Introduction

Pelvic inflammatory disease (PID) is “an inflammation of the endometrium, fallopian tubes, pelvic peritoneum and/or contiguous structures” (1). The inflammation is caused by an infection of the genital tract which spreads upwardly from the vagina and endocervix to the upper reproductive tract. Approximately 75% to 85% of PID is caused by *Neisseria gonorrhoeae* and *Chlamydia trachomatis* (1-3). It has been estimated that gonococcal infection is involved in 25% to 50% of PID cases and chlamydial infection in 30% to 60% (1).

The consequences of both symptomatic and asymptomatic (‘silent’) PID can be long-term and severe. The inflammatory process causes scarring of the fallopian tubes resulting in tubal infertility, ectopic pregnancy, and chronic pelvic pain. Asymptomatic PID likely remains undiagnosed and therefore untreated until the emergence of one or more sequelae; it has been estimated to occur three to five times more frequently than clinically diagnosed cases (4). After one episode of PID, approximately 15% of women become sterile; this rate doubles after a second infection (5).

The Canadian annual direct and indirect costs have been estimated as high as $13 million for gonococcal PID and as high as $21.1 million for chlamydial PID (5). These burden-of-illness estimates are for hospitalized cases only; there are no reliable estimates of ambulatory cases.

The symptoms of PID syndrome range from none to severe. Symptoms can include lower abdominal pain, urethritis or inflammation of the visceral peritoneum of the bladder, dysuria and urinary frequency, purulent endocervical discharge, and fever. Diagnosis of PID presents a major clinical challenge to most physicians; fewer than 16% of women with PID fit the textbook case definition (6). In one study the positive predictive value of a clinical diagnosis of PID was 0.65 — only slightly better than chance (7). In addition, PID can often be confused with other syndromes which leaves open the possibility for over-diagnosis (i.e. a false-positive diagnosis adds to the number of true cases).

Laboratory results are prone to false-negative and false-positive reports. Direct visualization of the upper genital tract requires an invasive surgical procedure (laparoscopy); it is not recommended as a diagnostic procedure. Even when laparoscopy is used, its sensitivity is less than ideal. A study in Burlington, Ontario found 50% sensitivity with laparoscopy — no better than chance (8).

PID is not a notifiable disease in Canada. Hospital separation data are the most reliable source of information on its incidence. Statistics Canada has published hospital morbidity data on the number of hospitalizations by province and by selected age groups for the fiscal years (31 March to 1 April of the following year) of 1983/84 to 1993/94. The Canadian Diagnostic Short Code 137, which corresponds to ICD-9 Code 614, was used and is defined as “inflammatory diseases of ovary, fallopian tube, and pelvic peritoneum” (9). The number of PID hospitalizations reflect the number of hospital discharges; accordingly, the database may include more than one admission for the same patient in one year. Incidence rates have been calculated per 100,000 female population by selected age groups using population data from Statistics Canada (Table 1).

Results

Between 1983/84 and 1993/94, 2.3% of all Canadian women of reproductive age (15 to 44 years of age) experienced PID of sufficient severity to be hospitalized. In this 11-year period, there was a decrease in total hospitalizations of 8,950 (51.1%). The rate of hospitalizations ranged from 386.0 per 100,000 in 1983/84 to 141.7 per 100,000 in 1993/94, representing a decrease of 64% (Figure 1). The 20- to 24-year-old group had the highest mean rate over that time period: 179.8 hospitalizations per 100,000. Second highest rates were in the 25- to 34-year-old age group, ranging from 323.1 per 100,000 in 1983/84 to 147.9 per 100,000 in 1993/94 (decrease of 54%). The 15- to 19-year-old group showed a decrease of 59%.
Table 1
Cases and rates* of hospital separations for PID, by age, Canada, 1983/84 to 1993/94

