NOGAP B2; Data on *In Situ* Water Irradiance, Temperature and Fluorescence, Solar Irradiance, and Ice Algae and Related Physical Parameters from the Canadian Beaufort Sea Shelf, 1985 to 1988

G.E. Hopky, M.J. Lawrence, D.B. Chiperzak and S.M. McRae

Central and Arctic Region Department of Fisheries and Oceans Winnipeg, Manitoba R3T 2N2

1994

Canadian Data Report of Fisheries and Aquatic Sciences 934

Fisheries and Oceans Pêches et Océans

Canadian Data Report of

Fisheries and Aquatic Sciences 934

1994

NOGAP B2; DATA ON <u>IN SITU</u> WATER IRRADIANCE, TEMPERATURE AND FLUORESCENCE, SOLAR IRRADIANCE, AND ICE ALGAE AND RELATED PHYSICAL PARAMETERS FROM THE CANADIAN BEAUFORT SEA SHELF, 1985 to 1988

by

G.E. Hopky, M.J. Lawrence, D.B. Chiperzak, and S.M. McRae

Central and Arctic Region Department of Fisheries and Oceans Winnipeg, Manitoba R3T 2N6

This is the 93rd Data Report

from the Central and Arctic Region, Winnipeg

PREFACE

This study was funded by the Northern Oil and Gas Action Program (NOGAP), through the Department of Fisheries and Oceans, Central and Arctic Region. It is one of a series of projects executed under NOGAP B.2, to provide background data for assessing the implications of hydrocarbon development and production on critical estuarine and marine habitats of the Canadian Arctic Coastal Shelf. This document constitutes NOGAP Report B2.53.

(c) Minister of Supply and Services Canada 1994

Cat. no. Fs 97-13/934E ISSN 0706-6465

Correct citation for this publication:

Hopky, G.E., M.J. Lawrence, D.B. Chiperzak, and S.M. McRae. 1994. NOGAP B2; Data on <u>in</u> <u>situ</u> water irradiance, temperature and fluorescence, solar irradiance, and ice algae and related parameters from the Canadian Beaufort Sea shelf, 1985 to 1988. Can. Data Rep. Fish. Aquat. Sci. 934: v + 112 p.

TABLE OF CONTENTS

.

	<u>Page</u>
PREFACE	ii
ABSTRACT/RÉSUMÉ	v
	1
METHODS Stations and positioning Subproject B.2.1 Subproject B.2.3 Sample collection, processing and analysis Sea-surface temperature buoy Fluorescence data Photosynthetically available radiation (PAR) data Chlorophyll <u>a</u> determination and ice-algae sampling	2 2 2 2 3 3 3 3 3 5
RESULTS	6
ACKNOWLEDGMENTS	8
REFERENCES	8

LIST OF FIGURES

Page

Figure

.6

1	Location of study area for NOGAP Subprojects B.2.1 and B.2.3	11
	Location of stations sampled on	
	the Beaufort Sea Shell in:	
2	July, 1985	12
3	August, 1985	13
4	March to July, 1986	14
5	August, 1986	15
6	September, 1986	16
7	March and May, 1987	
	and March, 1988	17
8	July, 1987	18
9	August, 1987	19
10	Location of stations sampled in	
	Tuktovaktuk Harbour, 1985 to	
	1988	20
-11	Location of stations sampled in	
11	Means Day 1096 to 1099	01
	Mason bay, 1900 10 1908	21

Figure

12	Coastal Beaufort Sea surface water fluorescence for transects north of Tuktoyaktuk (#1-5), 21 August, north of Pullen Island (#6-9), 9 and 10 September, and in Mackenzie Bay (#10-13), 10	
	in Mackenzie Bay (#10-13), 10 September, 1986	22
	• •	

LIST OF TABLES

Table		<u>Page</u>
1 2 3 4	Summary data for stations sampled during: 1985	23 25 28 32
5 6 7	Continuous temperature buoy data from: station 85101, 1985station 86034, 1986station 87014, 1987	34 35 37
8 9 10	Relative fluorescence profile data for: 1986 1987 1988	51 53 55
11 12	Summary data for sea surface fluorescence transects, Beaufort Sea shelf study area, 1986 Sea surface fluorescence data from transects in the Beaufort Sea, 1986	56 57
13 14 15	Average daily photosynthetically available irradiance measured at Tuktoyaktuk in: 1986 1987 1988	58 59 60
16	Mean daily total photosynthetically available irradiation at Tuktoyaktuk, for each month of record during 1986 to 1988	61

<u>Page</u>

Table		<u>Page</u>
17 18 19 20	Photosynthetically available irradi- ation water column profile data for: 1985 1986 1987 1988	62 65 74 82
21	Light extinction coefficients at one offshore, two Kugmallit Bay and two Tuktoyaktuk Harbour station sampled in 1986, in comparison to Seechi depth and collipity	ns 84
22	Photosynthetically available irradi- ation data for pre- and post- scraping of under-ice surfaces in	04
23	1987 Photosynthetically available irradi- ation data for pre- and post- scraping of underice surfaces in	85
24	1988 In-air sensitivity comparison of surface sensor to underwater	87
25	In-air sensitivity comparison of surface sensor to underwater	88
26	sensor fitted with ice scraper, 1988 List of scientific names of algae collected in the Beaufort Sea	88
27	study area during 1986 to 1988, ordered according to phylogenetic relationships Number of ice algae taxa and dominant taxa with associated snow	89
28	depth and surface salinity data, collected in March, 1987 and 1988 Number of ice algae taxa and dominant taxa with associated snow	91
·	depth and surface salinity data, collected in May, 1986 and 1987	92
20	Relative abundance of algae sampled from ice cores in:	03
29 30 31	1987	96 99
32	Summary data for ice cores sample for algae, 1986 to 1988	d 100

.

<u>Table</u>

Page

٠

.

.

•

r

	Ice core chlorophyll <u>a</u> data for stations sampled in:
33	1986 101
34	1987 103
35	1988 106
36	Total suspended solids data from
	ice cores sampled in 1987 109
37	Total suspended solids data from ice
	cores sampled in 1988 109
	Depth-frequency, mean and standard deviation snow depth data sampled in:
38	1986 110
39	1987 111
40	1988 112

ABSTRACT

Hopky, G.E., M.J. Lawrence, D.B. Chiperzak, and S.M. McRae. 1994. NOGAP B2; Data on <u>in situ</u> water irradiance, temperature and fluorescence, solar irradiance, and ice algae and related parameters from the Canadian Beaufort Sea shelf, 1985 to 1988. Can. Data Rep. Fish. Aquat. Sci. 934: v + 112 p.

Between 1985 to 1988, the Canadian southern Beaufort Sea shelf and coastal bays were sampled for a suite of oceanographic variables. In 1985, 41 stations were occupied between 21 July to 12 August. In 1986, 63 stations were sampled between 23 March and 20 September. In 1987, 59 stations were sampled between 05 March and 30 August. In 1988, 20 stations were sampled between 07 and 24 March. Throughout 1986 to 1988 continuous irradiance (PAR) data were recorded at Tuktoyaktuk. During open water, water column PAR and relative fluorescence measurements were made on the Beaufort Sea shelf and in Tuktoyaktuk Harbour, and continuous sea surface temperature data are reported for Kugmallit Bay. During ice cover Tuktoyaktuk Harbour and Mason Bay were sampled for water column fluorescence and PAR; and on the shelf stations were sampled for ice algae species composition and abundance, ice chlorophyll <u>a</u> concentration, total suspended solids and PAR data in relation to snow depth.

Key words: Beaufort Sea; Mackenzie River; estuaries; bays; irradiance; temperature; fluorescence; ice algae; taxa; biomass; chlorophylls.

RÉSUMÉ

Hopky, G.E., M.J. Lawrence, D.B. Chiperzak, and S.M. McRae. 1994. NOGAP B2; Data on in situ water irradiance, temperature and fluorescence, solar irradiance, and ice algae and related parameters from the Canadian Beaufort Sea shelf, 1985 to 1988. Can. Data Rep. Fish. Aquat. Sci. 934: v + 112 p.

Entre les années 1985 et 1988, des échantillons ont été prélevés sur le plateau continental canadien situé dans le sud de la mer de Beaufort et dans les baies côtières afin d'obtenir une série de données océanographiques. En 1985, 41 stations ont été échantillonnées entre le 21 juillet et le 12 août. En 1986, 63 stations ont fait l'objet d'un échantillonnage du 23 mars au 20 septembre. En 1987, des échantillonnées du 7 au 24 mars. Au cours de ces périodes, de 1986 à 1988, on a enregistré les données sur l'irradiation solaire à Tuktoyaktuk. Pendant la période d'eau libre, on a mesuré le RPA (rayonnement photosynthétiquement actif) et la fluorescence relative dans la colonne d'eau sur le plateau continental de la mer du Beaufort et dans le port de Tuktoyaktuk. On a également relevé, de façon continue, la température de la surface de la mer dans la baie Kugmallit. Au cours de la période des glaces, des échantillons ont été prélevés dans le port de Tuktoyaktuk et dans la baie de Mason afin de déterminer la fluorescence et le RPA dans la colonne d'eau. D'autres échantillons ont été prélevés dans les stations sur le plateau continental afin de déterminer l'abondance et la composition des espèces d'algues ainsi que la concentration de chlorophylle *a* dans les glaces, la quantité totale de matières solides en suspension ainsi que des données sur le RPA en fonction de l'épaisseur de la neige.

Mots-clés: Mer de Beaufort; fleuve Mackenzie; estuaires; baies; irradiation solaire; fluorescence; algues des glaces; taxons; biomasse; chlorophylle.

ì 4

INTRODUCTION

This report lists physical, chemical and biological data sampled as part of the Beaufort Shelf Fish Habitat Research Subproject (B.2.1) and the Nearshore Benthic Monitoring Subproject (B.2.3). These studies are components of the Critical Estuarine and Marine Habitat Project (B.2) undertaken by staff of the Department of Fisheries and Oceans (DFO), Central and Arctic Region, as part of the Northern Oil and Gas Action Program (NOGAP). NOGAP is a multi-disciplinary study to provide background data for assessing the potential effects of hydrocarbon development and production on the critical marine and estuarine habitats of the Canadian Arctic coastal shelf.

Subproject B.2.1 was conducted throughout the seasons of 1984 to 1988 on the Canadian Beaufort Sea shelf and Mackenzie River estuary in an area extending from the inshore reaches of the Mackenzie River estuary, including Tuktoyaktuk Harbour and Mason Bay, out to about the 200 m isobath and bounded to the west by Herschel Island and to the east by Amundsen Gulf (Fig. 1). The objectives of Subproject B.2.1 are:

- to conduct research towards identifying, in spatial and temporal terms, areas of significance to marine and estuarine fish species of the Beaufort Sea shelf;
- to characterize these areas in terms of community composition, and in terms of chemical, physical and biological parameters; and
- 3. to describe the feeding habits of selected fish species in relation to habitat and season.

The Beaufort Sea shelf region is significant habitat for marine mammals (Würsig et al. 1985; Norton and Harwood 1985), and estuarine and marine fishes (Craig 1984; Lawrence et al. 1984; Bond and Erickson 1989). Biological data for Subproject B.2.1 included algae sampled from the under-ice surface, zooplankton and ichthyoplankton collected during ice cover and open water, and fish sampled during ice cover (Chiperzak et al. 1991) and open water. The zoo- and ichthyoplanton data is either reported (e.g. Chiperzak et al. 1990; Hopky et al. 1994a) or in preparation for reporting (Hopky, pers. comm.). The data reported here assist in the delineation of fish and marine mammal habitats, and represent the final component of the physical and chemical data to be reported for this Subproject. Related physical (e.g.

salinity, temperature) data (e.g. Hopky et al. 1988a), and chemical (e.g. nutrients, dissolved oxygen, silica) and biological (e.g. chlorophyll <u>a</u>) data (Lawrence et al. 1991) are already reported.

Subproject B.2.3 was conducted in March 1985 to 1988, in Tuktoyaktuk Harbour and Mason Bay, located on the eastern side of the Mackenzie River estuary (Fig. 1). The objectives of Subproject B.2.3 are:

- to characterize the meiobenthic and macrobenthic communities, to determine the extent of interannual variability in numbers and biomass of these communities, and to relate these results to chemical and physical attributes in the sediment and water column; and
- 2. to develop sampling and analysis methods and to evaluate approaches for future effectsmonitoring programs.

Subproject B.2.3 involved the collection of macrobenthos (>500 µm screen) and meiobenthos (64 and 212 µm screens). The contribution of this Subproject to the goal of NOGAP B.2 was to provide baseline biological data on the benthic invertebrate populations found in bays along the Beaufort Sea coast. These coastal bays are often characterized by restricted water circulation with the adjacent shelf waters (Barber 1968), but never the less, provide critical habitat for estuarine, marine and freshwater fish (Bond 1982; Lawrence et al. 1984; Hopky and Ratynski 1984). The biological and related physical (e.g. sediment) data is reported in Hopky et al. (1994b), while the water column salinity and temperature data are reported in Hopky et al. (1990), and related water column chemical data (e.g. nutrients, pH, dissolved oxygen, etc.) in Lawrence et al. (1993).

The data reported here is not distinguished with respect to its Subproject of origin. However, in general, the open water period Beaufort Sea shelf and Tuktoyaktuk Harbour data, and the ice cover period Beaufort Sea shelf data are from Subproject B.2.1; while the ice cover period Tuktoyaktuk Harbour and Mason Bay data are from Subproject B.2.3. The data reported here includes the following:

- continuous near-surface water temperature data from a stationary buoy near Tuktoyaktuk, for open water periods during 1985 to 1987;
- 2. <u>in situ</u> water column profiles of fluorescence data from all study areas, during 1986 to 1988;

- in situ open water sea surface transects of fluorescence data from the Beaufort Sea study area, during 1986;
- 4. <u>in situ</u> water column profiles of photosynthetically available irradiance (PAR) data from all study areas, 1985 to 1988;
- continuous solar irradiance data from DFO's Tuktoyaktuk base camp, for various times throughout 1986 to 1988;
- chlorophyll <u>a</u> biomass and total suspended solids data from ice cores of the landfast ice from the Beaufort Sea study area, 1986 to 1988;
- snow depth data from ice core sampling stations located on the landfast ice from the Beaufort Sea study area, 1986 to 1988; and
- 8. algae community composition and density data from ice cores of the landfast ice from the Beaufort Sea study area, 1986 to 1988.

METHODS

STATIONS AND POSITIONING

Locations were designated on the basis of year, and station sample names were generally assigned sequentially in chronological order within year. An example of a typical station is 86033; this refers to the year 1986, with 033 referring to the station number assigned for 1986.

Subproject B.2.1

Samples were collected primarily along the coastal margin of the Beaufort Sea shelf and in Tuktoyaktuk Harbour and Mason Bay. During the ice-on sampling periods of March or May, stations were established by the objective of the primary research program, which was to sample the epontic algal community of the landfast ice under different salinity regimes along the coastal shelf. Station locations were often dependent on ice conditions, particularly near the interface of the landfast ice with the sea ice. A DH6 (Twin Otter) aircraft equipped with wheel skis was used for sampling from the ice surface, and station coordinates were determined using a Global Navigation System on the aircraft. Two stations, 88001 and 88002, were reached using ground vehicles. Coordinates for 88001 were determined by proximity to shoreline features and land maps (NTS series; 1:50 000), and those for 88002 with aircraft flypasts.

During the open water periods, the primary research program was plankton sampling and stations were established accordingly throughout the coastal shelf, and in Tuktoyaktuk Harbour. The MV Sequel, a wooden hulled 12 m vessel, was chartered as the sampling platform. The Sequel had a sailing range of about one week, and selection of sampling stations was often constrained by the vessel's small size and hull construction. Station coordinates were determined using a combination of radar (Furuno Model CR240) fixes to shore, bathymetric charts and satellite navigators (1985 - Magnavox Model MX4102; 1986 to 1988 - JRC Model JLE-3850) with nominal accuracy of ± 0.1 km.

Summary data for stations sampled on the Beaufort Sea shelf and in Tuktoyaktuk Harbour for each of 1985 to 1988 are given in Tables 1-4, respectively. Station locations are illustrated in Fig. 2-9.

Subproject B.2.3

Samples were collected in Tuktoyaktuk Harbour and Mason Bay during the ice-on period of March. Station locations were selected on the basis of pre-determined depth strata, bottom gradient and sediment texture consistent with the sampling design for the macro- and meiobenthos. The protocol for sampling the benthos necessitated that station positions be relocated intra- and interannually with a high degree of confidence. All stations in Tuktoyaktuk Harbour and Mason Bay were located using a detailed procedure outlined in Hopky et al. (1990). To summarize, in 1986, after locating semi-permanent reference points on land, an infrared rangefinder system (Sokkisha Red Model 2L) was used in combination with a theodolite (Wild TI 70 Series) to precisely position the sampling station. Repeat sampling occurred at each of these stations in subsequent years.

Summary data for stations sampled in Tuktoyuktuk Harbour and Mason Bay are summarized in Tables 3 and 4 for 1987 and 1988, respectively. Station locations are shown in Figs. 10 and 11 for Tuktoyaktuk Harbour and Mason Bay, respectively.

Sea-surface temperature buoy

A Ryan Model J-90 submersible analog thermograph (-5 to +25°C range, ± 0.3 °C accuracy) with 90 day quartz timing mechanism (± 0.2 % accuracy) was moored at stations 85101 and 86034 on 18 July, 1985, and 16 July, 1986, respectively. The thermographs were retrieved on 03 September, 1985, and 12 September, 1986, respectively. In each case, the units were tethered so that the temperature sensor was 15-30 cm below the water surface.

A Ryan Tempmentor submersible digital recording thermometer, (-32 to $+70^{\circ}$ C range, $\pm 0.3^{\circ}$ C accuracy) with internal quartz clock supported by IBM compatible RTM Version 1.02 software was deployed at station 87014 on 17 July, 1987, and retrieved on 02 September, 1987. As with the analog thermographs, the digital unit was tethered so that the sensor was submerged 15-30 cm below sea surface.

Analog temperature records from 1985 and 1986 were manually transcribed at four hour intervals into numeric data format. Digital temperature data from 1987 were electronically logged at 20 minute intervals and were subsequently electronically processed with the RTM supporting software.

Fluorescence data

A Turner Designs Model 10-005R continuous flow fluorometer with 10-040 light source and optical filters for chlorophyll <u>a</u> excitation, equipped with a Model 10-010 strip recorder, was used to take <u>in</u> <u>situ</u> measurements of water column chlorophyll <u>a</u> fluorescence (detection limit = ± 0.005 expressed as $\mu g \cdot L^{-1}$ chlorophyll <u>a</u>; response time = 4 s; to 98% accuracy). The fluorometer was powered by a 12 volt DC source. A 0.25 HP 110 volt AC water pump was installed on the outlet side of the cuvette, so that water was drawn through the cuvette with minimum bubble interference.

Fluorescence profiles were obtained by lowering a weighted, 1.27 cm inside diameter, black rubber garden hose, connected to the inlet port of the fluorometer, to total depth (1 m above the bottom to a maximum depth of 27.5 m). The pump was then turned on and after allowing time for the hose to purge, fluorescence was recorded at discrete depth intervals from bottom to top. As depth permitted, profile intervals were as follows: surface, 2, 4, 6, 8, 10, 12.5, 15, 17.5, 20, 22.5, 25, and 27.5 m.

The fluorometer was not calibrated against a chlorophyll <u>a</u> concentration standard. However, water samples taken from the standard bottle casts at each station (Lawrence et al. 1991, 1993) may be used to derive within-station fluorescence-chlorophyll <u>a</u> concentration relationships. Sensitivity adjustment of the fluorometer was kept constant within each sampling period, however, adjustments from year-to-year were made. For this reason, fluorescence data obtained for a particular profile should not be compared with data obtained from different time periods, until data are standard-ized using chlorophyll <u>a</u> data from Lawrence et al. (1991, 1993).

In 1986 sea-surface fluorescence data were collected along 13 tracks (1-4 km in length) while the vessel was in transit to and from Tuktoyaktuk. The vessel's sea-water intake was valved into a large poly-tub to enable any entrained air bubbles to escape. From the bottom portion of the tub, water was suctioned to the fluorometer and a continuous fluorescence record was obtained. Vessel position and time were recorded at the beginning and end of each track. The analog data record obtained was manually converted to numerical data at 10 minute intervals along the record.

Photosynthetically available radiation (PAR) data

<u>Continuous data - Tuktoyaktuk</u>: Solar irradiance (PAR) was measured with a quantum sensor (Li-Cor Model LI-190S) mounted on the roof of the DFO field laboratory in Tuktoyaktuk (69°26.3'N, 133°2.1'W). The data were recorded on a Lambda Instruments LI-550 printing integrator. Quantum sensor output (μ E·m²) was integrated over a one hour period and continuously recorded for the following periods: 12 to 23 May and 8 July to 21 September, 1986; 17 May to 16 September, 1987; and, 13 March to 13 August, 1988. Light data were integrated and recorded over a 24 hour period for the period 24 May to 7 July, 1986.

Light data for each of the periods of record were transformed and reported as averaged daily (for the full 24 hour day) instantaneous irradiance measurements expressed as $mE \cdot m^{-2} \cdot min^{-1}$ (Fee 1990).

Open water season water column profiles (WCP): In 1985, in situ water column profiles of solar irradiance (PAR) were measured with a Licor LI-192S underwater quantum sensor used in conjunction with a sensor-calibrated Licor LI-188 light meter. Light measurements were made on the "sunny side" of the vessel and proceeded as follows: a light reading was first recorded in air at the water surface, following which, light readings were made at 0.5 m depth intervals from surface to 5 m, and at 1 m intervals to the maximum depth at which readings could be made. Light readings at each depth interval were the average of sensor output over a 10 second integration period. Meter output (µE·m⁻²·sec⁻¹) was transformed and reported in mE·m⁻²·min⁻¹ units to a depth at which readings were consistently (normally three readings) < 0.1 $mE m^2 min^1$.

In 1986 and 1987, in situ solar irradiance profiles were measured with a Licor LI-192SA underwater sensor and an LI-190SA "deck" sensor in conjunction with a Licor LI-1000 light meter/ logger configured to permit manual logging of light readings averaged over a 10 second integration period. Sensors were recalibrated in each year. Data were output in ASCII format via the RS232 communication port to a micro-computer. The same profile and data transformation procedures were followed in 1986 and 1987 as in 1985, except that a calibrated-for-air "deck" sensor was placed in an unshaded area of the vessel so that surface irradiance was measured in conjunction with each water column interval reading. Light readings were made at 0.5 m depth intervals from surface to 10 m, and thereafter at 1 m intervals to the maximum depth at which readings could be made. The data logger was internally configured to calculate and record the ratio of underwater-to-surface light readings for each depth interval. This provided an instant, real-time indication of the light attenuation properties of the water column under the full range of incident light conditions. Profile output (in mE·m ²·min⁻¹) was reported as follows: 1) from surface to the depth at which water-to-surface ratio was consistently <0.001 (normally three readings); 2) from surface to bottom; or 3) from surface to maximum wire length (29 m).

Through the ice water column profiles: Solar irradiance (PAR) profiles were conducted through the ice in March and May, 1987, and in March, 1988. Two profiling techniques were employed in each of the sampling periods. When water column light measurements were not done in conjunction

with ice-algae sampling (1987 and 1988 profile sample numbers 1 to 12, Tables 3 and 4, respectively) procedures were identical to those used during open water profiling. The first reading was with the underwater sensor at the air-water interface in the ice hole.

When water column measurements were made in conjunction with ice algae sampling (1987 profile sample numbers 13 to 37, and 1988 profile sample numbers 13 to 26, in Tables 4 and 5, respectively), the first light reading was taken below the surface at the ice-water interface (as opposed to the air-water interface in the ice hole), and was offset horizontally 1.2 m from the hole. Profiling sequence was the same as for open water.

Ice-algae and light (PAR) attenuation (pre- and post-scrape data): A lead counter-weighted, articulated arm was constructed of 2.5 cm square tubular aluminum to the end of which was attached the Licor LI-192SA underwater sensor, fitted with a coarse-toothed hole saw blade that projected just above the light sensor element. The articulated arm was lowered through a 20.3 cm diameter hole in the ice, and once clear of the hole, the light sensor end of the arm was carefully swung vertically into a "looking-up" position at the ice-water interface, 1.2 m away from the centre of the ice hole. The surface sensor was placed on the ice surface in an unshaded location. At this point light readings (the average of sensor output over a 10 second integration period) from the LI-190SA surface sensor and the under water sensor were logged as "Pre-scrape" data on the LI-1000 data logger. The arm was then swung back and forth in a small arc, so as to scrape the under-surface of the ice. Scraping was stopped when the surface felt smooth and hard. A second reading was then logged as "Post-scrape" data. The data logger was internally configured to calculate and record the ratio of underwater-to-surface light intensity for each reading. This provided a measure of the solar irradiance at the ice-water interface in the presence and absence (i.e. pre- and post-scrape, respectively) of algal growth. This sequence of pre-scrape and post-scrape was repeated in the centre of each 90° quadrant around the ice hole.

Comparisons of the sensitivity of the surface (LI-190SA) sensor to the underwater sensor with hole-saw blade attached, were made on a number of occasions in 1987 and 1988 by placing the two

į

sensors side-by-side and recording light readings from each.

Comparisons of the sensitivity of the surface (LI-190SA) sensor with the Biospherical QSL-100 light sensor used in primary production experiments (Hopky, pers. comm.), were made in 1988 by placing the two sensors side-by-side under high and low light conditions and recording light readings from each.

Chlorophyll a determination and ice-algae sampling

Concentration of chlorophyll a in ice cores: A 10.16 cm diameter Sipre corer was used to obtain undisturbed samples of the bottom surface of the ice at locations along the landfast ice of the Beaufort Sea study area in March and May of 1986 and 1987, and in March, 1988. Core lengths were recorded in 1987 and 1988. In most cases cores were 5 cm in length, unless the ice was extremely hard, in which case a shorter core section was cut.

Five ice-coring stations were established in 1986 (three in March and two in May), and at each station, 10 to 30 ice-core sample sites were established based on snow-depth distribution at the station. Holes were then drilled to within 20-60 cm of the bottom surface of the ice at each selected site using an electric powered 20.3 cm diameter auger. The Sipre corer was then used to obtain an ice core, which was immediately cross-sectioned with a hand saw and mitre box so that the bottom portion of the core was retained. Lengths of individual cores retained were not measured, but were estimated to range from approximately 2-10 cm with an average length of 5 cm. A smaller 5.08 cm diameter core was subsequently removed from the centre portion of each Sipre core to obtain samples with as uniform a surface area as possible. The small cores were placed in numbered "Whirl-Pak" bags and immediately placed in a dark cooler. At each core site, snow depth and ice thickness were recorded. A systematic snow depth distribution survey was conducted over the station area within which all cores were taken. Between 190 to 400 snow depth measurements (±1 cm) were measured at approximately 5 m intervals along transects spaced 5-10 m apart.

Ten ice-coring stations were established in 1987 (six in March and four in May). Sampling procedures were the same as for 1986 except that each core-section length was recorded. Most cores were 5 cm long. Five ice-coring stations were established in March 1988. Sampling procedures were the same as for 1987 except that a visual assessment of the integrity of the bottom surface area of each sub-core was recorded.

In the laboratory in Tuktoyaktuk, ice-cores were allowed to melt in the dark, immediately after which the melted volume was measured, and then filtered through Whatman GF/C glass fibre filters, with several rinses of distilled, deionized water. Filters were placed in individual disposable plastic petri dishes, wrapped in aluminum foil and kept frozen, and shipped to DFO's Winnipeg laboratory. Chlorophyll <u>a</u> was determined fluorometrically with a Turner Model 111 following dark extraction in 95% methanol for a minimum of 16 hours (modification of Stainton et al. 1977).

<u>Suspended solids in ice data</u>: An electric powered 20.3 cm diameter auger was used to obtain ice samples for purposes of evaluating ice clarity as measured by the suspended particulate matter in the ice. First the area to be sampled was scraped clean of snow and then using a clean shovel, ice chips augured out of the hole were placed in labelled, clean poly-bags. All the ice was removed from the top 80-90% of the hole, following which a solid ice core was removed from the bottom portion (20-30 cm), with the Sipre corer. The core was processed for chlorophyll <u>a</u> determination as described in the preceding section.

The bagged-ice was returned to the laboratory in Tuktoyaktuk where it was allowed to melt. In 1987, the total melted sample (10-22 L) was filtered in measured batches, through a number of pre-washed and pre-weighed 47 mm diameter, 0.4 µm Nuclopore filters using standard Millipore filtration apparatus. The maximum vacuum was <150 mm Hg for particulate weight determination. Filters were stored in new petri dishes in a freezer and shipped to DFO's Winnipeg laboratory for dry weight determination (Stainton et al. 1977). Precision of the dry-weight determination is 0.5 mg·L⁻¹ at 8 mg·L⁻¹ particulate concentration. Volumes filtered met operating range accuracy criteria for dry weight determinations (minimum 2.5 mg solids per filter). The total weight of particulates retained on all filters was summed and divided by the total melted-ice volume to provide a . mean of the total suspended solids (TSS) concentration $(mg \cdot L^{-1})$ of the ice core.

In 1988, the volume of melted ice from the sample holes was determined, and following

thorough mixing in a 25 L container, a 1.00-1.24 L aliquot was removed for TSS determination. The concentration of solids in the sub-sample was then used to back-calculate the total particulates present in the ice core.

Ice algae species distribution and abundance: Cores were taken from a number of sites at icecore stations sampled in 1986, 1987 and 1988, and preserved in Lugol's solution. To make statistically valid assessments of, phytoplankton abundance in the melted core samples, a subsample was settled and examined using an Olympus inverted microscope. First, a volumetric measurement (±1 mL) was taken of each sample. Then, a 0.5-10.0 mL sub-sample was removed from each well-mixed sample to determine cell concentration and for scanning electron microscope examination. The amount settled provided approximately 500 cells for counting. An inverted microscope was used to identify and enumerate phytoplankton individuals. Sixty (60) fields were examined at 400x (Smayda 1978). From the counts, the total number of cells was calculated in each core sub-sample. Depending on the volume (of the sub-sample) settled, the number of cells counted was multiplied by a factor (1 mL = 73966; 2 mL = 36 983; 5 mL = 14 360; 10 mL = 7 184; H. Kling, Freshwater Institute, Winnipeg, pers. comm.) to provide an estimate of the number of cells-mL⁻¹ in the melted sample. Based on density estimates, the number of cells/core sample was calculated.

Alternatively, when cell densities appeared to be very low, one-half the slide containing the settled cells was examined at 100x. The number of cells per core sample was then calculated by multiplying the number of cells per half-slide x 2, then dividing by the sub-sample size (1-10 mL) and multiplying by the melted core volume.

Results on abundance of each species were reported as **Rare** (cell·mL⁻¹ \leq 5); **Common** (cell·mL⁻¹ \geq 6 but \leq 50); **Abundant** (cell·mL⁻¹ \geq 51 but \leq 100); and **Very Abundant** (cell·mL⁻¹ \geq 101).

Phytoplankton were identified with the assistance of a number of taxonomic references (Balech 1974; Cleve-Euler 1951-1955; Horner 1985; Hsiao 1983; Hustedt 1930a, 1930, 1959; Lebour 1930; Schiller 1933, 1937). Phytoplankton were identified to species where possible using a compound light microscope, or a scanning electron microscope (SEM). All specimens were assigned numeric codes based on a catalogue and

systematic list developed for NOGAP Subprojects B.2.1 and B.2.3 (Hopky et al. 1994c).

For SEM observation, a concentrated sample was either rinsed and air dried, cleaned using 30% H_2O_2 and KMnO₄ then rinsed and air dried, or critical point dried using a biorad polaron cpd. The samples were then coated with gold using a biorad polaron sputter coater. The samples were then examined using an Hitachi S-500 scanning electron microscope.

RESULTS

A summary of all stations sampled and measurements made at each station sampled from 1985 to 1988 are shown in Tables 1 to 4, respectively. Note that all sampling times reported in these and subsequent tables are local time (Mountain Time; daylight-saving for March, and standard time for the remaining months). In 1985, 41 stations were occupied during the period 21 July to 12 August. In that year, water column fluorescence data, ice coring and snow depth measurements were not components of the field program. In 1986, 63 stations were sampled between 23 March and 20 September. During the period of ice cover, ice algae species composition and abundance data were collected along with ice chlorophyll a concentration data in relation to snow depth. During open water, water column light (PAR) and relative fluorescence measurements were made in relation to depth. Data for PAR profile numbers 1, 35, 37 and 38 are not given because each profile is represented by only one reading at the water's surface, prior to light extinction at each station. In 1987, 59 stations were sampled between 05 March and 30 August. Measurements of irradiance (PAR) at the subsurface ice-water interface, before and after scraping to remove algal growth (PPS), and measurements of ice total suspended solids concentration, were added to the suite of measurements made during the period 19 March to 12 May period of ice-cover sampling. In 1988, 20 stations were sampled between 07 and 24 March. Sampling was similar to that done in March, 1987.

Sea surface temperature data from the temperature buoys deployed in Kugmallit Bay each open water season of 1985 to 1987 are shown in Tables 5 to 7, respectively. The buoys were

deployed at approximately the same location each year, that was within the influence of the fresh water plume of the Mackenzie River. The temperature data reflect this influence, and the occasional upwelling of colder offshore water that would occur depending on wind direction (usually with a southern component) and duration. Analysis of the data over a similar period of record for each year (18 July to 01 September) showed that mean water temperature (11.0, 12.1, and 12.3°C for July and 9.0, 10.4, and 10.9°C for August of 1985, 1986, and 1987, respectively) reflected the relative ice-cover situation in those years, with 1985 being one of the worst ice years on record and 1987 being one of the best (Fissel and Melling 1990).

In situ measurements of water column chlorophyll <u>a</u> fluorescence measured in 1986, 1987 and 1988 are shown in Table 8 to 10, respectively. In their present state these data are useful for examining within-profile relative differences in chlorophyll <u>a</u> concentration. Empirical relationships between these data and chlorophyll <u>a</u> data derived from bottle casts (Lawrence et al. 1991, 1993) need to be established prior to examining temporal and spatial differences in chlorophyll <u>a</u> as represented by the fluorescence profile data.

A summary of in situ sea surface fluorescence transect date and location data are shown in Table 11 along with the interval distance along the transect where fluorescence measurements were made. Table 12 shows the surface fluorescence data which are depicted in Fig. 12. Transects 1 to 5 were conducted on 21 August, 1986 while in transit east to west from a point northwest of Cape Dalhousie towards McKinley Bay (Fig. 1), ending near station 86072. The transect data show an increase in fluorescence with proximity to the Chlorophyll a Mackenzie River (Fig. 12). concentration determined from water samples taken at station 86072, ranged from 0.05 mg L⁻¹ near the surface, to 0.37 mg·L⁻¹ at 15 m depth (Lawrence et al. 1991). Transects 6 to 10 were done in Kugmallit Bay while in transit to and from the Pullen Island area on 09 and 10 September. Transects 11 to 13 were done on 10 September on transit around the head of Pullen Island. For transects 6 to 13. surface fluorescence was lowest in the high turbidity and fresher water area of Kugmallit Bay and progressively increased to its highest level in the brackish/marine zone near Pullen Island. There were no adjacent stations to provide comparative chlorophyll a data for these latter transects.

Average daily photosynthetically available irradiance (PAR - mE·m⁻²·min⁻¹) measurements made at Tuktoyaktuk in 1986 to 1988 are shown in Tables 13 to 15, respectively. Comparison of mean daily total PAR expressed as mE·m⁻²·day⁻¹ for each month and year of record (Table 16) show that the summer of 1986 and 1987 had considerably more cloud cover than 1988.

Water column profiles of PAR for 1985 to 1988 are shown in Tables 17 to 20, respectively. Note that when calculating extinction coefficients for 1986 to 1988 data, more accurate results may be obtained by calculating the negative slope of the linear regression of the logarithm of the ratio of deck sensor light reading to water sensor light reading, as a function of depth. In 1985, where a single sensor was used, extinction coefficients would be calculated as the negative slope of the linear regression of the logarithm of light as a function of depth (Fee et al. 1988). Some extinction coefficients calculated from 1986 light-ratio data from nearshore waters in the influence of the Mackenzie River plume (Table 21) were in the range of 0.2-0.7. These were associated with Secchi disc readings in the 1.2-0.3 m range. A typical offshore station beyond the influence of the river (Station 86068) had an extinction coefficient of 0.04 and a Secchi disc reading of 14.8 m. Secchi readings and salinity values were obtained from Hopky et al. (1987).

Measurements of irradiance (PAR) at the sub-surface ice-water interface, before and after scraping to remove algal growth that were made in March and May, 1987 and March, 1988 are shown in Tables 22 and 23, respectively. Examination of the 1987 data indicates that light penetration to the ice-water interface is negatively correlated with snow depth, and that the difference in light penetration pre- and post-scrape may be negatively correlated with both snow depth and salinity.

Comparisons of light readings in air of the surface sensor and the underwater sensor fitted with the ice scraper that were done in 1987 and 1988 are shown in Tables 24 and 25, respectively. In the majority of cases readings were similar, however, sun angle appears to have reduced the light reading with the scraper-fitted sensor in a number of cases. It is expected that the diffusion of light through the ice surface would have eliminated this problem when the underwater sensor was in position under the ice surface.

One hundred and twenty-seven species of algae were identified from ice core samples collected during 1986 to 1988. Names and phylogeny are shown in Table 26. Also shown is the species code that was assigned each species in the electronic data base. Dominant ice algae taxa at each sampling location, with associated surface salinity (i.e. at ice/water interface) and snow depth data, are shown in Tables 27 and 28 for March and May periods, respectively. Data were taken from algal species relative abundance data shown in Tables 29 to 31 for collections made in 1986 to 1988, respectively. Salinity data are from Hopky et al. (1987, 1988a,b). Snow depth and other data collected in association with the ice cores sampled for algae community data are shown in Table 32.

Ice core chlorophyll <u>a</u> concentration data from samples collected in 1986 to 1988 are shown along with snow depth and ice thickness data, in Tables 33 to 35, respectively. Chlorophyll <u>a</u> concentration data (μ g·L⁻¹) were converted to areal density units (mg·m⁻²⁾ to compensate for the difference in volume of melted ice cores; whether because of different core lengths between cores, or differences in core porosity and texture.

Assessments of the clarity of ice using TSS, at selected locations in 1987 and 1988 are shown in Tables 36 and 37, respectively. Observations made in the field at the time of sampling, suggested that at locations where ice algae would otherwise be expected to occur (i.e. with underlying estuarine/ marine waters, low snow depth), there was a negative correlation between ice algae abundance and the visible presence of particulate matter in ice.

Snow depth frequency data that were collected at each station sampled for ice algae or ice core chlorophyll <u>a</u> content, are shown in Tables 38 to 40 for years 1986 to 1988, respectively. These data will be useful for extrapolating finer scale, ice core chlorophyll <u>a</u> and site-snow-depth statistics, to a broader, station-scale statistic.

ACKNOWLEDGMENTS

We wish to acknowledge G. Lacho, D. Rasmussen and R. Sauvé of DFO Winnipeg for their assistance in the field. Skipper of the MV

Sequel was W. Bellam. Twin otter pilots were F. Hennessy, H. Hanlon and H. Perk. Dr. C. Mackenzie, Memorial University, St. John's, NFLD, identified and counted the algae. Their skills and contributions are gratefully acknowledged.

We also wish to thank the Polar Continental Shelf Project of the Canada Department of Energy, Mines and Resources, Tuktoyaktuk, N.W.T., for logistic support and S. Moorehouse, DFO Institute of Ocean Sciences, Sidney, B.C., for his cheerful and invaluable assistance on a number of "trying" occasions. Ice and weather information provided by Beaudrill Marine, also of Tuktoyaktuk, was appreciated.

REFERENCES

- BALECH, E. 1974. El genero "Protoperidinium" Bergh 1881 ("Peridinium" Ehrenberg 1831, partim). Rev. Mus. Argent. Ciene. Nat. "Bernardino Rivadavia" Inst. Nac. Invest. Cienc. Nat. Hidrobiol. 4.
- BARBER, F.G. 1968. On the water of Tuktoyaktuk Harbour. Can. Dep. Energy Mines Res. Mar. Sci. Br. Manuscr. Rep. Ser. 9: 32 p.
- BOND, W.A. 1982. A study of the fish resources of Tuktoyaktuk Harbour, southern Beaufort Sea coast, with special reference to the life histories of anadromous coregonids. Can. Tech. Rep. Fish. Aquat. Sci. 1119: vii + 90 p.
- BOND, W.A., and R.N. ERICKSON. 1989. Summer studies of the nearshore fish community at Phillips Bay, Beaufort Sea coast, Yukon. Can. Tech. Rep. Fish. Aquat. Sci. 1676: vi + 102 p.
- CHIPERZAK, D.B., G.E. HOPKY, and M.J. LAWRENCE. 1991. Fish catch data from the landfast ice of the Mackenzie River estuary, March 1985, and May 1986, 1987. Can. Data Rep. Fish. Aquat. Sci. 847: v + 28 p.
- CHIPERZAK, D.B., G.E. HOPKY, M.J. LAWRENCE, and G. LACHO. 1990. Marine ichthyoplankton data from the Canadian

Beaufort Sea shelf, July and September, 1984. Can. Data Rep. Fish. Aquat. Sci. 779: v + 45 p.

- CLEVE-EULER, A. 1951-1955. Die Diatomeen von Schweden und Finnland. Kgl. Sv. Vetenskapsakad Hd., Ser. IV 2(1), 3(3), 4(1), 4(5), 5(4).
- CRAIG, P. 1984. Fish use of coastal waters of the Alaskan Beaufort Sea: a review. Trans. Am. Fish. Soc. 113: 26-282.
- FEE, E.J. 1990. Computer programs for calculating in situ phytoplankton photosynthesis. Can. Tech. Rep. Fish. Aquat. Sci. 1740: v + 27 p.
- FEE, E.J., R.E. HECKY, S.J. GUILDFORD, C. ANEMA, D. MATHEW, and K. HALLARD. 1988. Phytoplankton primary production and related limnological data for lakes and channels in the Mackenzie Delta and lakes on the Tuktoyaktuk Peninsula., N.W.T. Can. Tech. Rep. Fish. Aquat. Sci. 1614: v + 62 p.
- FISSEL, D.B., and H. MELLING. 1990. Inter annual variability of oceanographic conditions in the southeastern Beaufort Sea. Can. Contr. Rep. Hydrogr. Ocean Sci. 35: xiv + 105 p. (plus 6 microfiche).
- HOPKY, G.E., D.B. CHIPERZAK, and M.J. LAWRENCE. 1987. Seasonal salinity, temperature and density data for the Canadian Beaufort Sea shelf, 1986. Can. Data Rep. Fish. Aquat. Sci. 661: iv + 268 p.
- HOPKY, G.E., D.B. CHIPERZAK, and M.J. LAWRENCE. 1988a. Seasonal salinity, temperature and density data for the Canadian Beaufort Sea shelf, 1987. Can. Data Rep. Fish. Aquat. Sci. 685: iv + 162 p.
- HOPKY, G.E., D.B. CHIPERZAK, and M.J. LAWRENCE. 1988b. Salinity, temperature and density data for the Canadian Beaufort Sea shelf, March 1988. Can. Data Rep. Fish. Aquat. Sci. 712: iv + 17 p.
- HOPKY, G.E., D.B. CHIPERZAK, M.J. LAWRENCE, and L. DE MARCH. 1990. Seasonal salinity, temperature and density data for Tuktoyaktuk Harbour and Mason

Bay, N.W.T., 1980 to 1988. Can. Data Rep. Fish. Aquat. Sci. 801: v + 231 p.

- HOPKY, G.E., M.J. LAWRENCE, and D.B. CHIPERZAK. 1994a. NOGAP B2; Zooplankton data from the Canadian Beaufort Sea shelf, 1987 and 1988. Can. Data Rep. Fish. Aquat. Sci. 912: v + 219 p.
- HOPKY, G.E., M.J. LAWRENCE, and D.B. CHIPERZAK. 1994b. NOGAP B2; Data on the meio- and macrobenthos, and related bottom sediment from Tuktoyaktuk Harbour and Mason Bay, N.W.T., March, 1985 to 1988. Can. Data Rep. Fish. Aquat. Sci. 939: vi + 297 p.
- HOPKY, G.E., M.J. LAWRENCE, S.M. McRAE, and D.B. CHIPERZAK. 1994c. NOGAP B2; List of scientific names of algae, invertebrates and vertebrates captured under NOGAP Subprojects B.2.1 and B.2.3, 1984 to 1988. Can. Data Rep. Fish. Aquat. Sci. 924: iv + 76 p.
- HOPKY, G.E., and R.A. RATYNSKI. 1984. Relative abundance, spatial and temporal distribution, age and growth of fishes in Tuktoyaktuk Harbour, N.W.T., 28 June to 5 September, 1981. Can. Manuscr. Rep. Fish. Aquat. Sci. 1713: v + 71 p.
- HORNER, R.A. 1985. Sea ice biota. CRC Press, Boco Raton, FL. 215 p.
- HSIAO, S.I. 1983. A checklist of marine phytoplankton and sea ice microalgae recorded from Arctic Canada. Nova Hedwigia 37: 225 p.
- HUSTEDT, F. 1930a. Die Susswasser-flora mitteleuropas. Heft 10. Bacillariophyta (Diatomeae). Johnson Reprint Corporation, New York, NY. 466 p.
- HUSTEDT, F. 1930,1959. Die Kieselalgen. In Rabenhorsts Kryptogamen-flora von Deutschland, Osterreich und der Schweiz Band 7, Teil I, II. Akademische Verlasgsgeseleschaft. Leipzig.
- LAWRENCE, M.J., M.A. BERGMANN, G.E. HOPKY, and D.B. CHIPERZAK. 1993. NOGAP B.2; Chemical data from

Tuktoyaktuk Harbour and Mason Bay, 1984 to 1988. Can. Data Rep. Fish. Aquat. Sci. 859: vi + 41 p.

- LAWRENCE, M.J., M.A. BERGMANN, G.E. HOPKY, D.B. CHIPERZAK, and M.A. KEAST. 1991. NOGAP B.2; Chemical data from the Canadian Beaufort Sea Shelf. Can. Data Rep. Fish. Aquat. Sci. 857: v + 60 p.
- LAWRENCE, M.J., G. LACHO, and S. DAVIES. 1984. A survey of the coastal fishes of the Southeastern Beaufort Sea. Can. Tech. Rep. Fish. Aquat. Sci. 1220: x + 178 p.
- LEBOUR, M.V. 1930. The planktonic diatoms of northern seas. Ray Society, Vol. 116: 244 p.
- NORTON, P., and L.A. HARWOOD. 1985. White whale use of the southeastern Beaufort Sea, July-September 1984. Can. Tech. Rep. Fish. Aquat. Sci. 1401: v + 46 p.
- SCHILLER, J. 1933, 1937. Dinoflagellatae (Peridineae). In L. Rabenhorst (ed.) Kryptogamen-flora von Deuschland, Osterreich und der Schweiz. Band 10. Otto Koeltz Science Publishers, Koenigstein, West Germany.
- SMAYDA, T.J. 1978. Estimating cell numbers.
 <u>In</u> A. Sournia (ed.) Phytoplankton manual.
 Monographs on oceanographic methodology
 6. UNESCO, Paris, France. 337 p.
- STAINTON, M.P., M.J. CAPEL, and F.A.J. ARMSTRONG. 1977. The chemical analysis of freshwater. 2nd ed. Can. Fish. Mar. Serv. Misc. Spec. Publ. 25: 180 p.
- WÜRSIG, B., E.M. DORSEY, M.A. FRAKER, R.S. PAYNE, and W.J. RICHARDSON. 1985. Behaviour of bowhead whales, <u>Balaena mysticetus</u>, summering in the Beaufort Sea: a description. U.S. Fish. Wildl. Serv. Fish. Bull. 83: 357-377.

Fig. 5. Location of stations sampled on the Beaufort Sea shelf in August, 1986.

Fig. 10. Location of stations sampled in Tuktoyaktuk Harbour, 1985 to 1988.

Fig. 11. Location of stations sampled in Mason Bay, 1986 to 1988.

Fig. 12. Coastal Beaufort Sea surface water fluorescence for transects north of Tuktoyaktuk (#1-5), 21 August, north of Pullen Island (#6-9), 9 and 10 September, and in Mackenzie Bay (#10-13), 10 September, 1986.

												b	Relative	1c	e Core Data	a ^C	
Sample Number	Si	Location	Date	<u>Lati</u> deg	tude min	Long dea	itude min	Time Arrive ^a	Station Depth	P/ Sample Number	AR Prof	Denth	Fluorescence Profile Sample	Algae Sample Number	Chlores	227	Snow Depth Profile
				,					(=)		1990	(#)	Number	HUMBER	on tor -u	155	Horrie
51	85103	Toker Point west	21 Jul	69	37.8	133	11.1	1055	5.6	1	WCP	3.0					
52	85102	Tuk Harbour west	21 Jul	69	28,1	133	02.0	1500	4,5	2	WCP	1.5					
53	85104	Toker Point west	22 Jul	69	37.1	133	02.3	1140	6.3	3	WCP	2.5					
54	85105	Toker Point west	22 Ju1	69	36.5	132	59.8	1445	2.0	4	WCP	2.0					
55	85106	Stokes Point north	24 Jul	69	20.7	138	43.2	0800	4.0	5	WCP	3.5					
56	85107	Stokes Point north	24 Ju1	69	23.6	138	44.5	1110	14.5	6	WCP	2.5					
57	85108	Stokes Point north	24 Ju1	69	25.0	138	47.9	1400	53.0	7	WCP	3.5					
58	85109	Stokes Point north	24 Ju1	69	27.7	138	47.9	1655	69.0	8	WCP	8.0					
59	85110	Thetis Bay south	25 Ju1	69	33.2	139	01.5	1000	5.6	9	WCP	3.0					
60	85111	Thetis Bay south	25 Jul	69	31.6	138	59.8	1245	14.5	10	WCP	10.0					
61	85112	Thetis Bay south	25 Ju1	69	31.1	138	55.5	1430	52.0	11	WCP	3.5					
62	85113	Thetis Bay south	25 Jul	69	28,5	138	48.8	1730	64.0	12	WCP	2.5					
63	85114	Kay Point east	26 Ju1	69	16.9	138	20.2	1005	5.5	13	WCP	1.5					
64	85115	Kay Point east	26 Ju1	69	16.2	138	16.6	1220	15.0	14	WCP	1.5					
65	85116	Sabine Point north	26 Ju1	69	12.0	137	41.5	1535	29.3	15	WCP	1.5					
66	85117	Shingle Point north	26 Jul	69	18.2	137	11.9	1850	15.2	16	WCP	2.0					
67	85THS	Tuk Harbour south basin	02 Aug	69	25.32	132	58.15	0940	25.0	17	WCP	3.0					
68	85THN	Tuk Harbour north basin	02 Aug	69	26.17	132	58.28	1050	20.0	18	WCP	3.0					
69	85118	Toker Point north	03 Aug	69	40.5	132	57.5	11 10	6.0	19	WCP	4.0					
70	85119	Toker Point west	03 Aug	69	36.5	133	00.0	1314	5.0	20	WCP	3.5					
71	85100	Topak Point west	03 Aug	69	30.8	133	09.5	1615	5.0	21	WCP	2.5					
72	85102	Kugmallit Bay west of Tuk	04 Aug	69	28.0	133	02.0	1525	4.5	22	WCP	2.0					
73	85120	Herschel Island north	05 Aug	69	39.7	138	42.5	1145	100.0	23	WCP	3.5					
74	85121	Herschel Island north	05 Aug	69	40.5	138	52.5	1550	50.0	24	WCP	11.0					

,

•

Table 1. Summary data for stations sampled during 1985.

a b D Type: WCP - water column profile; PPS - pre/post scrape. ^C For ice core data and snow depth data, X indicates that data exists and that Profile Sample Number = Station Sample Number.

Table 1. Summary data for stations sampled during 1985 (CONTINUED).

										h			Relative	Ic			
Station Station		-	1.8444.44		Lanalauda		ida Téma	Shahla-	PAR Profile		Fluorescence	Algae			Snow		
Number	Name	Location	Date	Date deg	#in	deg	min	Arrive ^a	Depth (m)	Number	Туре	Depth (m)	Sample Number	Number	Chlor-a	TSS	Profile
75	85122	Herschel Island north	05 Aug	69	38.3	138	54.7	1920	30.0	25	WCP	11.0	_				_
79	85THN	Tuk Harbour north basin	08 Aug	69	26.17	132	58.28	1900	20.0	26	WCP	11.0					
80	85THS	Tuk Harbour south basin	08 Aug	69	25.32	132	58.15	2050	25.0	27	WCP	11.1					
81	85125	Toker Point north	09 Aug	69	39.0	132	54.6	1555	3.0	28	HCP	2.5					
82	85126	Toker Point north	09 Aug	69	40.3	132	56.5	1800	6.0	29	WCP	5.0					
83	85127	Toker Point west	09 Aug	69	37.3	132	59.9	2005	2.0	30	WCP	2.0					
84	85128	Toker Point west	09 Aug	69	37.3	133	02.0	2200	6.0	31	WCP	4,5					
85	85129	Summer Island north	10 Aug	69	37.0	133	52.5	1055	2.5	32	WCP	2.5					
86	85130	Summer Island north	10 Aug	69	41.9	133	41.0	1325	6.0	33	WCP	5,5					
87	85131	Summer Island north	10 Aug	69	46.2	133	32.0	1530	9.0	34	WCP	3.5					
88	85132	Pullen Island noorth	10 Aug	69	46.8	134	24.2	2030	4.0	35	WCP	3.5					
89	85133	Pullen Island north	11 Aug	69	52.6	134	35.6	1030	10.5	36	WCP	6.0					
90	85134	Pullen Island north	11 Aug	69	58.1	134	36.3	1325	15.0	37	WCP	7.0					
91	85135	Pelly Island west	11 Aug	69	39.2	135	30.1	1900	5.0	38	WCP	4.5					
92	85136	Pelly Island west	12 Aug	69	37.0	135	56.4	1120	6.0	39	WCP	5.0					
93	85137	Pelly Island west	12 Aug	69	39.7	136	37.4	1500	15.0	40	WCP	8.0					
94	85138	Pelly Island west	12 Aug	69	38.9	137	03.0	1800	30.0	41	WCP	7.0					

.

٠

.

^a Local time. ^b Type: WCP - water column profile; PPS - pre/post scrape. ^C For ice core data and snow depth data, X indicates that data exists and that Profile Sample Number = Station Sample Number.

Table 2. Summary data for stations sampled d
--

٩.

										_			Relative	Ice	Core Dat	a ^c	_
Sample Number	S	Location	Date	<u>Lati</u> deg	tude min	Long den	<u>itude</u>	Time Arrive ⁸	Station Depth	P/ Sample Number	Type	Denth	Fluorescence Profile Sample	Algae Sample Number	Chlor-2	797	Snow Depth Profile
			2400	,		403			(m)			(m)	Number		on for -u		Torric
13	86001	Summer Island north	23 Mar	69	56	133	53	1345	13.9						x		x
14	86002	Whale Bluffs north-east	28 Mar	70	22.9	127	22.5	1130	19,4						X		X
15	86003	Thetis Bay south	29 Mar	69	31.9	138	55.3	1100	51.0						x		x
16	86004	McKinley Bay north	30 Mar	70	12.9	131	16.1	0900	20.7								x
56	86029	Whale Bluffs north-east	21 May	70	22.6	127	20.4	1645	37.0					1,2,3, 4,5,6	X		x
59	86033	Summer Island north	22 May	69	57	133	46	1230	16.0					7,8,9,1) X		x
63	86035	Topkak Point west	22 Ju1	69	31.8	133	13.5	1230	4.3				1				
64	86035	Topkak Point west	23 Ju1	69	30.7	133	14.5	1248	4.3	2	WCP	2.0	· 2				
65	86036	Topkak Point west	23 Ju1	69	32.9	132	59.2	1640	4.5	3	WCP	4.0	3				
										4	WCP	4.0					
66	86038	Kugmallit Bay west of Tuk	25 Jul	69	27.9	133	05.6	1405	3.6	5	WCP	0.5	4			•	
68	86040	Kugmallit Bay west of Tuk	25 Ju1	69	26.4	133	23.5	1735	2.8	6	WCP	1.5	5				
69	86041	Toker Point west	26 Jul	69	40.7	133	07.2	1340	6.1	7	WCP	6.0	6				
70	86042	Toker Point north	26 Ju1	69	53.7	133	07.7	1715	15.7	8	WCP	15.0	7				
71	86043	Garry Island west	29 Jul	69	34.1	136	09.5	1310	6.5	9	WCP	6.0	8				
72	86044	Garry Island west	30 Jul	69	33.9	136	48.0	1010	16.1	10	WCP	9.5	9				
73	86045	Garry Island west	30 Jul	69	32.6	137	07.1	1445	30.2	11	WCP	23.0	10				
74	86046	Herschel Island north	31 Ju1	69	35.0	138	50.6	1420	6.5	12	WCP	4.0	11				
75	86047	Herschel Island north	31 Jul	69	35.7	138	48.1	1725	16.0	13	WCP	11.0	12				
										14	WCP	14.0					
76	86048	Herschel Island north	01 Aug	69	41.4	138	39.9	1045	149.0	15	WCP	21.0	13				
77	86049	Herschel Island north	01 Aug	69	37.3	138	46.1	1700	43.5	16	WCP	24.0	14				
81	86051	King Point north	03 Aug	69	05.5	137	56.1	1515	6.2	17	WCP	6.0	15				

.

.

.

^a Local time. ^b Type: WCP - water column profile; PPS - pre/post scrape. ^C For ice core data and snow depth data, X indicates that data exists and that Profile Sample Number = Station Sample Number.

Station									P	AR Prof	ile ^b	Relative Fluorescence	Ic Algae	e Core Data	<u> </u>	Snow	
Sample Number	Name	Location .	Date	Date	<u>Lati</u> deg	<u>tude</u> min	<u>Long</u> deg	<u>itude</u> Time min Arrive ^a	Depth (m)	Sample Number	Туре	Depth (m)	Profile Sample Number	Sample Number	Chlor-a	TSS	Depth Profile
82	86052	King Point north	03 Aug	69	06.6	137	55.2	2020	15.5	18	WCP	15.0	16				
86	86THS	Tuk Harbour south basin	07 Aug	69	25.32	132	58.15	1030	23.0	19	WCP	7.0	17				
87	86THN	Tuk Harbour north basin	07 Aug	69	26.17	132	58.28	1415	21.7	20	WCP	5.0	18				
88	86053	Toker Point west	08 Aug	69	37.8	133	11.2	1135	5.5	21	WCP	4.0	19				
90	86056	Pullen Island north	10 Aug	69	48.5	134	24.6	1500	6.6	22 ·	WCP	4.5	20				
91	86057	Pullen Island north	10 Aug	69	57.9	134	10.0	1925	15.5	23	WCP	13.0	21				
92	86058	Pullen Island north	11 Aug	70	04.7	133	51.5	1015	32.0	24	WCP	27.0	22				
93	86059	Pullen Island north-east	11 Aug	70	13.0	133	33.8	1900	49.5	25	WCP	29.0	23				
94	86060	Pullen Island north-east	12 Aug	70	42.8	135	21.3	0630	97.7	26	WCP	27.0	24				
96	86065	Tuft Point north	16 Aug	69	45.2	132	31.3	1515	6,5	27	WCP	5.5	25				
98	86066	Tuft Point north	17 Aug	69	58.0	132	30.5	1605	16.5	28	WCP	15.0	26				
99	86067	Tuft Point north	18 Aug	70	10.8	132	29.7	0900	29.5	29	WCP	28.0	27				
100	86068	Tuft Point north	18 Aug	70	43.5	132	29.0	1715	50.5	30	WCP	27.0	28				
101	86069	Cape Dalhousie north	19 Aug	71	28.1	129	40.6	0715	112.0	31	WCP	27.0	29				
102	86070	Cape Dalhousie north	19 Aug	71	20.8	129	41.1	1345	51.0	32	WCP	25.0	30				
103	86071	Cape Dalhousie north	20 Aug	70	53.8	129	29.3	1354	31.5	33	WCP	20.0	31				
104	86072	McKinley Bay north	21 Aug	70	12.3	131	01.8	1615	16.1	34	WCP	3.5	32				
105	86034	Kugmallit Bay 🛛 Tuk	27 Aug	69	30.7	133	06.5	1130	5.0				33				
106	86073	Topkak Point west	28 Aug	. 69	32.5	133	07.7	1435	5.0	36	WCP	0.5	34				
107	86074	Topkak Point west	28 Aug	69	30.1	133	12.0	1755	4.8				35				
108	86075	Kugmallit Bay west of Tuk	29 Aug	69	27.9	133	23.6	1410	2.8				36				
109	86076	Toker Point north	30 Aug	69	52.1	133	10.8	1220	14.5	39	WCP	3.5	37				
110	86077	Tibjak Point west	30 Aug	69	35.1	133	11,8	1730	5.2	40	WCP	1.0	38				

۰ ·

.

.

× *

. .

-

^a Local time. ^b Type: WCP - water column profile; PPS - pre/post scrape. ^C For ice core data and snow depth data, X indicates that data exists and that Profile Sample Number = Station Sample Number.

Station										L			Relative	Ice Core Data ^C			
			•							PAR Profile			Fluorescence	Algae			Snow
Sample Number	Name	Location	Date de	deg	min	Long deg	<u>min</u>	lime Arrive ^a	Depth (m)	Sample Number	Туре	Depth (m)	Profile Sample Number	Sampte Number	Chlor-a	TSS Profi	Profile
111	86078	McKinley Bay north	O4 Sep	70	11.9	131	2,6	1710	15.7	41	WCP	8.0	39				
112	86079	McKinley Bay north	05 Sep	70	08.3	130	54.9	1030	6.6	42	WCP	6.0	40				
113	86THS	Tuk Harbour south basin	08 Sep	69	25.32	132	58.15	0855	23.0	43	WCP	4.0	41				
114	86THN	Tuk Harbour north basin	08 Sep	69	26.17	132	58,28	1439	20.0	44	WCP	4.5	42				
115	86080	Garry Island west	10 Sep	69	34.2	136	09.8	2015	6.8	45	WCP	1.0	43				
119	86081	Herschel Island north	15 Sep	69	41.2	138	37.6	1850	152.5	46	WCP	27.0	44				
120	86082	Herschel Island north	16 Sep	69	37.7	138	44.8	1045	48.7	47	WCP	26.0	45				
121	86083	Herschel Island north	16 Sep	69	36.7	138	48.4	1405	15.6	48	WCP	13.0	46				
122	86084	Herschel Island north	16 Sep	69	35.1	138	50.8	1640	6.5	49	WCP	6.0	47				
124	86085	King Point north	17 Sep	69	06.5	137	56.3	1615	7.0	50	WCP	6.0	48				
125	86086	King Point north	17 Sep	69	07.1	137	55,2	1755	16.3	51	WCP	15.0	49				
126	86087	King Point north	17 Sep	69	10.3	137	53.9	2010	29.7	52	WCP	13.0	50				
127	86088	King Point north	18 Sep	69	28.4	137	34.1	1410	50.1	53	WCP	0.5	51				
128	86089	Garry Island west	18 Sep	69	32.7	137	06.5	1815	29.0				52				
129	86090	Garry Island west	19 Sep	69	33.7	136	47.8	1000	15.6				53				
130	86091	Garry Island west	19 Sep	69	34.3	136	08.9	1315	7.0				54				
131	86092	Pullen Island north	20 Sep	69	48.1	134	24.6	0915	6.8				55				
132	86093	Pullen Island north	20 Sep	69	57.1	134	09.3	1250	15.0				56				
133	86094	Pullen Island north-east	20 Sep	70	04.5	133	51.3	1540	31.5				57				

.

