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ABSTRACT 

 

Murillo, F.J., Kenchington, E., Beazley, L., Lirette, C., Knudby, A., Guijarro, J., Benoît, H., 

Bourdages, H., Sainte-Marie, B. 2016. Distribution Modelling of Sea Pens, Sponges, 

Stalked Tunicates and Soft Corals from Research Vessel Survey Data in the Gulf of St. 

Lawrence for Use in the Identification of Significant Benthic Areas. Can. Tech. Rep. 

Fish. Aquat. Sci. 3170: vi + 132 p. 

 

Models of probability of occurrence and predicted biomass distribution have been created using 

random forest (RF) machine learning techniques for different invertebrate taxa in the Gulf of St. 

Lawrence. Response data were derived from by-catch data collected from DFO research vessel 

trawl surveys following a stratified random design based on depth and geographic region. 

Predictors were drawn from 78 environmental data layers. Occurrence models performed very 

well for sea pens and stalked tunicates and better than those for soft corals and sponges, with 

cross-validated AUC (area under the receiver operating characteristic curve) values ranging from 

0.71 to 0.91. For the models based on biomass, soft corals and sea pens had the highest R
2
 values 

(0.42 and 0.37, respectively) in the southern Gulf of St. Lawrence and stalked tunicates and sea 

pens in the north (0.41 and 0.27, respectively). Sponges had R
2 

values less than 0.1 in both areas 

indicating poor model performance. Biomass models from RF were compared with Generalized 

Additive Models (GAM). In most of the cases RF and GAM models provided similar results and 

were both good options, although the fewer assumptions required for RF makes this method 

more convenient. These results could be used to identify the potential distribution of some 

vulnerable marine ecosystems indicator taxa and help to refine the borders of the significant 

benthic area polygons defining significant concentrations of these taxa as identified through the 

kernel density analyses. In particular these models can be used to extrapolate to areas not 

covered by the research vessel surveys.  
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RÉSUMÉ 

 

Murillo, F.J., Kenchington, E., Beazley, L., Lirette, C., Knudby, A., Guijarro, J., Benoît, H., 

Bourdages, H., Sainte-Marie, B. 2016. Modélisation de la répartition des pennatules, des 

éponges, des tuniciers lobés et des coraux mous selon les données des relevés par navire 

scientifique dans le golfe du Saint-Laurent aux fins d'utilisation dans la désignation des 

zones benthiques importantes. Can. Tech. Rep. Fish. Aquat. Sci. 3170: vi + 132 p. 

 

Des modèles de la probabilité de présence et de la répartition de la biomasse prévue ont été créés 

au moyen de techniques d'apprentissage machine avec forêts aléatoires pour différents taxons 

d'invertébrés dans le golfe du Saint-Laurent. Les données de réponse ont été dérivées des 

données sur les prises accessoires recueillies à partir des relevés au chalut par navire scientifique 

de Pêches et Océans Canada, conformément à un plan aléatoire stratifié fondé sur la profondeur 

et la région géographique. Des facteurs de prévision ont été élaborés en fonction de 78 couches 

de données environnementales. Les modèles de présence donnaient un très bon rendement pour 

les pennatules et les tuniciers lobés et étaient meilleurs que ceux pour les coraux mous et les 

éponges, selon des valeurs contre-validées de l'aire sous la courbe de la fonction d'efficacité du 

récepteur variant de 0,71 à 0,91. Pour les modèles fondés sur la biomasse, les coraux mous et les 

pennatules avaient les plus grandes valeurs de R
2
 (0,42 et 0,37, respectivement) dans le sud du 

golfe du Saint-Laurent, tandis que les tuniciers lobés et les pennatules avaient les plus grandes 

valeurs dans le nord (0,41 et 0,27, respectivement). Les éponges avaient des valeurs de R
2
 

inférieures à 0,1 dans les deux zones, ce qui indique un faible rendement du modèle. Les 

modèles de la biomasse avec forêts aléatoires ont été comparés à des modèles additifs 

généralisés. Dans la plupart des cas, les modèles avec forêts aléatoires et les modèles additifs 

généralisés donnaient des résultats semblables et étaient tous les deux de bonnes options; 

toutefois, le modèle avec forêts aléatoires est plus pratique comme il nécessite moins 

d'hypothèses. Ces résultats pourraient servir à déterminer l'aire de répartition possible de certains 

taxons indicateurs des écosystèmes marins vulnérables et aider à peaufiner les limites des 

polygones des zones benthiques importantes pour définir les concentrations importantes de ces 

taxons, conformément aux analyses des noyaux de densité. En particulier, ces modèles peuvent 

servir à extrapoler à des zones qui ne sont pas couvertes par les relevés par navire scientifique.  
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INTRODUCTION 
 

Ecologists and conservation managers are increasingly using predictive models as a means of 

estimating species distributions, and they have become a significant component of conservation 

planning (e.g., Davis and Guinotte, 2011; Porfirio et al., 2014; Rooper et al., 2014). Species 

distribution models (SDM) estimate the relationship between species records at different 

locations and the environmental and/or spatial characteristics of those sites (Franklin, 2009). 

SDMs are often used to extend typically sparse point observations to create continuous 

predictions of species’ distribution or habitat type. SDMs have been extensively used in both 

terrestrial and marine environments to make contemporary distribution maps (e.g., Dolan et al., 

2008; Davies et al., 2008; Guinan et al., 2009; Tittensor et al., 2009; Davies and Guinotte, 2011; 

Yesson et al., 2012; Knudby et al. 2013 a,b,c; Rooper et al., 2014), to predict species/habitat 

responses to climate change (e.g., Lawler et al., 2009) and to predict the future range of invasive 

species (Peterson and Robins, 2003; Peterson 2003). They can also provide knowledge of the 

differences between actual and potential species distribution, making them a very useful tool for 

habitat restoration in fisheries and ocean management. 

 

Many different SDM models and modelling approaches are currently available (Guisan and 

Zimmerman, 2000). In recent years, machine learning methods have become increasingly 

common. These comprise a series of non-parametric techniques capable of synthesizing 

regression or classification functions based on the available data. Random Forest (RF) (Breiman, 

2001) is one such method that can be used for regression or classifications and is considered 

superior to most commonly-used methods (Cutler et al., 2007). Others have used regression 

based techniques such as generalized additive modelling (e.g., Rooper et al., 2014) which offer a 

different theoretical basis for the production of the interpolated surfaces. 

 

SDM using RF was recently applied in the Northwest Atlantic Fisheries Organization (NAFO) 

Regulatory Area (Knudby et al., 2013 a,b,c; NAFO, 2015) to refine the Vulnerable Marine 

Ecosystems polygons based on corals and sponges (NAFO, 2015) previously identified through 

Kernel Density Analysis (KDE) (Kenchington et al., 2014). In 2010, Kenchington et al. (2010) 

identified significant concentrations of corals and sponge on the east coast of Canada including 

the Gulf of St. Lawrence region, using kernel density estimation (KDE). This analysis has been 

updated with the most recent survey data (Kenchington et al., 2016). The Estuary and Gulf of St. 

Lawrence are amongst the largest and most productive estuarine/marine ecosystems in the world 

(Dufour and Ouellet, 2007). Here we present SDM-based maps of sea pens, sponges, stalked 

tunicates and cauliflower coral in the Gulf of St. Lawrence using RF. Additionally, generalized 

additive models (GAM) were used to model sea pen biomass, the results of which were 

compared to those from RF. These models will complement the kernel density surface polygons 

provided in Kenchington et al. (2016) towards Department of Fisheries and Oceans’ (DFO) 

implementation of the Policy for Managing the Impact of Fishing on Sensitive Benthic Areas for 

the east coast of Canada. 
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MATERIALS AND METHODS 

Study Area 
The ‘Gulf Region’ used herein (Figure 1), is a DFO Marine Protected Area (MPA) Network 

Planning Area for the Estuary and Gulf of St. Lawrence and corresponds to the area used as the 

spatial boundary for the construction of environmental variables in Beazley et al. (2016). This 

area combines three of DFO’s six administrative regions across Canada, the Gulf Region in the 

southern portion, the Quebec Region in the northern portion, and the Newfoundland Region to 

the east. A 5-km buffer was placed around all land to avoid its inclusion in the models. The total 

area covered in the study extent is approximately 196,494 km
2
 based on a NAD 1983 UTM Zone 

20N projection. 

 
Figure 1. Extent of the boundary used for species distribution modelling in the Gulf of St. 

Lawrence. 

 

Response Data 
Presence-absence and biomass records for four taxonomic groups (see Table 1 for species/taxa 

included in each group) were derived from by-catch data collected from DFO research vessel 

trawl surveys following a stratified random design based on depth and geographic region (Kulka 

et al., 2006).  We included analyses on the soft corals (Nephtheidae), most likely the cauliflower 

coral Gersemia rubiformis [syn. Eunephthya rubiformis], and on the stalked tunicates, mostly 
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Boltenia ovifera, as these were identified by oceans managers as being of interest. The latter 

taxon, the stalked tunicates, is recognized by NAFO as a vulnerable marine ecosystem indicator 

(NAFO, 2013).  

 

Trawl surveys in the Gulf Region were conducted on the CCGS Alfred Needler or Wildfred 

Templeman using a Western IIA trawl gear with tow duration of 30 minutes in the southern Gulf 

of St. Lawrence. In Quebec Region surveys were conducted on the CCGS Teleost using a 

Campelen 1800 trawl gear with tow duration of 15 minutes in the northern Gulf of St. Lawrence.  

 

Table 1. Taxon name and species code included in each of the taxonomic group studied for the 

northern and southern Gulf of St. Lawrence. 

Taxonomic group Region Taxon name Species code 

Porifera 

(sponges) 

Northern Gulf Porifera 

Stylocordila borealis 

1101 

1112 

 Southern Gulf Asconema foliata 

Biemna variantia 

Geodia spp. 

Halichondria panicea 

Halichondria sitiens 

Haliclona oculata 

Haliclona sp. 

Iophon sp. 

Mycale lingua 

Phakellia spp. 

Phakellia ventilabrum 

Polymastia mammillaris 

Polymastia sp. 

Porifera 

Suberites ficus 

Tentorium semisuberites 

8365 

8617 

8364 

8623 

8620 

8621 

8618 

8614 

8616 

8366 

8624 

8611 

8610 

8600 

8613 

8612 

Pennatulacea 

(sea pens) 

Northern Gulf Anthoptilum grandiflorum 

Halipteris finmarchica 

Pennatula aculeata 

Pennatula grandis 

Pennatulacea 

2218  

2217 

2203 

2210 

2201 

 Southern Gulf Anthoptilum grandiflorum 

Pennatulacea 

8631 

8318 

Gersemia 

(cauliflower coral) 

Northern Gulf Gersemia rubiformis 2184 

 Southern Gulf Eunephthya rubiformis (unaccepted) 

(syn.Gersemia rubiformis ) 

8324 

Boltenia ovifera 

(stalked tunicate) 

Northern Gulf Boltenia ovifera 8792 

 Southern Gulf Sea potato 1823 
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Response data for each taxonomic group were filtered so that only one presence or absence 

record occurred within a single environmental data raster cell, with presence records taking 

precedence over an absence record when both co-occurred in the same cell. The temporal range 

and number of presence and absence records are detailed individually for each taxonomic group. 

The associated biomass values were averaged across all tows within a single cell. There is 

overlap between the surveys along the southern margin of the Laurentian Channel which in 

theory would allow for the calculation of a conversion factor to one or other gear type and permit 

a single analysis of the data. However, the area of overlap is small and specific to one habitat 

type (slope) and consequently any attempt to apply a conversion factor derived from those data 

would introduce other biases. Therefore, two different models were performed with the biomass 

data given the different tow lengths and gears; although the entire region was modeled with the 

presence-absence data where catchability was deemed to be less of an issue.  

 

In fisheries ecology and management, fish catch is normally standardized to CPUE (catch per 

unit effort) assuming a linear relationship between fish abundance and time of trawling (DFO, 

2007). Previously, we have found no relationship between trawl length and the biomass of these 

highly aggregated taxa (Kenchington et al., 2014). However, to verify that conclusion for the 

present data, by-catch weight of each taxon from the surveys carried out in the northern and 

southern Gulf of St. Lawrence was plotted in relation to trawl length in order to evaluate if 

biomass should be standardized to CPUE or analysed as kg/tow instead. 

 

Environmental Data 
 

Dutil et al. (2011) compiled different environmental variables for use in habitat classification for 

the Gulf of St. Lawrence. They produced continuous interpolated surfaces for each variable 

through natural neighbours, although no quantitative assessment of the quality of the underlying 

data or interpolation was provided. Therefore new continuous interpolated surfaces of 113 

environmental variables were produced for potential use in species distribution models. 

Variables were chosen based on their availability and assumed relevance to the distribution of 

benthic fauna. Specific details on the methods used for the spatial interpolation of these variables 

as well as quantitative assessment of the quality of the interpolations are documented in Beazley 

et al. (2016). From the 113 continuous interpolated surfaces obtained, 78 were used as predictor 

variables in the models (Table 2). All variables except depth and slope were derived from long-

term modelled oceanographic or remote-sensing data and were spatially interpolated across the 

study area using ordinary kriging in ArcMap 10.2.2 software (ESRI, 2011). 

Temperature relationship between model data (GLORYS) and in situ data (CTD) 

Independent data from CTDs obtained during DFO research vessel trawl surveys were used to 

evaluate the interpolated mean bottom temperature obtained from GLORYS data. Surveys in the 

southern region were mainly carried out in September and data were available for the period 

2004 to 2011. Whereas, surveys in the northern region were mainly carried out in August and 

data were available for the period 2006 to 2011. Temperature values from the mean bottom 

temperature surface obtained from the GLORYS data were extracted to the CTD locations in 

ArcGIS 10.2 (ESRI, 2011) and the correlation between CTD and GLORYS temperature was 

evaluated. In order to study the spatial correlation between the two variables, different bottom 

temperature interpolated surfaces from CTD data were created for each year and region 
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following the same methodology than Beazley et al. (2016). Data from 2006 and 2011 are 

presented. 
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Table 2. Summary of the 78 environmental variables used as predictor variables in the modelling. N/A = Not applicable. 

 

Variable Data source 
Temporal 

range 
Unit 

Native 

resolution 

Depth CHS-ABC N/A metres 15 arc-sec 

(~500 m) 

Slope CHS-ABC N/A degrees 15 arc-sec 

(~500 m) 

     

Bottom Salinity Mean GLORYS2V1 1993 - 2011 N/A ¼ º  

Bottom Salinity Average Minimum  GLORYS2V1 1993 - 2011 N/A ¼ º 

Bottom Salinity Average Maximum  GLORYS2V1 1993 - 2011 N/A ¼ º 

Bottom Salinity Average Range  GLORYS2V1 1993 - 2011 N/A ¼ º 

     

Bottom Temperature Mean GLORYS2V1 1993 - 2011 ºC ¼ º 

Bottom Temperature Average Minimum  GLORYS2V1 1993 - 2011 ºC ¼ º 

Bottom Temperature Average Maximum  GLORYS2V1 1993 - 2011 ºC ¼ º 

Bottom Temperature Average Range  GLORYS2V1 1993 - 2011 ºC ¼ º 

     

Bottom Current Speed Mean GLORYS2V1 1993 - 2011 m s
-1

 ¼ º 

Bottom Current Speed Average Minimum  GLORYS2V1 1993 - 2011 m s
-1

 ¼ º 

Bottom Current Speed Average Maximum  GLORYS2V1 1993 - 2011 m s
-1

 ¼ º 

Bottom Current Speed Average Range GLORYS2V1 1993 - 2011 m s
-1

 ¼ º 

     

Bottom Shear Mean GLORYS2V1 1993 - 2011 Pa ¼ º 

Bottom Shear Average Minimum GLORYS2V1 1993 - 2011 Pa ¼ º 

Bottom Shear Average Maximum GLORYS2V1 1993 - 2011 Pa ¼ º 

Bottom Shear Average Range GLORYS2V1 1993 - 2011 Pa ¼ º 

     

Surface Salinity Mean GLORYS2V1 1993 - 2011 N/A ¼ º 

Surface Salinity Average Minimum  GLORYS2V1 1993 - 2011 N/A ¼ º 

Surface Salinity Average Maximum  GLORYS2V1 1993 - 2011 N/A ¼ º 

Surface Salinity Average Range  GLORYS2V1 1993 - 2011 N/A ¼ º 
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Surface Temperature Mean GLORYS2V1 1993 - 2011 ºC ¼ º 

Surface Temperature Average Minimum  GLORYS2V1 1993 - 2011 ºC ¼ º 

Surface Temperature Average Maximum  GLORYS2V1 1993 - 2011 ºC ¼ º 

Surface Temperature Average Range  GLORYS2V1 1993 - 2011 ºC ¼ º 

     

Surface Current Speed Mean GLORYS2V1 1993 - 2011 m s
-1

 ¼ º 

Surface Current Speed Average Minimum  GLORYS2V1 1993 - 2011 m s
-1

 ¼ º 

Surface Current Speed Average Maximum  GLORYS2V1 1993 - 2011 m s
-1

 ¼ º 

Surface Current Speed Average Range  GLORYS2V1 1993 - 2011 m s
-1

 ¼ º 

     

Maximum Average Mixed Layer Depth Fall  GLORYS2V1 1993 - 2011 metres ¼ º 

Maximum Average Mixed Layer Depth Winter  GLORYS2V1 1993 - 2011 metres ¼ º 

Maximum Average Mixed Layer Depth Spring  GLORYS2V1 1993 - 2011 metres ¼ º 

Maximum Average Mixed Layer Depth Summer  GLORYS2V1 1993 - 2011 metres ¼ º 

     

Fall Chlorophyll a Mean MODIS 2002 - 2012 mg m
-3

 2 km 

Fall Chlorophyll a Minimum MODIS 2002 – 2012 mg m
-3

 2 km 

Fall Chlorophyll a Maximum MODIS 2002 – 2012 mg m
-3

 2 km 

Fall Chlorophyll a Range MODIS 2002 – 2012 mg m
-3

 2 km 

     

