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In This Issue

This issue of the Survey Methodology journal opens with a special article to honour the memory of
M.P. Singh, the founding Editor who led the journal for thirty years to its current stature as an
internationally recognized source for new developments in survey methods and methods for production of
official statistics. In this article many of M.P.’s closest colleagues and friends from over the years share
their memories of him, and reflect on his career and his contributions.

In the first regular paper of this issue, Thompson discusses random walk designs for sampling from a
networked population. He shows how this approach can lead to network samples where the inclusion
probabilities can be estimated independently of how the initial sample of nodes is chosen, leading to valid
design-based inference methods. Selection preference can be given to certain types of nodes or graph
characteristics through choice of the random walk mechanism. He describes both uniform and targeted
random walk designs, and presents some examples for illustration.

Durrant and Skinner consider the use of imputation and weighting to correct for measurement error in
the estimation of a distribution function. They consider various nearest neighbor and hot-deck imputation
methods, and propensity score weighting under different response models. They discuss the theoretical
properties of these methods, and compare them via simulations to estimate the distribution of hourly pay
based on United Kingdom Labour Force Survey data. They conclude that an approach based on fractional
imputation seems best overall in terms of efficiency and robustness.

Harms and Duchesne look at the problem of estimation of quantiles using survey data. They calibrate an
interpolated estimate of a distribution function to given quantiles of an auxiliary variable, and then invert
the resulting calibrated interpolated estimator of the distribution function of the variable of interest. They
compare their approach with other methods in a simulation study.

In their paper, Haziza and Rao propose a new regression imputation method that uses the response
probabilities. The new method leads to valid estimators under either the nonresponse model approach or the
imputation model approach. In the nonresponse model approach, the response mechanism is parametrically
modelled and is not restricted to the uniform nonresponse model, while in the imputation model approach
the variables of interest are modelled and nonresponse is assumed to be ignorable. The authors also provide
estimators of the variance under their imputation method. Simulation results for both point and variance
estimation are reported that show the good performance of the proposed regression imputation method.

The paper by Zanutto and Zaslavsky deals with the problem of estimation in the U.S. decennial census
of population under sampling for nonresponse follow-up. Instead of trying to obtain information from all
nonrespondents, a sample is drawn for follow-up, thus creating a small area estimation problem. The
proposed strategy consists of predicting the number of nonrespondent households in different categories
using a hierarchical loglinear model and then imputing detailed person and household information using
donor imputation. The idea in the first step is to model household characteristics using low-dimensional
covariates at detailed levels of geography and more detailed covariates at higher levels of geography. The
performance of the proposed model compares favourably to other models in a simulation study.

In Théberge’s article, a new approach is proposed for 2006 Reverse Record Check (RRC) sample
allocation for measuring census undercoverage and a part of overcoverage. RRC estimates are used
together with census counts to produce population estimates which will be used in calculating Canadian
federal government equalization payments to the provinces. The proposed approach will provide an
allocation that achieves the proper balance between four objectives. It first consists of establishing a
separate allocation for each objective. Then, by province, the maximum sample size is used for each
allocation. Finally, the RRC’s sub-provincial sample allocation is obtained by using calibration to smooth
the stratum-level parameters.
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In his paper Longford discusses how to design a survey when estimates are required for a number of
small areas, with possibly different priorities for different small areas, by minimizing a weighted sum of
expected variances. He first develops his ideas for direct estimation, and then extends to composite
estimation that combines the direct estimator with a synthetic estimator. The approach is illustrated by the
resulting sample allocations, under various assumptions, to cantons in a Swiss household survey.

You and Chapman propose a Hierarchical Bayes estimation approach for small area estimation when the
sampling errors of direct estimators are estimated. They demonstrate the approach by producing small area
estimates from two data sets and investigate the sensitivity of their approach to model assumptions.

Khoshgooyanfard and Monazzah compare synthetic, composite and Empirical Bayes small area
estimation methods for producing intercensal estimates of unemployment rates for provinces in Iran. They
find that both composite and Empirical Bayes approaches lead to satisfactory results.

The short note by Gabler, Hader and Lynn, the last paper in this issue, provides an interesting extension
to the earlier paper by Gabler, Hider and Lahiri that appeared in Survey Methodology (1999). It offers a
practical solution for obtaining design effects when different exclusive domains use different sample
problems.

Finally, we note that Survey Methodology is now available on-line in a fully searchable pdf format. All
articles published in the journal are now being made available free of charge directly on the Statistics
Canada web site upon release. There are also plans to include past issues. All the articles from the latest
seven issues have been posted, and work is in progress to add those of the previous 10 years. Printed copies
of the journal will still be produced for subscribers. Older issues can be obtained upon request in paper or
pdf scanned formats. The journal can be accessed from Statistics Canada’s web site at www.statcan.ca/
bsolc/english/bsolc?catno=12-001-X.

Harold Mantel, Deputy Editor

Statistics Canada, Catalogue No. 12-001-XIE
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M.P. Singh Remembered

Introduction

Don Royce
Statistics Canada

In August of 2005 the world of survey methodology lost
one of its leading figures with the death of Dr. M.P. Singh at
the age of sixty-three, just a few months short of his planned
retirement. M.P. and I had discussed his upcoming retire-
ment only briefly, but it was intuitively clear to both of us
that he would continue as the Editor of Survey Methodology
even after he left Statistics Canada. Survey Methodology
was a part of his life, and I was only too happy to offer M.P.
the chance to work part-time from his family’s home in
Toronto so that he could continue to nurture the journal that
he had led for over thirty years. Sadly, this arrangement
never came to be realized.

In the series of articles that follow, many of M.P.’s
closest colleagues and friends (the two are indistinguish-
able) recall M.P. Singh the statistician, editor, collaborator,
leader, and human being. I am deeply indebted to Eric
Rancourt of Statistics Canada for suggesting this series of
articles, and to all of the authors who gave their time and
talents to put into words their memories of M.P. Singh.
Although words can never completely capture the essence
of a person, the articles that follow do a marvellous job of
describing the life of M.P. Singh and remind us of the
legacy he left to all of us who were fortunate enough to
know him. We hope M.P. would be pleased.

Some Reminiscences

J.N.K. Rao
Carleton University, Ottawa

I first met Mangala Prasad Singh (fondly known to many
of us as M.P.) in 1968 while I was a visiting professor at the
Indian Statistical Institute (ISI), Calcutta. M.P. was a Ph.D.
student at the ISI working under the supervision of M.N.
Murthy. While doing his Ph.D. he also worked in the
National Sample Survey (NSS) of India. NSS was located in
the ISI campus and M.P. worked under renowned survey
statisticians at the NSS and ISI including P.C. Mahalanobis,
D.B. Lahiri and M.N. Murthy. He received solid training in
both design and theory of sample surveys. M.P. made good
use of that sound training throughout his illustrious career

by following the principles of efficient design subject to cost
and operational considerations and insisting on sound theory
before implementing new survey designs or redesigning
continuing surveys such as the Canadian Labour Force
Survey (LFS).

A major part of M.P. Singh’s thesis was on the efficient
use of auxiliary information. He studied the case of two
auxiliary variables, one positively correlated and the other
negatively correlated with the variable of interest, and
developed ratio-cum-product estimators of totals. Murthy
(1967) devoted a section in his well-known sampling book
to ratio-cum-product estimators. M.P. published several
papers on the efficient use of auxiliary information based on
his thesis work: ratio-cum-product estimators (Metrika
1967; Sankhya 1969), multivariate product estimation
(Journal of the Indian Society of Agricultural Statistics
1967) and systematic sampling in ratio and product
estimation (Metrika 1967). He also published an important
paper in the Annals of Statistics, 1967 on the relative
efficiency of two-phase sampling strategies under a super-
population model. The first phase consisted of simple
random sampling to collect data on an auxiliary variable x
that was used at the second phase to select a PPS sample
without replacement and collect data on the variable of
interest, y.

M.P. was also dabbling with inferential issues in survey
sampling at the time of my visit to ISI and he encountered
technical problems in proving some admissibility results:
An estimator is admissible in a class of unbiased estimators
if no other estimator in the class is uniformly more efficient.
Unfortunately, the criterion of admissibility is not suffi-
ciently selective and as a result other admissibility related
criteria for unique choice were proposed in the literature. I
was also interested in inferential issues at that time and this
led to our collaboration on admissibility related topics. The
resulting work constituted a part of his Ph.D. thesis. We
ultimately published a paper based on this work in the
Australian Journal of Statistics, 1973 based on our 1969 ISI
Technical Report. Our results demonstrated the practical
irrelevance of a criterion called hyper-admissibility that
leads to the Horvitz-Thompson (HT) estimator of total as
the unique choice for any sampling design. Subsequently,
D. Basu obtained similar results independently in his 1971
landmark paper on inferential issues, and his famous
example of circus elephants put a stop to research on
unrealistic criteria that lead to unique choice for any design.
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M.P. also showed that hyper-admissibility when applied to
variance estimation leads to a “bad” variance estimator as
the unique choice.

Soon after joining Statistics Canada in 1970 as a
Methodologist, M.P. was actively involved in the redesign
of the LFS that led to several innovations. M.P. proposed
the use of systematic PPS sampling without replacement
with initial randomization for selecting the primary units
from the non-self-representing units (NSRUs) and the
random group method with one primary unit from each
random group selected by PPS sampling from the self-
representing units (SRUs). In the 1960s 1 studied those
methods theoretically from the point of view of efficiency
and variance estimation. M.P. on the other hand recognized
their practical advantages in the context of LFS. Both
systematic PPS sampling and random group method
permitted sample expansion as well as easy rotation of
sample primary units over time and the random group
method enabled the adaptation of Keyfitz’ ingenious
method for changing out-dated size measures within each
random group. A joint paper with Dick Platek on updating
size measures was published in Metrika, 1975. The LFS
group under the able guidance of M.P. made several
methodological advances to improve the efficiency of the
design as well as estimation. Given M.P. Singh’s past
interest in the effective use of auxiliary information, the LFS
switched to generalized regression estimation to accom-
modate several post-stratification variables. The LFS group
also was the first to recognize the merits of re-sampling
variance estimation and the jackknife was adopted for
variance estimation. More recently, regression composite
estimation was introduced in the LFS under M.P. Singh’s
leadership, using a method suggested by Wayne Fuller and
myself that is good for both change and level estimation.
This method and an earlier method of Avi Singh fit in well
with the existing LFS estimation system based on gener-
alized regression. Three papers on regression composite
estimation for LFS, including a joint paper of M.P. with
Jack Gambino and Brian Kennedy, were published in the
June 2001 issue of Survey Methodology.

M.P. also had a keen interest in small area estimation,
dating back to 1976. His team made important method-
ological contributions to small area estimation. M.P. and his
colleagues proposed simple synthetic estimators as well as a
new estimator called the sample dependent estimator. The
latter estimator is a simple composite estimator with weights
designed to account for realized sample sizes smaller than
expected sample sizes in the areas. Sample dependent
estimators became quite popular and many agencies world-
wide have used them. M.P. Singh’s 1994 joint paper in
Survey Methodology with Jack Gambino and Harold Mantel
addresses several practical issues pertaining to small area
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M.P. Singh Remembered

estimation. I particularly like the section on design issues. It
presents an excellent illustration of compromise sample
allocation in the LFS to satisfy reliability requirements at the
provincial level as well as sub-provincial level. A section in
my 2003 Wiley book on Small Area Estimation is devoted
to design issues largely based on the 1994 paper. M.P.
played an active role in organizing a highly successful
international conference on Small Area Estimation in 1985
and acted as co-editor of a 1987 book Small Area Statistics
published by Wiley based on the invited papers presented at
the conference.

M.P. thoroughly enjoyed working as Editor-in-Chief of
Survey Methodology. He maintained close contact with his
team of Associate Editors and introduced many innovative
ideas including theme papers on both theory and practice
and the Waksberg series of papers. The luncheon gatherings
M.P. organized at the Annual Joint Statistical Meetings
were always a big hit with the Associate Editors! As an
Associate Editor located in Ottawa and consultant to
Statistics Canada, I had many conversations with M.P. on
matters related to the journal over the past 25 years. M.P.
also played an active role in the Statistical Society of
Canada (SSC) and he was instrumental in raising the profile
of survey sampling at the SSC Annual Meetings.

M.P. was remarkably accurate in palm reading. In 1999
he read my palms and warned me of health problems.
Indeed, I faced an unexpected health problem in 2001 due to
complications from appendicitis. A few months before
M.P.’s death, Avi Singh told me that M.P. had read his own
palms and predicted recovery from his serious health
problems. Both Avi and I were very confident that we
would see M.P. back at work. However, it is a common
belief in India that palmists reading their own hands cannot
predict their futures accurately. Unfortunately, this belief
proved to be true in this instance.

M.P. was truly a great friend of mine and I will miss him
very much. It is fitting that his ashes were immersed in the
sacred river Ganges in the holiest city for Hindus, Varanasi
(also called Benares), where M.P. was born. His soul has
gone to Heaven but his legacy will remain with us.

M.P. and his Research Days

T.J. Rao
Indian Statistical Institute, Kolkata

I had first met M.P. when he came to attend the Fourth
Summer Course (Advanced) for Statisticians organized by
the Research and Training School (RTS) of the Indian
Statistical Institute (ISI) in May-June 1964 at the University
of Kerala in the South Indian city of Trivandrum (now
Thiruvanathapuram). This course was meant for research
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scholars and junior faculty of ISI and other Universities.
M.P. came from the Benares Hindu University (BHU)
where he was a temporary lecturer. He obtained his
Bachelor’s degree in Statistics from the same University
(BHU) and a Masters from University of Poona. 1 was
among the research scholars that were selected from ISI for
this course. We did not have much interaction during the
course.

A little later, M.P. was offered a job in the Sampling
Division of the National Sample Survey (NSS) Department,
which at that time was part of ISI. Professors D.B. Lahiri, S.
Rajarao and M.N. Murthy among others were already
heading several divisions of NSS by then. Besides being
occupied with the designing of the large scale sample
surveys conducted by NSS, M.P. spent his spare time on
research problems in sample surveys. Lahiri and Murthy
encouraged methodological research in the NSS and had
started a seminar series as well as release of technical
reports similar to the RTS technical reports of ISI. M.P. and
I spoke on our research on sampling problems in these
seminars organized by NSS as well as RTS. Most of the
work of M.P., which he made into technical reports of the
NSS Series, got published later on in well known journals.

With his expertise in the NSS on multi purpose surveys,
he got interested in the problems of utilization of auxiliary
information in sample surveys. His early work related to
ratio and product methods of estimation. M.P. successfully
and intelligently considered the case of multiple auxiliary
variables of which some are positively correlated and some
negatively correlated with the study variable and used ratio
estimators for the former and product estimators for the
latter and produced the “ratio cum product estimator”
(Singh 1967). This paper is often quoted and several
scholars, especially from India, published extensions.
Jointly with M.N. Murthy, he developed interesting
concepts of admissibility of estimators (Murthy and Singh
1969). During the year 1968, Professor J.N.K. Rao visited
ISI and we were very fortunate to have interaction with him.

M.P. was very much interested in attending conferences.
He never missed any at his alma mater BHU nor the
sessions of the Indian Science Congress. He took the task of
writing his thesis very seriously and used to have
discussions with Professors M.N. Murthy, J.N.K. Rao and
D. Basu. He submitted his research work as a Thesis (Singh
1969) for the degree of Doctor of Philosophy (Ph.D.) of the
Indian Statistical Institute in 1969 under the general
guidance of M.N. Murthy. He left the NSS and ISI in 1970
to join Statistics Canada.

All the research scholars of ISI during 1965-70 and his
colleagues at the NSS miss him very much.

References
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M.P. Singh

Nanjamma Chinnappa
Statistics Canada (retired)

While many know M.P. the statistician and of his
achievements in statistics, I will try to write about M.P. the
man.

I had not met M.P. until I came to Canada, although I had
heard that he was the young man appointed in my position
when [ resigned my job at the National Sample Survey
(NSS) department of the Indian Statistical Institute in
Kolkata, India. I heard that when Dr. M.N. Murthy (then the
head of the Methodology area in the NSS) sent me the draft
of his book Sampling Theory and Methods for review, M.P.
was the one who read my comments and discussed them
with Dr. Murthy. Much later, when Dr. Murthy heard that I
was hired by Statistics Canada, he gave me M.P.’s tele-
phone number in Ottawa. So, when we arrived in Ottawa, I
called M.P. from the hotel we were put up in and to my
surprise he drove to the hotel on a cold, damp morning in
late September and took me to Statistics Canada. That warm
and friendly gesture brightened my day and my introduction
to Statistics Canada.

M.P. hailed from the ancient city of Benares in India and
it would appear that some of the qualities for which that city
is famous had rubbed off on him. He was gentle, friendly to
all, unflappable, resilient and wise. Many have told me how
he was never too busy to listen to their problems and always
helped with kind words and suggestions. Many young
statisticians have benefited from his advice related to their
research and career.

M.P. was fond of classical Indian music and dance. A
family-oriented man, he was a pillar of strength for his wife
and children during their times of need. At social gatherings
he was full of fun and laughter. And when he first fell
seriously ill some years ago he told me that it was his faith
in God and in himself that helped him to recover. He will
long be remembered, not only as a statistician of repute but
as a good man who befriended and helped many.
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A Career in Survey Methodology

Gordon Brackstone
Statistics Canada (retired)

M.P. Singh spent almost his whole career in the
methodology area of Statistics Canada. He joined the
organization in 1970, after obtaining a Ph.D. in survey
sampling from the Indian Statistical Institute. At the time of
his death he was Director of the Household Survey Methods
Division in the Methodology Branch. His rise through the
organization was steady rather than meteoric: he became a
section Chief in 1973, an Assistant Director in 1982, and a
Director in 1994. This steady progression mirrored his
approach to survey methodology which valued thorough-
ness in research and testing to build firm foundations for
implementation and further improvement.

Our careers at Statistics Canada coincided, give or take a
year at either end, and intersected frequently, particularly
from 1982 onwards. In the early 1980s when we felt the
need to improve integration and oversight of Statistics
Canada’s methodology research work, there was little doubt
in my mind who we would ask to head this effort and M.P.
was duly appointed as the first Chair of the Methodology
Research Committee. In this role until 1987 he initiated the
planning processes and reporting requirements that, with
further improvements from his successors, have governed
the management of methodology research for two decades.
It was during this same period that Statistics Canada’s
annual methodology symposia became established, with
M.P. playing a key role in several of the earliest symposia
(and many more subsequently).

In his long career at Statistics Canada, M.P. was involved
in a broad range of methodological work, but his name will
always be most closely associated with two projects: the
design of the Canadian Labour Force Survey (LFS), and the
Editorship of the journal, Survey Methodology.

The LFS provides the foundation for Statistics Canada’s
household survey program. Not only is it the source of
monthly estimates of labour market conditions in Canada,
but its frame is also the sampling basis for many other
household surveys, including several longitudinal surveys
introduced in the 1990s. Its efficient design is therefore
crucial to the cost-effectiveness of Canada’s social statistics
program. First introduced in 1945, the LFS has typically
undergone at least a sample redesign after each decennial
Census. M.P. happened to join Statistics Canada just in time
for the major post-1971 Census redesign. This redesign
encompassed not only the sampling scheme, but also the
questionnaire, the methods of collection, and the processing
systems. Such a major redesign required extensive inter-
disciplinary project teamwork and M.P. became a key
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player in the methodological aspects of this redesign. His
papers from that period focus on optimizing the multi-stage
design and updating the sample. He was co-author of the
official description of the methodology of the Canadian
Labour Force Survey (Platek and Singh 1976).

Following this redesign pressure to produce labour
market estimates for smaller regions increased. This lead
him to develop methods for small area estimation from the
LFS (Drew, Singh and Choudhry 1982). By the time of the
post-1981 Census redesign, M.P. had become the Chair of
the Redesign Committee responsible for oversight of the
whole redesign. In addition to the usual sampling efficiency
objectives, this redesign aimed to produce better sub-
provincial data and to enhance the role of the LFS as a
vehicle for conducting other household surveys. Naturally
M.P. was again a principal author of the description of the
new design (Statistics Canada 1990).

The efforts to make the LFS frame a basis for other
household surveys were so successful that by the late 1990s
a problem of overload had arisen. With the introduction of
longitudinal surveys in addition to the regular survey
program, concerns over the burden on the frame were
increasing. In addition, the need for more targeted survey
frames for certain sub-populations was being felt. M.P., set
about finding alternative approaches, including approaches
that would take advantage of the address register being
developed for Census purposes. Some of these approaches
were incorporated into the post-2001 redesign of the LFS
that was just being introduced at the time of his death; some
more ambitious ideas for a new frame for household surveys
are still under consideration by his successors.

For more than 30 years M.P. guided methodological
input to the LFS. His many papers, often co-authored with
his staff, bear witness to his lasting imprint on the design of
this flagship survey, and his guidance of many younger
statisticians in the early stages of their careers.

Over this same period, M.P. also bore another heavy
responsibility as Editor of Survey Methodology. The evo-
lution of this journal from its inception in 1975 to its 25"
Anniversary has been described by its founder, Richard
Platek (1999), who had the foresight to appoint M.P. as its
first Editor.

Under M.P.’s leadership the journal passed many
milestones. In 1982 it became an official Statistics Canada
publication - fully bilingual and priced. Authorship was
expanded beyond Statistics Canada employees; a highly
qualified panel of associate editors was recruited; theme
issues were introduced, often attracting the best papers from
a recent conference or symposium; the Editor’s /n This Issue
feature was introduced to provide an overview of content;
special 25" anniversary issues were published in
1999 — 2000, along with an index for Volumes 1-26. Over
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this period, arrangements were negotiated, firstly with the
International Association of Survey Statisticians and later
with other statistical societies, to provide discounted
subscriptions. More recently electronic versions of the
journal have been made available.

Throughout these developments M.P. was at the helm,
planning future issues, on guard for interesting research
worthy of inclusion, encouraging potential authors,
recruiting and pestering associate editors through the ref-
ereeing process, working with Statistics Canada’s public-
cation and marketing staffs to improve and promote the
journal. On the journal’s Management Board from 1987-
2004, I witnessed first-hand and admired his enthusiasm and
perseverance in the face of many difficulties. It was for him,
I believe, a true labour of love.

These brief descriptions of just two of M.P.’s many
contributions to Statistics Canada and the statistics
profession cannot do full justice to his career. I hope they
give an impression of an ever dependable professional who
combined a deep understanding and research ability in
statistical methods with an appreciation of the practical
constraints of applying statistical methods to surveys. His
style was based on reason and persistence, without bluster
and shunning confrontation, coupled with an innate concern
for the feelings of others. It was always a pleasure to work
with M.P. and an honour to be associated with his
accomplishments.
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In Memory of M.P. Singh

Fritz Scheuren
2005 President, American Statistical Association

In M.P. Singh last summer we lost an individual known
throughout the whole statistical world as a scholar, a
gentleman, and a doer. When I spoke about him at the fall
2005 Statistics Canada Methodology Symposium, it was
from this perspective.
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I will be brief however, providing only a sample of what
could be said. Others are writing too. I will leave it to them
to say more.

My memories of M.P. go back over 20 years. Exactly
when we first met is now obscure to me but I have been one
of his associate editors (AE’s) at Survey Methodology for at
least that long.

He used to like to have me look at papers on record
linkage, sometimes sample weighting or estimation, and,
less commonly, on missing data topics. His selections were
ones | invariably learned from. By and large, after his initial
screening, the incoming quality was excellent and, working
under him my job was to make sure that the journal versions
that eventually resulted were even better.

His editorship of Survey Methodology was challenging.
The Journal had to have closely argued mathematical
statistical formulations but these also had to be ones that
could be put into practice. In other words the ideas had to be
very good, as well as eminently useful. And they have
consistently been both. No mean feat.

Many outstanding younger professionals, when they first
submit a paper, demonstrate just one of these two attributes
in their submissions, usually the mathematical side of their
topic. For submissions that achieved at least one of these,
my interpretation of the goal M.P. set for his AE’s was to
help authors, through the referee and AE comments, to
achieve the second goal too. And what a journal he created
with his vision!

By the way, he suggested that I might have tended to
overdo my author support role but I think that secretly he
was pleased with my approach of never giving up on what
could become a great paper, if given patience. And there
were several papers I handled that his patience was tried but
eventually rewarded in the end.

M.P. had toughness, though, that complemented his
unfailing gentleness. He firmly held all of us to high
standards in guiding Survey Methodology with a sure hand.
Even when his health began to fail, his spirit always
remained visible.

The one word summary I used to characterize M.P. at the
fall conference was to call him a “Mensch.” Now this
German word for “person” may be familiar to many of you
in its Yiddish sense of a complete or whole human being.
But frankly “Mensch” is really untranslatable. That is why it
has stayed in Yiddish here (although I have not written in
Hebrew letters, as would have been appropriate). Certainly
no simple definition can do justice to either the word or the
individual that M.P. was.

We all miss him greatly. He was a good friend, a loving
family man, open to new ideas, careful in his advice about
practice and rigorous in his thinking. M.P. will forever be a
model of what it means to be a sampling statistician.
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Some Recollections of M.P. Singh

David A. Binder
Statistics Canada (retired)

My memories of M.P. Singh over the many years that I
knew him are all very fond. His strengths, both as an
outstanding survey statistician, and as a kind and gentle
person, were characteristics that were unmatched.

It was in the summer of 1970 when I first met M.P.
Singh. I was working as a summer student in Agriculture
Division at Statistics Canada. M.P. Singh and J.C. (John)
Koop were the methodologists working with Agriculture
Division at the time. I was sharing an office with Jack
Graham who was on sabbatical leave from Carleton
University. Jack’s comment to me at that time was how
fortunate Statistics Canada was to have M.P. and John there
as survey methodologists, as they were two of the finest
survey statisticians in the world. In fact, it was such
outstanding talent at Statistics Canada that helped me decide
that it would be a good place to start my career.

Most people knew M.P. through his dozens of published
papers, his stewardship of the journal, Survey Methodology,
and his interventions at statistical conferences. His public-
cations included papers on household survey designs and
redesigns, estimation (including composite estimation and
domain estimation), small area estimation, and nonresponse
adjustment. His insights into the many complexities of
survey methods were often reflected by his questions and
suggestions at conferences and meetings.

He also co-edited monographs on panel surveys
(Kasprzyk et al. 1989) and on small area statistics (Platek
et al. 1987), and he wrote a review article on Survey Meth-
odology in the Encyclopedia of Statistical Sciences (Singh
1988).

As editor of Survey Methodology since its inception in
1975, M.P. oversaw the evolution of the journal from its
beginnings as mainly a vehicle for staff at Statistics Canada
to publish their research to a top international journal with
regular contributions from around the world. Survey
Methodology has been adopted by the Section on Survey
Research Methods of the American Statistical Association,
and by the International Association of Survey Statisticians
as a publication for members of those organizations. This is
a reflection of the many years of M.P.’s “labour of love” on
the journal. His gentleness and kindness were even reflected
in his encouraging remarks when writing a letter of rejection
to authors!

Over the years M.P. was a leader in adapting to the
changing technology for households surveys. He always
pursued ways to improve data collection methods. He guided
Statistics Canada though the world of face-face interviewing,
into telephone interviewing, and computer-assisted methods.
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Most recently, he was keen to develop methods to improve
efficiency by introducing the concept of a master sample for
household survey designs at Statistics Canada, and he was
instrumental in convincing managers from across Statistics
Canada of the potential merits of this concept.

M.P. was a major influence at Statistics Canada to ensure
the quality and the stature of research in Statistical Methods.
The Bureau’s accomplishments in this area have received
recognition from around the world, and Statistics Canada is
now often asked to participate in research activities, such as
presenting invited papers at meetings, participating on panel
discussions, and joining various advisory committees and
panels. To help achieve this stature, the Methodology
Research Committee was created in 1982-1983, with M.P.
as its first chair. There he helped develop a research agenda
and a strategic plan for the Methodology Branch. Although
the research agenda has changed over time, the Meth-
odology Research Program is still flourishing, thanks to the
management structure and support that M.P. helped put in
place.

Throughout my career at Statistics Canada, I was able to
benefit greatly from M.P.’s presence. At management
meetings and at meetings where he represented Meth-
odology management, he always ensured that we kept our
distinctiveness as methodologists, ensuring that decisions
we took made sense for our group.

Even with all of M.P.’s accomplishments as a survey
statistician, it was his character that I admired the most. His
selfless compassion for others, no matter what their level of
competence, was his greatest strength, in my opinion. I can
recall one occasion when the two of us were interviewing a
highly qualified candidate whom we brought to Ottawa
from a fair distance away. However, after just a few
minutes, it was clear that, in spite of this person’s qualify-
cations, he was not suitable for a position in the Meth-
odology Branch. Yet, M.P. managed to make the candidate
feel comfortable, after having made a special trip to Ottawa
for the interview, by discussing that which the candidate
was most familiar with, even though M.P. also recognized
that the candidate was unsuitable for the Branch.

M.P. always praised others when their accomplishments
were noteworthy. This is one of the many reasons why he
was endeared by so many, and why so many will miss him.
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Manager and Mentor

Jack Gambino
Statistics Canada

Others have written of M.P. Singh’s important and varied
contributions to the statistics profession and to Statistics
Canada. I had the good fortune to work closely with M.P.
for 17 years and got to know a side of him that only those
who worked with him on a regular basis saw and
appreciated. I saw M.P. in his role as editor of Survey
Methodology, including his involvement in the day-to-day
activities that led to each issue of the journal, in his role as
manager, and in his role as supervisor and mentor.

In the 1980s, when I first joined Statistics Canada, it was
impossible not to come across M.P. Singh. To me, for the
first few years, he was the person who asked probing
questions at each and every methodology seminar I
attended. Much later, when we happened to sit on some of
the same committees, I was always amazed when, during
meetings, he would come up with good questions on topics
that were clearly not on methodology turf. Invariably, his
questions helped to clarify the issues, not only for
methodologists, but for everyone in attendance. The lesson I
learned from this was not to assume that I’m the only one
who doesn’t fully understand the topic under discussion.

M.P. the Editor: 1 first got to know M.P. personally when
I joined his subdivision in 1988. He immediately recruited
me as an assistant editor of Survey Methodology. This was
standard practice for M.P. — when people with a strong
technical background came into his sights, they became
potential assistant editors for the journal. Those of us lucky
enough to become assistant editors learned a great deal from
the experience. As M.P. grew to trust our judgment over
time, he relied increasingly on our views, for example, in
dealing with a paper that had received conflicting referee
reports.

M.P. the Manager: M.P.’s approach to assistant editors is
illustrative of how he managed more generally. He let
people prove themselves and, with rare exceptions, each
employee’s abilities grew in parallel with M.P.’s confidence
in him or her. Many managers follow a specific manage-
ment philosophy, sometimes jumping on whatever the latest
management fad is. M.P. was not in that category. He was
an intuitive manager and had a knack for spotting future
“talent” early in their careers. He was also a non-authori-
tarian manager who encouraged his staff in their work.
Although M.P. was an open, easygoing manager, he knew
when to put his foot down, as many of us who worked with
him found out the hard way, albeit on rare occasions.

M.P. was a strategic thinker who liked to discuss both
statistical and management issues thoroughly. This
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sometimes led to long meetings where we were all expected
to give our views. And just when we would think that an
issue was settled, M.P. would throw in a new twist that got
the discussion going again! The advantage of M.P.’s
approach, of course, was that by the end of the meeting we
all understood the ins and outs of the subject under
discussion and almost always reached a consensus.

Throughout his career, M.P. took a strong interest in the
development of researchers and the research function at
Statistics Canada. He viewed an active research program as
essential for the continued success of Statistics Canada. As a
result, he worked to increase the professional visibility of
researchers, and more generally of survey methodologists,
within the Statistical Society of Canada and other
organizations.

M.P. the supervisor and mentor: After working in M.P.’s
area for a few years, I had the good fortune to report directly
to him. Separating M.P. the supervisor from M.P. the
mentor is impossible. He took a keen interest in his
immediate employees’ careers, giving them advice and
steering them toward the right choices or, more importantly,
steering them away from the wrong ones. What was
interesting was the way he often did this. Rather than be
direct, he would often lead the employee, in a near-Socratic
way, to the realization that something was not such a good
idea. Another technique was the “look” - anyone who got to
know M.P. well learned to tell at a glance when M.P.
thought an idea was particularly bad.

I learned a great deal about surveys from M.P. but more
importantly, I think, I learned from him what makes a good
manager, motivator and mentor. Thus I come to the
realization that perhaps his greatest role was M.P. the
teacher. Those of us who worked closely with M.P. over the
years will continue to benefit from his example for the rest
of our careers, and I expect we will pass on what we learned
from him, filtered through our own unique experiences, to
the next generation as well.

In his Own Words

Eric Rancourt
Statistics Canada

M.P. was a man of impressive personality. Many of his
employees and colleagues did not have the chance to work
closely with him, but for those who did, M.P. would reveal
himself as a very comprehensive and human character.
Below are a few quotes from him that others and I have
collected. These words usually came to us at a comforting
time and always made us come out of his office on a
positive note.
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Don’t bother setting up a meeting, my door is
always open to discuss anything.

It’s good to have a pet project.

We don’t design surveys to calculate the variance.
I’m sure it can be done.

You’re telling me that 2 out of 3 of your findings
did not make it to the survey! Don’t complain; if as
much as 10% of your ideas get implemented,
you’ll have a great career!
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There is a sign by the highway that says 100 km/h;
that doesn’t mean you have to go to 100 km/h.
Don’t worry, there is still time.

After all the efforts we make in designing surveys,
what we remember and appreciate the most is not
the methods or results; it is the people we worked
with.
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Targeted Random Walk Designs

Steven K. Thompson '

Abstract

Hidden human populations, the Internet, and other networked structures conceptualized mathematically as graphs are
inherently hard to sample by conventional means, and the most effective study designs usually involve procedures that
select the sample by adaptively following links from one node to another. Sample data obtained in such studies are generally
not representative at face value of the larger population of interest. However, a number of design and model based methods
are now available for effective inference from such samples. The design based methods have the advantage that they do not
depend on an assumed population model, but do depend for their validity on the design being implemented in a controlled
and known way, which can be difficult or impossible in practice. The model based methods allow greater flexibly in the
design, but depend on modeling of the population using stochastic graph models and also depend on the design being
ignorable or of known form so that it can be included in the likelihood or Bayes equations. For both the design and the
model based methods, the weak point often is the lack of control in how the initial sample is obtained, from which link-
tracing commences. The designs described in this paper offer a third way, in which the sample selection probabilities
become step by step less dependent on the initial sample selection. A Markov chain “random walk™ model idealizes the
natural design tendencies of a link-tracing selection sequence through a graph. This paper introduces uniform and targeted
walk designs in which the random walk is nudged at each step to produce a design with the desired stationary probabilities.
A sample is thus obtained that in important respects is representative at face value of the larger population of interest, or that
requires only simple weighting factors to make it so.

Key Words: Adaptive sampling; Link-tracing designs; Markov chain Monte Carlo; Network sampling; Random walk;
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Respondent-driven sampling; Sampling in graphs; Sampling hidden population.

1. Introduction

Populations with linkage or network structure are
conceptualized as graphs, with the nodes of the graph
representing the units of the population and the edges or arcs
of the graph representing the relationships or links between
the units in the population. A central problem of studies in
graph settings is that for many of the populations of interest
it is difficult or impossible to obtain samples using con-
ventional designs, and the samples obtained may be at face
value highly unrepresentative of the larger population of
interest. In practice, often the only practical methods of
obtaining the sample involve following links from sample
nodes to add more nodes and links to the sample. For
example, in studies of hidden human populations such as
injection drug users, sex workers, and others at risk for
HIV/AIDS or hepatitis C, social links are followed from
initially identified respondents to add more research parti-
cipants to the sample. Similarly, in investigations of the
characteristics of the Internet, the usual procedure is to
obtain a sample of web sites by following links from initial
sites to other sites.

Klovdahl (1989) used the term “random walk” to describe
a procedure for obtaining a sample from a hidden population
by asking a respondent to identify several contacts, one of
whom is selected at random to be the next respondent, with
the pattern continuing for a number of steps. Heckathorn

(1997) described methods of “respondent-driven sampling”
using procedures of this type. The motivation for using
designs like this in practice is to penetrate deeper into the
hidden population to obtain respondents who are more
“representative” of the population than the more conspicuous
initial respondents may be. In studies of the Internet, the
parallel idea is that of the “random surfer”, who selects a web
page at random, clicks at random on one of the links on that
page, thus moving to another page, and so on (Brin and Page
1998). The random walk design can be conceptualized as a
Markov chain (Heckathorn 1997, 2002, Henzinger, Heydon,
Mitzenmacher and Najork 2000, Salganik and Heckathorn
2004). In this paper some modifications of these Markov
chain designs are described, with the object of obtaining
stationary probabilities of equal or specified values in order
to obtain simple estimates of characteristics of the population
graph of interest.

Approaches to inference from samples in a graph setting
include design-based, model-based, and combination
methods. In the design based approach, all values of node
and link variables in the graph are considered fixed or given,
and inference is based on the design-induced probabilities
involved in selecting the sample. In the model based
approach, the population is itself viewed as a realization of a
stochastic graph model, which provides the joint probability
distribution of all the node and link variables. Previous
design-based approaches include the methods of network or
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multiplicity sampling (Birnbaum and Sirken 1965), adaptive
cluster sampling applied in a graph setting (Thompson and
Collins 2002), and a few of the methods in the snowball
sampling literature (Frank 1977, 1978, Frank and Snijders
1994). A method combining design and model based
approaches is used in Felix-Medina and Thompson (2004)
for studying a hidden population in which link-tracing
follows from a probability survey sample from a frame that
covers only part of the population.

The advantage of design-based methods is that popu-
lations such as socially networked hidden human popu-
lations are difficult to model realistically, and the design-
based inference does not rely on modeling assumptions for
properties such as unbiasedness and consistency of esti-
mators. Design-based inference methods do rely on the
design being implemented according to plan, however, and
exact implementation of a given design may be a very great
challenge in studies of hidden human populations. This was
the motivation for the development of a range of model-
based methods for inference from samples in graphs,
including maximum likelihood and Bayes techniques
(Thompson and Frank 2000, Chow and Thompson 2003).
Assuming that the initial sample is “ignorable” in the
likelihood sense (Rubin 1976), or that the design is of
known form so that it can be included in the likelihood and
Bayes equations, these methods work for a very wide range
of link-tracing sampling procedures, including most
variations of the snowball and network methods. In reality,
however, the initial sample may be selected in a fashion that
is anything but ignorable, with selection probabilities
depending on node value, node degree, and other factors.
The pervasive problem of initial sample selection in link-
tracing studies has been remarked upon by Spreen (1992)
among others.

The approach pursued in the present paper does not
assume total control over all design possibilities, but rather
seeks to work with the way samples naturally tend to get
selected in networked populations, whether by ethno-
graphers or other social scientists, members of the popu-
lation themselves, or automated web crawlers. Starting with
those natural selection processes, we introduce iterative
modifications to obtain sampling procedures that step by
step approach desired selection probabilities.

Although the underlying structure of the designs in this
paper depends on Markov chains, the estimators and
quantities of most interest to investigators may not in fact be
Markovian. For example, while the sequence of selections
of sample units may depend at each step only on the most
recently selected unit, the sequence by which distinct units
are added to the sample depends on all units selected thus
far. For this reason, the properties of a number of alternative
estimators with different designs are examined using
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simulation, by repeatedly selecting samples from stochastic
graph realizations and from an empirical population from a
study of a people at high risk for HIV/AIDS transmission.

Random walk designs are described in section 2.
Uniform and targeted walk designs are introduced in
sections 3 and 4 respectively. Examples are worked in
section 5, including an illustrative example using as the
population a realization of a stochastic graph model and an
empirical example using data from a study of a population
at high risk for HIV/AIDS.

2. Random Walk

The population of interest is a graph, given by a set of N
nodes with labels U={1,2,..., N} and values y-=
{y,.-.,yytand an NxN matrix A indicating relation-
ships or links between nodes. An element a; of A is one if
there is a link from node 7 to node j and zero otherwise. The
diagonal elements g, are assumed to be zero. For node i,
the row sum g« is the out-degree or number of nodes to
which 7 has a link and the column sum q,, is the in-degree
or number of nodes which link to i. With an undirected
graph, the matrix A is symmetric and the in-degree of any
node equals its out-degree.

Let W, denote the unit or node of the graph that is
selected at the k™ wave. If i is the node selected at the 4™
wave, then for wave k +1 one of the nodes linked from i is
selected at random. Thus, {W,,W,,W,,...} is a Markov
chain with

PW,.,, =jlW, =i)=a,.j/a,._. €))

Let Q denote the transition matrix of the chain with
elements g, = P(W,,, = j|W, =i). The chain is a random
walk in that at each step, one of the neighboring states of the
present state is selected at random.

If the graph consists of a single connected component,
that is, if every node of the graph is reachable from every
other node by some path, then the chain is irreducible and its
stationary probabilities (m,,...,my) satisfy n,=2mgq,
for j=1,...,N. In fact, with the simple random walk
design in a connected undirected graph the stationary
probabilities can be shown (Salganik and Heckathorn 2004)
to be

T, oca,;.

That is, for an undirected graph consisting of only one
connected component, the long term selection frequency for
any node is proportional to its in-degree, which, for a
nondirected graph, equals the out-degree.

Suppose one wishes to estimate a characteristic of the
population graph, such as the population mean of the node
values p, = >N v,/ N using data from a random walk
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sample. The sample mean y =2, y, is in general not
unbiased because the value y, of a node may be related to
its degree and hence to its probability of being selected.
However, one can obtain an approximately unbiased
estimate by weighting each sample y-value by the
reciprocal of its in-degree, assuming that that information is
available from the data (Salganik and Heckathorn 2004).

2.1 Random Walk with Random Jumps

In a graph with separate components or with un-
connected nodes, the simple random walk just described
does not have the property that every node can be eventually
reached from every other node. Without this property, the
limiting distribution of the random walk is sensitive to the
starting distribution, since the limiting probability for a node
depends on the initial probability of starting in the
component that contains that node. A modification of the
design which overcomes this problem allows for a jump
with small probability to a node at random from the whole
graph. At each step, this random walk follows a randomly
selected link with probability d and, with probability 1—-d,
jumps to another node in the graph at random or with
specified probability. In the Internet search literature, d is
referred to as the “damping factor”, since a value of d less
than one damps the effect of the out-degree of a given node
(Brin and Page 1998).

The transition probabilities for the random walk with
Jjumps are given by

_{(l—d)/Nera,.j/a,., if a,>0
=

2
if a,=0. @

1/N

With the small probability 1—d of a random jump at
any step, the Markov chain walk can potentially reach any
node in the graph from any other, so that the chain is
irreducible. Further, the random jumps, which include the
possibility of going to node i from node i, ensure that the
chain is aperiodic so that the stationary probabilities are
limiting probabilities. With d <1 the stationary probability
of node i is not a simple function of its own in-degree, but
depends also on the stationary probabilities of the nodes that
link to it.

More generally, the jumps can be made with any
specified probabilities p = (p,,..., py) and the probability
of a jump can depend on the current state, so that the
transition probabilities are

_|A-d)p,+da;/a. if a.>0
i1 1N if a,=0.

Estimates which are approximately design-unbiased for
population graph characteristics can be obtained by
weighting sample values inversely proportional to the
limiting Markov chain selection probabilities, but with the
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additional problem that these limiting probabilities are
unknown and must be estimated from the sample data (see
Henzinger et al. 2000 for an approach to this).

For the remainder of this paper, “random walk” or
“ordinary random walk” will refer to the random walk with
jumps unless it is specifically stated to be a random walk
without the option of jumps.

3. Uniform Walk

In this section a modification of the random walk design
is proposed which leads to uniform stationary probabilities
n=(xm,..., ).

Consider first the case of the population graph consisting
of only one connected component. Let Q be the transition
matrix for the simple random walk with transition proba-
bilities g,; given by (1). Suppose that at step & the state of
the process is i. A tentative selection is made using the
transition probabilities in the i™ row of Q. Suppose that the
tentative selection is node j. If the out-degree @, of node ;
is less than the out-degree a, of node i, then the selection
for the next wave is node j, that is, W,,, = j. If, on the other
hand, the out degree of node j is greater than the out degree
of node 7, then a uniform random number Z is selected from
the unit interval. If Z <a,, /a,., then W, , = j. Otherwise,
Wk+1 =1

Using the Hastings-Metropolis method (Hastings 1970),
the transition matrix for the modified walk in the connected
graph is constructed with elements

P, =q;0, for i#j
and
Fi=1- z R/
J#i
where

. | a.
o, =min<——,1¢.
y
a,.

With a population graph containing separate components
or isolated nodes, the random walk with jumps, having
transition matrix Q given by (2), can be modified to give

P, =q;0, for i#j

and

Eizl_z R’j

J#i

. |4
o, =miny——, 1.
4
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Thus, for two mutually connected nodes i and j, the
acceptance probability for a transition from i to j is

) (1—a’)/N+d/aj_
o, =min ,10.
Y (1-d)/N+d/a,

For a transition from an isolated unit to one in a
component larger than one node, the acceptance probability
is a; =1—d. Other acceptance probabilities have a,; =1.
Note also that for a directed graph, the acceptance
probability for following an asymmetric link would be zero.

The uniform walk is implemented, when the current state
is i, by selecting a candidate next state, say j, using the
transition probabilities in the i"™ row of Q. A standard
uniform random number Z is selected and, if Z < oy, the
next state is j, whereas otherwise the walk stays at 7 for one
more step.

The quantity o; with the uniform walk designs depends
on the known transition probabilities of the basic random
walk, so does not require estimation for implementation.

4. Targeted Walk

The same approach can be used to construct a walk
having any specified stationary probabilities, for example
selecting nodes with high y values with higher probabilities
or selecting nodes to have probabilities strictly proportional
to degree, even when the graph contains separate connected
components. Let m,(y) denote the desired stationary
selection probability for the i™ node as a function of its y
value. For example, in a study of a hidden human popu-
lation at risk for HIV/AIDS, suppose it is desired to sample
injection drug users (y, =1) with twice the probability of
noninjectors (y;, =0). The relevant transition probabilities
for the value-targeted walk, using again the Hastings-
Metropolis method, are

F;=q,0; for i#j
and
Pi=1- z R’j

J#i

Cmig,
o; = min 215,
T4,

Note that the basic transition probability is known, since
it depends only on out-degree of observed nodes, the chosen
probability d, and the specified ratio n; / ;.

For a walk in which the relative selection probability
depends ony value, the ratio ,(y;)/n(y;) is specified and

TT. . .
T, (¥,)q;

where
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As another example of a targeted walk, the target
distribution could be to have nodes selected proportional to
their out-degree, that is, the number of links out. Since the
degree for an isolated node is zero, one possibility, referred
to as the “degree + 1” targeted walk, simply adds one to
each degree, so that m, c g, +1 is the target selection
probability.

A slightly different choice, referred to simply as the
degree-targeted walk, adds one only to the degree of
isolated nodes, so that =, oc max(a,,1). For a degree-
targeted walk of this type, the acceptance probability for a
transition between two mutually connected nodes is

[a.a-d)/N+1
o, =miny ————, 1 ;.
g a.(1—-d)/N +1

For a transition between an isolated node and one with
positive degree, the probability is

a,; =min(a,,(1-d),1).

The transition probability between two nodes each
having positive degree is

. |a,
o, =min<——,1¢.
y
a,.
_Ja.q,
o; = min AT IS
a;.4;

Since isolated nodes, without any links to other nodes, have
degree zero, to give them a positive selection probability
their degree can arbitrarily be assigned the value “1” in the
degree-targeted walk calculation, or the value 1 can be
added to the degree of every node.

In that case

5. Nonreplacement Walk Designs

The limiting distribution results of the previous sections
apply exactly to walk designs with replacements, so that the
selection of nodes can proceed indefinitely through the finite
population. Some of the estimators used in the examples to
follow, are based however on the sequence of distinct units
selected through that process. The sequence of distinct units,
which in effect provides a walk sample without replace-
ment, can add new units only until the number of distinct
nodes in the sample equals that of the finite population, at
which point the sample mean and the population mean
coincide.

A different procedure for selecting a walk sample
without replacement is to directly confine the selection of
the next unit at any step from the set of units not already
selected, as with the “self-avoiding random walk” (Lovasz
1993). If a select-reject procedure is used as with the
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targeted walks, the next selection is made from the set of
units not having been tentatively selected at all, whether or
not the unit was accepted.

6. Estimators Based on the Values of the
Accepted Nodes

With a uniform random walk with replacement the draw-
by-draw sample mean of the sequence of accepted values is
asymptotically unbiased for the mean of the population,
because the limiting selection probabilities are all equal. The
draw-by-draw sample mean is the nominal mean including
repeat values, so a node’s value is weighted by the number
of times it is selected. With a without-replacement design
this same estimator is not precisely asymptotically unbiased
because the limiting probabilities are not exactly equal. The
standard variance estimator based on a within-walk sample
variance is not unbiased because of the dependencies within
walks. Variance estimators are examined empirically in the
examples.

