

Radioactive Release Data from Canadian Nuclear **Generating Stations** 1994 to 2003

INFO-0210 (Revision 12)

January 2005

RADIOACTIVE RELEASE DATA FROM CANADIAN NUCLEAR GENERATING STATIONS 1994 to 2003

Compiled by
Radiation Protection Division
Directorate of Power Reactor Regulation
Canadian Nuclear Safety Commission
Ottawa, Canada

Published by the Canadian Nuclear Safety Commission January 2005 Radioactive Release Data from Canadian Nuclear Generating Stations 1994 to 2003 INFO-0210/Rev. 12

Published by the Canadian Nuclear Safety Commission

© Minister of Public Works and Government Services Canada, 2005

Extracts from this document may be reproduced for individual use without permission provided the source is fully acknowledged. However, reproduction in whole or in part for purposes of resale or redistribution requires prior written permission from the Canadian Nuclear Safety Commission.

Cat no. CC172-13/2003E ISBN 0-662-39178-0

Ce document est également disponible en français sous le titre Données sur les rejets radioactifs des centrales nucléaires canadiennes de 1994 à 2003.

Document Availability

This document is available on the CNSC Web site at www.nuclearsafety.gc.ca. To order a print copy of the document in English or French, please contact:

Communications Directorate Canadian Nuclear Safety Commission P.O. Box 1046, Station B 280 Slater Street Ottawa, Ontario K1P 5S9 CANADA

Telephone: (613) 995-5894 or 1-800-668-5284 (Canada only)

Facsimile: (613) 992-2915 E-mail: info@cnsc-ccsn.gc.ca

NOTICE

i

TABLE OF CONTENTS

List of Tables	iv
List of Figures	iv
Introduction	1
New Brunswick	
Point Lepreau nuclear generating station	5
Ontario	
Bruce-A nuclear generating station	10
Bruce-B nuclear generating station	
Darlington nuclear generating station	
Pickering-A nuclear generating station	
Pickering-B nuclear generating station	29
Québec	
Gentilly-2 nuclear generating station	34
Glossary	39

iii

LIST OF TABLES

Table 1 Ann	al dose limits for members of the public1
Table 2 Deri	ved release limits for gaseous effluents2
	ved release limits for liquid effluents3
	•
	LIST OF FIGURES
	New Brunswick
Figures 1.1-1.8	Annual gaseous and liquid releases from Point Lepreau nuclear generating station5-9
	Ontario
Figures 2.1-2.8	Annual gaseous and liquid releases from Bruce-A nuclear generating station
Figures 3.1-3.8	Annual gaseous and liquid releases from Bruce-B nuclear generating station
Figures 4.1-4.9	Annual gaseous and liquid releases from Darlington nuclear generating station
Figures 5.1-5.7	Annual gaseous and liquid releases from Pickering-A nuclear generating station
Figures 6.1-6.8	Annual gaseous and liquid releases from Pickering-B nuclear generating station
	Québec
Figures 7.1-7.8	Annual gaseous and liquid releases from Gentilly-2 nuclear generating station 34-38

INTRODUCTION

All nuclear generating stations release small quantities of radioactive materials in a controlled manner into both the atmosphere (as gaseous effluents) and adjoining water bodies (as liquid effluents). The purpose of this document is to report the magnitude of these releases for each operating nuclear generating station in Canada. The report also indicates how these releases compare with the limitations imposed by the Canadian Nuclear Safety Commission (CNSC) as part of its regulatory program. The data shows that the levels of gaseous and liquid effluents from all operating nuclear generating stations are well below the values authorized by the CNSC.

This 12th revision of INFO-0210 presents data for the ten year period from 1994 to 2003.

The report incorporates histograms for each nuclear generating station displaying annual gaseous releases containing tritium in the form of tritium oxide, noble gases, iodine-131, and radioactive particulate, as well as the annual liquid releases containing tritium in the form of tritium oxide and gross beta-gamma activity. In addition, when monitored, annual releases of carbon-14 are displayed, and for Darlington nuclear generating station, airborne releases of elemental tritium are given. Darlington is required to monitor and report airborne releases of elemental tritium as a result of the operation of a tritium removal facility at Darlington nuclear generating station.

In each case, the release data are compared to the derived release limits (see below for an explanation of this term) in order that the data may be placed in perspective.

Derived release limits

Radioactive material released into the environment through gaseous and liquid effluents from nuclear generating stations can result in radiation doses to members of the public through direct irradiation. Such doses are subject to statutory dose limits for members of the public, which are set out in paragraphs 13 and 14 of

the *Radiation Protection Regulations* and are provided in Table 1 below. On May 31, 2000, the *Nuclear Safety and Control Act* (NSCA) and its associated Regulations came into force to replace the *Atomic Energy Control Act* and its Regulations. The *Radiation Protection Regulations* introduced new dose limits which reflect the recommendations of the International Commission on Radiation Protection (ICRP 60). The annual public dose limit was reduced from 5 mSv to 1 mSv.

Table 1
Annual dose limits for members of the public

Application	Dose
Effective dose, whole body	1 mSv
Equivalent dose, lens of an eye	15 mSv
Equivalent dose, skin	50 mSv
Equivalent dose, hands and feet	50 mSv

The doses received by members of the public from routine releases from nuclear generating stations are too low to measure directly. Therefore, to ensure that the public dose limit is not exceeded CNSC licences restrict the amount of radioactive materials that may be released in effluents from nuclear generating stations. These effluent limits are derived from the public dose limit and are referred to as derived release limits (DRLs). In addition, the nuclear generating stations set operating targets that are a small percentage of the derived release limits. These targets are based on the ALARA principle that doses be kept "as low as reasonably achievable". These targets are unique to each facility depending on the factors that exist at each one.

Table 2
Derived release limits for gaseous effluents

Nuclear generating station	Tritium* (TBq)	Iodine-131 (TBq)	Noble gases (TBq-MeV**)	Particulates (TBq)	Carbon-14 (TBq)
Point Lepreau	4.3 x 10 ⁵	9.9	7.3 x 10 ⁴	5.2	3.3×10^3
Bruce-A	8.8×10^4	1.2	5.0×10^4	2.1	5.7×10^2
Bruce-B	9.3×10^4	1.3	1.2×10^5	2.5	6.0×10^2
Darlington	4.6 x 10 ⁴ (HTO) 4.6 x 10 ⁵ (HT)***	3.3 x 10 ⁻¹	3.1×10^4	9.4 x 10 ⁻¹	1.5×10^2
Pickering-A	7.0×10^4	2.2	1.7×10^4	1.2	1.8×10^3
Pickering-B	7.0×10^4	2.2	1.7×10^4	1.2	1.8×10^3
Gentilly-2	4.4×10^5	1.3	1.7×10^5	1.9	9.1×10^2

^{*} Tritium oxide (HTO)

Methodology for establishing derived release limits

When the CNSC approved the DRLs for each nuclear generating station, the environmental pathways through which radioactive material could reach the most exposed members of the public after being released from the facility were considered. The most exposed members of the public are called the critical group. They are defined as those individuals who are expected to receive the highest dose of radiation because of such considerations as their age, diet, lifestyle and location.

Since 1987, DRL calculations have been based on a method recommended by the Canadian Standards Association in document CAN/CSA-N288.1-M87. This approach takes into account many more environmental pathways than did previous methods of calculating DRLs, and it allows for the use of more site-specific data. More realistic assumptions were incorporated into the method, for example, the use of shielding factors and occupancy times. Environmental transfer parameters for individual radionuclides were also updated. In addition to the use of this standard, the CNSC may place additional requirements on the calculation of DRLs such as the use of certain site-specific information to enable better estimates of environmental transfer processes.

As methods of calculating DRLs become more advanced, it may become necessary for licensees to revise their DRLs. At the same time, licensees may review the assumptions affecting the exposure of critical groups and adjust them where necessary to make them more representative, including, for example, such factors as location and lifestyle habits of critical groups and the location of dairy farms. In addition, licensees may use more site-specific data obtained from their routine environmental monitoring programs, such as liquid dispersion factors or surveys of the local population.

The net effect of changes associated with the methodology for calculating DRLs has been that over time, some limits increased while others have decreased, depending on the relative importance of the various pathways. As new information on dose calculation methods or parameters becomes available, the DRLs may require subsequent revisions. The current DRLs for all Canadian nuclear generating stations are listed in Tables 2 and 3.

The heavy horizontal lines at the top of the histograms in this report show the DRL for the elements in question.

^{**} TBq-MeV (terabecquerel-million electron volts)

^{***} Derived release limit for elemental tritium (HT) resulting from the tritium removal facility at Darlington nuclear generating station

Table 3
Derived release limits for liquid effluents

Nuclear generating station	Tritium* (TBq)	Gross beta-gamma activity (TBq)	Carbon-14 (TBq)
Point Lepreau**	1.6×10^7	1.6×10^{1}	3.0×10^2
Bruce-A***	4.5×10^4	5.8 x 10 ⁻¹	1.1×10^{1}
Bruce-B	6.0×10^5	4.9	9.1×10^{1}
Darlington	8.8×10^5	2.6×10^{1}	6.0×10^2
Pickering-A	1.7×10^5	2.0	2.6×10^{1}
Pickering-B	1.7×10^5	2.0	2.6×10^{1}
Gentilly-2	1.2×10^6	5.3	1.0×10^2

^{*} Tritium oxide (HTO)

Internal operating targets

Nuclear generating stations maintain their own internal operating targets of approximately 1% of the specified DRLs. Although DRLs are expressed as an annual release limit, weekly and monthly rates of release are further controlled. For gaseous releases, a limit of the annual DRL divided by 52 weeks is maintained. For liquid releases, a limit of the annual DRL divided by 12 months is maintained. Weekly airborne releases and monthly liquid releases at each nuclear generating station are compared to the respective weekly and monthly limits and are reported to the CNSC on a quarterly basis.

Release data

Licensees measure and report their releases in different ways. Most report the radionuclides that are major contributing factors to public dose such as airborne releases of tritium, iodine-131, noble gases, particulate and carbon-14, and liquid releases of tritium, gross beta-gamma and carbon-14. As particulate and gross beta-gamma consists of a mixture of radionuclides, the most dose-restrictive radionuclide is chosen to represent the mixture as the basis for comparison with the DRL.

