GROUND DEFORMATION DUE TO STEAM-ASSISTED GRAVITY DRAINAGE AND CYCLIC STEAM STIMULATION OBSERVED BY RADARSAT-2 IN ALBERTA’S OIL SANDS

D.V. Samsonov1 and M. Cznarogorska1

ABSTRACT

Ground deformation in Alberta’s oil sands in Canada was observed with RADARSAT-2. Differential Interferometric Synthetic Aperture Radar (DInSAR), Canadian RADARSAT-2 satellite is capable of acquiring SAI data with 24 day repeat cycle with beams of various resolution, coverage and polarization. In this work we used data from various RADARSAT-2 beams acquired over the Steam Assisted Gravity Drainage (SAGD) and the Cyclic Steaming Simulation (CSS) enhanced oil recovery mining sites. We employed the Small Baseline Subset (SBAS) technique for measuring linear deformation rates and time series of deformation when coherence of individual interferograms was favorable. In case of very bad deformation observed at some sites the accurate phase unwrapping for a large number of interferograms is impossible so for those sites we computed individual interferograms only. Presented here results demonstrate that CSS enhanced oil recovery method produces significantly larger ground deformation than SAGD method.

Alberta’s oil sands represent one of the largest deposits of crude oil in the world. They form viscous bitumen embedded within unconsolidated sand in the Lower Cretaceous McMurray Formation [3, 4]. According to the Energy Resources Conservation Board the most four oil sands deposits widely spread over an area of Northern Alberta, with total initial in-place reserves estimated at about 1.8 billion barrels. The largest of these deposits is the Athabasca, which outcrops along the Athabasca River and gradually dips down towards the south-west [3]. About 30% of the recoverable bitumen is close to the surface and is accessed through the open pit mining. Extraction of the remaining 70% of deposits, located at depth greater than 45 meters, is performed using two enhanced oil recovery methods: the Steaming Assisted Gravity Drainage (SAGD) and the Cyclic Steaming Simulation (CSS). In the SAGD operation a pair of wells operated by a few meters vertically is drilled horizontally into the oil reservoir. Then high pressure steam is injected continuously into the upper well, which heats the oil and reduces its viscosity and causes the heated oil to drain into the lower well, from which it is pumped out. In the CSS operation only one well is drilled, which is periodically used for injection and production. During the injection phase steam is injected for several weeks to months and then flow is reversed and all is withdrawn to the surface.

Figure 1. Digital Elevation Model (from ASTER 30 m). RADARSAT-2 frames are outlined in brown. SLA5 - Ultrawide, U19G2 – Wide Ultrafine, U41F4, M11F9 – MultiLook Fine, SLA5 - SpotLight. RADARSAT sites are labeled as G (Cold Lake), S (Surmont), MI (Muskeg River) and FI (Firebag). CSS site is labeled as G (Cold Lake). Regions of SAGD and CSS operations are outlined in brown dashed line.

Figure 2. Schematic geological cross section. The site is outlined gray. M161 = Cold Lake site. U55 = Surmont site. U43 = Muskeg River site. CL = Cold Lake. SLA5 = Surface deformation observed near Cold Lake site is outlined in brown. One fringe corresponds to 2.8 cm line of sight motion.

Figure 3. Schematic of Steaming Assisted Gravity Drainage (SAGD) site.

Figure 4. Schematic of Cyclic Steaming Simulation (CSS) site.

CONCLUSIONS

With DInSAR we observed ground deformation at both SAGD and CSS sites, but the rate and temporal pattern of deformation was significantly different. At SAGD sites the linear deformation rate measured with SBAS DInSAR [Figure 5] showed uplift with the maximum rate of about 2 cm/year [5]. At CSS sites (Figure 6) deformation was extremely high reaching up to 30 cm over 24 day cycle or 450 cm/year [6].

REFERENCES


ACKNOWLEDGEMENT

We thank the Canadian Space Agency for providing RADARSAT-2 data. Images were plotted with GMT and GNUPLOT. 2014