<table>
<thead>
<tr>
<th>Year **</th>
<th>Age group (years)</th>
<th>15-19</th>
<th>20-24</th>
<th>25-34</th>
<th>35-44</th>
<th>Total 15-44</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No.</td>
<td>Rate</td>
<td>No.</td>
<td>Rate</td>
<td>No.</td>
<td>Rate</td>
</tr>
<tr>
<td>1983/84</td>
<td>2,891</td>
<td>269.6</td>
<td>4,802</td>
<td>386.0</td>
<td>7,269</td>
<td>323.1</td>
</tr>
<tr>
<td>1984/85</td>
<td>2,866</td>
<td>290.2</td>
<td>4,797</td>
<td>385.9</td>
<td>7,320</td>
<td>319.5</td>
</tr>
<tr>
<td>1985/86</td>
<td>2,634</td>
<td>267.2</td>
<td>4,607</td>
<td>373.4</td>
<td>7,143</td>
<td>306.0</td>
</tr>
<tr>
<td>1986/87</td>
<td>2,650</td>
<td>273.1</td>
<td>4,243</td>
<td>351.5</td>
<td>7,101</td>
<td>298.5</td>
</tr>
<tr>
<td>1987/88</td>
<td>2,368</td>
<td>247.2</td>
<td>3,723</td>
<td>319.7</td>
<td>6,951</td>
<td>296.3</td>
</tr>
<tr>
<td>1988/89</td>
<td>2,249</td>
<td>236.2</td>
<td>3,197</td>
<td>286.8</td>
<td>6,246</td>
<td>252.7</td>
</tr>
<tr>
<td>1989/90</td>
<td>1,993</td>
<td>210.0</td>
<td>2,650</td>
<td>245.3</td>
<td>5,721</td>
<td>226.6</td>
</tr>
<tr>
<td>1990/91</td>
<td>1,803</td>
<td>190.5</td>
<td>2,309</td>
<td>219.3</td>
<td>5,359</td>
<td>210.5</td>
</tr>
<tr>
<td>1991/92</td>
<td>1,567</td>
<td>166.5</td>
<td>2,046</td>
<td>196.4</td>
<td>4,881</td>
<td>192.7</td>
</tr>
<tr>
<td>1992/93</td>
<td>1,387</td>
<td>147.0</td>
<td>1,778</td>
<td>171.6</td>
<td>4,343</td>
<td>172.1</td>
</tr>
<tr>
<td>1993/94</td>
<td>1,046</td>
<td>110.1</td>
<td>1,469</td>
<td>141.7</td>
<td>3,700</td>
<td>147.9</td>
</tr>
</tbody>
</table>

* Rates per 100,000 female population.
** Since 1980, Statistics Canada has reported all hospital morbidity by fiscal year.

Figure 1
Hospitalizations for PID, Canada, 1983/84-1993/94

![Graph showing hospitalization rates for PID by age group from 1983/84 to 1993/94]
Discussion

The decline in the incidence of PID hospitalizations represents a change in the findings for the previous decade. Hospital discharge data from the same source for the period 1971 to 1980 indicated an increase over time in all age groups with the largest increase (51%) in the 15- to 19-year-old age group, followed by the 20- to 24-year-old age group (35%)(11).

Decreases in PID hospitalizations in the latter part of the 1980s and onward also have been noted in Holland, Sweden, and the United States with differential decreases occurring in specific age groups(12-14). The downward trend of the incidence of PID hospitalizations may, in part, reflect concomitant decreases in the incidence of gonorrhea and chlamydial infections — declines as a result of the emerging awareness of the AIDS epidemic in the early 1980s and the augmented use of safer sex practices. However, caution should be exercised in interpreting the reasons for the decreases.

An American study attributed the decline in the incidence of PID hospitalizations to changes in practice patterns away from hospitalization to a preference for ambulatory care(13). This trend was noted for all conditions. It has been estimated that only 10% to 15% of all PID cases in Canada are treated in hospitals(15). Outpatient visits for PID in the province of Manitoba decreased from 695 to 463 (33%), while hospitalizations decreased from 139 to 71 (48%) over a 10-year period from 1981 to 1990. However, annual rates of hospitalization for any condition, including infectious diseases, remained relatively constant over the same period(16).

