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In This Issue

This issue of Survey Methodology includes papers covering a variety of methodological subjects such as
modeling and estimation, weighting and variance estimation, non-response and sampling.

In the first paper of the issue, Skinner and Vieira investigate the effect of clustered sampling on variance
estimation in longitudinal surveys. They present theoretical arguments and empirical evidence of the effects
of ignoring clustering in longitudinal analyses, and find that these effects tend to be larger than for
corresponding cross-sectional analyses. They also compare traditional survey sampling based methods to
account for clustering in variance estimation to a multi-level modeling approach.

Kovacevi¢ and Roberts compare three models for analyzing multiple spells arising from data collected
through longitudinal surveys with complex survey designs, which can involve stratification and clustering.
These models are variations of the Cox proportional hazards model along the same lines as those proposed
in the literature by Lin and Wei (1989), Binder (1992) and Lin (2000). These three models are compared
using data from Statistics Canada’s Survey on Labor and Income Dynamics (SLID). This paper gives new
insight into fitting Cox models to survey data containing multiple spells per individual, a situation that
arises quite frequently. The paper also illustrates some of the challenges in fitting Cox models to survey
data.

Elliott, in his paper, presents a method for balancing elevated variance due to extreme weights with
potential bias using a Bayesian weight trimming method in generalized linear models. This is accomplished
by using a stratified hierarchical Bayesian model in which strata are determined by the probabilities of
inclusion or survey weights. He illustrates and evaluates the approach using simulations based on linear and
logistic regression models, and an application using data from the Partners for Child Passenger Safety
dataset.

The paper by Breidt, Opsomer, Johnson and Ranalli explores the use of semiparametric methods for the
estimation of population means. In semiparametric estimation, some variables are assumed to be linearly
related to the variable of interest while the other variables may have a complicated, unspecified relation to
the variable of interest. The authors study theoretically the properties under the sampling design of the
resulting estimators. In particular, they show the design-consistency and the asymptotic normality of their
estimator. Their method is then applied to data from a survey of lakes in the northeastern United States.

Tanguay and Lavallée address the problem of estimating the depreciation of assets based on a database
of price ratios. In their paper, the issue is that the ratios do not come from a random sample from the
population of ratios. The authors argue that the distribution of ratios should converge to a Uniform
distribution and propose a weighting scheme that will make the weighted empirical distribution function
approximately uniform. The proposed method is illustrated by an example using data on the depreciation of
automobiles.

Steel and Clark present an empirical and theoretical comparison of person-level generalized regression
survey weights and integrated household-level weights in the case of a simple random sample of
households in which all household members selected. They conclude that there is little or no loss in
efficiency associated with integrated weighting.

Saigo, in his paper, proposes a bootstrap variance estimation procedure for two-phase designs with high
sampling fractions. The method uses common bootstrap techniques, but adjusts the values of the auxiliary
variables for units that are selected in the first phase sample only. The proposed technique is illustrated
using several commonly used estimators such as the ratio estimator, and estimators of the distribution
function and quantiles. Results from a simulation study comparing the proposed method to several others
are presented.



2 In This Issue

In the paper by Longford the problem of estimating the MSE of small area estimates is investigated. A
composite estimator of the MSE of small area means is obtained by combining a model-based variance
estimator and a naive estimator of the MSE. The coefficient that combines the two estimators minimizes
the expected MSE of the resulting composite estimator of the MSE. The proposed estimator is compared
with existing estimators through several simulation studies.

Shao considers the problem of imputing for missing values when the nonresponse is nonignorable. In
the situation where the nonresponse depends on a cluster level random effect, he shows that the commonly
used mean imputed estimator is biased unless the mean of the cluster is used. For variance estimation, a
jackknife variance estimation procedure for the proposed estimator is provided. The proposed estimator is
compared with the mean imputed estimator by means of a simulation study.

In the final paper of this issue, Tiwari, Nigam and Pant make use of the idea of nearest proportional to
size sampling designs to obtain optimal controlled sample designs where non-preferred samples have zero
selection probabilities. The optimal controlled sampled designs are obtained by combining an initial
inclusion probability proportional to size design and quadratic programming techniques to ensure that non-
preferred samples have a zero selection probability. Their method is illustrated using several examples.

Harold Mantel, Deputy Editor
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Variance estimation in the analysis of clustered
longitudinal survey data

Chris Skinner and Marcel de Toledo Vieira !

Abstract

We investigate the impact of cluster sampling on standard errors in the analysis of longitudinal survey data. We consider a
widely used class of regression models for longitudinal data and a standard class of point estimators of a generalized least
squares type. We argue theoretically that the impact of ignoring clustering in standard error estimation will tend to increase
with the number of waves in the analysis, under some patterns of clustering which are realistic for many social surveys. The
implication is that it is, in general, at least as important to allow for clustering in standard errors for longitudinal analyses as
for cross-sectional analyses. We illustrate this theoretical argument with empirical evidence from a regression analysis of
longitudinal data on gender role attitudes from the British Household Panel Survey. We also compare two approaches to
variance estimation in the analysis of longitudinal survey data: a survey sampling approach based upon linearization and a
multilevel modelling approach. We conclude that the impact of clustering can be seriously underestimated if it is simply
handled by including an additive random effect to represent the clustering in a multilevel model.

Key Words: Clustering; Design effect; Misspecification effect; Multilevel model.

1. Introduction

It is well known that it is important to take account of
sample clustering when estimating standard errors in the
analysis of survey data. Otherwise, standard error estimators
can be severely biased. In this paper we investigate the
impact of clustering in the regression analysis of
longitudinal survey data and compare it with the impact on
corresponding cross-sectional analyses. Kish and Frankel
(1974) presented empirical work which suggested that the
impact of complex designs on variances decrease for more
complex analytical statistics and so one might conjecture
that the impact on longitudinal analyses might also be
reduced. We shall argue that, in fact, the impact of
clustering on longitudinal analyses can tend to be greater, at
least for a number of common types of analysis and for
some common practical settings. An intuitive explanation is
that some common forms of longitudinal analysis of
individual survey data ‘pool’ data over time and enable
much temporal ‘random’ variation in individual responses
to be ‘extracted’ in the estimation of regression coefficients.
In contrast, it may only be possible to extract much less
variation in the effects of clustering since such clustering,
representing geography for example, often tends to generate
more stable effects than repeated measurements of
individual behaviour. As a consequence the relative
importance of clustering in standard errors can increase the
more waves of data are included in the analysis.

In addition to considering the impact of clustering on
variance estimation, we shall also consider the question of
how to undertake the variance estimation itself. It is natural
for many analysts to represent clustering via multilevel

models (Goldstein 2003, Chapter 9; Renard and Molenberghs
2002) and we shall consider how variance estimation
methods based upon such models compare with survey
sampling variance estimation procedures in the case of cluster
sampling.

There is a well established literature on methods for
taking account of complex sampling schemes in the
regression analysis of survey data. See e.g., Kish and
Frankel (1974), Fuller (1975), Binder (1983), Skinner, Holt
and Smith (1989) and Chambers and Skinner (2003). We
restrict attention here to ‘aggregate’ regression analyses
(Skinner et al. 1989), where regression coefficients at the
‘population level’ are the parameters of interest, where
suitable estimates of these coefficients may be obtained by
adapting standard model-based procedures using survey
weights and where the variances of these estimated
regression coefficients may be estimated by linearization
methods (Kish and Frankel 1974; Fuller 1975). In this
paper, we extend this work to the case when longitudinal
survey observations are obtained, based upon an initial
sample drawn according to a complex sampling scheme,
focussing again on the case of a clustered design. We
consider a standard class of linear regression models for
such longitudinal data, as considered in the biostatistical
literature (e.g., Diggle, Heagerty, Liang and Zeger 2002),
the multilevel modelling literature (e.g., Goldstein 2003)
and the econometric literature (e.g., Baltagi 2001). We
consider an established class of point estimators of a
generalized least squares type, modified by survey
weighting. For some applications of such methods to survey
data, see Lavange, Koch and Schwartz (2001); Lavange,
Stearns, Lafata, Koch and Shah (1996).

1. Chris Skinner, University of Southampton, United Kingdom; Marcel de Toledo Vieira, Universidade Federal de Juiz de Fora, Brazil.



The impact of a complex sampling scheme on variance
estimation will be measured by the ‘misspecification effect’,
denoted meff (Skinner 1989a), which is the variance of the
point estimator of interest under the actual sampling scheme
divided by the expectation of a specified variance estimator.
This is a measure of the relative bias of the specified
variance estimator. If it is unbiased then the meff will be
one. If the actual sampling scheme involves clustering but
the specified variance estimator is ‘misspecified’” by
ignoring the clustering, then the expectation of the variance
estimator will usually be less than the actual variance and
the meff will be greater than one. This concept is closely
related to that of the ‘design effect’ or deff of Kish (1965),
defined as the variance of the point estimator under the
given design divided by its variance under simple random
sampling with the same sample size, a concept more
relevant to the choice of design than to the choice of
standard error estimator.

We shall illustrate our theoretical arguments with
analyses of data from the British Household Panel Survey
(BHPS) on attitudes to gender roles, where the units of
primary analytic interest are individual women and the
clusters consist of postcode sectors, used as primary
sampling units in the selection of the first wave sample from
an address register.

The framework, including the models and estimation
methods, is described in Section 2. The theoretical
properties of the variance estimation methods are considered
in Section 3. Section 4 illustrates these properties numer-
ically, using an analysis of BHPS data. Some concluding
remarks are provided in Section 5.

2. Regression model, data and
inference procedures

Consider a finite population U = {1, ..., N} of N units,
assumed fixed across a series of occasions ¢ = 1,...,7. We
shall refer to the units as individuals, although our
discussion is applicable more generally. Let y, denote the
value of an outcome variable for individual i € U at
occasion ¢ and let y, = (y,,..., ¥;) be the vector of
repeated measurements. Let x, denote a corresponding
1 x g vector of values of covariates for individual i at
occasion ¢ and let x;, = (x},..., x/;). We assume that the
following linear model holds for the expectation of y,
conditional on (x, ..., xy) :

E(y;) = xB, 1

where B isa g x 1 vector of regression coefficients and the
expectation is with respect to the model. We suppose that 3
is the target for inference, that is the regression coefficients
are the parameters of primary interest to the analyst.

Statistics Canada, Catalogue No. 12-001
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Although we shall consider further features of this model,
such as the covariance matrix of y,, these will be assumed
to be of secondary interest to the analyst.

The data available to make inference about  are from a
longitudinal survey in which values of y, and x, are
observed at each occasion (wave) ¢ =1,..,7 for indi-
viduals i in a sample, s, drawn from U at wave 1 using a
specified sampling scheme. For simplicity, we assume no
non-response here, but return to this possibility in Section 4.

In order to formulate a point estimator of §, we extend
the specification of (1) to the following ‘working’ model:

Vi =X B +u +v,, @)

where u, and v, are independent random effects with zero
means and variances GZ = pc” and 63 =(1-p)o’ re-
spectively, conditional on (x,, ..., x,). This model may be
called a uniform correlation model (Diggle et al. 2002, page
55) or a two-level model (Goldstein 2003). The parameter
p is the intra-individual correlation.

The basic point estimator of 3 we consider is

-1
B = (zwi Xy x:) zWi XV, 3)
where w, is a survey weight and V' isa T x T estimated
covariance matrix of y, under the working model (2), i.e., it
has diagonal elements 6* and off-diagonal elements p &7,
where (p, &%) is an estimator of (p, ”). (Note that in fact
& cancels out in (3) and hence o* does not need to be
estimated for ). In the absence of the weight terms and
survey considerations, the form of (3 is motivated by the
generalized estimating equations (GEE) approach of Liang
and Zeger (1986). The idea here is that B, as a generalized
least squares estimator of 3, would be fully efficient if the
working model (2) held. However, 3 remains consistent
under (1) and may still be expected to combine within- and
between-individual information in a reasonably efficient
way even if the working model for the error structure does
not hold exactly.

The survey weights are included in (3) following the
pseudo-likelihood approach (Skinner 1989b) to ensure that
B is approximately unbiased for P with respect to the
model and the design, provided (1) holds.

There are a number of alternative ways of estimating p.
In a non-survey setting, Liang and Zeger (1986) provide an
iterative approach which alternates between estimates of 3
and p. Shah, Barnwell and Bieler (1997) describe how
survey weights may be incorporated into this approach and
implement this method in the REGRESS procedure of the
software SUDAAN. By default, SUDAAN implements
only one step of this iterative method and, in the non-survey
setting, Lipsitz, Fitzmaurice, Orav and Laird (1994)
conclude there is little to be lost by using only a single step.
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For the working model in (2), the approach of Liang and
Zeger (1986) to the estimation of B and p is virtually
identical to the iterative generalized least squares (IGLS)
estimation approach of Goldstein (1986). Both methods
iterate between estimates of 3 and p and both use GLS to
estimate [ given the current estimate of p. The only slight
difference is in the method used to estimate p. Pfeffermann,
Skinner, Holmes, Goldstein and Rasbash (1998) show how
to incorporate survey weights into the IGLS approach and
their method may be expected to lead to very similar
estimates of p to those in the SUDAAN REGRESS
procedure. For the purposes of this paper, the precise form
of p will not be critical and we may view [ as either a
weighted GEE or a weighted IGLS estimator.

We now turn to the estimation of the covariance matrix
of B under the complex sampling scheme. We shall gen-
erally assume that a stratified multistage sampling scheme
has been employed. We consider two main approaches to
variance estimation.

Our first approach is the classical method of linearization
(Skinner 1989b, page 78). The estimator of covariance
matrix of B is

r -1
ry7-1
> wxlV x,}
Lies

x Z”h (ny, = 1)2(% - Z,)(z, — Zh)':|
L & a

v(p) =

r -1
x Z%#V%} @
where 4 denotes stratum, a denotes primary sampling unit
(PSU), n, is the number of PSUs in stratum 4, z,,=
Yow.xV'e, z, =%,z,/n, and e, = y, — x, . Similar
estimators are considered by Shah ez al. (1997, pages 8-9)
and Lavange efal. (2001). If the weights, the sampling
scheme and the difference between n/(n —1) and 1 are
ignored, this estimator reduces to the ‘robust’ variance
estimator presented by Liang and Zeger (1986).

Our second approach is more directly model-based. The
model is first extended to represent the complex population
underlying the sampling scheme and inference then takes
place with respect to the extended model. We consider only
the case of two-stage sampling from a clustered population,
where the two-level model in (2) is extended to the three-
level model (Goldstein 2003):

Vair = Xt B+ M, + Uy + Ve )

The additional subscript a denotes cluster and the
additional random term m, with variance Gf] represents the
cluster effect (assumed independent of u, and v,,). We let
o, and o denote the variances of u, and v, respec-
tively. Inference then takes place using IGLS, which may be

5

weighted to avoid selection bias. This approach generates an
estimated covariance matrix of the estimator of 3 directly.
It should be noted, however that the estimator of 3 derived
using weighted IGLS under model (5) may differ slightly
from the estimator in (3) (although, for given estimates of
the three variance components in (5), it will be the same as a
weighted GEE estimator with a working covariance matrix
based on this three-level model). Nevertheless, from our
experience of social survey applications, such as in Section
4, and from theory (Scott and Holt 1982) the difference
between these alternative point estimators will often be
negligible.

Two broad approaches to deriving variance estimators
from (5) are available. First, ignoring survey weights, the
standard IGLS method (Goldstein 1986) may be employed,
assuming that each random effect follows a normal distri-
bution. Second, to avoid the assumption of normal
homoscedastic random effects, a ‘robust’ variance esti-
mation method (Goldstein 2003, page 80) may be
employed. This approach is extended to handle survey
weights in Pfeffermann efal. (1998). Leaving aside
stratification, their variance estimator is identical to the
linearization estimator in (4) for a given value of p.

3. Properties of variance estimators

In this section we consider the properties of the
estimators of the covariance matrix of  described in the
previous section. We focus first on the linearization
estimator v(B) in (4).

The consistency of v(B) for the covariance matrix of
follows established arguments in a suitable asymptotic
framework (e.g., Fuller 1975; Binder 1983). The one non-
standard feature is the presence of V™' in B and v(fs) and
the dependence of V' on p. In fact, in large samples the
covariance matrix of B depends on p only via its limiting
value p* (in a given asymptotic framework). To see this,
write B —P = (Zsu,.)_lzséi, where wu, = w,x/V 'x,
Z =wx/V'é and & =y, — x,B. Note that, under weak
regularity conditions (Fuller and Battese 1973, Corollary 3),
the asymptotic dis;m'bution of p—P is the same as that of
B'—B=,u) Xz, where u, =wx/V 'x, z=
w, x/ V& and V" takes the same form as ¥ with p
replaced by p* = plim(p), the probability limit of p in the
asymptotic framework. Writing z° = X,z /n and U=
plim(zsu: /n), we may thus approximate the covariance
matrix of B asymptotically by var(p) =~ U var(z" )U". If
the working model (2) holds then p" =p and this
covariance matrix will be the same for any consistent
method of estimating p. Even if the working model does
not hold, v(B) will be consistent for U var(z )U™
within the kinds of asymptotic frameworks considered by

Statistics Canada, Catalogue No. 12-001
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Fuller (1975) and Binder (1983) and under the kinds of
regularity conditions they and Fuller and Battese (1973) set
out.

We next explore the impact on the linearization method
of ignoring a complex sampling design. We denote by
vO(B) the linearization estimator obtained from expression
(4) by ignoring the design, i.e., by assuming only a single
stratum with PSUs identical to individuals so that n, = n is
the overall sample size and z,, is replaced by z,=
w, x'V'e. We shall be concerned with the bias of v, ()
when in fact the design is complex. Let Bk denote the k™
element of f and let Vo (8 .) denote the k ™ clement of
Vo (B). Then, following Skinner (1989a, page 24), we shall
measure the relative bias of the ‘incorrectly specified’
variance estimator v, (Bk) as an estimator of Var(fsk) by
the misspecification effect, meff[fsk,vo (Bk)]zvar(fsk) /E[v,
(Bk)]. Since V(Bk) is a consistent estimator of Var(Bk),
meff[Bk, vO(Bk)] may be estimated by V(Bk)/VO(Bk) and
is closely related to the idea of design effect.

To investigate the nature of meff[Bk, Vo (Bk)], we first
write:

vO(B) = (zsui )_l[n/(n -1)]
[ZG-06-9)(Zw) O

where z = Y z, /n. Then, as an asymptotic approximation,
we have E[v,(B)] = U '[n"'S]]U"", where S. is the
probability limit of the finite population covariance matrix
of z: . Using the fact that the numerator of meff[Bk,
Vo (B )] may be approximated by U Var(E*)U ! we can
thus write:

(U var(zH U,

ffA’OA = -l Lo*y -1y ° 7
meff[f,, vy (B, )] O[S, (7)

where (U™), is the ™ row of U, This simplifies in the
case g =1 to:

meff[B, v, ()] = var(z")/[n"'S]]. ®)

We may explore more specific forms of these
expressions under different models and assumptions about
the weights and the sampling scheme. We focus here on the
impact of clustering, assuming equal weights and no
stratification. Consider the three-level model in (5) and, to
simplify matters, suppose that ¢ =1 and x, =1 and f is
the mean of y,,. Then, straightforward algebra shows that
the value of z, for individual ; within cluster a is
[+p (T -DI'Y, (m, +u, +v,). Now suppose that
two-stage sampling is employed with a common sample
size m per cluster. Then, evaluating the variance var(z")
and probability limit .S : in (8) with respect to the model in
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(5), we find, in a similar manner to Skinner (1989a, page
38):

meff[B,v,(B)] = 1 + (m — )1, )

where 1 = Gf] /(GTZ] +o. +0./T) is the intracluster
correlation of z,.* . We see that, under this model, the meff
increases as T increases (provided o, > 0) and thus the
impact of clustering on variance estimation is greater in the
longitudinal case than for the cross-sectional problem
(where T =1).

This finding depends on the rather strong assumption that
the cluster effects n, are constant over time. In fact, (9) still
holds if we replace m, by a time-varying effect m,,
providled we replace t by 1t =var(n,)/[var(n,) +
o, +c./T], where n, = ¥,m, /T. Now, the meff will
increase as 7T increases if (and only if) o +o./T
decreases faster with 7' than var(n,). Whether this is the
case will depend on the particular application. However, we
suggest that for many longitudinal surveys of individuals
with area-based clusters (the kind of setting we have in
mind), this condition is plausible. In such applications we
may often expect G- to be large relative to - (i.e., for the
cross-sectional intracluster correlation to be small) in
particular as a result of wave-specific measurement error
and thus for . + o> /T to decrease fairly rapidly as T
increases. The socio-economic characteristics of areas may
often be expected to be more stable and only in unusual
situations might we expect measurement error to lead to
much occasion-specific variance in m,. Thus, we suggest
that the ratio of var(n,) for 7 =5, say, compared to
T =1 may in such applications usually be expected to be
greater than (o, + o /5)/(c. + ©.) which will approach
1/5as o /c. approaches 0. We thus suggest that in many
practical circumstances it will be more important to allow
for clustering in longitudinal analyses than in corresponding
cross-sectional analyses. An empirical illustration is
provided in Section 4.

We now consider the properties of variance estimators
based upon the three-level model in (5). We consider only
the approach based upon the assumption of normally
distributed homoscedastic random effects, ignoring survey
weights, given the (virtual) equivalence of the ‘robust’
multilevel approach and linearization.

If model (5) is correct and we can indeed ignore survey
weights then the model-based variance estimator will be
consistent (Goldstein 1986). However, as discussed in
Skinner (1989b, page 68) and supported by theory in
Skinner (1986), the main feature of clustering likely to
impact on the standard errors of estimated regression coef-
ficients is the variation in regression coefficients between
clusters. This is not allowed for in model (5).
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To see how model (5) may fail to capture the effects of
clustering adequately, consider the cross-sectional case
(T =1) where x is scalar. Then, if the three-level model
(5) holds, an approximate expression for the meff of the
variance estimator of 3 based upon the two-level model (2)
is:

meff =1+ (m - D11, (10)

where 1, = csf] /(csf] + 0. +0.) and 1, is the intracluster
correlations for x (Scott and Holt 1982; Skinner 1989D,
page 68). This result extends in the longitudinal case, to:

1 < meff <1+ (m—1)ir,, (11)

where % is the long-run (7 = ) version of T (see
Appendix) and t, is an intracluster correlation coefficient
for z,; =%,x,/T. The proof of this result and the
simplifying assumptions required are sketched in the
Appendix. The main point is that both 7 and t, will often
be small in which case Tt, will be very small and thus meff
may be implausibly close to one with the model-based
variance estimator being subject to downward bias. We
explore this empirically in Section 4. Of course, random
coefficients could be introduced into model (5) and we
consider this also in Section 4. However, given the difficulty
of specifying a correct random coefficient model, this
approach does not seem likely to be very robust.

Our focus in this section has so far been on the potential
bias (or inconsistency) of variance estimation methods. It is
also desirable to consider their efficiency. In particular, the
linearization method may be expected to be less efficient
than model-based variance estimation if the model is
correct. The relative importance of efficiency vs. bias may
be expected to increase as the number of clusters decreases.
Wolter (1985, Chapter 8) summarises a number of
simulation studies investigating both the bias and variance
of the linearization variance estimator and these studies
suggest that the linearization method performs well even
with few clusters. Possible degrees of freedom corrections
to confidence intervals for regression coefficients based
upon the linearization method with small numbers of
clusters are discussed by Fuller (1984). A simulation study
of estimators for multilevel models in Maas and Hox (2004)
does not suggest that the linearization method performs
noticeably worse than the model-based approach, in terms
of the coverage of confidence intervals for coefficients in
B, even with as few as 30 clusters.

4. Example: Regression analysis of BHPS
data on attitudes to gender roles

We now present an application to BHPS data to illustrate
some of the theoretical properties discussed in the previous
section.

7

Recent decades have witnessed major changes in the
roles of men and women in the family in many countries.
Social scientists are interested in the relation between
changing attitudes to gender roles and changes in behaviour,
such as parenthood and labour force participation (e.g.,
Morgan and Waite 1987; Fan and Marini 2000). A variety
of forms of statistical analysis are used to provide evidence
about these relationships. Here, we consider estimating a
linear model of form (1), with a measure of attitude to
gender roles as the outcome variable, y, following an
analysis of Berrington (2002).

The data come from waves 1, 3, 5, 7 and 9 (collected in
1991, 1993, 1995, 1997, and 1999 respectively) of the
BHPS and these waves are coded ¢ =1,...,7 = 5 respec-
tively. Respondents were asked whether they ‘strongly
agreed’, ‘agreed’, ‘neither agreed nor disagreed’, ‘dis-
agreed’ or ‘strongly disagreed’ with a series of statements
concerning the family, women’s roles, and work out of the
household. Responses were scored from 1 to 5. Factor
analysis was used to assess which statements could be
combined into a gender role attitude measure. The attitude
score, y,, considered here is the total score for six selected
statements for woman i at wave ¢. Higher scores signify
more egalitarian gender role attitudes. Berrington (2002)
provides further discussion of this variable. A more
sophisticated analysis might include a measurement error
model for attitudes (e.g., Fan and Marini 2000), with each of
the five-point responses to the six statements treated as
ordinal variables. Here, we adopt a simpler approach,
treating the aggregate score , and the associated
coefficient vector [ as scientifically interesting, with the
measurement error included in the error term of the model.

Covariates for the regression analysis were selected on
the basis of discussion in Berrington (2002) but reduced in
number to facilitate a focus on the methodological issues of
interest. The covariate of primary scientific interest is
economic activity, which distinguishes in particular between
women who are at home looking after children (denoted
‘family care”) and women following other forms of activity
in relation to the labour market. Variables reflecting age and
education are also included since these have often been
found to be strongly related to gender role attitudes (e.g.,
Fan and Marini 2000). All these covariates may change
values between waves. A year variable (scored 1, 3, ..., 9) is
also included. This may reflect both historical change and
the general ageing of the women in the sample.

The BHPS is a household panel survey of individuals in
private domiciles in Great Britain (Taylor, Brice, Buck and
Prentice-Lane 2001). The initial (wave one) sample in 1991
was selected by a stratified multistage design in which
households had approximately equal probabilities of
inclusion. The households were clustered into 250 primary

Statistics Canada, Catalogue No. 12-001



8 Skinner and Vieira: Variance estimation in the analysis of clustered longitudinal survey data

sampling units (PSUs), consisting of postcode sectors. All
resident members aged 16 or over were selected in sample
households. All adults selected at wave one were followed
from wave two onwards and represent the longitudinal
sample. The survey is subject to attrition and other forms of
wave non-response. To handle this non-response, we have
simply replaced s in (3) by the ‘longitudinal sample’ of
individuals for which observations are available for each of
t =1,..,T and have chosen not to apply any survey
weighting since our aim is to study potential misspeci-
fication effects associated with clustering and we wish to
avoid confounding these with weighting effects. We also
ignore the impact of stratification in the numerical work in
this section (but see Section 5 for some comments on the
effect of weights and stratification).

Given the analytic interest in whether women’s primary
labour market activity is ‘caring for a family’, we define our
study population as women aged 16-39 in 1991. Thus our
data consist of the longitudinal sample of women in the
eligible age range for whom full interview outcomes
(complete records) were obtained in all five waves, a sample
of n=1,340 women. These women are spread fairly evenly
across 248 postcode sectors. The small average sample size
of around five per postcode sector combined with the
relatively low intra-postcode sector correlation for the
attitude variable of interest leads to relatively small impacts
of the design, as measured by meffs. Since our aims are
methodological ones, we have chosen to group the postcode
sectors into 47 geographically contiguous clusters, to create
sharper comparisons, less blurred by sampling errors which
can be appreciable in variance estimation. The meffs in the
tables we present therefore tend to be greater than they are
for the actual design. The latter results tend to follow similar
patterns, although the patterns are less clear-cut as a result of
sampling error.

We first estimate meffs for the linearization estimator, as
discussed at the beginning of Section 3. Using data from just
the first wave and setting x,, = 1, the estimated meff for
this cross-sectional mean is given in Table 1 as about 1.5.
This value is plausible since, if we make the usual
approximation of (9) for unequal sample cluster sizes by
replacing m by m, the average sample size per cluster, we
find that 1+ (m—-1Dt=15 and m =1,340/47 = 29
imply a value of 1 of about 0.02 and such a small value is
in line with other estimated values of t found for attitudinal
variables in British surveys (Lynn and Lievesley 1991,
Appendix D).

Table 1 Estimates for longitudinal means

ﬁ s.e. meffs
Waves 1-9 1-9 1 1,3 1,35 1-7 19
19.83 0.12 1.51 1.50 1.68 1.81 1.84
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To assess the impact of the longitudinal aspect of the
data, we estimated a series of meffs using data for waves
1,....,t fort=2,3,...,5. Although these estimated meffs
are subject to sampling error, there seems clear evidence in
Table 1 of a tendency for the meff to increase with the
number of waves. This trend might be anticipated from the
theoretical discussion in Section 3 if the average level of
egalitarian attitudes in an area varies less from year to year
than the attitude scores of individual women. This seems
plausible since the latter will be affected both by
measurement error and genuine changes in attitudes, so that
var(n,) may be expected to decline more slowly with T
than var(u, +v,). We may therefore expect t, and
consequently the meff, to increase as 7' increases, as we
observe in Table 1.

We next elaborate the analysis by including indicator
variables for economic activity as covariates. The resulting
regression model has an intercept term and four covariates
representing contrasts between women who are employed
full-time and women in other categories of economic
activity. The estimated meffs are presented in Table 2. The
intercept term is a domain mean and standard theory for a
meft of a mean in a domain cutting across clusters (Skinner
1989b, page 60) suggests that it will be somewhat less than
the meff for the mean in the whole sample, as indeed is
observed with the meff for the cross-section domain mean
of 1.13 in Table 2 being less than the value 1.51 in Table 1.
As before, there is some evidence in Table 2 of tendency for
the meff to increase, from 1.13 with one wave to 1.50 with
five waves, albeit with lower values of the meffs than in
Table 1. The meffs for the contrasts in Table 2 vary in size,
some greater than and some less than one. These meffs may
be viewed as a combination of the traditional variance
inflating effect of clustering in surveys together with the
variance reducing effect of blocking in an experiment. Such
variance reduction arises if the domains being contrasted
share a common cluster effect (of the form 1, in model (5))
which tends to cancel out in the contrasts, implying that the
actual variance of the contrast is lower than the expectation
of the variance estimator which assumes independence
between domains. The latter expectation will be inflated by
common cluster effects. The main feature of these results of
interest here is that there is again no tendency for the meffs
to converge to one as the number of waves increases. If
there is a trend, it is in the opposite direction. For the
contrast of particular scientific interest, that between women
who are full-time employed and those who are ‘at home
caring for a family’, the meff is consistently well below one.

We next refine the model further by including, as
additional covariates, age group, year and qualifications.
The estimated meffs are given in Table 3. The meffs for the
regression coefficients corresponding to categories of
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economic activity again vary, some being above one and
some below one, for the same reasons as for the contrasts
(which may also be interpreted as regression coefficients) in
Table 2. There is again some evidence of a tendency for
these meffs to diverge away from one as the number of
waves increases. A comparison of Tables 1 and 3 confirms
the observation of Kish and Frankel (1974) that meffs for
regression coefficients tend not to be greater than meffs for
the means of the dependent variable.

Table 2 Estimates for regression with covariates
defined by economic activity

B s meffs
Waves 19 19 1 1,31,35 1-7 19
Intercept 20.58 0.11 1.131.01 1.09 1.38 1.50
Contrasts for
PT employed -1.03 0.10 0.930.91 0.93 1.00 0.89
Other inactive -0.80 0.15 0.600.96 0.68 0.76 0.81
FT student 0.41 0.24 1.101.32 1.14 1.48 1.44
Family care -2.18 0.10 0.720.49 0.58 0.66 0.60
Note: a) intercept is mean for women full-time employed

b) contrasts are for other categories of economic activity
relative to full-time employed

Table 3 Estimates for regression coefficients with
additional covariates in model

B s.e. meffs

Waves 1-9 19 1 13135 17 19
Intercept 20.20 0.30 095 0.87 0.87 1.04 1.07
Year, ¢ -0.04 0.01 - 0.86 0.69 0.59 0.96
Age Group

16-21 0.00 -

22-27 -0.71 0.25 1.22 1.37 1.44 1.73 1.64

28-33 -0.89 0.27 138 140 1.46 1.68 1.59

34+ -1.03 0.27 094 1.10 1.13 1.26 1.34
Economic Activity

FT employed 0.00 -

PT employed  -0.93 0.10  0.97 0.95 0.96 1.06 0.91

Other inactive  -0.75 0.15  0.60 0.96 0.68 0.77 0.81

FT student 0.17 0.24 093 132 123 1.39 1.32

Family care -2.09 0.10  0.77 0.59 0.70 0.78 0.67
Qualification

Degree 0.00 -

QF -0.52 0.21  0.77 0.64 0.75 0.87 0.85

A-level -0.61 0.24  0.98 0.87 094 0.94 1.01

O-level -0.44 0.20  0.62 0.62 0.59 0.69 0.73

Other -1.16 022 0.83 0.83 0.78 0.80 0.82

We next consider model-based standard errors obtained
from the three level model in (5), as discussed in section 2.
The results are given in Table 4 in the column headed ‘3

9

level model-based’. For comparison, we also estimate the
standard errors under the two level model in (2) - the results
are in the column headed ‘2 level model-based’. The
estimates in the two columns are virtually identical. There is
a single digit difference in the third decimal place for some
coefficients and slightly greater difference for the intercept
term. We suggest that this is evidence that simply adding in
a random area effect term can seriously understate the
impact of clustering on the standard errors of the estimated
regression coefficients. This evidence is in line with the
theoretical upper bound for the meff in (11). The estimated
value of 7 in (11) is 0.019 and none of the covariates may
be expected to display important intra-area correlation so the
expected values of the variance estimators for the two-level
and three-level models would be expected to be very close.

We suggested in Section 3 that the main feature of
clustering likely to impact on the covariance matrix of B is
the variation in regression coefficients between clusters. We
have explored this idea by introducing random coefficients
in the model. Treating the elements of 3 now as the
expected values of the random coefficients, we found that
the estimates of 3 were hardly changed. We found that the
estimated standard errors of these estimates were indeed
inflated, much more so than from the introduction of the
extra cluster random effect in model (5), and that the
inflation was of an order similar to those of the meffs in
Tables 2 and 3. Nevertheless, the IGLS method did lead to
several negative estimates of the variances of the random
coefficients, raising issues of which coefficients to allow to
vary or more generally the issue of model specification.
This problem is accentuated with increasing numbers of
covariates, as the number of parameters in the covariance
matrix of the coefficient vector increases with the square of
the number of covariates. Overall, the inclusion of random
coefficients seems to raise at least as many problems as it
solves, if the clustering is not of intrinsic scientific interest,
and thus does not seem a very satisfactory way to allow for
clustering in variance estimation. It is simpler to change the
method of variance estimation.

As mentioned at the end of Section 2, one alternative is a
‘robust’ variance estimation method based on the model in
(5) (Goldstein 2003, page 80). Values of such robust
standard error estimates are also included in Table 4. As
anticipated in Section 2, the robust standard error estimator
for the two level model performs very similarly to the
linearization estimator which ignores clustering. The robust
standard error estimator for the three level model performs
very similarly to the linearization estimator which allows for
two stage sampling. The slight differences reflect the
differences between the methods of estimating V.
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10 Skinner and Vieira: Variance estimation in the analysis of clustered longitudinal survey data

Table 4 Estimated standard errors of regression coefficients

Linearization

Multilevel modelling

SRS complex

2 level model-based 2 level robust 3 level model-based 3 level robust

Intercept 0.287  0.296 0.253
Year, ¢ 0.014  0.014 0.013
Age Group
16-21
22-27 0.191  0.245 0.155
28-33 0.214  0.270 0.187
34+ 0.237  0.275 0.218
Economic Activity
FT employed
PT employed 0.103  0.098 0.098
Other inactive ~ 0.166  0.150 0.146
FT student 0.207  0.238 0.199
Family care 0.125  0.102 0.112
Qualification
Degree
QF 0.228  0.210 0.207
A-level 0.238  0.239 0.209
O-level 0.234  0.199 0.217
Other 0.247  0.224 0.229

0.288 0.259 0.293
0.014 0.013 0.014
0.192 0.155 0.243
0.215 0.187 0.266
0.238 0.218 0.271
0.103 0.098 0.096
0.166 0.146 0.148
0.207 0.199 0.236
0.125 0.112 0.101
0.228 0.208 0.211
0.240 0.210 0.237
0.235 0.218 0.199
0.249 0.230 0.223

The linearization method in the presence of two-stage
sampling is thus very close to robust variance estimation
methods used in the literature on multilevel modeling. The
distinction between the methods becomes stronger if we
allow also for stratification and weighting. Another
distinction is that in the multilevel modeling approach,
differences between model-based and the robust standard
errors might be used as a diagnostic tool to detect departures
from the model (Maas and Hox 2004). For example, the
large differences in the three-level standard errors for the
coefficients of age group in Table 4 might lead to
consideration of the inclusion of random coefficients for age
group. This contrasts with the survey sampling approach
where the error structure in model (5) is only treated as a
working model and it is not necessarily expected that
standard errors based upon this model will be approximately
valid.

5. Discussion

We have presented some theoretical arguments and
empirical evidence that the impact of ignoring clustering in
standard error estimation for certain longitudinal analyses
can tend to be larger than for corresponding cross-sectional
analyses. The implication is that it is, in general, at least as
important to allow for clustering in standard errors for
longitudinal analyses as for cross-sectional analyses and that
the findings of, for example, Kish and Frankel (1974),
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should not be used as grounds to ignore complex sampling
in the former case.

The longitudinal analyses considered in this paper are of
a certain kind and we should emphasise that the patterns
observed for meffs in these kinds of analyses may well not
extend to all kinds of longitudinal analyses. To speculate
about the class of models and estimators for which the
patterns observed in this paper might apply, we conjecture
that increased meffs for longitudinal analyses will arise
when the longitudinal design enables temporal ‘random’
variation in individual responses to be extracted from
between-person differences and hence to reduce the
component of standard errors due to these differences, but
provides less ‘explanation’ of between cluster differences,
so that the relative importance of this component of standard
errors becomes greater.

The empirical work presented in this paper has also been
restricted to the impact of clustering. We have undertaken
corresponding work allowing for weighting and strat-
ification and found broadly similar findings. Stratification
tends to have a smaller effect than clustering. The sample
selection probabilities in the BHPS do not vary greatly and
the impact of weighting by the reciprocals of these
probabilities on both point and variance estimates tends not
to be large. There is rather greater variation among the
longitudinal weights which are provided with BHPS data
for analyses of sets of individuals who have responded at
each wave up to and including a given year 7. The impact
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of these weights on point and variance estimates is some-
what greater. As 7' increases and further attrition occurs,
the longitudinal weights tend to become more variable and
lead to greater inflation of variances. This tends to
compound the effect we have described of meffs increasing
with 7.