Spring Chlorophyll a Mean MODIS 2002 – 2012 mg m
-3

 2 km 

Spring Chlorophyll a Minimum MODIS 2002 – 2012 mg m
-3

 2 km 

Spring Chlorophyll a Maximum MODIS 2002 – 2012 mg m
-3

 2 km 

Spring Chlorophyll a Range MODIS 2002 – 2012 mg m
-3

 2 km 

     

Summer Chlorophyll a Mean MODIS 2002 – 2012 mg m
-3

 2 km 

Summer Chlorophyll a Minimum MODIS 2002 – 2012 mg m
-3

 2 km 

Summer Chlorophyll a Maximum MODIS 2002 – 2012 mg m
-3

 2 km 

Summer Chlorophyll a Range MODIS 2002 – 2012 mg m
-3

 2 km 

     

Annual Chlorophyll a Mean MODIS 2002 – 2012 mg m
-3

 2 km 

Annual Chlorophyll a Minimum MODIS 2002 – 2012 mg m
-3

 2 km 
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Annual Chlorophyll a Maximum MODIS 2002 – 2012 mg m
-3

 2 km 

Annual Chlorophyll a Range MODIS 2002 – 2012 mg m
-3

 2 km 

     

Fall Chlorophyll a Mean MERIS 2003 - 2011 mg m
-3

 1 km 

Fall Chlorophyll a Minimum MERIS 2003 - 2011 mg m
-3

 1 km 

Fall Chlorophyll a Maximum MERIS 2003 - 2011 mg m
-3

 1 km 

Fall Chlorophyll a Range MERIS 2003 - 2011 mg m
-3

 1 km 

     

Spring Chlorophyll a Mean MERIS 2003 - 2011 mg m
-3

 1 km 

Spring Chlorophyll a Minimum MERIS 2003 - 2011 mg m
-3

 1 km 

Spring Chlorophyll a Maximum MERIS 2003 - 2011 mg m
-3

 1 km 

Spring Chlorophyll a Range MERIS 2003 - 2011 mg m
-3

 1 km 

     

Summer Chlorophyll a Mean MERIS 2003 - 2011 mg m
-3

 1 km 

Summer Chlorophyll a Minimum MERIS 2003 - 2011 mg m
-3

 1 km 

Summer Chlorophyll a Maximum MERIS 2003 - 2011 mg m
-3

 1 km 

Summer Chlorophyll a Range MERIS 2003 - 2011 mg m
-3

 1 km 

     

Annual Chlorophyll a Mean MERIS 2003 - 2011 mg m
-3

 1 km 

Annual Chlorophyll a Minimum MERIS 2003 - 2011 mg m
-3

 1 km 

Annual Chlorophyll a Maximum MERIS 2003 - 2011 mg m
-3

 1 km 

Annual Chlorophyll a Range MERIS 2003 - 2011 mg m
-3

 1 km 

     

Spring Primary Production Mean SeaWiFS Level-3 with 

other input parameters 

2006 – 2010 mg C m
-2

 day
-1 9 km 

Spring Primary Production Average Minimum SeaWiFS Level-3 with 

other input parameters 

2006 – 2010 mg C m
-2

 day
-1 9 km 

Spring Primary Production Average Maximum SeaWiFS Level-3 with 

other input parameters 

2006 – 2010 mg C m
-2

 day
-1 9 km 

Spring Primary Production Average Range SeaWiFS Level-3 with 

other input parameters 

2006 – 2010 mg C m
-2

 day
-1 9 km 

     

Summer Primary Production Mean SeaWiFS Level-3 with 2006 – 2010 mg C m
-2

 day
-1 9 km 
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other input parameters 

Summer Primary Production Average Minimum SeaWiFS Level-3 with 

other input parameters 

2006 – 2010 mg C m
-2

 day
-1 9 km 

Summer Primary Production Average Maximum SeaWiFS Level-3 with 

other input parameters 

2006 – 2010 mg C m
-2

 day
-1 9 km 

Summer Primary Production Average Range SeaWiFS Level-3 with 

other input parameters 

2006 – 2010 mg C m
-2

 day
-1 9 km 

     

Annual Primary Production Mean SeaWiFS Level-3 with 

other input parameters 

2006 – 2010 mg C m
-2

 day
-1 9 km 

Annual Primary Production Average Minimum SeaWiFS Level-3 with 

other input parameters 

2006 – 2010 mg C m
-2

 day
-1 9 km 

Annual Primary Production Average Maximum SeaWiFS Level-3 with 

other input parameters 

2006 – 2010 mg C m
-2

 day
-1 9 km 

Annual Primary Production Average Range SeaWiFS Level-3 with 

other input parameters 

2006 – 2010 mg C m
-2

 day
-1 9 km 
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Distribution Modelling 

Random Forest 

Random Forest (Breiman, 2001), is a non-parametric machine learning technique, where 

multiple regression or classification trees (usually > 500) are built using random subsets of the 

data (Figure 2). Each tree is fit to a bootstrap sample of the biological observations (i.e. the ‘in-

bag’ observations), and the best split at each node is selected based on a randomly-chosen subset 

of predictor variables. Regression trees are used for response variables consisting of continuous 

data and classification trees for categorical variables. RF is a robust statistical method requiring 

no distributional assumptions on the covariate relationship to the response in comparison to other 

classical statistical models such as generalized linear models (GLMs) or generalized additive 

models (GAMs). 

 

For classification with presence-absence response data, RF can be used to predict the probability 

of a species’ presence in non-sampled areas by identifying areas with similar environmental 

conditions. Whereas, for regression with biomass response data, RF can be used to predict the 

species’ biomass in non-sampled areas. The models were built in the statistical computing 

software package R (R Development Core Team, 2015) using the ‘randomForest’ package (Liaw 

and Wiener, 2002). Default values were used for RF parameters, and 500 trees were constructed. 

 

RF classification models on response presence/absence and RF regression models on response 

biomass, were built individually for sea pens, sponges, stalked tunicates and cauliflower coral.  

 

 
Figure 2. An example of a regression model tree (modified from Kuhn & Johnson, 2013)  

 

Condition 1b 

Split 4 

Condition 4a Condition 4b 

 Leaf 7  Leaf 8 

Condition 1a 

Split 1 

Condition 2b Condition 2a 

 Leaf 2  Leaf 5  Leaf 4 

Split 3 

Condition 3b Condition 3a 

Split 2 
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Generalized Additive Model 

A generalized additive model (GAM) (Hastie and Tibshirani, 1986) is a generalized linear model 

in which the linear predictor involves the sum of unknown smooth functions of some predictor 

variables. In general the model has a structure such as: 

 

g(E(Y)) = β0 + f1(x1i) + f2(x2i) + ...+ fm(xm) 

 

where an exponential family distribution is specified for Y along with a link function g. The 

functions fj(xj) are smooth functions that can be specified by non-parametric means. The model 

allows for somewhat flexible specification of the dependence of the response on the covariates. 

This flexibility provides potential for better fits to data than purely parametric models, but brings 

the cost to represent the smooth functions in some way and to choose how smooth they should 

be. 

 

The mgcv package in R (Wood, 2006) was used to construct GAM models to predict the biomass 

in order to compare with the RF models. The top ten and top fifteen most important 

environmental variables obtained from the RF model based on biomass of sea pens were used as 

covariates in these models as well as the environmental variables correlated less than 0.7. Highly 

correlated variables were removed following the approach described in Knudby et al. (2013a). 

The autocorrelation of residuals was studied for the best of these models and in the case where it 

was significant latitude and longitude were included in the best model as a tensor product (i.e. 

te(lat, long)). Additional GAM models for the rest of the taxa with the environmental variables 

correlated less than 0.7 (Model 1) and including location (Model 2) are presented in Appendix I. 

The full model follows the formula: 

 

y =s(var.1)+s(var.2)+…+s(var.n) +te(lat,long) 

 

where y was specified as a Tweedie distribution and s indicate a thin plate regression spline 

smoothing function. A Tweedie model is an expansion of a compound Poisson model derived 

from the stochastic process where the weight of the counted objects has a gamma distribution. 

This model has the advantage of handling the zero-catch data in a unified way and the statistical 

performance seems to be rather better than that of a Delta lognormal model (Shono, 2008). 

Tweedie factor was estimated inside the model. 

Model evaluation 

Presence-Absence response data – Classification model (RF) 

The by-catch records of some taxonomic groups are characterized by a higher number of 

absences relative to presences (i.e. unbalanced species prevalence). The distribution of these two 

classes may be biased spatially and/or environmentally across the study area. Classification 

accuracy in random forest is prone to bias when the categorical response variable is highly 

imbalanced (Chen et al., 2004). This is due to over-representation of the majority class in the 

bootstrap sample leading to a higher frequency in which the majority class is drawn, therefore 

skewing predictions in that favour (Evans et al., 2011). Several different approaches have been 

used to address imbalanced data: 1) assign a high cost to misclassification of the minority class, 

2) down-sample the majority class, and 3) up-sample the minority class (Evans et al., 2011). 

Although several studies suggest a balanced modelling prevalence of 0.5 (McPherson et al., 
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2004; Liu et al., 2005), this approach may result in a loss of information particularly for rare 

species, and may not be necessary when the model training data is reliable and not biased 

spatially and/or environmentally (Jiménez-Valverde and Lobo, 2006). Another widely-used 

approach is to adjust the threshold used to divide the probabilistic predictions of occurrence into 

discrete predictions of presence or absence, to match modelling prevalence (Liu et al., 2005). 

The latter approach has shown to produce constant error rates and optimal model accuracy 

measures compared to balancing modelling prevalence (Liu et al., 2005; Hanberry and He, 

2013). 

  

For each taxonomic group we assessed the number of presences and absences and their spatial 

distribution across the study area. We employed two different random forest modelling methods. 

The first method was to model the response data with a balanced species prevalence and 

threshold of 0.5. Here the absence records were randomly down-sampled to match the number of 

presences prior to modelling. In the second method we used all presence and absence records and 

used species prevalence as the threshold. The appropriateness of each modelling approach on the 

response data was assessed based on the model accuracy measures (see explanation below of 

model accuracy measures) and the spatial pattern of the predictions of presence probability in 

relation to the response data. 

 

Accuracy measures were obtained using 10-fold cross validation (10 resamples over which 

performance estimates were obtained). In 10-fold cross validation the response data are 

randomly split into 10 equal-sized groups and the model is trained on a combination of 9, while 

validated on the remaining group. 

 

Three measures of accuracy were used to assess model performance: 1) sensitivity, 2) specificity, 

and 3) AUC. In a classification model with two classes (e.g. presence and absence), there are 

four possible predicted outcomes: 1) true positive, where observed presences are predicted as 

presences, 2) false negative, where observed presences are predicted as absences, 3) true 

negative, where observed absences are predicted as absences, and 4) false positive, where 

observed absences are predicted as presences (Fawcett, 2006). Sensitivity measures the 

proportion of observed presences correctly predicted as presence (i.e. the true positive rate) 

(McPherson et al., 2004; Fawcett, 2006). Low sensitivity indicates high omission error (i.e. false 

negative rate). Specificity measures the proportion of observed absences correctly predicted as 

absence (i.e. the true negative rate). Low specificity indicates high commission error (i.e. the 

false positive rate). Both sensitivity and specificity are derived from a two-by-two confusion 

matrix of the tabulated predicted outcomes. 

 

The AUC is a threshold-independent measure of model accuracy that is calculated from the 

combination of true positive rate (sensitivity) and false positive rate (1 – specificity), and equals 

the probability that the model will rank a randomly-chosen presence instance higher than a 

randomly-chosen absence instance (Fawcett, 2006). Its value ranges from 0 to 1, with values 

larger than 0.5 indicating performance better than random (Fawcett, 2006). It was calculated 

using 10-fold cross validation. 

 

For models generated using a balanced species prevalence and threshold of 0.5, 10 data subsets 

were created with an equal number of presence and absences (balanced data) and 10 models 
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were run. AUC was determined by averaging AUC values between folds within each run. The 

model with the highest average AUC was considered the most accurate in predicting the 

validated data and was used as the final model in which predicted presence probabilities of the 

response data were generated. The predicted outcomes from the two-by-two confusion matrices 

were summed across all 10 folds to give a complete confusion matrix for each model from which 

sensitivity and specificity were calculated. For models generated using all presence and absence 

data and a threshold equal to species prevalence, only one model was considered and the AUC 

was determined by averaging AUC values between folds. The predicted outcomes from the two-

by-two confusion matrices were summed across all 10 model folds to give one confusion matrix 

from which sensitivity and specificity were calculated. 

 

Biomass response data – Regression model 

RF 

Models were validated using 10-fold cross validation. Data were split using the createFolds 

function in R. This function performs stratified partitioning into k groups in order to evenly 

distributed the biomass within splits. Models were built using each calibrated and validated 

dataset and accuracy measures were calculated for each corresponding dataset. The accuracy 

measures used to validate the models included the goodness-of-fit statistic R
2
, the root mean 

squared error (RMSE) value and the percentage of variance explained. RMSE was normalised to 

a percentage of the range of observed biomass values (ymax – ymin) for each specific response 

(NRMSE) to facilitate the comparison between responses in the different models. The correlation 

between biomass and presence probability for stalked tunicates was also evaluated. Cross-

validation gives an average of the accuracy measures used, but can also be used to estimate the 

variability around the mean to evaluate the stability of the model fit, and to check for the 

arbitrary effects from subsampling data for calibrate and validate the model. 

 

GAM 

Residual plots to evaluate the fitness of the model can be generated with the function gam.check 

of the mgcv package. However, an artifact of the link function shows exact zeros as a band along 

the residuals vs. linear predictor plot, making it difficult to see whether residuals show 

heteroskedasticity. In order to avoid this issue randomised quantile residuals (Dunn and Smyth, 

1996) were generated using the rqgam.check function of the dsm package in R (Miller et al. 

2015). Randomised quantile residuals transform the residuals to be exactly normally distributed 

making the residuals vs. linear predictor plot much easier to interpret as it therefore doesn’t 

include the artifacts generated by the link function. The goodness-of-fit statistic R
2
, the 

percentage of variance explained, was used to evaluate the performance of the models as well as 

the prediction map derivate of the model in comparison to the real data. 

 

Ecological interpretation 

Ecological interpretation of the models was aided by predictor variable importance measures and 

partial dependence plots. In classification random forest, variable importance is measured as the 

mean decrease in Gini value, otherwise known as Gini impurity. When the response data are split 

into two child nodes based on a randomly-chosen variable, the data in the two descendent nodes 

are more homogeneous than that of the parent node. This difference in homogeneity between 

parent and child nodes is measured by the Gini index, where the increase in homogeneity equals 

in a decrease in Gini value. The sum of all decreases in Gini index for each variable in each tree 
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is averaged across all trees in the model ‘forest’ and then across all 10 repetitions of each model 

fold. The variable with the highest mean decrease in Gini value is considered the most important 

variable in the model. Variable importance in regression random forest is measured by the mean 

decrease in the residual sum of squares when the variable is included in a tree split.  

 

Partial dependence plots using the partialPlot function in R were generated for the 6 highest 

variable importance scores. Partial dependence plots show the relationship between a particular 

predictor variable and log-transformed predicted probabilities of presence (for classification 

models) or the biomass regression function (for regression models),while the other predictor 

variables were held constant at their mean observed value and are useful in showing general 

trends in model accuracy’s dependence on the predictors (Herrick et al., 2013). For classification 

models, the y axis ranges from -∞ to ∞ and quantifies the log-odds of a positive classification for 

the total range of values in 𝓍. Log-odds are logarithmic transformations of the probabilities for 

values in 𝓍 (Hastie et al., 2005). These values were transformed to the original presence 

probability scale using p = exp(y) / (1 + exp(y)), where p = the probability of presence, and y is 

the log-odds of presence, the standard output from the partialPlot function.  

 

RESULTS 

 

Relationship between Catch Weight and Trawl Duration  
 

Analyses of the catch weight distributions between trawl durations (length) indicated that there is 

no relationship between the catch weight and length of the tow (Figure 3). This is consistent with 

the aggregated distribution of the VME indicator taxa and the need for alignment between the 

trawl path and the maximum dimension of the aggregation to create a linear relationship. For this 

reason biomass was analysed as kg/tow instead of standardized to CPU. 

Temperature relationship between model data (GLORYS) and in situ data 

(CTD) 
 

Bottom temperature recorded from CTD during bottom trawl surveys carried out in August in the 

northern region and in September in the southern region from 2006 to 2011 was used to study the 

Spearman correlation with the mean bottom temperature obtained from GLORYS data for the 

same month and year in each region. This was done to evaluate the GLORYS data so that we 

could judge whether ecological inferences could be made from those modeled variables. In the 

northern region the average (+ SD) correlation between years was 0.761 + 0.020 and when the 

full period was considered, was 0.81. In the southern region the average (+ SD) correlation 

between years was 0.836 + 0.003 and when the full period was considered, was 0.81. For the 

entire Gulf region the average (+ SD) correlation between years was 0.838 + 0.002 and when the 

full period was considered, was 0.839 (Figure 4). 

 

 

 

 



 

15 

 

 

 

 

Figure 3. By-catch weight (kg) of each taxon in relation of trawl length (nmi) for the surveys 

carried out in the northern (upper panel) and southern (lower panel) Gulf of St. Lawrence. Note 

that the y axis is in logarithmic scale. 
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Figure 4. Scatterplot between mean bottom GLORYS temperature and CTD bottom temperature 

for the Gulf Region (2006-2011 period). 

 

Two years (2006 and 2011) were used to study the spatial correlation between the mean bottom 

temperature based on GLORYS data and the bottom temperature based on CTD data obtained 

for the same month and year in each of the regions. Figures 5 to 8 show a high spatial correlation 

between both data types for both regions. The only discrepancy between the figures is found 

around Magdalen Islands in the southern Gulf Region (Figures 7, 8) where the GLORYS data 

predict higher mean bottom temperature than the CTD data. However, this area is not surveyed 

by the cruises, therefore the pattern observed in the CTD figures are also product of the CTD 

interpolation data. 

 

 
Figure 5. Interpolated prediction surface of Bottom Temperature (˚C) based on GLORYS data 

(left panel) and CTD data (right panel) in the northern Gulf of St. Lawrence for 2006 August. 
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Figure 6. Interpolated prediction surface of Bottom Temperature (˚C) based on GLORYS data 

(left panel) and CTD data (right panel) in the northern Gulf of St. Lawrence for 2011 August. 

