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In This Issue 

 
This issue of Survey Methodology includes papers on a variety of methodology topics. 

In the first paper, Thompson and Wu consider the problem of obtaining inclusion probabilities, for the 

derivation of sampling weights, when modifications or compromises to the original sample design have 

been made due to practical constraints or limitations.  The problem was motivated by the International 

Tobacco Control Policy Evaluation Survey of China which used a multi-stage unequal probability design 

for the selection of adult smokers and nonsmokers from seven cities. Due to refusal to participate by some 

districts, substitution units had to be selected after the original sample was selected. This substitution made 

it very difficult to calculate first order inclusion probabilities and practically impossible to calculate second 

order probabilities. In the paper the authors demonstrate, both theoretically and empirically, that the first 

and second order inclusions probabilities can be accurately estimated through Monte Carlo simulations. 

Torabi and Rao derive the mean squared error (MSE) of a proposed new generalized regression 

estimator (GREG) of a small area mean under a two-level model and provide both theoretical and empirical 

comparisons between the new GREG and the best linear unbiased prediction estimator in terms of relative 

efficiency. 

The paper by You discuses various cross-sectional and time series small area models for unemployment 

rate estimation for Canadian sub-provincial areas. In particular he considers an integrated non-linear mixed 

effects model under the hierarchical Bayes (HB) framework. An HB approach with the Gibbs sampling 

method is used to obtain estimates of posterior means and posterior variances of small area unemployment 

rates. The proposed HB model leads to reliable model-based estimates in terms of CV reduction. You also 

analyses the proposed model fitness and compares the model-based estimates to direct estimates. 

The paper by Wang, Fuller and Qu studies small area estimation under a restriction. The authors study 

the impact of different augmented models in terms of MSE of the EBLUP. They consider small area 

models augmented with one additional explanatory variable for which the usual small area predictors 

achieve a self-calibrated property.  The then consider small area models augmented with an added auxiliary 

variable that is a function of area size to reduce the bias when an incorrect model is used for prediction. 

Nandram and Choi present an interesting approach to allocating undecided voters in surveys conducted 

prior to an election.  Data from election polls are typically presented in two-way categorical tables with 

many polls taken before the actual election. They present the construction and analysis of a time-dependent 

nonignorable nonresponse model using Bayesian methods.  They compare their model to extended versions 

(to include time) of ignorable and nonignorable nonresponse models introduced by Nandram, Cox and 

Choi (Survey Methodology, 2005). They also construct a new parameter to help predict the winner.  The 

approach is illustrated using polling data from the 1998 race for governor of Ohio. 

In their paper, Lazar, Meeden and Nelson develop a Bayesian approach to finite population sampling, 

through the use of a Polya posterior, when prior information is available in the form of partial knowledge 

about an auxiliary variable. The authors introduce the constrained Polya estimator and show that it has 

similarities with the generalized regression estimator under simple random sampling. However, their 

estimator does not require specification of a linear model. It is also related to empirical likelihood methods. 

Examples are used to illustrate the theory. 

Zaslavsky, Zheng and Adams consider optimal sampling rates in element-sampling designs when the 

anticipated analysis is a survey-weighted linear regression and the estimands of interest are linear 

combinations of regression coefficients from one or more models. Methods are first developed assuming 

that exact design information is available in the sampling frame and then generalized to situations in which 

some design variables are available only as aggregates for groups of potential subjects, or from inaccurate 

or old data.  Potential applications include estimation of means for several sets of overlapping domains, 

estimation for subpopulations such as minority races by disproportionate sampling of geographic areas, and 

studies in which characteristics available in sampling frames are measured with error. 
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The paper by Li explores the problem of estimating a finite population total using a nonlinear 

generalized regression estimator. The Box-Cox technique along with pseudo maximum likelihood 

estimation is used to obtain data-driven predictions. The author shows that the resulting regression 

estimator is design-consistent. Its performance is also evaluated through a simulation study. 

Béguin and Hulliger extend the BACON algorithm to handle incomplete survey data. The BACON 

algorithm was developed to identify multivariate outliers using Mahalanobis distance. In the presence of 

missing values, the EM algorithm can be considered to estimate the covariance matrix at each iteration step 

of the BACON algorithm. The authors modify the EM algorithm to handle finite population sampling, 

which they call the EEM (Estimated Expectation Maximization) algorithm, and combine this algorithm 

with the BACON algorithm. This leads to the proposed BACON-EEM algorithm. It is then applied to two 

datasets and compared with alternative methods. 

The paper by Jäckle and Lynn provides an empirical assessment of the effects of continued incentive 

payments on attrition, nonresponse bias and item nonresponse, and whether these effects change across 

waves of a multi-mode panel survey of young people in the UK. They test several hypotheses about the 

effects of incentives.  They conclude that respondent incentives are an effective means of maintaining 

sample sizes of a panel, thus ensuring its value in terms of efficiency, especially for subgroup analyses. 

However, they also found that incentives had no effect on attrition bias.   

Finally, Mohadjer and Curtin discuss challenges in designing and implementing a sample selection 

process that satisfies the goals of the National Health and Nutrition Examination Survey (NHANES). They 

describe how the sample design for NHANES must balance the requirement for efficient subdomain 

samples with the need for an efficient workload for the interview and examination staff at the Mobile 

Examination Centres (MEC), while keeping response rates as high as possible and costs down. The article 

elaborates on a number of unique features of the NHANES design and concludes with a brief summary of 

what has been achieved and some of the challenges facing future NHANES designs. 

 

 

 

 

 

Harold Mantel, Deputy Editor 
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Simulation-based randomized systematic PPS sampling 
under substitution of units 

Mary E. Thompson and Changbao Wu 1 

Abstract 

The International Tobacco Control (ITC) Policy Evaluation Survey of China uses a multi-stage unequal probability 

sampling design with upper level clusters selected by the randomized systematic PPS sampling method. A difficulty arises 

in the execution of the survey: several selected upper level clusters refuse to participate in the survey and have to be 

replaced by substitute units, selected from units not included in the initial sample and once again using the randomized 

systematic PPS sampling method. Under such a scenario the first order inclusion probabilities of the final selected units are 

very difficult to calculate and the second order inclusion probabilities become virtually intractable. In this paper we develop 

a simulation-based approach for computing the first and the second order inclusion probabilities when direct calculation is 

prohibitive or impossible. The efficiency and feasibility of the proposed approach are demonstrated through both theoretical 

considerations and numerical examples. Several R/S-PLUS functions and codes for the proposed procedure are included. 

The approach can be extended to handle more complex refusal/substitution scenarios one may encounter in practice. 

 

                                                           
1. Mary E. Thompson, Department of Statistics and Actuarial Science, University of Waterloo. E-mail: methomps@uwaterloo.ca; Changbao Wu, 

Department of Statistics and Actuarial Science, University of Waterloo. E-mail: cbwu@uwaterloo.ca. 

  

Key Words: Inclusion probability; Horvitz-Thompson estimator; Rao-Sampford method; Relative bias; Unequal 

probability sampling without replacement. 

 

 

 

1. Introduction 
 

Construction of survey weights is the first critical step in 

analyzing complex survey data. It starts with the calculation 

of the first order inclusion probabilities, which is often 

straightforward if the original sampling design is well 

executed without any alterations and/or modifications. For 

instance, if the sample units are selected with inclusion 

probability ( )π  proportional to size (PPS or psπ ), then the 

inclusion probabilities are readily available from a simple 

re-scaling of the size variable. Among existing unequal 

probability without replacement PPS sampling procedures 

which are applicable for arbitrary fixed sample sizes, the 

randomized systematic PPS sampling method is the 

simplest one to implement. The procedure was first 

described in Goodman and Kish (1950) as a controlled 

selection method, and was refined by Hartley and Rao 

(1962) who studied the important and yet difficult problem 

of how to compute the second order inclusion probabilities. 

Let , 1, 2, ,ix i N= …  be the values of the known size 

variable, where N is the total number of units in the 

population. Let /i iz x X=  where 1
N
i iX x=∑=  and assume 

1inz <  for all i. The randomized systematic PPS sampling 

procedure is as follows: Arrange the N population units in a 

random order and let 0 0A =  and 1 ( )j
ij iA nz=∑=  be the 

cumulative totals of inz  in that order so that 

0 10 .NA A A n= < < < =…  Let u be a uniform random 

number over [0, 1]. The n units to be included in the sample 

are those with indices j satisfying 1j jA u k A− ≤ + <  for 

0,1, , 1.k n= −…  Let s be the set of n sampled units and 

( )i P i sπ = ∈  be the first order inclusion probabilities. The 

randomized systematic PPS sampling procedure satisfies the 

condition  

, 1, 2, , .i inz i Nπ = = …  (1.1) 

Several other without replacement sampling procedures 

which satisfy (1.1) for an arbitrary fixed sample size n were 

also proposed in the literature, including the well-known 

Rao-Sampford unequal probability sampling method (Rao 

1965; Sampford 1967) and those of Chao (1982), Chen, 

Dempster and Liu (1994), Tillé (1996) and Deville and Tillé 

(1998), among others.  

The extensive research work on PPS sampling methods 

was largely stimulated by the Horvitz-Thompson (HT) 

estimator ˆ /i s i iT y∈∑= π  for the population total 

1
N
i iT y=∑=  of a study variable y. The HT estimator is 

extremely efficient when y is highly correlated with the size 

variable x and the sampling procedure satisfies (1.1). It is 

the unique design unbiased estimator among the class of 

linear estimators i s i iw y∈∑  for T if the weights iw  depend 

only on i. 

While a PPS sampling procedure can be desirable from a 

theoretical point of view, it is often difficult and/or 

sometimes impossible to execute due to practical constraints 

and limitations. Certain modifications and compromises will 

have to be made. The modified design, however, will no 

longer satisfy condition (1.1). Direct calculation of the final 

inclusion probabilities often becomes difficult or even 

impossible. Among common problems arising from survey 

practice which require alteration of the original sampling 
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design, units refusal and substitution of units are the most 

frequently encountered ones. The scenario is well illustrated 

by the following example.  

The International Tobacco Control (ITC) Policy 

Evaluation Survey of China (ITC China Survey) uses a 

multi-stage unequal probability sampling design for the 

selection of adult smokers and nonsmokers from seven 

cities. Each city has a natural hierarchical administrative 

structure   
City → Street District→ Residential Block→ Household → Individual  
which was conveniently integrated into the sampling design. 

At the upper levels, the randomized systematic PPS 

sampling method is used to select ten street districts from 

each city, with probability proportional to the population 

size of the district, and then two residential blocks are 

selected within each selected district, again using the 

randomized systematic PPS sampling method, with proba-

bility proportional to the population size of the block. 

Households and individuals within households are further 

selected, using a modified simple random sampling method. 

The original plan was to select 40 adult smokers and 10 

adult nonsmokers from each of the 20 residential blocks, 

making the final sample with 800 smokers and 200 non-

smokers for each city.  

A difficulty, however, arises in the execution of the 

survey: several selected upper level clusters (first Street 

Districts and then Residential Blocks) have refused to 

participate in the survey, due to time conflict with other 

activities or unavailability of human resources. These 

refusing clusters have to be replaced by substitute units, 

selected from units not included in the initial sample; one 

possibility is to use once again the randomized systematic 

PPS sampling method, to achieve the targeted overall 

sample size.  

Under multi-stage sampling designs such as the one used 

for the ITC China survey, first order inclusion probabilities 

for individuals selected in the final sample can be calculated 

by multiplying the inclusion probabilities of units at 

different stages. When the randomized systematic PPS 

sampling method is modified due to substitution of units at a 

certain stage, the condition (1.1) no longer holds for the 

final sample at that stage. The first order inclusion probabi-

lities under such a scenario are very difficult to calculate and 

the second order inclusion probabilities become virtually 

intractable. In Appendix A, we provide a method of direct 

calculation (5.2) for the iπ  when both the initial and the 

substitute samples are selected using the randomized 

systematic PPS sampling, assuming random refusal from 

the initial sample and no refusal from the substitute sample. 

The expression is valid conditional on the number of 

refusals and the population order used (after randomization) 

for the selection of the initial sample. It is apparent that even 

under such restrictive conditions and assumptions, the 

expression itself becomes computationally unfriendly with a 

not-so-large sample size.  

In this paper we demonstrate, through both theory and 

numerical examples, that the first and the second order 

inclusion probabilities can be accurately estimated through 

Monte Carlo simulations when complete design information 

is available. Our numerical examples are motivated by the 

ITC China survey for which the randomized systematic PPS 

sampling serves as a baseline method but our theoretical 

results and the general methodology apply to other unequal 

probability without replacement sampling procedures as 

well. Section 2 presents results on the accuracy of simu-

lation based methods. Numerical examples and comparisons 

are given in Section 3. Several R/S-PLUS functions and 

codes for the proposed procedure, originally developed for 

the ITC China survey, are included in Appendix C. Some 

additional remarks are given in Section 4.  

 
2. Properties of simulation-based methods 

 
When calculation of exact inclusion probabilities is 

impossible or prohibitive but complete design information is 

available, Monte Carlo simulation methods can easily be 

used to obtain estimates of the inclusion probabilities. 

Denote the completely specified probability sampling 

design by p. The simulation-based method is straight-

forward: select K independent samples, all following the 

same sampling design p; let iM  be the number of samples 

which include unit i. Then the first order inclusion proba-

bility ( )i P i sπ = ∈  can be estimated by * / .i iM Kπ =  For a 

particular i, the iM  follows a binomial distribution and the 
*

iπ  satisfies *( )i iE π = π  and * 1Var( ) (4 ) .i K −π ≤  Suppose 

for instance that we can afford to take K as big as 625 10 ,×  

then *(| | 0.001) 0.99i iP π − π < ≥  for any given .iπ  

A more relevant measure of the accuracy of simulation-

based methods is the performance of the Horvitz-Thompson 

estimator using the simulated inclusion probabilities. Let 
ˆ /i s i iT y∈∑= π  and */ .i s i iT y∈∑= πɶ  For a given sample, 

the relative bias of using Tɶ  in place of T̂  is defined as 
ˆ ˆ( ) / .T T T− ɶ  Without loss of generality, we assume 0iy ≥  

for all i. It is shown in Appendix B that for any > 0ε  and 

the given sample s,  

2

2

ˆ| | 2(1 ) 1
1 .

ˆ
i s i

T T
P n

KT ∈

 − + ε  ≤ ε ≥ − −   πε   
∑

ɶ

 (2.1) 

Note that (1/ )i s i∈∑ π  is the Horvitz-Thompson 

estimator of the population size N, a practical lower bound 

for ˆ ˆ(| | / )P T T T− ≤ εɶ  with a small ε  is given by  
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2

2( )
1 .

N n

K

−
∆ = −

ε
 (2.2) 

If one requires that 0.01ε =  and 0.98,∆ =  then for 

100N n− =  the (theoretical) number of independent 

samples required for the simulation is 810 .K =  Since the 

lower bound given by (2.1) is conservative, and valid for 

any response variable, one would expect that a smaller K 

with values around 710  or even 610  should work well for 

most practical scenarios where 100.N n− ≤  This is 

supported by numerical examples presented in Section 3.  

Estimation of the second order inclusion probabilities 

( , )ij P i j sπ = ∈  imposes no additional difficulty except 

that the total number of simulated samples, K, required to 

achieve the same level of relative accuracy as for the first 

order case is bigger. Let ijM  be the number of simulated 

samples among the K independent samples which include 

both i and j. Let * /ij ijM Kπ =  be the estimate for .ijπ  

Suppose the goal is to estimate a quadratic population 

quantity  

1 1

( , ).
N N

i j
i j

Q q y y
= =

=∑ ∑  

The Horvitz-Thompson type estimators of Q using ijπ  or 
*
ijπ  are respectively given by  

*

( , ) ( , )
ˆ and .

i j i j

i s j s i s j sij ij

q y y q y y
Q Q

∈ ∈ ∈ ∈

= =
π π

∑∑ ∑∑ɶ  

Following the same argument as that which leads to (2.1), 

we can show that  

2
2

2

ˆ| | 2(1 ) 1
1 .

ˆ
i s j s ij

Q Q
P n

KQ ∈ ∈

 − + ε  ≤ ε ≥ − −   πε   
∑∑

ɶ

 (2.3) 

Note that (1/ )i s j s ij∈ ∈∑ ∑ π  is a design-unbiased estimator 

of 2 ,N  a practical lower bound for ˆ ˆ(| | /Q )P Q Q− ≤ εɶ  is 

given by 21 2( )( ) /( ).N n N n K− + − ε  Comparing this with 

∆  given by (2.2), it is apparent that we need a much bigger 

K to achieve the same lower bound, although in both cases 

the lower bounds are conservative, and the actual K required 

can be smaller. On the other hand, second order inclusion 

probabilities are used for the estimation of second order 

parameters such as the population variance or the variance 

of a linear estimator. The desired estimation accuracy is less 

critical than that for first order parameters such as the 

population total or mean, and therefore a number in between 
610  and 710  for K should be acceptable for many practical 

situations.  

The most critical issue for simulation-based methods is 

obviously the feasibility of computational implementation. 

Among other things, it depends largely on the chosen value 

of K, the complexity of the sampling design, and the 

computational power available. If 610K =  and one would 

like to have the simulation-based results within ten hours, 

then it is necessary to take 28 simulated samples for every 

single second. The randomized systematic PPS sampling is 

the most efficient unequal probability without replacement 

sampling procedure in terms of computational implementa-

tion. It only involves a simple random ordering and 

selecting a random starting point. Most other competing 

procedures involve either rejective methods or complicated 

sequential selections. It takes much longer to select simu-

lated samples with these methods. A comparison of CPU 

times for computing the simulated iπ  between the random-

ized systematic PPS sampling and the Rao-Sampford un-

equal probability sampling design is given in Section 4.  

 
3. Numerical examples 

 
The design information used in this section is adapted 

from the ITC China survey. The number of Street Districts 

(top level clusters) in each of the seven cities involved in the 

survey ranges from 20N =  to 120.N =  Within each city 

10n =  districts are selected using the randomized 

systematic PPS sampling method. In the case of refusals, 

substitute districts are selected from the ones not included in 

the initial sample, again using the randomized systematic 

PPS sampling method. For the purpose of illustration we use 

the design information from the smallest city (i.e., 20N = ). 

Additional comments on cases where N is large are given in 

Section 4.   
3.1 First order inclusion probabilities  

We first demonstrate the accuracy of the simulated iπ  

when the exact values of iπ  are known. We then investigate 

the impact of substitution of units on the final iπ  and the 

performance of the Horvitz-Thompson estimator for a 

population total using the simulated .iπ  The simulated 

inclusion probabilities under substitution of units are 

compared to those assuming the modified design is still PPS 

sampling.  
 
Example 1. Simulation-based *

iπ  when there is no refusal. 

In this case the exact values of iπ  are given by .i inzπ =  
 
(i) Exact values of :iπ   
0.5840 0.5547 0.6702 0.5331 0.3085 0.2652 0.3930 0.4180 0.6952 0.3471 

0.5993 0.5393 0.8240 0.6868 0.4469 0.2191 0.4237 0.4180 0.7567 0.3163  
(ii) Simulated * 5, 10 :i Kπ =   
0.5828 0.5545 0.6656 0.5339 0.3071 0.2656 0.3929 0.4205 0.6969 0.3474 

0.6009 0.5429 0.8227 0.6865 0.4446 0.2186 0.4215 0.4179 0.7569 0.3194  
(iii) Simulated * 6, 10 :i Kπ =   
0.5836 0.5558 0.6701 0.5336 0.3081 0.2654 0.3931 0.4180 0.6950 0.3469 

0.5994 0.5394 0.8242 0.6864 0.4469 0.2186 0.4237 0.4172 0.7569 0.3166 
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The simulated *

iπ  matches iπ  to the second decimal 

point for 510K =  and to the third for 610K =  for most 

cases.  
Example 2. To assess the performance of the Horvitz-

Thompson (HT) estimator for a population total using the 

true iπ  and the simulated *

iπ  from Example 1, we 

generated the response variable from the model 0iy = β +  

1 , 1, , ,i ix i Nβ + ε = …  where ix  is the size variable and iε  

are independent and identically normally distributed with 

mean 0 and variance 2 .σ  We considered three populations 

(three values of 2σ ) where the population correlation 

coefficients between x and y are respectively 0.3, 0.5 and 

0.8. For each of the three populations, 2,000B =  repeated 

samples of size 10n =  were selected using the randomized 

systematic PPS sampling, and for each sample three HT 

estimators were computed using the true ,iπ  the simulated 
*

iπ  with 510K =  and the *

iπ  with 610 ,K =  respectively. 

The results, not reported here to save space, showed that all 

three HT estimators have relative bias less than 0.04% and 

almost identical mean squared errors.   
Example 3. When there are refusals in the initial PPS sample 

and substitute units are selected from units not included in 

the initial sample using the same PPS sampling procedure, 

there are two questions of interest: (1) how to compute the 

inclusion probabilities iπ  for the final sample; and (2) to 

what extent the substitution procedure has altered the 

original PPS sampling design. We can compute the 

simulated *

iπ  and compare them with iπɶ  obtained by 

assuming a PPS sampling after the refusing units are 

removed from the sampling frame. In simulating the *,iπ  we 

assume for simplicity that there is no possible refusal from 

any unit outside the initial sample, and hence there is no 

refusal among the substitute units. The number of replica-

tions K is chosen as 610  for the simulation. We consider 

two scenarios where there are three refusing units in the 

population, and all are among the initial sample of size 

10.n =   
 
(i) Three large units refuse: Simulated *

iπ  (first two rows) 

versus iπɶ  (last two rows) assuming PPS.  
 

0.7231 0.6981 0.7947 0.6773 0.4354 0.3811 0.5339 0.5619 0.0000 0.4815 

0.7363 0.6826 0.0000 0.8070 0.5919 0.3210 0.5678 0.5615 0.0000 0.4441 
 

0.7560 0.7182 0.8677 0.6901 0.3994 0.3434 0.5088 0.5412 0.0000 0.4494 

0.7759 0.6983 0.0000 0.8892 0.5786 0.2837 0.5486 0.5412 0.0000 0.4096  
(ii) Three small units refuse: Simulated *

iπ  (first two 

rows) versus iπɶ  (last two rows) assuming PPS.   
0.6326 0.6049 0.7167 0.5829 0.0000 0.0000 0.4415 0.4668 0.7406 0.3937 

0.6482 0.5901 0.8558 0.7330 0.4965 0.0000 0.4728 0.4664 0.7976 0.3590 
 

0.6343 0.6025 0.7280 0.5790 0.0000 0.0000 0.4268 0.4540 0.7550 0.3770 

0.6510 0.5858 0.8949 0.7459 0.4854 0.0000 0.4602 0.4540 0.8218 0.3436  
It is apparent that the sizes of the refusing units have 

dramatic impact on the distribution of the final inclusion 

probabilities. If one ignores the alteration of the sampling 

design due to substitution of units and treats the design as if 

it is still a PPS sampling, then the inclusion probabilities for 

large units are inflated and the role of small units is down-

played. This trend is more pronounced when there are large 

units among the refusals, i.e., case (i) where *

14 0.8070π =  

compared to 14 0.8897π =ɶ  and *

16 0.3210π =  to 16π =ɶ  

0.2837.   
3.2 Second order inclusion probabilities  

There have been considerable research activities on the 

randomized systematic PPS sampling, mainly for obtaining 

second order inclusion probabilities ijπ  and variance 

estimators. Hartley and Rao (1962) derived exact formulas 

for the ijπ  when 2n =  and 3N =  or 4;N =  Connor 

(1966) extended the results and derived the exact formula 

for general n and N, and the related computational 

procedure was later implemented in the Fortran language by 

Hidiroglou and Gray (1980). The procedure is quite heavy 

as evidenced by the 165 lines of Fortran code.  

The most intriguing result is probably the asymptotic 

approximation to ijπ  derived by Hartley and Rao (1962). In 

a recent paper Kott (2005) showed that the variance 

estimator of a Horvitz-Thompson estimator based on the 

Hartley-Rao approximation not only performs well under 

the design-based framework but also has good model-based 

properties. The Hartley-Rao approximation was initially 

derived based on the assumption that n is fixed and N is 

large and is correct to the order of 4( )O N −  (Hartley and 

Rao 1962: Equation (5.15) on page 369). In a private 

conversation with J.N.K. Rao during the 23
rd
 International 

Methodological Symposium of Statistics Canada, he 

pointed out that the approximation is still valid even if n is 

large, as long as /n N  is small. For cases where N is not 

large and/or /n N  is not small, such as the ITC China 

survey example considered here, the goodness of the 

Hartley-Rao approximation has not been documented.  

When the randomized systematic PPS sampling 

procedure is altered due to substitution of units, it is virtually 

impossible to derive the second order inclusion probabilities 

or some sort of approximations. With the simulation-based 

approach, however, it remains straightforward to obtain very 

reliable estimates of the ijπ  through a large number of 

simulated samples, given that the altered sampling 

procedure is completely specified. In what follows we 

examine the performance of variance estimators using the 

simulated *
ijπ  when there is no alteration to the randomized 

systematic PPS sampling procedure. In this case i inzπ =  

and the Hartley-Rao approximation ijπɶ  to ijπ  can also take 

part in the comparison.  
Example 4. We first compare *

ijπ  to ijπɶ  for each of the 

individual entries. To save space, we only present the results 

for 1, , 5i = …  and 1, ,10,j = …  which are sufficient to 
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show the general picture. The Hartley-Rao approximation 

ijπɶ  is very close to the simulated * ,ijπ  matching to the 

second decimal point for the majority of the entries. This is 

clearly an interesting observation given that 20N =  and 

10.n =   
 
(i) Simulated * 6, 10 :ij Kπ =  
 

0.0000 0.3121 0.3821 0.2975 0.1669 0.1442 0.2116 0.2249 0.3975 0.1873 

0.3121 0.0000 0.3623 0.2816 0.1590 0.1372 0.2025 0.2141 0.3766 0.1784 

0.3821 0.3623 0.0000 0.3469 0.1899 0.1640 0.2483 0.2659 0.4586 0.2153 

0.2975 0.2816 0.3469 0.0000 0.1523 0.1312 0.1938 0.2061 0.3606 0.1717 

0.1669 0.1590 0.1899 0.1523 0.0000 0.0742 0.1124 0.1197 0.1968 0.0988 
 

(ii) Hartley-Rao approximation :ijπɶ  
 

0.0000 0.3079 0.3769 0.2952 0.1668 0.1427 0.2143 0.2286 0.3921 0.1884 

0.3079 0.0000 0.3569 0.2795 0.1579 0.1351 0.2029 0.2164 0.3712 0.1784 

0.3769 0.3569 0.0000 0.3421 0.1932 0.1654 0.2484 0.2649 0.4544 0.2183 

0.2952 0.2795 0.3421 0.0000 0.1514 0.1296 0.1946 0.2075 0.3559 0.1710 

0.1668 0.1579 0.1932 0.1514 0.0000 0.0732 0.1099 0.1172 0.2010 0.0966  
Example 5. For second order inclusion probabilities the 

main focus is on variance estimation. With fixed sample 

size, an unbiased variance estimator for the Horvitz-

Thompson estimator HT
ˆ /i s i iY y∈∑= π  is given by the well-

known Yates-Grundy format,  

2
1

HT
1 1

ˆ( ) .
n n

i j ij ji

i j i ij i j

yy
v Y

−

= = +

π π − π  
= −  π π π 
∑ ∑  (3.1) 

We consider the three synthetic populations described in 

Example 2. The true variance HT
ˆVar( )V Y=  is obtained 

through simulation using 510B =  simulated samples and is 

computed as 1 2
1

ˆ( ) ,B
b bB Y Y−
=∑ −  where Y is the true 

population total and ˆbY  is the Horvitz-Thompson estimator 

of Y computed from the b
th
 simulated sample. Three 

variance estimators in the form of (3.1), denoted 

respectively by 1 2,v v  and 3,v  are examined, with the ijπ  in 

(3.1) being respectively replaced by the Hartley-Rao 

approximation ,ijπɶ  the simulated *
ijπ  for 510K =  and the 

*
ijπ  for 610 .K =  The performance of these estimators is 

measured through the simulated relative bias 
1 ( )

1RB ( ) /bB
bB v V V−
=∑= −  and the simulated instability 
1 ( ) 2 1/ 2

1INST { ( ) } / ,bB
bB v V V−
=∑= −  where ( )bv  is the 

variance estimate computed from the b
th
 sample, using 

another set of 510B =  independent samples. The results are 

summarized in Table 1 below. The three populations are 

indicated by the correlation coefficient ρ  between y and x.  
 

Table 1  Relative bias and instability of variance estimators 
 

  RB(%)  INST 

Population  1v  2v  3v   1v  2v  3v  

0.30ρ =   6.1% 1.4% -0.3% 0.66 0.65 0.65

0.50ρ =   4.3% 2.5% -1.1% 0.42 0.44 0.42

0.80ρ =   2.6% 1.2% -0.2% 0.61 0.60 0.60

 
In terms of relative bias, all three variance estimators are 

acceptable, with the one 1( )v  based on the Hartley-Rao 

approximation ijπɶ  having the largest bias. For variance 

estimators using the simulated * ,ijπ  increasing the value of 

K from 510  (i.e., 2v ) to 610  (i.e., 3v ) makes the bias to be 

negligible, although the one with 510K =  is clearly 

acceptable in practice. All three versions of the variance 

estimator have similar measures in terms of instability.  

 
4. Some additional remarks  

 
In theory, the simulation-based method for computing 

inclusion probabilities is applicable to any sampling design, 

as long as the complete design information is available. It is 

an effective approach to handling more complex substitu-

tion scenarios or other types of modifications to the original 

design. In the ITC China survey, one of the refusing units 

has to be substituted by a unit from a particular region of the 

city due to workload constraints and field work restrictions. 

In a Canadian national survey of youth, there were second 

and third round refusing units (schools) and hence substitute 

units before achieving the targeted sample size. As pointed 

out by an Associate Editor, a similar situation was also 

reported in the 57
th
 Round of the National Sample Survey 

Organization, Government of India (www.mospi.gov.in) 

where a modification was made to the circular systematic 

sampling with probability proportional to size in order to 

select two distinct sub-samples. Gray (1973) described a 

method on increasing the sample size (number of psu’s) 

when the initial sample was selected by the randomized 

systematic PPS method. Calculation of second order 

inclusion probabilities under the proposed procedure is 

difficult even for a very small sample size. In all these cases 

analytic solutions to the inclusion probabilities are either 

difficult to use or not available but the simulation-based 

approach can be applied without any extra difficulty.  

The recent paper by Fattorini (2006) discussed the use of 

the simulation-based method for spatial sampling where the 

units are selected sequentially. When a PPS sampling design 

is altered due to one or more rounds of substitution of units, 

the modified design can also be viewed as sequential. Our 

theoretical results on the accuracy of simulation-based 

methods, however, are different from those of Fattorini. We 

have used a conditional argument and proposed to assess the 

performance of the estimator using the simulated inclusion 

probabilities for a given sample, which is of interest for 

practical applications.  

The central issue related to simulation-based methods is 

the feasibility of computational implementation. The 

randomized systematic PPS sampling has a major advantage 

in computational efficiency. The Rao-Sampford unequal 

probability sampling method (Rao 1965; Sampford 1967), 

for instance, is another popular PPS sampling procedure. It 

has several desirable features such as closed form 

expressions for the second order inclusion probabilities and 
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is more efficient than the randomized systematic PPS 

sampling (Asok and Sukhatme 1976). The following is a 

comparison of CPU times between the randomized 

systematic PPS sampling and the Rao-Sampford PPS 

sampling for simulating the first order inclusion probabi-

lities. The sample size is fixed at 10n =  and the number of 

simulated samples is 610 .K =  The results are obtained 

using R on a dual-processor unix machine. 
 
N Systematic PPS Rao-Sampford PPS   
200 4.7 hours  7.5 hours  

100 2.5 hours 5.0 hours  

50 1.6 hours 4.4 hours  

20 1.2 hours 8.9 hours 

 
It is interesting to note that, although in general the Rao-

Sampford procedure takes longer time to obtain the results, 

it takes much longer for the case of 20.N =  This is because 

the Rao-Sampford method uses a rejective procedure and it 

usually takes many rejections to arrive at a final sample 

when the sampling fraction /n N  is large. The randomized 

systematic PPS sampling, on the other hand, is not affected 

by this and the simulation-based method can provide results 

with desired accuracy in a timely fashion for 400N =  or 

even bigger. Several R/S-PLUS functions and major codes 

for the proposed approach are included in Appendix C and 

are applicable to other substitution scenarios after minor 

modifications.  

One of the reasons for the use of the randomized 

systematic PPS sampling in selecting upper level clusters in 

the ITC China survey is that the final design is self-

weighting. An interesting question arises when there are 

refusals: how to select the substitute units such that the final 

altered sampling design is still (approximately) self-

weighting? In some other circumstances such as rotating 

samples, this is achievable; see, for instance, Fellegi (1963). 

How to accomplish this goal with the ITC China survey 

design is currently under investigation.  
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Appendix A  
A direct calculation under random refusal 

 
Under the randomized systematic PPS sampling design 

and assuming random refusal, it is possible in principle to 

calculate the inclusion probabilities under a substitution rule 

directly. The starting point is to enumerate all possible initial 

samples and their probabilities based on the particular 

population order used to select the initial sample.  

Recall that 10 0, ( )j
ij iA A nz=∑= =  and .NA n=  For a 

chosen uniform starting value [0,1],u∈  unit j is to be 

selected if 

1j jA u k A− ≤ + <  (5.1) 

for some 0,1, , 1.k n= −…  Let jk  be the largest integer 

less than ,jA  and let the remainder je  be given by 

.j j je A k= −  Let (1) (2) ( )0 Ne e e< ≤ ≤ ≤…  be the order 

statistics of the remainders, and let (1) ( ), , Nk k…  be the 

corresponding jk ’s. Note that ( ) 1.Ne =  We could then 

generate N possible samples 1, , Ns s…  with respective 

probabilities  

(1) (2) (1) ( ) ( 1), , , ,N Ne e e e e −− −…  

some of which may be 0. We begin by generating 1.s  From 

each 1, , ,j N= …  put j in 1s  if 1j jA k A− ≤ <  for some 

0,1, , 1,k n= −…  i.e., 1s  is selected using 0u =  in (5.1). 

As we move u from 0 to 1, different possible samples can be 

identified sequentially. Now given 1, , ,ms s…  let 1ms +  be 

the same as ms  except that the th
( )( 1)mk +  element is 

advanced by 1. For example, suppose 4n =  and ms =  
{1, 3, 6, 9},  and suppose ( ) 0,mk =  then 1 {2, 3, 6, 9}.ms + =  

On the other hand, if ( ) 2,mk =  then 1 {1, 3, 7, 9}.ms + =  The 

sample 1ms +  will have probability ( 1) ( ) .m me e+ −  

By construction, i inzπ =  for 1, , .i N= …  If only first 

and second order inclusion probabilities are desired, a 

similar but simpler algorithm can be used to calculate the 

second order inclusion probabilities directly, conditional on 

the initial order. However, for applications where the proba-

bilities of all samples are needed, the sample generation 

algorithm can be carried out. For example, for small popu-

lations, it is then also possible to calculate the first order 

inclusion probabilities when there is refusal and substitution. 

Suppose we first select a sample of size n with randomized 

systematic PPS sampling. Suppose 1n  of these agree to 

respond and an additional 2 1n n n= −  are selected, again 

using randomized systematic PPS sampling, from those 

units not sampled the first time. Assume for simplicity that 

refusal in the first sample occurs at random, and that there is 

no refusal in the second substitute sample. Note that this is a 

different assumption from the one used in Example 3, where 

the set of refusals is considered to be non-random. The 
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inclusion probability for unit i, conditional on the assumed 

initial population order, is  

1 2
1

: :

( ) .
m

m

i
i m

m i s jj j s

n n z
nz p s

n z∉ ∉

× + ∑ ∑
 (5.2) 

The outer sum is taken over all samples ms  of size n, 

generated according to the procedure described above but 

without having unit i, with probabilities 1( )mp s =  

( ) ( 1) .m me e −−  The inner sum involved in the denominator is 

taken over all j not included in ms  from the outer sum. The 

unconditional inclusion probability can be obtained by 

appropriate averaging over all population orders which give 

distinct values. Clearly this is feasible only when the popu-

lation is small, or when z takes a small number of values.  

 
Appendix B  

Derivation of (2.1) 
 

In this appendix we show that for any > 0ε  and a given 

sample s,  

2

2

ˆ| | 2(1 ) 1
1 ,

ˆ
i s i

T T
P n

KT ∈

 − + ε  ≤ ε ≥ − −   πε   
∑

ɶ

 

where *ˆ / , / ,i s i si i i iT y T y∈ ∈∑ ∑= π = πɶ  and *

iπ  are the 

simulated first order inclusion probabilities based on K 

independent samples. Noting that *( )i iE π = π  and 
*Var( ) (1 ) / ,i i i Kπ = π − π  by Chebyshev’s inequality we 

have * 2(| |> ) (1 ) /( )i i i iP c Kcπ − π ≤ π − π  for any > 0.c  It 

follows that  

*

*

* * * *

* *

* *

2 2

2 2 2 2

2

2

| |
>

( > ) ( )

( > /(1 )) ( /(1 ))

(| |> /(1 )) (| |> /(1 ))

(1 ) (1 ) (1 ) (1 )

2(1 ) 1
1

i i

i

i i i i i i

i i i i i i

i i i i i i

i i i i

i i

i

P

P P

P P

P P

K K

K

 π − π
ε 

π 

= π − π π ε + π − π < −π ε

= π − π επ − ε + π − π < −επ + ε

≤ π − π επ − ε + π − π επ + ε

− ε π − π + ε π − π
≤ +

ε π ε π

+ ε  = − πε  
.

 

If 0iy ≥  for all i, then 

* *

i i

* *

| | | |ˆ ˆ| | max .i i i

i s
i s i i i

y
T T T

∈∈

 π − π π − π 
− ≤ ≤  

π π π  
∑ɶ  

For any > 0ε  and the given sample s,  

*

*

*

*

2

2

ˆ | || |
max

ˆ

| |
1 >

2(1 ) 1
1 .

i i

i s
i

i i

i s i

i s i

T T
P P

T

P

n
K

∈

∈

∈

    π − π−  
≤ ε ≥ ≤ ε     π     

 π − π
≥ − ε 

π 

+ ε  ≥ − − πε  

∑

∑

ɶ

 

 
Appendix C  

R/S-PLUS Implementation  
C1. An R function for randomized systematic PPS 

sampling.  

The input variables of the function are x: the population 

vector of size variable and n: the sample size. The function 

syspps returns the set of n selected units.   
syspps<-function(x,n){ 

N<-length(x) 

U<-sample(N,N) 

xx<-x[U] 

z<-rep(0,N) 

for(i in 1:N) z[i]<-n*sum(xx[1:i])/sum(x) 

r<-runif(1) 

s<-numeric() 

for(i in 1:N){ 

if(z[i]>=r){ 

s<-c(s,U[i])  

r<-r+1 

 } } 

return(s[order(s)]) 

}  
C2. An R function for simulating the second order inclusion 

probabilities. 

The input variables of the function are x: the population 

vector of size variable and s: the set of labels of units in the 

sample. The default sampling procedure is the randomized 

systematic PPS sampling method and the number of 

repeated samples is 610 .K =  The function piij returns an 

n n×  matrix with the th( )ij  entry being the simulated 
* , , .ij i j sπ ∈   

piij<-function(x,s){ 

N<-length(x) 

n<-length(s) 

p<-matrix(0,n,n) 

for(k in 1:1000000){ 

ss<-syspps(x,n) 

for(i in 1:(n-1)){ 

for(j in (i+1):n){ 

if(min(abs(ss-s[i]))+min(abs(ss-s[j]))==0)  

    p[i,j]<-p[i,j]+1 

  } } } 

p<-(p+t(p))/1000000 

return(p) 

} 
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C3. An R function for PPS sampling under substitution of 

units.  
 
sysppssub<-function(x,n,refus){ 

s<-syspps(x,n) 

sub<-numeric() 

for (i in 1:n){ 

if(min(abs(s[i]-refus))==0) sub<-c(sub,i) 

} 

m<-length(sub) 

if(m>0){ 

s<-s[-sub] 

U1<-(1:length(x))[-c(refus,s)] 

x1<-x[-c(refus,s)] 

s1<-syspps(x1,m) 

s<-c(s,U1[s1]) 

} 

return(s[order(s)]) 

} 

 
The default procedure for the selection of the initial 

sample and the substitute sample is the randomized 

systematic PPS sampling. The following R function 

sysppssub is used for simulating the inclusion probabi-

lities under substitution of units. The input variables are x: 

the population vector of size variable, n: the sample size, 

and refus: the set of refusing units from the initial sample. 

The function returns a set of units for the final sample.  
C4. R codes for simulating the iπ  under substitution of 

units.   
pi<-rep(0,N)  

for(i in 1:1000000){ 

s<-sysppssub(x,n,refus) 

for(j in 1:N){ 

if(min(abs(s-j))==0) pi[j]<-pi[j]+1 

 } } 

pi<-pi/1000000 
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Small area estimation under a two-level model 
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Abstract 

Lehtonen and Veijanen (1999) proposed a new model-assisted generalized regression (GREG) estimator of a small area 

mean under a two-level model. They have shown that the proposed estimator performs better than the customary GREG 

estimator in terms of average absolute relative bias and average median absolute relative error. We derive the mean squared 

error (MSE) of the new GREG estimator under the two-level model and compare it to the MSE of the best linear unbiased 

prediction (BLUP) estimator. We also provide empirical results on the relative efficiency of the estimators. We show that 

the new GREG estimator exhibits better performance relative to the customary GREG estimator in terms of average MSE 

and average absolute relative error. We also show that, due to borrowing strength from related small areas, the EBLUP 

estimator exhibits significantly better performance relative to the customary GREG and the new GREG estimators. We 

provide simulation results under a model-based set-up as well as under a real finite population. 
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1. Introduction  
Small area estimation has received a lot of attention in 

recent years due to growing demand for reliable small area 

statistics. Traditional area-specific direct estimators do not 

provide adequate precision because sample sizes in small 

areas are seldom large enough. This makes it necessary to 

employ indirect estimators that borrow strength from related 

areas, in particular, model-based indirect estimators. Unit 

level random effect models, including nested error linear 

regression models and two-level models, are often used in 

small area estimation to obtain efficient model-based esti-

mators of small area means. Rao (2003) gives a compre-

hensive account of model-based small area estimation.  

A two-level model is given by  

1 1

ijij i ij

i i i i

y ex

Z j N i m

= β + ;′

β = β + ν , = , ..., ; = , ...,  (1)
 

where iN  is the number of units in the thi  area 

( 1 )i m= , ..., , ijy  is the response and ijx  is a 1p ×  vector 

of unit level covariates attached to the thj  unit in the thi  

area. Further, iZ  is a p q×  matrix of area level covariates, 

β  is a 1q ×  vector of regression parameters, iν ’s are 

independent random vectors with mean zero and covariance 

,ν∑  and ije ’s are independent random variables with mean 

zero and variance 2

eσ  and independent of iν ’s. We can 

express the mean iY  of thi  area as  

( )i ii i iZY X≈ µ = β + ν ,′  

assuming iN  is large, where iX  is the known population 

mean of ijx  in the thi  area. The sample values 

{( ) 1 1 }ij ij iy x j n i m, , = , ..., ; = , ...,  are assumed to obey 

the model  (1), that is, there is no sample selection bias. The 

model for the sample is then given by  

( ) 1 1ij ij i i ij iy x Z e j n i m′= β + ν + , = , ..., ; = , ..., .  (2) 

In matrix notation, (2) may be written as  

y ( ) 1i i i i iX Z e i m= β + ν + , = , ...,  

with 2Var(y )
ii i i v i e nV X X I′= = Σ + σ ,  where yi  is a 

1in ×  vector and iX  is a in p×  matrix. The two-level 

model (2) was first introduced by Moura and Holt (1999) in 

the context of small area estimation. This model effectively 

integrates the use of unit level and area level covariates into 

a single model, by modeling the random slopes iβ  in (1) in 

terms of area level covariates iZ .   
Lehtonen and Veijanen (1999) proposed a model-assisted 

new generalized regression (GREG) estimator of a small 

area mean under the two-level model. Lehtonen and 

Veijanen (1999) showed that the new GREG estimator 

based on model (1) performs better than the customary 

GREG estimator based on a model with fixed i iZβ = β.  
Moura and Holt (1999) obtained the best linear unbiased 

prediction (BLUP) estimator of the small area mean iµ  and 

its MSE under the two-level model (2); see Section 2. 

Lehtonen, Särndal, and Veijanen (2003) studied the effect of 

model choice on different types of estimators (synthetic, 

GREG, and composite) of small area means.  

In Section 3, we first derive the mean squared error 

(MSE) of the new GREG estimator and the customary 

GREG estimator (Section 2) under the two-level model (2), 

assuming known model parameters. We then compare the 

MSE of the GREG, new GREG and BLUP estimators, and 

obtain an explicit expression for the increase in MSE of the 

new GREG estimator relative to the MSE of the BLUP 

estimator. In Section 4, we provide empirical results on the 

relative efficiency of the estimators when the model 

parameters are estimated. We used a model-based set-up as 
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well as a real finite population for the simulation study. 

Finally, some concluding remarks are given in Section 5.  

 
2. BLUP and GREG estimators   

The two-level model (2) is a special case of a general 

linear mixed model with block diagonal covariance 

structure. Therefore, assuming known model parameters, we 

may calculate the BLUP estimator of iµ  as  

( )
B

ii ii
X Z′= β + ,µ νɶ ɶ  (3) 

where 
1(y )i v i i i i iX V X Z−′= Σ − β ,νɶ  

and the superscript B on 
iµɶ  stands for BLUP estimator 

(Rao 2003, page 107). Similarly, the BLUP estimator of a 

non-sampled observation j  in 
thi  area can be written as  

( )iij iij
x Zy ′= β + .νɶ ɶ  (4) 

On the other hand, a model-assisted GREG estimator of 

iµ  (or )iY  is given by  

1 1

1 ( ) 1
i iN n

G

ij iji ij ij
i j j

w y i my y
N

= =

 
= + − , = , ...,µ  

 
∑ ∑ɶ ɶɶ  (5) 

where 
ijyɶ  is the predictor of ijy  under the assumed model, 

and ijw  is the survey weight which equals i iN n  in the case 

of simple random sampling (SRS) within areas. We focus 

on SRS within areas in this paper.  

Using (5) with ij iij
x Zy ′= βɶ  as the predictor of ijy  under 

the model (1) with fixed i iZβ = β,  we can write the 

customary GREG estimator as  

( ) ,G

i i i i iy X x Z′µ = + − βɶ  (6) 

where the superscript G on 
iµɶ  denotes GREG (Särdnal, 

Swensson and Wretman 1992, page 225), 
iy  is sample 

mean of ijy  in the thi  area, and ix  is the sample mean of 

ijx  in the thi  area, respectively. Using the predictor (4) 

based on the two-level model (1) in (5), we get a new 

GREG estimator of iµ  (or )iY  as  

LV
[ ( ) ( ( ))]

( ) ( )

i ii i i ii i

i ii ii

X Z x Zy

Zy xX

′ ′= β + + − β +µ ν ν

′= + − β + ,ν

ɶ ɶ ɶ

ɶ  (7)
 

where the superscript LV on 
iµɶ  denotes that it was first 

proposed by Lehtonen and Veijanen (1999). The estimators 
B G

i i
,µ µɶ ɶ  and 

LV

iµɶ  are linear in the ijy ’s and unbiased under 

the two-level model (1). In practice, we replace the 

parameters vβ, Σ  and 2

eσ  in (3), (6) and (7) by suitable 

estimators. The resulting estimators are denoted by ˆ ˆ
B G

i i
,µ µ  

and 
LV

ˆ
iµ  respectively, where ˆ

B

iµ  is the empirical BLUP 

(EBLUP) estimator. Under normality assumption, ˆ
B

iµ  is the 

empirical best (EB) estimator. The EBLUP estimator of iY  

is given in Section 4.2.2. Note that ˆ
G

iµ  and 
LV

ˆ
iµ  are valid as 

estimators of iY .   
 

3. Mean squared error   
The mean squared error (MSE) of the customary GREG 

estimator 
G

iµɶ  under the two-level model can be written as  
2

2

2

2

MSE( ) ( )

[ ( ) ( )]

[( ) ]

( ) ( )

G G

ii i

i i i i i ii

i i i i

e
i i v i i

i

E

E X x Z X Zy

E x X e

x X x X
n

= −µµ µ

′ ′= + − β− β+ν

′= − ν +

σ′= − Σ − + ,

ɶ ɶ

 

as stated in Theorem 1.   
Theorem 1. The MSE of the GREG estimator (6) is given by  

2

MSE( ) ( ) ( )
G e

i ii ivi
i

x xX X
n

σ′= − Σ − + .µɶ  (8) 

Further, we may write the MSE of the BLUP estimator 
B

iµɶ  

as follows:  

( )

2

2

1

MSE( ) ( )

[ ( )]

B B

ii i

ii i

ii v v i i i v

E

E X

X X V X X
−

= − µµ µ

′= − νν

′ ′= Σ − Σ Σ ,

ɶ ɶ

ɶ  

as stated in Theorem 2.   
Theorem 2. The MSE of the BLUP estimator (3) is given by  

( )1MSE( )
B

i v v i i i v ii
X X V X X−′ ′= Σ − Σ Σ .µɶ  (9) 

Theorem 3 gives the MSE of the new GREG estimator 
LV

.
iµɶ   

Theorem 3. The MSE of the new GREG estimator (7) is 

given by  

LV

2
1

MSE( ) MSE( )
B

i i

e
i v i i i v i i v i

i

x X V X x x x
n

−

=µ µ

 σ′ ′ ′+ Σ Σ − Σ + . 
 

ɶ ɶ

 
(10)

 

Proof of Theorem 3 is given in the Appendix.  

