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Abstract

The authors examine the issue of lag-length selection in the context of a structural vector autore-

gression (VAR) and a vector error-correction model with long-run restrictions. First, they show

that imposing long-run restrictions implies, in general, a moving-average (MA) component in the

stationary multivariate representation. Then they examine the sensitivity of estimates of the per-

manent and transitory components to the selection of the lag length required in a VAR system to

approximate this MA component. In summary, they find that using a lag structure that is too short

can lead to a significant estimation bias of the permanent and transitory components. In addition,

in comparing four different lag-selection criteria, they find that the Schwarz information criterion

systematically underperforms relative to the other tests. More generally, as the order of the VAR

that best approximates the data-generating process increases, the sequence-based tests (Wald,

likelihood ratio) tend to provide more reliable results than the information-based tests (Akaike,

Schwarz).

Résumé

Dans la présente étude, les auteurs examinent la question du choix des retards dans un modèle

structurel d'autorégression vectorielle ou modèle vectoriel de correction des erreurs avec con-

traintes de long terme.  Ils montrent tout d'abord que l'imposition de telles contraintes implique

généralement qu'une composante de moyennes mobiles (MA) intervient dans la représentation

stationnaire du modèle à plusieurs variables.  Puis ils examinent le degré de sensibilité que les

estimations des composantes permanente et temporaire du modèle doivent afficher par rapport au

choix du retard dans un système autorégressif pour s'approcher de cette composante MA.  En

somme, ils trouvent que l'utilisation d'une structure de retard de trop courte durée peut entraîner

une distortion importante de l'estimation des composantes permanente et temporaire.  En outre,

une comparaison de quatre critères différents du choix des retards révèle que les tests axés sur le

critère d'information de Schwarz produisent toujours des résultats moins probants que les autres.

De façon générale, au fur et à mesure que s'accroît l'ordre du vecteur autorégressif qui fournit la

meilleure approximation du processus de génération de données, les tests séquentiels (Wald, rap-

port des vraisemblances) tendent à produire des résultats plus fiables que ceux qui s'appuient sur

les critères d'information (Akaike, Schwarz).
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1 Introduction

In order to legitimize the use of the vector autoregression (VAR) methodology to conduct
structural interpretation of impulse response functions, Sims (1986), Bernanke (1986) and
Blanchard and Watson (1986) introduced “structural” VARs (or SVARs). Each proposed
slightly different contemporaneous identifying restrictions that had the advantage of being more
directly drawn from economic theory compared with the standard and commonly used
alternative, which consisted of imposing a contemporaneous recursive structure on the vector of
reduced-form errors, often without any theoretical justification.

Blanchard and Quah (1989) as well as Shapiro and Watson (1988) proposed to identify the
structural shocks by imposing restrictions on their long-run effects. The main advantage was
that long-run restrictions are often easier to justify on the basis of economic theory than
contemporaneous restrictions. The methodology was also extended to representations with
cointegration by King, Plosser, Stock and Watson (1991). Since publication of these papers,
applications of the SVAR methodology, based either on contemporaneous or long-run
restrictions (or a mixture of both), have gained popularity. So far, SVARs have been used mostly
to evaluate the relative contribution of different “structural” shocks to fluctuations of output in
various countries. In some cases, the results have contributed to the ongoing debate in the
literature regarding the relative size of permanent and transitory shocks in output fluctuations.
Given the failure of univariate methods to provide non-arbitrary decompositions, the
multivariate (SVAR) approach can be seen as a useful alternative.

Even though one important class of SVARs relies on long-run restrictions, the method has been
commonly applied to relatively short samples. This raises the difficulty of obtaining a good
approximation of the matrix of long-run multipliers in small samples. While this type of
econometric problem has been the object of several papers in the last few years in the context of
univariate time series, it has not yet received as much attention in the multivariate context.
Nevertheless, there have been some recent attempts to provide a general characterization of the
properties of the SVAR methodology based on long-run restrictions. For instance, Faust and
Leeper (1994) argue that to obtain a meaningful structural interpretation, long-run restrictions
must be accompanied by restrictions on the finite-horizon dynamics, regardless of the sample
size.1

The main purpose of this paper is to examine the issue of lag-length selection in the context of a
structural VAR or vector error-correction model (VECM) with long-run restrictions. In
particular, we focus on the estimation of the matrix of contemporaneous decomposition of
reduced-form errors into their structural counterparts. In this regard, our paper can be seen as an

1.  To a certain extent, their argument is similar to the point raised by Watson (1986) who showed in the univariate
context that different ARIMA processes yielding almost identical short-run dynamics have very different long-run
implications in terms of the size of the long-run effect of the permanent shock.
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extension to the multivariate case of the work done by Hall (1995) and Ng and Perron (1994) in
the context of univariate series. While both papers examine this issue in the context of unit root
tests, Ng and Perron look at the implications of approximating an ARMA model with an AR
specification. Extending this approach to the multivariate context, we look at the implications of
using a VAR representation to approximate a VARMA model. The SVAR methodology relying
on long-run restrictions is particularly exposed to this approximation problem. Indeed, we show
that when some shocks have only temporary effects on one of the variables, the first difference
of the multivariate representation will, in general, contain an MA component.

Even though a parallel can be drawn with the applications of some cointegration tests based on
the estimation of the matrix of long-run multipliers, the examination of this issue is not one of
the objectives of this paper. We concentrate instead on the implications for the structural
interpretation of impulse response functions and variance decompositions derived from the
application of the SVAR methodology with long-run restrictions.

To do so, we generate various bivariate VARMA models, all of which satisfy all identifying
restrictions used in the estimation of SVARs. These models differ according to the size of the
MA component. Given that the VAR representation of these models has an infinite lag structure,
the models can only be approximated with a finite VAR specification.

Then, we estimate the VAR representation on each artificial data set for truncation lags that vary
from 1 to 12. We also compare the performance of four data-based lag-length selection criteria.
Two of these, Akaike (AIC) and Schwarz (SIC), are information-based criteria. The other two,
the Wald and likelihood ratio (LR) criteria, are sequence-based tests and are applied according
to a general-to-specific strategy for 5 and 10 per cent critical values.

To briefly summarize our results, we find that using a lag structure which is too parsimonious
can lead to a significant estimation bias of the permanent and temporary components. In
addition, we find that the Schwarz criterion systematically underperforms relative to the other
tests and that more generally, as the order of the VAR that best approximates the data-generating
process (DGP) increases, the sequence-based tests tend to provide more reliable estimates than
the information-based tests.

The rest of the paper is organized as follows. Section 2 provides a description of the
identification method based on long-run restrictions. The four lag-length selection criteria used
are introduced in Section 3. In Section 4, we describe the basic DGP. In Section 5, we discuss
the choice of parameter settings to achieve our objectives. Section 6 presents the results from
the simulations. Conclusions follow.



3

2 Identification method based on long-run restrictions

In this section, we describe the identification method based on long-run restrictions for a general
representation with integrated variables I(1) or with stationary variables I(0) that encompasses
the cases with and without cointegration.

Consider the following Wold representation of a reduced-form model:

(2.1)

where  is a n x 1 vector of I(0) random variables,  is a vector of constant,  and
 is a vector of i.i.d. reduced-form disturbances  with finite fourth moments.2 The roots of

det  must lie on or outside the unit circle.3 We wish to identify the structural parameters
and residuals from estimates of the reduced form, where the structural form is

(2.2)

and  is i.i.d. The variance-covariance matrix of  is usually normalized to the identity
matrix, which implies that the structural disturbances are assumed to be uncorrelated.
Therefore, it follows that

(2.3)

and

(2.4)

The identification problem is given by these two relationships. From (2.4), we see that the n x n
matrix , relates the reduced-form errors to their structural counterparts and has
elements. Since the variance-covariance matrix  in (2.3) contains only
independent terms,  additional constraints are necessary to identify  and
thereby recover the structural shocks from the reduced-form residuals.

The conventional approach to identifying the structural parameters has been to set restrictions
on the matrix of contemporaneous effects between the variables included in the system by
applying a Choleski decomposition on the covariance matrix of the reduced form. However,

2.  may include stationary variables in level, as was the case in Blanchard and Quah (1989), where the unem-
ployment rate in level is used in the VAR representation.