Table 2. Summary data for stations sampled during 1986 (CONTINUED).

^a Local time. ^b Type: WCP - water column profile; PPS - pre/post scrape. ^C For ice core data and snow depth data, X indicates that data exists and that Profile Sample Number = Station Sample Number.

Table 3. Summary data for stations sampled during 1987.

Station										PAR Bussilab			Relative	Ice Core Data ^C			fran 1
Station			•	Lati	tude	lonatude		Time	Station	Samle			r luorescence Profile	Aigae Sample			Snow Depth
Number -	Name	Location	Date	deg	min	deg	min	Arrive ^a	Depth (M)	Number	Туре	Depth (m)	Sample Number	Number	Chlor-a	TSS	Profile
1	87102	Tuk Harbour north basin	05 Mar	69	26.57	132	59.50	0930	5.2	1	WCP	5.0	2				
2	87T01	Tuk Harbour north basin	06 Mar	69	26.54	132	59.34	0830	9.7	2	WCP	7.5	1				
3	87108	Tuk Harbour north basin	07 Mar	69	26.33	132	58.69	0800	14.6	3	WCP	8.0	5				
4	87T04	Tuk Harbour north basin	08 Mar	69	26.17	132	58,28	0800	22.0	4	WCP	9.5	3				
5	87109	Tuk Harbour north basin	09 Mar	69	26.07	132	57.83	0830	9.0				6				
7	87109	Tuk Harbour north basin	10 Mar	69	26.07	132	57.83	1340	10.3	5	WCP	5.5	7				
8	87705	Tuk Harbour north basin	10 Mar	69	26.02	132	57.70	1440	5.2	6	WCP	4.5	4				
9	87M07	Mason Bay	11 Mar	69	31.95	134	08.3	1130	5.3	7	WCP	5.0	8				
10	87M08	Mason Bay	12 Mar	69	32.18	134	08.3	1000	10.1	8	WCP	4.5	9				
11	87M12	Mason Bay	13 Mar	69	34.27	134	03.4	0940	5.6	9	WCP	5.0	13				
12	87M10	Mason Bay	15 Mar	69	33.04	134	05.7	1150	20.3	10	WCP	5.5	11				
14	87M11	Mason Bay	16 Mar	69	33.22	134	06.7	1535	18.2	11	WCP	9.0	12				
15	87M09	Mason Bay	17 Mar	69	32.90	134	07.5	1000	9.9	12	WCP	3.0	_ 10				
16	87001	McKinley Bay north	19 Mar	70	12,9	131	17.3	1145	23.7	13	PPS	0.0				X	X
										14	WCP	13.0					
17	87002	Summer Island north	20 Mar	69	56.8	133	45.3	1000	15.6	15	PPS	0.0		4	x	x	X
										16	WCP	7.5					
18	87003	Whale Bluffs north-east	21 Mar	70	25.1	127	28.1	1020	8.3	17	PPS	0.0		1	x	x	x
										18	WCP	8.0					
19	87005	McKinley Bay north	22 Mar	70	14.4	131	17.1	1000	25.3					3	x	x	
20	87004	Kugmallit Bay	22 Mar	69	31.2	133	18.7	1230	3.5	19	PPS	0.0		2	x	X	X
21	87006	Kugmallit Bay	06 May	69	32.8	133	25.5	0915	3.7					9	x	x	x
22	87006	Kugmallit Bay	07 May	69	32.8	133	25.5	0915	3.7	20	PPS	0.0					
										21	WCP	3.5					

. .

. .

a Local time. ^b Type: WCP - water column profile; PPS - pre/post scrape. ^C For ice core data and snow depth data, X indicates that data exists and that Profile Sample Number = Station Sample Number.

•

Station										PAR Profile ^b			Relative Fluorescence	Ice Core Data ^C Algae				
Sample Number	Name	Location	- Date	<u>Lati</u> deg	<u>tude</u> min	<u>Long</u> deg	<u>itude</u> min	Time Arrive ^a	e Station Sa ve Depth Nu (m)	Sample Number	Туре	Depth (m)	Profile Sample Number	Sample Number	Chlor-a	TSS	Depth Profile	
23	87007	Summer Island north	07 May	69	57.6	133	49.3	1000	17.4					5	x	x	x	
24	87007	Summer Island north	08 May	69	57.6	133	49.3	0900	17.4	22	PPS	0.0						
										23	WCP	6.5						
										24	PPS	0.0						
										25	WCP	3.0						
25	87008	Whale Bluffs north-east	08 May	70	26.0	127	31.1	1100	13.0	26	PPS	0.0		6,7	x	x	X	
										27	WCP	12.5						
										28	PPS	0.0						
										29	WCP	12.0						
26	87009	McKinley Bay north	09 May	70	14.3	131	07.4	1430	17.5	30	PPS	0.0		8	x	X	x	
										31	WCP	4.5						
										32	PPS	0.0						
										33	WCP	4.5						
31	87009	McKinley Bay north	12 May	70	14.3	131	07.4	1245	17.5	34	PPS	0.0				X(2)		
										35	WCP	3.0						
										36	PPS	0.0						
										37	WCP	3.5						
39	87012	Atkinson Point north	16 May	69	55.8	131	32.4	1900	7.4						x			
51	87THS	Tuk Harbour south basin	16 Jul	69	25.32	132	58.15	1000	25.5	39	WCP	5.5	14					
52	87THN	Tuk Harbour north basin	16 Jul	69	26.17	132	58,28	1320	21.7	40	WCP	6.0	15					
54	87015	Herschel Island north	19 Jul	69	35.1	138	50.0	1130	6.5	41	WCP	3.0	16					
55	87016	Hercshel Island north	19 Jul	69	36.0	138	49.5	1345	17.7	42	WCP	13.0	17					
56	87017	Herschel Island north	20 Jul	69	38.0	138	45.9	1130	46.6	43	WCP	25.0	18					

Table 3. Summary data for stations sampled during 1987 (CONTINUED).

.

^a Local time. ^b Type: WCP - water column profile; PPS - pre/post scrape. ^C For ice core data and snow depth data, X indicates that data exists and that Profile Sample Number = Station Sample Number.
Table 3. Summary data for stations sampled during 1987 (CONTINUED).

	S	tation								P	AR Prof	ile ^b	Relative Fluorescence	Algae	e Core Data	ac	Snow
Sample Number	Hane	Location	Date	Lati deg	<u>tude</u> ≢in	<u>Long</u> deg	<u>itude</u> min	Time Arrive ^a	Station Depth (m)	Sample Number	Туре	Depth (m)	Profile Sample Number	Sample Number	Chlor-a	TSS	Depth Profile
57	87018	Herschel Island north	20 Ju)	69	43.0	138	44.4	1425	138.0	44	WCP	24.0	19				
59	87020	King Point north	22 Jul	69	06.6	137	57.0	1500	6.7	45	WCP	6.0	` 20				
60	87021	King Point north	22 Jul	69	06.8	137	56.5	1705	16,1	46	WCP	14.0	21				
61	87022	King Point north	22 Jul	69	10.8	137	52.5	1940	30.0	47	WCP	15.0	22			`	
62	87023	King Point north	23 Jul	69	27.2	137	33.7	1405	49.9	· 48	WCP	25.0	23				
63	87024	Garry Island west	23 Jul	69	32.6	137	06.7	1805	31.5	49	WCP	21.0	24				
64	87025	Garry Island west	23 Jul	6 9	34.0	136	47.5	2105	15.5	50	WCP	13.0	25				
65	87026	Garry Island west	24 Jul	69	34.0	136	09.6	0100	6.0	51	WCP	5.0	26				
66	87014	Kugmallit Bay @ Tuk	26 Jul	69	30.7	133	06.5	1030	4.6	52	WCP	3.0	27				
67	87027	Kittigazuit Bay north	26 Jul	69	24.2	133	38.0	1530	3.1	53	WCP	1.5	28				
68	87028	Topkak Point west	28 Jul	69	31.1	133	08.0	1007	5.5	54	WCP	4.0	29				
69	87029	Toker Point west	28 Jul	69	38.8	133	05.8	1435	6.5	55	WCP	3.5	30				
70	87030	Kugmallit Bay @ Tuk	29 Jul	69	32.2	133	09.4	1030	5.0	56	WCP	4.0	31				
71	87031	Tuktoyaktuk Harbour west	29 Jul	69	27.1	133	14.3	1505	3.3	57	WCP	3.0	32				
73	87033	Toker Point west	01 Aug	69	40.0	133	17.5	0924	6.5	58	WCP	2.0					
96	87060	Cape Dalhousie north	21 Aug	70	17.2	129	45.0	1530	7.0	59	WCP	5.0	33				
97	87061	Cape Bathurst north	22 Aug	70	33.8	127	57.8	1050	8.0	60	WCP	7.5	34				. ,
98	87062	Cape Bathurst north	22 Aug	70	35.2	127	47.6	1450	31.0	61	WCP	25.0	35				
99	87063	Cape Bathurst north	23 Aug	70	37.7	127	30.2	1026	196.5	62	WCP	29.0	36				
100	87064	Cape Dalhousie north	24 Aug	70	26.2	129	50.2	1220	15.8	63	WCP	7.0	37				
101	87066	McKinley Bay north	25 Aug	70	09.3	130	52.6	1406	8.5	64	WCP	4.0	38				
102	87067	McKinley Bay north	25 Aug	70	12.3	131	01.8	1730	16.4	65	WCP	15.0	39				
103	87065	McKinley Bay north	26 Aug	70	21.2	131	04.6	1323	26,0	66	WCP	26.0	40				

. .

• •

• ·

^a Local time. ^b Type: WCP - water column profile; PPS - pre/post scrape. ^C For ice core data and snow depth data, X indicates that data exists and that Profile Sample Number = Station Sample Number.

Table 3. Summary data for stations sampled during 1987 (CUNIINUE	εU		U	J	J	ļ	J	J	t			C	I	l	1	J	J	J	1	1	1	J	,	,	,	1	1	1	,	,	J	,	,	,
,	ļ	C	C I	C 1	C۱	CL	C۱	C۱	C	C	ļ				J	,	J	J	J	J	J	J	,	,	,	J	J	J	J	,	,	,	,	,
,	ļ	E	C	C.	C.	CL	C1	C1	E.	C	1	1		ļ	J	ļ	J	J	J	J	J	J	,	,	ļ	J	J	J	J	,	,	,	,	,
J	ļ	C	C	С1	C۱	CL	С1	С1	C	C	l				J	J	J	J	J	J	J	J	J	J	J	J	J	J	J	,	J	J	J	,
J	ļ	C	C	С1	C۱	CL	C 1	C 1	C	C	ļ		1		J	J	J	J	J	J	J	J	J	J	J	J	J	J	J	J	J	J	J	,
J	ļ	C	C	С1	C۱	CL	C 1	C 1	C	C	ļ		1		J	J	J	J	J	J	J	J	J	J	J	J	J	J	J	J	J	J	J	,
J		c	C 1	с.	٤.	c.	٤1	٤1	C,	c		ļ	ļ	ļ	J	J	J	J	J	J	J	J	J	J	J	J	J	J	J	J	J	J	J	J
J		c	C 1	с.	٤.	c.	٤1	٤1	C,	c		ļ	ļ	ļ	J	J	J	J	J	J	J	J	J	J	J	J	J	J	J	J	J	J	J	J
,	ļ	L		C 1	C.L	C.L	C1	C1	Ľ	Ľ	ļ				J	,	,	,	J	J	J	,	,	,	,	J	J	J	,	,	,	,	,	,
,	ļ	L		C 1	C.L	C.L	C1	C1	Ľ	Ľ	ļ				J	,	,	,	J	J	J	,	,	,	,	J	J	J	,	,	,	,	,	,

	S	tation	_							P/	AR Prof	i 1e ^b	Relative Fluorescence		e Core Data	,c	Snow
Sample Number	Name	Location	Date	<u>Lati</u> deg	<u>tude</u> min	<u>Long</u> deg	<u>itude</u> min	Time Arrive ^a	Station Depth (m)	Sample Number	Туре	Depth (#)	Profile Sample Number	Sample Number	Chlor-a	TSS	Depth Profile
104	87068	Tuft Point north	27 Aug	69	46.2	132	22.0	1120	7.0	67	WCP	5.5	41				
105	87069	Tuft Point north	27 Aug	69	58.2	132	28.5	1515	16.5	68	WCP	15.0	42				
106	87THS	Tuk Harbour south basin	30 Aug	69	25.32	132	58.15	1413	22.3	69	WCP	20.0	43				
107	87 THN	Tuk Harbour north basin	30 Aug	69	26.17	132	58.28	1550	21.0	70	WCP	20.0	44				

a b Type: WCP - water column profile; PPS - pre/post scrape. ^C For ice core data and snow depth data, X indicates that data exists and that Profile Sample Number = Station Sample Number.

Table 4. Summary data for stations sampled during 1988.

.

												b	Relative		e Core Data	<u>с</u>	Same 4
Sample	5	tation	•	Lati	tude	Long	itude	Time	Station	Sample	AK Prot	110	Profile	Aigae Sample			Snow Depth
Number	Name	Location	Date	deg	min	deg	min	Arrive ^a	Depth (m)	Number	Туре	Depth (m)	Sample Number	Number	Chlor-a	TSS	Profile
2	88102	Tuk Harbour north basin	07 Mar	69	26.57	132	59,50	0800	4.7	1	WCP	4.5	2				
3	88T01	Tuk Harbour north basin	07 Mar	69	26.54	132	59.34	1000	9.7				1				
4	88108	Tuk Harbour north basin	08 Mar	69	26.33	132	58.69	0830	17.2	2	WCP	12.0	3				
5	88T01	Tuk Harbour north basin	08 Mar	69	26.54	132	59.34	1630	9.7	3	WCP	9.5					
6	88T04	Tuk Harbour north basin	09 Mar	69	26.17	132	58,28	0850	22.0	4	WCP	13.0	4				
7	88T09	Tuk Harbour north basin	10 Mar	69	26.07	132	57.83	0830	8.8	5	WCP	8.5	5				
8	88T05	Tuk Harbour north basin	10 Mar	69	26.02	132	57.70	1540	4.7	6	WCP	4.5	6				
9	88M07	Mason Bay	13 Mar	69	31.95	134	08.3	0930	5.5	7	WCP	4.8	7				
10	88M10	Mason Bay	14 Mar	69	33.04	134	05.7	0815	20.3	8	WCP	11.0	8				
11	88M11	Mason Bay	14 Mar	69	33.22	134	06.7	1450	17.7	9	WCP	9.5	9				
12	88M09	Mason Bay	15 Mar	69	32.90	134	07.5	0900	9.6	10	WCP	9.5	10				
13	88M08	Mason Bay	15 Mar	69	32.18	134	08.3	1815	9.8				11				
14	88M08	Mason Bay	16 Mar	69	32.18	134	08.3	0845	9.8	11	WCP	5.5					
15	88M12	Mason Bay	16 Mar	69	34.27	134	03.4	1500	5.1	12	WCP	4.5	12				
16	88001	Mason Bay	17 Mar	69	34.0	134	04.5	0900	17.6	13	PPS	0.0	13	1	x	X	x
										14	WCP	6.0					
										15	PPS	0.0					
17	88002	Kugmallit Bay	20 Mar	69	34.8	133	16.1	1000	3.7						x	x	x
18	88003	Summer Island north	21 Mar	69	56.8	133	45.3	1100	13.1	16	PPS	0.0		2	x	x	x
		·								17	WCP	5,5					
19	88004	McKinley Bay	22 Mar	70	10.2	131	12.7	1030	17.9	18	PPS	0.0		3	x	x	x
										19	WCP	12.0					
										20	PPS	0.0					

. .

. .

a Local time. ^b Type: WCP - water column profile; PPS - pre/post scrape. ^c For ice core data and snow depth data, X indicates that data exists and that Profile Sample Number = Station Sample Number.

• •

Table 4. Summary data for stations sampled during 1988 (CONTINUED).

	\$	at fon								Pi	AR Prof	1. ^b	Relative Fluorescence	Ici	Core Date	¢	Snow
Sample Number	Kane	Location	Date	<u>Latit</u> deg	ude #In	<u>Long</u> deg	<u>itude</u> min	Time Arrive [®]	Station Depth (m)	Sample Number	Type	Depth (#)	Profile Sample Number	Sample Humber	Chlor-a	TSS	Depth Profile
20	88005	Whale Bluffs north-east	23 Mar	70	25.3	127	28.1	1030	17.0	21	PPS	0.0		4	x	X	x
										22	WCP	16,3					
	•									23	PPS	0.0					
21	88002	Kugmallit Bay	24 Mar	69	34.8	133	16.1	1330		24	PPS	0.0					
										25	WCP	3.0					
		•								26	PPS	0.0					

,

.

.

*

^d Local time. ^b Type: WCP - water column profile; PPS - pre/post scrape. ^c For ice core data and snow depth data, X indicates that data exists and that Profile Sample Number = Station Sample Number.

			Local T	ime		
Date	04:00	08:00	12:00	16:00	20:00	24:00
15 Jul 16 Jul	10.9	13.6	19.0 14.0	12.0	12.0 13.9	13.6 17.0
17 Jul	16.0	16.0	15.9	14.0	14.5	19.0
18 Jul	21.0	21.8	20.3	11.0	10.5	10.9
19 Jul	10.8	10.7	10.4	10.3	10.2	10.4
20 Jul	10.0	9.8	9./	9.6	9.9	9.8
	9.5	9.3	9.2	9.0	9.0	9.0
22 Jul	9.0	0.0	0.0 9.6	10 0	9.0	9.5
24 .]u]	9.7	9.3	9.4	10.0	9,9	9.8
25 Jul	9.9	9.5	9.4	10.2	10.1	10.1
26 Jul	10.3	9.9	10.0	10.8	11.0	11.1
27 Jul	11.5	11.7	11.7	11.3	12.0	12.0
28 Jul	12.0	12.0	12.0	12.0	12.2	12.6
29 Jul	12.3	12.2	12.0	11.9	12.0	12.2
30 Jul	12.0	12.0	11.9	12.1	12.0	12.0
31 Jul	11.8	11./	11.0	11./	11.7	11.8
UI Aug	11.4		11.3	11.2	11.2	11.4
02 Aug	11.2	11.0	11.0	11.1	11.1	11.5
	11.7	11.0	11.3	12.0	11.3	11.4
	11.4	11.4	11.3	11.4	11.3	11.2
06 Aug	11.1	10.7	10.0	10.3	10.2	10.6
07 Aug	10.2	8.8	8.8	8.9	7.0	9.0
08 Aug	7.5	5.3	5.3	6.7	5.9	5.9
09 Aug	4.0	4.0	3.4	3.7	4.7	4.3
10 Aug	6.5	8.4	8.7	8.5	9.3	9.9
11 Aug	9.0	9.0	9.0	9.0	10.4	11.5
12 Aug	11.2	11./	11.5	11.0	11.0	10.3
	10 . 9 Q 7	10.4	10.3	11 5	13.5	11.8
15 Aug	10.3	10.1	10.0	9.0	9.1	8.9
16 Aug	8.2	7.6	9.8	10.1	10.2	10.0
17 Aug	9.8	9.2	9.3	9.0	9.4	9.5
18 Aug	9.0	8.8	9.2	9.0	9.2	9.7
19 Aug	8.8	8.9	9.2	10.1	10.6	9.7
20 Aug	9.0	8.9	9.0	9.4	9.1	9.3
21 Aug	6.7	7.2	7.2	7.0	7.9	7.8
22 Aug	/.2	6. 5	5.8	0.U 7 E	0. 5	0.5 0 0
23 AUG	/.U 7 Q	0.0 7 Q	0.0 6 6	۲.J	0.0 7 K	0.9 7 N
24 Aug 25 Aug	/•9 . 6.6	7.0 A Q	7 0	6.4	7.0	7.0
26 Aug	6.8	7.1	6.8	6.3	7.8	8.2
27 Aug	7.8	7.4	7.0	6.8	7.0	7.8
28 Aug	7.6	7.4	7.0	6.9	7.0	7.6

Table 5. Continuous temperature (°C) buoy data from station 85101, 1985.

			Local T	ime		
Date	04:00	08:00	12:00	16:00	20:00	24:00
29 Aug	7.8	7.8	7.8	8.0	9.7	9.8
30 Aug	9.2	9.0	9.1	10.3	10.0	10.8
31 Aug	10.3	10.2	10.2	10.3	10.1	9.4
01 Sep	9.2	8.1	8.4	6.2	6.0	5.0
02 Sep	3.5	3.5	3.0	3.0	3.8	3.2
03 Sep	3.2	3.6	3.6	3.3		

Table 5. Continuous temperature (°C) buoy data from station 85101 (CONTINUED).

Table 6. Continuous temperature (C°) buoy data from station 86034, 1986.

			Local 1	ime		
Date	04:00	08:00	12:00	16:00	20:00	24:00
					13.2	11.0
17-Jul	9.5	8.9	12.2	13.0	13.0	14.3
18-Ju1	14.8	14.7	15.4	17.0	18.4	18.0
19-Ju1	17.3	17.3	16.9	18.0	17.2	16.7
20-Ju1	15.8	14.3	10.1	12.5	12.9	9.5
21-Ju1	7.4	9.0	9.4	10.1	10.5	10.8
22-Ju1	11.0	11.3	12.0	12.8	12.0	11.2
23-Ju1	8.1	9.6	9.4	8.0	7.6	8.5
24-Ju1	5.9	11.0	12.0	12.0	12.2	13.0
25-Ju1	9.2	11.3	11.2	12.5	12.3	12.2
26-Ju1	12.4	11.8	12.5	12.8	12.5	12.7
27-Ju1	12.8	12.7	12.8	13.0	13.1	12.3
28-Ju1	12.1	10.0	10.8	10.7	11.2	10.8
29-Ju1	11.0	11.1	11.1	11.6	11.5	12.0
30-Ju1	12.2	10.7	10.7	10.8	10.9	11.2
31-Ju1	11.7	11.7	11.8	11.8	12.7	12.8
01-Aug	12.8	12.6	12.6	13.0	12.8	12.2
02-Aug	12.6	12.4	12.3	12.5	14.4	14.8
03-Aug	14.1	14.1	13.1	13.0	13.1	12.8
04-Aug	12.6	12.0	8.3	10.4	10.0	8.1
05-Aug	7.6	7.7	7.4	6.7	8.7	9.0
06-Aug	8.5	8.7	8.9	10.0	9.9	9.4
07-Aug	9.5	9.5	11.6	12.5	13.1	12.8
08-Aug	13.0	12.3	11.9	13.6	12.9	12.5
09-Aug	9.9	11.0	11.3	10.0	11.3	12.1
10-Aug	11.6	11.0	13.0	15.5	15.4	14.6

			Local T	ime		
Date	04:00	08:00	12:00	16:00	20:00	24:00
11-Aug	11.9	12.3	13.0	15.3	14.0	13.7
12-Aug	13.8	14.0	14.0	15.8	15.6	14.8
13-Aug	14.1	12.5	13.1	13.6	13.6	13.2
14-Aug	12.9	11.4	13.1	14.7	14.8	14.9
15-Aug	14.8	12.6	12.8	13.8	11.9	9.7
16-Aug	9.8	9.2	8.2	10.7	12.1	12.0
17–Aug	11.3	11.1	11.7	12.6	12.0	11.8
18-Aug	11.0	12.4	12.3	12.8	13.2	12.7
19-Aug	12.1	11.9	11.4	10.7	11.0	11.1
20-Aug	11.0	11.2	11.2	10.9	11.0	11.0
21-Aug	10.7	10.9	11.0	11.2	11.0	10.9
22-Aug	10.5	10.1	9.9	9.8	9.7	9.7
23-Aug	9.8	9.4	7.9	8.7	7.1	6.9
24-Aug	7.5	7.2	7.4	7.8	8.0	8.1
25-Aug	8.0	7.9	8.0	8.0	8.0	8.0
26-Aug	8.0	7.4	7.2	7.1	7.3	7.1
27-Aug	7.0	7.0	7.0	7.0	6.8	6.6
28-Aug	6.6	6.1	6.2	6.2	6.2	6.2
29-Aug	6.2	5.6	5.5	6.0	6.9	6.8
30-Aug	5.8	5.2	5.1	- 5.4	5.8	5.5
31–Aug	5.6	5.7	5.8	6.6	6.7	6.9
01-Sep	6.8	6.5	6.9	7.1	7.6	5.9
02-Sep	5.2	5.5	5.1	5.1	6.1	5.9
03-Sep	5.8	5.9	6.0	6.1	6.5	7.1
04-Sep	7.2	7.5	7.8	8.0	8.0	8.4
05-Sep	8.4	8.4	9.0	9.5	9.5	9.7
06-Sep	10.1	9.8	9.8	9.9	10.6	9.4
07-Sep	7.0	7.9	8.5	9.1	9.7	9.9
08-Sep	7.8	8.5	8.8	7.1	8.6	8.3
09-Sep	8.0	7.6	6.9	7.1	7.1	7.8
10-Sep	7.9	8.0	8.7	8.9	9.6	9.3
11-Sep	9.1	8.6	8.3	8.4	8.6	8.5
12-Sep	8.2	8.1	8.1			

·

Table 6. Continuous temperature (C°) buoy data from station 86034 (CONTINUED).

	Local			Minutes a	fter the ho	our	
Date	Time	0000	0020	0040	0060	0080	0100
17 Jul 17 Jul 17 Jul 17 Jul 17 Jul 17 Jul	1500 1700 1900 2100 2300	18.8 10.7 6.9 6.7 6.2	15.3 9.6 7.1 6.8 6.1	13.6 9.0 6.7 6.4 6.0	19.0 8.6 6.6 6.4 5.9	13.9 7.8 6.7 6.5 5.8	12.1 7.3 6.3 6.3 5.6
18 Jul 18 Jul	0100 0300 0500 0700 0900 1100 1300 1500 1700 1900 2100 2300	5.7 5.6 5.8 6.2 8.0 14.0 14.1 14.7 14.7 14.7 14.3 14.4	5.8 5.4 5.8 6.2 7.8 14.0 14.2 14.4 14.8 14.6 14.3 14.4	5.8 5.4 5.9 6.4 8.2 14.0 14.3 14.8 14.9 14.4 14.4 14.4	5.6 5.4 6.0 6.6 11.5 14.0 14.4 14.8 14.9 14.2 14.4 14.5	5.8 5.6 6.1 7.3 13.9 14.0 14.4 14.9 14.8 14.3 14.2 14.5	5.7 5.6 6.1 7.6 13.9 14.0 14.5 14.9 14.8 14.2 14.2 14.2 14.6
19 Jul 19 Jul	0100 0300 0500 0700 0900 1100 1300 1500 1700 1900 2100 2300	14.7 14.4 14.7 14.7 14.4 14.8 14.6 14.8 15.1 15.1 14.9 14.6	14.7 14.5 14.7 14.6 14.5 14.7 14.7 14.8 15.3 14.9 14.8 14.8 14.4	14.7 14.5 14.7 14.6 14.7 14.7 14.7 14.9 15.3 15.0 14.7 14.4	14.6 14.7 14.8 14.5 14.7 14.6 14.8 15.0 15.3 15.1 14.3 14.4	14.6 14.8 14.7 14.5 14.8 14.6 14.8 15.1 15.3 15.1 14.6 14.3	14.5 14.7 14.5 14.8 14.7 14.8 15.1 15.3 14.9 14.6 14.2
20 Ju1 20 Ju1	0100 0300 0500 0700 0900 1100 1300 1500 1500 1700 1900 2100 2300	14.0 13.6 11.1 7.6 7.1 12.3 12.3 12.6 13.8 14.8 14.8 14.6 14.0	14.0 13.5 10.8 7.6 10.2 12.5 12.3 12.7 14.0 14.9 14.4 13.5	13.9 12.7 9.5 7.3 11.9 12.4 12.5 13.0 14.1 15.0 14.4 13.1	13.9 12.5 9.2 .7.3 12.1 12.4 12.5 13.1 14.2 14.9 14.1 12.3	13.8 12.4 9.3 7.4 12.2 12.3 12.4 13.4 14.6 14.8 13.9 11.7	13.8 11.8 8.1 6.8 12.3 12.3 12.5 13.6 14.7 14.7 14.7 14.0 11.3

Table 7. Continuous temperature (C°) buoy data from station 87014, 1987.

_

Nate	Local Time	0000	0020	Minutes af	fter the ho	our 0080	0100
21 Jul 21 Jul	0100 0300 0500 0700 0900 1100 1300 1500 1700 1900 2100 2300	11.2 9.8 9.6 9.6 8.6 8.1 9.1 9.8 10.3 12.0 11.3 11.6	11.0 9.7 9.5 9.7 7.8 8.1 9.9 9.7 10.3 12.4 11.3 11.5	10.7 9.5 9.4 9.8 7.6 8.6 9.8 9.6 10.3 12.4 11.3 11.8	10.4 9.7 9.4 10.4 7.8 8.4 9.8 9.5 10.4 11.9 11.5 11.8	10.3 9.6 9.8 8.9 8.7 9.8 9.7 10.3 11.8 11.6 12.0	10.1 9.6 9.2 8.9 8.6 9.7 10.0 11.1 11.5 11.6 12.0
22 Jul 22 Jul	0100 0300 0500 0700 0900 1100 1300 1500 1700 1900 2100 2300	11.9 11.1 10.6 10.8 11.1 11.8 11.9 13.0 14.0 14.7 14.5 13.9	12.1 10.6 10.6 11.0 11.1 11.8 12.1 13.0 14.1 14.7 14.4 13.8	11.8 11.0 10.7 11.0 11.3 11.8 12.3 12.6 14.2 14.7 13.7 14.0	11.7 11.0 10.7 11.0 11.3 11.8 12.5 13.1 14.3 14.8 14.0 14.2	11.8 10.8 10.7 11.0 11.6 11.8 12.6 13.8 14.2 14.8 14.0 14.2	11.5 10.7 10.8 11.0 11.6 11.9 12.8 14.0 14.4 14.5 13.9 14.0
23 Ju1 23 Ju1	0100 0300 0500 0700 0900 1100 1300 1500 1700 1900 2100 2300	14.0 13.9 14.0 13.7 13.5 11.9 12.1 12.5 13.8 12.7 11.3 10.2	14.0 13.9 13.7 13.4 11.9 12.1 12.6 13.7 12.4 10.9 10.0	14.0 13.9 13.6 13.4 11.9 12.1 13.0 13.6 12.3 10.5 9.9	13.9 13.9 13.6 13.2 12.1 12.1 13.5 13.5 12.1 10.4 9.8	13.9 14.0 13.8 13.6 12.1 12.1 12.1 13.8 13.4 11.8 10.3 9.6	13.8 14.0 13.8 13.6 11.9 12.1 12.3 13.9 13.1 11.7 10.3 9.4
24 Jul 24 Jul 24 Jul 24 Jul 24 Jul 24 Jul	0100 0300 0500 0700 0900 1100	9.2 8.9 8.2 7.9 9.2 9.2	9.2 8.9 8.2 8.0 9.2 8.5	9.3 8.8 8.5 8.1 9.2 8.6	9.1 8.7 8.1 9.3 8.6	9.1 8.5 8.2 9.4 8.5	9.0 8.5 8.1 9.1 9.4 8.7

Table 7. Continuous temperature (C°) buoy data from station 87014 (CONTINUED).

,

*. * [

-- I

.

D - 4	Local	0000		Minutes at	fter the ho	our	
Date	i i me	0000	0020	0040	0060	0800	0100
24 Ju1 24 Ju1 24 Ju1 24 Ju1 24 Ju1 24 Ju1 24 Ju1	1300 1500 1700 1900 2100 2300	8.9 9.2 10.4 8.4 10.9 12.1	8.9 9.3 10.0 8.4 11.3 12.1	8.9 9.4 11.5 8.4 11.8 11.7	9.0 9.5 10.9 8.8 11.9 11.3	9.2 9.5 9.5 9.4 12.1 11.1	9.2 9.9 8.4 10.4 12.2 10.8
25 Jul 25 Jul	0100 0300 0500 0700 0900 1100 1300 1500 1500 1700 1900 2100 2300	10.8 12.7 12.9 12.3 12.6 11.3 11.4 10.4 11.5 10.0 13.9 13.9	10.9 12.7 12.8 12.3 11.3 11.6 10.0 11.6 9.7 13.9 13.9	11.0 12.7 12.8 12.6 12.1 11.3 11.6 9.6 11.6 12.3 13.9 13.7	11.6 12.8 12.6 11.8 11.3 11.6 9.5 11.8 13.4 13.9 13.6	12.1 12.8 12.6 11.9 11.4 11.5 10.0 10.9 13.8 13.9 13.6	12.6 12.9 12.6 11.8 11.3 10.8 10.8 10.5 14.0 13.9 13.5
26 Jul 26 Jul	0100 0300 0500 0700 0900 1100 1300 1500 1500 1700 1900 2100 2300	13.5 13.6 13.2 12.1 12.7 13.1 13.6 13.9 14.2 14.0 13.0 14.4	13.5 13.6 13.1 11.9 12.8 13.1 14.0 14.0 14.1 11.8 14.0 14.5	13.5 13.6 12.6 11.8 12.9 13.3 13.9 14.0 14.1 11.1 14.2 14.5	13.6 13.6 12.2 12.3 12.9 13.3 14.0 14.2 14.0 10.6 14.4 14.6	13.8 13.6 12.0 12.7 13.0 13.4 13.9 14.2 14.0 11.9 14.4 14.6	13.6 13.4 11.9 12.8 13.0 13.5 13.9 14.2 14.1 13.2 14.4 14.5
27 Jul 27 Jul	0100 0300 0500 0700 0900 1100 1300 1500 1700 1900 2100 2300	14.6 14.7 14.6 14.4 14.1 13.8 14.0 13.8 13.6 11.3 11.5	14.7 14.6 14.7 14.5 14.2 14.0 13.8 13.9 13.9 13.9 12.7 11.3 11.6	14.6 14.7 14.4 14.1 14.0 13.7 13.9 13.9 12.3 11.3 11.6	14.7 14.6 14.8 14.4 14.1 13.9 13.8 13.9 13.8 11.8 11.3 11.6	14.7 14.7 14.7 14.4 14.1 13.9 13.9 13.8 13.8 13.8 11.3 11.6 11.8	14.7 14.7 14.7 14.4 14.1 13.8 13.9 13.8 13.9 11.3 11.5 11.8

Table 7. Continuous temperature (C°) buoy data from station 87014 (CONTINUED).

Dato	Local	0000	0020	Minutes at	fter the ho	onen	0100
	I THE	0000		0040	0000	0080	0100
31 Jul 31 Jul 31 Jul 31 Jul 31 Jul 31 Jul 31 Jul	1300 1500 1700 1900 2100 2300	12.4 12.1 12.0 12.1 11.7 11.5	12.1 12.0 12.1 11.9 11.8 11.3	12.2 12.0 12.1 11.8 11.8 11.1	12.3 11.9 12.2 11.8 11.8 11.1	12.3 11.9 12.3 11.8 11.8 11.1	12.1 11.9 12.2 11.8 11.6 11.0
01 Aug 01 Aug	0100 0300 0500 0700 0900 1100 1300 1500 1700 1900 2100 2300	11.0 10.8 10.3 10.0 10.1 10.7 11.8 12.4 11.8 11.8 11.2 10.9	10.9 10.7 10.3 10.0 10.2 10.9 11.9 12.5 11.6 11.8 11.1 10.8	10.9 10.7 10.3 10.0 10.2 11.0 12.1 12.5 11.3 11.4 11.0 10.9	10.9 10.6 10.2 10.0 10.3 11.2 12.2 12.5 11.2 11.3 11.0 10.8	10.8 10.7 10.2 10.0 10.4 11.5 12.3 12.5 10.9 11.4 10.9 10.7	10.8 10.5 10.0 10.2 10.5 11.6 12.3 12.5 11.1 11.4 10.9 10.4
02 Aug 02 Aug	0100 0300 0500 0700 0900 1100 1300 1500 1700 1900 2100 2300	10.4 10.2 10.0 9.6 9.8 10.5 12.6 13.3 11.4 11.1 11.2 11.8	10.5 10.2 9.8 9.7 10.0 11.3 12.7 13.1 11.5 11.1 11.3 12.0	10.5 10.0 9.7 9.7 10.3 11.8 12.8 12.3 11.3 11.1 11.3 12.1	10.4 10.0 9.6 10.3 12.1 13.1 11.9 11.3 11.8 11.3 12.3	10.3 10.0 9.6 9.5 10.4 12.2 13.2 11.8 11.2 11.7 11.6 12.6	10.2 10.0 9.6 9.8 10.4 12.3 13.1 11.6 11.1 11.3 11.6 12.7
03 Aug 03 Aug	0100 0300 0500 0700 0900 1100 1300 1500 1700 1900 2100 2300	12.8 12.3 11.8 11.7 11.8 12.6 13.4 13.9 14.4 14.5 14.1 14.4	12.5 12.3 11.8 11.6 11.8 12.7 13.4 14.0 14.6 14.4 14.1 14.1	12.5 12.1 11.8 11.6 11.8 12.8 13.6 14.1 14.4 14.4 14.4 14.0 13.9	12.5 12.3 11.7 11.6 12.1 12.8 13.7 14.4 14.5 14.4 14.0 13.7	12.4 12.0 11.8 11.6 12.1 13.2 13.8 14.4 14.4 14.3 14.0 13.6	12.4 12.1 11.6 11.7 12.3 13.4 13.9 14.3 14.4 14.2 14.0 13.6

Table 7. Continuous temperature (C°) buoy data from station 87014 (CONTINUED).

· 12

			2	Minutoc	fton the h		······································
Date	Time	0000	0020	0040	0060	0080	0100
28 Ju1 28 Ju1	0100 0300 0500 0700 0900 1100 1300 1500 1700 1900 2100	11.9 11.6 10.7 11.2 11.8 12.5 12.3 13.1 13.1 11.9 10.2	11.8 10.3 11.3 11.9 12.6 12.5 13.2 13.1 11.8 10.3	11.8 11.4 10.2 11.1 12.1 12.7 12.7 13.1 13.0 11.0 10.5	11.9 11.1 10.3 11.5 12.2 12.7 12.6 13.1 12.9 10.3 10.7	12.0 10.9 10.5 11.5 12.4 12.7 12.8 13.1 13.0 10.3 11.3	11.8 10.7 11.1 11.8 12.4 12.6 12.9 13.1 12.5 10.3 10.7
20 Jul 29 Jul	2300 0100 0300 0500 0700 0900 1100 1300 1500 1700 1900 2100 2300	12.1 11.3 10.9 10.2 11.5 12.6 12.8 12.4 13.3 13.4 13.4 13.3	12.1 11.6 10.0 10.1 12.3 12.6 12.9 12.7 13.6 13.4 13.4 13.2	11.2 12.3 11.8 10.2 10.8 12.3 12.7 12.7 12.7 13.4 13.2 13.3 13.2	12.3 11.6 10.0 10.7 12.6 12.9 12.6 12.7 13.4 13.5 13.2 13.2	11.8 12.2 11.5 10.0 11.1 12.6 12.9 12.5 12.8 13.3 13.4 13.2 13.2	11.8 11.4 11.1 10.1 11.6 12.7 12.9 12.4 13.2 13.4 13.2 13.2 13.2
30 Jul 30 Jul	0100 0300 0500 0700 0900 1100 1300 1500 1700 1900 2100 2300	13.2 13.1 12.8 13.3 11.5 12.5 13.1 13.9 13.4 11.3 10.5 13.6	13.1 13.0 12.8 13.0 11.8 12.4 13.0 13.9 12.3 11.3 12.5 13.6	13.1 13.0 12.8 12.1 12.3 12.5 13.4 14.0 11.4 11.1 13.7 13.8	13.1 12.9 12.9 11.8 12.1 12.6 13.6 14.0 11.1 10.7 13.6 13.8	13.1 12.9 13.1 11.6 12.0 13.3 13.6 13.9 10.9 11.2 13.6 13.8	13.1 12.8 13.1 11.9 12.6 13.2 13.6 12.3 11.0 11.0 13.6 13.6
31 Jul 31 Jul 31 Jul 31 Jul 31 Jul 31 Jul 31 Jul	0100 0300 0500 0700 0900 1100	13.5 13.4 13.1 13.0 13.0 12.8	13.5 13.3 13.1 13.0 13.0 12.8	13.4 13.3 13.1 13.0 12.9 12.8	13.4 13.3 13.0 12.9 12.9 12.8	13.4 13.2 13.1 13.0 12.8 12.8	13.4 13.1 13.0 13.0 12.9 12.7

Table 7. Continuous temperature (C°) buoy data from station 87014 (CONTINUED).

	Local			Minutes a	fter the ho	our	
Date	Time	0000	0020	0040	0060	0080	0100
04 Aug 04 Aug	0100 0300 0500 0700 0900 1100 1300 1500 1700 1900 2100 2300	13.4 13.1 12.9 12.3 11.5 12.1 12.5 12.3 12.5 12.1 12.1 12.1 11.9	13.4 13.1 12.9 12.3 11.1 12.2 12.5 12.3 12.6 12.1 12.1 12.1 11.9	13.3 13.1 12.9 11.9 11.1 12.3 12.5 12.3 12.5 12.1 12.1 12.1 11.8	13.3 13.1 12.8 11.6 11.0 12.3 12.5 12.4 12.4 12.4 12.1 12.1 11.9	13.3 13.0 12.6 11.7 11.8 12.5 12.6 12.4 12.3 12.1 12.0 11.8	13.2 12.9 12.5 11.5 11.8 12.5 12.4 12.5 12.1 12.1 12.1 11.9 11.8
05 Aug 05 Aug	0100 0300 0500 0700 0900 1100 1300 1500 1500 1700 1900 2100 2300	11.9 12.0 11.8 11.4 10.4 10.5 11.1 11.9 11.9 12.1 11.8 11.1	11.8 12.0 11.8 11.3 10.5 10.3 11.3 12.1 12.1 12.1 11.6 11.0	11.8 11.9 11.8 10.9 10.5 10.6 11.6 12.1 12.2 12.1 11.5 10.6	11.9 11.9 11.6 10.5 10.3 10.3 11.6 12.1 12.2 12.0 11.3 10.5	11.9 11.8 11.6 10.3 10.4 10.5 11.6 12.1 12.2 11.9 11.3 10.3	12.0 11.8 11.5 10.0 10.5 10.9 11.8 12.0 12.1 11.8 11.2 10.1
06 Aug 06 Aug	0100 0300 0500 0700 0900 1100 1300 1500 1500 1700 1900 2100 2300	11.0 10.5 10.2 9.2 8.6 8.4 9.6 9.9 10.2 9.4 9.5 9.2	11.0 10.5 10.3 8.9 8.6 9.2 9.5 10.0 10.1 9.4 9.4 9.2	10.9 10.5 10.1 8.8 8.5 9.3 9.6 10.0 10.0 9.5 9.4 9.1	10.8 10.3 10.0 8.8 8.5 9.4 9.8 10.0 9.5 9.6 9.4 9.0	10.6 10.3 10.0 8.7 8.5 9.6 9.8 10.0 9.4 9.4 9.4 8.9	10.5 10.3 9.8 8.6 8.5 9.5 9.9 10.2 9.4 9.8 9.3 8.9
07 Aug 07 Aug 07 Aug 07 Aug 07 Aug 07 Aug	0100 0300 0500 0700 0900 1100	8.8 8.8 9.5 10.0 10.2 10.7	8.8 8.9 9.7 10.0 10.3 10.8	8.7 9.0 9.8 10.1 10.5 10.9	8.7 9.0 9.8 10.2 10.5 11.0	8.7 9.2 10.0 10.2 10.6 11.0	8.7 9.4 9.9 10.2 10.6 11.1

Table 7. Continuous temperature (C°) buoy data from station 87014 (CONTINUED).

e# = v

Date	Local Time	0000	0020	Minutes af 0040	fter the ho 0060	our 0080	0100
07 Aug 07 Aug 07 Aug 07 Aug 07 Aug 07 Aug 07 Aug	1300 1500 1700 1900 2100 2300	11.1 11.6 11.9 11.3 12.2 11.6	11.3 11.8 12.1 12.1 12.1 12.1 11.3	11.3 11.8 12.0 12.3 12.1 11.1	11.3 11.8 11.6 12.3 11.8 11.1	11.5 11.8 11.6 12.4 11.6 11.1	11.6 12.0 11.0 12.3 11.8 10.8
08 Aug 08 Aug	0100 0300 0500 0700 0900 1100 1300 1500 1500 1700 1900 2100 2300	11.3 10.8 10.3 10.2 10.0 10.0 10.8 11.8 12.5 8.9 11.8 11.4	11.3 10.8 10.3 10.0 10.2 10.2 10.8 12.2 12.9 9.8 11.8 11.2	11.3 10.7 10.3 9.8 10.1 10.2 11.0 12.4 12.2 10.3 11.8 11.1	11.2 10.7 10.4 10.0 10.2 10.3 11.1 12.5 12.3 10.7 11.8 10.9	11.1 10.6 10.3 10.0 9.8 10.4 11.3 12.4 12.3 11.6 11.8 10.3	10.9 10.5 10.2 10.0 10.5 11.3 12.3 11.5 11.8 11.8 11.8 9.9
09 Aug 09 Aug	0100 0300 0500 0700 0900 1100 1300 1500 1700 1900 2100 2300	9.2 10.5 11.8 11.9 12.0 11.6 9.6 8.6 9.2 10.5 10.7 10.9	8.6 11.8 11.8 12.0 11.3 9.0 8.7 9.3 10.5 10.8 11.1	8.5 11.8 11.9 12.1 11.1 9.0 8.9 9.8 10.6 10.9 10.9	8.3 11.8 11.9 12.1 10.8 8.8 8.9 10.0 10.6 10.9 10.9	8.2 11.8 11.8 12.0 12.1 10.5 8.6 9.0 10.3 10.6 10.9 10.9	8.0 11.8 11.9 12.1 11.9 10.1 8.5 9.1 10.4 10.7 10.8 10.9
10 Aug 10 Aug	0100 0300 0500 0700 0900 1100 1300 1500 1700 1900 2100 2300	11.1 10.8 11.0 10.3 10.6 11.2 11.3 11.2 10.8 9.8 9.8 9.8 11.5	10.9 10.8 11.1 10.3 10.6 11.3 11.1 11.2 10.5 9.8 9.8 11.6	10.8 10.9 11.3 10.1 10.8 11.3 11.0 11.1 10.3 9.8 9.8 9.8 11.5	10.9 10.9 11.1 10.2 11.1 11.0 11.2 11.2 10.3 9.8 9.9 11.3	10.9 11.0 10.9 10.4 11.1 11.0 11.2 11.1 10.2 9.8 10.2 11.2	10.8 11.1 10.7 10.5 11.2 11.3 10.9 10.8 9.8 9.8 10.4 11.1

Table 7. Continuous temperature (C°) buoy data from station 87014 (CONTINUED).

	Local			Minutes af	fter the ho	our	
Date	Time	0000	0020	0040	0060	0080	0100
11 Aug 11 Aug	0100 0300 0500 0700 0900 1100 1300 1500 1500 1700 1900 2100 2300	10.9 10.6 10.5 10.6 11.0 11.1 11.6 12.1 11.1 10.3 11.8	10.7 10.5 10.7 10.4 10.7 11.0 11.3 11.6 12.1 11.3 10.3 11.8	10.6 10.4 10.8 10.5 10.8 11.1 11.3 11.8 12.1 11.0 10.5 11.8	10.6 10.9 10.6 10.9 11.1 11.5 11.9 12.1 11.0 10.6 11.1	10.5 10.7 10.7 10.9 11.0 11.1 11.6 11.8 12.1 11.2 11.2 11.0	10.5 10.7 10.5 10.7 11.0 11.2 11.6 12.1 11.5 10.7 11.8 10.9
12 Aug 12 Aug	0100 0300 0500 0700 0900 1100 1300 1500 1500 1700 1900 2100 2300	10.5 9.1 9.5 9.8 9.8 9.8 9.7 9.2 9.5 10.0 9.7 9.6	10.4 9.2 10.0 9.6 9.7 9.9 8.9 9.4 9.4 10.0 9.7 9.5	10.5 9.2 10.2 9.8 9.6 9.8 8.9 9.3 10.3 10.0 9.8 9.5	10.4 9.5 10.2 9.8 9.6 9.8 9.3 9.3 10.4 9.8 9.6 9.5	10.3 9.6 10.1 9.8 9.6 9.9 9.2 9.3 10.3 9.8 9.6 9.6	9.6 9.6 9.8 9.6 9.8 9.0 9.6 10.3 9.6 9.8 9.6 9.8
13 Aug 13 Aug	0100 0300 0500 0700 0900 1100 1300 1500 1500 1700 1900 2100 2300	9.2 9.0 8.6 8.5 8.9 9.2 8.7 8.9 9.0 9.5 9.2	9.0 8.9 8.6 8.5 8.8 9.1 8.9 9.1 8.9 9.0 9.8 9.4 9.2	9.0 8.9 8.6 8.9 9.2 9.2 9.2 9.0 9.8 9.3 9.2	9.0 8.7 8.6 8.9 9.2 9.0 8.9 9.7 9.3 9.2	9.0 8.7 8.5 8.9 9.0 9.2 9.0 9.0 9.0 9.2 9.2	8.9 8.7 8.6 8.5 9.0 8.8 9.0 9.0 9.0 9.5 9.3 9.2
14 Aug 14 Aug 14 Aug 14 Aug 14 Aug 14 Aug	0100 0300 0500 0700 0900 1100	9.2 9.2 9.2 8.9 8.9 9.2	9.2 9.2 9.0 8.9 8.7 9.4	9.2 9.1 9.0 8.9 8.7 9.8	9.1 9.1 8.9 9.0 8.8 9.9	9.1 9.2 8.9 9.0 8.9 10.0	9.2 9.2 8.9 8.9 8.9 10.2

Table 7. Continuous temperature (C°) buoy data from station 87014 (CONTINUED).

х• Ф.,

•

	Local			Minutes at	fter the ho	bur	
Date	Time	0000	0020	0040	0060	0080	0100
14 Aug 14 Aug 14 Aug 14 Aug 14 Aug 14 Aug	1300 1500 1700 1900 2100 2300	10.3 10.9 11.9 11.4 10.6 11.3	10.3 11.0 12.0 11.3 10.5 11.3	10.5 11.1 12.2 11.4 10.7 11.1	10.5 11.3 12.3 11.0 11.3 11.0	10.8 11.6 12.1 10.5 11.4 11.0	10.8 11.8 11.5 10.2 11.3 11.0
15 Aug 15 Aug	0100 0300 0500 0700 0900 1100 1300 1500 1700 1900 2100 2300	10.9 10.5 10.2 9.7 9.8 11.2 12.2 13.5 12.9 11.6 11.1 10.5	10.8 10.5 10.0 9.8 10.3 10.8 12.7 13.5 12.6 11.5 11.1 10.9	10.8 10.5 10.0 10.7 11.3 12.9 13.5 12.1 11.5 10.7 10.3	10.8 10.5 9.8 10.0 11.1 11.3 13.1 13.3 11.8 11.4 10.6 10.8	10.7 10.3 9.8 9.9 11.1 11.1 13.3 12.9 11.6 11.4 10.6 10.9	10.6 10.2 9.7 9.8 11.3 11.5 13.4 12.9 11.5 11.3 10.4 12.1
16 Aug 16 Aug	0100 0300 0500 0700 0900 1100 1300 1500 1700 1900 2100 2300	13.3 13.4 12.9 12.8 13.1 11.6 13.1 13.5 13.6 13.6 13.6 13.6 13.4	13.4 13.3 12.9 12.8 12.9 11.6 13.3 13.6 13.6 13.6 13.6 13.6	13.4 13.3 12.9 12.9 12.7 11.9 13.3 13.6 13.6 13.6 13.4 13.8 13.3	13.4 13.1 12.9 13.0 12.7 12.8 13.3 13.6 13.6 13.4 13.6 13.3	13.4 13.1 12.9 13.0 12.7 13.1 13.4 13.6 13.5 13.6 13.8 13.3	13.4 13.0 12.9 13.1 11.9 13.1 13.5 13.6 13.5 13.6 13.4 13.3
17 Aug 17 Aug	0100 0300 0500 0700 0900 1100 1300 1500 1700 1900 2100 2300	13.2 13.2 13.1 12.9 12.8 12.7 12.5 13.0 13.1 13.1 12.9 12.8	13.2 13.1 13.0 12.9 12.8 12.7 12.4 13.0 13.2 13.1 12.9 12.9	13.3 13.0 12.9 12.9 12.8 12.6 12.8 12.9 13.3 13.0 12.9 12.7	13.3 13.1 13.0 12.8 12.8 12.6 12.9 12.9 13.2 13.0 12.8 12.7	13.3 13.0 12.9 12.9 12.8 13.0 13.1 13.2 12.9 12.8 12.6	13.2 13.1 12.9 12.8 12.8 12.7 13.0 13.1 13.1 12.9 12.8 12.5

Table 7. Continuous temperature (C°) buoy data from station 87014 (CONTINUED).

	Local			Minutes a	fter the ho	our	
Date	Time	0000	0020	0040	0060	0080	0100
 18 Aug 	0100 0300 0500 0700 0900 1100 1300 1500 1700 1900 2100 2300	12.5 12.3 12.1 12.1 11.8 11.6 11.8 12.8 13.3 13.1 12.7 12.6	12.5 12.3 12.1 12.1 11.6 11.8 11.9 13.1 13.3 12.9 12.6 12.6	12.4 12.3 12.1 12.0 11.8 11.7 12.0 13.5 13.4 12.9 12.6 12.7	12.4 12.2 12.1 11.9 11.6 11.8 12.1 13.4 13.5 13.1 12.6 12.9	12.3 12.2 12.1 11.9 11.6 11.9 12.3 13.6 13.4 12.9 12.6 12.7	12.3 12.1 12.1 11.8 11.7 11.9 12.5 13.4 13.3 12.8 12.6 12.6
19 Aug 19 Aug	0100 0300 0500 0700 0900 1100 1300 1500 1700 1900 2100 2300	12.5 12.5 12.1 12.0 12.1 12.0 12.1 12.2 11.8 11.2 10.6 10.3	12.3 12.6 12.1 12.1 12.1 12.1 12.1 12.2 11.8 11.1 10.5 10.3	12.6 12.1 12.1 12.1 12.1 12.0 12.1 12.1 11.6 11.0 10.5 10.3	12.2 12.6 12.1 12.0 11.8 12.0 12.1 12.1 11.5 10.9 10.6 10.4	12.4 12.3 12.1 12.0 11.9 12.1 12.1 12.1 12.1 11.5 10.8 10.5 10.5	12.4 12.2 12.1 12.0 12.2 12.2 11.9 11.3 10.8 10.4 10.6
 20 Aug 	0100 0300 0500 0700 0900 1100 1300 1500 1700 1900 2100 2300	11.0 11.8 11.8 12.1 12.1 12.3 12.0 12.1 11.6 11.6 11.6	11.3 11.6 11.8 11.9 12.1 12.1 12.2 12.1 11.8 11.6 11.6 11.6	11.3 11.8 11.8 12.1 12.1 12.1 12.1 12.0 11.8 11.6 11.6 11.5	11.4 11.8 11.8 12.1 12.1 12.2 12.3 11.9 11.8 11.6 11.4	11.5 11.8 11.9 12.0 12.1 12.2 12.1 11.9 11.8 11.6 11.6 11.3	11.6 11.8 12.1 12.1 12.3 12.1 12.0 11.6 11.6 11.8 11.3
21 Aug 21 Aug 21 Aug 21 Aug 21 Aug 21 Aug 21 Aug	0100 0300 0500 0700 0900 1100	11.3 11.2 11.1 11.0 11.5 11.5	11.3 11.1 10.9 11.2 11.3 11.4	11.3 11.1 10.8 11.2 11.3 11.4	11.2 11.1 10.7 11.3 11.4 11.4	11.2 11.0 10.8 11.4 11.3 11.4	11.1 10.9 10.9 11.4 11.4 11.4

Table 7. Continuous temperature (C°) buoy data from station 87014 (CONTINUED).

a	Local Time	0000	0020	Minutes a 0040	fter the ho 0060	our 0080	0100
Aug Aug Aug Aug Aug Aug	1300 1500 1700 2100 2300	11.5 11.5 10.9 11.1 11.1	11.5 11.3 10.9 11.1	11.3 10.9 11.1 11.1	11.3 10.8 10.9 11.1 11.1	11.3 10.8 11.1 10.9	11.4 10.8 11.1 11.1 11.1 10.8
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0100 0300 0500 0700 1100 1100 1100 1100 1200 2300 2300	10.7 10.6 10.6 10.8 10.8 11.1 11.1 11.1 11.1 11.2	10.8 10.6 10.6 10.7 11.1 11.1 11.1 11.1 11.1 11.3	10.8 10.5 10.5 10.7 11.1 11.1 11.1 11.1 11.1 11.1	10.9 10.6 10.7 11.0 11.1 11.1 11.1 11.1 11.1 11.1	11.0 10.5 10.9 10.9 11.1 10.6 11.1 10.6 11.1 10.6 11.1 10.6 10.6	11.1 10.8 10.7 10.7 11.1 11.1 11.1 11.1 11.1
Aug Bug Bug Aug Aug Aug Aug Aug Aug Aug Aug Aug A	0100 0300 0500 0700 1100 1100 1200 2300 2300	11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5		11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5	11.6 11.6 11.5 11.3 11.5 11.3 11.5 11.3	4.0.4.0.0.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	4223424284284284284284284284428442844444444
6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7	0100 0300 0500 0700 0700 0900 1100 1100 1100 2100 2300	11.5 11.5 11.5 11.5 11.6 11.6 11.6 11.8	11.3 11.3 11.5 11.5 11.6 11.6 11.6 11.6 11.6	11.5 11.5 11.9 11.9 11.8 11.9 11.8 11.9 11.8	11.3 11.6 11.6 11.6 11.8 11.8 11.9 11.8 11.8	11.9 12.1 12.1 12.1 12.1 12.1 12.1 12.1	11.5 11.6 11.9 11.9 11.9 11.8

•

,

.

•

Table 7. Continuous temperature (C°) buoy data from station 87014 (CONTINUED).

.

4

	Local			Minutes a	fter the ho	our	
Date	Time	0000	0020	0040	0060	0080	0100
25 Aug 25 Aug	0100 0300 0500 0700 0900 1100 1300 1500 1700 1900 2100 2300	11.8 11.8 11.8 11.8 12.1 11.8 11.8 11.9 11.8 11.4 11.4 11.4 12.1	11.8 11.8 11.8 11.8 12.0 11.8 11.8 11.8 11.8 11.8 11.3 11.2 11.9	11.8 11.8 11.8 11.9 11.6 11.8 12.0 11.8 11.6 11.1 11.8	11.8 11.8 11.9 12.0 11.8 11.7 11.8 11.6 11.5 11.6 11.8	11.8 11.9 11.8 12.0 11.9 11.8 11.8 11.8 11.3 11.5 11.8 11.6	11.7 11.8 11.8 12.2 11.9 11.6 11.9 11.8 11.5 11.5 11.5 11.8 11.6
26 Aug 26 Aug	0100 0300 0500 0700 0900 1100 1300 1500 1700 1900 2100 2300	11.5 11.2 11.8 11.6 11.8 11.6 11.8 11.5 11.6 11.5 11.3 11.6	11.4 11.3 11.8 11.8 11.8 11.8 11.8 11.8 11.5 11.6 11.3 11.4 11.6	11.4 11.2 11.8 11.8 11.8 11.8 11.6 11.5 11.6 11.3 11.5 11.6	11.3 11.3 11.9 11.8 11.8 11.8 11.6 11.5 11.5 11.3 11.6 11.6	11.3 11.1 11.8 11.6 11.8 11.8 11.6 11.6 11.6	11.3 11.5 11.8 11.5 11.8 11.8 11.5 11.5 11.5
 27 Aug 	0100 0300 0500 0700 0900 1100 1300 1500 1700 1900 2100 2300	11.6 11.5 11.5 11.4 11.6 11.6 11.6 11.6 11.6 11.6 11.6	11.6 11.5 11.5 11.6 11.6 11.6 11.7 11.6 11.8 11.5 11.6	11.5 11.4 11.6 11.6 11.6 11.6 11.6 11.6 11.6	11.6 11.5 11.4 11.5 11.6 11.6 11.6 11.7 11.6 11.6 11.5 11.3	11.5 11.3 11.5 11.6 11.6 11.6 11.7 11.7 11.6 11.8 11.5 11.3	11.5 11.3 11.5 11.6 11.6 11.6 11.6 11.6 11.6 11.6
28 Aug 28 Aug 28 Aug 28 Aug 28 Aug 28 Aug 28 Aug	0100 0300 0500 0700 0900 1100	11.3 11.2 10.9 10.8 10.4 10.5	11.3 11.1 10.9 10.5 10.3 10.5	11.3 11.1 10.9 10.5 10.3 10.5	11.1 11.0 10.9 10.4 10.3 10.5	11.1 10.9 10.8 10.3 10.4 10.4	11.1 10.8 10.7 10.4 10.4 10.6

Table 7. Continuous temperature (C°) buoy data from station 87014 (CONTINUED).

	Local	·		Minutes af	fter the ho	our	
Date	Time	0000	0020	0040	0060	0080	0100
28 Aug 28 Aug 28 Aug 28 Aug 28 Aug 28 Aug 28 Aug	1300 1500 1700 1900 2100 2300	10.6 10.5 10.3 10.2 10.2 10.0	10.6 10.6 10.4 10.2 10.1 10.0	10.6 10.4 10.4 10.2 10.2 10.0	10.6 10.4 10.4 10.3 9.9 10.0	10.6 10.3 10.3 10.2 10.0 10.0	10.6 10.3 10.3 10.3 10.0 9.8
29 Aug 29 Aug	0100 0300 0500 0700 0900 1100 1300 1500 1700 1900 2100 2300	9.8 9.8 9.0 9.2 8.6 8.9 9.0 9.1 8.6 8.3 8.2	9.8 9.7 9.1 9.4 8.9 9.0 9.0 8.5 8.3 8.4	9.8 9.2 9.4 9.2 8.9 8.9 9.0 8.8 8.4 8.6 8.2	9.8 9.7 8.6 9.5 9.2 8.9 9.1 8.9 8.3 8.3 8.3 8.2	9.8 9.8 8.5 9.4 8.6 8.9 9.1 8.9 8.4 8.2 8.1	9.8 9.7 8.8 9.0 8.5 8.9 9.0 9.0 8.9 8.3 8.3 8.1
 30 Aug 	0100 0300 0500 0700 0900 1100 1300 1500 1700 1900 2100 2300	8.1 7.9 7.8 7.9 7.8 7.6 7.4 7.6 7.3 7.4 7.2	8.0 7.8 7.8 7.8 7.8 7.7 7.4 7.5 7.6 7.5 7.6 7.1	8.0 7.8 7.8 7.8 7.6 7.4 7.4 7.6 7.6 7.0 7.0	8.0 7.9 7.7 7.8 7.8 7.6 7.4 7.5 7.6 7.7 6.9 6.8	8.0 7.8 7.8 7.8 7.5 7.4 7.6 7.4 7.6 7.1 6.5	7.9 7.8 7.6 7.9 7.8 7.4 7.4 7.6 7.4 7.6 7.2 6.1
31 Aug 31 Aug	0100 0300 0500 0700 0900 1100 1300 1500 1700 1900 2100 2300	6.0 6.4 6.3 6.5 5.9 5.6 6.8 7.3 6.9 7.8 7.4	6.0 6.4 6.2 6.4 5.9 5.6 6.5 7.4 7.0 7.6 7.6	6.1 6.4 6.0 5.5 5.6 6.6 7.4 6.9 7.8 7.7	6.1 6.2 6.4 6.1 5.6 5.6 6.8 7.2 6.8 7.7 7.8	6.1 6.3 6.2 6.4 5.6 5.8 7.3 7.1 7.4 7.8 7.6	6.1 6.3 6.3 6.2 5.4 6.3 7.3 7.0 7.7 7.6 7.8

Table 7. Continuous temperature (C°) buoy data from station 87014 (CONTINUED).

