Characteristics of Environmental Data Layers for Use in Species Distribution Modelling in the Eastern Canadian Arctic and Sub-Arctic Regions

L. Beazley, J. Guijarro, C. Lirette, Z. Wang, E. Kenchington

Ocean and Ecosystem Sciences Division Maritimes Region Fisheries and Oceans Canada

Bedford Institute of Oceanography PO Box 1006 Dartmouth, Nova Scotia Canada B2Y 4A2

2018

Canadian Technical Report of Fisheries and Aquatic Sciences 3248

Canadian Technical Report of Fisheries and Aquatic Sciences

Technical reports contain scientific and technical information that contributes to existing knowledge but which is not normally appropriate for primary literature. Technical reports are directed primarily toward a worldwide audience and have an international distribution. No restriction is placed on subject matter and the series reflects the broad interests and policies of Fisheries and Oceans Canada, namely, fisheries and aquatic sciences.

Technical reports may be cited as full publications. The correct citation appears above the abstract of each report. Each report is abstracted in the data base *Aquatic Sciences and Fisheries Abstracts*.

Technical reports are produced regionally but are numbered nationally. Requests for individual reports will be filled by the issuing establishment listed on the front cover and title page.

Numbers 1-456 in this series were issued as Technical Reports of the Fisheries Research Board of Canada. Numbers 457-714 were issued as Department of the Environment, Fisheries and Marine Service, Research and Development Directorate Technical Reports. Numbers 715-924 were issued as Department of Fisheries and Environment, Fisheries and Marine Service Technical Reports. The current series name was changed with report number 925.

Rapport technique canadien des sciences halieutiques et aquatiques

Les rapports techniques contiennent des renseignements scientifiques et techniques qui constituent une contribution aux connaissances actuelles, mais qui ne sont pas normalement appropriés pour la publication dans un journal scientifique. Les rapports techniques sont destinés essentiellement à un public international et ils sont distribués à cet échelon. Il n'y a aucune restriction quant au sujet; de fait, la série reflète la vaste gamme des intérêts et des politiques de Pêches et Océans Canada, c'est-à-dire les sciences halieutiques et aquatiques.

Les rapports techniques peuvent être cités comme des publications à part entière. Le titre exact figure audessus du résumé de chaque rapport. Les rapports techniques sont résumés dans la base de données *Résumés des* sciences aquatiques et halieutiques.

Les rapports techniques sont produits à l'échelon régional, mais numérotés à l'échelon national. Les demandes de rapports seront satisfaites par l'établissement auteur dont le nom figure sur la couverture et la page du titre.

Les numéros 1 à 456 de cette série ont été publiés à titre de Rapports techniques de l'Office des recherches sur les pêcheries du Canada. Les numéros 457 à 714 sont parus à titre de Rapports techniques de la Direction générale de la recherche et du développement, Service des pêches et de la mer, ministère de l'Environnement. Les numéros 715 à 924 ont été publiés à titre de Rapports techniques du Service des pêches et de la mer, ministère des Pêches et de l'Environnement. Les numéros et de l'Environnement. Les numéros 457 à 600 de la Série a été établi lors de la parution du numéro 925.

Canadian Technical Report of

Fisheries and Aquatic Sciences 3248

2018

Characteristics of Environmental Data Layers for Use in Species Distribution Modelling in the Eastern Canadian Arctic and Sub-Arctic Regions

by

L. Beazley, J. Guijarro, C. Lirette, Z. Wang, E. Kenchington

Ocean and Ecosystem Sciences Division

Maritimes Region

Fisheries and Oceans Canada

Bedford Institute of Oceanography

P.O. Box 1006

Dartmouth, N.S.

Canada B2Y 4A2

© Her Majesty the Queen in Right of Canada, 2018. Cat. No. Fs97-6/3248E-PDF ISBN 978-0-660-24509-6 ISSN 1488-5379

Correct citation for this publication:

Beazley, L., Guijarro, J., Lirette, C., Wang, Z., and Kenchington, E. 2018. Characteristics of Environmental Data Layers for Use in Species Distribution Modelling in the Eastern Canadian Arctic and Sub-Arctic Regions. Can. Tech. Rep. Fish. Aquat. Sci. 3248: vii + 488p.

ABSTRACT	vi
RÉSUMÉ	vii
INTRODUCTION	1
MATERIALS AND METHODS	2
Study Area	2
Data Sources	
Global Ocean Reanalyses and Simulations (GLORYS)	
Sea Surface Chlorophyll <i>a</i>	
Primary Production	5
Sea Ice Cover	8
Nutrients	9
Spatial Interpolation Methods	9
Data Exploration and Model Fitting (extracted from Beazley et al. 2016a)	9
Assessment of Model Performance (extracted from Beazley et al. 2016a)	
Caveat for Spatial Interpolation Using Ordinary Kriging	
Recommended Use of Environmental Predictor Variables	13
RESULTS	14
Temperature	14
Bottom Temperature Mean	14
Bottom Temperature Minimum	
Bottom Temperature Maximum	
Bottom Temperature Range	
Bottom Temperature Average Minimum	30
Bottom Temperature Average Maximum	
Bottom Temperature Average Range	
Surface Temperature Mean	
Surface Temperature Minimum	
Surface Temperature Maximum	50
Surface Temperature Range	54
Surface Temperature Average Minimum	58
Surface Temperature Average Maximum	62
Surface Temperature Average Range	66
Salinity	70
Bottom Salinity Mean	70
Bottom Salinity Minimum	74
Bottom Salinity Maximum	78
Bottom Salinity Range	
Bottom Salinity Average Minimum	86
Bottom Salinity Average Maximum	
Bottom Salinity Average Range	
Surface Salinity Mean	
Surface Salinity Minimum	102
Surface Salinity Maximum	106
Surface Salinity Range	110

TABLE OF CONTENTS

Surface Salinity Average Minimum	. 114
Surface Salinity Average Maximum	. 118
Surface Salinity Average Range	. 122
Current Speed	. 126
Bottom Current Mean	. 126
Bottom Current Minimum	. 130
Bottom Current Maximum	. 134
Bottom Current Range	. 138
Bottom Current Average Minimum	. 142
Bottom Current Average Maximum	. 146
Bottom Current Average Range	. 150
Surface Current Mean	. 154
Surface Current Minimum	. 158
Surface Current Maximum	. 162
Surface Current Range	. 166
Surface Current Average Minimum	. 170
Surface Current Average Maximum	. 174
Surface Current Average Range	. 178
Bottom Shear	. 182
Bottom Shear Mean	. 182
Bottom Shear Minimum	. 186
Bottom Shear Maximum	. 190
Bottom Shear Range	. 194
Bottom Shear Average Minimum	. 198
Bottom Shear Average Maximum	. 202
Bottom Shear Average Range	. 206
Maximum Seasonal Mixed Layer Depth	. 210
Maximum Spring Mixed Layer Depth	. 210
Maximum Summer Mixed Layer Depth	. 214
Maximum Fall Mixed Layer Depth	. 218
Maximum Winter Mixed Layer Depth	. 222
Maximum Average Spring Mixed Layer Depth	. 226
Maximum Average Summer Mixed Layer Depth	. 230
Maximum Average Fall Mixed Layer Depth	. 234
Maximum Average Winter Mixed Layer Depth	. 238
Sea Surface Chlorophyll <i>a</i>	. 242
Spring Chlorophyll a Mean	. 242
Spring Chlorophyll a Minimum	. 246
Spring Chlorophyll a Maximum	. 250
Spring Chlorophyll a Range	. 254
Summer Chlorophyll <i>a</i> Mean	. 258
Summer Chlorophyll <i>a</i> Minimum	. 262
Summer Chlorophyll a Maximum	. 266
Summer Chlorophyll <i>a</i> Range	. 270
Annual Chlorophyll <i>a</i> Mean	. 274
Annual Chlorophyll <i>a</i> Minimum	. 278

Annual Chlorophyll a Range 286 Primary Production 290 Spring Primary Production Maximum 294 Spring Primary Production Maximum 298 Spring Primary Production Average Minimum 302 Spring Primary Production Average Minimum 306 Spring Primary Production Average Range 314 Summer Primary Production Mean 318 Summer Primary Production Mean 322 Summer Primary Production Maximum 322 Summer Primary Production Maximum 322 Summer Primary Production Maximum 322 Summer Primary Production Average Minimum 323 Summer Primary Production Average Maximum 344 Summer Primary Production Average Maximum 354 Annual Primary Production Maximum 354 Annual Primary Production Maximum 356 Annual Primary Production Maximum 356 Annual Primary Production Average Minimum 362 Annual Primary Production Average Maximum 364 Annual Primary Production Average Maximum 362 Annual Primary Production Average Maximum 362 Annual Primary Production Average Maximum	Annual Chlorophyll <i>a</i> Maximum	282
Primary Production 290 Spring Primary Production Mean 290 Spring Primary Production Maximum 294 Spring Primary Production Range 302 Spring Primary Production Average Minimum 306 Spring Primary Production Average Maximum 310 Spring Primary Production Average Maximum 310 Spring Primary Production Average Range 314 Summer Primary Production Mean 318 Summer Primary Production Maximum 322 Summer Primary Production Maximum 326 Summer Primary Production Average Maximum 334 Summer Primary Production Average Maximum 334 Summer Primary Production Average Maximum 334 Summer Primary Production Average Range 342 Annual Primary Production Average Range 342 Annual Primary Production Average Range 354 Annual Primary Production Maximum 356 Annual Primary Production Maximum 366 Annual Primary Production Average Maximum 366 Annual Primary Production Average Maximum 366 Annual Primary Production Average Maximum 366 Annual Primary Production Av	Annual Chlorophyll <i>a</i> Range	286
Spring Primary Production Mean 290 Spring Primary Production Minimum 294 Spring Primary Production Average Minimum 302 Spring Primary Production Average Maximum 310 Spring Primary Production Average Maximum 310 Spring Primary Production Average Range 314 Summer Primary Production Mean 312 Summer Primary Production Maximum 322 Summer Primary Production Maximum 322 Summer Primary Production Average Maximum 330 Summer Primary Production Average Maximum 334 Summer Primary Production Average Maximum 334 Summer Primary Production Average Maximum 334 Summer Primary Production Average Range 342 Annual Primary Production Mean 350 Annual Primary Production Maximum 350 Annual Primary Production Average Maximum 362 Annual Primary Production Average Maximum 364 Annual Primary Production Average Maximum 362 Annual Primary Production Average Maximum 362 Annual Primary Production Average Maximum 364 Annual Primary Production Average Range 374	Primary Production	290
Spring Primary Production Maximum 294 Spring Primary Production Maximum 298 Spring Primary Production Average Minimum 306 Spring Primary Production Average Maximum 310 Spring Primary Production Average Range 314 Summer Primary Production Average Range 314 Summer Primary Production Maximum 322 Summer Primary Production Maximum 326 Summer Primary Production Average Minimum 326 Summer Primary Production Average Minimum 326 Summer Primary Production Average Maximum 338 Summer Primary Production Average Maximum 338 Summer Primary Production Average Range 344 Annual Primary Production Maximum 350 Annual Primary Production Maximum 350 Annual Primary Production Maximum 366 Annual Primary Production Average Minimum 362 Annual Primary Production Average Minimum 364 Annual Primary Production Average Maximum 366 Annual Primary Production Average Maximum 366 Annual Primary Production Average Maximum 366 Annual Primary Production Average Maximum 374 <t< td=""><td>Spring Primary Production Mean</td><td> 290</td></t<>	Spring Primary Production Mean	290
Spring Primary Production Maximum 298 Spring Primary Production Range 302 Spring Primary Production Average Minimum 306 Spring Primary Production Average Maximum 310 Spring Primary Production Average Maximum 310 Spring Primary Production Average Range 314 Summer Primary Production Mean 318 Summer Primary Production Maximum 322 Summer Primary Production Maximum 326 Summer Primary Production Average Minimum 333 Summer Primary Production Average Maximum 338 Summer Primary Production Average Maximum 334 Summer Primary Production Average Maximum 334 Summer Primary Production Average Mange 342 Annual Primary Production Maximum 350 Annual Primary Production Maximum 350 Annual Primary Production Range 358 Annual Primary Production Average Maximum 366 Annual Primary Production Average Maximum 366 Annual Primary Production Average Maximum 362 Annual Primary Production Average Maximum 364 Annual Primary Production Average Maximum 362	Spring Primary Production Minimum	294
Spring Primary Production Range302Spring Primary Production Average Minimum306Spring Primary Production Average Maximum310Spring Primary Production Average Range314Summer Primary Production Mean318Summer Primary Production Maximum322Summer Primary Production Average Manimum322Summer Primary Production Average Maximum326Summer Primary Production Average Maximum334Summer Primary Production Average Maximum338Summer Primary Production Average Maximum338Summer Primary Production Average Range342Annual Primary Production Mean366Annual Primary Production Maximum350Annual Primary Production Maximum356Annual Primary Production Range358Annual Primary Production Average Maximum366Annual Primary Production Average Maximum366Annual Primary Production Average Range370Sea Ice Cover374Spring Ice Cover Mean374Spring Ice Cover Maximum388Spring Ice Cover Maximum389Spring Ice Cover Average Maximum390Spring Ice Cover Average Maximum390Spring Ice Cover Average Maximum394Spring Ice Cover Average Maximum394Spring Ice Cover Average Range398Sall Ice Cover Average Range398Sall Ice Cover Average Range398Sall Ice Cover Average Range398Sall Ice Cover Average Range394Spring Ice	Spring Primary Production Maximum	298
Spring Primary Production Average Maximum 306 Spring Primary Production Average Range 314 Summer Primary Production Mean 318 Summer Primary Production Maximum 322 Summer Primary Production Maximum 326 Summer Primary Production Range 330 Summer Primary Production Average Minimum 324 Summer Primary Production Average Minimum 334 Summer Primary Production Average Maximum 334 Summer Primary Production Average Range 342 Annual Primary Production Average Range 342 Annual Primary Production Mean 346 Annual Primary Production Maximum 350 Annual Primary Production Maximum 350 Annual Primary Production Range 358 Annual Primary Production Average Maximum 360 Annual Primary Production Average Maximum 362 Annual Primary Production Average Range 370 Sea Ice Cover 374 Spring Ice Cover Mean 374 Spring Ice Cover Maximum 382 Spring Ice Cover Maximum 382 Spring Ice Cover Average Maximum 394 Spr	Spring Primary Production Range	302
Spring Primary Production Average Maximum 310 Spring Primary Production Average Range 314 Summer Primary Production Minimum 322 Summer Primary Production Maximum 326 Summer Primary Production Average Minimum 326 Summer Primary Production Average Minimum 330 Summer Primary Production Average Maximum 334 Summer Primary Production Average Maximum 334 Summer Primary Production Average Range 342 Annual Primary Production Mean 346 Annual Primary Production Maximum 350 Annual Primary Production Maximum 350 Annual Primary Production Average Minimum 362 Annual Primary Production Average Maximum 366 Annual Primary Production Average Maximum 366 Annual Primary Production Average Range 374 Spring Ice Cover Mean 374 Spring Ice Cover Mean 374 Spring Ice Cover Maximum 382 Spring Ice Cover Average Minimum 382 Spring Ice Cover Average Maximum 394 Spring Ice Cover Average Maximum 394 Spring Ice Cover Average Manimum 406	Spring Primary Production Average Minimum	306
Spring Primary Production Average Range 314 Summer Primary Production Mean 318 Summer Primary Production Maximum 322 Summer Primary Production Range 330 Summer Primary Production Average Minimum 334 Summer Primary Production Average Maximum 338 Summer Primary Production Average Range 342 Annual Primary Production Average Range 342 Annual Primary Production Mean 350 Annual Primary Production Maximum 350 Annual Primary Production Maximum 354 Annual Primary Production Maximum 354 Annual Primary Production Average Minimum 366 Annual Primary Production Average Maximum 366 Spring Ice Cover Mean 374 Spring Ice Cover Mean 374 Spring Ice Cover Maximum 378 Spring Ice Cover Average Maximum 390 Spring Ice Cover Average Maximum 394	Spring Primary Production Average Maximum	310
Summer Primary Production Mean 318 Summer Primary Production Minimum 322 Summer Primary Production Range 330 Summer Primary Production Average Minimum 334 Summer Primary Production Average Maximum 338 Summer Primary Production Average Range 342 Annual Primary Production Average Range 342 Annual Primary Production Mean 350 Annual Primary Production Maximum 350 Annual Primary Production Maximum 354 Annual Primary Production Maximum 354 Annual Primary Production Maximum 354 Annual Primary Production Average Minimum 362 Annual Primary Production Average Maximum 362 Annual Primary Production Average Maximum 362 Annual Primary Production Average Range 374 Spring Ice Cover Mean 374 Spring Ice Cover Maximum 378 Spring Ice Cover Maximum 382 Spring Ice Cover Average Maximum 382 Spring Ice Cover Average Maximum 390 Spring Ice Cover Average Maximum 394 Spring Ice Cover Average Maximum 402 <t< td=""><td>Spring Primary Production Average Range</td><td> 314</td></t<>	Spring Primary Production Average Range	314
Summer Primary Production Minimum.322Summer Primary Production Maximum326Summer Primary Production Range330Summer Primary Production Average Minimum334Summer Primary Production Average Maximum338Summer Primary Production Average Range342Annual Primary Production Mean346Annual Primary Production Maximum350Annual Primary Production Maximum350Annual Primary Production Maximum350Annual Primary Production Average Minimum362Annual Primary Production Average Minimum362Annual Primary Production Average Maximum366Annual Primary Production Average Maximum362Sen Ice Cover374Spring Ice Cover Mean374Spring Ice Cover Maximum382Spring Ice Cover Maximum382Spring Ice Cover Average Minimum390Spring Ice Cover Average Minimum394Spring Ice Cover Average Maximum394Spring Ice Cover Average Max	Summer Primary Production Mean	318
Summer Primary Production Maximum326Summer Primary Production Range330Summer Primary Production Average Minimum334Summer Primary Production Average Range342Annual Primary Production Mean346Annual Primary Production Maximum350Annual Primary Production Maximum350Annual Primary Production Maximum354Annual Primary Production Maximum354Annual Primary Production Average Minimum362Annual Primary Production Average Minimum362Annual Primary Production Average Maximum366Annual Primary Production Average Maximum366Annual Primary Production Average Range370Sea Ice Cover374Spring Ice Cover Mean374Spring Ice Cover Maximum382Spring Ice Cover Average Minimum390Spring Ice Cover Average Minimum390Spring Ice Cover Average Minimum394Spring Ice Cover Average Minimum394Spring Ice Cover Average Minimum394Spring Ice Cover Average Minimum394Spring Ice Cover Average Maximum394Spring Ice Cover Averag	Summer Primary Production Minimum	322
Summer Primary Production Range330Summer Primary Production Average Maximum334Summer Primary Production Average Range342Annual Primary Production Mean346Annual Primary Production Mainmum350Annual Primary Production Maximum350Annual Primary Production Maximum354Annual Primary Production Maximum354Annual Primary Production Average Minimum362Annual Primary Production Average Minimum362Annual Primary Production Average Maximum366Annual Primary Production Average Range370Sea Ice Cover374Spring Ice Cover Mean374Spring Ice Cover Mean378Spring Ice Cover Maximum382Spring Ice Cover Average Minimum390Spring Ice Cover Average Maximum394Spring Ice Cover Average Range398Fall Ice Cover Average Range402Fall Ice Cover Average Maximum410Fall Ice Cover Average Minimum414Fall Ice Cover Average Maximum422Fall Ice Cover Average Maximum426Winter Ice Cover Maximum438Winter Ice C	Summer Primary Production Maximum	326
Summer Primary Production Average Minimum334Summer Primary Production Average Maximum338Summer Primary Production Average Range342Annual Primary Production Mean346Annual Primary Production Minimum350Annual Primary Production Range358Annual Primary Production Average Minimum362Annual Primary Production Average Minimum362Annual Primary Production Average Maximum366Annual Primary Production Average Maximum366Annual Primary Production Average Range370Sea Ice Cover374Spring Ice Cover Mean374Spring Ice Cover Mean378Spring Ice Cover Range386Spring Ice Cover Average Minimum390Spring Ice Cover Average Minimum394Spring Ice Cover Average Maximum394Spring Ice Cover Average Maximum394Spring Ice Cover Average Maximum394Spring Ice Cover Average Range398Fall Ice Cover Average Range402Fall Ice Cover Average Range414Fall Ice Cover Average Maximum416Fall Ice Cover Average Minimum418Fall Ice Cover Average Maximum422Fall Ice Cover Average Range426Winter Ice Cover Maximum438Winter Ice Cover Maximum438Winter Ice Co	Summer Primary Production Range	330
Summer Primary Production Average Maximum338Summer Primary Production Average Range342Annual Primary Production Mean346Annual Primary Production Minimum350Annual Primary Production Maximum354Annual Primary Production Range358Annual Primary Production Average Minimum362Annual Primary Production Average Maximum366Annual Primary Production Average Maximum366Annual Primary Production Average Maximum366Annual Primary Production Average Range370Sea Ice Cover374Spring Ice Cover Mean374Spring Ice Cover Mean374Spring Ice Cover Maximum382Spring Ice Cover Average Minimum382Spring Ice Cover Average Minimum390Spring Ice Cover Average Maximum394Spring Ice Cover Average Maximum394Spring Ice Cover Average Range398Fall Ice Cover Mean410Fall Ice Cover Average Range414Fall Ice Cover Average Minimum418Fall Ice Cover Average Minimum414Fall Ice Cover Average Minimum422Fall Ice Cover Average Minimum414Fall Ice Cover Average Minimum422Fall Ice Cover Average Minimum438Winter Ice Cover Mean430Winter Ice Cover Maximum<	Summer Primary Production Average Minimum	334
Summer Primary Production Average Range342Annual Primary Production Mean346Annual Primary Production Minimum350Annual Primary Production Maximum354Annual Primary Production Range358Annual Primary Production Average Minimum362Annual Primary Production Average Maximum366Annual Primary Production Average Maximum366Annual Primary Production Average Range370Sea Ice Cover374Spring Ice Cover Mean374Spring Ice Cover Maximum382Spring Ice Cover Maximum382Spring Ice Cover Average Minimum390Spring Ice Cover Average Maximum390Spring Ice Cover Average Maximum394Spring Ice Cover Average Range398Fall Ice Cover Maximum402Fall Ice Cover Maximum410Fall Ice Cover Maximum410Fall Ice Cover Average Maximum414Fall Ice Cover Average Maximum412Fall Ice Cover Average Maximum422Fall Ice Cover Average Maximum422Fall Ice Cover Average Maximum422Fall Ice Cover Average Maximum422Fall Ice Cover Average Range426Winter Ice Cover Mean430Winter Ice Cover Maximum434Winter Ice Cover Maximum434 <td>Summer Primary Production Average Maximum</td> <td> 338</td>	Summer Primary Production Average Maximum	338
Annual Primary Production Mean346Annual Primary Production Minimum350Annual Primary Production Maximum354Annual Primary Production Range358Annual Primary Production Average Minimum362Annual Primary Production Average Maximum366Annual Primary Production Average Range370Sea Ice Cover374Spring Ice Cover Mean374Spring Ice Cover Maximum382Spring Ice Cover Maximum382Spring Ice Cover Average Minimum390Spring Ice Cover Average Maximum394Spring Ice Cover Average Range398Fall Ice Cover Maximum410Fall Ice Cover Maximum410Fall Ice Cover Average Maximum414Fall Ice Cover Average Maximum414Fall Ice Cover Average Maximum412Fall Ice Cover Average Maximum414Fall Ice Cover Average Maximum422Fall Ice Cover Average Range426Winter Ice Cover Mean430Winter Ice Cover Maximum434Winter Ice Cover Maximum438Winter Ice Cover Maximum438Winter Ice Cover Maximum438Winter Ice Cover Maximu	Summer Primary Production Average Range	342
Annual Primary Production Minimum350Annual Primary Production Maximum354Annual Primary Production Range358Annual Primary Production Average Minimum362Annual Primary Production Average Maximum366Annual Primary Production Average Range370Sea Ice Cover374Spring Ice Cover Mean374Spring Ice Cover Mean378Spring Ice Cover Maximum382Spring Ice Cover Maximum382Spring Ice Cover Range386Spring Ice Cover Average Minimum390Spring Ice Cover Average Maximum394Spring Ice Cover Mean402Fall Ice Cover Maximum406Fall Ice Cover Maximum410Fall Ice Cover Range414Fall Ice Cover Average Minimum418Fall Ice Cover Average Minimum414Fall Ice Cover Average Minimum422Fall Ice Cover Average Maximum422Fall Ice Cover Average Maximum422Fall Ice Cover Average Maximum422Fall Ice Cover Average Maximum423Winter Ice Cover Mean438Winter Ice Cover Maximum438Winter Ice Cover Maximum438Winter Ice Cover Range442 <td>Annual Primary Production Mean</td> <td> 346</td>	Annual Primary Production Mean	346
Annual Primary Production Maximum354Annual Primary Production Range358Annual Primary Production Average Minimum362Annual Primary Production Average Maximum366Annual Primary Production Average Range370Sea Ice Cover374Spring Ice Cover Mean374Spring Ice Cover Maximum382Spring Ice Cover Range386Spring Ice Cover Range386Spring Ice Cover Average Minimum390Spring Ice Cover Average Minimum394Spring Ice Cover Average Maximum394Spring Ice Cover Average Maximum402Fall Ice Cover Maximum402Fall Ice Cover Maximum406Fall Ice Cover Range414Fall Ice Cover Average Minimum418Fall Ice Cover Average Minimum422Fall Ice Cover Average Minimum422Fall Ice Cover Average Minimum422Fall Ice Cover Average Minimum423Winter Ice Cover Average Range424Winter Ice Cover Mean438Winter Ice Cover Maximum438Winter Ice Cover Maximum438	Annual Primary Production Minimum	350
Annual Primary Production Range358Annual Primary Production Average Minimum362Annual Primary Production Average Maximum366Annual Primary Production Average Range370Sea Ice Cover374Spring Ice Cover Mean374Spring Ice Cover Minimum378Spring Ice Cover Maximum382Spring Ice Cover Average Minimum382Spring Ice Cover Average Minimum390Spring Ice Cover Average Minimum394Spring Ice Cover Average Maximum394Spring Ice Cover Average Range398Fall Ice Cover Mean402Fall Ice Cover Maximum406Fall Ice Cover Range414Fall Ice Cover Average Minimum418Fall Ice Cover Average Maximum422Fall Ice Cover Average Minimum418Fall Ice Cover Average Minimum414Fall Ice Cover Average Minimum422Fall Ice Cover Average Minimum414Fall Ice Cover Average Minimum422Fall Ice Cover Average Minimum422Fall Ice Cover Average Minimum422Fall Ice Cover Average Maximum422Fall Ice Cover Average Range424Winter Ice Cover Mean434Winter Ice Cover Minimum438Winter Ice Cover Maximum438Winter Ice Cover Maximum438Winter Ice Cover Range442	Annual Primary Production Maximum	354
Annual Primary Production Average Minimum362Annual Primary Production Average Maximum366Annual Primary Production Average Range370Sea Ice Cover374Spring Ice Cover Mean374Spring Ice Cover Minimum378Spring Ice Cover Maximum382Spring Ice Cover Range386Spring Ice Cover Average Minimum390Spring Ice Cover Average Minimum394Spring Ice Cover Average Maximum394Spring Ice Cover Average Range398Fall Ice Cover Mean402Fall Ice Cover Maximum406Fall Ice Cover Range414Fall Ice Cover Average Minimum418Fall Ice Cover Average Maximum412Fall Ice Cover Average Minimum414Fall Ice Cover Average Maximum422Fall Ice Cover Average Maximum424Winter Ice Cover Mean434Winter Ice Cover Maximum434Winter Ice Cover Maximum434	Annual Primary Production Range	358
Annual Primary Production Average Maximum366Annual Primary Production Average Range370Sea Ice Cover374Spring Ice Cover Mean374Spring Ice Cover Minimum378Spring Ice Cover Maximum382Spring Ice Cover Range386Spring Ice Cover Average Minimum390Spring Ice Cover Average Maximum394Spring Ice Cover Average Maximum394Spring Ice Cover Average Maximum394Spring Ice Cover Average Range398Fall Ice Cover Mean402Fall Ice Cover Maximum406Fall Ice Cover Maximum410Fall Ice Cover Range414Fall Ice Cover Average Maximum412Fall Ice Cover Average Maximum422Fall Ice Cover Average Maximum422Fall Ice Cover Average Maximum422Fall Ice Cover Average Maximum424Winter Ice Cover Mean434Winter Ice Cover Maximum438Winter Ice Cover Maximum438Winter Ice Cover Maximum438Winter Ice Cover Maximum438State Ice Cover Maximum438Spring Ice Cover Range442	Annual Primary Production Average Minimum	362
Annual Primary Production Average Range370Sea Ice Cover374Spring Ice Cover Mean374Spring Ice Cover Minimum378Spring Ice Cover Maximum382Spring Ice Cover Range386Spring Ice Cover Average Minimum390Spring Ice Cover Average Maximum394Spring Ice Cover Average Range398Fall Ice Cover Mean402Fall Ice Cover Maximum406Fall Ice Cover Average Minimum410Fall Ice Cover Average Maximum414Fall Ice Cover Average Maximum414Fall Ice Cover Maximum414Fall Ice Cover Average Maximum422Fall Ice Cover Average Maximum424Full Ice Cover Average Maximum424Fall Ice Cover Average Maximum424Fall Ice Cover Average Maximum424Fall Ice Cover Average Maximum426Winter Ice Cover Mean430Winter Ice Cover Maximum438Winter Ice Cover Maximum438Winter Ice Cover Maximum438Winter Ice Cover Maximum438	Annual Primary Production Average Maximum	366
Sea Ice Cover374Spring Ice Cover Mean374Spring Ice Cover Minimum378Spring Ice Cover Maximum382Spring Ice Cover Range386Spring Ice Cover Average Minimum390Spring Ice Cover Average Maximum394Spring Ice Cover Average Range398Fall Ice Cover Mean402Fall Ice Cover Minimum406Fall Ice Cover Maximum410Fall Ice Cover Range414Fall Ice Cover Range418Fall Ice Cover Average Maximum422Fall Ice Cover Average Minimum422Fall Ice Cover Average Maximum422Fall Ice Cover Average Maximum422Fall Ice Cover Average Range426Winter Ice Cover Mean438Winter Ice Cover Maximum438Winter Ice Cover Maximum438Winter Ice Cover Maximum438Winter Ice Cover Maximum438	Annual Primary Production Average Range	370
Spring Ice Cover Mean374Spring Ice Cover Minimum378Spring Ice Cover Maximum382Spring Ice Cover Range386Spring Ice Cover Average Minimum390Spring Ice Cover Average Maximum394Spring Ice Cover Average Range398Fall Ice Cover Mean402Fall Ice Cover Minimum406Fall Ice Cover Maximum410Fall Ice Cover Range414Fall Ice Cover Average Minimum418Fall Ice Cover Average Minimum418Fall Ice Cover Average Minimum418Fall Ice Cover Average Minimum418Fall Ice Cover Average Maximum422Fall Ice Cover Average Maximum423Winter Ice Cover Average Range426Winter Ice Cover Maximum438Winter Ice Cover Maximum438Winter Ice Cover Maximum438Winter Ice Cover Maximum438	Sea Ice Cover	374
Spring Ice Cover Minimum378Spring Ice Cover Maximum382Spring Ice Cover Range386Spring Ice Cover Average Minimum390Spring Ice Cover Average Maximum394Spring Ice Cover Average Range398Fall Ice Cover Mean402Fall Ice Cover Minimum406Fall Ice Cover Maximum410Fall Ice Cover Range414Fall Ice Cover Average Minimum416Fall Ice Cover Average Minimum418Fall Ice Cover Average Minimum418Fall Ice Cover Average Minimum422Fall Ice Cover Average Minimum423Winter Ice Cover Average Range426Winter Ice Cover Minimum434Winter Ice Cover Maximum438Winter Ice Cover Range442	Spring Ice Cover Mean	374
Spring Ice Cover Maximum382Spring Ice Cover Range386Spring Ice Cover Average Minimum390Spring Ice Cover Average Maximum394Spring Ice Cover Average Range398Fall Ice Cover Mean402Fall Ice Cover Minimum406Fall Ice Cover Maximum410Fall Ice Cover Range414Fall Ice Cover Average Minimum410Fall Ice Cover Average Minimum418Fall Ice Cover Average Minimum422Fall Ice Cover Average Minimum422Fall Ice Cover Average Minimum423Winter Ice Cover Mean430Winter Ice Cover Minimum434Winter Ice Cover Maximum438Winter Ice Cover Range442	Spring Ice Cover Minimum	378
Spring Ice Cover Range386Spring Ice Cover Average Minimum390Spring Ice Cover Average Maximum394Spring Ice Cover Average Range398Fall Ice Cover Mean402Fall Ice Cover Minimum406Fall Ice Cover Maximum410Fall Ice Cover Range414Fall Ice Cover Average Minimum418Fall Ice Cover Average Minimum422Fall Ice Cover Average Maximum422Fall Ice Cover Average Maximum426Winter Ice Cover Mean430Winter Ice Cover Maximum438Winter Ice Cover Maximum438Winter Ice Cover Range442	Spring Ice Cover Maximum	382
Spring Ice Cover Average Minimum.390Spring Ice Cover Average Maximum394Spring Ice Cover Average Range398Fall Ice Cover Mean.402Fall Ice Cover Minimum406Fall Ice Cover Maximum410Fall Ice Cover Range414Fall Ice Cover Average Minimum418Fall Ice Cover Average Minimum422Fall Ice Cover Average Maximum422Fall Ice Cover Average Maximum426Winter Ice Cover Mean430Winter Ice Cover Minimum434Winter Ice Cover Maximum438Winter Ice Cover Range442	Spring Ice Cover Range	386
Spring Ice Cover Average Maximum394Spring Ice Cover Average Range398Fall Ice Cover Mean402Fall Ice Cover Minimum406Fall Ice Cover Maximum410Fall Ice Cover Range414Fall Ice Cover Average Minimum418Fall Ice Cover Average Maximum422Fall Ice Cover Average Maximum426Winter Ice Cover Mean430Winter Ice Cover Minimum438Winter Ice Cover Maximum438	Spring Ice Cover Average Minimum	390
Spring Ice Cover Average Range398Fall Ice Cover Mean402Fall Ice Cover Minimum406Fall Ice Cover Maximum410Fall Ice Cover Range414Fall Ice Cover Average Minimum418Fall Ice Cover Average Maximum422Fall Ice Cover Average Range426Winter Ice Cover Mean430Winter Ice Cover Minimum434Winter Ice Cover Maximum438Winter Ice Cover Range442	Spring Ice Cover Average Maximum	394
Fall Ice Cover Mean	Spring Ice Cover Average Range	398
Fall Ice Cover Minimum406Fall Ice Cover Maximum410Fall Ice Cover Range414Fall Ice Cover Average Minimum418Fall Ice Cover Average Maximum422Fall Ice Cover Average Range426Winter Ice Cover Mean430Winter Ice Cover Minimum434Winter Ice Cover Maximum438Winter Ice Cover Range442	Fall Ice Cover Mean	402
Fall Ice Cover Maximum410Fall Ice Cover Range414Fall Ice Cover Average Minimum418Fall Ice Cover Average Maximum422Fall Ice Cover Average Range426Winter Ice Cover Mean430Winter Ice Cover Minimum434Winter Ice Cover Maximum438Winter Ice Cover Range442	Fall Ice Cover Minimum	406
Fall Ice Cover Range414Fall Ice Cover Average Minimum418Fall Ice Cover Average Maximum422Fall Ice Cover Average Range426Winter Ice Cover Mean430Winter Ice Cover Minimum434Winter Ice Cover Maximum438Winter Ice Cover Range442	Fall Ice Cover Maximum	410
Fall Ice Cover Average Minimum418Fall Ice Cover Average Maximum422Fall Ice Cover Average Range426Winter Ice Cover Mean430Winter Ice Cover Minimum434Winter Ice Cover Maximum438Winter Ice Cover Range442	Fall Ice Cover Range	414
Fall Ice Cover Average Maximum422Fall Ice Cover Average Range426Winter Ice Cover Mean430Winter Ice Cover Minimum434Winter Ice Cover Maximum438Winter Ice Cover Range442	Fall Ice Cover Average Minimum	418
Fall Ice Cover Average Range426Winter Ice Cover Mean430Winter Ice Cover Minimum434Winter Ice Cover Maximum438Winter Ice Cover Range442	Fall Ice Cover Average Maximum	422
Winter Ice Cover Mean430Winter Ice Cover Minimum434Winter Ice Cover Maximum438Winter Ice Cover Range442	Fall Ice Cover Average Range	426
Winter Ice Cover Minimum434Winter Ice Cover Maximum438Winter Ice Cover Range442	Winter Ice Cover Mean	430
Winter Ice Cover Maximum	Winter Ice Cover Minimum	434
Winter Ice Cover Range 442	Winter Ice Cover Maximum	438
1 miller fee Cover Runge	Winter Ice Cover Range	442
Winter Ice Cover Average Minimum	Winter Ice Cover Average Minimum	446
Winter Ice Cover Average Maximum	Winter Ice Cover Average Maximum	450
Winter Ice Cover Average Range	Winter Ice Cover Average Range	454

Recommendation on Variable Use for Species Distribution Modelling	458
ACKNOWLEDGMENTS	464
REFERENCES	464
APPENDIX I - Summary of Variables with Negative Values in the Interpolated	Prediction
Surface Resulting from Ordinary Kriging	469
Bottom Salinity Average Range	472
Bottom Current Minimum	472
Bottom Current Average Minimum	473
Surface Current Minimum	473
Surface Current Average Minimum	474
Maximum Spring Mixed Layer Depth	474
Maximum Winter Mixed Layer Depth	475
Maximum Average Winter Mixed Layer Depth	475
Bottom Shear Minimum	476
Spring Chlorophyll a Minimum	476
Summer Chlorophyll <i>a</i> Mean	477
Summer Chlorophyll a Maximum	477
Summer Chlorophyll <i>a</i> Range	478
Spring Ice Cover Mean	478
Spring Ice Cover Minimum	479
Spring Ice Cover Maximum	479
Spring Ice Cover Range	480
Spring Ice Cover Average Minimum	480
Spring Ice Cover Average Maximum	481
Spring Ice Cover Average Range	481
Fall Ice Cover Mean	482
Fall Ice Cover Minimum	482
Fall Ice Cover Maximum	483
Fall Ice Cover Range	483
Fall Ice Cover Average Minimum	484
Fall Ice Cover Average Maximum	484
Fall Ice Cover Average Range	485
Winter Ice Cover Mean	485
Winter Ice Cover Minimum	486
Winter Ice Cover Maximum	486
Winter Ice Cover Range	487
Winter Ice Cover Average Minimum	487
Winter Ice Cover Average Maximum	488
Winter Ice Cover Average Range	488

ABSTRACT

Beazley, L., Guijarro, J., Lirette, C., Wang, Z., and Kenchington, E. 2018. Characteristics of Environmental Data Layers for Use in Species Distribution Modelling in the Eastern Canadian Arctic and Sub-Arctic Regions. Can. Tech. Rep. Fish. Aquat. Sci. 3248: vii + 488p.

Species distribution modelling (SDM) is a tool that utilizes the relationship between a species and its environment in known (sampled) locations to predict the species' distribution in unsampled areas. Environmental data are typically collected at different spatial and temporal scales and often require spatial interpolation between data points to provide a continuous surface required by the modelling application. Here we provide detailed information on 111 environmental data layers collected over different spatial scales and temporal resolutions and interpolated using a geospatial method to provide continuous data surfaces for the Eastern Canadian Arctic and Sub-Arctic. Variables were obtained from a broad range of physical and biological data sources and spatially interpolated using ordinary kriging. For each environmental variable we show the distributional properties of the raw data prior to spatial interpolation, model performance indicators and assessment of model performance, and finally, maps of the prediction standard error and interpolation prediction surfaces. These layers have been archived in a common (raster) format at the Bedford Institute of Oceanography to facilitate future use. A subset of these variables has already been used in a conservation management application to identify deep-water coral and sponge Significant Benthic Areas in the Eastern Canadian Arctic.

RÉSUMÉ

Beazley, L., Guijarro, J., Lirette, C., Wang, Z., et Kenchington, E. 2018. Characteristics of Environmental Data Layers for Use in Species Distribution Modelling in the Eastern Canadian Arctic and Sub-Arctic Regions. Rapp. tech. can. sci. halieut. Sci. 3248: vii + 488p.

La modélisation de la répartition des espèces (MRE) est un outil qui utilise la relation entre une espèce et son environnement dans des emplacements connus (échantillonnés) pour prédire la répartition de l'espèce dans les zones non échantillonnées. Les données environnementales sont habituellement recueillies à différentes échelles spatiales et temporelles et nécessitent souvent une interpolation spatiale entre les points de données pour produire la surface continue requise pour les besoins de l'application de modélisation. Dans ce document, nous donnons des renseignements détaillés sur les 111 couches de données environnementales qui ont été recueillies au fil des différentes échelles spatiales et résolutions temporelles et qui ont été interpolées au moyen d'une méthode géospatiale pour produire des surfaces de données continues pour l'est de l'Arctique canadien et les régions subarctiques. Des variables ont été obtenues à partir d'une vaste gamme de sources de données physiques et biologiques interpolées sur le plan spatial à l'aide du krigeage ordinaire. Pour chaque variable environnementale, nous montrons les propriétés de répartition des données brutes avant l'interpolation spatiale, les modèles d'indicateurs de performance et une évaluation du rendement des modèles. Enfin, nous présentons l'erreur type et les surfaces de prédiction interpolées. Ces couches de données ont été archivées dans un format commun (trame) à l'Institut océanographique de Bedford afin de simplifier leur utilisation future. Un sous-ensemble de ces variables a déjà été utilisé dans une application de gestion de conservation pour déterminer les zones benthiques importantes de coraux et d'éponges d'eau profonde dans l'est de l'Arctique canadien.

INTRODUCTION

The physical environment of the Arctic Ocean is dynamic and characterized by strong seasonality and large inter-annual fluctuations. Air and ocean temperature, and perennial sea ice extent and duration are rapidly changing in this region (Boé et al., 2009; Peterson and Pettipas, 2013). Although the consequences of a changing climate on marine benthic communities remains largely undocumented (although see Wassmann et al. (2011) for a review of responses in Arctic benthos), the narrow environmental envelope of many polar benthic species (Peck et al., 2004) suggests they are highly susceptible to changes in their physical environment. For instance, small changes in the timing of sea ice break out in the summer months has shown to cause complete regime shifts in coastal benthic communities, from invertebrate to algae-dominated states (Clark et al., 2013). Further understanding of the parameters that control the distribution of these fauna will help determine their susceptibility to the projected rapid and eminent environmental change in this region.

Species distribution modelling (SDM) is a tool that utilizes the relationship between a species and its environment in known (sampled) locations to predict the species' distribution in unsampled areas. In the Arctic Ocean, SDMs have been recently applied to predict species' distribution under different climatic scenarios (see Gogina and Zettler, 2010; Gogina et al., 2010). In these applications it is essential to have continuous surfaces of environmental data and climate proxies in order to predict spatial distribution in unsampled areas and/or under different environmental scenarios. Environmental data are typically collected at different spatial and temporal resolutions, and often require spatial interpolation in order to provide continuous surfaces that can be used for predictive modelling at all spatial scales. There are over 60 spatial interpolation methods to choose from, including geospatial interpolators (e.g. kriging), non-geostatistical interpolators (e.g. inverse distance weighting, natural neighbours), and methods that combine both (Li and Heap, 2008).

Here we provide detailed information on 111 environmental data layers collected over different spatial scales and temporal resolutions and interpolated using ordinary kriging to provide continuous data surfaces for the Eastern Canadian Arctic and Sub-Arctic regions. The study extent for which these data layers were constructed included a combination of three Fisheries and Oceans Canada (DFO) Biogeographic Zones: the Hudson Bay Complex, Eastern Arctic, and the Newfoundland-Labrador (NL) Shelves. For each environmental variable we show the distributional properties of the raw data prior to spatial interpolation, model performance indicators and assessment of model performance, and finally, maps of the prediction standard error and interpolation prediction surfaces. These layers have been archived in a common (raster) format at the Bedford Institute of Oceanography to facilitate future use. Our intention is that these variables are used in species distribution modelling or other ecosystem-based management applications. A subset of these variables have already been used in random forest and generalized additive models to predict the probability of occurrence and biomass distribution of deep-water corals and sponges (see Beazley et al., 2016b), the results of which have been recently used in a conservation management application to identify deep-water coral and sponge Significant Benthic Areas (DFO, 2017; Kenchington et al., 2016) under DFO's Policy for Managing the Impacts of Fishing on Sensitive Benthic Areas.

