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IOCG deposits are polymetallic hydrothermal  
mineral occurrences that contain Cu and economic 
Au concentrations with potential enrichment in 
Ag,U,REE, Bi, Co, Ni, P, Nb, etc. set in a, bundant low-
Ti iron-oxide (magnetite, hematite) gangue 
minerals or associated alteration sulphide-.  The 
deficient ore  native elements and low-includes
sulphur base-metal sulphides and arsenides, such as 
chalcopyrite, bornite, chalcocite, pyrrhotite and 
arsenopyrite (Corriveau, 2007; Corriveau and 
Mumin, 2010). All IOCG deposits within are enclosed 
regional- alteration  iron scale, haloes of intensely
oxide-alkali-altered metasomatized rocks and 
breccias . (Fig. 2)

Figure 2. Subdivision of r that d egional- to deposit-scale alteration facies  produce iagnostic 
lithological, mineralogical, chemical, and geophysical characteristics (Belperio et al., 2007; 
Benavides et al., 2008; Corriveau et al., 2010; Skirrow, 2010).

Introduction

The GBMZ is interpreted as an continental arc that is comp sed of o
1873 – 1865 Ma, sub-predominantly intermediate to felsic suites of 
volcanic, volcanic and volcaniclastic rocks intruded by several 
generations of felsic plutons from 1870 – 1855 Ma  (Gandhi, 1988;  
Gandhi et al., 2001; Bennett and Rivers, 2006; Ootes et al., 2013; 
Hildebrand et al., 1987; Azar, 2007).

Figure 1. The GBMZ continental arc is situated on the western margin of 
the Wopmay orogen  developed on the composite Hottah terrane  . It , 
overl  ca. 1.88 Ga Treasure Lake Group sedimentary basin ying the
following the short lived Calderian orogeny  (Gandhi et al., 2001; 
Hildebrand et al., 2010). 

 REE concentrations in uraninite determined by LA-ICP-MS from IOCG and affiliated 
occurrences chondrite-normalized REE patterns  are produce remarkably consistent that
inferred to reflect precipitation from high temperature fluid(s) (>350 C)  o  and are remarkably
similar to intrusi - magmatically precipitated uraninite.  those of on hosted, 

 Moderate to high Th contents in uraninite also mirror magmatic-derived compositions, 
ranging from 0.25 to 12.9 wt. % Th. 

 Strongly n high egative Eu anomalies are interpreted to reflect scavenging of metals during 
temperature under reducing conditions  Na alteration and subsequent precipitation from 
fluids that evolved and equilibrated through progressive Na (albite), Ca-Fe (amphibole + 
magnetite) and ultimately K-Fe (K-feldspar/biotite + Fe-oxides) alteration (Fig. 2). phases 

 Mineral parageneses  precipitation of U minerals during K-Fe alterationrecord  accompanied 
by s  and compositions transitional significant change  in fluid conditions .  During this stage of 
IOAA evolution, magnetite-dominant (reduced) K-Fe alteration s overprinted by hematite-wa
bearing (oxidized) K-Fe alteration.  

 Alteration of uraninite to coffinite at most of the occurrences also points to increasing silica 
activity in the residual fluids, consistent with field observations  epithermal-style vein  of s
peripheral to the IOAA systems.

 Secondary re-mobilized  uraninite is characterized by chondrite-normalized (interpreted as )
REE patterns similar to the altered host rocks (e.g. Southern Breccia), typical in slope those of 
of lower temperature, vein-type U mineralization (Mercadier et al., 2011). 

Prel iminary Interpret at ions

The Fab Lake magnetite-group IOCG 
system is located in the south central 
GBMZ (Fig. 1) within a succession of 
rhyolitic to andesitic shoshonitic rocks.  

Alteration assemblages: Na, Na-Ca-Fe,  
Ca-Fe and Ca-Fe-K overprinted by high-
temperature K-Fe assemblages. 

