Canadian Data Report of

Fisheries and Aquatic Sciences 1049

1999

BIOLOGICAL DATA FROM AN EXPERIMENTAL FISHERY AT RESOLUTION BAY, GREAT SLAVE LAKE, NORTHWEST TERRITORIES,

JUNE - AUGUST 1996

by

D.B. Stewart¹, G. Low, N. Dewsbury, C.J. Read and A.C. Day

Central and Arctic Region

Department of Fisheries and Oceans

Winnipeg, Manitoba R3T 2N6

¹ Arctic Biological Consultants, Box 68, St. Norbert Postal Station, 95 Turnbull Drive, Winnipeg, MB, R3V 1L5.

PREFACE

This report was prepared under contract for the Department of Fisheries and Oceans, Central and Arctic Region, 501 University Crescent, Winnipeg, Manitoba, R3T 2N6. The Scientific Authority for this contract was A. C. Day of the Resource Management Section.

[©] Minister of Public Works and Government Services Canada 1999

Cat. no. Fs 97-13/1049E

ISSN 0706-6465

Correct citation for this report is:

Stewart, D.B., G. Low, N. Dewsbury, C.J. Read and A.C. Day. 1999. Biological data from an experimental fishery at Resolution Bay, Great Slave Lake, Northwest Territories, June - August 1996. Can. Data Rep. Fish. Aquat. Sci. 1049: vi + 91 p.

TABLE OF CONTENTS

ABSTRACT/RÉSUMÉ	vi
INTRODUCTION	1
MATERIALS AND METHODS	1
Catch per unit effort	2
Condition	2
Age determination	2
Contaminants analyses	2
Fish health	2
RESULTS	2
ACKNOWLEDGMENTS	3
REFERENCES	3

LIST OF FIGURES

Figure Page 1 Map of southwestern Great Slave NT, showing Lake, the administrative areas (IE to VI) and areas closed to commercial fishing . . . 4 2 Locations of sampling sites in Resolution Bay, Great Slave Lake, 3 Length-frequency distributions of burbot caught by gillnets at Resolution Bay, Great Slave Lake, NT, in the summer of 1996 6 4 Length-frequency distributions of lake whitefish caught by gillnets at Resolution Bay, Great Slave Lake, NT, in the summer of 1996 7 Length-frequency distributions of 5 longnose sucker caught by gillnets at Resolution Bay, Great Slave Lake, NT, in the summer of 1996 ... 8 6 Length-frequency distribution of northern pike caught by gillnets at Resolution Bay, Great Slave Lake, NT, in the summer of 1996 9 7 Age-frequency distribution of burbot caught by gillnets at Resolution Bay, Great Slave Lake, NT, in the summer of 1996 9

Figure

8	Age-frequency distribution of lake	
	whitefish caught by gillnets at	
	Resolution Bay, Great Slave Lake,	
	NT, in the summer of 1996	10

- 9 Age-frequency distribution of longnose sucker caught by gillnets at Resolution Bay, Great Slave Lake, NT, in the summer of 1996 . . 11
- 10 Age-frequency distribution of northern pike caught by gillnets at Resolution Bay, Great Slave Lake, NT, in the summer of 1996 12

LIST OF TABLES

<u>Table</u>		<u>Page</u>
1	Summary by sample site, mesh size and species of gillnet set data from Resolution Bay, Great Slave Lake, NT, June - August 1996	. 13
2	Summary by sampling site, species, and gillnet mesh size of the number of fish caught per unit of sampling effort at Resolution Bay, Great Slave Lake, NT, June - August 1996	. 18
3	Summary by sampling site, species, and gillnet mesh size of the round weight of fish caught per unit of sampling effort at Resolution Bay, Great Slave Lake, NT, June - August 1996	. 19

Biological data by length interval for burbot taken by survey gillnets during the summer of 1996 from the Resolution Bay area of Great Slave Lake, NT:

4	All meshes combined	20
5	89 mm mesh	21
6	114 mm mesh	22
7	133 mm mesh	23
Biolo cisc	ogical data by length interval for o taken by survey gillnets	

during the summer of 1996 from the Resolution Bay area of Great Slave Lake, NT 24

8

Page

Page

Page

Table

Ta

- Biological data by length interval for goldeye taken by survey gillnets during the summer of 1996 from the Resolution Bay area of Great Slave Lake, NT 25
- 10 Biological data by length interval for inconnu taken by survey gillnets during the summer of 1996 from the Resolution Bay area of Great Slave Lake, NT 25

Biological data by length interval for lake whitefish taken by survey gillnets during the summer of 1996 from the Resolution Bay area of Great Slave Lake, NT:

11	All meshes combined	26
12	89 mm mesh	27
13	114 mm mesh	28
14	133 mm mesh	29

Biological data by length interval for longnose sucker taken by survey gillnets during the summer of 1996 from the Resolution Bay area of Great Slave Lake, NT:

15	All meshes combined	-30
16	89 mm mesh	31
17	114 mm mesh	32
18	133 mm mesh	33

Biological data by length interval for northern pike taken by survey gillnets during the summer of 1996 from the Resolution Bay area of Great Slave Lake, NT:

19	All meshes combined	34
20	89 mm mesh	34
21	114 mm mesh	35
22	133 mm mesh	35

Biological data by age class for burbot taken by survey gillnets during the summer of 1996 from the Resolution Bay area of Great Slave Lake, NT:

24	All meshes combined	36
25	89 mm mesh	37
26	114 mm mesh	37
27	133 mm mesh	38

Table		<u>Page</u>
28	Biological data by age class for goldeye taken by survey gillnets during the summer of 1996 from the Resolution Bay area of Great Slave Lake, NT	38
29	Biological data by age class for inconnu taken by survey gillnets during the summer of 1996 from the Resolution Bay area of Great	

Slave Lake, NT 38 Biological data by age class for lake whitefish taken

by survey gillnets during the summer of 1996 from the Resolution Bay area of Great Slave Lake, NT:

30	All meshes combined	39
31	89 mm mesh	40
32	114 mm mesh	41
33	133 mm mesh	42

Biological data by age class for longnose sucker taken by survey gillnets during the summer of 1996 from the Resolution Bay area of Great Slave Lake, NT:

34	All meshes combined	43
35	89 mm mesh	44
36	114 mm mesh	45
37	133 mm mesh	46

Biological data by age class for northern pike taken by survey gillnets during the summer of 1996 from the Resolution Bay area of Great Slave Lake, NT:

38	All meshes combined	47
39	89 mm mesh	47
40	114 mm mesh	48
41	133 mm mesh	48

LIST OF APPENDICES

Appendix

Page

1	Harvests by the Fort Resolution	
	Aboriginal food fishery from	
	Resolution Bay of Great Slave Lake	
	during the 100+07 hanning seasons	
		50

Δnn andia

v

Apper	<u>idix</u>	Page
2	Harvests by the Fort Resolution Aboriginal food fishery from the Little Buffalo River during the 1994- 97 fishing seasons	. 51
3	Location and physical description of sampling sites when gillnets were set and pulled	. 52
4	Biological data from fish collected at Resolution Bay, Great Slave Lake, NT, 26 June - 23 August,	

1996, organized by species, collection date, sampling site, and

gillnet mesh 55

ABSTRACT

Stewart, D.B., G. Low, N. Dewsbury, C.J. Read and A.C. Day. 1999. Biological data from an experimental fishery at Resolution Bay, Great Slave lake, Northwest Territories, June - August 1996. Can. Data Rep. Fish. Aquat. Sci. 1049: vi + 91 p.

Resolution Bay of Great Slave Lake, NT, is an important fishing ground for the Fort Resolution Aboriginal food fishery. Participants in this fishery have expressed concern about the population status of the fish stocks they harvest, the individual health of these fish, and the possible effects of contaminants on the fish and those who eat them. The purpose of this study was to collect data on the present status of fish stocks in Resolution Bay for comparison with future stock assessment studies. Between 25 June and 23 August 1996, 1910 fishes were collected using mixed-mesh gillnets from 19 sites in the vicinity of the bay. Species captured were: burbot (Lota lota), cisco (Coregonus sp.), goldeve (Hiodon alosoides), inconnu (Stenodus leucichthys), lake whitefish (Coregonus clupeaformis), longnose sucker (Catostomus catostomus), northern pike (Esox lucius), and walleye (Stizostedion vitreum). This report presents data on the number and weight of fish caught per unit of sampling effort; on the age, length, weight, and sex of the fish; and on the symptoms and diagnoses of diseased fish. Fish were also captured for toxicological studies by other researchers.

Key words: fishery management; population parameters; fish growth; CPUE; Slave River.

RÉSUMÉ

Stewart, D.B., G. Low, N. Dewsbury, C.J. Read and A.C. Day. 1999. Biological data from an experimental fishery at Resolution Bay, Great Slave lake, Northwest Territories, June - August 1996. Can. Data Rep. Fish. Aquat. Sci. 1049: vi + 91 p.

La baie Resolution dans le Grand lac des Esclaves (T.N.-O.) est un important lieu de pêche de subsistance pour les Autochtones de Fort Resolution. Les participants à cette pêche s'inquiètent de la situation démographique des stocks qu'ils exploitent, de la santé de ces poissons et des effets potentiels des contaminants sur le poisson et ceux qui le consomment. La présente étude vise à recueillir des données sur l'état actuel des stocks de poisson dans la baie Resolution aux fins de comparaison avec les études d'évaluation futures des stocks. Du 25 juin au 23 août 1996, on a capturé 1 910 poissons au moven de filets maillants de maillage varié dans 19 sites au voisinage de la baie. Les espèces prélevées étaient les suivantes : la lotte (Lota lota), le cisco (Coregonus sp.), la laquaiche aux yeux d'or (Hiodon alosoides), l'inconnu (Stenodus leucichthys), le grand corégone (Coregonus clupeaformis), le meunier rouge (Catastomus catastomus), le grand brochet (Esox lucius) et le doré (Stizostedion vitreum). Le présent rapport contient des données sur le nombre et le poids de poissons capturés par unité d'effort d'échantillonnage ; l'âge, la longueur, le poids et le sexe des poissons, ainsi que les symptômes et les diagnostics chez les poissons malades. Les poissons ont aussi été prélevés aux fins d'études toxicologiques effectuées par d'autres scientifiques.

Mots-clés : gestion de la pêche ; paramètres de population ; croissance du poisson, PUE ; rivières des Esclaves. Resolution Bay of Great Slave Lake, NT, is an important fishing ground for the Fort Resolution Aboriginal food fishery. Recent harvest surveys indicate that up to 24,000 kg of fish are harvested annually from this area (Appendix 1). Portions of the bay are closed to commercial fishing to protect the Aboriginal food fishery (Fig. 1), but migratory fish stocks are shared with the Great Slave Lake commercial fishery. Other important harvesting areas for the community are the Little Buffalo (Appendix 2), Slave, and Taltson rivers.

The Deninu Ku'e First Nation and the Fort Resolution Metis Local #53 each have a member on the Great Slave Lake Advisory Committee (GSLAC), which advises the Department of Fisheries and Oceans (DFO) on the management of Great Slave Lake. Residents of Fort Resolution have expressed concern to the Environmental Committee of the First Nation and to GSLAC about the population status of the fish stocks they harvest, the individual health of these fish, and the possible effects of contaminants on the fish and those who eat them.

The effect of the Great Slave Lake commercial fishery on the Aboriginal food fishery is of particular concern to community residents. In 1996, on the recommendation of the Great Slave Lake Advisory Committee, the domestic fishing boundary was moved westward to expand the domestic fishing area and prevent commercial fishing near the mouth of the Little Buffalo River (Fig. 1). This measure will remain in effect until outstanding Dene and Metis land claims in the area are settled, after which time it may be reviewed by the Great Slave Lake Advisory Committee. Inshore zones along the south shore of Great Slave Lake and near the Slave River Delta have also been closed to commercial fishing in the spring to protect inconnu from the threatened Buffalo River stock which migrates along the south shore and concentrate at the river mouth in the spring.

In 1996, DFO contracted the Deninu Ku'e First Nation to collect data for a study to assess the fish stocks of Resolution Bay. This study was to provide information useful for the management of Great Slave Lake fisheries, and to train Aboriginal people for future involvement in fisheries studies and in the stewardship of the resource.

The purpose of this study was to collect data on the present status of fish stocks in Resolution Bay for comparison with future studies. These data will be especially useful for measuring any changes in species composition and abundance that may occur in the future.

Concerns over the effects of pollutants that may be carried down the Slave River from industrial developments upstream, and over fish health, have also been expressed by the Deninu Ku'e First Nation. Fish were collected during this work for other researchers who are conducting toxicological studies to address concerns over pollution (Evans et al. 1998). Fish that showed symptoms of disease were also collected. They were sent to the Freshwater Institute for examination and the diagnoses are reported.

This report presents data collected during the study in tabular form to serve as baseline data for future stock assessment studies in the area.

MATERIALS AND METHOD

Nineteen sites were sampled between 25 June and 23 August, 1996, at Great Slave Lake in the vicinity of Fort Resolution, NT (Fig. 2; Appendix 3). A Fisheries Technician contracted by DFO and three workers provided by the Deninu Ku'e First Nation conducted the field sampling program.

Fish were caught using gangs of bottom type gillnets. Each gang consisted of three panels of gillnet, each of a different mesh size (89, 114, or 133 mm stretched measure) and 91 m (100 yards) in length and 3.66 m (12 ft) in depth. The nets were constructed of 210-3 woven white nylon with a float line at the top, a lead line at the bottom, and a bridle at each end. Most gangs were set overnight and pulled the next day. Set sites were chosen on the basis of the traditional knowledge of the local crew and subsistence fishermen.

The location and period of each set was recorded. Set location was determined using a Global Positioning System (Sony Model IPS-360). At the time of each set, observations were made on the wind speed and direction, air temperature, cloud cover, water temperature, water depth, and bottom substrate. Captured fish were separated on the basis of mesh size.

Fish were identified to species, weighed (round weight \pm 10 g; Superior Weighing Systems Ltd. Accu-weigh model DSY-1100), and measured (fork length \pm 5 mm). Gonads were examined to

determine the sex. Pelvic or pectoral fins or sagittal otoliths were removed from the first 50 fish of each species captured each day and preserved in scale envelopes for age determination in the laboratory. A subsample of fishes were also bagged and preserved frozen for laboratory analyses of contaminants and disease identification by other researchers.

Catch per unit effort

The catch per unit of sampling effort (CPUE) was determined for each species at each sampling location. The mean, standard deviation and range of the CPUE are reported by species and for all species combined for a gang of gillnets and for each gillnet mesh in terms of both the number and round weight (kg) of fish taken per 100 m of gillnet set for a 24 h period.

Condition

The condition factor (K), a relative measure of the plumpness or robustness of the fish, was determined using the following formula:

 $K = (round weight in g \cdot 10^5) \cdot fork length in mm^{-3}$

Age determination

Ages were determined by examinations of pelvic fins (cisco, inconnu, lake whitefish, northern pike), pectoral fins (goldeye) or sagittal otoliths (burbot).

Ages were determined from fin cross sections following the technique used by Chilton and Beamish (1982). One fin from each fish was embedded in epoxy and then sectioned across its longitudinal axis near the base, using a Buehler lsomet low speed saw. The sections were mounted on microscope slides, examined at 10X power with transmitted light, and interpreted using the criteria described by Chilton and Beamish (1982).

Burbot ages were determined from sagittal otolith cross sections using the break and burn method. One otolith from each fish was broken through the nucleus and the exposed surfaces were heated over a hot plate until they turned light brown. The burned surfaces were then coated with glycerine and examined under a binocular dissecting microscope using reflected light. Annual growth rings were interpreted using the criteria described by Nordeng (1961).

Contaminants analyses

The frozen burbot, inconnu, northern pike, and walleye were analysed in the laboratory for arsenic, cadmium, copper, mercury, zinc, and organochlorines. The results of these analyses will be reported by Evans et al. (1998).

Fish health

Fish exhibiting symptoms of disease were frozen and sent for diagnosis to the Fish Health Section at the DFO laboratory in Winnipeg.

RESULTS

Species captured during the sampling program included: burbot (Lota lota), cisco (Coregonus sp.), goldeye (Hiodon alosoides), inconnu (Stenodus leucichthys), lake whitefish (Coregonus clupeaformis), longnose sucker (Catostomus catostomus), northern pike (Esox lucius), and walleye (Stizostedion vitreum). Biological data from the individual fish sampled are archived in Appendix 4.

A series of histograms illustrate the fishes' length-frequency (Figures 3 to 6) and age-frequency (Figures 7 to 10) distributions. In each case the data from individual sites are combined to provide an overview of the sampling area as a whole. Histograms were not constructed for cisco, goldeye or inconnu, each of which had a combined sample size of less than 40 fish.

The period and duration of each gillnet set, and the number and weight of each species caught in each set, are summarized by sample site and mesh size in Table 1. The number and weight of fish caught per unit of sampling effort are summarized by sampling site and gillnet mesh size for each species in Tables 2 and 3.

Length and age composition data for each species are presented by sex for all meshes combined and for each gillnet mesh size in Tables 4 through 41. In each case the data from individual sites are combined to provide an overview of the sampling area as a whole.

The symptoms and diagnoses of diseased fish taken during the study are provided in Table 42.

ACKNOWLEDGMENTS

Field work was ably conducted by Philip Beaulieu, Kevin Boucher and Chinta UnKa of Fort Resolution. We acknowledge their hard work and contribution to local fishing knowledge which made this project a success. Fred Taptuna of DFO Hay River, NT, provided field training and logistical support.

Fish ages were determined from fin rays by Carol Read, using fins mounted and sectioned by Laura Heuring, and from otoliths by Gary Carder. Dale McGowan and Carol Read of DFO Winnipeg, and Cécile Stewart of Arctic Biological Consultants undertook careful reviews of the manuscript at various stages. Your participation has greatly strengthened this project and we thank you.

Funding for this research was provided by DFO through the Aboriginal Fishery Strategy and by the Deninu Ku'e First Nation, who administered the study contract.

REFERENCES

- CHILTON, D. E., and R. J. BEAMISH. 1982. Age determination methods for fishes studied by the Groundfish Program at the Pacific Biological Station. Can. Spec. Publ. Fish. Aquat. Sci. 60: v + 102 p.
- DEPARTMENT OF FISHERIES AND OCEANS (DFO). 1996. Annual summary of fish and marine mammal harvest data for the Northwest Territories, Vol. 7, 1994-1995: xiii + 85 p.
- DEPARTMENT OF FISHERIES AND OCEANS (DFO). 1997. Annual summary of fish and marine mammal harvest data for the Northwest Territories, Vol. 8, 1995-1996: xii + 80 p.
- DEPARTMENT OF FISHERIES AND OCEANS (DFO). 1998. Annual summary of fish and marine mammal harvest data for the Northwest Territories, Vol. 9, 1996-1997: xi + 72 p.
- EVANS, M.S., D. MUIR, L. LOCKHART, and G. STERN. 1998. Metal and organochlorine contaminants in four species of predatory

fish from Resolution Bay, Great Slave Lake: summer 1996 studies. National Water Research Institute Contributions Series 98-XX (in press).

NORDENG, H. 1961. On the biology of char (Salmo alpinus L.) In Salangen, North Norway. 1. Age and spawning frequency determined from scales and otoliths. Nytt. Mag. Zool. 10: 67-123.

Figure 2. Locations of sampling sites in Resolution Bay, Great Slave Lake, NT.

Figure 3. Length-frequency distributions of burbot caught by gillnets at Resolution Bay, Great Slave Lake, NT, in the summer of 1996.

Figure 4. Length-frequency distributions of lake whitefish caught by gillnets at Resolution Bay, Great Slave Lake, NT, in the summer of 1996.

Figure 5. Length-frequency distributions of longnose sucker caught by gillnets at Resolution Bay, Great Slave Lake, NT, in the summer of 1996.

Figure 6. Length-frequency distribution of northern pike caught by gillnets at Resolution Bay, Great Slave Lake, NT, in the summer of 1996.

Figure 7. Age-frequency distribution of burbot caught by gillnets at Resolution Bay, Great Slave Lake, NT, in the summer of 1996.

Figure 8. Age-frequency distributions of lake whitefish caught by gillnets at Resolution Bay, Great Slave Lake, NT, in the summer of 1996.

Figure 9. Age-frequency distributions of longnose sucker caught by gillnets at Resolution Bay, Great Slave Lake, NT, in the summer of 1996.

Figure 10. Age-frequency distribution of northern pike caught by gillnets at Resolution Bay, Great Slave Lake, NT, in the summer of 1996.

Table 1.	Summary by sample site, mesh size and species of gillnet set data from Resolution Bay, Great
	Slave Lake, NT, June - August 1996.

	PERIOD										
MESH SIZE	PERIOD (GILLNET SET				r	NUMBER OF [round v	FISH CAUGH veight in g]	Т		
	Set date (time)	Pull date (time)	Hours fished *	burbot	cisco	goldeye	inconnu	lake whitefish	longnose sucker	northern pike	walleye
					SITE	1					
89 mm	25 June (1030 h)	26 June (0810 h)	21.67 (21:40)	71 [51855]				10 [7064]	3 [2573]	24 [30991]	1 [609]
	26 June (1015 h)	27 June (1010 h)	23.92 (23:55)	44 [36300]				5 [2910]		15 [18580]	
	27 June (0812 h)	28 June (0813 h)	24.02 (24:01)	30 [23320]				10 [6840]	37 [34280]	6 [9180]	
114 mm	24 June (1615 h)	25 June (1045 h)	18.5 (18:30)	6 [7682]				10 [8145]	3 [3445]	2 [4082]	
	25 June (1030 h)	26 June (0810 h)	21.67 (21:40)	17 [26300]				13 [10582]	7 [8573]	9 [22036]	
	26 June (1015 h)	27 June (1010 h)	23.92 (23:55)	8 [12240]			1	3 [2620]	7 [9210]	3 [6790]	1 [1050]
133 mm	25 June (1030 h)	26 June (0810 h)	21.67 (21:40)	6 [12155]	1 [155]			2 [1973]	3 [5545]		
	26 June (1015 h)	27 June (1010 h)	23.92 (23:55)	6 [13890]				1 [950]	1 [1650]		
	27 June (0812 h)	28 June (0813 h)	24.02 (24:01)	10 [19550]			1 [1280]	2 [2350]	8 [12060]	1 [2110]	
	тот	ALS		198 [203292]	1 [155]	0	1 [1280]	56 [43434]	69 [77336]	60 [93769]	2 [1659]
	<u> </u>		r		SITE	2				-	•
89 mm	3 July (0900 h)	4 July (0825 h)	24.50 (24:30)	28 [20100]				20 [13880]	15 [14680]		
133 mm	3 July (0900 h)	4 July (0930 h)	24.50 (24:30)	3 [6560]				3 [2750]		1 [3280]	
	тот	ALS		31 [26660]	0	o	o	23 [16630]	15 [14680]	1 [3280]	0
	· · · · · · · · · · · · · · · · · · ·	·····		P	SITE	3					
89 mm	4 July (0830 h)	5 July (0825 h)	23.92 (23:55)	27 [19190]	2 [110]		1 [770]	19 [18030]	16 [16400]		
114 mm	4 July (0830 h)	5 July (0825 h)	23.92 (23:55)	4 [6060]				25 [20670]	15 [18340]	1 [2270]	
133 mm	4 July (0830 h)	5 July (0825 h)	23.92 (23:55)	5 [11090]				9 [12930]	8 [14110]		
	тот	ALS		36 [36340]	2 [110]	0	1 [770]	53 [51630]	39 [48850]	1 [2270]	0
			· · · · · · ·		SITE	4					
89 mm	8 July (0900 h)	9 July (0825 h)	23.42 (23:25)	4 [4100]	1 [100]			9 [6290]	18 [26320]		
114 mm	8 July (0900 h)	9 July (0825 h)	23.42 (23:25)					5 [4560]	12 [17990]		
H		1	1	1			1			1	1
133 mm	8 July (0900 h)	9 July (0825 h)	23.42 (23:25)					1 [1160]	5 [8300]		

Table 1. Continued.

5

MESH	PERIOD	AND DURATIO	N OF			т					
5120	Set date (time)	Pull date (time)	Hours fished	burbot	cisco	goldeye	inconnu	lake whitefish	longnose sucker	northern pike	walleye
			_		SITE	5					
114 mm	9 July (0825 h)	10 July (0826 h)	24.02 (24:01)					5 [48 60]	5 [7510]		
133 mm	9 July (0825 h)	10 July (0826 h)	24.02 (24:01)					1 [97 0]	3 [6440]		
	тот	ALS		0	0 0 0 0 6 8 [5830] [13950						0
					SITE	6					<u> </u>
89 mm	10 July (0754 h)	11 July (1600 h)	32.10 (32:06)	9 [7180]	2 [270]			17 [15670]	20 [26280]		
114 mm	10 July (0754 h)	11 July (1600 h)	32.10 (32:06)					7 [10140]	2 [4070]		
133 mm	10 July (0754 h)	11 July (1600 h)	32.10 (32:06)					2 [2320]	5 [10870]		
	тот	ALS		9 [7180]	2 [270]	0	0	26 [28130]	27 [41220]	0	0
	·····				SITE	7					
89 mm	11 July (1425 h)	12 July (1400 h)	23.42 (23:25)	12 [8270]	5 [1050]			63 [51120]	51 [56370]		
114 mm	11 July (1425 h)	12 July (1400 h)	23.42 (23:25)	2 [3020]				43 [41940]	49 [68980]		
133 mm	11 July (1425 h)	14 July (1730 h)	75.08 (75:05)	2 ² [-]				7³ [2150]	34 ⁴ [20140]		
	тот	ALS		16 [11290]	5 [1050]	0	0	113 [95210]	134 [145490]	0	0
		·			SITE	8					
89 mm	15 July (1000 h)	16 July (0930 h)	23.50 (23:30)	15 [10930]	2 [650]			18 [12380]	16 ¹ [14460]	1 [1530]	
114 mm	15 July (1000 h)	16 July (0930 h)	23.50 (23:30)	2 [2870]				14 [13710]	12 [17160]	1 [1520]	
133 mm	15 July (1000 h)	16 July (0930 h)	23.50 (23:30)	1 [2150]	1 [90]			11 [14180]	8 [14090]		
	тот	ALS		18 [15950]	3 [740]	0	0	43 [40270]	36 [45710]	2 [3050]	0
					SITE	9					
89 mm	16 July (0755 h)	17 July (0930 h)	25.58 (25:35)	16 [12340]				28 [21530]	251 [28440]		
114 mm	16 July (0755 h)	17 July (0930 h)	25.58 (25:35)	3 [4270]				10 [9370]	22 [29250]		
133 mm	16 July (0755 h)	17 July (0930 h)	25.58 (25:35)					3 [3070]	8 [14670]		
	тот	ALS		19 [16610]	0	0	0	41 [33970]	55 [72360]	0	0

÷

MESH	PERIOD	AND DURATIO	N OF		NUMBER OF FISH CAUGHT [round weight in g]								
	Set date (time)	Pull date (time)	Hours fished	burbot	cisco	goldeye	inconnu	lake whitefish	longnose sucker	northern pike	walleye		
					SITE	10				<u></u>			
89 mm	17 July (0747 h)	18 July (0945 h)	25.97 (25:58)	9 [6720]				10 [8470]	8 [6170]				
114 mm	17 July (0747 h)	18 July (0945 h)	25.97 (25:58)	4 [5550]				3 [2860]	6 [832 0]				
133 mm	17 July (0747 h)	18 July (0945 h)	25.97 (25:58)	1 [5020]				2 [2170]	3 [4820]				
	тот	ALS		14 [17290]	0	0	0	15 [13500]	17 [19310]	0	0		
					SITE	11							
89 mm	18 July (0815 h)	19 July (0800 h)	23.75 (23:45)	29 [22900]				3 [1820]	1 [2060]				
114 mm	18 July (0815 h)	19 July (0800 h)	23.75 (23:45)	2 [2630]				2 [1410]	3 [4530]				
133 mm	18 July (0815 h)	19 July (0800 h)	23.75 (23:45)	1 [2150]				1 [1020]					
	тот	ALS		32 [27680]	0	0	0	6 [4250]	4 [6590]	0	0		
					SITE	12				-			
89 mm	6 August (1100 h)	7 August (0820 h)	21.33 (21:20)	7 [5360]	1 [80]			13 [9400]	5 [6630]				
114 mm	6 August (1100 h)	7 August (0820 h)	21.33 (21:20)					5 [5270]	5 [7830]				
133 mm	6 August (1100 h)	7 August (0820 h)	21.33 (21:20)	2 [4490]				3 [3890]	7 [13240]				
	тот	ALS		9 [9850]	1 [80]	0	0	21 [18560]	17 [27700]	0	Ō		
					SITE	13							
89 mm	7 August (0755 h)	8 August (1130 h)	27.58 (27:35)	13 [8940]	3 [1720]			17 [11 3 40]	7 [8250]				
114 mm	7 August (0755 h)	8 August (1130 h)	27.58 (27:35)	3 [4950]	2 [930]			8 [6450]	2 [4400]				
133 mm	7 August (0755 h)	8 August (1130 h)	27.58 (27:35)	1 [2050]	1 [70]			4 [4830]	6 [12300]				
	тот	ALS		17 (15940)	6 [2720]	0	0	29 [22620]	15 [24950]	0	0		
	·····	r		····	SITE	14							
89 mm	8 August (1000 h)	9 August (0805 h)	22.08 (22:05)	30 [21860]	4 [1650]			27 [19220]	6 [9630]				
114 mm	8 August (1000 h)	9 August (0805 h)	22.08 (22:05)	3 [5390]	3 [2500]			23 [21310]	11 [16285]				
133 mm	8 August (1000 h)	9 August (0805 h)	22.08 (22:05)	1 [1220]				11 [14870]	6 [9460]				
	тот	ALS		34 [28470]	7 [4150]	0	0	61 [55400]	23 [35375]	0	0		

Table 1. Continued.

-

-

Table 1. Continued.

MESH	PERIOD	AND DURATIO	N OF		NUMBER OF FISH CAUGHT [round weight in g]								
SIZE	Set date (time)	Pull date (time)	Hours fished	burbot	cisco	goldeye	inconnu	lake whitefish	longnose sucker	northern pike	walleye		
					SITE '	15							
89 mm	12 August (0910 h)	14 August (1015 h)	49.08 (49:05)	13 [9795]	1 [60]			23 [19800]	21 [24510]				
114 mm	12 August (0910 h)	14 August (1015 h)	49.08 (49:05)	1 [880]	1 [160]			8 [6580]	13 [17740]				
133 mm	12 August (0910 h)	14 August (1015 h)	49.08 (49:05)	3 [8400]	2 [180]			8 [12780]	8 [15850]				
	тот	ALS		17 [19075]	4 [400]	0	0	39 [39160]	42 [58100]	0	0		
					SITE	16							
89 mm	14 August (0935 h)	15 August (1330 h)	27.92 (27:55)	22 [16050]				20 [13620]	5 [4650]	2 [2790]	4 [2750]		
114 mm	14 August (0935 h)	15 August (1330 h)	27.92 (27:55)	3 [4750]				8 [8100]	5 [6430]	2 [4680]			
133 mm	14 August (0935 h)	15 August (1330 h)	27.92 (27:55)	2 [4440]				3 [3470]	2 [2650]	1 [3510]			
	тот	ALS		27 [25240]	0	0	0	31 [25190]	12 [13730]	5 [10980]	4 [2750]		
					SITE	17							
89 mm	15 August (1230 h)	16 August (0845 h)	20.25 (20:15)	7¹ [4420]	2 [250]			12 [9570]	6 [4130]	6 [8610]	1 [500]		
114 mm	15 August (1230 h)	16 August (0845 h)	20.25 (20:15)	2 [2430]				2 [2080]	2 [3220]	2 [3840]			
133 mm	15 August (1230 h)	16 August (0845 h)	20.25 (20:15)	1 [2500]					1 [1410]	1 [1750]			
	тот	ALS		10 [9350]	2 [250]	0	0	14 [11650]	9 [8760]	9 [14200]	1 [500]		
					SITE	18							
89 mm	19 August (1155 h)	22 August (0915 h)	70.33 (70:20)	37⁵				13	5	3			
114 mm	19 August (1155 h)	22 August (0915 h)	70.33 (70:20)	7				7	8	2			
133 mm	19 August (1155 h)	22 August (0915 h)	70.33 (70:20)	5				3	2	2			
	тот	TALS		49	0	0	0	23	15	7	0		
			<u></u>	·····	SITE	19							
89 mm	22 August (1200 h)	23 August (0820 h)	20.33 (20:20)	3 [2460]	2 [1150]	4 [1180]	6 [31470]	20 [14260]	2 [1940]	4 [6455]	7 [5450]		
133 mm	22 August (1200 h)	23 August (0820 h)	20.33 (20:20)	1 [2370]		1 [410]	3 [13250]	2 [1970]					
	T0"	TALS		4 [4830]	2 [1150]	5 [1590]	9 [44720]	22 [16230]	2 [1940]	4 [6455]	7 [5450]		

Table 1. Continued.

.

MESH SIZF	PERIOD AND DURATION OF GILLNET SET				NUMBER OF FISH CAUGHT [round weight in g]									
	Set date (time)	Pull date (time)	Hours fished *	burbot	cisco	goldeye	inconnu	lake whitefish	longnose sucker	northern pike	walleye			
	HARVEST TOTALS BY MESH SIZE													
8	9 mm mesh TO	TAL	554.99	426 [292090]	25 [7090]	4 [1180]	7 [32240]	357 [263214]	267 [287773]	61 [78136]	13 [9309]			
11	4 mm mesh TC)TAL	528.34	67 [89022]	6 [3590]	0	0	201 [180657]	189 [253283]	22 [45218]	1 [1050]			
13	33 mm mesh TC)TAL	630.62	51 [98035]	5 [495]	1 [410]	4 [14530]	79 [89803]	118 [167605]	6 [10650]	0			
	HARVEST TOTALS FOR ALL MESHES COMBINED													
Ali m	eshes combined	1 TOTAL	1713.95	544 [479147]	36 [11175]	5 [1590]	11 [46770]	637 [533674]	574 [708661]	89 [134004]	14 [10359]			

*Hours fished are given first in decimal form (e.g. 21.67) and then, underneath and in brackets, in hours and minutes (e.g. 21:40) ¹ One missing fish weight. ² Two missing fish weights. ³ Five missing fish weights. ⁴ Twenty-two missing fish weights. ⁵ No fish weights taken.

Table 2.Summary by sampling site, species, and gillnet mesh size of the number of fish caught per unit
(100 m of gillnet set for 24 h) of sampling effort (CPUE) at Resolution Bay, Great Slave Lake,
NT, June - August 1996.

SITE	SAMPLING	B EFFORT		NUMBER OF FISH CAUGHT										
SILE	length of gillnet (m)	Hours fished (h)	burbot	cisco	goldeye	inconnu	iake whitefish	longnose sucker	northern pike	waileye	All species			
1	273'	69.60	25.01	0.13	0	0.13	7.07	8.72	7.58	0.25	48.88			
2	182'	24.50	16.69	0	0	0	12.38	8.07	0.54	0	37.68			
3	273	23.92	13.23	0.74	0	0.37	19.48	14.33	0.37	0	48.51			
4	273	23.42	1.50	0.38	0	0	5.63	13.14	0	0	20.65			
5	182 ¹	24.02	0	0	0	0	3.29	4.39	0	0	7.69			
6	273	32.10	2.46	0.55	0	0	7.12	7.39	0	0	17.53			
7	182' 91	23.42 75.08	3.46	1.08	0	0	24.44	28.99	0	0	57.97			
8	273	23.50	6.73	1.12	0	0	16.09	13.47	0.75	0	38.16			
9	273	25.58	6.53	0	0	0	14.0 9	18.90	0	0	39.52			
10	273	25.97	4.74	0	0	0	5.08	5.75	0	0	15.57			
11	273	23.75	11.85	0	0	0	2.22	1.48	0	0	15.55			
12	273	21.33	3.71	0.41	0	0	8.66	7.01	0	0	19.78			
13	273	27.58	5.42	1.91	0	0	9.24	4.78	0	0	21.36			
14	273	22.08	13.54	2.79	0	0	24.29	9.16	0	0	49.77			
15	273	49.08	3.05	0.72	0	0	6.99	7.52	0	0	18.27			
16	273	27.92	8.50	0	o	0	9.76	3.78	1.57	1.26	24.87			
17	273	20.25	4.34	0.87	0	0	6.08	3.91	3.91	0.43	19.54			
18	273	70.33	6.13	0	0	0	2.88	1.88	0.88	0	11.75			
19	1821	20.33	2.59	1.30	3.24	5.84	14.27	1.30	2.59	4.54	35.67			
	Mean		7.34	0.63	0.17	0.33	10.48	8.63	0.96	0.34	28.88			
	Standard Dev	iation	6.22	0.76	0.74	1.34	6.75	6.83	1.92	1.06	14.98			
	Range		0-16.7	0-2.8	0-3.2	0-5.8	2.2-24	1.3-29	0-7.6	0-4.5	7.7-58			
			8	9 mm MESI	H GILLNETS	91 m in LEN	GTH, 3.66 m	in DEPTH		v				
	Mean	-	21.97	1.37	0.26	0.44	18.55	13.68	3.47	0.77	60.52			
	Standard Dev	iation	19.55	1.69	1.16	1.75	14.54	14.30	7.34	2.15	33.43			
	Range		3.9-86	0-5.6	0-5.2	0-7.8	3.3-71	0-57	0-29	0-9.1	22-148			
			11	4 mm MES	H GILLNETS	5 91 m in LEI	NGTH, 3.66 m	n in DEPTH		-				
 	Mean		3.76	0.32	-		11.36	10.37	1.29	0.06	27.16			
 	Standard Dev	iation	4.80	0.91	-	-	11.83	12.22	2.59	0.25	24.36			
 	Range		0-21	0-3.6	-	-	2.2-48	1.6-55	0-11	0-1.1	7.4-106			
 			13	33 mm MES	GILLNETS	6 91 m in LEI	NGTH, 3.66 n	n in DEPTH	T	· · · · · · · · · · · · · · · · · · ·	······································			
	Mean		7.45	0.80	0.37	0.65	9.61	6.36	1.66	-	26.90			
	Standard Dev	viation	6.01	0.80	0.86	1.53	5.99	4.56	2.00	· ·	6.98			
	Range		0-11	0-1.2	0-1.3	0-3.9	0-13	0-12	0-1.3		2.2-24			

¹ Mixed-mesh gang consisting of panels of 89 mm, 114 mm, and 133 mm mesh--each 91 m in length, except for sites 2 and 19 where the 114 mm mesh was not set, and site 5 where the 89 mm mesh was not set. At site 7, the 133 mm mesh net was set longer than the other meshes.