With a targeted walk in which the limiting probability =,
of node i is proportional to ¢;, an asymptotically consistent
estimator, based on the limiting probabilities, is provided by
the generalized ratio estimator

R ZS vile

a ZS 1/%"

Note that the Horvitz-Thompson estimator can not be used
because the proportionality constant in the inclusion proba-
bilities is unknown, whereas in the generalized ratio
estimator it cancels out. Again the limiting probabilities on
which the estimator is based hold exactly for the with-
replacement design. For the without-replacement variation,
the estimator is examined empirically in the examples.

7. Examples

7.1 Realized Stochastic Graph

Figure 1 depicts first a small simulated population having
60 nodes. Nodes having value y =1 are colored dark and
nodes with value y =0 are light. The entire realization is
taken to be our population of interest. The model producing
the realization is a stochastic block model in which the
probability of a link between any two nodes depends on the
values of the nodes. Links are more likely between nodes of
the same type, and the dark nodes are more highly
connected than the light nodes. For example, it may be of
interest to estimate the proportion of positive nodes (that is,
nodes with y =1) in the graph. In the population graph, 24
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of the 60 nodes are positive, so the true proportion is 0.4. To
the right is shown the same graph but with node sizes
proportional to the random walk limiting selection proba-
bilities. Because of the higher linkage tendencies of the
positive nodes, many of them have higher than average
selection probabilities.

In the bottom row of Figure 1 a random walk and a
uniform walk selected from the population are shown. Each
starts from the same randomly selected node, labelled “17,
and proceeds until five distinct nodes are selected. The
arrows show the direction of following links and a jump to a
new node selected at random from the graph is shown as a
dotted line. Note that the random walk backtracks from the
third selected node to the second one before following a
new link to the fourth sample node. From the first sample
node, the uniform walk passes up the higher-probability
node selected by the random walk, accepting instead
another of the nodes linked to it. Either of these walks can at
any time take a random jump, though in the examples
illustrated only the uniform walk happens to take one, in the
transition from the third to the fourth sample node.

7.2 Empirical Population

Data from a study on the heterosexual transmission of
HIV/AIDS in a high-risk population in Colorado Springs
(Potterat et al. 1993, Rothenberg et al. 1995) are shown in
Figures 2 and 3. The 595 people interviewed in the study
population are represented by the nodes of the graph, and
the reported sexual relationships between the respondents
are shown as links between nodes. (Additional sexual links
from any of the 595 to persons who were not subsequently
interviewed are not shown.) The study population includes
at-risk people including injecting drug users, sex workers,
their sexual and drug-use partners and other close social
contacts. The node variable depicted indicates sex work,
with a positive value (y=1) colored dark. Only sexual
links are shown, though many coincide with the drug-
related links. The largest sexually connected component of
the graph contains 219 of the people. The next largest
connected component contains 12 people, followed by a
number of components of four, three and two people. The
remaining nodes represent people without reported sexual
contacts within the interviewed population.

The observed pattern of this population, with one
connected component very much larger than the others, has
been described by researchers as not atypical of studies of
hidden, at-risk populations. We are using this population
solely as an empirical population from which to select
samples to compare sampling designs and estimators.

Statistics Canada, Catalogue No. 12-001-XIE
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Population
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Limit selection probabilities
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Top left: Population is realization of stochastic block graph model. Top right: The random walk limit

probabilities of the nodes. Bottom left: Random walk of 5 steps. Bottom right: Uniform walk of 5 steps.
Arbitrary axes scales are provided as a visual aid in identifying sample nodes with population nodes.

Figure 3 shows the same population with node size
drawn proportional to random walk limiting selection
probability.

Each plot of Figure 4 shows a cumulative sample mean
of a single walk which is continued until 120 distinct nodes
have been selected. The actual proportion of positive (1-
valued) nodes in the empirical population (0.2235) is shown
by the horizontal line in each plot.

In the top row of Figure 4, an ordinary random walk with
a randomly selected starting node is shown. The left plot
shows the cumulative sample mean of the distinct units. The
right plot shows the same data but with the draw-by-draw
sample mean, which includes repeat selections of the same
node, so that each node value is weighted by the number of
times that node was selected during the random walk.

Statistics Canada, Catalogue No. 12-001-XIE

In the bottom row of Figure 4 the same two types of
sample mean are shown for a uniform walk that is continued
until 120 distinct nodes are selected. Notice that, for the
ordinary random walk, the sample mean wanders mainly
above the actual mean, representing the positive bias
resulting from the preferential selection of the more highly
connected, high-risk people in the population. For the
uniform walk, the sample mean wanders closer to the actual
value, sometimes above and sometimes below. Each of
these plots also gives indication of the autocorrelation
present within a single Markov chain.
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Population

High-risk population in Colorado Springs study on
the heterosexual transmission of HIV/AIDS
(Potterat et al. 1993, Rothenberg et al. 1995, and
personal communications). Dark circles represent
highest-risk individuals, in this case those who
have exchanged sex for money. Links shown
between individuals are sexual and drug injecting
partnerships.

Sample mean of distinct units, random walk
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Limit selection probabilities

0.2 0.4 0.6 0.8 1.0
Limiting random walk selection probabilities
for Colorado Springs population. Notice that in
the real population many of the individuals
with the highest-risk behavior also have high
selection probabilities with the ordinary
random walk, and so will tend to be

overrepresented in a sample.
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Figure 4. Sample paths of sample means for a single random walk of length 120 nodes. The top two
plots are with an ordinary random walk, while the bottom two are with a uniform walk.
Sample mean of the distinct units, up to the wave given by the x-axis, is plotted on the left.
On the right is the sample mean of the nominal draws, so that node value is weighted by the
number of times the node is selected.
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The plots in Figure 5 show the expected node value as a
walk progresses wave by wave, for different types of walks
and with different initial distributions from which the first
node is selected, for the empirical population with 595
nodes. Thus, for the k™ wave, the plots show E(Y,), where
Y, is the value of the node selected at the k™ wave. The
dashed line shows the actual mean for the Colorado Springs
population (0.2235). The other three lines represent three
different starting distributions. In all cases, the line that
starts out the lowest is the uniform initial distribution, since
the mean for the initial randomly selected node equals the
mean for the population. The value-dependent initial distri-
bution, in which positive nodes (y=1) have twice the
initial selection probability of zero nodes ( y =0 ), gives the
expected value line that is in all cases mostly in the middle
initially and shows the strongest tendency toward initial
periodicity. The degree-based initial distribution, in which
initial probability of selection for a node is proportional to
its degree (plus one, since isolated nodes have zero degree),
forms the top line in each of the plots.

The six plots in Figure 5 show the expected values for six
different types of walks. For a random walk that follows

Random walk, no jumps

Thompson: Targeted Random Walk Designs

links only, without the possibility of random jumps, the long
term distribution is dependent on which component the
walk starts in, which depends on the initial distribution. The
three separate lines in the first figure reflect the sensitivity to
the initial distribution. The random walk with jumps, on the
other hand, enables any node to be reached from any other
so that a limiting distribution is approached quite rapidly
whatever the initial distribution. With the uniform random
walk, the walk that starts with the uniform distribution stays
in the uniform distribution wave after wave, and the walks
that start with either of the unequal distributions depicted
approach this distribution fairly rapidly. Each of the value-
dependent and degree-dependent walks also approaches its
limiting distribution fairly rapidly, with the expected node
value considerably higher than the average node value in the
population. The “degree + 17 walk approaches a distribution
with selection probabilities proportional to one plus the
degree for each node, while the “degree” walk has limiting
probabilities proportional to the actual degree except that
isolated nodes are assigned degree one.

Random walk (with jumps)
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Figure 5. Expected value of node by wave for different walk designs with the Colorado Springs

empirical population. Each plot shows one walk design. The dashed line is the actual
mean. The other three lines show expected value for three different starting distributions.
In each case the lower of the three lines starts with the uniform distribution, the middle
line with the value 2/1 distribution, and the top line with the degree distribution.

Statistics Canada, Catalogue No. 12-001-XIE



Survey Methodology, June 2006

Tables 1 and 2 show the calculated values of the
expected value of y for the Colorado Springs study popu-
lation for each type of walk, wave by wave, and with
different starting distributions for the mode selections.
Results for ordinary random walks are in Table 1 and for
uniform walks are in Table 2. The expected values are
shown for the initial selections, waves 1, 2, 3,4, 5, 6, 8, 16,
and 32, and for the limit as the number of waves approaches
infinity. The three initial distributions, for the selection of
the first node of a walk, are random, selection in which
positive nodes have twice the probability of zero-valued
nodes, and selection proportional to in-degree of each node
plus one. Note that, with & independent walks of a given
design, the expectations at wave j would apply to the sample
mean of the k y—values at wave j from each of the walks.

Table 1
Random Walks: Expected Value of y for Waves 0, 1, 2, 3, 4, 5, 6,
8, 16, 32, and Infinite. Wave 0 is the Initial Selection. Three Dif-
ferent Initial Selection Probability Assumptions are Used: Initial
Random Selection (7, =1/ N for all Nodes), Nodes with Value
y =1 Have Twice the Selection Probability of Nodes with Value
y=0(n, oc y+1), and Initial Selection Probability Proportional
to in-Degree Plus One (m; < a, ;+D. The Actual Mean of the
Node Values for this Population is 0.2235294

wave my=1/N Ty ocy+1 Ty ca,; +1
0 0.2235294 0.3653846 0.3349894
1 0.2998771 0.2752690 0.3560839
2 0.3005446 0.3587093 0.3507451
3 0.3273606 0.3082865 0.3570490
4 0.3177081 0.3594697 0.3500041
5 0.3320705 0.3179675 0.3528395
6 0.3231213 0.3542086 0.3469835
8 0.3256034 0.3490933 0.3440449
16 0.3291087 0.3372548 0.3363884
32 0.3302606 0.3313908 0.3315119
0 0.3303787 0.3303787 0.3303787
Table 2

Uniform Walks: Expected Value of y for Waves 0, 1, 2, 3,4, 5,
6, 8, 16, 32, and Infinite, with Three Different
Initial Selection Assumptions

wave my=1/N Ty ocy+1 Ty oca,;+1
0 0.2235294 0.3653846 0.3349894
1 0.2235294 0.2590239 0.2903147
2 0.2235294 0.2741356 0.2877974
3 0.2235294 0.2447258 0.2761270
4 0.2235294 0.2511473 0.2707929
5 0.2235294 0.2372440 0.2646280
6 0.2235294 0.2420866 0.2600923
8 0.2235294 0.2371714 0.2522952
16 0.2235294 0.2285370 0.2352150
32 0.2235294 0.2243635 0.2256228
© 0.2235294 0.2235294 0.2235294

For the ordinary random walks, starting with the initial
sample, the observed value is unbiased for the population
value only for the initial selection, and thereafter the bias
rapidly rises to its limiting value of 0.3303787-0.223594.

19

With the initial samples biased toward the positive nodes,
the bias changes less as the walk progresses.

For the uniform walk, an initial random selection
coincides with the stationary distribution, so that the walk
continues to be unbiased wave after wave. With the initial
selection in which positive nodes have twice the selection
probability of zero-valued nodes, the bias is greatly reduced
with each of the first few waves and the selected node
values approach their unbiased limiting state. With the
initial selection proportional to in-degree plus one, the bias
requires a few more waves to become small. The rapid
initial approach of the expected value toward the limiting
value suggests that it may be desirable to have an initial
“burn in” period which is not used in the estimation part.
Even a very short burn in of one to three waves could
substantially reduce the bias of estimators based on short
walks.

Figures 6-9 show the sampling distributions of sample
means and weighted estimators for different walk designs
with the Colorado Springs data set. Each histogram is based
on 1,000 simulations of the sampling design applied to the
empirical population. For the designs in Figures 6 and 7,
each sample consists of 24 walks, each having length 5, that
is, continuing until 5 distinct nodes are selected. Figure 5
shows the distributions of sample means for random walks
(top row) and uniform walks (bottom row). The distribution
of the mean of the 24 sample means of 5 distinct units is
given on the left. On the right, the mean of the 24 draw-by-
draw means, incorporating repeat selections, is given.

The actual proportion (0.2235) of the y values in the
empirical population is indicated by the solid triangle, while
the mean of the sampling distribution is indicated by the
hollow triangle. The sample means for the random walks
are biased upward, while the sample means for the uniform
walk are nearly unbiased. Neither is precisely unbiased,
because of the way the walk continues until a fixed number
of distinct nodes is selected, instead of proceeding for a
fixed number of waves.

Figure 7 shows the distribution of the generalized ratio
estimator for the targeted walks having stationary probabi-
lities related to node value and to degree (node degree plus
one). For comparison purposes, each of these walks was
started in its own stationary distribution, in effect giving the
distributions of the estimators after “burn in”. These
estimators are not unbiased, since effective sample size is
fixed, which affects the actual probabilities with with
distinct nodes are selected in sequence, and because the
denominator of the estimator is random, being the sum of
the sample weights.

Figures 8 and 9 show the distributions of the same
estimators and designs as in Figures 6 and 7, but with each
sample consisting on one long walk of 120 distinct nodes.
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Figure 6.

Figure 7.
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the simulation was 1,000.
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Figure 8. Distributions of sample means as estimators of the proportion of people who
have exchanged sex for money in the empirical population of the Colorado
Springs study, with random and uniform walks. Solid triangle is the actual
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the estimator. Note the overestimation with sample means for ordinary random
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walk of length 120. The number of realizations for the simulation was 1,000.
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Figure 9. Distributions of generalized ratio estimators of the proportion of people who
have exchanged sex for money in the empirical population of the Colorado
Springs study, with targeted walks. Solid triangle is the actual proportion in the
population. Hollow triangle is the mean of the distribution of the estimator. Note
the overestimation with sample means for ordinary random walks. Random
walks are at top, uniform walks at bottom. Design was a single walk of length
120. The number of realizations for the simulation was 1,000.
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Tables 3-6 summarize the expected values and mean
square errors of the estimators with the various strategies,
based on the 1,000 simulation runs with the Colorado
Springs data set serving as the population.

Tables 7 and 8 give the variance and the expected values
of between-walk sample variances, where available, and of
within-walk sample variances for the uniform walk designs.

Table 3
Means and Mean Square Errors for Sample Means of Distinct
Units and Draw-by-Draw Means for Random Walks and Uniforms
Walks. The Design Uses 24 Walks Each Continuing Until 5
Distinct Nodes are Included

design: random walk random walk uniform walk uniform walk
estimator: Sample mean  draw mean sample mean  draw mean
mean  0.3008000  0.2994872  0.2423000  0.2289125
m.s.e. 0.007617465 0.007608868 0.002016378 0.001974826

Table 4
Means and Mean Square Errors for Weighted Means (Generalized
Ratio Estimator), Using the Distinct Units in Each Walk or the
Draw-by-Draw Selections for Value-Dependent Walks and
Degree-Dependent Walks. The Design Uses 24 Walks Each
Continuing Until 5 Distinct Nodes are Included

design:  valuewalk  value walk degree walk degree walk
estimator: distinct units draw by draw _ distinct units draw by draw
mean  0.1805114  0.2144555  0.2235257  0.1994530
m.s.e. 0.002546968 0.001195507 0.001807981 0.004382568

Table 5
Means and Mean Square Errors for Sample Means of Distinct
Units and Draw-by-Draw Means for Random Walks and Uniform
Walks. The Design Uses One Walk Continuing Until 120 Distinct
Nodes are Included

design: random walk Random walk uniform walk uniform walk
estimator: sample mean  draw mean sample mean  draw mean
mean  0.3274083  0.3325171  0.2379333  0.2232534
m.s.e. 0.012004961 0.014902382 0.001777285 0.002442825

Table 6
Means and Mean Square Errors for Weighted Means (Generalized
Ratio Estimator), Using the Distinct Units in Each Walk or the
Draw-by-Draw Selections for Value-Dependent Walks and
Degree-Dependent Walks. The Design Uses One Walk Continuing
Until 120 Distinct Nodes are Included

design:  valuewalk  value walk degree walk degree walk
estimator: distinct units draw by draw _ distinct units draw by draw
mean  0.1652275 02254267  0.2404622  0.1835336
m.s.e. 0.003952703 0.001578039 0.002115518 0.003951540

Table 7
Variance of Estimators and Expected Values of Between-Walk and
Within-Walk Sample Variances for the Uniform Random Walk,
for the Design with 24 Walks of 5 Distinct Nodes Each

estimator: sample mean draw-by-draw mean

variance of estimator: 0.001665709 0.001947796
E (between-walk variance) 0.001584203 0.001919005
E (average within-walk variances) 0.001515521 0.001231983
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Table 8
Variance of Estimators and Expected Values of Within-Walk
Sample Variance for the Uniform Random Walk, for the Design
with a Single Walk of 120 Distinct Nodes. (No Between-Walk
Sample Variance is Available for this Design)

estimator: sample mean draw-by-draw mean
variance of estimator: 0.001571384 0.002445194
E (average within-walk variances) 0.001510515 0.001429126

Table 9
Acceptance Rates for the Uniform and Targeted Walks in the
Empirical Population

design: uniform walk value walk degree + 1 degree walk
walk
acceptance rate 0.62 0.60 0.85 0.88

8. Acceptance Rates

The principal advantages of the controlled Markov chain
sampling designs, such as the uniform and targeted walks,
are (1) they make the limiting selection probabilities known
from the data so that they can be used in estimation; (2) the
limiting probabilities are chosen, so that certain types of
nodes or graph characteristics may be preferentially se-
lected; (3) the estimates are design based and so certain of
their key properties do not depend on assumptions, which
might turn out to be incorrect, about the population graph
itself; and (4) with increasing chain length, the expected
values of estimates tend to move toward the corresponding
graph quantities even when the initial selection distribution
is different from the limiting one. Further, the uniform walk
design produces a sample that, without weighting or
analysis, is at face value “representative” in some respects
of the larger population.

An important practical concern with the uniform and
targeted walks is the acceptance rate, that is, the average
probability a tentatively selected node is accepted. Tenta-
tively selected nodes that are rejected do not contribute to
the simple estimators. For a population such as the Internet,
in which tentative selections and accept/reject decisions can
be automated and made quickly, the acceptance rate may
not be critical. Sampling simply continues until a suitable
number of nodes are accepted. For studies of hidden human
populations, sample sizes tend to be small. Members of the
population are difficult to find and interviews may be time
consuming. In some studies, however, the decision to accept
or reject, based on a tentatively selected person’s out degree,
may be fairly quickly ascertained through a short screening
interview. Even so, it is desirable to have a sampling
method with as high an acceptance rate as possible.
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The random walks have acceptance probability equal to
one, but do not in general have known or controlled limiting
probabilities. If one thinks of the underlying random walk as
the natural, uncontrolled walk through a population, then a
controlled walk having a limiting distribution close to the
natural random walk of the population would be expected to
have a higher acceptance rate than a controlled having a
limiting distribution very different from the natural random
walk. That is, a controlled walk with a stationary distri-
bution not far from the underlying random walk distribution
should require less modification through the rejection of
tentatively selected nodes than one with stationary distri-
bution far from the natural random walk tendencies.

As mentioned earlier, the stationary probabilities for an
ordinary random walk in a nondirected graph with a single
component are proportional to the degrees of the nodes.
When there is more than one connected component, the
random jump innovation is necessary to ensure that every
node is reachable and to produce a single stationary
distribution not dependent on the starting distribution, and
the limiting probabilities are influenced by, but not strictly
proportional to, the node degrees. Even with the random
jump innovation and the induced acceptance probabilities,
the targeted walks producing stationary probabilities
proportional to node degrees may be the closer than the
other controlled walks under consideration to the natural
random walk distribution. Indeed, in Figure 5 it is evident
that, for the empirical population, the equilibrium distri-
bution of the expected node value for the degree + 1 walk is
closer to the equilibrium for the random walk with jumps
than is any of the other controlled designs studied.

For the empirical population from the HIV/AIDS hetero-
sexual transmission study, the acceptance rates for the
different designs are given in Table 9. For the uniform walk
design, the acceptance rate was 62 percent. For the value
walk, giving twice the limiting probability for the high risk
as for the low risk people, the acceptance rate was 60
percent. For the degree walk, in which the limiting proba-
bility was proportional to the degree plus one, the accep-
tance rate was 85 percent. For the degree walk with ond
added only for the degree of the isolated nodes, the accep-
tance rate was 88 percent.

9. Discussion

The uniform and target walk sampling designs serve to
make the limiting selection probabilities known from the
data so that they can be used in estimation. Further, the
limiting probabilities are chosen, so that certain types of
nodes or graph characteristics may be preferentially
selected. Dependence on the initial selection, which may be
uncontrolled, decreased step by step.
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The estimators used in this paper with the uniform and
targeted walk designs can be said to be design based. Even
though the exact design based selection probabilities may be
unknown if they are unknown in the initial selection, the
stationary selection probabilities are used in the estimators.
With increasing chain length, these probabilities become
more accurate and the expected values of estimates move
toward the corresponding graph quantities. The design
based estimation methods have the advantage that certain of
their properties, such as design unbiasedness or consistency,
do not depend on model based assumptions that would
possibly be incorrect. The design based estimates have the
additional attractive quality that they are very simple and
easy to understand and explain, and can even produce data
that can be presented without analysis or interpretation as
representative in important characteristics of the wider
population of interest.

The use of Markov Chain Monte Carlo algorithms for
data analysis with complicated models is common in
statistics. The methods described here are unusual in that the
Markov Chain methods are applied to real-world popu-
lations to actually obtain the data, with the result that the
data thus obtained can be easily analyzed by hand. In fact,
one could go a step farther and construct a complex Bayes
stochastic graph model for the population, using Markov
Chain Monte Carlo methods in the conventional fashion in
analyzing the data as well as in their collection.

The uniform or targeted walk designs are useful to obtain
samples of accepted nodes that have certain desirable
properties in relation to the population, that provide very
simple estimators of population quantities, or that could
provide an initial sample for another design. It should be
noted that nodes that were observed but then “rejected”
under the design are actually still part of the data. Their
values can still be incorporated into estimates if desired
using the Rao-Blackwell method applied once the chain has
reached approximate equilibrium, though the estimates then
are computationally complex.

Another alternative is to use model based methods such
as Bayes estimates. The model based methods require, in
addition to adequate stochastic graph modeling of the popu-
lation, an ignorable initial selection procedure, which is not
in general satisfied with initial selections biased by node or
degree values, or else adequate modeling of the non-
ignorable selection procedure as part of the likelihood.
Targeted walk designs producing an asymptotic distribution
unrelated to the nonignorable selection procedure and hence
approximately unrelated to node or degree values outside of
the sample could provide the initial selections for a sample
with which model based inference methods could then be
applied.
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Using Missing Data Methods to Correct for Measurement Error in a
Distribution Function

Gabriele B. Durrant and Chris Skinner !

Abstract

This paper considers the use of imputation and weighting to correct for measurement error in the estimation of a distribution
function. The paper is motivated by the problem of estimating the distribution of hourly pay in the United Kingdom, using
data from the Labour Force Survey. Errors in measurement lead to bias and the aim is to use auxiliary data, measured
accurately for a subsample, to correct for this bias. Alternative point estimators are considered, based upon a variety of
imputation and weighting approaches, including fractional imputation, nearest neighbour imputation, predictive mean
matching and propensity score weighting. Properties of these point estimators are then compared both theoretically and by
simulation. A fractional predictive mean matching imputation approach is advocated. It performs similarly to propensity
score weighting, but displays slight advantages of robustness and efficiency.

Key Words: Donor imputation; Fractional imputation; Hot deck imputation; Multiple imputation; Nearest neighbour
imputation; Predictive mean matching; Propensity score weighting.

1. Introduction

Measurement error may lead to biased estimation of
distribution functions (Fuller 1995). In this paper we consid-
er approaches to correcting for this bias when, in addition to
sample observations on the erroneously measured variable,
values of the accurately measured variable are available for
a subsample. When the subsample is selected using a
randomised scheme, the set-up is an instance of the well-
studied problem of double sampling (e.g., Tenenbein 1970).
In this case, unbiased estimates can be constructed from the
subsample alone, but use of data on the correlated surrogate
variable for the whole sample may improve efficiency. See,
for example, Luo, Stokes and Sager (1998). In this paper we
shall suppose that the subsample is not selected by a known
randomised scheme, but rather by an unknown missing data
mechanism. We shall just assume that the accurate variable
is missing at random (MAR) (Little and Rubin 2002),
conditional on variables measured on the whole sample.
Some inference methods are available for this problem if we
are willing to make strong parametric assumptions about the
true distribution (e.g., Buonaccorsi 1990) or about the
measurement error model (e.g., Luo ef al. 1998). We shall
not consider such methods further, however, since we
suppose that we are dealing with an application where such
assumptions are unrealistic. Instead, the novel feature of this
paper is to view inference in this measurement error set-up
as a missing data problem and to consider the application of
imputation and weighting methods from the missing data
literature. Our focus will be on the choice of such methods
to improve point estimation of the distribution function,
in terms of bias, efficiency and robustness to model

assumptions. We shall only consider variance estimation
briefly.

This paper is motivated by an application to the
estimation of the distribution of hourly pay in the United
Kingdom (UK), using data from the UK Labour Force
Survey (LFS). In the LFS there are two ways of measuring
hourly pay. The traditional method is to obtain information
about earnings and hours worked and to derive a measure of
hourly pay from this information. We refer to the variable
derived in this way as the derived hourly pay variable. A
more recent method of measuring hourly pay is to ask
respondents directly about their hourly pay. We refer to the
resulting measure of hourly pay as the direct variable.
Skinner, Stuttard, Beissel-Durrant and Jenkins (2002)
describe and provide empirical evidence of many sources of
measurement error in the derived variable and conclude
from their study that the direct variable measures hourly pay
much more accurately than the derived variable. The
problem with the direct variable is that it is missing for
about 43% of all cases. The application is outlined in
Section 8 and described in greater detail in Skinner ef al.
(2002), who also proposed the use of imputation to address
the measurement error problem. This paper extends that
work by considering a wider class of approaches to missing
data and by comparing their properties both theoretically
and via simulation. The imputation approach developed in
this paper, which extends that considered by Skinner et al.
(2002), has now been implemented by the UK Office for
National Statistics as a new approach to producing low pay
estimates.

The paper is structured as follows. The estimation
problem is discussed in section 2. Imputation and weighting
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approaches are set out in sections 3 and 4 respectively and
their properties are studied and compared theoretically in
section 5 and via a simulation study in section 7. Variance
estimation is considered briefly in section 6. Section 8
discusses the application of the methods to the LFS. Some
concluding remarks are given in section 9.

2. The Estimation Problem

Let y, be the (true) value of a variable of interest
associated with unit ; in a finite population U. The
distribution function of the variable in U is:

F(y)=N"2 1<), (1

ieU

where /(.) is the truth function (/(£)=1 if E is true and
=0 otherwise) and y may take any specified value.
Suppose that a survey is conducted on a sample s c U and
that the variable is measured as y, for units i €s. The
difference between y, and y, represents measurement
error. Suppose that the true value y, is recorded for a subset
of sample units and that we write 7 =1 if y, is recorded
and 7, =0 otherwise. Let x, be a vector of auxiliary
variables also recorded in the survey. Our data consist of
values y., x, and r, for ies and values y, for ies
when 7, =1. The problem is how to use these data to make
inference about F(y).

In the LFS application, the units are employees, s is the
set of unit respondents in the LFS sample, y: is the value of
the derived hourly pay variable and y, is the value of the
direct variable for employee i. The value y, is assumed
equal to the true hourly pay.

The primary feature of this inference problem that
concerns us is the missingness of y, values and we consid-
er two approaches to handle this missingness:

— imputation of y, for units i € s where 7, =0, using
the values y, and x, as auxiliary information;

— weighting of an estimator based upon the responding
subsample s, ={i es; 1, =1}, in particular, the use
of propensity score weighting (Little 1986).

These approaches to estimating F'(y) will be discussed
in the following two sections.

Inference will be discussed under a model-based frame-
work, in which it is assumed that the population values
(y;, vi, X, 1), iU, are independently and identically
(IID) distributed and that sampling is ignorable, that is the
distribution of (y,, y: , X, 1) is the same whether or not
i es. In section 8 we shall comment on how the methods
developed under these assumptions may be adapted to
handle the sampling design of the LFS and the use of
weights to compensate for unit non-response in the survey.
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3. Imputation Approaches

Suppose initially that it is possible to observe y, for all
i €s. Then, under the assumptions given in the previous
section,

F)=n"Y 10y, <) @)

i=1

would be an unbiased estimator of F(y), in the sense that
E[F(»)-F(y)]=0 for all y, where we write s=
{1,...,n} and the expectation is with respect to the model,
conditional on the selected sample s. To address the
problem that y, is missing when 7, =0, suppose that y, is
replaced in (2) by an imputed value y/ when 7 =0 (and
ies) andlet 7, =y, if =1 and =y’ otherwise. The
resulting estimator of F(y) is

Fy)=n"Y 1G5, < ). 3)

i=1

A sufficient condition for F(y) to be an unbiased esti-
mator of F(y) is that the conditional distribution of y’
given 7, =0, denoted f(y! |7 =0), is the same as the
conditional distribution f(y, |7, =0). However, since y,
is only observed when 7, =1, the data provide no direct
information about f(y, |, =0) without further assump-
tions. We consider two possible assumptions.

Assumption (MAR): 7. and y, are conditionally inde-
pendent given y; and x,.

Assumption (Common Measurement Error Model): 7
and y: are conditionally independent given y, and x;.

The first assumption is the standard one made when
using imputation or weighting (Little and Rubin 2002) and
is the one which we shall make. The second assumption is
that the measurement error model, defined as the conditional
distribution of y, given y, and x, is the same for
respondents (r, =1) and nonrespondents (7 =0). We shall
use the second assumption in the simulation study in section
7 to assess robustness of MAR-based procedures. Inference
under the second assumption is more difficult, however, and
appears to require stronger modelling assumptions about the
distribution of y, and x,;; we are considering this problem
in other research and do not pursue this further in this paper.
The plausibility of these two assumptions for the LFS
application is discussed further in Skinner ef al. (2002).

Under the MAR assumption we have f(y;, | y:, X, 1=

1

0)= f(»| y: , X, n=1) and a sufficient condition for

1

F(Y) toestimate F(Y) unbiasedly is that
SO, % =0 = fU |y % =D (&)
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We therefore consider an imputation approach where the
conditional distribution of y given y* and x is “fitted’ to
the respondent (, = 1) data and then the imputed values »’
are ‘drawn from’ this fitted distribution at the values y, and
x, observed for the nonrespondents. Suppose that the
conditional distribution f(y; | y: , X;, 1, =1) may be repre-
sented by a parametric regression model:

g()=h(y, x; B)+e, E(e|y,, x)=0 (5)

where g(.) and A(.) are given functions and [ is a vector
of regression parameters. A point predictor of y,, given an
estimator 3 of B based on respondent data, is

P =g (], x5 P (6)

Using p, for imputation may, however, lead to serious
underestimation of F(y) for low values of y, since such
simple regression imputation is expected to reduce the
variation in F(y) artificially (Little and Rubin 2002, page
64). This effect might be avoided by taking y’ =
g ' h(y;, x; B)+é,.], where ¢, is a randomly selected
empirical residual (Little and Rubin 2002, page 65). Our
experience is, however, that this approach fails to generate
imputed values which reproduce the ‘spiky’ behaviour of
hourly pay distributions in our application and may lead to
bias around these spikes. We prefer therefore to restrict
attention to donor imputation methods, which set y/ =y, 40
(r, =0) for some donor respondent j=d(7) for which
r; =1. The imputed value from a donor will always be a
genuine value and will respect the spiky behaviour in our
application. The basic donor imputation method we consid-
er is predictive mean matching (Little 1988), that is nearest
neighbour imputation with respect to ;, defined by (6), i.e.,

impute y, by v,
satisfying | p, — ) I= j__mrig | V=91 (7

where 7, =0 and 7, =1.

Corollary 2 of Theorem 1 of Chen and Shao (2000) then
provides theoretical justification for the approximate unbi-
asedness of the resulting estimator £(y) for F(y), if the
following four conditions hold: (i) y, is missing at random
(MAR) conditional on z, = g"'[h(y,, x,;B)], where P=
plim(B), (ii) the conditional expectation of ¥, given z; is
monotonic and continuous in z, (i) z, and E(y,|z,)
have finite third moments and (iv) the probability of
response given z is bounded above zero. These conditions
seem plausible provided: the MAR assumption above holds;
the distribution of y, only depends on y, and x, via
z,; v, is a reasonably good proxy for y,. Inaddition, Chen
and Shao’s (2000) result needs to be adapted for the fact that
the nearest neighbour is defined with respect to B whereas
the above conditions are with respect to 3. This adaptation
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seems plausible since, for a sufficiently large number of
respondents, close neighbours with respect to 3, =
g '[h (), x; B)] should also be close neighbours with
respectto z, = g [/ (y:, x5 Bl

There are thus theoretical grounds that nearest neighbour
imputation with respect to p, will lead to an approximately
unbiased estimator of F'(y), subject to the MAR assump-
tion and certain additional plausible conditions. It is also of
interest to consider the efficiency of F(y). The variance of
F(y) for nearest neighbour imputation may be inflated if
certain donors may be used much more frequently than
others. We consider a number of approaches to reducing this
variance inflation effect.

First, we may restrict the number of times that respon-
dents are used as donors by defining imputation classes by
disjoint intervals of values of J, and drawing donors for a
recipient by simple random sampling from the class within
which the recipient’s value p, falls. The smoothing will be
greatest if we draw donors without replacement. We denote
this hot deck method HDIWR or HDIWOR, depending on
whether sampling is with or without replacement. A second
approach is to undertake donor selection sequentially and to
penalize the distance function employed for determining the
nearest neighbour d(i) as follows

|9 = Pay [ A+ pg))= min {5, = 3, [ A+ )b ()

where peR" is a penalty factor, ¢, is the number of times
the respondent j has already been used as a donor, 7, =0

and r,, =1 (Kalton 1983). A third approach is to employ
repeated imputed values yl.' " m=1,...M, for each
recipient i € s such that » =0. The resulting estimator of
F(y) is M7'Y,, F™(y), the mean of the resulting esti-
mators " (). We refer to the third approach as fractional
imputation (Kalton and Kish 1984; Fay 1996) rather than
multiple imputation (Rubin 1996), since we do not require
the imputation method to be ‘proper’, that is to fulfil
conditions which ensure that the multiple imputation vari-
ance estimator is consistent. We do not stipulate this re-
quirement here because our primary objective is point esti-
mation. In our use of fractional imputation we aim to select
donors d(i,m), m=1,..., M, each a close neighbour to i,
so that £ (y) remains approximately unbiased for F(y).

We consider the following variations of this approach.

(i) The M /2 nearest neighbours above and below
», are taken, for M =2 or 10, denoted NN2 and
NNI10 respectively.

(i) M /2 donors are selected by simple random
sampling with replacement from the M
respondents above and from the M respondents
below y,, for M =2 or 10, denoted NN2(4) and
NN10(20) respectively.
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(iil) M =10 donors are selected by simple random
sampling with or without replacement from the
imputation classes referred to in the HDIWR and
HDIWOR methods described above. We refer to
these as the HDIWR10 and HDIWORI10
methods.

For comparison we also consider the Approximate
Bayesian Bootstrap method of multiple imputation (Rubin
and Schenker 1986), denoted ABB10, defined with respect
to the imputation classes referred to in the HDIWR and
HDIWOR methods.

4. Weighted Estimation

The estimator £(y) implied by the different imputation
approaches considered in the previous section may be
expressed in weighted form as:

ﬁ()’):zwil(y,'<Y)/sz )

ies ies,

where s, ={ies;r =1} is the set of respondents and
w,=1+d,/M, where d, is the total number of times that
respondent i is used as a donor over the M repeated
imputations. Note that ¥, w; =n . Another choice of weight
would be to set w, equal to the reciprocal of an estimated
value of the propensity score, Pr(r =1|y, ,x,) (Little
1986). This approach has been proposed for the hourly pay
application by Dickens and Manning (2004). The propensity
score might be estimated, for example, under a logistic
regression model relating 7, to y; and x,. Under the MAR
assumption, the resulting estimator £(y) will be approx-
imately unbiased assuming validity of the model for the
conditional distribution f(7; | y: ,Xx;) and some regularity
conditions, such as those described in section 3 for the
imputed estimator. Note that the need to model f(r |y,
x,) replaces the need to model f(y, |y, x,) in the
imputation approach.

5. Properties of Imputation and
Weighting Approaches

In this section we investigate and compare the theoretical
properties of the imputation and propensity score weighting
approaches introduced in the previous two sections under
various simplifying assumptions. We fix y and set u, =
I(y, < y). Letting N — oo we suppose that the parameter
of interest is 0= FE(u;). We consider the imputation
approach first and suppose that y, depends upon y: and x,
only via z, :g"l[h(y:,xi;B] and that y, is missing at
random given z,. Ignoring the difference between B and
B, assuming s, is large, we consider nearest neighbour
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imputation with respect to z,. As in (9) the imputed
estimator of © may be expressed as

Oy =2 w2t/ 2w, (10)
where w, =1+d,/M (and X, w, =n). We write the corre-
sponding expression for propensity score weighting as 6,
with w, replaced by wyg;. Let zpg, be the scalar function
of y;, x, upon which 7 depends and write:

Pr(r; =1]y;, X,)=n(zZps,)- (11)

Just as we ignored the difference between B and B, we
initially ignore error in estimating m(z,g,) and write
Wes; = TC(ZPS:')_I'

The imputation and propensity score weighting ap-
proaches may be expected to yield similar estimators if z,
and z,; are similar, that is they are close to deterministic
functions of each other, and M is large. To see this,
consider a simple example of the imputation approach,
where the donor is drawn randomly from an imputation
class ¢ of close neighbours with respect to z,, containing
m, respondents and n, —m, nonrespondents, as described
in section 3. In this case, w, will approach 1+ (n, —
m,)/m,=n,/m, as M — o and this is the inverse of the
response rate within the class (David, Little, Samuhel and
Triest 1983). More generally, with the fractional nearest
neighbour imputation approach considered in section 3, the
weight w, =1+d,/M may be interpreted as a local (with
respect to z,) nonparametric estimate of Pr(r, =1|z,)"'
despite the fact that imputation is based upon a model for
¥; given z, rather than 7, given z,. Thus, the imputation
approach may be expected to lead to similar estimation
results to propensity score weighting if z, and z,g, are
deterministic functions of each other. In general, however,
this will not be the case. Since Pr(r,=1|z,) may be
expressed as an average of Pr(7, =1| y",x) across values
of y* and x for which z=z, we may interpret w, as a
smoothed version of wpg; and may expect it to show less
dispersion. This suggests that it may be possible to use
imputation to improve upon the efficiency of estimates
based on propensity score weighting, as also discussed by
David etal (1983) and Rubin (1996, section 4.6). To
investigate this further, assuming MAR and the other
assumptions in sections 3 and 4 upon which the approaches
are based, both imputation and weighting approaches lead to
approximately unbiased estimation of F(y) and we may
focus our comparison on relative efficiency.

It follows from equation (3.3) of Chen and Shao (2000)
that the variance of 0, may be approximated for large 7

by
Var(élMP) ~ n'2E|:Z:Sl wl.zV(ul. | Zl.):| + n_lV[\y(zl.)], (12)
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where y(z;) = E(u, | z;) and any impact of estimating 3 is
ignored. Note that Chen and Shao (2000) consider single
imputation with M =1 but their proof of this result carries
through if M > 1. Itis convenient to reexpress this result as

Var(élMP) ~n'c’ +nE [zsl (W =w )V (u, | Z,.)], (13)
using the identity
Viw(z)]=0" —EV (4] 2,)], (14)

where ¢° =V (u,) and a corollary of Chen and Shao’s
(2000) Theorem 1 that

E[n' Y wvw|z) | = EW @ | z)1+0,™™).  (15)

Note that w” —w, =(d,/M)(1+d,/M)>0. Expression
(13) may be interpreted from both ‘missing data’ and
‘measurement error’ perspectives. From a missing data
perspective, the first term in (13) is just the variance of 6 in
the absence of missing data and the second term represents
the inflation of this variance due to imputation error. From a
measurement error perspective, we may consider limiting
properties under ‘small measurement error asymptotics’
(Chesher 1991), that is where y, -y, and V(y|z,)
approaches zero. In this case, the second term also ap-
proaches zero and éIMP becomes ‘fully efficient’, i.e., its
variance approaches c* /n.

Let us now consider propensity score weighting. We
make the corresponding assumption that y, is missing at
random given z,, . Linearising the ratio in (9), with w,g; in
place of w,, using the fact that E (X, wps;)=n and
initially ignoring the impact of estimating the propensity
score we may write

var(0,5) ~ n Var[zs Whpg; (4, — G)]
= 1™ Ewps, (1, ~ 6)°], (16)
which may be expressed alternatively as
Var(éps) ~n"’E |:ZS1 WI%SiV(ui | ZPSi):|
+n'E {Wpsi[W (ZPS,')_G]Z} 17)

To compare the efficiency of weighting and imputation it
is convenient to use (14) and (15) (which hold also with
Wpg; in place of w;) to obtain

Var(éps) ~n'c’
+n_2E[zsl (WI%Si — Wps)V (1, | ZPSi):|
17 E{T, [, = 1W(zp5) - 0F | (18)
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Note that, in comparison with (13), this involves a third
term, which does not necessarily converge to zero as y;
approaches y, and V(u;|zpg;) — 0. Hence propensity
score weighting does not become fully efficient as the
measurement error disappears. The second term of (18) may
also be expected to dominate the second term of (13) when
V(u;|z;) and V(u,|zpg) are constant and equal, since,
recalling that X, w, = E(X, wpg;) =n, these second terms
are primarily determined by the variances of the weights w,
and wyg;, and, provided M is sufficiently large, we may
expect w, to display less variation than wpg, as argued
above.

The above discussion ignores the potential impact of esti-
mating [ or estimating a parameter vector a upon which
the propensity score Pr(r =1| y: ,x;) may be assumed to
depend. Kim (2004) shows in fact that the estimation of o
by its maximum likelihood estimator & reduces the
variance of 0, as follows:

var (éps) ~ var (O,5)

—cov (B, &) var (&) cov(d, B,5),  (19)

where 8, is the estimator 8, with the estimated propen-
sity scores replaced by their true values and where the left
hand sides of (16), (17) and (18) should now be var (éps) .
We conclude from this fact and the previous discussion that,
in general, 0, is not necessarily more efficient than 6,
or vice versa and we look to the simulation study in section
7 for numerical evidence. However, our conclusion that
0, is more efficient as measurement error disappears and
y; =y, remains valid even in the presence of estimation
error in o and [, since the impact of estimation error in 3
will disappear in this case with z, — y, whereas the
second term in (19) when added to expression (18) will not
in general reduce var (8,4) to 6*/n in this case.

Let us finally consider the impact of departures from
the MAR assumption. Under small measurement error
asymptotics where y: —y, and V(y;|z,) =0 so y,.I -
v;, the imputation approach will provide consistent
inference about 0 even if the MAR assumption fails. This
is not the case for the propensity score weighting approach.
This suggests that the imputation approach may display
more robustness to departures from the MAR assumption if
the amount of measurement error is relatively small.

6. Variance Estimation

Although point estimation is the primary focus of this
paper, we do now consider linearization variance estimation
briefly. For propensity score weighting we refer to Kim
(2004). For the single and fractional imputation methods in
section 3 based upon nearest neighbour imputation, we may
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consider a simplified approach based on the IID assumption
set out in section 2 and the expression for the variance of
B,p in (13).

The simple estimator of the first term c° /n :

w8 =n7Y i, — O (20)

is approximately unbiased from Corollary 1 of Chen and
Shao (2000). It follows that an approximately unbiased esti-
mator of var(0,,,,) is

Vibyp)=n"'6"+nY. (Wl -w)V(w|z) (1)

if we can construct an approximately unbiased estimator
V(u,. |z;) of V(u,|z;). Various approaches to estimating
V(u,|z;) seem possible. Following Fay (1999), we might
consider the sample variance of u; values for responding
neighbours near to i with respect to z. An alternative
approach would be to consider a model-based approach in
which a model is fitted to wy(z,)=E(y, |z,) for ies
giving y(z,) and we set V(u,|z,) = ¥(z)[1 = ¥(z)].
We have considered nonparametric methods of fitting
y(z,), but have found with the LFS data that these lead to
very similar values of ¥ (8,,,) as a logistic regression
model for y (z,).

It may be possible to apply ideas in Chen and Shao
(2001) or Kim and Fuller (2002) to extend the above
approach to handle survey weights and a complex design.
See Rancourt (1999) and Fay (1999) for other variance
estimation approaches for nearest neighbour imputation and
Little and Rubin (2002) for multiple imputation approaches.

7. Simulation Study

The aim of the study is to generate independent repeated
samples s", h =1,..,H, with values y,y,x,7,
i € s which are realistic in relation to the LFS application,
considered further in section 8, to compute the corre-
sponding estimates " (y) for alternative approaches to
missing data and values of y and to assess the performance
of the estimators F(y) empirically. In order to employ
realistic values, the samples s of size n were drawn with
replacement (i.e., using the bootstrap) from an actual sample
of about 16,000 employees for the March-May 2000
quarter of the LFS (only main jobs of employees aged 18+
were considered and the very small number of cases with
missing values on y; or x, were omitted). The values of x,
for each sample s were taken directly from the values in
the LFS sample. Variables were chosen for inclusion in x,
if they were either related to hourly pay, measurement error
in y; or response 7, (see Skinner et al. 2002) and included
for example age, gender, household position, qualifications,
occupation, duration of employment, full-time/part-time,
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industry and region (several of these variables were
represented by dummy variables). We set n =15,000, such
that each s was of a similar size as the original LFS
sample, and H =1,000. The values of y, y, and r, for
each sample s'") were generated from models, rather than
directly from the LFS data, for the following reasons.

v, these values were generated from a model because
they were frequently missing in the LFS. A linear
regression model was used, relating In(y,) to
In( y: ) and x;, with a normal error and with 20
covariates including squared terms in In( y: ) and
age and interactions between In ( y,.* ) and 5 compo-
nents of x,. The model was fitted to the roughly
7,000 cases where y, was observed.

v, . these values were generated from a model to avoid
duplicate values of (y;,x,) within each s,
which it was considered might lead to an un-
realistic distribution of distances between units for
the nearest neighbour method. The model was a
linear regression model relating In(y;) to x, with
a normal error and with 12 covariates, including a
squared term in age and one interaction, fitted to
the LFS data.

r,:  these values were generated from a model to en-
sure that the missing data mechanism was known.
Several models were fitted. The only one reported
here is a logistic regression relating 7 to In(y,)
and x, with 17 covariates including squared
In( y: ) and interactions between In( y,.* ) and two
covariates. The model was fitted to the LFS data.
The missing data mechanism is MAR given the y;
and x; for all the results presented except those in
Table 5.

Estimates éy’) of two parameters (¢=1,2) were

obtained for each sample s,

0,= proportion with pay below the national minimum
wage (=£3.00 per hour aged 18—21, £3.60 per
hour aged 22+)

0,= proportion with pay between minimum wage and
£5/hour.

The true values are 6, =0.056 and 0, =0.185. The
bias and standard error were estimated as bias (ét) =6, -0,
and  $.e.(0,)=[H'Z/L,(0" -0,)°1"%, where 6,=
H'y,0".

For the fractional imputation methods several different
values for M were explored and M =10 or 20 were
chosen to achieve an increase in the efficiency whilst still
being able to define a nearest neighbour imputation
sensibly.
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We first compare results for the alternative imputation
approaches. Table 1 presents estimates of the biases of esti-
mators of 8, and 6, for different imputation methods, for a
MAR missing data mechanism. There is no evidence of
significant biases for any of the nearest neighbour (NN)
methods. The bias/standard error ratios are small and may
be expected to be even smaller for estimates within domains
e.g., regions or age groups. We conclude that there is no
evidence of important bias for these methods, provided the
MAR mechanism holds and the model is correctly
specified.

There is some evidence of statistically significant biases
for each of the three methods based on imputation classes
(HDIWR10, HDIWOR10, ABB10) perhaps because of the
width of the classes, although the bias appears to be small
relative to the standard error. Given the additional
disadvantage of these methods, that the specification of the
boundaries of the classes is arbitrary, these methods appear
to be less attractive than the nearest neighbour methods.
This finding contrasts with the preference sometimes
expressed (e.g., Brick and Kalton 1996, page 227) for
stochastic methods of imputation, such as the HDI methods,
compared to deterministic methods, such as nearest
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neighbour imputation, when estimating distributional
parameters.