Leaving aside consideration of stratification and
weighting, we have compared two approaches to allowing
for cluster sampling. We have treated the survey sampling
approach as a benchmark. We have also considered a
multilevel modelling approach to allow for clustering. We
have suggested that the use of a simple additive random
effect to represent clustering can seriously understate the
impact of clustering and may lead to underestimation of
standard errors. If the clustering is of scientific interest, one
solution would be to consider including random
coefficients. Another would be to use the ‘GEE2’ approach
(Liang, Zeger and Qagqish 1992) and specify an additional
parametric model for E(y; y;). If the clustering is treated as
a nuisance, simply reflecting administrative convenience in
data collection, we suggest the survey sampling approach
has a number of practical advantages. This is discussed
further by Lavange ef al. (1996, 2001) in relation to other
applications to repeated measures data.

Appendix
Justification for (11)

For simplicity, x and B are taken to be scalar, B is
taken to be the ordinary least squares estimator and it is
assumed that the sample sizes within clusters are all equal to
m. The meff in (11) is defined as Var3([§)/ E3[v2(f5)],
where E; and var, are moments with respect to the three-
level model in (5) and v, (B) is a variance estimator based
upon the two-level model in (2). Under (5) we obtain

-2
van ) = (2 | (1% +0lT, +0l T |
cit c ci cit

where + denotes summation across a suffix, Gf], GZ and csi
are the respective variances of n,,u, and v, and x, is
centred at 0. We further suppose that v, (B) is defined so
that E[v, (B)]= (S x5,) "[(0],+6,) T i, +0) L5, -
After some algebra we may show that

meff =1+ (m-1) 7t p[l+(T -1, 1/[1+(T-Dpr,], (12)

where % =oc’/(c2 +062), p= (o> +0)/(c:+0

2 1 2 i 2 ! 2 T]2 ! 1 2u
G,), T, =06,/0, . = XuxX,, /(nT), G
[X.(x,./TY/n-c2/T[1-1/T], 1. =0c4/c, o =

Y.z ln, ol =[X.(z,, /m)/C—c/m]/[1-1/m] and

(&)

n = Cm is the sample size. Note that Tp = 1, and, when

+

11

T =1,t, =1, so that (12) reduces to (10). In general
p <1 and (11) follows from (12). In fact, we estimate p as
0.59 in our application so the bound in (11) is not expected
to be very tight.
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Modelling durations of multiple spells from longitudinal survey data

Milorad S. Kovadevi¢ and Georgia Roberts '

Abstract

We investigate some modifications of the classical single-spell Cox model in order to handle multiple spells from the same
individual when the data are collected in a longitudinal survey based on a complex sample design. One modification is the
use of a design-based approach for the estimation of the model coefficients and their variances; in the variance estimation
each individual is treated as a cluster of spells, bringing an extra stage of clustering into the survey design. Other
modifications to the model allow a flexible specification of the baseline hazard to account for possibly differential
dependence of hazard on the order and duration of successive spells, and also allow for differential effects of the covariates
on the spells of different orders. These approaches are illustrated using data from the Canadian Survey of Labour and

Income Dynamics (SLID).

Key Words: Cox regression; Design-based inference; Model-based inference; Spell order; SLID.

1. Introduction

The modelling problem addressed in this paper is known
under different names such as correlated failure-time
modelling, multivariate survival modelling, multiple spells
modelling, or a recurrent events problem. It has been studied
in the biomedical (e.g., Lin 1994, Hougaard 1999), social
(Blossfeld and Hamerle 1989, Hamerle 1989) and economic
literature (Lancaster 1979, Heckman and Singer 1982).
Generally this type of modelling is required to address
issues that arise in time-to-event studies when two or more
events occur to the same subject and where the research
interest is to assess the effect of various covariates on the
length of a spell. Failure times are correlated within a
subject, and thus the assumption of independence of failure
times conditional on given measured covariates, required by
standard survival models, is likely to be violated. In studies
of duration of spells (poverty, unemployment, etc.), the
“failure” is equivalent to exiting from the state of interest.
An additional property of many multiple spells, often
ignored, is that the spells are ordered “events”; that is, the
second spell cannot occur before the first, efc. This paper
was motivated by a study of unemployment spells,
discussed further in Section 5.

The dependence among the spells from the same
individual arises from the fact that these spells share certain
unobserved characteristics of the individual. The effect of
these unobserved characteristics can be explicitly modelled
as a random effect (e.g., Clayton and Cuzick 1985). When
this is done, it is assumed that the random effect follows a
known statistical distribution. The gamma distribution with
mean 1 and unknown variance is the distribution of choice
in many applications. Then, estimates of random and fixed

effects can be obtained by some suitable method (e.g.,
two-stage likelihood (Lancaster 1979), using an EM
algorithm (Klein 1992), etc.). This paper does not explore
this approach.

Another approach that has been taken - and is the one
that we will be using - is to take a semi-parametric approach
where we do not explicitly model the dependence among
multiple spells. We model the marginal distributions of the
individual spells, with a possible utilization of the order of
the spells in the model specification. In the non-survey
context, Lin (1994) describes how it is sufficient just to
modify the “naive” covariance matrix of the estimated
model coefficients obtained under the assumption of inde-
pendence since the correlated durations need to be
accounted for in the variance estimates but not in the
estimates of coefficients per se.

In socio-economic studies of spell durations the data
sources are frequently longitudinal surveys with complex
sample designs that involve stratification, sampling in sever-
al stages, selection with unequal probabilities, stochastic
adjustments for attrition and non-response, calibration to
known parameters, etc. Consequently, it is necessary to
account for the impact of the sample design on the
distribution of the sample data when estimating model
parameters and the variances of these estimates. Our
approach when analyzing complex survey data is to model
the marginal distributions of the multiple spells using single-
spell methods, treating the dependence among the spells as a
nuisance - both the dependence due to the correlation of
spells from the same person and dependence among
individuals due to the survey design - but taking account of
the unequal selection probabilities through the survey
weights. Based on the model chosen, finite population

1. Milorad S. Kovacevi¢, Methodology Research Advisor, Statistics Canada, Ottawa, Canada, KIA 0T6. E-mail: kovamil@statcan.ca; Georgia Roberts,
Chief of the Data Analysis Resource Center at the Social Survey Methods Division, Statistics Canada, Ottawa, Canada, KI1A 0T6. E-mail:
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parameters are defined and estimated as in Binder (1992).
Standard errors are estimated using an appropriate design-
consistent linearization method under the assumption that
the primary sampling units are sampled with replacement
within strata. This assumption is viable when the sampling
rates at the first stage are small, as is generally the case in
socio-economic surveys. Also, for such samples, the
difference between finite population and superpopulation
inference (i.e., the standard errors and the test statistics) has
been found to be rather negligible (Lin 2000). Therefore, the
results from inference based on our approach extend beyond
the finite population under study.

In the next section we review single-spell modelling and
some methods for robust estimation of variances when the
model is misspecified - first under a model-based frame-
work and then under a design-based one. Section 3 contains
further discussion of robust variance estimation for multiple
spells. In Section 4, we introduce three models for multiple
spells and describe how to fit these models using design-
based robust estimation methods. In Section 5, we fit these
models to data from the Canadian Survey of Labour and
Income Dynamics (SLID) and discuss the results. Finally,
Section 6 contains some overall remarks.

2. Inference for the single-spell hazard rate model

The duration of a spell (or simply, a spell) experienced
by an individual is a random variable denoted by 7. We are
particularly interested in the hazard function A(¢) of T at time
t, defined as the instantaneous rate of spell completion at
time ¢ given that it has not been completed prior to time ¢,
formally

< >
h(t) = lim Prob{t_T<t+dt|T_t}'
dt—0 dt

The value of the hazard function at ¢ is called the exit rate to
emphasize that the completion of the spell is equivalent to
exiting the state of interest. Duration models and analysis of
duration in general are formulated and discussed in terms of
the hazard function and its properties.

From a subject matter perspective, frequently the main
interest is to study the impact of some key covariates on the
distribution of 7. A proportional hazards model is often
chosen for such a study. Under the proportional hazards
model, the hazard function of the spell 7 given a vector of
possibly time-varying covariates x(¢) = (x,(?), ..., x,,(¢))" is

h(t [ x(2)) = Jo(1) e ¥, ()

The function ),(¢) is an unspecified baseline hazard
function and gives the shape of A(¢|x(¢)). The baseline
hazard describes the duration dependence, such as whether

Statistics Canada, Catalogue No. 12-001

the hazard rate depends on time already spent in the spell.
For example, negative dependence describes the situation
where the longer the spell the smaller the probability of exit.
If an individual has all x(#) variables set at 0, the value
(level) of the hazard function is equal to the baseline hazard.

2.1 Model-based inference

The vector P contains the unknown regression
parameters showing the dependence of the hazard on the
x (¢) vector, and may be estimated by maximizing the partial
likelihood function (Cox 1975):

n ex;(r,)ﬁ 3;
L(ﬁ)=H —_—| . (2)
S n e

J=1

Here 7,...,T, are n possibly right-censored durations;
d,=1if T, is an observed duration and &, =0 otherwise;
and x,(¢) is the corresponding covariate vector observed on
[0, 7;]. The denominator sum is taken over the spells that
are at risk of being completed at time 7, ie, Y,=1
if t<T,, andis equal to 0 otherwise. The estimate p of
the model parameter B is obtained by solving the partial

likelihood score equation

Uy(B) =3 (T, B) =0, )

where

B s, B)
uio(T;" B) _61'{ X,‘(Ti) S(O)(T;-, B) }a (4)
SO By =3 V() P, 5)
n -
and

SUB)= - ST OX O ©)

If model (1) is true and the durations are independent, the
model-based variance matrix of the score function /() is

J(B) =—0U,(B)/ B

=8, {S‘”@ B _s0a, ps"a, B)]'}
i S(O)(T;-, B) [S(O)(T;-, B)]z

i=1

where

S

SOWB) =3 (0 x, () X (1) e ¥,
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The approximate variance of B, obtained by linearization,
is J'(B).

If the form of (1) is incorrect but observations are
independent, Lin and Wei (1989) provide the robust
variance estimator for f§ as

JBGB)JB) (7

where
=3 5B gB)

and

g,(B) = Uy (T;’ B)

n Y;(Tj)ex;(rjm (1)( B)
_; ) nS” (T, ) {X"(T’) soa.p) @

2.2 Design-based inference

For observations from a survey with a complex sample
design, Binder (1992) used a pseudo-likelihood method to
estimate the parameters and their variances for a pro-
portional hazards model in the case of a single spell per
individual. In particular, he first defined the finite population
parameter of interest as a solution of the partial likelihood
score equation (3) calculated from the spells of the finite
population targeted by the survey:

N
U,(B) = zuio(Tp B)=0,
i-1

where u,,(T;, B) is the score residual defined in the same
way as u,,(T;, B), except that the averages in the definitions
of §9t B) and $"(¢,B) extend over N observations
rather than n. Note that if all members of the finite
population targeted by the survey do not experience spells,
N represents the size of the subpopulation that experiences
spells, and the summation is over these N individuals.

An estimate B of the parameter B is obtained as a
solution to the partial pseudo-score estimating equation

N
Uy(B) =D w,(s)0,(T, B) =0,
i=1

where w;(s)=w,, the survey weight, if ies, and 0
otherwise. Function #,,( 7;, B) takes the form

&) b,

~ D S (T’B)
u,‘ T;’B :61' X[ Ti _—l;\ )
o7, B) { (T) SO B)

where
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N N
SOwB) =D w ()Y (6)e P,

i=1
and

N .
SUB) =D wi(s)Y(t)x(t) 4"
i=1
Generally, the design-based variance of an estimate 0
that satisfies an estimating equation of the form U 0)=
2w, u;(0) = 0 can be estimated, using linearization, as

JV W), )

where J =0U(0)/00 is evaluated at 0=0, and V(U (0))
is the estimated variance of the estimated total U(0)
obtained by some standard design-based variance estimation
method (see for example Cochran (1977)) and evaluated at
0 =0. Binder (1983) states that in order to use this approach
to derive a consistent estimate of the variance, U(0) must
be expressed as a sum of independent random vectors. In
the case of the proportional hazards model above, U, (B)
does not satisfy this condition since each #,, is a function of
s (T,B) and S'(l)(ﬂ,]:"), both of which include many
individuals besides the i™ one. Thus, Binder (1992) found
an alternative expression for U,(B) which conforms to
these conditions, making it possible to obtain a design
consistent estimate ¥ (U,(B)) by application of a design-
based variance estimation method to the alternate expression
and then evaluating this variance estimate at B = B. If the
design-based variance estimation method chosen is the
linearization method, then the first step consists of
calculating the following residual for each of the sampled
individuals:

ﬁ,‘ (T;, ]:)') = ﬁ,‘o (T;, E)

N Y.(T) NP (T, B
_ZW,- (5) SleE(é))—A {X:‘ (Tj) - %} (10)
(T,.B) s, B)
Each individual in the sample belongs to a particular PSU
within a particular stratum. Thus, instead of identifying an
individual by a single subscript i we will use a triple
subscript sci where h=1,2, ..., H identifies the stratum,
c=1,2,..., ¢, identifies the PSU within the stratum and
i=1,2,..., n,, identifies the individual within the PSU.
Then

C

z (thc t_h) (thc - t_h)"
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e Cp
lhe =€ zwhci iy, and 7, = z Lhe [Cpr
i=1 c=1

3. Inference for multiple-spell hazard rate models

3.1 Model-based inference

If more than one spell is observed for an individual, it is
realistic to assume that these spells are not independent.
Thus, the partial likelihood function (2) is misspecified for
multiple spells since it does not account for intra-individual
correlation of the spells observed on the same individual.
Following Lin and Wei (1989), it is sufficient to modify
only the covariance matrix of the estimated model
parameters since the correlated durations affect the variance
while the model parameters can be estimated consistently
without accounting for this correlation. Lin (1994)
demonstrates how the covariance matrix of the estimated
model parameters might be estimated when there is intra-
individual correlation of spells, provided that spells from
different individuals are independent.

3.2 Design-based inference

In a longitudinal survey with a multi-stage design, the
multiple events can be correlated at different levels: the
spells are clustered within an individual, and individuals are
clustered within high-stage units. The positive intracluster
correlation at any level adds extra variation to estimates
calculated from such data, beyond what is expected under
independence. The assumption of independence of obser-
vations when they are cluster-correlated leads to underesti-
mating the true standard errors, which inflates the values of
test statistics, and ultimately results in too-frequent rejection
of null hypotheses. Thus, for multiple spells for individuals,
where the data are from a longitudinal survey, accounting
just for correlation within individuals is insufficient.

Design-based variance estimation for nested cluster-
correlated data can be greatly simplified when it is
reasonable to assume that individuals from different primary
sampling units (PSU’s) are uncorrelated. This is equivalent
to assuming that the PSU’s are sampled with replacement.
This assumption also holds approximately when the first
stage units are obtained by sampling without replacement,
provided that the sampling rate at the first stage is very
small. In such a case, an estimate of the between-PSU
variability captures the variability among units in all
subsequent stages, regardless of the dependence structure
among observations within each PSU. For a recent
summary of robust variance estimation for cluster-correlated
data see Williams (2000). This implies that Binder’s (1992)
approach for robust variance estimation of the single-spell
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model in the case of a survey design having with-
replacement sampling at the first stage can be directly
applied to the multiple spell situation since it accounts for
the impact of cluster-correlation at all levels within each
PSU.

4. Three models for multiple spells

In order to allow the covariates to have different effects
for spells of different orders, as well as to allow different
time dependencies (baseline hazards), we are exploring
three models for multiple spells. The models differ ac-
cording to the definition of the risk set and the assumptions
about the baseline hazard. Two of these models account for
the order of the spells.

It should be noted, however, that in our work, spell order
refers only to spells occurring in the observation period
from which the data are collected and not to the entire
history of an individual (unless these two time periods
coincide). For example, by the first spell we mean a first
spell in the observation period although it may be a spell of
some higher absolute order over the person’s lifetime. This
limitation implies a careful interpretation of any impact that
spell order may have on covariate effects or on time
dependency.

Model 1: In the first model, the risk set is carefully defined
to take spell order into account in the sense that an
individual cannot be at risk of completing the second spell
before he completes the first, efc. This model, known as the
conditional risk set model, was proposed by Prentice,
Williams and Peterson (1981) and was reviewed by Lin
(1994). 1t was also discussed by Hamerle (1989) and
Blossfeld and Hamerle (1989) in the context of modelling
multi-episode processes. Generally, the conditional risk set
at time ¢ for the completion of a spell of order j consists of
all individuals that are in their ;™ spells. This model allows
spell order to influence both the effect of covariates and the
shape of the baseline hazard function.

The hazard function for the i"™ individual for the spell of
j™ order is

hj (t|xij(t)) :7L0j(t) e X;’(t)ﬁ’,

where, for each spell order, a different baseline hazard
function and a different coefficient vector are allowed. For
this model and for other models that will be considered in
this Section, time ¢ is measured from the beginning of the
j™ spell. Although spells within the same individual may
not be independent, the following partial likelihood is still

valid for estimation of the B, ’s:
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' 8
e (T;)B, v

K N;

LBB=TI T1|+ , (1)
=1 =1 x; (T,
J Eﬁly'rj(T;j)e ,,(,,)ﬁ,

Here, T, .., Ty, ; are N, durations of possibly right-
censored ;™ order spells, 8, =1 if T, is an observed
duration and 8, = 0 otherwise, and K is the highest order
of spells to be included in the Cox model. The denominator
sum is taken over the ;™ spells that are at risk of being
completed at time T, ie, Y ()=1if t<T, and is
equal to 0 otherwise. The corresponding covariate vector
observed on [0, 7] is x;(#). Partial likelihood (11) can be
maximized separately for each j if there are no additional
restrictions on the f’s.

The corresponding score equations that define the finite
population parameter B = (B;, B}, ...,B})" are:

UO(B): z ZUUO (TijaBj) =0, (12)

j=1 i=1
with

ST, B)) }

wiolT B ) = 8; 1x4(Ty) —
jjONL ij J i { i i S(O)(TijaBj)

and with S (¢, B;) and sV, B ) having the form of (5)
and (6) respectively, but with N, replacing n and B,
replacing .

The design-based estimates of the parameters B; are
obtained by solving equations Y wl.(s)ﬁﬁo(@j,ﬁj) =0
separately for each j, where 4, has the form of u;, but
with $© and S replaced by S and S respectively.
Note that the sampling weights correspond to individuals
and not to spells. Similarly, estimation of the covariance
matrix of each B ; will be done separately using the design-
based robust estimation approach described in Section 2.2.
Technically, this is a set of analyses separated by spell
order.

Model 2: The second model considered is the marginal
model (Wei, Lin and Weissfeld 1989):

hj (f | Xl.'f (t)) = }\'Oj (t) ex,’, ()B ’

where, for each spell order, we allow a different baseline
hazard function while the covariate effects are kept the same
over different spell orders. The corresponding partial like-
lihood function as well as the risk set, under the assumption
that spells within the same individual are independent, is the
same as for Model 1, with B replacing the B,’s. The
corresponding score equation that defines the finite
population parameter is

17

K Nj
Uy (B)= D, D uy (T,,B) =0,

Jj=1 i=1
with

. ST B)
u,-,-o(T,-j, B,)=3§; {X[j(Tij) - m >
where S (7, B) and S (¢, B) are defined by (5) and (6)
respectively, but with N, replacing n and B replacing .

The design-based estimate of the parameter B is
obtained by solving the weighted score equations
K N X .
2 2 W) (T, B) =0,

i=l j=1

~.

where ﬁ;o has the form of u;
SV, B) replaced by
respectively.

The estimation of the covariance matrix of B will be
done using the design-based robust estimation approach
explained in Section 3.2.

;o but with S©(t,B) and
SO, B) and SV, B)

Model 3: The last model considered is the following:
Ry (E]x;) = ho (1) e O,

In this model we assume that the baseline hazard
functions and the effects of covariates are common for
different orders of spells. The risk set at time 7; is defined
differently than for Models 1 and 2, and contains all spells
with ¢ < T, effectively assuming that all spells are from
different individuals. Technically, this model is a single-
spell model, so that estimation of coefficients and variances
by a design-based robust method is straightforward.

5. Example of modelling multiple
unemployment spells

5.1 The data

The data set that we use for illustration comes from the
first six-year panel (1993-1998) of the Canadian Survey of
Labour and Income Dynamics (SLID). In this panel, about
31,000 individuals from approximately 15,000 households
were followed for six years through annual interviews.
Some individuals dropped out of the sample over time for
any number of reasons while a few others, after missing one
or more interviews, resumed their participation. A complex
weighting of the responding SLID individuals each year
takes into account different types of attrition so that each
respondent in a particular year is weighted against the
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relevant reference population of 1993. This results in a
separate longitudinal weight for each wave (i.e., year) of
data. For this analysis we used the longitudinal weights
from the last year of the panel, i.e., 1998, which meant that
data just from those individuals who were respondents in
the final wave of the panel were included in the analyses. A
good summary of the sample design issues in SLID is given
in Lavigne and Michaud (1998). A review of the issues
related to studies of unemployment spells from SLID is
given in Roberts and Kovadevi¢ (2001).

The state of interest is “being unemployed”, defined in
this case as the state between a permanent layoft from a full-
time job and the commencement of another full-time job. A
job is “full-time” if it requires at least 30 hours of work per
week. The event of interest is “the exit from un-
employment”. Only spells beginning after January 1, 1993
were included since January 31, 1993 is the starting date for
observations from the panel. Spells that were not completed
by the end of the observation period (December 31, 1998)
were considered censored. Sample counts of the number of
individuals experiencing eligible spells and the number of
spells according to their order are given in Table 1. In brief,
there werel7,880 spells from 8,401 longitudinal individuals.
About half of the sampled individuals (4,260) who became
unemployed during this period experienced two or more
unemployment spells. There were 3,809 spells that re-
mained uncompleted due to the termination of the panel.

From a long list of available covariates we chose only
ten. The variable sex [SEX] of the longitudinal individual is

Kovacevi¢ and Roberts: Modelling durations of multiple spells from longitudinal survey data

the only variable that remains constant over different spells.
Four variables have values recorded at the end of the year in
which the spell commenced: education level [EDUCLEV]
with 4 categories (low, low-medium, medium, high), marital
status [MARST] with three categories (single, married/
common law, other), family income per capita (in Canadian
dollars) with 4 categories (<10K, 10K-20K, 20K-30K,
30K+), and age [AGE] (in years). Three variables have the
values from the lay-off job preceding the spell: type of job
ending [TYPJBEND] with two categories (fired and
voluntary), occupation [OCCUPATION] with 6 categories
(professional, administration, primary sector, manufac-
turing, construction, and others); and firm size [FIRMSIZE]
with five categories (<20, 20-99, 100-499, 500-999, 1,000 +
employees). Two binary variables represent the situation
during the spell: having a part time job [PARTTJB], and
attending school [ATSCH].

The data set was prepared in the “counting process” style
where each individual with eligible spells is represented by
a set of rows, and each row corresponds to a spell. Although
a row contains time of entry to the spell #,, and time of exit
t, or time of censoring ¢, the duration time for analysis is
always considered in the form (0, #, —¢,) or (0, ¢, —1)).
The covariates under consideration are attached to each row.
Also attached to each row are the 1998 longitudinal weight
and the identifiers for the stratum and the PSU of the person
whose spell is being described by that record.

Table 1 Counts of individuals in the six-year panel of SLID with unemployment spells beginning between January 1993
and December 1998, by the total number of spells and by order of spell (C-completed, U-uncompleted)

Individuals by number Spells by order
of spells First Second Third Fourth 54

C U C U C U C U C U
1 spell 4,141 2,221 1,920 - - - - - - - -
2 spells 1,915 1,915 - 1,154 761 - - - - - -
3 spells 1,044 1,044 - 1,044 - 612 432 - - - -
4 spells 629 629 - 629 - 629 - 348 281 - -
5+ spells 672 672 - 672 - 672 - 672 - 1,158 415
Total 8,401 6,481 1,920 3,499 761 1,913 432 1,020 281 1,158 415
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5.2 Analysis

For the purpose of this illustration we restricted the
analysis to the first four spells, which means that all sampled
individuals with eligible spells are included in the analysis
but the spell records after the fourth spell are not considered
due to their small number in the sample.

We estimated coefficients and their variances for the 3
models by the design-based methods described in Section 4
through the use of the “SURVIVAL” procedure in
SUDAAN Version 8. For all three models, the survey
design was specified to be stratified with with-replacement
selection of PSU’s (i.e., DESIGN = WR). All three models
were fit to the same number of spells (16,307). For each
model, we then calculated the empirical cumulative baseline
hazard functions using a product-limit approach (see
Kalbfleisch and Prentice (2002), pages 114-116) as imple-
mented in the SURVIVAL procedure in SUDAAN.

In the robust model-based approach for multiple spells
described in Section 3.1, there is an adjustment in the
variance estimates to account for the possible dependence
among spells from the same individual, assuming
independence of spells from different individuals; however,
in this approach, no account is made for the unequal
probabilities of selection of the sampled individuals - in
either the coefficient estimates or the variance estimates. In
order to do this, for models 1 and 2 we also used the
SURVIVAL procedure in SUDAAN Version 8, to estimate
the variances of the weighted coefficient estimates where
we assumed independence of spells between individuals but
allowed for possible correlation of spells from the same
individual. We did this by specifying the sampling design to
be unstratified and having with-replacement selection of
clusters, and we specified that each individual formed his
own cluster. The dependence assumptions are the same as
those used by Lin (1994) but we accounted for the use of
weights in the estimation of the coefficients and the
variances. We will call these variance estimates “modified
robust model-based variance estimates of weighted
coefficient estimates”.

5.3 Some descriptive statistics

The estimated mean duration of a completed spell is 33.3
weeks while the estimated mean duration of the observed
portion of a censored (uncompleted) spell is 48.5 weeks.

Visual examination of estimated Kaplan-Meier survival
functions (not shown) for spells of each order indicated that,
as order increased, the value of the survivor function at any
fixed time ¢ decreased, indicating that first spells are the
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longest among completed spells, and that the higher the
order of a multiple spell the shorter is its duration. This is
likely to be a consequence of the limited life of the panel, in
the sense that an individual with more spells in the given
six-year time frame is likely to have shorter spells.

5.4 Model fits using a design-based approach

As noted earlier, our example is just an illustration of the
design-based approach to fitting proportional hazards
models to multiple-event data from a survey with a complex
design. Thus, little time is spent in this article on discussing
how to assess the adequacy of these models, such as the
adequacy of the proportionality assumptions in all of the
models or whether one type of model fits as well as another.

Estimated coefficients from fitting the three models to
the SLID data are given in Table 2. Coefficients found
significant at the 5% level, through the use of individual ¢
tests, are shown in bold.

Model 1 is conditional on the spell order and involved
fitting four models separately to the data from the four
different spell orders. As seen in Table 2, SEX, AGE, and at
least one category of the Family Income variable were
significant for spells of all orders, although magnitudes of
the estimated coefficients differed with the spell order. The
estimated coefficients for AGE were negative but decreased
in magnitude as the spell order increased, while there was
no discernable pattern in the estimated coefficients for the
other 2 variables. The variables EDUCLEV, PARTJB and
ATSCH had significant coefficients for spells of order 1, 2,
and 3, but not for spells of order 4. This can be at least partly
attributed to the small sample size for the fourth spells. For
each of the other three variables in the model (MARST,
OCCUPATION, and FIRMSIZE), there was just one spell
order for which a coefficient was significant.

For Model 2, the model coefficients are restricted to be
the same for all spell orders. As seen in Table 2, numerically
many - but not all - of the estimated coefficient values were
situated between the estimates for the first and the second
spells obtained for Model 1 which could be due to the fact
that a high proportion of the sample corresponded to events
of these orders. All but the OCCUPATION variable had a
significant coefficient. Standard errors of coefficients were
smaller for Model 2 than for Model 1.

Model 3 is a single-spell model with a single set of
model coefficients and a single baseline hazard function.
The estimated model coefficients are similar to the estimates
obtained by Model 2.
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Table 2 Estimated  coefficients for three models

Model 1 Model 2 Model 3
Order 1 Order 2 Order 3 Order 4

SEX (F)

M 0.4417 0.3781 0.3299 0.4435 0.4049 0.4090
EDUCLEV (H)

L -0.4561 -0.5234 -0.3748 -0.1065 -0.4128 -0.4331

LM -0.2330 -0.2700 -0.3310 -0.1653 -0.2436 -0.2474

M -0.0744 -0.1060 -0.1156 0.0668 -0.0684 -0.0671
MARST (M)

Single -0.1142 -0.1290 -0.0622 -0.1375 -0.1357 -0.1330

Other 0.0985 -0.0894 0.1124 -0.1072 0.0328 0.0401
TYPJBEND (Fired)

Voluntary 0.0704 0.2752 0.4207 0.3413 0.1579 0.1284
OCCUPATION(Othrs)

Professionals 0.1592 -0.1364 -0.1388 0.0903 0.0490 0.0485

Admin -0.0265 -0.2930 -0.1769 0.0579 -0.0971 -0.0938

PrimSector -0.0211 -0.2175 -0.1187 0.2032 -0.0410 -0.0201

Manufacture -0.0003 -0.0994 -0.1295 0.2862 -0.0093 -0.0088

Construction 0.1290 -0.1862 -0.0879 0.2339 0.0490 0.0813
FIRMSIZE (1000+)

<20 -0.0027 -0.0097 0.1005 0.4403 0.0441 0.0408

20-99 0.0358 0.0881 0.0815 0.3999 0.0928 0.0951

100-499 0.0436 -0.0905 0.0328 0.0257 0.0214 0.0278

500-999 -0.0006 0.0153 -0.0623 -0.0067 -0.0005 0.0020
PARTTIJB (No)

Yes -0.2903 -0.5414 -0.5109 -0.1407 -0.3693 -0.3743
ATSCH (No)

Yes -1.0832 -1.1516 -1.2956 -1.3541 -1.1205 -1.1266
Family Income Per Capita
(10K-)

10K-20K 0.1294 0.1802 0.0692 0.1117 0.1345 0.1330

20K-30K 0.1644 0.3611 0.1572 0.4900 0.2241 0.2141

30K+ 0.1712 0.3916 0.3005 0.4241 0.2280 0.2115
AGE -0.0491 -0.0311 -0.0269 -0.0207 -0.0424 -0.0435
Spells in risk set 8,386 4,255 2,345 1,300 16,286 16,286

Censored 1,913 759 432 281 3,385 3,385

Completed 6,473 3,496 1,913 1,019 12,901 12,901

The values significant at a 5% level are bold.

The estimated cumulative baseline hazard functions for
Models 1 to 3 are given in Figures 1 to 3 respectively. In all
cases, for durations up to approximately 50 weeks, the 164
functions have a concave shape, implying that there is a :
positive time dependence of the exit rate (i.e. the longer the
spell, the higher the probability of exit). For durations longer
than 50 weeks, the shapes become convex, suggesting
negative time dependence for the longer spells. In Figure 1,
positions of the estimated cumulative baseline hazard
functions vary according to spell order, with the curve for
spells of order 1 being the highest, and the curve for spells
of order 4 being the lowest. In Figure 2, for Model 2, the
positions of the different curves do not follow spell order.
This observed difference between Figures 1 and 2 could
serve as one visual diagnostic that further study is required .
in order to assess whether Model 1 or Model 2 is a better Figure 1 Cumulative Baseline Hazard — Model 1
descriptor of the data, since estimated coefficients have an
impact on the estimated baseline hazards.

Cumulative Baseline Hazard
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Figure 3 Cumulative Baseline Hazard — Model 3

5.5 Comparison to modified robust model-based
variance estimates

As described in Section 5.2, the modified robust model-
based variance estimates account for possible correlation
among spells from the same individual, where independence
among individuals is assumed. When, for Models 1 and 2,
the standard error estimates obtained by this approach were
compared to the design-based standard error estimates, only
very minor differences were observed. This would seem to
indicate that the design-based estimates are picking up any
correlation among spells from the same individual and also
that there does not appear to be additional dependence
above the level of the individual for our particular example.

6. Concluding remarks

We explored the problem of analysis of multiple spells
by considering two general approaches for dealing with the
lack of independence among the exit times: a robust model-
based approach and a design-based approach. The first
approach estimates the model parameters assuming inde-
pendence of the spells, and then corrects the naive co-
variance matrix to account for within-individual depen-
dencies postulated by the researcher. This approach does not
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account for the possible clustering between individuals (or,
in fact, for any clustering that might occur at a level above
the individual) nor for the unequal probabilities of selection
of individuals (although, in our example, we showed how
the method could be extended to include the survey
weights). The second approach defines the model coeffi-
cients as finite population parameters. These parameters are
then estimated accounting for possible unequal selection
probabilities of individuals. A design-based variance esti-
mation method that accounts for possible correlations be-
tween individuals in the same PSU automatically accounts
for the unspecified dependencies of spells at levels below
the PSU, such as dependencies within individuals. For large
sample sizes this design-based inference extends directly to
the super-population from which, hypothetically, the finite
population was generated. The deficiency of the first
approach is that it totally ignores the potential for clustering
between individuals. A possible disadvantage of the second
approach, as we applied i, is that it relies on the assumption
of with-replacement sampling of PSU’s of individuals. The
two approaches coincide in the case of simple random
sampling of individuals where, in the robust model-based
approach, dependence among spells from the same
individual is explicitly postulated and accounted for in the
variance estimation formula and where, in the design-based
approach, spells from the same individual are treated as a
cluster in the design-based variance estimation.

We applied the design-based approach to three propor-
tional-hazards-type models. One model allowed for differ-
ential unspecified baseline hazards and different coefficients
for each spell order. The second model still allowed for
differential unspecified baseline hazards for different spell
orders but required the coefficients to be the same over
orders. The third model was a simple single-spell model.
We found that how information on the spell order was used
affected the results of our model-fitting. A visual compare-
ison of the coefficient estimates and the estimates of the
cumulative baseline hazards for Models 1 and 2 indicated
different results. A formal test for whether the coefficients
actually differ by spell order (as allowed in Model 1), given
baseline hazards that can differ by spell order, would be
useful, as suggested by one of the referees. It is actually
straightforward to produce such a test, and can be done as
follows. Let y = (B}, B} ,...,B%)" be the vector of all K
coefficient vectors of Model 1, where each has length p,
and let z,(¢) = (0, 0, ..., x;,(1), 0', ..., 0")" be the vector of
length pK for the ;™ spell of the i™ individual where the
;™ component of this vector contains the vector of
covariates X (7). Then, Model 1 can be expressed as

hy (]2, ©) =2, (0) e,
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which has the general form of baseline hazards varying with
spell order but a fixed coefficient vector. A test for
constancy of the coefficients pertaining to each spell order,
ie, Hy,:B, =B,=..B, is equivalent to testing
H,:Cy=0 where C is the (K-1)pxKp matrix
Cc=1, ®A[1K-1 —I;_,]. Given an estimate ¥ of y and an
estimate V() of the covariance matrix of ¥, obtained as
described in Section 4 for Model 2, a Wald statistic may be
calculated in order to test the hypothesis. If the hypothesis is
not rejected, it may be concluded that a model with constant
coefficients over spell order (but baseline hazard varying
with spell order) appears to fit the data as well as a model
where both baseline hazard and coefficients vary with spell
order. Other measures for model adequacy should also be
straightforward to develop under the design-based frame-
work.

We also visually compared, for our example, coefficient
standard error estimates obtained under the design-based
approach (accounting for clustering at the PSU level and
lower) and obtained under a modification of the robust
model-based approach (accounting for clustering at the
individual level and lower) for Models 1 and 2. We found
only minor differences, which indicated no clustering
effects above the individual level for these particular data.
We also calculated standard error estimates assuming
independence even between spells from the same person
and again found only minor differences with those obtained
from the design-based approach. It thus seems that, for this
particular example, there is little inter-spell dependence.
However, in general, we feel that a design-based approach
guards against missing any unpostulated dependencies at the
PSU level and lower in the variance estimates.
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Bayesian weight trimming for generalized linear regression models

Michael R. Elliott '

Abstract

In sample surveys where units have unequal probabilities of inclusion in the sample, associations between the probability of
inclusion and the statistic of interest can induce bias. Weights equal to the inverse of the probability of inclusion are often
used to counteract this bias. Highly disproportional sample designs have large weights, which can introduce undesirable
variability in statistics such as the population mean estimator or population regression estimator. Weight trimming reduces
large weights to a fixed cutpoint value and adjusts weights below this value to maintain the untrimmed weight sum,
reducing variability at the cost of introducing some bias. Most standard approaches are ad-hoc in that they do not use the
data to optimize bias-variance tradeoffs. Approaches described in the literature that are data-driven are a little more efficient
than fully-weighted estimators. This paper develops Bayesian methods for weight trimming of linear and generalized linear
regression estimators in unequal probability-of-inclusion designs. An application to estimate injury risk of children rear-
seated in compact extended-cab pickup trucks using the Partners for Child Passenger Safety surveillance survey is

considered.

Key Words: Sample survey; Sampling weights; Weight Winsorization, Bayesian population inference; Weight

smoothing; Generalized linear mixed models.

1. Introduction

Analysis of data from samples with differential
probabilities of inclusion typically use case weights equal to
the inverse of the probability of inclusion to reduce or
remove bias in the estimators of population quantities of
interest. Replacing implicit means and totals in statistics
with their case-weighted equivalents yields unbiased linear
estimators and asymptotically unbiased non-linear esti-
mators of population values (Binder 1983). Case weights
may also incorporate non-response adjustments, which
typically are equal to the inverse of the estimated probability
of response (Gelman and Carlin 2002, Oh and Scheuren
1983), or calibration adjustments, which constrain case
weights to equal known population totals, either jointly, as
in poststratification or generalized regression estimation, or
marginally, as in generalized raking estimation (Deville and
Séarndal 1992, Isaki and Fuller 1982).

There is little debate that sampling weights be utilized
when considering descriptive statistics such as means and
totals obtained from unequal probability-of-selection
designs. However, when estimating “analytical” quantities
(Cochran 1977, page 4) that focus on associations between,
e.g., risk factors and health outcomes estimated via linear
and generalized linear models, the decision to use sampling
weights is less definitive (¢f Korn and Graubard 1999,
pages 180-182). In a regression setting, discrepancies
between weighted and unweighted regression slope
estimators can occur either because the data model is
misspecified or there is an association between the residual
errors and/or the probability of inclusion (sampling is

informative). When the data model is misspecified, one
option is to improve the model specification. However, it
may be difficult to determine the exact functional form; or it
may be that the degree of misspecification is very modest
but is magnified by the sample design; or it may be that an
approximation to the true model is desired to simplify
explanation (linearly approximating a quadratic trend). In
the case of informative or non-ignorable sampling, design
weights may be required to obtain consistent estimators of
regression parameters (Korn and Graubard 1995). More
formally, fully-weighted estimators of regression parameters
are “pseudo-maximum likelihood” estimators (PMLEs)
(Binder 1983, Pfeffermann 1993) in that they are “design
consistent” for MLEs that would solve the score equations
for the regression parameters under the assumed
superpopulation regression model if we had observed data
for the entire population. Design consistency implies that
the difference between the population target quantity and
the estimate derived from the sample tends to zero as the
sample size and population size jointly increase, or that
these differences will on average tend to 0 from repeated
sampling of the population, where samples are selected in
an identical fashion from ¢ — oo replicates of the
population: see Sarndal (1980) or Isaki and Fuller (1982). If
observations are clustered, more care must be taken to
develop design consistent estimators of PLMEs, although
nested multi-stage designs allow for the census log-
likelihood estimates to be approximated using weighted
score equations if care is taken to account for the fact that
the within-cluster sample sizes typically are small and
remain so even if the number of clusters increases
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(Pfeffermann, Skinner, Holmes, Goldstein and Rabash
1998, Korn and Graubard 2003).