Table 3.	Summary by sampling site, species, and gillnet mesh size of the round weight (kg) of fit
	caught per unit (100 m of gillnet set for 24 h) of sampling effort (CPUE) at Resolution Ba
	Great Slave Lake, NWT, June - August 1996.

SITE	SAMPLING	B EFFORT				ROUND W	EIGHT OF FIS	H CAUGHT (k	g)		
	length of gillnet (m)	Hours fished (h)	burbot	cisco	goldeye	inconnu	lake whitefish	longnose sucker	northern pike	walleye	All species
1	273	69.60	25.68	0.02	0	0.16	5.49	9.77	11.84	0.21	53.17
2	182	24.50	14.35	0	0	0	8.95	7. 9 0	1.77	0	32.97
3	273	23.92	13.36	0.04	0	0.28	18.98	17.95	0.83	0	51.45
4	273	23.42	1.54	0.04	0	0	4.51	19.75	0	0	25.83
5	182	24.02	o	0	0	0	3.20	7.66	0	0	10.86
6	273	32.10	1.97	0.07	0	0	7.70	11.29	0	0	21.03
7	189 91	23.42 75.08	2.44	0.23	0	0	20.60	31.47	0	0	54.74
8	273	23.50	5.97	0.28	0	0	15.06	17.10	1.14	0	39.55
9	273	25.58	5.71	0	0	0	11.67	24.87	0	0	42.25
10	273	25.97	5.85	0	0	0	4.57	6.54	0	0	16.96
11	273	23.75	10.25	0	0	0	1.57	2.44	0	0	14.26
12	273	21.33	4.06	0.03	0	0	7.65	11.42	0	0	23.16
13	273	27.58	5.08	0.87	0	0	7.21	7.95	0	0	21.11
14	273	22.08	11.34	1.65	0	0	22.06	14.08	0	0	49.13
15	273	49.08	3.42	0.07	0	0	7.01	10.41	0	0	20.91
16	273	27.92	7.95	0	0	0	7.93	4.32	3.46	0.87	24.53
17	273	20.25	4.06	0.11	0	0	5.06	3.80	6.16	0.22	19.41
19	182	20.33	2.60	0.62	0.86	24.07	8.74	1.04	3.47	2.93	44.33
ļ	Mean		6.98	0.22	0.05	1.36	9.33	11.65	1.59	0.23	31.43
	Standard Devi	ation	6.21	0.43	0.20	5.67	6.01	8.03	3.08	0.71	14.61
	Range		0-25.7	0-1.7	0-0.9	0-24.1	1.6-22.1	1.0-31.3	0-11.8	0-2.9	10.9-54.5
ļ			89	mm MESH	GILLNETS 9	1 m in LENG	TH, 3.66 m in	DEPTH			
ļ	Mean		15.82	0.41	0.08	2.15	14.70	15.25	4.99	0.58	53.97
	Standard Devi	iation	15.33	0.66	0.35	9.37	12.03	15.39	9.67	1.69	30.47
	Range		0-63.1	0-2.0	0-1.5	0-40.8	2.0-57.6	0-63.5	0-37.7	0-7.1	21.7-132
ļ			11.	4 mm MESH	GILLNETS 9	1 m in LENC	6TH, 3.66 m i	n DEPTH			
	Mean		6.80	0.23	-		10.93	15.46	2.85	0.06	36.28
]	Standard Dev	iation	8.38	0.72			11.06	17.37	6.47	0.27	30.27
	Range		0-32.0	0-3.0			2.7-47.2	3.3-76.6	0-26.8	0-1.2	9.5-82.1
 			13	3 mm MESH	GILLNETS 9	1 m in LENC	3TH, 3.66 m i	n DEPTH	.		
	Mean		5.24	0.02	0.03	0.93	4.53	7.90	0.57	-	19.21
	Standard Dev	iation	6.06	0.05	0.12	3.84	5.21	5.65	1.20	-	11.12
	Range		0-14.8	0-0.2	0-0.5	0-17.2	0-17.8	0-16.4	0-3.5		35-420

¹ One missing fish weight. ² Two missing fish weights. ³ Five missing fish weights. ⁴ Twenty-two missing fish weights. ⁵ Mixed-mesh gang consisting of panels of 89 mm, 114 mm, and 133 mm mesh-each 91 m in length, except for sites 2 and 19 where the 114 mm mesh was not set, and site 5 where the 89 mm mesh was not set. At site 7, the 133 mm mesh net was set longer than the other meshes.

Biological data by length interval for burbot taken by survey gillnets during the summer of 1996 from the Table 4.

		Resolut	ion Bay	/ area	of Great	Slave	Lake, N	T. (Not	e: "To	tal" inclue	les fis	h of unki	Nown S	sex).		
LENGTH			MALES					FEMALES					ž	DTAL		
INTERVAI (mm)		Length(mm)	Weigh	t(g)	×		ength(mm)	Weigh	it (g)	¥		ength(mm)	Weigh	it (g)	×	~ ~
Ì	Ē	mean	mean	S		، د	mean	mean	S		ב	mean	mean	S		Female
330-339	-	336	255	•	0.67	1	1	1	ı	1	-	336	255	1	0.67	1
350-359	~	359	300	I	0.65	ł	I	ł	1	8	m	358	303	23	0.66	ı
370-379	~	376	370	ı	0.70	ı	ł	1	ı	ı	~	376	370	I	0.70	1
380-389	-	380	391	ı	0.71	1	I	I	1	I	۲	380	391	ı	0.71	ı
400-409	-	409	460	1	0.67	-	408	420	ı	0.62	~	409	440	28	0.65	20
410-419	m	413	429	88	0.61	ł	ı	1	I	ı	m	413	429	88	0.61	1
420-429	M	425	533	32	0.69	~	424	545	~	0.72	9	424	533	24	0.70	6
430-439	10	437	598	28	0.72	4	435	523	22	0.64	16	435	575	48	0.70	62
440-449	∞	777	610	67	0.70	ŝ	447	612	61	0.69	15	445	624	80	0.71	38
450-459	6	454	628	48	0.67	4	455	663	86	0.70	18	454	644	23	0.69	۶ <u>۱</u>
460-469	6	465	667	63	0.66	0	463	637	22	0.64	82	464	658	48	0.66	47
470-479	ß	474	691	56	0.65	16	475	716	47	0.67	47	474	669	54	0.66	41
480-489	ŝ	484	723	57	0.64	0	485	674	35	0.59	ç	484	719	26	0.63	8
490-499	ର୍ଷ	494	763	64	0.63	σ	493	703	8	0.59	38	464	750	2	0.62	31
500-509	27	503	662	59	0.63	6	503	762	34	0.60	50	20 4	786	62	0.62	27
510-519	12	513	819	12	0.61	14	515	824	8	0.60	R	514	819	8	0.60	54
520-529	12	523	860	128	0.60	16	523	812	ß	0.57	33	523	840	8	0.59	57
530-539	5	532	864	131	0.57	6	534	903	88	0.59	27	532	885	<u>1</u> 05	0.59	45
540-549	~	544	899	115	0.56	œ	545	955	127	0.59	19	544	931	108	0.58	53
550-559	N	555	1025	120	0.60	Ś	554	1008	180	0.59	0	555	1004	136	0.59	7
560-569	I	1	I	ı	ı	۲	560	950	ł	0.54	~	561	1050	141	0.60	8
570-579	2	578	1159	380	0.60	4	575	943	173	0.49	9	576	1015	244	0.53	67
580-589	~	587	1220	ı	0.60	2	585	1175	92	0.59	4	584	1260	151	0.63	67
590-599	~	594	1396	173	0.66	m	592	1603	304	0.77	9	594	1458	225	0.70	30
609-009	ŝ	604	1436	47	0.65	2	605	1280	28	0.58	2	604	1392	86	0.63	29
610-619	4	614	1543	86	0.67	2	612	1430	57	0.62	ø	614	1539	128	0.66	33
620-629	0	624	1534	104	0.63	2	621	1440	57	0.60	ø	623	1511	10	0.62	ß
630-639	4	636	1799	51	0.70	2	637	1740	438	0.67	9	636	1780	202	0.69	33
640-649	0	645	1528	11	0.57	M	645	1533	67	0.57	Ś	645	1531	48	0.57	60
650-659	2	655	1835	304	0.65	ſ	655	1680	١.	0.60	4	656	1925	341	0.68	33
660-669	m	665	1751	237	0.60	~	668	1560	i	0.52	4	666	1703	215	0.58	ß
620-679	m	674	2115	205	0.69	-	670	2150	ı	0.71	4	673	2124	169	0.70	25
680-689	9	686	2157	256	0.67	ı	I	ł	ı	ı	9	686	2157	256	0.67	ł
669-069	m	696	2190	36	0.65	-	694	2120	1	0.63	4	695	2173	46	0.65	ŝ
602-002	m	206	2459	138	0.70	2	704	2390	156	0.68	Ś	705	2432	130	0.69	40
710-719	m	715	2400	125	0.66	~	719	2850	i	0.77	4	716	2513	247	0.68	32
720-729	m	725	2375	205	0.62	-	721	2250	i	0.60	4	724	2344	178	0.62	25
730-739	M	731	2546	229	0.65	-	732	2550	ı	0.65	ŝ	731	2532	165	0.65	ស
760-769	-	765	2420	ı	0.54	ı	I	1	ı	ł	~	765	2420	ı	0.54	ł
622-022	-	774	3891	1	0.84	ı	ı	ł	I	ı	۲	774	3891	1	0.84	I
662-062	I	ı	ı	I	ı	"	792	3270	I	0.66	~	792	3270	ı	0.66	ł
870-879	"	878	5020	1	0.74	ı	ł	ı	ł	1	۴	878	5020	ı	0.74	I
	-	5														
						-					00,					
TOTAL	251					152	202	570	077	C7 U	470	203	070	520	27 0	20
MEAN		529	1031	623	0.64		070	740	400	0.06		ŝ	707	000	co.0	ŝ

I able o		of 199(S from	the R	esolutior	וו ווי Bay a ו	irea of Gr	eat Sla	ve Lal	ke, NT.			2111A			
LENGTH			MALES	6				FEMALES					2	DTAL		
INTERVAL (mm)	_	ength(mm)	Weigh	it (g)	×	-	ength(mm)	Weigh	t(g)	×		.ength(mm)	Weigh	ht(g)	¥	%
	່ເ	mean	mean	8		`c	mean	mean	8		` c	mean	mean	SD		Female
350-359	~	359	300	I	0.65	ı	I	I	I	ł	ĸ	358	303	23	0.66	I
370-379	~	376	370	ı	0.70	ı	ı	1	ı	I	-	376	370	I	0.70	ı
380-389	-	380	391	ı	0.71	ı	ı	ı	I	I	~	380	391	t	0.71	ł
400-409	-	409	460	ı	0.67	-	408	420	ı	0.62	2	409	440	28	0.65	50
410-419	m	413	429	88	0.61	ı	1	ı	ł	ł	m	413	429	88	0.61	ŀ
420-429	m	425	533	32	0.69	~	424	545	7	0.72	9	424	533	24	0.70	40
430-439	10	437	598	28	0.72	4	435	523	52	0.64	16	435	575	48	0.70	59
440-449	80	444	610	67	0.70	Ś	447	612	61	0.69	15	445	624	80	0.71	38
450-459	10	454	628	48	0.67	4	455	663	86	0.70	18	454	644	59	0.69	29
460-469	9	465	667	63	0.66	6	463	637	32	0.64	28	464	658	48	0.66	47
470-479	ß	474	691	56	0.65	16	475	716	47	0.67	47	474	669	54	0.66	41
480-489	24	484	727	55	0.64	6	485	674	35	0.59	36	484	721	58	0.63	27
490-499	20	494	763	64	0.63	6	493	703	8	0.59	38	767	750	2	0.62	31
500-509	26	503	662	60	0.63	6	503	762	34	0.60	49	503	786	62	0.62	28
510-519	12	513	819	1	0.61	14	515	824	8	09.0	8	514	819	66	0.60	54
520-529	0	522	813	85	0.57	16	523	812	50	0.57	8	523	824	67	0.57	64
530-539	00	532	806	6 4	0.54	6	534	903	88	0.59	24	532	868	76	0.57	53
540-549	9	545	867	85	0.54	~	544	923	8	0.57	17	544	907	84	0.56	54
550-559	~	555	1025	120	0.60	4	554	935	88	0.55	80	555	968	84	0.57	67
560-569	ı	I	ı	I	ł	~	560	950	ı	0.54	2	561	1050	141	0.60	ı
570-579	"	577	890	ı	0.46	m	574	860	66	0.45	4	575	868	56	0.46	55
620-629	ı	ı	ı	ł	I	~	620	1480	ı	0.62	~	620	1480	1	0.62	1
670-679	۲	673	1950	ı	0.64	ı	ı	I	ı	I	۴	673	1950	1	0.64	ı
680-689	۲	684	2410	ł	0.75	ı	I	ı	ı	ı	~	684	2410	1	0.75	1
TOTAL	181					124					387					
MEAN		486	738	197	0.64		500	761	140	0.61		492	751	169	0.63	41

Locution Locution during the AV aillnate ŝ ī ť ξ ł ð 1 Rindoninal data Tabla E

Ö.

LENGTH			MALES	5				FEMALES					10	TAL		
INTERVAL (mm)		_ength(mm)	Weigh	ht(g)	×	-	ength(mm)	Weigh	t(g)	×	ت	ength(mm)	Weigh	t(g)	¥	~ ~
	_	mean	mean	ß		' c	mean	mean	S		' _	mean	mean	SD		Female
500-509	~	509	191	I	0,60	ı	ı	1	I	ı	e	509	162	I	0.60	ı
520-529	- M	525	1001	146	0.69	I	I	1	ı	ı	m	525	1001	146	0.69	I
530-539		532	1060	9	0.71	ı	1	I	ł	1	2	532	1060	9	0.71	I
540-549	- -	541	1091	1	0.69	"	545	1180	ł	0.73	2	543	1136	63	0.71	50
550-559	1	I	1	ı	ł	۲	555	1300	ı	0.76	۴-	555	1300	ı	0.76	ı
570-579	"	578	1427	I	0.74	~	579	1190	ı	0.61	~	579	1309	168	0.68	50
580-589	I	1	I	1	I	2	585	1175	92	0.59	m	583	1273	182	0.64	ı
590-599	~	594	1396	173	0.66	~	593	1435	120	0.69	6	594	1405	157	0.67	22
600-609	ŝ	604	1436	47	0.65	N	605	1280	28	0.58	2	604	1392	86	0.63	29
610-619	4	614	1543	86	0.67	~	612	1430	57	0.62	∞	614	1539	128	0.66	33
620-629	4	623	1499	111	0.62	۴	621	1400	ı	0.58	Ś	623	1479	106	0.61	20
630-639	2	635	1764	52	0.69	-	635	1430	ı	0.56	m	635	1652	196	0.65	33
640-649	~	645	1528	11	0.57	m	645	1533	67	0.57	ŝ	645	1531	48	0.57	60
650-659	N	655	1835	304	0.65	~ ~	655	1680	ı	0.60	m	655	1783	233	0.63	33
560-669	2	663	1641	199	0.56	~	668	1560	i	0.52	m	665	1614	149	0.55	33
690-699	~	269	2200	ı	0.65	~	694	2120	ı	0.63	2	696	2160	57	0.64	50
622-022	~	774	3891	i	0.84	ı	ı	1	I	I	~	774	3891	1	0.84	ı
TOTAL	38	203	1505	667	0 66	19	615	9671	228	0.61	60	609	1484	413	0.65	33
		8	201	1/1			2					ŝ	5	}		}

		summe	r of 19	36 11	DM The H	(esoint	ion bay a	rea or	ดเคลเ	SIAVE LAP	ke, NI	•				
LENGTH			MALES					FEMALES					ΤC	DTAL		
INTERVAL (mm)	l	Length(mm)	Weigh	it (g)	×	-	.ength(mm)	Weigh	it (g)	×		ength(mm)	Weigh	it (g)	¥	%
,	2	mean	mean	ß		`	mean	mean	S		`	mean	mean	SD		Female
025-025	~	ንደያ	255	ı	0 67	I	I	I	I	ı	(336	255	ı	0.67	ł
480-489		482	630	ı	0.56	ł	1	ı	ı	I	· –	482	630	I	0.56	1
530-539	. «	535	940	ı	0.61	I	ł	ł	I	I	-	535	940	I	0.61	I
580-589	~	587	1220	I	0.60	I	1	ı	I	I	۲	587	1220	ı	0.60	ı
590-599	I	I	1	ł	I	"	591	1940	ł	0.94	~	591	1940	1	0.94	ı
620-629	N	627	1605	49	0.65	I	ı	ı	I	ı	2	627	1605	49	0.65	ı
630-639	2	637	1835	~	0.71	"	638	2050	ı	0.79	M	637	1907	124	0.74	33
650-659	I	ı	ı	ı	1	ı	ı	ı	ı	I	-	658	2350	ı	0.82	ı
660-669	~	668	1970	ı	0.66	ı	I	1	ı	I	-	668	1970	I	0.66	I
670-679	2	675	2198	209	0.71	-	670	2150	I	0.71	m	673	2182	150	0.71	33
680-689	ŝ	686	2107	250	0.65	ł	ı	ı	I	1	Ś	686	2107	250	0.65	ł
669-069	~	695	2185	49	0.65	ı	ı	i	ı	1	2	695	2185	49	0.65	I
200-709	M	206	2459	138	0.70	~	704	2390	156	0.68	'n	705	2432	130	0.69	40
710-719	m	715	2400	125	0.66	-	719	2850	ı	0.77	4	716	2513	247	0.68	25
720-729	m	725	2375	205	0.62	-	721	2250	ı	0.60	4	724	2344	178	0.62	25
730-739	m	731	2546	229	0.65	-	732	2550	1	0.65	Ś	731	2532	165	0.65	25
760-769	۲	765	2420	ı	0.54	I	ł	ı	ı	ı	-	765	2420	ı	0.54	ı
662-062	I	ı	ı	ı	ı	-	792	3270	I	0.66	~~	262	3270	ł	0.66	ı
870-879	۲	878	5020	I	0.74	I	ł	I	ı	ı	-	878	5020	ı	0.74	I
TOTAL	32	167	7646	707	77 C	6	203	2070	107	0 7 0	43	680	1000	710	7 67	ŝ
MEAN		470	2124	9	00.2		140	2421	40.1	22		200	5001	2	5.5	UC CC

Biological data by length interval for cisco taken by survey gillnets during the summer of 1996 from the Resolution Bay area of Great Slave Lake, NT. Table 8.

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	LENGTH			MALES					FEMALES					10	TAL		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	INTERVAL (mm)		Length(mm)	Weigh	t (g)	×	-	ength(mm)	Weigh	t(g)	¥		ength(mm)	Weigh	it(g)	¥	%
160-169 1 165 40 - 0.89 - - 0.89 - 1.22 - 1.22 - 1.22 - 1.22 - 1.22 - 1.22 - 1.22 - 1.22 - 1.22 - 1.22 20 - 0.89 - 1.22 21 1.01 50 - 0.89 - 1.22 21 1.01 50 - 0.89 - 1.22 21 1.01 50 - 0.89 - 1.22 220 230 230 31 0.30 50 - 0.72 2 213 100 - 0.89 - 1.22 21 1.01 50 - 0.72 2 13 13 0.30 50		۲	mean	mean	5		' <u>-</u>	mean	mean	ß		' د ا	mean	mean	ß		female
	160-169	~	165	40	I	0.89	I	1	ı	I	ı	~	165	40	1	0.89	ı
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	180-189	• 1	1	2 1	I	1	ı	ı	ı	ı	1	~	187	8	ł	1.22	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	190-199	~	193	02	ı	0.97	~	191	20	1	0.72	4	193	2	21	1.01	50
210-219 1 211 90 - 0.88 1 218 100 - 0.97 2 218 95 7 0.92 50 220-229 1 228 90 - 0.76 1 221 100 - 0.93 13 0.90 50 220-239 - - - - - - 2 22 103 13 0.90 50 220-289 - - - - - - 2 25 10 0.71 - 0.95 50	200-209	· I	1	1	ł	I	ł	ł	ı	ı	I	~1	207	2	14	0.79	ı
230-229 1 228 90 - 0.76 1 221 100 - 0.93 4 225 103 13 0.90 50 230-239 3 235 90 10 0.69 - - - 2 4 236 93 10 0.71 - 240-249 - - - - - - 2 245 170 14 0.91 2 264 7 0.02 50 250-239 - - - - - - - 1 245 170 14 0.91 27 0.02 50 250-359 1 354 550 1 14 0.91 2 265 170 14 0.91 57 0 0.26 57 0 50 57 0 56 57 0 56 56 170 14 0.96 50 56 1.12 57 56 1.12 57 56 1.12 57 56 1.16	210-219		217	8	1	0.88	-	218	100	1	0.97	~	218	. 2	2	0.92	50
230-239 3 235 90 10 0.69 - - - 4 236 93 10 0.71 - 240-249 - - - - - - - 0 0 - 0.02 - 0.23 10 0.71 - 0.92 - - 0.92 - 1.92 0.96 - 0.96 - 0.96 - 1.26 - 0.96 - 1.26 - 0.96 - 1.26 - 1.26 - 1.26 1.126 - 1.25 -	220-229	~	228	8	I	0.76	-	221	6	ı	0.93	4	225	103	13	0.90	50
240-249 - - - - - - - - 0.86 - 250-259 - - - - - - - 0.92 - 1.24 0.91 - 0.92 - 1.124 - 1.24 - 1.24 - 1.24 - 1.24 - 1.24 1.17 3.06-30 - 1.25 6.4 1.176 - 1.24 - 1.25 1.17 3.0 - <t< td=""><td>230-239</td><td>M</td><td>235</td><td>8</td><td>10</td><td>0.69</td><td>i</td><td>ı</td><td>ł</td><td>ł</td><td>ı</td><td>4</td><td>236</td><td>93</td><td>10</td><td>0.71</td><td>I</td></t<>	230-239	M	235	8	10	0.69	i	ı	ł	ł	ı	4	236	93	10	0.71	I
250-259 - - - - - - 0.92 - 0.92 - 0.92 - 0.92 - 0.91 - 0.92 - 0.91 - 0.92 - 0.91 - 0.92 - 0.91 - 0.92 - 0.91 - 0.92 - 0.91 - 0.92 - 0.91 - 0.92 - 0.91 - 0.92 - 0.91 - 0.92 - 0.91 - 0.92 - 0.91 - 0.92 - 0.91 - 0.92 - 0.66 - 1.24 - - - - 1.24 - - 1.24 - 1.24 - 1.24 - 1.24 - 1.25 - 1.26 - 1.25 - 1.25 - 1.25 - 1.25 - 1.25 - 1.25 - 1.25 - 1.25 - 1.25 - 1.25 - 1.25 - 1.25 1.20 1.25 </td <td>240-249</td> <td>ı</td> <td>ł</td> <td>I</td> <td>ı</td> <td>ı</td> <td>ı</td> <td>ı</td> <td>ı</td> <td>ı</td> <td>1</td> <td>2</td> <td>245</td> <td>125</td> <td>2</td> <td>0.86</td> <td>ı</td>	240-249	ı	ł	I	ı	ı	ı	ı	ı	ı	1	2	245	125	2	0.86	ı
260-259 - - - - - - - - - - - - - - 0.91 - - - 0.91 - - - 0.91 - - - 0.91 - - 0.66 - - 0.66 - - 0.66 - 1.24 - 0.66 - 1.24 - 0.66 - 1.24 - 0.66 - 1.24 - 0.66 - 1.24 - 0.66 - 1.24 - 0.66 - 1.24 - 0.66 - 1.24 - 0.66 - 1.24 - 0.66 - 1.24 - 0.66 - 1.24 - 0.66 - 1.22 - 1.22 - 1.26 - 1.26 - 1.26 - 1.26 - 1.26 - 1.26 - 1.26 - 1.26 - 1.26 - 1.26 - 1.26 - 1.26 - 1.26	250-259	ı	I	1	ι	I	I	ı	1	I.	ı	۲	259	160	ı	0.92	ı
280-289 - - - - - - - 0.66 - 350-359 1 354 550 - 1.24 - - 1.24 - 1.22 - 1.22 - 1.24 - 1.25 - 1.24 - 1.25 - 1.24 - 1.25 - 1.24 1.17 - 1.24 1.17 - 1.24 1.17 - 1.24 1.16 - 1.26 1.16 - 1.26	260-269	ı	I	1	ι	I	2	265	170	14	0.91	2	265	170	14	0.91	ı
350-359 1 354 550 - 1.24 - - - 1 354 550 - 1.24 - - 1.24 - - 1.24 - 1.24 - - 1.24 - 1.22 - 1.17 - - 1.22 - 1.22 - 1.22 - 1.22 - 1.24 1.18 2.0<	280-289	I	ł	ı	ı	1	ı	ł	ı	ł	ı	. .	286	155	1	0.66	ı
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	350-359	~	354	550	•	1.24	ı	I	ł	ı	ı	-	354	550	I	1.24	ı
370-379 - - - - - 1 378 730 - 1.35 - - 1.35 - 1.35 - 1.35 - 1.35 - 1.35 - 1.35 - 1.35 - 1.35 - 1.35 - 1.35 - 1.35 - 1.35 - 1.35 - 1.35 - 1.35 - 1.35 - 1.35 - 1.35 - 1.35 - 1.47 1.18 - - 1.47 1.18 - - 1.47 1.18 - - 1.46 1.18 - - 1.20<	360-369	I	ı	ı	ı	ı	ı	I	ı	١	ı	-	366	600	t	1.22	ı
380-389 1 387 700 - 1.21 - - - 2 384 660 57 1.17 - 390-399 1 395 600 - 0.97 - - - 3 395 730 147 1.18 - 400-409 - - - - - - 2 403 775 64 1.18 - 410-419 - - - - - 2 403 775 64 1.18 - 420-429 - - - - - - 1 411 830 - 1.20 - 420-429 - - - - - - 1 411 830 - 1.32 - 420-429 - - - - - - 1 4.13 8.30 - 1.32 - 1.32 - 1.32 - 1.32 - 1.32 - 1.32 - 1.32 </td <td>370-379</td> <td>ł</td> <td>ı</td> <td>1</td> <td>ı</td> <td>ı</td> <td>1</td> <td>ı</td> <td>ı</td> <td>ı</td> <td>ı</td> <td>~</td> <td>378</td> <td>730</td> <td>I</td> <td>1.35</td> <td>ı</td>	370-379	ł	ı	1	ı	ı	1	ı	ı	ı	ı	~	378	730	I	1.35	ı
390-399 1 395 600 - 0.97 - - - - 395 730 147 1.18 - 400-409 - - - - - - - 2 403 775 64 1.18 - 410-419 - - - - - - - 1 411 830 - 1.20 - 420-429 - - - - - - - 1 420 980 - 1.32 - 420-429 - - - - - - - - 1 420 980 - 1.32 - 420-429 - - - - - - - 1 420 980 - 1.32 - 401 10 5 - - - - - - 1.32 - 1.32 - 420 980 241 262 0.90 5 232 118 52 0.89 310 310 0.99 33	380-389	~	387	002	ı	1.21	ł	I	1	1	I	2	384	660	57	1.17	ı
400-409 - - - - - - 1.18 - 410-419 - - - - - - - 1.18 - 410-419 - - - - - - 1 411 830 - 1.20 - 420-429 - - - - - - 1 420 980 - 1.32 - 420-429 - - - - - - - 1 420 980 - 1.32 - 420-429 - - - - - - - 1.120 - 1.32 - 1.32 - 1.32 - 1.32 - 1.32 - 1.32 - 1.32 - 1.32 - 1.32 - 1.32 - 1.32 - 1.32 - 1.32 - 1.32 - 1.32 - 1.32 1.41 8.5 0.89 310 310 209	390-399	۲	395	600	I	0.97	ı	ı	ı	ı	1	m	395	730	147	1.18	ı
410-419 1 411 830 - 1.20 - 420-429 1 4.1 830 - 1.32 - 420-429 1 420 980 - 1.32 1 420	400-409	I	ı	ı	ı	ł	ı	ł	ı	1	ı	2	403	775	64	1.18	ı
420-429 1 420 980 - 1.32 - TOTAL 10 5 232 118 52 0.89 310 310 0.99 33 MEAN 264 241 262 0.90 5 232 118 52 0.89 36	410-419	ı	i	ł	ı	ı	ı	ı	ı	ı	1	"	411	830	ł	1.20	ı
TOTAL 10 5 5 36 310 310 310 0.99 33 56 280 310 310 0.99 33	420-429	I	i	I	I	ı	I	ł	ı.	ł	ł	~	420	980	I	1.32	I
MEAN 264 241 262 0.90 232 118 52 0.89 280 310 310 0.99 33	10101	Ę					v					72					
	MEAN	2	264	241	262	0.90	r	232	118	52	0.89	R	280	310	310	0.99	33

Biological data by length interval for goldeye taken by survey gillnets during the summer of 1996 from the Resolution Bav area of Great Slave Lake, NT. Table 9.

,

-

		וופסחותר			מו מוכמו											
LENGTH			MALES					FEMALES					.0 1	TAL		
INTERVAL (mm)		ength(mm)	Weight	f(g)	×	ت	ength(mm)	Weight	(ĝ)	×	-	ength(mm)	Weigh	t(g)	×	%
,	ٰ د	mean	mean	ß		- -	mean	mean	ß		' -	mean	mean	S		Female
270-279	e	275	230	t	1.11	ł	ł	I	ı	ł	~	275	230	ł	1.11	ı
290-299	۲	298	340	ı	1.28	ı	ł	1	ı	1	۴	298	340	ł	1.28	ı
300-309	"	303	270	ı	0.97	ł	1	ı	ı	I	۲	303	270	ł	0.97	I
310-319	~	313	340	I	1.11	6	318	410	I	1.27	2	316	375	49	1.19	20
TOTAL MEAN	4	297	295	54	1.12	-	318	410	1	1.27	5	301	318	02	1.15	50

the	
from	
1996	
đ	
summer	
the	
during	
gillnets	
survey	
à	
taken	
inconnu	ke NT.
for	-
interval	reat Slavi
length	a of G
Å	are
data	, Bav
ical	tior
Biolog	Recolu
Table 10.	

		Resolut	tion Bay	, area	of Great :	Slave	Lake, NI									
LENGTH			MALES				-	FEMALES					Ŧ	DTAL		
INTERVAL (mm)		Length(mm)	Weight	t(g)	×	-	ength(mm)	Weight	(ĝ)	×		ength(mm)	Weigl	ht (g)	×	%
	_	mean	mean	SD		' -	mean	mean	S		۔ د	mean	mean	sD		Female
200-249	1	I	1	I	ľ	ł	1	1	1	1	٢	232	100	ł	0.80	1
400-449		403	022	ı	1.18	1	ı	ı	ı	ı	-	403	770	ı	1.18	I
500-549	-	502	1280	4	1.01	ı	ł	ı	ł	ı	~	502	1280	i	1.01	ı
600-649	i	ı	ı	ı	I	ł	ı	ı	I	I	~ ~	629	2930	ı	1.18	ł
700-749	ŧ	i	I	I	1	I	ı	ı	ı	ı	2	725	4820	57	1.27	ı
750-799	1	1	ı	ı	ł	1	ı	ı	ı	ı	m	774	5377	318	1.16	I
850-899	ı.	I	ı	ı	I	I	1	1	ı	I	2	854	7960	368	1.28	ı
TOTAL MEAN	~	453	1025	361	1.09	0	ı	·	I	 1	1	659	4252	2687	1.16	1

Biological data by length interval for lake whitefish taken by survey gillnets during the summer of 1996 from the Resolution Bay area of Great Slave Lake, NT. Table 11.