3.  This condition rules out non-fundamental representation as defined by Lippi and Reichlin (1993).

Xt∆ µ C L( ) εt+=

Xt∆ µ C 0( ) I=
εt Σ( )

Xt∆

C L( )

Xt∆ µ A L( ) ηt+=

ηt ηt

A 0( ) A 0( ) ′ Σ=

εt A 0( ) ηt=

A 0( ) n
2

Σ n n 1+( ) 2⁄
n n 1–( ) 2⁄ A 0( )
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Cooley and Leroy (1985) criticized this method on the grounds that recursive contemporaneous
structure implied is often hard to reconcile with any economic theory. In order to address this
line of criticism, Sims (1986), Bernanke (1986) and Blanchard and Watson (1986), proposed
alternative methods whereby structural equations can be recovered from reduced-form
estimates by imposing contemporaneous restrictions more directly drawn from economic
theory.

Blanchard and Quah (1989) and Shapiro and Watson (1988) proposed an alternative method
based on long-run restrictions. Instead of using the contemporaneous matrix, these authors
imposed some restrictions on the long-run effect of the shocks. The advantage was that long-run
restrictions are usually the object of a broader consensus across various economic theories.
King, Plosser, Stock and Watson (1991) extended the Blanchard-Quah (BQ) methodology to a
representation with cointegration vectors where the long-run restrictions correspond to common
stochastic trends.

Given its reliance on long-run restrictions, the BQ method can be used in a multivariate context
to identify the stochastic permanent and temporary components of a particular non-stationary
time series. We can transform the reduced form in a way to make these two components
explicit:

(2.5)

where  is permanent and  is transitory. The representation (2.5) corresponds to
the multivariate Beveridge and Nelson (1981) decomposition. As a result, the long-run
variance-covariance matrix of (2.5) is

(2.6)

Given the assumption of zero correlation between the structural shocks and the normalization of
their variance to unity, the long-run variance-covariance matrix of the structural form is

(2.7)

Therefore (2.3), (2.6) and (2.7) imply the following relation:

(2.8)

This relation suggests that by imposing restrictions on the long-run covariance matrix of the
structural form , we can identify the matrix . For example, Blanchard and Quah
estimate a VAR system for U.S. output growth and the unemployment rate. Their main
objective is to identify the relative contribution of supply and demand shocks to the variance of

Xt∆ µ C 1( ) εt C
*











L( )+ += εt

C 1( ) εt C
*











L( ) εt

C 1( ) ΣC 1( ) ′

A 1( ) A 1( ) ′

C 1( ) A 0( ) A 1( )=

A 1( ) A 0( )



5

output innovations. In their application, they assume that the two shocks driving the output and
unemployment processes are mutually uncorrelated, and only one of the two (defined as the
supply shock) has a permanent effect on output.

King, Plosser, Stock and Watson (henceforth, KPSW) consider the case where cointegration
between the I(1) variables exists. In this case, the matrix of the reduced form  has the
dimension n x (n-r), where r is the number of cointegration relations and n-r the number of
common trends (Stock and Watson 1988). KPSW describe how cointegration relationships can
be used as a set of long-run restrictions on the structural form. In their application, they try to
evaluate the importance of productivity shocks on economic fluctuations. These shocks are
identified as disturbances to the common trend in output, consumption and investment.

To obtain the moving-average representation of the reduced form (2.1) and the matrix of long-
run multipliers , we need to estimate a VAR in the case without cointegration and a
VECM in the case with cointegration.

In the case without cointegration, where the roots of  are outside the unit circle, (2.1) can
be expressed as an infinite VAR. In the case with cointegration, the Granger Representation
Theorem implies that any cointegrated system has an error-correction representation. Unless
this representation is a finite autoregression, the error-correction model corresponds to a infinite
VECM. The general infinite VECM representation is4

(2.9)

where  if there is no cointegration. However, to estimate the system, we need to fit a
finite autoregression of order k:

(2.10)

Now, we examine the link between the choice of truncation length k and the estimated long-run
covariance matrix. In order to facilitate the discussion, we introduce some useful definitions:

(2.11)

(2.12)

4.  For simplicity, we examine the case without a constant.

C 1( )

C 1( )

C L( )

Xt∆ ΠXt 1– Bi Xt i– εt+∆
i 1=

∞

∑+=

Π 0=

Xt∆ ΠXt 1– Bi Xt i– εkt+∆
i 1=

k

∑+=

Γx k( ) X′t 1– X't 1– … X't k–∆, ,∆,( ) ′ X′t 1– X't 1– … X't k–∆, ,∆,( )
t k 1+=

T

∑=

Σ̂k
1

T k–( )
------------------ ε̂ktε̂kt′

t k 1+=

T

∑=
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where  has dimension (nk+1) x (nk+1) and  is n x n. The vector of estimated
parameters is the following:

(2.13)

 is a  vector formed by stacking the columns of  (coefficients associated with
the lagged variables in the first difference) underneath each other such that

The estimation of the long-run covariance matrix (2.6) depends on the estimation of the long-
run multiplier  and on the estimation of . In the cointegration case, when a VECM is
used to approximate (2.1), the long-run multiplier is equal to

(2.14)

where  is the n x r matrix of cointegrating vectors,  is the n x r matrix of adjustment
coefficients such that ,  and . In the VAR case,  corresponds
to

(2.15)

By (2.14) and (2.15), it is clear that the estimation of the long-run matrix  depends on the
number of lags k.

In general, the problem of underestimating the appropriate number of lags will result in
inconsistent estimates, regardless of whether the identification restrictions are applied to the
matrix of short-run effects or to the matrix of long-run multipliers. For instance, suppose that
the DGP is a VAR with . If we select a VAR representation with , the sum of the
autoregressive process will differ from the true value. As a result,

where  is the sum of AR coefficients in the DGP. The inconsistency in the estimates of
the long-run covariance matrix may have an important impact on the decomposition between
permanent and transitory shock, unless the inconsistency in the long-run multiplier exactly
compensates for the inconsistency in the variance-covariance matrix . The problem is

Γx k( ) Σ̂k

βk vec Bk( )=

βk kn
2

1×( ) Bi

Bk B1 B2 … Bk, , ,( )=

C 1( ) Σ
C 1( )

α⊥ I δ'⊥Bk 1( ) α⊥–[ ] 1– δ'⊥

α δ
Π δα'= α'⊥α 0= δ'⊥δ 0= C 1( )

I Bk 1( )–[ ] 1–

C 1( )

k0 k k0<

I B̂k 1( )–[ ]
1–

I B0 1( )–[ ] 1–≠

B0 1( )

Σ
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exacerbated if the true DGP includes an MA component. In such a case, the number of lags
required to approximate the MA component will increase with the sample size at a given rate.
Even with a persistent, albeit temporary, component in the MA part, the truncation lag ( ) must
be large enough to approximate the true dynamic properly. In practice, the choice of an
appropriate value for  is usually limited by the degrees of freedom available. In addition, if a
higher number of lags helps to reduce the variance of the residuals, this usually comes at the
expense of a higher variance of parameter estimates, which leads to a trade-off between the size
of the bias in parameter estimates and the width of the confidence band around the estimates.

In the following lemme, we state that, in general, the presence of structural permanent and
transitory components for at least one of the variables, which is needed for the identification
based on long-run restrictions, implies a multivariate representation with an MA component.

Lemme: For the structural form (2.2), if at least one variable is characterized by orthogonal
transitory and permanent components, the multivariate representation of this
structural form possesses an MA component unless the autoregressive component
shares the same roots of this MA component.

Proof: see Appendix.

By this lemme, we need, in general, to approximate an infinite VAR or VECM by a finite
autoregression.

Lewis and Reinsel (1985) derived the asymptotic distribution of estimated autoregressive
coefficients, obtained by fitting a VAR model of order k to a multivariate series of T
observations from an infinite order autoregressive process, as k and . They developed
two theorems showing the consistency of the OLS estimates when k is chosen as a function of
T.

In the first theorem, they establish the consistency of  when (i) k is chosen as a function of T
such that  as k,  and ii) k is chosen as a function of T such that

(2.16)

where . The first condition indicates the rate at which k must rise to control
the variance of the estimators. The second condition prevents k from increasing too slowly for
the goodness of fit of the approximation. As Ng and Perron (1994) point out, the second
condition includes k increasing at a logarithmic rate. This condition is satisfied for any k
increasing such that  when .

k

k

T ∞→

B̂k

k
2

T⁄ 0→ T ∞→

k1 2⁄ Bj

j k 1+=

∞

∑ 0→

Bj
2

tr B'jBj( )=

k ∞→ T ∞→
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In the second theorem, Lewis and Reinsel show the consistency of any arbitrary linear
combination of  when (i) k is chosen as a function of T such that  as k, ,
and (ii) k is chosen as a function of T such that

when k, . In this case, the second condition rules out a choice of k increasing at the
logarithmic rate (see Ng and Perron 1994). More importantly, these conditions imply a rate of
convergence at . This condition is stronger than the previous one, since k must, in this case,
increase faster. The difference between the two theorems is the rate of convergence of the
estimator. In finite sample, a faster rate can presumably lead to better properties.