Although PMLEs are popular because of design
consistency, this property is purchased at the cost of
increased variance. This increase can overwhelm the
reduction in bias, so that the MSE actually increases under a
weighted analysis. This is particularly likely if a) the sample
size is small, b) the differences in the inclusion probabilities
are large, or ¢) the model is approximately correctly
specified and the sampling is approximately noninfor-
mative. Perhaps the most common approach to dealing with
this problem is weight trimming (Potter 1990, Kish 1992,
Alexander, Dahl and Weidman 1997), in which weights
larger than some value w, are fixed as w,. Typically w, is
chosen in an ad hoc manner - say 3 or 6 times the mean
weight - without regard to whether the chosen cutpoint is
optimal with respect to MSE. Thus bias is introduced to
reduce variance, with the goal of an overall reduction in
MSE.

Other design-based methods have been considered in the
literature. Potter (1990) discusses systematic methods for
choosing w,, including weight distribution and MSE
trimming procedures. The weight distribution technique
assumes that the weights follow an inverted and scaled beta
distribution; the parameters of the inverse-beta distribution
are estimated by method-of-moment estimators, and
weights from the upper tail of the distribution, say where
1-F(w;)<0.01, are trimmed to w, such that 1-—
F(w,)=0.01. The MSE trimming procedure determines
the empirical MSE at trimming level w,, where the trimmed
weight w, = w I(w,2w)+wI(w <w),i=1..,n
under the assumption that the fully weighted estimate is
unbiased for the true mean. In practice, one considers a
variety of trimming levels ¢=1,.., 7, where ¢t=1
corresponds to the unweighted data (w, = min,(w;)) and
t=T to the fully-weighted data (w, =max,(w,)), and 9,
is the value of the statistic using the trimmed weights at
level ¢ The trimming level chosen is then given by
wy =w., where ¢" =argmin (MSE,) for MSE,= ®, -
6,) +7(,).

In the calibration literature, techniques have been
developed that allow generalized poststratification or raking
adjustments to be bounded to prevent the construction of
extreme weights (Deville and Sérndal 1992, Folsom and
Singh 2000). Beaumont and Alavi (2004) extend this idea to
develop estimators that focus on trimming large weights of
highly influential or outlying observations. While these
bounds trim extreme weights to a fixed cutpoint value, the
choice of this cutpoint remains arbitrary.

An alternative approach to the direct weight trimming
procedures has been developed in the Bayesian finite
population inference literature (Elliott and Little 2000, Holt
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and Smith 1979, Ghosh and Meeden 1986, Little 1991,
1993, Lazzeroni and Little 1998, Rizzo 1992). These
approaches account for unequal probabilities of inclusion by
considering the case weights as stratifying variables within
strata defined by the probability of inclusion. These
“inclusion strata” may correspond to formal strata from a
disproportional stratified sample design, or may be “pseudo-
strata” based on collapsed or pooled weights derived from
selection, poststratification, and/or non-response adjust-
ments. Standard weighted estimates are then obtained when
the weight stratum means of survey outcomes are treated as
fixed effects, and trimming of the weights is achieved by
treating the underlying weight stratum means as random
effects. These methods allow for the possibility of
“partially-weighted” data that uses the data itself to appro-
priately modulate the bias-variance tradeoff, and also allows
estimation and inference from data collected under unequal
probability-of-inclusion sample designs to be based on
models common to other fields of statistical estimation and
inference.

This paper extends these random-effects models, which
we term “weight smoothing” models, to include estimation
of population parameters in linear and generalized linear
models. Section 2 briefly reviews Bayesian finite population
inference, formalizes the concept of ignorable and non-
ignorable sampling mechanisms, and develops the weight
smoothing models for linear and generalized linear
regression models in a fully Bayesian setting. Section 3
provides simulation results to consider the repeated
sampling properties of the weight smoothing estimators of
linear and logistic regression parameters in a dispro-
portional-stratified sample design and compares them with
standard design-based estimators. Section 4 illustrates the
use of the weight smoothing estimators in an analysis of risk
of injury to children in passenger vehicle crashes. Section 5
summarizes the results of the simulations and considers
extensions to more complex sample designs.

2. Bayesian finite population inference

Let the population data for a population with
i=1, .., N units be given by Y=(y, .., yy), with
associated covariate vectors X =(x,, ..., x,) and
sampling indicator variable / =({,, ..., I,;), where I, =1 if
the /™ element is sampled and O otherwise. As in design-
based population inference, Bayesian population inference
focuses on population quantities of interest Q(Y), such as
population means Q(Y)=Y or population least-squares
regression parameters  Q(Y, X)=min, , >Y,(y, — B, -
B,x,)’. In contrast to design-based inference, but consistent
with most other areas of statistics, one posits a model for
the population data Y as a function of parameters 0:
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Y ~ f(Y|0). Inference about Q(Y) is made based on the
posterior predictive distribution of p (Y, | Yoper / ), where
Y, consists of the elements of ¥, for which 7, = 0:

nob | obs? ):
ﬁ Py 1V 0.0)p (1 [Y,0,8) (¥, 10) p(6.6)d0d
I o1 o0 0.0) P11, 0.0) p (Yo, 10) p(O.0)dObY,

(D

where p(/ |7, 6, ¢) models the inclusion indicator.

If we assume that ¢ and 0 are a priori independent and
if the distribution of sampling indicator / is independent of
Y, the sampling design is said to be “unconfounded” or
“noninformative”; if the distribution of / depends only on

Y., then the sampling mechanism is said to be “ignorable”
(Rubin 1987), equivalent to the standard missing data
terminology (the unobserved elements of the population can
be thought of as missing by design). Under ignorable
sampling designs, p(6, )= p(0)p(¢) and p(/]Y,6,¢) =
p(I Y, $), and thus (1) reduces to

| 0 1V O) (Y, 16) p(0)d0
Il o, 17, 0)p(Y,,. 18)p(0)d64Y,,

= P(Yoop [Yobs)s (2)

allowing inference about Q(Y) to be made without
explicitly modeling the sampling inclusion parameter /
(Ericson 1969, Holt and Smith 1979, Little 1993, Rubin
1987, Skinner, Holt and Smith 1989). Noninformative
sample designs are a special case of ignorable sample
designs, equivalent to missing completely at random
mechanisms being a special case of missing at random
mechanisms.

In the regression setting, where inference is desired about
parameters that govern the distribution of ¥ conditional on
fixed and known covariates X, (1) becomes

P Yoo Xs 1) =
,”P( Yoo [Yope X 6, 0) X
PUY, X, 8,0) p(Yy, | X, 0) p(6, $)d0d ¢
.[”P( Yoo [Yopsr X 6, 0) X
pU1Y, X, 8,0) p(Yy | X, 6) p(6, 9)d0d$dY,

which reduces to

p( nob| obs’X):

| p(Yyy Y X,0.0) p(Y,y, | X, 0) (6, §)d0
I Dy 1Yo X, 0.0) p(Yy, | X, 0) p(6. $)dOAY,

if and only if / depends only on (¥, X), of which
dependence on X only is a special case. Thus if inference
is desired about a regression parameter Q(Y, X), then a
noninformative or more generally ignorable sample design
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can allow inclusion probabilities to be a function of the
fixed covariates.

2.1 Accommodating unequal probabilities of
inclusion

Maintaining the ignorability assumption for the sampling
mechanism often requires accounting for the sample design
in both the likelihood and prior model structure. In the case
of the unequal probability-of-inclusion sample designs, this
can be accomplished by developing an index ~=1,..., H of
the probability of inclusion (Little 1983, 1991); this could
either be a one-to-one mapping of the case weight order
statistics to their rankings, or a preliminary “pooling” of the
case weights using, e.g., the 100/H percentiles of the case
weights. The data are then modeled by

~f s 6,)i=1,..., N,

for all elements in the 4™ inclusion stratum, where 6,
allows for an interaction between the model parameter(s) 0
and the inclusion stratum /. Putting a noninformative prior
distribution on 0, then reproduces a fully-weighted analysis
with respect to the expectation of the posterior predictive
distribution of Q(Y).
To make this concrete, assume we are interested in
estimating a population mean Q(Y)=Y =N"'Y",y, from
a unequal probability-of-inclusion sample with a simple ran-
dom sample within inclusion strata. Rewriting as Q(Y) =
Y, PY, where Y, =N,'y, is the population inclusion
stratum mean and P, = N,/N, we have

E(Y|Y,,) = ZPE(Y Y, ) =

lzh:{th’h,obs + (N, —

Vi 10,

n, )E(Yh nob| obs )}

where Y, is decomposed into the observed inclusion
stratum mean y, .., =7, Z, "1,,y,; and the unobserved
inclusion stratum mean Y, ., = (N, - n) TN (1 -
1,.)y,;- If we assume

ind
Vi 10 03 ~ N(1y, 07)
p(y,, 0;) o 1
then
E( h,nob | obs)

E(E(Yh nob | obs) |Ybs’ “’h’ Gh) - E(uh | obs) = yh,obs'

and the posterior predictive mean of the population mean is
given by the weighted sample mean:

E(Y |V, = ZPE(Y Y, ) =

Nh
N'IZ Z LW, vy
hoi=l

N'IZNh yh,obs =
h
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where w,, = w, = N, /n, for all the observed elements in
inclusion stratum 4. Further, the weighted mean will be the
posterior predictive expectation of the population mean for
any assumed distribution of Y aslongas E(y,, |1,) = W,
In contrast, a simple exchangeable model for the data

vl o® Y N(w,o?)

p(p, o%) 1

yields E(Y |Y,,,) = n"' XY Iy, the unweighted estimator
of the mean, which may be badly biased if exchangeability
fails to hold, as would be the case if there is an association
between the probability of inclusion and Y.

2.2 Weight smoothing models

In its general form, our proposed “weight smoothing
method” stratifies the data by the probability of inclusion
and then uses a hierarchical model to effect trimming via
shrinkage. A general description of such a model is given by

Vi 18h = S (i3 04) 3)
eh |Mh’“'5R - N(j}h’R)’j}h = g(Mh’“')

WR M, ~ II.

where 4 =1,..., H indexes the probability of inclusion
from the highest to the lowest probabilities, g(M,, ) is a
function linking information A/, from the inclusion
probability stratum and a smoothing parameter p to the
data distribution parameter 6, indexed by the inclusion
stratum, and IT is a flat or weakly informative hyper-
parameter distribution (Little 2004).

The particulars of the likelihood and prior specifications
will depend on the population parameter of interest, the
sample design, distributional assumptions about y, and
efficiency-robustness tradeoffs. Positing an exchangeable
model on the inclusion stratum means from the previous
example yields (Lazzeroni and Little 1998, Elliott and Little
2000)

ind

Vi | eh ~ N(eh’ 02)

ind

0, ~ N, ).
Assuming for the moment ¢ and t* known, we have
E(}7 | Yope) =
N”Eh: {m Vi ovs + (N = m)E(Ry, | Yopo)}
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where  E(p, | Ypp) = wy, + - w)p for w, =
Un, /(t’n,+c”) and §=(Z,n,/(n,7°+c7) ' T,n,/(n, T+
)y, As T > oo, w, > 1 so that E(Y|Y,.) =
>» B, v,; thus a flat prior recovers the fully-weighted esti-
mator, as we showed previously. On the other hand, as
© — 0, w, > 0 sothat E(u, |Y,,) > J .= ¥, the
unweighted mean; thus the excluded units of the sample are
estimated at the pooled mean since the model assumes that
all y,; are drawn from a common mean. Hence this weight
smoothing model allows compromise between the design-
consistent estimator which may be highly inefficient, and
the unweighted estimator that is fully efficient under the
strong assumption that the inclusion probability and mean of
Y are independent. By assuming a weak hyperprior distri-
bution on t°, the degree of compromise between the
weighted and unweighted mean will be “data-driven,” albeit
under the modeling assumptions.

2.3 Weight smoothing for linear and generalized
linear regression models

Generalized linear regression models (McCullagh and

Nelder 1989) postulate a likelihood for y, of the form
10, 0) = ex y:9; — b(8;)
S (3:36: 9) P{ )

where a,(¢p) involves a known constant and a (nuisance)
scale parameter ¢, and the mean of y, is related to a linear
combination of fixed covariates x; through a link function
g(): E(y; 10,) = p;, where g(n,) = g('(9,)) =n, =
x''B. We also have Var(y, |0,) = a,($)V (1,), where
V(n;) = "(8,). The link is canonical if 6, = m;, in which
case g'(y,) = V_l(u,.). Well-known examples are the
normal distribution, where a.(¢)=c" and the canonical link
is g(u,)=u,; the binomial distribution, where a,(¢)=n"
and the canonical link is g(u,) = log(p,/(1 — p,)); and the
Poisson distribution, where «,(¢) =1 and the canonical
linkis g(p;) = log(w,).

Indexing the inclusion stratum by A, we have
g(E[y |B,]) = x1:B, . We assume a hierarchical model
of the form

+ (v d))} 4)

B/, By)" IB.G ~ Ny, (B, G). (5)

where B° is an unknown vector of mean values for the
regression coefficients and G is an unknown covariance
matrix.

We consider the target population quantity of interest
B=(B,..B, )" to be the slope that solves the population
score equation U, (B) = 0 where
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N

UL =Y :Blogf(y,, B) =
Ve — &7 W B)xw 6
ZZ VBB

Note that the quantity B such that U(B) = 0 is always
a meaningful population quantity of interest even if the
model is misspecificed (i.e., 1, is not exactly linear with
respect to the covariates), since it is the linear approximation
of x; to n; = g(k,). Under the model given by (4) and (5),
a first-order approximation (assuming a negligible sampling
fraction) to E(B |y, X) is given by B where

u O — &' (W (B)))x,
= 7
z:: 21: V(w,,(B)g' (1, (B)) @
where W, =N,/n,, 7, = g_l(x;,-ﬁh), and ﬁh =

E@B, |» X), as determined by the form of (5). (If N, is
unknown, it can be replaced with N, = Xcsw,» and the
N . N treated as a multinomial distribution of size N
parameterized by unknown inclusion stratum probabilities
G5 ---» 45 With, e.g., a Dirichlet prior.) Thus, in the example
of linear regression, where ¥ (u,) = ¢ and g'(y,) = 1, (7)
resolves to

B=E®B|yX)=
|:z Whi Xhix;i:| |:ZW;, (le x;,,-x;,-jﬁh:|. (8)
h i=1 h i=1

In the example of logistic regression, where V' (u,)=
(1 —p;) and g'(u)=p;'(1—p)", E(B |y, X) is given
by solving for the population regression parameters B,
J=1.

Z W Z exp(x,;B;,)
£y exp(x,;B;)

S« @By ()
h=1 i

— Ty exp(x;; )

This can be accomplished via simple root-finding
numerical methods such as Newton’s Method.
We consider four forms of B* and G in (5) in this

paper:
1. Exchangeable Random Slope (XRS):

Bi = (Bi,...B}) forall ,G = 1, ® 3. (10)
2. Autoregressive Random Slope (ARS):
B) = (B5. ... B;) forall A,

G=A®Y , 4, =p"™* jk=1.,H.
3. Linear Random Slope (LRS):

By = (Boo + Boilt, --aB;o + B*p1h),

G=1, ®A.
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4. Nonparametric Random Slope (NPRS):
B; = (fo(h)’ (RS fp(h))’ G = 0

e fjvabsolutely continuous, v = 0,1,
J(r®wydu < o,
min 38, ~ /,00)" +2, J(r® w2 du

where & again indexes the probability of inclusion, 7, is
an H x H identity matrix, p is an autocorrelation
parameter that controls the degree of shrinkage across the
weight strata, Y is an unconstrained p x p covariance
matrix, A is a px p diagonal matrix, and f;(h) is a
twice differentiable smooth function of % that minimizes
the residual sum of squares plus a roughness penalty
parameterized by A; (Wahba 1978, Hastie and Tibshirani
1990). Reformulating the NPRS model as in Wang (1998)
we have

ind
Vi | Bh -~ N(x;iBha 02)

By = B;o + B:qh +to,u,

ind
u, ~ Ny ,(0,1t2), 75 = */(HL;) j = 0,.., p

where @, is the 4™ row of Choleski decomposition of the
cubic spline basis matrix Q where Q,, = [;((h -
D/(H-1)—8),(k—1)/(H-1—-1),dt, (x), =xif x 20
and (x), =0ifx <0, h,k =1,.., H The NPRS model
can be extended into the generalized linear model form as in
Lin and Zhang (1999), where the first-stage normality
assumption is replaced with a link function that is linear in
the covariates: g(E(y,, |B,)) = x.,B,, for g(-) asin (4).

Assuming for the moment that the second stage
parameters are known, we see that, in the case of the XRS
model with normal data, as |G |— o, sharing of infor-
mation across inclusion strata ceases, and P, =
(x)x,)"' x|y, the regression estimator within the
inclusion stratum. Replacing this into (8) yields B ~ B,
the fully weighted estimator of the population slope.
Similarly, as |G |- 0, the within-inclusion-stratum slopes
B , =B the common prior slope, yielding B ~ B* when
replaced in (8), or B" if a non-informative hyperprior
distribution is placed on B* and its posterior mean obtained
as (x"x)"'x"y. Empirical or fully Bayesian methods that
allow the data to estimate the second stage parameters thus
allow for data-driven “weight smoothing,” compromising
between the unweighted and fully-weighted estimators.

In practice, of course, the second-stage mean and
variance components are usually not known; hence we
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complete the model specification by postulating a hyper-
prior distribution for the second-stage parameters:

(6,8, G) o« p(L).

Typically the hyperprior distribution p(€) is either
weakly informative or non-informative. Gibbs sampling
(Gelfand and Smith 1990; Gelman and Rubin 1992) can
then be utilized to obtained draws from the full joint
posterior of (B, B, ¢, G)" |y, X. In the XRS model, we con-
sider  p(o,B%,Y) oc 62 | X [P exp(=1/2 tr {r¥')),
that is, non-informative prior distributions on the scale and
prior mean parameters and an independent inverse-Wishart
hyperprior distribution on the prior variance G centered at
the identity matrix scaled by » with p degree of freedom.
The same prior distribution is usedifdor the ARS model, with
the additional assumption that p~ U(0,1) (non-negative
autocorrelation between inclusion strata). In the LRS and
NPRS models, p(c,B",A) «« 6 and p(c,B",1) < 6~
(standard non-informative scale prior distribution and
hyperprior distribution). Description of the conditional
draws of the Gibbs sampler are available at http://www.
sph.umich.edu/mrelliot/trim/meth2.pdf.

The degree of compromise is a function of the mean and
variance structure of the chosen model. The XRS and ARS
models assume exchangeable slope means; the ARS model
is more flexible in that its variance structure allows units
with more nearly equal probabilities of inclusion to be
smoothed more heavily than units with very unequal
probabilities of inclusion. The LRS model assumes an
underlying linear trend in slopes, whereas the NPRS model
assumes only an underlying trend smooth up to its second
derivative. Note that, in the LRS and NPRS models, we
assume a priori independence for the regression parameters
associated with a given covariate, i.e., (B, ;.. By) LBy -
Buy), j # j. This is because we model trends in these
parameters across the inclusion stratum, and do not wish to
“link up” these trends across the covariates.

Shrinkage will be greatest, corresponding to the most
severe weight trimming, when the weight stratum slopes
have little variability, or when the lowest probability-of-
inclusion stratum are poorly estimated. Little shrinkage
should occur when weight stratum slopes are precisely
estimated and when they are systematically associated with
their probability of inclusion. Based on Elliott and Little
(2000), we would expect the XRS model to be the most
efficient when large amounts of weight trimming are
required to minimize MSE, but to be the most vulnerable to
“overshrinking” when bias correction is most important.
Increasing structure, particularly in the mean portion of the
model as in LRS and NPRS, will provide more robust
estimation in the sense that overshrinkage will occur only in
near-pathological situations (e.g., when mean trends are
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non-monotonic and highly discontinuous), and even then
may only lead to slightly less bias correction than the data
warrant. The price to be paid for this robustness, however,
will be a reduction in efficiency relative to the exchangeable
models.

3. Simulation results

Because we desire models that are simultaneously more
efficient than design based estimators yet reasonably robust
to model misspecification - and in general we feel that even
Bayesian models should have good frequentist properties -
we evaluate our proposed models in a repeated sampling
context. We consider linear and logistic regression, under a
misspecified model with a non-informative sampling
design.

3.1 Linear regression

For the linear regression model in the presence of model
misspecification, we generated population data as follows:

Y |X,c" ~ N(aX, +BX’, o), (11)

X, ~U(0,10),i = 1,..., N = 20,000.

A noninformative, disproportionally stratified sampling
scheme sampled elements as a function of X, (/; equals 1 if
sampled and O otherwise):

h; =Dﬂ

P(I; =1|h) =mn, o« (1+ h/2.5)h,

This created 10 strata, defined by the integer portions of
the X, values. Elements (Y, X,) had ~ 1/36™ the selec-
tion probability when 0 < X, <1 as when 9< X, <10. We
sampled n = 500 elements without replacement for each
simulation. The object of the analysis is to obtain the pop-
ulation slope B, = XX, (Y, - Y)(X, - X)/ 3N (X, - X)’.
We fixed o = =1, yielding a positive bias in the esti-
mate of B, and varied . The effect of model misspeci-
fication increases as 6> — 0 as the bias of the estimators
becomes larger relative to the variance, and conversely
decreases as 6> — . We considered values of ° =10,
[ =1,...,5; 200 simulations were generated for each value
of 6°.

Here and below we utilized an inverse-Wishart
hyperprior distribution on the prior variance G, centered at
the identity matrix with 2 degree of freedom.

In addition to the exchangeable random slope (XRS),
autoregressive random slope (ARS), linear random slope
(LRS), and nonparametric random slope (NPRS) models



Survey Methodology, June 2007

discussed in Section 2.3, we consider the standard designed-
based (fully weighted) estimator, as well as trimmed weight
and unweighted estimators. For the fully-weighted (FWT)
estimator, we use the PMLE B, =(X'WX V' X' Wy where,
denoting by lower case the sampled elements (/, = 1),
w,=w, for h=1.,H, i=1..,n, W =diagw,),
xn = (Ix,,), X, contains the stacked rows of x,, and X
contain the stacked matrices X,. We obtained inference
about l?w via the standard Taylor Series approximation
(Binder 1983):

Var(B,) = Sy 2.(B,)S5y

where S is a design-consistent estimator of the population
total XY, x/x, given by X'WX and 3(B,) is a design-
consistent estimate of the variance of the total Y€, x,
where €, = y, — x;B is the difference between the value of
¥; and its estimated value under the true population slope
B: X (B)=Y, n, /(n,~1) S (%, —%,)' (X, —X,), where
X, =wye,x, for e, =y, —x,B . We also consider
the trimmed (TWT) estimator obtained by replacing the
weights w,, with trimmed values w), that set the maximum
normalized value to 3: w,, =Nvw,/X; n,W, Wwhere
whi=min(w,, 3N/n), and the unweighted (UNWT) esti-
mator obtained by fixing w,, = N/n forall 4, i.

Table 1 shows the relative bias, root mean square error
(RMSE), and nominal 95% coverage for the three design-
based and four model-based estimators of the population
slope (second component of B) under consideration, as a
function of the variance o”.

The fully-weighted estimator of the population slope is
essentially design-unbiased under model misspecification;
the unweighted and trimmed estimators are biased. The

Table 1
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biases of the exchangeable and autoregressive models
increase as variance increases, as these models trade
unbiasedness of the fully-weighted estimator for the reduced
variance of the unweighted estimator. The linear and
nonparametric model were approximately unbiased.

The unweighted and trimmed weight estimators perform
poorly with respect to MSE for small values of c°, where
the bias due to model misspecification is critical, and well
for larger values of o°, where the instability of the fully-
weighted estimator is more important than bias reduction.
The exchangeable model-based estimator has good RMSE
properties for small and large values of o°, with MSE
reductions of over 30%, but oversmooths for intermediate
degrees of model specification. The autoregressive model
performance equals that of the exchangeable model for
small and large values of o°, but is largely protected
against the oversmoothing of the exchangeable models at
intermediate levels. The linear and nonparametric models
essentially dominated the fully weighted estimators with
respect to MSE under all of the simulations considered,
although MSE reductions were only on the order of 10%.

The unweighted and trimmed estimators have poor
coverage except when model misspecification in nearly
absent. The failure of the bias-variance tradeoff for the
exchangeable estimator in the presence of model misspec-
ification is evident in the poor coverage of the estimator for
intermediate values of o?; this effect is ameliorated, but not
completely removed, for the autoregressive estimator. The
linear and non-parametric estimators have good coverage
when model misspecification is less important but
undercover to some degree when model misspecification is
more important.

Relative bias (%), square root of mean square error (RMSE) relative to RMSE of fully-weighted estimator, and true
coverage of the 95% confidence interval or posterior predictive interval of population linear regression slope
estimator under model misspecification. Population slope and intercept are estimated via design-based unweighted
(UNWT), fully-weighted (FWT), and weight-trimmed estimators (TWT), and as the posterior mean in (8) under an
exchangeable (XRS), autoregressive (ARS), linear (LRS), and non-parametric (NPRS) prior for the regression
parameters. MSE relative to the fully-weighted estimator less than 1 in boldface

Relative bias (%)
Variance log;,

RMSE relative to FWT

True Coverage

Variance log,, Variance log;,

Estimator 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
UNWT 21.5 21.8 222 20.8 223 12.1 457 176 0.75 0.67 0 0 6 78 92
FWT 00 01 14 16 -02 1 1 1 1 1 94 95 96 94 96
TWT 83 84 96 88 7.8 474 188 1.02 071 0.75 0 13 78 95 96
XRS 02 22 114 151 183 1.00 1.17 1.18 0.73 0.68 87 86 64 91 96
ARS 0.1 14 96 145 174 1.00 1.03 1.1 0.74 0.69 87 89 78 90 96
LRS 02 04 11 16 -03 099 091 091 091 0.93 8 91 96 95 94
NPRS -0.1 -03 09 15 -04 0.89 090 0.95 0.90 0.95 86 92 96 94 94
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3.2 Logistic regression

For the logistic regression model, we generated popu-
lation data as follows:

P(Y, =1|X,) ~ B(expit(3.25 — 0.75X, + vX2)), (12)

X, ~U(0,10),i = 1,..., N = 20,000.

where B(p) is a Bernoulli distribution with probability of
“success” p, expit(:) = exp(-)/(1 + exp(-)). The object of
the analysis is to obtain the logistic population regression
slope, defined as the value B, in the equation ¥ (y, —
expit(B, + B,x, ))[ %J =0. An unequal probability of
selection sampling scheme was implemented as described
in the linear regression simulations. We consider values of
vy=0,0.0158,0.0273,0.0368, 0.0454, corresponding to
curvature measures of K =0,0.02, 0.04,0.06, 0.08 at the
midpoint 5 of the support for X, where K(X;y)=
|2y /[1+ (29X —0.75)*1"*|; 200 simulations were gener-
ated for each value of y. As in the linear regression
simulations, elements were sampled without replacement
with probability proportional to (1+4,/2.5)h; a total of
1,000 elements were sampled for each simulation. We again
considered the PMLE-based the fully weighted (FTW),
unweighted (UNWT), and trimmed weight estimator
(TWT), along with the exchangeable random slope (XRS),
autoregressive random slope (ARS), linear random slope
(LRS), and nonparametric random slope (NPRS) estimators.
Inference about the PMLE estimators is obtained via Taylor
Series approximations (Binder 1983), as discussed in the
previous section.

Table 2 shows the relative bias, RMSE relative to the
RMSE of the fully-weighted estimator, and true coverage of
the nominal 95% Cls or PPIs associated with each of the

Table 2

seven estimators of the population slope (B) for different
values of curvature K, corresponding to increased degrees
of misspecification.

The undersampling of small values of X meant that the
maximum likelihood estimator of B in the model
misspecification setting was unbiased for K =0 and biased
downward for K =0.02,0.04,0.06, and 0.08 unless the
sample design was accounted for. The trimmed estimator’s
bias was intermediate between the unweighted and fully
weighted estimator. The exchangeable estimator’s bias was
between the trimmed weight estimator and fully weighted
estimator; the autoregressive estimator’s bias between that
of the exchangeable and fully weighted estimator; while the
linear and nonparametric estimators were essentially
unbiased.

The unweighted estimator had substantially improved
MSE (40% reduction) when the linear slope model was
approximately correctly specified, but failed with moderate
to large degree of misspecification. The trimmed weight,
autoregressive, and nonparametric estimators all dominated
the standard fully-weighted estimator, and the exchangeable
and linear estimators nearly so, over the range of
simulations considered. The crude trimming estimator
yielded up to 30% reduction in MSE, the nonparametric,
exchangeable and autoregressive estimators reductions of up
to 20-25%, and the linear estimator reductions of only 10%
or less.

The unweighted estimator had poor coverage except
when the linear slope model was correctly specified, or
nearly so. The model-based estimators had generally good
coverage properties when the linear model was correctly
specified, with slight reductions in coverage when curvature
was substantial.

Relative bias (%), square root of mean square error (RMSE) relative to RMSE of fully-weighted estimator, and
true coverage of the 95% confidence interval or posterior predictive interval of population logistic regression slope
estimator under model misspecification. Population slope and intercept are estimated via design-based unweighted
(UNWT), fully-weighted (FWT), and weight-trimmed estimators (TWT), and as the posterior mean in (8) under
an exchangeable (XRS), autoregressive (ARS), linear (LRS), and non-parametric (NPRS) prior for the regression
parameters. MSE relative to the fully-weighted estimator less than 1 in boldface

Relative bias (%) RMSE relative to FWT True Coverage

Curvature K Curvature K Curvature K
Estimator 0 0.02 0.04 0.06 0.08 0 0.02 0.04 0.06 0.08 0 0.02 0.04 0.06 0.08
UNWT 1.0 -49 -11.9 -21.6 -34.6 0.57 0.73 0.88 1.19 1.61 9% 89 66 32 17
FWT 1.1 22 13 -03 1.6 1 1 1 1 1 95 94 90 94 94
TWT 05 -1.0 -35 -72 -12.1 0.70 0.77 0.77 0.78 0.95 98 97 94 84 92
XRS 1.3 -08 -19 -56 -8.7 0.75 0.82 0.85 0.88 1.02 97 94 92 91 90
ARS 1.3 05 22 48 -75 0.78 0.85 0.84 0.84 0.95 94 92 90 92 90
LRS 08 1.7 15 -04 1.1 0.89 0.97 0.94 0.91 1.02 95 91 88 92 89
NPRS 03 1.5 1.1 09 05 0.87 0.88 0.87 0.80 0.90 95 92 88 94 96
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4. Application: Estimation of injuries to
children in compact extended-cab
pickup trucks

The Partners for Child Passenger Safety dataset consists
of the disproportionate, known-probability sample from all
State Farm claims since December 1998 involving at least
one child occupant < 15 years of age riding in a model year
1990 or newer State Farm-insured vehicle (Durbin, Bhatia,
Holmes, Shaw, Werner, Sorenson and Winston 2001).
Because injuries, and especially “consequential” injuries
defined as facial lacerations or other injuries rated 2 or more
on the Abbreviated Injury Scale (AIS) (Association for the
Advancement of Automotive Medicine 1990), are relatively
rare even among children in the population of crash-related
vehicle damage claims, a disproportional stratified cluster
sample is used to select vehicles (the unit of sampling) for
the conduct of a telephone survey with the driver. Vehicles
containing children who received medical treatment
following the crash were over-sampled so that the majority
of injured children would be selected while maintaining the
representativeness of the overall population. (Medical
treatment is defined as treatment by paramedics, treatment
at a physician’s office or emergency room, or hospital-
ization.) If a vehicle was sampled, all child occupants in that
vehicle were included in the survey. Drivers of sampled
vehicles were contacted by phone and, if medical treatment
had been received by a passenger, screened via an
abbreviated survey to verify the presence of at least one
child occupant with an injury. All vehicles with at least one
child who screened positive for injury and a 10% random
sample of vehicles in which all child occupants who were
reported to receive medical treatment but screened negative
for injury were selected for a full interview; a 2% (later
2.5%) sample of crashes where no medical treatment was
received were also selected. Because the treatment
stratification is imperfectly associated with risk of injury
(more than 15% of the population with consequential
injuries are estimated to be in the lowest probability-of-
selection category and nearly 20% of those without
consequential injuries are in the highest probability-of-
selection category), the sampling design is informative, with
unweighted odds ratios biased toward the null (Korn and
Graubard 1995). In addition, the weights for this dataset are
quite variable: 1< w, <50, where 9% of the weights have
normalized values greater than 3.

Winston, Kallan, Elliott, Menon and Durbin (2002)
determined that children rear-seated in compacted extended
cab pickups are at greater risk of consequential injuries than
children rear-seated in other vehicles. However, quantifying
degree of excess risk, and thus the size of the public health
problem, was problematic. The unweighted odds ratio (OR)
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of consequential injury for children riding in compacted
extended cab pickups versus other vehicles was 3.54 (95%
CI 2.01, 6.23), versus the fully-weighted estimator of 11.32
(95% CI 2.67, 48.03). Because both injury risk and
compacted extended cab pickup use were associated with
child age, crash severity (passenger compartment intrusion
and drivability), direction of impact, and vehicle weight, a
multivariate logistic regression model that adjusted for these
factors was also considered. The unweighted and fully-
weighted adjusted ORs for injury risk in rear seated children
in compacted extended cab pickups versus other vehicles
are 3.50 (95% CI 1.88, 6.53) and 14.56 (95% CI 3.45,
61.40) respectively. Utilizing the unweighted estimator was
problematic because of bias toward the null induced by the
informative sample design; however the fully weighted
estimator appeared to be highly unstable. in part because of
the presence of one consequential-injured child in the
compact extended cab pickups had a very low probability of
selection (0.025). In Winston ef al. (2002), this child was
removed before conducting the analysis.

Table 3 shows the results for the unadjusted and adjusted
odds ratios of consequential injury risk using the un-
weighted, fully-weighted, and trimmed-weight design-based
estimators, along with the model-based exchangeable,
autoregressive, and linear regression slope models. (Results
for the model-based estimators from 250,000 draws of a
single chain after a 50,000 draw burn-in; convergence was
assessed via Geweke (1992).) For the XRS and ARS
models, p(2)~INVERSE-WISHART(p, 0.17), where
p=2 for the unadjusted model and p=13 for the
adjusted model. In the unadjusted results, the XRS and ARS
estimators are intermediate between the unweighted and
fully-weighted estimator, while the linear and nonparametric
estimators tends to track the fully-weighted estimator. In the
adjusted analysis, all three model-based estimators are
intermediate between the unweighted and fully-weighted
estimators, with the XRS estimator closest to the un-
weighted estimator and the LRS estimator closest to the
fully-weighted estimator. Based on the results of the
simulation, it appears that the ARS estimator, which suggest
relative risks of injury on the order of 7 for children in
compact extended cab pickups relative to other vehicles,
may be a better estimator of relative risk than either the
unweighted or fully weighted estimator. (As a “sanity
check” of sorts, we note that an additional two years of data,
not available at the time of Winston ef al. (2002), which
included an additional 4,091 rear-seated children in
passenger vehicles [44 in compact extended-cab pickup
trucks], provided a fully-weighted unadjusted odds ratio for
injury for children in compact-extended cab pickups of 6.3,
and an adjusted OR of 7.0.)
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Table 3

Estimated odds ratio of injury for children rear-seated in compacted extended
cab pickups (n=060) versus rear-seated in other vehicles (n=8,060), using
unweighted (UNWT), fully-weighted (FWT), weights trimmed to a normalized
value of 3 (TWT), exchangeable random slope (XRS), autoregression random
slope (ARS), linear random slope (LRS), and nonparametric random slope
(NPRS) estimators; unadjusted and adjusted for child age, crash severity,
direction of impact, and vehicle weight. Point estimates for XRS, ARS, and
LRS models from posterior median. 95% confidence interval or posterior
predictive interval in subscript. Data from Partners for Child Passenger Safety

UNWT FWT TWT
Unadj.  3.54 501623y 1132267, 48.02) 9.15 (265,31.57)
Adj. 3.50 188653 1456 (34561400 1099 2973464
XRS ARS LRS NPRS
Unadj.  6.70 (251,20.92) 6.69 64,2105 1117 321, 24.08) 10.34 (3 57, 24.62)
Adj. 4.45 (239,8.67) 6.67 356,194  11.87 (3.33,36.03) 10.23 (3 02, 37,93

5. Discussion

The models discussed in this paper generalize the work
of Lazzeroni and Little (1998) and Elliott and Little (2000),
where population inference was restricted to population
means under Gaussian distributional assumptions. Viewing
weighting as an interaction between inclusion probability
and model parameters opens up an alternative paradigm for
weight trimming as a random effects model that smoothes
model parameters of interest across inclusion classes.
Models with exchangeable mean structures offer the largest
degree of shrinkage or trimming but the most sensitivity to
model misspecification; models with highly structured
means are potentially less efficient but are more robust to
model misspecification. This robustness property may be
particularly important in light of the fact that elements of the
large inclusion strata provide the largest degree of potential
variance reduction in the model-based setting but are also
subject to the largest degree of model bias and variance due
to extrapolation.

We consider simulations under varying degrees of model
misspecification and informative sampling for both linear
and logistic regression models. The linear and non-
parametric smoothing models nearly dominated fully-
weighted estimators with respect to squared error loss in the
simulations considered. The exchangeable model showed
some tendency to oversmooth, favoring variance reduction
over bias correction, especially in the linear regression
setting. All of the weight smoothing estimators tended to
have less than nominal coverage when models were highly
misspecified, although in no case was the nominal coverage
catastrophically low. The autoregressive smoothing model,
which allows for differential degrees of local smoothing
across weight strata, appeared to provide non-trivial
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increases in efficiency with limited risk of severe over-
smoothing or undercoverage.

Applying the methods to the Partners for Child Passenger
Safety data to determine the excess risk of injury in a crash
to rear-seated children in compacted extended-cab pickups
relative to rear-seated children in other passenger vehicles, it
appears that the decision in Winston efal. (2002) to
eliminate a low probability-of-selection child from the
analysis to stabilize the estimates was indeed conservative.
Indeed, the ARS estimator, favored by MSE in simulations,
suggests an adjusted excess risk of 6.7 with a 95% PPI of
(3.6, 11.9), versus the 14.6 with 95% CI of (3.4, 61.4) of the
fully-weighted estimator.