112012			MALES					FEMALES					2	TAL		
INTERVAL					2	-	andth(mm)	do i ell	(0)+	4	-	endth(mm)	Heidh	t(a)	×	%
(mm)	ſ	Lengtn (mm)			2	- - 1		mean	5	<u> </u>	۱۱ د	mean	mean	s S	!	Female
	=			;		:										
				9	1						٣	700	217	Ċ,	1 35	ı
280-289	m	286	317		1.35	ı	I	ŀ	•	1	n .	007		3 5		ı r
290-299	-	299	370	ı	1.38	M	294	330	6	1.29	4	296	540	N	25.1	<u>د</u> :
200-2005	16	304	361	35	1.28	Ś	306	382	59	1.33	19	305	369	2	1.30	26
210-210	: 0	315	408	40	1.31	~1	313	385	ŝ	1.25	ن	314	404	37	1.30	14
DCE-UCE	15	702	677	59	1.32	1	326	482	19	1.40	ß	325	465	47	1.36	48
220-220	14	335	555	: 5	1.42	~	332	517	62	1.41	24	334	530	56	1.42	33
072-072	2	345	576	67	1.41	6	344	559	58	1.38	35	344	570	62	1.40	31
350-359	12	353	622	5	1.41	14	354	649	5	1.47	31	353	636	64	1.44	47
07C 07C	2 2	364	680	62	1.41	15	364	202	56	1.46	32	364	695	2	1.44	48
220-200	2 2	374	750	22	1.44	24	374	756	96	1.44	58	374	753	80	1.44	44
780-780	2	385	822	78	1.44	5	385	841	74	1.47	56	385	832	62	1.46	49
002-002	39	202	806	83	1.49	5	394	892	85	1.45	22	394	904	85	1.48	39
607-007	6	403	965	87	1.47	20	403	918	105	1.40	57	403	946	93	1.44	38
410-419	72	413	1043	114	1.48	2	414	1093	138	1.54	48	413	1065	125	1.51	47
667-067	24	424	1180	112	1.55	23	423	1136	76	1.50	49	424	1156	104	1.52	49
430-439	14	435	1204	102	1.46	14	434	1203	232	1.47	8	435	1207	171	1.47	20
677-077		877	1330	1	1.48	80	445	1358	124	1.54	1	445	1348	109	1.53	89
450-459	• •	456	1480	66	1.56	9	453	1505	285	1.62	13	454	1480	200	1.58	20
460-469		461	1570	i	1.60	m	464	1753	280	1.76	4	463	1708	247	1.22	2
470-479	•	471	1430	ı	1.37	4	472	1708	194	1.62	9	472	1592	238	1.51	08 0
480-489	"	489	1850	ı	1.58	m	485	1427	176	1.25	4	486	1533	256	1.33	22
669-067	4	493	1758	345	1.47	~	466	2120	1	1.71	Ś	494	1830	340	1.52	20
500-500	~	503	2190	ł	1.72	1	ı	ı	ı	ı	~	503	2190	ł	1.72	ı
540-549	• 1	1	1	ı	I	-	542	1850	I	1.16	e	542	1850	I	1.16	ı
550-559	I	1	I	ı	I	ı	I	I	I	ı	~	553	1910	I	1.13	ı
TOTAL	316					246					604					
MEAN	2	381	835	313	1.44	I	391	916	333	1.46		386	873	323	1.45	44

26

mesh of survey gillnets during the	TOTAL
erval for lake whitefish taken by the 89 mm esolution Bay area of Great Slave Lake, NT.	FEMALES
Biological data by length int summer of 1996 from the Re	MALES
Table 12.	LENGTH

			2				5 Ano 110									
LENGTH			MALES	<i></i>				FEMALE	ŝ				10	ITAL		
INTERVAL (mm)]	_ength(mm)	Weigh	it (g)	×	ت	ength(mm)	Weigh	nt (g)	×		Length(mm)	Weigh	it (g)	×	%
	` _	mean	mean	ß		' ב	mean	mean	S		<u>د</u>	mean	mean	ß		Female
280289	M	286	317	40	1.35	1	ı	I	I	I	M	286	317	40	1.35	ı
290-299	-	299	370	1	1.38	2	293	330	14	1.32	m	295	343	ß	1.34	67
300-309	13	304	356	30	1.27	Ś	306	382	5	1.33	18	305	363	31	1.28	28
310-319	12	315	408	40	1.31	~	313	385	35	1.25	15	314	404	37	1.30	14
320-329	1	324	440	53	1.29	ø	325	476	18	1.38	2	325	456	45	1.33	42
330-339	14	335	535	57	1.42	9	332	200	46	1.37	53	334	526	54	1.41	30
340-349	18	345	562	62	1.37	80	343	558	65	1.38	28	344	559	8	1.37	31
350-359	14	353	619	54	1.40	12	353	658	78	1.49	27	353	639	67	1.45	46
360-369	12	364	699	84	1.39	6	365	206	48	1.45	21	364	685	22	1.42	4 3
370-379	18	374	745	67	1.43	5	374	703	62	1.34	2	374	728	2	1.39	42
380-389	15	384	804	81	1.42	12	386	840	65	1.46	8	385	825	8	1.45	44
390-399	8	394	891	2	1.46	14	394	202	8	1.48	37	394	<u>904</u>	2	1.48	41
400-409	42	403	941	<u>6</u>	1.44	ø	403	903	5	1.37	22	403	920	8	1.41	40
410-419	11	413	1054	104	1.49	~	414	1154	155	1.63	19	414	1090	129	1.54	39
420-429	14	423	1150	90	1.51	2	423	1154	82	1.53	22	423	1148	26	1.51	33
430-439	2	434	1215	64	1.49	4	435	1238	6 8	1.51	~	435	1237	59	1.51	67
40-449	ı	1	1	ı	I	~	444	1320	283	1.51	m	443	1340	203	1.54	ı
450-459	4	457	1498	123	1.57	~	457	1580	57	1.66	9	457	1525	107	1.60	33
420-479	ł	ı	ı	1	ı	-	472	1720	1	1.64	-	472	1720		1.60	I
480-489	-	489	1850	ł	1.58	۴	487	1630	1	1.41	~	488	1740	156	1.50	50
667-063	-	495	2060	ı	1.70	1	ł	і	ı	ı	-	495	2060	ı	1.70	I
IOTAL IEAN	8	367	738	299	1.41	2	376	662	297	1.44	240	371	762	298	1.42	38
				i					i					i		l

. 27

Biological data by length interval for lake whitefish taken by the 114 mm mesh of survey gillnets during the summer of 1996 from the Resolution Bay area of Great Slave Lake. NT. Table 13.

		summe	ר 01 וש	80 IIC	יה שוט הוס	11ninsa	ui nay ai		חבמו		A NI				1	
LENGTH			MALES					FEMALES					10	TAL		
INTERVAL (mm)	-	ength(mm)	Weigh	it (g)	×	ت	angth(mm)	Weigh	t(g)	×		ength(mm)	Weigh	it (g)	×	* -
	' c	mean	mean	ß		ء	mean	mean	SD			mean	mean	SD		remale
200-200	1	. 1	I	1	I	-	298	330	1	1.25	~	298	330	I	1.25	I
	~	200	ባይን	ł	1 46	- 1) 1	1	1	1		309	430	ı	1.46	I
220-229		325	550	I	1.60	м	326	497	12	1.43	4	326	510	28	1.47	75
330-339	• 1	1	1	ł	1	~	335	620	ł	1.65	. -	335	620	I	1.65	ł
340-349	4	345	640	50	1.57	~	345	565	2	1.38	2	344	613	5	1.51	33
350-359	2	352	645	2	1.48	2	357	609	28	1.32	4	355	623	33	1.40	50
360-369	4	367	713	59	1.45	9	364	704	7	1.46	1	365	715	65	1.48	60
370-379	5	373	757	26	1.45	9	374	801	54	1.53	24	374	222	69	1.49	43
380-389	6	386	838	69	1.46	13	385	842	85	1.48	25	385	836	78	1.46	57
390-399	15	393	902	80	1.48	6	395	880	35	1.43	26	394	891	65	1.46	38
400-409	14	404	956	26	1.45	6	403	880	92	1.35	25	403	931	82	1.42	39
410-419	9	412	972	86	1.39	6	415	1074	124	1.51	17	414	1029	119	1.45	63
420-429	9	427	1195	143	1.54	9	424	1106	106	1.45	17	425	1137	121	1.48	63
430-439	9	435	1177	116	1.43	2	434	1247	154	1.53	14	435	1174	232	1.43	54
677-077	~	448	1330	1	1.48	4	445	1385	85	1.57	9	445	1355	84	1.53	80
450-459	· -	453	1450	I	1.56	2	450	1314	476	1.44	M	451	1359	346	1.48	67
470-479	• 1	I	I	ı	ı	ł	ı	1	ι	I	۲	475	1290	ı	1.20	ł
480-489	ı	ı	ı	1	1	۴.	480	1330	١	1.20	-	480	1330	ł	1.20	ı
490-499	M	492	1657	343	1.39	ı	ı	ı	1	ì	m	492	1657	343	1.39	ı
540-549	ł	ı	1	ı	1	,	542	1850	ŧ	1.16	,	542	1850	ı	1.16	
550-559	ı	ı	١	I	I	ı	ı	I	ı	ı	-	553	1910	1	1.13	ı
TOTAL	87				ļ	9	0				193	002				5
MEAN		396	927	244	1.41		598	74.1	504	1.40		940	240	202	. 40	5

Table 14.		Biologic summer	al dat: • of 19	a by le 196 fro	ngth inte m the Re	rval fe soluti	or lake w on Bay al	hitefish rea of	n take Great	n by the Slave Lal	133 n ke, NT	nm mesh	of sur	vey gi	linets di	uring the
LENGTH			MALES	5				FEMALES	6				Ľ	DTAL		
INTERVAL (mm)		Length(mm)	Weigh	t (g)	×	-	ength(mm)	Weigh	ht(g)	×		ength(mm)	Weigh	ht (g)	×	%
Ì	c	mean	mean	SD		י ב	mean	mean	ß		<u>ء</u>	mean	mean	ß		Female
370-379	1	1	ı	ı	I	۴	377	066	i	1.85	~	377	066	I	1.85	I
380-389	-	386	920	I	1.60	I	1	ı	ı	1	•	386	920	ı	1.60	ı
390-399	ŝ	392	981	۶	1.62	m	394	857	127	1.40	6	394	940	110	1.54	38
400-409	9	405	1037	43	1.57	m	405	1070	60	1.61	9	404	1041	S S	1.57	33
410-419	2	412	1089	134	1.55	4	414	1033	135	1.46	12	413	1077	128	1.53	36
420-429	4	423	1263	62	1.67	9	424	1165	98	1.53	5	424	1204	%	1.59	60
430-439	9	435	1227	106	1.49	M	432	1253	133	1.55	6	434	1236	108	1.51	33
440-449	I	ı	1	ı	ı	2	446	1340	0	1.52	2	446	1340	0	1.52	ł
450-459	~	455	1440	ı	1.53	~	453	1620	255	1.75	4	453	1503	205	1.62	67
460-469	~	461	1570	ı	1.60	m	464	1753	280	1.76	4	463	1708	247	1.72	75
470-479	~	471	1430	ı	1.37	m	472	1703	238	1.62	4	472	1635	237	1.56	75
480-489	i	ı	1	ı	1	-	489	1320	I	1.13	~	489	1320	i	1.13	I
490-499	I	ı	ı	1	1	۴	499	2120	I	1.71	~	499	2120	ł	1.71	ł
500-509	~	503	2190	:	1.72	1	ı	ł	I.	I	~	503	2190	1	1.72	1
TOTAL	8	420	1173	250	1.57	32	433	1293	347	1.56	69	426	1225	300	1.57	67

Biological data by length interval for longnose sucker taken by survey gillnets during the summer of 1996 from the Beschution Bay area of Great Slave Lake NT Table 15.

LENGTH			MALES	Day				FEMALES					10	TAL		
INTERVAL		Length(mm)	Weigh	t(g)	×		ength(mm)	Weigh	it (g)	×		ength(mm)	Weigh	t (g)	×	%
	د	mean	mean	SD		<u>'</u> ב	mean	mean	SD		_ د	mean	mean	SD		female
66C-U6C	, -	797	410	1	1.57	I	I	1	ı	1	~	297	410	I	1.57	ı
310-319	- ~	313	450	14	1.47	ı	ı	I	ı	1	N	313	450	14	1.47	ı
320-329	i M	323	423	74	1.25	~	324	440	ł	1.29	4	323	428	61	1.26	25
330-339	~	330	390	ι	1.09	ı	ı	I	i	ı	2	332	435	64	1.19	ı
340-349	4	343	550	14	1.37	ı	ı	I	ı	ı	ŝ	343	592	95	1.47	ı
350-359	80	353	556	68	1.27	~	355	535	35	1.20	6	353	552	62	1.25	20
360-369	ø	365	643	0 4	1.32	4	366	630	54	1.29	12	365	638	43	1.31	33
370-379	1 0	375	203	44	1.33	۲	376	730	ı	1.37	14	375	678	<u>6</u>	1.28	6
380-389	13	384	728	84	1.28	2	385	720	0	1.27	17	384	734	81	1.29	13
390-399	5	395	778	154	1.27	ŝ	396	812	92	1.31	18	395	788	136	1.28	28
400-409	~	406	807	102	1.21	Ś	407	855	83	1.27	12	406	825	35	1.13	42
410-419	13	415	918	2	1.29	Ś	415	914	8	1.28	18	415	917	2	1.28	28
420-429	13	425	1000	119	1.31	ø	423	626	110	1.29	2	424	992	113	1.30	38
430-439	2	434	1086	122	1.33	~	436	1044	129	1.26	31	434	1085	136	1.32	52
440-449	24	445	1126	89	1.28	0	445	1082	2	1.23	36	445	1112	87	1.26	27
450459	22	455	1200	116	1.28	1	455	1189	2	1.26	34	455	1199	102	1.28	33
460-469	ŝ	464	1273	115	1.27	19	465	1306	145	1.30	4 5	464	1286	127	1.28	43
470-479	16	473	1407	136	1.33	18	474	1352	102	1.27	33	473	1380	119	1.30	53
480-489	2	484	1435	135	1.27	14	486	1451	144	1.27	36	485	1442	136	1.27	39
490-499	18	493	1503	6	1.25	20	494	1515	151	1.26	39	493	1510	126	1.26	53
500-509	14	503	1610	138	1.26	15	503	1527	111	1.20	٣	503	1577	131	1.24	52
510-519	11	514	1693	<u>۶</u>	1.25	12	514	1681	165	1.24	24	514	1688	130	1.24	52
520-529	9	526	1889	130	1.30	Ś	525	1796	120	1.24	17	526	1838	136	1.26	33
530-539	2	535	1844	127	1.21	ø	536	1885	191	1.23	15	535	1866	160	1.22	53
540-549	4	545	1970	68	1.22	ŝ	544	2024	175	1.26	6	544	2000	134	1.24	56
550-559	ŝ	554	2116	211	1.24	1	555	2088	183	1.22	16	554	2097	185	1.23	69
560-569	m	563	2087	162	1.17	9	564	2048	144	1.14	6	563	2086	154	1.17	67
570-579	~	571	2310	ı	1.24	~	575	2276	219	1.20	6	574	2266	195	1.20	88
590-599	~	591	2560	I	1.24	ŝ	595	2506	248	1.19	9	595	2515	223	1.20	83
609-009	ł	ı	I	1	I	ſ	602	2660	ı	1.22	~	602	2660	ı	1.22	ı
610-619	I	1	1	ł	ı	m	614	2843	180	1.23	m	614	2843	180	1.23	I
620-629	ł	ı	ı	i	I	~	623	3110	ı	1.29	~	623	3110	1	1.29	I
TOTAL	300					210					534					
MEAN		450	1212	426	1.28		486	1489	501	1.24		464	1322	479	1.27	41
		Summe	r of 19	3 vy 196 fre	om the F	lesoluti	ion Bay a	rea of	Great	Slave La	ke, NT			יכץ או	ווופוס מי	aın fiinn
------------------	----------------	-----------------	---------	-----------------	----------	----------	-----------	--------	---------	----------	--------	-----------	-------	----------	-----------	------------
LENGTH			MALE	s				FEMALE	s				Ĕ	DTAL		
INTERVAL (mm)		Length(mm)	Weigh	t(g)	×	-	ength(mm)	Weig	ht(g)	×	-	ength(mm)	Weigh	it (g)	¥	%
,	c	mean	mean	SD		` د	mean	mean	SD		- -	mean	mean	SD		Female
990-095	-	797	410	1	1.57	1	I	1	1	1	~	797	410	ı	1 57	1
310-319	· ~	313	450	14	1.47	ı	ł	1	ı	ı	• •	313	450	14	1.47	ı
320-329	(M)	323	423	74	1.25	~	324	440	I	1.29	4	323	428	61	1.26	25
330-339	· ~	330	390	1	1.09	1	1	1	ı	ı	2	332	435	64	1.19	1
340-349	4	343	550	14	1.37	ı	ı	i	ł	ı	ŝ	343	592	33	1.47	ı
350-359	00	353	556	68	1.27	~	355	535	35	1.20	10	353	552	62	1.25	20
360-369	80	365	643	40	1.32	4	366	630	54	1.29	12	365	638	43	1.31	33
370-379	9	375	203	44	1.33	٢	376	730	ı	1.37	14	375	678	<u>6</u>	1.28	6
380-389	12	384	713	67	1.26	~	385	720	0	1.27	15	384	713	59	1.26	14
390-399	6	394	741	159	1.21	ŝ	396	812	26	1.31	14	395	766	136	1.25	36
400-409	9	405	823	102	1.24	4	407	817		1.22	10	406	821	83	1.23	6 0
410-419	12	415	921	22	1.29	N	415	830	14	1.16	14	415	908	74	1.27	14
420-429	9	425	626	120	1.28	4	424	960	8	1.26	14	424	973	110	1.27	29
430-439	••	433	1043	126	1.29	Ś	435	1016	136	1.24	14	433	1029	121	1.27	38
440-449	13	445	1106	78	1.26	Ś	444	1034	69	1.18	5	445	1086	8	1.24	28
450-459	6	454	1140	93	1.22	4	457	1145	26	1.20	14	455	1151	83	1.23	31
460-469	ø	464	1239	93	1.24	~	466	1260	92	1.25	16	465	1247	8	1.24	47
470-479	ŝ	472	1338	27	1.27	9	474	1333	86	1.25	5	474	1335	2	1.26	67
480-489	2	484	1366	114	1.20	9	485	1500	182	1.32	13	484	1428	158	1.26	95
490-499	2	492	1477	48	1.24	m	493	1433	105	1.20	6	492	1464	67	1.23	30
500-509	ŝ	502	1606	210	1.27	ŝ	504	1508	145	1.18	6	503	1557	178	1.22	50
510-519	4	515	1635	41	1.20	2	513	1635	32	1.21	9	514	1635	36	1.20	33
520-529	m	527	1840	113	1.26	2	524	1725	134	1.20	ŝ	525	1794	122	1.24	40
530-539	2	535	1865	33	1.22	I	ı	I	ı	ı	2	535	1865	35	1.22	ı
540-549	~	540	2060	ı	1.31	2	543	1985	233	1.24	m	542	2010	171	1.26	67
550-559	-	558	1920	ł	1.11	4	555	2115	270	1.24	Ś	555	2076	250	1.21	80
560-569	-	560	1940	ı	1.10	4	563	2008	135	1.12	ŝ	563	1994	121	1.12	80
570-579	1	ı	ŀ	ı	I	-	575	2070	ı	1.09	~	575	2070	ı	1.09	ı
590-599	1	I	I	I	ı	-	595	2250	ł	1.07	~	595	2250	ı	1.07	ı
610-619	ł	ı	I	ı	I	-	617	3030	ı	1.29	~	617	3030	ı	1.29	1
620-629	1	ı	ı	ı	I	-	623	3110	ı	1.29	~	623	3110	ı	1.29	ı
TOTAL	140					ä					070					
101AL	20	367	2101	787	76 1	0	145	1207	525	20 1	202	827	105	156	, 3C	75
REAN		() 1	2	100	07.1		Ĉ,	200	200	3		004	2		3.	ĥ

Biological data by length interval for longnose sucker taken by the 89 mm mesh of survey gillnets during the Table 16.

.

Biological data by length interval for longnose sucker taken by the 114 mm mesh of survey gillnets during the summer of 1996 from the Resolution Bav area of Great Slave Lake. NT. Table 17.

LENGTH			MALES					FEMALES					10	TAL		
INTERVAL (mm)	-	.ength(mm)	Weigh	t(g)	×	Ē	ength(mm)	Weigh	it(g)	×		ength(mm)	Weigh	it (g)	×	%
	` _	mean	mean	SD		۱ ۲	mean	mean	SD		<u>۔</u>	mean	mean	sD		remale
380-389	-	388	910	1	1.56	ł	I	I	1	t	2	388	890	28	1.52	ł
390-399	4	396	862	119	1.39	ı	ı	ı	ı	ı	4	396	862	119	1.39	I
400-409	·	409	710	1	1.04	-	409	026	I	1.42	2	409	840	184	1.23	50
410-419	~	411	880	I	1.27	m	415	026	õ	1.36	4	414	948	5	1.33	75
420-429	· M	424	1073	8	1.41	4	422	666	135	1.33	~	423	1031	118	1.36	57
430-439	1	435	1108	125	1.34	~	439	1115	106	1.32	15	436	1130	143	1.37	15
640-449	6	445	1144	68	1.30	4	446	1143	39	1.29	13	445	1144	59	1.30	31
450-459	6	455	1204	101	1.28	9	454	1202	8	1.29	16	455	1203	9	1.28	38
460-469	14	464	1292	132	1.30	6	464	1266	122	1.26	ស	797	1282	126	1.28	39
470-479	6	473	1411	138	1.33	9	474	1362	135	1.28	16	473	1394	131	1.31	40
480-489	6	483	1407	108	1.25	Ś	486	1392	131	1.21	5	484	1402	112	1.23	33
490-499	~	494	1481	87	1.23	6	767	1539	199	1.28	16	767	1514	159	1.26	56
500-509	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	504	1611	8	1.26	2	502	1500	64	1.19	20	503	1569	113	1.23	47
510-519	4	514	1680	116	1.24	ŝ	513	1624	197	1.20	6	514	1649	159	1.22	56
520-529	2	527	1850	170	1.26	~	529	1720	1	1.16	4	528	1763	145	1.20	33
530-539	M	534	1850	139	1.22	m	535	1813	265	1.19	9	534	1832	190	1.20	50
540-549	~	544	1940	ı	1.21	~	546	1950	57	1.20	m	545	1947	4 0	1.20	67
550-559	2	554	2225	120	1.31	-	552	2090	i	1.24	m	553	2180	115	1.29	33
570-579	. -	571	2310	ı	1.24	2	576	2405	361	1.26	4	574	2318	240	1.23	67
590-599	I.	ŀ	ı	ı	I	N	596	2695	276	1.28	2	596	2695	276	1.28	ı
TOTAL	101					22					180					
MEAN		469	1351	309	1.29		484	1448	391	1.26		475	1395	350	1.28	42

Biological data by length interval for longnose sucker taken by the 133 mm mesh of survey gillnets during the Table 18.

		summe	r of 19	96 frc	om the H	lesoluti	on Bay ai	rea of	Great	Slave La	(e, N					
LENGTH			MALES					FEMALES	6				¥	DTAL		
INTERVAL (mm)		Length(mm)	Weigh	it (g)	¥	-	ength(mm)	Weigh	t (g)	×		.ength(mm)	Weigh	nt (g)	¥	%
	-	mean	mean	ß		` د	mean	mean	S		` _	mean	mean	SD		remale
430-439	~	433	1140	24	1.41	ı	i	I	I	1	2	433	1140	42	1.41	ł
670-775		446	1175	247	1.33	ı	ı	ı	ı	ł	2	446	1175	247	1.33	I
450-459	ŝ	455	1367	51	1.46	~	455	1290	I	1.37	4	455	1348	57	1.43	S
460-469	M	465	1277	84	1.27	m	464	1530	148	1.53	9	465	1403	176	1.40	50
420-479		470	1560	226	1.50	2	474	1420	85	1.34	4	472	1490	161	1.42	50
480-489	Ś	484	1590	<u>۶</u>	1.40	m	487	1453	5	1.26	ø	485	1539	102	1.35	38
490-499	4	494	1588	152	1.32	∞	494	1519	8	1.26	13	493	1540	112	1.28	67
500-509	~	503	1620	ı	1.27	m	503	1623	6	1.27	ŝ	503	1644	48	1.29	75
510-519	M	513	1787	49	1.32	Ś	515	1757	152	1.29	6	514	1762	113	1.30	63
520-529	ŝ	525	1934	139	1.34	2	525	1905	9	1.32	8	525	1902	125	1.31	29
530-539	N	536	1815	233	1.18	Ś	536	1928	151	1.25	~	536	1896	165	1.23	71
540-549	N	547	1940	57	1.19	-	543	2250	ı	1.41	m	546	2043	183	1.26	33
550-559		553	2105	318	1.25	9	555	2070	148	1.21	∞	554	2079	174	1.22	75
560-569	2	565	2160	141	1.20	~	564	2130	170	1.19	Ś	563	2178	134	1.22	50
570-579	I	ı	ł	ı	ı	4	575	2263	165	1.19	4	575	2263	165	1.19	ı
590-599	-	591	2560	1	1.24	2	596	2445	163	1.16	m	594	2483	133	1.19	67
600009	I	ı	1	ı	ı	~	602	2660	I	1.22	-	602	2660	I	1.22	ı
610-619	1	I	I	ι	i	2	613	2750	113	1.20	~	613	2750	113	1.20	I
											6					
TOTAL MEAN	39	200	1673	348	1.33	Ŋ	527	1867	389	1.27	Ż	515	1783	377	1.29	56

gillnets during the summer of 1996 from	
northern pike taken by survey	velske NT
Biological data by length interval for r	the Beenlintion Ray area of Great Slavi
Table 19.	

			5555	1		2 102										
LENGTH			MALE	s				FEMALES					To	TAL		
INTERVAL (mm)		Length(mm)	Weigh	ht(g)	×	-	ength(mm)	Weigh	t(g)	×		ength(mm)	Weigh	t(g)	¥	- ~ -
	<u>د</u>	mean	mean	ß		ב '	mean	mean	ទ		ב '	mean	mean	SD		Female
450-499	~	482	776	8	0.69	ł	I	ı	ı	I	2	482	776	96	0.69	I
500-549	12	525	1062	86	0.73	m	509	920	92	0.70	17	522	1033	104	0.73	20
550-599	ň	567	1317	157	0.72	Ś	575	1286	86	0.68	20	572	1327	143	0.71	28
600-649	12	622	1814	200	0.75	m	626	1867	146	0.76	18	622	1804	184	0.75	20
650-699	~	672	2291	197	0.76	m	673	2283	135	0.75	1	675	2287	164	0.75	30
700-749	~	715	2755	ł	0.75	2	707	2454	104	0.69	9	720	2867	439	0.76	67
750-799	~	751	2920	ı	0.69	1	ł	I	ı	ł	-	751	2920	ì	0.69	I
800-849	-	849	4655	I	0.76	I	I	I	ı	1	-	849	4655	ı	0.76	1
TOTAL MEAN	54	584	1545	708	0.73	16	209	1659	579	0.71	81	595	1629	713	0.73	23

ts during the	
urvey gillnet	
ofsi	
mesh c	
шШ	F
89	A N
the	
Ą	Jave
taken	reat S
pike	5
northern	Rav area
l for	tio
interva	a Recoli
r length	from th
data by	F 1006
Biological	e immer o
Table 20.	

		summe	r of 19:	96 fro	m the R	esolut	ion Bay ar	rea of (Great	Slave Lal	ke, NT					
LENGTH			MALES					FEMALES					TO	TAL		
INTERVAL	-	ength(mm)	Weigh	t(g)	×	-	_ength(mm)	Weigh	t(g)	¥		ength(mm)	Weigh	it (g)	¥	%
Ì	່ເ	mean	mean	SD		` ב	mean	mean	S		c	mean	mean	OS		remare
450-499	~	482	776	%	0.69	1	ł	ł	1	I	2	482	776	96	0.69	I
500-549	12	525	1062	86	0.73	m	509	920	26	0.70	17	522	1033	104	0.73	20
550-599	12	565	1302	152	0.72	ŝ	575	1286	86	0.68	17	568	1297	134	0.71	53
670-009	00	617	1755	209	0.75	2	617	1835	191	0.78	72	615	1755	193	0.75	20
650-699	0	671	2487	19	0.83	-	657	2230	ı	0.79	m	666	2401	149	0.81	33
700-749	.	715	2755	I	0.75	1	I	I	I	ı	٣	715	2755	i	0.75	ł
TOTAL MEAN	45	558	1323	491	0.73	7	572	1372	435	0.71	57	561	1334	468	0.73	21

LENGTH			MALES					FEMALES					10	TAL		
INTERVAL (mm)	-	_ength(mm)	Weigh	it(g)	×	د	ength(mm)	Weigh	t (g)	×		ength(mm)	Weigh	it (g)	¥	~ ~
Ì	່ຼ	mean	mean	S		ا د	mean	mean	SD		c	mean	mean	SD		remale
550-599	-	595	1509	1	0.72	1	1	ł	I	I	ħ	592	1496	32	0.72	I
600-649	M	631	1873	63	0.75	~	644	1930	ı	0.72	4	634	1887	59	0.74	25
650-699	ŝ	673	2212	171	0.73	2	682	2309	180	0.73	ø	678	2244	156	0.72	29
700-749	1	1	1	ı	ı	~	707	2454	104	0.69	m	206	2552	186	0.72	ı
750-799	"	751	2920	1	0.69	ı	ı	ı	ı	ł	-	751	2920	ı	0.69	ı
800-849	~	849	4655	I	0.76	ı	I	I	ł	ı	~	849	4655	I	0.76	ı
TOTAL MEAN	7	677	2342	852	0.73	Ś	684	2291	238	0.71	50	673	2261	688	0.73	31

	%	remare	1 1		0
	¥		0.74	3	0.78
TAL	t(g)	SD	255 163		864
TO	Weigh	mean	1930 3395		2663
	ength(mm)	mean	079 079		692
	ובן	c	~ ~		4
	¥		11		1
	(b):	SD	11		i
EMALES	Weight	mean	11		1
	ength(mm)	mean	11		ı
	ר	c	11		0
	×		0.79	1	0.79
	t(g)	SD	1 1		I
MALES	Weigh	mean	2110		2110
	ength(mm)	mean	643		643
	Ľ	ا د	-		٣
LENGTH	INTERVAL (mm)		600-649	647-001	TOTAL MEAN

	-	the Res	olution	Bay	area of G	reat S	ilave Lake	NT.								
LENGTH			MALES					FEMALES					10	TAL		
INTERVAL		Length(mm)	Weigh	t(g)	¥		_ength(mm)	Weigh	t(g)	¥		ength(mm)	Weigh	t (g)	¥	%
	_	mean	mean	SD		_	mean	mean	ß		c	mean	mean	SD		remate
0C2_0C2	'	1	1	I	1	•	1	I	1	ł	~	328	200	ı	1.42	ı
250-250	ı	I	ı	I	ı	ı	ı	ı	ı	I	~	355	525	35	1.17	I
022-022	¢	575	550	I	1.06	1	ł	ı	i	ı	~	375	605	78	1.15	ı
280-280	- 1	5	, I	ı	1	I	ı	I	1	ı	•	383	640	1	1.14	1
	I	ı	I	ı	ı	I	ı	ı	1	I	-	395	730	ı	1.18	1
610-040	~	411	890	ł	1.28	1	ł	ı	ı	i	M	412	830	87	1.19	1
007-007	- 1	. 1)	I	1	1	I	1	I	I	-	423	830	1	1.10	1
440-449	I	ı	ı	ı	I	"	448	1050	1	1.17	~	448	1050	I	1.17	ı
460-469	1	I	I	I	ł	ł	I	1	I	I	~	469	1250	ł	1.21	1
	1					•					21					
TOTAL MEAN	N	392	720	240	1.17	-	448	1050	ı	1.17	2	396	750	225	1.19	33

Biological data by length interval for yellow walleye taken by survey gillnets during the summer of 1996 from Table 23.

Biological data by age class for burbot taken by survey gillnets during the summer of 1996 from the Resolution Bay area of Great Slave Lake NT Table 24.

1		ΓE								
	%	FEMA		i	ß	44	3	33	37	34
		¥		0.66	0.63	0.64	0.65	0.63	0.64	0.64
		t(g)	s	32	124	183	117	113	221	181
	Ļ	Weigh1	mean	278	530	685	661	749	797	735
	TOTA	(mm)	SD	16	5	£ 3	30	62	43	24
		Length	mean	348	437	472	467	491	499	485 9
			*	2	m	~	12	42	34	7.
			c	N	4	σ	14	5	41	121
		¥		1	0.55	0.66	0.66	0.61	0.62	0.62
		t(g)	SD	ı	ł	108	150	108	88	111
	ES	Weight	mean	ł	640	733	588	743	741	723
	FEMAL	(mm	SD	1	I	39	80 M	28	33	34
		ength	mean	ı	489	482	445	497	493	0 489
.			*		m	9	9	43	35	<u></u>
z			c	'	ſ	4	4	17	14	40
IVE LAK		×		0.66	0.66	0.62	0.64	0.65	0.64	0.65
ar Jia		t(g)	8	2	123	232	76	117	243	194
e le	S	Weigh	mean	278	767	979	691	751	662	729
irea o	MALE	(um)	SD	14	97	67	ĥ	18	¥	44
bay a		Length	mean	348	027	797	523	488	496	481 8
			%	۳	ר ו	1 10	<u>ب</u>	77	3	► ►
			c	^	1 M	א נ	Ϋ́	2 2	54	12 78
	AGE	ઝે		1	ŀv	`	~	- 0	0	TOTAL MEAN MEAN AG

			from	the	Resolu	ution	Bay are	a of	Gre	at Sla	ve L	ake, I	Υ.		5			3	2			
AGE				MAL	ES						FEMA	LES						TOT	H.			%
(ý			Length	(uuu)	Weigh	it (g)	×	I	_	-ength	(m	Weigh	it (g)	×			Length	(mm)	Weigh	t(g)	×	FEMALE
	c	*	mean	SD	mean	SD		c	*	mean	S	mean	SD		c	*	mean	SD	mean	SD		
4	-	-	359	1	300		0.65	1	•	1	ŀ	ł	1	•	-	-	359	1	300	1	0.65	1
Ś	M	4	420	46	494	123	0.66	~	m	489	ı	640	ł	0.55	4	m	437	5	530	124	0.63	55
9	ŝ	~	464	49	646	232	0.62	4	9	482	39	733	108	0.66	6	00	472	43	685	183	0.64	77
~	9	14	475	23	691	64	0.64	4	6	445	38	588	150	0.66	14	2	467	30	661	117	0.65	5
80	32	44	485	28	734	<u> 8</u>	0.64	17	43	497	28	743	108	0.61	67	43	489	28	737	6	0.63	35
0	52	R	486	31	733	64	0.64	14	35	493	35	741	88	0.62	38	8	491	32	741	2	0.63	39
TOTAL YEAN YEAN AG	р 2 2	~	478 .8	36	706	127	0.64	64	o S	489 0	34	723	111	0.62	115		483	35	714	121	0.63	35

he summer of	
mesh of survey gillnets during th	
e 114 mm	ake, NT.
taken by th	Great Slave L
ss for burbot	Bay area of (
ita by age cla	he Resolution
Biological da	1996 from th
Table 26.	

%	EMALE		I	ı	0
	- ×		0.68	0.69	0.69
	(f)	S0	93	48	85
	eight(san	126	202	12 2
OTAL	ž	l ě	3 10	0 15	1 13
-	EH (m	S S	ſ	N	4
	Lengt	mean	532	601	573 .6
		%	6	%	00
		E	2	m	ŝ
	×		1	I	ł
	(g)	SD	I	ı	I
ES	Weight	nean	I	ı	I.
FEMAL		ទ	н	ı	1
	ength(nean	I	ł	1
	Ē	%	Т	ı	
		c	ı	ı.	o
	×		0.68	0.66	0.67
	(ɓ);	sD	93	206	313
S	Weight	mean	1026	1519	1272
MALE	(mm)	S	13	7	48
	Length	mean	532	612	572 .5
		*	50	20	00
		E	2	N	й 4 Н
AGE	Ś		∞	0	TOTAL Mean Yean ag

*	FEMALE		I
	¥		0.67
	(ĝ)	s	I
L.	Weight	mean	255
T01/	(mm)	SD	I
	Length(mean	336
		%	100
		Ľ	٦
	¥		1
	(ĝ)	S	I
ES	Weight	mean	I
FEMA	(mm	ß	ı
	Length(mean	I
		×	1
	ł	5	
	×		0.67
	(ĝ)	S	1
ES	Weight	mean	255
MAL	(uu)	S	1
	Length	mean	336
		*	90
		٤	-
AGE	(y		4

1996 from the Resolution	
Biological data by age class for goldeye taken by survey gillnets during the summer of	Bay area of Great Slave Lake, NT.
Table 28.	

%	FEMALE		I	1	1	ı	50
	¥		1.11	0.97	1.20	1.27	1.15
	(ĝ)	ß	ı	ı	0	I	2
AL	Weight	mean	230	270	340	410	318
TOT	(mm)	S	ļ	I	5	ı	12
	Length	mean	275	303	306	318	301
		*	20	8	\$	20	00
		2	ſ	~	~	~	ъ
	¥		ı	ı	ı	1.27	1.27
	(6)	ß	I	ı	ı	ł	1
ES	Weight	mean	I	I	1	410	410
EMAL	(m	S	I	1	ł	I	1
	ength(#	mean	ı	ı	i	318	318 0
	-	%	;	ı	ı	8	1.
	l	c	ı	ı	1	~	-
	×		1.11	0.97	1.20	i	1.12
	(ɓ)	S	1	ı	0	1	54
ES	Weight	mean	230	270	340	1	295
MAL	(uu)	S	1	1	11	1	16
 - 	Length	mean	275	303	306	1	297 .8
		%	3	١X	2	l I	2
		5	-		· ^	1	GE 4
AGE	Ś		۰ ا	• •c	, (25	TOTAL Mean Mean A

Bow area of Great Slave Lake NT

	%	FEMALE		ı	ı	ı	ı	ı	I	0
		¥		0.80	2	1.18	1.24	1.21	1.22	1.16
		t (g)	sD	I	ł	I	418	1713	ı	2558
	AL	Weigh	mean	100	1280	2930	5060	6270	2700	4600
	TOT	(mm)	S	ı	I	1	8	45	1	190
		Length	mean	232	502	629	743	798	858	684 6
			%	10	9	9	ğ	30	9	ò.
			ء	-	~	~	M	M	~	10
		¥		ı	ı	1	ı	ï	ł	I
		(ĝ)	SD	ı	ı	1	1	ł	ı	1
	ES	Weight	mean	1	i	I	ı	I	ı	1
	FEMAL	(me	SD	1	I	I	I	I	1	4
		ength(mean	1	I	ł	ı	I	ı	
		-	*	1	ł	ı	ı	ı	I	
2) 2		ļ	5	ı	ı	ł	1	ı	I	0
Ve Lak		×		ı	1.01	1	1	1	I	1.01
		(ĝ)	SD	1	ı	1	ı	ı	ı	I.
2 L C L G L G	s	Weight	mean	1	1280	1	i	I	I	1280
rea c	MALE	(mm	8	1	I	ı	ł	ł	ł	1
вау а		Length(mean	1	502	, i	1	1	I	502
			*	י	100	3 '	I	I	I	4
		ļ	2	1	۲	- 1	I	I	I	1 GE
	AGE	ઝે		^	1 4		~	- 00	0 0	TOTAL MEAN MEAN A

Biological data by age class for lake whitefish taken by survey gillnets during the summer of 1996 from the Resolution Bay area of Great Slave Lake, NT. Table 30.

