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In Thislssue

It iswith great sadness that we note the recent passing of M.P. Singh, Editor of the Survey Methodology
journd since the very first issuein 1975. Thisissue of thejournal openswith abrief obituary in memoriam.

This issue of Survey Methodology also contains the fifth paper in the annual invited paper seriesin
honour of Joseph Waksberg. A short biography of Joseph Waksberg was given in the June 2001 issue
of the journal, along with the first paper in the series. | would like to thank the members of the
selection committee- Michagl Brick, chair, David Bellhouse, Gordon Brackstone and Paul Biemer —
for having selected Jon Rao as the author of this year’s Waksberg paper.

In his paper entitled “Interplay Between Sample Survey Theory and Practice: An Appraisal”, Rao
traces how survey methods are stimulated by new theoretical developments, and how theory is
challenged by survey practice. After summarizing fifty years of contributions from 1920 to 1970, he
presents more detailed discussions of more recent developments in several areas. Finally, he discusses
severa examples of important theory that is not yet widely applied in practice.

In their paper, Fuller and Kim develop and study an efficient hot-deck imputation method under the
assumption that response probabilities are equal within imputation cells. Their proposed method is
based on the idea of fractional imputation and uses regression techniques to obtain an approximation
of the fully efficient version of fractional imputation. Variance estimation is developed for replication
methods. Their proposed method is shown to work well in asimulation study.

The paper by Brick, Jones, Kalton and Valliant compares through a simulation study three variance
estimation methods in the presence of hot-deck imputation: the model-assisted method, the adjusted
jackknife method and multiple imputation. The goal of the simulation study is to study the properties
of these variance estimators when their underlying assumptions do not hold. They found that the
coverage rate of confidence intervals is not close to the nominal level when the point estimates are
biased due failure to take into account the domains of interest at the imputation stage. They conclude
by noting that the differences between the variance estimators were too small and inconsistent to
support claims that any one of them is superior in general.

Little and Vartivarian study the effect of nonresponse weighting on the Mean Squared Error (M SE)
of a population mean estimator. Nonresponse weighting adjustments are obtained by adjusting design
weights by the inverse of response rates within cells. They come to the conclusion that a covariate
must have two characteristics to reduce nonresponse bias: it needs to be related to both the probability
of response and to the survey outcome. If the latter is true, nonresponse weighting can also reduce
nonresponse variance. Estimates of the MSE are proposed and used to define a composite estimator.
This composite estimator worked well when evaluated in a simulation study.

O'Malley and Zaslavsky present generalized variance-covariance modeling functions (GVCFs) for
multivariate means of ordinal survey items, for both complete data and data with structured non-
response. After developing and evaluating their methods, they give an illustration using data from the
Consumer Assessments of Health Plans Study. In the concluding section they discuss some issues
related to the application of GVCFs.

The paper by Singh, Shukla and Kundu develops spatial and spatial-temporal models for small area
estimation, as well as estimation of the MSE of the resulting EBLUPs. The models are applied to
monthly per capita consumption expenditure data, and they conclude that the models can be very
effective when there are significant correlations due to neighborhood effects.

Belshy, Bjarnstad and Zhang discuss modeling to estimate the number of households of different
sizes when there is nonignorable nonresponse. They model the response mechanism conditional on
household size, using registered family size as supplementary data. After developing their modeling
approach, they produce and evaluate estimates using data from the 1992 Norwegian Consumer
Expenditure Survey.

Nandram, Cox and Choi consider an analysis for categorical data from a single two-way table with
both item and unit nonresponse or, in their terminology, partial classification. They propose to use a
Bayesian approach for modeling different patterns of missingness under ignorability and non-
ignorability assumptions. The methods are illustrated using incompletel y-observed bivariate data from
the National Health and Nutrition Examination Survey where the variables subject to missingness are
bone mineral density and family income.
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In the first of three short notes in this issue, Beaumont discusses the use of data collection process
information in nonresponse weight adjustment. He then presents an example from the Canadian
Labour Force Survey using the number of attemptsto contact a survey unit. An important result is that
if the collection process information can be treated as random, then this approach does not introduce
any hias.

Starting from basic principles, Bustos derives an explicit form for the probability function of an
ordered sample. Using this function, he shows how it can be used to compute inclusion probabilities
with illustrations for common sample designs. Finaly, he gives the general form for the correlation
matrix of sample units, which depends solely on the inclusion probabilities.

Finally, the paper by Wu briefly reviews some theory about the Pseudo Empirical Likelihood (PEL)
method in survey sampling, and presents algorithms for computing maximum PEL estimators and for
constructing PEL ratio confidence intervals. Functions using the statistical software R and S-PLUS are
given to help implement these algorithms in real surveys or in simulation studies.

Harold Mantel
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In Memoriam
M.P. Singh
(1941-2005)

Dr. Mangala P. Singh was born in India on December
26", 1941 and received his PhD in 1969 from the Indian
Statigtical Institute, with a speciaization in survey sampling.
He joined Statistics Canada in 1970, where he rose to the
position of Director of Household Survey Methods Division
in 1994, aposition he held at his death on August 24", 2005,

M.P., as he was known to everyone, was a leading figure
in the application of datistica methods at Statistics Canada.
He was probably most closely associated with the Labour
Force Survey, one of the agency’s most important surveys.
He directed the methodology of the LFS through redesigns
in the 1970s, 1980s, 1990s and early
21% century, introducing innovations at
every turn, but aways ensuring that
changes were well-tested and sound.
In the later years of his career, he also
oversaw the development of severd
new and innovative health surveys and
directed the development of datistica
programs in the areas of household
expenditures, education and justice.

M.P. srole as the Editor-in-Chief of
the journal Survey Methodology had a
transformeative effect on the profession
of survey methodology, both in
Canada and abroad. M.P. was the
founding editor of the journal, and for
30 years he guided its evolution into a
flagship publication of Statistics Can-
ada. Thanks to his ability to attract a
gellar team of associate editors and contributors, Survey
Methodology is now recognized as one of the pre-eminent
journas of its kind in the world. Even in recent years, M.P.
continued to introduce innovations such as the Waksberg
series of papers and dectronic publishing.

M.P. was a source of many other “big ideas’ throughout
his career a Statistics Canada. During the 1970s he was
instrumental in gaining support for the idea of sable
funding for methodology research, and he persondly
chaired the Methodology Research and Development

Committee in its formative years. He encouraged numerous
researchers and went out of his way to make them fed at
home at Statistics Canada. Turning 60 did not stem the flow
of ideas in any way. M.P. devoted considerable energy in
the past four years to his proposa for a mgjor overhaul of
the way household surveys are conducted in Canada. As a
result of his efforts, people throughout Statistics Canada are
working on ways to implement his vison, and his influence
on Canada s household surveys will befelt for many years.

M.P. had a special love for datistica research and for
gatistics as a profession. He personally authored over 40
papers in internationd journals, co-
edited two books published by Wiley
and Sons, and organized sessions and
presented papers at numerous statis-
ticd conferences. He served on vari-
ous committees and task forces of the
Statistical  Society of Canada, the
International Statistical Institute and
the American Statistical Association.
He ds0 served as Secretary of Sta
tisgics Canada's externa Advisory
Committee on Stetistical Methods. In
turn, the profession honoured him; he
was elected to the International Sta-
tigtica Insgtitute in 1975, and in 1988
he became a Fellow of the American
Stetistical Association.

However it is his influence on an
entire generation of statisticians that
may be his greatest legacy. He was a mentor, a coach, a
patriarch and a friend to all who knew him. He inspired
others to give their best, and they did. He was aways ready
with alaugh, asmile and afriendly word of encouragement.
He dedicated his life to the profession of dtatistics and it is
through those whom he touched that his true contribution is
measured.

Heissurvived by hiswife Savitri, histwo daughers Mala
and Mamta, and his son Rahul.
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Waksberg Invited Paper Series

The journal Survey Methodology has established an annua invited paper series in honour of Joseph
Waksberg, who has made many important contributions to survey methodology. Each year a prominent
survey researcher is chosen to author an article as part of the Waksberg Invited Paper Series. The paper
reviews the development and current state of a significant topic within the field of survey methodology, and
reflects the mixture of theory and practice that characterized Waksberg's work. The author receives a cash
award made possible by a grant from Westat, in recognition of Joe Waksberg's contributions during his
many years of association with Westat. The grant is administered financially by the American Statistical
Association. Previous winners were Gad Nathan, Wayne Fuller, Tim Holt, Norman Bradburn, Jon Rao, and
Alastair Scott. Thefirst five papersin the series have already appeared in Survey Methodol ogy.

Previous Waksberg Award Winners:

Gad Nathan (2001)
Wayne A. Fuller (2002)
Tim Hoalt (2003)

Norman Bradburn (2004)
JN.K. Rao (2005)

Nominations:

The author of the 2007 Waksberg paper will be selected by a four-person committee appointed by Survey
Methodology and the American Statistical Association. Nominations of individuals to be consdered as
authors or suggestions for topics should be sent to the chair of the committee, Gordon Brackstone, 78
Charing Road, Ottawa, Ontario, Canada, K2G 4C9, by email to Gordon.brackstone@sympatico.ca or by fax
1-613-951-1394. Nominations and suggestions for topics must be received by February 28, 2006.

2005 Waksberg Invited Paper
Author: JN.K. Rao

JN.K. Rao is Distinguished Research Professor at Carleton University, Ottawa. He has published many
articleson a wide range of topics in survey sampling theory and methods and he is the author of the 2003
Wiley book “Small Area Estimation”. His research interests in survey sampling include analysis of survey
data, small area estimation, missing data and imputation, re-sampling methods and empirical likelihood
inference. His 1981 JASA paper (with A.J. Scott) on analysis of survey data was selected as a landmark
paper in survey sampling theory and methods. He has been a Member of the Advisory Committee on
Statitistical Methods of Statistics Canada since its inception 20 years ago. He is a Fellow of the Royal
Society of Canada and received the 1994 Gold Medal of the Statistical Society of Canada.



116 Waskberg Invited Paper Series
Members of the Waskberg Paper Selection Committee (2005-2006)

Gordon Brackstone, (Chair)
Wayne Fuller, lowa Sate University
Sharon Lohr, Arizona Sate University

Past Chairs:;

Graham Kalton (1999 - 2001)
Chris Skinner (2001 - 2002)
David A. Binder (2002 - 2003)

J. Michael Brick (2003 - 2004)
David R. Bellhouse (2004 - 2005)

Statistics Canada, Catalogue No. 12-001-XIE
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I nter play Between Sample Survey Theory and Practice: An Appraisal

JN.K.Rao?

Abstract

A large part of sample survey theory has been directly motivated by practica problems encountered in the design and
anaysis of sample surveys. On the other hand, sample survey theory has influenced practice, often leading to significant
improvements. This paper will examine thisinterplay over the past 60 years or so. Examples where new theory is needed or

where theory exists but is not used will also be presented.

Key Words: Anaysis of survey data; Early contributions; Inferential issues; Re-sampling methods; Small area

estimation.

1. Introduction

In this paper | will examine theinterplay between sample
survey theory and practice over the past 60 years or so. |
will cover a wide range of topics. early landmark contri-
butions that have greatly influenced practice, inferential
issues, calibration estimation that ensures consistency with
user specified totals of auxiliary variables, unequal proba
bility sampling without replacement, analysis of survey
data, the role of resampling methods, and small area esti-
mation. | will also present some examples where new theory
is needed or where theory exists but is not used widely.

2. SomeEarly Landmark Contributions:
1920-1970

This section gives an account of some early landmark
contributions to sample survey theory and methods that
have greatly influenced the practice. The Norwegian stetis-
tician A.N. Kiaer (1897) is perhaps the first to promote sam-
pling (or what was then called “the representative method”)
over complete enumeration, although the oldest reference to
sampling can be traced back to the great Indian epic
Mahabharata (Hacking 1975, page 7). In the representative
method the sample should mirror the parent finite
population and this may be achieved either by balanced
sampling through purposive selection or by random sam-
pling. The representative method was used in Russa as
early as 1900 (Zarkovic 1956) and Wright conducted
sample surveys in the United States around the same period
using this method. By the 1920s, the representative method
was widdy used, and the International Statistical Indtitute
played a prominent role by creating a committee in 1924 to
report on the representative method. This committee’s re-
port discussed theoretical and practical aspects of the ran-
dom sampling method. Bowley’s (1926) contribution to this
report includes his fundamental work on stratified random

sampling with proportional alocation, leading to a represen-
tative sample with equal inclusion probabilities. Hubback
(1927) recognized the need for random sampling in crop
surveys. “The only way in which a satisfactory estimate can
be found is by as close an approximation to random
sampling as the circumstances permit, since that not only
gets rid of the persona limitations of the experimenter but
aso makes it possble to say what is the probability with
which the results of a given number of samples will be
within agiven range from the mean. To put thisinto definite
language, it should be possible to find out how many
samples will be required to secure that the odds are at least
20:1 on the mean of the samples within one maund of the
true mean”. This statement contains two important obser-
vations on random sampling: (1). It avoids persond biases
in sample selection. (2). Sample size can be determined to
satisfy a specified margin of error gpart from a chance of 1
in 20. Mahaanobis (1946b) remarked that R.A. Fisher's
fundamental work a Rothamsted Experimental Station on
design of experiments was influenced directly by Hubback
(1927).

Neyman's (1934) classic landmark paper laid the theo-
retical foundations to the probability sampling (or design-
based) approach to inference from survey samples. He
showed, both theoretically and with practical examples, that
gratified random sampling is preferable to balanced sam-
pling because the latter can perform poorly if the underlying
model assumptions are violated. Neyman aso introduced
the ideas of efficiency and optima dlocation in his theory
of dratified random sampling without replacement by
relaxing the condition of equa inclusion probabilities. By
generdizing the Markov theorem on least sguares esti-
mation, Neyman proved that the stretified mean, Yy =
>nW, V., is the best estimator of the population mean,
Y =¥,W,Y,, inthelinear class of unbiased estimators of
the form y, =X \W, ¥;b, y,,, where W,,y, and Y, are

1. JN.K. Rao, School of Mathematics and Stetistics, Carleton University, Ottawa, Ontario, Canada, K1S 5B6.
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the h™ stratum weight, sample mean and population mean
(h=1, .., L), and b, is a congtant associated with the
item value y;, observed on the i"™ sample draw (i =
1, .., n,) inthe h™ gratum. Optimal alocation (n,, ...,
n,) of the total sample size, n, was obtained by minimi-
zing the variance of y, subject to X,,n, =n; an earlier
proof of Neyman allocation by Tschuprow (1923) was later
discovered. Neyman also proposed inference from larger
samples based on norma theory confidence intervals such
that the frequency of errors in the confidence statements
based on dl possible stratified random samples that could be
drawn does not exceed the limit prescribed in advance
“whatever the unknown properties of the population” . Any
method of sampling that satisfies the above frequency
statement was called “representative’. Note that Hubback
(1927) earlier dluded to the frequency statement associated
with the confidence interval. Neyman's final contribution to
the theory of sample surveys (Neyman 1938) studied two-
phase sampling for dratification and derived the optima
first phase and second phase sample sizes, n” and n, by
minimizing the variance of the estimator subject to a given
cost C=n’c’+nc, where the second phase cost per unit,
c, islargerelaiveto the first phase cost per unit, c¢’.

The 1930's saw a rapid growth in demand for informa-
tion, and the advantages of probability sampling in terms of
greater scope, reduced codt, greater speed and model-free
features were soon recognized, leading to an increase in the
number and type of surveys taken by probability sampling
and covering large populations. Neyman's gpproach was
amogt universaly accepted by practicing survey statis-
ticians. Moreover, it inspired various important extensions,
mostly motivated by practical and efficiency considerations.
Cochran’s (1939) landmark paper contains severd impor-
tant results: the use of ANOVA to estimate the gain in effi-
ciency due to stratification, estimation of variance compo-
nents in two-stage sampling for future studies on similar
material, choice of sampling unit, regression estimation
under two-phase sampling and effect of errorsin stratasizes.
This paper aso introduced the super-population concept:
“Thefinite population should itsalf be regarded as arandom
sample from some infinite population”. It is interesting to
note that Cochran at that time was critical of the traditional
fixed population concept: “Further, it is far removed from
redlity to regard the population as a fixed batch of known
numbers’. Cochran (1940) introduced ratio estimation for
sample surveys, dthough an early use of the ratio estimator
dates back to Laplace (1820). In another landmark paper
(Cochran 1942), he developed the theory of regression
estimation. He derived the conditional variance of the usua
regression estimator for a fixed sample and also a sample
estimator of this variance, assuming a linear regression
model y=oa+Px+e, where e has mean zero and

Statistics Canada, Catalogue No. 12-001-XIE

congtant variance in arrays in which x is fixed. He aso
noted that the regression estimator remains (model) unbi-
ased under non-random sampling, provided the assumed
linear regresson model is correct. He derived the average
bias under model deviations (in particular, quadratic regres-
son) for simple random sampling as the sample size n
increased. Cochran then extended his results to weighted
regression and derived the now well-known optimality
result for the ratio estimator, namely it is a “best unbiased
linear estimate if the mean value and variance both change
proportional to x”. The latter model is called the ratio mod-
e in the current literature. Madow and Madow (1944) and
Cochran (1946) compared the expected (or anticipated)
variance under a super-population model to study the
rlative efficiency of systemaic sampling and dratified
random sampling analyticaly. This paper stimulated much
subsequent research on the use of super-population models
in the choice of probability sampling strategies, and aso for
modéel -dependent and model-assisted inferences (see section
3).

In India, Mahalanobis made pioneering contributions to
sampling by formulating cost and variance functions for the
design of surveys. His 1944 [andmark paper (Mahalanobis
1944) provides deep theoreticd results on the efficient de-
sign of sample surveys and their practica applications, in
particular to crop acreage and yidd surveys. The wdl-
known optima alocation in dratified random sampling
with cost per unit varying across strata is obtained as a
special case of his genera theory. As early as 1937,
Mahalanobis used multi-stage designs for crop yield surveys
with villages, grids within villages, plots within grids and
cuts of different sizes and shapes as sampling units in the
four stages of sampling (Murthy 1964). He also used a two-
phase sampling design for estimating the yield of cinchona
bark. He was instrumental in establishing the Nationa
Sample Survey (NSS) of India, the largest multi-subject
continuing survey operation with full-time staff using
personal interviews for socioeconomic surveys and physical
measurements for crop surveys. Several prominent survey
gatisticians, including D.B. Lahiri and M.N. Murthy, were
associated with the NSS.

P.V. Sukhatme, who studied under Neyman, also made
pioneering contributions to the design and andysis of large-
scale agricultural surveys in India, using stratified multi-
stage sampling. Starting in 1942-1943 he developed
efficient designs for the conduct of nationwide surveys on
wheat and rice crops and demonstrated high degree of
precision for state estimates and reasonable margin of error
for district estimates. Sukhatme's approach differed from
that of Mahalanobis who used very small plots for crop
cutting employing ad hoc staff of investigators. Sukhatme
(1947) and Sukhatme and Panse (1951) demonstrated that
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the use of asmall plot might give biased estimates due to the
tendency of placing boundary plants inside the plot when
there is doubt. They also pointed out that the use of an
ad hoc staff of investigators, moving rapidly from place to
place, forces the plot measurements on only those sample
fields that are ready for harvest on the date of the visit, thus
violaing the principle of random sampling. Sukhatme's
solution was to use large plots to avoid boundary bias and to
entrust crop-cutting work to the local revenue or agricultura
agency in aState.

Survey statisticians at the U.S. Census Bureau, under the
leadership of Morris Hansen, William Hurwitz, William
Madow and Joseph Waksberg, made fundamental contribu-
tions to sample survey theory and practice during the period
1940-70, and many of those methods are still widely used
in practice. Hansen and Hurwitz (1943) developed the basic
theory of dratified two-stage sampling with one primary
sampling unit (PSU) within each stratum drawn with proba-
bility proportiona to size measure (PPS sampling) and then
sub-sampled at a rate that ensures self-weighting (equal
overal probahilities of selection) within drata. This ap-
proach provides approximately equa interviewer work
loads which is desirable in terms of field operations. It dso
leads to significant variance reduction by controlling the
variability arising from unequa PSU sizes without actudly
greatifying by size and thus alowing stratification on other
variables to reduce the variance. On the other hand,
workloads can vary widely if the PSUs are selected by
simple random sampling and then sub-sampled at the same
rate within each stratum. PPS sampling of PSUs is now
widely used in the design of large-scale surveys, but two or
more PSUs are selected without replacement from each
dratum such that the PSU inclusion probabilities are
proportional to size measures (see section 5).

Many large-scale surveys are repeated over time, such as
the monthly Canadian Labour Force Survey (LFS) and the
U.S. Current Population Survey (CPS), with partia replace-
ment of ultimate units (also called rotation sampling). For
example, in the LFS the sample of households is divided
into six rotation groups (panels) and a rotation group re-
mains in the sample for six consecutive months and then
drops out of the sample, thus giving five-sixth overlap be-
tween two consecutive months. Y ates (1949) and Patterson
(1950), following the initid work of Jessen (1942) for
sampling on two occasions with partial replacement of
units, provided the theoretical foundations for design and
estimation of repeated surveys, and demonstrated the effi-
ciency gains for level and change estimation by teking
advantage of past data. Hansen, Hurwitz, Nissedson and
Steinberg (1955) developed simpler estimators, caled K —
composite estimators, in the context of stratified multi-stage
designs with PPS sampling in the first stage. Rao and
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Graham (1964) studied optimal replacement palicies for the
K —composite estimators. Various extensions have also
been proposed. Composite estimators have been used in the
CPS and other continuing large scale surveys. Only re-
cently, the Canadian LFS adopted a type of composite esti-
mation, called regression composite estimation, that makes
use of sample information from previous months and that
can be implemented with a regression weights program (see
section 4).

Keyfitz (1951) proposed an ingenious method of
switching to better PSU size measures in continuing surveys
based on the latest census counts. His method ensures that
the probability of overlap with the previous sample of one
PSU per stratum is maximized, thus reducing the field costs
and a the same time achieving increased efficiency by using
the better sze measures in PPS sampling. The Canadian
LFS and other continuing surveys have used the Keyfitz
method. Rg (1956) formulated the optimization problem as
a“transportation problem” in linear programming. Kish and
Scott (1971) extended the Keyfitz method to changing strata
and size measures. Erngt (1999) has given a nice account of
the developments over the past 50 years in sample co-
ordination (maximizing or minimizing the sample overlap)
using trangportation agorithms and related methods, see
dso Mach, Reiss and Schiopu-Kratina (2005) for appli-
cations to business surveys with births and deaths of firms.

Dalenius (1957, Chapter 7) studied the problem of opti-
mal stratification for a given number of strata, L, under the
Neyman alocation. Daenius and Hodges (1959) obtained a
simple approximation to optimal dratification, caled the
cum /T rule, which is extensively used in practice. For
highly skewed populations with a small number of units
accounting for alarge share of the total Y, such as business
populations, efficient stratification requires one take-al
sratum (n, =N,) of big units and take-some strata of
medium and small size units. Lavalée and Hidiroglou
(1988) and Rivest (2002) developed agorithms for deter-
mining the strata boundaries using power alocation (Fellegi
1981; Bankier 1988) and Neyman dlocation for the take
some strata. Statistics Canada and other agencies currently
use those algorithms for business surveys.

The focus of research prior to 1950 was on estimating
population totals and means for the whole population and
large planned sub-populations, such as states or provinces.
However, users are aso interested in totals and means for
unplanned sub-populations (dso caled domains) such as
age-sex groups within a province, and parameters other than
totals and means such as the median and other quantiles, for
example median income. Hartley (1959) developed a
smple, unified theory for domain estimation applicable to
any design, requiring only the standard formulae for the
estimator of total and its variance estimator, denoted in the
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operator notation as Y(y) and v(y) respectively. He
introduced two synthetic variables ; y; and ; a; which take
the values y, and 1 respectively if the unit i belongs to
domain j and equa to O otherwise. The estimators of do-
maintotal ;Y =Y(;y) and domain size ; N=Y(;a) are
then smply obtained from the formulae for Y(y) and
v(y) by replacing y; by ;y; and ; a; respectively. Sm-
ilarly, estimators of domain means and domain differences
and their variance estimators are obtained from the basic
formulae for Y (y) and v(y). Durbin (1968) also obtained
smilar results. Domain estimation is now routinely done
using Hartley’ s ingenious method.

For inference on quantiles, Woodruff (1952) proposed a
smple and ingenious method of getting a (1- o) —level
confidence interval under general sampling designs, using
only the estimated distribution function and its standard
error (see Lohr's (1999) book, pages 311-313). Note that
the latter are smply obtained from the formulae for a tota
by changing y to an indicator variable. By equating the
Woodruff interval to a norma theory interval on the
quantile, a simple formula for the standard error of the p™
quantile estimator may also be obtained as half the length of
the interval divided by the upper o/2-point of the
standard N(O, 1) distribution which equals 1.96 if o =0.05
(Reo and Wu 1987; Francisco and Fuller 1991). A sur-
prising property of the Woodruff interval isthat it performs
well even when p is small or large and sample size is
moderate (Sitter and Wu 2001).

The importance of measurement errors was realized as
early as the 1940s. Mahalanobis (1946a) influential paper
developed the technique of interpenetrating sub-samples
(called replicated sampling by Deming 1960). This method
was extensively used in large-scale sample surveys in India
for assessing both sampling and measurement errors. The
sample is drawn in the form of two or more independent
sub-samples according to the same sampling design such
that each sub-sample provides avalid estimate of the total or
mean. The sub-samples are assigned to different interview-
ers (or teams) which leads to a vaid estimate of the total
variance that takes proper account of the correlated response
variance component due to interviewers. Interpenetrating
sub-samples increase the travel costs of interviewers, but
they can be reduced through modifictions of interviewer
assignments. Hansen, Hurwitz, Marks and Mauldin (1951),
Sukhatme and Seth (1952) and Hansen, Hurwitz and
Bershad (1961) developed basic theories under additive
measurement error models, and decomposed the total vari-
ance into sampling variance, smple response variance and
correlated response variance. The correlated response vari-
ance due to interviewers was shown to be of the order k™
regardless of the sample size, where k is the number of
interviewers. As aresult, it can dominate the total variance
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if k isnot large. The 1950 U.S. Census interviewer vari-
ance study showed that this component was indeed large for
smadll areas. Partly for this reason, self-enumeration by mail
was first introduced in the 1960 U.S. Census to reduce this
component of the variance (Waksberg 1998). Thisisindeed
asuccess gory of theory influencing practice. Fellegi (1964)
proposed a combination of interpenetration and replication
to estimate the covariance between sampling and response
deviations. This component is often neglected in the decom-
position of total variance but it could be sizeable in practice.

Y et another early milestone in sample survey methods is
the concept of design effect (DEFF) due to Ledie Kish (see
Kish 1965, section 8.2). The design effect is defined as the
ratio of the actual variance of a gatistic under the specified
design to the variance that would be obtained under smple
random sampling of the same size. This concept is epe-
cialy useful in the presentation and modeling of sampling
erors, and aso in the analysis of complex survey data
involving clustering and unequal probabilities of selection
(see section 6).

We refer the reader to Kish (1995), Kruskal and
Mosteller (1980), Hansen, Dalenius and Tepping (1985) and
O'Muircheartaigh and Wong (1981) for reviews of early
contributions to sample survey theory and methods.

3. Inferential Issues
3.1 Unified Design-Based Framewor k

The development of early sampling theory progressed
more or less inductively, athough Neyman (1934) studied
best linear unbiased estimation for dratified random
sampling. Strategies (design and estimation) that appeared
reasonable were entertained and relative properties were
carefully studied by analytical and/or empirical methods,
mainly through comparisons of mean squared errors, and
sometimes also by comparing anticipated mean sguared
errors or variances under plausible super-population models,
as noted in section 2. Unbiased estimation under a given
design was not insisted upon because it “often results in
much larger mean squared error than necessary” (Hansen,
Hurwitz and Tepping 1983). Instead, design consistency
was deemed necessary for large samples i.e., the estimator
approches the population value as the sample size increases.
Classica text books by Cochran (1953), Deming (1950),
Hansen, Hurwitz and Madow (1953), Sukhatme (1954) and
Y ates (1949), based on the above approach, grestly influ-
enced survey practice. Yet, academic datisticians paid little
attention to traditional sampling theory, possibly because it
lacked a formal theoretical framework and was not
integrated with mainstream datistica theory. Numerous
prestigious statistics departments in North America did not
offer graduate coursesin sampling theory.
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Formal theoretical frameworks and approaches to inte-
grating sampling theory with mainstream statistical infer-
ence were initiated in the 1950s under a somewheat idedlistic
set-up that focussed on sampling errors assuming the ab-
sence of measurement or response errors and Non-response.
Horvitz and Thompson (1952) made a basic contribution to
sampling with arbitrary probabilities of selection by formu-
lating three subclasses of linear design-unbiased estimators
of atotd Y that include the Markov class studied by
Neyman as one of the subclasses. Another subclass with
design weight d, attached to asample unit i and depending
only on i admitted the well-known estimator with weight
inversely proportional to the inclusion probability wr; asthe
only unbiased estimator. Narain (1951) also discovered this
estimator, so it should be caled the Narain-Horvitz-
Thompson (NHT) estimator rather than the HT estimator as
it is commonly known. For simple random sampling, the
sample mean is the best linear unbiased estimator (BLUE)
of the population mean in the three subclasses, but thisis not
aufficient to claim that the sample mean is the best in the
class of al possible linear unbiased estimators. Godambe
(1955) proposed a general class of linear unbiased esti-
mators of a totd Y by recognizing the sample data as
{(i, y;),ie s} and by letting the weight depend on the
sample unit i aswell as on the other unitsin the sample s,
thet is, the weight is of the form d, (s). He then established
that the BLUE does not exist in the generd class

V=34 (9, (1)

even under simple random sampling. This important neg-
ative theoretica result was largely overlooked for about 10
years. Godambe a so established a positive result by relating
y to asze measure x using a super-population regression
model through origin with error variance proportional to
x?, and then showing that the NHT estimator under any
fixed sample size design with m, proportiona to X,

minimizes the anticipated variance in the unbiased class (1).
This result clearly shows the conditions on the design for the
use of the NHT estimator. Rao (1966) recognized the lim-
itations of the NHT estimator in the context of surveys with
PPS sampling and multiple characterigtics. Here the NHT
estimator will be very inefficient when a characteristic y is
unrelated or weekly related to the size measure x (such as
poultry count y and farm size x in a farm survey). Rao
proposed efficient alternative estimators for such cases that
ignore the NHT weights. Ignoring the above results, some
theoretical criteria were later advanced in the sampling
literature to claim that the NHT estimator should be used for
any sampling design. Using an amusing example of circus
elephants, Basu (1971) illustrated the futility of such criteria
He constructed a*“bad” design with &, unrelated to y; and
then demonstrated that the NHT estimator leads to absurd
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egtimates which prompted the famous mainstream Bayesian
gatistician Dennis Lindley to conclude that this counte-
rexample destroys the design-based sample survey theory
(Lindley 1996). Thisisrather unfortunate because NHT and
Godambe clearly stated the conditions on the design for a
proper use of the NHT estimator, and Rao (1966) and Hajek
(1971) proposed dternative estimators to dea with multiple
characteristics and bad designs, respectively. It is interesting
to note that the same theoretical criterialed to abad variance
estimator of the NHT estimator asthe *optimd’ choice (Rao
and Singh 1973).

Attempts were also made to integrate sample survey
theory with mainstream statistical inference via the like-
lihood function. Godambe (1966) showed that the likeli-
hood function from the sample data {(i,y;), ie s}, re-
garding the N — vector of unknown y —values as the para-
meter, provides no information on the unobserved sample
values and hence on thetotal Y. This uninformative festure
of the likelihood function is due to the label property that
treats the N population units as essentidly N post-sirata
A way out of this difficulty is to take the Bayesian route by
assuming informative (exchangesble) priors on the para-
meter vector (Ericson 1969). An dternative route (design-
based) is to ignore some aspects of the sample data to make
the sample non-unique and thus arive a an informative
likelihood function (Hartley and Rao 1968; Royall 1968).
For example, under simple random sampling, suppressing
thelabels i and regarding the dataas { (i, y; ), i€ s} inthe
absence of information relating i to y;, leadsto the sample
mean as the maximum likelihood estimator of the popu-
lation mean. Bayesian estimation, assuming non-informa:
tive prior distributions, leads to results smilar to Ericson's
(1969) but depends on the sampling design unlike Ericson’s.
In the case y; is a vector thet includes auxiliary variables
with known totals, Hartley and Rao (1968) showed that the
maximum likelihood estimator under simple random sam-
pling is approximately equa to the traditiona regression
estimator of the total. This paper was the first to show how
to incorporate known auxiliary population totals in a like-
lihood framework. For stretified random sampling, labels
within gtrata are ignored but not dtrata labels because of
known strata differences. The resulting maximum likelihood
estimator is gpproximately equal to a pseudo-optimal linear
regression estimator when auxiliary variables with known
totals are available. The latter estimator has some good con-
ditional design-based properties (see section 3.4). The focus
of Hartley and Rao (1968) was on the estimation of a total,
but the likelihood approach has much wider scope in sam-
pling, including the egtimation of distribution functions
and quantiles and the condruction of likelihood ratio
based confidence intervals (see section 8.1). The Hartley-
Rao non-parametric likelihood approach was discovered
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independently twenty years later (Owen 1988) in the
mainstream datistica inference under the name “empirical
likelihood”. It has attracted a good ded of attention,
including its application to various sampling problems. So
in a sense the integration efforts with mainstream statistics
were partidly successful. Owen's (2002) book presents a
thorough account of empiricd likelihood theory and its
applications.

3.2 Mode-Dependent Approach

The model-dependent approach to inference assumes that
the population structure obeys a specified super-population
model. The distribution induced by the assumed model
provides inferences referring to the particular sample of
units s that has been drawn. Such conditional inferences
can be more relevant and appedling than repeated sampling
inferences. But model-dependent Strategies can perform
poorly in large samples when the model is not correctly
specified; even small deviaions from the assumed model
that are not easily detectable through model checking
methods can cause serious problems. For example, consider
the often-used ratio modd when an auxiliary variable x
with knowntota X isalso measured in the sample:

y, =Bx +¢,;i=1 .., N 2

where the €, are independent random variables with zero
mean and variance proportiond to x;. Assuming the mode!
holds for the sample, that is, no sample selection bias, the
best linear model-unbiased predictor of thetotd Y is given
by the ratio estimator (y/X) X regardless of the sample
design. This estimator is not design consistent unless the
design is sdf-weighting, for example, stratified random
sampling with proportiona alocation. As a result, it can
perform very poorly in large samples under non-self-
weighting designs even if the deviations from the model are
smal. Hansen et al. (1983) demonstrated the poor perfor-
mance under a repeated sampling set-up, using a stratified
random sampling design with near optimal sample aloca
tion (commonly used to handle highly skewed populations).
Rao (1996) used the same design to demonstrate poor
performance under a conditiond framework relevant to the
mode -dependent gpproach (Royall and Cumberland 1981).
Nevertheless, model -dependent approaches can play a vital
role in small area estimation where the sample sze in a
small area (or domain) can be very small or even zero; see
section 7.

Brewer (1963) proposed the model-dependent approach
in the context of the ratio modd (2). Royall (1970) and his
collaborators made a systematic study of this approach.
Vadliant, Dorfman and Royall (2000) give a comprehensive
account of the theory, including estimation of the (condi-
tionad) model variance of the estimator which varies with s.
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For example, under the ratio modd (2) the modd variance
depends on the sample mean X,. It is interesting to note
that balanced sampling through purposive selection appears
in the model-dependent approach in the context of protec-
tion against incorrect specification of the model (Royall and

Herson 1973).
3.3 Model-Assisted Approach

The model-assisted approach attempts to combine the
desirable features of design-based and model-dependent
methods. It entertains only design-consistent estimators of
thetotal Y that are also model unbiased under the assumed
“working” model. For example, under the ratio moddl (2), a
model-assisted estimator of Y for a specified probahility
sampling design is given by the ratio estimator \?r =
(Yaur / X e ) X which is design consistent regardless of
the assumed moddl. Hansen et al. (1983) used this estimator
for their dratified design to demonstrate its superior
performance over the model dependent estimator (y/X) X.
For variance estimation, the mode-assisted approach uses
estimators that are consistent for the design variance of the
estimator and a the same time exactly or asymptoticaly
mode unbiased for the modd variance. However, the infer-
ences are design-based because the model is used only as a
“working” mode.

For the ratio estimator Y, the variance estimator is given
by

Var(Yr)z(XIXNHT)ZV(e)i ©)

where in the operator notation v(e) is obtained from v(y)
by changing y, to the resduds e =y, — (Y /
X naT ) Xi- This variance estimator is asymptotically equiv-
dent to a customary linearization variance estimator v(e),
but it reflects the fact that the information in the sample
varies with X \;: larger values lead to smaller variability
and smdler valuesto larger variability. The resulting normal
pivota leads to valid model -dependent inferences under the
assumed model (unlike the use of v(e) in the pivotal) and
a the same time protects against model deviations in the
sense of providing asymptoticdly valid design-based infer-
ences. Note that the pivotd is asymptoticaly equivalent to
Y(8)/[v(E)]Y? with & =y, —(Y/X)x,. If the devia-
tions from the model are not large, then the skewness in the
resduals € will be small even if y;, and x; are highly
skewed, and norma confidence intervals will perform well.
On the other hand, for highly skewed populations, the
normal intervals based on Y, and its standard error may
perform poorly under repeated sampling even for fairly
large samples because the pivotal depends on the skewness
of the y,. Therefore, the population structure does metter in
design-based inferences contrary to the claims of Neyman
(1934), Hansen et al. (1983) and others. Rao, Jocelyn and
Hidiroglou (2003) considered the simple linear regression
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estimator under two-phase smple random sampling with
only x observed in the first phase. They demondtrated that
the coverage performance of the associated normal intervals
can be poor even for moderately large second phase samples
if the true underlying model that generated the population
deviated significantly from the linear regression mode (for
example, a quadratic regresson of y on x) and the
skewness of x is large. In this case, the first phase x—
values are observed, and a proper model-assisted approach
would use amultiple linear regression estimator with x and
z=x? asthe auxiliary variables. Note that for single phase
sampling such a mode-assisted estimator cannot be imple-
mented if only the total X is known since the estimator
depends on the population total of z.

Sarndal, Swenson and Wretman (1992) provide a com-
prehensive account of the model-assisted apporach to esti-
mating thetotal Y of avariable y under the working linear
regression model

y, =xB+e,;i=1 .., N @

with mean zero, uncorrelated errors €; and model variance
V,, (g;)=0%q =c} where the q; are known congtants
and the x — vectors have known totals X (the population
values X, ..., Xy, may not be known). Under this set-up,
the model-assisted approach leads to the generalized regres-
sion (GREG) edtimator with a closed-form expression
YAgr :YANHT +B'(X - >2NHT )= ZWi sy, ©
where
EA3=-|:71(2157'5i71xi yi /4 ) (6)

with T=Y.m;"x X/ /q, is a weighted regression coeffi-
cient, and w, (s) =g, (s);* with g, (8)=1+ (X - X 41 )
Tx /q;, known as“ g —weights’. Note that the GREG
estimator (5) can also be writtenas X, §; + ENHT , Where
¥, =X B is the predictor of y; under the working model
and E,,,; isthe NHT estimator of the total prediction error
E=Y.ue with e =y, —y,. This representation shows
the role of the working modd in the model-assisted
gpproach. The GREG edtimator (5) is design-consistent as
well as mode-unbiased under the working model (4).
Moreover, it is nearly “optima” in the sense of minimizing
the asymptotic anticipated MSE (modd expectation of the
design MSE) under the working mode, provided the
inclusion probability, m,, is proportiona to the model
standard deviation ;. However, in surveys with multiple
variables of interest, the model variance may vary across
variables. Because one must use a general-purpose design
such as the design with inclusion probabilities proportional
to sizes, the optimality result no longer holds, even if the
same vector x; is used for al the variables y; in the
working model.

123

The GREG estimator simplifies to the ‘projection’ esti-
mator X B=3.w, (s)y, with g, (s)=X'T *x, /q, if the
model variance o7 is proportiona to A'x, for some A.
The ratio estimator is obtained as a specia case of the pro-
jection estimator by letting ¢, =x;, leading to g, (S)=
X /X . Note that the GREG estimator (5) requires only
the population totals X and not necessarily the individual
population vaues x;. This is very useful because the
auxiliary population totals are often ascertained from exter-
nal sources such as demographic projections of age and sex
counts. Also, it ensures consstency with the known totals
X inthesense of Y w, (S)x; = X. Because of this prop-
erty, GREG isaso acalibration estimator.

Suppose there are p variables of interest, say y™, ...,
y(P) and we want to use the modd-assisted approach to
estimate the corresponding population totals Y™, ..., Y(P),
Also, suppose that the working model for y{) is of the
form (4) but requires possibly different x —vector x!)
with knowntota X V) foreach j=1, ..., p:

y() = x (B 1) j=1 . N, @

Inthis case, the g —weightsdepend on j and in turn the
final weights w;, (s) aso depend on j. In practice, it is
often desirable to use asingle st of final weights for al the
p variables to ensure internd consistency of figures when
agoregated over different variables. This property can be
achieved only by enlarging the x— vector in the model (7)
to accommodate al the variables y'!), say X with known
total X and then usi ng the working model

y D =% BD +e0,i=1, .., N. )

However, the resulting weighted regression coefficients
could become unstable due to possible multicolinearity in
the enlarged set of auxiliary varidbles. As a reault, the
GREG egtimator of Y under modd (8) is less efficient
compared to the GREG estimator under modd (7). More-
over, some of the resulting fina weights, say W, (s), may
not satisfy range restrictions by taking either values smaller
than 1 (including negative values) or very large postive
values. A possible solution to handle this problem isto use a
generalized ridge regression estimator of Y that is
model -assisted under the enlarged model (Chambers 1996;
Rao and Singh 1997).

For variance egtimation, the model-assisted approach
attempts to used design-consistent variance estimators that
are also modd-unbiased (at least for large samples) for the
conditional mode variance of the GREG estimator. De-
noting the variance estimator of the NHT estimator of Y by
v(y) in an operator notation, a smple Taylor linearization
variance estimator satisfying the above property is given by
v(ge), where v(ge) is obtained by changing y, to
g, (s)e in the formula for v(y); see Hidiroglou, Fuller
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and Hickman (1976) and Sarnda, Swenson and Wretman
(1989).

In the above discussion, we have assumed aworking lin-
ear regression modd for all the variables y‘!. But in prac-
tice alinear regresson model may not provide a good fit for
some of the y—variables of interest, for example, a binary
varidble. In the latter case, logistic regression provides a
suitable working modd. A general working model that cov-
ers logistic regression is of the form E_ (y; )= h(x/B) =
u;, where h(.) could be non-linear; mode (5) is a specid
casewith h(a) =a. A model-assisted estimator of the total
under the general working mode is the difference estimator
Yuur +Zufly - Zem i, where i, = h(X(B) and B is
an estimator of the model parameter B. It reduces to the
GREG edtimator (5) if h(a)=a. This difference estimator
is nearly optimal if the incluson probability w; is pro-
portional to ©,, where ¢ denotes the model variance,
Vm (yl )

GREG edtimators have become popular among users
because many of the commonly used estimators may be
obtained as specia cases of (5) by suitable specifications of
x; and q;. A Generdlized Estimation System (GES) based
on GREG has been developed at Statistics Canada.

Kott (2005) has proposed an aternative paradigm in-
ference, called the randomization-assisted model-based ap-
proach, which attempts to focus on model-based inference
assisted by randomization (or repeated sampling). The def-
inition of anticipated variance is reversed to the ran-
domization-expected model variance of an estimator, but it
is identical to the customary anticipated variance when the
working modd holds for the sample, as assumed in the
paper. As a resault, the choices of estimator and variance
estimator are often similar to those under the model-assisted
approach. However, Kott argues that the motivation is
clearer and “the approach proposed here for variance
estimation leads to logicaly coherent trestment of finite
population and small-sample adjustments when needed” .

3.4 Conditional Design-Based Approach

A conditional design-based approach has aso been
proposed. This approach attempts to combine the condi-
tiona features of the model-dependent approach with the
model-free features of the design-based approach. It allows
us to restrict the reference set of samples to a “relevant”
subset of dl possible samples specified by the design.
Conditionally valid inferences are obtained in the sense that
the conditional biasratio (i.e., theratio of conditional biasto
conditiona standard error) goes to zero as the sample size
increases. Approximately 100(1— o) % of the realized con-
fidence intervals in repeated sampling from the conditional
set will contain the unknown total Y.
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Holt and Smith (1979) provide compelling arguments in
favour of conditiona design based inference, even though
the discussion was confined to one-way post-stratification of
a smple random sample in which case it is natura to make
inferences conditional on the redized strata sample sizes.
Rao (1992, 1994) and Casady and Valiant (1993) studied
conditiona inference when only the auxiliary total X is
known from externa sources. In the latter case, conditioning
on the NHT estimator X ,,,; may be reasonable because it
is “approximately” an ancillary statistic when X is known
and the difference X ,,; — X provides ameasure of imbal-
ancein the redlized sample. Conditioning on X ,,; leadsto
the “optimal” linear regression estimator which has the
same form as the GREG estimator (5) with B given by (6)
replaced by the estimated optimal value éop{ of the regres-
sion coefficient which involves the estimated covariance of
Yy @d X and the estimated variance of X ;. This
optimal estimator leads to conditionally valid design-based
inferences and model-unbiased under the working model
(4). 1t is dso a calibration estimator depending only on the
total X and it can be expressed as Y. W, (S)y, with
weights W, (s)=d, g; (s) and the cdibration factor g, (s)
depending only on the total X and the sample x —vaues.
It works well for stratified random sampling (commonly
used in establishment surveys). However, éopt can become
unstable in the case of dratified multistage sampling unless
the number of sample clusters minus the number of stratais
fairly large. The GREG estimator does not require the latter
condition but it can perform poorly in terms of conditional
bias ratio and conditional coverage rates, as shown by Rao
(1996). The unbiased NHT egtimator can be very bad condi-
tionaly unless the design ensures that the measure of imbal-
ance as defined above is small. For example, in the Hansen
et al. (1983) design based on efficient x — dratification, the
imbalanceis small and the NHT estimator indeed performed
well conditionally.

Tillé (1998) proposed an NHT egtimator of the total Y
based on approximate conditiona inclusion probabilities
given X,.;. His method also leads to conditionally valid
inferences, but the estimator is not calibrated to X unlike
the “optimal” linear regresson estimator. Park and Fuller
(2005) proposed a cdlibrated GREG version based on
Till€ s estimator which leads to non-negative weights more
often than GREG.

| believe practitioners should pay more attention to
conditional aspects of design-based inference and serioudy
consider the new methods that have been proposed.

Katon (2002) has given compeling arguments for fa-
voring design-based approaches (possibly model-assisted
and/or conditional) for inference on finite population de-
scriptive parameters. Smith (1994) named design-based
inference as “procedural inference” and argued that
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procedural inference is the correct approach for surveys in
the public domain. We refer the reader to Smith (1976) and
Rao and Bellhouse (1990) for reviews of inferential issues
in sample survey theory.

4. Cadlibration Estimators

Cadlibration weights w (s) that ensure consistency with
user-specified auxiliary totals X are obtained by adjusting
the design weights d; = ;" to satisfy the benchmark con-
graints Y. W, (S)X, = X. Estimators that use calibration
weights are called cdibration estimators and they use a
sngle set of weights {w, (s)} for al the varigbles of
interest. We have noted in section 3.4 that the model-
assisted GREG estimator is a calibration estimator, but a
calibration estimator may not be model-assisted in the sense
that it could be model-biased under a working model (4)
unless the x-— variables in the model exactly match the
variables corresponding to the user-specified totals. For
example, suppose the working model suggested by the data
isaquadratic in ascaar variable x while the user-specified
total isonly itstotal X. The resulting calibration estimator
can perform poorly even in fairly large samples, as noted in
section 3.3, unlike the modd-assisted GREG estimator
based on the working quadratic model tha requires the
population total of the quadratic variables x? in addition to
X.

Post-dtratification has been extensively used in practice
to ensure consistency with known cell counts corresponding
to a post-gratification variable, for example counts in dif-
ferent age groups ascertained from external sources such as
demographic projections. The resulting post-stratified esti-
meator is a cdibration estimator. Calibration estimators that
ensure consistency with known margina counts of two or
more post-stratification variables have also been employed
in practice; in particular raking ratio estimators that are
obtained by benchmarking to the marginal counts in turn
until convergence is approximately achieved, typically in
four or less iterations. Reking ratio weights w;, (s) are
adways podtive. In the past, Statistics Canada used raking
ratio estimators in the Canadian Census to ensure consis-
tency of 2B-item estimators with known 2A—item counts.
In the context of the Canadian Census, Brackstone and Rao
(1979) studied the efficiency of raking ratio estimators and
aso derived Taylor linearization variance estimators when
the number of iterations is four or less. Raking ratio
esimators have aso been employed in the U.S. Current
Population Survey (CPS). It may be noted that the method
of adjusting cell counts to given margina counts in a two-
way table was originaly proposed in the landmark paper by
Deming and Stephan (1940).
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Unified approaches to calibration, based on minimizing a
suitable distance measure between calibration weights and
design weights subject to benchmark constraints, have
attracted the attention of users due to their ability to accom-
modate arbitrary number of user-specified benchmark con-
graints, for example, cdibration to the margina counts of
several pogt-dratification variables. Cdibration software is
aso readily available, including GES (Statistics Canada),
LIN WEIGHT (Statistics Netherlands), CALMAR (INSEE,
France) and CLAN97 (Statistics Sweden).

A chi-squared distance, Y., (d, —w; )*/d,, leadsto
the GREG egtimator (5), where the x—vector corresponds to
the user-specified benchmark congraints (BC) and w; ()
is denoted as w;, for simplicity (Huang and Fuller 1978;
Deville and S&rnda 1992). However, the resulting cal-
ibration weights may not satisfy desirable range restrictions
(RR), for example some weights may be negative or too
large especidly when the number of constraints is large and
the variability of the design weights is large. Huang and
Fuller (1978) proposed a scaled modified chi-squared
distance measure and obtained the cdibration weights
through an iterative solution that satisfies BC a each
iteration. However, a solution that satisfies BC and RR may
not exist. Another method, cdled shrinkage minimization
(Singh and Mohl 1996) has the same difficulty. Quadratic
programming methods that minimize the chi-squared
distance subject to both BC and RR have dso been pro-
posed (Hussain 1969) but the feasible set of solutions satis-
fying both BC and RR can be empty. Alternative methods
propose to change the distance function (Deville and
Sérndal 1992) or drop some of the BC (Bankier, Rathwell
and Majkowski 1992). For example, an information dis-
tance of theform X;.cq; {w, log(w; /d; ) —w, +d;} gives
raking ratio estimators with non-negative weights w;, but
some of the weights can be excessively large. “Ridge”
weights obtained by minimizing a penalized chi-squared
distance have aso been proposed (Chambers 1996), but no
guarantee that either BC or RR are satisfied, athough the
weights are more stable than the GREG weights. Rao and
Singh (1997) proposed a “ridge shrinkage” iterative method
that ensures convergence for a specified number of
iterations by using a built-in tolerance specification to relax
some BC while satisfying RR. Chen, Sitter and Wu (2002)
proposed asimilar method.

GREG cdibration weights have been used in the
Canadian Labour Force Survey and more recently it has
been extended to accommodate composite estimators that
make use of sample information in previous months, as
noted in section 2 (Fuller and Rao 2001; Gambino, Kennedy
and Singh 2001; Singh, Kennedy and Wu 2001). GREG-
type cdibration estimators have also been used for the
integration of two or more independent surveys from the
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same population. Such estimators ensure consistency be-
tween the surveys, in the sense that the estimates from the
two surveys for common varigbles are identicd, as well as
benchmarking to known population totas (Renssen and
Nieuwenbroek 1997; Singh and Wu 1996; Merkouris 2004).
For the 2001 Canadian Census, Bankier (2003) studied cali-
bration weights corresponding to the “optima” linear re-
gression egtimator (section 3.3) under dtratified random
sampling. He showed that the “optima” calibration method
performed better than the GREG cdibration used in the
previous census, in the sense of alowing more BC to be
retained while a the same time dlowing the calibration
weightsto be at least one. The “optimal” calibration weights
can be obtained from GES software by including the known
strata sizes in the BC and defining the tuning constant q,
auitably. Note that the “optima” calibration estimator also
has desirable conditional design properties (section 3.4).
Weighting for the 2001 Canadian census switched from
projection GREG (used in the 1996 census) to “optimal”
linear regression.

Demnati and Rao (2004) derived Taylor linearization
variance estimators for a general class of calibration esti-
mators with weights w, =d, F (x/ X), where the LaGrange
multiplier A is determined by solving the calibration
congraints. The choice F (a)=1+a gives GREG weights
and F(a)=e? leads to raking ratio weights. In the specid
case of GREG weights, the variance estimator reduces to
v(ge) giveninsection 3.3.

We refer the reader to the Waksberg award paper of
Fuller (Fuller 2002) for an excellent overview and appraisal
of regresson edimation in survey sampling, including
cdibration estimation.

5. Unequal Probability Sampling
Without Replacement

We have noted in section 2 that PPS sampling of PSUs
within dtrata in large-scale surveys was practicaly moti-
vated by the desire to achieve gpproximately equa work-
loads. PPS sampling also achieves significant variance re-
duction by controlling on the variability arising from un-
equal PSU sizes without actudly dratifying by sze. PSUs
are typically sampled without replacement such that the
PSU inclusion probability, =;, is proportiona to PSU size
measure X;. For example, systematic PPS sampling, with
or without initid randomization of the PSU labds, is an
inclusion probability proportional to size (IPPS) design (also
caled nPS design) that has been used in many complex
surveys, including the Canadian LFS. The estimator of a
total associated with an IPPS design isthe NHT estimator.