; ,

Data	Local Time	0000	0020	Minutes at	fter the he	oogo	0100
Dale	1 THE	0000	0020	0040	0000	0000	0100
01 Sen	0100	8.0	8.1	8.1	8.0	8.1	8.0
01 Sep	0300	8.0	8.0	7.9	7.8	7.8	7.8
01 Sep	0500	7.8	7.8	7.8	7.8	7.8	7.8
01 Sep	0700	7.8	7.8	7.7	7.8	7.7	7.6
01 Sep	0900	7.8	7.6	7.4	7.6	7.4	7.6
01 Sep	1100	7.7	7.8	7.8	7.7	7.8	7.8
01 Sep	1300	7.7	7.8	7.8	7.8	7.8	7.8
01 Sep	1500	7.8	7.8	7.6	7.6	7.5	7.4
01 Sep	1700	7.3	7.2	7.4	7.4	7.6	7.5
01 Sep	1900	7.4	7.4	7.4	7.3	7.1	7.4
01 Sep	2100	7.3	7.3	7.3	7.3	7.3	7.4
01 Sep	2300	7.3	7.3	7.2	7.1	7.1	7.1
02 Sep	0100	7.1	7.0	6.9	6.9	6.7	6.8
02 Sep	0300	6.8	6.8	6.9	6.8	6.8	6.7
02 Sep	0500	6.7	6.8	6.7	6.3	6.1	6.1
02 Sep	0700	6.1	6.0	6.0	5.9	5.9	5.8
02 Sep	0900	5.8	5.8	6.2	6.1	6.5	6.5
02 Sep	1100	6.4	6.4	6.4	6.4	6.4	6.4
02 Sep	1300	6.4	•				

Table 7. Continuous temperature (C°) buoy data from station 87014 (CONTINUED).

•

Profile Sample Number	Depth (=)	Relative Fluorescence	Profile Sample Number	Depth (m)	Relative Fluorescence	Profile Sample Number	Depth (=)	Relative Fluorescence	Profile Sample Number	Depth (m)	Relative Fluorescence
1	0.0	190	10	1.0	17	15	0.0	79	22	2.0	25
1	1.0	190	10	2.0	19	15	1.0	82	22	4.0	19
1	2.0	198	10	4.0	21	15	2.0	98	22	6.0	20
ĩ	4.0	104	10	6.0	25	15	4.0	120	22	8.0	18
-			10	8.0	20	15	6.0	137	22	10.0	16
2	0.0	98	10	10.0	17				22	12.5	19
2	1.0	88	10	12.5	15	16	0.0	76	22	15.0	17
2	2.0	73	10	15.0	14	16	2.0	88	22	17.5	18
2	2.0	90	10	17 6	13	16	1 0	85	22	20.0	33
2	3.9	30	10	20.0	12	16	4 0	104	22	22.2	20
•	~ ~	60	10	20.0	12	10	4.0	122	66	22.2	20
3	0.0	00	10	22.3	13	10	0.0	122	22		20
3	1.0	67	10	25.0	13	10	0.0	35	23	0.0	20
3	2.0	6/	10	27.5	13	10	10.0	21	23	2.0	22
3	4.0	66				16	12.5	19	23	4.0	23
			11	0.0	67	16	14.0	19	23	6.0	23
4	0.0	158	11	1.0	69				23	8.0	26
4	1.0	158	11	2.0	64	17	0.0	95	23	10.0	25
4	2.0	87	11	4.0	57	17	1.0	92	23	12.5	24
4	3.0	49	11	6.0	45	17	2.0	93	23	15.0	21
						17	4.0	39	23	17.5	21
5	0.0	149	12	0.0	75	17	6.0	38	23	20.0	22
5	1.0	149	12	1.0	79	17	8.0	40	23	22.5	23
5	2.0	152	12	2.0	81	17	10.0	41	23	25.0	20
5	2.5	169	12	4.0	76	17	12.5	41	23	27.5	21
			12	6.0	59	17	15.0	40	23	30.0	20
6	0.0	82	12	8.0	58	17	17.5	41			
6	0.5	95	12	10.0	60	17	20.0	39	24	0.0	28
6	1.0	92	12	12.5	55	17	22.5	37	24	1.0	28
6	2.0	95	12	15.0	57			••	24	2.0	28
6	4.0	93			•	18	0.0	101	24	4.0	30
ŝ	5.5	90	12	0.0	51	18	1 0	101	24	6.0	27
6	6.0	84	13	1 0	52	18	2 0	08	24	8.0	21
v	0.0	07	13	2.0	56	10	4.0	50	24	10.0	17
-	• •	140	13	2.0	50	10			24	10.0	1/
<u>'</u>	0.0	140	13	4.0	/4	18	0.0	40	24	12.5	10
<i>'</i>	1.0	130	13	6.0	58	18	8.0	42	24	15.0	19
/	2.0	120	13	8.0	40	18	10.0	41	24	17.5	1/
7	4.0	375	13	10.0	29	18	12.5	39	24	20.0	15
7	6.0	169	13	12.5	26	18	15.0	39	24	22.5	16
7	8.0	167	13	15.0	24	18	17.5	32	24	25.0	14
7	10.0	7	13	17.5	22	18	20.0	40	24	27.5	12
7	12.5	6	13	20.0	20				24	30.0	10
7	15.0	6	13	22.5	14	19	0.0	49			
			13	25.0	13	19	1.0	58	25	1.0	74
8	0.0	126	13	26.0	13	19	2.0	47	25	2.0	164
8	1.0	136				. 19	4.0	85	25	4.0	525
8	2.0	120	14	0.0	46				25	6.0	555
8	4.0	101	14	1.0	48	20	0.0	107			
8	6.0	84	14	2.0	56	20	1.0	115	26	1.0	15
			14	4.0	48	20	2.0	123	26	2.0	14
9	0.0	60	14	6.0	38	20	4.0	145	26	4.0	14
9	1.0	58	14	8.0	24	20	6.0	180	26	6.0	18
9	2.0	61	14	10.0	22			200	26	8.0	23
9	40	102	14	12 5	10	21		99	26	10.0	16
o o	6.0	207	14	15.0	17	21	1 0	82	20	12 6	196
0	0.0	207	14	17 5	17	21	2.0	02	20	16.5	100
3	10.0	21	14	1/.3	17	21	2.0	02 05	20	12.0	<i>212</i>
3	10.0	21	14	20.0	17	21	9.0	C0 00	~~		
у	12.5	33	14	44.5	1/	21	0.0	92	2/	1.0	19
У	15.0	18	14	25.0	18	21	8.0	88	27	z.0	19
			14	2/.5	18	21	10.0	117	27	4.0	19
10	0.0	16	14	29.0	17	21	12.5	142	27	6.0	20
						21	14.5	137	27	8.0) 20

Table 8. Relative fluorescence profile data for 1986.

٠

• ·

۲

.

.

•

Profile Sample Number	Depth (#)	Relative Fluorescence	Profile Sample Number	Depth (m)	Relative Fluorescence	Profile Sample Number	Depth (m)	Relative Fluorescence	Profile Sample Number	Depth (m)	Relative Fluorescence
27	10.0	20	31	20.0	15	40	1.0	19	45	20.0	7
27	12.5	20	31	22.5	21	40	2.0	20	45	22.5	8
27	15.0	21	31	25.0	21	40	4.0	20	45	25.0	8
27	17.5	35	31	27.5	21	40	6.0	22	45	27.5	6
27	20.0	198	31	29.0	21						
27	22.5	215				41	0.0	101	46	0.0	61
27	25.0	213	32	0.0	11	41	1.0	101	40	1.0	65
27	27.5	216	32	1.0	14	41	2.0	88	40	2.0	65
20	1.0	11	32	2.0	23	41	4.0	/9 72	40	4.0	21
20	2.0	11	32	4.0	33	41	8.0	73	40	8.0	22
20	2.0	11	32	8.0	125	41	10.0	65	40	10.0	24
20	4.U 6.0	11	32	10.0	125	41	12.5	66	40	12.5	23
20	0.0	11	32	12.5	145	41	15.0	76	40	14.5	25
29	10.0	10	32	15 0	155	41	17 5	76	47	0.0	8
28	12.5	11	0.	12.0	100	41	20.0	77	47	1.0	7
28	15.0	10	33	0.0	3	41	21.5	85	47	2.0	, 7
28	17.5	9	33	1.0	3				47	4.0	6
28	20.0	9	33	2.0	3	42	0.0	71	47	6.0	6
28	22.5	11	33	4.0	3	42	1.0	70			
28	25.0	12	33	5.0	3	42	2.0	69	48	0.0	24
28	27.5	14				42	4.0	63	48	1.0	22
28	30.0	16	34	0.0	103	42	6.0	38	48	2.0	24
			34	1.0	73	42	8.0	35	48	4.0	23
29	1.0	25	34	2.0	90	42	10.0	30	48	6.0	22
29	2.0	25	34	4.0	277	42	12.5	39			
29	4.0	24				42	15.0	29	49	0.0	21
29	6.0	26	35	0.0	114	42	17.5	27	49	1.0	.22
29	8.0	25	35	1.0	107	42	18.5	28	49	2.0	22
29	10.0	23	35	2.0	106				49	4.0	21
29	12.5	23	35	4.0	119	43	0.0	71	49	6.0	20
29	15.0	23				43	1.0	70	49	8.0	23
29	17.5	24	36	0.0	183	43	2.0	52	49	10.0	22
29	20.0	24	36	1.0	180	43	4.0	50	49	12.5	22
29	22.5	24	36	2.0	180	43	6.0	41	49	15.0	24
29	25.0	29									
29	27.5	32	37	0.0	28	44	1.0	37	50	0.0	21
29	30.0	27	37	1.0	28	44	2.0	3/	50	1.0	20
			3/	2.0	29	44	4.0	40	50	2.0	20
30	1.0	49	3/	4.0	29	44	0.0	45	50	4.0	21
30	2.0	52	3/	0.0	28	44	8.U 10.0	42	50	0.0	20
30	4.0	21	3/	10.0	20	44	10.0	42	50	10.0	21
20	0.0	52	37	12.5	20	44	12.5	43	50	12 5	20
30	10.0	52	37	13.5	20	44	17.5	36	50	15.0	22
30	12 5	52	57	13.5	20	44	20.0	35	50	17 5	25
30	15.0	53	38	0.0	46	44	22.5	36	50	20.0	23
30	17.5	53	38	1.0	43	44	25.0	36	50	22.5	25
30	20.0	53	38	2.0	44	44	27.5	35	50	25.0	24
30	22.5	50	38	4.0	45	44	30.0	31	50	27.5	24
30	25.0	50	39	0.0	6						
			39	1.0	6	45	0.0	5	51	1.0	16
31	1.0	9	39	2.0	6	45	1.0	5	51	2.0	17
31	2.0	9	39	4.0	23	45	2.0	5	51	4.0	18
31	4.0	9	39	6.0	21	45	4.0	6	51	6.0	19
31	6.0	9	39	8.0	23	45	6.0	6	51	8.0	21
31	8.0	10	39	10.0	35	45	8.0	6	51	10.0	28
31	10.0	10	39	12.5	39	45	10.0	6	51	12.5	133
31	12.5	9	39	15.0	41	45	12.5	5	51	15.0	133
31	15.0	10				45	15.0	6	51	17.5	53
31	17.5	9	40	0.0	20	45	17.5	7	51	20.0	12

Table 8. Relative fluorescence profile data for 1986 (CONTINUED).

•

Profile Sample Number	Depth (m)	Relative Fluorescence	Profile Sample Number	Depth (=)	Relative Fluorescence	Profile Sample Number	Depth (m)	Relative Fluorescence	Profile Sample Number	Depth (m)	Relative Fluorescence
51	22.5	14	52	22.5	33	54	4.0	23	56	12.5	18
51	25.0	12	52	25.0	34	54	6.0	28			
51	27.5	18	52	27.5	40				57	0.0	46
51	30.0	18				55	0.0	59	57	1.0	45
			53	1.0	20	55	1.0	60	57	2.0	44
52	0.0	23	53	2.0	20	55	2.0	61	57	4.0	33
52	1.0	23	53	4.0	17	55	4.0	61	57	6.0	30
52	2.0	23	53	6.0	18	55	5.0	59	57	8.0	28
52	4.0	23	53	8.0	25				57	10.0	22
52	6.0	25	53	10.0	28	56	0.0	43	57	12.5	18
52	8.0	25	53	12.5	26	56	1.0	43	57	15.0	16
52	10.0	33	53	13.5	29	56	2.0	43	57	17.5	15
52	12.5	21				56	4.0	37	57	20.0	14
52	15.0	45	54	0.0	70	56	6.0	26	57	22.5	22
52	17.5	75	54	1.0	70	56	8.0	24	57	25.0	14
52	20.0	33	54	2.0	42	56	10.0	19	57	27.5	15

Table 8. Relative fluorescence profile data for 1986 (CONTINUED).

.

.

Table 9. Relative fluorescence profile data for 1987.

Profile Sample	Depth	Relative Fluorescence									
Number	(8)		Number	(=)		Nuilder	(=)		NURDET	(#)	
1	2.0	101	5	12.5	95	11	2.0	139	14	10.0	180
1	4.0	88	5	14.0	98	11	4.0	149	14	12.5	193
1	6.0	82				11	6.0	130	14	15.0	171
1	8.0	82	6	2.0	85	11	8.0	114	14	17.5	164
1	9.0	85	6	4.0	88	11	10.0	111	14	20.0	155
			6	6.0	117	11	12.5	114	14	24.5	164
2	2.0	73	6	8.0	123	11	15.0	85	14	22.5	149
2	4.0	73				11	17.5	85			
			7	2.0	85	11	19.0	88	15	0.0	111
3	2.0	92	7	4.0	98				15	1.0	107
3	4.0	92	7	6.0	133	12	2.0	139	15	2.0	133
3	6.0	92	7	8.0	130	12	4.0	139	15	4.0	133
3	8.0	95				12	6.0	126	15	6.0	133
3	10.0	95	8	2.0	136	12	8.0	111	15	8.0	136
3	12.5	95	8	4.0	133	12	10.0	111	15	10.0	152
3	15.0	95				12	12.5	111	15	12.5	145
3	17.5	79	9	2.0	158	12	15.0	98	15	15.0	139
3	20.0	111	9	4.0	142	12	17.5	95	15	17.5	133
			9	6.0	126				15	20.0	136
4	2.0	88	9	8.0	120	13	2.0	111			
4	4.0	104	9	9.0	120	13	4.0	107	16	1.0	2
									16	2.0	3
5	1.5	85	10	2.0	111	14	0.0	126	16	5.0	4
5	2.0	79	10	4.0	117	14	1.0	123	16	4.0	4
5	4.0	92	10	6.0	98	14	2.0	120			
5	6.0	95	10	8.0	92	14	4.0	139	17	1.0	40
5	8.0	95	10	9.0	92	14	6.0	145	17	2.0	40
5	10.0	98				14	8.0	145	17	4.0	95

Profile Sample Number	Depth (m)	Relative Fluorescence	Profile Sample Number	Depth (m)	Relative Fluorescence	Profile Sample Number	Depth (m)	Relative Fluorescence	Profile Sample Number	Depth (=)	Relative Fluorescence
	<u>_</u>									<u> </u>	
17	6.0	126	23	2.0	133	31	0.0	231	38	4.0	85
17	8.0	174	23	4.0	133	31	1.0	234	38	6.0	8 8
17	10.0	183	23	6.0	120	31	2.0	250			
17	12.5	272	23	9.0	199	31	4.0	262	39	0.0	73
17	15.0	288	23	10.0	297				39	1.0	76
			23	12.5	164	32	0.0	76	39	2.0	73
18	0.0	60	23	15.0	164	32	1.0	79	39	4.0	70
18	1.0	85	23	17.5	161	32	2.0	66	39	6.0	76
18	2.0	190	23	20.5	142	32	2.5	85	39	8.0	92
18	4.0	190	23	22.5	111	33	0.0	68	39	10.0	82
18	6.0	95	23	25.0	98	33	1.0	92	39	12.5	79
18	8.0	95				33	2.0	88			
18	10.0	126	24	0.0	22	33	4.0	96	40	0.0	26
18	12.5	88	24	1.0	22	33	6.0	96	40	1.0	26
18	15.0	111	24	2.0	22				40	2.0	26
18	17.5	164	24	4.0	20	34	0.0	76	40	4.0	26
18	20.0	139	24	6.0	60	34	1.0	82	40	6.0	27
			24	8.0	67	34	. 2.0	82	40	8.0	28
19	1.0	45	24	10.0	62	34	4.0	88	40	10.0	32
19	2.0	43	24	12.5	68	34	6.0	95	40	12.5	37
19	4.0	36	24	15.0	55				40	15.0	32
19	6.0	66	24	17.5	51	35	0.0	46	40	17.5	33
19	8.0	70	24	20.0	49	35	1.0	45	40	20.0	41
19	10.0	60	24	22.5	47	35	2.0	44	40	22.5	41
19	12.5	33	24	25.0	43	35	4.0	45	40	25.0	43
19	15.0	31				35	6.0	45			
19	17.5	29	25	0.0	88	35	8.0	48	41	1.0	9 8
19	20.0	29	25	1.0	88	35	10.0	50	41	2.0	98
			25	2.0	88	35	12.5	74	41	4.0	98
20	0.0	95	25	4.0	73	35	15.0	210	41	6.0	92
20	1.0	145	25	6.0	190	35	17.5	220			
20	2.0	256	25	8.0	167	35	20.0	220	42	0.0	40
20	4.0	228	25	10.0	243	35	22.5	250	42	1.0	40
20	5.5	470	25	12.5	85				42	2.0	39
			25	13.5	95	36	0.0	25	42	4.0	34
21	0.0	114				36	1.0	25	42	6.0	30
21	1.0	164	26	0.0	85	36	2.0	25	42	8.0	30
21	2.0	300	26	.1.0	82	36	4.0	25	42	10.0	29
21	4.0	142	26	2.0	82	36	6.0	25	42	12.5	31
21	6.0	152	26	4.0	60	36	8.0	25	42	15.0	34
21	8.0	164	26	5.0	120	36	10.0	35			
21	10.0	142				36	12.5	36	43	0.0	107
21	12.5	133	27	0.0	88	36	15.0	33	43	1.0	107
21	15.0	126	27	1.0	88	36	17.5	30	43	2.0	107
			27	2.0	79	36	20.0	30	43	4.0	107
22	0.0	88	27	4.0	63	36	22.5	32	43	6.0	101
22	1.0	88				36	25.0	33	43	8.0	42
22	2.0	104	28	0.0	107				43	10.0	40
22	4.0	101	28	1.0	107	37	0.0	40	43	12.5	40
22	6.0	107	28	2.0	107	37	1.0	39	43	15.0	41
22	8.0	120				37	2.0	36	43	17.5	41
22	10.0	126	29	0.0	117	37	4.0	42	43	20.0	41
22	12.5	180	29	1.0	79	37	6.0	46			
22	15.0	303	29	2.0	66	37	8.0	47	44	1.0	114
22	17.5	136	29	4.0	66	37	10.0	39	44	2.0	114
22	20.0	88		•••	••	37	12.5	44	44	4.0	111
22	22.5	66	30	0.0	92	37	15.0	77	44	5 0	111
22	25.0	54	30	1.0	92		13.0		44	5.0	111
			30	2.0	88	38	0 0	AR	44	0.0 g n	A0
23	0.0	133	30	4.0	92	39	1.0	95	44	0.0	40
23	1 0	133	30	5.0	88	20	2 0	RR	44	10 0	20
	- • V		~~				÷.v			10.0	

Table 9. Relative fluorescence profile data for 1987 (CONTINUED).

•

.

.

Profile Sample Number	Depth (m)	Relative Fluorescence									
44	12.5	39	44	15.0	51	44	17.5	62	44	20.0	60

Table 9. Relative fluorescence profile data for 1987 (CONTINUED).

.

.

.

.

Table 10. Relative fluorescence profile data for 1988.

Profile		Relative									
Sample Number	Depth (m)	Fluorescence	Sample Number	Depth (=)	Fluorescence	Sample Number	Depth (m)	Fluorescence	Sample Number	Depth (m)	Fluorescence
1	1.3	126	4	8.0	76	8	4.0	82			
1	2.0	98	4	10.0	76	8	6.0	59	11	1.2	107
1	4.0	101	4	12.5	76	8	8.0	56	11	2.0	101
1	6.0	92	4	15.0	75	8	10.0	54	11	4.0	73
1	8.0	85	4	17.5	75	8	12.5	53	11	6.0	62
ī	9.0	92	4	20.0	76	8	15.0	56	11	8.0	58
			4	21.5	78	8	17.5	56	11	9.3	56
2	1.0	107				8	19.8	55			
2	2.0	98	5	1.5	88				12	1.5	104
2	4.0	98	5	2.0	85	9	1.2	114	12	2.0	95
			5	4.0	88	9	2.0	88	12	4.0	85
3	1.5	107	5	6.0	79	9	4.0	79	12	4.6	66
3	2.0	107	5	8.0	76	9	6.0	57			
3	4.0	109				9	8.0	60	13	1.5	107
3	6.0	101	6	1.5	85	9	10.0	59	13	2.0	92
3	8.0	98	6	2.0	85	9	12.5	56	13	4.0	82
3	10.0	95	6	4.1	85	9	15.0	56	13	6.0	70
3	12.5	92				9	17.5	56	13	8.0	63
3	15.0	95	7	1.5	120			*	13	10.0	66
3	16.5	95	7	2.0	136	10	1.4	101	13	12.5	62
			7	4.0	101	10	2.0	82	13	15.0	58
4	1.5	95	7	5.0	85	10	4.0	70	13	17.0	57
4	2.0	88				10	6.0	55			
4	4.0	88	8	1.5	120	10	8.0	52			
4	6.0	82	8	2.0	98	10	9.1	54			

Transect		<u></u>	Start			Finish			Site
Number	Date	Time	<u>Latitude</u> deg min	<u>Longitude</u> deg min	Time	<u>Latitude</u> deg min	<u>Longitude</u> deg min	Bearing	Interval (m)
1 2 3 4 5 6 7 8 9	21 Aug 21 Aug 21 Aug 21 Aug 21 Aug 09 Sep 09 Sep 10 Sep 10 Sep	1404 1430 1502 1530 1600 1702 1800 1107 1200 1302	70 13.25 70 15.88 70 15.25 70 14.74 70 12.70 69 43.84 69 41.50 69 34.06 69 38.09 69 43 14	130 18.27 130 28.02 130 39.38 130 50.47 130 55.18 135 08.34 135 27.01 133 18.63 133 34.09 133 51 87	1411 1439 1512 1540 1611 1712 1809 1117 1210 1313	70 13.18 70 15.88 70 15.25 70 14.79 70 12.70 69 43.53 69 41.16 69 34.72 69 38.86 69 43 84	130 20.80 130 31.36 130 43.38 130 54.60 130 59.48 135 11.72 135 30.13 133 21.24 133 37.14 133 57.02	095 090 090 090 105 107 054 054 126	200.0 300.0 312.5 288.9 477.8 287.5 262.5 300.0 266.7 455.6
11 12 13	10 Sep 10 Sep 10 Sep 10 Sep	1400 1500 1600	69 46.97 69 48.20 69 46.20	134 10.48 134 26.82 134 47.24	1411 1511 1612	69 47.76 69 47.85 69 45.70	134 13.63 134 30.60 134 50.99	054 105 111	250.0 277.8 325.0

•

.

.

-

Table 11. Summary data for sea surface fluorescence transects, Beaufort Sea shelf study area, 1986.

.

Transect Number	Site Number	Surface Fluorescence	Transect Number	Site Number	Surface Fluorescence
1 1	1 2	22.1 22.1	7 7	7 8	215.0 212.0
1	3	20.2	2		4-0.4
1	4	20.2	8	1	1/0.6
1	6	19.3	8	3	164.3
1	7	19.3	8	4	167.5
1	8	18.9	8	5	167.5
2	1	26.5	о 8	7	164.3
2	ź	27.8	6		10110
2	3	28.4	9	1	173.8
2	4	29.4	9	2	180.1
2	. 5 6	28.8	9	4	180.1
ž	ž	29.1	ě	5	180.1
_			9,	6	180.1
3	1	37.0	9	7	177.0
3 7	2	30.0	9	8 9	177.0
3	4	40.0	5	5	177.0
3	5	39.0	10	1	205.0
3	6	41.0	10	2	202.0
3	8	40.0	10	3 4	205.0
•	Ŭ	11.0	ĩŏ	5	202.0
4	1	47.0	10	6	208.0
4	2	43.0	10	7	205.0
4	4	42.0	10	ğ	205.0
4	5	40.0		5	20200
4	6	38.0	11	1	215.0
4	7	38.0	11	2	212.0
4	ğ	38.0	11	4	221.0
·	•		11	5	228.0
5	1	36.0	11	6	228.0
5	2	37.0	11	/	234.0
5	4	35.0	11	Q Q	231.0
5	5	32.0	<u>11</u>	10	234.0
5	6	34.0	10		
5	2	35.0	12	1	240.0
5	ğ	36.0	12	3	237.0
	-		12	4	237.0
6	1	212.0	12	5	243.0
о 6	2	212.0	12	6 7	246.0
ő	ă	215.0	12	8	240.0
6	5	215.0	12	9	234.0
6	5	215.0	10	1	200.0
6	8	215.0	13	2	209.0
-	Ť		13	3	209.0
7	1	212.0	13	4	209.0
/	2	215.0	13	5	212.0
7	3 4	213.0	13	0 7	202.0
, 7	5	215.0	13	8	212.0
7	6	215.0		-	*

Table 12. Sea surface fluorescence data from transects in the Beaufort Sea, 1986.

.

,

						_
Date	PAR	Date	PAR	Date	PAR	
13 May	26.10	26 Jun	14.55	09 Aug	5.82	-
14 May	21.77	27 Jun	10.54	10 Aug	12.93	
15 May	16.23	28 Jun	15.21	11 Aug	9.61	
16 May	16.75	29 Jun	13.77	12 Aug	7.77	
17 May	17.63	30 Jun	9.65	13 Aug	9.82	
18 May	18.91	01 Jul	11.12	14 Aug	18.30	
19 May	18.22	02 Jul	11.78	15 Aug	22.39	
20 May	18.78	03 Jul	14.10	16 Aug	20.26	
21 May	17.20	04 Jul	14.40	17 Aug	23.35	
22 May	16.91	05 Jul	12.71	18 Aug	11.77	
24 May	14.04	06 Jul	13.29	19 Aug	13.91	
25 May	14.76	07 Jul	11.54	20 Aug	19.35	
26 May	12.08	08 Jul	12.45	21 Aug	14.75	
27 May	13.47	10 Jul	1.25	22 Aug	14.70	
28 May	14.92	11 Jul	7 .9 8	23 Aug	9.99	
29 May	15.71	12 Jul	13.91	24 Aug	12.74	
30 May	14.86	13 Jul	16.29	25 Aug	10.56	
31 May	15.72	14 Jul	14.70	26 Aug	10.94	
01 Jun	13.93	15 Jul	17.04	27 Aug	6.30	
02 Jun	12.10	16 Jul	12.93	28 Aug	6.85	
03 Jun	12.98	17 Jul	15.31	29 Aug	12.63	
04 Jun	15.18	18 Jul	12.43	30 Aug	11.07	
05 Jun	13.96	19 Jul	15 .9 0	31 Aug	19.78	
06 Jun	15.24	20 Jul	7.34	01 Sep	12.10	
07 Jun	14.88	21 Jul	16.46	02 Sep	16.90	
08 Jun	14.99	22 Jul	15.96	03 Sep	17.74	
09 Jun	15.61	23 Jul	16.46	04 Sep	16.58	
10 Jun	11.19	24 Jul	14.90	05 Sep	15.99	
11 Jun	10.13	25 Jul	12.33	06 Sep	17.09	
12 Jun	14.52	26 Jul	8.73	07 Sep	16.61	
13 Jun	15.22	27 Jul	8.46	08 Sep	16.81	
14 Jun	15.38	28 Jul	8.68	09 Sep	4.75	
15 Jun	14.96	29 Jul	7.14	10 Sep	9.66	
16 Jun	12.38	30 Jul	7.59	11 Sep	-15.31	
17 Jun	6.82	31 Jul	8.88	12 Sep	3.92	
18 Jun	11.14	01 Aug	9.14	13 Sep	8.76	
19 Jun	15.19	02 Aug	7.07	14 Sep	13.90	
20 Jun	13.83	03 Aug	9.78	15 Sep	11.60	
21 Jun	15.20	04 Aug	12.51	16 Sep	8.13	
22 Jun	13.45	05 Aug	9.65	17 Sep	5.26	
23 Jun	10.64	06 Aug	8.16	18 Sep	3.62	
24 Jun	13.40	07 Aug	8.18	19 Sep	4.88	
25 Jun	11.60	08 Aug	11.81	20 Sep	9.15	
				•		

Table 13. Average daily photosynthetically available irradiance (PAR - $mE \cdot m^{-2} \cdot min^{-1}$) measured at Tuktoyaktuk in 1986.

Date	PAR	Date	PAR	Date	PAR
18 May	15.62	28 Jun	7.31	07 Aug	15.03
19 May	17.92	29 Jun	9.19	08 Aug	15.14
20 May	9.61	30 Jun	10.13	09 Aug	4.34
21 May	9.75	01 Jul	18.22	10 Aug	5.47
22 May	10.28	02 Jú1	20.08	11 Aug	8.57
23 May	10.30	03 Jul	19.16	12 Aug	14.22
24 May	9.81	04 Jul	19.39	13 Aug	14.19
25 May	9.60	05 Jul	14.0/	14 Aug	13.94
26 May	9./5	06 Jul	19.83	15 Aug	12.66
27 May	8.38	07 Jul	19.62	16 Aug	6.20
28 May	9.62		19.48	17 Aug	0.10
29 May	9.03	09 JUI 10 Jul	18.84	18 Aug	9.3/
30 May	0.85		19.83	19 Aug	0.09
31 May	0.10	11 JUI 12 Jul	10.09	20 Aug	5.49
	10 27		17.95	21 AUG	/.29 E 24
02 Jun	10.37		19 00	22 Aug 22 Aug	5.34
	8 95	14 001	18.35	23 Aug 24 Aug	3 00
	8 31	16 Jul	17 33	25 Aug	5.53
	10.38	17 .141	7 47	25 Aug 26 Aug	4 10
07 Jun	10.30	18 .101	12 03	27 Aug	6 51
08 Jun	9 90	19 .301	17 45	28 Aug	7 48
09 Jun	7.41	20 Jul	17.01	29 Aug	2.52
10 Jun	6.93	21 Jul	7.62	30 Aug	5.70
11 Jun	4.86	22 Jul	13.52	31 Aug	6.45
12 Jun	6.69	23 Jul	13.96	01 Sep	3.08
13 Jun	9.04	24 Jul	15.28	02 Sep	7.49
14 Jun	10.38	25 Jul	10.59	03 Sep	6.07
15 Jun	8.96	26 Jul	13.81	04 Sep	7.16
16 Jun	7.38	27 Jul	5.34	05 Sep	4.47
17 Jun	10.14	28 Jul	10.03	06 Sep	7.84
18 Jun	10.45	29 Jul	13.73	07 Sep	4.25
19 Jun	9.84	30 Jul	14.37	08 Sep	5.09
20 Jun	8.16	31 Jul	9.76	09 Sep	6.36
21 Jun	10.41	01 Aug	16.13	10 Sep	6.84
22 Jun	9.49	02 Aug	16.59	11 Sep	3.59
23 Jun	10.25	03 Aug	16.24	12 Sep	3.73
24 Jun	9.53	04 Aug	8.06	13 Sep	3.66
25 Jun	5.73	05 Aug	12.87	14 Sep	6.62
26 Jun	6.08	06 Aug	5.74	15 Sep	3.76
27 Jun	9.71				

Table 14. Average daily photosynthetically available irradiance (PAR - $mE \cdot m^{-2} \cdot min^{-1}$) measured at Tuktoyaktuk in 1987.

Date PAR Date PAR Date PAR 13 Mar 11.93 26 Apr 21.37 09 Jun 23.46 14 Mar 8.19 27 Apr 22.51 10 Jun 23.32 16 Mar 9.22 28 Apr 24.47 12 Jun 30.78 17 Mar 11.83 30 Apr 24.47 12 Jun 30.78 18 Mar 12.19 01 May 22.98 14 Jun 23.60 19 Mar 12.66 03 May 22.85 16 Jun 19.19 21 Mar 13.27 04 May 20.19 18 Jun 13.52 23 Mar 12.46 05 May 20.19 18 Jun 23.55 24 Mar 11.95 07 May 21.13 20 Jun 21.01						
13 Mar 11.93 26 Apr 21.37 09 Jun 23.46 14 Mar 8.19 27 Apr 22.51 10 Jun 23.37 15 Mar 9.22 28 Apr 23.85 11 Jun 23.32 16 Mar 9.83 29 Apr 23.85 11 Jun 23.32 17 Mar 11.83 30 Apr 24.47 12 Jun 30.78 19 Mar 12.66 03 May 22.85 16 Jun 19.19 20 Mar 13.77 O4 May 23.99 17 Jun 23.59 22 Mar 11.87 O6 May 23.25 19 Jun 16.182 23 Mar 11.455 O7 May 21.13 20 Jun 21.01 25 Mar 15.10 May 23.165 23	Date	PAR	Date	PAR	Date	PAR
14 Mar 8.19 27 Apr 22.51 10 Jun 23.37 15 Mar 9.22 28 Apr 23.85 11 Jun 23.32 16 Mar 9.83 29 Apr 24.47 12 Jun 30.78 17 Mar 11.83 30 Apr 21.86 13 Jun 23.60 19 Mar 12.68 02 May 22.98 14 Jun 23.60 19 Mar 12.66 03 May 22.98 16 Jun 19.19 21 Mar 13.27 04 May 25.99 17 Jun 23.59 22 Mar 12.46 05 May 20.19 18 Jun 16.82 23 Mar 11.87 06 May 23.25 19 Jun 23.59 24 Mar 11.95 07 May 21.13 20 Jun 21.01 25 Mar 14.95 08 May 19.45 21 Jun 0.67 26 Mar 14.56 09 May 28.15 22 Jun 26.46 27 Mar 15.15 10 May 23.05 25 Jun 16.66 30 Mar 17.44 13 May 20.82 26 Jun <td>13 Mar</td> <td>11.93</td> <td>26 Apr</td> <td>21.37</td> <td>09 Jun</td> <td>23.46</td>	13 Mar	11.93	26 Apr	21.37	09 Jun	23.46
15 Mar 9.22 28 Apr 23.85 11 Jun 23.32 16 Mar 9.83 29 Apr 24.47 12 Jun 30.78 17 Mar 11.83 30 Apr 24.47 12 Jun 30.78 18 Mar 12.19 01 May 22.98 14 Jun 23.60 19 Mar 12.68 02 May 21.73 15 Jun 19.61 20 Mar 12.46 03 May 22.98 16 Jun 19.19 21 Mar 13.27 04 May 25.99 17 Jun 23.59 22 Mar 11.87 06 May 23.25 19 Jun 33.85 24 Mar 11.95 07 May 21.13 20 Jun 21.01 25 Mar 14.56 09 May 28.15 22 Jun 26.46 27 Mar 15.15 10 May 22.61 23 Jun 20.66 28 Mar 16.08 11 May 23.95 25 Jun 16.66 30 Mar 17.44 13 May 20.82 26 Jun 20.50 21 Apr 17.92 16 May 25.35 29 Jun<	14 Mar	8.19	27 Apr	22.51	10 Jun	23.37
16 Mar 9.83 29 Apr 24.47 12 Jun 30.78 17 Mar 11.83 30 Apr 21.86 13 Jun 21.53 18 Mar 12.68 02 May 21.73 15 Jun 19.61 20 Mar 12.46 03 May 22.85 16 Jun 19.19 21 Mar 13.27 04 May 23.25 19 Jun 33.85 22 Mar 12.46 05 May 20.19 18 Jun 16.82 23 Mar 11.87 06 May 23.25 19 Jun 33.85 24 Mar 11.95 07 May 21.13 20 Jun 21.01 25 Mar 14.95 08 May 19.45 21 Jun 0.67 26 Mar 14.56 09 May 28.15 22 Jun 26.46 27 Mar 15.15 10 May 23.06 24 Jun 19.10 29 Mar 17.68 12 May 23.95 25 Jun 26.66 30 Mar 17.44 13 May 20.82 26 Jun 20.50 31 Mar 16.61 14 May 21.21 27 Jun<	15 Mar	9.22	28 Apr	23.85	11 Jun	23.32
17 Mar 11.83 30 Apr 21.86 13 Jun 21.53 18 Mar 12.19 01 May 22.98 14 Jun 23.60 19 Mar 12.66 02 May 22.85 16 Jun 19.61 20 Mar 12.46 03 May 22.85 16 Jun 19.19 21 Mar 13.27 04 May 25.99 17 Jun 23.59 22 Mar 12.46 05 May 20.19 18 Jun 16.82 23 Mar 11.87 06 May 23.25 19 Jun 33.85 24 Mar 11.95 07 May 21.13 20 Jun 21.01 25 Mar 14.95 08 May 19.45 21 Jun 0.67 26 Mar 14.56 09 May 23.06 24 Jun 19.10 29 Mar 17.68 12 May 23.95 25 Jun 16.66 30 Mar 17.44 13 May 20.82 26 Jun 20.50 31 Mar 16.61 14 May 21.21 27 Jun 25.02 01 Apr 17.13 15 May 24.52 28 Jun	16 Mar	9.83	29 Apr	24.47	12 Jun	30.78
18 Mar 12.19 01 May 22.98 14 Jun 23.60 19 Mar 12.68 02 May 21.73 15 Jun 19.61 20 Mar 12.66 03 May 22.85 16 Jun 19.91 21 Mar 12.46 05 May 22.99 17 Jun 23.59 22 Mar 12.46 05 May 23.25 19 Jun 33.85 23 Mar 11.87 06 May 23.25 19 Jun 26.66 24 Mar 14.95 07 May 21.13 20 Jun 26.66 25 Mar 14.56 09 May 28.15 22 Jun 26.46 27 Mar 15.15 10 May 23.06 24 Jun 19.10 29 Mar 17.68 12 May 23.95 25 Jun 16.66 30 Mar 16.61 14 May	17 Mar	11.83	30 Apr	21.86	13 Jun	21.53
19 Mar 12.68 02 May 21.73 15 Jun 19.61 20 Mar 12.46 03 May 22.85 16 Jun 19.19 21 Mar 13.27 04 May 25.99 17 Jun 23.59 22 Mar 12.46 05 May 20.19 18 Jun 16.62 23 Mar 11.87 06 May 23.25 19 Jun 33.85 24 Mar 14.95 07 May 21.13 20 Jun 21.01 25 Mar 14.95 08 May 19.45 21 Jun 0.67 26 Mar 14.56 09 May 28.15 22 Jun 26.46 27 Mar 15.15 10 May 23.06 24 Jun 19.10 28 Mar 16.08 11 May 23.06 24 Jun 19.10 29 Mar 17.68 12 May 23.95 25 Jun 16.66 30 Mar 17.44 13 May 24.52 28 Jun 23.06 02 Apr 17.92 16 May 25.35 29 Jun 23.06 03 Apr 17.92 16 May 28.93 30 Jun	18 Mar	12.19	Ol May	22.98	14 Jun	23.60
20 Mar 12.46 03 May 22.85 16 Jun 19.19 21 Mar 13.27 04 May 25.99 17 Jun 23.59 22 Mar 11.87 06 May 23.25 19 Jun 33.85 23 Mar 11.87 06 May 23.25 19 Jun 33.85 24 Mar 11.95 07 May 21.13 20 Jun 21.01 25 Mar 14.56 09 May 28.15 22 Jun 26.46 27 Mar 15.15 10 May 22.61 23 Jun 29.06 28 Mar 17.68 12 May 23.95 25 Jun 16.66 30 Mar 17.44 13 May 20.82 26 Jun 20.50 31 Mar 16.61 14 May 21.21 27 Jun 25.02 01 Apr 17.13 15 May 24.83 30 Jun 23.05 02 Apr 17.92 16 May 25.35 29 Jun 23.06 03 Apr 17.92 16 May 27.35 20 Jul 24.23 04 Apr 15.60 18 May 27.86 01 Ju	19 Mar	12.68	02 May	21.73	15 Jun	19.61
21 Mar 13.27 04 May 25.99 17 Jun 23.59 22 Mar 12.46 05 May 20.19 18 Jun 16.82 23 Mar 11.87 06 May 23.25 19 Jun 33.85 24 Mar 11.95 07 May 21.13 20 Jun 21.01 25 Mar 14.95 08 May 19.45 21 Jun 0.67 26 Mar 14.56 09 May 28.15 22 Jun 26.46 27 Mar 15.15 10 May 22.61 23 Jun 29.06 28 Mar 16.08 11 May 23.05 25 Jun 16.66 30 Mar 17.44 13 May 20.82 26 Jun 20.50 31 Mar 16.61 14 May 21.21 27 Jun 25.02 01 Apr 17.13 15 May 24.52 28 Jun 23.06 03 Apr 17.98 17 May 28.93 30 Jun 26.85 04 Apr 15.60 18 May 27.86 01 Jul 24.28 06 Apr 19.22 20 May 18.93 03 Jul	20 Mar	12.46	03 May	22.85	16 Jun	19.19
22 Mar 12.46 05 May 20.19 18 Jun 16.82 23 Mar 11.87 06 May 23.25 19 Jun 33.85 24 Mar 11.95 07 May 21.13 20 Jun 21.01 25 Mar 14.95 08 May 19.45 21 Jun 0.67 26 Mar 14.56 09 May 28.15 22 Jun 26.46 27 Mar 15.15 10 May 22.61 23 Jun 29.06 28 Mar 16.08 11 May 23.06 24 Jun 19.10 29 Mar 17.68 12 May 23.95 25 Jun 16.66 30 Mar 17.44 13 May 20.82 26 Jun 20.50 31 Mar 16.61 14 May 21.21 27 Jun 25.02 01 Apr 17.13 15 May 24.52 28 Jun 23.05 02 Apr 17.92 16 May 25.35 29 Jun 23.06 03 Apr 17.98 17 May 28.93 30 Jun 26.85 04 Apr 15.43 19 May 24.87 02 Jul	21 Mar	13.27	04 May	25.99	17 Jun	23.59
23 Mar 11.87 06 May 23.25 19 Jun 33.85 24 Mar 11.95 07 May 21.13 20 Jun 21.01 25 Mar 14.95 08 May 19.45 21 Jun 0.67 26 Mar 14.95 08 May 28.15 22 Jun 26.46 27 Mar 15.15 10 May 22.61 23 Jun 29.06 28 Mar 16.08 11 May 23.06 24 Jun 19.10 29 Mar 17.68 12 May 23.95 25 Jun 16.66 30 Mar 17.44 13 May 20.82 26 Jun 20.50 21 Apr 17.13 15 May 24.52 28 Jun 23.06 03 Apr 17.92 16 May 25.35 29 Jun 23.06 03 Apr 17.98 17 May 28.93 30 Jun 26.85 04 Apr 16.43 19 May 24.87 02 Jul 24.23 05 Apr 16.43 19 May 23.35 04 Jul 24.17 08 Apr 21.39 22 May 18.85 05 Jul	22 Mar	12.46	05 May	20.19	18 Jun	16.82
24 Mar 11.95 07 May 21.13 20 Jun 21.01 25 Mar 14.95 08 May 19.45 21 Jun 0.67 26 Mar 14.56 09 May 28.15 22 Jun 26.46 27 Mar 15.15 10 May 22.61 23 Jun 29.06 28 Mar 16.08 11 May 23.06 24 Jun 19.10 29 Mar 17.68 12 May 23.95 25 Jun 16.66 30 Mar 17.44 13 May 20.82 26 Jun 20.50 31 Mar 16.61 14 May 21.21 27 Jun 25.02 01 Apr 17.13 15 May 24.87 29 Jun 23.06 03 Apr 17.98 17 May 28.93 30 Jun 26.85 04 Apr 15.60 18 May 23.35 04 Jul 24.28 06 Apr 16.43 19 May 24.87 02 Jul 24.28 06 Apr 10.43 19 May 23.35 04 Jul 24.17 08 Apr 21.39 03 Jul 23.97 07 <td>23 Mar</td> <td>11.8/</td> <td>UD May</td> <td>23.25</td> <td>19 Jun</td> <td>33.85</td>	23 Mar	11.8/	UD May	23.25	19 Jun	33.85
25 Mar 14.95 08 May 19.45 21 Jun 0.07 26 Mar 14.56 09 May 22.61 23 Jun 29.06 27 Mar 15.15 10 May 22.61 23 Jun 29.06 28 Mar 16.08 11 May 23.95 25 Jun 16.66 30 Mar 17.68 12 May 23.95 25 Jun 25.02 31 Mar 16.61 14 May 21.21 27 Jun 25.02 01 Apr 17.13 15 May 24.52 28 Jun 23.06 03 Apr 17.92 16 May 27.86 01 Ju1 24.23 04 Apr 15.60 18 May 27.86 01 Ju1 24.23 05 Apr 16.43 19 May 23.35 04 Ju1 24.17 08 Apr 21.39 21 May	24 Mar	11.95	U/ May	21.13	20 Jun 21 Jun	21.01
27 Mar 14.30 0.9 May 22.61 22 011 26.46 28 Mar 16.08 11 May 23.06 24 Jun 19.10 29 Mar 17.68 12 May 23.95 25 Jun 16.66 30 Mar 17.44 13 May 20.82 26 Jun 25.02 31 Mar 16.61 14 May 24.52 28 Jun 23.05 02 Apr 17.92 16 May 25.35 29 Jun 23.06 03 Apr 17.98 17 May 28.93 30 Jun 26.85 04 Apr 15.60 18 May 27.36 01 124.28 06 Apr 19.22 20 May 18.93 03 Ju1 23.97 07 Apr 20.33 21 May 18.33 06 Ju1 24.28 06 Apr 13.99 22 May 18.87 </td <td>25 Mar</td> <td>14.95</td> <td>UO May</td> <td>19.40</td> <td>21 JUN 22 Jun</td> <td>0.0/</td>	25 Mar	14.95	UO May	19.40	21 JUN 22 Jun	0.0/
27 Mai 13.13 10 May 22.01 23.06 24 Jun 19.00 28 Mar 17.68 12 May 23.06 24 Jun 19.10 29 Mar 17.68 12 May 23.95 25 Jun 16.66 30 Mar 17.44 13 May 20.82 26 Jun 25.02 01 Apr 17.13 15 May 24.52 28 Jun 23.06 02 Apr 17.92 16 May 25.35 29 Jun 23.06 03 Apr 17.98 17 May 28.93 30 Jun 26.85 04 Apr 15.60 18 May 27.86 01 Jul 24.28 06 Apr 19.22 20 May 18.93 03 Jul 24.28 06 Apr 21.39 22 May 18.85 05 Jul 21.87 09 Apr 20.10 23 <td>20 Mar</td> <td>14.00</td> <td>10 May</td> <td>20.10</td> <td>22 Jun</td> <td>20.40</td>	20 Mar	14.00	10 May	20.10	22 Jun	20.40
11 Hay 23.95 25 Jun 19.16 29 Mar 17.68 12 May 23.95 25 Jun 16.66 30 Mar 17.44 13 May 20.82 26 Jun 20.50 31 Mar 16.61 14 May 21.21 27 Jun 25.02 01 Apr 17.13 15 May 24.52 28 Jun 23.05 02 Apr 17.92 16 May 25.35 29 Jun 23.06 03 Apr 17.98 17 May 28.93 30 Jun 26.85 04 Apr 15.60 18 May 27.86 01 Jul 24.23 05 Apr 16.43 19 May 23.35 04 Jul 24.17 08 Apr 21.39 22 May 18.85 05 Jul 21.87 09 Apr 18.96 24 May 18.87 07 Jul	28 Mar	16 08	10 May	22.01	23 Jun	10 10
11 11 14 13 14 14 14 15 16 16 16 16 16 16 16 16 16 16 16 16 16 17 17 17 17 17 17 17 17 17 16 May 21 21 27 10 25 02 10 17 13 15 May 24 52 28 10 23 05 02 17 17 92 16 May 25 35 29 Jun 23 05 02 10 12 16 13 19 May 24 83 30 Jun 26 35 04 10 12 12 23 05 04 17 14 30 12 13 13 12 12 12 12	29 Mar	17 68	12 May	23.00	25 Jun	16 66
35 Mar 16 16 14 May 21.21 27 Jun 25.02 01 Apr 17.13 15 May 24.52 28 Jun 23.05 02 Apr 17.92 16 May 25.35 29 Jun 23.06 03 Apr 17.98 17 May 28.93 30 Jun 26.85 04 Apr 15.60 18 May 27.86 01 Jul 24.23 05 Apr 16.43 19 May 23.35 04 Jul 24.17 08 Apr 21.39 22 May 18.85 05 Jul 21.87 07 Apr 20.33 21 May 28.33 06 Jul 22.87 10 Apr 18.96 24 May 18.87 07 Jul 23.90 11 Apr 20.47 25 May 26.23 08 Jul 21.33 13 Apr 21.16 27	30 Mar	17.44	13 May	20.82	25 Jun	20 50
11 Apr 17.13 15 May 24.52 28 Jun 23.05 02 Apr 17.92 16 May 25.35 29 Jun 23.06 03 Apr 17.98 17 May 28.93 30 Jun 26.85 04 Apr 15.60 18 May 27.86 01 Jul 24.23 05 Apr 16.43 19 May 24.87 02 Jul 24.28 06 Apr 19.22 20 May 18.93 03 Jul 23.97 07 Apr 20.33 21 May 23.35 04 Jul 24.17 08 Apr 21.39 22 May 18.85 05 Jul 21.87 09 Apr 20.10 23 May 18.33 06 Jul 22.87 10 Apr 18.96 24 May 18.87 07 Jul 23.90 11 Apr 20.47 26 May 26.83 08 Jul 35.75 12 Apr 22.47 26 May 20.68 09 Jul 21.33 13 Apr 21.16 27 May 24.60 10 Jul 23.44 14 Apr 23.49 28 May 28.91 11 Ju	31 Mar	16.61	14 May	21.21	20 Jun	25.02
17.92 16 May 25.35 29 Jun 23.06 03 Apr 17.98 17 May 28.93 30 Jun 26.85 04 Apr 15.60 18 May 27.86 01 Jul 24.23 05 Apr 16.43 19 May 24.87 02 Jul 24.28 06 Apr 19.22 20 May 18.93 03 Jul 23.97 07 Apr 20.33 21 May 23.35 04 Jul 24.17 08 Apr 21.39 22 May 18.85 05 Jul 21.87 09 Apr 20.10 23 May 18.33 06 Jul 22.87 10 Apr 18.96 24 May 18.87 07 Jul 23.90 11 Apr 20.47 25 May 26.23 08 Jul 35.75 12 Apr 22.47 26 May 20.68 09 Jul 21.33 13 Apr 21.16 27 May 21.60 10 Jul 23.44 14 Apr 23.49 28 May 28.91 11 Jul 20.35 15 Apr 25.21 29 May 24.19 12 Jul 24.44	01 Apr	17.13	15 May	24.52	28 Jun	23.05
03 Apr 17.98 17 May 28.93 30 Jun 26.85 04 Apr 15.60 18 May 27.86 01 Jul 24.23 05 Apr 16.43 19 May 24.87 02 Jul 24.28 06 Apr 19.22 20 May 18.93 03 Jul 23.97 07 Apr 20.33 21 May 23.35 04 Jul 24.17 08 Apr 21.39 22 May 18.83 06 Jul 22.87 09 Apr 20.10 23 May 18.87 07 Jul 23.90 11 Apr 20.47 25 May 26.23 08 Jul 35.75 12 Apr 22.47 26 May 28.68 09 Jul 21.33 13 Apr 21.16 27 May 24.19 12 Jul 24.44 14 Apr 23.49 28 May	02 Apr	17.92	16 May	25.35	29 Jun	23.06
04 Apr 15.60 18 May 27.86 01 Jul 24.23 05 Apr 16.43 19 May 24.87 02 Jul 24.28 06 Apr 19.22 20 May 18.93 03 Jul 23.97 07 Apr 20.33 21 May 23.35 04 Jul 24.17 08 Apr 21.39 22 May 18.85 05 Jul 21.87 09 Apr 20.10 23 May 18.33 06 Jul 22.87 10 Apr 18.96 24 May 18.87 07 Jul 23.90 11 Apr 20.47 25 May 26.23 08 Jul 35.75 12 Apr 22.47 26 May 20.68 09 Jul 21.33 13 Apr 21.16 27 May 21.60 10 Jul 23.44 14 Apr 23.49 28 May 28.91 11 Jul 20.35 15 Apr 25.21 29 May 24.19 12 Jul 24.44 16 Apr 24.20 30 May 29.49 13 Jul 28.49 17 Apr 25.28 31 May 18.74 14 Ju	03 Apr	17.98	17 May	28.93	30 Jun	26.85
05 Apr 16.43 19 May 24.87 02 Jul 24.28 06 Apr 19.22 20 May 18.93 03 Jul 23.97 07 Apr 20.33 21 May 23.35 04 Jul 24.17 08 Apr 21.39 22 May 18.85 05 Jul 21.87 09 Apr 20.10 23 May 18.33 06 Jul 22.87 10 Apr 18.96 24 May 18.87 07 Jul 23.90 11 Apr 20.47 25 May 26.23 08 Jul 35.75 12 Apr 22.47 26 May 20.68 09 Jul 21.33 13 Apr 21.16 27 May 21.60 10 Jul 23.44 14 Apr 23.49 28 May 28.91 11 Jul 20.35 15 Apr 25.21 29 May 24.19 12 Jul 24.44 16 Apr 24.20 30 May 29.49 13 Jul 28.67 18 Apr 23.56 01 Jun 25.34 15 Jul 32.15 19 Apr 26.34 02 Jun 24.07 16 Ju	04 Apr	15.60	18 May	27.86	01 Jul	24.23
06 Apr19.2220 May18.9303 Jul23.9707 Apr20.3321 May23.3504 Jul24.1708 Apr21.3922 May18.8505 Jul21.8709 Apr20.1023 May18.3306 Jul22.8710 Apr18.9624 May18.8707 Jul23.9011 Apr20.4725 May26.2308 Jul35.7512 Apr22.4726 May20.6809 Jul21.3313 Apr21.1627 May21.6010 Jul23.4414 Apr23.4928 May28.9111 Jul20.3515 Apr25.2129 May24.1912 Jul24.4416 Apr24.2030 May29.4913 Jul28.4917 Apr25.2831 May18.7414 Jul28.6718 Apr23.5601 Jun25.3415 Jul32.1519 Apr26.3402 Jun24.0716 Jul23.4620 Apr23.0103 Jun25.6917 Jul26.2121 Apr22.6904 Jun23.2118 Jul16.9722 Apr19.3905 Jun19.9919 Jul12.9323 Apr24.5206 Jun22.6120 Jul26.6924 Apr17.6707 Jun14.3421 Jul23.9625 Apr27 2208 Jun23.1122.1122.01	05 Apr	16.43	19 May	24.87	02 Jul	24.28
07 Apr 20.33 21 May 23.35 04 Jul 24.17 08 Apr 21.39 22 May 18.85 05 Jul 21.87 09 Apr 20.10 23 May 18.33 06 Jul 22.87 10 Apr 18.96 24 May 18.87 07 Jul 23.90 11 Apr 20.47 25 May 26.23 08 Jul 35.75 12 Apr 22.47 26 May 20.68 09 Jul 21.33 13 Apr 21.16 27 May 21.60 10 Jul 23.44 14 Apr 23.49 28 May 28.91 11 Jul 20.35 15 Apr 25.21 29 May 24.19 12 Jul 24.44 16 Apr 24.20 30 May 29.49 13 Jul 28.67 17 Apr 25.28 31 May 18.74 14 Jul 28.67 18 Apr 23.56 01 Jun 25.34 15 Jul 32.15 19 Apr 26.34 02 Jun 24.07 16 Jul 23.46 20 Apr 23.01 03 Jun 25.69 17 Ju	06 Apr	19.22	20 May	18.93	03 Jul	23.97
08 Apr 21.39 22 May 18.85 05 Jul 21.87 09 Apr 20.10 23 May 18.33 06 Jul 22.87 10 Apr 18.96 24 May 18.87 07 Jul 23.90 11 Apr 20.47 25 May 26.23 08 Jul 35.75 12 Apr 22.47 26 May 20.68 09 Jul 21.33 13 Apr 21.16 27 May 21.60 10 Jul 23.44 14 Apr 23.49 28 May 28.91 11 Jul 20.35 15 Apr 25.21 29 May 24.19 12 Jul 24.44 16 Apr 24.20 30 May 29.49 13 Jul 28.49 17 Apr 25.28 31 May 18.74 14 Jul 28.67 18 Apr 23.56 01 Jun 25.34 15 Jul 32.15 19 Apr 26.34 02 Jun 24.07 16 Jul 23.46 20 Apr 23.01 03 Jun 25.69 17 Jul 26.21 21 Apr 22.69 04 Jun 23.21 18 Ju	07 Apr	20.33	21 May	23.35	04 Ju1	24.17
09 Apr20.1023 May18.3306 Jul22.8710 Apr18.9624 May18.8707 Jul23.9011 Apr20.4725 May26.2308 Jul35.7512 Apr22.4726 May20.6809 Jul21.3313 Apr21.1627 May21.6010 Jul23.4414 Apr23.4928 May28.9111 Jul20.3515 Apr25.2129 May24.1912 Jul24.4416 Apr24.2030 May29.4913 Jul28.4917 Apr25.2831 May18.7414 Jul28.6718 Apr23.5601 Jun25.3415 Jul32.1519 Apr26.3402 Jun24.0716 Jul23.4620 Apr23.0103 Jun25.6917 Jul26.2121 Apr22.6904 Jun23.2118 Jul16.9722 Apr19.3905 Jun19.9919 Jul12.9323 Apr24.5206 Jun22.6120 Jul26.6924 Apr17.6707 Jun14.3421 Jul23.9625 Apr27.2208 Jun23.1122 Jul23.01	08 Apr	21.39	22 May	18.85	05 Jul	21.87
10 Apr 18.96 24 May 18.87 07 Jul 23.90 11 Apr 20.47 25 May 26.23 08 Jul 35.75 12 Apr 22.47 26 May 20.68 09 Jul 21.33 13 Apr 21.16 27 May 21.60 10 Jul 23.44 14 Apr 23.49 28 May 28.91 11 Jul 20.35 15 Apr 25.21 29 May 24.19 12 Jul 24.44 16 Apr 24.20 30 May 29.49 13 Jul 28.49 17 Apr 25.28 31 May 18.74 14 Jul 28.67 18 Apr 23.56 01 Jun 25.34 15 Jul 32.15 19 Apr 26.34 02 Jun 24.07 16 Jul 23.46 20 Apr 23.01 03 Jun 25.69 17 Jul 26.21 21 Apr 22.69 04 Jun 23.21 18 Jul 16.97 22 Apr 19.39 05 Jun 19.99 19 Jul 12.93 23 Apr 24.52 06 Jun 22.61 20 Ju	09 Apr	20.10	23 May	18.33	06 Jul	22.87
11 Apr 20.47 25 May 26.23 08 Jul 35.75 12 Apr 22.47 26 May 20.68 09 Jul 21.33 13 Apr 21.16 27 May 21.60 10 Jul 23.44 14 Apr 23.49 28 May 28.91 11 Jul 20.35 15 Apr 25.21 29 May 24.19 12 Jul 24.44 16 Apr 24.20 30 May 29.49 13 Jul 28.49 17 Apr 25.28 31 May 18.74 14 Jul 28.67 18 Apr 23.56 01 Jun 25.34 15 Jul 32.15 19 Apr 26.34 02 Jun 24.07 16 Jul 23.46 20 Apr 23.01 03 Jun 25.69 17 Jul 26.21 21 Apr 22.69 04 Jun	10 Apr	18.96	24 May	18.87	07 Jul	23.90
12 Apr 22.47 26 May 20.68 09 Jul 21.33 13 Apr 21.16 27 May 21.60 10 Jul 23.44 14 Apr 23.49 28 May 28.91 11 Jul 20.35 15 Apr 25.21 29 May 24.19 12 Jul 24.44 16 Apr 24.20 30 May 29.49 13 Jul 28.49 17 Apr 25.28 31 May 18.74 14 Jul 28.67 18 Apr 23.56 01 Jun 25.34 15 Jul 32.15 19 Apr 26.34 02 Jun 24.07 16 Jul 23.46 20 Apr 23.01 03 Jun 25.69 17 Jul 26.21 21 Apr 22.69 04 Jun 23.21 18 Jul 16.97 22 Apr 19.39 05 Jun 19.99 19 Jul 12.93 23 Apr 24.52 06 Jun 22.61 20 Jul 26.69 24 Apr 17.67 07 Jun 14.34 21 Jul 23.96 25 Apr 27.22 08 Jup 23 J1 22 Ju	11 Apr	20.47	25 May	26.23	08 Ju1	35.75
13 Apr 21.16 27 May 21.60 10 Jul 23.44 14 Apr 23.49 28 May 28.91 11 Jul 20.35 15 Apr 25.21 29 May 24.19 12 Jul 24.44 16 Apr 24.20 30 May 29.49 13 Jul 28.49 17 Apr 25.28 31 May 18.74 14 Jul 28.67 18 Apr 23.56 01 Jun 25.34 15 Jul 32.15 19 Apr 26.34 02 Jun 24.07 16 Jul 23.46 20 Apr 23.01 03 Jun 25.69 17 Jul 26.21 21 Apr 22.69 04 Jun 23.21 18 Jul 16.97 22 Apr 19.39 05 Jun 19.99 19 Jul 12.93 23 Apr 24.52 06 Jun 22.61 20 Jul 26.69 24 Apr 17.67 07 Jun 14.34 21 Jul 23.96 25 Apr 27.22 08 Jun 23.11 23 Jul 23.90	12 Apr	22.47	26 May	20.68	09 Jul	21.33
14 Apr 23.49 28 May 28.91 11 Jul 20.35 15 Apr 25.21 29 May 24.19 12 Jul 24.44 16 Apr 24.20 30 May 29.49 13 Jul 28.49 17 Apr 25.28 31 May 18.74 14 Jul 28.67 18 Apr 23.56 01 Jun 25.34 15 Jul 32.15 19 Apr 26.34 02 Jun 24.07 16 Jul 23.46 20 Apr 23.01 03 Jun 25.69 17 Jul 26.21 21 Apr 22.69 04 Jun 23.21 18 Jul 16.97 22 Apr 19.39 05 Jun 19.99 19 Jul 12.93 23 Apr 24.52 06 Jun 22.61 20 Jul 26.69 24 Apr 17.67 07 Jun 14.34 21 Jul 23.96 25 Apr 27 22 08 Jun 23 11 22 Jul 28 01	13 Apr	21.16	27 May	21.60	10 Jul	23.44
15 Apr 25.21 29 May 24.19 12 Jul 24.44 16 Apr 24.20 30 May 29.49 13 Jul 28.49 17 Apr 25.28 31 May 18.74 14 Jul 28.67 18 Apr 23.56 01 Jun 25.34 15 Jul 32.15 19 Apr 26.34 02 Jun 24.07 16 Jul 23.46 20 Apr 23.01 03 Jun 25.69 17 Jul 26.21 21 Apr 22.69 04 Jun 23.21 18 Jul 16.97 22 Apr 19.39 05 Jun 19.99 19 Jul 12.93 23 Apr 24.52 06 Jun 22.61 20 Jul 26.69 24 Apr 17.67 07 Jun 14.34 21 Jul 23.96 25 Apr 27.22 08 Jun 23.11 22 Jul 23.96	14 Apr	23.49	28 May	28.91	11 Jul	20.35
16 Apr 24.20 30 May 29.49 13 Jul 28.49 17 Apr 25.28 31 May 18.74 14 Jul 28.67 18 Apr 23.56 01 Jun 25.34 15 Jul 32.15 19 Apr 26.34 02 Jun 24.07 16 Jul 23.46 20 Apr 23.01 03 Jun 25.69 17 Jul 26.21 21 Apr 22.69 04 Jun 23.21 18 Jul 16.97 22 Apr 19.39 05 Jun 19.99 19 Jul 12.93 23 Apr 24.52 06 Jun 22.61 20 Jul 26.69 24 Apr 17.67 07 Jun 14.34 21 Jul 23.96 25 Apr 27 22 08 Jun 23.11 23 Jul 29.01	15 Apr	25.21	29 May	24.19	12 Jul	24.44
17 Apr 25.28 31 May 18.74 14 Jul 28.67 18 Apr 23.56 01 Jun 25.34 15 Jul 32.15 19 Apr 26.34 02 Jun 24.07 16 Jul 23.46 20 Apr 23.01 03 Jun 25.69 17 Jul 26.21 21 Apr 22.69 04 Jun 23.21 18 Jul 16.97 22 Apr 19.39 05 Jun 19.99 19 Jul 12.93 23 Apr 24.52 06 Jun 22.61 20 Jul 26.69 24 Apr 17.67 07 Jun 14.34 21 Jul 23.96 25 Apr 27.22 08 Jun 23.11 22 Jul 28.01	16 Apr	24.20	30 May	29.49	13 Jul	28.49
18 Apr 23.56 01 Jun 25.34 15 Jul 32.15 19 Apr 26.34 02 Jun 24.07 16 Jul 23.46 20 Apr 23.01 03 Jun 25.69 17 Jul 26.21 21 Apr 22.69 04 Jun 23.21 18 Jul 16.97 22 Apr 19.39 05 Jun 19.99 19 Jul 12.93 23 Apr 24.52 06 Jun 22.61 20 Jul 26.69 24 Apr 17.67 07 Jun 14.34 21 Jul 23.96 25 Apr 27.22 08 Jun 23.11 23 Jul 29.01	1/ Apr	25.28	31 May	18.74	14 Jul	28.67
19 Apr 26.34 02 Jun 24.07 16 Jul 23.46 20 Apr 23.01 03 Jun 25.69 17 Jul 26.21 21 Apr 22.69 04 Jun 23.21 18 Jul 16.97 22 Apr 19.39 05 Jun 19.99 19 Jul 12.93 23 Apr 24.52 06 Jun 22.61 20 Jul 26.69 24 Apr 17.67 07 Jun 14.34 21 Jul 23.96 25 Apr 27.22 08 Jun 23.11 23 Jul 29.01	18 Apr	23.50	UI JUN	25.34	15 JUI	32.15
20 Apr 23.01 03 Jun 25.09 17 Jul 26.21 21 Apr 22.69 04 Jun 23.21 18 Jul 16.97 22 Apr 19.39 05 Jun 19.99 19 Jul 12.93 23 Apr 24.52 06 Jun 22.61 20 Jul 26.69 24 Apr 17.67 07 Jun 14.34 21 Jul 23.96 25 Apr 27.22 08 Jun 23.11 22 Jul 29.01	20 Vee	20.34	02 JUN	24.07		23.40
21 Apr 22.09 04 Jun 23.21 18 Jul 16.97 22 Apr 19.39 05 Jun 19.99 19 Jul 12.93 23 Apr 24.52 06 Jun 22.61 20 Jul 26.69 24 Apr 17.67 07 Jun 14.34 21 Jul 23.96 25 Apr 27.22 08 Jun 23.11 23.11 23.01	20 Apr 21 Ann	23.01		23.09	1/ JUI 10 Jul	20.21
22 Apr 13.33 05 Jun 19.39 19 Jul 12.93 23 Apr 24.52 06 Jun 22.61 20 Jul 26.69 24 Apr 17.67 07 Jun 14.34 21 Jul 23.96 25 Apr 27 22 08 Jun 23.11 23 Jul 29.01	22 Apr	10 20	04 001	10 00		12.02
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22 Apr	13.07 24 52		73°77		12.93
$25 \text{ Ann} 27.22 \qquad 07.0011 14.34 \qquad 21.001 23.90 \qquad 25.4n 27.22 \qquad 0.8 \text{ Jun} 22.11 \qquad 22.101 23.90 \qquad 0.1 \qquad 0.01 \qquad 0.$	23 Apr 24 Ann	24.02 17 67		11 21	20 JUI 51 JUI	20.05
	25 Anr	27 22	02 Jun	22 11	21 JUI 22 Jul	23.30

Table 15. Average daily photosynthetically available irradiance (PAR - mE·m⁻²·min⁻¹) measured at Tuktoyaktuk in 1988.