Corresponding estimates of standard errors are given in
Table 2. We find as expected that the greatest standard error
occurs for the single NN1 imputation method. The variance
is reduced by around 10% using the penalty function
method (NN1P). About 10-20% reduction arises from
using two imputations (NN2 or NN2 (4)) and around 20%
reduction from using ten imputations (NN10, NN10 (20)),
HDIWR10, HDIWOR10, ABB10). For a given number of
imputations (2 or 10) there seem to be no obvious
systematic effects of using a stochastic method (NN2 (4) or
NN10 (20)) versus a deterministic method (NN2 or NN10).
We would expect the standard errors for HDIWR10 to be no
less than HDIWOR10, which is the case for 6, in table 2.
The slight reduction for the standard error of estimator éz is
likely to be caused by a comparatively small number of
simulation iterations (H =1,000), which may not be fully
sufficient for standard error estimation. We conclude that
NNI10 is the most promising approach, avoiding the bias of
the imputation class methods and having appreciable
efficiency gains over the methods generating one or two
imputations.

Table 1
Simulation Estimates of Biases of Estimators of 8, and 0, for Different Imputation Methods,
Assuming MAR and Correct Covariates (H =1,000)

Imputation Method Bias of él Rel. Bias of él Bias of éz Rel. Bias of éz

NNI 1.2%10* 0.2% 0.9%10™ 0.0%
(0.9%10™ (175107

NN1P! 4.4%10™ 0.8% 0.3*10™ 0.0%
(2.6%10™ (5.1%10™

NN2 0.6%10™ 0.1% 1.6%¥10* 0.0%
(0.8%10™ (1.5%10™

NN2(4) 1.4%10* 0.2% -2.5%10" -0.1%
(0.9%10™) (1.5%107)

NN10 0.2%10™ 0.0% -1.2*10" -0.1%
(0.8%10™ (1.5%10™

NN10(20) 0.2%10™ 0.0% 0.7*10™ 0.0%
(0.8%10™ (1.5%10™

HDIWR10 2.8%10™ 0.5% 26.2%10" 1.4%
(0.8%10™ (1.5%10™

HDIWOR10 2.5%10™ 0.4% 28.0%10" 1.5%
(0.8%10™ (1.5%10™

ABBI10 4.6%10™ 0.8% 29.8*%10" 1.6%
(0.8%10™ (1.5%10™

Standard errors of bias estimates are below the estimates in parentheses.
' Note: H =100 iterations were used due to computing time.
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Table 2
Simulation Estimates of Standard Errors of Estimators of 6, and 0, for Different Imputation Methods,
Assuming MAR and Correct Covariates (H =1,000)

R R V(éQ V(ézA)
Imputation Method s.e(6) s.e(0,) Vw1 (6p) Vaw1(6)
NN1 2.79*%1073 5.43%107 1 1
NN1P? 2.60%10 5.15%107 0.87 0.91
NN2 2.68*%107 5.05%107 0.91 0.86
NN2(4) 2.73*107 4.88*107 0.94 0.80
NN10 2.56*%1073 4.88*107 0.83 0.81
NN10(20) 2.57*107 4.79%107 0.84 0.77
HDIWRI10 2.52%1073 4.66%107 0.82 0.74
HDIWOR10 2.48*%1073 4.72%103 0.78 0.76
ABB10 2.63*%107 4.87*%107 0.88 0.80

2 Note: H =100 iterations were used due to computing time.

We next compare the NN10 imputation approach with
propensity score weighting (PSW). We consider not only
the case when the specification of the model used for
imputation or weighting corresponds to the model used in
the simulation, as in Table 1, but also some cases of
misspecification. To ensure a fair comparison of weighting
and imputation we use the same covariates when fitting both
the models generating y;, and 7. We first consider the
estimated biases in Table 3. When the model for imputation
(NN10) or the propensity scores is correctly specified
neither method demonstrates any significant bias in the
estimation of 6, or 6,. Significant bias does arise,
however, in both cases if the model is misspecified by
failing to include covariates used in the simulation. The
amount of bias is, however, noticeably greater for the
weighting approach. For example, for the estimator é1 the
bias is 3—7 times higher under PSW than under NN10
depending on the misspecification. The impact of the
misspecification seems higher for estimator 6,, in
particular for the PSW method. For this estimator, we found
a 6—15 times higher bias for PSW than for NN10.

Corresponding estimated standard errors of 6, and 0,
are given in Table 4. These also tend to be greater for the
weighting approach, showing an increase between 5 —15%
in comparison to the imputation method. The increase in the
standard error is higher for the second estimator 0.,
ranging from 12-15%, whereas for estimator é1 the
increase is between 5 —12%, depending on the misspecifi-
cation. Consequently, the mean squared error is also higher
for the weighting approach, with the increase ranging from
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20% to 28% for the six values in Table 4. At least under the
MAR assumption, the NN10 imputation approach appears
to be preferable to propensity score weighting in terms of
bias and variance.

Finally, we compare the properties of imputation (NN10)
and propensity score weighting when the MAR assumption
fails. We now simulate missingness according to the
Common Measurement Error model assumption of section
3. The same logistic model with the same coefficients as in
the previous simulation is used except that y: is replaced as
a covariate by y,. Simulation estimates of biases and
standard errors are presented in Table 5. We observe a non-
negligible significant relative bias of around 5% for the
imputation approach and a little higher for the propensity
score weighting approach. The positive direction of the bias
of 0, is as expected from arguments in Dickens and
Manning (2004) and Skinner efal (2002). MAR-based
methods will tend to overestimate numbers of the low paid,
if the CME assumption holds. This is because employees
with observed y, values tend to be lower paid than
employees with missing y, values and a MAR-based
imputation method, even conditional on other variables,
would tend to impute lower hourly pay values than would
be the case under CME which allows for the dependency on
true hourly pay. While the direction of the effect may be
anticipated, the magnitude of the effect is of some
importance for the robustness of MAR-based methods. The
relative bias of 5% of the NN10 approach does not,
however, appear to make the resulting estimates unusable.
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Table 3
Simulation Estimates of Biases of Estimators of 6, and 6, for Nearest Neighbour Imputation (NN10) and Propensity
Score Weighting, Assuming MAR and Correct and Misspecified Covariates (H =1,000)

Method Assumed Covariates Bias of él Rel. Bias of él Bias of éz Rel. Bias of éz
NN10 M1 (correct) —0.18*10* —0.03 % -5.8%10" —-0.31%
(0.64%10™ (1.20%10™
M2 ~1.31*10* —024%  —4.74%10%  —0.25%
(0.65%10™ (1.23%10™
M3 ~1.66%¥10* -030%  —10.6*10"  —0.57%
(0.63%10™ (1.23%10™%
Propensity Score Weighting M1 (correct) 0.15*%10" 0.03 % —2.62%10* -0.14 %
(0.72*%10™% (1.35%10™%
M2 ~-8.96%*10* —1.64% 70.2%10* 3.80 %
(0.68%10™ (1.40%10™
M3 ~5.02%10* —-0.92% 67.8%10 3.66 %
(0.68%10™ (1.41%10™

Note: M1 is the correct model
M2 excludes the interactions and the square terms from the correct model
M3 drops further covariates from model M2.

Table 4
Simulation Estimates of Standard Errors of Estimators of 6, and 6, for Nearest Neighbour Imputation (NN10)
and Propensity Score Weighting, Assuming MAR and Correct and Misspecified Covariates (H =1,000)

Method Assumed Covariates s.e.(él) s.e.(éz) MSE( él ) MSE( éz )
NN10 MI (correct) 2.02%10°  3.80%10°  4.10%10°  1.49*10°
M2 2.06%10°  3.88*10°  4.29%10°  1.54*107
M3 2.01%10°  3.89*10°  4.10%*10°  1.63*107
Propensity Score Weighting MI (correct) 2.27%10°  4.27%10°  5.16%10°  1.83*107
M2 2.17%10°  4.42%10°  5.51*10°  6.90*107
M3 2.16¥10°  4.46%10°  4.94*10°  6.59*107
Table 5

Simulation Estimates of Biases and Standard Errors of Estimators of 0, and 6, for Nearest Neighbour Imputation (NN10)
and Propensity Score Weighting. Under the (non-MAR) Common Measurement Error Model (H =1,000)

Method Bias of 6, Rel. Bias of ,  Biasof 6,  Rel. Bias of 6, s.e.(6)) s.e.(6,)
NN10 29.0%10" 5.1% 92.0%10™ 5.0 % 2.53*107 4.70%107
(0.8%10™ (1.48%10™
Propensity Score Weighting ~ 32.3*10™* 5.7% 100*10™* 5.7% 2.31¥107 4.42%107
(0.73%10™ (1.40%10™
8. Application to the Labour Force Survey hourly pay in the UK (Stuttard and Jenkins 2001). It is a

quarterly survey of households selected from a national file

In this section we consider the application of the methods ~ of postal addresses with equal probabilities by stratified
developed in sections 2 —4 to LFS data. The LFS provides  systematic sampling. All adults in selected households are
an important source of estimates of the distribution of  included in the sample. The resulting sample is clustered by
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household membership but not by geography. Each selected
household is retained in the sample for interview on five
successive quarters and then rotated out and replaced.
Questions relating to hourly pay are asked in just the first
and fifth interviews, generating data on this topic for about
16,000 employees per quarter.

Two measures of hourly pay are constructed, as outlined
in Section 1. The derived hourly pay variable in the LFS is
defined as follows: (a) employees are asked questions about
their main job to determine earnings over a reference period,
(b) questions are asked to determine hours worked over the
reference period and (c) the result of (a) is divided by the
result of (b). The direct variable is obtained by first asking
whether the respondent is paid a fixed hourly rate and then,
if the answer is positive, by asking respondents what this
(basic) rate is. Skinner ef al. (2002) discuss how the derived
variable suffers from many sources of measurement error,
as in similar surveys in other countries (Rodgers, Brown and
Duncan 1993; Moore, Stinson and Welniak 2000). They
conclude that the direct variable measures hourly pay much
more accurately. A working assumption in this application
is that the direct variable measures hourly pay without error.
The problem with the direct variable, however, is that it is
missing for respondents who state that they are not paid at a
fixed hourly rate (and for item nonrespondents) and this
missingness is positively associated with hourly pay. The
proportion of LFS respondents with a (main) job who
provide a response to the direct question is about 43%. This
proportion tends to be higher for lower paid employees, for
example the rate is 72% among those in the bottom decile of
the derived variable. The direct variable is not collected for
second (and further) jobs and we therefore restrict attention
only to main jobs. The aim is to use the missing data
methods developed in this paper to correct for the
measurement error in hourly pay. Skinner efal (2002)
discuss the plausibility of the two missing data assumptions
in section 3 for this application.

The methods in sections 2 — 4 were developed under the
assumption of an IID model and ignorable sampling.
Employees are selected with equal probabilities in the LFS
so the sampling may be viewed as ignorable with respect to
the bias of point estimation but unit non-response is likely to
be differential and survey weights are constructed to com-
pensate for this non-response (ONS 1999). We propose to
incorporate these survey weights into the estimator in (3) or
equivalently to multiply the weights w, in (9) by the survey
weights. This is analogous to the way the pseudo-likelihood
approach (Skinner 1989) weights estimators based upon an
IID assumption. The aim is to use the methods of sections
2 — 4 to compensate for bias due to measurement error and
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item non-response and the survey weights to compensate for
bias due to sampling and unit nonresponse. We have not
attempted to take account of the weights in the imputation
methods and this could be explored in future research.

We now apply nearest neighbour imputation, hot deck
imputation within classes and propensity score weighting to
LFS data. All methods are weighted by the survey weights.
Figure 1 compares an estimated distribution, which ignores
measurement error (the bold line) with estimates based on
three missing data methods (the three dotted lines). We
suggest the latter estimates are more approximately unbi-
ased than the former estimate. All three missing data adjust-
ments show, as expected, a strong ‘kink’ in the distribution
at the level of the national minimum wage unlike for the
derived variable. Corresponding estimates of two low pay
proportions of interest are presented in Table 6. The
‘missing data adjustments’ have a substantial impact in
comparison to estimates based on the derived variable. The
results suggest that the proportion of jobs paid at or below
the national minimum wage rate may be overestimated by
four or five times if measurement error is ignored. The
differences between the missing data methods are much
smaller. We can see that the estimates under propensity
score weighting differ from estimates derived using imputa-
tion methods, at least for the June-August 1999 quarter.
Note that this quarter of the LFS was subject to a lower
response rate than subsequent quarters resulting from
changes in the LFS questionnaire. It was found that for
consecutive quarters, which are subject to about 43%
response rate, weighting and imputation led to very similar
estimates of low pay proportions, as illustrated in table 7 for
the March-May 2000 quarter. The decrease in the propor-
tion of low paid employees over time is a result of the
impact of the National Minimum Wage legislation. In
addition, different imputation and propensity score models
are used to analyse the effects of various model speci-
fications on estimates of low pay. From Table 6 we can see
that there is an indication that different models can have an
effect on the estimates. With increasing complexity of the
model a reduction in the estimates for both point estimators
is observed. This might reflect a departure from the MAR
assumption for the simpler imputation models. At least for
the 1999 quarter, the differences in the estimates between
weighting and imputation methods seem to be greater than
between models. Note that the estimates presented here
might differ slightly from official UK estimates since, for
example, the official estimates are based on different
imputation models, treating outliers differently or imputing
differently for certain professions.
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Figure 1. Alternative Estimates of the Distribution of Hourly Earnings
From £2 to £4 for Age Group 22+, June-August 1999.

Table 6
Estimates of 0, and 6, (Weighted) for 18+ Using Different Propensity Score Models and Imputation
Models Applied to LFS, June—August 1999

(Weighted) (Weighted)
Method Propensity Score Model or Imputation Model él (%) éz (%)
Derived Variable - 7.13 20.5
Propensity Score Weighting M1 0.96 34.5
M2 1.08 38.4
M3 1.08 38.4
HDIWOR10 M1 1.44 32.1
M2 1.41 32.9
M3 1.50 33.2
NN10 M1 1.32 32.6
M2 1.44 32.8
M3 1.50 33.0
Note: M1 is the most complex model including square terms and interactions
M2 excludes the interactions and the square terms from model M1
M3 drops further covariates from model M2.
Table 7
Estimates of 0, and 6, (Weighted) for 18+ Using Propensity Score Weighting and Imputation
Applied to LFS, March—May 2000
Propensity Score Model or (Weighted) (Weighted)
Method Imputation Model 0, (%) 0, (%)
Propensity Score Weighting M1 0.54 27.10
HDIWOR10 M1 0.57 26.01
NN10 M1 0.55 26.61
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9. Conclusions

In this paper we have considered the application of
alternative missing data methods to correct for bias in the
estimation of a distribution function arising from measure-
ment error. Among imputation methods, nearest neighbour
methods have performed most promisingly in terms of bias.
These deterministic methods display no evidence of greater
bias than stochastic imputation methods. Fractional impu-
tation has shown appreciable efficiency gains compared to
single imputation and appears more effective than penal-
izing the distance function or sampling without replacement
with single imputation. In comparison to a propensity score
weighting approach, the fractional nearest neighbour
imputation has performed similarly, but has demonstrated
slight advantages of robustness and efficiency. The simu-
lation study suggested that the impact on the bias under a
wrong model is greater for propensity score weighting and
that the standard errors for the weighting approach were
approximately 5—15% times higher than for the imputa-
tion method.

Further research is being undertaken to develop and
evaluate associated variance estimation methods, as well as
alternative point estimation methods based upon the
Common Measurement Error Model in section 2.
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On Calibration Estimation for Quantiles

Torsten Harms and Pierre Duchesne '

Abstract

In this paper, we consider the estimation of quantiles using the calibration paradigm. The proposed methodology relies on an
approach similar to the one leading to the original calibration estimators of Deville and Sarndal (1992). An appealing
property of the new methodology is that it is not necessary to know the values of the auxiliary variables for all units in the
population. It suffices instead to know the corresponding quantiles for the auxiliary variables. When the quadratic metric is
adopted, an analytic representation of the calibration weights is obtained. In this situation, the weights are similar to those
leading to the generalized regression (GREG) estimator. Variance estimation and construction of confidence intervals are
discussed. In a small simulation study, a calibration estimator is compared to other popular estimators for quantiles that also

make use of auxiliary information.

Key Words: Calibration estimators; Quantiles; Ratio estimators; Difference estimators.

1. Introduction

In recent years, considerable attention has been given to
the estimation of population distribution functions in the
context of survey sampling. A particular target of this
attention has been the median, which is often regarded as a
more satisfactory location measure than the mean, espe-
cially when the variable of interest follows a skewed distri-
bution. Traditional estimators of population means or totals
can be usually substantially improved if relevant auxiliary
information is made available. Consequently, the use of
such auxiliary Information seems highly desirable in sample
quantile estimators.

Using a model-based approach, Chambers and Dunstan
(1986) considered quantile estimators based on an estimator
of the distribution function which do incorporate auxiliary
information. Rao, Kovar and Mantel (1990) have proposed
design-based alternatives to the model-based approach.
They used simulation experiments to compare two quantile
estimators, based on ratio and difference estimators, to the
simple design-based estimator which makes no use of the
auxiliary information. It should be noted that neither of the
two design-based proposals requires knowledge of the
auxiliary information for each unit in the population; it
rather suffices to know only the corresponding quantiles.
While the model-based estimator proposed by Chambers
and Dunstan (1986) can be more efficient than its design-
based alternative if the model is correctly specified, Rao
et al. (1990) have pointed out the advantage of the design-
based estimators under model misspecification. Chambers,
Dorfman and Hall (1992) have compared these two
estimators theoretically with respect to their consistency,
asymptotic bias and variance under a population model.
Their main conclusion is that neither of the two methods is a

sharp winner. Dorfman (1993) has reevaluated the simu-
lation results obtained by Rao et al. (1990) and proposed a
modified version of their methodology, using model-based
arguments. Variance estimators in the model-based ap-
proach of Chambers and Dunstan (1986) and the design-
based estimators of Rao et al. (1990) are discussed in Wu
and Sitter (2001).

Other related works on quantile and median estimators
include that of Kuk (1988) who proposes quantile estimators
under pps ( proportional to size) sampling and that of Kuk
and Mak (1989) who use a method that is based on cross-
classifying the individuals in the sample, according to the
variable of interest and a single auxiliary variable. Meeden
(1995) takes a different approach to construct a median
estimator based on univariate auxiliary information, using
the Bayesian concept of Polya sampling to impute all the
target variable’s unknown population values via a ratio-
based approach. Rueda, Arcos and Martinez (2003) have
recently built quantile estimators that extend ratio, differ-
ence and regression estimators in ways similar to those
developed for the population mean.

In this paper, we follow the concept of calibration which
was first introduced by Deville (1988) in order to derive a
quantile estimator. The calibration approach has gained pop-
ularity in real applications, because the resulting estimators
are easy to interpret and to motivate, relying, as they do, on
sampling weights and natural calibration constraints. This
approach was developed in the seminal work of Deville and
Sarndal (1992) as an alternative means of incorporating
auxiliary information in the estimation of population totals.
The so-called calibrated weights are found by minimizing a
distance measure between the sampling weights and the
new weights, which need to satisfy certain calibration con-
straints. For estimating totals the calibrated weights replace
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the original design weights used in Horvitz-Thompson type
estimators. When the new weights are applied to the
auxiliary variables available in the sample, they reproduce
the known population totals of the auxiliary variables
exactly; it is for this reason that the estimators in this class
are called calibration estimators. See also Singh and Mohl
(1996) who provide simple justifications of calibration
estimators. They also present a very general and unifying
treatment of calibration methods whose weights satisfy
certain range restrictions and benchmark constraints.

Our fundamental aim is to propose calibration estimators
for quantiles which are as easy to implement and interpret as
the calibration estimators for totals developed by Deville and
Séarndal (1992). When compared to the quantile estimators
available in the literature, the new calibration estimators
should also be competitive with respect to their bias,
variance, and coverage rates of the confidence intervals.
Early calibration estimators for distribution functions and
quantiles include those proposed by Kovacevi¢ (1997), who
considered estimators of the distribution function calibrated
on moments of the auxiliary variables. Harms (2003) has
investigated a similar approach, with applications to the
Finnish European Household Panel survey. Ren (2002)
appears to have been the first to develop a unifying treatment
of calibration estimators for distribution functions and
quantiles. The calibration estimators for quantiles presented
in this paper continue the work initiated by Ren (2002). We
adhere to the original calibration paradigm for totals as
closely as possible: when the parameter of interest is a total,
it seems natural to calibrate on totals of the auxiliary
variables. In the present context, since the parameter of
interest corresponds to a quantile, the calibration constraints
require that the weights are such that the sample quantile
estimators of the auxiliary variables and their corresponding
population quantiles are equal. In other words, the weighted
quantile estimators for the auxiliary variables should yield
exactly the population quantiles, which are assumed to be
known. We present arguments which justify calibrating on
quantiles, whenever the parameter of interest is itself a
quantile. Interestingly, our methodology does not necessitate
knowledge of the values of the auxiliary variables for all
units in the population. Since the resulting estimators display
a structural form very similar to the original calibration
estimators for totals, it is expected that, under general
conditions, the proposed estimators for quantiles will be
asymptotically design-unbiased. Furthermore, these simi-
larities allow us to derive variance estimators which admit a
familiar form. Contrary to some of the other estimators, the
proposed approach is also applicable to vectorial auxiliary
variables (that is, when several auxiliary variables are
available), while requiring only minimal auxiliary infor-
mation. However, some restricttions may apply when the
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sample is highly unrepresentative of the sampled population
or when the quantiles being estimated are very close to the
population minimum or maximum. Note that highly un-
representative samples can also cause problems for cali-
bration estimators for totals commonly used; in such
situations, the algorithm for computing calibration estimators
may fail to converge for many distance measures of practical
interest.

The organization of the paper is as follows: In section 2,
some preliminaries are given, including a brief review of the
calibration estimators for totals. The new calibration
estimators for quantiles are developed in section 3.1. The
standard distribution function can be interpreted as a
Horvitz-Thompson estimator, providing a possible approach
to the construction of a calibrated distribution function
estimator. Quantile estimators are then naturally derived by
inverting the distribution function estimator (see e.g., Ren
(2002)). As in calibration estimators for totals, design
weights can be replaced by more general sampling weights,
in order to take account the auxiliary information. However,
for many situations of practical interest, it may happen that
no solution exists for the calibration constraints when this
kind of distribution function estimator is adopted, the reason
being that this estimator corresponds to a step function. In
order to avoid existence problems of solutions for the
calibration constraints, a new distribution function estimator
is introduced, based on the natural concept of interpolation.
Under the common quadratic metric, an analytic represent-
tation of the calibration weights is provided in section 3.2;
variance estimators and confidence intervals are discussed
in section 3.3. A practical aspect involves evaluating the
methodology proposed with real populations and several
sampling plans. Consequently, in section 4, we present a
small simulation study where we compare our new ap-
proach, with respect to variance, bias and coverage rates of
the confidence intervals, with that of Chambers and Dunstan
(1986) as well as with some of the estimators proposed by
Rao et al. (1990). Finally, concluding remarks are offered in
section 5.

2. Some Preliminaries on Calibration Estimators

In this section, we present the fundamental concepts and
notations useful for the sequel. We also give a brief review
of calibration estimators for totals.

Let U={l, ..., k, ..., N} be a finite population of size
N. Let T, =%, y, be the population total of the variable of
interest )}, (note that foraset 4, AcU, X, will be used
as shorthand for Y,.,). A sample scU of size n is
drawn according to a sampling plan. Let ©, =Pr(s>k)
and m, =Pr(s>k, [) be the first and second order inclu-
sion probabilities, respectively. We denote the design
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weights d, =n,' and T, ot = 2 d; ¥, Tepresents the
Horvitz-Thompson (HT) estimator of 7, .

Let X, = (x, ..., x,)" bea vector of auxiliary variables
associated with unit &k, k € U. Calibration estimators natu-
rally include auxiliary information in the estimation. Let
s={k, ..., k,}, s c U. Starting with the vector of original
weights d = (a’kl, .., d, ), new weights are found which,
when applied to the auxinliary variables available in s, make
it possible to retrieve the known population totals for the J
auxiliary variables T, =%, x;, =(7,, .., T, ). The cali-
bration estimator for totals are more precisely defined in
Definition 1.

Definition 1 (Calibration estimator for totals). Let d =
(dy» - dy ) be the design weights. The calibration esti-
mator for totals takes the form T el = 25 Wi Vi Where the
weights w,, kes are obtained as the following mini-
mization problem with respect to the variable v = (v, ...,
v )

w =argmin, D(v, d), (1)

subject to the calibration constraints Y.,v, x, =T,, where
D(.,-) denotes the distance measure and W= (w, ...,
w, )’ corresponds to the vector of the calibrated weights.

For notational simplicity, we write w, =w, in Defi-
nition 1 when no confusion is possible. It is common
practice to let x;, =1, Vk €U, and consequently 7, = N.
This means that the calibrated weights satisfy the natural
constraint Y, w, =N. Many distance functions D are
available in the literature (see, e.g., Deville and Sérndal
(1992), Chen and Qin (1993), Thompson (1997)). Consider
the quadratic distance function

(v, —d,)’

D(v, d)= sta 2)
k"k

where ¢, determines the importance of the unit ks in
the calibration problem. Heteroscedasticity problems can be
handled using an appropriate choice of the g, ’s. Solving
the optimization problem (1) using the Lagrange multiplier
technique (see Deville and Sérndal (1992), among others),
the weights w, =d,(1+¢,x,A,) are obtained, where
A, =, d, g x, x;) (T, T, ;) and T, ,;; denotes the
HT-estimator of T,. This choice of distance function leads
to the weights of the well-known generalized regression
estimator (GREG) of Cassel, Sarndal and Wretman (1976),
which is studied in detail in Sérndal, Swensson and
Wretman (1992). Under minimal requirements for the dis-
ance measure D, Deville and Sarndal (1992) have shown
that all calibration estimators in this class are asymptotically
equivalent to the GREG. For ease of interpretation and other
cosmetic reasons, some users may want to have positive
weights or restrict them to a specific interval (see also Singh
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and Mohl (1996)). In practical applications, these numerical
features of the weights seem to be the main motivation for
an alternative choice of D.

3. New Calibration Estimators

In this section we develop calibration estimators for
quantiles, using ideas similar to those leading to the cali-
ration estimators for population totals, as described in
section 2. The new calibration estimators for quantiles are
introduced in the next subsection, using interpolated
distribution function estimators. Then, special attention is
devoted to the quadratic distance function. The last sub-
ection presents variance estimation and the construction of
confidence intervals.

3.1 Definition of the Calibration Estimators for
Quantiles

Let Q, , =(Q, o - O, ,) denote the known vector
of population quantiles for the vector of auxiliary variables
x, =(xy, - X)), k€U. The Heavyside function H(z)
is given by:

1, z>0,

H(Z):{O z<0

The population distribution function of a scalar auxiliary
variable x is defined in the usual way as F,(f)=
N'Y,H(t-x,), and the population quantile O, 18
obtained by letting Q, , =inf {¢| F (7)) > a.

The vector Q, , contains quantiles of the auxiliary
variables, obtained from information in past surveys or from
available administrative sources. For example, for skewed
distributions which are rather common in business and
economic surveys, it seems more natural to keep in the
record files the population medians rather than population
means; in this case it seems natural to assume the
knowledge of Q, ,s. This suggests that, using the same
approach as the one leading to calibration for totals de-
scribed in section 2, the proposed estimator for the popu-
lation quantile Q, , of the variable of interest y, noted
Qv,cal,a, could be obtained by inverting a certain estimator
of the distribution function (that we discuss below), subject
to calibration constraints such as Qx,cal,oc =0, o J=
L, ..., J. Following the usual interpretatidm if the calibrated
weights allow us to retrieve the known population quantiles
of the auxiliary variables then, under certain conditions, they
should produce reasonable estimators for the quantile of the
variable of interest y.

More precisely, the calibrated weights are obtained by
solving the following optimization problem:

w =argmin, D(v, d), 3)
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subject to the calibration constraints
Qx cal, 0~ (Qt cal, o> -+ Qv, cal, a) _Qx a

The estimators Q and QV «alo Tely on the vector
of weights w, stemming from the solution of the calibration
problem (3). To calculate these estimators for quantiles, we
need to construct w-—weighted estimators of the
distribution function for variables x and y. Based on the
sampling weights d, a natural estimator of the sampling
distribution function is given by

E()= d H(t-y)/> d,. )

which provides a consistent estimator of F,(#). Similarly,
F. (t) can be consistently estimated by F. (1)=3.d,
H(t— X 2 des j=1, . J. A w— welghted distribu-
tion function estimator of ij (¢) is given by

Fjvj,cal(t):zswkH(t_xjk)/zswk' (5)

A similar formula holds for F, , (¢). These w— weighted
estimators are considered in Ren (2002). However, if one
estimates O, , by Qx,ot =inf{t|F, (t)>a}, or makes a
similar estimation usiné a w- weighjted version, then it is
generally not possible to reach an exact solution of the
calibration problem (3). Indeed, if the previous definition is
used to estimate the quantiles by inverting the distribution
function using the previous definitions, then the constraints
in the optimization problem (3) will not, in general, be
fulfilled unless the sample s contains precisely a unit %
such that x; =0, ,. When J is large, this problem can be
more pronounced. Furthermore, even if the sample does
contain such a value, it is sometimes not possible to obtain
the weights needed to minimize the distance function, the
reason being that under certain circumstances, the weights
fulfilling the calibration constraints form an open set,
whereas the optimal weights lie precisely on the border of
this set. The following example illustrates this situation.

>v»=N and

X, cal, a

Example 1:

Consider a population U of size N =30, such that the
population median of x is O, 5 =2. A sample s of size
n=3 is drawn, and suppose that x, =k,Vkes=
{1, 2, 3}. For simplicity, the distance measure D(v,d)=
>, (v, —d,)* is adopted, it is supposed that the sampling
weights are (d,,d,,d;)=(15,9,6). Based on (5), the
calibration constraint is Q. . o5 =inf {1| £, ,(t)>0.5} =
2, which implies that Y w,H(2-x,)215 and X w,
H(1-x,)<15. Equivalently, w, +w, 215 and w, <15.
Thus we have to choose w, of the form w, =15—¢, for
€ >0. In this case, since w; +w, +w; =30, we have that
D(v,d)=¢*+ (w, — 9)* + (w, =9 - €)’, leading to the
optimal solution (w;, w,, w;)=(15-€,9+¢€/2,6+¢€/2).
Consequently, for these weights D (v, d)=3e”/2, which is
obviously minimized when € — 0. However, the limit
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reduces to w = (w, w,, w;) = (15,9, 6) with D(w,d)=0,
but based on these weights O, . o5 =1#0, o5 = 2.

However, these difficulties can be naturally avoided by
considering a smooth estimator of the distribution function.
For simplicity, we consider here a distribution function
estimator calculated using a linear interpolation (another
possibility is discussed in section 5), which is precisely
defined in Definition 2.

Definition 2 (Interpolated distribution function estimators).
Define

zswk Hy,s(t’ yk)

E, ()= : (6)
. 2 Wi

~ zqwk Hx,s(t’x'k)

F () =" N @)

PIR ’
where the Heavyside function H in (4) and (5) is replaced
by the slightly modified function

1, V<L, (1),
Hy,S(t’yk): By,s(t) yk:Uy,S(t)’ (8)

0’ yk>Uy,s(t)a
where L, (1) = max{{y,, kes|y, <1} U {-0}},
U, () =min{{y,,kes|y, >t3vio}; and B, ()=

{t—=L, O}, ,@©)—L, ()} The function H_ (t,x;)
is defined szmllarly The estimators (6) and (7), based on the
JSunctions H, (t,y,) and H_ (¢, x,), are called interpo-
lated distribution function estimators of F,(t) and F, (1),
respectively. ' j
The various quantities in (8) have easy interpretations:
L, and U,  represent the lower and upper neighbors of
in the sampled values y,,kes, and B, (r) denotes the
linear interpolation coefficient between these two quantities.
In particular, for all z€{y,,k €s} we have H q(t Vi) =
H(t-y,). Consequently, the relations F, () =F, (D)
are satisfied for all ¢ € {y,, k € s}. For all the other Values
of 7, F, ., (¢) consists of a linear interpolation between these
quantities. In the following example, Example 1 is revisited
using the interpolated distribution function estimator (7).

Example 2:
In Example 1, using the interpolated version (7), the
constraints are now w, +w, +w; =30 and (w, +w,)/
(W, +w, +w;)=0.5. Consequently w;, =15, w,+w, =
15. Simple algebra shows that the optimal solution is
(w, wy, wy) =(10.5,4.5,15), which is now well-defined.
With the interpolated distribution function estimators,
N Cdl(OL) and F' (o) are now well defined o —quantile
estimators for all o e (0, 1), as long as one can assure that
the weights w, are all strictly positive. Letting QA =

,cal, a

Cal(OL) we define the proposed calibration estimator

o cal
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QV «alo for the quantile QV +» using the interpolated distri-
bution function estimator given in Definition 2.

Definition 3 (Calibration estimator for quantiles). Consider
the optimization problem (3), subject to the calibration
constraints Y v, =N and Qx,cal,a = (Qxl,cal,ot’ e
) Q... Solving this optimization problem and

Q,p,,cal,a)':
denoting the resulting weights as Ww, the proposed

calibration estimator for quantiles of Q, , is defined by
Q,V,cal,ot = F’\jv_,lcal((x)’ (9)

where F, cal (1) is given by (6).

One of the appealing properties of the proposed estimator
(9) is that it yields exact population quantiles when the
relationship between y and a scalar auxiliary variable x is
exactly linear. Assume that y, = a + bx, holds perfectly for
all units k£ e U and suppose that the units in the sample s
are such that x, <Q, , <x, for some units x, and
X,, k,l€s. For the calibrated estimator (9), we have that
F. (0, ) =0. We need to distinguish the two cases,
b>0 and b <0 (The case b =0 is trivial since y, is then
identically equal to a constant). Firstly, consider the
situation b >0. Since the linear relation y, =a+bx, is
satisfied for all units £ and since »>0, the following
relations hold: L, (a+bt)=a+bL, (1)U, (a+bt)=
a+bU, (t) and 'BM (a+bt)=B, (). These relations
lead to H, (a +bt,y,) = H,  (t x,). It follows that
Fv,cal(a +bt) :Fjv,cal (t). Furthermore, Fv, al@+b0, ;)=
a' and using the relation a +50Q, , =0, a , we deduce that

F,(Q,,)=0. Consequently, When an exact linear
relationship holds and 5 >0, Qv ala = vcal(a) 0, q
Secondly, consider the case » <0. We deduce in this case
the following relations: L, (a+bt)=a+bU_ (¢);U,  (a+
bt) = a+bL_(1); B, (a+b)=1-B, () and H, (a+
bt, y,) =1- Hx,S(i, x,). Since b<0, the relaﬁonship
between the quantiles of x and y is given by a + bQ
0,... Then, we deduce that Fcy(Qy1.0)=1, @t
b0, )=1-F (0, ,)=1-a. Thus in this situation,
0,1, 1s estimated exactly by Qv, callq- This means that,
when an exact relation holds, if >0 the proposed
calibration estimator QAV, «alo Yi€lds perfect estimators with
zero bias and variance of 0, o On the other hand, if 5 <0
and calibrating on Q, ,, QV1 _, 1s estimated exactly by
QV, Lo (Which makes sense because the perfect linear
relationship between x and y is such that the slope
parameter is negative)

Note that when £, ., and £, _, are invertible at points
0,, and O, o> the calibration constraints in (3) can be
rewritten in terms of the distribution functions, that is the
calibration constraints based on the quantiles are equivalent
to Fx”ml(Qx”a) =a,j=1,..,J. This means that the
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original calibration problem can be alternatively written in
terms of distribution functions with the above constraints.

A natural question arises as to the existence of a solution
to the optimization problem (3). Even when formulated with
the interpolated distribution functions, it is not always
possible to find a solution to (3). For example, if O, , is
smaller or larger than all values x, in the sample s, then
F. (0, ) will equal zero or one regardless of the choice
of the wei,ghts w. Thus in these cases it may happen that the
calibration constraints cannot be fulfilled. However, when
the sample’s behavior differs widely from that of the target
population, one should keep a very critical eye on any
adjustment, and this situation can be considered somewhat
extreme. In practice, this rarely occurs unless o is chosen
very close to zero or one. Note that it may be impossible to
obtain a solution when the sample size n is small. In these
situations, the sample minimum or maximum could serve as
a possible estimator or we could resort to the simple design-
based estimator of the distribution function.

The second potential problem is that some weights w,
might be negative. In this case F Cdl is no longer bijective.
This is not a problem as long as £, FL () is still uniquely
determined. This problem can be avoided by restricting all
the weights to be strictly positive, using an appropriate
metric D(,-). This approach has been adopted by
Kovacevi¢ (1997) (for more details on distance functions
yielding positive weights, see also Deville and Sérndal
(1992) and Singh and Mohl (1996)).

Remark 1:

The proposed distribution functions estimators (6) and (7)
rely on a linear interpolation. In a unified way, the
population distribution function, which is a step function as
well, could also be defined using a linear interpolation. In
practice, the two definitions differ only slightly in behavior,
if the population N is sufficiently large. However, it should
be noted that if the population size N is relatively small, it
might be worth using an interpolation to define distribution
functions.

Remark 2:

In the optimization problem (3), we calibrated on a
particular quantile. This approach could be extended by
allowing to calibrate on a finite set of quantiles, if such
information is available. More precisely, suppose that for an
auxiliary variable x, the a, —quantiles O, ,m=1, ..,
M are known, where M <n—1. In this case, we could
consider the calibration constraints Fv @O o ) =0, m=
1, ..., M and solve the optimization problem (3) with these
additional calibration constraints. Naturally, this information
yields a more complete description of the distribution of the
auxiliary variables; so the efficiency of the calibration
estimators is expected to be higher.
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Remark 3:

The proposed calibration estimator (9) is obtained by
calibrating on population quantiles. Another possibility has
been considered by Ren (2002) who calibrated on
population moments, up to order m, of the same distri-
bution. More precisely, Ren (2002) has proposed calibration
estimators for quantiles satisfying constraints of the form
>owx, =Yy x., m=0,1, .., M. Calibration on different
moments of the same distribution is closely related to
calibrating on different quantiles of the same variable, and
all these constraints provide a more complete description of
the distribution of the auxiliary wvariable. For other
generalizations of the calibration paradigm on moments, see
also Ren and Deville (2000) and Harms (2003).

3.2 Analytical Solution of the Calibrated Weights
when D is the Quadratic Metric

When the quadratic distance function (2) is adopted, an
explicit solution of the optimization problem (3) can be
derived. This situation is similar to the calibration estimators
for totals, where the weights of the GREG estimator are
explicitly obtained under the metric (2). A careful analysis
of the estimation problem for quantiles reveals important
similarities, the reason being that the estimators given by (7)
are weighted sums of the variables {ij,s(t, x;y), kesy,
j=1, ..., J. This is stated in Proposition 1.

Proposition 1 (Calibrated weights for the quadratic metric).
Consider the quadratic distance function (2). The vector of
weights w which solves the optimization problem (3)

satisfies the relation:
we=d (1 + g a A). kes, (10)

where the vector A, = (A, ..., ;) is determined via the

J +1 constraints as:

A, :(zsdk i A a;c)_l(Ta _zsdk ak)a

with T,=(N, a, ..., &) and the

(1)

components  of

a, =(, ay, ..., ay)" are given by
N_la xjk < ij,s(ij,or)’
ajk = N_Iij,S(ij,Dt)’ xjk = ij,S(ij,Dt)’
Oa xjk > ij,S(ij,Ot)’
with j=1, ..., J.

Proof. To prove Proposition 1, first note that, since the first
constraint > wk =N must be satisfied, it follows that

F, ()= N'S wH (&, x;). Proceeding as in Deville
and Séarndal (1992), we can show that the vector a, =
(1, ay, ..., a,) satisfies
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SN B (00 =t =l

that we now evaluate explicitly Evaluating the derivatives,

we have that a, =N~ Hlﬁ(t xy)s j=1..,J, eval-
uatedat ¢ = Q o This leads to
N_la xjk < ij,s(ij,or)’
ajk = N_Iij,S(ij,Dt)’ xjk = ij,S(ij,Dt)’
0’ xjk > ij,S(ij,Dt)’

j=1 .., J, as announced.

In (11), T, can be interpreted as the expected value of
>, d, a,. The derived weights (10) in the distribution
function estimator (6) rely on the variables a,, kes
defined by (12). Note that they correspond to a certain
transformation of the auxiliary variable x,. The difference
between the weights for totals and quantiles relies on this
variable a,; when a, is replaced by x,, we retrieve the
original weights for totals. Consequently, it is useful to
interpret this new variable. When estimating a total, the
impact on the ;™ calibration constraint is measured by x Xjgs
for each unit & € 5. In our framework, the impact of the unit
k is now given by N7 if X <L (O o) it
corresponds to the factor N~ BA Qs 0) ‘when Xy =

U, . (Q, o) and it is null elsewhere. In section 5, we shall
discuss other estimation problems, leading to different
variables a, .

Noting the similarities between the estimation of totals
and quantiles, variance estimation can also be considered.
This issue is addressed in the next subsection.

3.3 Variance Estimation and Confidence Intervals

As described in the previous section, the estimator
Qv,cal,ot displays several similarities to the usual GREG
estimator for population totals. The transformed variables
given by (12) provide the main difference between the
calibration estimators for quantiles and totals. Interestingly,
because of the structural similarity with the original
calibration estimators, it is straightforward to derive a
confidence interval for the proposed estimator O, ., ,. We
consider the construction of confidence intervals following
Woodruff’s (1952) approach. The confidence interval is

given in Result 1.

Result 1 (Woodruff confidence interval for the calibration
estimator for quantiles). The confidence interval based on
Woodruff’s (1952) approach, using the calibration
estimator (9) for the quantile Q, , is given by
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(£ (@) Ey (@)1 (13)

where CAly =a- Zl—y/Z[V{FAjv,cal (Qy,ot)}]l/z and CAZy =o+
Z, LIV F’\jv,cal (Qy,a)}]l/z. The resulting procedure yields
an approximate confidence interval for Q, , at a specified
1—vy confidence level. '

Proof. Assuming that EV,Cal,a(Qy,a) is approximately
normally distributed, it follows that Pr(c, SF?V,CHLQ

(Q,..)<¢c,,) should approximately be equal to 1-v, if
one chooses

o, =a—z_,[V{F, (0, )17 (14)
¢y =a—z_ ,[V{F, (0, )} (15)

where z, denotes the y™ — quantile of the N(0,1) standard
normal distribution. Since Fjv,cal,ot(Qy,ot) represents essen-

tially a sample mean, a possible variance estimator justified
by the classical Taylor linearization is given by

NN _ A
ViE, (@)} =N Zzzsn_k/(wk e) (wre), (16)
i
where A, =m, —m,m,; the weights w,, k € s, correspond
to the calibrated weights (3) which reduce to (10) when D
is the quadratic distance function (2); the residuals are given
by € = Hy,s(QAy,cal,ot’ yk) - a;c ]§S where

. -1
B, = (ZSWk q; A a;{) ZSWk g ay H, (O, i ar Vi)

represents the regression coefficient estimator. Since the
constants ¢, and c,, given by (14) and (15) rely on
V{E . cal (Qv,’a )}, we can estimate these quantities using the
variance estimator (16).

In Result 1, note that Deville and Sérndal (1992)
advocated a w — weighted variance estimator similar to (16)
for estimating the variance of the calibration estimators of
the population totals. The performance of the proposed
calibration estimator (9) and the confidence interval given
by (13) are studied empirically in section 4.

4. Simulation Results

From a practical point of view, it is natural to inquire
about the finite sample properties of the new calibration
estimators and to compare them to popular estimators for
quantiles available in the literature. In this section, simula-
tion experiments are undertaken, to illustrate empirically the
new estimators. In particular, their empirical bias and
variance in real populations are investigated. The coverage
properties of the confidence intervals represent another
question of practical interest, which is also studied.

In partial answer to these questions, we carried out three
small simulation studies. For several sampling plans and for
real populations, the proposed calibration estimator for
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quantiles is compared to its popular competitors. In the next
subsection 4.1, we describe in detail the populations
investigated and we discuss the sampling plans chosen. In
subsection 4.2, the estimators included in the empirical
study are presented and, in subsection 4.3, the frequentist
measures (empirical bias, variance and mean squared error,
coverage rates of the confidence intervals) are described.
Our empirical results are analyzed in subsection 4.4.

4.1 Description of the Real Populations and the
Sampling Plans

The real populations are displayed in Figures 1 to 6. The
first population, noted MU284, is taken from Sérndal et al.
(1992, Appendix B). This population consists of N =284
municipalities in Sweden. We retain as variable of interest
the population in 1985 (variable P85), and we assume that
the auxiliary information available is the population in 1975
(variable P75). Both variables are measured in thousands. In
Figure 1, the variable P85 is expressed as a function of P75;
as expected, the relationship between P85 and P75 is
strongly linear. The variable P85 follows a highly skewed
distribution, as shown in Figure 2. In this population, 500
samples were drawn according to simple random sampling
without replacement (SRS). In addition, the same study was
carried out under a sampling plan with unequal proba-
bilities, the Poisson (PO) sampling scheme. The properties
of the PO sampling plan are described in Sirndal et al.
(1992). Due to the wide range of values for y, it was not
possible to construct sample selection probabilities ©, of
the form m, oc y,, since this would mean that some n, had
to be greater than one. For the purpose of our illustration, we
determined selection probabilities using the relation
n, 0.2y, +0.05 (we recognize that these m,’s are
idealized, since y, is not available in practice). Under the
SRS sampling plan (PO sampling plan), we considered the
sample sizes (expected sample sizes) n =25 and n = 50.

¥
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N

0 200 400 600
X

Figure 1. The Population MU284, where y =P85 and
x =P75.

For the second study, we chose the MU284 population,
but now made the variable of interest y = RMTS8S5, which
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represents the revenues from 1985 municipal taxation (in
millions of kronor). Here the auxiliary variable chosen is
x =REV84, which denotes real estate values according to
1984 assessments for each municipality (in millions of
kronor). As can be seen in Figure 3, the relationship between
x and y is somewhat spread out for larger values of x. The
histogram of the variable RMTS8S5 reveals that it follows a
skewed distribution (Figure 4). For this study, 500 samples
were drawn according to the SRS scheme of size n =25 and
n=>50.

S il
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Figure 2.Histogram of the Variable P85 in the MU284
Population.
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Figure 3.The Population MU284, where y=
RMTSS5 and x = REV84.
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Figure 4. Histogram of the Variable RMT85 in the
MU284 Population.
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The third population is based on a random subsample of
the Survey of Labor and Income Dynamics, noted SLID982.
The survey was conducted at Statistics Canada in 1998. For
simplicity’s sake, only entries with no missing values were
selected. The size of the subsample is N =2,000 and for our
purpose this is assumed to be a population (the original
sample size of this survey is approximately 60,000). Taxable
income (in thousands of dollars) is the target variable and the
auxiliary variable is the duration in months of the current
employment. From Figure 5, the linear relationship between
taxable income and length of employment is less pronounced.
However, the two variables do not appear to be independent.
In Figure 6, the variable of interest exhibits a strong
coefficient of skewness. We have drawn 500 samples from
the SLID982 population, according to SRS and PO sampling
plans. The sample sizes (expected sample size) n =100 and
n =200 were considered. For PO sampling, the first order
probabilities, n,, k€U, were defined according to two
rules. Under the first rule, the =, ’s were created such that m,
is approximately proportional to the variable of interest, that
is taxable income (for the purpose of our study we assume
that it is possible to create such , ’s). Since some y, are
negative in this population, we chose p, =y, —
min{y,, keU}+1 and we defined =n, =E(n)p,/
>u P » Where E(n ) stands for the expected sample size, in
our case E(n,)=100 and 200. Under the second rule, the
m, ’s were proportional to the entries in Table 1. This means
that for each k€U, there exists a factor p,,, which is
determined by the age-sex group of individual k. Then
n, = E(n,)p,, / Xy Pay» Where the factors p,, are given in
Table 1. The factors p,, in Table 1 are based on a
hypothetical sampling plan, in which we assume that these
factors provide suitable size measures for the units in the
various age-sex classes (see e.g., Sérndal et al. (1992, page
87)); for these units, more males than females are likely to be
selected and, for both sexes, adults in the 27 to 37 and 38 to
46 age range are more likely to be included in the sample.

¥
200,000 400,000 600,000 800,000

0

Wby s el

] . ; e
0 100 200 300 400 500 600

X
Figure S. The SLID982 Population, where the Dependent
Variable is the Taxable Income and Independent
Variable is the Duration of Current Employment
(in Months).
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Figure 6. Histogram of the Taxable Income in the
SLID982 Population.

Table 1
Factor p,, by Age and Sex of Individual £,

in the SLID982 Population

Age
16-25 27-37 38-46 47-69
Sex Male 3 6 5 4
Female 1 2 3 2

In these three studies, we estimate the quartiles, that is
the population parameters Q, , with o =0.25, 0.5 and
0.75. Since the variables of interest display highly skewed
distributions, it might be particulary interesting to study the
quantile corresponding to o =0.75, in addition to the
median and the first quartile. The next section describes the
estimators included in the study.

4.2 Estimators Included in the Empirical Study

Since one of our goals is to propose estimators with
reasonable properties with respect to bias, variance and
coverage rates of the confidence intervals, we compare the
new estimator defined by (9) based on the metric (2) to some
of the popular quantile estimators proposed in the literature.

