EXECUTIVE SUMMARY

Computer Aided Engineering Tools for Spacecraft Multiprocessor Systems

(Contract # OER 82-05067)

AUTHOR: Dr. C. Laferriere

APPROVED BY: Dr. S.A. Mahmoud

INTELLITECH CANADA LIMITED

352 MacLaren Street
Ottawa, Ontario K2P 0M6

SEPTEMBER 1983
EXECUTIVE SUMMARY - Computer Aided Engineering Tools for Spacecraft Multiprocessor Systems

AUTHOR(S): Dr. C. Laferriere

ISSUED BY CONTRACTOR AS REPORT NO: INT-83-55

PREPARED BY: Intellitech Canada Ltd.
352 MacLaren St.
Ottawa, Ontario
K2P 0M6

DEPARTMENT OF SUPPLY AND SERVICES CONTRACT NO: 36001-2-0560
SER NO. OER82-05067

DOC SCIENTIFIC AUTHORITY: R. A. Millar

CLASSIFICATION: Unclassified
FOREWORD

This executive summary reports on work done for the Federal Department of Communications, Communications Research Centre, Shirley Bay, Ottawa, Ontario, under contract # OER 82-05067.

The summary highlights the salient points of the following reports which were contract deliverables:

1.0 INTRODUCTION

In recent years, computer systems have seen their performance increase considerably. Faster circuits and devices, miniaturization, and better design techniques were major factors in bringing about this enhancement in computing power. This, in turn, has made possible the use of computers in applications which had hitherto been too complex to be cost effective. The control of a spacecraft by an on-board computer is such an application.

Given the power of today's microprocessors and the complexity of the tasks to be performed, it appears that a multiple processor architecture has to be employed if the performance criteria of the control system are to be met. However, the design of multiple processor systems, especially of a general purpose nature, is not well understood and can introduce a considerable overhead in the design activity.

In view of these facts, a research project was initiated to develop a design methodology for multiple processor systems for spacecraft applications and to specify a set of computer aided engineering tools to be used in conjunction with that methodology. The elaboration of the methodology was carried out in a previous contract; several areas worth further investigation were isolated.

1) the specification of desired multiprocessor system characteristics;
2) the mapping of functional specification into hardware/software components;
3) the hardware components development;
4) the software components development;
5) the system integration and testing.

Within the framework of the present contract, items 1, 2 and 4 were treated in [5] and items 3 and 5 were covered in [1, 2, 3, 4].
2.0 THE DESIGN METHODOLOGY

The design methodology is the basis for all work carried out under the present contract and therefore deserves some explanations. The purpose of the methodology is to guide the designers from the specification stage all the way to a practical implementation of the system. Figures 1 and 2 depict the upper and lower levels of the methodology and, although not always evident from those diagrams, looping back to an earlier stage to modify some design choices is the way to handle some inadequacies whenever they are found.

In the upper levels of the methodology, as shown in Figure 1, a functional model of the planned system is obtained by specifying the system requirements, and translating those requirements into functions which are to be decomposed using data flow and hierarchical methods successively. Once a detailed functional model is available, two courses of action are possible:

1. A data flow analysis which tries to produce processing power requirements for each function. This estimation is done analytically.

2. A functional simulation whose goals are similar to the data flow analysis stage but which uses simulation with estimations of processing power requirements.

The processing power requirements together with all the physical constraints affecting the eventual implementation are inputs to the hardware/software partitioning stage. The purpose of that stage is to take a functional view of the system and produce a set of software modules executing on some support hardware with, possibly, some hardware implemented functions. This is in fact the starting point of the implementation of the system.
Figure 2 depicts the lower levels of the design methodology, or in other words, the stages following the hardware/software partitioning stage. Figure 2 also shows some design choices (e.g. Ada simulation blocks, N.mPc, etc.) which will be covered later. Two streams of activity result from the partitioning stage:

1. The hardware development activity is concerned with designing and implementing the general purpose processors required to run the software and also the special purpose hardware components that may be required. It is essential that this activity be independent from actual hardware building yet, at the same time, be close enough to reality to allow for quick prototyping when the design is finalized and satisfactory. N.mPc was chosen as the computer aided engineering tool most suited for the task. Reference [1] describes the reasons why N.mPc was deemed to be the best alternative at the time. Those reasons were N.mPc's capabilities to define any hardware structure in software, to support code development (in assembler) and to provide for the integration of emulated hardware and target software for testing purposes. A complete description of the N.mPc system as received by Intellitech is to be found in [2]. References [3,4] established the viability of N.mPc as a design tool for multiprocessor systems for spacecraft. Several multiprocessor architectures were implemented and simulated successfully. Simulation listings are in [4].