These two theorems give the condition for the consistency of the estimator of the sum of the
autoregressive parameters . By virtue of the consistency of , we have the consistency
of the estimator of the variance-covariance matrix . As a result, we obtain the consistency of
the estimator of the long-run covariance matrix . Therefore, if we choose k
correctly, we can get consistent structural decompositions. However, this leaves the question of
how to choose k in finite samples. We examine this issue in the next section.

3 Criteria for lag-length selection

In this section, we describe four data-dependent rules for the choice of a truncation lag. First, we
present two criteria based on the minimization of an objective function. These criteria are based
on the Kullback-Leibler mean information. Following Hannan and Deistler (1988), the function
to be minimized for the choice of a truncation lag is of the form

(3.1)

where d(k) is the number of parameters in the VAR representation. For instance, in the case of a
representation with a constant, . While the first term is a function of the
square of residuals , which diminish with the number of lags, the second term imposes a
penalty for increasing the number of parameters. For both criteria considered below, it assumes
that  and . The difference between the two criteria is in the specification of

.

B̂k k
3

T⁄ 0→ T ∞→

T1 2⁄ Bj

j k 1+=

∞

∑ 0.→

T ∞→

T

B̂ 1( ) B̂k

Σ̂k

C 1( ) ΣC 1( ) ′

I k Σklog d+= k( ) CT T⁄

d k( ) n nk 1+( )=
Σ̂k

CT 0> CT T⁄ 0→
CT
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In our simulation exercise, we consider two criteria: Schwarz (SIC) and Akaike (AIC). In the
case of AIC, the criterion is the following:

(3.2)

and in the case of SIC:

(3.3)

The Schwarz criterion is therefore more restrictive than the Akaike. Shibata (1976) has shown
that, for a univariate finite order AR process, AIC asymptotically overestimates the order with
positive probability, whereas Schwarz provides a consistent estimator asymptotically with
probability 1.5 These results are also valid in a VAR case. Even in a univariate Gaussian ARMA
model, Shibata (1980) has shown that AIC with  chooses k in proportion to log(T).
Hannan and Deistler have shown the same result in an invertible multivariate ARMA model. As
Ng and Perron point out, both criteria satisfy the conditions of the first Lewis-Reinsel theorem
but not the conditions of the second one.

In addition to these two criteria, we consider sequential tests for the significance of the
coefficients on lags. Hall (1995) and Ng and Perron (1994) consider sequential tests for the
choice of lags in unit root tests. The sequential test is applied following a general-to-specific
strategy. Considering the same definition as the one used in these two papers, suppose that we
want to compare a model with j lags with a model with p=j+m lags.

Definition: The general to specific strategy chooses  as either i) j+1 where Q(j,m) is the first
statistic in the sequence of , which is significantly
different from zero at significance level ; or ii) 0 if Q(i,m) is not significantly
different from zero for all .

The first of the two sequential tests that we consider is the Wald statistic, which under the
hypothesis that the last m x n lags are jointly different from zero, has the following quadratic
form:

(3.5)

where  is the lower right hand (p-j) x (p-j) block of  and  are
the last  elements of the vector .

5.  This is the main reason why we consider the Schwarz criterion in our simulations.

AICk Σ̂klog d+= k( ) 2 T⁄

SICk Σ̂klog d+= k( ) Tlog T⁄

CT 2=

k̂
Q i m,( ) i, J 1– … 0, ,={ }

α
i J 1 … 0, ,–=

WST j m,( ) β̂ n
2

p j–( )( ) Σ̂k Γx
1–

k( ) p j–( )⊗ 
  1– β̂ n

2
p j–( )( ) χ2 n

2
p j–( )( )∼=

( ) p j–( ) Γx
1–

k( ) β̂ n
2

p j–( )( )
n

2
p j–( ) β̂
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The second test we examine is based on the LR statistic, which has the following form:

where c(k) is a correction factor equal to the number of variables in each unrestricted equation
in the VAR, as suggested by Sims (1980).

In the next section, we use simulation methods to achieve two objectives. First, we illustrate the
sensitivity of the distortion in structural parameter estimates to the underestimation of the
appropriate lag length. Second, based on the results, we compare the performance of the
different lag-selection criteria described in this section.

4 Description of the data-generating process

In this section, we present the general form of the DGP. Although the implications of selecting a
truncation lag that is too short have been discussed in a general context, our general DGP will
concentrate on the case without cointegration.

To generate the artificial data set we use a simple linear state-space modelling approach. This
has several advantages. First, it is a general representation that allows for a transparent
specification of the dynamics and relative size of each of the structural components included in
the system. Second, it has become a familiar framework in modern macro modelling since the
solution of a dynamic general equilibrium model is usually cast in a state-space model (e.g.
King, Plosser and Rebelo 1988). Finally, a state-space representation makes it easier to specify a
DGP that is general enough to generate results that have implications for a wide class of
multivariate processes and yet simple enough that we maintain our ability to conduct controlled
experiments with clear econometric interpretations.

 Our state-space model has the following measurement and transition equations:

(4.1)

(4.2)
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The measurement equation (4.1) relates each of the two observable variables  to a pair of
independent unobservable components . The parameters  measure the impact effect of
each shock on the two variables of the system. According to the specification of the transition
equation (4.2),  and  are non-stationary processes (  is a random walk), whereas  is an
AR(1) stationary process that is driven by the same stochastic shock as . While the shock
has a permanent effect on both variables in , the other disturbance  has a permanent effect
on  and a temporary effect on . As a result, this simple structure generates two data series
that satisfy all the conditions implicit in the application of a particular SVAR decomposition.
First, both series are nonstationary and non-cointegrated. Second, the two shocks are mutually
and serially uncorrelated. Third, one shock has a permanent effect on one variable and a
temporary effect on the other.

Notice that in contrast to some univariate methods of trend-cycle decomposition, the permanent
component in a multivariate decomposition method based on long-run restrictions need not
follow a random walk.6 Indeed, according to our formulation, the permanent and transitory
components of  can have different dynamics as indicated by the parameters  and .
However, for the purpose of transparency, we chose to keep the dynamics of the DGP to simple
low-order ARMA processes. Combining equations (4.1) and (4.2) yields the following system
for the two series in first differences:

(4.3)

In general form, this system can be expressed as

(4.4)

If , the MA part is invertible and the VAR representation can then be derived:

(4.5)

Introducing the following relationships:

(4.6)

and

(4.8)

6.  This is the case for most multivariate methods, regardless of whether they use long-run restrictions or not.
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we can rewrite (4.5) in terms of the parameters of the system:

(4.8)

It is clear from (4.8) that the corresponding VAR representation has an infinite lag structure and
therefore can at best be approximated with a finite VAR specification. In addition, since the term

 represents the size of the moving-average component, it can be directly related to the
parameters of the model by (4.7). Notice that it depends on all the structural parameters of the
model except . It is therefore independent of the dynamics of the permanent component.
Moreover, we see that removing the persistence in the transitory component (i.e. setting  to 0)
is not sufficient to eliminate the MA component. The implications of this are discussed in more
detail in the next section.

5 Calibration

To calibrate this state-space model, we must choose values for the parameters ,  and the
standard deviation of the two uncorrelated structural shocks. In order to motivate the choice of
particular values for these parameters, we first need to state clearly the objective of the
simulation exercise. The primary goal is to assess the extent to which the misspecification of the
lag length in the VAR leads to distorted estimates of the structural parameters of the model and,
thereby, of the relative size of the permanent and transitory components.

Given that the lag length that will provide the best approximation of the infinite VAR will vary
with the size of the MA component (parameter  in 4.8), we wish to choose values for the
and  that will vary  and then test the sensitivity of structural parameter estimates to these
changes. In order to be more specific we need to determine which structural parameters we
should focus on.

We know from Section 2 that identification of the elements of the matrix of contemporaneous
decomposition A(0) is central to estimation of the entire structural model. As shown in equation
2.4, the matrix A(0) contains the elements necessary to uncover the structural residuals from the
estimated reduced-form residuals. Looking at the contemporaneous relationship between the
structural shocks and the two series implied by equations (4.1) and (4.2), we find that by setting
the variance of the two structural shocks to unity, each element of the matrix A(0) corresponds

α
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in fact to one of the . Accordingly, in our discussion of the implications of the
misspecification of the appropriate lag length, we will focus on the  parameters.