Although this paper utilizes a fully Bayesian approach to
inference about the posterior predictive distribution of the
population regression slope, empirical Bayes (EB) estimates
can also be obtained via ML or REML estimation using
standard linear or generalized linear mixed model methods.
In the Gaussian setting, the EB estimates of G and c° can
be “plugged into” the closed-form expressions for
E(B|y, X) and Var(B|y, X). The general exponential
setting is more problematic. The plug-in estimates can be
used to determine E(B |y, X) via root-finding methods; the
lack of a closed form for E(B|y, X) makes it difficult to
obtain model-based Empirical Bayes estimators for
Var(B|y, X). Also, standard Empirical Bayes estimators
do not account for the uncertainty in the estimation of G.

We also note that, while computation of the actual
trimming values of the case weights is unnecessary in this
approach, it is possible to determine the revised design
weights implied by the shrinkage. In the linear model
setting, these can be obtained via a iterative application of a
calibration weighting scheme such as generalized regression
estimators or GREG (Deville and Sarndal 1992). The
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general exponential setting required embedding the
calibration weight algorithm within the iterative reweighted
least squares (IRWLS) algorithm used to fit a generalized
linear model.

When sampling weights are used to account for misspec-
ification of the mean in a regression setting, it could be
argued that the correct approach is to correctly specify the
mean to eliminate discrepancies between the fully-weighted
and unweighted estimates of the regression parameters.
However, perfect specification is an unattainable goal, and
even good approximations might be highly biased if case
weights are ignored when the sampling probabilities are
highly variable. In the informative sampling setting, it may
be impossible to determine whether discrepancies between
weighted and unweighted estimates are due to model
misspecification or to the sample design itself. Finally, even
misspecified regression models have the attractive feature in
the finite population setting of yielding a unique target
population quantity. Consequently accounting for the
probability of inclusion in linear and generalized linear
model settings continues to be advised, and methods that
balance between a low-bias, high variance fully-weighted
analysis and a high bias, low variance unweighted analysis
remain useful.

The methods discussed in this paper show the promise of
adapting model-based methods to attack problems in survey
data analysis. Our goal is not to develop a single hierarchical
Bayesian model finely-tuned to a specific or question
dataset at hand, but to develop robust yet efficient methods
that can be applied in a fast-paced “automated” setting that
many applied survey research analysts must sometimes
work. Although computationally intensive, the methods
considered are applications or extensions of the existing
random-effect model “toolbox,” and can either be im-
plemented in existing statistical packages or executed with
relatively simple MCMC methods. Our approach retains a
design-based flavor in that we attempt to develop “auto-
mated” Bayesian model-based estimation techniques that
yield robust inference in a repeated-sampling setting when
the model itself is misspecified. However, because these
models rely on stratifying the data by probability of
selection as a prelude to using pooling or shrinkage
techniques to induce data-driven weight trimming, there is a
natural correspondence between this methodology and
(post)stratified sample designs in which strata correspond to
unequal probabilities of inclusion. Developing methods that
accommodate a more general class of complex sample
designs that include single or multi-stage cluster samples
and/or strata that “cross” the inclusion strata remains an
important area for future work.
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Semiparametric model-assisted estimation for natural resource surveys

F. Jay Breidt, Jean D. Opsomer, Alicia A. Johnson and M. Giovanna Ranalli '

Abstract

Auxiliary information is often used to improve the precision of survey estimators of finite population means and totals
through ratio or linear regression estimation techniques. Resulting estimators have good theoretical and practical properties,
including invariance, calibration and design consistency. However, it is not always clear that ratio or linear models are good
approximations to the true relationship between the auxiliary variables and the variable of interest in the survey, resulting in
efficiency loss when the model is not appropriate. In this article, we explain how regression estimation can be extended to
incorporate semiparametric regression models, in both simple and more complicated designs. While maintaining the good
theoretical and practical properties of the linear models, semiparametric models are better able to capture complicated
relationships between variables. This often results in substantial gains in efficiency. The applicability of the approach for
complex designs using multiple types of auxiliary variables will be illustrated by estimating several acidification-related

characteristics for a survey of lakes in the Northeastern US.

Key Words: Regression estimation; Smoothing; Kernel regression; Lake chemistry.

1. Introduction

Post-stratification, calibration and regression estimation
are different design-based approaches that can be used to
improve the precision of estimators when auxiliary
information is available at the estimation stage. Model-
assisted estimation (Sirndal, Swensson and Wretman 1992)
provides a convenient framework in which to develop these
and related survey estimators. Under that framework, a
superpopulation model describes the relationship between
the variable of interest and the auxiliary variables. This
model is then used to construct sample-based estimators that
have improved precision when the model is correct, but
maintain key design properties such as consistency and an
estimable variance when the model is incorrect.

Until recently, the superpopulation models used in this
context were formulated as parametric models, most often
ratio or linear models. While reasonable in many practical
applications, there are also many situations in which such
relatively simple models are not good representations of the
relationship between the variable of interest and the
auxiliary variables. In Breidt and Opsomer (2000), a non-
parametric model-assisted estimator was proposed based on
local polynomial regression, which generalized the well-
established parametric regression estimators. With this
estimator, the superpopulation is no longer required to
follow a pre-specified parametric shape. Instead, the
relationship between the the variable(s) of interest in the
survey and the auxiliary variable is required to be smooth
(continuous), but is otherwise left completely unspecified.

In the current paper, we formally extend the theory of
Breidt and Opsomer (2000) to the semiparametric regres-
sion context, in which some variables are incorporated
linearly, and others are incorporated through smooth addi-
tive terms. This extension makes their results more useful in
practice, since auxiliary information is very often multi-
dimensional in nature, and almost always contains category-
ical variables that need to enter the regression model
parametrically (through the use of indicator variables). An
illustration of this is provided by a survey of lakes in the
Northeastern states of the U.S. conducted by the
Environmental Monitoring and Assessment Program of the
US Environmental Protection Agency. In that survey, 334
lakes were sampled from a population of 21,026 lakes
between 1991 and 1996. We will apply the semiparametric
model-assisted estimator to produce estimates of the mean
and distribution function of the acid neutralizing capacity
and other chemistry variables of interest. In this application,
we will include in the model both categorical and contin-
uous variables linearly and a continuous variable as a
smooth additive term.

In Opsomer, Breidt, Moisen and Kauermann (2007), the
nonparametric model-assisted estimation principle was
extended to generalized additive models (GAMs) and
applied in an interaction model for the estimation of
variables from Forest Inventory and Analysis surveys.
While GAMs also contained a mixture of categorical
(parametric) and nonparametric terms, a complete theo-
retical development is not possible in the case of GAMs,
and was therefore not provided there. The semiparametric
model considered in this article can be viewed as a special
case of a GAM with an identity link function. Unlike the

1. F. Jay Breidt, Department of Statistics, Colorado State University, Fort Collins CO 80523, U.S.A.; Jean D. Opsomer, Department of Statistics, lowa State
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“general” GAM, the semiparametric model allows for
formal derivation of the statistical properties of the model-
assisted estimator.

The remainder of the article is structured as follows. In
Section 2, the semiparametric model-assisted estimator is
defined. Section 3 states and proves the design properties of
the estimator. Section 4 describes the application of semi-
parametric model-assisted estimation to the Northeastern
Lakes data. Section 5 provides a conclusion.

2. Semiparametric model-assisted estimation

We begin by considering the superpopulation model with
a single univariate nonparametric term and a parametric
component; extension to several nonparametric terms is
addressed in Section 3.2. The parametric component can be
composed of an arbitrary number of linear terms. This
model is the semiparametric model studied by Speckman
(1988), among others. This superpopulation model, which
we denote by &, can be written down as

E, ) =g(x, z)=m(x)+z,P
Varé_ ) =v(x z3) (1)

with x, a continuous auxiliary variable to be modelled
nonparametrically and z, =(zy, ..., zp,) a vector of D
categorical or continuous auxiliary variables that are
parametrically specified. The functions m(-) and v(., -)
and the parameter vector B are unknown. For identifiability
purposes, we will assume that the vector z, contains an
intercept term, and that the function m(:) is centered
around 0 with respect to the distribution of the x,. We will
derive the model-assisted estimator that uses model (1) by
first defining population-level estimators for the unknown
functions and parameters, and then constructing sample-
based estimators. This is the same approach used for the
parametric case in Sarndal ez al. (1992, Chapter 6).

Let U={l, 2, ..., N} represent the ordered labels for a
finite population of interest. As the population estimator for
g(x,, z,), we will use the backfitting estimator described
in Opsomer and Ruppert (1999). We first introduce the
required notation. Let K(-) represent a kernel function used
to define the neighborhoods in which the local polynomials
will be fitted (assumptions on K are specified in the
Appendix). The population smoother vector for local
polynomial regression of degree p at x, is defined as

szT/k = e1T (XZCk Wi XUk)_1X5k Wi

with e, avector of length p+1 with a 1 in the first position
and Os elsewhere, W,, =diag{h"'K((x, —x,)/h), ...,
'K ((xy —x,)/h)} and
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I x—x,
Xy =1:

I xy-—x,

(x, —x; )’

(xy — xk)p

The smoother s, can be applied to the vector ¥, =
(5 -ees yN)T to produce the nonparametric regression fit
with respect to the variable x at observation x,. It can also
be applied to any of the columns of Z, =(z/, ..., z,)" to
smooth those with respect to x. This will be done in the
derivation of the properties of the semiparametric estimator
(Section 3).

In addition to the smoother vector at x,, s;,, we also
need to define the smoother matrix at all the observation
points x;, ..., Xy,

Son

S,=| |

Sux
and the centered smoother matrix S,, =(I-11"/N)S,,.
When the smoother matrix is applied to ¥, it produces the
vector of nonparametric regression fits at all the observation
points. The centered smoother matrix S, produces
centered fits, i.e., the overall mean of the fitted values is
subtracted from each fitted value. The centering is used to
maintain identifiability of the estimators, as explained in
Opsomer and Ruppert (1999).

For any observation x,, a possible estimator of m(x,)
could be defined as s,, Y,, with or without a centering
adjustment. This estimator would generally be poor, since it
does not take into account the fact that the y, contain a
parametric component that depends on the z,. A more
efficient estimator is provided by jointly estimating both
m(-) and B, as is done by the following set of estimators

B=(Z;(I-8,)Z,)"Z;(I-S,)Y,
m,=s,, (Y, —Z,B) k=1, .., N. 2

In these estimators, B is calculated first, and then the
“residual vector” ¥, — Z, B is smoothed with respect to x.
The estimators in (2) are identical to the backfitting
estimators for additive models described in Hastie and
Tibshirani (1990) and implemented in gam in S-Plus, R or
SAS. As a population estimator for E.(y,) =g (x |k, z,),
we use —

g =m + 7, B.

We now explain how to construct a model-assisted
estimator based on the semiparametric regression approach.
Let 4 c U be asample of size n drawn from U according
to sampling design p(4) with one-way and two-way
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inclusion probabilities wt, =X ,,, p(A4), Ty =2 451, P (A),
respectively. If the g,, k=1, .., N were available, it
would be possible to construct a difference estimator for the
population mean of the y,, ¥, =>, v, /N, as

L1 L 5= &
G =— +— ) S 3
Vit N %:gk N ZA: T, 3)
which is design unbiased and has design variance

Vi =8k Vi~ &
T LY

R 1
Varp (Paie) = _zzz (y —m7,)
N U

(Sérndal et al. 1992, page 221). The design variance is small
if the deviations between y, and g, are small. This
estimator is not feasible, since it requires knowledge of all
the x,, z, and y, for the population to calculate. Instead,
we will construct a feasible estimator by replacing the g,
by sample-based estimators. The sample-based estimators
corresponding to the population estimators in (2) are
constructed as follows. The design-weighted local poly-
nomial smoother vector is

SZZ = e1T (Xjk m XAk)_lXjk Wi “)

with X ,, containing the rows of X, corresponding to the
ke A and

X;—X
W, =diag 1 L Eljedl.
T h h

The matrix X', W, X, in (4) will be singular if, for
some sample A, there are less than p+1 observations in
the support of the kernel at some x,. This issue can be
avoided in practice by selecting a bandwidth large enough to
make that matrix invertible. However, this situation cannot
be excluded in general and we need an estimator that exists
for every sample A for the theoretical derivations of
Section 3. Hence, we will consider the following adjusted
sample smoother vector

sZk = e1T (Xﬁk Wy Xy + diag (5N ))_lXjk Wy (5

for some small &>0, as done in Breidt and Opsomer
(2000). The sample smoother matrix and its centered
version are

S, =[s",:ked] S,=I-11"1II'/N)S,

with II , =diag{m, : k€ 4}. The design-weighted esti-
mators for B and the m, are

B=(Z,/U-S)Z)'Z,L;I-S)Y, (6)

S sZk(YA —Zﬁ B), (7
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where Z, and Y, denote the sample versions of Z,, and
Y, respectively. Note that the estimator s, is defined for
any x, in the population, not only those appearing in the
sample. As for the population estimators, these estimators
can again be written as the solution to backfitting equations,
so that they can be calculated by appropriately weighted
versions of the existing algorithms.The estimator for g, is
g =y +z,B.

The semiparametric model-assisted estimator is then
constructed by replacing the g, in(3) by the g,:

N 1 1 Vi — 8k
= — 6, + — —==. 8
Y reg N %: 8k N ZA: T, ( )
Defining y, =%, y,/n, and similarly for 7, an
equivalent expression for J,., is given by

Vg =V + Ty —zn)l?+%§ 7ty —%Z ’:—;‘ ©)
which shows that the semiparametric estimator can be
interpreted as a “traditional” linear regression survey
estimator using the parametric model component z[3, with
an additional correction term for the nonparametric
component of the model. This estimator also shares some
desirable properties with the fully parametric regression
estimators. It is location and scale invariant, and it is
calibrated for both the parametric and the nonparametric
model components, in the sense that £, =X, and
%,e = Zy- The calibration for the variables in the parametric
term can be checked directly by using expressions (6) and
(7), while the calibration for the nonparametrically specified
variable x, follows from the fact that s’, X, =x,, where
X,=(x;:ked) (we are ignoring the effect of the
adjustment diag (SN ") in (5), because that adjustment can
be made arbitrarily small). In addition, the estimator can be
written as a weighted sum of the y,, k € 4, so that a set of
weights w, can be obtained and applied to any survey
variable of interest.

3. Properties and extensions
3.1 Design properties

In this section, we explore the design properties of the
semiparametric estimator (8). In particular, we prove that
Preg 18 design Jn -consistent, and we derive its asymptotic
distribution, including an estimated variance. This will be
done in the design-asymptotic context used in Isaki and
Fuller (1982) and in Breidt and Opsomer (2000), in which
both the population and the samples increase in size as
N — oo, All proofs and the necessary assumptions are in
the Appendix.
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In the following theorem, we prove the design
consistency of the semiparametric estimator. We also show
that the convergence rate is /n, the usual rate for design
estimators.

Theorem 3.1 Under the assumptions Al— A8, the esti-
mator P,., in (8) is design consistent with rate Jn, in the
sense that

1
Ve =Yy +O, | — |.
g N P ( \/; j
The following theorem proves that a central limit

theorem for 7., exists whenever it exists for the expansion
estimator y,.
Theorem 3.2 Under the assumptions Al- A8, if
Y =Dy
VP ()

—> N (O, 1),

with

N 1 Ty — T Ve Vs
PI) =52, kel
N? ZZA: Ty T, T,

Jfor a given sampling design, then we also have

yref—_yN_> N(0, 1),
VYV )
with
N 1 Ty~ V=8 Vi— &
V(e = —5 Mk . (10)
¢ N? z ZA: Ty T, T,

3.2 Semiparametric additive model

The results in Theorems 3.1 and 3.2 use the semi-
parametric model (1), which contains a single univariate
nonparametric term m(-). In many practical applications,
several auxiliary variables will be available that could be
included in the nonparametric portion of a model, but the
curse of dimensionality makes it often difficult to combine
several variables into a single multi-dimensional non-
parametric term. Instead, the variables that are to be
included nonparametrically will be treated as univariate
components. This results in the semiparametric additive
model, which is written as

E.(v)=g(x, z) =m(x,) +...+my(xy) + 2, B
Var&_ ) =v(x, z,)
where the m, (), ¢g=1, .., QO and v(,-) are unknown
smooth functions.

When QO =2, expressions similar to (6) and (7) can be
developed, using the additive model decompositions of
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Opsomer and Ruppert (1997), and for Q> 2, recursive
expressions can be derived using the approach of Opsomer
(2000). The estimator would then be written as in equations
(6) and (7), but with the smoother vectors s,, and smoother
matrix §, replaced by complicated higher-dimensional
additive model smoothers (see Opsomer (2000) for details).
Because of this, formally proving the properties of the
model-assisted estimator for the case with arbitrary QO
would be a challenging task beyond the scope of the current
article.

In practice, the backfitting algorithm formulation
provides a much more efficient and simple way to calculate
the semiparametric estimator. Let s, represent the sample
smoother vector, as defined in (5), for the variable x, at the
observation x, and S, is the corresponding smoother
matrix for the variable x,. Also, i, denotes the sample-
weighted backfitting estimator for m, (x,) and m,, =
(11, k € A). The backfitting algorithm for a model
including QO nonparametric terms consists of the following
set of equations, iterated to converge:

. 0
B =Z'iw)z)'z\1m} {YA —Z;ﬁAq]
q=1

q#1

Ht 4 :SAI(YA _Zﬁl}_z ’i'qu

h =8, {YA -Z\B-Y ;ﬁAq].
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These equations provide weighted fits at the sample
locations &k € A only. For the remaining locations k € U
not in A, an additional smoothing step is required after
obtaining the m,, q=1,.. Q:

~ T T H N
i, —sAqk(YA -Z\B-Y mAq,J.

q'#q

The sample-based estimators for the mean function at all
keU are then defined as g =, +... 41y, + 2B,
which are used in expression (8) to construct the model-
assisted estimator.

4. Application to Northeastern Lakes survey

In this section, we will show the applicability of the
semiparametric regression estimator on a dataset of water
chemistry samples. As will be illustrated, once a set of
auxiliary variables and a model has been selected,
computing survey estimators for the semiparametric model
is as easy as for linear models, and hence can lead to
improved precision for relatively little cost.
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The National Surface Water Survey (NSWS) sponsored
by the U.S. Environmental Protection Agency (EPA)
between the years of 1984 and 1986 estimated 4.2 percent
of the lakes in the northeastern region of the United States to
be acidic (Stoddard, Kahl, Deviney, DeWalle, Driscoll,
Herlihy, Kellogg, Murdoch, Webb and Webster 2003).
Acid-sensitive Northeastern lakes were among the concerns
addressed by the Clean Air Act Amendment (CAAA) of
1990, which placed restrictions on industrial sulfur and
nitrogen emissions in an effort to reduce the acidity of these
waters. A common measurement of acidity is acid
neutralizing capacity (ANC), which is defined as a water’s
ability to buffer acid. An ANC value less than zero peq/L
indicates that the water has lost all ability to buffer acid.
Surface waters with ANC values below 200 peq/L are
considered at risk of acidification, and values less than 50
peq/L are considered at high risk (National Acid
Precipitation Assessment Program (1991), page 15).

Between 1991 and 1996, the Environmental Monitoring
and Assessment Program (EMAP) of the U.S. Environ-
mental Protection Agency conducted a survey of lakes in
the Northeastern states of the U.S. These data were collected
in order to determine the effect that restrictions put in place
by the CAAA had on the ecological condition of these
waters. The survey is based on a population of 21,026 lakes
from which 334 lakes were surveyed, some of which were
visited several times during the study period. Multiple
measurements on the same lake were averaged in order to
obtain one measurement per lake sampled. Lakes to be
included in the survey were selected using a complex
sampling design commonly employed by EMAP based on a
hexagonal grid frame (see Larsen, Thornton, Urquhart and
Paulsen (1993) for a description of the sampling design).

Let y, represent the (possibly averaged) ANC value of
the k™ sampled lake. A very simple estimate of the ANC
mean of the lakes is represented by the expansion estimator
¥.. In this as in many surveys, a better choice is the Hajek
estimator,

. 1 y
yH=ﬁZ =+ (11)

keA Tck

which applies a ratio type adjustment for the estimation of
the population size through N =%, ,1/m,. However,
auxiliary variables are available for each lake in this
population, so that it should be possible to further improve
upon the efficiency of the Hajek estimator. The following
variables are available for each £ € U:

x, = UTMX, x-geographical coordinate of the
centroid of each lake in the UTM coordinate
system,

z;, = indicator variable for eco-region j =1, ..., 6,
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z;, = UTMY, y -geographical coordinate,
Zg, = elevation.

There are seven different eco-regions included in the
population, thus dummy variables z,, are constructed for
j=1, ..., 6. A semiparametric regression estimator for the
variable y will be constructed by treating the UTMX
variable x as a nonparametric term and the remaining
variables z —z; as a parametric component. Model
selection was used to determine that treating the other two
continuous variables as nonparametric did not improve the
model fit. For comparison purposes, we also computed a
regression estimator that treats all terms as parametric. This
estimator is therefore identical to the semiparametric
estimator, except that the x-geographical coordinate is
modeled linearly. We will denote this fully parametric
regression estimator by 9.

In order to determine the estimated efficiency of survey
estimators, we need to compute the variance estimates.
However, second order inclusion probabilities were not
available, thus we cannot evaluate V(f/reg) as in (10). In
order to come up with appropriate variance estimates, we
treat the complex sampling design as a stratified sample
taken with replacement. The 14 strata we selected
correspond to groups of spatial clusters of lakes that
appeared in the original design, and that were used to ensure
spatial distribution of the sampled lakes over the region of
interest. Larsen efal. (1993) provide details on the
construction of the spatial clusters.

Let H be the number of strata, n, the number of
observations within stratum /4, and 4, the set of sampled
elements that fall in stratum /. Define p, =n,' n,. Using
this notation and the assumption of a stratified sample with
replacement, we rewrite the semiparametric estimator as

N 1 .
Vg = 7 z 8 (x;, zk)

N keU
1l ¢ 1 D =8 ) (12)
N heH Ny, ked, Py

and the variance estimator as
A A 1 2
V (yreg) = 2 z Sh b
N heH

where S; is the estimated within-stratum weighted residual
variance for stratum 4. Assuming the strata are sampled
with replacement, Sarndal etal (1992, page 421-422)
suggest S; can be calculated as
. 2
Vi =8 (X 2p)
1 Pr
S; = ———— X . (13)
' n,(n, —1) k;:,, _ z v —&(x, )

led, T,
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Similarly, we estimate V' (,,) through

A

V(i)

2

heH Ny (nh _1) ked,

and the expression for ¥ ( Ppar) 18 obtained completely
analogously as for V(9 Prg) e€xcept that &(x;, z,) is
computed by linear regression.

This setup allows us to obtain the following estimates of
mean ANC for the Northeastern lakes, together with
variance estimates and approximate 95% confidence
intervals (CI). A local linear fit has been employed for the
nonparametric term with bandwidth set at one tenth of the
range of UTMX.

Preg =558.0 peq/L V(D) =2534.6 Cl=(459.3;656.6)

Ppar =577.3 peq/L V(P,,)=3239.6 CI=(465.8;688.9)

$, =555.9 peq/L V($,) =43133 CI=(427.2;684.7)

The confidence interval constructed using the Hajek
estimator is about 31% wider than that constructed using the
semiparametric estimator, while the interval for the fully
parametric regression estimator is 13% wider. These results
show evidence of an improvement in efficiency provided by
accounting for the auxiliary information in both a
parametric and nonparametric way in the mean estimation
procedure, with the nonparametric estimator able to capture
some additional efficiency beyond that of the parametric
estimator.

As mentioned above, an important goal of this
application is the assessment of how many lakes are at risk
of acidification or are acidified already. That is, we are
interested in estimating the proportion of Northeastern lakes
with ANC values smaller than some specific threshold
values. We can determine such proportions by estimating
the finite population distribution function,

_z st}

keU

Fy(@) =

at specific threshold values 7, where 7, ., denotes the
indicator function taking a value of 1 if y, < ¢ and 0
otherwise. Because all three estimators can be expressed as
weighted sums of sample observations, the weights obtained
for each can be applied directly to the /,, _,, for the sample
to estimate Fy () for any desired ¢. Let us denote by
F (1), F () and F, (¢) the H4jek, semiparametric and

reg par

Statistics Canada, Catalogue No. 12-001

probability
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parametric regression estimators of the distribution function,
respectively. Estimates for their design variances are
computed by plugging the indicator variables in equations
(13) and (14).

Figure 1 shows estimates of the ANC cdf produced by
E, @), pdr(t) and Freg(t) evaluated on a grid of 1,000
equally spaced values for ¢. Included are their respective
pointwise 95% confidence intervals calculated at each grid
point. All three estimators are similar, but the confidence
bands for the parametric and semiparametric regression
estimators tend to be narrower. Averaged over all 1,000
grid points, the widths of the confidence bands are 0.093

for £, (¢), 0.084 for pdr(z‘) and 0.075 for reg(t)
respectively.
2 - ———————
= i

B S

" M
oo —.':;:f"'"" it
S ’p._‘.‘,--r_,,.—-"-—-
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Figure 1

Estimates of the population cumulative distribution function for
ANC and confidence bounds produced by Hajek, parametric
and semiparametric regression estimators

Along with ANC, the EMAP survey of Northeastern
lakes measured the concentration of multiple chemistry
variables including sulfate, magnesium and chloride, so that
the survey weights obtained for ANC can also be applied to
these concentrations as well as their respective cdfs. As
another illustration of the semiparametric estimation
approach, it is possible to “invert” Freg (t) to obtain quantile
estimators éreg (a)=min{¢: F, ()= a} of these addi-
tional chemistry variables. Table 1 displays semiparametric
estimates of the first, second, and third quartiles of sulfate,
magnesium, and chloride measured in (peq/L). Variance
estimation for these quantiles could be handled using
asymptotic results of Francisco and Fuller (1991), but will
not be explored further here.

Table 1 Quartile estimates of chemistry variables

a Sulfate  Magnesium Chloride
0.25 73.3 63.8 27.4
0.50 104.3 127.0 162.2
0.75 201.4 221.9 462.2
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5. Conclusion

In this article, we have described a model-assisted
estimator that uses semiparametric regression to capture
relationships between multiple population-level auxiliary
variables and the survey variables. We have developed
asymptotic theory that shows the resulting estimator is
design consistent and asymptotically normal under mild
conditions on the design and the population. This
generalizes the results of Breidt and Opsomer (2000), who
had proved similar results for a univariate nonparametric
model-assisted estimator. The semiparametric estimator was
applied to data from a survey of lakes in the Northeastern
U.S., where it was shown to be more efficient than an
estimator that does not take advantage of the auxiliary
variables and than a fully parametric regression estimator.

In addition to its theoretical properties, the semi-
parametric model-assisted estimator has attractive practical
properties as well. As noted earlier, it is fully calibrated for
the auxiliary variables, whether used in the parametric or
nonparametric model components, and it is location and
scale invariant. The estimator can be expressed as a
weighted sum of the sample observations, so that it
conforms to the traditional survey estimation paradigm and
a single set of weights can be applied to all the survey
variables, hence preserving relationships between variables.

One issue which was not addressed in the current article
is the selection of the smoothing parameter for the
nonparametric component of the regression model. This is a
challenging topic in the model-assisted context, further
complicated by the just mentioned fact that a single set of
survey regression weights is applied to all the survey
variables: because the optimal bandwidth choice depends on
the variable being smoothed, no single bandwidth (and
hence set of weights) will be optimal for all variables in the
survey. This topic is currently being explored by the
authors.
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Appendix
Technical assumptions and derivations

We begin by stating the necessary assumptions, which
extend those used in Breidt and Opsomer (2000) to the
semiparametric model.

Assumptions:

A1 Distribution of the errors under &: the errors €,
are independent and have mean zero, variance
v(x,, z,), and compact support, uniformly for all N.

A2 Distribution of the covariates: the x, and z, are
considered fixed with respect to the superpopulation
model & The z, are assumed to have bounded
support, and the x, are independent and identically
distributed F(x)= | * f©dt, where f(-) is a density
with compact support [a ., b and f(x)>0 for all
x€la,, b

A3 Nonparametric mean and variance functions: the
mean function m(-) is continuous, and the variance
function v(-,-) is bounded and strictly greater than 0.
A4 Kernel K: the kernel K(-) has compact support
[-1, 1], is symmetric and continuous, and satisfies
' K@)du=1.

AS Sampling rate nN~' and bandwidth h,: as
N — o, nN"' > me(0, 1), hy >0 and
Nh, /(loglog N) — oo,

A6 Inclusion probabilities m, and m,: for all N,
min,; T, 2A >0, min, ;. T 2 A >0 and

limsupp max |m, —m,m, | < 0.
N—o k, €Uy,
A7 Additional assumptions involving higher-order

inclusion probabilities:

lim »*
N—>w

max
(ky by, ks, ky)€Dy

|E, (I, —m ) 7 )L 7 ), —m )|
< oo,

where D, \ denotes the set of all distinct t -tuples
(kla k2’ LRE) kt) from UNa

},im

G b }g’liﬁellJEp(lk1 Ikz_nklkz)([k3 [k4_nk3k4)| =0,
and
limsupn
N—w
2
max |Ep(1kl_nkl) (Ikz_nkz)([k3_nk3)|<°o'

(ki ky k)€ Dy y
A8 The matrix N"'Z}, (I -S8,))Z,, is invertible for all
N with model probability 1.
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Assumption A8 is required so that the population
estimator B is well-defined. The invertibility of the matrix
in A8 depends on the combined effect of the bandwidth %
and the joint distribution of the x, and z,. While it would
in principle be possible to write down sufficient conditions
for this, we opted for this simpler and more explicit
approach.

Before giving the proofs of Theorems 3.1 and 3.2, we
state and prove a number of lemmas.

Lemma 1 Under the assumptions A1-A7,
(@) forall keU and d=1, ..., D

1 T
N; Ep(sAk

Y,-s; ¥,) =
and

_ZE (sAk dA sUk dU) —O(th

(b) the s, Y, and s Z, are uniformly bounded over all
keU.

Proof of Lemma 1: Since both the y, and z, are
bounded by assumption, part (a) can be shown using an
identical reasoning as in Lemma 4 of Breidt and Opsomer
(2000). While that lemma did not include a rate of
convergence, that rate is readily derived by noting that

NZ g _O{ hj

in the notation of Breidt and Opsomer (2000) and then
proceeding as in that proof.

Part (b) was proven directly in Lemma 2 (iv) of Breidt and
Opsomer (2000).

Lemma 2 Under assumptions A1-A8,
B=B+0,(1/\nh),
with the rate holding component-wise, and B is bounded

forall N.

Proof of Lemma 2: Write 7 =s/ ¥, and ' =
s, Y, for the population and sample smoothed versions of
v, and similarly, z\"'=s/, Z, and Z'=5,2Z, We
rewrite expression (6) as a function of sample-weighted
terms £, /=1, ..., 6:

where
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N A Uy N
. (N
t _ZT[T (ﬁj
. 1 T 1 T sls4] 1 sls4]
t4__z zkzk__z X vzl — Lk
N A T, N A T, N A T
Z yEf N
I N
oLy Ly an ﬁ;[f
) >

NT =m, N T,

The sample-weighted estimator B will be expanded around
-1
| 7 -
B=| , | |7V, (15)
Iy U I

1

:W%: 27, —
1

_W%: A

and the remaining #, can be found in (15). The existence
and continuity of the derivatives of B with respect to the 7,
and evaluated at ¢, follow from Lemma 1(b) and the
existence of the inverse in (15), which is assumed by AS8.

The result will follow from a Oth order Taylor expansion
if we can show that 7, —#, =0, (1/~/nh) for all I (eg.,
Fuller (1996), Corollary 5.1.5). For 7, and £, this follows
directly from A2 and A6. The remaining terms contain sums
involving smoothed quantities z*) and ™. We
demonstrate the reasoning for one of those terms in 7#,. We
have

where

Z zT slsu] + zN _Z slsu]
1
z zT ~[sy] —T N 5}1[{%]

U

T ~[s4] 1

T

N7 T,

b Ly b s e
N7 T,
and the first term is O, (1/~/n) by A6 and Lemma 1(b),
using the same argument as in Lemma 4 of Breidt and
Opsomer (2000). For the second term, use Schwarz’s

inequality

1 T ~fs,] w~[sy] I
z 4l _ U
NEU: v (7 Yk )nk
1 ZTIk 1 Ssal _ sSlsu1y2
< =2 >, (T =,
\/NU LN g
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where zi”) denotes that the squares are computed

component-wise. The first term is bounded by A2 and A6,
and the second term is O, (1/+/nh) by Lemma 1(a) and
Markov’s inequality. The desired result then follows by
applying the same reasoning to the remaining terms in
i, &, I, L.

The boundedness of B follows directly from assumption
A8, Lemma 1(b) and the boundedness of the z,.

Lemma 3 Under the assumptions A1-A8, we have

N . 1
yreg = Vaie +0p (ﬁj

Proof of Lemma 3: Given expression (9), we need to

show that
o 1
7. -7)(B-B)=0 | — 16

I
%; (mk—rhk){l—éjzop(%j. (17)

Lemma 2 and assumptions A2, AS and A6 show that
Zy—7,)(B -B)= O,(1/nh). In order to prove (17), we
can rewrite it as

_z(m" m’f){l__j— Z(y“b o) { I_kj

T

_ slsul ~[? I_k B
TG  (
NG

The first term on the right hand side has been proven to be
0,(1/+/n) in Lemma 5 of Breidt and Opsomer (2000); this
same Lemma and boundness of B provide the same rate
for the second term. Assumptions A5-A6, Lemma 1(b) and
Lemma 2 show that the third term is O, (1/ n/h) and the
desired rate is achieved.

- I—’fj (B-B).

T

Lemma 4 Under assumptions A6 and A8,
E p Faie) =Ty

. 1 Vi~ & Vi—&
Var, (§g) :Fz z (T4 _7'%71/)%4

kleU k Wi

o)

Proof of Lemma 4: The properties of the difference
estimator are readily computed. The rate of the design
variance follows from the stated assumptions using the same
reasoning as in Lemma 4 of Breidt and Opsomer (2000).

Lemma 5 Under assumptions A1-A8,
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. . 1
V(yreg) = Varp (ydif) + Op (;j

Proof of Lemma 5: The reasoning for this proof will
closely follow that of Theorem 3 of Breidt and Opsomer
(2000). We write

VA(.)}reg) - Va’rp (.)’>djf) = (VA(.)}reg) - V(.)}djf )
+ (V(Par) - Var, (94¢)) (18)

with

N 1
V(Par) = FZZA: T

T Vi =8 Vi~ &
Ty T LY

:, (yk gk) < .
N U

by assumptions A1-A3 and from Lemmas 1(b) and 2, the
approach used for the term A, of Breidt and Opsomer
(2000) can be used to show that

8 . 1
Ep|V(ydif)_Varp(ydif)| =0 — |,
n

which provides the desired consistency by the Markov
inequality.
For the first term in (18), note that

&&= - -@ -5 (B-B)
+ (-5 B-B) - (& -z B,

so that
(V(yreg) - V(.)?dif )) =

2)’k 8k g, 8

e e T, — T,
k i WY
11,
LS8k 8, & — &k g, 8 T

T LY

1
VT

can be decomposed into variance terms involving sample
and population smooths and parameter estimators. Each of
these terms can be shown to be o,(1/7). We demonstrate
the approach on one of the terms:

%Zz Vi 8k & — % Ty — T4 Ty IkI/(E_B)
U Tk T T

C Sy Sy D
S(Wl—kszaxmk,—nkn,j ZH I—zV|B-B|
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where C,, C, <o summarize the bounded terms (by
assumptions Al-A3 and A6 and Lemma 1(b)), and the rate
of convergence is the result of assumption A6 and Lemmas
I(a) and 2.

Proof of Theorem 3.1: In Lemma 3, we show that

N N 1
yre :yj +to Bk
g dif p(\/;j

where J,. is the difference estimator (3). The result
immediately follows from assumption A5 and Lemma 4.

Proof of Theorem 3.2: Note that . can be written as the
sum of a population constant and an expansion estimator of
the form ¥, by defining a new variable y, — s, ¥, +
sy ZyB—7,B for keU. As is the case for the original
¥;, this new variable has bounded support by Lemma 1(b)
and a variance of order O(1/n) by Lemma 4. Hence,
existence of the CLT for y_ implies existence of the CLT
for Pye. Also, Py, = Py +0,(1/+/n) by Lemma 3, so that
Jn P, and </n Py have the same asymptotic distribution.
Applying Slutsky’s Theorem and Lemma 5 complete the
proof.
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EXx post weighting of price data to estimate depreciation rates

Marc Tanguay and Pierre Lavallée '

Abstract

To model economic depreciation, a database is used that contains information on assets discarded by companies. The
acquisition and resale prices are known along with the length of use of these assets. However, the assets for which prices are
known are only those that were involved in a transaction. While an asset depreciates on a continuous basis during its service
life, the value of the asset is only known when there has been a transaction. This article proposes an ex post weighting to
offset the effect of source of error in building econometric models.

Key Words: Price ratio; Survival data; Uniform distribution; Depreciation of vehicles.

1. Introduction

Various econometric models are used to estimate
economic depreciation. To this end, we use a database
containing information on assets discarded by companies.
The acquisition and resale prices are known along with the
length of use of these assets. From this information, we
would like to infer results for the total population of assets
used by companies. Regarding the use of the prices of used
assets to estimate economic depreciation, we refer the reader
to, Gellatly, Tanguay and Yan (2002) and Hulten and
Wykoff (1981).

We question, however, the representativeness of the
database used. Indeed, the assets for which prices are known
are solely those subject to a transaction. We do not know the
extent to which the losses of value observed on these assets
are representative of the loss of value for all assets in
production, regardless of whether they were the subject of a
transaction. This situation can be a source of error in
building econometric models because these models seek to
measure depreciation of assets over their service lives,
regardless of whether there was a transaction.

It is this second source of error that we propose to offset,
at least in part, by applying ex post weighting when building
econometric models. Section 2 of this article will describe
the problem in greater detail, while in Section 3, we will
describe the approach used to determine the weights.
Finally, in Section 4, we present some numeric results.

2. Problem

We are seeking to describe the relationship between
prices and asset age. There is a sample of n assets where we
know, for each asset i, the price ratior; and the time ¢,
when this ratio was measured. Once prices are expressed in

real dollars, this ratio is given as 7, = P'/P’ where P’ is
the initial value of the investment in asset i and P’ is its
resale price at time ¢ This ratio is strictly decreasing in
relation to the time axis . At the start, we do not know the
process that generates the loss in value and there are no
specifics about the function that describes this loss except
that it is strictly decreasing. However, it is possible to
examine the distribution of the price ratios between 0 and 1.
Here is an example constructed from data on manufacturing
plants (note that 2/3 of the sample was excluded because it
corresponds to discarded assets (the price is zero) and the
estimation procedures take this component into account,
each in its own way).