Annual releases of the radionuclides are presented in histograms and tables for each nuclear generating station. The bars of the histograms depict the amount of radionuclide released each year in units of terabecquerels (TBq) or terabecquerel-million electron volts (TBq-MeV) in the case of noble gases. Logarithmic scales are used to allow comparison between annual radioactive releases and the DRL for each radionuclide.

"ND" in the following histograms and tables indicates that radioactive releases were not detected in that particular year.

Interim DRLs

The DRLs used at Pickering, Bruce and Darlington nuclear generating stations were last revised and implemented in 2001 to reflect the annual statutory public dose limit of 1 mSv, and to incorporate more recently accepted values for factors such as breathing and ingestion rates which are used in the calculations. These most recent DRLs are referred to as "interim" as they are expected to be replaced by a more comprehensive revision in the future. The DRLs for Point Lepreau nuclear generating station were last revised in 1996 and the DRLs are based on a public dose limit of 1 mSv, as recommended by the ICRP in 1990. The DRLs for Gentilly-2 nuclear generating station were last revised in 1992 and take into account the previous annual statutory public dose limit of 5 mSv. However, the internal administrative targets are set at 1% of the DRL Updated DRLs for Gentilly-2 are expected in the near future.

^{**} The derived release limit for tritium in liquid releases at Point Lepreau is higher than for the other nuclear generating stations because the effluent is discharged to sea water, thus eliminating the drinking water pathway to humans.

^{***} The liquid DRLs for Bruce A provided here are based on one condenser cooling water pump operating. Other liquid DRLs are available for 2, 3 or 12 pumps operating.

Terminology

A brief glossary is provided at the end of this report so that all readers may understand the words and expressions that relate to radioactive release data.

Scientific notation

Due to the magnitude of the numbers used in this report it is often more convenient to express them in scientific notation. In most cases the numbers in this report are rounded to two significant figures. Examples follow:

100 000	10^{5}
1 260 000	1.3 x 10 ⁶ (to two significant figures)
0.003473	3.5×10^{-3} (to two significant figures)

POINT LEPREAU NUCLEAR GENERATING STATION

The Point Lepreau nuclear generating station consists of one nuclear reactor which began operation in 1982. It is located in New Brunswick on Point Lepreau, which extends into the Bay of Fundy.

Data for radioactive gaseous and liquid effluents released between 1994 and 2003 from the Point Lepreau nuclear generating station are presented in the following histograms. The major radionuclides in gaseous effluents are tritium in the form of tritium oxide (Figure 1.1), iodine-131 (Figure 1.2), noble gases (Figure 1.3), radioactive particulate (Figure 1.4) and carbon-14 (Figure 1.5). Those in liquid effluents are tritium in the form of

tritium oxide (Figure 1.6), gross beta-gamma activity (Figure 1.7) and carbon-14 (Figure 1.8).

Point Lepreau nuclear generating station began reporting carbon-14 in liquid releases in 1997.

It should be noted that the DRL for tritium in liquid effluent is higher than that for the other nuclear generating stations (see Table 3). This occurs because the effluent goes directly to sea water, thus eliminating the drinking water pathway to humans.

Figure 1.1 Tritium oxide in gaseous effluent from the Point Lepreau nuclear generating station (1994-2003) DRL since $1996: 4.3 \times 10^5$ TBq

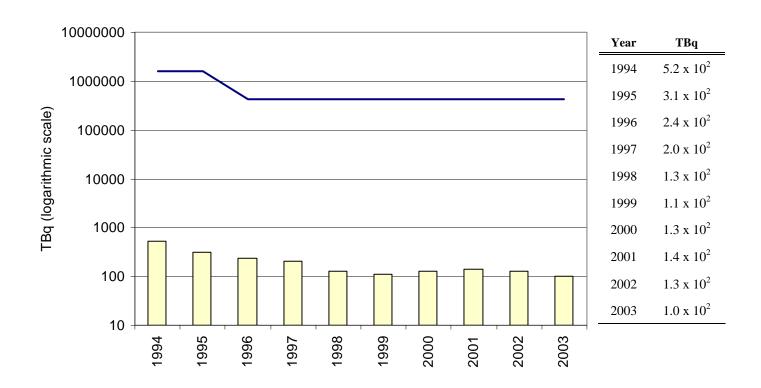


Figure 1.2 Iodine-131 in gaseous effluent from the Point Lepreau nuclear generating station (1994-2003) DRL since 1996: 9.9 TBq

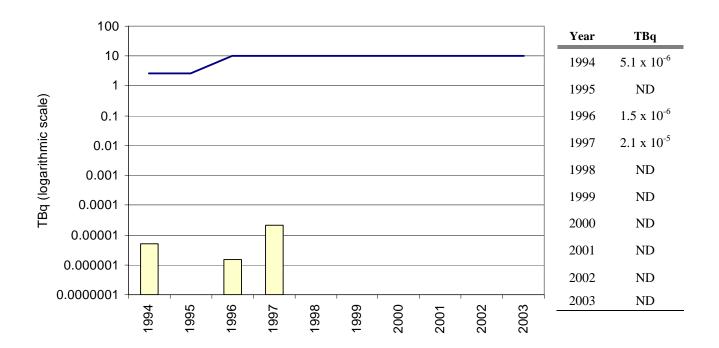


Figure 1.3 Noble Gas in gaseous effluent from the Point Lepreau nuclear generating station (1994-2003) DRL since $1996: 7.3 \times 10^4 \, TBq\text{-MeV}$

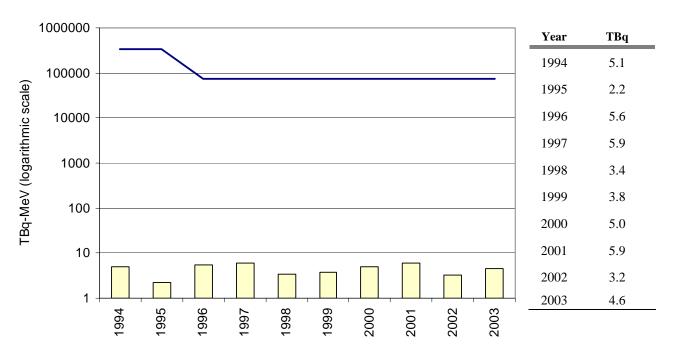


Figure 1.4
Radioactive particulate in gaseous effluent from the Point Lepreau nuclear generating station (1994-2003)
DRL since 1996: 5.2 TBq

Figure 1.5 Carbon-14 in gaseous effluent from the Point Lepreau nuclear generating station (1994-2003) DRL since $1996: 3.3 \times 10^3 \, TBq$

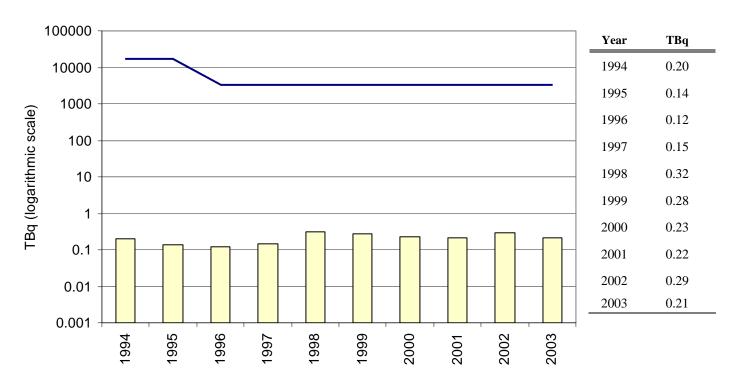


Figure 1.6 Tritium oxide in liquid effluent from the Point Lepreau nuclear generating station (1994-2003) DRL since $1996: 1.6 \times 10^7 \text{ TBq}$

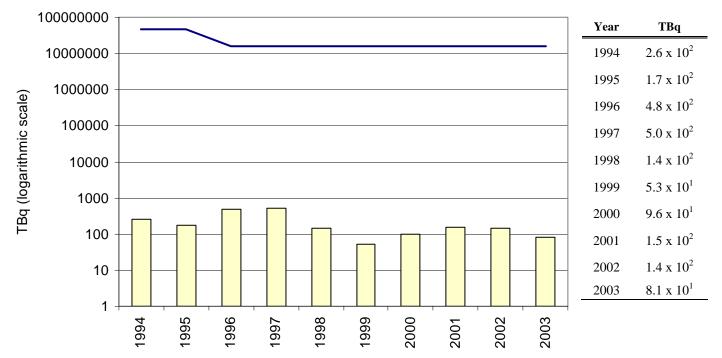


Figure 1.7 Gross beta-gamma activity in liquid effluent from the Point Lepreau nuclear generating station (1994-2003) DRL since $1996: 1.6 \times 10^{1} \text{ TBq}$

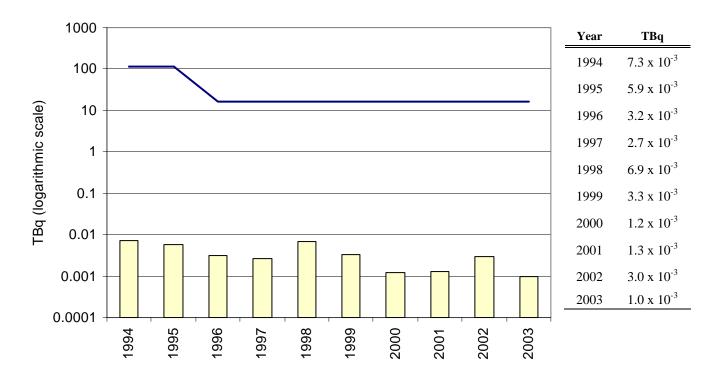
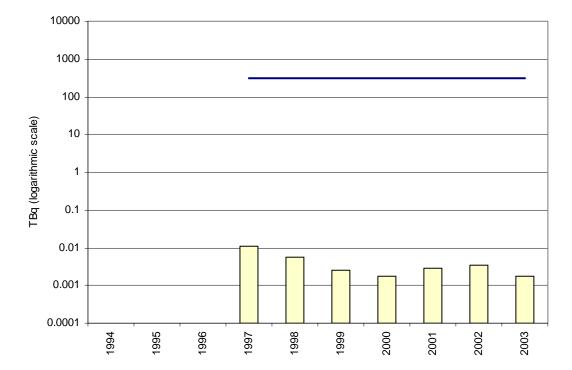



Figure 1.8 Carbon-14 in liquid effluent from the Point Lepreau nuclear generating station (1997-2003) DRL since 1996: $3.0 \times 10^2~\text{TBq}$

Year	TBq
1997	1.1 x 10 ⁻²
1998	5.5 x 10 ⁻³
1999	2.6 x 10 ⁻³
2000	1.8 x 10 ⁻³
2001	2.8 x 10 ⁻³
2002	3.4 x 10 ⁻³
2003	1.8 x 10 ⁻³

BRUCE-A NUCLEAR GENERATING STATION

The Bruce-A nuclear generating station consists of four nuclear reactors (units 1-4) which began operation in 1976. It is located in Ontario on the shore of Lake Huron near the town of Kincardine.