First, we include the simple design-based estimator based
on the inversion of the estimator F} O =%d, H, (t,y,)/
>d,

O, 1m.o =F (). (17)

The estimator (17) does not make use of auxiliary infor-
mation. A possible variance estimator is

ViE,(0, )} =
vy, ]
kil

{Hy,S(QAy,HT,a’ y/)_(l}

Wi

Hy,S(Qy,HT,a’ yk)_(x)}

Ty
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where N =¥.d,, and confidence intervals can be calcu-
lated using

(£, F,' (@)

where
&, =a—z_,[V{F,(0, )" (18)
&, =a+z_,,[V{F,(0,)}1" (19)

For more details, see Sarndal ez al. (1992, page 202).

We also include in our empirical study the model-based
estimator of Chambers and Dunstan (1986), which is
motivated by a linear superpopulation model y, =, +
B'x, +€,, keU, where ¢, forms an identically and inde-
pendently distributed sequence of random variables with
mean zero and finite variance. Their estimator is defined as

A

0, cp.o =inf{t| F, cp (1) 2 atl, (20)

where FAjv,CD ()= N_I{ZSH(t = V) + 2o G(t — M)} rep-
resents a model-based estimator of the distribution function,

Gu)=n"Yy. H@Wu-¢,) 1)

denotes the empirical distribution function of the residuals
¢, =y, kes, and 3, =P, +PB'x,, keU/s corre-
spond to the least-squares predictions. Since the estimator
(20) basically imputes the unknown y, for k€ U/s, note
that it necessitates a complete knowledge of x, for k e U.

The construction of a confidence interval for QAV,CD,Q
relies on estimating the variance VA{F boop (D} However, this
variance estimation problem creates difficulties, since any
analytical variance formula depends on the assumed model.
Furthermore, such analytical expressions involve kernel
density estimators, which are numerically intensive and
depend on a kernel function and a bandwidth. For all these
reasons, we decide to implement the delete-one jackknife
variance estimators studied in Wu and Sitter (2001), who
have shown the consistency of the proposed variance esti-
mators. In the context of survey sampling, various resampling
methods, including the jackknife, are introduced in Kovar,
Rao and Wu (1988). The jackknife technique involves
deleting a unit and re-calculating the estimator. Let s, = s/{i}
be the sample without unit i. Consider f3,, and B,, the
regression estimators of 3, and B calculated on s;. Under a
simple regression model, define

-1
N ZIEU/S
H{Qy,CD,a _Bi(x/ _xk)_yk}

A consistent variance estimator of V{If}, (O, cp.o)} 18
given by

F;* = (n - 1)_1 Zkes,
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» CD{ CD(Qva)} =

GO, oo = P0) 1-G(O, cp.o — P}

where f=n/N is the sampling fraction, F =n'Y.F
and G is given by (21). Based on V{F Lep (@) )} 1t is
now possible to calculate the confidence mtervals for O, ,
using the inversion approach. '
Since our method necessitates only the knowledge of the
vector of quantiles Q, ,, we include in our study the ratio
and difference estimators for the quantiles studied in Rao
et al. (1990):

Qy, ra, o = Qx,ot (Qy, HT, a /Qx, HT,a)’ (22)

Qy,diff,ot = Qy,HT,ot +R(Qx,ot _Qx,HT,a)’ (23)

where QAV,HT,Q is given by (17) and QAx, ur.o 18 calculated
similarly; the ratio estimator given by R=3.d, v,/
>, d, x, provides a consistent estimator of R= Y, v,/
> ;. Note that the estimators (22) and (23) are elaborated
based on a scalar auxiliary variable, that is J=1. Valid
variance estimators of (22) and (23) are given by:

V(Qy, ra, o ) = V(QYs HT, a )

N 2

Q HT 50 A

+ "y - V(Qx, HT,ot)
Qx, HT, a

A

QV o
_2 =t C(Qv HT, o> Qx, HT,OL)’

x, HT, a

V(Qy, dif, o) = V(Qy, HT.0)
+R2 I}(Qy, HT, a )
_2Ré(QV HT, o> Qv HT, Ot)'

These variance estimators rely on the variance of QV HT, >
and the covariance between QV ur. o and Qv ur, Which are
estimated using Woodruff’s (1952) approach:

2

V(QV HT,Q) =

42’

Z1- -y/2

C(Qy, HT, a? Qx, HT,a) =

W W.CHEQ, ), F (0, )}
4z0 L VAE(O, N PIVAE, (0, )31
where w,=E(@,)-F (¢, and W, =F7(,)-

El(e,) denote the Woodruff intervals associated with y
and x, with Clv and ¢,, defined by (18) and (19), ¢, =

a—z_, [ VIE (O, N7, Ey=0tz_ o[ VAE(O, I
and
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CA{FA?\;(QVV,OL)’ FAjv(Qx,ot)} =
" A H (Q HT.a» Vi)~ O
N 222 2 y,s =y HT, o
by

Ty

{Hx,S(Qx,HT,a’ x/)_(l}

LY

Summarizing, we expect QV cp. to perform well when
the linear model describes the population adequately. This
motivates the comparison of the new methodology with a
model-based estimator. Furthermore, it seems of interest to

evaluate QV «alo and the leading design-based proposals,
such as QV diff, @ and Q The estimators O, . o
Qv,dlff,Ot and QV o Use Q.. only to improve the
estimations and they take into account the sampling plan;
these estimators are natural competitors. Note that the
different estimators included in our study are elaborated
under different assumptions on the dimension of the vector
of the auxiliary variable x, and on the availability of x,.
Table 2 provides a comparison of the different estimators
described in this section.

y,ra, o

Table 2
Comparison of the Proposed Calibration Estimators and of Some
Leading Estimators for Quantiles Proposed in the Literature, with
Respect to the Dimension J of x and the information
requirement on X

Estimator ~ Dimension of x  Information requirements on x

QV HT.q n.a. none
0, cp.a J>1 X, keUls
Oy a J=1 O a
0, difr, o J=1 o
0, cala J 21 O

4.3 Frequentist Measures

Our goal it to evaluate the estimators with respect to bias
and variance. Other important considerations are the mean
squared error (MSE) and the coverage rates of the confidence
intervals.

Let Q be an estimator of the population quantile
0, Assume Q(V) is the estimator of the quantile calcu-
lated using the sample v, v=1, ..., K. The Monte Carlo
mean E,;., the Monte Carlo bias B,;-, and the Monte Carlo
variance V. are given by the usual formulas, that is

MC(QV Ot) K_IZQL‘)&’
Bye :EMC(QV ot)_Qy,ot’

Ve (Q,.0) = K'IZ{Q‘” Eyc(0, )}



Survey Methodology, June 2006

Our main criterion for determining efficiency is the Monte
Carlo MSE, defined by MSE,.=K"'3K (O, -
0, OL)2. The confidence intervals are calculated at the 95%
confidence level, according to the procedures described in
the previous sections. For an estimator Q') and its

variance estimator V", v=1, ..., K, the covérage rates at
the 95% confidence level are calculated as

CR(Q,,)=
& 0,

K31 . . . :
o e[Q;f;—l.% PO, O +1.96 VM]

where /(A) is the indicator function of the set A. The
coverage rates are given below the column CR. We recall
that we adopt K =500 for all studies.

4.4 Discussion of the Empirical Results

The results are presented in Tables 3 to 8. We first
discuss the results from Tables 3 to 4, when sampling the
MU284 population with SRS and PO sampling plans. As
can be seen, all the estimators display a similar behavior in
both studies. The model-based estimator O, , , appears to
be the most efficient among those analyzed when examining
o = 0.75 and is in general very efficient. This was expected,
since the relationship between x=P75 and y =P85 is
strongly linear and the model-based estimator assumes a
simple regression model. However, for o =025 the
differences in efficiency are less pronounced with respect to
the other estimators based on auxiliary information. Among
the estimators using only @, , as information on the
auxiliary variable, a rather similar performance is obtained.
When the sample size is small, coverage rates usually
deviate from the 95% nominal level. This is particulary true
for the coverage rates of O, ., ,. which are somewhat
underestimated. However, some improvement is observed at
n=>50, illustrating the consistency of the procedures
studied. On the other hand, those of O, ., and O, yx o
are always one. This suggests that the variances are
overestimated for these estimators. Due to an important
component of bias in the MSE, the coverage rates of the
model-based estimator sometimes deteriorate as the sample
size increases. The best coverage rates are obtained by using
the simple HT estimator, QAV,HT,Q, which is however less
efficient than the other estimators.

Table 5 shows the result for the second population, which
is the MU284 population but with y =RMT85 and x=
REVS84. Figure 3 seems to show a heteroscedasticity
phenomenon in this population. In view of this, since the
ratio estimator is justified when the underlying population
displays such behavior, it is not surprising that the ratio
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estimator QAv,m,OL performs well in this particular situation;
if outperforms O, 4ir.o inseveral cases. For a small sample
size, the ratio estimator generally behaves better than
Qv,cal,a' However, for n=50, the calibration estimator
appears to perform as well or slightly better than the ratio
estimator. In this experiment, the bias and variance of the
model-based estimator QAV,CD,Q increase the MSE substan-
tially. Furthermore, in some cases, confidence intervals for
this estimator could not be obtained, since the Woodruff
method is not appropriate in cases with extremely large
variance (the Woodruff interval becomes too large and the
linearity of the distribution function within this interval can
thus no longer be assumed). We suspect that a model taking
into account heteroscedasticity might improve the perfor-
mance of the model-based estimator. This highlights the fact
that to obtain high efficiency with model-based estimators,
the model must be correctly specified.

The results in Table 6 to 8 concern the SLID982 pop-
ulation, under SRS and PO sampling plans with two rules
for the m,’s. All the estimators in Table 6 perform
reasonably well in estimating the first quartile and the
median, except for the ratio estimator QAv,m,OL which is the
least efficient. Since the relationship between the dependent
and independent variables is not precisely a linear model,
this may partially explain the poor performance of the ratio
estimator in this case. The relationship between x and y is
not proportional and so the difference estimator QAv,diff,OL
appears preferable to QAV, o~ However, for o = 0.75, these
estimators show the highest MSE, being both the least
efficient. Interestingly, in this part of the experiment
O, .o dominates the design-based estimators in terms of
MSE. However, for small o, QAv,diff,OL and Qv,cal,ot
perform similarly. It should be noted that for a larger sample
size, 0, o and O, ¢p , give the best efficiencies for the
median and the third quartile. In fact, the model-based
estimator QAy,CD,on slightly outperforms Q'V,Cal,a, but it

should be noted that it uses more auxiliary information than
0, et

Tables 7 and 8 present results under PO sampling plans.
In general, design-based estimators perform much like those
under SRS sampling plan. This is not the case for the
model-based estimator; it is less efficient, likely because it
does not incorporate the information about the sampling
plan. More precisely, Table 7 presents simulation results
under PO sampling, using the first rule for the =, ’s, k e U.
Coverage rates of the model-based estimator are particularly
disappointing in this experiment; the components of bias
were too important in the MSE. The design-based
estimators provide much closer empirical coverage rates, to
the nominal 95% confidence level. For moderate and large
a, Qv,cal,a is the most efficient estimator. In fact, the
calibration  estimator Qv,cal,ot performs well in this
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experiment. Finally, Table 8 presents results obtained under ~ and the median, and QA'V, aitr.o 18 the least efficient for
PO sampling with the second rule for the =, ’s. In this case, a=0.75. In general, O dominates the other esti-

v, cal, o

QAV, .« 15 the least efficient estimator for the first quartile ~ mators in this situation, offering the highest efficiency.

Table 3
Monte Carlo Simulation Results for Sampling from the MU284 Population, y = P85, x =P75, Under SRS Sampling Plan.
The Number of Replications is Set at K =500

n=25 n=>50
o Estimator Byc Ve MSE ¢ CR By Vre MSE ¢ CR
0.25 Qv, cala —0.0343 0.5075 0.5077 0.886 —-0.0499 0.2437 0.2457 0.828
Q'v, HT. o —0.0266 2.3196 23157 0.952 0.0035 1.1087 1.1065 0.936
Q'v, ra,q —0.1444 0.3869 0.4070 1.000 -0.0774 0.1684 0.1741 1.000
Qv diff, o —0.1486 0.3901 04114 1.000 —-0.0734 0.1723 0.1774 1.000
Qy, CD.a 0.4855 0.2791 0.5143 0.906 0.5485 0.1981 0.4985 0.824
0.5 Qv, cala -0.2762 1.6499 1.7229 0.918 —0.2835 0.9585 1.0370 0.944
Q'v, HT. o 0.2605 12.5161 12.5589 0.922 —0.0064 5.8466 5.8349 0.916
Q'v, ra,q —0.2586 0.8828 0.9479 1.000 —-0.4296 0.6701 0.8533 1.000
Qv diff, o -0.2775 0.9898 1.0648 1.000 —-0.4331 0.7492 0.9352 1.000
Qy,CD,a 0.9431 0.4054 1.2940 0.866 0.9884 0.2410 1.2175 0.714
0.75 Qy, cala —-0.6229 3.3241 3.7055 0.614 —-0.3661 1.8107 1.9411 0.710
Qy,HT,a —-0.1414 53.1951 53.1088 0.948 -0.3692 18.8586 18.9572 0.964
Qy, ra,q —-0.7925 3.0021 3.6242 1.000 —1.0004 1.4594 24573 1.000
Qy, diff, o —-0.8230 3.4379 4.1083 1.000 —1.0396 1.5267 2.6044 1.000
Qy, CD.a 0.4343 0.5108 0.6984 0.954 0.4485 0.2618 0.4624 0.974
Table 4

Monte Carlo Simulation Results for Sampling from the MU284 Population, y = P85, x =P75, Under PO Sampling Plan.
The Number of Replications is Set at K =500

n=25 n=>50
o Estimator By Vre MSE ¢ CR By 9% MSE ¢ CR
0.25 Qv, cal, o —0.0441 0.4886 0.4896 0.888 -0.0169 0.2601 0.2599 0.828
Q’v, HT. « —0.1698 2.2825 2.3068 0.936 —-0.0384 1.1828 1.1819 0.928
Q’v, ra, o —-0.1509 0.3857 0.4076 1.000 —-0.0913 0.2100 0.2179 1.000
Qv diff, o —-0.1634 0.3821 0.4080 1.000 —-0.0877 0.2149 0.2221 1.000
Qy, CD. o 0.6709 0.3310 0.7805 0.896 0.8792 0.1339 0.9066 0.554
0.5 Qv, cal, o -0.3610 1.4881 1.6155 0.920 —-0.3236 0.8833 0.9863 0.936
Q’v, HT. « —-0.0612 11.3969 11.3778 0.926 -0.2712 5.2672 5.3302 0.906
Q’v, ra, o —-0.3735 1.0009 1.1385 1.000 —-0.4130 0.5486 0.7181 1.000
Q:v,diff,ot —-0.3962 1.1271 1.2818 1.000 -0.4217 0.5962 0.7729 1.000
Qy, CD. o 1.1740 0.4947 1.8719 0.820 1.3297 0.2146 1.9822 0.474
0.75 Qy, cal, o —0.6420 2.6605 3.0674 0.608 —-0.4476 1.6212 1.8183 0.708
Qy, HT. « —-0.6200 51.2934 51.5752 0.956 —-0.6632 17.3625 17.7677 0.966
Qy, ra, o —0.8686 2.8841 3.6329 1.000 —0.9683 1.6494 2.5837 1.000
Qy, diff, o —-0.9025 2.9826 3.7911 1.000 -1.0177 1.6340 2.6665 1.000
Qy, CD. o 0.4620 0.4501 0.6627 0.982 0.5388 0.2329 0.5228 0.980
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Table 5
Monte Carlo Simulation Results for Sampling from the MU284 Population, y = RMTS85, x = REV84, Under SRS Sampling Plan.
The Number of Replications is Set at K =500

n=25 n=>50
o Estimator By Vre MSE ¢ CR By 9% MSE ¢ CR
0.25 Qv, cal, o 1.0161 51.5421 52.4714 0.892 0.6499 24.0662 24.4404 0.954
Q'V, HT. « 0.3733 110.2572 110.1760 0.960 0.3383 47.2921 47.3120 0.962
Q'V, ra, o 3.0025 65.4135 74.2979 0.998 2.3856 30.7284 36.3580 0.992
QV diff, o 2.5952 107.7891 114.3084 0.994 2.4083 55.6977 61.3862 0.986
Qy, CD. o —-16.5165 1661.0257  1930.4983 0.990 -17.3217 820.7447 1119.1443 0.960
0.5 Qv, cal, o -1.6219 215.0326 217.2330 0.870 -0.3419 118.2125 118.0930 0.922
Q'V, HT. « 0.0075 763.6236 762.0964 0.910 -0.3977 331.2357 330.7314 0914
Q'V, ra, 0 0.7712 212.8298 212.9988 0.996 —-0.2810 136.4382 136.2443 0.996
QV diff, o 0.3415 283.6718 283.2210 0.998 —-1.0104 201.3707 201.9889 0.998
Q},,CD,OL 17.6124 190.0045 499.8199 n.a. 13.5037 100.2106 282.3611 0.566
0.75 Qy, cal, o —5.3477 1023.6924  1050.2431 0.826 —4.7339 443.0660 464.5896 0.926
Qy, HT. « —4.6352 3526.8202  3541.2514 0.938 —5.8890 1242.4858  1274.6812 0.940
Qy, ra, o —1.4390 980.5573 980.6669 0.994 —2.0070 555.5135 558.4305 1.000
Qy, diff, o —5.3988 1464.7867  1491.0041 0.996 —3.9008 744.1604 757.8881 1.000
Q},,CD,OL 49.3038 2753.8212  5179.1826 n.a. 49.4089 1488.9734  3927.2324 0.596
Table 6

Monte Carlo Simulation Results for Sampling from the SLID982 Population, Under SRS Sampling Plan.
The Number of Replications is Set at K =500

n=100 n =200

o Estimator BR Ve MSE ¢ CR BR ¢ Ve MSE ¢ CR
025 0, e 0.1360 3.0390 3.0514 0.956 0.2331 1.6787 1.7297 0.934
Q'v, HT. o ~0.0596 3.6099 3.6062 0.946 0.0499 1.9277 1.9263 0918

Q'v, - 03067 6.8815 6.9618 0.970 0.0910 3.0743 3.0764 0.958

Q:v, it a ~0.0504 2.9691 2.9657 0.980 0.0198 1.6139 16111 0.952

0, cp.u 1.1042 2.1180 33329 0.922 1.1392 1.2937 2.5888 0.826

05 0 e ~0.4034 6.3364 6.4865 0.966 ~0.1402 2.9940 3.0076 0.940
Q'V,HM ~0.4157 7.4589 7.6168 0918 ~0.189%4 3.5865 3.6151 0.928
Q'v,m,a 0.7015 418314 422399 0.958 0.2238 18.7005 18.7131 0.952

Q:v, it a ~0.4859 14.2083 14.4160 0.970 ~0.2740 6.6184 6.6803 0.974

0, .« 0.5702 3.5420 3.8601 0.952 0.6697 1.7559 2.2009 0.932
075 0y cata —0.4164 12.4657 12.6142 0.952 ~0.2384 59118 5.9568 0.950
0, wir.a ~0.5913 12.5456 12.8701 0.930 ~0.3519 6.5496 6.6603 0.926

[N 0.7404 48.6836  49.1345 0.954 0.2967 18.5786 18.6294 0.966

0, dit.a 03288 53.6456 53.6464 0.954 0.1841 21.7552 21.7456 0.966

0, cp.u 0.5966 8.3416 8.6809 0.954 0.5413 43692 4.6535 0.936
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Table 7

Monte Carlo Simulation Results for Sampling from the SLID982 Population, Under PO Sampling Plan and the First Rule for the

Construction of the m;, k € U. The number of replications is set at K =500

n=100 n =200
o Estimator BR e Vac MSE,;¢ CR BR ¢ Ve MSE,;¢ CR
0.25 Qv, cal, o 0.1393 4.8403 4.8500 0.956 0.1603 2.8293 2.8493 0.922
Q'V, HT. « —-0.0477 5.8276 5.8182 0.934 -0.0227 3.5939 3.5872 0.924
Q'V, ra, o 0.1648 9.5171 9.5252 0.980 0.1263 4.8687 4.8749 0.972
QV diff, o —-0.1418 4.7045 4.7152 0.960 —0.0464 2.9213 29176 0.936
Q'V,CD,Q 3.9150 3.5279 18.8477 0.584 39114 1.9163 17.2112 0.194
0.5 Qv, cal, o —-0.1746 8.2437 8.2577 0.944 —-0.2413 3.6477 3.6986 0.940
Q'V, HT. « —-0.2824 10.1117 10.1712 0.916 —0.3343 4.5023 4.6050 0.936
Q'V, ra, 0 0.6558 50.4938 50.8228 0.944 0.4263 26.5883 26.7169 0.948
Q:V, it a ~0.5975 17.0315 17.3544 0.972 ~0.3496 8.9060 9.0104 0.970
Qy, CD. o 43173 4.4061 23.0363 0.484 4.0937 2.0711 18.8252 0.184
0.75 Qy, cal, o -0.2229 12.1861 12.2114 0.942 -0.2113 6.5823 6.6138 0.952
Qy, HT. « —-0.4150 14.2935 14.4371 0.934 —-0.2786 7.6597 7.7220 0.934
Qy, ra, o 0.7861 47.3844 47.9077 0.980 —0.1344 19.5992 19.5781 0.958
Qy, diff, o 0.4347 52.3845 52.4687 0.972 —-0.3409 23.8277 23.8962 0.958
Q'V,CD,Q 44114 7.7023 27.1478 0.654 4.3549 4.1566 23.1136 0.392
Table 8

Monte Carlo Simulation Results for Sampling from the SLID982 Population, Under PO Sampling Plan and the Second Rule for the

Construction of the n;, k € U. The Number of Replications is Set at K =500

n=100 n =200

o Estimator BR Ve MSE ¢ CR BR ¢ Ve MSE ¢ CR

025 0, e 0.2392 3.4402 3.4906 0.962 0.1674 1.5214 1.5464 0.952
Q'v, HT. o 0.0267 4.0027 3.9954 0.940 ~0.0370 1.6995 1.6975 0.958
Q'v, - 0.4402 7.4350 7.6139 0.970 0.1850 3.0687 3.0968 0.978
Q:V,diff,a 0.0528 3.2842 3.2804 0.972 -0.0127 1.4718 1.4690 0.964
0, .« 2.1458 3.0460 7.6444 0.876 1.9785 1.3010 52130 0.690

05 0, cia ~0.1410 6.5627 6.5695 0.942 ~0.2850 2.9662 3.0415 0.954
Q'v, HT. o -0.2133 7.6604 7.6906 0.928 ~0.2876 3.6017 3.6772 0.926
Q'v, o 1.0245 432773 44.2402 0.930 ~0.3075 17.7242 17.7833 0.948
Q:v, it a ~0.1973 14.5261 14.5360 0.958 ~0.6111 6.2988 6.6596 0.978
0, .« 22140 45617 9.4543 0.834 1.8882 2.0393 5.6005 0.738

075 0y cata ~0.1985 12.6334 12.6476 0.952 ~0.0022 5.6442 5.6329 0.966
O, ur.« ~0.4012 13.5045 13.6384 0.922 ~0.1078 6.2239 6.2231 0.934
[N 0.7968 440650  44.6118 0.958 0.3727 19.1830 19.2836 0.960
0, air.a 0.4613 49.6620  49.7755 0.960 0.2340 22.1292 22.1397 0.966
0, cp.u 2.6329 9.6723 16.5850 0.854 2.6729 4.1179 11.2541 0.738
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5. Concluding Remarks

In this paper, we have developed quantile estimators
based on the calibration paradigm. The estimators are
particularly easy to implement and to interpret, since they
focus on weights and calibration constraints. Furthermore,
they require only the population quantiles of the auxiliary
variables, which can be vectorial. When the quadratic metric
is adopted, analytic expressions can be obtained for
calibrated weights as well as variance estimators, which are
similar to those for the calibration estimator for totals. From
a practical point of view, an appealing consequence of the
new methodology is that the proposed estimators are easy to
calculate; it suffices to transform the auxiliary variables and
then use existing software to compute the calibration
estimators.

In a small simulation study, we compared the calibration
estimator for quantiles, under the quadratic metric, to other
leading quantile estimators available in the literature. The
proposed estimator performed reasonably well in our
empirical experiments; its performance was often preferable
or at least similar to that of other estimators using the same
amount of information. The model-based estimator
incorporating much more information about the auxiliary
variables appeared preferable under SRS sampling and a
correctly specified model, but was outperformed by the new
estimator when the first order inclusion probabilities were
unequal. In general, the proposed estimator compared very
well with the design-based alternatives of Rao et al. (1990).

While, in this paper, we have concentrated on the
estimation of quantiles by calibrating on known population
quantiles for the auxiliary variables, calibration estimators
can be extended to other important estimation problems of
interest in survey sampling. The formulation of these
problems all lead to different transformed variables, that we
have noted a, in this paper. For example, it is possible to
formulate a calibration problem for the well-known Gini
coefficient and then show that the solution to this calibration
problem will give weights analogous to those derived in this
paper; however these weights can only be determined
numerically. More work is needed in this direction, in order
to extend calibration estimators to a more general
framework, which would include totals, quantiles, and Gini
coefficients as special cases. Another challenging research
avenue concerns the choice of the distribution function
estimator. In this paper, we have advocated a distribution
function estimator calculated using a linear interpolation.
Alternatively, we could consider kernel distribution function
estimator (see e.g., Altman and Léger (1995)). Kernel
density estimation from complex surveys is elaborated in
Bellhouse and Stafford (1999). This means that, in
F, (), the function H, (¢,y,) could be replaced by a
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general kernel, which would, however, depend on an
additional parameter, the bandwidth. Note that the linear
interpolation in the present paper avoids the choice of a
bandwidth, which is often a delicate matter. Developing a
general framework for calibration problems of a certain
functional, and kernel distribution function estimators, are
left for future studies.
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A Nonresponse Model Approach to Inference Under Imputation
for Missing Survey Data

David Haziza and Jon N.K. Rao !

Abstract

In the presence of item nonreponse, two approaches have been traditionally used to make inference on parameters of
interest. The first approach assumes uniform response within imputation cells whereas the second approach assumes
ignorable response but make use of a model on the variable of interest as the basis for inference. In this paper, we propose a
third appoach that assumes a specified ignorable response mechanism without having to specify a model on the variable of
interest. In this case, we show how to obtain imputed values which lead to estimators of a total that are approximately
unbiased under the proposed approach as well as the second approach. Variance estimators of the imputed estimators that
are approximately unbiased are also obtained using an approach of Fay (1991) in which the order of sampling and response
is reversed. Finally, simulation studies are conducted to investigate the finite sample performance of the methods in terms

of bias and mean square error.

Key Words: Bias-adjusted estimator; Deterministic regression imputation; Imputation model approach; Item
nonresponse; Nonresponse model approach; Random regression imputation; Variance estimation.

1. Introduction

Item nonresponse occurs in a survey when a sampled
element participates in the survey but fails to provide
responses on one or more of the survey items (Brick and
Kalton 1996). It is usually handled by some form of
imputation which involves “filling in” missing values for
each item. Imputation may achieve an effective bias
reduction, provided suitable auxiliary information is
available for all the sampled elements and appropriately
incorporated in the imputation model and/or the non-
response model.

Imputation offers the following desirable features, among
others: (i) it leads to the creation of a complete data file, and
(ii) it permits the use of the same survey weights for all
items which ensures that the results obtained from different
analyses of the completed data set are consistent with one
another, unlike the results of analyses from an incomplete
data set. However, imputation also presents the following
difficulties, among others: (a) marginal imputation for each
item distorts the relationship between items, and (b) treating
the imputed values as if they were true values may lead to
serious underestimation of the variance of imputed esti-
mators, especially when the nonresponse rate is appreciable.
Methods that address (a) and (b) have been proposed in the
literature.

In this paper, we focus on marginal imputation that is
commonly used in many surveys. We first consider deter-
ministic linear regression imputation that includes mean and
ratio imputation as special cases. In this method a missing
value is replaced by the predicted value obtained by fitting a

linear regression model using respondent values and
auxiliary variables collected on all the sampled elements.
We also consider the case of random linear regression
imputation that may be viewed as a deterministic regression
imputation plus an added random residual. It includes
random hot-deck imputation as a special case.

Let U be a finite population of possibly unknown size V.
The objective is to estimate the population total ¥ =3, v,
of an item y when imputation has been used to compensate
for nonresponse on the item values y,;. For brevity, > ,
will be used for ¥,_,, where 4 < U. Suppose a probability
sample, s, of size n is selected according to a specified
design p(s) from U. Under complete response to item y, a
design-unbiased estimator of Y is given by the well-known
Horvitz-Thompson estimator

V=3 wy, (1)

with sampling (or design) weights w, =1/x,, where =,
denotes the inclusion probability of population unit 7 in the
sample s,i=1,..., N. Rao (2005) suggested that (1) should
be called the Narain-Horvitz-Thompson (NHT) estimator in
recognition of the fact that Narain (1951) also discovered
(1) independently of Horvitz and Thompson (1952).

In the presence of nonresponse to item y, we use impu-
tation and define an imputed estimator ¥, as

f} :Zw,.a,.y,- +ZW,-(1_¢1,-))/,-* :zwi)wjia (2)

where y. denotes the value imputed for missing ., a,
denotes the response indicator equal to 1 if unit i responds to
ittm y and 0 otherwise and 7, =a,y, +(1—q,)y;. The

1. David Haziza, Business Survey Methods Division, Statistics Canada, Ottawa, Ontario, Canada, K1A 0T6; J.N.K. Rao, School of Mathematics and
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imputed estimator (2) can be implemented from the imputed
data file containing the survey weights w, and the ¥, only,
without the knowledge of response indicators «@,. However,
the response indicators will be required for variance esti-
mation. Let p, = P(a, =1) be the item y response proba-
bility for unit i. In this paper, we assume that the units
respond independently of one another, ie, p;=
P(a;=1,a;=1)=p,p;if i #j.

As for any method of compensating for missing data,
imputation requires some assumptions about the response
mechanism and/or the imputation model. In the presence of
imputed data, two different approaches are generally used
for making inference on totals, means and other parameters
of interest: (i) Imputation model (IM) approach; (ii) Non-
response Model (NM) approach. Approach (i) is also called
model-assisted approach (Sarndal 1992) and approach (ii)
design-based approach (Shao and Steel 1999). NM
approach is based on partitioning the population U into J
imputation cells and then imputing nonrespondents
y-values within each cell using respondent y—values within
the same cell as donor values, independently across the J
cells. The following assumption is made:

Assumption NM: Response probability for a given item
of interest is constant within imputation cells. That is,
p; =Pp,, say, where the subscript v denotes the imputation
cell.

In the NM approach, explicit assumptions about the
response mechanism are made. It follows that inference
under assumption NM is with respect to repeated sampling
and uniform response mechanism within cells. Approach
NM has been studied by Rao (1990, 1996), Rao and Shao
(1992), Rao and Sitter (1995) and Shao and Steel (1999),
among others. For simplicity, we assume a single impu-
tation cell so that p, = p under assumption NM.

IM approach is based on the following assumption:

Assumption IM: Item values are missing at random
(MAR) in the sense that the response probability does not
depend on the item value being imputed but may depend on
auxiliary variables used for imputation. Further, a model
that generates the item values y, is assumed.

In the IM approach, explicit assumptions about the
distribution of item values y; is made through a model
called the “imputation model”. It follows that inference
under assumption IM is with respect to repeated sampling
and the assumed model that generates the finite population
of y-values and nonrespondents to item y. Underlying
response mechanism is not specified, except for the MAR
assumption, unlike in the NM approach. The assumed
response mechanism under assumption IM is much weaker
than the uniform response within cells under assumption
NM, but inferences under assumption IM depends on the
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assumed population model. IM approach has been studied
by Sarndal (1992), Deville and Sirndal (1994) and Shao and
Steel (1999), among others.

Under linear regression imputation, IM approach
assumes the following linear regression imputation model:

Em(yi):Z;’Y’ I/m(yi):GiZ :Gz(;"'zi)’
Cov,(y,»,)=0if i+ j, 3)

where y is k—vector of unknown parameters, z; is a k~vector
of auxiliary variables available for all i € s, A is a k—vector
of specified constants, ¢ is an unknown parameter and
E,.V,, and Cov,, denote respectively the expectation, the
variance and the covariance operators with respect to the
imputation model. The restriction 7 =c”()A'z,) does not
severely restrict the range of imputation models.

In this paper, we propose a third approach, called the
Generalized Nonresponse Model (GNM) approach. GNM

approach is based on the following assumption:

Assumption GNM: Item values are missing at random
(MAR) and response probability is specified as a function of
auxiliary variables, u;, observed on all the sample
elements, and unknown parameters 1.

In this paper, we assume that the probability of response,
p;, for unit i, is linked to an /-vector of auxiliary variables
u; according to a logistic model so that

p; = fuin) =exp(uin)/exp(l+u;m), (4

where 1 is the /~vector of model parameters. Model (4) is
the assumed nonresponse model. It can be validated from
the values a; and u; for i es. Note that ¢, and u; are
item specific. Also, note that assumption NM is a special
case of assumption GNM. As in NM approach, explicit
assumptions about the response mechanism are made and
inference under assumption GNM is with respect to
repeated sampling and the assumed response mechanism.
Recall that imputation is designed to reduce the non-
response bias, assuming that the available auxiliary
variables can explain the item to be imputed and/or the item
response probability. Hence, in practice, the choice of the
approach (IM or GNM) should be dictated by the quality of
the imputation model and the nonresponse model. The
choice between modeling the item response probability and
modeling the item of interest will depend on how much
reliance one is ready to place on the two models. Although
it may seem intuitively more appealing to model the item of
interest, there are some cases encountered in practice for
which it may be easier to model the response probability
(GNM approach). For example, the Capital Expenditures
Survey at Statistics Canada produces data on investment
made in Canada, in all types of Canadian industries. For this
survey, two important variables of interest are capital
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expenditures on new construction (CC) and capital
expenditures on new machinery and new equipment (CM).
In a given year, a large number of businesses have not
invested any amount of money on new construction or new
machinery. As a result, the sample data file contains a large
number of zeros for the two variables CC and CM. In this
case, modeling the variables of intrest (CC or CM) may
prove to be difficult.

Survey design weights are generally used in linear
regression imputation. The resulting imputed estimator of a
population total is “robust” in the sense that it is
approximately unbiased under either assumption NM or
assumption IM. However, the imputed estimator is
generally biased under assumption GNM. In this paper, we
propose a new method of linear regression imputation that is
robust in the sense of leading to approximately unbiased
estimators under either assumption GNM or assumption IM.

Section 2 develops a new method of deterministic linear
regression imputation as well as random linear regression
imputation, and demonstrates the robustness property in
estimating a population total Y. Results of a simulation study
on the finite-sample performance of the imputed estimator
under the new method of imputation are reported in
section 3. Variance estimators are derived in section 4, using
the ‘reverse’ approach of Fay (1991) in which the order of
sampling and response is reversed:

Population — census with nonrespondents — sample
with nonrespondents.

Simulation results on variance estimators are also given.
Finally, the case of domain means is investigated in
section 5.

2. Estimation of a Total

In this section, we study the bias of the imputed estimator
Y,. The total error, ¥, — Y, may be decomposed as

V,-Y=(-Y)+(,-7). (5)

The term Y —Y in (5) is called the sampling error,
whereas the term Y, —Y is called the nonresponse/
imputation error. Note that there is no imputation error
under deterministic imputation. Since the sampling error
does not depend on nonresponse and imputation method, we
focus on the nonresponse/imputation error ¥, —¥ and
evaluate its properties conditionally on the sample s. Under
the NM or GNM approach, the conditional nonresponse
bias is defined as E, (¥, —Y |s), where E.(.) denotes the
expectation with respect to the response mechanism. Under
the IM approach, the conditional nonresponse bias is
definedas £ E, (Y, —Y|s) under MAR assumption.

r m
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2.1 Deterministic Regression Imputation

Deterministic regression imputation uses the imputed
values

*

yi =27, (6)

for missing y,, where
1
= (z w,a,2,Z; /(\N'z; )J z wa,z,y,/(N'z,)  (7)

is the weighted least squares estimator of y in the model
(3), based on the sample elements responding to item y.
Using (6), the imputed estimator (2) can be written as

Y, =¥, +(Z-2,)7,. ®)
where Y. =Y wa,y,Z=Y wz, and Z, =Y waz,.
Note that the imputed estimator (8) is similar to a regression
estimator in the case of two-phase sampling.

Under assumption NM, E, (¢, |s)=p and the condi-
tional nonresponse bias, E.(Y,—Y|s), is approximately
equal to 0. Furthermore, under assumption IM and
regression model (3), the conditional nonresponse bias

EE, (Y —Y|s), is equal to 0. However, under assumption
GNM, the conditional nonresponse bias is given by

E.(Y,-Y|s)~-Y w(-p)(y, -27,) =B, |s), (9
where
- (z W, D,2,Z; /(k'zi)j z w.pz,y, [(M'z;).  (10)

This result follows from the fact that under assumption
GNM, E (a,|s)= p,. Hence, the choice of imputed values
(6) is, in general, not suitable under assumption GNM. For
the special case of assumption NM with p, = p, the last
term in (9) vanishes, noting that (X, wz{)¥, =
M, wizzg /(;\"Zi))’?p =M (X, wzy, [(Mz) =2, Wy,
2.2 A Bias-Adjusted Estimator

We assume for now that the response probabilities p,
are known. A natural approach for eliminating the bias of
Y, under assumption GNM is to consider a bias-adjusted
estimator of the form

Yo=Y, = B(¥,]9), (11)
where B(Y, |s) is an estimator of B(Y, | s):
B, I5)= Zwa L2) iy g5y (2
pi

Note that Er[B(Y,|s)|s]zB(Y,|s) under assumption
GNM. Substituting (12) in (11), we get a bias-adjusted
estimator as

f,“zZ—ay, {sz—Z—az J?r. (13)

K i s i
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Note that (13) is also in the form of a two phase regression
estimator.

In practice, response probabilities p, are unknown.
Suppose we can obtain estimators p, of p; by modelling
p,; according to the nonresponse model (4). Then, a bias-
adjusted estimator is obtained by replacing p, in (13) with
p;. This estimator is also approximately conditionally
unbiased under assumption IM. Hence, the bias-adjusted
estimator (13) is robust in the sense of validity under either
assumption IM or assumption GNM. However, unlike the
imputed estimator Y, given by (2), the bias-adjusted
estimator ¥, cannot be computed without the knowledge of
the response identifiers, a;, and the estimated response
probabilities, p,. Hence, both the response indicators and
the estimated response probabilities must be provided with
the imputed data file to implement ¥, which may not be
the case in practice. This drawback of ¥;* can be eliminated
by using the new imputation method, given in section 2.3,
that leads to an approximately unbiased estimator under
either assumption GNM or assumption IM without the
knowledge of ¢; and p, onthe imputed data file. However,
for variance estimation, access to @, and p, is needed.

2.3 Modified Deterministic Regression Imputation

We assume for now that the response probabilites p, are
known. We then use the imputed values
v =2, (14)
for missing y, and obtain the form of ¥, that leads to an
approximately unbiased estimator under assumption GNM.

2.3.1 Approximately Unbiased Estimator

The following lemma gives the form of ¥, that leads to
an approximately unbiased estimator under assumption
GNM.

Lemma 1: Under assumption GNM, the choice of ¥, that
leads to E,(?, ~Y|s)=0 is given by

7s,N = |:z Wi(l - pi)ZiZ;/(;"'Zi):|_

s

zwi(l_pi)ziyi I(\z;). (15)

s

Proof: The conditional nonresponse bias of Y, with

*

¥; =2;7, under assumption GNM is given by
E.(Y, =Y |5)==3 w(- p); ~K7,).
Noting that (A'z;)/(M'z;)=1, it follows that

E.(Y,-Y|s)=0 if ¥, satisfies

;"'|:z w,(1=p)z;(y, _Zgys)/(;\"zi):|:0' (16)

s
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The choice ¥, =7, y satisfies (16).

Note that ¥, 5 is unknown since the y—values are only
observed for ies, and the response probabilities p, are
unknown. An estimator of ¥, ,, based on the responding
units and estimated response probabilites p,, is given by

-1
7, =| e, L iy

K i

S wa, P gy 0y, (17)
We have E.(Y,|s)~7,, so that ¥, is conditionally
approximately unbiased for ¥, , under assumption GNM.
Hence, using the imputed values
v =71, (18)
in (2) with ¥, given by (17), leads to an approximately
unbiased estimator of the total ¥ under assumption GNM.
Note that ¥, is a weighted least square estimator of y with
respect to a new set of weights, Ww,/(A'z;), where
w, =w,((1- p,)/ p,). Hence, the procedure increases the
weights w; for those units with p, <1/2 and decreases the
weights for those units with p,>1/2. The imputed
estimator can be implemented from the imputed data file
containing the sampling weights w, and the 7, only;
response identifiers @, and estimated response probabilities,
p;, are not required. However, a;, and p, are needed for
variance estimation. Note that the producer of the imputed
data file uses the information on a;, and u; to fit the
response model (4) and generate the imputed values y;
given by (18).

The use of imputed values (18) also leads to an
approximately unbiased estimator of Y under assumption
IM. First, under the regression model (3), noting that
E,(,l9) =2y and E,(,|s)=7. we have E,(¥,~
Y]s)=0 and E.E, (¥, -Y|s)=0 without specifying the
underlying MAR response mechanism. Hence, the use of
imputed values (18) leads to a robust imputed estimator in
the sense of validity under both approaches. Finally, it is
interesting to note that the imputed values (18) can also be
obtained using the method of calibration imputation
(Beaumont 2005). Calibration imputation consists of finding
final imputed values as close as possible to original imputed
values according to some distance function, subject to the
calibration constraint.

Two particular cases of modified regression imputation
(18) are of interest: (i) modified ratio imputation with
z; =z, and A'z; = z;; (ii) modified mean imputation with
z; =1 and A'z, =1. In case (i), the imputed values (18)
reduce to

- ZS Wi, )i -

O T (19)
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In case (ii), the imputed values (18) reduce to

X ZS wa;y; (20)

MUY e

Under uniform response p, = p, the imputed values (19)
and (20) reduce to (X, wa,y, /2 waz)z, and ¥, =
2. w.a,y, /2 wa, respectively, which are the usual values
that survey practioners use for ratio and mean imputation
(Rao and Sitter 1995).

2.3.2 Optimal Choice of ¥

We now turn to the “optimal” choice of ¥, by mini-
mizing the conditional mean square error of the imputed
estimator ¥, with y, = z]¥,. The conditional mean square
error of the imputed estimator ¥, is given by

MSE, (Y, | s)=V.(Y, | s) +[Bias(?, | s)]’
= z Wizpi(l -p) i — Zi"ys)z

{Z w (1= p)(; —ZI?S)} ; 2D

where V. (.|s) denotes the conditional nonresponse
variance with respect to the response mechanism, given the
sample s. We search for ¥, that minimizes MSE (Y, | s).

The optimal choice, ¥,,, of ¥, is complex, but in the
special case of ratio imputation, ¥, reduces to

:st,-(l—p,-)y,-zsw,-(l—p,.)z,.+zswl_2pi(1_pl_)yl_zl_
" [zswi(l_pi)ziJz"‘zS W,-zpl-(l—pl.)zl.2

. (22)

Assume that the sampling weights w, satisfy max(n/
Nw,)=0(1) and that a positive constant C exists such that
C < p;. Then,

Yone = ZS w; (1= p;)z

= 7S,N + O(l)
n

Hence, for large sample sizes, the choice ¥, , is nearly
optimal for ratio imputation. Similarly, ¥, , is nearly
optimal for mean imputation which is a special case of ratio
imputation.

~ zswi(l_pi)yi+0(1)

n

2.4 Random Regression Imputation

Random imputation can be viewed as deterministic
imputation plus a random noise. Let s, and s, denote the
sets of sample respondents and nonrespondents respectively,
and let ej.:(yj—zg?r)/(k'zj)”2 be the standardized
residuals for the respondents jes, under deterministic
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regression imputation. Further, e, =e ', with P(e =e )=
w; /2, w,a, independently for each i€ s, . Then, rand*om
regression imputation uses the imputed values y, =
7y, +e,,ies,, where €, =(1'z,)"* (e, —€,) with &, =
X wiae; /2 wa;. Let E.(.) denote the expectation with
respect to the random imputation process. We have
E*(e:):o and E.(Y,) equals (8). Hence, the imputed
estimator ¥, is approximately unbiased under either
assumption NM or assumption IM. It may be noted that
random regression imputation covers random (weighted)
hot-deck imputation as a special case. To see this, consider
the mean imputation model £, (y,)=v,V,(y,)= c° and
Cov,(y,¥y;)=0,i=j. We have 7,=% way,/
2, wa;, =y,, the weighted mean of the respondent y-
values, and e, =y, —y,. Therefore, y, =y, +€ =y f
corresponds to the respondent value y; drawn at random
with probability w; /2 w,a;.

The imputed estimator based on random regression
imputation is asymptotically biased under assumption
GNM. To obtain an approximately unbiased estimator for Y,
we propose modified random regression imputation. Let
¢ =(y,-z}¥,)/(Wz))""? and &’ =2, with P(g =2, =
W, /2, W,a, independently for each ies,, where ¥, is
given by (17) and W, =w,(1-p,)/ p,. Then, modified
random regression imputation uses the imputed values
y, =z,§, +&, where & =(0'z,)"*(¢ —¢&.) with ¢ =
Y, a2 /X, Wa; We have E.(;)=0 and E.(Y))
equals the imputed estimator under modified deterministic
regression imputation. Hence, the imputed estimator Y, is
approximately unbised under either assumption GNM or
assumption IM. For the special case of mean imputation
model, we have ¥, =Y Way, /Y Wa and y, =y,
corresponds to the respondent value y; drawn at random
with probability W, /2 W,a;.

m?

3. Simulation Studies

We performed two simulation studies to investigate the
finite sample performance of the proposed deterministic
modified regression and modified random regression impu-
tation methods in terms of relative bias and relative root
mean square error. The first simulation study compares the
performance of the traditional deterministic regression
imputation and the proposed modified deterministic regres-
sion imputation when the imputation model and/or the non-
response model are not correctly specified. The second
simulation study compares the performance of the imputed
estimator obtained by using imputation classes based on the
estimated response probabilities and weighted mean impu-
tation (traditional) with the imputed estimator obtained by
using the proposed modified deterministic regression impu-
tation method.
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3.1 Simulation Study 1

We generated a finite population of size N =1,000
containing 3 variables: a variable of interest y and two
auxiliary variables z, and z,. To do so, we first generated
z, and z, independently from an exponential distribution
with mean 4 and 30 respectively. Then the y—values were
generated according to the regression model

Yi=Yo T V12 T V22 T €,

where the €,’s are generated from a normal distribution
with mean 0 and variance o°. The values of the parameters
Yo,v; and v, were respectively set to 20, 2 and 0.1 and the
variance o> was chosen to lead to a model R’-value
approximately equal to 0.75. The objective is to estimate the
populationtotal Y =%, y,.

We generated R =5,000 simple random samples with-
out replacement of size n =100 from the finite population.
In each sample, nonresponse to item y was generated
according to the following response mechanisms:

Mechanism 1: Response probability p,, for unit 7 is given
by the logistic regression model

P
— P
Mechanism 2: Response probability p,, for unit 7 is given
by the logistic regression model

L Ao+ Ay,
— P

The values of A, and A, were chosen to give an overall
response rate approximately equal to 70%. The response
indicators a,, and a,, were generated independently from a
Bernoulli distribution with parameters p,, and p,,,
respectively. Note that in the case of the nonresponse
mechanism 2, the response mechanism is nonignorable in
the sense that the probability of response depends on the
variable of interest y.

To compensate for the nonresponse to item y, we used
the traditional deterministic regression imputation for which
the imputed values are given by (6) and the modified
deterministic regression imputation for which the imputed
values are given by (18). Imputations were based on the
models for y and for p listed in Table 1 as y), vy,
Yay» Yoy ad py), Py P3)- Note that p, corresponds to
response mechanism 1 and y,,, to the model generating the
population.