These g ve rise to magnetite-a
cemented hydrothermal crackle 
breccias developed in tension 
fractures,  extensive amphibole + 
magnetite-bearing replacement fronts 
and K-feldspar + magnetite alteration 
zones.

Uraninite  anhedral grains in forms
magnetite+K-feldspar veins associated 
with chalcopyrite and  pyrite.  
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The Southern Breccia is a 3 km long -
corridor of -rich polymetallic U
showings developed within the albitite 
zone of the Lou IOAA system   which
also hosts the co-genetic  NICO Au-Co-
Bi-Cu magnetite-group  IOCG deposit
(Montreuil et al., accepted).   
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Top: Representative BSE-images of 
uraninite grains from primary U 
mineralization in the Southern 
Breccia corridor. Middle: Chondrite-
normalized REE patterns of 
primary (red) and secondary 
(black) uraninite compared to the 
whole-rock values (grey). Right: 
representative BSE-image of 
secondary uraninite.
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The Nori occurrences at DeVries Lake (Fig.1) 
are within foliated and altered metasiltstones 
in the Central GBMZ.

Alteration  stratabound to discordant T  is high 
K-Fe (biotite + K-feldspar + magnetite). 

Uraninite biotite + magnetite is in veins of 
accompanied by K-feldspar, tourmaline, 
molybdenite, allanite-(Ce), pyrite and 
chalcopyrite (Gandhi, 1993; Ootes et al., 2010; 
Acosta-Góngora et al. 2011).

 Mild LREE depletion may relate to co-
precipitation of allanite- Ce .( )

Right: Location of the East Arm and photograph of U-bearing, 
amphibole+magnetite+K-feldspar vein from the Ridley IOA 

prospect.  Bottom: REE patterns of uraninite from the Ridley 
prospect hondrite normalization values of McDonough & , using c

Sun (1995). Inset: Representative BSE-image of uraninite  euhedra
hosted within magnetite+biotite .   intergrown  groundmass

Comparative Analys si

high-T  (>350 C) permits inclusion of large amounts of REEs without fractionation during o

crystallization (Mercadier et al., 2011). emobilized uraninite (e.g. Southern The REE pattern of r
Breccia) mimic  the host rocks reflecting precipitation from lower  fluidss that of , T . It distinctly 
contrasts the flat pattern with deep Eu anomaly of primary high-T uraninite . 
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Representative chondrite-normalized REE patterns of uraninite from 
Mercadier et al., (2011; intrusive, syn-metamorphic, Cigar Lake, SIMS 
method) and this study (Key Lake; LA-ICP-MS method) 

Top: Photographs of Ca-Fe and K-Fe altered, U-bearing samples from 
the Fab prospect.  Middle: chondrite-normalized REE patterns of 
uraninite from the Fab IOCG prospect.  Chondrite normalization values 
of McDonough & Sun (1995). Insets: Representative BSE-images of 
uraninite grains with variable coffinite alteration along the grain 
margins.   

The Cole Lake U showing located 16 km to is 
the northeast of NICO (Fig.1; Cole U) in an 
intensely Na-altered, brecciated volcanic host. 

Alteration assemblage: Na overprinted by Ca-
Fe±K (amphibole + magnetite + K-feldspar) 
veining that transitions into HT K-Fe 
(magnetite + K-feldspar) assemblages.

Uraninite occurs in magnetite, K-feldspar, 
amphibole and apatite veins with trace 
chlorite, zircon, monazite, chalcopyrite, 
titanite and rutile. 
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Right: Na and Ca-Fe-K altered Cole 
Lake U-bearing  sample. Below-
middle: Chondrite-normalized  
REE pattern. Below- insets: BSE- 
images of uraninite from the Cole 
Lake U-occurrence. Ccp = 
chalcopyrite, Mgt=magnetite 
Mnz=monazite, Zrn=zircon. 