			0001			aica		- Cia	202													
AGE				MALI	ŝ						FEMAL	ES						TOTA	L L			%
Ś			Length	(mm)	Weigh	t(g)	×			ength(I	Ê	Weigh	t(g)	×	1		Length((mm)	Weigh:	t(g)	×	FEMALE
	5	*	mean	8	mean	ß		٦	י א	mean	ទ	mean	SD		c	*	mean	S	mean	ß		
4	~	-	316	-	445	2	1.41	2	-	311	25	395	106	1.30	2	-	319	18	440	74	1.34	50
5	9	m	330	32	486	184	1.31	9	m	321	ß	433	94	1.29	13	m	326	27	463	137	1.30	50
9	14	9	330	27	471	143	1.28	'n	m	339	ß	596	179	1.49	20	Ś	335	28	523	174	1.34	26
2	28	13	340	26	541	158	1.34	28	15	356	6	655	183	1.42	63	14	351	32	623	204	1.39	50
80	24	7	367	24	725	164	1.45	23	13	379	5	806	197	1.46	5	2	373	27	764	178	1.46	49
6	5	5	377	28	808 808	198	1.48	20	11	385	28	849	201	1.46	57	13	381	28	828	195	1.47	41
10	53	;	398	14	920	156	1.46	ង	14	407	27	1038	310	1.51	54	12	402	2	975	243	1.48	52
1	20	14	400	22	939	185	1.46	21	12	411	27	1068	222	1.52	52	12	404	25	989	208	1.48	41
12	31	14	406	28	1001	212	1.48	24	5	423	28	1154	277	1.51	57	<u>ت</u>	414	29	1070	251	1.49	44
13	17	∞	420	26	1149	241	1.53	15	∞	421	2	1152	255	1.52	37	6	423	24	1166	231	1.53	47
14	9	m	442	З	1428	358	1.63	ø	4	444	33	1418	449	1.57	14	m	443	31	1422	397	1.60	57
15	m	~	413	18	1060	62	1.50	m	2	473	8	1453	344	1.38	2	2	439	48	1244	285	1.47	50
16	~	~	456	5	1350	212	1.44	N	~	480	1	1675	64	1.52	4	~	468	33	1513	227	1.48	50
18	~	0	503	I.	2190	I	1.72	I.	ı	ı	I.	ł	I	ı	~	0	503	1	2190	I	1.72	ı
TOTAL 2	16		383	41	847	309	1,44	182		395	43	676	348	1.48	435		389	75	895	325	1.46	46
IFAN AGE		2.6			;	Ì			6		9	:	:	!		0		ł		Ì	!	2

summer	
during the	
ey gillnets	
sh of surve	
39 mm me	ļ
i by the ξ	
ish taken	i
ce whitefi	
ass for lal	
by age cli	
gical data	
Biolog	•
Table 31.	

	MA	VLES						FEMA	LES						TOT	٩L			%
	ogth(mm)	Weiç	ght (g)	¥		-	.ength((ww	Weigh	ht(g)	¥			Length	(mm)	Weigh	t(g)	¥	FEMALE
	an SC	mear	SI C		c	~	mean	ŝ	mean	SD		c	%	mean	SD	mean	SD		
M ا	6	445		1.41	~	m	311	25	395	106	1.30	5	2	319	18	440	74	1.34	50
ž	18 13	412	3	1.28	ŝ	∞	326	ŝ	454	89	1.30	;	ŝ	323	19	440	68	1.29	50
В	50 27	. 471	143	5 1.28	4	ŝ	332	24	550	168	1.46	18	∞	331	22	489	148	1.32	22
3	54 20	ŝ	3 127	1.33	2	53	352	3	626	185	1.40	49	2	343	26	568	169	1.37	46
36	8 26	726	5 186	1.43	13	5	376	28	785	201	1.45	32	14	372	27	752	185	1.44	45
3	°0 30	751	213	1.45	~	ŝ	370	6£	733	254	1.40	32	14	373	32	792	216	1.44	28
3	11 60	. 941	214	1.47	15	19	404	22	992	190	1.50	27	2	402	20	967	193	1.48	60
38	39 22	861	200	1.44	~	∞	390	24	91	183	1.52	2	σ	389	22	878	191	1.47	33
5	17 90	930	143	1.49	4	Ś	413	9	1170	269	1.64	15	~	401	18	964	205	1.53	27
4	9 29	1086	553	1.45	2	m	409	16	1105	35	1.63	12	ŝ	419	52	1132	210	1.53	22
\$	۱ 6	1590	י ר	1.64	2	m	427	26	1205	445	1.52	m	-	437	26	1333	386	1.56	67
4	5	1030	1	1.55	۲	-	437	I	1250	I	1.50	N	~	421	Ŋ	1140	156	1.52	50
	1	•	1	1	2	m	480	1	1675	64	1.52	2	~	480	1	1675	64	1.52	ı
1					58							529							
99	38	720	1 273	1.40	;	α	376 8	45 7	810	310	1.45	Ì	00	371 8	40	764	289	1.43	41
						5	0						2	5					
	8 366 4555338333333333	Length(mm) ™ Inean S0 336 214 333 334 334 20 335 334 336 23 338 26 338 26 338 26 366 13 366 13 366 13 366 13 366 13 366 13 366 13 366 13 370 36 370 37 370 37 370 37 370 37 370 37 370 37 370 37 380 26 405 - 6 - 7 - 88 - 388 - 400 -	MALES MALES Length(mm) Veig mean SD mear 316 1 Veig 316 1 445 318 13 415 330 27 471 334 20 508 358 26 726 368 26 721 370 30 751 370 30 751 389 22 861 389 22 861 389 27 717 389 27 706 389 27 921086 405 - 1030 405 - 1030 405 - 1030 58 366 38 720	MALES MALES Length(mm) Weight(g) mean SD mean SI 316 1 445 7 330 27 471 143 334 20 731 143 358 26 726 184 370 37 771 213 368 26 726 186 370 30 771 213 379 17 941 214 379 17 941 214 419 29 1086 253 459 - 1030 - 405 - 1030 - - - - - - 366 38 720 230 - 405 - 1030 - - - - - - - -	MALES MALES Length(mm) Weight(g) K mean SD mean SD 316 1 445 7 1.41 318 1 445 7 1.41 318 1 445 7 1.41 318 1 445 7 1.41 318 1 445 7 1.41 333 26 70 508 127 1.28 370 30 751 213 1.45 3.44 370 30 751 213 1.45 3.44 370 30 751 213 1.45 4.45 417 941 214 1.47 3.44 4.45 1.49 419 29 148 2.65 143 1.45 4.45 459 1 1590 1.45 1.45 4.45 1.45 459 1 1590 1.45 </td <td>MALES MALES Length(mm) Veright(g) K mean SD mean SD 316 1 445 7 1.41 2 318 13 412 37 1.28 5 318 13 412 37 1.28 5 330 27 471 143 1.28 5 354 20 508 127 1.33 21 358 26 726 186 1.44 7 370 30 77 213 1.45 7 399 17 941 214 1.47 15 399 17 941 214 1.47 15 405 - 1030 - 1.45 2 2 405 - 1 - - - - 2 2 2 405 - 1.66 2 1.44 7<!--</td--><td>MALES MALES Length(mm) Weight(g) K mean SD mean SD 316 1 445 7 1.41 2 3 318 13 412 37 1.28 4 5 8 330 27 471 47 1.33 21 23 334 20 508 127 1.33 21 23 334 20 508 127 1.33 21 23 370 30 751 213 1.45 7 8 370 30 751 213 1.45 7 8 370 30 77 214 7 8 4 5 370 30 17 214 1.47 7 8 4 5 3 370 20 148 1.47 7 8 4 5 3 4 5</td><td>MALES Length(mm) Weight(g) K Length(mean SD mean SD n X Length(mean SD mean SD n X mean SD 316 1 445 7 1.41 2 3 311 318 13 412 37 1.28 5 8 326 330 27 471 143 1.28 4 5 332 334 20 508 127 1.33 21 23 376 370 30 751 213 1.45 7 8 370 399 17 941 200 1.44 7 8 370 396 26 186 1.44 7 8 370 419 20 1.44 7 8 370 427 20 1.44</td><td>MALES FEMA Length(mm) Weight(g) K Length(mm) mean SD mean SD n % 316 1 445 7 1.41 2 3 311 25 318 13 412 37 1.28 5 8 326 25 330 27 471 143 1.28 5 8 376 28 354 20 508 127 1.33 21 25 29 370 30 751 213 1.45 7 8 370 39 370 30 71 214 1.47 15 19 404 22 389 22 861 200 1.44 7 8 370 39 370 30 145 7 3 3 3 4 22 24 389 20 144 7 8</td><td>MALES FEMALES Length(mm) Weight(g) K Length(mm) Weight Imean SD mean SD n X mean SD mean 316 1 445 7 1.41 2 3 311 25 395 318 13 412 37 1.28 5 8 326 25 454 330 27 1.43 1.28 5 332 24 50 55 55 456 56 55 56</td><td>MALES FEMALES Length(mm) Weight(g) K Length(mm) Weight(g) Length(mm) Weight(g) K Length(mm) Weight(g) K 316 1 445 7 1.41 2 3 311 25 395 106 318 13 412 37 1.28 5 8 326 25 454 89 330 27 471 1.3 1.28 4 5 332 24 550 166 330 27 471 1.33 21 23 326 28 168 1143 15 376 28 733 254 370 30 17 941 214 144 7 8 370 373 254 370 30 1144 7 8 370 39 141 143 141 143 141 143<td>MALES FEMALES Length(mm) Weight(g) K Length(mm) Weight(g) K Length(mm) Weight(g) K 316 1 445 7 1.41 2 3 311 25 395 106 1.30 316 1 445 7 1.41 2 3 311 25 395 106 1.30 318 13 412 313 1.28 4 5 332 24 550 1.40 1.40 330 27 471 1.33 21 23 326 28 1.40 1.40 350 27 471 1.33 21 23 376 28 1.40 1.40 368 266 186 1.44 7 8 370 39 1.40 1.40 370 30 174 1.45 7 8 370 37</td><td>MALES FEMALES Length(mm) Veright(g) K Length(mm) Weight(g) K Length(mm) Weight(g) K mean SD mean SD mean SD mean SD n 316 1 445 7 1.41 2 3 311 25 395 106 1.30 5 318 13 412 37 1.28 5 8 326 25 454 89 1.30 11 330 27 471 143 1.28 4 5 332 24 550 168 1.46 18 330 27 471 145 7 8 370 39 733 254 1.40 49 330 17 941 214 1.45 7 8 370 39 152 21 389 22 1143 1.</td><td>MALES FEMALES Length(mm) Weight(g) K Length(mm) Weight(g) K nean SD mean SD mean SD mean SD n x 316 1 445 7 1.41 2 3 311 25 355 106 1.30 5 2 318 13 412 37 1.28 5 8 326 25 454 89 1.30 11 5 3 14 3 14 36 26 185 1.40 49 21 37 32 24 50 168 1.46 37 14 49 37 31 35 31 32 32 34 30 17 40 37 31 35 31 49 37 32 14 49 32 14 49 37 32 14 49 32 14 49 32</td><td>MALES FEMALES Length(mm) Weight(g) K Length(m) Mean SD N Mean SD N Mean SD N Mean N<!--</td--><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>MALES FEMALES FEMALES TOTAL Length(m) Weight(g) K Length(m) Weight(g) K ToTAL mean SD <</td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td></td></td></td>	MALES MALES Length(mm) Veright(g) K mean SD mean SD 316 1 445 7 1.41 2 318 13 412 37 1.28 5 318 13 412 37 1.28 5 330 27 471 143 1.28 5 354 20 508 127 1.33 21 358 26 726 186 1.44 7 370 30 77 213 1.45 7 399 17 941 214 1.47 15 399 17 941 214 1.47 15 405 - 1030 - 1.45 2 2 405 - 1 - - - - 2 2 2 405 - 1.66 2 1.44 7 </td <td>MALES MALES Length(mm) Weight(g) K mean SD mean SD 316 1 445 7 1.41 2 3 318 13 412 37 1.28 4 5 8 330 27 471 47 1.33 21 23 334 20 508 127 1.33 21 23 334 20 508 127 1.33 21 23 370 30 751 213 1.45 7 8 370 30 751 213 1.45 7 8 370 30 77 214 7 8 4 5 370 30 17 214 1.47 7 8 4 5 3 370 20 148 1.47 7 8 4 5 3 4 5</td> <td>MALES Length(mm) Weight(g) K Length(mean SD mean SD n X Length(mean SD mean SD n X mean SD 316 1 445 7 1.41 2 3 311 318 13 412 37 1.28 5 8 326 330 27 471 143 1.28 4 5 332 334 20 508 127 1.33 21 23 376 370 30 751 213 1.45 7 8 370 399 17 941 200 1.44 7 8 370 396 26 186 1.44 7 8 370 419 20 1.44 7 8 370 427 20 1.44</td> <td>MALES FEMA Length(mm) Weight(g) K Length(mm) mean SD mean SD n % 316 1 445 7 1.41 2 3 311 25 318 13 412 37 1.28 5 8 326 25 330 27 471 143 1.28 5 8 376 28 354 20 508 127 1.33 21 25 29 370 30 751 213 1.45 7 8 370 39 370 30 71 214 1.47 15 19 404 22 389 22 861 200 1.44 7 8 370 39 370 30 145 7 3 3 3 4 22 24 389 20 144 7 8</td> <td>MALES FEMALES Length(mm) Weight(g) K Length(mm) Weight Imean SD mean SD n X mean SD mean 316 1 445 7 1.41 2 3 311 25 395 318 13 412 37 1.28 5 8 326 25 454 330 27 1.43 1.28 5 332 24 50 55 55 456 56 55 56</td> <td>MALES FEMALES Length(mm) Weight(g) K Length(mm) Weight(g) Length(mm) Weight(g) K Length(mm) Weight(g) K 316 1 445 7 1.41 2 3 311 25 395 106 318 13 412 37 1.28 5 8 326 25 454 89 330 27 471 1.3 1.28 4 5 332 24 550 166 330 27 471 1.33 21 23 326 28 168 1143 15 376 28 733 254 370 30 17 941 214 144 7 8 370 373 254 370 30 1144 7 8 370 39 141 143 141 143 141 143<td>MALES FEMALES Length(mm) Weight(g) K Length(mm) Weight(g) K Length(mm) Weight(g) K 316 1 445 7 1.41 2 3 311 25 395 106 1.30 316 1 445 7 1.41 2 3 311 25 395 106 1.30 318 13 412 313 1.28 4 5 332 24 550 1.40 1.40 330 27 471 1.33 21 23 326 28 1.40 1.40 350 27 471 1.33 21 23 376 28 1.40 1.40 368 266 186 1.44 7 8 370 39 1.40 1.40 370 30 174 1.45 7 8 370 37</td><td>MALES FEMALES Length(mm) Veright(g) K Length(mm) Weight(g) K Length(mm) Weight(g) K mean SD mean SD mean SD mean SD n 316 1 445 7 1.41 2 3 311 25 395 106 1.30 5 318 13 412 37 1.28 5 8 326 25 454 89 1.30 11 330 27 471 143 1.28 4 5 332 24 550 168 1.46 18 330 27 471 145 7 8 370 39 733 254 1.40 49 330 17 941 214 1.45 7 8 370 39 152 21 389 22 1143 1.</td><td>MALES FEMALES Length(mm) Weight(g) K Length(mm) Weight(g) K nean SD mean SD mean SD mean SD n x 316 1 445 7 1.41 2 3 311 25 355 106 1.30 5 2 318 13 412 37 1.28 5 8 326 25 454 89 1.30 11 5 3 14 3 14 36 26 185 1.40 49 21 37 32 24 50 168 1.46 37 14 49 37 31 35 31 32 32 34 30 17 40 37 31 35 31 49 37 32 14 49 32 14 49 37 32 14 49 32 14 49 32</td><td>MALES FEMALES Length(mm) Weight(g) K Length(m) Mean SD N Mean SD N Mean SD N Mean N<!--</td--><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>MALES FEMALES FEMALES TOTAL Length(m) Weight(g) K Length(m) Weight(g) K ToTAL mean SD <</td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td></td></td>	MALES MALES Length(mm) Weight(g) K mean SD mean SD 316 1 445 7 1.41 2 3 318 13 412 37 1.28 4 5 8 330 27 471 47 1.33 21 23 334 20 508 127 1.33 21 23 334 20 508 127 1.33 21 23 370 30 751 213 1.45 7 8 370 30 751 213 1.45 7 8 370 30 77 214 7 8 4 5 370 30 17 214 1.47 7 8 4 5 3 370 20 148 1.47 7 8 4 5 3 4 5	MALES Length(mm) Weight(g) K Length(mean SD mean SD n X Length(mean SD mean SD n X mean SD 316 1 445 7 1.41 2 3 311 318 13 412 37 1.28 5 8 326 330 27 471 143 1.28 4 5 332 334 20 508 127 1.33 21 23 376 370 30 751 213 1.45 7 8 370 399 17 941 200 1.44 7 8 370 396 26 186 1.44 7 8 370 419 20 1.44 7 8 370 427 20 1.44	MALES FEMA Length(mm) Weight(g) K Length(mm) mean SD mean SD n % 316 1 445 7 1.41 2 3 311 25 318 13 412 37 1.28 5 8 326 25 330 27 471 143 1.28 5 8 376 28 354 20 508 127 1.33 21 25 29 370 30 751 213 1.45 7 8 370 39 370 30 71 214 1.47 15 19 404 22 389 22 861 200 1.44 7 8 370 39 370 30 145 7 3 3 3 4 22 24 389 20 144 7 8	MALES FEMALES Length(mm) Weight(g) K Length(mm) Weight Imean SD mean SD n X mean SD mean 316 1 445 7 1.41 2 3 311 25 395 318 13 412 37 1.28 5 8 326 25 454 330 27 1.43 1.28 5 332 24 50 55 55 456 56 55 56	MALES FEMALES Length(mm) Weight(g) K Length(mm) Weight(g) Length(mm) Weight(g) K Length(mm) Weight(g) K 316 1 445 7 1.41 2 3 311 25 395 106 318 13 412 37 1.28 5 8 326 25 454 89 330 27 471 1.3 1.28 4 5 332 24 550 166 330 27 471 1.33 21 23 326 28 168 1143 15 376 28 733 254 370 30 17 941 214 144 7 8 370 373 254 370 30 1144 7 8 370 39 141 143 141 143 141 143 <td>MALES FEMALES Length(mm) Weight(g) K Length(mm) Weight(g) K Length(mm) Weight(g) K 316 1 445 7 1.41 2 3 311 25 395 106 1.30 316 1 445 7 1.41 2 3 311 25 395 106 1.30 318 13 412 313 1.28 4 5 332 24 550 1.40 1.40 330 27 471 1.33 21 23 326 28 1.40 1.40 350 27 471 1.33 21 23 376 28 1.40 1.40 368 266 186 1.44 7 8 370 39 1.40 1.40 370 30 174 1.45 7 8 370 37</td> <td>MALES FEMALES Length(mm) Veright(g) K Length(mm) Weight(g) K Length(mm) Weight(g) K mean SD mean SD mean SD mean SD n 316 1 445 7 1.41 2 3 311 25 395 106 1.30 5 318 13 412 37 1.28 5 8 326 25 454 89 1.30 11 330 27 471 143 1.28 4 5 332 24 550 168 1.46 18 330 27 471 145 7 8 370 39 733 254 1.40 49 330 17 941 214 1.45 7 8 370 39 152 21 389 22 1143 1.</td> <td>MALES FEMALES Length(mm) Weight(g) K Length(mm) Weight(g) K nean SD mean SD mean SD mean SD n x 316 1 445 7 1.41 2 3 311 25 355 106 1.30 5 2 318 13 412 37 1.28 5 8 326 25 454 89 1.30 11 5 3 14 3 14 36 26 185 1.40 49 21 37 32 24 50 168 1.46 37 14 49 37 31 35 31 32 32 34 30 17 40 37 31 35 31 49 37 32 14 49 32 14 49 37 32 14 49 32 14 49 32</td> <td>MALES FEMALES Length(mm) Weight(g) K Length(m) Mean SD N Mean SD N Mean SD N Mean N<!--</td--><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>MALES FEMALES FEMALES TOTAL Length(m) Weight(g) K Length(m) Weight(g) K ToTAL mean SD <</td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td></td>	MALES FEMALES Length(mm) Weight(g) K Length(mm) Weight(g) K Length(mm) Weight(g) K 316 1 445 7 1.41 2 3 311 25 395 106 1.30 316 1 445 7 1.41 2 3 311 25 395 106 1.30 318 13 412 313 1.28 4 5 332 24 550 1.40 1.40 330 27 471 1.33 21 23 326 28 1.40 1.40 350 27 471 1.33 21 23 376 28 1.40 1.40 368 266 186 1.44 7 8 370 39 1.40 1.40 370 30 174 1.45 7 8 370 37	MALES FEMALES Length(mm) Veright(g) K Length(mm) Weight(g) K Length(mm) Weight(g) K mean SD mean SD mean SD mean SD n 316 1 445 7 1.41 2 3 311 25 395 106 1.30 5 318 13 412 37 1.28 5 8 326 25 454 89 1.30 11 330 27 471 143 1.28 4 5 332 24 550 168 1.46 18 330 27 471 145 7 8 370 39 733 254 1.40 49 330 17 941 214 1.45 7 8 370 39 152 21 389 22 1143 1.	MALES FEMALES Length(mm) Weight(g) K Length(mm) Weight(g) K nean SD mean SD mean SD mean SD n x 316 1 445 7 1.41 2 3 311 25 355 106 1.30 5 2 318 13 412 37 1.28 5 8 326 25 454 89 1.30 11 5 3 14 3 14 36 26 185 1.40 49 21 37 32 24 50 168 1.46 37 14 49 37 31 35 31 32 32 34 30 17 40 37 31 35 31 49 37 32 14 49 32 14 49 37 32 14 49 32 14 49 32	MALES FEMALES Length(mm) Weight(g) K Length(m) Mean SD N Mean SD N Mean SD N Mean N </td <td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td> <td>MALES FEMALES FEMALES TOTAL Length(m) Weight(g) K Length(m) Weight(g) K ToTAL mean SD <</td> <td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td>	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	MALES FEMALES FEMALES TOTAL Length(m) Weight(g) K Length(m) Weight(g) K ToTAL mean SD <	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

Biological data by age class for lake whitefish taken by the 114 mm mesh of survey gillnets during the summer Table 32.

	%	FEMALE		50	ı	67	56	47	43	47	48	2	ß	67	I		25	ł
		×		1.34	1.58	1.46	1.49	1.51	1.42	1.43	1.45	1.45	1.54	1.39	1.26		1.46	
		(g)	SD	371	62	208	168	127	184	181	244	174	486	436	ı		254	
	_	Jeight	nean	593	826	801	786	880	899	992	1026	1050	1418	1370	1500		276	:
	TOTAI	(mm	SD	65	13	34	27	18	15	20	Ř	24	37	2	1		34	
		-ength(hean	344	374	378	374	387	397	410	412	416	446	461	492		400	1
			, n	-	~	6	14	14	12	ñ	റ്റ	6	m	~	~			10.2
		1	E	2	2	13	19	20	16	1 8	28	12	4	M	-	120	50	
e, NT.		×		1.25	1.61	1.44	1.47	1.40	1.44	1.38	1.48	1.45	1.47	1.32	ı		1 44	
e Lak		(ĝ)	SD	1	i	130	199	223	270	285	252	187	389	417	ı		285	Ì
Slave	ES	Weight	mean	330	782	703	833	825	952	066	1082	1020	1145	1555	1		276	ł
breat	FEMAL	(m	8	ı	ı	24	32	18	19	21	28	15	33	7	I		75	ł
a of C		ength(mean	298	365	365	383	388	402	415	416	412	424	492	I		007	2
are		Ē	~	~	~	6	15	14	6	12	20	1	m	m	ı			10.
n Bay			c	-	~	9	6	0	9	ø	13	2	2	~	I		6	
solutio		×		1.44	I	1.41	1.49	1.53	1.42	1.39	1.43	1.53	1.61	1.55	1.26		1 46	ř
he Re		t(g)	S	1	1	133	120	126	35	147	242	4	509	I	ı		770	i J
om th	s	Weigh!	mean	855	I	813	724	884	866	944	981	973	1690	1000	1500		031	Ż
96 fr	MALE	(mm)	S		ı	31	19	20	13	20	34	~	30	I	I.		2	ł
of 19		Length	mean	390	1	386	364	386	394	408	407	399	469	401	492		202	22° 4.
			%	~	1	ŝ	5	1	ñ	÷	2	5	M		2			6
			5	-	1	M	• • •	10	00	0	14	m	N	· ~	-		3	ij
	AGE	ર્ઝ		2	9	~	. 00	0	10	: =	12	Ē	14	15	16		TOTAL	MEAN A

survey gillnets during the summer	
33 mm mesh of	ŀ
hitefish taken by the 1	
r age class for lake w	
Biological data by	
able 33.	

Dimine to the to the time	
	Lake, NT.
	ea of Great Slave
	ution Bay ar
	from the Resol
monRonord	of 1996 1

AGE				MAL	ES						FEMAI	LES			-			101	4			%
Ś			Length	(mm)	Weigh	t(g)	×			-ength((mm	Weigh	t(g)	×			Length	(me	Weigh	t (g)	×	FEMALE
	5	*	mean	SD	mean	SD		2	~	mean	8	mean	SD		E	*	mean	SD	mean	SD		
~	I	I		I	1	1	1	-	m	397	ı	970	ı	1.55	-	-	397	ı	026	1	1.55	1
9	~	m	402	1	1060	I	1.63	4	12	406	12	995	103	1.49	Ś	~	405	۲	1008	94	1.52	80
10	Ś	16	401	12	963	2	1.49	4	12	425	47	1343	574	1.67	1	16	410	R	1105	370	1.56	44
1	~	22	410	19	1089	93	1.58	v	19	430	24	1257	143	1.58	13	19	419	ß	1166	143	1.58	46
12	9	19	423	22	1180	160	1.56	~	ដ	442	26	1278	319	1.47	14	20	434	26	1240	245	1.51	54
13	~	2	431	22	1289	218	1.61	v	19	436	ž	1322	287	1.57	13	ž	433	22	1304	239	1.59	46
14	M	0	418	17	1200	176	1.64	4	12	463	22	1660	442	1.65	~	9	444	34	1463	411	1.64	57
15	"	m	434	I	1150	I	1.41	I	I	ł	1	1	1	ı	N	m	424	15	1160	14	1.53	1
16	~	m	420	I	1200	I	1.62	ł	1	ı	ł	I	ł	1	۴	۴-	420	I	1200	ı	1.62	I
18	۴	m	503	I	2190	ł	1.72	I	ı	1	ı	I	I	1	-	~	503	1	2190	I.	1.72	ł
FOTAL.	32		420	26	1179	252	1.58	32		425	30	1293	347	1.56	68		426	28	1229	301	1.57	50
TEAN AC	щ	12.	5	ł					11.	2	}		:			11.	8	ł	ļ			2

Biological data by age class for longnose sucker taken by survey gillnets during the summer of 1996 from the Resolution Bav area of Great Slave Lake, NT. Table 34.

						alda				1940												
AGE				MAL	ES						FEMA	TES						T0T/	Ļ			%
ý	I		Lengt	h(mm)	Weigh)t (g)	×	1		Length	(mm)	Weigh	it (g)	¥			Length(Ĩ	Weight	t (g)	×	FEMALE
	C	*	mean	SD	mean	SD		c	%	mean	8	mean	ß		ء	%	mean	ន	mean	sD		
4	5	-	310	1	440	1	1.48	1	I	1	1	1	ı	I	~	0	310	ı	440	I	1.48	1
· •	n NU	N N	331	11	493	51	1.36	I	I	I	ı	ł	ı	ı	m	~	331	11	493	51	1.36	ı
9	ŝ	4	362	19	634	122	1.32	I	ı	ı	ı	1	ı	ı	ŝ	~	362	19	634	122	1.32	ı
~	ŝ	4	387	39	752	205	1.28	~	N	370	∞	665	92	1.31	Ø	m	382	30	726	164	1.29	59
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4	M	375	18	690	102	1.30	Ś	4	408	36	910	280	1.31	1	4	397	33	819	223	1.29	56
6	6	2	429	34	1037	295	1.29	ø	~	434	ង	1070	162	1.31	17	2	431	29	1052	235	1.30	47
10	6	~	434	37	1092	347	1.30	۲	σ	468	2	1354	190	1.32	2	∞	455	34	1250	295	1.31	S
1	5	8	446	37	1142	250	1.27	;	0	487	82	1406	244	1.21	21	ø	468	38	1280	276	1.24	22
12	16	5	450	24	1222	191	1.34	5	;	498	37	1533	289	1.23	30	12	470	39	1365	279	1.31	45
5	16	5	471	30	1338	289	1.26	24	2	495	23	1487	221	1.22	40	16	485	83	1427	258	1.24	9
14	18	14	465	39	1347	286	1.33	ŝ	2	515	5	1794	469	1.29	44	17	494	48	1609	452	1.31	28
15	~	9	482	22	1517	162	1.36	۲	0	537	37	1945	407	1.24	20	∞	517	<b>6</b>	1769	371	1.27	61
16	80	9	490	16	1514	121	1.29	9	Ś	582	17	2420	180	1.23	15	\$	531	48	1929	481	1.27	43
1	4	m	495	40	1575	333	1.29	I	1	ı	I	ı	ı	ı	4	~	495	<b>6</b>	1575	333	1.29	ł
18	9	ŝ	536	26	2003	339	1.29	I	I	I	ł	1	I	ı	9	2	536	26	2003	339	1.29	ı
19	m	~	552	5	2100	594	1.22	-	~	602	I	2660	1	1.22	4	2	565	48	2240	560	1.22	ŝ
20	~	<b>-</b>	549	ı	1900	I	1.15	I	I	1	1	1	ı	ı	~	-	526	33	1810	127	1.25	ı
2	-	~	560	I	1940	ı	1.10	1	I	I	I	I	1	ı	<b>~</b>	0	560	ł	1940	ı	1.10	I
TOTAL	126							117							253							
MEAN		•	454	56	1259	432	1.30	Ì		495	5	1571	472	1.26	ç		474	58	1411	477	1.28	48
MEAN A	ш	2.4						-	5.4						2	t						

Biological data by age class for longnose sucker taken by the 89 mm mesh of survey gillnets during the summer of 1996 from the Resolution Bay area of Great Slave Lake, NT. Table 35.

			5							5													
AGE				MALI	ES					-	EMAL	ES						T0T/	Ļ			*	
Ś			Length	(mm	Weigh	t(g)	×			ength(n	Ê	Weight	t (g)	×			Length	(mm	Weigh	t (g)	×	FEMALE	
	Ē	*	mean	SD	mean	SD		c	~	mean	SD	mean	SD		Ľ	%	mean	SD	mean	sD			
4	-	~	310	1	440	I	1.48	ı	ı	I	I	1	1	1	-	-	310	I	440	J	1.48	I	
Ś	M	9	331	11	493	2	1.36	1	ī	ı	ı	I	ł	ı	m	4	331	5	493	51	1.36	1	
9	Ś	9	362	19	634	122	1.32	ı	ı	ı	ı	I	ŀ	1	Ś	9	362	19	634	122	1.32	ı	
~	ŝ	9	387	39	752	205	1.28	2	9	370	00	665	92	1.31	ø	6	382	R	726	164	1.29	59	
80	4	00	375	18	690	102	1.30	M	9	390	33	763	178	1.28	6	5	388	ğ	750	148	1.27	43	
6	80	16	422	30	676	140	1.26	4	13	421	5	968	8	1.30	12	14	422	52	955	122	1.27	33	
9	Ś	9	428	47	980	333	1.21	M	9	464	ស	1330	114	1.34	ø	6	442	42	1111	316	1.26	38	
1	ŝ	6	430	44	1020	274	1.26	m	9	510	4	1650	294	1.24	ø	6	460	58	1256	417	1.25	38	
12	~	4	437	2	1020	212	1.21	N	9	460	4	1175	219	1.21	4	ŝ	449	30	1098	198	1.21	50	
13	4	∞	450	32	1048	230	1.13	œ	26	482	5	1333	136	1.19	12	14	471	26	1238	214	1.17	67	
14	M	9	462	27	1317	226	1.33	ŝ	16	517	2	1778	820	1.22	ŝ	6	496	62	1605	675	1.26	63	
15	~	4	476	20	1435	2	1.34	۲	m	554	1	2430	ł	1.43	m	4	502	47	1767	575	1.37	33	
17	<b>~</b>	2	495	ı	1490	I	1.23	1	ł	1	ı	I	I	ı	~	~	495	ł	1490	I	1.23	ı	
18	~	~	200	1	1540	I	1.23	ı	ı	I	ı	1	1	1	~	-	200	I	1540	ı	1.23	1	
23	-	2	560	I	1940	I	1.10	1	ł	I	ı	1	I	I	~	-	560	I	1940	I	1.10	ı	
TOTAL	20			L	2		5	31			ç	245	073	70	84		227		107	121	2	10	
mean Mean ag	ų	10.	0 <b>4</b> 10	ŝ	4	040	12.1		1	ç Ç	2	כוכו	<u>v</u>	9		6.	t, t))	ō	0/01	-	9.	ŝ	

le class for longnose sucker taken by the 114 mm mesh of survey gillnets during the	the Resolution Bay area of Great Slave Lake, NT
ogical data by age class	mer of 1996 from the Re
Table 36. Biolo	IMUS

AGE				MAL	ES						FEMA	LES						101	AL			×
ઝે			Length	(mm)	Weigh	it(g)	¥	ļ	[	Length(	Î	Veigh	t(g)	×	ł		Lengt	(mm)	Heigh	t(g)	×	FEMALE
	c	*	mean	S	Mean	S		٤	*	Mean	8	mean	SD		£	*	mean	SD	mean	S		
80	1	1	I	1	1	I	I	~	5	435	2	1130	297	1.36	~	~	435	21	1130	297	1.36	
6	ł	ł	1	ł	1	I	1	m	~	777	28	1133	170	1.29	M	m	444	28	1133	170	5	ı
9	m	~	432	19	1070	171	1.32	4	5	461	26	1233	232	1.25	~	ø	449	27	1163	210	1.28	57
1	4	σ	467	22	1243	185	1.22	~	17	476	8	1299	164	1.20	11	22	473	19	1278	165	1.21	79
12	0	8	446	27	1190	163	1.34	ŝ	12	486	53	1438	160	1.26	15	16	459	ž	1291	197	1.35	36
13	80	17	478	27	1414	159	1.29	σ	2	496	28	1526	278	1.24	17	19	488	29	1473	230	1.27	23
14	5	24	458	ŝ	1297	265	1.34	2	17	2000	48	1573	412	1.24	<b>8</b>	ຊ	475	44	1404	347	1.30	39
15	<b>e</b>	2	469	I	1370	I	1.33	m	~	523	18	1797	276	1.25	Ś	ŝ	513	28	1678	270	1.24	3
16	9	ñ	488	18	1498	134	1.29	2	Ś	587	7	2580	113	1.28	∞	0	513	48	1769	515	1.29	2
17	-	2	447	1	1180	I	1.32	ı	T	ı	ı	I	ı	1	<b>e</b>	-	447	1	1180	1	1.32	¦ 1
18	~	N	552	1	2310	I	1.37	ı	1	1	I	ı	I	ı		~	552	I	2310	ı	1.37	ı
19	~	4	533	54	1870	622	1.21	ł	ī	1	ł	1	I	1	~	2	533	54	1870	622	1.21	1
ଟ୍ସ	ı	ł	ı	I	ı	ł	ı	ı	ŀ	ı	1	I	ł	ŧ	-	~	503	ł	1720	ł	1.35	I
TOTAL	3							3							5							
MEAN	}		468	36	1349	296	1.31	ŧ		488	41	1480	391	1.25			478	40	1418	345	1.28	48
MEAN AG	ų	13	ø.						22.	N						5	0					

Biological data by age class for longnose sucker taken by the 133 mm mesh of survey gillnets during the Table 37.

			summ	er of	199	6 fro	m the H	esol	Ī	n Bay	area	5	reat 5	slave Lá	же, Г	-						
AGE				MALE	S					-	FEMAL	ES						TOT	ي.			%
(y			Length(I	(m	Weight	(g)	×			-ength(i	(me	Veight	t(g)	×			Length(	(mm	Weight	(g)	¥	FEMALE
	٢	*	mean	SD	mean	SD		۲	*	mean	ß	mean	SD		Ē	%	mean	ß	mean	SD		
6	-	m	482	1	1740	1	1.55	-	~	455	ł	1290	1	1.37	~	m	469	19	1515	318	1.46	50
6	<b>~</b> ~	M	470	ı	1720	ı	1.66	4	0	478	14	1493	111	1.37	9	∞	479	ñ	1535	126	1.40	80
1	~	m	446	ı	1350	ı	1.52	~	2	495	I	1430	ł	1.18	~	m	471	35	1390	57	1.35	20
12	ŝ	17	461	18	1360	161	1.39	9	14	522	2	1732	250	1.22	11	14	494	41	1563	282	1.30	55
13	4	13	479	32	1475	391	1.32	~	16	508	<del>ت</del>	1614	66	1.23	"	14	497	25	1563	238	1.26	64
14	4	13	486	56	1508	389	1.31	13	30	521	34	1920	293	1.35	18	ខ	513	40	1817	344	1.34	26
15	4	<del>ا</del> م	488	27	1595	180	1.37	~	16	541	<b>4</b> 5	1939	448	1.21	12	5	522	44	1808	382	1.26	64
16	2	~	497	0	1560	85	1.27	4	6	579	20	2340	156	1.21	~	δ	553	42	2113	395	1.24	67
17	2	~	519	37	1815	233	1.30	ı	ı	ı	ı	ł	ł	ł	N	m	519	37	1815	233	1.30	ł
18	4	13	541	24	2043	293	1.29	I	ł	ı	ı	ı	ł	1	4	Ś	541	24	2043	293	1.29	I
19	<b>~</b> -	m	591	1	2560	ı	1.24	Ļ	~	602	1	2660	ı	1.22	~	m	597	00	2610	7	1.23	20
S	~	м	549	1	1900	I	1.15	1	ı	I	ı	I	ı	ı	~	-	549	I	1900	I	1.15	1
TOTA	02							1							Ř							
MEAN	R		495	, 5	1643	360	1.35	ţ		523	41	1839	371	1.27	2		512	43	1763	373	1.30	59
MEAN AG	ш	14.	2						13.	S						13.	6					

1996 from the	
the summer of	
s during	
y gillnet	
y surve	
taken b	
, pike	NT.
Biological data by age class for northern	Resolution Bay area of Great Slave Lake, I
Table 38.	