From each simulated sample, we calculated the imputed
estimator ¥, given by (2) with the imputed values (6) and
(18), based on selected combinations of the models y,,, and
Papysa=L..,4b= 1: 2,3. As a measure of the bias of an
imputed estimator Y,, we used the percent simulated
relative bias (RB) given by

log =Ny + A2y

log
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RB(F,) = 218U | 00, (23)
where
(T - LY P
Blas(YI):EZYI -Y (24)
r=1

and Y\ denotes the value of ¥, for the r—th simulated
sample. As a measure of variability of an imputed estimator
Y,, we used the percent simulated relative root mean square
error (RRMSE) given by

. JMSE(Y))
RRMSE(Y,) = Txloo, (25)
where
> 1 & s 2
MSE(Y1)=EZ(Y1 -Y)~. (26)
r=1
Table 1
Models Used for Imputation
Models for y Intercept zZ oz,
Yy Yes Yes Yes
Y Yes No Yes
Y3 Yes Yes No
Y No Yes Yes
Models for p, Intercept zZ oz,
Py Yes Yes No
P2) Yes No Yes
D(3) No Yes No

Results on relative bias and RRMSE are shown in Table
2 for the the samples generated by reponse mechanism 1
and in Table 3 for the samples generated by the response
mechanism 2. From Table 2, it is clear that, when the
imputation is performed according to the correct model (Z.e.,
Yay)» traditional deterministic regression imputation leads
to an approximately unbiased estimator and it is more
efficient than the modified deterministic regression impu-
tation in terms of RRMSE. As noted by a referee, modified
deterministic regression imputation can lead to more
efficient estimators than traditional deterministic regression.
That is, there are scenarios (not considered here) for which
the proposed modified deterministic regression imputation
method may be more efficient than the traditional deter-
ministic regression imputation method.

When the imputation model is incorrectly specified (e.g.,
Y@ and y), deterministic imputation leads to biased
estimators whereas the bias of the modified determinisic
imputation is small to negligible, provided the nonresponse
model is correctly specified (i.e., p,). As aresult, RRMSE
for the deterministic imputation is larger than that for the
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modified deterministic regression imputation. When both
imputation and nonresponse models are not correctly
specified (e.g., ¥4, — P(2)), all the estimators are biased.

From Table 3, it is clear that, for the case of mechanism
2, the imputed estimator obtained under modified regression
imputation performs equally or better than the imputed
estimator obtained under traditional regression imputation in
all the scenarios. This result is not suprising since achieving
an effective bias reduction in the case of nonignorable
nonresponse requires the use of all the appropriate auxiliary
information available. The auxiliary information used in the
case of the proposed modified regression imputation is
richer than the one used in the case of regression imputation
since it uses the auxiliary variables that are related to both
the variable of interest y and the response probability
whereas regression imputation uses only the auxiliary
variables related to the variable of interest y.

Table 2
Relative Bias (%) and RRMSE (%) of Imputed Estimators
Under Response Mechanism 1

Scenario Bias Bias RRMSE RRMSE
(traditional) (proposed) (traditional) (proposed)
Yy — Py 0.19 —0.01 1.85 2.33
Y©) — Pq) 5.20 0.16 5.60 2.66
Y3) ~ Py 0.17 —0.04 1.87 2.37
Y4y~ Pq) —14.80 -3.50 15.00 6.70
Yy —P@) 0.19 0.12 1.85 1.86
Y4~ P2) —14.80 —14.80 15.00 14.60
Yy —P@3) 0.19 0.05 1.85 1.88
Table 3

Relative Bias (%) and RRMSE (%) of Imputed Estimators
Under Response Mechanism 2

Scenario Bias Bias RRMSE RRMSE
(traditional) (proposed) (traditional) (proposed)
Yy = Py 1.84 1.83 2.55 2.54
Y2 ~ Py 446 1.84 4.89 2.65
Y@3) ~ Pqy 2.03 2.02 2.70 2.70
Y@y — Py —4.58 -3.04 5.07 3.81
Yy — P2) 1.84 1.84 2.55 2.55
Y(4)~ P2) —4.58 -1.70 5.07 2.88
Yy —P3) 1.84 1.84 2.55 2.55

3.2 Simulation Study 2

We generated a finite population of size N =1,000
containing 3 variables: a variable of interest y and three
auxiliary variables z,,z, and z,, by first generating z,, z,
and z, independently from an exponential distribution with
mean 100 and then generating the y—values according to the
regression model

_ 2
Yi=Yo V12 T V22 T 732, TE,
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where the €,’s are generated from a normal distribution
with mean 0 and variance 6. The values of the parameters
Yo V1> Y, and y; were respectively fixed to 20, 10, 0.5 and
10. The variance o> was chosen to lead to a model R*
approximately equal to 0.66. The objective is to estimate the
population mean Y =3, y,/N. In order to focus on the
nonresponse/imputation error, we considered the case of a
census, i.e., n=N =1,000. From the simulated population,
nonresponse to item y was generated according to the
following response mechanisms:

Mechanism 1: Response probability p,, for unit 7 is given
by the logistic model

P
— Pu
Mechanism 2: Response probability p,, for unit 7 is given
by the logistic model

Py
— Pai
The values of A,, A, and A, were chosen to give an overall
response rate approximately equal to 70%. Response
indicators a,, and a,, were then genrated independently
R=1,000 times from a Bernoulli distribution with para-
meters p,;, and p,,, respectively.

To compensate for nonresponse, two strategies were
used: The first strategy consisted in dividing the sample, s,
into imputation classes s, s,,..., S- based on the auxiliary
variables z;,z, and z;. To form the classes, we used the
score method which may be described as follows: Using the
auxiliary information, we first estimated the response
probabilites, p,, to obtain p, for both the respondents and
the nonrespondents using logistic regression on z, z, and
z,. Using the p, ’s, we then partitioned the population into
C classes using the procedure FASTCLUS of SAS (that
uses the k-means classification algorithm). The score
method leads to a partition of the population in such a way
that, within classes, units (respondents and nonrespondents)
are homogeneous with respect to p,-values. The second
strategy used the proposed modified regression imputation
method based on the auxiliary variables z,z, and z,. The
goal of the simulation study is to compare the performances
of two imputed estimators of the population mean Y: (a)
Imputed estimator based on the C imputation classes:

log =ho+A .z, +A,zy,.

log =ho+A Yy +A,zs,.

¢ & N,
V=2 Ve @27
c=1 N

where
_ 1 *
yIE‘:N_ E,Wiaiyl'"'zlwi(l_ai)yi >

and N, =Y w,. We used weighted mean imputation
within classes; i.e., v, =X, wa,y, /2, wa,.

Statistics Canada, Catalogue No. 12-001-XIE



60 Haziza and Rao: A Nonresponse Model Approach to Inference Under Imputation for Missing Survey Data

(b) Imputed estimator based on the proposed modified
regression imputation, denoted y, :

_ 1 .
Vi :ﬁ|:z w,a;y; +z w,(1-a;)y, :|, (28)

where the imputed values y, are given by (18) using
z,=(z,,2,) and N=Y_ w. For mechanism 1, the
response probabilities p, were correctly estimated using the
variable z, and z, whereas the variables z,,z, and z,
were used to estimate p; for mechanism 2.

Note that w, =1 in this simulation study for all i e U
because no sampling is involved. Finally, Table 4 compares
these estimators in terms of relative bias, given by (23) and
RRMSE, given by (25). From Table 4, it is clear that the
proposed imputed estimator (28) performs considerably
better than the estimator (27) based on imputation classes in
terms of RRMSE for both mechanism 1 and mechanism 2.

Table 4

Relative Bias (%) and RRMSE (%) of Imputed Estimators
Imputed estimator®*  Number of classes RB ~ RRMSE

7¢ (mechanism 1) 1 14.4 14.5

5 —-0.02 4.26

10 —-0.85 7.33

20 -0.20 8.61

30 —-0.03 8.61

40 0.03 9.09

50 0.06 9.44

¥, (mechanism 1) - 1.11 1.90

7¢ (mechanism 2) 1 200 291

5 214 214

10 21.0 21.1

20 20.9 21.0

30 20.9 21.0

40 21.0 21.0

50 21.0 21.0

¥, (mechanism 2) - 10.9 10.9

* 3¢ given by (27)and 7, given by (28).

4. Variance Estimation

In this section, we derive a variance estimator of the
imputed estimator Y,, using the reverse approach of Fay
(1991). The total variance of 7Y, 7 under a particular
deterministic imputation method, is given by

VY, -Y)=EV,(Y,-Y|a)+V,E,(V,-Y|a), (29)

where a =(qa,,...,a,)" is the vector of response indicators,
(Shao and Steel 1999). An estimator of the overall variance
V(¥, —Y) in (29) is given by v, = v, +v,, where v, is an
estimator of V, (Y, =Y |a) conditional on thg response
indicators a;, and v, is an estimator of V,[E (Y, —Y |a)].
The estimator v, does not depend on the response
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mechanism or the imputation model, and hence v, is valid
under either assumption GNM or assumption IM.

Under the corresponding random imputation, the
variance of the imputed estimator Y, is given by

V¥, =Y)=E,V,E.(Y, =Y |a)+ E, E,V.(Y, =Y |a)
+V,E, E.(Y, =Y |a), (30)

where V.(.) denotes the variance operator with respect to
random imputation. We assume that E.(Y, |a) agrees with
the imputed estimator for the deterministic case. Hence,
EVVPE*(? T —Yl|a) is estifnated by v, for the deterministic
case. Similarly, V,E E.(Y, =Y |a) is estimated by v, for
the deterministic case. The additional contribution to
variance due to random imputation comes from the
component EFE pV*(?, —Y|a), which is estimated by
v, =V.(Y; —Y |a). Hence, it follows from (30) that the
overall variance V' (Y, —Y) is estimated by v, = v, +v, +v,.
The term v, is absent for deterministic imputation.

4.1 Known p;

In this section, we assume that the reponse probabilites
p;, are known. We first consider the case of modified
deterministic regression imputation in section 4.1.1. The
case of modified random regression imputation is studied in
section 4.1.2.

4.1.1 Modified Deterministic Regression Imputation

Under modified deterministic regression imputation, the
imputed estimator with known p, may be written as

Y, => way +(Z-2,)7,, (31)
where

-1
Vo = |:z w4, Mziz; /(;"'Zi):|
s Pi

1

{z wa, L2y, /(x'zi)} (32)

To obtain v,, we use standard Taylor linearization which
leads to

Y,-Y=Y wE,. (33)
where

Eip = aiyi + (1 - ai)zgyrp

+(Z—Zr)'T"1a. d-p) 1

z(v.—72'y
P i —zi,,)

with Tp =X wa,((1-p,)/ p)Hz,z;/(\M'z;). Denoting the

1

variance estimator of the full sample estimator as



Survey Methodology, June 2006

Y =3, wy, as v(p), it follows from (33) that an estimator
of Vp(};l —Y|a) is given by N

v =v(&,), (34
which is obtained by replacing y, by E,.p

v(»)-
To obtain the second component v,, first note that

E,(Y,-Y|a)~Y ay,+> (1-a)y,-7,
K U

in the formula for

where
Tp =

{zUai(l;—p")zizi'/(k'zi)} a4 pp’)z . /(Mz,).

i i

Using Taylor linearization, it can be shown that

VIE,(Y,-Y|a)l~Y p(-p)C, (35)
where
(1_ [) 1 -1 '
¢, {Hp—f’ma—zr) T, zi}(y,- -77,)

with Z=2,2,,Z, =2, a;z; and T, =% a,((1-p;)/p;)
.Z;/(M'z;). The component v, is then obtained by esti-
mating the unknown quantities in (35), which leads to

=Y wa,(1-p)E&;, (36)
where

éi: 1+(1

A=r) Lz 7,58,

o vz )( e ;=
An estimator of the total variance v, is obtained as the sum
of (34) and (36): v, =v,+v,. In practice, the response
probabilities are unknown. As a result, it is not possible to
calculate the variance estimator v,. A simple solution
consists in replacing p, by the estimated response proba-
bilities p, in (34) and (36) and use the resulting v, as the
variance estimator of ¥,. As we show in a simulation sudy
in section 4.3, this simple method gives acceptable results.

Z;?rp)'

4.1.2 Modified Random Regression Imputation

e X L =

and Cov*(y,. , yj) =0,i# j. Hence, from (2) the
component v., due torandom imputation, is given by

vo=Y wil=a)V.(y)) =D wi(l-a)5. (37

An estimator of the total variance is obtained as the sum of
(34), (36) and (37): v, =v, +v, +v.. Once again, since the
response probabilities p, are unknown, it is not possible to

We first note that
V.(y)=

(LZ)ZW
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compute v, in (37). We propose to replace p, in (37) by
the estimated response probabilities p,.

4.2 Unknown p;

We use Binder’s method (Binder 1983) to derive the
component v, when the response probabilities p, are esti-
mated. We assume that p, = f(u;n), where n is 1-vector
of unknown parameters, u; is a 1-vector of auxiliary vari-
ables available for all i es. For example, in the case of
logistic regression, f(u;n)=-exp(u;n)/exp(l+u;n). The
estimated response probabilities are given by p, = f(u),
where 1] is a consistent estimator of m. Let 0=
My, vy,Y), where n, and y, are census parameter
corresponding to m and vy, respectively. An estimator of 0
given by 0 = (i, ¥.,Y,)" can be expressed as a solution of
the sample estimating equations

S(0)=0,
where §(0) = ($,(0).$,(0). 5,(®)) with

$:0)=> wula, - f(ujny)]=

& (1_f(“'7|1v)) ' l;
S,(0)= iii+ i_iN/;"i:O
0) gwal 7ame) (v —ziyy)/(M'zy)

and
$:0)=Y =Y wzyy =2 wa (v ~2iyy) = 0.
Let j(ﬂ)z(@S(ﬂ)/@ﬂ) be the (k+[+1)x(k+/+1)

matrix of partial derivative. We have
V(0)=[I"(0)1Z(0)[J " (0)],

where X(0) denotes the (k+/+1)x(k+1+1) symetric
matrix whose ij element is the covariance between S, (0)
and S () with respect to sampling given the vector of
response indicator a. If X(0) is replaced by a consistent
estimator 2(0), say, we obtain a consistent variance
estimator v(0) given by

vO) =[I O)IZ®)[TO)].
Since we are interested in the variance estimator, v, of Y, T

we need the final row, b, say, of J ~1(0), evaluated at @ = 0.
It follows that

v, =bX(0)b’. (38)
To obtain the component v,, we assume that the

sampling weights w, satisfy max(n/Nw,)=O(1) and that

there exists a positive constant C such that C < p,.
-1/2

Furthermore, we assume that § —m=0,(n"""). By Taylor
linearization, we have
A . B " u;
T+ @-WY - va)a—f(an“) +0,(N/n),

where
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¥, = {Z (1-a,)z2,2, /(k'zi)}_ {Z (-a)zy; /(k'zi)}

Assuming that f(uin)/0m is uniformly bounded, we

have
E,(Y)=E,(Y,)+0,(N/n'").

Hence, the component V,[E, (7, » — Y |a)] is approximately
given by (35) and v, is given by (36) with p, replaced by
p;. In the case of modified random regression imputation,
the component due to random imputation will be estimated
by (37) with p, replaced by p,.

4.3 Simulation Study

We performed a limited simulation study to assess the
performance of the variance estimators considered in
sections 4.1 and 4.2. We generated a population of size
N =2,500 containing two variables y and z. First, the
variable z was generated from a Gamma distribution with
scale parameter equal to 4 and shape parameter equal to 10.
The y-values were then generated according to the ratio
model

Yi=vz +€;,
where the €,’s are generated from a normal distribution
with mean 0 and variance o”. The value of the parameter y
was set to 2 and the variance 6> was chosen to lead to a
model R*-value approximately equal to 0.81. The
objective is to estimate the population total ¥ =2, y,.

We generated R =10,000 simple random samples
without replacement from the finite population using the
following sampling fractions n/N :0.05; 0.1 and 0.25. In
each sample, nonresponse to item y was generated
according to the following response mechanism: Response
probability p, for unit i is given by the logistic model

log =k + Mz,
The values of A, and A, were chosen to give an overall
response rate approximately equal to 70%. The response
indicators a, were then generated independently from a
Bernoulli distribution with parameters p,.

To compensate for the nonresponse to item y, we used
the modified deterministic ratio imputation for which the
imputed values are given by (19). From each simulated
sample, we calculated the imputed estimator Y, given by
(2) with the imputed values (19). As a measure of the bias of
a variance estimator v, we used the relative bias
[E(v) = MSE(Y,)]/MSE (Y,). Let v,,.. denotes the total
variance estimator obtained by summing (34) and (36) when
the response probabilties p, are replaced by the estimated
response probabilities p, and v, denotes the total
variance estimator obtained by summing (38) and (36) with
p, replaced by p,. Table 5 gives the relative bias (in %) of
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the two variance estimators. It is clear from Table 5 that
both variance estimators lead to underestimation, but v,
is slightly better in terms of underestimation. Also, both
variance estimators performed well with a relative bias less
than —-10%. Hence, the simpler variance estimator v
might be suitable in practice.

naive

Table 5
Relative Bias (%) of the Variance Estimators
f RB(vnaive) RB(vcorrect)
0.05 -6.3 -5.1
0.10 -5.8 —4.1
0.25 —4.3 =32

5. Estimation of Domain Means

In practice, estimates for various domains (subpopu-
lations) are often needed. For example, in the Canadian
Labour Force Survey, estimates of unemployment are
required by age-sex group and by industry at the provincial
level. To compensate for item nonresponse, the proposed
modified regression imputation may be used. However, the
domains must be specified in advance at the imputation
stage. In other words, the domain indicators must be part of
the imputation model. In practice, domains are generally not
specified at the edit and imputation stage and domain
estimates are obtained from imputed data based on imputa-
tion models without the domain indicators. As a result, the
imputed estimators for domains are generally biased. We
propose a bias-adjusted estimator, along the lines of section
2.2, to remedy this problem. The bias-adjusted estimator can
be obtained at the estimation stage and does not require the
specification of the domains at the imputation stage.

A vector of domain means may be expressed as

Yo = (Z X, X; j > Xy (39)

where x=(x,;,..., X, ...,Xp;) 18 @ vector of domain indi-
cators, x,, suchthat x,, =1 if i € domaind and x, =0,
otherwise. We assume that x is known for all the units
ies. In other words, only item y may be missing. In the
absence of nonresponse, an approximately unbiased esti-
mator of V( 4 1s given by

(d) (z w;X :J zwixiyi' (40)

In the presence of nonresponse to item y, an imputed esti-
mator of Y, is given by

I(d)—T |:2waxly,+2w(1 a,)x; y,}

:T'12waxly,, (41)
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where T=3, wx,x|. Note that the imputed estimator
Yl(d) in (41) does not require the response identifiers, a;.
Haziza and Rao (2005) showed that the imputed estimator
Yl(d) is biased under assumption NM. They proposed a
bias-adjusted estimator which is approximately unbiased
under either assumption NM or assumption IM. In this
section, we propose an extension of the Haziza-Rao bias-
adjusted estimator which is approximately unbiased under
either assumption GNM or assumption IM.

It is easily seen that, under assumption GNM, the
conditional nonresponse bias of the imputed estimator (41)
that uses the modified deterministic regression imputation

(18) is given by
Bias(vl(d) | S)z —T-{z w,(1— p,)x,(y; —zﬁs,N)}, (42)

where ¥, is given by (15). An approximately condi-
tionally unbiased estimator of the bias in (42) is given by

A

é(vl(d) | S)z -1 |:z wa;x; (v, _Z;,’Yr):|’ 43)

where ¥, is given by (17). A bias-adjusted estimator,
Y4, is then obtained as Y; 4, — B(Y,q | 5), which leads
to

Yia)= T_1|:z &aixi(yi —Z;¥,)+ z Wixizgyr:|' (44)

The bias-adjusted estimator (44) is approximately
unbiased under either IM or GNM. Hence, it is robust in the
sense of validity under both assumption IM or assumption
GNM. However, it requires both the response identifiers q,
and the estimated response probabilities p,, unlike the
imputed estimator Yy 4, in (41).

It is possible to obtain a bias-adjusted estimator of the
form (44) if we use the traditional deterministic regression
imputation instead. It is interesting to note that the bias-
adjusted estimator is identical to the estimator obtained
using calibrated imputation (Beaumont 2005). The latter
estimator does not require the knowledge of ¢, and p, in
the imputed data file but the domains must be specified at
the imputation stage, which may not be feasible in practice.

If the nonresponse model (4) contains only the intercept,
we have p, = p, where p denotes the overall response
rate. In this case, the bias-adjusted estimator (44) reduces to

?ﬁd) = ﬁ_l?l(d) +(1- ﬁ_l)T_lz WX Zi¥ s (45)

noting that ¥, =7,, where, under deterministic regression
imputation,

63

i :(z WiZiZ;/(;"'Zi)j_

ies

X z W, a,Z; ), /(;"'Zi) +z w,(I-a; )Ziyi* /(;"'Zi):|
=7,

Haziza and Rao (2005) obtained the bias-adjusted estimator

(45).

Concluding Remarks

For simplicity, we focussed on a single imputation class
but our GNM method readily extends to multiple imputation
classes by using separate imputations across classes. For
example, we could use weighted mean imputation within
classes using our modified weights W,. Also, our method
can be extended to the case of composite imputation (Sitter
and Rao 1997; Shao and Steel 1999 ) which uses different
imputations for missing item values depending on the
auxiliary information available. For example, ratio impu-
tation is used when an auxiliary variable x is observed and
some other imputation when x is not observed. In this case,
the IM approach based on the ratio model relating y to x
will not be applicable unlike in the case where x is observed
on all the sampled units.
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A Model for Estimating and Imputing Nonrespondent Census
Households under Sampling for Nonresponse Follow-up

Elaine L. Zanutto and Alan M. Zaslavsky '

Abstract

Sampling for nonresponse follow-up (NRFU) was an innovation for U.S. Decennial Census methodology considered for the
year 2000. Sampling for NRFU involves sending field enumerators to only a sample of the housing units that did not
respond to the initial mailed questionnaire, thereby reducing costs but creating a major small-area estimation problem. We
propose a model to impute the characteristics of the housing units that did not respond to the mailed questionnaire, to benefit
from the large cost savings of NRFU sampling while still attaining acceptable levels of accuracy for small areas. Our
strategy is to model household characteristics using low-dimensional covariates at detailed levels of geography and more
detailed covariates at larger levels of geography. To do this, households are first classified into a small number of types. A
hierarchical loglinear model then estimates the distribution of household types among the nonsample nonrespondent
households in each block. This distribution depends on the characteristics of mailback respondents in the same block and
sampled nonrespondents in nearby blocks. Nonsample nonrespondent households can then be imputed according to this
estimated household type distribution. We evaluate the performance of our loglinear model through simulation. Results
show that, when compared to estimates from alternative models, our loglinear model produces estimates with much smaller
MSE in many cases and estimates with approximately the same size MSE in most other cases. Although sampling for
NRFU was not used in the 2000 census, our estimation and imputation strategy can be used in any census or survey using
sampling for NRFU where units are clustered such that the characteristics of nonrespondents are related to the
characteristics of respondents in the same area and also related to the characteristics of sampled nonrespondents in nearby

areas.

Key Words: Missing data; Small area estimation; Iterative proportional fitting; Log-linear models; ECM.

1. Introduction

Sampling for nonresponse follow-up (NRFU) was an
innovation for U.S. Decennial Census methodology con-
sidered for the year 2000 (U.S. Bureau of the Census
1997a, b). Under current procedures used in 99% of house-
holds, the Census Bureau first mails or personally delivers a
questionnaire, to be returned by mail. Then field enumer-
ators attempt to contact all mail nonrespondents (about 35%
of those mailed). The workload of about 42 million
households makes this one of the most expensive census
operations.

Sampling for NRFU involves sending field enumerators
to only a sample of the nonresponding housing units. This
sample is either an unclustered element sample of non-
responding housing units (the “unit sample”) or a cluster
sample consisting of all nonresponding units in a sample of
the census blocks (small areas approximating a city block or
some compact rural area, averaging about 15 housing units).
This second stage of followup leads to the completion of a
questionnaire (through proxy response or imputation, if
necessary) for all sample housing units, except those that are
resolved to be vacant.

The potential cost savings of sampling are large, but it
would require estimating the characteristics of a huge

number of nonsampled nonresponding households, posing a
major small-area estimation problem (Ghosh and Rao 1994;
Rao 2003). We show that using appropriate models to
impute the characteristics of the nonsample nonrespondent
households, we may benefit from the large cost savings of
NRFU sampling while still attaining acceptable levels of
accuracy for small areas. Our strategy is to model household
characteristics using low-dimensional covariates at detailed
levels of geography and more detailed covariates at larger
levels of geography. To do this, households are first
classified into a small number of types. A hierarchical
loglinear model then estimates the distribution of household
types among the nonsample nonrespondent households in
each block. This distribution depends on the characteristics
of mailback respondents in the same block and sampled
nonrespondents in nearby blocks. Nonsample nonrespon-
dent households can then be imputed according to this
estimated household type distribution.

Although, for complex legal reasons, sampling for
NRFU was not used in the 2000 census, our estimation and
imputation strategy can be used for small area estimation or
imputation in any census or survey using sampling for
NRFU where units are clustered such that the characteristics
of nonrespondents are related to the characteristics of

1. Elaine L. Zanutto, Department of Statistics, The Wharton School, University of Pennsylvania, Philadelphia, PA 19104, U.S.A. E-mail:
zanutto@wharton.upenn.edu; Alan M. Zaslavsky, Department of Health Care Policy, Harvard Medical School, 180 Longwood Avenue, Boston, MA

02115, U.S.A. E-mail: zaslavsky@hcp.med.harvard.edu.
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respondents in the same area and also related to the
characteristics of sampled nonrespondents in nearby areas.
The related methodologies of Purcell and Kish (1980) and
Zhang and Chambers (2004) also use loglinear models to
estimate small-area cross-classified counts assuming that the
total populations are known and that auxiliary cross-
classified data is available at the small area level. We have
an additional source of information, specifically the
characteristics of the nonrespondents in the NRFU sample.
This allows us to model the relationship between respon-
dents and nonrespondents directly in some blocks.

Section 2 summarizes proposed strategies for imputing
missing data in this situation. Section 3.1 describes our
general sampling and estimation procedure. We present our
estimation and imputation model in Section 3.2, our
smoothing and estimation procedures in Section 3.3, and
evaluate our model by simulation in Section 4. Methods for
MSE estimation are summarized in Section 5, and Section 6
presents conclusions.

2. Previous Proposals for Imputing Census
Nonrespondents

Several methods have been proposed for imputing the
characteristics of nonresponding housing units. “Top-down”
strategies first estimate counts for aggregates of households
and then allocate them to small areas in a manner that
maintains consistency with the aggregates. Simple ratio
models (Fuller, Isaki and Tsay 1994, henceforth “FIT”),
Poisson regression models (Bell and Otto 1994), or more
complex loglinear models (as we propose here and in
Zanutto and Zaslavsky 1995b, a) are used to estimate counts
for small areas and detailed demographic groups for which
direct estimates are not possible. Like us, FIT classify
households into a modest number of types defined by
important characteristics (e.g., number of people, race,
tenure) and then estimate the number of households of each
type among nonsample nonrespondents. A complete census
roster is then generated by imputing the estimated number
of households of each type. The main difference between
our approach and that of FIT is that by using a loglinear
model rather than a stratified ratio model, we obtain more
flexibility in the detail of constraints imposed at various
levels of geography. Bell and Otto (1994) estimate the
number of people over 18 years old of each race (Hispanic,
non-Hispanic Black, Other) in each nonsample nonrespon-
dent housing unit but do not consider how to group imputed
persons into households or how to impute household-level
characteristics such as tenure. These ad hoc “‘top-down”
models incorporate at most a few household characteristics
and hence do not explicitly model household structure, but
they are designed to maintain the consistency of the
aggregates that are considered most important.

Statistics Canada, Catalogue No. 12-001-XIE

Schafer (1995) develops a “bottom-up” strategy in which
households are built up from individual persons and their
characteristics and relationships, each of which must be de-
scribed by its own model. These models describe the
population in more detail and can support full probability
(e.g., Bayesian) inferences about unobserved characteristics.
However, this approach, unlike the other, requires that a
fairly complex set of models be built before any imputations
can be made. Furthermore, in this framework it is more
difficult to maintain consistency between microdata and
aggregate controls. A combined strategy, however, could
use our models to produce nearly unbiased estimates by
household types and Schafer’s models to complete the
imputations.

3. Estimation Procedures and Models
3.1 Overview

In the first step of the imputation procedure, counts of the
number of nonsample nonrespondent households of each
type are predicted using a combination of logistic and
loglinear models for each block. This step is the topic of this
paper (and of FIT).

For modeling we classified households into types based
on a few important characteristics. Here we use 19 types,
one of which is “vacant.” The remaining 18 are defined by
the cross-classification of households by three size
categories (1-2 people, 3—4 people, 5 or more people), three
race categories (Hispanic, non-Hispanic Black, Other), and
two tenure categories (owner, renter).

To predict the number of vacant housing units among
nonsample nonresponding units in each block we (and FIT)
fitted a logistic regression model, recognizing that the
relationship between respondent and nonrespondent house-
holds is different for vacant than for nonvacant housing
units. Respondent vacants are simply those that were
identified as vacant by a postal service letter carrier, leading
to mail return of the original questionnaire. Their distri-
bution is likely to depend largely on housing characteristics
related to postal delivery, telling us little about the distri-
bution of nonrespondent vacants.

After modeling vacancies, we fitted a loglinear model to
predict the distribution of the nonvacant household types in
the remaining nonsample nonrespondent households at three
geographical levels. The block is the smallest unit and the
one for which estimated counts are calculated. The
“estimation domain” is the largest unit and is the area in
which estimation is conducted independent of other such
domains; in our application to the 1990 census, this is the
area for which the census was administered from one of 449
district field offices (DO) representing about 200,000
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households on average. Finally, we call an intermediate
level of geography an “area”, comprising a relatively ho-
mogeneous collection of contiguous blocks within an
estimation domain. In standard Census Bureau geography
these might be census tracts, block groups, or Address
Register Areas.

We lay out briefly the remaining steps that would be
followed to obtain census products using the estimates. In
the second step of the imputation procedure the predicted
counts would be rounded to integers. Unbiased schemes
(i.e., stochastic procedures that in expectation impute the
predicted number of units in each cell) for “controlled
rounding” (i.e., rounding in a two-way table while pre-
serving marginal totals) were developed by Cox (1987) and
George and Penny (1987). However, more research is
needed to determine if these methods can be modified to
round households counts while preserving all the margins
corresponding to effects in the loglinear model. This is an
active research topic due to its importance to statistical
nondisclosure.

Finally, detailed person and household information
would be imputed for nonrespondent households by sub-
stituting donor households with similar characteristics.
Donors can be chosen from the sampled nonrespondents,
the respondents, or a combination of both sources. Finally,
tabulations and microdata samples would be prepared from
the completed rosters.

3.2 Loglinear Model

We fitted a loglinear model to estimate the prevalence of
the various types of households among nonsample non-
respondent households in a DO, using data from the
respondents and from the nonrespondents in the NRFU
sample for that DO. The model predicts household types for
nonsample nonrespondent households in each block by
using information about the characteristics of respondent
households in the same block and the characteristics of
nonrespondent households, measured by the NRFU sample,
in surrounding blocks. To accomplish this, the loglinear
model contains interactions among the household charac-
teristics that define household type and response status at
various levels of geography.

This modeling strategy is motivated by the fact that when
a hierarchical loglinear model (i.e., one in which for every
included interaction effect, all main effects or interactions
marginal to it are also included) is fitted by maximum
likelihood, the fitted values for every margin or mean
corresponding to an effect in the model are equal to the
corresponding observed margins or means (Birch 1963).
Therefore, predictions for household types agree with
observed rates for the characteristics included in the model,
at the levels of geography and response status corresponding
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to the interactions included in the model. Also, because
model predictions for the included effects are constrained to
agree with observed rates based on a probability sample (the
NRFU sample), the corresponding estimates are consistent
and approximately unbiased. (Exact unbiasedness is not
obtained because of the nonlinearity of the prediction model
and because the number of nonsample nonrespondent
households in a block might be associated with some
characteristics of the nonresponding households in the
block.)

The loglinear model includes nested geographical factors
for blocks and areas. It also includes crossed factors
representing the demographic characteristics of households:
first-stage response indicator (respondent or nonrespondent
household), household type index, and model expressions in
the variables that define household types. These model
expressions are submodels of the fully interacted model
which defines household type (i.e., race x size x tenure).

We use the following notation:

i =block index (i =1, ..,
blocks in the DO),

j =index of household type (j =1, ..,
number of types),

r = first-stage (mail) response indicator,
r = 0 for nonresponding households
and » =1 for respondents,

a = a(i) =index for the area containing block

i(a =1, ..., number of areas),

=model expressions in the variables that
define household types where x, rep-
resents the full cross-classification de-
fining household types, x, and x, are
model expressions which are marginal to
x,, and x, is a model expression which
is marginal to x,. (This terminology is
explained below.)

number of

xe =X, (J)
k=1,2,3,4

We assume a loglinear model of the following form:

n;, ~Poisson(m,), log(m;,) = z; B (1)
where n,, and m,, are respectively the observed and ex-

pected counts for block i, household type j and response
status », and Z is the design matrix corresponding to the
following model formula:

X, +i*x, +i*r+r*x; +r*xaxx,. (2)

In the standard generalized linear models notation of
Wilkinson and Rogers (1973), the “*” operator indicates
that the main effects and all interactions that are marginal to
the given interaction are included in the model, so that this
model contains main effects for model expression x,,
response indicator », and block indices i and the
interactions i * x,, i * r, ¥ * x,, and r * a * x,.
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Because, in (1), x, interacts with area, the smallest level
of aggregation for the non-respondent data, it should
represent a fairly coarse classification of households in-
cluding only those household characteristics that are most
important to impute accurately at the area level. The x,
expression may include terms not included in x,, since it is
fitted at a higher level of geography where there is more
data available. Similarly, the x, expression might include
the most interactions, including the interaction of all
variables that define household type, since it is fitted at the
largest level of geography, using all available data. Finally,
x,, which can be different than x, since it interacts with i
instead of », should be less detailed than x; since it
interacts with block, a much smaller level of geography.
These guidelines are motivated by the fact that estimates of
interactions with i, », or a are determined by relatively
few observations and should be kept simple. Choosing
X,, x3, and x, as described above should improve the
precision of model estimates while preserving the most
important margins.

As an example of possible x,, ..., x, terms, suppose that
we define household type by a race x size X tenure cross-
classification. Then one possible specification of x,, x, and
X, 1S x; = race * size * tenure, x, = race * size + ten-
ure, x, = size * tenure, and x, = race+ size + tenure.
Allowing the x, ..., x, terms to be model expressions,
rather than just simple interactions, gives us a concise way
to represent a model containing all the desired interactions.
For example, a model containing an i * x, term, where x,
is specified above, includes both a block x race x size
interaction and a block x tenure interaction.

A heuristic interpretation of our loglinear model is that
we estimate the detailed distribution of household types
across the whole area (x, ) and then shift that distribution to
allow for the general characteristics of the block (x,), the
general differences between responding and nonresponding
households (x;), and the most important differences
between responding and nonresponding households in the
particular area (x,). All interactions could be included
except those of the form » * i * x, where x represents a
model expression in the variables that define household type
(i.e,such as x|, x,, x5, or x,). Interactions of this form
depend on the margins determined only by non-respondent
households in a single block and these are unavailable in
nonsample blocks under the block sample design, and based
on a very small sample under the unit sampling design.
Therefore our model specification excludes all » * i * x
effects, which are always inestimable (or poorly estimated,
in the household sample design). This model generalizes
two simple theories which are contained as submodels.
First, if there are no differences between blocks (i.e., the
loglinear i * x, and a * x, interactions are zero) then
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nonrespondent households in each block are imputed
according to the overall proportion of nonrespondent house-
holds in each of the x; categories in the NRFU sample,
through the 7 * x, effect. In other words, the imputations
are made using the same proportions in each block. Second,
if there are no differences between respondents and non-
respondents (i.e., no » * x; or r * x, interactions) then
nonrespondents are imputed in the same proportions as
observed in the respondents in each block.

Our general model formulation can accommodate many
definitions of area and household type and choices of model
expressions. Areas should be defined to be large enough to
contain adequate data to estimate the corresponding inter-
actions, but also relatively homogeneous. For example,
areas could be defined by a combination of geographical
contiguity and stratification by block-level covariates (such
as percent minority), in order to obtain more homogeneous
areas whose differences could be described by modeling,
Generalization to more than two levels of geography within
the estimation domain is also straightforward. Thus, for
example, we could interact another model expression x;
with a geographical unit intermediate between the area and
the block.

Fitting the model by maximum likelihood, the following
quantities are made equal to the corresponding observed
values: (1) fitted block counts (through the main effect for
block, i), (2) response rates by block (through the r * i
term), (3) household characteristic means overall (for x,
characteristics through the main effect term for x, ) and (4)
by block (for x, characteristics through the i * x, term),
and (5) household characteristic means for nonrespondents
overall (for x; characteristics, through the » * x; term)
and (6) for nonrespondents by area (for x, characteristics,
through the » * a * x, term). Thus, this model generalizes
the model used by FIT of block x type independence,
yielding unbiasedness at smaller levels of aggregation,
assuming that the margins and averages are estimated un-
biasedly from the data. The estimate for area is not exactly
the same as the usual unbiased estimate obtained by direct
estimation from the NRFU sample because the model
makes observed and fitted margins agree for the households
in sample. In effect, there is covariance (regression) ad-
justment that shifts the aggregate to account for observed
differences between respondent households in sample
blocks and respondent households in nonsample blocks, or
in the unit sampling design, between respondent households
in blocks with households in the NRFU sample and blocks
without households in the NRFU sample.

The idea of modeling household characteristics using
low-dimensional covariates at the block level and in more
detail at more aggregated levels is similar in concept,
although not in details, to the model described in Zaslavsky
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(2004). For use of loglinear weights to match sample
estimates of aggregates, see Brackstone and Rao (1976), Oh
and Scheuren (1983), and Zaslavsky (1988).

3.3 Estimation and Smoothing

We fit the model by maximum likelihood estimation
under the Poisson sampling model, which is equivalent to
fitting a multinomial logistic regression model. The fitting is
complicated by the fact that the data do not form a complete
block x response x type table because we have counts by
block, but not characteristics for nonsample nonresponding
households. In the block sampling design we lack char-
acteristics of all nonrespondents in some blocks and in the
unit sampling design we lack characteristics of some non-
respondents in almost all blocks. To fit the model we use a
modified iterative proportional fitting (IPF) algorithm
adapted to data that are partially classified in a part of the
dataset (Appendix).

With some data sets, some parameters may be inesti-
mable because the maximum likelihood estimates lie on the
boundary of the parameter space (infinite on the loglinear
scale, indicating a zero on the count scale) or because there
is no information for the parameter. Tailoring the model
specification in each estimation domain to remove inesti-
mable parameters is impractical in a census production
setting.

By introducing a small amount of prior information,
estimability of all parameters can be guaranteed. To do this,
we append a small amount of “pseudo-data” to the data for
each area, whose proportions by type are equal to those for
some surrounding area (the DO, in our simulations), by
adding these counts to the data table before fitting the
model. This implements an empirical Bayes analysis for
multinomial data with distribution f(ny,...,ny | Py
py) < [12, p, where n,, .., n, are the observed
number of households of each type in a block or area. If
{p,} have a joint Dirichlet prior distribution, f(p;,...,
py) < II2, pt', o, >0, the resulting posterior
distribution for the p,’s is Dirichlet with parameters
o,; + x, (Gelman, Carlin, Stern and Rubin 1995, page 76)
and posterior mode proportional to the parameters. Thus,
this empirical Bayes procedure is equivalent to adding
> o.; households to the area, where a; of these households
are of the i™ type. We fix the o, ’s to be proportional to
the observed proportions of each household type in some
surrounding area, so the observed distribution of household
types is smoothed by mixing it with the distribution for a
surrounding area, thus avoiding introducing bias at the level
of the larger area. This prior specification induces a prior on
the parameters of the loglinear model. See Rubin and
Schenker (1987), Zaslavsky (1988), and example and
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historical references in Clogg, Rubin, Schenker, Schultz and
Weidman (1991) for similar use of smoothing.

After estimating the model parameters, the next step is to
calculate predicted counts for each household type for the
nonrespondent households that are not in the NRFU sample.
Using the IPF algorithm, the predictions for the nonsample
nonrespondent households are obtained automatically by
applying the same fitting proportions to the partially
observed part of the table as to the fully observed part of the
table, so no further calculation is required (Appendix).

4. Simulations
4.1 Overview

Our simulation study evaluated the bias, variance and
MSE of the estimates of estimated demographic aggregates
(such as the number of households by race, size and tenure)
at various levels of geography, using estimated household
compositions for non-respondent households that are not in
the NRFU sample. Analytic evaluations are infeasible,
given the complexity of the models and sampling scheme,
the dependence of the performance of the model on the
actual geographical distribution of household types, and the
number of variations of the model that could be examined.

We used block-level data from three DOs from the 1990
U.S. Decennial Census; these constituted our estimation
areas. The simulations are similar in structure to those
described by Schindler (1993) or FIT.

The steps of the simulation are as follows:

1. Blocks or nonrespondent housing units are sampled
according to the NRFU sampling scheme.

2. A logistic regression model for vacant households is
fitted to the respondent households and the sampled
nonrespondent households.

3. The predicted number of nonrespondent households
that are vacant is calculated for each block.

4. A model for nonvacant types is fitted using the
respondent households and the sampled non-
respondent households.

5. The predicted number of nonsample nonrespondent
households of each nonvacant type are calculated for
each block.

6. Aggregates of interest are calculated based on the
predicted counts, and compared to the truth using loss
functions.

In our simulations, repeating these steps 30 times yielded
estimates of RMSE (defined in section 4.3) with adequate
accuracy to evaluate the performance of our model relative
to the alternative models. Specifically, the estimated coef-
ficients of variation of the estimated differences in RMSE
for the stratified ratio method (described below) and
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loglinear method are less than 0.05, except when the
difference between estimated RMSEs is very small,
resulting in a large coefficient of variation.

The performance of our proposed model is compared
with two alternative estimation methods, under both the unit
and block sampling designs. Each method first fits a logistic
regression model to estimate the number of nonrespondent
households that are vacant in each block. The first alter-
native, the “unstratified ratio method”, imputes households
for nonsample nonrespondent households in each block in
proportion to the distribution of household types among
nonrespondent households in the follow-up sample for the
entire DO. The second alternative, the “stratified ratio
method”, is a version of that in FIT. We first form strata of
approximately 82 blocks based on the racial composition of
the blocks, as described by FIT. (We use both respondent
and nonrespondent data to form strata, assuming, as in FIT,
that similar information would be available from admin-
istrative records. Stratification based only on respondent
information yielded similar results.) Then, in each stratum,
nonsample nonrespondent households are imputed to non-
vacant types in proportion to the frequency of the type in the
follow-up sample for that stratum.

We simulate each estimation method using a NRFU
sampling rate of 30%. In each stratum, we simulate NRFU
sampling by selecting a 30% simple random sample of
blocks for the block sampling design, and a 30% simple
random sample of nonrespondent households in each
stratum for the unit sampling design. The characteristics of
the nonrespondent households in these samples is assumed
to be known (i.e., as a result of follow-up operations). For
both our loglinear model method and the stratified ratio
method, we select a 30% sample of blocks or nonrespondent
households using simple random sampling without replace-
ment from each area.

We considered several loglinear model formulations. The
best model for both the block and unit sampling designs, by
the criteria described in Section 4.3, uses x, = size * race *
tenure, x, =race * tenure + size, x, =race * size, x, =
tenure. This model is used in the simulations.

To ensure the model can be fitted in every case and to
speed the convergence of the IPF, we smooth the data by
adding one hypothetical respondent household (“pseudo-
data”) to each block. This household is divided among the
18 nonvacant household types according to the overall DO
proportions of respondent households. Estimates using 5
households for smoothing were about as accurate as with
one, and more aggressive smoothing (adding 10, 15, 20 or
25 households per block) slightly increases errors in the
estimates. Also, although adding only a small fraction of a
household to each block is sufficient to ensure that the
model can be fitted in every case, using less than 1
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household per block drastically slowed convergence and
slightly increased the error in the estimates.

The three estimation procedures used the same logistic
regression model for vacancies. The covariates for each
block are the mail nonresponse rate, the percentages of
respondent households that are (separately) renters, apart-
ment dwellers, and of a minority race (either Black or
Hispanic), the average value of owner-occupied homes, the
average monthly rent for rental units, indicator variables for
each of the areas, and interactions between percentage of
respondent renters and average monthly rent, percentage of
respondent renters and average monthly rent squared (mean-
centered), percentage of respondent owners and average
home values, and percentage of respondent owners and
average home values squared (mean-centered). To avoid
computational problems arising from blocks with no non-
respondent vacant households, one hypothetical non-re-
spondent household is added to each block divided between
vacant and nonvacant according to their proportions in the
sampled nonrespondent households in the DO.

4.2 Data

We use short-form data from the 1990 census for three
DOs, whose characteristics are described in Table 1. The
race of a household is determined by the most prevalent race
in the household, usually (98% of households) the only race.
In DO 1 we grouped consecutive (and therefore contiguous)
block groups (clusters of contiguous blocks) into 94 areas
containing an average of 52 blocks and 1100 households.
For DOs 2 and 3, block group information was unavailable
so we formed areas by grouping consecutive blocks into
clusters containing an average of 50 blocks (on average, 548
households per area in DO 2 and 918 households per area in
DO 3).

Table 1
Characteristics of the Census District Office Areas
Used in the Simulations

DO1 DO2 DO3
Household 112,966 169,321 149,567
Blocks 4,907 15,470 8,167
Pseudo-areas 94 309 163
Non-Hispanic Black  14.4% 28.5% 1.3%
Hispanic 6.1% 1.0% 6.6%
Other  73.5% 59.4% 81.5%
Owner  63.8% 59.5% 52.6%
Renter  30.2% 29.4% 36.7%
Vacant 6.0% 11.1% 10.7%
Size 1 (1-2 people)  50.4% 46.9% 55.2%
Size 2 3—4 people)  31.6% 31.6% 26.2%
Size 3 (5+ people)  12.0% 10.4% 7.9%
Response Rate ~ 72.6% 65.3% 56.7%
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4.3 Measures of Bias, Variance, and Mean
Squared Error

Loss functions for our evaluations are based on the
relative error for household category ; (a type or combi-
nation of types) in geographic area i (a block or collection
of blocks):

=Y.
d, =——2" 3)
where Y, is the true number of households of category j in
geograph1cal unit i, Yw is the corresponding number of
households estimated from sample s (including those
observed in the sample and estimated by the model), and
.. 1s the total number of households in geographical unit
i.
We summarize bias in estimated counts for category j
and a level of geography (block, area, DO) with Root Mean

Weighted Squared Bias (RMWSB):
RMWSB? =

)

Y
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where S is the number of samples drawn and i =1, ..., [
where / is the number of geographical units. The second
term in the numerator removes a bias due to the finiteness of
the simulation. From a design-based perspective, we regard
the composition of each area as a fixed quantity, and only
sampling is random. Then bias is defined as the average
difference, over all possible samples, between the truth for
an area and the corresponding estimates, essentially the
model error for that area. Such error is inevitable since the
composition of the nonrespondents in any block is not
entirely predictable. A more serious type of bias would
involve systematic error in estimates for a collection of
blocks with similar composition. Although we have not
checked for all possible types of bias in this sense, the
model specification protects us against bias at higher levels
of aggregation because model estimates are constrained to
agree (approximately) with unbiased estimates for areas and
DOs.

As a measure of overall error, we calculate the Root
Mean Weighted Mean Squared Error (RMWMSE) for each
household category j, which is given by
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where Y, Yw, Y.,i, and S are defined as above. (The
two “means” refer to mean over geographical units (i) and
over samples (s).) We obtain a measure of the standard
deviation of the estimates for household category ; by

calculating the Root Mean Weighted Variance (RMWYV):

Sr (S - HE ) )}
2T

=RMWMSE? - RMWSB?. (6)

RMWV? =

Note that these MSE, bias, and standard deviation measures
are all estimates of expectations with respect to repeated
NRFU sampling from the given finite population of blocks.
These loss functions can be applied at various levels of
geography, reflecting the fact that the main use of block
level estimates is aggregation to form estimates at higher
levels of geography. With this in mind, these measures were
also chosen because they weight errors by the size of the
geographical unit. This leads to consistent estimates of error
when aggregating over geographical units, which is appro-
priate due to the arbitrariness of unit boundaries (Zaslavsky
1993). We base our measures on errors relative to the total
area [ population rather than the population in the target
category only, because the latter denominator inflates the
importance of small errors in blocks where the category
rarely or never appears.

4.4 Results

For simulated NRFU sampling using both the block and
unit sampling designs, estimates of the number of house-
holds with each characteristic are calculated at block, area,
and DO levels of geography using each of the three
estimation methods. The results for each method are rep-
resented by the shaded bars in Figure 1 for the unit sampling
design. (Results for the block sampling design are not
shown here, but the pattern of results are similar with the
RMWMSE being about 10% greater for all estimates.) In
this figure, each row of bar charts displays the RMWMSE
for block, area, and DO level estimates for one of the three
DOs. Each group of three bars represents the RMWMSE for
estimates of the total number of households for each of the
tenure categories, the household size categories and the race
categories using each of the three methods. Because all
three methods use the same logistic regression model to
predict the number of vacant nonsample nonrespondents in
each block, the vacant category is omitted from the plots.