In 1997 as part of its extensive recovery program, Ontario Hydro (now Ontario Power Generation) temporarily shut down all Bruce-A reactors and all units were maintained in a guaranteed shut down state. Units 3 and 4 were recently returned to service; Unit 4 was restarted in October of 2003 and Unit 3 was restarted in January of 2004. The Bruce nuclear generating station is currently operated by Bruce Power.

Data for radioactive gaseous and liquid effluents released between 1994 and 2003 from the Bruce-A

nuclear generating station are presented in the following histograms. The pertinent items in the gaseous effluents are tritium, in the form of tritium oxide (Figure 2.1), iodine-131 (Figure 2.2), noble gases (Figure 2.3), radioactive particulates (Figure 2.4) and carbon-14 (Figure 2.5); while those in the liquid effluents are tritium, in the form of tritium oxide (Figure 2.6), gross beta-gamma activity (Figure 2.7) and carbon-14 (Figure 2.8).

Bruce-A began reporting carbon-14 releases in gaseous and liquid effluents in 1999.

Figure 2.1

Tritium oxide in gaseous effluent from the Bruce-A nuclear generating station (1994-2003)

DRL from 1990 to 2000: 3.8 x 10⁵ TBq; DRL since 2001: 8.8 x 10⁴ TBq

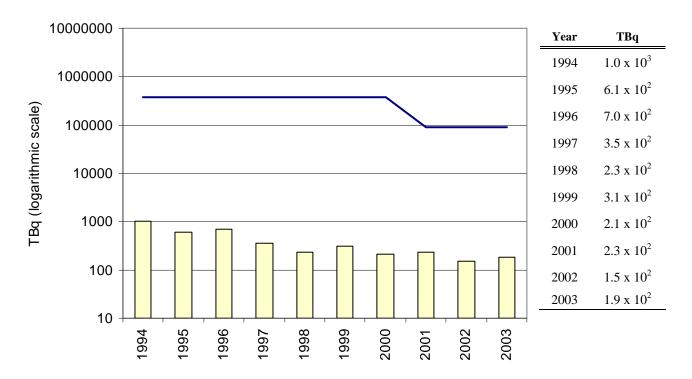


Figure 2.2 Iodine-131 in gaseous effluent from the Bruce-A nuclear generating station (1994-2003) DRL since 1990: 1.2 TBq

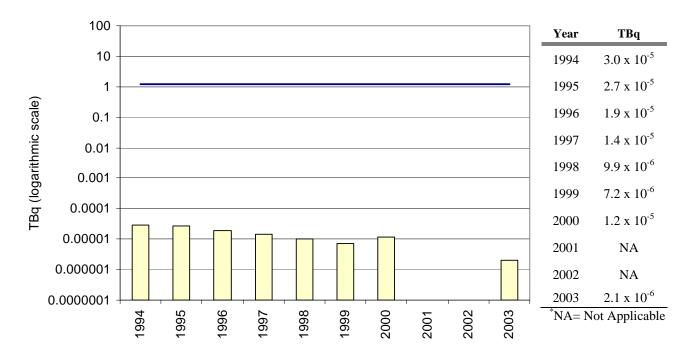
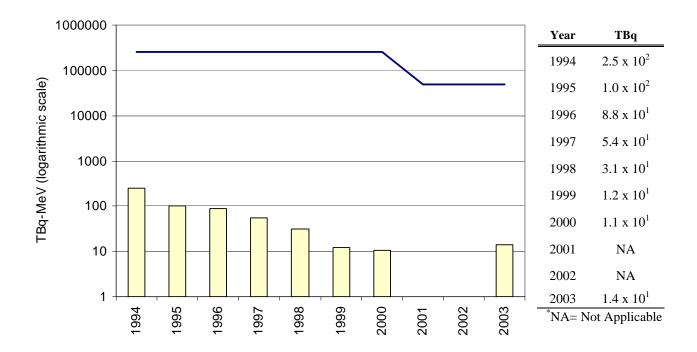



Figure 2.3 Noble gas in gaseous effluent from the Bruce-A nuclear generating station (1994-2003) DRL from 1990 to 2000: 2.5×10^5 TBq-MeV; DRL since $2001: 5.0 \times 10^4$ TBq-MeV

*In 2000, OPG shut down all noncontaminated stack monitors and all contaminated stack noble gas and iodine monitors at Bruce A

Figure 2.4
Radioactive particulate in gaseous effluent from the Bruce-A nuclear generating station (1994-2003)
DRL from 1990 to 2000: 2.7 TBq; DRL since 2001: 2.1 TBq

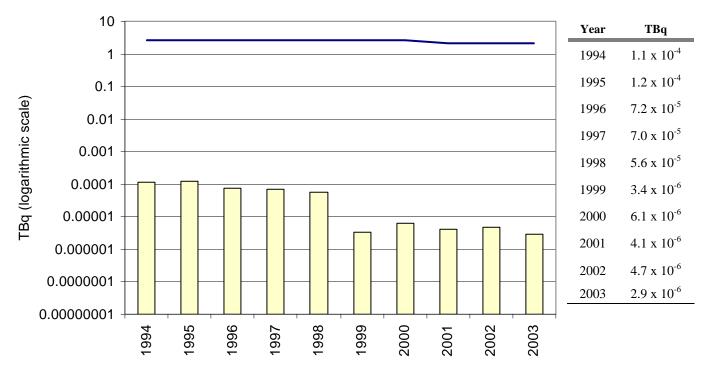


Figure 2.5 Carbon-14 in gaseous effluent from the Bruce-A nuclear generating station (1999-2003) DRL from 1990 to 2000: 2.8×10^3 TBq; DRL since 2001: 5.7×10^2 TBq

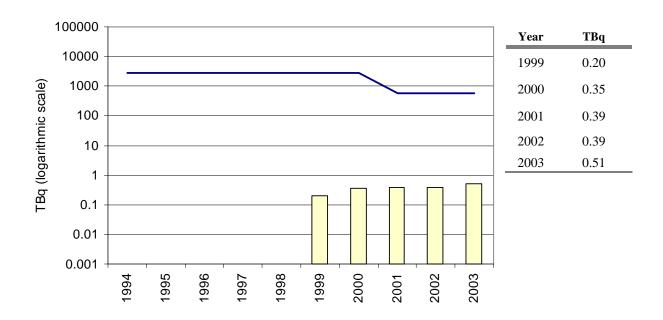


Figure 2.6
Tritium oxide in liquid effluent from the Bruce-A nuclear generating station (1994-2003)
DRL from 1990 to 2000: 1.7 x 10⁶ TBq; DRL since 2001: 4.5 x 10⁴ TBq

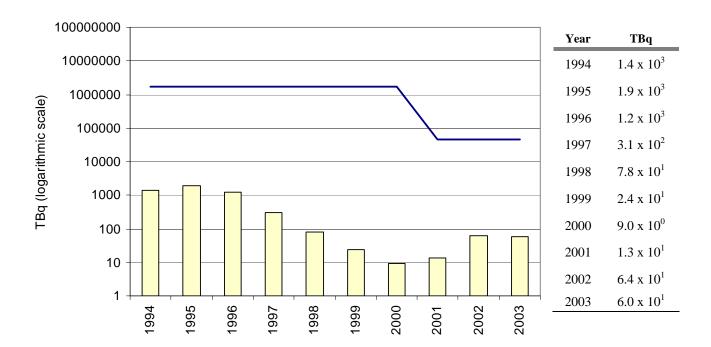


Figure 2.7 Gross beta-gamma activity in liquid effluent from the Bruce-A nuclear generating station (1994-2003) DRL from 1990 to 2000: 2.0×10^{1} TBq; DRL since $2001: 5.8 \times 10^{-1}$ TBq

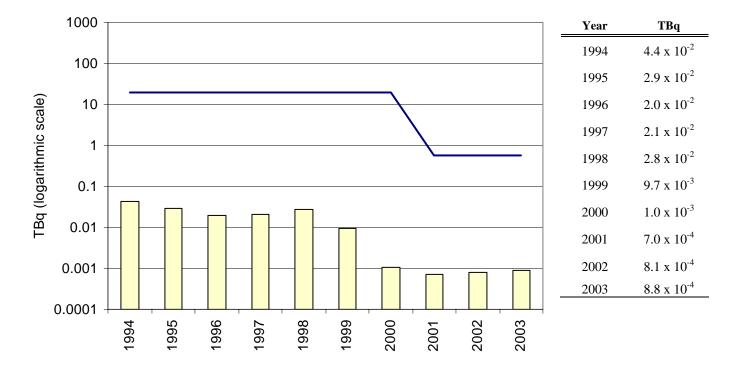
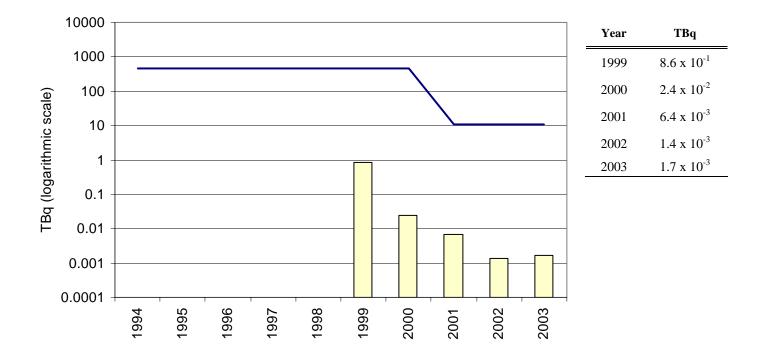



Figure 2.8 Carbon-14 in liquid effluent from the Bruce-A nuclear generating station (1999-2003) DRL from 1990 to 2000: 4.5×10^2 TBq; DRL since 2001: 1.1×10^1 TBq

BRUCE-B NUCLEAR GENERATING STATION

The Bruce-B nuclear generating station consists of four nuclear reactors (units 5-8) which began operation in 1984. It is located in Ontario on the shores of Lake Huron near the town of Kincardine. The Bruce nuclear generating station is currently operated by Bruce Power Inc.