AGE				MALE	s						FEMA	LES						TOTAI				*
ý			Length(n	Ê	Weight	(ĝ)	×	l	[]	ength(	(mm	Weight	(g)	×			Length	(m	Weight	(ĝ)	×	FEMALE
	5	*	mean	ß	mean	SD		c	~ ~	mean	SO	mean	SD		٢	*	mean	ß	mean	ß		
4	-	~	470	1	720	I	0.69	-	~	552	I	1310	1	0.78	2	M	511	58	1015	417	0.74	50
ŝ	4	6	487	14	784	158	0.67	۴	2	545	ı	2080	1	1.28	ŝ	~	499	\$	1043	596	0.80	20
· •0	Ś	7	569	5	1319	321	0.71	m	20	265	104	1472	808	0.65	6	13	580	65	1386	470	0.69	38
~	00	18	568	56	1453	498	0.76	2	13	540	49	1123	251	0.71	1	16	560	52	1360	453	0.75	20
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	5	ñ	603	22	1633	616	0.72	4	27	636	54	1932	463	0.74	8	5	614	<b>6</b> 8	1738	589	0.72	24
6	Ś	11	615	55	1684	502	0.71	m	2	660	38	2142	334	0.74	0	13	640	53	1902	471	0.71	38
6	~	ŝ	693	22	2396	508	0.72	~	~	657	I	2230	I	0.79	4	9	663	5	2210	400	0.75	33
Ę	N	Ś	659	ŝ	2285	304	0.80	ı	ı	ı	ı	ł	ı	1	M	4	651	13	2107	376	0.76	ı
12	2	Ś	604	33	1796	161	0.82	ı	ı	i	ı	ı	ı	1	m	4	652	87	2290	865	0.81	ı
5	"	2	849	I	4655	ı	0.76	ı	ı	ł	ı	ı	ł	ı	۴	~	849	I	4655	ł	0.76	1
15	~	2	660	I	2455	I	0.85	i	ı	ı	i	1	ı	ı	~	۴	660	I	2455	ı	0.85	ı
TOTAL	44		204	2	1631	755	52 0	15		610	69	1762	559	0,76	89		603	22	1701	708	0.74	25
MEAN AG	щ	ŝ	. 0	5	3	2			7	2	5					∞	0					

Biological data by age class for northern pike taken by the 89 mm mesh of survey gillnets during the summer Table 39.

			of 15	196 f	rom t	he R(solutior) Bay	/ are	a of G	reat	Slave	e Lak	e, NT.								
AGE				MAL	ES					÷	EMAL	ES						T0T/	Ļ			*
ઝે			Length	(mm)	Weigh	t(g)	×			ength(n	(m	Weight	(ĝ)	×	ł		Length	Ē	Weight	(ĝ)	 \	FEMALE
	c	%	mean	SD	mean	S		c	*	mean	S.	mean	SD		۲	%	mean	SD	mean	SD		
4	-	m	470	'	720	1	0.69	-	6	552	1	1310	I	0.78	2	4	511	58	1015	417	0.74	50
ŝ	4	13	487	14	784	158	0.67	~	6	545	1	2080	ı	1.28	Ś	7	499	62	1043	596	0.80	20
9	ŝ	16	569	51	1319	321	0.71	2	20	540	49	1018	258	0.64	~	16	560	48	1233	318	0.69	29
~	~	22	561	56	1388	200	0.76	2	20	540	49	1123	251	0.71	9	22	554	ß	1305	438	0.74	22
00	0	82	563	44	1299	333	0.71	2	20	590	16	1555	205	0.76	42	27	571	\$	1361	312	0.72	18
0	M	δ	612	22	1703	694	0.72	"	10	633	ı	1970	ı	0.78	4	0	617	6	1770	582	0.73	25
6	~	m	715	I	2755	ł	0.75	۴	9	657	ı	2230	ı	0.79	m	~	661	23	2268	469	0.78	50
5	~	M	655	1	2500	I	0.89	ł	ı	i	ı	I	I	1	~	~	655	I	2500	I	0.89	ı
12	~	m	580	I	1682	L	0.86	ł	ı	I	ı	ı	ı	i	۲	2	580	ł	1682	ł	0.86	I
															:							
TOTAL Mean Mean ai	ж Ж	~	3 564	64	1372	548	0.73	6	2.0	573	49	1498	478	0.78	3	2.	567 3	59	1407	517	0.74	24
	ł	•	2														1					

lass for northern pike taken by the 114 mm mesh of survey gillnets during the summer lution Bay area of Great Slave Lake, NT.	FEMALES TOTAL %	K Length(mm) Weight(g) K Length(mm) Weight(g) K FEMALE	n % mean SD mean SD n % mean SD mean SD	- 1 20 710 - 2380 - 0.66 2 10 651 84 1920 651 0.69 -	.80 1 5 620 - 1909 - 0.80 -	.69 2 40 682 4 2309 180 0.73 7 35 683 48 2330 454 0.72 40	.69 2 40 674 42 2229 422 0.72 5 25 657 45 2007 399 0.70 50	.68 1 5 670 - 2036 - 0.68 -	.71 1 5 662 - 2070 - 0.71 -	.77 1 5 627 - 1909 - 0.77 -	.76 1 5 849 - 4655 - 0.76 -	
lesh (%	10	ŝ	35	3	ŝ	ŝ	ŝ	Ś	•
и ш.		ł	c	2	-	~	Ś	"	Ē	-	"	•
114 n e, NT		×		0.66	ı	0.73	0.72	ı	ı	i	ı	
the e Lak		(g)	SD	T	ł	180	422	ı	ı	I	ı	
en by Slav	ES	Weigh1	mean	2380	I	2309	2229	i	I	1	I	
e tak Great	FEMAL	(m	SO	1	i	4	42	ı	ı	I	I	
rn pik a of (ength(mean	710	ı	682	674	ı	ı	I	ı	
orthe y are			8	ର	ı			ı	ı	ı	ı	
or nc n Ba		ł	5	-	I	N	2	I	I	ı	I	
class f solutio		¥		1	0.80	0.69	0.69	0.68	0.71	0.77	0.76	1
v age ie Re		(đ)	S	1	I	394	206	ł	1	I	1	
lata b om th	s	Weight	mean	1	1909	2473	1655	2036	2070	1909	4655	
ical c 96 fr	MALE	(WW	S	1	ı	38	36	I	i	I	ı	
Biolog of 19:		-ength(nean	1	620	708	621	670	662	627	849	
			~	.	0	27	18	6	6	6	6	
<u>o</u>			c	.	۲	M	N	. –	~	~	~	
able 4	AGE	ý		9	~	. 00	0	10	; =	12	ň	2

			01 13	10		le re	roinios		are	5	- PA	SIAVE		G' N I .								
AGE				MALE	S					ш.	EMAL	ES						TOTA	_			*
Ś			Length(i	Ē	Weight	(b)	×		Ľ	ength(m	Ê	Weight((b	¥			ength(r) E	Weight	(ĝ)	¥	FEMALE
	c	*	mean	8	mean	SD		c		lean	8	mean	S		c	% "	lean	SD	mean	SD		
00	-	100	643	1	2110		0.79		1	ł	ı	I	ı	ł	Ę	33	643	ı	2110	ı	0.79	I
; 5	· ı	ı	1	ı	3	I	ł	ı	1	ı	1	ı	ı	1	~	ß	637	ł	1750	ī	0.68	ı
5	ł	ı	ı	ı.	I	ı	I	1	ı	ı	ı.	I	ı.	I	~	23	748	I	3280	ł	0.78	ı
TOTAL MEAN MEAN AG	<u>ب</u>	, so	643 0	i i	2110	I	0.79	0		1		1	ı		m	10.3	676	62	2380	800	0.75	0

Я

673 9.1

20

0.71

26 2291 238

684 8.0

ŝ

0.73

70 2342 852

677 10.0

1

TOTAL 11 MEAN MEAN AGE

SPECIES	FORK LENGTH (mm)	ROUND WEIGHT (g)	SYMPTOMS OBSERVED	DIAGNOSIS
burbot	496	730	2 lesions(2-3 mm dia.) on left flank	A variety of lesions and epithelial abrasions.
	509	600	epithelial necrosis dorsal to operculum on left side	Pseudomonads are common opportunistic waterborne pathogens that can cause the types of lesions observed in these fish. When
	531	800	3 lesions (0.5-1.5 mm dia.) on the head, left flank, and caudal areas	these, and other opportunistic waterborne organisms, gain access to the fish via abrasions or other wound-type injuries they
	559	960	2 lesions (20 mm dia.) on left operculum	can produce necrosis (i.e. kill tissue) and an inflammatory response. <u>Pseudomonas</u>
	-	-	lesion dorsal to operculum on right side	paucimobilis was the predominant bacterial species isolated from these fish.
longnose	461	1220	flank lesion, left side lateral surface	
SUCKET	528	1900	lesion on right flank between dorsal and anal fins	
lake whitefish	-	-	small red lesions in scale pockets on flanks and ventral surface	
burbot	508	730	inflammation of palatine teeth area	Pseudomones spp. were isolated from one of the affected burbot. Pseudomonas has been
	530	800		implicated in a similar condition observed in cultured salmonids. On gross examination, the inflamed oral cavity resembles entering
	530	940		redmouth disease which is caused by <u>Yersinia</u> ruckeri.
burbot	503	760	pale, discoloured liver	Tests for bacteria were negative. This suggests that the condition may be related to dist (a g bigh for) or to other other.
	133	2390		Toxicological analyses or properly fixed tissue for histopathological study might provide a clear cause.
longnose sucker	345	760	horizontal curvature of the spine	Scoliosis.
lake whitefish	-	-	mottled reddish-brown discoloration of the adipose tissue of the viscera	Cause unknown,
cisco	241	130	Raise fluid-filled lump (~20 mm dia.) on right mid-flank, posterior to operculum. Contents pearly-white in colour and oily in appearance.	Cause unknown. Parasites were not found. An unidentified bacterium was isolated from the oily fluid but it is not known whether it was responsible for the fluid production.

Table 42.Symptoms and diagnoses of diseased fishes collected from Resolution Bay, Great Slave Lake,
NT, in 1996.

SPECIES	·	NUMBER OF I (estimated v	FISH LANDED veight in kg)	
	1994/5°	1995/6 ^b	1996/7°	1997/8 ^d
burbot	1,368	4,157	1,732	3,215
	(2,736)	(8,314)	(3,464)	(6,430)
inconnu	568	570	27	265
	(1,704)	(1,710)	(108)	(1,060)
lake cisco	0	995 (995)	918 (459)	202 (101)
lake trout	0	18 (54)	0	0
lake whitefish	3,040	4,842	3,410	5,329
	(3,040)	(4,842)	(3,410)	(5,329)
northern pike	2,717	1,727	1,681	816
	(5,434)	(3,454)	(3,362)	(1,632)
sucker (longnose and white)	2,005	2,785	2,295	3,664
	(3,008)	(4,177)	(2,295)	(3,664)
walleye	113	487	228	218
	(113)	(487)	(228)	(218)
other	19 (19)	0	0	0
TOTAL	9830	15581	10291	13709
	(16054)	(24033)	(13326)	(18434)

Appendix 1. Harvests by the Fort Resolution Aboriginal food fishery from Resolution Bay of Great Slave Lake during the 1994-97 fishing seasons.

^a These data, collected between 15 June and 21 October 1994, represent an unknown percentage of the total annual harvest from Resolution Bay (DFO 1996).

^b These data, collected between 1 April 1995 and 31 March 1996, represent the total annual harvest (±10%) from Resolution Bay (DFO 1997).

^c These data, collected between 5 June 1996 and 31 March 1997, represent an estimated 90% of the total annual harvest from Resolution Bay (DFO 1998).

^d These data, collected between 2 June 1997 and 31 March 1998, represent an estimated 90% of the total annual harvest from Resolution Bay (G. Low, unpubl. data).

SPECIES		NUMBER O (estimated	F FISH LANDED weight in kg)	
	1994/5*	1995/6 ^b	1996/7°	1997/8 ^d
burbot	46 (92)	0	1 (2)	96 (192)
inconnu	3 (9)	0	0	0
lake whitefish	9,034 (8,040)	10,327 (10,327)	5,514 (5,514)	7,700 (7,700)
northern pike	8,405 (16,810)	1,054 (2,108)	4,895 (9,790)	449 (898)
sucker (longnose and white)	75 (113)	5 (5)	0	81 (81)
walleye	1 (1)	151 (151)	5 (5)	34 (34)
other	2 (2)	0	0	0
TOTAL	17566 (25,067)	11537 (12591)	10415 (15311)	8360 (8905)

Appendix 2. Harvests by the Fort Resolution Aboriginal food fishery from the Little Buffalo River during the 1994-97 fishing seasons.

* These data, collected between 22 September and 21 October 1994, represent an estimated 90% of the total annual harvest from the Little Buffalo River (DFO 1996).

^b These data, collected between 22 September and 21 October 1995, represent an estimated 90% of the total annual harvest from the Little Buffalo River (DFO 1997).

^c These data, collected between 21 September and 20 October 1996, represent an estimated 90% of the total annual harvest from the Little Buffalo River (DFO 1998).

^d These data, collected between 20 September and 21 October 1997, represent an estimated 90% of the total annual harvest from the Little Buffalo River (G. Low, unpubl. data).

Site	Coordinates	Set date	Pull date	Wind	Wave	Cloud	Air	Depth			Water temp	oerature (°C)		
*		(aum)		+ velocity (km/h)	(m)	(%)	(°C)		Surface	Е Т	2 m	3 m	4 m	5 m
-	61°09.705'N,113°45.892'W	24 June (1615 h)		0	0	0	22.1	4-5	22.3	12.7	11.8	11.2	10.2	8.5
			25 June (1045 h)	S15	0.6	^г о	15.4		16.0	14.6	14.3	13.4	13.3	11.6
	61°09.766'N,113°45.988'W	25 June (1030 h)		S15	0.6	۰0	15.4	4-5	16.0	14.6	14.3	13.4	13.3	11.6
-			26 June (0810 h)	SSE15	0.3	0	16.4		14.6	13.9	13.4	13.1	12.8	12.7
	61°09.766'N,113°45.988'W	26 June (1015 h)		SSE15	0.3	°,	16.4	4-5	14.6	13.9	13.4	13.1	12.8	12.7
			27 June (1010 h)	SE15	0.5	01	15.8		12.5	12.5	12.5	12.4	12.4	12.4
	61°09.766'N,113°45.988'W	27 June (0812 h)		SE15	0.5	,o	15.8	ġ	12.5	12.5	12.5	12.4	12.4	12.4
			28 June (0813 h)	SE10	0.3	60	14.5		13.3	13.2	13.1	12.8	12.8	12.4
2	61°08.994'N,113°46.373'W	3 July (A 0090)		SSW25	1.0	1001	12.5	4-6	13.3	13.3	13.3	13.3	13.3	a a a a a a a a a a a a a a a a a a a
	1.1		4 July (0930 h)	o	0	ō	15.4		16.2	14.7	14.5	14.4	13.7	13.6
e	61°08.664'N,113°47.467'W	4 July (0830 h)		o	0	°,	15.4	7.5- 8.5	15.0	14.3	13.4	13.3	13.2	13.3
			5 July (0825 h)	E25	0.6	100	15.4		14.1	14.0	14.0	14.0	13.9	12.9
4	61°06.873'N,113°45.615'W	8 July (A 0060)		S25	0.6	70	16.2	6 8	13.1	13.1	13.1	13.1	13.1	13.1
			9 July (0825 h)	S5	0.3	15	16.6		14.2	14.1	14.0	14.0	13.8	13.4
ß	61°05.919'N,113°47.484'W	9 July (0825 h)		S5	0.3	15	16.6	10	14.2	14.1	14.0	14.0	13.8	13.4
			10 July 10826 h)	E10	0.2	40	16.9		14.9	14.7	14.7	14.3	12.8	12.5

Appendix 3. Location and physical description of sampling sites when gillnets were set and pulled.

ō
Ð.
7
-E-
Ξ
ō
Ŭ.
-
m.
. <u>~</u>
σ
Ę.
ě
×
7
4

Site	Coordinates	Set date	Pull date	Wind	Wave beicht	Cloud	Air temperature	Depth (m)			Water temp	erature (°C)		
\$				+ velocity (km/h)	(L)	(%)	(°C)		Surface	۲ ۳	2 m	3 m	4 m	5 m
و	61°05.053'N,113°49.429'W	10 July (0754 h)		E10	0.2	40	16.9	4-9	14.9	14.9	14.8	14.5	12.8	12.3
			11 July (1600 h)	NW10	0.3	80	18.4		15.4	15.1	14.5	14.4	14.4	14.2
2	61°02.617'N,113°52.728'W	11 Juty (1425 h)		NW10	0.3	80	18.4	ω	15.4	15.1	14.5	14.4	14.4	14.2
			12 July (1400 h)	NW35	3.3	۲,	1		,		1	1	ł	•
œ	61°07.812'N,113°41.398'W	15 July (1000 h)		NE15	0.6	10	15.1	G	15.1	15.1	15.1	15.1	15.1	15.1
			16 July (0930 h)	NE15	0.6	30	12.2		10.7	10.7	10.7	10.7	10.6	10.6
6	61°06.193'N,113°42.373'W	16 July (0755 h)		NE15	0.6	30	12.2	G	10.7	10.7	10.7	10.7	10.6	10.6
			17 July (0930 h)	E10	0.2	0	13.2		12.4	12.4	12.3	12.1	7.0	6.7
10	61°05.404'N,113°43.394'W	17 July (0747 h)		E10	0.2	0	13.2	6.5	12.0	11.9	11.7	11.4	6.7	6.4
			18 July	E5-10	0.2	40	13.9		12.6	12.5	12.4	12.3	12.0	6.9
=	61°03.641'N,113°46.138'W	18 July (0815 h)		E5-10	0.2	40	13.9	6.5	11.7	11.6	11.6	11.6	6.7	6.5
			19 July (0800 h)	NE10-15	0.3	100	14.2		11.8	11.8	11.7	10.7	7.1	6.7
12	61°08.108'N,113°51.614'W	6 August (1100 h)		NE 20-25	1.0	100	11.7	12	12.1	12.0	12.0	11.7	11.7	9.6
			6 August (0820 h)	ο	0.6	100	11.1		10.1	6.6	8.8	8.5	8.1	6.7
13	61°08.003'N,113°53.887'W	7 August (0755 h)		ο	0.6	100	11.1	12	9.3	9.3	С. б	9.3	9.0	8.8
			8 August (1130 h)	W10	0.5	40	11.2		10.8	10.7	10.5	10.1	9.6	9.4

Continued.
ы.
vppendix
~

Site *	Coordinates	Set date	Pull date	Wind	Wave heinht	Cloud	Air temperature	Depth (m)			Water temp	perature (°C)		
2				+ velocity (km/h)	Ē	(%)	(°C)		Surface	1 m	2 m	3 m	4 m	5 m
14	61°07.928'N,113°56.926'W	8 August (1000 h)		W10	0.5	40	11.2	12	8.2	8.2	8.1	8.0	8.0	7.8
			9 August (0805 h)	S5-10	0.5	06	12.2		10.6	10.6	10.4	8.7	7.8	7.8
15	61°07.953'N,113°47.841'W	12 August (0910 h)		S5-10	0.3	06	15.4	22	12.5	12.5	12.5	12.3	11.5	10.8
			14 August (1015 h)	N10-15	0.6	50	13.7		12.2	12.2	12.1	12.1	12.1	12.0
16	61°09.873'N,113°47.436'W	14 August (0935 h)		N10-15	9.0	50	13.7	>5	16.0	16.0	15.9	15.5	15.3	14.8
			15 August (1330 h)	W5	0.2	0	15.4		14.0	13.8	13.6	11.7	11.4	11.3
17	61°09.128'N,113°41.215'W	15 August (1230 h)		W5	0.2	0	15.4	4-5	15.9	14.9	14.7	14.6	14.0	13.4
			16 August (0845 h)	E5	0.2	0	12.1		13.5	13.5	13.5	13.4	13.4	12.2
18	61°11.744'N,113°47.610'W	19 August (1155 h)		0	0	25	16.9	> 5 >	14.3	13.3	13.2	13.1	11.7	7.2
			22 August (0915 h)	SE15-20	1	15	·			,	1		,	
19	61°09.685'N,113°41.113'W	22 August (1200 h)		W10	0.3	100	12.6	∧ 2	12.7	12.8	12.7	12.7	12.7	12.7
			23 August (0820 h)	W10	0.3	100	12.6		12.7	12.8	12.7	12.7	12.7	12.7

' smoke ² a ".." indicates that no data are available, generally due to rough water.

Appendix 4.	Biological data from fish collected at Resolution Bay, Great Slave Lake, NT, 2	26 June - 23 August
	1996, organized by species, collection date, sampling site, and gillnet mesh (stretched measure)

Date	Site	Gillnet	Sample	Fork length	Round Weight	Sex	Fish age (y)	Condition
(ddmmyy)	#	Mesh	Number	(mm)	(g)	•	Fin Otolith	- Factor
BURBOT (Lot	<u>ta lota</u>)							
250696	1	114 mm	BR001	590	1355	m	10	0.66
250696	1	114 mm	BR002	635	1727	m	17	0.67
250696	1	114 mm	BROO3	592	1291	m	10	0.62
250696	1	114 mm	BR004	530	1055	m	12	0.71
250696	1	114 mm	BR005	526	1164	m	12	0.80
250696	1	114 mm	BR006	541	1091	m	, 2 g	0.69
260696	1	133 mm	BR007	730	2809	m	18	0.00
260696	1	133 mm	BROOS	688	1973	m	14	0.61
260696	1	133 mm	BR009	675	2345	m	13	0.76
260696	1	133 mm	BR010	706	2618	m	18	0.74
260696	1	133 mm	BR011	726	2155	m	14	0.56
260696	1	133 mm	BR012	336	255	m	4	0.67
260696	1	114 mm	BR013	597	1318	m	11	0.62
260696	1	114 mm	BR014	661	1500	m	13	0.52
260696	1	114 mm	BR015	626	1445	m	14	0.59
260696	1	114 mm	BR016	774	3891	m	15	0.84
260696	1	114 mm	BR017	578	1427	m	13	0.74
260696	1	114 mm	BR018	620	1664	m	9	0.70
260696	1	114 mm	BR019	604	1373	m	9	0.62
260696	1	114 mm	BR020	625	1455	m	11	0.60
260696	1	114 mm	BR021	590	1127	m	16	0.55
260696	1	114 mm	BR022	533	1064	m	10	0.70
260696	1	114 mm	BR023	509	791	m	11	0.60
260696	1	114 mm	BR024	602	1455	m	10	0.67
260696	1	114 mm	BR025	606	1473	m	12	0.66
260696	1	114 mm	BR026	605	1400	m	13	0.63
260696	1	114 mm	BR027	596	1600	m	11	0.76
260696	1	114 mm	BR028	645	1536	m	12	0.57
260696	1	114 mm	BR029	665	1782	m	10	0.61
260696	1	89 mm	BR030	486	727	m	. 11	0.63
260696	1	89 mm	BR031	468	736	m	8	0.72
260696	1	89 mm	BR032	483	773	m	10	0.69
260696	1	89 mm	BR033	493	764	m		0.64
260696	1	89 mm	BR034	502	927	m	8	0.73
260696	1	89 mm	BR035	380	391	m	5	0.71
260696	1	89 mm	BR036	548	891	m	11	0.54
260696	1	89 mm	BR037	482	782	m	8	0.70
260696	1	89 mm	BR038	500	827	m	8	0.66
260696	1	89 mm	BR039	359	300	m	4	0.65
260696	1	89 mm	BR040	414	336	m	6	0.47
260696	1	89 mm	BR041	506	782	m	10	0.60
260696	1	89 mm	BR042	468	709	m	8	0.69
260696	1	89 mm	BR043	507	755	m	9	0.58
260696	1	89 mm	BR044	465	682	m	10	0.68
260696	1	89 mm	BR045	438	636	m	6	0.76
260696	1	89 mm	BR046	524	755	m	10	0.52
260696	1	89 mm	BR047	484	627	m	7	0.55
260696	1	89 mm	BR048	534	764	m	13	0.50

Appendix	4.	Continued.
----------	----	------------

Date	Site	Gillnet	Sample	Fork length	Round Weight	Sex	Fish	age (y)	Condition
(ddmmyy)	#	Mesh	Number	(mm)	(g)		Fin	Otolith	Factor
260696	1	89 mm	BR049	496	818	m		9	0.67
260696	1	89 mm	BR050	488	682	m		8	0.59
260696	1	89 mm	BR051	509	836	m		9	0.63
260696	1	89 mm	BR052	495	709	m		10	0.58
260696	1	89 mm	BR053	465	627	m			0.62
260696	1	89 mm	BR054	500	782	m			0.63
260696	1	89 mm	BR055	512	864	m		9	0.64
260696	1	89 mm	BR056	489	764	m		8	0.65
260696	1	89 mm	BR057	470	600			-	0.58
260696	1	89 mm	BR058	501	727				0.58
260696	1	89 mm	BR059	480	773				0.70
260696	1	89 mm	BR060	469	709				0.70
260696	1	89 mm	BR061	495	773				0.64
260696	1	89 mm	BR062	462	636				0.65
260696	1	89 mm	BR063	525	845				0.65
260696	1	89 mm	BR064	542	1000				0.58
260696	1	89 mm	BROGS	491	700				0.63
260696	1	89 mm	BROGG	540	955				0.59
260696	1	89 mm	BROGT	509	882				0.61
260696	1	89 mm	BROGR	495	719				0.67
260696	1	89 mm	BROGG	514	227				0.59
260696	1	89 mm	BROZO	514	827				0.61
260696	، 1	89 mm	BR070	510	702				0.93
260696	, 1	89 mm	BR071	510	782				0.59
200000	1	89 mm	BR072 BR073	475	607				0.57
260696	, 1	89 mm	BR073	473 500	764				0.59
200030	1	'99 mm	BR074	500	1019				0.61
200090	1	89 mm	BR075	532	1018				0.68
200696	1	89 mm	BR076	493	804				0.72
260696	1	89 mm	BR077	503	804				0.68
200090	,	89 mm	BR078	491	764				0.65
260696	1	89 mm	BR079	405	591				0.59
260696	1	89 mm	BRUSU	4/4	/55				0.71
260696	1	89 mm	BROBI	470	700				0.67
260696	1	89 mm	BR082	525	864				0.60
260696	1	89 mm	BRO83	500	864				0.69
260696	1	89 mm	BR084	358	282				0.61
260696	1	89 mm	BRO85	496	818				0.67
260696	1	89 mm	BRO86	422	509				0.68
260696	1	89 mm	BRO87	463	682				0.69
260696	1	89 mm	BRO88	358	327				0.71
260696	1	89 mm	BR089	534	900				0.59
260696	1	89 mm	BR090	481	864				0.78
260696	1	89 mm	BK091	472	682				0.65
260696	1	89 mm	BR092	500	736				0.59
260696	1	89 mm	BR093	470	645				0.62
260696	1	89 mm	BR094	489	709				0.61
260696	1	89 mm	BR095	505	718				0.56
260696	1	89 mm	BR096	450	636				0.70
260696	1	89 mm	BR096	510	709				0.53
260696	1	89 mm	BR098	508	809				0.62

Appendix 4. Continued.

Date	Site	Gillnet	Sample	Fork length	Round Weight	Sex	Fish	age (y)	Condition
(ddmmyy)	#	Mesh	Number	(mm)	(g)		Fin	Otolith	Factor
					<u>.</u>				
260696	1	89 mm	BR099	494	755				0.63
260696	1	89 mm	BR100	454	627				0.67
270696	1	89 mm	BR101	684	2410	m		20	0.75
270696	1	89 mm	BR102	545	750	m			0.46
270696	1	89 mm	BR103	530	820	m		13	0.55
270696	1	89 mm	BR104	546	840	m		8	0.52
270696	1	89 mm	BR105	521	890	f		10	0.63
270696	1	89 mm	BR106	506	910	m		15	0.70
270696	1	89 mm	BR107	422	570	m			0.76
270696	1	89 mm	BR108	481	740	m		7	0.66
270696	1	89 mm	BR109	496	680	m		8	0.56
270696	1	89 mm	BR110	510	830	m		8	0.63
270696	1	89 mm	BR111	442	720	m		9	0.83
270696	1	89 mm	BR112	497	830	m		10	0.68
270696	1	89 mm	BR113	499	730	m		6	0.59
270696	1	89 mm	BR114	496	800	m		8	0.66
270696	1	89 mm	BR115	490	760	m		9	0.65
270696	1	89 mm	BR116	470	630	m		5	0.61
270696	1	89 mm	BR117	514	830			9	0.61
270696	1	89 mm	BR118	501	720	m		9	0.57
270696	1	89 mm	BR119	515	780	m		9	0.57
270696	1	89 mm	BR120	467	690			-	0.68
270696	1	89 mm	BR121	528	860				0.58
270696	1	89 mm	BR122	531	970				0.65
270696	1	89 mm	BR123	549	910				0.55
270696	1	89 mm	BR124	485	740				0.65
270696	1	89 mm	BR125	504	800				0.62
270696	1	89 mm	BR126	528	980				0.67
270696	1	89 mm	BR127	494	780				0.65
270696	1	89 mm	BR128	464	670				0.67
270696	1	89 mm	BR129	430	530				0.67
270696	1	89 mm	BR130	556	990				0.58
270696	1	89 mm	BR131	464	720				0.72
270696	1	89 mm	BR132	481	750				0.67
270696	1	89 mm	BR133	561	1150				0.65
270696	1	89 mm	BR134	501	780				0.62
270696	1	89 mm	BR135	514	810				0.60
270696	1	89 mm	BR136	477	790				0.73
270696	1	89 mm	BR137	462	670				0.68
270696	1	89 mm	BR138	519	930				0.67
270696	1	89 mm	BR139	455	750				0.07
270696	1	89 mm	BR140	521	870				0.80
270696	1	89 mm	BR141	506	860				0.02
270696	1	89 mm	BR142	483	760			s.	0.00
270696	1	89 mm	BR143	445	600				0.07
270696	1	89 mm	BR144	472	700				0.08
270696	1	114 mm	BR145	644	1520	m		11	0.0/
270696	1	114 mm	BR146	611	1560	m		11	0.5/
270696	1	114 mm	BR147	659	2050	m		10	0.08
270696	1	114 mm	BR148	635	1800	m		11	0.72
									0.70

Appendix 4. Continued.

Date	Site	Gillnet	Sample	Fork length	Round Weight	Sex	Fish	age (y)	Condition
(ddmmyy)	#	Mesh	Number	(mm)	(g)		Fin	Otolith	Factor
270696	1	114 mm	BR149	622	1430	m		13	0.59
270696	1	114 mm	BR150	618	1620	m		13	0.69
270696	1	114 mm	BR151	555	1300	f		12	0.76
270696	1	114 mm	BR152	522	960	m		8	0.67
270696	1	133 mm	BR153	685	2240	m		12	0.70
270696	1	133 mm	BR154		3400	m			0.70
270696	1	133 mm	BR155	624	1570	m			0.65
270696	1	133 mm	BR156	715	2410	m		13	0.66
270696	1	133 mm	BR157	639	1830	m		10	0.70
270696	1	133 mm	BR158	731	2440	m		13	0.62
280696	1	89 mm	BR159	430	610			15	0.02
280696	1	89 mm	BR160	469	660				0.77
280696	1	89 mm	BR161	485	750	m			0.04
280696	1	89 mm	BR162	490	750	m		•	0.66
280696	1	89 mm	BR163	476	680	m		0	0.64
280696	1	89 mm	BR164	445	620	m		9	0.83
280696	1	89 mm	BR165	430	620			8	0.70
280696	1	89 mm	BR166	433	700			~	0.73
280696	1	89 mm	BR167	4 70 520	970			,	0.65
280696	1	89 mm	DD160	532	970	m		6	0.64
280696	1	89 mm	BR100	503	840	m		8	0.66
280696	1	89 mm	BR 109	400	700	m		9	0.75
280090	1	09 mm	BR170	401	660	m		11	0.67
280090	1	89 mm	BR 171	509	930	m		10	0.71
280696	1	89 mm	BR172		1340	m		10	
280696	1	89 mm	BR173	511	810	m		10	0.61
280696	1	89 mm	BR174	534	890	f		10	0.58
280696	1	89 mm	BR175	487	790	m		8	0.68
280696	1	89 mm	BR176	555	890	f		14	0.52
280696	1	89 mm	BR177	457	610	m		8	0.64
280696	1	89 mm	BR178	481	750	m			0.67
280696	1	89 mm	BR179	501	750	m		11	0.60
280696	1	89 mm	BR180	500	780	m		13	0.62
280696	1	89 mm	BR181	532	810	m		10	0.54
280696	1	89 mm	BR182	499	800	m			0.64
280696	1	89 mm	BR183	559	940	m			0.54
280696	1	89 mm	BR184	490	800	m		13	0.68
280696	1	89 mm	BR185	500	770	m		13	0.62
280696	1	89 mm	BR186	495	820	m		9	0.68
280696	1	89 mm	BR187	477	720	f		13	0.66
280696	1	89 mm	BR188	431	560	m		7	0.70
280696	1	133 mm	BR189	725	2560	m			0.67
280696	1	133 mm	BR190	765	2420	m			0.54
280696	1	133 mm	BR191	698	2220	m			0.65
280696	1	133 mm	BR192	685	2210	m			0.69
280696	1	133 mm	BR193	704	2390	m			0.68
280696	1	133 mm	BR194	689	2370	m			0.72
280696	1	133 mm	BR195	635	1840	m			0.72
280696	1	133 mm	BR196	668	1 97 0	m			0.66
280696	1	133 mm	BR197	535	940	m			0.61
280696	1	133 mm	BR198	482	630	m			0.56

Appendix 4. Continued.