Development of suitable (IPPS, NHT) drategies raises
theoretically challenging problems, including the evauation
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of exact joint incluson probabilities, T;, Or accurate
gpproximations to ;; requiring only the individua m; s,
that are needed in getting unbiased or nearly unbiased
variance estimator. My own 1961 Ph.D. thesis at lowa State
University addressed the latter problem. Severa solutions,
requiring sophisticated theoreticadl tools, have been
published since then by talented mathematical statisticians.
However, this theoretical work is often classified as “theory
without application” because it is customary practice to treat
the PSUs as if sampled with replacement since that leads to
greast simplification. The variance estimator is smply
obtained from the estimated PSU totals and, in fact, this
assumption is the basis for re-sampling methods (section 6).
This variance estimator can lead to substantial over-esti-
mation unless the overall PSU sampling fraction is small.
The latter may be true in many large-scale surveys. In the
following paragraphs, 1 will try to demondrate that the
theoretical work on (IPPS, NHT) drategies as well as some
non-1PPS designs have wide practical applicability.

Firg, | will focus on (IPPS, NHT) drategies. In Sweden
and some other countries in Europe, stratified single-stage
sampling is often used because of the availability of list
frames and |PPS designs are attractive options, but sampling
fractions are often large. For example, Rosén (1991) notes
that Statistics Sweden’s Labour Force Barometer samples
some 100 different populations using systematic PPS
sampling and that the sampling rates can exceed 50%. Aires
and Rosén (2005) studied Pareto PS sampling for Swedish
surveys. This method has attractive properties, including
fixed sample size, Smple sample selection, good estimation
precision and consistent variance estimation regardless of
sampling rates. It also dlows sample coordination through
permanent random numbers (PRN) as in Poisson sampling,
but the latter method leads to variable sample size. Because
of these merits, Pareto ©PS has been implemented in a
number of Statistics Sweden surveys, notably in price index
surveys. Ohlsson (1995) described PRN techniques that are
commonly used in practice.

The method of Rao-Sampford (see Brewer and Hanif
1983, page 28) leads to exact IPPS designs and non-
negative unbiased variance estimators for arbitrary fixed
sample sizes. It has been implemented in the new version of
SAS. Stehman and Overton (1994) note that variable proba
bility structure arises naturally in environmental surveys
rather than being selected just for enhanced efficiency, and
thet the wt; s are only known for the units i in the sample
S. By treating the sample design as randomized systemeatic
PPS, Stehman and Overton obtained approximations to the
;s that depend only w;, ies, unlike the origina ap-
proximations of Hartley and Rao (1962) that require the
sum of squares of al the =; s in the population. In the
Stehman and Overton applicetions, the sampling rates are
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substantial enough to warrant the evaluation of the joint
inclusion probabilities.

I will now turn to non-IPPS designs using estimators
different from the NHT estimator that ensure zero variance
when y is exactly proportional to x. The random group
method of Rao, Hatley and Cochran (1962) permits a
simple non-negative variance estimator for any fixed sample
Size and yet compares favorably to (IPPS, NHT) strategies
in terms of efficiency and is always more efficient than the
PPS with replacement strategy. Schabenberger and Gregoire
(1994) noted that (IPPS, NHT) strategies have not enjoyed
much application in forestry because of difficulty in im-
plementation and recommended the Rao-Hartley-Cochran
drategy in view of its remarkable smplicity and good
efficiency properties. It is intereting to note that this
strategy has been used in the Canadian LFS on the basis of
its suitability for switching to new size measures, using the
Keyfitz method within each random group. On the other
hand, (IPPS, NHT) drategies are not readily suitable for this
purpose (Fellegi 1966). | understand that the Rao-Hartley-
Cochran drategy is often used in audit sampling and other
accounting applications.

Murthy (1957) used a non-IPPS design based on drawing
successive units with probabilities p,, p; /(1-p;), py/
(1-p; — p;) andsoon, and the following estimator:

, p(sli)
Y, =3y o 9
2900 ©

where p(s]i) is the conditiona probability of obtaining
the sample < given that unit i was sdlected first. He dso
provided a non-negative variance estimator requiring the
conditional probabilities, p(s]i, j), of obtaining s given
i and j aresdectedin thefirst two draws. This method did
not receive practica attention for several years due to
computational complexity, but more recently it has been
gpplied in unexpected areas, including oil discovery
(Andreatta and Kaufmann 1986) and sequentia sampling
including inverse sampling and some adaptive sampling
schemes (Salehi and Seber 1997). It may be noted that
adaptive sampling has received a lot of attention in recent
years because of its potentiad as an efficient sampling
method for estimating totals or means of rare populations
(Thompson and Seber 1996). In the oil discovery appli-
cation, the successive sampling scheme is a characterization
of discovery and the order in which fields are discovered is
governed by sampling proportional to field size and without
replacement, following the industry folklore “on the
average, the big fields are found first”. Here p, =y, /Y
and the total oil reserve Y is assumed to be known from
geological congiderations. In this gpplication, geologists are
interested in the size distribution of all fieldsin the basin and
when a basin is partially explored the sample is composed
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of magnitudes y, of discovered deposits. The size digtri-
bution function F(a) can be estimated by using Murthy’s
estimator (9) with vy, replaced by the indicator variable
I (y, <a). The computation of p(s|i) and p(s), how-
ever, isformidable even for moderate sample sizes. To over-
come this computational difficulty, Andreatta and Kaufman
(1986) used integral representations of these quantities to
develop asymptotic expansions of Murthy’s estimator, the
first few terms of which are easily computable. Similarly,
they obtain computable approximations to Murthy's vari-
ance estimator. Note that the NHT estimator of F (a) isnot
feasible here because the inclusion probabilities are func-
tionsof al the y—valuesin the population.

The above discussion is intended to demondirate thet a
particular theory can have applications in diverse practical
aress evenif it isnot needed in a particular situation, such as
large-scale surveys with negligible first stage sampling frac-
tions. Also it shows that unequal probability sampling de-
signs play a vitd role in survey sampling, despite Sérndd’s
(1996) contention that simpler designs, such as stratified
SRS and stratified Bernoulli sampling, together with GREG
estimators should replace strategies based on unequal proba-
bility sampling without replacement.

6. Analyssof Survey Data
and Resampling M ethods

Standard methods of data analysis are generally based on
the assumption of simple random sampling, athough some
software packages do take account of survey weights and
provide correct point estimates. However, gpplication of
standard methods to survey data, ignoring the design effect
due to clustering and unequal probabilities of selection, can
lead to erroneous inferences even for large samples. In
particular, standard errors of parameter edtimates and
asociated confidence intervals can be serioudy under-
dated, type | error rates of tests of hypotheses can be much
bigger than the nomina levels, and standard model
diagnostics, such as residual analysis to detect model
deviations, are aso affected. Kish and Frankel (1974) and
others drew attention to some of those problems and empha-
sized the need for new methods that take proper account of
the complexity of data derived from large-scale surveys.
Fuller (1975) developed asymptotically valid methods for
linear regression andysis, based on Taylor linearization
variance estimators. Rapid progress has been made over the
past 20 years or S0 in developing suitable methods. Re-
sampling methods play a vital role in developing methods
that take account of survey design in the analysis of data.
All one needs is adata file containing the observed data, the
final survey weights and the corresponding final weights for
each pseudo-replicate generated by the re-sampling method.
Software packages that take account of survey weights in
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the point estimation of parameters of interest can then be
used to calculate the correct estimators and standard errors,
as demongtrated below. As a result, re-sampling methods of
inference have attracted the attention of users as they can
perform the analyses themselves very easily using standard
software packages. However, releasing public-use data files
with replicate weights can lead to confidentidity issues,
such as the identification of clusters from replicate weights.
Infact, a present achallenge to theory isto develop suitable
methods that can preserve confidentiaity of the data. Lu,
Brick and Sitter (2004) proposed grouping strata and then
forming pseudo-replicates using the combined strata for
variance estimation, thus limiting the risk of cluster identifi-
cation from the resulting public-use data file. Grouping
grata and/or PSUs within gtrata smplifies variance esti-
mation by reducing the number of pseudo-replicates used in
variance estimation compared to the commonly used delete-
cluster jackknife discussed below. A method of inverse
sampling to undo the complex survey data structure and yet
provide protection against revealing cluster labels (Hinkins,
Oh and Scheuren 1997; Rap, Scott and Benhin 2003)
appears promising, but much work on inverse sampling
methods remains to be done before it becomes attractive to
theuser.

Rao and Scott (1981, 1984) made a systematic study of
the impact of survey design effect on standard chi-squared
and likelihood ratio tests associated with a multi-way table
of estimated counts or proportions. They showed that the
test Statistic is asymptotically distributed as a weighted sum
of independent %2 variables, where the weights are the
eigenvalues of a “generdized design effects’ matrix. This
general result shows that the survey design can have a
substantial impact on the type | error rate. Rao and Scott
proposed smple firg-order corrections to the standard chi-
squared datistics that can be computed from published
tables that include estimates of design effects for cell esti-
mates and their marginal totals, thus facilitating secondary
anayses from published tables. They aso derived second
order corrections that are more accurate, but require the
knowledge of afull estimated covariance matrix of the cell
estimates, as in the case of familiar Wald tests. However,
Wald tests can become highly unstable as the number of
cdls in a mult-way table increases and the number of
sample clusters decreases, leading to unacceptably high type
| error rates compared to the nominal levels, unlike the Rao-
Scott second order corrections (Thomas and Rao 1987). The
first and second order corrections are now known as
Rao-Scott corrections and are given as default optionsin the
new verson of SAS. Roberts, Rao and Kumar (1987)
developed Rao-Scott type corrections to tests for logistic
regression analysis of estimated cell proportions associated
with a binary response variable. They applied the methods
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to atwo-way table of employment rates from the Canadian
LFS 1977 obtained by cross-classifying age and education
groups. Bdlhouse and Rao (2002) extended the work of
Roberts etal. to the analysis of domain means using
generaized linear models. They applied the methods to
domain means from a Fiji Fertility Survey cross-classified
by education and years since the woman’s first marriage,
where a domain mean is the mean number of children ever
born for women of Indian race belonging to the domain.

Re-sampling methods in the context of large-scale sur-
veys using stratified multi-stage designs have been studied
extensively. For inference purposes, the sample PSUs are
treated as if drawn with replacement within strata. This
leads to over-estimation of variances but it is smdl if the
overall PSU sampling fraction is negligible. Let 6 be the
survey-weighted estimator of a*census’ parameter of inter-
est computed from the final weights w;, and let the corre-
sponding weights for each pseudo-replicate r generated by
the re-sampling method be denoted by w("). The estimator
based on the pseudo-replicate weights w'") is denoted as
6" for each r =1, ..., R. Then a re-sampling variance
estimator of 6 isof theform

V(@)=Y 0" 0O -8 @0

for specified coefficients ¢, in (10) determined by the re-
sampling method.

Commonly used re-sampling methods include (a) delete-
cluster (delete-PSU) jackknife, (b) balanced repeated rep-
lication (BRR) particularly for n, =2 PSUs in each dra-
tum h and (c) the Rao and Wu (1988) bootstrap. Jackknife
pseudo-replicates are obtained by deleting each sample
cluster r = (hj) inturn, leading to jackknife design weights
d{") taking the value O if the sample unit i is in the
deleted cluster, n,d; /(n, —1) if i isnot in the deleted
cluster but in the same stratum, and unchanged if i isin a
different stratum. The jackknife design weights are then
adjusted for unit non-response and post-stretification,
leading to the final jackknife weights w"). The jackknife
variance estimator is given by (10) with ¢, =(n, -1)/n,
for r =(hj). The delete-cluster jackknife method has two
possible disadvantages: (1) When the total number of sam-
pled PSUs, n=3%n,, isvery large, R is dso very large
because R=n. (2) It is not known if the delete-jackknife
variance estimator is design-consigtent in the case of non-
smooth estimators 6, for example the survey-weighted
estimator of the median. For smple random sampling, the
jackknife is known to be inconsgtent for the median or
other quantiles. 1t would be theoreticaly challenging and
practicdly relevant to find conditions for the consistency of
the ddete-cluster jackknife variance estimator of a non-
smooth estimator 6.
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BRR can handle non-smooth 6, but it is readily appli-
cable only for the important specia case of n, =2 PSUs
per stratum. A minima set of balanced haf-samples can be
congructed from an Rx R Hadamard matrix by selecting
H columns, excluding the column of +1's, where H +1<
R<H +4 (McCathy 1969). The BRR design weights
d{"”) equa 2d, or O according as whether or not i isin
the half-sample. A modified BRR, due to Bob Fay, uses dll
the sampled units in each replicate unlike the BRR by de-
fining the replicate design weights as d" (e) = (1+¢)d,
or (1-¢)d; according as whether or not i is in the half-
sample, where O<e<1; agood choice of € is 1/2. The
modified BRR weights are then adjusted for non-response
and pogt-stratification to get the fina weights w'"” (¢) and
the estimator 6 (e). The modified BRR variance
estimator is given by (10) divided by 2 and 8" replaced
by 6(") (&); see Rao and Shao (1999). The modified BRR
is particularly useful under independent re-imputation for
missing item responses in each replicate because it can use
the donors in the full sample to impute unlike the BRR that
uses the donors only in the half-sample.

The Rao-Wu bootstrap is valid for arbitrary n, (= 2)
unlike the BRR, and it can also handle non-smooth 6. Each
bootstrap replicate is constructed by drawing a simple
random sample of PSUs of size n,, —1 from the n, sample
clusters, independently across the strata. The bootstrap
design weights d") are given by [n, /(n, —1)Im{"d, if
i isingtratum hand replicate r, where m{ isthe number
of times sampled PSU (hi) is sdected, 3, m{"”) =n, —1.
The weights d{" are then adjusted for unit non-response
and post-stratification to get the final bootstrap weights and
the estimator 6. Typically, R=500 bootstrap replicates
are used in the bootstrap variance estimator (10). Severa
recent surveys at Statistics Canada have adopted the boot-
srap method for variance estimation because of the flex-
ibility in the choice of R and wider applicability. Users of
Statistics Canada survey micro data files seem to be very
happy with the bootstrap method for analysis of data.

Early work on the jackknife and the BRR was largely
empirica (e.g., Kish and Frankd 1974). Krewski and Rao
(1981) formulated a forma asymptotic framework appropri-
ate for gratified multi-stage sampling and established design
consigency of the jackknife and BRR variance estimators
when 6 canbe expressed as a smooth function of estimated
means. Severa extensions of this basic work have been
reported in the recent literature; see the book by Shao and
Tu (1995, Chapter 6). Theoretica support for re-sampling
methods is essential for their usein practice.

In the above discussion, | let 6 denote the estimator of a
“census’ parameter. The census parameter 6. is often
motivated by an underlying super-population model and the
census is regarded as a sample generated by the moddl,
leading to census estimating equations whose solution is
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0. The census edtimating functions U . (8) are simply
population totals of functions u; (6) with zero expectation
under the assumed model, and the census estimating equa-
tions are given by U, (6)=0 (Godambe and Thompson
1986). Kish and Frankel (1974) argued that the census
parameter makes sense even if the model is not correctly
specified. For example, in the case of linear regression, the
census regression coefficient could explain how much of the
relationship between the response variable and the indepen-
dent variables is accounted by a linear regression model.
Noting that the census estimating functions are smply pop-
ulation totals, survey weighted estimators U (6) from the
full sample and U () (0) from each pseudo-replicate are
obtained. The solutions of corresponding estimating equa-
tions U (0) =0 and U (") (6) =0 give 6 and 6" respec-
tively. Note that the re-sampling variance egtimators are
designed to estimate the variance of 6 asan estimator of the
census parameters but not the mode parameters. Under
certain conditions, the difference can be ignored but in
general we have a two-phase sampling situation, where the
census is the first phase sample from the super-population
and the sample is a probability sample from the census
population. Recently, some useful work has been done on
two-phase variance estimation when the model parameters
are the target parameters (Graubard and Korn 2002; Rubin-
Bleuer and Schiopu-Kratina 2005), but more work is needed
to address the difficulty in specifying the covariance
structure of the model errors.

A difficulty with the bootstrap is that the solution 6"
may not exist for some bootstrap replicates r  (Binder,
Kovacevic and Roberts 2004). Rao and Taus (2004) used
an edtimating function (EF) bootstrap method that avoids
the difficulty. In this method, we solve U (8) =U (") (8)
for ® using only one step of the Newton-Raphson iteration
with 6 asthe starting value. The resulting estimator 6" is
then used in (10) to get the EF bootstrap variance estimator
of & which can be readily implemented from the data file
providing replicate weights, using dight modifications of
any software package that accounts for survey weights. It is
interesting to note that the EF bootstrap variance estimator is
equivalent to a Taylor linearization sandwich variance esti-
mator that uses the bootstrap variance estimator of U (6)
and the inverse of the observed information matrix (deriv-
ative of —U (0)), both evaluated a& 6=6 (Binder etal.
2004).

Taylor linearization methods provide asymptotically val-
id variance estimators for general sampling designs, unlike
re-sampling methods, but they require a separate formulafor
each estimator 6 . Binder (1983), Rao, Y ung and Hidiroglou
(2002) and Demnati and Rao (2004) have provided unified
linearization variance formulae for estimators defined as
solutions to estimating equations.
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Pfeffermann (1993) discussed the role of design weights
in the anadysis of survey data. If the population model holds
for the sample (i.e,, if thereis no sample sdlection bias), then
model-based unweighted estimators will be more efficient
than the weighted estimators and lead to valid inferences,
especidly for data with smaler sample sizes and larger
varidion in the weights. However, for typical data from
large-scal e surveys, the survey design is informative and the
population model may not hold for the sample. As a result,
the model-based estimators can be serioudy biased and
inferences can be erroneous. Pfeffermann and his colleagues
initiated a new approach to inference under informative
sampling; see Pfeffermann and Sverchkov (2003) for recent
developments. This approach seems to provide more effi-
cient inferences compared to the survey weighted approach,
and it certainly deserves the attention of users of survey
data. However, much work remains to be done, especidly in
handling data based on multi-stage sampling.

Excellent accounts of methods for analysis of complex
survey data are given in Skinner, Holt and Smith (1989),
Chambers and Skinner (2003) and Lehtonen and Pahkinen
(2004).

7. Small Area Egtimaton

Previous sections of this paper have focussed on tradi-
tional methods that use direct domain estimators based on
domain-specific sample observations aong with auxiliary
population information. Such methods, however, may not
provide reliable inferences when the domain sample sizes
are very small or even zero for some domains. Domains or
sub-populations with small or zero sample sizes are cdlled
small aress in the literature. Demand for reliable small area
statistics has grestly increased in recent years because of the
growing use of small area statistics in formulating policies
and programs, alocation of funds and regiona planning.
Clearly, it is seldom possible to have alarge enough overall
sample size to support reliable direct estimates for dll
domains of interest. Also, in practice, it is not possible to
anticipate al uses of survey data and “the client will always
require more than is specified at the design stage’ (Fuller
1999, page 344). In making estimates for small areas with
adeguate level of precison, it is often necessary to use
“indirect” egtimators that borrow information from related
domains through auxiliary information, such as census and
current administrative data, to increase the “effective’
sample size within the small aress.

It is now generally recognized that explicit models
linking the smdl areas through auxiliary information and
accounting for residual between — area variation through
random small area effects are needed in developing indirect
estimators. Success of such mode-based methods heavily
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depends on the availability of good auxiliary information
and thorough vaidation of modes through interna and
externd evaluations. Many of the random effects methods
used in mainstream statistical theory are relevant to small
area estimation, including empirical best (or Bayes), empir-
ical best linear unbiased prediction and hierarchical Bayes
based on prior distributions on the model parameters. A
comprehensive account of such methods is given in Rao
(2003). Practical relevance and theoreticd interest of small
area edimation have attracted the attention of many re-
searchers, leading to important advances in point and mean
squared error estimation. The “new” methods have been
applied successfully worldwide to a variety of smdl area
problems. Model-based methods have been recently used to
produce county and school district estimates of poor school-
age children in the U.SA. The U.S. Department of Edu-
cation alocates annualy over $7 hillion of funds to counties
on the basis of model-based county estimates. The allocated
funds support compensatory education programs to meet the
needs of educationally disadvantaged children. We refer to
Rao (2003, example 7.1.2) for details of this gpplication. In
the United Kingdom, the Office for National Statistics
edablished a Small Area Estimation Project to develop
model-based estimates at the level of political wards
(roughly 2,000 households). The practice and estimation
methods of U.S. federd statistical programs that use indirect
estimators to produce published estimates are documented
in Schaible (1996). Singh, Gambino and Mantel (1994) and
Brackstone (2002) discuss some practical issues and strat-
egiesfor small area statistics.

Small area etimation is a striking example of the inter-
play between theory and practice. The theoretica advances
are impressive, but many practica issues need further
attention of theory. Such issues include: (a) Benchmarking
model-based estimators to agree with reliable direct esti-
mators a large area levels. (b) Developing and validating
suitable linking models and addressing issues such as errors
in variables, incorrect specification of the linking model and
omitted variables. (¢) Development of methods that satisfy
multiple goas. good area-specific estimates, good rank
properties and good histogram for small aress.

8. Some Theory Deserving Attention of
Practiceand ViceVersa

In this section, | will briefly mention some examples of
important theory that exists but not widely used in practice.

8.1 Empirical Likelihood I nference

Traditiond sampling theory largely focused on point
estimation and associated standard errors, appealing to nor-
mal approximations for confidence intervals on parameters
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of interest. In mainstream datistics, the empirica likelihood
(EL) approach (Owen 1988) has attracted a lot of attention
due to severd desrable properties. It provides a non-
parametric likelihood, leading to EL ratio confidence inter-
vals similar to the parametric likelihood ratio intervas. The
shape and orientation of EL intervals are determined en-
tirely by the data, and the intervas are range preserving and
transformation respecting, and are particularly useful in
providing balanced tail error rates, unlike the symmetric
normal theory intervals. As noted in section 3.1, the EL
gpproach was in fact firgt introduced in the sample survey
context by Hartley and Rao (1968), but their focus was on
inferential issues related to point estimation. Chen, Chen
and Rao (2003) obtained EL intervals on the population
mean under smple random and stratified random sampling
for populations containing many zeros. Such populations are
encountered in audit sampling, where y denotes the
amount of money owed to the government and the mean Y
is the average amount of excessive claims. Previous work
on audit sampling used parametric likelihood ratio intervals
based on parametric mixture distributions for the variable
y. Such intervals perform better than the standard normal
theory intervals, but EL intervas perform better under
deviations from the assumed mixture model, by providing
non-coverage rate below the lower bound closer to the
nominal error rate and aso larger lower bound. For general
designs, Wu and Rao (2004) used a pseudo-empirica
likelihood (Chen and Sitter 1999) to obtain adjusted pseudo-
EL intervas on the mean and the distribution function that
account for the design features, and showed that the
intervals provide more balanced tail error rates than the
normal theory intervals. The EL method aso provides a
systematic approach to calibration estimation and integra-
tion of surveys. We refer the reader to the review papers by
Rao (2004) and Wu and Rao (2005).

Further refinements and extensions remain to be done,
particularly on the pseudo-empirica likelihood, but the EL
theory in the survey context deserves the attention of
practice.

8.2 Exploratory Analysesof Survey Data

In section 6 we discussed methods for confirmatory
andysis of survey data taking the design into account, such
as point estimation of model (or census) parameters and
associated standard errors and forma tests of hypotheses.
Graphical displays and exploratory data analyses of survey
data are adso very useful. Such methods have been exten-
sively developed in the mainstream literature. Only recently,
some extensions of these modern methods are reported in
the survey literature and deserve the attention of practice. |
will briefly mention some of those developments. First, non-
parametric kernel dengity estimates are commonly used to
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display the shape of a data set without relying on parametric
models. They can aso be used to compare different sub-
populations.

Bellhouse and Stafford (1999) provided kernel density
estimators that take account of the survey design and studied
their properties and applied the methods to data from the
Ontario Health Survey. Buskirk and Lohr (2005) studied
asymptotic and finite sample properties of kernd density
estimators and obtained confidence bands. They applied the
methods to data from the US National Crime Victimization
Survey and the US Nationa Hedth and Nutrition Exam-
ination Survey.

Secondly, Bellhouse and Stafford (2001) developed local
polynomial regression methods, taking design into account,
that can be used to study the relationship between a re-
sponse variable and predictor variables, without making
strong parametric model assumptions. The resulting graph-
ical displays are useful in understanding the relationships
and aso for comparing different sub-populations. Bellhouse
and Stafford (2001) illustrated local polynomia regression
on the Ontario Hedth Survey data; for example, the
relationship between body mass index of females and age.
Bellhouse, Chipman and Stafford (2004) studied additive
models for survey data via pendized least squares method to
handle more than one predictor variable, and illustrated the
methods on the Ontario Health Survey data. This approach
has many advantages in terms of graphica display,
estimation, testing and seection of “smoothing” parameters
for fitting the models.

8.3 Measurement Errors

Typicaly, measurement errors are assumed to be addi-
tive with zero means. As aresult, usua estimators of totals
and means remain unbiased or consistent. However, this
nice feature may not hold for more complex parameters
such as digribution functions, quantiles and regression
coefficients. In the latter case, the usua estimators will be
biased, even for large samples, and hence can lead to
erroneous inferences (Fuller 1995). It is possible to obtain
bias-adjusted estimators if estimates of measurement error
variances are available. The latter may be obtained by
dlocating resources at the design stage to make repeated
observations on a sub-sample. Fuller (1975, 1995) has been
a champion of proper methods in the presence of
measurement errors and the bias-adjusted methods deserve
the attention of practice.

Hartley and Rao (1978) and Hartley and Biemer (1978)
provided interviewer and coder assgnment conditions that
permit the estimation of sampling and response variances
for the mean or total from current surveys. Unfortunately,
current surveys are often not designed to satisfy those
conditions and even if they do the required information on
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interviewer and coder assignmentsis seldom available at the
estimation stage.

Linear components of variance models are often used to
estimate interviewer variability. Such models are appropri-
ate for continuous responses, but not for binary responses.
The linear model approach for binary responses can result in
underestimating the intrarinterviewer correlations. Scott and
Davis (2001) proposed multi-level models for binary re-
sponses to estimate interviewer variability. Given that re-
sponses are often binary in many surveys, practice should
pay attention to such models for proper analyses of survey
datawith binary responses.

8.4 Imputation for Missing Survey Data

Imputation is commonly used in prectice to fill in
missing item values. It ensures that the results obtained from
different analyses of the completed data set are consistent
with one another by using the same survey weight for all
items. Marginal imputation methods, such as ratio, nearest
neighbor and random donor within imputation classes are
used by many dtatistical agencies. Unfortunately, the im-
puted values are often treated as if they were true vaues and
then used to compute estimates and variance estimates. The
imputed point estimates of margina parameters are gen-
eradly valid under an assumed response mechanism or impu-
tation model. But the “naive’ variance estimators can lead
to erroneous inferences even for large samples; in particular,
serious underestimation of the variance of the imputed esti-
mator because the additional variability due to estimating
the missing values is not taken into account. Advocates of
Rubin’s (1987) multiple imputation claim that the multiple
imputation variance estimator can fix this problem because
a between imputed estimators sum of squaresis added to the
average of naive variance edimators resulting from the
multiple imputations. Unfortunately, there are some diffi-
culties associated with multiple imputation variance esti-
mators, as discussed by Kott (1995), Fay (1996), Binder and
Sun (1996), Wang and Robins (1998), Kim, Brick, Fuller
and Kalton (2004) and others. Moreover, single imputation
is often preferred due to operationa and cost considerations.
Some impressive advances have been made in recent years
on meaking efficient and asymptotically valid inferences
from singly imputed data sets. We refer the reader to review
papers by Shao (2002) and Rao (2000, 2005) for methods of
variance estimation under single imputation. Kim and Fuller
(2004) dtudied fractional imputation using more than one
randomly imputed value and showed that it also leads to
asymptoticaly valid inferences, see also Kalton and Kish
(1984) and Fay (1996). An advantage of fractional impu-
tetion is that it reduces the imputation variance relative to
single imputation using one randomly imputed vaue. The
above methods of variance estimation deserve the attention
of practice.
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8.5 Multiple Frame Surveys

Multiple frame surveys employ two or more overlapping
frames that can cover the target poulation. Hartley (1962)
studied the special case of a complete frame B and an
incomplete frame A and smple random sampling indepen-
dently from both frames. He showed that an “optima” dual
frame estimator can lead to large gains in efficiency for the
same cost over the single complete frame estimator, pro-
vided the cost per unit for frame A is significantly smaller
than the cost per unit for frame B. Multiple frame surveys
are particularly suited for sampling rare or hard-to-reach
populations, such as homeless populations and persons with
AIDS, when incomplete list frames contain high proportions
of individuas from the target populaion. Hartley's (1974)
landmark paper derived “optima” dual frame estimators for
general sampling designs and possibly different obser-
vational units in the two frames. Fuller and Burmeister
(1972) proposed improved “optimal” estimators. However,
the optimal estimators use different sets of weights for each
item y, which isnot desirable in practice. Skinner and Rao
(1996) derived pseudo-ML (PML) estimators for dud frame
surveys that use the same set of weights for al items vy,
smilar to “single frame”’ estimators (Katon and Anderson
1986), and maintain efficiency. Lohr and Rao (2005)
developed a unified theory for the multiple frames setting
with two or more frames, by extending the optimal, pseudo-
ML and single frame estimators. Lohr and Rao (2000, 2005)
obtained asymptoticaly valid jackknife variance estimators.
Those general results deserve the attention of practice when
dedling with two or more frames. Dual frame telephone
surveys based on cell phone and landline phone frames need
the attention of theory becauseit is unclear how to weight in
the cell phone survey: some families share a cell phone and
othershave acell phonefor each person.

8.6 Indirect Sampling

The method of indirect sampling can be used when the
frame for a target population U ® is not available but the
frame for another population U”*, linked to U®B, is
employed to draw a probability sample. The links between
the two populations are used to develop suitable weights
that can provide unbiased estimators and variance esti-
mators. Lavallée (2002) developed a unified method, caled
Generalized Weight Sharing, (GWS), that covers severd
known methods. the weight sharing method of Ernst (1989)
for cross sectiond estimation from longitudinal household
surveys, network sampling and multiplicity estimation
(Sirken 1970) and adaptive cluster sampling (Thompson
and Seber 1996). Rao's (1968) theory for sampling from a
frame containing an unknown amount of duplication may be
regarded as aspecia case of GWS. Multiple frames can aso
be handled by GWS and the resulting estimators are simple
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but not necessarily efficient compared to the optimal esti-
mators of Hartley (1974) or the PML estimators. The GWS
method has wide applicability and deserves the attention of
practice.

9. Concluding Remarks

Joe Waksherg's contributions to sample survey theory
and methods truly reflect the interplay between theory and
practice. Working at the US Census Bureau and later a
Wedtat, he faced red practical problems and produced
sound theoretical solutions. For example, his landmark pa-
per (Waksberg 1978) studied an ingenious method (pro-
posed by Warren Mitofsky) for random digit diaing (RDD)
that sgnificantly reduces the survey costs compared to
dialing numbers completely at random. He presented sound
theory to demonstrate its efficiency. The widespread use of
RDD surveys is largely due to the theoretical development
in Waksberg (1978) and subsequent refinements. Joe
Waksberg is one of my heroesin survey sampling and | fedl
greatly honored to have received the 2005 Waksberg award
for survey methodol ogy.
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Hot Deck I mputation for the Response M odel

WayneA. Fuller and Jae Kwang Kim*

Abstract

Hot deck imputation is a procedure in which missing items are replaced with values from respondents. A model supporting
such proceduresis the model in which response probabilities are assumed equal within imputation cells. An efficient version
of hot deck imputation is described for the cell response model and a computationally efficient variance estimator is given.
An approximation to the fully efficient procedure in which a small number of values are imputed for each nonrespondent is
described. Variance estimation procedures areillustrated in aMonte Carlo study.

Key Words: Nonresponse; Fractional imputation; Response probability; Replication variance estimation.

1. Introduction

Imputation is used in sample surveys as a method of
handling item nonresponse. In hot deck imputation, the
imputed vaues are functions of the respondents in the
current sample. Sande (1983) and Ford (1983) contain
descriptions of hot deck imputation. Katon and Kasprzyk
(1986) and Little and Rubin (2002) review various impu-
tation procedures.

In one version of hot deck imputation, the imputed value
is the value of a respondent in the same imputation cell,
where the imputation cells form an exhaustive and mutudly
exclusive subdivision of the population. In random hot deck
imputation, respondents are assigned values at random from
respondents in the same imputation cell. The record
providing the value is called the donor and the record with
themissing valueis called the recipient.

The variance of the imputed estimator is generdly larger
than the complete sample variance because nonresponse
reduces sample size and because the imputed estimator may
contain a component due to random imputation. Rao and
Shao (1992) proposed an adjusted jackknife method for hot-
deck imputation where the first phase units are selected
with-replacement. Rao and Sitter (1995) discussed the
adjusted jackknife variance estimation method for ratio
imputation. Rao (1996) and Sitter (1997) applied the
adjusted jackknife method to regression imputation. Shao,
Chen and Chen (1998) apply the idea of Rap and Shao
(1992) to the balanced repeated replication method. Shao
and Steel (1999) propose variance estimation for survey
data with composite imputation, where more than one
imputation method is used, and the sampling fractions are
included in the variance expressions. Y ung and Rao (2000)
applied the adjusted jackknife method to imputed estimators
congtructed with a pogtstratified sample. Rubin (1987) and

Rubin and Schenker (1986) suggested multiple imputation
procedures. Tollefson and Fuller (1992), and Sérndal (1992)
proposed imputation methods and corresponding variance
edimators. Kim and Fuller (2004) studied the use of
fractional imputation for the model in which observationsin
an imputation cell are independently and identicaly
distributed.

In this paper, we consider hot deck imputation for a
population divided into imputation cells. The response
modd is described in section 2. In section 3, we introduce
fully efficient fractional imputation and present a variance
estimation method for the imputation estimator, under the
assumptions that the probability of nonresponse is constant
within a cell. In section 4 we suggest a modification of the
fully efficient method that uses a smaller number of donors.
In section 5, an example is introduced to illustrate the actual
implementation of the proposed method. In section 6, results
of asimulation study are reported. Summary is presented in
the last section.

2. Badc Setup

Consider apopulation of N elementsidentified by a set of
indices U ={1, 2, ..., N}. Associated with each unit i in the
population there is a study variable y, and a vector x; of
auxiliary information. The set of wvectors, (y;,X,),
i=12,...,N, isdenoted by F.

Let A denote the indices of the eements in a sample
selected by a set of probability rules called the sampling
mechanism. Let the population quantity of interest be 6,
let 6 be a full sample, linear-in-y, estimator of 6, and
write

0=>wy. @)
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If w istheinverse of the selection probability, then 0 is

unbiased for the population totd.
Let A; and A, denote the set of indices of the sample

respondents and sample nonrespondents, respectively.
Define the response indicator function
1 ifie
R ={0 ie A @
if ie Ay
andlet R={(i,R);ie A}. Thedistribution of R iscaled
the response mechanism.

Assume that the finite population U is made up of G
imputation cells, where the set of elementsincel gis U .
Let n, bethe number of sample elementsin imputation cell
gandlet ry, ry >0, bethe number of respondents in impu-
tation cdl g. Assume the within-cell uniform response
model inwhichthe r, responsesinacell areequivaenttoa
Poisson sample sdlected with equal probabilities from the
n, elements.

Fractional imputation is a procedure in which more than
one donor is used per recipient. Katon and Kish (1984)
suggested fractional imputation as an efficient imputation
procedure. The method was discussed by Fay (1996). Let
d;; be the number of timesthat y, is used as donor for the
missng y; and define d={d;;ie A;, je A,}. The
distribution of d is called the imputation mechanism. Let
w; be the factor applied to the origina weight for element j
when vy, is used as a donor for element j. For element
i€ Ay,

Y= 2 WY, ©)

ieAq

is the weighted mean of the respondent values. The factor
w; is called the imputation fraction. It is the fraction that
donor i donates for the missing item y;. Notethat w;; =1
for ie Ay and w; =0 for i # j,i, je A;. Thesumof the
imputation fractions for a missng item is restricted to equal
one,

2 W =1 VjeA @
ie g

An egtimator with the imputed values defined in (3) and
some w; <1 iscaled afractionally imputed estimator.

A linear-in-y imputation estimator can be written in the
form

0, = Z(Z wjvv:;fj Y, ®

ieAg\ jeA

= Z oY, ©)]

ieAq
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where the notation A =: B means that B is defined to be
equal to A. Thesum of w; w; over all recipientsfor whichi
isadonor (including acting as adonor for itsalf), denoted by
o, isthe total weight of donor i. If aresponding unit i is
not used as a donor, except for itself, then o, =w.

3. Fully Efficient Fractional Imputation

Assume all elements in an imputation cdl have the same
probability of responding and assume the responses are
independent. Then the overall distribution of an imputed
estimator under the response model can be obtained by
using the probability structure of multiple phase sampling,
where the response moddl is treated as the second phase
sampling mechanism.

If the response probabilities in a cdl are uniform, then a
reasonable estimator of the total is the weighted sum of ratio
estimators

ie AU Vv|y'
J—Z ke )

éFEzi{ > w 5 e
ieAgnUg

g=1{ ieAnU,
In the context of two phase sampling, Kott and Stukel
(1997) call the estimator (7) a reweighted expansion esti-
mator. The estimator (7) is called fully efficient because it
contains no variability due to random selection of donors. If
the w arethe samefor al elementsin acell, theratio

[ 2 WJ D Wy, ®

ie AgnUq ieAgnUy

is a simple mean and, hence, unbiased for the cell mean
given that there is a least one respondent in the cdl. If the
w inacdl are not equal, then (8) is subject to ratio bias. It
is possible for the number of eementsinacell, ny, to be
positive and the number of respondents, rg, to be zero. If
thisoccursin practice, cellswill be collapsed.

The large sample properties of the estimator can be
obtained for a sequence of populations and samples.
Assume the population is composed of G, mutualy
exclusve and exhausted cells, where v is the index of the
sequence. Assume the variance of a full sample estimator of
the mean is O(n,%), where n, is the size of the sample
sdected from the v population. Assume responses are
independent. Then, under regularity conditions, the proce-
dures used by Kim, Navarro and Fuller (2005) in the proof
of their Theorem 2.1 can be used to show that estimator (7)
satisfies

~ ~ Gv
eFEv = eV + Z z Wiy (ng\ll Riv _1)eiv +Op(n\71/2Nv)! (9)
g,=lieAy,
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where g, =Y, —Y,,, A, istheset of sampleindicesin the
g™ cdl for the v‘ﬁv sample, Y,, is the population mean of
they-variablein cell gv of population K, g, isthe prob-
ability that an element in cell gv responds, and F, denotes
the v population. Also

V(8 IF,) = VO, IF,)

+ E{z T (1-7g) D WA

ie Agv

& Fv}, (19
where

ey =0, + >, > w

g,=lieAy,

-De,.

The estimator (7) can be implemented by using fractional
imputation in which every responding unit in an imputation
cel is used as a donor for every nonrespondent in the cell.
Then, the estimator (7) can be written as the fractionaly
imputed estimator

G

éFEFI ZZ Z Z

g=1 jeAnUy ieAgnUg

J ij y| ) (11)

where w; w; isthe weight of donor i for recipient j, w; is
the imputation fraction of donor i for recipient j defined in

3), and

W (ZseARﬁU ) WRifR, =0 12

Tl if R, =Land i=j.

The edimator (11) with wj of (12), agebraicaly
equivaent to (7), is caled the fully efficient fractionally
imputed (FEFI) estimator. The fractionally imputed esti-
mator has the advantage that functions of y such as the
fraction less than a given number can be directly estimated
from the fractionaly imputed data set.

To consider replication variance estimation, let a replica-
tion variance estimator for the complete sample be

L
V(®) =3 (6 -8)7, (13)
k=1
where 6% isthe k™ estimate of 6, based on the observa-
tionsincluded in the k™ replicate, L is the number of repli-
cates, and ¢, is a factor associated with replicate k deter-
mined by the replication method. For a discussion of
replication for survey samples see Krewski and Rao (1981)
and Rao, Wu and Y ue (1992). When the origind estimator
0 is a linear estimator of the form (1), the k™ replicate
estimate of 6 can bewritten

6M =3 wiy, (14)

ieA
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where W denotes the replicate weight for the i™ unit of
the k™ replication. i

A proposed replicate for the estimator 6., is

e Dicncu, WY,
G(FKE)HZZ{ Z Wi(k)J—ZAR : w®

ieAgnUg

=3 T3 Wy, @9

g=1 je AnU4ie AnUg

Using the replicates (15), the replicate variance estimator
can bewritten as

= z C (eFEFI Orer). (16)
k=1

The replicates in (15) can be computed in two steps.
Firgt, create the usua replicate by defining the weights w™
for every element. Second, for a nonrespondent, the repli-
cate imputation fraction for donor i to recipient j is

Wi

W — |

1] k) *
ZSE ArnUg \Né

Note that the sum of the fractiond replication weights of the
donor records for each recipient is the same as the replica-
tion weight for that unit in acomplete sample.

The suggested procedureis closdly related to the Rao and
Shao (1992) variance estimator. See also Yung and Reo
(2000). However, the use of fractional imputation greatly
smplifies variance estimation. In the creation of replicates,
only the weights on the imputed values are changed. No
recomputing of imputed vaues is required, and once
computed, the replicate weights can be used for any smooth
function of the vector y. Also, the fractional replicates make
the estimator (16) appropriate for a vector of y—variables.

Theorem 3.1 of Kim, Navarro and Fuller (2005) can be
used to show that, given a condstent full sample replication
procedure,

\7FEFI = V(eFEv | Fv)

G,
=NGE Y D my (- )6, +o,(n)), (17)
g,=1ieUg,

where §FEV is defined in (10), and the distribution is with
respect to the sampling and response mechanisms.

If the finite population correction can be ignored, the
estimator (16) is consistent for V{éFE} . If thesamplesizeis
largerelative to N, then an estimator of

N,? Z > nyd-my) €l

g,=1 |eU

should be added to (16).
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The imputation and variance estimation procedure
outlined for the response model also produces consistent
estimators for the cell mean model. Under the cell mean
model, the elements within a cell of the finite population are
a redlization of independently and identicaly distributed
random variables. The imputation procedure based on the
response model is not necessarily fully efficient for the
population mean under the cell mean model, but it can be
shown that the estimator of the mean and the estimator of
the variance of the estimated mean are consistent.

4. Approximationstothe Fully
Efficient Procedure

In the previous sections, the estimator éFEF, was
congtructed to produce zero imputation variance. The
implementation of the fractiona imputation procedure, as
described in (11), could require the use of alarge number of
donors for each recipient. Therefore, we outline a procedure
with a fixed number of donors per recipient that is fully
efficient for the grand total, but not necessarily fully
efficient for subpopulations. The procedure assigns donors
to produce small between-recipient variance of imputed
values and modifies the weights of donors to attain full
efficiency for the total.

Suppose that M donors are to be assigned to each
recipient. We suggest donors be assgned to recipients to
gpproximate the distribution of al respondents in the cell.
One possible selection method isto select a gtratified sample
for each recipient. A second possibility is to use systematic
sampling with probability proportiona to the weights to
select donors for each recipient. Initia fractions wj, are
assigned to the donated values. For systematic sampling
with equal weights, theinitial wj, is M ™.

After the donors are assigned, the initia fractions, wﬁo
are adjusted so that the sum of the weights gives the fully
efficient estimator of the mean of y, and such that the
estimated cumulative distribution function based on the
weights approximates the fully efficient estimator of the
cumulative distribution function. The modification of
weights using regression has been suggested by Fuller
(1984, 2003). Chen, Rao and Sitter (2000) discussed an
efficient imputation method that changes the imputed values
rather than the weights. Let z; =(23, Zy5, --- ) be
avector defined by

» Zgjo
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Z50 = Y

2y, =1 ify; <L,
= 0 otherwise

Zgio =1 ifLy<y <L,
= 0 otherwise,

where L,, L, ..., L, divide the range of observed y in cell
ginto o—1 sections. The number of sections that can be
used depends on the numbers and type of observations in
the cell, the number of recipients and the number of donors
per recipient. If the number of donors per recipient is large,
it is possible to adjust the set of weights for each recipient so
that the sum of w; over i is one for every j and the sum of
W, y; over i isthe fully efficient estimator for every j. In
most cases the weights will be adjusted so that the sum of
the w; over i is one for every j and the cell means of the
imputed values are equal to thefully efficient estimator.

Let Z , denote the fully efficient estimator for cell g.
Using regression procedures, the modified w;, modified to
givethefully efficient cell mean of z, are

\NJ = \Nljo + (ZFE,g _72) S;igvvi’go(zg[i]j _zg'j)/’ (18)

where
Sizg = 2 by 2 Wio(Zgy=Zg-)) (Zgpy;=Z4-) 0y

jeAyg i€ Agg

Zg.; = 2, Wio Zggy; A,
ieAgg

Zg= 2. by X wiozgp; dy,

€Ay i€ Agy

-1

b; :[ > Wsj Wi
seAyy

A , isthe set of indexes of recipientsincell g, z ;= z,

is the value imputed from donor i for recipient j, and Z,,.; is

the weighted mean of the imputed values for recipient j

using theinitial W,

To estimate the variance, replicates are created so that the
weights on the donors reflect the effect of the deletion of an
element on the fully efficient estimator. We use the words
“deletion” and “delete” to identify the element chosen for
principal weight modification for replication variance
estimation.

Let w* be the weight assigned to element i for the k™
replicate for variance estimation of the full sample esti-
mator. Then the replicate for the fully efficient mean of y for
cdlgis
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2 { > W;w} > Wiz, (19

i€ Ay i€ Ay

Replicate fractions are assgned to donors in cell g so that
the replicate estimate of the cdl mean is z{". Initia
fractional weights w; (" are assigned where w{ is small,
but positive, if i is a deleted unit for replicate k. The fina
fractional weights w;* are computed using the procedure
of (18) with Z{ replacing Z.. , and ;¥ replacing w,.
The procedure simulates the effect of deleting a single
element on the fully efficient estimator.

5. An Artificial Example

In this section, we present an example with artificia data
to illustrate the implementation of the proposed method.
Suppose that two study variables, x and y, are observed in a
sample of sze n = 10 obtained by smple random sampling.
Variable x is acategorical variable with three categories, say
1, 2, and 3, and variable y is a continuous variable. Both
variables have item nonresponse and there is a set of
imputation cedlls for each variable. Table 5.1 shows the
sample observations, where nonresponse is denoted by M in
the table. We use a weight of one to smplify the presen-
tation. Divide by ten to obtain weights for the mean.

Table5.1
An Illustrative Data Set

Observation Weight Celforx Cdlfory x 'y
1 1 1 1 1 7
2 1 1 1 2 M
3 1 1 2 3 M
4 1 1 1 M 14
5 1 1 2 1 3
6 1 2 1 2 15
7 1 2 2 3 8
8 1 2 1 3 9
9 1 2 2 2 2
10 1 2 1 M M

Because the x variable is a categorical variable with three
categories, usng three fractions for fractional imputation
gives fully efficient estimators for the digtribution of the
x—variable. Thus the weights in Table 5.2 for the three
imputed values of x for observation four are the fractions for
the three categoriesin x—cell one.

If a subset of donors is to be used for each recipient, a
controlled method of selecting donors, such as systematic
sampling, is suggested. In our simple illustration we could
easily use fractional imputation with all four y responses in
cdl 1, but to illustrate the regression adjustment we use only
three. See Table 5.2.

Several approaches are possible for the situation in which
two items are missing, including the definition of a third set
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of imputation cells for such cases. Because of the small size
of our illustration, we impute under the assumption that x
and y are independent within cdlls. Thus we impute four
values for observation ten. For each of the two possible
values of x we impute two possible values for y. One of the
pair of imputed y—values is chosen to be less than the mean
of responses and one is chosen to be greater than the mean.
See the imputed values for observation 10 in Table 5.2,

Table5.2
Fractional Weights for Means

Observation Weight Donor fory Cell forx Cdlfory x vy

1 1.0000 1 1 1 7
2 0.2886 1 1 1 2 7
2 0.3960 6 1 1 2 15
2 0.3154 8 1 1 2 9
3 0.3333 5 1 2 3 3
3 0.3333 7 1 2 3 8
3 0.3334 9 1 2 3 2
4 0.5000 1 1 1 14
4 0.2500 1 1 2 14
4 0.2500 1 1 3 14
5 1.0000 1 2 1 3
6 1.0000 2 1 2 15
7 1.0000 2 2 3 8
8 1.0000 2 1 3 9
9 1.0000 2 2 2 2
10 0.2247 8 2 1 2 9
10 0.2753 4 2 1 2 14
10 0.2095 1 2 1 3 7
10 0.2905 6 2 1 3 15

Initid fractions of one third are assigned to the three
imputed vaues for observations three and four, and initial
fractions of one fourth are assigned to the four imputed
values for observation ten. The fractional weights are then
adjusted using the regression method of equation (18) to
give the FEFl mean of y as the estimator, where the fully
efficient estimator for themean of y is

2

Vee =, Dy Vrg =84833.
g1 N

We restrict the weights for observation 10 so that the
estimated fractions for the two categories of x are the cell
fractions. Then, because the weighted mean for the categor-
ical variable is controlled for each individual, the vector z
contains only the y-variable. Table 5.2 gives the fina
fractional weights computed with the regression weighting.

An analyst can use the data set of Table 5.2 and any full-
sample computer program to compute estimates of
functions of y and x, such as the mean of y for the x cate-
gories. The fractional data set is fully efficient for any
function of the x-variable and is adso fully efficient for the
mean of they-variable.

For jackknife variance estimation, we repeat the weight
caculation for each replicate. The replicate estimates of the
cel means of y are given in Table 5.3 and the replicate
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edtimates of the category fractions for x are given in Table
5.4. Thevaluesin Table 5.3 and in Table 5.4 are used asthe
control totals Z , in the regresson weighting. We used
w;t) =37 as the initial value of the replication fractions
for observation two and w; 4 = 4" for observation ten.

Table 55 contains the jackknife weights for the
fractionally imputed data set of Table 5.2. The replicate
weights are used in the same way as replicates for a full
sample. They are appropriate, with the caveats of the next
section, for any dtatistic for which the full sample jackknife
is gppropriate. Thus the procedure is particularly appesaling
for a generd purpose data set, because no additional
computations are required of the analyst.

The fully efficient estimator of the mean of y is obtained
by treating the respondents as the second phase of a two
phase sample. A two-phase variance estimator is

Fuller and Kim: Hot Deck Imputation for the Response Model

1.
=82, =3.043,

where ség is the within cell sample variance for cdll g . If
we use the replication weights in Table 5.5, the replication
variance estimate for themean of y is

-~ 10
VJK (yFI) = Z 0.9 (y;(::() - )7;:, )2 =3.078.
k=1

The difference between the linearized variance estimator
and the jackknife variance estimator is

2 r _
g n—1—1 Sho-
alrg-1n

Thus, the jackknife variance estimator dightly overestimates
thetrue variance in this example.

Table5.3
Jackknife Replicates of Cell Mean of y—variable
Cdl Replicate
1 2 3 4 5 6 7 8 9 10
1 12.67 11.25 11.25 10.33 11.25 10.00 11.25 12.00 11.25 11.25
2 433 433 433 433 5.00 433 2.50 433 5.50 433
Table5.4
Jackknife Replicates of Cell Mean of the Dummy Variables of x—variable
Cdl Levd of x Replicate
1 2 3 4 5 6 7 8 9 10
1 0.33 0.67 0.67 0.50 033 0.50 0.50 0.50 0.50 0.50
1 2 0.33 0.00 0.33 0.25 0.33 0.25 0.25 0.25 0.25 0.25
3 0.33 0.33 0.00 0.25 033 0.25 0.25 0.25 0.25 0.25
1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 2 0.50 0.50 0.50 0.50 0.50 0.33 0.67 0.67 0.33 0.50
3 0.50 0.50 0.50 0.50 0.50 0.67 0.33 0.33 0.67 0.50
Table5.5
Jackknife Weights for Fractional Imputation
Obs. Replicate
1 2 3 4 5 6 7 8 9 10
1 0 11111 11111 11111 11111 11111 11111 11111 11111 11111
2 0.1664 0 0.3206 0.4205 0.3206 0.4563 0.3206 0.2392 0.3206 0.2724
2 0.6559 0 0.4400 0.3002 0.4400 0.2500 0.4400 0.5540 0.4400 0.5075
2 0.2888 0 0.3505 0.3904 0.3505 0.4048 0.3505 0.3179 0.3505 0.3312
3 0.3706 0.3706 0 0.3706 0.3226 0.3706 0.5018 0.3706 0.2867 0.3706
3 0.3697 0.3697 0 0.3697 0.5018 0.3697 0.0090 0.3697 0.6004 0.3697
3 0.3708 0.3708 0 0.3708 0.2867 0.3708 0.6003 0.3708 0.2240 0.3708
4 0.3703 0.7407 0.7407 0 0.3703 0.5556 0.5556 0.5556 0.5556 0.5556
4 0.3704 0 0.3704 0 0.3704 0.2777 0.2777 02777 02777 0.2777
4 0.3704 0.3704 0 0 0.3704 0.2778 0.2778 0.2778 0.2778 0.2778
5 11111 11111 11111 11111 0 11111 11111 11111 11111 11111
6 11111 11111 11111 11111 11111 0 1.1111 1.1111 1.1111 11111
7 11111 11111 11111 11111 11111 11111 0 11111 11111 11111
8 11111 11111 11111 11111 11111 11111 11111 0 11111 11111
9 11111 11111 11111 11111 11111 11111 11111 11111 0 11111
10 0.1624 0.2777 0.2777 0.3061 0.2777 0.2286 0.3474 0.3013 0.1520 0
10 0.3931 0.2778 0.2778 0.2494 0.2778 0.1417 0.3934 0.4395 0.2185 0
10 0.0932 0.2778 0.2778 0.3231 0.2778 0.4400 0.1483 0.0746 03171 0
10 0.4623 0.2778 0.2778 0.2324 0.2778 0.3008 0.2220 0.2957 0.4235 0
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6. Smulation Studies

6.1 Study Parameters

To study the properties of the imputation procedure we
conducted a Monte Carlo study. The sample is a stratified
sample with two eements per stratum and two imputation
cdlls, where the cells cut across the strata. Cell one is 20%
of the population in strata 1-25 and 80% of the population
in strata 26-50. The probability of response is 0.7 for cell
oneand 0.5 for call two. Two variables are considered. The
variable D is dways observed and defines a subpopulation.
The probability that D = 1 is 0.25 for cdll one and 0.40 for
cel two. The variable y is subject to nonresponse with
constant within-cell response probabilities. The variable D is
independent of y and of the response probability. The
variable y is normaly distributed, where the parameters for
a population of 50 strata are given in Table 5.1. In the data
generating model of Table 6.1, there are no stratum effects.
The parameters of interest are: 6, = mean of y, 6, = mean
of y for D=1,0,= fraction of Y's less than two, 0, =
fraction of Y 'slessthan one.