Data for radioactive gaseous and liquid effluents released between 1994 and 2003 from the Bruce-B nuclear generating station are presented in the following histograms. The pertinent items in the gaseous effluents are tritium, in the form of tritium oxide (Figure 3.1),

iodine-131 (Figure 3.2), noble gases (Figure 3.3) radioactive particulates (Figure 3.4) and carbon-14 (Figure 3.5), while those in the liquid effluents are tritium, in the form of tritium oxide (Figure 3.6), gross beta-gamma activity (Figure 3.7) and carbon-14 (Figure 3.7).

Bruce-B began reporting carbon-14 releases in liquid effluents in 1999, and carbon-14 releases in gaseous effluents starting in 2000.

Figure 3.1

Tritium oxide in gaseous effluent from the Bruce-B nuclear generating station (1994-2003)

DRL from 1990 to 2000: 4.7 x 10⁵ TBq; DRL since 2001: 9.3 x 10⁴ TBq

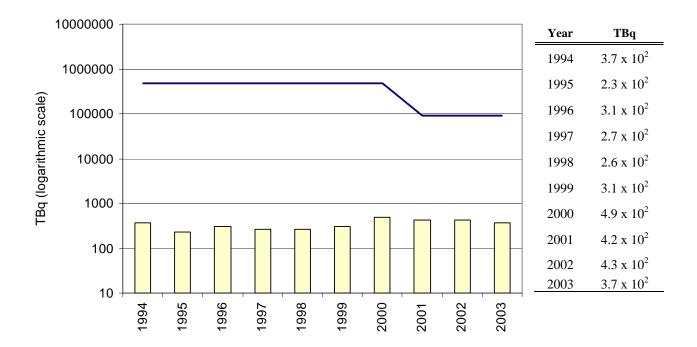


Figure 3.2 Iodine-131 in gaseous effluent from the Bruce-B nuclear generating station (1994-2003) DRL since 1990: 1.3 TBq

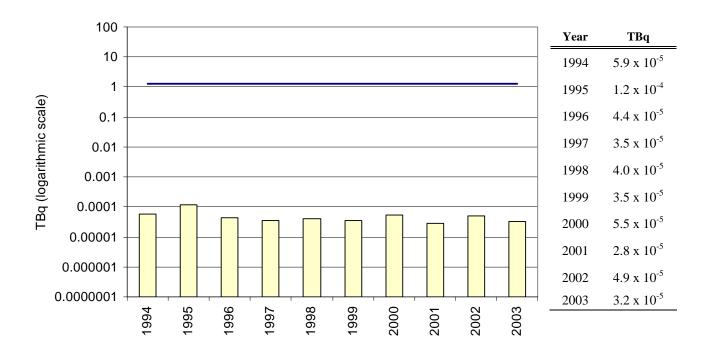


Figure 3.3 Noble gas in gaseous effluent from the Bruce-B nuclear generating station (1994-2003) DRL from 1990 to 2000: 6.1×10^5 TBq-MeV; DRL since 2001: 1.2×10^5 TBq-MeV

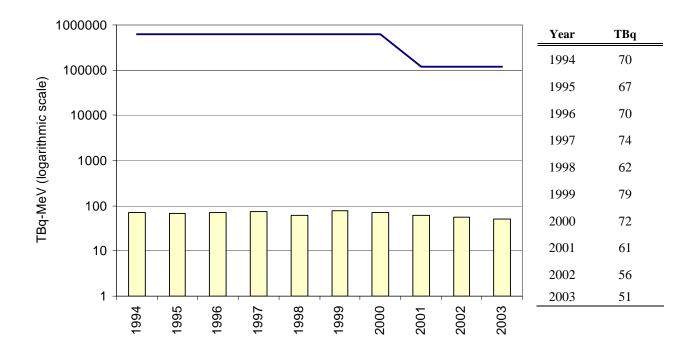


Figure 3.4
Radioactive particulate in gaseous effluent from the Bruce-B nuclear generating station (1994-2003)
DRL from 1990 to 2000: 4.8 TBq; DRL since 2001: 2.5 TBq

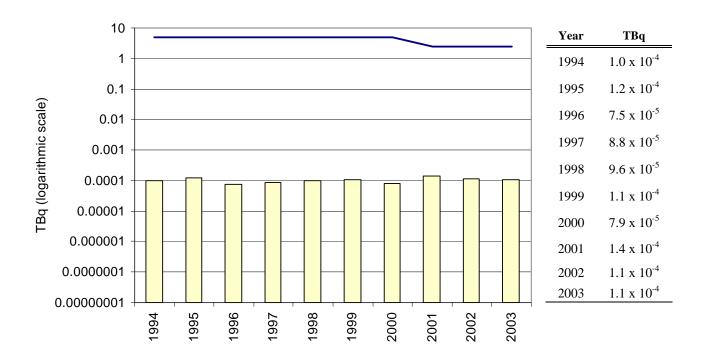


Figure 3.5
C-14 in gaseous effluent from the Bruce-B nuclear generating station (2000-2003)
DRL from 1990 to 2000: 3.0 x 10³ TBq; DRL since 2001: 6.0 x 10² TBq

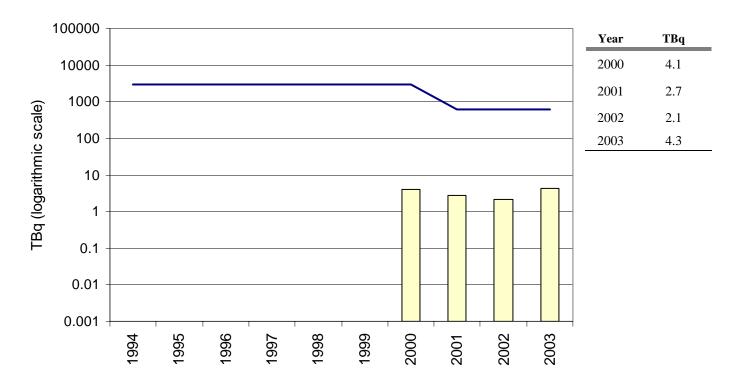


Figure 3.6 Tritium oxide in liquid effluent from the Bruce-B nuclear generating station (1994-2003) DRL from 1990 to 2000: 3.0×10^6 DRL since 2001: 6.0×10^5 TBq

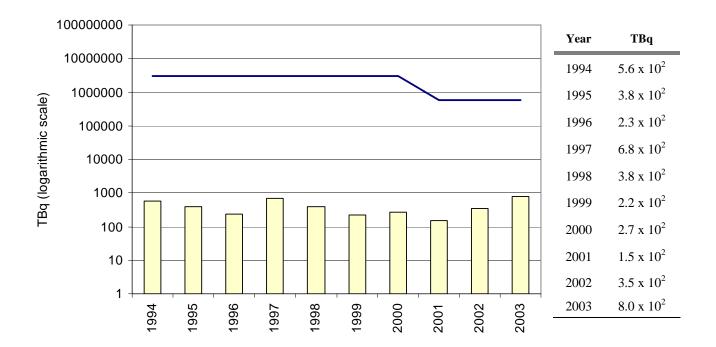


Figure 3.7 Gross beta- gamma activity in liquid effluent from the Bruce-B nuclear generating station (1994-2003) DRL from 1990 to 2000: 2.3×10^1 TBq; DRL since 2001: 4.9 TBq

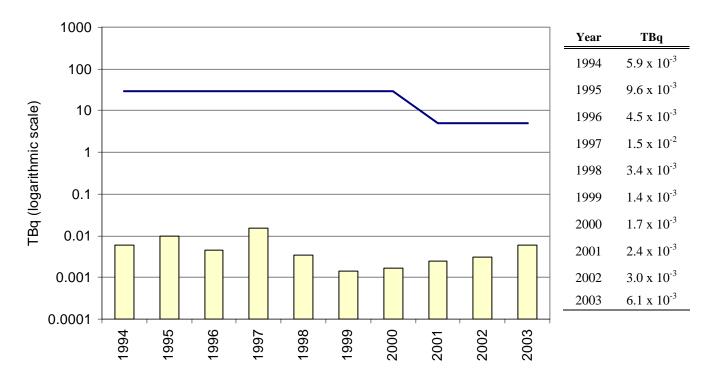
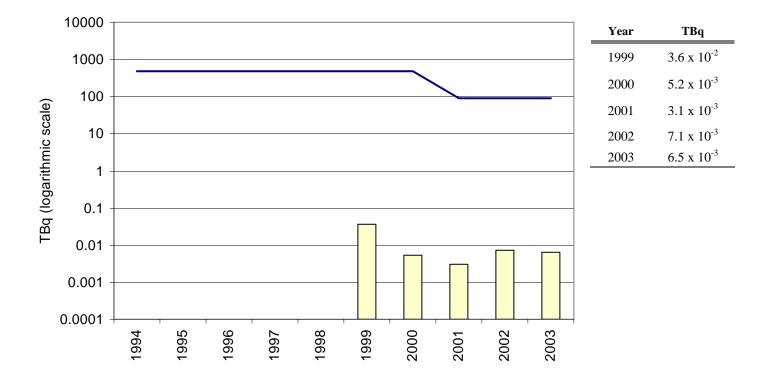



Figure 3.8 C-14 in liquid effluent from the Bruce-B nuclear generating station (1999-2003) DRL from 1990 to 2000: 4.8×10^2 TBq; DRL since 2001: 9.1×10^1 TBq

DARLINGTON NUCLEAR GENERATING STATION

The Darlington Nuclear Generating Station consists of four nuclear reactors, the first of which started up in 1989, and a tritium removal facility which started operations in 1988. Both facilities are located in Ontario on the shore of Lake Ontario near the town of Bowmanville.