 
Figure 7. Interpolated prediction surface of Bottom Temperature (˚C) based on GLORYS data 

(left panel) and CTD data (right panel) in the southern Gulf of St. Lawrence for 2006 September. 

  
Figure 8. Interpolated prediction surface of Bottom Temperature (˚C) based on GLORYS data 

(left panel) and CTD data (right panel) in the southern Gulf of St. Lawrence for 2011 September. 
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Distribution Modelling 
 

Sea Pens (Pennatulacea) 

Data Sources and Distribution 

The data available for analysis of sea pens in the Gulf Region was collected over a period of 13 

years from 2003 to 2015 (Table 3). The data were filtered so that only one presence or absence 

record occurs within the same environmental data raster cell (approximately 1 km
2
; with 

presence records taking precedence over an absence record when both occurred in the same cell), 

giving a total of 238 presence and 1595 absence records for the southern Gulf and 1034 presence 

and 769 absence records for the northern Gulf. Sea pen biomass (kg) was averaged across each 

catch occurring within the same cell. Sea pens presence and absence records were distributed 

unevenly across the Gulf Region (Figure 9). Presences were predominant on the northern Gulf 

and absences in the southern. Highest biomass occurred mainly along the Laurentian Channel.  

 

Table 3. Total number of presences and absences of sea pen catch data recorded from DFO trawl 

surveys from 2003 to 2015 in the Gulf Region. P, presences; A, absences. 

 

 
Southern 

Gulf 

Northern 

Gulf 

Year P A P A 

2003 5 77 - - 

2004 17 202 2 126 

2005 28 190 - - 

2006 18 147 80 101 

2007 31 136 105 74 

2008 24 151 121 69 

2009 28 119 117 49 

2010 28 98 100 40 

2011 19 103 105 51 

2012 10 126 98 74 

2013 14 109 97 46 

2014 16 137 103 69 

2015 - - 106 70 

TOTAL 238 1595 1034 769 
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Figure 9. Mean biomass (kg) per grid cell of sea pen by-catches recorded from DFO groundfish 

trawl surveys from 2003 to 2015 within the Gulf Region. 

 

Model 1 – Balanced species prevalence 

Accuracy measures (mean AUC, sensitivity and specificity) for the random forest model on 

balanced species prevalence data are presented in Table 4. The highest AUC was 0.912 

associated with Model Run 3 which is considered the optimal model for the prediction of sea pen 

response data. The sensitivity and specificity measures of this model were 0.840 and 0.822, 

respectively. The confusion matrix of the optimal model is also presented in Table 4. Class error 

for both classes was below 0.180. 
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Table 4. Accuracy measures for all 10 model repetitions of 10-fold cross validation from random 

forest modelling of presence and absence of sea pens within the Gulf Region. The confusion 

matrix is shown for the model with the highest AUC value (Model Run 3) which is considered 

the optimal model for predicting sea pens probability in the Region. 

 

Model Run AUC Sensitivity Specificity 

1 0.902 0.843 0.811 

2 0.901 0.845 0.806 

3 0.912 0.840 0.822 

4 0.907 0.853 0.814 

5 0.908 0.851 0.818 

6 0.909 0.857 0.812 

7 0.906 0.836 0.818 

8 0.907 0.838 0.818 

9 0.905 0.842 0.811 

10 0.909 0.840 0.825 

Mean 0.907 0.845 0.815 

SD 0.003 0.007 0.006 

    

Confusion matrix of model with maximum AUC: 

 

Observations Predictions Total n Class 

error 

 Absence Presence   

Absence 1046 226 1272 0.178 

Presence 204 1068 1272 0.160 

 

The presence probability prediction surface of sea pens is presented in Figure 10. The highest 

predictions of presence probability occurred in the deeper areas along the Laurentian Channel. 

Areas of higher presence probability corresponded well with the spatial distribution of presence 

records (see Figure 11). The area around Prince Edward Island is predicted to have zero or low 

presence probability of sea pens.  
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Figure 10. Predictions of presence probability (pres. prob.) of sea pens from the optimal random 

forest model (see Table 4) based on balanced data. 

 
Figure 11. Total presence and absence observations and predictions of presence probability 

(pres. prob.) of sea pens from the optimal random forest model (see Table 4) based on balanced 

data. 
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The actual presence and absence data observations (1272 presences and 1272 absences) used in 

the optimal model did not show important differences (Figure 12) with respect of the distribution 

of all the absence records across the study area (Figure 11). In this figure are also showed the 

areas of model extrapolation (i.e. areas where at least one environmental variable has values 

beyond its sampled range). The south of Prince Edward Island and the shallow portion in the 

northeast, before the Strait of Belle Isle are considered extrapolated area, as well as smaller areas 

scattered across the study area. 

 

 
Figure 12. Presence and balanced absence observations and predictions of presence probability 

(pres. prob.) of sea pens from the optimal random forest model (see Table 4) based on balanced 

data. The grey areas of extrapolation are also shown. 

 

Of all 78 environmental predictor variables used in the model, Bottom Salinity Average 

Minimum was the most important for the classification of the sea pen presence and absence data 

(Figure 13). This variable was followed in terms of its Mean Decrease in Gini Value by Bottom 

Salinity Mean and Bottom Salinity Average Maximum. Bottom Temperature Average Minimum 

and Depth variables had high importance in this model too. The partial dependence plots for the 

top 6 most important predictors are shown in Figure 14. Presence probability of sea pens rapidly 

increased at a salinity average minimum at bottom of almost 31, and depths values of ~60-70 m. 
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Figure 13. Importance of the top 15 predictor variables measured as the Mean Decrease in Gini 

value of the optimal random forest model of sea pens presence and absence data within the Gulf 

Region. The higher the Mean Gini value the more important the variable is for predicting the 

response data. 
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Figure 14. Partial dependence plots of the top six predictors from the optimal random forest 

model of sea pens presence and absence data collected within the Gulf Region, ordered left to 

right from the top. 
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Model 2 – Unbalanced species prevalence 

 

Table 5 shows the accuracy measures for the random forest model on sea pen presence and 

absence data (1272 presences and 2364 absences) and a threshold equal to species prevalence 

(0.35). The AUC calculated from Model 2 was 0.905, lower than that of Model 1 (0.912). Class 

error of the presence class was the same to that of Model 1 (0.160), however class error for the 

absence class was slightly higher (0.185 compared to 0.178 from Model 1). Sensitivity was the 

same for Model 2 (0.840), and Specificity of Model 2 was slightly lower than that of Model 1 

(0.815 versus 0.822). 

 

Table 5. Accuracy measures and confusion matrix from 10-fold cross validation from random 

forest modelling of presence and absence of sea pens within the Gulf Region with a cut-off 

threshold of 0.35. 

 

The predicted presence probability surface of sea pens generated from Model 2 is shown in 

Figure 15. The highest presence probability of sea pens is found along the Laurentian Channel 

where are found most of the sea pen presence records (Figure 16). The area around Prince 

Edward Island is predicted to have zero or low presence probability of sea pens.  

 

 
Figure 15. Predictions of presence probability (pres. prob.) of sea pens from the unbalanced 

random forest model (see Table 5). 

Observations Predictions Total n Class 

error 

AUC Sensitivity Specificity 

 Absence Presence      

Absence 1926 438 2364 0.185 0.905 0.840 0.815 

Presence 203 1069 1272 0.160    
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Figure 16. Presence and absence observations and predictions of presence probability (pres. 

prob.) of sea pens from the unbalanced random forest model (see Table 5).  

 
Figure 17. Predicted distribution of sea pens from the unbalanced random forest model (see 

Table 5) using the prevalence cut-off threshold of 0.35. The grey areas of extrapolation are also 

shown, they appear dark red when overlain on the red presence surface. 
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Figure 18. Presence and absence observations and predicted distribution of sea pens from the 

unbalanced random forest model (see Table 5) using the prevalence cut-off threshold of 0.35. 

The grey areas of extrapolation are also shown, they appear dark red when overlain on the red 

presence surface. 

 

The six most important environmental predictor variables in Model 2 were the same than that of 

Model 1 (Figure 19), although in this case Depth was the most important variable in Model 2 

compared to Bottom Salinity Average Minimum in Model 1. Partial dependence of sea pens 

presence and absence data on the top 6 predictor variables is shown in Figure 20. Presence 

probability of sea pens increased at ~50 m depth and reaches is maximum around ~300 m. 
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Figure 19. Importance of the top 15 predictor variables measured as the Mean Decrease in Gini 

value of the unbalanced random forest model of sea pen presence and absence data within the 

Gulf Region. The higher the Mean Gini value the more important the variable is for predicting 

the response data. 
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Figure 20. Partial dependence plots of the top six predictors from the unbalanced random forest 

model of sea pens presence and absence data collected within the Gulf Region, ordered left to 

right from the top. 
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Model Selection 

Model accuracy measures were very similar for both models, with AUC values higher than 0.9 in 

both cases (0.912 for Model 1 and 0.905 for Model 2). The selection of Model 1, based on 

balanced data, allows for the use of the presence probabilities considering values higher than 0.5 

as presences and lower as absences to maintain fairly constant the error rates. 

 

Prediction of Sea Pen Biomass Using Random Forest (RF) 

 

a) Southern Gulf of St. Lawrence 

The accuracy measures of the regression random forest model on mean sea pen biomass per grid 

cell for the southern Gulf of St. Lawrence are presented in Table 6. The average R-square (R
2
) 

value was 0.370 ± 0.217, the average Root-Mean-Square Error (RMSE) was 3.540 ± 1.815, and 

the average percent variance explained was 32.439 ± 7.728. The high variability around the 

mean for both of these metrics indicates high variability of the model fit. 

 

Table 6. Accuracy measures from 10-fold cross validation from random forest modelling of 

biomass of sea pens within the southern Gulf of St. Lawrence. NRMSE, is the normalized root-

mean square deviation (RMSE/range of biomass values for response). 

Figures 21 and 22 show the surface of sea pen biomass (kg) predictions per grid cell generated 

from the random forest model in the southern Gulf of St. Lawrence. The maximum biomass was 

predicted in the Laurentian Channel portion sampled by these surveys. Around Magdalen Islands 

some areas were predicted with high biomass, however, this part correspond to an extrapolated 

area (Figure 21), so we caution that this prediction could be consequence of the lack of data. 

Model Fold R
2
 RMSE NRMSE %variance 

explained 

1 0.519 1.374 0.015 32.910 

2 0.777 4.227 0.046 23.550 

3 0.287 3.895 0.042 36.870 

4 0.263 7.290 0.079 17.810 

5 0.375 2.830 0.031 34.580 

6 0.389 2.596 0.028 33.470 

7 0.016 3.647 0.039 42.570 

8 0.549 1.561 0.017 38.530 

9 0.127 2.479 0.027 38.330 

10 0.399 5.502 0.060 25.770 

Mean 0.370 3.540 0.038 32.439 

SD 0.217 1.815 0.020 7.728 
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Figure 21. Prediction of sea pen biomass (kg) from the random forest (see Table 6) within the 

southern Gulf of St. Lawrence. 

 
Figure 22. Sea pen biomass catches overlaid to the sea pen biomass (kg) predicted from the 

random forest model (see Table 6) within the southern Gulf of St. Lawrence. 
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The top 15 most important environmental variables for predicting sea pen biomass in the 

southern Gulf of St. Lawrence are shown in Figure 23. Spring Primary Production Average 

Minimum was the most important variable in the model, followed more distantly by Bottom 

Salinity Average Range and the other variables in the model. The partial dependence of sea pen 

biomass on the top 6 most important variables is shown in Figure 24. Spring Primary Production 

Average Minimum predicted highest biomass at primary production values lower than 550 mg C 

m
-2

 day
-1

. 

 

 
 

Figure 23. Importance of the top 15 predictor variables measured as the Mean Decrease 

Residual Sum of Squares of the random forest model (see Table 6) of sea pen biomass data 

within the southern Gulf of St. Lawrence. 
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Figure 24. Partial dependence plots of the top six predictors from the random forest model based 

on sea pen biomass data collected within the southern Gulf of St. Lawrence, ordered left to right 

from the top. 
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b) Northern Gulf of St. Lawrence 

The accuracy measures of the regression random forest model on mean sea pen biomass per grid 

cell for the northern Gulf of St. Lawrence are presented in Table 7. The average R-square (R
2
) 

value was 0.273 ± 0.137, the average Root-Mean-Square Error (RMSE) was 5.030 ± 2.737, and 

the average percent variance explained was 22.362 ± 2.998. The variability around the mean for 

both of these metrics was lower than in the southern Gulf but still high, indicating variability of 

the model fit. 

 

Table 7. Accuracy measures from 10-fold cross validation from random forest modelling of 

biomass of sea pens within the northern Gulf of St. Lawrence. NRMSE, is the normalized root-

mean square deviation (RMSE/range of biomass values for response). 

Figures 25 and 26 show the surface of sea pen biomass (kg) predictions per grid cell generated 

from the random forest model in the northern Gulf of St. Lawrence. The maximum biomass was 

predicted in two areas of the Laurentian Channel, with an area of lower biomass between them. 

 

 

 

 

 

 

 

 

Model Fold R
2
 RMSE NRMSE %variance 

explained 

1 0.096 2.861 0.022 25.790 

2 0.283 2.754 0.021 22.650 

3 0.502 3.199 0.025 25.370 

4 0.279 11.599 0.090 17.880 

5 0.314 3.788 0.029 22.380 

6 0.419 7.585 0.059 20.620 

7 0.027 4.276 0.033 26.360 

8 0.275 3.643 0.028 21.400 

9 0.303 4.891 0.038 17.970 

10 0.234 5.702 0.044 23.200 

Mean 0.273 5.030 0.039 22.362 

SD 0.137 2.737 0.021 2.998 
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Figure 25. Prediction of sea pen biomass (kg) from the random forest model (see Table 7) within 

the northern Gulf of St. Lawrence. 

 
Figure 26. Sea pen biomass catches overlaid to the sea pen biomass (kg) predicted from the 

random forest model (see Table 7) within the southern Gulf of St. Lawrence. 
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The top 15 most important environmental variables for predicting sea pen biomass in the 

northern Gulf of St. Lawrence are shown in Figure 27. Surface Temperature Average Maximum 

was the most important variable in the model, followed distantly by Depth and the other 

variables in the model. The partial dependence of sea pen biomass on the top 6 most important 

variables is shown in Figure 28. Surface Temperature Average Maximum predicted highest 

biomass at temperature values higher than 17 °C. 

 

 

Figure 27. Importance of the top 15 predictor variables measured as the Mean Decrease 

Residual Sum of Squares of the random forest model (see Table 7) of sea pen biomass data 

within the northern Gulf of St. Lawrence. 
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Figure 28. Partial dependence plots of the top six predictors of the random forest model (see 

Table 7) of sea pen biomass data within the southern Gulf of St. Lawrence on, ordered left to 

right from the top. 

 

Figures 29 and 30 show the surface of sea pen biomass (kg) predictions per grid cell generated 

from the random forest model in the entire Gulf of St. Lawrence. 
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Figure 29. Predictions of sea pen biomass from the random forest model within the Gulf Region. 

 

 
Figure 30. Sea pen biomass catches overlaid to the sea pen biomass (kg) predicted from the 

random forest model within the Gulf Region. 
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Prediction of Sea Pen Biomass Using Generalized Additive Models (GAM) 

 

a) Southern Gulf of St. Lawrence 

The GAM results on mean sea pen biomass per grid cell for the southern Gulf of St. Lawrence 

are presented in Table 8. The maximum R-square (R-sq) value was 0.58 for the model with 

environmental variables correlated less than 0.7 and including the latitude and longitude. Figure 

31 shows that the autocorrelation of the residuals for Model 1 when latitude and longitude were 

not considered in the model was significant and therefore latitude and longitude were considered 

as a tensor product for Model 2.  

 

Table 8. GAM results. Significant variables (p < 0.05) are listed in order of their significance 

(highest to lowest) in the model, the deviance explained and the estimated degrees of freedom 

(edf) and the R
2
 are also provided. Variables are Spring Primary Production Average Minimum 

(pp_spr_min_avg), Depth, Bottom Temperature Average Maximum (b_tmp_max_avg), MODIS 

Case I Fall Chrolophyll a Range (chl_fall_ran), Summer Primary Production Average Range 

(pp_sum_ran_avg), Maximum Summer Mixed Layer Depth (mld_sum_max_avg), Spring 

Primary Production Average Range (pp_spr_ran_avg), Summer Primary Production Average 

Maximum (pp_sum_max_avg), Bottom Current Average Range (b_cur_ran_avg), Slope, Surface 

Current Average Range (s_cur_ran_avg), MODIS Case I Spring Chrolophyll a Range 

(chl_spr_ran), location (lat, long), MERIS Case II Fall Chlorophyll a Minimum 

(M_chl_fall_min). 

 

Model Significant variables 

Deviance 

explained edf R
2
 

1 
(0.7 

correlation) 

s(pp_spr_min_avg) + s(depth) + 

s(b_tmp_max_avg) + s(chl_fall_ran) + 

s(pp_sum_ran_avg) + 

s(mld_sum_max_avg) + 

s(pp_spr_ran_avg) + s(pp_sum_max_avg) 

+ s(b_cur_ran_avg) + s(slope) + 

s(s_cur_ran_avg) + s(chl_spr_ran) 

82.40% 

1; 1; 1.9; 1; 

4.7; 1; 3.7; 1; 

1.8; 1; 1; 1; 3 

0.36 

2 
(0.7 

correlation 

with lat 

and long) 

te(lat, long) + s(chl_fall_ran) + s(depth) + 

s(M_chl_fall_min) + s(slope) + 

s(chl_spr_ran) 

87.90% 
63.6, 1; 1.7; 1; 

1; 2.6 
0.58 
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Figure 31. Autocorrelation for residuals of GAM Model 1 

 

 
Figure 32. Prediction of sea pen biomass (kg) from the GAM Model 1 (see Table 8) within the 

southern Gulf of St. Lawrence. 



 

41 

 
Figure 33. Prediction of sea pen biomass (kg) from the GAM Model 2 (see Table 8) within the 

southern Gulf of St. Lawrence. 