RMWMSE with both the stratified ratio method and the
loglinear model was much smaller than with the unstratified
ratio method for most household characteristics at the block
and area level. Therefore, we confine further discussion to
comparison of the two former methods.
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The most dramatic differences appear for the tenure
categories at the block and area levels. In each DO, block
and area level estimates of the tenure categories from the
loglinear model have much smaller RMWMSE than the
estimates from the stratified ratio method, primarily because
the former had much smaller bias (RMWSB). Standard
deviations (RMWYV) were slightly larger for the loglinear
model under the unit sampling design, but about equal for
the two methods under the block sampling design. The
loglinear model had smaller bias for the tenure categories at
the area level because tenure is included in the model as an
area-level effect, x,. Stratification on race in the ratio
method reduces RMWMSE for the race categories at the
block level, but the two methods have comparable

RMWMSE for the race categories at the area and DO levels.
The stratified ratio method loses its advantage over the
loglinear model at the area level because the former does
not use any area-level information. Both methods generally
produce estimates with comparable RMWMSE at all levels
of geography for the size categories.

The statistical significance (under the simulations) of
differences in RMWMSE between the methods was eval-
uated using 7—tests. Almost all differences at the block and
area levels, excluding the vacant category, have two-tailed
p —values <0.001 and therefore cannot be attributed to
simulation error.
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Figure 1. RMWMSE for block, area, and DO level estimates for each household characteristic, using
the unit sampling design for DO 1, 2, and 3, with 30 simulated samples (“Ow” = Owner,
“R” = Renter, “B” = Black, “H” = Hispanic, “O” = Other race, “S1” = Size group 1 (1 -2

people), “S2” = Size group 2 (3 — 4 people), “S3”
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Size group 3 (5 or more people)).
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5. Assessment and Prediction of Model Error

Methods for estimation of MSE of fitted estimates using
sample data are briefly summarized here due to space
limitation; methods and findings are available from the first
author.

First, we developed analytic approximations that predict
the effect of changing the sampling rate on the accuracy of
our estimates without requiring additional simulations at
each rate. These can be useful for sample design. We
approximate the RMWMSE of block, area, and DO level
estimates at a new sampling rate under both the block and
unit sampling designs, assuming simulation results using
one sampling rate are already available, by combining
estimates of bias and variance at the current sampling rate
using two rescaling factors. The first factor reflects the
changed proportion of housing units that require estimation
under the new sampling rate, which affects the bias and
variance of the combined estimates. The other reflects the
effect of the sampling rate on the variance of the estimates
for the nonresponding units. Simulations demonstrated the
accuracy of predictions for RMWMSE using these approxi-
mations, except for some extreme extrapolations.

Using these results, we developed a cross-validation pro-
cedure to facilitate within-sample estimates of RMWMSE
for use in a production setting where the true characteristics
of the nonsample nonrespondent households are not known.
The follow-up sample in each areas is divided randomly
into C cross-validation groups (of blocks for block sam-
pling, and of households for unit sampling). Each cross-
validation group is dropped out in turn and the model is
fitted to the nonrespondents in the remaining C— 1 cross-
validation groups and the respondents in all C groups. We
can then estimate RMWMSE under the design simulated by
the cross-validation and project this estimate to the actual
sampling rate, or some other rate of interest, using the
approximations described in the preceding paragraph.
Simulations show that this produces accurate estimates of
RMWMSE at block and DO levels of geography, with some
overestimation at the area level. This method also provides
separate estimates of bias and variance that are shown by
simulation to be very accurate. These are useful for as-
sessing model adequacy since a poorly-fitting model would
be betrayed by a large component of MSE due to bias.

6. Conclusions

In the preceding sections, we have presented a model-
based approach to imputation of the characteristics of
nonresponding households in a census that were not
sampled for nonresponse followup. In simulations, our
loglinear model produces estimates with much smaller error

73

than two alternatives for some estimands, and is about
equivalent for others. These conclusions hold for both the
block and unit sampling designs. An advantage of our
approach is that models can be specified to constrain only a
few marginal tables or interactions of characteristics at the
finest levels of geography, where the data are sparse, while
fitting more detailed distributions of characteristics at higher
levels of geographic aggregation at which more data are
available. This is consistent with typical practice in release
of census data, which include minimal characteristics at the
block level but increasingly more detailed characteristics for
larger units.

Many important uses of the census involve estimation of
the population and its characteristics for small domains such
as legislative districts and planning areas for social services
(such as schools and clinics) and commercial development.
Even though these domains will not always align with the
areas used in census estimation, controlling the census
estimates to match unbiased estimates at several levels of
geography makes it more likely that estimates for policy-
relevant domains assembled from wholes or parts of these
areas will also be nearly unbiased. Our method has more
predictable aggregate properties than complex alternatives
such as hierarchical spatial modeling. Although the latter
might produce estimates with smaller MSE at the lowest
levels of geography, fitting such models and checking their
biases at various levels of geographic aggregation would
require extensive local tuning which is likely to be
impractical in a census production setting.

Our methodology is illustrated here in the context of a
NRFU sampling for the U.S. Decennial Census, but our
estimation and imputation strategy can be used for small
area estimation or imputation in any census or survey using
sampling for nonresponse followup with hierarchically
structured populations. We can also incorporate adminis-
trative records as covariates for predicting the characteristics
of the corresponding nonrespondent households (Zanutto
and Zaslavsky 2002). In that scenario, data from households
in the NRFU sample for which we have both census and
administrative records information are used to estimate the
systematic differences between the two information sources.
Under the same models, we impute the characteristics of
nonsample nonrespondent households. Using administrative
records through this modeling approach can improve the
accuracy of small area (block-level) estimates.

Although the discussion of sampling in the United States
census has been politically contentious, nonetheless in the
long run it seems likely that some form of estimation will be
used for nonrespondents. The potential might be even
greater in countries where population estimation already
makes substantial use of administrative records (Redfern
1989). Methods such as those described here that can
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combine information across data sources while reflecting
local diversity will be essential to such efforts.

Appendix

Iterative Proportional Fitting with Partially
Cross-Classified Data

A standard approach to fitting loglinear models to par-
tially cross-classified data uses an EM algorithm (Dempster,
Laird and Rubin 1977; Little and Rubin 2002, chapter 8), in
which in alternate steps (1) the expected counts are imputed
under the model and (2) the model is refitted to the observed
and imputed data, using iterative proportional fitting (IPF)
(Darroch and Ratcliff 1972) for models without closed-form
solutions. In the more efficient ECM modification of this
algorithm, only a single cycle of the IPF algorithm is taken
at each step (Meng and Rubin 1993).

For our application we developed a modified IPF
algorithm that is faster than the EM and ECM algorithms for
our models, which always include a block x response
interaction and never include any block x type x response
interactions. We found that our modified IPF algorithm
converges in approximately one half to two thirds the
number of cycles that ECM requires with less computation
per step (Zanutto 1998, Part 1, Appendix A). (Convergence
is declared when the predicted and observed values of the
minimal sufficient statistics of the model are sufficiently
close.)

Our algorithm takes advantage of the fact that partially
classified observations contribute to the likelihood only
through the total number of nonrespondent households in
each block. Therefore, to maximize this part of the like-
lihood we need only ensure that the fitted number of non-
respondents in each block equals the observed number,
which is automatic because the block X response interaction
is always included in our model.

The modified IPF algorithm fits the model to the fully
classified observations using an ordinary IPF algorithm,
ignoring the partially cross-classified observations. For the
block sampling design, this means that the model is fitted
using the fully observed part of the block x type x response
table using an ordinary IPF algorithm, ignoring the partially
classified part of the table. Predictions for the partially
cross-classified cells are obtained by applying the same
fitting proportions to those cells as to the fully observed part
of the table. Finally, predictions for the partially cross-
classified cells are scaled so that the fitted number of
nonrespondents in each block equals the observed number.
For the unit sampling design, the same algorithm is used,
viewing the collection of respondent households and
nonrespondent households in the follow-up sample as
analogous to the fully-observed part of the table in the block
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sampling design and viewing the blocks with no non-
respondents in the follow-up sample as analogous to the
out-of-sample blocks in the block sampling design. This
gives predictions for nonrespondent households in blocks
with no nonrespondents in the follow-up sample. Predic-
tions for nonrespondent households in blocks with one or
more nonrespondent households in the follow-up sample are
obtained by applying the predicted distribution of household
types among sampled nonrespondent households in each of
these blocks to the corresponding nonsample nonrespondent
households in these blocks. For more details about in the
unit sampling case, see Zanutto and Zaslavsky (2002).

We now illustrate the IPF algorithm for the block
sampling design under a Poisson model like (1) with
log(m,,) = z;,B where m;, represents the expected
number of households in block i of household type j of
response status », and Z is the design matrix corre-
sponding to the model expression i * x + i * r + r * Xx.
This is a simplified version of the model in (2) with only
one level of geography and only one “x” representing the
full cross-classification defining household types. We
observe n, if r =1 orif r=0 and i € S, but only
n;, if i¢S, where S represents the set of blocks
selected for the NRFU sample.

The IPF algorithm to fit this model starts with initial
estimates r?z,.(j)., =1 for all i, j, » and contains the
following three steps in cycle 7 :

1 Al ni+r . . . .
Lty | ifieSorif igS, r=1
Step 1: m;,° = m;,,
i, if igS,r=0
t+— n,
A j+ . .
1, . ifieS
t+—
2 AN
) At+§ _ m,.j+
Step2: m,”> =
t+1 n
L Mip o
> —| if igS
Ly
g,
t+= n, .
TS BN 3 +j1
Step 3: vy =, >
L
m

2 E n..
At AH'E ies o0
- 2
t+=

s 3
Ziesmijo

The scaling factors in each step are based only on observed
counts.
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These steps are repeated until the estimates of the
minimal sufficient statistics for the model, excluding 1, ,
for igS,r=0 (ie, m,,, for ieS and ig¢ S,r=
1, m,, forieS,my; forigsS,m,;, and X sm;,)
are sufficiently close to their observed values. Denoting the
step at which this occurs as ¢°, the final step in this
algorithm is to set

I’;lt* ni+r
At el _ ijr

ijr mi+r

ifigS, r=0

*
~t

n, otherwise,
to ensure that estimated blockxresponse margin (i * r) for
i ¢ S, r = 0 equals the observed margin.

This IPF algorithm produces estimates that converge to
the maximum likelihood estimates of the model parameters
(Zanutto 1998, Part 1, Appendix A). The second case in
Step 2 is not needed to maximize the likelihood but is
included to obtain predictions for the nonsample nonre-
spondent cells (i.e., i ¢ S, r = 0).
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The 2006 Reverse Record Check Sample Allocation

Alain Théberge '

Abstract

Sample allocation can be optimized with respect to various goals. When there is more than one goal, a compromise
allocation must be chosen. In the past, the Reverse Record Check achieved that compromise by having a certain fraction of
the sample optimally allocated for each goal (for example, two thirds of the sample is allocated to produce good-quality
provincial estimates, and one third to produce a good-quality national estimate). This paper suggests a method that involves
selecting the maximum of two or more optimal allocations. By analyzing the impact that the precision of population
estimates has on the federal government’s equalization payments to the provinces, we can set four goals for the Reverse
Record Check’s provincial sample allocation. The Reverse Record Check’s subprovincial sample allocation requires the
smoothing of stratum-level parameters. This paper shows how calibration can be used to achieve this smoothing. The
calibration problem and its solution do not assume that the calibration constraints have a solution. This avoids convergence

problems inherent in related methods such as the raking ratio.

Key Words: Calibration; Raking ratio; Reverse record check; Sample allocation; Smoothing.

1. Introduction

The Canadian Census of Population is conducted every
five years, most recently in 2001. The Reverse Record
Check (RRC) measures the undercoverage and part of the
overcoverage in the Census. For the next RRC in 2006, it is
hoped that most of the census overcoverage will be
measured by another survey, the Automated Match Study,
which is more efficient for this task. This should make it
possible to optimize the RRC sample allocation for
undercoverage measurement. RRC coverage estimates are
used in conjunction with census counts to produce
population estimates. The population estimates are used for
various purposes; for example, the federal Department of
Finance uses them to calculate the equalization payments
that the federal government makes to the provincial
governments.

Traditionally, one consideration in allocating the RRC
sample among the provinces has been to balance the need
for a good-quality estimate of the national rate of persons
missed by the Census and the need for good-quality
estimates of provincial rates for use in producing Statistics
Canada’s population estimates.

It was hoped that this approach would also meet the need
for good-quality equalization payment estimates (they are
estimates because they depend on population estimates), but
this has never been verified. The federal government makes
equalization payments to the have-not provinces. In this
paper, we examine the impact that the provincial sample
allocation has on the quality of equalization payment
estimates.

If the variance of a variable of interest is the same in
every province, we can obtain an optimal allocation for a

minimum-variance national estimate if the sample size is
proportional to the frame size for province p, N,. An
allocation that produces provincial estimates of equal
variance is one where the sample size is constant
(proportional to Ng). One way often used to balance the
two needs is to make the sample size proportional to Nll,/ 2
A different method of achieving this balance has been used
in the past by the RRC: part of the sample is allocated so as
to yield provincial estimates of equal variance, and the other
part is allocated so as to produce a minimum-variance
national estimate. Traditionally, about two thirds of the
sample is allocated in such a way as to produce provincial
estimates of equal variance.

In this paper, we propose a new method of obtaining a
provincial allocation which balances two or more goals.
That method involves computing a distinct allocation for
each goal, possibly with a different total sample size for
each allocation; we obtain the final allocation, which should
satisfy every goal, by taking the maximum sample size over
each of the distinct allocations for each province.

The optimal subprovincial allocation is simply given by
the Neyman allocation. The difficulty lies in predicting the
variance in relatively small strata, or more precisely, in
predicting the totals (number of persons missed by the
Census, number of RRC non-respondents) on which the
variance depends. For each province, the approach taken in
this paper is to start with more stable national values at the
cell level (age x sex x marital status) and scale them so that
the totals agree with the provincial values for each age
group, for each sex and for each marital status. This goal is
reminiscent of an iterative raking procedure introduced by
Deming and Stephan (1940), also used by Brackstone and
Rao (1976). Deville and Sarndal (1992) showed how
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calibration can be used to achieve the same result. In the
case of the RRC, calibration will be used even though the
cells cannot be put in a convenient three-dimensional matrix
because the age groups differ for each marital status. The
raking ratio method sometimes fails to converge because the
constraints cannot be satisfied. By stating the calibration
problem as in Théberge (1999), we allow for the possibility
that the constraints are inconsistent, and this does not cause
convergence problems. In addition, if we use the Moore-
Penrose inverse as part of the solution, the constraints can be
linearly dependent.

In the next section, we will explore the relationship
between population estimates and equalization payments.
As we will see, the sample allocation problem entails
balancing four goals. In Section 3, we use an approximate
variance formula that relies on a design effect to determine
the optimal allocation for each goal. We determine the value
of the design effect empirically in Section 4. Section 5
explains how a final allocation can balance individual
allocations for separate goals. Finally, the subprovincial
allocation is addressed in Section 6. The sample allocation
for the three territories is not discussed in this paper.

2. Impact of Population Estimates on
Equalization Payments

Statistics Canada is responsible for producing population
estimates. One important use of those population estimates
is in computing the equalization payments made by the
federal Department of Finance. Although Statistics Canada
is not directly concerned with the formula for equalization
payments, it is still relevant to examine how the precision of
the population estimates affects the precision of the
equalization payments. The impact that the sample
allocation has on the precision of the population estimates
has been studied for many years; in this paper, we will also
examine how the sample allocation affects the precision of
the equalization payments.

The RRC is the survey used to measure the rate of
persons missed by the Census. Traditionally, the RRC’s
sample allocation has been designed to achieve a
compromise between having a minimum variance for the
national estimated undercoverage rate (goal I) and having
equally low variances for the estimated undercoverage rates
of the provinces (goal II). Two more goals will be added as
we examine the impact that the sample allocation has on the
precision of the equalization payments.

The formula used to calculate the equalization payments,
before any smoothing based on moving average, is
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@.1)

32: stdj_LP’
ST, Py P )7

std P

where E, is the equalization payment for beneficiary
province p (at the time of writing, all provinces except
Ontario and Alberta), R is the total revenue (all provinces)
from revenue source j, 7, is the total tax base for revenue
source j, T, ; is the tax base of the standard provinces (all
provinces except the Atlantic provinces and Alberta) for
revenue source j, P, is the population of the standard
provinces, 7, is the tax base of beneficiary province p for
revenue source j, and P, is the population of beneficiary
province p.

To measure the influence that population estimates have
on the equalization payments, we will rewrite equation (2.1)

as
PP
Ep =| —|Cy —Kp, (2.2)
std
where
3 RT..
Cstd = z thbtdj
J=1 4
and
33 R.T
K,=y-"22.
p jZ::l T;j

We note that the population of Alberta has no impact on
the equalization payment of any beneficiary province. The
population of Ontario only affects the equalization payment
through P,,. For the Atlantic provinces, their equalization
payment varies linearly with their population, since their
population does not affect P,,. If we assume P, is known,
we can say that an error of one person in a beneficiary
province’s population has an impact of C, /P, dollars on
its equalization payment, for any beneficiary province. This
does not mean that the equalization payment of a
beneficiary province only depends on its population and not
on the population of the standard provinces. However, as we
will see, most of the sampling error in the equalization
payment comes from the sampling error in the estimate of
the beneficiary province’s population, and relatively little
comes from the sampling error in the estimate of the
standard provinces’ population.

If symbols with hats represent estimates, then from (2.2),

P 2
V(Pp)+(P—"J V(Py)
V(E,)=Cly— W (2.3)
Pstd P

-2—"-Cov(P,, Py)

std
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Because stratification is done separately for each
province, for a beneficiary province p, which is not one of
the standard provinces, we have, ignoring interprovincial

migration, Cov (If’p, P,)=0, whereas Cov (If’p, P)=
V(If’p) for any of the standard provinces. We can compute

an approximation by leaving out the last two terms of (2.3):

V(Ep)z{gﬂj V(P).

std

(2.4)

Using data from the 2001 RRC, we can verify that the
standard deviation of the equalization payment derived from
(2.4) differs from that derived from (2.3) by no more than
7%, except for two beneficiary provinces: Newfoundland
and Labrador, for which the approximation underestimates
the standard deviation by 11%, and Quebec, for which the
approximation underestimates the standard deviation by
12%.

As we can see from equation (2.4), a sample allocation
that produces equal variances for beneficiary provinces’
population estimates also produces equal variances for
beneficiary provinces’ equalization payment estimates.
However, having equal CVs for the beneficiary provinces’
population estimates does not guarantee equal CVs for the
beneficiary provinces’ equalization payment estimates,
since from equation (2.2), E, is not directly proportional to
P,, because K, is not zero. Having equal CVs for the
beneficiary provinces’ population estimates is still a goal
worth pursuing, since it ensures confidence intervals of
equal length for the equalization payment per person.
Indeed, because of the use of the approximation (2.4), if the
2001 situation recurs in 2006, the confidence interval for
Newfoundland and Labrador will be 11% too short (that is,
the precision for the equalization payment per person will be
poorer than for other beneficiary provinces), while the
confidence interval for Quebec will be 12% too long (that is,
the precision for the equalization payment per person will be
greater than for other beneficiary provinces). Also, if we
ignore interprovincial migration, then the provincial
population estimates are independent and the variance of the
total equalization payment is minimized if and only if the
variance of the total population of beneficiary provinces is
minimized.

We are attempting to find a provincial sample allocation
that minimizes the variance of the total equalization
payment or, equivalently, the variance of the total popu-
lation of beneficiary provinces (goal III). We also want to
find a provincial sample allocation that produces equal CVs
for each beneficiary province’s population estimate (goal
IV), in order to achieve equally good precision for the
equalization payment per person.

Most of the variance in population estimates is due to the
variance in the undercoverage estimates. If we ignore the
contribution that overcoverage makes to the variance of the
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population estimate, then it is easily verified that the
standard error of the estimated undercoverage rate equals
the CV of the population estimate. Goals I and II can then
be restated as follows: minimize the CV of the national
population estimate, and produce provincial population
estimates with equal CVs. The difference between goals 11
and I, and between goals IV and 11, is that one applies to
beneficiary provinces, and the other to all provinces. In what
follows, we will indeed assume that the variance of the
population estimates equals the variance of the under-
coverage estimates.

The goals of the provincial sample allocation are
summarized in Table 2.1.

Table 2.1
The Four Goals of the Provincial Sample Allocation
Goal Description (equivalent description)
I Minimize the variance of the estimated nation-

al undercoverage rate. (Minimize the CV of the
national population estimate.)

II Produce equal variances for the provinces’
estimated undercoverage rates. (Produce pro-
vincial population estimates with equal CVs.)

I Minimize the variance of the total equalization
payment (Minimize the variance of the esti-
mated total population of beneficiary prov-
inces).

v Produce equal variances for the equalization
payment per person for each beneficiary prov-
ince (Produce equal CVs for the population
estimate for each beneficiary province, or
produce equal variances for the estimated
undercoverage rates of the beneficiary prov-
inces).

3. Optimal Provincial Sample Allocation

In this section, we will first describe the notation we plan
to use, and then we will discuss approximate variance
formulae for population estimates and estimated under-
coverage rates. We will explore the issue of optimality with
respect to the four goals mentioned above.

Five sample frames are used for the RRC in the
provinces: the census frame (people enumerated in the
previous census), the birth frame (intercensal births), the
immigrant frame (intercensal immigrants), the non-
permanent resident frame and the “missed” frame. The
“missed” frame is made up of the sampled persons of the
previous RRC who were missed by the previous census.
With their weights, they represent the subpopulation of
enumerable persons not covered by any of the other four
frames. Each frame within each province is stratified
separately. A stratified random sample is selected in each
frame. All persons from the “missed” frame are included in
the sample.
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Let U,, be the number of undercovered persons in
stratum /4 who are classified in province (of classification) p.
Similarly, let £,, and O,, be, respectively, the number of
enumerated and overcovered persons in stratum 4 who are

classified in province p, and B, =U,, +E, —O,,. The
undercoverage rate for province p can then be written as
R,=U,IP,, (3.1)

where U, =%,U,, and P,=%,F, . We see that P,
equals P, as defined in the preceding section.
An estimator of the undercoverage rate for province p is

A A

R,=U,/P,,

P

(3.2)

where Up and Pp are estimators of U, and P,
respectively. Linearization gives

2

V(R );L 140 )+£V(13) . (33)
P P2 P P2 P

-P -P

The second term in brackets is negligible in comparison
to the first; therefore,

~ 1 U,(N,=U,)
V(R )=~ — #5
(®y) Pf,zh: n,

(3.4)

where N, is the size of stratum 4, and 7, is the sample size
in stratum /4. This ignores the finite population correction
factor. In what follows, we will assume that there is no non-
response and that there is only one stratum per province of
selection (no stratification by frame, age, sex, efc.). This
assumption will of course be dropped in Section 6, which
deals with sample allocation to subprovincial strata. To
compensate for the effects of subprovincial stratification and
non-response, we introduce a design effect, D,. We assume
that this design effect varies only with stratum #4; in
particular, the same design effect is used to represent the
variance of the estimated number of persons selected in
stratum /4 who are undercovered in province p, for all p. The
variance (3.4) can be approximated by

N o pU, (N, -U
V(RAp);Lzz WUy (N, hp)’

(3.5)
Pp h=1 nh
and
N w pU, (N, -U
V(Up);z h hp( h hp)’ (36)

h=1 n,

where the summation this time is over the provinces of
selection.

Goal I:
From (3.5), we have
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1 S DhUhA(Nh _UhA)

V(R)=— 3.7

(R) P ; " G.7)
where P =%\ P, ,R=U/P,U =% U, and
U, =%,.U,,. This variance of the national estimated

undercoverage rate will be minimized if 7, is proportional
to DU, (N,-U,) =N, DR, (1-R,), where R, =
U, /N, . Therefore, the optimal allocation for goal I of a
sample of total size n; is

N, /DpRpA(l—RpA)
Il 10
ZIN"‘ /DpRpA (1-R,)
P

This is an improvement over the formula used for the
2001 RRC (see Clark 2000), where no design effect was
applied to the part of the sample allocated to provide the
best Canada-level estimate. In addition, for the 2001 RRC,
n,, was proportional to the projected population in province
p. It makes sense for n, to depend on the size of the
provincial frames; it should also depend on the provincial
distribution of the undercoverage.

=n P = 1, veey 10. (3.8)

pl

Goal II:

We can use equation (3.5) to compute the values of n,
that yield the same variance for the estimated provincial
undercoverage rates. That problem has 10 equations in 10
unknowns. There is also another difficulty: obtaining
sufficiently precise estimates of the U, for p#h,
especially if p is a small province. Although in many cases
it is reasonable to assume that the rate of undercovered
persons in a small province p, R,=U,/P,, that was
observed in one census, is a good predictor of the rate in the
next census, the individual values of the U,, for p # h are
harder to estimate and still harder to predict. Instead, we will
assume that U,, =0 for p#h andthat U, =U ,, which
will mitigate the effect that outliers have on the expected
variances. The provincial estimates of the undercoverage
rate will then be of equal variance, if n,, for A=p, is
proportional to (1/P;)D,U ,(N,-U,)=D,R, (N,/
P, —R ). Therefore, the optimal allocation for goal Il of a
sample of total size n,, is

D,R,(N,/P,~R,)

10
ZIDPRAP (N,/P,-R))
P

n =Ny

p =1 ..,10. (3.9

pll

Note that in the 2001 RRC, for the part of the sample
allocated to ensure equal precision of the provincial
estimates, the sample sizes were set proportional to
D,R,(1-R,) (see Clark 2000). Using N, /P, instead of
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1 takes into account not only those units which are in the
province’s frame and leave the province’s population but
also those units of the province’s population that are not in
the province’s frame, leaving the design effect to account
only for non-response and the sample design. In 2001,
adjustment for frame units leaving the population was made
through the design effect, and no adjustment was made for
population units not in the frame.

Goal III:

The estimate of the total population of beneficiary
provinces has a variance equal to
. . 10 _
V(Pben ) = V(U ben) = z . theﬂ (Nh then )

h=1 n,

, (3.10)

where P, = Zi:lea Ulben = Zi:thp and U, =
iU , are sums over the eight beneficiary provinces (we
assume that the beneficiary provinces are numbered
p=1,..., 8, and the non-beneficiary provinces are numbered
p=9, 10). Equation (3.10) is minimized if n,, for
h=1,...,10, is proportional to \/Dh Uiben (N, —Ujpen) =
N, \/ Dy Rypen (1 = Ryppe), Where Ry, = Uppey/ N, There-
fore, the optimal allocation for goal III of a sample of total

size ny, 1s

Np\/Dp pren (1 - pren)
1

0
zll NP \/DP pren (1 - pren)
p=

Rpm = My

p=1.,10. (311)

Note that because units selected in one province can be
classified in another province, R, and 7, are not
necessarily zero when p is a non-beneficiary province.

Goal IV:
From equation (3.6), we have
1 &% DU, (N, _Uhp)

Cr(p,) = P—Jz

p \ h=1 n,

(3.12)

We can use this equation to compute the values of n,
that yield the same coefficient of variation for the
beneficiary provinces’ population estimates. That problem
has eight equations in eight unknowns. Again here, we have
a second difficulty: obtaining sufficiently precise estimates
ofthe U,, for p # h, especially if p is a small province. As
we did for goal II, we will assume instead that U,, =0 for
p#h and that U, =U, Beneficiary provinces’
population estimates will then have equal coefficients of
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variation if n,, for h=p, is proportional to (1/ Pf,)
Dp‘UAp(Np - U‘Ap) =D,R,(N,/ P,-R)). Therefqre, the
optimal allocation for goal IV of a sample of total size n,,
is

D,R,(N,/P,~R,)

p=1..,8(.13)

nyy =Ny

8
>.D,R, (N, P, ~R,)

with the two
n,y=0,p=9.10.

It is worth noting that 7, /n,, is constant for all eight
beneficiary provinces. This shows that goal II (equal
precision of the estimated provincial undercoverage rates),
which is a traditional goal of the RRC sample allocation,
largely overlaps with goal IV (equal precision of the
beneficiary provinces’ equalization payments per person).
We will see in Section 5 that n,/n,;, for the eight
beneficiary provinces, is nearly constant as well. This shows
that goal I (maximum precision of the estimated national
undercoverage rate), which is a traditional goal of the RRC
sample allocation, largely overlaps with goal Il (maximum
precision of the total equalization payments).

non-beneficiary  provinces having

4. Design Effect

Standard errors for the 2001 RRC estimates were
computed using the Generalized Estimation System. Those
standard errors take into account the RRC’s sampling plan
and non-response by assuming that the respondents are
selected with a multi-stage sampling plan. A comparison of
the standard error derived from (3.6) and the standard error
computed by the Generalized Estimation System is
presented in Table 4.1. A design effect equal to the inverse
of the cube of the response rate for the province of selection
was used for this comparison.

The table shows that the standard error for Prince
Edward Island derived from (3.6) is 39% higher than the
standard error computed by the GES; this is due to an outlier
which affects the equation (3.6) estimate more than it affects
the GES estimate. For most provinces, the equation (3.6)
standard error is close to the GES standard error. These
empirical results show that the design effect in equations
(3.5) and (3.6) is approximately equal to the inverse
response rate cubed. This suggests that a sample size of “n”
units with response rate 7 ” yields the equivalent of 7 x7”
units rather than the expected nxr, because non-
respondents are concentrated among persons missed by the
Census. The GES takes into account the fact that
undercovered persons are less likely to respond. This
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decline in precision due to non-response occurs even though
the actual sampling plan is more efficiently stratified than
the assumed sampling plan of one stratum per province.

Théberge: The 2006 Reverse Record Check Sample Allocation

The final sample size allocated to province p is simply
n, =max (M, My, My Ny) P =1, ., 100 (5.1)

Whether we use the maximum of the four sizes as in
(5.1), a weighted arithmetic mean, or a weighted geometric
mean, each method uses four arbitrary parameters (three if

the total sample size is fixed). For the maximum method,
higher relative values of n; (or of ny, ny or ny) make
goal I (IL, III or IV respectively) more important.

Table 4.1
Comparison of Standard Errors

Standard error  Standard error  (3.6)

of under- of under- SE

D= coverage coverage /

Response (response estimate from  estimate from  GES

Province rate rate)” (3.6) GES SE
N.L. 0.97 1.08 1,783 1,689 1.06
PEL 0.97 1.09 1,021 734 1.39
N.S. 0.95 1.15 3,903 3,955 0.99
N.B. 0.96 1.13 3,272 3,229 1.01
Que. 0.95 1.17 19,915 19,664 1.01
Ont. 0.92 1.28 31,502 31,602 1.00
Man. 0.95 1.15 4,762 5,115 0.93
Sask. 0.96 1.12 3,921 3,840 1.02
Alta. 0.93 1.25 10,493 10,505 1.00
B.C. 0.91 1.34 14,619 14,763 0.99
Can. 0.94 1.20 42,074 42,041 1.00

Table 5.2 presents an example with nr; =30,000,
ny = 64,000, ny =25,000 and n;,, =48,078.

The resulting total sample size is 70,028. Figures in bold
represent the maximum for the four allocations, 7,,. Small
changes in n; would affect only the final allocation for
Quebec. This suggests that with the sample sizes n;, ny,
ny and ny as chosen above, the final sample size
allocated to Quebec is dictated by goal III (a precise
estimate of the total equalization payment). Similarly, the
final sample size allocated to Ontario is dictated by goal I (a

There have been no similar studies comparing the design
effect and the non-response rate in previous RRCs. The
weight adjustment method used to compensate for non-
response is different, and the nature of non-response is
significantly different from what it was before 2001.

5. Final Provincial Sample
Allocation and Example

Table 5.1 shows the parameter values that will be used in
the example. The values of N , are projections of RRC
frame size for 2006; the other parameters are based on 2001
RRC data.

As we might expect, the values of R hen 10 Ontario and
Alberta show that few units selected in those two provinces
are classified as missed by the Census in beneficiary
provinces.

precise estimate of the national undercoverage rate). The
final sample size allocated to Alberta is dictated by goal II
(equal variances for the provinces’ estimated undercoverage
rates). The final sample sizes of the other provinces are
dictated both by goal II and by goal IV (equal precision of
the estimated equalization payment per person). As noted in
Section 3, n,;/n,, is constant for all eight beneficiary
provinces. In the example above, because of the “judicious”
choice of n, the constant is 1. Lowering n, would
decrease Alberta’s final sample size, but not that of other
provinces. We note also that 7, /n,;; does not vary much
for the eight beneficiary provinces. The addition of goals 111
and IV (relating to equalization payments) allows us to
control Quebec’s sample size and Alberta’s sample size
separately. When only goals I and II were used, Quebec’s
sample size tended to be closely tied to Ontario’s, while
Alberta’s sample size was closely tied to that of the other
provinces.

Table 5.1
Parameter Values

N

D

Py

R,

R

Province P P 12 pben
N.L. 551,987  1.0804 524,722 0.0339 0.0464 0.0368
P.E.L 145,173 1.0882 132,473  0.0334 0.0334 0.0307
N.S. 995,651 1.1527 947,099  0.0492 0.0464 0.0440
N.B. 797,488  1.1345 736,129  0.0493 0.0466 0.0440
Que. 8,079,167 1.1740 7,381,352  0.0510 0.0471 0.0460
Ont. 13,423,132  1.2752 11,702,797  0.0653 0.0565 0.0017
Man. 1,262,547  1.1558 1,136,146  0.0466 0.0437 0.0392
Sask. 1,082,238  1.1223 996,562  0.0437 0.0430 0.0402
Alta. 3,373,128 1.2478 3,010,105  0.0490 0.0403 0.0028
B.C. 4,570,444  1.3369 4,014,502 0.0761 0.0669 0.0620
Can. 34,280,955 1.2039 30,581,887  0.0587 0.0524 0.0258
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Table 5.2

Provincial Sample Allocation with
n; = 30,000, n; = 64,000, ny = 25,000, and n;, = 48,078

83

Province n,p 1 npm nprv ny, Mot My
N.L. 427 3,816 546 3,816 3,816 0.78
PE.L 96 3,956 132 3,956 3,956 0.73
N.S. 796 5,822 1,107 5,822 5,822 0.72
N.B. 634 5,921 881 5,921 5,921 0.72
Que. 6 562 6,399 9,262 6,399 9,262 0.71
Ont. 12,385 9,220 3,148 0 12,385 393
Man. 982 5,867 1,331 5,867 5,867 0.74
Sask. 823 5,234 1,139 5,234 5,234 0.72
Alta. 2,622 6,702 1,015 0 6,702 2.58
B.C. 4,673 11,063 6,440 11,063 11,063 0.73
Total 30,000 64,000 25,000 48,078 70,028

An allocation method that uses equation (5.1) and a table
such as Table 5.2 makes it clear why a province’s sample
has to be a certain size. For example, if we look at the final
sample allocation in Table 5.2 and decide that 5,867
observations in Manitoba is insufficient, then we have to
specify the goal for which they are insufficient. If we want
to improve on the results for goal II (or goal IV), we also
have to increase the sample size in all Atlantic provinces
and all western provinces (or in all Atlantic provinces and
all western provinces except Alberta).

6. Subprovincial Sample Allocation

Although it is evident from equation (3.5) that the
subprovincial sample allocation in one province of selection
affects the variances of other provinces’ estimates, we will
try to optimize the allocation in one province only for that
province’s estimate. In other words, our problem for each
province p is to minimize

2

j < [strata of province n,
of selection p

DhUhp(Nh _Uhp)

(6.1)

subject to the constraint

n,=n P
J < [strata of province
of selection p

where n, is a previously determined total sample size for
province p. Note that the sample size allocated to the
“missed” frame is fixed, which means that in what follows,
the “missed” frame strata are ignored, and 7, excludes the

“missed” frame sample size. The solution to that
minimization problem is
D.U.(N.-U.)
n.=n, {2V, Ny Ui, (6.2)

Z \/DhUhp(Nh _Uhp)

j < [strata of province
of selection p

for each stratum A" in province of selection p.

As we saw in Section 4, there is empirical evidence at the
provincial level that the factor D, is inversely proportional
to the cube of the RRC response rate. For the 2001 sample
allocation, it was assumed that D, varied with the inverse
of the response rate. To limit the shift of sample, relative to
2001, from strata with a high response rate, such as census
frame or birth frame strata, to strata with a low response
rate, such as immigrant frame or non-permanent resident
frame strata, we will make D, proportional to the inverse of
the square of the response rate in stratum /4. Note that here,
in contrast to the assumption we made in Section 3, factor
D, compensates only for non-response; it does not
compensate for the stratification since it is defined at the
stratum level. This is another reason for choosing a factor
smaller than the inverse of the cube of the response rate.

As was the case in the 2001 sample allocation, we are
faced with the problem of reliably projecting the 2006
values of U, and D, for every stratum A. Since the birth
frame, the immigrant frame and the non-permanent resident
frame each have only one stratum per province, we plan to
use the 2006 sizes for those strata and the 2001
undercoverage rates and response rates, along with some ad
hoc adjustments for the less populous provinces if
necessary. A similar procedure can be used for the Indian
reserve strata of the census frame. The other census frame
strata are based on sex, marital status (married, not married)
and age group. For these strata, using the same age groups
for each sex and each marital status, it would be possible,
for each province, to rake the national projections to
margins of provincial projections, and use the raked values
in equation (6.2). More precisely, to produce projections for
U,, forall strata 4 in province of selection p, we would first
take the 2001 estimated rates and the 2006 strata sizes and
compute a projection, for each cell (sex x marital status x
age group), of the number of missed persons, classified in
the province where they were selected. Those national
figures could populate the cells of a three-dimensional
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matrix. Still using the 2001 estimated rates and the 2006
strata sizes, we would then compute a projection for the
number of missed persons, classified in province p, in all of
the province’s strata by sex, then in all of the province’s
strata by marital status, and finally in all of the province’s
strata by age group. Those figures would provide the desired
marginal totals of the three-dimensional matrix. Through
raking, we could obtain projections for U,, that add up to
the desired provincial totals by sex, by marital status and by
age group. We can avoid convergence problems, simplify
programming and enhance flexibility if we replace raking;
we can do so by solving a calibration problem. In fact, we
need the added flexibility in this case, because the age
groups for married persons are not the same as the age
groups for not-married persons.

Here is an example of how calibration is used. The
method is based on the following result from Théberge
(1999).

If we let U and T be positive diagonal matrices of
dimension n and ¢ respectively, w, a vector of dimension
n, A a gxn matrix, and b a vector of dimension g, then
among the weight vectors w of dimension # that minimize
|| Aw—b|%, the unique weight vector that minimizes
lIw—w, |13 is given by

W=W,

+UTA T2(T2AUTA TV T (b - Aw,), (6.3)

where ||z-z,| ;=(z-2z,)F(z—2z,) is a weighted
distance measure between z and z,,and G' is the Moore-
Penrose inverse of G .

The equation Aw =b forms the set of g calibration
constraints. We will set T equal to the identity matrix in
equation (6.3). If the constraints can be satisfied, then the
matrix T is irrelevant; if not, then setting T equal to the
identity matrix has the effect of giving equal importance to
each of the ¢ constraints when we minimize the distance
between Aw and b.

In this case, in projecting the number of missed persons
in each stratum of a given province, we have A =MX,
with

11 1111000O0O0O0TO
0000O0O0OT1TT1T1T1T1:1
1111001 T11T1TUO0PO0
M=/0 0 001 10O0O0O0T1 1],
1 0000O0O1O0O0OO0OO0OTO
01 000O0OO0O1TO0O0OTO0O®O
001111001111
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XENo-14 WENO-14
XFN15-24 WEN15-24
XEN25-44 WEN25-44 b
F..
XEN4s5+ WEN4s+ b
M..
XrM25-34 WEp25-34 b
X w N.
. FM35+ FM35+
X = diag , W= ,b=| b, |,
XuNo-14 Wyno-14 b
0-14
XuN15-24 Wun15-24 b
15-24
XpN25-44 Wrn25-44 b
.25+
Xpnas+ Wrvas+
Xum25-34 Wan25-34
Xams3s+ W35+

where, for example, x,,,s_4 1S the number of missed
persons, classified in the province where they were selected,
in the strata of not-married males aged 25 to 44, w,,s_44 1S
the desired weight for that stratum, and &, is the number of
missed persons selected and classified in the province who
belong to the “not married” strata. All persons aged 0 to 24
are in “not married” strata regardless of their actual marital
status. Note that in calculating both the national figures, X,
and the provincial figures, b, we count only persons who
did not move from one province to another, so as to remain
consistent with the objective set out at the beginning of this
section.

Continuing the parallel with raking, the matrix X gives
the values of the three-dimensional matrix to be raked,
except that the elements are arranged in a diagonal matrix;
the vector w provides the final “raking factors” that are
applied to the elements of X to produce the raked values,
Xw; the constraint is that sums of those raked elements,
MXw, should be as close as possible to the desired
“margins” given by the vector b; and w should be as close
as possible to w, described below.

By choosing the vector w, so that every element is equal
to a constant factor, we can scale the national figures down
to figures that are more appropriate for the province. We can
do this if we want the weighted national figures to add up to
the provincial marginal totals, with weights that are as close
as possible to a constant, in order to preserve the more
reliable national distribution. The national distribution of
missed persons may not be appropriate if the distribution of
strata sizes is not the same for Canada as it is for the
province. Therefore, a better alternative is to set the w,
element that corresponds to stratum 4° to

w,:=N./ > N,,

heS «
)

(6.4)
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where §,. is the set of the 10 strata (one per province)
similar to stratum /" (for example, the 10 strata of not-
married males aged 15 to 24).

We could remove two constraints because the
corresponding rows of M are linear combinations of the
others (for example, the fourth row and the last row), but the
solution (6.3) is sufficiently general that their removal is
unnecessary. With A=MX, U=X and T equal to the
identity matrix, (6.3) simplifies to

w=w, +M(MXM') (b-MXw,). (6.5)

The smoothed values for each stratum are the elements of
the vector Xw.

A similar problem can arise for non-respondents when
we want to smooth the sample design’s effects.

7. Conclusion

There is much overlap between the two traditional goals
of RRC sample allocation, which are to obtain a minimum
variance for the national estimated undercoverage rate (goal
I) and to obtain equal variances for the estimated provincial
undercoverage rates (goal II), and the two additional goals
considered in this paper, which are to minimize the variance
of the total equalization payment (goal III) and to obtain
equal CVs for the beneficiary provinces’ population
estimates (goal IV). Nevertheless, the explicit consideration
of those two additional goals may allow the sample sizes for
Quebec and Alberta to vary independently from those of the
other provinces. The method suggested in this paper to
achieve a compromise between different allocations that is
optimal with respect to the various goals, is to take, for each
province, the maximum sample size over each of the distinct
allocations. The method provides a more direct justification
for the allocation.
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A comparison of the GES standard errors with the
standard errors derived from the approximation formula
(3.6) shows for the 2001 RRC, n sampled units with a
response rate of 7 are equivalent to only nx 7> full-response
units.

Optimal subprovincial allocation requires smoothing of
provincial parameters at the age x sex x marital status level.
Calibration can be a convenient method to scale more stable
national age X sex x marital status values so that they add up
to provincial age values, sex values and marital status
values. The method’s principal goal is reminiscent of the
principal goal of the raking ratio method, but a solution such
as the one described in Théberge (1999), which deals with
the possibility that the constraints may not be satisfied,
avoids convergence problems. In addition, using the Moore-
Penrose inverse prevents collinearity problems.
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Sample Size Calculation for Small-Area Estimation

Nicholas Tibor Longford '

Abstract

We describe a general approach to setting the sampling design in surveys that are planned for making inferences about small
areas (sub-domains). The approach requires a specification of the inferential priorities for the areas. Sample size allocation
schemes are derived first for the direct estimator and then for composite and empirical Bayes estimators. The methods are
illustrated on an example of planning a survey of the population of Switzerland and estimating the mean or proportion of a

variable for each of'its 26 cantons.

Key Words: Efficiency; Inferential priority; Sample size allocation; Small-area estimation.

1. Introduction

Sampling design is a key device for efficient estimation
and other forms of inference about a large population when
the resources available do not permit collecting the relevant
information from every member of the population. In this
context, efficiency is interpreted as the optimal combination
of a sampling design and an estimator of a population quan-
tity 6. By optimum we understand minimum mean squared
error, although the development presented in this paper can
be adapted for other criteria. The pool of the possible
sampling designs is delimited by the resources, and these
are usually expressed in terms of a fixed sample size. This is
not always appropriate because the designs may not entail
identical average costs per subject. However, within a
limited range of designs, this issue can be ignored.

The problem of setting the sampling design for the
purpose of efficient estimation of a single quantity is well
understood, and solutions are available for many commonly
encountered settings. Most of them involve a univariate
constrained optimisation problem. Setting the sampling
design for estimating several quantities represents a quan-
tum leap in complexity, because the problem involves
several factors, typically one for each quantity. It is essential
to optimise the design simultaneously for all the factors,
because the goals of efficient inference about the target
quantities may be in conflict. For example, in small-area
estimation, a more generous allocation of the sample size to
one area has to be compensated by a less generous allo-
cation to one or several other areas.

Small-area statistics have become an important research
topic in survey methods in the last few decades (Fay and
Herriot 1979; Platek, Rao, Sérndal and Singh 1987; Ghosh
and Rao (1994), Longford 1999; and Rao 2003), stimulated
by increasing interest of government agencies, the adver-
tising and marketing industry and the financial and in-
surance sector. At present, many large-scale surveys are

designed for estimating national quantities but, sometimes
almost as an afterthought, are used for inferences about
small areas. This would be appropriate if the sampling
designs optimal for small-area and national inferences were
similar. We illustrate in this paper that this is not the case
and that sampling design can be effectively targeted for
small-area estimation, taking into account the goal of
efficient estimation of national quantities. To avoid the
trivial case, we assume that the areas have unequal popu-
lation sizes. We apply the methods to the problem of
planning inferences about the 26 cantons of Switzerland,
their population sizes range from 15,000 (Appenzell-
Innerrhoden) to 1.23 million (Ziirich). The population of
Switzerland is 7.26 million.

Literature on the subject of planning surveys for small-
area estimation is rather sparse. An important contribution is
Singh, Gambino and Mantel (1994). In one of the ap-
proaches they discuss, the planned sample size for the
Canadian Labor Force Survey is split into two parts. One
part is allocated optimally for the purpose of national
(domain) estimation and the remainder optimally for small-
area estimation. For the latter goal, equal subsample sizes
are allocated to each area when the areas have equal within-
area variances, the finite population correction can be
ignored and the areas have equal survey costs per subject,
but also when the targets of inference are area-level means.
When the targets are population totals, equal allocation to
the areas is not efficient, because it handicaps estimation for
more populous areas. Even when proportions or rates (per-
centages) are estimated, the within-area variances depend on
the population proportion, although the dependence is weak
when all the proportions are distant from zero and unity. For
more recent developments in sampling design for small-area
estimation, see Marker (2001).

The next section describes the proposed approach based
on minimising the weighted sum of the sampling variances
(mean squared errors) of the planned estimators, with the
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weights specified to reflect the inferential priorities. It is
applied first to direct estimation of the area-level quantities.
Then it is extended to incorporate the goal of national
estimation, and, finally, to composite estimation in section
3. The concluding section 4 contains a discussion.

The remainder of this section introduces the notation
used in the rest of the paper. We assume that area-level
population quantities 0,, d =1, ..., D, are estimated by
6 , With respective mean squared errors (MSE) v, that are
functions of the within-area subsample sizes n,;v, =
v,(n,). The overall sample size is denoted by n, and is
assumed to be fixed. The population sizes are denoted by
N (overall) and N, (for area d ). For brevity, we denote
n=(n, .., ny) . Most population quantities 6 are
functions of a single variable, such as its mean, total, and the
like. The variable may be recorded in the survey directly, or
constructed from one or several such variables. Although
our development is not restricted to such quantities, the
motivation is more straightforward with them. An estimator
of 0, is said to be direct if it is a function of only the
variable concerned on subjects in area d.

We assume that each direct estimator considered is
unbiased. This is not particularly restrictive, as most direct
estimators are naive estimators or are closely related to
them. We assume that the sample sizes for the areas are
under the control of the survey designer. This is the case in
stratified sampling designs in which the strata coincide with
the areas. In section 4, we discuss sampling designs in
which such control cannot be exercised; they are
particularly relevant for divisions of the country into many
(hundreds of) areas.

2. Optimal Design for Direct Estimation

We resolve the conflict between the goals of efficient
estimation of the area-level quantities 6, by choosing the
area-level sampling design that minimises the weighted sum
of the sampling variances (MSEs),

D
min, > P, (1)
d=1
subject to the constraint of fixed overall sample size
n=n'1,;1, is the vector of unities of length D. The
coefficients P, are called inferential priorities. Greater
value of P, (in relation to the values P,, d'#d) implies a
greater urgency to reduce v,, because the contribution of
area d to the sum in (1) in magnified more than for the
other areas.