MATERIALS AND METHODS

Study Area

Three Fisheries and Oceans Canada (DFO) Biogeographic Zones were used as the basis for construction of the spatial extent of the environmental layers described in this report (see Figure 1): The Hudson Bay Complex and Eastern Arctic Biogeographic Zones in the Arctic Ocean and the NL-Labrador Shelves Biogeographic Zone in the Atlantic Ocean (see DFO (2009)). The Hudson Bay Complex includes Hudson Strait, Foxe Basin, James Bay, and Hudson Bay, while the Eastern Arctic includes Lancaster Sound and the Baffin Bay-Davis Strait areas. The latter extends to the Barrow Strait in the North, and ends just northwest of the Gulf of Boothia in the west. The NL-Labrador Shelves zone was included as far south as the Strait of Belle Isle between Labrador and Newfoundland. All three zones were extended beyond the Exclusive Economic Zone (EEZ) to Greenland in order to fully encompass the circulation patterns and oceanographic characteristics that govern Baffin Bay and Davis Strait. Given the rugged coastline in these regions, a 20-km buffer was applied to all land values to ensure their exclusion.

Figure 1. Extent of the boundary used to construct the interpolated surfaces of environmental variables in this report.

Data Sources

Global Ocean Reanalyses and Simulations (GLORYS)

Data for surface and bottom temperature, salinity, current speed, and mixed layer depth were extracted from the Global Ocean Reanalyses and Simulations (GLORYS2V1). GLORYS2V1 is a numerical ocean general circulation model reanalysis product with ¹/₄° horizontal resolution (approximately ~25 km in the study extent (Figure 2) that aims to provide the mean and time-varying state of the oceanic states with a focus on capturing variation of meso-scale eddies (<u>http://www.mercator-ocean.fr/eng/science/GLORYS</u>). Details of this model can be found in Beazley et al. (2016a). For each point location, data were extracted for each month between January, 1993 and December, 2011.

For each environmental variable, two different sets of statistics were created from the GLORYS2V1 monthly data. First, the absolute minima, maxima, and range were calculated for each variable by taking the minimum and maximum values across all months and years at each point location. Range was calculated as the difference between the maximum and minimum values at each location, across all months and years. In this report these variables are denoted as 'Minimum', 'Maximum', or 'Range' (e.g. Bottom Current Maximum). These 'absolute' variables are likely reflective of anomalous events over the entire 19-year time period. The second dataset was created by calculating the average minima, maxima, and range by taking the minimum and maximum values at each location across all months within a year, and averaging

Figure 2. Distribution of point data extracted from the GLORYS2V1 model from 1993 to 2011 for the Eastern Canadian Arctic and Sub-Arctic. Point data have a native resolution of ¹/₄°.

across years. These variables are denoted as 'Average Minimum', 'Average Maximum', or 'Average Range' throughout the report, and are likely more representative of long-term oceanographic climate in the region. Finally, the mean of each variable was calculated by averaging the values at each location across all months and years, and is denoted as the 'Mean' in this report. Zeroes in the current and shear data, which were falsely generated from a model topography issue, were removed prior to calculating the different statistics.

For some of the 'bottom' variables there is a gap in data that spans across Hudson Bay, Hudson Strait, and Davis Strait between $\sim 60^{\circ}$ N to $\sim 65^{\circ}$ N. In order to span the entire eastern Arctic and north Northwest Atlantic, two datasets were processed and combined, resulting in a gap in data approximately 1 km wide. Interpolation of the data filled in this gap. However, this line is evident in the standard error plots for some variables, but is not apparent in the final interpolated surfaces.

Caveat for GLORYS variables

Bottom temperature values derived from the GLORYS model (i.e. raw values prior to ordinary kriging) were abnormally low in some shallow, coastal portions of the study area, particularly in Hudson Bay. This is likely caused by the data assimilation scheme of the model. The unrealistically low values of bottom temperature (e.g. Bottom Temperature Minimum values of \sim -12°C) cannot be interpreted by any physical means and are not representative of the actual values in those areas. These extreme values are found almost entirely in Hudson Bay, and therefore caution should be taken when using these layers for that area. Future releases of the GLORYS product hopes to resolve this issue.

Sea Surface Chlorophyll *a*

Sea surface chlorophyll a (mg m⁻³) data were derived from the Sea-viewing Wide Field-of-view Sensor (SeaWIFS) database. SeaWiFS data is primarily used to determine concentrations of chlorophyll in the oceanic water column. The ocean optical data from SeaWiFS can also be used to determine light attenuation in the oceanic water column, which provides information on suspended sediment concentrations and other parameters. Ocean color distribution can be used to investigate the forces influencing trophic productivity in the world's oceans.

Monthly SeaWIFS (Level 3 SMI) data from 2001 to 2010 were downloaded from NASA's OceanColor Group (http://oceandata.sci.gsfc.nasa.gov/) using Duke University's Marine Geospatial Ecology Tools (Roberts et al., 2010) in ArcGIS (ESRI, 2011). Composite images were displayed in raster format with a spatial resolution of 9 km. The native resolution of the point data for SeaWIFS chlorophyll *a* data are shown in Figure 3.

Annual and seasonal averages were computed for the SeaWIFS dataset. Due to ice coverage in the winter months, sea surface chlorophyll a data were extracted for only two seasons: Spring (days of year 91 – 181) and Summer (days 182 – 273). These seasonal delimitations capture the peak of the spring and late summer phytoplankton blooms in most areas of the Arctic.

Figure 3. Distribution of sea surface chlorophyll *a* (SeaWIFS) point data (Spring, Summer and Annual) for the Eastern Canadian Arctic Region and Sub-Arctic, from 2001 to 2010. Point data have a native resolution of 9 km.

Primary Production

Primary production was calculated following the method of Platt et al. (2008) using software developed by the Remote Sensing Unit of the Bedford Institute of Oceanography (RSU-BIO) and the Department of Oceanography at Dalhousie University. The calculation of primary production requires input from multiple sources. Monthly mean surface chlorophyll a and photosynthetically active radiation (PAR) was obtained from NASA's SeaWiFS Level 3, 9-km global coverage (reprocessing R2010.0; Feldman and McClain, 2012). Sea surface temperature (SST) was obtained from NOAA PathFinder version 5.2 data and was reprocessed from its native resolution of 4000 m^2 pixel-1 to match the spatial and temporal resolution of chlorophyll data. Monthly images of total cloud fraction data used in the model were obtained in November 2014 from MYD08 M3. a monthly aggregation of MYD35. collection 51 (ftp://ladsweb.nascom.nasa.gov/allData/51/MYD08_M3/). The in situ parameters, such as photosynthetic performance, chlorophyll a, sea surface temperature, and water depth originate from ship-based observations made by DFO's Atlantic Zone Monitoring Program (AZMP; http://www.bio.gc.ca/science/monitoring-monitorage/azmp-pmza-en.php). Reliability of the resulting primary production data is therefore unknown for areas outside the AZMP region. The model described in Platt et al. (2008) results in pixel-by-pixel depth-integrated net primary production (mg C m⁻² day⁻¹) calculated for the 15 day of each month from September 2006 to September 2010. Like the GLORYS2V1-derived variables, monthly values for primary

production allowed for the calculation of both 'absolute' and 'average' minima, maxima, and range quantifications. However, for some months and years no data were available (see Table 1), therefore only spring (April – June), summer (July – September) and annual layers were created. For the creation of these variables, we ensured that each point location across the study extent had at least two months of data in each of the five years contributing to the quantifications. Summer and annual surfaces showed nearly full coverage across the Arctic Region, whereas portions of the Hudson Bay Complex, Baffin Basin and Davis Strait are not covered in the spring as these are locations with less than one month of data contributing across the 5-year data period (Figure 4).

The timing of sea ice formation and melting has a significant impact on the distribution of photosynthetically active radiation (PAR) (Fritsen et al., 2011). Primary production values for high latitude winter are not available for times and locations when ice covers the surface or the daylight period is very short. As much of Hudson Bay and the northern Eastern Arctic are ice covered in the spring months, the coverage of primary production in these areas is poor. Sea surface chlorophyll a may, however, be available from satellite passes that occur near local noon. Because the resolution of the passive microwave sensors used to determine seasonal ice coverage (25 km) is much lower than the resolution (1 km) of ocean colour sensors, chlorophyll values are sometimes available for times and locations where production cannot be determined by remote sensing.

Season	Month	2006	2007	2008	2009	2010	Total number of years
	January						4
	February	\checkmark	\checkmark			\checkmark	4
	March	\checkmark	\checkmark				4
	April	\checkmark	\checkmark	\checkmark			5
Spring	May	\checkmark	\checkmark	\checkmark			4
	June	\checkmark	\checkmark	\checkmark			5
	July	\checkmark					4
Summer	August	\checkmark	\checkmark			\checkmark	5
	September	\checkmark					4
	October						4
	November						4
	December					\checkmark	3

Table 1. Contributing months to each of the five years of data for the primary production dataset. The $\sqrt{}$ indicates that data exists for this month. Note that even though data exists for a particular month, each point location across the full study extent may not have observation data.

Figure 4. Distribution of Spring, Summer, and Annual primary production point data from 2006 to 2010 for the Eastern Canadian Arctic and Sub-Arctic. Point data have a native resolution of 9 km.

Caveat for Sea Surface Chlorophyll a and Primary Production variables

Ocean-colour satellite sensors degrade over time. As oceans are dark, most light reaching a satellite sensor is contributed by atmospheric scattering. Careful calibration and validation are needed to ensure measurements are accurate after atmospheric contributions are accounted for. Degradation is typically smooth in NASA's SeaWiFS sensor, making it possible to extrapolate calibrations forward in time. However in 2017, unexpected changes over time in the calibration of MODIS Aqua and VIIRS sensors were detected. These patterns were discovered after the ocean colour variables described in this report (chlorophyll a and primary production using MODIS Aqua) were generated, and also apply to previously-generated reports on the environmental variables for DFO's Maritimes, Gulf of St. Lawrence, Newfoundland and Labrador Regions (see Beazley et al., 2016, 2017; Guijarro et al., 2016).

These errors were shown to influence monthly mean surface chlorophyll a and photosynthetically active radiation (PAR) values in the Eastern Canadian Arctic, particularly when examining trends over time. Although general patterns in sea surface chlorophyll a and

primary production were not shown to vary after these updates, we caution the user of these variables when examining trends over time and of over-interpretation of the empirical values of primary production and chlorophyll a. It is recommended that users compare trends for data from three or more sensors to guard against unexpected calibration changes.

Sea Ice Cover

The sea ice data used in this report are from the Hadley Centre Sea Ice and Sea Surface Temperature Data Set (HadISST; <u>http://www.metoffice.gov.uk/hadobs/hadisst/</u>). HadISST was developed at the Met Office Hadley Centre for Climate Prediction and Research, and is a 1° x 1° spatially infilled dataset with monthly data from 1871 to present. HadISST combines data from historical ice charts from shipping, expeditions and other activities, passive microwave satellite retrievals (primarily the NASA Goddard NASA Team data set), and NCEP operational ice analyses. The sea ice fields are made more homogeneous by compensating satellite microwave-based sea ice concentrations for the impact of surface melt effects on retrievals in the Arctic and for algorithm deficiencies in the Antarctic and by making the historical *in situ* concentrations consistent with the satellite data.

Seasonal sea ice was extracted from 1993 to 2010. Ice concentration is stored as double number from 0 to 1 and represents the percentage of ice cover (0 - 100%). Seasons were delimited by the following 'day of year' ranges: days 1 - 90 (Winter), 91 - 181 (Spring), and 274 - 365 (Fall). The native resolution of the point data for each season are 1° and is shown in Figure 5.

For each seasonal sea ice data, two different sets of statistics were created from the Hadley Centre Sea Ice and Sea Surface Temperature Data Set (HadISST) monthly data. First, the absolute minima, maxima, and range were calculated for each variable by taking the minimum and maximum values across all months and years at each point location. Range was calculated as the difference between the maximum and minimum values at each location, across all months and year. In this report these variables are denoted as 'Minimum', 'Maximum', or 'Range' (e.g. Sea Ice Cover Maximum). These 'absolute' variables are likely reflective of anomalous events over the entire 18 year time period. The second dataset was created by calculating the average minima, maxima, and range by taking the minimum and maximum values at each location across all months within a year, and averaging across years. These variables are denoted as 'Average Minimum', 'Average Maximum', or 'Average Range' throughout the report. Finally, the mean of each variable was calculated by averaging the values at each location across all months and years, and is denoted as the 'Mean' in this report.

Figure 5. Distribution of Winter, Spring, and Fall sea ice point data from 1993 to 2010 for the Eastern Canadian Arctic and Sub-Arctic. Point data have a native resolution of 1°, which is equivalent to approximately 111 km in this region.

Nutrients

The distribution of surface silicate, phosphate, nitrate, and dissolved oxygen data for the Eastern Canadian Arctic and Sub-Arctic was examined from the World Ocean Database 2013 (https://www.nodc.noaa.gov/OC5/WOD13/; Boyer et al., 2013). The data were queried from the Ocean Station Data (OSD) dataset from the period of 2006 to 2011. The OSD dataset groups together bottle (Nansen and Niskin) and bucket data, plankton data, and low resolution CTD and expendable CTD (XCTD). Only data collected within the top 10 metres of water and with the highest quality control flag ('Accepted') were called. Data coverage of these variables was very sparse within the study region, making spatial interpolation of the data not possible. Nutrient variables were therefore not included in this report.

Spatial Interpolation Methods

Data Exploration and Model Fitting (extracted from Beazley et al. 2016a)

Kriging is a family of geostatistical estimators used to interpolate spatial data. It is a generalized least-square regression technique that allows for spatial prediction in unsampled locations by accounting for the spatial dependence between observed data (Goovaerts, 2000). Spatial

dependence is captured by constructing an empirical semivariogram that shows the average semivariance between points by the distance between them. A semivariogram model is then fit to the points forming the empirical semivariogram, and predictions are generated for unmeasured locations based on a weighted average of neighbouring data and their spatial arrangement (Johnston et al., 2001).

Within the kriging family a number of different methods exist including but not limited to, ordinary kriging, universal kriging, and simple kriging. For this report, we chose ordinary kriging as the method of spatial interpolation as it assumes that the mean is unknown prior to modelling and approximately constant (stationary) only in the local neighbourhood of each estimation point and not over the entire data domain (Li and Heap, 2008; Krivoruchko, 2011). Thus ordinary kriging with a local search neighbourhood already accounts for trends in the data (Li and Heap, 2008). When compared against the Inverse Distance Weighting (IDW) interpolation method, ordinary kriging produced better overall mean prediction and root-mean-square errors and smoother prediction surfaces for the same variables interpolated in the Gulf Region (see Beazley et al., 2016a).

Ordinary kriging as a geostatistical interpolator does not require the data to follow a normal distribution (Krivoruchko, 2011). However, the generation of quantile and probability maps using ordinary kriging does require the data to meet this assumption (Krivoruchko, 2011). Transformation of highly skewed data prior to ordinary kriging may result in improved estimates and prediction errors, particularly if the dataset is small and contains outliers (Kravchenko and Bullock, 1999). If a variable shows positive skewness, the confidence limits on the variogram are wider than normal resulting in higher variance (Robinson and Metternicht, 2006; Yamamoto, 2007). Thus, data are often transformed prior to spatial interpolation in order to improve the calculation of statistics and weighted averages (Yamamoto, 2007). Transformation of the data results in estimates on a different scale than the original data, and so it is necessary to backtransform the kriging estimates to their original scale prior to creating the interpolation surface. However, for logarithmic transformation, back-transformation through exponentiation results in exaggerated interpolation-related errors, with extreme errors being the worst affected (Goovaerts, 1997; Robinson and Metternicht, 2006). In the Maritimes Region, variables that had been backtransformed within the Geostatistical Analyst package had poorer prediction errors when compared to variables that were log-transformed outside the ArcMap forum (and thus, were not back-transformed in ArcMap). Therefore, to avoid biased prediction errors, we chose not to transform our data prior to spatial interpolation.

Prior to interpolation we assessed the distributional properties of all variables by examining histograms and summary statistics generated in the 'Explore Data' option in ArcMap's Geostatistical Analyst package. These were reviewed to detect anomalous data points and to visually assess departures from a normal distribution (skewness, kurtosis) in advance of conducting geostatistics. Data distributions were described in terms of their skew (right, or positive, and left, or negative), and kurtosis. Kurtosis is a measure of the 'tailedness' of the distribution, where values equal to 3 are considered mesokurtic (zero tailedness), values < 3 platykurtic (thin-tailed), and values > 3 are leptokurtic (heavy-tailed) (DeCarlo, 1997). Normal Q-Q plots were then constructed to compare the distribution of the data against a standard normal (Gaussian) distribution. The data values are ordered and cumulative distribution values

are calculated as (i-0.5)/n for the ith ordered value out of n total values. If the data values are normally distributed they will form a perfect line at 45° to the origin. Data values that fell above and below the reference line were mapped to identify any spatial trend in the departure from normality.

Ordinary kriging models were created using all default settings in the Geostatistical Analyst wizard. Default settings are a stable semivariogram model type and a circular search neighbourhood with 4 sectors that capture a minimum of 2 and a maximum of 5 neighbours. The optimization function was set for each model, which determines the optimal partial sill, nugget, lag size, and number of lags based on the model range.

Assessment of Model Performance (extracted from Beazley et al. 2016a)

Model performance was examined by performing cross-validation, a process where each data point is removed in turn from the model and predicted by the remaining data points. Geostatistical Analyst provides several graphical summaries of the cross validation results, including a scatterplot of the measured versus predicted values (called the Prediction plot), a scatterplot of the residuals of the measured values versus the predicted values (Error plot), a standardized error plot, which shows measured values subtracted from the predicted values and divided by the estimated kriging standard errors, and finally a Q-Q plot, which shows the quantiles of the difference between the predicted and measured values and the corresponding quantiles from a standard normal distribution to assess the normality of the error distributions. Of these, we show only the Prediction plot in the report, although all plots were visually assessed. In the Prediction plot, a horizontal relationship indicates that the model has no information content. With autocorrelation and a good geostatistical model, the relationship between the measured and predicted values should be 1:1.

Also provided by cross validation are five prediction error statistics used for performance evaluation (see Table 2). The overall mean error represents the difference between the measured and predicted values, and should be near zero if the prediction errors are unbiased (i.e., centred on the measured values). However, this value depends on the scale and units of the data, therefore it is better to assess the standardized prediction errors, which are given as prediction errors divided by their prediction standard errors. The mean (Standardized Mean) of these should also be near zero. If the Average Standard Error is close to the Root-Mean-Square Prediction Error, variability in the predictions has been correctly assessed. The Standardized Root-Mean-Square error should be close to one. If the Average Standard Error is greater than the Root-Mean-Square Prediction Error, or if the Standardized Root-Mean-Square Prediction Error is less than one, then the variability of predictions has been overestimated. If the Average Standard Error is less than the Root-Mean-Square Prediction Error or if the Standardized Root-Mean-Square Prediction Error is greater than one, then the variability of predictions has been underestimated. In summary, a good geostatistical model has an Overall Mean Error and Standardized Mean near zero, a small Root-Mean-Square Prediction Error that is approximately equal to the Average Standard Error, an Average Standard Error approximately equal to the Root-Mean-Square Prediction Error, and a Standardized Root-Mean-Square Prediction Error close to one (Johnston et al., 2001). These five prediction error statistics are provided for each

variable and are assessed against the rules in Table 2 to provide an overall assessment of model performance.

Finally, model performance was assessed through visual examination of a standard error map. A standard error map quantifies the uncertainty of the prediction and is calculated by taking the square root of the kriging variances. If the data comes from a normal distribution, the true value will be within ± 2 times the prediction standard errors about 95% of the time (Johnston et al. 2001). These maps were used to determine whether there was any spatial pattern in the error distribution.

Table 2. Prediction error statistics rules used to assess performance of ordinary kriging models.

Prediction error	Rule
Overall Mean Error	Close to 0
Root-Mean-Square Prediction Error	Close to 0 and approximately equal to the average standard error
Standardized Mean	Close to 0
Standardized Root-Mean-Square Prediction Error	Close to 1
Average Standard Error	Approximately equal to the root mean square prediction error

During the assessment of model performance, we noted that data with a poor underlying distribution did not always result in poor cross validation statistics during the interpolation process. For instance, ordinary kriging on some variables displaying a bimodal distribution (e.g., Bottom Temperature Mean in Beazley et al. 2016a) produced a good fit between measured and predicted values and good to excellent cross validation statistics, suggesting the ordinary kriging is robust to non-normality. Similarly, a model displaying a good fit between measured and predicted values often showed poor cross validation statistics, particularly a higher-than-expected Standardized Root-Mean-Square Prediction Error, indicating that variability in the predictions has been underestimated.

Caveat for Spatial Interpolation Using Ordinary Kriging

We noted that ordinary kriging of some GLORYS, sea surface chlorophyll *a*, and all sea ice cover variables resulted in negative values in the prediction surfaces. This is in addition to some of the small negative values produced by the GLORYS model itself (see Beazley et al., 2016a for description). Note that for the sea ice variables, ordinary kriging resulted in values outside the limits of the data (less than 0% and greater than 100%).

This issue has been previously described by Deutsch (1996) and Ly et al. (2011), who found that negative weights were generated by ordinary kriging models when outlying data points occurred close to the location being estimated. Ly et al. (2011) suggested two methods for dealing with this issue: 1) apply an *a posteriori* correction as outlined in Deutsch (1996), or 2) to replace all negative interpolated values with zero (or 1, in the case of the sea ice cover variables). In trials to determine the impact of these negative values in species distribution models in DFO's Newfoundland and Labrador Region (see Guijarro et al., 2016), these negative values were replaced with zero, the data remodelled, and the predictions were compared to those models containing the negative values. There was little difference in both the predictions and performance in these different models, suggesting a negligible impact of the negative values on species distribution modelling applications.

The location of these erroneous values in the prediction surface of each variable are shown in Appendix I.

Recommended Use of Environmental Predictor Variables

At the end of this report we provide a recommendation on the use of these 111 environmental variables in species distribution modelling applications. Variables that provided poor results following spatial interpolation and therefore have limitations to their use are highlighted.

RESULTS

Temperature

Both surface and bottom temperatures have biological relevance to benthic invertebrates. In marine sponges, temperature influences various physiological activities, including rates of growth (Barthel, 1986), and pumping and filtration (Riigård et al., 1993). Temperature is also a cue for gametogenesis and larval release (Ettinger-Epstein et al., 2007). Surface water temperature can influence primary and secondary production and hence benthic food supply. Temperature, along with salinity, can be used to indicate water mass structure.

Bottom Temperature Mean

This variable displayed a skewed, multimodal and platykurtic distribution prior to interpolation with multiple peaks (Table 3, Figure 6). The data were greater than predicted by a normal distribution at the lowest and upper mid-range values, and lower than predicted at the highest and lower mid-range values. These areas of under- and over-prediction showed spatial pattern over the region (Figure 7).

The semivariogram showed moderate autocorrelation present in the data (Figure 8). The kriged model showed an excellent fit between measured and predicted values (Figure 8). Good performance of the model was indicated by the cross-validation results (Table 4). The error map showed low error in Hudson Bay, and moderate error in Baffin Bay and Davis Strait, with higher error along the edges of the study area (Figure 9). The kriged surface is presented in Figure 10.

Property	Value
Number of Observations	16376
Minimum	-2.685
Maximum	4.725
Mean	0.357
Median	0.105
Standard Deviation	1.871
Skewness	0.282
Kurtosis	1.696

Table 3. Distributional properties of Bottom Temperature Mean (°C).

Figure 6. Distribution of Bottom Temperature Mean (°C). Histogram was illustrated using 10 bins. Y axis is shown at 10⁻³.

Figure 7. Normal Q-Q plot for data values of Bottom Temperature Mean (°C). Points falling under (top right panel) and over (bottom right panel) the reference line are mapped.

Figure 8. Left panel: Semivariogram of Bottom Temperature Mean (°C). Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 0.257 degrees; number of lags: 12; Parameter: 1.728; Range: 2.054 degrees; Partial Sill: 0.266. Right panel: Scatterplot of predicted values versus observed values for the model of Bottom Temperature Mean (°C).

Table 4. Results of cross-validation of the kriged model for Bottom Temperature Mean (°C).

Prediction Error	Value
Number of Observations	16376
Overall Mean Error	4.920 x 10 ⁻⁴
Root Mean Square Prediction Error	0.110
Standardized Mean	4.033 x 10 ⁻³
Standardized Root Mean Square Prediction Error	1.097
Average Standard Error	0.095

Figure 9. Prediction standard error surface of Bottom Temperature Mean (°C).

Figure 10. Interpolated prediction surface of Bottom Temperature Mean (°C).

Bottom Temperature Minimum

This variable displayed a left-skewed, leptokurtic distribution prior to interpolation (Table 5, Figure 11). The data were lower than predicted by a normal distribution at both tails, while mid-values followed the reference line (Figure 12). These areas of under- and over-prediction showed spatial pattern over the region (Figure 12).

The semivariogram showed moderate autocorrelation present in the data (Figure 13). The kriged model showed an excellent fit between measured and predicted values (Figure 13). Good performance of the model was indicated by the cross-validation results (Table 6). The error map showed low error in Hudson Bay, and moderate error in Baffin Bay and Davis Strait, with higher error along the edges of the study extent and in the most northern areas (Figure 14). The kriged surface is presented in Figure 15. The extreme minimum values (~ -12°C) are located along the coast in Hudson Bay and are not considered realistic. Therefore, caution should be taken when interpreting this variable in that region.

Property	Value
Number of Observations	16376
Minimum	-12.801
Maximum	3.197
Mean	-0.698
Median	-0.425
Standard Deviation	2.284
Skewness	-0.619
Kurtosis	3.754

Table 5. Distributional properties of Bottom Temperature Minimum (°C).

Figure 11. Distribution of Bottom Temperature Minimum (°C). Histogram was illustrated using 10 bins. X axis is shown at 10^{-1} ; Y axis is shown at 10^{-3} .

Figure 12. Normal Q-Q plot for data values of Bottom Temperature Minimum (°C). Points falling under (top right panel) and over (bottom right panel) the reference line are mapped.

Figure 13. Left panel: Semivariogram of Bottom Temperature Minimum (°C). Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 0.067 degrees; number of lags: 12; Parameter: 2; Range: 0.538 degrees; Partial Sill: 0.288. Right panel: Scatterplot of predicted values versus observed values for the model of Bottom Temperature Minimum (°C).

Table 6. Results of cross-validation of the kriged model for Bottom Temperature Minimum (°C).

Prediction Error	Value
Number of Observations	16376
Overall Mean Error	6.586 x 10 ⁻⁴
Root Mean Square Prediction Error	0.205
Standardized Mean	1.302×10^{-3}
Standardized Root Mean Square Prediction Error	0.693
Average Standard Error	0.282

Figure 14. Prediction standard error surface of Bottom Temperature Minimum (°C).

Figure 15. Interpolated prediction surface of Bottom Temperature Minimum (°C).

Bottom Temperature Maximum

This variable displayed a right-skewed, platykurtic distribution prior to interpolation (Table 7, Figure 16). The data were higher than predicted by a normal distribution at both tails, while mid-values followed the reference line but with some deviation (Figure 17). These areas of under-and over-prediction showed spatial pattern over the region (Figure 17).

The semivariogram showed moderate autocorrelation present in the data (Figure 18). The kriged model showed an excellent fit between measured and predicted values (Figure 18). Good performance of the model was indicated by the cross-validation results (Table 8). The error map showed low error in Hudson Bay, and moderate error in Baffin Bay and Davis Strait, with higher error along the edges of the study extent and in the most northern areas (Figure 19). The kriged surface is presented in Figure 20.

Property	Value
Number of Observations	16376
Minimum	-1.390
Maximum	11.190
Mean	1.460
Median	1.120
Standard Deviation	2.067
Skewness	0.515
Kurtosis	2.482

Table 7. Distributional properties of Bottom Temperature Maximum (°C).

Figure 16. Distribution of Bottom Temperature Maximum (°C). Histogram was illustrated using 10 bins. X axis is shown at 10^{-1} ; Y axis is shown at 10^{-3} .

Figure 17. Normal Q-Q plot for data values of Bottom Temperature Maximum (°C). Points falling under (top right panel) and over (bottom right panel) the reference line are mapped.

Figure 18. Left panel: Semivariogram of Bottom Temperature Maximum (°C). Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 0.101 degrees; number of lags: 12; Parameter: 2; Range: 0.808 degrees; Partial Sill: 0.476. Right panel: Scatterplot of predicted values versus observed values for the model of Bottom Temperature Maximum (°C).

Table 8. Results of cross-validation of the kriged model for Bottom Temperature Maximum (°C).

Prediction Error	Value
Number of Observations	16376
Overall Mean Error	-4.441 x 10 ⁻⁴
Root Mean Square Prediction Error	0.191
Standardized Mean	1.159 x 10 ⁻³
Standardized Root Mean Square Prediction Error	1.127
Average Standard Error	0.155

Figure 19. Prediction standard error surface of Bottom Temperature Maximum (°C).

Figure 20. Interpolated prediction surface of Bottom Temperature Maximum (°C).

Bottom Temperature Range

This variable displayed a right-skewed, leptokurtic distribution prior to interpolation (Table 9, Figure 21). The data were higher than predicted by a normal distribution at both tails, while mid-values were lower than the reference line (Figure 22). These areas of under- and over-prediction showed spatial pattern over the region (Figure 22).

The semivariogram showed moderate autocorrelation present in the data (Figure 23). The kriged model showed an excellent fit between measured and predicted values (Figure 23). Fair performance of the model was indicated by the cross-validation results (Table 10), with overestimation of the variability of the predictions as indicated by the Standardized Root-Mean-Square Error less than 1. The error map showed lower error in Hudson Bay compared to Baffin Bay and Davis Strait, with higher error along the edges of the study extent and in the most northern areas (Figure 24). The kriged surface is presented in Figure 25.

Property	Value
Number of Observations	16376
Minimum	0.096
Maximum	17.281
Mean	2.157
Median	1.384
Standard Deviation	2.060
Skewness	2.374
Kurtosis	10.431

Table 9. Distributional properties of Bottom Temperature Range (°C).

Figure 21. Distribution of Bottom Temperature Range (°C). Histogram was illustrated using 10 bins. X axis is shown at 10^{-1} ; Y axis is shown at 10^{-4} .

Figure 22. Normal Q-Q plot for data values of Bottom Temperature Range (°C). Points falling under (top right panel) and over (bottom right panel) the reference line are mapped.

Figure 23. Left panel: Semivariogram of Bottom Temperature Range (°C). Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 1.236 degrees; number of lags: 12; Parameter: 1.028; Range: 9.892 degrees; Partial Sill: 4.474. Right panel: Scatterplot of predicted values versus observed values for the model of Bottom Temperature Range (°C).

Table 10. Results of cross-validation of the kriged model for Bottom Temperature Range (°C).

Prediction Error	Value
Number of Observations	16376
Overall Mean Error	-1.416 x 10 ⁻³
Root Mean Square Prediction Error	0.256
Standardized Mean	-1.107 x 10 ⁻³
Standardized Root Mean Square Prediction Error	0.628
Average Standard Error	0.397

Figure 24. Prediction standard error surface of Bottom Temperature Range (°C).

Figure 25. Interpolated prediction surface of Bottom Temperature Range (°C).

Bottom Temperature Average Minimum

This variable displayed a left-skewed, platykurtic distribution prior to interpolation (Table 11, Figure 26). The data were lower than predicted by a normal distribution at both tails, while mid-values followed the reference line but with some deviation (Figure 27). These areas of underand over-prediction showed spatial pattern over the region (Figure 27).

The semivariogram showed moderate autocorrelation present in the data (Figure 28). The kriged model showed an excellent fit between measured and predicted values (Figure 28). Fair performance of the model was indicated by the cross-validation results (Table 12). The error map showed lower error in Hudson Bay compared to Baffin Bay and Davis Strait, with higher error along the edges of the study extent and in the most northern areas (Figure 29). The kriged surface is presented in Figure 30.

Property	Value
Number of Observations	16376
Minimum	-8.911
Maximum	3.919
Mean	-0.047
Median	-0.062
Standard Deviation	2.025
Skewness	-0.162
Kurtosis	2.450

Table 11. Distributional properties of Bottom Temperature Average Minimum (°C).

Figure 26. Distribution of Bottom Temperature Average Minimum (°C). Histogram was illustrated using 10 bins. Y axis is shown at 10^{-3} .

Figure 27. Normal Q-Q plot for data values of Bottom Temperature Average Minimum (°C). Points falling under (top right panel) and over (bottom right panel) the reference line are mapped.

Figure 28. Left panel: Semivariogram of Bottom Temperature Average Minimum (°C). Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 0.084 degrees; number of lags: 12; Parameter: 2; Range: 0.672 degrees; Partial Sill: 0.190. Right panel: Scatterplot of predicted values versus observed values for the model of Bottom Temperature Average Minimum (°C).

Table	12.	Results	of	cross-validation	of	the	kriged	model	for	Bottom	Temperature	Average
Minim	num	(°C).										

Prediction Error	Value
Number of Observations	16376
Overall Mean Error	$1.200 \ge 10^{-3}$
Root Mean Square Prediction Error	0.136
Standardized Mean	4.622×10^{-3}
Standardized Root Mean Square Prediction Error	0.812
Average Standard Error	0.157

Figure 29. Prediction standard error surface of Bottom Temperature Average Minimum (°C).

Figure 30. Interpolated prediction surface of Bottom Temperature Average Minimum (°C).

Bottom Temperature Average Maximum

This variable displayed a bimodal, platykurtic distribution prior to interpolation (Table 13, Figure 31). The data were greater than predicted by a normal distribution at the lowest and upper mid-range values, and lower than predicted at the highest and lower mid-range values. These areas of under- and over-prediction showed no spatial pattern over the region (Figure 32).

The semivariogram showed moderate autocorrelation present in the data (Figure 33). The kriged model showed a good fit between measured and predicted values (Figure 33). Fair performance of the model was indicated by the cross-validation results (Table 14). The error map showed lower error in Hudson Bay compared to Baffin Bay and Davis Strait, with higher error along the edges of the study extent and in the most northern areas (Figure 34). The kriged surface is presented in Figure 35.

Property	Value
Number of Observations	16376
Minimum	-1.704
Maximum	8.064
Mean	0.768
Median	0.289
Standard Deviation	1.927
Skewness	0.406
Kurtosis	2.037

Table 13. Distributional properties of Bottom Temperature Average Maximum (°C).

Figure 31. Distribution of Bottom Temperature Average Maximum (°C). Histogram was illustrated using 10 bins. Y axis is shown at 10^{-3} .

Figure 32. Normal Q-Q plot for data values of Bottom Temperature Average Maximum (°C). Points falling under (top right panel) and over (bottom right panel) the reference line are mapped.

Figure 33. Left panel: Semivariogram of Bottom Temperature Average Maximum (°C). Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 0.103 degrees; number of lags: 12; Parameter: 2; Range: 0.821 degrees; Partial Sill: 0.249. Right panel: Scatterplot of predicted values versus observed values for the model of Bottom Temperature Average Maximum (°C).

Table	14.	Results	of	cross-validation	of	the	kriged	model	for	Bottom	Temperature	Average
Maxin	num	(°C).										

Prediction Error	Value
Number of Observations	16376
Overall Mean Error	-2.334 x 10 ⁻⁴
Root Mean Square Prediction Error	0.131
Standardized Mean	1.346 x 10 ⁻³
Standardized Root Mean Square Prediction Error	1.253
Average Standard Error	0.094

Figure 34. Prediction standard error surface of Bottom Temperature Average Maximum (°C).

Figure 35. Interpolated prediction surface of Bottom Temperature Average Maximum (°C).

Bottom Temperature Average Range

This variable displayed a right-skewed, leptokurtic distribution prior to interpolation (Table 15, Figure 36). The data were higher than predicted by a normal distribution at both tails, while mid-values were lower than the reference line (Figure 37). These areas of under- and over-prediction showed spatial pattern over the region (Figure 37).

The semivariogram showed moderate autocorrelation present in the data (Figure 38). The kriged model showed a good fit between measured and predicted values (Figure 38). Fair performance of the model was indicated by the cross-validation results (Table 16). The error map showed lower error in Hudson Bay compared to Baffin Bay and Davis Strait, with higher error along the edges of the study extent and in the most northern areas (Figure 39). The kriged surface is presented in Figure 40.

Property	Value
Number of Observations	16376
Minimum	0.017
Maximum	9.603
Mean	0.816
Median	0.384
Standard Deviation	1.121
Skewness	3.140
Kurtosis	15.228

Table 15. Distributional properties of Bottom Temperature Average Range (°C).

Figure 36. Distribution of Bottom Temperature Average Range (°C). Histogram was illustrated using 10 bins. Y axis is shown at 10^{-4} .

Figure 37. Normal Q-Q plot for data values of Bottom Temperature Average Range (°C). Points falling under (top right panel) and over (bottom right panel) the reference line are mapped.

Figure 38. Left panel: Semivariogram of Bottom Temperature Average Range (°C). Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 0.074 degrees; number of lags: 12; Parameter: 2; Range: 0.595 degrees; Partial Sill: 0.233. Right panel: Scatterplot of predicted values versus observed values for the model of Bottom Temperature Average Range (°C).

Table	16.	Results	of	cross-validation	of	the	kriged	model	for	Bottom	Temperature	Average
Range	(°C	⁽).										

Prediction Error	Value
Number of Observations	16376
Overall Mean Error	-1.858 x 10 ⁻³
Root Mean Square Prediction Error	0.127
Standardized Mean	-4.619 x 10 ⁻³
Standardized Root Mean Square Prediction Error	0.603
Average Standard Error	0.191

Figure 39. Prediction standard error surface of Bottom Temperature Average Range (°C).

Figure 40. Interpolated prediction surface of Bottom Temperature Average Range (°C).

Surface Temperature Mean

This variable displayed a right-skewed, leptokurtic distribution prior to interpolation (Table 17, Figure 41). The data were higher than predicted by a normal distribution at both tails, while mid-values were lower than the reference line (Figure 42). These areas of under- and over-prediction showed spatial pattern over the region (Figure 42).

The semivariogram showed moderate autocorrelation present in the data (Figure 43). The kriged model showed an excellent fit between measured and predicted values (Figure 43). Good performance of the model was indicated by the cross-validation results (Table 18). The error map showed lower error in Hudson Bay compared to Baffin Bay and Davis Strait, with higher error along the edges of the study extent and in the most northern areas (Figure 44). The kriged surface is presented in Figure 45.

Property	Value
Number of Observations	16491
Minimum	-1.572
Maximum	11.244
Mean	1.487
Median	0.709
Standard Deviation	2.426
Skewness	1.224
Kurtosis	3.833

Table 17. Distributional properties of Surface Temperature Mean (°C).

Figure 41. Distribution of Surface Temperature Mean (°C). Histogram was illustrated using 10 bins. X axis is shown at 10^{-1} Y axis is shown at 10^{-3} .

Figure 42. Normal Q-Q plot for data values of Surface Temperature Mean (°C). Points falling under (top right panel) and over (bottom right panel) the reference line are mapped.

Figure 43. Left panel: Semivariogram of Surface Temperature Mean (°C). Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 0.124 degrees; number of lags: 12; Parameter: 2; Range: 0.992 degrees; Partial Sill: 0.081. Right panel: Scatterplot of predicted values versus observed values for the model of Surface Temperature Mean (°C).

Table 18. Results of cross-validation of the kriged model for Surface Temperature Mean (°C).

Prediction Error	Value
Number of Observations	16491
Overall Mean Error	3.558 x 10 ⁻⁵
Root Mean Square Prediction Error	0.017
Standardized Mean	1.592 x 10 ⁻³
Standardized Root Mean Square Prediction Error	1.104
Average Standard Error	0.015

Figure 44. Prediction standard error surface of Surface Temperature Mean (°C).

Figure 45. Interpolated prediction surface of Surface Temperature Mean (°C).

Surface Temperature Minimum

This variable displayed a right-skewed, leptokurtic distribution prior to interpolation (Table 19, Figure 46). The data were higher than predicted by a normal distribution at both tails, while mid-values were lower than the reference line (Figure 47). These areas of under- and over-prediction showed spatial pattern over the region (Figure 47).

The semivariogram showed moderate autocorrelation present in the data (Figure 48). The kriged model showed an excellent fit between measured and predicted values (Figure 48). Poor performance of the model was indicated by the cross-validation results (Table 20), with underestimation of the variability of the predictions as indicated by the Standardized Root-Mean-Square Error greater than 1. The error map showed lower error in Hudson Bay compared to Baffin Bay and Davis Strait, with higher error along the edges of the study extent and in the most northern areas (Figure 49). The kriged surface is presented in Figure 50.

Property	Value
Number of Observations	16491
Minimum	-2.553
Maximum	6.802
Mean	-1.171
Median	-1.817
Standard Deviation	1.440
Skewness	2.182
Kurtosis	7.136

Table 19. Distributional properties of Surface Temperature Minimum (°C).

Figure 46. Distribution of Surface Temperature Minimum (°C). Histogram was illustrated using 10 bins. Y axis is shown at 10⁻⁴.

Figure 47. Normal Q-Q plot for data values of Surface Temperature Minimum (°C). Points falling under (top right panel) and over (bottom right panel) the reference line are mapped.

Figure 48. Left panel: Semivariogram of Surface Temperature Minimum (°C). Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 0.155 degrees; number of lags: 12; Parameter: 2; Range: 1.238 degrees; Partial Sill: 0.075. Right panel: Scatterplot of predicted values versus observed values for the model of Surface Temperature Minimum (°C).

Table	20.	Results	of	cross-validation	of	the	kriged	model	for	Surface	Temperature	Minimum
(°C).												

Prediction Error	Value
Number of Observations	16491
Overall Mean Error	1.100 x 10 ⁻⁴
Root Mean Square Prediction Error	0.049
Standardized Mean	3.782 x 10 ⁻³
Standardized Root Mean Square Prediction Error	4.097
Average Standard Error	0.012

Figure 49. Prediction standard error surface of Surface Temperature Minimum (°C).

Figure 50. Interpolated prediction surface of Surface Temperature Minimum (°C).

Surface Temperature Maximum

This variable displayed a left-skewed, platykurtic distribution prior to interpolation (Table 21, Figure 51). The data were greater than predicted by a normal distribution at the lowest and upper mid-range values, and lower than predicted at the highest and lower mid-range values (Figure 52). These areas of under- and over-prediction showed spatial pattern over the region (Figure 52).

The semivariogram showed weak autocorrelation present in the data (Figure 53). The kriged model showed an excellent fit between measured and predicted values (Figure 53). Good performance of the model was indicated by the cross-validation results (Table 22). The error map showed lower error in Hudson Bay compared to Baffin Bay and Davis Strait, with higher error along the edges of the study extent and in the most northern areas (Figure 54). The kriged surface is presented in Figure 55.

Property	Value
Number of Observations	16491
Minimum	1.142
Maximum	17.658
Mean	8.385
Median	8.897
Standard Deviation	2.675
Skewness	-0.166
Kurtosis	2.877

Table 21. Distributional properties of Surface Temperature Maximum (°C).

Figure 51. Distribution of Surface Temperature Maximum (°C). Histogram was illustrated using 10 bins. X axis is shown at 10^{-1} Y axis is shown at 10^{-3} .

Figure 52. Normal Q-Q plot for data values of Surface Temperature Maximum (°C). Points falling under (top right panel) and over (bottom right panel) the reference line are mapped.

Figure 53. Left panel: Semivariogram of Surface Temperature Maximum (°C). Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 2.598 degrees; number of lags: 12; Parameter: 1.596; Range: 20.787 degrees; Partial Sill: 9.330. Right panel: Scatterplot of predicted values versus observed values for the model of Surface Temperature Maximum (°C).

Table 22. Results of cross-validation of the kriged model for Surface Temperature Maximum (°C).

Prediction Error	Value
Number of Observations	16491
Overall Mean Error	1.580 x 10 ⁻⁴
Root Mean Square Prediction Error	0.077
Standardized Mean	$1.220 \ge 10^{-3}$
Standardized Root Mean Square Prediction Error	1.077
Average Standard Error	0.066

Figure 54. Prediction standard error surface of Surface Temperature Maximum (°C).

Figure 55. Interpolated prediction surface of Surface Temperature Maximum (°C).

Surface Temperature Range

This variable displayed a left-skewed, platykurtic distribution prior to interpolation (Table 23, Figure 56). The data were greater than predicted by a normal distribution at the lowest and upper mid-range values, and lower than predicted at the highest and lower mid-range values (Figure 57). These areas of under- and over-prediction showed spatial pattern over the region (Figure 57).

The semivariogram showed weak autocorrelation present in the data (Figure 58). The kriged model showed an excellent fit between measured and predicted values (Figure 58). Good performance of the model was indicated by the cross-validation results (Table 24). The error map showed lower error in Hudson Bay compared to Baffin Bay and Davis Strait, with higher error along the edges of the study extent and in the most northern areas (Figure 59). The kriged surface is presented in Figure 60.