Date	Site	Gillnet	Sample	Fork length	Round Weight	Sex	Fish	age (y)	Condition
(ddmmyy)	#	Mesh	Number	(mm)	(g)		Fin	Otolith	Factor
040796	2	89 mm	BR199	500	820	m		8	0.66
040796	2	89 mm	BR200	493	790	m		8	0.66
040796	2	89 mm	BR201	503	760	m		11	0.60
040796	2	89 mm	BR202	515	860	m		9	0.63
040796	2	89 mm	BR203	521	820	m		9	0.58
040796	2	89 mm	BR204	496	740	m		13	0.61
040796	2	89 mm	BR205	470	620	m		8	0.60
040796	2	89 mm	BR206	475	700	m		9	0.65
040796	2	89 mm	BR207	467	610	m		8	0.60
040796	2	89 mm	BR208	520	630	m		9	0.45
040796	2	89 mm	BR209	474	770	m			0.72
040796	2	89 mm	BR210	511	660	m		10	0.49
040796	2	89 mm	BR211	530	820	m		10	0.55
040796	2	89 mm	BR212	441	520	m		10	0.61
040796	2	89 mm	BR213	439	630	m		8	0.74
040796	2	89 mm	BR214	500	690	m		7	0.55
040796	2	89 mm	BR215	439	560	m		6	0.66
040796	2	89 mm	BR216	540	810	m		8	0.51
040796	2	89 mm	BR217	472	670	m		9	0.64
040796	2	89 mm	BR218	499	640	f		13	0.52
040796	2	89 mm	BR219	500	850	m		10	0.68
040796	2	89 mm	BR220	462	710	m		9	0.72
040796	2	89 mm	BR221	511	750	m		_	0.56
040796	2	89 mm	BR222	473	620	m			0.59
040796	2	89 mm	BR223	414	440	m			0.62
040796	2	89 mm	BR224	522	800	m			0.56
040796	2	89 mm	BR225	550	1110	m			0.67
040796	2	89 mm	BR226	530	700	m			0.07
040796	2	133 mm	BR227	730	2470				0.47
040796	2	133 mm	BR228	658	2350				0.03
040796	2	133 mm	BR229	682	1740	m			0.82
050796	3	89 mm	BR230	475	690	m		10	0.55
050796	3	89 mm	BR231	486	710	m		0	0.04
050796	3	89 mm	BR232	526	860	 m		0	0.62
050796	3	89 mm	BR233	483	800	m		9 7	0.59
050796	3	89 mm	BR234	530	940	111		,	0.71
050796	3	89 mm	BR235	410	540	m		0	0.63
050796	3	89 mm	BR236	475	700	m		9 10	0.74
050796	3	89 mm	BR237	455	670	m		10	0.65
050796	3	89 mm	BR238	531	800			10	0.71
050796	3	89 mm	BR239	509	600				0.53
050796	3	89 mm	BR240	505	800			10	0.45
050796	3	89 mm	BR241	500	830	m		10	0.66
050796	3	89 mm	BR242	520 A76	700	1 1 1		10	0.59
050796	3	89 mm	BR 2/2	+/0	700	m		-	0.65
050796	3	89 mm	DR240	508	790	m		8	0.60
050796	2	80 mm	00244 00375	520	/40	t		10	0.53
050796	3	99 mm	00240	530	800				0.54
050796	3	89 mm	DD440	443 E75	560	m			0.64
050796	2	90 mm	DD140	5/5	/90	t			0.42
030/30	3	09 mm	BK248	501	820	m			0.65

Appendix 4	4. Co	ntinued.
------------	-------	----------

Date	Site	Gillnet	Sample	Fork length	Round Weight	Sex	Fish	age (v)	Condition
(ddmmyy)	#	Mesh	Number	(mm)	(g)		Fin	Otolith	Factor
050796	3	89 mm	BR249	482	690	m			0.62
050796	3	89 mm	BR250	526	860	f			0.59
050796	3	89 mm	BR251	474	700	f			0.66
050796	3	89 mm	BR252	471	670	m			0.64
050796	3	89 mm	BR253	490	720	m			0.61
050796	3	89 mm	BR254	436	500	f			0.60
050796	з	89 mm	BR255	376	370	m			0.70
050796	з	89 mm	BR256	443	540	m			0.62
050796	3	114 mm	BR257	595	1590	m		12	0.75
050796	3	114 mm	BR258	599	1490	m		13	0.69
050796	з	114 mm	BR259	668	1560	f		13	0.53
050796	3	114 mm	BR260	612	1420	m		12	0.52
050796	3	133 mm	BR261	712	2520	m		14	0.02
050796	3	133 mm	BR262	725	2410	m		14	0.70
050796	3	133 mm	BR263	721	2250	f		23	0.63
050796	3	133 mm	BR264	719	2200	m		10	0.60
050796	3	133 mm	BR265	629	1640	m		10	0.61
090796	4	89 mm	BR266	490	650	f		10	0.66
090796	4	89 mm	BR267	470	740	f		10	0.55
090796	4	89 mm	BR268	500	760	f		4	0.71
090796	4	89 mm	BR269	673	1950	m		16	0.61
110796	6	89 mm	BR270	545	920	m		11	0.64
110796	6	89 mm	BR271	500	760			0	0.57
110796	6	89 mm	BR272	500	760	m		o	0.61
110796	6	89 mm	BR 273	516	780	4 11		11	0.61
110796	6	89 mm	BR274	570	890	, m		16	0.57
110796	6	89 mm	BR275	486	740			10	0.46
110796	6	89 mm	BR276	527	990			11	0.64
110796	6	89 mm	BR270	537	720	1		8	0.64
110796	6	89 mm	DN277	420	730				0.56
120796	7	80 mm	DN270	439	610	m 4		/	0.72
120796	7	89 mm	BR2/3	460	610	T			0.63
120796	7	89 mm	BR200	460	510	T		11	0.63
120796	7	89 mm	DR201	455	570	m		8	0.61
120796	7	89 mm	DR202	520	740	T		8	0.53
120796	7	89 mm	DR 203	525	830	T		12	0.57
120796	7	89 mm	BR284	4/1	680	Ť		8	0.65
120796	7	89 mm	BR285	513	810	Ť		11	0.60
120796	7	89 mm	BR280	509	750	m		10	0.57
120796	7	89 mm	BR287	495	690	T		8	0.57
120796	, ,	89 mm	BR288	491	680	m		10	0.57
120796	,	89 mm	BR289	441	630	m		10	0.73
120796	, ,	89 mm	BR290	4/4	670	m		12	0.63
120/96	/	114 mm	BR291	621	1400	f		12	0.58
120/96	/	114 mm	BK292	651	1620	m		13	0.59
100/96	8	89 mm	BK295	476	740	f		10	0.69
160796	8	89 mm	BR296	428	520	m		12	0.66
160/96	8	89 mm	BR297	533	830			9	0.55
160796	8	89 mm	BR298	453	580	m			0.62
160796	8	89 mm	BR299	446	600	f		6	0.68
160796	8	89 mm	BR300	509	740	f		9	0.56

Appendix 4. Continued.

Date	Site	Gillnet	Sample	Fork length	Round Weight	Sex	Fist	age (y)	Condition
(ddmmyy)	#	Mesh	Number	(mm)	(g)	-	Fin	Otolith	Factor
160796	8	89 mm	BR301	517	960	f		10	0.69
160796	8	89 mm	BR302	500	760	f		9	0.61
160796	8	89 mm	BR303	479	720	f		8	0.66
160796	8	89 mm	BR304	492	710	f		6	0.60
160796	8	89 mm	BR305	513	780	f		8	0.58
160796	8	89 mm	BR306	519	810	t		9	0.58
160796	8	89 mm	BR307	465	560	m		13	0.56
160796	8	89 mm	BR308	479	800	m		8	0.73
160796	8	89 mm	BR309	486	820	m		7	0.71
160796	8	114 mm	BR310	602	1480	m		12	0.68
160796	8	1 14 mm	BR311	612	1390	f		12	0.61
160796	8	133 mm	BR312	670	2150	f		16	0.71
170796	9	89 mm	BR313	530	880	f		12	0.59
170796	9	89 mm	BR314	484	710	f		9	0.63
170796	9	89 mm	BR315	514	780	m		15	0.57
170796	9	89 mm	BR316	548	920	f		9	0.56
170796	9	89 mm	BR317	454	660	m		8	0.71
170796	9	89 mm	BR318	500	830	f		8	0.66
170796	9	89 mm	BR319	522	820	f		11	0.58
170796	9	89 mm	BR320	534	800	f.		12	0.58
170796	9	89 mm	BR321	516	790	m		9	0.53
170796	9	89 mm	BR322	505	760	f		8	0.58
170796	9	89 mm	BR323	523	850	f		10	0.59
170796	9	89 mm	BR324	521	870	, f		10	0.59
170796	9	89 mm	BR325	494	750	f		12	0.62
170796	9	89 mm	BR326	489	640	r F		(Z E	0.62
170796	9	89 mm	BR327	408	420	r F		5	0.55
170796	q	89 mm	BR328	522	920	۱ ۲		,	0.62
170796	9	114 mm	BR329	642	1460	r F		15	0.57
170796	Ğ	114 mm	BR330	646	1460	r f		10	0.55
170796	9	114 mm	BR330	640	1350	۱ ح		13	0.57
180796	10	89 mm	DR331	500	1260	1 2		15	0.58
180796	10	99 mm	BN332	543	960	1		11	0.58
180796	10	89 mm	DD333	556	1060	T A		13	0.62
180796	10	89 mm	DD334	518	/90	T		13	0.57
180796	10	89 mm	BR335	445	640	Ť		13	0.73
180796	10	89 mm	BR330	507	/90	m		14	0.61
180796	10	89 mm	BR337	426	510	m		8	0.66
180796	10	89 mm	BR338	484	640	m		12	0.56
180796	10	89 mm	BR339	489	700	t		10	0.60
180796	10	89 mm	BR340	448	630	m		10	0.70
180796	10	114 mm	BR341	594	1350	f		13	0.64
180796	10	114 mm	BR342	609	1300	f		14	0.58
180796	10	114 mm	BR343	612	1470	f		18	0.64
180/96	10	114 mm	BR344	635	1430	f		14	0.56
180796	10	133 mm	BR345	878	5020	m		22	0.74
190796	11	89 mm	BR346	513	840	f			0.62
190796	11	89 mm	BR347	518	900	f		10	0.65
190796	11	89 mm	BR348	506	800	m		10	0.62
190796	11	89 mm	BR349	475	800	m		10	0.75
190796	11	89 mm	BR350	496	730				0.60

A	ppe	ndix	4.	Co	ntin	ued.
---	-----	------	----	----	------	------

Date	Site	Gillnet	Sample	Fork length	Round Weight	Sex	Fish age (y)	Condition
(ddmmyy)	#	Mesh	Number	(mm)	(g)		Fin Otolith	- Factor
190796	11	89 mm	BR351	548	1100	f	11	0.67
190796	11	89 mm	BR352	470	660	m	10	0.64
190796	11	89 mm	BR353	492	780	f	7	0.65
190796	11	89 mm	BR354	522	730	f	, 12	0.53
190796	11	89 mm	BR355	487	700	f	12	0.51
190796	11	89 mm	BR356	535	990	f	12	0.65
190796	11	89 mm	BR357	515	840	f	10	0.05
190796	11	89 mm	BR358	479	730	m	10	0.61
190796	11	89 mm	BR359	532	880	m	10	0.66
190796	11	89 mm	BR360	540	960		13	0.58
190796	11	89 mm	BR361	540	950	۱ ۲	8	0.61
190796	11	89 mm	BR362	480	740	1	10	0.54
190796	11	89 mm	BR363	480	740	m		0.67
190796	11	89 mm	BR364	485	700	m 		0.67
190796	11	89 mm	DR365	472	770	m		0.73
190796	11	89 mm	BR305	511	800	T Z		0.64
190796	11	89 mm	BN300	506	800	Ť		0.62
100706	11	89 mm	BR30/	468	760	m		0.74
190796	11	89 mm	BR368	495	880	t		0.73
190796	11	89 mm	BR369	448	700	t		0.78
190796	11	89 mm	BR370	507	720	f		0.55
190796	11	89 mm	BR371	469	610	f		0.59
190796	11	89 mm	BR372	446	540	f		0.61
190796	11	89 mm	BR373	465	660	f		0.66
190796	11	89 mm	BR374	475	710	m		0.66
190796	11	114 mm	BR375	587	1110	f	12	0.55
190796	11	114 mm	BR376	591	1520	f	14	0.74
190796	11	133 mm	BR377	692	2150	m	13	0.65
070896	12	133 mm	BR378	591	1940	f	13	0.94
070896	12	133 mm	BR379	732	2550	f	13	0.65
070896	12	89 mm	BR380	456	760	f	6	0.80
070896	12	89 mm	BR381	461	620	f	10	0.63
070896	12	89 mm	BR382	518	940	m	13	0.68
070896	12	89 mm	BR383	574	920	f	12	0.49
070896	12	89 mm	BR384	546	850	f	13	0.52
070896	12	89 mm	BR385	421	540	f	7	0.72
070896	12	89 mm	BR386	479	730	f	9	0.66
080896	13	89 mm	BR387	409	460	m	5	0.67
080896	13	89 mm	BR388	470	740	f	9	0.71
080896	13	89 mm	BR389	430	590	m	11	0.74
080896	13	89 mm	BR390	427	550	f	8	0.71
080896	13	89 mm	BR391	458	590	f	9	0.61
080896	13	89 mm	BR392	436	600	m	9	0.72
080896	13	89 mm	BR393	439	600	m		0.71
080896	13	89 mm	BR394	486	730	m	14	0.64
080896	13	89 mm	BR395	545	890			0.55
080896	13	89 mm	BR396	465	700	f	11	0.70
080896	13	89 mm	BR397	486	720	m	13	0.63
080896	13	89 mm	BR398	526	830	f	12	0.57
080896	13	89 mm	BR399	492	940	m	11	0.79
080896	13	114 mm	BR400	545	1180	f	11	0.73

Appendix 4. Continued.

-

Date	Site	Gillnet	Sample	Fork length	Round Weight	Sex	Fish	age (y)	Condition
(ddmmyy)	#	Mesh	Number	(mm)	(g)		Fin	Otolith	Factor
080896	13	114 mm	BR401	697	2200	m		19	0.65
080896	13	114 mm	BR402	616	1570	m		19	0.67
080896	13	133 mm	BR403	638	2050	f		11	0.79
090896	14	89 mm	BR404	452	670	m		8	0.73
090896	14	89 mm	BR405	524	790	f		10	0.55
090896	14	89 mm	BR406	544	990	m			0.61
090896	14	89 mm	BR407	448	580	f		10	0.65
090896	14	89 mm	BR408	514	830	m		14	0.61
090896	14	89 mm	BR409	434	600	f		10	0.73
090896	14	89 mm	BR410	478	640	f		10	0.59
090896	14	89 mm	BR411	485	720	m		8	0.63
090896	14	89 mm	BR412	520	880	m		12	0.63
090896	14	89 mm	BR413	573	870	f		9	0.46
090896	14	89 mm	BR414	524	850	f		11	0.59
090896	14	89 mm	BR415	555	860	f		11	0.50
090896	14	89 mm	BR416	526	840	f		11	0.58
090896	14	89 mm	BR417	471	760	f		9	0.73
090896	14	89 mm	BR418	460	630	f		Ū	0.65
090896	14	89 mm	BR419	472	670	m			0.64
090896	14	89 mm	BR420	477	700	f			0.64
090896	14	89 mm	BR421	475	700	f			0.65
090896	14	89 mm	BR422	480	750	m			0.05
090896	14	89 mm	BR423	511	770	f			0.58
090896	14	89 mm	BR424	526	930	m			0.58
090896	14	89 mm	BR425	470	670	m			0.64
090896	14	89 mm	BR426	467	620				0.65
090896	14	89 mm	BR427	450	610	m			0.01
090896	14	89 mm	BR428	450	590				0.67
090896	14	89 mm	BR429	436	530	, 			0.65
090896	14	89 mm	BR430	485	610	m			0.69
090896	14	89 mm	BR431	405	660	m			0.53
090896	14	89 mm	BR432	440	600	~			0.74
090896	14	89 mm	BR433	518	880	f In			0.63
090896	14	114 mm	BR434	655	1690	۱ ۲			0.63
090896	14	114 mm	BR435	648	1590	۱ ۲		15	0.60
090896	14	114 mm	BR436	694	2120	۱ ۲		14	0.58
090896	14	133 mm	BR437	597	1220	1		16	0.63
140896	15	89 mm	BR439	587	960	m		16	0.60
140896	15	89 mm	BR439	539	960	4			0.55
140896	15	89 mm	BR440	535	300	i x		10	0.61
140896	15	89 mm	BR440	520	770	T		8	0.53
140896	15	89 mm	BR441	4/4	650	т		8	0.61
140896	15	89 mm	DR442	400	740	,			0.70
140896	15	89 mm	BR///	018 187	740	Ť		12	0.53
140996	15	89 mm		457	560	m ·		11	0.59
140906	15	03 mm	DR440 DD440	506	/20	t		8	0.56
140000	15	03 mm	DR440	4/5	580	m		7	0.54
140006	15	03 mm	BR447	480	610	f		9	0.55
140905	15	80 mm	DR448	521	810	m		8	0.57
140000	10	09 mm	BR449	532	1000	f		11	0.66
140830	10	89 mm	BR450	500	780	m		7	0.62

Appendix	(4.	Continued.
----------	-----	------------

Date	Site	Gillnet	Sample	Fork length	Round Weight	Sex	Fish	age (y)	Condition
(ddmmyy)	#	Mesh	Number	(mm)	(g)		Fin	Otolith	Factor
140896	15	114 mm	BR451	526	880	m			0.60
140896	15	133 mm	BR452	792	3270	f		20	0.66
140896	15	133 mm	BR453	703	2280	f		24	0.66
140896	15	133 mm	BR454	719	2850	f		12	0.77
150896	16	89 mm	BR455	550	930	f		14	0.56
150896	16	89 mm	BR456	499	730	m		10	0.59
150896	16	89 mm	BR457	620	1480	f		13	0.62
150896	16	89 mm	BR458	473	680	f		8	0.64
150896	16	89 mm	BR459	477	840	f		13	0.77
150896	16	89 mm	BR460	485	700	f		8	0.61
150896	16	89 mm	BR461	540	830	f		13	0.53
150896	16	89 mm	BR462	489	660	f		13	0.56
150896	16	89 mm	BR463	540	840	f		13	0.53
150896	16	89 mm	BR464	482	640	m		9	0.57
150896	16	89 mm	BR465	434	500	f		10	0.61
150896	16	89 mm	BR466	495	680	m		11	0.56
150896	16	89 mm	BR467	491	580	f		10	0.49
150896	16	89 mm	BR468	455	710	f		9	0.75
150896	1 6	89 mm	BR469	490	650	f		8	0.55
150896	16	89 mm	BR470	435	490	f			0.60
150896	16	89 mm	BR471	504	720	m			0.56
150896	16	89 mm	BR472	483	650	f			0.58
150896	16	89 mm	BR473	455	650	m			0.69
150896	16	89 mm	BR474	482	700	f			0.63
150896	16	89 mm	BR475	490	710	m			0.60
150896	16	89 mm	BR476	534	680	m			0.45
150896	16	114 mm	BR477	580	1470			9	0.75
150896	16	114 mm	BR478	615	1490			19	0.64
150896	16	114 mm	BR479	618	1790			11	0.76
150896	16	133 mm	BR480	675	2050	m		19	0.67
150896	16	133 mm	BR481	733	2390	m		19	0.61
160896	17	89 mm	BR482	460	670	f		9	0.69
160896	17	89 mm	BR483	526	810	f		10	0.56
160896	17	89 mm	BR484	472	680	m		9	0.65
160896	17	89 mm	BR485	500	770	f		11	0.62
160896	17	89 mm	BR486	515	780	f		13	0.57
160896	17	89 mm	BR487	478	710	f		12	0.65
160896	17	114 mm	BR488	583	1240	f		13	0.63
160896	17	114 mm	BR489	579	1190	f		11	0.61
160896	17	133 mm	BR490	705	2500	f		13	0.71
230896	19	89 mm	BR540	520	770	f		11	0.55
230896	19	89 mm	BR541	510	930	m		12	0.70
230896	19	89 mm	BR542	530	760	f		19	0.51
230896	19	133 mm	BR543	707	2370	m			0.67
CISCO sp. (Coregoni	<u>us</u> sp.)							
260696	1	133 mm	CS001	286	155				0.66
050796	3	89 mm	CS002	193	70	m			0.97
050796	3	89 mm	CS003	165	40	m			0.89
									0.00

Appendix 4. Continued.

Date	Site	Gillnet	Sample	Fork length	Round Weight	Sex	Fish	Fish age (y)	
(ddmmyy)	#	Mesh	Number	(mm)	(g)		Fin	Otolith	Factor
090796	4	89 mm	CS004	221	100	f			0.93
110796	6	89 mm	CS005	228	90	m			0.76
110796	6	89 mm	CS006	266	180	f			0.96
120796	7	89 mm	CS007	234	80	m			0.62
120796	7	89 mm	CS008	235	90	m			0.69
120796	7	89 mm	CS009	236	100	m			0.76
120796	7	89 mm	CS010	264	160	f			0.87
120796	7	89 mm	CS035	380	620				1.13
160796	8	89 mm	CS011	395	600	m			0.97
160796	8	89 mm	CS012	191	50	f			0.72
160796	8	133 mm	CS013	217	90	m			0.88
070896	12	89 mm	CS014	187	80				1.22
080896	13	89 mm	CS015	194	100				1.37
080896	13	114 mm	CS016	226	100				0.87
080896	13	133 mm	CS017	192	70				0.99
080896	13	114 mm	CS018	411	830				1.20
080896	13	89 mm	CS019	378	730				1.35
080896	13	89 mm	CS020	397	890				1.42
090896	14	89 mm	CS021	394	700				1.14
090896	14	89 mm	CS022	401	730				1.13
090896	14	89 mm	CS023	224	120				1.07
090896	14	89 mm	CS024	218	100	f			0.97
090896	14	114 mm	CS025	405	820				1.23
090896	14	114 mm	CS026	387	700	m			1.21
090896	14	114 mm	CS027	420	980				1.32
140896	15	89 mm	CS028	205	60				0.70
140896	15	114 mm	CS029	259	160				0.92
140896	15	133 mm	CS030	208	80				0.89
140896	15	133 mm	CS031	238	100				0.26
160896	17	89 mm	CS032	241	130				0.93
160896	17	89 mm	CS033	248	120				0.79
230896	19	89 mm	CS034	354	550	m			1 24
230896	19	89 mm	CS036	366	600				1.27
									1.22
Goldeye (<u>H</u>	liodon <u>ale</u>	esoides)							
230896	19	89 mm	GF001	200	240		10		
230896	19	89 mm	GEODY	230	340	·m	10		1.28
230896	19	89 mm	GEOO2	275	230	m 	5		1.11
230896	10	89 mm	GE003	303	270	m	6		0.97
230896	19	122 mm	GEOO4	313	340	m	10		1.11
230830	13	155 mm	GEOOS	318	410	T	11		1.27
INCONNU (<u>s</u>	Stenodus	leucichthys)							
280696	1	133 mm	INO01	502	1280	m	А		1.01
050796	3	89 mm	IN002	403	770	m	7		1 10
230896	19	. 89 mm	IN003	232	100		2		1.10
230896	19	89 mm	IN004	712	4860				U.dU 1.3E
230896	19	89 mm	IN005	770	5010		, 2		1.30
230896	19	89 mm	IN006	858	7700		9		1 22
							•		1.44

Appendix	4.	Continued.
----------	----	------------

Date	Site	Gillnet	Sample	Fork length	Round Weight	Sex	Fish	age (v)	Condition
(ddmmyy)	#	Mesh	Number	(mm)	(g)		Fin	Otolith	Factor
		<i></i>							
230896	19	89 mm	IN007	775	5580		8		1 20
230896	19	89 mm	IN008	850	8220		8		1.20
230896	19	133 mm	IN009	778	5540		7		1.04
230896	19	133 mm	INO10	629	2930		6		1.10
230896	19	133 mm	INO11	738	4780		7		1.10
LAKE WHITE	FISH (<u>Ca</u>	pregonus clupe	aformis)						
250696	1	114 mm	LW001	375	800	f	9		1 5 2
250696	1	114 mm	LW002	397	890	•	۵ ۵		1.52
250696	1	114 mm	LW003	430	1100	f	11		1.42
250696	1	114 mm	LW004	401	945	f	11		1.38
250696	1	114 mm	LW005	450	977	f	8		1.47
250696	1	114 mm	LW006	365	782	f	6		1.07
250696	1	114 mm	LW007	384	709	•	10		1.01
250696	1	114 mm	LWOOS	436	1432	f	11		1.25
250696	1	114 mm	LW009	400	1077	m	10		1.73
250696	1	114 mm	1 W010	409	955		12		1.38
260696	1	133 mm	1 W011	390	964		9 10		1.40
260696	1	133 mm	1 W012	422	1109		10		1.46
260696	1	89 mm	1 W013	360	591	۱ ۳	12		1.48
260696	1	89 mm	1.0014	380	045	m			1.27
260696	1	89 mm		201	040	m			1.54
260696	1	89 mm		301	008	m			1.45
260696	1	89 mm		332	600	m			1.64
260696	1	89 mm		392	/36	m			1.22
260696	1	89 mm		324	500	Ť			1.47
260696	1	89 mm	LWO19	370	/45	m			1.47
260696	1	89 mm		401	891	m			1.38
200090	1	09 mm		387	845	f			1.46
200090	1	89 mm	LW022	335	509	m			1.35
200090	1	114 mm	LW023	388	700	f	13		1.20
260696	1	114 mm	LW024	34/	591	m	8		1.41
260696	1	114 mm	LW025	391	818	m	10		1.37
260696	1	114 mm	LW026	375	818	f	10		1.55
260696	1	114 mm	LW027	406	827	f	10		1.24
260696	1	114 mm	LW028	368	664	m	8		1.33
260696	1	114 mm	LW029	432	1445	f	10		1.79
260696	1	114 mm	LW030	390	855	m	5		1.44
260696	1	114 mm	LW031	361	600	f	8		1.28
260696	1	114 mm	LW032	394	764	m			1.25
260696	1	114 mm	LW033	375	818	f			1.55
260696	1	114 mm	LW034	370	791	f	12		1.56
260696	1	114 mm	LW035	398	891	f	9		1.41
270696	1	89 mm	LW036	342	520		4		1.30
270696	1	89 mm	LW037	389	750	m	10		1.27
270696	1	89 mm	LW038	324	430	m	5		1.26
270696	1	89 mm	LW039	349	470	m	6		1.11
270696	1	89 mm	LW040	400	740	f	10		1.16
270696	1	114 mm	LW041	373	870	m	9		1.68
270696	1	114 mm	LW042	381	850	m	9		1.54
Appendix 4. Continued.

•

Date	Site	Gillnet	Sample	Fork length	Round Weight	Sex	Fish	age (y)	Condition
(ddmmyy)	#	Mesh	Number	(mm)	(g)		Fin	Otolith	Factor
270696	1	114 mm	LW043	408	900	m	11		1.33
270696	1	133 mm	LW044	410	950	m	11		1.38
280696	1	89 mm	LW045	412	1030	m			1.47
280696	1	89 mm	LW046	390	810	m	11		1.37
280696	1	89 mm	LW047	396	880	f			1.42
280696	1	89 mm	LW048	365	710	m	7		1.46
280696	1	89 mm	LW049	352	680	f	6		1.56
280696	1	89 mm	LW050	347	630	m			1.51
280696	1	89 mm	LW051	345	650	m	9		1.58
280696	1	89 mm	LW052	344	520	f	5		1.28
280696	1	89 mm	LW053	341	540	f	7		1.36
280696	1	89 mm	LW054	317	390	m	6		1.22
280696	1	133 mm	LW055	434	1330	f	13		1.63
280696	1	133 mm	LW056	415	1020	m	10		1.43
040796	2	89 mm	LW057	390	960	m	9		1.62
040796	2	89 mm	LW058	392	1000	f	10		1.66
040796	2	89 mm	LW059	370	730	m	7		1.44
040796	2	89 mm	LW060	391	830		8		1.39
040796	2	89 mm	LW061	394	890	m	12		1.46
040796	2	89 mm	LW062	350	690		7		1.61
040796	2	89 mm	LW063	423	1150	f	9		1.52
040796	2	89 mm	LW064	383	660	m	11		1.17
040796	2	89 mm	LW065	377	790	m	8		1.47
040796	2	89 mm	LW066	347	640	m	7		1 53
040796	2	89 mm	LW067	372	640	f	8		1 24
040796	2	89 mm	LW068	360	560	m	11		1.24
040796	2	89 mm	LW069	305	330	m	7		1.20
040796	2	89 mm	LW070	328	420	m	8		1.10
040796	2	89 mm	LW071	317	420	m	7		1.10
040796	2	89 mm	LW072	312	310	m	, 7		1.52
040796	2	89 mm	LW073	414	1080	m	12		1.02
040796	2	89 mm	LW074	442	1120	f	10		1.52
040796	2	89 mm	LW075	302	310	m	6		1.30
040796	2	89 mm	LW076	324	350	m	7		1.13
040796	2	133 mm	LW077	412	930	f	12		1.03
040796	2	133 mm	LW078	394	720	, t	10		1.33
040796	2	133 mm	LW079	430	1100	f	13		1.10
050796	3	89 mm	LW080	391	860	m	13		1.30
050796	3	89 mm	LW081	425	1340	m	10		1.44
050796	3	89 mm	LW082	371	850	m	8		1.75
050796	3	89 mm	LW083	400	880	m	10		1.00
050796	3	89 mm	LW084	419	1210	f	10		1.38
050796	3	89 mm	LW085	487	1630	f	16		1.04
050796	3	89 mm	LW086	396	920	í f	10		1.41
050796	3	89 mm	LW087	329	480	" "	10		1.48
050796	3	89 mm	LWORR	312	450		7		1.35
050796	3	89 mm	LW089	355	+30 670	111	,		1.47
050796	3	89 mm	LW090	333	370	(1)	9		1.50
050796	3	89 mm	LW091	372	700		9		1.36
050796	3	89 mm	1 W092	201	430	m 	9		1.27
		50 mm	L##032	304	/90	m	10		1.40

Appendix	4.	Co	ntinı	led.
----------	----	----	-------	------

Date	Site	Gillnet	Sample	Fork length	Round Weight	Sex	Fish	age (y)	Condition
(ddmmyy)	#	Mesh	Number	(mm)	(g)		Fin	Otolith	Factor
050796	3	89 mm	LW093	332	600		8		1.64
050796	3	89 mm	LW094	417	1040		10		1.43
050796	3	89 mm	LW095	437	1250	f	15		1.50
050796	3	89 mm	LW096	472	1720	f	16		1.64
050796	3	89 mm	LW097	445	1520	f	14		1.72
050796	3	89 mm	LW098	351	630	m	8		1.46
050796	3	114 mm	LW099	375	750	m	10		1.42
050796	3	114 mm	LW100	369	790	m	12		1.57
050796	3	114 mm	LW101	348	580	f	7		1.38
050796	3	114 mm	LW102	430	1210	f	11		1.52
050796	3	114 mm	LW103	415	970	f	12		1.36
050796	3	114 mm	LW104	387	990	m	10		1.71
050796	3	114 mm	LW105	395	920	m	9		1 49
050796	3	114 mm	LW106	438	1190	f	11		1 42
050796	3	114 mm	LW107	370	850	m	9		1.68
050796	3	114 mm	LW108	414	900	m	7		1.00
050796	3	114 mm	LW109	373	740	f	8		1.27
050796	3	114 mm	LW110	413	1190	f	12		1.49
050796	3	114 mm	LW111	394	1020	m	13		1.65
050796	3	114 mm	LW112	437	1250		13		1.67
050796	3	114 mm	LW113	428	1170	m	.9		1.50
050796	3	114 mm	LW114	421	1030	f	Ū		1.49
050796	3	114 mm	LW115	326	490	f			1.38
050796	3	114 mm	LW116	391	840	m			1.41
050796	3	114 mm	LW117	356	580	f			1.41
050796	3	114 mm	LW118	352	630	m			1.29
050796	3	114 mm	LW119	327	510	f			1.44
050796	3	114 mm	LW120	326	490	f			1.40
050796	3	114 mm	LW121	325	550	m			1.41
050796	3	114 mm	LW122	376	600	m			1.00
050796	3	114 mm	LW123	309	430	m			1.13
050796	3	133 mm	LW124	390	880		a		1.40
050796	3	133 mm	IW125	443	1340	ŕ	11		1.40
050796	3	133 mm	1W126	489	1320	f	10		1.54
050796	3	133 mm	LW127	475	1860	f	10		1.13
050796	3	133 mm	LW128	466	1930	f	14		1.74
050796	3	133 mm	LW129	400	2120	r f	14		1.91
050796	3	133 mm	LW130	420	1200	'n	16		1.71
050796	3	133 mm	LW131	433	1210	m	11		1.02
050796	3	133 mm	LW132	405	1070	m	11		1.49
090796	4	133 mm	LW133	420	1160		14		1.01
090796	4	114 mm	LW134	434	1300	f	12		1.57
090796	4	114 mm	LW135	400	880	m	14		1.59
090796	4	114 mm	LW136	404	950				1.30
090796	4	114 mm	LW137	381	800	f			1.44
090796	4	114 mm	LW138	341	630	m			1.40
090796	4	89 mm	LW139	360	520	m			1.39
090796	4	89 mm	LW140	348	550				1.11
090796	4	89 mm	LW141	332	500				1.31
090796	4	89 mm	LW142	360	700	£			1.37
	т		LTT 172	303	700	Ŧ			1.39

Appendix 4. Continued.

Date	Site	Gillnet	Sample	Fork length	Round Weight	Sex	Fish	age (y)	Condition
(ddmmyy)	#	Mesh	Number	(mm)	(g)		Fin	Otolith	Factor
090796	4	89 mm	LW143	415	920	f			1.29
090796	4	89 mm	LW144	348	620	m			1.47
090796	4	89 mm	LW145	395	910	m			1.48
090796	4	89 mm	LW146	387	770	f			1.33
090796	4	89 mm	LW147	385	800	f			1.40
100796	5	133 mm	LW148	408	970	m			1.43
100796	5	114 mm	LW149	424	1180	f			1.55
100796	5	114 mm	LW150	382	880	f			1.58
100796	5	114 mm	LW151	392	970	m			1.61
100796	5	114 mm	LW152	387	840	f			1.45
100796	5	114 mm	LW153	381	810	f			1 46
110796	6	89 mm	LW154	395	850	f	7		1.38
110796	6	89 mm	LW155	345	550	m	9		1.34
110796	6	89 mm	LW156	374	790	m	10		1.51
110796	6	89 mm	LW157	322	420		7		1.31
110796	6	89 mm	LW158	362	750	f	8		1.20
110796	6	89 mm	LW159	393	990	m	8		1.50
110796	6	89 mm	LW160	369	630	m	8		1.03
110796	6	133 mm	LW161	399	990		10		1.25
110796	6	89 mm	LW162	378	860	f	10		1.50
110796	6	89 mm	LW163	353	710	f	6		1.55
110796	6	89 mm	LW164	495	2060	m	Ū		1.01
110796	6	89 mm	LW165	407	1180	m	٩		1.70
110796	6	89 mm	1W166	388	1010		ۍ ۵		1.75
110796	6	89 mm	1W167	432	1140	4	9		1.73
110796	6	89 mm	1W168	435	1300	ı 4	0 10		1.41
110796	6	89 mm	1W169	306	390	1 4	5		1.58
110796	6	89 mm	1W170	450	1340	, m	12		1.33
110796	6	89 mm	1W171	396	710	111	10		1.4/
110796	6	114 mm	1.W172	402	960		10		1.14
110796	6	114 mm		402	900	m	8		1.48
110796	6	114 mm	EW/174		1950	ا ع	12		1.20
110796	6	114 mm		54Z 47E	1000	I	15		1.16
110796	6	114 mm	LW175	475	1290		13		1.20
110796	6	114 mm		203	1910				1.13
110796	6	114 mm		430	1300	. m	11		1.57
110796	6	133 mm		492	1500	m	16		1.26
120796	7	99 mm		438	1330	m	14		1.58
120796	7	89 mm		345	620	m	/		1.51
120796	7	89 mm		394	880	m	12		1.44
120790	7	89 mm	LW 182	375	/90	m	6		1.50
120796	7	89 mm	LVV 183	389	800	m	12		1.36
120796	,	89 mm	LW184	344	510	m	7		1.25
120790	7	89 mm	LW185	345	620	m	6		1.51
120790	/ 7	89 mm	LW186	360	710	m	12		1.52
120790	/ -	89 mm	LW187	328	480	m	7		1.36
120796	, ,	89 mm	LW188	317	410	m	8		1.29
120/96	/	89 mm	LW189	356	670	m	8		1.48
120796	/	89 mm	LW190	405	1030	m	15		1.55
120796	-	89 mm	LW191	402	980	m	12		1.51
120796	1	89 mm	LW192	410	1190	f	10		1.73

Appendix 4. Continued.