More precisely, since we are essentially interested in the decomposition of , we will
concentrate mainly on  and , given that the value of these two parameters is sufficient to
compute the one-period-ahead variance decomposition of the prediction error on .7 This
variance decomposition is often used in the application of structural VAR methodology as a
measure of the relative size of each component.

In the simulation exercise that follows, we use DGPs based on three different sets of . In the
simplest case, we set both  and  to 0.5 so that each shock accounts for 50 per cent of
the one-period-ahead variance decomposition of the prediction error of .  and  are
then arbitrarily set to -0.5 and 0.5.8 We then examine two alternative specifications, one where
the one-period-ahead variance decomposition of the prediction error of  is largely dominated
by the transitory component and the other where it is dominated by the permanent component.
The values for the  used to generate these cases and the implied variance decompositions are
shown in Table 1.

This calibration strategy allows us to fulfill part of our objective, which is to assess the extent to
which the size of the distortion in the estimates of the structural parameters  and  is
sensitive to variations in the size of the MA component ( ). In this case, we vary  by selecting
different values for the  in the true model. Given that  depends also on  but not on
(see equation 4.7) we verify how sensitive the estimated size of the structural parameters is to
the degree of persistence in the dynamic adjustment of the permanent and transitory
components.  This is particularly relevant given that the decomposition of the variable  into
its permanent and transitory components is based on a restriction regarding the long-run effect
of the two structural shocks.

As is the case for the , we consider three cases for the . In the first case, we treat the
permanent and the transitory components as being characterized by symmetric adjustment
paths. To do so, we set  equal to  and examine the implications of varying the degree of
persistence from 0 to 0.9. In Table 1, using equation (4.8), we show the size of the MA
component corresponding to these various degrees of persistence for each set of values for the

. Note that when we set , we obtain a value of 0.5 for the MA component (for
values of the  that correspond to the basic scenario) even though there are no dynamics in the
transition equation (4.2). This shows that the existence of the MA component is associated with

7.  The main reason for focussing on  is that in the application of a bivariate structural VAR using long-run re-
strictions, usually one of the variables is the object of the decomposition, while the other is used to provide an extra
error term and the information necessary to obtain a non-arbitrary decomposition of the first series. In our system,

 is the main variable of interest and  represents the variable that provides extra information.

8.  The reason for setting the parameter to -0.5 is that using 0.5 would have implied a singular A(0) matrix.
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the presence of a transitory component rather than with just the dynamics of the permanent or
transitory shocks.

In the second case, we treat the permanent component as a random walk by setting  to zero
and we let  vary over the same range used in the base case (i.e. from 0 to 0.9). This case is
interesting, since in structural time-series models, the permanent component is often modelled
as a random walk. Since  is independent of , we obtain the same values for the size of the
MA component as in the previous case.

Conversely, in the final case considered, we set  to zero and allow instead  to take values
from 0 to 0.9 as in the base case. Since the value of  will in this case depend only on the ,
the size of the MA component is given by the first column of the right panel in Table 1 (under

), regardless of the value taken by . This implies that in such a case, the size of the
MA component will never be larger than 0.75, whereas in the previous two cases, it could be as
high as 0.975 under certain parameter values.

To summarize, for each set of parameter values for the  we have three sets of values for the
. In each of these sets, we use five different degrees of persistence (different values for either
,  or for both of them, depending on the case considered) ranging from 0 to 0.9. This

implies 13 different models for each set of . Given that we consider three different sets of ,
we have a total of 39 models or DGPs used to generate data and on which to apply the SVAR
methodology based on long-run restrictions.

6 Results

In this section, we report the results of Monte Carlo experiments based on the models described
above. Given the large number of experiments implied in total, we can only report a subset of
the results. Therefore we will present in detail the results based on the 13 models corresponding
to the case where .  We then summarize how results change when this restriction is
relaxed.

In reporting the results, we focus on the values of the parameter  and , which measure the
impact effect of each shock on .  The value of these two parameters is sufficient to compute
the one-period-ahead variance decomposition of the prediction error on .9 Each experiment
is conducted over 1000 replications and over a fixed sample of 200 observations.

9.  We could, instead, have reported the variance decomposition directly, but then when a bias was found we would
not have known whether it came from , or both.
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The rest of the section is divided in two parts. In the first part, we verify how the distortion in
the estimates of  and  evolve with the order of the VAR. In the second part, instead of
imposing a lag length, we compare the performance of four optimal lag-selection criteria.

6.1  Sensitivity of the bias to different truncation lags

Since the 39 models presented above have different VAR representations, we first report the
mean estimates of  and  obtained when we impose the same lag length for each trial. We
conduct this experiment for each of the 39 models and for lags 1 to 12.

6.1.1  DGPs with  equal to

The results for the case where  is equal to  are shown in Tables 2-A to 2-C. Each table
corresponds to a particular pair of values for  and  in the true model, and therefore imply a
different size for the MA component. In Table 2-A, both parameters are set to 0.5, which
implies an equal size for the permanent and transitory components in the one-period-ahead
variance decomposition. This also implies a size of the MA component ranging from 0.5, when

, to 0.95 when . In each table, the rows correspond to the number
of lags imposed during an experiment, while each column corresponds to a different value for

 and .

The results from Table 2-A provide some idea of the potential severity of the distortion when
the truncation lag in the VAR is set too low. Even in the case where there is little or no dynamics
in the transition equation, the presence of the MA component in the DGP implies that four to
five lags are necessary to properly approximate the VARMA model, as shown in the first
column of Table 2. In this case, using only one or two lags would lead to an overestimation of
the permanent component in the variance decomposition, arising from both an overestimation
of  and an underestimation of .

Surprisingly, as the degree of persistence increases (higher value for the ), fewer lags are
necessary to produce unbiased estimates of the , even though the size of the MA component
gets significantly larger. In fact, in the case where , we find that one lag is
sufficient to yield undistorted estimates of the . Intuitively, this can be explained by the fact
that as we raise the size of the MA component via a joint increase in the value of  and ,
the difference in the dynamic persistence of the permanent and transitory components tends to
diminish. As a result, even when the VAR is too parsimonious to capture the full dynamic
adjustment, the complete effect of both components is more likely to be underestimated in a
proportional amount, and therefore neither component will tend to be overestimated.

The results shown in Table 2-B are generated from the model where the values for  and
are set to 0.25 and 0.75 respectively, which implies a size of the permanent component equal to
10 per cent in the one-period-ahead variance decomposition (see Table 1). Generally speaking,
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we observe the same pattern as in Table 2-A, except that the extent of the bias in the parameter
estimates is more pronounced. The distortion always goes in the direction of an overestimation
of the permanent component. Again, as we increase the size of  and , the magnitude of
the bias diminishes for low-order VARs. However, as we extend the order of the VAR we obtain
a much faster convergence towards the true values when  and  are small.

Table 2-C reports the results for models generating a series for  that is largely dominated by
the permanent component. As expected, given the smaller size of the MA component, fewer
lags are necessary to get an unbiased estimate of the relative size of each component in
comparison to the previous cases.

6.1.2  DGPs with

Next, we set  to zero and let  vary over the same range as before. Even though the same
three sets of calibration for the  were simulated, we only report the results for the case where

 and  are both set to 0.5. These results appear in Table 3.10

We find that, as in the case where  is equal to , a parsimonious lag structure leads to a
systematic overestimation of the permanent component (due to both an overestimation of
and an underestimation of ). However, comparing the results from Tables 3 and 2-A, we see
that when , the overestimation of the permanent component in low-order VAR systems
becomes more rather than less significant as the value of  increases (compare the last column
and first row of Tables 3 and 2-A). Therefore, much longer lags are necessary to eliminate the
bias for larger values of . In fact, when  equals 0.8 or 0.9, even with 12 lags we find some
distortion in the estimates of  and therefore, in the variance decomposition.11

The explanation for this difference may lie in the measurement of the long-run effects of each
shock. When  is set to zero, the permanent component is a random walk, so the long-run
effect of a permanent shock is likely to be estimated properly even when the number of lags
included in the VAR is too small to capture the complete dynamic process of the system. In
contrast, as  increases, a longer lag structure is required to properly estimate the effect of a
transitory shock. As a result, when the order of the VAR is too low, a portion of the transitory
shocks may be interpreted as permanent shocks. However, for this explanation to hold, an
overestimation of the transitory component should be observed in the case where the adjustment
to the temporary shock is much faster than the adjustment to the permanent shock. We
investigate this possibility next.