 

 
Figure 34. Sea pen biomass catches overlaid to the sea pen biomass (kg) predicted from the 

GAM Model 1 (see Table 8) within the southern Gulf of St. Lawrence. 
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Figure 35. Sea pen biomass catches overlaid to the sea pen biomass (kg) predicted from the 

GAM Model 2 (see Table 8) within the southern Gulf of St. Lawrence. 

 

 
Figure 36. Sea pen biomass catches overlaid to the sea pen biomass (kg) predicted from the RF 

model (see Table 6) within the southern Gulf of St. Lawrence. 
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a) Northern Gulf of St. Lawrence 

The GAM results on mean sea pen biomass per grid cell for the northern Gulf of St. Lawrence 

are presented in Table 9. The maximum R-square (R-sq) value was 0.33 for the model with 

environmental variables correlated less than 0.7 and including the latitude and longitude. Figure 

37 shows that the autocorrelation of the residuals for Model 3 when latitude and longitude were 

not considered in the model was significant and therefore latitude and longitude were considered 

as a tensor product for Model 4.  
 

 

Figure 37. Autocorrelation for residuals of GAM Model 3. 

 
Figure 38. Prediction of sea pen biomass (kg) from the GAM Model 3 (see Table 9) within the 

northern Gulf of St. Lawrence. 
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Table 9. GAM results. Significant variables (p < 0.05) are listed in order of their significance 

(highest to lowest) in the model, the deviance explained and the estimated degrees of freedom 

(edf) and the R
2
 are also provided. Variables are Depth, Surface Temperature Average Maximum 

(s_tmp_max_avg), Surface Temperature Average Range (s_tmp_ran_avg), Bottom Salinity 

Average Range (b_sal_ran_avg), Surface Salinity Average Range (s_sal_ran_avg), Summer 

Primary Production Average Range (pp_sum_ran_avg), Surface Current Average Minimum 

(s_cur_min_avg), MODIS Case I Spring Chrolophyll a Mean (chl_spr_mean), Surface 

Temperature Mean (s_tmp_mean), MERIS Case II Summer Chlorophyll a Maximum 

(M_chl_sum_max), Bottom Salinity Average Maximum (b_sal_max_avg), MERIS Case II 

Summer Chlorophyll a Range (M_chl_sum_ran), Slope, Surface Temperature Average 

Minimum (s_tmp_min_avg), Spring Primary Production Average Minimum (pp_spr_min_avg), 

Anuual Primary Production Average Minimum (pp_ann_min_avg), Bottom Temperature 

Average Maximum (b_tmp_max_avg), Summer Primary Production Average Maximum 

(pp_sum_max_avg), Bottom Current Average Range (b_cur_ran_avg), Maximum Summer 

Mixed Layer Depth (mld_sum_max_avg), Spring Primary Production Average Range 

(pp_spr_ran_avg), Summer Primary Production Average Minimum (pp_sum_min_avg), Bottom 

Temperature Average Range (b_tmp_ran_avg), MODIS Case I Fall Chrolophyll a Range 

(chl_fall_ran), MODIS Case I Spring Chrolophyll a Range (chl_spr_ran), location (lat, long). 

Model Significant variables 

Deviance 

explained edf R
2
 

1 
15 RF 

Biomass 

s(depth) + s(s_tmp_max_avg) + 

s(s_tmp_ran_avg) + s(b_sal_ran_avg) + 

s(s_sal_ran_avg) + s(pp_sum_ran_avg) + 

s(s_cur_min_avg) +s(chl_spr_mean) 

+s(s_tmp_mean) + s(M_chl_sum_max) + 

s(b_sal_max_avg) + s(M_chl_sum_ran) 

+s(slope) 

64.40% 

1; 4.3; 1; 2; 

4.8; 4.6; 4.6; 

4.5; 3.8; 3.8; 

1.9; 3.5; 1 

0.01 

2 
10 RF 

Biomass 

s(depth) + s(s_tmp_max_avg) + 

s(b_sal_min_avg) + s(s_tmp_ran_avg) + 

s(s_sal_ran_avg) + s(M_chl_sum_max) + 

s(chl_spr_ran) + s(s_tmp_mean) + 

s(M_chl_sum_ran) + s(s_cur_min_avg) 

60.90% 

1; 4.6; 1.9; 1; 

4.6; 3.8; 3.3; 

4.2; 3.1; 4.3  

-

0.06 

3 
0.7 

correlation 

s(depth) + s(s_tmp_min_avg) + s(slope) + 

s(pp_spr_min_avg) + s(pp_ann_min_avg) 

+ s(pp_sum_ran_avg) + 

s(b_tmp_max_avg) + 

s(pp_sum_max_avg) + s(b_cur_ran_avg) 

+ s(mld_sum_max_avg)+ 

s(pp_spr_ran_avg) + s(s_cur_min_avg) + 

s(M_chl_sum_ran) + s(pp_sum_min_avg) 

+ s(b_tmp_ran_avg) + s(chl_fall_ran) + 

s(chl_spr_ran) 

61.30% 

1.5; 4.9; 1.9; 1; 

1.8; 4.6; 1.9; 

1.9; 1.9; 4.6; 

4.6; 3.3; 2.5; 

2.5; 1.9;  3.7; 

3.1 

0.1 

4 
0.7 

correlation 

with lat 

and long 

te(x,y) + s(depth) + s(b_tmp_ran_avg) + 

s(s_cur_min_avg) + s(pp_sum_ran_avg) + 

s(M_chl_sum_ran) 

76.20% 
115; 1; 1; 4; 4; 

3 
0.33 
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Figure 39. Prediction of sea pen biomass (kg) from the GAM Model 4 (see Table 9) within the 

northern Gulf of St. Lawrence. 

 

 
Figure 40. Sea pen biomass catches overlaid to the sea pen biomass (kg) predicted from the 

GAM Model 3 (see Table 9) within the northern Gulf of St. Lawrence. 
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Figure 41. Sea pen biomass catches overlaid to the sea pen biomass (kg) predicted from the 

GAM Model 4 (see Table 9) within the northern Gulf of St. Lawrence. 

 
Figure 42. Sea pen biomass catches overlaid to the sea pen biomass (kg) predicted from the RF 

model (see Table 7) within the northern Gulf of St. Lawrence. 
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Comparison between GAM and RF 

RF models performed better (in terms of R
2
) than GAM models in the northern and southern 

Gulf of St. Lawrence, except when the latitude and longitude was considered as a tensor product 

in the GAM model. A RF model for the northern Gulf with the environmental variables 

correlated less than 0.7 was created but it did not improve the performance than when all the 

predictors were consider (R
2
=0.22 vs 0.27). These models were tested in the southern Gulf and 

the highest R
2 

(0.13) was obtained with the GAM Model 3 (predictors correlated less than 0.7), 

followed by GAM Model 4 (R
2
=0.10). The RF with the predictors correlated less than 0.7 gave 

better performance than when all the predictors were considered in the model (R
2
=0.01 vs 

0.006).  

 

Sponges (Porifera) 

Data Sources and Distribution 

The data available for analysis sponges in the Gulf Region was collected over a period of 13 

years from 2003 to 2015 (Table 10). The data were filtered so that only one presence or absence 

record occurs within the same environmental data raster cell (approximately 1 km
2
; with 

presence records taking precedence over an absence record when both occurred in the same cell), 

giving a total of 1125 presence and 709 absence records for the southern Gulf and 1089 presence 

and 569 absence records for the northern Gulf. Sponge biomass (kg) was averaged across each 

catch occurring within the same cell. Sponges presences are distributed practically across all the 

Region, with some absence locations along the Laurentian Channel (Figure 44). Two areas with 

higher biomass are found in shallow depths on the southern Gulf and on the mouth of the Saint 

Lawrence River. 

 

Table 10. Total number of presences and absences of sponges by-catch data recorded from DFO 

trawl surveys from 2003 to 2015 in the Gulf Region. P, presences; A, absences. 

 

 
Southern 

Gulf 

Northern 

Gulf 

Year P A P A 

2003 53 27 - - 

2004 130 83 - - 

2005 120 99 - - 

2006 117 47 89 92 

2007 104 61 94 83 

2008 104 71 139 50 

2009 107 41 115 55 

2010 82 52 106 31 

2011 78 47 113 39 

2012 71 69 114 59 

2013 80 44 88 53 

2014 79 68 119 48 

2015 - - 112 59 

TOTAL 1125 709 1089 569 
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Figure 44. Mean biomass (kg) per grid cell of sponge by-catches recorded from DFO groundfish 

trawl surveys from 2003 to 2015 within the Gulf Region. 

Model 1 – Unbalanced species prevalence 

Table 11 shows the accuracy measures for the random forest model on sponge presence and 

absence data (2214 presences and 1278 absences) and a threshold equal to species prevalence 

(0.63). The AUC calculated was 0.708. Class error of the presence and absence classes were 

relatively higher, 0.354 and 0.338, respectively. Sensitivity and specificity were low, 0.646 and 

0.662, respectively. 

 

Table 11. Accuracy measures and confusion matrix from 10-fold cross validation from random 

forest modelling of presence and absence of sponges within the Gulf Region with a cut-off 

threshold of 0.63. 

Observations Predictions Total n Class 

error 

AUC Sensitivity Specificity 

 Absence Presence      

Absence 846 432 1278 0.338 0.708 0.646 0.662 

Presence 783 1431 2214 0.354    
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The predicted presence probability surface of sponges generated is shown in Figure 45. Most of 

the Region presents high probability, mainly the northern Gulf of St. Lawrence. Lower 

probability was found along the Laurentian Channel. 

 
Figure 45. Predictions of presence probability (pres. prob.) of sponges from the unbalanced 

random forest model (see Table 11). 

 
Figure 46. Presence and absence observations and predictions of presence probability (pres. 

prob.) of sponges from the unbalanced random forest model (see Table 11). The grey areas of 

extrapolation are also shown. 
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Figure 47. Predicted distribution of sponges from the unbalanced random forest model (see 

Table 11) using the prevalence cut-off threshold of 0.63. The grey areas of extrapolation are also 

shown, they appear dark red when overlain on the red presence surface. 

 
Figure 48. Presence and absence observations and predicted distribution of sponges from the 

unbalanced random forest model (see Table 11) using the prevalence cut-off threshold of 0.63. 

The grey areas of extrapolation are also shown, they appear dark red when overlain on the red 

presence surface. 
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Of all 78 environmental predictor variables used in the model, Depth was the most important for 

the classification of the sponge presence and absence data (Figure 49). This variable was 

followed more distantly in terms of its Mean Decrease in Gini Value by Slope and Surface 

Salinity Average Maximum. The partial dependence plots for the top 6 most important predictors 

are shown in Figure 50. Presence probability of sponges started to decrease below 200 m depth. 

 

 

 
 

Figure 49. Importance of the top 15 predictor variables measured as the Mean Decrease in Gini 

value of the unbalanced random forest model of sponge presence and absence data within the 

Gulf Region. The higher the Mean Gini value the more important the variable is for predicting 

the response data. 
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Figure 50. Partial dependence plots of the top six predictors of the unbalanced random forest 

model of sponges presence and absence data collected within the Gulf Region, ordered left to 

right from the top. 
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Prediction of Sponge Biomass Using Random Forest 

 

a) Southern Gulf Region 

The accuracy measures of the regression random forest model on mean sponge biomass per grid 

cell for the southern Gulf of St. Lawrence are presented in Table 12. The average R-square (R
2
) 

value was 0.066 ± 0.130, the average Root-Mean-Square Error (RMSE) was 3.794 ± 4.677, and 

the average percent variance explained was negative. These low accuracy metrics indicate poor 

predictive performance of the model. 

 

Table 12. Accuracy measures from 10-fold cross validation from random forest modelling of 

biomass of sponges within the southern Gulf of St. Lawrence. NRMSE, is the normalized root-

mean square deviation (RMSE/range of biomass values for response). 

Figures 51 and 52 show the surface of sponge biomass (kg) predictions per grid cell generated 

from the random forest model in the southern Gulf of St. Lawrence. The maximum biomass was 

predicted in a small area in the middle of the area where a high catch of 225 kg was found.  

 

 

 

 

 

 

Model Fold R
2
 RMSE NRMSE %variance 

explained 

1 0.091 1.070 0.005 -4.2 

2 0.018 1.184 0.005 -2.58 

3 0.428 2.756 0.012 -9.35 

4 0.004 1.619 0.007 -6.97 

5 0.026 4.942 0.022 -5.7 

6 0.001 4.356 0.019 -6.95 

7 0.020 1.088 0.005 -4.37 

8 0.005 3.180 0.014 -3.07 

9 0.007 1.261 0.006 -4.29 

10 0.063 16.487 0.073 -2 

Mean 0.066 3.794 0.017 -4.948 

SD 0.130 4.677 0.021 2.290 
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Figure 51. Prediction of sponge biomass (kg) from the random forest model (see Table 12) 

within the southern Gulf of St. Lawrence. 

 

 
Figure 52. Sponge biomass catches overlaid to the sponge biomass (kg) predicted from the 

random forest model (see Table 12) within the southern Gulf of St. Lawrence. 
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The top 15 most important environmental variables for predicting sponge biomass in the 

southern Gulf of St. Lawrence are shown in Figure 53. MERIS Case II Spring Chlorophyll a 

Range was the most important variable in the model, followed by MODIS Case I Spring 

Chlorophyll a and Bottom Temperature Average Range. The partial dependence of sponge 

biomass on the top 6 most important variables is shown in Figure 54. MERIS Case II Spring 

Chlorophyll a Range predicted highest biomass at Chlorophyll a range of 2.0 mg m
-3

. 

 

 
 

Figure 53. Importance of the top 15 predictor variables measured as the Mean Decrease in Gini 

value of the unbalanced random forest model of sponge presence and absence data within the 

southern Gulf of St. Lawrence. The higher the Mean Gini value the more important the variable 

is for predicting the response data. 
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Figure 54. Partial dependence plots of the top six predictors of from the unbalanced random 

forest model of sponge presence and absence data collected within the southern Gulf of St. 

Lawrence, ordered left to right from the top. 
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b) Northern Gulf Region 

The accuracy measures of the regression random forest model on mean sponge biomass per grid 

cell for the northern Gulf of St. Lawrence are presented in Table 13. The average R-square (R
2
) 

value was 0.033 ± 0.041, the average Root-Mean-Square Error (RMSE) was 3.109 ± 1.503, and 

the average percent variance explained was negative. These low accuracy metrics indicate poor 

predictive performance of the model. 

 

Table 13. Accuracy measures from 10-fold cross validation from random forest modelling of 

biomass of sponges within the northern Gulf of St. Lawrence. NRMSE, is the normalized root-

mean square deviation (RMSE/range of biomass values for response). 

 

Model Fold R
2
 RMSE NRMSE %variance 

explained 

1 0.013 1.908 0.027 -2.28 

2 0.044 1.888 0.027 -1.69 

3 0.005 6.202 0.087 -0.15 

4 0.023 2.574 0.036 -1.88 

5 0.024 2.330 0.033 -2.67 

6 0.019 4.874 0.069 -3.76 

7 0.145 3.614 0.051 -4.83 

8 0.024 1.749 0.025 -4.55 

9 0.001 3.888 0.055 -3.17 

10 0.032 2.059 0.029 -3.56 

Mean 0.033 3.109 0.044 -2.854 

SD 0.041 1.503 0.021 1.421 

     

Figures 55 and 56 show the surface of sponge biomass (kg) predictions per grid cell generated 

from the random forest model in the northern Gulf of St. Lawrence. No large areas with high 

biomass were predicted, although the maximum biomass predicted can be found at the mouth of 

the Saint Lawrence River. 
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Figure 55. Predictions of sponge biomass (kg) from the random forest model (see Table 13) 

within the northern Gulf of St. Lawrence. 

 
Figure 56. Sponge biomass catches overlaid to the sponge biomass (kg) predicted from the 

random forest model (see Table 13) within the northern Gulf of St. Lawrence. 
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The top 15 most important environmental variables for predicting sponge biomass in the 

northern Gulf of St. Lawrence are shown in Figure 57. Maximum Average Summer Mixed Layer 

Depth was the most important variable in the model, followed distantly by Annual Primary 

Production Average Maximum. The partial dependence of sponge biomass on the top 6 most 

important variables is shown in Figure 58. Biomass (kg) of sponges predicted decreased at 

Maximum Average Summer Mixed Layer Depth of 11 m. 

 

 
 

Figure 57 Importance of the top 15 predictor variables measured as the Mean Decrease Residual 

Sum of Squares of the random forest model (see Table 13) of sponge biomass data within the 

northern Gulf of St. Lawrence. 
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Figure 58. Partial dependence plots of the top six predictors of the random forest model (see 

Table 13) of sponge biomass data within the northern Gulf of St. Lawrence on, ordered left to 

right from the top. 

 

Figures 59 and 60 show the surface of sponge biomass (kg) predictions per grid cell generated 

from the random forest model in the entire Gulf of St. Lawrence. 
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Figure 59. Predictions of sponge biomass from the random forest model within the Gulf Region. 

 

 
Figure 60. Sponge biomass catches overlaid to the sponge biomass predicted from the random 

forest model within the Gulf Region. 
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Stalked tunicates (Boltenia ovifera) 

Data Sources and Distribution 

The data available for analysis of stalked tunicates in the Gulf Region was collected over a 

period of 15 years from 2001 to 2015 (Table 14). The data were filtered so that only one 

presence or absence record occurs within the same environmental data raster cell (approximately 

1 km
2
; with presence records taking precedence over an absence record when both occurred in 

the same cell), giving a total of 1036 presence and 1126 absence records for the southern Gulf of 

St. Lawrence and 167 presence and 1495 absence records for the northern. Stalked tunicate 

biomass (kg) was averaged across each catch occurring within the same cell. 
 

In order to study the different catchability of both gears, an analysis of the presence and absence 

of stalked tunicates from the tow sets carried out by both surveys in a common area in the 

Laurentian Channel was made. 168 tow sets were analyzed for the southern Gulf of St. 