Data for radioactive gaseous and liquid effluents released between 1994 and 2003 from the Darlington nuclear generating station are presented in the following histograms. The pertinent items in the gaseous effluents are tritium, in the form of tritium oxide (Figure 4.1) and elemental tritium (Figure 4.2), iodine-131 (Figure 4.3),

noble gases (Figure 4.4), radioactive particulates (Figure 4.5) and carbon-14 (Figure 4.6); while those in the liquid effluents are tritium, in the form of tritium oxide (Figure 4.7), gross beta-gamma activity (Figure 4.8) and carbon-14 (Figure 4.9).

Gaseous effluent releases of tritium in elemental form occur due to the operation of the tritium removal facility.

Darlington began reporting carbon-14 releases in gaseous and liquid effluents in 1999.

Figure 4.1
Tritium oxide in gaseous effluent from the Darlington nuclear generating station (1994-2003)
DRL from 1989 to 2000: 2.1 x 10⁵ TBq; DRL since 2001: 4.6 x 10⁴ TBq

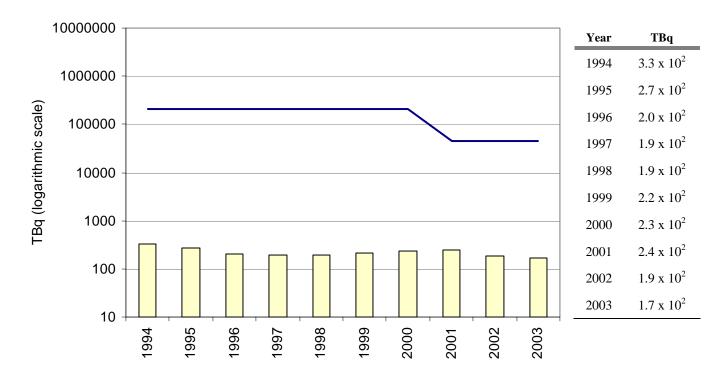


Figure 4.2
Elemental tritium in gaseous effluent from the Darlington nuclear generating station (1994-2003)
DRL from 1993 to 2000: 7.3 x 10⁶ TBq; DRL since 2001: 4.6 x 10⁵ TBq

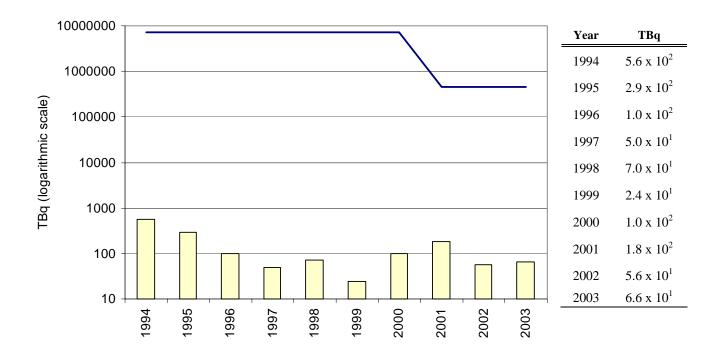
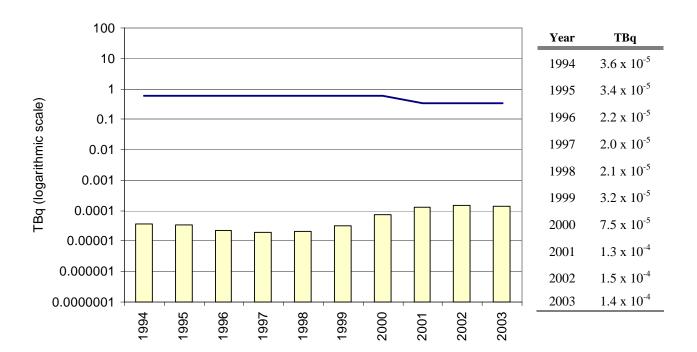



Figure 4.3 Iodine-131 in gaseous effluent from the Darlington nuclear generating station (1994-2003) DRL from 1989 to 2000: 6.0×10^{-1} TBq; DRL since 2001: 3.3×10^{-1} TBq

Figure 4.4 Noble gas in effluent from the Darlington nuclear generating station (1994-2003)DRL from 1989 to 2000: 2.1 x 10⁵ TBq-MeV; DRL since 2001: 3.1 x 10⁴ TBq-MeV

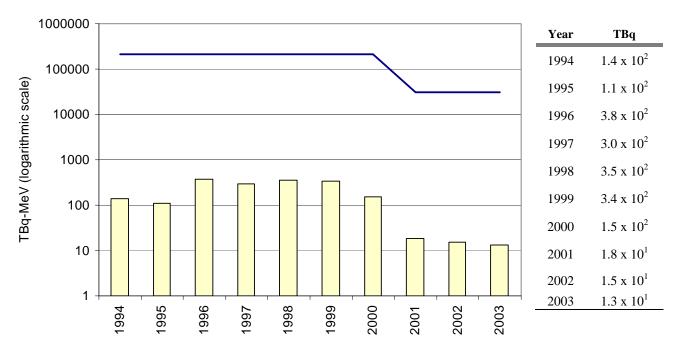


Figure 4.5
Radioactive particulate in gaseous effluent from the Darlington nuclear generating station (1994-2003)
DRL from 1989 to 2000: 4.4 TBq; DRL since 2001: 9.4 x 10⁻¹ TBq

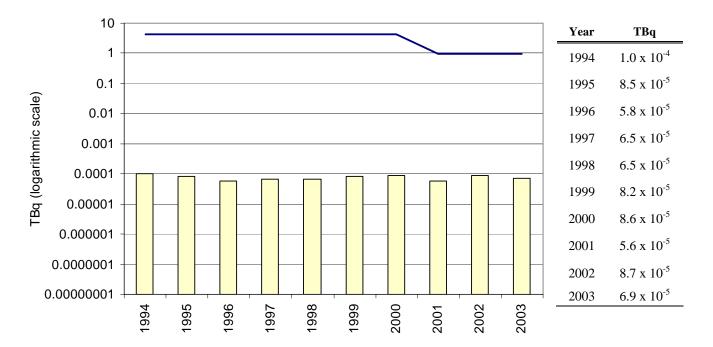


Figure 4.6
Carbon-14 in gaseous effluent from the Darlington nuclear generating station (1999-2003)
DRL from 1989 to 2000: 1.4 x 10³ TBq; DRL since 2001: 1.5 x 10² TBq

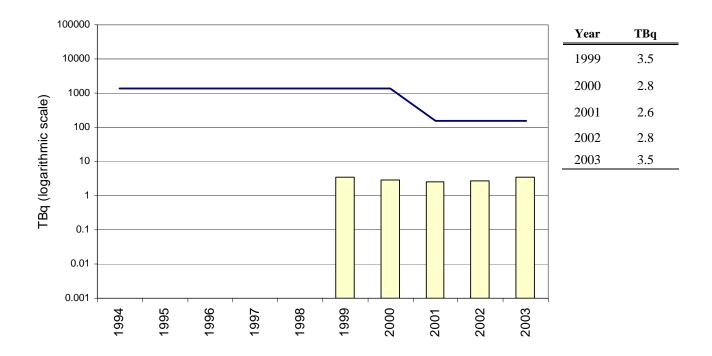


Figure 4.7

Tritium oxide in liquid effluent from the Darlington nuclear generating station (1994-2003)

DRL from 1989 to 2000: 5.3 x10⁶ TBq; DRL since 2001: 8.8 x 10⁵ TBq

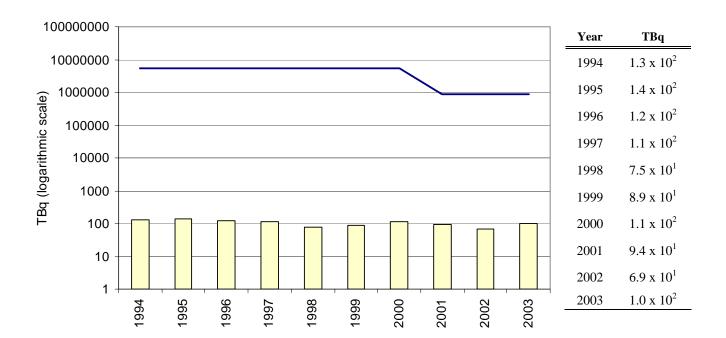


Figure 4.8
Gross beta-gamma activity in liquid effluent from the Darlington nuclear generating station (1994-2003)
DRL from 1989 to 2000: 1.3 x 10² TBq; DRL since 2001: 2.6 x 10¹ TBq

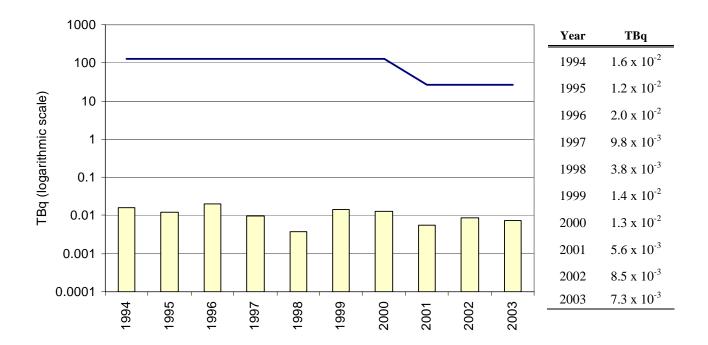
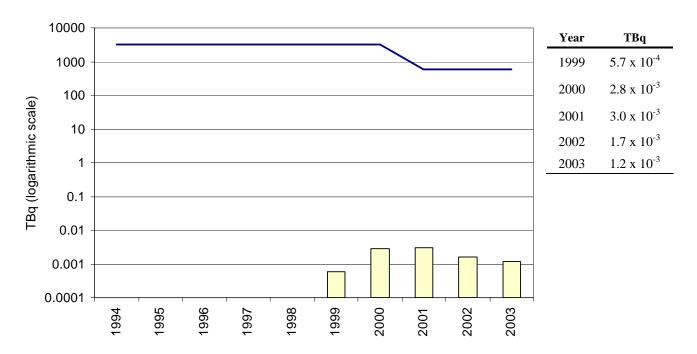



Figure 4.9 Carbon-14 in liquid effluent from the Darlington nuclear generating station (1999-2003) DRL from 1989 to 2000: 3.2×10^3 TBq; DRL since 2001: 6.0×10^2 TBq

PICKERING-A NUCLEAR GENERATING STATION

The Pickering-A nuclear generating station consists of four nuclear reactors (units 1-4) which began operation in 1971. It is located in Ontario on the shores of Lake Ontario near the town of Pickering.