10.  In the case where  = 0 (first column), the results will not differ from those reported in Table 2-A.

11.  Although the results are not reported, the same general pattern is observed in the case where  and  are set
to 0.25 and 0.75, respectively. The main difference is that the extent of the overestimation of the permanent compo-
nent is much more pronounced. This is consistent with the fact that for each value of , the size of the correspond-
ing MA component is larger than in the case reported in Table 3. In contrast, when  and  are set to 0.75 and
0.25, respectively, the relatively smaller values of the MA component contribute to limit the size of the distortion in
parameter estimates.
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6.1.3  DGPs with

We perform a final set of experiments, where we set  to zero and allow  to take values from
0 to 0.9. The results for the case where  and  are both set to 0.5 appear in Table 4. As can
be seen, for values of  below 0.6, the permanent component will tend to be overestimated as a
result of estimating a low-order VAR. However, for values of  greater or equal to 0.6, we find,
in contrast, that a parsimonious VAR will tend to produce an overestimation of the transitory
component. In fact, the results obtained with  are almost exactly the opposite of those
obtained with .

To better understand this result we can rewrite equation (4.8) for the case where  is set to
zero:

where

In the special case where  and  are both set to 0.5, we find that the size of the MA
component  is 0.5. Given that the MA component in our model is associated with the
transitory component, we should expect to find the smallest bias in the relative size of each
component in the case where  is set at a value close to 0.5. In fact, we can see that with a
value of 0.5 for , the terms  and  would cancel out in the equation for

. In other words, even when , it is only for values of  greater than the size of the
MA component (0.5 in this case) that the dynamics of the permanent component dominate those
of the transitory component. Moreover, the larger is the size of the transitory component in the
DGP, the higher has to be the value of  to obtain unbiased estimates when a parsimonious
VAR is specified.12

12.  Again, the same general pattern emerges in the case where  and  are set to 0.25 and 0.75, respectively.
The main difference is that a value of  equal to 0.75 rather than 0.5 is necessary to cancel the MA component and
produce undistorted estimates of  and . However, for values of  equal to 0.8 or 0.9, the overestimation of
the transitory component is much more pronounced. In contrast, when  and  are set to 0.75 and 0.25, overes-
timation of the transitory component is obtained for values of  greater than 0.25, but given the relatively small
size of the MA component in this case, the extent of the distortion in the estimates of  and  is fairly limited
even for high values of . These results are not reported here owing to space constraints.
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To summarize, the results from Tables 2 to 4 indicate that structural parameter estimates can be
highly sensitive to an underestimation of the appropriate lag length. As a consequence, if the
two structural components are characterized by significantly different dynamic adjustment
processes, choosing a truncation lag for the VAR that is too low can result in severe distortions
in the estimation of the relative size of the permanent and transitory components. Moreover, we
find that the extent of this bias depends not only on the dynamic profile of each component but
also on their relative size in the DGP. In the context of our model, this is explained by the fact
that the size of the MA component, and therefore the appropriate lag length in the VAR,
increase with the relative size of the transitory component.

6.2  Performance of different optimal lag-selection criteria

In the previous section, we performed each simulation by imposing a specific lag length
throughout the 1000 replications. This provided a background against which we can compare
the performance of the four different data-dependent lag selection criteria introduced in
Section 3.

As mentioned above, the Schwarz (SIC) and Akaike (AIC) criteria are based on the
minimization of an objective function and are referred to as the information-based criteria. As
for the Wald and LR tests, they correspond to a general-to-specific modelling strategy and will
be referred to as sequence-based criteria. Since the latter two are based on critical values, we
apply both of them at the 5 and 10 per cent significance levels.

The experiments were conducted over the same 39 models as before, and we again focus
exclusively on the estimates of the parameter  and . The results for the case where

 are reported in Table 5-A. Tables 5-B and 5-C contain the results corresponding to the
cases where  and , respectively. The three panels included in each table
correspond to a pair of values for  and .

The emphasis will be put on the cases where the selection of a short lag-length yields distorted
estimates of the parameter  and . For example, we know that in the case where  is equal
to , the gap between parameter estimates and the true values is largest when  and  are
set to 0.25 and 0.75, respectively. In particular, the results shown in the first two columns of
Table 2-B suggest that under small values for  and  (0 or 0.2), a minimum of six or seven
lags are required to produce parameter estimates that are not too far from the true value.

Against this background, we can evaluate the performance of the various lag-selection criteria
by looking at the results shown in the top panel of Table 5-A. An examination of the first two
columns indicates that a generally better performance is achieved when the sequence-based
tests are applied. Among the information-based tests, the performance of the Akaike criterion is
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not substantially different from that of the sequence-based test evaluated at 5 per cent. The
Schwarz criterion produces estimates with the largest distortion.

The difference in the performance between the information-based and the sequence-based tests
is more evident in the case where the permanent component is a random walk ( ). From
the results of Table 3, we know that in such a case the number of lags necessary to produce
unbiased results increases rapidly with higher values for . As a result, for values of  greater
than 0.6, a parsimonious VAR produces highly distorted estimates of  and .

The performance of the different lag-selection criteria in this case is shown in the middle panel
of Table 5-B.13 We find that for small values of  all the criteria except the Schwarz criterion
produce estimates of  and  that are close to their true values. However, as the value of
increases, the information-based criteria tend to produce estimates that are much more distorted
than the sequence-based tests. Moreover, in such a case, there is much less difference in the
performance of the Akaike and Schwarz criteria since both perform just as poorly. Overall,
when a long lag structure is necessary, the 10 per cent Wald and LR tests provide the least-
biased estimates of the parameters  and , with a slight advantage for the Wald test.
Nevertheless, all the criteria produce large distortions.

In order to understand why the various criteria produce different results, Table 6 reports the
frequency distribution of the number of lags selected for the results reported in the middle panel
of Table 5-B. First, we observe that under the Schwarz criterion, the number of lags selected is
always less than three for 99 per cent of the replications, which explains its poor performance.
In addition, we find that although the Akaike criterion selects longer lags than the Schwarz, the
maximum lag selected exceeds eight, less than 1 per cent of the time, and we find that 78 per
cent of the distribution is concentrated in lags one to three.

The longest mean lag is usually found when the Wald test is used. Indeed, the 10 per cent Wald
statistic is the only one systematically showing a higher proportion of lags selected in the range
10 to 12 than in the range 1 to 4. This is consistent with the fact that this statistic generally
yields mean estimates for  and  that are the closest to the true values.

A final point is worth mentioning.  As shown in Table 3, the higher is the degree of persistence
in the transitory component ( ), the longer is the lag length required to eliminate the bias in
parameter estimates. However, the frequency distribution of selected lags shows the opposite
phenomenon. That is, as the value of  increases and approaches unity, an optimal lag length
of order one is found much more frequently than with lower values of . The problem is most
severe in the case of the information-based criteria and is much more limited when the 10 per
cent Wald or LR statistics are used.

13.  This is the case where  and  are both set to 0.5, and it therefore corresponds to the case reported in
Table 3.
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This can be attributed to the common factor problem encountered as the value of
approaches one. To better understand the nature of the problem, we can rewrite the VAR
representation of the VARMA model (4.8) in the case where :

where

We can see from that equation that in the limiting case where ,  is also equal to one, in
which case all the terms with a lag operator cancel out and the optimal lag in the VAR is zero.
Ng and Perron (1994) obtained a similar result in the context of univariate data. Earlier, the
problem had been documented by Schwert (1989), which found Phillips and Perron unit root
tests to have low power for time series whose first difference had a large negative MA
component.

6.3  Impulse response functions and variance decompositions

In the previous two sections, we focussed exclusively on the value of the parameters  and
, To give a more complete picture of the extent of the estimation bias and how it affects the

dynamic structure, we show the impulse response functions and the variance decompositions
with their respective confidence intervals for one of the models used above.

The impulse response functions we show are based on the model with values for  and  set
to 0.5, and values for  and  set to 0 and 0.6, respectively. (The mean estimated values for

 and  obtained from the imposition of a given lag length appear in the third column of
results in Table 3). The mean estimated values obtained from the various lag-selection criteria
appear in the middle panel of Table 5-B). We chose this particular case because it provides a
good illustration of the relative performance of the different criteria. In particular, we know that
even though a VAR with a short lag length will produce highly distorted estimates of  and

, a truncation lag of 12 is more than sufficient to eliminate most of the distortion.