By definition, we have 
LV

MSE( ) MSE( )
B

i i
≤µ µɶ ɶ  and (10) 

gives an explicit expression for the increase in MSE of 
LV

iµɶ  

relative to the MSE of the BLUP estimator 
B

i
.µɶ   

 
4. Empirical results   

4.1 Empirical comparison of MSE values  
In order to study the efficiency of the new GREG 

estimator, we used data from Moura and Holt (1999) based 

on 38,740 households in the enumeration districts (small 

areas) in one county in Brazil. The income of household’s 

head was treated as the response variable .y  Two unit level 

independent variables were identified as the educational 

attainment of household’s head (ordinal scale of 0-5) and 

the number of rooms in the household (1-11+). The 

following two-level model was assumed for this data:  
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0 1 1 2 2

1 1

ij i i ij i ij ij

i

y x x e

j N i m

= β + β + β + ,

= , ..., ; = , ...,  (11)
 

with 

0 0 0 1 1 1 2 2 2i i i i i iβ = β + ν ; β = β + ν ; β = β + ν ,  (12) 

where 

( )
iid iid

2

0 1 2 3( ) 0 (0 )i i i v ij eN e N′ν = ν , ν , ν , Σ , , σ∼ ∼  

and 1x  and 2x  respectively represent the number of rooms 

and the educational attainment of household’s head 

(centered about their respective population means). Note 

that the model (12) for the random iβ - coefficients does not 

contain area level covariates .Z  

Moura and Holt (1999) also studied another model with 

an area level covariate Z  for modeling iβ ’s in (12). For this 

data, average number of cars per household in each area was 

used as a covariate z  for modeling the random coefficients 

1iβ  and 2iβ  corresponding to the variables 1x  and 2,x  but 

not for the random intercept term, 0.iβ  The two-level model 

(11) with the area level covariate z  is given by  

0 1 1 2 2

1 1

ij i i ij i ij ij

i

y x x

j N i m

= β + β + β + ε ,

= , ..., ; = , ...,  (13)
 

with 

0 0 0

1 1 1 1 2 2 2 2

i i

i i i i i iz z

β = β + ν ;

β = β + α + ν ; β = β + α + ν .  (14)

 

Moura and Holt (1999) fitted models (11)-(12) and (13)-

(14) to the full data set mentioned above. We summarize 

their results in Table 1.   
Table 1 
Parameter estimates based on Moura and Holt’s 
(1999) data set, where 2

0 ,σσσσ  2
1σσσσ  and 2

2σσσσ  are the 

diagonal elements and 01,σσσσ 02σσσσ  and 12σσσσ  are the off-
diagonal elements of the covariance matrix ΣΣΣΣνννν  

 

Parameter Diagonal 
Covariance: 

Diagonal 
Covariance: 

General 
Covariance: 

 Model (14) 
with z   

Model (12) 
without z   

Model (12) 
without z  

0β   8.442 8.688 8.456 

1β   0.451 1.321 1.223 

2β   0.744 2.636 2.596 

1α   3.779 - - 

2α   1.659 - - 
2
0σ   0.745 0.637 1.385 
2
1σ   0.237 0.471 0.234 
2
2σ   0.700 1.472 0.926 

01σ   - - 0.354 

02σ   - - 0.492 

12σ   - - 0.333 
2
eσ   44.00 44.01 47.74 

 
The area means of 1x  and 2x  were calculated from the 

whole data and treated as the population means 1iX  and 

2 .iX  A random subsample of 10% of the records was 

selected from each small area. The overall sample size is 

n = 3,876 and the number of small areas is m = 140. Using 

the sample values of 1 2x x,  and z  and the population 

means 1iX  and 2 ,iX  we computed MSE( ),
G

iµɶ MSE( )
B

iµɶ  

and 
LV

MSE( )
iµɶ  using (8), (9) and (10) respectively, treating 

the estimates of regression parameters, vΣ  and 2

eσ  in Table 

1 for the full data as true values. We then calculated the 

average MSE values over the areas: 

1

1 MSE( ),MSE
m G

G iim =
= µ∑ ɶ  

1

1 MSE( )MSE
m B

B iim =
= µ∑ ɶ  

and 
LV

LV 1

1 MSE( ).MSE
m

iim =
= µ∑ ɶ  

We define the relative efficiency of 
Bµɶ  over 

Gµɶ  as EFFB  

and the relative efficiency of 
LVµɶ  over 

Gµɶ  as LVEFF ,  

where  

LV
LV

MSE MSEEFF EFF
MSE MSE

G G
B

B

= ; = .  

We summarize the results in Tables 2 and 3. Tables 2 

and 3 reveal that the new GREG estimator is slightly more 

efficient than the usual GREG estimator in terms of average 

MSE: LVEFF ≤ 112%. However, the new GREG estimator 

is substantially less efficient than the BLUP estimator, under 

the assumed two-level model. For example, for the model 

with z  and diagonal covariance matrix (Table 2), EFFB =  

292% compared to LVEFF = 106%, and MSEB = 0.62 

compared to LVMSE = 1.72.  
 
Table 2 

Comparison of small area estimators: relative efficiency 
(EFF) and average MSE (MSE)  for the case of diagonal 
covariance matrix based on Moura and Holt’s (1999) data set 
 

Model without z Model with z Quality  

Measure  GREG  New 

GREG  

BLUP  GREG  New 

GREG  

BLUP   

EFF  100% 112% 306% 100% 106% 292% 
MSE   1.92 1.71 0.62 1.83 1.72 0.62 

 
Table 3 
Comparison of small area estimators: relative 

efficiency (EFF) and average MSE (MSE ) for the case 
of a general covariance matrix based on Moura and 
Holt’s (1999) data set  
 

Model without z   Quality  

Measure  GREG  New GREG  BLUP   

EFF 100% 108% 253% 

MSE  2.02 1.87 0.80 

 
4.2 Simulation study  
4.2.1 Simulation study under a model-based 

framework  
In order to investigate the efficiency of the new GREG 

estimator with estimated model parameters, a small 



14 Torabi and Rao: Small area estimation under a two-level model 

 

 

Statistics Canada, Catalogue No. 12-001-X 

simulation study based on the two-level models (11)-(12) 

and (13)-(14) was undertaken. We only considered a 

diagonal covariance structure vΣ  with diagonal elements 
2 2

0 1σ , σ  and 2

2.σ  We again used the data from Moura and 

Holt (1999). The estimates of 2 2 2

0 1 2 1 2 0 1 2β , β , β , α , α , σ , σ , σ  

and 2

eσ  reported in Table 1 are treated as true values.  

In our simulation study, we took 1 2( )ij ij ix x z, ,  from 

Moura and Holt (1999) and then generated ijy  based on the 

models (11)-(12) and (13)-(14). By using the generated 

samples ( )
1 2( ), 1, ...,b

ij ij ij iy x x z b B, , , = = 1,000, we calcu-

lated ( )ˆ bβ  by generalized least squares for the new GREG 

method as well as for the BLUP method. For the GREG 

method we used ordinary least squares to estimate β  as 
( )

ols
ˆ bβ . In addition, ( )ˆ b

vΣ  and 2( )ˆ b

eσ  were computed based on 

the restricted maximum likelihood (REML) method. For 

each generated sample, we calculated  

( ) ( )( ) 1 1b b
ii i iZ i m b BXµ = β + ν , = , ..., ; = , ..., .′  

We computed the new GREG estimator of ( )b

iµ  as 
( )( )LV( ) ( )ˆ( ) ( )ˆ ˆ
bbb b

i ii ii i
Zy xX ′= + − + ,µ νβ  the GREG estimator 

of ( )b

iµ  as 
( )( )( )

ols
ˆ( )ˆ

bbG b
ii ii i

Zy xX ′= + −µ β  and the empirical 

BLUP (EBLUP) estimator of ( )b

iµ  as ( )ˆ B b

iµ =  
( ) ( )ˆ ˆ( ),b b

i i iX Z′ β +ν  where 
( )( ) 1( ) ( )( ) ˆˆ ˆ(y )ˆ
bb b bb

i v i i i i iX V X Z−′=Σ − .ν β   

We then computed the average mean squared error 

(
______

1MSE ) and average absolute relative error (
______

1ARE )  

( )1 ( ) 2

1 11
1

( )1 ( ) ( )

1 1 1
1

1 MSE where MSE ( )ˆMSE

1 ARE where ARE ˆARE

m B
b b

i i ii
i b
m B

b b b

i i i ii
i b

B
m

B
m

−

=

−

=

= = − µ ,µ

= = | −µ | /µ ,µ

∑ ∑

∑ ∑
 

where 
( )

ˆ
b

iµ  denotes 
LV( ) ( )

ˆ ˆ
b G b

i i
,µ µ  or 

( )
.ˆ

B b

iµ  We report the 

results in Table 4. Both models with area level covariate z  

and without z  have slightly smaller values of 
______

1MSE  and 
______

1ARE  for the new GREG estimator relative to the GREG 

estimator. However, 
______

1MSE  and 
______

1ARE  are significantly 

smaller for the EBLUP estimator due to borrowing strength 

from related areas. Moreover, comparing Tables 2 and 4, we 

can see that the values of 
______

1MSE  in Table 4 are slightly 

larger than the corresponding values in Table 2 due to 

estimating model parameters.  

 
Table 4 

Comparison of small area estimators: average MSE (
_____

1MSE ) 
and average absolute relative error (

_____

1ARE ) under a model-
based framework 
 

Quality Model without z Model with z 

Measure  GREG  New 
GREG 

EBLUP  GREG  New 
GREG 

EBLUP 

1MSE   1.93  1.73  0.67  1.84  1.73  0.73   

1ARE   0.14  0.13  0.08  0.13  0.12  0.08   

 
 

4.2.2 Simulation study under a finite population 

framework  
To study the performance of the estimators under a finite 

population framework, we created a synthetic finite 

population from the Brazilian data consisting of n = 3,876 

sample values 1 2( )ij ij ij iy x x z, , , .  By duplicating the sample 

values 1 2( )ij ij ij iy x x z, , ,  five times, we treated the new 

1 2( )y x x z, , , -data of size 19,380 as our real population.  

We generated 500 independent samples ( B = 500), each 

of size n = 700 and n = 1,400, by taking simple random 

samples of size 5in =  and 10in =  in each area 

1 140.i = , ...,  As before, for each sample we calculated 
( )ˆ bβ  for the new GREG and the BLUP methods and ( )

ols
ˆ bβ  for 

the GREG method. In addition, ( )ˆ b

vΣ  and 2( )ˆ b

eσ  were 

calculated based on the REML method. We also computed 

the population mean of ijy  for each area i  as  

1

1 140
iN

i ij i
j

y N iY
=

= / , = , ..., ,∑  

where iN  is the population size in thi  area. Further, for 

each sample 1 ,b B= , ...,  we calculated the new GREG 

estimate of the thi  area mean as 
LV( ) ( )ˆ b b

ii
yY = +  

( )( ) ( )ˆ( ) ( ),ˆ
bb b

i ii iX Zx ′− +νβ  the GREG estimate as 
( )( )ˆ bG b

i i
Y y= +  

( )( )

ols
ˆ( )

bb
ii iZxX ′− β  and the EBLUP estimate as ( )ˆ B b

iY =  
( ) ( )ˆ(1 ) [ ( )],ˆ
b b

iii i ii
f f Zy X

′∗+ − + νβ  where 

,i i i i
ii i i

i i

N X n x
f n N X

N n
∗ −

= / , =
−

 

and ( ) ( ) 1( ) ( ) ( )ˆˆˆˆ (y )b b b b b

i v i i i i iv X V X Z−′= Σ − β .  
The EBLUP estimator accounts for the finite population 

corrections .if  

We computed the average mean squared error (
______

2MSE ) 

and average absolute relative error (
______

2ARE ) as  

22 22
1 1MSE AREMSE ARE

m m

i i

i i
m m

= , = ,∑ ∑  

where  

( ) ( )2
2 2

1 1

1 1ˆ ˆMSE ( ) ARE
B B

b b

i i ii ii i
b b

Y Y YY YB B
= =

= − , = | − | / ,∑ ∑  

and ( )ˆ b

iY  denotes LV( ) ( )ˆ ˆ,b G b

i iY Y  or ( )ˆ .B b

iY  We report the 

results in Tables 5 and 6 for 5in =  and 10in =  

respectively. Both models with area level covariate z  and 

without z  are considered.  

 
Table 5 
Comparison of small area estimators: average MSE (

_____

2MSE ) 

and average absolute relative error (
_____

2ARE ) under a finite 
population framework ( 5)in ====  

 

Quality Model without z Model with z 
Measure  GREG  New 

GREG 

EBLUP  GREG  New 

GREG 

EBLUP 

2MSE   11.03  10.02  6.50  10.76  10.06  7.06   

2ARE   0.27  0.24  0.18  0.25  0.23  0.22   



Survey Methodology, June 2008 15 
 

 

Statistics Canada, Catalogue No. 12-001-X 

Table 5 shows that for 5in =  the new GREG estimator 

exhibits slightly better performance relative to the GREG 

estimator in the sense of smaller 2MSE  and 
______

2ARE . On the 

other hand, Table 6 reveals that with 10in =  the GREG 

estimator has slightly better performance than the new 

GREG estimator in terms of 2MSE  but not 
______

2ARE .  

However, the EBLUP estimator gives substantially smaller 

2MSE  and 
______

2ARE  than the GREG and the new GREG in 

both cases due to borrowing strength from related small 

areas. For example, for the model without z  and 5,in =  

2MSE = 10.02, 11.03 and 6.50 for the new GREG, the 

GREG and the EBLUP, respectively.  

 
 
Table 6 

Comparison of small area estimators: average MSE (
_____

2MSE ) 
and average absolute relative error (

_____

2ARE ) under finite 
population framework ( 10)in ====  
 

Quality Model without z Model with z 

Measure  GREG  New 
GREG 

EBLUP  GREG  New 
GREG 

EBLUP 

2MSE   6.53  6.77  4.73  6.75  6.96  5.24   

2ARE   0.20  0.18  0.15  0.19  0.18  0.19   

 
5. Summary  

 
In this paper, we derived the model mean squared error 

(MSE) of a two-level model-assisted new GREG estimator 

of a small area mean, proposed by Lehtonen and Veijanen 

(1999). In addition, we used a data set of Moura and Holt 

(1999) to demonstrate empirically that the BLUP estimator 

is substantially more efficient than the new GREG estimator 

in terms of model MSE, while the new GREG is only 

slightly more efficient than the customary GREG based on 

the regression model 1 .i i i iy X Z e i m= β + , = , ...,  More-

over, using a simulation study under a model-based frame-

work, we have shown that the new GREG estimator has 

consistently better performance relative to the GREG esti-

mator in terms of average MSE, MSE,  and average 

absolute relative error, 
______

ARE.  However, due to borrowing 

strength from related small areas, EBLUP estimator exhibits 

significantly better performance relative to the GREG and 

the new GREG estimators. In addition, we conducted a 

simulation study under a finite population framework and 

showed that the EBLUP estimator outperforms the new 

GREG and the GREG estimators in terms of 
______

MSE  and 
______

ARE.  
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Appendix  

 
Derivation of 

LV
MSE( )ɶ

i
::::µµµµ   

LV LV 2

2 2

MSE( ) ( )

[ ( )] [ ( )]

2 [( ( )) ( )]

ii i

i i i i i ii

i i i i i ii

E

E X E x Zy

E x Z Xy

= − µµ µ

′ ′= ν −ν + − β+ν

′ ′+ − β+ν ν − ν ,

ɶ ɶ

ɶ ɶ

ɶ ɶ  (A.1)
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MSE of the BLUP estimator under the two-level model, 
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where the second term is zero. Therefore, we may write  
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using the following Lemma:   
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LEMMA 1 (Searle 1971). If y is a 1n ×  vector with mean 

µ  and variance-covariance matrix Σ  and b  is a 1n ×  

vector, then (y y) .E b b b′ ′= Σ + µ µ   
Hence,  
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Then we may write (A.2) as follows:  

2
2

1

2
1

[ ( )]

2

e
ii i i i vi

i

i v i i i v i i v i

e
i v i i i v i i v i

i

E x Z xy x
n

x X V X x x x

x X V X x x x
n

−

−

σ′ ′− β+ν = Σ +

′ ′ ′+ Σ Σ − Σ

σ′ ′ ′= Σ Σ − Σ + .

ɶ

 (A.3)

 

Finally, we need to find the cross-product term of (A.1). 
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where the first term on the right side of (A.4) may be written 
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The first term of (A.5) is  
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Then we obtain the following expression for the four 

terms on the right side of (A.10):  
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Therefore, substituting (A.11)-(A.14) in (A.10), we get  
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Hence, it follows from (A.4), (A.9) and (A.15) that  
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It now follows from (A.1), (A.3) and (A.16) that  
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as stated in Theorem 3. 

 
References  

 
Lehtonen, R., and Veijanen, A. (1999). Domain estimation with 

logistic generalized regression and related estimators. IASS 
Satellite Conference on Small Area Estimation, Riga: Latvian 
Council of Science, 121- 128. 

 

Lehtonen, R., Särndal, C.-E. and Veijanen, A. (2003). The effect of 
model choice in estimation for domains, including small domains. 
Survey Methodology, 29, 33-44. 

 
Moura, F.A.S., and Holt, D. (1999). Small area estimation using 

multilevel models. Survey Methodology, 25, 73-80.  
 
Rao, J.N.K. (2003). Small Area Estimation. Hoboken: New York: 

John Wiley & Sons, Inc.  
 
Särndal, C.-E., Swensson, B. and Wretman, J.H. (1992). Model 

Assisted Survey Sampling. New York: Springer-Verlag.  
 
Searle, S.R. (1971). Linear Models. New York: John Wiley & Sons, 

Inc. 

 

 
 
 
 
 
 





Survey Methodology, June 2008  19 
Vol. 34, No. 1, pp. 19-27 
Statistics Canada, Catalogue No. 12-001-X 

 

An integrated modeling approach to unemployment rate estimation 
for sub-provincial areas of Canada 

Yong You 1 

Abstract 

The Canadian Labour Force Survey (LFS) produces monthly estimates of the unemployment rate at national and provincial 

levels. The LFS also releases unemployment estimates for sub-provincial areas such as Census Metropolitan Areas (CMAs) 

and Urban Centers (UCs). However, for some sub-provincial areas, the direct estimates are not reliable since the sample size 

in some areas is quite small. The small area estimation in LFS concerns estimation of unemployment rates for local sub-

provincial areas such as CMA/UCs using small area models. In this paper, we will discuss various models including the 

Fay-Herriot model and cross-sectional and time series models. In particular, an integrated non-linear mixed effects model 

will be proposed under the hierarchical Bayes (HB) framework for the LFS unemployment rate estimation. Monthly 

Employment Insurance (EI) beneficiary data at the CMA/UC level are used as auxiliary covariates in the model. A HB 

approach with the Gibbs sampling method is used to obtain the estimates of posterior means and posterior variances of the 

CMA/UC level unemployment rates. The proposed HB model leads to reliable model-based estimates in terms of CV 

reduction. Model fit analysis and comparison of the model-based estimates with the direct estimates are presented in the 

paper. 

                                                           
1. Yong You, Household Survey Methods Division, Statistics Canada, Ottawa, Ontario, K1A 0T6. E-mail: yong.you@statcan.ca. 
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1. Introduction 
 
The unemployment rate is generally viewed as a key 

indicator of economic performance. In Canada, the 

unemployment rate estimates are produced monthly by the 

Labour Force Survey (LFS) of Statistics Canada. The LFS 

is a monthly survey of 53,000 households selected using a 

stratified, multistage design. Each month, one-sixth of the 

sample is replaced. Thus five-sixths of the sample is 

common between two consecutive months. This sample 

overlap induces correlations which can be exploited to 

produce better estimates by alternative methods such as 

model-based methods to borrow strength over time; more 

details will be discussed in Section 2. For a detailed 

description of the LFS design, see Gambino, Singh, Dufour, 

Kennedy and Lindeyer (1998). The LFS releases monthly 

unemployment rate estimates for large areas such as the 

nation and provinces as well as local areas (small areas) 

such as Census Metropolitan Areas (CMAs, i.e., cities with 

population more than 100,000) and other Urban Centres 

(UCs) across Canada. Although national and provincial 

estimates get the most media attention, sub-provincial 

estimates of the unemployment rate are also very important. 

They are used by the Employment Insurance (EI) program 

to determine the rules used to administer the program. In 

addition, the unemployment rates for CMAs and UCs 

receive close scrutiny at local levels. However, many local 

areas do not have large enough samples to produce adequate 

direct estimates, since the LFS is designed to produce 

adequate or reliable estimates at the national level and 

provincial level. The estimated coefficient of variation (CV) 

level for the nation is about 2% and 4% to 7% for provinces. 

However, the CVs for CMAs and UCs range from about 

7% to 50%. Some UCs have CVs even larger than 50%. 

The direct LFS estimates for some local areas are not 

reliable with very large CVs due to the small sample sizes 

for those areas. Therefore, alternative estimators, in 

particular, model-based estimators, are considered to 

improve the direct LFS estimates for small areas. The 

objective in this paper is to obtain a reliable model-based 

estimator that is an improvement over the direct LFS 

estimator in terms of small and stable CVs.  

In general, direct survey estimators, based only on the 

domain-specific sample data, are typically used to estimate 

parameters for large domains such as the nation and 

provinces. But sample sizes in small domains, particularly 

small geographical areas, are rarely large enough to provide 

reliable direct estimates for specific small domains. In 

making estimates for small areas, it is necessary to borrow 

strength from related areas to form indirect estimators that 

increase the effective sample size and thus increase the 

precision. Such indirect estimators are based on either 

implicit or explicit models that provide a link to related 

small areas through supplementary data such as census 

counts and administrative records. It is now generally 

accepted that when indirect estimates are to be used they 

should be based on explicit models that relate the small 

areas of interest through supplementary data; see Rao 

(2003). The model-based estimators are indirect estimators 

in the sense that these estimators are obtained by using small 
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area models, direct estimates and related auxiliary variables. 

The model-based estimators are obtained to improve the 

direct design-based estimators in terms of precision and 

reliability, that is, smaller CVs. Traditional small area 

estimators borrow strength either from similar small areas or 

from the same area across time, but not both. In recent 

years, several approaches to borrowing strength simulta-

neously across both space and time have been developed. 

Estimators based on the approach developed by Rao and Yu 

(1994), Ghosh, Nangia and Kim (1996), Datta, Lahiri, Maiti 

and Lu (1999), Datta, Lahiri and Maiti (2002) and You, Rao 

and Gambino (2000, 2003), successfully exploit the two 

dimensions simultaneously to produce improved estimates 

with desirable properties for small areas. In particular, You 

et al. (2000, 2003) studied the model-based estimation of 

unemployment rates for local sub-provincial areas such as 

CMAs and Census Agglomerations (CAs) across Canada. 

They obtained efficient model-based estimators and 

adequate model fit for the LFS unemployment rate 

estimation. However, the model proposed by You et al. 

(2000, 2003) has some limitations. In this paper, we discuss 

these limitations and propose a new integrated model for the 

LFS unemployment rate estimation under hierarchical 

Bayes (HB) framework. The idea is to model the parameters 

of interest and the sampling variances together as suggested 

in You et al. (2003) and You and Chapman (2006). We will 

apply the proposed model to the 2005 LFS data and obtain 

the model-based unemployment rate estimates. Comparison 

of the HB estimates with the direct LFS estimates and 

model fit analysis will also be provided.  

This paper is organized as follows. In Section 2, we 

present and discuss various small area models proposed in 

the literature for the unemployment rate estimation. In 

Section 3, we discuss the problem of smoothing and 

modeling the sampling covariance matrix. In Section 4, an 

integrated non-linear mixed effects model is proposed in a 

hierarchical Bayes framework, and the use of Gibbs 

sampling to generate samples from the joint posterior 

distribution is described. In Sections 5, we apply the 

proposed model to LFS data and obtain the HB estimates 

for small area unemployment rates. Model analysis and 

evaluation are also provided. And finally in Section 6 we 

offer some concluding remarks and future work directions.  

 
2. Small area models 

 
2.1 Cross-sectional model  
Cross-sectional or area level models are used to produce 

reliable model-based estimates by combining area level 

auxiliary information and direct area level estimates. A 

basic area level model is the well-known Fay-Herriot model 

(Fay and Herriot 1979). This model has two components: 

(1) a sampling model for the direct survey estimates, and (2) 

a linking model that relates the small area parameters to area 

level auxiliary variables through a linear regression model. 

For the LFS monthly unemployment rate estimation, let itθ  
denote the true unemployment rate for the thi  CMA/UC at a 

particular time (month) ,t  where 1, ..., ,i m=  where m  is 

the number of CMA/UCs, and let ity  denote the direct LFS 

estimate of .itθ  Then the sampling model for ity  can be 

expressed as  

, 1, ..., ,it it ity e i m= θ + =  (1) 

where ite  is the sampling error associated with the direct 

estimator .ity  The sampling error is assumed to be normally 

distributed as 2 (0, )it ite N σ∼  where 2

itσ  is the sampling 
variance. The linking model for the true unemployment rate 

itθ  may be written as  

, 1, ..., ,it it ix v i m′θ = β + =  (2) 

where itx  is the auxiliary variable and iv  is area-specific 

random effect. For each time point (each month), we can 

use the Fay-Herriot model for the monthly direct estimates. 

The Fay-Herriot model combines cross-sectional informa-

tion but does not borrow strength over the past time periods.  
 
2.2 Cross-sectional and time series model   
Because of the LFS sample design and rotation pattern, 

there is substantial sample overlap over six month time 

periods within each area. As a result, for a particular area ,i  

the correlation between the sampling errors ite  and ise  

( )t s≠  need to be taken into account. You et al. (2000, 

2003) proposed a cross-sectional and time series model for 

the LFS unemployment rate estimates. You et al. (2000, 

2003) only used previous six months of data to predict the 

current month rate since the LFS sample rotation is based on 

a six month cycle. Each month, one sixth of the LFS sample 

is replaced. Thus after six months, the correlation between 

estimates is weak (see Section 2.1 for the lag correlation 

coefficients). Let iy = 1( , ..., ) ,i iTy y ′
1( , ..., ) ,i i iT

′θ = θ θ  

and 1( , ..., ) ,i i iTe e e ′=  where 6T =  here. By assuming that 

ie  follows a multivariate normal distribution with mean 

vector 0 and sampling covariance matrix ,i∑  we have  

( )~ , ,    1, ..., .i i i
y N i mθ =∑  

Thus iy  is assumed to be design-unbiased for .iθ  The 
sampling covariance matrix i∑  is unknown in the model. 

Direct estimates of the sampling covariance matrices are 

available. It is customary to assume a known sampling 

variance in area level model-based small area estimation 

(Rao 2003). For example, the traditional Fay-Herriot model 

assumes the sampling variance known in the model. Usually 
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a smoothed estimator of the sampling variance is used. 

However, recent development on modeling the sampling 

variance provides an alternative approach to handle the 

problem of sampling variance; for example, see Wang and 

Fuller (2003), You and Dick (2004) and You and Chapman 

(2006). For the unemployment rate estimation, details on 

smoothing and modeling the sampling variances are given 

in Section 3.  

To borrow strength across regions and time periods, and 

following You et al. (2000, 2003) we can model the true 

unemployment rate itθ  by a linear regression model with 
random effects through auxiliary variables ,itx  that is,  

,    1, ..., , 1, ..., ,it it i itx v u i m t T′θ = β + + = =  (3) 

where iv  is a area random effect assumed to be 
2(0, )vN σ  

and itu  is a random time and area component. We can 

further assume that itu  follows a random walk process over 

time period 1, ..., ,t T=  that is,  

, 1 ,it i t itu u −= + ε  (4) 

where 2~  (0, ).it N εε σ  Then 2cov( , ) min( , ) .it isu u t s ε= σ  

The regression vector β  and the variance components 2

vσ  
and 2

εσ  are unknown in the model and need to be estimated. 
Combining the model (1), (3) and (4), we obtain a linear 

mixed model with time components as  

,    1, ..., , 1, ..., .it it i it ity x v u e i m t T′= β + + + = =  (5) 

You et al. (2003) showed that the cross-sectional and 

time series model (5) is better than the Fay-Herriot model in 

terms of smoothing the direct estimates and CV reduction 

over the direct estimates for the LFS unemployment rate 

estimation.  

We have used a random walk model for .itu  Rao and Yu 

(1994) used a stationary autoregressive model for .itu  You 

et al. (2003) showed that the random walk model on itu  had 

provided better model fit to the unemployment rate 

estimation than the autoregressive AR(1) model. Datta et al. 

(1999) also used a random walk model to estimate the US 

unemployment rates at the state level.  

 
2.3 Log-linear linking model  
However, a limitation of the model (3) is that the linking 

model for the parameter of interest, the true unemployment 

rate ,itθ  is a linear model with normal random effects. Since 

itθ  is a positive number between 0 and 1, and it is close to 
0, the linear linking model with normal random effects may 

lead to negative estimates for itθ  for some small areas. To 
avoid this problem, You, Chen and Gambino (2002) 

proposed a log-linear linking model for itθ  as follows:  

log( ) ,    1, ..., , 1, ..., .it it i itx v u i m t T′θ = β + + = =  (6) 

You and Rao (2002) also studied the log-linear linking 

model for the Fay-Herriot model as the unmatched sampling 

and linking models with application in the Canadian census 

undercoverage estimation. The results of You and Rao 

(2002) and You et al. (2002) have shown that the log-linear 

linking model performs very well in the small area 

estimation problems. In this paper, we therefore will use the 

log-linear linking model (6) for the true unemployment rate 

.itθ  

 

3. Sampling variance  
 
In general, we can obtain direct sampling variance 

estimates from survey data. However, these direct estimates 

are unstable if sample sizes are small. In area level models 

of small area estimation, the sampling variances are usually 

assumed to be known (e.g., Fay and Herriot 1979; Datta 

et al. 1999; You and Rao 2002). If the sampling variances 

are assumed to be known in the model, then reliable 

(smoothed) estimates of sampling variances are constructed 

using other auxiliary data and models usually through 

generalized variance functions (e.g., Dick 1995; Datta et al. 

1999). In this paper alternatively, we model sampling 

variance covariance matrix using the direct estimates in a 

specific way such that we do not need to assume the 

sampling variances and covariances are known in the 

model. Thus we simplify the problem of smoothing 

unknown sampling variance and integrate the sampling 

variance modeling part into the whole model.  
 
3.1 Smoothing sampling covariance matrix  
You et al. (2000, 2003) used two steps to smooth the 

sampling covariance matrix. The first step is to obtain a 

smoothed or common CV for each CMA/UC by computing 

the average CVs for each CMA/UC over a certain time 

period, denoted as CV ,i  where 1, 2, ..., .i m=  The second 

step is to obtain the average lag correlation coefficients over 

time and all CMA/UCs, denoted as | |t s−ρ  for the time lag 

| |.t s−  This step involves intensive computation. We have 

used three years (1999 to 2001) of LFS data to compute the 

smoothed correlation coefficients. We treat the smoothed 

values over both time and space as the true values in the 

model. The one-month lag (lag-1) correlation coefficient is 

obtained as 1 0.48,ρ =  lag-2 correlation coefficient is 

2 0.31,ρ =  lag-3 is 3 0.21,ρ =  lag-4 is 4 0.16,ρ =  lag-5 is 

5 0.11ρ =  and 6 0.1.ρ =  After lag 6, the lag correlation 

coefficient is less than 0.1. The lag correlation coefficients 

decrease as the lag increases. This is consistent with the 

rotation pattern of the LFS design. Figure 1 shows the 

smoothed lag correlation coefficients for the LFS 

unemployment rate estimates.  
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By using these smoothed CVs and lag correlation 

coefficients, a smoothed covariance matrix ˆ
i

∑  can be 
obtained with diagonal elements 2 2 2(CV )ˆ it i ityσ =  and off-

diagonal elements | | .ˆ ˆ ˆits t s it is−σ = ρ σ σ  The smoothed ˆ
i

∑  is 
then treated as known in the model. The study of You et al. 

(2000, 2003) suggests that using the smoothed ˆ
i

∑  in the 
model can significantly improve the estimates in terms of 

CV reduction compared to the HB estimates obtained using 

the direct survey estimates of 
i

∑  in the model. For more 
details of the result, see You et al. (2003).  

 

 

 

 

 

 

 

 

 

Figure 1 Smoothed unemployment rate lag corre-

lation coefficients 

 
3.2 Equal CV modeling approach  
The main problem of the method of You et al. (2000, 

2003) is that the smoothed sampling covariance matrices 

depend on the direct survey estimates ,ity  whereas the ity ’s 

are not reliable for some small regions. Note that the true 

sampling variance can be written as 2 2 2(CV ) .it it itσ = θ  Based 

on the assumption of common CV over time for a given 

area, You et al. (2003) suggested in their concluding 

remarks to use estimates of the form 2 2 2(CV )it it iσ = θɶ  and 

itsσ =ɶ | | ( )t s it is−ρ σ σɶ ɶ  for the smoothed variances and 

covariances respectively. Then the new smoothed sampling 

covariance matrix 
i

∑ɶ  has diagonal elements 2

itσɶ  and off-
diagonal elements .itsσɶ  However, under this method, the 

sampling covariance matrix 
i

∑ɶ  becomes unknown in the 
model, since 2

itσɶ  and itsσɶ  depend on the unknown 
parameters ,itθ  whereas itθ  is related to a linking model. 
The advantage of this method is that the model structure of 

the sampling covariance matrix is clearly specified. This 

method is better than the smoothing method in the sense that 

the sampling covariance is clearly specified and not treated 

as known.  
 
3.3 Equal design effects modeling approach  
An alternative modeling approach is based on the 

assumption of common design effects as suggested in 

Singh, You and Mantel (2005) and Singh, Folsom and 

Vaish (2005) to smooth the sampling variance 2.itσ  The 

design effect (deff) for the ith area at time t may be 

approximately written as  

2

deff ,
(1 ) /

it
it

it it itn

σ
=
θ − θ

 

where itn  is the corresponding sample size. Then the 

sampling variance 2

itσ  can be written as 2

itσ =  
(1 ) deff / .it it it itnθ − θ ⋅  Let 2deff / /( (1it it it it itnτ = = σ θ −  
)).itθ  Then we can estimate itτ  using the direct estimates of 

itθ  and 
2

itσ  as 2 /( (1 )).ˆ ˆit it it ity yτ = σ −  For each area, based 

on the assumption of a common deff and a common sample 

size over time, we can obtain a smoothed average factor iτ  
as 1 / .ˆT

ti it T=∑τ = τ  Then a smoothed sampling variance can 

be obtained as 2 (1 ) ,it it it iσ = θ − θ ⋅ τɶ  which again depends on 

itθ  as well. The sampling covariance is still in the form of 

| | ( ),its t s it is−σ = ρ σ σɶ ɶ ɶ  as in You et al. (2003). Note that iτ  is 
a moving average of ˆ itτ  over the time period T  in the 
model. In practice, however, alternatively one may use a 

longer time series data to obtain more stable estimate of iτ  
for each area if necessary. In this paper, we will use the 

common design effects model for unemployment rate 

estimation based on the smoothed moving average factor iτ  
as we borrow information from the past time period .T  

 
4. Hierarchical Bayes inference 

 
In this section, we propose an integrated cross-sectional 

and time series log-linear model for the unemployment rate 

estimation. We apply the hierarchical Bayes approach to the 

model. Estimates of posterior means and posterior variances 

are obtained by using the Gibbs sampling method.  
 
4.1 Integrated hierarchical Bayes model  
We now propose the integrated cross-sectional and time 

series log-linear model in a hierarchical Bayes framework as 

follows: 
 

• Conditional on 1( , ..., ) ,i i iT
′θ = θ θ [ | ] ~ ind ( ,i i iy Nθ θ  

( ));i i∑ θ  

• Conditional on ,β  itu  and 2,vσ
2[log( ) | , , ] ~it it vuθ β σ  

2ind ( , );it it v N x u′β + σ  

• Conditional on , 1i tu −  and 
2,εσ

2
, 1[ | , ] ~it i tu u − εσ  

2
, 1ind ( , );i tN u − εσ  

• ( )i i∑ θ  depends on iθ  with diagonal elements 
2

itσ =ɶ  

(1 )it it iθ − θ ⋅ τ  and off-diagonal elements itsσ =ɶ  

| | ( ).t s it is−ρ σ σɶ ɶ  

• Marginally ,β 2

vσ  and 
2

εσ  are mutually independent 
with priors given as 1,β ∝ 2

1 1~ IG( , ),v a bσ  and 
2

2 2~ IG( , ),a bεσ  where IG denotes an inverse gamma 
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distribution and 1 1 2 2, , ,a b a b  are known positive 

constants and usually set to be very small to reflect our 

vague knowledge about 2

vσ  and 
2.εσ   

Remarks:   
1. The proposed HB model has used a log-linear 

linking model for the small area parameter of 

interest itθ  as suggested in You et al. (2002) and 
You and Rao (2002).  

2. The sampling covariance matrix i∑  is unknown in 

the model, and it is specified as a function of 

unknown small area parameter iθ  as suggested in 
You and Rao (2002) and You et al. (2003).  

3. We have used the assumption of common design 

effects for small areas as suggested in Singh, You 

and Mantel (2005).  

4. The proposed HB model overcomes the limitations 

of the model of You et al. (2000, 2003) in terms of 

log-linear modeling and specification of unknown 

sampling covariance matrix modeling. In particular, 

we model the unknown sampling covariance matrix 

through the small area parameters iθ  using 
smoothed estimates of design effects for each areas.   

We are interested in estimating the true unemployment 

rate ,itθ  and in particular, the current unemployment rate 

.iTθ  In the HB analysis, iTθ  is estimated by its posterior 

mean ( | )iTE yθ  and the uncertainty associated with the 

estimator is measured by the posterior variance ( | ).iTV yθ  

We use the Gibbs sampling method (Gelfand and Smith 

1990; Gelman and Rubin 1992) to obtain the posterior mean 

and the posterior variance of .iTθ  
 
4.2 Gibbs sampling inference  
The Gibbs sampling method is an iterative Markov chain 

Monte Carlo sampling method to simulate samples from a 

joint distribution of random variables by sampling from low 

dimensional densities to make inference about the joint and 

marginal distributions (Gelfand and Smith 1990). The most 

prominent application is for inference within a Bayesian 

framework. In Bayesian inference one is interested in the 

posterior distribution of the parameters. Assume that |iy θ  
has conditional density ( | )if y θ for 1, ...,i n=  and that the 

prior information about 1( , ..., )k ′θ = θ θ  is summarized by a 

prior density ( ).π θ  Let ( | )yπ θ  denote the posterior density 

of θ  given the data 1( , ..., ) .ny y y ′=  It may be difficult to 

sample from ( | )yπ θ  directly in practice due to the high 

dimensional integration with respect to .θ  However, one 
can use the Gibbs sampler to construct a Markov chain 
( ) ( ) ( )

1{ ( , ..., ) }g g g

k
′θ = θ θ  with ( | )yπ θ  as the limiting 

distribution. For illustration, let 1 2( , ) .′θ = θ θ  Starting with 

an initial set of values (0) (0) (0)

1 2( , ) ,′θ = θ θ  we generate 
( ) ( ) ( )

1 2( , )g g g ′θ = θ θ  by sampling ( )

1

gθ  from ( 1)

1 2( | , )g y−π θ θ  

and ( )

2

gθ  from ( 1)

2 1( | , ).g y−π θ θ  Under certain regularity 

conditions, ( ) ( ) ( )

1 2( , )g g g ′θ = θ θ  converges in distribution to 

( | )yπ θ  as .g →∞  Marginal inference about ( | )i yπ θ  can 

be based on the marginal samples ( ){ ; 1, 2, ...}g k

i k+θ =  for 

large .g  

For the proposed integrated HB model, to obtain the 

posterior estimation of unemployment rate, we implement 

the Gibbs sampling method by generating samples from the 

full conditional distributions of the parameters ,β 2

vσ  and 
2,εσ itu  and .iθ  These full conditional distributions are 
given in the Appendix. The distributions of ,β 2

vσ  and 
2,εσ  

itu  are standard normal or inverse gamma distributions that 

can be easily sampled. However, the conditional distribution 

of iθ  does not have a closed form. We use the Metropolis-
Hastings algorithm within the Gibbs sampler (Chib and 

Greenberg 1995) to update .iθ  Following You et al. (2002) 
and You and Rao (2002), the full conditional distribution of 

iθ  in the Gibbs sampler can be written as  
2 2| , , , , ( ) ( ),i v i iY u h fεθ β σ σ ∝ θ θ  

where  

1 11
( ) ( ) exp{ ( ) ( )}

2
i i i i i ii i

h y y
− −′θ = θ − − θ − θ∑ ∑  

and  

2
1

( )

1 1
exp (log( ) x ) (log( ) x ) .

θ2

i

T

i i i i i i

t itv

f

u u
=

θ =

  ′ ′ ′− θ − β− θ − β− ⋅   σ   
∏

 

To update ,iθ  we proceed as follows:  
1. For 1, ..., ,t T=  draw ( 1) ( 1) ( 1)~ log ( ,k k k

it it itN x β u+ + +′θ +  
2( 1) ),k

v

+σ  then we have ( 1) ( 1) ( 1)

1( , ..., ) .k k k

i i iT

+ + + ′θ = θ θ  
 

2. Compute the rejection probability  

    
( 1)

( ) ( 1)

( )

( )
( , ) min{ ,1}.

( )

k
k k i
i i k

i

h

h

+
+ θ

α θ θ =
θ

 

 

3. Generate ~ Uniform(0,1),λ  if ( ) ( 1)( , ),k k

i i

+λ < α θ θ  

then accept ( 1);k

i

+θ  otherwise reject ( 1)k

i

+θ  and set 
( 1) ( ).k k

i i

+θ = θ   
To implement Gibbs sampling, we follow the 

recommendation of Gelman and Rubin (1992) and 

independently run ( 2)L L >  parallel chains, each of length 

2 .d  The first d  iterations of each chain are deleted. The 

convergence monitoring is based on the potential scale 

reduction factor as suggested in Gelman and Rubin (1992) 

and adopted by You et al. (2003) for estimating .iTθ  Details 

are given in You et al. (2003). Estimates of the posterior 

mean ( | )iTE yθ  and the posterior variance ( | )iTV yθ  are 

obtained based on the samples generated from the Gibbs 

sampler.  



24 You: An integrated modeling approach to unemployment rate estimation for sub-provincial areas of Canada 

 

 

Statistics Canada, Catalogue No. 12-001-X 

5. Application to LFS data 
 
5.1 Estimation  
We use the 2005 January to June LFS unemployment 

rate estimates, ,ity  in our data analysis. In addition to the 

direct estimates ity  and the sampling covariance matrices 

used in the small area models, auxiliary administrative 

variables are needed in the models. For the unemployment 

rate estimation, local area employment insurance (EI) 

monthly beneficiary rate is used as auxiliary data itx  in the 

model. The beneficiary rate is calculated as the ratio of the 

number of persons applying EI benefit over the number of 

persons in the labour force. There are 72 CMA/UCs across 

Canada. One UC (Miramichi) does not have the EI data. So 

we consider m = 71 CMA/UCs in the model. Within each 

area, we consider six consecutive monthly estimates ity  

from January 2005 to June 2005, so that T = 6. For the 

January to June 2005 data, the overall average (over 71 

CMA/UCs and 6 months) unemployment rate is 0.076, and 

the overall average EI beneficiary rate is 0.059. For the 

proposed small area model, the parameter of interest iTθ  is 

the true unemployment rate for area i  in June 2005, where 

i  = 1, …, 71. To implement the Gibbs sampler, we have 

used 10 parallel runs, each of length 2000. The first 1,000 

iterations are deleted as “burn-in” periods. The hyper-

parameters for variance components in the model are set to 

be 0.0001 to reflect the vague knowledge about 2

vσ  and 
2.εσ  

We now present the posterior estimates of the 

unemployment rates under the proposed integrated HB 

model given in section 4.1 using the Gibbs sampling 

method. Figure 2 displays the LFS direct estimates and the 

HB model-based estimates of the June 2005 unemployment 

rates for the 71 CMA/UCs across Canada. The 71 

CMA/UCs appear in the order of population size with the 

smallest UC (Dawson Creek, BC) on the left and the largest 

CMA (Toronto, ON) on the right. For the point estimates, 

the HB estimates leads to moderate smoothing of the direct 

LFS estimates. For the CMAs with large population sizes 

and therefore large sample sizes, the direct estimates and the 

HB estimates are very close to each other as expected, 

particularly for Toronto, Montreal and Vancouver; for 

smaller UCs, the direct and HB estimates differ substantially 

for some regions.  

Figure 3 displays the CVs of the estimates. The CV of 

the HB estimate is taken as the ratio of the square root of the 

posterior variance and the posterior mean. It is clear from 

Figure 3 that the direct estimates have very large CVs, 

particularly for the UCs, the CVs are very large and 

unstable. The HB estimates have very small and stable CVs 

compared to the direct estimates. The efficiency gain of the 

HB estimates is obvious, particularly for the UCs with 

smaller population sizes. More precisely, we computed the 

percent CV reduction for the HB estimators based on the 

data of June 2005. The percent CV reduction is computed as 

the difference of the direct CV and HB CV relative to the 

direct CV. The average CV reduction for UCs is 63% and 

the CV reduction for CMAs is 35%. As expected, the 

proposed model has achieved a large CV reduction over the 

direct estimates, particularly for smaller UCs with smaller 

sample sizes.  
 

 

 

 

 

 

 

 

 

Figure 2  Comparison of direct and HB estimates 

 

 

 

 

 

 

 

 

Figure 3  Comparison of direct and HB CVs 

 
5.2 Model fit using posterior predictive distribution  
To check the overall fit of the proposed model, we use 

the method of posterior predictive distribution. Let repy  

denote the replicated observation under the model. The 

posterior predictive distribution of repy  given the observed 

data obsy  is defined as  

rep obs rep obs( | ) ( | ) ( | ) .f y y f y f y d= θ θ θ∫  

In this approach, a discrepancy measure ( , )D y θ  that 
depends on the data y and the parameter θ  can be defined 
and the observed value obs obs( , | )D y yθ  compared to the 

posterior predictive distribution of rep obs( , | )D y yθ  with any 

significant difference indicates a model failure. Meng 

(1994) and Gelman, Carlin, Stern and Rubin (1995) 

proposed the posterior predictive -p value as  
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rep obs obs( ( , ) ( , ) | ).p P D y D y y= θ ≥ θ  

This is a natural extension of the usual -p value in a 

Bayesian context. If a model fits the observed data, then the 

two values of the discrepancy measure are similar. In other 

words, if the given model adequately fits the observed data, 

then obs obs( , | )D y yθ  should be near the central part of the 

histogram of the rep obs( , | )D y yθ  values if repy  is generated 

repeatedly from the posterior predictive distribution. 

Consequently, the posterior predictive -p value is expected 

to be near 0.5 if the model adequately fits the data. Extreme 

-p values (near 0 or 1) suggest poor fit. The posterior 

predictive -p value can be estimated as follows: Let *θ  
represent a draw from the posterior distribution obs( | ),f yθ  

and let *
repy  represent a draw from *

rep( | ).f y θ  Then 

marginally *
repy  is a sample from the posterior predictive 

distribution rep obs( | ).f y y Computing the -p value is 

relatively easy using the simulated values of *θ  from the 
Gibbs sampler. For each simulated value *,θ  we can 

simulate *
repy  from the model and compute * *

rep( , )D y θ  and 
*

obs( , ).D y θ  Then the -p value is estimated by the 

proportion of times * *
rep( , )D y θ  exceeds *

obs( , ).D y θ  

For the proposed HB model, the discrepancy measure 

used for overall fit is given by 1( , ) (m
i id y y=∑θ = −  

1) ( ).ii i iy−∑′θ − θ  This measure has been used by Datta 

et al. (1999) and You et al. (2003). We computed the 

-p value by combining the simulated *θ  and *y  from all 

10 parallel runs. We obtained an estimated average 

-p value about 0.38. Thus we have no indication of lack of 

overall model fit.  

The posterior predictive -p value model checking has 

been criticized for being conservative due to the double use 

of the observed data. The double use of the data can induce 

unnatural behaviour, as demonstrated by Bayarri and Berger 

(2000). They proposed alternative model checking -p value 

measures, named the partial posterior predictive -p value 

and the conditional predictive -p value. However, their 

methods are more difficult to implement and interpret (Rao 

2002; Sinharay and Stern 2003). As noted in Sinharay and 

Stern (2003), the posterior predictive -p value is especially 

useful if we think of the current model as a plausible ending 

point with modifications to be made only if substantial lack 

of fit is found.  

To compare the proposed model with the model of 

You et al. (2003), we computed the divergence measure 

of Laud and Ibrahim (1995) based on the posterior 

predictive distribution. The expected divergence measure 

of Laud and Ibrahim (1995) is given by *

obs( , )d y y =  
1 * 2

obs obs( || || | ),E k y y y− −  where k  is the dimension of 

obsy  and *y  is a sample from the posterior predictive 

distribution obs( | ).f y y  Between two models, we prefer a 

model that yields a smaller value of this measure. As in 

Datta, Day and Maiti (1998) and You et al. (2003), we 

approximated the divergence measure *

obs( , )d y y  by 

using the simulated samples from the posterior predictive 

distribution. Using the Gibbs sampling multiple outputs, 

we obtained a divergence measure in the range of 8 to 9 

for the proposed model, and about 12 to 14 for the model 

of You et al. (2003). Thus the divergence measure 

suggests a better fit of the proposed integrated HB model 

for the LFS unemployment rate estimation.  
 
5.3 Bias diagnostic using regression analysis  
To evaluate the possible bias introduced by the model, 

we use a simple method of ordinary least squares regression 

analysis for the direct LFS estimates and the HB model-

based estimates. The regression method is suggested by 

Brown, Chamber, Heady and Heasman (2001). If the 

model-based estimates are close to the true unemployment 

rates, then the direct LFS estimators should behave like 

random variables whose expected values correspond to the 

values of the model-based estimates. We plot the model-

based HB estimates as X  and the direct LFS estimates as 

,Y  and see how close the regression line is to .Y X=  In 

terms of regression, basically we fit the regression model 

Y X= α  to the data and estimate the coefficient .α  Less 
biased model-based estimates should lead to the value of α  
close to 1. For the June 2005 data, let Y  be the direct 

unemployment rate estimates, and X  be the model-based 

HB estimates. We obtain the estimated α  value as 1.0207 
with standard error 0.0281. Figure 4 shows a scatter plot 

with the fitted regression line.  

The regression result shows no significant difference 

from .Y X=  Therefore, we conclude that the model-based 

estimates derived from the proposed model are consistent 

with the direct LFS estimates with no extra possible bias 

included. The result may also indicate no evidence of any 

bias due to possible model misspecification.  

 

 
 

 

 

 

 

 

 

 

 

 
Figure 4  Scatter plot with regression line 

 

2 

4 

6 

8 

10 

12 

14 

2 4 6 8 10 12 14 

HB estimates 

D
ir
ec
t 
es
ti
m
at
es
 



26 You: An integrated modeling approach to unemployment rate estimation for sub-provincial areas of Canada 

 

 

Statistics Canada, Catalogue No. 12-001-X 

6. Concluding remarks and future work 
 
In this paper we have reviewed some small area models 

including the Fay-Herriot model and the cross-sectional and 

time series model of You et al. (2003). In view of the 

previous work, we have proposed an integrated non-linear 

cross-sectional and time series model to obtain model-based 

estimates of unemployment rates for CMA/UCs across 

Canada using the LFS data. The proposed model overcomes 

the limitations of the previous work. In particular, we can 

model the sampling variance as a function of the small area 

mean by assuming either a common CV for a given area or 

a common deff for a given area. Our data analysis has 

shown that the proposed model fits the data quite well. The 

hierarchical Bayes estimates, based on the model, improve 

the direct survey estimates significantly in terms of CV 

reduction, especially for UCs with small population sizes.  