PAR .	Date	PAR	Date	PAR
20.84	30 Jul	32.21	06 Aug	15.52
13.35	31 Jul	32.05	07 Aug	28.96
14.52	01 Aug	24.24	08 Aug	25.05
29.67	02 Aug	14.53	09 Aug	14.72
27.89	03 Aug	17.17	10 Aug	5.73
25.01	04 Aug	18.82	11 Aug	17.95
27.06	05 Aug	11.72	12 Aug	25.14
	PAR 20.84 13.35 14.52 29.67 27.89 25.01 27.06	PAR Date 20.84 30 Jul 13.35 31 Jul 14.52 01 Aug 29.67 02 Aug 27.89 03 Aug 25.01 04 Aug 27.06 05 Aug	PAR Date PAR 20.84 30 Jul 32.21 13.35 31 Jul 32.05 14.52 01 Aug 24.24 29.67 02 Aug 14.53 27.89 03 Aug 17.17 25.01 04 Aug 18.82 27.06 05 Aug 11.72	PARDatePARDate20.8430 Jul32.2106 Aug13.3531 Jul32.0507 Aug14.5201 Aug24.2408 Aug29.6702 Aug14.5309 Aug27.8903 Aug17.1710 Aug25.0104 Aug18.8211 Aug27.0605 Aug11.7212 Aug

Table 15. Average daily photosynthetically available irradiance (CONTINUED).

Table 16. Mean daily total photosynthetically available irradiation (mE·m⁻²·day⁻¹) at Tuktoyaktuk, for each month of record during 1986 to 1988.

Month	Mean Dai	1y PAR (mE·m ⁻² ·day	(-1×10^{-3})
	1986	1987	1988
March April			19.0 31.0
May	24.3	14.7	33.3
June Julv	19.1 17.4	12.7 22.2	32.1 35.3
August	17.7	12.7	26.4
September	16.5	. 8.0	

ŝ

Profile Sample Number	Depth of Water Sensor	Water Sensor Reading	Start Time	Profile Sample Number	Depth of Water Sensor	Water Sensor Reading	Start Time	Profile Sample Number	Depth of Water Sensor	Water Sensor Reading	Start Time	Profile Sample Number	Depth of Water Sensor	Water Sensor Reading	Start Time
1	0.0	9.9	1050	6	2.5	<0.1		10	3.5	1.3		16	0.0	5.4	1850
1	0.5	5.9						10	4.0	1.0		16	0.5	0.1	
1	1.0	0.9		7	0.0	31.3	1400	10	5.0	0.5		16	1.0	<0.1	
1	1.5	0.2		7	0.5	7.6		10	6.0	0.3		16	1.5	<0.1	
1	2.0	<0.1		7	1.0	1.6		10	7.0	0.1		16	2.0	<0.1	
1	2.5	<0.1		7	1.5	0.5		10	8.0	<0.1					
1	3.0	<0.1		7	2.0	0.1		10	9.0	<0.1		17	0.0	27.9	940
				7	2.5	<0 . 1		10	10.0	<0.1		17	0.5	12.4	
2	0.0	8.4	1500	7	3.0	<0.1						17	1.0	1.3	
2	0.5	<0.1		7	3.5	<0.1		11	0.0	27.1	1430	17	1.5	0.2	
2	1.0	<0.1						11	0.5	6.7		17	2.0	<0.1	
2	1.5	<0.1		8	0.0	52.1	1655	11	1.0	1.7		17	2.5	<0.1	
				8	0.5	26.5		11	1.5	0.8		17	3.0	<0.1	
3	0.0	45.1	1140	8	1.0	10.6		11	2.0	0.2					
3	0.5	27.9		8	1.5	3.2		11	2.5	<0.1		18	0.0	18.2	1050
3	1.0	7.7		8	2.0	1.7		11	3.0	<0.1		18	0.5	6.1	
3	1.5	<0.1		8	2.5	1.0		11	3.5	<0.1		18	1.0	1.2	
3	2.0	<0.1		8	3.0	0.5						18	1.5	0.3	
3	2.5	<0.1		8	3.5	0.3		12	0.0	28.4	1730	18	2.0	<0.1	
				8	4.0	0.2		12	0.5	4.6		18	2.5	<0.1	
4	0.0	41.4	1445	8	5.0	0.1		12	1.0	0.6		18	3.0	<0.1	
4	0.5	8.9		8	6.0	<0.1		12	1.5	<0.1					
4	1.0	<0.1		8	7.0	<0.1		12	2.0	<0.1		19	0.0	38.8	1110
4	1.5	<0.1		8	8.0	<0.1		12	2.5	<0.1		19	0.5	11.0	
4	2.0	<0.1										19	1.0	3.4	
				9	0.0	5.9	1000	13	0.0	9.2	1005	19	1.5	0.9	
5	0.0	27.1	800	9	0.5	1.6		13	0.5	<0.1		19	2.0	0.3	
5	0.5	21.3		9	1.0	0.5		13	1.0	<0.1		19	2.5	0.1	
5	1.0	3.0		9	1.5	0.1		13	1.5	<0.1		19	3.0	<0.1	
5	1.5	1.3		9	2.0	<0.1						19	3.5	<0.1	
5	2.0	0.6		9	2.5	<0.1		14	0.0	5.2	1220	19	4.0	<0.1	
5	2.5	0.2		9	3.0	<0.1		14	0.5	<0.1 ·					
5	3.0	0.1						14	1.0	<0.1		20	0.0	50.2	1314
5	3.5	<0.1		10	0.0	22.7	1245	14	1.5	<0.1		20	0.5	12.1	
				10	0.5	12.2						20	1.0	3.4	
6	0.0	35.8	1110	10	1.0	8.1		15	0.0	10.0	1535	20	1.5	0.9	
6	0.5	18.7		10	1.5	5.2		15	0.5	<0.1		20	2.0	0.3	
6	1.0	0.7		10	2.0	4.0		15	1.0	<0.1		20	2.5	<0.1	
6	1.5	<0.1		10	2.5	2.8		15	1.5	<0.1		20	3.0	<0.1	
6	2.0	<0.1		10	3.0	2.1						20	3.5	<0.1	

Table 17.	Photosynthetical]	y available	irradiation	(mE·m [~]	•min ⁻¹) water	column	profile	data for	1985.
-----------	-------------------	-------------	-------------	--------------------	--------------------	---------	--------	---------	----------	-------

Profile Sample Number	Depth of Water Sensor	Water Sensor Reading	Start Time	Profile Sample Number	Depth of Water Sensor	Water Sensor Reading	Start Time	Profile Sample Number	Depth of Water Sensor	Water Sensor Reading	Start Time	Profile Sample Number	Depth of Water Sensor	Water Sensor Reading	Start Time
21	0.0	29.1	1615	25	0.0	41.2	1920	27	2.0	0.4		31	1.0	0.5	
21	0.5	4.1		25	0.5	15.0		27	2.5	<0.1		31	1.5	0.4	
21	1.0	0.4		25	1.0	8.6		27	3.0	0.4		31	2.0	0.3	
21	1.5	<0.1		25	1.5	5.5		27	3.5	0.4		31	2.5	0.3	
21	2.0	<0.1		25	2.0	3.8		27	4.0	0.5		31	3.0	0.3	
21	2.5	<0.1		25	2.5	3.3		27	4.5	0.5		31	3,5	0.3	
				25	3.0	2.9		27	5.0	0.5		31	4.0	0.3	
22	0.0	10.1	1525	25	3.5	2.7		27	6.0	0.5		31	4.5	0.3	
22	0.5	2.0		25	4.0	2.6		27	7.0	0.5					
22	1.0	<0.1		25	4.5	2.6		27	8.0	0.5		32	0.0	9.7	1055
22	1.5	<0.1		25	5.0	3,5		27	9.0	0.5		32	0.5	0.7	
22	2.0	<0.1		25	6.0	2.6	•	27	10.0	0.5		32	1.0	0.3	
				25	7.0	2.6		27	11.1	0.5		32	1.5	0.1	
23	0.0	11.6	1145	25	8.0	3.2						32	2.0	<0.1	
23	0.5	2.8		25	9.0	2.8		28	0.0	44.9	1555	32	2.5	<0.1	
23	1.0	0.8		25	10.0	6.5		28	0.5	9.1					
23	1.5	0.5		25	11.0	3.8		28	1.0	3.2		33	0.0	19.7	1325
23	2.0	0.2						28	1.5	0.7		33	0.5	5.8	
23	2.5	<0.1		26	0.0	23.8	1900	28	2.0	0.5		33	1.0	2.8	
23	3.0	<0.1		26	0.5	5.9		28	2.5	0.2		33	1.5	0.2	
23	3,5	<0.1		26	1.0	1.6						33	2.0	0.3	
				26	1.5	0.5		29	0.0	21.2	1800	33	2,5	0.2	
24	0.0	33.7	1550	26	2.0	0.5		29	0.5	11.9		33	3.0	0.1	
24	0.5	10.7		26	2.5	0.6		29	1.0	4.8		33	3,5	0.1	
24	1.0	4.1		26	3.0	0.7		29	1.5	2.3		33	4.0	0.1	
24	1.5	1.7		26	3.5	0.8		29	2.0	0.9		33	4.5	0.1	
24	2.0	0.4		26	4.0	0.8		29	2.5	0.8		33	5.0	0.1	
24	2.5	0.4		20	4.5	0.7		29	3.0	0.5		33	5.5	0.1	
24	3.0	0.3		20	5.0	0.7		29	3.5	0.4		24	0.0	5 0	1520
24	3.5	0.3		20	7.0	0.7		23	4.0	0.3		24	0.0	5.2	1530
24	4.0	0.2		20	7.0	0.7		29	5.0	0.3		34	0.5	1.0	
24	4.5	0.2		20	9.0	0.7		20	0.0	12 0	2005	34	1.0	0.0	
24	6.0	0.2		26	10.0	0.7		30	0.5	2.3	2003	34	2.0	0.5	
24	7.0	0.2		26	11.0	0.6		30	1.0	0.9		34	2.5	<0.1	
24	8.0	0.2		LV				30	1.5	0.4		34	3.0	<0 1	
24	9.0	0.2		27	0.0	23.7	2030	30	2.0	0.3		34	3.5	<0.1	
24	10.0	0.2		27	0.5	5.1			2	0.0			0.0		
24	11.0	0.2		27	1.0	1.4		31	0.0	4.1	2200	35	0.0	2.8	2030
÷ ·								~~				~~			2000

•

Table 17. Photosynthetically available irradiation $(mE \cdot m^{-2} \cdot min^{-1})$ water column profile data for 1985 (CONTINUED).

,

Profile Sample Number	Depth of Water Sensor	Water Sensor Reading	Start Time	Profile Sample Number	Depth of Water Sensor	Water Sensor Reading	Start Time	Profile Sample Number	Depth of Water Sensor	Water Sensor Reading	Start Time	Profile Sample Number	Depth of Water Sensor	Water Sensor Reading	Start Time
35	1.0	0.7		37	1.0	9.8		38	4.5	<0.1		40	4.0	0.8	
35	1.5	0.4		37	1.5	4.6						40	4.5	0.6	
35	2.0	0.2		37	2.0	2.8		39	0.0	9.9	1120	40	5.0	0.4	
35	2.5	<0.1		37	2.5	1.3		39	0.5	6.2		40	6.0	0.2	
35	3.0	<0.1		37	3.0	0.5		39	1.0	3.8		40	7.0	<0.1	
35	3.5	<0.1		37	3.5	0.6		39	1.5	2.4		40	8.0	<0.1	
				37	4.0	0.3		39	2.0	1.6					
36	0.0	8.5	1030	37	4.5	0.2		39	2.5	1.1		41	0.0	5.2	1800
36	0.5	5.5		37	5.0	<0.1		39	3.0	0.7		41	0.5	3.7	
36	1.0	4.1		37	6.0	<0.1		39	3.5	0.5		41	1.0	2.3	
36	1.5	3.8		37	7.0	<0.1		39	4.0	0.3		41	1.5	1.5	
36	2.0	3.3						39	4.5	0.2		41	2.0	1.0	
36	2.5	3.0		38	0.0	7.0	1900	39	5.0	<0.1		41	2.5	0.6	
36	3.0	2.9	•	38	0.5	2.7						41	3.0	0.4	
36	3.5	2.8		38	1.0	1.7		40	0.0	14.0	1500	41	3.5	0.3	
36	4.0	2.8		38	1.5	0.1		40	0.5	8.5		41	4.0	0.2	
36	4.5	2.7		38	2.0	0.3		40	1.5	6.1		41	4.5	0.1	
36	5.0	2.7		38	2.5	0.1		40	2.0	3.4		41	5.0	<0.1	
36	6.0	0.6		38	3.0	0.1		40	2.5	2.6		41	6.0	<0.1	
				38	3.5	<0.1		40	3.0	2.0		41	7.0	<0.1	
37	0.0	40.2	1325	38	4.0	<0.1		40	3.5	1.2					-
37	0.5	21.2													

. ,

Table 17. Photosynthetically available irradiation ($mE \cdot m^{-2} \cdot min^{-1}$) water column profile data for 1985 (CONTINUED).

.

٠

•

Profile Sample Number	Depth of Water Sensor (m)	Surface Sensor Reading	Water Sensor Reading	Water/ Surface Ratio	Time	Profile Sample Number	Depth of Water Sensor (m)	Surface Sensor Reading	Water Sensor Reading	Water/ Surface Ratio	Time
2	0.0	76.1	<0.1	0.001	1317	8	6.5	32.5	0.9	0.027	1741
2	0.5	73.5	78.9	1.074	1319	8	7.0	30.9	0.6	0.020	1742
2	1.0	73 2	3 1	0.043	1319	8	7 5	25 7	0.4	0 017	1745
5	1 5	71 2	<0.1	<0.001	1310	8	8.0	25 3	0.3	0.014	1745
2	2.0	72 4	<0.1	<0.001	1320	8	8.5	24 0	0.3	0.011	1745
2	2.0	72.4	-0.1	-0.001	1920	0 9	0.5	23.1	0.3	0.011	1745
`		70.3	00.0	1 400	1710	0	9.0	23.1	0.2	0.000	1740
3	0.0	70.3	99.0	1.409	1/12	8	9.5	21.4	0.2	0.009	1740
3	0.5	70.3	49.7	0.707	1/12	8	11.0	21.1	0.1	0.005	1/40
3	1.0	70.1	16./	0.239	1/13	8	12.0	20.8	⊲0.1	0.004	1/40
3	1.5	70.1	7.0	0.100	1713	8	13.0	20.5	.⊲0.1	0.002	1747
3	2.0	70.1	2.9	0.041	1713	8	14.0	20.7	⊲0.1	0.002	1747
3	2.5	69.9	1.4	0.020	1713	8	15.0	19.2	⊲0.1	0.001	1748
3	3.0	70.0	0.7	0.010	1714						
3	3.5	70.1	0.3	0.005	1714	9	0.0	34.4	25.6	0.745	1340
3	4.0	70.3	0.2	0.002	1714	9	0.5	33.7	17.4	0.515	1341
						9	1.0	33.5	9.5	0.283	1341
4	0.0	70.1	82.5	1.177	1714	9	1.5	33.4	4.8	0.142	1341
4	0.5	70.4	22.4	0.318	1714	· 9	2.0	33.3	2.6	0.079	1342
4	1.0	70.4	6.2	0.087	1714	9	2.5	33.1	1.5	0.044	1342
4	1.5	70.3	5.5	0.079	1715	9	3.0	32.7 .	0.8	0.025	1342
4	2.0	70.3	5.5	0.078	1715	9	3.5	32.0	0.4	0.014	1343
Å	2.5	70.2	53	0 076	1715	Ģ	4.0	31 5	0.1	0.008	1343
	3.0	70.2	5.2	0.074	1715	9	4.5	31 1	0.5	0.005	1242
7	3.0	70.2	5.2	0.074	1715	9		20.7	-0.1	0.003	1243
7	3.5	70.1	5.1	0.073	1715	,	5.0	30.7	-0.1	0.003	1343
4	4.0	/0.1	5.1	0.0/2	1/15	9	5.5	30.5	40.1	0.002	1344
_						9	6.0	30.2	⊲0.1	0.001	1344
5	0.0	49.9	30.3	0.607	1433						
5	0.5	52.8	<0.1	0.001	1433	10	0.0	15.8	12.2	0.728	1024
						10	0.5	17.1	9.4	0.553	1024
6	0.0	76.5	40.6	0.531	1748	10	1.0	18.6	6.0	0.324	1024
6	0.5	71.2	0.2	0.003	1748	10	1.5	22.0	5.2	0.238	1025
6	1.5	68.6	⊲0.1	⊲0.001	1749	10	2.0	22.3	3.1	0.140	1025
						10	2.5	21.7	2.4	0.109	1026
7	0.0	45.1	36.9	0.819	1346	10	3.0	21.3	1.4	0.068	1026
7	0.5	45.6	23.6	0.517	1346	10	3.5	22.6	1.3	0.056	1027
7	1.0	46.2	16.1	0.349	1346	10	4.0	23.0	0.8	0.034	1027
7	1.5	47.3	12.0	0.254	1347	10	4.5	24.8	0.5	0.019	1027
7	2.0	48.7	7.9	0.162	1347	10	5.0	25.4	0.3	0.011	1028
7	2.5	52.0	5.6	0.108	1347	10	5.5	25.6	0.2	0.007	1028
7	3.0	52.9	4.0	0.076	1348	10	6.0	26.0	0.1	0.005	1028
7	3.5	50.0	2.4	0.048	1348	10	6.5	25.4	⊲0.1	0.003	1029
7	4.0	51.2	1.9	0.037	1348	10	7.0	28.6	⊲0.1	0.002	1029
7	4.5	53.4	1.4	0.026	1349	10	7.5	28.5	<0.1	0.002	1029
7	5.0	51 1	0.0	0 017	1249	10	8 0	20 4	~0.1	0.002	1020
,	5.0	40.0	0.5	0.012	1250	10	0.0	20.6	-0.1	0.002	1030
, ,	5.5	49.9	0.0	0.012	1350	10	0.5	25.0	-0.1	0.001	1030
/	0.0	49.0	0.4	0.000	1350	10	9.0	25.1	-0.1	0.001	1030
-						10	9.5	22.1	⊲0.1	0.001	1031
8	0.0	53.7	32.6	0.608	1/31						
8	0.5	49.8	34.1	0.683	1732	11	0.0	29.4	17.4	0.592	1500
8	1.0	54.9	32.8	0.596	1732	11	0.5	33.0	22.8	0.692	1502
8	1.5	51.9	25.4	0.489	1733	11	1.0	32.9	17.2	0.523	1502
8	2.0	41.7	16.3	0.391	1736	11	1.5	33.0	13.6	0.412	1502
8	2.5	38.8	12.3	0.317	1737	11	2.0	33.1	10.4	0.314	1503
8	3.0	37.8	8.7	0.231	1737	11	2.5	34.0	8.5	0.250	1503
8	3.5	38.4	6.5	0.170	1737	11	3.0	33.2	7.0	0.210	1503
8	4.0	39.2	4.8	0.124	1738	11	3.5	32.9	5.2	0.157	1503
8	4.5	40.2	3.3	0.082	1738	11	4.0	32.3	3.9	0.120	1504
8	5.0	40.2	2.8	0.070	1738	11	4.5	31.9	2.7	0.085	1504
8	5.5	39.7	2.0	0.050	1738	11	5.0	32.1	2.2	0.067	1505

Table 18. Photosynthetically available irradiation ($mE \cdot m^{-2} \cdot min^{-1}$) water column profile data for 1986.

.

.

,
Profile Sample Number	Depth of Water Sensor (m)	Surface Sensor Reading	Water Sensor Reading	Water/ Surface Ratio	Time	Profile Sample Number	Depth of Water Sensor (m)	Surface Sensor Reading	Water Sensor Reading	Water/ Surface Ratio	Time
11	5.5	31.8	1.5	0.047	1505	14	1.0	9.4	3.6	0.383	1901
11	6.0	31.4	1.2	0.038	1505	14	1.5	9.3	2.4	0.264	1901
11	6.5	31.1	0.9	0.028	1506	14	2.0	9.2	1.6	0.176	1902
11	7.0	30.8	0.8	0.027	1506	14	2.5	9.0	1.1	0.121	1902
11	7.5	29.7	0.6	0.021	1506	14	3.0	8.9	0.8	0.087	1902
11	8.0	30.5	0.5	0.017	1507	14	3.5	9.0	0.6	0.065	1903
11	8.5	30.0	0.4	0.015	1507	14	4.0	8.9	0.5	0.053	1903
11	9.0	29.8	0.4	0.013	1507	14	4.5	8.8	0.4	0.042	1903
11	9.5	28.6	0.3	0.010	1508	14	5.0	8.7	0.3	0.034	1904
11	10.0	27.8	0.3	0.009	1508	14	5.5	8.7	0.2	0.029	1904
11	11.0	27.1	0.2	0.008	1508	14	6.0	8.5	0.2	0.023	1904
11	12.0	26.5	0.2	0.006	1509	14	6.5	8.6	0.2	0.019	1905
11	13.0	26.0	0.1	0.005	1509	14	7.0	8.1	0.1	0.017	1906
11	14.0	25.6	0.1	0.004	1509	14	7.5	8.3	0.1	0.013	1906
11	15.0	25.4	⊲0.1	0.004	1510	14	8.0	8.2	0.1	0.014	1905
11	16.0	25.3	<0.1	0.003	1510	14	8.5	8.3	⊲0.1	0.009	1907
11	17.0	25.2	<0.1	0.002	1510	14	9.0	8.3	⊲0.1	0.007	1907
11	18.0	25.4	⊲0.1	0.002	1511	14	9.5	8.2	⊲0.1	0.006	1907
11	19.0	25.5	⊲0.1	0.001	1511	14	10.0	8.1	⊲0.1	0.005	1908
11	20.0	25.7	⊲0.1	0.002	1512	14	11.0	8.2	⊲0.1	0.006	1908
11	21.0	25.9	<0.1	0.001	1512	14	12.0	8.2	⊲0.1	0.005	1909
11	22.0	26.2	<0.1	0.001	1512	14	14.0	8.1	⊲0.1	0.002	1910
11	23.0	26.5	<0.1	<0.001	1513						
				•		15	0.0	19.4	10.5	0.547	1100
12	0.0	11.9	8.1	0.684	1426	15	0.5	19.6	9.3	0.475	1100
12	0.5	12.0	2.7	0.221	1426	15	1.0	19.4	6.2	0.317	1100
12	1.0	12.1	0.8	0.070	1427	15	1.5	19.5	5.3	0.273	1100
12	1.5	12.4	0.2	0.017	1427	15	2.0	19.4	3.4	0.176	1101
12	2.0	12.5	⊲0.1	0.008	1427	15	2.5	19.9	2.9	0.145	1101
12	2.5	12.7	⊲0.1	0.003	1427	15	3.0	20.3	2.2	0.110	1101
12	3.0	12.9	⊲0.1	0.001	1428	15	3.5	20.9	1.7	0,082	1102
12	3.5	13.1	<0.1	0.001	1428	15	4.0	22.2	1.4	0.064	1102
12	4.0	13.3	<0.1	<0.001	1428	15	4.5	22.9	1.0	0.045	1102
						15	5.0	22.4	0.8	0.036	1102
13	0.0	20.1	14.4	0.719	1757	15	5.5	22.5	0.5	0.024	1103
13	0.5	20.7	11.3	0.546	1757	15	6.0	21.9	0.4	0.019	1103
13	1.0	21.5	8.1	0.377	1757	15	6.5	22.0	0.3	0.015	1103
13	1.5	22.5	6.3	0.282	1758	15	7.0	22.1	0.3	0.013	1104
13	2.0	23.4	4.4	0.189	1758	15	7.5	21.5	0.2	0.010	1104
13	2.5	24.1	3.2	0.134	1758	15	8.0	21.5	0.2	0.009	1104
13	3.0	24.8	2.5	0.100	1759	15	8.5	22.0	0.2	0.007	1105
13	3.5	25.6	2.0	0.076	1759	15	9.0	22.5	0.1	0.006	1105
13	4.0	26.2	1.3	0.048	1800	15	9.5	22.5	0.1	0.005	1105
13	4.5	25.9	1.2	0.045	1800	15	10.0	21.5	0.1	0.005	1106
. 13	5.0	26.1	0.8	0.033	1801	15	11.0	20.4	<0.1	0.004	1106
13	5.5	25.6	0.7	0.02/	1801	15	12.0	19.5	⊲0.1	0.003	1107
13	6.0	24.3	0.6	0.023	1802	15	13.0	15.2	<0.1	0.003	1110
13	0.5	23.8	0.4	0.015	1802	15	14.0	15.3	⊲0.1	0.002	1111
13	7.0	23.3	0.3	0.015	1003	15	15.0	15.2	<0.1	0.002	1111
13	/.5	22.8	0.2	0.010	1804	15	10.0	15.3	<0.1	0.001	1111
13	8.0	22.5	0.2	0.008	1804	15	17.0	12.8	<0.1	0.001	1112
13	8.5	22.5	0.2	0.007	1805	15	18.0	10.3	<0.1	0.002	1112
13	. 9.0	21./	-0.1	0.005	1805	15	13.0	10.8	⊲∪.1	0.001	1112
13	9.5 10 0	21.5	-0.1	0.004	1800	15	20.0	17.2	<0.1	0.001	1113
13	11 0	20.8	~0.1	0.002	1807	15	21.0	1/.9	⊲∪.1	0.001	1113
12	11.0	20.4	-0.1	0.002	. 100/	16	0.0	12 5	0.0	0 710	1744
14	0.0	0 5	77	0 916	1000	10	0.0	13.5	3.D 7 7	0./10	1740
14	0.0	3.5	· · ·	0.013	1901	10	1 0	12.1	/.3	0.335	1740
7.4	v.5	3.4	5.5	0.333	1301	10	1.0	16.0	4.0	V.3/2	1/40

Table 18. Photosynthetically available irradiation (mE·m⁻²·min⁻¹) water column profile data for 1986 (CONTINUED).

•

Profile Sample	Depth of Water	Surface Sensor	Water	Water/ Surface		Profile Sample	Depth of Water	Surface	Water Sensor	Water/	
Number	Sensor (m)	Reading	Reading	Ratio	Time	Number	Sensor (m)	Reading	Reading	Ratio	Time
16	1.5	13.4	3.8	0.284	1740	18	6.0	21.0	0.3	0.016	2034
16	2.0	13.5	2.6	0.190	1741	18	6.5	20.7	0.2	0.012	2034
16	2.5	14.1	2.1	0.150	1741	18	7.0	20.6	0.2	0.010	2035
16	3.0	14.7	1.5	0.101	1741	18	7.5	20.5	0.2	0.009	2035
16	3.5	15.0	1.1	0.073	1742	18	8.0	20.2	0.2	0.008	2035
16	4.0	15.3	0.8	0.053	1742	18	8.5	19.7	0.1	0.007	2036
16	4.5	15.7	0.6	0.041	1742	18	9.0	20.3	0.1	0.005	2036
16	5.0	15.8	0.5	0.032	1742	18	9.5	20.5	⊲0.1	0.005	2036
16	5,5	15.2	0.4	0.027	1743	18	10.0	20.3	⊲0.1	0.004	2037
16	6,0	15.5	0.4	0.023	1743	18	11.0	19.4	<0.1	0.003	2037
16	6.5	16.2	0.3	0.019	1743	18	12.0	20.0	⊲0.1	0.002	2037
16	7.0	16.7	0.3	0.016	1743	18	13.0	19.5	<0.1	0.002	2038
16	7.5	17.0	0.2	0.014	1744	18	14.0	18.8	⊲0.1	0.001	2038
16	8.0	16.9	0.2	0.012	1744	18	15.0	18.3	⊲0.1	0.001	2038
16	8.5	16.3	0.2	0.010	1744						
16	9.0	15.5	0.1	0.009	1745	19	0.0	9.4	8.4	0.897	1047
16	9.5	15.2	0.1	0.008	1745	19	0.5	9.3	3.5	0.373	1048
16	10.0	15.6	0.1	0.007	1745	19	1.0	9.3	2.2	0.240	1048
16	11.0	15.8	<0.1	0.006	1745	19	1.5	9.4	1.4	0.146	1048
16	12.0	16.3	⊲0.1	0.005	1746	19	2.0	9.6	0.7	0.073	1049
16	13.0	16.6	⊲0.1	0.004	1746	19	2.5	9.7	0.3	0.036	1049
16	14.0	16.4	<0.1	0.004	1746	19	3.0	9.6	0.2	0.022	1049
16	15.0	16.4	⊲0.1	0.003	1746	19	3.5	9.8	0.1	0.013	1049
16	16.0	17.2	⊲0.1	0.003	1747	. 19	4.0	9.8	⊲0.1	0.007	1050
16	17.0	17.3	<0.1	0.002	1747	19	4.5	9.7	<0.1	0.004	1050
16	18.0	17.3	<0.1	0.002	1747	19	5.0	9.4	⊲0.1	0.003	1050
16	19.0	16.9	<0.1	0.002	1748	19	5.5	9.3	⊲0.1	0.002	1050
16	20.0	15.9	⊲0.1	0.002	1748	19	6.0	9.1	⊲0.1	0.001	1050
16	21.0	15.5	⊲0.1	0.002	1749	19	6.5	8.9	<0.1	0.001	1051
16	22.0	15.9	⊲0.1	0.001	1749	19	7.0	8.8	⊲0.1	0.001	1051
16	23.0	16.2	<0.1	0.001	1749						
16	24.0	16.5	<0.1	0.001	1750	20	0.0	39.6	37.4	0.943	1424
					•	20	0.5	39.7	6.9	0.173	1424
17	0.0	32.0	30.5	0.951	1708	20	1.0	39.6	2.1	0.053	1424
17	0.5	32.2	22.1	0.586	1708	20	1.5	39.5	0.7	0.017	1424
17	1.0	31.9	16.7	0.525	1708	20	2.0	39.4	0.3	0.007	1424
17	1.5	31.8	12.3	0.385	1708	20	2.5	39.3	0.1	0.004	1425
17	2.0	32.0	8.8	0.276	1709	20	3.0	38.9	⊲0.1	0.002	1425
17	2.5	32.1	6.5	0.203	1709	20	3.5	39.2	⊲0.1	0.002	1425
17	3.0	32.0	4.5	0.142	1709	20	4.0	39.3	⊲0.1	0.001	1425
17	3,5	31.8	3.3	0.104	1709	20	4.5	39.3	<0.1	⊲0.001	1426
17	4.0	31.8	2.5	0.080	1710	20	5.0	39.3	<0.1	<0.001	1426
1/	4.5	32.4	1.7	0.052	1710						
17	5.0	32.5	1.3	0.041	1/10	21	0.0	42.6	46.3	1.085	1145
1/	5.5	32.6	1.0	0.031	1/10	21	0.5	44.1	22.5	0.511	1145
17	0.0	32.9	0.7	0.021	1/11	21	1.0	45.5	11.8	0.260	1145
10	• •					21	1.5	44.2	5.6	0.126	1146
18	0.0	23.3	10.3	0.699	2030	21	2.0	47.1	2.6	0.056	1146
10	1.5	23.2	12.5	0.538	2030	21	2.5	40.7	1.2	0.027	1146
10	1.0	23.2	y./	0.420	2030	21	3.0	45.9	0.3	0.007	1147
19	2.0	22.0	0.2	0.2/3	2031	21	3.5	47.1	<0.1	0.001	114/
18	2 5	21.3	4.0	0.210	2031	21	4.0	40.U	<0.1	<0.001	1147
18	3 0	21 6	3.5	0.102	2032		• •	74.0	74 7	1 007	1 5 4 4
18	3.0	21.0	2.5	0.100	2032	22	0.0	74.2	14./	1.00/	1520
18	4 0	21 5	1 2	0.051	2032	22 33	1.0	74.2	10.8	0.22/	1520
18	4.5	21.4	0.8	0.030	2033	22 22	1 6	70.0	0.9	0.097	1001
18	5.0	21 4	0.7	0.031	2033	22	2 0	59.0	C.1	0.030	1521
18	5.5	21.2	0.5	0.023	2034	22	2 5	68 4	0.0	0.012	1522
			0.0	0.000			L .J		0.2	0.004	1066

Table 18. Photosynthetically available irradiation (mE+m⁻²+min⁻¹) water column profile data for 1986 (CONTINUED).

.

.

Profile Sample Number	Depth of Water Sensor (m)	Surface Sensor Reading	Water Sensor Reading	Water/ Surface Ratio	Time	Profile Sample Number	Depth of Water Sensor (m)	Surface Sensor Reading	Water Sensor Reading	Water/ Surface Ratio	Time
	3.0	70.0	0.3	0.002	1522		10.0	11.6		0.000	1027
22	3.0	70.0 69.6	-0.2	0.002	1522	24	19.0	12.0	<0.1	0.006	1037
22	3.5	71 1	< -0.1	-0.001	1522	24	20.0	12.1	~0.1	0.000	1037
22	4.5	59.6	~0.1	<0.001	1523	24	22.0	12.5	<0.1	0.003	1037
26	4.5			-0.001	IJLJ	24	23.0	13.0	<0.1	0.004	1038
23	0.0	34 1	20.9	0.611	1931	24	24 0	13.0	<0.1	0.003	1039
23	0.5	33.2	16.9	0.509	1931	24	25.0	14.1	<0.1	0.002	1039
23	1.0	33.7	11.8	0.350	1932	24	26.0	13.6	<0.1	0.002	1039
23	1.5	32.8	9.3	0.283	1932	24	27.0	14.6	<0.1	<0.001	1039
23	2.0	31.9	7.8	0.244	1932						
23	2.5	32.2	6.9	0.213	1933	25	0.0	25.2	27.0	1.070	1922
23	3.0	32.4	6.4	0.198	1933	25	0.5	22.3	19.2	0.859	1923
23	3.5	32.6	5.5	0.169	1933	25	1.0	21.8	13.4	0.615	1924
23	4.0	32.9	5.0	0.153	1933	25	1.5	21.6	10.8	0.498	1924
23	4.5	33.2	4.1	0.123	1934	25	2.0	20.9	9.2	0.442	1924
23	5.0	32.3	3.7	0.115	1934	25	2.5	20.4	7.8	0.383	1925
23	5.5	32.3	3.4	0.105	1934	25	3.0	19.7	6.5	0.328	1925
23	6.0	29.8	2.7	0.090	1935	25	3.5	19.5	5.6	0.288	1926
23	6.5	27.6	2.2	0.080	1935	25	4.0	19.7	5.0	0.253	1926
23	7.0	26.6	1.9	0.072	1935	25	4.5	19.8	4.5	0.226	1926
23	7.5	25.2	1./	0.068	1936	25	5.0	19.7	3.9	0.200	1926
23	8.0	23.4	1.4	0.059	1036	25	5.5	20.0	3.0	0.1/9	1927
23	0.5	22.1	1.0	0.053	1027	. 23	0.0	20.1	3.2	0.100	1927
23	9.0	22.3	1.0	0.045	1937	25	7.0	20.4	2.9	0.144	1927
23	10.0	24.2	0.5	0.037	1937	25	7.0	20.9	2.7	0.128	1920
23	11 0	25.8	0.3	0.013	1938	25	8.0	22 3	2.5	0 113	1928
23	12.0	26.4	0.2	0.008	1938	25	8 5	23.5	23	0.097	1929
23	13.0	27.1	⊲0.1	0.004	1938	25	9.0	23.9	2.3	0.095	1929
			•••			25	9.5	24.0	2.1	0.089	1929
24	0.0	9.6	7.5	0.782	1027	25	10.0	22.6	2.0	0.091	1930
24	0.5	10.4	5.4	0.521	1027	25	11.0	20.1	1.7	0.083	1935
24	1.0	10.1	4.7	0.463	1027	25	12.0	19.9	1.5	0.077	1935
24	1.5	9.9	4.1	0.418	1028	25	13.0	20.2	1.4	0.069	1935
24	2.0	9.9	2.9	0.297	1028	25	14.0	20.4	1.3	0.062	1935
24	2.5	9.8	2.4	0.241	1028	25	15.0	20.4	1.2	0.058	1936
24	3.0	10.1	1.8	0.182	1029	25	16.0	20.5	1.1	0.052	1936
24	3.5	10.1	1.5	0.146	1029	25	17.0	20.5	1.0	0.049	1936
24	4.0	10.3	1.2	0.119	1029	25	18.0	20.9	0.9	0.045	1936
Z4	4.5	9.8	1.0	0.105	1030	25	19.0	21.0	0.9	0.042	1937
24	5.0	10.1	0.8	0.079	1030	25	20.0	21.2	0.8	0.038	1937
24	5.5	9.7	0.7	0.009	1031	25	21.0	21.2	0.8	0.03/	1937
24	0.U 6.6	10.1	0.5	0.051	1031	25	22.0	21.9	0.7	0.033	1938
24	7.0	10.2	0.4	0.042	1031	20	23.0	22.0	0.6	0.028	1938
24	7.0	0.4	0.7	0.030	1032	25	24.0	23.4	0.0	0.027	1936
24	8.0	10.3	0.3	0.035	1032	25	25.0	23.9	0.0	0.025	1930
24	8.5	10.2	0.2	0.023	1033	25	27.0	24.0	0.5	0.022	1939
24	9.0	10.2	0.2	0.021	1033	25	28.0	24.3	0.5	0.020	1939
24	9.5	10.7	0.2	0.018	1033	25	29.0	23.8	0.4	0.018	1940
24	10.0	10.0	0.2	0.019	1034				U 17		2340
24	11.0	10.6	0.2	0.015	1034	26	0.0	2.1	1.4	0.681	0701
24	12.0	10.7	0.1	0.014	1034	26	0.5	2.1	1.2	0.571	0702
24	13.0	10.4	0.1	0.014	1035	26	1.0	2.1	1.0	0.471	0702
24	14.0	11.0	0.1	0,012	1035	26	1.5	2.1	0.9	0.403	0702
24	15.0	11.0	0.1	0.011	1036	26	2.0	2.1	0.7	0.350	0703
24	16.0	11.4	0.1	0.009	1036	26	2.5	2.7	0.6	0.217	0704
24	17.0	11.9	0.1	0.009	1036	26	3.0	2.7	0.5	0.190	0704
24	18.0	12.1	<0.1	0.008	1036	26	3.5	2.7	0.4	0.158	0704

Table 18. Photosynthetically available irradiation ($mE \cdot m^{-2} \cdot min^{-1}$) water column profile data for 1986 (CONTINUED).

Profile Sample Number	Depth of Water Sensor (m)	Surface Sensor Reading	Water Sensor Reading	Water/ Surface Ratio	Time	Profile Sample Number	Depth of Water Sensor (#)	Surface Sensor Reading	Water Sensor Reading	Water/ Surface Ratio	Time
26	4.0	2.8	0.4	0.133	0704	28	7.5	70.7	3.6	0.051	1614
26	4.5	2.8	0.3	0.115	0705	28	8.0	71.4	3.1	0.043	1615
26	5.0	2.7	0.3	0.100	0705	28	8.5	71.5	2.9	0.041	1615
26	5 5	2.6	0.2	0.090	0700	28	9.0	72.0	2.6	0.036	1615
26	6.0	2.6	0.2	0.081	0706	28	9.5	73.2	2.4	0.033	1615
26	6.5	2.6	0.2	0.074	0706	28	10.0	72.1	2.2	0.030	1616
26	7.0	2.7	0.2	0.067	0706	28	11.0	73.4	1.7	0.024	1616
26	7.5	2.7	0.2	0.063	0707	28	12.0	73.0	1.5	0.020	1617
26	8.0	2.7	0.2	0.059	0707	28	13.0	72.4	1.0	0.014	1617
26	8.5	2.8	0.2	0.057	0707	28	14.0	74.0	0.6	0.007	1617
26	9.0	2.8	0.1	0.052	0708	28	15.0	71.6	0.3	0.004	0617
26	9.5	2.8	0.1	0.051	0708						
26	10.0	2.8	0.1	0.047	0708	29	0.0	5.0	4.0	0.797	0857
26	11.0	3.2	0.1	0.043	0711	29	0.5	4.8	3.3	0.671	0857
26	12.0	3.2	0.1	0.039	0712	29	1.0	4.7	2.6	0.545	0857
26	13.0	3.2	0.1	0.036	0712	29	1.5	4.7	2.3	0.493	0858
26	14.0	3.3	0.1	0.033	0712	29	2.0	4.6	2.1	0.450	0858
26	15.0	3.3	⊲0.1	0.030	0713	29	2.5	4.6	1.9	0.408	0858
26	16.0	3.4	⊲0.1	0.028	0713	29	3.0	4.7	1.7	0.360	0859
26	17.0	3.4	⊲0.1	0.026	0713	29	3.5	4.8	1.6	0.335	0859
26	18.0	3.3	⊲0.1	0.024	0714	29	4.0	4.9	1.4	0.282	0859
26	19.0	3.3	⊲0.1	0.021	0714	29	4.5	4.8	1.2	0.254	0900
26	20.0	3.3	⊲0.1	0.020	0715	29	5.0	4.7	1.3	0.264	0900
26	21.0	3.3	⊲0.1	0.018	0715	29	5.5	4.7	1.0	0.222	0900
26	22.0	3.3	⊲0.1	0.017	0715	29	6.0	4.6	1.0	0.223	0900
26	23.0	3.3	<0.1	0.016	0716	29	6.5	4.6	0.9	0.207	0901
26	24.0	3.3	<0.1	0.015	0716	29	7.0	4.6	0.9	0.188	0901
26	25.0	3.4	<0.1	0.014	0716	29	7.5	4.7	0.8	0.171	0902
26	26.0	3.4	<0.1	0.012	0717	29	8.0	4.9	0.8	0.157	0902
26	27.0	3.5	<0.1	0.011	0717	29	8.5	5.0	0.7	0.146	0902
20	27.00	0.0		01011	0.1.	29	9.0	5.1	0.7	0.137	0902
27	0.0	71.5	59.9	0.839	1522	29	9.5	5.3	0.7	0.128	0903
27	0.5	71 4	39.5	0.553	1522	29	10.0	5.5	0.6	0 118	0903
27	1 0	71 3	24 8	0.348	1523	. 29	11 0	5 7	0.6	0 109	0904
27	1.5	71 2	11 3	0 159	1523	29	12.0	5.8	0.6	0.100	0904
27	2.0	72 3	6.6	0.092	1524	29	13.0	6.0	0.5	0.091	0004
27	2 5	72 1	3 9	0.054	1524	29	14.0	6 1	0.5	0.083	0904
27	3.0	72 1	1.8	0.025	1524	29	15.0	5.2	0.5	0.026	0905
27	3.5	73.3	0.8	0.011	1524	29	16.0	6.2	0.4	0.068	0905
27	4.0	71.5	0.5	0.007	1525	29	17.0	6 1	0.4	0.063	0905
27	4.5	71.8	0.2	0.003	1525	29	18.0	6.2	0.3	0.051	0906
27	5.0	71.9	<0.1	<0.001	1526	29	19.0	5.2	0.3	0.044	0906
27	5.5	71.6	<0.1	⊲0.001	1526	29	20.0	6.2	0.2	0.027	0906
	0.0	,			1010	29	21.0	5.4	0.1	0.016	0907
28	0.0	65.0	75.8	1,166	1609	29	22.0	7.7	<0.1	0.005	0910
28	0.5	68.2	58.2	0.854	1610	29	23.0	7.7	<0.1	0.004	0911
28	1.0	58.8	45.8	0.666	1610	29	24.0	7.8	<0.1	0.003	0911
28	1.5	69.0	36.3	0.526	1611	29	25.0	7.8	<0.1	0.002	0911
28	2.0	68.9	28.0	0.405	1611	29	26.0	7.8	<0.1	<0.001	0912
28	2.5	67.3	21.8	0.324	1611	29	27.0	7.7	<0.1	<0.001	0912
28	3.0	68.2	19.2	0.281	1611	29	28.0	7.6	<0.1	<0.001	0912
28	3.5	68.5	15.3	0.223	1612		20.0		-0.1	-01001	V J12
28	4.0	67.0	12.2	0.182	1612	30	0 0	10 2	11 7	0 609	1720
28	4.5	68.6	10.1	0.147	1612	30	0 5	18 7	10 3	0.550	1720
28	5.0	68.3	8.8	0.128	1613	30	1.0	18 1	9.5	0.527	1729
28	5.5	68.3	7.1	0.104	1613	30	1.5	17 7	R 4	0.474	1720
28	6.0	68.4	6.2	0.091	1613	30	2.0	17.6	7.8	0.441	1720
28	6.5	69.2	4.9	0.071	1614	30	2.5	18.0	7.3	0.404	1730
28	7.0	70.0	4.2	0.060	1614	30	3.0	18.4	6.8	0.372	1730

Table 18. Photosynthetically available irradiation ($mE \cdot m^{-2} \cdot min^{-1}$) water column profile data for 1986 (CONTINUED).

Profile Sample Number	Depth of Water Sensor (m)	Surface Sensor Reading	Water Sensor Reading	Water/ Surface Ratio	Time	Profile Sample Number	Depth of Water Sensor (m)	Surface Sensor Reading	Water Sensor Reading	Water/ Surface Ratio	Time
30	3.5	18.9	6.5	0.343	1731	31	17.0	4.2	0.3	0.082	0813
30	4.0	19.2	6.2	0.323	1731	31	18.0	4.4	0.3	0.079	0814
30	4.5	18.1	5.6	0.307	1731	31	19.0	4.5	0.3	0.071	0814
30	5.0	17.2	5.0	0.290	1731	31	20.0	4.7	0.3	0.065	0815
30	5.5	16.9	4.6	0.270	1732	31	21.0	4.9	0.3	0.056	0815
30	6.0	16.9	4.3	0.255	1732	31	22.0	4.9	0.2	0.047	0815
30	6.5	17.0	4.0	0.238	1732	31	23.0	5.0	0.2	0.038	0816
30	7.0	17.2	3.9	0.225	1733	31	24.0	5.1	0.2	0.030	0816
30	7.5	17.3	3.7	0.215	1733	31	25.0	5.2	0.1	0.023	0816
30	8.0	17.2	3.6	0.207	1733	31	26.0	5.3	<0.1	0.013	0817
30	8.5	17.1	3.3	0.195	1734	31	27.0	5.4	<0.1	0.002	0817
30	9.0	16.9	3.1	0.185	1734						
30	9.5	16.7	3.0	0.178	1734	32	0.0	41.3	34.2	0.826	1457
30	10.0	16.7	2.8	0.168	1734	32	1.0	34.8	19.7	0.565	1458
30	11.0	16.7	2.6	0.154	1735	32	2.0	57.4	37.7	0.656	1458
30	12.0	16.6	2.3	0.140	1735	32	3.0	29.8	11.7	0.395	1459
30	13.0	16.9	2.1	0.123	1735	32	4.0	35.8	11.9	0.331	1459
30	14.0	17.3	1.9	0.109	1736	32	5.0	50.9	18.1	0.356	1500
30	15.0	18.0	1.8	0.098	1736	32	6.0	33.9	7.8	0.231	1501
30	16.0	18.7	1.7	0.090	1737	32	7.0	39.2	8.4	0.214	1501
30	17.0	19.1	1.6	0.085	1737	32	8.0	41.6	7.8	0.188	1502
30	18.0	19.3	1.5	0.080	1737	32	9.0	34.1	4.9	0.143	1502
30	19.0	19.9	1.4	0.073	1738	32	10.0	31.4	4.0	0.127	1503
30	20.0	21.1	1.4	0.068	1738	32	11.0	37.3	4.2	0.113	1503
30	21.0	23.9	1.5	0.063	1738	32	12.0	28.5	2.4	0.086	1504
30	22.0	27.3	1.6	0.059	1739	32	13.0	58.3	7.5	0.129	1505
30	23.0	28.2	1.6	0.055	1739	32	14.0	34.2	2.3	0.068	1506
30	24.0	27.9	1.4	0.051	1739	32	15.0	32.7	1.8	0.055	1507
30	25.0	28.0	1.3	0.047	1740	32	16.0	39.6	2.4	0.062	1507
30	26.0	25.8	1.1	0.044	1740	32	17.0	41.3	2.4	0.058	1507
30	27.0	24.5	1.0	0.041	1740	32	18.0	41.8	1.9	0.045	1508
						32	19.0	42.4	1.6	0.038	1508
31	0.0	1.7	1.2	0.697	0806	32	20.0	42.0	1.4	0.032	1509
31	0.5	1.8	1.1	0.610	0806	32	21.0	40.3	0.8	0.020	1510
31	1.0	1.9	1.0	0.526	0806	32	22.0	39.8	0.5	0.014	1510
31	1.5	1.9	0.9	0.468	0807	32	23.0	39.3	0.2	0.005	1510
31	2.0	2.0	0.9	0.462	0807	32	24.0	41.9	0.2	0.004	1511
31	2.5	2.1	1.0	0.468	0807	32	25.0	43.8	⊲0.1	0,002	1511
31	3.0	2.1	1.0	0.450	0807						
31	3.5	2.2	0.9	0.419	0808	33	0.0	48.1	34.0	0.706	1451
31	4.0	2.2	0.9	0.398	0808	33	1.0	51.7	72.8	1.410	1451
31	4.5	2.3	0.9	0.391	0808	33	2.0	14.5	12.6	0.868	1452
31	5.0	2.4	0.9	0.374	0809	33	3.0	13.8	10.7	0.769	1452
31	5.5	2.4	0.9	0.351	0809	33	4.0	36.4	9.7	0.266	1453
31	6.0	2.5	0.8	0.336	0809	33	5.0	33.3	7.7	0.231	1453
31	0.5	2.6	0.8	0.321	0809	33	6.0	33.0	6.9	0.208	1454
31	7.0	2./	0.8	0.291	0810	33	7.0	33.4	6.3	0.189	1454
31	1.5	2.8	0.8	0.280	0810	33	8.0	32.0	5.9	0.182	1454
31	8.0	2.9	0.8	0.201	0810	33	9.0	32.7	5.3	0.151	1455
21	0.5	3.1	0.8	0.253	0811	33	10.0	33.4	4.7	0.142	1455
31	9.0	3.2	0.8	0.240	0811	33	11.0	33.3	4.2	0.127	1456
31 21	9.5	3.3	0./	0.226	0811	33	12.0	34.3	4.1	0.118	1456
31	10.0	3.4	0.7	0.219	0811	33	13.0	34.4	3.5	0.103	1457
31	11.0	3.5	0.7	0.207	0812	33	14.0	34.5	3.2	0.094	1457
31	12.0	3.6	0.7	0.199	0812	33	15.0	33.8	2.9	0.086	1457
31	13.0	3.7	0.7	0.1/7	0812	33	16.0	35.9	2.5	0.071	1458
31 21	14.0	3.8	0.5	0.134	0813	33	17.0	41.7	2.4	0.059	1458
3L 21	15.0	4.0	0.5	0.126	0813	33	18.0	49.6	2.3	0.045	1459
31	10.0	4.1	0.4	0.103	0813	33	19.0	55.8	1.2	0.022	1459

Table 18. Photosynthetically available irradiation $(mE \cdot m^{-2} \cdot min^{-1})$ water column profile data for 1986 (CONTINUED).

Profile Sample Number	Depth of Water Sensor (m)	Surface Sensor Reading	Water Sensor Reading	Water/ Surface Ratio	Time	Profile Sample Number	Depth of Water Sensor (m)	Surface Sensor Reading	Water Sensor Reading	Water/ Surface Ratio	Time
					1500			15.6		·	
33	20.0	55.9	Ų.2	0.003	1500	43	0.0	10.0	6.9 E 1	0.418	0909
24	• •	22.0	20.2	0.049	1674	43	0.5	17.0	5.1	0.303	0010
34	0.0	32.0	30.3	0.940	1024	43	1.0	10.7	2.3	0.139	0910
34	0.5	34.7	24.0	0.092	1624	43	1.5	17.1	1.3	0.0/5	0910
34	1.0	39.8	19.8	0.490	1024	43	2.0	17.2	0.8	0.046	0910
34	1.5	45.8	12.0	0.2/5	1025	43	2.5	17.2	0.4	0.025	0910
34	2.0	D/./	12.0	0.18/	1025	43	3.0	17.2	0.2	0.012	0911
34	2.5	//.9	8./	0.112	1625	43	3.5	17.2	0.1	0.005	0911
34	3.0	40.2	2.0	0.044	1020	43	4.0	17.0	40.1	0.001	0911
34	3.5	44.3	0.4	0.008	1020	44	• •	60.2	46 7	0 776	1440
26		22.2	27	0 165	1606	· 44	0.0	60.2	70.7	0.770	1440
30	0.0	22.2	3.7	0.105	1500	44	0.5	62.0	30.7	0.500	1440
30	0.5	21.7	0.0	0.027	1500	44	1.0	62.0	11.7 E A	0.100	1440
20		15.3	11 0	0 701	1000	44	1.5	60.7	5.4	0.000	1449
39	0.0	15.3	11.9	0.701	1222	44	2.0	60.1	2.4	0.039	1449
39	0.5	15.0	5.8	0.384	1223	44	2.5	60.4	1.4	0.023	1449
39	1.0	14.9	3.2	0.218	1223	44	3.0	01.0	0.8	0.014	1450
39	1.5	15.0	2.1	0.142	1223	44	3.5	51.5	0.5	0.008	1450
39	2.0	15.1	1.0	0.103	1223	44	4.0	01.9	0.2	0.003	1450
39	2.5	15.0	0.8	0.055	1224	44	4.5	60.5	<0.1	0.001	1451
39	3.0	15.1	0.5	0.033	1224	15		11 4	14.0	1 000	
39	3.5	14.8	0.2	0.013	1224	45	0.0	11.4	14.8	1.303	2023
		5 0 0			1700	45	0.5	11.7	5.4	0.461	2024
40	0.0	50.8	3/.3	0.735	1736	45	1.0	11.4	0.3	0.026	2024
40	0.5	51.0	7.5	0.146	1/30						1050
40	1.0	49.0	0.3	0.006	1/30	40	0.0	11.1	11.1	0.996	1859
		<u></u>	55 0	1 000	1710	40	0.5	11.1	9.0	0.868	1859
41	0.0	31.1	50.0	1.802	1718	40	1.0	10.9	0.8	0.62/	1900
41	0.5	30.3	40.0	1.313	1710	40	1.5	11.0	5.9	0.530	1000
41	1.0	30.5	30.2	0.900	1719	40	2.0	10.4	4.0	0.443	1900
41	1.5	30.9	14.2	0.052	1719	40	2.5	11.2	3.7	0.333	1001
41 41	2.0	30.7	14.3	0.400	1719	40	3.0	11.1	3.0	0.272	1001
41	2.5	29.9	10.3	0.345	1720	40	3.5	10.0	2.5	0.229	1901
41	3.0	30.2	5.0	0.257	1720	40	4.0	10.9	2.1	0.192	1901
41	3.5	30.3	J.J A 1	0.134	1720	40	4.5	10.9	1.0	0.103	1002
41	4.0	29.0	3.0	0.137	1720	40	5.0	11 0	1.4	0.131	1902
41	4.5	23.3	2.0	0.103	1720	40	5.5	10.7	1.2	0.107	1902
91 41	5.0	29.2	2.1	0.0/2	1720	40	6.U	10.7	1.0	0.093	1902
41	5.5	20.9	1.0	0.05/	1721	40	0.5	10.8	0.9	0.0/9	1903
41	0.U	20.3	1.0	0.035	1721	40	7.0	10.6	0.8	0.070	1903
41	0.5	20.1	0.7	0.020	1721	40	7.5	10.0	0.6	0.001	1903
41	7.0	27.8	0.5	0.017	1722	40	8.0	10.7	0.0	0.050	1903
41	7.5	27.9	0.3	0.011	1722	40	8.5	10.0	0.5	0.048	1904
41	6.0	27.8	0.1	0.004	1/22	40	9.0	10.7	0.5	0.044	1904
42		20 5	22.4	1 144	1025	40	9.5	10.4	0.4	0.039	1904
42	0.0	20.5	23.4	1.144	1030	40	10.0	10.4	0.4	0.035	1904
42	0.5	22.8	12.7	0.950	1030	40	11.0	10.4	0.3	0.027	1904
42	1.0	22.3	12.7	0.5/2	1030	40	12.0	10.4	0.2	0.021	1905
42	2.0	22.3	J.J £ 0	0.303	1037	40	14.0	10.2	0.2	0.01/	1005
42	2.0	22.3	0.0	0.302	1037	40 AC	16.0	10.5	0.1	0.014	1005
42	2.3	21.0	۰./ ۲ د	0.222	1037	40	15.0	10.0	0.1	0.012	1005
42	3.0	21./	3.1	0.109	1030	40 AC	17 0	10.0	0.1	0.010	1005
42	3,3	17 5	2.3	0.111	1030	40	10 0	10.0	-0.1	0.009	1000
42	4.U A E	17.3	0.7	0.005	1030	40	10.0	10.0	~0.1	0.003	1005
42	4.3 E A	20.4	0./	0.030	1039	40	73.0	10.7	-0.1	0.007	1000
42	5.0	20.4	0.3	0.020	1039	40 46	20.0	10.0	<u.1< td=""><td>0.00/</td><td>1007</td></u.1<>	0.00/	1007
42	5.5	18 9	0.2	0.011	1040	40 Ar	22.0	10.5	~0.1	0.000	1007
46	0.0	10.0	0.1	0.000	1040	40 Afi	22.0	10.9	~0.1 cft 1	0.005	1907
							23.0	AV.0	-0.1	0.004	1201

Table 18. Photosynthetically available irradiation (mE·m⁻²·min⁻¹) water column profile data for 1986 (CONTINUED).