Date	Site	Gillnet	Sample	Fork length	Round Weight	Sex	Fish age (y)		Condition
(ddmmyy)	#	Mesh	Number	(mm)	(g)		Fin	Otolith	Factor
120796	7	89 mm	LW193	350	610	m	8		1.42
120796	7	89 mm	LW194	356	680	m			1.51
120796	7	89 mm	LW195	341	570	m			1.44
120796	7	89 mm	LW196	403	970	m			1.48
120796	7	89 mm	LW197	414	980	m			1.38
120796	7	89 mm	LW198	320	520	m			1 59
120796	7	89 mm	LW199	395	970	m			1 57
120796	7	89 mm	LW200	353	660	f			1.50
120796	7	89 mm	LW201	344	540	m			1.33
120796	7	89 mm	LW202	410	980	m			1.00
120796	7	89 mm	LW203	422	1140	f			1.52
120796	7	89 mm	LW204	390	910	m			1.52
120796	7	89 mm	LW205	370	700	m			1.38
120796	7	89 mm	LW206	334	500	m			1.30
120796	7	89 mm	LW207	339	560	m			1.34
120796	7	89 mm	LW208	420	1070	m			1.44
120796	7	89 mm	LW209	429	1210	m			1.74
120796	7	89 mm	LW210	354	600	m			1.33
120796	7	89 mm	LW211	360	720	m			1.55
120796	7	89 mm	LW212	330	550	m			1.54
120796	7	89 mm	I W213	384	720	4 4			1.53
120796	7	89 mm	LW214	431	1260	'n			1.27
120796	7	89 mm	LW215	406	850	111 4			1.57
120796	7	89 mm	1W216	400	840	۱ ۲			1.27
120796	, 7	89 mm	1.W217	422	1140	1			1.31
120796	, 7	89 mm	1.W/218	422	1090	m 			1.52
120796	7	89 mm	1.1/219	424	790	m z			1.43
120796	, 7	89 mm	1.W/220	377 A1A	1120	T			1.46
120796	, 7	89 mm	1.14/221	414	770	m			1.58
120796	7	89 mm	11//222	370	770	m			1.45
120796	7	89 mm	LW/222	300	830	T			1.42
120796	, 7	89 mm		320	450	T (1.28
120796	7	89 mm		300	760	T			1.55
120796	, 7	89 mm		344	610	T			1.50
120796	7	09 mm		389	920	m			1.56
120796	, 7	89 mm	LW227	331	500	m			1.38
120796	, 7	89 mm	LW228	300	380	m			1.41
120796	, 7	89 mm	L.W 229	288	360	m			1.51
120796	, 7	89 mm	LW230	383	/90	m			1.41
120796	, 7	89 mm		405	990	Ť			1.49
120796	7	89 mm	LW232	489	1850	m			1.58
120796	7	89 mm		427	1180	t			1.52
120796	7	89 mm	LW234	427	1320	m			1.70
120700	/ 7	00 mm	LW235	320	430	m			1.31
120730	/ 7	69 mm		361	620	f			1.32
120790	7	ວອ mm 00	LW23/	390	990	m			1.67
120796	/	89 mm	LW238	412	1040	m			1.49
120796	/	89 mm	LW239	388	890	f			1.52
120796	/	89 mm	LW240	404	830	m			1.26
120796	/	89 mm	LW241	373	700	f			1.35
120796	7	89 mm	LW242	418	980	m			1.34

Appendix 4. Continued.

.

Date	Site	Gillnet	Sample	Fork length	Round Weight	Sex	Fish	age (v)	Condition
(ddmmyy)	#	Mesh	Number	(mm)	(g)		Fin	Otolith	Factor
120796	7	114 mm	LW243	398	910	m	12		1.44
120796	7	114 mm	LW244	405	830	m	10		1.25
120796	7	114 mm	LW245	389	840	m	11		1.43
120796	7	114 mm	LW246	395	860	f	12		1.40
120796	7	114 mm	LW247	342	710	m	8		1.77
120796	7	114 mm	LW248	394	910	f	9		1.49
120796	7	114 mm	LW249	372	810	f	8		1.57
120796	7	114 mm	LW250	407	960	m	13		1.42
120796	7	114 mm	LW251	400	870	f	14		1.36
120796	7	114 mm	LW252	424	990	m	11		1.30
120796	7	114 mm	LW253	379	760	m	12		1.00
120796	7	114 mm	LW254	400	800	f	12		1.40
120796	7	114 mm	LW255	387	830	m	12		1.23
120796	7	114 mm	LW256	410	940	m	12		1.75
120796	7	114 mm	LW257	372	790	m	12		1.50
120796	7	114 mm	LW258	380	750	f	. 2		1.55
120796	7	114 mm	LW259	398	920	m			1.37
120796	7	114 mm	LW260	386	920	f			1.40
120796	7	114 mm	LW261	371	710	m			1.00
120796	7	114 mm	LW262	446	1410	f			1.59
120796	7	114 mm	LW263	431	1310	m			1.59
120796	7	114 mm	LW264	425	1190	f			1.04
120796	7	114 mm	LW265	453	1450	m			1.55
120796	7	114 mm	LW266	439	1140	m			1.50
120796	7	114 mm	LW267	425	1120	f			1.35
120796	7	114 mm	LW268	433	1180	m			1.40
120796	7	114 mm	LW269	413	1130	 m			1.45
120796	7	114 mm	LW270	446	1450	4			1.60
120796	7	114 mm	LW271	429	1260	, m			1.63
120796	7	114 mm	LW272	394	1060	m			1.60
120796	7	114 mm	LW273	391	900	· · · · ·			1.73
120796	7	114 mm	LW274	402	1060	m			1.51
120796	7	114 mm	LW275	425	950				1.63
120796	7	114 mm	1W276	436	1050	۱ ۲			1.24
120796	7	114 mm	1 W 277	375	940	۱ د			1.27
120796	7	114 mm	1 W 278	404	1100	1			1.59
120796	7	114 mm	1 W 279	404	1020	m			1.67
120796	7	114 mm	1.W280	405	1030	m			1.56
120796	, 7	114 mm	1 W 281	405	990	m			1.49
120796	, 7	114 mm	1 W/282	410	880	m			1.53
120796	7	114 mm	1 W 283	291	370	m			1.41
120796	7	114 mm	LW284	372	760	m			1.37
120796	7	114 mm	LW285	39/	970	m 4			1.46
120796	, 7	133 mm	1 11/200	304 121	6/U 1090	T T	10		1.54
120796	, 7	133 mm	1 W 200	404	1090	m T	13		1.33
160796	, 8	89 mm	1 11/202	333	1000	m v	11		1.75
160796	с 8	89 mm	LVV 233	383	830	т	9		1.48
160796	8	89 mm	1 W205	400	1280		13		1.54
160796	8	89 mm	LW295	3/1	1000	,	9		1.51
160796	9 9	99 mm	114/207	335	000	t	8		1.62
100/90	0	៰១ mm	LW29/	3/8	870	m	-9		1.61

A	ppe	ndix	4.	Continu	ed.
---	-----	------	----	---------	-----

Date	Site	Gillnet	Sample	Fork length	Round Weight	Sex	Fish age (y)		Condition
(ddmmyy)	#	Mesh	Number	(mm)	(g)		Fin	Otolith	Factor
									وغقيته والمتعادية والتراج
160796	8	89 mm	LW298	340	510	m	7		1.30
160796	8	89 mm	LW299	322	470	m	7		1.41
160796	8	89 mm	LW300	420	1130	f	13		1.53
160796	8	89 mm	LW301	325	510		9		1.49
160796	8	89 mm	LW302	334	550	f	8		1.48
160796	8	89 mm	LW303	349	590	f	7		1.39
160796	8	89 mm	LW304	310	400				1.34
160796	8	89 mm	LW305	316	410	f	6		1.30
160796	8	89 mm	LW306	370	580	f	8		1.15
160796	8	89 mm	LW307	307	390	m	7		1.35
160796	8	89 mm	LW308	315	420	m	7		1.34
160796	8	89 mm	LW309	340	560	m	9		1 42
160796	8	89 mm	LW310	399	1110		13		1 75
160796	8	114 mm	LW311	374	900	f	8		1 72
160796	8	114 mm	LW312	393	920	f	8		1.52
160796	8	114 mm	LW313	397	940	m	13		1.52
160796	8	114 mm	LW314	415	1130	f	13		1.50
160796	8	114 mm	LW315	416	1080	f	13		1.56
160796	8	114 mm	LW316	441	1260	f	15		1.30
160796	8	114 mm	LW317	438	1130	m	12		1.47
160796	8	114 mm	1W318	414	1000	f	12		1.34
160796	8	114 mm	1.W319	410	1090	ı f	12		1.41
160796	8	114 mm	1.W320	335	620	r F	10 7		1.58
160796	8	114 mm	1 W321	389	1020	ı f	,		1.00
160796	8	114 mm	1 1 1 1 2 2 1	303	790	1 4	9		1.73
160796	8	114 mm	1 W/3 23	308	790	i F	9		1.40
160796	8	114 mm	1W324	402	890	-	9 10		1.41
160796	8	133 mm	1 1/2 25	402	940	m	10		1.45
160796	8	133 mm	11/226	331	1040	m 4	10		1.74
160796	8	133 mm	1 14/2 27	427	1020	1	12		1.31
160796	0	122 mm	LVV327	377	990	T	10		1.85
160796	0	133 mm	LVV320	380	920	m	13		1.60
160796	0	122 mm	LW329	407	1000	m	14		1.48
160796	0 0	133 mm	LW330	455	1800	Ť	10		1.91
160796	0 0	133 mm	LW331	461	1900	Ť	12		1.94
160796	0 0	133 mm	LW332	471	1430	m	12		1.37
160796	8	133 mm	LW333	4/1	1430	t	11		1.37
160796	8	133 mm	LW334	448	1340	t	12		1.49
160796	8	133 mm	LW335	429	1310	t	11		1.66
170796	9	89 mm	LW336	369	800	m			1.59
170796	9	89 mm	LW337	377	640	f	9		1.19
170796	9	89 mm	LW338	403	880	f	10		1.34
1/0796	9	89 mm	LW339	387	940	f	8		1.62
1/0/96	9	89 mm	LW340	385	800	m	11		1.40
1/0796	9	89 mm	LW341	435	1260	f	12		1.53
1/0796	9	89 mm	LW342	426	1040	m	11		1.35
1/0/96	9	89 mm	LW343	386	880	m	10		1.53
1/0/96	9	89 mm	LW344	400	970	f	11		1.52
170796	9	89 mm	LW345	374	740	f	8		1.41
170796	9	89 mm	LW346	382	830	m	12		1.49
170796	9	89 mm	LW347	352	650	m	7		1.49

Appendix 4. Continued.

	Date	Site	Gillnet	Sample	Fork length	Round Weight	Sex	Fish	age (y)	Condition
-	(ddmmyy)	#	Mesh	Number	(mm)	(g)		Fin	Otolith	Factor
	170796	9	89 mm	LW348	390	860	m	11		1.45
	170796	9	89 mm	LW349	379	790	m	13		1.45
	170796	9	89 mm	LW350	389	790	f			1.34
	1 70796	9	89 mm	LW351	390	770	f	12		1.30
	170796	9	89 mm	LW352	313	440	m			1.43
	170796	9	89 mm	LW353	339	590	m			1.51
	170796	9	89 mm	LW354	340	490	f			1.25
	170796	9	89 mm	LW355	362	690	f			1.45
	170796	9	89 mm	LW356	422	1060	m			1.41
	170796	9	89 mm	LW357	381	810	m			1.46
	170796	9	89 mm	LW358	381	930	f			1.68
	170796	9	89 mm	LW359	353	680	f			1.55
	170796	9	89 mm	LW360	348	580	m			1.38
	170796	9	89 mm	LW361	328	470	f			1.33
	170796	9	89 mm	LW362	370	670	f			1.30
	170796	9	89 mm	LW363	329	480	m			1.35
	170796	9	114 mm	LW364	414	880	f			1.33
	170796	9	114 mm	LW365	400	770	f	10		1.24
	170796	9	114 mm	LW366	352	660	m	7		1.20
	170796	9	114 mm	LW367	406	860	f	11		1.01
	170796	9	114 mm	LW368	390	870	m	12		1.25
	170796	9	114 mm	LW369	372	830	m	9		1.47
	170796	9	114 mm	LW370	384	880	m	11		1.01
•	170796	9	114 mm	LW371	427	1070		12		1.55
	170796	9	114 mm	1W372	423	1130	r F	13		1.37
	170796	9	114 mm	1W373	494	1420	, m	10		1.49
	170796	9	133 mm	1W374	404	1040	m	12		1.18
	170796	9	133 mm	1W375	412	990	m	12		1.58
	170796	9	133 mm	1W376	395	1040	 m	10		1.42
	180796	10	89 mm	1.W377	422	1210		10		1.69
	180796	10	89 mm	1 W/378	207	1090		13		1.61
	180796	10	89 mm	1 1/279	337	610	1	13		1.73
	180796	10	89 mm	1.1/280	415	1110	m r	8		1.42
	180796	10	89 mm	1 14/2 9 1	415	1000	T A			1.55
	180796	10	89 mm	1 1/2 9 2	412	1000	T	11		1.43
	180796	10	89 mm	114/202	330	890	m ,	12		1.41
	180796	10	89 mm	11/204	350	300	T	8		1.35
	180796	10	89 mm	11/205	367	780	m	11		1.58
	180796	10	89 mm	1///206	353	350	m			1.45
	180796	10	114 mm	LW300	301	350	m	0		1.28
	180796	10	114 mm	114/200	401	950	т	11		1.47
	180796	10	114 mm	LW300	393	950	m ,	9		1.57
	180790	10	122	LW389	421	960	Ť	12		1.29
	120730	10	122	LW390	410	12/0	m	14		1.84
	100790	10	133 mm	LW3371	393	900	m	10		1.48
	190790	11	03 mm	LW392	282	280	m			1.25
	190790	11	69 mm	LW393	350	650	t			1.52
	190790	11	09 mm	LW394	332	890	m	_		1.44
	190790	11		LW335	360	670	f	7		1.44
	190790	11	122	LW390	370	/40	m	8		1.46
	130130	11	133 mm	LW397	411	1020	m	12		1 47

A	ppe	ndix	4.	Continued.
---	-----	------	----	------------

Date	Site	Gillnet	Sample	Fork length	Round Weight	Sex	Fish age (y)		Condition
(ddmmyy)	#	Mesh	Number	(mm)	(g)		Fin	Otolith	Factor
070896	12	133 mm	LW398	434	1150	m	15		1.41
070896	12	133 mm	LW399	461	1570	m	13		1.60
070896	12	133 mm	LW400	425	1170	f	13		1.52
070896	12	89 mm	LW401	420	1320	f	10		1.78
070896	12	89 mm	LW402	422	1100	m	10		1.46
070896	12	89 mm	LW403	393	1010	f	10		1.66
070896	12	89 mm	LW404	355	720	f	10		1.61
070896	12	89 mm	LW405	385	890	m	9		1.56
070896	12	89 mm	LW406	402	910	m	11		1,40
070896	12	89 mm	LW407	358	610	m	9		1.33
070896	12	89 mm	LW408	331	540	f	7		1.49
070896	12	89 mm	LW409	312	380	m			1.25
070896	12	89 mm	LW410	335	450	m	9		1.20
070896	12	89 mm	LW411	332	450	f	7		1 23
070896	12	89 mm	LW412	350	660	f	7		1.54
070896	12	89 mm	LW413	305	360	f	, 7		1.34
070896	12	114 mm	LW414	374	760	m	9		1.27
070896	12	114 mm	LW415	410	900	m	12		1.45
070896	12	114 mm	LW416	395	820	f	13		1.31
070896	12	114 mm	LW417	425	1370	m	12		1.33
070896	12	114 mm	LW418	447	1420	f	14		1.70
080896	13	89 mm	LW419	329	500	f	7		1.33
080896	13	89 mm	LW420	380	880	m	, 11		1.40
080896	13	89 mm	LW421	365	690	m	8		1.00
080896	13	89 mm	LW422	330	450	f	7		1.75
080896	13	89 mm	LW423	308	420	f	, Q		1.25
080896	13	89 mm	LW424	322	470	ŕ	7		1.44
080896	13	89 mm	LW425	306	410	m	,		1.41
080896	13	89 mm	LW426	292	340		Б		1.43
080896	13	89 mm	LW 427	308	400	r F	6		1.37
080896	13	89 mm	1 W428	342	4 00 610	, 	7		1.37
080896	13	89 mm	1 W429	414	1340		10		1.52
080896	13	89 mm	1.W430	305	380	1 	12		1.89
080896	13	89 mm	1 W431	459	1590		14		1.34
080896	13	89 mm	1 W432	422	1090		14		1.64
080896	13	89 mm	1.W433	340	490		13		1.45
080896	13	89 mm	1.W434	342	480 510	m	/ 6		1.20
080896	13	89 mm	1 W/435	201	790	m r	10		1.38
080896	13	114 mm	1 W/436	394	780	۱ د	10		1.28
080896	13	114 mm	1 W/437	303	760	۱ ۲	9		1.51
080896	13	114 mm	1 1// 439	250	750	T Z	8 7		1.59
080896	13	114 mm	11///29	330	820	т	,		1.35
080896	13	114 mm		375	/90	m	9		1.50
080896	13	114 mm	L VV-741U	330	8 I U 1 3 3 0	m	11		1.37
080896	12	114 mm		44 ð 200	1330	m	14		1.48
080806	12	114 mm	LVV442	388	840	m	10		1.44
080666	12	122	LVV443	341	550	t ,	8		1.39
080896	12	122	LVV444	408	1070	Ť	13		1.58
080886	10	122	LVV440	420	1220	m	12		1.58
000000	10	133 mm	LVV440	433	1330	t	12		1.64
090990	13	133 mm	LW44/	439	1210	m	11		1.43

Appendix 4. Continued.

	Date	Site	Gillnet	Sample	Fork length	Round Weight	Sex	Fish	age (y)	Condition
•	(ddmmyy)	#	Mesh	Number	(mm)	(g)		Fin	Otolith	Factor
	090896	14	89 mm	LW448	457	1620	f			1.70
	090896	14	89 mm	LW449	472			9		
	090896	14	89 mm	LW450	332	530	f	9		1.45
	090896	14	89 mm	LW451	375	800	m	8		1.52
	090896	14	89 mm	LW452	391	960	m	12		1.61
	090896	14	89 mm	LW453	399	990	f	11		1.56
	090896	14	89 mm	LW454	396	970		9		1.56
	090896	14	89 mm	LW455	330	480	f	7		1.34
	090896	14	89 mm	LW456	323	490	f	8		1.45
	090896	14	89 mm	LW457	303	360	m	6		1.29
	090896	14	89 mm	LW458	305	370	m	5		1.30
	090896	14	89 mm	LW459	420	1080	f	10		1.46
	090896	14	89 mm	LW460	425	1160	m	13		1.51
	090896	14	89 mm	LW461	425	1080		9		1.41
	090896	14	89 mm	LW462	402	850		9		1.31
	090896	14	89 mm	LW463	337	600	m	7		1.57
	090896	14	89 mm	LW464	408	890	f	14		1.31
	090896	14	89 mm	LW465	339	640	m	9		1.64
	090896	14	89 mm	LW466	370	750	f	8		1.48
	090896	14	89 mm	LW467	384	860	f			1.52
	090896	14	89 mm	LW468	355	730	f			1.63
	090896	14	89 mm	LW469	320	460	f			1.40
	090896	14	89 mm	LW470	301	330	m			1.21
	090896	14	89 mm	LW471	310	390	m			1.31
	090896	14	89 mm	LW472	289	310	m			1.28
	090896	14	89 mm	LW473	299	370	m			1.38
	090896	14	89 mm	LW474	305	350	f			1 23
	090896	14	114 mm	LW475	365	670	m	8		1.38
	090896	14	114 mm	LW476	380	830	f	11		1.50
	090896	14	114 mm	LW477	413	930		12		1.32
	090896	14	114 mm	LW478	362	790		7		1.67
	090896	14	114 mm	LW479	389	760	f	10		1.29
	090896	14	114 mm	LW480	383	870		6		1.55
	090896	14	114 mm	LW481	424	1290	f	12		1.69
	090896	14	114 mm	LW482	428	1300	m	12		1.66
	090896	14	114 mm	LW483	401	910	m	11		1.41
	090896	14	114 mm	LW484	370	810		8		1.60
	090896	14	114 mm	LW485	402	870	m	11		1.34
	090896	14	114 mm	LW486	490	2050	m	14		1.34
	090896	14	114 mm	LW487	376	640	m	12		1.20
	090896	14	114 mm	LW488	298	330	f	5		1.25
	090896	14	114 mm	LW489	389	930	f	12		1.58
	090896	14	114 mm	LW490	418	1210	f	13		1.66
	090896	14	114 mm	LW491	444	1260	-	7		1 44
	090896	14	114 mm	LW492	409	1000	f	12		1 46
	090896	14	114 mm	LW493	348	630	m	8		1 49
	090896	14	114 mm	LW494	391	830	f	- 7		1 29
	090896	14	114 mm	LW495	388	760	m	•		1 20
	090896	14	114 mm	LW496	411	940	f			1.30
	090896	14	114 mm	LW497	372	700	f			1 26
							•			1.30

Appendix 4. Continued.

Date	Site	Gillnet	Sample	Fork length	Round Weight	Sex	Fish	age (y)	Condition
(ddmmyy)	#	Mesh	Number	(mm)	(g)		Fin	Otolith	Factor
090896	14	133 mm	LW498	412	1090	m	12		1.56
090896	14	133 mm	LW499	450	1440	f	13		1.58
090896	14	133 mm	LW500	420	1330	m	13		1.80
090896	14	133 mm	LW501	402	1060	m	9		1.63
090896	14	133 mm	LW502	402	980		10		1.51
090896	14	133 mm	LW503	413	1170		15		1.66
090896	14	133 mm	LW504	425	1300	m	13		1.69
090896	14	133 mm	LW505	500			13		0.00
090896	14	133 mm	LW506	405	1010	f	11		1.52
090896	14	133 mm	LW507	412	1230	f	11		1.76
090896	14	133 mm	LW508	451	1330		12		1.45
140896	15	89 mm	LW509	320	420	m	5		1.28
140896	15	89 mm	LW510	413	1240	m	11		1.76
140896	15	89 mm	LW511	426	1080	f	10		1.40
140896	15	89 mm	LW512	414	1310	f	12		1.85
140896	15	89 mm	LW513	399	960	m	8		1.51
140896	15	89 mm	LW514	374	700	m	-		1.34
140896	15	89 mm	LW515	374	620	f	9		1 19
140896	15	89 mm	LW516	459	1460	m	13		1.10
140896	15	89 mm	LW517	355	680	m			1.57
140896	15	89 mm	LW518	414	1230	m	10		1.52
140896	15	89 mm	LW519	411	970	m	12		1.75
140896	15	89 mm	1.W520	365	740	4	7		1.40
140896	15	89 mm	1 W521	422	1240	m	10		1.52
140896	15	89 mm	1W522	355	700	f	11		1.05
140896	15	89 mm	1 W/523	378	700	, m	11		1.50
140896	15	89 mm	1.W524	458	1600				1.33
140896	15	89 mm	1 14/525	370	690				1.67
140896	15	89 mm	1 1 1 2 2 5	370	820				1.36
140896	15	89 mm	1.14/527	390	620				1.30
140896	15	89 mm	11/629	360	620 510	m			1.13
140896	15	89 mm	11/520	356	400	m ∡			1.11
140896	15	89 mm	11/520	350	490	1			1.14
140896	15	89 mm	LW530	349	490	m 4			1.15
140896	15	114 mm	LW531	354	510	т	10		1.15
140896	15	114 mm	LW532	389	770	m	10		1.31
140896	15	114 mm	LW533	423	1100		,		1.45
140896	10	114 mm	LW534	395	840		11		1.36
140896	15	114 mm	LW535	396		m	9		
140896	15	114 mm	LW536	366	660	t	9		1.35
140896	15	114 mm	LW537	435	1000	m	11		1.21
140896	15	114 mm	LW538	415	990	m	10		1.39
140896	15	114 mm	LW539	364	730	m	9		1.51
140896	15	133 mm	LW540	433	1370	m	13		1.69
140896	15	133 mm	LW541	480	_	f	13		
140896	15	133 mm	LW542	401	1080	m	11		1.67
140896	15	133 mm	LW543	402	1130	f	9		1.74
140896	15	133 mm	LW544	503	2190	m	18		1.72
140896	15	133 mm	LW545	465	1430	f	14		1.42
140896	15	133 mm	LW546	470	1820	f	13		1.75
140896	15	133 mm	LW547	455	1440	m	13		1.53

Appendix 4. Continued.

Date	Site	Gillnet	Sample	Fork length	Round Weight	Sex	Fish	age (y)	Condition
(ddmmyy)	#	Mesh	Number	(mm)	(g)		Fin	Otolith	Factor
150896	16	89 mm	LW548	372	640	f	7		1.24
150896	16	89 mm	LW549	309	340	m	7		1.15
150896	16	89 mm	LW550	383	790		10		1.41
150896	16	89 mm	LW551	340	470	m	7		1.20
150896	16	89 mm	LW552	360	670	m	7		1.44
150896	16	89 mm	LW553	304	360	m	6		1.28
150896	16	89 mm	LW554	315	440	m	4		1.41
150896	16	89 mm	LW555	400	940	m	11		1.47
150896	16	89 mm	LW556	293	320	f	4		1.27
150896	16	89 mm	LW557	335	530	m	7		1.41
150896	16	89 mm	LW558	401	800	m	9		1.24
150896	16	89 mm	LW559	317	450	m	4		1.41
150896	16	89 mm	LW560	396	880	f	10		1.42
150896	16	89 mm	LW561	367	750	f	11		1.52
150896	16	89 mm	LW562	441	1380		13		1.61
150896	16	89 mm	LW563	329	470	f	4		1.32
150896	16	89 mm	LW564	387	880	f	7		1.52
150896	16	89 mm	LW565	436	1170	m	9		1.41
150896	16	89 mm	LW566	366	660	f	7		1.35
150896	16	89 mm	LW567	370	680	m	9		1.34
150896	16	114 mm	LW568	450	1650	f	12		1.81
150896	16	114 mm	LW569	392	880	m	7		1.46
150896	16	114 mm	LW570	401	1000	m	15		1.55
150896	16	114 mm	LW571	400	900	f			1.41
150896	16	114 mm	LW572	405	1030		10		1.55
150896	16	114 mm	LW573	422	1140	f	9		1.52
150896	16	114 mm	LW574	396	900	f	7		1.45
150896	16	114 mm	LW575	342	600		7		1.50
150896	16	133 mm	LW576	415	1280	m	12		1.79
150896	16	133 mm	LW577	421	1220	f	11		1.63
150896	16	133 mm	LW578	397	970	f	7		1.55
160896	17	89 mm	LW579	396	940	f	9		1.51
160896	17	89 mm	LW580	303	320	m	6		1.15
160896	17	89 mm	LW581	391	800	f	7		1.34
160896	17	89 mm	LW582	406	900	m	13		1.34
160896	17	89 mm	LW583	378	760	f	11		1.41
160896	17	89 mm	LW584	456	1540	f			1.62
160896	17	89 mm	LW585	342	680	f	7		1.70
160896	17	89 mm	LW586	350	580	m	6		1.35
160896	17	89 mm	LW587	365	680	f	7		1.40
160896	17	89 mm	LW588	371	630	m	6		1.23
160896	17	89 mm	LW589	401	980	m			1.52
160896	17	89 mm	LW590	378	760	f	8		1.41
160896	17	114 mm	LW591	419	1250	f	8		1.70
160896	17	114 mm	LW592	387	830	f	8		1.43
230896	19	89 mm	LW616	350	520	m	6		1 21
230896	19	89 mm	LW617	401	890		7		1.38
230896	19	89 mm	LW618	356	700	f	7		1 55
230896	19	89 mm	LW619	321	360	m	7		1 09
230896	19	89 mm	LW620	405	1060	f	8		1.60

7	8
	~

Appendix 4. Continued.

Date	Site	Gillnet	Sample	Fork length	Round Weight	Sex	Fish age (v)	Condition
(ddmmyy)	#	Mesh	Number	(mm)	(g)		Fin Otolith	- Factor
230896	19	89 mm	LW621	317	390	m	6	1 22
230896	19	89 mm	LW622	345	540	f	5	1 32
230896	19	89 mm	LW623	395	890	m	8	1.52
230896	19	89 mm	LW624	339	510		5	1 31
230896	19	89 mm	LW625	334	460	m	5	1.07
230896	19	89 mm	LW626	342	490	f	5	1.23
230896	19	89 mm	LW627	414	940	'n	a	1.22
230896	19	89 mm	LW628	310	360	4	7	1.32
230896	19	89 mm	1 W629	371	630	, 	, o	1.21
230896	19	89 mm	1.W630	420	1030		0	1.23
230896	19	89 mm	1.W631	720	810	m	8	1.39
230896	10	89 mm	LWOSI	300	810	,	8	1.39
230850	10	89 mm	LW032	375		T	5	
230890	10	89 mm	LW033	367	650	m	/	1.31
230030	10	90		397	940	m	10	1.50
200890	19	89 mm	LW635	3/5	/30	m	9	1.38
230896	19	133 mm	LW636	415	970	f	9	1.36
230896	19	133 mm	LW637	415	1000	f	9	1.40
LONGNOSE	SUCKER	(Catostomus	catostomus)					
250696	1	114 mm	LNO01	490	1536	f		1.31
250696	1	114 mm	LNOO2	462	1200	f	11	1.22
250696	1	114 mm	LN003	396	709	m		1.14
260696	1	133 mm	LN004	527	1900	f	14	1.30
260696	1	133 mm	LN005	523	1909	f	14	1.33
260696	1	133 mm	LN006	511	1736	f	13	1.30
260696	1	89 mm	LN007	420	855	m		1.15
260696	1	89 mm	LN008	435	1000	m	9	1.21
260696	1	89 mm	LN009	399	718	m		1.13
260696	1	114 mm	LN010	499	1418	f	12	1.14
260696	1	114 mm	LN011	431	1136	m		1.42
260696	1	114 mm	LNO12	485	1400	f	12	1.23
260696	1	114 mm	LNO13	430	1127	m		1.42
260696	1	114 mm	LN014	455	1182	m	14	1.25
260696	1	114 mm	LNO15	420	955	f		1.29
260696	1	114 mm	LNO16	468	1355	f	13	1.32
270696	1	114 mm	LN017	458	1010	m	12	1.05
270696	1	114 mm	LNO18	436	1090	m		1.32
270696	1	114 mm	LN019	493	1860	f		1.55
270696	1	114 mm	LN020	473	1440			1.36
270696	1	114 mm	LNO21	435	1430	m		1.74
270696	1	114 mm	LN022	432	1460		12	1.81
270696	1	114 mm	LNO23	425	920	f		1.20
270696	1	133 mm	LNO24	492	1650	m	17	1.39
280696	1	89 mm	LNO25	389	720	f		1.00
280696	1	89 mm	LNO26	419	960	m		1 21
280696	1	89 mm	LN027	378	750	m	8	1 20
280696	1	89 mm	LNO28	501	1570	f	13	1.00
280696	1	89 mm	LNO29	427	1050	m		1.20
280696	1	89 mm	L NO30	440	1090	4 4		1.35
	•		214000	770	1000	I		1.27

Appendix 4. Continued.

-

Date	Site	Gillnet	Sample	Fork length	Round Weight	Sex	Fish	age (v)	Condition
(ddmmyy)	#	Mesh	Number	(mm)	(g)		Fin	Otolith	Factor
280696	1	89 mm	LNO31	362	620	m			1.31
280696	1	89 mm	LN032	436	1250	f	10		1.51
280696	1	89 mm	LN033	465	1370	f			1.36
280696	1	89 mm	LNO34	392	840	m	6		1.39
280696	1	89 mm	LN035	412	980	m			1.40
280696	1	89 mm	LN036	449	1230	m	10		1.36
280696	1	89 mm	LN037	374	700	m			1.34
280696	1	89 mm	LN038	413	860	m			1.22
280696	1	89 mm	LN039	324	450	m	5		1 32
280696	1	89 mm	LN040	431	990	m	-		1 24
280696	1	89 mm	LNO41	554	2430	f	15		1 43
280696	1	89 mm	LN042	510	1610	f			1.21
280696	1	89 mm	LN043	440	1060	m	13		1 24
280696	1	89 mm	LN044	381	710	m	10		1.24
280696	1	89 mm	LN045	454	1280				1.20
280696	1	89 mm	LNO46	373	650				1.37
280696	1	89 mm	LN047	391	790	m	8		1.20
280696	1	89 mm	LN048	446	1180		Ũ		1.32
280696	1	89 mm	LN049	369	700	m	7		1.33
280696	1	89 mm	LN050	500	1520	f	14		1.33
280696	1	89 mm	LN051	347	540	m	14		1.22
280696	1	89 mm	LN052	429	1010	f	Q		1.29
280696	1	89 mm	LN053	429	990	m	5		1.20
280696	1	89 mm	LN054	350	410	m			1.25
280696	1	89 mm	LN055	377	750	m			0.96
280696	1	89 mm	LN056	376	720		7		1.40
280696	1	89 mm	LN057	320	340	m	,		1.35
280696	1	89 mm	LN058	380	700		Q		1.04
280696	1	89 mm	LN059	395	350	m	0		1.28
280696	1	89 mm	LN060	374	360				0.57
280696	1	89 mm	LN061	375	760	m			0.69
280696	1	133 mm	LN062	501	1620	4	10		1.44
280696	1	133 mm	LN063	494	1470	, f	10		1.29
280696	1	133 mm	LN064	471	1360	۱ ۴	14		1.22
280696	1	133 mm	1 N065	574	2030	i f	14		1.30
280696	1	133 mm	LN066	445	1000	, m	10		1.07
280696	1	133 mm	1 N067	509	1620	m 4	13		1.13
280696	1	133 mm	1 N068	500	1620	I 4	15		1.24
280696	1	133 mm	1 N069	465	1320	1	13		1.30
040796	2	89 mm		405	1120	m	12		1.32
040796	2	89 mm		44 5	150	m	11		1.28
040796	2	89 mm	1 NO72	410	1540	m	18		1.23
040796	2	89 mm	1 N072	351	520	л 1	•		1.33
040796	2	89 mm		303	500	m	6		1.29
040796	2	89 mm		333	1220	m			1.27
040796	2	89 mm		442 252	1230	m	11		1.42
040796	2	89 mm		333	1040	m			1.45
040796	2	89 mm		430	1040	m			1.25
040796	2	89 mm		328	1900	m			1.29
040796	- 2	80 mm		490	1330	T	12		1.13
0-10/30	4	09 mm	LINUBU	499	1540	f			1.24

Appendix 4	. Continued.
------------	--------------

Date	Site	Gillnet	Sample	Fork length	Round Weight	Sex	Fish	age (v)	Condition
(ddmmyy)	#	Mesh	Number	(mm)	(g)		Fin	Otolith	Factor
*-									
040796	2	89 mm	LN081	365	650	m	6		1.34
040796	2	89 mm	LN082	330	390	m			1.09
040796	2	89 mm	LN083	325	480	m	5		1.40
040796	2	89 mm	LN084	356	560	m	7		1 24
050796	3	89 mm	LN085	397	890	f	8		1 42
050796	3	89 mm	LNO86	340	540	m	6		1.37
050796	3	89 mm	LN087	466	1260	f	13		1.07
050796	3	89 mm	LN088	384	670	m			1.23
050796	3	89 mm	LN089	476	1270	f	13		1.10
050796	3	89 mm	LNO90	468	1180	m	10		1.18
050796	3	89 mm	LNO91	297	410	m			1.15
050796	3	89 mm	LNO92	316	460	m			1.57
050796	3	89 mm	LN093	484	1280	f	13		1.40
050796	3	89 mm	LN094	506	1450	m	10		1.13
050796	3	89 mm	LN095	482	1230	m	13		1.12
050796	3	89 mm	LN096	474	1350	m	10		1.10
050796	3	89 mm	1.0097	469	1240	f	13		1.27
050796	3	89 mm	1 NO98	459	1110	ı F	15		1.20
050796	3	89 mm	1 11099	458	1090	I			1.16
050796	3	89 mm	LN100	422	990				1.26
050796	3	114 mm		433	980	m			1.21
050796	3	114 mm		424	1200	T	10		1.57
050796	3 2	114 mm	LNIO2	514	1610	T	12		1.19
050798	ა 2	114 mm	LNTO3	405	1040	Ť			1.03
050798	3	114 mm	LN104	461	1300	m	12		1.33
050796	3	114 mm	LNIOS	482	1160	m	11		1.04
050796	3	114 mm	LNIOS	442	1130	m	14		1.31
050796	3	114 mm	LNIOZ	438	1120	m	10		1.33
050796	3	114 mm	LN108	440	1020	m	11		1.20
050796	3	114 mm	LN109	473	1370	m	16		1.29
050796	3	114 mm	LN110	484	1310	m	12		1.16
050796	3	114 mm	LN111	464	1420	f			1.42
050796	3	114 mm	LN112	439	1070	m			1.26
050796	3	114 mm	LN113	450	1200	f			1.32
050796	3	114 mm	LN114	513	1420	f	14		1.05
050796	3	114 mm	LN115	409	970	f			1.42
050796	3	133 mm	LN116	499	1560	f	13		1.26
050796	3	133 mm	LN117	537	1650	m			1.07
050/96	3	133 mm	LN118	549	1900	m	20		1.15
050796	3	133 mm	LN119	489	1420	f	12		1.21
050796	3	133 mm	LN120	491	1520		10		1.28
050796	3	133 mm	LN121	490	1410	f	15		1.20
050796	3	133 mm	LN122	539	1980	f			1.26
050796	3	133 mm	LN123	610	2670	f	15		1.18
090796	4	133 mm	LN124	520	1940	m			1.38
090796	4	133 mm	LN125	532	1740	f	13		1.16
090796	4	133 mm	LN126	430	1170	m	14		1.47
090796	4	133 mm	LN127	513	1710		14		1.27
090796	4	133 mm	LN128	527	1740		15		1.19
090796	4	114 mm	LN129	511	1480	f	15		1.11
090796	4	114 mm	LN130	506	1530	m	13		1.18

Appendix 4. Continued.