The optimisation problem in (1) is solved by the method
of Lagrange multipliers, or simply by substituting
n,=n—n,—..—np, so that the problem then involves
D -1 functionally unrelated variables. The solution
satisfies the condition
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ov
P, —% = const.
ny

An analytical expression for the optimal subsample sizes
n, cannot be obtained in general, but when v, =7 /n,,
as in simple random sampling within areas, the solution is
proportional to G, \/E , thatis,

nT:n Gd\/g .
d oi\JB +..+0,\Py

When the within-area variances o coincide, o; =...=
o}, =c", this simplifies further; the optimal sample sizes
are proportional to \/E and do not depend on &°.

In most contexts, it is difficult to elicit a suitable set of
priorities P,, and so it is more constructive to propose a
convenient parametric class of priorities P = (P, ..., P,)’
and illustrate their impact on the sample size allocation. We
propose the priorities P, = N! for 0<¢g <2. For ¢=0,
inference is equally important for every area. With in-
creasing ¢, relatively greater importance is ascribed to
more populous areas. When v, =c’/n,, the optimal
sample size allocation for ¢ =2, n} =nN, /N, is propor-
tional to the population sizes in the areas, and so the same
sampling design is optimal for national and area-level
inferences. For ¢ >2 the sample size allocation is even
more generous to the most populous areas, at the expense of
less populous areas. As this is counterintuitive in the context
of small-area estimation, the choice of an exponent g >2 is
probably never appropriate. A negative priority exponent ¢
would be suitable for a survey that aims to focus on the least
populous areas. Of course, such a design is very inefficient
for estimating the national quantity 0, especially when the
areas have widely dispersed population sizes.

The inferential priorities P, may be functions of
quantities other than N,. For example, the sizes of certain
subpopulations of focal interest, such as an ethnic minority
in the area, may be used instead of N,, P, may be defined
differently in the country’s regions, or the formula for them
may be overriden for one or a few areas.

In some publications of survey analyses, an estimate is
reported only when it is based on a sufficiently large sample
size or its coefficient of variation (the ratio of the estimated
standard error and the estimate) is smaller than a specified
threshold. If a ‘penalty’ for not reporting a quantity is
specified, it can be incorporated in the definition of the
inferential priorities. The difficulty that may arise is that the
objective function in (1) is discontinuous and the standard
approaches to its optimisation are no longer applicable. The
penalty has to be set with care. If it is too low it is
ineffective; if it is set too high the solution will prefer
reporting estimates for as many areas as possible, but each
with sample size or precision that narrowly exceeds the set
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threshold. See Marker (2001) for an alternative approach to
this problem.

Figure 1 illustrates the impact of the priority exponent ¢
on the sample size allocation for a survey planned in
Switzerland, with the aim of estimating the population
means of a variable in its 26 cantons, assuming a common
within-canton variance o”. The planned overall sample size
is n=10,000. The curves in either panel connect the
optimal sample sizes for each exponent ¢; they are drawn
on the linear scale (on the left) and on the log scale (on the
right). The population sizes are marked on the horizontal bar
at the bottom of each plot. On the log scale, the curves are
linear. The log scale is useful also because the population
sizes of the cantons are more evenly distributed on it.

For ¢ =0, each canton is allocated the same sample
size, 10,000/26 =385, and for g=2 the allocation is
proportional to the canton’s population size. For inter-
mediate values of ¢, sample sizes of the least populous
cantons are boosted in relation to proportional allocation
(¢ =2), at the expense of reduced allocation to the most
populous cantons. The subsample sizes depend very little on
q for cantons with population of about 250,000,
approximately 3% of the national population size.

2.1 The Priority for National Estimation

As the canton-level subsample sizes differ from the
proportional allocation for priority exponent g < 2, optimal
canton-level estimation is accompanied by a loss of
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efficiency of the national estimator. Consider the stratified
estimator

~ 12 n
0=—>» N0
N; dVd

of the national mean © of a variable, where 6, are
unbiased estimators of the within-canton means of the same
variable. Assuming stratified sampling with simple random
sampling within strata (cantons), with 0 , set to the within-
stratum sample means,

Var(é)—Li N—dz(l—f)csz
N? d=1 Ny e

where f, =n, /N, is the finite population correction.

Figure 2 displays the function that relates the standard
error +/var(0) to the priority exponent ¢, calculated
assuming c” =100. The standard error is a decreasing
function of ¢; it decreases more steeply at ¢ =0 than at
q =2, where it is quite flat. For ¢ =2, the goals of canton-
level and national estimation are in accord, and
\lvar(é) =0.100. For ¢=0, «lvar(é) =0.143; in this
setting, optimality of the small-area estimation exerts a
considerable toll on national estimation, equivalent to
halving the sample size (0.143/0.100 =+/2). For negative
g, thetoll is even greater.
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Figure 1. The sample size allocation to the Swiss cantons for a range of priority exponents g. The population sizes of the
cantons are marked on the horizontal bar at the bottom of each plot.
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Figure 2. The standard error of the national estimator © of the
mean of a variable, as a function of the exponent ¢
for priorities of the canton-level estimation.

Thus, the need for efficiency of the national estimator
can be addressed by increasing the priority exponent. For
example, the parties with rival inferential interests may
negotiate about how much loss in efficiency of 6 can be
afforded, and the priority exponent would then be set to
match this loss. Alternatively, this loss may be considered
by applying the optimal design for area-level estimation. If
it is regarded as excessive, ¢ is increased until a balance is
struck between the losses of efficiency for national and
small-area estimation.

An unsatisfactory feature of these approaches is that they
compromise the original purpose of the priorities P — to
reflect the relative importance of the inferences about the
distinct small areas. This drawback is addressed by
associating  with a priority, denoted by G, relative to
small-area estimation, and considering optimal estimation of
the set of D area-level targets 0, together with the national
target 0. Thus, we minimise the objective function

iPM (ng) + GP,v(n),

d=1

where v=var() and P, =P'1, The factor P, is
introduced to ameliorate the effect of the absolute sizes of
P, and the number of areas on the relative priority G. The
priorities P, can be interpreted only by their relative sizes,
as, for any constant ¢>0, P, and c¢P, correspond to
identical sets of priorities for small-area estimation in (1).
When the sampling design within each area is simple
random and O is the standard stratified estimator, the
minimum is attained when
c. % = const,
ny
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where P] = P, + GP_N; / N*. The optimal sample sizes for
the areas are

’
n,=n S
.= .
o, /B +...4+0,/P)

This corresponds to an adjustment of the priorities P, by
GP_N./N’. Note that this adjustment is neither additive
nor multiplicative. The priority is boosted more for the more
populous areas. As a consequence, the area-level subsample
sizes are dispersed more when the relative priority for
national estimation is incorporated and the area-level
priorities are unchanged. The finite population correction
has no impact on 7, because it reduces each sampling
variance v, and v by a quantity that does not depend on n.

The priority G can be set by insisting that the loss of
efficiency in estimating the national quantity 6 does not
exceed a given percentage or that at most a few (or none) of
the absolute differences |P; — P,| or log-ratios [log (P, / P,)|
are very large. However, the analytical problem is simple to
solve, so the survey management can be presented by the
sampling designs that are optimal for a range of values of G.

The dependence of the subsample size on the exponent
g and relative priority G is plotted in Figure 3 for the least
and most populous cantons, Appenzell-Innerrhoden and
Ziirich, in the respective panels A and C. Panels B and D
plot the same curves as A and C, respectively, on the log
scale. Ignoring the goal of national estimation corresponds
to G =0 and ignoring the goal of small-area estimation to
very large values of G. Throughout, we assume that
n=10,000 and o =100, common to all cantons.

For each exponent ¢ <2, the sample-size curve n,(G)
decreases for the less populous and increases for the more
populous cantons toward the proportional representation
n, =nN, /N, which corresponds to ¢ =2. On the linear
scale, the increase is quite rapid for Ziirich for small ¢ and
G, whereas the reduction for Appenzell-Innerrhoden is
more gradual. As the relative priority G is reduced, the
excess sample size is re-distributed from Ziirich (and a few
other populous cantons) to several less populous cantons.

Figure 4 plots the ‘national’ standard error ./var (é)
under the optimal sample allocation for an array of values of
g and G. The diagram shows that the standard error of 0
is reduced radically by a small increase of G in the vicinity
of G =0, whereas for larger values of G it is affected only
slightly. For each G, higher priority exponent ¢ is
associated with higher precision of .
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Figure 3. The optimal sample sizes for the direct estimator éd for combinations of priority exponents ¢ and relative
priorities G for the least and most populous cantons.

3. Composite Estimation

0.14

The resources available for the conduct of a survey are
used most effectively by the optimal combination of a
sampling design and estimator(s), and so the sampling
design and (the selection of) the estimator should be, in
ideal circumstances, optimised simultaneously. This prob-
lem is difficult to solve formally in most settings, although
some estimators are more efficient than their competitors in
a wide range of designs. Composite estimators (Longford
1999, 2004) are one such class. They are convex combina-
tions of the direct small-area and national estimators,

0.12 0.13

Standard error

0.11

0.10

T T
0 100 200 300 400
Relative priority G ~ N A
. _ _ 0,=(1-b,)0,+b,0, )
Figure 4. The standard error of the national estimator
for the allocation that is optimal under an

array of priorities given by ¢ and G.
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with area-specific coefficients b, that are estimates of the
optimum. The composition 6 , exploits the similarity of the
areas; it is particularly effective when the areas have a small
between-area variance op,=D"'Y, (0,-0)°, where
0=D"y,0,. This variance is defined over the D pop-
ulation quantities 6, and is unaffected by the sampling
design. In practice, o3, has to be estimated. When planning
a survey, estimates from other surveys of the same or a
related population have to be used, and the uncertainty
about o;, addressed. This can be done by sensitivity anal-
ysis, exploring the optimal designs for a range of plausible
values of o7,

If the deviations A, =0, —0 were known the optimal
coefficient b, in (2) would be, approximately, b, = o>/
(o> +n,A}). As A, is not known (otherwise 0, would be
estimated with high precision by 0+ A,), we replace A
by its average over the areas, equal to o}, yielding the
coefficient b, =1/(1+n,0,), where ©, =0} /c. is the
variance ratio. The variance o, also has to be estimated,
but when there are many areas it is estimated with precision
much higher than most A’ are.

If the coefficients b, are estimated with sufficient preci-
sion the composite estimator 6, is more efficient than the
two constituent estimators 6, and 6. Ignoring the un-
certainty about the within- and between-area variances, as
well as the national mean 0 and the correlation between the
national and area-level (direct) estimators, the average MSE
of 0, is

oy

aMSE® ,)=——28 3
) 1+ n,0, ®)

where ‘aMSE’ denotes the MSE in which A’ is replaced by
o}, its average over the areas. The aMSE in (3) is also an
approximation to the conditional variance of the EBLUP
estimator of the area-level mean based on the two-level
(empirical Bayes) model (Longford 1993, Goldstein 1995,
Marker 1999, and Rao 2003). See Ghosh and Rao (1994)
for an authoritative review of application of these models to
small-area estimation.

For the composite estimators of the area-level means, we
search for the sample allocation that minimises the objective
function

D
> P,aMSE(®,) + GP,v.

d=1
The solution satisfies the condition

2 2
P Ni o = const. 4

q,. 2
Niocgzo,
+ a2 2

N~ n;

(1+n,0,)
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This equation does not have a convenient closed-form
solution, but iterative schemes can be applied to solve it.
The value of n, determines the remaining sample sizes n,,
and so optimisation corresponds to a one-dimensional
search. If the provisional sample sizes n based on a set
value of n, are too large, n' 1, > n, n, is reduced and the
other sample sizes n, are calculated by solving (4). Note
that the solution depends on the variances o and c3. The
problem is simplified somewhat when the areas have a
common variance 6° =G, =...=G,,. Then the solution of
(4) depends on the variances only through the ratio
w=o0;, /6" because c” is a multiplicative factor and has
no impact on the optimisation.

By way of an example, suppose ¢ =1 and G =10 in
planning a survey of the population of Switzerland with
n=10,000, and ®=0.10 is assumed. As the initial
solution, we use the allocation optimal for direct estimation
with the same values of ¢ and G. One iteration updates the
sample size for each canton and, within it, the updating for
all but the arbitrarily selected reference canton d =1 is also
iterative. The reference canton’s provisional subsample size
determines the current value of the constant on the right-
hand side of (4). Then equation (4) is solved, iteratively, for
each canton d =2, ..., D, using the Newton method. In the
application, the number of these iterations was in single
digits for each canton. Finally, the subsample size for the
reference canton is adjusted by the 1/D -multiple of the
difference between the current total of the subsample sizes
and the target total n. The updating of the cantons is itself
iterated, but only a few iterations are required to achieve
convergence; for example, all the changes in the subsample
sizes were smaller than 1.0 after three iterations, and smaller
than 0.01 after eight iterations. The convergence is fast
because the starting solution is close to the optimum; the
largest difference between the two subsample sizes is for
Ziirich, 20.0 (from 1199.5 at the start to 1219.5 after eight
iterations). For Appenzell-Innerrhoden, the sample size is
reduced from 81.6 to 73.4. Change by less than unity takes
place for five cantons with population sizes in the range
228,000-278,000. Note that the subsample sizes would in
practice be rounded, and possibly adjusted further to
conform with various survey management constraints.

No priority for national estimation

If national estimation has no priority, G =0, equation (4)
has the explicit solution

. no+D NI? 1
"y @
o U? o

>
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where U'” = N> + ...+ N{/>. This allocation is related to
the allocation n;, d=1, ..., D, that is optimal for direct
estimation of 0, by the identity

. DN4'?
nd:n;+l %—1.
ol UY

Hence, when ¢ >0, the allocation optimal for composite
estimation is more dispersed than for direct estimation. The
break-even population size is N, =(U'"/ D)*4; areas
with population sizes N, < N; have smaller subsample
sizes for composite than for direct estimation, and areas
with greater population sizes have greater subsample sizes.
(For ¢ =0, n; =n/D). The amount of extra dispersion is
inversely proportional to .

For ® =0, the equations for the optimal sampling design
lead to a singularity. In this case, each 0, is estimated
efficiently by the national estimator 6, and so the design
optimal for composite estimation coincides with the design
that is optimal for the national estimator (1, =nN,/N).
For ¢ >0, the optimal allocation yields negative sample

sizes n, when
@ )
N, <{ v } . 5)

no+D

This (formal) solution is not meaningful. A negative
solution should come as no surprise because the aMSE in
(3) is an analytical function for n, >—-1/®,. For small
® >0, the aMSE is a shallow decreasing function of the
sample size n,. A negative n, indicates that a (small)
canton is not worth sampling because of its low inferential
priority P,. Although additional sample size for a more
populous canton d' may yield a smaller reduction of aMSE
than it would for a small canton d, its impact is magnified
by the larger priority P,..

Positive priority for the national mean

The aMSE in (3) ignores the uncertainty about the
national mean 0, and this becomes acute when one of the
cantons is not represented in the sample. This deficiency of
(3) can be compensated for by setting the relative priority
G to a positive value.

Figure 5 summarises the impact of the relative priority
G and the priority exponent ¢ on the optimal sample sizes
of the least and most populous cantons, together with canton
Thurgau which has the 13" (median) largest population size,
228,000. Each setting of ¢, indicated in the title, and G,
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using different line types, is represented for a canton by a
graph of the optimal sample size as a function of the
variance ratio ®. The limit of this function for ® — +co,
equal to the sample size optimal for direct estimation, is
marked by a bar at the right-hand margin of the panel. For
® =0, the sampling design optimal for estimation of the
national mean 0 is obtained. Panels A and B at the top are
for the overall sample size n=10,000 and panels C and D
for n=1,000.

The diagram shows that the optimal sample sizes are
nearly constant in the range e (w , +©); ® increases
with ¢, G and 1/n. This is a consequence of the relatively
large sample size n, which ensures that the subsamples of
most cantons are too large for any substantial borrowing of
strength across the cantons to take place, unless the cantons
are very similar (o<o'). Most shrinkage coefficients
b, =1/1+n, ) are very small. When »=10,000 is
planned, for small values of ®, the optimal sample size
increases steeply for the least populous canton and drops
precipitously for the most populous canton. Dispersion of
the optimal sample sizes increases with ¢ and G,
converging to the optimal allocation for estimating the
national mean 6, which corresponds to = 0. In contrast,
the optimal sample sizes are discontinuous at =0 when
G =0; the solutions diverge to —co for the least populous
cantons.

In panels C and D, for »=1,000, the dependence of the
sample sizes on o persists over a wider range of ®
because there is a greater scope for borrowing strength
across the cantons with the smaller sample sizes. The
optimal sample sizes are not monotone functions of w; for
the least populous cantons there is a dip at small values of
®. The dip is more pronounced for small G and large ¢,
that is, when the disparities of the cantons’ priorities are
greater and inference about the national mean is relatively
unimportant. This phenomenon, somewhat exaggerated by
the log-scale of the vertical axis, is similar to the case
discussed for G =0. Because of the disparity in the
priorities P,, a small reduction of aMSE for a more
populous canton is preferred to a greater reduction for a less
populous canton. The dip is present also when n =10,000,
but it is so shallow and narrow as to be invisible with the
resolution of the graph. Note that the horizontal axes in
panels C and D have three times wider range of values of ®
than in panels A and B.

In the context of the planned survey, it was agreed that
o is unlikely to be smaller than 0.05. Therefore, the sample
size calculations could be based on the direct estimator.
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Priority q = 0.5; n=10,000
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Priority q =1; n=10,000
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Figure 5.The sample sizes optimal for composite estimation of the population means for three cantons for a range of
variance ratios o, priority exponents g =0.5 and ¢=1.0 and relative priorities G=1, 10 and 100. The
overall sample sizes are 10,000 (panels A and B) and 1,000 (panels C and D).

4. Discussion

The method described in this paper identifies the optimal
design for the artificial setting of stratified sampling with
simple random sampling within homoscedastic strata.
Specifying the priorities for small-area and national esti-
mation is a key element of the method. In practice, the
priorities may be difficult to agree on, and some of the
assumptions made may be problematic, the assumptions of
equal within-stratum variances and simple random sampling
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in particular. The method can be extended to more complex
estimators, but then the values of further parameters are
required. A more constructive approach regards the optimal
sampling design for the simplified setting as an approx-
imation to the sampling design that is optimal for the more
realistic setting. Even if the optimal sampling design were
identified, it could not be implemented literally, because of
imperfections in the sampling frame and (possibly) infor-
mative and unevenly distributed nonresponse. However, the
approach can be applied, in principle, to any small-area
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estimator that has an analytical expression for the exact or
approximate MSE. This includes all estimators based on
empirical Bayes models, to which the composite estimator
is closely related. Sampling weights can be incorporated in
sample size calculation if they, or their within-area
distributions, are known, subject to some approximation, in
advance. Sample size calculation for a single (national)
quantity entails the same problem.

Although the numerical solution of the problem for
composite estimation with a positive priority G is simple
and involves no convergence problems, it is advantageous
to have an analytical solution, so that a range of scenarios
can be explored. The proximity of the solutions for the
direct and composite estimation suggests that the allocation
optimal for direct estimation may be close to optimum also
for composite estimation with realistic values of ®, say,
®>0.05.

Various management and organisational constraints are
another obstacle to the literal implementation of an analyt-
ically derived sampling design. In household surveys, it is
often preferable to assign an (almost) full quota of addresses
to each interviewer, and so sample sizes that are multiples of
the quota are preferred. These and numerous other con-
straints can be incorporated in the optimization problem,
although they are often difficult to quantify or the designer
may not be aware of them because of imperfect communi-
cation. Improvisation, after obtaining the sampling design
that is optimal for a simpler setting, may be more practical.
Also, priorities, or expert opinion about them, may change
over time, even while the survey is being conducted and
analysed. Estimates that are associated with standard errors
or coefficients of variation greater than a specified threshold
are often excluded from analysis reports. Intention to do this
can be reflected in sample size calculation by regarding 0
as the estimator of 0,, that is, by setting the associated
MSE to the corresponding aMSE 02B + Var(é) or to
another (large) constant.

Although we propose a particular class of priorities for
the small areas, no conceptual difficulties arise when
another class is used instead. It may depend on several
population quantities, not only the population size. In
principle, the priorities can also be set for the areas individ-
ually, although this is practical only when the number of
areas is small. The formula-based and individually set
priorities can be combined by adjusting the priorities, such
as P, =N, for a few areas to reflect their exceptional role
in the analysis.

Sensitivity analysis, exploring how the sampling design
is changed as a result of altered input, is essential for
understanding the impact of uncertainty about the estimated
parameters (the variance ratio « in particular) and the
arbitrariness, however limited, in how the priorities are set.
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For this, an analytically simple solution that can be executed
many times, for a range of settings, is preferred to a more
complex solution, the properties of which are more difficult
to explore.

Multivariate composite estimators exploit the similarity
not only across areas, but also across (auxiliary) variables,
time, subpopulations, and the like (Longford 1999 and
2005). The aMSEs of these estimators depend on the scaled
variance matrix £, the multivariate counterpart of .
Sample size calculation for this method is difficult to
implement directly because both variances and covariances
in Q are essential to the efficiency of the estimators. A
more constructive approach matches the matrix Q with a
ratio o that can be interpreted as the similarity of the areas
after adjusting for the auxiliary information, as in empirical
Bayes methods.

When control over the sample sizes allocated to the areas
is not possible sample size calculation is still meaningful as
a guide for how the sample sizes should be allocated on
average. In general, a unit reduction of the sample size is
associated with greater loss of precision than a unit increase.
Therefore, designs in which the sampling (replication)
variance of the subsample sizes n,(d fixed) is smaller are
better suited for small-area estimation. In designs with large
clusters, such variances are large because, at an extreme, an
area may not be represented in the survey in some
replications and may be over-represented several times in
others. Using smaller clusters is in general preferable for
small-area estimation if this does not inflate the survey costs
and a fixed overall sample size can be maintained.
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Small Area Estimation Using Area Level Models and
Estimated Sampling Variances

Yong You and Beatrice Chapman '

Abstract

In small area estimation, area level models such as the Fay—Herriot model (Fay and Herriot 1979) are widely used to obtain
efficient model-based estimators for small areas. The sampling error variances are customarily assumed to be known in the
model. In this paper we consider the situation where the sampling error variances are estimated individually by direct
estimators. A full hierarchical Bayes (HB) model is constructed for the direct survey estimators and the sampling error
variances estimators. The Gibbs sampling method is employed to obtain the small area HB estimators. The proposed HB
approach automatically takes account of the extra uncertainty of estimating the sampling error variances, especially when
the area-specific sample sizes are small. We compare the proposed HB model with the Fay—Herriot model through analysis
of two survey data sets. Our results have shown that the proposed HB estimators perform quite well compared to the direct
estimates. We also discussed the problem of priors on the variance components.

Key Words: Gibbs sampling; Hierarchical Bayes; Prior sensitivity,; Sample size; Variance components.

1. Introduction

Sample surveys, for most purposes, are usually designed
to provide reliable direct estimates for total populations and
large areas by using area-specific sample data. These direct
estimates frequently fail to provide reliable estimates for
small areas due to very small sample sizes in the areas.
Since small area estimates often have unsuitably large
standard errors, to gain precision and reliability it is
necessary to “borrow strength” from related areas thus
increasing the effective sample size to construct indirect
estimates for the small areas (Rao 1999). Explicit model-
based methods that use supplementary data such as census
and administrative data associated with the small areas in
explicit models to link the small areas have been widely
used in practice to obtain reliable model-based estimators.
There are two broad classifications for these models: area
level models and unit level models. Area level models are
based on area direct survey estimators and unit level models
are based on individual observations in the areas. For
overviews and appraisals of models for small area
estimation, see Rao (1999, 2003). In this paper we study
area level models.

To obtain a basic area level model we assume that the
small area parameter of interest 0, is related to area-specific
auxiliary data x; =(x,, ..., x;,)" through a linear model

0, =xB+v,i=1...,m, €))

where m is the number of small areas, B =(B,,...,B,)" is
the px1 vector of regression coefficients, and the v,’s are
area-specific random effects assumed to be independent
and identically distributed (iid) with E(v,)=0 and
var(v,) = 6.. The assumption of normality may also be

included. This model is referred to as a linking model for
0,.
The basic area level model also assumes that given the
area-specific sample size n, > 1, there exists a direct survey
estimator y, (usually design unbiased) for the small area

parameter 0, such that
y;=0,+e,i=1..,m, 2

where the ¢, is the sampling error associated with the direct
estimator y,. We also assume are that the e,’s are inde-
pendent normal random variables with mean E(e, |6,) =0
and sampling variance var(e, |0,) = 5. Combining models
(1) and (2) lead to a linear mixed area level model

v, =xB+v,+e,i=1..,m 3)

The well-known Fay—-Herriot model (Fay and Herriot 1979)
in small area estimation has the form of model (3) with the
sampling variance o; assumed to be known in the model.
This is a very strong assumption. Usually a smoothed
estimator of o, is used in the model and then treated as
known. In this paper, we consider the situation where the
sampling variances o are unknown and are estimated by
unbiased estimators s.. Following Rivest and Vandal
(2002) and Wang and Fuller (2003), we assume that the
estimators s are independent of the direct survey estima-
tors y, and s’ has a sampling distribution d,s’ ~ o>y,
where d, =n, —1 and n, is the sample size for the i" arca.
For example, suppose we have n, observations from small
area i and these observations are iid N(u,, ). Let y, be
the sample mean of the n, observations. Then y, ~
N(y;,5;) and c; =c”/n,. Then we can obtain a direct
estimator of o, as s =1/ /n,, where 1, is the sample

1. Yong You and Beatrice Chapman, Household Survey Methods Division, Statistics Canada, Ottawa, K1A 0T6. E-mail: yongyou@statcan.ca.
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variance of the n, observations. Also y, and s’ are
independent and (n, —1)s” ~ G, Xﬁ,_1 .

We are interested in estimating the small area parameters
0,. Rivest and Vandal (2002) and Wang and Fuller (2003)
obtained the empirical best linear unbiased prediction
(EBLUP) estimators of 6, and the associated mean square
error (MSE) approximations assuming that m and n, are
relatively large. In this paper, we consider a hierarchical
Bayes (HB) approach using the Gibbs sampling method. An
advantage of the HB approach is that it is straightforward,
and the inferences for parameters 6, are “exact” unlike the
EBLUP approach. The small area parameter 0, is estimated
by its posterior mean and its precision is measured by its
posterior variance. The HB approach automatically takes
account of the uncertainties associated with unknown
parameters in the model. Section 2 presents the HB area
level models and related Gibbs sampling inferences. Section
3 presents two survey data analysis and sensitivity analysis.
And finally in section 4, we offer some conclusions and
future work directions.

2. Hierarchical Bayes Approach
We now present the area level model (3) and the

estimated sampling variances s in a HB framework as
follows:

Model 1
¢ yi|ei’ iZNindN(ei’Giz)’i:L-'-am;
- d;s|o; ~ind Gfxs’,dizn,.—l, i=1, ..., m;

- 0,|B,o.~ind N(x B,c>), i=1,...,m;

+ Priors for the parameters: w(B)ocl, n(c))~
1G(a,;, b,),i=1, ..., m, n(c.) ~1G(a,,b,), where
a;,b; (0<i<m) are chosen to be very small known
constants to reflect vague knowledge on o’ and o-.
IG denotes the inverse gamma distribution.

In Model 1, the sampling variances o, are unknown. In
practice however, we may have a simpler model by
replacing o by its estimate s (here s is treated as a
constant) and obtain the following model:

Model 2
¢ yi|ei~indN(ei’Gi2:Si2)’i:L"-am;
© (.0 ~ind N(xB, ), i=1,...,m;
+ Priors: n(B) <1, n(ci) ~1G(ay,by)-
Model 2 is actually the Fay-Herriot model with sampling
variances known as s;. If area-specific sample sizes 7, are
small, using s; in Model 2 may lead to underestimation of

the MSE under the EBLUP approach or the posterior
variance under the HB approach. We are interested in
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evaluating the effects of using s’ for ¢ in the model. We
will obtain the HB estimates of 6, under both Model 1 and
Model 2 and compare the HB estimates through real survey
data analysis.

Under the HB approach, we use the posterior mean
E(0,]|y) as a point estimate for 6, and the posterior
variance V' (0,|y) as a measure of variability, where y =
(»s---»¥,). To estimate E(6,|y) and V(6,|y), we
employ the Gibbs sampling method (Gelfand and Smith
1990). From Model 1, we obtain the following full condi-
tional distributions for the Gibbs sampler:

- [0,15,B,07,0.1~ N(y, y; + (1—=y,)x! B, v, 5;), where

+1
,- d,2+ b,
+ [6]1»,0,B,0.1~1G
;- ei)2 + d:SZ
2
where d, =n,—1,i=1,...,m;
a0+ﬂ,b0

TN N R R .
+EZ(G:‘_X;B)2
il

It is straight forward to draw samples from these full
conditional distributions. For implementations, we use L =5
parallel runs each with a “burn-in” length of B = 1,000 and
Gibbs sampling size of G = 5,000. The prior parameters a,,
b, and a,, b, are chosen to 0.0001. The HB estimator of 6,
under Model 1 is thus obtained as

n L G
07" =(LG)" 2 > ¥y +(-1) 21 B™), 4
=1 g=1
where 719 = 629 /(5209 4 5209
variance of 0, canbe estimated by

{ORUIDHNRAD

and the posterior

I=1 g=1
L G
+ (LG)—IZZ (,Yf_lg)yi + (1 _ ,Yf_lg) )x[' B(lg) )2
1=1 g=1
-1 LS (lg) (lg) 1 (g) ?
S LOTE X 0y =y L (6
I=1 g=1
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where (B9, Gf“g), Gf“g); g=1..G;I=1,..., L} is the
sample generated from the Gibbs sampler. The estimators
(4) and (5) are the so-called Rao-Blackwellized HB
estimators. The Rao-Blackwellized estimators are more
stable in terms of simulation errors as shown, for example,
in Gelfand and Smith (1991) and Y ou and Rao (2000).

Now we consider Model 2. The full conditional distribu-
tions for the Gibbs sampler under Model 2 are

« [6,1.B,6.1~N(y, »; +(1=v)x] B, v,s7), where

a0+ﬂ,b0

[0y, 0.B1~IG] | :

+EZ(ei_x;B)2
i=1

Under Model 2, the HB estimator of 6, and the
corresponding posterior variance estimator are given by (4)
and (5) respectively with 6> replaced by s’. Note that
using s} instead of ;" may lead to severe under-
estimation of the posterior variance of 0, for some areas
with small sample sizes 7, We will compare the HB
estimators and evaluate the effects of using s/ in Model 2
through data analysis in the following section.

3. Data Analysis

3.1 The Data Sets

We consider two interesting data sets in our analysis. The
first data set is corn and soybean data with only 8 areas and
small sample sizes in each area. The second data set is milk
data with 43 areas and relatively large sample sizes in each
area. We will compare the HB models and estimates based
on these two data sets.

Corn and Soybean Data: The corn and soybean data comes
from the U.S. Department of Agriculture and was first
studied by Battese, Harter and Fuller (1988). The data
contains reported crop hectares and LANDSAT satellite
data for corn and soybeans in sample segments of 12 Iowa
counties. The reported number of hectares for each crop
comprise the direct survey estimates. Used as auxiliary data
are the population means of number of pixels of a given
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crop per segment. The sample sizes are small for these
areas, ranging from 1-5. For our purposes only the counties
with a sample size of 3 and greater are used (8 areas meet
the criteria). Therefore of the included counties the sample
sizes range from 3-5. The original data is unit level data. In
order to have area level data the sample mean and the
sample standard error are calculated for each county. The
sample standard errors for the corn and soybean data are
quite large in general (yielding some CVs in the 0.3-0.4
range and one CV of 0.532) but by chance there are also
some small values in some instances (for corn data, Franklin
has standard error 5.704 and CV 0.036). Because the sample
sizes are so small, these sample standard errors cannot be
trusted to approximate the true standard errors. Table 1
presents the modified area level data for corn and soybeans
from the unit level data of Battese et al. (1988).

Table 1
Modified Crop Area Level Data, from
Battese, Harter and Fuller (1988)

Corn Soybeans
County n; Vi SD CV Vi SD (6\Y%
Franklin 3 158.623 5.704 0.036 52473 16425 0313
Pocahontas 3 102.523 43406 0423 118.697 50.290 0.424
Winnebago 3 112773 30.547 0271  88.573 10453 0.118
Wright 3 144297 53999 0.374 97.800 52.034 0.532
Webster 4 117595 21.298 0.181 112.980 23.531 0.208
Hancock 5 109.382 15.661 0.143 117478 17.209 0.146
Kossuth 5 110252 12.112 0.110 117.844 20954 0.178
Hardin 5  120.054 36.807 0.307 101.834 26.790 0.263

Milk Data: The milk data, used in an article by Arora and
Lahiri (1997), comes from the U.S. Bureau of Labor
Statistics. The estimated values are the average expenditure
on fresh milk for the year 1989. There is data for 43 areas
with sample sizes ranging from 95 to 633. The CVs range
from 0.074 to 0.341 over the 43 areas. A more detailed
description of the data can be found in Arora and Lahiri
(1997). For completeness, we give the data in Table 2.
Following Arora and Lahiri (1997), we use x;B=f; if
ie j™ major area, a collection of similar publication areas.
Arora and Lahiri (1997) used eight major areas. Since this
division of the eight major areas is not given in their paper,
after noting trends in the data we used the Fay-Herriot
model to test two new divisions of 6 and 4 major areas that
combine similar survey estimates. These major areas
produced large CV reduction in general. Where the 6 groups
had yielded an average CV reduction of about 20% the 4
groups gave approximately an average 25% CV reduction
over the direct estimates. Comparison of the point estimates
and CVs have shown that the 4 major areas perform better
than the 6 major areas. The 4 major areas are 1-7, 8-14,
15-25 and 26-43. In this paper, we will use these 4 groups
as auxiliary variables for illustration purpose only.
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Table 2
Milk Data, from Arora and Lahiri (1997)
Small
Area n, Y SD CV

1 191 1.099 0.163 0.148

2 633 1.075 0.080 0.074

3 597 1.105 0.083 0.075

4 221 0.628 0.109 0.174

5 195 0.753 0.119 0.158

6 191 0.981 0.141 0.144

7 183 1.257 0.202 0.161

8 188 1.095 0.127 0.116

9 204 1.405 0.168 0.120
10 188 1.356 0.178 0.131
11 149 0.615 0.100 0.163
12 290 1.460 0.201 0.138
13 250 1.338 0.148 0.111
14 194 0.854 0.143 0.167
15 184 1.176 0.149 0.127
16 193 1.111 0.145 0.131
17 218 1.257 0.135 0.107
18 266 1.430 0.172 0.120
19 214 1.278 0.137 0.107
20 213 1.292 0.163 0.126
21 196 1.002 0.125 0.125
22 95 1.183 0.247 0.209
23 195 1.044 0.140 0.134
24 187 1.267 0.171 0.135
25 479 1.193 0.106 0.089
26 230 0.791 0.121 0.153
27 186 0.795 0.121 0.152
28 199 0.759 0.259 0.341
29 238 0.796 0.106 0.133
30 207 0.565 0.089 0.158
31 165 0.886 0.225 0.254
32 153 0.952 0.205 0.215
33 210 0.807 0.119 0.147
34 383 0.582 0.067 0.115
35 255 0.684 0.106 0.155
36 226 0.787 0.126 0.160
37 224 0.440 0.092 0.209
38 212 0.759 0.132 0.174
39 211 0.770 0.100 0.130
40 179 0.800 0.113 0.141
41 312 0.756 0.083 0.110
42 241 0.865 0.121 0.140
43 205 0.640 0.129 0.202

3.2 Analysis of Results

Corn and Soybean Data: First we consider the effect of our
treatment of 0,.2 using the HB approach. Table 3 presents
the HB estimates 6"™® and the associated standard errors
(SDs) and CVs for the small area corn and soybean data
sets. The SD is the square root of the posterior variance.
Under Model 1 (o; unknown), the SDs and CVs are
consistently larger than the corresponding SDs and CVs
under Model 2 (o7 =5’ known). The increased SDs and
CVs of Model 1 are expected since this model takes into
account the added variability of estimating 7. On average
there is about 20% increase in SDs and CVs (this calcu-
lation excludes Franklin for corn data). The results support
the fact that letting o, =s;, the known direct estimate of
o7, leads to underestimation of the SD and CV of 0,.
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Inspection of small areas Franklin and Webster for the corn
data and county Winnebago for the soybean data establish
in some cases where the sampling errors by chance are quite
small this under estimation is severe.

Comparison of the HB estimates under Model 1 and
Model 2 to the direct estimates can be made using the CVs
in Table 1 and Table 3. Under Model 2 the HB estimates
have smaller CVs than the direct estimates in 6 of the 8
counties for the corn data and similarly for the soybean data,
6 out of 8 counties. Of the remaining 2 counties for each
crop, the CVs under Model 2 are the same as the direct
survey CVs or only slightly larger. Estimators from Model 2
therefore seem to have gained efficiency compared to the
direct survey estimators. Now examining the HB estimates
under Model 1 and the direct survey estimates lead to mixed
results for the corn and soybean data sets. Model 1 accounts
for the added uncertainty of estimating the sampling
variances and so in only 4 of the 8 counties the HB
estimates show improvements in efficiency for the corn
data. For the soybean data 5 out of 8 counties demonstrate
the HB estimates as improvements on the direct survey
CVs. For the remaining counties the direct estimates exhibit
lower CVs and even substantially lower CVs in some cases.
For the corn data, counties Franklin and Webster have CV
increases with Model 1 of more than 0.09 and 0.12
respectively. As well for the soybean data, county
Winnebago has a CV increase of almost 0.10 from the direct
survey estimate, using Model 1. Areas where the direct
estimates demonstrate smaller CVs compared to the HB
estimates include a number of those areas where the CVs
are by chance atypically small. So the increased model-
based CVs may reflect more appropriate CVs for those
areas. Of the 7 cases where the direct CVs are smaller
compared to the HB CVs under Model 1, the 3 cases noted
above have severe differences and the remaining 4 instances
show only slight reduction in efficiency with use of Model
1. Since direct survey estimates quite often have
unacceptably large CVs and yet still by chance may have
CVs grossly and inexplicably small, HB estimation under
Model 1 may be more reliable and reasonable by taking into
consideration the uncertainty of estimating o .

Milk data: Table 4 contains the HB estimates for the milk
data. As expected, over the 43 areas the treatment of c; as
known or unknown shows negligible differences in terms of
point estimates, SDs and CVs due to the large sample sizes
in the 43 areas. Therefore the substitution of 6. =s; in the
model is reasonable when the area-specific sample sizes are
large, as clearly shown in this example. Also the HB
estimates give reduced SDs and CVs when compared to the
direct survey estimates in Table 2. As would be expected,
the HB estimation approach is thus an improvement on the
direct survey estimates.
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Comparison of HB Estimates for Crop Data

Table 3

G,-z known (G,-Z :s,-z)

G,-2 unknown

County o sb cv OB SD  CV
Corn
Franklin 155.788  6.061 0.039 142.862 18408 0.129
Pocahontas  100.813 28.297 0.281 91.560 32.420 0.356
Winnebago 115337 28406 0246 113.130 35207 0311
Wright 131.630 28345 0.215 123.547 30.764 0.250
Webster 109.030 20.634 0.189  97.856 29.834 0.307
Hancock 121.682 15.656 0.129 123478 17.857 0.145
Kossuth 115710 11.180 0.097 114910 12510 0.109
Hardin 135.626 23228 0.171 135.178 23.804 0.176
Soybean
Franklin 75375 16272 0216  88.186 21.067 0.239
Pocahontas  116.943 27.031 0231 109.052 30.098 0276
Winnebago 87.525 10304 0.118  88.053 18.854 0.214
Wright 104.184 23.671 0.227 105.825 24497 0.232
Webster 115510 20.789 0.180 109455 25.801 0.236
Hancock 101.368 15.741 0.155 102.876 17311 0.169
Kossuth 102.388 14948 0.146 101.862 15.019 0.148
Hardin 87455 17.774 0203 93397 20.251 0.217
Table 4
Comparison of HB Estimates for Milk Data

Small G,-z known (G,-Z = s,-z) G,-z unknown
area 0 SD cv o SD cv
1 1.020 0.113 0.111 1.021 0.111 0.109
2 1.045 0.072 0.069 1.045 0.071 0.068
3 1.065 0.073 0.069 1.065 0.074 0.069
4 0767 0.095 0.124 0.770 0.096 0.125
5  0.849 0.096 0.113 0.852 0.096 0.113
6 0975 0.103 0.106 0.975 0.102 0.105
7 1.058 0.125 0.118 1.055 0.125 0.118
8 1.097 0.099 0.090 1.096 0.099 0.090
9 1219 0.121 0.099 1215 0.121 0.100
10 1.192 0.122 0.102 1.190 0.122 0.102
11 0.793 0.094 0.119 0.799 0.097 0.122
12 1213 0.131 0.108 1.209 0.130 0.107
13 1.206 0.112 0.093 1.203 0.112 0.093
14 0984 0.107 0.109 0.987 0.107 0.109
15 1.187 0.105 0.088 1.187 0.104 0.087
16 1.156 0.104 0.090 1.156 0.102 0.089
17 1.225 0.101 0.083 1.225 0.100 0.081
18 1.284 0.115 0.089 1.281 0.113 0.088
19 1234 0.101 0.082 1.235 0.100 0.081
20 1.233 0.110 0.089 1.233 0.110 0.089
21 1.092 0.097 0.089 1.095 0.098 0.089
22 1192 0.128 0.107 1.193 0.127 0.106
23 1122 0.103 0.092 1.125 0.103 0.091
24 1221 0.113 0.092 1.220 0.111 0.091
25 1193 0.086 0.072 1.193 0.086 0.072
26 0.761 0.091 0.120 0.762 0.091 0.120
27 0.763 0.092 0.120 0.762 0.091 0.119
28 0.734 0.125 0.170 0.732 0.123 0.169
29  0.768 0.085 0.110 0.767 0.085 0.110
30 0615 0.076 0.124 0.618 0.076 0.123
31 0.769 0.122 0.158 0.767 0.120 0.156
32 0795 0.119 0.150 0.792 0.118 0.148
33 0771 0.091 0.118 0.770 0.090 0.117
34 0612 0.060 0.099 0.613 0.062 0.100
35 0.701 0.085 0.121 0.701 0.084 0.120
36 0.757 0.094 0.123 0.759 0.093 0.123
37 0534 0.080 0.150 0.538 0.081 0.151
38 0.744 0.096 0.129 0.743 0.095 0.128
39 0.754 0.082 0.108 0.753 0.082 0.108
40  0.768 0.088 0.115 0.768 0.088 0.115
41  0.747 0.071 0.095 0.747 0.070 0.094
42 0.801 0.093 0.116 0.800 0.092 0.116
43 0.682 0.094 0.139 0.682 0.094 0.138
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3.3 Priors and Sensitivity Analysis

In Model 1, the sampling variances o, are assumed to
be independent with inverse gamma prior distribution
1G(a,,b,), and the model variance o_ also has inverse
gamma prior distribution 1G(a,, b,), where a;,b,
(0<i<m) are chosen to be very small known constants to
reflect vague knowledge on o; and c’. So we have used
proper priors to avoid the problem of any improper
posteriors. One may consider using flat priors for o, and
o2, ie, n(c;)ocl, and m(c>)ocl, similar to the flat
prior on B. With the flat priors on o, and o, the full
conditional distributions for 6; and c_ are given as

d -1 (y.-0) +ds
2 ’e’ , 2 NIG i , i i i I
[o; .6,B,0.] 5 5
and
m—-2 1l ,
[G\%|y’eaB’G?]~IG T’E;(ei_‘xi B)z -

The implementation of the Gibbs sampler under the flat
priors is also straightforward. However, the flat priors on
o’ and o’ may lead to improper posteriors if the sample
sizes and the number of small areas are small. In order to
see the problem on o more clearly, we can study the
Model 1 in two steps. First, we can obtain the posterior of
o? given its direct estimate s as

n(o; |s7) o f(s7 |o}) (o))

oc (62) "% exp{—o,*d.s? 12} -n(c?).
By assuming a flat prior m(c;)oc 1, we can obtain

2
n(o? | 57)~ 1G] L 1,450 |
2 2

provided that d;,>2, or n, >3. Then we can use this
proper IG posterior n(cs,.2 |s,.2) as an informative prior for
o, in the sampling model y, |0,, 57 ~ind N(0,,5;). This
will ensure to have proper posterior inference. For the
modified corn and soybean data, using flat priors on o> will
lead to improper posterior due to the small sample sizes
(n, =3) for some areas. Thus, proper inverse gamma priors
are used in the data analysis to ensure that all the posteriors
are proper, as commonly used in the HB small area
estimation in practice (e.g., Arora and Lahiri 1997; Datta,
Labhiri, Maiti and Lu 1999; You and Rao 2000; Rao 2003).
Hence we do not face the problem of some posteriors being
improper, since correct HB inference should be based on
proper posteriors. Under Model 2 with the sampling
variance known as o; =s;, using a flat prior m(c>) oc1 for
o>, the posterior of o> will be proper provided that

Vv
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m > p+2, where m is the number of small areas and p is
the size of regression parameters [ (Rao 2003, page 238).
Since the number of small areas is usually relatively large,
this condition is generally satisfied in practice.

For the sensitivity analysis of vague proper priors, we
can test the sensitivity of the posterior estimates to the
choice of prior parameters «,, b,(0 <i<m). Under Model
1, we set a, = b, at four different values, i.e., 0.0001, 0.001,
0.01 and 0.1. Table 5 presents the estimated posterior means
for the corn and soybean data, and Table 6 presents the
corresponding CVs.

Table 5
Comparison of Posterior Mean Estimates for Crop Data
1G(a;, b,), a;, =b,
County 0.0001 0.001 0.01 0.1
Corn
Franklin 142.862 142.593 143.155 144311
Pocahontas 91.560 91912 91422 91974
Winnebago 113.130 113.068 121.578 114.430
Wright 123.547 124170 125.103  125.351
Webster 97.856  98.231 99.132 98511
Hancock 123478 123.858 124.395 124.138
Kossuth 114910 115281 115316 115.528
Hardin 135.178 134157 135223 136.001
Soybean
Franklin 88.186  89.368  89.145  89.513
Pocahontas 109.052  109.571 107.745 108.176
Winnebago 88.053 87.478  86.267  87.302
Wright 105.825 106.712 105.142 104.676
Webster 109.455 108.392  109.835 110.252
Hancock 102.876  103.413  102.240 101.808
Kossuth 101.862  101.159 101.379  100.808
Hardin 93397 94713  93.576  94.767
Table 6
Comparison of Posterior CVs for Crop Data
1G(a;, b,), a;, =b,
County 0.0001 0.001 0.01 0.1
Corn
Franklin 0.129 0.124 0.128 0.125
Pocahontas 0.356 0.351 0.347 0.341
Winnebago 0.311 0.314 0.321 0.324
Wright 0.250 0.246 0.235 0.236
Webster 0.307 0.292 0.285 0.280
Hancock 0.145 0.148 0.148 0.142
Kossuth 0.109 0.110 0.107 0.104
Hardin 0.176 0.173 0.178 0.168
Soybean

Franklin 0.239 0.233 0.231 0.227
Pocahontas 0.276 0.281 0.271 0.296
Winnebago 0.214 0.193 0.196 0.198
Wright 0.232 0.223 0.231 0.226
Webster 0.236 0.231 0.237 0.228
Hancock 0.169 0.165 0.168 0.161
Kossuth 0.148 0.145 0.142 0.135
Hardin 0.217 0.215 0.213 0.213

It is clear from Table 5 and Table 6 that the posterior
estimates and the corresponding CVs are about the same
and stable, which indicates that the HB estimates are not
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sensitive to the choice of vague proper priors. For the milk
data, the HB estimates are very stable to these proper vague
priors (results are not provided here). Since the milk data
has large sample sizes, flat priors on variance components
can also be used to analyze the milk data under Model 1.
We thus obtained the HB estimates based on the flat priors
and compared them with the HB estimates based on the
vague 1G priors. These HB estimates are almost identical
and stable with relative difference ranging from 0.07% to
2.23%, an average value of 0.69% over 43 areas, which
indicates that the posterior estimates of small area means
based on Model 1 are very stable and not sensitive to the
choice of flat priors or vague IG priors, provided that the
sample sizes and number of small areas are relatively large.

4. Conclusion and Future Work

In this paper we have studied the well-known Fay-
Herriot model with the situations where o7, the sampling
error variances, are assumed unknown and where they are
estimated by unbiased estimators s’, using the HB
approach. The full HB approach with the Gibbs sampling
method automatically takes into account the extra
uncertainty associated with the estimation of o. We
applied the HB approach in two survey data analysis. Our
results have shown that the proposed HB approach under
Model 1 works quite well no matter the area-specific sample
sizes are small or large. For future work, the proposed HB
modeling approach can be extended to the general area level
models studied by You and Rao (2002). Application of the
new HB modeling approach includes the census
undercoverage estimation as in You, Rao and Dick (2004).
Under Model 1, the HB estimators of the sampling
variances o, can be obtained. These HB estimators of o
can be used as alternative smoothed estimators for o7 in the
sampling models. Application and evaluation of the HB
estimators of the sampling variances include the census
undercoverage estimation and the Canadian Labour Force
Survey (LFS) unemployment rate estimation (You, Rao and
Gambino 2003). We also plan to compare the HB approach
with the EBLUP approach as studied by Rivest and Vandal
(2002) and Wang and Fuller (2003).
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A Cost-Effective Strategy for Provincial Unemployment Estimation:
A Small Area Approach

Ali-Reza Khoshgooyanfard and Mohammad Taheri Monazzah '

Abstract

This paper primarily aims at proposing a cost-effective strategy to estimate the intercensal unemployment rate at the
provincial level in Iran. Taking advantage of the small area estimation (SAE) methods, this strategy is based on a single
sampling at the national level. Three methods of synthetic, composite, and empirical Bayes estimators are used to find the
indirect estimates of interest for the year 1996. Findings not only confirm the adequacy of the suggested strategy, but they
also indicate that the composite and empirical Bayes estimators perform well and similarly.