Lawrence, whereas 155 were analyzed for the northern Gulf, finding 58 presences of stalked 

tunicates in the southern Gulf and 0 in the northern (Figure 61). Most of all the presences were 

small catches preceded by large catches carried out in shallower waters, which suggests some 

kind of contamination from the shallower tow sets to the deeper ones in the Channel. This 

contamination is an artefact that could affect the SDM and therefore 52 of these presence records 

were removed from the analysis; the remaining 6 presences being along the edge of the shelf and 

in an area with no evidence of contamination from precedent tow sets was found. Therefore, the 

final data used are presented in Table 14 and include a total of 984 presence and 1178 absence 

records for the southern Gulf of St. Lawrence and 167 presence and 1495 absence records for the 

northern. 
 

Table 14. Data date range, gear type, area, and the total number of presences and absences of 

stalked tunicates catch data recorded from DFO trawl surveys. 
 

 
Southern 

Gulf 

Northern 

Gulf 

Year P A P A 

2001 49 95 - - 

2002 67 111 - - 

2003 27 55 - - 

2004 106 114 - - 

2005 100 122 - - 

2006 77 87 23 160 

2007 84 82 21 158 

2008 80 95 20 170 

2009 66 82 15 157 

2010 59 67 16 121 

2011 63 62 12 140 

2012 59 76 16 156 

2013 68 56 7 133 

2014 79 74 24 144 

2015 - - 13 156 

TOTAL 984 1178 167 1495 
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Figure 61. Stalked tunicates presence and absence from the common area surveyed by the 

southern and northern research vessel trawl surveys from 2001 to 2015 within the Gulf Region.  

 

Stalked tunicate presence and absence records were distributed unevenly across the Gulf Region 

and are practically absent along the Laurentian Channel (Figure 62). Presences were 

concentrated mainly on the southern Gulf of St. Lawrence in shallow waters and scattered along 

the northern border, while absences were concentrated in the deeper areas. The highest biomass 

records occurred northeast of Prince Edward Island. 
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Figure 62. Mean biomass (kg) per grid cell of stalked tunicate by-catches recorded from DFO 

research vessel trawl surveys from 2001 to 2015 within the Gulf Region. 

 

 

Model 1 – Balanced species prevalence 

 

Accuracy measures (AUC, sensitivity, and specificity) for the random forest model on balanced 

species prevalence (1151 presences and 1151 absences) are presented in Table 15. The highest 

AUC was 0.891 associated with Model Run 7 which was considered the optimal model for the 

prediction of the stalked tunicate response data. The sensitivity and specificity measures of this 

model were 0.837 and 0.805, respectively. The confusion matrix of the optimal model is also 

presented in Table 15. Class error for the presence class was low (0.163). 
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Table 15. Accuracy measures for all 10 model repetitions of 10-fold cross validation of a 

random forest model of presence and absence of stalked tunicates within the Gulf Region. The 

confusion matrix is shown for the model with the highest AUC value (Model Run 7) which is 

considered the optimal model for predicting the presence probability of stalked tunicates in the 

region. 

 

Model Run AUC Sensitivity Specificity 

1 0.872 0.826 0.772 

2 0.869 0.811 0.769 

3 0.875 0.829 0.790 

4 0.875 0.822 0.776 

5 0.881 0.835 0.785 

6 0.872 0.818 0.781 

7 0.891 0.837 0.805 

8 0.877 0.811 0.831 

9 0.877 0.827 0.782 

10 0.883 0.832 0.785 

Mean 0.877 0.825 0.788 

SD 0.007 0.009 0.018 

    

Confusion matrix of model with maximum AUC: 

 

Observations Predictions Total n Class 

error 

 Absence Presence   

Absence 927 224 1151 0.195 

Presence 188 963 1151 0.163 

 

The presence probability prediction surface of stalked tunicates is presented in Figure 63. The 

highest predictions of presence probability occurred in the southern Gulf and in the shallower 

areas in the north. Areas of higher presence probability corresponded well with the spatial 

distribution of presence records (see Figure 64). Some areas in the Laurentian Channel are 

predicted to have zero or low presence probability of stalked tunicates. 
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Figure 63. Predictions of presence probability (pres. prob.) of stalked tunicates from the optimal 

random forest model (see Table 15) based on balanced data. 

 
Figure 64. Total presence and absence observations and predictions of presence probability 

(pres. prob.) of stalked tunicates from the optimal random forest model (see Table 15) based on 

balanced data. 
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Figure 65. Presence and balanced absence observations and predictions of presence probability 

(pres. prob.) of stalked tunicates from the optimal random forest model (see Table 15) based on 

balanced data. The grey areas of extrapolation are also shown. 

 

The actual presence and absence data observations (1151 presences and 1151 absences) used in 

the optimal model did not show important differences (Figure 65) with respect of the distribution 

of all the absence records across the study area (Figure 64). In this figure are also shown the 

areas of model extrapolation (i.e. areas where at least one environmental variable has values 

beyond its sampled range). The south of Prince Edward Island and the shallow portion in the 

northeast, before the Strait of Belle Isle are considered extrapolated area, as well as smaller areas 

scattered across the study area. 

 

Of all 78 environmental predictor variables used in the model, Bottom Temperature Mean was 

the most important for the classification of the stalked tunicate presence and absence data (Figure 

66). This variable was followed closely in terms of its Mean Decrease in Gini Value by Depth. 

Bottom Salinity Average Minimum and Bottom Salinity Average Maximum variables had high 

importance in this model too. The partial dependence plots for the top 6 most important 

predictors are shown in Figure 67. Presence probability of stalked tunicates was maximum at low 

values of Bottom Temperature Mean. 
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Figure 66. Importance of the top 15 predictor variables measured as the Mean Decrease in Gini 

value of the optimal random forest model of stalked tunicate presence and absence data within 

the Gulf Region. The higher the Mean Gini value the more important the variable is for 

predicting the response data. 
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Figure 67. Partial dependence plots of the top six predictors from the optimal random forest 

model of stalked tunicate presence and absence data collected within the Gulf Region, ordered 

left to right from the top. 
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Model 2 – Unbalanced species prevalence 

 

Table 16 shows the accuracy measures for the random forest model on stalked tunicates presence 

and absence data (1151 presences and 2673 absences) and a threshold equal to species 

prevalence (0.31). The AUC calculated from Model 2 was 0.874, slightly lower than that of 

Model 1 (0.891). Class error of the presence class was higher than that of Model 1 (0.163), as 

well as the class error for the absence class (0.218 compared to 0.195 from Model 1). Sensitivity 

and Specificity were also slightly lower. 

 

Table 16. Accuracy measures and confusion matrix from 10-fold cross validation from random 

forest modelling of presence and absence of stalked tunicates within the Gulf Region with a cut-

off threshold of 0.31. 

 

The predicted presence probability surface of stalked tunicates generated from Model 2 is shown 

in Figure 68 and it is very similar than Model 1, with the highest predictions of presence 

probability occurring in the southern Gulf and in the shallower areas in the north. However, more 

areas, mainly in the Laurentian Channel are predicted to have zero probability of stalked 

tunicates.  

 
Figure 68. Predictions of presence probability (pres. prob.) of stalked tunicates from the 

unbalanced random forest model (see Table 16). 

Observations Predictions Total n Class 

error 

AUC Sensitivity Specificity 

 Absence Presence      

Absence 2089 584 2673 0.218 0.874 0.821 0.782 

Presence 206 945 1151 0.179    
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Figure 69. Presence and absence observations and predictions of presence probability (pres. 

prob.) of stalked tunicates from the unbalanced random forest model (see Table 16). The grey 

areas of extrapolation are also shown. 

 
Figure 70. Predicted distribution of stalked tunicates from the unbalanced random forest model 

(see Table 16) using the prevalence cut-off threshold of 0.31. The grey areas of extrapolation are 

also shown, they appear dark red when overlain on the red presence surface. 
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Figure 71. Presence and absence observations and predicted distribution of stalked tunicates 

from the unbalanced random forest model (see Table 16) using the prevalence cut-off threshold 

of 0.31. The grey areas of extrapolation are also shown, they appear dark red when overlain on 

the red presence surface. 

 

Five of the six most important environmental predictor variables in Model 2 were the same than 

that of Model 1 (Figure 72), and Bottom Temperature Mean and Depth were also the most 

important variables for the classification of stalked tunicates in Model 2. The partial dependence 

plots for the top 6 most important predictors are shown in Figure 73 and show similar results to 

those for Model 1. 
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Figure 72. Importance of the top 15 predictor variables measured as the Mean Decrease in Gini 

value of the unbalanced random forest model of stalked tunicate presence and absence data 

within the Gulf Region. The higher the Mean Gini value the more important the variable is for 

predicting the response data. 
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Figure 73. Partial dependence plots of the top six predictors of from the unbalanced random 

forest model of stalked tunicate presence and absence data collected within the Gulf Region, 

ordered left to right from the top. 
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Correlation between Biomass and Presence Probability 

Biomass (kg) of stalked tunicates was positively correlated (ρ=0.73) to the presence probability 

of stalked tunicates based on balanced data, showing that areas with higher probabilities tend to 

present higher biomass (Figure 74). 

 

 

Figure 74. Scatterplot between the presence probabilities of stalked tunicates based on balanced 

data with the mean biomass (kg) per grid cell of stalked tunicates. 

 

Model Selection 

Model accuracy measures were very similar for both models, although Model 1 presented 

slightly higher AUC and sensitivity and specificity. The selection of Model 1, based on balanced 

data, allows for the use of the presence probabilities considering values higher than 0.5 as 

presences and lower as absences to maintain fairly constant error rates. 
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Prediction of Stalked Tunicates Biomass Using Random Forest 

 

c) Southern Gulf of St. Lawrence 

The accuracy measures of the regression random forest model on mean stalked tunicate biomass 

per grid cell for the southern Gulf of St. Lawrence are presented in Table 17. The average R-

square (R
2
) value was 0.179 ± 0.080, the average Root-Mean-Square Error (RMSE) was 4.347 ± 

1.495, and the average percent variance explained was 11.98 ± 1.61.  

 

Table 17. Accuracy measures from 10-fold cross validation from random forest modelling of 

biomass of stalked tunicates within the southern Gulf of St. Lawrence. NRMSE, is the 

normalized root-mean square deviation (RMSE/range of biomass values for response). 

Figures 76 and 77 show the surface of stalked tunicate biomass (kg) predictions per grid cell 

generated from the random forest model in the southern Gulf of St. Lawrence. The maximum 

biomass was predicted in the northeast of Prince Edward Island. 

 

 

 

Model Fold R
2
 RMSE NRMSE %variance 

explained 

1 0.196 3.349 0.037 11.14 

2 0.308 4.042 0.044 9.11 

3 0.200 5.193 0.057 10.56 

4 0.084 4.760 0.052 12.76 

5 0.184 6.886 0.075 13.78 

6 0.085 6.031 0.066 13.67 

7 0.080 3.100 0.034 13.13 

8 0.170 5.017 0.055 12.92 

9 0.288 2.963 0.032 10.19 

10 0.199 2.125 0.023 12.54 

Mean 0.179 4.347 0.048 11.98 

SD 0.080 1.495 0.016 1.61 

     



 

77 

 
Figure 76. Predictions of stalked tunicate biomass probability from the random forest model (see 

Table 17) within the southern Gulf of St. Lawrence. 

 
Figure 77. Stalked tunicate biomass catches overlaid to the stalked tunicate biomass probability 

from the random forest model (see Table 17) within the southern Gulf of St. Lawrence. 
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The top 15 most important environmental variables for predicting stalked tunicate biomass in the 

southern Gulf of St. Lawrence are shown in Figure 78. MERIS Case II Fall Chlorophyll a 

Minimum was the most important variable in the model, followed more distantly by Bottom 

Current Average Range and Annual Primary Production Average Range. The partial dependence 

of stalked tunicate biomass on the top 6 most important variables is shown in Figure 79. 

Predicted biomass (kg) was maximum for MERIS Case II Fall Chlorophyll a Minimum values 

lower than 0.5 mg m
-3

. 

 

 
 

Figure 78. Importance of the top 15 predictor variables measured as the Mean Decrease 

Residual Sum of Squares of the random forest model (see Table 17) of stalked tunicate biomass 

data within the southern Gulf of St. Lawrence. 
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Figure 79. Partial dependence plots of the top six predictors of the random forest model (see 

Table 17) of stalked tunicate biomass data within the southern Gulf of St. Lawrence, ordered left 

to right from the top. 
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Model 4 – Northern Gulf Region 

The accuracy measures of the regression random forest model on mean stalked tunicate biomass 

per grid cell for the northern Gulf of St. Lawrence are presented in Table 18. The average R-

square (R
2
) value was 0.409 ± 0.215, the average Root-Mean-Square Error (RMSE) was 1.082 ± 

0.560, and the average percent variance explained was 28.17 ± 9.87. The mean accuracy metrics 

were better than for the southern Gulf of St. Lawrence. 

 

Table 18. Accuracy measures from 10-fold cross validation from random forest modelling of 

biomass of stalked tunicates within the northern Gulf of St. Lawrence. NRMSE, is the 

normalized root-mean square deviation (RMSE/range of biomass values for response). 

Figures 80 and 81 show the surface of stalked tunicate biomass (kg) predictions per grid cell 

generated from the random forest model in the northern Gulf of St. Lawrence. The maximum 

biomass was predicted in the northwest of Anticosti Island and in the Strait of Belle Isle. 

 

Model Fold R
2
 RMSE NRMSE %variance 

explained 

1 0.572 0.854 0.024 29.62 

2 0.433 1.632 0.045 39.25 

3 0.225 1.106 0.031 28.96 

4 0.824 1.175 0.033 10.33 

5 0.199 0.622 0.017 34.42 

6 0.495 0.506 0.014 33.02 

7 0.252 0.535 0.015 30.05 

8 0.243 1.530 0.043 30.84 

9 0.228 0.665 0.018 34.82 

10 0.622 2.196 0.061 10.39 

Mean 0.409 1.082 0.030 28.17 

SD 0.215 0.560 0.016 9.87 
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Figure 80. Predictions of stalked tunicate biomass probability from the random forest model (see 

Table 18) within the northern Gulf of St. Lawrence. 

 
Figure 81. Stalked tunicate biomass catches overlaid to the stalked tunicate biomass probability 

from the random forest model (see Table 18) within the northern Gulf of St. Lawrence. 
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The top 15 most important environmental variables for predicting stalked tunicate biomass in the 

northern Gulf of St. Lawrence are shown in Figure 82. Summer Primary Production Mean was 

the most important variable in the model, followed distantly by the other variables in the model. 

The partial dependence of stalked tunicate biomass on the top 6 most important variables is 

shown in Figure 83. Summer Primary Production Mean was the most important variable for 

predicting stalked tunicate biomass. Predicted biomass was highest at primary production values 

lower than 850 mg C m
-2

 day
-1

. 

 

 
 

Figure 82 Importance of the top 15 predictor variables measured as the Mean Decrease Residual 

Sum of Squares of the random forest model (see Table 18) of stalked tunicate biomass data 

within the northern Gulf of St. Lawrence. 
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Figure 83. Partial dependence plots of the top six predictors of the random forest model (see 

Table 18) of stalked tunicate biomass data within the northern Gulf of St. Lawrence, ordered left 

to right from the top. 

 

Figures 84 and 85 show the surface of stalked tunicate biomass (kg) predictions per grid cell 

generated from the random forest model in the entire Gulf of St. Lawrence. 
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Figure 84. Predictions of stalked tunicate biomass probability from the random forest model 

within the Gulf Region. 

 
Figure 85. Stalked tunicate biomass catches overlaid to the stalked tunicate biomass probability 

from the random forest model within the Gulf Region. 
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Soft corals (Gersemia rubiformis) 

Data Sources and Distribution 

The soft coral G. rubiformis, known also as sea cauliflower, by-catch data available for species 

distribution modelling was collected over a period of 13 years from 2003 to 2015 (Table 19). In 

the surveys from the southern Gulf of St. Lawrence one catch of 41.66 kg was observed in an 

area with no other high catches around it. The next largest by-catch in term of biomass was 6.60 

kg. As it was not possible to confirm this data as a valid catch or as an annotation error, it was 

considered for the presence-absence models but not for the biomass model. The data were 

filtered so that only one presence or absence record occurred within the same environmental data 

raster cell (approximately 1 km
2
; with presence records taking precedence over an absence 

record when both occurred in the same cell), giving a total of 730 presence and 1118 absence 

records for the southern Gulf Region and 326 presence and 1342 absence records for the 

northern Gulf Region. Biomass (kg) of G. rubiformis was averaged across each catch occurring 

within the same cell. G. rubiformis presence and absence records were distributed unevenly 

across the Gulf Region (Figure 86). Presences were concentrated mainly in the southern Region 

in shallow waters and scattered along the northern Region, while absences were concentrated on 

the deeper areas. The highest biomass records occurred in the southern Region. 

 

Table 19. Data date range, gear type, area, and the total number of presences and absences of G. 

rubiformis catch data recorded from DFO trawl surveys. 

 

 
Southern 

Gulf 

Northern 

Gulf 

Year P A P A 

2003 52 30 - - 

2004 69 150 - - 

2005 89 135 - - 

2006 75 90 53 128 

2007 58 109 26 152 

2008 57 119 47 144 

2009 46 101 49 122 

2010 57 73 52 86 

2011 42 77 27 127 

2012 52 87 13 157 

2013 63 61 14 126 

2014 70 86 26 142 

2015 - - 19 158 

TOTAL 730 1118 326 1342 

 



 

86 

 
Figure 86. Mean biomass (kg) per grid cell of G. rubiformis by-catches recorded from DFO 

groundfish trawl surveys from 2003 to 2015 within the Gulf Region. 

 

Model 1 – Balanced species prevalence 

Accuracy measures (mean AUC, sensitivity and specificity) for the random forest model on 

balanced species prevalence data are presented in Table 20. The highest AUC was 0.753 

associated with Model Run 7 which is considered the optimal model for the prediction of G. 

rubiformis response data. The sensitivity and specificity measures of this model were 0.722 and 

0.674, respectively. The confusion matrix of the optimal model is also presented in Table 20. 

Class error for both classes was above 0.25. 
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Table 20. Accuracy measures for all 10 model repetitions from 10-fold cross validation from 

random forest modelling of presence and absence of G. rubiformis within the Gulf Region. The 

confusion matrix is shown for the model with the highest AUC value (Model Run 7) which is 

considered the optimal model for predicting G. rubiformis presence probability. 