Property	Value
Number of Observations	16491
Minimum	2.848
Maximum	16.114
Mean	9.556
Median	9.830
Standard Deviation	2.180
Skewness	-0.390
Kurtosis	2.842

Table 23. Distributional properties of Surface Temperature Range (°C).

Figure 56. Distribution of Surface Temperature Range (°C). Histogram was illustrated using 10 bins. X axis is shown at 10^{-1} Y axis is shown at 10^{-3} .

Figure 57. Normal Q-Q plot for data values of Surface Temperature Range (°C). Points falling under (top right panel) and over (bottom right panel) the reference line are mapped.

Figure 58. Left panel: Semivariogram of Surface Temperature Range (°C). Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 2.252 degrees; number of lags: 12; Parameter: 1.525; Range: 18.023 degrees; Partial Sill: 6.625. Right panel: Scatterplot of predicted values versus observed values for the model of Surface Temperature Range (°C).

Table 24. Results of cross-validation of the kriged model for Surface Temperature Range (°C).

Prediction Error	Value
Number of Observations	16491
Overall Mean Error	1.635 x 10 ⁻⁴
Root Mean Square Prediction Error	0.089
Standardized Mean	1.015 x 10 ⁻³
Standardized Root Mean Square Prediction Error	1.048
Average Standard Error	0.080

Figure 59. Prediction standard error surface of Surface Temperature Range (°C).

Figure 60. Interpolated prediction surface of Surface Temperature Range (°C).

Surface Temperature Average Minimum

This variable displayed a right-skewed, leptokurtic distribution prior to interpolation (Table 25, Figure 61). The data were higher than predicted by a normal distribution at both tails, while mid-values were lower than the reference line (Figure 62). These areas of under- and over-prediction showed spatial pattern over the region (Figure 62).

The semivariogram showed moderate autocorrelation present in the data (Figure 63). The kriged model showed an excellent fit between measured and predicted values (Figure 63). Good performance of the model was indicated by the cross-validation results (Table 26). The error map showed lower error in Hudson Bay compared to Baffin Bay and Davis Strait, with higher error along the edges of the study extent and in the most northern areas (Figure 64). The kriged surface is presented in Figure 65.

Property	Value
Number of Observations	16491
Minimum	-1.977
Maximum	8.123
Mean	-0.631
Median	-1.755
Standard Deviation	1.990
Skewness	1.592
Kurtosis	4.432

Table 25. Distributional properties of Surface Temperature Average Minimum (°C).

Figure 61. Distribution of Surface Temperature Average Minimum (°C). Histogram was illustrated using 10 bins. Y axis is shown at 10^{-4} .

Figure 62. Normal Q-Q plot for data values of Surface Temperature Average Minimum (°C). Points falling under (top right panel) and over (bottom right panel) the reference line are mapped.

Figure 63. Left panel: Semivariogram of Surface Temperature Average Minimum (°C). Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 0.114 degrees; number of lags: 12; Parameter: 2; Range: 0.916degrees; Partial Sill: 0.062. Right panel: Scatterplot of predicted values versus observed values for the model of Surface Temperature Average Minimum (°C).

Table 26.	Results	of	cross-validation	of	the	kriged	model	for	Surface	Temperature	Average
Minimum	(°C).										

Prediction Error	Value
Number of Observations	16491
Overall Mean Error	9.031 x 10 ⁻⁵
Root Mean Square Prediction Error	0.018
Standardized Mean	2.685×10^{-3}
Standardized Root Mean Square Prediction Error	1.331
Average Standard Error	0.014

Figure 64. Prediction standard error surface of Surface Temperature Average Minimum (°C).

Figure 65. Interpolated prediction surface of Surface Temperature Average Minimum (°C).

Surface Temperature Average Maximum

This variable displayed a bimodal, platykurtic distribution prior to interpolation (Table 27, Figure 66). The data were greater than predicted by a normal distribution at the lowest and upper mid-range values, and lower than predicted at the highest and lower mid-range values (Figure 67). These areas of under- and over-prediction showed spatial pattern over the region.

The semivariogram showed very weak autocorrelation present in the data (Figure 68). The kriged model showed an excellent fit between measured and predicted values (Figure 68). Poor performance of the model was indicated by the cross-validation results (Table 28), and variability in the predictions was overestimated as indicated by the Standardized Root-Mean-Square Error below 1. The error map showed lower error in Hudson Bay compared to Baffin Bay and Davis Strait, with higher error along the edges of the study extent and in the most northern areas (Figure 69). The kriged surface is presented in Figure 70.

Property	Value
Number of Observations	16491
Minimum	-0.589
Maximum	15.296
Mean	6.106
Median	6.814
Standard Deviation	2.881
Skewness	0.042
Kurtosis	2.557

Table 27. Distributional properties of Surface Temperature Average Maximum (°C).

Figure 66. Distribution of Surface Temperature Average Maximum (°C). Histogram was illustrated using 10 bins. X axis is shown at 10^{-1} ; Y axis is shown at 10^{-3} .

Figure 67. Normal Q-Q plot for data values of Surface Temperature Average Maximum (°C). Points falling under (top right panel) and over (bottom right panel) the reference line are mapped.

Figure 68. Left panel: Semivariogram of Surface Temperature Average Maximum (°C). Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 3.862 degrees; number of lags: 12; Parameter: 1.462; Range: 30.892 degrees; Partial Sill: 12.281. Right panel: Scatterplot of predicted values versus observed values for the model of Surface Temperature Average Maximum (°C).

Table 28.	Results	of	cross-validation	of	the	kriged	model	for	Surface	Temperature	Average
Maximum	(°C).										

Prediction Error	Value
Number of Observations	16491
Overall Mean Error	9.011 x 10 ⁻⁵
Root Mean Square Prediction Error	0.037
Standardized Mean	3.020×10^{-4}
Standardized Root Mean Square Prediction Error	0.346
Average Standard Error	0.090

Figure 69. Prediction standard error surface of Surface Temperature Average Maximum (°C).

Figure 70. Interpolated prediction surface of Surface Temperature Average Maximum (°C).

Surface Temperature Average Range

This variable displayed a bimodal, platykurtic distribution prior to interpolation (Table 29, Figure 71). The data were greater than predicted by a normal distribution at the lowest and upper mid-range values, and lower than predicted at the highest and lower mid-range values (Figure 72). These areas of under- and over-prediction showed spatial pattern over the region.

The semivariogram showed weak autocorrelation present in the data (Figure 73). The kriged model showed an excellent fit between measured and predicted values (Figure 73). Poor performance of the model was indicated by the cross-validation results (Table 30), and variability in the predictions was overestimated as indicated by the Standardized Root-Mean-Square Error below 1. The error map showed lower error in Hudson Bay compared to Baffin Bay and Davis Strait, with higher error along the edges of the study extent and in the most northern areas (Figure 74). The kriged surface is presented in Figure 75.

Property	Value
Number of Observations	16491
Minimum	1.170
Maximum	12.709
Mean	6.737
Median	6.420
Standard Deviation	2.189
Skewness	6.280 x 10 ⁻⁴
Kurtosis	2.091

Table 29. Distributional properties of Surface Temperature Average Range (°C).

Figure 71. Distribution of Surface Temperature Average Range (°C). Histogram was illustrated using 10 bins. X axis is shown at 10^{-1} ; Y axis is shown at 10^{-3} .

Figure 72. Normal Q-Q plot for data values of Surface Temperature Average Range (°C). Points falling under (top right panel) and over (bottom right panel) the reference line are mapped.

Figure 73. Left panel: Semivariogram of Surface Temperature Average Range (°C). Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 2.950 degrees; number of lags: 12; Parameter: 1.464; Range: 23.596 degrees; Partial Sill: 6.514. Right panel: Scatterplot of predicted values versus observed values for the model of Surface Temperature Average Range (°C).

Table	30.	Results	of	cross-validation	of	the	kriged	model	for	Surface	Temperature	Average
Range	(°C).										

Prediction Error	Value
Number of Observations	16491
Overall Mean Error	7.177 x 10 ⁻⁵
Root Mean Square Prediction Error	0.038
Standardized Mean	2.440 x 10 ⁻⁴
Standardized Root Mean Square Prediction Error	0.416
Average Standard Error	0.079

Figure 74. Prediction standard error surface of Surface Temperature Average Range (°C).

Figure 75. Interpolated prediction surface of Surface Temperature Average Range (°C).

Salinity

Salinity influences osmoregulation (control of osmosis and diffusion) in marine organisms. In marine molluscs, one of the most common reactions to changes in salinity is a decrease in respiration rate (Berger and Pharazova, 1997). Salinity is particularly important in shallow and estuarine environments where freshwater input can be substantial. An example of an area with significant freshwater input is Hudson Bay, where mean bottom salinity was as low as 16. Nearbottom salinity was shown to be an important driver of megafaunal species richness and abundance of megafauna associated with deep-water sponge communities in the northwest Atlantic (Beazley et al., 2013) and elsewhere (Papiol et al., 2012). Variations in salinity may also reflect changes in water mass structure which may also influence megafaunal boundaries (Flach et al., 1998; Howell et al., 2002; Arantes et al., 2009).

Bottom Salinity Mean

This variable displayed a left-skewed, leptokurtic distribution prior to interpolation (Table 31, Figure 76). The data were lower than predicted by a normal distribution at both tails, while mid-values were slightly higher than the reference line (Figure 77). These areas of under- and over-prediction showed spatial pattern over the region (Figure 77).

The semivariogram showed moderate autocorrelation present in the data (Figure 78). The kriged model showed a good fit between measured and predicted values (Figure 78). Good performance of the model was indicated by the cross-validation results (Table 32). The error map showed lower error in Hudson Bay compared to Baffin Bay and Davis Strait, with higher error along the edges of the study extent and in the most northern areas (Figure 79). The kriged surface is presented in Figure 80.

Property	Value
Number of Observations	16376
Minimum	16.052
Maximum	34.953
Mean	34.062
Median	34.393
Standard Deviation	0.941
Skewness	-3.157
Kurtosis	33.622

Table 31. Distributional properties of Bottom Salinity Mean.

Figure 76. Distribution of Bottom Salinity Mean. Histogram was illustrated using 10 bins. X axis is shown at 10^{-1} ; Y axis is shown at 10^{-4} .

Figure 77. Normal Q-Q plot for data values of Bottom Salinity Mean. Points falling under (top right panel) and over (bottom right panel) the reference line are mapped.

Figure 78. Left panel: Semivariogram of Bottom Salinity Mean. Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 0.127 degrees; number of lags: 12; Parameter: 2; Range: 1.019 degrees; Partial Sill: 0.091. Right panel: Scatterplot of predicted values versus observed values for the model of Bottom Salinity Mean.

Table 32. Results of cross-validation of the kriged model for Bottom Salinity Mean.

Prediction Error	Value
Number of Observations	16376
Overall Mean Error	6.095 x 10 ⁻⁴
Root Mean Square Prediction Error	0.084
Standardized Mean	-2.505 x 10 ⁻⁵
Standardized Root Mean Square Prediction Error	1.292
Average Standard Error	0.057

Figure 79. Prediction standard error surface of Bottom Salinity Mean.

Figure 80. Interpolated prediction surface of Bottom Salinity Mean.

Bottom Salinity Minimum

This variable displayed a left-skewed, leptokurtic distribution prior to interpolation (Table 33, Figure 81). The data were lower than predicted by a normal distribution at both tails, while mid-values were slightly higher than the reference line (Figure 82). These areas of under- and over-prediction showed spatial pattern over the region (Figure 82).

The semivariogram showed moderate autocorrelation present in the data (Figure 83). The kriged model showed a good fit between measured and predicted values (Figure 83). Good performance of the model was indicated by the cross-validation results (Table 34). The error map showed lower error in Hudson Bay compared to Baffin Bay and Davis Strait, with higher error along the edges of the study extent and in the most northern areas (Figure 84). The kriged surface is presented in Figure 85.

Property	Value
Number of Observations	16376
Minimum	12.067
Maximum	34.904
Mean	33.712
Median	34.146
Standard Deviation	1.317
Skewness	-2.954
Kurtosis	23.370

Table 33. Distributional properties of Bottom Salinity Minimum.

Figure 81. Distribution of Bottom Salinity Minimum. Histogram was illustrated using 10 bins. X axis is shown at 10^{-1} ; Y axis is shown at 10^{-4} .

Figure 82. Normal Q-Q plot for data values of Bottom Salinity Minimum. Points falling under (top right panel) and over (bottom right panel) the reference line are mapped.

Figure 83. Left panel: Semivariogram of Bottom Salinity Minimum. Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 0.127 degrees; number of lags: 12; Parameter: 2; Range: 1.019 degrees; Partial Sill: 0.091. Right panel: Scatterplot of predicted values versus observed values for the model of Bottom Salinity Minimum.

Table 34. Results of cross-validation of the kriged model for Bottom Salinity Minimum.

Prediction Error	Value
Number of Observations	16376
Overall Mean Error	2.571 x 10 ⁻⁴
Root Mean Square Prediction Error	0.125
Standardized Mean	-5.435x 10 ⁻³
Standardized Root Mean Square Prediction Error	0.793
Average Standard Error	0.143

Figure 84. Prediction standard error surface of Bottom Salinity Minimum.

Figure 85. Interpolated prediction surface of Bottom Salinity Minimum.

Bottom Salinity Maximum

This variable displayed a left-skewed, leptokurtic distribution prior to interpolation (Table 35, Figure 86). The data were lower than predicted by a normal distribution at both tails, while mid-values were slightly higher than the reference line (Figure 87). These areas of under- and over-prediction showed spatial pattern over the region (Figure 87).

The semivariogram showed moderate autocorrelation present in the data (Figure 88). The kriged model showed a good fit between measured and predicted values (Figure 88). Fair performance of the model was indicated by the cross-validation results (Table 36). The error map showed lower error in Hudson Bay compared to Baffin Bay and Davis Strait, with higher error along the edges of the study extent and in the most northern areas (Figure 89). The kriged surface is presented in Figure 90.

Property	Value
Number of Observations	16376
Minimum	25.560
Maximum	35.289
Mean	34.379
Median	34.542
Standard Deviation	0.652
Skewness	-1.899
Kurtosis	10.966

Table 35. Distributional properties of Bottom Salinity Maximum.

Figure 86. Distribution of Bottom Salinity Maximum. Histogram was illustrated using 10 bins. X axis is shown at 10^{-1} ; Y axis is shown at 10^{-4} .

Figure 87. Normal Q-Q plot for data values of Bottom Salinity Minimum. Points falling under (top right panel) and over (bottom right panel) the reference line are mapped.

Figure 88. Left panel: Semivariogram of Bottom Salinity Maximum. Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 0.104 degrees; number of lags: 12; Parameter: 2; Range: 0.829 degrees; Partial Sill: 0.046. Right panel: Scatterplot of predicted values versus observed values for the model of Bottom Salinity Maximum.

Table 36. Results of cross-validation of the kriged model for Bottom Salinity Maximum.

Prediction Error	Value
Number of Observations	16376
Overall Mean Error	7.806 x 10 ⁻⁴
Root Mean Square Prediction Error	0.073
Standardized Mean	9.001 x 10 ⁻³
Standardized Root Mean Square Prediction Error	1.520
Average Standard Error	0.041

Figure 89. Prediction standard error surface of Bottom Salinity Maximum.

Figure 90. Interpolated prediction surface of Bottom Salinity Maximum.

Bottom Salinity Range

This variable displayed a right-skewed, leptokurtic distribution prior to interpolation (Table 37, Figure 91). The data were higher than predicted by a normal distribution at both tails, while mid-values were slightly lower than the reference line (Figure 92). These areas of under- and over-prediction showed spatial pattern over the region (Figure 92).

The semivariogram showed moderate autocorrelation present in the data (Figure 93). The kriged model showed a good fit between measured and predicted values (Figure 93). Good performance of the model was indicated by the cross-validation results (Table 38). The error map showed lower error in Hudson Bay compared to Baffin Bay and Davis Strait, with higher error along the edges of the study extent and in the most northern areas (Figure 94). The kriged surface is presented in Figure 95.

Property	Value
Number of Observations	16376
Minimum	0.024
Maximum	13.524
Mean	0.667
Median	0.407
Standard Deviation	0.823
Skewness	3.902
Kurtosis	33.678

Table 37. Distributional properties of Bottom Salinity Range.

Figure 91. Distribution of Bottom Salinity Range. Histogram was illustrated using 10 bins. X axis is shown at 10^{-1} ; Y axis is shown at 10^{-4} .

Figure 92. Normal Q-Q plot for data values of Bottom Salinity Range. Points falling under (top right panel) and over (bottom right panel) the reference line are mapped.

Figure 93. Left panel: Semivariogram of Bottom Salinity Range. Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 0.113 degrees; number of lags: 12; Parameter: 1.831; Range: 0.907 degrees; Partial Sill: 0.119. Right panel: Scatterplot of predicted values versus observed values for the model of Bottom Salinity Range.

Table 38. Results of cross-validation of the kriged model for Bottom Salinity Range.

Prediction Error	Value
Number of Observations	16376
Overall Mean Error	-6.084x 10 ⁻⁴
Root Mean Square Prediction Error	0.102
Standardized Mean	1.376 x 10 ⁻³
Standardized Root Mean Square Prediction Error	0.703
Average Standard Error	0.133

Figure 94. Prediction standard error surface of Bottom Salinity Range.

Figure 95. Interpolated prediction surface of Bottom Salinity Range.

Bottom Salinity Average Minimum

This variable displayed a left-skewed, leptokurtic distribution prior to interpolation (Table 39, Figure 96). The data were lower than predicted by a normal distribution at both tails, while mid-values were slightly higher than the reference line (Figure 97). These areas of under- and over-prediction showed spatial pattern over the region (Figure 97).

The semivariogram showed moderate autocorrelation present in the data (Figure 98). The kriged model showed a good fit between measured and predicted values (Figure 98). Good performance of the model was indicated by the cross-validation results (Table 40). The error map showed lower error in Hudson Bay compared to Baffin Bay and Davis Strait, with higher error along the edges of the study extent and in the most northern areas (Figure 99). The kriged surface is presented in Figure 100.

Property	Value
Number of Observations	16376
Minimum	13.046
Maximum	34.915
Mean	33.929
Median	34.323
Standard Deviation	1.135
Skewness	-3.330
Kurtosis	30.884

Table 39. Distributional properties of Bottom Salinity Average Minimum.

Figure 96. Distribution of Bottom Salinity Average Minimum. Histogram was illustrated using 10 bins. X axis is shown at 10^{-1} ; Y axis is shown at 10^{-4} .

Figure 97. Normal Q-Q plot for data values of Bottom Salinity Average Minimum. Points falling under (top right panel) and over (bottom right panel) the reference line are mapped.

Figure 98. Left panel: Semivariogram of Bottom Salinity Average Minimum. Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 0.144 degrees; number of lags: 12; Parameter: 1.829; Range: 1.150 degrees; Partial Sill: 0.183. Right panel: Scatterplot of predicted values versus observed values for the model of Bottom Salinity Average Minimum.

Table 40. Results of cross-validation of the kriged model for Bottom Salinity Average Minimum.

Prediction Error	Value
Number of Observations	16376
Overall Mean Error	6.730 x 10 ⁻⁴
Root Mean Square Prediction Error	0.105
Standardized Mean	-2.376 x 10 ⁻³
Standardized Root Mean Square Prediction Error	0.816
Average Standard Error	0.114

Figure 99. Prediction standard error surface of Bottom Salinity Average Minimum.

Figure 100. Interpolated prediction surface of Bottom Salinity Average Minimum.

Bottom Salinity Average Maximum

This variable displayed a left-skewed, leptokurtic distribution prior to interpolation (Table 41, Figure 101). The data were lower than predicted by a normal distribution at both tails, while mid-values were slightly higher than the reference line (Figure 102). These areas of under- and over-prediction showed spatial pattern over the region (Figure 102).

The semivariogram showed moderate autocorrelation present in the data (Figure 103). The kriged model showed a good fit between measured and predicted values (Figure 103). Fair performance of the model was indicated by the cross-validation results (Table 42). The error map showed lower error in Hudson Bay compared to Baffin Bay and Davis Strait, with higher error along the edges of the study extent and in the most northern areas (Figure 104). The kriged surface is presented in Figure 105.

Property	Value
Number of Observations	16376
Minimum	18.949
Maximum	35.064
Mean	34.181
Median	34.452
Standard Deviation	0.808
Skewness	-2.785
Kurtosis	29.417

Table 41. Distributional properties of Bottom Salinity Average Maximum.

Figure 101. Distribution of Bottom Salinity Average Maximum. Histogram was illustrated using 10 bins. X axis is shown at 10^{-1} ; Y axis is shown at 10^{-4} .

Figure 102. Normal Q-Q plot for data values of Bottom Salinity Average Maximum. Points falling under (top right panel) and over (bottom right panel) the reference line are mapped.

Figure 103. Left panel: Semivariogram of Bottom Salinity Average Maximum. Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 0.123 degrees; number of lags: 12; Parameter: 2; Range: 0.987 degrees; Partial Sill: 0.060. Right panel: Scatterplot of predicted values versus observed values for the model of Bottom Salinity Average Maximum.

Table	42.	Results	of	cross-validation	of	the	kriged	model	for	Bottom	Salinity	Average
Maxim	num.											

Prediction Error	Value
Number of Observations	16376
Overall Mean Error	7.139 x 10 ⁻⁴
Root Mean Square Prediction Error	0.072
Standardized Mean	6.331 x 10 ⁻³
Standardized Root Mean Square Prediction Error	1.616
Average Standard Error	0.039

Figure 104. Prediction standard error surface of Bottom Salinity Average Maximum.

Figure 105. Interpolated prediction surface of Bottom Salinity Average Maximum.

Bottom Salinity Average Range

This variable displayed a right-skewed, leptokurtic distribution prior to interpolation (Table 43, Figure 106). The data were lower than predicted by a normal distribution at both tails, while mid-values were slightly higher than the reference line (Figure 107). These areas of under- and over-prediction showed spatial pattern over the region (Figure 107).

The semivariogram showed moderate autocorrelation present in the data (Figure 108). The kriged model showed a good fit between measured and predicted values (Figure 108). Fair performance of the model was indicated by the cross-validation results (Table 44). The error map showed lower error in Hudson Bay compared to Baffin Bay and Davis Strait, with higher error along the edges of the study extent and in the most northern areas (Figure 109). The kriged surface is presented in Figure 110.

Property	Value
Number of Observations	16376
Minimum	6.262 x 10 ⁻³
Maximum	7.910
Mean	0.252
Median	0.121
Standard Deviation	0.427
Skewness	5.357
Kurtosis	53.308

Table 43. Distributional properties of Bottom Salinity Average Range.

Figure 106. Distribution of Bottom Salinity Average Range. Histogram was illustrated using 10 bins. Y axis is shown at 10⁻⁴.

Figure 107. Normal Q-Q plot for data values of Bottom Salinity Average Range. Points falling under (top right panel) and over (bottom right panel) the reference line are mapped.

Figure 108. Left panel: Semivariogram of Bottom Salinity Average Range. Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 0.120 degrees; number of lags: 12; Parameter: 1.469; Range: 0.956 degrees; Partial Sill: 0.057. Right panel: Scatterplot of predicted values versus observed values for the model of Bottom Salinity Average Range.

Table 44. Results of cross-validation of the kriged model for Bottom Salinity Average Range.

Prediction Error	Value
Number of Observations	16376
Overall Mean Error	-1.333 x 10 ⁻³
Root Mean Square Prediction Error	0.059
Standardized Mean	-7.820 x 10 ⁻³
Standardized Root Mean Square Prediction Error	0.653
Average Standard Error	0.083

Figure 109. Prediction standard error surface of Bottom Salinity Average Range.

Figure 110. Interpolated prediction surface of Bottom Salinity Average Range.

Surface Salinity Mean

This variable displayed a left-skewed, leptokurtic distribution prior to interpolation (Table 45, Figure 111). The data were lower than predicted by a normal distribution at both tails, while mid-values were slightly higher than the reference line (Figure 112). These areas of under- and over-prediction showed spatial pattern over the region (Figure 112).

The semivariogram showed moderate autocorrelation present in the data (Figure 113). The kriged model showed a very good fit between measured and predicted values (Figure 113). Good performance of the model was indicated by the cross-validation results (Table 46). The error map showed lower error in Hudson Bay compared to Baffin Bay and Davis Strait, with higher error along the edges of the study extent and in the most northern areas (Figure 114). The kriged surface is presented in Figure 115.

Property	Value
Number of Observations	16491
Minimum	14.316
Maximum	34.891
Mean	32.255
Median	32.247
Standard Deviation	1.678
Skewness	-1.202
Kurtosis	8.377

Table 45. Distributional properties of Surface Salinity Mean.

Figure 111. Distribution of Surface Salinity Mean. Histogram was illustrated using 10 bins. X axis is shown at 10^{-1} ; Y axis is shown at 10^{-3} .

Figure 112. Normal Q-Q plot for data values of Surface Salinity Mean. Points falling under (top right panel) and over (bottom right panel) the reference line are mapped.

Figure 113. Left panel: Semivariogram of Surface Salinity Mean. Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 0.120 degrees; number of lags: 12; Parameter: 2; Range: 0.961 degrees; Partial Sill: 0.174. Right panel: Scatterplot of predicted values versus observed values for the model of Surface Salinity Mean.

Table 46. Results of cross-validation of the kriged model for Surface Salinity Mean.

Prediction Error	Value
Number of Observations	16491
Overall Mean Error	8.044 x 10 ⁻⁴
Root Mean Square Prediction Error	0.035
Standardized Mean	0.018
Standardized Root Mean Square Prediction Error	1.103
Average Standard Error	0.022

Figure 114. Prediction standard error surface of Surface Salinity Mean.

Figure 115. Interpolated prediction surface of Surface Salinity Mean.

Surface Salinity Minimum

This variable displayed a left-skewed, leptokurtic distribution prior to interpolation (Table 47, Figure 116). The data were lower than predicted by a normal distribution at both tails, while mid-values were slightly higher than the reference line (Figure 117). These areas of under- and over-prediction showed little spatial pattern over the region (Figure 117).

The semivariogram showed moderate autocorrelation present in the data (Figure 118). The kriged model showed a very good fit between measured and predicted values (Figure 118). Fair performance of the model was indicated by the cross-validation results (Table 48). Variability in the predictions was underestimated, as indicated by the Standardized Root-Mean-Square Error greater than 1. The error map showed lower error in Hudson Bay compared to Baffin Bay and Davis Strait, with higher error along the edges of the study extent and in the most northern areas (Figure 119). The kriged surface is presented in Figure 120.

Property	Value
Number of Observations	16491
Minimum	9.305
Maximum	34.230
Mean	29.570
Median	29.246
Standard Deviation	2.746
Skewness	-0.561
Kurtosis	4.730

Table 47. Distributional properties of Surface Salinity Minimum.

Figure 116. Distribution of Surface Salinity Minimum. Histogram was illustrated using 10 bins. X axis is shown at 10^{-1} ; Y axis is shown at 10^{-3} .

Figure 117. Normal Q-Q plot for data values of Surface Salinity Minimum. Points falling under (top right panel) and over (bottom right panel) the reference line are mapped.

Figure 118. Left panel: Semivariogram of Surface Salinity Minimum. Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 0.192 degrees; number of lags: 12; Parameter: 2; Range: 1.537 degrees; Partial Sill: 0.913. Right panel: Scatterplot of predicted values versus observed values for the model of Surface Salinity Minimum.

Table 48. Results of cross-validation of the kriged model for Surface Salinity Minimum.

Prediction Error	Value
Number of Observations	16491
Overall Mean Error	8.114 x 10 ⁻⁴
Root Mean Square Prediction Error	0.094
Standardized Mean	8.928 x 10 ⁻³
Standardized Root Mean Square Prediction Error	2.409
Average Standard Error	0.038

Figure 119. Prediction standard error surface of Surface Salinity Minimum.

Figure 120. Interpolated prediction surface of Surface Salinity Minimum.

Surface Salinity Maximum

This variable displayed a left-skewed, leptokurtic distribution prior to interpolation (Table 49, Figure 121). The data were lower than predicted by a normal distribution at both tails, while mid-values were slightly higher than the reference line (Figure 122). These areas of under- and over-prediction showed spatial pattern over the region (Figure 122).

The semivariogram showed moderate autocorrelation present in the data (Figure 123). The kriged model showed a very good fit between measured and predicted values (Figure 123). Fair performance of the model was indicated by the cross-validation results (Table 50). Variability in the predictions was underestimated, as indicated by the Standardized Root-Mean-Square Error greater than 1. The error map showed lower error in Hudson Bay compared to Baffin Bay and Davis Strait, with higher error along the edges of the study extent and in the most northern areas (Figure 124). The kriged surface is presented in Figure 125.

Property	Value
Number of Observations	16491
Minimum	24.206
Maximum	35.425
Mean	33.611
Median	33.635
Standard Deviation	1.013
Skewness	-0.992
Kurtosis	6.043

Table 49. Distributional properties of Surface Salinity Maximum.

Figure 121. Distribution of Surface Salinity Maximum. Histogram was illustrated using 10 bins. X axis is shown at 10^{-1} ; Y axis is shown at 10^{-3} .

Figure 122. Normal Q-Q plot for data values of Surface Salinity Maximum. Points falling under (top right panel) and over (bottom right panel) the reference line are mapped.

Figure 123. Left panel: Semivariogram of Surface Salinity Maximum. Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 0.125 degrees; number of lags: 12; Parameter: 2; Range: 0.997 degrees; Partial Sill: 0.058. Right panel: Scatterplot of predicted values versus observed values for the model of Surface Salinity Maximum.

Table 50. Results of cross-validation of the kriged model for Surface Salinity Maximum.

Prediction Error	Value
Number of Observations	16491
Overall Mean Error	3.467 x 10 ⁻⁴
Root Mean Square Prediction Error	0.045
Standardized Mean	0.011
Standardized Root Mean Square Prediction Error	2.809
Average Standard Error	0.013

Figure 124. Prediction standard error surface of Surface Salinity Maximum.

Figure 125. Interpolated prediction surface of Surface Salinity Maximum.

Surface Salinity Range

This variable displayed a right-skewed, leptokurtic distribution prior to interpolation (Table 51, Figure 126). The data were higher than predicted by a normal distribution at both tails, while mid-values were slightly lower than the reference line (Figure 127). These areas of under- and over-prediction showed spatial pattern over the region (Figure 127).

The semivariogram showed moderate autocorrelation present in the data (Figure 128). The kriged model showed a very good fit between measured and predicted values (Figure 128). Fair performance of the model was indicated by the cross-validation results (Table 52). Variability in the predictions was underestimated, as indicated by the Standardized Root-Mean-Square Error greater than 1. The error map showed lower error in Hudson Bay compared to Baffin Bay and Davis Strait, with higher error along the edges of the study extent and in the most northern areas (Figure 129). The kriged surface is presented in Figure 130.

Property	Value
Number of Observations	16491
Minimum	0.687
Maximum	18.245
Mean	4.041
Median	4.164
Standard Deviation	1.989
Skewness	0.997
Kurtosis	6.330

Table 51. Distributional properties of Surface Salinity Range.

Figure 126. Distribution of Surface Salinity Range. Histogram was illustrated using 10 bins. X axis is shown at 10^{-1} ; Y axis is shown at 10^{-3} .

Figure 127. Normal Q-Q plot for data values of Surface Salinity Range. Points falling under (top right panel) and over (bottom right panel) the reference line are mapped.

Figure 128. Left panel: Semivariogram of Surface Salinity Range. Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 0.202 degrees; number of lags: 12; Parameter: 2; Range: 1.612 degrees; Partial Sill: 0.807. Right panel: Scatterplot of predicted values versus observed values for the model of Surface Salinity Range.

Table 52. Results of cross-validation of the kriged model for Surface Salinity Range.

Prediction Error	Value
Number of Observations	16491
Overall Mean Error	-5.052 x 10 ⁻⁴
Root Mean Square Prediction Error	0.095
Standardized Mean	-4.803 x 10 ⁻³
Standardized Root Mean Square Prediction Error	2.664
Average Standard Error	0.035

Figure 129. Prediction standard error surface of Surface Salinity Range.

Figure 130. Interpolated prediction surface of Surface Salinity Range.

Surface Salinity Average Minimum

This variable displayed a left-skewed, leptokurtic distribution prior to interpolation (Table 53, Figure 131). The data were lower than predicted by a normal distribution at both tails, while mid-values were slightly higher than the reference line (Figure 132). These areas of under- and over-prediction showed spatial pattern over the region (Figure 132).

The semivariogram showed moderate autocorrelation present in the data (Figure 133). The kriged model showed a very good fit between measured and predicted values (Figure 133). Good performance of the model was indicated by the cross-validation results (Table 54). The error map showed lower error in Hudson Bay compared to Baffin Bay and Davis Strait, with higher error along the edges of the study extent and in the most northern areas (Figure 134). The kriged surface is presented in Figure 135.

Property	Value
Number of Observations	16491
Minimum	10.599
Maximum	34.541
Mean	30.792
Median	30.580
Standard Deviation	2.409
Skewness	-0.825
Kurtosis	5.842

Table 53. Distributional properties of Surface Salinity Average Minimum.

Figure 131. Distribution of Surface Salinity Average Minimum. Histogram was illustrated using 10 bins. X axis is shown at 10^{-1} ; Y axis is shown at 10^{-3} .

Figure 132. Normal Q-Q plot for data values of Surface Salinity Average Minimum. Points falling under (top right panel) and over (bottom right panel) the reference line are mapped.

Figure 133. Left panel: Semivariogram of Surface Salinity Average Minimum. Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 0.157 degrees; number of lags: 12; Parameter: 2; Range: 1.258 degrees; Partial Sill: 0.519. Right panel: Scatterplot of predicted values versus observed values for the model of Surface Salinity Average Minimum.

Table	54.	Results	of	cross-validation	of	the	kriged	model	for	Surface	Salinity	Average
Minim	um.											

Prediction Error	Value
Number of Observations	16491
Overall Mean Error	9.942 x 10 ⁻⁴
Root Mean Square Prediction Error	0.047
Standardized Mean	0.015
Standardized Root Mean Square Prediction Error	1.147
Average Standard Error	0.032

Figure 134. Prediction standard error surface of Surface Salinity Average Minimum.

Surface Salinity Average Maximum

This variable displayed a left-skewed, leptokurtic distribution prior to interpolation (Table 55, Figure 136). The data were lower than predicted by a normal distribution at both tails, while mid-values were slightly higher than the reference line (Figure 137). These areas of under- and over-prediction showed spatial pattern over the region (Figure 137).

The semivariogram showed weak autocorrelation present in the data (Figure 138). The kriged model showed a very good fit between measured and predicted values (Figure 138). Good performance of the model was indicated by the cross-validation results (Table 56). The error map showed lower error in Hudson Bay compared to Baffin Bay and Davis Strait, with higher error along the edges of the study extent and in the most northern areas (Figure 139). The kriged surface is presented in Figure 140.

Property	Value
Number of Observations	16491
Minimum	18.067
Maximum	35.173
Mean	33.159
Median	33.151
Standard Deviation	1.258
Skewness	-1.272
Kurtosis	9.542

Table 55. Distributional properties of Surface Salinity Average Maximum.

Figure 136. Distribution of Surface Salinity Average Maximum. Histogram was illustrated using 10 bins. X axis is shown at 10^{-1} ; Y axis is shown at 10^{-3} .

Figure 137. Normal Q-Q plot for data values of Surface Salinity Average Maximum. Points falling under (top right panel) and over (bottom right panel) the reference line are mapped.

Figure 138. Left panel: Semivariogram of Surface Salinity Average Maximum. Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 0.100 degrees; number of lags: 12; Parameter: 2; Range: 0.798 degrees; Partial Sill: 0.064. Right panel: Scatterplot of predicted values versus observed values for the model of Surface Salinity Average Maximum.

Table	56.	Results	of	cross-validation	of	the	kriged	model	for	Surface	Salinity	Average
Maxin	num.											

Prediction Error	Value
Number of Observations	16491
Overall Mean Error	3.744 x 10 ⁻⁴
Root Mean Square Prediction Error	0.030
Standardized Mean	$7.390 \ge 10^{-3}$
Standardized Root Mean Square Prediction Error	1.202
Average Standard Error	0.017

Figure 139. Prediction standard error surface of Surface Salinity Average Maximum.

Figure 140. Interpolated prediction surface of Surface Salinity Average Maximum.

Surface Salinity Average Range

This variable displayed a right-skewed, leptokurtic distribution prior to interpolation (Table 57, Figure 141). The data were higher than predicted by a normal distribution at both tails, while mid-values were slightly lower than the reference line (Figure 142). These areas of under- and over-prediction showed spatial pattern over the region (Figure 142).

The semivariogram showed moderate autocorrelation present in the data (Figure 143). The kriged model showed a very good fit between measured and predicted values (Figure 143). Good performance of the model was indicated by the cross-validation results (Table 58). The error map showed lower error in Hudson Bay compared to Baffin Bay and Davis Strait, with higher error along the edges of the study extent and in the most northern areas (Figure 144). The kriged surface is presented in Figure 145.

Property	Value
Number of Observations	16491
Minimum	0.292
Maximum	14.429
Mean	2.367
Median	2.314
Standard Deviation	1.390
Skewness	1.492
Kurtosis	9.236

Table 57. Distributional properties of Surface Salinity Average Range.

Figure 141. Distribution of Surface Salinity Average Range. Histogram was illustrated using 10 bins. X axis is shown at 10^{-1} ; Y axis is shown at 10^{-3} .

Figure 142. Normal Q-Q plot for data values of Surface Salinity Average Range. Points falling under (top right panel) and over (bottom right panel) the reference line are mapped.

Figure 143. Left panel: Semivariogram of Surface Salinity Average Range. Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 0.182 degrees; number of lags: 12; Parameter: 2; Range: 1.458 degrees; Partial Sill: 0.391. Right panel: Scatterplot of predicted values versus observed values for the model of Surface Salinity Average Range.

Table 58. Results of cross-validation of the kriged model for Surface Salinity Average Range.

Prediction Error	Value
Number of Observations	16491
Overall Mean Error	-5.955 x 10 ⁻⁴
Root Mean Square Prediction Error	0.040
Standardized Mean	-9.766 x 10 ⁻³
Standardized Root Mean Square Prediction Error	1.280
Average Standard Error	0.026

Figure 144. Prediction standard error surface of Surface Salinity Average Range.

Figure 145. Interpolated prediction surface of Surface Salinity Average Range.

Current Speed

Filter- and suspension-feeding fauna such as corals and sponges are often associated with areas of higher near-bottom current regimes (Genin et al., 1986; Ginn et al., 2000; Klitgaard et al., 1997). Current speed determines the rate at which food particles reach benthic species through both vertical and horizontal transmission. Excurrent flow rates through glass sponges in the Straight of Georgia were strongly and positively correlated with bottom currents (Leys et al., 2011), which provided a large proportion of the overall food intake in the sponges. Mass sponge occurrences off the Faroe Islands were found to be associated with the shelf break or areas where the bottom slope matches the slope required for the propagation of internal tidal waves (Kitgaard et al., 1997). In these regions, bottom currents were elevated, thus enhancing resuspension and transportation of particles.

Bottom Current Mean

This variable displayed a right-skewed, leptokurtic distribution prior to interpolation (Table 59, Figure 146). The data were higher than predicted by a normal distribution at both tails, while mid-values were slightly lower than the reference line (Figure 147). These areas of under- and over-prediction showed little spatial pattern over the region (Figure 147).

The semivariogram showed moderate autocorrelation present in the data (Figure 148). The kriged model showed a poor fit between measured and predicted values (Figure 148). Very good performance of the model was indicated by the cross-validation results (Table 60). The error map showed lower error in Hudson Bay compared to Baffin Bay and Davis Strait, with higher error along the edges of the study extent and in the most northern areas (Figure 149). The kriged surface is presented in Figure 150.

Property	Value
Number of Observations	16257
Minimum	3.050 x 10 ⁻⁴
Maximum	0.266
Mean	0.024
Median	0.017
Standard Deviation	0.023
Skewness	2.720
Kurtosis	15.291

Table 59. Distributional properties of Bottom Current Mean (m s⁻¹).

Figure 146. Distribution of Bottom Current Mean (m s⁻¹). Histogram was illustrated using 10 bins. X axis is shown at 10; Y axis is shown at 10^{-4} .

Figure 147. Normal Q-Q plot for data values of Bottom Current Mean (m s⁻¹). Points falling under (top right panel) and over (bottom right panel) the reference line are mapped.

Figure 148. Left panel: Semivariogram of Bottom Current Mean (m s⁻¹). Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 0.151 degrees; number of lags: 12; Parameter: 1.796; Range: 1.207 degrees; Partial Sill: 1.573×10^{-4} . Right panel: Scatterplot of predicted values versus observed values for the model of Bottom Current Mean (m s⁻¹).

Prediction Error	alue
Number of Observations1	6257
Overall Mean Error 4.078 x	x 10 ⁻⁶
Root Mean Square Prediction Error	0.010
Standardized Mean 3.426	x 10 ⁻⁴
Standardized Root Mean Square Prediction Error	1.003
Average Standard Error	0.010

Table 60. Results of cross-validation of the kriged model for Bottom Current Mean (m s⁻¹).

Figure 149. Prediction standard error surface of Bottom Current Mean (m s⁻¹).

Figure 150. Interpolated prediction surface of Bottom Current Mean (m s⁻¹).

Bottom Current Minimum

This variable displayed a right-skewed, extremely leptokurtic distribution prior to interpolation and outlying data in the upper range (Table 61, Figure 151). The data were higher than predicted by a normal distribution at both tails, while mid-values were lower than the reference line (Figure 152). These areas of under- and over-prediction showed spatial pattern over the region (Figure 152).

The semivariogram showed autocorrelation present in the data (Figure 153). The kriged model showed a poor fit between measured and predicted values (Figure 153). Good performance of the model was indicated by the cross-validation results (Table 62). The error map showed lower error in Hudson Bay compared to Baffin Bay and Davis Strait, and higher error along the edges of the study extent and in the most northern areas (Figure 154). The kriged surface is presented in Figure 155.

Property	Value
Number of Observations	16257
Minimum	$1.000 \ge 10^{-6}$
Maximum	0.149
Mean	2.482 x 10 ⁻³
Median	6.250 x 10 ⁻⁴
Standard Deviation	7.868 x 10 ⁻³
Skewness	7.546
Kurtosis	77.951

Table 61. Distributional properties of Bottom Current Minimum (m s⁻¹).

Figure 151. Distribution of Bottom Current Minimum (m s⁻¹). Histogram was illustrated using 10 bins. X axis is shown at 10; Y axis is shown at 10^{-4} .

Figure 152. Normal Q-Q plot for data values of Bottom Current Minimum (m s^{-1}). Points falling under (top right panel) and over (bottom right panel) the reference line are mapped.

Figure 153. Left panel: Semivariogram of Bottom Current Minimum (m s⁻¹). Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 0.574 degrees; number of lags: 12; Parameter: 0.731; Range: 4.592 degrees; Partial Sill: 5.616 x 10⁻⁵. Right panel: Scatterplot of predicted values versus observed values for the model of Bottom Current Minimum (m s⁻¹).

Prediction Error	Value
Number of Observations	16257
Overall Mean Error	5.008 x 10 ⁻⁶
Root Mean Square Prediction Error	4.011 x 10 ⁻³
Standardized Mean	7.523 x 10 ⁻⁴
Standardized Root Mean Square Prediction Error	1.078
Average Standard Error	3.633 x 10 ⁻³

Table 62. Results of cross-validation of the kriged model for Bottom Current Minimum (m s⁻¹).

Figure 154. Prediction standard error surface of Bottom Current Minimum (m s⁻¹).

Figure 155. Interpolated prediction surface of Bottom Current Minimum (m s⁻¹).

Bottom Current Maximum

This variable displayed a right-skewed, leptokurtic distribution prior to interpolation and outlying data in the upper range (Table 63, Figure 156). The data were higher than predicted by a normal distribution at both tails, while mid-values were lower than the reference line (Figure 157). These areas of under- and over-prediction showed little spatial pattern over the region (Figure 157).

The semivariogram showed moderate autocorrelation present in the data (Figure 158). The kriged model showed a poor fit between measured and predicted values (Figure 158). Very good performance of the model was indicated by the cross-validation results (Table 64). The error map showed lower error in Hudson Bay compared to Baffin Bay and Davis Strait, and higher error along the edges of the study extent (Figure 159). The kriged surface is presented in Figure 160.

Property	Value
Number of Observations	16257
Minimum	$1.290 \ge 10^{-3}$
Maximum	0.589
Mean	0.077
Median	0.062
Standard Deviation	0.056
Skewness	1.419
Kurtosis	5.864

Table 63. Distributional properties of Bottom Current Maximum (m s⁻¹).

Figure 156. Distribution of Bottom Current Maximum (m s⁻¹). Histogram was illustrated using 10 bins. X axis is shown at 10; Y axis is shown at 10^{-3} .

Figure 157. Normal Q-Q plot for data values of Bottom Current Maximum (m s⁻¹). Points falling under (top right panel) and over (bottom right panel) the reference line are mapped.