Table6.1
Parameter Set A
Cdl One Cdl Two
Element
Strata  Weight Mean Vaiance Mean Variance
1-25 0.01 04 0.36 16 0.36
26-50 001 04 0.36 1.6 0.36

6.2 Estimation Procedures

In the simulation M = 5 and M = 3 donors were used per
recipient. Systematic samples were sdected to serve as
donors for each recipient. If the number of respondents in
the cell islessthen M, every respondent was used as a donor
for every recipient and the wj are proportiona to the
origind w of the respondents. If there are more than M
respondents in a cell, the donors are ordered by size and
numbered from oneto r,. Then the donors are placed in the
order 1, 3, 5, S P rg_3,...,2 for 'y odd and the order
135,y Iy Iy ..., 2 for ry, even. The cumulated
sums of the weights are formed and m; systematic samples
of size M are selected, where m; =n, —r,. The cumulative
sums are normalized so that the grand sum is one, arandom
number, Rug> between zero and 0.2mgl is sdlected and the
m, samples are the systematic samples of size M defined
by the donor associated with Ry, +0.2(s—1) + (t-Hm;*,
s=1,2,3,4,5 for recipients t=1,2,...,m,. The initia
imputation fraction for each donor is w; = M -

The initial imputation fractions are modified using the
regression procedure of (18). The donors in a cell were
ordered from smallest to largest and the cumulative sum of
theweights formed. Let
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Syt =Z Wips 1€ Agy, (20)

where w,,i=12,...,r;, is the weight of vy, and
Yoy <---< Yg(m e the ordered y-vaues in cell g. To
define the boundaries of groups to be used to creste
indicator functions, let t,, bethet for which

maX {Sy w1 Sy we <0.2sS,,}

9, wt

fors=1,2 3, 4, where S, isthetota of the weights of the
donorsin cdl g. Define

z =1 if ¥ <y, andie Ay
= 0 otherwise )

fors=1,2 3, 4 and let zZ =(ygjl, Zgoy e zng). The
regression modified imputed estimator of the mean for each
of the five variables in the z-vector is the fully efficient
estimator of the respective mean.

The k-deleted FE estimator of the cell mean of z is
defined in (19). The initia fractional weight for donor k to
element j is set a wy =0.01w. This initial weight
assures that the final weight will be small, but permits
regression adjustment. The final w;" are computed using
the regresson procedure of (18) using the initial weight
W

gi,s+1

6.3 Monte Carlo Results

The Monte Carlo results for 5,000 samples generated by
the parameters of Table 6.1 are given in Table 6.2 and Table
6.3. Reallts are given for the full sample, for fractiona
imputation with 5 donors, fractiona imputation with three
donors, and for multiple imputation (MI) using the
Approximate Bayesian Bootstrap (ABB) of Rubin and
Schenker (1986) with M =5 and ABB with M = 3. Boththe
FI and M1 procedures are unbiased for al four parameters of
Table 6.2. The last column of Table 6.2 gives the Monte
Carlo variance of the estimator divided by the Monte Carlo
variance of the Fl procedure with M = 5, expressed in
percent. The Fl procedure is five to ten percent more
efficient than M1 with M = 5 and 9 to 13 percent more
efficient than MI with M = 3.

Under the model, the mean of the observed vaues is not
the best estimator of the domain mean. In this example, the
Fl estimator is about as efficient as the full sample
estimator. The effect of a smaller number of observationsis
balanced by the use of a superior estimator of the mean for
the domain. Under the modd, the doman indicator is
independent of the y values, given the cell. Therefore it is
efficient to use dl values in the cdl as donors, not just
respondents in the domain.

The properties of the variance estimators are given in
Table 6.3. The column headed “Relative Mean” gives the
Monte Carlo estimated mean of the estimated variances
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divided by the Monte Carlo estimated variance, where the
Monte Carlo estimated variance is given in Table 6.2. Both
variance estimation procedures appear to be nearly unbiased
for the variance of the mean. Therelative variance of the Ml
variance estimator for M = 5 is nearly twice that of the Fli
variance estimator for M = 5. For M = 3, the MI variance
edimator is more than three times that for FI. The MI
variance estimator has alarge variance because the variance
due to missing observations is estimated with four degrees-
of-freedom for M = 5 and with two-degrees-of freedom for
M=3.

The MI variance ediimator for the domain mean is
serioudy biased. This property was firgt identified by Fay

Fuller and Kim: Hot Deck Imputation for the Response Model

(1991, 1992) and studied by Meng (1994) and Wang and
Robins (1998). The FlI variance estimator for the domain
mean aso has a positive bias, though much smaller than that
of MI. The biasin the F variance estimator can be reduced
by increasing M, but the bias of MI has little relationship to
M.

All variance estimators for the variance of 64 aredightly
negatively biased. We believe Fl is dightly biased for 64
because, dthough we use the z-vector, the weights are
dightly smoothed by the regression procedure. M1 is known
to have asmall sample bias. See Kim (2002).

Table 6.2
Mean and Variance of the Point Estimators Under Setup A (5,000 Samples of Size 100)
Parameter Imputation Scheme Mean Variance Stand. Var.
Mean Complete Sample 1.00 0.00570 67
6,) FI(3) 1.00 0.00849 100
ABB(3) 1.00 0.00926 109
FI(5) 1.00 0.00849 100
ABB(5) 1.00 0.00903 106
Domain Mean Complete Sample 114 0.02020 29
(6,) FI(3) 114 0.02050 100
ABB(3) 114 0.02230 109
FI(5) 114 0.02040 100
ABB(5) 114 0.02170 106
Pr(Y<?2) Complete Sample 0.87 0.00104 51
(63) FI(3) 0.87 0.00202 100
ABB(3) 0.87 0.00228 113
FI(5) 0.87 0.00202 100
ABB(5) 0.87 0.00223 110
Pr(Y <1) Complete Sample 0.50 0.00208 66
(64) FI(3) 0.50 0.00313 100
ABB(3) 0.50 0.00342 109
FI(5) 0.50 0.00313 100
ABB(5) 0.50 0.00329 105
Table6.3
Relative Mean, t—statistic and Relative Variance for the Variance Estimators Under Setup A
(5,000 Samples of Size 100)
Parameter Method Rdative Mean (%0)** t—daistic* Rdative Variance (%)
Mean FI(3) 100.1 0.05 5.66
(CH) ABB(3) 99.6 -0.19 19.25
FI(5) 100.1 0.03 5.65
ABB(5) 98.2 -0.89 9.95
Domain Mean FI(3) 1159 754 13.88
(65) ABB(3) 127.9 12.72 28.88
FI(5) 106.6 314 11.62
ABB(5) 1284 1343 20.03
Pr(Y <2) FI(3) 1039 1.86 13.90
(63) ABB(3) 100.8 0.36 48.42
FI(5) 1017 0.82 12.07
ABB(5) 98.5 -0.67 25.10
Pr(Y <1) FI(3) 98.5 -0.75 4.67
(04) ABB(3) 9.3 -1.80 1851
FI(5) 97.6 -1.20 4.45
ABB(5) 96.7 -1.65 10.17

* Statidtic for hypothesisthat the estimated variance is unbiased.
** Monte Carlo mean of variance estimates divided by Monte Carlo variance of etimates, in percent.
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In a second set of parameters, denoted by C, the means
were asfollows:

Cellof stratal—-25; u=04
Celllof strata26—-50; w=3.0
Cel 20of stratal—25; u=1.6
Cell 2of strata26—-50; pu=2.2.

All other parameters are the same as in parameter set A. The
properties of the estimators are given in Table 6.4. Both FI
and M| produce unbiased estimates of the means and of the
domain mean. As with parameter set A, the Fl procedure is
eight to twelve percent more efficient than MI for M =5 and
14 to 16 percent more efficient for M = 3.

The assumptions required for M| variance estimation are
not satisfied for parameter set C. Therefore the M1 estimated
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variance is serioudy biased for all parameters. See Table
6.5. The bias in the MI estimated variance with M = 5 is
about 17% for the variance of the overal mean and nearly
50% for the domain mean. The bias of the MI variance of
the mean for abinomia variable is smaller than the bias for
the mean of the continuous variable because the stratifica
tion effect is smaller for the binomia variable.

The properties of the estimated variances for the F
procedures are similar to those for setup A. There is a
positive bias for the variance of the domain mean of about
23% for M = 3 and about 6% for M = 5.

The variance of the M| estimated variance is 2.4 to 3.5
times the variance of the FI estimated variance for M = 5
and 3 to 7 times for M = 3, demongtrating the clear supe-
riority of the FI variance estimator for this configuration.

Table6.4
Mean and Variance of the Point Estimators Under Setup C (5,000 Samples of Size 100)
Parameter Imputation Scheme Mean Variance Stand.Variance
Mean Complete Sample 210 0.00500 48
6,) FI(3) 210 0.01050 100
ABB(3) 210 0.01220 116
FI(5) 210 0.01050 100
ABB(5) 210 0.01150 110
Domain Mean Complete Sample 0.02530 102
(6,) FI(3) 201 0.02510 101
ABB(3) 201 0.02850 115
FI(5) 201 0.02480 100
ABB(5) 201 0.02710 109
Pr(Y<2) Complete Sample 0.00127 45
(63) FI(3) 0.45 0.00281 100
ABB(3) 0.45 0.00322 115
FI(5) 0.45 0.00280 100
ABB(5) 0.45 0.00314 112
Pr(Y <1) Complete Sample 0.00107 54
(0,4) FI(3) 0.15 0.00199 100
ABB(3) 0.15 0.00226 114
FI(5) 0.15 0.00199 100
ABB(5) 0.15 0.00214 108
Table6.5
Relative Mean, t—statistic and Relative Variance for the Variance Estimators Under Setup C (5,000 Samples of Size 100)
Parameter Method Rdative Mean (%) t—daistic* Reative Variance (%)
Mean FI(3) 100.9 041 6.42
(CH) ABB(3) 116.7 731 40.14
FI(5) 100.8 0.39 6.42
ABB(5) 117.1 7.99 22.29
Domain Mean FI(3) 122.7 10.78 16.23
(65) ABB(3) 1444 19.79 46.05
FI(5) 106.1 2.95 11.95
ABB(5) 148.7 2251 32.49
Pr(Y<2) FI(3) 104.4 218 6.63
(63) ABB(3) 114.7 6.54 2.32
FI(5) 101.8 0.89 6.42
ABB(5) 1121 5.74 20.67
Pr(Y <1) FI(3) 102.3 113 11.08
(04) ABB(3) 101.3 0.58 39.14
FI(5) 99.9 -0.04 10.05
ABB(5) 102.2 1.04 23.60

* Statigtic for hypothesisthat the estimated varianceis unbiased.
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7. Summary

In fractiona imputation, several donors are used for each
missing value and each donor is given a fraction of the
weight of the nonrespondent. If al donors are used, the
procedure is fully efficient, under the model, for dl
functions of ay-vector. It is shown that the use of fractional
imputation with a small number of imputations per non-
respondent can give a fully efficient estimator of the mean.
Estimates of other parameters, such as edimates of the
cumulative distribution are nearly fully efficient.

Fractional imputation permits the construction of generd
purpose replicates for variance estimation. A single set of
replicates can be used for variance estimation for imputed
variables, variables observed on al respondents, and under
model assumptions, for functions of the two types of
variables. The replicates give estimates of the variances of
domain means with much smaller biases than those of
multiple imputation. The bias goes to zero as M increases
and, in the simulation, is modest for M = 5. The replication
variance egtimator is easly implemented with replication
software such as Wesvar.

Fractional imputation with a fixed number of donors per
recipient is dightly more efficient for the mean than
multiple imputation with the same number of donors.
Fractional imputation gives variance estimates with smaller
bias and much smdler variance than multiple imputation
estimators with the same number of imputations.
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Variance Estimation with Hot Deck | mputation:
A Simulation Study of Three Methods

J. Michad Brick, Michael E. Jones, Graham Kalton and Richard Valliant *

Abstract

Complete data methods for estimating the variances of survey estimates are biased when some data are imputed. This paper
uses simulation to compare the performance of the mode-assisted, the adjusted jackknife, and the multiple imputation
methods for estimating the variance of a total when missing items have been imputed using hot deck imputation. The
simulation studies the properties of the variance estimates for imputed estimates of totals for the full population and for
domains from a single-stage disproportionate stratified sample design when underlying assumptions, such as unbiasedness
of the point estimate and item responses being randomly missing within hot deck cells, do not hold. The variance estimators
for full population estimates produce confidence intervals with coverage rates near the nominal level even under modest
departures from the assumptions, but this finding does not apply for the domain estimates. Coverage is most sensitive to bias
in the point estimates. As the simulation demonstrates, even if an imputation method gives almost unbiased estimates for the

full population, estimates for domains may be very biased.

Key Words: Adjusted jackknife; Domain estimation; Model-assisted variance estimation; Multiple imputation;

Nonresponse.

1. Introduction

Imputation is frequently used in survey research to assign
values for missng item responses, thereby producing
complete data sets for public use or general analysis. It is
well-recognized that treating imputed values as observed
values results in downwardly biased variance estimates for
the survey estimates. As a result, confidence intervas have
lower than nomina levels. The biases in the variance
estimates tend to increase with the item nonresponse rate
and can be subgtantial when that rateis high.

Three methods of variance estimation that have been
developed for use with imputed data are studied here: a
model-assisted method (S&rndal 1992), an adjusted jack-
knife method (Rao and Shao 1992), and multiple imputation
(Rubin 1987). Each method has been evaluated theoretically
and by smulation methods, primarily under conditions
consigent with the assumptions of the methods. This paper
uses smulation to compare the three methods under the
same experimental conditions in which some of the assump-
tions required by the methods do not hold. The god is to
examine the relative performances of the methods in
stuations that are likely to occur in practice. Other Ssmu-
lation studies of variance estimation methods with imputed
data have generally been more limited. Even the more
extensive smulation study by Lee, Rancourt, and Sarnda
(2001) was based on smadl populations and it did not
include multiple imputation.

A single-stage disproportionate stratified sample selected
from a real population data set is used to evauate these
variance estimation methods in a redigdic setting. The
imputed values are assigned using a hot deck imputation
method, one of the most popular methods of imputation in
survey research. Since hot deck imputation is a form of
regression imputation (Katon and Kaspryzk 1986), re-
dricting the smulation study to the hot deck is not a crucial
feature for examining the implications for variance estima-
tion. We study edtimation for both full populaion and
domain totals. For the domain estimates, the domain indi-
cator is assumed to be known for all sample members.

Three different combinations of missing data mecha-
nisms and hot deck cell formation are used in the smula-
tions to assess the performance of the variance estimation
methods under conditions that violate the assumptions of the
methods to varying degrees. The three variance estimation
methods we study al assume that data are randomly missing
in each hot deck cell and the mode-assisted (MA) and
multiple imputation (M) methods also assume that asimple
model with common mean and variance holds in each cell.
Studying the robustness of the variance estimation methods
is an important feature of the smulation because in practice
the assumptions underlying the methods will almost never
befully satisfied.

The next section briefly describes three variance estima-
tion methods with hot deck imputed data. The third section
outlines the study population, the sample design used in the
simulations, and the methods used to generate the missing

1. J. Michael Brick, Michadl E. Jones and Graham Kalton, Westat, 1650 Research Boulevard, Rockville, MD 20850; Richard Valliant, University of

Michigan, 1218 Lefrak Hall, College Park, MD 20742.
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data and implement the hot deck imputations. The fourth
section gives the results of the smulations. The last section
gives some conclusions about the methods and their applica-

bility.

2. Description of the Variance
Estimation Methods

We denote the full sample by A, the subset that responds
to anitem by Ag, and the subset that does not respond by
A, . For theimputations the units are divided into hot deck
cells indexed by g=1,...,G, where the subset of ng,
respondents in cell g is Ag,, and the subset of non-
respondentsis A,,. For each unit with amissing value, the
hot deck method consists of randomly selecting a
respondent from within the same hot deck cell to be the
donor of theimputed value.

With hot deck imputation, donors are often selected
within a cell by smple random sampling with replacement
(srswrr), by smple random sampling without replacement, or
by sampling with probabilities proportiona to the survey
weights with replacement (ppswr). Since the simulation
results obtained using the srswr and the ppswr methods are
very amilar, only the results for the ppswr method-termed
the weighted hot deck—are presented here. The imputed
edimator of a population tota is é, =Yiea, WY, +
Yiea, WY;, Where w is the survey weight, y; is the
reported value and y; is the imputed vaue for unit i in the
nonrespondent set.

2.1 Model-Assisted Variance Estimation

The modd-assisted (MA) approach with hot deck
imputation assumes that data are randomly missing within
the hot deck cells and that a model for the generation of the
y' s holds. A natural model for use with hot deck imputation
is that the vy, ’s are independently and identically generated
within the hot deck cdls, i.e, yj ~(ug,c ) for cel g.
Inferences from the model-assisted approach depend on the
validity of the model assumptions.

Sarndal (1992) decomposed the total variance of the
imputed estimator into three components denoted by
Vaam s Viue, @d V,,. The estimators used for these com-
ponents in the simulations are those given in Brick, Kalton,
and Kim (2004). The MA varlance estimator is the sum of
the component esimates: V,,, =Vauy +Viyp + NVyx- The
Ve ad V,, esimaiors require an estimator of the
element variance in each hot deck cell. Since the simu-
lations showed little difference between weighted and un-
weighted estimators only the weighted estimator of 03 is
discussed, that is 62 —D) 7 a, W (YY)’ X

1S 69 =gy (Mg
(Zay W)™ With Yoy = Sa, WY (Ta, W)™
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2.2 Adjusted Jackknife Variance Estimation

The Rao and Shao (1992) adjusted jackknife (AJ)
variance estimator for a stratified sample with imputations
and ignorablefinite population correction factors ( fpc's) is

D261 -6,)2,

h=1 k=1 h

where n,, isthe number sampled in stratum h,

. G
6W=Zﬂi2 Wyt T Wy + 5 %@}

g=1 | (hi)e Ay (hi)e Avg
is the adjusted estimator when unit k is omitted,

= % iy [ 3w,

(hi)e Ang (hi)e Ang

Yrg = > Wy, yhi/ > Wy
(hi)e Ay (h)e Ay

w®is the weight for unit hi adjusted to account for the
omission of unit k. The notation (hi) € B denotes unit i in
dratum h is part of set B. This procedure requires the
computation of Yn replicate estimates, 0. A
commonly used strategy to reduce the computations is to
combine units into variance drata (e.g., see Rust and Rao
1996). Let h* denote a combined variance stratum and k a
group of sample units within the combined stratum. All
sampled units are assigned to one of the groups. Then, the
grouped adjusted jackknife variance estimator is

Zz h(k) (e(k) é|)2:

is the number of sample units in combined
varlancestratum h* M i isthe number of unitsretained in
sraum h* when units in group k are deleted and,
corresponding to 6, 8 is the adjusted imputed estimate
for the full population when units in group k in stratum h*
are deleted. The retained units from design stratum h that
are in combined variance stratum h* are assigned replicate
weightsof W =n_(n,. ) W

The AJ method assumes a uniform response probability
model within each hot deck cdll but, unlike the MA method,
it does not require distributional assumptions. Under the
uniform response probability model without distributiona
assumptions, a weighted hot deck is needed to produce
unbiased imputed estimates.

In developing the theory for the AJ method, Rao and
Shao (1992) assume that fpc's are ignorable. However, the
fpc's are not negligible in some srata in the simulations,
ranging from about 0.05 to 0.24. Shao and Sted (1999) and
Lee, Rancourt, and Sérndal (1995) provide methods for
accounting for nonnegligible fpc's. The Lee, Rancourt, and
Sarndal (1995) fpc adjustment was applied in the smu-
lations because of its ease of implementation. Without the

where n.
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fpc adjustment, the AJ variance estimator substantialy
overestimated the variances in the smulations.

2.3 Multiple Imputation

Multiple imputation (M1) is described in detail in Rubin
(1987) and Little and Rubin (2002). The summary here
relates to its gpplication with hot deck imputation. As with
the model-assisted approach, within the hot deck cells re-
sponses are assumed to be missing randomly and they' s are
assumed to be independent random variables with a com-
mon mean and variance. For each unit that has a missing
value, M vaues are imputed, cresting M completed data
sets.

To avoid underestimation of variances with the Ml
method, the hot deck method needs to be modified. Rubin
and Schenker (1986) proposed the approximate Bayesian
bootstrap (ABB) for simple random sampling with hot deck
imputation for use with the MI method. The ABB was
modified for the smulaions to accommodate sampling
donors by ppswr. In the simulations a donor pool for the
ABB was created in each cell by selecting respondents with
replacement with probabilities proportiond to w.. (Thereis
no literature that discusses the gpplication of ABB methods
with unequal weights. In hindsight, an unweighted ABB
might have been preferable. The use of an unweighted ABB
with a ppswr hot deck yields unbiased point estimates of
population totals under the response probability moddl).

3. Design of the Simulation Study

3.1 Description of the Study Population and Sample
Design
The sampling frame for the smulations is a subset of the
file of public school districts extracted from the 1999-2000
Common Core of Data (CCD) compiled by the U.S.
National Center for Education Statigtics. The final frame
consstsof 11,941 didtricts.
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The sample design used in the smulations is a stratified
smple random sample of 1,020 school didtricts. Twelve
drata were created by cross-classifying four categories of
number of students (district size) by three categories of the
percentage of students at or below the poverty level (poverty
gtatus). The strata and number of digtricts in the frame are
given in Table 1. The table aso gives the stratum sample
sizes and sampling rates used in the simulations.

The table aso contains the stratum means and standard
deviations for the two study variables, the number of
sudents in the digtrict and the number of districts that
include pre-kindergarten as the lowest grade. These study
variables were chosen because they are typicd of many
estimates computed from this type of design.

In addition to the full population estimates we computed
the two study estimates for two domains, defined as districts
located in the Northeast region and those in nonmetropolitan
aress. The means for these domains are substantialy
different from the full population means for both study
variables.

3.2 Missing Data M echanisms and Imputation
Methods

By construction, information on the two study variables
is available for all districts in the sampling frame. To create
missing values, response indicators were assigned to
sampled units within “response cells’. In some cases the
response cells are the sampling strata, termed STR cédlls,
whereas in other cases they are what are termed HD cdlls.
The HD cdlls were defined by the cross-classification of
four geographic regions and a fourfold categorization of the
number of full time equivaent teachers in the didtrict. The
HD cdlls are somewhat correlated with the sampling strata,
but each cell contains units from more than one stratum.

Tablel
Stratum Definitions, Population Counts, Sample Sizes, Sampling Rates, Means and Standard Deviations of Number of Students
and Proportions of Districts with Pre-Kindergarten

District Poverty Sampling Number of students Proportion with

Stratum size status Nh Ny, rate Mean Std. dev. pre-kindergarten
1 1 1 615 32 0.0520 270.0 155.0 0.44
2 1 2 1,147 59 0.0514 263.3 175.0 0.49
3 1 3 1,292 66 0.0511 2435 1425 0.49
4 2 1 1,720 111 0.0645 1,607.2 837.0 0.44
5 2 2 2,305 149 0.0646 1,429.7 784.1 0.52
6 2 3 1,893 122 0.0644 1,427.8 788.8 0.63
7 3 1 692 75 0.1084 4,695.3 1,360.6 0.35
8 3 2 579 63 0.1088 4,7285 1,365.0 051
9 3 3 527 57 0.1082 4591.8 1,380.3 0.63
10 4 1 342 83 0.2427 16,003.4 12,670.2 0.51
11 4 2 449 110 0.2450 17,577.3 14,246.7 0.58
12 4 3 380 93 0.2447 19,331.8 16,142.7 0.68
Total 11,941 1,020 3,237.9 6,770.5 0.52
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Within a given response cel, sampled units were
assigned at random to be missng or nonmissing a a
specified rate. For each type of response cell, three schemes
for assigning rates of missingness were chosen. In two of
the schemes, the rates of missingness varied across the
response cells, whereas in the other scheme the rate was
congtant across the cells.

The smulations were conducted by first drawing a
gretified simple random sample using the stratum sample
szes in Table 1. Once the sample was selected, response
gtatus (respondent/nonrespondent) was randomly assigned
to each sampled unit according to the given response
scheme. For the MA and AJ methods, the weighted hot deck
imputation procedures described earlier were used to impute
for missing values. For the MI method, a donor pool was
first creasted using the weighted ABB, and weighted hot
decks were then used to impute for each of the M=5
imputed data sets. The estimated total numbers of students
and districts with pre-kindergarten were computed for the
smulated sample with imputed values, and variance
estimates were computed for these estimates using the three
variance estimation methods. (If the estimated variance
could not be computed in a particular simulation run or the
sample size in a cell was less than 2, then that sample was
ddeted. The maximum number of deleted samples across ll
the smulations of 10,000 runs esch was 2 for the MA
method and 28 for the AJ (only one run had 28 AJ samples
ddeted; the next largest number was 3). The AJ method was
based on three combined variance strata and 40 groups of
units per gratum for a total of 120 replicates. The three
combined strata, formed from strata having about the same
fpc, consisted of strata 1-6, 7-9, and 10-12. As a check of
the grouping, we verified that the grouped jackknife
variance procedure gave essentidly the same average
variance estimates and confidence interval coverage rates as
the ungrouped jackknife in the case of complete response.
The entire process was repeated 10,000 times for each
response scheme.

A feature of the design of the smulation isthat the means
for the two domains considered often differ substantially
from the full population means by strata and HD cdlls. A
key point for the domain estimates is that imputations were
made by selecting donors from al the respondents in a hot
deck cdl, without specifically recognizing the domain as
might be done in practice for some domains. After impu-
tations were made for the full sample, the estimated total for
a domain was esimated by 6, =i, SWY, +3ca,
d;w;y; where §; =1 if uniti isin the domain and O if not.

Three of the four possible combinations of response
mechanism (STR or HD cells) and hot deck cell formation
(STR or HD cdlls) were studied in the simulations. We refer
to these combinations as STR/STR, HD/HD, and STR/HD,

Statistics Canada, Catalogue No. 12-001-XIE

where the fird st of letters identifies the response
mechanism and the second set identifies the type of hot deck
cell. The three sets of response rates were 0.2 to 0.6 spaced
evenly across the response cells, a constant 0.7 in al cells,
and 0.6 to 0.9 spread evenly across the cells. The three
combinations of response/hot deck cells with the three sets
of response rates generated nine separate Smulation
schemesfor each estimate.

3.3 Assumptionsfor Models of Response and
Population Structure

There are two models involved in the smulations. The
population model assumes that the y values within each hot
deck cell are independent and have the same expected value.
The response model assumes that there is a uniform
response probability within each hot deck cell. If both
models hold, then the use of either an unweighted or a
weighted hot deck will lead to an unbiased estimate of the
overdl population total. However, if only the response
model is assumed, then the use of a weighted hot deck is
needed to produce an unbiased edtimate of the overal
population total. Since the weighted hot deck is used in the
simulations, only the response probability model needs to be
satisfied for unbiased point estimation of the overall popu-
lation totd. The response probability modd holds for dl the
STR/STR and HD/HD combinations and for the STR/HD
combination with a constant response rate; however, it does
not hold for the other two STR/HD combinations. The AJ
theory for variance estimation of population totals was
developed assuming only the response probability model.
TheMA and M| theories assume that both models hold.

Reliance on only the response probability model and the
weighted hot deck to produce unbiased edtimates of
population totals does not in general extend to estimates of
domain totals. When domains cut across hot deck cdlls, it is
necessary to invoke a population model that assumes that
the expected value of the domain values is the same as that
of the nondomain values in each hot deck cell. However, if
the hot deck cells are defined such that each domain
comprises the full population in a subset of the hot deck
cels, then the situation for point and variance estimation is
the same as stated above for overall population totds.

The smulation schemes were generally constructed so
that the hot deck cells do not incorporate the domains in
order to reflect the practicad consgderation that it is
essentidly impossible to incorporate al domains in an
imputation scheme. Specificaly, in the smulations the
digtricts in the Northeast (NE) region and digtricts in
nonmetropolitan statistical areas (NMSA) are unrelated to
the stratum definitions in Table 1 (which are used as hot
deck cdls in some cases). Also, didtricts in the NMSA
domain can be found in al HD cdls. However, the NE
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domain is a subset of four of the HD cdls. Thus, the
definition of the HD cells is more consistent with estimating
NE domain totals than NMSA domain totals.

34 Summary Statistics

The relaive bias of a point estimate is estimated by
relbias(B, )=bias(B, ) /6,,, where bias(8, )= (6,.—6y)/
10,000, é,s is the estimate from sample s, and 6, is the
finite population parameter. The empirica variance of é,
is Var(6,)=3.(6,,—6,)2/10,000, where 8, =36,/
10,000. The average variance egtimate for a particular
method is v=3Vv,/10,000, where v, is the estimated
variance for smulation run s.

The percentages of intervals that include 8, are based
on the nominal 95 percent confidence intervals
(6, £tV¥'2) computed for each of the 10,000 simulations
for each smulation scheme. An issue to consider here isthe
precision of the variance estimates from a disproportionate
dratified sample design and its impact on whether normal
gpproximation or t intervals should be used to calculate
confidence intervals. We found that the use of the
t—distribution did not have a substantial effect for most
cases with the MA and AJ methods, and we have therefore
used a multiplier of 1.96 for confidence intervals based on
these methods. Rubin and Schenker (1986) suggest using a
t—distribution with A degrees of freedom for confidence
intervals with the M1 method, where
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M+1B
Since using 1.96 with the M1 method yielded intervals

that had severe undercoverage, the t-distribution with A
degrees of freedom is used for the M1 confidence intervals.

kz(M—l)(1+ M Uj.

4, Smulation Reaults

This section presents the main results from the
smulations, beginning with the performance of the three
methods of variance estimation for estimates from the full
population, followed by the results for the domain estimates.
Key outcomes are summarized here graphically, but tables
with full details are available in Brick, Jones, Kalton, and
Valliant (2004).

4.1 Full Population Estimates

Figure 1 shows the results of the smulations for
edtimating the total number of students and the number of
districts offering pre-kindergarten from the 10,000 samples
for each of the nine smulation schemes. The figure gives
the reative bias of the imputed estimator, the average
variance estimate as a percentage of the empirical variance,
and the confidence interval coverage rate.

Rel-bias (%) viVar (%) 95% CI coverage
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The point estimates are theoretically unbiased with
weighted hot deck imputation if al units in a hot deck cell
have the same response probability. As noted earlier, this
condition holds for the STR/STR and HD/HD combinations
and adso for the STR/HD combination with a uniform
overd| response probability. The graph of relative biasesin
Figure 1 is consigtent with this theoretical result within the
bounds of smulation error. While the relative biases of the
point estimates in the other two STR/HD schemes are small
(aways less than 3%), they ill may be important if the
gandard errors of the estimates are dso small. Cochran
(1977, page 12) shows that when the ratio of the bias to the
standard error is relatively large, then the coverage rate can
be much lower than the nominal level. For the full
population estimates with this sample size the ratios never
exceed 0.4, but much larger ratios occur for domain
estimates, as discussed later.

The graph of the ratios of the average variance estimates
to the empirical variances (v/Var in the figures) for the three
methods shows that these estimates have relatively small
biases in most cases, within a range of plus or minus 8
percent around the simulated true variance. While the ratios
for dl the methods vary across the nine schemes, the Ml
ratios are dightly more variable than the other two.

A primary reason for computing variances is to produce
confidence intervals. The right-hand pand in Figure 1
shows that the coverage rates for the confidence intervals
for the estimates are generally close to the nominal
95 percent level, especially for the pre-kindergarten Satitic.
The coverage rates for both statistics and all the methods
and schemes are between 91% and 96%, with the exception
of the number of students for the STR/HD 0.2 to 0.6
scheme. The coverage rates of 88% or less for al three
methods in this case, with its extremely high rate of
nonresponse, are due to the relatively large bias in the point
estimate. Overdl, al three variance estimation methods
produce confidence intervals with coverages that are vast
improvements over those for intervals based on naive
variance estimates (Brick et al. 2004).

The confidence interval coverage rates for the MA and
AJ methods are essentially equivalent. The MI coverage
rates are generally dightly greeter than those for the MA
and AJ methods. The MI coverage rates are dightly closer
to the nominal level for the number of students. Most of the
differences are small.

For all three variance estimation methods, the upper and
lower confidence interval coverage rates were similar. For
the number of students, which is a highly skewed variable,
the coverage rates in the two tails are unequa due to
correlation between the estimated total and the standard
eror estimates. The asymmetric tail coverages are aso
associated with lower overall coverage rates.
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The MA and AJ methods yield confidence intervals that
have nearly the same average length across the schemes and
variables. Because the MI method uses t-didtribution
values, itsintervals range from 10 to 20 percent longer than
the MA and AJ intervals when the response rates are low.
With the higher response rates, the M1 intervals range from
about the same to 5 percent longer than the intervals from
the two other methods. The M1 confidence intervals could,
of course, be shortened by increessng M (Rubin 1987,
Chapter 4), even though M = 5istypical for gpplications.

4.2 Domain Estimates

Edimating characteristics for domains that are not
explicitly incorporated in the imputation scheme can be
problematic when the missing data rate is not trivial. Katon
and Kaspryzk (1986) and Rubin (1996) dong with many
others have discussed this point and urged the inclusion of
as many variables as possible in the imputation process.
However, given the many preplanned and ad hoc domain
andyses that are carried out with survey data, it is
unreglistic to assume that all domains can be accounted for
in an imputation scheme. For this reason, the design of the
smulations intentionally did not include the domains
explicitly in the definition of the hot deck cells. In the case
of multiple imputation, issues of variance estimation for
domain estimates have received much attention (e.g., Fay
1992; Meng 1994; Rubin 1996).

In the smulations we estimate the totals for two
domains: school digtricts in the NE and those in NMSA.
Figures 2 and 3 present the results of the simulations for the
NE domain and for the NMSA domain, respectively, in the
same format as used before. Note that the scales for Figures
2 and 3 differ from each other and are very different from
those used for the full population estimates.

For the NE domain, the point estimates have large
positive biases for the STR/STR combinations. Hot deck
cells based on STR are not related to region, and, as areault,
NE didricts with missing data have donors from other
regions, which have different characteristics. In contrast, the
inclusion of region in the construction of the HD imputation
cells removes the bias of the point etimates in the HD/HD
combinations and the STR/HD combination with uniform
overdl response probability, and reduces the bias in the
other STR/HD combinations.

All three methods of variance estimation require
unbiased point estimates and theory for the methods does
not provide guidance on how the methods will perform
under the conditions we study. The variance estimates are
gpproximately unbiased for all three variance estimation
methods when the domain point estimates are unbiased or
have only small biases. However, Figure 2 shows that for
the STR/STR combination, where the point estimates are
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serioudly biased, the variance estimates usually overestimate
the empirical variances.

Figure 2 shows that the coverage rates for the HD/HD
and STR/HD schemes-for which the point estimates have
no or smdl relative biases-are between 92 percent and
96 percent for al but one of these schemes and variance
edimation methods. The exception is the STR/HD
combination with response rates between 0.2 and 0.6, which
has coverage rates as low as 86 percent for the number of
students.

For the STR/STR schemes, Figure 2 shows that al the
methods tend to cover at greater than the nominal level for
the number of students and less than the nomina level for
the number of districts with pre-kindergarten. The
difference in the coverage rates for the two variables is due
to the Sizes of the relative bias of the point estimates and of
the variance estimates.

Turning to the NMSA domain estimatesin Figure 3, note
that metropolitan status is not explicitly included in the

Rel-bias (%)

viVar (%)
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definitions of either STR or HD, dthough it is clearly
correlated with size and, thus, with STR. The point
estimates for the number of students in the NMSA domain
for al the schemes have substantiad positive biases. The MA
confidence intervals consistently cover at the nomina level
or higher, primarily due to the extreme positive biases of the
variance egimates. The AJ intervals cover a close to the
nominal level for the HD/HD and STR/HD schemes, but
undercover in the three STR/STR schemes. The patterns for
the MI coverages are smilar to those of the AJ, except that
the MI intervals appreciably undercover in the HD/HD
scheme with 0.2 to 0.6 response rates.

The point estimates of the number of districts with pre-
kindergarten in the NMSA domain have moderate negative
relative biases for al nine schemes. The confidence
intervals for all three methods of variance estimation are
close to the nomind level, without the overcoverage found
in the NE domain estimates.

95% CI coverage
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with pre-kindergarten (A) in nonmetropolitan areas.

5. Conclusions

The smulations examined the performance of three
variance estimators for imputed totals from a single-stage
dgratified sample design under different  response
mechanisms with weighted hot deck imputation. The
circumstances reflected what can be expected in practice in
the sense that the assumptions of the methods were violated
in different ways. All three methods were substantial
improvements over the naive variance estimator. All three
methods performed very well with unbiased point estimates.
When the point estimates had large biases, none of the
methods produced confidence intervals with the nominal
coverage levels. Poor coverage rates for biased point
edtimates are not unexpected since the same result holds
with no missing data When the point estimates had
relatively smal biases, the actua coverage rates for the
three variance estimation methods sometimes exceeded and
sometimes fell short of the nominal levels. In this case the
tendency of dl three methods to overestimate the variance
often resulted in coverage rates close to the nominal level.
Low response rates were associated with undercoverage,
largely dueto the greater biasesin the point estimates.
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The differences in the coverage rates of the three
methods were generdly too smal and inconsigent to
support claims that any one method is superior in general.
With very low response rates, the average lengths of the
confidence intervals for the MI method were appreciably
longer than those for the MA and AJ methods, but using a
larger number of sets of imputations with the MI method
would rectify that problem. It should, however, be noted
that these simulations only address single stage sampling.
Differences in confidence interval lengths between methods
may exist in cluster samples. This possibility awaits further
investigation.

The results of this study give practitioners of hot deck
imputation empirical evidence that al of the variance
esimation methods perform well in single stage samples
provided that the point estimate is unbiased, even when
other assumptions are violated. Estimates for domains that
are not taken into account in the imputation scheme are
susceptible to large biases. When the point estimates are
seriously biased, the methods may produce confidence
intervals that cover at far less than the nomina rate.
Andydts of imputed data sets should examine whether the
imputation method that has been used is likely to give
approximately unbiased estimates, especialy for domain
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egimates. If not, they may need to re-impute the missing
items to give less biased point estimates. Advice to imputers
to take advantage of as many explanatory variables as
feasible in the imputation process is not new, but the
evidence from the simul ations demonstrates its importance.
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Does Weighting for Nonresponse I ncrease the
Variance of Survey Means?

Roderick J. Littleand Sonya Vartivarian *

Abstract

Nonresponse weighting is a common method for handling unit nonresponse in surveys. The method is aimed at reducing
nonresponse bhias, and it is often accompanied by an increase in variance. Hence, the efficacy of weighting adjustments is
often seen as a bias-variance trade-off. This view is an oversmplification — nonresponse weighting can in fact lead to a
reduction in variance as well as bias. A covariate for a weighting adjustment must have two characteristics to reduce
nonresponse hias — it needs to be related to the probability of response, and it needs to be related to the survey outcome. If
the latter is true, then weighting can reduce, not increase, sampling variance. A detailed analysis of bias and variance is
provided in the setting of weighting for an estimate of a survey mean based on adjustment cells. The anadyss suggests that
the most important feature of variables for inclusion in weighting adjustmentsis that they are predictive of survey outcomes;
prediction of the propensity to respond is a secondary, though useful, goa. Empirical estimates of root mean squared error
for assessing when weighting is effective are proposed and evaluated in a simulation study. A smple composite estimator
based on the empirica root mean squared error yields some gains over the weighted estimator in the simulations.

Key Words: Missing data; Nonresponse adjustment; Sampling weights; Survey nonresponse.

1. Introduction

In most surveys, some individuals provide no infor-
mation because of noncontact or refusal to respond (unit
nonresponse). The most common method of adjustment for
unit nonresponse is weighting, where respondents and
nonrespondents are classfied into adjustment cells based on
covariate information known for all units in the sample, and
a nonresponse weight is computed for cases in a cdl
proportional to the inverse of the response rate in the cell.
These weights often multiply the sample weight, and the
overal weight is normalized to sum to the number of
respondents in the sample. A good overview of nonresponse
weighting is Oh and Scheuren (1983). A related approach to
nonresponse weighting is post-stratification (Holt and Smith
1979), which applies when the distribution of the population
over adjustment cells is available from externa sources,
such as a Census. The weight is then proportional to the
ratio of the population count in a cell to the number of
respondentsin that cell.

Nonresponse weighting is primarily viewed as a device
for reducing bias from unit nonresponse. This role of
weighting is analogous to the role of sampling weights, and
is related to the design unbiasedness property of the
Horvitz-Thompson estimator of the total (Horvitz and
Thompson 1952), which weights units by the inverse of
their selection probabilities. Nonresponse weighting can be
viewed as a natural extension of this idea, where included
units are weighted by the inverse of their inclusion

probabilities, estimated as the product of the probability of
selection and the probability of response given sdlection; the
inverse of the latter probability is the nonresponse weight.
Modders have argued that weighting for bias adjustment is
not necessary for models where the weights are not
associated with the survey outcomes, but in practice few are
willing to make such a strong assumption.

Sampling weights reduce bias at the expense of increased
variance, if the outcome has a constant variance. Given the
andogy of nonresponse weights with sampling weights, it
seems plausible that nonresponse weighting aso reduces
bias at the expense of an increase in the variance of survey
estimates. The idea of a biasvariance trade-off arises in
discussions of nonresponse weighting adjustments (Kalton
and Kasprzyk 1986, Kish 1992, Little, Lewitzky, Heeringa,
Lepkowski and Kessler 1997). Kish (1992) presents a
smple formula for the proportiona increase in variance
from weighting, say L, under the assumption that the
variance of the observationsis approximately constant:

L=cv?, D

where cv is the coefficient of variation of the respondent
weights.

Equation (1) is a good approximation when the
adjustment cell variable is weakly associated with the
survey outcome. However, since it approximates variance
rather than mean squared error, it does not measure the
potential nonresponse bias reduction that is the man
objective of weighting, and it does not apply to outcomes

1. Roderick J. Little, University of Michigan, U.S.A. E-mail: rlittle@umich.edu; Sonya Vartivarian, Mathematica Policy Research, Inc. 600 Maryland Ave
SW, Suite 550, Washington, D.C. 20024-2512. E-mail: SV artivarian@M athematica-M PR.com.



162 Little and Vartivarian: Does Weighting for Nonresponse Increase the Variance of Survey Means?

that are associated with the adjustment cell variable, where
nonresponse weighting can in fact reduce the variance. The
fact that nonresponse weighting can reduce variance is
implicit in the formulae in Oh and Scheuren (1983), and is
noted in Little (1986) when adjustment cells are created
using predictive mean stratification. It is dso seen in the
rdlated method of pod-dratification for nonresponse
adjustment (Holt and Smith 1979).

Variability of the weights per se does not necessarily
trand ate into estimates with high variance: an estimate with
a high value of L can have a smaler variance than an
estimate with a small value of L, as is shown in the
smulations in section 3. Also, the dtuations where
nonresponse weighting is most effective in reducing bias are
precisely the situations where the welghting tends to reduce,
not increase, variance, and Equation (1) does not apply. This
differs from the case of sampling weights, and is related to
“super-efficiency” that can result when weights are
estimated from the sample rather than fixed constants; see,
for example, Robins, Rotnitsky and Zhao (1994).

We propose a simple refinement of Equation (1), namely
Equation (14) below, that captures both bias and variance
components whether or not the adjustment cell varigble is
associated with the outcome, and hence is a more accurate
gauge of the vaue of weighting the estimates, and of
dternative adjusment cell variables. In multipurpose
surveys with many outcomes, the standard approach is to
apply the same nonresponse weighting adjustment to al the
variables, with the implicit assumption that the value of
nonresponse bias reduction for some variables outweighs
the potentiad variance increase for others. Our empirical
estimate of mean squared error dlows a smple refinement
of this strategy, namely to restrict nonresponse weighting to
the subset of variables for which nonresponse weighting
reduces the estimated mean squared error. This composite
drategy is assessed in the smulation study in section 3, and
shows some gains over weighting al the outcomes. As
noted in section 4, there are dternative approaches that have
even better statistical properties, but these lead to different
weights for each variable and hence are more cumbersome
to implement and explain to survey users.

2. Nonresponse Weighting Adjustments
for aMean

Suppose a sample of n units is selected. We consider
inference for the population mean of a survey variable Y
subject to nonresponse. To keep things simple and focused
on the nonresponse adjustment question, we assume that
units are selected by simple random sampling. The points
made here about nonresponse adjustments aso apply in
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general to complex designs, athough the technical details
become more complicated.

We assume that respondents and nonrespondents can be
classified into C adjustment cells based on a covariate X. Let
M be a missing-data indicator taking the value O for
respondents and 1 for nonrespondents. Let n,. be the
number of sampled individuals with M =m, X =c,
m=0,Lc=1...,C,n =ny +n, denote the number of
sampled individuds in cdl ¢,n,=Y5,n,, and n =

¢, n. the totd number of respondents and non-
respondents, and p, =n,. /N, Py, =Ny /N, the proportions
of sampled and responding cases in cell ¢. We compare two
estimates of the population mean p of Y, the unweighted
mean

C
YO = z pOcYOc’ (2)
c=1

where y,. is the respondent mean in cel ¢, and the
weighted mean

C C
Yo = Z P Yoc :Z W, Poc Yoc » (3)
c=1 c=1

which weights respondents in cell ¢ by the inverse of the
response rate w, = p./ p,.. The estimator (3) can be
viewed as a gpecia case of a regression estimator, where
missing values are imputed by the regresson of Y on
indicators for the adjustment cells. We compare the bias and
mean squared error of (2) and (3) under the following
model, which ceaptures the important features of the
problem. We suppose that conditiona on the sample size n,
the sampled cases have a multinomia distribution over the
(Cx2) contingency table based on the classification of M
and X, with cell probabilities

Pr(M =0, X =€) = 0e; Pr(M =1, X =¢) = (1~ ),

where ¢=Pr(M =0) is the marginad probability of
response. The conditional digtribution of X given M =0
and n, is multinomial with cell probabilities Pr(X =
c|M =0)=mn,., and the marginal distribution of X given
nis multinomia with index n and cell probabilities

Pr(X =¢) = moc + 10y =1,

say. We assume that the conditional distribution of Y given
M =m, X =c has mean p,. and congant variance o”.
The mean of Y for respondents and nonrespondents are

c c
Lo = Z Tocktocr My ZZ Ty Macs
c=1

c=1
respectively, and the overall mean of Y is w=o¢pu,+
A-0)u,.
Under this modd, the conditiona mean and variance of
Y, given {p.} arerespectively Y5, p.Ho. and 673,
p? / n,.. Hencethebiasof y, is
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C
b(yw) = z ch(“Oc _!'Lc)l
c=1
where ©t, and . are the population proportion and mean
of Yincell c. This can be written as

b(5,,) = Ko — M, @

where [I, =5, Tt W, iS the respondent mean “adjusted”
for the covariates, and u =35, 7, 1, isthe true population
mean of Y. The variance of y,, is the sum of the expected
value of the conditional variance and the variance of its
conditional expectation, and is approximately

V(¥,) = @+1)c* /ng + i e (Moe = 0)* /1, ©)

where A =35, n, ((r. /7, —1)%) isthe population analog
of the variance of the nonresponse weights {w_}, which is
thesameasL in Equation (1) since the weights are scaled to
average to one. The formulafor the variance of the weighted
mean in Oh and Scheuren (1983), derived under the quasi-
randomization perspective, reduces to (5) when the within-
cel variance is assumed congtant, and finite population
corrections and terms of order 1/n? are ignored. The mean
squared error of y,, isthus

mse(Y,) = b* (V) +V (V.)- (6)
The mean squared error of the unweighted mean (2) is
mse(Y,) = b*(¥,) +V(Yo), ()
where:
b(¥o) =b(¥.,) + 1o — o, )
isthebiasand
C
V(Yp)=0%/ny+ Z Toe (Hoe —Mo)* / Ty, ©
c=1

is the variance. Hence the difference (say A) in mean
squared errorsis

A =mse(y,) - mse(y,) =B+V, -V,, where
B = (ko —lo)* +2(1o — o) (o — 1),
Vi o —o)” 1y =3, e, i)
V, = 7;02 In, 7
Equation (10) and its detailed interpretation provide the

main results of the paper; note that positive terms in (10)
favor the weighted estimator y,,.

(@ Thefirst term B represents the impact on MSE of bias
reduction from adjustment on the covariates. It is order
one and increasingly dominates the M SE as the sample
Sze increases. If u<p,<p, or Hy,<Wt,<pu, then
weighting has reduced the bias of the respondent

(10)

(b)

©

(d)
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mean, and both of the components of B are positive. In
particular, if the missing data are missing a random
(Rubin 1976, Little and Rubin 2002), in the sense that
respondents are a random sample of the sampled cases
in each cell ¢, then I, =u and weighting eliminates
the bias of the unweighted mean. The bias adjustment
is

c
Mo —Ho = z Toe (1= W) (Mo — Mo)s

c=1

ignoring differences between the weights and their
expectations. This is zero to O(1) if ether non-
response is unrelated to the adjustment cells (in which
cae W, =1 for all c, or the outcome is unrelated to
the adjustment cells (in which case p,, =, foral c).
Thus a substantial bias reduction requires adjustment
cell variables that are related both to nonresponse and
to the outcome of interest, afact that has been noted by
severa authors. It is often believed that conditioning
on observed characteristics of nonrespondents will
reduce bias, but note that this is not guaranteed; it is
possible for the adjusted mean to be further on average
from the true mean than the unadjusted mean, in which
case weighting makes the bias worse.

The effect of weighting on the variance is represented
by V, -V,.

For outcomes Y that are unrelated to the adjustment
cdls, wg.=u, for dl c, V;=0, and weighting
incresses the variance, since V, is postive. The
variance part of eguation (10) then reduces to the
population verson of Kish's formula (1). Adjustment
cdl variables that are good predictors of nonresponse
hurt rather than help in this dtuation, since they
increase the variance of the weights without any
reduction in bias; but there is no bias-variance trade-off
for these outcomes, since thereis no bias reduction.

If the adjustment cell variable X is unrelated to non-
response, then A is O(1/n) and hence V, hasalower
order of varigbility than V,. The term V, tends to be
positive, since & o (Moo~ Mo ) *= T o (Hoc —
ii,)?, and the divisor n in the second term is larger
than the divisor n, in thefirst term. Thus weighting in
this case tends to have no impact on the bias, but
reduces variance to the extent that X isagood predictor
of the outcome. This contradicts the notion that
weighting increases variance. The above-mentioned
“super-efficiency” that results from estimating non-
response weights from the sample is seen by the fact
that if the data are missing completely at random, then
the “true” nonresponse weight is a constant for all
responding units. Hence weighting by “true” weights
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leads to (2), which is less efficient than weighting by
the“estimated” weights, which leadsto (3).

(e) If the adjustment cell variableisagood predictor of the
outcome and also predictive of nonresponse, then V,
is again small because of the reduced residua variance
c?, and V, isgeneraly positive by asimilar argument
to (d). The teem XS, m (Wo. — Mo)° mMay deviate
more from S, m (uy. — [,)° because the weights
are less dike, but this difference could be postive or
negative, and the different divisors seem more likely to
determine the sign and size of V,. Thus, weighting
tends to reduce both bias and variancein this case.

(f) Equation (9) can be applied to the case of post-
gratification on population counts, by letting n
represent the population size rather than the sample
size. Assuming a large population, the second term in
V, essentially vanishes, increasing the potential for
variance reduction when the variables forming the
post-strata are predictive of the outcome. This finding
replicates previous results on post-stratification (Holt
and Smith 1979; Little 1993).

A smple qualitative summary of the results (a) — (f) of
section 2 is shown in Table 1, which indicates the direction
of bias and variance when the associations between the
adjustment cells and the outcome and missing indicator are
high or low. Clearly, weighting is only effective for
outcomes that are associated with the adjustment cell
variable, since otherwise it incresses the variance with no
compensating reduction in bias. For outcomes that are
associated with the adjustment cell variable, weighting
increases precision, and also reduces bias if the adjustment
cell variable isrelated to nonresponse.

Tablel
Effect of Weighting Adjustments on Bias and Variance of
aMean, by Strength of Association of the Adjustment Cell
Variables with Nonresponse and Outcome

Associ ation with outcome

Association with nonresponse Low High
Cdl1l Cdl3
Low Bias. --- Bias. ---
Var: --- Var: |
Cdl 2 Cdl 4
High Bias --- Bias |
Var: 1 Var: |

It is useful to have estimates of the MSE of y, and Y,
that can be computed from the observed data. Let %, =
Sice(V = Voo )? /(N —1) dencte the sample variance of
respondents in cdl ¢, s* =3, (N, —1sh. /(n,, —C) the
pooled within-cdl variance, and =X (Y - Y,)?/
(np—1), the totad sample variance of the respondent
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values. We use the following approximately unbiased
expressions, under the assumption that the dataare MAR:

mée(yo) = éz(yo) +\7(yo): (11)
where V(y,)=s2/n, and
éz()70) = max{O, (yw - 70)2 _Vd}
c
Z plc(VOc - V(gl))z / nl
c=1

c

Vd = (nl/n)z +Z pOc(yOc _YO)Z/nO ) (12)

c=1

C
+SZZ (plc - pOc)Zanc
c=1

where 3" =S, p, V., and V, estimates the variance of
(Yo —Y,) andisincluded in (12) as a bias adjustment for
(Y., —Y,)? as an edimate of B?(y,), Smilar to that in
Littleet al. (1997). Also

M8&(Y,,) =V (V) =@+ L)S? /Mo +> Pe(Yoo — Vu)? /N (13)

c=1
Subtracting (11) from (13), the difference in MSE's of y,,
and Y, isthen estimated by

D=Ls*/n,—(s5—5%)/n,
C ~
+2 Pe(Voo —Va)*IN=B*(Y,). (14
c=1

Thisis our proposed refinement of (1), which is represented
by the leading term on the right side of (14).

3. Simulation Study

We include smulations to illustrate the bias and variance
of the weighted and unweighted mean for sets of parameters
representing each cell in Table 1. We dso compare the
anadytic MSE approximations in Equations (6) and (7) and
their sample-based estimates (11) and (13) with the
empirical M SE over repeated samples.