We plan to use alternative modeling approach for the 

sampling variance. Recently You and Dick (2004) and You 

and Chapman (2006) has used the HB approach to model 

the sampling variance directly without specifying the form 

of the sampling variance under the frame of the Fay-Herriot 

model. The model automatically takes into account the 

variability of estimating the sampling variances. In 

particular, You and Dick (2004) applied the model to the 

census undercoverage estimation problem and obtained 

efficient HB census undercoverage estimates for small 

domains across Canada. It will be interesting to adopt the 

same idea to the cross-sectional and time series model and 

compare the results with the current work. The purpose of 

comparison is to establish a reliable and easy-to-implement 

model for the LFS model-based unemployment rate 

estimation for small areas.  

We plan to produce the model-based estimates for a 

relative long time period, for example, 24 months from 

2004 to 2005. We will compare the 24 months model-based 

estimates with the 24 months direct estimates, particularly 

for the large CMAs to study the smoothing effects of the 

proposed model. The model-based estimates should follow 

the pattern of direct LFS estimates for large CMAs, which 

indicates that the smoothing effects on time series effects are 

reasonable. The purpose is to verify the robustness of the 

proposed model-based estimates over time.  

 
Appendix 

 
In the following, we present the full conditional distri-

butions for the Gibbs sampler under the proposed HB 

model. Let 1( , ..., ) ,mY Y Y′ ′ ′= 1( , ..., ) ,mX X X′ ′ ′= 1( , ...,′θ = θ  

) ,m
′ ′θ  and 1( , ..., ) ,mu u u′ ′ ′=  with 1( , ..., ),i i iTY y y′= iX ′ =  

1( , ..., ),i iTx x 1( , ..., ),i i iT
′θ = θ θ  and 1( , ..., ),i i iTu u u′ =  we 

obtain the full conditional distributions as follows:  

• 
2 2| , , , , ~vY uεβ σ σ θ  

1 2 1(( ) (log( ) ), ( ) );vN X X X u X X− −′ ′ ′θ − σ  
 

 

• 
2 2| , , , , ~v Y uεσ β σ θ  

( )( )2

1 1 1 1
IG / 2, (log( ) ) /2 ;

m T

it it iti t
a mT b x u

= =
′+ + θ − β−∑ ∑

 

 

 

• 
2 2| , , , , ~vY uεσ β σ θ  

( )( )2

2 2 , 11 2
IG ( 1) / 2, ( ) /2 ;

m T

it i ti t
a m T b u u −= =

+ − + −∑ ∑  

 
 

• For 1, ..., ,i m=  

2 2

1 2| , , , , , ~i v iu Y uεβ σ σ θ  

1 1

1 1 2

2 2 2 2 2 2

log( )1 1 1 1
, ;i i i

v v v

x u
N

− −

ε ε ε

 ′θ − β    + + +      σ σ σ σ σ σ      
 

 

 

• For 1, ..., ,i m=  and 2 1,t T≤ ≤ −  

2 2
, 1 , 1| , , , , , , ~it v i t i tu Y u uε − +β σ σ θ  

1
, 1 , 1

2 2 2 2

log( )1 2
,

i t i tit it

v v

u ux
N

−
− +

ε ε

 +′ θ − β + +    σ σ σ σ   
 

1

2 2

1 2
;

v

−

ε

 +   σ σ  
 

 

• For 1, ..., ,i m=  

2 2
, 1| , , , , , ~iT v i Tu Y uε −β σ σ θ  

1
, 1

2 2 2 2

log( )1 1
,

i TiT iT

v v

ux
N

−
−

ε ε

 ′ θ − β + +    σ σ σ σ   
 

1

2 2

1 1
;

v

−

ε

 +   σ σ  
 

 

• For 1, ..., ,i m=  

{ }
2 2

1/ 2 1

2

2
1 1

| , , , ,

1
exp ( ) ( )

2

1 1
 exp (log( ) β ) .

2

i v

i i i ii i

TT

it it it
t t itv

Y u

y y

x u

ε

− −

= =

θ β σ σ ∝

′− − θ − θ

  ′× − θ − −  θσ   

∑ ∑

∑ ∏
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Small area estimation under a restriction 
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Abstract 

Small area prediction based on random effects, called EBLUP, is a procedure for constructing estimates for small 

geographical areas or small subpopulations using existing survey data. The total of the small area predictors is often forced 

to equal the direct survey estimate and such predictors are said to be calibrated. Several calibrated predictors are reviewed 

and a criterion that unifies the derivation of these calibrated predictors is presented. The predictor that is the unique best 

linear unbiased predictor under the criterion is derived and the mean square error of the calibrated predictors is discussed. 

Implicit in the imposition of the restriction is the possibility that the small area model is misspecified and the predictors are 

biased. Augmented models with one additional explanatory variable for which the usual small area predictors achieve the 

self-calibrated property are considered. Simulations demonstrate that calibrated predictors have slightly smaller bias 

compared to those of the usual EBLUP predictor. However, if the bias is a concern, a better approach is to use an augmented 

model with an added auxiliary variable that is a function of area size. In the simulation, the predictors based on the 

augmented model had smaller MSE than EBLUP when the incorrect model was used for prediction. Furthermore, there was 

a very small increase in MSE relative to EBLUP if the auxiliary variable was added to the correct model. 
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1. Introduction 
 

There are situations in which it is desirable to derive 

reliable estimators for small geographical areas or small 

subpopulations from existing survey data. However, sample 

sizes for the areas may be such that the usual survey 

estimators yield unacceptably large standard errors. This 

makes it reasonable to use a model-based estimator. See 

Rao (2003) for a complete discussion of small area 

estimation.  

A model for small area estimation is  

i i iy b′= + ,x ββββ  (1) 

, 1, ...,i i iY y e i n= + = ,  (2) 

where iy  are unobservable small area means, iY  are 

observable survey estimators, i
′x  are known vectors, ββββ  is 

the vector of regression parameters, ib  are independent and 

identically distributed random variables with ( ) 0iE b =  and 
2( ) ,i bV b = σ  and ie  are sampling errors with ( ) 0i iE e y| =  

and 2( )i i eiV e y| = σ .  Combining (1) and (2), we obtain  

, 1, , ,i i i iY b e i … n′= + + =x ββββ  (3) 

which is a special case of the mixed linear model.  

Assuming the variance components 2

bσ  and 2

eiσ  to be 

known, the best linear unbiased estimator of ββββ  is  

ɵ
11 1

1

2 2 1 2 2 1

1 1

( ) ( )
n n

b ei i i b ei i i
i i

Y

−− −

−  
− − 

 
  = =

′ ′ =  

 ′= σ + σ σ + σ ,  
∑ ∑

Yβ Σ Σβ Σ Σβ Σ Σβ Σ ΣX X X

x x x  (4)

 

where 1( , ..., ),n
′=X x x 1( , , ),nY … Y′ =Y  and Var ( )= =YΣΣΣΣ  

2 2 2 2

1diag ( , ..., ).b e b enσ + σ σ + σ  Furthermore, the best linear 

unbiased predictor (BLUP) of iy  is  

ɵ ɵ( ),H

i i i i iy Y′ ′= + γ −ɶ x xβ ββ ββ ββ β  (5) 

where  
2 2 1 2( )i b ei b

−γ = σ + σ σ .  (6) 

See Henderson (1963) and Rao (2003). When the variance 

components are unknown, we replace the variance 

components in (4) and (6) with estimators to obtain ˆ ,H

iy  the 

empirical BLUP or EBLUP.  

The survey estimator of the total of all survey areas is 

often judged to be of adequate precision. In such cases, the 

practitioner may prefer to use the design consistent 

estimator of the total and to require that the weighted sum of 

the small area predictors equal the design consistent 

estimator. Thus, it is desirable to have small area predictors 

ˆiy  that satisfy  

1 1

ˆ ,
n n

i i i i

i i

y Y
= =

ω = ω∑ ∑  (7) 

where iω  are sampling weights such that 1
n
i i iY=∑ ω  is a 

design consistent estimator of the total (or mean). A number 

of procedures have been suggested for constructing 

predictors to satisfy (7). Such procedures are often called 

“benchmarking” or “calibration”, e.g., Mantel, Singh and 

Barcau (1993) and You and Rao (2003).  

To review such procedures, let 1( , ..., )H H H

ny y ′=ɶ ɶ ɶy  

denote the BLUP predictor of 1( , ..., )ny y ′=y  defined in 

(5), where  
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ˆ ˆ,H = +ɶy X bββββ  (8) 

β̂βββ  and b̂  are any solutions to  

1 1 1

1 1 1 1
e e e

e e b e

− − −

− − − −
′ ′ ′     = ,     +   

Y
b Y

X X X X

X

Σ Σ ΣΣ Σ ΣΣ Σ ΣΣ Σ Σββββ
Σ Σ Σ ΣΣ Σ Σ ΣΣ Σ Σ ΣΣ Σ Σ Σ

 (9) 

2 ,b b n= σ IΣΣΣΣ  and 2 2

1diag ( , ..., ).e e en= σ σΣΣΣΣ  Equation (9) is 

called the mixed model equation. Finding a solution to a 

mixed model equation (9) is equivalent to finding a solution 

to the minimization problem  

1 1min {( ) ( ) }
,

e b
− −′ ′− − − − + .Y X b Y X b b b

b
β Σ β Σβ Σ β Σβ Σ β Σβ Σ β Σ

ββββ
 (10) 

Pfeffermann and Barnard (1991) proposed the modified 

predictor  

PB PB PBˆ ˆˆ ,= +y X bββββ  (11) 

where PBβ̂βββ  and PB
b̂  are any solutions to the minimization 

problem (10) with ββββ  and b  subject to the constraint  

1 1

( ) .
n n

i i i i i

i i

b Y
= =

′ω + = ω∑ ∑x ββββ  (12) 

This leads to the predictor  

PB 1

. . .
1

ˆ [Var ( )] cov( , )
n

H H

i i i j j
j

y y y y y Y y−

=

 
= + ω − , 

 
∑ɶ ɶ ɶ ɶ ɶ (13) 

where 1. ,Hn
i i iy y=∑= ωɶ ɶ

2

.cov( , )H

i i i eiy y = ω γ σ +ɶ ɶ  

1
ˆ(1 ) (1 ) ( ) ,n

j j i j i jV=∑ ′ω − γ − γ x xββββ  and .Var ( )y =ɶ  

1 .cov( ).Hn
i i iy y=∑ ω ,ɶ ɶ  

Isaki, Tsay and Fuller (2000) imposed the restriction by a 

procedure that, approximately, constructs the best predictors 

of 1n −  quantities that are uncorrelated with 1 .n
i i iY=∑ ω  

After some matrix operations, the Isaki-Tsay-Fuller (ITF) 

predictor can be rewritten as  

� �

ITF

1

2

1 1 1

ˆ ˆ

ˆVar ( ) Var ( )

H

i i

n n n
H

j j i i j j j j

j j j

y y

Y Y Y y

−

= = =

= +

   
ω ω ω − ω ,  

   
∑ ∑ ∑

 

(14)

 

where �Var ( )iY  is an estimator of 2 2 .b eiσ + σ  

Note that the Pfeffermann-Barnard (PB) predictor (13), 

and the ITF predictor (14) have the form  

1 1

ˆ ˆ ˆ
n n

i i i j j j j
j j

y y a Y y
= =

 
= + ω − ω , 

 
∑ ∑a  (15) 

where 1 1.n
i i ia=∑ ω =  In other words, we may consider 

imposing restriction (7) to be an adjustment problem. To 

make an adjusted predictor ˆ
iy
a  satisfy (7), the difference 

1 1 ˆn n
j jj j j jY y= =∑ ∑ω − ω  is allocated to small area predictor 

ˆ
iy  using .ia  

Using the unit level model, You and Rao (2002) 

proposed an estimator of ββββ  such that the resulting 

predictors satisfy (7). They called such predictors self-

calibrated. Applying their procedure to the area model (3), 

we have  

YR

YR
ˆˆ ˆˆ (1 ) ,i i i i iy Y ′= γ + − γ x ββββ  (16) 

where  

1

YR

1 1

ˆ ˆ ˆ(1 ) (1 )
n n

i i i i i i i i

i i

Y

−

= =

 ′= ω − γ ω − γ .  
∑ ∑x x xββββ  (17) 

Any predictor that has the self-calibrated property, such as 

the You and Rao (YR) predictor (16), is a predictor of the 

form (15) since the difference 1 1 ˆn n
j jj j j jY y= =∑ ∑ω − ω  is 

equal to zero.  

We will derive the “best” predictor of the form (15) in 

Section 2. The results will lead to a unifying view of several 

BLUP based predictors. In Section 3, we propose an 

alternative approach that has the self-calibrated property. 

We will briefly discuss the mean square error (MSE) in 

Section 4 and use simulation studies to compare the 

predictors in Section 5. Conclusions and discussion will be 

given in Section 6.  

 
2. “Best” linear unbiased predictor  

       under a restriction 
 

To find the “best” linear unbiased predictor for y  that 

satisfies restriction (7), we first assume the parameters for 

the variance components are known. According to Lemma 1 

of Pfeffermann and Barnard (1991), it is impossible to 

compare predictors that satisfy restriction (7) component-

by-component to find the best one. Therefore, some kind of 

overall criterion is required. A natural criterion is  

2

1

ˆ ˆ( ) ( )
n

i i i

i

Q E y y
=

= ϕ − ,∑a a
y  (18) 

where the , 1, ,i i … nϕ =  are a chosen set of positive 

weights.   
Theorem 1. Assume the random effects model  

, 1, , ,i i i iY b e i … n′= + + =x ββββ  

where the ib  have independent identical distributions with 

mean zero and variance 2,bσ  the ie  have independent 

distributions with mean zero and variance 2 ,eiσ  and 

1( , , )nb … b ′=b  is independent of 1( , ..., ) .ne e ′=e  

Assume 2

bσ  and 2

eiσ  are known, and ββββ  is unknown. Let H

iyɶ  

be the BLUP of iy  defined in (5). Let  
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1 1

ˆ ,
n n

H H
ii i j j j j

j j

y y Y ya
= =

 
= + ω − ω 

 
∑ ∑

⌣
⌣

ɶ ɶ
a  (19) 

where 1 2 1 1
1( )n

i i i i i ia
− − −

=∑= ϕ ω ϕ ω⌣  and iω  are the fixed 

weights of (7). Then 1
ˆ ˆ ˆ( , , )ny … y ′=
⌣ ⌣ ⌣
a a a
y  is the unique 

predictor among all linear unbiased predictors that satisfy 

(7) and minimize criterion (18).   
Proof: See Appendix A.   
Remark 1. When the variance components are unknown, we 

replace the variance components in (6) with suitable 

estimators to obtain the empirical BLUP or EBLUP, 

denoted by ˆ .H

iy  Thus, we have the modified predictor  

1 1

ˆ ˆ ˆ
n n

H H

i i i j j j j
j j

y y a Y y
= =

 = + ω − ω . 
 
∑ ∑

⌣ ⌣a  (20) 

 
Remark 2. The criterion (18) defines a “loss function”, 

where the choice of the weights iϕ  depends on the problem 

under consideration. For example, a statistician can decide 

to assign higher weights to “more important” areas and 

lower weights to “less important” areas. Often, iϕ  is 

function of the variance components. In some cases, one can 

choose iϕ  so that the derived predictors have certain 

desirable properties. For example, � 1[Var ( )]i iY
−ϕ =  gives 

the ITF predictors, which are BLUP (in the traditional 

sense) in the subspace that is orthogonal to 1( , ..., )n
′ω ω  in 

the space spanned by .Y   
Remark 3. If 1

.[cov( , )] ,H

i i iy y −ϕ = ω ɶ ɶ  where .y =ɶ  

1 ,Hn
j j jy=∑ ω ɶ  we have the predictor (13) derived by 

Pfeffermann and Barnard (1991). When � 1ˆ[Var ( )] ,
H

i jy
−ϕ =  

we have the predictor used by Battese, Harter, and Fuller 

(1988).  

 
3. An alternative way to impose the restriction 

 
We have discussed a family of predictors in which the 

total for the small area predictors is equal to the total of the 

direct survey estimates. Implicit in the imposition of 

restriction (7) is the possibility that the small area predictor 

of the total is biased due to a misspecified model (3). In 

practical applications, model misspecification is a valid 

concern since the true mechanism that generates Y  is 

unknown.  

A common misspecification occurs when the explanatory 

variables used in the model are not the same as the ones that 

generated .Y  Thus, the direction of the overall bias may not 

be the same as the direction of the bias for a particular small 

area. In this case, the predictors of form (15) may increase 

the bias for some small areas compared to the bias before 

adjustment. Mantel et al. (1993) concluded that “Generally 

the effect of benchmarking here is a slight improvement in 

the overall bias at the cost of some deterioration with respect 

to the other evaluation measures”.  

Since the bias is nonzero if there is nonzero correlation 

between iω  and ˆ( ),i iY y−  the bias can be reduced by 

including iω  in the model. That is, for a given model, one 

approach is to use the augmented model  

1 ,= + +Y X b eββββ  (21) 

where 1 ( , )=X X ωωωω  and 1( , ..., ) ,n
′= ω ωωωωω  to obtain the 

BLUP or EBLUP. With ωωωω  in the model, the adjustment 

needed to meet restriction (7) will often be much smaller 

than the adjustment for the model without .ωωωω  

Using an augmented model approach, we can go one step 

further and construct predictors that satisfy restriction (7). 

First, assume the variances 2

eiσ  are known. Note that  

ɵ

1 1 1

ˆ (1 ) ( )
n n n

H

j j j j i i i i
j j i

Y y Y
= = =

′ω − ω = ω − γ −∑ ∑ ∑ x ββββ  (22) 

and 2(1 )Var ( ) .i i i i eiYω − γ = ω σ  Using the theory of the 

linear model, we can show that the predictor constructed 

with the augmented model  

2 ,= + +Y X b eββββ  (23) 

where 2 ( , )e=X X ωωωω  and 2 2

1 1( , ..., ) ,e e n en
′= ω σ ω σωωωω  has 

the self-calibrated property when the generalized least 

squares (GLS) estimator of ββββ  is used. Note that this 

approach gives a predictor that is different than the You-Rao 

predictor (16).  

If the 2

eiσ  are unknown, we replace 2

eiσ  in eωωωω  with its 

estimator 2ˆ .eiσ  As long as the 2ˆ
eiσ  in eωωωω  is the same as the 

2ˆ
eiσ  used in constructing ,iγ  the predictors have the self-

calibrated property. If the 2

eiσ  has the form 2 ( ),e ifσ u  where 
2

eσ  is unknown, but iu  and ( )f .  are known, one can 

construct the variables for model (23) using e =ωωωω  

1 1( ( ), ..., ( ))n nf f ′ω ωu u  without estimating 2.eσ  For 

example, if 2 1 2,ei i em−σ = σ  the eωωωω  for model (23) is 
1 1

1( , ..., ) .i n nm m− − ′ω ω  

 
4. The MSE of the modified predictors 

 
One can show that any predictor of the form (15) can be 

written as  

ɵ1 ( ) ( )n

−= − − −ɶ
a

a ay Y C BC I Y XΓ βΓ βΓ βΓ β  (24) 

by letting ,=a aC A T  where  

( )1

1 1

1 2

1
,

( , , )

n

n n

n na … a

−

− −

−

′
= −

′= .

0
aA a I

a
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Therefore, the estimator for the variance of ɶ ay  defined in 

(14) proposed in Isaki et al. (2000) can be used to estimate 

the MSE of any predictor of the form (15). Often, the MSE 

of an adjusted predictor is close to the MSE of the predictor 

before the adjustment.  

The augmented model (23) has the self-calibrated 

property, thus the MSE can be estimated using the formula 

for usual EBLUP predictors.  

 
5. Simulation study 

 
5.1 Simulation setup  

To study the empirical properties of small area predictors 

described in Section 2 and 3, we use data designed to 

simulate a large national survey in which state estimates are 

of interest. Table 1 contains the approximate populations of 

the 50 states of the United States in the year 2000. The 

sample sizes im  given in the table are approximately 

proportional to the square roots of the state populations. 
 

Table 1  Population and sample sizes for the simulation  
 

 Population Sample  Population Sample  

State (in 1,000)  size ( im ) State  (in 1,000)  size ( im )  

1  33,640  58  26  4,000  20   

2  21,160  46  27  3,610  19   

3  19,360  44  28  3,240  18   

4  16,000  40  29  3,240  18   

5  12,250  35  30  2,890  17   

6  12,250  35  31  2,890  17   

7  11,560  34  32  2,560  16   

8  10,240  32  33  2,560  16   

9  8,410  29  34  2,250  15   

10  8,410  29  35  1,960  14   

11  7,840  28  36  1,690  13   

12  7,290  27  37  1,690  13   

13  6,250  25  38  1,690  13   

14  6,250  25  39  1,210  11   

15  5,760  24  40  1,210  11   

16  5,760  24  41  1,210  11   

17  5,760  24  42  1,210  11   

18  5,290  23  43  1,000  10   

19  5,290  23  44  810  9   

20  5,290  23  45  810  9   

21  4,840  22  46  810  9   

22  4,410  21  47  640  8   

23  4,410  21  48  640  8   

24  4,410  21  49  640  8   

25  4,000  20  50  490  7   

 

A total of 10,000 samples were generated. Each sample 

in the simulation study was composed of observations 

generated from model  

ij i i ijY b′= + + ε ,x ββββ  (25) 

where (1, ),i iz′ =x (6 0, 3 0),′= . .ββββ 0 2 0 2Pop Pop ,i iz . .= −  

Popi  is the population of state i  in millions, 0 2Pop .  is the 

mean of 0 2Pop ,i

. (0, 1),ib NI∼  and (0, 16).ij NIε ∼  The 

ib ’s and ije ’s are independent. The model for the state 

observations becomes  

,i i i iY b e′= + +x ββββ  (26) 

where 1
1

im
ji i ijY m Y−
=∑=  and 1

1 .im
ji i ije m−
=∑= ε  With the 

sample sizes given in Table 1, the iγ  defined in (6) is 0.784 

for the largest state (California) and 0.304 for the smallest 

state (Wyoming).  

To investigate the performance of five predictors, 

EBLUP, Pfeffermann-Bernard (PB), Isaki-Tsay-Fuller 

(ITF), You-Rao (YR), and augmented model (23) (AUG2), 

two estimation models were used. The first model is a 

misspecified model with 1i
′ =x  in the notation of (26). 

This model is called model (A). Correspondingly, the data 

generating model (26) with (1, )i iz′ =x  is called model 

(B).  

Following the method outlined in Wang and Fuller 

(2003), the estimator of 2

bσ  is  

2 2 0 5 2ˆˆ max{0 5[ ( )] , },b b bV .σ = . σ σɶ ɶ  (27) 

where  

50
2 2 2

OLS

1

50 ˆ( ) ,ˆ
50 eib i i i

i

c Y
k

=

 ′σ = − − σ −∑ɶ x ββββ  (28) 

{ }
50 2

2 2 2 2 2

OLS
1

50 ˆˆ ˆ( ) ( )
50b i i i ei b

i

V c Y
k

=

 ′σ = ,− − σ − σ −∑ɶ ɶx ββββ (29) 

0 5 1 0 550
1( ) ,ii i ic m m. − .

=∑= OLSβ̂βββ  is the ordinary least squares 

estimator of the regression coefficient of iY  on ,ix k  is the 

dimension of the vector ,ix
1 22 ,ˆ ei i im s−=σ  and 2

is =  
1 2

1( 1) ( )im
ji ij im Y Y−
=∑− −  is the sample variance of area .i  

The EBLUP predictor is  

GLS GLS
ˆ ˆˆˆ ( )i i i i iy Y′ ′= + γ − ,x xβ ββ ββ ββ β  (30) 

where  

2 2 1 2ˆ ˆ ˆ ˆ( ) ,i b ei b

−γ = σ + σ σ  (31) 

and  

1

2 2 1 12 2

GLS
1 1

ˆ ˆ( ) ( )ˆ ˆ
n n

b eib ei i i i i

i i

Y

−  
− − 

 
  = =

 ′= σ + σ +σ σ  
∑ ∑x x xββββ  (32) 

is the generalized least squares estimator of .ββββ  The 

restriction considered is 50 50
1 1ˆ ,i ii i i iy Y= =∑ ∑ω = ωa  where  

150

1

Pop Popi i i

i

−

=

 ω = . 
 
∑  (33) 

With EBLUP predictor, PB and ITF are derived using (13) 

and (14). The YR predictor is derived use (16) with ˆ
iγ  

defined in (31) and YRβ̂βββ  defined in (17). The AUG2 
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predictor is of the form (30) with 2(1, )ˆ eii i
′ = ω σx  under the 

augmented model (A) and 2(1, , )ˆ eii i iz′ = ω σx  under the 

augmented model (B).  

For each of the 10 predictors, the criterion  

50
2

1

ˆ ˆ( ) 0 02 ( )i i i

i

Q y y
=

= . ϕ −∑y  (34) 

was calculated, where 1 2 1( ) .i i i em− −ϕ = γ σ  Note that 1

i

−ϕ  is 

the variance of the predictor of iy  constructed with known 

parameters.  
 
5.2 Simulation results  

The estimator of 2

bσ  constructed under model (B) has a 

Monte Carlo mean of 1.001 with a standard deviation of 

0.386. When model (A) is used for estimation, the Monte 

Carlo mean of the estimator of 2

bσ  is 1.720 with a standard 

deviation of 0.521. The mean square of 3 iz  is 0.636. Thus, 

the estimation procedure using model (A) incorporates 

much of the fixed area effect of model (B) into the random 

effect. With a bigger 2ˆ ,bσ  the ˆ
iγ  is bigger and a higher 

proportion of iY  was used to construct the predictors, which 

partially offsets the impact of model misspecification. 

Under augmented model (A), the estimator of 2

bσ  is 1.197, 

i.e., a much smaller portion of the fixed area effect of model 

(B) is incorporated into the random effect.  

Table 2 contains some summary statistics for predictors 

based on 10,000 simulated samples. The empirical bias in 

ˆ( )i i iY y∑ω −  is zero for all predictors when model (B) or 

its augmented model is used because the prediction model 

matches the data-generating model. The difference 

ˆ( )i i iY y∑ω −  has a simulated standard deviation of 0.022 

for the usual EBLUP predictor. The standard deviations of 

ˆ( )i i iY y∑ω −  are 0 for the other four predictors because the 

predictors satisfy the restriction 50 50
1 1ˆ .i ii i i iy Y= =∑ ∑ω = ω  

 
Table 2 Monte Carlo properties of small area predictors 

(average of 10,000 samples generated by model B) 
 

Quantity EBLUP PB ITF YR AUG2 

 Predictor constructed under model (A) 

ˆ( )i i iY yω −∑  Mean -0.100 0.000 0.000 0.000 0.000 

(SD) (0.027) (0.000) (0.000) (0.000) (0.000) 

ˆ( )Q y  Mean 1.438 1.446 1.419 1.558 1.298 

 Predictor constructed under model (B) 

ˆ( )i i iY yω −∑  Mean -0.000 0.000 0.000 0.000 0.000 

(SD) (0.022) (0.000) (0.000) (0.000) (0.000) 

ˆ( )Q y  Mean 1.203 1.202 1.202 1.208 1.219 

 
Prediction based on model (A), or its augmented model, 

is biased because the data generation model (B) contains a 

function of the population size. The simulated mean of the 

weighted difference ˆ( )i i iAY y∑ω −  is -0.100, where ˆiAy  is 

the EBLUP predictor. The t-statistic for the weighted bias is 

-3.70. The simulated variance of the weighted mean of the 

predictions is  

50

1

ˆ 0 060i iA

i

V y
=

 ω = . . 
 
∑  

The estimated mean square error of the model (A) 

prediction of i iy∑ω  for data generated by model (B) is  

50 50
2

1 1

2

ˆ ˆMSE ( ) Bias

0 060 ( 0 100) 0 070

i iA i i iA
i i

y y V y
= =

   ω − = ω +   
   

= . + − . = . .

∑ ∑
 

(35)

 

The variance of i iY∑ω  is  

50 50
2 2 1 2

1 1

( ) 0 0622i i i b i e

i i

V Y m
 
  −
 
 
 = =

ω = ω σ + σ = . .∑ ∑  (36) 

Thus, the use of i iY∑ω  as the estimator of i iy∑ω  is about 

12.5% more efficient than the predictor ˆi iAy∑ω  based on 

the model (A). Due to calibration, the MSE of the four 

predictors (PB, ITF, YR, and AUG2) of i iy∑ω  have the 

same MSE as the MSE of the directly estimated mean 

.i iY∑ω  The squared bias would be a much larger 

proportion of the mean square error if there were more small 

areas.  

The value of criterion Q  for EBLUP is 1.20 under model 

(B). Thus, estimation of the parameters increased the 

average variance of the predictors about 20% relative to the 

use of known parameters. If the predictions are made using 

the known 2 ,eiσ  the value of criterion Q  for EBLUP is 1.06. 

Therefore, estimation of 2ˆ
eiσ  contributes the most to the 

increase in the variability. Because the bias is zero when 

model (B) is used for estimation, the adjustments that the 

restricted predictors make are small. Consequently, the 

adjustment predictors give criteria values very similar to 

those of the unadjusted predictors. The YR predictors have 

slightly larger criterion values than the corresponding PB 

and ITF predictors because the YR predictor uses an 

inefficient estimator of .ββββ  Predictors based on the 

augmented model have slightly larger criterion value Q  

because the model has a redundant variable. The less than 

2% increase in Q  is on the order of 1,n−  which is the 

expected loss from adding an unnecessary parameter in a 

least square prediction.  

The value of criterion Q  for the EBLUP under model 

(A) is 1.438 compared to 1.203 for the EBLUP under model 

(B). This is the penalty due to the model misspecification. 

Among adjustment procedures based on model (A), the ITF 

procedure has the smallest value for .Q  There is little 

difference among the PB, ITF, and the EBLUP predictors. 

The Q  for the You-Rao procedure is about 8% larger than 

that for the EBLUP. The predictor based on the augmented 
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model has a Q  about 11% smaller than that of the EBLUP 

predictor. In a sense, the augmented model is less 

misspecified.  

The augmentation approach not only calibrates the small 

area predictors, it also reduces the bias at the area level 

when the model is misspecified. Tables 3 and 4 contain 

Monte Carlo properties of predictors for some selected 

areas. In the tables, the estimated biases are normalized by 
1 2 0 5( ) ,i i em− .γ σ  the square root of the MSE of the BLUP 

predictor with known parameters, and the estimated MSE’s 

are normalized by 1 2.i i em−γ σ  When the correct model (B) is 

used, the Monte Carlo bias at the individual area is close to 

zero. See Table 3. Also there is little difference in the 

MSE’s of the different procedures, with the augmented 

model having slightly (less than 2%) larger MSE. Again, 

Table 3 shows that the calibration process has little effect on 

the MSE of the area predictors in compared to the EBLUP 

predictor.  

 
Table 3 
Monte Carlo Properties of individual area predictors 
using versions of model (B) (10,000 samples generated 

by model B)  
 

State Quantity EBLUP PB ITF YR AUG2

Bias 0.011 0.012 0.012 0.013 0.011  
1 MSE 1.100 1.101 1.105 1.104 1.120  

Bias 0.000 0.001 0.001 0.002 0.001  
2 MSE 1.072 1.072 1.072 1.076 1.092  

Bias -0.001 -0.001 -0.001 -0.001 -0.001  
14 MSE 1.058 1.058 1.058 1.058 1.074  

Bias 0.015 0.015 0.015 0.015 0.018  
26 MSE 1.078 1.077 1.078 1.079 1.092  

Bias -0.005 -0.005 -0.005 -0.006 -0.003  
38 MSE 1.123 1.122 1.122 1.132 1.135  

Bias 0.012 0.012 0.012 0.009 0.014  
50 MSE 1.222 1.222 1.222 1.247 1.246  

 

If a misspecified model, such as model (A) is used, the 

bias in the sum of the EBLUP predictors as an estimator of 

the total is negative for the example because the states with 

a negative bias have large .iω  See Table 4. The adjustment 

procedures such as PB or ITF allocate the bias to all the 

small areas. Thus, the adjustment reduces the negative bias 

of area predictors with large negative bias and increases the 

positive bias of predictors with large positive bias. This 

results in a smaller MSE for larger states and a slightly 

larger MSE for smaller states. The YR predictor has larger 

bias than the ITF predictor. On the other hand, predictors 

constructed with 2ˆ(1, ),i i ei
′ = ω σx  i.e., the augmented model 

(A), are much superior to those constructed under model 

(A). The bias is reduced for areas, large or small.  
 

 

 

Table 4 
Monte Carlo Properties of individual area 
predictors using versions of model (A) (10,000 

samples generated by model B)  
 

State Quantity EBLUP PB ITF YR AUG2 

Bias -0.597 -0.225 -0.052 -0.473 -0.030  
1 MSE 1.471 1.165 1.130 1.331 1.139  

Bias -0.496 -0.227 -0.170 -0.358 -0.070  
2 MSE 1.330 1.134 1.115 1.207 1.124  

Bias -0.121 0.004 -0.031 0.055 -0.025  
14 MSE 1.100 1.085 1.086 1.089 1.105  

Bias 0.057 0.157 0.115 0.249 0.053  
26 MSE 1.126 1.148 1.136 1.188 1.132  

Bias 0.380 0.453 0.406 0.601 0.202  
38 MSE 1.340 1.405 1.361 1.571 1.233  

Bias 0.922 0.980 0.931 1.178 0.537  
50 MSE 2.196 2.316 2.215 2.767 1.577  

 
6. Conclusions 

 
In this paper, several calibrated predictors are reviewed. 

We offer a fresh look at the benchmarking restriction (7). 

Imposing the restriction is viewed as an adjustment problem 

and a criterion that unifies the derivation of calibrated 

predictors is presented. The criterion approach to the 

problem opens the door for consideration of other 

predictors.  

Implicit in the imposition of the restriction is the 

possibility that the small area model is misspecified and the 

predictors are biased. When the model is misspecified, the 

calibration adjustment only adjusts for the overall bias, not 

for the bias at the small area level. The augmented model 

approach leads to a self-calibrated predictor and reduces the 

bias at the small area level. Also, variance estimation for the 

externally calibrated predictors is relatively complex, while 

variance estimation for self-calibrated predictors is 

straightforward. In summary, if the bias is a concern, use of 

a self-calibrated augmented model is preferred to external 

calibration.  

 
7. Appendix 

 
Proof of Theorem 1: Let H

iyɶ  be the BLUP of iy  and let 

ˆ
iy  be any linear unbiased predictor of .iy  By standard 

results for BLUP (see, for example, Robinson (1991) and 

Harville (1976)), we have  

ˆcov( , ) 0 ifH H
i i j jy y y y i j− − = , ≠ ,ɶ ɶ  (A.1) 

for 1, ...,i n=  and 1, ..., .j n=  Let ˆ( )R ay  denote the 

collection of all linear unbiased predictors that satisfy (7). 

For any ˆ ˆ( ),R∈ ay y  by (A.1), we have  
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2 2 2ˆ ˆ{( ) } {( ) } {( ) }.H H

i i i i i iE y y E y y E y y− = − + −ɶ ɶ  (A.2) 

Therefore,  

2

1

2 2

1 1

ˆ ˆ( ) {( ) }

ˆ{( ) } {( ) }.

n

i i i
i

n n
H H

i i i i i i
i i

Q E y y

E y y E y y

=

= =

= ϕ −

= ϕ − + ϕ −

∑

∑ ∑ɶ ɶ

y

 

(A.3)

 

Since ŷ  satisfies (7), we have 1 1ˆn n
i ii i i iy Y= =∑ ∑ω = ω  and, 

for the ˆ
iy
⌣
a  defined in (19),  

1

1

ˆ ( )

ˆ( )

n
H H

i i i j j j
j

n
H H

i i j j j

j

y y a Y y

y a y y

=

=

 
= + ω − 

 

 
= + ω − . 

 

∑

∑

⌣ ⌣
ɶ ɶ

⌣
ɶ ɶ

a

 

By (A.1),  

2

1

2

1 1 1

2

2 2

1 1 1

ˆ ˆ( ) ( )

ˆ( )

{( ) } ( ) .

n

i i i i
i

n n n
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i i i i j j j j
i j j
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H H
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Q y E y y

E y y a y y

E y y E Y y a

=

= = =

= = =

= ϕ −

    = ϕ − + ω − ω   
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Since 1 2 1 1
1( )n

i i i i i ia
− − −

=∑= ϕ ω ϕ ω⌣  in (A.4), we have  

2

1

2 1

1 2

1 1

ˆ( ) {( ) }

ˆ( ) .

n
H

i i i i
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H
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j i
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 
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= ϕ −
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Note that  

2

1 1 1

2

1

ˆ( )

,

n n n
H

j j j j k j k
j j k

n

i i
i

E y y g g

g

= = =

 
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 
 
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 (A.6)

 

where 2 0.5ˆ{ [( ) ]} .H
j j jg E y y= − ɶ  By Cauchy’s inequality,  

2

1 2 2

1 1 1

1 2 2

1 1
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n n n
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(A.7)

 

Combining (A.3), (A.5), (A.6), and (A.7), we have 

ˆˆ( ) ( ).iQ y Q≤
⌣
a y  

To show the uniqueness of ˆ ,iy
⌣
a  we need to check when 

the inequalities (A.6) and (A.7) become equalities. 

Inequality (A.6) becomes an equality if and only if  

0 1
1 1ˆ ˆ( )H H

j j j jy y c c y y− = + −ɶ ɶ  (A.8) 

for some constants 0
jc  and 1, 2, , .jc j … n=  Inequality 

(A.7) becomes an equality if and only if  

1 2 2 1 2 2
0,i i j j j j i iv g v g

− −ϕ ω − ω ϕ =  (A.9) 

or, equivalently,  

2 2 2 2 2 2ˆ ˆ{( ) } {( ) }H H
i i i i j j j jE y y v E y y− −ϕ ω − = ω − .ɶ ɶ  (A.10) 

Also,  

1 1

ˆ .
n n

i i i i

i i

y Y
= =

ω = ω∑ ∑  (A.11) 

Combining (A.8), (A.10), and (A.11), we have that the 

equality holds if and only if ˆ ˆ .j iy y=
⌣
a

 Thus, we have 

shown that ˆ
iy
⌣
a

 is the unique linear unbiased predictor that 

satisfies (7) and minimizes criterion (18).  
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A Bayesian allocation of undecided voters 

Balgobin Nandram and Jai Won Choi 1 

Abstract 

Data from election polls in the US are typically presented in two-way categorical tables, and there are many polls before the 

actual election in November. For example, in the Buckeye State Poll in 1998 for governor there are three polls, January, 

April and October; the first category represents the candidates (e.g., Fisher, Taft and other) and the second category 

represents the current status of the voters (likely to vote and not likely to vote for governor of Ohio). There is a substantial 

number of undecided voters for one or both categories in all three polls, and we use a Bayesian method to allocate the 

undecided voters to the three candidates. This method permits modeling different patterns of missingness under ignorable 

and nonignorable assumptions, and a multinomial-Dirichlet model is used to estimate the cell probabilities which can help to 

predict the winner. We propose a time-dependent nonignorable nonresponse model for the three tables. Here, a nonignorable 

nonresponse model is centered on an ignorable nonresponse model to induce some flexibility and uncertainty about 

ignorabilty or nonignorability. As competitors we also consider two other models, an ignorable and a nonignorable 

nonresponse model. These latter two models assume a common stochastic process to borrow strength over time. Markov 

chain Monte Carlo methods are used to fit the models. We also construct a parameter that can potentially be used to predict 

the winner among the candidates in the November election. 
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1. Introduction 
 

It is a common practice to use two-way categorical tables 

to present survey data. Our application is to predict the 

winner in an election using tables constructed from a short 

series of polls taken before the actual election. For many 

surveys, there are missing data and this gives rise to partial 

classification of the sampled individuals. Little and Rubin 

(2002, section 1.3) give definitions of the three missing data 

mechanism (missing completely at random  -  MCAR, 

missing at random  -  MAR, missing not at random  -

MNAR); ignorable models are used to analyze data from 

MAR and MCAR mechanisms and nonignorable models 

for data from MNAR mechanisms. Thus, for the two-way 

table there are both item nonresponse (one of the two 

categories is missing) and unit nonresponse (both categories 

are missing). One may not know how the data are missing, 

and a model that includes some difference between the 

observed data and missing data (i.e., nonignorable missing 

data) may be preferred. For a general r c×  categorical table 

we address the issue of estimation of the cell probabilities of 

the two-way table. This problem is important because, with 

a substantial number of undecided voters, an election 

prediction based on only the partially observed data may be 

misleading.  

As in Nandram, Cox and Choi (2005) essentially there 

are four two -way tables, one table with all complete cases 

and three supplemental tables. Of the three supplemental 

tables, the first has only row classification (item 

nonresponse), the second has only column classification 

(item nonresponse), and the third does not have any 

classification (unit nonresponse). We have extended the 

ignorable and nonignorable nonresponse models for two-

way categorical tables of Nandram, et al. (2005) to 

accommodate a third category (i.e., time in a short sequence 

of election polls). We have extended these models even 

further to include a time-dependent nonignorable non-

response structure. The inclusion of the time-dependent 

structure can provide a more efficient prediction. A 

Bayesian method permits modeling different patterns of 

missingness under the ignorability and nonignorability 

assumptions, and a time-dependent nonignorable non-

response model is obtained.  

Our application is in Ohio governor’s election, and there 

are several related problems. The sampled persons are 

categorized by two types of attributes and the cells of such 

categorical tables are analyzed. However, only partial 

classification of the individuals is available because some 

individuals are classified by at most one attribute, and others 

are left unclassified. Specifically, we use tabular data from 

the Ohio polls to study the relation between a measure of 

voters’ status (likely to vote and unlikely to vote) and 

candidate preference (Fisher, Taft and other) to illustrate our 

methodology. It is interesting that voters’ status is related to 

candidate preference. Also, it is desirable to make an 

adjustment for undecided voters because the proportion of 

undecided voters is usually high, and they often decide the 

final outcome of an election.  
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We do not know whether an ignorable nonresponse 

model or a nonignorable nonresponse model is appropriate, 

but one may have uncertainty about the ignorability of 

undecided voters in election polls. Referring to the Buckeye 

State Poll, Chen and Stasny (2003) stated that “The 

assumption of nonignorability of the nonresponse may be a 

reasonable assumption in this study because people might 

be reluctant to express their preference for an unpopular 

candidate, or if their current preferences are not firm or 

accurate enough for the standards of the interview.” They 

also said that while Chang and Krosnick (2001) use 

ignorable models for their analyses, Chang and Krosnick 

(2001) suggested that nonresponse might be related to the 

unobserved data itself. Chen and Stasny (2003) fit three 

ignorable nonresponse models (A, B and C) and one 

nonignorable nonresponse model (D). We compare our 

results with theirs.  

Nandram and Choi (2002 a, b) use an expansion model 

to study nonignorable nonresponse binary data. The 

expansion model, a nonignorable nonresponse model, 

degenerates into an ignorable nonresponse model (in the 

spirit of Draper 1995). This degeneracy occurs when a 

parameter in the nonignorable nonresponse model is set to a 

certain value; a good description of the centering idea is 

given in Nandram, et al. (2005, section 1.2). Because it is 

difficult to carry out this procedure as described, we use an 

alternative procedure as in Nandram, et al. (2005). This 

permits an expression of uncertainty about ignorability. This 

is the idea of centering a nonignorable nonresponse model 

on an ignorable nonresponse model, and we have used it in 

several of our papers to express uncertainty about 

ignorability or nonignorability. Here, for nonignorable 

nonresponse we attempt a related methodology, but the 

issues for a two-way categorical table are more complex, 

especially when a third category (i.e., time) is included in 

these tables.  

Using the approach of Chen and Fienberg (1974), Chen 

and Stasny (2003) describe the two issues we are discussing 

in this paper. For the two-way categorical tables they can 

handle item nonresponse only; unit nonresponse is excluded 

from their analysis. However, they assume that the data are 

missing at random and show how to obtain maximum 

likelihood estimators under their model. They also use a 

nonignorable nonresponse model (D), which they claim is 

their best model. It is noted in Little and Rubin (2002, 

chapter 15) that one issue of the nonignorable nonresponse 

model for this problem is that there are too many 

parameters, and many parameters are not identified, so they 

attempted a correction using hierarchical log-linear models. 

See Nandram, et al. (2005) for the case in which there are 

three supplemental tables.  

Our methodology differs from those of Chen and Stasny 

(2003). The major difference is that we use a Bayesian 

approach. This permits us to use a method that does not rely 

on asymptotic theory, incorporate nonignorable missingness 

into the modeling and obtain time-dependent nonignorable 

model for estimating the proportion of voters for the three 

candidates. Looking to predict the winner more convince-

ingly, we have also constructed a new parameter; it is 

relatively easy to analyze this parameter within the Bayesian 

paradigm. The Bayesian method permits modeling different 

patterns of missingness under two different assumptions 

(i.e., ignorable and nonignorable missingness). Our idea is 

to start with an ignorable nonresponse model, which is then 

expanded into a nonignorable nonresponse model, and to 

the time-dependent nonignorable nonresponse model. It is 

worth noting that unit nonresponse is also included in our 

modeling which the other researchers consider as a separate 

problem using weighting adjustment (e.g., see discussion in 

Kalton and Kasprzyk 1986). However, there can be 

nonignorability here as well, and one would need to include 

unit and item nonresponses simultaneously.  

In this paper, our key contribution is to introduce a 

Bayesian method to analyze data from an r c×  categorical 

table when there are both item and unit nonresponse, and the 

missing data mechanism can be nonignorable with a time-

dependent structure. In Section 2, we describe the categor-

ical data on voters’ status and candidate preference with a 

time-dependent structure. In Section 3, we describe the 

methodology to obtain estimates of the cell probabilities 

incorporating the two types of missing data, and we show 

how to expand an ignorable nonresponse model into a 

nonignorable nonresponse model and time-dependent 

model. We also show how to use Markov chain Monte 

Carlo methods to fit the nonignorable nonresponse model. 

In Section 4, we analyze the Ohio election data to 

demonstrate the versatility of our methods. Finally, Section 

5 has concluding remarks.  

 
2. Data on 1998 Ohio Polls  

The Center for Survey Research (CSR) at the Ohio State 

University conducted the Buckeye State Poll (BSP) during 

the 1998 election for Senator, Governor, Attorney General, 

State Secretary, Treasurer and Columbus Mayor. In certain 

months before the election, CSR conducted pre-election 

surveys as part of the BSP and included additional questions 

to collect information related to the respondent’s likelihood 

of voting and candidate preference. In the BSP, households 

are sampled using the Random Digit Dialing (RDD) 

method, and one adult per household is selected to be 

interviewed using the last birthday method (Lavrakas 1993).  
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It is pertinent to briefly describe the RDD method. 

Polling firms make extensive use RDD, and the main goal 

of RDD is to develop a representative sample of the overall 

voter population. RDD sampling assumes that a represen-

tative sample cannot be obtained using listed telephone 

numbers in the directory. Each telephone number has 10 

digits, the first three form the area code, the next three form 

the prefix (colloquially called the exchange), and the last 

four (suffix) identify a particular subscriber or a household 

(one household can have more than one phone number). 

The area codes are geographically based and typically 

identify localities in a state, and the exchanges can be 

geographically oriented. There are ten million numbers to 

dial but roughly less than 25% of these are real telephone 

numbers. Thus time and money are wasted in dialing 

unused numbers. We discuss this further in Section 3.  

Chen and Stasny (2003) and Chang and Krosnick (2001) 

analyzed data from three BSP pre-election forecasting polls. 

Details of each of these three BSP pre-election surveys can 

be found in Table 1. These BSP pre-election surveys 

measured respondents’ candidate preferences three times 

(January, April and October) for the November 1998 Ohio 

Governor race. In addition, respondents were asked for their 

self-reported likelihood of voting in the upcoming election 

using two questions. Chang and Krosnick (2001) also used 

filter variables (such as registered to vote, self-reported 

likelihood of voting, and voted in the last major election, 

etc.) to obtain those most likely to vote. Thus prediction is 

based only on the respondents likely to vote. Those 

registered to vote are classified into likely to vote, unlikely 

to vote and undecided. Chang and Krosnick (2001) showed 

that deterministic allocation of undecided respondents 

provide improvement in forecasting voters’ candidate 

preferences, as compared to exclusion of all undecided 

respondents. Chen and Stasny (2003) used probability 

models to allocate the undecided voters and compared their 

forecasting with that of Chang and Krosnick (2001).  

The data set in Chen and Stasny (2003) is slightly 

different because we use the undecided counts (unit 

nonresponse) on both variables. A voter can be undecided 

on at least one of the two categorical variables at each of the 

three polls. Chen and Stasny (2003) only study the data with 

undecided in exactly one variable, not both. In Table 1 for 

the undecided voters in both variables the counts for the 

January, April and October polls are respectively 5, 3 and 4; 

these numbers are bolded. In fact, the inclusion of these 

counts into our model, is an extension of the models in Chen 

and Stasny, and generalizes our methodology considerably.  

We briefly describe the 2 3×  categorical table of Ohio 

election data by voters’ status (VS) and candidate 

preference (CAN). Here VS is a binary variable, and there 

are two levels: likely to vote and not likely to vote; CAN has 

three levels: Fisher, Taft, others. There are also undecided 

voters in VS and CAN. The bulk of the undecided voters 

come from voters who are “likely to vote” and “unlikely to 

vote” and the numbers are 173, 142 and 138 for January, 

April and October respectively; the undecided voters for 

Fisher, Taft and others are much smaller.   
Table 1 

Classification of October 1998 Buckeye State Poll by voting 
status and candidate 
 

Candidate 

Status  Fisher Taft Other Undecided Total 

a. January, 1998       

 Likely to vote 127 183 8 109 427 
 Not likely to vote 57 94 4 59 214 
 Undecided 0 2 0 5 7 
 Total 184 279 12 173 648 

b. April, 1998       

 Likely to vote 114 135 1 61 311 
 Not likely to vote 104 149 3 78 334 
 Undecided 2 6 0 3 11 
 Total 220 290 4 142 656 

c. October, 1998       

 Likely to vote 112 140 23 61 336 
 Not likely to vote 96 108 21 73 298 
 Undecided 7 11 1 4 23 
 Total 215 259 45 138 657 

 

NOTE: These data are taken from Chang and Krosnick (2001); Chen 
and Stasny (2003) used a very similar data set; they did not use 
5 3 4,, ,  the number of undecided voters in both variables.  

In the January 1998 poll, about 73% of the voters are 

completely classified, 27% have no decision about 

candidate preference, only 1% did not know whether they 

would vote or not, and only five persons were completely 

unclassified among the 648 participants. The data set, used 

in our study, is presented in Table 1 as a 2 3×  categorical 

table of voters’ status and candidate preference. Our 

problem is to predict the winning candidate by estimating 

the proportion of final votes for each candidate.  