Furthermore, research findings have indicated that the incidence of chlamydial PID, which is less severe than gonococcal PID, is increasing in relation to the incidence of the latter. Accordingly, the hospitalized cases of PID may reflect the more severe cases due to gonorrhea. An estimate of the true incidence of PID is compounded by the asymptomatic nature of chlamydial infection (70% of cases are asymptomatic). More important, if asymptomatic cases remain undetected and therefore undiagnosed, the reservoir of infection causing PID becomes endemic in the community. Women with subacute or asymptomatic infections may never know that they have been infected with Chlamydia until they decide to have a child, at which time they discover that they have tubal infertility and cannot conceive, or they become pregnant but the pregnancy is ectopic. In essence, although the rates for hospitalization are showing a positive downward trend, hospitalization data represent the "tip of the iceberg." The true incidence of PID remains elusive and is subject to varying interpretations.

Prevention of genital-tract infection with Chlamydia and N. gonorrhoeae remains the best strategy for the prevention of PID and, subsequently, its long-term sequelae.

References

Source: R Kurtz, BA, J Doherty, BA (Hon), MSc, Division of STD Prevention and Control, Bureau of HIV/AIDS and STD, LCDC, Ottawa, ON.
CHLAMYDIA TRACHOMATIS GENITAL INFECTIONS — UNITED STATES, 1995

In 1995, all states (except Alaska) and the District of Columbia reported cases of chlamydial infection to the United States Centers for Disease Control and Prevention (CDC). Sixteen states (Hawaii, Idaho, Mississippi, Missouri, Nebraska, Nevada, New Hampshire, New Jersey, Oklahoma, South Dakota, Tennessee, Utah, Virginia, Washington, Wisconsin, and Wyoming) provided anonymous, line-listed data to CDC for 70,101 cases of chlamydial infection among women, including 68,344 with age data. *Chlamydia* screening and prevalence-monitoring activities were initiated in Public Health Service (PHS) Region X in 1988 as a CDC-supported demonstration project. In 1993, *Chlamydia* screening services for women were initiated in three additional PHS regions (III, VII, and VIII) and, in 1995, in the remaining PHS regions (I, II, IV, V, VI, and IX)*. In some regions, federally funded *Chlamydia* screening supplements local- and state-funded screening programs. Data about trends in *Chlamydia* test positivity (number of positive tests divided by number of adequate tests performed) were available for Region X (approximately 70,000 tests per year) for 1988 to 1995, and for Region III (approximately 100,000 tests per year), and Region VIII (approximately 50,000 tests per year) for 1994 to June 1996.

In 1995, a total of 477,638 cases of chlamydial infection were reported to CDC, representing a rate of 182.2 cases per 100,000 population. State-specific rates for women ranged from 46.4 to 622.0 per 100,000; rates were highest in western and midwestern states**. The overall reported rate for women (290.3) was nearly six times higher than that for men (52.1). Of the 68,344 cases in women for whom age data were available, 2,452 (4%) were aged ≤ 14 years; 31,511 (46%) were aged 15 to 19 years; 22,540 (33%) were aged 20 to 24 years; and 11,841 (17%), were aged ≥ 25 years.

In 1995, state-specific *Chlamydia* test positivity among women aged 15 to 24 years who were screened at selected family-planning clinics ranged from 2.8% to 9.4%. During 1988 to 1995, among women participating in the screening programs in Region X *Chlamydia* Project family-planning clinics, the annual rate of *Chlamydia* test positivity declined 65% (from 9.3% to 3.3%). Rates declined substantially for all age groups, although they were persistently highest among adolescents (Figure 1). Preliminary data from the Region III *Chlamydia* Project indicate that from 1994 to January to June 1996, the annual positivity rate among women aged ≤ 19 years declined 31% (from 7.8% to 5.4%). During this period, the annual positivity rate among women aged ≤ 19 years declined 16% (from 5.5% to 4.6%) in the Region VIII *Chlamydia* Project.