3.1 Superpopulation Parameters

The smulation set-up for the joint distribution of X and
M is described in Table 2. The sample is approximately
uniformly distributed across the adjustment cell variable X,
which has C =10 cels. Two margina response rates are
chosen, 70%, corresponding to a typica survey value, and
52%, a more extreme value to accentuate differences in
methods. Three distributions of M given X are smulated to
model high, medium and low association.

The smulated distributions of the outcome Y given
M =m, X =c are shown in Table 3. These dl have the
form

[YIM =m, X =c]~ N(B, +B, X, 6%).



Survey Methodology, December 2005

Table 2

Percent of Sample Casesin Adjustment Cell X and Missingness Cell M

a Overdl Response Rate = 52%
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Association X 1 2 3 4 5 6 7 8 9 10
Between
M and X
1. High M=0 0.55 1.00 4.01 452 5.04 5.55 6.06 6.58 9.14 9.96
M=1 8.69 9.00 6.01 553 504 454 4,04 354 1.02 0.20
2. Medium M=0 2.77 3.50 4,01 452 504 5.55 6.06 6.58 711 7.62
M=1 6.47 6.50 6.01 553 504 454 404 354 3.05 254
3. Low M=0 4.62 5.15 521 5.28 534 5.40 545 5.52 5.58 5.64
M=1 4.62 4.85 4,81 477 473 4,69 4.65 4,60 457 452
b. Overall Response Rate = 70%
Association X 1 2 3 4 5 6 7 8 9 10
Between
M and X
1. High M=0 0.55 3.00 6.51 7.04 7.55 8.07 8.59 911 9.64 9.96
M=1 8.69 7.00 351 3.02 252 2.02 152 1.01 0.51 0.20
2. Medium M=0 4.44 5.30 5.81 6.33 6.85 7.37 7.88 8.40 8.93 9.45
M=1 4.80 4,70 421 372 322 272 222 172 1.22 071
3. Low M=0 6.19 6.85 6.91 6.98 7.05 711 7.17 7.24 731 737
M=1 3.05 3.15 311 3.07 3.02 2.98 2.93 2.88 2.84 2.79

Table3
Parameters for [Y |[M =m, X =c] ~ N(B +B; ¢, 6%)
Association Between B o? p?
Yand X
1 High 475 46  ~080
2. Medium 3.70 122 ~048
3. Low 0.00 234 0.00

Three sets of values of (B,,6%) are smulated to model
high, medium and low associations between Y and X. The
intercept B, is chosen so that the overall mean of Y is
U = 26.3625 for each scenario.

A thousand replicate samples of sze n =400 and n =
2,000 were smulated for each combination of parametersin
Tables 2 and 3. Samples where n,. =0 for any ¢ were
excluded, since the weighted estimate cannot be computed;
in practice some cells would probably be pooled in such
cases. The numbers of excluded simulations are shown in
Table4.

Table4
Numbers of Replicates Excluded Because of Cell
with no Respondents

Response Rate

Association of  Association of  52% 70%

M and X Y and X

High High 134 113
Medium 120 117

Low 131 104

Medium Low 1 0

3.2 Comparisons of Bias, Variance and Root Mean
Squared Error, and their Estimates

Summaries of empirical bias and root MSE's (RMSE')
are reported in Table 5. The empiricd RMSE's of the
weighted mean can be compared with the following esti-
mates, which are displayed in Table 5, averaged over the
1,000 replicates: The estimated RM SE based on Kish's rule
of thumb Equation (1), namely:

M3&yiq (Vo) = A+ L)S; /1y,

wheresy =" (y; = Yo)?/(no = 1); (15)
i=1
The anayticdl RMSE from Equations (6) and (7); and the
estimated RM SE from Equations (11) and (13).

Following the suggestion of Oh and Scheuren (1983), we
include in the last two columns of Table 5 the average
empirical bias and RM SE of a composite mean that chooses
between y, and Yy,, picking the estimate with a lower
sample-based estimate of the MSE. The empirica bias
relative to the population parameter is reported for al
estimators. We a so include the bias and RM SE of the mean
before deletion of cases due to nonresponse.

Table 5a shows results for simulations with a response
rate of 52%. Rows are labeled according to the four cellsin
Table 1, with medium and high associations combined. For
each row, the lower of the RMSE's for the unweighted and
weighted respondent means is bolded, indicating superiority
for the corresponding method.

The firgt four rows of Table 5a correspond to cell 4 in
Table 1, with medium/high association between Y and X and
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mediunmvhigh association between M and X. In these cases
Y., has much lower RMSE than y,, reflecting substantial
biasof y, that isremoved by the weighting.

The next two rows of Table 5a corresponding to cell 3 of
Table 1, with medium/high association between Y and X and
low association between M and X. In these cases y, isno
longer seriously biased, but y,, has improved precision,
particularly when the association of Y and X is high. These
are cases where the variance is reduced, not increased, by
weighting. The anaytic estimates of RMSE and sample-
based estimates are close to the empiricall RMSE estimates,
while Kish's rule of thumb overestimates the RMSE, as
predicted by the theory in section 2.

The next two rows of Table 5a correspond to cell 2 of
Table 1, where the association between Y and X is low and
the association between M and X is medium or high. In
these cases, Y, has higher MSE than Yy,. These cases
illustrate situations where the weighting increases variance,
with no compensating reduction in bias. The last row
corresponds to cell 1 of Table 1, with low associations
between M and X and between Y and X. The unweighted
mean has lower RMSE in these cases, but the increase in
RMSE from weighting is negligible. For the last three rows
of Table 55, RMSE's from Kishv'srule of thumb are smilar

Little and Vartivarian: Does Weighting for Nonresponse Increase the Variance of Survey Means?

to those from the anaytical formula in section 2 and
empirical estimates based on this formulag, and al these
estimates are close to the empirical RM SE.

The last two columns of Table 5a show empirical bias
and RM SE of the composite method that chooses y,, or Y,
based on the estimated RMSE. For the simulations in the
first 6 rows, the composite estimator is the sameas y,,, and
hence detects and removes the bias of the unweighted mean.
For smulations in cell 1 (the last row) the composite
estimator performs like y,, or y,, as expected since Y,
and Yy, perform smilarly in this case. For smulations in
cdl 2 that are not favorable to weighting, the composite
estimator has lower RMSE than y,, but consderably
higher than that of y,, suggesting that for the conditions of
this smulation the empirical MSE affords limited ability to
pick the better estimator in individua samples.

Nevertheless, the composite estimator is the best overall
estimator of the three considered in this smulation.

Table 5b shows results for the 70% response rate. The
pattern of results is very similar to that of Table 5a As
expected, differences between the methods are smadler,
athough they remain substantia in many rows of the table.

Table5a
Summaries of Estimators Based on 1,000 Replicate Samples for C = 10 Adjustment Cells, Restricted to Sample
Replicateswith ny. >0 for al c. Response Rate of 52%. Values are Multiplied by 1,000

Association with Adjustment Unweighted Weighted Before Deletion Composite
CdlsBased on X Mean Mean Mean Mean

Cdl M, X) (Y, X) n emp. emp. analytical ed. emp. emp. Kish anaytical ed. emp. emp. emp. emp.

biss rmse rmset  mse? biss mse mse rmse® s biss  rmse bias rmse

4 High  High 400 6,955 7,024 7,055 6974 0 1,057 1410 956 988 -38 795 0 1,057

2,000 7,008 7,020 7,006 7,015 -2 424 608 27 434 12 342 -2 424

4 High  Medium 400 5376 5471 5536 5404 -33 1264 1510 1216 1297 =21 776 -33 1,264

2,000 5424 5441 5466 5466 -41 561 650 545 559 -30 338 -41 561

4 Medium High 400 3664 3,794 3809 3754 -4 816 1,071 83% 842 6 741 -4 816

2,000 3,703 3731 3,700 3,712 7 369 473 373 374 4 337 7 369

4 Medium Medium 400 2,838 3,006 3042 2991 -18 938 1,095 954 970 -9 747 -18 938

2000 2864 2900 2898 2893 -2 426 483 426 428 6 33 -2 426

3 Low  High 400 476 1,148 1,113 1,178 40 823 1,050 823 828 30 764 40 823

2000 376 587 614 595 -11 361 465 368 368 -3 333 -11 361

3 Low  Medium 400 350 1,106 1,095 1,134 13 927 1,063 925 939 -16 762 13 927

2000 287 565 563 559 -20 429 470 413 414 -22 353 -20 429

2 High  Low(0) 400 56 1,070 1,056 1,275 9% 1658 1613 1518 1,631 28 793 83 1,410

2000 -11 464 473 567 -26 698 698 679 699 -19 337 -25 620

2 Medium Low(0) 400 9 1042 1053 1,077 =27 1122 1112 1,097 1,125 21 772 -12 1,074

2,000 -4 474 471 480 -11 491 491 491 493 11 340 -9 481

1 Low Low(0) 400 -30 1,038 1,050 1,055 -30 1,053 1,064 1,050 1,076 -30 752 -30 1,040

2,000 -2 472 469 469 -1 474 470 469 471 -8 343 -1 472

1 Computed using Equation (7)
2 Computed using Equation (11)
® Computed using Equation (15)
4 Computed using Equation (6)
® Computed using Equation (13)
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Table5b
Summaries of Estimators based on 1,000 Replicate Samples for C = 10 Adjustment Cells, Restricted to Sample
Replicates with ng. >0 for al c. Response Rate of 70%. Vaues are Multiplied by 1,000

Association with Adjustment Unweighted Weighted Before Deletion Composite
Cellsbased on X Mean Mean Mean Mean

Cdl M, X) (Y,X) n emp. emp. anayticd es. emp. emp. Kish andyticd edt. emp. emp. emp. emp.
bias rmse rmmse® s’ bias rmse s ms? mse® biss  rmse bias rmse

4 High  High 400 4,692 4810 4,893 4,860 -133 1129 1,192 889 894 -129 998 -133 1,129
2,000 4827 4841 4839 4854 -20 400 529 398 405 -5 3# -20 400

4 High Medium 400 3581 3716 385 3733 -133 1266 1250 1075 1097 -128 917 127 1284
2000 3,763 3784 3778 3777 -9 501 554 481 490 11 343 -9 501

4 Medium High 400 2666 2812 2878 2837 -58 803 910 794 796 -49 772 -58 803
2000 2,732 2,760 2767 2,761 -6 353 406 3B5 35 -9 333 -6 353

4 Medium Medium 400 2104 2282 2315 2291 —-28 833 924 84 861 -43 751 -28 833
2000 2146 2180 2170 2165 13 370 411 382 382 10 334 13 370

3 Low  High 400 217 906 954 980 -81 797 911 790 793 =77 771 -81 797
2000 312 513 506 502 2 365 405 353 353 4 349 2 365

3 Low Medium 400 251 922 942 960 15 804 916 845 852 26 727 15 804
2000 224 454 472 471 -14 370 408 378 379 -15 327 -14 370

2 High  Low(0) 400 0 952 915 1,131 35 1445 1349 1298 1,358 1 807 26 1,292
2000 -11 416 409 485 —41 608 598 580 599 -4 347 =31 535

2 Medium Low(0) 400 2 9 910 920 24 942 936 930 946 2 757 21 925
2,000 23 418 407 411 20 425 416 416 417 15 344 19 420

1 Low Low(0) 400 1 914 914 912 2 917 916 914 926 -5 751 1 914
2,000 4 402 408 408 4 403 409 408 410 6 331 4 402

¢ Computed using Equation (7)
7 Computed using Equation (11)
& Computed using Equation (15)
® Computed using Equation (6)
10 Computed using Equation (13)

4, Discussion

The results in sections 2 and 3 have important
implications for the use of weighting as an adjustment tool
for unit nonresponse. Surveys often have many outcome
variables, and the same weights are usualy applied to dl
these outcomes. The analysis of section 2 and smulationsin
section 3 suggests that improved results might be obtained
by egtimating the MSE of the weighted and unweighted
mean and confining weighting to cases where this
relationship is substantial. A more sophisticated approach is
to apply random-effects models to shrink the weights, with
more shrinkage for outcomes that are not strongly related to
the covariates (e.g., Elliott and Little 2000). A flexible
dternative to this approach is imputation based on
prediction models, since these models alow for interval-
scded as well as categorical predictors, and alow
interactions to be dropped to incorporate more main effects.
Multiple imputation (Rubin 1987) can be used to propagate
uncertainty.

When there is substantial covariate information, one
attractive gpproach to generalizing weighting class adjust-
ments is to create a propensity score for each respondent
based on a logistic regression of the nonresponse indicator
on the covariates, and then create adjustment cells based on
this score. Propensity score methods were origindly

developed in the context of matching cases and controls in
observational studies (Rosenbaum and Rubin 1983), but are
now quite commonly applied in the setting of unit
nonresponse (Little 1986; Czgka, Hirabayashi, Little and
Rubin 1987; Ezzati and Khare 1992). The analysis here
suggests that for this approach to be productive, the
propensity score has to be predictive of the outcomes.
Vartivarian and Little (2002) consider adjustment cells
based on joint classification by the response propensity and
summary predictors of the outcomes, to exploit residual
associations between the covariates and the outcome after
adjusting for the propensity score. The requirement that
adjustment cell variables predict the outcomes lends support
to this approach.

The andysis presented here might be extended in a
number of ways. Second order terms in the variance are
ignored here, which if included would pendize weighting
adjustments based on a large number of small adjustment
cels. Finite population corrections could be included,
athough it seems unlikely that they would affect the main
conclusions. It would be of interest to see to what extent the
results can be generdlized to complex sample designs
involving clustering and dtratification. Also, careful anaysis
of the bias and variance implications of nonresponse
weighting on statistics other than means, such as subclass
means or regression coefficients, would be worthwhile. We
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expect it to be important that adjustment cell variables
predict the outcome in many of these analyses too, but other
points of interest may emerge.
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Variance-Covariance Functions for Domain M eans of
Ordinal Survey Items

Alistair James O’ Malley and Alan Mark Zaslavsky *

Abstract

Estimates of a sampling variance-covariance matrix are required in many statistical analyses, particularly for multilevel
anaysis. In univariate problems, functions relating the variance to the mean have been used to obtain variance estimates,
pooling information across units or variables. We present variance and correlation functions for multivariate means of
ordina survey items, both for complete data and for data with structured non-response. Methods are also developed for
assessing modd fit, and for computing composite estimators that combine direct and model-based predictions. Survey data
from the Consumer Assessments of Health Plans Study (CAHPS®) illustrate the application of the methodol ogy.

Key Words: Variance function; Correlation function; Hierarchical model; Ordinal response; Nonresponse; Skip

pattern.

1. Introduction

Survey data are often used to obtain measures for
comparisons across estimation domains. In our motivating
example, surveys are conducted to dicit reports on
experiences with health plans (entities administering health
care) from enrolled members, similarly a survey might
asess schools by administering tests to a sample of
students.

An essential part of the analysis of survey data is the
caculation of sampling variances, or the sampling-
covariance matrix of a multivariate estimator. The standard
survey sampling approach is to compute variances directly
for each egtimator in each domain. Direct variance estimates
may be unstable when the number of respondents to an item
is smal because the sample size for a domain is small,
because the item is applicable to only a fraction of
respondents (such as users of specialized equipment in
health surveys), or because we are interested in means for a
small subgroup (such as those with chronic illnesses).

By modeling variance estimates as functions of the unit
(domain) means, we can pool information across units to
obtain more stable edtimates. Although modeling may
introduce bias, for small units this is offset by the reduction
in sampling variation. One may also consider generalizing
variance estimates across items in addition to or instead of
domains. This will be appropriate when there are groups of
items for which the same mean-variance relationship is
likdly to hold. However, when there are many more
domains than items, the grestest potentia gain is from
generalizing across domains rather than across items.

A Generalized Variance Function (GVF) is a
mathematica model describing the relationship between the

variance or relative variance of a survey estimator and its
expectation. When multiple estimates are produced from the
same sample, Wolter (1985, chapter 5) proposes the model

VIM?=0,+6,/M,

where M and V denote the expected value and variance of
the estimator respectively. Such aform might be suitable for
variables such as income or wedlth for which a nearly
constant coefficient of variation might be plausible because
the mean and standard deviation are proportiona to the
length of the reference period. Modding the coefficient of
variation is thus most suited to Stuations where the
variables are similar in content but have different scales
with unrestricted ranges (e.g., income collected monthly and
yearly). In our problem the items are ordinal and so a model
of the coefficient of variation is not a natural choice. Other
proposed GVFs dso have smple forms (Woodruff 1992;
Otto and Bell 1995).

If a suitable GVF can be found, it can smplify
caculations and make variance estimates more stable.
Furthermore, summarizing sampling variance estimates in
the form of a function aso facilitates presentation of large
volumes of gtatigtics (Wolter 1985, pages 201-202). Finaly,
modeling variances as functions of means facilitates
iterative re-estimation of sampling variances in hierarchical
modeling. In practice the decision to use variance functions
in ahierarchica modeling context depends on the goodness
of the fit of the GVF; only with a sufficiently good fit is use
of the GVF worthwhile.

Past work on GVFs is relatively sparse. Wolter (1985,
chapter 5) gave an overview but provided only a few
references, as did Vadliant, Dorfman and Royall (2000,

1. Alistair James O’'Malley and Alan Mark Zaslavsky, Department of Health Care Policy, Harvard Medical School, 180 Longwood Avenue, Boston, MA
02115-5899, U.S.A. E-mail: omalley@hcp.med.harvard.edu and zas avsk@hcp.med.harvard.edu.



170 O’Malley and Zaslavsky: Variance-Covariance Functions for Domain Means of Ordinal Survey Iltems

pages 344-348). Vadliant (1992a, 1992b) used GVFs to
smooth time-dependent indices in time series analysis.
Woodruff (1992) used GVFs for variance estimation of
employment change in the Current Employment Survey,
and Wolter (1985, pages 208-217) illustrates the use of
GVFs on data from the Current Population Survey. GVFs
are dso used in the Nationd Health Interview Survey
(Vdliant et al. 2000, page 344).

Huff, Eltinge, and Gershunskaya (2002) and Cho,
Eltinge, Gershunskaya and Huff (2002) considered GVFs
for the United States Current Employment Survey and
Consumer Expenditure Survey. Eltinge (2002) uses GVFs
to estimate a full sampling covariance matrix when samples
are too smal to produce stable edtimates for al areas,
estimating the components of the mean squared error (MSE)
of the GVF model. Otto and Bell (1995) fit GV Fsto median
income, per capita income, and age-group poverty rates in
the Current Population Survey, assuming an autoregressive
dependence between rates over time and a Wishart
distribution for the sampling covariance matrices.

Our research extends previous research on GVFsin four
directions. Fird, we use the GVF to generalize across
domains rather than items. Thus, we do not assume that
different items have the same GVF, athough it might be
reasonable to fit models of the same form for items with
similar response categories. Second, we develop GV Fs for
the full covariance matrix, which must be estimated for joint
inference on multiple outcomes. Thirdly, we focus on the
relationship between means and variances of items with the
ordina response formats often used in survey question-
naires, rather than on homoscedastic continuous responses.
Findly, we explicitly allow for patterns of nonresponse due
to structured skip patterns. While sructured item non-
response can be ignored (except for its effect on sample
Sze) in univariate estimation, it must be considered
explicitly to model bivariate relationships because it affects
the sampling covariance of item means. Furthermore,
because the number of responses varies across items, we
cannot model the sampling covariances using a Wishart
distribution, which has only a single parameter for sample
sze.

We first describe direct estimation of variances and
covariances, including the case when data are missing due
to skip patterns. In section 3 we introduce models for
generalized variance and covariance functions (GVCFs) and
lay out our gtrategies for moded fitting and evaluation and
for combining direct estimates and mode predictions. In
section 4, we apply our methods to a mgjor hedth care
survey. In section 5, we conclude by describing applications
and extensions of our methods.
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2. Direct Egtimates of Sampling Variances of
Domain Means

We index observations by domain h, items (indicesi and
j ), and respondents (indicesk and 1 ); y,, ;. ad r, ; denote
the outcome and response indicator of subject k in domain h
on item i. We suppress the index for item when referring to
al items for a respondent or domain, and have no need for
the subscript for respondent when discussing the means,
variances, and correlations of items.

Direct egtimation of the sampling covariance matrix of
domain means (henceforth, “variance estimation”) begins
by expressng the means as functions of totals of the
outcomes and response indicators. We replace y,, , with 0
for missing observations so that totas are defined in the
presence of skip patterns. Following the notation of Sarndal,
Swenson and Wretman (1992, pages 24-28; 36-42), let U,
and S, describe the population and sample respectively for
the h" domain, Y,; =%y, Vni: Rui =2, Moicr Yoi =
ZsYnio ad Ry =3 g, where ¥y =Yy /T
Foik =Tk / Ty, ad m,  =pr(ke S,).

The vector of mean outcomes for the population of
eementswithindomain his

Y1 Yol
My = f (Y, Rh)z{Rh_”Rh_]’

where Y, =(Y,1,....Y,,) ad R =(R,;...,R, ). An

estimator is
5oy (Y Yo
f : = A—Y,...,A—' .
(Yo Ry [Rm ij

A first order Taylor series expansion of f(Y,,R,) about
f (Y, R,) producesthe gpproximation

var(f (Y, R)) =V, = (Y, R)var(Y,, R) f'(Y,, R)",

where f’(Y,,R,) isthe Jacobian of f(Y,,R,). Oftenitis
computationally easer to fir¢ cdculate u,, =
(Y, R)Z, «» Where z, , = (Y, »Th«), and then evaluate
the variance as

i
=var[z Uy i Ih’kJ

Un

= Z A Uh,kug,l’
k,leU,
where I, =1if ke S, (indicating that the k™ member of
domain h is sampled) and O otherwise, A, =
Tt — Thk Ty, and m, g =pr(k,le §,). An estimator
for v, is
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Vi = Z Ap i Ui UII,I’ @
k,1e§,
where Ay, g = Ay /Ty -

To describe evaluation of V one need only consider one
diagona (i.e, variance) dement and one off-diagona (i.e.,
covariance) eement. The sub-matrix of the Jacobian formed
by the i™ and j™ itemsisgiven by

Y,
R0 R
PR M
0 — 0 i
R j R
For, Z, = (Yn,i: Yn, jko Thik T, ) it follows that
1
__(yh,ik ~MyiThix)
Upy = F' (Y0, R) Z i = 1’| ,
R, — Ynjk =My i)
i
where M, ; =V, ; /R, ; isthe mean outcome of the i item
in domain h. Hence,
. 1 - ~ ~
Vi ZRq_z Ap it Tnik =M Toil) T =My 1) @
i kles,
and
. 1 y ~
A :RM—RMK’IES‘Ah,kI(yh,ik - My i)
X(yh,jl_Mh,jrh,jl)' (€)]

To evduate (2) and (3), we make a further approximeti on
by substituting R, = Zs, i ad M, = Zs, Yni/
(Zs, i) for Ry and My, ;.

When sampling rates are small, or if we wish to make
predictions for a large super-population (e.g., al potentia
enrollees in a hedlth plan, not just those currently enrolled),
Apg=1-m,, =1 if k=1,A, ;=0 if k%l and the
sampling design approaches sampling with replacement.
Under the sampling with replacement design, approximately
unbiased estimators are

Vhii = Rh kz (Ynik— hlrhlk) @
i ke§,
and
\7h ij =
Rh Rh kzsﬂ (Vn,ik =M T i) (W, ]k_Mh i Th i) (5)
J €

These ediimators can be generadlized to accommodate
clustering.
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With equal-praobability sampling within domains, (4) and
(5) reduceto

z (Ynik = Mp; Ty, i)’ (6
RSH ke,

and
VAhij =

Z Ynik = Mui i) Wh ik = Mu i), ()
RR, Rsh €S,
where If%Shi is the number of respondents to item i in
domainh.

3. Moddsfor Variance Functions

In this section we propose specifications for modds for
variances and for sample corrdations with complete
responses or with structured skipped responses. We then
discuss modd fitting and evaluation strategies. We assume
that these domains are nonoverlapping strata, so the
sampling errorsfor different domains are independent.

We transform the ordind ratings to the [0, 1] interval by
the tranformation p,; =(B,; =M, ;) /(B,; — A,;), Where
A,; ad B,; are the minimum and maximum response
categories for item i in domain h respectively. We focus on
modeling variances for large vaues of M, ; (smdl values
of p,;) becausein our motivating example mean outcomes
aretypicdly near the high end of the scale.

3.1 Variance Functions

To account for the variable number of respondents over
domains and items, and differing scales, we normalize the
variance estimatorsin (6) for sample size and re-scale:

\7h i Z—Reh'i Yo 7
' (Bh| _Ah,i)

With unequal probability sampling within domains, a
normalization factor could be used that accounts for the
welghts One possible normalization is to multiply Vh i by
Rsh, =(X )’ (E 1), where 1, is the response
indicator for itemi for the k™ subject inthe h™ domain, in
place of Ifesn This approximation, proposed in Kish
(1965), has a modd based justification (Gabler, Haeder and
Lahiri 1999). It works well if the sampling probabilities
vary modestly in the sample, but can lead to inefficiency if
the variation is excessive (Korn and Graubard 1999, page
173; Spencer 2000).

Because the items in our example have ordinal scales, the
variancemustgotoOas p,; — 0 or p,; — 1. Anobvious
predictor with this property is the variance function of the
Bernoulli distribution, p,, ;(1— p,;). This holds exactly for
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dichotomous items, and might be a useful approximation for
items with three or more categories.

As dternatives to the Bernoulli variance mode we
considered models with a variety of polynomial and other
functions of the means as predictors. Of al the models
considered, the quadratic family of models were found to fit
as wel as any. We focused on the following quadratic
models.

Model V1: \7h,ii =By Phis ®
Model V2: \7h,ii =By Pni (L= Ppi) ©)]
Model V3: \7h,ii =By Pni + B Pri (1= Phi)- (10

Thus we congder a linear variance model V1, a binomia-
like model V2, and a general quadratic variance model V3.
All models correctly ensure V, ; =0 when p,; =0, but
only V2 ensures that \7h,ii =0 when p,; =1. Therationae
behind V1 is that relationships are often approximately
linear over small intervals. Both V1 and V2 are submodels
of the two-parameter quadratic V3. We aso considered
modelsfor Iog(\7hyii), but these models did not fit aswell.

The modd V3 is equivalent to the model suggested by
Wolter (1985, chapter 5); the equivalence is seen by
expressing the right-hand side of V3 in terms of p,; and
pi;, and then dividing both sides by p7; to obtain the
relative variance. However, parameter estimates obtained by
fitting the two forms of the model may be different
depending on the modeling assumptions used.

3.2 Correlation Functionswith Complete Data

Because correlations are independent of the scde of the
data, we model the correlations and derive the sampling
covariances, rather than modeling the covariances directly.
We model the sample correlations

[3 _ Vh,ij

hi = x5 3 L2’

! (Vh,ith,jj)llz

via the unrestricted transformed values Zh,ij =

log{ (1+ Py ;) /(L=py;;)}- Unlike the variance models,
models for corrdations may include an unrestricted
intercept, since there is no natura restriction on the
correlationwhen p,; or p, ; approachesOor 1.

Because p,,; is a function of the first and second
moments of itemsi and j, it seemed reasonable to first focus
on linear and quadratic models for Z, ;. As with variance
functions, we found that a more extensive range of models
(e.g., modd s with logarithms of the means as predictors) did
not substantially improve mode fit. We ultimately focused
on the following nested series of models.
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Model CL: Z,, =0t (11)
Model C2: Z ; = oty + 0z Pri Ph s (12
Model C3: Zy, i = Olgj 0Ly (P + ph,j)

+0gj Pni Pn,je (13)

Model C4: Z;; =0l + 0y P, i + 0y P |

+ 0y Pni Pnj» (14

Model C5:  Zy ; = 0Ly + Oy Py + Oy Py

+ 0 Pni Phj T Oy pkzl,i + Olg;; pr21,j! (15)
Model C3is model C4 with the constraint oL; = 0y -

3.3 Predicting Covarianceswith Structured
Missing Data

When the data have skip patterns, the sample correlations
of the ratings for the set of respondents who answered both
items can be modeled by (11)-(15), as in the complete
response case. The corresponding sample covariances can
be easily estimated by using the fitted variance functions to
re-scale the predicted corrdlations. However, because the
sampling covariance reflects the variability in the whole
sampling process, not just the variability within the sub-
population of respondents who answered both items, the
relationship between sample covariance and sampling
covariance is more complicated than if the data were
complete. In this section we derive the relationship between
the sample covariance for the set of respondents who
answered both items and the sampling covariance. This
alows correlation models such as (11)—(15) to be gpplied to
datawith skip patterns.

There are four distinct data patterns for any pair of items:
response to both items, one response and one skipped item
(two patterns), and both items skipped. We extend our
notation by introducing a superscript representing the
response dtaus of a second item. Let Yy, =
;sﬂ Yi,iMh, jk’Yh(,)ij =2s, yb,ik(l_fh, jk):\ Rﬁ,ij = 2s, th,ikrh,l\jk’
Rt?,ij ZZsﬂ rh,ik(]-_ rh,jk)l Mﬁ,ij =th,ij /Ri,ij ) Mr?,ij =Yh?ij /Rt?,ij'
Then

Mh‘ — If‘)fiii Mﬁ,ijj’ IQr?,ij Mr?,ij .
’ R
In the equal probability sampling case, substitution of the

above expressionfor M, ; into (7) yields
~ R - R0 D R D, .
Vii == R&;” Cﬂ,vij + Rui ol I?“’“ nit (16)
Rh,i Rh,j Rh,i RM
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where I:’Sh ij M h,jj M r(\)u Here Cﬁ ij Xs (yh,ik -
M T Vo —Mp i T i)/ Reyis  the  normalized
sample covariance of the ratings for the set of respondents
who answered both items (which can be predicted using
correlation and variance functions, and in the case of
unequal probability sampling applying a normalization
factor). When the sampling probabilities are not equd,
Equation (16) holds exactly only if Xqr
(Vi — M i Foi) = 0. Therefore, (16) may be expected to
provide a good approximation if the sampling probabilities
for one item are not highly correlated with the residuas for
another item. In generd, the appropriateness of using (16)
for unequal probability sampling designs should be
checked.

The estimated mean differences D, ; determine the
contribution of the response pattern to the sampling
covariance. Either D, ; or D, ; Dy, ; may be modeled in
the process of obtaining smoothed estimates of V,, ;. In our
goplication, the D, ; were typicaly small. Because the
second term of (16) is a product of two factors of small
magnitude (Dh j and Dh i), the contribution of Dh j to
(16) was small and it sufficed to use a smple model for
IZA)h,”-, such as a constant for esch item pair. However,
unique constants should be estimated for each pair of items.

3.4 Modd Fitting and Evaluation

We estimate the parameters of the variance or correlation
function using iteratively reweighted least squares
regression. Weighting is important when the number of
reponses varies greatly across domains, as in our
motivating example.

In this section we index domains (h) and respondents (k)
but not items as the same methodology applies to each
variance and correlation model. Exact computations are
derived for the equal probability sampling case, and
gpproximations are noted for the unequal probability
sampling case. Generically, the direct estimators f,,, true
values f,, and model predictions f are related through
the hierarchical model

Levell: f, =f, +e,, 17

Levelll: f, =1, +¢e, (18)

where €, ~ [0, Gh/R‘Sh] e, ~[0, 7°], and [u, 6] mdmat@
a distribution with expectation u and variance 62 but un-
specified form. In the unequal probability sampling case we
replace RS" with Rsﬂ Here e, represents sampling error
and e, represents modd error. Marginaly, fh_f +
e,+€, S0 in the regresson we weight the observation for
domain h by w,=(t°+c67/Rs)™", the inverse of the
marginal variance. With equal-probability sampling, the
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variance of the direct estimate of 62 = E[ f, —
by

Gh(Fh) =

f.]* isgiven

1
(Ynk— M rhk) _(1__)f
il =l

if f is a variance 19

4

Gh(Fh) ==

if f is a transformed correlation. (20)

In the equd probability sampling case Equation (19) isexact
and does not depend on parametric assumptions (Seber
1977, page 14). The asymptotic approximation (20) to the
variance of the transformed corrdlation Z,, (Freund and
Wadpole 1987, page 477) deteriorates as sample sizes
decrease, and fails dtogether for Ry <3. However,
domains with smal sample sizes have little impact on the
fitted models, we exclude domains with Iig" <3 from
correlation modeling.

When the sampling probabilities are not equal, the large
sample counterpart to (19), given by
2

(yh,k_Mhrh,k)Z 2w,

- r? r,

6h(fh)=z ZIES h,1 ZIES2 il ’
keS ~ f 2

X (Y —Mnfh)— z
leS hl

where W, = (Zs Vi fni)/ SsF3) —M,, may be used. In
the equal probability sampling case, w, =0 and the above
expression reduces to a non-bias corrected version of (19).
If the sampling probabilities are not equal, we suggest
replacing (20) with the design-effect-corrected estimator

‘h<fh>—RSh4 -

The model error variance 12 is estimated as:

%2 = max{o, MéE——Z %2;(ﬂ‘)}.

where MSE=Y,¢,(V, - f,)? a4, =NRs /T, Ry, and
N=>,I (Ra > 0) The weights are then re-estimated as
W, = (1° +6h(f )/RS")‘ and the GV CF models are refit,
iterati ng to convergence. We again suggest replacing RS"
with Rsﬂ if the sampling probabilities are not equal.

We compared the predictive accuracy of models using
R?=1- MSE/MSV, where MSE is the mean squared
eror of the regression, and MSV s the sample size
weighted average of the sampling variances of the direct
estimators (variances or transformed correlations) for each
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domain. Note that we could have R* <0 for a very poorly
fitting model.

3.5 Combined Estimators

For domains with small samples, direct survey variance
edimates often are too imprecise to be useful, while
estimates for larger domains in the same study may be quite
reliable. Fay and Herriot (1979) and Ghosh and Rao (1994)
demonstrated that shrinking direct estimates towards a
model-based smoothed value can lead to substantia gainsin
precision. They proposed composite or empirical Bayes
edimators that are weighted averages of direct and model-
based estimators. That is, instead of either using the direct
estimates or estimates obtained from generalized variance/
covariance modeling, we use a weighted average of the two
estimators to potentialy obtain even better estimates.

Such weighted estimators can be congtructed for domain
variances using the model specified in (17) and (18). A
natural approach is to weight the direct model-based
edimators inversely proportiona to the corresponding
sampling and model error variances respectively (denoted
o. and t° respectively for domain h). The resulting
edimator for domain h (for variances and transformed
correlations) is.

£ mod ~2
fh

g Ohn  (Fmod _ Fai
— fhlr +%2+62 (fhm _ fhlr)’

A2 gdir | a2
= T +6;
=

—h

2 +67

where f9" and f™ denote the direct and model-based
edimators. This generic formula applies to the variance
estimates for dl items, and correlation estimates for dl pairs
of items. The right-most expresson has the form of an
empirica Bayes estimator.

If the direct and mode-based variance estimators are
independent, the variance of the resulting combined
edimator is t°c./(t° +o7)<min{1®,c2}. Thus the
composite is as least as precise as either of its two
component estimators, improving on ad hoc selection
between direct and model-based predictions. Thisisa useful
srategy especialy when mode-based predictions improve
on direct estimates for some, but not all domains.

4. Example: CAHPS® Data Set

The Consumer Assessments of Hedth Plans Study
(CAHPS®) survey (Goldstein, Cleary, Langwell, Zaslavsky
and Heller 2001) was designed primarily to elicit consumer
ratings and reports on health plans. Plan mean scores
(perhaps after recoding) on the various survey items are
caculated and reported to consumers, hedth plans, and
purchasers. Each analytic domain consists of the enrollees
of a health plan (or geographically defined portion of one)
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in a year; mogt of the plans are sampled in multiple years.
The stratum is the reporting unit (plan or portion thereof) in
a given year; reporting units corresponded to plans with the
exception of a few large plans that had multiple reporting
units. Therefore, there are many units for variance and
covariance function estimation.

We illustrate our methods with a CAHPS data set for
beneficiaries of U.S. Medicare managed care plans, a
system of private but government-funded entities serving
from 5.7 to 6.9 million elderly or disabled beneficiaries in
each year during our study period (1997 to 2001). Our data
represent 381 reporting domains each sampled in 1 to 5
years for a total of 932 digtinct reporting unit by year
domains with 705,848 responses. Because samples are
drawn independently each year, patients may be sampled in
multiple years. However, repeated sampling is rare and can
be overlooked for our analysis. Therefore, the domains are
drata with equal probability element sampling performed
within each. Note that in CAHPS anayses no corrections
are made for finite-population sampling since the data are
collected to guide choices for future years rather than to
record experiences of the specific population in a particular
year.

CAHPS items use a variety of ordinal response formats
with either 11, 4, 3, or 2 response options. Overal ratings of
doctor, specidist, care, and plan are measured on a 0 to 10
scale from “worst possible’ to “best possible’. Other items
use a 4-point ordinal “frequency” scae (never/sometimes/
usualy/always), or a 3—point ordina *problem” scale (not a
problem/somewhat a problem/a big problem), or are
dichotomous (nolyes). Many items are answered only by
respondents who used particular services or had particular
needs, as determined by screener items. For example, an
item about whether advice was obtained successfully by
telephone is only answered by those who first reported that
they attempted to obtain advice in that way.

4.1 Descriptive Statistics

Table 1 presents response distributions and domain mean
distributions by item type. Missing observations due to
structured skip patterns often occurred in blocks, with as
many as 11 items skipped on the basis of a single screening
question. Very little nonresponse (less than 2% on amost dll
items) was not due to a structured skip pattern. In this
andysiswetrest al types of nonresponse identically.

Item response rates were lowest (as low as 4%) for
problem items, several of which dedt with specidty
sarvices such as therapy or home hedlth care needed by
relatively few respondents. Some of the frequency and
yesno items also had low response rates. The greatest
variaion in the proportions of skipped items was evident
among the yes/no items. 96.7% for a“complaint or problem
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with plan” to 12.5% for “get prescription through plan”.
Domain mean outcomes are in general concentrated towards
the higher end of their scales, indicating that most responses
werefavorable.

Tablel
Distribution of Responses and Ratings Evaluated over Items
of the Same Type (n = 705,848 Respondents)

Statistic Numerical How Often Problem Yes/No
Number of items 4 11 11 9
Percentage responding
Mean 74.97 62.56 3032 57.26
Minimum 50.90 27.70 400 1250
Maximum 95.00 74.50 6440 96.70
Item means
Mean 8.76 357 270 178
Minimum 857 3.09 249 162
Maximum 8.88 384 2.86 197
Digtribution of ratings (acrossitemsin group)
0 05
1 04 20 57 195
2 04 6.3 121 805
3 0.7 239 82.2
4 0.9 67.8
5 46
6 30
7 6.2
8 16.1
9 178
10 49.5

Items are on a 0—10 numerica scae from “worse possble’ to “best
possble’, a4—point 1—4 ordina “frequency” scade (never/sometimes/
usudly/dways), a 3—point 1-3 ordind “problem” scde (not a
problem/somewnhat a problem/a big problem), or are dichotomous 1-2
items (nolyes).

The domain mean, minimum, and maximum vaues
across dl items of the same type are also presented in Table
1. Theseillustrate that the 0-10 items have the smallest total
variation (after rescaling to the common 0-1 range), while
the 1-2 items have the largest total variation across domains
and items. This is dso illustrated in Figure 1, where we
observe that the distribution of the 1-2 items varies sub-
dtantialy across items whereas the distributions of the 0-10
items are more homogeneous.

Table 2 presents datistica summary measures for the
means and standard deviations of the domain mean ratings,
evauated across items of the same type. This complements
Figure 1 by summarizing the difference in distributions of
items within a given scde. Items with more response
categories are concentrated towards the top of the scale and
hence have smdler variance. For example, the mean
standard deviation of the 1-2 items (0.36) is twice tha of
the rescaled 0-10 items (0.172). With the exception of the
0-10 items, the distributions of domain mean ratings vary
greatly across items of the same type. For ingtance, the
standard deviation of the means of 1-2 items acrossitemsis
0.30 compared to a rescaled standard deviation of 0.03 for
the 0-10 items.
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Figure 1. Five-point Summary of the Domain Sample Means
for Each Item. The five-point summary consists of
the minimum, 10" percentile, mean, 90™ percentile,
and the maximum.

Table 2
Summary Statistics of Domain Means and Standard Deviations
Evaluated Over Domains and ltems

Type Summary Statisticsfor:
Iltem Means Item SDs
Min Max Mean SD Mean SD

Numerical 0-10 682 952 876 0.30 172 026
Frequency 1-4 28 390 357 012 066 0.09
Problem 1-3 188 299 270 014 057 013
Yes/No 1-2 134 196 178 008 036 006

Note Columns 2 through 5 give the minimum, maximum, mean,
and standard deviation of the domain item means across items
of agiven type. Columns 6 and 7 give the mean and standard
deviation of the domain item standard deviations across items
of agiven type.

Sample correlations also varied gresatly across the pairs of
items (Figure 2), athough most were positive. Correlations
between items of the same type most often were higher than
those between items of different types. The numerical 0-10
ratings had the largest correlations (mean = 0.49), and
generally ratings with more categories tended to have higher
correlations than ratings with fewer categories. Although
most of the pairs of 1-4 items had mean correlations near to
0.5, one item was negatively correlated with the others
(reveded by the cluster of mean correlations below 0); this
arose from reverse coding an item whose overall sample
mean was not in the top half of the scale. The distributions
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of the correlations of pairs of 1-2 items were centered near
0, indicating that pairs of items of this type often have
negative correlations. Complete item wordings and
additional summary statistics gppear in Zasavsky, Beaulieu,
Landon and Cleary (2000) and Zadavsky and Cleary
(2002).

Models fitted to the variances and correlations are
presented in the remainder of this section. Extensive
checking of the best-fitting models indicated that the
residuasdid not follow any discernible pattern.

Numerical item pairs Frequency item pairs
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Figure 2. Five-point summary of the domain sample correations
between items with the same type. The five-point summary
consists of the minimum, 10" percentile, mean, 90™
percentile, and the maximum.

4.2 Variance Functions

In prdiminary investigations not reported here, we fit
two models within groups of items with the same response
scale, one with common and one with different regression
parameters for each item, to the data set comprising all of
the items. Comparisons of the overall fits of the models
(using criteria such asMallow's C, R?, adjusted R?) and
tests of the sgnificance of effect-item interactions demon-
drated that alowing parameters to vary across items signi-
ficantly improved modd fit. For instance, for the rescaled
numerical ratings, weighted by domain sample size, the two
models root mean squared errors were 0.446 versus 0.402,
and values of R? were 0.783 versus 0.825. Based on this
we decided to fit separate modelsfor each item.

Statistics Canada, Catalogue No. 12-001-XIE

The variance functions (8-10) were fitted to each item
except the yes/no items, which follow the binomia variance
function in the equa-probability sampling case. The
iterative procedure described in section 3.4 converged
amogt precisely in exactly two iterations. This is because
the weights for the observaions change only with the
estimate of 1, and so very little change in the weights
occurs after thefirgt iteration.

Table 3 presents the average sampling variation, average
model error variation, and R?, for each model averaged
over items of each response scde. Sampling variation,
computed using (19), does not depend on the model.

Table3
Goodness-of-fit Statistics for Variance Functions

Rating Scae 0-10 1-4 1-3
Sampling Variation 0.1460 0.3511 3.1703

ModErr R® ModErr R? ModErr R?
Modd V1 0.020 0.741 0.066 0.824 0.069 0.916
Modd V2 0.043 0.710 0.036 0.835 0.000 0.940
Modd V3 0.016 0.750 0.024 0.847 0.000 0.947

Prob(ModErr < Sampling Varigtion)

Modd V1 0.968 0.916 0.996
Modd V2 0.858 0.967 0.996
Modd V3 0.981 0.983 0.996

ModErr is the variance component for lack of fit, R? is as defined in
section 3.4, Prob(ModErr < Sampling Variaion) is the proportion of
domains for which modd error is smaller than sampling variation. All
reé‘i1 ngs are rescaled to a0—1 scale, and modd errors are multiplied by
10"

For items with few categories (more closaly resembling
the binomial), the quadratic component of the variance
function tends to dominate the linear component, making
models V2 and V3 fit better than V1. Because V2 imposes a
condraint a a point far outside the range of the domain
means, it does not fit the data as well when there are more
categories and the data are consequently further from
binomial. The 0-10 items are less dispersed than the 1-4
and 1-3 ratings, enabling the linear modd to fit better. The
R? values for mode V3 were close to 0.75 for numerical
(0-10) items, 0.85 for the frequency (1-4) items, and 0.95
for the problem (1-3) items.

The lower portion of Table 3 displays for each item the
proportion of domains (of those with at least 2 responses to
the given item) for which sampling variation is larger than
model error variation. For over 90% of domains, model
error variation was less than the sampling variation of the
direct variance estimate.

Figure 3illustrates the fit of V3 for two each of the 0-10,
1-4, and 1-3 items. lllustrations for the remaining items are
smilar, but are not provided due to space limitations. The
fitted curves are constrained to O a the maximum ratings.
To assess the impact this congraint has on the fitted
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variance function, we aso fit an unrestricted (three para-
meter) quadratic variance function; these attained vaues
very close to 0 a the maximum rating, and closely approxi-
mated the fitted curve from the constrained models, further
supporting V3.

Average paameter edimates and their standard
deviations over items of the same type are shown in Table 4.
The parameters differed substantidly across items, sup-
porting the decison to edimate separate regression
coefficients. In most cases the coefficients for both the p,,;
and p,;(1-p,;) termsin V3 were significant, indicating
that these are needed for generdized variance modding. In
some cases (particularly with the 0-10 items) the coefficient
of the p,;(1-p,;) term was negative, resulting in an
edtimated variance function that is convex rather than
concave (the shape of the binomial variance function). This
can happen when the sample means for the ratings are
concentrated on a smal proportion of the response scale,
over which the linear term explains much of the variation in
the data. As mentioned earlier, adding higher-order poly-
nomial or logarithmic functionsof py,; did not significantly
improve mode fit.

n
“!
o
g9 .
= (=}
E
o)
(=}
O -
-“.H-H"-
=}
=} e
[Te) 1-4 it
F!
o
E
8O
J
> o) T
8 .\‘\\
>3 \"\-\.\
o' ! .,
[ J S— =
mn 1-3 it
F!
o
o ~3
= ~
()] H
o o
5 Ty
5 Y
>3 \
=
= o :

177

Table4
Average Variance Function Parameter Estimates for Each Type of
Item and Standard Deviations Across Items (in Parentheses)

Modd Item Type
0-10 1-4 1-3
By B2 By B2 B B2
Vi 0.236 0.354 0.569 -
(0.016) - (0.039) - (0.068) -
V2 - 0.271 - 0421 - 0.711
- (0.020) - (0.034) - (0.069)
V3 0334 -0114 0151 0241 0239 0420
(0143) (0.155) (0.104) (0.132) (0.112) (0.110)

See Table 1 for adescription of the 0—10, 1-4, and 1-3items.

4.3 Correlation Functions

Modeds are ordered from smplest (C1, the constant
model) to most complex (C5, containing al linear and
quadratic terms). As for the variance models, statistical tests
found highly significant item interaction effects, implying
that separate models should be fit for each pair. We did not
expect al pairs of items to have smilar corrdations, since
by intention the items are divided into internaly consistent
groups, each of which measures a distinct aspect of patient
experiences such as interactions with doctor or dealings
with customer service agents (Hays, Shaul, Williams,
Lubdin, Harris-Kojetin, Sweeny and Cleary 1999).

0-10 item

Figure3. Quadratic Variance Function (V3) of Two Items for each Rating Type.

Each point is the average of 60 domains. Vertical linesjoin the 10" and
90™ percentiles of the distribution of the variances. For this and
following displays the direction of the transformed horizontal axis has
been reversed to agree with that of the original variables.
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The fits of the correlation models for pairs of items of the
same type are summarized in Table 5. Over the range of
models considered, the biggest improvements in model
performance (as measured by R?) occur between model C1
and mode C2, and between modd C3 and moddl CA4. For
example, the average R? for the numerical ratings in
models C3-C5 are 0.0391, 0.1494, and 0.1508 respectively,
and the average R? for the 1-4 ratings over C1-C3 are 0,
0.0700, and 0.0789 respectively. This suggests that C2 and
C4 are the best models for different pairs of items, a clam
that is supported by the hypothesis tests on the significance
of the incremental improvementsin model fit.

Sampling variation was highest for the 1-3 ratings, at
least in part because high rates of non-response due to
skipped responses diminished the sample sizes. Mode error
and R? of corrdation models for items of different types
were similar to those for models for items having the same
type.

The R? values for the correlation models were between
0.029 and 0.15 for all pairs of items. Although there was no
evidence to suggest that C4 was an inappropriate model for
the correlations, these results indicate that substantial
variation in the correlations is not explained by the item
means.

O’Malley and Zaslavsky: Variance-Covariance Functions for Domain Means of Ordinal Survey Iltems

The sampling variances of the direct estimates were often
less than the corresponding model error variances (lower
part of Tables 5 and 6 especidly for the 0-10 items. Under
C4, modd error variances were smaller for only 13% of
domains for the 0-10 ratings, 45% of domains for the 1-4
ratings, and approximately 81% of domains for the 1-3 and
1-2 ratings.

Figure 4 presents the observed correlations and fitted
function C4 for an illustrative pair of items from each of the
10 combinations of item types, representing the 595 distinct
pairs of items. To illustrate the fitted correlation models, we
adjust the observed and fitted correlations to the mean of
one item and plot the resulting values in two-dimensiona
gpace. This process is repeated for the other item, yielding
two plots for each correlation.

Figure 4 illustrates the generally weak relationship of the
correlation to the means of the items seen in Tables 5 and 6.
Anaysis of Tables 5 and 6 reveds that the relationship
between the correlation and the mean outcome is wesker for
items with fewer categories and with correlations of items of
different types. In particular, the 0 —10 numerical ratings are
the only group for which there is a clear correlation-mean
relationship.

Table5
Model Fitting Diagnostics for Correlation Functions for Items of the Same Type, Averaged over Pairs of Items of the Same Type

Rating Type 0-10 1-4 1-3 1-2
Sampling Variaion 0.0124 0.0178 0.1482 0.0325

ModErr R? ModErr R? ModErr R? ModErr R?
Modd C1 0.060 0.000 0.028 0.000 0112 0.000 0.018 0.000
Modd C2 0.060 0.013 0.025 0.070 0.103 0.048 0.017 0.014
Modd C3 0.057 0.039 0.024 0.079 0.102 0.054 0.017 0.018
Mode C4 0.047 0.150 0.023 0.100 0.100 0.068 0.016 0.029
Mode C5 0.044 0.151 0.023 0.105 0.096 0.080 0.015 0.034

Prob(ModErr < Sampling Variation)

Modd C1 0.033 0.339 0.461 0.788
Modd C2 0.033 0.400 0.498 0.795
Mode C3 0.034 0411 0.502 0.796
Mode C4 0.038 0.435 0.516 0.799
Modd C5 0.065 0.440 0.530 0.802

See Table 1 for adescription of the 0-10, 1-4, 1-3 and 1-2 items, and Table 3 for an explanation of the column headings.

Table6
Model Fitting Diagnostics for Correlation Functions for C4 by Type of Item.
Averaged over Items of the Same Type

Types 0-10 1-4 1-3 1-2
ModEr R® ModEmr R?®> ModEmr R? ModEr @ R?
0-10 0.047 0.149 0021 0.104 0040 0094 0013 0.059
1-4 0023 0.100 0.038 0076 0013 0039
1-3 0100 0.068 0.028 0031
1-2 0016 0.029
Prob(ModErr < Sampling Varigtion)
0-10 0.038 0.358 0523 0.784
1-4 0.435 0.605 0.790
1-3 0516 0.827
1-2 0.799

See Table 1 for adescription of the 0-10, 1-4, 1-3 and 1-2 items, and Table 3 for an explanation

of the column headings.
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Figure4. Correaion Functions for One Pair of Items for Each Combination of Rating Types.

Note:  The plots for each items involved in the correlation are side by side. Refer to
Figure 3 for adescription of the contents and axes of the plot.

Although the fitted curves for the correlation functions
are nearly flat, the variation in the parameter estimates under
modd C4 for o, ae large and were suggestive of
instability. The wildly varying parameter estimates are a
consequence of collinearity among the predictors in model
CA. In many cases the estimated value of o, offsets the
parameter estimates for the linear predictors, resulting in a
fitted curve that is nearly flat.

4.4 Mean Difference Functions

The difference D,,; appeared to depend on both the
marginal mean and its square, implying a model analogous
to V3 could be appropriate. However, because IZA)h,”-
typicadly is smal enough that D, ; D, ; has minimal
impact on (16), we fit a constant model.

45 Composite Estimator

Table 7 presents the quantiles of the distribution of
weights 2 /(t* +62) for the model-based estimate, used in
the composite estimator of section 3.5, averaged over items
(or pairs of items) of the same type. The proportion of

domains for which the standard error of the model-based
predictions was smaller than that of the direct estimates is
aso presented. As noted previoudy, the model-based pre-
dictions have more weight in the composite variance
edtimates than in the composite correlation estimates. The
average (across items or pairs) median of the weights of the
model-based estimator ranged from 0.892 to 1.000 for
variances, 0.256 to 0.709 for correlations of items of the
same type, and from 0.468 to 0.738 for correlations of items
of different types. Also, for both variances and correlations,
the weight of the model-based predictions was larger for
items with fewer response categories. For example, the
model-based estimator had median weights of 0.256, 0.468,
0.540, and 0.647 on the composite estimates of correlations
when the numerical 0-10 ratings were paired with the 0-10,
1-4, 1-3, and 1-2 ratings, respectively. However, even for
pairs of 0-10 numerical ratings, for which sampling error of
the direct estimator exceeded the model error in only 3.81%
of domains, these results indicate that the median weight of
the model-based estimator was 0.256, anontrivial amount.
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Table7
Distribution of Weights for the M odel-Based Component of the Composite Estimator, Averaged Over
Items of Same Type
Mode Item Type Prob(ModErr < Quantiles

1 2 Sampling Variation) 10% Median 90%
Variance 0-10 - 0.981 0.778 0.892 0.948
1-4 - 0.983 0.948 0.966 0.974
1-3 - 0.996 1.000 1.000 1.000
Correlation 0-10 0-10 0.038 0.141 0.256 0.335
0-10 1-4 0.358 0.301 0.468 0.562
0-10 1-3 0.523 0.357 0.540 0.654
0-10 1-2 0.784 0.531 0.695 0.767
1-4 1-4 0435 0.324 0.497 0.591
1-4 1-3 0.605 0.404 0.587 0.699
1-4 1-2 0.853 0.584 0.738 0.805
1-3 1-3 0.516 0.349 0.540 0.675
1-3 1-2 0.827 0.584 0.737 0.817
1-2 1-2 0.799 0.541 0.709 0.780

8

Thedigtribution of weightsis summariz

4.6 Joint Predictions

Because we modeled the correlations independently for
each item, our fitted correlation matrices do not necessarily
satisfy the congraint of positive definiteness, which can be
important for multivariate inference. In additiona work, we
have determined that as long as the multivariate andysis is
restricted to items of the same type, the fitted correlations
from the C2 and C4 models yield positive definite estimates
of correlation matrices for aimost all domains. However, for
anadyses including items of different types (eg., the 0-10
numerical items, and the 1-2 yes/no items), predictions
based on C4 predict correlation matrices that are indefinite
for many domains, while predictions based on C2 are more
stable and amost always yield positive definite predictions.
This suggests that while C4 may be dightly superior in
terms of univariate modd fit, C2 may be more appropriate
for multivariate inference.