The samples obtained in January, April and October are 

independent. There is no oversampling for a particular sub-

population or weighting of the original sample. Like many 

telephone surveys, RDD frame suffers from the common 

problem of undercoverage. As telephone coverage is not 

uniform over age, race, sex, income and geography, there is 

a need to poststratify the original sample to reduce the 

coverage bias by properly weighting the original data.  

We perform a preliminary test of heterogeneity of the 

cell proportions across the three polls. Assuming a missing 

at random mechanism, we fill in the undecided votes. We 

assume that for each row (column) the undecided voters are 

filled in proportionally to the cell counts. Let tjkn  denote the 

adjusted cell counts with 1 1 ,r c
j kt tjkn n= =∑ ∑=  and let tjkp  

denote the cell proportions. For a model of heterogeneous 

proportions, we assume that  
ind iid

Multinomial( ) and Dirichlet( ) 1t t t t tn t … T| , , = , , ,1∼ ∼n p p p  
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where 1  is a rc -vector of ones.  

For a model of homogeneous proportions, we assume 

that  

ind

Multinomial( ) 1 and Dirichlet( )t tn t … T| , , = , , , .1∼ ∼n p p p  

Then, the Bayes factor of heterogeneity versus homo-

geneity is  

1 1
2

1 1
1 1

{ 1}1BF
{( 1)} ( ) ( 1)

T Tr c
tjk tt t

T T
j k tjk tt t

n n rc

rc n n rc

= =

= = = =

  ! + − ! 
= .  

− ! ! + − !    

∏ ∑∏∏
∑ ∏

 

Thus, using the adjusted cell counts, the logarithm of the 

Bayes factor (LBF) is approximately 12.4, showing very 

strong evidence for heterogeneity, and supporting our time-

dependent model.  

In a similar manner, we have computed the Bayes factors 

of 1 2 3= ≠p p p  or 1 2 3≠ =p p p  versus homogeneity; 

the LBFs are 7.6 and 4.4 respectively. Thus, the time-

dependence occurs for both periods, January-April and 

April-October.  

 
3. Methodology 

 
We have constructed a time-dependent nonignorable 

nonresponse model for the 1998 Ohio Poll data. For 

comparison we have also considered two other models, an 

ignorable and a nonignorable nonresponse model. These 

latter two models are not time-dependent because we 

assume that the three time points come from the same 

stochastic process (i.e., no correlation across time). Our 

main contribution is the time-dependent model. We have 

used the ignorable and nonignorable nonresponse models 

for a single time point in Nandram, et al. (2005). Although 

these two models are not appropriate in the present context, 

they are natural to motivate our time dependent non-

ignorable nonresponse model. Essentially we start with the 

ignorable nonresponse model which is expanded into a 

nonignorable nonresponse model, and we extend the non-

ignorable nonresponse model to a time-dependent model.  

In RDD stratification and clustering are used to reduce 

the excess artificial numbers. Stratification by area code and 

some exchanges is used; geographic ordering (state or 

region) with systematic selection provides implicit 

stratification of exchanges. If an exchange is used to form a 

stratum, there are still ten thousand numbers to dial, still a 

large waste with numerous redundant numbers. The 

Mitofsky-Waksberg (see Waksberg 1978) procedure is a 

stratified two-stage cluster sampling design used to reduce 

the artificial numbers. Exchange areas are divided into equal 

size, and a random sample of exchanges is taken with 

replacement from those eligible (according to the measure 

of size of each exchange area). Within selected exchange 

area, a fixed number of telephone numbers is generated at 

random, without replacement and dialed. Thus, there is also 

differential probabilities of selection (i.e., unequal cluster 

sizes) that must be considered in a comprehensive analysis. 

There are other variants of this procedure. RDD was 

adequate in 1998 Ohio election, but because of new 

technological innovations (e.g., cellular phone, email, 

internet, etc.), the usefulness of RDD may be diminished. In 

this paper, our method and models do not include strat-

ification, clustering or differential probabilities of selection.  

Our models are used to estimate the proportions of voters 

voting for Fisher, Taft and other in the October poll. Then, 

assuming no catastrophic change in the November election, 

we predict the proportion of voters voting for Fisher, Taft 

and other. In this way we can predict the winner in the 

November election. We are excited by a referee’s 

suggestion that one can use a mixture model to cover the 

possibility of a catastrophe.  

In Sections 3.1 and 3.2 we describe the notations and the 

three models. In Section 3.3 we show how to fit the time-

dependent nonignorable nonresponse model. The ignorable 

and nonignorable nonresponse models can be fit in a similar 

manner (see Nandram, et al. 2005 for details). In Section 3.4 

we show how to specify the two parameters ( 0µ  and 2

0c ), 

and in Section 3.5 we show how to do estimation in the 

October poll and prediction in the November election. 

 
3.1 Notation 
 

Let 1tjkI =ℓ  if the th
ℓ  voter belongs to the thj  row and 

thk  column of the two-way table at time t  and 0tjkI =ℓ  

otherwise, 1 1 1 1 .t … T j … r k … c … L= , , , = , , , = , , , = , ,ℓ  

That is, 1tjkI =ℓ  denotes the cell of the r c×  table that a 

voter belongs to. In our application 3,T =  2r =  and 

3.c =  Let 1tsJ =ℓ  if the th
ℓ  voter falls in table s  

( 1 2 3 4s= , , , ) and 0tsJ =ℓ  otherwise, 1, ,4,s …= 4
1 tss J=∑ =ℓ  

1; tsJ ℓ  indicates which table an individual belongs to and 

1 2 3 4( ).t t t t tJ J J J= , , ,ℓ ℓ ℓ ℓ ℓJ  

Let the cell counts be 1 , 1, 2, 3, 4n
tsjk tjk tsy I J s=∑= =ℓ ℓℓ  

for the four tables at each poll. Here 1t jky  are observed and 

, 2, 3, 4,tsjky s =  1, ,t … T=  are missing (i.e., latent 

variables). For 1t jky  we know that 1 01 1 ,r c
t jk tj k y n= =∑ ∑ =  the 

number of individuals with complete data. For 2t jky  we 

know that 21 ,c
t jk tjk y u=∑ =  where the row margins 

, 1, ,tju j … r=  are observed. For 3t jky  we know that 

31 ,r
t jk tkj y v=∑ =  where the column margins , 1, ,tkv k … c=  

are observed. For 4t jky  we know that 41 1
r c

t jk tj k y w= =∑ ∑ =  

(unit nonresponse). In this analysis 0,tn ,tu tv  and tw  are 

held fixed (i.e., fixed margin analysis) and known.  

Whenever it is convenient, we will use notations such as  
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1 1 1 1 1 1

r cr c

tsjk tsjk tsjk tsjk

s j k s j k s j k s j k

y y
, , = = = , , = = =

≡ , π ≡ π∑ ∑∑∑ ∏ ∏∏∏  

and (1) 2 3 4 (2) 1 3 4( , , ), ( , , ),t t t t t t t t= =y y y y y y y y  etc., where 

( , 1, , , 1, , , 1, , , 1, 2, 3, 4).ts tsjky j … r k … c t … T s= = = = =y  

Also, we let 1 11 1( , , )T…=y y y  and (1) 1(1) (1)( , , )T…=y y y  

with (1) (1) (4)( , , ).t t…=y y y  Also, 4 .r c
tsjk ts j k y n, ,

, ,∑ =  We will 

also use ts tsjk t jk tsjkj k sy y y y⋅⋅ ⋅,∑ ∑= , = ,  etc., t =y  

1 2 3 4( )t t t t, , ,y y y y  and 1( ).T…= , ,y y y  
 
3.2 Nonresponse models  

Letting ( 1 , 1 1t tjkI t … T j … r k … c= , = , , = , , , = , , , =ℓ ℓ ℓI  

1 ),… L, ,  for all models, we take  

iid

Multinomial{1 }t t t| , ,ℓ ∼I p p  (1) 

where 

1 1

1 0 1 1 1 .
r c

tjk tjk

j j

p p t … T j … r k … c
= =

= , ≥ , = , , , = , , , = , ,∑∑  

For the ignorable nonresponse model we take  

iid

Multinomial{1 }t t t| , .ℓ ∼J π ππ ππ ππ π  (2) 

That is, there is no dependence on the cell status of an 

individual. For the nonignorable nonresponse models we 

take  

iid

{ 1 0 }

Multinomial{1 }

t tjk tjktj k

tjk

I I j j k k′ ′ ′ ′| = , = , ≠ , ≠ ,

, .

ℓ ℓ ℓ

∼

J ππππ

ππππ  (3)

 

Assumption (3) specifies that the probabilities an 

individual belongs to one of the four tables depend on the 

two characteristics (i.e., row and column classifications) of 

the individual. In this manner we incorporate the 

assumption that the missing data is nonignorable. Note that 

conditional on the specified parameters in (1)-(3), one 

voter’s behavior is correlated with another at the same time 

,t  but there is independence over time. It is worth noting 

here that while the parameters in (2) are identifiable, those 

in (3) are not identifiable. This is where the difficulty in the 

nonignorable nonresponse model arises, and special 

attention is needed.  

It follows from (1) and (2) that for the ignorable model  

4 4

1 1 1 1 1

( )
tsjk

ts

yT r c
tjky

ts
tsjkt s s j k

p
g

y

 
 

⋅⋅ 
 
 
  = = = = =

  
, | ∝ π  !  

∏ ∏ ∏∏∏p yππππ  (4) 

subject to 21 1 ,c
t jk tjk y u j r=∑ = , = , ..., 31

r
t jk tkj y v k=∑ = , =  

1 ,c, ...,  and 41 1 .r c
t jk tj k y w= =∑ ∑ =  Note that under 

ignorability the likelihood function in (4) separates into two 

pieces, one that contains the tsπ  only and the other the ,tjkp  

and inference about these two parameters are unrelated; see 

Section 3.2 of Nandram, et al. (2005) for the original 

discussion of this model. Also, it follows from (1) and (3) 

that for the nonignorable nonresponse models the 

augmented likelihood function for (1) 1, , |p y yππππ  is  

4

(1) 1

1

( )
tsjk

t jk

yr c r cT
ysjk
tjk

tsjkt s j k j k

g p
y

 
 
 ⋅
 
 
 
  

, , ,

= , , ,

 π
, , | ∝  ! 

∏ ∏ ∏p y yππππ  (5) 

subject to 21 1 ,c
t jk tjk y u j r=∑ = , = , ..., 31

r
t jk tkj y v k=∑ = , =  

1 ,c, ...,  and 41 1 ;r c
t jk tj k y w= =∑ ∑ =  see Nandram, et al. (2005) 

for a description of identifiability in a similar situation.  

For the ignorable and nonignorable nonresponse models, 

we take  

iid

2 2 2 2Dirichlet ( ) 1 1t t … T| , τ τ , = , , + ,∼p µ µµ µµ µµ µ  (6) 

where we consider prediction at 1,T +  one step ahead 

(November). The probabilistic structure in (6) permits a 

“borrowing of strength” across time. Note that the k -

dimensional vector x  has a Dirichlet distribution if 
1

11( ) ( ) 0 1 1,jk k
j jj jjp x D x j … k x

α −
== ∑∏| = / , ≥ , = , , , =x α αα αα αα α  

where ( )D αααα  is the Dirichlet function and 

0 1 .j j … kα > , = , ,  For a quick reference see Ghosh and 

Meeden (1997, pages 42, 50, 127) in connection with the 

Polya urn distribution, and more appropriately its use as a 

conjugate prior in multinomial sampling; starting with our 

first paper (i.e., Nandram 1998) we have been using the 

Dirichlet-multinomial extensively in our research.  

We next describe the stochastic models for the .tjkππππ  For 

the ignorable nonresponse model, we take  

iid

Dirichlet ( ) 1t t … T, = , , ,1∼ππππ  (7) 

where 1 is a four-dimensional vector of ones. We need (7) 

because T  is small (i.e., 3T =  in our application). Thus, 

we use the uniform prior in 4R  (essentially noniformative); 

otherwise we will have to specify the unknown parameters 

of the Dirichlet distribution with virtually no data. For the 

nonignorable nonresponse models we take  

1 1

iid

1 1Dirichlet ( ) 1 1 1

tjk

t … T j … r k … c

| , τ

τ , = , , , = , , , = , , .∼

π µπ µπ µπ µ

µµµµ  (8)

 

First, we note that (8) provides a “borrowing of strength" 

across time. More importantly, because tjkππππ  are not 

identifiable so are 1µµµµ  and 1.τ  One possible way out of this 

dilemma is to “center” the nonignorable nonresponse model 

on the ignorable nonresponse model.  

For the time-dependent model, we take  

iid

1 2 1 2Dirichlet ( ) 1 1t t t t … T− −| , τ τ , = , , + ,∼p p p  (9) 
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where 0p  is also unknown. Note that  

1 2 1{ } 1 1t t tE t … T− −| , τ = , = , , + ;p p p  

so that { },tp  a priori, is a martingale vector. Here T  is 

small (i.e., 3T = ). Thus, this time-dependent structure 

seems more appropriate, and can potentially provide 

improved precision. Note also that we have taken 

0 Dirichlet ( ).1∼p  

Finally, we specify prior densities for the hyper-

parameters. First, we take  

iid

1 2 Dirichlet ( ), ,1∼µ µµ µµ µµ µ  (10) 

essentially noniformative prior densities.  

Finally, 1τ  and 2τ  are independent and identically 

distributed random variables from  

2( ) 1 (1 ) 0f x x x= / + , ≥ .  (11) 

Again this is an essentially noniformative prior density. 

Note that 1µµµµ  and 1τ  do not exist in the ignorable 

nonresponse model. Gelman (2006) recommended priors 

like (11) instead of the ill-behaved proper diffuse gamma 

priors.  

For the nonignorable nonresponse models we need to be 

more careful to specify the prior density of 1τ  because tjkππππ  

are not identifiable. Here we attempt to “center” the 

nonignorable nonresponse models on the ignorable 

nonresponse model. In (8) the parameter 1τ  tells us about 

the closeness of the nonignorable model to the ignorable 

model. For example, if 1τ  is small, the tjkππππ  will be very 

different, and if 1τ  is large, the tjkππππ  will be very similar. 

Thus, a priori inference will be sensitive to the choice of 1,τ  

and one has to be careful in choosing 1.τ  We would like to 

choose a prior density for 1τ  so that the nonignorable 

nonresponse model is kept close to the ignorable 

nonresponse model. Thus, we take  

2 2
1 0 0 0Gamma (1 1 )c cτ / , /µ ,∼  (12) 

where 1 0( )E τ = µ  and 1 0CV( ) ,cτ =  with CV  the 

coefficient of variation; both 0µ  and 0c  are to be specified. 

We use the prior (12) because by an appropriate choice of 

0µ  and 0c  it is possible to center the nonignorable 

nonresponse model on the ignorable nonresponse model. Of 

course, one can use other convenient proper priors with 

parameters like 0µ  and 0c  to facilitate the centering. In 

Section 3.4 we will use samples from the posterior density 

of 1τ  under the ignorable nonresponse model to specify 0µ  

and 0.c  

For each of the three models, it is easy to write down the 

joint prior density of the parameters. For example, for the 

time-dependent model the joint prior density is  

2 2
0 1 0 0

1 2 1 1

1 1
1 1 2 1 2

2

1 4 1

1 1 1

1 2 1 11 1 1

1( )
(1 )

( ) ( )

t jk s

c c

r c p
T r c

tjk tsjkj k s

tt j k

p e

p

D D

−

/ − −τ /µ

τ − µ τ −
= = =

−= = =

, , , τ , τ ∝ τ
+ τ

 π 
× , τ τ  

∏ ∏ ∏∏ ∏∏

p

p

π µπ µπ µπ µ

µµµµ  (13)

 

where ( )D ⋅  is the Dirichlet function.  
 
3.3 Fitting the time-dependent nonignorable 

nonresponse model   
Combining the likelihood function in (5) with the joint 

prior density in (13) via Bayes’ theorem, the joint posterior 

density of the parameters ,ππππ p 1,µµµµ 1τ 2τ  and the latent 

variables (1)y  is  

2 2
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−= = =

π , , , τ , τ , |

 π
∝ τ  !+ τ  

 π
×  τ τ

∏ ∏ ∏

∏ ∏ ∏∏ ∏∏

p y y

p

π µπ µπ µπ µ

µµµµ



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subject to 21 1 ,c
t jk tjk y u j r=∑ = , = ,..., 31

r
t jk tkj y v k=∑ = , =  

1 ,c,...,  and 41 1 1r c
t jk tj k y w t … T= =∑ ∑ = , = , , .  

The posterior density in (14) is complex, so we will use 

Markov chain Monte Carlo methods to fit it. However, it is 

easy to fit the time-dependent model using the griddy 

Metropolis-Hastings sampler (our terminology) as we will 

describe. Also, in a similar manner using the griddy Gibbs 

sampler (Ritter and Tanner 1992), it is easy to fit the 

ignorable and the nonignorable nonresponse models. We 

obtain a sample from the joint posterior density in order to 

make inference about the parameters. Specifically, we need 

to make inference about .tp  To run the Metropolis-Hastings 

sampler, we need the conditional posterior density of each 

of the parameters given the others.  

First, we consider the conditional posterior probability 

mass functions of 2 3 4ts s, = , , ,y 1t … T= , ,  given ( ),t sy  

,tp 1 1 .tjk j … r k … c, = , , , = , ,ππππ  From (14) it is clear that 

under the conditional posterior density the 1ts t …, = , ,y  

2 3 4,T s, = , ,  are independent multinomial random vectors. 

Specifically, letting ( 1 1 1 )tjkp t … T j … r k … c= , = , , , = , , , = , ,p  

and ( 1 1 1 ),tjk t … T j … r k … c= , = , , , = , , = , ,π ππ ππ ππ π  

ind
(2)

2 1{ } Multinomial( ) 1 )t j t tj tju j … r| , , , = , , ,∼y y p qππππ  

ind
(3)

3 1{ } Multinomial( ) 1 )t k t tk tkv k … c| , , , , = , , ,∼y y p qππππ  

(4)
4 1{ } Multinomial( )t t t tw| , , , ,∼y y p qππππ  (15) 
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where (2)
2 21

1 ,c
t jk tjktjk t jk tjkk

q p p k … c′ ′′=∑= π / π , = , , (3)
tjkq =  

3 31
1r

t jk tjk t j k tj kj
p p j … r′ ′′=∑π / π , = , ,  and (4)

tjkq =  
4 41 1

,r c
t jk tjk t j k tj kj k
p p′ ′ ′ ′′ ′= =∑ ∑π / π 1 1 1j … r k … c t … T= , , , = , , , = , ,  

The conditional posterior density of tjkππππ  is given by  

ind

1 1 1 2 2 1

3 3 1 4 4 1

{ } Dirichlet(

)

tjk t t jk t t jk t

t jk t t jk t

y y

y y

| , τ, +µ τ , +µ τ ,

+µ τ , +µ τ

∼yπ µπ µπ µπ µ

 (16)

 

with independence over 1 ,t … T= , , 1 1 .j … r k … c= , , , = , ,  

The conditional posterior density for ,tp 1t … T= , ,  is 

more difficult. We note that 

0 2 1

11 1
0 1

0 2

( else )
( )

jk
r c p

jkj k
p

D

τ −

= =π | , ∝
τ

∏ ∏
p y

p
 (17) 

and 

2

1 2

1

1

11 1 1

21 1

( else )

1
( )

tjk

t jk t jk

t

r c p
r c

t jky p j k
tjk

tj k

p
p t … T

D
⋅ −

τ − 
++ τ −  = =

 
 

= = 

π | ,

∝ , = , , ,
τ

∏ ∏
∏∏

p y

p
 (18)

 

where “else” refers to all of the parameters in 

1 1 2 (1)( ), , , τ , τ ,p yπ µπ µπ µπ µ  excluding 0p  in (17) or tp  in (18). 

We show how to draw samples from (17) and (18) in 

Appendix A.  

Next, we consider the hyper-parameters. Letting sδ =  

1 1 1 ,T r c
sjkt j k= = =∏ ∏ ∏ π  and ( 1 1tjk t … T j … r= π , = , , , = , , ,ππππ  

1 ),k … c= , ,  the joint conditional posterior density of 

1 1, τµµµµ  is  

1 1

2 2
0 1 0 0

4

1 11
1 1 1

1 1
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c cs
rcT

p e
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µ τ

/ − −τ /µ=

δ
, τ | ∝ τ ,

τ

∏
µ πµ πµ πµ π

µµµµ
 

where 

4

1 1 11
1 0 1 2 3 4 0.s ss

s
=
µ = , µ ≥ , = , , , , τ >∑  

We do not need to get a sample directly from 

1 1( ).p | τ ,µ πµ πµ πµ π  But, letting 1( )sµµµµ  denote the vector of all 

components of 1µµµµ  except 1 ,sµ  we have  
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δδ∝ ,
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≤ µ ≤ − µ , = , , .∑

µ πµ πµ πµ π

 

(19)

 

We use a grid method to draw a sample from 

1 1( ) 1( ).s sp µ | , τ ,µ πµ πµ πµ π  We started by using 50 grids (i.e., we 

have divided the range of 1 ,sµ 3
11(0 1 ),ss s s ′′ ′= , ≠∑, − µ  into 50 

intervals of equal widths) to form an approximate 

probability mass function of 1 1 2 3.s sµ , = , ,  We first draw a 

random variable from this probability mass function to 

indicate which of the 50 intervals is selected. Then, for 1sµ  

we draw a uniform random variable in this interval. This 

procedure is efficient because 1sµ  is bounded, the intervals 

are very narrow, and it is very “cheap” to construct the 

discrete probability mass function for each 1 1 2 3.s sµ , = , ,  

Finally, 14µ  is obtained from its conditional posterior 

density by taking 3
14 111 .ss=∑µ = − µ  

The conditional posterior density of 1τ  is  

1 1 2 2
0 1 0 0

4
1 1

1 1 1 1

1 11

( ) 0
{ ( )}

s
c cs

rcT
ss

p e
µ τ

/ − −τ /µ

=

 δτ | , ∝ τ , τ > . Γ µ τ 
∏µ πµ πµ πµ π (20) 

To draw a random deviate from (20), we proceed in the 

same manner as for (19), except that we transform 1τ  from 

the positive half of the real line to (0 1).,  (It is more 

convenient to perform a grid approximation to a density in a 

bounded interval.) Thus, letting 1 (1 )τ = φ/ − φ  in (20), we 

have  

1 1 2 2
0 1 0 0
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1
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 δ∝ τ , < φ < . − φ Γ µ τ 
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Again, we started by using 50 intervals of equal width to 

draw ,φ  and the random deviate for 1τ  is (1 ).φ/ − φ  

Letting ( 1 1 1 ),tjkp p t … T j … r k … c= , = , , , = , , , = , ,  the 

conditional posterior density of 2τ  is  

1 2 1

1 1
2 22

1 22 1

1( ) 0
( )(1 )

t jk
r c p

T
tjkj k

tt

p

D

− τ −

= =

−=

  
π τ | ∝ , τ > . τ+τ   

∏ ∏
∏p

p
 (21) 

A sample is obtained in a manner similar to 1τ  in (20).  

We have extensive experience in using the grid 

approximation. However, one has to be careful in using the 

grid approximation for parameters close to 0 or 1 in the in 

the interval [0 1].,  One would need to use a grid 

approximation in an interval near the boundary; this can be 

obtained by trial and error in looking at the output of the 

sampler as it progresses. If a parameter in [0 1],  is likely to 

be away from 0 or 1, then the grid method works fine; this is 

the case for the 1sµ ’s. However, for a parameter like 1τ  

(can be very large), when transformed to φ  in the interval 
[0 1],, φ  can be very large (near to 1). If the transformed 
value is like 0.999, one needs to adjust the grid search to be 

in an interval containing 0.999. This has to be done by trial 

and error; one needs to look at the output of φ  as the 
sampler progresses, and adjust the interval accordingly. For 

example, if 100 grid points are equally spaced in [0 1],  such 

as 0.01, 0.02, 0.03, …. 0.99, and the parameter is likely to 

be around 0.999, although we draw uniformly in the 

selected grid interval, these grid points are not going to be 

very efficient.  
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The Metropolis-Hastings sampler is executed by drawing 

a random deviate from each of (15), (16), (17), (18), (19), 

(20) and (21) iterating the entire procedure until 

convergence. This is an example of the griddy Metropolis-

Hastings sampler (Ritter and Tanner 1992). We obtain a 

sample from the posterior densities corresponding to the 

ignorable and nonignorable nonresponse models in a similar 

manner. For all models, we use a sample of 1,000M =  

from the posterior densities to do estimation and prediction. 

We monitored the algorithm for convergence by looking at 

the trace plots of each parameter versus iteration order and 

we studied the autocorrelation coefficient. We used a griddy 

Gibbs sampler to fit the ignorable and nonignorable 

nonresponse models. We used a “burn in” of 1,000 iterates 

and we took every tenth thereafter. This procedure works 

well.  

However, for the time-dependent model, we used a 

griddy approximation to the conditional posterior of 0,p  but 

Metropolis steps for 1 .t t … T, = , ,p  The Metropolis steps 

did not work well because the jumping probabilities are 

0.67, 0.65 and 0.73 for the three conditional posterior 

densities of 1,p 2,p  and 3,p  but they are recommended to 

be between 0.25 and 0.50 (Gelman, Roberts and Gilks 

1996); tuning did not help. So we used grid approximations 

to these three conditional posterior densities as well. The 

grid approximations are very accurate. In all grid 

approximations, we started with 50 grids, and we increased 

the number of grids until our estimates of all ,Tp 1,T +p  

2,µµµµ 2τ  do not change. We found that 200 grids were 

adequate in all cases (i.e., for 1 2 1 2)., , τ , τµ µµ µµ µµ µ  Also, we found 

that although the Metropolis-Hastings sampler did not work 

as well as we wanted, the estimates of the cell proportions 

are virtually the same from both samplers. The Metropolis-

Hastings sampler was run for 25,000 iterations with a “burn 

in” of 5,000 and thinning by choosing every twentieth.  

Finally, we stored the sample from the joint posterior 

density for further analysis. Specifically, for the ignorable 

and the nonignorable nonresponse models, we need the 

sample of size M  from ( ) ( ) ( ) ( )
2 2 1{( ) 1 },h h h h

T h … M−, τ , , , = , ,p pµµµµ  

and for the time-dependent model we need the sample of 

size M  from ( ) ( ) ( )
2 1( ) 1 .h h h

T h … M−τ , , , = , ,p p  
 
3.4 Specification of 0µµµµ  and 

2

0
c   

Finally, we describe how to specify 0µ  and 0c  in (12). 

This is important because it permits us to “center” the 

nonignorable nonresponse model on the ignorable 

nonresponse model (i.e., an expansion model). This 

procedure is in the spirit of Nandram, et al. (2005).  

We have drawn a sample of ( ) 1 1h
t t … T h … M, = , , , = , , ,ππππ  

M = 1,000 iterates from the ignorable nonresponse model, 
and computed ( ) ( )

1 1 .h hT
tt T h … M=∑= / , = , ,π ππ ππ ππ π  Then, using 

the griddy Gibbs sampler, we fit the model  

iid
( )

1 1

2
1 1 1 1

Dirichlet( )

Dirichlet( ) ( ) 1 (1 ) 0

h

p

τ ,

, τ = / + τ , τ > ,1

∼

∼

π µπ µπ µπ µ

µµµµ
 

with a priori 1µµµµ  and 1τ  independent, to obtain a sample 
( )
1 1 .h h … Mτ , = , ,  We have drawn 1,500 iterates with a 

“burn in” of 500 to get M = 1,000 iterates.  
Finally, taking 1 ( )

1 1
hM

ha M −
=∑= τ  and b =  

1 ( ) 2
1 1( 1) ( ) ,hM

hM a−
=∑− τ −  we set  

0 0andc b a a= / µ = .
 

For the election data, our procedure gives 0c = 0.031 and 
0µ = 2.431. This specification will hold the nonignorable 

nonresponse model close to the ignorable nonresponse 

model, thereby providing a possible centering mechanism.  

To study sensitivity to the misspecification of the prior 

density of 1,τ  we use two constants, 1κ  and 2,κ  such that 

a priori  

2 2 2 2
1 1 0 1 2 0 0Gamma (1 1 )c cτ / κ , / κ κ µ∼  

with varying values of 1κ  and 2.κ  It is worth noting that 

1 2 0( )E τ = κ µ  and 1 1 0CV( ) ;cτ = κ  thus increasing 2κ  

means increasing 1τ  which, in turn, means increasing 

precision a priori but not necessarily a posteriori. We will 

study the sensitivity to the specification of 1κ  and 2κ  when 

we describe the data analysis.  
 
3.5 Estimation and prediction   

We show how to improve estimation (i.e., Rao-

Blackwellization) in the October poll, and how to do 

prediction in the November election.  

For the ignorable and nonignorable nonresponse models,  

1 2 2 2 2 1 2 2

( ) ( )
2 2

1

( ) ( ) ( )

1 ( )

T T

M
h h

T

h

g g d d

g
M

=

| = | , τ π ,τ | τ

≈ | , τ ,

∫

∑

p y p y

p

µ µ µµ µ µµ µ µµ µ µ

µµµµ  (22)

 

where 2 2 2 2Dirichlet ( ),T | , τ τ∼p µ µµ µµ µµ µ  and for the time-

dependent model,  

1 1 2 1 2 1 2

( ) ( )
1 2

1

( ) ( ) ( )

1 ( )

T T T T T

M
h h

T T

h

g g d d

g
M

− −

−
=

| = | , τ π ,τ | τ

≈ | , τ ,

∫

∑

p y p p p y p

p p  (23)

 

where 1 2 1 2Dirichlet ( ).T T T− −| , τ τ∼p p p  

We obtain (predict) the cell proportions for November as 

follows. The ignorable or nonignorable nonresponse model, 

posterior density of 1T +p  is  

1 1 1 2 2 2 2 1 2 2

( ) ( )
1 2 2

1

( ) ( ) ( )

1 ( )

T T

M
h h

T

h

g g d d

g
M

+ +

+
=

| = | , τ π ,τ | τ

≈ | , τ ,

∫

∑

p y p y

p

µ µ µµ µ µµ µ µµ µ µ

µµµµ  (24)
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where 1 2 2 2 2Dirichlet ( ).T + | , τ τ∼p µ µµ µµ µµ µ  For the time-

dependent  

1 1 1 2 2 1 2

( ) ( )
1 2

1

( ) ( ) ( )

1 ( )

T T T T T

M
h h

T T

h

g g d d

g
M

+ +

+
=

| = | , τ π ,τ | τ

≈ | , τ ,

∫

∑

p y p p p y p

p p (25)

 

where 1 2 2Dirichlet ( ).T T T+ | , τ τ∼p p p  

Thus, by (22), (23), (24) and (25), estimation and predict-

tion are straight forward. For example, consider the time-

dependent model. For estimation, by (24) for each ,h  we 

draw a random deviate ( ) ( ) ( ) ( )
1 2 1 2Dirichlet( ),h h h h

T T T− −| , τ τ∼p p p  

denoted  by  ( ) 1 .h
T h … M, = , ,p   For  prediction,  by  (25)  for 

each ,h  we draw a random deviate ( )
1

h
T T+ | ,p p  

( ) ( ) ( )
2 2Dirichlet ( ),h h h

Tτ τ∼ p  denoted by ( ) 1 .h
T h … M, = , ,p  

Thus, inference about Tp  and 1T +p  is made in the usual 

manner. The procedure is similar for the ignorable and 

nonignorable nonresponse models.  

 
4. Data analysis  

 
In this section we compare our models with those of 

Chen and Stasny (2003) and the actual (November election) 

outcomes. We have introduced a new parameter to help 

predict the outcome of the election. We also study 

extensively sensitivity of inference to choices of 1κ  and 2.κ  

Based on our procedure, we have specified the coefficient of 

variation, 0c = 0.031, and the mean, 0µ = 2.431, of the 
prior distribution of 1.τ  

In Table 2 we compare inference about the proportions of 

October voters allocated to the three candidates by our 

models and those of Chen and Stasny (2003). In this table 

the results are based on the prior 2 2
1 0 0 0Gamma (1 1 )c cτ / , /µ∼  

(i.e., 1 2 1κ = κ = ). We also present the actual proportions 

taken from Chang and Krosnick (2001). The actual 

proportions are (0.45, 0.50, 0.05) for Fisher, Taft and other. 

Using our time-dependent nonresponse model these 

proportions are estimated to be (0.41, 0.50, 0.09). These 

compare favorably with the actual outcomes. The 

corresponding estimates are (0.41, 0.51, 0.08) for the 

ignorable nonresponse model and (0.40, 0.50, 0.09) for the 

nonignorable nonresponse model. The best result of Chen 

and Stasny (2003) is obtained from their Model D, and their 

estimates are (0.42, 0.51, 0.07). We have provided 95% 

credible intervals for our estimates, but within the approach 

of Chen and Stasny (2003) it is relatively more difficult to 

provide similar intervals. Also, in Table 2 we present 

estimates of the predicted proportions for the November 

elections. The point predictors are similar to the point 

estimates except for the predicted proportion going to Taft 

under the ignorable nonresponse model. However, as 

expected the 95% credible intervals for the predicted 

proportions are much wider. For example, under the time-

dependent model 95% credible interval for the proportion 

voting for Taft in the October poll is (0.41, 0.60) and for 

prediction it is (0.21, 0.78). Thus, while the point estimates 

and predictions do indicate the winner, the variability 

indicates no difference between Taft and Fisher. We will 

look at this further.   
Table 2 
Comparison of the proportion of likely voters for the October 
1998 poll and prediction for November 1998 election for 

different models with actual outcome 
 

Status  Fisher Taft Other 

Sample Estimate   0.41  0.51  0.08  

Approximate 95% CI   (0.35, 0.47)  (0.45, 0.57)  (0.05, 0.11) 
Actual Outcome   0.45  0.50  0.05  

a. Estimation     

 Chen/Stasny models A,B,C   0.41  0.51  0.08  

 Chen/Stasny model D   0.42  0.51  0.07  
 Chen/Stasny model E   0.41  0.51  0.08  

 Ignorable model   0.41  0.51  0.08  

 95% CI   (0.35, 0.46)  (0.46, 0.57)  (0.05, 0.12) 
 Nonignorable model   0.41  0.50  0.09  

 95% CI   (0.32, 0.51)  (0.40, 0.60)  (0.05, 0.17) 

 Time-dependent model   0.41  0.50  0.09  
 95% CI   (0.32, 0.52)  (0.41, 0.60)  (0.05, 0.16) 

b. Prediction     

 Ignorable model   0.41  0.54  0.05  

 95% CI   (0.15, 0.70)  (0.25, 0.81)  (0.00, 0.22) 
 Nonignorable model   0.42  0.52  0.06  

 95% CI   (0.15, 0.70)  (0.22, 0.79)  (0.00, 0.28) 

 Time-dependent model   0.41  0.50  0.09  
 95% CI   (0.15, 0.71)  (0.21, 0.78)  (0.00, 0.31) 

 

NOTE: 2 2
1 0 0 0Gamma(1 1 ),c cτ / , /µ∼  where 0c = 0.031 and 

0µ = 2.431.  
Although our estimates from the time-dependent model 

are close to the actual estimates, the 95% credible intervals 

for 311p  and 312p  overlap, thereby making it difficult to 

predict Taft is the winner. Although the 95% credible 

intervals for our other models are shorter, the point 

estimates are not so good and they still overlap. One 

weakness in our analysis in Table 2 is that we have ignored 

the correlation between the two estimates (i.e., we should 

really study the difference 312 311,p p−  the margin of 

winning).  

In Table 3 we present estimates of 312 311e p pΛ = −  and 

412 411p p pΛ = −  at 1 2 1κ =κ =  for the three models. We 

have also included the numerical standard error (NSE) 

which is a measure of how well the numerical results can be 

reproduced; we have used the batch-means method to 

compute it. Small NSEs mean that if we repeat the entire 

computation the same way (i.e., using another 1,000 

iterates), we should see very little difference between the 

two sets of answers. In Table 3 the NSEs are small. The 

point estimators and predictors are all positive showing that 

Taft is the winner in both the October poll and the 

November election. However, the variability dwarfs this 
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result somewhat because the PSD are large, as expected 

even more so for prediction. This causes the 95% credible 

intervals for both parameters to contain 0. Thus, again when 

variability is considered, there is no difference between Taft 

and Fisher.  
 
Table 3 
Comparison of the three models for estimation and prediction 

using the posterior means (PM), posterior standard deviations 
(PSD), numerical standard errors (NSE) and 95% credible 
intervals for ΛΛΛΛe  ( ΛΛΛΛ p ) and ∆∆∆∆e  ( ∆∆∆∆ p ) 
 

 Model  PM  PSD  NSE  Interval  

eΛ   Ignorable  0.105  0.055  0.002  (-0.002,  0.209)  

 Nonignorable  0.097  0.099  0.006  (-0.100,  0.280)  

 Time-dependent  0.093  0.101  0.007  (-0.098,  0.276)  

pΛ   Ignorable  0.071  0.154  0.004  (-0.240,  0.362)  

 Nonignorable  0.058  0.150  0.005  (-0.252,  0.369)  

 Time-dependent  0.050  0.134  0.005  (-0.244,  0.314)  

e∆   Ignorable  0.688  0.175  0.008  (0.295,  0.958)  

 Nonignorable  0.663  0.200  0.012  (0.222,  0.959)  

 Time-dependent  0.632  0.148  0.014  (0.336,  0.901)  

p∆   Ignorable  0.688  0.175  0.008  (0.295,  0.960)  

 Nonignorable  0.663  0.193  0.009  (0.253,  0.972)  

 Time-dependent  0.648  0.155  0.011  (0.341,  0.923)  
 

NOTE: See note to Table 2; 312 311e p pΛ = −  (estimation, 
difference between Taft and Fisher for the October poll); 

412 411p p pΛ = −  (prediction, difference between Taft 
and Fisher for the November election); e∆ =  

312 311 311 312 313Pr( );p p p p p> | + + ,αααα  and p∆ =  
412 411 411 412 413Pr( );p p p p p> | + + ,αααα  see (26).   

 
We seek an alternative parameter looking to help us 

predict the winner more convincingly. We pose the 

following question: “What is the probability that the 

proportion of Taft’s voters in the October poll and the 

November election is larger than that of Fisher’s voters?”  

Thus, we consider the parameter e∆ = 312Pr (p >  
311 311p p| + 312 313 )p p+ ,αααα  where 2 1jk jk j … r kα =µ τ , = , , , =  

1 ,… c, ,  for the ignorable and nonignorable nonresponse 

models, and 2 2 1 1 ,jk jkp j … r k … cα = τ , = , , , = , ,  for the time-

dependent model. In either case, letting 1 311 31 ,q p p .= /  

2 312 31 ,q p p .= /  and 3 313 31q p p .= /  with 3
31 311 kkp p⋅ =∑=  

and 3
1 1,kk q=∑ =  it is easy to show that 

1 2 3 1 2 3( ) Dirichlet ( ),q q q, , α , α , αɶ ɶ ɶ∼  where 1 11,α = αɶ  

2 12α = αɶ  and 3 13 21 .c
kk=∑α = α + αɶ  Therefore, we have  

1 1 1
1 2 3

1

1

2 1

1/ 2 1
1 2 1 2

2 1
0 1 2 3

Pr ( )

(1 )
.

( , )

e

q

q

q q

q q q q
dq dq

D

− − −α α α−

∆ = > |

 − −=  
α α α ∫ ∫

ɶ ɶ ɶ

ɶ ɶ ɶ

αααα

 

Then, it is easy to show that  

1 2 3 2 3

1 2 3

1 2 3
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1 1
0

1 1
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1
1 2 3

1 (1 2) { (1 )}
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dq
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∫ɶ ɶ ɶ ɶ ɶ

ɶ ɶ ɶ

ɶ ɶ ɶ ɶ ɶ ɶ
 (26)

 

where  

11 2 31

1 2 3 1 2 3

(1 )

( )0
( )

a x x

BF a dx
+ −− α αα −

, +α α α , +α α α
= ∫

ɶ ɶɶ

ɶ ɶ ɶ ɶ ɶ ɶ
 

and 
11 32

2 3 2 3

(1 )

( )0
( )

a x x

BF a dx
−− αα −

,α α ,α α
= .∫

ɶɶ

ɶ ɶ ɶ ɶ
 

We note that e∆  is the probability that Talft received a 

higher proportion of the votes in the October poll, and p∆  is 

the probability that Taft received a higher proportion of the 

votes in the November election. These parameters can be 

very useful for estimation (e ) and prediction ( p ). 

Parameters like e∆  or p∆  are difficult to analyze in the 

non-Bayesian approach such as that of Chen and Stasny 

(2003); indeed this is a great strength of the Bayesian 

paradigm.  

It is easy to compute (26) using Monte Carlo integration. 

For each 1 2 3,, ,α α αɶ ɶ ɶ e∆ 1 1 2 3Beta( )q , +α α α∼ ɶ ɶ ɶ  truncated to 

the (0 1 2), /  is used as an importance function. Thus, for 

each ( ),hɶαααα 1 ,h … M= , , M = 1,000 from the Metropolis-

Hastings sampler (or Gibbs sampler), we can compute ( ).he∆  

A posteriori inference about e∆  is obtained in the standard 

empirical manner. For prediction, we have also considered 

412 411 411 412 413Pr( ),p p p p p p∆ = > | + + ,αααα  where jkα =  
2 1 1 ,jk j … r k … cµ τ , = , , , = , ,  for the ignorable and non-

ignorable nonresponse models, and 3 2 1jk jkp j … rα = τ , = , , ,  
1 ,k … c= , ,  for the time-dependent model. Note that e∆  and 

p∆  are the same for the ignorable and nonignorable non-

response models.  

In Table 3 we also present estimates of e∆  and pΛ  for 

the three models. First, note again that the NSEs are all 

small. The estimates of these parameters are similar for the 

three models, and larger than 0.60, but the 95% credible 

intervals contain 0.5. Thus, again the posterior means 

indicate that Taft is the winner, but variation is nullifying 

the effect of Taft being the winner. We note again that the 

time-dependent model provides sharper inference, not 

enough though. The parameters e∆  and p∆  are more 

sensible because they restrict inference to a smaller region 

by conditioning on 311 312 313p p p+ +  and 411 412 413,p p p+ +  

and from a probabilistic view these parameters are more 

appropriate.  

Finally, we study sensitivity to inference about pΛ  and 

p∆  for the nonignorable nonresponse model and the time-

dependent model. We do not present results for eΛ  and e∆  

because they are similar to pΛ  and .p∆  Also, we have 

dropped the ignorable model as well, and we do not present 

95% credible intervals because the posterior densities are 

roughly symmetric. Our results are presented in Table 4 by 

model, 1κ  and 2.κ  The posterior means of pΛ  and p∆  are 

respectively very similar for different values of 1κ  and 2.κ  

Note that a priori 
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Table 4 

Sensitivity of the posterior means (PM) and the posterior standard deviations (PSD) of 

ΛΛΛΛ p  and ∆∆∆∆ p  with respect to changes in 1κκκκ  and 2κκκκ  by model 
 

   2κκκκ  

   1  5  25  50 

Model 1κκκκ   PM PSD  PM PSD  PM PSD  PM PSD 

a. pΛ         

 Nonignorable  1   0.058  0.150   0.046  0.153   0.060  0.148   0.054  0.147  

 2   0.051  0.153   0.046  0.146   0.062  0.151   0.054  0.145  

 3   0.058  0.152   0.059  0.145   0.053  0.149   0.055  0.149  

 4   0.055  0.151   0.057  0.148   0.049  0.148   0.043  0.154  

 Time-dependent  1   0.050  0.134   0.044  0.144   0.048  0.136   0.050  0.130  

 2   0.049  0.136   0.052  0.140   0.056  0.129   0.047  0.137  

 3   0.039  0.139   0.049  0.137   0.045  0.139   0.052  0.133  

 4   0.037  0.138   0.042  0.138   0.041  0.141   0.051  0.129  

b. p∆         

 Nonignorable  1   0.663  0.200   0.650  0.194   0.666  0.186   0.670  0.182  

 2   0.663  0.197   0.661  0.188   0.667  0.185   0.659  0.181  

 3   0.663  0.199   0.647  0.196   0.666  0.184   0.669  0.180  

 4   0.641  0.202   0.668  0.191   0.643  0.197   0.650  0.195  

 Time-dependent  1   0.648  0.155   0.642  0.123   0.657  0.099   0.661  0.095  

 2   0.660  0.151   0.652  0.127   0.659  0.102   0.657  0.099  

 3   0.622  0.153   0.636  0.137   0.649  0.120   0.648  0.115  

 4   0.610  0.162   0.636  0.152   0.646  0.132   0.644  0.127  
 

NOTE: We have taken 2 2 2 2
1 1 0 2 0 1 0Gamma (1/ 1/ )c cτ κ , κ µ κ∼  and we studied sensitivity 

with respect to 1κκκκ  and .2κκκκ  See note to Table 3. 
   
 

( )1 2 2 2 2
1 0 2 0 1 0

1 1Gamma , ,
c c

τ
κ κ µ κ

∼  

1 2 0( )E τ = κ µ  and 1 1 2 0 0SD( ) ;cτ = κ κ µ  so clearly, 

a priori 1( )E τ  increases with 2κ  and 1SD( )τ  increases 

with either 1κ  or 2,κ  but not necessarily a posteriori. These 

changes do not have a lot of effect on inference a posteriori. 

For almost all combinations of 1κ  and 2,κ  under the time-

dependent model posterior standard deviations of pΛ  are 

smaller (but not substantially) than under the nonignorable 

nonresponse model. Under the time-dependent model 

posterior standard deviations of p∆  are substantially 

smaller than under the nonignorable nonresponse model for 

all combinations of 1κ  and 2.κ  

 
Concluding Remarks   

The main contribution in this paper is the construction 

and analysis of a time-dependent nonignorable nonresponse 

model and its application to the Ohio polling data. We have 

done two additional things as well. First, we have compared 

the time-dependent model with an extended version (to 

include time) of the ignorable and nonignorable 

nonresponse models of Nandram, et al. (2005). Second, we 

have constructed a new parameter to help predict the 

winner; however, this parameter did not make an enormous 

difference partly because there are only three time points in 

the time-dependent model.  

Our time-dependent model provides posterior inferences 

that are closer to the truth than the ignorable and 

nonignorable nonresponse models as well as those of Chen 

and Stasny (2003). It is natural for voters’ preference to 

change as new information, detrimental or supportive, is 

revealed into the public place. Thus, our time-dependent 

model, which takes care of changes over time and provides 

improved precision, is to be preferred. The uncertainty in 

the prediction can be reduced in two ways. First, with an 

increased number of polls there will be increased precision 

in the parameters, which in turn, can lead to improved 

prediction. Second, with more prior information (e.g., exit 

polling) about the November election, one can also improve 

the prediction.  

Our 95% credible intervals can be shortened by using 

prior information on the proportion of voters going to Taft 

or Fisher. A referee suggested, “The major-party voting 

proportions are between 35% and 65% in general elections, 

and in specific states an objective political scientist could 

generally provide an even tighter prior.” However, this is a 

complex problem because with truncated prior distributions 

on the p s, there is a normalization constant which is a 

function of 2.τ  Thus, when 2τ  is drawn from its conditional 

posterior density, we need to perform a Monte Carlo 

integration to compute the normalization constant at each 

iterate. While this will be a useful contribution, we prefer 

not to pursue this problem here. 
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The number of days to an election has an important 

impact on poll accuracy and that this effect can vary 

substantially across different campaign contexts (e.g., 

DeSart and Holbrook 2003). Thus, it is really difficult to 

predict the outcome of an election weeks before it actually 

occurs, unless there exists an absolute margin. Someone 

who wishes to predict the outcome of an election must take 

into consideration additional information near the actual 

election. Our prediction assumes that there is no 

catastrophic change near the election; such an abrupt change 

in public opinion can occur. For example, in 1988 Dukakis 

lost the election against George Bush for various reasons: he 

spent the last week in Massachusetts, his cold personality, 

and Bush’s attack on his liberal position. Also, an effective 

campaign can mobilize undecided voters near the election 

(e.g., Truman and Dewey in 1948). One way to capture a 

possible catastrophe is to use mixture distributions or other 

heavy-tailed distributions (as researchers use Levy 

distributions in mathematical finance).  

 
Acknowledgement  

 
This work was done while Balgobin Nandram was on 

sabbatical leave at the National Center for Health Statistics, 

Hyattsville, Maryland, 2003-2004.  

 
Appendix A   

Time-dependent model: Conditional posterior 

densities of 0, = , ,, = , ,, = , ,, = , ,tp t … T  
 

We show how to draw a sample from the conditional 

posterior density of 0p  in (17) using a grid method, and 

how to draw a sample from the conditional posterior 

densities of 1t t … T, = , ,p  in (18) using Metropolis steps, 

each with an independence chain.  

First, we show how to draw a sample from the 

conditional posterior density of 0p  in (17) using a grid 

method. Letting 01 0 01 0( ) ( )L rcq … q p … p, , = , ,  and 

11 1 11 1( ) ( )L rcq … q p … p, , = , ,  where ,L rc=  with 
1

01 1,L q−
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and it is easy to show that  
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For each ℓ  we divide the range 1
0 010 1 Lq q−

′′ ′= , ≠∑≤ ≤ −ℓ ℓℓ ℓ ℓ  into 

a number of subintervals. To obtain a random deviate 0q ℓ  

from its conditional posterior density, we select an interval 

proportional to its area, and draw a uniform random deviate 

from this interval.  

Second, we show how to draw a sample from the 

conditional posterior densities of 1t t … T, = , ,p  in (18) 

using Metropolis steps, each with an independence chain. 

Consider 1 2 1 .t t t … T−| , τ , , = , ,p p y  We use the candidate 

generating density  

1 2 Dirichlet( )t t t−| , τ , ,∼p p y a  

where  

2 1 1 1 1 .tjk t jk t jka y p t … T j … r k … c⋅ −= + τ , = , , , = , , , = , ,  

Then, the acceptance probability is 1s sA , + =  
1min(1 )s s+,ψ /ψ  where 

( )
2 1 ( )

211 1
( ).

s
tjk

r c p s
s tt jkj k

p D
τ −

+= =
ψ = / τ∏ ∏ p  
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A noninformative Bayesian approach to finite population  
sampling using auxiliary variables 

Radu Lazar, Glen Meeden and David Nelson 1 

Abstract 

In finite population sampling prior information is often available in the form of partial knowledge about an auxiliary 

variable, for example its mean may be known. In such cases, the ratio estimator and the regression estimator are often used 

for estimating the population mean of the characteristic of interest. The Polya posterior has been developed as a 

noninformative Bayesian approach to survey sampling. It is appropriate when little or no prior information about the 

population is available. Here we show that it can be extended to incorporate types of partial prior information about 

auxiliary variables. We will see that it typically yields procedures with good frequentist properties even in some problems 

where standard frequentist methods are difficult to apply.  
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1. Introduction 
 
Finite population sampling is one area of statistics where 

prior information is used routinely when making inferences. 