Figures 1 to 3 show the mean impulse responses of  to permanent and transitory shocks
estimated from the application of the 10 per cent Wald statistic, as well as the Akaike and
Schwarz criteria. The impulse responses corresponding to the Wald test are shown in Figures 1a
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and 1b. We know from the results of Table 5-B that the mean estimated impulses at period one
are equal to 0.52 and 0.40 for the permanent and temporary shocks, respectively. As can be
seen, the VAR in this case seems to approximate the VARMA adequately, since the estimates
are not only unbiased but also fairly close to the true values.

Not surprisingly, a different picture emerges when the Akaike criterion is applied. As shown in
Figure 2b, the true impulse response to the temporary shock lies just outside the upper bound,
and as a result, the estimated impulse is significantly downward biased at a 10 per cent
significance level. Even though the response to the permanent shock is not biased significantly
(Figure 2a), the two results combined provide a large relative overestimation of the permanent
component at short and medium horizons. Finally, when the Schwarz criterion is used, the result
is a large and statistically significant bias in the estimated impulse response to both a permanent
and a temporary shock (see figure 3).

The corresponding mean variance decompositions are shown in Table 7. Given that the variance
decomposition is a non-linear transformation of the impulse response, even a relatively small
bias in the impulse can lead to a completely misleading variance decomposition. As was the
case with the impulse response, the mean estimated contribution of the temporary shock to the
variance of the forecast error of  varies widely across the different lag-selection criteria. Not
surprisingly, the 10 per cent Wald statistic provides estimates that are much closer to the true
values than the two alternatives. However, because the Wald statistic selects longer lags, the
estimated variance decompositions based on the Wald statistic are associated with very large
confidence intervals. In contrast, the estimates obtained from the application of both the Akaike
and Schwarz criteria have narrower confidence intervals, but the relative contribution of the
transitory shock to the variance decomposition is underestimated to the point of not being
significantly different from zero even in the short run.

7 Conclusions

In this paper, we use simulation techniques to examine the consequences of the choice of
truncation lags in the context of a structural VAR with long-run restrictions. In particular, we
focus on the estimation bias found in the matrix of the contemporaneous decomposition of
reduced-form errors into their structural counterparts resulting from the specification of a VAR
that is too parsimonious. We do this by looking at the implications of approximating a VARMA
model with a finite VAR structure.

The results obtained indicate that, under our DGP, using a lag structure that is too parsimonious
can lead to an important estimation bias of the permanent and/or temporary components. In
addition, we find that the Schwarz test systematically underperforms the other criteria and that
more generally, as the order of the VAR that best approximates the DGP increases, the

y1
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sequence-based tests tend to provide more reliable estimates than the information-based tests.
These results tend to confirm those obtained by Hall (1995) and Ng and Perron (1994) in the
univariate context of unit root tests.

Based on our findings, we conclude that application of the VAR methodology with long-run
restrictions requires taking special care in selecting the lag length. To avoid biases, sequence-
based methods (in particular the Wald test) should be preferred to information-based tests as
selection criteria, even though they may imply a longer lag structure and therefore wider
confidence intervals around the point estimates. In addition, it may be wise to examine the
sensitivity of the key parameter estimates to the choice of truncation lags.
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Appendix

First, we look at the case without cointegration. The lemme is shown in a bivariate case but
could be easily generalized to the case with n-variables. Assume the following structural form:

(A.1)

where the roots ofdet  lie outside the unit circle. Imposing long-run restriction implies
that at least one of the two variables possesses orthogonal permanent and transitory
components. Therefore, we can always rewrite (A.1) in the following way:

(A.2)

where  has a permanent component related to the error term  and a transitory
component related to the error term . We see that the decomposition implied by the long-run
restrictions involve an MA component corresponding to the matrix , where ,
regardless of whether the inverse of  has a finite vector autoregression representation.
Taking the inverse of the moving-average representation yields the following autoregressive
representation:

This representation is a finite VAR only if  is finite and has a common root
corresponding to the root of  such that

where  is of finite order. Otherwise, we are in the presence of an infinite autoregressive
representation.

In the cointegration case, the number of permanent components will be smaller than the number
of variables in the multivariate representation. According to the Granger Representation
Theorem, there exists an error correction representation of the structural form which is

where  is a scalar lag polynomial. An finite vector autoregression exists only if
or if  has roots equal to the roots of .

Xt∆ A L( ) ηt=

A L( )

∆X1t

∆X2t

A∗ L( )
a11 a12 1 L–( )
a21 a22

η1t

η2t

=

∆X1t η1t

η2t

aij L( ) i j, 1 2,=
A∗ L( )

det a L( )( ) 1– adj a L( )( ) A∗ L( ) 1– ∆X1t

∆X2t

η1t

η2t

=

A∗ L( ) 1–

det a L( )( ) 1–

A∗ L( ) 1– det a L( )( ) Φ L( )=

Φ L( )

B L( ) ∆Xt ΠXt 1– d L( ) ηt+=

d L( ) d L( ) 1=
B L( ) det d L( )( )
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Table 1

a. Variance decomposition of the one-period-ahead prediction error on the level of . Since we are mainly
interested in the decomposition of , we do not report the variance decomposition of ,
b. Permanent shock to .
c. Temporary shock to .

Main characteristics of the models in terms of the variance decomposition and the size of the
MA component in the VAR representation

Value of

Model

Parameters of the
impact effect of each

shock on:

Percentage
contribution

of:a
0.0 0.2 0.6 0.8 0.9

b c Size of the MA component

Case 1 50 50 0.50 0.60 0.80 0.90 0.95

Case 2 10 90 0.75 0.80 0.90 0.95 0.975

Case 3 90 10 0.25 0.40 0.70 0.85 0.925

ρ2

y1t
y1t y2t

y1t y2t η1t

y1

η2t

y1

z11 0.5=

z12 0.5=

z21 0.5–=

z22 0.5=

z11 0.25=

z12 0.75=

z21 0.25–=

z22 0.25=

z11 0.75=

z12 0.25=

z21 0.75–=

z22 0.75=
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Table 2-A: Mean estimated values for  and

Case with dynamics in both components ( )

True values:  and

Value for  and

0.0 0.2 0.6 0.8 0.9

Corresponding value of the MA parameter

0.5 0.6 0.8 0.9 0.95

No. of lags Mean estimates of  and  (1000 draws)

1 0.65/0.32 0.63/0.35 0.58/0.41 0.54/0.45 0.52/0.47

2 0.57/0.41 0.57/0.41 0.56/0.43 0.54/0.45 0.52/0.47

3 0.53/0.45 0.53/0.44 0.54/0.44 0.52/0.45 0.51/0.47

4 0.50/0.47 0.51/0.46 0.52/0.45 0.51/0.46 0.50/0.47

5 0.49/0.47 0.50/0.47 0.51/0.45 0.51/0.45 0.50/0.46

6 0.48/0.47 0.49/0.47 0.50/0.46 0.50/0.46 0.49/0.46

7 0.47/0.47 0.48/0.47 0.49/0.46 0.49/0.45 0.49/0.46

8 0.47/0.47 0.47/0.46 0.49/0.45 0.49/0.45 0.49/0.45

9 0.47/0.46 0.47/0.46 0.48/0.45 0.49/0.45 0.48/0.45

10 0.46/0.46 0.46/0.46 0.47/0.45 0.48/0.45 0.48/0.45

11 0.46/0.45 0.46/0.45 0.47/0.45 0.47/0.44 0.47/0.44

12 0.46/0.45 0.46/0.45 0.46/0.44 0.47/0.44 0.47/0.44

z11 z12

ρ1 ρ2=

z11 0.50= z12 0.50=

ρ1 ρ2

z11 z12
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Table 2-B: Mean estimated values for  and

Case with dynamics in both components ( )

True values:  and

Value for  and

0.0 0.2 0.6 0.8 0.9

Corresponding value of the MA parameter

0.75 0.8 0.9 0.95 0.975

No. of lags Mean estimates of  and  (1000 draws)