Since we want to use the data to infer statistics on the
population of assets in production, we would like our data to
have properties similar to those of a random sample drawn
from that population. As we stated earlier, this is not the
case because we only have the prices of assets i that were
subject to a transaction at time ¢, i= 1, ..., n. In effect,
while we would like to have price ratios for various periods
in the existence of a given asset i, the ratio is only available
when there has been a transaction, something that occurs in
a non-uniform manner over an asset’s service life.

Consequently, we can ask ourselves what form the above
distribution might have if it had been drawn from a sample
in which the price ratio had been measured, for the same
asset 7 at different times #. Our argument is that it should
converge toward a uniform distribution. We will therefore
seek to obtain a weighting that will help us recreate a
uniform distribution of price ratios. This weighting will help
us offset the lack of uniformity in the distribution of
observations, which may impact statistical analyses such as
linear regression.

1. Marc Tanguay and Pierre Lavallée, Statistics Canada, Ottawa, Ontario, Canada K1A 0T6. E-mail: marc.tanguay@statcan.ca, pierre.lavallee(@statcan.ca.
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Figure 1 Distribution of observations by price ratio, manufacturing plants

3. Approach

Our starting point is that price ratios can be considered
empirical realizations of an unknown form of survival
function. In service life models, the survival function
expresses the probability that an entity with a limited service
life will survive beyond a certain point on the time axis.
Accordingly, it provides the same information as a
distribution function (or Cumulative Distribution Function).
We will let r, be a random variable describing the service
life of a unit of value incorporated in some asset. The value
gradually erodes over time for as long as the asset is in
service. The price ratio can therefore be interpreted as the
surviving fraction that gradually becomes smaller and
smaller. This fraction is written as S(y) and gives

S()=1-F(y)

where F(y)= P(r<y) is the distribution function, that is,
the probability that a unit of value is lost before point y.
Fundamental transformation theorems of probability
laws provide the means for defining the inverse function of
F(y) (Greene 1993 and Ross 2002). We let z = F(y) and
assume that the inverse function F~' exists so that
y = F~'(2). This shows that there is a direct match between
the space of y, bounded at 0 but infinite to the right, and that
of F which is bound between 0 and 1. The distribution
function of z is F(F'(z)) = z. The law that generates this
distribution is a uniform distribution between 0 and 1.
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This result is generally at the core of data generation
processes like Monte Carlo simulations because the uniform
distribution is often used when a random sample is being
generated, followed by the application of the inverse
function (Davidson and MacKinnon 1993). This approach is
not always practical and indeed is sometimes patently
impossible, especially if the inverse function F~' is not
explicit. This result has also been used in generalized
remainder approaches, notably to build specification tests
(Lancaster 1985).

The result is that any random sample built using
empirical realizations of survival proportion data must
converge in distribution toward a uniform distribution.

In the case of price data, intuition suggests that between
the time of investment and that of disposal, the full range of
relative prices must be covered by an asset in production.
Initially, value depreciates faster and therefore there are
more observations with short periods of time. This is offset
by the fact that the corresponding reference on the time
scale is also shorter. For example, it takes less time to move
from 100% of the initial value to 90%, than from 15% to
5% of the initial value.

It is easy to verify these findings numerically using
simulated data and we will not spend time on this. Rather,
we will examine how this result can be reintroduced in the
database to produce, at least partially, properties similar to
those of a random sample. We can do this by simply
imposing ex post on the empirical price distribution a
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weight structure w, that ensures that the empirical
distribution of the data, in the price space, is uniform.
The empirical distribution of price ratios r is given by
A z i=1 I i (y )

F;«()’)ZT ()

where [,(y)=1 if the measured value 7, of asset i is less
than or equal to y (specifically, » <y), and 0 otherwise,
and # is the total number of observations. Note that if the n
units of the sample are independent and identically
distributed (i.i.d.), when n—> o, F (y) converges in
probability to F(y), thatis, £, (y)—— F(y) (Bickel and
Doksum 1977).

To obtain weight w, for each asset i, we simply
distribute the sample in a given number A of intervals (or
classes) of a fixed size on the scale of price ratios, and we
assign the same probability m=1/H to each of these
intervals. Since the price ratios are bounded by 0 and 1, we
then have the interval 2=1 given by [0, H '], and for
h=2, .., H, the intervals are given by (h—1)H
hH™']. A weight w, is then calculated in each interval / by
the ratio w/#, where #, is the empirical probability
specific to interval A, producing

1 & n
R, o= — 5. (h) = - 2
P ; i () . 2
where 8,(h) =1 if r, € h, 0 otherwise. We then propose
T
Wi =W, =~
T,
n
=— 3
i 3)

for r e h. Using these weights, the weighted empirical
distribution of the price ratios r is given by

D wL(y)
z:l:l Wi

By writing >/ w, = X1, > n/ Hn, = n, we finally get

E, () = (4)

R " ow
amﬁ;%}@. (5)
Since n, =X, 5,(h), we have
R " ow
£ ()= 2t L0
n
1 & 1 ¢
= 2 LML
=l Ny =1
:Liimﬂww
"3 Y7 8,k
1 & .
—g;ﬂmm 6)
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When n— o, we have (1/n) X, 8,(h)I(y)—2—>
P(reh, r<y) and (1/n)X",8.(h)—L— P(r € h). Thus,
when n — o,

P(rehr<y)

P(reh)

=P(r<ylremn=F(y|h) (7)

E(y|h)—=~

where F(y|h) is the distribution of price ratios » within
interval /.

For a sufficiently large n, H must be determined in such a
way as to build the intervals 4 so that £ (y|h) is
distributed approximately uniformly, ~=1, ..., H. In other
words, when n — oo, for a sufficiently large H, F(y|h)
should have a uniform distribution on interval 4. Note that
this argument was used by Dalenius and Hodges (1959) in a
context of optimal stratification. In this case, the distribution
F(y|h) is given by

0 for y<(h—-1)H™'
F(y|h)y={Hy—h+1 for (h-D)H ' <y<hH™" (8)
1 fory>hH™"

Since F(y) =Y F(y|h)/H, we have F(y)=y,
which corresponds to the uniform distribution. We conclude
from this that for a sufficiently large », the use of weighting
(3) should ensure that the weighted empirical distribution
Fn,w( y) given by (5) is distributed approximately
uniformly.

Monte Carlo simulations have shown that estimates
produced from a non-random sample could be improved by
using this approach. Its main advantages can be attributed
to:

. its simplicity;

. the fact that it can be introduced ex ante, or prior to
introducing the econometric model as such.
Consequently, it does not require strong working
hypotheses.

If we go back to the histogram presented earlier and
divide the sample in H =5 intervals of a width of 0.2 and a
value of m=1/5=0.2, we then get the following histogram
that was weighted ex post.

4. Application

We will now illustrate our approach using an example
taken from the Kelly Blue Book, a source of information
widely used to estimate depreciation of automobiles. Table
1 shows the prices of two models of cars at different ages
between 1 and 18 years. For each car, we have a sample of
n=18 units. Prices are expressed in relative value in

Statistics Canada, Catalogue No. 12-001
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relation to a new model. The ratios also have to be adjusted
to take into account the survival probability at each of these
ages. For each vehicle, the final ratio used 7; for year i is
built from the product of the price ratio times the survival
probability.

We are interested in the average depreciation rate T for
each car. This can be estimated from a regression of the
prices (or from a function of these prices) in relation to age
(or a function of age). However, if we assume that the rate is
constant and geometric, we obtain the relationship 7 =
1-7', where , is the relative price based on age i. In this
case, a rate %, can be estimated at each age i by %, =
1-7"". An estimate of the average rate of depreciation is
then produced from the average for all ages, T =Y* %, /18.

In the above example, we see that the depreciation rates
%, vary by age range and that they tend to increase with
age. Moreover, the fact that we use a simple average of the
ages in calculating T again implicitly gives the same
weight to each age. However, it is quite clear that this is not
the distribution that we would get from a random sample of
service vehicles. The figure below shows the distribution of
price cells between ratios of 0 and 1.

0.12

The reweighting technique simply involves applying an
equal weight to each of the relative price ranges. In this
example, the n=18 ages are distributed into H =7
classes, resulting in 18/7 of the ages in each class (in reality,
the structures of the cells was configured into 8 classes but
the last is always empty). As mentioned in Section 3, the
individual weights w;, for each age i are built using (3), that
is, by dividing 18/7 by the number of observations found in
each class, except for the empty cells where the weight
remains zero. Table 2 shows the results and the impact of
reweighting on the derived statistics.

This example clearly illustrates the problems of aggre-
gation bias typical of regressions estimated from economic
aggregates without taking account the real distribution of the
units at the micro level. Thus, it is quite clear that the units
at 17 and 18 years would not have the same regression
weight as those at 1 year because the risk of loss at 1 year
affects almost all vehicles to be put into circulation, while
very few of them will be exposed to the risk of loss of value
at more advanced ages. The result is that the unweighted
estimate in this example produces an over-estimation of the
depreciation rate in the order of 15%.
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Figure 2 Weighted distribution of observations by price ratio, manufacturing plants Ex post

weighting
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Table 1 Relative prices of two models of cars based on the Kelly Blue Book and average depreciation rates

before weighting

Pr (> 98)* Relative price Average depreciation rates
Excluding disposals Including disposals Including disposals
Year Buick Chrysler Buick Chrysler Buick Chrysler

1 0.9988 0.8633 0.8257 0.8622 0.8246 0.1367 0.1743
2 0.9901 0.7435 0.6801 0.7361 0.6734 0.1377 0.1753
3 0.9666 0.6410 0.5608 0.6195 0.5420 0.1378 0.1754
4 0.9220 0.5523 0.4621 0.5092 0.4261 0.1379 0.1755
5 0.8526 0.4740 0.3794 0.4042 0.3234 0.1387 0.1762
6 0.7582 0.4034 0.3087 0.3058 0.2341 0.1404 0.1779
7 0.6433 0.3391 0.2482 0.2181 0.1597 0.1432 0.1805
8 0.5164 0.2790 0.1953 0.1441 0.1009 0.1475 0.1846
9 0.3892 0.2227 0.1491 0.0867 0.0580 0.1537 0.1906
10 0.2731 0.1639 0.1050 0.0448 0.0287 0.1654 0.2018
11 0.1770 0.1261 0.0772 0.0223 0.0137 0.1716 0.2077
12 0.1051 0.0892 0.0523 0.0094 0.0055 0.1824 0.2180
13 0.0567 0.0614 0.0344 0.0035 0.0019 0.1932 0.2284
14 0.0276 0.0441 0.0236 0.0012 0.0007 0.1999 0.2347
15 0.0120 0.0320 0.0164 0.0004 0.0002 0.2050 0.2396
16 0.0046 0.0190 0.0093 0.0001 0.0000 0.2194 0.2534
17 0.0016 0.0088 0.0041 0.0000 0.0000 0.2432 0.2761
18 0.0005 0.0051 0.0023 0.0000 0.0000 0.2542 0.2867

Average 0.1727 0.2087

* Survival probability based on estimates from the Micro-Economic Studies and Analysis Division of Statistics Canada.

0
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Figure 3 Distribution of cells used to estimate the average depreciation rate using data
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Table 2 Relative prices of two models of cars based on the Kelly Blue Book and the average depreciation rate after weighting

Relative prices Average depreciation rates Ex post weights
Including disposals Including disposals
Year Buick Chrysler Buick Chrysler Buick Chrysler
1 0.8622 0.8246 0.1367 0.1743 2.5714 2.5714
2 0.7361 0.6734 0.1377 0.1753 2.5714 2.5714
3 0.6195 0.5420 0.1378 0.1754 1.2857 2.5714
4 0.5092 0.4261 0.1379 0.1755 1.2857 2.5714
5 0.4042 0.3234 0.1387 0.1762 2.5714 2.5714
6 0.3058 0.2341 0.1404 0.1779 2.5714 1.2857
7 0.2181 0.1597 0.1432 0.1805 1.2857 1.2857
8 0.1441 0.1009 0.1475 0.1846 1.2857 0.2338
9 0.0867 0.0580 0.1537 0.1906 0.2571 0.2338
10 0.0448 0.0287 0.1654 0.2018 0.2571 0.2338
11 0.0223 0.0137 0.1716 0.2077 0.2571 0.2338
12 0.0094 0.0055 0.1824 0.2180 0.2571 0.2338
13 0.0035 0.0019 0.1932 0.2284 0.2571 0.2338
14 0.0012 0.0007 0.1999 0.2347 0.2571 0.2338
15 0.0004 0.0002 0.2050 0.2396 0.2571 0.2338
16 0.0001 0.0000 0.2194 0.2534 0.2571 0.2338
17 0.0000 0.0000 0.2432 0.2761 0.2571 0.2338
18 0.0000 0.0000 0.2542 0.2867 0.2571 0.2338
Weighted
average 0.1479 0.1836
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Person-level and household-level regression
estimation in household surveys

David G. Steel and Robert G. Clark !

Abstract

A common class of survey designs involves selecting all people within selected households. Generalized regression
estimators can be calculated at either the person or household level. Implementing the estimator at the household level has
the convenience of equal estimation weights for people within households. In this article the two approaches are compared
theoretically and empirically for the case of simple random sampling of households and selection of all persons in each
selected household. We find that the household level approach is theoretically more efficient in large samples and any

empirical inefficiency in small samples is limited.

Key Words: Contextual effects; Generalized regression estimator; Intra-class correlation; Sampling variance; Model-

assisted; Household surveys.

1. Introduction

Many household surveys involve selecting a sample of
households and then selecting all people in the scope of the
survey in the selected households. Data on one or more
variables of interest are collected for the people in the
sample. There may be some auxiliary variables whose
population totals and sample values are known; for example
these may consist of population counts by geographic and
demographic classifications. The generalized regression
(GREG) estimator is often used to combine auxiliary
information and sample data to efficiently estimate the
population totals of the variables of interest.

The GREG estimator makes use of a regression model
relating the variable of interest to the auxiliary variables.
The standard approach is to fit this model using data for
each person in the sample (e.g., Lemaitre and Dufour 1987,
first paragraph). This person-level GREG estimator is equal
to a weighted sum of the sample values of the variable of
interest, where the weights are in general different for each
person.

It is sometimes convenient to have equal weights for
people within a household, for surveys which collect
information on both household and person level variables of
interest. The same weights can then be used for both types
of wvariables. This ensures that relationships between
household variables and person variables are reflected in
estimates of total. If a household level variable is equal to
the sum of person level variables (for example if household
income is the sum of personal incomes), then the estimated
total of the household variable will equal the estimated total
of the person variable. This is not generally the case where
separate weighting procedures are used for person and
household variables. Similarly, if there is an inequality

relationship between a household level variable and the sum
of the person level variables, this will also be reflected in the
estimates of the two variables. For example, the estimated
number of households using child care centres should not
exceed the estimated number of children using centres.

The household-level GREG estimator achieves equal
weights within households by fitting the regression model
using household totals of the variable of interest and the
auxiliary variables (e.g., Nieuwenbroek 1993). Weights with
this property are called integrated weights.

An alternative approach would be to use different
estimation methods for household-level and person-level
variables, and then make an adjustment to force agreement
of estimates which should be equal. This approach is
sometimes called benchmarking and has mainly been used
to achieve consistency between estimates from annual and
sub-annual business surveys (e.g., Cholette 1984). A
benchmarking approach to household and person-level
variables from household surveys would require explicit
identification of which person and household-level variables
should have equal population totals. In this article we
concentrate on integrated weighting and do not consider
benchmarking approaches.

Luery (1986); Alexander (1987); Heldal (1992) and
Lemaitre and Dufour (1987) discussed a number of methods
which give integrated weights for person-level and
household-level estimates. However, none of these authors
evaluated the impact on the sampling variance of calculating
the generalized regression estimator at the household level
rather than the person level. This is an important issue in
practice because the cosmetic benefit of integrated
weighting must be balanced against any effect on sampling
efficiency.

1. David G. Steel and Robert G. Clark, Centre for Statistical and Survey Methodology, University of Wollongong, NSW 2522 Australia. E-mail:

David_Steel@uow.edu.au.
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This article compares the design variance, which is the
variance over repeated probability sampling from a fixed
population, of the person-level and household-level
generalized regression estimators. In Section 2, we prove
that the large sample variance of the household-level
estimator is less than or equal to that of the person-level
estimator, by showing that the former is optimal in a large
class of GREG estimators. We show that this is because the
household-level estimator effectively models contextual
effects whereas the person-level estimator does not. In
Section 3 the two estimators are compared for a range of
variables in a simulation study. Section 4 is a discussion.
Three theorems are proved in an Appendix.

2. Theoretical comparison of person
and household GREGs

2.1 The generalized regression estimator

In this subsection the generalized regression estimator is
described for the general case of probability sampling from
any population of units. Let U be a finite population of
units and s < U be the sample. The probabilities of
selection are m, = Pr[i € s] for units i € U. Let y, be the
variable of interest which is observed for units i € 5. Let
Z, be the vector of auxiliary variables for unit i, which are
observed for every unit in the population. The population
totals of these variables are 7}, and T, respectively.

The generalized regression estimator of 7, is based on a
model relating the variable of interest to the auxiliary
variables:

EM[y,'] = BTzi
vary,[y,] = v,.cs2 (1)

Vi ¥ independent for i # j

where v, are known variance parameters. Subscripts “M”
refer to expectations under a model and subscripts “p” refer
to design-based expectations, which are expectations over
repeated probability sampling from a fixed population. For
business surveys collecting continuous variables such as
business income and expenses, Vv, are often modelled as a
function of business size. For household surveys, the
variable of interest is often dichotomous, in which case v, is
usually set to 1 corresponding to a homoskedastic model.
Usually z; have the property that there exists a vector A

such that A"z, =1 forall j e U. For example, this is true if
the regression model (1) contains an intercept parameter.

Definition 1. generalized regression estimator

The generalized regression estimator for model (1) is
defined as

Statistics Canada, Catalogue No. 12-001

T. =17 +B"(1,-T,) Q)

where

and f is a solution of

zcini_l[yi _ﬁTzijzi =0

ies

where ¢, are regression weights. (Often ¢, are set to
¢, =v")

The coefficients (3 are calculated from a weighted least
squares regression of y, on z; for i e s. The GREG
estimator has low design variance if the model is
approximately true but is design-consistent regardless of the
truth of the model (e.g., Sérndal, Swensson and Wretman
1992, chapter 6).

For large samples the design variance of 7. is
approximately equal to

var, 7, ]~ var, [T, ] 3)
where

T, =T, +B" (T, ~T,)
and B is a solution of

Y -B"2)5=0

ieU
(Sarndal eral. 1992, Result 6.6.1, page 235). The coef-
ficients B are calculated from a weighted least squares
regression of y, on z; for i € U. The sample regression
coefficients P are design-consistent for B.

2.2 Person and household level GREGs

We now consider the special case of household
sampling, where the basic unit, 7, is the person. Let x; be
the p - vector of auxiliary variables observed for all people
i € U. The elements of x; may refer to characteristics of
the person or of the household to which they belong. The
population and sample of households will be denoted U,
and s, respectively. The population of people in household
g € U, will be denoted U, which is of size N,. Let
Yo = Ziew, ¥; and X, = X,y x; be the household totals
of y, and x;. Let x, = x,,/N, be the household mean of
x;.

We consider the common case where households are
selected by probability sampling and all people are selected
from selected households, so that s =U,. U o Let

&E5
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= P[g € 5;]> 0 be the probability of selection for
household g. Itfollows that n, = n,, for i € U,.
The person-level GREG, T, 1s the GREG under the
following model:

EM [yl] = BTx,'
vary, [y]=v,0° @)
¥, »; independent for i # j.

So the person-level GREG, 7}, is given by substituting x;
for z; in (2). Model (4) ignores any correlations between
y; and y; for people i and j in the same household.
These correlations were 0.3 or less in most of the variables
considered by Clark and Steel (2002), although higher
values occurred for variables related to ethnicity, such as
Indigenous self-identification. Correlations of 1 could occur
for environmental variables. Tam (1995) shows that the
optimal model-assisted estimator for cluster sampling is
robust to mis-specification of within-cluster correlations.
One way of interpreting this result is that correlations within
households are not relevant to estimating population totals,
because all people are selected in selected households. So
within-household correlations do not help to estimate for
non-sample individuals, since the sampled and non-sampled
people are in distinct households.

A number of methods have been suggested for GREG-
type estimation with equal weights within households.
Nieuwenbroek (1993) motivated an estimator by
aggregating model (4) to household level:

Ey [ygl] = BTxgl
VarM [ygl] = vgl 02 (5)
Vg» Vi Independent for g # k.

where v, = Ziev, Vi The GREG estimator using sample
data y,, for g € s, based on this model is 7, :

T, =T, +By Iy - Ty,) (6)
where 4 is asolution of
AT
z Tcgl g (ygl Bngl) xgl = 0. (7)

8E5

The regression coefficient (, is a household level
weighted least squares regression of the sample values of
Vg ON Xy w1th weights Ttgl . The values of a, could
be set to v,. If v, =1 then v, =N, so a, —N"
Alternanvely, =1 could also be used.

Several other equivalent integrated weighting methods
have been used. Lemaitre and Dufour (1987) constructed a
generalized regression estimator at person level, using x,
instead of x; as the auxiliary variables. Nieuwenbroek
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(1993) commented that this is equivalent to (6) if
¢ =a,N, for ieU, Alexander (1987) developed
closely related weighting methods using a minimum
distance criterion.

Both the person and household level GREG can be
written in weighted form X, w, Y. The weights for both

estimators can be written as w, = 7;'g, where

g =1+Ty - (ch xx)cx,.
for 7, and
=1+ Ty - (z a, ngl X4 xgl)_1 a, n; X4
ges)
for T, ", where person i belongs to household g.

[T3k2]

(Superscript “-” stands for generalized inverse of a matrix).

2.3 Theoretical results

In this section, we show that 7}, has the lowest possible
large sample variance in a class of estimators which also
includes 7, for the sample design where households are
selected by simple random sampling without replacement.
We will then explain this result by showing that 7, 18
equivalent to a regression estimator calculated using person
level data, where the model includes contextual effects.

For large samples, 7, and 7,, can be approximated by

T, =T + BL(Ty —Ty,);
and
T, =T + B}, (T, - Ty,)

respectively, where B, and B, are solutions of

> ¢y, — Bpx,)x, =0
ieU
®)
z ag(ygl - BITngl)xgl =0
gel,

(Sérndal efal. 1992, Result 6.6.1, page 235). Theorem 1
states the minimum variance estimator in a class including
T, and T,
Theorem 1. Optimal estimator for simple cluster
sampling

Suppose that m households are selected by simple random
sampling without replacement from a population of M
households, and all people are selected from selected
households. Consider the estimator of 7 given by

T=T+h" (T, -Ty,)

where h is a constant p-vector. It is assumed that there
exists a vector A such that A”x, =1 for all i € U. The
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variance of this estimator is minimised by 4" which are
solutions of
T
z (ygl —h xgl)xgl =0.

8ES5

Hence 7, with a, =1 for all g is the optimal choice of
T.

Theorem 1 has the perhaps surprising implication that
T, w (with a, =1 for all g) has lower variance tpan T, » for
large samples. This is in spite of the fact that 7,, discards
some of the information in the sample, because it uses the
household sums of x; and y. The Theorem suggests that
T, , 1s the appropriate GREG estimator for the cluster
sampling design assumed here, and that the information
discarded by summing to household level is not relevant
when this design is used. To explain why 7, can perform
better than 7, we will make use of a “linear contextual
model” which is a more general model for E,,[Y;] than (4).
The model is:

Eyly]=7v{x,+7:% (i€U,)

vary [y,]= o ©9)
;> ¥; independent for i = ;.

Both X, and x; are used as explanatory variables for y,
because the household mean of the person level auxiliary
variables may capture some of the effect of household
context (Lazarfeld and Menzel 1961). For example, if the
elements of x; are indicator variables summarising the age
and sex of person i then X, are the proportions of people
in the household falling into different age and sex
categories. If the population of interest includes both adults
and children, then X, includes the proportion of children in
the household, which could be relevant to the labour force
participation of adults in the household.

Theorem 2 shows that the improvement in the variance
from using 7,, with a, =1 rather than using T, can be
explained by the linear contextual model.

Theorem 2. Explaining the difference in the
asymptotic variances

Suppose that households are selected by simple random
sampling without replacement and all people are selected
from selected households. Let 7, = y, — BLx,, and let B,
be the result of regressing 7 on X, over i e U using
weighted least squares regression weighted by N,. Then

var, [TP] — var, [TH] =

2
ST ICER A PIENEATS

gel,
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where 7, is calculated using a, =1 forall g.

The result shows that the reduction in variance from
using 7,, (with a, = 1) rather than T, is a quadratic form
in B.. Hence the extent of the improvement depends on the
extent to which X, helps to predict y, after x; has already
been controlled for, ie., the extent to which a linear
contextual effect helps to predict 7 over i € U, using a
weighted least squares regression weighted by N,.

The proofs of Theorems 1 and 2 are very much
dependent on the assumption of cluster sampling. The
results would not be expected to apply if there was
subsampling within households.

Theorems 1 and 2 only apply v&fith a, =1 in the
weighted least squares regression for 7,,. Other choices of
a, are often used, for example it would often be reasonable
to assume that v,, = N, in model (5), in which case it
v&fould be sensible to use a, = N;. Theorem 3 shows that
T, is equivalent to a person-level GREG estimator fitted
under the linear contextual model for other choices of a,.

Theorem 3. The linear contextual GREG

For sample designs where all people are selected from
selected households and 7, > 0 forall g € U, 7, witha
given choice of a, is the generalized regression estimator
for model (9) where ¢; = a,N, for i e U,.

Theorem 3 means that 7, is the GREG under a more
general model than 7, Nieuwenbroek (1993) showed that
7, is equal to a person-level GREG derived from
regressing y; on X,. Theorem 3 states it is also equal to the
person-level GREG from regressing y, on both x; and
X,, thereby automatically incoi‘porating any household
contextual effects. As a result, 7,, would be expected to
have lower variance than 7' »» for large samples. (In the case
of a, =1, Theorem 1 stated that this is always the case).
For small samples, however, a more general model may be
counter-productive. Silva and Skinner (1997) showed for
single-stage sampling that adding parameters to the model
can increase the variance of the GREG estimator, although
this effect is negligible for large samples. It is possible that
the contextual effects have little or no predictive power for
some variables. In this case, it would be expected that 7,
would perform slightly worse than 7, for small samples,
and about the same for large samples.

The contextual model, (9), includes all of the elements of
x; and all of the elements of x,. An alternative would be
to use only those elements of either x; and X, which are
significant, or which give improvements in the estimated
variance of a GREG estimator. A GREG estimator based on
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this type of model would probably have lower variance than
the estimators considered in this paper, but would not give
integrated weights unless the same elements of x; and X,
were used.

3. Empirical study

3.1 Methodology

A simulation study was undertaken to compare the
person and household GREGs, 7, and 7),, for a range of
survey variables. We used two populations, consisting of
187,178 households randomly selected from the 2001
Australian Population Census and 210,132 households from
the 1995 Australian National Health Survey. All adults and
children in the households were included. The average
household size was approximately 2.5.

We selected cluster samples from these populations,
where households were selected by simple random
sampling without replacement and all people from selected
households were selected. We simulated samples of size
m = 500, 1,000, 2,000, 5,000 and 10,000 households. In
each case, 5,000 samples were selected. The auxiliary
variables x; consisted of indicator variables of sex by
agegroup (12 categories). (This choice of x; means that the
GREG estimation is equivalent to post-stratification.) The
person-level GREG with ¢, = 1(7},), the household-level
GREG with a, = N g'l (T,,), and the household-level
GREG with a, = 1(T,) were all calculated. We also
included the Hajek estimator

g o
which equals N/n %, ¥y, y; for cluster sampling with
simple random sampling of households, where n is the
realized sample size of people.

The variables include labour force, health and other
topics. All of the variables are dichotomous except for
income (annual income in Australian dollars, based on
range data reported from the Census). “Employment(F)” is
the indicator variable which is 1 if a person is employed and
female, and O otherwise. The first six variables are from the
Census population and the remaining five variables are from
the health population.

3.2 Results

Table 1 shows the relative root mean squared errors
(RRMSEs) of 7, T}, T, and T,,, for a sample size of
1,000 households. The RRMSEs are expressed as a
percentage of the true population total. The biases have not
been tabulated because they were a negligible component of
the MSE in all cases. The percentage improvements in MSE
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of T, and T,,, relative to 7, are also shown. The figures
in brackets are the simulation standard errors of these
percentage improvements.

For this sample size, 7, and 7}, performed slightly
worse than 7, for the health variables and slightly better for
most other variables. The greatest gain was in estimating the
number of sole parents; this variance was reduced by 10.8%
and 16.3% by using the household-level GREGs. For all
other variables, either the improvement was small or the
household GREG was slightly worse than the person-level
GREG. The inefficiency from using a household-level
GREG rather than 7, was never more than 2.2%.

Table 2 shows the percentage improvement in MSE from
using 7, rather than 7, for different sample sizes. The
simulation standard errors for each figure are shown in
brackets. Table 3 shows the percentage improvements from
using 7, rather than 7, The asymptotic percentage
improvements (m = oo) are also shown, based on the large
sample approximation to the variance of a GREG. For both
household-level GREGs, the percentage improvements are
generally increasing as the sample size increases. For
m = 500, the household GREGs are generally worse than
the person GREGs, although never more than 5% worse.
For m =10,000, an improvement is recorded for over half
of the variables. The greatest improvements were for
estimates of the number of sole parents (11.5%) and
employed women (4.2%); all other improvements were
small. 7, and 7,, never had variances more than 0.2%
higher than 7, for m = 10,000. Generally 7}, performs
better than 7,, for larger sample sizes, as would be
expected from Theorem 1, but the reverse is true for small
sample sizes.

In practice estimates of subpopulation totals are often of
as much interest as population totals. Table 4 shows the
performance of the various estimators for age-sex domains
(12 age categories) and region domains, for the sample size
of 1,000 households. There were 49 regions in the census
dataset. The health dataset did not contain a similar region
variable, instead the socioeconomic quintile of the collection
district (a geographical unit consisting of approximately 200
contiguous households) was used as the domain. The
domain estimators were produced by calculating weights
from each estimator and taking the weighted sum over the
sample in the domain. This is equivalent to the domain ratio
estimator described in Case 1, Section 2.1 of Hidiroglou and
Patak (2004). We have used this method because it is the
most commonly used in practice, as it enables all domains
and population totals to be estimated with a single set of
weights, although more efficient domain estimators exist
(Hidiroglou and Patak 2004, cases 2-6).

In each case, the median RRMSE over the domains is
shown. The table shows that there is not much difference

Statistics Canada, Catalogue No. 12-001
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between the three GREG estimators. For age-sex domains,
the household GREGs did slightly better than the person
GREG for census variables and slightly worse for health
variables. For region estimates, the household GREGs were
slightly worse in all cases. Table 5 shows that the

households GREGs performed very similarly to 7, for a
sample size of 10,000 households. It is worth noting that
Theorem 1 and 2 do not apply to the domain estimators we
have used.

Table 1 Relative RMSEs for sample size of 1,000 households

Variable RRMSE% % improvement in MSE
I Tp Ty Ty, Ty Ty,

employed 2.62 2.09 2.09 2.10 0.20 (0.26) -0.28 (0.27)
employed F 3.78 3.05 3.01 3.02 2.63(0.33) 2.09 (0.33)
income 2.56 2.20 2.19 2.19 1.04 (0.25) 0.75(0.24)
low income 5.04 4.87 4.89 4.90 -0.62 (0.20) -1.12 (0.22)
hrs worked 3.08 2.54 2.53 2.53 0.94 (0.28) 0.70 (0.28)
sole parent 12.50 12.73 12.02 11.65 10.84 (0.62) 16.31 (0.49)
arthritis 5.52 4.50 4.53 4.53 -1.38 (0.17) -1.57 (0.18)
smoker 4.73 4.57 4.60 4.61 -1.64 (0.18) -1.81 (0.20)
high BPR 6.80 5.30 5.35 5.36 -1.70 (0.17) -2.06 (0.18)
fair/poor hlth 9.79 9.42 9.47 9.47 -1.16 (0.16) -1.07 (0.18)
alcohol 4.81 4.66 4.70 4.71 -1.77 (0.16) -2.15(0.18)

Table 2 Improvement in MSE of household GREG T}, compared to 7,

Variable % improvement in MSE

m =500 1,000 2,000 5,000 10,000
employed -0.65(0.31) 0.20(0.26) 1.02(0.24) 0.90(0.21) 2.17(0.21) 1.85
employed F 1.22(0.37) 2.63(0.33) 2.59(0.33) 3.53(0.31) 4.24(0.31) 4.13
income -1.53(0.31) 1.04(0.25) 0.48(0.24) 0.61(0.19) 1.43(0.19) 1.07

low income  -2.45 (0.27) -0.62 (0.20)
hrs worked ~ -0.26 (0.34)  0.94 (0.28)

sole parent 7.81(0.69) 10.84 (0.62)
arthritis -3.01(0.24) -1.38 (0.17)
smoker -3.91(0.25) -1.64 (0.18)
high BPR -2.93(0.24) -1.70 (0.17)
fair/poor hlth ~ -3.67 (0.25) -1.16 (0.16)
alcohol 4.22(0.23) -1.77 (0.16)

0.02(0.18) 0.18(0.15)  0.00 (0.00) 0.65

1.72(027) 1.61(0.24) 2.64(0.24) 2.12
10.74 (0.61) 10.23(0.57) 11.50 (0.58)11.21
-0.34(0.12) -0.08 (0.09) -0.13 (0.07) 0.08
-1.02(0.12) -0.26 (0.08) -0.06 (0.07) 0.16
-0.86(0.12) -0.31(0.08) -0.04 (0.06) 0.08
-0.71(0.12) -0.05 (0.08)  0.03 (0.06) 0.10
-0.77(0.12) -0.31 (0.08) -0.21(0.07) 0.14

Table 3 Improvement in MSE of household GREG T}, compared to T,

2,000 5,000 10,000 )

1.25(025) 1.05(021) 222(021) 198
2.71(0.33) 3.55(0.29) 4.50(0.30) 4.31
0.71(022) 0.90(0.17) 1.30(0.16) 137

-0.15(0.18)  0.06(0.15)  0.00(0.00) 0.94
1.98(0.25) 1.79(0.21) 2.57(022) 2.26

16.39 (0.47) 15.41 (0.44) 16.44 (0.44) 16.35

-0.05(0.13) -0.12(0.09) -0.10(0.07) 0.16

-0.69(0.14)  0.21(0.11) 0.28(0.10) 0.57

-1.12(0.13) -0.40 (0.09) -0.05(0.07) 0.12

-0.57 (0.13) -0.09 (0.09) 0.00(0.07) 0.15

Variable % improvement in MSE
m =500 1,000
employed -1.85(0.35) -0.28(0.27)
employed F 0.28 (0.39) 2.09(0.33)
income -2.64 (0.31) 0.75(0.24)
low income -3.15(0.30) -1.12(0.22)
hrs worked -1.51(0.35) 0.70(0.28)
sole parent 14.70 (0.53) 16.31 (0.49)
arthritis -3.31(0.26) -1.57(0.18)
smoker -3.82 (0.28) -1.81(0.20)
high BPR -3.20 (0.26) -2.06 (0.18)
fair/poor hith ~ -4.02 (0.28) -1.07 (0.18)
alcohol -5.00 (0.26) -2.15(0.18)

-0.82 (0.13) -0.49 (0.09) -0.29(0.08) 0.18
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Table 4 Median relative RMSEs for domain estimators for sample
size m = 1,000

Variable Age-Sex Domains Region Domains

I Ty, Tyn Ty, I Ty, Tyn Ty,
employed 1274 7.92 793 790 29.89 29.92 30.20 30.34
employed F 13.12 8.32 836 834 34.64 34.65 35.03 35.16
income 13.25 8.43 849 847 28.04 28.12 28.43 28.51
low income 21.17 18.77 1896 18.94 42.71 42.85 43.24 43.33
hrs worked 14.56 10.69 10.76 10.72 31.24 31.23 31.52 31.63
sole parent 96.20 96.33 97.64 96.69 92.99 93.30 94.37 93.50
arthritis 2494 20.94 21.12 21.11 13.31 12.94 13.02 13.04
smoker 32.10 29.25 29.39 29.37 12.32 12.27 12.35 12.38
high BPR 27.01 23.80 23.97 2395 15.83 15.31 1544 1545
fair/poor hith ~ 39.64 37.73 38.05 38.08 22.38 22.30 22.51 22.55
alcohol 25.58 21.42 21.53 21.58 12.73 12.70 12.80 12.82

Table 5 Median relative RMSEs for domain estimators for sample

size m = 10,000

Variable Age-Sex Domains Region Domains

L T, Ty Typ I Ty, Ty Ty,
employed 3.77 235 232 231 885 8.85 8.87 8.8
employed F 3.86 2.43 243 242 10.30 10.26 10.25 10.25
income 391 2.53 251 251 824 823 823 824
low income 6.31 563 562 561 12.67 12.68 12.69 12.69
hrs worked 429 3.15 3.15 3.12 926 925 927 927
sole parent 28.40 28.26 28.29 28.23 27.11 27.14 27.16 27.11
arthritis 740 6.26 627 627 398 385 3.85 3.85
smoker 9.53 858 8.58 857 3.69 3.67 3.68 3.67
high BPR 8.07 7.02 7.01 7.01 4.66 448 449 449
fair/poor hith  11.69 11.02 11.02 11.01 6.75 6.69 6.69 6.69
alcohol 774 643 643 643 3.87 385 385 3.85

4. Discussion Acknowledgements

The standard person-level GREG estimator produces
unequal weights within households. Household-level GREG
estimators can be used to give integrated household and
person weights, which is beneficial for surveys collecting
information on both household-level and person-level
variables. This article demonstrated that there is little or no
loss associated with the practical benefit of integrated
weighting arising from using a household-level GREG
estimator. For large samples, the household-level GREG has
lower design variance than the person-level GREG. For
smaller samples there is at most a small increase in variance
for some variables from using the household GREG,
because this estimator is equivalent to using a regression
model containing more parameters. Therefore, if integrated
weights would improve the coherence of a household
survey’s outputs, the household-level GREG can be adopted
with little or no detriment to the variance and bias of
estimators.
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Appendix

Proof of theorems
Proof of theorem 1
Let ¥, =T,/M and X, =T,/M be the population

means of y,, and x,, respectively. The variance of T is

var, [T] = var[ T, + h (Ty — Ty,)]

% z (ygl - thgl):|

&ES

= var

M- ) s

Statistics Canada, Catalogue No. 12-001



58 Steel and Clark: Person-level and household-level regression estimation in household surveys

where 8 = (M — 1) S, (v — hTx, — (F — W7 X))}
To minimise with respect to &, we set the derivative of S’
to zero:

0=W-D">

gel,
Do — thgl — (¥ - hTXl)} (X1 — X))

0= Ve — thgl -, -h"X))} X,

gel,

_z {(ygl - }71) - hT(xgl - )?1)})?1

gel,

0= (yg—h'x,; - -h"X)}x,

gel,

0= z (ygl - thgl) X1 ~ (}71 - hTXl) Ty. (10)

gel,

We now show that (10) is satisfied by h*. By
assumption, A" satisfies

0= z (ygl

gel,

— x,h") x,. (11)

Hence the first sum in the right hand side of (10) is equal to
zero for h = h*. Premultiplying both sides of (11) by A"
gives

0= z (ygl

T g% T
= x,h) A x,

gel,

0= z (ygl — x;h*)
gel,

0=T,~TL .