2. The software development activity is concerned with developing the functional description of the system into a proper set of software modules. To help make this activity more efficient, it was suggested that Ada (*) should be used both to specify the system requirements (upper level) and to develop the code for the application (lower level). Reference [5] covers these topics; in particular, it describes the special constructs necessary to express high level functions in Ada and it describes how these functions can be easily developed into Ada code.

(*) Ada is a trademark of the U.S. Department of Defence.
Following the hardware and software development activities, the hardware/software integration stage takes the emulated hardware and the target software and prepares a simulation module. N.mPc is used to create the simulation and to provide the user interface for the control of the simulation execution. In this fashion, thorough testing can be achieved and any design and/or implementation inadequacies can be uncovered readily. These topics were also covered in reference [5].
3.0 SUMMARY

The major aspects of the design methodology for multiprocessor systems which had been developed during a previous phase of this work have been covered. The higher levels of the methodology as well as the practicalities of the lower levels were covered in [5]. The other reports [1,2,3,4] covered the use of the computer aided engineering tool N.mPc.

The use of the methodology as well as the computer aided engineering tools promise to improve considerably the design of multiprocessor systems. This improvement is achieved partly through the logic of the methodology and partly through the use of the CAE tools which allow quicker design turn-around times.

Several areas of investigation remain before a complete design environment can be put together. Foremost among these, is the study of reliability and recovery techniques and how they affect the design of multiprocessor systems. Reliability and robustness are, of course, extremely important in satellite work and thus justify the proposed investigation.

Finally, the work described herein was presented to the technical authority, Mr. R. Millar of CRC, at the Communications Research Centre, Shirley Bay, Ottawa on the 6th of May 1983 and on the 9th of August 1983. A selection of some of the slides shown on those occasions is included in Appendix A.
Requirements
Definition

Data Flow
Decomposition

Hierarchical
Decomposition

Data Flow
Analysis

Mapping to
Simulation
Blocks

Compilation

Diagnostics

Simulation

Design
Evaluation

Hardware/
Software
Partition

FIGURE 1 Upper Levels of the Design Methodology
FIGURE 2 Lower Levels of the Design Methodology
REFERENCES

APPENDIX A

This appendix contains a selection of slides shown during two presentations at the Communications Research Centre, on the 6th of May 1983 and the 9th of August 1983.
COMPUTER AIDED ENGINEERING TOOLS
AND THEIR APPLICATION TO THE DESIGN
OF SPACECRAFT MULTIPROCESSOR SYSTEMS

INTELLITECH CANADA LIMITED

DR. S.A. MAHMOUD
DR. C. LAFERRIERE
MR. J. OUIMET
SPECIFICATION OF SYSTEM (FUNCTIONS, PERFORMANCE, ...)

DEFINITION OF HARDWARE/SOFTWARE BOUNDARY

HIGH LEVEL SOFTWARE DESIGN

LOW LEVEL SOFTWARE IMPLEMENTATION

HARDWARE DESIGN

HARDWARE IMPLEMENTATION

HARDWARE/SOFTWARE INTEGRATION & TESTING

EVALUATION OF SYSTEM PERFORMANCE

ACCEPTABLE SYSTEM?

YES

"DONE"

NO

SYSTEM DESIGN CYCLE

MODIFY

ADA
N.MPC CAPABILITIES

1. PROVIDES FULL SOFTWARE DEVELOPMENT ENVIRONMENT FOR MOST MICROPROCESSORS

2. PROVIDES HARDWARE FUNCTION SIMULATION

3. ACCOMODATES MULTIPROCESSOR ARCHITECTURE EVALUATION

4. ENABLES SYSTEM PERFORMANCE EVALUATION
RECENT WORK WITH N.mPC

- IMPLEMENTATION OF FERRANTI F100-L AND SUPPORT CHIPS

- MULTIPROCESSOR SIMULATIONS USING F100-L'S

- INVESTIGATION OF INTERPROCESSOR CO-ORDINATION

- EVALUATION OF F100-L ARCHITECTURE

- F100-L DEVELOPMENT SYSTEM

 OBSERVATIONS ON N.mPC ON LSI 11/23 - UNIX

 - SPEED

 - OVERALL MEMORY

 - SIMULATED MEMORY
FAULT TOLERANT SYSTEMS

- OF EXTREME IMPORTANCE IN SPACECRAFT ON-BOARD PROCESSING SYSTEM.