1 0.77/0.41 0.74/0.43 0.64/0.51 0.52/0.61 0.41/0.67

2 0.62/0.54 0.62/0.53 0.59/0.55 0.49/0.62 0.40/0.67

3 0.51/0.60 0.54/0.58 0.54/0.58 0.47/0.63 0.39/0.67

4 0.44/0.64 0.47/0.62 0.49/0.61 0.44/0.64 0.38/0.67

5 0.39/0.66 0.42/0.64 0.46/0.62 0.42/0.64 0.37/0.67

6 0.35/0.67 0.38/0.66 0.42/0.63 0.41/0.65 0.36/0.67

7 0.31/0.68 0.34/0.67 0.40/0.64 0.39/0.65 0.35/0.66

8 0.29/0.68 0.32/0.67 0.38/0.65 0.38/0.65 0.35/0.66

9 0.28/0.68 0.30/0.67 0.36/0.65 0.37/0.65 0.34/0.66

10 0.27/0.68 0.29/0.67 0.34/0.65 0.36/0.65 0.33/0.66

11 0.25/0.68 0.27/0.67 0.33/0.65 0.35/0.64 0.33/0.65

12 0.25/0.67 0.27/0.67 0.32/0.65 0.34/0.64 0.32/0.65

z11 z12

ρ1 ρ2=

z11 0.25= z12 0.75=

ρ1 ρ2

z11 z12
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Table 2-C: Mean estimated values for  and

Case with dynamics in both components ( )

True values:  and

Value for  and

0.0 0.2 0.6 0.8 0.9

Corresponding value of the MA parameter

0.25 0.4 0.7 0.85 0.925

No. of lags Mean estimates of  and  (1000 draws)

1 0.76/0.19 0.76/0.20 0.75/0.22 0.75/0.23 0.74/0.24

2 0.74/0.23 0.74/0.23 0.74/0.23 0.74/0.23 0.74/0.24

3 0.73/0.24 0.73/0.24 0.74/0.23 0.73/0.23 0.73/0.24

4 0.73/0.24 0.73/0.24 0.73/0.24 0.73/0.24 0.73/0.24

5 0.72/0.24 0.72/0.24 0.72/0.23 0.72/0.23 0.72/0.23

6 0.71/0.24 0.71/0.24 0.72/0.24 0.72/0.23 0.72/0.23

7 0.70/0.24 0.71/0.23 0.71/0.23 0.71/0.23 0.71/0.23

8 0.70/0.23 0.70/0.23 0.70/0.23 0.71/0.23 0.70/0.23

9 0.70/0.23 0.70/0.23 0.70/0.23 0.70/0.23 0.70/0.22

10 0.69/0.22 0.69/0.22 0.69/0.23 0.69/0.22 0.69/0.22

11 0.68/0.22 0.68/0.22 0.69/0.22 0.69/0.22 0.69/0.22

12 0.68/0.22 0.68/0.22 0.68/0.22 0.68/0.22 0.68/0.22

z11 z12

ρ1 ρ2=

z11 0.75= z12 0.25=

ρ1 ρ2

z11 z12
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Table 3: Mean estimated values for  and

Case where permanent component is a random walk ( )

True values:  and

Value for

0.0 0.2 0.6 0.8 0.9

Corresponding value of the MA parameter

0.5 0.6 0.8 0.9 0.95

No. of lags Mean estimates of  and  (1000 draws)

1 0.65/0.32 0.68/0.27 0.71/0.14 0.71/0.07 0.71/0.04

2 0.57/0.41 0.60/0.37 0.67/0.23 0.70/0.13 0.70/0.07

3 0.53/0.45 0.55/0.42 0.64/0.29 0.68/0.18 0.69/0.10

4 0.50/0.47 0.52/0.45 0.60/0.34 0.66/0.22 0.68/0.12

5 0.49/0.47 0.50/0.46 0.57/0.37 0.64/0.25 0.67/0.15

6 0.48/0.47 0.49/0.46 0.55/0.39 0.62/0.28 0.66/0.17

7 0.47/0.47 0.48/0.47 0.53/0.41 0.60/0.30 0.64/0.19

8 0.47/0.47 0.48/0.46 0.52/0.42 0.59/0.32 0.63/0.20

9 0.47/0.46 0.47/0.46 0.50/0.42 0.57/0.33 0.62/0.22

10 0.46/0.46 0.47/0.46 0.49/0.43 0.56/0.34 0.61/0.23

11 0.46/0.45 0.46/0.45 0.48/0.43 0.54/0.35 0.60/0.24

12 0.46/0.45 0.46/0.45 0.48/0.43 0.53/0.36 0.59/0.25

z11 z12

ρ1 0=

z11 0.50= z12 0.50=

ρ2

z11 z12
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Table 4: Mean estimated values for  and

Case with no dynamics in transitory component ( )

True values:  and

Value for

0.0 0.2 0.6 0.8 0.9

Corresponding value for the MA component

0.5 0.5 0.5 0.5 0.5

No. of lags Mean estimates of  and  (1000 draws)

1 0.65/0.32 0.60/0.39 0.45/0.54 0.36/0.60 0.31/0.63

2 0.57/0.41 0.54/0.44 0.48/0.51 0.43/0.54 0.41/0.56

3 0.53/0.45 0.51/0.47 0.48/0.50 0.46/0.51 0.45/0.52

4 0.50/0.47 0.50/0.47 0.48/0.49 0.47/0.50 0.47/0.50

5 0.49/0.47 0.49/0.48 0.48/0.48 0.48/0.49 0.47/0.49

6 0.48/0.47 0.47/0.48 0.48/0.48 0.47/0.48 0.47/0.48

7 0.47/0.47 0.47/0.47 0.47/0.47 0.47/0.47 0.47/0.47

8 0.47/0.47 0.47/0.47 0.47/0.47 0.47/0.47 0.47/0.47

9 0.47/0.46 0.47/0.46 0.47/0.46 0.47/0.46 0.47/0.46

10 0.46/0.46 0.46/0.46 0.46/0.46 0.46/0.46 0.46/0.46

11 0.46/0.45 0.46/0.45 0.46/0.45 0.46/0.45 0.46/0.45

12 0.46/0.45 0.46/0.45 0.46/0.45 0.46/0.45 0.46/0.45

z11 z12

ρ2 0=

z11 0.50= z12 0.50=

ρ1

z11 z12
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Table 5-A: Mean estimated values for  and

Case with dynamics in both components ( )

True Values
Lag-

selection
procedure

Value for  and

0.0 0.2 0.6 0.8 0.9

AIC 0.41/0.64 0.44/0.62 0.53/0.57 0.50/0.61 0.41/0.67

SIC 0.59/0.54 0.65/0.49 0.64/0.51 0.52/0.60 0.41/0.67

Wald
5% 0.35/0.65 0.36/0.65 0.41/0.62 0.41/0.63 0.37/0.66

10% 0.30/0.67 0.32/0.66 0.37/0.64 0.38/0.64 0.35/0.66

LR
5% 0.37/0.65 0.40/0.63 0.45/0.60 0.44/0.62 0.38/0.66

10% 0.33/0.66 0.35/0.65 0.39/0.63 0.39/0.63 0.36/0.66

AIC 0.54/0.43 0.55/0.42 0.55/0.42 0.53/0.45 0.52/0.47

SIC 0.62/0.35 0.62/0.35 0.58/0.41 0.54/0.45 0.52/0.47

Wald
5% 0.51/0.44 0.51/0.43 0.51/0.44 0.50/0.45 0.50/0.46

10% 0.48/0.45 0.48/0.45 0.49/0.45 0.49/0.45 0.49/0.45

LR
5% 0.52/0.43 0.53/0.43 0.52/0.43 0.51/0.45 0.50/0.46

10% 0.49/0.45 0.49/0.44 0.50/0.44 0.50/0.45 0.49/0.45

AIC 0.75/0.21 0.75/0.21 0.74/0.23 0.74/0.24 0.74/0.24

SIC 0.76/0.19 0.76/0.20 0.75/0.22 0.75/0.23 0.74/0.24

Wald
5% 0.72/0.22 0.72/0.22 0.72/0.23 0.72/0.23 0.72/0.23

10% 0.70/0.23 0.70/0.23 0.70/0.23 0.70/0.23 0.70/0.23

LR
5% 0.73/0.21 0.73/0.22 0.73/0.23 0.72/0.23 0.72/0.23

10% 0.71/0.23 0.71/0.23 0.71/0.23 0.71/0.23 0.71/0.23

z11 z12

ρ1 ρ2=

ρ1 ρ2

z11 0.25=

z12 0.75=

z11 0.50=

z12 0.50=

z11 0.75=

z12 0.25=
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Table 5-B: Mean estimated values for  and

Case where permanent component is a random walk ( )