Dividing by M gives ¥, — X h* = 0. Hence the rest of
the right hand side of (10) is equal to zero. So A" satisfies
(10).

Proof of theorem 2

Let “-” denote a generalized inverse of a matrix. Then
B isequal to

D DI D ) R

geU, ieU, geU, ieU,

=12 Xa¥Xa| 2

- Xg1¥g1 Xetlg1- (12)
geU; geU;

Now, 7,
becomes

=y, — B}x, so T = Vo1 = BIT,xgl. Hence (12)
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B, =

5 xglx;] S (v - Blx)

gel, gel,

= |Z xglx;] Z Xe1 Vel

geU; geU;

Z xglx;] Z xglx;BP

geU, geU,

=B, - B, (13)

. T
since By = {Xect, X1 X} 2 ey, Yiev, Xg1V g1 The
difference in the variances is given by

var [T,] - var, [T,,] = MWZ (1 - ﬁ) M — 1)

|z b~ Blx )~ S O - Bf,xglf]

gel, gel,

which becomes

{var,[T,] - var, [TH]}/{MWZ (1 - ﬁ) M — 1)-1}

2 T T 2
= Z To — Z (ry + Bpxgy — Byx,)
gel, gel,
2 T 2
= Z Tgp — z (rgl - Bngl)
geU, geU;
T T 2 T 2
= z (rg1 — chgl + chgl) — z (rg1 — chgl)
geU, geU;
T 2 T 2
= z (rg — Bexg)™ + z (Bexy)
gel, gel,
T T pT
+2) (ry — Bix,) xg Bl
geU,
T 2
- Y (ry = Bix,)
geU,
T T T T
= Y BixyxgyBe +2) (r, — Bexy,) xuBe.  (14)
gel, gel,

Now, B, is an ordinary least squares regression of 7,; on
X, SO

z (ry — nggl) X, =0.

gel,
Hence (14) becomes
var, [TP] — var, [TH] =

M3 -1 pT T
7(1 - ﬁ) M - 1'BLY x,xB,.

gel,
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Proof of Theorem 3

The GREG estimator is invariant under linear invertible
transformations of the auxiliary variables. Hence model (9)
can be re-parameterised to give

Ey[y]=¢1x,+ 6 (x; — X) (15)

or equivalently

Ey[v]=9¢"z
where

o)

x,. — Xg
and
o[
b,

The parameters in model (15) are related to those in model

9)by ¢, = v, + 7, and ¢, =7,
From Definition 1, noting that

S:UUg

&ES

for the assumed design, the generalized regression estimator
under model (15) is

T=T,+3¢%-2m'ds

=T+ 2 (% by — %)
3> Gy Xl + by (X5 — X)) (16)

ges, ieU,

However, Yy (x; — Xg) =0 for each g. Hence (16)

becomes
T=Tor 2 Xdxe— 2 2 m'x
geU, iel, ges, ieU,
ST IDIDIEIET DI FPIES
geU, ieU, ges; ieU,

- ~T —_ ~T -1 _
T, + o, z Xgl ™ ¢1Z Mol X g1

g€l ges,

=T, +§,(Ty ~ Tyy). an

Notice that (17) does not include the estimator of ¢,. The
least squares estimators
. {cbl]
b,
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are the solution of:

Doy, -

ies

b z,) z; =0
which is equivalent to:

z Tci_lci i

ies

AT T - Xg ~
— 0 Xg — ¢ (X; — xg)}(xi o j =0.

Xg

By assumption, ¢, = a,N, so the first p elements of this

equation are:
1 o AT AT o
0= z z T agNgxg{yi — 0 Xg — 0,(x; — X}
ges, ieU,
—1 AT AT _
0= z Tl agN xgz i - 0y Xg — ¢, (x; — X}
ges, iel,
—1 AT AT
0= z Tg1 dg Xg1 {ygl — 0, % — §,(x, — xgl)}
&ES
-1 AT
0= z T dg Xg1 (Vg1 = Oy Xgp)-
&ES

Hence $1 is a solution to (7). So the GREG estimator for
model (9) is equal to 7,, provided that ¢, = a,N,.
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Mean - Adjusted bootstrap for two - Phase sampling

Hiroshi Saigo '

Abstract

Two-phase sampling is a useful design when the auxiliary variables are unavailable in advance. Variance estimation under
this design, however, is complicated particularly when sampling fractions are high. This article addresses a simple bootstrap
method for two-phase simple random sampling without replacement at each phase with high sampling fractions. It works for
the estimation of distribution functions and quantiles since no rescaling is performed. The method can be extended to
stratified two-phase sampling by independently repeating the proposed procedure in different strata. Variance estimation of
some conventional estimators, such as the ratio and regression estimators, is studied for illustration. A simulation study is
conducted to compare the proposed method with existing variance estimators for estimating distribution functions and

quantiles.

Key Words: Double Sampling; Resampling; Variance estimation.

1. Introduction

Two-phase sampling or double sampling is a powerful
tool for efficient estimation in surveys. Usually, a large-
scale first phase sample is taken where auxiliary variables,
correlated with the characteristics of interest and relatively
easily obtained, are observed. Then, a small-scale sub-
sample is chosen from the first phase sample to measure the
characteristics of interest that are harder to obtain. At the
estimation stage, the auxiliary variables at the first phase are
employed to obtain an efficient estimator.

A closed-form sample variance formula for an estimator
can be complicated or even unavailable under two-phase
sampling. Consequently, resampling methods, such as the
jackknife and bootstrap, are appealing for two-phase
sampling. Rao and Sitter (1995) and Sitter (1997) studied
the delete-1 jackknife approach to the ratio and regression
estimators under two-phase sampling and found the method
provides design-consistent variance estimation with desir-
able conditional properties given the auxiliary variables.

A weakness of the delete-1 jackknife is that it cannot
handle quantile estimation. Moreover, it is not trivial how
one can incorporate the finite population correction into the
jackknife variance estimation under two-phase sampling
(see Lee and Kim 2002 and Berger and Rao 2006). The
bootstrap, on the other hand, eliminates these problems if
properly formulated.

Several bootstrap methods for two-phase sampling have
been proposed and studied. Schreuder, Li and Scott (1987),
Biemer and Atkinson (1993) and Sitter (1997) considered
similar bootstrap methods which provide consistent variance
estimation when sampling fractions are negligible. Rao and
Sitter (1997) proposed a rescaling bootstrap for high
sampling fractions.

A disadvantage of the rescaling approach is that it cannot
handle the estimation of distribution functions and quantiles.
In this paper, we propose a mean-adjusted bootstrap for
two-phase sampling that accommodates the estimation of
distribution functions and quantiles. The method is simple
and includes the existing ones for negligible sampling
fractions as a special case. Recently, Kim, Navarro, and
Fuller (2006) studied replication variance estimation with-
out rescaling for two-phase sampling in a more generalized
framework than that of this paper. Our method, however, is
different in that it internally incorporates the finite popu-
lation correction.

This paper is organized as follows. Section 2 presents the
mean-adjusted bootstrap for two-phase sampling. Section 3
illustrates how the proposed method works for some
conventional estimators. A simulation for estimating distri-
bution functions and quantiles is conducted in Section 4.
Section 5 discusses further applications of the mean-
adjusted bootstrap. Concluding remarks are given in
Section 6.

2. Mean - Adjusted bootstrap

For notational simplicity, we assume there is only one
stratum. To extend our method to stratified sampling, repeat
the same procedure independently in different strata to
obtain a bootstrap sample (see Rao and Sitter 1997, pages
759-762).

Let P be the set of unit labels in a population of size M.
Suppose a simple random sample without replacement
(SRSWOR) of size n,,, from P is taken and denote the
sampled labels by 4 + B. The auxiliary variable (vector) x,
is observed for ie A+ B. Then take a second phase
SRSWOR of size n, <n,,, from 4+ B and denote the
sampled labels by 4. The characteristic (vector) y, is

1. Hiroshi Saigo, Faculty of Political Science and Economics, Waseda University, 1-6-1 Nishiwaseda, Shinjuku Tokyo 169-8050, Japan.
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measured for ie 4. Let B=(A+B)—A4, ng=n,,, -
ng,yy={yriedl, x,={x:ied}, and x,={x;
j € B}. An approximately design-unbiased estimator of
parameter 0 is assumed to be written as 0 =7 (y o X
Xp).

Under the proposed method, a bootstrap sample is
constructed as follows.

1. Regard 4 as an SRSWOR of size n, from P.
Choose n, units from 4 by a bootstrap method
suitable for an SRSWOR of size n, from P.
Denote the sampled labels by 4"

2. Regard B as an SRSWOR of size n, from P-4
conditional on 4 having been selected. Choose r,
units from B by a bootstrap method suitable for an
SRSWOR of size n, from P — A. Denote the
sampled labels by B".

3. For je B", define the mean-adjustment as %,
where

Xo=x 4+ f,(X -X /A= f), (D

with X, = nQIZ[EAx,., X, = njz,.eA*x,., and f, =
n,/N.
4. Let Y, —{y,:zeA} X,o=1{x: ied}, and
=% :je€ B'}. The bootstrap analogue of O
1stheng1venby 0" =1(y o» X5 Xp0).

For bootstrap methods for a finite population, see Shao
and Tu (1995, Chapter 6). The Bernoulli Bootstrap (BBE)
proposed by Funaoka, Saigo, Sitter and Toida (2006) is
appropriate for our method because of a reason specified
later. To obtain a bootstrap sample A~ in the BBE, we
conduct random replacement for each i in A4: keep
(x;, y) 1in the bootstrap sample with probability
p={-00-n" A=) or replace it with one
randomly selected from 4. For the case where p ¢ [0, 1],
see Funaoka et al. (2006).

To estimate the variance of 0, repeat steps 1-4 a large
number of times K and use

K
Voot (0) = K™ z O — 6y )2’ )

where 0; ) 1s the Value of & inthe &™ bootstrap sample
and 6() =K'y, 6 )

When f, is negligible, the mean adjustment (1) is
unnecessary. The above method then reduces for large #,
to that by Schreuder et al. (1987) and Sitter (1997).

The proposed bootstrap method is motivated by the
following two observations. First, let sampling schemes I
and Il be [P > A+B, A+B —> A] and [P > A, P -
A — B], respectively, where — means “the right hand
side is an SRSWOR from the left hand side.” Then, I and II
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implement the identical design. In fact, the design
probability assigned to a particular sample {i = (i, i,, ...,

i, €A, = Jos s Jo,)€B} in 1 is Priie4,
JEB} =[vC N nMCn,,] = = n,lng (N — nA+B)'/N
while it is Pr{ied, je B} =[,C, chng] =

nng (N —ny )/ N in IL ObV10usly, the sampling
distribution of an estimator under repeated sampling
depends on the sampling design. So, it is a matter of
convenience to assume Il is carried out even when I is
employed.

Second, to motivate the mean adjustment (1), observe
that the mean of x of the set P— A4, or the conditional
expectation of X, under repeated sampling given 4, is

X, , =(X - foA)/(l—fA) The bootstrap analogue of
XPAlsglvenbe = (X - S X)) A= f). So,
equation (1) amounts to X=x; -X, A+XP_A , a mean
adjustment similar to that proposed by Rao and Shao (1992)
in the context of hot deck imputation under the uniform
response mechanism. This mean adjustment ensures
appropriate correlations between x in 4 and x in B’
required for consistent variance estimation with high
sampling fractions (see Rao and Sitter 1997, page 760).
Note that the condition n, =n . or f, = f . is essential
for cancelling out X in the mean adjustment. Therefore, the
mean-adjusted bootstrap requires a bootstrap method for
SRSWOR which retains the original sample size, such as
the BBE.

It is shown in Appendix A that the proposed bootstrap
method provides design-consistent variance estimation for
the class of estimators studied by Rao and Sitter (1997).
Since no rescaling is performed, the method also works for
estimation of distribution functions. Under some regularity
conditions for the population distribution function, it
provides design-consistent variance estimates for quantiles.

3. Illustrations
3.1 Ratio estimator

To illustrate, let us first consider the ratio estimator
Y, =r;X,p Where r,=5y,/x,w,=n,/n,, and
Xpop = Wi X, + (1= w) X, Let y, =, /X ) wX +
(1-w,)X,.}, the bootstrap analogue of y,. Using the
results in Appendix A with A(y,, X,, X3) = (¥, /xA)
w,x, +(1-—w,)xz}, we may approx1mate variance of y yr
under the proposed bootstrap method V. (¥, ") by

G0 G 10 8
+ 2(X /X)) — & fA+B) deA
Nyip
( fA+B) (WA fA) sz + ( WA) sz (3)
a-rn 7 a-rp 77
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Where S =(n,—1y Z,eA(J’, )’ AdxA =(n, -1

a Qi) (= X0 S8 = (0 =D T )
and St =y -1 s (xl X,)’. The right hand side of
(3) can be described as a “bootstrap-linearization” variance
estimator. We denote it by vy, (77,). Note that vy (¥,) is
almost identical to the jackknife-linearization variance
estimator by Rao and Sitter (1995),

_ _ _ 1 s
v (3,) = (xA+B/xA)2 ( an) dA
+ 2(X,, 5/ X,) —5 d fA+B) deA
Nyp
( fA+B) 2 SY:A+B, (4)
Ny.p
where S, ,=(n,, - 1)"'Yus (x, —X,.,)°, which

agrees with equation 4.8 of Demnati and Rao (2004), page
25. Since they are close to vy, (7,), Vi(¥,,), its Monte Carlo
approximation v, (7.) and vy (¥, ) should perform well
not only unconditionally but conditionally on (x,,,/X,) as
well. It is interesting to note that Taylor linearization in
deriving vy (.) is performed around the sample means,
not the population means (see the comment made by
Demnati and Rao 2004, page 21).

3.2 Regression estimator

We next consider the regression estimator. The estimator
of the population mean is ¥, =V, +b (xA+B xA)—
y+(1- wA)b (x3—Xx,), where b, —SYA/SM with S”1

(ny=D)"Ties (=X, —¥,). Let ¥, =y, +(01-
wy)b,. (xB —X ). Using the results in Appendix A (see
also Appendix B), we have
. (1=
Vi(,) = M My,
n,
+ (1_fA+B) bj (WA _fA) Sva + (1_WA) AfB
nyp =7 (I=1)
1- 1-
RN A By A
ny n,
+2ZA (1_fA+B) bA "
nyvB
1- N
+ 4z £———152-aAbe;‘$;, )
ny

Where 2y =15 —%,) /{(nA - )85, m,, =(n, —
1) Yiea ;=% )€, e=y, -y, -b,(x,—X,), and

=y,-b,x, We call the right hand side of (5) a
bootstrap—linearization variance estimator of ¥, and denote
it by vy (¥,). The jackknife-linearization variance
estimator for 7, (Sitter 1997, page 781) is
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_ (=N (1= fip)
vie () = B 4 My, + B A2 b2 vA+B
4 A+B
ZAZ (x, %, e 2ZAZ (x xA)e
nA icA (1_0) nA icA C)

2z,b, Z (x;, =X )(x, _fA+B)ei’ (6)

ny(ngp =1 ic (I-¢)

where ¢, =n}' + (x, - x,)* /{(n, —1)S2,}, the leverage
values. From (5) and (6), Vi (7). v, (7,) and vy, (7,)
perform in a similar fashion conditionally provided that
fup =0, n, is large enough for all ¢; to be nearly zero
and the last term on the right hand side of (5) is negligible.

3.3 Estimation of distribution functions

As an example, let us take the model-calibrated pseudo-
empirical maximum likelihood estimator (ME) under two-
phase sampling proposed by Wu and Luan (2003) defined

by
B =Y p 1y, <), (7)

icA

where p, maximizes the pseudo-likelihood function
I(p)=%, (N/n,) logp, subject to (a) X, p, =
1(0<p, <1); and (b) X, pig =nysSas g Where
g =g(x,t)=P(y<t|x;) under a certain working
model. For example, we may assume log(g,/(1-g,)) =
x; 0 with variance function V(g) = g(1 — g). Chen, Sitter
and Wu (2002) showed a simple algorithm for computing
P, It can be shown (see Wu and Luan 2003) that under the
two-phase sampling considered in this paper,

Fye(®) =n}'Y 1(y,<1)

icA4

+{n;LB Y g -n)Y g,-} B+ o,(n}"),

i€A+B ie4
where  B=3%, (g&-)I/(y<0/Tp (g—-2)° with
g=N"Y, g. Note that this equation is not used in

estimation, but it shows that the variance of F,,;(¢) can be
estimated by the mean-adjusted bootstrap since Fy(f) is
approximated by a regression-type estimator.

3.4 Quantile estimation

Quantile estimation can be obtained by directly inverting
F(t) by F'(a) =inf {t: F(t) > o} for some o € (0, 1).
For example, if (7) is used, then a quantile estimate is given
by v, where y,, is the k™ order statistic of y such that
S5 Py <o and X, p,) =a (Chen and Wu 2002).
Under some conditions specified in Chen and Wu (2002), a
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Bahadur-type representation for £,. (o) can be established.
Thus the mean-adjusted bootstrap variance estimator for
Fb(a) is design-consistent. Note that no closed form
variance estimator for Fy; (o) is available, but a consistent
variance estimator based on Woodruff’s interval estimation
(Woodruff 1952) can be applied.

4. Simulation

4.1 Population and sampling

A simulation study was conducted to examine the mean-
adjusted bootstrap variance estimator for the estimators in
Section 3. We report here the results for estimating
distribution functions and quantiles. The results for the ratio
and regression estimators are available from the author upon
request.

First, the auxiliary variable x for a finite population P
of size N =2,000 were generated as Gamma(1, 1). The
characteristic variable y was then generated by y, =
x, + [x, v, where v, ~ N(0, 0.5°). An SRSWOR 4 + B
of size n,, , =800 was taken from the population and then
an SRSWOR A4 of size n, =200 was selected from
A+ B. The population was fixed throughout all simulation
runs since we focus on design-based repeated-sampling
properties.

4.2 Estimation of distribution functions

For the estimation of distribution functions, we took
F,:(t) as an example. Other estimators, e.g., Chambers
and Dunstan (1986) and Rao, Kovar and Mantel (1990), can
be handled similarly when an estimator is approximately
design-unbiased. The working model for g in £y (¢) was
assumed to be logit with binomial variance. The bootstrap
variance estimator v, (£ (f)) was calculated with K =
200. The BBE was used in constructing a bootstrap sample.
The total simulation runs were M = 5,000 while the true
MSE of £, (¢) atagiven ¢ was estimated by 50,000 runs.

We compared v, (Fy:(¢)) with three variance
estimators: Wu and Luan’s (2003) analytical estimator, the
standard delete-1 jackknife and an ad hoc fpc-adjusted
delete-1 jackknife. Wu and Luan’s (2003) estimator is

v (Fye (D) = (n5 = NS} + () —n,5)Sh,

where the two $? components are estimated respectively
by
$2 g%y 1 z
=g [ u,‘j
Ny g (Mg =1 jsiiean
1

-l ¥

n, (nA _1)j>i:i,jeA

Statistics Canada, Catalogue No. 12-001

Saigo: Mean - Adjusted bootstrap for two - Phase sampling

where 5% = {n,(n, - 1)}_lzi<j:i,jeA v, and BF =
Sic i jea UV | ic i jea Uy With u; and v, specified as
follows: For S;, v = — Ij)2 and u; = (&, - gj.)2 with
I, =1(y;<t) and g, =g(x, t) estimated in 4; For
Sp-vy=(D; =D’ and w;=g,(1-8)+8,(1-¢))
Vzith Di =1L, =8B B=2ics L(& — &)/ Xicu (& —
gA)z and g, = n;llzieA g
The standard delete-1 jackknife formula is given by

A -1 A A
Vy (©) = M z (e(_j) - e(.)) 5

Nyp  jed+B

where 0 = Fy; (1), 0_, is the j" jackknife pseudo-

estimate and 0, = nATLBZjE/HB 0. Note that for j € 4,
both y, and x, are deleted from the sample while for
J €B, only x; is deleted (see Rao and Sitter 1995 and
Sitter 1997). The adhoc fpc-adjusted formula is
Vitpe (Fue(0) = (1= f4,5)v, (Fyg (D).

Table 1 shows the relative bias (%Bias) and the
coefficient of variation (CV) of the four variance estimators
for  F(¢,) (o= 0.10, 0.25, 0.50, 0.75, 0.90),  where
F(t,)=0a. Here, %Bias and CV were calculated as
%Bias = 100x (M '™, v —MSE)/MSE and CV =
[M7'SM (V™ —MSE)*]"? /MSE, respectively, where
v(™ is a variance estimate in the m™ simulation run. Table
1 demonstrates that v, (£, (¢)) is biased upward since the
sampling fractions are not negligible, that vm,c(F‘ME(t)) is
biased downward since the adhoc adjustment factor
(1= f,.z) is too small, and that both v, (F;(¢)) and
Vooot (Fri (£))  are approximately unbiased although the
latter is slightly more unstable, as is typical for a resampling
method.

Table 1 Variance estimation for the pseudo-empirical MLE

ﬁME(tu)
a
Estimator 0.10 025 050 0.75 0.90
Vooot Fme(fa))  %Bias 027 -0.22 0.64 083 273
CV 019 0.14 014 0.15 024
v, (EFve(y)) %Bias -2.29 -2.03 -0.47 -1.95 -3.26
CvV 017 0.1 009 0.11 0.19
vy (Fume(ty) %Bias 14.24 1729 2298 23.80 24.97
CV 024 021 025 027 036
Vipe(FMe(a))  %Bias -31.45 -29.63 -26.21 -25.72 -25.02
CV 033 030 027 027 030

Paralleling Royall and Cumberland (1981a, 1981b), we
ordered the M = 5,000 simulated samples on the values of
X, — %, classified them into 20 consecutive groups of
G =250 in each of which the simulated conditional
MSE(MSE,) and conditional mean of v(E.(v)) were
computed. Figure 1 shows MSE_, and E_.(v) plotted
against the group averages of X, — X, for #,,, and ),
It is seen that both v, (£ (¢)) and vy, (Fy:(¢)) behave
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similarly conditioned on X,,, — X, The jackknife variance
estimators, v, (Fy;(#)) and \/prc(lf‘l\,[E (t)), though biased,
track a trend in MSE,.

4.3 Quantile estimation

By directly inverting F,,;(f), we estimated the a
quantile. To obtain p, for £ (¢), we fixed ¢ at 7, where
i =inf{t:n,'Y, I(y, <t)>a}, an estimator using only
{y,:i € A}. For variance estimation, K =1,000 bootstrap
samples were created. For comparison, we also computed
the Woodruff variance estimator (Woodruff 1952 and Shao
and Tu 1995, page 238),

n A 2
o (Bt o] PO 61ow6) = Frg (4= 612y) |-
2C1—K/2
where 62F = v(Ey: (1)) with ¢ = F L (o) and &, _,, is the
(1-1x/2) quantile of N(0, 1). We let k = 0.05 although
the best choice of x is unknown. The performance
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M = 5,000 runs while the true MSE was estimated through
50,000 simulation runs.

Table 2 summarizes the results for quantile estimation. It
demonstrates that the mean-adjusted bootstrap has an
upward bias in estimating ¥ (F,1. (o)) while the bias in the
Woodruff variance estimator is negligible.

Table 2 Variance estimation for quantiles

a
Estimator 0.10 0.25 0.50 0.75 0.90
vbom(ﬁg,[lE(a)) %Bias 6.27 14.32 10.05 10.02 10.28
CV 0.53 053 0.51 052 0.61
vW(ﬁK,[lE(oc)) %Bias 1.64 3.75 292 0.70 -3.67

CV 050 045 045 046 0.52

Figure 2 shows conditional properties of v, ., (Fyyp(ct))
and v, (Fyt(a) for o =0.10,0.90. We see that both
Vooot (Fup () and vy, (Fyf(a)) track MSE, similarly
although the former uniformly possesses an upward bias.
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Figure 1 MSE, and E.(v) for Fy(t,)
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Figure 2 MSE, and E(v) for quantile estimation
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5. Further remarks
5.1 Stratified two-phase sampling

Suppose a population is to be stratified into H strata but
no information for stratification is available. A possible
solution for this situation is to first obtain an SRSWOR of
size n' from the population, observe auxiliary variables
including the ones for stratification, stratify the sample into
H strata, and in each stratum take an SRSWOR of size n,
from n, units belonging to stratum /4 in the sample. See,
for example, Cochran (1977, section 12.2) for details.

Let N, be the size of stratum % in the population.
Conditioned on #n; >0, the first-phase sampling in stratum
h described above is equivalent to simple random sampling
without replacement of size n; in stratum / independent
across strata. Thus, given n, (h=1,..,H), the mean-
adjusted bootstrap can be applied independently in different
strata to obtain a bootstrap sample. When N, is unknown,
as is usually the case for stratified two-phase sampling, an
unbiased estimator A7, = N(n,/n") canbe used in the mean-
adjusted bootstrap. In this case, the sampling fraction n'/N
is used commonly throughout all the strata.

Note, however, that the present discussion is legitimate
for estimates conditioned on the first phase sample sizes.
Variance due to the variable n, may be large. For
unconditional variance estimation, see Kim et al. (2006).

5.2 Non-response

The above comment applies to imputed survey data
under the uniform response mechanism. Let us suppose that
a population is stratified into S, (4 =1,..., H) where simple
random sampling without replacement is undertaken
independently. A sample is divided into imputation classes
C, (I=1,..,L) in each of which the response rate is
assume to be uniform and imputation is performed. An
imputation class may cut across strata. We also assume
which imputation class a sampled unit belongs to is
correctly identified before imputation. Let us denote the
numbers of sampled units and respondents in S, N C, by
n,, and r,, respectively. Then, it is seen that given n,, and
1, the corresponding design in S, N C, is the same as the
one discussed in this paper if we regard the n,, units and
r, respondents as A+ B and A4, respectively. Therefore,
the mean-adjusted bootstrap can be conducted
independently in different S, N"C, (h=1, ..., H;l=
L, ..., L). The size of S, nC,, denoted by N,, can be
estimated by N,, =N, (n, /n,). Note that this is a boot-
strap method conditioned on the number of respondents.

6. Conclusion

In this paper, we have proposed the mean-adjusted
bootstrap for two-phase sampling. The method requires a
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simple mean adjustment and can handle the estimation of
distribution functions and quantiles because it requires no
rescaling. The Taylor series expansion shows that the
method has desirable conditional properties for the ratio and
regression estimators. A simulation study demonstrates that
it also has similar conditional properties in estimating
distribution functions and quantiles. An extension to strat-
fied two-phase sampling is straightforward. Conditioned on
the first phase sample sizes, the method can handle stratified
two-phase sampling and imputation under the uniform
response mechanism. We are currently invesigating an
extension of the proposed method to more generalized
multi-phase sampling designs.
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Appendix A

In this appendix, we show that the proposed bootstrap
method provides consistent variance estimates for a class of
estimators considered by Rao and Sitter (1997). We use the
same setting as in Rao and Sitter (1997) with slightly
different notation. For simplicity, we assume there exists
only one stratum, but an extension to stratified two-phase
sampling is straightforward.

Consider a class of estimators, 6 =A(y ,, X,, X;), of a
population parameter 8 =/4(Y, X, X), where ¥ and X
are the population means of vectors y and x, ie.,
Y=N"'Y,,y and X = N'Y, ,x,. Here, x is observed
in the first phase sample 4+ B whereas y is measured
only in the second phase sample 4. The sample means
(y, x4 and x, are calculated in A4 and B,
respectively, ie., ¥ ,=n,YiiVi ¥4=N, SicaX,, and
Xp="p Licp X,

By a Taylor expansion, we have

0=0+Vh'(AY,,AX,, AX}) +0,(n,"?),

where VA is the gradient vector of /4 evaluated at
Y, X, X), Ay ,=y,-Y, AX,=X,-X, AX,;=X, -
X, and ' means a transposed matrix (see equation 33.7 of
Rao and Sitter 1997, page 757 and the required conditions
therein). Then, the variance of 8=h(y,, X, X,) is
approximated by

v)=vhy . Vh,

(70 %0 %)
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where X ¢ o) i the variance-covariance matrix of
(¥, X', X3)" under repeated two-phase sampling. Because
A and B are SRSWOR’s of size n, and n, from the
population P, respectively, we see that X o )=
(1- fA)S(y wy/ny and T =(- f3)Sy/ng, where S
(N-1)" Siep(u, —U)(u, —U) is the population variance
of u=(y, x") or x and f, =ny/N. For Cov(y,, Xp),
let E, and Ej, be the expectation for selecting an
SRSWOR 4 from P and choosing an SRSWOR B from
P-4 given A, respectively. Note that Ej ,(x,)=(X —
f4x)/ (- f,). So, we have

Cov(y , X) = E(¥ ,X3) — E(¥ ) E(Xp)
=E, (5, Ep (%) -V X'
=-S,. /N,

where =(N =)'y -V)(x - X)'
COV(XA: xB) =—S}/N.

Now consider a Taylor expansion of §" =#4(y .,
X, x ) with x =X, +f,(x,-x)/(-f,), the
bootstrap analogue of 0= h(yA, X,, Xp). Let E, and V, be
the expectation and variance under the proposed bootstrap
procedure, respectively. First, observe that E.(y .)=¥,,
E.(x,)=Xx, and

E(xp)= E*A»« (E*B»«‘A»« (X5))

Similarly,

=E (X + f4(x, =X )/ 1))
= EB’
where E . and E . o are respectively the expectation

with respect to samphng A" and the conditional expectation
with respect to sampling B* given 4" under the proposed
bootstrap method. Then, 0" = (¥ > X o» X,0) 1S approxi-
mated by

0" =0+ VA" (AT, A%, AR + o, (n]"),

where VA is the gradient of / evaluated at (y ,, X X, Xz),
AV =V, =V,p AX,. =X, -X,, and AX,. =X, — X,
(see equation 33.A.1 of Rao and Sitter 1997, page 767 and
the required conditions therein). Therefore, ¥,(0°) is
approximated by
V.(0)=Vh z(j;*, 2.2y v,

where Z(y S is the variance-covariance matrix of
(VX 05 X, L) "under the proposed bootstrap sampling.

Consrstent variance estimation under the proposed
method is proved by showing VA* and Z(y %. %,y are
consistent for Vi and Xy v wys respectlvely
Consistency of VA® for Vi follows from consistency of
(¥,, X, X) for (¥,X,X) and continuity of 4.
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Consistency of Z( ¥ Ry Can be shown as follows.
First, since we use a bootstrap method suitable for simple
random sampling without replacement in subsampling A",
we have Z(y = (1—fA)SA'(2y:x,),A/nA, where §2,=
(n,~)"'Tis (u w,)(u,—u,) with u=(y,x'). Sec-

ond, because
1. Z; (VB‘A (x )+ A*(E*B*\A*(;CB*))’ where
V. e and Vg are respectively the variance with
respect to sampling 4" and the conditional variance
wrth respect to sampling B” given 47,

2.V, " (x D=01- fB\A)SxB/nB’ Where S =(ng =
D7 Y (x; —X3)(x;, —X;)" and Soa=ng/(N -
n,), and

3. E*B‘A (x )= xB+fA(xA )/(1 f4), we have

. = (1 fB‘A)SxB/nB +fA SxA/(N nA) Since
both $2, and §2, are consistent for S, Zf is
consistent for X = (1-f; )S2/ny. Frnally, we
compute Cov, (¥ ,, X,.) and Cov,(X ., X,.). For
the former, we have

COV*(yA*’ EB*) = E*(yA* if;*) _E*(yA*) E*(EB*)'
=E, (Vi By, (X)) =7 ,%,
=E (¥ Axs+t [u(xa—X0)A=F )} =V X5
__SyxA/N’

where §, =(n, )"y, =¥ )(x, —X,). Similarly,

Cov,(x A*,.?TCB*):—S'iA/N. This completes the proof of
consistency of X5 = z.y for Ty, «, 5y

Appendix B

In this appendix, we derive vy (¥,). Under the mean-
adjusted bootstrap,

=Y
+(1-wy)b, {—M'F(JTB*—)TB)"‘(YB—)TA)}-
(=1
Define
&;q:n;z,'efr* x;” yiq’
‘% = [‘%10’ ‘%01’ ‘%11’ ‘%20’ fB*]'
and

S ETS IS IR T 7D SR IE N X ()

Note that bA»« = (&Tl - &TO&ZI)/(&ZO - &T(Z)) Let )_’; = h(%*)'
This expression is slightly different from that in Appendix
A, but we may exploit independent subsampling of 4" and
B". Then, by Taylor linearization of 7, =/(¢") around &,
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we obtain 7, =7, + VA" (¢ ~€) and V.(¥,)=Vh" 3.
* é
Vh', where

Vi =[-b,(A=w /(A= [)=2,(¥ ,=2b,%,).1 =2, X
zp—2,b,b,(1=w,))]

and Y = [v;] with
V=26, S'iA’
Va1 =4 S
Vi =¢4 S
vy =c (n, =07y (x5 y =€) — X0,
=y (=)' (-0 — T,
vy =c,(n, —1)_lzi€A (x v, =€)
v =, (ng =D (7 = Ey)(X — X0,
v =c (n, =07 Y (7 =€) =T )
Vs =, (ny =D (5 —E)(x ¥, — &),
Vag =€ (ny = 1)_12ieA (7 = &),
Vs = Vsy = Vg3 =gy =0,
Ve = {ng' —(N —n,)"} S2,

v;=v;, and c,=(1-f,)/n, Rewriting the moments

from the origin as the central moments, noting that
y; =¥ ,=b,(x,—x ) +e and using properties of e; as the
least-squares residuals, we obtain the right hand side of (5)
after some algebra.
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On standard errors of model-based small-area estimators

Nicholas Tibor Longford '

Abstract

We derive an estimator of the mean squared error (MSE) of the empirical Bayes and composite estimator of the local-area
mean in the standard small-area setting. The MSE estimator is a composition of the established estimator based on the
conditional expectation of the random deviation associated with the area and a naive estimator of the design-based MSE. Its
performance is assessed by simulations. Variants of this MSE estimator are explored and some extensions outlined.

Key Words: Composite estimation; Empirical Bayes estimation; Shrinkage; Small-area estimation.

1. Introduction

Design-based methods have over the years been proven
to be inefficient for small-area estimation because, unlike
empirical Bayes and related methods, they cannot make
effective use of auxiliary information. However, the
assumptions associated with the models that are applied
remain a weakness of model-based methods because
inferences based on them have the ubiquitous caveat of ‘If
the model is valid ...’. In the application of empirical Bayes
models to small-area estimation, the local areas (districts)
are associated with random effects. In the design-based
perspective, this assumption is not valid because in a
hypothetical replication of the survey the same districts
would be realised (except for some districts that happen not
to be represented in the sample drawn), and the target
quantities associated with them would also be the same.
That is, the districts should be associated with fixed effects.
The lack of validity in this aspect of empirical Bayes models
has no adverse impact on estimation of small-area quantities
(means, totals, proportions, and the like). Associating small
areas with random effects is key to borrowing strength from
or exploiting the similarity of the areas, as well as to doing
so across variables, time points, surveys and other data
sources, but it distorts the assessment of the precision of the
estimators. Some composite estimators and estimators of
their mean squared errors have the same deficiency.

In the next section we diagnose this problem in detail,
and in Section 3 propose a solution, which is then illustrated
and assessed in Section 4 by simulations using a set of
examples. These range from the simplest and most
congenial (agreeing with most of the assumptions made) to
more complex and realistic but least congenial, so as to
explore the robustness of the method. Its fuller potential is
discussed in the concluding section.

2. Fixed and random

By sampling variance of a general estimator 0 based on
a given data-generating (sampling) process 7y Wwe
understand the variation of the values of O(X) in
replications of the processes that generate datasets X and
apply 6 to them. In the design-based perspective, the
replication of a survey of a country with its division to D
districts yields the same district-level population quantities
0,,d=1,..., D; these D quantities are fixed. In contrast,
each replication in the model-based perspective, using
empirical Bayes models, starts by generating a fresh set of D
values 0,, independently of the previous replications.

We regard the design-based perspective as appropriate,
because, in principle, each quantity 0, could be established
with precision and a hypothetical replication of the survey
would draw a sample from the same population, with the
same division of the country into its districts and the same
values of the recorded variables for each member of the
population. Most established design-based methods are
valid when the survey is based on a perfect sampling frame,
which contains no duplicates and is exclusive for the studied
population, and the sampling design is implemented with
perfection, without any departures from the protocol. That
is, the estimators they yield are (approximately) unbiased,
the expressions for their sampling variances are correct, or
nearly so, and these variances are estimated with small or no
bias.

In contrast, model-based methods carry a much heavier
burden of assumptions that often cannot be verified. Various
model diagnostic procedures are available, but they are all
subject to uncertainty. Interpreting failure to find a contra-
diction as evidence of absence of any contradiction is a
commonly committed logical inconsistency. It can be
overcome only by quoting properties of estimators when the
assumptions are not valid, but such methods are difficult to
develop because of a wide range of model violations that

1. Nicholas Tibor Longford, Departament d’Economia i Empresa, Universitat Pompeu Fabra, Ramon Trias Fargas 25-27, 08005 Barcelona, Spain. E-mail:

NTL@SNTL.co.uk.
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one would have to take into account. Yet, despite these
drawbacks, model-based methods have proven their worth
in small-area estimation and are nowadays rightly regarded
as indispensable (Ghosh and Rao 1994; Rao 2003; and
Longford 2005).

The EURAREA project (EURAREA Consortium 2004)
carried out a large-scale simulation study involving
sampling from artificially generated populations that
resemble the human populations of several European
countries and application of several classes of estimators. It
confirmed the superiority of model-based estimators, with
several qualifications, but reported rather disappointing
results regarding estimators of their standard errors. We
trace this problem to an averaging applied in deriving the
standard errors of shrinkage estimators.

Suppose a population is divided into D districts, each of
them of population size that can for all practical purposes be
regarded as infinite, and independent simple random
sampling schemes are applied in the districts. We assume
that within each district d the outcome variable Y has the
normal distribution with mean p, and the same variance
oy, N(u,, 63,). For the within-district population means
n,, we assume the superpopulation model p, ~
N, GZB* ), but we want to make inferences about a fixed
set of (realised) means {u,}. In Section 5, we discuss the
more general regression setting defined by the within-
district models

(Y|d)~ N(X,B+3,,0y),

in which X, are the within-district regression matrices, 8
the set of corresponding regression parameters common to
the districts, and o, is the deviation of the within-district
regression from the typical regression defined by 6, =0. In
the superpopulation, &, are a random sample from
N(0, GZB* ), but we want to make inferences about the fixed
(realised) set {5,}. Thus, we use model-based estimators,
but assess their properties by design-based criteria.