Profile Sample Number	Depth of Water Sensor (m)	Surface Sensor Reading	Water Sensor Reading	Water/ Surface Ratio	Time	Profile Sample Number	Depth of Water Sensor (m)	Surface Sensor Reading	Water Sensor Reading	Water/ Surface Ratio	Time
46	24.0	10.8	<0.1	0.003	1907	48	8.0	22.2	2.0	0.061	1417
45	25.0	10.0	<0.1	0.005	1908	48	8.5	34.3	1.6	0.047	1417
46	26.0	10.9	<0.1	0.001	1908	48	9.0	35.2	1.2	0.035	1418
46	27.0	10.6	<0.1	0.002	1908	48	9.5	34.6	1.0	0.030	1418
				•		48	10.0	33.8	0.8	0.022	1418
47	0.0	22.4	24.0	1.075	1046	48	11.0	34.8	0.5	0.013	1418
47	0.5	22.6	15.7	0.694	1046	48	12.0	33.1	0.2	0.007	1419
47	1.0	21.5	12.0	0.557	1047	48	13.0	33.7	0.1	0.004	1419
47	1.5	19.7	8.5	0.431	1047						
47	2.0	18.3	6.9	0.377	1047	49	0.0	17.7	18.5	1.052	1645
47	2.5	16.4	5.1	0.311	1047	49	0.5	17.6	7.6	0.432	1645
47	3.0	15.3	4.1	0.268	1047	49	1.0	17.5	5.1	0.295	1645
47	3.5	14.2	3.3	0.233	1048	49	1.5	17.5	3.1	0.176	1646
47	4.0	13.2	2.8	0.208	1048	49	2.0	17.5	2.2	0.124	1646
47	4.5	12.8	2.3	0.180	1048	49	2.5	17.5	1.3	0.076	1646
47	5.0	12.5	2.0	0.161	1048	49	3.0	17.6	1.1	0.063	1646
47	5.5	12.6	1.5	0.121	1049	49	3.5	17.5	0.8	0.048	1646
47	6.0	13.6	1.4	0.103	1049	49	4.0	17.5	0.6	0.036	1646
47	6.5	14.4	1.2	0.084	1049	49	4.5	17.4	0.6	0.034	1647
47	7.0	14.7	1.1	0.074	1049	49	5.0	17.2	0.5	0.027	1647
47	7.5	15.6	1.0	0.063	1049	49	5.5	17.2	0.4	0.023	1647
47	8.0	17.0	1.0	0.056	1050	49	6.0	17.0	0.3	0.020	1647
47	8.5	17.6	0.9	0.049	1050						
47	9.0	17.0	0.8	0.047	1050	50	0.0	23.0	21.5	0.935	1617
47	9.5	15.5	0.7	0.046	1050	50	0.5	22.8	11.6	0,509	1617
47	10.0	14.4	0.7	0.046	1051	50	1.0	23.0	6.3	0.273	1617
47	11.0	15.0	0.6	0.038	1051	50	1.5	22.9	4.3	0.190	1617
47	12.0	15.0	0.4	0.026	1055	50	2.0	22.8	3.6	0.158	1618
47	13.0	15.5	0.3	0.022	1055	50	2.5	22.6	2.7	0.120	1618
47	14.0	16.1	0.3	0.021	1055	50	3.0	22.8	2.2	0.098	1618
4/	15.0	27.4	0.3	0.010	1055	50	3.5	22.5	1.5	0.069	1618
4/	10.0	29.2	0.2	0.008	1056	50	4.0	22.2	1.3	0.059	1618
4/	10 0	25.1	0.2	0.006	1050	50	4.J E 0	21.9	0.9	0.040	1019
4/	10.0	20.7	0.1	0.000	1050	50	5.0	22.0	0.7	0.033	1619
47	20.0	23.7	0.1	0.004	1057	50	5.5	21.3	0.5	0.023	1620
47	21 0	21 5	<0.1	0.005	1057	50	0.0	21.5	0.4	0.020	1020
A7	22 0	24.1	<0.1	0.003	1058	51	0.0	15.0	13.0	0 865	1800
47	23.0	24.9	<0.1	0.002	1058	51	0.5	14 7	10.3	0.696	1800
47	24.0	24.2	<0.1	0.002	1058	51	1.0	14.7	5.8	0.395	1801
47	25.0	24.0	⊲0.1	0.002	1058	51	1.5	14.9	5.4	0.364	1801
47	26.0	23.7	⊲0.1	0.001	1059	51	2.0	14.4	4.5	0.310	1801
				•••••		51	2.5	14.4	3.8	0.266	1801
48	0.0	28.6	30.7	1.071	1412	51	3.0	14.2	3.1	0.217	1802
48	0.5	29.7	21.2	0.715	1412	51	3.5	14.2	2.5	0.176	1802
48	1.0	29.7	18.1	0.607	1413	51	4.0	14.1	2.1	0.149	1802
48	1.5	30.2	15.1	0.501	1413	51	4.5	14.0	1.8	0.130	1802
48	2.0	30.6	11.7	0.382	1413	51	5.0	13.8	1.5	0.108	1803
48	2.5	31.5	9.9	0.314	1414	51	5.5	13.6	1.3	0.094	1803
48	3.0	33.4	9.1	0.273	1414	51	6.0	13.5	1.1	0.081	1803
48	3.5	33.5	7.5	0.223	1414	51	6.5	13.4	0.9	0.068	1803
48	4.0	33.2	6.2	0.188	1415	51	7.0	13.1	0.8	0.058	1803
48	4.5	35.2	5.7	0.161	1415	51	7.5	13.2	0.6	0.048	1804
48	5.0	34.1	4.8	0.142	1415	51	8.0	12.8	0.5	0.041	1804
48	5.5	33.8	4.4	0.129	1415	51	8.5	12.7	0.4	0.034	1804
48	5.0	33.4	3.8	0.113	1416	51	9.0	12.6	0.4	0.028	1805
48	0.5	33.7	3.3	0.09/	1416	51	9.5	12.3	0.3	0.022	1805
48	7.0	39.4	3.1	0.080	1416	51	10.0	12.1	0.2	0.018	1805
40	1.5	34.8	2.5	0.0/2	141/	51	11.0	11.9	0.1	0.013	1902

Table 18. Photosynthetically available irradiation (mE+m⁻²+min⁻¹) water column profile data for 1986 (CONTINUED).

Profile Sample Number	Depth of Water Sensor (m)	Surface Sensor Reading	Water Sensor Reading	Water/ Surface Ratio	Time	Profile Sample Number	Depth of Water Sensor (m)	Surface Sensor Reading	Water Sensor Reading	Water/ Surface Ratio	Time
51	12.0	11.5	0.1	0.010	1806	52	5.5	2.5	0.4	0.139	2025
51	13.0	11.2	<0.1	0.006	1806	52	6.0	2.5	0.3	0.117	2025
51	14.0	11.1	⊲0.1	0.003	1806	52	6.5	2.5	0.3	0.102	2025
51	15.0	11.0	<0.1	0.004	1806	52	7.0	2.5	0.2	0.085	2025
						52	7.5	2.5	0.2	0.078	2026
52	0.0	2.7	2.2	0.812	2022	52	8.0	2.4	0.2	0.071	2026
52	0.5	2.7	1.7	0.637	2023	52	8.5	2.5	0.1	0.057	2026
52	1.0	2.7	1.4	0.518	2023	52	9.0	2.4	0.1	0.047	2026
52	1.5	2.7	1.2	0.426	2023	52	9.5	2.4	⊲0.1	0.038	2026
52	2.0	2.7	1.0	0.370	2023	52	10.0	2.4	<0.1	0.034	2027
52	2.5	2.7	0.8	0.314	2023	52	11.0	2.4	⊲0.1	0.022	2027
52	3.0	2.6	0.7	0.286	2024	52	12.0	2.4	<0.1	0.011	2027
52	3.5	2.6	0.6	0.228	2024	52	13.0	2.4	⊲0.1	0.007	2027
52	4.0	2.6	0.5	0.201	2024						
52	4.5	2.6	0.5	0.178	2024	53	0.0	9.9	1.4	0.142	1413
52	5.0	2.6	0.4	0.154	2024	53	0.5	9.8	0.8	0.081	1414

Table 18. Photosynthetically available irradiation (mE·m⁻²·min⁻¹) water column profile data for 1986 (CONTINUED).

Profile Sample Number	Depth of Water Sensor (m)	Surface Sensor Reading	Water Sensor Reading	Water/ Surface Ratio	Time	Profile Sample Number	Depth of Water Sensor (m)	Surface Sensor Reading	Water Sensor Reading	Water/ Surface Ratio	Time
1	0.0	20.6	20.7	1.008	1335	5	3.0	51.2	0.3	0.006	1426
1	0.5	17 4	15.4	0.883	1336	5	3.5	51.3	0.2	0.004	1427
i	1 0	15.8	6 7	0 422	1336	5	4 0	51 4	0.1	0.002	1427
1	1.0	16.0	2 2	0.907	1226	5	4.0	51 2	-0.1	0.001	1427
1	2.0	15.0	2.2	0.120	1226	5	5.0	51.3	~1 1	0.001	1427
1	2.0	15.8	2.2	0.139	1330	5	5.0	51.5	V.1	0.001	1427
1	2.5	15.8	1.2	0.0/8	1330	2	5.5	51.4	-U.1	0.001	1420
1	3.0	16.0	0.7	0.042	1337	<i>c</i>		20.4	10.0	0 632	1007
1	3.5	16.1	0.5	0.028	133/	0	0.0	30.4	19.2	0.032	102/
1	4.0	15.2	0.3	0.018	1337	6	0.5	30.8	10.8	0.350	1627
1	4.5	15.9	0.2	0.013	1337	6	1.0	30.8	3.8	0.125	1627
1	5.0	15.6	0.1	0.008	1337	6	1.5	30.8	2.4	0.078	1627
						6	2.0	30.7	1.4	0.047	1628
2	1.5	37.4	2.1	0.055	1434	6	2.5	30.7	0.9	0.029	1628
2	2.0	37.4	1.4	0.038	1434	6	3.0	30.8	0.6	0.019	1628
2	2.5	37.4	1.2	0.032	1434	6	3.5	30.6	0.4	0.012	1628
2	3.0	37.4	0.7	0.020	1434	6	4.0	30.7	. 0.2	0.008	1628
2	3.5	37.5	0.5	0.014	1434	6	4.5	30.6	0.2	0.005	1629
2	4.0	37.5	0.3	0.007	1434					•	
2	4.5	37.5	0.2	0.004	1435	7	0.0	24.9	26.1	1.050	1302
2	5.0	37.6	0.1	0.003	1435	7	0.5	24.9	7.1	0.286	1302
2	5.5	37.6	<0.1	0.002	1435	7	1.0	24.9	4.7	0.191	1302
2	6.0	37 7	<0.1	0.002	1436	7	1.5	24.9	2.9	0.117	1302
2	6.5	37 6	<0.1	0.001	1436	7	2.0	24 9	1 9	0.077	1302
2	7.0	37.0	<0.1	0.001	1426	7	2.5	24 0	1.5	0.049	1202
2	7.0	37.5	-0.1	0.001	1430	, , ,	2.5	25.0	1.2	0.040	1202
2	7.5	37.0	~0.1	0.001	1430	,	3.0	25.0	0.8	0.031	1303
						<u>′</u>	3.5	25.0	0.5	0.022	1303
3	0.0	4.1	3.3	0.814	0957	7	4.0	25.0	0.4	0.016	1303
3	1.0	4.1	0.6	0.154	0957	7	4.5	25.0	0.3	0.012	1303
3	2.0	4.2	0.2	0.045	0957	7	5.0	25.0	0.2	0.009	1304
3	3.0	4.3	⊲0.1	0.017	0957						
3	4.0	4.3	⊲0.1	0.006	0957	8	0.0	22.4	18.5	0.829	1503
3	5.0	4.3	<0.1	0.003	0958	8	0.5	22.1	5.9	0.265	1504
3	6.0	4.3	<0.1	0.002	0958	8	1.0	22.6	3.0	0.132	1504
3	7.0	4.4	<0.1	0.002	0958	8	1.5	22.7	1.5	0.066	1504
3	8.0	4.5	<0.1	0.001	0958	8	2.0	22.7	1.0	0.042	1504
						8	2.5	22.7	0.2	0.009	1504
4	0.0	28.1	25.5	0.907	1255	8	3.0	22.8	⊲0.1	0.004	1505
4	0.5	27.9	5.1	0.181	1256	8	3.5	22.8	⊲0.1	0.001	1505
4	1.0	28.0	3.2	0.114	1256	8	4.0	22.8	⊲0.1	<0.001	1505
4	1.5	28.2	2.1	0.074	1256	8	4.5	22.9	<0.1	⊲0.001	1505
4	2.0	28.2	1.6	0.056	1256	-					
4	2.5	28.3	1.0	0.037	1256	9	0.0	12.0	9.6	0.805	1040
4	2.0	28.3	0.7	0.026	1257	0	0.5	12.0	3.0 A A	0.365	1040
7	3.0	20.3	0.7	0.020	1257	5	1.0	12.0	1.0	0.303	1041
4	3.5	20.2	0.5	0.010	1237	3	1.0	12.1	1.0	0.151	1041
4	4.0	28.4	0.3	0.012	125/	9	1.5	12.1	1.0	0.085	1041
4	4.5	28.3	0.2	0.008	1257	9	2.0	12.2	0.5	0.043	1041
4	5.0	28.4	0.2	0.006	1257	9	2.5	12.2	0.3	0.024	1041
4	5.5	28.4	0.1	0.004	1258	9	3.0	12.3	0.2	0.016	1042
4	6.0	28.3	⊲0.1	0.003	1258	9	3.5	12.3	0.1	0.010	1042
4	6.5	28.4	<0.1	0.003	1258	9	4.0	12.4	<0.1	0.007	1042
4	7.0	28.5	<0.1	0.002	1258	9	4.5	12.5	<0.1	0.005	1042
4	7.5	28.5	<0.1	0.002	1258	9	5.0	12.5	<0.1	0.004	1043
4	8.0	28.4	<0.1	0.002	1259						
4	8.5	28.4	<0.1	0.001	1259	10	0.0	35.4	29.6	0.837	1459
4	9.0	28.6	<0.1	0.001	1259	10	0.5	35.3	3.7	0.105	1459
4	9.5	28.7	<0.1	0.001	1259	10	1.0	35.1	1.8	0.052	1459
				-		10	1.5	35.0	1.1	0.031	1500
5	0.0	51.2	41.1	0.802	1425	10	2.0	35.2	0.5	0.015	1500
5	2.0	51.3	1.0	0.020	1426	10	2.5	35.3	0.3	0.007	1500
5	2.5	51.2	0.4	0.008	1426	10	3.0	34.9	0.2	0.005	1500
-											

Table 19. Photosynthetically available irradiation (mE·m⁻²·min⁻¹) water column profile data for 1987.

· · · *

			<u> </u>					7.471. <u>- 1</u>			
Profile Sample	Depth of Water	Surface Sensor	Water Sensor	Water/ Surface		Profile Sample	Depth of Water	Surface Sensor	Water Sensor	Water/ Surface	
Number	Sensor (m)	Reading	Reading	Ratio	Time	Number	Sensor (m)	Reading	Reading	Ratio	Time
		25.2		0.003	1600	16	4.5	20.0	0.1	0.002	11.46
10	3.5	35,3	11.1	0.003	1500	16	4.5	39.0	-0.1	0.003	1140
10	4.0	35.3	0.9	0.002	1500	10	5.0	39.0	-0.1	0.002	114/
10	4.5	35.3	40.1	0.001	1501	10	5.5	36.7	-0.1	0.002	114/
10	5.0	35.3	≪0.1	0.001	1501	10	6.0	38.7	⊲0.1	0.002	114/
10	5.5	35.4	⊲0.1	0.001	1501	16	0.5	39.0	⊲0.1	0.001	1148
						16	7.0	39.2	<0.1	0.001	1148
11	0.0	19.2	2.3	0.122	1708	16	7.5	39.0	<0.1	0.001	1148
11	0.5	19.1	1.5	0.076	1708						
11	1.0	19.1	1.0	0.051	1708	18	2.0	39.6	1.1	0.028	1213
11	1.5	19.1	0.6	0.033	1708	18	2.5	39.5	1.1	0.027	1213
11	2.0	19.0	0.4	0.021	1709	18	3.0	39.5	1.0	0.025	1213
11	2.5	19.1	0.3	0.015	1709	18	3.5	39.3	0.9	0.023	1214
11	3.0	19.0	0.2	0.010	1709	18	4.0	39.6	0.8	0.021	1214
11	3.5	18.9	0.1	0.008	1710	18	4.5	40.3	0.8	0.019	1214
11	4.0	18.6	0.1	0.006	1710	18	5.0	40.6	0.7	0.018	1215
11	4.5	17.6	<0.1	0.005	1711	18	5.5	41.0	0.7	0.017	1215
11	5.0	18.4	<0.1	0.004	1711	18	6.0	41.1	0.7	0.016	1215
11	5.5	17.6	<0.1	0.003	1712	18	6.5	41.4	0.6	0.015	1216
11	6.0	17.3	<0.1	0.003	1712	18	7.0	41.2	0.6	0.014	1216
11	6.5	17.3	<0.1	0.002	1712	18	7.5	41.3	0.5	0.013	1216
11	7.0	17 4	<0.1	0.002	1712	18	8.0	40.7	0.5	0.013	1217
11	7.5	11 1	<01	0.002	1715		0.0		0.0	0.010	
11	8.0	19 2	<0.1	0.001	1716	21	20	30 0	07	0.017	0924
11	0.0	17.0	-0.1	0.001	1716	21	2.5	40 1	0.7	0.010	0024
11	0.5	17.5	~ 1	0.001	1716	21	2.5	40.1	0.7	0.010	0324
11	9.0	17.5	40.1	0.001	1/10	21 -	3.0	40.2	0.2	0.000	0925
					1.000	21	3.5	40.2	0.2	0.004	0925
12	0.0	38.9	24.9	0.641	1602		• •				
12	0.5	38.9	3.3	0.085	1603	23	2.0	44.6	0.3	0.007	0920
12	1.0	38.9	0.8	0.021	1603	23	2.5	44.8	0.2	0.005	0921
12	1.5	38.8	0.4	0.009	1603	23	3.0	45.3	0.2	0.004	0921
12	2.0	38.8	<0.1	0.001	1603	23	3.5	46.1	0.1	0.003	0921
12	2.5	38.9	<0.1	⊲0.001	1603	23	4.0	47.0	0.1	0.002	0921
12	3.0	38.9	<0.1	⊲0.001	1604	23	4.5	47.9	⊲0.1	0.002	0921
						23	5.0	48.6	<0.1	0.002	0922
14	2.0	37.5	0.4	0.010	1557	23	5.5	49.3	⊲0.1	0.001	0922
14	2.5	36.0	0.3	0.009	1557	23	6.0	49.9	⊲0.1	0.001	0922
14	3.0	35.4	0.3	0.007	1557	23	6.5	50.2	⊲0.1	0.001	0922
14	3.5	35.7	0.2	0.006	1558						
14	4.0	36.3	0.2	0.005	1559	25	2.0	36.1	<0.1	⊲0.001	0936
14	4.5	36.1	0.2	0.004	1559	25	2.5	35.5	<0.1	<0.001	0936
14	5.0	35.6	0.1	0.004	1559	25	3.0	33.5	<0.1	<0.001	0936
14	5.5	35.4	0.1	0.003	1600						
14	6.0	35.3	0.1	0.003	1600	27	1.5	84.4	4.6	0.054	1500
14	6.5	34.1	0.1	0.003	1600	27	2.0	84.2	4.2	0.050	1500
14	7.0	35.5	<0.1	0.002	1601	27	2.5	83.9	3.5	0.042	1500
14	7.5	35.5	⊲0.1	0.002	1601	27	3.0	84.2	3.0	0.036	1501
14	8.0	36.9	<0.1	0.002	1602	27	3.5	84.4	2.6	0.031	1501
14	8.5	36.2	⊲0.1	0.002	1602	27	4.0	84.5	2.4	0.029	1501
14	9.0	36.0	<0.1	0.002	1602	27	4.5	84.2	2.2	0.026	1502
14	9.5	35.8	<0.1	0.002	1603	27	5.0	R4 1	2 1	0.025	1502
14	10.0	35.0	<0.1	0.002	1603	27	5.0	83.8	1 0	0.023	1602
1.4	11 0	35.7	~0.1	0.002	1603	21	0.0 A A	92.0	1.7	0.023	1502
14	12.0	30.1 26 A	~0.1	0.001	1603	21	0.U c c	03.0	1.0	0.021	1502
14	12.0	33.4	-0.1	0.001	1004	2/	0.5	83.3	1.0	0.020	1203
14	13.0	30.0	-0.1	0.001	1004	2/	7.0	82.8	1.5	0.018	1503
	• •		. .			2/	1.5	82.5	1.4	0.01/	1503
16	2.0	38.4	0.4	0.011	1144	27	8.0	82.7	1.3	0.016	1503
16	2.5	38.2	0.3	0.008	1145	27	8.5	82.9	1.2	0.014	1504
16	3.0	38.2	0.2	0.006	1145	27	9.0	82.8	1.1	0.013	1504
16	3.5	38.4	0.2	0.004	1145	27	9.5	82.8	1.0	0.012	1504
16	4.0	38.5	0.1	0.004	1146	27	10.0	82.9	1.0	0.012	1504

Table 19. Photosynthetically available irradiation (mE·m⁻²·min⁻¹) water column profile data for 1987 (CONTINUED).

			<u></u>	······	<u> </u>	şt r i					
Profile Sample Number	Depth of Water Sensor	Surface Sensor Reading	Water Sensor Reading	Water/ Surface Ratio	Time	Profile Sample Number	Depth of Water Sensor (m)	Surface Sensor Reading	Water Sensor Reading	Water/ Surface Ratio	Time
	()										
27	11.0	92.2	0.9	0.010	1505	40	0.0	71.0	68 0	0 958	1350
27	12.0	03.2	0.0	0.010	1505	40	0.0	71 4	21 4	0.330	1350
21	12.0	83.0	0.7	0.009	1505	40 .	0.5	71.4	31.4	0.440	1350
27	12.5	84.0	0.7	0.008	1505	40	1.0	/1.4	11.7	0.164	1351
						40	1.5	70.2	5,1	0.073	1351
29	1.5	72.1	2.3	0.032	1524	40	2.0	71.6	2.6	0.036	1351
29	2.0	73.4	2.0	0.027	1524	40	2.5	72.5	1.2	0.016	1352
29	2.5	74.4	1.8	0.024	1524	40	3.0	73.1	0.8	0.011	1352
29	3.0	75.1	1.6	0.021	1525	40	3.5	73.1	0.4	0.006	1352
29	3.5	75.5	1.4	0.018	1525	40	4.0	73.2	0.2	0.003	1352
29	4.0	76.0	1.3	0.017	1525	40	4.5	72.6	0.1	0.002	1353
29	4.5	76.4	1.2	0.016	1526	40	5.0	71.0	⊲0.1	0.001	1353
29	5.0	76.7	1.1	0.014	1526	40	5.5	71.2	⊲0.1	<0.001	1353
20	5.0	76 9	1 0	0.013	1527	40	6.0	71 0	<01	<0.001	1353
20	5.5	70.3	1.0	0.013	1527		0.0	,	-0.1	-0.001	1000
29	0.0	77.0	0.9	0.012	192/	41		44 7	40 C	1 000	1150
29	0.5	79.0	0.9	0.011	1527	41	0.0	44.7	40.0	1.000	1150
29	7.0	79.7	0.8	0.011	1528	41	0.5	43.2	12.8	0.297	1159
29	7.5	80.0	0.8	0.010	1528	41	1.0	40.8	0.3	0.007	1159
29	8.0	80.9	0.7	0.009	1528	41	1.5	44.7	<0.1	0.002	1159
29	8.5	81.4	0.7	0.008	1528	41	2.0	40.6	⊲0.1	⊲0.001	1200
29	9.0	81.7	0.6	0.008	1529	41	2.5	42.9	⊲0.1	⊲0.001	1200
29	9.5	81.7	0.6	0.007	1529	41	3.0	60.8	⊲0.1	⊲0.001	1200
29	10.0	81.5	0.6	0.007	1529						
29	11.0	81.8	0.5	0.006	1530	42	0.0	39.0	26.6	0.682	1444
29	12.0	82.0	0.4	0.005	1530	42	0.5	37.5	20.0	0.533	1444
	12.00	0210				42	1.0	35 4	14 4	0 408	1444
21	2.0	E7 2	0.2	0.003	1944	42	1.5	40 7	12.8	0 313	1445
21	2.0	57.5	0.2	0.003	1044	42	2.0	37 6	10.0	0.313	1445
31	2.5	57.3	0.1	0.002	1044	42	2.0	37.0	10.0	0.207	1440
31	3.0	5/.2	<0.1	0.002	1844	42	2.5	39.4	9.0	0.228	1440
31	3.5	5/.1	<0.1	0.001	1845	42	3.0	42.7	0.0	0.139	1440
31	4.0	57.0	<0.1	0.001	1845	42	3.5	41.5	4.9	0.11/	1446
31	4.5	56.9	<0.1	0.001	1846	42	4.0	36.3	3.4	0.095	1446
						42	4.5	35.7	3.1	0.087	1447
33	2.0	50.8	0.2	0.003	1914	42	5.0	36.6	2.5	0.069	1447
33	2.5	50.7	0.1	0.002	1915	42	5.5	38.7	2.0	0.052	1448
33	3.0	50.6	<0.1	0.002	1915	42	6.0	38.9	1.6	0.042	1448
33	3.5	50.6	<0.1	0.001	1915	42	6.5	38.5	1.3	0.033	1448
33	4.0	50.5	<0.1	0,001	1916	42	7.0	41.0	.1.0	0.025	1449
33	4.5	50.4	<0.1	0.001	1916	42	7.5	41.3	0.8	0.018	1449
55	4.5	30.4		01001	1010	42	8.0	41.5	0.6	0.015	1450
25	2.0	70 1	~0.1	0.001	1452	42	8 5	12.5	0.5	0.011	1450
33	2.0	/3.1	~0.1	0.001	1452	42	0.5	40.0	0.5	0.011	1450
35	2.5	80.5	-U.I	0.001	1432	42	9.0	40.9	0.2	0.000	1450
35	3.0	82.5	<0.1	0.001	1453	42	9.5	45.4	0.2	0.004	1451
						42	10.0	39.1	0.1	0.003	1451
37	2.0	71.6	0.1	0.002	1516	42	11.0	39.2	⊲0.1	0.001	1452
37	2.5	71.1	<0.1	0.001	1517	42	12.0	37.8	<0.1	0.001	1452
37	3.0	69.8	<0.1	0.001	1517	42	13.0	37.1	<0.1	0.001	1452
37	3.5	67.4	<0.1	0.001	1518						
						43	0.0	53.1	10.0	0.189	1304
39	0.0	54.2	59.3	1.095	1050	43	0.5	48.6	9.0	0.186	1304
39	0.5	54.9	25.3	0.460	1051	43	1.0	50.3	6.9	0.136	1305
39	1.0	55.2	9.5	0.173	1051	43	1.5	50.0	5.7	0.114	1305
30	1 6	54 8	A 3	0.078	1052	13	2 0	44 9	., 	0 102	1205
20	2.0	57.0 EA E	7.3	0.070	1052	40	2.0	47.3	4.0	0.102	1303
33	2.0	34.3	2.1	0.030	1022	40	2.3	43.2	4.0	0.093	1300
39	2.5	54.9	1.2	0.021	1052	43	3.0	39.0	3.4	0.088	1306
39	3.0	54.4	0.2	0.004	1053	43	3.5	41.3	2.9	0.070	1306
39	3.5	53.9	0.2	0.003	1053	43	4.0	45.4	3.1	0.068	1307
39	4.0	54.2	<0.1	0.002	1053	43	4.5	42.1	2.5	0.060	1307
39	4.5	54.2	<0.1	0.001	1054	43	5.0	40.7	2.4	0.060	1307
39	5.0	55.6	<0.1	0.001	1054	43	5.5	35.5	2.1	0.060	1308
39	5.5	55.6	<0.1	<0.001	1054	43	6.0	31.9	2.0	0.061	1308

Table 19. Photosynthetically available irradiation (mE·m⁻²·min⁻¹) water column profile data for 1987 (CONTINUED).

Profile Sample Number	Depth of Water Sensor (m)	Surface Sensor Reading	Water Sensor Reading	Water/ Surface Ratio	Time	Profile Sample Number	Depth of Water Sensor (m)	Surface Sensor Reading	Water Sensor Reading	Water/ Surface Ratio	Time
		·····.		· · · ·							
43	6.5	35.9	2.0	0.057	1309	45	0.0	86.3	109.3	1.266	1510
43	7.0	50.4	2.2	0.044	1309	45	0.5	85.4	39.2	0.458	1511
43	7.5	49.2	2.1	0.042	1309	45	1.0	86.6	15.2	0.176	1512
43	8.0	50.7	1.9	0.037	1310	45	1.5	86.2	9.1	0.106	1512
43	8.5	55.2	2.1	0.038	1310	45	2.0	84.9	5.5	0.065	1512
43	9.0	51.5	2.0	0.039	1310	45	2.5	85.1	3.4	0.039	1513
43	9.5	56.4	1.9	0.034	1311	45	3.0	86.1	2.0	0.023	1513
43	10.0	53.9	1.8	0.034	1311	45	3.5	85.1	1.3	0.015	1513
43	11.0	50.1	1.6	0.032	1311	45	4.0	86.0	0.6	0.007	1514
43	12.0	51.4	1.6	0.030	1312	45	4.5	85.2	0.3	0.003	1514
43	13.0	58.3	1.5	0.026	1312	45	5.0	84.7	⊲0.1	0.001	1514
43	14.0	60.8	1.4	0.024	1312	45	5.5	85.6	⊲0.1	⊲0.001	1515
43	15.0	5/./	1.3	0.023	1313	45	6.0	85.0	⊲0.1	⊲0.001	1515
43	10.0	53.2	1.1	0.021	1313	10	• •	63 0		1 1 10	
43	17.0	53.9	1.2	0.021	1313	40	0.0	0/.9	//.5	1,142	1725
43	19.0	57.3	1.1	0.019	1314	40	0.5	63.8	34.9	0.54/	1720
43	10.0	61 1	1.1	0.016	1315	40	1.0	69.0	10.4	0.239	1720
43	20.0	62 7	1.0	0.010	1315	40	2.0	65.7	11.8	0.173	1720
47	21 0	62.8	0.9	0.015	1316	40	2.5	68 3	5.5	0.124	1720
43	22.0	64.3	0.8	0.013	1316	46	3.0	67 7	4.6	0.068	1727
43	23.0	65.2	0.8	0.013	1317	46	35	68.6	37	0.000	1727
43	24.0	50.8	0.7	0.014	1317	46	4.0	68.5	2.8	0.042	1727
43	25.0	65.8	0.7	0.010	1317	45	4.5	68 3	2 4	0.035	1728
			•••	01010	101/	46	5.0	58.6	2.0	0.030	1728
44	0.0	13.8	18.2	1.313	1748	45	5.5	68.7	1.6	0.024	1728
44	0.5	37.7	37.0	0.981	1749	46	6.0	68.3	1.3	0.019	1728
44	1.0	21.0	23.1	1,101	1749	46	6.5	68.3	1.1	0.017	1728
44	1.5	52.3	18.6	0.355	1750	46	7.0	67.7	1.0	0.014	1729
44	2.0	55.5	13.8	0.248	1750	46	7.5	65.3	0.8	0.013	1729
44	2.5	44.2	11.6	0.262	1750	46	8.0	59.9	0.7	0.012	1729
44	3.0	56.1	10.0	0.179	1750	46	8.5	67.0	0.5	0.008	1729
44	3.5	55.0	8.1	0.147	1751	46	9.0	68.6	0.4	0.006	1730
44	4.0	55.6	6.3	0.113	1751	46	9.5	68.6	0.3	0.004	1730
44	4.5	57.4	6.8	0.119	1751	46	10.0	69.1	0.2	0.003	1730
44	5.0	59.5	5.8	0.098	1752	46	11.0	54.0	<0.1	0.002	1731
44	5.5	57.2	5.2	0.092	1752	46	12.0	68.2	⊲0.1	<0.001	1731
44	6.0	55.4	5.2	0.094	1752	46	13.0	66.8	⊲0.1	⊲0.001	1732
44	6.5	56.5	5.4	0.096	1753	46	14.0	68.6	⊲0.1	<0.001	1732
44	7.0	55.9	4.8	0.086	1753						
44	7.5	60.1	4.3	0.072	· 1753	47	0.0	45.4	17.2	0.379	2009
44	8.0	57.9	3.7	0.064	1754	47	0.5	45.0	64.6	1.434	2010
44	8.5	58.5	3.6	0.062	1754	47	1.0	44.4	31.0	0.698	2011
44	9.0	59.1	3.3	0.056	1755	47	1.5	44.0	17.1	0.388	2011
44	9.5	60.0	2.8	0.04/	1755	47	2.0	45.0	10.4	0.231	2011
44	10.0	55.8	2.3	0.041	1/56	4/	2.5	44.8	5.3	0.118	2011
44	11.0	60.7	2.2	0.036	1/56	4/	3.0	45.0	4.5	0.100	2012
44	12.0	50.7	2.0	0.033	1/5/	4/	3.5	45.4	2.5	0.055	2012
44	14.0	59.0	1.7	0.025	1757	47	4.0	43.5	2.1	0.04/	2012
44	15 0	50.4 50.0	1.0	0.020	1758	4/ A7	4.3 5 A	44.U AA 2	1.0	0.030	2012
44	16.0	58 1	1 3	0.023	1758		5.0	44 5	1.4	0.02/	2012
44	17.0	61.8	1.2	0.019	1758	47 47	6.0	AA 0	0.5	0.020	2013
44	18.0	58.2	1.0	0.018	1759	47	5.5	44.5	0.0	0.016	2013
44	19.0	57.6	0.9	0.016	1759	47	7 0	45 0	0.5	0.014	2013
44	20.0	58.5	0.8	0.014	1800	47	7.5	44.5	0.4	0.009	2014
44	21.0	58.1	0.8	0.013	1800	47	8.0	45.0	0.3	0.007	2014
44	22.0	58.2	0.7	0.012	1800	47	8.5	44.5	0.3	0,006	2015
44	23.0	57.0	0.7	0.012	1801	47	9.0	44.3	0.2	0.005	2015
44	24.0	56.0	0.6	0.011	1801	47	9.5	45.0	0.2	0.004	2015

-

Table 19. Photosynthetically available irradiation (mE+m⁻²+min⁻¹) water column profile data for 1987 (CONTINUED).

Profile Sample	Depth of Water	Surface Sensor	Water Sensor	Water/ Surface	T! _ /	Profile Sample	Depth of Water	Surface Sensor	Water Sensor	Water/ Surface	*•
Number	Sensor (m)	Reading	Reading	Ratio	Time	Number	Sensor (m)	Reading	Reading	Ratio	Time
47	10.0	43.7	0.2	0.004	2016	49	8.0	31.4	0.7	0.023	1843
47	11.0	43.8	0.1	0.003	2016	49	8.5	30.4	0.6	0.021	1844
47	12.0	43.4	⊲0.1	0.002	2016	49	9.0	29.3	0.6	0.019	1844
47	13.0	44.6	<0.1	0.001	2017	49	9.5	28.7	0.5	0.017	1844
47	14.0	43.9	⊲0.1	0.001	2017	49	10.0	29.0	0.4	0.015	1844
47	15.0	44.0	<0.1	0.001	2017	49	11.0	29.4	0.4	0.012	1845
						49	12.0	30.0	0.3	0.010	1845
48	0.0	51.8	40.5	0.782	1506	49	13.0	29.4	0.2	0.008	1846
48	0.5	51.3	27.5	0.536	1506	49	14.0	30.5	0.2	0.007	1846
48	1.0	51.4	22.7	0.441	1506	49	15.0	31.9	0.2	0.005	1847
48	1.5	50.4	18.5	0.367	1507	49	16.0	32.1	0.1	0.004	1847
48	2.0	52.5	15.7	0.299	1507	49	17.0	32.0	⊲0.1	0.003	1847
48	2.5	52.5	13.3	0.254	1507	49	18.0	35.8	⊲0.1	0.002	1848
48	3.0	51.6	10.9	0.211	1507	49	19.0	38.1	⊲0.1	0.001	1848
48	3.5	51.3	10.2	0.199	1507	49	20.0	40.3	<0.1	0.001	1849
48	4.0	50.7	8.1	0.159	1508	49	21.0	41.1	<0.1	0.001	1849
48	4.5	50.8	7.1	0.139	1508	~~					
48	5.0	48.9	6.0	0.123	1508	50	0.0	11.6	/./	0.661	2126
48	5.5	48.5	5.1	0.105	1508	50	0.5	11.5	4.8	0.412	2120
48	6.0	49.0	4.4	0.090	1509	50	1.0	11.0	2.5	0.214	2127
48	0.5	49.0	3.8	0.0/8	1509	50	1.5	11.7	1.5	0.125	2127
48	7.0	49.1	3.4	0.009	1509	50	2.0	11.4	0.9	0.0/5	212/
48	7.5	49.1	3.0	0.061	1510	50	2.5	11.5	0.9	0.043	2120
48	8.0	48.5	2.7	0.055	1510	50	3.0	11.0	0.3	0.023	2120
40	0.5	45.0	1 0	0.04/	1510	50	4.0	11.5	0.1	0.013	2120
40	9.0	52 7	1.5	0.030	1511	50	4.0	11.2	0.1	0.010	2129
49	10.0	52.8	13	0.024	1511	50	5.0	11.0	<0.1	0.008	2129
40	11.0	52.0	0.9	0.024	1511	50	5.5	10.6	<0.1	0.006	2130
48	12.0	51 6	0.5	0.014	1512	50	6.0	10.2	<0.1	0.006	2130
48	13.0	52.0	0.6	0.011	1512	50	6.5	10.1	⊲0.1	0.005	2130
48	14.0	52.3	0.5	0.009	1512	50	7.0	9.9	⊲0.1	0.004	2131
48	15.0	52.4	0.4	0.007	1513	50	7.5	9.8	<0.1	0.004	2131
48	16.0	52.3	0.3	0.006	1513	50	8.0	9.9	<0.1	0.003	2131
48	17.0	53.1	0.2	0.005	1513	50	8.5	10.1	<0.1	0.003	2131
48	18.0	52.3	0.2	0.004	1514	50	9.0	10.3	<0.1	0.003	2132
48	19.0	50.6	0.1	0.003	1514	50	9.5	10.2	<0.1	0.003	2132
48	20.0	48.3	0.1	0.002	1514	50	10.0	10.1	<0.1	0.002	2132
48	21.0	47.6	⊲0.1	0.002	1514	50	11.0	10.2	⊲0.1	0.001	2133
48	22.0	47.1	<0.1	0.002	1515	50	13.0	10.0	⊲0.1	⊲0.001	2133
48	23.0	47.3	⊲0.1	0.001	1515						
48	24.0	46.2	⊲0.1	0.001	1515	51	0.0	1.6	1.0	0.636	0115
48	25.0	46.2	⊲0.1	0.001	1516	51	0.5	1.5	0.2	0.141	0116
						51	1.0	1.5	⊲0.1	0.024	0116
49	0.0	22.5	19.2	0.854	1838	51	1.5	1.5	⊲0.1	0.006	0116
49	0.5	22.4	8.2	0.366	1838	51	2.0	1.5	⊲0.1	0.001	0116
49	1.0	25.4	8.1	0.318	1839	51	4.0	1.4	⊲0.1	0.001	0118
49	1.5	26.8	6.5	0.243	1839	51	5.0	1.4	⊲0.1	<0.001	0119
49	2.0	28.6	5.6	0.196	1839						
49	2.5	29.7	4.8	0.161	1840	52	0.0	65.6	54.7	0.834	1106
49	3.0	29.6	3.4	0.115	1840	52	0.5	66.3	8.7	0.131	1107
49	3.5	28.7	2.4	0.085	1840	52	1.0	66.3	2.0	0.030	1107
49	4.0	28.1	2.1	0.074	1841	52	1.5	56.8	0.5	0.007	1107
49	4.5	28.3	1.6	0.057	1841	52	2.0	67.0	⊲0.1	0.001	1108
49	5.0	29.0	1.5	0.051	1841	52	Z.5	67.3	<0.1	<0.001	1108
49	5.5	29.0	1.2	0.041	1842	52	3.0	67.1	⊲0,1	⊲0.001	1108
49	5.0	29.3	1.1	0.038	1842		• •	07 0	74.0	0 307	1000
49	6.5	29.5	· 0.9	0.031	1842	53	0.0	35.3 02 C	/4.9	0.780	1222
49	/.0	29.7	0.9	0.029	1043	53	0.5	33.5	1.8	0.019	1000
49	1.5	51.5	U.8	0.02/	1043	53	1.0	102.3	-v.i	0.001	7222

Table 19. Photosynthetically available irradiation (mE+m⁻²+min⁻¹) water column profile data for 1987 (CONTINUED).

Profile Sample Number	Depth of Water Sensor (m)	Surface Sensor Reading	Water Sensor Reading	Water/ Surface Ratio	Time	Profile Sample Number	Depth of Water Sensor (m)	Surface Sensor Reading	Water Sensor Reading	Water/ Surface Ratio	Time
53	1.5	101.3	<0.1	⊲0.001	1556	60	1.5	4.4	0.7	0.149	1101
			•			60	2.0	4.6	0.4	0.092	1102
54	0.0	61.3	59.8	0.975	1050	60	2.5	4.6	0.4	0.082	1103
54	0.5	51.9	13.3	0.257	1050	60	3.0	4./	0.2	0.050	1103
54	1.0	45.9	5.0	0.131	1051	60	3.5	4.8	0.2	0.039	1104
54	1.5	44.8	0.9	0.020	1051	60	4.0	4.9	0.2	0.031	1104
54	2.0	39.5	0.5	0.012	1051	60	4.5	5.0	<0.1	0.009	1104
54	2.5	43.7	-0.2	0.004	1052	60	5.0	5.1	<0.1	0.000	1105
54 EA	3.0	44.9 62 1	<0.1	0.001	1052	50	5.5	5.1	<0.1	0.003	1105
54 EA	3.5	52.1	<0.1	<0.001	1052	60	6.5	5.2	<0.1	0.002	1105
34	4.0	50.4	~0.1	-0.001	1033	60	7.0	5 1	<0.1	0.001	1105
55	0.0	55 3	45 1	0.816	1503	60	7.5	51	<0.1	<0.001	1106
55	0.0	54.9	14 5	0 265	1503			0.1		-01001	1100
55	1.0	54.5	7.4	0.137	1504	61	0.0	16.9	14.3	0.847	1534
55	1.0	54.5	0.6	0.011	1504	61	0.5	16.9	11.8	0.695	1534
55	2.0	53.0	0.0	0.004	1504	61	1.0	17.0	11.6	0.684	1534
55	25	51 5	<0.1	0 001	1505	-61	1.5	17.0	11.2	0.661	1535
55	3.0	50.6	<0.1	<0.001	1505	61	2.0	17.5	9.5	0.543	1535
55	3.5	50.0	<0.1	<0.001	1505	61	2.5	17.8	9.0	0.507	1535
55	0.0	50.1				61	3.0	18.2	8.9	0.488	1535
56	0.0	41.5	34.6	0.833	1102	61	3.5	18.0	8.4	0.467	1536
56	0.5	68.5	21.3	0.311	1102	61	4.0	18.1	7.8	0.434	1536
56	1.0	62.9	7.9	0.126	1102	61	4.5	18.1	7.5	0.414	1536
56	1.5	49.2	2.4	0.050	1103	61	5.0	18.0	7.2	0.398	1536
56	2.0	38.1	0.5	0.013	1103	61	5.5	18.2	7.1	0.389	1537
56	2.5	38.1	<0.1	0.003	1103	61	6.0	18.5	7.0	0.377	1537
56	3.0	58.0	<0.1	<0.001	1103	61	6.5	19.4	7.1	0.364	1537
56	3.5	71.4	<0.1	<0.001	1104	61	7.0	20.1	7.3	0.364	1537
56	4.0	70.9	<0.1	<0.001	1104	61	7.5	20.0	7.1	0.355	1537
						61	8.0	18.8	6.5	0.346	1538
57	0.0	94.7	52.9	0.558	1534	61	8.5	17.4	6.1	0.349	1538
57	0.5	79.0	13.9	0.176	1535	61	9.0	15.6	5.2	0.334	1538
57	1.0	100.5	3.1	0.031	1535	61	9.5	15.5	5.0	0.321	1539
57	1.5	108.8	0.8	0.007	1535	61	10.0	15.5	4.8	0.311	1539
57	2.0	112.8	0.3	0.003	1536	61	11.0	16.7	4.7	0.282	1539
57	2.5	81.5	<0.1	0.001	1536	61	12.0	16.1	4.4	0.275	1539
57	3.0	29.7	<0.1	<0.001	1537	61	13.0	16.1	4.3	0.265	1540
						61	14.0	16.3	4.0	0.244	1540
58	0.0	83.8	60.1	0.717	1354	61	15.0	16.1	3.1	0.193	1540
58	0.5	84.4	13.8	0.163	1354	61	16.0	16.3	2.6	0.162	1540
58	1.0	84.2	0.5	0.006	1355	61	17.0	16.3	1.8	0.108	1541
58	1.5	84.1	<0.1	0.001	1355	61	18.0	16.2	0.8	0.051	1541
58	2.0	86.6	⊲0.1	⊲0.001	1355	61	19.0	16.0	0.5	0.028	1541
						61	20.0	15.8	0.2	0.012	1541
59	0.0	76.3	42.4	0.557	1540	61	21.0	15.7	<0.1	0.004	1541
59	0.5	76.3	20.1	0.263	1540	61	22.0	14.4	<0.1	0.002	1542
59	1.0	77.4	7.7	0.099	1540	61	23.0	12.8	<0.1	0.001	1542
59	1.5	78.9	3.9	0.050	1540	61	24.0	12.3	<0.1	<0.001	1542
59	2.0	79.0	2.1	0.027	1541	61	25.0	11.7	<0.1	⊲0.001	1542
59	2.5	77.8	0.7	0.009	1541						
59	3.0	79.0	0.4	0.006	1541	62	0.0	15.6	8.3	0.532	1226
59	3.5	79.6	0.2	0.002	1541	62	0.5	16.4	7.9	0.481	1227
59	4.0	78.7	<0.1	0.001	1541	62	1.0	16.8	7.3	0.436	1227
59	4.5	79.0	<0.1	<0.001	1542	62	1.5	16.9	7.0	0.412	1228
59	5.0	80.2	<0.1	<0.001	1542	62	2.0	17.2	6.7	0.388	1228
<i></i>	<u>.</u> .					62	2.5	17.3	6.2	0.360	1228
60	0.0	4.3	3.0	0.700	1101	62	3.0	17.3	5,8	0.335	1228
60	0.5	4.3	2.2	0.505	1101	62	3.5	1/.3	5.7	0.333	1229
60	1.0	4.4	1.2	0.2/7	1101	62	4.0	17.3	5.5	0.321	1229

Table 19. Photosynthetically available irradiation (mE·m⁻²·min⁻¹) water column profile data for 1987 (CONTINUED).

Profile Sample Number	Depth of Water Sensor (m)	Surfac e Sensor Reading	Water Sensor Reading	Water/ Surface Ratio	Time	Profile Sample Number	Depth of Water Sensor (m)	Surface Sensor Reading	Water Sensor Reading	Water/ Surface Ratio	Time
											<u> </u>
62	4.5	17.8	5.6	0.316	1229	65	1.0	17.9	1.8	0.103	1812
62	5.0	18.0	5.7	0.319	1229	65	1.5	18.0	1.1	0.062	1813
62	5.5	18.1	5.6	0.311	1230	65	2.0	18.1	0.8	0.044	1813
62	6.0	18.2	5.9	0.323	1230	65	2.5	18.3	0.7	0.037	1813
62	6.5	18.3	5.7	0.312	1230	65	3.0	18.3	0.6	0.033	1813
62	7.0	18.9	5.7	0.304	1230	65	3.5	18.2	0.6	0.032	1814
62	7.5	19.3	5.8	0.301	1231	65	4.0	18.1	0.6	0.031	1814
62	8.0	19.6	5.8	0.295	1231	65	4.5	17.9	0.6	0.031	1814
62	8.5	19.7	5.7	0.290	1231	65	5.0	17.8	0.6	0.031	1814
62	9.0	19.8	5.6	0.284	1231	65	5.5	17.8	0.6	0.031	1814
62	9.5	20.2	5.6	0.278	1232	65	6.0	17.9	0.5	0.031	1815
62	10.0	21 2	5 7	0 271	1232	65	6 5	17.8	0.5	0.031	1015
62	11 0	21 5	57	0 267	1232	65	7 0	17.6	0.0	0.031	1015
62	12.0	22.3	5.7	0.207	1232	65	7.0	17.0	0.5	0.031	1015
62	12.0	22.5	5.6	0.230	1222	65	7.5	16.7	0.5	0.032	1010
02	13.0	22.4	5.5	0.24/	1233	05	0.0	10.0	0.5	0.033	1810
02	14.0	23.1	5.0	0.219	1234	05	8.5	15.5	0.5	0.034	1816
62	15.0	23.3	4.0	0.196	1234	65	9.0	15.0	0.5	0.031	1817
62	16.0	23.2	3.9	0.168	1234	65	9.5	14.9	0.5	0.031	1817
62	17.0	23.1	3.5	0.150	1234	65	10.0	14.9	0.4	0.030	1817
62	18.0	22.3	3.0	0.136	1235	65	11.0	15.0	0.5	0.030	1818
62	19.1	21.7	2.7	0.124	1235	65	12.0	15.8	0.4	0.027	1818
62	20.0	21.1	2.4	0.113	1235	65	13.0	15.6	0.4	0.027	1819
62	21.0	21.5	2.2	0.105	1236	65	14.0	14.9	0.4	0.027	1819
62	22.0	22.0	2.1	0.097	1236	65	15.0	13.8	0.4	0.028	1820
62	23.0	22.1	2.0	0.090	1236						
62	24.0	22.2	1.9	0.084	1236	66	0.0	23.9	17.6	0.738	1344
62	25.0	22.4	1.7	0.077	1237	66	0.5	23.8	14.3	0.599	1344
62	26.0	22.3	1.6	0.073	1237	66	1.0	23.8	13.1	0.548	1344
62	27.0	22.8	1.5	0.066	1237	66	1.5	23.8	11.5	0.481	1345
62	28.0	22.2	1.3	0.058	1238	56	2.0	23.8	10.6	0.444	1345
62	29.0	21.1	1.2	0.055	1238	55	2.5	23.8	10.2	0 431	1345
•-					1200	55	3.0	22.9	0.7	0.405	1245
63	0.0	11 3	7.0	0 620	1224	66	2.0	22.0	9.7	0.70	1245
67	. 0.5	11 4	7.0	0.650	1224	66	4.0	23.0	0.5	0.3/0	1345
62	1.0	11.4	5.9	0.000	1224	66	4.0	23.0	0.2	0.343	1340
63	1.0	11.5	6.0	0.330	1234	00	4.5	23.0	0.2	0.344	1340
03	1.5	11.5	5.7	0.490	1235	00	5.0	23.8	1.1	0.323	1345
03	2.0	11.0	4.9	0.423	1235	00	5.5	23.9	7.5	0.315	1346
63	2.5	11.0	4.2	0.361	1235	66	6.0	23.9	7.0	0.294	1347
63	3.0	11.6	2.7	0.234	1235	56	6.5	23.9	6.6	0.278	1347
63	3.5	11.7	1.6	0.138	1235	66	7.0	23.9	6.3	0.262	1347
63	4.0	11.7	1.0	0.088	1236	66	7.5	24.0	5.9	0.245	1347
63	4.5	11.7	0.4	0.030	1236	66	8.0	24.0	5.4	0.227	1348
63	5.0	11.8	0.1	0.010	1236	66	8.5	24.0	4.9	0.206	1348
63	5.5	11.8	<0.1	0.004	1236	66	9.0	24.0	4.8	0.199	1348
63	6.0	12.1	⊲0.1	0.001	1237	66	9.5	24.1	4.5	0.187	1348
63	6.5	12.3	⊲0.1	0.001	1237	66	10.0	24.1	4.1	0.172	1349
63	7.0	12.4	<0.1	⊲0.001	1237	66	11.0	24.1	3.7	0.155	1349
						66	12.0	24.1	3.3	0.137	1349
64	0.0	77.0	91.4	1.187	1453	66	13.0	24.2	2.9	0.120	1349
64	0.5	37.4	. 13.8	0.369	1453	66	14.0	24.3	2.3	0.096	1350
64	1.0	35.6	4.6	0.128	1453	66	15.0	24.3	1.7	0,070	1350
64	1.5	32.3	1.4	0.044	1454	66	16.0	24.3	1.5	0.062	1350
64	2.0	36.7	0.4	0.012	1454	66	17.0	24 3	1.2	0.054	1360
64	2.5	39.6	0.2	0,005	1454	50 56	18 0	24.5 24 A	1 2	0.034	1351
64	3.0	48 2	<0.1	0.001	1454	33	19.0	24 4	n e	0.04/	1251
64	3 5	54 0	<0.1		1455	33	20.0	24 4	0.0	0.035	1951
64	4.0	56 5	-0.1	-0.001	1455	66	21 0	24.4	0.5	0.020	1351
04	7.0	50.5	~0.1	~0.001	1400	00 66	22.0	6414 24 F	0.3	0.013	1321
65	0 0	17 0	7 ۵	0 547	1912	00 66	22.0	24.5	0.2	0.009	1351
65 6F	0.0	17.0	3./	0.041	1012	00	23.0	24.5	0.2	0.006	1352
63	0.5	1/.9	3.0	0.200	1815	66	24.0	24.5	0.1	0.005	1352

Table 19. Photosynthetically available irradiation (mE·m⁻²·min⁻¹) water column profile data for 1987 (CONTINUED).

· 4

Sample Number	Water Sensor (m)	Sensor Reading	Sensor Reading	Surface Ratio	Time	Sample Number	Water Sensor (m)	Surrace Sensor Reading	water Sensor Reading	Water/ Surface Ratio	Time
66	25.0	24.4	<0.1	0.004	1352	69	5.0	57.1	2.1	0.036	1429
66	26.0	24.4	<0.1	0.003	1352	69	5.5	60.7	2.0	0.034	1430
			•••			69	6.0	73.0	2.0	0.028	1430
67	0.0	23.7	19.6	0.827	1135	69	6.5	58.6	2.0	0.034	1430
67	0.5	22.5	9.4	0.417	1135	69	7.0	84.4	2.0	0.024	1430
67	1.0	21.7	2.8	0.130	1135	69	7.5	74.0	2.0	0.027	1431
67	1.5	21.7	2.4	0.111	1136	69	8.0	63.9	1.9	0.030	1431
67	2.0	22.4	2.1	0.093	1136	69	8.5	60.8	1.9	0.032	1431
67	2.5	23.7	2.0	0.083	1136	69	9.0	51.9	1.9	0.037	1431
67	3.0	24.1	1.9	0.081	1136	69	9.5	48.2	1.9	0.039	1431
67	3.5	24.0	1.9	0.080	1136	69	10.0	47.9	1.9	0.040	1432
67	4.0	23.4	1.9	0.082	1137	69	11.0	41.0	1.9	0.047	1432
67	4.5	22.4	1.9	0.085	1137	69	12.0	40.5	1.9	0.047	1432
67	5.0	23.1	1.9	0.082	1137	69	13.0	44.1	1.9	0.043	1433
67	5.5	23.4	1.9	0.081	1138	69	14.0	58.1	1.9	0.033	1433
						69	15.0	52.9	1.9	0.036	1433
68	0.0	11.5	10.0	0.871	1530	69	16.0	70.6	1.9	0.027	1434
68	0.5	11.6	8.7	0.752	1530	69	17.0	93.3	1.9	0.020	1434
58	1.0	11.6	7.3	0.627	1531	69	18.0	33.8	1.8	0.053	1435
68	1.5	11.6	6.3	0.538	1531	69	19.0	32.4	1.8	0.055	1435
68	2.0	11.1	5.5	0.49/	1531	69	20.0	29.6	1.5	0.055	1436
68 60	2.5	11.1	4.5	0.407	1531						
68	3.0	11.4	4.1	0.356	1532	70	0.0	16.9	9.3	0.552	1550
68	3.5	11.4	3.7	0.321	1532	70	0.5	16.8	2.2	0.132	1550
68	4.0	11.4	3.3	0.293	1532	70	1.0	16.6	1.7	0.105	1550
68	4.5	11.2	3.2	0.288	1532	70	1.5	16.5	1.7	0.104	1551
68	5.0	11.5	3.0	0.264	1532	70	2.0	16.4	1.7	0.104	1551
68	5.5	11.2	3.0	0.266	1533	70	2.5	16.2	1.7	0.104	1551
68	0.0	11.0	2.9	0.249	1533	70	3.0	16.2	1./	0.104	1551
60	0.5	11.1	2.8	0,251	1533	70	3.5	16.2	1.7	0.104	1551
60	7.0	11.4	2.7	0.240	1533	70	4.0	10.1	1.7	0.104	1552
69	7.5	12.1	2.7	0.222	1535	70	4.5	10.3	1.7	0.102	1552
68	8.5	12.5	2.5	0.214	1534	70	5.0	16.5	1.7	0.101	1552
68	9.0	12.5	2.6	0.207	1534	70	5.5	16.5	1.7	0.100	1552
68	9.5	12.8	2.6	0.205	1534	70	6.5	16.5	1.6	0.100	1553
68	10.0	13.0	2.6	0.197	1535	70	7.0	16.2	1.7	0.102	1553
68	11.0	12.5	2.5	0.201	1535	70	7.5	16.1	1.6	0.102	1553
68	12.0	12.6	2.5	0.199	1535	70	8.0	15.8	1.6	0.104	1554
68	13.0	12.7	2.5	0.196	1535	70	8.5	15.7	1.6	0.104	1554
68	14.0	12.7	2.5	0.197	1536	70	9.0	15.5	1.6	0.105	1554
68	15.0	12.6	2.5	0.197	1536	70	9.5	15.4	1.6	0.105	1554
						70	10.0	15.3	1.6	0.105	1554
69	0.0	78.7	54.9	0.699	1427	70	11.0	15.2	1.6	0.106	1555
69	0.5	79.0	7.8	0.099	1427	70	12.0	15.0	1.6	0.107	1555
69	1.0	49.2	2.9	0.060	1427	70	13.0	15.1	1.6	0.106	1555
69	1.5	24.3	2.3	0.096	1428	70	14.0	15.0	1.6	0.107	1555
69	2.0	25.8	2.2	0.085	1428	70	15.0	14.9	1.6	0.108	1555
69	2.5	42.7	2.2	0.051	1428	70	16.0	14.7	1.6	0.109	1556
69	3.0	76.6	2.1	0.028	1428	70	17.0	14.6	1.6	0.109	1556
69	3.5	79.2	2.1	0.027	1429	70	18.0	14.5	1.6	0.111	1556
69	4.0	79.9	2.1	0.026	1429	70	19.0	14.6	1.6	0.110	1556
69	4.5	78.5	2.1	0.027	1429	70	20.0	14.7	1.6	0.108	1557

Table 19. Photosynthetically available irradiation (mE·m⁻²·min⁻¹) water column profile data for 1987 (CONTINUED).

Profile Sample Number	Depth of Water Sensor (m)	Surface Sensor Reading	Water Sensor Reading	Water/ Surface Ratio	Time	Profile Sample Number	Depth of Water Sensor (m)	Surface Sensor Reading	Water Sensor Reading	Water/ Surface Ratio	Time
1	0.0	2.5	1.9	0.757	0924	4	2.0	8.2	1.0	0.119	1030
1	0.5	2.5	1.0	0.377	0924	4	2.5	8.3	0.6	0.071	1030
1	1 0	2.6	0.3	0.132	0924	4	3.0	8.3	0.4	0.048	1030
1	1.5	2.6	0.3	0 135	0924	4	35	8.4	0.3	0 031	1030
1	2.0	2.6	0.5	0.100	0925	4	4.0	8.4	0.0	0.022	1031
1	2.0	2.6	0.1	0.042	0925	4	4.0	85	0.1	0.014	1031
1	2.5	2.0	0.1	0.072	0925	4	5.0	0.5	~0.1	0.014	1031
1	3.0	2.0	~0.1	0.027	0925	4	5.0	0.5	<0.1	0.000	1031
1	3.5	2.7	<0.1	0.018	0925	2	5.5	0.5	Q.1	0.003	1031
1	4.0	2.7	<0.1	0.011	0920	4	6.0	0.0	<0.1 -0.1	0.007	1032
I	4.5	2.1	40.1	0.006	0350	4	0.5	0.7	-0.1 -0.1	0.005	1032
•			<i>с</i> ,	1 001	1010	4	7.0	8.7	40.1	0.005	1032
2	0.0	4.9	5.4	1.091	1012	4	7.5	8.8	<0.1	0.004	1032
2	0.5	4.9	3.1	0.630	1013	4	8.0	8.8	<0.1	0.004	1033
2	1.0	5.0	1.6	0.328	1013	4	8.5	8.9	⊲0.1	0.003	1033
2	1.5	5.0	1.2	0.245	1013	4	9.0	8.9	<0.1	0.003	1033
2	2.0	5.0	0.7	0.150	1013	4	9.5	8.9	<0.1	0.002	1033
2	2.5	5.0	0.4	0.087	1014	4	10.0	8.9	<0.1	0.002	1034
2	3.0	5.0	0.3	0.057	1014	4	11.0	8.9	<0.1	0.001	1034
2	3.5	5.0	0.2	0.036	1014	4	12.0	8.9	⊲0.1	0.001	1034
2	4.0	5.0	0.1	0.024	1014	4	13.0	8.9	<0.1	0.001	1035
2	4.5	5.0	<0.1	0.015	1014						
2	5.0	5.0	⊲0.1	0.011	1015	5	0.0	5.4	4.1	0.754	942
2	5.5	5.1	⊲0.1	0.009	1015	5	0.5	5.4	2.2	0.414	943
2	6.0	5,1	⊲0.1	0.007	1015	5	1.0	5.4	1.2	0.229	943
2	6.5	5.1	⊲0.1	0.006	1016	5	1.5	5.5	0.9	0.157	943
2	7.0	5.1	⊲0.1	0.005	1016	5	2.0	5.5	0.6	0.110	944
2	7.5	5.1	⊲0.1	0.004	1016	5	2.5	5.5	0.4	0.072	944
2	8.0	5.1	<0.1	0.004	1016	5	3.0	5.5	0.3	0.048	945
2	8.5	5.2	<0.1	0.003	1018	5	3.5	5.5	0.2	0.032	945
2	9.0	5.2	⊲0.1	0.003	· 1018	5	4.0	5.6	0.1	0.022	945
2	9.5	5 2	<0.1	0.002	1018	5	4.5	5.6	<0.1	0.014	945
2	10.0	5.3	<0.1	0.002	1019	5	5.0	5.6	<0.1	3.012	946
2	11.0	5 3	<0.1	0.002	1019	5	5.5	5.6	<0.1	0.010	946
2	12.0	5.3	<0.1	0.001	1020	5	6.0	5.6	<0.1	0.008	946
•	12.00	0.0		0.001	1000	5	6.5	5.6	<0.1	0.007	946
3	0.0	23 1	12.3	0.531	1634	5	7.0	5.6	<0.1	0.005	946
2	0.5	23 1	4.0	0.173	1635	5	7.5	5.0	≪0.1	0.005	947
3	1.0	23.1	2.5	0.110	1635	5	8.0	57	<0.1	0.003	947
2	1.5	22.0	1.8	0.020	1635	s s	8.5	57	<0.1	0.004	047
2	2.0	23.0	1 2	0.055	1625	2	0.5	3.7	-0.1	0.004	341
2	2.0	22.0	1.5	0.035	1635	6	0.0			0 670	1702
3	2.5	23.0	0.0	0.030	1636	6	0.0	3.3	2.0	0.070	1703
3	3.0	22.9	0.6	0.025	1030	U C	0.5	9.9	3.7	0.370	1703
3	3.5	22.9	0.4	0.010	1037	0	1.0	9.9	2.2	0.228	1703
3	4.0	22.8	0.3	0.011	1637	0	1.5	9.9	1.5	0.152	1/03
3	4.5	22.8	0.2	0.008	1637	0	2.0	9.9	0.9	0.096	1/04
3	5.0	22.8	0.1	0.005	1637	6	2.5	9.9	0.5	0.065	1704
3	5.5	22.8	0.1	0.005	1638	6	3.0	9.9	0.4	0.044	1704
3	6.0	22.7	<0.1	0.004	1638	6	3.5	10.0	0.3	0.028	1704
3	6.5	22.7	⊲0.1	0.003	1638	6	4.0	10.0	0.2	0.018	1705
3	7.0	22.7	<0.1	0.002	1639	6	4.5	9.9	0.1	0.013	1705
3	7.5	22.7	<0.1	0.002	1639						
3	8.0	22.9	<0.1	0.002	1639	7	0.0	33.4	24.7	0.739	1143
3	8.5	20.7	<0.1	0.002	1640	7	0.5	33.1	16.0	0.484	1143
3	9.0	16.6	⊲0.1	0.001	1640	7	1.0	32.7	7.0	0.214	1143
3	9.5	20.3	<0.1	0.001	1641	7	1.5	32.3	4.4	0.135	1143
•						7	2.0	32.3	2.6	0.082	1143
4	0.0	8.2	6.6	0.805	1029	7	2.5	32.4	1.8	0.055	1144
4	0.5	8.2	3.8	0.461	1029	7	3.0	32.6	1.2	0.037	1144
4	1.0	8.2	2.3	0.278	1029	7	3.5	33.1	8.0	0.025	1144
4	1.5	8.2	1.5	0.178	1029	7	4.0	33.4	0.6	0.019	1144

Table 20. Photosynthetically available irradiation ($mE \cdot m^{-2} \cdot min^{-1}$) water column profile data for 1988.