Figure 158. Left panel: Semivariogram of Bottom Current Maximum (m s⁻¹). Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 2.754 degrees; number of lags: 12; Parameter: 0.734; Range: 22.036 degrees; Partial Sill: 3.088×10^{-3} . Right panel: Scatterplot of predicted values versus observed values for the model of Bottom Current Maximum (m s⁻¹).

Гab	le 64.	Results	of	cross-validation	ı of	the	kriged	l mode	el f	or I	Bottom	Current	Maximum	(m s ⁻¹	').
-----	--------	---------	----	------------------	------	-----	--------	--------	------	------	--------	---------	---------	--------------------	-----

Prediction Error	Value
Number of Observations	16257
Overall Mean Error	-9.683 x 10 ⁻⁶
Root Mean Square Prediction Error	0.025
Standardized Mean	-1.818 x 10 ⁻⁴
Standardized Root Mean Square Prediction Error	1.007
Average Standard Error	0.025

Figure 159. Prediction standard error surface of Bottom Current Maximum (m s⁻¹).

Figure 160. Interpolated prediction surface of Bottom Current Maximum (m s⁻¹).

Bottom Current Range

This variable displayed a right-skewed, leptokurtic distribution prior to interpolation and outlying data in the upper range (Table 65, Figure 161). The data were higher than predicted by a normal distribution at both tails, while mid-values were lower than the reference line (Figure 162). These areas of under- and over-prediction showed little spatial pattern over the region (Figure 162).

The semivariogram showed moderate autocorrelation present in the data (Figure 163). The kriged model showed a poor fit between measured and predicted values (Figure 163). Very good performance of the model was indicated by the cross-validation results (Table 66). The error map showed lower error in Hudson Bay compared to Baffin Bay and Davis Strait, and higher error along the edges of the study extent (Figure 164). The kriged surface is presented in Figure 165.

Property	Value
Number of Observations	16257
Minimum	1.264 x 10 ⁻³
Maximum	0.517
Mean	0.075
Median	0.061
Standard Deviation	0.053
Skewness	1.328
Kurtosis	5.262

Table 65. Distributional properties of Bottom Current Range (m s⁻¹).

Figure 161. Distribution of Bottom Current Range (m s⁻¹). Histogram was illustrated using 10 bins. X axis is shown at 10; Y axis is shown at 10^{-3} .

Figure 162. Normal Q-Q plot for data values of Bottom Current Range (m s^{-1}). Points falling under (top right panel) and over (bottom right panel) the reference line are mapped.

Figure 163. Left panel: Semivariogram of Bottom Current Range (m s⁻¹). Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 2.599 degrees; number of lags: 12; Parameter: 0.708; Range: 20.792 degrees; Partial Sill: 2.834 x 10^{-3} . Right panel: Scatterplot of predicted values versus observed values for the model of Bottom Current Range (m s⁻¹).

Table 66. Results of cross-validation of the kriged model for Bottom Current Range (m s⁻¹).

Prediction Error	Value
Number of Observations	16257
Overall Mean Error	-1.445 x 10 ⁻⁵
Root Mean Square Prediction Error	0.024
Standardized Mean	-2.843 x 10 ⁻⁴
Standardized Root Mean Square Prediction Error	1.045
Average Standard Error	0.023

Figure 164. Prediction standard error surface of Bottom Current Range (m s⁻¹).

Figure 165. Interpolated prediction surface of Bottom Current Range (m s⁻¹).

Bottom Current Average Minimum

This variable displayed a right-skewed, extremely leptokurtic distribution prior to interpolation and outlying data in the upper range (Table 67, Figure 166). The data were higher than predicted by a normal distribution at both tails, while mid-values were lower than the reference line (Figure 167). These areas of under- and over-prediction showed spatial pattern over the region (Figure 167).

The semivariogram showed moderate autocorrelation present in the data (Figure 168). The kriged model showed a poor fit between measured and predicted values (Figure 168). Very good performance of the model was indicated by the cross-validation results (Table 68). The error map showed lower error in Hudson Bay compared to Baffin Bay and Davis Strait, and higher error along the edges of the study extent (Figure 169). The kriged surface is presented in Figure 170.

Property	Value
Number of Observations	16257
Minimum	2.900 x 10 ⁻⁵
Maximum	0.196
Mean	8.233 x 10 ⁻³
Median	3.974 x 10 ⁻³
Standard Deviation	0.014
Skewness	4.750
Kurtosis	34.270

Table 67. Distributional properties of Bottom Current Average Minimum (m s⁻¹).

Figure 166. Distribution of Bottom Current Average Minimum (m s⁻¹). Histogram was illustrated using 10 bins. X axis is shown at 10; Y axis is shown at 10⁻⁴.

Figure 167. Normal Q-Q plot for data values of Bottom Current Average Minimum (m s⁻¹). Points falling under (top right panel) and over (bottom right panel) the reference line are mapped.

Figure 168. Left panel: Semivariogram of Bottom Current Average Minimum (m s⁻¹). Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 0.159 degrees; number of lags: 12; Parameter: 1.696; Range: 1.273 degrees; Partial Sill: 8.449 x 10^{-5} . Right panel: Scatterplot of predicted values versus observed values for the model of Bottom Current Average Minimum (m s⁻¹).

'	Table	68.	Results	of	cross-v	alidation	of th	e kriged	l model	for	Bottom	Current	Average	Minimum
($(m s^{-1})$).						C					C C	

Prediction Error	Value
Number of Observations	16257
Overall Mean Error	4.524 x 10 ⁻⁶
Root Mean Square Prediction Error	6.199 x 10 ⁻³
Standardized Mean	4.946 x 10 ⁻⁴
Standardized Root Mean Square Prediction Error	1.013
Average Standard Error	6.038 x 10 ⁻³

Figure 169. Prediction standard error surface of Bottom Current Average Minimum (m s⁻¹).

Figure 170. Interpolated prediction surface of Bottom Current Average Minimum (m s⁻¹).

Bottom Current Average Maximum

This variable displayed a right-skewed, leptokurtic distribution prior to interpolation (Table 69, Figure 171). The data were higher than predicted by a normal distribution at both tails, while mid-values were lower than the reference line (Figure 172). These areas of under- and over-prediction showed little spatial pattern over the region (Figure 172).

The semivariogram showed moderate autocorrelation present in the data (Figure 173). The kriged model showed a poor fit between measured and predicted values (Figure 173). Very good performance of the model was indicated by the cross-validation results (Table 70). The error map showed lower error in Hudson Bay compared to Baffin Bay and Davis Strait, and higher error along the edges of the study extent (Figure 174). The kriged surface is presented in Figure 175.

Property	Value
Number of Observations	16257
Minimum	7.020 x 10 ⁻⁴
Maximum	0.390
Mean	0.048
Median	0.037
Standard Deviation	0.038
Skewness	1.750
Kurtosis	8.180

Table 69. Distributional properties of Bottom Current Average Maximum (m s⁻¹).

Figure 171. Distribution of Bottom Current Average Maximum (m s⁻¹). Histogram was illustrated using 10 bins. X axis is shown at 10; Y axis is shown at 10^{-3} .

Figure 172. Normal Q-Q plot for data values of Bottom Current Average Maximum (m s⁻¹). Points falling under (top right panel) and over (bottom right panel) the reference line are mapped.

Figure 173. Left panel: Semivariogram of Bottom Current Average Maximum (m s⁻¹). Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 0.125 degrees; number of lags: 12; Parameter: 1.933; Range: 0.998 degrees; Partial Sill: 3.576 x 10⁻⁴. Right panel: Scatterplot of predicted values versus observed values for the model of Bottom Current Average Maximum (m s⁻¹).

Table 70. Results of cross-validation of the kriged model for Bottom Current Average Maximum $(m s^{-1})$.

Prediction Error	Value
Number of Observations	16257
Overall Mean Error	3.966 x 10 ⁻⁶
Root Mean Square Prediction Error	0.017
Standardized Mean	3.576 x 10 ⁻⁴
Standardized Root Mean Square Prediction Error	1.010
Average Standard Error	0.017

Figure 174. Prediction standard error surface of Bottom Current Average Maximum (m s⁻¹).

Figure 175. Interpolated prediction surface of Bottom Current Average Maximum (m s⁻¹).

Bottom Current Average Range

This variable displayed a right-skewed, leptokurtic distribution prior to interpolation (Table 71, Figure 176). The data were higher than predicted by a normal distribution at both tails, while mid-values were lower than the reference line (Figure 177). These areas of under- and over-prediction showed little spatial pattern over the region (Figure 177).

The semivariogram showed moderate autocorrelation present in the data (Figure 178). The kriged model showed a poor fit between measured and predicted values (Figure 178). Very good performance of the model was indicated by the cross-validation results (Table 72). The error map showed lower error in Hudson Bay compared to Baffin Bay and Davis Strait, and higher error along the edges of the study extent (Figure 179). The kriged surface is presented in Figure 180.

Property	Value
Number of Observations	16257
Minimum	5.940 x 10 ⁻⁴
Maximum	0.266
Mean	0.040
Median	0.032
Standard Deviation	0.029
Skewness	1.408
Kurtosis	5.830

Table 71. Distributional properties of Bottom Current Average Range (m s⁻¹).

Figure 176. Distribution of Bottom Current Average Range (m s⁻¹). Histogram was illustrated using 10 bins. X axis is shown at 10; Y axis is shown at 10⁻³.

Figure 177. Normal Q-Q plot for data values of Bottom Current Average Range (m s⁻¹). Points falling under (top right panel) and over (bottom right panel) the reference line are mapped.

Figure 178. Left panel: Semivariogram of Bottom Current Average Range (m s⁻¹). Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 2.889 degrees; number of lags: 12; Parameter: 0.734; Range: 23.108 degrees; Partial Sill: 8.573 x 10^{-4} . Right panel: Scatterplot of predicted values versus observed values for the model of Bottom Current Average Range (m s⁻¹).

Table 72. Results of cross-validation of the kriged model for Bottom Current Average Range (m s^{-1}).

Prediction Error	Value
Number of Observations	16257
Overall Mean Error	-7.277 x 10 ⁻⁶
Root Mean Square Prediction Error	0.013
Standardized Mean	-3.011 x 10 ⁻⁴
Standardized Root Mean Square Prediction Error	0.967
Average Standard Error	0.013

Figure 179. Prediction standard error surface of Bottom Current Average Range (m s⁻¹).

Figure 180. Interpolated prediction surface of Bottom Current Average Range (m s⁻¹).

Surface Current Mean

This variable displayed a right-skewed, leptokurtic distribution prior to interpolation (Table 73, Figure 181). The data were higher than predicted by a normal distribution at both tails, while mid-values were lower than the reference line (Figure 182). These areas of under- and over-prediction showed spatial pattern over the region (Figure 182).

The semivariogram showed moderate autocorrelation present in the data (Figure 183). The kriged model showed a good fit between measured and predicted values (Figure 183). Fair performance of the model was indicated by the cross-validation results (Table 74). The error map showed lower error in Hudson Bay compared to Baffin Bay and Davis Strait, and higher error along the edges of the study extent (Figure 184). The kriged surface is presented in Figure 185.

Property	Value
Number of Observations	16376
Minimum	7.070 x 10 ⁻³
Maximum	0.636
Mean	0.071
Median	0.057
Standard Deviation	0.054
Skewness	2.943
Kurtosis	16.720

Table 73. Distributional properties of Surface Current Mean (m s⁻¹).

Figure 181. Distribution of Surface Current Mean (m s⁻¹). Histogram was illustrated using 10 bins. X axis is shown at 10; Y axis is shown at 10^{-4} .

Figure 182. Normal Q-Q plot for data values of Surface Current Mean (m s^{-1}). Points falling under (top right panel) and over (bottom right panel) the reference line are mapped.

Figure 183. Left panel: Semivariogram of Surface Current Mean (m s⁻¹). Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 0.128 degrees; number of lags: 12; Parameter: 2; Range: 1.024 degrees; Partial Sill: 8.844 x 10^{-4} . Right panel: Scatterplot of predicted values versus observed values for the model of Surface Current Mean (m s⁻¹).

Table 74. Results of cross-validation of the kriged model for Surface Current Mean (m s⁻¹).

Prediction Error	Value
Number of Observations	16376
Overall Mean Error	-8.683 x 10 ⁻⁶
Root Mean Square Prediction Error	7.406 x 10 ⁻³
Standardized Mean	4.377 x 10 ⁻⁵
Standardized Root Mean Square Prediction Error	1.325
Average Standard Error	5.377 x 10 ⁻³

Figure 184. Prediction standard error surface of Surface Current Mean (m s⁻¹).

Figure 185. Interpolated prediction surface of Surface Current Mean (m s⁻¹).

Surface Current Minimum

This variable displayed a right-skewed, extremely leptokurtic distribution prior to interpolation and outlying data in the upper range (Table 75, Figure 186). The data were higher than predicted by a normal distribution at both tails, while mid-values were lower than the reference line (Figure 187). These areas of under- and over-prediction showed little spatial pattern over the region (Figure 187).

The semivariogram showed moderate autocorrelation present in the data (Figure 188). Aside from a few outliers, the kriged model showed a good fit between measured and predicted values (Figure 188). Fair performance of the model was indicated by the cross-validation results (Table 76). The error map showed lower error in Hudson Bay compared to Baffin Bay and Davis Strait, and higher error along the edges of the study extent (Figure 189). The kriged surface is presented in Figure 190.

Property	Value
Number of Observations	16376
Minimum	2.100 x 10 ⁻⁵
Maximum	0.374
Mean	8.243 x 10 ⁻³
Median	3.214 x 10 ⁻³
Standard Deviation	0.019
Skewness	6.356
Kurtosis	60.916

Table 75. Distributional properties of Surface Current Minimum (m s⁻¹).

Figure 186. Distribution of Surface Current Minimum (m s⁻¹). Histogram was illustrated using 10 bins. X axis is shown at 10; Y axis is shown at 10^{-4} .

Figure 187. Normal Q-Q plot for data values of Surface Current Minimum (m s⁻¹). Points falling under (top right panel) and over (bottom right panel) the reference line are mapped.

Figure 188. Left panel: Semivariogram of Surface Current Minimum (m s⁻¹). Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 0.152 degrees; number of lags: 12; Parameter: 1.436; Range: 1.219 degrees; Partial Sill: 2.006 x 10⁻⁴. Right panel: Scatterplot of predicted values versus observed values for the model of Surface Current Minimum (m s⁻¹).

Tabl	e 7	76.	Resul	ts o	f cross-va	lidation	n of tl	he kriged	model	for	Surface	Current	Minimum	(m s ⁻¹).
------	-----	-----	-------	------	------------	----------	---------	-----------	-------	-----	---------	---------	---------	--------------------	----

Prediction Error	Value
Number of Observations	16376
Overall Mean Error	-3.017 x 10 ⁻⁶
Root Mean Square Prediction Error	5.960x 10 ⁻³
Standardized Mean	-1.823 x 10 ⁻⁴
Standardized Root Mean Square Prediction Error	1.343
Average Standard Error	4.296×10^{-3}
Number of Observations Overall Mean Error Root Mean Square Prediction Error Standardized Mean Standardized Root Mean Square Prediction Error Average Standard Error	16376 -3.017 x 10 ⁻⁶ 5.960x 10 ⁻³ -1.823 x 10 ⁻⁴ 1.343 4.296 x 10 ⁻³

Figure 189. Prediction standard error surface of Surface Current Minimum (m s⁻¹).

Figure 190. Interpolated prediction surface of Surface Current Minimum (m s⁻¹).

Surface Current Maximum

This variable displayed a right-skewed, leptokurtic distribution prior to interpolation (Table 77, Figure 191). The data were higher than predicted by a normal distribution at both tails, while mid-values were slightly lower than the reference line (Figure 192). These areas of under- and over-prediction showed spatial pattern over the region (Figure 192).

The semivariogram showed autocorrelation present in the data (Figure 193). The kriged model showed a good fit between measured and predicted values (Figure 193). Very good performance of the model was indicated by the cross-validation results (Table 78). The error map showed lower error in Hudson Bay compared to Baffin Bay and Davis Strait, with higher error along the edges of the study extent and in the most northern areas (Figure 194). The kriged surface is presented in Figure 195.

Property	Value
Number of Observations	16376
Minimum	0.029
Maximum	0.999
Mean	0.206
Median	0.189
Standard Deviation	0.105
Skewness	1.520
Kurtosis	7.387

Table 77. Distributional properties of Surface Current Maximum (m s⁻¹).

Figure 191. Distribution of Surface Current Maximum (m s⁻¹). Histogram was illustrated using 10 bins. X axis is shown at 10; Y axis is shown at 10⁻³.

Figure 192. Normal Q-Q plot for data values of Surface Current Maximum (m s⁻¹). Points falling under (top right panel) and over (bottom right panel) the reference line are mapped.

Figure 193. Left panel: Semivariogram of Surface Current Maximum (m s⁻¹). Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 0.109 degrees; number of lags: 12; Parameter: 2; Range: 0.870 degrees; Partial Sill: 3.199 x 10^{-3} . Right panel: Scatterplot of predicted values versus observed values for the model of Surface Current Maximum (m s⁻¹).

Table 78. Results of cross-validation of the kriged model for Surface Current Maximum (m s⁻¹).

Prediction Error	Value
Number of Observations	16376
Overall Mean Error	-6.189 x 10 ⁻⁵
Root Mean Square Prediction Error	0.025
Standardized Mean	-5.143 x 10 ⁻⁴
Standardized Root Mean Square Prediction Error	1.142
Average Standard Error	0.021

Figure 194. Prediction standard error surface of Surface Current Maximum (m s⁻¹).

Figure 195. Interpolated prediction surface of Surface Current Maximum (m s⁻¹).

Surface Current Range

This variable displayed a right-skewed, leptokurtic distribution prior to interpolation (Table 79, Figure 196). The data were higher than predicted by a normal distribution at both tails, while mid-values were slightly lower than the reference line (Figure 197). These areas of under- and over-prediction showed spatial pattern over the region (Figure 197).

The semivariogram showed moderate autocorrelation present in the data (Figure 198). The kriged model showed good fit between measured and predicted values (Figure 198). Very good performance of the model was indicated by the cross-validation results (Table 80). The error map showed lower error in Hudson Bay compared to Baffin Bay and Davis Strait, with higher error along the edges of the study extent and in the most northern areas (Figure 199). The kriged surface is presented in Figure 200.

Property	Value
Number of Observations	16376
Minimum	0.029
Maximum	0.822
Mean	0.198
Median	0.185
Standard Deviation	0.096
Skewness	1.345
Kurtosis	6.608

Table 79. Distributional properties of Surface Current Range (m s⁻¹).

Figure 196. Distribution of Surface Current Range (m s⁻¹). Histogram was illustrated using 10 bins. X axis is shown at 10; Y axis is shown at 10^{-3} .

Figure 197. Normal Q-Q plot for data values of Surface Current Range (m s^{-1}). Points falling under (top right panel) and over (bottom right panel) the reference line are mapped.

Figure 198. Left panel: Semivariogram of Surface Current Range (m s⁻¹). Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 0.104 degrees; number of lags: 12; Parameter: 2; Range: 0.829 degrees; Partial Sill: 2.540 x 10^{-3} . Right panel: Scatterplot of predicted values versus observed values for the model of Surface Current Range (m s⁻¹).

Table 80. Results of cross-validation of the kriged model for Surface Current Range (m s⁻¹).

Prediction Error	Value
Number of Observations	16376
Overall Mean Error	-6.828 x 10 ⁻⁵
Root Mean Square Prediction Error	0.025
Standardized Mean	-7.758 x 10 ⁻⁴
Standardized Root Mean Square Prediction Error	1.110
Average Standard Error	0.022

Figure 199. Prediction standard error surface of Surface Current Range (m s⁻¹).

Figure 200. Interpolated prediction surface of Surface Current Range (m s^{-1}).

Surface Current Average Minimum

This variable displayed a right-skewed, extremely leptokurtic distribution prior to interpolation (Table 81, Figure 201). The data were higher than predicted by a normal distribution at both tails, while mid-values were lower than the reference line (Figure 202). These areas of underand over-prediction showed spatial pattern over the region (Figure 202).

The semivariogram showed moderate autocorrelation present in the data (Figure 203). The kriged model showed good fit between measured and predicted values (Figure 203). Very good performance of the model was indicated by the cross-validation results (Table 82). The error map showed lower error in Hudson Bay compared to Baffin Bay and Davis Strait, and higher error along the edges of the study extent (Figure 204). The kriged surface is presented in Figure 205.

Property	Value
Number of Observations	16376
Minimum	9.790 x 10 ⁻⁴
Maximum	0.471
Mean	0.026
Median	0.016
Standard Deviation	0.035
Skewness	4.405
Kurtosis	30.354

Table 81. Distributional properties of Surface Current Average Minimum (m s⁻¹).

Figure 201. Distribution of Surface Current Average Minimum (m s⁻¹). Histogram was illustrated using 10 bins. X axis is shown at 10; Y axis is shown at 10⁻⁴.

Figure 202. Normal Q-Q plot for data values of Surface Current Average Minimum (m s⁻¹). Points falling under (top right panel) and over (bottom right panel) the reference line are mapped.

Figure 203. Left panel: Semivariogram of Surface Current Average Minimum (m s⁻¹). Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 0.209 degrees; number of lags: 12; Parameter: 1.490; Range: 1.672 degrees; Partial Sill: 5.991 x 10^{-4} . Right panel: Scatterplot of predicted values versus observed values for the model of Surface Current Average Minimum (m s⁻¹).

Table 82. Results of cross-validation of the kriged model for Surface Current Average Minimum $(m s^{-1})$.

Prediction Error	Value
Number of Observations	16376
Overall Mean Error	1.453 x 10 ⁻⁶
Root Mean Square Prediction Error	5.123 x 10 ⁻³
Standardized Mean	1.396 x 10 ⁻⁴
Standardized Root Mean Square Prediction Error	0.930
Average Standard Error	5.206 x 10 ⁻³

Figure 204. Prediction standard error surface of Surface Current Average Minimum (m s⁻¹).

Figure 205. Interpolated prediction surface of Surface Current Average Minimum (m s⁻¹).

Surface Current Average Maximum

This variable displayed a right-skewed, leptokurtic distribution prior to interpolation (Table 83, Figure 206). The data were higher than predicted by a normal distribution at both tails, while mid-values were lower than the reference line (Figure 207). These areas of under- and over-prediction showed spatial pattern over the region (Figure 207).

The semivariogram showed autocorrelation present in the data (Figure 208). The kriged model showed good fit between measured and predicted values (Figure 208). Very good performance of the model was indicated by the cross-validation results (Table 84). The error map showed lower error in Hudson Bay compared to Baffin Bay and Davis Strait, and higher error along the edges of the study extent (Figure 209). The kriged surface is presented in Figure 210.

Property	Value
Number of Observations	16376
Minimum	0.019
Maximum	0.832
Mean	0.136
Median	0.118
Standard Deviation	0.080
Skewness	2.035
Kurtosis	9.934

Table 83. Distributional properties of Surface Current Average Maximum (m s⁻¹).

Figure 206. Distribution of Surface Current Average Maximum (m s⁻¹). Histogram was illustrated using 10 bins. X axis is shown at 10; Y axis is shown at 10^{-3} .

Figure 207. Normal Q-Q plot for data values of Surface Current Average Maximum (m s⁻¹). Points falling under (top right panel) and over (bottom right panel) the reference line are mapped.

Figure 208. Left panel: Semivariogram of Surface Current Average Maximum (m s⁻¹). Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 0.120 degrees; number of lags: 12; Parameter: 2; Range: 0.956 degrees; Partial Sill: 1.871 x 10⁻³. Right panel: Scatterplot of predicted values versus observed values for the model of Surface Current Average Maximum (m s⁻¹).

,	Table	84.	Results	of c	ross-va	alidation	of the	kriged	model	for	Surface	Current	Average	Maximu	m
($(m s^{-1})$).						U					U		

Prediction Error	Value
Number of Observations	16376
Overall Mean Error	-4.683 x 10 ⁻⁵
Root Mean Square Prediction Error	0.013
Standardized Mean	-8.298 x 10 ⁻⁴
Standardized Root Mean Square Prediction Error	1.093
Average Standard Error	0.011

Figure 209. Prediction standard error surface of Surface Current Average Maximum (m s⁻¹).

Figure 210. Interpolated prediction surface of Surface Current Average Maximum (m s⁻¹).

Surface Current Average Range

This variable displayed a right-skewed, leptokurtic distribution prior to interpolation (Table 85, Figure 211). The data were higher than predicted by a normal distribution at both tails, while mid-values were lower than the reference line (Figure 212). These areas of under- and over-prediction showed spatial pattern over the region (Figure 212).

The semivariogram showed autocorrelation present in the data (Figure 213). The kriged model showed good fit between measured and predicted values (Figure 213). Very good performance of the model was indicated by the cross-validation results (Table 86). The error map showed lower error in Hudson Bay compared to Baffin Bay and Davis Strait, and higher error along the edges of the study extent (Figure 214). The kriged surface is presented in Figure 215.

Property	Value
Number of Observations	16376
Minimum	0.017
Maximum	0.499
Mean	0.110
Median	0.100
Standard Deviation	0.057
Skewness	1.748
Kurtosis	8.632

Table 85. Distributional properties of Surface Current Average Range (m s⁻¹).

Figure 211. Distribution of Surface Current Average Range (m s⁻¹). Histogram was illustrated using 10 bins. X axis is shown at 10; Y axis is shown at 10⁻³.

Figure 212. Normal Q-Q plot for data values of Surface Current Average Range (m s⁻¹). Points falling under (top right panel) and over (bottom right panel) the reference line are mapped.

Figure 213. Left panel: Semivariogram of Surface Current Average Range (m s⁻¹). Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 0.114 degrees; number of lags: 12; Parameter: 2; Range: 0.912 degrees; Partial Sill: 9.308 x 10^{-4} . Right panel: Scatterplot of predicted values versus observed values for the model of Surface Current Average Range (m s⁻¹).

Table 86. Results of cross-validation of the kriged model for Surface Current Average Range (m s^{-1}).

Prediction Error	Value
Number of Observations	16376
Overall Mean Error	-4.803 x 10 ⁻⁵
Root Mean Square Prediction Error	0.011
Standardized Mean	-1.023 x 10 ⁻³
Standardized Root Mean Square Prediction Error	0.997
Average Standard Error	0.010

Figure 214. Prediction standard error surface of Surface Current Average Range (m s⁻¹).

Figure 215. Interpolated prediction surface of Surface Current Average Range (m s⁻¹).

Bottom Shear

Bottom shear stress reflects friction pressure on the seabed. Its unit is Pa or pascal, which is equivalent to one newton (1 N) of force over one meter squared. Shear stress near the seabed causes sediment erosion and affects vertical mixing and conditions conducive to sediment deposition (Cheng et al., 1999).

Bottom Shear Mean

This variable displayed a right-skewed, extremely leptokurtic distribution prior to interpolation (Table 87, Figure 216). The data were higher than predicted by a normal distribution at both tails, while mid-values were slightly lower than the reference line (Figure 217). These areas of under- and over-prediction showed little spatial pattern over the region (Figure 217).

The semivariogram showed very weak autocorrelation present in the data (Figure 218). The kriged model showed poor fit between measured and predicted values (Figure 218). Very good performance of the model was indicated by the cross-validation results (Table 88). The error map showed lower error in Hudson Bay compared to Baffin Bay and Davis Strait, and higher error along the edges of the study extent (Figure 219). The kriged surface is presented in Figure 220.

Property	Value
Number of Observations	16257
Minimum	1.080 x 10 ⁻⁴
Maximum	0.278
Mean	0.010
Median	6.303 x 10 ⁻³
Standard Deviation	0.014
Skewness	5.939
Kurtosis	67.933

Table 87. Distributional properties of Bottom Shear Mean (Pa).

Figure 216. Distribution of Bottom Shear Mean (Pa). Histogram was illustrated using 10 bins. X axis is shown at 10; Y axis is shown at 10^{-4} .

Figure 217. Normal Q-Q plot for data values of Bottom Shear Mean (Pa). Points falling under (top right panel) and over (bottom right panel) the reference line are mapped.

Figure 218. Left panel: Semivariogram of Bottom Shear Mean (Pa). Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 3.493 degrees; number of lags: 12; Parameter: 0.625; Range: 27.946 degrees; Partial Sill: 1.737×10^{-4} . Right panel: Scatterplot of predicted values versus observed values for the model of Bottom Shear Mean (Pa).

Table 88. Results of cross-validation of the kriged model for Bottom Shear Mean (Pa).

Prediction Error	Value
Number of Observations	16257
Overall Mean Error	1.436 x 10 ⁻⁶
Root Mean Square Prediction Error	7.488 x 10 ⁻³
Standardized Mean	1.278 x 10 ⁻⁴
Standardized Root Mean Square Prediction Error	1.065
Average Standard Error	6.939 x 10 ⁻³

Figure 219. Prediction standard error surface of Bottom Shear Mean (Pa).

Figure 220. Interpolated prediction surface of Bottom Shear Mean (Pa).

Bottom Shear Minimum

This variable displayed a right-skewed, extremely leptokurtic distribution prior to interpolation (Table 89, Figure 221). The data were higher than predicted by a normal distribution at both tails, while mid-values were lower than the reference line (Figure 222). These areas of underand over-prediction showed little spatial pattern over the region (Figure 222).

The semivariogram showed moderate autocorrelation present in the data (Figure 223). The kriged model showed poor fit between measured and predicted values (Figure 223). Good performance of the model was indicated by the cross-validation results (Table 90). The error map showed lower error in Hudson Bay compared to Baffin Bay and Davis Strait, and higher error along the edges of the study extent (Figure 224). The kriged surface is presented in Figure 225.

Property	Value
Number of Observations	16257
Minimum	1.00 x 10 ⁻⁶
Maximum	0.095
Mean	9.440 x 10 ⁻⁴
Median	2.210 x 10 ⁻⁴
Standard Deviation	3.451 x 10 ⁻³
Skewness	10.587
Kurtosis	176.440

Table 89. Distributional properties of Bottom Shear Minimum (Pa).

Figure 221. Distribution of Bottom Shear Minimum (Pa). Histogram was illustrated using 10 bins. X axis is shown at 10^2 ; Y axis is shown at 10^{-4} .

Figure 222. Normal Q-Q plot for data values of Bottom Shear Minimum (Pa). Points falling under (top right panel) and over (bottom right panel) the reference line are mapped.

Figure 223. Left panel: Semivariogram of Bottom Shear Minimum (Pa). Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 0.574 degrees; number of lags: 12; Parameter: 0.701; Range: 4.592 degrees; Partial Sill: 9.460 x 10^{-6} . Right panel: Scatterplot of predicted values versus observed values for the model of Bottom Shear Minimum (Pa).

Table 90. Results of cross-validation of the kriged model for Bottom Shear Minimum (Pa).

Prediction Error	Value
Number of Observations	16257
Overall Mean Error	2.495 x 10 ⁻⁶
Root Mean Square Prediction Error	1.995 x 10 ⁻³
Standardized Mean	8.883 x 10 ⁻⁴
Standardized Root Mean Square Prediction Error	1.243
Average Standard Error	1.567 x 10 ⁻³

Figure 224. Prediction standard error surface of Bottom Shear Minimum (Pa).

Figure 225. Interpolated prediction surface of Bottom Shear Minimum (Pa).

Bottom Shear Maximum

This variable displayed a right-skewed, leptokurtic distribution prior to interpolation (Table 91, Figure 226). The data were higher than predicted by a normal distribution at both tails, while mid-values were slightly lower than the reference line (Figure 227). These areas of under- and over-prediction showed little spatial pattern over the region (Figure 227).

The semivariogram showed moderate autocorrelation present in the data (Figure 228). The kriged model showed poor fit between measured and predicted values (Figure 228). Very good performance of the model was indicated by the cross-validation results (Table 92). The error map showed lower error in Hudson Bay compared to Baffin Bay and Davis Strait, and higher error along the edges of the study extent (Figure 229). The kriged surface is presented in Figure 230.

Property	Value
Number of Observations	16257
Minimum	4.570 x 10 ⁻⁴
Maximum	1.249
Mean	0.044
Median	0.026
Standard Deviation	0.053
Skewness	4.105
Kurtosis	39.871

Table 91. Distributional properties of Bottom Shear Maximum (Pa).

Figure 226. Distribution of Bottom Shear Maximum (Pa). Histogram was illustrated using 10 bins. Y axis is shown at 10^{-4} .

Figure 227. Normal Q-Q plot for data values of Bottom Shear Maximum (Pa). Points falling under (top right panel) and over (bottom right panel) the reference line are mapped.

Figure 228. Left panel: Semivariogram of Bottom Shear Maximum (Pa). Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 2.505 degrees; number of lags: 12; Parameter: 0.518; Range: 20.038 degrees; Partial Sill: 2.808 x 10^{-3} . Right panel: Scatterplot of predicted values versus observed values for the model of Bottom Shear Maximum (Pa).

Table 92. Results of cross-validation of the kriged model for Bottom Shear Maximum (Pa).

Prediction Error	Value
Number of Observations	16257
Overall Mean Error	-1.514 x 10 ⁻⁵
Root Mean Square Prediction Error	0.029
Standardized Mean	-3.175 x 10 ⁻⁴
Standardized Root Mean Square Prediction Error	1.082
Average Standard Error	0.026

Figure 229. Prediction standard error surface of Bottom Shear Maximum (Pa).

Figure 230. Interpolated prediction surface of Bottom Shear Maximum (Pa).

Bottom Shear Range

This variable displayed a right-skewed, leptokurtic distribution prior to interpolation (Table 93, Figure 231). The data were higher than predicted by a normal distribution at both tails, while mid-values were lower than the reference line (Figure 232). These areas of under- and over-prediction showed little spatial pattern over the region (Figure 232).

The semivariogram showed moderate autocorrelation present in the data (Figure 233). The kriged model showed poor fit between measured and predicted values (Figure 233). Good performance of the model was indicated by the cross-validation results (Table 94). The error map showed lower error in Hudson Bay compared to Baffin Bay and Davis Strait, and higher error along the edges of the study extent (Figure 234). The kriged surface is presented in Figure 235.

Property	Value
Number of Observations	16257
Minimum	4.550 x 10 ⁻⁴
Maximum	1.217
Mean	0.043
Median	0.025
Standard Deviation	0.051
Skewness	4.017
Kurtosis	38.580

Table 93. Distributional properties of Bottom Shear Range (Pa).

Figure 231. Distribution of Bottom Shear Range (Pa). Histogram was illustrated using 10 bins. Y axis is shown at 10⁻⁴.

Figure 222. Normal Q-Q plot for data values of Bottom Shear Range (Pa). Points falling under (top right panel) and over (bottom right panel) the reference line are mapped.

Figure 233. Left panel: Semivariogram of Bottom Shear Range (Pa). Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 2.439 degrees; number of lags: 12; Parameter: 0.523; Range: 19.516 degrees; Partial Sill: 2.667 x 10^{-3} . Right panel: Scatterplot of predicted values versus observed values for the model of Bottom Shear Range (Pa).

Table 94. Results of cross-validation of the kriged model for Bottom Shear Range (Pa).

Prediction Error	Value
Number of Observations	16257
Overall Mean Error	-1.743 x 10 ⁻⁵
Root Mean Square Prediction Error	0.028
Standardized Mean	-3.800 x 10 ⁻⁴
Standardized Root Mean Square Prediction Error	1.085
Average Standard Error	0.025

Figure 234. Prediction standard error surface of Bottom Shear Range (Pa).

Figure 235. Interpolated prediction surface of Bottom Shear Range (Pa).

Bottom Shear Average Minimum

This variable displayed a right-skewed, extremely leptokurtic distribution prior to interpolation (Table 95, Figure 236). The data were higher than predicted by a normal distribution at both tails, while mid-values were lower than the reference line (Figure 237). These areas of underand over-prediction showed spatial pattern over the region (Figure 237).

The semivariogram showed moderate autocorrelation present in the data (Figure 238). The kriged model showed poor fit between measured and predicted values (Figure 238). Very good performance of the model was indicated by the cross-validation results (Table 96). The error map showed lower error in Hudson Bay compared to Baffin Bay and Davis Strait, and higher error along the edges of the study extent (Figure 239). The kriged surface is presented in Figure 240.

Property	Value
Number of Observations	16257
Minimum	$1.100 \ge 10^{-5}$
Maximum	0.155
Mean	3.224 x 10 ⁻³
Median	1.411 x 10 ⁻³
Standard Deviation	6.729 x 10 ⁻³
Skewness	7.674
Kurtosis	98.884

Table 95. Distributional properties of Bottom Shear Average Minimum (Pa).

Figure 236. Distribution of Bottom Shear Average Minimum (Pa). Histogram was illustrated using 10 bins. X axis is shown at 10; Y axis is shown at 10^{-4} .

Figure 237. Normal Q-Q plot for data values of Bottom Shear Average Minimum (Pa). Points falling under (top right panel) and over (bottom right panel) the reference line are mapped.

Figure 238. Left panel: Semivariogram of Bottom Shear Average Minimum (Pa). Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 0.235 degrees; number of lags: 12; Parameter: 1.149; Range: 2.596 degrees; Partial Sill: 2.305 x 10⁻⁵. Right panel: Scatterplot of predicted values versus observed values for the model of Bottom Shear Average Minimum (Pa).

Table 9	6. R	esults	of	cross-va	alidation	of	the	kriged	model	for	Bottom	Shear	Average	Minimum
(Pa).														

Prediction Error	Value
Number of Observations	16257
Overall Mean Error	2.275 x 10 ⁻⁶
Root Mean Square Prediction Error	3.632 x 10 ⁻³
Standardized Mean	4.053 x 10 ⁻⁴
Standardized Root Mean Square Prediction Error	1.046
Average Standard Error	3.427 x 10 ⁻³

Figure 239. Prediction standard error surface of Bottom Shear Average Minimum (Pa).

Figure 240. Interpolated prediction surface of Bottom Shear Average Minimum (Pa).

Bottom Shear Average Maximum

This variable displayed a right-skewed, extremely leptokurtic distribution prior to interpolation (Table 97, Figure 241). The data were higher than predicted by a normal distribution at both tails, while mid-values were lower than the reference line (Figure 242). These areas of underand over-prediction showed spatial pattern over the region (Figure 242).

The semivariogram showed moderate autocorrelation present in the data (Figure 243). The kriged model showed poor fit between measured and predicted values (Figure 243). Very good performance of the model was indicated by the cross-validation results (Table 98). The error map showed lower error in Hudson Bay compared to Baffin Bay and Davis Strait, and higher error along the edges of the study extent (Figure 244). The kriged surface is presented in Figure 245.

Property	Value
Number of Observations	16257
Minimum	2.490 x 10 ⁻⁴
Maximum	0.580
Mean	0.023
Median	0.014
Standard Deviation	0.028
Skewness	4.947
Kurtosis	53.176

Table 97. Distributional properties of Bottom Shear Average Maximum (Pa).

Figure 241. Distribution of Bottom Shear Average Maximum (Pa). Histogram was illustrated using 10 bins. X axis is shown at 10; Y axis is shown at 10⁻⁴.

Figure 242. Normal Q-Q plot for data values of Bottom Shear Average Maximum (Pa). Points falling under (top right panel) and over (bottom right panel) the reference line are mapped.

Figure 243. Left panel: Semivariogram of Bottom Shear Average Maximum (Pa). Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 2.302 degrees; number of lags: 12; Parameter: 0.530; Range: 18.414 degrees; Partial Sill: 7.288 x 10⁻⁴. Right panel: Scatterplot of predicted values versus observed values for the model of Bottom Shear Average Maximum (Pa).

Table 98.	Results	of	cross-val	idation	of	the	kriged	model	for	Bottom	Shear	Average	Maximun
(Pa).													

Prediction Error	Value
Number of Observations	16257
Overall Mean Error	-3.591 x 10 ⁻⁶
Root Mean Square Prediction Error	0.015
Standardized Mean	-1.417 x 10 ⁻⁴
Standardized Root Mean Square Prediction Error	1.048
Average Standard Error	0.014

Figure 244. Prediction standard error surface of Bottom Shear Average Maximum (Pa).

Figure 245. Interpolated prediction surface of Bottom Shear Average Maximum (Pa).

Bottom Shear Average Range

This variable displayed a right-skewed, extremely leptokurtic distribution prior to interpolation (Table 99, Figure 246). The data were higher than predicted by a normal distribution at both tails, while mid-values were slightly lower than the reference line (Figure 247). These areas of under- and over-prediction showed little spatial pattern over the region (Figure 247).

The semivariogram showed very weak autocorrelation present in the data (Figure 248). The kriged model showed poor fit between measured and predicted values (Figure 248). Good performance of the model was indicated by the cross-validation results (Table 100). The error map showed lower error in Hudson Bay compared to Baffin Bay and Davis Strait, and higher error along the edges of the study extent (Figure 249). The kriged surface is presented in Figure 250.

Property	Value
Number of Observations	16257
Minimum	2.110 x 10 ⁻⁴
Maximum	0.508
Mean	0.020
Median	0.013
Standard Deviation	0.023
Skewness	4.596
Kurtosis	48.795

Table 99. Distributional properties of Bottom Shear Average Range (Pa).

Figure 246. Distribution of Bottom Shear Average Range (Pa). Histogram was illustrated using 10 bins. X axis is shown at 10; Y axis is shown at 10^{-4} .

Figure 247. Normal Q-Q plot for data values of Bottom Shear Average Range (Pa). Points falling under (top right panel) and over (bottom right panel) the reference line are mapped.

Figure 248. Left panel: Semivariogram of Bottom Shear Average Range (Pa). Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 4.924 degrees; number of lags: 12; Parameter: 0.541; Range: 39.390 degrees; Partial Sill: 6.692×10^{-4} . Right panel: Scatterplot of predicted values versus observed values for the model of Bottom Shear Average Range (Pa).

Table	100.	Results	of	cross-validation	of	the	kriged	model	for	Bottom	Shear	Average	Range
(Pa).													

Prediction Error	Value
Number of Observations	16257
Overall Mean Error	-6.535 x 10 ⁻⁶
Root Mean Square Prediction Error	0.013
Standardized Mean	-3.276 x 10 ⁻⁴
Standardized Root Mean Square Prediction Error	1.224
Average Standard Error	0.010

Figure 249. Prediction standard error surface of Bottom Shear Average Range (Pa).

Figure 250. Interpolated prediction surface of Bottom Shear Average Range (Pa).

Maximum Seasonal Mixed Layer Depth

Maximum mixed layer depth, or, the depth at which surface vertical mixing dissipates, is a nearuniversal feature of the open ocean (de Boyer Montégut et al., 2004). Within this mixed layer, salinity, temperature, and density are nearly uniform, a phenomenon caused by surface forcing, lateral advection, and internal wave processes that vary on diurnal, intra-seasonal, seasonal, and inter-annual scales (de Boyer Montégut et al., 2004). The depth of this mixed zone can show large spatial variability, ranging from less than 20 m in the summer hemisphere, to more than 500 m in the winter hemisphere at subpolar latitudes (de Boyer Montégut et al., 2004). The mixed layer depth has a significant influence on primary production in the surface waters. As the mixed layer depth increases it entrains nutrients from deeper waters below, supplying additional nutrients for primary production (Polovina et al., 1995; Carstensen et al., 2002).

Maximum Spring Mixed Layer Depth

This variable displayed a right-skewed, leptokurtic distribution prior to interpolation (Table 101, Figure 251). The data were higher than predicted by a normal distribution at both tails, while mid-values were lower than the reference line (Figure 252). These areas of under- and over-prediction showed spatial pattern over the region (Figure 252).

The semivariogram showed moderate autocorrelation present in the data (Figure 253). The kriged model showed good fit between measured and predicted values (Figure 253). Very good performance of the model was indicated by the cross-validation results (Table 102). The error map showed lower error in Hudson Bay compared to Baffin Bay and Davis Strait, and higher error along the edges of the study extent (Figure 254). The kriged surface is presented in Figure 255.

Property	Value
Number of Observations	16376
Minimum	10.768
Maximum	2135.600
Mean	143.750
Median	59.046
Standard Deviation	240.630
Skewness	3.509
Kurtosis	16.990

Table 101. Distributional properties of Maximum Spring Mixed Layer Depth (m).

Figure 251. Distribution of Maximum Spring Mixed Layer Depth (m). Histogram was illustrated using 10 bins. X axis is shown at 10^{-3} ; Y axis is shown at 10^{-4} .

Figure 252. Normal Q-Q plot for data values of Maximum Spring Mixed Layer Depth (m). Points falling under (top right panel) and over (bottom right panel) the reference line are mapped.

Figure 253. Left panel: Semivariogram of Maximum Spring Mixed Layer Depth (m). Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 1.236 degrees; number of lags: 12; Parameter: 1.135; Range: 9.892 degrees; Partial Sill: 64530.930. Right panel: Scatterplot of predicted values versus observed values for the model of Maximum Spring Mixed Layer Depth (m).

Table	102.	Results	of	cross-validation	of	the	kriged	model	for	Maximum	Spring	Mixed	Layer
Depth	(m).												