 

Model Run AUC Sensitivity Specificity 

1 0.739 0.706 0.666 

2 0.743 0.729 0.659 

3 0.738 0.704 0.652 

4 0.730 0.699 0.651 

5 0.752 0.729 0.670 

6 0.738 0.713 0.662 

7 0.753 0.722 0.674 

8 0.737 0.709 0.632 

9 0.749 0.728 0.670 

10 0.733 0.702 0.649 

Mean 0.741 0.714 0.659 

SD 0.008 0.012 0.013 

    

Confusion matrix of model with maximum AUC: 

 

Observations Predictions Total n Class 

error 

 Absence Presence   

Absence 712 344 1056 0.326 

Presence 294 762 1056 0.278 

 

The presence probability prediction surface of G. rubiformis is presented in Figure 87. The 

highest predictions of presence probability occurred in the shallower areas of the Region. Areas 

of higher presence probability corresponded well with the spatial distribution of presence records 

(see Figure 88).  
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Figure 87. Predictions of presence probability (pres. prob.) of G. rubiformis from the optimal 

random forest model (see Table 20) based on balanced data. 

 
Figure 88. Total presence and absence observations and predictions of presence probability 

(pres. prob.) of G. rubiformis from the optimal random forest model (see Table 20) based on 

balanced data. 
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The actual presence and absence data observations (1056 presences and 1056 absences) used in 

the optimal model did not show important differences (Figure 89) with respect of the distribution 

of all the absence records across the study area (Figure 88). In this figure are also showed the 

areas of model extrapolation (i.e. areas where at least one environmental variable has values 

beyond its sampled range). The south of Prince Edward Island and the shallow portion in the 

northeast, before the Strait of Belle Isle are considered extrapolated area, as well as smaller areas 

scattered across the study area. 

 

 
Figure 89. Presence and balanced absence observations and predictions of presence probability 

(pres. prob.) of G. rubiformis from the optimal random forest model (see Table 20) based on 

balanced data. The grey areas of extrapolation are also shown. 

 

Of all 78 environmental predictor variables used in the model, Depth was the most important for 

the classification of the G. rubiformis presence and absence data (Figure 90). This variable was 

followed more distantly in terms of its Mean Decrease in Gini Value by Bottom Temperature 

Mean and other variables. The partial dependence plots for the top 6 most important predictors 

are shown in Figure 91. Presence probabilities of G. rubiformis were higher at depths values 

lower than 200 m. 
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Figure 90. Importance of the top 15 predictor variables measured as the Mean Decrease in Gini 

value of the optimal random forest model of G. rubiformis presence and absence data within the 

Gulf Region. The higher the Mean Gini value the more important the variable is for predicting 

the response data. 
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Figure 91. Partial dependence plots of the top six predictors of from the optimal random forest 

model of G. rubiformis presence and absence data collected within the Gulf Region, ordered left 

to right from the top. 
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Model 2 – Unbalanced species prevalence 

 

Table 22 shows the accuracy measures for the random forest model on G. rubiformis presence 

and absence data (1056 presences and 2460 absences) and a threshold equal to species 

prevalence (0.3). The AUC calculated from Model 2 was 0.739, slightly lower than that of 

Model 1 (0.741). Class error of the presence class was higher than that of Model 1 although class 

error for the absence class was lower. Sensitivity was lower for Model 2, although specificity 

was higher. 

 

Table 22. Accuracy measures and confusion matrix from 10-fold cross validation from random 

forest modelling of presence and absence of G. rubiformis within the Gulf Region with a cut-off 

threshold of 0.3. 

 

The predicted presence probability surface of G. rubiformis generated from Model 2 is shown in 

Figure 92. Similarly to Model 1, the highest predictions of presence probability occurred in the 

shallower areas of the Region. Areas of higher presence probability corresponded well with the 

spatial distribution of presence records (see Figure 93).  

 

 
Figure 92. Predictions of presence probability (pres. prob.) of G. rubiformis from the unbalanced 

random forest model (see Table 22). 

Observations Predictions Total n Class 

error 

AUC Sensitivity Specificity 

 Absence Presence      

Absence 1754 706 2460 0.287 0.739 0.627 0.713 

Presence 394 662 1056 0.373    
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Figure 93. Presence and absence observations and predictions of presence probability (pres. 

prob.) of G. rubiformis from the unbalanced random forest model (see Table 22). The grey areas 

of extrapolation are also shown. 

 
Figure 94. Predicted distribution of G. rubiformis from the unbalanced random forest model (see 

Table 22) using the prevalence cut-off threshold of 0.3. The grey areas of extrapolation are also 

shown, they appear dark red when overlain on the red presence surface. 
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Figure 95. Presence and absence observations and predicted distribution of G. rubiformis from 

the unbalanced random forest model (see Table 22) using the prevalence cut-off threshold of 0.3. 

The grey areas of extrapolation are also shown, they appear dark red when overlain on the red 

presence surface. 

 

The six most important environmental predictor variables in Model 2 were the same as that of 

Model 1 (Figure 96), and Depth and Bottom Temperature Mean were also the most important 

variables for the classification of G. rubiformis in Model 2. Partial dependence of G. rubiformis 

presence and absence data on the top 6 predictor variables is shown in Figure 97 and show 

similar results to those for Model 1. 
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Figure 96. Importance of the top 15 predictor variables measured as the Mean Decrease in Gini 

value of the unbalanced random forest model of G. rubiformis presence and absence data within 

the Gulf Region. The higher the Mean Gini value the more important the variable is for 

predicting the response data. 
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Figure 97. Partial dependence plots of the top six predictors of from the unbalanced random 

forest model of G. rubiformis presence and absence data collected within the Gulf Region, 

ordered left to right from the top. 
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Model Selection 

Model accuracy measures were very similar for both models, although Model 1 presented 

slightly higher AUC and sensitivity and lower specificity. The selection of Model 1, based on 

balanced data, allows for the use of the presence probabilities considering values higher than 0.5 

as presences and lower as absences to maintain fairly constant  error rates. 

 

Prediction of G. rubiformis Biomass Using Random Forest 

 

a) Southern Gulf of St. Lawrence 

The accuracy measures of the regression random forest model on mean G. rubiformis biomass 

per grid cell for the southern Gulf of St. Lawrence are presented in Table 23. The average R-

square (R
2
) value was 0.420 ± 0.287, the average Root-Mean-Square Error (RMSE) was 0.209 ± 

0.098, and the average percent variance explained was 18.26 ± 6.28. The high variability around 

the mean for R
2
 indicates high variability of the model fit. 

 

Table 23. Accuracy measures from 10-fold cross validation from random forest modelling of 

biomass of G. rubiformis within the southern Gulf of St. Lawrence. NRMSE, is the normalized 

root-mean square deviation (RMSE/range of biomass values for response). 

 

Figures 98 and 99 show the surface of G. rubiformis biomass (kg) predictions per grid cell 

generated from the random forest model in the southern Gulf of St. Lawrence. The maximum 

biomass was predicted in the coastal areas in the southern part.  

Model Fold R
2
 RMSE NRMSE %variance 

explained 

1 0.373 0.294 0.010 13.90 

2 0.003 0.210 0.008 26.25 

3 0.110 0.264 0.007 21.67 

4 0.547 0.165 0.074 18.16 

5 0.703 0.101 0.009 12.84 

6 0.403 0.174 0.004 14.49 

7 0.037 0.179 0.006 20.20 

8 0.596 0.407 0.003 29.91 

9 0.611 0.227 0.007 10.04 

10 0.820 0.066 0.007 15.16 

Mean 0.420 0.209 0.005 18.26 

SD 0.287 0.098 0.002 6.28 
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Figure 98. Prediction of G. rubiformis biomass (kg) from the random forest model (see Table 

23) within the southern Gulf of St. Lawrence. 

 
Figure 99. G. rubiformis biomass catches overlaid to the G. rubiformis biomass (kg) predicted 

from the random forest model (see Table 23) within the southern Gulf of St. Lawrence. 
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The top 15 most important environmental variables for predicting G. rubiformis biomass in the 

southern Gulf of St. Lawrence are shown in Figure 100. Maximum Average Spring Mixed Layer 

Depth was the most important variable in the model, followed by Maximum Average Winter 

Mixed Layer Depth. The partial dependence of G. rubiformis biomass on the top 6 most 

important variables is shown in Figure 101. Maximum Average Spring Mixed Layer Depth 

predicted highest biomass at values around 11 m depth. 

 

 
 

Figure 100. Importance of the top 15 predictor variables measured as the Mean Decrease 

Residual Sum of Squares of the random forest model (see Table 23) of G. rubiformis biomass 

data within the southern Gulf of St. Lawrence. 
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Figure 101. Partial dependence plots of the top six predictors of the random forest model (see 

Table 23) of G. rubiformis biomass data within the southern Gulf of St. Lawrence, ordered left to 

right from the top. 
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Model 4 – Northern Gulf Region 

The accuracy measures of the regression random forest model on mean G. rubiformis biomass 

per grid cell for the northern Gulf of St. Lawrence are presented in Table 24. The average R-

square (R
2
) value was 0.192 ± 0.274, the average Root-Mean-Square Error (RMSE) was 0.042 ± 

0.038, and the average percent variance explained was 7.002 ± 4.190. The high variability 

around the mean for both of these metrics indicates high variability of the model fit. 

 

Table 24. Accuracy measures from 10-fold cross validation from random forest modelling of 

biomass of G. rubiformis within the northern Gulf of St. Lawrence. NRMSE, is the normalized 

root-mean square deviation (RMSE/range of biomass values for response). 

Figures 102 and 103 show the surface of G. rubiformis biomass (kg) predictions per grid cell 

generated from the random forest model in the northern Gulf of St. Lawrence. The biomass 

predicted was low in most of the area except in some shallow areas in the estuary of the St. 

Lawrence River. 

 

Model Fold R
2
 RMSE NRMSE %variance 

explained 

1 0.003 0.063 0.033 15.500 

2 0.542 0.021 0.011 2.820 

3 0.287 0.142 0.075 2.920 

4 0.024 0.023 0.012 5.660 

5 0.029 0.043 0.023 7.180 

6 0.004 0.014 0.007 7.790 

7 0.050 0.018 0.009 7.150 

8 0.038 0.032 0.017 11.880 

9 0.800 0.020 0.011 1.970 

10 0.137 0.045 0.024 7.150 

Mean 0.192 0.042 0.022 7.002 

SD 0.274 0.038 0.020 4.190 
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Figure 102. Predictions of G. rubiformis biomass probability from the random forest model (see 

Table 24) within the northern Gulf of St. Lawrence. 

 
Figure 103. G. rubiformis biomass catches overlaid to the G. rubiformis biomass probability 

from the random forest model (see Table 24) within the northern Gulf of St. Lawrence. 
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The top 15 most important environmental variables for predicting G. rubiformis biomass in the 

northern Gulf of St. Lawrence are shown in Figure 104. The first five top environmental 

variables are related to MODIS Case I Chlorophyll a, being the MODIS Case I Chlorophyll a 

Range the most important variable in the model. The partial dependence of G. rubiformis 

biomass on the top 6 most important variables is shown in Figure 105. Predicted biomass of G. 

rubiformis increased when MODIS Case I Chlorophyll a Range was higher than 9 mg m
-3

. 

 

 
 

Figure 104 Importance of the top 15 predictor variables measured as the Mean Decrease 

Residual Sum of Squares of the random forest model (see Table 24) of G. rubiformis biomass 

data within the northern Gulf of St. Lawrence. 
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Figure 105. Partial dependence plots of the top six predictors of the random forest model (see 

Table 24) of G. rubiformis biomass data within the northern Gulf of St. Lawrence, ordered left to 

right from the top. 

 

Figures 106 and 107 show the surface of G. rubiformis biomass (kg) predictions per grid cell 

generated from the random forest model in the entire Gulf of St. Lawrence. 
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Figure 106. Predictions of G. rubiformis biomass from the random forest model within the Gulf 

of St. Lawrence. 

 

 
Figure 107. G. rubiformis biomass catches overlaid to the G. rubiformis biomass predicted from 

the random forest model within the Gulf of St. Lawrence. 



 

106 

DISCUSSION 

Random forest-generated species distribution models have been produced for sea pens 

(Pennatulacea), sponges (Porifera), stalked tunicates (Boltenia ovifera) and soft corals (Gersemia 

rubiformis). Models for presence-absence response data performed very well for sea pens and 

stalked tunicates and performed well for soft corals and sponges (Table 25). Prediction surfaces 

for the four groups produced clearly-defined areas of high occurrence probability. For the models 

based on biomass, soft corals and sea pens had the highest R
2
 values in the southern Gulf of St. 

Lawrence and stalked tunicates and sea pens in the north. Sponges had R
2
 values less than 0.1 in 

both areas indicating very bad model performance. The group “sponges” includes a highly 

diverse set of species as we can see in Table 1 that can have different environmental 

requirements making it more difficult to find a common response to the predictors than for the 

other taxa modelled in this study. In the case of sea pens, different species are also included (see 

Table 1) but all of them have similar environmental requirements (Williams, 1995) and they 

constitute extensive aggregations (sea pens fields) in suitable conditions (Fuller et al., 2008). 

 

Table 25. Accuracy measures for the models selected for each group based on presence-absence 

and on biomass data. 

 

Presence-Absence Biomass 

 
   

Southern Gulf Northern Gulf 

Taxon AUC Sensitivity Specificity R
2
 NRMSE R

2
 NRMSE 

Sea pens 0.91 0.840 0.822 0.37 0.04 0.27 0.04 

Sponges 0.71 0.646 0.662 0.07 0.02 0.03 0.04 

Stalked tunicates 0.89 0.837 0.805 0.18 0.05 0.41 0.03 

Soft corals 0.75 0.722 0.674 0.42 0.01 0.19 0.02 

 

Recently, Moritz et al. (2013) have modelled the spatial distribution of epibenthic communities 

in the Lower Estuary and Northern Gulf of St. Lawrence using generalized linear models. 

Predicted high and low suitability zones for six benthic communities were mapped in relation to 

two sets of environmental variables. Most of the models had a good performance with AUC 

values higher than 0.8. Of the taxonomic groups modelled in this report, only sea pens 

(Pennatulacea) and sponges (Porifera) were present as dominant taxa in some of the benthic 

communities groups identified by Moritz et al. (2013). Sea pens were included in the five 

dominant taxa in 5 of the 6 communities, and in the group B (estuarine community) they were 

found with the highest frequency of occurrence (91%). This group was characterized by low 

salinity, poor oxygen saturation and turbidity. This distribution is similar to the distribution 

found in the presence probability maps (Figures 10 and 15) where the Bottom Salinity Average 

Minimum was the main variable in importance in the balanced model and Depth in the 

unbalanced model. Sponges were included as one of the five dominant taxa in 3 of the 6 

communities, and the highest frequency was 67% in group A. Sponges are found in almost all of 

the area in our study and due to the poor resolution of this group no further comparisons can be 

done. 

 

Large numbers of collinear predictors can create different problems (such as inaccurate model 

parameterization or exclusion of significant predictors during model creation) and make models 



 

107 

more difficult to interpret (Graham, 2003). In the case of RF, the model is obtained by 

combining base models trained on different bootstrap replicate samples of the data together and 

only a random subset of the available variables is used for the candidate splitting variables at 

each node, alleviating the problem of correlated variables (Breiman, 1996). This has allowed us 

to use all of the environmental variables in the RF model and the performance obtained has 

produced better results than when a subset of predictors was considered (i.e. correlated less than 

a threshold). Nevertheless, the interpretability of the model can still be difficult. From the partial 

plots derived from the RF models it can be observed that the environmental variable values from 

which the presence probability (or biomass in regression models) increases towards the 

maximum on the x axis. These values may indicate an environmental barrier or environmental 

ranges in the distribution of the species. However, we caution that when such values are 

observed, the interpolated prediction surface of the environmental variable and the surface of the 

prediction standard error along with the Q-Q plots generated (Beazley et al., 2016) should be 

considered together to interpret the results. In the process of interpolation some of the areas can 

be over- or under-estimated which could affect the posterior results during the modelling 

process.  

 

Although it was not our goal to identify the specific niche requirements of each taxon 

considered, some preliminary conclusions can be obtained from the top predictor of each model 

(Table 26). Predictors relating to the physical environment, such as bottom temperature and 

salinity, were the most important predictors in presence-absence models, whereas those relating 

to biological factors, such as primary production or chlorophyll a, where the main predictors in 

the biomass models. This could be explained by the physical environment being a limiting factor 

for the presence of a taxon, but its development or growth could be more related to biological 

factors controlling food availability which is consistent with the biology of these groups of 

sessile filter feeders. 

 

Table 26. Top important environmental variable from each RF model. For presence-absence 

only the model selected between balanced and unbalanced data is considered.  

 

Presence-Absence Biomass 

Taxon 

 

Southern Gulf Northern Gulf 

Sea Pens 
Bottom Salinity 

Average Minimum  

Spring Primary Production 

Average Minimum  

Surface Temperature 

Average Maximum 

Sponges 
Depth 

MERIS Case II Spring 

Chlorophyll a Range 

Maximum Average Summer 

Mixed Layer Depth 

Stalked 

tunicates 

Bottom 

Temperature Mean 

MERIS Case II Fall 

Chlorophyll a Minimum 

Surface Primary Production 

Mean 

Soft corals Depth 

Maximum Average Spring 

Mixed Layer Depth 

MODIS Case I Spring 

Chlorophyll a Range 

 

The number of available methods for predicting species’ distribution has increased in response to 

the demand for predictive modelling in recent years. According to Knudby et al. (2010), RF is 

superior in predicting species richness and diversity, whereas GAM is superior in predicting 

biomass. Some authors suggest the use of an ensemble approach where different methods are 

applied (Bučas et al., 2013). We have compared the results obtained from RF and GAM in the 

case of sea pens and additional GAM models for the other taxa are presented in Appendix 1. RF 
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biomass models performed similar or better than GAM models when latitude and longitude were 

not included as predictor variables. However, including latitude and longitude as a tensor product 

in the GAM models increased the R
2
 but the prediction capacity outside the range of data 

observations decreased. Depending on the objective of the study, it can be useful to use latitude 

and longitude as predictors. In the case of refining areas already identified by other means, such 

as Kernel Density Estimation (Kenchington et al., 2016), it seems that either the RF or the GAM 

models considering geographic distance give accurate results and are able to map sea pen habitat 

when a threshold is defined by the KDE analysis in advance. However, if the objective is to 

predict biomass in new areas where no data are available, the GAM without latitude and 

longitude seemed to generalize better than RF. RF is a robust statistical method that requires very 

little input from the user and is able to learn patterns in the data automatically, whereas in GAM 

models several parameters need to be defined, such as the distribution type or the degrees of 

freedom of the smothers. In addition, when latitude and longitude are considered in a GAM 

model as a tensor product the model becomes computationally costly and most of the 

explanatory power related to the environmental variables is collected by these predictors, making 

interpretability of the model difficult. In the Gulf of St. Lawrence where good coverage of the 

response data was available, the main objective was to present SDM-maps that can be used to 

refine the significant polygons (Figure 108). For this objective it seems that RF and GAM 

models provide similar results and are both good options, although the fewer assumptions 

required for RF makes this method more convenient. 