In most cases this prior information is not incorporated into 

the problem in a Bayesian manner. One reason for this is 

that the prior information usually does not lead, in a obvious 

way, to a sensible prior distribution. In the predictive 

approach (see Valliant, Dorfman and Royall 2000) a model 

is assumed and its unknown parameters are estimated after 

the sample has been observed. In the usual frequentist 

theory the prior information is encapsulated in the prob-

ability sampling plan or sample design. Basu showed that 

after the sample has been observed, the sampling design 

plays no role in the posterior distribution for a Bayesian. 

(For this fact and more of Basu’s thoughts on finite popu-

lation sampling see Ghosh (1988).) Although this radical 

conclusion has not been accepted by all Bayesians it is true 

that the usual frequentist theory and the Bayesian approach 

to survey sampling do not have a lot in common.  

Traditional theory in survey sampling has emphasized 

estimation of the population mean. When the population 

mean of an auxiliary variable is known a priori the ratio 

estimator or the regression estimator is often employed. If 

one wishes to estimate something other than the mean, say a 

population quantile or the population distribution function, 

or if one has prior information about the auxiliary variable 

other than its mean then new methods need to be developed. 

Recent work along this line can be found in Chen and Qin 

(1993), Chen and Sitter (1999), Mak and Kuk (1993), Kuk 

and Mak (1989), Rao, Kovar and Mantel (1990) and 

Chambers and Dunstan (1986).  

One advantage of a Bayesian approach is that a sensible 

posterior distribution for the population will incorporate the 

prior information into the estimation of several population 

parameters. Even if the posterior does not have a closed 

expression for a particular estimator for any given sample 

we can find its value approximately. This is done by 

sampling from the posterior distribution to simulate com-

plete copies of the population and employing Monte Carlo 

estimation methods. If the posterior does not have a 

convenient form for sampling one should be able to use 

Markov Chain Monte Carlo methods to implement the 

simulation process. For each such simulated copy one 

computes the value of the parameter of interest. By 

simulating many such full copies of the population one can 

find, approximately, the corresponding Bayes point and 

interval estimates of the given population parameter. The 

problem then is to find a sensible Bayesian population 

model which utilizes the type of prior information available 

for the auxiliary variable.  

Often, sensible Bayesian models can be based on the 

Polya posterior. The Polya posterior is a noninformative 

Bayesian approach to finite population sampling which uses 

little or no prior information about the population. A good 

source for more discussion on this approach is Ghosh and 

Meeden (1997). It is appropriate when a classical survey 

sampler would be willing to use simple random sampling as 

their sampling design. Here we show how it can be 

extended to cases where prior information about an 

auxiliary variable is present. For example the mean or 

median of an auxiliary variable might be known exactly or 

known to belong to some interval of possible values.  
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The basic idea is to constrain or restrict the Polya 

posterior to put positive probability only on simulated 

populations which satisfy the constraints specified by the 

prior information for the auxiliary variables. This appro-

priately constrained Polya posterior can then be used to 

make inferences about the population parameters of interest. 

In Nelson and Meeden (1998) the authors considered 

several scenarios where a constrained Polya posterior 

yielded sensible frequentist results. There it was assumed 

that information about the population quantiles of the 

auxiliary variable was known a priori. Here we assume that 

we have more general forms of prior information about 

either the population mean or population quantiles for a set 

of auxiliary variables. These quantities may either be known 

exactly or known only to belong to some interval.  

In section 2 we review the Polya posterior. In section 3 

we introduce the constrained Polya posterior and discuss 

how to use Markov Chain Monte Carlo methods to find, 

approximately, the value of an estimate based on this 

distribution. In section 4 we apply the Polya posterior in a 

variety of situations and compare it to standard methods. In 

section 5 we discuss more formally how it relates to some 

standard frequentist methods. In section 6 we see that the 

constrained Polya posterior can used with designs other than 

simple random sampling. In section 7 we give a few 

concluding remarks. In the appendix we prove an 

admissibility result for the constrained Polya posterior 

which gives a theoretical justification for the methods 

presented here.  

 
2. The Polya posterior 

 
Consider a finite population consisting of N  units. For 

unit i  let ,iy  a real number, be the unknown value of some 

characteristic of interest. We assume the unknown state of 

nature, 1( ),Ny y … y= , ,  belongs so some known subset of 

N -dimensional Euclidian space. Suppose we wish to 

estimate some function ( ),yγ  of the unknown state of 

nature. The next step for a proper Bayesian analysis would 

be to specify a prior distribution over the parameter space. 

Then, given a sample generated by the sampling design, one 

would determine the posterior distribution of the un-

observed members of the population conditioned on the 

values of the observed units in the sample. In most cases the 

posterior will not depend on the sampling design.  

The Polya posterior can be used like a proper posterior 

distribution although it does not arise from a proper 

Bayesian model. It would be appropriate when there is little 

known about the population and the sample is assumed to 

be representative of the population. An example when it 

would be appropriate is when the sampling design is simple 

random sampling. Next, we briefly describe this distribution 

and outline its theoretical justification.  

Given the data, the Polya posterior is a predictive joint 

distribution for the unobserved units in the population 

conditioned on the values in the sample. Given a sample we 

now show how to generate a set of possible values for the 

unobserved units from this distribution. Consider two urns 

where the first urn contains the n  units in the sample along 

with their observed y  values. The second urn contains the 

N n−  unsampled units. We begin by choosing one unit at 

random from each of the two urns. We then assign the 

observed y  value of the unit selected from the first urn to 

the unit selected from the second urn and then place them 

both in the first urn. The urns now contain 1n +  and 

1N n− −  balls respectively. This process is repeated until 

all the units have been moved from the second urn to the 

first and have been assigned a value. At each step in the 

process all the units in the first urn have the same 

probability of being selected. That is, the units which have 

been assigned a value are treated just like the ones that 

actually appeared in the sample. Once this is done, we have 

generated one complete realization of the population under 

the Polya posterior distribution. This simulated, completed 

copy contains the n  observed values along with the N n−  

simulated values for the unobserved members of the 

population. Hence, simple Polya sampling yields a predict-

tive distribution for the unobserved given the observed. A 

good reference for Polya sampling is Feller (1968). The 

Polya posterior is related to the Bayesian bootstrap of Rubin 

(1981). See also Lo (1988) and Binder (1982).  

This predictive distribution often generates estimators 

similar to standard frequentist estimators under simple ran-

dom sampling. Consider, for example, estimation of the 

population mean. Before continuing we need a bit more 

notation.  

Let s  denote a possible sample of size ( ).n s  It is a 

subset of {1 2 },… N, , ,  the set of labels for the finite 

population. If 1 ( ){ }n ss i … i= , ,  then 
1 ( )

{ }
n ss i iy y … y= , ,  is 

the set of observed values for ,y  the characteristic of 

interest. We let ( )sz s y= ,  denote a typical observed 

sample. Then given ( )sz s y= ,  we have  

( )

1

( )
j

n s

s i
j

y n sz
=

= /∑  

and 
( )

2

1

Var( ) ( ) ( ( ) 1)
j

n s

si
j

z y n sz
=

= − / −∑  

are the sample mean and sample variance. Let ( )mn yγ =  

1
N
i iy N=∑ /  be the population mean. Under the Polya 

posterior distribution,  

( ( ) ) smnE y z zγ | =  
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and 

Var( ) ( ) 1
Var( ( ) ) (1 )

( ) ( ) 1mn

z n s
y z f

n s n s

−γ | = −
+

 

where ( ) .f n s N= /  Note that, except for the last factor in 

the posterior variance, these two terms are just the sample 

mean and its variance under simple random sampling. The 

design probabilities play no explicit role in these calcu-

lations. Nonetheless, for the Polya posterior to be appro-

priate, in the judgment of the survey sampler, the values for 

the characteristic of interest for the observed and un-

observed units need to be roughly exchangeable. It is in 

such situations that simple random sampling without re-

placement is used.  

Under the Polya posterior the Bayesian credible interval 

for the population mean or point and interval estimates of 

other population quantities cannot always be found explic-

itly. In such cases it is easy to find these estimates ap-

proximately by repeatedly simulating completed copies of 

the population. For each simulated copy we calculate the 

population parameter of interest. Experience has shown that 

500 to 1,000 simulated values will usually give good results. 

The mean of these computed values will be our point 

estimate and the 0.025 and 0.975 quantiles of these 

computed values will be our interval estimate.  

Since under the Polya posterior the only y  values that 

appear in a simulated completed copy of the population are 

those that appeared in the sample the Polya posterior is just 

a way to assign random weights, i.e., probabilities, to the 

units in the sample. Under the Polya posterior the average 

weight assigned to each unit in the sample is 1 ( )n s/  so, as 

we have seen, its estimate of the population mean is just the 

sample mean. It is this relationship and the Bayes like 

character of the Polya posterior which allows one to prove 

the admissibility of the sample mean for estimating the 

population mean under squared error loss. This suggests that 

inferential procedures based on the Polya posterior will tend 

to agree with frequentist procedures and will have good 

frequentist properties.  

As further documentation of this point we note that 

recently two of the authors (Nelson and Meeden 2006) dem-

onstrated that Bayesian credible intervals based on the Polya 

posterior for the population median agree asymptotically 

with the standard Woodruff interval (Woodruff 1952). For 

another example consider estimating either the mean or the 

total of a subpopulation or domain when a simple random 

sample from the entire population is used. Here the number 

of units in the sample which belong to the domain is a 

random variable. Hence the mean of the units in the sample 

which fall into the domain is the ratio of two random 

variables. This estimate is more complicated than the mean 

of all the units in the sample. To get an estimate of variance 

for this estimator the usual frequentist method conditions on 

the number of units in the sample that are in the domain. 

However when estimating the domain total this conditional 

argument does not work and an unconditional method is 

used to get an estimate of variance. See for example 

Cochran (1976). Recently one of the authors (Meeden 2005) 

showed that inferences based on the Polya posterior agree 

with the usual frequentist answers. Hence the Polya 

posterior handles both situations with one simple theory. It 

is important to remember that conditioning in the frequentist 

approach can be done under simple random sampling but 

for more complex designs, conditioning is not generally 

feasible since the conditional randomization distribution is 

unknown. As a final example note that the usual frequentist 

two stage cluster sampling procedures can be been justified 

from an extension of the Polya posterior (Meeden 1999).  

The Polya posterior is similar in spirit to bootstrap 

methods for finite population sampling. Both methods use a 

type of exchangeability argument to generate pseudo-

versions of the population. The basic idea for the bootstrap 

is found in Gross (1980). Suppose we have a simple random 

sample of size ( )n s  from the population and suppose 

( )N n s m/ =  is an integer. Given the sample we create a 

good guess for the population by combining m  replicates of 

the sample. We then take repeated random samples of size 

( )n s  from this created population to study the behavior of 

the estimator of interest. The asymptotic properties of 

estimators can also be studied (see Booth, Bulter and Hall 

1994 for details). This is in contrast to the Polya posterior 

which for a fixed sample generates complete versions of the 

population and examines the distribution of the parameter of 

interest in the population rather than properties of the 

estimator for the parameter. For the given population 

quantity of interest the properties of its estimator derive 

directly from this predictive distribution for the population 

values.  

The Polya posterior is the Bayesian bootstrap of Rubin 

(1981) applied to finite population sampling. The original 

Bayesian bootstrap applies to a random sample from an 

infinite population. Rubin showed that the bootstrap and 

Bayesian bootstrap are operationally very similar. The same 

type of analogy holds for the finite population setup. To 

study the variability of an estimator each repeatedly assigns 

random weights to the units in the sample. The logic for 

assigning the weights are different in the two cases as well 

as their theoretical justifications. The bootstrap has an 

asymptotic justification under repeated random sampling. 

The Polya posterior has a decision theoretic justification 

based on its stepwise Bayes nature (Ghosh and Meeden 

1997).  

Rather than generating a complete copy of the population 

it is often more efficient to use a well known approximation 
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to the Polya posterior. Assume that the sampling fraction f  

is small. For 1 ( )j … n s= , ,  let jp  be the proportion of 

units in a complete simulated copy of the entire population 

which take on the value .jy  Then, under the Polya 

posterior, 1 ( )( )n sp p … p= , ,  has approximately a Dirichlet 

distribution with a parameter vector of all ones, i.e., it is 

uniform on the ( ) 1n s −  dimensional simplex, where 
( )
1 1.n s

j jp=∑ =  This approach will be very useful when we 

consider the constrained Polya posterior.  
 

3. The constrained Polya posterior 
 
3.1 The basic idea  
In many situations, in addition to the variable of interest, 

,y  the sampler has in hand auxiliary variables, ,x  for which 

prior information is available. For example, the population 

mean, ,xµ  of x  could be known. Given a unit in a random 

sample we observe its pair of values ( ).y x,  Following our 

earlier notation we denote the sample by  

1 1 ( ) ( )
( ( ) ) ( {( ) ( )}).

n s n ss i i i iz s y x s y x … y x= , , = , , , , ,  

In this situation the regression estimator is often used 

when estimating the population mean. How should the 

Polya posterior be adjusted to take into account the fact that 

the population mean of x  is known? The simple answer is 

to constrain the predictive distribution to put mass only on 

populations consistent with the prior information. In 

practice, we would only generate completed copies of the 

population consistent with the known prior information. To 

see how this can be done we consider the approximate form 

of the Polya posterior described at the end of the previous 

section.  

For 1, , ( )j … n s=  let jp  be the proportion of units in a 

completed copy of the population that have the value 

( ).
j ji iy x,  Rather than using the uniform distribution for 

1 ( )( )n sp p … p= , ,  over the simplex to generate simulated 

copies of the population we should use the uniform 

distribution restricted to the subset of the simplex satisfying  

( )

1

.
j

n s

j i x
j

p x
=

= µ∑  (1) 

Before describing how we can generate vectors of p  

from this constrained Polya posterior we consider how the 

resulting estimator is related to the regression estimator.  

Numerous simulation results (not presented here) show 

that the constrained Polya posterior behaves very much like 

the regression estimator under simple random sampling. 

The following simple argument shows why these two point 

estimates should often agree even though the Polya 

posterior makes no assumptions about the relationship 

between y  and .x  

Suppose in the population i i iy a bx= + + ε  where iε  
is a random error with expectation zero. Let X  be the 

known population mean of .x  Then given a sample and 

ip ’s satisfying i s i ip x X∈∑ =  we have  

( )

ˆ ˆ

ˆ( )

i i i i i i i

i s i s i s i s

ss

ss

E p y aE p bE p x E p e

a bX

b bXy x

b Xy x

∈ ∈ ∈ ∈

     = + +     
     

+

− +

= + −

∑ ∑ ∑ ∑

≐

≐

 

where b̂  is the least squares estimate of .b  Here the sample 

values are fixed and the ip ’s and ie ’s are random and the 

expectation of the ip ’s is with respect to the constrained 

Polya posterior. The first approximation follows since under 

simple random sampling we expect to see balanced samples 

on the average and the ip ’s and ie ’s to be roughly 

independent.  
 
3.2 Linear constraints and the Polya posterior 
 
Prior information involving auxiliary variables can arise 

in many ways. We have already discussed the case where 

the population mean of an auxiliary variable is known. 

Another case is knowing a population median. More gen-

erally one might only know that a population mean or 

median belongs to some interval of real numbers. Although 

such cases are little discussed in the usual design based 

literature they seem quite realistic. Another case is where a 

pair of auxiliary variables describe a two way table where 

each unit must belong to one of the cells and the population 

row and column totals for the numbers falling into each cell 

are known. Before describing the constrained Polya 

posterior approach to such problems we need to mention a 

minor technical point.  

Suppose the population mean of the auxiliary variable x  

is known to equal ( ).xµ  There will be samples where the 

value of x  is less than ( )xµ  for each unit in the sample. In 

such cases it would be impossible to use the constrained 

Polya posterior. But as a practical matter this will hardly 

ever happen. We will always assume that the sample we are 

considering is “consistent” with the prior information. This 

is explained in more detail just below. In our simulation 

studies we always reject a sample which is not consistent 

and select another. Again, in most cases, the probability of 

having to reject a sample is very small.  

Each of our examples of prior information can be 

represented by one or more linear equality or inequality 

constraints. We have seen that knowing the population 

mean yields one linear equality constraint. If one knows that 

the population mean falls in some interval this yields two 
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linear inequality constraints. We next develop some notation 

that will allow us to consider a variety of situations where 

prior information can be described using linear equality and 

inequality constraints.  

We assume that in addition to the characteristic of 

interest y  the population has a set of auxiliary variables 
1 2 .mx x … x, , ,  For unit i  let  

1 2( ) ( )m

i i i i i iy x y x x … x, = , , , ,  

be the vector of values for y  and the auxiliary variables. 

We assume that for any unit in the sample this vector of 

values is observed. We assume the prior information about 

the population can be expressed through a set of weighted 

linear equality and inequality constraints on the distinct 

auxiliary values in the population with weights corre-

sponding to the proportions of the population taking these 

individual distinct values. We illustrate this issue more 

precisely by explaining how we translate this prior infor-

mation about the population to the observed sample values 

so that we can construct pseudo-versions of the population 

consistent with the prior information.  

Let s  be a sample and, for 1 2 ( ),j … n s= , , ,  let 

( )
j ji iy x,  be the observed values which for simplicity we 

assume are distinct. Let 1 ( )( )n sp p … p= , ,  be the 

proportion of units which are assigned the value ( )
j ji iy x,  in 

a simulated complete copy of the population. Any linear 

constraint on the population values of an auxiliary variable 

will translate in an obvious way to a linear constraint on 

these simulated values. For example, if the population mean 

of 1x  is known to be less than or equal to some value, say 

1,b  then for the simulated population this becomes the 

constraint  

( )
1

1
1

.
j

n s

j i
j

p x b
=

≤∑  

If the population median of 2x  is known to be equal to 

2b  then the constraint for the simulated population becomes  

( )

1

0 5
n s

j j
j

p w
=

= .∑  

where 1jw =  if 2

2ji
x b≤  and it is zero otherwise. If the 

population mean of 2x  is less than or equal to the 

population mean of 3x  then the simulated population 

constraint becomes  

( )
2 3

1

( ) 0.
j j

n s

j i i
j

p x x
=

− ≤∑  

Hence, given a family of population constraints based on 

prior information and a sample we will be able to represent 

the corresponding constraints on the simulated p  by two 

systems of equations  

1 1sA p b, =  (2) 

2 2sA p b, ≤  (3) 

where 1 sA ,  and 2 sA ,  are 1 ( )m n s×  and 2 ( )m n s×  matrices 

and 1b  and 2b  are vectors of the appropriate dimensions. 

This generalizes the argument leading to equation 1.  

We assume the sample is such that the subset of the 

simplex it defines by equations 2 and 3 is non-empty. For 

such a sample the asymptotic approximation to the con-

strained Polya posterior puts a uniform distribution over this 

subset of the simplex. Before addressing the issue of 

simulation from this distribution we note that it has a 

theoretical justification. It can be given a stepwise Bayes 

justification which guarantees that it will yield admissible 

procedures. Details are given in the appendix.  
 
3.3 Computation  
Let P  denote the subset of the simplex which is defined 

by equations 2 and 3. P  is a non-full dimension polytope. 

We would like to generate independent observations from 

the uniform distribution over .P  Unfortunately we do not 

know how to do this. Instead, we use Markov chain Monte 

Carlo (MCMC) methods to generate dependent samples.  

In particular we will use the Metropolis-Hastings 

algorithm which depends on using a Markov chain to 

generate a dependent sequence of random values for 

.p P∈  The process works as follows. We begin by finding 

a starting point in 0p  in the relative interior of .P  This is 

Step 1 below. Next we choose a random direction d  in .P  

This is a bit tricky because the dimension of P  is strictly 

less than ( ) 1.n s −  This is accomplished in Steps 2 and 3 

below. Next we find the line segment which is the 

intersection of the line passing through 0p  in direction d  

with .P  This is Step 4 below. Next we choose a point at 

random from the uniform distribution over this line 

segment. This is the first observation in our Markov chain. 

We then repeat the process with this point playing the role 

of 0p  to get a second random point. Letting this second 

random point play the role of 0p  we get a third and so on. 

More formally our algorithm is:   
Step 1. Choose an initial positive probability vector 0p  

such that 1 0 1sA p b, =  and 2 0 2sA p b, <  and set 

0.i =    
Step 2. Generate a random direction id  uniformly 

distributed over the unit sphere in .nR   
Step 3. Let id ∗  be the normalized projection of id  onto the 

null space of 1 .sA ,   
Step 4. Find the line segment { }i i iL R p d P∗= α∈ | +α ∈  

and generate iα  uniformly over the line segment.   
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Step 5. Set 1i i i ip p d ∗
+ = +α  and 1i i= +  and go back to 

step 2.  

 

At first glance it might not be clear what role the 

constraints are playing in this process. They are there 

however through the definition of .P  The Markov chain 

generated in this way converges in distribution to the 

uniform distribution over the polytope. The convergence 

result of such mixing algorithms was proven by Smith 

(1984). If we wish to approximate the expected value of 

some function defined on P  then the average of the 

function computed at the simulated values converges to its 

actual value. This allows one to compute point estimates of 

population parameters. Finding the 0.95 Bayesian credible 

interval approximately is more difficult.  

One possibility is to run the chain for a long time; for 

example, we may generate 4.1 million values, throw away 

the first 100,000 values, and find the 0.025 and 0.975 

quantiles of the remaining values. These two numbers will 

form our approximate 0.95 credible interval. In this 

manuscript we will only consider sample sizes of less than 

100. For such sample sizes we have found that chains of a 

few million suffice.  

How fast a chain mixes can depend on the constraints 

and the parameter being estimated. It seems to take longer to 

get good mixing when estimating the median than when 

estimating the mean. This is not surprising when one recalls 

that in standard bootstrap methods many more bootstrap 

samples are required when estimating quantiles rather than 

means. See for example Efron and Tibshirani (1993).  

Another approach which can work well is to run the 

chain for a long time and then just use every thm  point 

where m  is a large integer. Although this is inefficient it 

can give good answers when finding a 0.95 credible interval 

for the median.  

 
4. Applications 

 
In this section we show how various types of partial 

information about auxiliary variables can be incorporated in 

the estimation of the parameters when the constrained Polya 

posterior is employed. In many instances, the prior 

information used in the constrained Polya posterior 

estimation cannot be utilized by the standard frequentist 

methods.  
 
4.1 Stratification  
Stratification is a type of prior information which is 

commonly used in finite population sampling. We note that 

the usual stratified estimator can be thought of as arising 

from independent Polya posteriors within each stratum. 

Details can be found in Vardeman and Meeden (1984). 

When, in addition to stratification, an auxiliary variable is 

present a good estimate of the population mean can be 

found by combining the estimates obtained from the 

regression estimator within each stratum. For details, see 

Cochran (1976). If only the population mean of the auxiliary 

variable is known then under standard approaches it is 

difficult to combine this information with stratification 

unless a common model is assumed across strata. The 

constrained Polya can incorporate both types of information 

which can lead to improved estimates yet it does not require 

the common model assumption.  

To demonstrate, we constructed a stratified population of 

size 900 consisting of three strata. The strata sizes were 300, 

200 and 400. There were two auxiliary variables, say 1x  and 

2.x  In stratum one the 1 ix , ’s were a random sample from a 

gamma (10 1),  distribution and the 2 ix , ’s were a random 

sample from a gamma (2 1),  distribution. In the second 

stratum the 1 ix , ’s and the 2 ix , ’s were generated by the 

gamma (15 1),  and the gamma (7 1),  distributions respect-

tively. In the third stratum the 1 ix , ’s and the 2 ix , ’s were 

generate by the gamma (5 1),  and the gamma (3 1),  distri-

butions respectively. The characteristic of interest for the 

population was generated as follows:   
stratum 1: 1 21i i i iy x x= + + ε  

stratum 2: 1 1 23i i i i iy x x x= + + + ε  

stratum 3: 2 1 22i i i i iy x x x= + + + ε  
 
where in stratum one the iε ’s were normal(0 1),,  while in 

stratum two they were 2normal (0 1 5 ),, .  and in stratum three 

they were 2normal (0 3 5 )., .  All the iε ’s were independent.  
In addition to the strata sizes we assumed that the 

population median of 1x  and the population mean of 2x  

were known. We generated 500 random samples according 

to our sampling plan drawing 75 units such that 25 units 

were in the first stratum, 20 units were in the second stratum 

and 35 units were in the third stratum. For each sample we 

computed the sample mean, the usual stratified estimate 

which is the sum of the sample means within each stratum 

adjusted for the size of all strata, the constrained Polya 

estimate, and the corresponding 95% confidence intervals 

and 0.95 credible intervals for these estimates.  

The results of the simulations are given in Table 1. From 

the table, we see that the constrained Polya estimator on 

average agrees with the usual stratified estimator and is 

essentially unbiased. But its average absolute error is much 

smaller than the average errors of the other two. This is to be 

expected since the more information an estimator uses the 

better it should perform and the constrained Polya estimates 

are using information from the auxiliary variables that is 

ignored by the estimates which just use stratification. Note 

that the constrained Polya made no assumptions about how 

y  and 1x  and 2x  were related. Furthermore it is not clear 
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how standard methods could make use of knowing the 

population median of 1x  and the population mean of 2.x  If 

just information about means is available then the empirical 

likelihood based methods of Chen and Sitter (1999) and 

Zhong and Rao (2000) could be used. The results clearly 

show that the constrained Polya posterior is utilizing this 

additional information in a sensible manner.  
 
Table 1 

Simulation results for the stratified example where the median 
of the first auxiliary variable and the mean of the second are 
known 
 

Method point estimate 95% confidence or credible intervals 

 Ave. of 

estimate 

Ave. of 

absolute 

error 

Ave. of 

lower bound 

Ave. 

length 

Freq. of 

coverage 

Meanest 47.978 4.821 36.44 23.09 1.000 

Strataest 43.395 2.072 38.22 10.35 0.942 

Polyaest 43.355 1.516 40.19 6.75 0.936 

 

In this example the constrained Polya estimates were 

obtained using Markov chains of length 4,000,000 after the 

initial 100,000 points were discarded.  
 
4.2 Categorical auxiliary variables  
Assume that the elements of a population of known size 

N  are associated with the elements of k  categorical 

auxiliary variables. For simplicity, we consider 2k =  but 

the theory applies to more than two categorical variables. If 

one auxiliary variable takes on r  distinct values and the 

other takes on c  distinct values they allow the elements of 

the population to be classified into a two-way table with 

r c×  cells. Let ijN  be the number of elements in the 

population that belong to the ij -cell, for i  in {1 }r, ...,  and 

j  in {1 },c, ...,  then 1 1 .r c
i j ijN N= =∑ ∑ =  If the ijN ’s are 

known and s  is a random sample with ijn  elements from 

the ij -cell then a good estimate of the population mean is 

given by 

1 1
,

r c sij

iji j

N
y

N= =∑ ∑  

where 
s

ijy  is the mean of the ijn  elements from the ij -cell 

in the sample. This is the usual stratified estimator where the 

cells in the table are consider the strata.  

A harder problem is the estimation of the population 

mean when the counts, ijN ’s, are not known but the 

marginal counts are known. Let 1
c
ji ijN N=∑. =  denote the 

marginal row counts, for i  in {1 }r, ...,  and 1
r
ij ijN N=∑. =  

denote the marginal column counts, for j  in {1 }.c, ...,  In 

such cases, one way of estimating the population mean is 

the frequentist procedure called calibration or raking. In this 

procedure, given a sample ,s  the estimator is given by 

,ˆ kk s kyw∈∑  where the ˆ kw ’s are not the design weights but 

are new weights assigned to the units in the sample. A good 

set of weights needs to satisfy two conditions. The first is 

that the weights must preserve the known marginal counts, 

for example, ( ) ˆ kk s j jNw∈ ⋅,∑ = .  where ( )s j⋅,  is the portion 

of the sample falling in the thj  column of the two-way 

table. The second is that the weights should in some sense 

be close to the sampling design weights 1 ,k/π  where 

( ).k P k sπ = ∈  Depending on the function used to measure 

the distance different calibration estimators can be obtained. 

Although this is a sensible idea, selecting the right distance 

measure and then getting a sensible estimate of variance for 

the resulting estimator has no standard frequentist answer. 

For details, see Deville and Särndal (1992).  

The Polya posterior gives an alternative approach to this 

problem since the information provided by the known 

marginal totals determines a set of linear constraints on the 

random weights it assigns to the units in the sample. If there 

are continuous auxiliary variables for which we have prior 

information then additional constraints can be added. To see 

how this could work in practice we considered a simple 

example with two dichotomous variables so each unit can 

be classified into a cell of a 2 2×  table, together with a 

third continuous auxiliary characteristic. We assumed four 

different levels of prior information.   
1. The marginal counts for the 2-way table are known.  

2. The marginal counts and the mean of the continuous 

auxiliary variable are known.  

3. The marginal counts and the median of the 

continuous auxiliary variable are known.  

4. The marginal counts are known and the mean of the 

continuous auxiliary variable is known to lie between 

two bounds. We chose the 45
th
 and 65

th
 quantiles of 

its population of values to specify these bounds.   
For each case we formed a population using the 

following model where all the random variables are 

independent.  
 
Cell 1,1 gamma (8 1),ix ,∼

2normal(0 7 )iε ,∼  and iy =  
25 3 i ix+ + ε  for i  in {1 150}., ...,   

Cell 1,2 gamma (10 1),ix ,∼
2normal(0 7 )iε ,∼  and iy =  

25 3 i ix+ + ε  for i  in {1 350}., ...,   
Cell 2,1 gamma (6 1),ix ,∼

2normal(0 4 )iε ,∼  and iy =  
25 2 i ix+ + ε  for i  in {1 250}., ...,   

Cell 2,2 gamma (4 1),ix ,∼
2normal(0 4 )iε ,∼  and iy =  

25 2 i ix+ + ε  for i  in {1 250}., ...,  
 
For each of the cases we generated a population and took 

500 random samples of size 80 with 20 units from each cell. 

For each sample we computed the sample mean and the 

stratification estimate, assuming that the true population cell 

counts were known, and their corresponding 95% confi-

dence intervals. We also computed the constrained Polya 
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estimates along with their 0.95 credible intervals. The 

constrained Polya estimates were obtained from the last 

4,000,000 points of a Markov chain of size 4,100,000. The 

results of the simulations are given in Tables 2 through 5. 

The results in the tables show that the constrained Polya 

estimates based on known marginal counts and a known 

mean, median or known interval about the mean are better 

than the strata estimates based on known cell counts. The 

stratified estimates are better than the constrained Polya 

posterior only when the constrained Polya posterior only 

makes use of the known marginal counts.  
 
Table 2 
Simulation results for the categorical example when just the 

marginal cell counts are assumed known 
 

Method point estimate 95% confidence or credible intervals 

 Ave. of 

estimate 

Ave. of 

absolute 

error 

Ave. of 

lower bound 

Ave. 

length 

Freq. of 

coverage 

Meanest 43.805  0.919  41.107  5.396  0.976  

Strataest 44.355  0.846  42.259  4.191  0.940  

Polyaest 43.909  0.896  41.863  4.197  0.922  

 
Table 3 
Simulation results for the categorical example when the 

marginal cell counts and the mean of the auxiliary variable are 
assumed known 
 

Method point estimate 95% confidence or credible intervals 

 Ave. of 

estimate 

Ave. of 

absolute 

error 

Ave. of 

lower bound 

Ave. 

length 

Freq. of 

coverage 

Meanest 43.804  0.922  41.063  5.482  0.964  

Strataest 44.399  0.862  42.272  4.256  0.942  

Polyaest 44.506  0.510  43.257  2.497  0.960  

 
Table 4 

Simulation results for the categorical example when the 
marginal cell counts and the mean of the auxiliary variable are 
assumed known 
 

Method point estimate 95% confidence or credible intervals 

 Ave. of 

estimate 

Ave. of 

absolute 

error 

Ave. of 

lower bound 

Ave. 

length 

Freq. of 

coverage 

Meanest 43.439  0.877  40.783  5.312  0.986  

Strataest 43.927  0.884  41.804  4.244  0.940  

Polyaest 43.784  0.785  42.032  3.640  0.920  

 
Table 5 
Simulation results for the categorical example when the 
marginal cell counts are assumed known and the mean of the 

auxiliary variable is known to lie between its known 45th and 
65th quantiles 
 

Method point estimate 95% confidence or credible intervals 

 Ave. of 

estimate 

Ave. of 

absolute 

error 

Ave. of 

lower bound 

Ave. 

length 

Freq. of 

coverage 

Meanest 43.463  0.840  40.789  5.348  0.978  

Strataest 43.948  0.865  41.825  4.245  0.948  

Polyaest 43.519  0.829  41.555  4.029  0.938  

 
 
 

4.3 An example  
In this section we consider data from the Veterans Health 

Administration. In 1998 the VA Upper Midwest Health 

Care Network administered a functional status survey of the 

veteran users of the VA facilities within the network (Singh, 

Borowsky, Nugent, Murdoch, Zhao, Nelson, Petzel and 

Nichol 2005). Veterans eligible for this survey were those 

with any outpatient encounter or inpatient stay between 

October 1997 and March 1998 at any one of the five VA 

facilities in the network. In addition to basic demographic 

measures, such as age and sex, the primary component of 

the survey was the SF36-V (Kazis, Miller, Clark, Skinner, 

Lee, Rogers, Spiro, Payne, Fincke, Selim and Linzer 1998). 

This health-related quality of life survey instrument consists 

of eight sub-scales of physical functioning, role limitations 

due to physical problems, bodily pain, general health, 

energy/vitality, social functioning, role limitations due to 

emotional problems, and mental health. These scales are 

combined to form physical (PCS) and mental (MCS) 

component summary scores. Larger scores represent better 

health status. VHA administrative data measuring major 

comorbid conditions present in the year before the survey 

were also collected.  

From the population of one of the five facilities we 

selected a subpopulation comprising all of the women and a 

random subset of the men to form a population of 2,500 

individuals. For purposes of this example the number of 

comorbidities was categorized into three categories to 

represent measures of good, average and poor health. We 

then selected 200 stratified random samples of size 100 

from the population. The strata sizes along with the sample 

sizes are given in table 6. Our sampling plan over sampled 

the women. Such unbalanced sampling plans can often 

occur in practice.  
 

Table 6  

The strata sizes along with the 
sample sizes for the Veterans 
Administration data 

 

 Good  Average  Poor  

F  353(20)  155(10)  117(10)  

M  890(30)  493(20)  492(10)  

 
We compared three different estimators of the mean PCS 

score for this population of 2,500; the sample mean which 

ignores the stratification, the usual stratified estimator which 

assume the strata sizes are known, and a constrained Polya 

posterior estimator which assumes that the marginal row 

and column totals of table 6 are known along with the 

average age of the individuals in the population. The 

population correlation between PCS  and age is -0.22. The 

correlations of PCS  with gender and with categorized 

comorbidity-based state of health are -0.13 and -0.28. From 
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the results in table 7 we see that the constrained Polya 

estimator performs about the same as the stratified estimator 

and both are a bit better than the sample mean. To compute 

the constrained Polya estimator we generated Markov 

Chains of length 7,000,000.  
 
Table 7 
Results for estimating PCS in the Veterans Administration 
data. The constrained Polya estimator assumes the row and 

column totals are know along with the average age of the 
individuals in the population 
 

Method point estimate 95% confidence or credible intervals 

 Ave. of 

estimate 

Ave. of 

absolute 

error 

Ave. of 

lower bound 

Ave. 

length 

Freq. of 

coverage 

Meanest 37.235  1.040  34.907  4.650  0.938  

Strataest 36.648  0.925  34.322  4.651  0.948  

Polyaest 36.644  0.925  34.344  4.605  0.958  

 
5. Relation to empirical likelihood methods 

 
In this section we review some frequentist methods for 

problems where constraints are involved and discuss their 

relationship to the constrained Polya posterior.  

Chen and Qin (1993) considered an empirical likelihood 

approach to estimation in survey sampling when prior 

information about an auxiliary characteristic is available. To 

construct estimators after the sample has been observed the 

units in the sample are weighted to reflect the prior 

information. For example, suppose that the sample mean is 

less than the known population mean of the x  values. Then 

positive weights, which sum to one, are selected for the 

sampled units such that the mean of the sx  values under the 

probability distribution given by the weights satisfies the 

known constraint. Although these weights can not be found 

explicitly they are easy to compute. When estimating the 

population mean of y  the resulting estimator was first 

noted in Hartley and Rao (1968) and shown to be 

asymptotically equivalent to the regression estimator. If the 

population median of x  is known then the units in the 

sample less than the known population median are given 

equal weights which sum to 0.5 and similarly for the 

sampled units with x  values larger than the known 

population median. When estimating the population median 

the resulting estimator is one proposed by Kuk and Mak 

(1989).  

An advantage of the constrained Polya posterior, and 

more generally of a Bayesian approach, is that it is 

straightforward to estimate many population quantities 

besides the mean without developing any new theory or 

methods. Given a simulated copy of the entire population 

which satisfies the constraints one just calculates the 

population parameter of interest. Then one uses such 

simulated values just as when one is estimating the mean.  

To compare the Chen and Qin estimator of the pop-

ulation median of y  with the constrained Polya posterior 

estimator when the population mean of x  is known eight 

different populations were constructed. In half of the 

populations one would expect the regression estimator to do 

well in estimating the population mean while the remaining 

half did not satisfy the usual super-population model 

assumptions associated with the regression estimator. For 

each population 500 random samples of sizes 30 and 50 

were taken, subject to satisfying the constraint that the 

sample contained values for x  greater and less than the 

known mean. In all cases the two estimators using the prior 

information performed better than the sample median. 

These results were consistent with the simulation results of 

Chen and Qin. We calculated the average absolute error for 

the two estimators using the mean constraint. In each of the 

16 different sets of simulations we then calculated the ratio 

of the constrained Polya posterior absolute error to that of 

the estimator of Chen and Qin. The range of these 16 values 

was 0.85 to 1.00 with a mean of 0.91. So in terms of 

absolute error, the constrained Polya posterior performed 

about 10% better, on average, than the estimator of Chen 

and Qin.  

Suppose now that the population median of x  is known. 

To simplify matters suppose that none of the actual values 

are equal to the population median of .x  Let ln  be the 

number of units in the sample whose x  values are less than 

the known population median of .x  Then ( )u ln n s n= −  is 

the number of units in the sample which are on the other 

side of the known median. Let 1( )
ll np p … p= , ,  and 

1( )
uu np p … p= , ,  be two probability vectors. Intuitively, a 

sensible posterior distribution given the sample and the 

know population median would be for lp  and up  to be 

independent Dirichlet distributions with all parameters equal 

to one with each of them assigned a weight of one half so 

that their total sum is one. It follows from the Theorem 

proved in the appendix that under our sampling plan these 

posteriors are stepwise Bayes. Note that under these 

posteriors the expected values of the proportions assigned to 

each unit in the sample are the weights assigned to the 

sample by Chen and Qin. This proves the admissibility of 

their estimator of the population median and consequently 

of Kuk and Mak’s. Simulation results show that this 

constrained Polya posterior’s 0.95 credible intervals cover 

approximately 95% of the time except in one special case. If 

the sample size is small and y  and x  are highly correlated 

then the medians for the simulated populations under the 

constrained Polya posterior do not vary enough and the 

resulting intervals are too short and their coverage frequency 

may be considerable less than 95%.  

This close relation between the empirical likelihood 

approach and the Polya posterior is not surprising when one 
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notes that in the unconstrained case the sequence of priors 

leading to the Polya posterior can be used to prove the 

admissibility of the maximum likelihood estimator for the 

probability vector of a multinomial distribution.  

 
6. Other sampling designs  

All the simulation results presented thus far have used 

(stratified) simple random sampling without replacement 

(SRS) as the sampling design. In an earlier version of the 

manuscript a referee wanted to know how much the 

behavior of estimators based on the constrained Polya 

posterior depended on using this design. The answer is there 

is some dependence but not as much as you might initially 

believe.  

We have seen under SRS that the constrained Polya 

posterior (CPP) estimator behaves much like the regression 

estimator (REG). Formally, the regression estimator 

depends only on knowing the population mean of the 

auxiliary variable. Its properties are usually studied under 

simple random sampling and the estimator of its variance is 

only valid for large samples.  

For a general design the Horvitz-Thompson estimator 

(HT) is often used. It is unbiased but computing the exact 

inclusion probabilities can be difficult. This is true, for 

example, if the sampling is done with selection probability 

proportional to the size for an auxiliary variable ,x  say 

PPS( x ). In practice one simply assumes that the inclusion 

probability of a unit is proportional to its value of x  and the 
resulting estimator will be approximately unbiased.  

We implemented several simulation studies comparing 

these three methods for estimating a population total. For 

brevity, we present the results of two of the studies. In these 

studies we constructed two populations of size 500. The 

auxiliary variable is the same in both populations and is a 

random sample from a gamma distribution with shape 

parameter 5 and scale parameter 1. Plots of the two 

populations are given in figure 1. We are not suggesting that 

in practice one would be likely to use the regression 

estimator in the second population. It is presented here 

simply to illustrate what can happen.  

For each population we took 400 random samples of size 

30 and 60 under two different sampling designs. They were 

PPS( x ) and PPS(1 ( 5)x/ + ). We assumed that the 

population mean of x  was known. For each sample we 

calculated the three estimates of the population total. The 

results from the first design are given in table 8. We see that 

CPP is the clear winner. The HT interval estimator’s 

observed frequency of coverage is closest to the nominal 

level of 0.95. But the interval length is ridiculously long. 

This occurs because the reciprocals of the inclusion 

probabilities vary greatly. For the first population, which is 

roughly linear, REG and CPP behave similarly. However, 

for the second population, CPP performs better than REG. 

It’s only shortcoming here is that it under covers with the 

smaller sample size. Under PPS(1 ( 5)x/ + ) the story is 

much the same although the difference between REG and 

CPP is much smaller for the second population. For 

example, when the sample size is 30 the average absolute 

error and frequency of coverage for REG is 131.9 and 0.875 

compared to 124.3 and 0.908 for CPP. When the sample 

size is 60 the numbers for REG are 88.4 and 0.905 

compared to 90.1 and 0.958 for CPP. The average length of 

their intervals are 384 and 560 respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1 Plots of the two populations used in the 

simulations in table 8. The correlations for the two 
populations are 0.47 and -0.22 and their totals are 
118,210 and 11,648.7 

 

 

For the second population we did a second set of 

simulations using the PPS( x ) design for sample sizes of 30 

and 60. This time we assumed that the population means of 

x  and 2x  are both known. We then compared the CPP 

estimator which incorporates constraints on both x  and 2x  

with the regression estimator which assumes a quadratic 

function of x  as the model. These estimators are denoted by 

CPP2 and REG2 in the table. At first glance it might seem 

surprising that the results for CPP and CPP2 are essentially 

the same. But upon reflection it is what one should expect. 

The constrained Polya is simulating full copies of the 

population that are “balanced” with respect to ,x  that is 

agree with its known population mean. The additional 

constraint that a simulated copy of the population must be 

“balanced” with respect to 2x  as well adds little 
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information. On the other hand with a sensible model the 

regression estimator can exploit the additional information. 

This results in an improved point estimator but its interval 

estimates still under cover.  

 
Table 8 
Simulating results for the two populations in 

figure 1 when estimating the population total. 
In each case they are based on 400 samples 
which were select using PPS( x ) as the design. 

Note abserr is the absolute value of the 
difference between the estimate and the true 
population total 
 

Method  Ave. of  Ave. of  Ave of  Freq. of  

 estimates abserr  length coverage  

For population 1 with total = 118,210.2  

for a sample size of 30  

HT  118,803.1  8,095.3  38,696.6  0.905  

REG  116,838.1  3,355.3  14,136.4  0.905  

CPP  117,515.7  3,277.3  14,330.7  0.905  

for a sample size of 60  

HT  119,139.2  5,395.6  28,233.3  0.952  

REG  117,041.4  2,213.2  9,561.0  0.910  

CPP  118,041.4  2,195.3  11,836.5  0.938  

For population 2 with total = 11,648.7  

for a sample size of 30  

HT  11,737.2  783.5  4,012.0  0.945  

REG  11,800.3  179.7  533.0  0.745  

CPP  11,689.9  122.4  535.4  0.900  

REG2  11,660.0  97.2  382.3  0.862  

CPP2  11,689.9  122.4  535.4  0.900  

CPPbd  11,683.2  116.5  537.0  0.918  

for a sample size of 60  

HT  11,774.2  564.8  2,908.2  0.955  

REG  11,795.8  155.2  373.1  0.635  

CPP  11,647.9  80.4  524.4  0.978  

REG2  11,663.1  66.7  266.2  0.895  

CPP2  11,651.2  88.4  523.6 0.962  

CPPbd  11,644.6  83.9  552.1  0.978  

 
 
For the second population we did a third set of 

simulations using PPS( x ) as the design for sample sizes of 

30 and 60. In this case we assumed that the population mean 

of x  was contained in the interval (4.45, 5.53). These are 

the 0.45 and 0.65 quantiles of the x  population. The mean 

of this population is 5.02. The results are in table 8 under the 

label CPPbd. We see that the results are very similar to 

those where the population mean of x  was assumed to be 

known.  

All three estimators are using the information contained 

in the auxiliary variable x  but the HT estimator is the only 

one that depends on knowing the sampling design. As we 

have noted, it is well known that Bayesian estimators do not 

use the design probabilities in their computation. In these 

examples we see that CPP is making effective use of the 

information contained in the auxiliary variable. In general, 

the Polya posterior and variations on the Polya posterior, 

like the Constrained Polya posterior, do not rely directly 

upon simple random sampling, stratified random sampling, 

or any other design. Their suitableness and their perfor-

mance are dependent upon the agreement of the structure 

underlying the population and the structure specified in the 

chosen predictive distribution.  

The basic idea underlying the CPP is that one should use 

the sample and the available auxiliary information to 

simulate complete representative copies of the population. 

In simple examples like those given above we see that its 

point estimator should have excellent frequentist properties 

for a wide class of designs and the performance of its 

interval estimator will be adequate if the sample size is not 

to small. Does this mean that it can automatically adjust 

“bad” samples to get good estimates? Not really since with a 

very bad sample, one that agrees poorly with the known 

prior information, two bad things can happen. First, 

extremely unbalance or biased samples will introduce some 

bias into the point estimate. Second, they will severely 

constrain the possible values of p  under the CPP and result 

in a posterior variance that is too small, which will lead to 

interval estimates that are too short and under cover the 

quantity of interest. In more complicated situations further 

study needs to done to discovery when the CPP can 

profitably be employed.  

 
7. Final remarks 

 
One problem with standard frequentist methods is that 

each different problem demands its own solution. Esti-

mating the population median of y  when the population 

mean of x  is known is a different problem than estimating 

the mean of y  when the mean of x  is known. Also, if the 

population mean of x  is not known exactly but is only 

known to belong to some interval of values then the 

standard frequentist methods cannot make use of this 

information. A strength of a Bayesian approach is that once 

you have a posterior distribution which sensibly combines 

the sample with the prior information inference can be done 

for many population parameters of interest simply by 

simulating completed copies of the population.  

Here we have argued that the constrained Polya posterior 

is a sensible method of introducing objective prior 

information about auxiliary variables into a noninformative 

Bayesian approach to finite population sampling. The 

resulting point estimators have a stepwise Bayes justi-

fication which guarantees their admissibility. Their 0.95 

credible intervals will usually be approximate 95% confi-

dence intervals and they give sensible answers for problems 

where there are no standard frequentist procedures avail-

able. This demonstrates an important strength of the Polya 

posterior. Once you can simulate sensible copies of the 
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entire population inference for a variety of problems 

becomes straightforward. On the downside, one needs to 

use MCMC methods for their calculation. All our compu-

tations were done in R (R Development Core Team 2005). 

Two of the authors have recently released an R package 

polyapost which makes it easy for others to use our 

methods. Here we have restricted ourselves to samples of 

less than 100. This was just a matter of convenience so we 

could do our simulations in a reasonable amount of time. In 

practice for a larger specific sample one just needs to run a 

longer chain. Then one can use some of the standard 

diagnostics to decide whether or not it seems to have 

converged.  

 
Appendix 

 

An admissibility proof 
 
The basic theoretical justification for point estimators 

arising from the Polya posterior is that are admissible. The 

proofs of admissibility use the stepwise Bayes nature of the 

Polya posterior. This section presents a proof for point 

estimators based on the constrained Polya posterior.  

In these stepwise Bayes arguments a finite sequence of 

disjoint subsets of the parameter space is selected, where the 

order is important. A different prior distribution is defined 

on each of the subsets. Then, the Bayes procedure is found 

for each sample point that receives positive probability 

under the first prior. Next, the Bayes procedure is found for 

each sample point which receives positive probability under 

the second prior and which was not considered under the 

first prior. Then, the third prior is considered and so on. For 

a particular sample point the value of the stepwise Bayes 

estimate is the value of the Bayes procedure from the step at 

which it was considered. It is the stepwise Bayes nature of 

the Polya posterior that explains its somewhat paradoxical 

properties. Given a sample, it behaves just like a proper 

Bayesian posterior but one never has to explicitly specify a 

prior distribution. For more details and discussion on these 

points see Ghosh and Meeden (1997).  

To prove the admissibility of the estimators arising from 

the Polya posterior for the parameter space [0 )N, ∞  the 

main part of the stepwise Bayes argument first assumes that 

the parameter space is ,NΛ  where Λ  is an arbitrary finite 
set of positive real numbers. Once admissibility has been 

demonstrated for such general ,Λ  admissibility for the 

parameter space [0 )N, ∞  follows easily. A similar argument 

will be used for the constrained Polya posterior.  

Dealing with constraints on finite populations introduces 

some technical problems which are difficult to handle. For 

this reason, we will suppose that the population is large 

enough compared to the sample size that the approximate 

form of the Polya posterior involving the Dirichlet 

distribution is appropriate. For simplicity we assume that the 

population U  is infinite.  