Profile Sample Number	Depth of Water Sensor (m)	Surface Sensor Reading	Water Sensor Reading	Water/ Surface Ratio	Time	Profile Sample Number	Depth of Water Sensor (m)	Surface Sensor Reading	Water Sensor Reading	Water/ Surface Ratio	Time
7	4.5	33.7	0.5	0.014	1145	10	5.5	11.1	2.3	0.208	1036
/	4.8	33.7	0.4	0.011	1145	10	7.0	11.1	2.1	0.192	1037
•		7.0	E 1	0 733	1000	10	7.5	11.1	1.9	0.1/4	1037
8	0.0	7.0	5.1	0.732	1000	10	8.0	11.1	1./	0.150	103/
0	0.5	7.0	2.0	0.3/2	1000	10	8.5	11.1	1.5	0.13/	103/
8	1.0	7.0	1.5	0.215	1001	10	9.0	11.1	1.8	0.162	1038
•	1.5	7.0	0.9	0.120	1001	10	9.5	11.1	2.1	0.188	1038
0	2.0	7.0	0.4	0.001	1001	11		• •	17	0.740	0050
0	2.5	7.1	0.3	0.040	1001	11	0.0	2.3	1.7	0.740	0050
• •	3.0	7.1	0.2	0.025	1001	11	1.5	2.4	0.8	0.354	0050
	3.5	7.1	0.1	0.017	1002	11	1.0	2.4	0.4	0.1/4	0851
8	4.0	7.1	<0.1	0.012	1002	11	1.5	2.4	0.2	0.098	0851
0	4.5	7.2	<0.1	0.009	1002	11	2.0	2.4	0.1	0.051	0851
	5.0	7.2	<0.1	0.00/	1002	11	2.5	2.4	40.1	0.029	0851
0	5.5	7.2	<0.1	0.006	1002	11	3.0	2.4	<0.1	0.015	0852
8	6.0	7.2	⊲.1	0.005	1003	11	3.5	2.5	<0.1	0.009	0852
8	0.5	7.2	<0.1	0.004	1003	11	4.0	2.5	⊲0.1	0.006	0852
8	7.0	7.3	⊲0.1	0.003	1003	11	4.5	2.5	⊲0.1	0.004	0852
8	7.5	/.3	<0.1	0.003	1003	11	5.0	2.5	⊲0.1	0.003	0853
8	8.0	7.3	⊲0.1	0.002	1004	11	5.5	2.5	<0.1	0.002	0853
8	8.5	7.4	⊲0.1	0.002	1004						
8	9.0	/.4	⊲0.1	0.002	1004	12	0.0	31.3	23.5	0.750	1620
8	9.5	7.4	<0.1	0.001	1004	12	0.5	31.2	13.4	0.428	1620
8	10.0	7.5	<0.1	0.001	1005	12	1.0	31.2	6.8	0.219	1620
8	11.0	7.5	<0.1	0.001	1005	12	1.5	31.2	4.5	0.145	1620
						12	2.0	31.2	3.5	0.111	1621
9	0.0	14.5	10.4	0.717	1634	12	2.5	31.4	2.9	0.091	1621
9	0.5	14.5	5.7	0.393	1634	12	3.0	31.4	2.5	0.080	1621
9	1.0	14.5	2.9	0.203	1635	12	3.5	31.4	2.3	0.074	1621
9	1.5	14.5	1.6	0.113	1635	12	4.0	31.4	2.1	0.068	1621
9	2.0	14.6	1.0	0.066	1635	12	4.5	31.4	3.1	0.098	1622
9	2.5	14.6	0.5	0.037	1635						
9	3.0	14.5	0.3	0.022	1635	14	2.0	28.8	0.2	0.006	1625
9	3.5	14.5	0.2	0.014	1636	14	2.5	28.8	0.1	0.005	1625
9	4.0	14.4	0.1	0.010	1636	14	3.0	28.6	<0.1	0.003	1627
9	4.5	14.3	⊲0.1	0.007	1636	14	3.5	28.6	⊲0.1	0.002	1627
9	5.0	14.4	⊲0.1	0.005	1636	14	4.0	28.6	<0.1	0.002	1627
9	5.5	14.4	⊲0.1	0.004	1637	14	4.5	28.5	<0.1	0.002	1628
9	6.0	14.5	⊲0.1	0.003	1637	14	5.0	28.4	⊲0.1	0.001	1628
9	6.5	14.5	⊲0.1	0.003	1637	14	5.5 -	28.4	⊲0.1	0.001	1629
9	7.0	14.5	<0,1	0.002	1637	14	6.0	28.3	⊲0.1	0.001	1629
9	7.5	14.5	⊲0.1	0.002	1638						
9	8.0	14.5	<0.1	0.002	1638	17	1.5	36.7	0.4	0.012	1611
9	8.5	14.4	⊲0.1	0.001	1638	17	2.0	36.6	0.3	0.009	1611
9	9.0	14.4	<0.1	0.001	1638	17	2.5	36.4	0.2	0.006	1612
9	9.5	14.4	<0.1	0.001	1638	17	3.0	36.1	0.2	0.005	1612
						17	3.5	36.1	0.1	0.003	1612
10	0.0	11.1	10.7	0.965	1033	17	4.0	36.0	<0.1	0.002	1613
10	0.5	11.1	6.8	0.611	1033	17	4.5	35.9	<0.1	0.001	1613
10	1.0	11.2	5.6	0.499	1033	17	5.0	35.9	<0.1	0.001	1614
10	1.5	11.2	4.7	0.416	1034	17	5.5	35.8	<0.1	0.001	1614
10	2.0	11.1	3.3	0,296	1034						
10	2.5	11.2	2.9	0.263	1034	19	1.0	39.6	0.3	0.009	1504
10	3.0	11.1	2.7	0.243	1034	. 19	1.5	39.6	0.3	0.008	1504
10	3.5	11.1	2.5	0.221	1035	19	2.0	39.6	0.3	0.008	1505
10	4.0	11.1	2.4	0.213	1035	19	2.5	39.5	0.3	0.007	1505
10	4.5	11.1	2.9	0.259	1035	19	3.0	39.4	0.2	0.006	1505
10	5.0	11.1	3.5	0.312	1036	19	3.5	39.4	0.2	0.005	1506
10	5.5	11.1	3.4	0.310	1036	19	4.0	39.3	0.2	0.005	1506
10	6.0	11.1	2.4	0.219	1036	19	4.5	39.2	0.2	0.004	1506

Table 20. Photosynthetically available irradiation ($mE \cdot m^{-2} \cdot min^{-1}$) water column profile data for 1988 (CONTINUED).

Profile Sample Number	Depth of Water Sensor (m)	Surface Sensor Reading	Water Sensor Reading	Water/ Surface Ratio	Time	Profile Sample Number	Depth of Water Sensor (m)	Surface Sensor Reading	Water Sensor Reading	Water/ Surface Ratio	Time
19	5.0	38.8	0.1	0.004	1506	22	5.5	54.1	0.3	0.006	1401
19	5.0	38.6	0.1	0.003	1507	22	6.0	54.3	0.3	0.006	1401
19	6.0	38.6	0.1	0.003	1507	22	6.5	54.5	0.3	0.005	1402
19	6.5	38.4	⊲0.1	0.002	1507	22	7.0	54.5	0.3	0.005	1402
19	7.0	38.4	<0.1	0.002	1507	22	7.5	54.5	0.2	0.004	1402
19	7.5	38.3	<0.1	0.002	1507	22	8.0	54.6	0.2	0.004	1402
19	8.0	38.3	<0.1	0.002	1508	22	8.5	54.8	0.2	0.004	1402
19	8.5	38.3	<0.1	0.002	1508	22	9.0	54.7	0.2	0.004	1403
19	9.0	38.2	<0.1	0.002	1508	22	9.5	54.6	0.2	0.003	1403
19	9.5	38.1	<0.1	0.002	1508	22	10.0	54.5	0.2	0.003	1403
19	10.0	38.1	<0.1	0.001	1509	22	11.0	54.5	0.2	0.003	1403
19	11.0	38.3	<0.1	0.001	1509	22	12.0	54.3	0.1	0.003	1404
19	12.0	38.1	<0.1	0.001	1509	22	13.0	54.3	0.1	0.002	1404
						22	14.0	54.2	0.1	0.002	1404
22	1.0	54.7	0.9	0.017	1358	22	15.0	54.2	⊲0.1	0.002	1405
22	1.5	54.8	0.7	0.012	1359	22	16.0	54.2	<0.1	0.002	1405
22	2.0	54.8	0.7	0.013	1359	22	16.3	54.1	<0.1	0.001	1405
22	2.5	54.7	0.6	0.011	1359						
22	3.0	54.6	0.5	0.010	1359	25	1.5	44.5	0.1	0.003	1348
22	3.5	54.3	0.5	0.009	1400	25	2.0	43.3	⊲0.1	0.001	1348
22	4.0	53.9	0.4	0.008	1400	25	2.5	42.1	<0.1	0.001	1349
22	4.5	54.0	0.4	0.007	1401	25	3.0	37.4	⊲0.1	0.001	1349
22	5.0	54.0	0.3	0.006	1401						

Table 20. Photosynthetically available irradiation $(mE \cdot m^{-2} \cdot min^{-1})$ water column profile data for 1988 (CONTINUED).

Table 21. Light extinction coefficients at one offshore (86068), two Kugmallit Bay (86036, 86041) and two Tuktoyaktuk Harbour stations sampled in 1986, in comparison to Secchi depth and salinity.

Station	Date	Extinction Coefficient (m ⁻¹)	Station Depth (m)	Secchi Depth (m)	Surface Salinity (Practical Scale)
86068	18 August	0.04	51	14.8	31
86036	23 July	0.23	5	0.8	25
86041	26 July	0.33	6	0.9	30
86THS	07 August	0.48	23	1.2	12
86THN	07 August	0.71	22	0.3	10

Profile Sample Number	Quadrant Number	Underice Surface	Surface Sensor Reading	Water Sensor Reading	Water/ Surface Ratio	Time	Snow Depth (cm)	Profile Sample Number	Quadrant Number	Underice Surface	Surface Sensor Reading	Water Sensor Reading	Water/ Surface Ratio	Time	Snow Depth (cm)
13	1	Pre-scrape	40.0	0.5	0.013	1549	2	22	1	Pre-scrape	39.8	0.3	0.007	0914	2
13	1	Post-scrape	40.7	0.9	0.022	1549	_	22	1	Post-scrape	42.5	0.9	0.022	0915	_
13	2	Pre-scrape	40.5	0.5	0.012	1550		22	2	Pre-scrape	41.3	0.3	0.008	0916	
13	2	Post-scrape	38.3	1.0	0.025	1551		22	2	Post-scrape	44.2	1.0	0.022	0917	
13	3	Pre-scrape	37.9	0.5	0.013	1552		22	3	Pre-scrape	44.2	0.5	0.011	0918	
13	3	Post-scrape	38.2	0.9	0.024	1553		22	3	Post-scrape	45.5	0.9	0.020	0919	
13	4	Pre-scrape	35.8	0.4	0.012	1554		22	4	Pre-scrape	45.6	0.3	0.008	0919	
13	4	Post-scrape	37.1	0.9	0.025	1555		22	4	Post-scrape	45.1	0.9	0.019	0920	
15	1	Pre-scrape	43.0	0.9	0.021	1136	1	24	1	Pre-scrape	51.6	<0.1	0.001	0931	14
15	1	Post-scrape	42.6	1.1	0.025	1137		24	1	Post-scrape	50.0	<0.1	0.001	0931	
15	2	Pre-scrape	41.6	0.7	0.016	1137		24	2	Pre-scrape	41.8	<0.1	0.001	0932	
15	2	Post-scrape	39.9	0.9	0.024	1139		24	2	Post-scrape	39.5	<0.1	0.002	0933	
15	3	Pre-scrape	38.8	1.2	0.030	1140		24	3	Pre-scrape	38.4	<0.1	0.001	0933	
15	3	Post-scrape	38.0	1.4	0.036	1141		24	3	Post-scrape	36.7	<0.1	0.002	0934	
15	4	Pre-scrape	37.6	1.0	0.027	1142		24	4	Pre-scrape	34.7	<0.1	0.001	0935	
15	4	Post-scrape	38.5	1,1	0.029	1143		24	4	Post-scrape	35.9	<0.1	0.001	0935	
17	1	Pre-scrape	37.5	1.3	0.034	1207	1	26	1	Pre-scrape	90.4	4.4	0.049	1454	2
17	1	Post-scrape	37.8	1.6	0.041	1208		26	1	Post-scrape	89.8	4.6	0.052	1455	
17	2	Pre-scrape	38.0	1.3	0.034	1208		26	2	Pre-scrape	89.0	4.8	0.054	1455	
17	2	Post-scrape	38.2	1.6	0.041	1209		26	2	Post-scrape	88.7	6.2	0.070	1456	
17	3	Pre-scrape	38.0	1.1	0.029	1210		26	3	Pre-scrape	89.2	5.7	0.064	1456	
17	3	Post-scrape	38.3	1.3	0.035	1211		26	3	Post-scrape	88.0	7.5	0.085	1457	
17	4	Pre-scrape	38.9	1.2	0.031	1211		26	4	Pre-scrape	87.1	5.6	0.065	1458	
17	4	Post-scrape	39.3	1.6	0.040	1212		26	4	Post-scrape	85.6	6.7	0.078	1459	
19	1	Pre-scrape	56.8	0.3	0.005	1333	14	28	1	Pre-scrape	80.6	2.5	0.031	1516	2
19	1	Post-scrape	58.2	0.3	0.004	1336		28	1	Post-scrape	81.2	3.5	0.043	1517	
19	2	Pre-scrape	58.2	0.3	0.004	1336		28	2	Pre-scrape	79.7	2.5	0.031	1518	
19	2	Post-scrape	58.2	0.3	0.004	1336		28	2	Post-scrape	79.1	2.9	0.037	1519	
								28	3	Pre-scrape	80.9	2.7	0.034	1520	
20	1	Pre-scrape	38.6	0.6	0.015	0920	3	28	3	Post-scrape	75.0	3.5	0.047	1521	
20	1	Post-scrape	38.8	0.6	0.015	0920		28	4	Pre-scrape	70.6	2.3	0.033	1522	
20	2	Pre-scrape	38.9	0.6	0.014	0921		28	4	Post-scrape	/0.4	2.8	0.040	1523	
20	2	Post-scrape	39.2	0.6	0.014	0921				-					_
20	3	Pre-scrape	39.3	0.6	0.016	0922		30	1	Pre-scrape	58.6	0.2	0.003	1838	5
20	3	Post-scrape	39.4	0.6	0.016	0922		30	1	Post-scrape	58.5	0.3	0.004	1839	
20	4	Pre-scrape	39.5	0.7	0.018	0923		30	Z	rre-scrape	58.3	0.2	0.003	1839	
20	4	Post-scrape	39,7	0.7	0.018	0923		30	2	Post-scrape	58.2	0.3	0.004	1840	

Table 22. Photosynthetically available irradiation (mE·m $^{-2}$ ·min $^{-1}$) data for pre- and post-scraping of underice surfaces in 1987.

٠

Profile Sample Number	Quadrant Number	Underice Surface	Surface Sensor Reading	Water Sensor Reading	Water/ Surface Ratio	Time	Snow Depth (cm)	Profile Sample Number	Quadrant Number	Underice Surface	Surfac e Sensor Reading	Water Sensor Reading	Water/ Surface Ratio	Time	Snow Depth (cm)
30	3	Pre-scrape	58.0	0.2	0.003	1841		34	1	Pre-scrape	77.6	<0.1	0.001	1444	15
30	3	Post-scrape	57.8	0.2	0.004	1841		34	1	Post-scrape	77.3	0.1	0.002	1446	
30	4	Pre-scrape	57.6	0.2	0.003	1842		34	2	Pre-scrape	76.1	<0.1	0.001	1446	
30	4	Post-scrape	57.5	0.2	0.004	1843		34	2	Post-scrape	71.5	<0.1	0.001	1448	
								34	3	Pre-scrape	72.4	<0.1	0.001	1449	
32	1	Pre-scrape	52.5	0.2	0.003	1908	5	34	3	Post-scrape	76.6	0.1	0.001	1450	
32	1	Post-scrape	52.2	0.3	0.005	1909		34	4	Pre-scrape	83.0	<0.1	0.001	1451	
32	2	Pre-scrape	52.1	0.2	0.004	1909		34	4	Post-scrape	79.4	<0.1	0.001	1452	
32	2	Post-scrape	51.8	0.3	0.005	19 10									
32	3	Pre-scrape	51.6	0.2	0.004	1911		36	1	Pre-scrape	69.7	0.1	0.002	1509	16
32	3	Post-scrape	51.3	0.3	0.005	1912		36	1	Post-scrape	70.7	0.2	0.002	1510	
32	4	Pre-scrape	51.2	0.2	0.003	1913		36	2	Pre-scrape	69.4	0.1	0.002	1511	
32	4	Post-scrape	51.0	0.2	0.004	1913		36	2	Post-scrape	78.1	0.2	0.002	1512	
								36	3	Pre-scrape	83.7	0.2	0.002	1513	
								36	3	Post-scrape	78.1	0.2	0.002	1514	
								36	4	Pre-scrape	75.2	0.1	0.002	1515	
								36	4	Post-scrape	72.6	0.2	0.002	1516	

• .

4

Table 22. Photosynthetically available irradiation (mE·m⁻²·min⁻¹) data for pre- and post-scraping of underice surfaces in 1987 (CONTINUED).

Profile Sample Number	Quadrant Number	Underice Surface	Surface Sensor Reading	Water Sensor Reading	Water/ Surface Ratio	Time	Snow Depth (cm)	Profile Sample Number	Quadrant Number	Underice Surface	Surface Sensor Reading	Water Sensor Reading	Water/ Surfac e Ratio	Time	Snow Depth (cm)
13	1	Pre-scrape	29.3	0.2	0.007	1620	5	20	3	Pre-scrape	40.3	0.1	0.003	1521	
13	1	Post-scrape	29.2	0.2	0.007	1621		20	3	Post-scrape	40.0	0.4	0.011	1522	
13	2	Pre-scrape	29.2	0.2	0.007	1621		20	4	Pre-scrape	39.9	0.2	0.006	1522	
13	2	Post-scrape	29.1	0.2	0.006	1622		20	4	Post-scrape	39.8	0.3	0.007	1523	
13	3	Pre-scrape	29.0	0.2	0.006	1623									
13	3	Post-scrape	29.0	0.2	0.006	1623		21	1	Pre-scrape	55.3	1.4	0.025	1354	3
13	4	Pre-scrape	28.9	0.2	0.006	1624		21	1	Post-scrape	55.4	2.3	0.042	1355	-
13	4	Post-scrape	28.9	0.2	0.006	1624		21	2	Pre-scrape	54.9	0.9	0.016	1355	
								21	2	Post-scrape	55.0	2.7	0.049	1356	
15	1	Pre-scrape	34.4	<0.1	0.003	1646	20	21	3	Pre-scrape	55.0	1.0	0.018	1356	
15	1	Post-scrape	34.1	<0.1	0.002	1647		21	3	Post-scrape	54.4	2.6	0.048	1357	
15	2	Pre-scrape	34.1	<0.1	0.002	1647		21	4	Pre-scrape	54.5	0.9	0.017	1357	
15	2	Post-scrape	34.0	<0.1	0.002	1648		21	Å	Post-scrape	54.7	2.3	0.043	1358	
15	3	Pre-scrape	34.0	<0.1	0.001	1648			•		•		01010	1000	
15	3	Post-scrane	33.9	<0.1	0.001	1649		23	1	Pre-scrane	48.6	0.7	0.014	1414	4
15	4	Presscrape	33.8	<0.1	0.001	1649		23	ĩ	Post_scrape	48.2	1 1	0.023	1415	
15	4	Post-scrane	33.8	<0.1	0.001	1650		23	2	Pro-scrape	47.0	0.6	0.012	1415	
10	•	i osc-sci apc	50.0	-011	0.001	1000		23	2	Post_scrape	47.5	1 4	0.012	1416	
16	1	Pre-scrane	37 7	0.4	0 011	1605	2	23	2	Pre-ecrane	47.0	0.6	0.000	1417	
16	1	Post-scrupe	27 6	0.4	0.024	1605	•	22	2	Poet compo	47.0	1.2	0.012	1417	
16	2	Pro-terano	37.5	0.5	0.024	1607		23	3	Post-scrape	46.0	0.4	0.020	1417	
16	2	Post_comana	37.5	0.6	0.010	1607		23	4	Pre-scrape	40.3	0.4	0.009	1410	
16	2	Pre-scrape	37.5	0.0	0.017	1609		25	-	rost-sci ape	40.0	0.9	0.010	1413	
16	3	Post compo	27 4	0.4	0.021	1600		24	1	Due	A0 A	0.1	0 002	1544	10
16	3	Prost-scrape	37.4	0.8	0.021	1600		24	1	Pre-scrape	43.4	×0.1	0.002	1344	10
16	4	Pre-scrape	37.3	0.5	0.012	1610		24	3	Post-scrape	40.0	~0.1	0.002	1044	
10	4	Post-scrape	3/.2	0.0	0.020	1010		24	2	Pre-scrape	49.0	0.1	0.002	1343	
10	1	0	20 0	• •	0.011	1460	2	24	2	Pust-scrape	52,3	0.1	0.002	1343	
10	1	Pre-scrape	30.9	1.0	0.011	1409	2	24	3	Pre-scrape	49.9	0.2	0.003	1340	
10	1	Post-scrape	39.0	1.0	0.024	1500		24	3	Post-scrape	40.8	0.1	0.003	1340	
10	2	Pre-scrape	39.5	0.4	0.010	1501		24	-	Pre-scrape	40.9	0.2	0.003	1340	
10	2	Post-scrape	39.8	0.8	0.020	1502		24	4	Post-scrape	40.1	0.2	0.003	134/	
10	3	Pre-scrape	39.9	0.4	0.011	1502				0	<u> </u>	.0.1	.0.001		
18	3	Post-scrape	40.1	0.9	0.023	1503		20	1	rre-scrape	30.0	<0.1	<0.001	1412	35
18	4	Pre-scrape	40.1	0.5	0.012	1503	•	26	1	Post-scrape	39.0	<0.1	<0.001	1413	
18	4	rost-scrape	40.0	1.0	0.024	1203		20	2	rre-scrape	3/.4	<0.1	<0.001	1413	
							•	25	Z	Post-scrape	36.3	<0.1	<0.001	1413	
20	1	Pre-scrape	41.1	0.1	0.004	1518	Z	26	3	Pre-scrape	35.5	<0.1	0.001	1414	
20	1	Post-scrape	40.9	0.2	0.004	1519		26	3	Post-scrape	37.0	<0.1	0.001	1414	
20	2	Pre-scrape	40.5	<0.1	0.002	1520		26	4	Pre-scrape	3/.2	<0.1	0.001	1415	
20	Z	Post-scrape	40.5	<0.1	0.002	1521		26	4	Post-scrape	36.0	<0.1	0.001	1415	

Table 23. Photosynthetically available irradiation $(mE \cdot m^{-2} \cdot min^{-1})$ data for pre- and post-scraping of underice surfaces in 1988.

,

.

**

Profile Sample Number	Surface Sensor Reading (mE•m ⁻² •min ⁻¹)	Underwater Sensor Reading (mE•m ⁻² •min ⁻¹)	Underwater/ Surface Ratio	Time
22	35.3	27.7	0.78	0913
26	92.7	110.4	1.19	1453
30	59.0	45.1	0.76	1836
32	53.0	42.8	0.81	1906
34	78.8	91.4	1.17	1442
36	75.6	81.0	1.07	1506

Table 24. In-air sensitivity comparison of surface sensor (LI-190SA) to underwater sensor (LI-192SA) fitted with ice scraper, 1987.

Table 25. In-air sensitivity comparison of surface sensor (LI-190SA) to underwater sensor (LI-192SA) fitted with ice scraper, 1988.

Profile Sample Number	Surface Sensor Reading (mE•m ⁻² •min ⁻¹)	Underwater Sensor Reading (mE•m ⁻² •min ⁻¹)	Underwater/ Surface Ratio	Time	
18	38.3	35.1	0.92	1458	
20	40.8	23.6	0.58	1517	
21	54.6	51.7	0.95	1353	
23	49.5	51.9	1.04	1414	
24	56.4	42.0	0.74	1342	
26	37.5	31.4	0.83	1416	

Scientifc Name and	Phylogenetic Relationship	Authority	Species Code
Kingdom Protista			020000
Phylum Chrysophyta	1		
Class Bactillar	Achasthac teorists	Courses 1890	020001
	Amphinnora alata	(Ebrenhera 1840)Kutzina	021011
	Amphiprora gigantea var, septentrionalis	(Grunow) Cleve 1880	021021
	Amphiprora kjellmanii	Cleve	021023
	Amphiprora kjellmanii var. striolata	(Grunow) Cleve 1880	021024
	Amphiprora paludosa	Wm. Smith 1853	021025
	Amphiprora paludosa var. hyperborea	(Grunow) Cleve 1880	021026
	Amphiprora paludosa var. punctulata	(Grunow) Cleve 1880	021027
	Amphora cf. laevis laevissima	(Gregory 1857) Cleve 1895	021031
	Amphora proteus	Gregory 1857	021032
	Caloneis previs	(Gregory 1857) Cleve 1894	021041
	Caroners liber	(WW. SWITH 1853) Cleve 1894 (Cleve 1999) Hendey 1937	021042
	Chaetoceros ceratosporum	Ostenfeld 1910	021051
	Chaetoceros gracilis	Paulsen 1905	021062
	Chaetoceros septentrionalis	Ostrup 1895	021063
	Cocconeis placentula var. euglypta	(Ehrenberg 1854) Grunow 1884	021071
	<u>Cocconeis</u> scutellum var. stauroneiformis	Rabenhorst 1864	021072
	Coscinodiscus sp.		021080
	Coscinodiscus kuetzingii	Schmidt 1878	021081
	Cyclotella comta	(Ehrenberg 1844) Kutzing	021091
	Distora elongatur	(Enrenberg 1839) Keimann et Lewin (Lumahua 1910) Aaamda 1924	021101
	Diploneis incurvata	(Lyngoye 1019) Agardin 1024 (Fregory 1855) Cleve	021111
	Diploneis litoralis var. clathrata	(Ostrup 1895) Cleve	021121
	Diploneis vacillans	(A. Schwidt 1875) Cleve	021123
	Eunotia lunaris	(Ehrenberg 1831) Brebisson	021131
	Fragilaria construens	(Ehrenberg 1841) Grunow	021141
	<u>Fragilaria</u> islandica	Grunow in Van Heurck 1881	021142
	<u>Fragilaria pinnata</u>	Ehrenberg 1841	021143
	Fragilaria striatula	Lyngbye 1819	021144
	Gomphonema sp.	Agardh 1824	021150
	Gomphonema kantschaticum	Kutzing 1844 Chungu 1979	021151
	Gyrosigma cf. kuetzingii	(Grunow 1860) Cleve	021152
	Hantzschia weyprechii	Grunow 1880	021171
	Licmophora gracilis var. anglica	(Kutzing) Peragallo	021181
	Melosira arctica	Dickie in litt.	021191
	Navicula sp.	Bory 1822	021200
	Navicula algida	Grunow 1884	021201
	Navicula bahusiensis	(Grunow in Van Heurck 1880)	021202
	Navicula directa van sunsata	(Wm. Smith 1855) Ralfs Octave 1905	021203
	Navicula dastrum	(Ebronhovo 1841) Kutaino	021204
	Navicula glacialis	(Cleve 1873) Grunow	021205
	Navicula gracilis	Ehrenberg 1830	021200
	Navicula kariana	Grunow in Cleve & Grunow 1880	021208
	Navicula maculosa	Donkin 1871	021209
	Navicula marina	Ralfs in Pritchard 1861	021211
	Navicula pelagica	Cleve 1896	021212
	Navicula pygmaea	Kutzing 1849	021213
	Navicula salinarum	Kutzing 1844	021214
	Navicula scopulorum	urunow in Lieve & Muller 1878 Brobisson in Kutsing 1940	021215
	Navicula spicula	(Hickie 1874) Clave	021210
	Navicula vanhoeffenii	Gran 1897	021217
	Navicula vitrea	Grunow in Cleve & Muller 1879	021219
	Neidium bisulcatum	(Lagerstedt 1873) Cleve	021221
	<u>Neidium bisulcatum</u> cf. var. <u>undulata</u>	Muller 1898	021222

Table 26. List of scientific names of algae collected in the Beaufort Sea study area during 1986 to 1988, ordered according to phylogenetic relationships.

Scientifc Name and	Phylogenetic Relationship	Authority S	pecies Code
	Nitzschia sn.	Hassal 1845	021230
	Nitzschia acicularis	(Kutzing 1844) We Smith	021230
	Nitzschia cf acuminata	(him. Smith 1853) Grunow	021231
	Nitzschia angularis	Win. Smith 1853	021232
	Nitzschia closterium	(Fhrenhern 1839) We Smith	021233
	Nitzschia cylindrus	(Grunow) Hacle	021234
	Nitzschia frigida	Arunow 1880	021235
	Nitzschia Jaevissiaa	Grunow in Cleve & Muller 1882	021230
	Nitzschia longissina	(Brehisson in Kutzing) Grungw	021237
	Nitzschia cf. nalea	(Kutzing 1844) We Smith	021230
	Nitzschia nlana	We Smith 1853	021233
	Nitzschia polanic	Grunow in Clave & Muller 1992	021241
	Nitzschia coniata		021242
	Nitzschia seriaca	(Kutaina 1944) Ma Eaith	021243
	Nitzschie signe	(NULZING 1044) WW. SWITH	021244
	Mitzschia signoidea	(NITZSCh 1817) Wm. Smith	021245
	NITZSCHIA CT. THEMAINS	(Enrenberg 1841)	021246
	<u>Pinnularia</u> cf. <u>gibba</u>	Ehrenberg 1841	021251
	<u>Pinnularia</u> guadratarea	(A. Schmidt 1874) Cleve	021252
	<u>Pinnularia quadratarea</u> var. <u>constricta</u>	(Ostrup 1895) Heiden	021253
	<u>Pinnularia guadratarea</u> var. <u>minor</u>	(Grunow 1880) Cleve	021254
	<u>Pleurosigma angulatum</u>	(Quekett 1848) Wm. Smith	021261
	<u>Pleurosigma angulatum</u> var. <u>strigosum</u>	(Wm. Smith 1852) Van Heurck	021262
	Pleurosigma clevei	Grunow 1880	021263
	Pleurosigma elongatum	Wm. Smith 1852	021264
	Pleurosigma longum	Cleve 1873	021265
	Pleurosigma salinarum	(Grunow 1878) Grunow	021266
	Stauroneis sp.	Verrill 1900	021270
	Stauroneis cf. linearis	Wa. Saith 1853	021271
	Stauroneis guadripedis	(Cleve-Euler 1952) Hendey	021272
	Stauroneis septentrionalis	Grunow 1884	021273
	Stephanodiscus astraea	(Ebrenberg 1844) Grunow	021281
	Synedra acus	Kutzing 1844	021201
	Synedra cantschatica	Grupow 1862	021231
	Synedra byperhores	frince 1884	021292
	Synedra nulchella	(Palfs 1944) Kutzing	021295
	Synedra tabulata	(Acardh 1822) Kutzing	021234
	Synedra tabulata yan facciculata	(Agarun 1832) Kutzing	021295
	Taballania flocculeta	(Lyngbye 1619:) Husteat	021290
	The lace imparts with schioides	(Koth 1/9/0 Kutzing	021301
	Thalacsioning haltica	(Grunow 1862) van Heurck	021311
	Thelessiosing manufa	(Grunow 1880) Ustenfeld	021321
	Thelessiosira gravida	Cleve 1896	021322
	Thelessiosire lacustris	(Grunow) Haste	021323
	Inalassiosira nordenskibeldii	Cleve	021324
	Inalassiothrix trauenteidii	(Grunow 1863)	021331
Class Chausanh	Ihalassiothrix longissima	Cleve & Grunow in Cleve & Muller 1878	021332
class chrysophy	Chause the second in a second se	1	
	Chrysochromulina sp.	Lackey 1938	024010
	unrysococcus sp.	Klebs	024020
	Uchronomas sp.	Nysotzki	024030
Class Dictyophy	/ceae		
	Ebria tripartita	Lemmermann	025011
hylum Chlorophyta			
Class Chloronhy	/ceae		
	Carteria sp.	Niesing	022010
	Chlanydonopas sp.	Fhrenhern 1833	023030
	Chlorococcus sp	Entenberg 1033	023020
	Kinchnorialla lunaric	(Kinchnon) Noch-tur	023030
	Kalialla en	(KITCHNET) MOEDIUS	023041
	Noteria sp.		023050
	ryramidomonas grossi	Parke	023061
	<u>Schroederia</u> sp.	Lemmermann	023070
hulum Eunlesses.			
nyium Lugienophyta			

Table 26. List of scientific names of algae collected in the Beaufort Sea study area during 1986 to 1988 (CONTINUED).

.

٠

Scientifc Name a	and Phylogenetic Relationship	Authority	Species Code
Class Eugle	nophyceae		
-	Euglena proxima	Dangeard 1901	027011
	Euglena viridis	Ehrenberg 1830	027012
Phylum Pyrrophyta			
Class Dinopl	hyceae		
	Amphidinium sp.	Claparide and Lachmann	022010
	Gymnodinium sp.	Stein	022020
	Oxytoxum sp.	Stein	022030
	Peridiniella catenata	(Levander) Balech	022041
	Prorocentrum rampi	Sournia	022051
	Protoperidinium bipes	(Paulsen 1908) Balech	022061
	Protoperidinium globulus var. ovatum	(Diwald) Balech	022062
	Protoperidinium grenlandicum	(Woloszynska) Balech	022063
	Protoperidinium pellucidum	Berg	022064
Phylum Cryptophyta			
Class Crypto	ophyceae		
	Cryptomonas sp.	Ehrenberg	026010

Table 26. List of scientific names of algae collected in the Beaufort Sea study area during 1986 to 1988 (CONTINUED).

Table 27. Number of ice algae taxa and dominant taxa with associated snow depth and surface salinity data, collected in March, 1987 and 1988.

Station/ Algae Sample Number	Surface Salinity (Practical Scale)	Snow Depth (cm)	Number of Algae Taxa	Dominant Taxa
87003/1	32	1	49	Diatoma elongatum Thalassionema nitzshioides Schroederia sp.
87004/2	0	10	2	Chlamydomonas sp.
87005/3	28	3	40	Fragilaria construens Nitzschia frigida Thalassionema nitzschioides
87002/4	10	1	43	Diatoma elongatum Fragilaria striatula Thalassionema nitzschioides
88001/1	10	7	5	Nitzschia frigida Chrysococcus sp. Ochronomas sp.
88003/2	16	4	43	Diatoma elongatum Fragilaria striatula Ochronomas sp.
88004/3	32	5	37	Diatoma elongatum Fragilaria striatula Ochronomas sp.
88005/4	33	3	33	Diatoma elongatum Fragilaria striatula Chrysococcus sp.

Station/ Algae Sample Number	Surface Salinity (Practical Scale)	Snow Depth (cm)	Number of Algae Taxa	Dominant Taxa
86029/1	31	8	37	Nitzschia frigida Fragilaria striatula Nitzschia acicularis
86029/2	31	8	37	Nitzschia frigida Fragilaria construens Nitzschia acicularis
86029/3	7	10	32	Nitzschia frigida Fragilaria striatula Nitzschia acicularis
86029/4	7	11	36	Nitzschia frigida Fragilaria striatula
86029/5	7	13	34	Nitzschia frigida Chaetoceros ceratosporum Fragilaria striatula
86029/6	7	17	32	Nitzschia frigida Fragilaria islandica Thalassionema nitzschioides
86033/7	7	9	18	Nitzschia cylindrus Peridiniella catenata
86033/8	7	13	11	Peridiniella catenata Fragilaria islandica Fragilaria striatula
86033/9	7	19	20	Nitzschia cylindrus Thalassionema nitzschioides
86033/10	7	21	13	Fragilaria construens Peridiniella catenata Koliella sp.
87007/5	11	3	47	Nitzschia frigida Fragilaria striatula
87008/6	32	14	2	Thalassionema nitzschioides
87008/7	3	21	32	Nitzschia closterium
87009/8	8	44	4	Fragilaria striatula Cryptomonas sp.
87006/9	0	3	5	Nitzschia frigida

Table 28. Number of ice algae taxa and dominant taxa with associated snow depth and surface salinity data, collected in May, 1986 and 1987.

-41-

•

Table 29. Relative abundance of algae sampled from ice cores in 1986.

Algae Sample			Algae Sample		
Number	Species	Abundance ^a	Number	Species	Abundance ^a
1.	Amphiprora gigantea var. septentrionalis	R	2	Nitzschia seriata	c
1	Amphiprora kjellmanii var. striolata	R	2	Nitzschia sigma	С
1	Amphiprora paludosa	С	2	Pinnularia quadratarea	R
1	Amphiprora paludosa var. hyperborea	R	2	Pleurosigma angulatum	R
1	Chaetoceros ceratosporum	С	2	Pleurosigma elongatum	С
1	Chaetoceros septentrionalis	. C	2	Pleurosigma longum	R
1	Diatoma elongatum	R	2	Synedra acus	С
1	Fragilaria construens	С	2	Thalassionema nitzschioides	С
1	Fragilaria islandica	C	2	Thalassiosira lacustris	R
1	Fragilaria pinnata	R	2	Thalassiothrix longissima	R
1	Fragilaria striatula	A	2	Protoperidinium grenlandicum	R
1	Gomphonema exiguum	R	2	Chlamydomonas sp.	R
1	Gomphonema kamtschaticum	R	2	Chrysochromulina sp.	С
1	Navicula bahusiensis	R	2	Chrysococcus sp.	С
1	Navicula directa	R	2	Ebria tripartita	R
1	Navicula gastrum	C	2	Cryptomonas sp.	R
1	Navicula salinarum	C			
1	Navicula spicula	R	3	Amphiprora gigantea var. septentrionalis	R
1	Nitzschia sp.	C	3	Amphiprora kjellmanii var. striolata	R
1	Nitzschia acicularis	C	3	Amphiprora paludosa	С
1	Nitzschia frigida	v	3	Amphiprora paludosa var. hyperborea	R
1	Nitzschia laevissima	R	3	Amphiprora paludosa var. punctulata	R
1	Nitzschia longissima	C	3	Chaetoceros ceratosporum	С
1	Nitzschia sigma	C	3	Chaetoceros septentrionalis	С
1	Nitzschia sigmoidea	R	3	Fragilaria construens	A
1	Pinnularia quadratarea var. minor	R	3	Fragilaria pinnata	С
1	Pleurosigma elongatum	C	3	Fragilaria striatula	A
1	Pleurosigma longum	R	3	Gomphonema kamtschaticum	R
1	Stauroneis cf. linearis	C	3	Navicula bahusiensis	R
1	Synedra acus	C	3	Navicula directa	R
1	Synegra camtschatica	ĸ	3	Navicula gastrum	C
1	Synedra tabulata var. fasciculata	R	3	Navicula salinarum	C
1	Thelessian a flocculosa	ĸ	3	Nitzschia acicularis	A
1	Chrysten burger line of	L C	3	NITZSCHIA TRIGIDA	v
1	Chrysochromulina sp.	Ĺ	3	NITZSCHIA (ACVISSIMA	R
1	Unrysococcus sp.	L R	3	NITZSCHIA IONGISSIMA	R
1	Euglena viriais	R	3	NICZSCHIA SIGNA	C
2	Apphinners tiollassii	•	3	Pinnularia quadratarea	ĸ
2	Amphiptora Kjelimanili Amphiptora paludora	r r	3	Pleurosigna erongatum	A
2	Amphippora paludosa yar hyperborea		3	Stauronais suddiadis	ĸ
2	Chaetoceros ceratosporum	ŕ	3	Superina cantechatica	R D
2	Chaetoceros sententrionalis	, č	3	Synedra tabulata	R D
2	Diatona elongatum	· C	3	Syncura tabulata yan facejeulata	ĸ
2	Fragilaria construens	Δ	3	Thalassionena nitzechioidos	с С
2	Fragilaria islandica	r r	2	Protoperidinium grenlandicum	
2	Fragilaria ninnata	č	3	Chlanvdomonas sp	P
2	Fragilaria striatula	Ă	3	Chrysochromulina sp.	r r
2	Navicula sp.	ĉ	3	Chrysococcus sp.	c r
2	Navicula bahusiensis	R	•		č
2	Navicula directa	R	4	Achnanthes taeniata	c
2	Navicula gastrum	C	4	Amphiprora gigantea var. septentrionalis	R
2	Navicula salinarum	c	4	Amphiprora kiellmanii	R
2	Navicula spicula	C	4	Amphiprora paludosa	, C
2	Navicula vanhoeffenii	С	4	Chaetoceros ceratosporum	č
2	Nitzschia acicularis	Ā	4	Chaetoceros septentrionalis	č
2	Nitzschia frigida	v	4	Cocconeis placentula var. euclynta	R
2	Nitzschia laevissima	c	4	Diatoma elongatum	R
2	Nitzschia longissima	C	4	Fragilaria construens	Ċ
	-			-	-

^a R = rare; C = common; A = abundant; V = very abundant.

.

Algae Sample			Algae Sample		a
Number	Species	Abundance	Number	Species	Abundance
	Funding inlanding	c	F	Churteshing in a	
4	Fragilaria islandica	L A	5	Chrysochromulina sp.	ĸ
4	rragilaria striatula Comboneno kontechnicum	n 0	5	Chrysterenze en	
4	Gompnonema kamtschaticum	r D	5	cryptomonas sp.	к
4	Navicula danusiensis	n D	e	Anabianana kiallaanii waa shulalaha	
4	Navicula directa	n C	0 6	Amphiprora kjelimanti var. stribiata	ĸ
4	Navicula gastrum		6	Amphiprora paludosa var. punctulata	ĸ
4	Navicula Saliharum	с С	6	Chaetoceros ceratosporum	C C
7	Nitzschia Enicida	v	5	Cocconais placentula var auglunta	
4 A	Nitzschia lapviscima	c ·	6	Functia lumaris	R
4	Nitzschia longissima	Ċ	6	Fragilaria construens	Ċ
Å	Nitzschia polaris	Č	6	Fragilaria islandica	č
4	Nitzechia ciona	č	ě Ř	Gomphonema kantschaticum	Ř
2	Pinnularia quadratarea	R	6	Navicula directa	R
Å	Pleurosiona elongatum	c C	6	Navicula gastrum	R
4	Pleurosigna longum	R	6	Navicula salinarum	Ċ
4	Stauroneis cf. linearis	R	6	Navicula spicula	R
4	Stauroneis guadripedis	R	6	Neidium bisulcatum	R
4	Synedra acus	ċ	6	Nitzschia acicularis	Ċ
4	Synedra hyperborea	c	6	Nitzschia angularis	R
4	Synedra tabulata var. fasciculata	c	6	Nitzschia frigida	v
4	Tabellaria flocculosa	R	6	Nitzschia longissima	ċ
4	Thalassionema nitzschioides	C	6	Nitzschia polaris	R
Å	Protoperidinium grenlandicum	R	6	Nitzschia sigma	c
4	Chlamydomonas sp.	R	6	Pinnularia guadratarea	R
4	Chrysococcus sp.	c	6	Pleurosigma angulatum	R
4	Ebria tripartita	R	6	Pleurosigma elongatum	С
	·		6	Pleurosigma longum	С
5	Amphiprora kjellmanii	С	6	Synedra acus	R
5	Amphiprora paludosa	С	6	Synedra hyperborea	С
5	Amphiprora paludosa var. hyperborea	R	6	Synedra tabulata	R
5	Caloneis brevis	R	6	Thalassionema nitzschioides	С
5	Caloneis liber	R	6	Protoperidinium grenlandicum	R
5	Chaetoceros ceratosporum	A	6 '	Chlamydomonas sp.	С
5	Chaetoceros septentrionalis	C	6	Chrysochromulina sp.	R
5	Fragilaria construens	C	6	Chrysococcus sp.	c
5	Fragilaria islandica	C			
5	Fragilaria pinnata	R	7	Cocconeis scutellum var. stauroneiformis	· R
5	Fragilaria striatula	A	7	Diatoma elongatum	С
5	Gomphonema exiguum	R	7	Fragilaria construens	c
5	Navicula bahusiensis	R	7	Fragilaria islandica	С
5	Navicula directa	R	7	Fragilaria striatula	A
5	Navicula gastrum	С	7	Navicula maculosa	С
5	Navicula salinarum	С	7	Navicula salinarum	С
5	Nitzschia acicularis	A	7	Nitzschia acicularis	R
5	Nitzschia frigida	v	7	Nitzschia cylindrus	v
5	Nitzschia laevissima	R	7	Nitzschia polaris	С
5	Nitzschia longissima	C	7	Nitzschia sigma	R
5	Nitzschia sigma	C	7	Synedra tabulata	R
5	Pinnularia quadratarea	C	7	Tabellaria flocculosa	R
5	Pleurosigma elongatum	C	7	Gyminodinium sp.	R
5	Stauroneis quadripedis	R	7	Peridiniella catenata	V
5	Synedra acus	C	7	Protoperidinium bipes	ç
5	Synedra nyperborea	C A	1	Kollella Sp.	c -
5	Synedra tabulata Taballania floorulaa	C	1	tryptomonas sp.	R
5	The Teacter and The Could Sa	ĸ	~	Construction of the second second	-
5 E	Indidasionema nitzschiologs	L O	8	COSCINOUISCUS KUETZINGII	ĸ
5	Protoperiginium globulus var. ovatum Protopenidinium operignatieum	ĸ	8	rragilaria islandica Emanilaria atmintula	V
	reocoper runnium greniana icum	л	ō	riayilaria scriacula	¥

Table 29. Relative abundance of algae sampled from ice cores in 1986 (CONTINUED).

·

^a R = rare; C = common; A = abundant; V = very abundant.

ł

.

Algae Sample		а	Algae Sample		a
Number	Species	Abundance	Number	Species	Abundance
8	Navicula sp.	С	9	Peridiniella catenata	v
8	Nitzschia polaris	С	9	Prorocentrum rampi	R
8	Gymnodinium sp.	C	9	Protoperidinium pellucidum	С
8	Peridiniella catenata	V	9	Chlorococcus sp.	C
8	Protoperidinium bipes	C	9	Koliella sp.	Α
8	Chlamydomonas sp.	R	9	Cryptomonas sp.	С
8	Koliella sp.	A	9	Euglena proxima	R
8	Cryptomonas sp.	R			
			10	Amphiprora kjellmanii	R
9	Amphiprora kjellmanii	R	10	Fragilaria construens	v
9	Fragilaria construens	С	10	Fragilaria striatula	- A
9	Fragilaria islandica	C	10	Navicula gastrum	R
9	Fragilaria pinnata	R	10	Nitzschia closterium	R
9	Navicula bahusiensis	R	10	Nitzschia cylindrus	A
9	Navicula salinarum	R	10	Thalassionema nitzschioides	С
9	Nitzschia cylindrus	v	10	Thalassiosira lacustris	R
9	Nitzschia polaris	R	10	Gymnodinium sp.	С
9	Pinnularia quadratarea	R	10	Peridiniella catenata	. V
9	Thalassionema nitzschioides	۷	10	Koliella sp.	v
9	Thalassiosira baltica	R	10	Cryptomonas sp.	C
9	Thalassiosira gravida	R	10	Euglena viridis	, R
9	Thalassiosira lacustris	C		-	

Table 29. Relative abundance of algae sampled from ice cores in 1986 (CONTINUED).

^a R = rare; C = common; A = abundant; V = very abundant.