One way of overcoming the problem of indefinite
predicted correlation matrices is to use a weighted average
of the predicted correlation matrix for a domain and the
edimated average correlation matrix (EACM) across
domains. The EACM may be constructed by weighting the
direct estimates (each of which is at least positive semi-
definite) by the totd sample size for each domain. Then any
indefinite predicted correlation matrices are replaced with
the weighted average of the predicted correlation matrix and
the EACM, where the weight used for each domain is
increased until a positive definite matrix results. Like an
empirical Bayes estimator, this process stabilizes estimates
by effectively shrinking the mode coefficients toward those
of asimpler (constant) model.

When andyzing dl 35 CAHPS items smultaneoudly the
EACM had an average weight across domains of 0.65 with

Statistics Canada, Catalogue No. 12-001-XIE

by the 10" 501, and 90™ percentiles. See Table 3 for definition of ModEtr.

model C4, whereas with model C2 the average weight was
only 0.01 since the predicted correlations under C2 were
usualy positive definite. In analyzing only the 0-10, 1-4,
and 1-3 items the EACM had average weights of 0.28 and
0.00 with C4 and C2 respectively, while in analyzing just
the 0-10 and 1-4 items the corresponding average weights
were 0.06 and 0.00. When anayzing the different types of
items separately, the average weight of the EACM with C4
was 0.00 for the 0-10 and 1-4 items, 0.01 for the 1-3
items, and 0.17 for the 1-2 items. The EACM s thus not
needed when analyzing the 0-10 and 1-4 items because the
predicted correlation meatrices were positive definite for
every domain.

5. Conclusion

We have presented methodology for estimating variance
and covariance functions for domain means of ordina
survey items. Our methodology can aso be applied to
survey items measured on continuous scales. We introduced
a decomposition of the model error that alows the variation
due to sampling to be separated from that due to model fit.
The decomposition also helps to avoid over-fitting because
it estimates the proportion of variation in the data that can be
model ed and thus when the current predictors suffice.

The procedure for fitting the variance and correlation
models is the same regardless of whether or not the data
contain skip patterns. The analytic derivation in section 3.3
shows that if skip patterns are present, mean differences of
items by response status of other items are required in order
to compute the sampling covariance estimates. However,
we argued that these quantities are likely to have minimal
impact on the results and that therefore a constant model
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could be used, which was supported by our empirica
findings.

A quadratic variance function constrained to O a the
maximum rating, and a model for transformed correlaions
involving the product but not the squares of the means, best
predicted the direct estimates in our applied example. The
modeled variance estimates generally had much smaller
dtandard errors than the direct estimates;, the same was,
however, not true of the correlation estimates. It is
interesting and reassuring that our quadratic variance
function can be expressed as the widdy-used relative
variance model of Wolter (1985).

For our ordinal data, the estimates of the domain mean
ratings contain minimal information about the correlation
between the ratings. Hence, the mean-covariance relation-
ship is principally an artifact of the mean-variance relation-
ship. However, for items with many response categories, the
association between correlations and mean outcomes for
items of the same type was stronger most notably for pairs
of 0-10 items. With the exception of the 0-10 and possibly
the 1-4 ratings, the correlations might as well be modeled
as constants, which also makes it easier to guarantee
positive definiteness of the predicted correlation matrix.
However, it is important that the parameters of the
correlation model be allowed to vary across pairs of items.

A composite estimator that weights the direct and model-
based estimators proportional to their precisions has smaller
variance than either estimator alone, especially when the
components have close to equa weight. The model-based
estimator had the greatest influence on estimates for small
domains, for which little information is available. The
model-based estimator had the greatest influence on
estimates for variances, followed by correlations of items of
the same type, and lastly correlations of items of different
types. Both model-based and composite estimators can be
benchmarked (ratio adjusted) to agree on the average across
domains with direct estimates, although this proved to be
unnecessary in our example.

GVCFs find severd applications in our continuing
rescarch. We are developing quasi likelihood-based
methods for estimating covariance matrices for the domain
means of ordinal survey items, representing the second-level
(structurd) covariance in a hierarchica modd (O'Malley
and Zadlavsky 2004). GV CF models are needed to provide
estimates of sampling variances and covariances and to
modify those estimates as the means are re-estimated during
the fitting procedure. If the sampling variagbility of the
GV CF estimates is minimal because the number of domains
is large, the GV CF predicted variances and covariances can
be treated as known. However, if the sampling error of the
GV CF-based estimates is large a modd that alows these
errors to propagate through the analysis should be used. In
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related work, Fay and Train (1997) used a binomia model
with a design effect for each domain in empirical Bayes
estimation of binomial rates. Our research extends this
gpproach to multivariate edtimation and more genera
response formats.

Another application of GVCFs is the computation of
variance estimates for linear combinations of item means,
facilitating variance estimation for composite scores, like
those used in CAHPS reporting. The methods described in
section 2 are applicable to variance estimation for any
functions of totas, including functions of means, other
ratios, or regression coefficients.

There are severd ways of extending the GVCF
methodology. In addition to summary measures of
outcomes, generdized variance and covariance functions
(GVCFs) may aso depend on other independent variables,
in particular those that would better predict corrdations. We
considered variables summarizing response patterns, such as
the proportion of respondents in a domain, but these did not
improve the model. GV CFs could also be extended to multi-
stage sampling.
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Spatio-Temporal Modelsin Small Area Estimation

Bharat Bhushan Singh, Girja Kant Shukla and DebasisKundu *

Abstract

A spatia regression mode in a general mixed effects model framework has been proposed for the small area etimation
problem. A common autocorrelation parameter across the small areas has resulted in the improvement of the smal area
estimates. It has been found to be very useful in the cases where thereislittle improvement in the small area estimates due to
the exogenous variables. A second order approximation to the mean squared error (MSE) of the empirical best linear
unbiased predictor (EBLUP) has also been worked out. Using the Kalman filtering approach, a spatia temporal mode has
been proposed. In this case aso, a second order approximation to the MSE of the EBLUP has been obtained. As a case
study, the time series monthly per capita consumption expenditure (MPCE) data from the National Sample Survey
Organisation (NSSO) of the Ministry of Statistics and Programme Implementation, Government of India, have been used

for the validation of the models.

Key Words: Mixed effects linear model; Spatial autocorrelation; Weight matrix; Best linear unbiased predictor;
Empirical best linear unbiased predictor; Kalman filtering; NSSO rounds.

1. Introduction

Local leve planning requires reliable data at the appro-
priate level. The complete enumeration or large sample
surveys with adequate sample sze is expensive and time
consuming. The censuses are usually carried out once in a
decade, while the sample surveys are often planned to
provide estimates a& much higher level. One such large
sample survey is socio-economic survey of National Sample
Survey Organisation (NSSO). Here the direct survey
edtimates are available at small area (district) level as most
of the didtricts are stratum in the sampling procedure
adopted by the NSSO. However, the estimates are exceed-
ingly unreliable due to unacceptably large standard errors.
This requires strengthening of such estimates with the use of
information from similar small areas or with the help of
some relatable exogenous variables, easily available and
related to the variable under studly.

Various mode based approaches have been suggested to
improve the direct estimators. The model-based gpproach
facilitates its validation through the sample data. The simple
area specific model suggested is two stage model of Fay and
Herriot (1979).

Y, =6, +¢, E(g16,)=0, Varg [6) =07, (11

0, =X/B+vz,E(V)=0 Var(y)=062,i=12,...,m (12

Here y,’s are direct survey estimators of 6,'s, the
characteristic under study. 6,’s may be population small
aeameans. X; =(X;;,..., Xip)T’sae@(oger\ousvariabI&s
which are available and assumed to be closdly related to
0, 'sand z 'sare known positive congtants. B(px1) isthe
vector of regression parameters.

The first equation (1.1) is the design model while the
second (1.2) is the linking model. The €;’s are sampling
errors. Estimators  y,’s are design unbiased and the
sampling variances ¢7’s are known. Further the ¢, ’s and
v,’s are identically and independently distributed random
varidbles. Normality of the random errors and random
effects are often assumed. For this model, best linear
unbiased predictor (BLUP) on the line of the best linear
unbiased estimator (BLUE) has been suggested. The
estimate is design condstent and model unbiased (Ghosh
and Rao 1994). It is typicaly the weighted average of the
direct survey estimator y, and the regresson synthetic
egimator X;"B. The BLUP estimator depends on variance
component 2 which is unknown in pratical applications.
Various methods of edtimating variance components in
general mixed effects linear model are available (Cressie
1992). By replacing o2 with an asymptotically consistent
estimator &2, an empirical best linear unbiased predictor
(EBLUP) has also been obtained.

The main problem associated with the data in the Indian
context is the non-availability of administrative or civic
registration data at small area level. Often, it is difficult to
find out the exogenous variables closely related (multiple
correlation coefficient R* >0.5) to the variable under
study.

In the present paper, the exploitation of spatia auto-
correlation amongst the smal area units in the form of
spatial model, has been considered for improving the small
area estimators. Besides this, for the time series data, a
spatia temporal model on the line of Kaman filtering has
been utilised to further improve the estimators. Time series
data on monthly per capitd consumption expenditure

1. Bharat Bhushan Singh, Girja Kant Shukla and Debasis Kundu, Department of Mathematics, 1.1.T. Kanpur-208016. E-mail: drbbsingh@hotmail.com.
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(MPCE) as estimated from alarge sample survey carried out
by the National Sample Survey Organisation (NSSO) has
been studied. In the present paper, we propose suitable
models in the framework of mixed effects linear model to
provide better estimators of the MPCE at small arealevel.

Rest of the paper has been organized as follows. In
Section 2, we consider a Spatid Model on the line of
general mixed effects linear modd with the introduction of
spatia autocorrelation among the small area units. The
BLUP and EBLUP of the mixed effects have been
presented. A second order approximation to the M SE of the
EBLUP and to the estimator of the MSE has aso been
obtained. Section 3 deds with the time series extension of
Spatia Modd in form of Spatial Temporal Model, using the
Kaman filtering approach. The BLUP and the EBLUP of
the mixed effects along with a second order approximation
to the MSE of the EBLUP and to the estimator of the MSE
have been discussed. Section 4 presents and analyses
estimates of the MPCE from a large sample survey caried
out periodicdly in India. The conclusons of the data
andysis are reported in Section 5. All the proofs have been
provided in the Appendix.

2. Spatial Mode

The smdll area characterigtics usualy have the spatia
dependence in terms of neighbourhood similarities. Cressie
(1990) used conditiona spatia dependence among random
effects, in the context of adjustment for census undercounts.
Here, we use smultaneous spatial dependence (Cliff and
Ord 1981) among the random effects which has certain
advantage over conditional dependence (Ripley 1981). We
have thus tried to explain a portion of the random error
unaccounted for and left over by explanatory variables
which makes it possible to improve the direct survey
estimators. The proposed model is athree stage area specific
model (Ghosh and Rap 1994).

y=0+¢, e~N, (O R), (2.1
0=XB+u, (22
u=pWu+v, v~N,(0,c2l), (2.3

where 6 is a m-component vector (corresponding to
number of small areas) for the characteristic under study and
y is its direct surevy estimator obtained through small
sample data. In the above modd, the first equation (2.1)
shows the design (sampling) model, the second equation
(2.2) shows regression model and the third one (2.3) shows
spatial model on the residuals, the later two are linked in the
first equation. The above modd can be expressed as

y=XB+2Zv+e, Z=(l-pW)™, (24
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where X(mx p) isthe design matrix of full column rank p,
B(px1) isacolumn vector of regresson parameters and
Z(mxm) represents the coefficients of random effects v.
W(mxm) is aknown spatial weight matrix which shows
the amount of interaction between any pair of small aress.
The elements of W =[W;] with W, =0 Vi may depend
on the distance between the centers of small areas or on the
length of common boundary between them. As a smple
dternative, it may have binary values W, =1 (unscaled) if
j" area is physically contiguous to i" area and W, =0,
otherwise. The matrix has been standardised so as to satisfy
z;ilvv” =1fori=12,...,m Thecongant p isameasure
of the overal level of spatial autocorrelation and its
magnitude reflects the suitability of W for given y and X.
Further v and & are assumed to be independent of each
other. R is a diagonal matrix of order m which may be
expressed as R=diag(c?, 65,...,065) Where ¢?’s are
known sampling variances corresponding to the i area.
The parameter vector y =[p, 62]" hastwo eements.

In this model the strength is borrowed from the similar
small areas through two common parameters viz. regression
parameter B and autocorrelation parameter p. Note that the
present model isamore general model and the mode! of Fay
and Herriot (1979) can be obtained from this by taking
p=0.

By adopting the mixed effects linear model approach
(Henderson 1975), the best linear unbiased predictor
(BLUP) of 6=XB+2v and the mean squared error
(MSE) of the BLUP may be obtained as

0(y) = X By) + A(y)[y - XB(w)]

= . A (W)Z ™ (y)y + R (w) X B(w), (25)
MSF[é(w)] =

ELO(w) - 0)B(w) - 0)"]1= g, (w) + 9, (W), (2.6)

o (v) = A(y)R=R-RZ ™ (y)R 2.7)

9, (W) = REH WX (XTZHW)X) " XTZ (R (28)

Bw) =[XTZ W) X] ™ XT= 7 (w)y,
() =AM (W) + R

AW) =, AT (WZ (W), Aly) = (1 —pW) " (1 —pW).

Here B > and A, dl are the functions of v and usualy
have been expressed as B(y), Z(y) and A(y) respect-
ively. However, sometimes due to brevity, the suffix y has
been omitted. The first term, g,(y) in the expression for
the MSE, shows the variability of 6 when dl the
parameters are known and is of order O(1). The second
term, g,(y), due to estimating the fixed effects B, is of
order O(m™) for large m. Further, with p =0, the above
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model reduces to the standard mixed effects linear
regression model while for X =u, we obtain a purely
spatia scheme with only intercept term.

In practice parameter y is unknown and is estimated
from the data. The maximum likelihood estimator (MLE) of
the parameter, v is obtained by maximizing the following
log likelihood function of

| = const - % log[| Z(w) I

-2ty = XB = w)ly - XBw)] (29)
with respect to the parameter . The empirical best linear
unbiased predictor (EBLUP), é(w) and the naive estimator
of the MSE are abtained from the equations (2.5) and (2.6)
respectively, by replacing the parameter vector y by its
estimator .

00p) =A™ ()T (§)y + RE(§) XB(P),
MSE[8(§)] = 9,(§) + 9, (),
where () =62A"()) +R
and  A() = (1 —pW)" (I —pW).

This expression for the MSE of the EBLUP severdy
underestimates the true MSE as the variability due to the
edimation of the parameters through the data has been
ignored. We aobtain a second order approximation to the
MSE[é(q‘f)] in case y is the maximum likelihood esti-
mator (MLE) or the restricted maximum likelihood
estimator (REMLE) of v, with the assumption of large m
and by neglecting &l the terms of the order o(m™), under
the following regularity conditions. The approximation has
been worked out along the lines of Prasad and Rao (1990)
and Dattaand Lahiri (2000) which are heuristic in nature.

(2.10)

(2.12)

Regularity Conditions 1

(@ The eements of X are uniformly bounded such that
XTZH W) XHO(M)] ., Where E(y)=[o7A™ (y)+
RI;

(b) misfinite;

© AWX=[0]mnp,  ELAW)X](OW4)=[OD)]
@ [AMW)(OW0y,) =[OD)] ey or d, €=1 2

(d) ¢ is the estimator of y which satisfies y—y=

O, (M%), §(=y) = (y), ¥(y+xh) = (y) Vhe R?
and Vy.

These regularity conditions are satisfied in this case. The
special standardised form of the weight matrix W satisfies
the condition (c) for |p |<1 asit has only afinite number of
nonzero elements and its row sum is equd to 1. It may be
mentioned here that the matrix 6ZA™E ™" has finite number
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of nonzero edements and the order of W,(I —pW),
W(l —pW),X, =™ or any sum or product combination of
these and their derivatives mentioned in condition (c) do not
increase. The MLE and the REMLE, in addition satisfy the
condition (d). A second order approximation to the M SE of
the EBLUP has been shown in Theorem A.1 of the
Appendix as

MSE[8(§)] = E[(6(§) - 0)(6(§) —6)"]
=0, (W) + 9, (W) + g5 () + o(m™).(2.12)

Here the third term g,(y) comes from estimating the
unknown parameter vector from the sample data and it is of
the same order O(m™) as that of g,(y). Further g,(y)
may be expressed as

95 () =L" (W1, (W) ®ZW)] L(w), (213)
where
L(w) = Col [Ly ()] =[L, (W), L (I,

d

L =2 412 1 =€l o,

Wy oy
is the information matrix and ® represents Kronecker
product. Further g,(y) may aso be written as

g:(W) =2 > LyWEW)Le (W)l (v) (214)

d=1 e=1
where 1" () = (I & (¥))-

It is common practice to estimate the M SE of the EBLUP
by replacing the unknown parameters including components
of the variance by their respective estimators. This proce-
dure can lead to severe underestimation of the true MSE
(Prasad and Rao 1990, Singh, Stukel and Pfeffermann
1998). We obtain the estimator of the MSE of the EBLUP
in Theorem A.2 of the Appendix for large m neglecting al
termsof order o(m™). Asaresult we have the expressions

E[9, (%) +95(9) — 9, (§) — 95 (¥)] =g, () + o(m ™), (2.15)

E[9,(¥)] = g,(w) + o(m™)

and  E[g;(¥)] = g5 () +o(m™), (216)
and finally the estimator of the MSE of 6({) as
mse[6({)] =
[0, (9)+9, (¥)+295(§) -9, (-5 (#)]+o(m™),  (217)

where E[mse(6({))]=MSE[B(§)] + o(m™).

Obvioudy the additional terms, g,(¥), 9,(¥) and
gs(y) are the contributions, due to estimation of unknown
parameter vector v by . The expressonsfor g,(v) and
gs(V) uptoorder o(m™) aregiven by
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agl (\V)

9,(w) =[b; (W) ® 1]

by (y) = —|-1(\|;) Col {Trace{ ) fy(“’)ﬂ, (2.18)

d

[1,®(RZ™ (y))]

g (w)—lTac 975
° N a(“?[l Ly)@E L (y)R)] |

(2.19)

Here b, (y) isthe bias of \y i.e, E(y) -y up to order
o(m™) and (99,(v)) /(81|/) is a patitioned matrix
[(99,(w))/(@p), (99, (w)) /(957)]"  of order (2mxm)
having 2 matrices of order mxm in acolumn. In the same
way (9°Z(y))/(dyoy') is a partitioned matrix of order
(2mx 2m) having 2 partitions, row and column wise with
(0%Z(y)) /(0w 40v,) being a general sub matrix of order
mxm therein. Trace(B) =7, B,,, where B is a square
partitioned matrix with square sub matrices of similar order.
Inaddition g,(v) and g;(y) may also bewritten as

94(y) =

—ZZ| (W)Trace{ 5 (y )alﬁ(w}agﬁ), (2.20)

9s(y) =

) Z{ ol >§f§"” SR, (w)} (221)
d=1 e=1 d e

The expression (2.17) gives the matrix of the estimator of
the MSE of EBLUP, é(fp) and the MSE of the individua
smdl area estimators may be obtained as the respective
diagonal element. In case of simple model without the
spatia autocorrelation, similar expressions can be obtained.
Inthiscase g(v), however, becomes zero.

3. Spatial Temporal Model

In this section, State Space Models via Kalman filtering
have been used to take the advantage of the time series data
aong with the common regression parameter and common
autocorrelation parameter to strengthen the direct survey
edimators a any point of time. This is especidly
advantageous in the case where the past survey estimates are
more reliable. The models used in this category are the
following

ind
Ve = XB+2v, +&, 6 ~N,,(O,R), Z=(l _pW)il’ (31
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ind
v, =kv,, +n,, M, ~N,,(0,621) t=1,2,...,T and

g, and m, are independent of each other. 32

Here the parameters have usua meaning as explained in
the previous section. Weight matrix W(mxm) and design
matrices X,(mx p) are known, Z(mxm) is a matrix of
coefficients of random effects and p is an unknown
autocorrelation coefficient. R is adiagona matrix of order
m which may be expressed as R = diag(c3, 65, ..., 0%)
where o7 's are known sampling variances corresponding
to the i™ small area and t™ time point. B is unknown
vector of fixed effects and y=[p, o2, k]" is a vector of
three unknown parameters. These parameters are
independent of time t. It may be noted that the random
effects v, have been allowed to change in accordance with
(32) and k is tempora autoregressive parameter. For
sationarity | k|<1.

The estimators of fixed and random effects and the MSE
of these estimators are obtained in stages, starting with
assumption of mixed effects linear model approach at time
t=1, and by taking v, ~ N,,(0, 621) (Salas and Harville
1994). In the standard form we write the model as

Y, =V +&, 0, =Tar , +§,, T =diagl ,, Kl ], (33
Ct - Np+m(0' Q)! Q= dlag[op' 65 lm]
Utz[Xt,Z],O(tz[Bt,Vt]T. (34

Here |, and O,, are the unit and zero matrices of order
mand by diag[l ,, Kkl ] we meanthe matrix

{I pxp Opxm }

Omcp Kl

Incase B is assumed fixed but dependent on time, thereis
no change in the model except that T =diag[0,, kI ,,].

Theinitial estimates of the effects o, and their variances
(based on t =1) are obtained as

ﬁ (X H_lxl)_lx H1 yl’vl_cszTHl_l(yl_Xlﬁl)’
>, X

le Rl('is Afl’ 21=|: 11 12:|,
221 222

Z.(pxp)= (X1TH1_1X1)_1:

To(pxm) =X =—cZ(X{ H* X)) X[ H,*Z

and X,,(mxm)=cl,-c.Z2"H,;'Z

+00ZTH X (X HP X)) X H 'z

The recurring Kalman filtering equations for updation of
the estimators at subsequent stages are
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DIV =T, T'+Q, O =T0, 4, H =R +Utzl|t—1UlT )
&t = dtlt—l + Ztlt—lutT Ht_l(yt _Utdtlt—l)'

= El|t—l - 21|t—1 UtT H ;1lJ 12t|t—1

where a., , are the estimators of the effects o, given the
observations [y;, ¥s, ..., V4] and the X, are the mean
squared errors of &, ;. H, are the conditiond variance
covariance matrix of y, given [y, ¥,,..., ¥,4]. With the
help of the above recurring filtering equations, the best
linear unbiased predictor (BLUP) of 6, = X,f+2Zv,, and
the mean squared error (MSE) of the BLUP may be
obtained as

6, (W) =U, (w)&, ()
= yt_R(Ht_l(W)[yt _Ut(\v)&tltfl(W)]

=U, (\lf)&tn—l(qf) + A (W& (W), (3.9)

MSE[8, (y)] = Gy (W) =U, (W)Z, (W)U, (), (36)

where A, (y)=U, (W)Ztn—l(W)UtT (VH{ Y(v)
— 1 - RHZ W)
and &(W) =Y, _Ut(\v)&tlt—l(\v)'

It may be noted that g,,, () isthe spatiad counterpart of
0,(v)+ g,(y). Asusud in practice, the parameter vector
v is unknown and its restricted maximum likelihood
edtimators (REMLE) can be obtained by maximizing the
following log likelihood function, based on the sample data
covering al time points

1 _ 1
| = const.— ~logll XJ Hy*X, 1= > logl| H, ]
t=1
1 A ~ A
_E(yl - XlBl)T Hll(yl - XlBl)

18 A - "
_Ez (yt _Ut(xtll—l)T Ht l(yt _Utatlt—l) (37)
t=2

with respect to the parameter . With the help of the above,
the estimator, \y is obtained and the EBLUP of 6, and the
naive estimator of the M SE of the EBLUP are given by

0,(§) = U, (§)6, () = U, (#)81 (§) + A, ()& (§), (38)

MSE[6, (§)] = g1z (F) = U, ($)Z, (U (). (39

Asexplained earlier in section 2, the M SE of the EBLUP
underestimates the true MSE as it does not take care of the
variability due to replacing parameters by their estimates. A
second order approximation to the MSE[él (§)] for large
m and neglecting al the terms of order o(m™), has been
obtained in Theorem A.3 of the Appendix, under the
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following regularity conditions satisfied by our model.
These conditions are analogous to the regularity conditions
1

Regularity Conditions 2

(8 The éements of X,,t=12,...,T ae uniformaly
bounded such that X%, *(y) X, =[O(m)],,,, Where
() =[00A () +RI;

(b) mand T arefinite;

© A WU (W) =[OD)] pp: LA (WU (W)]) /(0w ) =

O] mep: ([°A (W) /(O 40W ) = [OD)] ms t =1,
2,...,Tandd,e=123

(d) W is the estimator of y which satisfies y—wy =

O, (M%), W(=y)=0(y), Y(y+xh) =(y) Vhe R®
and V .

The second order approximation to the MSE of the
EBLUPis

MSE[8, (§)] = E[(®, (§) - 6,)(6, (§) - 6,)"]
= Oy (W) + 95 (W) + O(mfl)-

Here g, (y) is the bias due to the estimation of the
parameters from the sample data and is of the order O(m™)
anditisgiven by

0a (W) = LT (W) 1, () K, (W) H 1 F )L (v) - (3.10)
where K, (y) = (Kg(¥)

19 4 0H; |, 1 0H,
d K =—>T HYP—LH*—| 312
an de (W) 2 ; race{ i aWd i awe :| ( )

(3.10)

Further
L (w) = &1'3[ Lqg (W)] and Ly (w) = (@A (v))/(dyy)
for d=123.

In aproper form, we may write g, (y) as

Ox (V) =
331w
f=1 g=1
3 3 T G OH L 0H |
;;er(\lf) XETraC{Hi mHi a\VgJ Lie(w).
X Hl g (W)

The expression for the information matrix involved here,
may be given as
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)=~
T v

a T
=liTrace{Hll—a|_|t Hllﬂ}+i {athla—e‘}
2'3 oYy Ve | T [y v,

[(XTHX) X H?
1
——Trace 2
2 x[ J°H, —28HlkhlaHl}4ﬁxl
Wy,  dy, Iy,

4 0H,
' oy
4 0H,

(X{Hy'X;) " X[ H H'X

—lTrace

X (X7 H X)X H H.™X,)

e

Egtimator of the MSE of the EBLUP has aso been obtained
with the assumption of large m and neglecting all terms of
order o(m™) in Theorem A .4 of the Appendix as

mse[ 6, (§)] =[Gy (§) + oy (F) + Gayy ()

— G (¥) — 95 (9] + o(m™), (CNE)
where Gy (W), 0., (w) and g, () aregivenas
O (W) = L (W' (WO H WL (w), (314
T 992 (V)
«(w) =[0] (W)@ 1,,] 722",
9 (W) =[by (W)® ;] 2)
1 = -1 a'g(\lf)
b@ :El\v (W)gﬁls{ﬂac{'ﬁ (v) o, ﬂ, (3.15)
gSt(W)z
[1;®(RH™)]
—Trac aZHt o N . 316
2 8\|/81|/T[|“’(W)®(H‘ Rl (3.16)

4. Analysisof the NSSO Data

National Sample Survey Organisation (NSSO) of the
Ministry of Statistics and Programme Implementation (Gov-
enment of Indi@) conducts quinquennia large sample
surveys (QS) on household consumption expenditure and
employment, amost every five years in India. The surveys
cover more than hundred thousand households spread over a
number of villages and urban blocks. In order to fill the gaps
in data between the successive QSs, the NSSO conducts
annual consumer expenditure survey (CES) in dmogt every
round (equivaent to six months or one year duration). The
annua series covers only 10-30 thousand households
depending on the number of villages and urban blocks
surveyed dl over the country. Each round of NSS normally
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has more than one subject of enquiry. The annual series has
a different principa subject of enquiry. However schedule
1.0 of the annual surveys is designed to collect data on
household consumption expenditure among other character-
istics on employment.

The NSSO adopts two stage dratified sampling design,
the first stage units being census villages in the rura sector
selected through circular systematic sampling with proba-
bility proportiona to size (PPS) and the ultimate-stage units
being the households selected circular systematically with
independent random dtarts. India has been divided into
States and the Didtricts are the second level administrative
unitsin the States. There is not much difference between the
annual and quingquennia surveys excepting that normally in
annua series, a small sample of four households per first
stage units are surveyed while in the case of quinquennia
survey, ten to twelve households per firgt stage units are
surveyed. Besides this, in NSSO surveys, we have two
samples viz, the first one as central sample surveyed by the
investigators of the NSSO, and the second one as state
sample surveyed by the State authorities. Regarding the
estimation procedure, the first stage units are selected in the
form of two independent sub-samples. The estimate of the
population mean and its variance based on the two sub-
samples are separately obtained. The pooled mean vy, =
(95 +92)/2 and R =(9,~9,)°/4 for i=12,...,m,
where ¥,,, ¥, are the sub-sample means, estimate respect-
ively the population mean and its variance for a particular
district (small areg). In case of round 55, first stage units are
selected in the form of eight independent sub-samples and
the estimate of the populaion mean and its variance are
based on these sub-samples. In view of the problems related
to the estimates of R ’'swith 1 df., the R for each small
area were analysed and compared over time. In case of any
abnormal R, it was smoothed out by taking the average of
R ’s over neighboring time points and in some cases, over
neighboring small areas also. The survey estimates y, 'sare
the direct estimates, and the smoothed R ’s are the diagona
elements of the sampling variance covariance matrix R, in
our moddl equations (2.1), (2.4) and (3.1), referred in this
paper.

In this paper, we have used data from central sample
only. The edtimates of monthly per capita consumption
expenditure (MPCE) and of the standard error(SE) of the
estimators have been obtained under various mixed effects
models for the rural 63 districts (small areas) of alarge state
in India, namely, Uttar Pradesh. We have used data from the
six rounds of the NSSO viz round 50 (July 1993-June
1994), round 51 (July 1994-June 1995), round 52 (July
1995-June 1996), round 53 (January—December 1997),
round 54 (January-June 1998) and round 55 (July 1999-
June 2000). Out of these rounds 50 and 55 are based on
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quinquennial surveys. The sdlected exogenous variables
used in the models are i) number of households, ii) gross
area sown and iii) per capita net area sown in the digtricts.
The agriculturd data are available on annua basis while the
estimates of the households and the population were
obtained through the interpolation techniques based on the
1971, 1981 and 1991 decennid census data These
exogenous variables have been sdlected from a host of
variables ranging from 1991 census to annual agricultural
data through the covariagte anadlysis. Different weight
matrices such as length of common boundary between a pair
of districts, distance between centres of two districts and the
binary weights were considered. Binary weights give larger
estimate of gpatial autocorrelation coefficient, therefore they
(standardised by making row sum of the weight matrix as
one) have been used for further analysis in this paper. In the
whole exercise, maximization of log likelihood function and
the estimation of the parameters have been carried out by
using the Nelder and Mead simplex method on the software
MATLAB.

Various mixed effects models, used for finding out
improved estimates of MPCE are given in Table 1. The
parameters in the models have usual meaning as shown in
sections 2 and 3. Further, in case of each model, sampling
variance Ror R (in case of tempora model) are assumed
to be known.

Tablel
Mixed Effects Models

Mode—1 Direct Edimates

Mode—2 Regresson Mode y=XB+v+e
Model -3 Spatiad Modd y=XB+Zv+e

Mode —3A Spetia Modd (intercept) y=u+Zv+¢
Modd—4 Regresson Tempord — y, =X B+V; +&;,V, =kvi4+ 1
Modd -5 Spatial Tempora Vi =X B+2v; + &,V =kvi 1+,
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Table 2 presents the round wise estimates of the para-
meters for the smple mixed effects regression and spatia
models. The value of the multiple correlation coefficients
R? between MPCE estimates and the auxiliary variables, in
case of each round has aso been shown here. The figuresin
bracket show the Standard Errors (SE) of the parameter
estimates. Note that A(=A,,A,) is the likelihood ratio test
(LRT) datistics defined as —2logL ~ 2, where L is the
ratio of nested likelihoods at the hypothesised parameter
valuesfor two competing models under different hypotheses
and k is the difference between the number of parameters
under two models. Here A, compares regression model and
spatial model, under H,:p=0 against H,:p#0 and is
distributed as xZ under H,, and A, compares spatia
model and spatiad (intercept) model, under H,:f=0
agangt H,:B=0[B does not include intercept term ]
andisdistributed as 5 under H,,.

On comparison of the simple regression model (Model 2)
and spatiad model (Model 3) through LRT, we find that
under H,(p = 0), the spatia autocorrelation p for Model 3
has been found highly significant for the two rounds 52 and
55, obvioudy for these rounds, use of spatial model results
in much improvement in the estimates of MPCE. On the
other hand, in case of rounds 50 and 53, and for these only,
the regresson coefficients B have been found nearly
sgnificant for the Model 3 in comparison to Modd 3A
which shows that the spatial model with intercept term may
improve the estimates for these rounds without any help of
the exogenous variables.

Table 3 presents the parameter estimates and their SE in
case of regresson tempord model and spatiad temporal
model.

For Modd 4, uncondrained iterative maximisation
process converged the value of k greater than 1, which is
inadmissible under the assumption of stationarity. For this

Table2

Estimates of Parameters for Small Area Estimates of MPCE Under Regression and Spatial Models

Round R? Moded 2 Modd 3 LRT Mode 3A LRT

65 p 05 M p 05 Ao

Rd. 50 0.27 1,72448 030 1,635.70 1.80 0.59 1,724.68 6.64
(356.19) (0.18) (346.45) (013)  (378.66)

Rd. 51 0.27 342421 048 3,156.90 0.66 0.67 3,022.32 454
(820.89) (0.19) (815.24) (013)  (824.54)

Rd. 52 0.17 215054 087 714.96 13.46 0.86 768.11 0.90
(540.23) (0.07) (257.15) (0.07) (272.27)

Rd. 53 0.13 6,312.99 -0.39 5,822.99 1.56 009 714160 7.66
(1,397.92) (0.27) (1,374.70) (0.23) (1,561.72)

Rd. 54 0.22 343767 061 2,793.24 130 066  2,888.66 3.00
(806.87) (0.14) (742.35) (0.13) (768.84)

Rd. 55 0.31 2989.73 087 1,060.21 20.30 0.86 1,186.58 156
(712.28) (0.06) (362.40) (007)  (394.27)

A, and A, compare models 2,3 and models 3,3A respectively. x1.05=3.841 for A, and %3 g5 = 7.815 for A,.
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case, estimates were obtained by taking k=1 and Moddl 4
was accordingly modified. Table 3 reports the results for
k=1 in case of regresson tempora modd. The spatiad
temporal model shows higher value of common auto-
correlation coefficient and far lower value of the estimate of
c2. A summary of the round wise average estimates of
MPCE (based on dl the 63 digtricts), their estimated
standard errors (SE) and the coefficient of variation (CV)
under each model has been presented in Table 4.

Theresults of Table 4 have been summarized below.

The Direct survey estimates are less precise and al the
models involving mixed effects improve it. The estimates
for the rounds 50 and 55 (based on large samples) are more
precise than the estimates based on other rounds. Spatia
model, depending on the value of p improves the estimates
considerably. In case of rounds 52 and 55, where the
autocorrelation have been found significant, the reduction in
the average SE of the estimates in comparison to the model
without spatial autocorrelation, is considerable. Moddl 3A
with gpatid effect and without auxiliary variables is equdly

good. The spatia tempora mode further improves the
estimates taking into advantage of the state space consider-
ations. It may be noted that for the round 52 (very high
Spatial autocorrelation), the estimates based on tempora
models are worse than the estimates based on models
without tempora considerations. Perhaps due to fixed
regression and autocorrdlation parameters, the estimates
tend towards the average of the five rounds.

In order to judge the performances of the estimators
under various models vis-avis under the most genera
model (spatia temporad modd), data have been simulated
under the spatid temporal model and true MSEs of the
replicated estimates under each of the assumed models have
been obtained. For this, we have conducted the smulation
by taking the estimated parameters from the spatial temporal
model, given in Table 2 and obtained the true replicated
small area mean 6(b) for b™ replication (b=12,..., B)
aong with simulated observations y(b) for alarge number
of replications. On this smulated dataset, for each repli-
cation, different modelsincluding spatial temporal model

Table3
Estimates of Parameters for Small Area Estimation of MPCE Under Regression Temporal and
Spatial Temporal Models

2

p oy k
Modes Edimate SE. Edimate SE. Edimate SE.
Modd 4 - - 4,715.64 431.00 - -
Modd 5 0.79 0.04 2,163.50 245,50 0.53 0.07
Table4

Average EBLUP for MPCE (Rs.), their Estimated SE and CV Under Regression,
Spatial, Regression Tempora and Spatial Temporal Models

NSSO Rounds
Models 50 51 52 53 54 55
Average Small Area Edtimates
Modd 1 27610 32126 37307 40852 41125  482.00
Modd 2 27287 31253 35445 39752 40087 47199
Modd 3 27298 31314 35151 39821  400.78  471.09
Modd 3A 27356 31419 35201 39640 39991 47191
Modd 4 27413 30562 34554 38353 39956  463.32
Modd 5 27375 31221 35179 39161 39950 47357
Average Standard Errors (SE)
Modd 1 25.09 66.06 64.18 74.19 53.87 45.45
Modd 2 17.10 33.65 29.09 39.85 32.68 30.59
Modd 3 16.88 3284 2151 39.98 30.87 2484
Modd 3A 16.56 31.29 20.79 40.03 30.23 24.37
Modd 4 1951 34.91 35.19 37.79 35.14 33.15
Modd 5 17.18 28.99 28.33 30.02 28.76 28.10
Average Coefficient of Variation (CV) (%)
Modd 1 9.09 20.56 17.20 18.16 13.10 943
Modd 2 6.27 10.79 821 10.01 815 6.48
Modd 3 6.18 10.49 6.12 10.04 7.70 5.27
Modd 3A 6.05 9.96 591 10.10 7.56 5.17
Modd 4 712 1142 10.18 9.85 8.79 7.15
Modd 5 6.28 9.29 8.05 7.67 7.20 5.93
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Table5
Percentage Relative Efficiency [RM SE] of the Temporal Modelsin Comparison
to other Models for MPCE

NSSO Rounds
50 51 52 53 54 55
Spatial Tempora Model [Modd 5]
Modd 2 12363 17054 19368 20355 204.72  169.76
Modd 3 10024 13382 14970 16546 16585  154.23
Modd 4 12581 14150 14193 13755 13911 129.88
Regresson Temporal Model [Modd 4]
Modd 2 100.71 13450 15635 16530 16313  152.56

have been applied and the small area mean estimators under
each of them are obtained. While fitting the regression and
spatiad temporad models on the simulated datasets, the
iterative maximisation process have the constrained value of
k <=1. Here we have taken B =5,000 replications. The
true MSEs of the estimators for i™ small area under a
particular modd (k =2-4) may bedefined as

MSE(G!‘)z%ZB:[éi"(b)—ei(b)]z, i=12..,m
k=1

The relative efficiency of the estimators under spatia
temporal model (Model 5) againgt the estimators under
models 2-4 have been judged by the ratio of their mean
squared errors (RMSE) as

> MSE(B))
RMSE(k, Temp) =100
2.5 MSEO™)

where ‘Temp’ denotes the spatia temporal modd and k
denotes models 2, 3 and 4. Likewise the relative efficiency
of the regresson tempora modd (Model 4) againgt the
smple regresson model (Model 2) has been found by
smulating data with the estimated parameters given in
Table 3, under the regression temporal model. The results
have been shownin Table 5.

The results confirm the superiority of the spatial temporal
model in comparison to other models for these parameters.
The regression temporal model has aso been found better
than the smple regression model.

5. Conclusons

The Direct survey estimates based on the small sample
can be consderably improved by using the area specific
small area models. The spatial autocorrelation amongst the
neighboring areas may be exploited for improving the direct
survey estimates. However, the model must be applied after
studying the significant correlation amongst the small areas
by virtue of their neighborhood effects. In case of poor
relation between the dependent and exogenous varigbles, the
sample spatial model with intercept only, may equaly

improve the estimates. This modd uses only the spatia
autocorrelation to strengthen the smdll area estimates and do
not require the use of exogenous variables. The spatid
models, by using the appropriate weight matrix W, or a
combination of W matrices, can considerably improve the
estimates. Weight matrix should be based on logica
considerations and it may be used effectively for the cases,
where due to some reasons, reliable exogenous variables are
not available. This aspect can be further exploited to find out
the small area estimates for the areas which have been
recently created/demarcated.

One has to be careful about the increase in the MSE due
to the variahility caused by replacing the parameters by their
edimates. This gets reflected through the second order
gpproximation to the MSE dedt in the paper. That is why
many times the simple spatid modd (with intercept)
performs better than the spatiad mode involving more
parameters. Use of time series data with fixed regression
parameters across the time, further improves the small area
estimates especialy for the time points where the direct
survey estimates have larger MSE. Spatia temporal models
have advantage over temporad models without spatial
consideration due to the inclusion of fixed spatid auto-
correlation across the small areas. However, for some time
points for which p may be very different than the ret, this
may not hold due to estimates tending towards the average
of five rounds. Here the temporal consideration can be
darted from a suitable initial time point. Findly the
exogenous variables X and the weight matrix W supplement
each other through the regression parameter B and the
autocorrelation parameter p and a judicious use of them
may result in considerable improvement in the small area
estimates.
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Appendix
Theorem A.1: Under Regularity Conditions 1

9 (W) + 9, (W) + 95 (W) +o(m™). (5.1)

For proof of the Theorem, we use the following well known
results (Srivastawa and Tiwari 1976). Let U ~ N(O, X)
then for the symmetric matricesA, Band C

MSE[8()] =

E[U(UTAU)U "] =Trace(AZ)X + 2X AS
E[U(UTAU)(U "BU)U "] = Trace( AZ) Trace(BX)X

+ 2[Trace( AX)ZBX + Trace(BX)XAX + Trace( AXBX)X]
+ 4[X AXBX + B AX].

Proof of Theorem A.1

Kackar and Harville (1984) showed that MSE[é(ﬁ;)]:
MSE[8(w)] + E[B(H) - 6(w)) B -8(w)™]. It s
sraight forward to show that MSE[G(\V)] =0, (V) + 9, (W).
We need to prove that g,(y) = E[(8()) - 6(y)) (6(¥) -
6(y)) 1+ o(m™). Taylor Series expansion of 6({) around
v ad usng (§-y)=0,(m"?) and (@°6(w))/
(y49ve) |, =0, (@) when' I =l 1 -wl we
oet

[6(9) - 6w =[(F - W) ®1,1"VO(y) + O, (m™). (52)

Here  VO(y) = (06(w)) /(@) = [(98(y)) /(9p), (28(w))/
(962)]". Using

Bly) 5 9 (B w)  3By) 96 B.y)
a\l] B=B(y) aWd a\ud
d=12

where 6" (B, y) = XB(w) + A(y)[y— XB(y)], and the fact

that (9B, ())/(dyy) =0, (m™'?) (Cox and Reid (1987)),
we get from the above

[6(§) - 6(w)] =[(F—y)" ®1,1V6 (y) +0,(m™)

|B=f3(w)

(5.3)

96" (B.v) 96'(B, w)} |
p aGV ﬁﬁ(‘l’)

=Ly - XBw)].

where VO’ (y) = {
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Using the Regularity Conditions 1 and the fact that
Bw)-B=0,(m™'?) wehave

[6(F) - B(w)]
=[(F =)@ 11" L)y~ X B(w)] + O, (m™)
=3 (Fy ~ o) LsW)y - X B+ O, ().

d=1

Further using the Taylor Series expansion of the Likelihood
S(M) =0 around v where

of
Col
S )= Logp{ 2B, }
and the orthogondlity of B and v, it follow that
(F—w) =1, (y)S, M) + O, (m™).

Writing
S, (W) = Col[S, (W] =[S, (w), S (W),

Sm) =[Sy (), S, )",

Sy(¥) = o = - Trac {zl o } L1umB, @l

Vg 2 Iy

4 0 51
By(y) =X F A XB(y) and

Wy
oW = Trace{zla—zzl az}
a\ud aWe

we get

[60F) - 6(w)] = L (W)[1, (W) @ 1,][S, (v) ®u]
and thus the expression
[6(3) — B(w)1[6(F) - 6(y)]" upto order o(m™)
=L" (W)[1,'(w) ®1,,] Col [uS; (w)] Concal[ S, (w)u']
[1,'(w) ® 1 ,]L(w)
=L"(W)[1,"(w)®1,] Col Concat[us, (w)S.(w)u']
[1,' W) ® 1 ]L(w).

Now we can write the likelihood and its derivative as

(5.9

=logL = const.—%logn | ——uTZ*lu

9t :_lTracz{Z‘l 82} ;u B, (W)u,

oy 2 Iy
B, (y) =212 3
Vy
2
E{— o }lerac{Z‘l o Z‘la—z}zlde(w)
Yoy, | 2 vy 0y,

where information matrix 1, (v) = I 4 ().
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The expectation of atypica element of the inner most terms
in the expression (5.4) becomes

E[uS, (v)S,(W)u']=

"U[u" B, (y)u][u" By (y)ulu"

_ uTrace{Z‘1 882 }[uT B, (y)ulu’

d

—u[u'B, (1|/)u]Trace{Z‘1 0% }UT
oy

e

+ uTrace{Zl 2 }Trace{zl a—z}uT
i Yy e | |
and by applying the results of Srivastawa and Tiwari (1976),
it becomes

B[S, (v)S.(y)u'] =
1 Trace{zl O 5 a_z}z + 2{8—2 z 8—2}.
2 Wy IV Ny IV,

Substituting these in the expresson (5.4) and aso the
second expression being of order O(m™), we can get the
following upto order o(m™)

[603) — 6(w)I[6(F) — ()"
=L ()[1,'(w) ® 1] Col Concat[ I ()2]
[1,)w) ® 1 ,]1L(y)
=L ()1, () @ 1,101, (W) © Z][1, () © 1 1L(w)
=" ()1, (y) ® Z]L(y).
Theorem A.2: Under Regularity Conditions 1
EL9,(9) + 95(F) — 04(F) — 95(9)] = 0, () +o(m™), (5.5)

E[9,()] = g, () +o(m™),

E[95(§)]= g;(w) +o(m™) (56)

and E[gs ()] = g5(w) +o(m™). (5.7

Proof of Theorem A.2

Taylor Series expansion of g,({) aound v and using
§—y =0, (m™?) when [|§ —y||<=[1F—yl|, weget
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0:9) = 0.(¥) +[(§) — (W) @1, 1Va,(v)
+§[(¢—W ® 1, 1V2a W -y ®1,]

+0,(m™)

Vo, (y) = {_agsgu) —aglé‘j’)} ,

9°g,(y)
) B Z J\y¥J
\Y O, (W) - ]Scd(glz |:C]2I;gat B\Ud aWe

agl(W) — Rz—l ox Z_lR

Iy Iy
9%g.(v) :_Zszla_szla_szlR
W40y, yy Iy,
2
+Rz? (a2 >R
aWdaWe

Using the fact that X(y) and its derivatives are symmetric,
we have the second term of the expression as

[T - @1,V WIF-w) @I,
=-L"(y)[1,'(v) ® Z]L(v)

9’
oyoy'

+%Trﬂqc{[lz @ (RE == {1, y) @ (= R

=-05(y) + s (V)

where I\,‘,l(\p) =Var(y) is information matrix, the
asymptotic variance of . The first term in the expression
[(F—w)" ®1,]Vg, () reduces to g,(y) because of
E(J—w)=b,(y) up to order o(m™) (Peers and Igbal
1985).

The second part of the Theorem follows from the Taylor
series expansion of g, (), g;(¥) and g- (), each around
v ad usng G-y=0,(m"?) and (9%g,(v))/
(OWq OWe) |y = Op(M™), (0205(W))/ (QWu0W,) |yeg =
O,(m™)  and  (9°Gs(W)/(WadVe) = O, (M),
respectively where [|§ —yr [I< || §r— ||

Theorem A.3: Under Regularity Conditions 2
MSE([6, (¥)] = Grzr (W) + G (W) +0(m ™),

Proof of Theorem A.3

The proof is basicaly on the line of Theorem A.1 and with
the use of the results of (Srivastawa and Tiwari (1976))
mentioned therein.

MSE([6, (§)]
= MSE([6, (w)] + E([6, (w) —6,)(8, (W)~ 6,)"]
= Gy (W) + EL(6, () — 8,)(8, (w) - 6,)"].

(5.8)

(5.9)
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Taylor series expansion of 6, (v) around v and using
(=) =0, (M%) and (°8(y)) (OW 4OV |, =0 @)
when [ — || < [l -y || wehave
[6,(§) — 6, ()]

=[(F-y) ®1,]" VO, () + O, (m™)

= [0y —ve)Ly(Wa W)]+0,(m™).  (510)
d=1

Further using the Taylor series expansion of the Likelihood
equation S(f)) =0 and the orthogondity of B and v, it

follows
(T —w) =1,"(w) S(y) + O, (m™). (5.12)

Subgtituting the expression for (\ — ) in equation (5.10),
we have up to order o(m™)

[6,(9) -6, (W)]=Lf W1, (W) ®1,][S, (W) ®e] (512
and

[(6, () — 6, (w)) (6, () — 6, (w))"]
=L"(y)[I, (y)®1 ] Col Concat

1<d<3 1<e<3
[&:Ss (W)Se (W)l 111, (W) ® 1, 1L (W)

where

(5.13)

5,0 =CallS ()], Si(w)=si-

d
Using the expression for derivatives of likelihood, we have

Tracd Cy, (V)] - i Trace{Ht‘l %}

1 oy
S (W) ZE ’
.
+> [6' By (w)a]
=1
4, 0 _ _ 40H,
_|:etTHt 155 :|C1d (W):|:(X:ITH11X1) 1><1TH1l 2 Hllxl}
Vg Iy
4 0H, _
Btd(W):Htla : Htl-

d

By applying the considerations ¢ ~ N(O, H,), Corr(e,
g;)=0 for i# j,Corr(g, (dg)/(dy4))=0 and Corr(e,
(0%€) /(g 40y,)) =0 due to the fact that (de)/(dy,) =
(0(y; =U 0,y 1)) [(0yy)  being linear function  of
(Yis Yo, ---» Yoyq) is uncorrdated with e, we get the
expectation of the inner most terms of the expression (5.13)
as
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Ele S, (W)S,(WET =Ko (W)H, + 2{ o, Hai}
Wy Iy

1 oH
+ E{Trace[ By (W)] a—t

+ Trace[ B (y)] 2 }
We a\pd

+ %Trace[ By (W)] Trace[ B, (w)IH,

where
13 4 0H, , ,0H
K ==> Trace| H LH—L |
ae(W) 221: { t v, t awj

The middle three terms in the expression being of order
O@) which dong with I\;l(\p) in the expression given
below makes them of order o(m™),

EL(B, (%) ~ 6, (W) (6, (§) -6, ()] = gay (W)
=L )1, (W) @ 1,1IK, (W) @ H,]
[1,'(w) ® 1,]L(w) +o(m™)
= LT ()1, (WK, (W1, (W) ® H IL(w) +o(m™).
Theorem A.4: Under Regularity Conditions 2

E[ 91 (W) + 93 (W) + e (W) — 9 (W) — G5, (V)]
= O (W) +0(m™)

E[ga ()] = ga (W) +0(m™)

and
E[9s: (9)] = Gs; (W) +0o(m™).
Proof of Theorem A.4

The proof is essentidly based on the line suggested in
proving Theorem A.2. Using Taylor series expansion of
01 (W) around v, we get

G2t (§) = G (W) +[(F =) ® 1,1 Vg1 (W)
T UOMCII & SO (VI

+0,(m™)
0
VG (W) = ]S(EL [V (W], VOio (W) = —gam ()
B WYy

%Gy (V)
2 = B
\Y Ot (\Ij) - ]ggl:; |:ngsc3at B\Ud aWe

991 (V) - Ryt a_R sIR

oy oy
Mz_z *18_22*18_22*1R
GATACITR Wy IV,
2
+Rz? gz >R
aWdaWe
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Using the fact that X(y) and its derivatives are symmetric,
we have the second term of the expression as

[~ ¥)" @1,V 9 (WIF-y) ®1,]
= —L' (W[, (v) ®ZIL(W)

0°%
ooy’

+§Trgce{[|3 @ (RE == [1,4(y) @ (= 'R

= —9x(¥)=9x (V)

where I\;l(\p) =Var(y) is the asymptotic variance of .
The firgt term in the expression [(f—y)" ® | ]Vd. (W)
reduces to g, (v) because of E(y—wy)=Db,(y) up to
order o(m™) (Peersand Igbal 1985).

The second part of the Theorem follows from the Taylor
series expansion of g, () and g (), each around v
and usng §-y=0,(mY%) ad (99, (y))/
(W4 W) -5 =Op (M) and (995, (W) /
ﬁa}ydaq;"e) =5 =0, (M™), respectively where ||§" —|I<

V-vi.
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Modeling and Estimation Methods for Household Sizein the Presence of
Nonignor able Nonresponse Applied to the Norwegian Consumer
Expenditure Survey

Liv Belsby, Jan Bjernstad and Li-Chun Zhang*

Abstract

This paper considers the problem of estimating, in the presence of considerable nonignorable nonresponse, the number of
private households of various sizes and the total number of households in Norway. The approach is model-based with a
population model for household size given registered family size. We account for possible nonresponse biases by modeling
the response mechanism conditional on household size. Various models are evaluated together with a maximum likelihood
estimator and imputation-based poststratification. Comparisons are made with pure poststratification using registered family
size as stratifier and estimation methods used in officia statistics for The Norwegian Consumer Expenditure Survey. The
study indicates that a modeling approach, including response modeling, poststratification and imputation are important

ingredients for a satisfactory approach.