We assume that for all j  in ,U ( )j j iy X a, =  for some 

i  in {1 },k, ...,  where 1 ( 1)( )i i i ma a a += , ...,  are distinct 

vectors in 1mR +  and where k  can be very large. That is, the 

vectors ( )j jy X,  can take on only a finite number of 

values. If ip  is the proportion of ( )j jy X, ’s in the 

population which are equal to ,ia , for i  in {1 },k, ...,  then 

the population mean of Y  is 1 1.
k
i i ip a=∑  

We assume that there is prior information available about 

the auxiliary variables { }i i
jX x j U:= | ∈  for i  in 

{1 },m, ...,  which gives rise to linear equalities and 

inequalities involving the proportions p  of the form  

1 1A p b=  (4) 

2 2A p b≤  (5) 

where 1,A 2A  are 1m k×  and 2m k×  matrices and 1,b 2b  

vectors of appropriate dimensions. In this setting, for 

instance, we may want to estimate  

1

1

( )
k

i i

i

p p a
=

µ = ∑  

subject to the constraints in equations 4 and 5 and where 

1 1i k
i ip=
=∑ =  with 0,ip ≥  for all i  in {1 }.k, ...,  

Consider a sample s  of size n  which for notational 

convenience we will assume consists of n  distinct ia ’s. Let 

sa  denote this set of values. We then let 1 sA ,  and 2 sA ,  be 

the 1m n×  and 2m n×  matrices which are just 1A  and 2A  

restricted to the columns corresponding to the members of 

.sa  Let sp  be p  restricted to the members of .sa  Then the 

constraints on the population given in equations 4 and 5 

translate into the following constraints  

1 1s sA p b, =  (6) 

2 2s sA p b, ≤  (7) 

for the random weights assigned to members of the sample. 

That is, given a sample the constrained Polya posterior is 

just the uniform distribution over the subset of the simplex 

defined by equations 6 and 7.  

A technical difficulty when proving admissible under 

constraints is that even when the population satisfies the 

stated constraints it is always possible to get a sample which 

fails to satisfy them. There are several ways one can handle 

such cases. One possibility is to assume that the constraints 

are wrong and just ignore them. This tactic was used in 

Nelson and Meeden (1998). Another possibility is to use 

prior information to augment the sample so that it satisfies 

the constraints. This can be messy and your answer can 

depend strongly on how you adjust the sample. We will take 

a third approach here.  
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We will assume the sampling design is simple random 

sampling and that the our prior information must be correct. 

In such a situation it might make sense to reject any sample 

which does not satisfy the constraints since it is clearly an 

unrepresentative sample. More specifically, suppose we take 

a simple random sample of size n  from the population and 

observe all i
jx ’s in the sample. Let 1( )s s s

kp p p= , ...,  be 

the proportions of the possible vectors for the jx  that are 

observed in the sample. The element s

ip  is zero whenever 

the vector 2 ( 1)( )i i i ma a a += , ...,  does not appear in the 

sample. If sp  satisfies equations 6 and 7 we keep the 

sample, if not we discard it and try again. We will call this 

sampling plan constraint restricted random sampling. In 

practice, for typical constraints, it will almost never be 

necessary to discard a sample. Although this is a sampling 

plan that would never be used it is not a bad approximation 

to what is actually done.  

More formally, let iZ  be the number of ( )j jy X, ’s in 

the sample that equal ,ia  for i  in {1 },k, ...,  then 

1( )kZ Z, ...,  is 1Multinomial( )kn p p, , ...,  where the 

parameter values belong to  

1 1 1 2 2
1

( ) 1
.

and 0 {1 }

k

k i
i

i

p p A p b A p b p
P

p i k

=

 , ..., = , ≤ , = , 
:=  

 ≥ ∀ ∈ , ..., 

∑
 (8) 

For a given sample 1( )ks z … z= , ,  let  

{ and 0 whenever 0 for 1 }.s s

i iP p p P p p i … k:= | ∈ = = = , , (9) 

We see that we keep a sample if and only if sP  is not 

empty.  

Denote the 1k −  dimensional simplex by  

1

1

( ) 1 0 {1 } .
k

k i i

i

F p p p p i k
=

 
:= ,.., = , ≥ ∀ ∈ ,..., 

 
∑  

For 1i … k= , ,  let ie  denote the vertices of .F  The ie ’s 

are the unit vectors whose thi  value is 1 and is 0 elsewhere.  

Now P  is a convex polytope which is the intersection of 

F  with the space  

1 1 1 2 2{( ) }.kG p p A p b A p b:= , ..., | = , ≤  

A partition of the parameter space P  can be found in the 

following way. Let jF  denote the set of faces of dimension 

j  of the simplex ,F  0 1 1.j k= , ..., −  Then 0F  is the set 

of its vertices, jF  is the collection of the convex hulls of all 

combinations of 1j +  vertices, for 1 2j k= , ..., −  and 

1kF −  is the simplex .F  If int( )jF  is the set of the interiors 

of the faces of dimension ,j  for 1 1,j k= , ..., −  then 

0 1 1{ int( ) int( )}kF F F −, , ...,  determines a partition of the 

simplex .F  If 0 0G F G:= ∩  and int( )j jG F G:= ∩  for 

1 1j k= , ..., −  then 0 1 1{ }kG G G −, , ...,  is a partition of the 

parameter space .P  Note that some of jG ’s might be 

empty. The stages of the stepwise Bayes argument follow 

the nonempty members of the jG ’s.  

If Z  is the sample space of the counts 1( )kZ Z, ...,  then 

for p P∈  the distribution of the counts, say ( )Pf z p|  is 

1Multinomial( )kn p p, , ...,  when the sample size is .n  Let 

FP  be the restriction of the parameter space P  to ,F  where 

F  is any subset of P  and 
FPZ  be the restriction of the 

sample space Z  determined by .FP  

We are now ready to prove the admissibility of the 

constrained Polya posterior estimator of ( )pµ  over .P  

Suppose we are at the stage where we are considering ,jG  

for some 0.j ≥  Assume jG G F= ∩  for some subset is 

nonempty. There are two possible cases.   
Case 1. If the dimension of jG  is zero, i.e., it consists of one 

vector, say 0,p  then we take the prior that puts unit mass on 

this vector. The posterior also then puts unit mass on this 

vector  and  if  z   is  the  unique  member  of  
FPZ  then the 

Bayes estimator is 0( ) ( ( ) ) ( ).
PF

z E p z pπδ = µ | = µ   
Case 2. If the dimension of jG  is greater than zero then the 

distribution of 1( )kZ Z, ...,  restricted to 
FPZ  is  

( )
( ) .

( )F

PF

P
P

Pz Z

f z p
f z p

f z p
∈

|
| =

|∑
 

The prior we consider on FP  is  

{ 0}

( )
( )

PF

F

F i

Pz Z

P
ii p P p

f z p
p

p

∈

| ∈ , >

|
π ,

∑
∏

 

which can be normalized to be a proper prior since 

( )
PF

z Z Pf z p∈∑ |  can be written as { 0}( )
F ii p P p ig p p| ∈ >∏  

where ( )g p  is a bounded function of .p  With this prior, 

the posterior distribution is the Dirichlet density kernel 

restricted to ,FP  

1

{ 0}

( ) ( ) ( ) i

F F F

F i

z

P P P i

i p P p

f p z f z p p p
−

| ∈ , >

| ∝ | π ∝ .∏  

The Bayes estimator of ( )pµ  against ,
FPπ  where p  

belongs to ,FP  is ( ) ( ( ) )
PF

z E p zπδ = µ |  for all z  in 
FPZ . 

Hence, if we use the sequence of priors  

0 1 2 1
{{ } { } { } { }}

F F F FP F G P F G P F G P F Gγ −| ∈ | ∈ | ∈ | ∈π , π , π , ..., π ,  

ignoring the empty sets at each step, then the estimator ( )zδ  

defined by  

( ) ( ) for 1 1
P FF

P iz z z Z F G iπδ = δ ∈ , ∈ , = , ..., γ − ,  (10) 

where kγ =  if k n<  and n  if ,k n≥  is an admissible 

estimator for ( ).pµ  This concludes the proof of the 

following theorem.   
Theorem 1. Under the constraint restricted random 

sampling plan defined by equations 2 and 3 with parameter 
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space defined in equation 8 the constrained Polya posterior 

estimator given in equation 10 for estimating the population 

mean is stepwise Bayes and hence admissible under 

squared error loss.  
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Optimal sample allocation for design-consistent regression in a cancer 
services survey when design variables are known for aggregates 

Alan M. Zaslavsky, Hui Zheng and John Adams 1 

Abstract 

We consider optimal sampling rates in element-sampling designs when the anticipated analysis is survey-weighted linear 

regression and the estimands of interest are linear combinations of regression coefficients from one or more models. 

Methods are first developed assuming that exact design information is available in the sampling frame and then generalized 

to situations in which some design variables are available only as aggregates for groups of potential subjects, or from 

inaccurate or old data. We also consider design for estimation of combinations of coefficients from more than one model. A 

further generalization allows for flexible combinations of coefficients chosen to improve estimation of one effect while 

controlling for another. Potential applications include estimation of means for several sets of overlapping domains, or 

improving estimates for subpopulations such as minority races by disproportionate sampling of geographic areas. In the 

motivating problem of designing a survey on care received by cancer patients (the CanCORS study), potential design 

information included block-level census data on race/ethnicity and poverty as well as individual-level data. In one study site, 

an unequal-probability sampling design using the subjectss residential addresses and census data would have reduced the 

variance of the estimator of an income effect by 25%, or by 38% if the subjects’ races were also known. With flexible 

weighting of the income contrasts by race, the variance of the estimator would be reduced by 26% using residential 

addresses alone and by 52% using addresses and races. Our methods would be useful in studies in which geographic 

oversampling by race-ethnicity or socioeconomic characteristics is considered, or in any study in which characteristics 

available in sampling frames are measured with error. 
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Street, Santa Monica, CA 90401. 
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1. Introduction 

 
A sample survey is to be designed to obtain data that will 

be used to estimate coefficients of one or more regression 

models. Information about the population distribution of the 

covariates is available, and also some covariate information 

is available in the sampling frame. How can this information 

be used to make the survey design more efficient? How 

much can variance be reduced with such a design, relative to 

simple random sampling, and how is that answer affected if 

the frame only provides covariate distributions aggregated 

over groups, but not for individual subjects? 

These questions were motivated by design of a survey of 

health care processes (such as provision of chemotherapy 

when appropriate) and outcomes (such as quality of life 

after treatment) for a large sample of cancer patients at 

seven sites in the United States, conducted as part of the 

CanCORS (Cancer Care Outcomes Research and Surveil-

lance) study (Ayanian, Chrischilles, Wallace, Fletcher, 

Fouad, Kiefe, Harrington, Weeks, Kahn, Malin, Lipscomb, 

Potosky, Provenzale, Sandler, Vanryn and West 2004). 

Among the primary objectives of this study was to estimate 

joint effects of race and income on these measures, using 

regression models that include both of these patient 

characteristics. However, only limited data were available 

when patients were sampled for enrollment in the study.  

Prior experience suggested that race and residential address 

might be determined with reasonable accuracy at the time 

cases were ascertained for possible study recruitment, but 

income could not be determined until the subject was 

recruited and interviewed, and could not practically be 

collected in a screening interview. We undertook the 

research reported here to determine how the available 

patient data could be combined with census data on race-

income distributions in census blocks to sample patients 

disproportionately and thereby improve estimates of race 

and income effects. 

Such concerns arise frequently when survey data will be 

used to estimate coefficients of one or more regression 

models. For example, the National Health Interview Survey 

(NHIS) uses geographical oversampling together with a 

screening interview to oversample Black and Hispanic 

respondents for improved domain estimation (Botman, 

Moore, Moriarity and Parsons 2000, page 12); NHIS data 

have been used extensively in regression analyses, of which 

domain estimation is a special case. Sastry, Ghosh-Dastidar, 

Adams and Pebley (2005, pages 1013-1014) oversampled 

census tracts by minority composition, using simulations to 

evaluate the power of various designs for regression 

analyses of interest. The Youth Risk Behavior Surveillance 
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System oversamples schools in high-minority PSUs to 

improve precision of estimates for minority racial/ethnic 

groups (Eaton, Kann, Kinchen, Ross, Hawkins, Harris, 

Lowry, McManus, Chyen, Shanklin, Lim, Grunbaum and 

Wechsler 2006, pages 2-3). 

The literature on optimal design of experiments is 

extensive. Design objectives for surveys, however, differ in 

important ways from those for experiments, in which the 

researcher can arbitrarily assign a priori identical units to 

treatments. A strongly model-based approach to estimation 

of regression coefficients would suggest selection of a 

suitable set of high-leverage observations, much as in design 

of an experiment (Royall 1970), but the application of these 

principles to survey design is controversial (see Sec. 4). The 

design-based approach requires a sample that is 

representative, through a known probability mechanism, of 

a defined population; intermediate positions are also 

possible (Sec. 2.5, 3.4). From this perspective, the sampler 

is not free to select, for example, 100 white respondents 

from a convenient primarily white neighborhood and 100 

Hispanic respondents from a convenient primarily Hispanic 

neighborhood and call the sample “representative” for 

estimating differences between whites and Hispanics. The 

objects of design-based inference are quantities that describe 

the population; in the case of regression we will refer to 

“descriptive population quantity” or DPQ regressions 

(Pfeffermann 1993, pages 319-321). 

Since Neyman (1934), the extensive literature on optimal 

design of surveys (reviewed in standard texts like Cochran 

1977 or Särndal, Swensson and Wretman 1992) has 

primarily focused on estimation of simple quantities such as 

a mean or ratio, or of several such quantities (Kish 1974; 

Bellhouse 1984; Chromy 1987). Although variance 

estimation for design-based estimates of regression 

coefficients has received considerable attention (Fuller 

1975; Fuller 1984; Binder 1981; Binder 1983), relatively 

little attention has been given to the corresponding optimal 

sample designs. (Regression-assisted estimation of a mean 

(Cassel, Särndal and Wretman 1976; Särndal, Swensson and 

Wretman 1992, Sec. 12.2) is a distinct problem.) 

Furthermore, characteristics that might be used to define 

an unequal-probability sampling scheme are likely to be 

recorded with error in sampling frames, because they are 

based on aggregated data or because the characteristics 

associated with a unit (such as an address or a household) 

change over time. Such errors can greatly affect the 

efficiency of a putatively optimal sampling scheme; see 

Morris, Newhouse and Archibald (1979, Sec. III) on 

stratified sampling for domain estimation and Thomsen, 

Tesfu and Binder (1986) on probability-proportional-to-size 

sampling. Waksberg (1973, 1995) considers stratification by 

census blocks on a single aggregated characteristic for 

estimation of means for domains such as racial/ethnic 

groups or the poor, with or without a subsequent screening 

interview.  

Our objective in this article is to describe optimal designs 

for samples that will be used in DPQ (design-weighted) 

regression analysis, in the sense of minimizing the weighted 

sum of variances of some preselected linear combinations of 

regression coefficients. We also consider some classes of 

estimands and corresponding estimators that depart from the 

DPQ approach to improve efficiency. In Section 2, we 

establish notation and derive optimal sampling rates for 

DPQ regression under scenarios representative of the 

individual and area-level information that might be 

encountered in population surveys with imperfect frames. 

We first assume that exact design information is available in 

the sampling frame and then generalize to situations in 

which some variables are available only as aggregates for 

subdomains or from inaccurate data. We next consider 

optimal estimation of combinations of coefficients from 

more than one model and of flexible combinations of 

coefficients. In Section 3 we estimate the potential benefits 

of these methods for a survey in the CanCORS study sites, 

using block-level census data on race/ethnicity and poverty. 

Finally, in Section 4 we consider the relevance of the DPQ 

approach and possible extensions of the methodology. 

 
2. Optimal design calculations 

 
2.1 Notation  

Suppose that the target population is divided into cells 

indexed by 1, 2, ..., ,b B=  with elements indexed by 

1, 2, ..., bk K=  in cell .b  With each element is associated 

a covariate vector bkx  with ( , ),bk bk bk
′ ′ ′=x u t  where bku  is 

the component observed for identifiable individuals. The 

distribution of bkt  in each cell is known but the values for 

individuals are not observed; thus the cell is the unit of 

aggregation for some or all of the design variables. Hence 

we know the finite population values b =T 1 2( , , ..., )
bb b bK
′t t t  

but cannot identify the rows with individuals. Define 

1 / ,b b bK′=t T  the mean of t  in cell .b  

Associated with sampling each element is a cost .bkc  A 

sampling plan is defined by assigning a probability of 

selection bkπ  to each element. Assume a constraint on 

expected cost, 

,

.bk bk
b k

c Cπ ≤∑  (1) 

To simplify the presentation, we also assume that the 

sampling rate is low and potential benefits of stratification 

are minimal, so the design can be described approximately 

as unstratified unequal-probability sampling with replace-

ment. We also assume single-stage element sampling. The 



Survey Methodology, June 2008 67 
 

 

Statistics Canada, Catalogue No. 12-001-X 

population is {( , ): 1, 2, ..., ; 1, 2, ..., }bU b k b B k K= = =  

and a sample is .S U⊂  

The population-descriptive ordinary least squares (OLS) 

regression coefficient, corresponding to the model bky =  

bk bk
′ + εxββββ  with 2[0, ],bkε σ∼  is 1( ) ,U U U U U

−′ ′= X X X yββββ  

where subscript U  signifies matrices or vectors corre-

sponding to the entire population. (Here 2[0, ]σ  signifies a 

distribution with mean 0 and variance 2,σ  but unspecified 

form.) Then 

1ˆ ( )S S S S S S

−′ ′= X W X X W yββββ  (2) 

is the usual design-based estimator of ,ββββ  where S  signifies 

that only the rows corresponding to the sample are included, 

and W  is the diagonal matrix of weights 1/ .bkπ  

To design the survey, we must make some assumptions 

about the distribution of outcomes ,bky  even if we would 

not rely on the same assumptions in analysis of the data. 

Specifically, we assume that the outcomes are generated by 

a model : ,bk bk bky ′ξ = +εx ββββ  with independent 2[0, ]bk bkε σ∼  

and known 2

bkσ  (up to a constant factor). Note that the 

distributions of the design variables bkx  and the residuals 

are relevant to optimization of the design, but the value of ββββ  

is not since it does not affect the variance of the regression 

estimators. Furthermore, the assumption of independent 

residuals from a regression model might be more reasonable 

then independence of data values. We allow for 

heteroscedasticity, even when fitting an OLS model. OLS 

coefficients (including special cases such as the overall 

mean or domain means) are often useful descriptive 

statistics even if the OLS model does not actually hold, but 

if information about heteroscedasticity is available it can be 

used to make the design more efficient. 
 
2.2 Optimal DPQ regression design with individual-

level variables only  
Consider first the case in which t  is empty, so 

,bk bk=x u  reflecting a scenario in which all relevant design 

variables (race and income in our CanCORS design) are 

available to the researcher before sampling. Since the cells 

now consist of single cases we drop the subscript ,b  writing 
1ˆ ( ) ( ).S Sk k k k k kw w y−′= ∑ ∑x x xββββ  Then for any fixed linear 

combination of coefficients with weights ,a  assuming that 

the first factor is a design-consistent estimator (after scaling) 

of 1( ) ,U UN −′X X  we have the expectation under sampling of 

the model-based variance (White 1980) of the estimator, 

( )
( )

1 1

1 2 1

ˆVar

( ) Var / ( )

( ) ( / ) ( ) .

a

U U k k k U U
k S

U U k k k k U U
k U

V E

E y

π ξ

− −
π ξ

∈

− −

∈

′=

′ ′ ′≈ π

′ ′ ′ ′= σ π

∑

∑

a

a X X x X X a

a X X x x X X a

ββββ

 (3)

 

For design-based inference, the relevant measure is the 

average variance under the sampling design over possible 

populations obtained under the model ˆ, VarEξ π
′ξ a ββββ  (the 

“anticipated variance” of Isaki and Fuller 1982; see also 

Bellhouse 1984, sec. 1); this quantity is approximately equal 

to the expected model-based variance (see Appendix for 

proof and asymptotic conditions). 

By the typical Lagrange multiplier argument for optimal 

allocation problems (e.g., Valliant, Dorfman and Royall 

2000, pages 169-170), aV  is minimized subject to the 

expected cost constraint (1) when /a k kV c∂ ∂π = λ  for some 

constant λ  and all ,k  so 1( ) ) / .k k U U k kc
−′ ′π ∝ σ a X X x  

Thus the optimal sampling rate is higher for cases with 

greater model variance and lower cost (as in the usual case 

of estimation of a mean) and also for cases with greater 

leverage in the regression. This result differs from the 

standard model-based calculations for optimal experimental 

design, which would allocate the entire sample to a few 

high-leverage design points. The design-consistent estimator 

of the DPQ regression does not assume the correctness of 

the model and therefore requires that every case have a 

positive probability of selection. Thus, for estimation of a 

ratio β  under a homoscedastic model ,k k ky x= β + ε  

model-based estimation would suggest selection of the units 

with the largest values of ,x  but our probabilities of 

selection are proportional to .x  

Typically, more than one estimand will be of interest in a 

study; CanCORS is intended to estimate both race and 

income effects. We generalize (3) to simultaneous esti-

mation of several linear combinations of coefficients by 

optimizing a weighted sum of variances ,
i

i iV d V∑= a  

where i  indexes the estimands. By the same arguments the 

optimal sampling probabilities for this objective are 

( )1/ 21 2( ( ) ) / .k k i i U U k k

i

d c−′ ′π ∝ σ ∑ a X X x  (4) 

With some choices of the ,i{ }a  strict adherence to (4) 

could lead to arbitrarily small bkπ  (and hence arbitrarily 

large weights) for cases with leverage approaching zero. To 

prevent this, we could set a positive floor on the .kπ  

Alternatively, by making estimation of the population mean 

one of the objectives (Section 2.4), we guarantee sampling 

with positive probability over the entire population. Either 

method makes the design more robust against error in the 

approximate calculation of leverage and better prepared for 

possible post hoc decisions to estimate quantities not 

foreseen in the original design plan (Section 2.6). Further-

more, reasonably good estimation of means is needed to 

guarantee design-consistency of the first factor of (2). 
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2.3 Optimal design with individual- and aggregate-

level variables  
Now suppose that the covariate vector bkt  is nonempty 

and bku  is constant in each cell, as when aggregated design 

information is available for cells corresponding to covariate 

classes of u  within blocks. In CanCORS, if race ( )u  but 

not income ( )t  is known for individual subjects, and 

income distributions are available for each race in each 

census block, we would define cells to consist of people of a 

single race in a single census block. 

Since cases in the same cell cannot be distinguished on 

covariates we further assume that bk bσ = σ  and bk bc c=  

are a priori constant across the cell, so the optimal design 

also makes bk bπ = π  constant in each cell. 

We can now rewrite (3) as 

( )

( )

1 1

`

1 2 1

,

( ) Var / ( )

( ) ( / ) ( ) ,

a U U bk bk b U U
S

U U b b b U U
b k

V E y
− −

π ξ

− −

′ ′ ′≈ π

′ ′ ′= σ π

∑

∑

a X X x X X a

a X X S X X a  (5)
 

where 

b b b b

b

b b Tb

′ ′ 
=  ′ 

u u u t
S

t u S
 

is the matrix of mean squares and crossproducts in cell ,b  

with / .Tb b b bK′=S T T  The optimal sampling probabilities 

corresponding to (4) are then 

( )1/ 21 1( ) ( ) / .b b i i U U b U U i b b

i

d K c− −′ ′ ′π ∝ σ ∑ a X X S X X a (6) 

If t  is measured through a census of each cell, then bt  

and TbS  are known exactly. The same principles apply, 

however, if TbS  is not directly observed but instead is 

estimated under a model .ζ  We then replace bt  and bS  in 

(5) with predictive expectations b bEζ=t tɶ  and b =Sɶ  

.bEζ S  Examples might include the following situations: (1) 

data for each cell are only available for a sample, (2) design 

data are old and the distribution of design variables in the 

cell may have changed over time, or (3) data on individual 

elements are measured with error. Similarly, the distribution 

of t  might be available only for a supercell that contains 

multiple values of u  (for example, race and census block of 

residence are known for each individual, but the income 

distribution is known for the block as a whole but not for 

each race within the block), so bt  and TbS  must be 

estimated under a model. 
 
2.4 More than one model  

The preceding development assumes that all estimands 

of interest are combinations of parameters of a single model. 

More generally, the contemplated analyses might involve 

fitting several models, and V  might sum the variances of 

combinations of parameters from these models. An obvious 

special case is estimation of a population mean (as 

suggested in Section 2.2), the coefficient of the model 

0 1 ,k bky = β ⋅ + ε  together with some regression coeffi-

cients. Another simple example is estimation of the means 

of variously defined domains, that is the coefficients of 

models of the form ( ) ( ) ( )k m m bk m bky ′= + εxββββ  where ( )m bkx  is 

a vector of domain membership indicators with alternative 

domain definitions indexed by 1, ..., ,m M=  or contrasts 

of these means. For example, we might be interested in 

estimating mean outcomes both by race and by age. 

If each of the combinations of interest only includes 

parameters of a single model, then each combination has its 

own design matrix, so the model index m  can be identified 

with the estimand index .i  Thus in (5) and (6) we replace 

UX  with ( )U iX  and replace bS  with ( ) .i bS  

If some estimands combine parameters from different 

models, we stack the estimators ( )
ˆ
mββββ  for the different 

models. Then in (5) and (6) we replace U U
′X X  with 

( ) ( )diag( , 1, ..., )U m U m m M′ =X X  and redefine bS  as the 

combined sums of squares and crossproducts matrix for all 

of the models, with blocks 

( ) ( )( ) ( )

( , )
( )( ) ( , )

.
b m b mb m b m

b m m
b mb m Tb m m

′ ′
′

′ ′

′ ′ 
=  ′ 

u u u t
S

t u S
 

The remainder of the optimization is unchanged from 

Section 2.3.  
2.5 Flexible contrast weights  

In CanCORS, we are interested in the income effect 

controlling for race and averaged across races. It is less 

important to us how the races are weighted in that average, 

since the study areas are not representative of national pro-

portions by race. Then we might estimate the poverty/non-

poverty income effect for each race and combine them with 

weights chosen to minimize the variance of the estimator of 

the weighted average of within-race income effects. 

In general, we consider situations in which scientific 

interest is directed at estimating or testing any combination 

i i i=a A f  where iA  is fixed and each if  is arbitrary (and 

not necessarily all of the same dimension) subject to the 

constraints 1 1, 0.i ijf′ = ≥f  In our motivating example, the 

underlying model includes eight indicator variables for each 

of the groups defined by four race groups crossed with 

dichotomous poverty level, and 1A  is an 8 4×  matrix in 

which each column contains a 1 and -1 for the contrast 

between poor and nonpoor within one race. Then 1f  

contains the weights given to the contrast in each race, and 

1 11 11 12 12 13 13 14 14( , , , , , , , )f f f f f f f f′ = − − − −a  is the weighted 

contrast of the eight indicator coefficients. 

Substituting into (5)-(6), we optimize over both sampling 

probabilities k= {π }ππππ  and combining weights .i= { }f f  

With multiple models, we use either of the formulations of 

Section 2.4, depending on whether the combinations of 
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interest include coefficients of one or several models. The 

definition of ia  is thus determined in part by scientific 

considerations and in part by the information available from 

the population at hand. 

A natural approach to jointly optimizing ππππ  and f  is 

alternately to minimize V  with respect to ππππ  using the 

modified (6) and with respect to ,f  observing the con-

straints on .f  In the optimization, if  appears in an 

expression of the form ( ) .i i i
′ πf D f  Minimizing subject to the 

constraint 1i
′ ⋅ =f 1  using Lagrange multipliers, we obtain 

1 1ˆ ( ) /( ( ) )i i i

− −′= π πf D 1 1 D 1  as long as 0bkπ >  and the non-

negativity constraints are not binding. If the nonnegativity 

constraints are binding, quadratic programming methods 

can be used.  
2.6 Precision of unanticipated analyses  

A design that is intended to be optimal for one regression 

coefficient might be very inefficient for other regression 

coefficients in the same or different models. Making the 

population mean one of the estimands helps to control this 

risk. We illustrate this by an example with design variables 

,k kx z  with joint distribution 

( )( )1
1

: ( , ) 0,X Z N ρ
ρζ ∼  

fully observed for individuals (indexed by k  as in Section 

2.2) and the following constant and univariate regression 

models:  
Model 0: 0 0 2

0 0, [0, ]k k ky = α + ε ε σ∼   
Model 1: 2, [0, ]X X

k X X k k k Xy x= α + β + ε ε σ∼   
Model 2: 2, [0, ].Z Z

k Z Z k k k Zy z= α + β + ε ε σ∼  To sim-

plify notation we assume 2 2 2

0 1,X Z Uxσ ≈ σ ≈ σ ≈ = Uz =  

0 and costs kc  are constant.  
Consider the sample design optimized for V =  

0
ˆˆ( ) ( ), 0.XdV V dα + β ≥  By (4), the optimal design has 

2.k kd xπ ∝ +  Under this design, the anticipated variance is 

approximated by 1 2 1 1ˆ( ) ( ) ( ) ( )Z Z U U U U U U UV n Z Z Z W Z Z Z− − −′ ′ ′β ≈ σ  

where 1( , ..., )U NZ z z ′=  and 1 1

1diag ( , ..., ).U NW − −= π π  

Then 
2 2

0
ˆ( ) ( / )ZE nV c E Z d Xζ ζβ ≈ +  where 0c  depends 

only on d  so ˆ( )ZE nVζ β  depends on ρ  and .d  If 0d =  

(no weight is attached to the estimation of mean), 
ˆ( )ZE nVζ β = ∞  unless 1.ρ = ±  Thus unless the objective 

gives some weight to the variance of the mean estimator, the 

design is potentially very poor for the coefficients attached 

to covariates that are not in the span of variables of the 

optimized models. But if 0d >  we can decompose Z  into 

components parallel and orthogonal to 
1 2

,X Z Z Z= +  

where 
1
Z X=ρ  and 

2
,Z Z X= − ρ  so 1 2 2,Z Z Z X⊥ ⊥  

and 
2

0.E Zζ =  Then 
2 2 2

0
ˆ( ) ( / )ZE nV c E X d Xζ ζβ =ρ + +  

2 2 2 2

0 0opt opt
ˆ ˆ(1 ) (1/ ) ( ) (1 ) ( ).Xc E d X E V E Vζ ζ ζ−ρ + =ρ β + −ρ α  

In words, the variance of the coefficient of the new 

model is a combination of the two variances that were 

controlled in the optimization. This suggests that a design 

that includes estimation of the overall population mean in 

the optimization gives some protection against extreme 

inefficiency for other models with variables that were not 

considered in the original design, although the simple results 

given here do not necessarily generalize to cover every case. 

 
3. Application: Regressions on race 

    and poverty status  
3.1 Description of sites and data  

The CanCORS project (Ayanian et al. 2004) consists of 

five geographically-defined sites (northern California, Los 

Angeles, Alabama/Georgia, North Carolina, and Iowa) and 

two organizationally-based sites. The northern California 

site consists of 9 counties extending from the San Francisco 

Bay area to semirural Placer County on the Nevada border. 

This site is ethnically diverse and geographically varied and 

therefore best illustrates the methods. We describe results 

for this site in detail and then summarize results for other 

sites. 

Our data were based on the 2000 U. S. Decennial Census 

“long form” sample and were extracted for the 9 counties of 

our target area (Alameda, Contra Costa, Placer, Sacramento, 

San Francisco, San Joaquin, San Mateo, Santa Clara, and 

Solano) from SF-3, Tables 159a-159i, “Poverty Status in 

1999 by Age.” We cross-tabulated the sampled residents at 

least 65 years old of each census block group (a small 

contiguous area roughly equivalent to several city blocks, 

henceforth referred to as a block) by race/ethnicity and 

income, using census sampling weights. The age restriction 

roughly corresponds to the ages of most incident cancer 

cases eligible for the study. Household income was 

dichotomized as exceeding or falling below the standard 

poverty line. The census included separate items on 

Hispanic ethnicity and race; we classified the population as 

Hispanic or as non-Hispanic white, Black, or Asian-

American. A heterogeneous “Rest” category constitutes the 

remaining 3% of the elderly population. (For conciseness 

we henceforth refer to these as “race” categories.) The study 

site contained 844,560 over-65 individuals in 5,098 block 

groups, or an average of 166 per block group. 

Table 1 summarizes the distribution of race and income 

in the northern California site. Blacks have the highest 

overall poverty rate and are also the most segregated (largest 

coefficient of variation of percent Black by block), 

consistent with national patterns of residential segregation 

(Denton and Massey 1993). Hispanics have the most 

relative geographical variation in poverty rates (largest 

coefficient of variation of poverty rates by block).  
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Table 1 
Distributions of race and poverty for those with age 65≥≥≥≥  
years, by census block group in the northern California site. 

(CV = coefficient of variation) 
 

 White Black Asian Hispanic Rest Total 

Percent of population 65.70 6.40 16.80 8.20 3.00 100.00 

Percent poor 5.20 14.20 10.10 10.60 11.30 7.20 

CV block percent in race 0.46 2.94 1.21 1.73 2.28   - 

CV block percent poor 1.53 1.37 1.58 1.89 2.30 1.16 

 
3.2 Design conditions: Available information and 

design objectives  
We calculated the efficiency relative to simple random 

sampling (SRS) of the optimal design for scenarios defined 

by two conditions: (1) the choice of objective function, and 

(2) the assumptions about the information available for 

determining sampling probabilities. 

We considered six possible assumptions about available 

information for race (unavailable, or available at the individ-

ual level) and income (unavailable, only available by block, 

or available at the individual level). Because race is more 

often recorded in hospital records than income, we excluded 

the case where individual income group is known but race is 

only known by block group. Each assumption corresponds 

to a definition of the cell for the development of Sections 

2.3 and a corresponding definition of variables t  and :u  
 

1. No design information available: the cell is the 

entire population and u  includes race and income. 

(Columns headed “SRS” in Table 2.) 

2. Race alone: the cell is a race category, u  contains 

race variables, and t  is income. (Columns headed 

“Race.”) 

3. Block-aggregated data alone: the cell is a census 

block group, u  is empty and t  includes race and 

income. (Columns headed “Block.”) 

4. Individual race, block-aggregated income data by 

race: the cell is the population of one race in a block 

group, u  is race, and t  is income. (Columns 

headed “Race+Block.”) 

5. Individual income, no race data: the cell is an 

income group, u  is income and t  is empty. 

(Columns headed “Income.”) 

6. Race and income both available for each individual: 

the cell is a race by income category, u  includes 

race and income, and t  is empty. (Columns headed 

“Race+Income.”) 
 

We calculated optimal sampling rates under each 

assumption about available information, with a variety of 

objective functions. Each of the objective functions we 

considered weights together variances of coefficient esti-

mates in some or all of four regression models: (1) the “in-

tercept only” model whose single parameter is the 

population mean, (2) a race model parametrized as a white 

mean and contrasts for differences between whites and each 

of the other major race groups (Blacks, Hispanics, and 

Asians), (3) an income model parametrized as a nonpoor 

mean and a contrast between poor and nonpoor, and (4) an 

additive joint model including race and income effects. 

Every objective includes weight mean 0,d >  which 

guarantees that all 0,bkπ >  avoiding numerical problems in 

the optimization. Thus, at least two models are represented 

in each objective (Section 2.4). When the objective weights 

both income and race effects, the single income effect is 

given weight income 3d =  to match the three race effects with 

weights of 1. 

We explored a selection of objective weights that 

emphasized estimation of race effects, income effects, or 

both. Each panel of Table 2 represents a single choice of 

objective weights id  (third column) for the contrast coeffi-

cients ia  (second column) of a series of models (first col-

umns). The fourth column shows the variance (normalized 

to unit sample size) 
i

nVa  for estimation of that coefficient 

under SRS assuming residual variance 2 1.σ =  The re-

maining columns present design effects, the ratios of the 

normalized variance 
i

nVa  for the optimized design with 

various assumptions about available design information to 

the variance under SRS. Rows with objective weight 0id =  

do not affect the optimization but are included to illustrate 

the effect of each design on efficiency for estimating a 

coefficient that is not included in the objective function. The 

final row summarizes the weighted design effect corre-

spondding to the loss function, that is, the weighted combi-

nation of variances. 
 
3.3 Efficiency with fixed models  

The first two objective functions optimize for estimation 

of race contrasts and the overall mean. Using individual race 

greatly improves efficiency for estimating Black and 

Hispanic effects. The greatest gains are for the Black effect 

(the smallest of the three major racial minorities), whose 

variance is reduced to 43% of its value under SRS. 

Conversely there is no gain for Asian-Americans, whose 

population representation is close to the optimal sampling 

rate. With this objective, once race is available, additional 

design information (block or individual income) is irrelevant 

to the optimization. If individual race is unknown, using 

block of residence can help with oversampling of Blacks 

(the most segregated group residentially), reducing the 

variance of the estimated Black effect to about 65% of that 

under SRS, but oversampling by block only slightly reduces 

the variance of the estimated Hispanic effect. Knowing 

income by itself is of little use to improve sampling for 

estimation of race effects. 
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Table 2 

Normalized variances and objective functions for optimal designs for various objective weights and 
design information assumptions 

 

Objective 1: Optimized for race effects 
    Variance as percent of variance under SRS 
   Variance (by available design information) 

  Weight Under   Race+  Race+ 
Model Effect ( )id  SRS Race Block Block Income Income 

Constant Mean 0.1 1.0 181 119 181 100 181 

Race Black 1 17.2 43 65 43 99 43 
 Asian 1 7.5 100 106 100 100 100 
 Hispanic 1 13.7 55 90 55 100 55 

Income Poor 0 15.0 182 104 182 81 182 

Race+Income Black 0 17.4 44 65 44 99 44 
 Asian 0 7.5 100 106 100 100 100 
 Hispanic 0 13.8 55 90 55 100 55 
 Poor 0 15.2 182 104 182 81 182 

Total = 
ii anV n d V= ∑   38.6 59 82 59 99 59 

Objective 2: Optimized for race effects and overall mean 
    Variance as percent of variance under SRS 
   Variance (by available design information) 

  Weight Under   Race+  Race+ 
Model Effect ( )id  SRS Race Block Block Income Income 

Constant Mean 3 1.0 136 115 136 100 136 

Race Black 1 17.2 44 66 44 99 44 
 Asian 1 7.5 100 104 100 100 100 
 Hispanic 1 13.7 56 90 56 100 56 

Income Poor 0 15.0 121 101 121 82 121 

Race+Income Black 0 17.4 45 66 45 99 45 
 Asian 0 7.5 100 104 100 100 100 
 Hispanic 0 13.8 56 90 56 100 56 
 Poor 0 15.2 122 102 122 82 122 

Total = 
ii anV n d V= ∑   41.5 65 84 65 100 65 

Objective 3: Optimized for income effect 
    Variance as percent of variance under SRS 
   Variance (by available design information) 

  Weight Under   Race+  Race+ 
Model Effect ( )id  SRS Race Block Block Income Income 

Constant Mean 0.001 1.0 103 154 173 173 173 

Race Black 0 17.2 75 119 152 163 163 
 Asian 0 7.5 90 144 173 170 170 
 Hispanic 0 13.7 86 142 196 168 168 

Income Poor 3 15.0 97 74 60 27 27 

Race+Income Black 0 17.4 75 119 153 164 164 
 Asian 0 7.5 90 144 174 171 171 
 Hispanic 0 13.8 86 143 197 169 169 
 Poor 0 15.2 97 75 63 29 29 

Total = 
ii anV n d V= ∑   45.0 97 74 60 27 27 

Objective 4: Optimized for income effect and overall mean 
    Variance as percent of variance under SRS 
   Variance (by available design information) 

  Weight Under   Race+  Race+ 
Model Effect ( )id  SRS Race Block Block Income Income 

Constant Mean 3 1.0 103 134 147 151 151 

Race Black 0 17.2 76 107 128 142 142 
 Asian 0 7.5 91 127 145 148 148 
 Hispanic 0 13.7 86 125 161 147 147 

Income Poor 3 15.0 97 75 61 27 27 

Race+Income Black 0 17.4 76 107 129 143 143 
 Asian 0 7.5 91 127 146 149 149 
 Hispanic 0 13.8 86 125 162 147 147 
 Poor 0 15.2 97 75 63 29 29 

Total = 
ii anV n d V= ∑   48.0 97 79 66 35 35 
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Table 2 (continued) 
Normalized variances and objective functions for optimal designs for various objective weights and 
design information assumptions 

 

Objective 5: Optimized for separate race effects, income effect and overall mean 
    Variance as percent of variance under SRS 
   Variance (by available design information) 

  Weight Under   Race+  Race+ 
Model Effect ( )id  SRS Race Block Block Income Income 

Constant Mean 3 1.0 111 117 135 114 150 

Race Black 1 17.2 54 74 55 109 53 
 Asian 1 7.5 95 106 109 112 116 
 Hispanic 1 13.7 67 96 69 112 67 

Income Poor 3 15.0 101 82 72 38 37 

Race+Income Black 0 17.4 55 74 55 109 52 
 Asian 0 7.5 95 106 109 113 115 
 Hispanic 0 13.8 67 96 69 112 66 
 Poor 0 15.2 101 82 72 39 35 

Total = 
ii anV n d V= ∑  0 86.4 86 86 74 73 56 

Objective 6: Optimized for race effects and income effect in two-factor model and for overall mean 
    Variance as percent of variance under SRS 
   Variance (by available design information) 

  Weight Under   Race+  Race+ 
Model Effect ( )id  SRS Race Block Block Income Income 

Constant Mean 3 1.0 111 119 138 114 156 

Race Black 0 17.2 55 74 55 108 53 
 Asian 0 7.5 95 107 109 112 114 
 Hispanic 0 13.7 67 96 69 111 67 

Income Poor 0 15.0 101 82 72 38 37 

Race+Income Black 1 17.4 55 74 55 109 52 
 Asian 1 7.5 95 107 109 113 113 
 Hispanic 1 13.8 67 96 69 112 66 
 Poor 3 15.2 101 81 71 39 35 

Total = 
ii anV n d V= ∑   87.2 86 86 73 73 54 

Objective 7: Optimized for income effect in two-factor model and for overall mean 
    Variance as percent of variance under SRS 
   Variance (by available design information) 

  Weight Under   Race+  Race+ 
Model Effect ( )id  SRS Race Block Block Income Income 

Constant Mean 3 1.0 103 135 149 148 156 

Race Black 0 17.2 77 100 98 139 97 
 Asian 0 7.5 91 124 132 145 132 
 Hispanic 0 13.7 86 122 135 144 122 

Income Poor 0 15.0 97 75 62 28 28 

Race+Income Black 0 17.4 77 100 98 140 96 
 Asian 0 7.5 91 124 132 146 132 
 Hispanic 0 13.8 86 122 135 144 121 
 Poor 3 15.2 97 75 62 29 27 

Total = 
ii anV n d V= ∑   48.6 97 79 67 36 35 

 

 

Disproportionate sampling, tuned to optimize for esti-

mation of race effects, inflates the variances of the other 

parameter estimators. When minimal weight is given to the 

mean in the optimization objective (Objective 1), this 

inflation can be quite large: a factor of 181% for the mean 

and income effects. Giving more weight to the mean 

(Objective 2) moderates this effect, reducing the variance 

inflation to 136% for the mean and 121% for the income 

effect, while only slightly increasing variances for the race 

effects. 

The minimum possible normalized variance for esti-

mation of the income effect (Objective 3) is 4 (27% of the 

variance under SRS), attained when income is known for 

individuals under a design that divides the sample equally 

between poor and nonpoor. With block-level information, 

variance can be reduced to 74% of that under SRS. 

Although knowing race alone has little benefit for this 

objective, adding individual race to block-level information 

further reduces the variance of the estimated income effect 

to 60% of that under SRS. Variances of estimates of the 

mean and of race effects are substantially increased under 
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these designs, but increasing the weight of the mean 

(Objective 4) substantially ameliorates the variance inflation 

for the mean and race effects, only slightly increasing the 

variance of the estimated income effect. 

Including both race and income effects in Objective 5 

yields designs that are not quite as good as the optimal 

designs for either alone, but still much better than SRS. For 

example, variances of the race effects with race and block of 

residence known are 10% to 24% higher than with the 

designs using the same design information but separately 

optimized for race or income. When only individual race or 

only individual income is known, the design essentially 

optimizes for the effects corresponding to the available 

variable, inflating the variance of estimated effects of the 

other variable. 

The design optimized for joint race and income effects in 

the two-factor additive model (Objective 6) is quite close to 

that optimizing for race and income effects in separate 

marginal models (Objective 5). When optimizing for 

separate effects, variances of these effects are slightly 

smaller than those of the corresponding effects in the two-

factor model. When optimizing for effects in the joint 

model, their variances are reduced although in most cases 

still slightly larger than those of the corresponding effects in 

marginal race and income models, due to the partial 

confounding of race and income effects. 

Likewise, optimization for the income effect in the two-

factor model (Objective 7) is fairly similar to optimization 

for the univariate income effect (Objective 4) when no race 

data are available. Making race data available together with 

either block or individual income, however, considerably 

reduces variances for race effects under the design for the 

two-factor model. Because of the partial confounding of 

race and income effects under this model, this design adapts 

to estimate the former more efficiently, accumulating more 

data at the design points that are critical to unconfounding 

these effects. 
 
3.4 Efficiency with flexible contrast weights  

We next consider the potential benefits of estimating 

income effects under a flexible weighting scheme (Table 3). 

The objective function considers coefficients of two models, 

the constant model whose parameter is the population mean, 

and a model with indicator variables for each race-by-

income cell. The income effect within each race is estimated 

as the difference of the coefficients for poor and nonpoor 

within that race, and these estimates are combined with 

flexible weights to estimate an overall income effect. This 

strategy is most nearly parallel to Objective 7, which also 

estimates income effects controlling for race. The flexible-

contrast analysis is less model-dependent than the two-

factor model in that it does not rely on that model’s 

additivity assumption. On the other hand, the way the races 

are combined does not necessarily reflect population 

proportions. The weights given to the income contrast in 

each race, estimated as described in Section 2.5, are 

presented in the lower panel of Table 3 to demonstrate how 

this approach allows us to modify the estimand to exploit 

available design information. (The alternating-optimization 

algorithm converged to adequate accuracy within 7 

iterations.) 

Under SRS the variance of the income effect under the 

flexible-weights model is slightly larger than in the two-

factor model (15.91 versus 14.99). The weight given to the 

white contrast under this design (51%) is less than the white 

proportion of the population (66%) because relatively few 

whites are poor and therefore the income contrast among 

whites is relatively imprecise. Conversely, the weight for the 

Black income contrast (12%) is almost twice that group’s 

share of the population, because of the disproportionately 

high poverty rates in that group. 

Using individual race in the design accentuates this 

disproportion: more sample, and much more weight (75%), 

is given to the Black group, with the highest percentage in 

poverty. Thus flexible weighting makes possible a large 

reduction in the variance of the estimated income effect (to 

63% of that under SRS) using only race, which was not 

possible under the more restrictive two-factor DPQ model. 

Block-level information is slightly less useful for this 

design than race information. The combination of block and 

race information, however, is very powerful, reducing the 

variance of the income effect to 48% of that under SRS. 

Under this design, much more weight (46%) is given to the 

Hispanic income contrast, which can be estimated 

efficiently because of the greater income segregation among 

Hispanics (Table 1). When individual income is available 

(with or without race), the contrasts weights approximate 

the proportions by race, since efficient income contrasts can 

be obtained within any race and the inclusion of the overall 

mean in the objective pulls the design toward proportionate 

sampling. Thus, the design is dramatically different under 

alternative assumptions about availability of design 

information. 
 
3.5 Comparisons across sites  

Table 4 compares the gains for disproportionate sampling 

at four CanCORS sites, excluding the nongeographical sites 

and one site (Iowa) that was almost all white. At each site 

we optimized for unit ( 1)id =  weighting of variances of 

overall mean and the income effect in the two-way model 

(proportional to Objective 7), under alternative assumptions 

about available design information. The theoretical 

minimum for this objective with a balanced population is 5 

mean income( 1, 4).V V= =  SRS is inefficient at every site, 
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especially in Alabama and northern California, and race 

information alone would be of little help. Conversely, the 

best variance attainable using full race and income 

information on individuals is between 5.60 and 5.72 at each 

site. Oversampling based on block-level income information 

would substantially reduce variances, with substantially 

greater gains in Alabama and northern California than in the 

other sites.  

 
4. Discussion 

 
To develop design alternatives for a health services 

study, we extended previous methods for optimal design in 

domain estimation to show how an optimal unequal-

probability sampling scheme can be designed for estimation 

of regression coefficients in one or more models. In our 

application, substantial reductions in variance were possible 

even if some variables were only available for geographical 

aggregates. Particularly large gains were possible for 

categorical regressors (poverty status, race) with very 

imbalanced distributions. 

In essence, our approach to survey design with 

imprecisely measured design variables uses the predictive 

distribution of the design variables for each sampled unit, 

specifically the expectations of the variables and of their 

squares and cross-products. This concept unites design 

using cell aggregates (estimated from census or sample 

data), using variables measured with error, or using a 

sampling frame whose units might have changed their 

characteristics over time. 
 

Table 3 
Normalized variances and contrast weights for optimal DPQ designs with flexible weighting of income 

contrasts by race. Lines for fixed contrasts are included to demonstrate the effect of various choices of 
flexible weights, for comparison to fixed-weight objective scenarios 
 

Variances for “flexible-weight” estimate and for contrasts represented in Table 2 
    Variance as percent of variance under SRS 
   Variance (by available design information) 

  Weight Under   Race+  Race+ 
Model Effect ( )id  SRS Race Block Block Income Income 

Constant Mean 3 1.0 233 139 206 152 152 
Flexible contrast Income 3 15.9 63 74 48 28 26 

Race Black 0 17.2 34 90 61 143 139 
 Asian 0 7.5 197 124 172 149 146 
 Hispanic 0 13.7 172 124 61 148 144 

Income Poor 0 15.0 209 77 124 27 39 

Race+Income Black 0 17.4 35 90 61 144 139 
 Asian 0 7.5 197 124 173 150 147 
 Hispanic 0 13.8 172 124 61 148 144 
 Poor 0 15.2 210 77 125 29 39 

Total = 
ii ad V∑   50.7 73 78 57 35 33 

Optimum weights (as percent, 100% × )if  of each within-race income contrast in calculation of the combined 
estimate of the income effect, under each design information assumption. (Columns may not sum to 100% due to 
roundoff error.) 
  Design information assumptions  

 Contrast SRS Race Block Race+Block Income Race+Income  

 Black 12 75 17 25 9 6  
 Asian 24 9 26 16 21 17  
 Hispanic 12 5 13 46 11 8  
 White 51 12 45 13 59 68  

 
 

Table 4 
Normalized objective function for optimal DPQ designs under equal ( 1)====id  weighting of 

variances of the overall mean and the income effect in the two-way model, at four CanCORS sites 
 

Variance as percent of variance under SRS 

Site location 

Variance 
under 
SRS Race Block Race+Block Income Race+Income 

Alabama 16.2 97 79 67 36 35 
Los Angeles 11.8 98 85 76 49 47 
North Carolina 10.2 97 89 86 59 55 
Northern California 16.2 97 79 67 36 35 
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The methods described here for optimizing element 

sampling probabilities can be combined with stratification 

and cluster or multistage sampling. (Neither of these design 

features appeared in the CanCORS study which motivated 

our research. Stratification was inconvenient given the 

sequential identification of subjects and there was little prior 

information to guide construction of homogeneous strata. 