1 Apphiprora gigantes var. septentrionalis R 3 Eunotis lumaris R 1 Apphiprora Kigalmani un gulputa R 3 Fragilaria construction V 1 Construction construction R 3 Fragilaria construction V 1 Construction A 3 Fragilaria construction C 1 Construction R 3 Geophones sequence C 1 Fragilaria stimatica R 3 Geophones sequencia R 1 Fragilaria stimatica R 3 Nervicula giscience R 1 Fragilaria stimatica R 3 Nervicula giscience R 1 Geophones exigume C 3 Nervicula giscience R 1 Geophones exigume C 3 Nervicula giscience R 1 Marciala bisid R 3 Nervicula giscience R 1 Marciala bisid R 3 Nervicula giscience R 1 Marciala bisid R 3 Nervicula giscience	Algae Sample Number	Species	Abundance ^a	Algae Sample Number	Species	Abundance ^a
1 Amphiprora signante var. espectrionalis R 3 Fregilaris construens V 1 Cocconcis placentula var. espipata C 3 Fregilaria construens V 1 Cocconcis placentula var. espipata C 3 Fregilaria islandica C 1 Distone construens R 3 Fregilaria islandica C 1 Fregilaria prints R 3 Gosphomes esfgua C 1 Fregilaria prints R 3 Gosphomes esfgua C 1 Fregilaria prints R 3 Mavicula directa R 1 Gosphomes esfgua C 3 Navicula glacialis R 1 Gosphomes esfgua C 3 Navicula glacialis R 1 Mavicula batentosis R 3 Navicula glacialis R 1 Mavicula spicula R 3 Navicula spicula R 1 Mavicula spicula R 3 Navicula spicula R 1 Mavicula spicula R 3 Navicula spicula <		······································				
1 Apphyprox (spi)anti R 3 Fregilaris isonstruens V 1 Coccores placentula var. euglynte R 3 Fregilaris isonstruens C 1 Distose closterium R 3 Fregilaris isonsta C 1 Distose closterium R 3 Geophomes spinatia C 1 Fregilaris isonsta R 3 Geophomes spinatia R 1 Fregilaris isonsta R 3 Marcalla isonsta R 1 Marcalla isonsta R 3 Marcalla isonsta R 1 Marcalla isonsta R 3 Marcalla isonsta R 1 Marcalla isonsta R 3 Marcalla isonsta R <t< td=""><td>1</td><td>Amphiprora gigantea var. septentrionalis</td><td>R</td><td>3</td><td>Eunotia lunaris</td><td>R</td></t<>	1	Amphiprora gigantea var. septentrionalis	R	3	Eunotia lunaris	R
1 Coccomer's placentula vareuglysta C 3 Fregilaria isindica C 1 Controlmente of contruments A 3 Fregilaria isindica C 1 Eunotia lumaria R 3 Gregilaria isindica C 1 Fregilaria isindica C 3 Gosphomese actionus C 1 Fregilaria pinata C 3 Gosphomese actionus R 1 Fregilaria pinata C 3 Mavicula gatta R 1 Fregilaria pinata C 3 Mavicula gatta R 1 Gosphomes actionus C 3 Mavicula gatta R 1 Mavicula batta R 3 Mavicula gatta R 1 Mavicula batta R 3 Mavicula gatta R 1 Mavicula gatta R 3 Mavicula gatta R 1 Mavicula gatta R 3 Mavicula gatta R 1 Mavicula gatta <td>1</td> <td>Amphiprora kjellmanii</td> <td>R</td> <td>3</td> <td>Fragilaria construens</td> <td>V</td>	1	Amphiprora kjellmanii	R	3	Fragilaria construens	V
1 Cylindrothea closterium R 3 Fragilaria pinnata C 1 Distone clongtum A 3 Fragilaria triatula C 1 Eunotia lunaris R 3 Gomphones exigum C 1 Fragilaria triatula C 3 Gomphones exigum R 1 Fragilaria triatula C 3 Navicala gatum R 1 Gomphones exigum R 3 Navicala gatum R 1 Maricala spicala R 3 Navicala gatum R 1 Navicala gatum R	1	Cocconeis placentula var. euglypta	С	3	Fragilaria islandica	C
1 Distone elongatum A 3 Fregilaria striatula C 1 Eunotis lumaris R 3 Gosphones app. R 1 Fregilaria fishantia C 3 Gosphones Asstachaticum R 1 Fregilaria fishantia R 3 Hatzschia weyprechil R 1 Fregilaria fishantia R 3 Hatzschia weyprechil R 1 Gosphones katschaticum R 3 Hatzschia weyprechil R 1 Gosphones katschaticum R 3 Hatzschia selpata R 1 Gosphones katschaticum R 3 Hatzschia selpata R 1 Hatzschia figida R 3 Hatzschia selpata R 1 Hatzschia selpata R 3 Hetfidue bisulcatum R	1	Cylindrotheca closterium	R	3	Fragilaria pinnata	C
1 Eunotia lunaris R 3 Gomphonesa exiguum C 1 Fregilaria islandica C 3 Gomphonesa exiguum R 1 Fregilaria islandica C 3 Marticula directa R 1 Fregilaria islandica C 3 Navicula gatum R 1 Gomphonesa exiguum C 3 Navicula gatum R 1 Gomphonesa exiguum C 3 Navicula gatum R 1 Gomphonesa exiguum C 3 Navicula gatum R 1 Mavicula algida R 3 Navicula gatum R 1 Mavicula directa ver. cumesta R 3 Navicula gatum R 1 Navicula gatinarum C 3 Nitzschia isigaa R 1 Navicula gatinarum C 3 Nitzschia isigaa R 1 Navicula salinarum C 3 Nitzschia iguaditarum R 1 Navicula salinarum C 3 Nitzschia iguaditarum R 1 Navicula salinarum C 3 Nitzschia iguaditarum R 1 Navicula salinarum R 3 Pieurosigaa elo	1	Diatoma elongatum	A	3	Fragilaria striatula	С
1 Fregilaria construens C 3 Gosphones ketsjuum C 1 Fregilaria sinata R 3 Hantzschia weyprechii R 1 Fregilaria sinata R 3 Hantzschia weyprechii R 1 Gosphones katschaticum R 3 Havicula giztulis R 1 Gosphones katschaticum R 3 Navicula giztulis R 1 Maricula divecta var. cumesta R 3 Navicula giztulis R 1 Navicula sipical R 3 Navicula sipical R 1 Navicula sipical R 3 Navicula sipical R 1 Navicula sipical R 3 Hetschia rigida R 1 Navicula sipical R 3 Hitzschia rigida R 1	1	Eunotia lunaris	· R	3	Gomphonema sp.	R
1 Fragilaria islandica C 3 Gomphonea katischaticum R 1 Fragilaria striatula C 3 Maricula directa R 1 Gomphonea katischaticum R 3 Maricula directa R 1 Gomphonea katischaticum R 3 Maricula gastrum R 1 Mavicula sigida R 3 Maricula gastrum R 1 Mavicula directa var. cuneata R 3 Maricula spiela R 1 Mavicula directa var. cuneata R 3 Maricula spiela R 1 Mavicula astriana C 3 Mitzschia spiela R 1 Mavicula spicula R 3 Maricula spicula R 1 Mavicula spicula R 3 Mitzschia frigida C 3 Mitzschia frigida R 1 Mavicula spicula R 3 Mitzschia frigida R 1 Mitzschia frigida R 3 1 1 1 1 1 1 1 1 1 1 <	1	Fragilaria construens	C	3	Gomphonema exiguum	C
1 Fragilaria striatula R 3 Matzschia weprechini R 1 Gosphonesa katschaticula C 3 Marciala gastrum R 1 Gosphonesa katschaticula R 3 Marciala gastrum R 1 Marciala bisuisensis R 3 Marciala kariana R 1 Marciala bisuisensis R 3 Marciala kariana R 1 Marciala bisuisensis R 3 Marciala kariana R 1 Marciala spicula R 3 Marciala spicula R 1 Marciala spicula R 3 Mitzschia frigida V 1 Marciala spicula R 3 Mitzschia frigida R 1	1	Fragilaria islandica	C	3	Gomphonema kamtschaticum	R
1 Fragilaria striatula C 3 Marcola dipecta R 1 Gosphones Astricula R Marcola gastrum R 1 Maycola gastrum R Marcola gastrum R 1 Marcola gastrum R Marcola gastrum R 1 Marcola spicula R Marcola gastrum R 1 Marcola spicula R Marcola gastrum R 1 Marcola spicula R Marcola spicula R 1 Marcola spicula R Marcola spicula R 1 Marcola spicula R Mitzschia cylintra sugartanee var. constricta R 1 Marcola spicula spicula R Pinularia quadratanee var. constricta R 1 Mitzschia cylintrus R Pinularia quadratanee var. constricta R 1 Mitzschia plaris R Syndra hyperborea R 1 Mitzschia plaris R Syndra hyperborea R 1 Mitzschia spicula R Thalassionea inducum R 1 Pinularia quadratanea <td>1</td> <td>Fragilaria pinnata</td> <td>R</td> <td>3</td> <td>Hantzschia weyprechii</td> <td>ĸ</td>	1	Fragilaria pinnata	R	3	Hantzschia weyprechii	ĸ
1 Gosphonesk acts/bit/Gum R 3 Mar/Coll gastrim R 1 Gosphonesk acts/bit/Gum R 3 Mar/Coll gastrim R 1 Navicula babusiensis R 3 Mar/Coll gastrim R 1 Navicula solimanue C 3 Mar/Coll gastrim R 1 Navicula solimanue C 3 Mar/Coll gastrim R 1 Navicula solimanue C 3 Mar/Coll gastrim R 1 Mar/Coll a gastrim R 3 Mar/Coll gastrim R 1 Mar/Coll a gastrim R 3 Mar/Coll gastrim R 1 Mar/	1	Fragilaria striatula	Ľ	5	Navicula directa	ĸ
1 Navícula algída R 3 Mavícula katisánis R 1 Navícula algída R 3 Mavícula katisánis R 1 Navícula dírecta var. cunesta R 3 Mavícula pelagida C 1 Navícula dírecta var. cunesta R 3 Mavícula pelagida C 1 Navícula sínchocephala R 3 Matídu bísulcatua R 1 Navícula sínchocephala R 3 Matídu bísulcatua R 1 Navícula sínchocephala R 3 Pinularia quadratarea C 1 Navícula sínchocephala R 3 Pinularia quadratarea C 1 Navícula síncha R 3 Pinularia quadratarea C 1 Mitzschia síncha R 3 Synedra acus R 1 Mitzschia sínga R 3 Synedra acus R 1 Mitzschia sínga R 3 Synedra acus R 1 Mitzschia sínga R 3 Synedra hyperborea R 1 Mitzschia sínga R 3 Synedra hyperborea R 1 Pieurosígaa alganstum var. strigosu C 3<	1	Gomphonema exiguum	L D	3	Navicula gastrum	ĸ
1 Navicula la babustensis R 3 Mavicula aculosa R 1 Navicula babustensis R 3 Navicula gasicula R 1 Navicula directa var. cuneata R 3 Navicula spicula R 1 Navicula directa var. cuneata R 3 Navicula spicula R 1 Navicula kariana C 3 Mitzschia frigida V 1 Navicula spicula R 3 Hitzschia frigida V 1 Navicula spicula R 3 Pinularia quadratarea var. constricta R 1 Neizschia frigida R 3 Pinularia quadratarea var. constricta R 1 Mitzschia acuissima R 3 Synedra acus R 1 Mitzschia favissima R 3 Synedra hyperborea R 1 Mitzschia frigida R 3 Thalassionena nitzscholdes A 1 Mitzschia spicata R 3 Thalassionena nitzscholdes A 1 Mitzschia spicata R 3 Thalassion	1	Gomphonema kamischaticum	ĸ	3	Ravicula glacialis	κ ο
1 Navicula directa var. cumeata R 3 Maricula spisula R 1 Navicula directa var. cumeata R 3 Maricula spisula R 1 Navicula gastrum R 3 Maricula spisula R 1 Navicula spisulatum R 3 Maricula pisulatum R 1 Navicula spisulatum R 3 Mitzschia spisulatum R 1 Navicula spisulatum R 3 Pinnularia guadraturea C 1 Navisulatum R 3 Pinnularia guadraturea C 1 Navisulatum R 3 Pinnularia guadraturea R 1 Nitzschia aryissima R 3 Synefra Acurs R 1 Nitzschia aryissima R 3 Thalassionea nitzschioides A 1 Nitzschia aryissima R 3 Thalassionea nitzschioides R 1 Nitzschia aryissima R 3 Thalassionea nitzschioides R 1 Nitzschia aryissima R 3 Thalassionea nitzschioides <td>1</td> <td>Navicula algica</td> <td>ĸ</td> <td>3</td> <td>Navicula Karlana Navicula saculasa</td> <td>R D</td>	1	Navicula algica	ĸ	3	Navicula Karlana Navicula saculasa	R D
1 Navicula girecta var. cuneata R 3 Navicula spicula R 1 Navicula girecta var. cuneata R 3 Neicula spicula R 1 Navicula spicula R 3 Neicula spicula R 1 Navicula spicula R 3 Neizschia frigida V 1 Navicula spicula R 3 Neizschia frigida V 1 Navicula spicula R 3 Pinnularia quadratarea C 1 Neizschia frigida C 3 Pieurosigma longue R 1 Nitzschia ispicula R 3 Synedra Acus R 1 Nitzschia ispicula R 3 Thalassiothriz Synedra Acus R 1 Nitzschia ispicula R 3 Thalassiothrizschia R 1	1	Navicula Danusiensis	ĸ	3	Navicula maculosa	ĸ
1 Navicula gastrum R 3 Nevicula yastrum R 1 Navicula spicula R 3 Neticula thysicula R 1 Navicula spicula R 3 Nitzschia sigua R 1 Navicula spicula R 3 Nitzschia sigua R 1 Navicula spicula R 3 Pitzschia sigua R 1 Navicula spicula R 3 Pitzschia sigua R 1 Nitzschia chia frigida C 3 Pieurosigua clongua R 1 Nitzschia pingida C 3 Pieurosigua clongua R 1 Nitzschia pingida R 3 Thalassionia succia R 1 Nitzschia pingida R 3 Thalassionia R 1 Nitzschia p	1	Navicula directa		3	Navicula pelagica	
1 Navicula karima K 3 Mitguiduu K 1 Navicula kirima C 3 Mitzschia frigida V 1 Navicula shimruma C 3 Mitzschia frigida V 1 Navicula shimruma C 3 Mitzschia frigida R 1 Navicula shimruma R 3 Pinnularia quadratarea var. constricta R 1 Mitzschia frigida C 3 Pieurosigaa longua R 1 Mitzschia frigida C 3 Pieurosigaa longua R 1 Mitzschia frigida C 3 Pieurosigaa longua R 1 Mitzschia frigida C 3 Symedra acus R 1 Mitzschia frigida C 3 Symedra hyperiorea R 1 Pieurosigaa angu	1	Navicula directa var. cuneata	ĸ	3	Navicula Spicula	ĸ
I Navicula stynchodosphala R 3 Nitzschia signatu R 1 Navicula spicula R 3 Nitzschia signatu R 1 Navicula spicula R 3 Pinularia quadratarea C 1 Nitzschia cyindrus R 3 Pinularia quadratarea var. constricta R 1 Nitzschia frigida C 3 Pieurosigua longua R 1 Nitzschia piaris R 3 Symedra quas R 1 Nitzschia piaris R 3 Symedra hyperborea R 1 Nitzschia signa R 3 Thalassionema nitzschioides A 1 Nitzschia guadratarea R 3 Thalassionema nitzschioides A 1 Pieurosigua alongatum C 3 Gymedra ingresina R 1 Pieurosigua alongatum C 3 Chioreooccus sp. R 1 Pieurosigua alongatum C 3 Chioreooccus sp. R 1 Stauroneis quadripedis R 3 Chioreooccus sp. R	1	Navicula gastrum	ĸ	3	Neigium Disulcatum	ĸ
1 Navicula salinarum K 3 Nitzschia f. thermalis K 1 Navicula sajinarum C 3 Nitzschia f. thermalis R 1 Navicula spicula R 3 Pinnularia quadratarea var. constricta R 1 Nitzschia cylindrus R 3 Pinnularia quadratarea var. constricta R 1 Mitzschia ikevissima R 3 Pinnularia quadratarea var. constricta R 1 Mitzschia ikevissima R 3 Symedra icustris R 1 Mitzschia signa R 3 Symedra icustris R 1 Mitzschia signa R 3 Thalassionean intrischicies A 1 Mitzschia signa R 3 Thalassionean intrischicies A 1 Mitzschia signa R 3 Thalassionean intrischicies A 1 Pieurosigna angulatum var. strigosum C 3 Gymedrinium sp. R 1 Pieurosigna salinarum C 3 Carteria sp. R 2 Symedra acus R <td< td=""><td>1</td><td>Navicula kariana</td><td>Ľ</td><td>3</td><td>Nitzschia trigida</td><td></td></td<>	1	Navicula kariana	Ľ	3	Nitzschia trigida	
1 Navicula spicula C 3 Pitnularia quadratarea C 1 Meidium bisulcatum R 3 Pinnularia quadratarea var. constricta R 1 Mitzschia pindrus R 3 Pinnularia quadratarea var. constricta R 1 Mitzschia pindrus R 3 Pieurosigma elongatum R 1 Mitzschia pindrus R 3 Synedra acus R 1 Mitzschia pindrus R 3 Synedra hyperborea R 1 Mitzschia pindrus R 3 Thalassionea nitzschioides A 1 Mitzschia pindrus R 3 Thalassionea nitzschioides A 1 Pinularia quadratarea R 3 Thalassionea nitzschioides A 1 Pieurosigma elongatum C 3 Graneotinium grenlandicum R 1 Pieurosigma elongatum C 3 Calconeis pindrus R 1 Pieurosigma elongatum C 3 Caloneis brevis R 1 Tabellaria flocculosa R 4	1	Navicula rhynchocephala	ĸ	3	Nitzschia signa	ĸ
1 Maricula spicula K 3 Prinularia quadratarea var. constricta C 1 Mitzschia cylindrus R 3 Pleurosigna elongatum C 1 Mitzschia figida C 3 Pleurosigna elongatum R 1 Mitzschia spicula R 3 Symedra acus R 1 Mitzschia spicula R 3 Symedra acus R 1 Mitzschia spicula R 3 Symedra acus R 1 Mitzschia spicula R 3 Thalassiosira altaschioides A 1 Pinularia quadratarea var. constricta R 3 Thalassiosira altaschiodes A 1 Mitzschia figida C 3 Symedra acus R 3 Thalassiosira altaschiodes A 1 Pleurosigna alpulatum var. strigosum C 3 Greentian guadratarea R 1 1 Pleurosigna alpulatum var. strigosum C 3 Concorcus sp. R 1 Pleurosigna alpulatum var. strigosum R 3 Chiorosus sp. R <	1	Navicula salinarum	C	3	Nitzschia cr. thermalis	ĸ
1 Metgdum Disulcatum R 3 Primurata guadratarea var. constricta R 1 Mitzschia frigida C 3 Pleurosigma clongum R 1 Mitzschia polaris R 3 Synedra acus R 1 Mitzschia polaris R 3 Synedra hyperborea R 1 Mitzschia sigma R 3 Thalassionema nitzschioides A 1 Mitzschia quadratarea R 3 Thalassiostria lacustris R 1 Pinularia quadratarea R 3 Thalassiostria lacustris R 1 Pinularia quadratarea R 3 Thalassiostria lacustris R 1 Pinularia quadratarea R 3 Thalassiostria lacustris R 1 Pinurosigma alonguitum var. strigosum C 3 Potoperidinium sp. R 1 Pieurosigma alonguitum var. strigosum C 3 Coloreacus sp. R 1 Pieurosigma alonguitum var. strigosum R 3 Chiorococcus sp. R 1 Pieurosigma clonguitum	1	Navicula spicula	ĸ	3	Pinnularia quadratarea	Ĺ
1 Mitzschia cylindrus R 3 Pieurosigma elongatum C 1 Mitzschia laevissima R 3 Symedra acus R 1 Mitzschia laevissima R 3 Symedra acus R 1 Mitzschia jagma R 3 Thalassiosira lacustris R 1 Mitzschia jagma R 3 Thalassiosira lacustris R 1 Pinnularia quadratarea R 3 Thalassiosira lacustris R 1 Pieurosigma elongatum C 3 Gymodinium sp. R 1 Pieurosigma angulatum var. strigosum C 3 Carteria sp. R 1 Pieurosigma angulatum var. strigosum C 3 Carteria sp. R 1 Pieurosigma angulatum var. strigosum C 3 Carteria sp. R 1 Pieurosigma angulatum var. strigosum C 3 Carteria sp. R 1 Symedra acus R 3 Koliella sp. R 1 Symedra tupolati var. strigosum C Caloneis brevis <td< td=""><td>1</td><td>Neidium Disulcatum</td><td>ĸ</td><td>3</td><td>Pinnularia quadratarea var. constricta</td><td>ĸ</td></td<>	1	Neidium Disulcatum	ĸ	3	Pinnularia quadratarea var. constricta	ĸ
1 Mitzschia irupida C 3 Frieurosiga acus R 1 Mitzschia polaris R 3 Symedra kyperborea R 1 Mitzschia joga R 3 Thalassionean hitzschioides A 1 Mitzschia joga R 3 Thalassiothrix longissima R 1 Pinnularia cr. gibba R 3 Thalassiothrix longissima R 1 Pieurosigma angulatum var. strigosum C 3 Grandoninus sp. R 1 Pieurosigma adupitatur var. strigosum C 3 Carteria sp. R 1 Symedra kyperborea C 3 Carteria sp. R 1 Symedra kyperborea C 3 Caloneis liber R 1 Tabellaria flocculosa R 4 Caloneis liber R 1 Thalassiothrix longissima C 4 Caloneis liber R 1 Thalassiothrix longissima C 4 Coscindiscus kuetzingi R 1 Thalassiothrix longissima C 4 Coscindiscus kuetzi	1	Nitzschia cylingrus	R	3	Pleurosigna elongatum	L B
1 Mitzschia planis R 3 Synedra Auss R 1 Mitzschia sigma R 3 Thalassionema nitzschioides A 1 Mitzschia sigma R 3 Thalassionema nitzschioides A 1 Pinnularia cr. gibba R 3 Thalassiothrix longissima R 1 Pieurosigma elongatum C 3 Gymodinium sp. R 1 Pieurosigma elongatum C 3 Carteria sp. R 1 Stauroneis quadripedis R 3 Chlorococcus sp. R 1 Synedra acus R 4 Caloneis brevis R 1 Synedra isbuilata var. fasciculata R 4 Caloneis brevis R 1 Tabellaria flocculosa R 4 Caloneis brevis R 1 Thalassiothrix frauenfeldii C 4 Coscinoficus kuetzingii R 1 Thalassiothrix frauenfeldii C 4 Coscinoficus kuetzingii R 1 Thalassiothrix frauenfeldii C 4 Coscinoficus kuetz	1	Nitzschia frigida	с В	3	Preurosigna longum	R D
1 Mitzschia golaris R 3 Thalassionema nitzschioides A 1 Mitzschia golaris R 3 Thalassionema nitzschioides A 1 Pinnularia quadratarea R 3 Thalassionema nitzschioides A 1 Pieurosigma angulatum var. strigosum C 3 Gyanodinium sp. R 1 Pieurosigma alinarum C 3 Protoperidinium grenlandicum R 1 Pieurosigma alinarum C 3 Carteria sp. R 1 Synedra hyperborea C 3 Chlorococcus sp. R 1 Synedra hyperborea C 4 Caloneis brevis R 1 Tabellaria flocculosa R 4 Caloneis brevis R 1 Talassiosira baltica R 4 Caloneis brevis R 1 Thalassiotria fraucerfeldii C 4 Coconeis placentula var. euglypta R 1 Thalassiotria construens C 4 Coscinodiscus kuetzingii R 1 Thalassiotri frauenfeldiii C <	1	Nitzschia laevissima	R D	3	Synedra acus	R D
1 Nitzschi a signa N 3 Inalassionema intzschiolues A 1 Pinnularia quadratarea R 3 Thalassiothrix longissima R 1 Pinnularia quadratarea R 3 Thalassiothrix longissima R 1 Pleurosigma alongatum C 3 Gymodinium sp. R 1 Pleurosigma alongatum C 3 Catteria sp. R 1 Pleurosigma alongatum C 3 Chlorococcus sp. R 1 Stauroneis quadripedis R 3 Kolieila sp. R 1 Symedra abulata var. fasciculata R 4 Aaphiprora kjellmanii R 1 Tabellaria flocculosa R 4 Caloneis brevis R 1 1 Tabalassionema nitzschioides A 4 Caloneis liber R 1 1 Talassiothrix frauenfeldii C 4 Coaconeis placentula var. euglypta R 1 Thalassiothriu longissima C 4 Coaconstruens C 1 1 Aaphidinium sp	1	Nitzschia polaris	ĸ	3	Synegra nyperborea Thalassienera mitrachioidos	л А
1 Pinnularia cr. gibod R 3 Thalassiothria faustris R 1 Pieurosigma angulatum var. strigosum C 3 Gymodinium sp. R 1 Pleurosigma angulatum var. strigosum C 3 Protoperidinium grenlandicum R 1 Pleurosigma aslinarum C 3 Carteria sp. R 1 Stauroneis quadripedis R 3 Chlorococcus sp. R 1 Synedra acus R 3 Coliciis brevis R 1 Synedra tabulata var. fasciculata R 4 Caloneis brevis R 1 Tabalsistink frauenfeldii C 4 Caloneis brevis R 1 Tabalssiotink frauenfeldii C 4 Cocconeis placentula var. euglypta R 1 Thalassiothrix longissima C 4 Coscinodiscus kuetzingii R 1 Thalassiothrix frauenfeldii C 4 Coscinodiscus kuetzingii R 1 Thalassiothrix frauenfeldii C 4 Coscinodiscus kuetzingii R 1 Thalassiothrix frauenfeld	1	Nitzschia sigma Diezulania of cibbo	π P	3	Thalassionema nitzschiolues	~
1 Pieurosigna angulatum var. strigosum C 3 Gymodinium sp. R 1 Pieurosigna angulatum var. strigosum C 3 Gymodinium sp. R 1 Pieurosigna alinarum C 3 Carteria sp. R 1 Pieurosigna alinarum C 3 Carteria sp. R 1 Symedra acus R 3 Chiorococcus sp. R 1 Symedra acus R 3 Koliella sp. R 1 Symedra acus R 4 Caloneis brevis R 1 Tabellaria flocculosa R 4 Caloneis brevis R 1 Thalassiothrix frauenfeldii C 4 Cocconeis placentula var. euglypta R 1 Thalassiothrix longissima C 4 Cocconeis placentula var. euglypta R 1 Thalassiothrix longissima C 4 Cocconeis placentula var. euglypta R 1 Thalassiothrix longissima C 4 Cocconeis placentula var. euglypta R 1 Thalassiothrix longissima C	1	Pinnularia cr. gibba Pinnularia guadmatanca	r. D	3	Thalacsiothnin longiccima	r. P
1Pieurosigua elongatumC3Protocymica inum sp.R1Pleurosigua salinarumC3Carteria sp.R1Staurone's quadripedisR3Chlorococcus sp.R1Symedra acusR3Koliella sp.R1Symedra tabulata var. fasciculataR4Amphiprora kjellmaniiR1Tabellaria flocculosaR4Caloneis brevisR1Tabellaria flocculosaR4Caloneis brevisR1Thalassionema nitzschioidesA4Caloneis brevisR1Thalassiothrix frauenfeldiiC4Coconeis placentula var. euglyptaR1Thalassiothrix frauenfeldiiC4Coscinodiscus kuetzingiiR1Thalassiothrix forauenfeldiiC4Coscinodiscus kuetzingiiR1Amphidinium sp.R4Fragilaria construensC1Oxytoxum sp.R4Fragilaria pinnataC1Okrysochromalina sp.R4Fragilaria pinnataC2Chlawdomonas sp.C4Gouphonema axiguumR2Chlawdomonas sp.C4Navicula bakusiensisR3Amphiprora sjegantea var. septentrionalisR4Navicula salinarumR3Amphiprora sjegantea var. septentrionalisR4Navicula salinarumR3Amphiprora sjelmaniiR4Navicu	1	Pinnularia quauratarea	к с	3	Gumpedinium en	к 0
1Pleurosigua solinarumC3Catteria sp.R1Stauroneis quadripedisR3Chlorococcus sp.R1Symedra acusR3Chlorococcus sp.R1Symedra acusR3Koliella sp.R1Symedra tabulata var. fasciculataR4Amphipora kjellmaniiR1Tabellaria flocculosaR4Caloneis brevisR1Thalassionean itzschioidesA4Caloneis liberR1Thalassiotira balticaR4Coscinodiscus kuetzingiiR1Thalassiothrix frauenfeldiiC4Coscinodiscus kuetzingiiR1Thalassiothrix longissimaC4Coscinodiscus kuetzingiiR1Amphifonium sp.R4Fragilaria construensC1Oxytoxum sp.R4Fragilaria islandicaA1Schroederia sp.R4Fragilaria pinnataC1Chrysocchromulina sp.R4Gomphonema sp.R1Ochronomas sp.C4Gomphonema sp.R2Chlamydomonas sp.C4Navicula directaC2Chlamydomonas sp.C4Navicula adisectuR3Amphiprora gigantea var. septentrionalisR4Navicula adimenueR3Amphiprora gigantea var. septentrionalisR4Navicula adimenueR3Amphi	1	Pleurosigna angulatum var. striyosum Pleurosigna elengatum		3	Cymnou nitum sp. Dnotonoridinium granlandicum	r. Þ
1Freurosigne SalinatumC3Calteriasp.R1Stauroneis quadripedisR3Calteriasp.R1Synedra acusR3Koliella sp.R1Synedra hyperboreaC	1	Pleurosigna elongacum		3	Cantonia co	
1 Staticities quaringents R 3 Christococcus sp. R 1 Synedra acus R 3 Kaliella sp. R 1 Synedra tabulata var. fasciculata R 4 Amphiprora kjellmanii R 1 Tabellaria flocculosa R 4 Caloneis liber R 1 Thalassionema nitzschioides A 4 Caloneis liber R 1 Thalassiothrix frauenfeldii C 4 Cocconeis placentula var. euglypta R 1 Thalassiothrix longissima C 4 Coscinotiscus kuezingii R 1 Thalassiothrix longissima C 4 Coscinotiscus kuezingii R 1 Thalassiothrix longissima C 4 Coscinotiscus kuezingii R 1 Thalassiothrix longissima R 4 Fragilaria construens C 1 1 Amphidinium sp. R 4 Fragilaria striatula V 1 1 Gymoodas sp. C 4 Gomphonema exigum R 1 Chysococus sp. <	.⊥ 1	Fleurosigma saiinarum Staumonois guadminodis		3	Chlonococcus en	n D
1 Synedra Juperborea C 1 Synedra tabulata var, fasciculata R 4 Amphiprora kjellmanii R 1 Tabellaria flocculosa R 4 Caloneis brevis R 1 Tabalssionean nitzschoides A 4 Caloneis liber R 1 Thalassiothrix frauenfeldii C 4 Cocconeis placentula var. euglypta R 1 Thalassiothrix frauenfeldii C 4 Coscinodiscus kuetzingii R 1 Amphidinium sp. R 4 Diatoma elongatum V 1 Gymodinium sp. R 4 Fragilaria isonatues C 1 Schroederia sp. R 4 Fragilaria pinnata C 1 Oxytoxum sp. R 4 Fragilaria pinnata C 1 Chrysochromulina sp. R 4 Gomphonema sp. R 1 Chrysochromulina sp. R 4 Gomphonema sp. R 1 Chrysochromal sp. C 4 Gomphonema kautschaticum R 1 Chr	1	Scauroners quadripeurs	л Б	3	Kalialla ca	
1Synedra tuppertoreaC1Synedra tuppertoreafasciculataR4Amphiprora kjellmaniiR1Tabellaria flocculosaR4Caloneis brevisR1Thalassionema nitzschioidesA4Caloneis brevisR1Thalassiothrix frauenfeldiiC4Coacconeis placentula var. euglyptaR1Thalassiothrix frauenfeldiiC4Coscinodiscus kuetzingiiR1Thalassiothrix longissimaC4Coscinodiscus kuetzingiiR1Amphidinium sp.R4Fragilaria construensC1Oxytoxum sp.R4Fragilaria islandicaA1Schroederia sp.R4Fragilaria pinnataC1Okytoxum sp.R4Fragilaria striatulaV1Chrysochromulina sp.R4Gomphonema exiguumR1Ochronomas sp.C4Gomphonema exiguumR1Cryptomonas sp.C4Navicula directaC2Ochronomas sp.C4Navicula diastrumR3Amphiprora kjellmaniiR4Navicula gastrumR3Amphiprora gigantea var. septentrionalisR4Navicula aginarumR3Amphora proteusR4Navicula aginarumR3Caloneis brevisC4Neidium bisulcatumR3Galoneis brevisC <td< td=""><td>1</td><td>Synedia deus Sunadra humanharea</td><td>r r</td><td>5</td><td>Kotteria sp.</td><td>ĸ</td></td<>	1	Synedia deus Sunadra humanharea	r r	5	Kotteria sp.	ĸ
1Opening to tabulate valueR4Caloneis previsR1Tabellaria flocculosaR4Caloneis liberR1Thalassionema nitzschioidesA4Caloneis liberR1Thalassiothrix frauenfeldiiC4Cocconeis placentula var. euglyptaR1Thalassiothrix frauenfeldiiC4Cocconeis placentula var. euglyptaR1Thalassiothrix longissimaC4Cocconeis placentula var. euglyptaR1Amphidinium sp.R4Diatoma elongatumV1Gymnodinium sp.R4Fragilaria construensC1Oxytoxum sp.R4Fragilaria islandicaA1Schroederia sp.R4Fragilaria pinnataC1Chrysochromulina sp.R4Fragilaria striatulaV1Chrysochromulina sp.R4Gomphonema sp.R1Ochronomas sp.C4Gomphonema exiguumR2Chlamydomonas sp.C4Navicula balusiensisR2Chlamydomonas sp.C4Navicula gastrumR3Amphiprora gigantea var. septentrionalisR4Navicula spiculaR3Amphora proteusR4Navicula spiculaR3Caloneis spevisC4Neticula spiculaR3Caloneis previsC4Neticula spiculaR3<	1	Syneyra Hyperborea Syneyra tabulata yar fasciculata	с в	A	Amphiorona kiellmanii	P
1Thalassionema nitzschioidesA4Caloneis liberR1Thalassiosira balticaR4Caloneis liberR1Thalassiosira balticaR4Chaetoceros ceratosporumR1Thalassiothrix frauenfeldiiC4Coscinodiscus kuetzingiiR1Amphidinium sp.R4Diatoma elongatumV1Gymnodinium sp.R4Fragilaria construensC1Oxytoxum sp.R4Fragilaria islandicaA1Schroederia sp.R4Fragilaria striatulaC1Chrysochromulina sp.R4Fragilaria striatulaV1Chrysochromulina sp.R4Fragilaria striatulaV1Chrysochromulina sp.R4Gomphonema sp.R1Chrysochromulina sp.R4Gomphonema sp.R1Chrysochromal sp.C4Gomphonema sp.R1Chrysochromas sp.C4Gomphonema kamtschaticumR2Chlamydomonas sp.C4Navicula gastrumR2Ochronomas sp.R4Navicula gastrumR3Amphiprora gigantea var. septentrionalisR4Navicula salinarumR3Amphora proteusR4Heidium bisulcatumR3Caloneis brevisC4Neidium bisulcatumR3Caloneis brevisC <td< td=""><td>1</td><td>Taballaria flocculoca</td><td>5</td><td>4</td><td>Falonais brovis</td><td>2</td></td<>	1	Taballaria flocculoca	5	4	Falonais brovis	2
1 Thalassiona intrustica R 4 Chaetoceros ceratosporum R 1 Thalassiothrix frauenfeldii C 4 Cocconeis placentula var. euglypta R 1 Thalassiothrix longissima C 4 Cocconeis placentula var. euglypta R 1 Thalassiothrix longissima C 4 Cocconeis placentula var. euglypta R 1 Thalassiothrix longissima C 4 Cocconeis placentula var. euglypta R 1 Amphidinium sp. R 4 Diatoma elongatum V 1 Gymnodinium sp. R 4 Fragilaria islandica A 1 Oxytoxum sp. R 4 Fragilaria islandica A 1 Oxytoxum sp. R 4 Fragilaria islandica A 1 Chrysochromulina sp. R 4 Gomphonema sp. R 1 Chrysochromulina sp. R 4 Gomphonema kamischaticum R 1 Chrysochromulina sp. R 4 Gomphonema kamischaticum R 1 Chrysochomas sp. C	1	Thalassionera nitzschioides	Δ	4	faloneis liber	2
1Thalassiothrix frauenfeldiiC4Cocconeis placentula var. euglyptaR1Thalassiothrix longissimaC4Cocconeis placentula var. euglyptaR1Amphidinium sp.R4Diatoma elongatumV1Gymnodinium sp.R4Fragilaria construensC1Oxytoxum sp.R4Fragilaria construensC1Oxytoxum sp.R4Fragilaria islandicaA1Schroederia sp.R4Fragilaria islandicaC1Chrysochromulina sp.R4Fragilaria striatulaV1Chrysococcus sp.C4Gomphonema sp.R1Ochronomas sp.R4Gomphonema kamtschaticumR1Cryptomonas sp.C4Gomphonema kamtschaticumR2Chlamydomonas sp.C4Navicula bahusiensisR2Chlamydomonas sp.C4Navicula gastrumR3Amphiprora gigantea var. septentrionalisR4Navicula salinarumR3Amphiprora kjellmaniiR4Navicula spiculaR3Caloneis brevisC4Neidium bisulcatum cf. var. undulataC3Chaetoceros ceratosporumR4Nitzschia laevissimaR3Cocconeis placentula var. euglyptaR4Nitzschia longissimaR	1	Thalassiosira baltica	R	4		R
1Thalassiothrix longissimaC4Cockingiscus kuetzingisR1Amphidinium sp.RR4Diatoma elongatumV1Gymnodinium sp.R4Fragilaria construensC1Oxytoxum sp.R4Fragilaria islandicaA1Schroederia sp.R4Fragilaria pinnataC1Chrysochromulina sp.R4Fragilaria striatulaV1Chrysochromulina sp.R4Fragilaria striatulaV1Chrysochromulina sp.R4Gomphonema sp.R1Ochronomas sp.C4Gomphonema exiguumR1Ochronomas sp.C4Gomphonema kamtschaticumR2Chlamydomonas sp.C4Navicula bahusiensisR2Chlamydomonas sp.C4Navicula directaC2Ochronomas sp.R4Navicula gastrumR3Amphiprora gigantea var. septentrionalisR4Navicula salinarumR3Amphora proteusR4Navicula spiculaR3Caloneis brevisC4Neidum bisulcatumR3Caloneis brevisC4Neidum bisulcatumR3Caloneis brevisC4Neidum bisulcatum cf. var. undulataC3Coccoreis placentula var. euglyptaR4Nitzschia laevissimaR	1	Thalassiothrix frauenfeldii	ĉ	Å	Cocconeis placentula var. euglymta	R
1AmphiformaR4Distance longatumV1Gymnodinium sp.RR4Fragilaria construensC1Oxytoxum sp.RR4Fragilaria construensC1Oxytoxum sp.RA4Fragilaria islandicaA1Schroederia sp.A4Fragilaria striatulaC1Chrysochromulina sp.R4Fragilaria striatulaV1Chrysocccus sp.C4Gomphonema sp.R1Ochronomas sp.R4Gomphonema kamtschaticumR1Cryptomonas sp.C4Gomphonema kamtschaticumR2Chlamydomonas sp.C4Navicula bahusiensisR2Chlamydomonas sp.C4Navicula gastrumR3Amphiprora gigantea var. septentrionalisR4Navicula salinarumR3Amphiprora kjellmaniiR4Navicula spiculaR3Caloneis brevisC4Neidium bisulcatumR3Chaetoceros ceratosporumR4Nitzschia laevissimaR3Cocconeis placentula var. euglyptaR4Nitzschia laevissimaR	1	Thalassiothrix longissima	č	4	Coscinodiscus kuetzingii	R
Image: ConstructionRFragilaria construensC1Gyumodinium sp.R4Fragilaria construensA1Schroederia sp.R4Fragilaria islandicaA1Schroederia sp.A4Fragilaria pinnataC1Chrysochromulina sp.R4Fragilaria striatulaV1Chrysochromulina sp.R4Gomphonema sp.R1Ochronomas sp.C4Gomphonema exiguumR1Ochronomas sp.C4Gomphonema kamtschaticumR1Cryptomonas sp.C4Gomphonema exiguumR2Chlamydomonas sp.C4Navicula bahusiensisR2Chronomas sp.C4Navicula gastrumR3Amphiprora gigantea var. septentrionalisR4Navicula salinarumR3Amphiprora proteusR4Navicula spiculaR3Caloneis brevisC4Neidium bisulcatumR3Chaetoceros ceratosporumR4Nitzschia laevissimaR3Cocconeis placentula var. euglyptaR4Nitzschia longissimaR	1	Amhidinium sn.	R	Å	Diatoma elongatum	v
1Dxytoxum sp.R4Fragilaria islandicaA1Schroederia sp.A4Fragilaria islandicaC1Chrysochromulina sp.R4Fragilaria striatulaV1Chrysococcus sp.C4Gomphonema sp.R1Ochronomas sp.C4Gomphonema exiguumR1Chrynomonas sp.C4Gomphonema exiguumR2Chlamydomonas sp.C4Gomphonema kamtschaticumR2Chlamydomonas sp.C4Navicula bahusiensisR2Chronomas sp.C4Navicula directaC2Ochronomas sp.R4Navicula gastrumR3Amphiprora gigantea var. septentrionalisR4Navicula spiculaR3Amphora proteusR4Nevicula spiculaR3Caloneis brevisC4Neidium bisulcatumR3Chaetoceros ceratosporumR4Nitzschia laevissimaR3Cocconeis placentula var. euglyptaR4Nitzschia longissimaR	ī	Gvenodinium sp.	R	4	Fragilaria construens	ċ
1 Schroederia sp. A 4 Fragilaria pinnata C 1 Chrysochromulina sp. R 4 Fragilaria striatula V 1 Chrysocccus sp. C 4 Gomphonema sp. R 1 Ochronomas sp. C 4 Gomphonema sp. R 1 Ochronomas sp. C 4 Gomphonema kamtschaticum R 1 Chrynomonas sp. C 4 Gomphonema kamtschaticum R 2 Chlamydomonas sp. C 4 Navicula bahusiensis R 2 Chlamydomonas sp. C 4 Navicula gastrum R 2 Ochronomas sp. R 4 Navicula gastrum R 3 Amphiprora gigantea var. septentrionalis R 4 Navicula salinarum R 3 Amphiprora kjellmanii R 4 Navicula spicula R 3 Amphora proteus R 4 Neidium bisulcatum R 3 Caloneis brevis C 4 Neidium bisulcatum cf. var. undulata C	1	Oxytoxum sp.	R	4	Fragilaria islandica	Ă
1 Chrysochromulina sp. R 4 Fragilaria striatula V 1 Chrysococcus sp. C 4 Gomphonema sp. R 1 Ochronomas sp. R 4 Gomphonema exiguum R 1 Cryptomonas sp. C 4 Gomphonema exiguum R 1 Cryptomonas sp. C 4 Gomphonema kamtschaticum R 2 Chlamydomonas sp. C 4 Mavicula bahusiensis R 2 Chlamydomonas sp. C 4 Navicula directa C 2 Ochronomas sp. C 4 Navicula gastrum R 3 Amphiprora gigantea var. septentrionalis R 4 Navicula salinarum R 3 Amphiprora kjellmanii R 4 Navicula salinarum R 3 Amphora proteus R 4 Neidium bisulcatum R 3 Caloneis brevis C 4 Neidium bisulcatum cf. var. undulata C 3 Chaetoceros ceratosporum R 4 Nitzschia laevissima R <td>1</td> <td>Schroederia sp.</td> <td>A</td> <td>4</td> <td>Fragilaria pinnata</td> <td>Ċ</td>	1	Schroederia sp.	A	4	Fragilaria pinnata	Ċ
1 Chrysococcus sp. C 4 Gomphonema sp. R 1 Ochronomas sp. R 4 Gomphonema exiguum R 1 Cryptomonas sp. C 4 Gomphonema kamtschaticum R 1 Cryptomonas sp. C 4 Gomphonema kamtschaticum R 2 Chlamydomonas sp. C 4 Navicula bahusiensis R 2 Chlamydomonas sp. C 4 Navicula directa C 2 Ochronomas sp. C 4 Navicula gastrum R 3 Amphiprora gigantea var. septentrionalis R 4 Navicula salinarum R 3 Amphiprora kjellmanii R 4 Navicula salinarum R 3 Amphora proteus R 4 Navicula spicula R 3 Caloneis brevis C 4 Neidium bisulcatum R 3 Chaetoceros ceratosporum R 4 Nitzschia laevissima R 3 Cocconeis placentula var. euglypta R 4 Nitzschia longissima R <td>1</td> <td>Chrysochromulina sp.</td> <td>R</td> <td>4</td> <td>Fragilaria striatula</td> <td>v</td>	1	Chrysochromulina sp.	R	4	Fragilaria striatula	v
1 Ochronomas sp. R 4 Gomphonema exiguum R 1 Cryptomonas sp. C 4 Gomphonema kamitschaticum R 2 Chlamydomonas sp. C 4 Navicula bahusiensis R 2 Chlamydomonas sp. C 4 Navicula directa C 2 Ochronomas sp. C 4 Navicula directa C 2 Ochronomas sp. R 4 Navicula gastrum R 3 Amphiprora gigantea var. septentrionalis R 4 Navicula salinarum R 3 Amphiprora kjellmanii R 4 Navicula salinarum R 3 Amphora proteus R 4 Navicula spicula R 3 Caloneis brevis C 4 Neidium bisulcatum R 3 Chaetoceros ceratosporum R 4 Nitzschia laevissima R 3 Cocconeis placentula var. euglypta R 4 Nitzschia longissima R	1	Chrysococcus sp.	Ċ	4	Gomphonema sp.	R
1 Cryptomonas sp. C 4 Gomphonema kamtschaticum R 2 Chlamydomonas sp. C 4 Navicula bahusiensis R 2 Chlamydomonas sp. C 4 Navicula bahusiensis R 2 Ochronomas sp. C 4 Navicula directa C 2 Ochronomas sp. R 4 Navicula gastrum R 3 Amphiprora gigantea var. septentrionalis R 4 Navicula salinarum R 3 Amphiprora kjellmanii R 4 Navicula salinarum R 3 Amphora proteus R 4 Neidium bisulcatum R 3 Caloneis brevis C 4 Neidium bisulcatum cf. var. undulata C 3 Chaetoceros ceratosporum R 4 Nitzschia laevissima R 3 Cocconeis placentula var. euglypta R 4 Nitzschia longissima R	1	Ochronomas sp.	R	4	Gomphonema exiguum	R
2 Chlamydomonas sp. C 4 Navicula bahusiensis R 2 Chlamydomonas sp. C 4 Navicula bahusiensis R 2 Ochronomas sp. R 4 Navicula gastrum R 3 Amphiprora gigantea var. septentrionalis R 4 Navicula salinarum R 3 Amphiprora kjellmanii R 4 Navicula spicula R 3 Amphora proteus R 4 Navicula spicula R 3 Caloneis brevis C 4 Neidium bisulcatum cf. var. undulata C 3 Chaetoceros ceratosporum R 4 Nitzschia laevissima R 3 Cocconeis placentula var. euglypta R 4 Nitzschia longissima R	ī	Cryptomonas sp.	Ċ	4	Gomphonema kamtschaticum	R
2 Chlamydomonas sp. C 4 Navicula directa C 2 Ochronomas sp. R 4 Navicula gastrum R 3 Amphiprora gigantea var. septentrionalis R 4 Navicula salinarum R 3 Amphiprora kjellmanii R 4 Navicula spicula R 3 Amphora proteus R 4 Neidium bisulcatum R 3 Caloneis brevis C 4 Neidium bisulcatum cf. var. undulata C 3 Chaetoceros ceratosporum R 4 Nitzschia laevissima R 3 Cocconeis placentula var. euglypta R 4 Nitzschia longissima R			-	4	Navicula bahusiensis	R
2 Ochronomas sp. R 4 Navicula gastrum R 3 Amphiprora gigantea var. septentrionalis R 4 Navicula salinarum R 3 Amphiprora kjellmanii R 4 Navicula salinarum R 3 Amphora proteus R 4 Navicula spicula R 3 Caloneis brevis C 4 Neidium bisulcatum cf. var. undulata C 3 Chaetoceros ceratosporum R 4 Nitzschia laevissima R 3 Cocconeis placentula var. euglypta R 4 Nitzschia longissima R	2	Chlamydomonas sp.	С	4	Navicula directa	Ċ
4 Navicula maculosa R 3 Amphiprora gigantea var. septentrionalis R 4 Navicula salinarum R 3 Amphiprora kjellmanii R 4 Navicula salinarum R 3 Amphora proteus R 4 Navicula spicula R 3 Caloneis brevis C 4 Neidium bisulcatum R 3 Caloneis brevis C 4 Nitzschia laevissima R 3 Chaetoceros ceratosporum R 4 Nitzschia laevissima R 3 Cocconeis placentula var. euglypta R 4 Nitzschia longissima R	2	Ochronomas sp.	Ř	4	Navicula gastrum	Ř
3 Amphiprora gigantea var. septentrionalis R 4 Navicula salinarum R 3 Amphiprora kjellmanii R 4 Navicula salinarum R 3 Amphora proteus R 4 Navicula solinarum R 3 Amphora proteus R 4 Navicula solinarum R 3 Caloneis brevis C 4 Neidium bisulcatum C 3 Chaetoceros ceratosporum R 4 Nitzschia laevissima R 3 Cocconeis placentula var. euglypta R 4 Nitzschia longissima R	-	· ·		4	Navicula maculosa	R
3 Amphiprora kjellmanii R 4 Navicula spicula R 3 Amphora proteus R 4 Neidium bisulcatum R 3 Caloneis brevis C 4 Neidium bisulcatum cf. var. undulata C 3 Chaetoceros ceratosporum R 4 Nitzschia laevissima R 3 Cocconeis placentula var. euglypta R 4 Nitzschia longissima R	3	Amphiprora gigantea var. septentrionalis	R	4	Navicula salinarum	R
3 Amphora proteus R 4 Neidium bisulcatum R 3 Caloneis brevis C 4 Neidium bisulcatum cf. var. undulata C 3 Chaetoceros ceratosporum R 4 Nitzschia laevissima R 3 Cocconeis placentula var. euglypta R 4 Nitzschia longissima R	3	Amphiprora kjellmanii	R	4	Navicula spicula	R
3 Caloneis brevis C 4 Neidium bisulcatum cf. var. undulata C 3 Chaetoceros ceratosporum R 4 Nitzschia laevissima R 3 Cocconeis placentula var. euglypta R 4 Nitzschia longissima R	3	Amphora proteus	R	4	Neidium bisulcatum	R
3 Chaetoceros ceratosporum R 4 Nitzschia laevissima R 3 Cocconeis placentula var. euglypta R 4 Nitzschia longissima R	3	Caloneis brevis	c	4	Neidium bisulcatum cf. var. undulata	Ċ
3 Cocconeis placentula var. euglypta R 4 Nitzschia longissima R	3	Chaetoceros ceratosporum	R	4	Nitzschia laevissima	R
	3	Cocconeis placentula var. euglypta	R	4	Nitzschia longissima	R

Table 30. Relative abundance of algae sampled from ice cores in 1987.

^a R = rare; C = common; A = abundant; V = very abundant.

Table 30. Relative abundance of algae sampled from ice cores in 1987 (CONTINUED).

,

£

.

. .

Algae Sample			Algae Sample		
Number	Species	Abundance"	Number	Species	Abundance
4	Nitzschia cf. palea	R	5	Protoperidinium grenlandicum	R
4	Nitzschia sigma	R	5	Carteria sp.	R
4	Pinnularia cf. gibba	R	5	Chlorococcus sp.	С
4	Pinnularia quadratarea	R	5	Chrysochromulina sp.	С
4	Pleurosigma salinarum	R	`5	Chrysococcus sp.	С
4	Stauroneis quadripedis	R	5	Ebria tripartita	R
4	Synedra tabulata	C	5	Cryptomonas sp.	С
4	Thalassionema nitzschioides	v	5	Euglena proxima	R
4	Thalassiosira lacustris	R			
4	Thalassiothrix longissima	C	6	Chaetoceros septentrionalis	С
4	Amphidinium sp.	R	6	Cylindrotheca closterium	R
4	Protoperidinium grenlandicum	R	6	Diatoma elongatum	C
4	Chlorococcus sp.	C	6	Diploneis litoralis var. clathrata	Ŕ
4	Kirchneriella lunaris	R	6	Eunotia lunaris	C
4	Pyramidomonas grossi	R	6	Fragilaria construens	C
4	Chrysochromulina sp.	C	6	Fragilaria islandica	C
4	Chrysococcus sp.	C	6	Fragilaria striatula	R
4	Ochronomas sp.	R	6	Gomphonema kamtschaticum	C
4	Cryptomonas sp.	C	6	Licmophora gracilis var. anglica	ĸ
-	.	•	0	Navicula danustensis	ĸ
5	Achnanthes taeniata	A	6	Navicula directa	L 0
5	Amphiprora alata	R	6	Navicula gastrum Navicula abunchecentala	· .
5	Amphiprora gigantea var. septentrionalis	R D	6	Navicula enjinamun	L P
5	Amphiprora kjelimanii	R D	6	Navicula saliharum Navicula scopulopum	R D
5	Calencic browic	P	6	Navicula vitrea	P
5	Caloneis Drevis	r r	6	Navicula vicrea Naidium biculcatum	Ċ
5	Constaulina polacica	c c	6	Nitzechia acicularie	Ċ
5	Chaotocenos constosnorum	p	6	Nitzschia clostorium	с р
5	Chaetoceros cententrionalis	P	6	Nitzechia laovissima	P
5	Eragilaria construens	R	ă	Nitzschia nlana	8
5	Fragilaria ninnata	C	. 6	Witzschia polaris	8
5	Franilaria striatula	v	6	Nitzschia sigma	R
5	Somphonema exigure	R	6	Pinnularia cf. gibba	R
5	Navicula habusiensis	R	6	Pinnularia guadratarea	R
5	Navicula directa	R	6	Pinnularia guadratarea var. constricta	R
5	Navícula gastrum	R	6	Stauroneis guadripedis	R
5	Navicula salinarum	R	6	Synedra hyperborea	С
5	Navicula spicula	R	6	Synedra tabulata	R
5	Neidium bisulcatum	R	6	Synedra tabulata var. fasciculata	С
5	Nitzschia acicularis	C	6	Tabellaria flocculosa	C
5	Nitzschia frigida	٧	6	Thalassionema nitzschioides	A
5	Nitzschia longissima	R	6	Peridiniella catenata	R
5	Nitzschia cf. palea	R	6	Carteria sp.	С
5	Nitzschia polaris	С	6	Chlamydomonas sp.	R
5	Nitzschia sigma	С	6	Schroederia sp.	С
5	Nitzschia cf. thermalis	R	6	Chrysochromulina sp.	С
5	Pinnularia quadratarea	R	6	Chrysococcus sp.	C
5	Pleurosigma clevei	R	6	Ochronomas sp.	С
5	Stauroneis quadripedis	R	6	Ebria tripartita	R
5	Stephanodiscus astraea	R	6	Cryptomonas sp.	R
5	Synedra acus	С			
5	Synedra hyperborea	C	7	Chaetoceros septentrionalis	R
5	Synedra pulchella	R	7	Cocconeis placentula var. euglypta	R
5	Thalassionema nitzschioides	С	7	Diatoma elongatum	С
5	Thalassiothrix frauenfeldii	С	7	Diploneis incurvata	R
5	Thalassiothrix longissima	R	7	Diploneis vacillans	R
5	Amphidinium sp.	R	7	Eunotia lunaris	С
5	Peridiniella catenata	R	7	Fragilaria construens	R

^a R = rare; C ≠ common; A ≈ abundant; V = very abundant.

Algae Sample Number	Species	Abundance ^a	Algae Sample Number	Species	Abundance ^a
	<u>, , , , , , , , , , , , , , , , , , , </u>		<u></u>	·····	<u> </u>
7	Fragilaria islandica	С	8	Navicula directa	R
7	Fragilaria striatula	С	8	Navicula gastrum	С
7	Gomphonema exiguum	R	8	Navicula glacialis	R
7	Navicula directa	R	8	Navicula maculosa	R
7	Navicula gastrum	R	8	Navicula marina	C
7	Navicula kariana	R	8	Navicula rhynchocephala	R
7	Navicula rhynchocephala	R	8	Navicula salinarum	R
7	Navicula salinarum	R	8	Navicula spicula	ĉ
7	Nitzschia closterium	C	8	Neidium bisulcatum	R
7	Nitzschia frigida	Ċ	8	Neidium bisulcatum cf. var. undulata	ĉ
7	Nitzschia longissima	С	8	Nitzschia frigida	R
7	Nitzschia sigma	R	8	Nitzschia polaris	R
7	Stauroneis guadripedis	R	8	Pleurosigma clevei	R
7	Synedra camtschatica	R	8	Stauroneis guadripedis	C
7	Synedra hyperborea	С	8	Synedra acus	R
7	Tabellaria flocculosa	C	8	Synedra hyperborea	R
7	Thalassionema nitzschioides	С	8	Synedra tabulata var. fasciculata	С
7	Gymnodinium sp.	R	8	Thalassionema nitzschioides	C
7	Protoperidinium bipes	R	8	Thalassiosira gravida	R
7	Carteria sp.	С	8	Thalassiosira lacustris	R
7	Chlamydomonas sp.	R	8	Thalassiothrix longissima	С
7	Chrysochromulina sp.	C	8	Oxytoxum sp.	R
7	Chrysococcus sp.	C	8	Peridiniella catenata	С
7	Ochronomas sp.	R	8	Protoperidinium grenlandicum	R
7	Cryptomonas sp.	C	8	Carteria sp.	R
			8	Koliella sp.	R
8	Amphiprora kjellmanii	R	8	Schroederia sp.	R
8	Caloneis liber	R	8	Chrysochromulina sp.	С
8	Cerataulina pelagica	R	8	Chrysococcus sp.	R
8	Chaetoceros ceratosporum	R	8	Ochronomas sp.	C
8	Chaetoceros septentrionalis	C	8	Cryptomonas sp.	А
8	Coscinodiscus kuetzingii	C	8	Euglena proxima	R
8	Cyclotella comta	, R		•	
8	Fragilaria construens	C	9	Melosira arctica	С
8	Fragilaria islandica	C	9	Nitzschia frigida	v
8	Fragilaria pinnata	R	9	Chrysochromulina sp.	R
8	Fragilaria striatula	A	9	Chrysococcus sp.	С
8	Goenhonema exiguum	R	9	Cryntomonas sn.	P

Table 30. Relative abundance of algae sampled from ice cores in 1987 (CONTINUED).

^a R = rare; C = common; A = abundant; V = very abundant.

ŧ

•

there are including and all all and the second of a state and the second of the second	Table 31.	Relative	abundance	of	algae	sampled	from	ice	cores	in	1988
--	-----------	----------	-----------	----	-------	---------	------	-----	-------	----	------

Algae Sample			Algae Sample		
Number	Species	Abundance ^a	Number	Species	Abundance
1	Nitzschia frigida	v	3	Navicula bahusiensis	R
1	Gymnodinium sp.	R	3	Navicula directa	С
1	Chlamydomonas sp.	С	3	Navicula glacialis	R
1	Chrysococcus sp.	v	3	Navicula gracilis	С
1	Ochronomas sp.	v	3	Navicula kariana	R
			3	Navicula maculosa	R
2	Amphora cf. laevis laevissima	R	3	Navicula spicula	С
2	Chaetoceros ceratosporum	С	3	Nitzschia acicularis	C
2	Diatoma elongatum	v	3	Nitzschia closterium	C
2	Fragilaria construens	С	3	Nitzschia cylindrus	C
2	Fragilaria islandica	V	3	Nitzschia frigida	А
2	Fragilaria striatula	v	3	Nitzschia laevissima	A
2	Gomphonema exiguum	R	3	Nitzschia polaris	С
2	Gomphonema kamtschaticum	R	3	Nitzschia sigma	С
2	Gyrosigma cf. kuetzingii	C	3	Pleurosigma angulatum	R
2	Navicula bahusiensis	С	3	Pleurosigma elongatum	R
2	Navicula directa	С	3	Pleurosigma salinarum	R
2	Navicula gastrum	R	3	Stauroneis sp.	R
2	Navicula glacialis	С	3	Synedra acus	R
2	Navicula gracilis	R	3	Synedra hyperborea	С
2	Navicula kariana	R	3	Synedra tabulata	R
2	Navicula maculosa	R	3	Synedra tabulata var. fasciculata	С
2	Navicula marina	R	3	Tabellaria flocculosa	С
2	Navicula pygmaea	R	3	Thalassiosira lacustris	R
2	Navicula rhynchocephala	R	3	Gymnodinium sp.	C
2	Navicula salinarum	R	3	Ochronomas sp.	v
2	Navicula spicula	С			
2	Neidium bisulcatum	R	4	Cerataulina pelagica	R
2	Nitzschia acicularis	С	4	Chaetoceros ceratosporum	C
2	Nitzschia cf. acuminata	R	4	Chaetoceros gracilis	R
2	Nitzschia closterium	R	4	Chaetoceros septentrionalis	R
2	Nitzschia frigida	A	4	Diatoma elongatum	٧
2	Nitzschia laevissima	С	4	Fragilaria construens	С
2	Nitzschia cf. palea	R	4	Fragilaria islandica	С
2	Nitzschia polaris	С	4	Fragilaria pinnata	R
2	Nitzschia sigma	С	4	Fragilaria striatula	A
2	Pinnularia guadratarea var. constricta	R	4	Gomphonema exiguum	С
2	Pleurosigma angulatum	R	4	Gomphonema kamtschaticum	С
2	Pleurosigma elongatum	R	4	Hantzschia weyprechii	R
2	Pleurosigna longum	R	4	Navicula directa	C
2	Pleurosigma salinarum	R	4	Navicula gastrum	R
2	Stauroneis septentrionalis	c	4	Navicula marina	R
2	Svnedra hyperborea	Ċ	4	Navicula spicula	R
2	Svnedra tabulata var. fasciculata	č	4	Nitzschia cylindrus	C
2	Thalassiosira lacustris	ċ	4	Nitzschia frigida	c
2	Gymnodinium sp.	č	4	Nitzschia longissima	R
2	Ochronomas sp.	v	4	Nitzschia signoidea	R
2	Ebria tripartita	ċ	Å	Pinnularia guadratarea var. constricta	R
2	Cryptomonas sp.	č	4	Pleurosigna angulatum	R
-		-	4	Pleurosigma angulatum var. strigosum	R
3	Amphiprora kiellmanii	R	4	Pleurosigna elongatum	c C
3	Amphiprora paludosa	R	4	Pleurosigma salinarum	R
3	Chaetoceros ceratosporum	c	4	Synedra hyperborea	 Я
3	Diatoma elongatum	v	4	Synedra tabulata yar, fasciculata	Ċ
3	Fragilaria construens	r.	4	Amphidinium sp.	R
3	Fragilaria islandica	Ă	4	Gvanodinium sp.	ŗ
ন	Fragilaria ninnata	r r	Ă	Pyrasidosonas procei	D
3	Franilaria etriatula	v		Chrysococcus sn	v
2	Goenhonees evidua	ŕ	4 A	Ochronomas sp	r r
3	Gomphonema kantschaticum	r r	4	Ehria trinartita	R R
3	Gyrosigma cf. kuetzingii	R	*	conta en iparonoa	N

^a R = rare; C = common; A = abundant; V = very abundant.

	Algae	Sta	tion		Como		Tee	Smart
Year	Number	Number	Name	Number	Length (cm)	Volume (ml)	Thickness (cm)	Depth (cm)
1986	1 2 3 4 5 6 7 8 9 10	56 56 56 56 56 59 59 59 59	86029 86029 86029 86029 86029 86029 86029 86033 86033 86033 86033			64 72 73 61 53 73 114 140 64 105		8.0 8.0 10.0 13.0 17.0 9.0 13.0 19.0 21.0
1987	1 2 3 4 5 6 7 8 9	18 20 19 17 23 25 25 26 21	87003 87004 87005 87002 87007 87008 87008 87008 87008 87009 87009	21 22 16 26 31 31 26 16	3.5 1.5 3.0 5.0 5.0 5.0 5.0 5.0 3.0	113 63 99 83 177 135 110 193 49	1.6 1.6 1.1 1.6 1.1 1.1 1.8 2.0	1.0 10.0 2.5 1.0 3.0 1.0 1.0 4.0 3.0
1988	1 2 3 4	16 18 19 20	88001 88002 88004 88005	28 17 2 1	5.0 5.0 5.0 5.0	152 22 56 54	1.9 1.5 1.1 1.0	7.0 4.0 5.0 3.0

Table 32. Summary data for ice cores sampled for algae, 1986 to 1988.

5.1

Station Sample Number	Core Number	Melted Core Volume (ml)	Chl <u>a</u> Concentration (µg/L)	Core Length (cm)	Core Area (cm ²)	Chl <u>a</u> (mg·m ⁻²)	Ice Thickness (m)	Snow Depth (cm)
13 13	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 20 21 22 23 24 25 26 27 8 9 30	80 47 82 76 164 83 75 82 77 77 74 62 73 45 75 86 78 75 86 78 75 86 78 79 151 73 141 76 68 72 74 78 81 84	77.5 23.0 23.8 3.4 0.4 1.6 1.3 1.4 0.8 0.4 0.4 88.0 23.2 33.2 13.1 1.0 0.4 0.2 0.2 0.2 0.2 131.0 0.2 1.8 1.8 1.8 0.7 1.2 0.6 0.4		20.27 20.27	3.06 0.53 0.96 0.13 0.03 0.07 0.05 0.06 0.03 0.02 0.01 2.69 0.84 0.74 0.84 0.74 0.48 0.04 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01	2.1 2.2 1.5 1.6 1.3 1.5 1.4 1.2 2.1 1.4 1.6 1.4 1.5 1.3 1.4 2.0 1.5 1.5 1.5 1.4 1.4 1.4	$\begin{array}{c} 0.0\\ 0.0\\ 3.0\\ 4.0\\ 10.0\\ 11.0\\ 13.0\\ 19.0\\ 20.0\\ 22.0\\ 0.0\\ 1.5\\ 4.0\\ 20.0\\ 21.0\\ 24.0\\ 25.0\\ 0.0\\ 21.0\\ 25.0\\ 0.0\\ 25.0\\ 15.0\\ 19.0\\ 23.0\\ 25.0\\ 19.0\\ 25.0\\ 19.0\\ 25.0\\ 19.0\\ 25.0\\ 19.0\\ 25.0\\ 19.0\\ 25.0\\ 19.0\\ 25.0\\ 19.0\\ 25.0\\ 19.0\\ 25.0\\ 19.0\\ 25.0\\ 19.0\\ 25.0\\ 10$
14 14 14 14 14 14 14 14 14 14 14 14 14 1	1 2 3 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 14 5 16 7 8 9 10 11 23 14 5 16 7 8 9 10 11 23 14 5 16 7 8 9 10 11 23 14 5 16 7 8 9 10 11 23 14 5 16 7 8 9 10 11 23 12 2 24 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	76 82 81 75 87 78 79 84 82 86 79 80 980 94 77 80 82 82 82 82	$\begin{array}{c} 42.0\\ 113.0\\ 109.0\\ 92.0\\ 60.5\\ 7.1\\ 14.2\\ 10.6\\ 17.5\\ 0.9\\ 49.0\\ 36.4\\ 34.4\\ 29.4\\ 1.2\\ 13.8\\ 3.2\\ 2.0\\ 9.4\\ 75.5\\ 85.0\\ 99.0\\ 96.5\\ 6.0\\ 85.0\\ 52.5\\ 12.7\\ 33.8 \end{array}$		20.27 20.27	$1.57 \\ 4.57 \\ 4.36 \\ 3.40 \\ 2.60 \\ 0.28 \\ 0.54 \\ 0.40 \\ 0.67 \\ 1.44 \\ 1.25 \\ 0.04 \\ 0.67 \\ 0.13 \\ 0.07 \\ 0.34 \\ 2.91 \\ 3.31 \\ 4.10 \\ 3.67 \\ 0.21 \\ 3.35 \\ 2.12 \\ 0.52 \\ 1.37 \\ 0.52 \\ 1.57 \\ 0.52 \\ 1.57 \\ 0.52 \\ 1.57 \\ 0.52 \\ 1.57 \\ 0.52 \\ 1.57 \\ 0.52 \\ 1.57 \\ 0.52 \\ 1.57 \\ 0.52 \\ 1.57 \\ 0.57 \\ $	1.5 1.1 1.0 1.0 0.9 0.9 0.9 1.3 1.0 0.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	$\begin{array}{c} 1.0\\ 3.0\\ 3.0\\ 3.0\\ 16.0\\ 17.0\\ 17.0\\ 17.0\\ 11.0\\ 11.0\\ 11.0\\ 22.0\\ 25.0\\ 3.0\\ 3.0\\ 5.0\\ 6.0\\ 7.0\\ 9.0\\ 10.0\end{array}$

Table 33. Ice core chlorophyll \underline{a} (Chl \underline{a}) data for stations sampled in 1986.
Station Sample Number	Core Number	Melted Core Volume (ml)	Chl <u>a</u> Concentration (µg/L)	Core Length (cm)	Core Area (cm ²)	Chl <u>a</u> (mg∙m ⁻²)	Ice Thickness (m)	Snow Depth (cm)
15 15 15 15 15 15 15 15 15 15 15	1 2 3 4 5 6 7 8 9 10	82 72 59 73 86 75 63 77 69 79	9.1 10.1 1.9 16.3 0.5 0.1 0.6 5.9 0.2 0.2		20.27 20.27 20.27 20.27 20.27 20.27 20.27 20.27 20.27 20.27 20.27	0.37 0.36 0.05 0.02 0.00 0.02 0.22 0.01 0.01	1.6 1.5 1.6 1.5 1.7 1.7 1.7 1.7	0.0 0.0 9.0 10.0 11.0 12.0 15.0 16.0 20.0
566 566 566 566 566 566 566 566 566 566	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	67 71 75 31 65 69 63 67 67 71 64 73 74 72 67 70 66 70	14.1 11.1 5.7 35.2 5.3 12.9 8.0 9.1 20.8 11.3 18.5 16.2 50.5 8.8 48.5 91.0 120.0 82.0 167.0 88.0		20.27 20.27	$\begin{array}{c} 0.47\\ 0.39\\ 0.21\\ 0.54\\ 0.16\\ 0.41\\ 0.27\\ 0.28\\ 0.69\\ 0.37\\ 0.65\\ 0.51\\ 1.82\\ 0.32\\ 1.72\\ 3.01\\ 4.14\\ 2.83\\ 5.44\\ 3.04 \end{array}$	$1.0 \\ 1.2 \\ 1.0 \\ 1.1 \\ 1.2 \\ 1.1 \\ 1.2 \\ 1.1 \\ 1.2 \\ 1.1 \\ 1.2 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.2 $	7.0 7.0 9.0 9.0 10.0 11.0 11.0 12.0 12.0 12.0 14.0 15.0 15.0 15.0 18.0 20.0
59 59 59 59 59 59 59 59 59 59 59 59 59 5	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	70 110 71 83 108 112 100 125 70 57 95 100 108 80 125 103 112 105 120 115	197.0 220.0 168.0 369.0 189.0 669.0 136.0 256.0 170.0 143.0 139.0 65.0 174.0 98.0 114.0 139.0 108.0 102.0 71.5 173.0		20.27 20.27	$\begin{array}{c} 6.80\\ 11.94\\ 5.88\\ 15.11\\ 10.07\\ 36.96\\ 6.71\\ 8.39\\ 8.84\\ 4.78\\ 6.70\\ 6.86\\ 3.46\\ 6.87\\ 6.04\\ 5.59\\ 6.04\\ 5.59\\ 6.04\\ 4.06\\ 9.81\\ \end{array}$	0.8 0.8 1.0 0.8 0.8 0.8 0.8 0.8 0.8 0.9 0.8 0.9 0.8 0.9 0.8 0.9 0.8 0.9 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8	8.0 9.0 10.0 10.0 12.0 12.0 14.0 15.0 15.0 19.0 21.0 22.0 23.0 23.0

Table 33. Ice core chlorophyll \underline{a} (Chl \underline{a}) data for stations sampled in 1986 (CONTINUED).

Station Sample Number	Core Number	Melted Core Volume (ml)	Chl <u>a</u> Concentration (µg/L)	Core Length (cm)	Core Area (cm ²)	Chla_ (mg∙m ⁻²)	Ice Thickness (m)	Snow Depth (cm)
16 16 16 16 16 16 16 16 16	1 2 3 4 5 6 7 8 9 10	86 57 76 72 74 70 74 77 84 82	328.0 319.0 451.0 200.0 217.0 570.0 551.0 411.0 432.0 545.0	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	20.27 20.27 20.27 20.27 20.27 20.27 20.27 20.27 20.27 20.27 20.27	13.92 8.97 16.91 7.10 7.87 19.68 19.98 15.61 17.90 22.05	1.1 1.0 1.0 1.0 1.0 1.0 1.0 1.1 1.2 1.2	3.0 3.0 2.0 4.0 3.0 4.0 2.0 2.0 2.0
17 17 17 17 17 17 17 17 17 17 17 17 17	1 2 3 4 5 6 7 8 9 10 11 13 14 15	65 62 68 74 62 73 64 77 73 78 47 72 74 73	264.0 300.0 134.0 168.0 272.0 169.0 146.0 126.0 141.0 132.0 238.0 99.5 126.0 46.0	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	20.27 20.27 20.27 20.27 20.27 20.27 20.27 20.27 20.27 20.27 20.27 20.27 20.27 20.27 20.27	8.47 9.18 4.50 6.13 8.32 6.09 4.61 4.79 5.08 5.08 5.52 3.53 4.60 1.66	1.3 1.2 1.4 1.2 1.3 1.3 1.2 1.3 1.2 1.4 1.1 1.2 1.0	1.0 5.0 3.0 2.0 3.0 7.0 4.0 2.0 4.0 2.0 6.0 6.0 10.0
18 18 18 18 18 18 18 18 18 18 18 18 18 1	1 2 3 4 5 6 7 8 9 11 12 13 14 15 16 17 18 9 20 22	73 73 77 67 69 67 76 66 81 80 73 78 83 76 82 76 82 76 82 78	59.5 40.0 57.0 27.6 45.5 23.8 68.5 54.0 41.5 94.0 83.0 112.0 53.5 73.5 54.5 38.4 60.0 36.0 45.0 52.5	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	20.27 20.27	2.14 1.44 2.17 0.91 1.55 0.79 2.57 1.76 1.66 3.71 2.99 4.31 2.19 2.76 2.20 1.44 2.31 1.35 1.82 2.02	1.5 1.3 1.5 2.0 1.5 1.7 1.6 2.0 1.9 1.6 1.4 1.5 1.5 1.7 1.6 1.7 1.7 1.7	2.0 4.0 2.5 5.0 2.5 1.0 2.5 1.0 2.5 7.0 2.0 3.0 9.0 2.0 1.0 5 4.0 3.0 9.0 2.0 1.0 5
19 19 19 19 19 19 19 19 19 19 19 19	1 2 3 4 5 6 7 8 9 10 11 12 13	79 76 75 78 80 78 80 82 76 76 82 80	960.0 667.0 802.0 720.0 700.0 705.0 768.0 488.0 729.0 981.0 663.0 583.0	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	20.27 20.27 20.27 20.27 20.27 20.27 20.27 20.27 20.27 20.27 20.27 20.27 20.27 20.27	37.41 25.01 29.67 27.63 27.13 30.31 19.74 27.33 36.78 26.82 23.01	$1.1 \\ 1.1 \\ 1.2 \\ 1.1 $	2.0 3.0 2.0 4.0 3.0 3.0 3.0 3.0 2.0 2.0 2.0

Table 34. Ice core chlorophyll \underline{a} (Chl \underline{a}) data for stations sampled in 1987.

s e e

ć -

Station Sample Number	Core Number	Melted Core Volume (ml)	Chl a Concentration (µg/L)	Core Length (Cm)	Core Area (cm ²)	Ch1 <u>a</u> (mg·m ⁻²)	Ice Thickness (m)	Snow Depth (cm)
19 19	14 15	84 70	671.0 587.0	5.0 5.0	20.27 20.27	27.81 20.27	1.1 1.1	5.0 5.0
20 20 20 20 20 20 20 20 20 20 20 20 20 2	1 2 3 4 6 9 10 12 14 16 18 19 20 21	82 70 76 90 52 51 79 47 76 27 58 48 38	0.9 0.3 0.2 0.8 0.4 0.3 0.2 0.3 0.2 0.3 0.2 0.9 0.4 0.4 0.3	5.0 4.0 5.0 4.0 3.5 3.0 5.0 2.5 5.0 1.5 4.0 2.0	20.27 20.27 20.27 20.27 20.27 20.27 20.27 20.27 20.27 20.27 20.27 20.27 20.27 20.27 20.27	0.03 0.01 0.01 0.03 0.01 0.01 0.01 0.01	1.5 1.4 1.4 1.5 1.5 1.6 1.5 1.4 1.4 1.3 1.7 1.6	15.0 21.0 14.0 13.0 15.0 14.0 17.0 13.0 20.0 32.0 33.0 25.0 10.0
21 21 21 21 21 21 21 21 21 21 21 21 21 2	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	30 36 44 23 17 17 26 24 17 22 19 19 19 19	2.9 0.3 0.9 5.1 2.5 0.7 2.5 6.1 1.9 2.6 6.6 10.9 20.6 8.1 7.0	1.5 1.0 1.5 2.0 0.7 0.5 1.5 2.0 0.7 0.5 1.0 1.0 0.5 0.7	20.27 20.27 20.27 20.27 20.27 20.27 20.27 20.27 20.27 20.27 20.27 20.27 20.27 20.27 20.27 20.27	0.04 0.01 0.02 0.08 0.03 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.07 0.10 0.19 0.08 0.06	1.8 1.7 1.8 1.7 1.7 1.9 1.7 1.8 1.7 2.0 2.0 2.0 2.0 2.0 2.0	9.0 13.0 26.0 15.0 14.0 13.0 14.0 15.0 27.0 9.0 5.0 3.0 32.0
23 23 23 23 23 23 23 23 23 23 23 23 23 2	1 2 3 4 5 6 7 8 9 0 11 12 3 4 5 6 7 8 9 0 11 12 3 4 5 6 7 8 9 0 11 12 3 4 5 6 7 8 9 0 11 12 3 4 5 6 7 8 9 0 11 12 3 4 5 6 7 8 9 0 11 12 3 4 5 6 7 8 9 0 11 12 3 4 5 6 7 8 9 0 11 12 3 4 5 6 7 8 9 0 11 12 3 4 5 6 7 8 9 0 11 12 3 4 5 6 7 8 9 0 11 12 3 4 5 6 7 8 9 0 11 12 3 4 5 6 7 8 9 0 11 12 3 4 5 6 7 8 9 0 11 12 3 4 5 6 7 8 9 0 11 12 3 14 5 15 14 12 12 12 12 12 12 11 12 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 11	78 80 86 81 74 78 81 79 77 60 77 80 79 80 32 79 80 32 79 80 83 80 83 80 83 80 77	49.0 122.0 45.5 43.0 89.0 36.2 269.0 747.0 41.5 48.5 307.0 61.5 168.0 113.0 169.0 381.0 166.0 160.0 160.0 142.0 503.0 548.0 46.0 58.5 588.0 88.5	5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00	20.27 20.27	1.89 4.81 1.93 1.78 3.56 1.32 10.35 29.85 1.62 1.84 9.09 2.34 6.63 4.40 6.67 6.01 6.47 6.01 6.47 6.16 3.85 19.60 21.63 1.88 2.31 18.28 3.36	1.6 1.6 1.6 1.7 1.6 1.6 1.7 1.6 1.6 1.6 1.6 1.6 1.6 1.5 1.5 1.6 1.6 1.5 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6	$\begin{array}{c} 1.0\\ 8.0\\ 9.0\\ 2.0\\ 10.0\\ 13.0\\ 1.0\\ 14.0\\ 2.0\\ 1.0\\ 2.0\\ 1.0\\ 3.0\\ 3.0\\ 3.0\\ 3.0\\ 3.0\\ 3.0\\ 3.0\\ 5.0\\ 1.0\\ 3.0\\ 0\\ 3.0\\ 0\\ 3.0\\ 0\\ 3.0\\ 0\\ 0\\ 3.0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0$

Table 34. Ice core chlorophyll <u>a</u> (Chl <u>a</u>) data for stations sampled in 1987 (CONTINUED).