 

 
 

Figure 108. Sea pen biomass predicted (higher and lower than 4 kg) overlaid with the significant 

area polygons from Kenchington et al. (2016) in the northern Gulf of St. Lawrence. Left panel 

(RF Model output); Right panel (GAM Model 4 output). 

 

The models provided in this study do not consider the effect of disturbance by human activities. 

The Gulf of St. Lawrence has been subjected to the effects of fisheries for centuries (Perley, 

1849). Predicted biomass and to a lesser degree distribution can therefore be confounded by 

fishing activities, and areas that are physically suitable but are predicted to have low occurrence 

or biomass may not necessarily indicate bad model performance. Three of the taxa considered in 

this report (sea pens, sponges, and stalked tunicates) are vulnerable marine ecosystems (VME) 

indicators (Murillo et al., 2011) and are highly aggregating, structure-forming megafaunal groups 
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that can be found in ‘significant concentrations’ constituting VME (Kenchington et al., 2014). 

The life-history traits of these species, such as slow growth rates, late age of maturity, or their 

structural complexity make them very vulnerable to fishing activities (FAO, 2009). In order to 

consider how anthropogenic pressure has influenced these ecosystems, a measure of this, such as 

fishing intensity, should be included as a predictor variable in the RF models and the effects of 

changes in the pressure explored (Bergstrom et al. 2013). This kind of analysis would point out 

potential species distribution and could indicate areas for future restoration initiatives helping the 

implementation of the Policy for Managing the Impact of Fishing on Sensitive Benthic Areas 

developed by DFO in 2009 to ensure Canadian fisheries are conducted in a manner that supports 

marine conservation and sustainable resource use within and outside Canada's 200 nautical mile 

exclusive economic zone. 

  

ACKNOWLEDGMENTS 
 

This project was funded in part by a one year project under DFO’s Strategic Program for 

Ecosystem-Based Research and Advice (SPERA) to EK and through financial support by DFO’s 

Oceans Management Program, Gulf Region. We thank Ray MacIsaac for the latter contribution 

and guidance in the preparation of this report. We thank C. Rooper (NMFS - RACE Division, 

Washington, USA) and K. Tanaka (U of Maine, Maine, USA) for their constructive comments 

on SDM and GAMs. 

 

 

REFERENCES 

 
Beazley, L., Lirette, C., Sabaniel, J., Wang, Z., Knudby, A., and Kenchington, E. 2016. 

Characteristics and Environmental Data Layers for Use in Species Distribution Modelling 

in the Gulf of St. Lawrence. Can. Tech. Rep. Fish. Aquat. Sci. 3154: viii + 357 p. 

Bergström, U., Sundblad, G., Downie, A.-L., Snickars, M., Bostöm, C., and Lindegarth, M. 

2013. Evaluating eutrophication management scenarios in the Baltic Sea using species 

distribution modelling. J. Appl. Ecol. 50: 680–690. 

Bučas, M., Bergström, U., Downie, A-L., Sundblad, G., Gullström, M., von Numers, M., 

Šiaulys, A., and Lindegarth, M. 2013. Empirical modelling of benthic species distribution, 

abundance, and diversity in the Baltic Sea: evaluating the scope for predictive mapping 

using different modelling approaches. ICES J. Mar. Sci. doi: 10.1093/icesjms/fst036. 

Breiman, L. 1996. Bagging Predictors. Mach. Learn. 24: 123–140. 

Breiman, L. 2001. Random Forests. Mach. Learn. 45: 5–32. 

Chen, C., Liaw, A., and Breiman, L. 2004. Using random forest to learn imbalanced data. 

University of California, Berkeley. 12 p. 

Cutler, D.R., Edwards Jr., T.C., Beard, K.H., Cutler, A., Hess, K.T., Gibson, J., and Lawler, J.J. 

2007. Random Forest for classification in Ecology. Ecology 88: 2783–2792. 



 

110 

Davies, A.J., Wisshak, M., Orr, J.C., and Roberts, J.M. 2008. Predicting suitable habitat for the 

cold-water coral Lophelia pertusa (Scleractinia). Deep-Sea Res. I 55: 1048–1062. 

Davies, A.J., and Guinotte, J.M. 2011. Global habitat suitability for framework-forming 

coldwater corals. PLoS ONE 6(4): e18483. doi:10.1371/journal.pone.0018483 

DFO. 2007. Assessment of cod stock in the northern gulf of St. Lawrence (3Pn, 4RS) in 2006. 

DFO Canadian Science Advisory Secretariat Science Advisory Report 2007/003. 14 p. 

Dolan, M.F.J., Grehan, A.J., Guinan, J.C., and Brown, C. 2008. Modelling the local distribution 

of cold-water corals in relation to bathymetric variables: Adding spatial context to deep-sea 

video data. Deep-Sea Res. I 55: 1564–1579. 

Dufour, R., and Ouellet, P. 2007. Estuary and Gulf of St. Lawrence marine ecosystem overview and 

assessment report. Can. Tech. Rep. Fish. Aquat. Sci. 2744E: vii + 112 p. 

Dunn, P. K., and Smyth, G. K. 1996. Randomized quantile residuals. J. Comput. Graph. Stat. 5: 

236–244. 

Dutil, J.-D., Proulx, S., Chouinard, P.-M., and Borcard, D. 2011. A hierarchical classification of 

the seabed based on physiographic and oceanographic features in the St. Lawrence. Can. 

Tech. Rep. Fish. Aquat. Sci. 2916: vii + 72 p. 

ESRI, 2011. ArcGIS Desktop: Release 10. Environmental Systems Research Institute, Redlands, 

CA. 

Evans J.S., Murphy, M.A., Holden, Z.A., and Cushman, S.A. 2011. Modeling Species 

Distribution and change Using Random Forests. In Predictive Species and Habitat 

Modeling in Landscape Ecology: Concepts and Applications. Edited by C.A Drew, Y.F. 

Wiersma, and F. Huettmann. Springer, New York. pp. 139–159. 

FAO. 2009. International Guidelines for the Management of Deep-sea Fisheries in the High 

Seas. FAO, Rome. 73p. 

Fawcett, T. 2006. An introduction to ROC analysis. Pattern Recog. Lett. 27: 861–874. 

Franklin, J. 2009. Mapping Species Distributions: Spatial Inference and Prediction. Cambridge 

University Press, Cambridge, U.K. 338 p. 

Fuller, S.D., Murillo Perez, F.J., Wareham, V., and Kenchington, E. 2008. Vulnerable Marine 

Ecosystems Dominated by Deep-Water Corals and Sponges in the NAFO Convention 

Area. Ser No N5524. NAFO SCR Doc 08/22. 24 p. 

Graham, M. 2003. Confronting multicollinearity in ecological multiple regression. Ecology 84: 

2809-2815. doi:10.1890/02-3114. 



 

111 

Guinan, J., Grehan, A.J., Dolan, M.F.J., and Brown, C. 2009. Quantifying relationships between 

video observations of cold-water coral cover and seafloor features in Rockall Trough, West 

of Ireland. Mar. Ecol. Prog. Ser. 375: 125–138. 

Guisan, A., and Zimmerman, N.E. 2000. Predictive habitat distribution models in ecology. Ecol. 

Model. 135: 147–186. 

Hanberry, B.B., and He, H.S. 2013. Prevalence, statistical thresholds and accuracy assessment 

for species distribution models. Web Ecology 13: 13–19. 

Hastie, T., and Tibshirani, R. 1986. Generalized additive models. Stat. Sci. 1: 297–318. 

Hastie, T., Tibshirani, R., Friedman, J., and Franklin, J. 2005. The Elements of Statistical 

Learning: Data Mining, Inference and Prediction. Second Edition. Springer+Verlag. 

Herrick, K.K., Huettmann, F., and Lindgren, M.A. 2013. A global model of avian influenza 

prediction in wild birds: the importance of northern region. Vet. Res. 44: 42. 

Jiménez-Valverde, A. and Lobo, J. M. 2006. The ghost of unbalanced species distribution data in 

geographical model predictions. Divers. Distrib. 12: 521–524. 

Kenchington, E., Lirette, C., Cogswell, A., Archambault, D., Archambault, P., Benoit, H., 

Bernier, D., Brodie, B., Fuller, S., Gilkinson, K., Lévesque, M., Power, D., Siferd, T., 

Treble, M., and Wareham, V. 2010. Delineating coral and sponge concentrations in the 

biogeographic regions of the east coast of Canada using spatial analyses. Can. Sci. Advis. 

Sec. Res. Doc. 2010/041: vi + 202 p. 

Kenchington, E., Murillo, F.J., Lirette, C., Sacau, M., Koen-Alonso, M., Kenny, A., Ollerhead, 

N., Wareham, V., and Beazley, L. 2014. Kernel density surface modelling as a means to 

identify significant concentrations of vulnerable marine ecosystem indicators. PLoS ONE 

9(10): e109365. doi:10.1371/journal.pone.0109365 

Kenchington, E., Lirette, C., Murillo, F.J., Beazley, L., Guijarro, J., Wareham, V., Gilkinson, K., 

Koen Alonso, M., Benoît, H., Bourdages, H., Sainte-Marie, B., Treble, M., and Siferd, T. 

2016. Kernel Density Analyses of Coral and Sponge Catches from Research Vessel Survey 

Data for Use in Identification of Significant Benthic Areas. Can. Tech. Rep. Fish. Aquat. 

Sci. 3167: viii + 207 p. 

Knudby, A., Brenning, A., and LeDrew, E. 2010. New approaches to modelling fish-habitat 

relationships. Ecol. Model. 221: 503–511. 

Knudby, A., Kenchington, E., Cogswell, A.T., Lirette, C.G., and Murillo, F.J. 2013a. 

Distribution modelling for sponges and sponge grounds in the northwest Atlantic Ocean. 

Can. Tech. Rep. Fish. Aquat. Sci. 3055: v + 73 p. 

Knudby, A., Kenchington, E., and Murillo, F.J. 2013b. Modeling the distribution of Geodia 

sponges and sponge grounds in the northwest Atlantic Ocean. PLoS ONE 8, e82306. 

http://dx.doi.org/10.1371/journal.pone.0082306. 



 

112 

Knudby, A., Lirette, C., Kenchington, E., and Murillo, F.J. 2013c. Species Distribution Models 

of Black Corals, Large Gorgonian Corals and Sea Pens in the NAFO Regulatory Area. 

Ser No N6276. NAFO SCR Doc 13/78. 17p. 

Kuhn, M. and Johnson, K. 2013. Applied Predictive Modeling. Springer. New York. 574 p. 

Kulka, D., Swain. D., Simpson, M.R., Miri, C.M., Simon, J., Gauthier, J., McPhie, R., 

Sulikowski, J. and Hamilton, J. 2006. Distribution, abundance, and life history of 

Malacoraja senta (smooth skate) in Canadian Atlantic waters with reference to its global 

distribution. DFO Can. Sci. Advis. Sec. Res. Doc. 2006/093: 140 p. 

Lawler, J.J., Shafer, S.L., White, D., Kareiva, P., Maurer, E.P., Blaustein, A.R., and Bartlein, P.J. 

2009. Projected climate-induced faunal change in the Western Hemisphere. Ecology 90: 

588–597. 

Liaw, A., and Wiener, M. 2002. Classification and regression by randomForest. R News 2: 18–

22. 

Liu, C., Berry, P.M., Dawson, T.P., and Pearson, R.G. 2005. Selecting thresholds of occurrence 

in prediction of species distribution. Ecography 28: 385–393. 

McPherson, J.M., Jetz, W., and Rogers, D.J. 2004. The effects of species’ range sizes on the 

accuracy of distribution models: ecological phenomenon or statistical artifact? J. Appl. 

Ecol. 41: 811–823. 

Miller, D.L., Rexstad, E., Burt, L., Bravington, M.V., and Hedley, S. 2015. Package ‘dsm’. 26 p. 

Moritz, C., Lévesque, M., Gravel, D., Vaz, S., Archambault, D., and Archambault, P. 2013. 

Modelling spatial distribution of epibenthic communities in the Gulf of St. Lawrence 

(Canada). J. Sea Res. 78: 75–84. 

Murillo, F.J., Kenchington, E., Sacau, M., Piper, D.J.W., Wareham V, and Muñoz, A. 2011. New 

VME indicator species (excluding corals and sponges) and some potential VME elements 

of the NAFO Regulatory Area. Ser No N6003. NAFO SCR Doc 11/73. 20 p. 

NAFO. 2013. Conservation and Enforcement Measures. NAFO/FC, Doc. 13/1, Serial No. 

N6131. 103 p. 

NAFO. 2015. Report of the 8
th

 meeting of the NAFO Scientific Council Working Group on 

Ecosystem Science and Assessment (WGESA). NAFO SCS, in press. 

Perley, M. H. 1849. Report on the fisheries of the Gulf of Saint Lawrence.  

Peterson, A. 2003. Predicting the geography of species' invasions via ecological niche modeling. 

Q. Rev. Biol. 78: 419–433. 

 



 

113 

Peterson, A., and Robins, C. 2003. Using ecological-niche modeling to predict barred owl 

invasions with implications for spotted owl conservation. Conserv. Biol. 17: 1161–1165. 

Porfirio, L.L., Harris, R.M.B., Lefroy, E.C., Hugh, S., Gould, S.F., Lee, G., Bindoff, N.L., and 

Mackey, B. 2014. Improving the Use of Species Distribution Models in Conservation 

Planning and Management under Climate Change. PLoS ONE 9(11): e113749. 

doi:10.1371/journal.pone.0113749. 

R Core Team, 2015. R: A language and environment for statistical computing. R Foundation for 

Statistical Computing, Vienna, Austria. https://www.R-project.org/. 

Rooper, C.N., Zimmermann, M., Prescott, M.M., and Hermann, A.J. 2014. Predictive models of 

coral and sponge distribution, abundance and diversity in bottom trawl surveys of the 

Aleutian Islands, Alaska. Mar. Ecol. Prog. Ser. 503: 157–176. 

Shono, H. 2008. Application of the Tweedie distribution of zero-catch data in CPUE analysis. 

Fish. Res. 93: 154–162. 

Tittensor, D.P., Baco, A.R., Brewin, P.E., Clark, M.R., Consalvey, M., Hall-Spencer, J., 

Rowden, A.A., Schlacher, T., Stocks, K.I., and Rogers, A.D. 2009. Predicting global 

habitat suitability for stony corals on seamounts. J. Biogeogr. 36: 1111–1128. 

Williams, G. C. 1995. Living genera of sea pens (Coelenterata: Octocorallia: Pennatulacea): 

illustrated key and synopses. Zool. J. Linn. Soc.- Lond. 113: 93–140. 

Wood, S.N. 2006. Generalized additive models: an introduction with R. Chapman & Hall/CRC 

Press, Boca Raton, FL. 

Yesson, C., Taylor, M.L., Tittensor, D.P., Davies, A.J., Guinotte, J., Baco, A., Black, J., Hall-

Spencer, J.M., and Rogers, A.D. 2012. Global habitat suitability of cold-water octocorals. 

J. Biogeogr. 39: 1278–1292. 

  



 

114 

APPENDIX 1 
 

Prediction of Sponges, Stalked Tunicates and Soft Corals Biomass Using 

GAM 
 

Sponges (Porifera) 
 

a) Southern Gulf of St. Lawrence 

The GAM results on mean sponge biomass per grid cell for the southern Gulf of St. Lawrence 

are presented in Table A1.  

 

Table A1. GAM results. Significant variables (p < 0.05) are listed in order of their significance 

(highest to lowest) in the model, the deviance explained and the estimated degrees of freedom 

(edf) and the R
2
 are also provided. Variables are Summer Primary Production Average Range 

(pp_sum_ran_avg), Spring Primary Production Average Range (pp_spr_ran_avg), Depth, 

Surface Temperature Average Minimum (s_tmp_min_avg), Summer Primary Production 

Average Minimum (pp_sum_min_avg), MERIS Case II Fall Chlorophyll a Minimum 

(M_chl_fall_min), Maximum Summer Mixed Layer Depth (mld_sum_max_avg), Summer 

Primary Production Average Maximum (pp_sum_max_avg), MODIS Case I Fall Chrolophyll a 

Range (chl_fall_ran), MODIS Case I Spring Chrolophyll a Range (chl_spr_ran), Surface Current 

Average Range (s_cur_ran_avg), Slope, location (lat, long), Surface Current Average Minimum 

(s_cur_min_avg). 

 

Model Significant variables 

Deviance 

explained edf R
2
 

1 

s(pp_sum_ran_avg) + s(pp_spr_ran_avg) 

+ s(depth) + s(s_tmp_min_avg) + 

s(pp_sum_min_avg) + s(M_chl_fall_min) 

+ s(mld_sum_max_avg) 

+s(pp_sum_max_avg) +s(chl_fall_ran) + 

s(chl_spr_ran) + s(s_cur_ran_avg) + 

s(slope) 

27.1% 

3.5; 4.3; 1; 4.7; 

3.9; 1.5; 3.9; 1; 

4.4; 3.6; 4.2; 

1.9 

0.05 

2 

te(lat, long) + s(depth) + 

s(pp_sum_ran_avg) + s(s_cur_min_avg) + 

s(M_chl_fall_min) + 

s(mld_sum_max_avg) 

55% 
194; 1; 1; 3.3; 

1.5; 3.1 
0.26 

 

Figures A1 and A2 show the surface of sponge biomass (kg) predictions per grid cell generated 

from GAM Models 1 and 2 in the southern Gulf of St. Lawrence. The biomass predicted was 

higher around the maximum sponge catch, but in Model 2 (Figure A2) deviance explained and 

R
2
 were higher, and very large predictions (> 4.000 kg) were obtained in two small areas at the 

northeast of Prince Edward Island in areas where the maximum biomass sponge recorded was 

less than 10 kg (Figure A3). 
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Figure A1. Prediction of sponge biomass (kg) from the GAM Model 1 (see Table A1) within the 

southern Gulf of St. Lawrence.  