Prediction Error	Value
Number of Observations	16376
Overall Mean Error	-0.024
Root Mean Square Prediction Error	37.362
Standardized Mean	-4.621 x 10 ⁻⁴
Standardized Root Mean Square Prediction Error	1.001
Average Standard Error	36.541

Figure 254. Prediction standard error surface of Maximum Spring Mixed Layer Depth (m).

Figure 255. Interpolated prediction surface of Maximum Spring Mixed Layer Depth (m).

Maximum Summer Mixed Layer Depth

This variable displayed a right-skewed, extremely leptokurtic distribution prior to interpolation (Table 103, Figure 256). The data were higher than predicted by a normal distribution at both tails, while mid-values were lower than the reference line (Figure 257). These areas of underand over-prediction showed spatial pattern over the region (Figure 257).

The semivariogram showed autocorrelation present in the data (Figure 258). The kriged model showed good fit between measured and predicted values (Figure 258). Good performance of the model was indicated by the cross-validation results (Table 104). The error map showed lower error in Hudson Bay compared to Baffin Bay and Davis Strait, and higher error along the edges of the study extent (Figure 259). The kriged surface is presented in Figure 260.

Property	Value
Number of Observations	16376
Minimum	10.768
Maximum	495.000
Mean	26.078
Median	18.131
Standard Deviation	22.030
Skewness	8.452
Kurtosis	132.750

Table 103. Distributional properties of Maximum Summer Mixed Layer Depth (m).

Figure 256. Distribution of Maximum Summer Mixed Layer Depth (m). Histogram was illustrated using 10 bins. X axis is shown at 10^{-2} ; Y axis is shown at 10^{-4} .

Figure 257. Normal Q-Q plot for data values of Maximum Summer Mixed Layer Depth (m). Points falling under (top right panel) and over (bottom right panel) the reference line are mapped.

Figure 258. Left panel: Semivariogram of Maximum Summer Mixed Layer Depth (m). Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 0.322 degrees; number of lags: 12; Parameter: 1.274; Range: 2.577 degrees; Partial Sill: 302.546. Right panel: Scatterplot of predicted values versus observed values for the model of Maximum Summer Mixed Layer Depth (m).

Table	104.	Results	of	cross-	-validati	on c	of the	kriged	model	for	Maximum	Summer	Mixed	Layer
Depth	(m).													

Prediction Error	Value
Number of Observations	16376
Overall Mean Error	8.466 x 10 ⁻⁴
Root Mean Square Prediction Error	4.076
Standardized Mean	4.353 x 10 ⁻⁵
Standardized Root Mean Square Prediction Error	0.929
Average Standard Error	4.163

Figure 259. Prediction standard error surface of Maximum Summer Mixed Layer Depth (m).

Figure 260. Interpolated prediction surface of Maximum Summer Mixed Layer Depth (m).

Maximum Fall Mixed Layer Depth

This variable displayed a right-skewed, extremely leptokurtic distribution prior to interpolation (Table 105, Figure 261). The data were higher than predicted by a normal distribution at both tails, while mid-values were lower than the reference line (Figure 262). These areas of underand over-prediction showed spatial pattern over the region (Figure 262).

The semivariogram showed moderate autocorrelation present in the data (Figure 263). The kriged model showed good fit between measured and predicted values (Figure 263). Good performance of the model was indicated by the cross-validation results (Table 106). The error map showed lower error in Hudson Bay compared to Baffin Bay and Davis Strait, and higher error along the edges of the study extent (Figure 264). The kriged surface is presented in Figure 265.

Property	Value
Number of Observations	16376
Minimum	11.099
Maximum	2463.100
Mean	91.004
Median	42.431
Standard Deviation	165.88
Skewness	7.593
Kurtosis	77.499

Table 105. Distributional properties of Maximum Fall Mixed Layer Depth (m).

Figure 261. Distribution of Maximum Fall Mixed Layer Depth (m). Histogram was illustrated using 10 bins. X axis is shown at 10^{-3} ; Y axis is shown at 10^{-4} .

Figure 262. Normal Q-Q plot for data values of Maximum Fall Mixed Layer Depth (m). Points falling under (top right panel) and over (bottom right panel) the reference line are mapped.

Figure 263. Left panel: Semivariogram of Maximum Fall Mixed Layer Depth (m). Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 1.511 degrees; number of lags: 12; Parameter: 0.842; Range: 12.087 degrees; Partial Sill: 25851.890. Right panel: Scatterplot of predicted values versus observed values for the model of Maximum Fall Mixed Layer Depth (m).

Table	106.	Results	of	cross-validation	of	the	kriged	model	for	Maximum	Fall	Mixed	Layer
Depth	(m).												

Prediction Error	Value
Number of Observations	16376
Overall Mean Error	0.016
Root Mean Square Prediction Error	33.946
Standardized Mean	8.774 x 10 ⁻⁵
Standardized Root Mean Square Prediction Error	0.769
Average Standard Error	43.112

Figure 264. Prediction standard error surface of Maximum Fall Mixed Layer Depth (m).

Figure 265. Interpolated prediction surface of Maximum Fall Mixed Layer Depth (m).

Maximum Winter Mixed Layer Depth

This variable displayed a right-skewed, leptokurtic distribution prior to interpolation (Table 107, Figure 266). The data were higher than predicted by a normal distribution at both tails, while mid-values were lower than the reference line (Figure 267). These areas of under- and over-prediction showed spatial pattern over the region (Figure 267).

The semivariogram showed moderate autocorrelation present in the data (Figure 268). The kriged model showed good fit between measured and predicted values (Figure 268). Fair performance of the model was indicated by the cross-validation results (Table 108), with underestimation of the variability of the predictions as indicated by a Standardized Root-Mean-Square Error higher than 1. The error map showed lower error in Hudson Bay compared to Baffin Bay and Davis Strait, and higher error along the edges of the study extent (Figure 269). The kriged surface is presented in Figure 270.

Value
16376
10.768
3036.500
315.330
68.410
581.190
2.389
7.548

Table 107. Distributional properties of Maximum Winter Mixed Layer Depth (m).

Figure 266. Distribution of Maximum Winter Mixed Layer Depth (m). Histogram was illustrated using 10 bins. X axis is shown at 10^{-3} ; Y axis is shown at 10^{-4} .

Figure 267. Normal Q-Q plot for data values of Maximum Winter Mixed Layer Depth (m). Points falling under (top right panel) and over (bottom right panel) the reference line are mapped.

Figure 268. Left panel: Semivariogram of Maximum Winter Mixed Layer Depth (m). Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 0.117 degrees; number of lags: 12; Parameter: 2; Range: 0.936 degrees; Partial Sill: 44714.130. Right panel: Scatterplot of predicted values versus observed values for the model of Maximum Winter Mixed Layer Depth (m).

Table	108.	Results	of	cross-validation	of	the	kriged	model	for	Maximum	Winter	Mixed	Layer
Depth	(m).												

Prediction Error	Value
Number of Observations	16376
Overall Mean Error	-0.041
Root Mean Square Prediction Error	51.859
Standardized Mean	1.256 x 10 ⁻⁴
Standardized Root Mean Square Prediction Error	2.001
Average Standard Error	26.141

Figure 269. Prediction standard error surface of Maximum Winter Mixed Layer Depth (m).

Figure 270. Interpolated prediction surface of Maximum Winter Mixed Layer Depth (m).

Maximum Average Spring Mixed Layer Depth

This variable displayed a right-skewed, leptokurtic distribution prior to interpolation (Table 109, Figure 271). The data were higher than predicted by a normal distribution at both tails, while mid-values were lower than the reference line (Figure 272). These areas of under- and over-prediction showed spatial pattern over the region (Figure 272).

The semivariogram showed moderate autocorrelation present in the data (Figure 273). The kriged model showed good fit between measured and predicted values (Figure 273). Good performance of the model was indicated by the cross-validation results (Table 110). The error map showed lower error in Hudson Bay compared to Baffin Bay and Davis Strait, and higher error along the edges of the study extent (Figure 274). The kriged surface is presented in Figure 275.

Property	Value
Number of Observations	16376
Minimum	10.768
Maximum	688.440
Mean	52.846
Median	32.658
Standard Deviation	61.182
Skewness	3.718
Kurtosis	21.944

Table 109. Distributional properties of Maximum Average Spring Mixed Layer Depth (m).

Figure 271. Distribution of Maximum Average Spring Mixed Layer Depth (m). Histogram was illustrated using 10 bins. X axis is shown at 10^{-2} ; Y axis is shown at 10^{-4} .

Figure 272. Normal Q-Q plot for data values of Maximum Average Spring Mixed Layer Depth (m). Points falling under (top right panel) and over (bottom right panel) the reference line are mapped.

Figure 273. Left panel: Semivariogram of Maximum Average Spring Mixed Layer Depth (m). Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 1.017 degrees; number of lags: 12; Parameter: 1.383; Range: 8.138 degrees; Partial Sill: 4399.551. Right panel: Scatterplot of predicted values versus observed values for the model of Maximum Average Spring Mixed Layer Depth (m).

Table 110.	Results of	f cross-validation	of the l	kriged	model t	for M	aximum A	Average	Spring	Mixed
Layer Dept	h (m).									

Prediction Error	Value
Number of Observations	16376
Overall Mean Error	-6.368 x 10 ⁻³
Root Mean Square Prediction Error	4.340
Standardized Mean	-5.602 x 10 ⁻⁴
Standardized Root Mean Square Prediction Error	0.747
Average Standard Error	5.656

Figure 274. Prediction standard error surface of Maximum Average Spring Mixed Layer Depth (m).

Figure 275. Interpolated prediction surface of Maximum Average Spring Mixed Layer Depth (m).

Maximum Average Summer Mixed Layer Depth

This variable displayed a right-skewed, leptokurtic distribution prior to interpolation (Table 111, Figure 276). The data were greater than predicted by a normal distribution at the lowest and the highest, and upper mid-range values, and lower than predicted at lower mid-range values (Figure 277). These areas of under- and over-prediction showed a strong spatial pattern over the region (Figure 277).

The semivariogram showed weak autocorrelation present in the data (Figure 278). The kriged model showed good fit between measured and predicted values (Figure 278). Fair performance of the model was indicated by the cross-validation results (Table 112). The error map showed lower error in Hudson Bay compared to Baffin Bay and Davis Strait, and higher error along the edges of the study extent and in northern Baffin Bay (Figure 279). The kriged surface is presented in Figure 280.

Property	Value
Number of Observations	16376
Minimum	10.768
Maximum	71.450
Mean	17.144
Median	13.318
Standard Deviation	7.758
Skewness	1.371
Kurtosis	3.769

Table 111. Distributional properties of Maximum Average Summer Mixed Layer Depth (m).

Figure 276. Distribution of Maximum Average Summer Mixed Layer Depth (m). Histogram was illustrated using 10 bins. X axis is shown at 10^{-1} ; Y axis is shown at 10^{-4} .

Figure 277. Normal Q-Q plot for data values of Maximum Average Summer Mixed Layer Depth (m). Points falling under (top right panel) and over (bottom right panel) the reference line are mapped.

Figure 278. Left panel: Semivariogram of Maximum Average Summer Mixed Layer Depth (m). Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 0.087 degrees; number of lags: 12; Parameter: 2; Range: 0.693 degrees; Partial Sill: 2.474. Right panel: Scatterplot of predicted values versus observed values for the model of Maximum Average Summer Mixed Layer Depth (m).

Table	112.	Results	of	cross-validation	of	the	kriged	model	for	Maximum	Average	Summer
Mixed	Laye	er Depth	(m)).								

Prediction Error	Value
Number of Observations	16376
Overall Mean Error	1.003×10^{-3}
Root Mean Square Prediction Error	0.559
Standardized Mean	2.101×10^{-3}
Standardized Root Mean Square Prediction Error	5.407
Average Standard Error	0.129

Figure 279. Prediction standard error surface of Maximum Average Summer Mixed Layer Depth (m).

Figure 280. Interpolated prediction surface of Maximum Average Summer Mixed Layer Depth (m).

Maximum Average Fall Mixed Layer Depth

This variable displayed a right-skewed, extremely leptokurtic distribution prior to interpolation (Table 113, Figure 281). The data were higher than predicted by a normal distribution at both tails, while mid-values were lower than the reference line (Figure 282). These areas of underand over-prediction showed a strong spatial pattern over the region (Figure 282).

The semivariogram showed autocorrelation present in the data (Figure 283). The kriged model showed good fit between measured and predicted values (Figure 283). Fair performance of the model was indicated by the cross-validation results (Table 114). The error map showed lower error in Hudson Bay compared to Baffin Bay and Davis Strait, and higher error along the edges of the study extent (Figure 284). The kriged surface is presented in Figure 285.

Property	Value
Number of Observations	16376
Minimum	10.884
Maximum	898.050
Mean	50.671
Median	28.843
Standard Deviation	61.793
Skewness	5.949
Kurtosis	56.735

Table 113. Distributional properties of Maximum Average Fall Mixed Layer Depth (m).

Figure 281. Distribution of Maximum Average Fall Mixed Layer Depth (m). Histogram was illustrated using 10 bins. X axis is shown at 10^{-2} ; Y axis is shown at 10^{-4} .

Figure 282. Normal Q-Q plot for data values of Maximum Average Fall Mixed Layer Depth (m). Points falling under (top right panel) and over (bottom right panel) the reference line are mapped.

Figure 283. Left panel: Semivariogram of Maximum Average Fall Mixed Layer Depth (m). Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 0.254 degrees; number of lags: 12; Parameter: 1.622; Range: 2.033 degrees; Partial Sill: 1189.452. Right panel: Scatterplot of predicted values versus observed values for the model of Maximum Average Fall Mixed Layer Depth (m).

Table	114.	Results	of	cross-validation	of	the	kriged	model	for	Maximum	Average	Fall	Mixed
Layer	Dept	h (m).											

Prediction Error	Value
Number of Observations	16376
Overall Mean Error	-0.012
Root Mean Square Prediction Error	11.126
Standardized Mean	-9.535 x 10 ⁻⁴
Standardized Root Mean Square Prediction Error	0.761
Average Standard Error	14.433

Figure 284. Prediction standard error surface of Maximum Average Fall Mixed Layer Depth (m).

Figure 285. Interpolated prediction surface of Maximum Average Fall Mixed Layer Depth (m).

Maximum Average Winter Mixed Layer Depth

This variable displayed a right-skewed, leptokurtic distribution prior to interpolation (Table 115, Figure 286). The data were higher than predicted by a normal distribution at both tails, while mid-values were lower than the reference line (Figure 287). These areas of under- and over-prediction showed a strong spatial pattern over the region (Figure 287).

The semivariogram showed weak autocorrelation present in the data (Figure 288). The kriged model showed good fit between measured and predicted values (Figure 288). Fair performance of the model was indicated by the cross-validation results (Table 116). The error map showed lower error in Hudson Bay compared to Baffin Bay and Davis Strait, and higher error along the edges of the study extent (Figure 289). The kriged surface is presented in Figure 290.

Property	Value
Number of Observations	16376
Minimum	10.768
Maximum	2183.800
Mean	122.720
Median	43.956
Standard Deviation	214.390
Skewness	3.820
Kurtosis	22.146

Table 115. Distributional properties of Maximum Average Winter Mixed Layer Depth (m).

Figure 286. Distribution of Maximum Average Winter Mixed Layer Depth (m). Histogram was illustrated using 10 bins. X axis is shown at 10^{-3} ; Y axis is shown at 10^{-4} .

Figure 287. Normal Q-Q plot for data values of Maximum Average Winter Mixed Layer Depth (m). Points falling under (top right panel) and over (bottom right panel) the reference line are mapped.

Figure 288. Left panel: Semivariogram of Maximum Average Winter Mixed Layer Depth (m). Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 0.106 degrees; number of lags: 12; Parameter: 2; Range: 0.851 degrees; Partial Sill: 6768.481. Right panel: Scatterplot of predicted values versus observed values for the model of Maximum Average Winter Mixed Layer Depth (m).

Table 116. Resul	ts of cross-validat	on of the kriged	I model for Maxin	mum Average V	Vinter Mixed
Layer Depth (m).					

Prediction Error	Value
Number of Observations	16376
Overall Mean Error	-0.056
Root Mean Square Prediction Error	17.368
Standardized Mean	-1.996 x 10 ⁻³
Standardized Root Mean Square Prediction Error	1.593
Average Standard Error	10.337

Figure 289. Prediction standard error surface of Maximum Average Winter Mixed Layer Depth (m).

Figure 290. Interpolated prediction surface of Maximum Average Winter Mixed Layer Depth (m).

Sea Surface Chlorophyll a

Sea surface chlorophyll a concentration is a proxy for phytoplankton biomass and is therefore related to the vertical flux of particulate organic carbon and food supply to the seafloor (Lutz et al., 2007). Gradients in food supply have often been identified as the main factor in controlling changes in benthic biomass, diversity, distribution, and zonation in the deep sea (Levin et al., 2001; Carney, 2005; Soltwedel et al., 2009; MacDonald et al., 2010; Papiol et al., 2012). In the northwest Atlantic, surface chlorophyll a has shown to be an important determinant in generalized linear models of megafaunal abundance and richness (Beazley et al. 2013) and was an important variable in random forest models predicting the presence of *Geodia* sponge and sponge grounds (Knudby et al., 2013). The spring phytoplankton bloom is thought to be a controlling factor in the reproductive cycles of several deep-sea corals (Sun et al., 2010a; 2010b; 2011; Mercier and Hamel, 2011) and sponges (Spetland et al., 2007) in the North Atlantic. Therefore, we expect that seasonal rather than annual measures of chlorophyll a will be more important in species distribution models.

Spring Chlorophyll *a* Mean

This variable displayed a right-skewed, extremely leptokurtic distribution with outlying data in the upper range prior to interpolation (Table 117, Figure 291). The data were higher than predicted by a normal distribution at both tails, while mid-values were slightly lower than the reference line (Figure 292). These areas of under- and over-prediction showed little spatial pattern over the region (Figure 292).

The semivariogram showed very weak autocorrelation present in the data (Figure 293). The kriged model showed poor fit between measured and predicted values (Figure 293). Very good performance of the model was indicated by the cross-validation results (Table 118). The error map showed patches of high error across the study extent, particularly east off Baffin Island and in Foxe Basin (Figure 294). The kriged surface is presented in Figure 295.

Property	Value
Number of Observations	62911
Minimum	0.217
Maximum	25.219
Mean	1.155
Median	0.962
Standard Deviation	0.780
Skewness	6.934
Kurtosis	136.230

Table 117. Distributional properties of Spring Chlorophyll *a* Mean (mg m⁻³).

Figure 291. Distribution of Spring Chlorophyll *a* Mean (mg m⁻³). Histogram was illustrated using 10 bins. X axis is shown at 10^{-1} ; Y axis is shown at 10^{-4} .

Figure 292. Normal Q-Q plot for data values of Spring Chlorophyll *a* Mean (mg m⁻³). Points falling under (top right panel) and over (bottom right panel) the reference line are mapped.

Figure 293. Left panel: Semivariogram of Spring Chlorophyll *a* Mean (mg m⁻³). Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 4.920 degrees; number of lags: 12; Parameter: 0.752; Range: 39.361 degrees; Partial Sill: 0.662. Right panel: Scatterplot of predicted values versus observed values for the model of Spring Chlorophyll *a* Mean (mg m⁻³).

Table 118. Results of cross-validation of the kriged model for Spring Chlorophyll *a* Mean (mg m^{-3}).

Value
62911
1.659 x 10 ⁻⁴
0.491
4.065 x 10 ⁻⁴
1.023
0.478

Figure 294. Prediction standard error surface of Spring Chlorophyll *a* Mean (mg m⁻³).

Figure 295. Interpolated prediction surface of Spring Chlorophyll *a* Mean (mg m⁻³).

Spring Chlorophyll *a* Minimum

This variable displayed a right-skewed, extremely leptokurtic distribution with outlying data in the upper range prior to interpolation (Table 119, Figure 296). The data were higher than predicted by a normal distribution at both tails, while mid-values were slightly lower than the reference line (Figure 297). These areas of under- and over-prediction showed a spatial pattern over the region (Figure 297).

The semivariogram showed autocorrelation present in the data (Figure 298). The kriged model showed moderate fit between measured and predicted values (Figure 298). Very good performance of the model was indicated by the cross-validation results (Table 120). The error map showed patches of high error across the study extent, particularly off Baffin Island, Foxe Basin, south of Hudson Bay and in the Gulf of Boothia (Figure 299). The kriged surface is presented in Figure 300.

Property	Value
Number of Observations	62911
Minimum	0.025
Maximum	10.788
Mean	0.371
Median	0.303
Standard Deviation	0.294
Skewness	6.667
Kurtosis	105.650

Table 119. Distributional properties of Spring Chlorophyll *a* Minimum (mg m⁻³).

Figure 296. Distribution of Spring Chlorophyll *a* Minimum (mg m⁻³). Histogram was illustrated using 10 bins. X axis is shown at 10^{-1} ; Y axis is shown at 10^{-4} .

Figure 297. Normal Q-Q plot for data values of Spring Chlorophyll *a* Minimum (mg m⁻³). Points falling under (top right panel) and over (bottom right panel) the reference line are mapped.

Figure 298. Left panel: Semivariogram of Spring Chlorophyll *a* Minimum (mg m⁻³). Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 0.021 degrees; number of lags: 12; Parameter: 1.587; Range: 0.167 degrees; Partial Sill: 9.234 x 10^{-3} . Right panel: Scatterplot of predicted values versus observed values for the model of Spring Chlorophyll *a* Minimum (mg m⁻³).

Table 120. Results of cross-validation of the kriged model for Spring Chlorophyll *a* Minimum (mg m^{-3}).

Prediction Error	Value
Number of Observations	62911
Overall Mean Error	-2.412 x 10 ⁻⁵
Root Mean Square Prediction Error	0.101
Standardized Mean	-3.218 x 10 ⁻⁵
Standardized Root Mean Square Prediction Error	1.298
Average Standard Error	0.075

Figure 299. Prediction standard error surface of Spring Chlorophyll *a* Minimum (mg m⁻³).

Figure 300. Interpolated prediction surface of Spring Chlorophyll *a* Minimum (mg m⁻³).

Spring Chlorophyll a Maximum

This variable displayed a right-skewed, extremely leptokurtic distribution prior to interpolation (Table 121, Figure 301). The data were higher than predicted by a normal distribution at both tails, while mid-values were slightly lower than the reference line (Figure 302). These areas of under- and over-prediction showed spatial pattern over the region (Figure 302).

The semivariogram showed autocorrelation present in the data (Figure 303). The kriged model showed poor fit between measured and predicted values (Figure 303). Good performance of the model was indicated by the cross-validation results (Table 122). The error map showed patches of high error across the study extent, particularly off Baffin Island, Foxe Basin, south of Hudson Bay and in the Gulf of Boothia (Figure 304). The kriged surface is presented in Figure 305.

Property	Value
Number of Observations	62911
Minimum	0.232
Maximum	98.423
Mean	4.023
Median	2.506
Standard Deviation	4.937
Skewness	5.079
Kurtosis	53.261

Table 121. Distributional properties of Spring Chlorophyll *a* Maximum (mg m^{-3}).

Figure 301. Distribution of Spring Chlorophyll *a* Maximum (mg m⁻³). Histogram was illustrated using 10 bins. X axis is shown at 10^{-1} ; Y axis is shown at 10^{-4} .

Figure 302. Normal Q-Q plot for data values of Spring Chlorophyll *a* Maximum (mg m⁻³). Points falling under (top right panel) and over (bottom right panel) the reference line are mapped.

Figure 303. Left panel: Semivariogram of Spring Chlorophyll *a* Maximum (mg m⁻³). Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 1.489 degrees; number of lags: 12; Parameter: 0.666; Range: 11.910 degrees; Partial Sill: 15.908. Right panel: Scatterplot of predicted values versus observed values for the model of Spring Chlorophyll *a* Maximum (mg m⁻³).

Table 122. Results of cross-validation of the kriged model for Spring Chlorophyll *a* Maximum (mg m⁻³).

Prediction Error	Value
Number of Observations	62911
Overall Mean Error	6.692 x 10 ⁻⁵
Root Mean Square Prediction Error	3.484
Standardized Mean	2.463 x 10 ⁻⁵
Standardized Root Mean Square Prediction Error	0.902
Average Standard Error	3.866

Figure 304. Prediction standard error surface of Spring Chlorophyll *a* Maximum (mg m⁻³).

Figure 305. Interpolated prediction surface of Spring Chlorophyll *a* Maximum (mg m⁻³).

Spring Chlorophyll *a* Range

This variable displayed a right-skewed, extremely leptokurtic distribution prior to interpolation (Table 123, Figure 306). The data were higher than predicted by a normal distribution at both tails, while mid-values were slightly lower than the reference line (Figure 307). These areas of under- and over-prediction showed strong spatial pattern over the region (Figure 307).

The semivariogram showed weak autocorrelation present in the data (Figure 308). The kriged model showed poor fit between measured and predicted values (Figure 308). Good performance of the model was indicated by the cross-validation results (Table 124). The error map showed patches of high error across the study extent, particularly off Baffin Island, Foxe Basin, south of Hudson Bay and in the Gulf of Boothia (Figure 309). The kriged surface is presented in Figure 310.

Property	Value
Number of Observations	62911
Minimum	3.001 x 10 ⁻⁵
Maximum	98.108
Mean	3.653
Median	2.180
Standard Deviation	4.960
Skewness	5.023
Kurtosis	52.382

Table 123. Distributional properties of Spring Chlorophyll *a* Range (mg m⁻³).

Figure 306. Distribution of Spring Chlorophyll *a* Range (mg m⁻³). Histogram was illustrated using 10 bins. X axis is shown at 10^{-1} ; Y axis is shown at 10^{-4} .

Figure 307. Normal Q-Q plot for data values of Spring Chlorophyll *a* Range (mg m⁻³). Points falling under (top right panel) and over (bottom right panel) the reference line are mapped.

Figure 308. Left panel: Semivariogram of Spring Chlorophyll *a* Range (mg m⁻³). Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 1.489 degrees; number of lags: 12; Parameter: 0.675; Range: 11.910 degrees; Partial Sill: 16.085. Right panel: Scatterplot of predicted values versus observed values for the model of Spring Chlorophyll *a* Range (mg m⁻³).

Table 124. Results of cross-validation of the kriged model for Spring Chlorophyll *a* Range (mg m^{-3}).

Prediction Error	Value
Number of Observations	62911
Overall Mean Error	3.099 x 10 ⁻⁵
Root Mean Square Prediction Error	3.482
Standardized Mean	1.272 x 10 ⁻⁵
Standardized Root Mean Square Prediction Error	0.907
Average Standard Error	3.840

Figure 309. Prediction standard error surface of Spring Chlorophyll *a* Range (mg m⁻³).

Figure 310. Interpolated prediction surface of Spring Chlorophyll *a* Range (mg m⁻³).

Summer Chlorophyll a Mean

This variable displayed a right-skewed, leptokurtic distribution with outlying data in the upper range prior to interpolation (Table 125, Figure 311). The data were higher than predicted by a normal distribution at both tails, while mid-values were slightly lower than the reference line (Figure 312). These areas of under- and over-prediction showed spatial pattern over the region (Figure 312).

The semivariogram showed autocorrelation present in the data (Figure 313). The kriged model showed a good fit between measured and predicted values (Figure 313). Good performance of the model was indicated by the cross-validation results (Table 126). The error map displayed a grid-like pattern over the study extent (Figure 314). The kriged surface is presented in Figure 315.

Property	Value
Number of Observations	77369
Minimum	0.277
Maximum	8.013
Mean	0.699
Median	0.607
Standard Deviation	0.411
Skewness	3.935
Kurtosis	30.406

Table 125. Distributional properties of Summer Chlorophyll *a* Mean (mg m⁻³).

Figure 311. Distribution of Summer Chlorophyll *a* Mean (mg m⁻³). Histogram was illustrated using 10 bins. Y axis is shown at 10^{-4} .

Figure 312. Normal Q-Q plot for data values of Summer Chlorophyll *a* Mean (mg m⁻³). Points falling under (top right panel) and over (bottom right panel) the reference line are mapped.

Figure 313. Left panel: Semivariogram of Summer Chlorophyll *a* Mean (mg m⁻³). Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 0.021 degrees; number of lags: 12; Parameter: 2; Range: 0.167 degrees; Partial Sill: 9.852 x 10^{-3} . Right panel: Scatterplot of predicted values versus observed values for the model of Summer Chlorophyll *a* Mean (mg m⁻³).

Table 126. Results of cross-validation of the kriged model for Summer Chlorophyll *a* Mean (mg m^{-3}).

Prediction Error	Value
Number of Observations	77369
Overall Mean Error	-3.061 x 10 ⁻⁴
Root Mean Square Prediction Error	0.086
Standardized Mean	-2.324 x 10 ⁻³
Standardized Root Mean Square Prediction Error	1.593
Average Standard Error	0.052

Figure 314. Prediction standard error surface of Summer Chlorophyll *a* Mean (mg m⁻³).

Figure 315. Interpolated prediction surface of Summer Chlorophyll *a* Mean (mg m⁻³).

Summer Chlorophyll *a* Minimum

This variable displayed a right-skewed, extremely leptokurtic distribution prior to interpolation (Table 127, Figure 316). The data were higher than predicted by a normal distribution at both tails, while mid-values were slightly lower than the reference line (Figure 317). These areas of under- and over-prediction showed spatial pattern over the region (Figure 317).

The semivariogram showed autocorrelation present in the data (Figure 318). The kriged model showed a good fit between measured and predicted values (Figure 318). Good performance of the model was indicated by the cross-validation results (Table 128). The error map displayed a grid-like pattern over the study extent (Figure 319). The kriged surface is presented in Figure 320.

Property	Value
Number of Observations	77369
Minimum	0.055
Maximum	4.214
Mean	0.343
Median	0.297
Standard Deviation	0.194
Skewness	5.907
Kurtosis	68.497

Table 127. Distributional properties of Summer Chlorophyll *a* Minimum (mg m⁻³).

Figure 316. Distribution of Summer Chlorophyll *a* Minimum (mg m⁻³). Histogram was illustrated using 10 bins. Y axis is shown at 10^{-4} .

Figure 317. Normal Q-Q plot for data values of Summer Chlorophyll *a* Minimum (mg m⁻³). Points falling under (top right panel) and over (bottom right panel) the reference line are mapped.

Figure 318. Left panel: Semivariogram of Summer Chlorophyll *a* Minimum (mg m⁻³). Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 0.022 degrees; number of lags: 12; Parameter: 1.559; Range: 0.181 degrees; Partial Sill: 2.462 x 10⁻³. Right panel: Scatterplot of predicted values versus observed values for the model of Summer Chlorophyll *a* Minimum (mg m⁻³).

Table 128. Results of cross-validation of the kriged model for Summer Chlorophyll *a* Minimum $(mg m^{-3})$.

Prediction Error	Value
Number of Observations	77369
Overall Mean Error	-1.551 x 10 ⁻⁴
Root Mean Square Prediction Error	0.038
Standardized Mean	-2.648 x 10 ⁻³
Standardized Root Mean Square Prediction Error	1.016
Average Standard Error	0.037

Figure 319. Prediction standard error surface of Summer Chlorophyll *a* Minimum (mg m⁻³).

Figure 320. Interpolated prediction surface of Summer Chlorophyll *a* Minimum (mg m⁻³).

Summer Chlorophyll *a* Maximum

This variable displayed a right-skewed, extremely leptokurtic distribution with outlying data in the upper range prior to interpolation (Table 129, Figure 321). The data were higher than predicted by a normal distribution at both tails, while mid-values were slightly lower than the reference line (Figure 322). These areas of under- and over-prediction showed spatial pattern over the region (Figure 322).

The semivariogram showed weak autocorrelation present in the data (Figure 323). The kriged model showed a poor fit between measured and predicted values (Figure 323). Good performance of the model was indicated by the cross-validation results (Table 130). The error map displayed a grid-like pattern over the study extent (Figure 324). The kriged surface is presented in Figure 325.

Property	Value
Number of Observations	77369
Minimum	0.370
Maximum	82.209
Mean	1.770
Median	1.296
Standard Deviation	2.024
Skewness	9.741
Kurtosis	203.040

Table 129. Distributional properties of Summer Chlorophyll *a* Maximum (mg m⁻³).

Figure 321. Distribution of Summer Chlorophyll *a* Maximum (mg m⁻³). Histogram was illustrated using 10 bins. X axis is shown at 10^{-1} ; Y axis is shown at 10^{-4} .

Figure 322. Normal Q-Q plot for data values of Summer Chlorophyll *a* Maximum (mg m⁻³). Points falling under (top right panel) and over (bottom right panel) the reference line are mapped.

Figure 323. Left panel: Semivariogram of Summer Chlorophyll *a* Maximum (mg m⁻³). Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 0.021 degrees; number of lags: 12; Parameter: 1.807; Range: 0.167 degrees; Partial Sill: 2.909. Right panel: Scatterplot of predicted values versus observed values for the model of Summer Chlorophyll *a* Maximum (mg m⁻³).

Table 130. Results of cross-validation of the kriged model for Summer Chlorophyll *a* Maximum (mg m⁻³).

Prediction Error	Value
Number of Observations	77369
Overall Mean Error	-1.427 x 10 ⁻⁴
Root Mean Square Prediction Error	1.343
Standardized Mean	-1.520 x 10 ⁻⁶
Standardized Root Mean Square Prediction Error	1.164
Average Standard Error	1.153

Figure 324. Prediction standard error surface of Summer Chlorophyll *a* Maximum (mg m⁻³).

Figure 325. Interpolated prediction surface of Summer Chlorophyll *a* Maximum (mg m⁻³).

Summer Chlorophyll *a* Range

This variable displayed a right-skewed, extremely leptokurtic distribution with outlying data in the upper range prior to interpolation (Table 131, Figure 326). The data were higher than predicted by a normal distribution at both tails, while mid-values were slightly lower than the reference line (Figure 327). These areas of under- and over-prediction showed spatial pattern over the region (Figure 327).

The semivariogram showed weak autocorrelation present in the data (Figure 328). The kriged model showed a poor fit between measured and predicted values (Figure 328). Good performance of the model was indicated by the cross-validation results (Table 132). The error map displayed a grid-like pattern over the study extent (Figure 329). The kriged surface is presented in Figure 330.

Property	Value
Number of Observations	77369
Minimum	1.150 x 10 ⁻³
Maximum	81.975
Mean	1.427
Median	0.970
Standard Deviation	1.950
Skewness	10.596
Kurtosis	233.710

Table 131. Distributional properties of Summer Chlorophyll *a* Range (mg m⁻³).

Figure 326. Distribution of Summer Chlorophyll *a* Range (mg m⁻³). Histogram was illustrated using 10 bins. X axis is shown at 10^{-1} ; Y axis is shown at 10^{-4} .

Figure 327. Normal Q-Q plot for data values of Summer Chlorophyll *a* Range (mg m⁻³). Points falling under (top right panel) and over (bottom right panel) the reference line are mapped.

Figure 328. Left panel: Semivariogram of Summer Chlorophyll *a* Range (mg m⁻³). Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 0.021 degrees; number of lags: 12; Parameter: 1.805; Range: 0.167 degrees; Partial Sill: 2.908. Right panel: Scatterplot of predicted values versus observed values for the model of Summer Chlorophyll *a* Range (mg m⁻³).

Table 132. Results of cross-validation of the kriged model for Summer Chlorophyll *a* Range (mg m^{-3}).

Prediction Error	Value
Number of Observations	77369
Overall Mean Error	5.356 x 10 ⁻⁶
Root Mean Square Prediction Error	1.342
Standardized Mean	6.433 x 10 ⁻⁶
Standardized Root Mean Square Prediction Error	1.162
Average Standard Error	1.154

Figure 329. Prediction standard error surface of Spring Chlorophyll *a* Range (mg m⁻³).

Figure 330. Interpolated prediction surface of Summer Chlorophyll *a* Range (mg m⁻³).

Annual Chlorophyll a Mean

This variable displayed a right-skewed, extremely leptokurtic distribution with outlying data in the upper range prior to interpolation (Table 133, Figure 331). The data were higher than predicted by a normal distribution at both tails, while mid-values were slightly lower than the reference line (Figure 332). These areas of under- and over-prediction showed spatial pattern over the region (Figure 332).

The semivariogram showed autocorrelation present in the data (Figure 333). The kriged model showed a good fit between measured and predicted values (Figure 333). Good performance of the model was indicated by the cross-validation results (Table 134). The error map displayed a grid-like pattern over the study extent (Figure 334). The kriged surface is presented in Figure 335.

Property	Value
Number of Observations	77369
Minimum	0.289
Maximum	8.504
Mean	0.806
Median	0.723
Standard Deviation	0.457
Skewness	3.144
Kurtosis	21.812

Table 133. Distributional properties of Annual Chlorophyll *a* Mean (mg m⁻³).

Figure 331. Distribution of Annual Chlorophyll *a* Mean (mg m⁻³). Histogram was illustrated using 10 bins. Y axis is shown at 10^{-4} .

Figure 332. Normal Q-Q plot for data values of Annual Chlorophyll *a* Mean (mg m⁻³). Points falling under (top right panel) and over (bottom right panel) the reference line are mapped.

Figure 333. Left panel: Semivariogram of Annual Chlorophyll *a* Mean (mg m⁻³). Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 0.027 degrees; number of lags: 12; Parameter: 1.058; Range: 0.218 degrees; Partial Sill: 0.023. Right panel: Scatterplot of predicted values versus observed values for the model of Annual Chlorophyll *a* Mean (mg m⁻³).

Table 134. Results of cross-validation of the kriged model for Annual Chlorophyll *a* Mean (mg m^{-3}).

Prediction Error	Value
Number of Observations	77369
Overall Mean Error	-3.059 x 10 ⁻⁴
Root Mean Square Prediction Error	0.114
Standardized Mean	-1.860 x 10 ⁻³
Standardized Root Mean Square Prediction Error	0.887
Average Standard Error	0.128

Figure 334. Prediction standard error surface of Annual Chlorophyll *a* Mean (mg m⁻³).

Figure 335. Interpolated prediction surface of Annual Chlorophyll *a* Mean (mg m⁻³).

Annual Chlorophyll a Minimum

This variable displayed a right-skewed, extremely leptokurtic distribution prior to interpolation (Table 135, Figure 336). The data were higher than predicted by a normal distribution at both tails, while mid-values were slightly lower than the reference line (Figure 337). These areas of under- and over-prediction showed spatial pattern over the region (Figure 337).

The semivariogram showed weak autocorrelation present in the data (Figure 338). The kriged model showed a good fit between measured and predicted values (Figure 338). Good performance of the model was indicated by the cross-validation results (Table 136). The error map showed low error across the study area except along its boundaries (Figure 339). The kriged surface is presented in Figure 340.

Property	Value
Number of Observations	77369
Minimum	0.023
Maximum	4.156
Mean	0.272
Median	0.236
Standard Deviation	0.181
Skewness	6.252
Kurtosis	74.928

Table 135. Distributional properties of Annual Chlorophyll *a* Minimum (mg m⁻³).

Figure 336. Distribution of Annual Chlorophyll *a* Minimum (mg m⁻³). Histogram was illustrated using 10 bins. Y axis is shown at 10^{-4} .

Figure 337. Normal Q-Q plot for data values of Annual Chlorophyll *a* Minimum (mg m⁻³). Points falling under (top right panel) and over (bottom right panel) the reference line are mapped.

Figure 338. Left panel: Semivariogram of Annual Chlorophyll *a* Minimum (mg m⁻³). Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 0.056 degrees; number of lags: 12; Parameter: 2; Range: 0.445 degrees; Partial Sill: 1.555×10^{-3} . Right panel: Scatterplot of predicted values versus observed values for the model of Annual Chlorophyll *a* Minimum (mg m⁻³).

Table 136. Results of cross-validation of the kriged model for Annual Chlorophyll *a* Minimum $(mg m^{-3})$.

Prediction Error	Value
Number of Observations	77369
Overall Mean Error	-6.915 x 10 ⁻⁵
Root Mean Square Prediction Error	0.048
Standardized Mean	-9.483 x 10 ⁻⁴
Standardized Root Mean Square Prediction Error	0.939
Average Standard Error	0.051

Figure 339. Prediction standard error surface of Annual Chlorophyll *a* Minimum (mg m⁻³).

Figure 340. Interpolated prediction surface of Annual Chlorophyll *a* Minimum (mg m⁻³).

Annual Chlorophyll a Maximum

This variable displayed a right-skewed, extremely leptokurtic distribution prior to interpolation (Table 137, Figure 341). The data were higher than predicted by a normal distribution at both tails, while mid-values were slightly lower than the reference line (Figure 342). These areas of under- and over-prediction showed spatial pattern over the region (Figure 342).

The semivariogram showed autocorrelation present in the data (Figure 343). The kriged model showed poor fit between measured and predicted values (Figure 343). Good performance of the model was indicated by the cross-validation results (Table 138). The error map displayed a grid-like pattern over the study extent (Figure 344). The kriged surface is presented in Figure 345.

Property	Value
Number of Observations	77369
Minimum	0.370
Maximum	98.423
Mean	3.894
Median	2.409
Standard Deviation	4.483
Skewness	5.159
Kurtosis	53.817

Table 137. Distributional properties of Annual Chlorophyll *a* Maximum (mg m⁻³).

Figure 341. Distribution of Annual Chlorophyll *a* Maximum (mg m⁻³). Histogram was illustrated using 10 bins. X axis is shown at 10^{-1} ; Y axis is shown at 10^{-4} .

Figure 342. Normal Q-Q plot for data values of Annual Chlorophyll *a* Maximum (mg m⁻³). Points falling under (top right panel) and over (bottom right panel) the reference line are mapped.

Figure 343. Left panel: Semivariogram of Annual Chlorophyll *a* Maximum (mg m⁻³). Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 0.273 degrees; number of lags: 12; Parameter: 0.365; Range: 2.812 degrees; Partial Sill: 23.158. Right panel: Scatterplot of predicted values versus observed values for the model of Annual Chlorophyll *a* Maximum (mg m⁻³).

Table 138. Results of cross-validation of the kriged model for Annual Chlorophyll *a* Maximum (mg m^{-3}).

Prediction Error	Value
Number of Observations	77369
Overall Mean Error	-8.504 x 10 ⁻⁶
Root Mean Square Prediction Error	3.357
Standardized Mean	1.005 x 10 ⁻⁵
Standardized Root Mean Square Prediction Error	0.867
Average Standard Error	3.875

Figure 344. Prediction standard error surface of Annual Chlorophyll *a* Maximum (mg m⁻³).

Figure 345. Interpolated prediction surface of Annual Chlorophyll *a* Maximum (mg m⁻³).

Annual Chlorophyll a Range

This variable displayed a right-skewed, extremely leptokurtic distribution prior to interpolation (Table 139, Figure 346). The data were higher than predicted by a normal distribution at both tails, while mid-values were slightly lower than the reference line (Figure 347). These areas of under- and over-prediction showed spatial pattern over the region (Figure 347).

The semivariogram showed autocorrelation present in the data (Figure 348). The kriged model showed poor fit between measured and predicted values (Figure 348). Good performance of the model was indicated by the cross-validation results (Table 140). The error map displayed a grid-like pattern over the study extent (Figure 349). The kriged surface is presented in Figure 350.

Property	Value
Number of Observations	77369
Minimum	$1.150 \ge 10^{-3}$
Maximum	98.108
Mean	3.622
Median	2.157
Standard Deviation	4.838
Skewness	5.174
Kurtosis	54.027

Table 139. Distributional properties of Annual Chlorophyll *a* Range (mg m⁻³).

Figure 346. Distribution of Annual Chlorophyll *a* Range (mg m⁻³). Histogram was illustrated using 10 bins. X axis is shown at 10^{-1} ; Y axis is shown at 10^{-4} .

Figure 347. Normal Q-Q plot for data values of Annual Chlorophyll *a* Range (mg m⁻³). Points falling under (top right panel) and over (bottom right panel) the reference line are mapped.

Figure 348. Left panel: Semivariogram of Annual Chlorophyll *a* Range (mg m⁻³). Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 0.271 degrees; number of lags: 12; Parameter: 0.362; Range: 2.170 degrees; Partial Sill: 23.080. Right panel: Scatterplot of predicted values versus observed values for the model of Annual Chlorophyll *a* Range (mg m⁻³).

Table 140. Results of cross-validation of the kriged model for Annual Chlorophyll *a* Range (mg m^{-3}).

Prediction Error	Value
Number of Observations	77369
Overall Mean Error	9.777 x 10 ⁻⁵
Root Mean Square Prediction Error	3.359
Standardized Mean	3.249 x 10 ⁻⁵
Standardized Root Mean Square Prediction Error	0.865
Average Standard Error	3.884

Figure 349. Prediction standard error surface of Annual Chlorophyll *a* Range (mg m⁻³).

Figure 350. Interpolated prediction surface of Annual Chlorophyll *a* Range (mg m⁻³).