Telephone interviewing made it operationally unnecessary 

to cluster our subjects.) Because these design features can 

affect the sampling distributions of both the design and 

outcome variables, and the design objectives involve both 

the posited population model and the scientific model of 

interest, the number of possible combinations is even larger 

than in design for estimation of a population mean. We 

therefore limit ourselves to suggesting a few ideas to be 

followed up in future research. 

Stratification can improve a design for a regression 

analysis in at least three ways: (1) to implement 

disproportionate sampling (using probabilities equal or close 

to those derived under our methodology), (2) to control the 

distribution of design variables to be closer to the optimal 

design than in an unstratified unequal-probability design, 

and (3) to reduce the within-stratum variation of the case 

influence statistics and thereby reduce the variance of 

coefficient estimates (Fuller 1975). Since the efficiency of 

the design is insensitive to small deviations around the 

optimum, some stratified designs with equal probabilities 

within strata might approach the efficiency of the optimal 

design. Ad hoc stratifications might have poorer efficiency, 

even with optimal allocation to strata. For example, 

stratifying blocks by the least prevalent race-income group 

represented yielded a design with about half the efficiency 

gain of our design using aggregated block composition. 

With regard to the last point, note that designing 

homogeneous strata for estimation of regression coefficients 

is likely to be more difficult than for estimation of a mean. 

The influence of an observation depends on its residual from 

the regression model, not its raw value, so to reduce 

homogeneity the stratification would have to involve 

predictive variables not included in the model. Influence 

also depends on the observation’s leverage for each 

coefficient, a possibly complex function of the covariates. 

For cluster sampling, the equivalence of ˆVarEπ ξ
′a ββββ  and 

ˆVarEξ ξ
′a ββββ  might not hold except under restrictive 

assumptions such as independent residuals; thus the terms of 

the middle factor of (5) would take a more complex form. 

There are several possible cases for cluster sampling 

depending on the relationship between the cells and the 

clusters, which should be elaborated on further research. 

Another natural extension is to nonlinear regression 

models and other estimands defined by estimating 

equations. The weighted least squares formulation of the 

Newton-Raphson step (McCullagh and Nelder 1989, sec. 

2.5) for a generalized linear model can be applied by 

suitably defining 2

bkσ  in (3) and hence in (4)-(6); a similar 

procedure can be applied for other estimating equations 

(Binder 1981; Binder 1983; Morel 1989). Because the 

variances are functions of the model predictions, 

implementing this modification requires design assumptions 

about the fitted model as well as about the distribution of the 

covariates. 

Every optimization has its costs, which for our methods 

can be both practical and statistical. 

In the CanCORS study, incident cases of the cancers 

under study were identified in real time through a field 

operation (“rapid case ascertainment”); patients then had to 

be contacted on a very tight schedule to start contacting 

them for interviews within the desired interval (3 months 

from their dates of diagnosis). Thus, the practical issues of 

survey implementation were exacerbated. Among the 

concerns that ultimately led us not to implement the DPQ 

design were (1) the difficulty of accurately geocoding 

patients within the time frame allowed; (2) incomplete and 

inaccurate race identification in the case ascertainment data, 

and (3) lower-than-expected participation rates, which made 

any sampling problematical. 

Such issues are less problematic in surveys with a static 

sampling frame that can be processed on a less stringent 

timeline, particularly in large-scale and/or repeated surveys 

in which even modest variance reductions justify some 

added complexity. They could be used, for example, to 

evaluate the potential gains through geographically-based 

oversampling in surveys for which national estimates by 

race are required. 

Statistical concerns about our design strategy arise 

because optimization for one set of predetermined statistical 

objectives is likely to reduce efficiency for others. It is 

difficult in any but the most tightly focused study to 

anticipate all potential analyses. Simultaneous optimization 

for a reasonably comprehensive collection of analyses, and 

investigation of sensitivity of the design to varying the 

relative weights of the various objectives, should give some 

protection against an overspecialized design. However, this 

approach can only be used with variables for which there 

are some data prior to the study. The results in Section 2.6 

suggest that monitoring the effect of disproportionate 

sampling on the precision of the population mean gives 

some protection against designs that are excessively 

inefficient for unanticipated analyses and variables, 

although the bounds there are not very general. 

More broadly, we might ask when the DPQ analysis is 

the scientifically relevant estimand. Regression models are 

often used in analyses intended to be generalizable to 

broader populations, rather than to describe the finite 
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population at hand, just as the CanCORS sites were selected 

purposively to study patterns and variations in care that 

might reflect broader national patterns. While using 

sampling weights in enumerative studies is relatively 

uncontroversial, there has been a lively debate about the use 

of weights in analytic studies (Hansen, Madow and Tepping 

1983 and discussion; DuMouchel and Duncan 1983; 

Bellhouse 1984; Pfeffermann 1993, Fuller 2002, sec. 5). A 

population-descriptive analysis offers some robustness 

against the possibility that the sample will be selected in 

way that distorts typical relationships. Thus, even where a 

pure DPQ analysis cannot be justified on grounds of 

enumerative representativeness, a sample drawn to optimize 

unweighted estimation of regression coefficients might have 

limited scientific value. For example, suppose that the 

CanCORS data would be analyzed with an unweighted 

regression to estimate a simple income effect (a contrast of 

means), using block level design information from the 

census. Optimally the sample would draw from a collection 

of blocks which, taken together, have about half their 

residents in poverty. Since poverty rates are rarely that high, 

this effectively requires sampling only from the blocks with 

the highest poverty rates. Such a sample would be 

unrepresentative of either of the income groups. Similarly, a 

sample that overrepresented Black residents by sampling 

from mostly Black blocks would (if analyzed without 

weights) be unrepresentative of the Black population in 

general, because the services available in highly segregated 

areas are likely to differ from those in more mixed areas. 

More general formulations are needed, with clearly stated 

assumptions and objectives, that “consider[s] the model 

parameters as the ultimate target parameters but at the same 

time focuses on the DPQ’s as a way to secure the robustness 

of the inference” (Pfeffermann 1993), taking into account 

the scientific objectives of the study. Previous proposals 

include testing the null hypothesis that the weights have no 

effect on the regression (DuMouchel and Duncan 1983; 

Fuller 1984), or including design variables (Nathan and Holt 

1980; Little 1991) or the weights themselves (Rubin 1985) 

as control variables in the regression. These approaches are 

problematical, however, when the weights are functions of 

the covariates of primary scientific interest. We have 

attempted through flexible contrast weighting (Section 2.5) 

to take a step toward such a general formulation, extending 

the DPQ approach to allow a focus on a range of valid 

inferences for particular scientific objectives rather than 

exclusively on inference for finite populations. From this 

range, the investigator can select an inferential objective and 

sample design adapted to the structure of the population and 

the practicalities of study design. 

 

 

Appendix  
Equivalence of sampling and model variances  
We show that ˆ ˆVar VarE Eξ π π ξ≈β ββ ββ ββ β  under the following 

conditions:  
1. 1 U UN ′ → ∑X X  for some positive definite .∑  

This minimal condition relates the hypothetical 

sequence of populations. 

2. The design-based regression estimator can be 

written as ,
ˆ

U n SR= +β ββ ββ ββ β  where ,Var n SE Rξ π =  
1( )o n−  and 1

,Var ( ).n SE R o n−π ξ =  Note that β̂βββ  

cannot strictly be defined as in (2), because the 

matrix inverse is undefined when the sample values 

of x  do not span the design space and hence its 

expectation and variance are also undefined. A 

scalar ratio estimator likewise might be undefined 

with nonzero but 1( )o n−  probability because the 

sample might have only 0 values for the 

denominator variable. Assigning some arbitrary 

value in that event, the estimator nonetheless could 

have good asymptotic properties. A similar 

argument lets us assume that a suitable β̂βββ  can be 

defined. We do not specify how (2) must be 

modified to technically satisfy the condition since 

this depends on the specifics of ξ  and the sequence 

of designs. 

3. max ( ) ( )i O n Nπ =  and ( ),n o N=  essentially our 

assumption that finite population corrections can be 

ignored. 

4. Homoscedasticity, 2Var ;kyξ = σ  this is not 

restrictive since it can always be made true by a 

suitable transformation of x  and .y   
Under these conditions,  

1

ˆ ˆ ˆVar ( ) Var Var

ˆVar Var

ˆ( ) Var

E E

E

o n E

πξ π ξ π ξ

π π ξ

−
π ξ

= +

= +

= +

β β ββ β ββ β ββ β β

β ββ ββ ββ β

ββββ

 

On the other hand  

ˆ ˆ ˆVar Var VarE Eξπ ξ π ξ π= +β β ββ β ββ β ββ β β  

The first term in the above equation is 

, ,

1 2 1 1/2 1/2

1 1 1/2 1/2 1

Var ( ) Var )

( ) ( ) ( )

( ) ( ) ( ) ( )

U n S U n S

U U

E R E R

o n o N n

O N o n o n N o n

ξ π ξ π

− − − −

− − − − −

+ = ( +

′= σ + +

= + + =

X X

β ββ ββ ββ β

 

This proof is an elaboration of one by Isaki and Fuller 

(1982), summarized in Pfeffermann (1993, page 321). 
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Generalized regression estimators of a finite population total  
using the Box-Cox technique 
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Abstract 

A new generalized regression estimator of a finite population total based on the Box-Cox transformation technique and its 

variance estimator are proposed under a general unequal probability sampling design. By being design consistent, the 

proposed estimator maintains the robustness property of the GREG estimator even if the underlying model fails. 

Furthermore, the Box-Cox technique automatically finds a reasonable transformation for the dependent variable using the 

data. The robustness and efficiency of the new estimator are evaluated analytically and via Monte Carlo simulation studies. 
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1. Introduction 

 
Generalized regression (GREG) estimators for finite 

population totals and means are derived using suitable 

regression models. Although models are employed to 

construct such estimators, randomization must be used to 

select the samples and to evaluate the statistical properties of 

the resulting estimation strategies. Examples may be found 

in Särndal, Swensson and Wretman (1992), Estevao, 

Hidiroglou and Särndal (1995), Fuller, Loughin and Baker 

(1994), and Jayasuriya and Valliant (1996). A good model 

is crucial in limiting the variability of a model-assisted 

estimator like the GREG. If the assumed model describes 

the finite population well, the GREG estimator can 

potentially bring about a large variance reduction when used 

in place of the Horvitz-Thompson estimator (Horvitz and 

Thompson 1952). A general discussion of regression esti-

mation can be found in Fuller (2002). Särndal et al. (1992) 

provide a comprehensive description of the model-assisted 

framework for constructing survey estimators.  

Studies on the GREG estimator have mostly been 

conducted in the context of linear regression modeling. The 

GREG essentially incorporates relevant auxiliary variables 

through their known population control totals even when the 

auxiliary variables are known for every unit in the popu-

lation (Cassel, Särndal and Wretman 1976; Särndal 1980; 

Deville and Särndal 1992; Särndal et al. 1992; Jiang and 

Lahiri 2006). The availability of complete auxiliary infor-

mation is fairly common these days: census data, admin-

istrative registers, remote sensing data and previous surveys 

provide a wealth of valuable information that can be used to 

increase the precision of the estimation procedure 

(Montanari and Ranalli 2003). As a result, complex models 

and flexible techniques making use of complete auxiliary 

information have been introduced into survey sampling in 

recent years. Penalized spline techniques have been adapted 

to construct model-based (Zheng and Little 2004) and 

model-assisted (Breidt, Claeskens and Opsomer 2005) 

estimators for a finite population total based on complex 

survey data. Breidt and Opsomer (2000) considered a 

nonparametric, model-assisted regression estimator using 

local polynomial regression and showed that nonparametric 

regression can significantly improve the efficiency of 

estimators when parametric models are misspecified. Their 

work was further extended from the single-covariate model 

to the case of the semiparametric additive model. Wu and 

Sitter (2001) fit a general working model, which could have 

both linear and nonlinear components, and then calibrated 

on the resulting fitted values using simple linear regression. 

Montanari and Ranalli (2005) combined model calibration 

estimation and nonparametric methods and proposed non-

parametric model-assisted estimators for a finite population 

mean.  

In mainstream statistics, a suitable transformation on the 

dependent variable in the assumed model is often taken to 

achieve normality, linearity, and homoscedasticity (Carroll 

and Ruppert 1988), but the literature on transformations in 

finite population inference is not very rich. There is, 

however, a growing interest in developing methods that use 

an appropriate transformation with survey data. In some 

survey applications, especially in business and estab-

lishment surveys, it is common to have highly skewed 

continuous and positive survey variables (e.g., income). To 

estimate the finite population total of the survey variable, a 

linear model may not be appropriate for a study variable, but 

may be reasonable for a strictly monotonic transformation 

of the study variable. Chen and Chen (1996) considered 

transformed survey data in order to improve on the precision 

of the normal approximation. Korn and Graubard (1998) 

compared different confidence intervals, including intervals 
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based on a logit-transformation, for proportions with small 

expected number of positive counts. Karlberg (2000) 

proposed an estimator based on a lognormal-logistic super-

population model to predict the finite population total of a 

highly skewed survey variable. The simulation results 

indicated that the lognormal-logistic model estimator offers 

a sensible alternative to other estimators, especially when 

the sample size is small. Chambers and Dorfman (2003) 

discussed the estimation of a finite population mean under 

certain general but known transformation on the continuous 

data. 

Researchers find the transformation technique useful in 

analyzing survey data. The key step is the identification of 

an appropriate transformation that fits the survey data well. 

In many applications, the form of transformation is 

determined subjectively. Unfortunately, prior knowledge or 

theory may not suggest the transformation to be used. In 

such situations, it would be convenient to determine the 

transformation adaptively using the survey data. 

The work of Box and Cox (1964) has led to the 

development of “data-decide-transformation” methods for 

constructing models with independently and identically 

distributed errors. Their paper and other papers on the 

subject, including Tukey (1957), John and Draper (1980), 

and Bickel and Doksum (1981), have inspired a large 

volume of applied research. Spitzer (1976) examined the 

relationship between the demand for money and the 

liquidity trap with a generalized Box-Cox model. In the 

context of research related to malaria, Newman (1977) 

concluded that the Box-Cox functional specification was 

superior to earlier specifications. Miner (1982) and Davison, 

Arnade and Hallahan (1989) considered modeling of 

soybean yield functions and the U.S. soybean export 

respectively. They concluded that the Box-Cox transfor-

mation provides approximately normally distributed error 

terms. A bibliography related to the Box-Cox transfor-

mation can be found in a review paper by Sakia (1992). For 

an application of the Box-Cox methodology to a mixed 

linear model, see Gurka (2004, 2006). 

Li and Lahiri (2007) used the Box-Cox transformation on 

the study variable to generate robust model-based predictors 

of a finite population total. Model-assisted estimators were 

also mentioned in a sub-section (Section 2.6), but the 

properties of the proposed estimators were not investigated. 

This article provides that analysis. The Box-Cox technique 

is employed to fit a regression between the study variable 

and a set of auxiliary variables. The fitted regression is then 

used to predict the values of study variable for the 

unobserved units of the finite population which, in turn, 

provide an adaptive regression type estimator within the 

model-assisted framework.  

The article is organized as follows. In Section 2, a new 

estimator is proposed and the analytical properties of the 

proposed estimator with respect to the sampling design are 

investigated. To better assess the robustness and the 

efficiency of the proposed estimator, we compare it to 

GREG estimators based on the underlying linear and log-

linear working models via Monte Carlo simulations in 

Section 3. Section 4 discusses the results. Finally, we offer 

some concluding remarks about areas for potential future 

research in Section 5. 

 
2. A new estimator of the finite population total 

 
Suppose that the quantity of interest is the finite 

population total  

,i
i U

T y
∈

= ∑  

where {1, ..., }U N=  denotes a finite population of known 

size ,N  and 0iy >  is the value of the study variable 

associated with unit .i  Write 1( , ..., ).Ny y ′=Y  To estimate 

,T  a sample s  of size n  is drawn from the finite population 

using a probability sampling scheme. Let iw  be the 

sampling weight for unit .i  The sampling weight is simply 

the inverse of the inclusion probability for the unit ,i  

denoted by ( ) ( 1, ..., ).i P i s i Nπ = ∈ =  We assume that 

we have information on 1( ,..., ) ,N
′=X x x  where i =x  

1(1, , ..., )i ikx x ′  is a column vector of k  known auxiliary 

variables for the unit .i  For any sample s  of size ,n  we 

redefine Y  and X  so that the first n  rows of Y  and X  

correspond to those in the sample. Write  

, ,
s s

r r

   
= =   

   

y X
Y X

y X
 

where 

• sy  is a 1n ×  column vector of observed study 

variable; 

• ry  is a ( ) 1N n− ×  column vector of unobserved 

study variable; 

• sX  is a ( 1)n k× +  matrix of known auxiliary 

variables in the sample; 

• rX  is a ( ) ( 1)N n k− × +  matrix of known auxiliary 

variables outside the sample.  
Throughout the paper, we use dE  and dV  to denote the 

expected value and variance with respect to the sampling 

design. 

 
2.1 GREG estimators of finite population totals   

The GREG estimator is defined here as 

, ,
ˆ ˆ ˆ( ) / ,G i w i i w i

i U i s

T y y y
∈ ∈

= + − π∑ ∑  
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where ,ˆi wy  is the predictor of iy  based on a model. 

Regardless of how well the underlying model describes the 

population, GREG estimators of the finite population total 

are design-consistent under mild conditions (Särndal et al. 

1992). The most commonly used model is the standard 

linear regression model, given by 

1 :  ,= +M Y Xβ ε  

where 2~ ( , ),σε 0 I  a -N variate probability distribution 

with the mean vector 0 and variance covariance matrix 2 ,σ I  

and I  is the N N×  identity matrix (nothing would be lost 

in this context by replacing 2σ I  with a more general 

positive definite matrix). In this equation, β  is a ( 1) 1k + ×  

column vector of regression coefficients. Both 2σ  and β  

are unknown superpopulation parameters. An unbiased 

predictor for the thi  unit is 

,
ˆˆ ,i w wy ′= ix β  (1) 

where ˆ
wβ  is the weighted least square (WLS) estimator of 

β  under 1M  and  

1

ˆ .w i i i i

i s i s

w w y

−

∈ ∈

   ′=    
   
∑ ∑i iβ x x x  

In some applications, especially in business and 

agricultural surveys, a linear model may not be appropriate 

for ,y  but may be reasonable for a strictly monotonic 

transformation of .y  For the data set given in Royall and 

Cumberland (1981), Chen and Chen (1996) observed that 

the finite population distribution was severely skewed and 

that the log-transformation helped achieving symmetry. The 

need and the benefit of taking the log-transformation were 

obvious. Therefore, we consider the log-linear regression 

model where the log-transformation is used on the 

dependent variable 

2 :  log ,= +M Y Xβ ε  

where 2~ ( , ).σε 0 I  An obvious predictor for the thi  unit is 

given by 

ˆ

,ˆ ,lw
i wy e

′= ix β  (2) 

where 

1

ˆ log .lw i i i i

i s i s

w w y

−

∈ ∈

   ′=    
   
∑ ∑i iβ x x x  

Model 2M  requires a subjective specification of the 

transformation applied to the study variable. This may be 

reasonable in situations where we know the appropriate 

transformation from prior empirical evidence or from the 

theory. In absence of any prior knowledge about the 

transformation, it is prudent to choose the transformation 

from among a flexible family of transformations using the 

data.  

Tukey (1957) considered the following family of power 

transformations: 

( ) 0,

log( ) 0,

y
y

y

λ
λ  λ ≠

= 
λ =

 

where 0.y >  In order to remove the discontinuity at 

0,λ =  Box and Cox (1964) proposed the following family 

of transformations: 

( ) ( 1) / 0,

log( ) 0,

y
y

y

λ
λ  − λ λ ≠

= 
λ =

 

where 0.y >  The parameter λ  determines the nature of 

transformation. For example, 1, 0, 0.5, -1λ =  correspond 

to no transformation, log-transformation, square root 

transformation, and reciprocal transformation, respectively. 

The transformation parameter λ  is estimated by the data. 

The Box-Cox analysis may lead to a log-transformation, but 

may equally lead to some other transformation in the above 

family - it depends on the actual data observed. 

We consider the following superpopulation model for the 

transformed study variable: 

( )

3 : ,λ = β +M Y X ε  

where ε  are approximately normal with mean 0 and 

variance matrix 2 .σ I  

Schlesselman (1971) showed that the maximum likely-

hood estimators of the Box-Cox model parameters are 

scale-invariant so that rescaling the original -y variable 

leads to the same log-likelihood function as long as the 

regression model contains an intercept term. Following his 

study and most papers on the Box-Cox models, we include 

an intercept term in the model. 

Under ,3M  the predictor for the thi  unobserved unit is 

obtained by a simple back-transformation from the Box-

Cox transformation: 

ˆ1/

,
ˆ ˆ ˆ ˆˆ ( , ) ( 1) ,wi w i w w w wy g

λ′= λ = λ +iβ x β  (3) 

where ˆ
wβ  and ˆ

wλ  are estimators of the model parameters. 

The estimation method is explained in next subsection. 

Equations (2) and (3) do not provide unbiased predictors for 

iy  under the respective underlying models. Li and Lahiri 

(2007) showed that if the error variance is small, that is, the 

model fits the data very well, the right-hand sides of 

equations (2) and (3) are good alternatives to the unbiased 

predictors. For simplicity and to reduce the computational 

burden, we will treat the right-hand sides of equations (2) 

and (3) as appropriate alternatives for the unbiased 

predictors. Recall that our purpose is to describe model-

assisted estimators for finite population totals. The 
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underlying model is only used to suggest an estimator, 

which will be evaluated under the randomization 

framework. Even though the predictors of the individual iy  

are biased, we can still construct design-consistent esti-

mators for finite population totals, unlike the strictly model-

based estimators proposed by Li and Lahiri (2007). 

We denote GREG estimators under the three models 

−1 3M M  by _
ˆ ,G LT  _ LOG

ˆ ,G LT  and _
ˆ ,G BCT  respectively. 

The _
ˆ
G BCT  estimator is different from the _

ˆ
G LT  and 

_ LOG
ˆ
G LT  because the data dictates the transformation to be 

used. 

It is possible to incorporate Box-Cox transformations on 

both the -y variable and -x variables. In the past, different 

functional forms of the Box-Cox model have been 

investigated. Khan and Ross (1977), Spitzer (1976), 

Zarembka (1968), Boylan, Cuddy and O’Muircheartaigh 

(1980), and others, considered a particular case of the 

general Box-Cox model when a common transformation 

parameter is assumed for the -y variable and -x variables. 

Gemmill (1980), Boylan, Cuddy and O’Muircheartaigh 

(1982), and others, applied the general Box-Cox model with 

different transformation parameters on -y variable and 

-x variables. Li and Lahiri (2007) also used the general 

Box-Cox model to predict the finite population total under a 

model-based framework. In future, this method can be 

extended to different functional forms of the Box-Cox 

transformation.  

We only discuss a Box-Cox transformation of the 

-y variable here. This allows for a fairer comparison among 

the three GREG estimators.  
 
2.2 Estimation of model and transformation 

parameters ′2( , , )ϕ = β λ σϕ = β λ σϕ = β λ σϕ = β λ σ  using the pseudo-

maximum likelihood (PML) method  
In order to ease the estimation of λ  using existing 

computational procedures, one must replace ( )λ
Y  in the 

model 3M  by a scaled transformation *( ).λY  For the thi  

unit,  

1

*( )
( 1) /

log( )

i

i

i

y y
y

y y

λ λ−
λ

 − λ
= 



ɶ

ɶ

0,

0,

λ ≠

λ =
 

where yɶ  is the geometric mean of y ’s. The following 

calculation will be based on the new scaled model:  

*( ) * *

4 : ,λ = +M Y Xβ ε  

where *ε  are approximately normal with mean 0 and 

variance matrix *2 .eσ I  Let * * *2( , , ) .e
′= λ σφ β  

The maximum likelihood estimator (MLE) of *φ  

maximizes the log-likelihood  

* *( ) log ( ; , ),i

i

l f y y= ∑φ φ ɶ  

where  

{ }

*

*2 1/ 2 *2 1 *( ) 2 1

( ; , )

(2 ) exp (2 ) ( ) ( / ) .

i

e e i i

f y y

y y y− − λ λ−

=

′πσ − σ − ⋅*

i

φ

x β

ɶ

ɶ

 

Skinner, Holt and Smith (1989) redefines *
φ  as the value of 

*
φɶ  which maximizes  

* *( ) log ( , ),i

i U

l f y
∈

= ∑φ φɶ ɶ  

the sum being taken over all units in the finite population. 

Thus, among all possible models *( , ),if y φɶ  the one which 

“best fits” the finite population is chosen. If we choose the 
*( , )if y φɶ  family poorly, this best fit will still be poor, but 

our inference treats it as the target we are trying to hit with 

our sample data. Thus, it is important to select appropriate 

choices for *( , ).if y φɶ  

For the finite population, *
φ  satisfies 

* * *( ) log ( ; , ) / 0,U i

i U

l f y y
∈

 = ∂ ∂ = ∑φ φ φɺ ɶ  

where 

1/

1

.
N

N
i

i

y y
=

= ∏ɶ  

For given *,φ  let *( ),Ul φɺ  summation of the first derivative 

of the log-likelihood with respect to *,φ  be a finite 

population parameter. We take a sample, and, by approxi-

mating *log ( ; , )if y yφ ɶ  for each unit i  in the sample by 
*log ( ; , ),i wf y yφ ɶ  we estimate the population total, *( ),Ul φɺ  

by *

PML
ˆ( ):sl φ
ɺ  

* *
PML

* * *
PML ˆ

ˆ( ) log ( ; , ) / ,s i i w

i s

l w f y y
=

∈

 = ∂ ∂ ∑
φ φ

φ φ φɺ ɶ  

where 

,
i i

i s

w w

w i

i s

y y ∈
∑

∈

= ∏ɶ  

the weighted geometric mean of y ’s in the sample and 

ˆ *
PMLφ  is the pseudo maximum likelihood estimator of *,φ  

satisfying *

PML
ˆ( ) 0sl =φɺ  (Wu and Sitter 2001). The PML 

estimator, 
* *2

,
ˆ ˆˆ ˆ, , ) ,w w e w

′= λ σ*

PMLφ (β  can be obtained by a 

grid search method. That is, calculating and plotting the 

weighted log likelihood values,  

* *log ( ) log ( ; , )i i w

i s

L w f y y
∈

= ∑φ φ ɶ  (4) 

against the set of values for λ  will locate the PML estimate, 
ˆ ,wλ  of the transformation parameter. When we evaluate the 

log-likelihood function at each fixed value of λ  in the 

sampling context, *
β  and 2*

eσ  are estimated by 

incorporating the sampling weights as: 
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1

*( )

*2 *( ) * 2

,

ˆ ,

ˆˆ ( ) .

w i i i i
i s i s

e w i i w i
i s i s

w w y

w y w

−
λ

∈ ∈

λ

∈ ∈

   ′=    
   

′σ = −

∑ ∑

∑ ∑

*

i i

i

β x x x

x β

 

Since model 3M  is of the interest, converting ˆ *
PMLφ  that 

maximizes (4) back to ˆ
PMLφ  in the model 3M  is necessary 

and 
ˆ 1 *ˆ ˆ ,w

w w wy
λ −=β βɶ

ˆ2( 1)2 *2

, ,ˆ ˆ .w

e w w e wy
λ −σ = σɶ  

Since we plan to use a design-consistent estimator for the 

population total, it is reasonable to question why we need 

the sampling weights in estimating the model parameters. 

Sverchkov and Pfeffermann (2004) argue that incorporating 

weights can produce better estimates of model parameters 

when the model is correct in the population but wrong in the 

sample. That can happen when the probabilities or 

selections are correlated within the .iε  

Let *B  and Λ  be the first two components of the full-

sample solution to the maximization of *log ( , ),U if y∑ φɶ  

and 1 *.yΛ−=B Bɶ  This allows us to define ( , )N = Λθ B  as 

finite population parameters, irrespective of the validity of 

the model.  

It can be shown that ˆ ˆ ˆ( , )w w w= β λθ  is a design-

consistent estimator of ,Nθ  that is,  

ˆ →wβ B  in probability and ˆ
wλ → Λ  in probability 

under certain regularity conditions using arguments similar 

to Binder (1983), Wu (1999) and Wu and Sitter (2001). 

Here the probabilistic convergence is with respect to the 

sampling design. 
 
2.3 Consistency property of ˆ

_G BCT  estimator  
It is well-known that the _

ˆ
G LT  estimator has the 

desirable property of design-consistency under mild condi-

tions (Särndal et al. 1992). This means that the relative 

difference between the estimator and what it estimates will 

converge in probability to 0 as the sample grows arbitrarily 

large whether or not the working model on which it is based 

holds. That property can be maintained for the _
ˆ
G BCT  

estimator.  

Define  

( )_ _
ˆ ( ) ( ) / ,D G BC i N i i N i

i U i s

T g y g
∈ ∈

= + − π∑ ∑θ θ  

and  

_
ˆ ˆˆ ( ) ( ( )) / .G BC i w i i w i

i U i s

T g y g
∈ ∈

= + − π∑ ∑θ θ  

 

Theorem: Under the following assumptions, the Box-

Cox-based GREG estimator _
ˆ
G BCT  is design consistent for 

,T  in the sense that 1
_

ˆ( ) (1 ).G BC pN T T O n− − =  Further-

more, the asymptotic variance of _
ˆ
G BCT  is given by 

( )

_
ˆ( )

( ) ( ) ( ( )) /( ),

d G BC

ij i j i i N j j N i j
i U j U

AV T

y g y g
∈ ∈

=

π − π π − − π π∑∑ θ θ
 

which can be estimated by 

_
ˆ ˆ( )

ˆ ˆ(( ) ) ( ( )) ( ( )) ( ).

d G BC

ij i j ij i i w j j w i j
i s j s

V T

y g y g
∈ ∈

=

π − π π π − − π π∑∑ θ θ (5)
 

 

Assumption 1: ˆ (1 );w N pO n= +θ θ  

Assumption 2: For each ,ix ( ) /ig∂ ∂t t  is continuous in t  

and ( ) / ( )ig h∂ ∂ ≤t t θ  for t  in a neigh-

bourhood of ;θ  

Assumption 3: The Horvitz-Thompson estimators with the 

basic design weights for certain population 

totals are asymptotically normally dis-

tributed. 

Assumption 4: For each ,ix  the second derivative of ( )ig t  

with respect to t  is continuous and bounded 

in the neighborhood of .θ  

 

Proof: (see Appendix).  
The proposed variance estimator in equation (5) is based 

on large sample approximations. For a given nominal level 

1 ,− α  the usual confidence interval based on the normal 

approximation for the variance estimator gives approxi-

mately 100(1 − α )% coverage rate in repeated large 

samples. Unfortunately, in some cases, it has been observed 

that the coverage properties of this type of variance 

estimator can be poor for some choices of the assisted 

model for the _
ˆ
G LT  estimators (Särndal 1982; Särndal, 

Swensson and Wretman 1989; etc). Theoretical and 

empirical studies on the coverage property of the proposed 

variance estimator need further investigated. 

The _
ˆ
G BCT  estimator is design-consistent for the finite 

population total T  under the randomization approach, and 

the Box-Cox technique allows a reasonable transformation 

on the dependent variable to be automatically determined by 

the data from a large family of functions, and hence 

increased efficiency can be achieved. 

 
3. A simulation study 

 
The purpose of this simulation study is to evaluate the 

performance of different GREG estimators for a finite 

population total. In this simulation exercise, a finite 

population from the Australian Agricultural and Grazing 

Industries Survey (AAGIS) is generated. This survey data 

contains information on the number of cattle ( )y  and farm 

area ( )x  for each of the 431 farms.  
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We consider a finite population of size N = 4,000, 

generated from the following model:  
( )

0 1: ( 1) / ,i i i iy y xλ λ= − λ = β + β + ε5M  

where iε ’s are independent with approximate 2(0, ),N σ  

and ix  is the logarithm of a value generated from an 

exponential distribution with mean xµ  and standard error 

.xσ  In order to mimic a true situation, we choose λ = 0.1, 

0β = 4.20, and 1β = 2.66 which are the estimates obtained 

by fitting the real survey data to the model .3M  We set 

xµ = 1,040, xσ = 1,000 to ensure 0iy >  for almost all unit 

.i  Strictly speaking, we have a truncated normal distribution 

of ,y  since all negative values of y  generated are 

discarded. The effect of this is negligible since less than 

0.1% of the generated y  values need to be discarded. The 

same phenomenon was found by Taylor (1986). 

Simulation is based on repeated sampling from the 

generated finite population. Two sampling designs are 

investigated: simple random sampling (SRS) and stratified 

SRS (STSRS). When a sample is selected by STSRS, 

unequal selection probabilities among different strata are 

applied. We define two strata using the boundary value: 

median of y  values in the finite population. For stratum h  

of size ,hN  a simple random sample of size hn  is selected. 

Define 1p  and 2p  selection probabilities for stratum 1 and 

stratum 2, respectively. We specify 1 22 .p p= ×  For fixed 

sample size 1 1 1, ,n n N p= ×  and 2 2 2.n N p= ×  

We are interested in estimating the finite population total 

.i
i U

T y
∈

= ∑  

In this simulation study, we study the performances of 

_
ˆ
G BCT  estimator, _

ˆ ,G LT _ LOG
ˆ ,G LT  along with the design-

based Horvitz-Thompson estimator ˆ( ),DT  where the 

subscripts “ -L ”, “-LOGL”, and “-BC” denote the 

underlying linear model, log-linear model, and Box-Cox 

model, respectively. 

One thousand samples are selected from the simulated 

finite population for each of the sample size n ∈(30, 80, 

150). Four estimators are produced for each selected 

sample. Estimator of the finite population transformation 

parameter Λ  is also produced for each sample. For the 

purpose of comparison, two methods are used to estimate 

.Λ  Let ˆ ˆ( )wλ λ  be the OLS/ML (PML) estimators of .Λ  

Over all the 1,000 samples, we compute the empirical 

percentage relative biases (RelBias) and root mean square 

errors (rmse) to evaluate these estimators using the 

following formulae:  

RelBias 1

1

ˆ( ) / ,
B

b
b

B
−

=

= ϖ − ϖ ϖ∑  

and 

1 2

1

ˆrmse ( ) ,
B

b

b

B−

=

= ϖ − ϖ∑  

where B  is the number of the replications in the Monte 

Carlo simulation and ϖ̂  represents an arbitrary estimates of 

the finite population parameter .ϖ  

 
4. Results 

 
In Table 1 we present the RelBias and rmse of four 

estimators using different sampling designs with varying 

sample sizes when σ = 0.5. All four estimators give 

RelBias close to zero [maximum of the absolute values of 

RelBias (|RelBias|) in Table 1 is less than 0.01].  Among 

them, _Ĝ BCT  has the smallest |RelBias| and rmse over 

different sampling sizes and sampling designs. Therefore, 

the Box-Cox technique protects _
ˆ ,G BCT  which achieves 

improvement in efficiency compared to other GREG 

estimators. 

The RelBias and rmse under the same conditions when 

σ = 1 and σ = 2 are also investigated. Figure 1 presents the 

rmse for the three GREG estimators _ _ LOG
ˆ ˆ( , ,G L G LT T  and 

_
ˆ )G BCT  using different sampling designs. We note that 

_Ĝ BCT  consistently has the smallest rmse when σ = 0.5 and 

1. Thus, a robust model chosen by the Box-Cox method 

reduces the rmse, especially when the model is appropriate 

with small .σ  

  
Table 1 
Relative biases and root mean square errors of the four 
estimators using different sampling designs with varying 

sample sizes ( 0.1)λ =λ =λ =λ =  
 

  ˆ1
DT  ˆ 2

G_LT  ˆ 3
LOGG_ LT  ˆ 4

_G BCT  

Simple random sampling 
RelBias(×10-3) n = 30 4.37 -9.82 5.46 3.62 
 n = 80 1.43 -3.67 1.24 0.65 
 n = 150 -2.60 -1.24 1.22 0.53 

rmse(×107) n = 30 7.17 3.54 2.02 1.94 
 n = 80 4.26 2.09 1.18 1.09 
 n = 150 3.20 1.58 0.88 0.79 

Stratified simple random sampling 
RelBias(×10-3) n = 30 6.01 -5.82 3.84 1.92 
 n = 80 9.93 -1.01 3.04 0.98 
 n = 150 1.75 -1.85 1.06 0.42 

rmse(×107) n = 30 5.63 3.67 2.29 2.11 
 n = 80 3.51 2.31 1.43 1.28 
 n = 150 2.49 1.59 1.01 0.90 

 

1 ˆ
DT : the design-based Horvitz-Thompson estimator; 

 

2 
_

ˆ
G LT : the GREG estimator with the underlying linear 

model; 
3 

_ LOG
ˆ
G LT : the GREG estimator with the underlying log-linear 

model; 
4 

_
ˆ
G BCT : the GREG estimator with the underlying Box-Cox 

model.  
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Figure 1 Comparison of root mean square error of ˆ ,G_LT ˆ ,LOGG_ LT  and ˆ
_G BCT  with varying sampling designs, sample sizes, and 

standard deviations 
 

We may also be interested in how ˆ
G LT

−
 performs 

compared to ˆ
G BCT

−
 when λ = 1, the situation favoring ˆ .G LT

−
 

From Table 2, we can see that ˆ
G BCT

−
 is quite comparable to 

ˆ ,G LT
−

 especially when sample size is large. This result 

implies we don’t have much loss in RelBias and rmse by 

using ˆ
G BCT

−
 when ˆ

G LT
−

 should be used. 

In order to better assess the robustness and the 

improvement in efficiency of the ˆ
G BCT

−
 versus ˆ .G LT

−
 and 

LOG
ˆ ,G LT

−
 a finite population of size N = 4,000 is generated 

from the model not in agreement with the Box-Cox model 

,5M  but  
( )

0 1: ,i i i iy x zλ = β + β + + ε6M  

where 2.i iz x=  The same ix ’s and parameter values as 

specified in Section 3 are used to generate iy ’s. The same 

four estimators are studied based on the new finite 

population {( , )i ix y ’s for 1, ..., 4,000}.i =  This is the 

situation not ideal for any of the GREG estimators. The 

results are shown in Table 3. The advantage of using ˆ
G BCT

−
 

is obvious in terms of the Relbias and rmse. 

Table 4 presents the RelBias and rmse of λ̂  and ˆ
wλ  for 

STSRS sampling with varying sample sizes and σ ’s based 

on population values generated from .5M  Since we 

stratified on the -y variable, using the weights should have 

an impact, at least on the bias of the parameter estimate. 

When σ  is small, that is, when the simulated data are well 

fitted to the assumed model, ˆ
wλ  gives RelBias closer to 

zero, but ˆ
wλ  and λ̂  perform equally well in terms of the 

rmse. When σ  is large, however, ˆ
wλ  consistently gives 

smaller absolute values of RelBias and rmse, as compared to 
ˆ,λ  although the rmse’s remain close. Indeed, when it come 

to estimating ,T  neither approach has the advantage in 

terms of empirical bias or root mean squared error no matter 

the sample size or the setting for σ  (not shown). This may 

be because the estimator for T  is model-biased no matter 

how well λ  is estimated.  
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Table 2  
Relative biases and root mean square errors of the four 
estimators using different sampling designs with varying 

sample sizes ( 1λ =λ =λ =λ = ) 
 

  
ˆ1
DT  ˆ 2

G_LT  ˆ 3
LOGG_ LT  ˆ 4

_G BCT  

Simple random sampling  

RelBias(×10-3) n = 30 0.31 0.16 0.63 0.24 

 n = 80 -0.37 -0.09 0.03 -0.09 

 n = 150 -0.25 0.03 0.10 0.02 

rmse(×107) n = 30 20.91 3.51 3.98 3.63 

 n = 80 12.22 2.12 2.36 2.13 

 n = 150 8.98 1.57 1.75 1.57 

Stratified simple random sampling 

RelBias(×10-3) n = 30 0.51 0.27 0.56 0.22 

 n = 80 3.97 -0.11 -0.11 -0.13 

 n = 150 -0.23 0.04 0.06 0.04 

rmse(×107) n = 30 12.54 3.79 4.20 3.91 

 n = 80 8.39 2.27 2.61 2.29 

 n = 150 5.48 1.67 1.90 1.67 
 

1 ˆ
DT : the design-based Horvitz-Thompson estimator; 

 

2 
_

ˆ
G LT : the GREG estimator with the underlying linear 

model; 
3 

_ LOG
ˆ
G LT : the GREG estimator with the underlying log-

linear model; 
4 

_
ˆ
G BCT : the GREG estimator with the underlying Box-Cox 

model. 

 
 
Table 3  

Relative biases and root mean square errors of the four 
estimators using different sampling designs with varying 
sample sizes ( y  values generated from a model M6) 

 

  
ˆ1
DT  ˆ 2

G_LT  ˆ 3
LOGG_ LT  ˆ 4

_G BCT  

Simple random sampling  

RelBias(×10-3) n = 30 -16.89 -54.56 28.81 -2.17 

 n = 80 -5.65 -23.15 11.76 -1.43 

 n = 150 -13.78 -13.78 10.73 -0.76 

rmse(×1011) n = 30 30.08 24.68 12.11 2.87 

 n = 80 17.95 13.85 7.25 1.78 

 n = 150 13.60 10.29 5.50 1.33 

Stratified simple random sampling 

RelBias(×10-3) n = 30 1.11 -36.13 31.95 -7.87 

 n = 80 5.59 -18.13 13.11 -3.26 

 n = 150 -2.79 -7.30 7.33 -1.43 

rmse(×1011) n = 30 34.10 27.15 14.19 4.37 

 n = 80 19.61 15.93 8.49 2.61 

 n = 150 14.60 12.19 6.62 2.02 
 

1 ˆ
DT : the design-based Horvitz-Thompson estimator; 

 

2 
_

ˆ
G LT : the GREG estimator with the underlying linear 

model; 
3 

_ LOG
ˆ
G LT : the GREG estimator with the underlying log-linear 

model; 
4 

_
ˆ
G BCT : the GREG estimator with the underlying Box-Cox 

model. 

 

 

 

Table 4  
Relative biases and root mean square error of 
ˆ 1λλλλ  and ˆ 2

wλλλλ  for STSRS sampling with varying 

sample sizes and standard deviations. 
 

 σσσσ  = 2 σσσσ  = 1 σσσσ  = 0.5 

 λ̂λλλ  ˆ
wλλλλ  λ̂λλλ  ˆ

wλλλλ  λ̂λλλ  ˆ
wλλλλ  

Relative biases  

n = 30 -0.58 0.13 -0.28 0.10 -0.16 -0.01 

n = 80 -0.42 0.14 -0.19 0.11 -0.13 -0.02 

n = 150 -0.39 0.10 -0.16 0.09 -0.10 -0.01 

Root mean square error 

n = 30 0.14 0.12 0.11 0.11 0.07 0.07 

n = 80 0.08 0.07 0.06 0.06 0.04 0.04 

n = 150 0.06 0.05 0.05 0.04 0.03 0.03 
 

1 
Estimator λ̂  is obtained using ordinary least 
square method/maximum likelihood method;  

2 Estimator ˆ
wλ  is obtained by pseudo-maximum 

likelihood method. 

 
5. Concluding remarks 

 
In this article, we have proposed a generalized regression 

estimator of a finite population total based on the Box-Cox 

transformation technique under a general unequal proba-

bility sampling design. The proposed estimator, being 

design-consistent, maintains the robustness property of 

GREG even if the underlying model fails. In many 

situations, some version of the model in M3 will at least 

provide a useful approximation of dependent-variable 

behavior. The Box-Cox technique allows a reasonable-

fitting transformation on the dependent variable to be 

automatically determined by the data. The robustness and 

efficiency of the proposed estimator were evaluated 

analytically and via Monte Carlo simulations. 

When comparing a GREG based on an underlying linear 

model ( _
ˆ
G LT ) to one based on a Box-Cox model ( _

ˆ
G BCT ), 

we should remember that _
ˆ
G LT  doesn’t require complete 

auxiliary information. Moreover, it can produce a single set 

of weights usable for all variables of interest, unlike the 

_
ˆ .G BCT  To achieve higher efficiency, however, both 

estimators usually require different weights for different 

variables of interest, because each study variable is best fit 

by its own working model. The _
ˆ
G BCT  can provide even 

more efficiency than the _
ˆ
G LT  but at the cost of requiring 

complete information about the -x variables. Such 

information, although rarely available in North American 

household surveys, is often available in business surveys.  

Surveys are rarely conducted to measure a single variable 

of interest. The question is how to estimate the finite totals 

for mutually exclusive and exhaustive subpopulations such 

that those estimates will add up to the estimate of the finite 

total for the entire population. We need to take special care 

of this problem since Box-Cox estimators are not linear in 

.y  Such estimates can be obtained using a standard 
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benchmarking tool outlined in Li and Lahiri (2007). 

Another approach is to use model calibration (Wu and Sitter 

2001). Treating the predictions ,ˆi wy  from equation (3) as the 

auxiliary variable into a design-consistent linear regression 

estimator, such as  

_
ˆ / / ,G BC i i i i i

i s i U i s

T y
∈ ∈ ∈

 ′ ′= π + − π 
 

∑ ∑ ∑z z d  

where 

1

,ˆ, and (1 ) ,i i i i i i i i w

i s i s

w w y y

−

∈ ∈

   ′ ′= =   
   
∑ ∑d z z z z  

will produce a set of calibration weights  

( )( )( )1

, 1 /i c i ii i j j jj i iU S S
w w w

− ′ ′ ′= + − π ∑ ∑ ∑z z z z z
 

that can be used generally. Moreover, we can, in principle, 

incorporate more than one set of predictors as auxiliary 

variables, either for different variables of interest or the 

same variable of interest broken into several subpopulations. 

This is a fruitful area for future research. 

Several other extensions of our current method merit 

further exploration. We did not consider here the possibility 

of unit model errors having a complex correlation structure. 

Although a design-consistent estimator obtains using our 

methods when such a structure exists but is ignored, the 

efficiency of the estimator likely suffers. It will be inter-

esting to investigate whether allowing certain correlation 

structures in the data can make the estimation procedure 

more efficient. 

In this article, we only transformed -y variable by the 

Box-Cox technique. In future, this method can be extended 

to different functional forms of the Box-Cox transformation. 

The variance estimator of the _
ˆ
G BCT  estimator proposed 

in this article is based on large sample approximation. Some 

studies showed poor performance for this type of variance 

estimator for some choices of the assisted models for the 

_
ˆ .G LT  Theoretical and empirical studies on the coverage 

property of the proposed variance estimator need further 

investigation. 
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Appendix 

 
Write 

_
ˆ ˆˆ / ( ) ( ) / ,G BC i i i w i w i

i s i U i s

T y g g
∈ ∈ ∈

 = π + − π 
 

∑ ∑ ∑θ θ  

by Taylor Series expansion, with assumption (2) we have 

( ) *
ˆ ˆ( ) ( ) ( ) / | ( ),i w i N i w Nt

g g g
=

= + ∂ ∂ −
θ

θ θ t t θ θ  

where * ˆ( , )N w∈θ θ θ  or ˆ( , ),w Nθ θ  and ( )( ) /ig∂ ∂t t  is a row 

vector. 

By assumptions (1) and (2),  

1 1ˆ( ) ( ) (1 )i w i N p

i U i U

N g N g O n
− −

∈ ∈

= +∑ ∑θ θ  

1 1 1 1ˆ( ) ( ) (1 ).i i w i i N p

i s i s

N g N g O n
− − − −

∈ ∈

π = π +∑ ∑θ θ  

Also note that by assumption (3), 

1 1 1( ) ( ) (1 ).i N i i N p

i U i s

N g N g O n− − −

∈ ∈

= π +∑ ∑θ θ  

Therefore,  

1 1ˆ ˆ( ) ( ) (1 ).i w i i w p

i U i s

N g g O n− −

∈ ∈

 − π = 
 
∑ ∑θ θ  

Also, by assumption (3), 

1 1 (1 ).i i i p

i U i s

N y y O n− −

∈ ∈

 − π = 
 
∑ ∑  

Therefore, 1
_

ˆ( ) (1 ),G BC pN T T O n− − =  i.e., _
ˆ
G BCT  con-

verges in probability to T  with the order of (1 ).pO n  

In addition, with assumption (4), a second-order Taylor 

series approximation to ˆ( )i wg θ  can be expanded as:  

( )( ) *

2

ˆ( ) ( ) ( ( ) / ) |

ˆ ˆ ˆ( ) ( ) ( ) / | ( ),

Ni w i N i t

w N w N i w Nt

g g g

g

=

=

′= + ∂ ∂

′ ′− + − ∂ ∂ ∂ −

θ

θ

θ θ t t

θ θ θ θ t t t θ θ
 

where * ˆ( , )N w∈θ θ θ  or ˆ( , ).w Nθ θ  It follows from 

assumptions (1) and (4) that  

( )

1 1

1 1

ˆ( ) ( )

ˆ( ) / | ( ) ( ),
N

i w i N
i U i U

i t w N p
i U

N g N g

N g O n

− −

∈ ∈

− −
=

∈

=

′+ ∂ ∂ − +

∑ ∑

∑ θ

θ θ

t t θ θ
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( )

1 1 1 1

1 1 1

ˆ( ) ( )

ˆ( ) / | ( ) ( ).
N

i i w i i N
i s i s

i i t w N p
i s

N g N g

N g O n

− − − −

∈ ∈

− − −
=

∈

π = π

′+ π ∂ ∂ − +

∑ ∑

∑ θ

θ θ

t t θ θ
 

By assumptions (1) and (3), ˆ (1 )w N pO n= +θ θ  and  

1 1 1
( ) / | ( ) / |

(1 ).

N Ni i t i t
i s i U

p

N g N g

O n

− − −
= =

∈ ∈

π ∂ ∂ = ∂ ∂

+

∑ ∑θ θt t t t

 

Hence, 

1 1

1 1 1

ˆ ˆ( ) ( )

( ) ( ) ( ).

i w i i w

i U i s

i N i i N p
i U i s

N g g

N g g O n

− −

∈ ∈

− − −

∈ ∈

 − π = 
 

 − π + 
 

∑ ∑

∑ ∑

θ θ

θ θ

 

Therefore,  

_

1

ˆ /

( ) ( ) ( / ).