Top: Photographs of U-bearing, magnetite-rich and K-feldspar veined 
samples from the Nori prospect.  Middle: REE patterns of uraninite 
using chondrite normalization values of McDonough & Sun (1995). 
Insets: Representative BSE-images of uraninite (Urn) grains with allanite 
(Aln), biotite (Bt), tourmaline (Tur), molybdenite (Mo) and magnetite 
(Fe).
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As presented by  Fryer and Taylor (1987), Pagel et 
al. (1987), Maas and McCulloch (1990), Hidaka et 
al., (1992), Fayek and Kyser (1997), Hidaka and 
Gauthier-Lafaye (2001), Cuney (2010) and 
Mercadier et al. (2011), chondrite-normalized REE 
patterns of uraninite are di for deposit agnostic 
types, reflecting conditions distinct genetic 
( combinations of fluid chemistry, , different T
source materials, etc. ).  Recent technological 
advances permitting in-situ analysis (SIMS and 
LA-ICP-MS methods) have facilitated analysis of 
least-altered grains with greater accuracy and 
precision.  raninite from IOCG REE signatures of u
and affiliated systems are most similar to 
intrusi  related U deposits, whereon in the dilation

La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

10

100

1000

10000

100000

IOA (Ridley)
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The Ridley iron oxide-apatite (IOA or Kiruna-type) 
veins are located in the East Arm of Great Slave Lake.  

The prospects are characterized by lenses of 
pegmatitic actinolite magnetite apatite +  +  ± K-

feldspar veins with erratically distributed uraninite, 
chalcopyrite, pyrite and carbonate hosted within a 

fractured   and variably Na-altered quartz monzonite 
laccolith that intrudes sedimentary rocks of the East 

Arm Basin ; Potter et  (Badham, 1978; Jefferson 2013
al., 2013b). 

2 cm

Late, northeast-trending brittle faults 
remobilized into earthy hematiteU + 
chlorite  veins. +K-feldspar

Alteration: Na (albite), Ca-Fe 
(amphibole + magnetite), K-Fe (K-
feldspar/biotite + magnetite/ilmenite), 
K±Fe (K-feldspar + biotite) and Mg-Fe 
(hematite + chlorite). 

Uraninite, brannerite and coffinite 
occur within magnetite-bearing K-Fe 
alteration with ± pyrite ± chalcopyrite 
± molybdenite ± bismuthinite ± galena 
in magnetite + ilmenite + K-feldspar ± 
biotite-cemented breccias developed 
in albitite. 

Ab=albite, Ap=apatite, Bt= biotite, Chl=chlorite, 
Cof=coffinite, Hem=hemaite, Kfs=K-feldspar, 
Ilm=ilmenite, Py=pyrite, Urn=uraninite.

Although the Olympic Dam deposit contains the world's largest 
recoverable U resource, very little is known regarding the processes 
and timing of U enrichment in iron oxide-copper-gold (IOCG) 
systems.  The Great Bear magmatic zone (GBMZ) in the Northwest 
Territories of Canada is an ideal natural laboratory to study U in iron 
oxide-alkali-altered (IOAA) systems.  Reexamination of excellent
glaciated 3D exposures of the weakly to un-deformed/ metaun -
morphosed IOAA systems has shown these systems to encompass 
not only IOCG deposits (magnetite, magnetite-hematite and 
hematite group IOCG deposits;  Williams, 2010), their alteration cf.
and breccia zones, but also the wide spectrum of affiliated deposits 
that form within such systems such as iron oxide-apatite (IOA or 
Kiruna-type) deposits (W et al., 2005; Potter et al., 2013a), iron illiams 
oxide-uranium (IOU; Hitzman and Valenta, 2005; Skirrow et al., 
2011), some skarns (Gandhi, 2003; Williams, 2010; Corriveau et al., 
2011) as well as alkaline intrusion-hosted IOCG deposits (Groves et 
al., 2010). The GBMZ also hosts historic polymetallic U-bearing vein 
systems (e.g. Port Radium, Rayrock) attesting to the availability of U 
during formation of the  deposits (Kidd and Haycock, se younger
1935; Lang et al., 1962 ).; Gandhi et al, 2013
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