Denote by p the (national) mean of the quantities
and by o the district-level variance, o3 =D"'Y,
(u, —p)>. Note that they differ from their respective
superpopulation counterparts p~ and GZB,,. We assume first
that o;,0y and p are known. Let (i, and fi be the
sample means of the variable of interest in district d and in
the whole domain (country). They are based on samples of
respective sizes n, and n=mn +---+n,. When no
covariates are used the empirical Bayes (shrinkage)
estimator of p, is

- 1 . 1.
fi, ={1— jud + A, (1
I+n,0 I+n,0
where ® =c3/cy, is the variance ratio. The model-based

conditional variance of n,, given the data, p, Gf,v and GZB,
equal to GZB/(l +n,m), is often regarded as the sampling
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variance of fi ; the origins of this practice can be traced to
the application of the EM algorithm. A more careful
derivation acknowledges that in the design-based
perspective [i, is biased for p,,
E(@,ln,)—p, = _M,
I+n,0

and its mean squared error is

MSE(fi; ) = {1 - j var(i, )+ e =)

1+n,0 (1+n,0)
2 2
n,m —
:G%v d - + (“’d “‘)2 , (2)
(1+n,0) (1+n,m)

assuming, for simplicity, that i=p. To emphasise that
MSE depends on the target, we include both the estimator
and the target in its argument. In particular, MSE([i; p) #
MSE({i; ), unless p, =p. An inconvenient feature of
the identity in (2) is that it involves p,, the target of
estimation. If we replace (u, —p)° with its expectation
over the districts, o}, we obtain the more familiar identity

©)

Oy

MSE(f ;1) = >
I1+n,0
the EM-related conditional model-based variance of u,.
The bar over MSE indicates expectation (averaging) of
(n, — ), the numerator in the last term of (2), over the
districts, with the sample sizes n, intact. Throughout, we
condition on the within-district sample sizes n,, d =
L, ..., D, even though in the sampling design each of them
may be variable. MSE can be interpreted as model
expectation, although the expectation or average of the
squared deviations (u, —p)* could be considered and
estimated for a given set of districts without any reference to
a model. The conditional variance in (3) is appropriate for
districts with p, in the ‘typical’ distance, oy, from the
national mean p. When |p, —p|# oy, an unbiased esti-
mator of the conditional variance o3/(1+ n,0) is biased for
MSE(fi; pn,). As the bias is related to the population
quantity p, —u, it is not reduced by increasing the sample
size n,.

3. Composite estimation of MSE

To estimate MSE(fi,; pn,), we reuse the idea of
shrinkage and combine the alternative estimators, o5/ (1+
n, ®) and a naive estimator of the MSE in (2). This
composite estimator can be motivated as follows. If n, =0,
and therefore fi, = [i, we have no direct information about
iL,, SO we cannot improve on op,/(1+ 7,0) as an estimator
of MSE(fi;p,). When n, is large, p, is estimated with
precision sufficient for using (fi,—(1)’, possibly with an
adjustment for bias, as an estimator of (u, —p)>. For
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intermediate sample sizes, we search for a composition
(compromise) of these two alternatives that are suitable in
the extreme settings, when n, =0 and as n, — +o. We
therefore derive expressions for their MSEs and then for the
MSE of their combination.

We regard the constant o3,/(1+7n,m) as an estimator,
and refer to it as the averaged estimator of MSE. Although
it has no variance, it is biased, with mean squared error

2

MSE{ 8

1+n,0

s MSE(fL; “’d)}

_J on  owme’  (wg-w’ ’
l+n,0 (I+n,m) (+n,0)
:{GB_(Hd_H) } @)

(1+n,0)

The squared deviation (u, —p)’, involved in (2), is
estimated naively by (fi,—{)° with bias equal to
oy (n,' —=n')y=o%,/n, and, assuming that {i, is normally
distributed,
MSE{(fi, =) (1, =)}
= var{(fL, — )’ [u,}
+HE{(R, — () = (1, —1)’ g} 1

oy % Ou
= A, — )’
n, n, d
2 2
ow |30
=—W| Yt 4, —u)Z], (5)
ng | Hy

derived from the properties of the non-central 1y’

distribution and an approximation by letting n — +. As
an alternative, [i, may be used instead of [i ; elementary
operations yield the approximations

E{(ﬁd_pl)zmd}i(l_bd)z|2—W+(ud—u)2]
d
2 . (1-b)"
varl(@, ~ Y I3 =5
ny

oy 2075 +4n, (u, — W’}
where b, =1/(1+ n,®), andso
MSE{(fi, — )5 (1, — 1)’}

= var{(fi,~ )1 3+ [E{(R, — 0" ~(1y = )l 3T

4
= (1- b,y 2
ny
2 2 oy (n _H)z
+2(1-b,)*(2—6b, +3b;)——4
n,
+b7(2=b,)" (1, —W)*. (6)
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This approximation is valid only for b, =1/(1+n,0), so
further approximation is involved when we substitute a
possibly suboptimal choice or an estimate of b, based on an
estimate of . In general, the coefficient b, that minimises
the MSE in (6) differs from 1/(1+#n,0) because the
shrinkage with b, =1/(1+ n,0) is optimal only for targets
that are linear transformations of p, (Shen and Louis
1998). We do not pursue this avenue because the solution,
being a complicated function of the parameters, is likely to
be sensitive to the error in estimation of the parameters. The
estimator (fi,— ()> could be corrected for its bias in
estimating (u, —p)°, although this may result in a negative
estimate, especially when »n, is small.

Finally, we combine the two (biased) estimators of
MSE(fi; p,), the averaged estimator op/(1+n,0) and
the naive estimator derived from the identity in (2), using
(i, —{1)* as an estimator of (i, —n)*. The MSEs of these
two estimators depend on (u, —p)*, so we replace the
relevant terms by their expectations across the districts d.
We replace (u, —un)* with GZB, and (n, —n)* with 36;;
or, in general, with KG;;, where « is the kurtosis of the
(district-level) distribution of p,. Although it may at first
appear that we have not gained anything, because we still
have to remove the dependence of MSE on (i, —p)* by
using o}, instead, now we make this step at a later stage. In
the simulations in Section 4, we show that this reduces the
undesirable impact of averaging.

Thus, we search for the coefficient ¢, that minimises the
expected MSE of the composite estimator of the MSE,

MSE(fi,; 1ty)
=(1~c,)MSE(fi; u,)+c,MSE(fi;1,)

2
c .\ .\
=(-c,) (1—bd)2n—w+b§(ud—u)2 +c,bon. (7)
d

To evaluate the MSE of this MSE estimator, as a
function of ¢,, we use the expressions

MSE{b,o5; MSE(ji,; 1)} = 2b,03,

MSE{(ii, - 1)*;(n, —p)’} = Z—?G +4n,),
d
MSE{(fi, — )75 (1, — 1)’}

= Z—?{sa —b,) +302(2—b,) nle’
d

+2(1—b,)*(2—6b, +3b))n,0},
derived by averaging of the respective equations (4), (5) and
(6); (n, —n)* isreplaced by o, and (u, —p)* by 3o},

Assuming that the district-level targets p, are normally
distributed, the MSE of the composite estimator in (7) is
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2
O ~ ~
E{(=e)U=b,)" —+ (L=e)bj(f, )’
d
+ CdbdGZB _bdzcévndwz _bdz(ud - Hd)z}z

= b3 E{(1-c,)oin,o+(1-c,)({i,—)?

+ ¢,05(1+n,0) —ogn,0 = (1, —p)’}’
= b3 E{(1-c,)(fi, — )’ + ;08 — (g — )}
20y, 4oy

2
(I-¢,) S+
n, n,

=b

S

(hy — u)z]

5 2

c
+b] (1_Cd)n_w+cd{62B = (1, _H)Z}
d

>

using the identities (1-b,)* =b n o’ and o3 =cy® to
extract the factor b;. By taking the expectation over the
districts, keeping the sample sizes intact, we obtain

MSE {MSE(fi; 1, )}

b4
= n%{(l -c, )2 3+ 4nd0))csf,v + 265 nj G;;}.
d

The minimum of this quadratic function of ¢, is attained for

« 3+4n,0
Ca

3+4n,0+2n 0

This choice of a coefficient ¢, agrees with our expectations.
For n, =0, ¢, =1 and we rely solely on the averaged MSE
estimator, equal to oy, Further, ¢ is a decreasing function
of n,, converging to zero as n, diverges to +oo; for large
n, we rely on the naive estimator of MSE. It is also a
decreasing function of ®; for @ =0, that is, 02B =0,c, =1
for every district d, confirming that u, =p and p, would
be estimated precisely i p were known. With increasing
o, o3/(1+n,m) becomes less and less useful because the
squared deviations (u, —p)* are widely spread (around
op).

If we adjust (fi,— (i)’ for its bias in estimating
n, - i)?, the expected MSE of the shrinkage estimator is
minimised for

¢ 1+2n,0
CGq=—""7"
(1+n,m)
It is easy to check that
. njco2 1

.
Cq—Cy4

(4 n,0) 3+4n,0+2n 0>

so the bias-adjusted estimator derived from (2) is assigned
greater weight (equal to 1—c}) than the naive estimator
would be. But the difference is small for all values of 7.
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The composite MSE estimator based on (fi,— 0)? s
derived similarly, but the resulting expression is much more
complex. The optimal shrinkage coefficient is

¢ =3(1-b)) +2(1-b,)* f (b, )n,0 = b, (2—b,) f (b, )n; 0’
x [3(1=b,)* +2(1-b,)* f (b, )n,;0—
{2-4b,(2-b,)+3b] f(b,)}nj’],

where f(b,)=2~6b, +3b;. The dependence on b, is
particularly problematic, because in practice b, is estimated
and the properties of the MSE estimator based on estimated
c;' are bound to be affected by the uncertainty about b,. In
the derivations, we used the identity b, =1/(1+n,0), so
this expression could not be used when the values of b, are
set a priori.

4. Simulations

Properties of the composite estimator of MSE cannot be
derived analytically, and so we resort to simulations. We
consider the artificial setting of a national survey with a
stratified sampling design, with strata coinciding with the
country’s 100 districts for which estimates of the means of a
variable Y are sought. Simple random sampling is applied
within each stratum, assumed to be of practically infinite
population size. We have generated the values of the means
u, from the normal distribution N(u =20, oy, =8), and
the sample sizes n, from scaled conditional beta distri-
butions, given the means i, so as to inject a modicum of
dependence of the means on the sample sizes. With this
adjustment, the assumption underlying the averaged MSE
estimator is false, but this could not be detected by a
diagnostic procedure or a hypothesis test, not even with p,
known. The sample size of one district was altered to be
much greater than the rest, to represent the capital of the
fictitious country. The within-stratum distributions of Y are
N(u,, o4 =100). The district-level means and sample
sizes are fixed in the replications. For orientation, they are
plotted in Figure 1. The districts are assigned order numbers
from 1 to 100 in the ascending order of their sample sizes.
The smallest sample size is n, =15 and the overall sample
size is 3,698.

In the simulations, comprising 1,000 replications, we
generate the direct estimates [i, as independent random
draws from N(u,, o3,/n,) and the within-district corrected
sums of squares as independent draws from the
appropriately scaled 3 distributions with 7, —1 degrees of
freedom. Then we evaluate the shrinkage estimator i, for
each district d, followed by evaluation of the averaged,
naive and the two composite MSE estimators using the
coefficients ¢’ and ¢! or their naive estimates.
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In the first set of replications, we assume that p, 5, and
op, are known, so that the simulation reproduces the
theoretically derived results and enables us to assess the
quality of the composite MSE estimators without the
interference of uncertainty about the shrinkage coefficient
b, =1/(1+ n, ;o). The results are summarised graphically in
Figure 2. The empirical biases (their absolute values) of the
four MSE estimators are plotted in the left-hand panel.
Circles and black dots are used for the averaged and naive
estimators, respectively, and the biases of the composite
estimators are connected by solid lines. The absolute values
of the empirical biases are plotted, to highlight their strong
association with the sample size for the naive estimator. For

73

60 districts (60%), the composite estimator of MSE has a
positive bias. For the naive estimator, this count or
percentage is higher (78), and for the averaged estimator
lower (52). Throughout, the main contributor to the bias of
the averaged MSE estimator is the deviation of the squared
distance (u, —p)° from the district-level variance c3. The
two composite estimators, based on ({i,— 1)’ and on its
bias-adjusted version, differ so little that their biases cannot
be distinguished in the plot. The diagram shows that the
averaged estimator of MSE entails substantial bias for a few
districts, including several with large sample sizes. The
biases of the naive and composite estimators are without
such extremes.

Districts
v -
N . .
s s, . N "
g e &
Q . "y . .
=} . .
2 e : ek .
5 ‘8 . '
£ % .
o n . T 1 ' u " .
= . .
il - ‘
| I |
50 100 150
Sample size
Figure1 The district-level sample sizes and population means of Y. Artificially
generated values
o L
F ] o Averaged est.
'. @ Naive est.
<+ — » Comnposite est.
o — o
" ° w g
® e

Bias of MSE estimators

0 50 100
Districts
(in ascending order of sample size)

Root-MSEs of MSE estimators

0 50 100
Districts
(in ascending order of sample size)

Figure 2 The bias and root-MSE of estimators of the MSE of the empirical Bayes small-area estimators.
Based on simulations with an artificial setting. The bias and root-MSE of the composite

estimators are connected by solid lines
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In the right-hand panel, the root-MSEs of the MSE
estimators are plotted, using the same symbols and layout.
The diagram shows that the naive estimator is inefficient,
especially for districts with the smallest sample sizes,
whereas the averaged estimator is very efficient for some
but inefficient for some other districts, without any apparent
relation to their sample sizes. In fact, apart from sample size,
high efficiency is associated with proximity of (n, — 1)’ to
o}, and low efficiency with the smallest and largest values
of (n, - 1)>. For example, the empirical root-MSE of the
averaged MSE estimator for district 1, with n, =15, is 2.63,
whereas its counterpart for district 11 (n;, =16) is 0.049.
Their population means are p, =24.55, exceeding p+ oy
by 1.72, and p,, =22.87, differing from u+ oy by only
0.04. The root-MSEs of the naive estimator are 5.08 and
3.51, and those of the composite estimator are 2.10 and 1.00
for the respective districts 1 and 11. The composite MSE
estimator performs much more evenly, moderating the
deficiencies of the averaged and naive estimators.

All three estimators are conservative (have positive
biases) for districts with relatively small MSE of i, The
averaged estimator has negative biases when the MSEs are
relatively large. The composite estimator also has negative
biases for such districts, but they tend to be smaller in
absolute value. For districts with the smallest sample sizes,
the composite estimator is not very effective because the
naive estimator is very inefficient. For a few of these
districts, the composition is counterproductive, as a result of
averaging, but such districts cannot be identified from a
single realisation of the survey.

Next we study a less congenial setting, in which the
normality assumptions of p, across the districts and of the

o Averaged est.
® Naive est.
~ + Empirical MSE

Mean of MSE estimates

0 50 100
Districts
(in ascending order of samples size)

clementary observations y,, within the districts are still
satisfied, but the global parameters, p, Gf,v and GZB, are not
known and are estimated. We use the same means u, and
sample sizes n, as in Figure 1. The results of the simu-
lations are summarised in Figure 3. In the left-hand panel,
the empirical means of the MSE estimators are plotted,
using the same symbols as in Figure 2, together with the
empirical MSEs (crosses ‘+’) of the shrinkage estimators
fi,. The empirical means of the averaged estimators have a
regular pattern because the estimates in each replication
depend only on the sample size n, and the estimated
variance ratio @®. For biases, the naive estimators have a
regular pattern, similar to their pattern in Figure 2. The
naive estimators have positive biases that decline with the
sample size. The averaged estimators are far too conser-
vative; their means do not veer from the smooth trend. The
composite MSE estimators deviate from this trend in the
appropriate direction, but not to full degree. Their average
bias is positive, equal to 0.22, or 10% (2.42 vs. 2.20), and
they overestimate the target MSE for 70 out of the 100
districts.

The right-hand panel displays the root-MSEs of the MSE
estimators. The naive estimator is inefficient, whereas the
averaged estimator is very efficient for some and rather
inefficient for other districts. The composite MSE estimator
is more efficient than either naive or averaged estimator for
36 districts; it is more efficient than the averaged estimator
in exactly half of the districts, but it does not have its glaring
weaknesses. As in the congenial setting (Figure 2), the
differences due to bias adjustment of (i, — )* in compo-
sitt. MSE estimation (using coefficients ¢, or c') are
negligible.

Root-MSEs of MSE estimators

Districts
(in ascending order of sample size)

Figure 3 The mean and root-MSE of estimators of the MSE of the empirical Bayes small-area
estimators. The global parameters p, cfv and 0123 are estimated
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Next we compare the MSE estimators for the district-
level means of ¥*/100, denoted by v,. The assumptions of
normality both within and across districts are no longer
appropriate. We apply the methods that rely on the
normality assumptions, to assess the robustness of the
composite estimators, but also to contrast the deficiencies of
the averaging with the consequences of using ‘incorrect’
models. We chose the square transformation because the

within-district ~ expectations are known, equal to
(1) +6%,)/100, and could be estimated by
o _ Ay —MSE(ii,) + &y
Vg = : ®)
100
We denote by v, the empirical Bayes estimators applied to

y2,/100.

The results of the simulations based on the values of
y2,/100 are presented in Figure 4, using the same layout
and symbols as in Figure 3. The same conclusions about the
biases and root-MSEs are arrived at as before, except that
the naive estimator is even more inefficient and the perfor-
mance of the averaged estimator even more erratic - it is
both very efficient and inefficient for more districts than in
the more congenial setting of Figure 3. The naive estimator
is conservative, but for some districts with small n, far too
much so, and its MSEs for these districts are very large.

We contrast these conclusions with a comparison of
estimating the district-level means of Y?/100 by v,
transforming the estimates fi, according to (8). The
estimator ¥, is more efficient than ¥, for most districts
(90, in fact), and when less efficient, the relative difference
of their MSEs is less than 4%. For a few districts, the

v —f

— [
+* O Averaged est.
® Naive est.
p— + Empirical MSE
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difference in efficiency is perceptible, exceeding 20% for
ten districts. However, the differences in the MSEs are small
in comparison with the biases in estimating these MSEs, as
shown in Figure 5. The biases and MSEs of ¥, are marked
by black dots connected to their counterparts for ¥.

Part of the lack of efficiency of ¥, is due to its bias; the
bias of ¥, exceeds the bias of ¥, for all but two districts,
but the difference is non-trivial only when both estimators
are positively biased. Thus, little efficiency is gained by
arranging the analysis so that the distributional assumptions
are satisfied. The gains are modest in comparison with the
increase in the difficulty of estimating the efficiency, as
expressed by MSE(V/Z; v,). Although the sampling
variation of 6€V/_\is trivial in large-scale surveys, the
contribution of MSE(fi; 1,) to MSE(V,;v,) cannot be
ignored.

Figure 6 compares the composite MSE estimator with the
naive estimator of MSE of [i, based on the empirical Bayes
estimator of p ; it is derived by substituting i, for p, in
(2). For brevity, we refer to it as the EB-naive estimator. As
anticipated in Section 3, it tends to underestimate its target.
It is more efficient than the composite estimator of MSE for
about half the districts (52 out of 100), but its performance
is more uneven than that of the composite MSE estimator.
In principle, the EB-naive estimator could be improved by
combining it with the averaged estimator; however, only
minor improvement is made even in the congenial setting
(known p,c3, and o;), and the composition is
detrimental for several districts in the less congenial
settings. Details are omitted.

1.0
l

Root-MSEs of MSE estimators

Districts

(in ascending order of sample size)

Figure4 The mean and root-MSE of estimators of the MSE of the empirical Bayes small-area estimators;

estimation of the means of ¥? /100
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Figure 5 The bi*ases and MSEs of estimators of v,. The vertical segments connect the quantities associated
with v, and v,. The quantities associated with v, are marked by black dots
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Figure 6 The bias and root-MSE of the composite and empirical-Bayes naive estimators of the MSE of |i,

As a final simulation, we consider a binary outcome
variable that indicates whether Y <5, so that the district-
level percentages are in the range 1.5-18.8 and the
dependence of the percentage on the variance within
districts is substantial. The mean of the district-level
percentages is 6.85; the substantial skew of these
percentages (skewness coefficient equal to 1.01 and kurtosis
to 3.78) provides a stern test of the method.

Statistics Canada, Catalogue No. 12-001

In the simulation, the district-level percentages are
estimated by the univariate version of the shrinkage method
described in Longford (1999 and 2005, Chapter 8). The
results are summarised in Figure 7. The MSE is over-
estimated by all three estimators for most districts, except
for a minority for which the empirical MSE is several times
higher than for the rest. The naive estimator has a substantial
bias for most districts. The averaged estimator is less
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regimented than for normally distributed outcomes because
the shrinkage coefficient depends also on the estimated
proportion, which is truncated from below at 2% to avoid
zero estimated variance p,(1- p,)/n,. The graph of the
composite MSE estimates has the spikes for the appropriate
districts, but the spikes are far too short to reduce the bias
substantially.

The MSEs of the averaged estimator are satisfactory for
most, but are very large for several districts. For the latter
districts, the naive MSE estimator is even less efficient. The
composite MSE estimator is less efficient than the averaged
estimator for many districts, but the difference is rather
small, compensated by the gains in efficiency for districts
for which the averaged estimator is less efficient. The EB-
naive MSE estimator resembles in many features the naive
MSE estimator; it is not plotted in the diagram.

In conclusion, this simulation shows that when one of the
MSE estimators, in this case the naive estimator, is very
inefficient, it nevertheless contributes, even if very
modestly, to the efficiency of the composite MSE estimator.
The composite estimator draws on the best that the
constituent estimators, averaged and naive, have to offer,
even in uncongenial settings. A remaining challenge is to
combine the naive and averaged estimators to satisfy a
particular criterion which trades off the precision for
districts that are estimated with high precision for higher
precision in estimating in the districts with low precision.
For example, we may be less concerned about estimation of
the MSEs for districts with abundant representation in the
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sample and much more about the sparsely represented
districts. Also, some districts (e.g., those in a particular
region) may be of specific interest, unrelated to their
representation. Of course, the first step in this is the
definition of one or a class of criteria that reflect the
inferential priorities, and this is bound to be specific to each
survey and client. See Longford (2006) for some proposals.

4.1 Refinements and extensions

Several elements of realism can be incorporated in the
derivation of the composite MSE estimator. First,
uncertainty about p can be reflected by acknowledging that
i, and [i are correlated. Thus, var(fi,—f1) = oy (n, —
1/n) and the approximation in (5) becomes equality when
both instances of o4,/n, are replaced by o3, (1/n, —1/n).
This brings about only a slight change when n, < n, the
case for most districts. If the country has a dominant district,
with sample size that is a large fraction of the overall sample
size, then this adjustment might be relevant, but it has a
negligible impact on MSE estimation because even direct
estimation of the mean for the district is nearly efficient.

A similar refinement can be applied to the empirical
Bayes estimator of p,. It amounts to replacing n, with
V(n,'=n"y=n,n/(n—n,) in the coefficient b, =
1/(1+ n, o). The change is not trivial only for a dominant
district, but for such a district shrinkage yields only minute
improvement over direct estimation with or without this
adjustment.

1.0

l

Root-MSEs of MSE estimators (%)
0.5
L ]
L ]

0.0

0 50 100
Districts
(in ascending order of sample size)

Figure 7 The mean and root-MSE of the composite naive and averaged estimators of the MSEs of district-

level percentages
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Accommodating sampling designs that differ from
stratified random sampling, and which associate subjects
with sampling weights, generates in composite estimation
no problems additional to direct estimation with such
designs and weights, because we require only the sampling
variances of [i,[i and functions of these. Similarly,
exploiting auxiliary information by applying (empirical
Bayes) regression

Via :xde+6d +€ 4,

with independent random samples &, ~ N(O, GZB) and
€, ~ N(O, csf,vA), amounts to replacing i in (1) with the
prediction %,P, where X, is the vector of means of the
regressors for district & and B is the vector of regression
parameter estimates. To see this, we express the empirical
Bayes fit for district d as

P .

. A n
-x,p) = +
(=% 1+nd(oud I1+n,0

1,0
I+n,0

3,6+ %,8.

Pfeffermann et al. (1998) discuss issues related to fitting
empirical Bayes models to observations with sampling
weights. Composite estimation uses direct estimators [i,
and [i for the vectors of all the variables involved and their
estimated sampling variance matrices; their evaluation is a
standard task in sampling theory. An outstanding problem
with empirical Bayes estimators arises when X, is based on
very few observations because the uncertainty about p, is
then inflated, even when the model fit is very good; if the
vector of means x, were known (available from sources
external to the survey), p, would be estimated much more
efficiently using x,B. Composite estimation bypasses this
problem by searching for the combination of district-level
means of auxiliary variables, whether known or estimated
from the survey or from other sources, aiming directly to
minimise the MSE of the combination (Longford 1999).

The approach developed in Section 3 can be adapted to
distributions other than normal straightforwardly, so long as
the kurtoses required for evaluating the district-level
variance of (u, —p)° and the sampling variance of
(i, —p)* are known. In practice, kurtosis depends on the
mean L, creating difficulties that can be overcome only by
approximations or averaging. Estimating proportions p,
with dichotomous data is a case in point. We have

. v
var{(p,—p)’} = n—i(l ~3p, +3p;)
d

2
202, ) py — )+ 2y~ ) 1

1y ny ny
where v, = p,(1- p,)/n, and p is the national proportion.
The complex dependence on the poorly estimated p,
presents an analytical challenge that does not have a
universal solution.
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Throughout, we assumed that the value of the variance
ratio  is known. In practice, ® is estimated. It is difficult
to take account of the uncertainty about ® analytically, but
its impact on estimation of p, and MSE(fi ;u,) can be
assessed by sensitivity analysis which repeats the
simulations described in Section 4 for a range of plausible
values of ®. As one set of simulations takes about one
minute of CPU time, this is a manageable computational
task. One difficulty in such an assessment is that with an
altered assumed value of ® the estimator fi, is changed,
and so the target of the composite MSE estimator is also
changed. An alternative informal approach considers the
consequences of under- and over-stating the value of ®. In
estimating p, it is advisable to err on the side of greater o,
giving more weight to the direct estimator [i, (Longford
2005, Chapter 8). For estimating the MSE of fi,, we may
prefer to err on the side of the more stable averaged
estimator. That corresponds to increasing the value of the
coefficient ¢, and, as ¢ is a decreasing function of ®, to
reducing the value of @ used for setting ¢;. Of course, this
should be done in moderation, not to discard the contri-
bution of the naive estimator of MSE altogether.

5. Conclusion

The approach developed in this paper applies the general
idea of shrinkage to estimation of MSE of small-area
estimators and reduces the impact of averaging, regarded as
undesirable when viewed from the design-based pers-
pective, in which the country’s districts have fixed
population quantities p,. We have focussed on improve-
ment in estimation of the MSE for each district separately.
In practice, improvement of estimation for some districts is
more important than for others. Many surveys are designed
for inferences other than small-area estimation, or take small
areas into account in planning only peripherally, and so they
may yield more than satisfactory estimators for some
districts, typically the most populous ones, and less satis-
factory for others, often the sparsely populated districts. In
such a setting, relatively higher inferential priority should be
ascribed to the latter districts. Shrinkage estimators of small-
area means and proportions have this property, and the
simulations documented in Section 4 indicate that
composite estimation of MSE has a similar property, at least
in relation to the averaged estimator.

For a given size of the bias in estimating an MSE, we
prefer the positive bias, because we regard understating the
precision as statistically ‘dishonest’, whereas overstating it
merely fails to present the estimate in the light it deserves -
we undersell the results of our analytical effort. With this
perspective, the optimal coefficient ¢, in (7) should not be
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sought by minimising the MSE of the combination, but by a
criterion that regards underestimation of MSE as an error
more severe than its overestimation by the same amount.
Finding a suitable criterion for this, for which optimisation
is tractable, is an open problem. The composite MSE
estimator derived in Section 3 tends to overestimate the
MSE, but this is not by our design.

We have experimented with ML and REML estimation;
in the setting used for the simulations, the differences
between the two approaches are minute. The advantage of
unbiased estimation of the variance o7, is lost when &7, is
subjected to a non-linear transformation, and efficiency is
maintained by transformations only asymptotically. How-
ever, small-area estimation is a quintessentially small-
sample problem.

The approach presented in this paper illustrates the
universality of the general idea of combining alternative
estimators. The composite estimator exploits the strengths
and reduces the drawbacks of the constituent estimators.
Applying it is not detrimental when one of the estimators is
far inferior to the other. As a form of averaging is involved
even in the composite MSE estimator, it contributes to its
robustness by ameliorating departures from the assumptions
made in the theoretical development, such as hetero-
scedasticity and asymmetric (non-normal) within-district
distributions.

Incorporating  inferential  priorities, in  effect,
redistributing the precision in estimating the MSEs for the
small areas, is an open problem. A similar problem,
designing surveys for small-area estimation so as to ensure
sufficient precision in the model-based perspective (with
averaging) is addressed by Longford (2006).

79
Acknowledgement

Partial support for the work on this manuscript by Grants
SEC2003-04476 and SAB2004-0190 from the Spanish
Ministry of Education and Science is acknowledged.
Insightful and constructive comments of two referees and an
Associate Editor are acknowledged.

References

EURAREA Consortium. (2004). EURAREA Project Final Reference
Volume. Enhancing Small-Area Estimation Techniques to Meet
European Needs. Office for National Statistics, London. Available
from http://www.statistics.gov.uk/eurarea.

Ghosh, M., and Rao, JN.K. (1994). Small area estimation: An
appraisal. Statistical Science, 9, 55-93.

Longford, N.T. (1999). Multivariate shrinkage estimation of small-
area means and proportions. Journal of the Royal Statistical
Society, Series A, 162, 227-245.

Longford, N.T. (2005). Missing Data and Small-Area Estimation.
Modern Analytical Equipment for the Survey Statistician. New
York: Springer-Verlag.

Longford, N.T. (2006). Sample size calculation for small-area
estimation. Survey Methodology, 32, 87-96.

Pfeffermann, D., Skinner, C.J., Holmes, D.J., Goldstein, H. and
Rasbash, J. (1988). Weighting for unequal selection probabilities
in multilevel models. Journal of the Royal Statistical Society,
Series B, 60, 23-40.

Rao, J.N.K. (2003). Small Area Estimation. New Y ork: John Wiley &
Sons, Inc.

Shen, W., and Louis, T.A. (1998). Triple-goal estimates in two-stage
hierarchical models. Journal of the Royal Statistical Society,
Series B, 60, 455-471.

Statistics Canada, Catalogue No. 12-001


http://www.statistics.gov.uk/eurarea




Survey Methodology, June 2007
Vol. 33, No. 1, pp. 81-85
Statistics Canada, Catalogue No. 12-001

81

Handling survey nonresponse in cluster sampling

Jun Shao !

Abstract

In surveys under cluster sampling, nonresponse on a variable is often dependent on a cluster level random effect and, hence,
is nonignorable. Estimators of the population mean obtained by mean imputation or reweighting under the ignorable
nonresponse assumption are then biased. We propose an unbiased estimator of the population mean by imputing or
reweighting within each sampled cluster or a group of sampled clusters sharing some common feature. Some simulation
results are presented to study the performance of the proposed estimator.

Key Words: Nonignorable nonresponse; Random-effect-based nonresponse; Imputation; Collapsing clusters.

1. Introduction

Nonresponse exists in most survey problems. The proba-
bility of having a nonrespondent in a survey item (variable)
v typically depends on the unobserved value of y, which
creates a great challenge in handling nonrespondents. Com-
monly used procedures for handling nonresponse (such as
reweighting and imputation) are all based on the assumption
that nonresponse is ignorable conditional on an auxiliary
variable. More precisely,

P(yisarespondent| y, z) = P(yisa respondent|z), (1)

where z is an auxiliary variable whose values are observed
for all sampled units in the survey. That is, conditional on z,
the value of y and its response status are statistically
independent. Assumption (1) is referred to as the uncon-
founded response mechanism by Lee, Rancourt and Sérndal
(1994). Using the terminology in Rubin (1976), non-
response under (1) is ignorable conditional on z.

There are situations in which it is difficult to find a
variable z to satisfy (1). The purpose of this article is to
study a method of handling nonresponse when cluster
sampling is used, assuming that a variable z satisfying (1) is
not available. In cluster sampling, sampling is carried out in
two stages; the first stage sampled units are clusters
containing units that are sampled in the second stage.
Cluster sampling is used because of economic consider-
ations. It is necessary when no reliable list of the second
stage units in the population is available (for example, there
is no complete list of people but a list of households is
available). Under cluster sampling, the variable of interest y
may be decomposed as y=p+b+e, where p is an
unknown overall mean of y,b is a cluster level random
effect (all units in the same cluster share the same random
effect b), and e is a within-cluster random effect. In many
cases, the dependence of the value of y and its response

status is through the unobserved cluster level random effect
b:

P(yisarespondent| y, b)= P(yisa respondent | b), (2)

i.e., if b were observed, then we would have assumption (1)
with z=5. For example, suppose that clusters are house-
holds and a single person completes survey forms for all
sampled persons in a household. It is likely that the response
probability depends on the household level variable b, not
on the within household variable e.

Assumption (2) was first used by Wu and Carroll (1988)
in a health problem where the clusters have a longitudinal
(repeated-measure) structure. They called (2) informative
censoring (missing) and proposed a method under some
parametric assumptions on the probability P(y is a
respondent |[b) and the distribution of y. Later, Little
(1995) called this type of missing mechanism the non-
ignorable random-coefficient-based missing mechanism.
Thus, assumption (2) will be referred to as nonignorable
random-effect-based response mechanism. Since b is not
observed, response mechanism (2) is actually nonignorable.

For survey data, it is difficult to impose any parametric
model on the distribution of y. Furthermore, it is also
difficult to fit a parametric model for the response mech-
anism under (2), since b is not observed. After introducing
some details on the sampling design and our assumptions,
we propose in Section 2 a method for the estimation of the
population mean of y under response mechanism (2),
without requiring a parametric model for the response
mechanism. It is assumed that y follows a random (cluster)
effect model, but there is no parametric assumption on the
distribution of y. Results from a simulation study are
presented in Section 3 for examining the performance of the
proposed estimator. Some discussions are given in the last
section.

1. Jun Shao, Department of Statistics, University of Wisconsin, Madison, WI 53706, U.S.A.
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2. Main results

Let S be a sample of clusters of size n from a population
P. Within the i™ sampled cluster, let S, be the second
stage sample of size m, >2 from a population P. For
sampled unit je S, a survey weight w; is constructed
(from the specification of the sampling design) so that when
there is no nonresponse, ¥ =Y, (3 Jes, Wy 18 an unbiased
estimator of the population total Y on any variable y, i.e.,
E, (Y —Y) =0, where ¥; 1s the y-value of unit j in cluster i
Y =%,p2jep¥;» and E_ is the expectation with respect to
repeated sampling.

Let y be the variable of interest. We adopt an imputation
model approach, ie., we assume that each y, in the
population is a random variable with

Vi =l +b +ey, 3)

where p, is an unknown parameter, b, is an unobserved
cluster level random effect with mean O and a finite
variance, e; is an unobserved within cluster random effect
with mean 0 and a finite variance, and b,’s and ¢, ’s are
independent. Note that the distribution of y; may vary with
@ ).

Let 8, be the response indicator for y, (6, =1 if y; is
a respondent and 8, =0 if y, is a nonrespondent). We
adopt the approach in Shao and Steel (1999), ie., §; is
defined for every unit in the population and nonresponse
mechanism is part of the model. Let 8, be the vector
containing §;, j€S;, and y, be the vector containing
Vy» J € S;. We assume the following nonignorable random-
effect-based response mechanism: for every sample,

B,(8ib,y)=F,@:|b), i€S, (4)

where P, is the probability with respect to the model and
P (&|m) denotes the conditional distribution of & given n.
That is, conditional on b, y, and §, are independent.
(Unconditionally, they may be dependent.) We assume that
the stochastic mechanism with respect to the model is
independent of the sampling mechanism so that
EE (X)=E,E (X) aslongas.Xis integrable, where E,,
is the expectation with respect to P, .

Furthermore, we assume that

for anyie S, at least one 9, is 1. (5)

That is, each cluster has at least one respondent. Without
this assumption (or some other assumption), the population
total ¥ may not be estimable. More discussion is given in
Section 4.

If we assume ignorable nonresponse, ie., B, (3, =
1| y;)=F,(5; =1), then a commonly used procedure is to
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impute each nonrespondent by the mean ¥, s 50, w;;/
Yies 2 jes, 8;W;» which leads to the following estimator of
Y:

V=20 2 8y wy

ieS jes;
:WU{ZZWU/ZZ Sy.w,.j}. (6)
ieS jes, ieS jes;
Under assumptions (3)-(5),
EE,(Y))
= EvEm {z Z 6[/' Wy(ul + bi + e[j)J
ieS jes;
:ESEm z z 6ij‘»ij”’i +ESEm z ZSUWUbi}’ (7)
ieS jesS; ieS jes;

where the last equality follows from

E,(8,wye,) =E,[E, (3, w;e, | b)]
:Em[Em(SyWy|b1)Em(ey |b1)]:0 (8)

under (4). The first term in (7) is equal to

ES Em

ieS jeS; ieS jes; ieS jeS;

DL

s a2

which is approximately equal to (when # is large)

ES Em

> ZSUW:J‘“

ieS jes;

i ESEm

)} ZW,-,}

ieS jes;

> Fom,

ieS jes;

ES Em

E, {z Zwij“'iEm (SU)JES

ieS jes,

E, {Z ZWUEM (SU)J.

ieS jes;

]

ie§ jes;

Note that

ESEm(Y):Em(Y):Z z H’i :ES

ieP jeP,

PIPIRTHT?

ieS jes;

Hence, either w, =p for all i or E,(5,) does not
depend on (i, j) implies that the expectation of the first
term in (7) is approximately equal to the expectation of Y.
However, E, (6;w;b,)# 0 in general, because §, and b,
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are dependent. Thus, the second term in (7) is not 0 and,
hence, };r defined by (6) is biased under the nonignorable
random-effect-based nonresponse. This bias does not go
away asymptotically as n — co and/or m, — oo for all i.

Recognizing that the problem with }i is that imputation
is done over the entire sample whereas the nonresponse
depends on a cluster level random effect, we can find an
unbiased estimator by performing imputation within each
cluster. This would have been a natural way of imputing if
the cluster random effect 5, were observed. If we impute a
nonrespondent y; in cluster i by the cluster mean
Y jes, 0;W; Y/ L jes, 8,;W;» then the resulting estimator is

EDIDIL I

ieS jes;

with

WU:WU{ZWU/ZSUWUJ' ©))

JES; JES;

Assumption (5) ensures that iy, is well defined. Note that

EE (y)=EE, +FE

s m

228wk,

ieS jes,

ZZWU i

ie§ jes,

=E, (),

Tt

ieS jes,

= Equ + E

s m

»ay

ieS jes,

where the first equality follows from assumption (3) and the
fact that, under assumption (4), result (8) still holds with W,
replaced by 1w, the second equality follows from the
definition of ), and the fact that p, and b, do not depend
on j, and the last equality follows from £ (b,)=0. Hence,
Y. is an unbiased estimator of Y.