Primary Production

Primary production measures the rate at which atmospheric or aqueous carbon dioxide is converted to organic carbon by autotrophs (Bender et al., 1987) and relates more directly to the flux of particulate organic carbon and food supply to the seafloor than sea surface chlorophyll a concentration. However, as satellite-derived chlorophyll a is a main source of data used in the calculation of the primary production variables in this report, we expect these variables to be highly correlated.

Spring Primary Production Mean

This variable had poor coverage over much of the study extent. It displayed a near-normal distribution prior to interpolation, with leptokurtosis (Table 141, Figure 351). The data were higher than predicted by a normal distribution at both tails however the mid-region was very well-predicted (Figure 352). Only a single data point fell below the reference line.

The semivariogram showed autocorrelation present in the data (Figure 353). The kriged model showed a good fit between measured and predicted values (Figure 353). Good performance of the model was indicated by the cross-validation results (Table 142). The error map was discontinuous and showed patches of high error in those areas where data points were scarce (Figure 354). The kriged surface is presented in Figure 355. Predictions were discontinuous in data-poor areas.

Property	Value
Number of Observations	17007
Minimum	173.010
Maximum	1344.800
Mean	684.990
Median	667.710
Standard Deviation	107.120
Skewness	1.013
Kurtosis	4.671

Table 141. Distributional properties of Spring Primary Production Mean (mg C m⁻² day⁻¹).

Figure 351. Distribution of Spring Primary Production Mean (mg C m⁻² day⁻¹). Histogram was illustrated using 10 bins. X axis is shown at 10^{-3} ; Y axis is shown at 10^{-3} .

Figure 352. Normal Q-Q plot for data values of Spring Primary Production Mean (mg C m^{-2} day⁻¹). Points falling under (top right panel) and over (bottom right panel) the reference line are mapped.

Figure 353. Left panel: Semivariogram of Spring Primary Production Mean (mg C m⁻² day⁻¹). Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 0.053 degrees; number of lags: 12; Parameter: 2; Range: 0.424 degrees; Partial Sill: 1436.812. Right panel: Scatterplot of predicted values versus observed values for the model of Spring Primary Production Mean (mg C m⁻² day⁻¹).

Prediction Error	Value
Number of Observations	17007
Overall Mean Error	0.027
Root Mean Square Prediction Error	53.093
Standardized Mean	4.773 x 10 ⁻⁴
Standardized Root Mean Square Prediction Error	1.076
Average Standard Error	48.782

Table 142. Results of cross-validation of the kriged model for Spring Primary Production Mean $(mg C m^{-2} day^{-1})$.

Figure 354. Prediction standard error surface of Spring Primary Production Mean (mg C m⁻² day⁻¹).

Figure 355. Interpolated prediction surface of Spring Primary Production Mean (mg C m⁻² day⁻¹).

Spring Primary Production Minimum

This variable had poor coverage over much of the study extent. It displayed a near-normal distribution prior to interpolation, with slight skewness (Table 143, Figure 356). The data were higher than predicted by a normal distribution at both tails however the mid-region was very well-predicted (Figure 357). These areas of under- and over-prediction showed no strong spatial pattern over the region (Figure 357).

The semivariogram showed autocorrelation present in the data (Figure 358). The kriged model showed a good fit between measured and predicted values (Figure 358). Very good performance of the model was indicated by the cross-validation results (Table 144). The error map was discontinuous and showed patches of high error in those areas where data points were scarce (Figure 359). The kriged surface is presented in Figure 360. Predictions were discontinuous in data-poor areas.

Property	Value
Number of Observations	17007
Minimum	39.890
Maximum	1038.500
Mean	356.740
Median	326.770
Standard Deviation	136.520
Skewness	0.772
Kurtosis	3.086

Table 143. Distributional properties of Spring Primary Production Minimum (mg C m⁻² day⁻¹).

Figure 356. Distribution of Spring Primary Production Minimum (mg C m⁻² day⁻¹). Histogram was illustrated using 10 bins. X axis is shown at 10^{-3} ; Y axis is shown at 10^{-3} .

Figure 357. Normal Q-Q plot for data values of Spring Primary Production Minimum (mg C m⁻² day⁻¹). Points falling under (top right panel) and over (bottom right panel) the reference line are mapped.

Figure 358. Left panel: Semivariogram of Spring Primary Production Minimum (mg C m^{-2} day¹). Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 0.053 degrees; number of lags: 12; Parameter: 2; Range: 0.426 degrees; Partial Sill: 2031.490. Right panel: Scatterplot of predicted values versus observed values for the model of Spring Primary Production Minimum (mg C m^{-2} day⁻¹).

Table	144.	Results	of	cross	-validation	of	the	kriged	model	for	Spring	Primary	Production
Minim	um (1	mg C m ⁻²	2 da	y^{-1}).				_				-	

Prediction Error	Value
Number of Observations	17007
Overall Mean Error	0.059
Root Mean Square Prediction Error	61.362
Standardized Mean	7.975 x 10 ⁻⁴
Standardized Root Mean Square Prediction Error	1.024
Average Standard Error	59.532

Figure 359. Prediction standard error surface of Spring Primary Production Minimum (mg C m⁻² day⁻¹).

Figure 360. Interpolated prediction surface of Spring Primary Production Minimum (mg C m^{-2} day⁻¹).

Spring Primary Production Maximum

This variable had poor coverage over much of the study extent. It displayed a slightly skewed, leptokurtic distribution prior to interpolation (Table 145, Figure 361). The data were higher than predicted by a normal distribution at both tails however the mid-region was well-predicted, with some data points falling just below the reference line (Figure 362). These areas of under- and over-prediction showed no strong spatial pattern over the region (Figure 362).

The semivariogram showed weak autocorrelation present in the data (Figure 363). The kriged model showed good fit between measured and predicted values (Figure 363). Good performance of the model was indicated by the cross-validation results (Table 146). The error map was discontinuous and showed patches of high error in those areas where data points were scarce (Figure 364). The kriged surface is presented in Figure 365. Predictions were discontinuous in data-poor areas.

Property	Value
Number of Observations	17007
Minimum	426.800
Maximum	3163.600
Mean	1085.900
Median	1043.100
Standard Deviation	232.360
Skewness	0.984
Kurtosis	4.472

Table 145. Distributional properties of Spring Primary Production Maximum (mg C m⁻² day⁻¹).

Figure 361. Distribution of Spring Primary Production Maximum (mg C m⁻² day⁻¹). Histogram was illustrated using 10 bins. X axis is shown at 10^{-3} ; Y axis is shown at 10^{-3} .

Figure 362. Normal Q-Q plot for data values of Spring Primary Production Maximum (mg C m⁻² day⁻¹). Points falling under (top right panel) and over (bottom right panel) the reference line are mapped.

Figure 363. Left panel: Semivariogram of Spring Primary Production Maximum (mg C m⁻² day⁻¹). Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 0.100 degrees; number of lags: 12; Parameter: 1.670; Range: 0.823 degrees; Partial Sill: 10654.160. Right panel: Scatterplot of predicted values versus observed values for the model of Spring Primary Production Maximum (mg C m⁻² day⁻¹).

Table 146. Results of cross-validation of the kriged model for Spring Primary Production Maximum (mg C $m^{-2} day^{-1}$).

Prediction Error	Value
Number of Observations	17007
Overall Mean Error	-0.047
Root Mean Square Prediction Error	178.937
Standardized Mean	-2.725 x 10 ⁻⁴
Standardized Root Mean Square Prediction Error	1.028
Average Standard Error	173.744

Figure 364. Prediction standard error surface of Spring Primary Production Maximum (mg C m^{-2} day⁻¹).

Figure 365. Interpolated prediction surface of Spring Primary Production Maximum (mg C m^{-2} day⁻¹).

Spring Primary Production Range

This variable had poor coverage over much of the study extent. It displayed a near-normal distribution prior to interpolation, with slight skew and leptokurtosis (Table 147, Figure 366). The data were higher than predicted by a normal distribution, and no points fell under the reference line (Figure 367). These areas of over-prediction showed no strong spatial pattern over the region (Figure 367).

The semivariogram showed autocorrelation present in the data (Figure 368). The kriged model showed a poor fit between measured and predicted values (Figure 368). Nonetheless very good performance of the model was indicated by the cross-validation results (Table 148). The error map was discontinuous and showed patches of high error in those areas where data points were scarce (Figure 369). The kriged surface is presented in Figure 370. Predictions were discontinuous in data-poor areas.

Property	Value
Number of Observations	17007
Minimum	36.480
Maximum	2727.700
Mean	729.180
Median	705.700
Standard Deviation	242.390
Skewness	0.582
Kurtosis	4.538

Table 147. Distributional properties of Spring Primary Production Range (mg C m⁻² day⁻¹).

Figure 366. Distribution of Spring Primary Production Range (mg C m⁻² day⁻¹). Histogram was illustrated using 10 bins. X axis is shown at 10^{-3} ; Y axis is shown at 10^{-3} .

Figure 367. Normal Q-Q plot for data values of Spring Primary Production Range (mg C m^{-2} day⁻¹). Points falling over the reference line are mapped; no points fall under the reference line.

Figure 368. Left panel: Semivariogram of Spring Primary Production Range (mg C m⁻² day⁻¹). Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 0.501 degrees; number of lags: 12; Parameter: 0.748; Range: 4.007 degrees; Partial Sill: 25852.560. Right panel: Scatterplot of predicted values versus observed values for the model of Spring Primary Production Range (mg C m⁻² day⁻¹).

Table 148	3. Results c	of cross-validation	of the k	criged model	for Spring	Primary	Production	Range
$(mg C m^{-2})$	2 day ⁻¹).			C	1 0	•		U

Prediction Error	Value
Number of Observations	17007
Overall Mean Error	-0.082
Root Mean Square Prediction Error	188.334
Standardized Mean	-4.377 x 10 ⁻⁴
Standardized Root Mean Square Prediction Error	1.017
Average Standard Error	184.791

Figure 369. Prediction standard error surface of Spring Primary Production Range (mg C m^{-2} day⁻¹).

Figure 370. Interpolated prediction surface of Spring Primary Production Range (mg C m^{-2} day⁻¹).

Spring Primary Production Average Minimum

This variable had poor coverage over much of the study extent. It displayed a near-normal distribution prior to interpolation (Table 149, Figure 371). The data were higher than predicted by a normal distribution, and no points fell under the reference line (Figure 372). These areas of over-prediction showed no strong spatial pattern over the region (Figure 372).

The semivariogram showed autocorrelation present in the data (Figure 373). The kriged model showed a good fit between measured and predicted values (Figure 373). Nonetheless very good performance of the model was indicated by the cross-validation results (Table 150). The error map was discontinuous and showed patches of high error in those areas where data points were scarce (Figure 374). The kriged surface is presented in Figure 375. Predictions were discontinuous in data-poor areas.

Table	149.	Distributional	properties of	of Spring	Primary	Production	Average	Minimum	(mg C	m^{-2}
day^{-1}).					-		-		-	

Property	Value
Number of Observations	17007
Minimum	64.068
Maximum	1167.100
Mean	492.070
Median	486.910
Standard Deviation	125.320
Skewness	0.535
Kurtosis	3.402

Figure 371. Distribution of Spring Primary Production Average Minimum (mg C m^{-2} day⁻¹). Histogram was illustrated using 10 bins. X axis is shown at 10⁻³; Y axis is shown at 10⁻³.

Figure 372. Normal Q-Q plot for data values of Spring Primary Production Average Minimum (mg C m^{-2} day⁻¹). Points falling over the reference line are mapped; no points fall under the reference line.

Figure 373. Left panel: Semivariogram of Spring Primary Production Average Minimum (mg C $m^{-2} day^{-1}$). Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 0.042 degrees; number of lags: 12; Parameter: 2; Range: 0.333 degrees; Partial Sill: 1544.585. Right panel: Scatterplot of predicted values versus observed values for the model of Spring Primary Production Average Minimum (mg C $m^{-2} day^{-1}$).

Table	150.	Results	of	cross-validation	of	the	kriged	model	for	Spring	Primary	Production
Avera	ge Mi	nimum (mg	$C m^{-2} day^{-1}$).			-					

Prediction Error	Value
Number of Observations	17007
Overall Mean Error	0.023
Root Mean Square Prediction Error	54.929
Standardized Mean	3.654 x 10 ⁻⁴
Standardized Root Mean Square Prediction Error	1.039
Average Standard Error	52.460

Figure 374. Prediction standard error surface of Spring Primary Production Average Minimum (mg C $m^{-2} day^{-1}$).

Figure 375. Interpolated prediction surface of Spring Primary Production Average Minimum (mg C $m^{-2} day^{-1}$).

Spring Primary Production Average Maximum

This variable had poor coverage over much of the study extent. It displayed a near-normal distribution prior to interpolation, with slight skew and leptokurtosis (Table 151, Figure 376). The data were higher than predicted by a normal distribution at both tails however the mid-region was well-predicted with some points falling below the reference line (Figure 377). These areas of under- and over-prediction showed no spatial pattern over the region (Figure 377).

The semivariogram showed autocorrelation present in the data (Figure 378). The kriged model showed poor fit between measured and predicted values (Figure 378). Nonetheless, very good performance of the model was indicated by the cross-validation results (Table 152). The error map was discontinuous and showed patches of high error in those areas where data points were scarce (Figure 379). The kriged surface is presented in Figure 380. Predictions were discontinuous in data-poor areas.

Property	Value
Number of Observations	17007
Minimum	349.330
Maximum	1753.000
Mean	875.120
Median	848.680
Standard Deviation	132.770
Skewness	1.059
Kurtosis	4.990

Table 151. Distributional properties of Spring Primary Production Average Maximum (mg C m⁻² day⁻¹).

Figure 376. Distribution of Spring Primary Production Average Maximum (mg C m⁻² day⁻¹). Histogram was illustrated using 10 bins. X axis is shown at 10^{-3} ; Y axis is shown at 10^{-3} .

Figure 377. Normal Q-Q plot for data values of Spring Primary Production Average Maximum (mg C $m^{-2} day^{-1}$). Points falling under (top right panel) and over (bottom right panel) the reference line are mapped.

Figure 378. Left panel: Semivariogram of Spring Primary Production Average Maximum (mg C $m^{-2} day^{-1}$). Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 0.057 degrees; number of lags: 12; Parameter: 2; Range: 0.455 degrees; Partial Sill: 2660.101. Right panel: Scatterplot of predicted values versus observed values for the model of Spring Primary Production Average Maximum (mg C $m^{-2} day^{-1}$).

Table	152.	Results	of	cross-validation	of	the	kriged	model	for	Spring	Primary	Production
Avera	ge Ma	aximum ((mg	$C m^{-2} day^{-1}$).			U			1 0		

Prediction Error	Value
Number of Observations	17007
Overall Mean Error	0.012
Root Mean Square Prediction Error	87.644
Standardized Mean	1.281 x 10 ⁻⁴
Standardized Root Mean Square Prediction Error	1.041
Average Standard Error	83.602

Figure 379. Prediction standard error surface of Spring Primary Production Average Maximum (mg C $m^{-2} day^{-1}$).

Figure 380. Interpolated prediction surface of Spring Primary Production Average Maximum (mg C $m^{-2} day^{-1}$).

Spring Primary Production Average Range

This variable had poor coverage over much of the study extent. It displayed a near-normal distribution prior to interpolation, with slight skew and leptokurtosis (Table 153, Figure 381). The data were higher than predicted by a normal distribution, and no points fell under the reference line (Figure 382). These areas of over-prediction showed no strong spatial pattern over the region (Figure 382).

The semivariogram showed weak autocorrelation present in the data (Figure 383). The kriged model showed a fair fit between measured and predicted values (Figure 383). Nonetheless, very good performance of the model was indicated by the cross-validation results (Table 154). The error map was discontinuous and showed patches of high error in those areas where data points were scarce (Figure 384). The kriged surface is presented in Figure 385. Predictions were discontinuous in data-poor areas.

Property	Value
Number of Observations	17007
Minimum	1.42
Maximum	1127.200
Mean	383.050
Median	379.940
Standard Deviation	130.200
Skewness	0.191
Kurtosis	3.389

Table 153. Distributional properties of Spring Primary Production Average Range (mg C m^{-2} day⁻¹).

Figure 381. Distribution of Spring Primary Production Average Range (mg C m⁻² day⁻¹). Histogram was illustrated using 10 bins. X axis is shown at 10^{-3} ; Y axis is shown at 10^{-3} .

Figure 382. Normal Q-Q plot for data values of Spring Primary Production Average Range (mg C m⁻² day⁻¹). Points falling over the reference line are mapped; no points fall under the reference line.

Figure 383. Left panel: Semivariogram of Spring Primary Production Average Range (mg C m⁻² day⁻¹). Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 0.097 degrees; number of lags: 12; Parameter: 1.597; Range: 0.773 degrees; Partial Sill: 3524.317. Right panel: Scatterplot of predicted values versus observed values for the model of Spring Primary Production Average Range (mg C m⁻² day⁻¹).

Table	154.	Results	of	cross-validation	of	the	kriged	model	for	Spring	Primary	Production
Avera	ge Ra	nge (mg	C n	$n^{-2} day^{-1}$).								

Prediction Error	Value
Number of Observations	17007
Overall Mean Error	-0.035
Root Mean Square Prediction Error	95.453
Standardized Mean	-3.781 x 10 ⁻⁴
Standardized Root Mean Square Prediction Error	1.020
Average Standard Error	93.237

Figure 384. Prediction standard error surface of Spring Primary Production Average Range (mg C $m^{-2} day^{-1}$).

Figure 385. Interpolated prediction surface of Spring Primary Production Average Range (mg C $m^{-2} day^{-1}$).

Summer Primary Production Mean

This variable had good coverage over the study extent and displayed a near-normal distribution prior to interpolation (Table 155, Figure 386). The data were lower than predicted by a normal distribution at both tails, while mid-values were slightly higher in the upper mid-range values (Figure 387). These areas of under- and over-prediction showed spatial pattern over the region (Figure 387).

The semivariogram showed moderate autocorrelation present in the data (Figure 388). The kriged model showed a good fit between measured and predicted values (Figure 388). Good performance of the model was indicated by the cross-validation results (Table 156). The error map showed moderate error in the northern portion of the study extent, with patches of high error interspersed (Figure 389). The kriged surface is presented in Figure 390.

Property	Value
Number of Observations	33872
Minimum	94.012
Maximum	1083.600
Mean	658.900
Median	653.610
Standard Deviation	115.980
Skewness	0.176
Kurtosis	3.186

Table 155. Distributional properties of Summer Primary Production Mean (mg C m⁻² day⁻¹).

Figure 386. Distribution of Summer Primary Production Mean (mg C m⁻² day⁻¹). Histogram was illustrated using 10 bins. X axis is shown at 10^{-3} ; Y axis is shown at 10^{-4} .

Figure 387. Normal Q-Q plot for data values of Summer Primary Production Mean (mg C m⁻² day⁻¹). Points falling under (top right panel) and over (bottom right panel) the reference line are mapped.

Figure 388. Left panel: Semivariogram of Summer Primary Production Mean (mg C m⁻² day⁻¹). Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 0.061 degrees; number of lags: 12; Parameter: 2; Range: 0.488 degrees; Partial Sill: 1722.462 Right panel: Scatterplot of predicted values versus observed values for the model of Summer Primary Production Mean (mg C m⁻² day⁻¹).

Table 156	6. Results	of cross-validatio	n of the krige	ed model fo	or Summer	Primary	Production	Mean
$(mg C m^{-2})$	2 day ⁻¹).		C					

Prediction Error	Value
Number of Observations	33872
Overall Mean Error	0.068
Root Mean Square Prediction Error	43.090
Standardized Mean	1.211 x 10 ⁻³
Standardized Root Mean Square Prediction Error	1.061
Average Standard Error	40.421

Figure 389. Prediction standard error surface of Summer Primary Production Mean (mg C m^{-2} day⁻¹).

Figure 390. Interpolated prediction surface of Summer Primary Production Mean (mg C m⁻² day⁻¹).

Summer Primary Production Minimum

This variable had good coverage over the study extent and displayed a near-normal distribution prior to interpolation (Table 157, Figure 391). The data were higher than predicted by a normal distribution at both tails, with no data points falling under the reference line (Figure 392). These areas over-prediction showed some spatial pattern over the region (Figure 392).

The semivariogram showed moderate autocorrelation present in the data (Figure 393). The kriged model showed a good fit between measured and predicted values (Figure 393). Very good performance of the model was indicated by the cross-validation results (Table 158). The error map showed moderate error in the northern portion of the study extent, with patches of high error interspersed (Figure 394). The kriged surface is presented in Figure 395.

Property	Value
Number of Observations	33872
Minimum	44.610
Maximum	848.49
Mean	370.920
Median	367.550
Standard Deviation	110.260
Skewness	0.517
Kurtosis	3.300

Table 157. Distributional properties of Summer Primary Production Minimum (mg C m⁻² day⁻¹).

Figure 391. Distribution of Summer Primary Production Minimum (mg C m⁻² day⁻¹). Histogram was illustrated using 10 bins. X axis is shown at 10^{-2} ; Y axis is shown at 10^{-3} .

Figure 392. Normal Q-Q plot for data values of Summer Primary Production Minimum (mg C m⁻² day⁻¹). Points falling over the reference line are mapped; no points fall under the reference line.

Figure 393. Left panel: Semivariogram of Summer Primary Production Minimum (mg C m⁻² day⁻¹). Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 0.044 degrees; number of lags: 12; Parameter: 2; Range: 0.350 degrees; Partial Sill: 1340.729 Right panel: Scatterplot of predicted values versus observed values for the model of Summer Primary Production Minimum (mg C m⁻² day⁻¹).

Table	158.	Results	of	cross-	validation	of	the	kriged	model	for	Summer	Primary	Production
Minim	num (mg C m ⁻²	² da	y^{-1}).				-					

Prediction Error	Value
Number of Observations	33872
Overall Mean Error	0.057
Root Mean Square Prediction Error	58.631
Standardized Mean	8.434 x 10 ⁻³
Standardized Root Mean Square Prediction Error	1.019
Average Standard Error	57.482

Figure 394. Prediction standard error surface of Summer Primary Production Minimum (mg C $m^{-2} day^{-1}$).

Figure 395. Interpolated prediction surface of Summer Primary Production Minimum (mg C m⁻² day⁻¹).

Summer Primary Production Maximum

This variable displayed a right-skewed, leptokurtic distribution prior to interpolation (Table 159, Figure 396). The data were higher than predicted by a normal distribution at both tails (Figure 397). No data points fell below the reference line. These areas of over-prediction showed no spatial pattern over the region (Figure 397).

The semivariogram showed weak autocorrelation present in the data (Figure 398). The kriged model showed poor fit between measured and predicted values (Figure 398). Very good performance of the model was indicated by the cross-validation results (Table 160). The error map showed moderate error in the northern portion of the study extent, with patches of high error interspersed (Figure 399). The kriged surface is presented in Figure 400.

Property	Value
Number of Observations	33872
Minimum	135.380
Maximum	2895.700
Mean	1031.600
Median	1014.400
Standard Deviation	213.980
Skewness	0.317
Kurtosis	3.596

Table 159. Distributional properties of Summer Primary Production Maximum (mg C m⁻² day⁻¹).

Figure 396. Distribution of Summer Primary Production Maximum (mg C m⁻² day⁻¹). Histogram was illustrated using 10 bins. X axis is shown at 10^{-3} ; Y axis is shown at 10^{-4} .

Figure 397. Normal Q-Q plot for data values of Summer Primary Production Maximum (mg C m⁻² day⁻¹). Points falling over the reference line are mapped; no points fall under the reference line.

Figure 398. Left panel: Semivariogram of Summer Primary Production Maximum (mg C m⁻² day⁻¹). Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 0.069 degrees; number of lags: 12; Parameter: 2; Range: 0.555 degrees; Partial Sill: 8538.102 Right panel: Scatterplot of predicted values versus observed values for the model of Summer Primary Production Maximum (mg C m⁻² day⁻¹).

Prediction Error	Value
Number of Observations	33872
Overall Mean Error	0.091
Root Mean Square Prediction Error	133.937
Standardized Mean	5.654 x 10 ⁻⁴
Standardized Root Mean Square Prediction Error	1.036
Average Standard Error	129.108

Table 160. Results of cross-validation of the kriged model for Summer Primary Production Maximum (mg C $m^{-2} day^{-1}$).

Figure 399. Prediction standard error surface of Summer Primary Production Maximum (mg C $m^{-2} day^{-1}$).

Figure 400. Interpolated prediction surface of Summer Primary Production Maximum (mg C m⁻² day⁻¹).

Summer Primary Production Range

This variable displayed a right-skewed, leptokurtic distribution prior to interpolation (Table 161, Figure 401). The data were higher than predicted by a normal distribution at both tails (Figure 402). No data points fell below the reference line. These areas of over-prediction showed no strong spatial pattern over the region (Figure 402).

The semivariogram showed weak autocorrelation present in the data (Figure 403). The kriged model showed fair fit between measured and predicted values (Figure 403). Very good performance of the model was indicated by the cross-validation results (Table 162). The error map showed moderate error over much of the study extent, with patches of high error interspersed (Figure 404). The kriged surface is presented in Figure 405.

Property	Value
Number of Observations	33872
Minimum	16.860
Maximum	2523.500
Mean	660.650
Median	644.080
Standard Deviation	210.560
Skewness	0.475
Kurtosis	4.024

Table 161. Distributional properties of Summer Primary Production Range (mg C m⁻² day⁻¹).

Figure 401. Distribution of Summer Primary Production Range (mg C m⁻² day⁻¹). Histogram was illustrated using 10 bins. X axis is shown at 10^{-3} ; Y axis is shown at 10^{-4} .

Figure 402. Normal Q-Q plot for data values of Summer Primary Production Range (mg C m^{-2} day⁻¹). Points falling over the reference line are mapped; no points fall under the reference line.

Figure 403. Left panel: Semivariogram of Summer Primary Production Range (mg C m⁻² day⁻¹). Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 4.195 degrees; number of lags: 12; Parameter: 0.455; Range: 39.324 degrees; Partial Sill: 39111.100 Right panel: Scatterplot of predicted values versus observed values for the model of Summer Primary Production Range (mg C m⁻² day⁻¹).

Table	162.	Results	of	cross-validation	of	the	kriged	model	for	Summer	Primary	Production
Range	(mg	$C m^{-2} da$	y ⁻¹)).			-				-	

Prediction Error	Value
Number of Observations	33872
Overall Mean Error	0.025
Root Mean Square Prediction Error	145.592
Standardized Mean	1.128 x 10 ⁻⁴
Standardized Root Mean Square Prediction Error	1.012
Average Standard Error	143.667

Figure 404. Prediction standard error surface of Summer Primary Production Range (mg C m^{-2} day⁻¹).

Figure 405. Interpolated prediction surface of Summer Primary Production Range (mg C m^{-2} day⁻¹).

Summer Primary Production Average Minimum

This variable displayed a normal distribution prior to interpolation (Table 163, Figure 406). Few data points deviated from the 1:1 reference line in the Q-Q plot (Figure 407). These areas of over and under-prediction showed little spatial pattern over the region (Figure 407).

The semivariogram showed autocorrelation present in the data (Figure 408). The kriged model showed a good fit between measured and predicted values (Figure 408). Good performance of the model was indicated by the cross-validation results (Table 164). The error map showed moderate error in the northern portion of the study extent, with patches of high error interspersed (Figure 409). The kriged surface is presented in Figure 410.

Table 163. Distributional properties of Summer Primary Production Average Minimum (mg C $m^{-2} day^{-1}$).

Property	Value
Number of Observations	33872
Minimum	71.732
Maximum	933.640
Mean	502.040
Median	497.090
Standard Deviation	109.310
Skewness	0.227
Kurtosis	3.014

Figure 406. Distribution of Summer Primary Production Average Minimum (mg C m^{-2} day⁻¹). Histogram was illustrated using 10 bins. X axis is shown at 10⁻²; Y axis is shown at 10⁻⁴.

Figure 407. Normal Q-Q plot for data values of Summer Primary Production Average Minimum (mg C m^{-2} day⁻¹). Points falling under (top right panel) and over (bottom right panel) the reference line are mapped.

Figure 408. Left panel: Semivariogram of Summer Primary Production Average Minimum (mg C m⁻² day⁻¹). Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 0.067 degrees; number of lags: 12; Parameter: 2; Range: 0.536 degrees; Partial Sill: 1600.746 Right panel: Scatterplot of predicted values versus observed values for the model of Summer Primary Production Average Minimum (mg C m⁻² day⁻¹).

Table	164.	Results	of	cross-validation	of	the	kriged	model	for	Summer	Primary	Production
Avera	ge Mi	inimum (mg	$g C m^{-2} da y^{-1}$).			U				•	

Prediction Error	Value
Number of Observations	33872
Overall Mean Error	0.058
Root Mean Square Prediction Error	44.955
Standardized Mean	1.068 x 10 ⁻³
Standardized Root Mean Square Prediction Error	1.076
Average Standard Error	41.686

Figure 409. Prediction standard error surface of Summer Primary Production Average Minimum (mg C $m^{-2} day^{-1}$).

Figure 410. Interpolated prediction surface of Summer Primary Production Average Minimum (mg C $m^{-2} day^{-1}$).

Summer Primary Production Average Maximum

This variable displayed a normal distribution prior to interpolation (Table 165, Figure 411). Few data points deviated from the 1:1 reference line in the Q-Q plot (Figure 412). These areas of over and under-prediction showed some spatial pattern over the region (Figure 412).

The semivariogram showed autocorrelation present in the data (Figure 413). The kriged model showed a good fit between measured and predicted values (Figure 413). Very good performance of the model was indicated by the cross-validation results (Table 166). The error map showed moderate error in the northern portion of the study extent, with patches of high error interspersed (Figure 414). The kriged surface is presented in Figure 415.

Table 165. Distributional properties of Summer Primary Production Average Maximum (mg C $m^{-2} day^{-1}$).

Property	Value
Number of Observations	33872
Minimum	114.300
Maximum	1458.900
Mean	817.940
Median	808.470
Standard Deviation	147.000
Skewness	0.256
Kurtosis	3.364

Figure 411. Distribution of Summer Primary Production Average Maximum (mg C m⁻² day⁻¹). Histogram was illustrated using 10 bins. X axis is shown at 10^{-3} ; Y axis is shown at 10^{-4} .

Figure 412. Normal Q-Q plot for data values of Summer Primary Production Average Maximum (mg C m^{-2} day⁻¹). Points falling under (top right panel) and over (bottom right panel) the reference line are mapped.

Figure 413. Left panel: Semivariogram of Summer Primary Production Average Maximum (mg C m⁻² day⁻¹). Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 0.061 degrees; number of lags: 12; Parameter: 2; Range: 0.491 degrees; Partial Sill: 3371.717 Right panel: Scatterplot of predicted values versus observed values for the model of Summer Primary Production Average Maximum (mg C m⁻² day⁻¹).

Table	166.	Results	of	cross-	validation	of	the	kriged	model	for	Summer	Primary	Production
Averag	ge Ma	aximum	(mg	g C m ⁻²	day^{-1}).			U				•	

Prediction Error	Value
Number of Observations	33872
Overall Mean Error	0.075
Root Mean Square Prediction Error	69.940
Standardized Mean	7.868 x 10 ⁻⁴
Standardized Root Mean Square Prediction Error	1.011
Average Standard Error	68.955

Figure 414. Prediction standard error surface of Summer Primary Production Average Maximum (mg C $m^{-2} day^{-1}$).

Figure 415. Interpolated prediction surface of Summer Primary Production Average Maximum (mg C $m^{-2} day^{-1}$).

Summer Primary Production Average Range

This variable displayed a slightly skewed and leptokurtic distribution prior to interpolation (Table 167, Figure 416). The data were higher than predicted by a normal distribution at both tails. No data points fell below the reference line. Mid-range values were well predicted (Figure 417). These areas of over-prediction showed no spatial pattern over the region (Figure 417).

The semivariogram showed weak autocorrelation present in the data (Figure 418). The kriged model showed fair fit between measured and predicted values (Figure 418). Very good performance of the model was indicated by the cross-validation results (Table 168). The error map showed moderate error in the northern portion of the study extent, with patches of high error interspersed (Figure 419). The kriged surface is presented in Figure 420.

Table 167. Distributional properties of Summer Primary Production Average Range (mg C m^{-2} day⁻¹).

Property	Value
Number of Observations	33872
Minimum	5.225
Maximum	924.880
Mean	315.900
Median	307.740
Standard Deviation	111.590
Skewness	0.464
Kurtosis	3.572

Figure 416. Distribution of Summer Primary Production Average Range (mg C m⁻² day⁻¹). Histogram was illustrated using 10 bins. X axis is shown at 10^{-2} ; Y axis is shown at 10^{-4} .

Figure 417. Normal Q-Q plot for data values of Summer Primary Production Average Range (mg C m^{-2} day⁻¹). Points falling over the reference line are mapped; no points fall under the reference line.

Figure 418. Left panel: Semivariogram of Summer Primary Production Average Range (mg C m² day⁻¹). Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 0.055 degrees; number of lags: 12; Parameter: 1.597; Range: 0.444 degrees; Partial Sill: 2610.084. Right panel: Scatterplot of predicted values versus observed values for the model of Summer Primary Production Average Range (mg C m⁻² day⁻¹).

Table	168.	Results	of	cross-v	validation	of	the	kriged	model	for	Summer	Primary	Production
Avera	ge Ra	unge (mg	Сı	m ⁻² day	^{,-1}).			U				•	

Prediction Error	Value
Number of Observations	33872
Overall Mean Error	0.012
Root Mean Square Prediction Error	75.468
Standardized Mean	8.089 x 10 ⁻⁵
Standardized Root Mean Square Prediction Error	1.002
Average Standard Error	75.213

Figure 419. Prediction standard error surface of Summer Primary Production Average Range (mg C $m^{-2} day^{-1}$).

Figure 420. Interpolated prediction surface of Summer Primary Production Average Range (mg C $m^{-2} day^{-1}$).

Annual Primary Production Mean

This variable displayed a near-normal but slightly leptokurtic distribution prior to interpolation (Table 169, Figure 421). The data were higher than predicted by a normal distribution at the highest values and lower than predicted at the lowest values. Mid-range values were well predicted (Figure 422). These areas of over and under-prediction showed some spatial pattern over the region (Figure 422).

The semivariogram showed weak autocorrelation present in the data (Figure 423). The kriged model showed fair fit between measured and predicted values (Figure 423). Good performance of the model was indicated by the cross-validation results (Table 170). The error map showed moderate error in the northern portion of the study extent, with patches of high error interspersed (Figure 424). The kriged surface is presented in Figure 425.

Property	Value
Number of Observations	33920
Minimum	128.970
Maximum	1039.300
Mean	636.700
Median	630.830
Standard Deviation	90.619
Skewness	0.022
Kurtosis	3.938

Table 169. Distributional properties of Annual Primary Production Mean (mg C m⁻² day⁻¹).

Figure 421. Distribution of Annual Primary Production Mean (mg C m⁻² day⁻¹). Histogram was illustrated using 10 bins. X axis is shown at 10^{-3} ; Y axis is shown at 10^{-4} .

Figure 422. Normal Q-Q plot for data values of Annual Primary Production Mean (mg C m⁻² day⁻¹). Points falling under (top right panel) and over (bottom right panel) the reference line are mapped.

Figure 423. Left panel: Semivariogram of Annual Primary Production Mean (mg C m⁻² day⁻¹). Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 2.358 degrees; number of lags: 12; Parameter: 0.863; Range: 18.868 degrees; Partial Sill: 9126.734. Right panel: Scatterplot of predicted values versus observed values for the model of Annual Primary Production Mean (mg C m⁻² day⁻¹).

Prediction Error	Value
Number of Observations	33920
Overall Mean Error	0.025
Root Mean Square Prediction Error	38.029
Standardized Mean	2.632 x 10 ⁻⁴
Standardized Root Mean Square Prediction Error	1.091
Average Standard Error	34.606

Table 170. Results of cross-validation of the kriged model for Annual Primary Production Mean (mg C $m^{-2} day^{-1}$).

Figure 424. Prediction standard error surface of Annual Primary Production Mean (mg C m^{-2} day⁻¹).

Figure 425. Interpolated prediction surface of Annual Primary Production Mean (mg C m^{-2} day⁻¹).

Annual Primary Production Minimum

This variable displayed a slightly skewed distribution prior to interpolation (Table 171, Figure 426). The data were higher than predicted by a normal distribution at both tails and slightly lower than predicted at mid-values (Figure 427). These areas of over and under-prediction showed little spatial pattern over the region (Figure 427).

The semivariogram showed autocorrelation present in the data (Figure 428). The kriged model showed good fit between measured and predicted values (Figure 428). Good performance of the model was indicated by the cross-validation results (Table 172). The error map showed moderate error in the northern portion of the study extent, with patches of high error interspersed (Figure 429). The kriged surface is presented in Figure 430.

Property	Value
Number of Observations	33920
Minimum	18.220
Maximum	774.380
Mean	259.110
Median	234.340
Standard Deviation	99.234
Skewness	0.839
Kurtosis	3.209

Table 171. Distributional properties of Annual Primary Production Minimum (mg C m⁻² day⁻¹).

Figure 426. Distribution of Annual Primary Production Minimum (mg C m⁻² day⁻¹). Histogram was illustrated using 10 bins. X axis is shown at 10^{-2} ; Y axis is shown at 10^{-4} .

Figure 427. Normal Q-Q plot for data values of Annual Primary Production Minimum (mg C m⁻² day⁻¹). Points falling under (top right panel) and over (bottom right panel) the reference line are mapped.

Figure 428. Left panel: Semivariogram of Annual Primary Production Minimum (mg C m⁻² day⁻¹). Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 2.358 degrees; number of lags: 12; Parameter: 0.863; Range: 18.868 degrees; Partial Sill: 9126.734. Right panel: Scatterplot of predicted values versus observed values for the model of Annual Primary Production Minimum (mg C m⁻² day⁻¹).

Table	172.	Results	of	cross-	validation	of	the	kriged	model	for	Annual	Primary	Production
Minim	um (mg C m ⁻²	2 da	.y ⁻¹).									

Prediction Error	Value
Number of Observations	33920
Overall Mean Error	0.027
Root Mean Square Prediction Error	53.069
Standardized Mean	3.637 x 10 ⁻⁴
Standardized Root Mean Square Prediction Error	1.048
Average Standard Error	50.520

Figure 429. Prediction standard error surface of Annual Primary Production Minimum (mg C m $^{-2}$ day $^{-1}$).

Figure 430. Interpolated prediction surface of Annual Primary Production Minimum (mg C m⁻² day⁻¹).

Annual Primary Production Maximum

This variable displayed a right-skewed, leptokurtic distribution prior to interpolation (Table 173, Figure 431). The data were higher than predicted by a normal distribution at both tails, while mid-values followed the reference line (Figure 432). These areas of over-prediction showed little spatial pattern over the region (Figure 432).

The semivariogram showed very weak autocorrelation present in the data (Figure 433). The kriged model showed fair fit between measured and predicted values (Figure 433). Very good performance of the model was indicated by the cross-validation results (Table 174). The error map showed moderate error in the northern portion of the study extent, with patches of high error interspersed (Figure 434). The kriged surface is presented in Figure 435.

Property	Value
Number of Observations	33920
Minimum	279.220
Maximum	3378.800
Mean	1129.700
Median	1114.900
Standard Deviation	242.570
Skewness	0.566
Kurtosis	5.232

Table 173. Distributional properties of Annual Primary Production Maximum (mg C m⁻² day⁻¹).

Figure 431. Distribution of Annual Primary Production Maximum (mg C m⁻² day⁻¹). Histogram was illustrated using 10 bins. X axis is shown at 10^{-3} ; Y axis is shown at 10^{-4} .

Figure 432. Normal Q-Q plot for data values of Annual Primary Production Maximum (mg C m^{2} day^{$^{-1}$}). Points falling over the reference line are mapped; no points fall under the reference line.

Figure 433. Left panel: Semivariogram of Annual Primary Production Maximum (mg C m⁻² day⁻¹). Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 3.150 degrees; number of lags: 12; Parameter: 0.752; Range: 25.198 degrees; Partial Sill: 46602.110. Right panel: Scatterplot of predicted values versus observed values for the model of Annual Primary Production Maximum (mg C m⁻² day⁻¹).

Table	174.	Results	of	cross-v	alidation	of	the	kriged	model	for	Annual	Primary	Production
Maxin	num ((mg C m ⁻	2 da	ay ⁻¹).									

Prediction Error	Value
Number of Observations	33920
Overall Mean Error	-0.043
Root Mean Square Prediction Error	166.018
Standardized Mean	-3.306 x 10 ⁻⁴
Standardized Root Mean Square Prediction Error	1.049
Average Standard Error	158.026

Figure 434. Prediction standard error surface of Annual Primary Production Maximum (mg C m⁻¹ day⁻¹).

Figure 435. Interpolated prediction surface of Annual Primary Production Maximum (mg C m⁻² day⁻¹).

Annual Primary Production Range

This variable displayed a right-skewed, leptokurtic distribution prior to interpolation (Table 175, Figure 436). The data were higher than predicted by a normal distribution at both tails, while mid-values followed the reference line (Figure 437). These areas of over-prediction showed little spatial pattern over the region (Figure 437).

The semivariogram showed autocorrelation present in the data (Figure 438). The kriged model showed fair fit between measured and predicted values (Figure 438). Good performance of the model was indicated by the cross-validation results (Table 176). The error map showed moderate error in the northern portion of the study extent, with patches of high error interspersed (Figure 439). The kriged surface is presented in Figure 440.

Property	Value
Number of Observations	33920
Minimum	30.100
Maximum	3110.100
Mean	870.600
Median	868.660
Standard Deviation	271.540
Skewness	0.289
Kurtosis	4.336

Table 175. Distributional properties of Annual Primary Production Range (mg C m⁻² day⁻¹).

Figure 436. Distribution of Annual Primary Production Range (mg C m⁻² day⁻¹). Histogram was illustrated using 10 bins. X axis is shown at 10^{-3} ; Y axis is shown at 10^{-4} .

Figure 437. Normal Q-Q plot for data values of Annual Primary Production Range (mg C m^{-2} day⁻¹). Points falling over the reference line are mapped; no points fall under the reference line.

Figure 438. Left panel: Semivariogram of Annual Primary Production Range (mg C m⁻² day⁻¹). Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 0.195 degrees; number of lags: 12; Parameter: 1.501; Range: 1.561 degrees; Partial Sill: 16063.880. Right panel: Scatterplot of predicted values versus observed values for the model of Annual Primary Production Range (mg C m⁻² day⁻¹).

Table 176	6. Results	of cross-validation	of the krige	d model for	Annual Prima	ary Production	Range
$(mg C m^{-2})$	2 day ⁻¹).		C			•	C

Prediction Error	Value
Number of Observations	33920
Overall Mean Error	-0.038
Root Mean Square Prediction Error	174.505
Standardized Mean	-2.486 x 10 ⁻⁴
Standardized Root Mean Square Prediction Error	1.061
Average Standard Error	164.330

Figure 439. Prediction standard error surface of Annual Primary Production Range (mg C m^{-2} day⁻¹).

Figure 440. Interpolated prediction surface of Annual Primary Production Range (mg C m^{-2} day¹).

Annual Primary Production Average Minimum

This variable displayed a near-normal distribution prior to interpolation (Table 177, Figure 441). The data were higher than predicted by a normal distribution at the lowest values and lower than predicted at the highest values, while mid-values followed the reference line (Figure 442). These areas of under and over-prediction showed spatial pattern over the region (Figure 442).

The semivariogram showed autocorrelation present in the data (Figure 443). The kriged model showed good fit between measured and predicted values (Figure 443). Very good performance of the model was indicated by the cross-validation results (Table 178). The error map showed moderate error in the northern portion of the study extent, with patches of high error interspersed (Figure 444). The kriged surface is presented in Figure 445.

Property	Value
Number of Observations	33920
Minimum	40.032
Maximum	795.840
Mean	400.200
Median	389.85
Standard Deviation	104.860
Skewness	0.339
Kurtosis	2.595

Table 177. Distributional properties of Annual Primary Production Average Minimum (mg C m⁻² day⁻¹).

Figure 441. Distribution of Annual Primary Production Average Minimum (mg C m⁻² day⁻¹). Histogram was illustrated using 10 bins. X axis is shown at 10^{-2} ; Y axis is shown at 10^{-3} .

Figure 442. Normal Q-Q plot for data values of Annual Primary Production Average Minimum (mg C m^{-2} day⁻¹). Points falling under (top right panel) and over (bottom right panel) the reference line are mapped.

Figure 443. Left panel: Semivariogram of Annual Primary Production Average Minimum (mg C $m^{-2} day^{-1}$). Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 0.067 degrees; number of lags: 12; Parameter: 2; Range: 0.536 degrees; Partial Sill: 1421.344. Right panel: Scatterplot of predicted values versus observed values for the model of Annual Primary Production Average Minimum (mg C $m^{-2} day^{-1}$).