In 1997 as part of its extensive recovery program, Ontario Hydro (now Ontario Power Generation) temporarily shut down all Pickering-A reactors and the reactors were maintained in a guaranteed shut-down state. In September, 2003 Unit 4 was restarted.

Data for radioactive gaseous and liquid effluents released between 1994 and 2003 from the Pickering-A

nuclear generating station are presented in the following histograms. The pertinent items in the gaseous effluents are tritium, in the form of tritium oxide (Figure 5.1), iodine-131 (Figure 5.2), noble gases (Figure 5.3), radioactive particulates (Figure 5.4) and carbon-14 (Figure 5.5); while those in the liquid effluents are tritium, in the form of tritium oxide (Figure 5.6) and gross beta-gamma activity (Figure 5.7). Since 1999, carbon-14 releases in liquid effluent from Pickering A have been reported in the carbon-14 liquid release data for Pickering B.

Figure 5.1 Tritium oxide in gaseous effluent from the Pickering-A nuclear generating station (1994-2003) DRL from 1992 to 2000: 3.4×10^5 TBq; DRL since 2001: 7.0×10^4 TBq

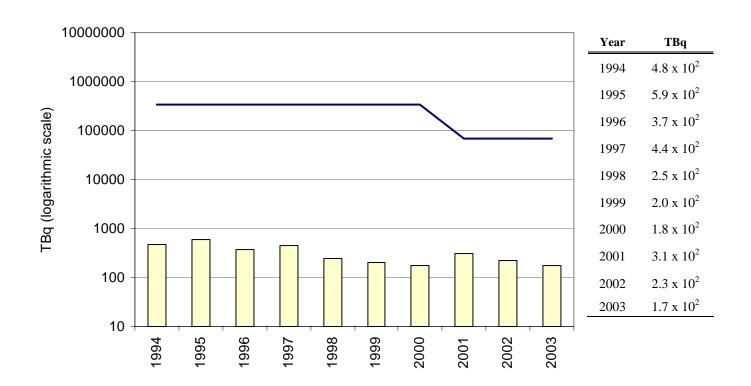


Figure 5.2 Iodine-131 in gaseous effluent from the Pickering-A nuclear generating station (1994-2003) DRL from 1992 to 2000: 2.4 TBq; DRL since 2001: 2.2 TBq

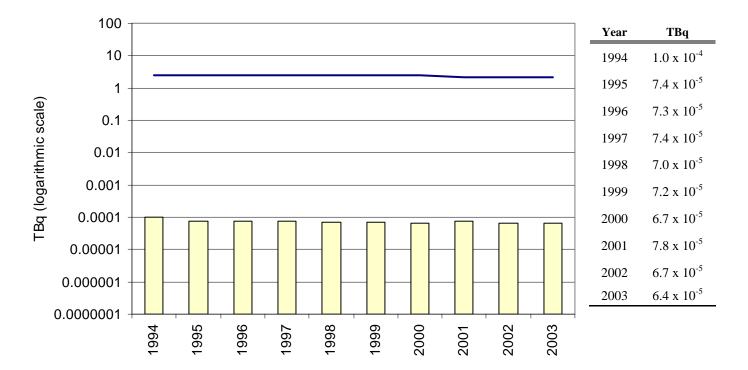


Figure 5.3 Noble gas in gaseous effluent from the Pickering-A nuclear generating station (1994-2003) DRL from 1992 to 2000: 8.3×10^4 TBq-MeV; DRL since 2001: 1.7×10^4 TBq-MeV

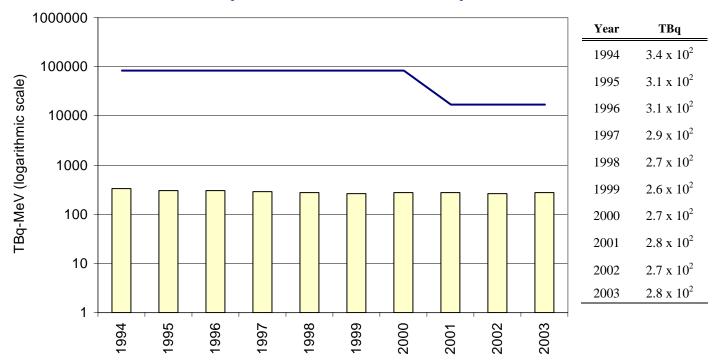


Figure 5.4
Radioactive particulate in gaseous effluent from the Pickering-A nuclear generating station (1994-2003)
DRL from 1992 to 2000: 5.0 TBq; DRL since 2001: 1.2 TBq

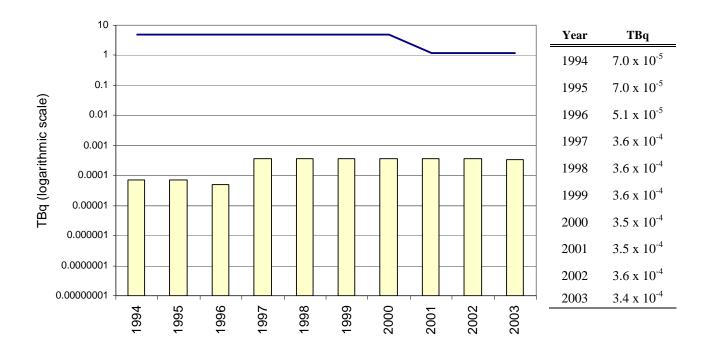


Figure 5.5 C-14 in gaseous effluent from the Pickering-A nuclear generating station (1994-2003) DRL from 1992 to 2000: 8.8 x 10³ TBq; DRL since 2001: 1.8 x 10³ TBq

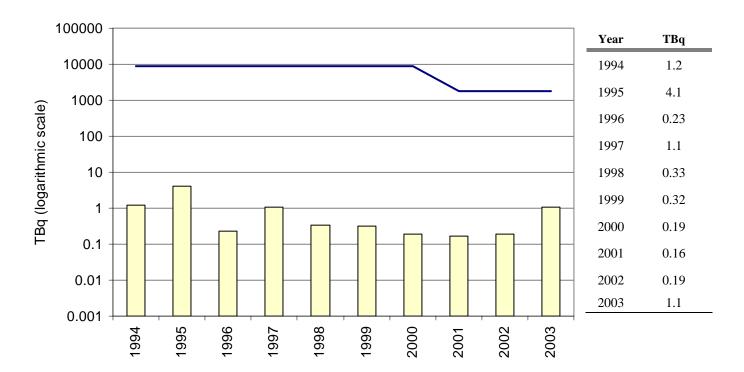


Figure 5.6
Tritium oxide in liquid effluent from the Pickering-A nuclear generating station (1994-2003)
DRL from 1992 to 2000: 8.3 x 10⁵ TBq; DRL since 2001: 1.7 x 10⁵ TBq

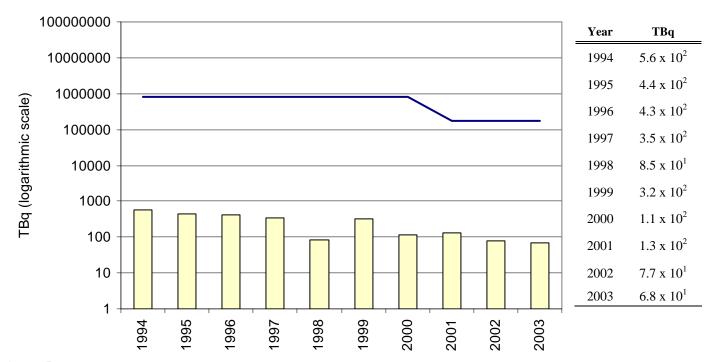
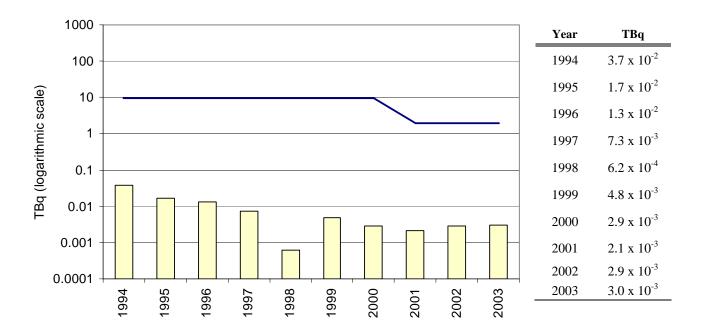



Figure 5.7
Gross beta-gamma activity in liquid effluent from the Pickering-A nuclear generating station (1994-2003)
DRL from 1992 to 2000: 9.7 TBq; DRL since 2001: 2.0 TBq

PICKERING-B NUCLEAR GENERATING STATION

The Pickering-B nuclear generating station consists of four nuclear reactors (units 5-8) which began operation in 1982. It is located in Ontario on the shore of Lake Ontario near the town of Pickering.

Data for radioactive gaseous and liquid effluents released between 1994 and 2003 from the Pickering-B nuclear generating station are presented in the following histograms. The pertinent items in the gaseous effluents are tritium, in the form of tritium oxide (Figure 6.1), iodine-131 (Figure 6.2), noble gases (Figure 6.3),

radioactive particulates (Figure 6.4) and carbon-14 (Figure 6.5); while those in the liquid effluents are tritium, in the form of tritium oxide (Figure 6.6), gross beta-gamma activity (Figure 6.7) and carbon-14 (Figure 6.8).

Pickering-B began reporting carbon-14 in liquid releases in 1999 and began reporting carbon-14 in gaseous releases in 2000.