Since imputation is done within each cluster, the esti-
mator defined by (9) seems inefficient when some cluster
sample sizes m, are very small. This worry, however, is not
necessary in the case where w; =w, for all j (eg., the
second stage sampling is with equal probability). When
w; =w; for all j, imputation leading to Y. in (9) is actually
done in a much larger class, a group of clusters sharing
something in common. Let §,=m 'Y jes,8; be the
response rate within cluster i and let

Glz{ieS:ml.zm,S,:k/m}, I=(k,m),k<m. (10)

For each /= (k,m),G, in (10) is the group of sample
clusters having the same m, =m and §,=k. If w; =w,
for all j, then, for i € G, with [ = (k, m),

83

wii =W [zjeS, Wi /ZjeS, By.w,.jj
D NRT)

=w/3;
=w,/(k/m)

=W [ZieG, miw"j/{z"eg r]:lmiWiJ

=W [zieG, miwij/[ZiEG’ 3 miwjj

G [zieG, Z:/'ES, Wij/[ZiEG’ ZjeS, SUWJ
=Wy [zieG, ZjeS, WUJ/[Z’EG' zjes’ SUWUJ'

Therefore, imputation leading to ¥, in (9) is actually done
within each group G, when w;, =w, for all j, ie, a
nonrespondent in S, is imputed by the sample mean of the
respondents in G, X;cq, 2 jes, 8, Wy Vy/ Zieg, 2 jes, 05 Wy-

When w; varies with j for some i’s, some additional
conditions are needed in order to combine clusters. A
discussion is given in Section 4.

We end this section with a discussion of variance
estimation, since most surveys require a variance estimator
for each point estimator. A variance formula or its
approximation (as n — ) for ¥, can be derived, which
may require more details on the sampling design. When the
first stage sample size # is large, m, < m for all i and a fixed
integer m, and n/N is small, where N is the size of P, we
can apply the adjusted jackknife method as described in Rao
and Shao (1992). More precisely, we can follow the
following steps.

1. Create n jackknife replicates, where the ™

replicate is obtained by deleting the i™ cluster and
adjusting the weights to w,({?, k#i,i=1,...,n,
according to the sampling design. For example, if
the first stage sampling is a stratified sampling,
then w,({? =w,, if k and i are not in the same
stratum and w,({? =m,w; /(n, —1) if k and i are in
the same stratum 4, where n, is the stratum size.

2. Re-impute the nonrespondents in the i™ jackknife
replicate using the respondents in the i™ jackknife
replicate, i =1,..., n.

3. Compute }i,i the same as ¥ but based on the i"™
re-imputed jackknife replicate, i =1, ..., n.

4.  Compute the jackknife variance estimator for }76
using a standard jackknife formula (e.g., Shao and
Tu 1995, Chapter 6). For example, if the first stage
sampling is a stratified sampling with H strata, then
a jackknife variance estimator is

Statistics Canada, Catalogue No. 12-001



84

a 1

2
nh - n 1 n
v=2 =2 P2 Ve |
=1 My es, N kes

where S, is the sample from the 4™ stratum and
n, is the size of §,.

3. Simulation results

We now present some results from a simulation study to
examine the performance of the estimators ?r and ?C

We create a finite population similar to the elementary
school teacher population in Maricopa County, Arizona
(Lohr 1999, pages 446-447). The finite population contains
311 clusters (schools). In each cluster, the second stage units
are teachers. The cluster size (the number of teachers) varies
from 6 to 59 and, hence, the first stage sampling is an
unequal probability sampling with probability proportional
to cluster size. The first stage sampling is with replacement
and the sample size is 31. The second stage sampling is a
simple random sampling of size 6 (for any cluster) without
replacement.

For each teacher, the variable of interest is the minutes
spent per week in school on preparation. The values of y;,
for this variable in the simulation are generated according to
model (3), where ., is the mean minutes spent per week in
school on preparation for the i™ school, b, is a random
effect of the i™ school, and e, is a random effect of the
7™ teacher in the i™ school. The values of p.’s are the
sample means in the data set in Lohr (1999, pages 446-447),
which vary from 25.52 to 42.18 with a mean of 33.76 and a
median of 33.47. The value of b, is generated according to
b, =8.31(X; —2), where X, has the gamma distribution
with shape parameter 2 and scale parameter 1. The value of
e; is generated from the normal distribution with mean 0
and standard deviation 2.27. The b,’s and e¢;’s are
independently generated. The values of y, =p, +b, +e¢;
are generated in each simulation run so that we can evaluate
the biases and standard errors of estimators using joint
probability under sampling and models (3)-(5).

For sampled units, nonrespondents are generated
according to (4) and (5). That is, each sampled cluster has
one respondent and the response status of the rest of the
sampled units in each cluster are independently determined
by P(y; is missing |b,) = e"7/(1+¢"™). The mean non-
response probability is 33.76%.

For the estimation of the finite population mean, a
simulation of 1,000 runs shows that, when f’r is used, the
bias, standard error, and root mean squared error are -2.89,
1.32, and 3.17, respectively, and the relative bias
E(};r -Y)/E(Y) is -8.5%; when ?C is used, the bias,
standard error, and root mean squared error are 0.12, 1.81,
and 1.82, respectively, and the relative bias E (};C -Y)/E(Y)
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is 0.3%. This simulation result supports our theory, i.e., Y,
is approximately unbiased but f’r is biased. In this case, ?C
has a larger standard error than ¥, but ¥, has a much larger
root mean squared error than ?C due to its large bias.

4. Discussions

Without the assumption that each sampled cluster has at
least one respondent, the population total may not be
estimable unless some other assumption is added. Under the
nonresponse mechanism (4), when all observations in a
cluster are nonrespondents, no information in that cluster
can be recovered from observed data in other clusters unless
some additional assumption is made. For example, one may
assume that the population of clusters with no respondent is
similar to that of clusters with 1 respondent, in which case
one can collapse clusters by distributing the weights of
clusters with 0 respondent to the weights of clusters with 1
respondent. Another approach is to assume a model so that
we can extrapolate results to clusters with no respondent.

The results in Section 2 are given for mean imputation.
Extensions to some other imputation methods are straight-
forward. For example, if random hot deck imputation is
considered, then our result leads to imputation within
clusters (or G, ’s). When there is a covariate x whose values
are all observed, our result can be extended to regression
imputation with model (3) modified to y,=a+
Bx; + b, +e;. For unit nonresponse, our result can also be
applied to re-weighting, ie., adjusting weights within
clusters (or G, ’s).

Our method is imputation model based. We assume
random-effect model (3) and random-effect-based response
mechanism (4). If model (4) does not hold, then
E,(8;w;e;)#0 and our estimator Y. has a bias with a
magnitude Adepending on the size of [E,(5;w;e;)|-
Similarly, Y, is not valid if model (3) does not hold.

It is shown in Section 2 that the condition w;, = w; for all
j ensures that imputation is done within each G, that is the
group of clusters with the same size and response rate. For
two-stage sampling, this condition is satisfied when the last
stage sampling is with equal probability (e.g., simple
random sampling without replacement). For three-stage
sampling, model (3) should be replaced by y; =
w; +b; +e; and b, in (4) should be replaced by b;. The
survey weight w;, satisfies w;, =w, as long as the last
stage sampling is with equal probability and our result still
holds. In two-stage sampling with w, varying with j, we
may perform imputation within a group of clusters that have
the same £, (y,|8§,). For example, suppose that, in addition
to (3)-(5), u, =u,b,’s are independent and identically
distributed (iid), and conditional on b,, the components of
8, areiid. Then E, (b, |5;) = E,, (b, | 5,) depending only on
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the size of the cluster m, and §,. Hence we can perform
imputation within each G, defined by (10).
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On an optimal controlled nearest proportional to size sampling scheme

Neeraj Tiwari, Arun Kumar Nigam and |la Pant *

Abstract

The concept of ‘nearest proportional to size sampling designs originated by Gabler (1987) is used to obtain an optimal
controlled sampling design, ensuring zero selection probabilities to non-preferred samples. Variance estimation for the
proposed optimal controlled sampling design using the Y ates-Grundy form of the Horvitz-Thompson estimator is discussed.
The true sampling variance of the proposed procedure is compared with that of the existing optima controlled and
uncontrolled high entropy selection procedures. The utility of the proposed procedure is demonstrated with the help of

examples.

Key Words. Controlled sampling; Non-preferred samples; Quadratic programming; High entropy variance.

1. Introduction

In many sSituations, some samples may be undesirable due
to adminigtrative inconvenience, long distance, similarity of
units or cost considerations. Such samples are termed non-
preferred samples and the technique for avoiding these
samples is known as ‘controlled selection’ or ‘controlled
sampling’. Thistechnique, originated by Goodman and Kish
(1950) has received considerable attention in recent years
dueto itspractical importance.

The technique of controlled sampling is most appropriate
when financid or other considerations make it necessary to
sdect a small number of large first stage units, such as
hospitals, firms, schools etc., for incluson in the study. The
main purpose of controlled sampling is to increase the
probability of selecting a preferred combination beyond that
possible with dratified sampling, whilst smultaneoudly
maintaining theinitial selection probabilities for each unit of
the population, thus preserving the property of a probability
sample. This dStuation generdly arises in field surveys
where the practical considerations make selection of some
units undesirable but it is necessary to follow probability
sampling. Controls may be imposed to secure a proper
distribution geographicaly or otherwise and to ensure
adequate sample size for some subgroups of the population.
Goodman and Kish (1950) considered the reduction of
sampling variances of the key estimates as the principal
objective of controlled selection, but they also cautioned that
this might not aways be attained. A red problem
emphasizing the need for controls beyond dratification was
also discussed by Goodman and Kish (1950, page 354) with
the objective of sdlecting 21 primary sampling units to
represent the North Centra States. Hess and Srikantan
(1966) used the data for the 1961 universe of nonfederal,
short-term genera medica hospitals in the United States to
illustrate the applications of edtimation and variance

formulae for controlled selection. Waterton (1983) used the
data available from a postal survey of Scottish school
leavers carried out in 1977 to describe the advantages of
controlled sdlection and compare the efficiency of con-
trolled selection with multiple proportionate stratified ran-
dom sampling (meaning the sampling scheme in which
instead of one stratifying variable, many variables each of
which is associated with the variable of interest y, are used
by cross-classifying the population on the basis of these
variables) and found the controlled sdection to perform
favourably.

Three different approaches have been advanced in the
recent literature to implement controlled sampling. These
are (i) using typical experimental design configurations, (ii)
the method of emptying boxes and (iii) using linear
programming approaches. While some researchers have
used ssimple random sampling designs to construct the con-
trolled sampling designs, one of the more popular strategies
isthe use of IPPS (inclusion probability proportional to size)
sampling designs in conjunction with the Horvitz-
Thompson (1952) estimator. To construct controlled simple
random sampling designs, Chakrabarti (1963) and Avadhani
and Sukhatme (1973) proposed the use of balanced
incomplete block (BIB) designs with parameters v=N,
k=n and A, where N isthe population szeand n isthe
sample size. Wynn (1977) and Foody and Hedayat (1977)
used the BIB designs with repeated blocks for Stuations
where non-trivial BIB designs do not exist. Gupta, Nigam,
and Kumar (1982) studied controlled sampling designs with
inclusion probabilities proportional to size and used BIB
designs in conjunction with the Horvitz-Thompson
estimator of the population total Y(= Xy, where y. is
the value of the i™ unit of the population, U). Nigam,
Kumar and Gupta (1984) used some configurations of
different types of experimental designs, including BIB
designs, to obtain controlled IPPS sampling plans with the
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additional property cmm; <my <mmw; for al i=zj=
1, ..., N and some positive constant ¢ suchthat 0<c<1,
where m; and m; denote first and second order inclusion
probabilities, respectively. Hedayat and Lin (1980) and
Hedayat, Lin, and Stufken (1989) used the method of
‘emptying boxes to construct controlled IPPS sampling
designs with the additional property O<m; <mm;, i< =
1 ..., N. Srivastava and Saeh (1985) and Mukhopadhyay
and Vijayan (1996) suggested the use of ‘t-desgns to
replace smple random sampling without replacement
(SRSWOR) designs to construct controlled sampling
designs.

All the methods of controlled sampling discussed in the
previous paragraph may be carried out manualy with
varying degrees of |aboriousness, but none has exploited the
advantage of modern computing. Using the smplex method
in linear programming, Rao and Nigam (1990, 1992)
proposed optimal controlled sampling designs that minimize
the probability of selecting the non-preferred samples, while
retaining certain properties of an associated uncontrolled
plan. Utilizing the approach of Rao and Nigam (1990,
1992), Sitter and Skinner (1994) and Tiwari and Nigam
(1998) used the simplex method in linear programming to
solve multi-way gratification problems with ‘controls
beyond stratification'.

In the present article, we use quadratic programming to
propose an optima controlled sampling design which
ensures that the probability of sdecting non-preferred
samples is exactly equal to zero, rather than minimizing it,
without sacrificing the efficiency of the Horvitz-Thompson
edimator based on an associated uncontrolled 1PPS
sampling plan. The idea of ‘nearest proportiona to size
sampling designs’, introduced by Gabler (1987), is used to
congtruct the proposed design. The Microsoft Excel Solver
of the Microsoft Office 2000 package is used to solve the
quadratic programming problem. The applicability of the
Horvitz-Thompson edtimator to the proposed design is
discussed. The true sampling variance of the estimate for the
proposed design is empirically compared with the variances
of the aternative optimal controlled designs of Rao and
Nigam (1990, 1992) and uncontrolled high entropy
selection procedures of Goodman and Kish (1950) and
Brewer and Donadio (2003). In Section 3, some examples
are considered to demonstrate the utility of the proposed
procedure by comparing the probabilities of non-preferred
samples and sampling variances of the etimates. Finaly in
Section 4, the findings of the paper are summarized.

2. Theoptimal controlled sampling design

In this section, we use the concept of ‘nearest propor-
tiond to size sampling designs to propose an optima
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controlled IPPS sampling design that matches the origina
m, vaues, sdtisfies the sufficient condition m; <mmn; for
non-negativity of the Yates-Grundy (1953) form of the
Horvitz-Thompson (HT) (1952) estimator of the variance
and aso ensures that the probability of selecting non-
preferred samplesis exactly equa to zero. Before coming to
the proposed plan, we briefly describe the Misdzuno-Sen
and Sampford IPPS designs which will be used in the
proposed plan for obtaining theinitial IPPS design p(s).

2.1 TheMidzuno-Sen and Sampford | PPS designs

To introduce the concept of IPPS designs, we assume
that a known positive quantity, %, is associated with the
value of the i™ unit of the population and there is reason to
believe that the 'y, 's are approximately proportiond to X 's.
Here x is assumed to be known for all units of the
population and y; is to be collected for sampled units. In
IPPS sampling designs, ;, the probability of including the
i"™ unit in a sample of sze n, is np, where p, is the
single draw probability of sdecting the i™ unit in the
population (also known as the normal size measure of unit
i), given by

p=—2—i=12..,N

2%
j=1

We first describe the Midzuno-Sen IPPS scheme and then
discuss Sampford’ s design.

The Midzuno-Sen (MS) (1952, 1953) scheme has a
restriction that the probabilities of selecting the i™ unit in
the population (p, 's) must satisfy the condition

11, 1

- = i=12 ..,N (1
SNos P L )
If (1) is satisfied for the p, values of the population
under consideration, we apply the MS scheme to get an
IPPS plan with the revised probabilities of selection, p 's,

[also known as revised normal size measures| given by
. N-1 n-1

=np . , i=1,2.,N (2
A VA Y =1 @

Now, supposing that the s" sample consists of units
igs 1y ..oy 1, the probability of including these units in the
s" sample under the MS schemeiis given by

p(s) ==

[P

_ l ( * + * +
NoT p,+ R, + -
n-1

However, due to redtriction (1), the MS plan limits the
applicability of the method to units that are rather smilar in

+p)- ©)
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size. Therefore, when the initial probabilities do not satisfy
the condition of the MS plan, we suggest the use of
Sampford’s (1967) plan to obtain the initia IPPS design
p(s).
Using Sampford's scheme, the probability of including
n units i, i, ..., i, inthe s™ sampleisgiven by
p(s) =, ;

iy, i, e iy

:nKn kil,}biz,..., }Lin (1_ pluj, (4)

=1
where K =(ntL,  /n)™ A =p/A-p) for a st
S(m) of m< N different units, iy, i,, ..., i, ad L, is
defined as
=1 Lpy=> A, Ao & (ISMSN).
)

S(m

m?

2.2 Theproposed plan

Congider a population of N units. Suppose a sample of
size n is to be sdected from this population. The single
draw selection probabilities of these N units of the
population (p’'s) are known. Let S and § denote
respectively, the set of all possble samples and the set of
non-preferred samples.

Given the sdlection probabilities for N units of the
population, we first obtain an appropriate uncontrolled IPPS
design p(s), such as the Midzuno-Sen (1952, 1953) or
Sampford (1967) design, as described in Section 2.1. After
obtaining the initial 1PPS design p(s), the idea behind the
proposed plan is to get rid of the non-preferred samples §
by confining ourselves to the st S—S by introducing a
new design p,(s) which assigns zero probability of
selection to each of the non-preferred samples belonging to
S, givenby

p(s) for se S-§

1- ). p(s)
Po(S) = sé (5)

0 otherwise,

where p(s) istheinitial uncontrolled IPPS sampling plan.

Consequently, p,(s) is no longer an IPPS design. So,
applying the idea of Gabler (1987), we are interested in the
‘nearest proportiona to size sampling design’” p,(s) in the
sense that p,(s) minimizes the directed distance D from
the sampling design p,(s) to the sampling design p,(s),
defined as

Ll pi(s)
D(py, p)=E, | 2-1| = 3 2 1 (g
(Py: P) p{po } Se;g 0. (9) (6)

subject to the following constraints:
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() P20,
i) > me=1

«=S-§

(i) Y p(s)=m,

S3i

(iv) > p(s)>0 and 7

s,

V) D pls ST,

S3i,

The ordering of the above five congraints is carried out
in accordance with their necessity and desirability.
Congraints (i) and (ii) are necessary for any probability
sampling design. Constraint (iii), which requires that the
selection probabilities in the old and new schemes remain
unchanged, which ensures that the resultant design will be
IPPS. This condraint is a very strong condraint and it
affects the convergence properties of the proposed planto a
great extent. Constraint (iv) is highly desirable because it
ensures unbiased estimation of the variance. Constraint (v)
is dedrable as it ensures the sufficient condition for non-
negativity of the Y ates-Grundy estimator of the variance.

The solution to the above quadratic programming
problem, viz,, minimizing the objective function (6) subject
to the condraints (7), provides us with the optimal
controlled 1PPS sampling plan that ensures zero probability
of sdection for the non-preferred samples. The proposed
plan is as near as possible to the controlled design p,(s)
defined in (5) and at the same time it achieves the same set
of first order inclusion probabilities =;, as for the original
uncontrolled IPPS sampling plan p(s). Due to the
congtraints (iv) and (v) in (7), the proposed plan aso ensures
the conditions m; >0 and m; <mmx; for the Y ates-Grundy
estimator of the variance to be stable and non-negative.

The distance measure D(p,, p,) defined in (6) is
smilar to the y”-statistic often employed in related
problems and is aso used by Cassdl and S=rndal (1972) and
Gabler (1987). Other distance measures are aso discussed
by Takeuchi, Yanai and Mukherjee (1983). An alternative
distance measure for the present discussion may be defined
as

(po — p1)2
D(p,, =y == 8

(P> P1) Zs:(po+p1) ®
When applied on different numerical problems
consdered by us, we found that the use of (8) gave similar
results to (6) in convergence and efficiency and so we will

give results using (6) asthe distance measure.
While al the other controlled sampling plans discussed
by earlier authors attempt to minimize the selection
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probabilities of the non-preferred samples, the proposed
plan completely excludes the possibility of sdecting non-
preferred samples by ensuring zero probability for them and
a the same time it also ensures the non-negativity of the
Y ates-Grundy estimator of the variance. However, in some
situations a feasible solution to the quadratic programming
problem, satisfying al the congtraints in (7), may not exist.
Constraint (v) may then be relaxed. This may not guarantee
the non-negativity of the Y ates-Grundy form of the variance
edimator. However, since the condition w; <mm; is
aufficient for non-negativity of the Y ates-Grundy estimator
of the variance but not necessary for n> 2, as pointed out
by Singh (1954), there will gtill be a possibility of obtaining
a non-negative estimator of the variance. After relaxing the
congraint (v) in (7), if the Yates-Grungy estimator of the
variance comes out to be negative, an dternative variance
edimator may be used. This has been demonsirated in
Example 5 in Section 3. If even after relaxing constraint (v),
afeasible solution of the quadratic programming problemis
not found, congraint (iv) may aso be relaxed and
consequently an dternative variance estimator in place of
the Y ates-Grundy form of the HT variance estimator may be
used. The effect of relaxing these condraints on efficiency
of the proposed design is difficult to study, as after relaxing
the non-negativity constraint (v) the Y ates-Grundy estimator
of the variance does not provide accurate results. Using the
Y ates-Grundy estimator of the variance, for some problems
the variance estimate is smaller after relaxing constraint (v)
[asin the case of Examples 2(a), 2(b) and 3(a) in Section 3]
while for other problems it is larger [as in the case of
Example 1(a), 1(b), 3(b), 4@ and 4(b) in Section 3.
Relaxing a constraint leading to an increased variance
edtimate may be due to the inability of the Yates-Grundy
form of the variance estimator to estimate the true sampling
variance correctly, when the non-negativity condition is not
satisfied.

The proposed method may also be considered superior to
the earlier methods of optima controlled selection in the
sense tha setting some samples to have zero selection
probability is different from associating a cost with each
sample and then trying to minimize the cost, the technique
used in earlier approaches of controlled selection. The
technique employed by the earlier authors for controlled
selection was a crude approach giving some samples very
high cost and others very low.

One limitation of the proposed plan is that it becomes
impractica when (N) is very large, as the process of
enumeration of al possible samples and formation of the
objective function and constraints becomes quite tedious.
This limitation also holds for the optimum approach of Rao
and Nigam (1990, 1992) and other controlled sampling
approaches discussed in Section 1. However, with the
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advent of faster computing techniques and modern statistical
packages, there may not be much difficulty in using the
proposed procedure for moderately large populations. On
the basis of the size of populations that we have considered
in the empirical evaluation, we found that the proposed
method can easily handle the controlled selection problems
up to a population of 12 units and a sample of size 5. The
proposed method may be used to select a smal number of
first-stage units from each of alarge number of strata. This
involves a solution of a series of quadratic programming
problems, each of areasonable size, provided the set of non-
preferred samplesis specified separately in each stratum.

As in the case of linear programming, there is no
guarantee of convergence of a quadraic programming
problem. Kuhn and Tucker (1951) have derived some
necessary conditions for the optimum solution of a quadratic
programming agorithm but no sufficient conditions exist for
convergence. Therefore unless the Kuhn-Tucker conditions
are sdtisfied in advance, there is no way of verifying whether
aquadratic programming agorithm converges to an absolute
(globd) or relative (local) optimum. Also, thereis no way to
predict in advance that the solution of a quadratic
programming problem exists or not.

2.3 Comparison of sampling variance of the estimate

To edimate the population mean Y (= N3N, y) based
on asample s of size n, we use the HT estimator of Y
defined as

= Y,
V= Y 1 9
" ies NTCi

Sen (1953) and Yates and Grundy (1953) showed
independently that for fixed size ssmpling designs, Y,,; has

the variance
v oYY
(_i _ _JJ (10)
T T,

and an unbiased estimator of V(\?HT) isgivenas

~ 1 &N
V(¥yr) = NZ Z (mm; —m;

i<j=1

2
o N AL T T LT I 4 Y;

V(Yir) = Nzi;jzl m (ni njj' (11)
Constraint (v), when used in the proposed plan, ensures the
non-negativity of the variance estimator (11).

To demondtrate the utility of the proposed procedure, we
use the empirical examples given in Section 3 to compare
the true sampling variance of the HT edimator for the
proposed procedure obtained through (10) with variances of
the HT edtimator using the optimal controlled plan of Rao
and Nigam (1990, 1992) and those of two uncontrolled high
entropy (meaning the absence of any detectable pattern or
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ordering in the sdected sample units) procedures of
Goodman and Kish (1950) and Brewer and Donadio (2003).
In what follows, we reproduce the expressions for the
variances of these two high entropy procedures.

The expression for variance of VY,; correct to
O(N™) using the procedure of Goodman and Kish (1950)
isgiven as

V¥irdex =

P

2 2
nN ieU ieU nN

X[ZZ PPAT-2 0" > p.ZAZ—Z(Z D.ZAH, (12)

ieU ieU ieU ieU

where A =Y, /p -Y,Y=%\Y, and U denotes thefinite
populationof N units.

Recently, Brewer and Donadio (2003) derived the m; -
free formula for the high entropy variance of the HT
edimator. They showed that the performance of this
variance estimator, under conditions of high entropy, was
reasonably good for al populations. Their expression for the
variance of the HT estimator is given by

- 1 Y YV
V (Yr)eo :Wig T (l_qni)(?_F] )
whee ¢ = (n-D/{n-2Cn-H(n-Y*'m +
(n-D) ™y nf} foral ieU, which appears to perform
better than the other valuesof ¢ suggested by them.

3. Examples

In this section, we consider some empirical examples to
demonstrate the utility of the proposed procedure and
compare it with the existing procedures of optima
controlled sampling. In the present discussion, we begin
with the Midzuno-Sen (1952, 1953) IPPS design to
demonstrate our procedure, as it is relatively easy to
compute the probability of drawing every potential sample
under this scheme. However, if the conditions of the
Midzuno-Sen scheme are not satisfied, we demondtrate that
other IPPS sampling without replacement procedures, such
as the Sampford (1967) procedure, may aso be used to
obtain the initial IPPS design p(s). The true sampling
variance of the HT estimator under the proposed plan isaso
compared with that of the existing procedures of optimal
controlled selection and uncontrolled high entropy selection
procedures given by (12) and (13).

Example 1: Let us consider a population consisting of six
villages, borrowed from Hedayat and Lin (1980). Thesat S
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of al possible samples consists of 20 samples each of size
n=23. Due to the considerations of travel, organization of
fieldwork and cost considerations, Rao and Nigam (1990)
identified thefollowing 7 samples as non-preferred samples.

123; 126; 136; 146; 234, 236; 246

(@. The Y, and p, vaues associated with the six villages of
the population are;

Yi: 12 15 17 24 17 19
pi: 0.14 0.14 0.15 0.16 0.22 0.19

Since the p, values satisfy the condition (1), we apply the
MS scheme (3) to get an IPPS plan with the revised normal
size measures (p; 'S given by (2).

Applying the method discussed in Section 2 and solving
the resulting quadratic programming problem with the
Microsoft Excel Solver of Microsoft Office 2000 package,
we obtain the controlled IPPS plan given in Table 1.

Tablel Optimal controlled IPPS plan corresponding to
Midzuono-Sen (MS) and Sampford’'s (SAMP)
schemesfor Example 1

s PuS) [MS] pu(s) [SAMP] s pu(s) [MS]  pu(s) [SAMP]
124 014 009 245 003 0.12
125 0.03 005 256 013 0.14
134 0.00 000 345 002 0.06
135 0.09 003 346 020 0.10
145 0.3 006 356 006 0.06
156  0.13 007 456  0.06 0.16

235 0.09 0.05

This plan matches the origind w; values, satisfies the
condition m; <mm; and ensures that the probability of
sdlecting non-preferred samples is exactly equa to zero.
Obvioudy, due to the fulfillment of the condition
m; <mm;, we can apply the Yates-Grundy form of the HT
variance estimator for estimating the variance of the

proposed plan.

We have also solved the above example, using plan (3)
of Rao and Nigam (1990, page 809) with specified = 's
taken from the Sampford's plan [to be denoted by RN3] and
their plan (4) [to be denoted by RN4]. Using the RN3 plan,
the probability of non- preferred samples (¢) comes out to
be 0.155253 and using the RN4 plan with ¢=0.005, ¢
comes out to be zero, whereas the proposed plan aways
ensures zero probability to non-preferred samples.

The values of the true sampling variance of the HT
estimator [V (Y,;)] for the proposed plan, the RN3 plan, the
RN4 plan, the Randomized Systematic IPPS sampling plan
of Goodman and Kish (1950) [to be denoted by GK] and the
uncontrolled high entropy sampling plan of Brewer and
Donadio (2003) [to be denoted by BD ] are produced in the
first row of Table 2. It is clear from Table 2 that the
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proposed plan yields amost the same value of variance of
the HT estimator as yielded by the RN4 plan. The value of
V(Y,;) for the proposed plan is dlightly higher than those
obtained from the RN3, GK and BD plans. Thisincrease in
variance may be acceptable given the dimination of
undesirable samples by the proposed plan.

Table2 Values of the true sampling variance of the HT
estimator [V (Y,7)] for the Proposed, RN3, RN4, GK

and BD plans
- PROPOSED

V (Yur) RN3 RN4 GK BD PLAN
Ex1(a)

N=6n=3 203 402 303 292 4.06
Ex 1(b)

N=6n=3 476 507 489 415 478
Ex 2(a)

N=7,n=3 448 501 461 445 3.56
Ex 2(b)

N=7,n=3 1197 1452 1225 11.44 9.49
Ex 3(a)

N=8n=3 485 429 4.9 4.86 3.90
Ex 3(b)

N=8n=3 729 843 774 737 8.17
Ex 4(a)

N=8n=4 319 346 323 315 3.75
Ex 4(b)

N=8n=4 241 253 254 238 2.25
Ex5

N=7,n=4 308 393 312 307 5.10

(b). Now suppose that the p; values for the above population
of 6 unitsare asfollows.

pi: 0.10 0.15 0.10 0.20 0.27 0.18

Since these values of p, do not satisfy the condition (1) of
the M S plan, we apply the Sampford (1967) plan to get the
initial IPPSdesign p(s) using (4).

Applying the method discussed in Section 2 and solving
the resultant quadratic programming problem, we obtain the
controlled IPPS plan given in Table 1. This plan again
ensures zero probability to non-preferred samples and
satisfies the non-negativity condition for the Y ates-Grundy
form of the HT variance estimator. This example was dso
solved by the RN3 and RN4 plans. The value of ¢ for the
RN3 plan is 0.064135 and the value of ¢ for the RN4 plan
with ¢=0.005 is zero. The proposed plan aways ensures
zero probability to non-preferred samples.

The values of V(Y,;) for the proposed plan, the RN3
plan, the RN4 plan, the GK plan and the BD plan are
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produced in the second row of Table 2. The proposed plan
appears to perform better than the RN4 and GK plans and
quite close to other plans considered by us.

Further examples were condructed to analyze the
performance of the proposed plan. The populations with Y,
and p, vaues and the set of non-preferred samples for each
population are summarized in the Appendix. The p, vaues
for Examples 2(a), 3(a) and 4(a) satisfy the condition (1) of
Midzuno-Sen plan and hence for these examples the
Midzuno-Sen IPPS plan is used to obtain the initial 1PPS
design p(s). However, for Examples 2(b), 3(b) and 4(b)
the p, values do not satisfy this condition and therefore we
apply the Sampford IPPS plan to obtain the initid IPPS
design. The probabilities of non-preferred samples (¢) for
these examples using the RN3 plan, the RN4 plan and the
proposed method are produced in Table 3. Table 3 shows
that while the RN3 and RN4 plans only attempt to minimize
the probability of non-preferred samples, the proposed plan
aways ensures zero probability to non-preferred samples.

The values of V(Y,;) for the proposed plan, the RN3
plan, the RN4 plan, the GK plan and the BD plan for the
population summarized in the Appendix are given in Table
2. From Table 2 we conclude that for al the empirica
problems considered by us, the proposed plan gppears to
perform better than or quite close to the RN3, RN4, GK and
BD plans. The increase in variance of the estimate for the
proposed plan in some cases may be acceptable given the
elimination of undesirable samples by the proposed plan.

Table3 The probabilities of non-preferred samples using
RN3, RN4 and Proposed plans

Praobability of non- RN3 RN4  Proposed
preferred samples(¢)  PLAN PLAN Plan
Example 2(a)

N=7,n=3 0.06 0(c=05) 0
Example 2(b)

N=7,n=3 0.05 0(c=05) 0
Example 3(a)

N=8,n=3 0.12 0 (c=0.005) 0
Example 3(b)

N=8,n=3 0.17 0 (c=0.005) 0
Example 4(a)

N=8,n=4 0.05 0 (c=0.005) 0
Example 4(b)

N=8,n=4 0.13 0 (c=0.005) 0
Example 5

N=7,n=4 0.30 0.1008 (c = 0.5) 0

Example 5. We now consider one more example to
demonstrate the situation where the proposed plan fails to
provide a feasible solution satisfying al the congraints in
(7). In such situations, we have to drop acongtraint in (7) to
obtain a feasible solution of the related quadratic pro-
gramming problem.
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Congder a population of seven villages. Suppose a
sample of size n=4 isto be drawn from this population.
There are 35 possible samples, out of which the following
14 are considered as non-preferred:

1234, 1236;
2345; 2346;

1246;
2456;

1346;
2567;

1357,
3456;

1456;
3567;

1567,
4567.

Suppose that the following p, values are associated with
the seven villages.

p: 014 013 015 013 016 015 014.

Since the p, vaues satisfy condition (1), we apply the
MS plan (3) to obtain the initia 1PPS design p(s) and
solve the quadratic programming problem by the method
discussed in Section 2. However, no feasible solution of the
related quadratic programming problem exists in this case.
Consequently, we drop congraint (v) in (7) for this
particular problem to obtain a feasible solution of the
quadratic programming problem. The probabilities of non-
preferred samples using the RN3 plan, the RN4 plan and the
Proposed plan for this empirical problem are given in the
last row of Table 3. The proposed plan again matches the
original m; values and ensures the probability of selecting
the non-preferred samples exactly equa to zero. However,
due to non-fulfillment of the condition m; <mm; for this
example, the non-negativity of the Y ates-Grundy estimator
of the variance is not ensured. The values of the true
variance, V(Y,;) , for the proposed plan, the RN3 plan, the
RN4 plan, the GK plan and the BD plan are produced in the
last row of Table 2. Thevalue of V(Y,,;) for this empirical
example using the proposed plan does not appear to be
satisfactory. For such problems where congraint (v) is not
satisfied, we suggest the use of dternative variance
edimatorsin place of the Y ates-Grundy variance estimator.

We have dso solved one more example with N =9 and
n=4 usng both the Midzuno-Sen and Sampford's
methods for obtaining the initial IPPS design p(s). The
details of these solutions are omitted for brevity and can be
obtained from the authors.

4, Conclusion

We have proposed a quadratic programming approach to
solve the controlled sampling problems ensuring zero
probability to non-preferred samples. The concept of
‘nearest proportional to size sampling designs of Gabler
(1987) is used to obtain the proposed plan. The approach is
smple in concept and is very flexible in dlowing for a
range of different objective functions as wdl as in
permitting avariety of congraints. The only limitation of the
procedureisthat it cannot be applied to large populations, as
the computational process becomes quite tedious for large
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populations. The utility of the proposed procedure is
demonstrated with the help of examples and its true
sampling variance is empiricaly compared with that of
existing controlled sampling plans and uncontrolled high
entropy sampling procedures. The proposed plan performs
suitably.
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Appendix

The populationsfor Example 2-4 with Y; and p;
valuesand the set of non-preferred samples.

Example2 N=7,n=3.
Non-preferred samples:  123; 126; 136; 146; 234; 236; 246;
137; 147; 167; 237, 247; 347; 467.

Yi: 12 15 17 24 17 19 25
@.p: 012 012 013 014 020 015 014
(b).p: 008 008 016 011 024 020 013

Example3. N=8,n=3.

Non-preferred samples.  123; 126; 136; 146; 234; 236; 246;
137; 147, 167; 237; 247, 347, 467,
128; 178; 248; 458; 468; 478; 578.

Yo 12 15 17 24 17 19 25 18
@.p: 010 010 011 012 018 013 012 014
(b).p: 005 009 020 015 010 011 012 018

Example4.N=8,n=4.

Non-preferred samples. 1234; 1236; 1238; 1246; 1248; 1268; 1346;
1348; 1357; 1456; 1468; 1567; 1568; 1678;
2345; 2346; 2456; 2468; 2567, 2568; 2678,;
3456; 3468; 3567, 3678, 4567; 4678; 5678.

Yo 12 15 17 24 17 19 25 18
@.p: 011 011 012 013 017 012 011 013
().p: 009 009 018 011 012 014 017 010
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GUIDELINES FOR MANUSCRIPTS

Before having a manuscript typed for submission, please examine a recent issue of Survey Methodology (Vol. 32, No. 2 and
onward) as a guide and note particularly the points below. Articles must be submitted in machine-readable form, preferably
in Word. A paper copy may be required for formulas and figures.

1.

1.1
1.2
1.3

1.4
1.5

2.

Layout

Manuscripts should be typed on white bond paper of standard size (82 % 11 inch), one side only, entirely double
spaced with margins of at least 1} inches on all sides.

The manuscripts should be divided into numbered sections with suitable verbal titles.

The name and address of each author should be given as a footnote on the first page of the manuscript.
Acknowledgements should appear at the end of the text.

Any appendix should be placed after the acknowledgements but before the list of references.

Abstract

The manuscript should begin with an abstract consisting of one paragraph followed by three to six key words. Avoid
mathematical expressions in the abstract.

3.
3.1
3.2
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3.4

3.5
3.6

Style

Avoid footnotes, abbreviations, and acronyms.

Mathematical symbols will be italicized unless specified otherwise except for functional symbols such as “exp(-)”
and “log(")”, etc.

Short formulae should be left in the text but everything in the text should fit in single spacing. Long and important
equations should be separated from the text and numbered consecutively with arabic numerals on the right if they are
to be referred to later.

Write fractions in the text using a solidus.

Distinguish between ambiguous characters, (e.g., w, ®; 0,0, 0; L, 1).

Italics are used for emphasis. Indicate italics by underlining on the manuscript.

Figures and Tables

All figures and tables should be numbered consecutively with arabic numerals, with titles which are as nearly self
explanatory as possible, at the bottom for figures and at the top for tables.

They should be put on separate pages with an indication of their appropriate placement in the text. (Normally they
should appear near where they are first referred to).

References

References in the text should be cited with authors’ names and the date of publication. If part of a reference is cited,
indicate after the reference, e.g., Cochran (1977, page 164).

The list of references at the end of the manuscript should be arranged alphabetically and for the same author
chronologically. Distinguish publications of the same author in the same year by attaching a, b, ¢ to the year of
publication. Journal titles should not be abbreviated. Follow the same format used in recent issues.

Short Notes

Documents submitted for the short notes section must have a maximum of 3,000 words.