- DEFINITION: FAULT TOLERANCE RELIABILITY

- APPLIES TO WHOLE SYSTEM OR TO SETS OF COMPONENTS

- HAS TO BE BUILT INTO A DESIGN; HARDWARE & SOFTWARE

- SEVERAL CONFIGURATIONS MAY HAVE TO BE TESTED AND MODIFIED DURING DESIGN AND DEVELOPMENT

- RELIABILITY IS ALSO ASSESSED WHEN PRODUCT DESIGN IS FINALIZED
PROPOSED TECHNOLOGY DEVELOPMENT

1 - NimPC/N.2 on VAX/VMS

2 - FAULT TOLERANCE INVESTIGATION WITH NimPC

3 - DESIGN, IMPLEMENTATION, SIMULATION OF MICROPROCESSOR BASED FAULT TOLERANT SYSTEMS WITH NimPC

4 - USE OF CROSS DEVELOPMENT SOFTWARE AND INTEGRATION INTO NimPC ENVIRONMENT

5 - SPECIFICATION AND DEVELOPMENT OF NimPC GRAPHICS INTERFACES

6 - DEVELOPMENT OF HIGHER LEVEL SPECIFICATION TOOLS
L-SAT ATTITUDE AND ORBIT CONTROL SYSTEM

CONTROL ELECTRONIC UNIT

EXTERNAL SERIAL BUS (100 KHZ)

ACTUATOR DRIVE ELECTRONICS (E.G. WDE, TDE)

SENSOR ELECTRONICS (E.G. IRS, DSS)
SPACECRAFT MICROCOMPUTER MODULE

MICRO-PROCESSOR

MEMORY (RAM, ROM)

BUS: ADDRESS, DATA, CONTROL

ADDRESSABLE SERIAL BUS INTERFACE CIRCUIT

SMM 1

SMM 2

MISCELLANEOUS ELECTRONICS (POWER CONTROL, FAILURE DETECTION, ...)

INTERNAL SERIAL BUS (500 KHZ): DATA, CLOCK, REQUEST

GROUND LINKS (TT & C) 1

GROUND LINKS (TT & C) 2

BUS CONTROLLER AND COUPLER

EXTERNAL SERIAL BUS (100KHZ)

CONTROL ELECTRONIC UNIT
PROPOSED M-SAT SUPPORT

1 - DEVELOPMENT OF MAJOR BUILDING BLOCKS OF M-SAT ARCHITECTURE WITH N.MPC (E.G. TMS 9989)

2 - DEVELOPMENT OF HARDWARE DESCRIPTION OF M-SAT ARCHITECTURE ON N.MPC (E.G. SMM, ASBIC, BUSCOT)

3 - PERFORMANCE & CORRECTNESS OF HARDWARE/SOFTWARE BY EXERCISING THE HARDWARE WITH SKELETAL SOFTWARE

4 - COMPLETE SIMULATION OF HARDWARE/SOFTWARE SYSTEM UNDER N.MPC
INFORMATION REQUIRED

1 - DEFINITION OF MAJOR BUILDING BLOCKS

2 - HARDWARE CONFIGURATION: (E.G. INTERCONNECTION, TIMING, DESCRIPTION OF SPECIAL PURPOSE CHIPS, ...)