 
Figure A2. Prediction of sponge biomass (kg) from the GAM Model 2 (see Table A1) within the 

southern Gulf of St. Lawrence. Red circle highlights an area of high predicted biomass that was 

not as prominent in the Model 1 analysis (Figure A1). 
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Figure A3. Sponge biomass catches overlaid on the sponge biomass (kg) predicted from the 

GAM Model 1 (see Table A1) within the southern Gulf of St. Lawrence. 
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b) Northern Gulf of St. Lawrence 

The GAM results on mean sponge biomass per grid cell for the northern Gulf of St. Lawrence 

are presented in Table A2. 

Table A2. GAM results. Significant variables (p < 0.05) are listed in order of their significance 

(highest to lowest) in the model, the deviance explained and the estimated degrees of freedom 

(edf) and the R
2
 are also provided. Variables are Maximum Summer Mixed Layer Depth 

(mld_sum_max_avg), Surface Current Average Minimum (s_cur_min_avg), Depth, Surface 

Current Average Range (s_cur_ran_avg), MERIS Case II Fall Chlorophyll a Minimum 

(M_chl_fall_min), MODIS Case I Spring Chrolophyll a Range (chl_spr_ran), Bottom current 

Average Range (b_cur_ran_avg), Summer Primary Production Average Minimum 

(pp_sum_min_avg), Summer Primary Production Average Maximum (pp_sum_max_avg), 

Summer Primary Production Average Range (pp_sum_ran_avg), Bottom Temperature Average 

Range (b_tmp_ran_avg), location (lat, long), Slope. 

Model Significant variables 

Deviance 

explained edf R
2
 

1 

s(mld_sum_max_avg) + 

s(s_cur_min_avg) + s(depth) + 

s(s_cur_ran_avg) + s(M_chl_fall_min) + 

s(chl_spr_ran) + s(b_cur_ran_avg) + 

s(pp_spr_min_avg) + s(pp_spr_ran_avg) 

+ s(pp_sum_min_avg) + 

s(pp_sum_max_avg) + 

s(pp_sum_ran_avg) + s(b_tmp_ran_avg) 

22% 

4.5; 4.8; 1.8; 

4.8; 1; 1; 1.7; 

3.5; 4.1; 3.6; 

1.8; 1; 1 

0.03 

2 

te(lat, long) + s(pp_sum_ran_avg) + 

s(slope) + s(M_chl_fall_min) + s(depth) + 

s(s_cur_ran_avg) + s(pp_spr_ran_avg) + 

s(pp_sum_max_avg) + 

s(mld_sum_max_avg) + s(b_cur_ran_avg) 

45.2% 

138; 1; 1.8; 

1.5; 1; 1; 4.1; 

1.5; 4.2; 1 

0.136 

 

Figures A4 and A5 show the surface of sponge biomass (kg) predictions per grid cell generated 

from GAM Models 1 and 2 in the northern Gulf of St. Lawrence. Both surfaces showed very 

similar predictions with the maximum predicted biomass west and north of Anticosti Island. The 

biomass records overlaid on the sponge biomass predicted from the GAM Model 2 can be 

observed in Figure A6. 
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Figure A4. Prediction of sponge biomass (kg) from the GAM Model 1 (see Table A2) within the 

northern Gulf of St. Lawrence.  

 

 
Figure A5. Prediction of sponge biomass (kg) from the GAM Model 2 (see Table A2) within the 

northern Gulf of St. Lawrence. 
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Figure A6. Sponge biomass catches overlaid on the sponge biomass (kg) predicted from the 

GAM Model 2 (see Table A2) within the northern Gulf of St. Lawrence. 
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Stalked tunicates (Boltenia ovifera) 

 
a) Southern Gulf of St. Lawrence 

The GAM results on mean stalked tunicates biomass per grid cell for the southern Gulf of St. 

Lawrence are presented in Table A3. 

 

Table A3. GAM results. Significant variables (p < 0.05) are listed in order of their significance 

(highest to lowest) in the model, the deviance explained and the estimated degrees of freedom 

(edf) and the R
2
 are also provided. Variables are Depth, MERIS Case II Fall Chlorophyll a 

Minimum (M_chl_fall_min), Slope, Maximum Summer Mixed Layer Depth 

(mld_sum_max_avg), Spring Primary Production Average Range (pp_spr_ran_avg), Bottom 

Temperature Average Maximum (b_tmp_max_avg), Surface Current Average Minimum 

(s_cur_min_avg), MERIS Case II Summer Chlorophyll a Range (M_chl_sum_ran), MODIS 

Case I Spring Chrolophyll a Range (chl_spr_ran), Spring Primary Production Average Minimum 

(pp_spr_min_avg), Annual Primary Production Average Minimum (pp_ann_min_avg), Bottom 

Temperature Average Range (b_tmp_ran_avg), Bottom Current Average Range 

(b_cur_ran_avg), Surface Current Average Range (s_cur_ran_avg), MODIS Case I Fall 

Chrolophyll a Range (chl_fall_ran), Surface Temperature Average Minimum (s_tmp_min_avg), 

Summer Primary Production Average Maximum (pp_sum_max_avg), Summer Primary 

Production Average Range (pp_sum_ran_avg), location (lat, long). 

 

Model Significant variables 

Deviance 

explained edf R
2
 

1 

s(depth) + s(M_chl_fall_min) + s(slope) + 

s(mld_sum_max_avg) + 

s(pp_spr_ran_avg) + s(b_tmp_max_avg) 

+ s(s_cur_min_avg) + s(M_chl_sum_ran) 

+ s(chl_spr_ran) + s(pp_spr_min_avg) + 

s(pp_ann_min_avg) + s(b_tmp_ran_avg) 

+ s(b_cur_ran_avg) + s(s_cur_ran_avg) + 

s(chl_fall_ran) + s(s_tmp_min_avg) + 

s(pp_sum_max_avg) + 

s(pp_sum_ran_avg) 

52.8% 

1; 2; 1.9; 4.8; 

4.5; 1; 2.8; 4.3; 

4.8; 4.5; 1.8; 1; 

1; 1; 2.7; 4.7; 

1.8; 2.9 

0.18 

2 
te(lat, long) + s(depth) + s(slope) + 

s(chl_spr_ran) + s(M_chl_fall_min) 
71.3% 

170.3; 1.4; 1; 

4.4; 1 
0.36 

 

Figures A7 and A8 show the surface of stalked tunicate biomass (kg) predictions per grid cell 

generated from GAM Models 1 and 2 in the southern Gulf of St. Lawrence. GAM Model 2 had 

higher deviance explained and R
2
 than Model 1 and was able to predict the large stalked tunicate 

biomass between Prince Edward Island and Magdalen Islands. However, both of them predicted 

high biomass at the northwest of the study region, where no large stalked tunicate biomass 

catches have been found to date (Figure A9). 
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Figure A7. Prediction of stalked tunicate biomass (kg) from the GAM Model 1 (see Table A3) 

within the southern Gulf of St. Lawrence. 

 

 
Figure A8. Prediction of stalked tunicate biomass (kg) from the GAM Model 2 (see Table A3) 

within the southern Gulf of St. Lawrence. 
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Figure A9. Stalked tunicate biomass catches overlaid to the stalked tunicate biomass (kg) 

predicted from the GAM Model 2 (see Table A3) within the southern Gulf of St. Lawrence. 
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b) Northern Gulf of St. Lawrence 

The GAM results on mean stalked tunicates biomass per grid cell for the northern Gulf of St. 

Lawrence are presented in Table A4. 

 

Table A4. GAM results. Significant variables (p < 0.05) are listed in order of their significance 

(highest to lowest) in the model, the deviance explained and the estimated degrees of freedom 

(edf) and the R
2
 are also provided. Variables are Surface Current Average Minimum 

(s_cur_min_avg), Depth, Surface Current Average Range (s_cur_ran_avg), Bottom Current 

Average Range (b_cur_ran_avg), Summer Primary Production Average Maximum 

(pp_sum_max_avg), Surface Temperature Average Minimum (s_tmp_min_avg), Maximum 

Summer Mixed Layer Depth (mld_sum_max_avg), Spring Primary Production Average 

Minimum (pp_spr_min_avg), Summer Primary Production Average Range (pp_sum_ran_avg), 

location (lat, long), Spring Primary Production Average Range (pp_spr_ran_avg), MERIS Case 

II Fall Chlorophyll a Minimum (M_chl_fall_min), Slope, Bottom Temperature Average Range 

(b_tmp_ran_avg). 

 

Model Significant variables 

Deviance 

explained edf R
2
 

1 

s(s_cur_min_avg) + s(depth) + 

s(s_cur_ran_avg) + s(b_cur_ran_avg) + 

s(pp_sum_max_avg) + s(s_tmp_min_avg) 

+ s(mld_sum_max_avg) + 

s(pp_spr_min_avg) + s(pp_sum_ran_avg) 

82.7% 
4.7; 1.9; 4.1; 1; 

1; 3.3; 3.7; 1; 1 
0.42 

2 

te(lat, long) + s(pp_spr_ran_avg) + 

s(s_tmp_min_avg) + s(M_chl_fall_min) + 

s(depth) + s(slope) + s(pp_sum_max_avg) 

+ s(s_cur_ran_avg) + s(b_cur_ran_avg) + 

s(b_tmp_ran_avg) 

85.1% 

19.2; 3.2; 1; 

1.8; 1; 1; 1; 

1.9; 1; 1.8 

0.44 

 

Figures A10 and A11 show the surface of stalked tunicate biomass (kg) predictions per grid cell 

generated from GAM Models 1 and 2 in the northern Gulf of St. Lawrence. GAM Model 2 had 

slightly higher deviance explained and R
2
 than Model 1 and both model predicted large stalked 

tunicate biomass north of Anticosti island, where the higher biomass of stalked tunicates was 

found (Figure A12). However, GAM Model 2 predicted very high biomass at the mouth of the 

St. Lawrence Estuary where low stalked tunicate biomass was recorded (Figure A11). 
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Figure A10. Prediction of stalked tunicate biomass (kg) from the GAM Model 1 (see Table A4) 

within the northern Gulf of St. Lawrence. 

 
Figure A11. Prediction of stalked tunicate biomass (kg) from the GAM Model 2 (see Table A4) 

within the northern Gulf of St. Lawrence. Red circle highlights an area of high predicted biomass 

that was not as prominent in the Model 1 analysis (Figure A10). 
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Figure A12. Stalked tunicate biomass catches overlaid to the stalked tunicate biomass (kg) 

predicted from the GAM Model 2 (see Table A4) within the northern Gulf of St. Lawrence. 
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Soft corals (Gersemia rubiformis) 

 
a) Southern Gulf of St. Lawrence 

The GAM results on mean stalked tunicates biomass per grid cell for the southern Gulf of St. 

Lawrence are presented in Table A5. 

 

Table A5. GAM results. Significant variables (p < 0.05) are listed in order of their significance 

(highest to lowest) in the model, the deviance explained and the estimated degrees of freedom 

(edf) and the R
2
 are also provided. Variables are Spring Primary Production Average Range 

(pp_spr_ran_avg), Surface Temperature Average Minimum (s_tmp_min_avg), Summer Primary 

Production Average Minimum (pp_sum_min_avg), Bottom Current Average Range 

(b_cur_ran_avg), MERIS Case II Fall Chlorophyll a Minimum (M_chl_fall_min), Spring 

Primary Production Average Minimum (pp_spr_min_avg), MERIS Case II Summer Chlorophyll 

a Range (M_chl_sum_ran), Surface Current Average Range (s_cur_ran_avg), Bottom 

Temperature Average Range (b_tmp_ran_avg), location (lat, long). 

 

Model Significant variables 

Deviance 

explained edf R
2
 

1 

s(pp_spr_ran_avg) + s(s_tmp_min_avg) + 

s(pp_sum_min_avg) + s(b_cur_ran_avg) 

+ s(M_chl_fall_min) + 

s(pp_spr_min_avg) + s(M_chl_sum_ran) 

+ s(s_cur_ran_avg) + s(b_tmp_ran_avg) 

41.5% 

4.4; 4.6; 4.5; 

1.8; 1.2; 3.8; 1; 

2.6; 1 

0.34 

2 
te(lat, long) + s(M_chl_fall_min) + 

s(pp_sum_min_avg) 
48% 54; 1; 3.7 0.36 

 

Figures A13 and A14 show the surface of G. rubiformis biomass (kg) predictions per grid cell 

generated from GAM Models 1 and 2 in the southern Gulf of St. Lawrence. GAM Model 2 had 

slightly higher deviance explained and R
2
 than Model 1 although both surfaces were very similar 

showing a good fit to the G. rubiformis biomass catches (Figure A15). Biomass is predicted to be 

highest in the Baie des Chaleurs under both models. 
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Figure A13. Prediction of G. rubiformis biomass (kg) from the GAM Model 1 (see Table A5) 

within the southern Gulf of St. Lawrence. 

 

 
Figure A14. Prediction of G. rubiformis biomass (kg) from the GAM Model 2 (see Table A5) 

within the southern Gulf of St. Lawrence. 
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Figure A15. G. rubiformis biomass catches overlaid to the G. rubiformis biomass (kg) predicted 

from the GAM Model 2 (see Table A5) within the southern Gulf of St. Lawrence. 
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b) Northern Gulf of St. Lawrence 

The GAM results on mean G. rubiformis biomass per grid cell for the northern Gulf of St. 

Lawrence are presented in Table A6. 

 

Table A6. GAM results. Significant variables (p < 0.05) are listed in order of their significance 

(highest to lowest) in the model, the deviance explained and the estimated degrees of freedom 

(edf) and the R
2
 are also provided. Variables are Depth, Surface Current Average Range 

(s_cur_ran_avg), Bottom Temperature Average Maximum (b_tmp_max_avg), Spring Primary 

Production Average Range (pp_spr_ran_avg), Maximum Summer Mixed Layer Depth 

(mld_sum_max_avg), Annual Primary Production Average Minimum (pp_ann_min_avg), 

Summer Primary Production Average Maximum (pp_sum_max_avg), Summer Primary 

Production Average Minimum (pp_sum_min_avg), MODIS Case I Fall Chrolophyll a Range 

(chl_fall_ran), Spring Primary Production Average Minimum (pp_spr_min_avg), Bottom 

Temperature Average Range (b_tmp_ran_avg), Surface Temperature Average Minimum 

(s_tmp_min_avg), MODIS Case I Spring Chrolophyll a Range (chl_spr_ran), Surface Current 

Average Minimum (s_cur_min_avg), Summer Primary Production Average Range 

(pp_sum_ran_avg), Bottom Current Average Range (b_cur_ran_avg), Slope, location (lat, long). 

 

Model Significant variables 

Deviance 

explained edf R
2
 

1 

s(depth) + s(s_cur_ran_avg) + 

s(b_tmp_max_avg) + s(pp_spr_ran_avg) 

+ s(mld_sum_max_avg) + 

s(pp_ann_min_avg) + 

s(pp_sum_max_avg) + 

s(pp_sum_min_avg) + s(chl_fall_ran) + 

s(pp_spr_min_avg) + s(b_tmp_ran_avg) + 

s(s_tmp_min_avg) + s(chl_spr_ran) + 

s(s_cur_min_avg) + s(pp_sum_ran_avg) + 

s(b_cur_ran_avg) + s(slope) 

38.1% 

1.8; 1; 1.7; 1; 

1.4; 2; 1.9; 2.5; 

1; 3.5; 1; 4.3; 

1.6; 1.2; 1; 1.4; 

1 

0.34 

2 

te(lat, long) + s(depth) + 

s(mld_sum_max_avg) + 

s(b_tmp_max_avg) + s(s_cur_ran_avg) + 

s(pp_spr_ran_avg) + s(pp_sum_max_avg) 

+ s(chl_spr_ran) + s(b_cur_ran_avg) 

46.6% 

34.4; 1.9; 1; 

1.8; 1; 1; 1.9; 

1; 1 

0.47 

 

Figures A16 and A17 show the surface of G. rubiformis biomass (kg) predictions per grid cell 

generated from GAM Models 1 and 2 in the northern Gulf of St. Lawrence. GAM Model 2 had 

higher deviance explained and R
2
 than Model 1 and both models predicted similar biomass 

surfaces, however biomass predicted from GAM Model 2 was closer to the G. rubiformis 

biomass catches (Figure A18). 
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Figure A16. Prediction of G. rubiformis biomass (kg) from the GAM Model 1 (see Table A6) 

within the northern Gulf of St. Lawrence. 

 

 
Figure A17. Prediction of G. rubiformis biomass (kg) from the GAM Model 2 (see Table A6) 

within the northern Gulf of St. Lawrence. 
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Figure A18. G. rubiformis biomass catches overlaid to the G. rubiformis biomass (kg) predicted 

from the GAM Model 2 (see Table A6) within the northern Gulf of St. Lawrence. 
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APPENDIX 2 
 

Distribution of Solitary Cup Corals (Flabellum alabastrum) 
 

Solitary cup corals are not considered to be VME indicator taxa by NAFO (NAFO, 2013) 

however they are the only representatives of the stony corals in the Gulf of St. Lawrence. Their 

known distribution from DFO research vessel survey data has been plotted (Figure A19) in order 

to complement the work presented herein. To date only Flabellum alabastrum has been reported 

and only from surveys in the northern Gulf of St. Lawrence.  

 

 
Figure A19. Flabellum alabastrum (stony cup coral) biomass catches within the northern Gulf 

of St. Lawrence. No records were reported from the southern Gulf region. 

 