.

Date	Site	Gillnet	Sample	Fork length	Round Weight	Sex	Fish	age (y)	Condition
(ddmmyy)	#	Mesh	Number	(mm)	(g)		Fin	Otolith	Factor
090796	4	114 mm	LN131	490	1480	f	13		1.26
090796	4	114 mm	LN132	459	1220	f	14		1.26
090796	4	114 mm	LN133	495	1400	m	13		1.15
090796	4	114 mm	LN134	509	1800	m			1.36
090796	4	114 mm	LN135	544	1990	f	15		1.24
090796	4	114 mm	LN136	469	1440	m	13		1.40
090796	4	114 mm	LN137	573	2150	f	14		1.14
090796	4	89 mm	LN138	473	1350	m			1.28
090796	4	89 mm	LN139	502	1650	m			1.30
090796	4	89 mm	LN140	525	1710	m			1.18
090796	4	89 mm	LN141	472	1280	f	10		1.22
090796	4	89 mm	LN142	432	1070	m			1.33
090796	4	89 mm	LN143	523	1820	f	11		1.27
090796	4	89 mm	LN144	489	1540	m			1.32
090796	4	89 mm	LN145	381	620	m			1.12
090796	4	89 mm	LN146	503	1310	f			1.03
090796	4	89 mm	LN147	418	960	m			1.31
090796	4	89 mm	LN148	566	2190	f			1.21
090796	4	89 mm	LN149	500	1440	m	10		1.15
090796	4	89 mm	LN150	558	1920	m			1.11
090796	4	89 mm	LN151	516	1660	f			1.21
090796	4	89 mm	LN152	518	1690	m			1.22
090796	4	89 mm	LN153	485	1270	m			1 11
090796	4	89 mm	LN154	430	1310	m			1.65
090796	4	89 mm	LN155	490	1530	m	14		1.30
090796	4	114 mm	LN156	452	1170	m			1.00
090796	4	114 mm	LN157	425	1140	m	14		1.27
090796	4	114 mm	LN158	449	1190	m	12		1.31
100796	5	133 mm	LN159	528	1770	m	18		1.31
100796	5	133 mm	LN160	597	2330	f	16		1.10
100796	5	133 mm	LN161	574	2340	f	15		1.10
100796	5	114 mm	LN162	439	970	m			1.24
100796	5	114 mm	LN163	515	1610	m			1.15
100796	5	114 mm	LN164	482	1510	m			1.10
100796	5	114 mm	LN165	526	1730	m	13		1.55
100796	5	114 mm	LN166	531	1690	m			1.13
110796	6	89 mm	LN167	623	3110	f			1.13
110796	6	89 mm	LN168	490	1520	m			1 29
110796	6	89 mm	LN169	404	740	m	10		1.12
110796	6	89 mm	LN170	560	1940	m	22		1.12
110796	6	89 mm	LN171	452	1170	m	12		1.10
110796	6	89 mm	LN172	441	930	f			1.27
110796	6	89 mm	LN173	368	660	m			1.00
110796	6	89 mm	LN174	367	620	m			1 25
110796	6	89 mm	LN175	446	1060	f	14		1 19
110796	6	89 mm	LN176	524	1630	f			1 12
110796	6	89 mm	LN177	456	1120	m	9		1 10
110796	6	89 mm	LN178	450	1090	m	11		1.10
110796	6	89 mm	LN179	536	1840	m			1.20
110796	6	89 mm	LN180	439	950	f			1.13
						•			1.14

Appendix 4. Continued.

Date	Site	Gillnet	Sample	Fork length	Round Weight	Sex	Fish	age (y)	Condition
(ddmmyy)	#	Mesh	Number	(mm)	(g)		Fin	Otolith	Factor
								····	
110796	6	89 mm	LN181	483	1290	m			1.14
110796	6	89 mm	LN182	387	740	m			1.28
110796	6	89 mm	LN183	409	950	m			1.39
110796	6	89 mm	LN184	495	1460	m			1.20
110796	6	89 mm	LN185	575	2070	f			1.09
110796	6	89 mm	LN186	491	1390	m			1.17
110796	6	114 mm	LN187	572	2150				1.15
110796	6	114 mm	LN188	539	1920	m			1.23
110796	6	133 mm	LN189	565	2260	m	18		1.25
110796	6	133 mm	LN190	555	2200	f	16		1.29
110796	6	133 mm	LN191	515	1810	f	14		1.33
110796	6	133 mm	LN192	555	2330	m	18		1.36
110796	6	133 mm	LN193	571	2270	f	16		1 22
120796	7	89 mm	LN194	422	870	m	12		1 16
120796	7	89 mm	LN195	454	1100	m	7		1.10
120796	7	89 mm	LN196	352	540	m	, 11		1.10
120796	7	89 mm	LN197	469	1180	m	13		1.24
120796	7	89 mm	LN198	430	1020	f	10		1.14
120796	7	89 mm	LN199	400	1160	f	12		1.28
120796	, 7	89 mm	LN200	475	1440	r F	12		1.08
120796	7	89 mm	LN201	310	440	, m	13		1.34
120796	, 7	89 mm	LN202	410	720	m	12		1.48
120796	, 7	89 mm	LN202	410	720		13		1.04
120796	7	89 mm	LN203	456	1110		0		1.04
120796	, 7	89 mm	LN205	514	1620		3		1.17
120796	, 7	89 mm	LN205	100	1630	m			1.20
120796	, 7	89 mm	LN200	400	1430	m r	10		1.23
120796	, 7	89 mm	LN207	345	760	I	13		1.11
120796	7	89 mm	1 N209	345	100				1.85
120796	, 7	89 mm	LN209	401	740				1.25
120796	7	89 mm		305	740	m			1.30
120790	7	89 mm		4/3	1310	m			1.24
120796	7	89 mm	LNZIZ	420	870	T			1.17
120796	7	89 mm		447	1080	m			1.21
120796	7	89 mm		460	1220	m			1.25
120796	7	89 mm	LN215	447	1120	m			1.25
120796	, ,	89 mm	LN216	453	1160	t			1.25
120796	,	89 mm		470	1310	m			1.26
120796	/	89 mm	LN218	449	1060	m			1.17
120796	/	89 mm	LN219	561	1910	f			1.08
120796	-	89 mm	LN220	472	1270	f			1.21
120796	/	89 mm	LN221	422	1030	m			1.37
120796	/	89 mm	LN222	458	1140	f			1.19
120796	7	89 mm	LN223	446	1010	m			1.14
120796	7	89 mm	LN224	414	920	m			1.30
120796	7	89 mm	LN225	518	1590	m			1.14
120796	7	89 mm	LN226	477	1360	f			1.25
120796	7	89 mm	LN227	439	940	f			1.11
120796	7	89 mm	LN228	554	1770	f			1.04
120796	7	89 mm	LN229	490	1500	m			1.27
120796	7	89 mm	LN230	468	1200	f			1.17

Appendix 4. Continued.

.

Date	Site	Gillnet	Sample	Fork length	Round Weight	Sex	Fish	age (y)	Condition
(ddmmyy)	#	Mesh	Number	(mm)	(g)		Fin	Otolith	Factor
120796	7	89 mm	LN231	398	730	m			1.16
120796	7	89 mm	LN232	440	1000	m			1.17
120796	7	89 mm	LN233	560	2030	f			1.16
120796	7	89 mm	LN234	404	930	m			1.41
120796	7	89 mm	LN235	450	1090	m			1.20
120796	7	89 mm	LN236	442	1170	m			1.35
120796	7	89 mm	LN237	412	820	f			1.17
120796	7	89 mm	LN238	394	720	m			1.18
120796	7	89 mm	LN239	415	940	m			1.32
120796	7	89 mm	LN240	378	650	m			1.20
120796	7	89 mm	LN241	465	1290	m			1.28
120796	7	89 mm	LN242	390	760	f			1.28
120796	7	89 mm	LN243	459	1170	f			1.21
120796	7	89 mm	LN244	380	720	f			1.31
120796	7	114 mm	LN245	411	880	m	10		1.27
120796	7	114 mm	LN246	503	1720		20		1.35
120796	7	114 mm	LN247	485	1420	m			1.33
120796	7	114 mm	LN248	529	1720	f	13		1.16
120796	7	114 mm	LN249		2140	f.	10		1.10
120796	7	114 mm	LN250	447	1210	m	10		1 25
120796	7	114 mm	LN251	482	1420	m	10		1.35
120796	7	114 mm	LN252	552	2310	m	18		1.27
120796	7	114 mm	LN253	499	1360	f	, 0		1.37
120796	7	114 mm	LN254	533	1730	4	12		1.09
120796	7	114 mm	LN255	462	1360	f	15		1.14
120796	7	114 mm	LN256	484	1210	f	11		1.38
120796	7	114 mm	LN257	552	2090	r F			1.07
120796	7	114 mm	LN258	471	1/90	1	10		1.24
120796	7	114 mm	LN259	501	1640	111 4	12		1.43
120796	7	114 mm	LN260	462	1340	1	14		1.30
120796	7	114 mm	LN261	402	1120		14		1.36
120796	7	114 mm	LN262	490	1440	m m			1.27
120796	7	114 mm	1 N263	455	1200				1.22
120796	7	114 mm	1 N264	400 515	1200				1.27
120796	7	114 mm	1 N265	445	1000	m			1.17
120796	7	114 mm	LN266	491	1290	m			1.24
120796	7	114 mm	1 N 267	401	1380	m r			1.24
120796	7	114 mm	1 N269	445 500	1120	T A			1.27
120796	, 7	114 mm	1 N 269	500	1540	T A			1.23
120796	7	114 mm	1 N 270	556	1100	т			1.03
120796	, 7	114 mm	LN270	460	1120	m			1.15
120796	7	114 mm		500	1360	t			1.09
120796	7	114 mm		444	1120	m			1.28
120790	, 7	114 mm		413	970	f			1.38
120730	י ד	114 mm		4/5	1400	f -			1.31
120730	, 7	114 mm		493	1370	f			1.14
120790	7	114 mm		4/6	1400	f			1.30
120790	י ד	114 mm		500	1480	m			1.18
120730	7	114 mm		504	1460	f			1.14
120/30	, ,	114 mm		460	1000	m			1.03
120796	,	114 mm	LN280	473	1400	m			1.32

Appendix 4. Continued.

Date	Site	Gillnet	Sample	Fork length	Round Weight	Sex	Fish	age (y)	Condition
(ddmmyy)	#	Mesh	Number	(mm)	(g)		Fin	Otolith	Factor
120796	7	114 mm	LN281	492	1470	m			1.23
120796	7	114 mm	LN282	461	1230	m			1.26
120796	7	114 mm	LN283	451	1180	m			1.29
120796	7	114 mm	LN284	516	1660	m			1.21
120796	7	114 mm	LN285	501	1560	m			1.24
120796	7	114 mm	LN286	514	1690	f			1.24
120796	7	114 mm	LN287	457	1250	m			1.31
120796	7	114 mm	LN288	470	1160	m			1.12
120796	7	114 mm	LN289	488	1400	f			1.20
120796	7	114 mm	LN290	397	870	m			1.39
120796	7	114 mm	LN291	473	1440	m			1.36
120796	7	114 mm	LN292	467	1380	m			1.35
120796	7	114 mm	LN293	500	1480	f			1 18
120796	7	133 mm	LN294	545	1980	m	17		1.10
120796	7	133 mm	LN295	554	1960	f	12		1 15
120796	7	133 mm	LN296	493	1430	m			1.19
120796	7	133 mm	LN297	564	2060	m	14		1.15
120796	7	133 mm	LN298	539	1840	f	12		1.15
120796	7	133 mm	LN299	499	1770	m	13		1.10
120796	7	133 mm	LN300	503	1620	m	16		1.72
120796	7	133 mm	LN301	503	1730				1.27
120796	7	133 mm	LN302	470	1400	m	12		1.30
120796	7	133 mm	LN303	518	1550	f	13		1.35
120796	7	133 mm	LN304	476	1480	f	14		1.12
120796	7	133 mm	LN305	469	1320	'n	14		1.37
160796	8	89 mm	LN328	369	710	f	17		1.20
160796	8	89 mm	LN329	459	1340	, m	14		1.41
160796	8	89 mm	1.N330	375	690	 m	17		1.39
160796	8	89 mm	1 N331	430	870		٩		1.31
160796	8	89 mm	1 N332	400	1380	4 4	3		1.09
160796	8	89 mm	LN333	480	1650	r f			1.30
160796	8	89 mm	1 N334	400	1100	f			1.49
160796	8	89 mm	1 N335	383	790	, m	٥		1.23
160796	8	89 mm	1 N336	340	570	m			1.41
160796	8	89 mm	1 N337	375	740	- m	0		1.45
160796	8	89 mm	1 N338	407	740 810	۲۱۱ ۲	9		1.40
160796	8	89 mm	LN339	407	1070	ו ב	•		1.20
160796	8	89 mm	LN335	425	700	-	9		1.39
160796	8	89 mm	1 N341	-03	700 610	m r			1.07
160796	8	89 mm	1 N342	409	610	1 2			1.28
160796	8	89 mm	LN342	409 510	1620				
160796	8	114 mm	LN343	470	1630	m 			1.23
160796	2 2	114 mm	1 12/5	+/0	21.40	m			1.54
160796	2	114 mm	LN340	500	2140	rn	15		1.25
160796	s s	114 mm	LN340	020 196	1010		61 1 4		1.11
160796	Q	11/ mm	111347	400	1010	m 	14		1.22
160796	0 0	114 mm	LIN340	390	870	m			1.40
160796	۵ و	114 mm	1 11250	409	710	m	4.0		1.04
160796	8	114 mm	LN350	37 I 100	2310	m	19		1.24
160796	Q	114 mm	LNDDI	+33 110	10400	m 	10		1.18
100/00	0	1 1	LINGOZ	442	1240	m	12		1.44

,

Appendix 4. Continued.

-

Date	Site	Gillnet	Sample	Fork length	Round Weight	Sex	Fish	age (y)	Condition
(ddmmyy)	#	Mesh	Number	(mm)	(g)		Fin	Otolith	Factor
160796	8	114 mm	LN353	482	1470	m	16		1.31
160796	8	114 mm	LN354	473	1380	f	14		1.30
160796	8	114 mm	LN355	450	1340	f	8		1.47
160796	8	133 mm	LN356	495	1510	f	10		1.24
160796	8	133 mm	LN357	489	1580	m	15		1.35
160796	8	133 mm	LN358	466	1630	f	10		1.61
160796	8	133 mm	LN359	436	1110	m	12		1.34
160796	8	133 mm	LN360	470	1720	m	10		1.66
160796	8	133 mm	LN361	543	2250	f	14		1.41
160796	8	133 mm	LN362	535	1980	m			1.29
160796	8	133 mm	LN363	560	2310		16		1.32
170796	9	89 mm	LN364	408	860	f			1.27
170796	9	89 mm	LN365	382	660	m	8		1 18
170796	9	89 mm	LN366	490	1430	f			1 22
170796	9	89 mm	LN367	466	1140	f	14		1.22
170796	9	89 mm	LN368	364	620	m			1 29
170796	9	89 mm	LN369	450	1020	m			1 1 2 3
170796	9	89 mm	LN370	455	1220	m			1.12
170796	9	89 mm	LN371	464	1310	f	11		1.30
170796	9	89 mm	LN372			ŕ	• •		1.51
170796	9	89 mm	LN373	418	940	m	Q		1 20
170796	9	89 mm	LN374	388	680	 m	5		1.25
170796	9	89 mm	LN375		1880	f	16		1.10
170796	9	89 mm	1N376	395	880	'n	10		1 4 2
170796	9	89 mm	LN377	534	1890	m			1.43
170796	9	89 mm	1N378	370	640	m			1.24
170796	9	89 mm	1N379	419	940	~			1.20
170796	9	89 mm	1N380	482	1460				1.28
170796	9	89 mm	LN381	472	1370				1.30
170796	9	89 mm	1N382	556	2120	- F			1.30
170796	9	89 mm	1 N383	488	1510	۱ ۲			1.23
170796	9	89 mm	1 N384	462	1310	1			1.30
170796	9	89 mm	1 N385	566	1270	m z			1.29
170796	9	89 mm	LNOOS	300	1900	T			1.05
170796	9	89 mm	LNOOT	442	1100	m			1.27
170796	9	89 mm	1 11200	429	920	m			1.17
170796	9	114 mm	LINGOO	374	680	m			1.30
170796	9	114 mm	LN389	445	1120	t ,	10		1.27
170796	9	114 mm	LN390	507	1440	Ť	11		1.10
170796	9	114 mm	LN391	547	1910	Ť	14		1.17
170796	9	114 mm	LN392	594	2500	Ť	16		1.19
170796	9	114 mm	LN393	447	1180	m	17		1.32
170706	3	114 mm	LN394	510	1850	m	14		1.39
170706	9	114 mm	LN395	487	1370	f	13		1.19
170700	3	114 mm	LN396	495	1430	m	19		1.18
170700	3	114 mm	LN39/	509	1630	m	16		1.24
170700	9	114 mm	LN398	454	1100	f	10		1.18
170700	9	114 mm	LN399	439	1040	f	14		1.23
170790	3	114 mm	LN400	420	920	f	8		1.24
170796	э	114 mm	LN401	448	1200	f	9		1.33
170796	9	114 mm	LN402	470	1270	f	13		1.22

A	pper	ndix	4.	Cor	ntin	ued.
---	------	------	----	-----	------	------

Date	Site	Gillnet	Sample	Fork length	Round Weight	Sex	Fish	age (y)	Condition
(ddmmyy)	#	Mesh	Number	(mm)	(g)		Fin	Otolith	Factor
170796	9	114 mm	LN403	457	1300	m	13		1.36
170796	9	114 mm	LN404	469	1260	f	9		1.22
170796	9	114 mm	LN405	437	1010	m			1.21
170796	9	114 mm	LN406	418	1000	f			1.37
170796	9	114 mm	LN407	461	1270	m			1.30
170796	9	114 mm	LN408	459	1130	m			1.17
170796	9	114 mm	LN409	439	1190	f			1 41
170796	9	114 mm	LN410	465	1130	m			1.12
170796	9	133 mm	LN411	455	1290	f	9		1.37
170796	9	133 mm	LN412	455	1380	m	15		1.47
170796	9	133 mm	LN413	514	1730	m			1.17
170796	9	133 mm	LN414	536	1940	f	14		1.26
170796	9	133 mm	LN415	594	2560	f	16		1.20
170796	9	133 mm	LN416	559	2070	f	15		1 19
170796	9	133 mm	LN417	521	1820	m	15		1.19
170796	9	133 mm	LN418	550	1880	m			1.23
180796	10	89 mm	LN419	383	730	m	7		1.13
180796	10	89 mm	LN420	376	730	f	, 7		1.30
180796	10	89 mm	LN421	375	670	m	, 7		1.37
180796	10	89 mm	LN422	354	560	f	, 8		1.27
180796	10	89 mm	I N423	324	440	f	U		1.20
180796	10	89 mm	1 N424	399	870	i f	٥		1.29
180796	10	89 mm	1 N425	447	1020	1 500	3		1.37
180796	10	89 mm	1 N426	429	1150				1.14
180796	10	114 mm	LN427	423 544	1940	m m			1.46
180796	10	114 mm	LN428	344 474	1940	rn m	1.4		1.21
180796	10	114 mm	1 1429	424	1270		14		1.19
180796	10	114 mm	LN420	434	1050		12		1.28
180796	10	114 mm	LN431	434	1170	m m			1.43
180796	10	114 mm	1 N432	451	1370	m	10		1.45
180796	10	133 mm	1 N433	492	1230	m 	13		1.34
180796	10	133 mm	1 N434	482	1740	m	14		1.32
180796	10	133 mm	1 N/25	460	1740	m _	9		1.55
190796	11	89 mm	LN435	400 540	1600	T	14		1.64
190796	11	114 mm	LN430	540	2060	m	10		1.31
190796	11	114 mm		+03 500	1290	m	13		1.30
190796	11	114 mm	LN430	528	1970	m			1.34
070996	10	122	LN439	405	1270	Ť	13		1.26
070896	12	133 mm		559	2120	Ť	14		1.21
070896	12	133 mm		467	1360	t	10		1.34
070898	12	133 mm		446	1350	m	11		1.52
070896	12	133 mm	LN443	591	2560	m	19		1.24
070896	12	133 mm	LN444	5/9	2410	f			1.24
070006	12	133 mm	LN445	486	1600	m	15		1.39
070000	12	133 mm		551	1840	† -	15		1.10
070030	12	09 mm		555	2140	f	14		1.25
070000	12	89 mm	LN448	480	1340	m			1.21
070000	12	89 mm	LN449	461	1300	f			1.33
070030	12	03 mm	LN45U	415	990	m			1.39
070030	12	03 mm		382	860	m			1.54
010030	12	114 mm	LN452	531	1940	m			1.30

Appendix 4. Continued.

Date	Site	Gillnet	Sample	Fork length	Round Weight	Sex	Fish	age (y)	Condition
(ddmmyy)	#	Mesh	Number	(mm)	(g)		Fin	Otolith	Factor
070896	12	114 mm	LN453	514	1920	f	15		1.41
070896	12	114 mm	LN454	462	1140	f			1.16
070896	12	114 mm	LN455	468	1460	m	14		1.42
070896	12	114 mm	LN456	464	1370	m	16		1.37
080896	13	89 mm	LN457	364	600	f	7		1.24
080896	13	89 mm	LN458	352	620	m			1.42
080896	13	89 mm	LN459	423	1120	m			1.48
080896	13	89 mm	LN460	402	780	f			1.20
080896	13	89 mm	LN461	462	1420	m	15		1.44
080896	13	89 mm	LN462	484	1760	f			1.55
080896	13	89 mm	LN463	504	1950	m			1.52
080896	13	114 mm	LN464	496	1510	f			1.24
080896	13	114 mm	LN465	597	2890	f			1.36
080896	13	133 mm	LN466	512	1820	m	13		1.36
080896	13	133 mm	LN467	516	1970	f	14		1.43
080896	13	133 mm	LN468	459	1310	m	13		1.35
080896	13	133 mm	LN469	551	2230	f	14		1.33
080896	13	133 mm	LN470	615	2830	f			1.22
080896	13	133 mm	LN471	535	2140	f	14		1.40
090896	14	89 mm	LN472	617	3030	f	14		1.29
090896	14	89 mm	LN473	542	2150	f			1.35
090896	14	89 mm	LN474	475	1410	f			1.32
090896	14	89 mm	LN475	398	710	f			1.13
090896	14	89 mm	LN476	484	1460	f	10		1.29
090896	14	89 mm	LN477	390	870	m			1.47
090896	14	114 mm	LN478	579	2660	f	16		1.37
090896	14	114 mm	LN479	475	1560	f	12		1.46
090896	14	114 mm	LN480	424	1120	m	12		1 47
090896	14	114 mm	LN481	445	1130	f	10		1.28
090896	14	114 mm	LN482	395	1000	m	12		1.62
090896	14	114 mm	LN483	496	1890	f	14		1.55
090896	14	114 mm	LN484	469	1370	m	15		1.33
090896	14	114 mm	LN485	459	1390	m	11		1.44
090896	14	11 4 mm	LN486	462	1350	f	11		1.37
090896	14	114 mm	LN487	455	1150	f	11		1.22
090896	14	114 mm	LN488	495	1665	m			1.37
090896	14	133 mm	LN489	496	1460	f	12		1.20
090896	14	133 mm	LN490	490	1500	m	16		1.27
090896	14	133 mm	LN491	516	1720	f			1.25
090896	14	133 mm	LN492	484	1470	f	10		1.30
090896	14	133 mm	LN493	491	1610	f	15		1.36
090896	14	133 mm	LN494	490	1700	f	12		1 44
140896	15	89 mm	LN495	470	1400	f			1.35
140896	15	89 mm	LN496	495	1490	m	17		1.23
140896	15	89 mm	LN497	488	1340	f			1 15
140896	15	89 mm	LN498	386	640	m			1 11
140896	15	89 mm	LN499	467	1240	m			1 22
140896	15	89 mm	LN500	350	560	m	8		1 21
140896	15	89 mm	LN501	430	990		J		1.01
140896	15	89 mm	LN502	333	480				1 30
					· - •				1.00

Appendix 4. Continued.

Date	Site	Gillnet	Sample	Fork length	Round Weight	Sex	Fish	age (y)	Condition
(ddmmyy)	#	Mesh	Number	(mm)	(g)		Fin	Otolith	Factor
140896	15	89 mm	LN503	595	2250	f			1.07
140896	15	89 mm	LN504	490	1450	m	15		1.23
140896	15	89 mm	LN505	476	1360	f			1.26
140896	15	89 mm	LN506	417	920	m			1.27
140896	15	89 mm	LN507	448	1170	m			1.30
140896	15	89 mm	LN508	445	1000		8		1.13
140896	15	89 mm	LN509	404	840	m			1.27
140896	15	89 mm	LN510	460	1110	m	11		1.14
140896	15	89 mm	LN511	387	710	m			1.22
140896	15	89 mm	LN512	544	1820	f	11		1.13
140896	15	89 mm	LN513	527	1910	m			1.30
140896	15	89 mm	LN514	396	830	f			1.34
140896	15	89 mm	LN515	448	1000	f			1.11
140896	15	114 mm	LN516	505	1590	m			1.23
140896	15	114 mm	LN517	487	1400	m	11		1.21
140896	15	114 mm	LN518	475	1160	f	11		1.08
140896	15	114 mm	LN519	437	1070				1.00
140896	15	114 mm	LN520	534	2110	f	13		1 39
140896	15	114 mm	LN521	423	960	m			1.00
140896	15	114 mm	LN522	488	1580	f	11		1.27
140896	15	114 mm	LN523	500	1610	m			1.30
140896	15	114 mm	LN524	388	910	m	14		1.20
140896	15	114 mm	LN525	388	870				1.30
140896	15	114 mm	LN526	500	1580	f	10		1.75
140896	15	114 mm	LN527	494	1500	m	14		1.20
140896	15	114 mm	LN528	477	1400	, m	.4		1.24
140896	15	133 mm	1 N529	527	2060				1.29
140896	15	133 mm	1 N530	482	1550	m	10		1.41
140896	15	133 mm	LN531	514	1810		12		1.38
140896	15	133 mm	LN532	561	2010	4 4	10		1.33
140896	15	133 mm	1 N533	528	2010	, m	12		1.14
140896	15	133 mm	1 N534	495	1430	f	11		1.41
140896	15	133 mm	1 N535	400 602	2660	ı f	10		1.18
140896	15	133 mm	LN536	567	2000	ן ג	1.5		1.22
150896	16	89 mm	1 N527	360	2250	1	14		1.23
150896	16	89 mm	1 N529	300	590	m	<u> </u>		1.48
150896	16	89 mm	1 N539	303	580	m 4	0		1.21
150896	16	89 mm	LN540	436	1080	, m	14		1.22
150896	16	89 mm		430	1700	m r	14		1.30
150896	16	114 mm		309	1/00	1 4	10		1.29
150896	16	114 mm	1 1542	490	1430	1	10		1.22
150896	16	114 mm		400	1390	m	13		1.43
150896	16	114 mm		400 111	1470	m 4	14		1.26
150890	16	114 mm		414	940	Ţ	9		1.32
150000	16	122	LING40	400	1100	T	12		1.27
150030	10	133 mm		402	1180	m			1.20
160006	17	133 mm		489	1470	t			1.26
160000	17	03 mm	LN049	355	510	t	-		1.14
160000	17	09 mm	LNSSU	418	840	f	8		1.15
160000	17	03 mm	LINDO I	358	560	m	-		1.22
100830	17	as mm	LN55Z	343	550	m	5		1.36

2

Appendix 4. Continued.

.

Date	Site	Gillnet	Sample	Fork length	Round Weight	Sex	Fish	age (y)	Condition
(ddmmyy)	#	Mesh	Number	(mm)	(g)		Fin	Otolith	Factor
160896	17	89 mm	LN553	420	890	f			1.20
160896	17	89 mm	LN554	408	780	m	10		1.15
160896	17	114 mm	LN555	481	1530	m			1.37
160896	17	114 mm	LN556	500	1690	m	16		1.35
160896	17	133 mm	LN557	450	1410	m	12		1.55
230896	19	89 mm	LN573	430	920	f	9		1.16
230896	19	89 mm	LN574	424	1020	m	9		1.34
NORTHERN	PIKE (<u>Esc</u>	ox lucius)							
250696	1	114 mm	NPOO 1	697	2172	-	•		0.07
250696	1	114 mm	NP002	620	1909	m	0 7		0.87
260696	1	89 mm	NP003	506	1055	m	,		0.80
260696	1	89 mm	NPO04	500	1055		c		0.81
260696	1	89 mm	NP005	555	1200	m	0		0.66
260696	1	· 89 mm	NPOOS	355 494	745	111	F		0.70
260696	1	89 mm	NP007	552	1155				0.66
260696	1	89 mm	NPOOR	505	1200	11) 	/		0.68
260696	, 1	89 mm	NPOOS	595	1209	-			0.57
260696	1	89 mm	NP010	504	1400	m	10		0.78
260696	1	89 mm	NP010	697	2/00	m	_10		0.75
200030	1	89 mm	NPO12	687 E26	24/3	m	9		0.76
200090	1	89 mm	NP012	536	1191	m	-		0.77
200030	1	89 mm	NP013	586	1436	m	8		0.71
260696	1	89 mm	NPO15	500	909	m	/		0.73
200030	1	89 mm	NP015	580	1682	m	12		0.86
260696	1	89 mm	NPO10	470	791	m	5		0.73
260696	1	89 mm	NPO19	480	1009	m	5		0.55
260696	1	89 mm	NPO10	493	1804	m	,		0.81
260696	1	89 mm	NPO19	483	809	m	8		0.72
260696	1	89 mm	NPO20	541	1070	m	9		0.71
260696	1	89 mm	NPO21	575	12/3	m	8		0.67
260696	1	89 mm	NPO22	505	545	T	,		0.73
260696	1	89 mm	NPO23	606	1509	m	9		0.67
260696	1	89 mm	NPO24	552	1027	m	8		0.71
260696	1	89 mm	NP025	552	001	m	-		0.70
260696	1	114 mm	NPO20	508	991	m r	5		0.76
260696	1	114 mm	NPO27	704	2527	T	9		0.72
260696	1	114 mm	NP028	080	2327	m	8		0.72
260696	1	114 mm	NP029	627	1909	m	12		0.77
200030	1	114 mm	NF030	849	4655	m	13		0.76
260696	1	114 mm	NP031	684	2182	1	8		0.68
260696	1	114 mm	NPU32	6/9	2436	t	8		0.78
200030	1	114 mm	NP033	595	1509	m	9		0.72
200030	1	114 mm	NP034	660	2455	m	15		0.85
200030	1	00	NP035	6/0	2036	m	10		0.68
270030	1	00 mm	NP036	540	1110	m	8		0.70
270030	1	69 mm	NP037	500	950	m	6		0.76
270606	1	89 mm	NP038	655	2500	m	11		0.89
270030	1	69 mm	NP039	470	720	m	4		0.69
210090	1	89 mm	NP040	602	1690	m	6		0.77

Appendix 4. Continued.

Date	Site	Gillnet	Sample	Fork length	Round Weight	Sex	Fish	age (v)	Condition
(ddmmyy)	#	Mesh	Number	(mm)	(g)		Fin	Otolith	Factor
270696	1	89 mm	NPO41	615	1690	m	7		0.73
270696	1	89 mm	NPO42	560	1170	m	8		0.67
270696	1	89 mm	NPO43	532	1090	m	7		0.72
270696	1	89 mm	NPO44	532	1090		7		0.72
270696	1	89 mm	NP045	549	1100	m	8		0.72
270696	1	89 mm	NPO46	492	880	m	•		0.00
270696	1	89 mm	NPO47	584	1270	m			0.74
270696	1	89 mm	NPO48	510	940	m			0.84
270696	1	89 mm	NP049	557	1180	m			0.71
270696	1	89 mm	NP050	575	1200	f	e		0.68
270696	1	114 mm	NP051	646	1200	, m	0		0.63
270696	1	114 mm	NPO52	751	2920		9		0.67
270696	1	114 mm	NP053	662	2920	m	8		0.69
280696	1	89 mm	NP054	565	1220	m	11		0.71
280696	1	89 mm	NPOEE	505	1320	m	0		0.73
280696	, 1	89 mm	NPOSS	517	980	T			0.71
280090	1	89 mm	NP056	632	1580	m	6		0.63
200090	1	89 mm	NP057	629	1950	m	8		0.78
280696	1	89 mm	NP058	535	1220	m	8		0.80
280696	1	89 mm	NP059	623	2130	m	7		0.88
280696	1	133 mm	NPO60	643	2110	m	8		0.79
040796	2	133 mm	NPO61	748	3280		12		0.78
050796	3	114 mm	NPO62	698	2270		9		0.67
160796	8	89 mm	NP063	606	1530		8		0.69
160796	8	114 mm	NPO64	589	1520		8		0.74
150896	16	89 mm	NP065	509	970				0.74
150896	16	89 mm	NPO66	610	1820		10		0.80
150896	16	114 mm	NP067	705	2750		8		0.78
150896	16	114 mm	NP068	644	1930	f	9		0.72
150896	16	133 mm	NP069	739	3510				0.87
160896	17	89 mm	NP070	633	1970	f	9		0.78
160896	17	89 mm	NP071	491	880	m	7		0.74
160896	17	89 mm	NP072	550	1350	m			0.81
160896	17	89 mm	NP073	574	1300	f	7		0.69
160896	17	89 mm	NP074	601	1700	f	8		0.78
160896	17	89 mm	NP075	578	1410	f	8		0.73
160896	17	114 mm	NP076	591	1460		6		0.71
160896	17	114 mm	NP077	710	2380	f	6		0.66
160896	17	133 mm	NP078	637	1750		11		0.68
230896	19	89 mm	NP086	505	835	f	6		0.68
230896	19	89 mm	NP087	545	2080	f	5		1.00
230896	19	89 mm	NP088	552	1310	f	J		1.28
230896	19	89 mm	NPO89	657	2230	r F	4 10		0.78
				007	2230	1	10		0.79
WALLEYE (<u>S</u>	tizostedi	ion <u>vitreum</u>)							
260696	1	89 mm	YW001	399	609	m			0.00
270696	1	114 mm	YW002	448	1050	f			0.90
150896	16	89 mm	YW003	423	830	•			1.17
150896	16	89 mm	YW004	411	870				1.10
150896	16	89 mm	YW005	356	550				1.25
	. =			550	550				1.22

Appendix 4. Continued.

Date (ddmmyy)	Site	Gillnet	Sample	Fork length (mm)	Round Weight (g)	Sex	Fish age (y)		Condition
	#	Mesh	Number				Fin	Otolith	Factor
150896	16	89 mm	YW006	328	500				1.42
160896	17	89 mm	YW007	354	500				1.13
230896	19	89 mm	YW008	373	550	m			1.06
230896	19	89 mm	YW009	411	890	m			1.28
230896	19	89 mm	YW010	395	730				1 18
230896	19	89 mm	YW011	383	640				1 14
230896	19	89 mm	YW012	469	1250				1.14
230896	19	89 mm	YW013	377	660				1.21
230896	19	89 mm	YW014	415	730				1.02