Key Words. Household size; Nonresponse; Imputation; Poststratification.

1. Introduction

This work is motivated by the considerable nonresponse
rate in the Norwegian Consumer Expenditure Surveys
(CES) for private households, for example 32% in the 1992
survey. Nonresponse involves both noncontact and refusal.
We focus on the problem of nonignorable nonresponse that
occurs when egimating the number of households of
various sizes and the total number of households.

We shall consder a completely model-based approach;
modeling and estimating the distribution of household size
given regigtered family size and the response mechanism
conditiona on the household size. This modd takes into
account that the nonresponse mechanism may be nonigno-
rable, in the sense that the probahility of responseis alowed
to depend on the size of the household. The response model
is used to correct for nonresponse. M odel-based approaches
with nonresponse included, sometimes called the prediction
gpproach, have been considered by, among others, Little
(1982), Greenlees, Reece and Zieschang (1982), Baker and
Laird (1988), Bjgrnstad and Walsze (1991), Bjgrnstad and
Skjold (1992) and Forster and Smith (1998).

For various models of household size and response we
consider mainly two model-based approaches, a maximum
likelihood estimator and imputation-based poststratification
after registered family size. These methods are compared to
pure poststratification and the methods in current use in
CES.

The main issue here is a comparison of models and
methods with estimation bias as the basic problem. In
addition, standard errors of the estimates and differences of
the edtimates, conditional on the sizes of pod-strata
determined by family size, are estimated using a bootstrap
approach. In addition to assessing the statistical uncertainty
of the estimators, this is done to help evaluate the extent to
which differences between the proposed estimators are
attributable to sampling error, nonresponse bias or both.
However, in this evaluation we keep in mind the following
quote from Little and Rubin (1987, page 67): “It is impor-
tant to emphasize that in many applications the issue of
nonresponse bias is often more crucia than that of variance.
In fact, it has been argued that providing a valid estimate of
sampling variance is worse than providing no estimate if the
edimator has a large bias, which dominates the mean
squared error.”

Section 2 describes the data-structure and the sample
design of CES, and Section 3 considers modeling issues.
Section 3.1 presents the various models for household size
and response to be considered for the 1992 CES, Section 3.2
describes the maximum likelihood method for parameter
estimation, and in Section 3.3 the models are evaluated. A
family size group modd for household size and a logistic
link for the response probability using household size as a
categorica variable give the best fit of the models under
consideration. Section 3.4 gives the estimated household
size digributions for different family sizes and estimated
response probabilities for different household sizes.
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Statistics Norway, Division of Statistical Methods and Standards, P.O. Box 8131 Dep., N-0033 Oslo. E-mail: jab@ssh.no and Li-Chun Zhang, Statistics
Norway, Division of Statistical Methods and Standards, P.O. Box 8131 Dep., N-0033 Odlo. E-mail: lcz@ssh.no.
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Section 4 considers model-based estimation, the impu-
tation method, imputation-based estimators and the variance
estimation method. It is shown that for the chosen model for
household size from Section 3.3, the maximum likelihood
estimator and the imputation-based poststratified estimator
areidentica.

Section 5 deals with the main goa of estimating the total
number of household of various sizes based on the 1992
CES, using the estimators in Section 4. The mode! that gave
the best fit seems to work well for our estimation problem.
We conclude that poststratification, response modeling and
imputation are key ingredients for a satisfactory approach.

2. Norwegian Consumer Expenditure Survey

The population totals within household-size categories
provide a more correct number of dwellings than the totals
within family-size categories from the Norwegian Family
Register. Furthermore, the authorities for evaluating even-
tual policy intervention aimed a housing construction use
the estimated number of households. Estimating household-
Size totals is therefore an important issue in socia planning.
It is invariably affected by nonignorable nonresponse, no
matter what kind of survey one uses. Hence, it is a good
illustration for how to handle nonresponse bias. We shall
base our estimation on the Norwegian Consumer Expen-
diture Surveys (CES), where it is important to gain infor-
mation about the composition of households, since house-
hold size influences consumption.

The actua CES, the survey for expenditure varigbles, isa
sample of private households from al private households in
Norway. This is done by selecting a sample of persons and
including the whole households these persons belong to.
Persons older than 80 years old are excluded since they
often live in indtitutions. For our purpose, the units of inter-
et in the survey are persons between the ages of 16 and 80
living in private households, and the variable of interest is
the size of the household the person belongs to, which is
observed only in the response sample of the persons
sected.

The sample design is a three-stage sdlf-weighting sample
of persons. That is, every person in the population has the
same inclusion probability to the total sample. Thefirst two
stages select geographical areas in a stratified way, while at
the third stage persons are sdected randomly from the
chosen geographical areas. The primary sampling units
(PSU) at stage 1 consists of the municipalities in Norway.
Municipalities with less than 3,000 inhabitants are grouped
together such that eech PSU congsts of at least 3,000
persons. The PSUs are first grouped into 10 regions and
within each region sratified according to size (number of
inhabitants) and type of municipdity (i.e, industrid
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gtructure and centrality). Totally, we have 102 strata. Towns
of more than 30,000 inhabitants are their own strata and
therefore selected with certainty at stage 1. For the other
dtrata, one PSU is selected with probability proportiond to
size. At the second stage, the sdected PSUs are divided into
three smaller areas (secondary sampling units, SSU) and
one of theseis selected a random. Finadly, at the third stage,
for each of the selected SSU, arandom sample of personsis
sdected. The sample sizes for each sdected SSU are
determined such that the resulting total sample of personsis
s f-weighting.

Our gpplication is based on the data from the 1992 CES.
CESisayearly survey and since 1992 a modified Horvitz-
Thompson estimator, including a correction for nonresponse
by estimating response probahilities given household size,
has been employed (see Belsby 1995). The weights equa
the inverse of the probability of being selected multiplied
with the conditional probability of response given selected.
Since 1993 the probability of response is estimated with a
logistic model with auxiliary variables being place of
residence (rura/urban), and household size. For most of the
nonrespondents the family size is used as a substitute for the
household size.

A household is defined as persons having a common
dwelling and sharing at least one meal each day (having
common board). For a complete description of CES we
refer to Statistics Norway (1996). In CES, the auxiliary
variadbles known for the total sample, including the
nonrespondents, are the family size, the time of the survey
(summer/not summer), and the place of residence (urbar/
rural). Families are registered in Norwegian Family Reg-
ister, (NFR), and may differ from the household the persons
in the family belong to, both by definition and because of
changes not yet registered. Hence, the registered family size
from NFR differs to some extent from the household size.
Initidly, based on experience from previous surveys, al the
auxiliary variables and household size are assumed to affect
theresponserate.

Table 1 shows the data for the 1992 CES with a total
sample of 1,698 persons. The households with size five and
greater are collapsed due to the low frequency in the sample
of households. We base our modeling and estimation on two
corresponding tables, one for the persons in rura areas and
one for the persons in urban aress. These data are given in
table Al in appendix Al

For example, the number 48 in cell (1,2) means that of
the 162 persons registered to live aone in the response
sample, 48 are actudly living in a two-persons household.
This is explained mostly by young people's tendency to
cohabitate without being married; see Keilman and
Brunborg (1995).
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Tablel
Family and household sizes for the 1992 Norwegian Consumer Expenditure Survey
Household size
Family size 1 2 3 4 >5 Totd Nonresponse Response rate
1 83 48 20 9 2 162 153 0.514
2 9 177 37 4 3 230 160 0.590
3 10 25 131 40 6 212 91 0.700
4 2 13 37 231 17 300 123 0.709
>5 1 4 4 17 181 207 60 0.775
Total 105 267 229 301 209 1111 587 0.654

3. Modding of Household Size and Nonresponse

We shall assume a population model for the household
size, given auxiliary variables, i.e., we model the conditional
probability. To take nonresponse into account in the statis-
tica analysis, we must mode the response mechanism, i.e.,
the distribution of response conditional on the household
size and auxiliary variables. The sampling mechanism for
persons is ignorable for the survey we consider, i.e., is
independent of the population vector of household sizes.
The datistical analysis is therefore done conditional on the
total sample, following the likelihood principle (see
Bjernstad 1996). Hence, probability considerations based on
the sampling design is irrelevant in the statistical analysis.
This is the so-cdled prediction gpproach. However, when
evaluating the estimation methods with regard to statistical
uncertainty, we do this from a common randomization per-
spective as described in Section 4.3.

For CES, the auxiliary vector consgts of the family size,
place of residence divided into rurd and urban areas, and
time of the data collection.

3.1 TheModes

Let us first consider a smple model for the household
Size, denoted by Y. Let x denote all auxiliary variables. The
household size is assumed to depend only on the family size
X, and as such is a model with a restricted parametric link
function, but with no additional assumptions,

P(Yi =yIxi)=P(Yi =yIx)=py, (B

where

> p,,, =1,foreachpossiblevalueof x;.
y

The modd (3.1) is flexible in the sense that it does not
include any restrictions on the assumed model function of
X;. The drawback is the high number of parameters
compared with a model using a logistic type model with a
linear, in X, link function (the function linking P(Y =
y) with x). If nonresponse is ignored the estimates in this
model would simply be the observed rates.

Household size defines ordered categories. Thus anatura
choice for amodel is the cumulative logit model, known as
the proportional-odds model (see McCullagh and Nelder
1991), assuming (with 6 increasingin y)

1

P(Y, <y|x)={1+exp(-6,+B'x)

1 for y>5.

fory=12,3,4

However, a goodness of fit test, with x consisting of
family size and place of residence, indicated that this model
fitsthe data badly. Thuswe chooseto reject it.

It is assumed that the probability of nonresponse may
depend on the household size. For example, one-person
households are less likely to respond than households of
larger size since larger households are easier to “find at
home”. Nonresponse is indicated by the variable R, where
R =1if person i respondsand O otherwise. Let R, bethe
vector of these indicators in the total sample. From
Bjarnstad (1996), the response mechanism (RM), i.e, the
conditional distribution of R, given the x—values in the
population and the y —vaues in the total sample, is defined
to be ignorable if it can be discarded in a likelihood-based
andysis. This means that RM isignorable if this conditional
distribution of R, does not depend on the unobserved
y—values, coinciding with the definition used by Little and
Rubin (1987, pages 90, 218). For our case it is assumed that
adl pairs (Y;, R) areindependent. Then RM isignorable if
Y; and R, are independent. Hence, nonignorable response
mechanism is equivalent to

P(Yi =yi X, 1 =0)2 P(Y; =y, %, =1)

and then both aredifferent from P(Y, =y, |X; ).

Thus egtimating the parameters in the modd for P(Y =
y|x) usng only the response sample, ignoring that the
probability of response depends on the household size, would
most likely give biased edtimates for the unknown para
meters. Also the poddratificaion estimator would give
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biased estimates because it assumes that the distribution of R
only depends on the auxiliary x. E.g., the observed lower
response rate among one-person families indicates that the
same may hold for one-person households. If o, the edti-
mated probability of household size 1, based on respondents
only, would be too smdl. Podstratification with respect to
family sizewill mogt likely correct only some of thisbias.

The model for the probability of response, given
auxiliary variables and household size y;, isassumed to be
logigtic. It depends on the auxiliary varigbles z;, which
includes part of x;, expressed by

RM1(y, z):

1 (32
1+exp(-o -7y, —y'z;)

Here, oo and y are scalar parametersand y is a vector.
The variable y; hasan order. Motivated by this fact, and to
avoid introducing many parameters, y, isused in (3.2) as
an ordinal variable rather than a class variable. Thus the
logit function,

log{ P(R =1|y;,z;)/P(R =0]y; ,z;)} =a

+yy +v'z,

is linear in y,. To avoid the assumption of linear logit in
Yy;,» we &so consider a model with y, as a categorica
variable, i.e,
RM2(y,2):P(R =1]y;,z;)=

1
=0 =04l (Y ) =0yl () J
—aglg(y) -0l () -v'z
where theindicator variable |, (y;) equaslif y, =y and

0 otherwise. The drawback with this model is that it
includes three parameters more than model (3.2).

P(R =1ly;,z;)=

v (33)
1+ exp(

3.2 Maximum Likelihood Parameter Estimation

All the selected persons in the sample are from different
households (duplicates have been removed), The population
model then assumes that the household sizes Y, are
satistically independent. For this variable, interviewer- or
cluster- effect playsno role.

Let us consider the likelihood function for estimating the
unknown parameters, assuming that &l pairs (Y, R ) are
independent and response model RM1 given by (3.2). To
smplify notation we relabel the observations such that
observations 1 to n, are the respondents and observations
n, +1 to n are the nonrespondents. With response model
RM2 the expression for the likelihood is of the same form
with (3.3) replacing (3.2).

For the respondents let L, =P(Y, =y, "R =1]|x,).
Then, for modd (3.1)
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1
T lrep-o-vy-v'z,) "

=1,..,n (34

yivxi’l r

For the nonrespondentslet L, = P(R, =0]|Xx; ). Then

5 1
L= Py y.i=n+1..,n (35
2 reporryy'z) P ©9

The likelihood function for the entire sample of persons

from different householdsis given by
L(8,B, o, v v) =[] L. (39)

For i=1, .., n,, L, is according to (3.4) and for i =
n, +1, .., n, L, isgivenby (3.5).

Edimates are found by maximizing the likelihood
function (3.6). The maximization was done numericaly
usng the software TSP (1991) see Hdl, Cummins and
Schnake (1991). The optimizing dgorithm is a standard
gradient method, using the andytica first and second
derivatives. These are obtained by the program, saving us a
substantial piece of programming. The modd fitting is
based on the chi-square statistic and on the t—values,
provided by TSP, where the standard errors are derived
from the andytical second derivatives. The t—values have
to be interpreted with some care, since the unbiasedness of
the estimated standard errors depends on how well the
model is specified as well as the number of observations
compared with the number of parameters.

3.3 Evaluation of the Modelsfor Household Size and
Response

We present the fit of the models with the Pearson
goodness-of-fit statistics. The model study is based on the
1992 CES. The parameters are considered to be significant
when the absolute t—values are greater than 2. However,
we do not want a moded that is too restrictive, and therefore
some vaiables are kept even though their absolute
t—values arelessthan 2.

In the response models RM1 and RM2 we use the
variable z =z, placeof resdence. Welet z=0 if rura area
and z=1 if urban area It was observed in the CES
1986-88 and CES 1992 — 94, see Statistics Norway (1990,
1996), that there is more nonresponse during the summer.
Therefore, the time of the survey was aso included in the
mode, that is whether or not the data were collected in the
period May 21—August 12. However, the time of the
survey was found to be nonggnificant, with t—value
clearly less than 2. Also the family size was found to be
nonsignificant. But if the household size is omitted in the
response model then the family size turns out to be
sgnificant.
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Idedlly, we want to take a look at the empirica logit
function for response with respect to the household size.
However, household size is unavailable for the non-
respondents. As a replacement we plot the logit-function
againg the family size; seefigure 1. From family size oneto
two the two functions for rurdl and urban families increase
in afarly pardlel way . However, for family size three and
four the logit functions depart from being linear and paralléel.
Thus we suspect that coding the household size as a
categoria variable, as in model RM2, will give better fit
than restricting the logit functions to be paralld for rural and
urban and linear with respect to the household size, as in
model RM 1.

In order to test the goodness of fit of the models, we
consider the Pearson chi-square statistic, conditiona on the
auxiliary variables x, z. Given rural or urban type of
residence and registered family size, there are six possible
outcomes, household sizes 1,..,5 and nonresponse.
Altogether there are ten multinomial trials and sixty cells.
For family sizes (1,2) and (4,5), the extreme household sizes
(4,5 and (1,2), respectively, are comhined because the
expected sizes under the models are too small. This reduces
the number of cdls to 52. The degrees of freedom (d.f.) is
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calculated as: number of cells — number of trials — number
of parameters. For model (3.1) & RM1(y, z), df.= 52—
10-(20+3)=19, and for (3.1) & RM2(y, z), df. =
52— 10-(20+6)=16. For model (3.1) & RM1(y, z)
the Pearson statistic y* is 26.35 and the p—value is0.121.
And for model (3.1) & RM2(y, z) x? is 21.77 and the
p—vaueis0.151.

By sudying the standardized residuas, (observed-
expected) / v/ Var(observed) , we find that the main reason
for the better fit is that model (3.1) & RM2(y, z) does a
better job of predicting the observed counts for the urban
area where the response rate is lowest (see appendix Al).
Thus the data indicates that coding the household size as a
categoria variable, asin RM2, improves the fit compared to
using it as an ordina variable. The model (3.1), with the
restricted parametric link function, combined with RM2 is
the best of the models we have considered so far.

3.4 Estimated Household Size Distribution and
Response Probabilities

Table 2 displays the estimates for the population model
(3.1) together with the logistic response model RM2 in
(3.3).

15 A

1.0 A

log(response rate/nonresponse rate)
o
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Figure 1. The logit function for the empirical response rate with respect to family size 1, ..., 5 in urban and rura areas,
respectively. The computation is based on respondents and nonrespondents from Table 1 in Appendix Al.

Table2
1992 CES. Parameter Estimates, in Percentages, for the Population Model with a Restricted Parametric
Link Function, p,, ,, Combined with the Logistic Response Model RM2 (y, z). In Parentheses
are the Estimates for the Population Modédl, Ignoring the Response Mechanism

Household size
Family size, x 1 2 3 4 5 or more
1 60.01(51.23)  26.75(29.63) 8.35(12.35) 4.09 (5.56) 0.80 (1.23)
2 5.27(3.91) 79.80(76.98) 12.48(16.09) 1.47 (1.74) 0.98 (1.30)
3 753(4.72) 1445(11.79) 56.67(61.79) 18.85(18.87) 2.50 (2.83)
4 1.06 (0.67) 5.31(4.33) 11.38(12.33) 77.20(77.00) 5.05 (5.67)
5 or more 0.84 (0.48) 2.60 (1.93) 1.96 (1.93) 9.05(8.21) 85.55(87.44)
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Let us interpret some of the values in the household
model. Taking the response mechanism into account has
largest effect on the estimated household distribution for
one-person families. The probability that a household size
equals one, given that the family sizeis one, is estimated as
60.01%. The estimate based on the traditional approach,
ignoring the nonresponse, is 51.23%. The response model
“adjusts’ the observed rate among the respondents to a
higher value. This seems reasonable since the rate of non-
respondents is higher for smal households. The estimated
probability of household size five or more, given family size
of five or more is 85.55%, which differs little from the
observed rate among the respondents, 87.44%. This
indicates that, given family size five or more, the household
size digtribution is about the same among respondents and
nonrespondents.

Table 3 presents the estimated response probabilities
based on RM2 in combination with the population model
(3.1). Furthermore, we present estimated response proba
bilities based on a saturated modd, with perfect fit,
presented in Section 4.2. The model, defined by (4.9),
assumes that the response probability for persons with the
same household size within rural/urban area, respectively, is
identica for different family sizes. Moreover, the model for
household size depends on place of resdence and family
size, but with no restriction on the link function. We note
that RM2(y, z) sdatisfies (4.9b), but is more regtrictive.
Modd (4.9) alows for more freedom than model (3.1) with
RM2(y, 2).

Table3
Estimated Probability of Response Based on the Logistic

Model RM2 in Combination with (3.1), and the Saturated
Model (4.9). The Estimates are Given in Percentages

Household size
Place of residence 1 2 3 4 5or more
Estimated response probabilities for
model RM 2
Rural 47.77 6090 79.16 7326 81.52
Urban 38.92 52.04 7244 6562 75.46
Estimated response probabilities for
the saturated model
Rural 50.79 62.37 76.90 7057 83.07
Urban 35.17 50.85 74.79 70.68 72.89

The estimated response probabilities reflect the lower
response rate among one-person households, and the lower
response rate in urban areas. Households of size five and
higher have the highest response rate. The models estimate,
surprisingly maybe, that the the probability of response is
higher for households of size three than for households of
size four. This may be explained by the fact that women
often choose to have two children, and that three-person-
households mostly consist of mother, father and a small
child. Such a family will tend to stay at home and thus be
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more accessible than a typical four-persons-family with two
older children.

The higher estimated response rate for households of size
three compared to size four is equivaent to the ratio
P(Y =3|R=1)/P(Y =3|R=0) being greater than theratio
P(Y=4|R=1)/P(Y=4|R=0). This is condgtent with
the household distribution in table 2, where we estimete that
P(Y=4)=P(Y=4|R=1), ie, P(Y=4|R=0)= P(Y=
4| R=1). Onthe other hand, the estimates in table 2 indicate
that P(Y=3|R=1)>P(Y =3) which means that P(Y =

3|R=1)>P(Y=3|R=0).

We see that the logistic model RM2 combined with the
population model with the restricted parametric link p,
acts as a smoother of the estimates based on the saturated
modé in (4.9), because of the added assumption of parallel
logits of the response probabilities for urban and rural aress.

4. Egimatorsfor Household Size Totals

In this section we present the estimators for household
size totals and the method for variance estimation. We use a
maximum likelihood estimator with the redtricted para
metric link function in (3.1) as population modd. It is
shown that this estimator is identical to an imputation-based
posttratified estimator, which again turns out as a standard
posttratification when the response mechanism is ignored.
Furthermore, we present an imputed postdtratified estimator,
based on a saturated model for household size and response
probability.

4.1 EstimatorsBased on a Restricted Parametric
Link Function as Population M odel

With N, denoting the total number of persons living in
households of size y, the number of households of size y
equas H,=N,/y. The total number of households is
denoted by H, H =2yH,.

The datistical problem is to estimae H, for
y=1, .., J and H. Thelargest size J is chosen such that
there are few households of size greater than J. Strictly
spesking, H; is the number of households of size J or
more, and likewise for N;. In our application we choose
J =5 dueto the low frequency in the sample of households
of sze greater than five. We can write N, = SIY=Yy),
where theindicator function 1 (Y; = y)=1if Y, =y, and0O
otherwise. Hence, with X = (X, ..., Xy),

1 N
E(H, [X)==2 P(Y, =yIx;).
Yiz
A maximum likelihood based estimator for H, can be
obtained by estimating E(H, [x), ie, replacing
P(Y, = y|x;) by the maximum likelihood estimator
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I3(Yi =y|x;). The data is stratified according to family
szes 1, ..., K, where the last category contains persons
belonging to families of sizes > K. Using the modd with
the redtricted parametric link function, defined in (3.1), Y is
assumed to depend only on the family size x, and the
estimator takes theform

H =12K M, P(Y =y|x) (4.2)

y y x=1"" X '

where M, (M, ) denotes the number of persons in the
population with registered family size x(=K). The M, ’s
are known auxiliary information from the Norwegian
Family Register.

A common approach to correct for nonresponse is by
imputation of the missing values in the sample. Based on
the estimated distribution for Y for a given family size and
place of residence for the nonrespondents, P(Y=y|x,
z, r =0), we assign the nonrespondents to the vaues
1, ..., 5 in proportions given by P(Y =y|x, z,r =0) for
y=1,..,5 Let n, (0)(n, (1) be the number of
imputed values with family size x and household size 'y,
for rural (urban) areas and let m,, (0) (m,, (1)) be the
number of missing observations for personsin rura (urban)
aresswith family size x. Then

Ny, (2)=m, (z)-P(Y=y|x,zr=0),z=0,1 (42

and
N, =Ny (0)+n,, (1)

is the total number of imputed values with family sze x
and household size y, i.e, n,, is the estimated expected
number of households of size y, given family size x and
r=0.

The following genera result holds, showing that with
population model (3.1), the maximum likelihood estimator
(4.1) is identica to an imputation-based poststratified
estimator.

Theorem. Assume model (3.1) for Y. That is, P(Y=
yIX, z)= p, Is independent of 2z, but otherwise the
P, xS are completely unknown with the only restriction
>y Py x =1, foral valuesof x. The response mechanism
is arbitrarily parametrized, i.e., no assumption is made about
P(R=1|Y=Yy, X, z). Then the maximum likelihood
edimatesfor p, , aregivenby, for x=1, ..., K,

b, Myt
m, +m,,

where n,, is the number of respondents belonging to a

family of size x and household size y, m,(m,) isthe

number of respondents belonging to families of gze

x(=zK), and m,, =m,, (0)+m,, (1).
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Proof. See Appendix A2.

The theorem implies that the etimator can be written asthe
imputation-based pogstratified estimator, using family size
asthe gratifying variable,

|_A|I 1 K nxy+nxy

y, post :_Zx:lM

y
Assuming ignorable response mechanism and using the
model (3.1), the likelihood function is given by
[T P(Y, =y, |x ). Then the maximum likelihood esti-
mate P(Y = y|x) is smply the observed rate among the
respondents with household size y, given family size x.
Thus the maximum likelihood estimator turns out to be
identicd to the standard poststratified estimator, with family
Sze asthe dratifying variable,

N 1k Ny
H . pos =;Zx=1'\" “m.

4.3
m, +m,,

4.9

For a general study of poststratification see, for example
Holt and Smith (1979) and Sérndal, Swensson and Wretman
(1992, chapter 7.6).

To illustrate the effects of nonresponse modeling and
postdtratification, we also present estimates based on the
regular expansion estimator, given by

- n
Hyyezl-N—y (45)
y n
and the imputation-based expansion estimator given by
N n, +n;
H'ye:1~N y (4.6)
ey n

Here, n, is the number of respondents in households of
sSze y,n, is the tota number of respondents, and
n, = YN, . The edimator (4.5) does not seek to correct
for nonresponse nor use the family population distribution
as a pog-gtratifying tool to improve the estimation, while
estimator (4.6) tries to take the response mechanism into
account, but cannot correct for nonrepresentative samples.

4.2 Imputation-based Poststratification with a
Saturated M odéel

We now proceed to an intuitive method of imputation
that was used to estimate response probabilities for a
modified Horvitz-Thompson edimator in the officia
gatistics from the 1992 CES (described in Belsby 1995).
We will use this imputation method for the poststratified
estimator (4.3).

The imputation method consists of distributing, within
rural/urban area, the m,, (z) nonresponse units over the
household sizes 1,..,5 in such a way that, given
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household size, the rate of nonresponse is the same for al
family sizes. It implicitly assumes that the response
probability for persons with the same household size within
rural/urban area is identical for different family sizes.
Denote the number of nonresponse persons with family size
x and household size y and place of residence z obtained
in this manner by h,, (z). The corresponding number
among the respondents is n,, (z). The values of h,, (z)
are determined by the equations

hy(@ _ h(?
hy (2)+n,(2) hy(2)+n,(2)’

When n, (z)=0, we let h, (z)=0. The eguation
(4.7) issolved under the conditions

D> h,(2)=m(2);x=1,2,3,4,5 and z=0,1. (4.8)
y

=0,1. (47

Solving (4.7) and (4.8) requires, for each value of z, one
row (n,,(z), n,,(2),..., n,s(z)) of nonzeros, which
holds for our case. The imputed values h,, (z) determined
by (4.7) and (4.8) correspond to the imputation method
described by (4.2) for the following model:

P(Y=y|x,2)=p,,, withnoregrictions (4.99)

P(R=1|Y=YyY,x,2)=q, ,, independent of x. (4.9b)

This can be seen asfollows:

For the ten multinomial trials determined by the different
(X, z)—values, we have 50 unknown cell probabilities
T, . =P(Y =y, R=1|x, z). With no regtrictions on cell
probabilities, the maximum likelihood estimates (mle) are
given by observed relative frequencies,

. (@

2 m (2)+my (2)

This also holds when n,, (z) =0. Now, it can be shown
that there is a one-to-one correspondence between n=
(mo, m;) and (Po, Ao, Py, 0y), Where @, =(m,, , Y=
1..,5;x=1..,5), pZ:(p_yx,z:yz:L...,S;x::L vy D)
and q, z(ql,z' s q5,z)' Since Tcyx,z = py,x,z 'qyz! the
mleof p,, , and g, , must satisfy
N, (2)

m, (2) + m,, (2)

pyx,z 'qy,z = (410)

and are uniquely determined by 7, ,.
Consder h,, (z), given by (45 & (4.6). Let

h, (z2)=%,h,, (2) and n,(2) =Xn,, (2). From(4.7),
@ Mm@ ,if ng(2)>0. (4.11)
hj (2)+n;(2) hy(2)+n,(2)
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From (4.10) and (4.11) we have that the following
intuitive estimates also are mle.

. n(2)
qy’z_ny(z)+hy(z)
~ N, (2)+h,, (2)

yvwxz

4.12)

(4.13)

m,(2)+m,, (2)
(dsowhen n,, (z)=h,, (2)=0).

(We can dso show (4.12) and (4.13) by maximizing the
loglikelihood directly.) Next, we show that the imputed
values (4.2) for the model (4.9) equal h, (2) . From (4.2),
we have n, (z)=m,(2)- P(Y = y|x,z,r = 0). Under
mode (4.9) and estimates (4.12) and (4.13), wefind that

I3(Y=y|x,z,R=O)=
ﬁ(Y=y|x, z)—ﬁ(Yzy, R=1|x, 2)

P(R=0|x, z)
Byer Ty
_1—nytw
~n w (2)+hy (2)—n (z) h,, (2)
my, (2) T m(2)’

and it follows that n: (z) hy(2). If n, (z)=0, then
Pyxz=Ty,=0, and Ny (z) 0. We notethat model
(4.9) issaturated and will, from (4.10), give perfect fit.

The imputation-based expanson estimates (4.6), with
model (4.9), are identicad to the modified Horvitz-
Thompson estimates with g, , = n (z)/[n,(2) +n; (2)]
(from (4.12)) as the estimated response probabilities, used in
the official statistics from the 1992 CES. This follows from
the fact that the modified Horvitz-Thompson estimator of
N, isgiven by » )

~ i = y

Nywr = 27—
where m;, = P ( person i is selected to the sample and
responds). Hence,

n - n .
T, _WP(Ri =1|x;,z,Y, —Y)—ﬁqy,zi
and
MM=EF¥9+Wm} (4.14)
Ny Qyo dy,1
Here,
Ny,HT =
N n, (0) n, (1)
n{ n, (0)/(n, (0)+ny (0)) ny (D/(ny (1) +ny (1)
ny+ny
- n
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So this modified Horvitz-Thompson estimator suffers
from the same negative feature as the imputation-based
expansion estimator (4.6); it cannot correct for the biasin an
unrepresentative sample. For a general description of the
modified Horvitz-Thompson method see, e.g., Sarnddl et al.
(1992, chapter 15).

4.3 Variance Estimation

Variance estimation of the various estimates are obtained
by bootstrapping. It can be carried out under the modeling
or quasi-randomization framework (Little and Rubin 1987).
For instance, to estimate the variance under model (3.1) and
RM1 (3.2), we may apply the parametric bootstrap with the
estimated parameters (Efron and Tibshirani 1993). How-
ever, it is not clear how to compare the variances estimated
under the alternative models. We have therefore chosen to
estimate the variances of the different estimators under a
common quasi-randomization framework. We assume
smple random sampling conditional to the family size,
which is the only assumption we make for variance
estimation. Unconditionally we have a self-weighting, but
not simple random, sample, and therefore this is a rather
crude approximation to the actua conditional sampling
design. However, for a comparative study of the estimators
the approximation will serve this purpose well. The
nonresponse indicator r, is considered to be a constant
associated with person i . We draw the bootstrap sample,
resampling (Vv;,z.r, =1), (z,r, =0) randomly with
replacement, as described by Shao and Sitter (1996, Section
5), within each post-stratum of {i;x;, = x}. While the sizes
of the sample post-strata are fixed, both the number of
nonrespondents and the number of persons from urban or
rural areas vary from one bootstrap sample to another. We
caculate the bootstrap estimates in the same way as based
on the observed data. In particular, the bootstrap data are
imputed in the same way as the original data if the estimator
is imputation-based. Finally, the estimated variances and
gandard errors are obtained by the usuad Monte Carlo
gpproximation based on 500 independent bootstrap samples.

5. Estimated Number of Households of Different
Sizes Based on the 1992 Norwegian Consumer
Expenditure Survey

In this section we present the estimated number of
households of sizes one to five and more, and the total
number of households for the population in Norway aged
less than eighty years old. The estimation uses the data from
CES 1992, and is based on the estimators considered in
Section 4. To compute the estimates we need the number of
families of different Sizesin the population, i.e, M,, atthe
time of the 1992 survey. The actual number a the time of
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the survey is not recorded. As an approximation we use the
numbers at January 1, 1993. These aregiven in table 4.

Table4
Families and Persons with Age Lessthan 80 Y ears
in Norway at January, 1993

Number of personsin family Families Persons
1 person 793,869 793,869
2 persons 408,440 816,880
3 persons 261,527 784,581
4 persons 266,504 1,066,016
5 or more persons 127,653 670,528
Total 1,857,993 4,131,874

Note that the average family size for families with 5 or
more persons is 670,528/127,653 = 5.25. We use 5.25 as an
estimate of the average household size for households of
size 5 or more, and divide by 5.25 instead of 5 in all esti-
matesof H..

5.1 Maximum Likelihood Estimation and
Poststr atification

The estimated household distributions are presented in
table 5. The estimates are based on the maximum likelihood
(m.l.) estimator (4.1) using the population model with the
restricted parametric link function p, , in combination with
the response models RM1(y,z) and RM2(y, z). To
illustrate the effect of nonresponse modeling versus post-
gratification we dso present the standard podstratified
estimator (4.4). We recall that this is the maximum likely-
hood estimator when ignoring the response mechanism.
Furthermore, we present the edtimated household size
distribution based on the imputation-based poststratification
(4.3) with the saturated modd (4.9). For assessing the
sampling variability of the different estimators, the esti-
mated standard errors are also included.

The three models that take the response mechanism into
account give higher total number of households. They also
give condderable higher numbers of one-person-house-
holds. This seems sensble since we expect the one-person
households to have the highest nonresponse rate. And thus,
these estimates are most influenced by taking the response
mechanism into account. We note that the restricted para
metric link model (3.1) together with the logistic response
model RM2(y, z) gives practicaly the same poststratified
estimates as modd (4.9), with also approximately the same
standard errors. Because of the freedom of model (4.9), with
perfect fit, it seems that modd (3.1) & RM2(y, z) works
well for estimating the number of households of different
sizes. Regarding the uncertainty of the estimates, we see as
one might expect that the standard errors typically seem to
increase with the number of unknown parameters in the
underlying model. Also, the total number of households is
rather accurately estimated, not counting possible bias,
while it's clearly mogt difficult to estimate the number of
one-person households.
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In order to evaluate the extent to which the differences
between the estimates are due to sampling error or non-
response bias, we consider the estimated standard errors of
the differences of the point estimates. Some of these are
given in table 6, usng mostly the imputation-based post-
sratification with the saturated model as a reference. For
short, we use the terms Est1 — Est4 for the estimates defined
asthey appear intable5;

Estl: M.l estimator based on population model p, ,
and response model RM1

Est2: M.l. estimator based on population model p, ,
and response model RM2

Est3: Imputation-based postsiratification based on the
saturated model (4.9)

Est4: Poststratified estimator without imputation.

Based on tables 5 and 6 we can conclude that Est4 and
Est3 have different expected valuesin estimeting H,, H,
H., and H. Regarding the other comparisons, we see that
in estimating H, there is a significant difference between
Egtl and Est2/Est3, and note from earlier discussions in
Section 3.3 that RM2 gives a better fit to the datathan RM 1.

The estimates based on the expansion etimator H ye
given by (4.5), in 100's, are 390,500, 496,500, 283,900,
279,900, 148,000 and 1,598,800 with estimated standard
errors equal to 33,100, 21,700, 14,600, 11,600, 6,100 and
23,700 for H,, ..., H; and H, respectively. The standard
errors for the differences between these estimates and the
Est3-egtimates are 52,800, 30,900, 19,100, 10,800, 5,400
and 32,000 for H,, .., H; and H respectively. These
expansion estimates indicate serious bias due to non-
response, especialy the estimates for H,, H, and H,
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with postdtratification correcting for some of the bias
(probably about 50% for the estimatesof H, and H). We
adso note that the standard errors for the posstratified
estimator and this simple expansion estimator are about the
same. So by reducing the bias with postdtratification one
reducesthe total error aswell.

Pogtatratification corrects for the bias caused by the
discrepancy between the family size distributions in the
response sample and the population. From table 1 and table
4 we see that these family size distributions are given by (in
percentages), for x=1, ..., 5:

Response sample: 14.6—20.7—-19.1-27.0—-18.6
Population: 19.2-19.8-19.0-25.8—-16.2.

Since the number of one-person families is much too low
in the response sample, so will the expansion estimate of
H, be With post strata determined by family size, post-
gratification corrects for the family size biasin the response
sample, but does implicitly assume that nonrespondents and
respondents have the same household size distribution, for a
fixed family size. Or, in other words, the respondents are
treated as a random subsample of sampled units with the
same family size, as mentioned by Little (1993). This is
most likely not the case. We recdl that the family sze
variable was not significant when the household variable
was included in the response modes. Thus it seems
reasonable to assume, as in our response models, that
response rates will vary with the actual household sizes
rather than the registered family sizes. Typicaly, estimates
of the number of one-person households will be biased
when the nonrespondents are ignored.

Table5
Estimated Household Totals for Persons Aged Less than 80 Y earsin Norway at January 1, 1993, in Units of 100.
In Parentheses, the Estimated Standard Error of the Estimates

Maximum likelihood estimator with nonignorable response

Imputation-based Ignoring the response

mechanism poststratification mechanism
Household Population model % Population model % Saturated population % Poststratified %
size y Py, x and Py, x and and response model estimator
response model response model
RM1(y, 2) RM2(y, 2)
1 558,800 32 595,400 34 596,600 34 486,000 29
(38,900) (48,000) (53,500) (35,800)
2 520,200 30 525,800 30 523,600 30 507,800 30
(20,600) (27,400) (29,800) (20,000)
3 278,900 16 249,100 14 250,000 14 286,200 17
(13,800) (20,300) (19,800) (14,100)
4 258,900 15 269,000 15 268,900 15 270,600 16
(9,800) (11,600) (11,500) (10,200)
>5 125,800 7 126,000 7 126,200 7 131,300 8
- (4,700) (5,100) (5,000) (4,700)
Total 1,742,600 100 1,765,300 100 1,765,300 100 1,681,900 100
(25,600) (29,700) (31,900) (23,300)
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Table6
Estimated Standard Errors of the Differences of the Point Estimatesin Table 5
Household size Est1—Est2 Est1—Est3 Est2—Est3 Est4—Est3
1 29,700 37,000 16,600 42,400
2 19,300 22,200 8,800 23,100
3 15,400 15,200 5,300 15,500
4 6,700 6,500 1,800 6,600
>5 1,700 1,700 500 1,900
Total 15,300 18,800 8,900 23,300

After having corrected for nonresponse bias by com-
pleting the sample with imputed values, the sample itself
may be skewed compared to the population. To illustrate the
effect of postdratification to correct for this, we shal
compare, using the saturated modd (4.9), the imputation-
based poddratified estimates ESt3 with the imputation-
based expansion estimates given by (4.6): 583,900, 567,700,
244,300, 259,300, 122,400 and 1,777,600 for Hi, ..,
H, and H, respectively. As noted in Section 4.2, see
(4.14), these estimates are identical to the modified Horvitz-
Thompson estimates. The standard errors for these estimates
are practically the same as for ESt3. Hence, the dternative
poststratified estimation methods based on nonignorable
response models have standard errors at least no worse than
the modified Horvitz-Thompson estimator. So if one
reduces the bias with the dternative methods, one reduces
the total error too. The standard errors of the differences
between Est3 and this modified Horvitz-Thompson esti-
mator in the estimates of H,, ..., H; and H are 3,500,
2,200, 1,100, 600, 200 and 2,100 respectively. Clearly these
two methods give significantly different estimates for dll
household size totals. In this comparison, one feature stands
out. The expansion estimate of the number of two-persons
households, 567,700, is clearly too high, as seen by com-
paring the family size distributions in the total sample and
the population (in percentages), for x=1, ..., 5:

Population: 19.2-19.8-19.0-258-16.2
Sample: 18.6-230-178-249-157.

The sample proportion of persons in two-persons fami-
lies is much too high, and even though we have corrected
for nonresponse bias, the expansion estimator, and then also
the modified Horvitz-Thompson estimator cannot correct
for a nonrepresentative sample. This will necessarily lead to
biased estimates of H,. We need postdratification to
correct for a skewed sample. One can regard the difference
in expected values for these estimators of H, as being
close to the bias for the modified Horvitz-Thompson esti-
mator, and note that an approximate 95% confidence
interval for this differenceis (39,800, 48,400).

For robustness considerations we aso present the esti-
mates from the cumulative logit model mentioned in Sec-
tion 3.1 together with RM1(y, z), which we know fits the

data poorly. They are, in 100's. 591,800, 501,000, 265,200,
267,300, 128,200 and 1,753,500 for H,, ..., H, and H,
respectively. Compared to table 5, this seems to indicate that
areasonable model for response plays a more important role
than a good population modd. It is aso evident that
nonresponse modding makes a difference, as seen when
compared to poststratification and simple expansion.

5.2 Comparison with the Currently Used Estimates
in CES, the Quality Survey for the 1990 Census
and a Projection Study

Since 1993, an dternative, computationaly simpler,
modified Horvitz-Thompson estimator of type (4.14) has
been in use in the production of official statigtics from CES,
see (Belshy 1995). We recdl from Section 2 that the
weights are the inverse sampling probabilities of the
households, multiplied with the estimated probability of
response. The response probabilities are estimated using a
logistic modd similar to RM2 ('y, z) with place of residence
and household sze as explanatory variables. For the
nonrespondents with unknown household size the registered
family size is used instead, replacing (3.5). Thus, the
weights may be regarded as an gpproximation to using (3.5).
Of course, (3.5) is possible only when a population modd is
considered, which CES has not done. Table 7 presents
estimated household didtribution based on this CES
modified Horvitz-Thompson estimator.

The qudity survey for the Census 1990, PES 1990,
contains 8,280 respondents and uses practicaly the same
household definition as CES. The response rate was 95%.
The H  —edtimates uses poststratification with respect to
household size in the Census. However, no attempts were
made to correct for possible nonresponse bias with respect
to actual household sze. PES deds with the whole
population. Table 7 has the estimates for the 0—79 age
group with the same poststratification method asin PES

Table 7 aso presents estimates based on the Household
Projections study by Keilman and Brunborg (1995). This
study simulates household structure for the period 1990 to
2020. The data sources are 28,384 individuals from the
1990 Population and Housing Census and 1988 Family and
Occupation Survey. Keilman and Brunborg project for the
whole population in 1992. We adjust their estimates to the
0—79 age group.
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Table7
Estimated Household Size Totals for Persons Less than 80 Y earsin Norway at January 1, 1993
with CES-modified Horvitz-Thompson, PES 1990 and Projections, in Units of 100

CES-Modified %
Horvitz-Thompson

Household size

PES 1990 % Projections %

1 622,900 35 626,000 35 668,300 37
2 518,500 29 494,200 28 549,000 30
3 259,900 15 291,500 16 211,900 12
4 258,500 15 250,000 14 221,500 12
>5 124,600 7 115,300 6 97,500 5
Unknown 78,500 4
Total 1,784,400 1 1,777,000 99 1,826,700 100
Table8

Estimated Probability of Response Based on the Method Used
in CES Since 1993, in Percentages

Household size
Place of residence 1 3 4 5 or more
CES-method
Rural 44,53 66.24 74.55 73.54 80.07
Urban 36.01 57.90 67.25 66.09 73.80
Model py  in(3.1) combined with RM2(y, 2)
Rural 47.77 60.90 79.05 73.26 81.52
Urban 38.92 52.04 72.44 65.62 75.46

The egtimates in table 7 support our impression that the
estimates based on modding the response mechanism leads
to less biased estimates compared with ignoring the response
mechanism as in mere pogtstratification or smple expansion.
Thisis especidly true for the one-person households and the
total. The current “official estimator”, the modified Horvitz-
Thompson seems to give estimates of the right magnitude
and in fact is closer to the results of PES 1990 than the
model based estimates. However, thisis more by accident. As
a method it has some problems even in a representative
sample. We can study this by estimating the response prob-
abilities. Table 8 presents the results together with the esti-
mates based on RM2(y, z) & (3.1) fromtable 3.

Compared to the estimated response probabilities based
on model RM2(y, z) with (3.1), we see that replacing
household size with family size in the nonresponse group is
not a satisfactory approximation. Hence, if compared with
the modified Horvitz-Thompson estimator in Section 5.1
based on the saturated model (4.9), the latter one would be
preferred. For this particular survey, the CES approach
overestimates the probability of response for household of
Sze 2, which in a representative sample would lead to
underestimating of H,. The estimated response prob-
abilitieswill most likely be biased when we are using family
size in place of household size in the nonresponse group
when estimating the parameters in the response model. This
bias is an additiond problem to the previously mentioned
one, that the modified Horvitz-Thompson estimates will be
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smilar to the imputation-based expanson estimates and
cannot correct for nonrepresentative samples (as has been a
problem in CES since 1993). In the 1992 CES, however, the
sample is skewed with a too high proportion of families of
sze 2, and the H, —edimate will be of the right
magnitude, by accident.

6. Conclusons

We have investigated modeling and methodologica
issues for estimating the total number of households of
different szes in Norway, based on the Norwegian
Consumer Expenditure Survey (CES ). The main issue is
how to correct for bias due to nonignorable nonresponse.
The existing estimation method in CES is a modified
Horvitz-Thompson estimator that includes a correction for
nonresponse by estimating response probabilities. We have
consdered basically two modelbased approaches, a
maximum+likelihood estimator and imputation-based post-
gratification after registered family size. With a population
model that corresponds to a group model after family size
only, these two estimators are identical. This family group
model for household size and alogistic link for the response
probability using household size as a categorica variable
seem to work well for our estimation problem.

In analyzing the 1992 CES, we find serious bias due to
nonresponse, especialy the estimates for H, and H, with
pure podstratification (without imputation) correcting for
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some of the bias (probably about 50% for the estimates of
H, and H). Podstratification does not, however, take
into account possible nonresponse bias dependent on
household size. Our response models assume that the
response rates will vary with the actual household sizes
rather than the registered the family sizes, and it is quite
evident that such nonresponse modeling makes a difference,
leading to less biased estimates than mere postdtratification
or simple expansion, especiallyof H, and H.

The modified Horvitz-Thompson estimates used in the
official statistics from CES correspond to imputation-based
expansion estimates. Hence, they cannot correct for nonre-
presentative samples. The study in this paper shows that, in
addition to a nonignorable response modd it is also
necessary to poststratify according to family size, i.e., using
a population mode given family size. Hence postsirat-
ification, response modeling and imputation are key ingre-
dientsfor asatisfactory approach.

In any estimation problem of totals in survey sampling,
one must be aware of the fact that a Horvitz-Thompson
egtimator cannot correct for skewed samples, even when
modified with good response estimates. Postdtratification
should aways be considered as well as imputation based on
aresponse model, nonignorable when needed.
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assumption is made about P(R=1|Y =y, X, z). Then the

maximum likelihood estimatesfor p, , aregivenby

R n, +n,

Py =—"—".
m, +m,,

Proof. Let q, ,=P(R=1]Y=Y, X, z). The log
likelihood is given by

=220y Pyt XTI (24,

z=0 X vy

+ZZ My (Z)|09P(R=O|x, Z)

z=0 x

‘ZZ” Py, x +ZZZ“ (Z)qyx,z

z=0 X vy

+ ZZ m,, (2)log(1- Z Py x Oy 2)-

z=0 x
We use the Lagrange method and maximize G=/+
A (5aPy — D).

Let the solutionsbe p,, (A, ), and determinethe A, 's
such that ¥, p, , (A,)=1, for al x. No matter how the
0y . S ae parametrized, the mle p, , must satisfy, by
solving the equations G /adp,, , =0,

. n q
Appendix Al — z My (2) =——2——+A, =0 (Al
. . yx  z=0 P(R Ol )
The data for rural and urban areas separately are given in ‘
table Al which is equivalent to:
Appendix A2 21: m,, (2)
Theorem. Assume modd (31) for Y. e, ZP(R=0|x 2)
P(Y=yl|x, 2)=p,, isindependent of z, but otherwise
the p, ,'sare completely unknown with the only restriction _im (2) P(R=0,Y=y]|X,2) Y
being that ¥, p, , =1, for al valuesof x, for dl k. The = P(R=0|x, 2) X
response mechanism is arbitrarily parametrized, i.e,, no
TableAl
Family and Household Sizes for the 1992 Norwegian Consumer Expenditure Survey, Split into Rural
and Urban Areas. The Upper Entry is for the Urban Group
Household size
Family size 1 2 3 4 >5  Tota response Non-response  Total Response rate
1 urban 28 24 7 2 0 61 78 139 0.439
rural 55 24 13 7 2 101 75 176 0.574
2 urban 6 70 12 3 0 91 84 175 0.520
rural 3 107 25 1 3 139 76 215 0.647
3 urban 4 8 57 11 3 83 40 123 0.675
rural 6 17 74 29 3 129 51 180 0.717
4 urban 0 3 15 80 5 103 43 146 0.705
rural 2 10 22 151 12 197 80 277 0.711
> 5urban 0 1 0 6 66 73 28 101 0.723
rural 1 3 4 11 115 134 32 166 0.807
Total urban 38 106 91 102 74 411 273 684 0.601
Total rural 67 161 138 199 135 700 314 1014 0.690
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We determine A, by summing over y: P(R= =
x Y g y 0, (2)=my (2), P(I? 0lY=yY,X2)
mo3 (D P(R=0|x 2)
=0P(R=0]|x,2) and, from (A2),
1 P(R=0]|x, 2) Ny (2)
—2M (D)= — -2, p, . =n m, +m, al
ZE) P(R=0]x, 2) P ”/[ - Z(:) Py«
hence .
Xy
N =nxy/[m +m,, J
ZL(Z) (mx+mxu)' py,x
~oP(R=0]x, 2) _
or equivalently,
It follows from (A1) that p,, sdtisfies the following . .
relation: Py x (M + My ) =Ny =Ny,
P, = M (A2) n,, +n;
yx 1 5 = = ' |e, P :u ED
(mx+mxu_zmxu(z) gy y’XZ)j P = v my, 0
720 P(R=0]|x z)
The imputed values are given by , from (4.2),
Appendix A3
Table A2

The Completed Sample Including the Imputed Values, Split Into Two Groups, Rural and Urban. The Upper Entry
isfor the Urban Group and the Lower Entry is for the Rural Group. Based on Model (3.1) and RM1( y, 2)

Household size
Family size 1 2 3 4 >5 Total
1 wurban 77.8 441 12.9 39 0.3 139
rural 103.6 431 18.4 8.7 23 176
2 urban 10.8 137.9 22.1 38 0.4 175
rural 75 168.6 339 17 33 215
3 urban 75 14.3 81.3 16.4 3.6 123
rural 10.7 253 104.8 35.6 3.7 180
4 urban 0.8 6.4 21.9 110.3 6.6 146
rural 35 16.7 35.1 206.9 14.8 277
> 5urban 0.5 24 1.0 9.0 88.2 101
rural 1.6 4.7 52 14.4 140.1 166
Total /urban 97.4 205.1 139.2 143.4 99.1 684
rural 126.9 258.4 1974 267.3 164.2 1,014
Table A3

The Completed Sample Including the Imputed Values, Split Into Two Groups, Rural and Urban. The Upper Entry
isfor the Urban Group and the Lower Entry is for the Rural Group. Based on Model (3.1) and RM2 (y, 2)

Household size
Family size 1 2 3 4 >5 Total
1 urban 81.6 427 104 4.0 0.3 139
rural 107.5 415 15.9 8.8 2.3 176
2 urban 11.9 140.4 18.3 3.9 0.5 175
rural 8.6 170.9 30.3 1.8 34 215
3 urban 9.4 16.1 75.2 18.6 3.7 123
rural 134 27.7 96.5 38.5 3.9 180
4 urban 0.8 6.2 18.9 1135 6.6 146
rural 3.7 16.2 29.2 2131 14.8 277
> 5urban 0.5 2.3 0.6 9.3 88.3 101
rural 17 4.6 4.6 14.9 140.2 166
Total /urban 104.2 207.7 123.4 149.3 99.4 684
rura 134.9 260.9 176.5 277.1 164.6 1,014
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Appendix A4

Table A4
The Completed Sample Including the Imputed Values, Split Into Two Groups, Rural and Urban.
The Upper Entry is for the Urban Group and the Lower Entry is for the Rural Group.
Based on Model (4.9), i.e, Imputations Determined by (4.7) and (4.8)

Household size
Family size 1 2 4 >5 Total
1 wurban 79.6 47.2 9.4 2.8 0.0 139
rural 108.3 385 16.9 9.9 24 176
2 urban 17.1 137.7 16.0 4.2 0.0 175
rural 5.9 171.6 325 14 3.6 215
3 urban 114 15.7 76.2 15.6 4.1 123
rural 118 273 96.2 41.1 3.6 180
4 urban 0.0 5.9 20.0 113.2 6.9 146
rural 3.9 16.0 28.6 214.0 145 277
> 5urban 0.0 2.0 0.0 85 90.5 101
rural 2.0 4.8 5.2 15.6 138.4 166
Total /urban 108.1 208.5 121.6 144.3 101.5 684
rural 131.9 258.2 179.4 282.0 162.5 1,014
Table A5
The Total Numbers of Family and Household Sizes for Imputed Complete Sample. Based on Model (4.9)
Household size
Family size 1 2 4 >5 Total
1 187.9 85.7 26.3 12.7 24 315
2 23.0 309.2 48.6 57 3.6 390
3 232 43.0 172.4 56.7 7.7 303
4 39 21.9 48.7 327.2 21.3 423
>5 2.0 6.8 24.1 229.0 267
Totd 240.0 466.6 301.1 426.3 264.0 1,698
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Bayesian Analysis of Nonignorable Missing Categorical Data:
An Application to Bone Mineral Density and Family Income

Balgobin Nandram, Lawrence H. Cox and Jai Won Choi *

Abstract

We consider a problem in which an analysis is needed for categorical data from a single two-way table with partial
classification (i.e.,, both item and unit nonresponses). We assume that this is the only information available. A Bayesian
methodology permits modeling different patterns of missingness under ignorability and nonignorability assumptions. We
construct a nonignorable nonresponse model which is obtained from the ignorable nonresponse model via a mode
expansion using a data-dependent prior; the nonignorable nonresponse model robustifies the ignorable nonresponse model.
A multinomial-Dirichlet model, adjusted for the nonresponse, is used to estimate the cell probabilities, and a Bayes factor is
used to test for association. We illustrate our methodology using data on bone mineral density and family income. A
sendgitivity analysis is used to assess the effects of the data-dependent prior. The ignorable and nonignorable nonresponse
models are compared using a simulation study, and there are subtle differences between these models.