3 - ALGORITHMIC DESCRIPTION OF MAJOR SOFTWARE MODULES

4 - COMPLETE HARDWARE AND SOFTWARE DESCRIPTION
ADVANTAGES OF USING AN N.MPC SIMULATION

1. COMPARISON WITH SYSTEM TEST RESULTS

2. FAULT SIMULATION AND EVALUATION OF RECOVERY MECHANISMS

3. LEARNING ENVIRONMENT FOR UNDERSTANDING SYSTEM OPERATIONS

4. DEVELOPING SKILLS IN A MULTIPROCESSOR PROGRAMMING ENVIRONMENT

5. EVALUATION OF MODIFICATIONS
 - DESIGN PHASE (PRE LAUNCH)
 - OPERATIONAL SUPPORT PHASE (POST LAUNCH)
Cost

I - Hardware - Software

- **N.MPC/N.2 on VAX/VMS** $45,000
- **Optional C Compiler** $10,000
- **Modems, Telephone Line, etc.**, $5,000

$60,000

II - Proposed M-SAT Support

- **Tasks 1 and 2** $45,000

III - Proposed Technology Development

- **Tasks 1 & 4** $12,000
- **Tasks 2 & 3** $82,000
- **Task 5** $46,000

$140,000
WORK SCHEDULE

M-SAT SUPPORT

TASK 1

TASK 2

REPORT ON BUILDING BLOCKS

PRELIMINARY CONFIGURATION EVALUATION

ARCHITECTURE ASSESSMENT REPORT

TECHNOLOGY DEVELOPMENT

TASKS 1 & 4

TASKS 2 & 3

INSTALLATION REPORT

TESTBED SYSTEM IMPLEMENTATION REPORT

RELIABILITY STUDIES REPORT

ENHANCEMENT PACKAGE AND REPORT

JUL AUG SEP OCT NOV DEC JAN FEB MAR APR MAY JUN
TMS 9900/TMS 9989

- TMS 9900 HARDWARE AND SOFTWARE MODELS
 - ISP' DESCRIPTION
 - META MICRO COMMAND FILE
 - LINKING LOADER COMMAND FILE

- TMS 9989 HARDWARE AND SOFTWARE MODELS

IN PROGRESS

- TMS 9989 HARDWARE MODEL
 - TIMING
 - DEBUGGING
 - FULL DOCUMENTATION

NEXT ACTIVITY

- TMS 9989 PERIPHERAL CHIPS
 - INTERRUPT CONTROLLER
 - INPUT/OUTPUT DEVICES
 - BUS & MEMORY CONTROLLERS
<table>
<thead>
<tr>
<th></th>
<th>TMS 9900</th>
<th>TMS 9989</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical</td>
<td>4 8 Clock</td>
<td>1 8 Clock</td>
</tr>
<tr>
<td></td>
<td>64 Kbytes</td>
<td>128 Kbytes</td>
</tr>
<tr>
<td>New PINS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interlock</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INTA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extended Instr.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Software</td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Instructions</td>
<td>LOAD STATUS REG</td>
<td>LOAD WP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MUL (SIGNED)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DIV (SIGNED)</td>
</tr>
<tr>
<td>Performance</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Any Other Characteristics are the Same</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
M-SAT BUS SIMULATION

- INTERNAL ARCHITECTURE OF A SPACECRAFT MICROCOMPUTER MODULE.

 . CHIPS
 . WIRING DIAGRAMS
 . FULL DESCRIPTION OF SPECIAL PURPOSE CHIPS SUCH AS PLA'S (E.G. ASBIC)
 . TIMING DIAGRAMS WHENEVER DIFFERENT FROM MANUFACTURER'S OWN

- INTERNAL SERIAL BUS

 . RESOLUTION OF ACCESS CONTENTION
 . ANY PECULIARITY AFFECTING IMPLEMENTATION
M-SAT BUS SIMULATION (CONT'D)

- OTHER MODULES ON THE INTERNAL SERIAL BUS
 - THEIR INTERFACE TO THE INTERNAL SERIAL BUS
 - THEIR HARDWARE FUNCTIONALITY
 - DESCRIPTION AND FUNCTIONALITY OF BUSCOT
 - TIMING DIAGRAMS
 - FSM (IF POSSIBLE)
 - SPECIAL ATTENTION TO INTERFACING OF BUSCOT/EXTERNAL SERIAL BUS WITH ASBIC/INTERNAL SERIAL BUS

- EXTERNAL SERIAL BUS
 - RESOLUTION OF ACCESS CONTENTION
 - ANY PECULIARITY AFFECTING IMPLEMENTATION

- OTHER MODULES ON EXTERNAL SERIAL BUS
 - THEIR INTERFACE TO THE INTERNAL SERIAL BUS
 - THEIR HARDWARE FUNCTIONALITY