Table	178.	Results	of	cross-validation	of	the	kriged	model	for	Annual	Primary	Production
Avera	ge Mi	inimum (mg	$C m^{-2} day^{-1}$).			2					

Prediction Error	Value
Number of Observations	33920
Overall Mean Error	0.043
Root Mean Square Prediction Error	43.524
Standardized Mean	7.260 x 10 ⁻⁴
Standardized Root Mean Square Prediction Error	0.997
Average Standard Error	43.585

Figure 444. Prediction standard error surface of Annual Primary Production Average Minimum (mg C $m^{-2} day^{-1}$).

Figure 445. Interpolated prediction surface of Annual Primary Production Average Minimum (mg C $m^{-2} day^{-1}$).

Annual Primary Production Average Maximum

This variable displayed a left-skewed, leptokurtic distribution prior to interpolation (Table 179, Figure 446). The data were higher than predicted by a normal distribution at the highest values and lower than predicted at the lowest values, while mid-values followed the reference line (Figure 447). These areas of under and over-prediction showed spatial pattern over the region (Figure 447).

The semivariogram showed autocorrelation present in the data (Figure 448). The kriged model showed a good fit between measured and predicted values (Figure 448). Good performance of the model was indicated by the cross-validation results (Table 180). The error map showed moderate error in the northern portion of the study extent, with patches of high error interspersed (Figure 449). The kriged surface is presented in Figure 450.

Property	Value
Number of Observations	33920
Minimum	208.690
Maximum	1725.600
Mean	886.880
Median	890.080
Standard Deviation	151.910
Skewness	-0.138
Kurtosis	3.660

Table 179. Distributional properties of Annual Primary Production Average Maximum (mg C m^{2} day^{$^{-1}$}).

Figure 446. Distribution of Annual Primary Production Average Maximum (mg C m⁻² day⁻¹). Histogram was illustrated using 10 bins. X axis is shown at 10^{-3} ; Y axis is shown at 10^{-4} .

Figure 447. Normal Q-Q plot for data values of Annual Primary Production Average Maximum (mg C m^{-2} day⁻¹). Points falling under (top right panel) and over (bottom right panel) the reference line are mapped.

Figure 448. Left panel: Semivariogram of Annual Primary Production Average Maximum (mg C $m^{-2} day^{-1}$). Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 0.093 degrees; number of lags: 12; Parameter: 1.900; Range: 0.741 degrees; Partial Sill: 4030.125. Right panel: Scatterplot of predicted values versus observed values for the model of Annual Primary Production Average Maximum (mg C $m^{-2} day^{-1}$).

Table	180.	Results	of	cross-	validation	of	the	kriged	model	for	Annual	Primary	Production
Avera	ge Ma	aximum	(mg	$C m^{-2}$	day ⁻¹).			U				•	

Prediction Error	Value
Number of Observations	33920
Overall Mean Error	0.074
Root Mean Square Prediction Error	75.022
Standardized Mean	7.510 x 10 ⁻⁴
Standardized Root Mean Square Prediction Error	1.081
Average Standard Error	69.126

Figure 449. Prediction standard error surface of Annual Primary Production Average Maximum (mg C $m^{-2} day^{-1}$).

Figure 450. Interpolated prediction surface of Annual Primary Production Average Maximum (mg C $m^{-2} day^{-1}$).

Annual Primary Production Average Range

This variable displayed a slightly right-skewed distribution prior to interpolation (Table 181, Figure 451). The data were higher than predicted by a normal distribution at both tails, while mid-values followed the reference line (Figure 452). These areas of over-prediction showed spatial pattern over the region (Figure 452).

The semivariogram showed moderate autocorrelation present in the data (Figure 453). The kriged model showed good fit between measured and predicted values (Figure 453). Good performance of the model was indicated by the cross-validation results (Table 182). The error map showed moderate error in the northern portion of the study extent, with patches of high error interspersed (Figure 454). The kriged surface is presented in Figure 455.

Table	181.	Distributional	properties	of	Annual	Primary	Production	Average	Range	(mg	Сn	n^{-2}
day^{-1}).												

Property	Value
Number of Observations	33920
Minimum	4.535
Maximum	1486.600
Mean	486.680
Median	495.460
Standard Deviation	178.290
Skewness	0.019
Kurtosis	2.823

Figure 451. Distribution of Annual Primary Production Average Range (mg C m⁻² day⁻¹). Histogram was illustrated using 10 bins. X axis is shown at 10^{-3} ; Y axis is shown at 10^{-4} .

Figure 452. Normal Q-Q plot for data values of Annual Primary Production Average Range (mg C m⁻² day⁻¹). Points falling over the reference line are mapped; no points fall under the reference line.

Figure 453. Left panel: Semivariogram of Annual Primary Production Average Range (mg C m⁻² day⁻¹). Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 0.126 degrees; number of lags: 12; Parameter: 1.664; Range: 1.006 degrees; Partial Sill: 5381.840. Right panel: Scatterplot of predicted values versus observed values for the model of Annual Primary Production Average Range (mg C m⁻² day⁻¹).

Table	182.	Results	of	cross-validatio	n o	f the	kriged	model	for	Annual	Primary	Production
Avera	ge Ra	nge (mg	C r	$m^{-2} day^{-1}$).			C				•	

Prediction Error	Value
Number of Observations	33920
Overall Mean Error	0.031
Root Mean Square Prediction Error	83.098
Standardized Mean	2.681 x 10 ⁻⁴
Standardized Root Mean Square Prediction Error	1.039
Average Standard Error	79.826

Figure 454. Prediction standard error surface of Annual Primary Production Average Range (mg C $m^{-2} day^{-1}$).

Figure 455. Interpolated prediction surface of Annual Primary Production Average Range (mg C $m^{-2} day^{-1}$).

Sea Ice Cover

Sea ice is an important driver of the physical marine environment in Arctic communities. As temperatures warm in the spring and summer, sea ice weakens, and is fragmented and transported offshore by wind (Clark et al., 2015). This phenomenon is referred to as sea ice 'break out' (Clark et al., 2015). This seasonal cycle of sea ice presence and absence can have an impact on the underlying physical marine environment through its regulation of light penetration, disturbance, and sedimentation. The seasonal extent and duration of sea ice is rapidly changing in the Arctic (Boé et al., 2009), and small changes in the timing of sea ice presence and absence can dasence can cause complete regime shifts in local benthic communities from invertebrate to algae-dominated states (Clark et al., 2013).

The sea ice cover values are presented as a fraction from 0 to 1, representing 0 to 100% ice cover.

Spring Ice Cover Mean

This variable displayed a left-skewed, bimonal distribution prior to interpolation (Table 183, Figure 456). The data were higher than predicted by a normal distribution at the lowest and upper mid-values, while were lower than predicted at the highest and lower mid-values (Figure 457). These areas of over and under-prediction showed a strong spatial pattern over the region (Figure 457).

The semivariogram showed moderate autocorrelation present in the data (Figure 458). The kriged model showed very good fit between measured and predicted values (Figure 458). Good performance of the model was indicated by the cross-validation results (Table 184), although the Standardized Root-Mean-Square Prediction error was greater than 1 indicating that variability in the predictions has been underestimated. The error map showed lower error in all the study area except in Jones and Lancaster Sound (Figure 459). The kriged surface is presented in Figure 460.

Property	Value
Number of Observations	526
Minimum	0.000
Maximum	0.996
Mean	0.529
Median	0.702
Standard Deviation	0.396
Skewness	-0.361
Kurtosis	1.376

Table 183. Distributional properties of Spring Ice Cover Mean.

Figure 456. Distribution of Spring Ice Cover Mean Histogram was illustrated using 10 bins. X axis is shown at 10; Y axis is shown at 10^{-2} .

Figure 457. Normal Q-Q plot for data values of Spring Ice Cover Mean. Points falling under (top right panel) and over (bottom right panel) the reference line are mapped.

Figure 458. Left panel: Semivariogram of Spring Ice Cover Mean. Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 0.550 degrees; number of lags: 12; Parameter: 2; Range: 4.402 degrees; Partial Sill: 0.028. Right panel: Scatterplot of predicted values versus observed values for the model of Spring Ice Cover Mean.

Prediction Error	Value
Number of Observations	526
Overall Mean Error	-5.048 x 10 ⁻⁵
Root Mean Square Prediction Error	0.017
Standardized Mean	0.012
Standardized Root Mean Square Prediction Error	1.300
Average Standard Error	0.018

Table 184. Results of cross-validation of the kriged model for Spring Ice Cover Mean.

Figure 459. Prediction standard error surface of Spring Ice Cover Mean.

Figure 460. Interpolated prediction surface of Spring Ice Cover Mean.

Spring Ice Cover Minimum

This variable displayed a right-skewed, leptokurtic distribution prior to interpolation (Table 185, Figure 461). The data were higher than predicted by a normal distribution at both tails, while were lower than predicted at mid-values (Figure 462). These areas of over and under-prediction showed spatial pattern over the region (Figure 462).

The semivariogram showed moderate autocorrelation present in the data (Figure 463). The kriged model showed a good fit between measured and predicted values (Figure 463). Good performance of the model was indicated by the cross-validation results (Table 186). The error map showed a "bullseye" pattern with error increasing with distance from data points (Figure 464). The kriged surface is presented in Figure 465.

Property	Value
Number of Observations	526
Minimum	0.000
Maximum	0.950
Mean	0.160
Median	0.000
Standard Deviation	0.272
Skewness	1.659
Kurtosis	4.578

Table 185. Distributional properties of Spring Ice Cover Minimum.

Figure 461. Distribution of Spring Ice Cover Minimum. Histogram was illustrated using 10 bins. X axis is shown at 10; Y axis is shown at 10^{-2} .

Figure 462. Normal Q-Q plot for data values of Spring Ice Cover Minimum. Points falling under (top right panel) and over (bottom right panel) the reference line are mapped.

Figure 463. Left panel: Semivariogram of Spring Ice Cover Minimum. Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 2.256 degrees; number of lags: 12; Parameter: 1.153; Range: 18.050 degrees; Partial Sill: 0.095. Right panel: Scatterplot of predicted values versus observed values for the model of Spring Ice Cover Minimum.

Table 186. Results of cross-validation of the kriged model for Spring Ice Cover Minimum.

Prediction Error	Value
Number of Observations	526
Overall Mean Error	-2.042 x 10 ⁻⁴
Root Mean Square Prediction Error	0.083
Standardized Mean	-1.165 x 10 ⁻³
Standardized Root Mean Square Prediction Error	0.908
Average Standard Error	0.085

Figure 464. Prediction standard error surface of Spring Ice Cover Minimum.

Figure 465. Interpolated prediction surface of Spring Ice Cover Minimum.

Spring Ice Cover Maximum

This variable displayed a bimodal, platykurtic distribution prior to interpolation (Table 187, Figure 466). The data were higher than predicted by a normal distribution at the lowest and upper mid-values, and were lower than predicted at the highest and lower mid-values (Figure 467). These areas of over and under-prediction showed spatial pattern over the region (Figure 467).

The semivariogram showed moderate autocorrelation present in the data (Figure 468). The kriged model showed good fit between measured and predicted values (Figure 468). Fair performance of the model was indicated by the cross-validation results (Table 188), with underestimation in the variability of the predictions as indicated by the Standardized Root-Mean-Square Error greater than 1. The error map showed low error over much of the study extent with higher error in Lancaster Sound and in smaller inlets (Figure 469). The kriged surface is presented in Figure 470.

Property	Value
Number of Observations	526
Minimum	0.000
Maximum	1.000
Mean	0.723
Median	0.99
Standard Deviation	0.410
Skewness	-1.053
Kurtosis	2.266

Table 187. Distributional properties of Spring Ice Cover Maximum.

Figure 466. Distribution of Spring Ice Cover Maximum. Histogram was illustrated using 10 bins. Y axis is shown at 10^{-2} .

Figure 467. Normal Q-Q plot for data values of Spring Ice Cover Maximum. Points falling under (top right panel) and over (bottom right panel) the reference line are mapped.

Figure 468. Left panel: Semivariogram of Spring Ice Cover Maximum. Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 0.550 degrees; number of lags: 12; Parameter: 2; Range: 4.402 degrees; Partial Sill: 0.038. Right panel: Scatterplot of predicted values versus observed values for the model of Spring Ice Cover Maximum.

Table 188. Results of cross-validation of the kriged model for Spring Ice Cover Maximum.

Prediction Error	Value
Number of Observations	526
Overall Mean Error	3.211 x 10 ⁻⁴
Root Mean Square Prediction Error	0.033
Standardized Mean	6.180 x 10 ⁻⁴
Standardized Root Mean Square Prediction Error	2.775
Average Standard Error	0.021

Figure 469. Prediction standard error surface of Spring Ice Cover Maximum.

Figure 470. Interpolated prediction surface of Spring Ice Cover Maximum.

Spring Ice Cover Range

This variable displayed a bimodal, platykurtic distribution prior to interpolation (Table 189, Figure 471). The data were higher than predicted by a normal distribution at the lowest and upper mid-values, and were lower than predicted at the highest and lower mid-values (Figure 472). These areas of over and under-prediction showed spatial pattern over the region (Figure 472).

The semivariogram showed moderate autocorrelation present in the data (Figure 473). The kriged model showed good fit between measured and predicted values (Figure 473). Very good performance of the model was indicated by the cross-validation results (Table 190). The error map showed a "bullseye" pattern with error decreasing with distance from data points (Figure 474). The kriged surface is presented in Figure 475.

Property	Value
Number of Observations	526
Minimum	0.000
Maximum	1.000
Mean	0.563
Median	0.680
Standard Deviation	0.392
Skewness	-0.361
Kurtosis	1.517

Table 189. Distributional properties of Spring Ice Cover Range.

Figure 471. Distribution of Spring Ice Cover Range. Histogram was illustrated using 10 bins. Y axis is shown at 10^{-2} .

Figure 472. Normal Q-Q plot for data values of Spring Ice Cover Range. Points falling under (top right panel) and over (bottom right panel) the reference line are mapped.

Figure 473. Left panel: Semivariogram of Spring Ice Cover Range. Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 1.813 degrees; number of lags: 12; Parameter: 1.316; Range: 14.503 degrees; Partial Sill: 0.162. Right panel: Scatterplot of predicted values versus observed values for the model of Spring Ice Cover Range.

Table 190. Results of cross-validation of the kriged model for Spring Ice Cover Range.

Prediction Error	Value
Number of Observations	526
Overall Mean Error	1.881 x 10 ⁻⁴
Root Mean Square Prediction Error	0.090
Standardized Mean	9.383 x 10 ⁻⁴
Standardized Root Mean Square Prediction Error	0.906
Average Standard Error	0.098

Figure 474. Prediction standard error surface of Spring Ice Cover Range.

Figure 475. Interpolated prediction surface of Spring Ice Cover Range.

Spring Ice Cover Average Minimum

This variable displayed a right-skewed, nearly bimodal distribution with kurtosis prior to interpolation (Table 191, Figure 476). The data were higher than predicted by a normal distribution at the lowest and upper mid-values, and were lower than predicted at the highest and lower mid-values (Figure 477). These areas of over and under-prediction showed spatial pattern over the region (Figure 477).

The semivariogram showed moderate autocorrelation present in the data (Figure 478). The kriged model showed good fit between measured and predicted values (Figure 478). Good performance of the model was indicated by the cross-validation results (Table 192), although variability in the predictions was underestimated as indicated by the Standardized Root-Mean-Square Error greater than 1. The error map showed lower error in Hudson Bay, Baffin Bay and Davis Strait, with higher error along the edges of the study extent and in Lancaster Sound (Figure 479). The kriged surface is presented in Figure 480.

Property	Value
Number of Observations	526
Minimum	0.000
Maximum	0.987
Mean	0.400
Median	0.386
Standard Deviation	0.367
Skewness	0.154
Kurtosis	1.391

Table 191. Distributional properties of Spring Ice Cover Average Minimum.

Figure 476. Distribution of Spring Ice Cover Average Minimum. Histogram was illustrated using 10 bins. X axis is shown at 10; Y axis is shown at 10⁻².

Figure 477. Normal Q-Q plot for data values of Spring Ice Cover Average Minimum. Points falling under (top right panel) and over (bottom right panel) the reference line are mapped.

Figure 478. Left panel: Semivariogram of Spring Ice Cover Average Minimum. Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 0.550 degrees; number of lags: 12; Parameter: 2; Range: 4.402 degrees; Partial Sill: 0.037. Right panel: Scatterplot of predicted values versus observed values for the model of Spring Ice Cover Average Minimum.

Table	192.	Results	of	cross-validation	of	the	kriged	model	for	Spring	Ice	Cover	Average
Minim	um.												

Prediction Error	Value
Number of Observations	526
Overall Mean Error	-9.569 x 10 ⁻⁴
Root Mean Square Prediction Error	0.033
Standardized Mean	-8.629 x 10 ⁻³
Standardized Root Mean Square Prediction Error	1.905
Average Standard Error	0.021

Figure 479. Prediction standard error surface of Spring Ice Cover Average Minimum.

Figure 480. Interpolated prediction surface of Spring Ice Cover Average Minimum.

Spring Ice Cover Average Maximum

This variable displayed a bimodal, platykurtic distribution prior to interpolation (Table 193, Figure 481). The data were higher than predicted by a normal distribution at the lowest and upper mid-values, and were lower than predicted at the highest and lower mid-values (Figure 482). These areas of over and under-prediction showed spatial pattern over the region (Figure 482).

The semivariogram showed moderate autocorrelation present in the data (Figure 483). The kriged model showed good fit between measured and predicted values (Figure 483). Good performance of the model was indicated by the cross-validation results (Table 194). The error map showed lower error in Hudson Bay and Baffin Bay compared with Davis Strait, with higher error along the edges of the study extent and in Lancaster Sound (Figure 484). The kriged surface is presented in Figure 485.

Property	Value
Number of Observations	526
Minimum	0.000
Maximum	1.000
Mean	0.633
Median	0.921
Standard Deviation	0.432
Skewness	-0.636
Kurtosis	1.525

Table 193. Distributional properties of Spring Ice Cover Average Maximum.

Figure 481. Distribution of Spring Ice Cover Average Maximum. Histogram was illustrated using 10 bins. Y axis is shown at 10⁻².

Figure 482. Normal Q-Q plot for data values of Spring Ice Cover Average Maximum. Points falling under (top right panel) and over (bottom right panel) the reference line are mapped.

Figure 483. Left panel: Semivariogram of Spring Ice Cover Average Maximum. Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 0.396 degrees; number of lags: 12; Parameter: 2; Range: 3.170 degrees; Partial Sill: 0.021. Right panel: Scatterplot of predicted values versus observed values for the model of Spring Ice Cover Average Maximum.

Table	194.	Results	of	cross-validation	of	the	kriged	model	for	Spring	Ice	Cover	Average
Maxin	num.												

Prediction Error	Value
Number of Observations	526
Overall Mean Error	2.166 x 10 ⁻⁴
Root Mean Square Prediction Error	0.017
Standardized Mean	-0.015
Standardized Root Mean Square Prediction Error	0.822
Average Standard Error	0.031

Figure 484. Prediction standard error surface of Spring Ice Cover Average Maximum.

Figure 485. Interpolated prediction surface of Spring Ice Cover Average Maximum.

Spring Ice Cover Average Range

This variable displayed a right-skewed, platykurtic distribution prior to interpolation (Table 195, Figure 486). The data were higher than predicted by a normal distribution at the lowest and upper mid-values, and were lower than predicted at the highest and lower mid-values (Figure 487). These areas of over and under-prediction showed spatial pattern over the region (Figure 487).

The semivariogram showed moderate autocorrelation present in the data (Figure 488). The kriged model showed a good fit between measured and predicted values (Figure 488). Good performance of the model was indicated by the cross-validation results (Table 196). The error map showed low error over much of the study extent with higher error in Lancaster Sound and along some coastal regions (Figure 489). The kriged surface is presented in Figure 490.

Property	Value
Number of Observations	526
Minimum	0.000
Maximum	0.856
Mean	0.233
Median	0.166
Standard Deviation	0.228
Skewness	0.738
Kurtosis	2.375

Table 195. Distributional properties of Spring Ice Cover Average Range.

Figure 486. Distribution of Spring Ice Cover Average Range. Histogram was illustrated using 10 bins. X axis is shown at 10; Y axis is shown at 10^{-2} .

Figure 487. Normal Q-Q plot for data values of Spring Ice Cover Average Range. Points falling under (top right panel) and over (bottom right panel) the reference line are mapped.

Figure 488. Left panel: Semivariogram of Spring Ice Cover Average Range. Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 0.442 degrees; number of lags: 12; Parameter: 2; Range: 3.537 degrees; Partial Sill: 0.030. Right panel: Scatterplot of predicted values versus observed values for the model of Spring Ice Cover Average Range.

Table 196. Results of cross-validation of the kriged model for Spring Ice Cover Average Range.

Prediction Error	Value
Number of Observations	526
Overall Mean Error	4.853 x 10 ⁻⁴
Root Mean Square Prediction Error	0.038
Standardized Mean	-0.037
Standardized Root Mean Square Prediction Error	1.691
Average Standard Error	0.031

Figure 489. Prediction standard error surface of Spring Ice Cover Average Range.

Figure 490. Interpolated prediction surface of Spring Ice Cover Average Range.

Fall Ice Cover Mean

This variable displayed a right-skewed, platykurtic distribution prior to interpolation (Table 197, Figure 491). The data were higher than predicted by a normal distribution at the lowest and upper mid-values, and were lower than predicted at the highest and lower mid-values (Figure 492). These areas of over and under-prediction showed spatial pattern over the region (Figure 492).

The semivariogram showed relatively weak autocorrelation present in the data (Figure 493). The kriged model showed good fit between measured and predicted values (Figure 493). Fair to poor performance of the model was indicated by the cross-validation results (Table 198), with underestimation of the variability in the predictions as indicated by the Standardized Root-Mean-Square Error higher than 1. The error map showed low error in all the study extent, with higher error in Lancaster Sound and other coastal regions (Figure 494). The kriged surface is presented in Figure 495.

Property	Value
Number of Observations	526
Minimum	0.000
Maximum	0.856
Mean	0.256
Median	0.234
Standard Deviation	0.257
Skewness	0.552
Kurtosis	2.035

Table 197. Distributional properties of Fall Ice Cover Mean.

Figure 491. Distribution of Fall Ice Cover Mean. Histogram was illustrated using 10 bins. X axis is shown at 10; Y axis is shown at 10^{-2} .

Figure 492. Normal Q-Q plot for data values of Fall Ice Cover Mean. Points falling under (top right panel) and over (bottom right panel) the reference line are mapped.

Figure 493. Left panel: Semivariogram of Fall Ice Cover Mean. Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 0.773 degrees; number of lags: 12; Parameter: 2; Range: 6.184 degrees; Partial Sill: 0.014. Right panel: Scatterplot of predicted values versus observed values for the model of Fall Ice Cover Mean.

Prediction Error	Value
Number of Observations	526
Overall Mean Error	-1.876 x 10 ⁻⁴
Root Mean Square Prediction Error	0.019
Standardized Mean	-0.016
Standardized Root Mean Square Prediction Error	2.610
Average Standard Error	7.427 x 10 ⁻³

Table 198. Results of cross-validation of the kriged model for Fall Ice Cover Mean.

Figure 494. Prediction standard error surface of Fall Ice Cover Mean.

Figure 495. Interpolated prediction surface of Fall Ice Cover Mean.

Fall Ice Cover Minimum

This variable displayed an extremely right-skewed, leptokurtic distribution with outlying data in the upper range prior to interpolation (Table 199, Figure 496). The data were higher than predicted by a normal distribution at both tails, and were lower than predicted at mid-values (Figure 497). These areas of over and under-prediction showed strong spatial pattern over the region (Figure 497).

The semivariogram showed autocorrelation present in the data (Figure 498). The kriged model showed poor fit between measured and predicted values (Figure 498). Nonetheless, good performance of the model was indicated by the cross-validation results (Table 200). The error map showed a "bullseye" pattern with error increasing with distance from data points (Figure 499). The kriged surface is presented in Figure 500.

Property	Value
Number of Observations	526
Minimum	0.000
Maximum	0.500
Mean	3.441 x 10 ⁻³
Median	0.000
Standard Deviation	0.033
Skewness	11.152
Kurtosis	141.560

Table 199. Distributional properties of Fall Ice Cover Minimum.

Figure 496. Distribution of Fall Ice Cover Minimum. Histogram was illustrated using 10 bins. X axis is shown at 10; Y axis is shown at 10^{-2} .

Figure 497. Normal Q-Q plot for data values of Fall Ice Cover Minimum. Points falling under (top right panel) and over (bottom right panel) the reference line are mapped.

Figure 498. Left panel: Semivariogram of Fall Ice Cover Minimum. Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 0.250 degrees; number of lags: 12; Parameter: 1.130; Range: 2 degrees; Partial Sill: 4.893×10^{-4} . Right panel: Scatterplot of predicted values versus observed values for the model of Fall Ice Cover Minimum.

Table 200. Results of cross-validation of the kriged model for Fall Ice Cover Minimum.

Prediction Error	Value
Number of Observations	526
Overall Mean Error	-4.107 x 10 ⁻⁴
Root Mean Square Prediction Error	0.026
Standardized Mean	-0.015
Standardized Root Mean Square Prediction Error	1.205
Average Standard Error	0.020

Figure 499. Prediction standard error surface of Fall Ice Cover Minimum.

Figure 500. Interpolated prediction surface of Fall Ice Cover Minimum.

Fall Ice Cover Maximum

This variable displayed a bimodal, platykurtic distribution prior to interpolation (Table 201, Figure 501). The data were greater than predicted by a normal distribution at the lowest and upper mid-range values, and lower than predicted at the highest and lower mid-range values (Figure 502). These areas of over and under-prediction showed a strong spatial pattern over the region (Figure 502).

The semivariogram showed autocorrelation present in the data (Figure 503). The kriged model showed good fit between measured and predicted values (Figure 503). Poor performance of the model was indicated by the cross-validation results (Table 202), with a Standardized Root-Mean-Square Error higher than 1, indicating that variability in the predictions was underestimated. The error map showed lower error across the study extent, with high error in Lancaster Sound and other coastal areas (Figure 504). The kriged surface is presented in Figure 505.

Property	Value
Number of Observations	526
Minimum	0.000
Maximum	1.000
Mean	0.601
Median	0.935
Standard Deviation	0.459
Skewness	-0.469
Kurtosis	1.304

Table 201. Distributional properties of Fall Ice Cover Maximum.

Figure 501. Distribution of Fall Ice Cover Maximum. Histogram was illustrated using 10 bins. Y axis is shown at 10^{-2} .

Figure 502. Normal Q-Q plot for data values of Fall Ice Cover Maximum. Points falling under (top right panel) and over (bottom right panel) the reference line are mapped.

Figure 503. Left panel: Semivariogram of Fall Ice Cover Maximum. Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 0.940 degrees; number of lags: 12; Parameter: 2; Range: 7.521 degrees; Partial Sill: 0.069. Right panel: Scatterplot of predicted values versus observed values for the model of Fall Ice Cover Maximum.

Table 2	202.	Results	of	cross-	validatio	n of	the	kriged	model	for	Fall	Ice	Cover	Maximur	n.
								<u> </u>							

Prediction Error	Value
Number of Observations	526
Overall Mean Error	9.188 x 10 ⁻⁴
Root Mean Square Prediction Error	0.037
Standardized Mean	0.043
Standardized Root Mean Square Prediction Error	3.380
Average Standard Error	0.013

Figure 504. Prediction standard error surface of Fall Ice Cover Maximum.

Figure 505. Interpolated prediction surface of Fall Ice Cover Maximum.

Fall Ice Cover Range

This variable displayed a bimodal, platykurtic distribution prior to interpolation (Table 203, Figure 506). The data were greater than predicted by a normal distribution at the lowest and upper mid-range values, and lower than predicted at the highest and lower mid-range values (Figure 507). These areas of over and under-prediction showed spatial pattern over the region (Figure 507).

The semivariogram showed autocorrelation present in the data (Figure 508). The kriged model showed good fit between measured and predicted values (Figure 508). Poor performance of the model was indicated by the cross-validation results (Table 204), with a Standardized Root-Mean-Square Error higher than 1, indicating that variability in the predictions was underestimated. The error map showed lower error across the study extent, with high error in Lancaster Sound and other coastal areas (Figure 509). The kriged surface is presented in Figure 510.

Property	Value
Number of Observations	526
Minimum	0.000
Maximum	1.000
Mean	0.598
Median	0.920
Standard Deviation	0.457
Skewness	-0.459
Kurtosis	1.303

Table 203. Distributional properties of Fall Ice Cover Range.

Figure 506. Distribution of Fall Ice Cover Range. Histogram was illustrated using 10 bins. Y axis is shown at 10⁻².

Figure 507. Normal Q-Q plot for data values of Fall Ice Cover Range. Points falling under (top right panel) and over (bottom right panel) the reference line are mapped.

Figure 508. Left panel: Semivariogram of Fall Ice Cover Range. Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 0.996 degrees; number of lags: 12; Parameter: 2; Range: 7.967 degrees; Partial Sill: 0.075. Right panel: Scatterplot of predicted values versus observed values for the model of Fall Ice Cover Range.

Table 204. Results of cross-validation of the kriged model for Fall Ice Cover Range.

Prediction Error	Value
Number of Observations	526
Overall Mean Error	1.485 x 10 ⁻³
Root Mean Square Prediction Error	0.042
Standardized Mean	0.057
Standardized Root Mean Square Prediction Error	3.480
Average Standard Error	0.013

Figure 509. Prediction standard error surface of Fall Ice Cover Range.

Figure 510. Interpolated prediction surface of Fall Ice Cover Range.

Fall Ice Cover Average Minimum

This variable displayed an extremely right-skewed, leptokurtic distribution prior to interpolation (Table 205, Figure 511). The data were higher than predicted by a normal distribution at both tails, while mid-values were lower than the reference line (Figure 512). These areas of underand over-prediction showed a strong spatial pattern over the region (Figure 512).

The semivariogram showed autocorrelation present in the data (Figure 513). The kriged model showed good fit between measured and predicted values (Figure 513). Good performance of the model was indicated by the cross-validation results (Table 206). The error map showed lower error across the study extent, with high error in Lancaster Sound and other coastal areas (Figure 514). The kriged surface is presented in Figure 515.

Property	Value
Number of Observations	526
Minimum	0.000
Maximum	0.773
Mean	0.039
Median	0.000
Standard Deviation	0.117
Skewness	3.980
Kurtosis	18.914

Table 205. Distributional properties of Fall Ice Cover Average Minimum.

Figure 511. Distribution of Fall Ice Cover Average Minimum. Histogram was illustrated using 10 bins. X axis is shown at 10; Y axis is shown at 10^{-2} .

Figure 512. Normal Q-Q plot for data values of Fall Ice Cover Average Minimum. Points falling under (top right panel) and over (bottom right panel) the reference line are mapped.

Figure 513. Left panel: Semivariogram of Fall Ice Cover Average Minimum. Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 0.529 degrees; number of lags: 12; Parameter: 2; Range: 4.228 degrees; Partial Sill: 2.057×10^{-3} . Right panel: Scatterplot of predicted values versus observed values for the model of Fall Ice Cover Average Minimum.

Table 206. Results of cross-validation of the kriged model for Fall Ice Cover Average Minimum.

Prediction Error	Value
Number of Observations	526
Overall Mean Error	-4.291 x 10 ⁻⁴
Root Mean Square Prediction Error	0.022
Standardized Mean	-0.010
Standardized Root Mean Square Prediction Error	1.052
Average Standard Error	0.018

Figure 514. Prediction standard error surface of Fall Ice Cover Average Minimum.

Figure 515. Interpolated prediction surface of Fall Ice Cover Average Minimum.

Fall Ice Cover Average Maximum

This variable displayed a bimodal, platykurtic distribution prior to interpolation (Table 207, Figure 516). The data were greater than predicted by a normal distribution at the lowest and upper mid-range values, and lower than predicted at the highest and lower mid-range values (Figure 517). These areas of under- and over-prediction showed spatial pattern over the region.

The semivariogram showed autocorrelation present in the data (Figure 518). The kriged model showed good fit between measured and predicted values (Figure 518). Fair to poor performance of the model was indicated by the cross-validation results (Table 208), with a Standardized Root-Mean-Square Error higher than 1, indicating that variability in the predictions was underestimated. The error map showed lower error across the study extent, with high error in Lancaster Sound and other coastal areas (Figure 519). The kriged surface is presented in Figure 520.

Property	Value
Number of Observations	526
Minimum	0.000
Maximum	0.997
Mean	0.500
Median	0.639
Standard Deviation	0.430
Skewness	-0.141
Kurtosis	1.190

Table 207. Distributional properties of Fall Ice Cover Average Maximum.

Figure 516. Distribution of Fall Ice Cover Average Maximum. Histogram was illustrated using 10 bins. X axis is shown at 10; Y axis is shown at 10^{-2} .

Figure 517. Normal Q-Q plot for data values of Fall Ice Cover Average Maximum. Points falling under (top right panel) and over (bottom right panel) the reference line are mapped.

Figure 518. Left panel: Semivariogram of Fall Ice Cover Average Maximum. Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 0.908 degrees; number of lags: 12; Parameter: 2; Range: 7.266 degrees; Partial Sill: 0.058. Right panel: Scatterplot of predicted values versus observed values for the model of Fall Ice Cover Average Maximum.

Table 200. Results of closs-valuation of the Ringed model for than ice cover Average Maximum	Tabl	e 20	08.	Re	sult	s of	cross-	valid	lation	of	the	kriged	l mode	l f	or H	Fall	Ice	Co	ver A	Average	e N	Iaxi	mun	n.
--	------	------	-----	----	------	------	--------	-------	--------	----	-----	--------	--------	-----	------	------	-----	----	-------	---------	-----	------	-----	----

Number of Observations526Overall Mean Error-2.995 x 10 ⁻⁴ Root Mean Square Prediction Error0.023Standardized Mean2.621 x 10 ⁻³ Standardized Root Mean Square Prediction Error1.970Average Standard Error0.012	Prediction Error	Value
Overall Mean Error-2.995 x 10-4Root Mean Square Prediction Error0.023Standardized Mean2.621 x 10-3Standardized Root Mean Square Prediction Error1.970Average Standard Error0.012	Number of Observations	526
Root Mean Square Prediction Error0.023Standardized Mean2.621 x 10 ⁻³ Standardized Root Mean Square Prediction Error1.970Average Standard Error0.012	Overall Mean Error	-2.995 x 10 ⁻⁴
Standardized Mean2.621 x 10^{-3}Standardized Root Mean Square Prediction Error1.970Average Standard Error0.012	Root Mean Square Prediction Error	0.023
Standardized Root Mean Square Prediction Error1.970Average Standard Error0.012	Standardized Mean	2.621 x 10 ⁻³
Average Standard Error 0.012	Standardized Root Mean Square Prediction Error	1.970
Average Standard Error 0.012	Average Standard Error	0.012

Figure 519. Prediction standard error surface of Fall Ice Cover Average Maximum.

Figure 520. Interpolated prediction surface of Fall Ice Cover Average Maximum.

Fall Ice Cover Average Range

This variable displayed a bimodal, platykurtic distribution prior to interpolation (Table 209, Figure 521). The data were greater than predicted by a normal distribution at the lowest and upper mid-range values, and lower than predicted at the highest and lower mid-range values (Figure 522). These areas of under- and over-prediction showed spatial pattern over the region.

The semivariogram showed autocorrelation present in the data (Figure 523). The kriged model showed good fit between measured and predicted values (Figure 523). Poor performance of the model was indicated by the cross-validation results (Table 210), with a Standardized Root-Mean-Square Error higher than 1, indicating that variability in the predictions was underestimated. The error map showed lower error across the study extent, with high error in Lancaster Sound and other coastal areas (Figure 524). The kriged surface is presented in Figure 525.

Property	Value
Number of Observations	526
Minimum	0.000
Maximum	0.983
Mean	0.461
Median	0.521
Standard Deviation	0.406
Skewness	-0.044
Kurtosis	1.223

Table 209. Distributional properties of Fall Ice Cover Average Range.

Figure 521. Distribution of Fall Ice Cover Average Range. Histogram was illustrated using 10 bins. X axis is shown at 10; Y axis is shown at 10^{-2} .

Figure 522. Normal Q-Q plot for data values of Fall Ice Cover Average Range. Points falling under (top right panel) and over (bottom right panel) the reference line are mapped.

Figure 523. Left panel: Semivariogram of Fall Ice Cover Average Range. Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 0.742 degrees; number of lags: 12; Parameter: 2; Range: 5.940 degrees; Partial Sill: 0.048. Right panel: Scatterplot of predicted values versus observed values for the model of Fall Ice Cover Average Range.

Table 210. Results of cross-validation of the kriged model for Fall Ice Cover Average Range.

Prediction Error	Value
Number of Observations	526
Overall Mean Error	-7.255 x 10 ⁻⁴
Root Mean Square Prediction Error	0.029
Standardized Mean	-0.011
Standardized Root Mean Square Prediction Error	2.252
Average Standard Error	0.014

Figure 524. Prediction standard error surface of Fall Ice Cover Average Range.

Figure 525. Interpolated prediction surface of Fall Ice Cover Average Range.

Winter Ice Cover Mean

This variable displayed a bimodal, platykurtic distribution prior to interpolation (Table 211, Figure 526). The data were greater than predicted by a normal distribution at the lowest and upper mid-range values, and lower than predicted at the highest and lower mid-range values (Figure 527). These areas of under- and over-prediction showed spatial pattern over the region.

The semivariogram showed moderate autocorrelation present in the data (Figure 528). The kriged model showed good fit between measured and predicted values (Figure 528). Good performance of the model was indicated by the cross-validation results (Table 212). The error map showed lower error across the study extent, with high error in Lancaster Sound and other coastal areas (Figure 529). The kriged surface is presented in Figure 530.

Property	Value
Number of Observations	526
Minimum	0.000
Maximum	1.000
Mean	0.642
Median	0.939
Standard Deviation	0.429
Skewness	-0.648
Kurtosis	1.553

Table 211. Distributional properties of Winter Ice Cover Mean.

Figure 526. Distribution of Winter Ice Cover Mean. Histogram was illustrated using 10 bins. X axis is shown at 10; Y axis is shown at 10^{-2} .

Figure 527. Normal Q-Q plot for data values of Winter Ice Cover Mean. Points falling under (top right panel) and over (bottom right panel) the reference line are mapped.

Figure 528. Left panel: Semivariogram of Winter Ice Cover Mean. Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 0.437 degrees; number of lags: 12; Parameter: 2; Range: 3.497 degrees; Partial Sill: 0.024. Right panel: Scatterplot of predicted values versus observed values for the model of Winter Ice Cover Mean.

Table 212. Results of cross-validation of the kriged model for Winter Ice Cover Mean.

Prediction Error	Value
Number of Observations	526
Overall Mean Error	1.553 x 10 ⁻⁴
Root Mean Square Prediction Error	0.014
Standardized Mean	-0.017
Standardized Root Mean Square Prediction Error	0.944
Average Standard Error	0.026

Figure 529. Prediction standard error surface of Winter Ice Cover Mean.

Figure 530. Interpolated prediction surface of Winter Ice Cover Mean.

Winter Ice Cover Minimum

This variable displayed a bimodal, platykurtic distribution prior to interpolation (Table 213, Figure 531). The data were greater than predicted by a normal distribution at the lowest and upper mid-range values, and lower than predicted at the highest and lower mid-range values (Figure 532). These areas of under- and over-prediction showed spatial pattern over the region.

The semivariogram showed moderate autocorrelation present in the data (Figure 533). The kriged model showed good fit between measured and predicted values (Figure 533). Good performance of the model was indicated by the cross-validation results (Table 214). The error map showed a "bullseye" pattern with error increasing slightly with distance away from data points (Figure 534). The kriged surface is presented in Figure 535.

Property	Value
Number of Observations	526
Minimum	0.000
Maximum	0.990
Mean	0.417
Median	0.290
Standard Deviation	0.415
Skewness	0.255
Kurtosis	1.304

Table 213. Distributional properties of Winter Ice Cover Minimum.

Figure 531. Distribution of Winter Ice Cover Minimum. Histogram was illustrated using 10 bins. X axis is shown at 10; Y axis is shown at 10^{-2} .

Figure 532. Normal Q-Q plot for data values of Winter Ice Cover Minimum. Points falling under (top right panel) and over (bottom right panel) the reference line are mapped.

Figure 533. Left panel: Semivariogram of Winter Ice Cover Minimum. Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 4.770 degrees; number of lags: 12; Parameter: 1.392; Range: 38.163 degrees; Partial Sill: 0.285. Right panel: Scatterplot of predicted values versus observed values for the model of Winter Ice Cover Minimum.

Table 214. Results of cross-validation of the kriged model for Winter Ice Cover Minimum.

Prediction Error	Value
Number of Observations	526
Overall Mean Error	1.139 x 10 ⁻⁴
Root Mean Square Prediction Error	0.093
Standardized Mean	9.730 x 10 ⁻⁴
Standardized Root Mean Square Prediction Error	1.135
Average Standard Error	0.026

Figure 534. Prediction standard error surface of Winter Ice Cover Minimum.

Figure 535. Interpolated prediction surface of Winter Ice Cover Minimum.

Winter Ice Cover Maximum

This variable displayed a bimodal and discontinuous distribution and prior to interpolation (Table 215, Figure 536). The data were greater than predicted by a normal distribution at the lowest and upper mid-range values, and lower than predicted at the highest and lower mid-range values (Figure 537). These areas of under- and over-prediction showed spatial pattern over the region.

The semivariogram showed moderate autocorrelation present in the data (Figure 538). The kriged model showed good fit between measured and predicted values (Figure 538). Fair performance of the model was indicated by the cross-validation results (Table 216). The error map showed lower error across the study extent, with high error in Lancaster Sound and other coastal areas (Figure 539). The kriged surface is presented in Figure 540.

Property	Value
Number of Observations	526
Minimum	0.000
Maximum	1.000
Mean	0.764
Median	0.764
Standard Deviation	0.393
Skewness	-1.322
Kurtosis	2.900

Table 215. Distributional properties of Winter Ice Cover Maximum.

Figure 536. Distribution of Winter Ice Cover Maximum. Histogram was illustrated using 10 bins. Y axis is shown at 10^{-2} .

Figure 537. Normal Q-Q plot for data values of Winter Ice Cover Maximum. Points falling under (top right panel) and over (bottom right panel) the reference line are mapped.

Figure 538. Left panel: Semivariogram of Winter Ice Cover Maximum. Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 0.843 degrees; number of lags: 12; Parameter: 2; Range: 6.742 degrees; Partial Sill: 0.067. Right panel: Scatterplot of predicted values versus observed values for the model of Winter Ice Cover Maximum.

Table 216. Results of cross-validation of the kriged model for Winter Ice Cover Maximum.

Prediction Error	Value
Number of Observations	526
Overall Mean Error	-1.314 x 10 ⁻⁴
Root Mean Square Prediction Error	0.038
Standardized Mean	-1.422 x 10 ⁻⁴
Standardized Root Mean Square Prediction Error	3.646
Average Standard Error	0.014

Figure 539. Prediction standard error surface of Winter Ice Cover Maximum.

Figure 540. Interpolated prediction surface of Winter Ice Cover Maximum.

Winter Ice Cover Range

This variable displayed a right-skewed, platykurtic distribution prior to interpolation (Table 217, Figure 541). The data were greater than predicted by a normal distribution at the lowest and upper mid-range values, and lower than predicted at the highest and lower mid-range values (Figure 542). These areas of under- and over-prediction showed spatial pattern over the region.

The semivariogram showed autocorrelation present in the data (Figure 543). The kriged model showed good fit between measured and predicted values (Figure 543). Good performance of the model was indicated by the cross-validation results (Table 218). The error map showed a "bullseye" pattern with error increasing with distance from data points (Figure 544). The kriged surface is presented in Figure 545.

Property	Value
Number of Observations	526
Minimum	0.000
Maximum	1.000
Mean	0.347
Median	0.155
Standard Deviation	0.360
Skewness	0.517
Kurtosis	1.612

Table 217. Distributional properties of Winter Ice Cover Range.

Figure 541. Distribution of Winter Ice Cover Range. Histogram was illustrated using 10 bins. Y axis is shown at 10^{-2} .

Figure 542. Normal Q-Q plot for data values of Winter Ice Cover Range. Points falling under (top right panel) and over (bottom right panel) the reference line are mapped.

Figure 543. Left panel: Semivariogram of Winter Ice Cover Range. Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 2.336 degrees; number of lags: 12; Parameter: 1.121; Range: 18.685 degrees; Partial Sill: 0.173. Right panel: Scatterplot of predicted values versus observed values for the model of Winter Ice Cover Range.

Table 218. Results of cross-validation of the kriged model for Winter Ice Cover Range.

Prediction Error	Value
Number of Observations	526
Overall Mean Error	-4.711 x 10 ⁻⁴
Root Mean Square Prediction Error	0.101
Standardized Mean	-2.893 x 10 ⁻³
Standardized Root Mean Square Prediction Error	0.825
Average Standard Error	0.124

Figure 544. Prediction standard error surface of Winter Ice Cover Range.

Figure 545. Interpolated prediction surface of Winter Ice Cover Range.