Key Words: Composite estimator; Design-based estimator; Empirical Bayes estimator; Indirect estimator; Non-

sampling error; Synthetic estimator; Post-strata.

1. Introduction

Each year, sample surveys are conducted in Iran to obtain
statistical information required for decision and policy
making. However, these surveys cannot fulfill all statistical
requirements because of two factors. The first one is related
to the governmental and non-governmental sectors’ demand
for comprehensive statistical information not only at
national and regional but also at small area levels. Further,
they need the information at shorter periods of time per
year, say monthly or quarterly. The second factor is that the
main source of statistical data in Iran is surveys, and there
are financial limitations for conducting surveys several
times per year at small area levels. These two factors chal-
lenge statistical agencies to find efficient strategies to
balance both cost and statistical information quality. The
work presented here is an endeavor to overcome this
challenge by using small area estimation (SAE) methods.

The purpose of SAE methods is to provide acceptable
estimates for some subpopulations in a sample design
planned for the “whole” population regardless of the sub-
populations. For example, a sample design is planned for
estimating population parameters for the “country” and after
data collection the parameters are estimated by the national
sample data. If simultaneously “provincial estimates™ of the
parameters are needed, it is not possible to conduct separate
provincial sample surveys. The provinces are unplanned
subpopulations in the sense that the available sample design
has been planned just for estimating the parameters for the
country without considering the provincial level. In the
nationwide sample, few or no sample units may be available
for some provinces. Hence, acceptable estimates for such
provinces (subpopulations) cannot be produced.

Before the availability of SAE methods, such sub-
population estimates were obtained by direct design-based
estimation. If there were data from a given subpopulation in
the nationwide sample, an estimate would be directly cal-
culated according to the nationwide sample design by using
“the available data”. The direct estimate may differ sub-
stantially from the actual subpopulation parameter due to
large sampling errors owing to small sample size.

Statisticians and demographers have developed ways of
estimating for such subpopulations. Indirect estimators have
been suggested and applications have been increasing over
the last twenty years. However, the SAE methods are still an
active topic of study. See Purcell and Kish (1979, 1980),
Ghosh and Rao (1994), Schaible (1995), Marker (1999),
Pfeffermann (2002) and especially Rao (2003a) for problem
definition and a review of the SAE methods.

For a number of years, the Statistical Center of Iran (SCI)
implemented annually a national one-stage cluster sample in
order to estimate the intercensal unemployment rate at the
country level. For sixteen years, separate one-stage cluster
samples for all provinces have been conducted to estimate
provincial unemployment rates. A weighted combination of
provincial estimates then yields the unemployment rate for
the total country. The increasing need for estimation of the
unemployment rate at a provincial level on a monthly, or at
least seasonal basis, and the lack of administrative records in
Iran at both small and national levels persuaded SCI to try
the SAE methods as the core of a revised strategy to meet
the provincial need.

The revised strategy consists of designing a sample
survey only at the national level and producing the provin-
cial estimates by SAE methods. A province in the strategy is
a small area. This strategy demands a smaller sample size
than that for aggregating provincial samples. If the revised
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strategy proves practicable, time and cost of the data collec-
tion can be reduced, and produce provincial estimates on a
monthly basis. The smaller sample is easier to control in the
field, and estimates are less affected by nonsampling errors.
This paper is intended to answer the following questions:

1. Can a nationwide sample substitute for separate
provincial samples for making estimates of the
provincial unemployment rates?

2.  From the three SAE methods - synthetic, com-
posite and empirical Bayes estimators — which one
produces the best estimates?

To answer empirically these two questions, estimates were
produced for the year 1996 when the actual values of the
provincial unemployment rates are available from the 1996
Census. Consequently, the actual bias of each provincial
estimate can be computed.

The process includes the following three stages. First, a
sample of size 13,000 from the whole country is selected
(the 1996 Census data file). The sample size is determined
at the national level, and is allocated to all provinces pro-
portionally to population. The allocation provides sample
from each province enabling direct estimates of the un-
employment rate for each province. Direct estimates are not
necessarily acceptable for all provinces because of the large
sampling errors due to small sample sizes in some
provinces. Second, applying three SAE methods, indirect
estimates are produced for each province. Third, the indirect
estimates are evaluated by comparing them with corre-
sponding actual values, computing MSEs, mean of absolute
errors (MAE), and mean of errors (ME).

In addition to this introduction, the paper takes in three
more sections. Section 2 offers a short review of the three
estimators used in this paper, including the estimation
methods, their corresponding MSEs, and properties of the
estimators. The estimates and corresponding computational
aspects are presented in section 3, where performances of
the estimators are tentatively appraised. Section 4 is devoted
to final remarks and recommendations about the estimators
and the merit of the SAE strategy.

2. A Glance Over the Estimators

Indirect estimators used in the study are introduced
briefly. However, an excellent discussion of the SAE
methodology is in Rao (2003a). First, the synthetic esti-
mator is considered, and then the composite estimator. The
empirical Bayes (EB) estimator as a model-based estimator
is also considered.
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2.1 Synthetic Estimator

There is a family of small area estimators characterized
as synthetic, see Rao (2003a, chapter 4). The traditional and
simplest is discussed here. For this estimator,

1. The country is partitioned into six post-strata on the
basis of six age groups, see Table (1).

2. Next, the number of unemployed persons is esti-
mated in each province, providing the numerator in
expression (1).

3. The synthetic estimate of the i province is obtained
by dividing the estimated number of unemployed
persons in province i by its Economically Active
Population (EAP), namely

B ={i N,-,P,-] /N,- m

where 13/ is a direct design-based estimate of the un-
employment rate in post-stratum j, NN, is the EAP in
province i, and N i is the EAP in the intersection of
province i and post-stratum j, cell (i,j) The synthetic
estimate of the i™ province is according to the official
definition of the unemployment rate in Iran.

The synthetic estimate shares all national sample data by
using national direct estimates of the unemployment rate
from the post-strata. It uses the six estimated “‘post-strata”
unemployment rates computed over all provinces rather
than specific estimates of the six “cells”. This process thus
borrows strength because each province contributes to the
national sample by pooling provincial sample units to
overcome small sample sizes in each province.

This estimator has three limitations:

1. The smaller the inter-post-stratum variation is, the
better synthetic estimator performs. It means that all
provinces should have a rather equal unemployment
rate in each age group. Using the national post-strata
direct estimates equally for all provinces is allowable
only under this assumption. If the homogeneity
assumption is not satisfied, the synthetic estimator
cannot reflect specific small area variation, and the
estimates could be severely biased.

2. If there are several variables that are important in post-
stratification, the synthetic estimator cannot often use
all of them because post-strata (after cross-classifi-
cation of the several variables) have sample sizes that
are too small and yield unacceptable direct estimates of
the post-strata. Generally speaking, many post-strata
give rise to poor direct estimates for some of the post-
strata. This can create serious problems for synthetic
estimation when a poor direct estimate receives a large
EAP for a cell.
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3. Quality of the EAPs can affect the synthetic estimates.
Owing to lack of timely data sources such as admi-
nistrative records, out of date EAPs from the 1986
Census data are used here in order to produce the
synthetic estimates for the year 1996.

2.2 Composite Estimator

The composite estimator of the i province combines the
synthetic and direct estimators of that province, namely

BE=W.B" +(1-W)E? @

where P” is the direct design-based estimator for the i
province, and 0 < W, <1. Expression (2) improves upon (1)
by exploiting both estimators. That is, provincial differences
may take into account in the composite estimator via the
provincial unbiased direct estimates and instability of the
direct estimator may be reduced via the synthetic estimator.
The weight W, can be specified so as to minimize mean
square error of P, MSE(P). Assuming Cov(P”,
I%S) = 0, the weight is simplified as
opt 1
W =—— - €)
(V(B")IMSE(B®))+1

where V(IE;D) and MSE(I-?S) are the variance of f;D and
the mean square error of P°, respectively. In expression
(3), the weights of the direct and synthetic estimators in (2)
are proportional to the MSEs of the two estimators. See
Schaible (1978) and Rao (2003a, page 58) for properties of
the estimator and weight.

In practice, we should estimate MSE(2*) and V' (P")
to generate an estimate of the weight (3). If there are some
sample data from the i™ province, according to the sample
design, an unbiased design-based estimator of ¥ (2”) can
be computed by using only the sample data. Therefore, only
an estimator for MSE(P®) is required. Under the assump-
tion that Cov(P”, P°)=0, Ghosh and Rao (1994) pro-
posed the unbiased estimator

MSE(B*)=(B* - B"Y -V(B). @
Under the same assumption, one can easily show that
MSE(B") =W V(B")+(1-W,)’ MSE(B’). (5

The estimator (4) may result in negative estimates for
some provinces, and the weight in expression (3) is no
longer computable. In this case, instead of (3) and (4), we
have used respectively the combined weight in (6) and
AMSE =(1/1"X", MgE(IE;S) where I’ is the number of
small areas having positive estimated MSE (see Gonzalez
and Waksberg (1973) for more details):
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1
[z V(E) /ZMSE(I%-S)j +1
In addition to expressions (3) and (6), Copas (1972), Ghosh

and Rao (1994), and Thompsen and Holmoy (1998) suggest
alternative weights.

we =

(6)

2.3 Empirical Bayes (EB) Estimator

Model based SAE methods have received more attention
than the synthetic and composite esitmators. Marker (1999)
regarded the SAE methods as having a common element
expressed through regression models. The EB method is of
the regression type. Consider the following mixed model
(see Rao (2003a, page 76)):

g=Xp+v+s @)

where

PP PP
s s Ln IAD
1-A 1-P,

g'=(Ln )

Xisan Ixk design matrix of supplementary variables,
isa kx1 vector of unknown parameters, and v and g are
Ix1 random vectors (I is the number of provinces).
Assume that:

1. v and 8 are independent.
2. E(8)=0 and Var(g) = Diag(d,,...,d;) .
3. v~N(0,Y) where ¥ = Diag(¢’, ..., t°).
Ghosh and Meeden (1997) show that the EB estimate of the

i™ element of g is:

g =Wx/B+(1-W)g, (8)

h h

where x| and g, are the i" row and the /" component of
X and g respectively, and W, is an estimate of
d’
W,=—- )

odP e

Consequently, the EB estimate of the i™ rate is:

pe__SPUTxB+(1-W)g)
L+exp(,x; B +(1-W)g,)

(10)

It is obvious that (10) needs two estimates for B and the
weight in (9). On the other hand, the weight in (9) relies on
the estimates of #* and d’. By applying the delta method,
(g)’V(P") generates an estimate of d’ where g
through the first derivative of g, = Ln(I%D /1— ij) . Based
on Chand and Alexander (1995), estimates of B and ¢ * are
found by simultaneously solving
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Ce(e- PV @ XBI-R)
B — (X!V—IX)—IX!V—lg
where V =Diag(d] +¢*,...,d; +¢*). Note that the

equations in (11) are solved by numerical iteration with an
initial value for #*.

The EB and composite estimators have similarities
although they arise from different approaches. Both esti-
mators have two components; a direct component (I%D in
(2) and g, in (8)) computed from the provincial sample
data, and an indirect component ( I%S in (2) and x;ﬁ in (8))
constructed from the national sample data and supple-
mentary information. Both estimators (2) and (8) give more
weight to the indirect component when it is reliable. Other-
wise the direct component receives more weight. Additional
details are given in Cressie (1989), Ghosh et al. (1998) and
Rao (2003 a, b).

3. Estimation for Iran

Estimates were produced for the year 1996 because the
1996 actual unemployment rate of each province is known
from the 1996 Census. As a result, the actual bias of each
estimate can be computed.

In 1996 the country consisted of 26 provinces. However,
21 provinces are studied here because supplementary
information from the 1986 Census was available for 21
geographically unchanged provinces between the years
1986 and 1996. To make the three indirect estimates, at the
national level, a sample was planned and its sample size was
determined for estimating the unemployment rate of the
country as a whole. Each province is a small area. The
national sample was allocated among the 26 provinces
proportional to population in order to have sample data from
each province (a top-down approach). This enabled direct
design-based estimates for each province and its corres-
ponding variance required for both the EB and composite
estimators. The sample design is able to produce good
estimates for the country and for some provinces.

3.1 Computational Aspects

To construct synthetic estimates, six age groups formed
the post-strata. The estimated unemployment rate of each
group based on the national sample and its corresponding
actual value based on the 1996 Census are presented in
Table (1), which also contains absolute errors of the esti-
mates.

The estimates for the first two groups have very large
error. Therefore, if a province in expression (1) gives large
EAPs to these age groups, its synthetic estimate may not
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perform well. The 1986 Census data were used in
computing the EAPs for all provinces and cells (N, and
N, in expression (1)) because, in the absence of adminis-
trative records, the nearest census to the year 1996 is the

main source of data at any level.

Table 1
Post-strata Characteristics
Age Group Estimated Rate (P ;) Actual Value  Absolute Error
10—-15 0.3240 0.2826 0.0414
16—20 0.2402 0.2629 0.0227
21-25 0.1868 0.1856 0.0012
26-30 0.0811 0.0802 0.0009
31-50 0.0363 0.0366 0.0003
More than 50 0.0653 0.0648 0.0005

To construct the composite estimates, provinces were
divided into two groups. The first consists of 14 provinces
that used the weight in expression (3), and the second of
seven provinces used the common weight W< = 0.873184
based on (6). Because the estimator in expression (4)
produces negative estimates for MSE(I%S ) for these seven
provinces, the AMSE was used.

To construct the EB estimates, d’ was estimated by
using the delta method and then #* was estimated following
Prasad and Rao (1990) by using a SAS/IML program (the
program is available from the authors). An initial estimate
for ¢* is required in this program, and was calculated by the
moment estimation method as #* =0.3117194. To solve the
equations in (11), the following 21x2 design matrix was
used, whose first and second columns are 1s and EAPs,
respectively:

[1 133,449
1 141,124
1 883,653
X=|1 795714
1 522,976
|1 162,892

The estimated #*> and E are

" . [ ~2.066874
2 =0.5596389, B =

~-1.273x107’

To test normality, a normal Q-Q plot and a Shapiro-
Wilk’s test for standardized residuals of the fitted model
were examined. The points in the Q—Q plot are close to a
straight line, and the test did not reject the null hypothesis of
normality ( p—value = 0.851).
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3.2 Results

The results are organized into four parts. First, bias in the
forms of error and absolute error is examined using two
criteria, ME and MAE. Second, MSEs are compared among
methods. Third, efficiencies of the indirect estimators rela-
tive to the direct estimator are evaluated. Finally, the
weights of the direct components in expressions (2) and (8)
are analyzed. All the results are depicted in appropriate
figures, however, details can be found in Table (2).

Suppose S, is the allocated sample size from the national
sample to a given province and S, the required sample size if
the sample size is separately determined for the province. In
other words, if there is a sample of size S, from the province,
an acceptable direct estimate can be then computed for the
province. Therefore, (S,/S; ) % 100 measures how much the
available sample size (S,) is adequate for a given province.
This measure is used on horizontal axes of all plots as a
basis for comparison sample size effects.

The synthetic estimator has the highest MAE, which was
even larger than that of the direct estimator (see Figure 1).
Conversely, MAEs of the composite and EB estimators are
the lowest, and very similar to one another. Based on ME,
there is a slight overestimation of the actual value for all
estimators. The direct estimator has the lowest ME because
it is unbiased. MEs of the composite and EB estimators are
close and the synthetic estimator has the highest ME.

For the direct, composite, and EB estimators, all
provinces with S,/S; > 10% have absolute errors less than
0.02. The highest absolute errors belong to Ilam and
Kohgiluyeh & Boyerahmad which have the smallest
populations and very small S,/S,. Plots of these three
estimators have relatively similar patterns. The story is
different for the synthetic estimator because the “national”
sample data are only used in making synthetic estimates
through the post-strata direct estimates and then the
“national” sample size (not S,/S;) affects the synthetic
estimate of a province through the cell EAPs. In other
words, if a post-stratum does not have “enough” national

sample data to yield acceptable direct estimates, and a
province gives large EAP to the post-stratum direct
estimate, the province has a poor synthetic estimate. This is
the case for Sistan & Baluchestan, Bushehr, Tehran and
Lorestan because of poor direct estimates for the first two
post-strata (the age groups of 10-15 and 16-20) and large
young populations of these provinces.

The lowest MSE always belongs to the composite or EB
estimator (see Figure 2). However, MSE of the composite
estimator is often lower than that of the EB estimator. The
MSE of the synthetic estimator is always higher than those
of the other estimators, even the direct estimator.

As the S, /S, increases, the MSE decreases for the direct,
composite and EB estimators (see the descending trend in
Figure 2). This effect is very drastic for Tehran (S,/S,=
36%). Again, there are two exceptions for the three
estimators, Ilam and Kohgiluyeh & Boyerahmad, both
having the smallest populations and very small S,/S,. The
pattern of Figure 2 for the synthetic estimator may be
misleading because seven provinces used AMSE. However,
the four previous provinces (Sistan & Baluchestan, Bushehr,
Tehran and Lorestan) also do not conform to the pattern. As
a general rule for an estimator, the greater the dependency
on the provincial direct estimates the stronger the relation-
ship between the MSE and the ratio S,/S,.

The relative efficiencies (RE) of the three indirect esti-
mators compared to the direct estimator for all provinces are
often smaller than or equal to one for the composite and EB
estimators and greater than one for the synthetic estimator.
Some composite estimates have good REs: Semnan (0.34),
West Azarbayejan (0.46), Khorasan (0.70), Kermanshah
(0_.72) and Hamadan (0'—775)é Means of REs (ﬁs =13.6,
RE =0.8595 and RE  =0.9951) indicate that the
composite estimator is the most efficient estimator among
the three indirect estimators. Further, in Figure 3 as S,/S;
increases RE™ approaches one. Figure 3 as well as Figure 2
may be misleading for the synthetic estimator.
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Table 2
Provincial and Estimator Characteristics
Province EAP Sa S S./S. RECRE™ RE®  AE‘ AE™® AE® AE” MSE®© MSE"™® MSE® MSE"
Bushehr 133449 146 4,550 3.2% 0.96 1.17 25.57 0.03300 0.01687  0.06501  0.02644  0.0003030  0.000368  0.0080483  0.0003148
Chaharmahal & Bakhtiyari* 141,124 203 4,063 5% 0.87 095 652 0.02136  0.02135 0.03644  0.02031 0.0003813  0.000417  0.0028670  0.0004397
Esfahan 883,653 1032 5,850 17.6% 0.90 1.00 9.56 0.01268  0.01421  0.00990  0.01504  0.0000533  0.000059  0.0005631  0.0000589
Fars 795,714 925 6,175 15% 0.91 099 9.69 0.00610 0.00886  0.02235  0.00904 0.0000836  0.000091  0.0008931  0.0000922
Gilan* 734,196 683 5364 12.7% 1.04 0.97 17.25 0.00484  0.00460  0.01107  0.00393 0.0001728  0.000162  0.0028670  0.0001662
Hamadan 387,517 439 4,550 9.6% 0.77 1.00 3.36 0.01294 0.01701  0.00675 0.01880  0.0001155  0.000150  0.0005030  0.0001498
Hormozgan* 168268 198 4,063 4.9% 0.84 093 5.12 0.01984 0.01734 0.02821 0.01862  0.0004731  0.000519  0.0028670  0.0005600
Tlam 84,210 111 4,063 2.7% 0.83 0.87 4.94 0.04901 0.05201  0.03395 0.06579 0.0013919  0.001450  0.0082747 0.0016734
Kerman* 312,768 450 5,200 8.7% 0.96 0.97 12.00 0.03615 0.03672  0.02864  0.03724  0.0002283  0.000231  0.0028670  0.0002389
Kermanshah 357,096 436 3,575 12.2% 0.75 0.96 3.07 0.00265 0.00928  0.02641  0.01210 0.0002747  0.000349  0.0011190  0.0003640
Khorasan 1,410,863 1,587 8,125 19.5% 0.70 0.99 236 0.00515 0.00193  0.01353  0.00160  0.0000298  0.000042  0.0000999  0.0000424
Khuzestan* 609,044 786 4225 18.6% 1.03 0.97 16.83 0.01034 0.01247  0.00308  0.01140 0.0001760  0.000166  0.0028670  0.0001704
Kohgiluyeh & Boyerahmad 90,655 105 3,575 2.9% 0.83 0.86 4.83 0.05486  0.05932  0.02630  0.07165 0.0013629  0.001408  0.0079493  0.0016449
Kordestan* 276,575 341 5200 6.6% 091 0.95 922 0.03105 0.02814 0.03641  0.03027 0.0002833  0.000297  0.0028670  0.0003111
Lorestan 310918 341 3,575 9.5% 0.86 0.95 622 0.00943 0.01383  0.04101  0.01754  0.0004090  0.000451  0.0029534  0.0004747
Mazandaran* 917259 1,043 6,013 17.3% 1.30 0.98 33.57 0.00199 0.00188  0.00310  0.00183 0.0001112  0.000084  0.0028670  0.0000854
Semnan 110,166 121 4,713 2.6% 0.34 1.08 0.51 0.02776  0.01929  0.03661  0.01042 0.0001534  0.000491  0.0002317  0.0004542
Sistan & Baluchestan 272,752 318 42875 6.5% 0.96 0.97 26.53 0.00431 0.00228  0.08606  0.00123  0.0002519  0.000254  0.0069347  0.0002614
Tehran 2,343,290 2,913 8,125 35.9% 0.99 1.00 83.08 0.00605 0.00573  0.04767  0.00555  0.0000209  0.000021  0.0017530  0.0000211
West Azarbayejan 522976 654 6,500 10.1% 0.46 0.98 0.85 0.00505 0.01247  0.00182  0.01309 0.0000552  0.000118  0.0001024  0.0001199
Yazd 162,892 207 5,038 4.1% 0.82 1.36 4.52 0.01414  0.00968 0.01008 0.01950 0.0001299  0.000215  0.0007164 0.0001586
*Denote provinces for which expression (3) produces negative estimates for MSEs.
EAP: Economically Active Population
Sa: Allocated Sample Size
S;: Required Sample Size
RE: Relative Efficiency
AE: Absolute Error
MSE: Mean Squared Error (the lowest MSE is bold for each province)
C, EB, S and D stand for Composite, Empirical Bayes, Synthetic and Direct estimators, respectively.
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Figure 1. Absolute errors of the estimates against S, /S,.
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Relative Efficiency (Composite)

Figure 3. Relative efficiency (Estimated MSE of indirect estimator/Estimated variance of direct estimator) against S, /S,
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(the plot of synthetic estimator has a different scale on the vertical axis for legibility).
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The direct component of the estimator in expression (8),
g;, always receives more weight than the indirect
component. This is the case for the composite estimator,
except for two provinces of Semnan and West Azarbayejan.
For the composite estimator, Rao (2003a, page 58) states
that “the optimal weight W™ will be close to zero or one
when one of the component estimators has a much larger
MSE than the other, that is, when f = MSE(ISiC )/
MSE(ISiS) is either large or small. In this case, the estimator
with larger MSE adds little information and therefore it is
better to use the component with smaller MSE.” This
comment is clearly illustrated for Bushehr (W =0.962355,
RE®=2527), Sistan & Baluchestan (W =0.963670,
RE®=26.53) and Tehran (W =0.988083, RE®=283.08),
because the direct estimates of these provinces have smaller
MSE:s than the synthetic estimates. Figure 4 clearly shows
an ascendant relationship between the weight and S,/S; for
the EB estimator. For the composite estimator, the lowest
and highest weights pertain to the provinces with the lowest
S./S; and the highest S, /S, respectively.

In general, the synthetic estimator performs poorly based
on the MAE, ME, MSE and RE criteria, even though the
synthetic estimates of some provinces are individually
closer to actual values than other estimates. However, the
synthetic estimates have been computed under the most
disadvantageous conditions. The EAPs applied to construct
the synthetic estimates are based on the 1986 Census (ten
years before the year when the estimates were produced). In
addition, the direct estimates of the first two post-strata are
quite different from the other post-strata, causing poor
synthetic estimates.

To address the first problem, administrative records
should be developed; for the second, post-strata estimation
should be handled in the sample design in advance. If not
only post-strata estimation but also provincial classifications
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0.9 R
08] =+

0.7
0.6
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0.4
03
0.2
0.1
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W (Composite)
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S./S;

in planning the sample design are considered in advance,
good direct estimates for the post-strata can be expected.
Consequently, good synthetic estimates for the provinces
can be expected. The provincial classifications can increase
homogeneity by putting similar provinces in classes togeth-
er and using only sample data of the classified provinces to
make the direct post-strata estimates to construct the syn-
thetic estimates of those provinces.

The composite and EB estimators usually perform well
when S,/S; is 10% or larger for a province because the
direct components of the estimators (2) and (8) are relatively
stable and receive a larger weight, especially for the EB
estimator. Tehran, Khorasan, Khuzestan and Esfahan are of
this type, while Bushehr, Ilam, Kohgiluyeh & Boyerahmad
and Semnan are not.

4. Final Remarks

In developing countries like Iran, administrative records
are not often available both at small and large area levels.
Surveys may yield satisfactory estimates for large areas but
not for small areas. Periodic censuses do not meet all
demands for effective policies and planning. These limi-
tations lead to deficiencies in official statistics. Therefore,
the statistical planning activities of SCI are directed towards
compensating these deficiencies by using new methods and
strategies. The present study proposes a cost-effective
strategy to overcome some of the limitations.

In this study, the findings support the idea that a nation-
wide sample design can be used instead of the separate
provincial sample designs by applying suitable SAE
methods. The nationwide sample design consists of nearly
13,000 persons, whereas the twenty-one separate provincial
sample designs totally consist of almost 100,000 persons.
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Figure 4. The weights of the direct components of composite and EB estimates against S,/S,.
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The provincial design is the method currently used to
produce provincial estimates by SCI. Using the national
sample design decreases costs more than 80 percent. In
addition, note that:

1. Although some SAE methods do not rely on existing
sample data from all small areas, the strategy for
producing provincial estimates is more appropriate
when the small areas of interest are pre-specified.
Therefore, the nationwide sample can be allocated to
all small areas of interest to produce direct design-
based estimates. It is important to adjust the sample
design to accommodate the SAE methods before data
collection begins. As Singh, Gambino and Mantel
(1994, page 3) note
“small area needs should be recognized at the
early stages of planning for large scale
surveys. The sample design should include
special features that enable production of
reliable small area data using design or model
estimators”.

Therefore, SCI must re-plan sample designs to reflect

small area needs.

2. The SAE estimators usually perform well as the
sample size increases. To improve provincial esti-
mates, the nationwide sample size can be enlarged to
have larger sample sizes from each province. Also,
the provinces can be classified into groups with
similar characteristics, such as unemployment rates,
socio-demographic variables, and so on. Separate
sample size would then be determined for each group.

3. Appropriate supplementary variables, which are
related to the variable of interest, play a central role in
improving the estimators.

— The synthetic estimator used only one variable
(age) for partitioning but it may be possible to use
another variable or a combination of variables for
partitioning. The post-strata in the synthetic
estimator should be formed by variables that
reduce variation in each post-stratum. These
variables can indirectly affect the composite
estimator as well.

— The EB model can be improved with better
supplementary information. Therefore it is
important to try different supplementary variables
to find the best model. In this work only EPA was
used as the independent variable in the model, but
there may be other variables that produce better
estimates.

4. The composite estimator performs relatively better
than the synthetic and EB estimators. However, the
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results are only meant to provide a first impression of
the utility of SAE methods. More research is needed to
develop a generic SAE methodology in Iran. Further,
the SAE methods should be applied not only in
estimating unemployment rates but also in estimating
other parameters, and SAE methods should be
compared with the estimates coming from separate
sample designs.
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Design Effects for Multiple Design Samples

Siegfried Gabler, Sabine Hiider and Peter Lynn '

Abstract

In some situations the sample design of a survey is rather complex, consisting of fundamentally different designs in different
domains. The design effect for estimates based upon the total sample is a weighted sum of the domain-specific design
effects. We derive these weights under an appropriate model and illustrate their use with data from the European Social

Survey (ESS).

Key Words: Stratification; Clustering; Variance component model; Intraclass correlation coefficient; Selection

probabilities.

1. Introduction

In survey research complex sample designs are often
applied. These designs have features such as stratification,
clustering and/or unequal inclusion probabilities, that lead to
“design effects”. The design effect is a measure that shows
the effect of the design on the variance of an estimate.
Design-based it is defined as follows (see Lohr 1999, page
239):
deff' (plan, statistic) =

V (estimate from sampling plan)

V(estimate from an srs with same number)

of observation units

where srs indicates a simple random sample. The use of
clustering and/or unequal inclusion probabilities typically
leads to design effects greater than 1.0; in other words the
variance of an estimate is increased compared to the
variance of the estimate from a simple random sample with
the same number of observations. The consideration of
design effects is very important when deciding upon the
sample size of a survey in advance. For example, if a
comparative survey with different countries is planned it is
very useful to have estimates of the design effects for the
different countries. Then it is possible to choose the net
sample sizes in a way that the precision of the estimates will
be approximately equal. For this, for a certain degree of
precision the sample size that would be needed under srs
(effective sample size) has to be multiplied by the predicted
design effect.

The European Social Survey (ESS, see www.european
socialsurvey.com) is a survey program where design effects
are taken into consideration for calculating net sample sizes
—aiming at the same effective sample size for each country
(n =1,500). 22 countries participated in the first round of
the ESS, only three of them with unclustered, equal

probability designs (srs): Denmark, Finland and Sweden.
For all other countries there was the need to predict the
design effect in advance of the study. For this, a model
based approach (see Gabler, Hader and Lahiri 1999) can be
used which distinguishes between a design effect due to
unequal inclusion probabilities (term 1) and a design effect
due to clustering (term 2):

I
X mw;
m;w;

deff =m—"——— x[1+(b" —Dp]=deff, x deff, (1)
)

where m, are respondents in the i™ selection probability
class, each receiving a weight of w,, p is the intracluster
correlation coefficient and

|

th

b, 2
Z Wei

A

b* c=1 \ j=1
= c )
22w

c=1 j=1

where b, is the number of observations in cluster
c(c=1...,C) and w, is the design weight for sample
element j in cluster c. (This is of course a simplification that
assumes no association between y and w, or between w,
and " and ignores any effects of stratification, that will
tend to be beneficial and modest. See Lynn, Gabler, Hader
and Laaksonen (2007, forthcoming) and Park and Lee
(2004) for discussion of the sensitivity of deff predictions to
these assumptions; see Lynn and Gabler (2005) for
discussion of alternative ways to predict deff, ).

In some countries the applied designs were even more
complicated, consisting of fundamentally different designs
in each of two independent domains. In the UK, e.g., the
design was a mixture of a clustered design with unequal
inclusion probabilities (in Great Britain) and an unclustered

1. Siegfried Gabler and Sabine Hider, Zentrum fiir Umfragen, Methoden und Analysen (ZUMA), Postfach 12 21 55, 68072 Mannheim, Germany. E-mail:
gabler@zuma-mannheim.de; Peter Lynn, Institute for Social and Economic Research, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ,

United Kingdom. E-mail: plynn@essex.ac.uk.
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sample (in Northern Ireland). In Poland, simple random
samples were selected in one domain (cities and large
towns), while a two-stage clustered design was applied in
the second domain (all other areas). In Germany, a clustered
equal-probability sample was selected in each domain (West
Germany including West Berlin; East Germany), but the
sampling fractions differed between the domains.

The question arose how to predict design effects for these
dual design samples. As we show below, it is not simply a
convex combination of the design effects for the different
domains-apart from in some special cases. A general
solution for multiple design samples will be presented in
section 2, with illustrations of the application of this solution
to prediction of design effects prior to field work (section 3)
and to estimation of design effects post-field work (section
4). Section 5 concludes with discussion.

2. Design Effects for Multiple Design Samples

Let {C,,...,Cy} be a partition of the clusters into K
domains. Then Cb =%, b, =55 ¥ cc, b =Xk m =m,
where m;, =3, ., b, is the number of observations in the
k™ domain of clusters. Let y, be the observation for
sample element j in cluster c(c=1,...,C; j=1,...,b,).
The usual design-based estimator for the population mean is

where

z zwcjycj

—(k) ceC, j=1

YT,

ceC, j=1

We assume the following model M1:

E(y,)=n

Var(y )—02} for c=1,...,C;j=1,...,b,
g)=

2
p, o’ ifc=c'eC;j#)' Py

COV(yC,-,ycr,-r)={ =1,....K.

0 otherwise

Model M1 is appropriate to account for the cluster effect
with different kinds of clusters and generalises an earlier
approach (see, e.g., Gabler et al. 1999). More general
models can be found in Rao and Kleffe (1988, page 62). We
define the (model) design effect as deff = Var,,,(¥,)/
Var,,, (¥), where Var,,, (¥, ) is the variance of ¥, under
model M1 and Var,,,(¥) is the variance of the overall

Statistics Canada, Catalogue No. 12-001-XIE

sample mean y, defined as Y., X%, v, /m, computed
under the following model M2:

E(y,)=n

Var(y )—02} for c¢=1,...,C;j=1...,b,
g/

3)
Cov(ycj’yc’j’):o for all (C’j)i (C"j')'

Note that model M2 is appropriate under simple random
sampling and provides the usual expression, Var,,,(¥) =
2
o /m.

Quite analogous to Gabler et al. (1999) we note that

Vaer{i i Wi ych:
} “)

c=1 j=1

SPIPR DT LA

k=1 ceC; = Ve
Thus
b, 2
K C ; WUj m
deﬁ":z % m—a’eﬁ"k (5)
. Z Z Wei ¢
c=1 j=1
where
b,
22"
deff, =m, ‘;* Sx[L(b, = Dp, 1=deff , xdeff .,
Z Z Wei
ceC, j=1
and

(2]

s
P

It can be seen that deﬁ" is not a convex combination of the
specific {deff,} except in some special cases. We consider
here four realistic scenarios, each representing a simplifi-
cation of the general case. Only in two of these scenarios
(scenarios 1 and 4) does the combination become convex:

Scenario 1: Equal weights for all units
If w, =1 forall ¢, j, then expression (5) simplifies to:

deff = f % deff,. (6)

k=1 M

Scenario 2: Equal weights within each domain

If w,=w, for all ceC,,j, then expression (5)
becomes:
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_mwe

deff =3 | - L deff,. 7

k=1 zmkwk m

Scenario 3: Weighted sample size proportional to domain
population size

If
b,
w
ceCAjz:; ? _&
c_ b TN
DIPIRLH
c=1 j=1

where N, is population size in domain k;N =35, N,
then expression (5) becomes:

_E(NY m
deﬁ"—;(NJ m deff,. ®)

Scenario 4: Unweighted sample size proportional to domain
population size
If

m_N
m, N,

then expression (8) becomes:

deff = Z Ne deﬁ"k )
k=1

3. Application to Prediction of Deff

In round 1 of the ESS, the sample design was a
combination of two different sample designs for 5 out of 22
countries: United Kingdom, Poland, Belgium, Norway and
Germany. We can apply the general formula (5) for design
effects for multiple design samples to each of these cases,
where K =2. In some cases, we can equivalently use one of
the simplified expressions (6) to (9). Here we illustrate how
the formulae would be used in the prediction of design
effects prior to fieldwork, for the purpose of establishing the
required net (respondent) sample size to achieve a
prescribed precision of estimation. In each case, the
approach is to predict {deff,} using (1) for each k and then
use (5) to predict deff. To predict {deff,}, the observed
values of {w,} from the ESS round 1 respondent sample
are used to estimate, b ,m, and w;. In other words, these
could be thought of as predictions for a future survey using
the same design (e.g., a future round of ESS). For
illustration, we assume p, =0.02Vk with a clustered
design and p, =0.00V k£ with an unclustered design (0.02
is in fact the default value that was used for predicted design
effects for clustered samples on the ESS in cases where
estimates from previous surveys were not available). Our
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focus here is on the application of (5). For a more detailed
description of the sample designs see Héder, Gabler,
Laaksonen and Lynn (2003). We use three of the ESS
countries—Poland, UK and Germany-as illustrations as
these designs differ between the domains in different ways.
The designs of Norway and Belgium were similar to that of
Poland, with equal probabilities for all units but one domain
clustered and one unclustered.

3.1 Poland

In Poland, the first domain covered the population living
in towns of 100,000 inhabitants or more. Within this
domain, a srs of persons was selected from the population
register (PESEL data base) in each region, with slight
variation between regions in the sampling fraction,
reflecting anticipated differences in response rate. There
were 42 towns in this domain and they accounted for about
31% of the target population.

The second domain corresponded to the rest of the
population—people living in towns of 99,999 inhabitants or
fewer and people living in rural areas. This part of the
sample was stratified and clustered (158 clusters). The
sampling of this second part was based on a two-stage
design: PSUs were selected with probability proportional to
size. The definition of a PSU was different for urban vs.
rural areas. For urban areas, a PSU was equivalent to a
town, whereas for rural areas, it was equivalent to a village.
In the second stage, a cluster of 12 respondents was selected
in each PSU by srs.

In the first domain, p, =0 and deff,, =1. The modest
variation in selection probabilities leads to deff,,, =1.005
and, therefore, deff; = deff,, - deff,, =1.005. In the second
domain, the design effect due to clustering is anticipated to
be deff., =1.18 (based on a prediction of »* =10.07) and
deff,, =1.01 which results in deff, =deff., -deff,, =
1.19. Substituting these values of deff, in (5) leads to a
prediction of deff =1.17.

The design for Poland differs only slightly from scenario
2 and it can be seen that in this case the simpler expression,
(7), provides a reasonable prediction if we approximate the
weights as follows. Domain 1 contains 37.3% of the gross
sample and 31% of the target population. Thus

1
W = N,/N 0.3 0_083
n/n 0373
and
_N,/N _0.690 ~1.100,
nz/n T 0.627

respectively, where n, 1is selected sample size in domain
. vK
ky Yo ny.
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Now, we can apply expression (7) to find the predicted
design effect for estimates for Poland: deff =
(0.194-1.005)+(0.821-1.19) = 1.17.

3.2. United Kingdom

In the UK, the ESS sample design differed between
Great Britain (England, Wales, Scotland) and Northern
Ireland. In Great Britain a stratified three-stage design with
unequal probabilities was applied. At the first stage 162
small areas known as “postcode sectors” were selected
systematically with probability proportional to the number
of addresses in the sector, after implicit stratification by
region and population density. At stage 2, 24 addresses were
selected in each sector, leading to an equal-probability
sample of addresses. At the third stage, one person aged 15+
was selected at the selected address using a Kish grid.

For Northern Ireland a simple random sample of 125
addresses was drawn from the Valuation and Land
Agency’s list of domestic properties. One person aged 15+
was selected at the selected address using a Kish grid. Thus,
the UK sample is clustered in one domain but not in the
other. In both domains, there are unequal selection proba-
bilities.

In Great Britain we predicted deff,; =1.20 (based on a
prediction of " =11.11) and deff,, =1.22, so deff, =
1.46. In Northern Ireland we have predictions of deff., =1
(by definition) and deff,, =1.27, so deff, =1.27. From
expression (5), deff =0.978-1.46+ 0.023-1.27 =1.460.
It should also be noted that the selected sample sizes in the
two domains were chosen to result in net sample sizes that
would be approximately in proportion to the population
sizes. In other words, the simplification of scenario 4
approximately holds. If we use expression (9), we get
deff = N,/N deff, + N,/N deff, =0.97-1.46 + 0.03-
1.27=1.457, demonstrating that this provides a reasonable
approximation to (5) in this case.

3.3. Germany

In Germany independent samples were selected in two
domains, West Germany incl. West Berlin, and East
Germany incl. East Berlin. In both domains, the sample was
clustered and equal-probability, but a higher sampling
fraction was used in East Germany.

At the first stage 100 communities (clusters) for West
Germany, and 50 for East Germany were selected with
probability proportional to the population size of the
community (aged 15 years or older). The number of com-
munities selected from each stratum was determined by a
controlled rounding procedure. The number of sample
points was 108 in the West, and 55 in the East (some larger
communities have more than one sample point). At the
second stage in each sample point there was drawn an equal
number of individuals by a systematic random selection
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process. This was done using the local registers of residents’
registration offices.

Since the sampling design is self-weighting for both East
and West Germany, but with disproportional allocation,
scenario 2 applies and we can use expression (7), where

N
W, = Weagy = —E 0,567

N ngagr
and

N
_Zwest M 957,

Wy = Wygst = N
Nwest

(we note that common practice on some surveys is to
scale the weights so that they sum to population sizes. This
would make no difference to the application here as
expression (5) involves only ratios of sums of weights).

The design effect due to clustering for each domain was
predicted as deff,, =1.39 and deff., =1.35, respectively
(via predictions of »" =20.56 and 18.65 respectively), so
from (7) we have

deff =0.120-1.39+0.991-1.35=1.51.

It should be noted that in this case any convex
combination of the domain-specific design effects will lead
to a prediction of deff’ between 1.35 and 1.39. For example,
(6) would give deff =1.36. This fails to take into account
the differences in selection probabilities between the
domains. With this particular design—where the only
difference in design between domains is the difference in
selection probabilities — deff might alternatively be predicted
by taking the convex combination and multiplying it by the
prediction of deff,, from the first term in expression (1), viz.
deff =1.36-1.09 =1.49. But this method is equivalent only
in the special case where {deff,} are equal-and approxi-
mately equivalent in this case, where the variation is small.

4. Application to Estimation of Deff

Here we illustrate the use of expression (5) in the
estimation of design effects post-fieldwork. We present
estimates for 5 demographic/behavioural variables and a set
of 24 attitude measures from round 1 of the European Social
Survey, for the same three countries as in section 3. For
comparison, we present also the estimates that would be
obtained using the simpler expressions (6), (8) and (9). It
can be seen that the estimates of deff differ greatly between
variables. This is to be expected, reflecting variation in the
association of y with clusters and with selection probabi-
lities. But here we are more interested in differences
between estimation methods for the same variable.
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For Germany, we see that estimators (6) and (9), which
ignore variation in weights and in sampling rates between
the two domains respectively, under-estimates deff for all
variables. Estimator (8), which assumes only equal response
rates in each domain, produces estimates very similar to (5).
For Poland, all three simplified estimators under-estimate
deff, though (6) perhaps performs marginally better than the
other two. For UK, we observe the remarkable result that all
four estimators produce almost identical estimates for every
variable. The assumption in (9) (and therefore also that in
(8)) holds for UK and while weights are by no means equal,
the distribution of weights is very similar in each domain. It
can be noted that (6) holds under a weaker assumption that
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i.e., that the share of the weights in each stratum equals the
share of sample units. It is striking that these relationships
between the estimators are consistent across all the variables
considered.

5. Discussion and Conclusion

Expression (5) provides an appropriate means of
combining design effects for domains with fundamentally
different designs. It can be applied in estimation by
estimating deffs in the usual way for each domain and then
combining them using knowledge of the weight and domain
membership of sample units. Use of (5) in the prediction of

3 z W, deffs before a survey is carried out is only slightly more
ceCy j=1 ! _my demanding, requiring prediction of the share of the weights
c b om in the responding sample in each domain in addition to a
e Wej method of predicting design-specific deffs.
Table 1
Estimates of Deff for Means Under 4 Estimators for 3 Countries
DE GB PL
Estimator: G © © G © ©® O G © ©® ©
Demographic/behavioural
Persons in household 1.87 185 187 1.74 1.66 1.66 1.66 1.66 151 143 141 142
Years of education 325 280 325 288 281 279 280 2.79 1.77 1.66 163 1.64
Net household income 246 215 246 2.19 2.82 280 2.80 2.80 2.16 200 195 1.98
Time watching TV 2.08 1.86 2.08 1.87 2.04 203 203 203 131 126 125 1.25
Time reading newspaper .79 1.62 1.79 1.35 135 135 135 .73 1.63 1.60 1.61
Attitude measures
Discriminated by race .16 1.03 1.16 1.04 1.92 192 192 192 .02 1.01 101 1.01
Discriminated by religion 122 1.05 122 1.08 126 126 126 1.26 1.07 1.05 1.05 1.05
General happiness 256 211 255 223 1.56 1.55 156 1.55 149 142 140 141
Trust in others 220 196 220 1.98 1.85 1.84 1.84 1.84 1.66 157 154 1.55
Trust in Euro Parliament 1.83 159 183 1.62 1.50 1.50 1.50 1.50 143 137 135 136
Trust in legal system 207 172 207 181 1.37 137 137 137 142 136 134 135
Trust in police 1.92 1.63 192 1.69 124 124 124 1.24 124 120 1.19 1.19
Trust in politicians 175 1.62 175 1.59 1.38 138 1.38 1.38 1.63 154 151 1.53
Trust in parliament 1.64 148 164 148 145 145 145 145 .13 1.10 1.10 1.10
Left-right scale 1.70 1.65 170 1.58 148 147 148 148 131 126 125 1.25
Satisfaction with life 206 1.74 206 1.81 1.68 1.67 1.67 1.67 130 125 124 125
Satisfaction with education system 3.03 2.89 3.03 279 1.37 137 137 137 140 134 132 133
Satisfaction with health system 376 321 376 3.32 1.65 1.64 1.64 1.64 1.65 1.56 153 1.54
Religiosity 194 175 194 1.75 1.57 156 1.56 1.56 1.73 1.63 1.60 1.61
Attitudes to immigrants 277 2.68 277 257 192 192 192 192 1.89 176 173 1.74
Supports law against ethnic discrimination  2.82  2.85 2.82 2.66 .73 172 172 1.72 257 236 229 233
Importance of family 217 199 217 197 .19 1.19 119 1.19 121 117 117 117
Importance of friends 231 209 231 2.08 134 134 134 134 1.54 146 144 145
Importance of work 220 216 220 2.05 190 1.89 1.89 1.89 .69 1.59 157 1.58
Support people worse off 270 247 270 245 1.35 135 135 135 1.78 1.67 1.64 1.66
Always obey law 243 221 243 220 1.53 152 152 1.52 211 196 191 193
Political activism 326 2.83 326 2.89 1.94 194 194 194 2.16 200 196 1.98
Liberalism 228 218 228 2.10 1.78 177 178 1.78 175 1.64 161 1.63
Participation in groups 375 3.04 375 324 226 225 225 225 1.82 171 1.68 1.69
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We have shown in section 4 above that use of alternative,
simpler, methods of combining the domain-specific deffs
does not always result in good estimates. In particular, the
use of a convex combination will tend to result in an under-
estimation, the extent of which depends on the extent of
departure from the assumptions underlying the simplified
expressions. In our empirical illustration, departures were
modest, but it is easy to imagine designs with greater
variation between domains in mean selection probabilities
or in the distribution of design weights. We would therefore
recommend that estimators (6)-(9) are used only if the
assumptions genuinely hold, or if the sample design data
necessary to calculate (5) is not available, in which case the
analyst should at least make arbitrary allowance for under-
estimation based on his or her knowledge of the design.

An important issue that is outside the scope of this article
is how to deal with non-response when predicting or
estimating design effects for multiple design samples. The
expressions throughout section 2 of this article refer to the
number of observations, i.e., respondent sample units, in
each domain, m,, and the calculations in sections 3 and 4
are based on predicted numbers of observations and actual
numbers of observations respectively. But the natural
interpretation of the differences between the four scenarios
in section 2 may be in terms of sample design, where the
weights are design weights. Thus, scenario 2, for example,
would refer to a design that is epsem within domains, but
where the sampling fraction is permitted to differ between
domains. However, in most realistic applications non-
response will occur and may well be differential both
between and within domains. This is often reflected in an
adjustment to the design weight. Thus, the simplification of
scenario 2 would only apply if the non-response adjustment
were constant within domains, in addition to the design
being epsem within domains.

Scenario 3, if interpreted with respect to design alone,
should always hold for any well-specified design in which
the domains form explicit strata. Expression (8) is therefore
equivalent to expression (5) in the absence of non-response.
In the presence of non-response, scenario 3 requires that the
(design-weighted) response rates are equal in each domain.
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Similarly, scenario 4 requires that the net inclusion rate (the
product of coverage rate, sampling fraction and response
rate) is equal in each domain, whereas a design inter-
pretation would not consider the response rate component.
Appropriate ways to incorporate non-response adjust-
ment into design effect estimation and, in particular, how
that might effect estimation for multiple design samples,
would appear to be an area worthy of further research.
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