Key Words: Bayes factor; Chi-squared statistic; Importance function; Markov chain Monte Carlo; Multinomial-
Dirichlet model; Robust; Two-way categorical table.

1. Introduction

It isacommon practice to use two-way categorical tables
to present survey data. For many surveys there are missing
data, and this gives rise to partia classification of the
sampled individuals. Thus, for the two-way table there are
both item nonresponse (one of the two categoriesis missing)
and unit nonresponse (both categories are missing); see
Little and Rubin (2002, section 1.3) for definitions of the
three missing data mechanisms (MCAR, MAR, MNAR).
Thus, there are four tables (one table with the complete
cases, and three possible supplemental tables: one table with
row classification only, one table with column classification
only, and one table with neither row nor column classifi-
cation). One may not know how the data are missing. Thus,
we use a model in which the likdihood function accounts
for differences between the observed data and missing data
(i.e, nonignorable missing data); see Rubin (1976) and
Little and Rubin (2002) for the relation between igno-
rability/nonignorability and these three missing data
mechanisms. Because there are well-known advantages of
the Bayesian method over the non-Bayesian method for
these problems, we propose a Bayesian analysis of a genera
r xc categorical table, conssting of a table with complete
cases and three supplemental tables. Specificdly, we
develop a Bayesian method to estimate the cell probabilities
and test for association between the two categorica
variables.

We assume that the only information available to the data
andysts is the complete cases and the three supplementa
tables. Specificdly, we assume that there is no information
(either from covariates or prior information) about non-
ignorability. In our Bayesian approach, the survey design
features have been suppressed (i.e., there are no survey
weights and there are no clustering or dSratification).
Sometimes survey data are presented to the public with
certain features of the data suppressed for reasons of
convenience and confidentiality. We recognize that both the
ignorable and the nonignorable nonresponse models may be
incorrect when they do not take account of these features.
However, the parameters in the ignorable nonresponse
modd are identifiable and estimable, and one can take
advantage of this fact to construct a nonignorable non-
response model which is related to the ignorable non-
response model. Also, in the ignorable nonresponse model
we assume that there is a MAR mechanism that drives the
nonresponse, and there may be information in the in-
complete cases (i.e., the two tables with observed row and
column margins). Without any information about the degree
of nonignorability, it is sensible to generalize the ignorable
nonresponse model. This is how we attempt to accomplish
our objectivesin this paper.

This paper has five sections. In section 1 we have further
discussion of the problem, and we review related meth-
odology. In section 2, we describe a 3x 3 table of bone
mineral densty (BMD) and family income (FI) from the
third National Health and Nutrition Examination Survey

1. Balgobin Nandram, Department of Mathematical Sciences, Worcester Polytechnic Ingtitute, 100 Institute road, Worcester MA 01609, E-mail:
balnan@wpi.edu; Lawrence H. Cox and Jai Won Choi, Office of Research and Methodology, National Center for Health Statistics, 3311 Toledo Road,
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(NHANES I11). This is used mainly for illugtration. In
section 3, we describe the methodology to obtain estimates
of the cell probabilities, and we use the Bayes factor to test
for association of the two attributes. We accomplish these
objectives by first constructing an ignorable nonresponse
model, and we show how to expand an ignorable non-
response model into a nonignorable nonresponse model. In
section 4, we analyze the NHANES 111 data to demonstrate
our methods. Also, a simulation study gives further com-
parison of the ignorable and the nonignorable nonresponse
models, and a sensitivity analysis shows that inference is not
too sengtive to the choice of an important prior distribution.
Findly, section 5 has concluding remarks.

1.1 Discussion of the Problem

We do not know whether an ignorable nonresponse
model or a nonignorable nonresponse modd is appropriate,
but it is worthwhile noting that Cohen and Duffy (2002)
point out that “Hedlth surveys are a good example, where it
seems plausible that propensity to respond may be related to
hedlth.” Thus, nonignorable nonresponse models are im-
portant candidates for the analysis of data from health
surveys. For agenerd rxc categorica table (two categor-
ical variables, one with r categories and the other with ¢
categories) with nonresponse, our objectives are to show
how to (a) make inference about the cell probahilities, and
(b) test for no association between the two categories using
the Bayes factor. While (a) comes directly from the
modeling, (b) needs one extra step.

Let I, be the cel indicator for the i™ individua in a
rxc table for i=1,...,n individuas Then, it is well
known that if the I, ae independent and identically
distributed, the Pearson’'s chi-squared dtatistic  has
Xirpep- Otherwise the Pearson's chi-souared statistic
does not have a X(Zr—l)(c—l)’ and this is true when there are
missing data and the respondents and nonrespondents differ.
When this is the case, adjustments must be made to the
Pearson’s chi-squared statistic. Within the non-Bayesian
framework Chen and Fenberg (1974) and Wang (2001)
have corrections for incomplete two-way tables. Although
not directly relevant here, it is pertinent to mention that
smilar adjustments have been made for cluster sampling
and stratified random sampling (Rao and Scott 1981, 1984).
The works of Chen and Fienberg (1974) and Wang (2001)
can essentially handle item nonresponse only; unit non-
response is excluded because the modeling is motivated by
the ignorable nonresponse models (e.g., see discussion in
Katon and Kasprzyk 1986).

The Bayesian method permits us to use a procedure that
does not rely on asymptotic theory, incorporate non-
ignorable missingness into the modeling and obtain an
dternative to Pearson’s chi-squared dtatistic for testing for
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no association; see Little (2003) for a discussion of the well-
known advantages of the Bayesian approach in survey
sampling. Our dternative to the Pearson chi-squared stetistic
is based on the Bayes factor (Kass and Raftery 1995). This
isadaigtic that compares amode with association and one
with no association via the ratio of their margina like-
lihoods under the ignorable and the nonignorable non-
response models separately.

Little and Rubin (2002, chapter 15) discuss the non-
ignorable nonresponse problem. For example, Rubin, Stern
and Vehovar (1995) (also discussed in Little and Rubin
2002, page 345) provide an interesting analysis of the
November/December 1990 Slovenian Public Opinion
survey in which there were data on 2,074 prospective voters
in their plebiscite with three dichotomous variables; there is
12% nonresponse. They fit both ignorable and nonignorable
nonresponse models (loglinear with al interactions) to the
data, and they were satisfied with the ignorable nonresponse
model. However, they stated “ Of course, this does not mean
that MAR should be automatically applied in al cases.
Anayses assuming MAR are not likely to be adequate if a
survey has large amounts of nonresponse, if covariate
information is limited, or for cases where the missing-data
mechanism is clearly nonignorable (e.g., censored data).”

1.2 Related Methodology

Our methodology is different from Rubin, Stern and
Vehovar (1995). We start with Nandram and Choi (2002 a,
b) in which a parameter y centers (can be viewed as an
index) the nonignorable nonresponse moded on the
ignorable nonresponse modd. When y=1, the non-
ignorable nonresponse model is the ignorable nonresponse
model, and thus, the nonignorable nonresponse model
“degenerates’ into the ignorable nonresponse model when
v=1 see dso Forgter and Smith (1998). This is useful
because the nonignorable nonresponse model contains the
ignorable nonresponse model as a special case; thereby
expressing uncertainty about ignorability. Draper (1995)
cdled this a continuous mode expansion, and he has
recommended the use of a continuous model expansion over
adiscrete model expansion (i.e,, finite mixtures) whenever it
is possible. We simply cdll the continuous model expansion
an expansion modd. Nandram and Choi (2002 &, b) obtain
the centering by taking y|v ~Gamma(v,v) in which
E(y|v)=1 var(y|v)=1/v.

Nandram and Choi (2002 &) anayze binary data on
household crimes in the Naiona Crime Survey, and
Nandram and Choi (2002 b) anayze binary data on doctor
vigts in the Nationa Hedth Interview Survey. While
Nandram and Choi (2002 @ has more comparisons,
Nandram and Choi (2002 b) has more sengitivity analyses.
Nandram, Han and Choi (2002) describe two hierarchical
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Bayesian models, an ignorable and a nonignorable non-
response model, for the analysis of count data from several
aress, the counts in each area being described by a multi-
nomia distribution. In all these works the issue of associa-
tion is not relevant because there is a single categorical
variable.

The approach in Nandram and Choi (2002 a, b) is
attractive, but it does not apply immediately to the current
gpplication on r x ¢ categorical table. Specifically, only one
centering parameter was needed in Nandram and Choi
(2002 a, b). To extend the method of Nandram and Choi
(2002 &, b), one needs rc centering parameters. Each of
these parameters has to have a distribution centered at oneto
dlow degeneration to the ignorable nonresponse model.
There are also inequality congraints that must be included
in the nonignorable nonresponse model. Thus, while this
ideais attractive, the methodology needed to apply the work
of Nandram and Choi (2002 a, b) is much beyond the scope
of our current paper.

Nandram, Liu, Choi and Cox (2005) extend the work of
Nandram, Han and Choi (2002) in two important directions
to (a) consider several two-way categorical tables instead of
oneway tables and (b) develop a method to study the
association between the two categoricd variables. Nandram,
Liu, Choi and Cox (2005) andyze data on the relation
between bone mineral density (BMD) and age from thirty-
five counties in the third National Health and Nutrition
Examination Survey. In each county the data are cate-
gorized into two levels of age and three levels of BMD (i.e,
there are thirty-five 2x3 categorica tables). Note that the
age of everyoneis observed, but the BMD valuesfor alarge
number of individuals are not observed. Thus, for each
county there is a single table with complete cases, and one
table with row totals (i.e., the ages of these individuals are
known, but their BMD vaues are missng). Here, our
objective is to extend the work of Nandram, Liu, Choi and
Cox (2005) to ageneral r xc categoricd table. Thisis an
important advance because now there are three supple-
mental tables (one table with row classification only, one
table with column classfication only, and one table with
neither row nor column classification) instead of just one
with row totals asin Nandram, Liu, Choi and Cox (2005).

2. Dataon BoneMineral Dengty
and Family Income

We briefly describe the 3x3 categoricd table of bone
minera density (BMD) and family income (FI). Fl is a
discrete variable, and there are three levels: low, medium
and high. While BMD is a continuous variable, the World
Hedth Organization has classfied BMD into three levels:
normal, osteopenia and osteoporosis, see Looker, Orwall,
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Johnston, Lindsay, Wahner, Dunn, Cavo and Harris (1997,
1998). BMD is used to diagnose osteoporosis, a disease of
elderly females, and in NHANES Il it is measured for
individuas at least twenty years old (i.e., we use the data on
white femaes only with chronic conditions older than
twenty years).

Among those participated in the examination stage, about
62% of the individuals have both FI and BMD observed,
8% with only BMD observed, 29% with only income
observed, 1% with neither income nor BMD. The dataset,
used in our study, is presented in Table 1 as a 3x3 ca
tegorical table of BMD and Fl. Our problem is to estimate
the proportion of individuals at each BMD-FI level and to
test for association between BMD and Fl. In NHANES 111
the response rate increases up to age twenty years, and
stahilizes after that age; race, sex and the sampling weights
play a minor role (see Nandram and Choi 2005). Thus, for
this application we assume that the only data available are
the four tables of BMD and Fl, and we develop a
methodology for this Situation.

Tablel
Classification of Bone Mineral Density (BMD) and Family Income
(FI) for 2,998 White Females, at Least 20 years Old (20+)

Fl
BMD 0 1 2 Missing Sum
0 621 290 284 135 1,330
1 260 131 117 69 577
2 93 30 18 27 168
Missing 456 156 266 45 923
Sum 1,430 607 685 276 2,998

Note BMD: 0(> 0.82g/cm? normal), 1(> 0.64, < 0.82g/cm?
osteopenia), 2(< 0.64g/lcm?  osteoporosis); Fl: 0(<
$20,000), 1(>$20,000, < $45,000), 2(> $45,000); BMD
isonly measured for age 20+.

It is difficult to assess an association between BMD and
FI when there are many individuas not completely
classified (i.e., missing data). As discussed in the literature,
not necessarily on NHANES 111, there are several poten-
tialy important confounding variables such as age,
smoking, dietary calcium intake, estrogen replacement
therapy, physica activity, educational attainment, hedth
status and acohol consumption (see Ganry, Baudoin and
Fardellone 2000). Farahmand, Persson, Michael sson, Baron,
Parker and Ljunghdl (2000) stated that for postmenopausal
women, aged 50-81 years, from six counties in Sweden,
higher household income is associated with decreased hip
fracture risk. Using complete data from NHANES IlII,
Lauderdale and Rathouz (2003) studied the regression of
bone minera content on economic indicators (e.g., educa
tion and poverty income ratio). An adjustment was made for
other factors such as age, height and weight. They conclude
that “Bone density does not reflect economic conditions as
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strongly or consistently as physical stature.” Unfortunately,
these works do not address the nonignorability of the
missing data; missing data are not discussed. Also, the
response rate to income itemsisusually low.

We have looked at the data for the complete cases more
closdly. We fit a multinomial-Dirichlet model with associa-
tion and one with no association . The model with asso-
cigion is n|p~Multinomia (n,p) and p~ Dirichlet
(4...,1). Note tha by no association we mean that
Pu=p" P, j=1...,r,k=1...,c, where ¥, p =1
and Y2, p@ =1 Thus, for the model with no association,
n| p~ Multinomial (n, p), p® ~ Dirichlet(4, ..., 1), and
independently p'® ~ Dirichlet(d, ..., 1), where p and
p® have r and ¢ components respectively. It is easy to
show that the margina likelihood with association (as) is
ps(n) =(rc=!nl/(n+rc-1! and with no association
(nas) is

(n+rc-1!
(n+r=-Y!'(n+c-1!

H;Zl n T, !
Hrj:1 Hizl njk!

Congder our data in Table 1 again. Under independence
(i.e, no association) the observed chi-squared datistic is
12.7 on 4 degrees of freedom with a p-value of 0.013 and
the hypothess of no association is rgected. On the
logarithmic scale, the margina likelihoods are p,(n) =
—46.2 and p,(n)=-49.6 resulting in a log Bayes factor
of 3.40 for evidence of no association relative to association.
Therefore, while the chi-squared test provides strong
evidence againgt no association, the log Bayes factor
provides strong evidence for no association. Thus, thereis a
contradictory evidence for no association. See Mirkin
(2001) for a review of interpretations of the chi-squared
statistic as ameasure of association or independence.

How sensitive is the Bayes factor to the choice of the
prior distributions? First, note that the prior density that any
reasonable person might use in this problem is the Dirichlet
distribution. For the modd with association we have
selected the prior distributions to be p ~ Dirichlet (y), and
for the model with no association p® ~ Dirichlet (o) and
independently p® ~ Dirichlet (B). Let n{® =¥, N
j=1 ... r ad n? =%\ ,n,, k=1 .. c Then, it is
easy to show that the Bayes factor for atest of association
Versus no association is

D,.(n+v)/D, (n? +a)D,(n.? + )
D,c(v)/ D, (a)D,(B)

where D, (.) refers to the Dirichlet function with r com-
ponents, etc.; see section 3.1 for notations. Then, we choose

()(r Di(c-D!

Pras (M) = (rc—1)

BF =
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each of the components of a,p and y to be x (eg, in

p.(n) and p.(N), kx=1). Sendtivity to the choice of
prior distributions can be studied in terms of k. Here k=1
corresponds to the prior distributions that are usualy used in
the multinomia-Dirichlet model, and x= 0.50, Jeffreys
prior. Thus, we have chosen k¥ =0.25,0.5, 1.0,15,2,3,
and the corresponding Bayes factors (log scale) are 4.7, 3.6,
34, 3.9, 4.7, 6.6. Thus, while the Bayes factor is sensitive to
the choice of the prior distributions, it is not too sensitive. Of
coursg, if thereisinformative prior information, in which «
issubstantially large, it isadifferent issue.

The Pearson chi-squared statistic is dominated by cells
(3, 1) and (3, 3) with squares of the Pearson residuals being
461 and 6.15 respectively (the observed chi-squared
datistic is 12.7). It is interesting that the Bayes factor tends
to smooth this effect out. We have collapsed the two
categories, osteopenia and osteoporosis, into a single
category. For this 2x3 categoricd table, the chi-squared
test statistic is 1.7 on 2 degrees of freedom with a p—vaue
of 0.42. The margind likelihoods are p,(n) =-28.2 and
p,(N) =-32.0 resulting in a log Bayes factor of -3.81.
Therefore, both tests suggest no association for this 2x3
table. Thus, based on these data it is hard to believe that
there is an association between BMD and Fl. The question
that now arises is “Can this conclusion change if we take
into account the incomplete data?’

3. Methodology and Nonresponse M odels

First, we describe the notation. Second, we describe the
ignorable nonresponse model. Third, we construct a non-
ignorable nonresponse model by expanding the ignorable
nonresponse model. Fourth, we discuss the Bayes factor.
Findly, we describe how to specify an important prior
distribution.

3.1 Notation

For a rxc categorical table, let |, =1if ¢ indi-
vidud falsinthe j™ row and k™ column and 0 otherwise.
Also, let J,, =1 if the /™ individua falsintable s(s=1:
completecase; s=2: table with row totals, s=3: table
with column totals, s=4: table with individuals un-
clasdfied), and J, =0 otherwise, s=1,2,34 with

¢, J,=1 Thevector J,,=(Jy,, Iy, I3, J,,) hasits
components corresponding to the four tables.

Let p;, be the probability that an individua belongs to
cal (], k) of the r xc table, andlet nty, bethe probability
that an individual belongs to the s table given that cell
gatus (], k). For the ignorable nonresponse model 1ty =
T, but for a nonignorable nonresponse model Ty,
dependson et least oneof | and k aswell. We will aso let
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p be the vector py, j=1 ..., 1, k=1 ..., ¢, ad m
be a vector with components {n,,s=1,..., 4}, j=1...,r,
k=1...,c
Then, we take
1, | p Multinomia{1, p}, Q)
where Y1 3%a Pk =L pi=20,j=1...,r,k=1...,c

For the parameters p wetake

D, pi 20, zz Pk =1 (2
1 kA

=1

p ~ Dirichlet(1, ...,

Henceforth, we will use the notation that a k-dimensional
vector, X ~ Dirichlet (ct) to mean f(x) :{1‘['} xjc“"l}/
D, (ct), x; 20, X% x;=1, where D, (ct) ={IT', T(c;t)}/
['(t) istheDirichlet functionwith ¢, >0, ¥, ¢, =1.

Assumptions (1) and (2) are the same for both the
ignorable and nonignorable nonresponse models, and they
are standard when there are no missing data.

Let the cell countsbe yg, =37 1, Iy, 5=1,2,3,4 for
the four cases. Here Yijx are observed and Yskr S= 2,34
are missing (i.e, latent variables). For y;;, we know that
21 Xka Yok =g, the number of individuals with com-
plete data; for y,; we know that 3¢, v, =u;, wherethe
row margins u;, j=1...,r ae observed; for y,, we
know that X', Yz =V, where the column margins
V., k=1...,c ae observed; and for Yaj We know that
2j-1 Xk=1 Yaj =W. Throughout we assume that al infer-
ence is conditionad on ny,,u,v and w, and we will
suppress this notation whenever it is understood. Whenever
it is convenient, we will use notations such as g ; « Vg =

1 X Yha Yoo Isjk Tk = e I [Tk g and
y(1) = (Y, Y3a Ya)s Yo = (Y1, ¥3: Ya) ec,  where
o= (Yge» 1=L...,1,k=1,...,¢),5=1,2,3/4. Alsp, T

qu_n WeW|II dsouse vy,
Y=Y Y2 Y31 Ya)-

=ik sk Yk = 2s Vs and

3.2 Ignorable Nonresponse M odéel
For the ignorable nonresponse model we take
J, |7 = Multinomial{ 1, x}. €)

That is, there is no dependence on the cdll status of an indi-
vidual.

Then, the augmented likelihood function for p, @, y, |
Vi, Ny, U, V, W iS

4
9P, 7, Yy | Y1, Ny U, V, W) o< {H T‘sys}
4 pY:k
TTTT T2 @)
s j=1 k=1 Ysk

subject 0 Xy Y Vi =
Z]:l y3]k Vk’k :L

Mo, Zkly2]k ] J_:L ol
€ and X\ ¥k Y, =W. There

217

are three interesting features in (4). First, under ignorability
the likelihood function separates into two pieces, one that
contains the ©t, only and the other the p;,, and inference
about these two parameters are unrelated. Second, inference
about T is based only on the observed vy, (i.e, the suf-
ficient statistics for m,, m,, m; and m, are essentialy the
proportions of cases in the first, second, third and fourth
tables respectively). Third, under the ignorable nonresponse
mode, the u; and the v, contain information about the
P;y; W does not contain any information about the p;,.
This is easy to show; letting T denote the set {(Y,, Vs,

Ya) 1 Zka Yo =Uj, J =11, 2o Ve = Viok=1...,¢,
2io1 Xkar Yaj =W}, by (4)
> T2 =wl]
(Yoo Vorya)eT 51 1 k1 Ysi! [ - K
2. Pik
k=1
C I _c py1Jk
lk:! i j=1 k=1 yl]k
z Pii
=1
Findly, for the parameters = wetake
4
= ~ Dirichlet(, ...,1), n, 20, Z w, =1 5)
s=1

Note that this is a uniform probability density in four-
dimensiona space, and there are no hyperparametersin this
model. Thus, for the ignorable nonresponse model, com-
bining (2) and (5), the joint prior dendty is

r c 4
G(p )<l py 20,3 > py=1m 203 n.=1 (6)
j=1 k=1 s=1
whichis proper.
Finally, combining the likelihood function in (4) with the
joint prior density in (6) via Bayes theorem, the joint
posterior density of the parameters &, p and y,,, is

n(p.m, y(1)|y1>o{1‘[nysHHHH p'y;k]. ™

o1 =1 k1 Ysk!

A poderiori p and m are independent. Inference about
n is eassy because wl|y,, Y, ~Dirichlet(y, +1...,
Y, +1), which is independent of . Inference about p
can be obtained using a smple Gibbs sampler because,
letting Qﬁ) = P/ Zka Py and q(z) = P/ X4 P the
conditiona probabilities are

p|y ~ Dirichlet(y,, +1,..., y,. +1),
ind . . .
Y2; | B U, Yo ~ Multinomial(u;, qf), j=1,...,r,

Yac | P Vi, Vs s Multinomial(v,, g?),k=1...,c,
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Yal P, W, Y4 ~ Multinomial(w, p). (8)

Clearly, the parameters p and = are identifiable and
estimable. Also, note that y, in (8) is alatent variable and
that it does not contribute to inference about p. Rather it
assists in the computation by providing a smple Gibbs
sampler. However, we note that informetionin y,, viaw, is
important under a nonignorable nonresponse model.

3.3 Nonignorable Nonresponse M odel

For nonignorable missing datawe take
J, |{|jk/ =1, ij =0,j# | k=K, njk}

“Multinomial{1,  ,}. ©)

Assumption (9) specifies that the probabilities an individual
belongs to one of the four tables depend on the two
characterigtics (i.e., row and column classifications) of the
individua. In this manner we incorporate the assumption
that the missing datais nonignorable. Thisis an extension of
the model in Nandram, Han and Choi (2002). One can dso
have mr; or m, instead of =, ; the methodology issimilar.
Next, we need the likdihood function. Here the
augmented likelihood functionfor p, , y,) | y; is

4r.cq ysk
9(P. 7, Yy [ Y1, Mg, U, V, W) o< {H ]{H plklk:l’ (10)

slkqu

subject t0 Xy Xk Yij =gy Zka Yo =Uj, i =11,
Yia Yax =Vio kK=1,..., ¢, and Xy Yo Yaj = W.

Observe that in (10) the parameters p;, and my, arenot
identifiable. Clearly, to estimate p; one needs to know
Y, butonly the y,, are known. Also, to estimate 7y,
one needs to know yg,,s=2,3,4. Thus, ygy,s=234
are dso not identifiable. Putting very informative proper
priors on the 7y, will help, but this is not a practica
solution. If an ignorable model (i.e,, my, =) is used, then
al the parameters can be identified. Therefore, a sensible
solution is to attempt to link the =, over (j,k) using a
common feature. If the =, come from a common distri-
bution with “known” parameters, we would be able to esti-
mate them. That is, we must attempt to “borrow strength” as
in small area estimation. This permits estimation of 'y,
which, in turn, will facilitate estimation of the p;, and m,

For the @, we “center” the nonignorable nonresponse
model on the ignorable nonresponse modd. Specifically, we
assume that

T T " Dirichlet (T, WL, T, WsT, WyT),

T 20, Z Mgy = (11)
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i=L4...,r,k=1...,c. In (11) the parameter 1 tells us
about the closeness of the nonignorable nonresponse model
to the ignorable nonresponse moddl. For example, if T is
small, the =, will be very different, and if t islarge, the
m;, Will be very similar. Thus, inference may be sengtive
to the choice of t, and one hasto be careful in choosing .
In the absence of any information about nonignorability, it is
natural to choose a prior dendity for Tt so that the non-
ignorable nonresponse modd generdizes the ignorable
nonresponse model. This generdization is attained because
as T goes to infinity, the m;, converge to the same value
over (j,k) (not component-wise), the ignorable non-
response model. The parameters p and T are not iden-
tifiable because the m;, are not. Thus, it is impossible to
estimate p and t without any information; a natural way to
proceed is to attempt to use some of the data aready
observed.

Specificaly, apriori wetake w and 1 to be independent
with

p("):l MSZO’ s=1234,

ius:l T~ Gamma (o, By), T=0, (12
s=1

where o, and B, are to be specified; without any infor-
mation about o, and B, one needs to use the data again.
To hdp specify o, and B, for the nonignorable non-
response model, we have used the ignorable nonresponse
model. The prior on T adds extra varidion, thereby
permitting some degree of nonignorability (see section 3.5).
Note again that if © isvery large(i.e, o >>f,), thisnon-
ignorable nonresponse model degenerates into the ignorable
nonresponse model. Thus, an issue of how senstive infer-
ence is to this specification arises. Of course, one can
choose other digtributions for t in (12) (e.g., lognorma
distribution), but thisisreally not the key issue.

Combining (2), (11) and (12), the joint prior density of
@, p,n and T is

R(p. 7, T) {HH IL, =i

D(M)
Note again that (13) is a proper prior density. Finally,
combining the likelihood function in (10) with the joint
prior density in (13) via Bayes theorem, the joint posterior
dengty of the parameters =, p, u, T and the latent variables
Yu IS

4,r,c . )Ysk
TC( pl wN,T, y(l) | yl) oc [H {M}]

=1 k=1

usT -1
e T (13)

s .k k-
H HsT -1
H &1 1% Tt (14)
i,k D("'T)



Survey Methodology, December 2005

In Appendix A we show how to fit the nonignorable
nonresponse model to obtain the appropriate inference using
the Gibbs sampler.

3.4 BayesFactor: Tests of Association and
Nonignor ability

We congtruct atest for the association between BMD and
FI. This test is an assessment of the assumption that
Pik = O ok i=4...,r,k=1...,c, and zjzlqu =1 and
Yi-1 0, =1. We use the Bayes factor, the ratio of the
marginal likelihoods under two scenarios (e.g., association
versus no association). Note thet we observe 'y, but y, is
a set of latent variables. So each marginal likdlihood is
smply the probability that y, is the observed value of Y,
which we denoteby p(y,).

We st

Yo :Zijk =u;, j=1..,r1;

ZySJk_Vk’k 1. ,C1zzy4jk=W

j=1 k=1
Then, Iettmg d=3nl(rc-! and e=3nl(r-!(c-1!,
the marginal likelihood for the ignorable (IG) nonresponse
modd is

C_

Pic(Y) =
4,r,c
d Z J‘J- l_[{(TCspjk)yﬁk /qu|}dﬂ7dp,
YeC s, i,k
association
(15)
e ”j H{(nsoa O )™ / ygdmda, da,,
Y€
no assomatlon,
and letting Q, =(p, 7w, p,7) and Q. =(q,q,, 7w, 1, 1),

the marginal likelihood for the nonignorable (NIG) non-
response model is

Panic (Y1) =
dchfg H {(qukp,k)y%/qu'}g(ﬂ 1, 1) dQ,,
s s,
association

(16)
ex o, H {(nqkquqw)qulquqg(n n7)dQ,,

y(leC

Nno association,
where
GorolgBet r ¢ il
oty =BTy i |
(o) j=1 k=1 D(u1)

The summation in the set C is computationaly intensive
because there are numerous points y, € C (i.e, weneedto
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sum over dl of them). We avoid this problem by first
summing over C anaytically and the rest is obtained using
Monte Carlo integration.

For theignorable mode it is easy to show that

Pic(Y1) =
_3n (rc-1)!
n+1l(n+rc-1’
association
Can == T vTT v
Cn+l(nr=in+c-0! [T T vad

No association,

(18)

where nisthetotal number of individualsin the entire table.
We describe how to estimate py,g(Y;) in Appendix B.

However, we note that a test for ignorability or non-
ignorability is tenuous because we assume that there is no
information about ignorability or nonignorability. Yet, our
nonignorable nonresponse model is a generalization of our
ignorable nonresponse model. We bdlieve that the test about
asociation under the ignorable nonresponse model or
nonignorable nonresponse modd isreliable.

Finaly, we note that the Bayes factor may be sensitive to
prior specifications, especidly when there are not enough
data to estimate the parameters under test; see Sinharay and
Stern (2002) for an interesting discussion on nested models.
We have studied sengitivity of the Bayes factor with respect
to the specification of o, and B, in (17); see section 3.5
and Table 6. Thisis useful becauseit isan important prior in
our nonignorable nonresponse model. However, the main
comparison is a test for no association under the ignorable
nonresponse model and the nonignorable nonresponse
model separately. The parameter T only enters the non-
ignorable nonresponse model, and t has the same prior
under association and no association.

3.5 Specification of a, and B,

The specification of the hyperparameters o, and B, in
T~ Gamma(a.,, B,) isakey issuein our method; see (12).
This isimportant because we use this technique to robustify
the ignorable nonresponse model; a sengtivity analysis is
performed later. Note that E(t) =0, /B,; thusif oy >>
B,. the nonignorable nonresponse model will be similar to
theignorable nonresponse model. Suppose we can cbservea
random sample @, ..., ™) from Gamma(o.,, B,). Then,
we can use a simple method (e.g., the method of moments)
to estimate o, and B,.

How can we obtain a sample to fit Gamma(o,, B,) ?
The Gibbs sampler in (8) for the ignorable nonresponse
model gives imputed values for the missing cell counts. We
have imputed the missing cell counts M times, M =1,000;
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let nf) =y, and n{),s=234, h=1.. M denote

the missing cell counts. Then, for each h we fit the
nonignorable nonresponse modd without the prior specifi-
cationin (12),
(NE, o N o ML M) [,
~ Multinomial{n, (7,1, Py, .- -» Tare Prc)}

p~ Dirichlet(1), and =, ~ Dirichlet (a)
where o, =T, s=1,2,3,4.

After integrating out p and m;, we get the likelihood
function,

1" 4
I @(XJ jﬁ (e, +n)

1 ke 4 I'lo
j=1 k=1 FEZ ((xs+ns(jhk) s=1 ( s)
s=1

a,>0,s=1234. (19)

Using the Nelder-Mead agorithm to maximize the like-
lihood function in (19) over o,>0,5=1234, & the
h" iterate, we obtain the maximum likelihood estimators
a,h=1...,M. Now letting 1™ =32, 4", we view
1™ h=1...,M a a random sample from Gamma
(09, Bo)-

Findly, usng the mehod of moments, we fit
Gamma(o.y, B,) to the “data” 1™,h=1...,M, to get
a,=a’/b and B,=al/b, where a=M'3M, 1™ and
b=(M -1)*xM, (1™ —a)% Thus, we have constructed a
data-dependent prior distribution for 1. Our procedure gives
o, =125 B,=0.35 (i.e, t has mean 357 and standard
deviation 31.9). In section 4 we discuss sengtivity to this
choice.

4. Dataand Empirical Analysis

We apply our methodology to the data in the 3x3
categorical table in Table 1. After we present results
associated with the observed data and a sengtivity analysis,
we describe a simulation study to assess the difference
between the ignorable and the nonignorable nonresponse
models.

4.1 DataAnalysis

See Table 2 for a comparison of the ignorable
nonresponse model and the nonignorable nonresponse
model. We have also included the numerical standard error
(NSE) which is a measure of how well the numerical results
can be reproduced; we have used the batch-means method
to compute it. Thus, one would be comfortable with smal
NSE’srelative to the Monte Carlo estimates or the posterior
means. For both models the NSE's are small with relatively
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larger values for the nonignorable nonresponse model (both
near zero any way), indicating that the computations are
repeatable. The posterior means (PM) are very similar for
the two models. The posterior standard deviations (PSD) are
larger for the nonignorable moded, making the 95% credible
intervals wider. Virtuadly al the 95% credible intervals
under the ignorable nonresponse model are contained by
those of the nonignorable nonresponse model.

Table2
Comparison of the Posterior Means (PM), Posterior Standard
Deviations (PSD), Numerical Standard Errors (NSE), and 95%
Credible Intervals (Cl) for p from the Ignorable and Nonignorable

Nonresponse Models
(o] p PV PSD NSE cl

(& Ignorable Model

(1,1) 0337 0330 0005 0001 (0.321, 0.339)
(1,2 0157 0142 0003  0.001 (0.136,0.147)
(1,3 0154 0168 0004  0.001 (0.162,0.175)
(1) 0141 0142 0004  0.001 (0.134,0.148)
(22 0071 0066 0002  0.001 (0.061, 0.070)
(23) 0063 0071 0003  0.001 (0.086, 0.078)
(31) 0050 0053 0003 0.001 (0,048, 0.059)
(32 0016 0016 0001  0.000 (0.013,0.019)
(33 0010 0012 0002  0.000 (0.009, 0.015)
(b) Nonignorable Model

(1,1) 0337 0321 0020  0.009 (0.278,0.355)
(1,2 0157 0143 0008  0.003 (0.126,0.158)
(1,3 0154 0173 0014  0.007 (0.140, 0.196)
(1) 0141 0139 0019  0.009 (0.109,0.182)
(22 0071 0069 0007  0.003 (0.056, 0.085)
(23) 0063 0071 0013  0.006 (0.053,0.102)
(31) 0050 0052 0008  0.002 (0.040, 0.070)
(32 0016 0019 0003  0.001 (0.014, 0.026)
(3,3 0010 0013 0003 0.001 (0.009, 0.020)

Note: The ignorable nonresponse mode has  mg, =T,
$=1,2,3,4, j=12,3 k=1,2,3. Theobserved vaueof p
based on the complete datais p.

In Table 3 we have also compared the estimation of
in the ignorable nonresponse mode!l with g, in the non-
ignorable nonresponse model. For the nonignorable non-
response model we present the range of the posterior means
(PM) for the nine cdlls of each s, s=1,2,3,4. Thisindi-
cates the extent of the nonignorability. The PM’s of &, are
within the range of the Tk and as expected, the PSD’'s are
larger for the nonignorable model. For example, over the
nine cellsthe m,;, vary from 0.388 to 0.656, and these two
numbers differ significantly from 0.615, showing some
degree of nonignorability. Thus, there is some difference
between the ignorable and the nonignorable nonresponse
models.

In Table 4 we have presented the logarithms of the Bayes
factors for testing the goodness of fit of the ignorable non-
response model and the nonignorable nonresponse model.
There is “strong” evidence that the ignorable nonresponse
mode fits better than the nonignorable nonresponse model
for these data (Kass and Raftery 1995). While the ignorable
nonresponse model provides “strong” evidence for no asso-
ciation, the evidence from the nonignorable nonresponse
model is “positive’ as stated by Kass and Raftery (1995).
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Thus, again there is a difference between the ignorable and
the nonignorable nonresponse models. However, the NSE
of 1.80 tends to nullify such differences. Our conclusion is
that there is strong evidence to suggest no association
between BMD and FI.

Table3
Comparison of the Posterior Means (PM) and Posterior Standard
Deviations (PSD) for mg, fromthe Ignorable and Nonignorable
Nonresponse Models

Ignorable
751 0.615 (0.009)
T, 0.077 (0.005)

Nonignorable

0.388 (0.078) — 0.656 (0.044)

0.057 (0.017) — 0.195 (0.068)

T3 0.292 (0.008) 0217 (0.041) — 0.349(0.053)

T, 0.015 (0.002) 0.013(0.005) — 0.152 (0.055)

Note: PSD’s are in parentheses. For the ignorable nonresponse
mode the parameters are my,m,, w3 and m, and for the
nonignorable nonresponse modd the parameters are
nq-k,s:J, 2,34,j=1,2,3 k=123 Among the
nine cells for each s we sdlected the smallest PM and the
largest PM to form the range.

Table4
Margina Likelihoods and Bayes Factors for Testing Association
Between BMD and FI Under the Ignorable and the Nonignorable

Nonresponse Models
Asociation  No associaion Difference
Ignorable —49.571 —46.173 —3.398
Nonignorable -53.129 -50.132 —2.996
NSE 1.800 1.790

Note  All entries (margind likelihoods and their differences) are on
the logarithmic scde. The Monte Carlo integration uses
50,000 iteractions. The NSEs, numericd standard errors, are
small reaiveto the margind likelihoods.

We have considered the relation between BMD and F
when the osteopenia and osteoporosis levels are collapsed
into one level. Under the ignorable nonresponse model the
log Bayes factor is -2.77 (log margind likelihoods. —32.82
and —29.05), and under the nonignorable nonresponse
model the log Bayes factor is —4.52 (log margina
likeihoods: —34.25 and —4.52). Thus, the same conclusion
is reached about no association between BMD and FI.
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We have also separated out the data into two age groups.
premenopausal (age a most 49 years old; young) and
postmenopausal (age at least 50 years old; old). For the
young group there were only 4 females with osteoporosis,
and so we collapsed the femaes with osteopenia and
ogteoporosis. We fit both the ignorable and nonignorable
nonresponse models to these data and got similar results.
For the old group using the ignorable nonresponse model
thelog marginal likelihoods corresponding to no association
and association are —43.01 and —38.91 giving a log Bayes
factor of 4.10 for no association. Thus, there is strong
evidence for no association between BMD and Fl. For the
young group using the ignorable nonresponse mode the log
marginal likelihoods corresponding to no association and
asociation are —29.93 and —28.80 giving a log Bayes
factor of 1.13 for no association. Thus, there is positive
evidence for no association between BMD and Fl for both
age groups. Therefore, age is unlikely to play arole in the
association of BMD and Fl.

4.2 Sensitivity Analysis

We have studied the sensitivity of inference about the
Py with respect to the prior distribution of 1. That is, we
have taken © ~ Gamma(ko.,, B,), where k isasensitivity
parameter that we have taken to be 1 in our anaysis (note
that E(t) = ko, /B,)-

Our procedure for the specification of o, and B, gives
valuesof o, =125 and B, = 0.35; see section 3.5. Making
k bigger than 1 induces less changes in the posterior mean
(PM) and posterior standard deviation (PSD) of the p;,
than for k smaller than 1 because larger values of «
induces much smaller changesin the prior distribution of 7.
In Table 5 we present PM’s and PSD's of the p;, for
k =0.25, 0.50,1.00, 2.00, 4.00. The PM’sincrease with «
and the PSD’s decrease as x increases from 0.25 to 4.00.
Thus, there is some sengitivity to the specification of o,
and B,, but the changes are small. For example, the PM’s
of p, ae0.31, 032, 033 a «=0.251.00,4.00 and the
PSD’s at these values of « are0.04, 0.02, 0.01.

Table5
Sensitivity of the Posterior Means (PM) and Posterior Standard Deviations (PSD) of the pj, to Choices of k
in the Nonignorable Nonresponse M odel

K 0.25 0.50 1.00 2.00 4.00

Cdl PM PSD PM PSD PSD PM PSD PM PSD

(1,1 30693 3609 31501 2581 32181 1995 32537 1455  326.16 10.46
(1,20 14112 1552  139.86 1191 14266 844 14263 6.68 14342 501
(1,3) 16168 2580 167.83 1877 17340 13.77  176.20 844 17578 6.71
(21) 14318 3420 14262 2492 13857 1882  137.23 1359  137.26 9.70
(2,20 6846 1312 71.06 10.09 68.44 748 68.79 572 68.11 4.45
(2,3) 7978 2283 75.97 17.86 7111 12.56 68.09 7.84 68.34 6.38
(3) 5997 2160 53.50 12.12 52.14 7.76 50.97 529 5141 4.35
(3,2 2143 7.76 20.02 4.89 18.96 2328 18.67 278 17.84 223
(3,3 1745 10.38 14.12 4.28 12.93 2.99 12.05 234 11.69 1.99

o
Note: All entries must be multiplied by 1073, In the nonignorable nonresponse model Tk “Gamma (kag,Bo),
wherek isthe sensitivity parameter and aq =125 and 8, =0.35.
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We have dso studied the senditivity of the Bayes factors
to choices of k (see Table 6). Firs, the NSE's decrease
with «, but the change is smdl. Note that we have used
50,000 iterations in the Monte Carlo integration; this sample
Sze is needed for the Monte Carlo estimates to stabilize.
The log marginal likelihoods do not change too much with
k. Because the log Bayes factors are smal, some changes
are reflected in inference: At x=0.25,0.50, 4.00 thereis
“grong” evidence for no association, but a « =1.00, 2.00
there is “pogitive’ (borderline) evidence for no association.
Overadll, there is some degree of evidence for no association.
Thus, it is interesting that one does not need to worry too
much about the choicefor (a.,, B,)-

Table6
Sensitivity of the Marginal Likelihoods and the Bayes Factor to
Choices of « in the Nonignorable Nonresponse Model

Association No Asocigtion  BayesFactor
K ML NSE ML NSE
025 5337 190 -49.16 1.89 -4.21
050 -52.58 183  -4949 182 -3.08
100 -5258 180 -49.76 179 -2.82
200 -5281 179 —49.83 178 —2.98
400 -52.95 178  -4991 177 -3.04

Note: All entries are on theili%gai thm scale. In the nonignorable non-
response model mg, ~ Gamma (xoq,Bg), Where x isthe
sensitivity parameter and og =125 and By =0.35.

4.3 Simulation Study

We have performed a simulation study to further
compare the ignorable and nonignorable nonresponse
models. Our objective is to confirm differences that exist
between the two models. In our Situation a test based on the
Bayes factor can confirm one or the other. With limited
information about nonignorability (our current situation), it
is sensible to fit an ignorable nonresponse model because all
the parameters are identifiable in the ignorable nonresponse
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model. Thus, we proceed by comparing the ignorable and
nonignorable nonresponse models when data are generated
from (a) the ignorable nonresponse modd and (b) the
nonignorable nonresponse modd. Thisis atypica Bayesian
anaysis.

We obtained the posterior means of the p, and the
Ty, denoted by P, and Ty, respectively, after the non-
ignorable nonresponse modd s fit to the observed data. For
the ignorable model we took T =X Yk g/
rc,s=12,3 4. We obtained the cdl counts for the
ignorable model by drawing from

(Yaazs s Yarer -0 Yazo -0 Yare) |6 P
~ Multinomia{n, (T, Py, ..., T4 Prc)}

and for the nonignorable model by drawing from

(Y1121 -1 Yarer -oos Yagar--o» Yare) | D
~ Multinomia{n, (T,;; Pyys---» Tare Prc)}s

where n=2,998, the totd number of individuas in the
original data set (see Table 1). We have generated 1,000
datasets from each of the ignorable and nonignorable non-
response models. Then, we fit the ignorable and non-
ignorable nonresponse models to each dataset in exactly the
same manner for the observed data in Table 1, and we
computed the posterior means (PM) and the posterior
standard deviations (PSD) for the p;. In Table 7 we
present the averages of the PM's and PSD’s over the 1,000
datasets. The second column (labdled p) has the posterior
meen of p;, for the observed data under the nonignorable
nonresponse model (see Table 2b).

For (a) in Table 7 the PM’s are very closeto the p,, for
the ignorable nonresponse model, but not so close when the
nonignorable nonresponse modd isfit. It isnoticeable that

Table7
Comparison of the Ignorable and Nonignorable Nonresponse Models Via the Simulated Data and the Posterior Means (PM)
and Posterior Standard Deviations (PSD) of the pjy

Simulated Ignorable (a) Nonignorable (b)
Fitted Ignorable Nonignorable Ignorable Nonignorable

Cdl p PM PSD PM PSD PM PSD PM PSD
1,1 321.81 320.73 5.72 307.42 11.30 332.02 5.10 324.44 10.60
1,2 142.66 142.96 424 146.44 734 14181 330 143.44 543
193 173.40 172.59 442 173.49 7.62 168.66 414 174.10 7.04
21 138.57 138.82 481 135.32 9.82 143.63 452 139.20 9.74
2,2 68.44 68.44 3.55 72,01 6.02 64.51 291 68.20 4.76
273 7111 7141 3.65 75.00 6.30 70.85 3.76 69.63 6.58
3,1 52.14 52.17 311 53.03 495 53.08 304 52.44 4.70
3,2 18.96 19.35 2.08 21.65 298 15.08 172 17.32 248
(3,3 12.93 1354 178 15.64 2.55 10.95 1.85 11.20 2.18
Note Data are smulated from the ignorable nonresponse mode in (&) or the nonignorable nonresponse model in (b), and both

the ignorable and nonignorable nonresponse models are fit. We have generated 1,000 datasets, and we fit both the
ignorable and nonignorable nonresponse modds to each smulated dataset. The PM’s and PSD'’ s are averages over the
1,000 datasetsand P isthe posterior mean for the observed data which we used to generate the data sets. All entries must

be multiplied by 1073,
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the PSD’s under the nonignorable nonresponse model are
about twice as large as those under the ignorable non-
response model. For (b) in Table 7 the PM’s for the non-
ignorable nonresponse model are closer to the p;, than
those from the ignorable nonresponse modd. However, in
both cases the PSD’s for the nonignorable nonresponse
mode are about twice those from the ignorable nonresponse
model. For example, in Table 7 for the (1, 1) cdl as
compared with 0.322 for f, in (&) the ignorable (non-
ignorable) model givesa PM of 0.321 (0.307), but in (b) the
ignorable (nonignorable) modd givesaPM of 0.332 (0.324)
for other examples. Thus, the two models are indeed
different for estimating p.

We have also considered estimating the proportion P of
smulated datasets in which the ignorable nonresponse
model performs better than the nonignorable nonresponse
model. It is expensive to compute the marginal likelihood
under the nonignorable nonresponse model. We note again
that it takes 50,000 iterations for the Monte Carlo estimate
to stabilize; thisis an enormous task for the simulation study
because we need to caculate the margina likelihoods for
1,000 datasets. Thus, we use a Ssmple procedure to compare
the two models, and we expect that this procedure would
giveaconclusion similar to a power caculation.

Specifically, we compute A™ =n¥i, Y5, (P -

PM )2 /PM Y, where PM ) is the posterior mean of
p, corresponding to the h™ dataset. We denote A™ by
A(:*g for the ignorable nonresponse model and A for the
nonignorable nonresponse model. An estimator of P, F3, is
obtained by counting the number of the 1,000 experiments
in which AR > Al . For the data generated from the
ignorable nonresponse model, P is 0.236 with a standard
error of 0.013. For the data generated from the nonignorable
nonresponse model, P is 0.920 with a standard error of
0.009. Thus, if the ignorable nonresponse mode is expected
to hold, about 24% of the time the nonignorable non-
response model will beat it, and if the nonignorable
nonresponse model is expected to hold, only about (1 -
0.920)100% ~ 8% of the time the ignorable nonresponse
model will best it. Thus, there are |atent differences between
these two models. The nonignorable nonresponse model
does capture some degree of nonignorability, and it
robugtifies the ignorable nonresponse model. We believe
that this is a reasonable comparison between the ignorable
and the nonignorable nonresponse models.

5. Concluding Remarks

There are two key methodological developments in this
paper. Specificadly, we have shown that () it is possible to
andyze multinomial data from rxc categoricd tables
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when there are both item and unit nonresponses, and the
nonresponse mechanism may be nonignorable; and (b) by
using the Bayes factor (ratio of the marginal likelihoods of
two modes), we can test for association between the two
categories. Essentidly, we have assumed that there is no
information about nonignorability, all design features are
suppressed and we have taken a conservative ground.

For the 3x 3 categorical data of BMD and Fl, we have
shown how to estimate the cell probabilities accurately. For
the complete cases, the Bayes factor shows “strong”
evidence for no association between BMD and FI. For all
the data, our Bayes factor shows that the evidence for no
asociation is “strong” under the ignorable nonresponse
model, and is “pogtive’ under the nonignorable non-
response model. Thus, there is virtudly no difference
between the two scenarios. data from only the complete
cases are used and dl the data are used. Also, based on the
Bayes factor and our smulation study, while there are
differences between the ignorable nonresponse mode and
the nonignorable nonresponse models, such differences are
smdl. There are differences for inference about the pro-
portions of individuas in various BMD-Fl levels, the
posterior means are similar but the posterior standard
deviations under the nonignorable nonresponse model are
larger than those under the ignorable nonresponse model.

Our simulation study supports two properties (subtle
differences) of our models. Fird, the estimates of the cell
probabilities from the ignorable (nonignorable) nonresponse
model are closer to the true values when the ignorable
(nonignorable) nonresponse model is expected to hold, but
in either case the estimates from the nonignorable non-
response model have about twice the standard deviations
from the ignorable nonresponse model. Second, if the
ignorable (nonignorable) nonresponse model is expected to
hold, it can be beaten by the nonignorable (ignorable) non-
response model. This happens a sgnificantly larger pro-
portion of time when the ignorable nonresponse model is
expected to hold. Thus, there are differences between these
models. We suggest fitting both models, and compute the
Bayes factor to decide which one to use. We do not re-
commend using these models when there are appropriate
covariates and/or prior information to explan non-
ignorability.

In future research one can atempt to reduce the number
of parameters in the nonignorable nonresponse model to
further reduce the effects of nonignorability. For example, it
may be possible to consider representing the data in two
categoricd tables as follows. The three supplemental tables
are collapsed into a single supplemental table with its ™
row having at least u; individuds, and its k™ column
having at least v, individuals, the total number of indi-
viduals in this supplemental table is w+ X', U; + 3¢5 Vy;
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see section 3.1 for notations. Finaly, we note that a full
andysis of data from a complex survey requires an input of
information (covariates and prior information) about non-
ignorability, sampling weights and clustering effectsaswell.

Appendix A
Fitting the Nonignor able Nonresponse M odel

We show how to use the Gibbs sampler to make
inference about the parameters in (14). The conditiond
posterior density of pis

p|y~ Dirichlet(y,;; +1, ..., ¥, +1
and the conditional posterior density of =, is

S T, Y
yljk Ml y2]k (A2)
THLT, Yajk THST Yaj tHAT
with independenceover j=1,...,r,k=1,...,cC.

We need the conditional posterior probability mass
functions of y,,s=2,3,4 given yq, p,my,j=1....r1,
k=1...,c. From (14) itisclear that the y,,s=2,3,4 are
conditionally independent multinomia random vectors.
Specificaly,

Yo {Y1s Py, j=1...,r, k=1...,¢

* Multinomial(u,,q®), j=1...,r,

(A1)

I (TR R Dirichlet[

,rk=1...,¢

™ Multinomial(v,, g®), k=1 ..., c,

y3k |{y11 p!njk’ J :1,

Yally oy, j=1...,r,k=1....¢

~ Multinomia (w, ), (A3

where A5 = Mo Pic/ Tk Mo Py, k=1, ..., G, =
TP | Zha Tan P J =11, and qf =15 py/
Y Yk T Piwes i=1...,r,k=1...,c

Next, we consider the hyper-parameters. Letting 6, =
ITja [Tka 7y, the joint conditional posterior density of
B, Tis

p(p, t|my, j=1...,r,k=1...,¢

o |:{ﬁ 6251:}/{ D(ll T)}rc:|,t(x01eﬁot, (A4)
s=1
where Y4, u =1,u,20,5=12,34,1>0.

We use the grid method to get samples from the
conditional posterior density of p(u|t, @y, j=1...,r,
k=1...,c) ad p(t|p, @y, j=L....,r, k=1...,¢).
After transforming t to @/(1- ¢), the parameters now live
on (0,1) with appropriate constraints, making the grid
procedure convenient. We use 50 intervals of equa widths
(obtained by experimentation) to draw p and ¢, and a
random deviaefor T is @/(1- @).
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The Gibbs sampler is executed by drawing a random
deviate from each of the conditional posterior “densities’,
(A1), (A.2), (A.3), and (A.4) in turn, iterating the entire
procedure until convergence. This is an example of the
griddy Gibbs sampler (Ritter and Tanner 1992).

Appendix B
Estimation of p,,.(y,) in (16)

Letting n,, denote the number of incomplete cases (i.e.,
n=n,+n,), one can aso show that for the model with
asociation  pyg(y) =al(n+1!)/(ny!n, YA and for the
model with no association py,s(Y;)=b((n+)!/(n,!n,!))B,
wherea and b aregivenin (18),

A=

Ina{lj}nfﬁk HiZ T Pk }”m{ L, P }

2]k D(Yu1 L) Yire 1)

T
XH{ D(uv) }

B=

8‘0 T“oflefﬁof
Q. ,
(o)

" 4 M
IQ {l_lﬂlyllkI }{z an‘kquqzk}
oLk s=2 ]k
Hi a)’ 1, oz

X
D(yy +L...,yy, ) D(yy1+L..., ¥+

Lo e

ik D(pr) I'(ayg)

Note that 0< A, B<1 gives a useful diagnostic check on
the computation.

We show how to compute A in (B.1) using Monte Carlo
integration; the procedure to compute B is smilar. We
prefer the smpler procedure based on Monte Carlo
integration with an importance function (Nandram and Kim
2002) rather than the method based on a continuation of the
Gibbs sampler (Chib and Jeliazkov 2001).