Winter Ice Cover Average Minimum

This variable displayed a bimodal, platykurtic distribution prior to interpolation (Table 219, Figure 546). The data were greater than predicted by a normal distribution at the lowest and upper mid-range values, and lower than predicted at the highest and lower mid-range values (Figure 547). These areas of under- and over-prediction showed spatial pattern over the region.

The semivariogram showed autocorrelation present in the data (Figure 548). The kriged model showed good fit between measured and predicted values (Figure 548). Good performance of the model was indicated by the cross-validation results (Table 220). The error map showed lower error across the study extent, with high error in Lancaster Sound and other coastal areas (Figure 549). The kriged surface is presented in Figure 550.

Property	Value
Number of Observations	526
Minimum	0.000
Maximum	0.999
Mean	0.602
Median	0.898
Standard Deviation	0.433
Skewness	-0.518
Kurtosis	1.391

Table 219. Distributional properties of Winter Ice Cover Average Minimum.

Figure 546. Distribution of Winter Ice Cover Average Minimum. Histogram was illustrated using 10 bins. X axis is shown at 10; Y axis is shown at 10^{-2} .

Figure 547. Normal Q-Q plot for data values of Winter Ice Cover Average Minimum. Points falling under (top right panel) and over (bottom right panel) the reference line are mapped.

Figure 548. Left panel: Semivariogram of Winter Ice Cover Average Minimum. Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 0.701 degrees; number of lags: 12; Parameter: 2; Range: 5.607 degrees; Partial Sill: 0.041. Right panel: Scatterplot of predicted values versus observed values for the model of Winter Ice Cover Average Minimum.

Table	220.	Results	of	cross-validation	of	the	kriged	model	for	Winter	Ice	Cover	Average
Minim	um.												

Prediction Error	Value
Number of Observations	526
Overall Mean Error	7.448 x 10 ⁻⁴
Root Mean Square Prediction Error	0.019
Standardized Mean	0.017
Standardized Root Mean Square Prediction Error	1.629
Average Standard Error	0.015

Figure 549. Prediction standard error surface of Winter Ice Cover Average Minimum.

Figure 550. Interpolated prediction surface of Winter Ice Cover Average Minimum.

Winter Ice Cover Average Maximum

This variable displayed a bimodal, platykurtic distribution prior to interpolation (Table 221, Figure 551). The data were greater than predicted by a normal distribution at the lowest and upper mid-range values, and lower than predicted at the highest and lower mid-range values (Figure 552). These areas of under- and over-prediction showed spatial pattern over the region.

The semivariogram showed moderate autocorrelation present in the data (Figure 553). The kriged model showed good fit between measured and predicted values (Figure 553). Good performance of the model was indicated by the cross-validation results (Table 222). The error map showed low error across the study extent, with high error in Lancaster Sound and other coastal areas (Figure 554). The kriged surface is presented in Figure 555.

Property	Value
Number of Observations	526
Minimum	0.000
Maximum	1.000
Mean	0.674
Median	0.972
Standard Deviation	0.427
Skewness	-0.769
Kurtosis	1.722

Table 221. Distributional properties of Winter Ice Cover Average Maximum.

Figure 551. Distribution of Winter Ice Cover Average Maximum. Histogram was illustrated using 10 bins. Y axis is shown at 10^{-2} .

Figure 552. Normal Q-Q plot for data values of Winter Ice Cover Average Maximum. Points falling under (top right panel) and over (bottom right panel) the reference line are mapped.

Figure 553. Left panel: Semivariogram of Winter Ice Cover Average Maximum. Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 0.437 degrees; number of lags: 12; Parameter: 2; Range: 3.497 degrees; Partial Sill: 0.028. Right panel: Scatterplot of predicted values versus observed values for the model of Winter Ice Cover Average Maximum.

Table	222.	Results	of	cross-validation	of	the	kriged	model	for	Winter	Ice	Cover	Average
Maxin	num.												

Prediction Error	Value
Number of Observations	526
Overall Mean Error	1.819 x 10 ⁻⁴
Root Mean Square Prediction Error	0.015
Standardized Mean	-7.081 x 10 ⁻³
Standardized Root Mean Square Prediction Error	0.948
Average Standard Error	0.029

Figure 554. Prediction standard error surface of Winter Ice Cover Average Maximum.

Figure 555. Interpolated prediction surface of Winter Ice Cover Average Maximum.

Winter Ice Cover Average Range

This variable displayed a right-skewed, leptokurtic distribution prior to interpolation (Table 223, Figure 556). The data were higher than predicted by a normal distribution at both tails, while mid-values were lower than the reference line (Figure 557). These areas of under- and over-prediction showed spatial pattern over the region (Figure 557).

The semivariogram showed autocorrelation present in the data (Figure 558). The kriged model showed good fit between measured and predicted values (Figure 558). Fair performance of the model was indicated by the cross-validation results (Table 224). The Standardized Root Mean Square Error is large than 1, indicating that variability in the predictions was underestimated. The error map showed low error across the study extent, with high error in Lancaster Sound and other coastal areas (Figure 559). The kriged surface is presented in Figure 560.

Property	Value
Number of Observations	526
Minimum	0.000
Maximum	0.553
Mean	0.072
Median	0.033
Standard Deviation	0.107
Skewness	2.108
Kurtosis	6.836

Table 223. Distributional properties of Winter Ice Cover Average Range.

Figure 556. Distribution of Winter Ice Cover Average Range. Histogram was illustrated using 10 bins. X axis is shown at 10; Y axis is shown at 10^{-2} .

Figure 557. Normal Q-Q plot for data values of Winter Ice Cover Average Range. Points falling under (top right panel) and over (bottom right panel) the reference line are mapped.

Figure 558. Left panel: Semivariogram of Winter Ice Cover Average Range. Binned values are shown as red dots; average points are shown as blue crosses; the model fit to the averaged values is shown as a blue line. Lag size: 0.628 degrees; number of lags: 12; Parameter: 2; Range: 5.026 degrees; Partial Sill: 0.011. Right panel: Scatterplot of predicted values versus observed values for the model of Winter Ice Cover Average Range.

Table 224. Results of cross-validation of the kriged model for Winter Ice Cover Average Range.

Prediction Error	Value
Number of Observations	526
Overall Mean Error	-1.696 x 10 ⁻⁴
Root Mean Square Prediction Error	0.018
Standardized Mean	3.608×10^{-3}
Standardized Root Mean Square Prediction Error	2.544
Average Standard Error	0.010

Figure 559. Prediction standard error surface of Winter Ice Cover Average Range.

Figure 560. Interpolated prediction surface of Winter Ice Cover Average Range.

Recommendation on Variable Use for Species Distribution Modelling

This report provides detailed information on 111 environmental data layers for the Eastern Canadian Arctic and Sub-Arctic that were extracted from various sources and with different native spatial resolutions. These data layers were spatially interpolated using ordinary kriging in ArcGIS to provide continuous data surfaces to be used in various modelling applications.

Upon examination of the interpolated surfaces, we noted poor interpolation of those variables with sparse coverage of the raw data. For instance, interpolation of the various metrics of Spring Primary Production provided poor results north of Davis Strait due to sparse coverage of the raw data. Therefore, we do not recommend their use in those areas.

Below we provide a recommendation on our suggested use of these environmental variables in species distribution modelling applications (Table 225). Those variables with restrictions or limitations to their use due to poor interpolation are highlighted in bold. All other variables are considered good predictors of the environmental conditions of the region, with the exception of the extreme temperature values located in Hudson Bay (see methodology). Caution should therefore be taken when applying these data layers from that region.

Variables labelled 'average' (see methodology) are considered more representative of long-term average climate, as the quantities were obtained by taking an average of the minima, maxima, and range values at each point location across years. In contrast, the 'absolute' variables were created by taking the absolute minima, maxima, and range at each point location across all years and are therefore more reflective of extreme or anomalous events. Previous applications of these variables in modelling processes (see Beazley et al., 2016b; Murillo et al., in prep.) used the 'average' variables over the 'absolute', as average climate was considered more relevant to the distribution of long-lived benthic marine fauna than extreme events.

Variable	Recommendation on Use
Temperature	
Bottom Temperature Mean	Recommended for applications requiring data
	on long-term average climate.
Bottom Temperature Minimum	Recommended for applications requiring data
	on extreme climate. Note erroneously low
	temperature values in Hudson Bay.
Bottom Temperature Maximum	Recommended for applications requiring data on extreme climate.
Bottom Temperature Range	Recommended for applications requiring data on extreme climate.

Table 225. Recommended use of each environmental variable in species distribution modelling applications.
Bottom Temperature Average Minimum	Recommended for applications requiring data						
	on long-term average climate.						
Bottom Temperature Average Maximum	Recommended for applications requiring data						
	on long-term average climate.						
Bottom Temperature Average Range	Recommended for applications requiring data						
	on long-term average climate.						
Surface Temperature Mean	Recommended for applications requiring data						
	on long-term average climate.						
Surface Temperature Minimum	Recommended for applications requiring data						
	on extreme climate.						
Surface Temperature Maximum	Recommended for applications requiring data						
	on extreme climate.						
Surface Temperature Range	Recommended for applications requiring data						
	on extreme climate.						
Surface Temperature Average Minimum	Recommended for applications requiring data						
	on long-term average climate.						
Surface Temperature Average Maximum	Recommended for applications requiring data						
	on long-term average climate.						
Surface Temperature Average Range	Recommended for applications requiring data						
	on long-term average climate.						

Salinity

Bottom Salinity Mean	Recommended for applications requiring data				
	on long-term average climate.				
Bottom Salinity Minimum	Recommended for applications requiring data				
	on extreme climate.				
Bottom Salinity Maximum	Recommended for applications requiring data				
	on extreme climate.				
Bottom Salinity Range	Recommended for applications requiring data				
	on extreme climate.				
Bottom Salinity Average Minimum	Recommended for applications requiring data				
	on long-term average climate.				
Bottom Salinity Average Maximum	Recommended for applications requiring data				
	on long-term average climate.				
Bottom Salinity Average Range	Recommended for applications requiring data				
	on long-term average climate.				
Surface Salinity Mean	Recommended for applications requiring data				
	on long-term average climate.				
Surface Salinity Minimum	Recommended for applications requiring data				
	on extreme climate.				
Surface Salinity Maximum	Recommended for applications requiring data				
	on extreme climate.				
Surface Salinity Range	Recommended for applications requiring data				
	on extreme climate.				
Surface Salinity Average Minimum	Recommended for applications requiring data				
	on long-term average climate.				
Surface Salinity Average Maximum	Recommended for applications requiring data				

	on long-term average climate.				
Surface Salinity Average Range	Recommended for applications requiring data				
	on long-term average climate.				
Current Speed					
Bottom Current Mean	Recommended for applications requiring data				
	on long-term average climate.				
Bottom Current Minimum	Recommended for applications requiring data				
	on extreme climate.				
Bottom Current Maximum	Recommended for applications requiring data				
	on extreme climate.				
Bottom Current Range	Recommended for applications requiring data				
	on extreme climate.				
Bottom Current Average Minimum	Recommended for applications requiring data				
-	on long-term average climate.				
Bottom Current Average Maximum	Recommended for applications requiring data				
	on long-term average climate.				
Bottom Current Average Range	Recommended for applications requiring data				
	on long-term average climate.				
Surface Current Mean	Recommended for applications requiring data				
	on long-term average climate.				
Surface Current Minimum	Recommended for applications requiring data				
	on extreme climate				
Surface Current Maximum	Recommended for applications requiring data				
	on extreme climate.				
Surface Current Range	Recommended for applications requiring data				
Surrace Current Runge	on extreme climate.				
Surface Current Average Minimum	Recommended for applications requiring data				
	on long-term average climate.				
Surface Current Average Maximum	Recommended for applications requiring data				
	on long-term average climate.				
Surface Current Average Range	Recommended for applications requiring data				
	on long-term average climate.				
Maximum Seasonal Mixed Laver Depth					
Maximum Spring Mixed I aver Depth	Recommended for applications requiring data				
Maximum Spring Mixed Layer Depti	on extreme climate				
Maximum Summer Mixed Laver Depth	Recommended for applications requiring data				
Maximum Summer Mixed Eager Depui	on extreme climate				
Maximum Fall Mixed I aver Denth	Recommended for applications requiring data				
Maximum I an Mixed Layer Depui	on extreme climate				
Maximum Winter Mixed I aver Denth	Recommended for applications requiring data				
maximum winter winter Layer Depui	on extreme climate				
Maximum Average Spring Mixed Laver Depth	Recommended for applications requiring data				
maximum reverage opring mixed Layer Deput	on long-term average climate				
Maximum Average Summer Mixed I aver Denth	Recommended for applications requiring data				
Maximum reveraçe Summer Mixed Layer Depui	on long-term average climate				
	on rong with avoiago onnaw.				

Maximum Average Fall Mixed Layer Depth	Recommended for applications requiring data on long-term average climate
Maximum Average Winter Mixed Layer Depth	Recommended for applications requiring data on long-term average climate
Bottom Shear	
Bottom Shear Mean	Recommended for applications requiring data
	on long-term average climate.
Bottom Shear Minimum	Recommended for applications requiring data
Bottom Shear Maximum	Recommended for applications requiring data
	on extreme climate.
Bottom Shear Range	Recommended for applications requiring data
	on extreme climate.
Bottom Shear Average Minimum	Recommended for applications requiring data
	on long-term average climate.
Bottom Shear Average Maximum	Recommended for applications requiring data
Dottom Chaon Average Denge	Decommonded for applications requiring data
Bottom Shear Average Kange	on long-term average climate
Soo Surface Chloronhyll a	on long-term average enmate.
Sering Chlorenhall - Maan	Decommon ded for annihisations requiring data
Spring Chlorophyll <i>a</i> Mean	Recommended for applications requiring data
	on long-term average climate.
Spring Chlorophyll <i>a</i> Minimum	Recommended for applications requiring data
Spring Chlorophyll a Maximum	Decommonded for applications requiring data
Spring Chlorophyn a Maximum	on long-term average climate.
Spring Chlorophyll <i>a</i> Range	Recommended for applications requiring data
	on long-term average climate.
Summer Chlorophyll <i>a</i> Mean	Recommended for applications requiring data
	on long-term average climate.
Summer Chlorophyll a Minimum	Recommended for applications requiring data
	on long-term average climate.
Summer Chlorophyll <i>a</i> Maximum	Recommended for applications requiring data
Summer Chlorophyll a Range	Recommended for applications requiring data
Summer emotophyn a Range	on long-term average climate
Annual Chlorophyll <i>a</i> Mean	Recommended for applications requiring data
	on long-term average climate.
Annual Chlorophyll <i>a</i> Minimum	Recommended for applications requiring data
	on long-term average climate.
Annual Chlorophyll a Maximum	Recommended for applications requiring data
	on long-term average climate.
Annual Chlorophyll a Range	Recommended for applications requiring data
	on long-term average climate.
Primary Production	

Spring Primary Production Minimumuse; poor coverage of raw data.Spring Primary Production MaximumNorth of Davis Strait not recommended for use; poor coverage of raw data.Spring Primary Production RangeNorth of Davis Strait not recommended for use; poor coverage of raw data.Spring Primary Production RangeNorth of Davis Strait not recommended for use; poor coverage of raw data.Spring Primary Production Average MinimumNorth of Davis Strait not recommended for use; poor coverage of raw data.
Spring Primary Production MinimumNorth of Davis Strait not recommended for use; poor coverage of raw data.Spring Primary Production MaximumNorth of Davis Strait not recommended for use; poor coverage of raw data.Spring Primary Production RangeNorth of Davis Strait not recommended for use; poor coverage of raw data.Spring Primary Production RangeNorth of Davis Strait not recommended for use; poor coverage of raw data.Spring Primary Production Average MinimumNorth of Davis Strait not recommended for use; poor coverage of raw data.
Spring Primary Production Maximumuse; poor coverage of raw data.Spring Primary Production RangeNorth of Davis Strait not recommended for use; poor coverage of raw data.Spring Primary Production Average MinimumNorth of Davis Strait not recommended for use; poor coverage of raw data.Spring Primary Production Average MinimumNorth of Davis Strait not recommended for use; poor coverage of raw data.
Spring Primary Production MaximumNorth of Davis Strait not recommended for use; poor coverage of raw data.Spring Primary Production RangeNorth of Davis Strait not recommended for use; poor coverage of raw data.Spring Primary Production Average MinimumNorth of Davis Strait not recommended for use; poor coverage of raw data.
Spring Primary Production Rangeuse; poor coverage of raw data.Spring Primary Production Average MinimumNorth of Davis Strait not recommended for use; poor coverage of raw data.Spring Primary Production Average MinimumNorth of Davis Strait not recommended for
Spring Primary Production RangeNorth of Davis Strait not recommended for use; poor coverage of raw data.Spring Primary Production Average MinimumNorth of Davis Strait not recommended for
Spring Primary Production Average Minimum North of Davis Strait not recommended for
Spring Primary Production Average Minimum North of Davis Strait not recommended for
Spring Primary Production Average Maximum North of Davis Strait not recommended for
use non coverage of raw data
Spring Primary Production Average Range North of Davis Strait not recommended for
use poor coverage of raw data
Summer Primary Production Mean Recommended for applications requiring data
summer rinnary rioduction wear requiring data
Summer Drimery Dreduction Minimum Decommended for employed ate
Summer Primary Production Minimum Recommended for applications requiring data
Summer Primary Production Maximum Recommended for applications requiring data
on extreme climate
Summer Primary Production Range Recommended for applications requiring data
on extreme climate.
Summer Primary Production Average Minimum Recommended for applications requiring data
on long-term average climate.
Summer Primary Production Average Maximum Recommended for applications requiring data
on long-term average climate.
Summer Primary Production Average Range Recommended for applications requiring data
on long-term average climate.
Annual Primary Production Mean Recommended for applications requiring data
on long-term average climate.
Annual Primary Production Minimum Recommended for applications requiring data
on extreme climate.
Annual Primary Production Maximum Recommended for applications requiring data
Annual Primary Production Pange Pacempended for applications requiring data
Annual Filmary Floduction Range Recommended for applications requiring data on extreme climate
Annual Primary Production Average Minimum Recommended for applications requiring data
on long-term average climate.
Annual Primary Production Average Maximum Recommended for applications requiring data
on long-term average climate.
Annual Primary Production Average Range Recommended for applications requiring data
on long-term average climate.
Sea Ice Cover

Spring Ice Cover Mean

-

Recommended for applications requiring data on long-term average climate.

Spring Ice Cover Minimum	Recommended for applications requiring data
Spring Ice Cover Maximum	Recommended for applications requiring data
Spring Ice Cover Range	Recommended for applications requiring data
Spring Ice Cover Average Minimum	Recommended for applications requiring data
Spring Ice Cover Average Maximum	Recommended for applications requiring data
Spring Ice Cover Average Range	Recommended for applications requiring data
Fall Ice Cover Mean	Recommended for applications requiring data
Fall Ice Cover Minimum	Recommended for applications requiring data
Fall Ice Cover Maximum	Recommended for applications requiring data
Fall Ice Cover Range	Recommended for applications requiring data
Fall Ice Cover Average Minimum	Recommended for applications requiring data
Fall Ice Cover Average Maximum	on long-term average climate. Recommended for applications requiring data
Fall Ice Cover Average Range	Recommended for applications requiring data on long-term average climate
Winter Ice Cover Mean	Recommended for applications requiring data
Winter Ice Cover Minimum	Recommended for applications requiring data
Winter Ice Cover Maximum	Recommended for applications requiring data
Winter Ice Cover Range	Recommended for applications requiring data
Winter Ice Cover Average Minimum	Recommended for applications requiring data
Winter Ice Cover Average Maximum	Recommended for applications requiring data
Winter Ice Cover Average Range	Recommended for applications requiring data on long-term average climate.

ACKNOWLEDGMENTS

This project was funded in part by a one year project under DFO's Strategic Program for Ecosystem-Based Research and Advice (SPERA) and an International Governance Strategy (IGS) project to EK. We thank G. White (DFO-MAR) for providing the primary production data.

REFERENCES

- Arantes, R. C. M., Castro, C. B., Pires, D. O., and Seoane, J. C. S. 2009. Depth and water mass zonation and species associations of coldwater octocoral and stony coral communities in the southwestern Atlantic. Mar. Ecol. Progr. Ser. 397: 71–79.
- Barthel, D. 1986. On the ecophysiology of the sponge *Halichondria panicea* in Kiel Bight. I. Substrate specificity, growth and reproduction. Mar. Ecol. Progr. Ser. 32: 291–298.
- Beazley, L.I., Kenchington, E.L., Murillo, F.J., and Sacau, M. 2013. Deep-sea sponge grounds enhance diversity and abundance of epibenthic megafauna in the Northwest Atlantic. ICES J. Mar. Sci. 70: 1471–1490.
- Beazley, L., Lirette, C., Sabaniel, J., Wang, Z., Knudby, A., and Kenchington, E. 2016a. Characteristics of Environmental Data Layers for Use in Species Distribution Modelling in the Gulf of St. Lawrence. Can. Tech. Rep. Fish. Aquat. Sci. 3154: viii + 357p.
- Beazley, L., Murillo, F.J., Kenchington, E., Guijarro, J., Lirette, C., Siferd, T., Treble, M., Wareham, V., Baker, E., Bouchard Marmen, M., and Tompkins MacDonald, G. 2016b. Species Distribution Modelling of Corals and Sponges in the Eastern Arctic for Use in the Identification of Significant Benthic Areas. Can. Tech. Rep. Fish. Aquat. Sci. 3175: vii + 210p.
- Beazley, L., Guijarro, J., Lirette, C., Wang, Z., and Kenchington, E. 2017. Characteristics of Environmental Data Layers for Use in Species Distribution Modelling in the Maritimes Region. Can. Tech. Rep. Fish. Aquat. Sci. 3212: vii + 327p.
- Berger, V.J., and Kharazova, A.D. 1997. Mechanisms of salinity adaptations in marine molluscs. Hydrobiologia 355: 115-126.
- Bender, M., Grande, K., and Johnson, K. 1987. A comparison of four methods for determining planktonic community production. Limnol. Oceanogr. 32: 1085-1098.
- Boé, J., Hall, A., and Qu, X. 2009. September sea-ice cover in the Arctic Ocean projected to vanish by 2100. Nat. Geosci. 2: 341-343.
- Carney, R.S. 2005. Zonation of deep-sea biota on continental margins. Oceanogr. Mar. Biol. Annu. Rev. 43: 211–279.
- Carstensen, J., Conley, D.J., Lophaven, S., Danielsson, A., Rahm, L., and Toompuu, A. 2002. Statistical Analysis and Modelling of Phytoplankton Dynamics: Exploitation of Data in the Nordic and Baltic Monitoring Programs, Nordic Council of Ministers.

- Cheng, R.T., Ling, C-H, and Gartner, J.W. 1999. Estimates of bottom roughness length and bottom shear stress in South San Francisco Bay, California. J. Geophys. Res. 104: 7715-7728.
- Clark, G.F., Marzinelli, E.M., Fogwill, C.J., Turney, C.S.M., and Johnston, E.L. 2015. Effects of sea-ice cover on marine benthic communities: a natural experiment in Commonwealth Bay, East Antarctica. Polar Biol. 38: 1213-1222.
- Clark, G.F., Stark, J.S., Johnston, E.L., Runcie, J.W., Goldsworthy, P.M., Raymond, B., and Riddle, M.J. 2013. Light-driven tippings points in polar ecosystems. Glob. Change Biol. 19: 3749-3761.
- de Boyer Montégut, C., Madec, G., Fischer, A.S., Lazar, A., and Iudicone, D. 2004. Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. J Geophys Res 109, C12003, doi:10.1029/2004JC002378.
- DeCarlo, L.T. On the meaning and use of kurtosis. Psychol. Methods, 2(3): 292-307.
- Deutsch, C.V. 1996. Correcting for negative weights in ordinary kriging. Comput. Geosci. 22: 765-773.
- DFO. 2009. Development of a Framework and Principles for the Biogeographic Classification of Canadian Marine Areas. DFO Can. Sci. Advis. Sec. Sci. Advis. Rep. 2009/056.
- DFO. 2017. Delineation of Significant Areas of Coldwater Corals and Sponge-Dominated Communities in Canada's Atlantic and Eastern Arctic Marine Waters and their Overlap with Fishing Activity. DFO Can. Sci. Advis. Sec. Sci. Advis. Rep. 2017/007.
- ESRI, 2011. ArcGIS Desktop: Release 10. Environmental Systems Research Institute, Redlands, CA.
- Ettinger-Epstein, P., Whalan, S.W., Battershill, C.N., Nys, R. 2007. Temperature cues gametogenesis and larval release in a tropical sponge. Mar. Biol. 153: 171-178.
- Feldman, G.C., and McClain, C.R. 2012. Ocean Color Web, SeaWiFS Reprocessing 2010.0, NASA Goddard Space Flight Centre. Eds. Kuring, N. and Bailey, S.W. June, 2012. <u>http://oceancolor.gsfc.nasa.gov/</u>
- Flach, E., Lavaleye, M., deStigter, H., and Thomsen, L. 1998. Feeding types of the benthic community and particle transport across the slope of a NW European continental margin (Goban Spur). Prog. Oceanogr. 42: 209–231.
- Fritsen, C.H., Memmott, J.C., Ross, R.M., Quetin, L.B., Vernet, M., and Wirthlin, E.D. 2011. The timing of sea ice formation and exposure to photosynthetically active radiation along the Western Antarctic Peninsula. Polar Biol., 34: 683-692.
- Genin, A., Dayton, P.K., Lonsdale, P.F., and Spiess, F.N. 1986. Corals on seamount peaks provide evidence of current acceleration over deep-sea topography. Nature 322: 59-61.
- Ginn, B., Logan, A., and Thomas, M. 2000. Sponge ecology on sublittoral hard substrates in a high current velocity area. Estuar. Coast. Shelf Sci. 50: 403-414.

- Gogina, M., Glockzin, M., and Zettler, M.L. 2010. Distribution of benthic macrofaunal communities in the western Baltic Sea with regard to near-bottom environmental parameters. 2. Modelling and prediction. J. Mar. Syst. 80: 57-70.
- Gogina, M., and Zettler, M.L. 2010. Diversity and distribution of benthic macrofauna in the Baltic Sea: Data inventory and its use for species distribution modelling and prediction. J. Sea. Res. 64: 313-321.
- Goovaerts, P. 1997. Geostatistics for Natural Resources Evaluation. Oxford University Press. 483 pp.
- Goovaerts, P. 2000. Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. J. Hydrol. 228: 113–129.
- Guijarro, J., Beazley, L., Lirette, C., Wang, Z., and Kenchington, E. 2016. Characteristics of Environmental Data Layers for Use in Species Distribution Modelling in the Newfoundland and Labrador Region. Can. Tech. Rep. Fish. Aquat. Sci. 3187: viii + 325p.
- Howell, K. L., Billett, D. S. M., and Tyler, P. A. 2002. Depth-related distribution and abundance of seastars (Echinodermata: Asteroidea) in the Porcupine Seabight and Porcupine Abyssal Plain, N.E. Atlantic. Deep Sea Res. I 49: 1901–1920.
- Johnston, K., Ver Hoef, J.M., Krivoruchko, K., and Lucas, N. 2001. Using ArcGIS Geostatistical Analyst. ArcGIS User manual, ESRI. California, Redlands. 1-300 pp.
- Kenchington, E., L. Beazley, C. Lirette, F.J. Murillo, J. Guijarro, V. Wareham, K. Gilkinson, M. Koen Alonso, H. Benoît, H. Bourdages, B. Sainte-Marie, M. Treble, and T. Siferd. 2016. Delineation of Coral and Sponge Significant Benthic Areas in Eastern Canada Using Kernel Density Analyses and Species Distribution Models. DFO Can. Sci. Advis. Sec. Res. Doc. 2016/093. vi + 178 p.
- Klitgaard, A.B., Tendal, O.S. and Westerberg, H. 1997. Mass occurrences of large-sized sponges (Porifera) in Faroe Island (NE-Atlantic) shelf and slope areas: characteristics, distribution and possible causes. Pp. 129-142. - In L.E. Hawkins and S. Hutchinson, with A.C. Jensen, M. Sheader and J.A. Williams (eds): The Responses of Marine Organisms to their Environments. Proceedings of the 30th European Marine Biology Symposium, University of Southampton. 362 pp.
- Knudby, A., Kenchington, E., and Murillo, F.J. 2013. Modeling the distribution of *Geodia* sponges and sponge grounds in the northwest Atlantic Ocean. PLoS ONE 8(12): e82306. doi:10.1371/journal.pone.0082306.
- Kravchenko, A., and Bullock, D.G. 1999. A comparative study of interpolation methods for mapping soil properties. Agron. J. 91: 393–400.
- Krivoruchko, K. 2011. Spatial Statistical Data Analysis for GIS Users. ESRI Press, Redlands, CA. 928 pp.
- Leys, S.P., Yahel, G., Reidenbach, M.A., Tunnicliffe, V., Shavit, U., Reiswig, H.M. 2011. The sponge pump: the role of current induced flow in the design of the sponge body plan. PLoS ONE 6(12): e27787. doi:10.1371/journal.pone.0027787

- Levin, L.A., Etter, R. J., Rex, M.A., Gooday, A.J., Smith, C. R., Pineda, J., Stuart, C. T., et al. 2001. Environmental influences on regional deep-sea species diversity. Annu. Rev. Ecol. Syst. 32: 51–93.
- Li, J. and Heap, A.D. 2008. A Review of Spatial Interpolation Methods for Environmental Scientists. Geoscience Australia, Record 2008/23, 137 pp.
- Lutz, M.J., Caldeira, K., Dunbar, R.B., and Behrenfeld, M.J. 2007. Seasonal rhythms of net primary production and particulate organic carbon flux to depth describe the efficiency of biological pump in the global ocean. J Geophys Res-Oceans 112: C10011.
- Ly, S., Charles, C., and Degré, A. 2011. Geostatistical interpolation of daily rainfall at catchment scale: the use of several variogram models in the Ourthe and Ambleve catchments, Belgium. Hydrol. Earth Syst. Sci. 15: 2259-2274.
- MacDonald, I. R., Bluhm, B. A., Iken, K., Gavaev, S., and Strong, S. 2010. Benthic macrofauna and megafauna assemblages in the Arctic Deep-Sea Canada Basin. Deep Sea Res. II 57: 136–152.
- Mercier, A., Hamel, J-F. 2011. Contrasting reproductive strategies in three deep- sea octocorals from eastern Canada: *Primnoa resedaeformis*, *Keratoisis ornata*, and *Anthomastus* grandiflorus. Coral Reefs 30: 337–350.
- Papiol, V., Cartes, J. E., Fanelli, E., and Maynou, F. 2012. Influence of environmental variables on the spatio-temporal dynamics of the bentho-pelagic assemblages in the middle slope of the Balearic Basin (NW Mediterranean). Deep Sea Res. I, 61: 84–99.
- Peck, L.S., Webb, K.E., and Bailey, D.M. 2004. Extreme sensitivity of biological function to temperature in Antarctic marine species. Funct. Ecol. 18: 625-630.
- Peterson, I. K., and R. Pettipas. 2013. Trends in air temperature and sea ice in the Atlantic Large Aquatic Basin and adjoining areas, Can. Tech. Rep. Hydrogr. Ocean Sci. 290: v + 59 p.
- Platt, T., Sathyendranath, S., Forget, M-H., White III, G.N., Caverhill, C., Bouman, H., Devred, E., and Son, S. 2008. Operational estimation of primary production at large geographical scales. Remote Sens. Environ., 112: 3437-3448.
- Polovina, J.J., Mitchum, G.T., and Evans, G.T. 1995. Decadal and basin-scale variation in mixed layer depth and the impact on biological production in the Central and North Pacific, 1960-88. Deep-Sea Res. 42: 1701-1716.
- Riigård, H.U., Thomassen, S., Jakobsen, H., Weeks, J.M., Larsen, P.S. 1993. Suspension feeding in marine sponges *Halichondria panacea* and *Haliclona urceolus*: effects of temperature on filtration rate and energy cost of pumping. Mar. Ecol. Progr. Ser. 96: 177-188.
- Roberts, J.J., Best, B.D., Dunn, D.C., Treml, E.A., and Halpin, P.N. 2010. Marine Geospatial Ecology Tools: An integrated framework for ecological geoprocessing with ArcGIS, Python, R, MATLAB, and C++. Environ. Modell. Softw. 25: 1197-1207.
- Robinson, T.P., and Metternicht, G. 2006. Testing the performance of spatial techniques for mapping soil properties. Comput. Electron. Agric. 50: 97-108.

- Soltwedel, T., Jaeckisch, N., Ritter, N., Hasemann, C., Bergmann, M., and Klages, M. 2009. Bathymetric patterns of megafaunal assemblages from the arctic deep-sea observatory HAUSGARTEN. Deep Sea Res. I 56: 1856–1872.
- Spetland, F., Rapp, H.T., Hoffmann, F., and Tendal, O.S. 2007. Sexual reproduction of *Geodia* barretti Bowerbank 1858 (Porifera, Astrophorida) in two Scandinavian fjords. In: Custódio, M.R., Lôbo-Hajdu, G., Hajdu, E., and Muricy, G (eds). Porifera Research: Biodiversity, Innovation and Sustainability. Rio de Janeiro, Brazil: Museu. Nacional: 613-620.
- Sun, Z., Hamel, J.-F., Edinger, E., Mercier, A. 2010a. Reproductive biology of the deep-sea octocoral *Drifa glomerata* in the Northwest Atlantic. Mar. Biol. 157: 863–873.
- Sun, Z., Hamel, J.-F., Mercier, A. 2010b. Planulation periodicity, settlement preferences and growth of two deep-sea octocorals from the Northwest Atlantic. Mar. Ecol. Prog. Ser. 410: 71–87.
- Sun, Z., Hamel, J.-F., Mercier, A. 2011. Planulation, larval biology, and early growth of the deep-sea soft corals *Gersemia fruticosa* and *Duva florida* (Octocorallia: Alcyonacea). Invert. Biol. 130: 91–99.
- Wassmann, P., Duarte, C.M., Agusti, S., and Sejr, M.K. 2011. Footprints of climate change in the Arctic marine ecosystem. Glob. Chang. Biol. 17: 1235-1249.
- Yamamoto, J.K. 2007. On unbiased backtransform of lognormal kriging estimates. Comput. Geosci. 11: 219-234.

APPENDIX I - Summary of Variables with Negative Values in the Interpolated Prediction Surface Resulting from Ordinary Kriging

Appendix 1 shows a map of each of the thirteen variables with negative values resulting in the prediction surfaces after spatial interpolation using ordinary kriging. The location of the negative values is highlighted in blue. The data distribution prior to modeling and the numbers of cells with negative values for each variable is presented in Table A1. For the sea ice cover variables, Table A2 shows the data distribution and cells that had both negative values and values greater than one resulting from the ordinary kriging process. Maps showing the location of those cells are also shown.

Variable	Negative Values in Input	Data Distribution	Total Number of Cells	Cells with Negative Values	Range of Negative Values
Bottom Salinity Average Range	No	Right-skewed	1197966	477	-9.52 x 10 ⁻² to -8.70 x 10 ⁻⁷
Bottom Current Minimum	No	Right-skewed, Single large outlier	1197966	557	-2.78 x 10 ⁻⁴ to- 2.00 x 10 ⁻⁸
Bottom Current Average Minimum	No	Right-skewed, Single large outlier	1197966	90	-4.19 x 10 ⁻⁴ to- 2.41 x 10 ⁻⁶
Surface Current Minimum	No	Right-skewed, single large outlier	1197966	1992	-8.53 x 10 ⁻³ to -6.50 x 10 ⁻⁷
Surface Current Average Minimum	No	Right-skewed	1197966	9	-2.07 x 10 ⁻³ to -4.03 x 10 ⁻⁵
Maximum Spring Mixed Layer Depth	No	Right-skewed	1197966	60	-73.02 to -1.02
Maximum Winter Mixed Layer Depth	No	Right-skewed	1197966	444	-204.85 to -0.55
Maximum Average Winter Mixed Layer Depth	No	Right-skewed	1197966	320	-124.67 to -9.70 x 10 ⁻²
Bottom Shear Minimum	No	Right-skewed, large outlier	1197966	204	-2.39 x 10 ⁻⁴ to - 9.00 x 10 ⁻⁸
Spring Chlorophyll <i>a</i> Minimum	No	Right-skewed, double large outlier	1197966	8	-0.19 to -5.68 x 10 ⁻⁴
Summer Chlorophyll <i>a</i> Mean	No	Right-skewed, single large outlier	1197966	59	-0.40 to -3.25 x 10 ⁻³
Summer Chlorophyll <i>a</i> Maximum	No	Right-skewed, single large outlier	1197966	4418	-10.39 to -9.40 x 10 ⁻⁵
Summer Chlorophyll <i>a</i> Range	No	Right-skewed, single large outlier	1197966	7847	-10.63 to -2.70 x 10 ⁻⁵

Table A1. Summary of environmental variables with negative prediction values resulting from ordinary kriging.

Table A2. Summary of sea ice cover variables with both negative prediction values and values greater than 1 resulting from ordinary kriging.

Variable	Negative Values in Input	Data Distribution	Total Number of Cells	Cells with Negative Values	Range of Negative Values	Cells with Values Greater than 1	Range of Values Greater than 1
Spring Ice Cover Mean	No	Left-skewed	1197966	67417	-0.017 to - 1.00 x 10 ⁻⁶	1476	1.009 to 1.00001
Spring Ice Cover Minimum	No	Right-skewed	1197966	158214	-0.048 to - 1.00 x 10 ⁻⁶	NA	NA
Spring Ice Cover Maximum	No	Left-skewed	1197966	67046	-0.088 to - 1.00 x 10 ⁻⁶	153170	1.031 to 1.000001
Spring Ice Cover Range	No	Left-skewed	1197966	79258	-0.057 to - 1.00 x 10 ⁻⁶	96499	1.056 to 1.000001
Spring Ice Cover Average Minimum	No	Right-skewed	1197966	56653	-0.023 to - 1.00 x 10 ⁻⁶	1053	1.020 to 1.000015
Spring Ice Cover Average Maximum	No	Left-skewed	1197966	52485	-0.033 to - 1.00 x 10 ⁻⁶	14193	1.007 to 1.000001
Spring Ice Cover Average Range	No	Right-skewed	1197966	56535	-0.033 to - 1.00 x 10 ⁻⁶	NA	NA
Fall Ice Cover Mean	No	Right-skewed	1197966	91692	-0.015 to - 0.004	NA	NA
Fall Ice Cover Minimum	No	Right-skewed	1197966	5029	-0.006 to - 100 x 10 ⁻⁶	NA	NA
Fall Ice Cover Maximum	No	Left-skewed	1197966	97403	-0.061 to - 1.00 x 10 ⁻⁶	7636	1.048 to 1.000001
Fall Ice Cover Range	No	Left-skewed	1197966	72991	-0.097 to - 1.00 x 10 ⁻⁶	143596	1.003 to 1.000001
Fall Ice Cover Average Minimum	No	Right-skewed	1197966	141896	-0.057 to - 0.006	NA	NA
Fall Ice Cover Average Maximum	No	Left-skewed	1197966	97403	-0.061 to - 1.00 x 10 ⁻⁶	7366	1.048 to 1.000001
Fall Ice Cover Average Range	No	Left-skewed	1197966	85306	-0.023 to - 1.00 x 10 ⁻⁶	316	1.066 to 1.000048
Winter Ice Cover Mean	No	Left-skewed	1197966	37643	-0.028 to - 1.00 x 10 ⁻⁶	20153	1.013 to 1.000001
Winter Ice Cover Minimum	No	Right-skewed	1197966	53846	-0.102 to - 1.00 x 10 ⁻⁶	NA	NA
Winter Ice Cover Maximum	No	Left-skewed	1197966	51960	-0.082 to - 1.00 x 10 ⁻⁶	140041	1.038 to 1.000001
Winter Ice Cover Range	No	Right-skewed	1197966	71367	-0.049 to - 1.00 x 10 ⁻⁶	6326	1.080 to 1.000001
Winter Ice Cover Average Minimum	No	Left-skewed	1197966	64385	-0.035 to - 1.00 x 10 ⁻⁶	29600	1.021 to 1.000001
Winter Ice Cover Average Maximum	No	Left-skewed	1197966	38811	-0.049 to - 1.00 x 10 ⁻⁶	57040	1.014 to 1.000001

Winter Ice Cover Average Range	No	right-skewed	1197966	71407	-0.041 to - NA 1.00 x 10 ⁻⁶	NA

Bottom Salinity Average Range

Figure A1. Negative values generated in the interpolated prediction surface of Bottom Salinity Average Range.

Bottom Current Minimum

Figure A2. Negative values generated in the interpolated prediction surface of Bottom Current Minimum.

Bottom Current Average Minimum

Surface Current Minimum

Figure A4. Negative values generated in the interpolated prediction surface of Surface Current Minimum.

Surface Current Average Minimum

Maximum Spring Mixed Layer Depth

Figure A6. Negative values generated in the interpolated prediction surface of Maximum Spring Mixed Layer Depth.

Maximum Winter Mixed Layer Depth

Figure A7. Negative values generated in the interpolated prediction surface of Maximum Winter Mixed Layer Depth.

Maximum Average Winter Mixed Layer Depth

Figure A8. Negative values generated in the interpolated prediction surface of Maximum Average Winter Mixed Layer Depth.

Bottom Shear Minimum

Figure A9. Negative values generated in the interpolated prediction surface of Bottom Shear Minimum.

Spring Chlorophyll *a* Minimum

Figure A10. Negative values generated in the interpolated prediction surface of Spring Chlorophyll a Minimum

Summer Chlorophyll a Mean

Figure A11. Negative values generated in the interpolated prediction surface of Summer Chlorophyll *a* Mean.

Summer Chlorophyll a Maximum

Figure A12. Negative values generated in the interpolated prediction surface of Summer Chlorophyll *a* Maximum.

Summer Chlorophyll a Range

Spring Ice Cover Mean

Figure A14. Values greater than 1 and less than zero generated in the interpolated prediction surface of Spring Ice Cover Mean.

Spring Ice Cover Minimum

Figure A15. Values less than zero generated in the interpolated prediction surface of Spring Ice Cover Minimum.

Spring Ice Cover Maximum

Figure A16. Values greater than 1 and less than zero generated in the interpolated prediction surface of Spring Ice Cover Maximum

Spring Ice Cover Range

Figure A17. Values greater than 1 and less than zero generated in the interpolated prediction surface of Spring Ice Cover Range.

Spring Ice Cover Average Minimum

Figure A18. Values greater than 1 and less than zero generated in the interpolated prediction surface of Spring Ice Cover Average Minimum.

Spring Ice Cover Average Maximum

ONTARIO

Values > 1

Values < 0

Spring Ice Cover Average Maximum

GREENLAND

at 75°N

t 55%

Spring Ice Cover Average Range

50°N

2°N

Figure A20. Values less than zero generated in the interpolated prediction surface of Spring Ice Cover Average Range.

Fall Ice Cover Mean

Figure A21. Values less than zero generated in the interpolated prediction surface of Fall Ice Cover Mean.

GREENLAND NoS 60"N ANITOBA 95°N LABRADOR ONTARIO 20°N Fall Ice Cover Minimum 45°N Values < 0 90°W 80°W 70°W 60'W 50'W

0.N

Fall Ice Cover Minimum

Figure A22. Values less than zero generated in the interpolated prediction surface of Fall Ice Cover Minimum.

Fall Ice Cover Maximum

Fall Ice Cover Range

Figure A23. Values greater than 1 and less than zero generated in the interpolated prediction surface of Fall Ice Cover Range.

Fall Ice Cover Average Minimum

Figure A24. Values greater than 1 and less than zero generated in the interpolated prediction surface of Fall Ice Cover Average Minimum.

Fall Ice Cover Average Maximum

Figure A25. Values greater than 1 and less than zero generated in the interpolated prediction surface of Fall Ice Cover Average Maximum.

Fall Ice Cover Average Range

Figure A26. Values greater than 1 and less than zero generated in the interpolated prediction surface of Fall Ice Cover Average Range.

Winter Ice Cover Mean

Figure A27. Values greater than 1 and less than zero generated in the interpolated prediction surface of Winter Ice Cover Mean.

Winter Ice Cover Minimum

Figure A28. Values less than zero generated in the interpolated prediction surface of Winter Ice Cover Minimum.

Winter Ice Cover Maximum

Figure A29. Values greater than 1 and less than zero generated in the interpolated prediction surface of Winter Ice Cover Maximum.

Winter Ice Cover Range

Figure A30. Values greater than 1 and less than zero generated in the interpolated prediction surface of Winter Ice Cover Range.

Winter Ice Cover Average Minimum

Figure A31. Values greater than 1 and less than zero generated in the interpolated prediction surface of Winter Ice Cover Average Minimum.

Winter Ice Cover Average Maximum

Winter Ice Cover Average Range

Figure A33. Values less than zero generated in the interpolated prediction surface of Winter Ice Cover Average Range.