Station Sample Number	Core Number	Melted Core Volume (ml)	Chl <u>a</u> Concentration (µg/L)	Core Length (cm)	Core Area (cm ²)	Chl <u>a</u> (mg∙m ⁻²)	Ice Thickness (m)	Snow Depth (cm)
25555555555555555555555555555555555555	1 2 3 4 5 6 7 8 9 0 11 12 13 14 5 6 7 8 9 0 11 21 22 3 4 5 6 7 8 9 0 11 21 22 3 4 5 6 7 8 9 0 11 213 14 5 6 7 8 9 0 11 23 4 5 6 7 8 9 0 11 23 4 5 6 7 8 9 0 11 23 4 5 6 7 8 9 0 11 23 4 5 6 7 8 9 0 11 23 4 5 6 7 8 9 0 11 23 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 2 3 4 5 6 7 8 9 0 11 2 2 2 3 4 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	44 82 79 78 83 37 86 76 74 72 85 81 80 90 84 83 80 84 81 80 81 81 63 81 81 76	$\begin{array}{c} 68.5\\ 31.2\\ 31.0\\ 31.6\\ 34.2\\ 63.0\\ 31.0\\ 36.6\\ 43.0\\ 50.5\\ 103.0\\ 40.5\\ 38.2\\ 52.0\\ 36.8\\ 56.0\\ 39.8\\ 58.0\\ 40.0\\ 33.8\\ 47.0\\ 33.6\\ 48.0\\ 48.0\\ 52.5\\ 56.5\\ 46.0\\ 33.2\\ 43.0\\ 37.6\end{array}$	2.0000000000000000000000000000000000000	20.27 20.27	$\begin{array}{c} 1.49\\ 1.26\\ 1.21\\ 1.22\\ 1.40\\ 1.15\\ 1.32\\ 1.37\\ 1.57\\ 1.79\\ 4.17\\ 1.70\\ 1.53\\ 2.05\\ 1.63\\ 2.32\\ 1.61\\ 2.37\\ 1.62\\ 1.33\\ 1.90\\ 1.39\\ 1.92\\ 1.89\\ 2.10\\ 1.76\\ 1.82\\ 1.33\\ 1.72\\ 1.41\\ \end{array}$	1.0 1.0 1.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0	$\begin{array}{c} 1.0\\ 2.0\\ 2.0\\ 2.0\\ 2.0\\ 1.0\\ 2.0\\ 2.0\\ 1.0\\ 2.0\\ 1.0\\ 2.0\\ 1.0\\ 2.0\\ 1.0\\ 2.0\\ 1.0\\ 2.0\\ 2.0\\ 1.0\\ 2.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1$
26 26 26 26 26 26 26 26 26 26 26 26 26 2	2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 8 9 20 21 22 23 4 25 27	81 83 40 85 83 85 85 60 63 75 85 75 87 75 85 75 87 72 77 81 83 78 85 81	291.0 214.0 567.0 350.0 348.0 261.0 779.0 376.0 170.0 1325 957.0 28.0 104.0 548.0 280.0 354.0 170.0 220.0 450.0 274.0 360.0 202.0 208.0 236.0 290.0	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	20.27 20.27	$11.63 \\ 8.76 \\ 11.19 \\ 14.68 \\ 14.25 \\ 10.56 \\ 32.67 \\ 15.77 \\ 5.03 \\ 41.18 \\ 35.41 \\ 1.17 \\ 4.57 \\ 21.09 \\ 10.91 \\ 13.10 \\ 7.13 \\ 8.14 \\ 19.31 \\ 9.31 \\ 10.41 \\ 14.39 \\ 8.27 \\ 8.00 \\ 9.90 \\ 11.59 \\ 4.96 \\ 1.59 $	1.8 1.8 1.8 1.7 1.7 1.8 1.8 1.6 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	$\begin{array}{c} 6.0\\ 11.0\\ 4.0\\ 5.0\\ 12.0\\ 13.0\\ 5.0\\ 27.0\\ 4.0\\ 4.0\\ 9.0\\ 14.0\\ 15.0\\ 15.0\\ 15.0\\ 15.0\\ 15.0\\ 4.0\\ 7.0\\ 9.0\\ 4.0\\ 5.0\\ 12.0\\$
39	. 1	59	16/.0	4.5	20.27	4.86	1.6	12.0

Table 34. Ice core chlorophyll <u>a</u> (Chl <u>a</u>) data for stations sampled in 1987 (CONTINUED).

5 F

105

- ;

Station Sample Number	Core Number	Melted Core Volume (ml)	Chl <u>a</u> Concentration (µg/L)	Core Length (cm)	Core Area (cm ²)	Chl <u>a</u> (mg·m ⁻²)	Ice Thickness (m)	Snow Depth (cm)
16 16 16 16 16 16 16 16 16 16	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 7 8 9 10 11 12 13 14 15 16 7 8 9 21 22 23 24 5 26 27 28 29 30	72 82 62 38 77 70 72 80 64 74 35 75 75 75 75 75 75 75 75 75 75 75 75 75	$\begin{array}{c} 0.6\\ 0.4\\ 5.4\\ 0.6\\ 5.3\\ 0.8\\ 1.1\\ 0.6\\ 1.1\\ 5.9\\ 0.6\\ 0.4\\ 2.2\\ 0.7\\ 0.7\\ 2.0\\ 0.3\\ 0.3\\ 0.5\\ 1.4\\ 0.7\\ 2.0\\ 6.1\\ 0.9\\ 0.7\\ 2.1\\ 0.5\\ 1.0\\ 0.4 \end{array}$	6.0 6.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	12.1614.1920.2718.2416.2214.1920.2712.1610.1416.2220.2714.1910.1412.1618.2418.2420.2716.2220.2716.2210.1420.2716.2210.1418.2418.2410.1420.2716.2210.1418.2418.2410.1416.2220.2716.2210.1418.2418.2418.2418.2418.2418.2418.2418.2418.2418.2418.2418.2418.2418.2418.2419.2719.2	$\begin{array}{c} 0.10\\ 0.01\\ 0.20\\ 0.02\\ 0.03\\ 0.02\\ 0.04\\ 0.10\\ 0.01\\ 0.01\\ 0.01\\ 0.02\\ 0.01\\ 0.02\\ 0.01\\ 0.04\\ 0.01\\ 0.02\\ 0.04\\ 0.03\\ 0.06\\ 0.14\\ 0.03\\ 0.06\\ 0.14\\ 0.03\\ 0.01\\ 0.08\\ 0.02\\ 0.02\\ 0.00\\ \end{array}$	1.7 2.0 1.7 1.9 1.9 1.7 1.6 1.4 1.7 1.6 1.7 1.8 1.7 1.8 1.7 1.8 1.7 1.8 1.7 1.8 1.7 1.9 1.8 1.7 1.9 1.9 1.6 1.8 1.7 1.9 1.8 1.7 1.9 1.8 1.7 1.7 1.9 1.8 1.7 1.7 1.9 1.8 1.7 1.7 1.9 1.8 1.7 1.7 1.9 1.8 1.7 1.7 1.9 1.8 1.7 1.7 1.9 1.8 1.7 1.7 1.9 1.8 1.7 1.7 1.9 1.8 1.7 1.7 1.9 1.8 1.7 1.7 1.9 1.8 1.7 1.7 1.9 1.8 1.7 1.7 1.9 1.8 1.7 1.7 1.9 1.7 1.9 1.7 1.7 1.9 1.7 1.7 1.9 1.7	$\begin{array}{c} 3.0\\ 15.0\\ 3.0\\ 29.0\\ 4.0\\ 5.0\\ 15.0\\ 10.0\\ 24.0\\ 5.0\\ 15.0\\ 28.0\\ 15.0\\ 10.0\\ 15.0\\ 10.0\\ 15.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 10.0\\ 33.0\\ 10.0\\ 10.0\\ 33.0\\ 10.0\\ 10.0\\ 33.0\\ 10.0$
17 17 17 17 17 17 17 17 17 17 17 17	1 2 3 4 5 6 7 8 9 10 11	42 13 12 21 11 12 22 14 24 27 17	0.3 0.8 0.6 0.4 0.9 0.5 0.4 0.3 0.3 0.3 0.5	3.0 1.5 1.0 0.5 0.5 1.0 1.0 1.0 1.0	20.27 20.27 20.27 20.27 20.27 20.27 20.27 20.27 20.27 20.27 20.27 20.27	0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00	1.5 1.7 1.7 1.8 1.4 1.6 1.7 1.7 1.7 1.4 1.6	11.0 13.0 9.0 6.0 25.0 22.0 11.0 17.0 28.0 10.0
18 18 18 18 18 18 18 18 18 18	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	78 80 73 64 79 73 76 75 72 84 72 81 79 53 45 49 77	2.2 4.3 2.2 198.0 3.4 43.0 155.0 6.6 6.7 113.0 153.0 287.0 84.5 269.0 16.7 166.0 360.0	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	20.27 20.27 20.27 20.27 20.27 20.27 20.27 20.27 20.27 20.27 20.27 20.27 20.27 20.27 20.27 20.27 20.27 20.27 20.27	$\begin{array}{c} \textbf{0.08} \\ \textbf{0.17} \\ \textbf{0.08} \\ \textbf{6.25} \\ \textbf{0.13} \\ \textbf{1.55} \\ \textbf{5.81} \\ \textbf{0.24} \\ \textbf{0.24} \\ \textbf{4.68} \\ \textbf{5.43} \\ \textbf{11.47} \\ \textbf{3.29} \\ \textbf{7.03} \\ \textbf{0.37} \\ \textbf{4.01} \\ \textbf{13.68} \end{array}$	1.6 1.5 1.7 1.6 1.7 1.6 1.6 1.6 1.6 1.5 1.6 1.5 1.5	2.0 9.0 4.0 3.0 1.0 13.0 4.0 2.0 3.0 2.0 8.0 3.0 15.0 4.0

Table 35. Ice core chlorophyll \underline{a} (Chl \underline{a}) data for stations sampled in 1988.

с. К

î

` .' ``

.

٠.

....

Station Sample Number	Core Number	Melted Core Volume (ml)	Chl <u>a</u> Concentration (µg/L)	Core Length (cm)	Core Area (cm ²)	Ch1 <u>a</u> (mg∙m ⁻²)	Ice Thickness (m)	Snow Depth (cm)
18 18 18 18 18 18 18 18 18 18 18 18 18 1	18 19 20 21 22 23 24 25 26 27 28 29 30	32 73 75 67 86 78 70 82 72 31 78 82 90	111.0 19.0 86.0 48.0 203.0 22.6 148.0 74.5 840.0 4.2 3.0 2.6	3.0 5.0 5.0 5.0 5.0 5.0 5.0 1.5 5.0 5.0 5.0	16.22 20.27 20.27 20.27 20.27 20.27 20.27 20.27 20.27 20.27 20.27 20.27 20.27 20.27	1.40 0.68 3.18 1.59 7.98 7.81 0.78 5.99 2.65 12.85 0.16 0.12 0.12	1.5 1.5 1.6 1.5 1.6 1.5 1.5 1.5 1.4 1.5 1.4 1.5 1.8 1.6 1.9	8.0 14.0 4.0 7.0 2.0 3.0 14.0 7.0 11.0 2.0 5.0 7.0 7.0
19 19 19 19 19 19 19 19 19 19 19 19 19 1	1 2 3 4 5 6 7 8 10 11 12 13 14 5 6 7 8 10 11 23 4 5 6 7 8 10 11 23 4 5 6 7 8 10 11 23 4 5 6 7 8 10 11 12 34 5 6 7 8 0 11 12 34 5 6 7 8 0 11 12 34 5 6 7 8 0 11 12 34 5 6 7 8 0 11 12 34 5 6 7 8 0 11 12 34 5 6 7 8 0 11 12 34 5 6 7 8 0 11 12 34 5 6 7 8 0 11 12 34 5 6 7 8 10 11 12 34 5 16 7 8 10 11 12 34 5 16 7 8 10 11 12 34 5 16 17 11 12 12 11 12 12 11 12 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 12	85 76 75 77 83 84 69 48 69 48 75 72 81 72 81 71 82 71 78 76 83 77 74 63 79 60 82	$\begin{array}{c} 693.0\\ 514.0\\ 642.0\\ 718.0\\ 545.0\\ 617.0\\ 84.5\\ 13.3\\ 10.6\\ 162.0\\ 244.0\\ 217.0\\ 3.2\\ 4.5\\ 86.0\\ 35.8\\ 118.0\\ 74.5\\ 51.0\\ 367.0\\ 258.0\\ 170.0\\ 86.5\\ 50.0\\ 2.6\\ 56.5\\ 562.0\\ 784.0\\ 502.0\\ \end{array}$	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	20.27 20.27 20.27 20.27 20.27 20.27 20.27 20.27 20.27 20.27 14.19 20.27 16.22 20.27	$\begin{array}{c} 29.06\\ 19.27\\ 23.75\\ 27.27\\ 22.32\\ 25.57\\ 2.88\\ 0.31\\ 0.40\\ 5.19\\ 6.91\\ 7.71\\ 0.07\\ 0.16\\ 3.44\\ 1.45\\ 4.25\\ 2.61\\ 1.77\\ 13.76\\ 10.56\\ 6.46\\ 3.29\\ 0.18\\ 0.08\\ 2.12\\ 21.90\\ 23.21\\ 20.31\\ \end{array}$	1.2 1.1 1.2 1.2 1.2 1.5 1.6 1.5 1.6 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7	2.0 5.0 5.0 9.0 9.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2
20 20 20 20 20 20 20 20 20 20 20 20 20 2	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	74 83 74 86 85 73 68 80 81 81 80 85 75 79 84 81	390.0 379.0 294.0 323.0 270.0 433.0 259.0 314.0 372.0 342.0 257.0 312.0 524.0 389.0 384.0 370.0	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	20.27 20.27 20.27 20.27 20.27 20.27 20.27 20.27 20.27 20.27 20.27 20.27 20.27 20.27 20.27 20.27 20.27 20.27	14.24 15.52 10.73 13.70 11.32 15.59 8.69 12.39 14.87 13.67 10.14 13.08 19.39 15.16 15.91 14.79	$ \begin{array}{c} 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\$	$\begin{array}{c} 3.0\\ 3.0\\ 4.0\\ 3.0\\ 5.0\\ 10.0\\ 8.0\\ 3.0\\ 3.0\\ 3.0\\ 3.0\\ 3.0\\ 3.0\\ 3.0\\ 4.0\\ \end{array}$

Table 35. Ice core chlorophyll <u>a</u> (Chl <u>a</u>) data for stations sampled in 1988 (CONTINUED).

a transformer to

γ.

.

Station Sample Number	Core Number	Melted Core Volume (ml)	Chl <u>a</u> Concentration (µg/L)	Core Length (cm)	Core Area (cm ²)	Ch1 <u>a</u> (mg∙m ⁻²)	Ice Thickness (m)	Snow Depth (cm)
20 20 20 20 20 20 20 20 20 20 20 20 20 2	17 18 19 20 21 22 23 23 24 25 26 27 28 29 30	77 83 82 78 78 81 77 81 78 82 79 75 81 82	410.0 586.0 367.0 440.0 295.0 288.0 377.0 208.0 251.0 332.0 521.0 233.0 212.0 318.0	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	20.27 20.27 20.27 20.27 20.27 20.27 20.27 20.27 20.27 20.27 20.27 20.27 20.27 20.27 20.27	15.57 24.00 14.85 16.93 11.35 11.51 14.32 8.31 9.66 13.43 20.31 8.62 8.47 12.86	1.0 1.0 1.0 1.0 1.1 1.1 1.1 1.1 1.1 1.1	3.0 3.0 3.0 3.0 4.0 9.0 5.0 5.0 8.0 7.0 4.0 11.0

Table 35. Ice core chlorophyll <u>a</u> (Chl <u>a</u>) data for stations sampled in 1988 (CONTINUED).

,

Sample Number	Total Weight (mg)	Total Volume (1)	TSS (mg/1)
16	59,71	11.20	5,33
17	94.20	13.52	6.97
18	30.76	15.38	2.00
20	729.55	12.39	58.90
19	47.66	12.95	3.68
21	51.05	16.08	3.17
23	17.75	18.25	0.97
25	42.46	14.60	2.91
26	125.16	11.10	11.30
26	107.60	16.60	6.48
31	110.57	11.80	9.37
31	267.34	6.95	38.50

Table 36. Total suspended solids (TSS) data from ice cores sampled in 1987.

.

. .

••

Table 37. Total suspended solids (TSS) data from ice cores sampled in 1988.

Sample Number	Total Weight (mg)	Total Volume (1)	TSS (mg/l)
16	230.55	20,85	11.06
16	309.60	17.20	18.00
17	758,00	18,95	40.00
17	184.00	18.40	10.00
18	274.40	19.60	14.00
18	185.00	18.50	10.00
19	64.00	12.80	5.00
19	285.00	19.00	15.00
20	58.50	11.70	5.00
20	46.40	11.60	4.00

Sample Prequency Sample Prequency Sample Prequency Sample Prequency Sample Prequency Number (cs) Frequency Kasker (cs) Frequency Number (cs) Frequency Kasker (cs) Frequency Total 15 Sample Prequency Number (cs) Frequency Frequency Total 15 Sample Frequency Sample Frequency Total 15 15 Total 15 Sample Frequency Sample Frequency	Station	Snow		Station	Snow		Station	Snow	
Number (cs) Frequency Number (cs) Frequency Number (cs) Frequency 13 0.0 24 14 20.0 1 15 8.0 10 13 1.0 22 14 20.0 1 15 8.0 5 13 0.0 45 14 86.0 1 16 10.0 5 13 3.0 45 14 86.0 1 16 11.0 3 13 5.0 52 50.0 6.5 16 15 1.0 3 13 5.0 16 15 1.0 3 16 2.0 1 13 10.0 16 15 10.0 3 16 22.0 1 13 10.0 16 15 10.0 3 16 22.0 1 13 10.0 2 15 10.0 3 16 22.0 1 <th>Sample</th> <th>Depth</th> <th></th> <th>Sample</th> <th>Depth</th> <th></th> <th>Sample De</th> <th>epth</th> <th></th>	Sample	Depth		Sample	Depth		Sample De	epth	
13 0.0 24 14 27.0 1 16 8.0 10 13 1.0 22 14 36.0 1 15 10.0 5 13 2.0 45 14 36.0 1 16 12.0 3 13 5.0 58 Mean 6.4 15 13.0 5 13 5.0 58 Mean 6.4 16 13.0 5 13 5.0 16 15.0 1 16 16.0 1 13 5.0 16 15 1.0 3 16 1 16 1.0 1 13 1.0 16 15 1.0 3 16 2.0 1 13 1.0 15 12.0 1 16 2.0 1 13 1.0 10 15 12.0 1 16 2.0 1 13 1.0 2 <th>Number</th> <th>(cm)</th> <th>Frequency</th> <th>Number</th> <th>(cm)</th> <th>Frequency</th> <th>Number</th> <th>(ca)</th> <th>Frequency</th>	Number	(cm)	Frequency	Number	(cm)	Frequency	Number	(ca)	Frequency
13 0.0 24 14 27.0 1 16 8.0 10 13 2.0 35 14 26.0 1 16 10.0 6 13 2.0 35 14 26.0 1 16 11.0 3 13 4.0 44 14 76.0 1 16 12.0 3 13 5.0 521 5.0 6.5 16 15.0 5 13 5.0 221 5.0 6.0 15 16 15.0 1 13 9.0 16 15 7.0 1 16 82.0 1 13 10.0 15 11.0 3 16 22.0 1 13 13.0 8 15 13.0 1 16 23.0 2 1 13 13.0 6 15 13.0 1 16 25.0 1 13 13.0 6 15 10.0 5 1.0 15 1.0 15 1.									
13 1.0 22 14 29.0 1 15 16 10.0 6 13 2.0 35 14 36.0 1 15 10.0 6 13 3.0 45 14 46.0 1 15 12.0 3 13 5.0 58 Mean 6.4 16 12.0 5 13 5.0 56 50 16 15 10.0 15 10.0 15 10.0 15 10.0 15 10.0 15 10.0 3 16 20.0 1 13 10.0 16 15 12.0 1 16 20.0 1 13 10.0 16 15 12.0 1 16 20.0 1 13 10.0 16 15 12.0 1 16 26.0 1 13 13.0 10 15 12.0 1 16 26.0 1 13 13.0 1 15 15.0 1 16 <td< td=""><td>13</td><td>0.0</td><td>24</td><td>14</td><td>27.0</td><td>1</td><td>16</td><td>8.0</td><td>10</td></td<>	13	0.0	24	14	27.0	1	16	8.0	10
13 2.0 35 14 36.0 1 16 1.0 3 13 4.0 44 14 76.0 1 15 10.0 3 13 4.0 44 14 76.0 1 15 10.0 3 13 7.0 27 S.0 1 16 15.0 3 13 9.0 16 15 7.0 1 16 16.0 1 13 10.0 16 15 7.0 1 16 2.0 1 13 11.0 10 15 11.0 3 16 22.0 1 13 14.0 4 15 15.0 1 16 23.0 2 13 15.0 5 15 15.0 3 16 25.0 1 13 16.0 2 15 15.0 10 56 3.0 1 13 16.0 2 15 15.0 10 10 10 10 10 1 </td <td>13</td> <td>1.0</td> <td>22</td> <td>14</td> <td>29.0</td> <td>1</td> <td>16</td> <td>9.0</td> <td>5</td>	13	1.0	22	14	29.0	1	16	9.0	5
33 3.0 45 14 46.0 1 15 1.0 3 13 4.0 44 14 72.0 1 15 12.0 3 13 5.0 58 Mean * 6.4 15 15 10.0 15 10.0 15 10.0 16 15 10.0 16 16 16 15 10.0 16 16 16 16 16 16 16 16 16 16 10.0 1 10.0 16 15 10.0 1 16 20.0 1 113 10.0 16 15 15.0 1 16 24.0 1 13 15.0 1 16 24.0 1 13 15.0 1 16 24.0 1 13 15.0 1 16 24.0 1 13 13.0 1 16 24.0 1 13 13.0 1 16 24.0 1 13 13.0 1 15 16 15.0 10 13 13 13.0 1 <td>13</td> <td>2.0</td> <td>35</td> <td>14</td> <td>36.0</td> <td>1</td> <td>16</td> <td>10.0</td> <td>6</td>	13	2.0	35	14	36.0	1	16	10.0	6
13 4.0 4.4 14 76.0 1 15 16.0 3 13 5.0 58 Mean 6.4 16 13.0 5 13 6.0 21 5.0.* 6.5 16 16 1.0 1 13 6.0 15 10.0 3 16 16.0 1 13 10.0 15 11.0 3 16 20.0 1 13 10.0 15 11.0 3 16 20.0 1 13 10.0 15 15.0 3 16 23.0 1 13 10.0 5 15.0 1 16.0 2 1 1 13 15.0 6 15 15.0 1 16 23.0 1 1 13 17.0 2 15 15.0 1	13	3.0	45	14	46.0	1	16	11.0	3
13 5,0 86 Mean * b.4 16 14.0 5 13 6,0 21 Sance * 6.5 16 16 1 13 7,0 27 Samples * 600 15 16 15 3 13 9,0 16 15 7,0 1 16 1.0 3 13 9,0 16 15 10,0 3 16 20,0 1 13 12,0 7 15 12,0 1 16 24,0 2 13 16,0 6 15 15,0 3 16 26,0 1 13 16,0 6 15 16,0 2 Samples * 400 1 13 16,0 2 Samples * 400 4 56 8,0 1 13 16,0 3 15 26,0 7 56 1,0 1 13 16,0 2 15 26,0 7 <td>13</td> <td>4.0</td> <td>44</td> <td>14</td> <td>78.0</td> <td>1</td> <td>16</td> <td>12.0</td> <td>3</td>	13	4.0	44	14	78.0	1	16	12.0	3
1.3 0.0 2.1 3.1. 0.1. 0.3 1.0 1.0 1.1. 1.0 1.1. <th1.1.< th=""> <th1.1.< th=""> <th1.1.< th=""></th1.1.<></th1.1.<></th1.1.<>	13	5.0	58	Hean a	- 6.4		10	13.0	5
13 10 12.0 30 13.0 12.0 12.0 3 13 9.0 16 15 7.0 1 16 16.0 1 13 9.0 16 15 7.0 1 16 16.0 1 13 10.0 15 11.0 3 16 22.0 1 13 12.0 7 15 12.0 1 16 22.0 1 13 14.0 4 15 12.0 1 16 22.0 1 13 15.0 6 15 16.0 9 Mean 5.0 1 13 15.0 6 15 17.0 5 56 3.0 1 13 15.0 2 15 10.0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <t< td=""><td>13</td><td>5.0</td><td>21</td><td>5.U. 5</td><td>· 0.5</td><td></td><td>10</td><td>16.0</td><td>2</td></t<>	13	5.0	21	5.U. 5	· 0.5		10	16.0	2
1.5 5.0 16 15 7.0 1 16 16 1 13 10.0 16 15 10.0 3 16 20.0 1 13 10.0 16 15 10.0 3 16 20.0 1 13 12.0 7 15 12.0 1 16 20.0 1 13 14.0 4 15 15.0 3 16 20.0 1 13 14.0 6 15 17.0 2 3 3 15 3.0 2 3 3 1 1 3 1 1 3 3 1 1 3 1 1 3 3 1 1 3 3 1 1 3 3 1 1 3 3 1 1 3 3 1 1 3 3 1 1 3 3 3 3	13	7.0	2/	Sample	es = 400		10	15.0	5
1 1 <	12	0.0	16	15	7 0	1	16	18.0	1
110 10 15 11.0 3 15 22.0 1 13 12.0 10 15 12.0 1 15 22.0 2 13 13.0 6 15 13.0 16 22.0 1 13 14.0 6 15 13.0 16 22.0 1 13 15.0 5 5.0 - 3.5 5.0 - 3.5 13 15.0 5 5.0 - 3.5 5.0 1 13 10.0 5 5 6.0 1 1 3.5 1.0 2 3.6 1.0 1.1	13	10.0	16	15	10.0	3	16	20.0	1
1 12.0 7 15 12.0 1 16 22.0 2 13 14.0 4 15 15.0 3 H6 25.0 1 13 14.0 4 15 15.0 3 H6 25.0 1 13 15.0 6 15 17.0 2 15 10.0 5 Samples * 400 13 15.0 15 15.0 2 Samples * 400 1 13 19.0 5 15 20.0 5 5 5.0 1 13 22.0 2 15 20.0 2 56 6.0 4 13 22.0 1 15 22.0 2 56 10.0 83 13 22.0 1 15 22.0 7 56 11.0 13 13 22.0 1 15 22.0 8 56 12.0 31 13<	13	11.0	10	15	11.0	3	16	22.0	1
13.0 8 15 12.0 1 16 24.0 1 13 14.0 4 15 15.0 3 16 25.0 1 13 15.0 5 15 15.0 2 Samples * 400 1 13 15.0 6 15 17.0 5 S.D. * 3.5 1 13 15.0 2 15 15.0 2 Samples * 400 1 13 18.0 3 15 10.0 1 <	13	12.0	7	15	12.0	1	16	23.0	2
1 1	13	13.0	8	15	13.0	1	16	24.0	ĩ
15:0 5 15 16:0 9 Hem = 5:0 13 16:0 6 15 17:0 2 Samples = 400 13 18:0 3 15 19:0 10 Samples = 400 13 18:0 3 15 10 Samples = 400 1 13 19:0 5 15 20.0 1 1 56 3.0 1 13 20:0 3 15 21:0 4 56 5.0 1 13 22:0 1 15 22:0 2 56 6.0 4 13 22:0 1 15 22:0 2 56 9.0 78 13 26:0 1 15 25:0 9 56 10.0 63 13 26:0 1 15 30.0 8 56 13.0 23 13 36:0 1 15 30.0 8 56	13	14.0	4	15	15.0	3	16	25.0	1
13 16.0 6 15 17.0 5 S.D. = 3.5 13 17.0 2 15 18.0 2 Samples = 400 13 19.0 5 15 20.0 5 56 3.0 1 13 19.0 5 15 20.0 4 56 5.0 4 13 21.0 2 15 22.0 2 56 6.0 4 13 22.0 1 15 22.0 2 56 9.0 78 13 22.0 1 15 22.0 7 56 10.0 83 13 27.0 2 15 28.0 8 56 13.0 23 13 27.0 2 15 30.0 14 56 14.0 14 13 28.0 1 15 37.0 3 56 15.0 26 13 28.0 1 15 37.0 3 56 17.0 4 13 38.0 1 <td>13</td> <td>15.0</td> <td>5</td> <td>15</td> <td>16.0</td> <td>9</td> <td>Hean =</td> <td>5.0</td> <td></td>	13	15.0	5	15	16.0	9	Hean =	5.0	
13 17.0 2 15 16.0 2 Samples = 400 13 19.0 5 15 20.0 5 66 3.0 1 13 20.0 3 15 21.0 4 56 5.0 1 13 20.0 3 15 21.0 4 56 5.0 4 13 22.0 1 15 23.0 10 56 7.0 23 13 25.0 3 15 27.0 7 56 10.0 83 13 25.0 3 15 27.0 7 56 11.0 42 13 27.0 2 15 29.0 8 56 13.0 23 13 37.0 2 15 37.0 1 15 31.0 14 15 16.0 16 13 37.0 1 15 31.0 14 56 15.0 26 13 37.0 1 15 31.0 14 56 16.0	13	16.0	6	15	17.0	5	S.D. =	3.5	
13 18.0 3 15 19.0 10 13 20.0 3 15 21.0 4 56 5.0 1 13 21.0 2 15 22.0 2 56 6.0 4 13 22.0 1 15 22.0 2 56 6.0 4 13 22.0 1 15 22.0 2 56 6.0 4 13 22.0 1 15 22.0 9 56 10.0 83 13 25.0 3 15 25.0 7 56 10.0 43 13 25.0 1 15 25.0 8 56 13.0 23 13 32.0 1 15 32.0 8 56 16.0 16 13 35.0 1 15 32.0 3 56 15.0 26 13 35.0 1 15 35.0 1 56 19.0 2 14 1.0 2	13	17.0	2	15	18.0	2	Samples =	400	
13 19.0 5 56 3.0 1 13 20.0 3 15 21.0 2 56 6.0 1 13 21.0 2 15 22.0 2 56 6.0 4 13 22.0 1 15 22.0 2 56 6.0 4 13 22.0 1 15 22.0 2 56 9.0 78 13 22.0 1 15 27.0 7 56 11.0 42 13 27.0 2 15 28.0 8 56 12.0 31 13 27.0 2 15 28.0 8 56 13.0 23 13 37.0 2 15 37.0 14 14 14 14 14 14 14 14 14 14 14 16 15 37.0 8 56 17.0 4 13 38.0 16 16 15 16 16 16 16 16 <t< td=""><td>13</td><td>18.0</td><td>3</td><td>15</td><td>19.0</td><td>10</td><td></td><td></td><td></td></t<>	13	18.0	3	15	19.0	10			
13 20.0 3 15 21.0 4 56 5.0 1 13 21.0 2 15 22.0 2 56 6.0 4 13 22.0 1 15 23.0 10 56 7.0 23 13 22.0 4 15 23.0 9 56 9.0 78 13 25.0 3 15 25.0 7 56 10.0 83 13 25.0 2 15 28.0 8 56 12.0 31 13 28.0 2 15 29.0 8 56 13.0 23 13 28.0 2 15 30.0 14 56 16.0 16 13 38.0 1 15 32.0 3 56 16.0 2 13 38.0 1 15 33.0 56 16.0 2 13 39.0 1 15 37.0 3 56 22.0 2 Samp	13	19.0	5	15	20.0	5	56	3.0	1
13 21.0 2 56 6.0 4 13 22.0 1 15 23.0 10 56 7.0 23 13 22.0 1 15 23.0 4 56 6.0 44 13 22.0 1 15 23.0 9 56 9.0 78 13 25.0 3 15 27.0 7 56 11.0 42 13 25.0 2 15 29.0 8 56 13.0 23 13 21.0 2 15 30.0 14 56 14.0 14 13 32.0 1 15 31.0 4 56 15.0 26 13 35.0 1 15 32.0 3 56 16.0 16 13 35.0 1 15 35.0 15 56 15.0 2 13 30.0 1 15 35.0 6 16.0 2 2 2 2 2 2	13	20.0	3	• 15	21.0	4	56	5.0	1
13 22.0 1 15 23.0 40 15 23.0 44 13 23.0 4 15 24.0 3 56 8.0 44 13 24.0 1 15 25.0 9 56 9.0 78 13 25.0 3 15 26.0 7 56 10.0 83 13 25.0 2 15 25.0 8 56 13.0 23 13 28.0 2 15 20.0 8 56 13.0 23 13 31.0 2 15 30.0 14 56 14.0 14 13 35.0 1 15 31.0 56 15.0 26 13 36.0 1 15 31.0 56 16.0 16 13 39.0 1 15 31.0 56 18.0 2 13 39.0 1 15 31.0 56 18.0 2 13 30.0 1	13	21.0	2	15	22.0	2	56	6.0	4
13 23.0 4 15 24.0 4 56 8.0 44 13 24.0 1 15 25.0 9.0 78 13 25.0 3 15 25.0 7 56 10.0 83 13 25.0 1 15 27.0 7 56 11.0 42 13 28.0 2 15 29.0 8 56 13.0 23 13 31.0 2 15 30.0 14 56 14.0 23 13 35.0 1 15 31.0 4 56 15.0 26 13 35.0 1 15 31.0 8 56 16.0 16 13 30.0 1 15 31.0 8 56 18.0 2 14 1.0 2 15 36.0 6 56 23.0 2 14 2.0 14 15 41.0 2 50 1.0 2 14 1.0	13	22.0	1	15	23.0	10	56	7.0	23
13 24.0 1 15 25.0 9 56 9.0 78 13 25.0 3 15 25.0 7 56 10.0 83 13 25.0 1 15 27.0 7 56 11.0 42 13 27.0 2 15 29.0 8 56 12.0 31 13 31.0 2 15 30.0 14 56 14.0 14 13 35.0 1 15 31.0 4 56 15.0 26 13 35.0 1 15 32.0 3 56 16.0 16 13 39.0 1 15 32.0 8 56 17.0 4 13 39.0 1 15 35.0 11 56 16.0 2 13 39.0 1 15 37.0 3 56 22.0 2 Samples = 400 15 41.0 4 Samples = 400 14 1.0 4	13	23.0	4	15	24.0	4	56	8.0	44
13 25.0 3 15 26.0 7 56 10.0 83 13 26.0 1 15 27.0 7 56 11.0 42 13 27.0 2 15 28.0 8 56 13.0 23 13 31.0 2 15 29.0 8 56 16.0 14 13 32.0 1 15 33.0 14 56 15.0 26 13 35.0 1 15 32.0 3 56 16.0 16 13 36.0 1 15 32.0 8 56 17.0 4 13 39.0 1 15 33.0 8 56 18.0 2 13 39.0 1 15 35.0 11 56 10.0 2 13 39.0 1 15 39.0 5 6 10.0 2 Mean = 7.1 15 38.0 6 56 12.0 2 2	13	24.0	1	15	25.0	9	56	9.0	78
1326.011527.075611.0421327.021528.085612.0311331.021530.0145614.0141332.011531.045615.0261335.011532.035616.0161335.011533.085617.041339.011533.085618.021340.011535.0115619.02Rean *7.11535.0115620.02S.D. *6.81537.035622.02Samples *1539.05Mean *10.82141.021540.02S.0. *2.9143.0791542.041510.015145.0581544.02599.05146.0261545.02599.015146.0261545.015910.015146.0261545.015910.021410.081555.015910.0271410.081555.0<	13	25.0	3	15	26.0	7	56	10.0	83
13 27.0 2 15 28.0 8 56 13.0 23 13 31.0 2 15 30.0 14 56 13.0 23 13 31.0 2 15 30.0 14 56 14.0 14 13 35.0 1 15 32.0 3 56 16.0 16 13 35.0 1 15 32.0 3 56 17.0 4 13 39.0 1 15 34.0 5 56 18.0 2 13 40.0 1 15 35.0 11 56 19.0 2 Mean = 7.1 15 36.0 6 56 23.0 2	13	26.0	1	15	27.0	7	56	11.0	42
13 28.0 2 15 29.0 8 56 13.0 23 13 31.0 2 15 30.0 14 56 14.0 14 13 35.0 1 15 31.0 4 56 15.0 26 13 35.0 1 15 32.0 3 56 17.0 4 13 35.0 1 15 34.0 5 56 18.0 2 13 36.0 1 15 35.0 11 56 19.0 2 14 40.0 1 15 37.0 3 56 22.0 2 Samples = 400 15 37.0 3 56 23.0 2 14 1.0 2 15 40.0 2 59 9.0 5 14 1.0 2 15 40.0 2 59 9.0 5 14 1.0 26 15 45.0 2 59 9.0 5 14 <td< td=""><td>13</td><td>27.0</td><td>2</td><td>15</td><td>28.0</td><td>8</td><td>56</td><td>12.0</td><td>31</td></td<>	13	27.0	2	15	28.0	8	56	12.0	31
13 31.0 2 15 30.0 14 56 14.0 14 13 35.0 1 15 31.0 4 56 15.0 26 13 35.0 1 15 32.0 3 56 16.0 16 13 39.0 1 15 33.0 8 56 17.0 4 13 39.0 1 15 35.0 11 56 18.0 2 13 40.0 1 15 35.0 11 56 19.0 2 Mean = 7.1 15 36.0 6 56 20.0 2 Samples = 400 2 15 47.0 3 56 22.0 2 14 1.0 2 15 40.0 2 5.0. = 2.9 1 14 4.0 135 15 42.0 4 59 8.0 3 14 4.0 135 15 43.0 4 59 8.0 3	13	28.0	2	15	29.0	8	56	13.0	23
1332.011531.045615.0261335.011532.035616.0161339.011533.085617.041339.011533.085618.02Mean =7.11536.065620.02Samples =4001538.065622.02Samples =1539.05Mean =10.82141.021540.02S.D. =2.9142.0141541.02598.03145.0581544.02599.05146.0261545.02599.015146.0261545.02599.015147.0121547.015913.0271410.081555.015913.0271410.081556.015913.0271412.03Mean =28.010151413.03S.D. =9.45918.021415.015913.0271410.0151413.03S.D. =9.45918.0<	13	31.0	2	15	30.0	14	56	14.0	14
1335.011532.035616.0161339.011533.085617.041339.011534.055618.021340.011535.0115619.021340.011535.0115620.02S.D. =6.81537.035622.02Samples =4001538.065623.02141.021540.02S.D. =2.9142.0141541.04Samples =400143.0791543.04598.03145.0581543.04599.05146.0261544.02599.05146.0261547.015913.0271410.081555.015913.0271410.081555.015914.0271412.03Mean =285910.0151413.03S.D. =9.45915.0321413.03S.D. =9.45916.0101413.0161.015920	13	32.0	1	15	31.0	4	56	15.0	26
1336.011533.085617.041339.011534.055618.021340.011535.0115619.02Mean = 7.11536.065620.02Samples = 4001539.05Mean =10.8141.021540.025.0. =2.9142.0141541.04Samples =400143.0791542.047145.0581544.02598.03145.0581544.02599.05146.0261545.02599.015146.0261549.015912.024149.011555.015913.0271410.081555.015913.0271411.06155916.0151414.0271412.03Mean = 28.65916.015151414.09Samples = 1905918.021414.021415.01161.015912.02141416.01161.0 <td< td=""><td>13</td><td>35.0</td><td>1</td><td>15</td><td>32.0</td><td>3</td><td>56</td><td>16.0</td><td>16</td></td<>	13	35.0	1	15	32.0	3	56	16.0	16
1339,011534,055618,021340,011535,0115619,02Mean = 7.11536,065620,02S.D. = 6.81537,035622,02Samples = 4001538,065623,02141.021540,02S.D. = 2.9142.0141541,04Samples = 400143.0791542,04144.01351543,04598,0145.0581543,04599,05145.0581547,015911,030145.0261547,015911,030147.0121549,015912,024149.011555,015916,0151410,081555,015916,0151412,03Mean = 28,65916,0151413,03S,D, =9,45917,0101414,09Samples = 1905917,0101414,09Samples = 1905922,011416,015922,011 <td>13</td> <td>36.0</td> <td>1</td> <td>15</td> <td>33.0</td> <td>8</td> <td>56</td> <td>17.0</td> <td>4</td>	13	36.0	1	15	33.0	8	56	17.0	4
1340.011535.0115619.02Mean = 7.11536.065620.02Samples = 4001537.035622.02Samples = 4001539.05Mean = 10.82141.021540.02S.D. = 2.9142.0141541.04Samples = 400143.0791542.04144.01351543.04145.0581544.02599.0145.0581544.025910.015146.0261545.025910.015146.0261549.015912.024149.011555.015913.0271410.081555.015916.0151412.03Mean = 28.65916.0151413.03S.0. = 9.45917.0101415.015920.041415.015912.021415.015912.021415.015913.021415.015910.021416.0101 <td>13</td> <td>39.0</td> <td>1</td> <td>15</td> <td>34.0</td> <td>5</td> <td>56</td> <td>18.0</td> <td>2</td>	13	39.0	1	15	34.0	5	56	18.0	2
Mean = 1.1 15 36.0 650 20.0 2Samples =40015 37.0 356 22.0 2Samples =15 39.0 5Mean = 10.8 141.0215 40.0 2 $S.D. =$ 2.9 142.01415 41.0 4Samples = 400 143.07915 42.0 4 $ -$ 144.013515 43.0 4 59 8.0 3145.05815 44.0 2 59 9.0 5 146.02615 45.0 2 59 10.0 15 147.01215 47.0 1 59 12.0 24 149.0115 52.0 1 59 13.0 27 1410.0815 55.0 1 59 14.0 27 1410.0815 55.0 1 59 15.0 32 1412.03Mean = 28.6 59 16.0 15 1413.03 $S.0. =$ 9.4 59 17.0 10 1414.09Samples = 190 59 22.0 1 1415.01 59 15.0 22.0 1 1415.01 59 23.0 1 59 23.0 1 <	13	40.0	1	15	35.0	11	50	19.0	2
S.D. =1.537.035022.02Samples =4001538.065623.02141.021.540.02S.D. =2.9142.0141541.04Samples =400143.0791542.044144.01351543.04598.03146.0261545.02599.05146.0261547.015911.030148.091549.015912.024149.011552.015913.0271410.081556.015913.0271411.061556.015915.0321412.03Mean =28.65916.0151413.03S.D. =9.45917.0101415.01161.015921.021415.01161.015910.021413.033.01010110101414.093.02.15916.0151413.033.01021021415	mean ≠	/.1		15	30.0	2	50	20.0	2
Is 38.0502.0141.021538.005Hean = 10.8141.021540.02 $S.D. = 2.9$ 142.0141541.04Samples = 400143.0791542.04144.01351543.0459145.0581544.0259145.0581544.0259145.0261545.0259147.0121547.0159148.091549.015911.0148.091555.015914.01410.081555.015916.01412.03Mean = 28.65916.0151413.03S.D. = 9.45918.021415.015918.021415.015910.021416.01165921.021416.0163.01095923.011418.06163.01095923.011419.01164.01395923.011419.01165.050 <td>5.U. =</td> <td>0.0</td> <td></td> <td>15</td> <td>37.0</td> <td>3</td> <td>50</td> <td>22.0</td> <td>2</td>	5.U. =	0.0		15	37.0	3	50	22.0	2
141.021535.03real10.5142.0141541.04Samples = 400143.0791542.04144.01351543.0459146.0261545.02599.0146.0261545.025910.015146.0261545.025910.015147.0121547.015911.030148.091549.015913.0271410.081555.015913.0271410.081555.015915.0321410.081555.015915.0321413.03S.D. =9.45916.0151413.03S.D. =9.45918.021416.01165920.041416.015920.041419.01163.01095922.011418.06163.01095922.011419.01164.01395923.011419.01165.050M	Sampres	= 400		15	30.0	5	JO Mohn r	10 0	2
141.021540.025.0. $= 2.3$ 142.0141541.04Samples = 400143.0791542.04144.01351543.04598.0146.0261545.02599.05147.0121547.015911.030148.091549.015912.024149.011555.015913.0271410.081555.015914.0271411.061556.015915.0321412.03Mean = 28.65915.0151413.03S.D. = 9.45915.0151413.03S.D. = 9.45918.021415.015920.041417.04161.015920.041417.04162.0155921.021413.06163.01095923.011414.09161.015920.041417.04162.0155921.021418.06163.0	14	1.0	2	15	39.0	5	S D -	20.0	
142.01542.0430791542.04144.01351543.04598.03145.0581544.02599.05146.0261545.025910.015147.0121547.015911.030148.091549.015912.024149.011552.015913.0271410.081556.015914.0271410.061556.015915.0321413.03S.D. = 9.45916.0151413.03S.D. = 9.45917.0101416.04161.015920.041417.04162.0155921.021419.01164.01395923.011419.01166.025S.D. = 2.7141421.02166.025S.D. = 2.7141423.033167.013Samples = 200	14	2.0	14	15	40.0	4	Samples =	400	
143.0151541.017144.01351543.04598.03145.0581544.02599.05146.0261545.025910.015147.0121547.015911.030148.091559.015913.027149.011552.015913.0271410.081555.015914.0271411.061556.015915.0321412.03Mean = 28.65916.0151413.03S.D. = 9.45917.0101414.09Samples = 1905918.021415.015918.021416.04161.015920.041417.04162.0155921.021418.06165.050Mean = 13.511419.01166.025S.D. = 2.711420.05166.025S.D. = 2.711422.04167.013Samples = 20011423.033	14	3.0	70	15	42.0	4	Jumpiles -	+00	
145.0581544.02599.05146.0261545.025910.015147.0121547.015911.030148.091549.015912.024149.011552.015913.0271410.081555.015914.0271411.061556.015916.0151412.03Mean = 28.65916.0151413.03S.D. = 9.45917.0101416.015920.041417.04161.015920.041417.04162.0155921.021418.06163.01095923.011419.01166.0255.0. =2.71421.02166.025S.0. =2.71422.04167.013Samples = 2001423.03333331421.02166.0255.0. =2.71423.03333331423.0333 </td <td>14</td> <td>4.0</td> <td>135</td> <td>15</td> <td>43.0</td> <td>4</td> <td>59</td> <td>8.0</td> <td>3</td>	14	4.0	135	15	43.0	4	59	8.0	3
146.0261545.025910.015147.0121547.015911.030148.091549.015912.024149.011552.015913.0271410.081555.015914.0271411.061556.015915.0321412.03Mean =28.65916.0151413.03S.D. =9.45917.0101414.09Samples =1905918.021415.01161.015920.041417.04162.0155921.021418.06163.01095923.011419.01164.01395923.011420.05165.050Mean =13.51421.02166.025S.D. =2.71422.04167.013Samples =2001423.033167.013Samples =200	14	5.0	58	15	44.0	2	59	9.0	5
147.0121547.015911.030148.091549.015912.024149.011552.015913.0271410.081555.015914.0271411.061555.015915.0321412.03Mean $=$ 28.65916.0151413.03S.D. $=$ 9.45917.0101414.09Samples $=$ 1905918.021415.01161.015920.041417.04162.0155921.021419.01164.01395923.011420.05165.050Mean $=$ 13.5141421.02166.025S.D. $=$ 2.71422.04167.013Samples $=$ 2001423.0333333	14	6.0	26	15	45.0	2	59	10.0	15
148.091549.015912.024149.011552.015913.0271410.081555.015914.0271411.061556.015915.0321412.03Mean = 28.65916.0151413.03S.D. = 9.45917.0101414.09Samples = 1905918.021415.01161.015920.041417.04162.0155921.021418.06163.01095923.011419.01164.01395923.011420.05165.050Mean = 13.5141421.02166.025S.D. = 2.7141423.03333333	14	7.0	12	15	47.0	1	59	11.0	30
149.011552.015913.0271410.081555.015914.0271411.061556.015915.0321412.03Mean = 28.65916.0151413.03S.D. = 9.45917.0101414.09Samples = 1905918.021415.015920.041415.015920.041417.04161.015920.01418.06163.01095922.011419.01164.01395923.011420.05165.050Mean = 13.511421.02166.025S.D. = 2.711422.04167.013Samples = 20011423.03333333	14	8.0	9	15	49.0	1	59	12.0	24
1410.081555.015914.0271411.061556.015915.0321412.03Mean = 28.65916.0151413.03S.D. * 9.45917.0101414.09Samples = 1905918.021415.015920.041416.04161.015920.01415.01162.0155921.021418.06163.01095922.011419.01164.01395923.011420.05165.050Mean = 13.511421.02166.025S.D. = 2.711422.04167.013Samples = 20011423.03333333	14	9.0	1	15	52.0	1	59	13.0	27
1411.061556.015915.0321412.03Mean = 28.65916.0151413.03S.D. = 9.4 5917.0101414.09Samples = 1905918.021415.015920.041416.04161.015920.01417.04162.0155921.021418.06163.01095922.011419.01164.01395923.011420.05165.050Mean = 13.5141422.04167.013Samples = 200141423.03333333	14	10.0	8	15	55.0	1	59	14.0	27
1412.03Mean = 28.65916.0151413.03 $S.D. = 9.4$ 5917.0101414.09Samples = 1905918.021415.015920.041416.04161.015920.01417.04162.0155921.021418.06163.01095922.011419.01164.01395923.011420.05165.050Mean = 13.5141422.04167.013Samples = 200141423.03333333	14	11.0	6	15	56.0	1	59	15.0	32
1413.03 $S.D. = 9.4$ 5917.0101414.09Samples = 1905918.021415.015919.021416.015920.041417.04161.015921.01418.06163.01095922.011419.01164.01395923.011420.05165.050Mean = 13.5141422.04167.013Samples = 200141423.03333333	14	12.0	3	Mean	= 28. 6		59	16.0	15
1414.09Samples = 1905918.021415.015919.021416.04161.015920.041417.04162.0155921.021418.06163.01095922.011419.01164.01395923.011420.05165.050Mean = 13.5141421.02166.025S.D. = 2.7141423.033167.013Samples = 200	14	13.0	3	S.D.	= 9.4		59	17.0	10
1415.015919.021416.04161.015920.041417.04162.0155921.021418.06163.01095922.011419.01164.01395923.011420.05165.050Mean = 13.51421.02166.025S.D. = 2.71422.04167.013Samples = 2001423.033333	14	14.0	9	Sampl	es = 190		59	18.0	2
1416.04161.015920.041417.04162.0155921.021418.06163.01095922.011419.01164.01395923.011420.05165.050Mean = 13.51421.02166.025S.D. = 2.71422.04167.013Samples = 2001423.033333	14	15.0	1			_	59	19.0	2
14 17.0 416 2.0 15 59 21.0 2 14 18.0 6 16 3.0 109 59 22.0 1 14 19.0 1 16 4.0 139 59 23.0 1 14 20.0 5 16 5.0 50 Mean = 13.514 21.0 2 16 6.0 25 $S.D. = 2.7$ 14 22.0 4 16 7.0 13 Samples = 200 14 23.0 3 3 3 3 3	14	16.0	4	16	1.0	1	59	20.0	4
14 18.0 6 16 3.0 109 59 22.0 1 14 19.0 1 16 4.0 139 59 23.0 1 14 20.0 5 16 5.0 50 Mean = 13.5 14 14 21.0 2 16 6.0 25 S.D. = 2.7 14 14 22.0 4 16 7.0 13 Samples = 200 14 14 23.0 3	14	17.0	4	16	2.0	15	59	21.0	2
14 19.0 1 16 4.0 139 59 23.0 1 14 20.0 5 16 5.0 50 Mean = 13.5 14 21.0 2 16 6.0 25 S.D. = 2.7 14 22.0 4 16 7.0 13 Samples = 200 14 23.0 3 3 3 3 3	14	18.0	6	16	3.0	109	59	22.0	1
14 20.0 5 16 5.0 50 Mean = 13.5 14 21.0 2 16 6.0 25 S.D. = 2.7 14 22.0 4 16 7.0 13 Samples = 200 14 23.0 3 3 3 3 3	14	19.0	1	16	4.0	139	59	23.0	1
14 21.0 2 16 6.0 25 S.D. = 2.7 14 22.0 4 16 7.0 13 Samples = 200 14 23.0 3 3 3 Samples = 200	14	20.0	5	16	5.0	50	Mean =	13.5	
14 22.0 4 16 7.0 13 Samples = 200 14 23.0 3	14	21.0	2	16	6.0	25	S.D. =	2.7	
14 23.0 3	14	22.0	4	16	7.0	13	Samples *	200	
	14	23.0	3						

Table 38. Depth-frequency, mean and standard deviation (SD) snow depth data sampled in 1986.

110

١.

ž:

Station Sample Number	Snow Depth (cm)	Frequency	Station Sample Number	Snow Depth (cm)	Frequency	Station Sn Sample Dep Number (c	ow ith m) Frequency
L6	1.0	4	20	28.0	· 5	23 2	2.0 122
L6	2.0	54	20	29.0	4	23 3	3.0 52
6	3.0	34	20	30.0	12	23	1.0 35
6	4.0	2	20	31.0	2	23 5	i.0 28
6	5.0	4	20	32.0	2	23 6	i.0 20
6	6.0	1	20	33.0	1	23 7	′ . 0 20
ean =	2.5		20	34.0	2	23 8	3.0 14
.D. =	0.9		20	35.0	2	23 . 9	1.0 7
anapies	* 99		20	37.0	1	23 10).0 11
-	1 0	E 0	20	39.0	4	23 11	0 3
,	2.0	50 70	20	40.0	2	23 14	
7	3.0	21	žu Mežnis	42.0	2	23 14	5.0 2
7	4 0	11	- 100m	7 0		23 16	5.0 2
7	5.0	10	Samles	= 200		23 16	3.0 4
7	6.0	8	00000000			23 10	1.0 1
7	7.0	2	21	3.0	1	23 20	0.0 2
7	8.0	1	21	7.0	1	23 21	.0 3
7	9.0	1	21	10.0	6	23 22	2.0 1
7	12.0	1	21	11.0	1	23 23	3.0 1
ean =	2.4		21	12.0	7	23 25	i. 0 1
.D. =	1.7		21	13.0	6	Mean = 4	1.4
amples	= 192		21	14.0	7	S.D. = 4	1.2
			21	15.0	12	Samples = 4	100
3	0.0	1	21	16.0	6		
8	1.0	37	21	17.0	8	25 1	0 44
3	2.0	30	21	18.0	11	25 2	2.0 116
5	3.0	36	21	19.0	5	25 3	1.0 50
5 6	4.0	2	. 21	20.0	13	25 4	1.0 9
6 6	5.0	2	21	22.0	12	25 2	5.0 I
e e	7 0	1	21	22.0	8	25 0	
R	9.0	1	21	24 0	4	. 25 17	.0 3
3	13.0	2	21	25.0	14	Mean = 2	
3	14.0	ī	21	26.0	9	S.D. = 1	.4
ean =	2.6		21	27.0	2	Samples = 2	25
.D. =	2.2		21	28.0	6		
annples	= 116		21	29.0	3	26 2	2.0 2
			21	30.0	8	26 3	3.0 2
)	6.0	1	21	31.0	5	26 4	1.0 13
)	8.0	2	21	32.0	8	26 5	i.0 60
)	9.0	1	21	33.0	12	26 6	i.0 29
)	10.0	3	21	34.0	1	26 7	′ . 0 29
)	11.0	4	21	35.0	6	26 8	1.0 27
)	12.0	4	21	36.0	1	26 9	1.0 24
)	13.0	1	21	37.0	1	26 10	1.0 29
}	14.0	8	21	38.0	4	26 11	.0 23
) \	15.0	25	21	39.0	1	26 12	2.0 11
	17.0	0	21	40.0	2	26 13	1.0 12
, 1	18.0	9 10	21	41.U 42 A	1	26 14	13
,	19.0	6	21	44 0	1	20 13	7.0 4 50 10
,)	20.0	19	21	44.0	1	20 10	10 10
Ś	21.0	8	21	47 0	▲ 1	20 1/	.0 4 20 2
)	22.0	2	Mean =	23.4	•	26 26	1.0 2
)	23.0	13	S.D. =	8.3		26 21	.0 2
)	24.0	11	Samples	= 202		26 24	1.0 1
)	25.0	17		202		Nean = P	3.8
5	26.0	6	23	0.0	3	S.D. = 3	3.9
n .	27 0	6		1 0	60	Samler - 2	200

Table 39. Depth-frequency, mean and standard deviation (SD) snow depth data sampled in 1987.

111

Station Sample Number	Snow Depth (cm)	Frequency	Station Sample Number	Snow Depth (cm)	Frequency	Station Snow Sample Depth Number (cm)	Frequency
16	3.0	5	17	9.0	17	18 14.0	7
16	4.0	. 2	17	10.0	30	18 15.0	3
16	5.0	19	17	11.0	20	18 16.0	1
16	6.0	12	17	12.0	16	18 17.0	5
16	7.0	12	17	13.0	14	18 18.0	2
16	8.0	21	17	14.0	21	18 19.0	6
16	9.0	13	17	15.0	48	18 21.0	5
16	10.0	33	17	16.0	20	18 25.0	1
16	11.0	29	17	17.0	13	18 26.0	1
16	12.0	21	17	18.0	19	Mean * 5.3	
16	13.0	13	17	19.0	12	S.D. = 4.7	
16	14.0	21	17	20.0	16	Samples = 400	
16	15.0	37	17	21.0	18		
16	16.0	19	17	22.0	12	19 1.0	66
16	17.0	7	17	23.0	12	19 2.0	220
16	18.0	10	17	24.0	7	19 3.0	62
16	19.0	16	17	25.0	18	19 4.0	16
16	20.0	20	17	26.0	4	19 5.0	9
16	21.0	8	17	27.0	5	19 6.0	3
16	22.0	10	17	28.0	3	19 7.0	4
16	23.0	13	17	29.0	2	19 8.0	2
16	24.0	10	17	30.0	6	19 9.0	4
16	25.0	10	17	31.0	4	19 10.0	5
16	26.0	5	17	32.0	3	19 13.0	1
16	27.0	8	17	33.0	2	19 14.0	2
16	28.0	3	17	34.0	1	19 20.0	1
16	29.0	5	17	35.0	2	19 21.0	1
16	30.0	4	17	40.0	2	19 22.0	2
16	31.0	4	17	41.0	1	19 24.0	1
16	34.0	1	Mean =	16.0		19 30.0	1
16	35.0	2	S.D. =	7.1		Mean = 2.8	
16	36.0	2	Sample	s = 400		S.D. = 3.1	
16	37.0	1				Samples = 400	
16	40.0	1	18	1.0	33		
16	42.0	1	18	2.0	92	20 1.0	2
16	44.0	1	18	3.0	80	20 2.0	43
Mean =	15.3		18	4.0	41	20 3.0	295
S.D. ≖	7.4		18	5.0	34	20 4.0	43
Samples	= 399		18	6.0	15	20 5.0	12
			18	7.0	11	20 6.0	2
17	2.0	2	18	8.0	11	20 7.0	1
17	3.0	6	18	9.0	14	20 8.0	1
17	4.0	5	18	10.0	16	20 13.0	1
17	5.0	6	18	11.0	7	Mean = 3.1	
17	5.0	8	18	12.0	8	S.D. * 0.9	
17	7.0	12	18	13.0	6	Samples = 400	
17	8.0	13					

Table 40. Depth-freqency, mean and standard deviation (SD) snow depth data sampled in 1988.

١.

.

.