Figure 6.1
Tritium oxide in gaseous effluent from the Pickering-B nuclear generating station (1994-2003)
DRL from 1992 to 2000: 3.4 x 10⁵ TBq; DRL since 2001: 7.0 x 10⁴ TBq

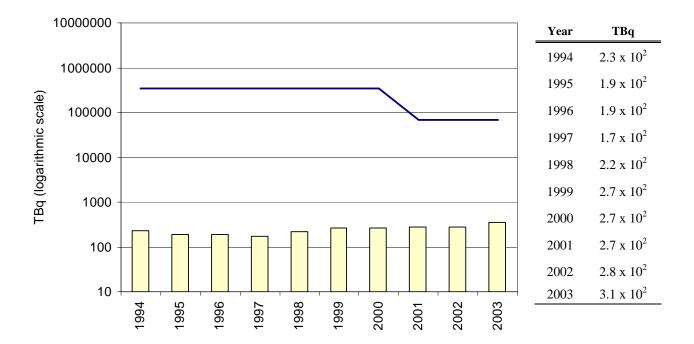


Figure 6.2 Iodine-131 in gaseous effluent from the Pickering-B nuclear generating station (1994-2003) DRL from 1992 to 2000: 2.4 TBq; DRL since 2001: 2.2 TBq

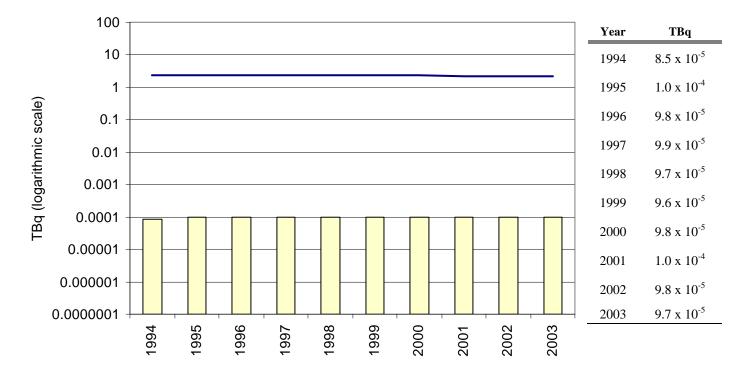
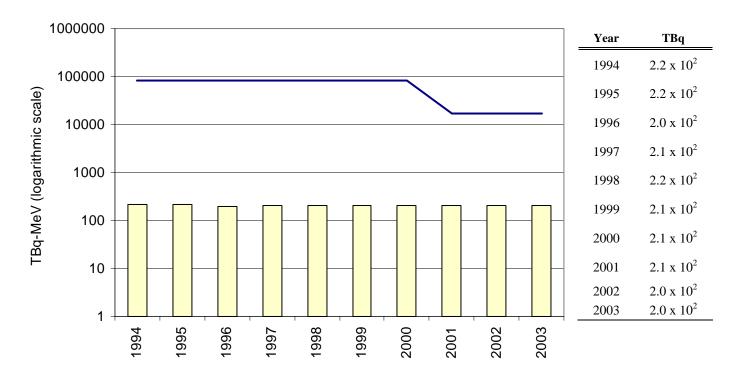



Figure 6.3 Noble gas in gaseous effluent from the Pickering-B nuclear generating station (1994-2003) DRL from 1992 to 2000: 8.3×10^4 TBq-MeV; DRL since 2001: 1.7×10^4 TBq-MeV

Figure 6.4 Radioactive particulate in gaseous effluent from the Pickering-B nuclear generating station (1994-2003)DRL from 1992 to 2000: 5.0 TBq; DRL since 2001: 1.2 TBq

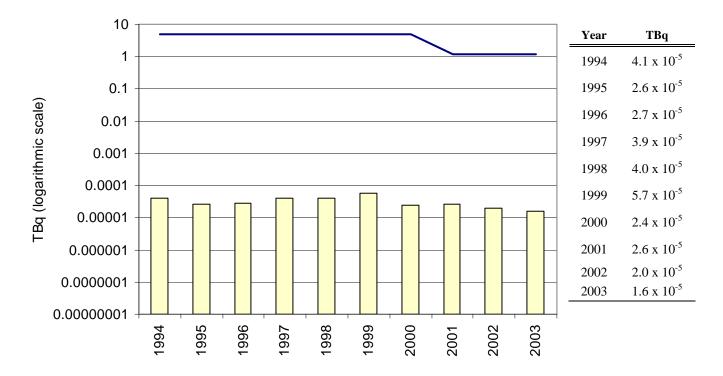


Figure 6.5
C-14 in gaseous effluent from the Pickering-B nuclear generating station (2000-2003)
DRL from 1992-2000: 8.8 x 10³ TBq; DRL since 2001: 1.8 x 10³ TBq

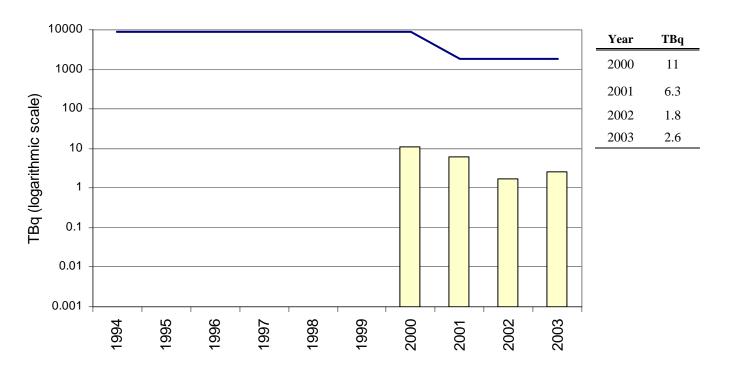


Figure 6.6
Tritium oxide in liquid effluent from the Pickering-B nuclear generating station (1994-2003)
DRL from 1992 to 2000: 8.3 x 10⁵ TBq; DRL since 2001: 1.7 x 10⁵ TBq

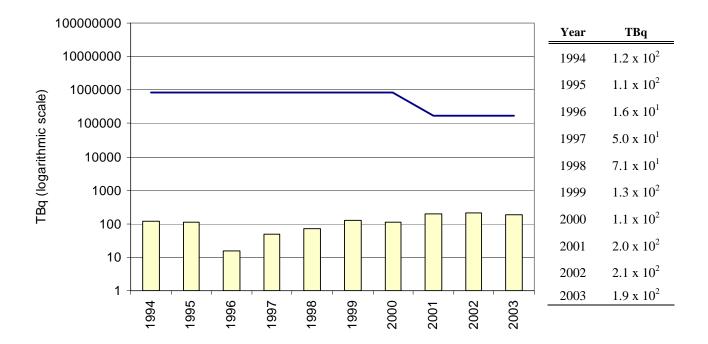


Figure 6.7 Gross beta-gamma activity in liquid effluent from the Pickering-B nuclear generating station (1994-2003) DRL from 1992 to 2000: 9.7 TBq; DRL since 2001: 2.0 TBq

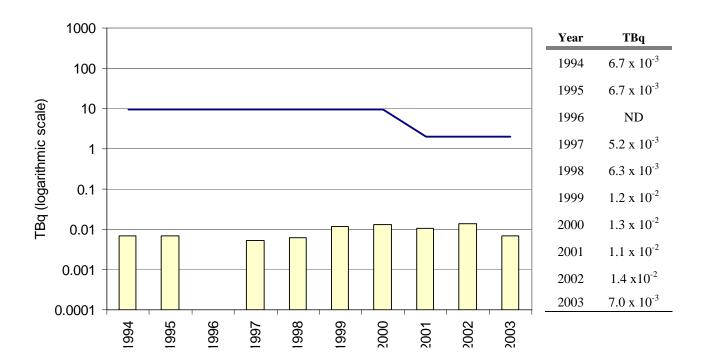
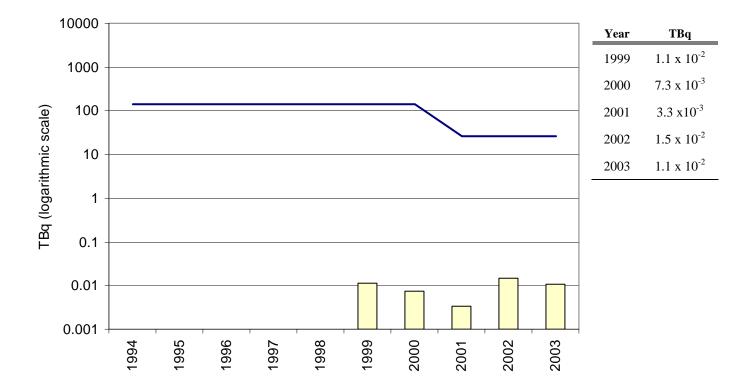



Figure 6.8 C-14 in liquid effluent from the Pickering-B nuclear generating station (1999-2003) DRL from 1992 to 2000: 1.4×10^2 TBq; DRL since 2001: 2.6×10^1 TBq

GENTILLY-2 NUCLEAR GENERATING STATION

The Gentilly-2 nuclear generating station consists of one nuclear reactor which began operation in 1982. It is located in Québec on the Saint Lawrence River near the city of Trois-Rivières.

Data for radioactive gaseous and liquid effluents released between 1994 and 2003 from the Gentilly-2 nuclear generating station are presented in the following histograms. The pertinent items in the gaseous effluents are tritium, in the form of tritium oxide (Figure 7.1),

iodine-131 (Figure 7.2), noble gases (Figure 7.3), radioactive particulate (Figure 7.4) and carbon-14 (Figure 7.5); while those in the liquid effluents are tritium, in the form of tritium oxide (Figure 7.6), gross beta-gamma activity (Figure 7.7) and carbon-14 (Figure 7.8).

DRLs for carbon-14 in gaseous and liquid effluents were introduced in 1992.