MMWR Editorial Note

In the United States, chlamydial infection is the most common infectious disease notification to state health departments and CDC[1]. During 1987 to 1995, the annual reported rate of chlamydial infections increased 281% (from 47.8 to 182.2 cases per 100,000), while the number of states that require reporting of this infection increased from 22 to 48. The findings in this report document the sustained high rates of chlamydial infections among American women through 1995. Reported case rates primarily reflect chlamydial infections identified during screening of asymptomatic women. Screening is an essential component of *Chlamydia* surveillance because, even though infection can cause extensive inflammation and scarring of the genital tract, most infected women have only mild manifestations or are asymptomatic. In states with low rates of screening and treatment, many chlamydial infections may not be identified or treated; consequently, state-specific rates of chlamydial infection may be low even though actual morbidity is high[2].

The low reported rate of chlamydial infection among men reflects low rates of testing among this group; most men with cases of chlamydial urethritis are treated for presumptive infection without confirmatory microbiologic testing, often as the result of a Gram-stain diagnosis of non-gonococcal urethritis. Increased use of *Chlamydia* testing among men would facilitate partner notification, evaluation, treatment, and reporting. In addition, approximately one-half of men with chlamydial infection may be asymptomatic, and screening for *Chlamydia* is limited among men, including those at high risk for infection.

Although notifiable disease surveillance data are an important indicator of morbidity, *Chlamydia* positivity rates among women attending family-planning clinics provide a more accurate measure of disease burden in this population. Based on analysis of data from universally tested clinic populations, comparisons of positivity rates (which may include more than one test for some patients) with prevalence rates (which are based on a single test per patient) indicate that positivity rates frequently underestimate prevalence, but generally by ≤ 10% (e.g. a positivity rate of 10% may correspond to a prevalence of 11%) (CDC, unpublished data, 1996). Positivity rates can be a useful indicator when prevalence data are not available. Declining positivity rates documented by the regional *Chlamydia* screening projects confirm the effectiveness of screening and treatment of women in reducing the prevalence of infection.

Both the case reports and the positivity data from family-planning clinics emphasize the continuing high burden of chlamydial disease in adolescent and young adult women. Data

* Region I = Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, and Vermont; Region II = New Jersey, New York, Puerto Rico, and United States Virgin Islands; Region III = Delaware, District of Columbia, Maryland, Pennsylvania, Virginia, and West Virginia; Region IV = Alabama, Florida, Georgia, Kentucky, Mississippi, North Carolina, South Carolina, and Tennessee; Region V = Illinois, Indiana, Michigan, Minnesota, Ohio, and Wisconsin; Region VI = Arkansas, Louisiana, New Mexico, Oklahoma, and Texas; Region VII = Iowa, Kansas, Missouri, and Nebraska; Region VIII = Colorado, Montana, North Dakota, South Dakota, Utah, and Wyoming; Region IX = Arizona, California, Hawaii, and Nevada; and Region X = Alaska, Idaho, Oregon, and Washington.

** Northeast = Connecticut, Maine, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, and Vermont; Midwest = Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Missouri, Nebraska, North Dakota, Ohio, South Dakota, and Wisconsin; South = Alabama, Arkansas, Delaware, District of Columbia, Florida, Georgia, Kentucky, Louisiana, Maryland, Mississippi, North Carolina, Oklahoma, South Carolina, Tennessee, Texas, Virginia, and West Virginia; and West = Alaska, Arizona, California, Colorado, Hawaii, Idaho, Montana, Nevada, New Mexico, Oregon, Utah, Washington, and Wyoming.
provided to CDC by the United States Department of Labor also documented high prevalences of infection among young women: in 1995, state-specific prevalence of infection among 16- to 24-year-old female entrants into the United States Job Corps (an economically disadvantaged population) ranged from 4.2% to 17.1% (3).

References