For A we choose the importance function

Hj K pjyl1jk {Hs n}slfkt_l }

D(y111+1’-”1 ylrc+1) jk D(HT)

4 mE-
[T, w8 poere™
D(n7) (o)

where I, and T are estimates obtained using a Gibbs
output. We obtain a sample from =, (2,) by drawing
T~ Gamma(a,, B,), 1 TndDirichIet(ﬁ, 1), mylnT -
Dirichlet(n,t) and p|y, ~ Dirichlet(y,,; +1,..., ¥y, +1).

Q.. (B

nim(Qa) =
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Then, letting w, =X X Yy logn{i+n,, log[¥2, 3]
i n) piP] - x4, ({1, -1) +logu® +log (D( 7)), h=
1...,M, an edimator of A is A=M3M e>. The
numerical standard error (NSE) of Iog(A) can be approx-
imated. For letting ®=M 'Y, ®, and S*=(M -1
TV (0, -®)?2 we hae Var(A)=e*®S?/M,
Var(log(A)) = (Var(A)/e®) = S?/M, and the NSE is
S/VM  approximately. We start with M =10,000
independent samples from the importance function, and
increesing M until convergence which occurs about
M = 50,000.
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On the Use of Data Collection Process | nformation for the Treatment of

Unit Nonresponse Through Weight Adjustment

Jean-Francois Beaumont *

Abstract

Nonresponse weight adjustment is commonly used to compensate for unit nonresponse in surveys. Often, a nonresponse
model is postulated and design weights are adjusted by the inverse of estimated response probabilities. Typical nonresponse
models are conditiona on a vector of fixed auxiliary variables that are observed for every sample unit, such as variables
used to construct the sampling design. In this note, we consider using data collection process variables as potential auxiliary
variables. An example is the number of attempts to contact a sample unit. In our treatment, these auxiliary variables are
taken to be random, even after conditioning on the selected sample, since they could change if the data collection process
were repeated for a given sample. We show that this randomness introduces no bias and no additional variance component
in the estimates of population totals when the nonresponse model is properly specified. Moreover, when nonresponse
depends on the variables of interest, we argue that the use of data collection process variables is likely to reduce the
nonresponse bias if they provide information about the variables of interest not aready included in the nonresponse model
and if they are associated with nonresponse. As a result, data collection process variables may well be beneficia to handle
unit nonresponse. Thisis briefly illustrated using the Canadian Labour Force Survey.

Key Words: Nonresponse bias; Nonresponse model; Nonresponse variance; Number of attempts; Paradata; Response

probability.

1. Introduction

Unit nonresponse is often handled in surveys by using a
nonresponse weight adjustment method. The basic principle
that is often chosen is to adjust the design weights by the
inverse of estimated response probabilities (see, for exam-
ple, Ekholm and Lasksonen 1991). These estimated re-
sponse probabilities are obtained by postulating a model for
the unknown nonresponse mechanism, which we call the
nonresponse modd. Key to reducing the nonresponse bias
and variance as much as possible is to condition on a vector
of auxiliary variables that are observed for every sample
unit and that are good predictors of both nonresponse and
the variables of interest (Little and Vartivarian 2005).
Usudly, the auxiliary variables are treated as being fixed
both unconditionally and conditionally on the selected
sample.

In this note, we consider using Data Collection Process
(DCP) varidbles as potentia auxiliary variables to be
included in the nonresponse model. An example is the
number of attempts to contact a sample unit. Such type of
data is sometimes called paradata (see Couper and Lyberg
2005 for a recent reference on paradata) and has been used
to dedl with unit nonresponse by Holt and Elliott (1991),
among others. In our trestment, contrary to Holt and Elliott
(1991), DCP variables are taken to be random, even after
conditioning on the sdlected sample, since they could

change if the data collection process were repested for a
given sample.

DCP varigbles may be particularly useful in cross
sectional surveys where the auxiliary variables available to
handle unit nonresponse are often limited to variables used
to congtruct the sampling design. Although such design
variables are not useless, they are often neither very good
predictors of nonresponse nor the variables of interest. The
additiona information from data collection process may be
welcome in these cases. In longitudina surveys, there is a
wedlth of potential auxiliary variables to deal with wave
nonresponse. DCP information may thus not have the same
importance to compensate for wave nonresponse than the
importance it has to compensate for unit nonresponse in
cross-sectional surveys. However, we have yet to study this
in any depth. It may turn out that, at change points, DCP
variables may matter greatly.

In section 2, we introduce notation and theory concerning
the effect of using random auxiliary variables in the
nonresponse model when estimating population totals. This
issue of the randomness of DCP auxiliary variables was
raised and debated at Statistics Canada s Advisory Commit-
tee on Statisticadl Methods after the paper by Alavi and
Beaumont (2004) was presented. The goa of section 2 is
thus to shed some light on this issue. The use of DCP
variables to adjust design weights for nonresponse is briefly
illustrated in section 3, using the Canadian Labour Force

1. Jean-Francois Beaumont, Business Survey Methods Division, Statistics Canada, 11" floor, R.H. Coats Building, Ottawa, Ontario, Canada, K1A OT6.

E-mail: jean-francois.beaumont@statcan.ca.
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Survey (CLFS). The last section, section 4, contains a brief
summary of the paper.

2. Theory

Let us assume that we are interested in estimating the
population total t, =3, y, of avariable of interest y
for a certain fixed population U of sze N. From this pop-
ulation, arandom sample s of size n is selected according
to a probability sampling design p(s|D), where D isa
N — row matrix containing d; inits k™ row and d isthe
vector of design variables. Let dso assume that, in the ab-
sence of nonresponse, we would use the Horvitz-Thompson
estimator fy =Y kes Wi Y. Where w, =1/, isthe design
weight of unit k and &, =P (ke s) isits selection proba-
bility.

Usudly, due to a number of reasons, unit nonresponse
occurs so that the varigbley is only observed for asubset S,
of s, the respondents. Along with S, , a random vector z
of DCP variables is aso observed for every sample unit
according to a joint mechanism #q(Z g, s, |s Y, D, X).
As mentioned in the introduction, the number of attempts to
contact a sample unit is an example of a DCP variable. The
vector z of DCP variables and the set of respondents s,
are random after conditioning on the selected sample since
these quantities would likely take different valuesiif the data
collection process were repeated for a given sample. The
quantity Z . isa n—row matrix containing z; inits k"
row, Y isa N—dement vector containing y, inits k"
element and X isa N —row matrix containing x; in its
k™ row. The vector x is a vector of additiona fixed
auxiliary variables. For instance, these auxiliary variables
could come from an administrative file or, in a longitudina
survey, they could be the variables of interest observed at
the previous wave. As a result, the vector x may not be
avalable for nonsample units. Table 1 summarizes the
availability of the different types of variables for the re-
spondents, nonrespondents and nonsample units.

Table 1
Availability of Variables
y z X d
Respondents: s, YES YES YES YES
Nonrespondents: s—s, NO YES YES YES
Nonsample units: U —s NO NO" YES™ YES

*  Thevector zis not even defined for nonsample units.
** The vector x may not always be available for non-
sample units.

The joint mechanism #q(Z,, s, |s Y, D, X) can be
factorized into two diginct random mechanisms. i)
#(Z,|s Y. D, X) adii) q(s, |s Y, D, X, Z). The
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former is caled the DCP mechanism while the latter is
caled the nonresponse mechanism. This factorization will
be useful later to obtain properties of our nonresponse-
weight-adjusted estimator defined in equation (2.2) below.
We assume that

a(s, Is, Y, D, X, Z;)=q(s, |s, D, X, Z5), (21)

where D and X are the sample portions of D and X
respectively. This assumption implies that the nonresponse
mechanism is independent of (or unconfounded with) Y,
after conditioningon s D, X, and Z , and that the data
are missing at random. However, we make no explicit
simplifying assumption about the DCP mechanism o that it
may well depend on Y, even after conditioning on s D
and X.

To compensate for unit nonresponse, we consder the
nonresponse-weight-adjusted estimator

S

kes, pk (6“)

Wy

Yis (22

where p, () =P(ke s, |s, D, X, Z;a) isthe condi-
tiona response probability for a unit ke s and a is an
estimator of the vector of unknown nonresponse model
parameters a. Note that a nonresponse modd is a set of
assumptions about the unknown nonresponse mechanism
q(s, |s,Y, D, X, Z,); one of them being assumption
(2.1). We assume that a. is implicitly defined by the equa-
tion U, (a)=0, where U, (.) isa vector of gq— unbiased
esimating functions for a; tha is E {U,(a)|s, Y,
D, X, Z.}=0. Therefore, U, (.) isaso p#qg- unbiased
for a. In the remaining of the paper, we remove every-
where the conditioning on Y, D and X when taking ex-
pectations and variances since these vectors are aways
treated as being fixed. For ingtance, we will write
E,{U,(a)|s Z,}=0 ingead of E {U,(a)|s,Y,D,
X, Z .} =0. Thiswill smplify considerably the notation.

Note that the nonresponse-weight-adjusted estimator
(2.2) isimplicitly defined by the equation

~ r ~ W
Uz(a,t;\lWA):t;\lWA_z k

2.3
kes, pk (&) ( )

Y« =0.

If the nonresponse modd is correctly specified and, in
particular, if assumption (2.1) is satisfied, then the esti-
mating function U, (.,.) is p#q— unbiased for t,; thatis,
E piq{U2 (a,t, )} =0. To make assumption (2.1) as plau-
sible as possible, it is important that the nonresponse model
be conditional on design, auxiliary and DCP variables that
arewell correlated with y, provided that these variables are
adso associated with nonresponse. This recommendation
should be useful to control the magnitude of the non-
response bias, which may be unavoidable in red surveys.
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Thisis dso in line with the recommendation given in Little
and Vartivarian (2005). Therefore, if DCP variables contain
information about y above the information aready con-
tained in d and X, then the use of DCP variables may be
useful to reduce the nonresponse bias if they are associated
with nonresponse. A N

Now, let 0=(a’,t,)’, 0=(a’, {,""*)" and U(0)=
{U; (@), U, (a,t,)}’, for some vector 8 =(a’, t,)". As
noted above, O is implicitly defined by the equation
U(0)=0 and the estimating function U() is p#q-—
unbiased for 0 since E ,,,{U(0)} =0. Using a first-order
Taylor approximation (see Binder 1983), we have 0=
0—{H(0)}'U(B), where H(9)=Ep#q{aU(9)/aﬂ'}.
The matrix {H (08)} * isthus given by

a0} 0} 24
_H21(0){H11(9)} 1

where H,,(0)=E,, (3U, (0))/(0a"), for i=1, 2.
Using conditions similar to those of Binder (1983), 0 is
asymptoticaly norma and asymptotically p#q— unbiased
for 0. As a result, £, is asymptotically normal and
asymptotically p#q— unbiased for t,. Therefore, using
DCP variables in the nonresponse model does not introduce
any bias in the nonresponse-weight-adjusted estimator
£,""* provided that the nonresponse model (specification of
q(s, |Is Dg, X4, Z) and assumption 2.1) holds. Also, if
the true unknown nonresponse mechanism depends on the
sample portion of Y, Y, after conditioningon s, D, and
X, then conditioning on a vector z of DCP variables is
likely to reduce the nonresponse bias if the DCP mechanism
depends on Y, after conditioning on s, D, and X,
which means that the DCP variables contain information
about y not dready containedin d and x.

Continuing our Taylor linearization, and using the fact
that

{H(e)}™ =(

Vo {U(0)} =V E, {U(0)]s}
+E,V,E,{U(8)]s,Z,)}
+E .V {U(0)[s,Z.},

the p#q - variance-covariance matrix of 0, A (é), is
approximated by

Vpsq (8)={H(8)} "V E {U(8)|SH{H'(0)}
+{H(0)} "E,V,E,{U(8)|s,Z H{H ()}
+H{H(0)} "E [,V {U(O)[sZ H{H'(O)} . (25

The first term on the right-hand side of equation (2.5) is
cdled the sampling variance of 0, the second term is called
the DCP variance of 6 and the third term is called the
nonresponse variance of 0. The variance V ,, (£)""*) is
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gpproximated by the value in the lagt row and in the last
column of equation (2.5). Using expression (2.4) and the
fact that E,{U(0)|s Z,}=(0’t, -f,)", the approxi-
mate variance (2.5) reducesto

Vi (6)2(8 Vp(()fy)jJ“(g 8)

+{H(0)} "E Vo {U(8)[s, ZH{H(8)} . (26)

The second matrix on the right-hand side of equation
(2.6) corresponds to the DCP variance of 0 and contains 0
for al its elements. Therefore, usng random auxiliary
(DCP) variables in the nonresponse model does not
introduce any additional term of variance, as opposed to
using only fixed auxiliary variables, when the nonresponse
modé is properly specified. Since DCP variables are likely
to reduce the nonresponse hias if they are associated with y,
then it seems beneficia to take advantage of them when
handling unit nonresponse through a weight adjustment.
Als, as pointed out by Little and Vartivarian (2005), adding
auxiliary variables in the nonresponse model that are
associated with y tends to reduce the nonresponse variance.
The mean squared error can therefore be reduced on both
counts.

A more detailed expression for the nonresponse variance
term in equation (2.6) as wdl as a sampling and a non-
response variance estimator can be obtained smilarly as in
Beaumont (2005). Beaumont (2005) aso discusses the
effect of estimating the nonresponse model parameters on
the variance of an estimator of a population total.

3. TheExample of the Canadian
Labour Force Survey

The god of this example is not to provide every detail of
the analysis that was conducted on the Canadian Labour
Force Survey (CLFS) data but smply to describe some
issues related to the choice of the nonresponse model and to
the estimation of response probabilities. With these pointsin
mind, we then go on to discuss the main conclusions that
were reached. Greater detall about the results of the
investigations in the CLFS, implementation of the new
method and a comparison with the previous method can be
found in Alavi and Beaumont (2004).

The CLFS is a monthly survey with a stratified multi-
stage sampling design (Gambino, Singh, Dufour, Kennedy
and Lindeyer 1998). The information used to congtruct the
sampling design and to draw a sample of dwellingsis essen-
tially geographic. The sample is divided into six represent-
tetive rotation groups and each sampled dwelling stays in
the sample for six consecutive months. One rotation group
contains dwellings for which the members are interviewed
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for the firgt time; another rotation group contains dwellings
for which the members are interviewed for the second time
and so0 on. Thus, for five rotation groups out of six, the
sampled dwellings are common from one month to the next.
Computer-assisted interviews are used to collect the survey
information for every person in the selected households.
With computer-assisted interviews, a large amount of DCP
information is obtained for both responding and non-
responding households.

A logistic nonresponse model has been considered to
model the unknown nonresponse mechanism q(s, |s Dy,
Z ). With this model, the unknown response probability
for household k is expressed as p, (@) ={1+exp(-a’
(zd), )} " and sampled households are assumed to respond
independently of one another. The vector zd is a vector
that contains DCP variables z, fixed design variables d as
well as interactions between these two types of variables.
No additiona vector x of auxiliary variables was available.
Two DCP variables were used: the number of attempts to
contact a sampled household, which was divided into five
categories, and the time of the last atempt, which was aso
divided into five categories. The design variables used were
mainly geographic and also included the rotation group
indicator. Due to potential interviewer and clustering effects,
the above modd may not be entirely redigtic. It was used
for its smplicity and because it appeared reasonable and an
improvement over the previous method. Also, the estimated
response probabilities resulting from this model were used
only to provide a score and were not used directly to adjust
design weights, as described below in this section.

The unknown vector a was estimated by the maximum
likelihood method using the g —unbiased estimating func-
tion

Ul(a)zzkes{ M = Py (@)} (2d)y (D)
where r, =1, if ke s,, and r, =0, otherwise. Note that a
design-weighted estimating function was not considered.
This follows the practice recommended in Little and
Vartivarian (2003) and can be justified by noting that the
interest isin modelling the nonresponse mechanism only for
sampled households ke s (not for the whole population)
and that this mechanism is conditional on s. Also, the DCP
variables are not even defined outsde the sample. The use
of design weights does thus not make sense in this context
and increases the variance of . if the nonresponse model is
correctly specified. Also, it is not clear that using a design-
weighted estimating function would systematically bring
robustness in this case. However, note that we do not ignore
design information since it is included in the nonresponse
model. This can be paraleled to the recommendation of
including design information in imputation models (see, for
example, Rubin 1996).
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Stepwise logigtic regression was performed for severa
months in order to determine appropriate design and DCP
variables to be included in the fina nonresponse model. In
al months considered, the variable ‘number of attempts
was the first to enter in the model and thus the most useful
for explaining nonresponse. This variable was aso corre-
lated with the main variables of interest ‘employment’ and
‘unemployment’. For instance, people belonging to respon-
dent households with a large number of attempts, i.e. those
that are difficult to reach, had a tendency to be more often
employed (see Alavi and Beaumont 2004). Households with
a large number of attempts had also a tendency to be
nonrespondents. Therefore, it seems appropriate to give a
larger weight adjustment to the responding households for
which the number of attemptsis large since their propensity
to respond is lower and they are more likely to have
characteristics similar to the nonrespondents.

The final nonresponse modd chosen fit reasonably well
the CLFS data in most months considered, according to the
Hosmer-Lemeshow goodness-of-fit test. Nevertheless, the
score method of Little (1986) was used to obtain some
robustness against undetected model failures. The above
logistic nonresponse model was first used to obtain an
estimated response probability for every sampled household
and then the sample was divided into about 50 homog-
eneous classes with respect to this edtimated response
probability using the clustering dgorithm implemented in
the procedure FASTCLUS of SAS. This large number of
classes was possible given the large CLFS sample size. It
was chosen so as to reduce the nonresponse bias not only at
the population level but aso for smaler domains. The
nonresponse weight adjustment for a responding household
k within a given class ¢ was simply computed as the inverse
of the unweighted response rate within class c. A threshold
on the nonresponse weight adjustment was set to 2.5 to
control the nonresponse variance of the nonresponse-
weight-adjusted estimator. When needed, the application of
this threshold was necessary only for a very small number
of classes. These were the classes with the smallest edti-
mated response probabilities. Without this threshold, non-
response weight adjustments around 4 could occasionally be
observed.

Another nonresponse modd was considered in which the
response probability for a household k is modelled as the
product of the probability that household k be contacted,
times the probability that this household respond, given it is
contacted. The latter two probabilities were modelled sepa-
rately. Although this model seems to be a better approx-
imation of reality and gave dightly better resultsin the sense
that it better explained nonresponse, the gains were not
deemed sufficient to add this complexity in the nonresponse
adjustment method. It may deserve further study.
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4. Concluson

An important contribution of this paper is that DCP
information must be treated as being random when used in a
nonresponse model. We then have shown that the use of
such information to handle unit nonresponse through a
weight adjustment does not introduce any bias and that there
is no additional variance component in the estimates of
population totals when the nonresponse model is properly
specified. Moreover, we have argued that if DCP
information is associated with the variables of interest and
with nonresponse, then its use is likely to reduce the
nonresponse  bias when the nonresponse mechanism
depends directly on the variables of interest. We have aso
illustrated through the CLFS example that such information
can be useful for deding with unit nonresponse in a mgjor
survey.

The full response estimator that we have considered is
the Horvitz-Thompson estimator. Our conclusons would
have remained the same had we used instead a generdized
regression estimator. We have used the Horvitz-Thompson
estimator for its smplicity and because it was sufficient to
show our main point.
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On the Correlation Structure of Sample Units

Alfredo Bustos*®

Abstract

In this paper we make explicit some distributional properties of sample units, not usualy found in the literature; in
particular, their correlation structure and the fact that it does not depend on arbitrarily assigned population indices. Such
properties are relevant to anumber of estimation procedures, whose efficiency would benefit from making explicit reference

to them.

Key Words: Census; Survey; Sampling; Sample units; Probability function; Mean; Covariance.

1. Introduction

In recent times, population and household censuses, as
we know them, have become more difficult to perform for a
number of reasons. Alternative ways of securing more
frequent information for the production of local, state and
national Statistical results have been proposed. Continuous
large national surveys, among them those known as rolling
censuses, with large sample sizes and complex designs, are
being considered.

However, in order to produce results at the loca
authority level the way a census does, different techniques
for estimation as well as for validation and, in some cases,
for imputation have to be developed and their efficiency
improved. One way of achieving greater efficiency consists
of taking into account al relevant information available, Of
course, this includes the stochadtic properties of sample
units.

In what follows, beginning from basic principles, we
derive agenerd explicit form for the probability function of
an ordered sample. We aso show how that function, as well
as the inclusion probahilities, can be computed. Finally, we
give a genera form for the correlation matrix of sample
units, which depends solely on inclusion probabilities, so
that linear and maximum-likelihood estimation procedures
can benefit fromiit.

2. TheBascMod€d

The basic model we start from represents the sequentia
random drawing of n units from a population U formed by
N such units, and may be stated as follows. Let N and n be
two positive constants such that n< N, and let V represent
an N xn matrix, whose components are each distributed as
Bernoulli random variables with, possibly, different para
meters. Then,

ﬁ11 1312 1313 o ﬁ1n
1321 1922 1923 o ﬁZn
(1.2

Vien =| Oz V3 OVgg -+ Uy,

_ﬁNl 19N2 19N3 ﬁNn_
Also part of the modéd is the restriction imposed on each
column of V to add to one. In other words, we require that

N
> 9y, =1 for k=1..,n (1.2
1=1

be satisfied.

This is required because if the j™ draw results in
population unit | being selected, then entry (1, j) takes the
value of one while all other entries of column j are equa to
zero. Note that this is equivdent to imposing a non-
stochastic constraint on the behavior of al components of
the i"™ column of V, regardless of the sampling scheme.
Therefore, entries belonging to the same column do not
behave independently.

When sampling takes place with replacement (WR), the
sum of the elements of the |™ row of the above matrix is
distributed as a Binomid (n, p,) since each column is
distributed independently of other columns. On the other
hand, when sampling takes place without replacement
(WOR), the total of row | can take only two values: one, if
the I'™ unit is drawn at some dstage, or zero, otherwise,
bringing us back to the Bernoulli case.

Digoint subsets of rows may be formed according to
different criteria. For instance, when rows are grouped with
regard to their spatial vicinity, one could speak about
clusters or primary sampling units. When one or more
datistical indicators form the basis for the groupings, the
term stratais usualy used.
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Let us now define theinclusion probabilities as

7 = P(population unit | in sample of size k)

=0if k=0. @

Note tha =n{” =m,, commonly refered to as the
inclusion probability for unit I.

Now let 9,; represent the j" columnand @, the 1"
row of matrix V. Therefore, based on the following
expression,

f (Qola V.2 Vogy e ﬁn) = f (Ql) f (Qz |Ql)

f (QoB |ﬁol’ QoZ) f (Qon |ﬁ01! ey Qon—l) (3)

we can write the joint probability function of the elements of
Vas

f (ﬁol! ﬁoZ! ﬁo3! =y ﬁon)

] e - |

k=1 1=1
=”hﬂm%%} @

subject to

and here p™, defined as p® = (r —r*?), stands for
the probability that population unit | is included in the
sample at the k™ draw. The above function is useful for
caculating the probability of any ordered sample of size n.
Clearly, when the order of inclusion can be ignored, the
probability of a given sample would be obtained by adding
the n! values obtained through (4).

3. Thelmplicationsof Sampling on the Stochastic
Propertiesof Population Units

Consequently,
E(0y) = p = (n{ - n{™) ©)

and therefore, we can write

P p? p”

pd p? p¥ - pf?
EVI=|p p? pd - pd” | ©)

SIS VO < U
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From here, step-by-step inclusion probabilities, in WOR
sampling situations, may be recursvely computed, as is
shownin (7), below.

D, if k=1

(k=1) 0

6D PI it s
P S ptd .

k
pld =

Note that (7) enables us to compute the desired probabi-
lities a two different moments: first, when no draw has
actually occurred, which explains why we average over the
whole population, and secondly, when the result of the
previous draw is known, at which time the probability of the
J™ population unit, say, entering the sample equals one and
al other probabilities for that draw are equa to zero. Hence,
a least in theory, we can compute the inverse of the so
called expangon factors or weights for one stage sampling,
or stage by stage in multistage sampling. Clearly,

n
m” =3 p. ®)
k=1
If we definethejoint inclusion probabilities as
=

then we have that they can aso be computed as follows:

n-1 ..n ..n
miy = Z( P> Py + i Y pfk)} (10)

j=1 k>j k>

population units 1 and )
J in sample of size k)" (9)

For example, in smple random sampling WR
(SRYWR), expressions (7), (8) and (10) resultin (7.1), (8.1)
and (10.1),

pl :% when k>1 (7.0)
am=" 81
M _ [ (D% 1) 2 (DS )
my =2 P YR’ + P’ Y p

= > k>

(n-j n—jj n(n-1)

_ . _ . (101
,Z;( N2  N? N2 (10

While in SRSYWOR we get expressions (7.2), (8.2) and
(10.2), instead.

p® =% when k>1 (7.2)
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o= 82)
n-1 ..n K n ‘
my =2 | P ps? + Py pl | where J #1
= k>j k>
n-1 _ o _
=Z[ A J= St BTV
FSUN(N-D N(N-2)) N(N-I

Let us now consder the row vectors 4,, . Then, for the
covariance matrix between different rows, we get

COV(QN’QJD):

0 -pPpP - 0 (11)
0 0 -p"p” .

whenever | isdifferent from J.

When sampling takes place WR, and therefore, p!” =
p, Vj=1..,n, the covariance matrix for the 1™ row
vector isgiven by

Cov(¥,.,9,.)=
I pl QI 0 0 o 0 1
O pl ql O T O
0 0O pg - O (121
. O 0 0 P o
In aWOR setting the above covariance matrix becomes
Cov(9,.,9y.) =
pP@-p”)  -pPp? -p’p”
-pp? P -pi?) -pp" | 122)
-pp”  —p?p” P @-p") ],

Let ¥ represent the N-dimensiond vector which results
from adding the columns of V. Clearly, the components of
this vector may be expressed as the product of ¥,, by a
vector whose components are al equa to one. In other
words,

H
=

> D> D
N

» I |

[

(13)

N
=

>
=z
2
=z .
=
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Some distributional properties of these sums may be then
obtained directly from those of the rows or the columns of
meatrix V.

For instance, their expected values are given as

E(0,)=E(®].1) = E(iﬁ.kj
k=1

n
k k k—:
O =aP 4 S - = (19
1 k=2

=~

) M3

From (1.2), we get the non-stochastic restriction:
VO=09,+9,+0;+..+%, =n. (15)

From (14) and (15), well known propositions (16) and
(17) follow immediately,

E[9] :(nin) , n(zn),n(Bn),_“’ nw)) (16)

"+ +a 4.+ =n. 17)
For the second order moments, we get
Cov(9,,9,)=Cov(l'v,,,1'9,.)

n
=1 Cov(d,,, 9,,)1=-> p® p{

k=1
-npp; WR
= 18
{(nﬂ‘) ~n"z(”) WOR, (18)
which clearly indicates that the covariance is never positive.
Inturn, the variances are given by

Var(d,)=Var(l'9,.) =1 Cov(9,.)1
_Jmpa, WR
- {n@ @-={") WOR. (19)
Another important consequence of (15) has to do with
the second order moments of the stochastic vector .

0=Var(n) =Var(l'9) =1Cov(9)1=1CL (20

Clearly, the diagona elements of matrix C, the
covariance matrix of 3, are not dl equal to zero. Therefore,
randomly drawing a fixed-size simple introduces a
dependency in the population units which results in non-null
covariances implying that matrix C issingular. Otherwise, it
isimpossible for (20) to be satisfied.

As amatter of fact, it is possible to prove that the sum of
any row (or column) of C must be equal to zero, which isa
stronger statement. Given that the covariance between a
random variable and a constant equals zero, we get
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0= Cov(9,,n) = Cov(d,, 0+, + Oy +---+ V)
=C+C+--+Cyy
=Var(d) + ) Cov(d;,9,). (1)
Jzl
We have thus proven that in WOR sampling (22.1) holds.
0=n{"@-n{")+ Y (n) -n{"x?). (22.1)

J#l
The same statement can be proven agebraically by noting
that

(n) _ —(n) (n)
Znu =T, ZnJll

J=l J=l
=(n-1r!",

which is obvious once we redlize that the conditional
probability involved represents the probability that popu-
lation unit J enters a sample of size n—1 for which (19)
aso gpplies. Additionally, using (19) again, note that

> i’ =(n-n”),

J=l
and therefore,

0= @-x)+ X (x) - )
J=l

= () + (- D~ (n-").
For WR sampling (21) implies:
0= np,q, +Z(n(n_1) P pP; - n2p| p.])

J#l

=np,q, —nNp, Z P;

J=l

(222)

which isimmediately seen to apply.

In any case, the most important implication of the above
results is that regardless of the sampling scheme, the
correlation matrix of the population random variables
Wy, Oy, Uy, ..., Oy IS Singular. For the practical situations
described in the introduction, the most important impli-
cation of this fact lies mainly in the use made by many
modé fitting and estimation procedures of the inverse of the
covariance matrix.

4. TheFirst Two Momentsof Sample Units

Oncethefirst and second order moments of the vector
have been established, we are in a position to determine the
corresponding moments for sub-vectors of different sizes
and whose components are randomly chosen, i.e, the
sample. To this end, let us define the random variables
9,9, ,....,9, , where r represents the number of
different population units in the sample, and whose indices
l..,1<k<r<n, can teke the vaue | with probability
(™. In other words, under the above conditions, we are in
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the presence of a set of random variables whose indices are
random themselves.

4.1 Mean and Variancefor WR Sampling

For this case, the probability function of 9, isgiven by
N

P(ﬁ|j ZX)ZZ p, P(9, =X)

1

P, [njp.x(l— p)" ()
X

The first two moments may also be obtained via a condi-
tiond argument. The mean of itsdistribution is given by
N

E(ﬁlj) Zzlj: Py E(ﬁ| ) ZZ np, p, = ni p|2- (24

1=l

In turn, its variance is computed using the well known
formula

V(o) =V [E@, [1I+E V@, 1)) (29)

Inthis case, we have
E(ﬁIj |Ij =1)=np,
andV(ﬁ|j|Ij=I)=np|(1—p,). (26)

Hence,
Vi [E®, [1]=V, (np, )
=n’[E, (p?)-E’ (p )]
E, V@, [I)]=E, [p, (1-p, )]
=n[E, (p, )>-E, (p{ )]  (27)

and therefore

V()

=nlE, (p,) =B, (P)1+M°E, (p7)~Ef (p,)]

= inpf[h (n-1)p, —inp?} (28)

For the case of SRS, (24) above resultsin

E(9, ) =%Z(nf”))2 =%Z(%j = (%} ﬂ:%_

=) n
While (28) yields

N1 1 & 1 1 1
V(@ )=>n—1+(n-)——> n— |=n—| 1-— |
(0) .zl NZ( (=D le sz N( N)
4.2 Mean and Variance for WOR Sampling
For this case, the probability function of 9, isgiven by

PO, =0 =23 7S () - i) (@9

=1 k=1
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and therefore while the covariance between brackets on the right-hand
10 sdeof (34) iseasly seento equa
E(ﬁ“):Hann)E(&) Cov(d, , oI, =11, =3)=nf) —x"n”.  (37)
I e (- Lo (2 From (35) and (36), we obtain
= — n = — n . 30 1
PRIDNCREENCD (30)

Cov, | [E(®, [1)), E(®, [1,)]

Using (25) again, we notefirstly that ,lk(n(“) m”)—E, (n{")E, (") (39)

E(ﬁ“ 1) :nf?) andv(ﬁ“ 1) =7tf?)(1—7tf?))

whereas from (37) we get
from which we get E, \ [Cov(®, , 0, [1;,1))]
= My _ 2V n(®
VIE®, [1)]=V(x")=E[x")*]-[Er{")]* B (i) — By (i 5). (39)
and

Finaly, adding these last two expressons we arrive at the
- - ® (2 desired covariance
EIV@®, [1))]=Ex{” @-n{")] = E[(n{")] -[E(x{”)°].

Cov(ﬁIj Oy,)
Hence, the variance isgiven b n n n
gvensy =E.j.k(nszk)—[ai<nfj>)1[E.k(n$k>)]
V(®,)=Em")-E*n{”) = E(n{")[1- E(n{”)] L 2
(mf)? (— (n‘”))ZJ . (40
:[EZN:(n$n))2j|:1_(lzN:(n€n))2j:|. (31) n(n l);% né !
N4 n=4
Once again, in order to exemplify these results, let usturn Inthe SRSWR (40) resitsin
oy N N
to SRS. Expression (30) becomes Cov(, 9, )= - ZZ[n(n 1))
18 2 n(n )iaa
E(ﬁ“):_z (™) 232
RESL
N n [n |_1(Nj J
S ORI
n 1=1 N n N 3 n(n—l) n2
Wheress (31) resultsin N? N?
n
= (41)
1&(nY 1&(nY 2’
oo 335 |- () .
Nz Nz while for the WOR case the covariance can be seen to equal
n n 2
=—[1-—| (33) L& n(n-1)
N( Nj COV(ﬁ.,ﬁk)—
e - ZZ N(N -1)
4.3 The Covariance Between Sample Units > ,
In order to edtablish the covariance between different e z(ﬂ)
sample units we resort to asimple extension to (25), niz\N
Cov(d, ,9,)=Cov,  [E(®, [I;),E®, [1,)] _n(h-J _n_2
_ 2
+E, , [Cov(®, ,0, [1,,1,)] (34) N(N-1) N
n(N —n)
; =— ——|. 42
In this case, we have that (NZ(N—l)J (42)
E@®, |1;=1)=n" (35)
and It should be stressed that for SRS, regardless of whether
it takes place with or without replacement, the correlation
E@® , 0, 11;=1,1,=3)=n{ (36)

coefficients are given by
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-1

Corr(ﬁ,j,ﬁIk )=m,

CS)
independently of the sample size.

Furthermore, we have that, as the value of n approaches
that of N in WOR sampling, both ©{” and ={} approach
one. In particular, when n=N, the values of expressions
(31) and (40) become zero.

5. TheCorrédation Matrix for Sample Units

Once we redlize that none of the expressionsin (28), (31)
and (40) depend on any of the arbitrary indices used to
differentiate population units, it should become clear that the
r Xr correlaion meatrix for the random vector 6=
(9,,,9,,,9,,..., 9, ), where r <n, may bewritten as.

Cor(®)=R()=|p p 1 - p}| (44)

It should be noted that the elements of R (p) in (44)
depend only on the inclusion probabilities which, for any
sample size, may be fully computed from recursion (7), and
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expressions (8) and (10). In other words, they do not depend
on any unknown population parameters to be estimated nor
on the values of the variables to be measured on the sample
units.

6. Final Remarks

In theory, the efficiency of every estimation procedure
will experience some gain whenever explicit alowance for
the corrdation between sample units is made. This would
certainly be the case for linear as well as for some instances
of maximum-likelihood estimetion.

On the other hand, it should be emphasized that R, (p)
may become singular as the sample size n gpproaches the
population size N; thisisthe case for SRS (R (-1/(N —1))
aswell asfor WOR sampling in general. Therefore, numeri-
caly, many estimation procedures which rely on theinverse
or the determinant of R, rather than on the correl ation matrix
itsddf, may also benefit from replacing the smplifying
assumption of independence between observations by a
more redliic one of correlated observations whenever
sample sizes are large relative to population sSizes. Instances
where this can happen are given by some stages in multi-
stage sampling (e.g., number of households in a block) and
by large country-wide surveys.
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Algorithmsand R Codesfor the Pseudo Empirical Likelihood
Method in Survey Sampling

Changbao Wu'*

Abstract

We present computational algorithms for the recently proposed pseudo empirica likelihood method for the analysis of
complex survey data. Severd key agorithms for computing the maximum pseudo empirical likelihood estimators and for
constructing the pseudo empirica likelihood ratio confidence intervals are implemented using the popular stetistical
software R and S-PLUS. Mgjor codes are written in the form of R/S-PLUS functions and therefore can directly be used for

survey applications and/or simulation studies.

Key Words: Confidence interval; Bi-section algorithm; Empirical likelihood; Newton-Raphson procedure; Stratified

sampling; Unequa probability sampling.

1. Introduction

One of the mgor chalenges in applying advanced and
often sophisticated statistical methods for real world surveys
is the computationa implementation of the method. Prac-
tical considerations often rule out the use of methods which
are theoretically sound and attractive but are computa
tionally formidable.

The empirical likelihood method first proposed by Owen
(1988) is one of the major advances in statistics during the
pagt fifteen years. In addition to its data driven and range
respecting feature in edtimation and testing, its non-
parametric and discrete nature is particularly appealing for
finite population problems. Indeed an early version of the
method, the so-called scale-load estimators, was used in
survey sampling by Hartley and Rao back in 1968. The
more recent investigation of the method in survey sampling
has resulted in a series of research papers and generated
noticeable interests among survey daigticians to further
explore the method. Wu and Rao (2004) contains a brief
summary on the recent development of the pseudo empirical
likelihood (PEL) method in survey sampling.

Progress on agorithmic development for the PEL
method has also been made. A modified Newton-Raphson
procedure for computing the maximum PEL estimators
under non-stratified sampling was proposed by Chen, Sitter
and Wu (2002). The procedure was further modified by Wu
(20044) to handle stratified sampling designs.

In this article we present computational agorithms for
computing the maximum PEL egtimators and for construc-
ting the related PEL ratio confidence intervals for complex
surveys under a unified framework, with particular interest
in implementing those algorithms using R and S-PLUS.
The <oftware package R, a friendly programming

environment and compatible to the popular commercia
datistical software S-PLUS, is attracting more and more
users from the statistical community. What is advantageous
about using R isthat it is available free for research use and
the package may be easily downloaded from the web. It is
hoped that this article will bridge the current gap between
theoretical developments and practical applications of the
PEL method and will generate more research activities in
this direction to make fully practical use of the PEL method
aredity.

The dgorithm for computing the maximum PEL
estimator under non-stratified sampling and some notes on
its implementation in R/S-PLUS are presented in section 2.
The dgorithm of Wu (20044) for dratified sampling is
discussed in section 3. Congruction of the PEL ratio
confidence intervals involves profiling the pseudo empirica
likelihood ratio statistic and is detailed in section 4. All R
functions or sample codes are included in the Appendix.
They can aso be downloaded from the author’'s persona
homepage http://mnwww.stats.uwaterloo.cal ~ cowuw/paper. html.
These functions and codes had been tested in the Simulation
study reported in Wu and Rao (2004) and were observed to

perform very well.

2. Non-Stratified Sampling

Condder afinite population consisting of N identifiable
units. Associated with the i™ unit are values of the study
variable, y,, and a vector of auxiliary variables, x;. The
vector of population means X = N"*> N, x; isknown. Let
{(y;, X;), ie s} bethe sample data where s is the s&t of
units selected using a complex survey design. Let
n; =P(i € s) bethe inclusion probabilities and d; =1/,
be the design weights.

1. Changbao Wu, Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada. E-mail: chwu@uwaterloo.ca.
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The pseudo empirica maximum likelihood estimator of
the population mean Y=N"'3N,y. iscomputed as Yo, =
Yies D Y, Where the weights P, are obtained by maxi-
mizing the pseudo empirical log likelihood function

Ins(p):n*zdi*log(pi) (21
subject to the set of constraints
O<p <L > p=1lad dpx=X (22

The origina pseudo empirical likelihood function proposed
by Chen and Sitter (1999) is | (p) =X.sd; log(p;). The
pseudo empirical likelihood function | (p) given by (2.1)
was used by Wu and Rao (2004), where d; =d, /Y. d,
are the normalized design weights and n is the effective
sample size. The point estimator Yo, =Y., Y, remains
the same for either version of the likelihood function. The
rescaling used in 1. ,(p) facilitates the construction of the
PEL ratio confidence intervals.

Using a standard Lagrange multiplier argument it can be
shown that

*

d

bi :l+x'(xi -X)

where the vector-valued Lagrange multiplier, A, is the
solution to

for i€ s, (2.3

d; (x, -X)

gl(X)—E 1+ (x, - X)

The mgjor computational task here is to find the solution to
g,(A)=0. This can be done using the modified Newton-
Raphson procedure proposed by Chen et al. (2002). The
modification involves checking at each updating stage that
the congtraint 1+ A'(x, — X)>0 (i.e, p, >0) is dways
satisfied. Without loss of generdlity, we assume X =0 (if
not, replace x, by x, — X throughout). The modified
procedure is asfollows.

Step O: Let A, =0. Set k=0, y,=1and e=10-8.
Step 1: Caculate A;(A,) and A,(r,) where

* X|
Al(;") = Zdi 1+ % X

and
x x|
A,(A)=1{-Yd —"—1 A1)
() {Z .(M,Xi)z} 10

If |A,(M) Il < €, stop the agorithm and report A, ;
otherwise go to Step 2.
Step 2: Calculate 8, =y, A,(A,). If 1+ (1, —8,) X, <0
forsome i, let y, =7, /2 and repeat Step 2.
Step 3 Set A=A -0, k=k+1 ad vy,,=
(k+1) 2. GotoStep 1.
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In the origina agorithm presented by Chen et al. (2002),
their step 2 also checks a related dua objective function.
While this is necessary for the theoreticd proof of
convergence of the agorithm, it is not really required for
practical applications.

The R function Lag2(u,dsmu) can be used for finding
the solution to g,(A)=0 when the vector of auxiliary
variables x is of dimenson m and m>2. When x is
univariate, an extremely simple and stable bi-section
method to be described shortly should be used. Let n bethe
sample Sze. The three required arguments are the nxm
data matrix u, the nx1 vector of design weights ds and the
mx1 population mean vector mu. The output of the
function Lag2(u,ds,mu) returns the value of A which isthe
solutionto g, (*) =0.

The function Lag2(u,dsmu) will fail to provide a
solution if (i) the mean vector X isnot aninner point of the
convex hull formed by {x;,ie s}, or (ii) the matrix
Yiesd X; X/ is not of full rank. In case (i) the pseudo
empiricadl maximum likelihood estimator does not exist.
This happens with probability approaching to zero as the
sample size n goesto infinity; in case (ii) one may consider
to remove some components of the x variables from the set
of congtraints (2.2) to eliminate the collinearity problem.

When the x variable is univariate, s0 is the involved
Lagrange multiplier A. In this case we need to solve
g, (M) =3.d x /(1+Ax,)=0 for a scdar A, as
suming X =0. A unique solution exists if and only if
min{x,ie s < 0 < max{x,ie s. The solution, if
exists, lies between L=-1/max{x,ie s and U=
-1/min{x, i € s}. Noting that g,(A) is a monotone
decreasing function for A € (L, U), the most efficient and
reliable algorithm for solving g,(A) =0 is the bi-section
method. The function Lagl(u,dsmu) does exactly this,
where the required arguments are u = (X, ..., X,), ds =
(d;, ..., d,) and mu = X. The output returns the solution
to g,(A)=0.

The function Lagl(u,ds,mu) can be used in conjunction
with the model-cdibrated pseudo empirical likelihood
(MCPEL) approach of Wu and Sitter (2001) to handle cases
where the x variable is high dimensona. The MCPEL
gpproach involves only a single dimension reduction
variable derived from amultiple linear regression model and
the related Lagrange multiplier problem is aways of
dimension one.

3. Stratified Sampling

Let {(Vy, Xy), i€ s, h=1 .., H} be the sample
data from a dratified sampling design. Let d,; =
dy /¥ics dyy bethenormalized design weights for stratum
h, h=1, ..., H. The pseudo empirical likelihood function
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under gratified sampling defined by Wu and Rao (2004) is
given by

H
l¢ (P -oes pH):n*hZ: W, Z d;\i log(py), (3.2)
=1 ies,
where W, =N, /N are the stratum weights and n" is the
total effective sample size as defined in Wu and Rao (2004).
Thevaueof n" isnot required for point estimation but this
scaling congtant is needed for the construction of confidence
intervals. Let X be the known vector of population means
for auxiliary variables. The maximum pseudo empirical
likelihood estimator of the population mean Y =
oW, Y, is defined as Yo =3 W, Sics P Vi
where the p,; maximize I4(p,, ..., py) Subject to the set
of congiraints
Py >0, > py =1 h=1 .., H

ies,

th z P Xy = X.
h

ies,

and
(3.2

The mgor computationa difficulty under dratified
sampling is caused by the fact that the subnormalization of
weights (i.e, Y. P, =1) occurs at the stratum level while
the benchmark congtraints (i.e, >, W, Yics Py Xy = X )
and the constrained maximization of the PEL function are
taken at the the population level. The agorithm proposed
by Wu (20044) for computing the f,; proceeds as follows:
let x,, be augmented to include the firss H —1 stratum
indicator variables and X be augmented to include
W, ..., W, _,) asitsfirst H —1 components. In the case of
no benchmark condraints involved, the augmented x
variable will consst of the H -1 stratum indicator
variables only and X =(W,, ..., W, _,). It follows that the
st of congtraints (3.2) isequivaent to

H

Pni >0, th Z P =1

h=1 ies,
and

H —
Z W, z Pri Xn = X, (33
h=1 ies,

where the x variable is now augmented. Let u,; =
X, — X. Itisstraightforward by using a standard Lagrange

multiplier argument to show that

*

p _ dhi
"1+ uy
with the vector-valued A being the solution to
d. u.
MN=> W —h -,
gS( ) ; high ]__}_}\‘/uhi

The modified Newton-Raphson procedure of section 2 for
solving g;(A) =0 can be used for solving g,(A)=0. The
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key computational step under stratified sampling designs is
to prepare the data file into suitable format so that the R
function Lag2(u,dsmu) for non-stratified sampling can
directly be called. Sample R codes for doing this are
included in the Appendix.

4. Congruction of PEL Ratio
Confidence Intervals

While the computational algorithms for the maximum
PEL edtimator under non-stratified and dratified sampling
designs are somewhat different, the search for the lower and
the upper boundary of the pseudo empirica likelihood ratio
confidence interval for Y involves the same type of profile
andysis. Under non-stratified sampling designs, the
(A-o)—level PEL ratio confidence interva of Y is
congtructed as

{811 (8) <xf (o)}, (4.1)

where xZ (o) isthe 1o quantile from a y? distribution
with one degree of freedom. The pseudo empirical log
likelihood ratio stetistic r.,(0) iscomputed as
rns(e) = _Z{IHS(E) - Ins( p)}!
where the p maximize |.,(p) subject to the set of
“gtandard congtraints’ such as (2.2) and the p maximize
l<(p) subject to the “standard congtraints’ plus an
additional one induced by the parameter of interest, Y, i.e.
Z p Y =6. (4.2)

To compute P one needs to treat (4.2) as an additional
component of the “standard condraints’ for each fixed
value of O so that the maximization process is essential the
same as before.

Let (L, U) betheinterval given by (4.1). Our proposed
bi-section method in searching for L and U is based on
following observations:

i) The minimum vaue of 1. (6) is achieved a 6=
Yies B Vi =Ype - Inthiscase Pp=p and ()=
0.

i) Theinterval (L, U) isbounded by (., ¥,) Where
Yoy =min{y;,ies} ad y , =max{y;,ies}.

iif) The pseudo empirical likelihood ratio function
r,(6) is monotone decreasing for 8 € (Y, Yee.)
and monotoneincreasing for 6 € (Yo, Yn))-

Conclusion iii) can be reached by noting that |,,(p) does
notinvolve 8 and |, ((P)=n" Y;.sd; log(p.) istypicaly a
concave function of 6. It is aso possible to show this by
directly checking dr.(6)/d6. For instance, in the case of
no auxiliary information involved, the “standard con-
graints’ are p, >0 and Y. p, =1. The p; are given by
d; and Yoy, =Xicsd; y,. The P, are computed as
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*

_d

= 4.3
o 1+ A (y —0) (4.3
wherethe A isthe solution to
d (y,-9)
S 44
2 Ty =0) @9

Using (43) and (44), ad noting that X .d; /

@+ A(y, —0))=1, itisstraightforward to show that
d r (6)=2n Z di {(dA/dB) (y;, —6)—A} o L
de ies 1+ 7\’(y| _e)

By rewriting d; (y;—6) as di (y, —6) [{1+A(y; - )}
—A(y; —6)] and after some regroupi ngin (4.4) we get

a4 (v, -9)*
& Z 1+ l(y. Z
It follows _that drns(e)/de——Zn A<0 if 6<
Yiesd Y =Yoy and dr, (6)/d6 >0 otherwise.

Sample codes for finding (L, U) where no auxiliary
variable is involved are included in the Appendix. In this
cae P =d ad Yoy =X..d Y =Y, is the Haek
estimator for Y. The profiling process involves finding A
for each chosen vaue of 6 and evauating the PEL ratio
datigtic r,,(0) againgt the cut-off value from the y?
distribution under the desired confidence level 1—o. With
auxiliary information, one needs to modify the computation
of r..(0) for each fixed 6. The bi-section search agorithm
for finding L and U remains the same.

The value of the effective sample size n" is required for
computing the PEL retio statistic r,4(0). For non-stretified
sampling designsit iscomputed asn =SV (y) where

-y y)

ies j>i i

and
e 2
& _5i
V - T 1
(y) NZ é g TC” [ni chJ
where e =y, — YHT and YHT_N '5iesd Y. SeeWu and

Rao (2004) for further detail. Computation of n” involves
the second order inclusion probabilities m; which may
impose aredl chdlenge if a mps sampling scheme is used.
In the smulation study reported in Wu and Rao (2004), the
Rao-Sampford mps sampling method was used. R
functions for selecting a mps sample using this method as
well as for computing the related second order inclusion
probabilities can be found in Wu (2004b). Similar R
functions are also available in an add-on R package called
“pps’, written by J Gamhbino (2003), which can be
downloaded from the R homepage http://cran.r-project.org/
by clicking the packages option.
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Appendix: R/S-PLUS Codes
Al R Function for solving g,(2) =0.

Let m bethe number of auxiliary variables involved and
m= 2. There are three required arguments in the function
Lag2(u,ds,mu):

(1) u: the nxm data matrix with x; asits i"
i=1 .., n

(2) ds the nx1 vector of design weights consisting of
d, ...d

row,

n-

(3) mu: the mx1 population mean vector X.

The output of thefunction isthe solutionto g, (A) =0.

Lag2<-function(u,ds,mu)

n<-length(ds)
u<-u-rep(1,n)%*%t(mu)
M<-0*mu
dif<-1
tol<-1e-08
while(dif>tol){
D1<-0*mu
DD<-D1%*%t(D1)
for(i in 1:n){
aa<-as.numeric(1+t(M)%*%uli,])
D1<-D1+ds[i]*uli,J/aa
DD<-DD-ds[i]*(u[i,]%*%t(ui,]))/aa"2
}

D2<-solve(DD,D1,tol=1e-12)
dif<-max(abs(D2))
rule<-1
while(rule>0){
rule<-0
if(min(1+t(M-D2)%*%t(u))<=0) rule<-rule+1
if(rule>0) D2<-D2/2

}
M<-M-D2

}
return(M)

A2. R Function for solving g,(A)=0.

When the x variable is univariate, the solution to
g,(A)=0 can be found through a smple and reliable bi-
section method. The three required arguments for the
function Lagl(udsmu) ae u=(x, .., X,), ds=
(d, ..., d;) and mu =X. The output is the solution to
g,(»)=0.
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Lagl<-function(u,ds,mu)

L<--1/max(u-mu)

R<--1/min(u-mu)

dif<-1

tol<-1e-08

while(dif>tol){
M<~(L+R)/2
glam<-sum((ds*(u-mu))/(1+M*(u-mu)))
if(glam>0) L<-M
if(glam<0) R<-M
dif<-abs(glam)

}
return(M)

A3. Sample code for dratified sampling.

We need to call the function Lag2(u,dsmu) from
nonstratified sampling. The key step is to prepare the data
fileinto suitable formeat. Let

(1) n=(n, ..., ny) be the vector of stratum sample
Szes.

(2) x be the data matrix with x, as row vectors,
i=1 .. n,h=1.. H.

*

(3) ds=(dj, ..., d;h, ey Oiygy sy d:,nH), where d,;
are the normalized initid desgn weights for
sratum h.

(4) X bethe vector of known population means.

B W=W,..,W,) be the vector of stratum
weights(i.e, W, =N, /N).

The following sample codes show how the solution to
g;(2)=0 is found (M from the second last line of the
following code) and how the f,; s are computed (phi from
thelast line).

HH
nst<-sum(n)
k<-length(n)-1
ntot<-rep(0,k)

ntot[1]<-n[1]

for(j in 2:k) ntot[j]<-ntot[j-1]+nl[j]
ist<-matrix(0,nst,k)

ist[1:n[1],1]<-1

for(j in 2:k) ist[(ntot[j-1]+1):ntot[j],j]<-1
uhi<-chind(ist,x)
mu<-c(W[1:k],X)
whi<-rep(W[1],n[1])

for(j in 2:(k+1)) whi<-c(whi,rep(W/[j],n[i]))
dhi<-whi*ds
M<-Lag2(uhi,dhi,mu)
phi<-as.vector(ds/(1+(uhi-rep(1,nst)%*%t(mu))%*%M))
HiHt

A4. Sample code for finding the PEL ratio confidence
interval.

The search for the lower boundary (LB) and the upper
boundary (UB) of the PEL ratio confidence interval needsto
be carried out separately. The following codes show how
this is done for the case of no auxiliary information. With
auxiliary information, one needs to modify the computation
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of the involved pseudo empirica likelihood ratio statistic
(eratio) accordingly. Let

(1) a=1-o be the confidence level of the desired
interval.

@ ys=(y,, ..., ¥,) bethesampledata

(3 ds=(d;, .., d,) be the normdized design
weights.

(4 YEL=Y,..p vy (inthiscase p, =d).

(5) nssbethe estimated effective samplesize n".

HH

tol<-1e-08
cut<-gchisq(a,1)
HH

t1<-YEL

t2<-max(ys)

dif<-t2-t1

while(dif>tol){
tau<-(t1+t2)/2
M<-Lagl(ys,ds,tau)
elratio<-2*nss*sum(ds*log(1+M*(ys-tau)))
if(elratio>cut) t2<-tau
if(elratio<=cut) t1<-tau
dif<-t2-t1

}

UB<-(t1+t2)/2

it

t1<-YEL

t2<-min(ys)

dif<-t1-t2

while(dif>tol){
tau<-(t1+t2)/2
M<-Lagl(ys,ds,tau)
elratio<-2*nss*sum(ds*log(1+M*(ys-tau)))
if(elratio>cut) t2<-tau
if(elratio<=cut) t1<-tau
dif<-t1-t2

}
LB<-(t1+t2)/2
it
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