Figure 7.1 Tritium oxide in gaseous effluent from the Gentilly-2 nuclear generating station (1994-2003) DRL since $1992: 4.4 \times 10^5$ TBq

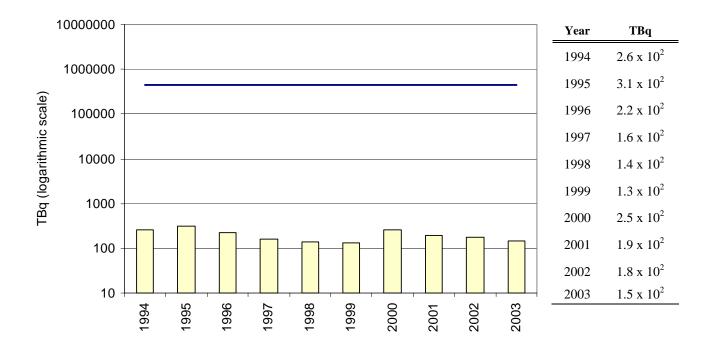


Figure 7.2 Iodine-131 in gaseous effluent from the Gentilly-2 nuclear generating station (1994-2003) DRL since 1992: 1.3 TBq

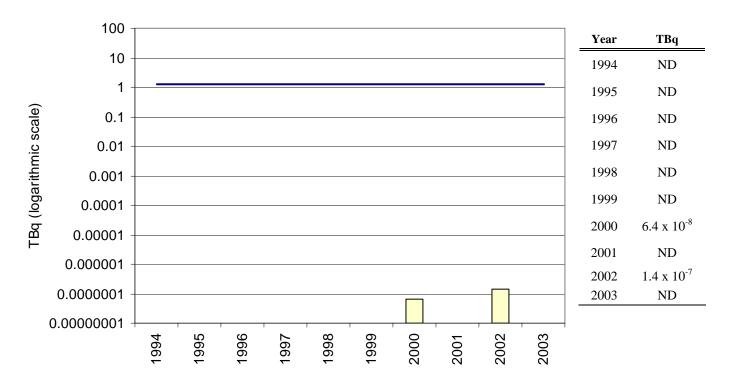


Figure 7.3 Noble gas in gaseous effluent from the Gentilly-2 nuclear generating station (1994-2003) DRL since $1992: 1.7 \times 10^5$ TBq-MeV

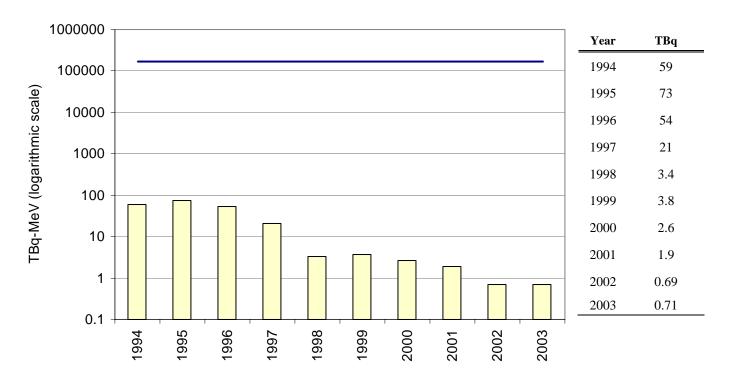


Figure 7.4
Radioactive particulate in gaseous effluent from the Gentilly-2 nuclear generating station (1994-2003)
DRL since 1992: 1.9 TBq

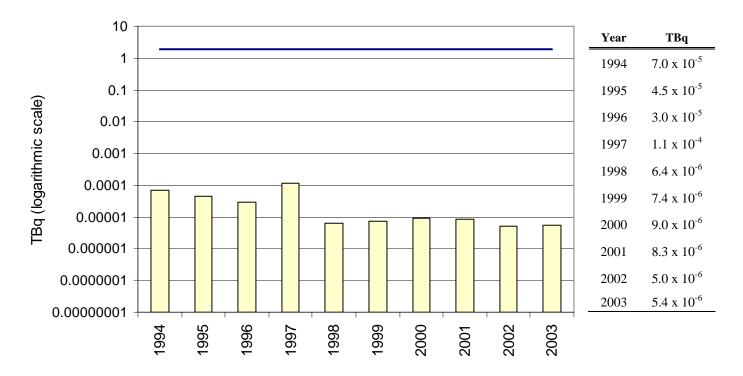


Figure 7.5 Carbon-14 in gaseous effluent from the Gentilly-2 nuclear generating station (1994-2003) DRL since $1992: 9.1 \times 10^2 \, \text{TBq}$

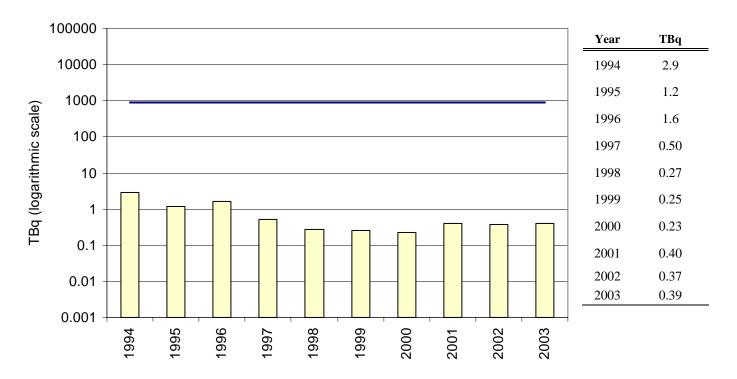


Figure 7.6 Tritium oxide in liquid effluent from the Gentilly-2 nuclear generating station (1994-2003) DRL since $1992: 1.2 \times 10^6 \, \text{TBq}$

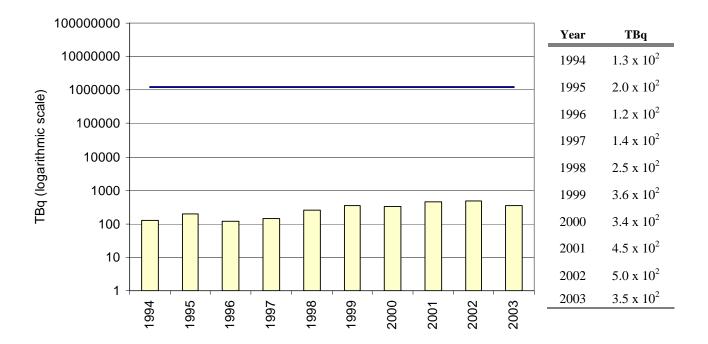


Figure 7.7
Gross beta-gamma activity in liquid effluent from the Gentilly-2 nuclear generating station (1994-2003)
DRL since 1992: 5.3 TBq

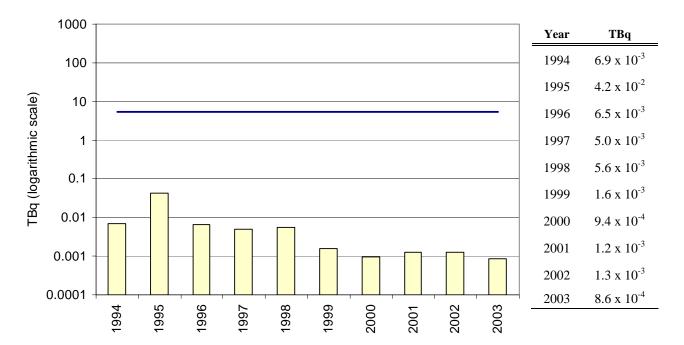
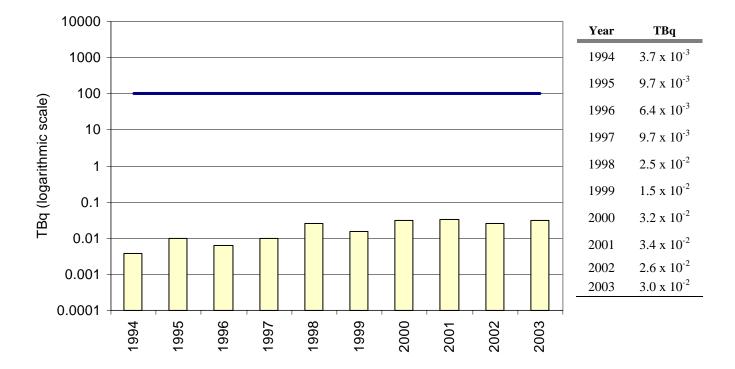



Figure 7.8 Carbon-14 in liquid effluent from the Gentilly-2 nuclear generating station (1994-2003) DRL since $1992: 1.0 \times 10^2$ TBq

GLOSSARY

Becquerel (**Bq**): The unit of activity under the SI system. It is equivalent to 1 disintegration per second or 2.7×10^{-11} Ci.

Critical group: A homogeneous group of members of the public identified as being those individuals which are most likely to receive the highest doses from exposure to radioactive materials released by CNSC licensees. While the concept of critical group is the same for all nuclear generating stations in Canada, the description of the critical group for each station is unique. It is based on analysis of site-specific radionuclide releases and exposure pathways.

Curie (Ci): A unit for measuring the rate of radioactive decay; it is defined as 3.7×10^{10} disintegrations per second. $1 \text{ Ci} = 3.7 \times 10^{10} \text{ Bq}$.

Derived Release Limit (DRL): A limit on the release of a radioactive substance from a licensed nuclear facility such that compliance with the DRL gives reasonable assurance that the regulatory public dose limit is not exceeded.

Dose limit: A limit on radiation dose specified in the CNSC *Radiation Protection Regulations*.

Iodine-131: Radioactive isotope of iodine. There are several radioisotopes of iodine produced during normal operation of a nuclear reactor; I-131 is one of them.

Ionizing radiation: Any atomic or subatomic particle or electromagnetic wave having sufficient energy to produce ions (atoms which have become charged due to the loss or gain of electrons) in the material in which it is absorbed. Ionizing radiation includes alpha and beta particles and gamma radiation, as well as neutrons and some other particles.

Irradiation: Exposure to radiation.

Logarithmic scale: An exponential scale in which the distances that numbers are at from a reference point are proportional their exponents rather than their linear relationship to each other.

Noble gases: Xenon, argon, krypton, neon, helium. They are chemically inert gases. Radioisotopes of the noble gases are created during the operation of a nuclear reactor.

Radioactivity: The spontaneous disintegration of the nucleus of an atom by expulsion of particles. It can be accompanied by electromagnetic radiation. Solids, liquids or gases can be radioactive.

Sievert (Sv): The SI unit of dose, corresponding to the rem (1 Sv = 100 rem). It is the product of absorbed dose in grays and the radiation weighting factor.

Tritium: A radioactive form of hydrogen having an atomic mass number of three. Tritium is produced during normal operation of Canadian nuclear reactors.