True Values
Lag-

selection
procedure

Value for

0.0 0.2 0.6 0.8 0.9

AIC 0.41/0.64 0.46/0.61 0.63/0.43 0.76/0.19 0.79/0.08

SIC 0.59/0.54 0.66/0.47 0.80/0.20 0.81/0.09 0.80/0.04

Wald
5% 0.35/0.65 0.37/0.64 0.51/0.52 0.65/0.35 0.72/0.20

10% 0.30/0.67 0.33/0.65 0.47/0.56 0.60/0.41 0.69/0.26

LR
5% 0.37/0.65 0.41/0.62 0.55/0.49 0.68/0.31 0.74/0.16

10% 0.33/0.66 0.35/0.64 0.49/0.54 0.63/0.38 0.71/0.22

AIC 0.54/0.43 0.56/0.40 0.63/0.27 0.69/0.12 0.70/0.06

SIC 0.62/0.35 0.66/0.29 0.71/0.14 0.71/0.07 0.71/0.04

Wald
5% 0.51/0.44 0.52/0.43 0.56/0.35 0.61/0.25 0.65/0.15

10% 0.48/0.45 0.49/0.44 0.52/0.40 0.58/0.31 0.62/0.20

LR
5% 0.52/0.43 0.53/0.41 0.58/0.32 0.63/0.21 0.66/0.12

10% 0.49/0.45 0.50/0.44 0.54/0.38 0.59/0.28 0.64/0.17

AIC 0.75/0.21 0.75/0.19 0.77/0.11 0.78/0.06 0.78/0.03

SIC 0.76/0.19 0.77/0.16 0.78/0.08 0.78/0.04 0.78/0.02

Wald
5% 0.72/0.22 0.72/0.21 0.73/0.17 0.74/0.13 0.75/0.08

10% 0.70/0.23 0.70/0.22 0.71/0.20 0.72/0.16 0.73/0.11

LR
5% 0.73/0.21 0.73/0.20 0.74/0.15 0.75/0.11 0.76/0.07

10% 0.71/0.23 0.71/0.22 0.72/0.19 0.73/0.14 0.74/0.09

z11 z12

ρ1 0=

ρ2

z11 0.25=

z12 0.75=

z11 0.50=

z12 0.50=

z11 0.75=

z12 0.25=
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Table 5-C: Mean estimated values for  and

Case with no dynamics in transitory component ( )

True Values
Lag-

selection
procedure

Value for

0.0 0.2 0.6 0.8 0.9

AIC 0.40/0.64 0.39/0.65 0.31/0.71 0.22/0.74 0.17/0.75

SIC 0.59/0.54 0.58/0.57 0.40/0.71 0.19/0.79 0.06/0.81

Wald
5% 0.35/0.65 0.34/0.66 0.28/0.70 0.23/0.72 0.20/0.72

10% 0.30/0.67 0.30/0.67 0.26/0.69 0.23/0.70 0.22/0.71

LR
5% 0.37/0.65 0.36/0.66 0.29/0.70 0.23/0.72 0.19/0.73

10% 0.33/0.66 0.32/0.67 0.27/0.70 0.23/0.71 0.21/0.72

AIC 0.54/0.43 0.53/0.45 0.47/0.51 0.44/0.53 0.43/0.54

SIC 0.62/0.35 0.59/0.40 0.46/0.53 0.38/0.59 0.34/0.61

Wald
5% 0.51/0.44 0.50/0.45 0.46/0.49 0.45/0.50 0.44/0.50

10% 0.48/0.45 0.48/0.45 0.46/0.47 0.46/0.47 0.46/0.47

LR
5% 0.52/0.43 0.51/0.45 0.47/0.49 0.44/0.51 0.43/0.51

10% 0.49/0.45 0.49/0.45 0.46/0.48 0.45/0.49 0.45/0.49

AIC 0.75/0.21 0.74/0.24 0.72/0.29 0.71/0.31 0.71/0.31

SIC 0.76/0.19 0.75/0.24 0.71/0.32 0.70/0.36 0.69/0.38

Wald
5% 0.72/0.22 0.71/0.24 0.70/0.27 0.70/0.27 0.70/0.28

10% 0.70/0.23 0.70/0.23 0.69/0.25 0.69/0.25 0.69/0.25

LR
5% 0.73/0.21 0.72/0.24 0.71/0.28 0.70/0.29 0.70/0.29

10% 0.71/0.23 0.71/0.24 0.70/0.25 0.70/0.26 0.71/0.23

z11 z12

ρ2 0=

ρ1

z11 0.25=

z12 0.75=

z11 0.50=

z12 0.50=

z11 0.75=

z12 0.25=
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Table 6: Frequency distribution of lags selected

Case with  and

# of Times Lag chosen (out of 1000)

procedure 1 2 3 4 5 6 7 8 9 10 11 12

0.0 AIC 70 559 244 80 26 8 6 5 1 0 0 1
S 739 256 5 0 0 0 0 0 0 0 0 0
Wald 5% 65 299 112 56 50 41 35 52 59 59 85 87

10% 17 162 83 47 50 50 44 70 91 89 145 152
LR 5% 86 402 132 51 42 38 30 41 45 45 46 42

10% 25 220 121 66 60 57 38 72 68 67 105 101

0.2 AIC 68 458 288 114 39 18 8 5 1 0 0 1
S 773 221 6 0 0 0 0 0 0 0 0 0
Wald 5% 50 253 131 77 58 56 41 51 58 56 85 84

10% 10 109 95 72 61 58 45 72 86 90 142 160
LR 5% 78 338 153 71 56 49 36 47 41 40 48 43

10% 24 183 127 84 67 63 45 66 69 71 99 102

0.6 AIC 304 300 176 108 57 24 11 13 5 1 0 1
S 956 42 2 0 0 0 0 0 0 0 0 0
Wald 5% 150 100 107 94 75 60 53 57 60 72 83 89

10% 35 60 52 67 71 68 65 84 95 102 138 163
LR 5% 221 134 116 102 74 64 40 52 41 48 56 52

10% 75 82 87 98 87 69 63 79 76 87 96 101

0.8 AIC 645 181 75 44 26 10 9 4 4 1 0 1
S 995 5 0 0 0 0 0 0 0 0 0 0
Wald 5% 261 52 55 67 53 55 54 65 59 81 91 107

10% 89 26 41 56 61 63 65 79 89 118 140 173
LR 5% 386 67 64 67 52 63 41 46 43 53 57 61

10% 150 51 55 72 72 63 67 83 72 94 101 120

0.9 AIC 807 110 41 19 8 5 3 3 2 1 0 1
S 997 3 0 0 0 0 0 0 0 0 0 0
Wald 5% 352 43 44 41 46 41 53 64 51 80 79 106

10% 138 21 28 45 56 62 60 78 81 115 138 178
LR 5% 500 43 44 44 41 42 38 42 33 56 53 64

10% 243 39 42 58 57 53 59 75 69 96 94 115

ρ1 0= z11 z12 0.5= =

ρ2
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Table 7: Variance decomposition

Percentage contribution of the temporary shock to the variance
decomposition of the forecast error of

Case with ,  and

Mean estimated percentage contribution with 10% confidence interval

True 10% Wald test Akaike Schwarz

No. of
periods

Low Mean Up Low Mean Up Low Mean Up

1 50.0 6.9 38.6 77.8 1.5 18.2 50.7 0.5 4.7 11.9

2 40.5 4.3 31.0 69.0 0.9 13.3 42.2 0.3 2.7 6.9

3 33.2 3.3 25.4 60.3 0.6 10.2 33.6 0.2 1.9 4.7

4 27.7 2.7 21.5 52.2 0.5 8.3 27.5 0.2 1.4 3.5

5 23.7 2.2 18.6 45.9 0.4 6.9 22.6 0.1 1.1 2.8

6 20.6 1.9 16.3 41.0 0.3 5.8 19.3 0.1 1.0 2.4

7 18.2 1.7 14.5 37.4 0.3 5.1 16.6 0.1 0.8 2.0

8 16.3 1.6 13.0 33.5 0.2 4.5 14.7 0.1 0.7 1.8

12 11.5 1.1 9.2 23.5 0.2 3.1 10.0 0.1 0.5 1.2

16 8.9 0.8 7.1 17.8 0.1 2.3 7.7 0.0 0.4 1.0

20 7.2 0.7 5.8 14.7 0.1 1.9 6.2 0.0 0.3 0.7

24 6.1 0.6 4.9 12.4 0.1 1.6 5.2 0.0 0.2 0.6

y1

ρ1 0= ρ2 0.6= z11 z12 0.5= =
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FIGURE 1a.

FIGURE 1b.

rho

true

mean

rho

mean

true



38

FIGURE 2a.

FIGURE 2b.

rho

true

mean

rho

mean

true



39

FIGURE 3a.

FIGURE 3b.
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