G BC i i
i s

i N i i N p
i U i s

T y

g g O N n

∈

−

∈ ∈

= π

 + − π + 
 

∑

∑ ∑θ θ

 

The asymptotic design-variance of ˆ
AGT  is: 

_
ˆ( )

( ) ( ( )) ( ( )) /( ),

d G BC

ij i j i i N j j N i j
i U j U

AV T

y g y g
∈ ∈

≈ π − π π − − π π∑∑ θ θ
 

which can be estimated by 

_
ˆ ˆ( )

ˆ ˆ( ) ( ( )) ( ( )) ( ).

d G BC

ij i j ij i i w j j w i j
i s j s

V T

y g y g
∈ ∈

≈ π − π π π − − π π∑∑ θ θ
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The BACON-EEM algorithm for multivariate outlier detection 
in incomplete survey data 

Cédric Béguin and Beat Hulliger 1 

Abstract 

With complete multivariate data the BACON algorithm (Billor, Hadi and Vellemann 2000) yields a robust estimate of the 

covariance matrix. The corresponding Mahalanobis distance may be used for multivariate outlier detection. When items are 

missing the EM algorithm is a convenient way to estimate the covariance matrix at each iteration step of the BACON 

algorithm. In finite population sampling the EM algorithm must be enhanced to estimate the covariance matrix of the 

population rather than of the sample. A version of the EM algorithm for survey data following a multivariate normal model, 

the EEM algorithm (Estimated Expectation Maximization), is proposed. The combination of the two algorithms, the 

BACON-EEM algorithm, is applied to two datasets and compared with alternative methods.  
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1. Introduction 
 

The problem underlying the methods presented in this 

article is a sample survey on quantitative data like sales of 

different products where missing values and outliers occur. 

Often in the editing phase of the survey outliers are detected 

by inspection of individual questionnaires or by univariate 

outlier detection methods. However, there are few 

systematic methods which allow multivariate outlier 

detection in incomplete survey data.  

Outlier detection is an important aspect of statistical data 

editing. Undetected outliers may have a large and un-

desirable impact on survey results. Most existing outlier-

detection methods are designed for complete univariate or 

bivariate data. However, real outliers in survey data are 

often multivariate in nature. The problem of outliers 

becomes much more difficult in three or more dimensions 

than in one dimension or two. While an outlier can only be 

very small or very large in one dimension (at least for 

unimodal distributions) in higher dimensions the issue of the 

“direction” of the outlier becomes more and more 

important. Outliers may be quite close to the bulk of the 

data or to a model if the distance is measured in a Euclidean 

metric because this metric only checks the axis directions. 

However, if a metric appropriate to the correlation structure 

of the bulk of the data is used the outlier may be far away. 

Thus in higher dimensions the form of the point cloud of the 

bulk of the data must be well reflected in the metric used to 

detect outliers.  

Outlier detection needs a model for the bulk of the data to 

be able to distinguish observations which are not fitted well 

by the model. Thus outlier detection is inherently tied to 

models and their robust estimation. In a sampling context 

the model should be appropriate for the bulk of the 

population and not only for the bulk of the sample. 

Therefore, the sample design should be taken into account 

when detecting outliers in sample survey data. The 

discussion on the role of sampling weights is taken up again 

in Sections 1 and 5.  

Survey data often contains missing values. Outlier 

detection with missing items must estimate the model for 

the bulk of the data taking into account the missingness. 

This estimation under missing values will be based on the 

relationship among the observed and missing variables. The 

relationship must be modeled robustly to protect it from 

outliers. If an observation would be classified as an outlier 

based on complete information but the values causing the 

outlyingness are missing then the outlier will not show up 

compared with a robust model. Therefore it will be difficult 

to detect an outlier which is outlying only in its missing 

values. This is analogue to the conception of missingness at 

random (MAR) (Little and Rubin 1987): We need 

information in the observed values to infer that an observa-

tion is an outlier. We may call this situation “outlying at 

random”. We can formalize it by stating that the outlier 

mechanism does not depend on unobserved data, which 

includes unobserved true values of the outlier in case the 

outlier is an error. However, for outlier detection this 

condition is too strict because we may be able to detect 

outliers in observed values even if the mechanism depends 

on unobserved values. This is possible because the model 

must hold for the bulk of the data only and not for the 

outliers. If the observed values of the outlier deviate enough 

from the model the outlier will be detected. However, when 

it comes to imputation of true values for nominated outliers 

we are in the same situation as for missing values. If the 
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outlier mechanism, conditionally on the observed values, 

still depends on the true unobserved values of the outlier we 

cannot estimate a model for the unobserved values. In this 

article we use imputation only as an ad hoc device for better 

outlier detection. Nevertheless we assume that, condi-

tionally on the observed data, the non-response mechanism 

and the outlier-mechanism are independent and that both 

mechanisms do not depend on unobserved data.  

In a workpackage of the EUREDIT project on “The 

development and evaluation of new methods for editing and 

imputation” (EUREDIT 2003) the authors developed outlier 

detection methods which cope with this difficult set-up: 

multivariate incomplete sample survey data. Two of these 

methods, Transformed Rank Correlations and the Epidemic 

Algorithm are presented in (Béguin and Hulliger 2004). The 

third method, BACON-EEM, is presented here.  

In this article we concentrate on outlier detection. The 

scenario we have in mind is that once an outlier is detected, 

either it may be checked and treated manually or it may be 

treated by imputation. Robust estimation would replace both 

detection and imputation but is less adapted to the practice 

of official statistics. We do not distinguish between 

representative and non-representative outliers (Chambers 

1986) since both types of outliers have to be detected, 

though they may have to be treated differently.  

For complete data the existing multivariate methods can 

be classified into two major families. Many methods 

suppose that the data follow some elliptical distribution and 

try to estimate robustly the center and the covariance matrix. 

Then they use a corresponding Mahalanobis distance to 

detect outliers. The second class of methods does not rely on 

a distributional assumption but uses some measure of data-

depth (see Liu, Parelius and Singh 1999, for a review) to be 

used as an outlyingness measure. The second family is at 

first sight more appealing, but, unfortunately, it often fails to 

yield methods computationally feasible with large datasets.  

Many robust estimators of the covariance matrix have 

been reported in the literature. M-estimators (Huber 1981; 

Maronna 1976) have the advantage of being relatively 

simple to compute with a straightforward iteration from a 

good starting point (Rocke and Woodruff 1993). But their 

breakdown point - i.e., the smallest fraction of the data 

whose arbitrary modification can carry an estimator beyond 

all bounds - is at most 1 ( 1)p/ +  where p is the dimension of 

the data (Donoho 1982; Maronna 1976; Stahel 1981). This 

handicap is important when dealing with data from official 

statistics, which is often high dimensional. Many other 

affine equivariant robust estimators, i.e., estimators which 

transform coherently when the data is transformed linearly, 

were studied by (Donoho 1982) but all have breakdown 

points of at most 1 ( 1).p/ +  Other approaches ended up with 

affine equivariant high breakdown point estimators, e.g. the 

Stahel-Donoho (SD) estimator (Stahel 1981; Donoho 1982) 

or the Minimum Covariance Determinant (MCD) estimators 

(Rousseeuw 1985; Rousseeuw and Leroy 1987), but had the 

disadvantage of being computationally expensive. An 

approach of Gnanadesikan and Kettenring, using a 

componentwise construction of the covariance matrix, 

sacrificed affine equivariance but gained simplicity and 

speed. This approach has been re-actualized in (Maronna 

and Zamar 2002) and in one of the methods presented in 

(Béguin and Hulliger 2004), called Transformed Rank 

Correlations (TRC). TRC calculates an initial matrix of 

bivariate Spearman Rank correlations. To ensure positive 

definiteness of the covariance matrix the data is transformed 

into the space of eigenvectors of the initial matrix. The 

coordinatewise medians and median absolute deviations in 

this new space are then backtransformed into the original 

space to obtain an estimate of the center and a positive 

definite covariance matrix.  

Another idea from (Gnanadesikan and Kettenring 1972) 

is related to the so-called forward search methods, which are 

closely related to the method proposed in this paper. These 

so called forward search methods are based on the concept 

of “growing a good subset of observations”. By “good 

subset” one means a subset free or almost free of outliers. 

The idea is to start with a small subset of the data and then 

to add non-outlying observations until no more non-outliers 

are available.  

The idea of a forward search algorithm was first 

suggested in (Wilks and Gnanadesikan 1964) and described 

in detail in (Gnanadesikan and Kettenring 1972). The 

articles of (Hadi 1992) and (Atkinson 1993) demonstrated 

the efficiency of such methods. In both articles the “good 

subset” grows one point at a time using Mahalanobis 

distances to rank the observations. Then research 

concentrated on developing faster and more sophisticated 

methods based on the same idea. The last two and most 

efficient were developed in (Billor, Hadi and Vellemann 

2000) and (Kosinski 1999). These algorithms were 

compared in (Béguin 2002) and the BACON algorithm 

(Billor et al. 2000) turned out to be the most robust and 

fastest forward search method with complete multivariate 

normal data. In particular the breakdown point turned out to 

be high in practical applications. Also when comparing with 

other Mahalanobis type methods the performance of 

BACON on complete data is very good (Béguin and 

Hulliger 2003). 

None of the above methods is designed to deal with 

incomplete data stemming from surveys, i.e., with missing 

values and sampling weights. The first article to address the 

problem of multivariate outlier detection in incomplete data 

is (Little and Smith 1987). The authors propose 

Mahalanobis distances to detect outliers, with robust 
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estimations of center and scatter obtained by the ER 

algorithm. The ER algorithm replaces the maximum-

likelihood estimator in the maximization step of the EM 

algorithm (Dempster, Laird and Rubin 1977) by a robust 

one-step M-estimator. However, the starting point of the ER 

algorithm is the classical non-robust mean and covariance 

and therefore the breakdown point of the ER algorithm is 0. 

In other words even one single outlier can carry the 

estimator beyond any limit. To correct the low breakdown 

point of that algorithm (Cheng and Victoria-Feser 2000) 

used an MCD algorithm for the maximization step of the 

EM-algorithm. However, the combination of the iterative 

procedures of MCD and EM makes the computation for 

large datasets too slow for practical applications. Moreover 

the introduction of sampling weights is not straightforward.  

The TRC algorithm in (Béguin and Hulliger 2004) uses 

robust linear regression imputations by the best univariate 

predictor to cope with missing values. The Spearman rank 

correlations are expressed as functionals of the empirical 

distribution function of the sample to obtain estimates for 

the Spearman rank correlations in the population.  

The BACON algorithm is based on the multivariate 

normal distribution and thus the EM algorithm for multi-

variate normal data was chosen to impute missing values 

within the BACON iterations. To take into account the 

sampling aspect, the estimates of the BACON algorithm 

have to be replaced by Horvitz-Thompson type estimators 

and a special version of the EM algorithm is developed 

where the expectations on the population level are estimated 

from the sample. Section 2 sets up the notation, recalls 

quickly the BACON algorithm and presents its adaptation to 

sampling weights. Section 3 introduces the Estimated-EM 

(EEM) algorithm and Section 1 discusses the adaptation of 

the Mahalanobis distance to missing values. Section 4 

explains how BACON and EEM are merged in an efficient 

way to become the BACON-EEM algorithm. Section 5 

shows the application of BACON-EEM to two datasets. 

The results are compared to the competitor methods, 

Transformed Rank Correlations, developed in (Béguin and 

Hulliger 2004), the ER-algorithm and a baseline algorithm 

which uses MCD after non-robust imputation based on the 

EM-algorithm. 

 
2. The BACON algorithm 

 
The BACON algorithm is presented in (Billor et al. 

2000). Two versions are described: one for multivariate data 

in general and one for regression data. Only the first case 

will be considered here.  

The data are stocked in a matrix X of n rows 

(observations 1 )nx x, ...,  and p columns (variables 
1 ).px x, ...,  We assume that the bulk of the data is unimodal 

and roughly elliptical symmetric. The coordinatewise mean 

(resp. covariance matrix) computed on X is denoted by Xm  

(resp. ).XC  The squared Mahalanobis distance of a point y 

based on Xm  and XC  is 2MD ( ) ( )X Xy y m= − ⊤  
1( ).X XC y m− −  If the mean and covariance are calculated 

only on a subset G of the data then we denote them Gm  and 

GC  with corresponding Mahalanobis distance MD .G   

The first step of the algorithm is the choice of an initial 

subset G of “good data”. Two versions are proposed in the 

literature. The first version simply selects the cp  points 

with smallest Mahalanobis distances MD ( ),X ix  

{1 },i n∈ , ...,  with c being an integer chosen by the data 

analyst. It may be set to 3c =  by default. The second 

version selects the cp  points with smallest Euclidean 

distances from the coordinatewise median, with c as before. 

The second version is more robust but it looses affine 

equivariance. Other starting points than the coordinatewise 

median might be considered like a spatial median. In this 

article we concentrate on the second version of the basic 

good subset. In both versions if GC  is singular then the 

basic subset is increased by adding observations with 

smallest distances until GC  has full rank. Then an iterative 

process starts.  

Denote by 2
p, βχ  the 1−β  percentile of the 2χ  distribu-

tion with p degrees of freedom and by | |G  the number of 

elements in the set G. The steps of the BACON algorithm 

are:  
 
1. Compute the squared Mahalanobis distances  

2MD ( )G ix  for {1 };i n∈ , ...,   
2. Define a subset G′  including all points with 

2 2MD ( ) ,G i npr p nx c ,α/< χ  where npr np hrc c c= +  is a 

correction factor with 1 ( 1) ( )npc p n p= + + / − +  

1 ( ), max{0 ( ) ( )},hrn h p c h r h r h/ − − = , − / + =
( 1) 2n p+ + /    and | | |.r G=    

3. If G G′ =  then stop, else set G to G′  and go to 
Step 1.  

 
Note that the correction factor nprc  is close to 1 for large n. 

The observations that are not contained in the final G are 

declared outliers. Alternatively a threshold for the 

Mahalanobis distance, above which observations are 

nominated outliers, may be chosen by inspecting the distri-

bution of the Mahalanobis distance.  

The computing effort required by the BACON algorithm 

depends on the configuration of the data. Compared with 

other algorithms it is small and in particular this effort 

grows slowly with increasing sample size (see also Section 

5). This makes the BACON method particularly well suited 

for large datasets.  

Note that the original selection criterion of Step 2 is 

designed for a multivariate normal distribution, which 
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implies that the squared Mahalanobis distances follow 

asymptotically a 2χ  distribution with p degrees of freedom. 

Suppose all points follow a multivariate normal distribution 

and that the Mahalanobis distance is computed using the 

sample mean and covariance matrix. The test 
2 2MD ( )X i px ,α> χ  declares about 100α  percent of the points 

as outliers. Instead of α  we often use / .nα  Using 

Bonferroni inequalities one can show that under normality 

the test with level / nα  will declare no outlier with 

probability larger than 1− α  (i.e., 2 2(MD ( )X i p nP x ,α/< χ ,  
{1 }) 1 ).i n∀ ∈ , ..., ≥ − α  The test with / nα  very rarely 

detects points that are not outliers but it also reduces its 

sensitivity to close outliers when n becomes large. One may 

also want to run the method with both types of the test level 

and compare the results.   
2.1 Adaptation to sampling weights  

For the sampling context we use the following notation. 

The data stem from a random sample s of the finite 

population U with N elements. The sample of size n is 

drawn with the sample design ( )p s  and the first order 

inclusion probabilities are denoted ( ).s i si p s| ∈∑π =  The 

weights will be the inverse of the inclusion probabilities of 

the observations 1i iw = /π  such that the Horvitz-Thompson 

estimator of the population total, ,i U ix∈∑  is 

1 .n
s ii i i iw x w x=∑ ∑=  Furthermore it is assumed that 

.s iw N∑ ≈  The mean Xm  and the covariance matrix XC  

may be estimated by the Hájek estimators  

ˆ

and

ˆ ˆ( )( )
ˆ .

i is
X

is

i i X i Xs
X

is

w x
m

w

w x m x m
C

w

=

− −
=

∑
∑

∑
∑

⊤

 (1) 

The sample estimate of the median is defined as in 

(Béguin and Hulliger 2004): let k

ux  be the smallest value 

such that  ( ) 0 51 k
u

k
x xs si i iw x w≤∑ ∑≥ .  and k

vx  the smallest 

value such that ( ) 0 5 ,1 k
v

k
x xs si i iw x w≤∑ ∑> .  then the estimate 

is given by  

� ( ) ( ).med
k k

u u v v u vX
w x w x w w= + / +  (2) 

To adapt the BACON algorithm to sampling the initial 

subset is selected using Hájek estimators ˆ Xm  and ˆ
XC  or 

the median �med .X  For the iterative process, denote by Gs  

the selected “good observations” of the sample. These 

observations are representatives of a “virtual good subset” G 

of the whole population with estimated size ˆ .
Gs ir w∑=  The 

mean and covariance matrix of this subset are estimated by 

the Hájek estimators  

ˆ

and

ˆ ˆ( )( )
ˆ .

G

G

G

G

i is

G

is

i i G i Gs

G

is

w x
m

w

w x m x m
C

w

=

− −
=

∑
∑

∑
∑

⊤

 (3) 

These estimates are used to compute the estimates of the 

Mahalanobis distances �MD ( ), .G i ix x s∈  Finally the 

correction factor Npr Np hrc c c= +  of the selection criteria is 

computed using the estimates ˆ
s iN w∑=  and ˆ .

Gs ir w∑=  If 

N is known, its actual value is used.  

If there are no missing values in the data the BACON 

algorithm can be used to estimate the population mean and 

covariance. The basic assumption for the BACON algo-

rithm is still that the bulk of observations of the population 

has an elliptical distribution. We may use the BACON 

algorithm without weighting and compare the result with 

the weighted version. Different results indicate that the 

design-variables or a model used for non-response 

weighting are not well reflected in the model. We advocate 

the use of weights, in particular in routine applications, to 

give some protection against miss-specification of the 

model. In any case the estimand should be the mean and 

covariance of the bulk of the population.  

Note that the Mahalanobis distance does not involve the 

sampling weights directly. The weight of a possible outlier 

influences the Mahalanobis distance only through the 

model, i.e., the mean and the covariance.  

 
3. The EEM algorithm  

Nonresponse issues are important in official statistics and 

many surveys cannot deliver a complete dataset. The 

problem of unit-nonresponse, i.e., completely missing 

observations, is usually dealt with by using appropriate 

weights and is not treated here. Item-nonresponse, i.e., 

observations with only partially available information, 

cannot be treated by discarding all incomplete observations 

because too much information is lost. The approach 

followed here will retain high efficiency under multivariate 

normal data. At each BACON iterative step the mean and 

covariance matrix of the good subset of observations will be 

computed using a modified version of the EM algorithm for 

multivariate normal data. The expectations computed in the 

E-step are replaced by sample estimates. The modified 

algorithm is therefore named the EEM (Estimated-

Expectation/Maximization) algorithm. Note that this adapta-

tion is presented here for multivariate normal data but the 

results can be generalized to other distributions of the 

regular exponential family.  
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This paragraph re-uses the description and notation of the 

EM algorithm given in (Schafer 2000). All details about EM 

not given here can be found within the first three chapters 

and in Section 5.3 of this book. The following abuse of 

notation is also used here:  X  will denote simultaneously a 

p-dimensional random variable and the N p×  matrix 

containing the realized values of the variable X of the 

population U. If a census were taken of the whole 

population to measure the variable X it would result in some 

observed and missing values .o mX X X= ∪  The EM-

algorithm assumes that the missingness mechanism is 

ignorable (Schafer 2000, section 2.2). Here we assume in 

addition that the missingness is independent from the 

sampling. The observations of the data can be modeled as 

independent, identically distributed (iid) draws from a 

multivariate normal probability distribution with density 

( ).f x, θ  Using the assumptions and the factorization 

( ) ( ) ( )o m oP X P X P X X| θ = | θ | , θ  the complete-data log-

likelihood can be written as ( ) ( )ol X l Xθ | = θ | +  

log( ( )) ,m oP X X c| , θ +  where ( )ol Xθ |  is the observed-

data log-likelihood and c is an arbitrary constant. The term 

( )m oP X X| , θ  captures the interdependence between mX  

and θ  on which the EM-algorithm capitalizes. Because 

( )m oP X X| , θ  is unknown the average of ( )l Xθ |  over 
( )( )t

m oP X X| , θ  is taken at each E-step, where ( )tθ  is a 

preliminary estimate of the unknown parameter. The next 

estimate  ( 1)t+θ  is found by maximizing the result of the 

expectation step (M-step). The sequence of E and M-steps is 

iterated until convergence. Conditions under which this 

sequence  ( )tθ  converges to a stationary point of the 

observed-data likelihood are provided in (Dempster et al. 

1977). In well-behaved problems this stationary point is a 

global maximum.  

For a probability distribution of the regular exponential 

family the complete data log-likelihood may be written as  

( ) ( ) ( ) ( )l X T X Ng cθ | = η θ ⋅ + θ + ,⊤  (4) 

where 1 2( ) ( ( ) ( ) ( ))kη θ = η θ , η θ , ..., η θ ⊤  is the canonical 

form of the parameter θ  and 1( ) ( ( )T X T X= ,  

2 ( ) ( ))kT X T X, ..., ⊤  is the vector of complete-data sufficient 

statistics. Moreover, each of the sufficient statistics has an 

additive form 1( ) ( ),N
ij j iT X h x=∑=  for some function .jh  

Because ( )l Xθ |  is a linear function of the sufficient 

statistics, the E-step replaces ( )jT X  by 
( )( ( ) ).t

j oE T X X| , θ  In other words the E-step fills in the 

missing portions of the complete-data sufficient statistics. 

For a multivariate normal distribution 1( , , )pX X X= …  

the sufficient statistics are composed of two types of 

elements: the sums 1
kN

i ix=∑  and the sums of products 

1 ,k lN
i i ix x=∑  1 .k l p≤ , ≤  The E-step reduces to computing 

the conditional expectations of these sums given the 

observed data oX  and the preliminary parameter ( ) .tθ  

For a single summand i one can show (Schafer 2000, 

section 5.3) that these expectations depend only on the 

observed components of the same observation, i.e., on obs .ix  

This leads to  

( ) ( )

1 1

obs ( )

1

( )

( ) 1

N N
k t k t

i o i o
i i

N
k t

i i
i

E x X E x X

E x x k p

 
 
 
  = = 

=

, θ = | ,θ

= | , θ , ≤ ≤

∑ ∑

∑
 

(5)

 

and the analogue form of the sum of products. Of course 
obs ( )( )k t k

i i iE x x x| , θ =  if obs .k

i ix x∈  If k

ix  is missing, then 

this expectation is the fitted value of a regression of kx  

given the parameter ( )tθ  on the variables which are 

observed for observation i. Thus the sufficient statistics are 

composed of population sums of observed values ( )oT  and 

sums of fitted values ( ).mT   

In the situation where our data stem from a sample of a 

finite population we consider the finite population as a 

realization of a multivariate normal distribution and the 

sums (5) and sums of products have to be estimated from 

the sample. The form of (5) allows the use of simple 

Horvitz-Thompson estimators. The estimate of (5) is  

0 obs ( )( ) 1k k t
i i i

s

T w E x x k p= | ,θ , ≤ ≤ ,∑  (6) 

and ( )
1( | )

s

k l tN
i i i oE x x X=∑ , θ  is estimated by  

obs ( )( ) 1 .kl k l t
i i i i

s

T w E x x x k l p= | , θ , ≤ , ≤∑  (7) 

In short: We replace the population sums of oT  and mT  

by their Horvitz-Thompson estimators ˆoT  and ˆ .mT  We call 

the calculation of the 0kT  and klT  the estimated 

expectation step (EE-step). Plugging these estimators into 

(4) we obtain an estimator of the average population 

likelihood function.  

For the M-step, the maximization of the estimate of the 

average population likelihood, the weighted normal 

equations have to be solved. The solution is found by a 

simple matrix operation using the sweep operator (Schafer 

2000, section 5.3) applied to the symmetric ( 1) ( 1)p p+ × +  

matrix 0( )kl
k l pT ≤ , ≤  of the estimated expectations of the 

sufficient statistics (with 00T  set to 1) divided by N, which 
is estimated by the sum of weights if unknown:  

0( 1)
( )

SWP[0] ,

kl

k l pt

is

T

w

≤ , ≤+
 

θ =   
 ∑

 (8) 

where SWP[0]  is the sweep operator on the first 

line/column of the matrix.  

The EEM algorithm iterates the EE and the M-step. 

Computationally the difference between the EE-step and the 

E-step of the original EM-algorithm comes down to using 
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weighted sums instead of un-weighted sums with weights 

that do not change over the iterations. We therefore expect 

that the convergence of the EEM-algorithm will remain 

similar to the EM-algorithm. For the BACON-EEM 

algorithm we only need a rough approximation to the 

solution in each BACON-step. Thus we use only a small 

number of iterations of the EEM algorithm.   
3.1 Mahalanobis distance with missing values  

The Mahalanobis distance is developed for complete 

observations and needs to be adapted to missing values. One 

option is to use the EEM estimate to impute the conditional 

mean for the missing values given the observed values and 

then calculate the Mahalanobis distance with imputed 

values. Under a MAR (Missing At Random) assumption 

there is a valid model based on the observed part of the data 

to impute the missing values. In the case of outlier detection 

we suppose that the imputation model may hold for the bulk 

of the data only and is estimated in a robust way. But then 

we may not expect that an outlier value is predicted by the 

model, except if already the observed part of an obser-

vations is outlying. Therefore there is no advantage to use 

imputation before outlier detection and we prefer to directly 

adapt the Mahalanobis distance to missingness. Two 

different versions of the Mahalanobis distance are possible 

in this situation.  

We call the first version marginal Mahalanobis distance. 

It uses the Mahalanobis distance in the space of observed 

variables and scales it up with a factor ,p q/  where 

k ikq r∑=  is the number of non-missing variables and p is 

the total number of variables. More precisely, we assume an 

observation x is partitioned into ( )o mx x x= ,⊤ ⊤ ⊤  (after 

possible rearrangement), where ox  denotes the observed 

part and mx  the unobserved part of the observation. Then 

the marginal Mahalanobis distance is  

2 1

margMD ( ) ( ) ( ),o o oo o o

p
x m S x m

q

−= − −⊤
 (9) 

where ooS  is the part of the covariance matrix 

corresponding to .ox  This version is also used in (Little and 

Smith 1987). 

The second version of Mahalanobis distance with 

missing values is obtained by reducing the contribution of 

the missing values to the Mahalanobis distance to zero. This 

amounts to replacing all missing values by their mean, i.e., 

.m mx m=  In other words we would impute a mean without 

consideration of the covariance matrix and the above 

arguments against outlier detection with imputed values 

apply here as well. Nevertheless we tested this second 

version of Mahalanobis distance. It yields erratic 

Mahalanobis distances (Béguin 2002) and (Béguin and 

Hulliger 2003) and we did not use it any further.  

 

4. The BACON-EEM algorithm 
 

Both algorithms, BACON and EEM, are computa-

tionally demanding. By merging them in a convenient way 

we gain performance. The “growing” structure of the 

BACON algorithm implies redundancies which may be 

used to avoid extra-computations in the EEM-algorithm at 

each step. The crucial point at each BACON step is that the 

estimations of the mean and the covariance matrix from the 

EEM-algorithm allow the exclusion of outlying points from 

the good subset and this does not need extremely precise 

estimates. Thus it is not necessary to iterate EEM to 

convergence each time the mean and covariance are needed. 

We use only 5 iterations by default. Furthermore we use the 

result of the last EEM-iteration of the last BACON-step as a 

starting value for EEM.  

As much information from past iterations as possible 

should be reused. In fact the sufficient statistic GT  

computed on some good subset G have an observed part of 

the sum G

oT  and a missing part of the sum .G

mT  The 

expectation computed by the E-step can therefore be written 

as  

( ) ( ).G G G G G

o o m oE T X T E T X| , θ = + | , θ  (10) 

As the subsets G are usually growing, ˆG

oT  is not 

recomputed at each step of the BACON loop, but a global 

variable for ˆG

oT  is updated each time G changes (usually 

only adding points, sometimes removing a few).  

At each iteration of the BACON-EEM algorithm, once 

the EEM algorithm has obtained the estimations of the 

center and the scatter of the good subset, marginal 

Mahalanobis distances for all observations are used in step 2 

of the BACON algorithm.  

Note the crucial point for the robustness of the algorithm: 

EEM is not robust, but at each BACON-step EEM is run 

only on points that have the smallest and therefore non-

outlying marginal Mahalanobis distance in the preceding 

step. In other words the observation x will be used by EEM 

if and only if ox  is sufficiently small for the metric given by 
1( )ooS −  at the preceding step. Therefore if the first subset of 

good points is free or almost free of outliers, the imputation 

process in EEM will never create outlying values through-

out the whole BACON-EEM algorithm. In other words, the 

non-robust EEM-algorithm is protected by the general 

forward search approach of the BACON algorithm in the 

same way as the non-robust mean and covariance of the 

original BACON algorithm is protected.  

Summing up, the steps of the BACON-EEM algorithm 

are the following:   
1. Calculate the weighted coordinate-wise median �med( )x  

ignoring missing values in each variable separately. 

Determine the Euclidean distance from the median of 
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each observation omitting missing values but 

standardizing for the number of present values: 
�|| med( )|| .i ia x x p q= − /  Select the m cp=  obser-

vations with least ia  to constitute the initial subset G.   
2. Compute a center ˆGm  and scatter ˆ

GC  using the EEM-

algorithm and update the estimate of the sufficient 

statistic of the observed part ˆ .G

oT   
3. Compute the squared marginal Mahalanobis distances 

2MD ( )G ix  for 1 .i … n= , ,  The new set G′  contains the 
observations with 2 2

ˆ ˆ
MD ( ) .G i pNpr

x c ,α< χ    
4. If G G′ =  then stop, else set G to G′  and go to step 2.   

If instead of outlier detection the mean and covariance 

estimates of BACON-EEM are the main objectives the 

EEM-algorithm may be iterated further without changing G. 

In step 3 one may alternatively use nα/  instead of α  (see 

Section 2).  

 
5. Applications 

 
In this section we compare the BACON-EEM algorithm 

(BEM) with Transformed Rank Correlations (TRC) from 

(Béguin and Hulliger 2004) and the ER-algorithm from 

(Little and Smith 1987). As a further benchmark we use an 

imputation under the multivariate normal model with 

estimates of the mean and covariance by the EM algorithm. 

In other words we create a non-robust imputation. Then 

robust estimates of the multivariate location and the 

covariance matrix are obtained by the Minimum Covariance 

Determinant estimator computed on the imputed data and 

finally outliers are detected using the corresponding 

Mahalanobis distances. The benchmark method is called 

GIMCD for “Gauss Imputation followed by MCD 

detection”. The algorithms are implemented in R (R 

Development Core Team 2006) with the help of the R-

packages norm (Novo and Schafer 2002) and MASS 

(Venables and Ripley 2002).  
5.1 Bushfire data  

The reaction of the BACON-EEM to the introduction of 

missing values is illustrated with a real dataset of 38 

observations and 5 variables. It was used by (Maronna and 

Zamar 2002) to locate bushfire scars. This well known 

example is also studied in (Maronna and Yohai 1995) and 

(Maronna and Zamar 2002). It allows a two dimensional 

plot (in variable 2 and 3) that reveals most of the outliers 

(see Figure 1). The data contains an outlying cluster of 

observations 33 to 38 a second outlier cluster of obser-

vations 7 to 11 and a few more isolated outliers, namely 

observations 12, 13, 31 and 32. We have added observation 

31 to the list of potential outliers because it is indicated as a 

borderline case by MCD, BACON and also other methods 

studied in (Maronna and Zamar 2002). Missing values are 

created with a MCAR (Missing Completely At Random) 

mechanism. Two datasets are created with respectively 20 

and 40% of missing items. The dataset with 40% of missing 

values have observations with up to 4 out of 5 missing 

values and therefore are a challenge for any method. As the 

size n of the dataset is small, BACON-EEM is run with the 
2
p n, α/χ  test. The results are given in Table 1. Observations 7 

to 13 and 31 to 38 are individually shown as detected or not, 

while for the other 23 good points the number of 

observations declared as outliers is indicated. The limit 

above which a Mahalanobis distance indicates an outlier, 

was determined for each run by inspection of the quantile 

plot of the Mahalanobis distance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1  Bushfire Data 
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With complete observations none of the methods 

declared any good observations as outlier. The Mahalanobis 

distance with non-robust mean and covariance detects 3 

outliers but misses the others. MCD and BACON-EEM end 

up with the same subset of data as good points and therefore 

give the same result, i.e., exactly the same Mahalanobis 

distance for all observations. Both do not declare observa-

tions 12 and 13 as outliers but all the others. ER does detect 

the group of outliers 7,...,12 but none of the other outliers. 

TRC detects the group 32,...,38 and two more outliers.  

With 20% missing values BEM and TRC declare one 

good data point as outlier. TRC detects 14 of the 15 

potential outliers. ER misses all outliers except observation 

7. GIMCD detects the same 13 outliers as without missing 

values. Note however, that there is some variability in the 

results for GIMCD due to the random imputation. BEM 

detects the same outliers as with complete data except 

observation 11.   
Table 1  Outliers detected for 3 missingness rates 

 

(1 - q)% Method 7-11 12,13,21 32-38 n. good 

0 MD 11100 000 0000000 0 
0 MCD 11111 001 1111111 0 
0 ER 11111 100 0000000 0 
0 BEM 11111 001 1111111 0 
0 TRC 01100 000 1111111 0 
20 GIMCD 11111 001 1111111 0 
20 ER 10000 000 0000000 0 
20 BEM 11111 000 1111111 1 
20 TRC 01111 111 1111111 1 
40 GIMCD(1) 11100 000 1111111 0 
40 GIMCD(2) 11100 000 0100000 5 
40 ER 10000 010 0000000 2 
40 BEM 11111 000 1111111 1 
40 TRC 11111 010 1111111 1 

 

MD: Classical Mahalanobis distance, MCD: Minimum Covariance 
Determinant, GIMCD: Non-robust imputation under Gaussian 
model followed by MCD (GIMCD(1) and GIMCD(2) are two 
realisations of the GIMCD-algorithm), ER: Expectation-
Maximization with one M-step at maximization, BEM: BACON-
EEM, TRC: Transformed Rank Correlations. The first column 
indicates the proportion of missing values, the last column gives the 
number of other points (non-outliers) declared outliers, the 
intermediate columns are detection indicators for the observations in 
the first row. 
 
 

With 40% missing values ER nominates observation 7, 

13 and two good observations as outliers. Since the 

imputation is random the result of GIMCD has some 

variability. Two realizations, GIMCD(1) and GIMCD(2) 

are reported in Table 1. In a good case GIMCD detects 10 

of the 15 outliers and does not declare any good observation 

as outlier. In a bad case GIMCD detects only 4 outliers but 

declares 5 good observations as outliers. BEM detects 12 of 

the outliers and declares one good observation as outlier. 

TRC detects 13 outliers and declares one good observation 

as outlier.   

5.2 MU281 data  
The MU284 data set from (Särndal, Swensson and 

Wretman 1992) contains data about Swedish municipalities. 

We use the variables population in 1975 and population in 

1985 (pop75 and pop85), revenue from municipal taxes 

1985 (RMT85), number of municipal employees 1984 

(ME84) and real estate value 1984 (REV84). The largest 

three cities according to pop75 are discarded because they 

are huge outliers and would be treated separately in practice. 

The remaining municipalities are supposed to be a stratified 

sample of a larger population. Strata are defined according 

to 0 pop75 20 20 pop75 100 100 pop75.< < , ≤ < , ≤  Table 

2 shows the assumed population sizes and the 

corresponding weights. This sample design reflects a typical 

stratification for establishment surveys with a take-all 

stratum of the largest establishments, where in the end 8 of 

10 establishments answer the survey.   
Table 2  MU281 population and sample sizes 

 

 stratum 
 1 2 3 

pop75 0-19 20-99 100+ 
N 1,600 250 10 
n 171 102 8 
w 9.36 2.45 1.25 

 
The three variables RMT85, ME84 and REV84 are 

divided by pop85 to obtain figures per capita. The per capita 

variables are denoted by lower case names (rmt85, me84 

and rev84). Figure 2 shows the distribution of these 3 

variables plus the auxiliary variable pop75. The per capita 

figures are roughly elliptically distributed. There is a linear 

relationship between rmt85 and me84 and a slightly non-

linear relationship of these variables with pop75. There is no 

apparent relationship between rev84 and rmt85 and between 

rev84 and me84 but there is clearly more variability in 

rev84 for low pop75. The distributions of variable pop75 

and rev84 are skew. There is a large outlier in rmt85 and 

me84 and at least two in rev84.  

We include pop75 in all our calculations. In practice one 

would include the auxiliary variable which defines the 

sample design in a model. Note that pop75 has no missing 

values.  

The qq-plot of Mahalanobis distances based on MCD 

shows only the two clear outliers in rev84. The large outlier 

jointly in rmt85 and me84 has 25th largest Mahalanobis 

distance. We call these largest 25 observations the un-

weighted basic outliers. In the original MU284 dataset these 

unweighted basic outliers have LABEL 3, 4, 29, 31, 46, 47, 

56, 79, 83, 117, 126, 131, 140, 158, 199, 211, 222, 246, 248, 

252, 254, 260, 262, 272, and 273. With classical non-robust 

Mahalanobis distances only 12 of the basic outliers are 

nominated outliers, i.e., are among the 25 observations with 
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largest (classical) Mahalanobis distance. Robust methods 

are necessary to detect the outliers in the MU281 data. To 

allow a comparison between the methods we fix the number 

of observations which are to be considered outliers to 25 for 

the moment. Thus we consider for each method the 25 

observations with largest Mahalanobis distance as the 

outliers. Note that this may not be the threshold one would 

choose after inspection of the qq-plot of the Mahalanobis 

distances. 

Table 3 shows the number of basic outliers detected by 

the methods run on the complete dataset. MCD detects its 

own 25 outliers, of course. The ER, BEM and TRC 

algorithm detect 25 or 24 of these outliers if no weights are 

applied but only 11or 15 if weighted. A suffix “w” behind 

the acronym of the method indicates that the sampling 

weights were used. Since the small municipalities have 

more weight the estimates are attracted towards them and 

other outliers will come up among the 25 largest 

Mahalanobis distances for ERw, BEMw and TRCw (see 

also Table 4). Closer inspection shows that many of the 

unweighted outliers are located in the tail of rev84 while 

most of the weighted outliers are located in the tail of 

pop75. The weighted methods coincide on 20 observations 

as outliers. We will call them weighted basic outliers. The 

weighted basic outliers have original MU284-LABEL 16, 

28, 36, 45, 46, 55, 97, 113, 115, 121, 155, 185, 196, 208, 

233, 241, 245, 265, 267, and 270. Only 10 of these 

observations are also among the unweighted basic outliers. 

Table 4 shows the number of weighted and unweighted 

basic outliers in the strata. There are 12 unweighted but only 

2 weighted basic outliers in stratum 1. Thus the weights 

have a clear influence on outlier detection. The influence is 

on the model primarily which is attracted towards the small 

observations with larger weights. Of course this can be seen 

as a sort of masking of outliers but in the context of 

modeling a better explanation is that the model is not 

completely adequate over all the strata and the weighted 

model fits the population better than the unweighted.  

The second row of Table 3 gives the computation time 

for the algorithms. The ER algorithm is much slower than 

its competitors. This may be due to an inefficient implemen-

tation, however. The fastest algorithm is BEM, followed by 

TRC and, at some distance MCD. TRC may become slow, 

however, when the missingness rate is high.   
Table 3 Complete MU281, number of detected unweighted 
 basic outliers 
 

Method MCD ER ERW BEM BEMW TRC TRCW 

Number detected 25 25 11 24 15 24 15 
Computation time 0.81 3.17 2.52 0.07 0.04 0.14 0.14 
 

Suffix w indicates that the algorithm is run with sampling weights.  
 

Table 4  Number of basic outliers per stratum 
 

stratum 1 2 3 Total

unweighted 12 5 8 25
weighted 2 10 8 20

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 MU281 per capita figures and pop75 
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5.2.1 Missing values  
We now introduce missingness into the variables rmt85, 

me84 and rev84 according to a mild MAR mechanism. 

Missingness patterns are assigned to the observations 

according to the modulo of their label in the original 

MU284 data. The MAR mechanism is reflected in higher 

missingness rates for stratum 1 and 2 (see Appendix). The 

response patterns and missingness rates per stratum are 

shown in Table 5. For example rev84 is the only missing 

value in 15 observations of stratum 1 and 2 of stratum 2. 

Overall 187 observations remain complete and the 

proportion of observations with missing values (missingness 

rate) is 33%.  
 
Table 5 Frequency of response patterns per stratum for rmt85,  

me84, rev84 
 

Response indicator stratum 

rmt85 me84 rev84 1 2 3 
0 1 1 11 4 0 
1 0 1 13 2 0 
1 1 0 15 2 0 
1 0 0 13 2 1 
0 1 0 14 2 0 
0 0 1 11 4 0 
1 1 1 94 86 7 

missingness rate 0.450 0.157 0.125 

 
Among the 35 weighted or unweighted basic outliers 

there are 17 observations with missing values. Table 6 

shows how many of the basic outliers have been detected 

after the introduction of missingness. The 20 weighted basic 

outliers are detected well by the weighted algorithms ERw, 

BEMw and TRCw. GIMCD detects 4 of the weighted basic 

outliers and 14 of the unweighted basic outliers. Thus the 

missingness affects the capability of the MCD algorithm 

which was actually used to define the unweighted basic 

outliers. One word of caution: Several runs of random 

Gaussian imputation have been made and there is some 

variability in the results of GIMCD. However, also with a 

favorable imputation outcome GIMCD did not beat ER, 

BEM or TRC in detecting the unweighted basic outliers. 

The weighted versions ERw, BEMw and TRCw detect the 

weighted basic outliers well. The number of complete 

observations among the outliers nominated by the different 

methods is indicated in the last row of Table 6. All methods 

nominate as outliers also observations with missing values. 

Since the missingness rate is larger in the stratum of small 

observations and the weighted versions of the methods 

nominate less outliers in this stratum, the number of 

complete outliers is usually larger for the weighted 

algorithms. Overall the introduction of missingness has not 

altered the capabilities of ER, BEM and TRC by much, 

while GIMCD is moderately affected.      

Table 6 MU281 data set with missing values, number of detected  
basic outliers 

 

Method GIMD GIMCD ER ERw BEM BEMw TRC TRCw 

Weighted 14 4 10 20 9 19 12 17 
Unweighted 12 14 23 11 22 15 22 17 
Complete 16 8 17 20 16 18 19 18 
 

GIMD: Non-robust imputation under a Gaussian model followed by 
classical Mahalanobis distance.   
5.2.2 Additional outliers  

In addition to the outliers in the original data we now 

introduce new outliers. The observations which should 

become additional outliers are determined by the modulo of 

the original LABEL. If (LABEL mod 8 = 1 and 

pop75 ≥  10) or (LABEL mod 16 = 1 and pop75 <  10) 

then the observation is an additional outlier. Thus the rate of 

outlyingness is larger for large municipalities. But the 

outlyingness is not influenced by the values of the other 

variables. We may say that the outlyingness is at random. 

Note that we could have taken a random sample instead of 

the above systematic sample. We preferred the systematic 

sample to simplify the replication of the results and to avoid 

additional randomness.  

Two of the weighted and one of the unweighted basic 

outliers happen to be also additional outliers. We continue to 

treat them as basic outliers. Taking this into account there 

are 32 additional outliers in the sample. Together with the 

25 unweighted or the 20 weighted basic outliers defined 

above there are 57 or 52 outliers to detect (20.3% or 18.5% 

outliers). From now on the threshold for the Mahalanobis 

distances is set at the 57
th
 largest distance to simplify the 

comparison of the methods.  

The values of the additional outliers are created as 

follows: rmt 0 2 rmt85 8 me 0 1 me84 50 rev= . ∗ + , = . ∗ + , =  

0 4 rev84 300.. ∗ +  Note that we omit the suffix indicating 

the year for the contaminated variables. The dependence on 

the old values is negligible. It is only used to avoid an 

explicit model for the error around the point (rmt me, ,  
rev) (8 50 300).= , ,  This is the type of contamination that is 

difficult to detect for robust covariance estimators (Rocke 

and Woodruff 1996): concentrated and close to the point 

cloud of good observations. 

Figure 3 shows the three variables with contamination 

and the location of the additional outliers.  

Table 7 shows the number of detected outliers. GIMCD 

detects 31 of the 32 additional outliers, while BEM, BEMw, 

TRC and TRCw detect many of them but not all. ER and 

ERw detect less of the additional outliers. The weighted 

basic outliers are all detected by ER and ERw, BEMw and 

TRCw. The unweighted versions of BEM and TRC detect 

less of the weighted basic outliers and GIMCD detects only 

4 of the weighted basic outliers. BEM and TRC whether 

weighted or not detect the unweighted basic outliers best. 
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Figure 3 Variables me and rev vs. rmt. Additional outliers are marked with a cross  

 

 

The last row in Table 7 shows that its non-robust 

imputation leads GIMCD to nominate more outliers with 

missing values than the other methods which robustify their 

imputations already before the detection phase.  
 
Table 7 MU281 with missingness and moderate additional 

contamination 
 

Method n. out GIMCD ER ERw BEM BEMw TRC TRCw 

Additional 32 31 19 6 27 27 28 27 
Weighted 
basic 

20 4 20 20 11 20 12 20 

Unweighted 
basic 

25 13 15 12 23 19 23 18 

Complete  24 34 43 38 40 40 40 
 

n. out: number of outliers, n. complete: number of complete 
observations among detected outliers. 

 
 

In order to check the breakdown of the methods when a 

high number of additional outliers contaminates the data we 

set outliers if (LABEL mod 2 = 0 and pop75 ≥  20) or 

(LABEL mod 3 = 1 and pop75 <  20). Excluding 

observations which are already basic outliers there are 98 

additional outliers. Thus together with the 25 unweighted 

basic outliers we obtain 43.8% outliers. The threshold for 

the methods is therefore set at the 123
rd
 largest Mahalanobis 

distance. Table 8 shows that, due to this large threshold, all 

weighted basic outliers are detected by all methods. The 

methods GIMCD, ER and ERw cannot cope with the high 

rate of outliers. BEM detects most of the outliers with 

BEMw and TRC only slightly behind. TRCw detects 

somewhat less of the unweighted basic outliers and of the 

additional outliers.  
 
Table 8 MU281 with missingness and high additional  
 contamination 
 

Method n. out GIMCD ER ERw BEM BEMw TRC TRCw 

Additional 98 20 19 37 85 85 85 80 
Basic 
weighted 

20 20 20 20 20 20 20 20 

Basic 
unweighted 

25 21 19 17 23 18 18 13 

 
6. Conclusions 

 
The EM-algorithm for multivariate normal data can be 

adapted to a sampling context. The BACON algorithm 

protects the non-robust EEM-algorithm from outliers when 

the latter is applied within an iteration of the BACON 

algorithm. The ER-algorithm uses robustification within the 

EM-algorithm. The applications showed that this may not 

yield enough robustification. A possible reason, however, 

may also be the non-robust starting point of the M-step in 

the ER-algorithm.  

GIMCD, a non-robust EM-algorithm followed by an 

imputation and detection with MCD covariance worked 

remarkably well for moderate missingness and contamina-

tion. Its variability with high missingness rate is a 

disadvantage. More stable solutions which also can take into 

account the sampling design should be explored. The 
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BACON-EEM algorithm showed very good detection 

capabilities in particular when the missingness rate and the 

contamination rate are high.  

In spite of its simplicity the TRC algorithm is a good 

method in many circumstances. Its main problem seems to 

be the ad-hoc imputation with only one covariable, which 

can be a problem with high missingness rates.  

In order to find a good model for the population it is 

important to use the sampling weights. Nevertheless, it is 

advisable to use also a non-weighted version and to check 

the differences. It is possible that outliers are masked by 

large sampling weights because they may then dominate the 

model estimate.  
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Appendix  

Missingness in MU281 
 

The default response pattern is 111, indicating that the 

three variables rmt85, me84 and rev84 are all present. A 0 in 

the string indicates a missing value for the corresponding 

variable. First, for all strata the response pattern is changed 

accordingto the following scheme with parameters  

( , , ) (1, 2, 3) :a b c =  

011 if LABEL mod 20 a

101 if LABEL mod 20 b

110 if LABEL mod 20 c
response pattern

100 if LABEL mod 30 a

010 if LABEL mod 30 b

001 if LABEL mod 30 c

, = ;
 , = ;
 , = ;

= 
, = ;

 , = ;


, = .

 

Additionally, the above scheme with parameters 

( ) (5 6 7)a b c, , = , ,  is applied for stratum 1 again.  

 
References 

 
Atkinson, A. (1993). Stalactite plots and robust estimation for the 

detection of multivariate outliers. In Data Analysis and 
Robustness. (Eds., S. Morgenthaler, E. Ronchetti and W. Stahel), 
Birkäuser. 

Béguin, C. (2002). Outlier detection in multivariate data. Master’s 
thesis, Université de Neuchâtel.  

Béguin, C., and Hulliger, B. (2003). Robust multivariate outlier 
detection and imputation with incomplete survey data. Deliverable 
D4/5.2.1/2 Part C, EUREDIT.  

Béguin, C., and Hulliger, B. (2004). Multivariate oulier detection in 
incomplete survey data: The epidemic algorithm and transformed 
rank correlations. Journal of the Royal Statistical Society, A 
167(Part 2.), 275-294.  

Billor, N., Hadi, A.S. and Vellemann, P.F. (2000). BACON: Blocked 
Adaptative Computationally-efficient Outlier Nominators. 
Computational Statistics and Data Analysis, 34(3), 279-298.  

Campbell, N. (1989). Bushfire mapping using noaa avhrr data. 
Technical report, CSIRO.  

Chambers, R. (1986). Outlier robust finite population estimation. 
Journal of the American Statistical Association, 81(396), 1063-
1069.  

Cheng, T.-C., and Victoria-Feser, M.-P. (2000). Robust correlation 
estimation with missing data. Technical Report 2000.05, 
Université de Genève.  

Dempster, A.P., Laird, N.M. and Rubin, D.B. (1977). Maximum 
likelihood from incomplete data via the EM algorithm (c/r: P22-
37). Journal of the Royal Statistical Society, Series B, 
Methodological, 39, 1-22.  

Donoho, D. (1982). Breakdown Properties of Multivariate Location 
Estimators. Ph.d. qualifying paper, Department of Statistics, 
Harvard University.  

EUREDIT (2003). Towards Effective Statistical Editing and 
Imputation Strategies - Findings of the Euredit project, Volume 1 
and 2. EUREDIT consortium. http://www.cs.york.ac.uk/euredit/ 
results/results.html.  

Gnanadesikan, R., and Kettenring, J.R. (1972, March). Robust 
estimates, residuals, and outlier detection with multiresponse data. 
Biometrics, 28, 81-124.  

Hadi, A.S. (1992). Identifying multiple outliers in multivariate data. 
Journal of the Royal Statistical Society, B, 54(3), 761-771.  

Huber, P.J. (1981). Robust Statistics. New York: John Wiley & Sons, 
Inc.  

Kosinski, A.S. (1999). A procedure for the detection of multivariate 
outliers. Computational Statistics & Data Analysis, 29, 145-161.  

Little, R., and Smith, P. (1987). Editing and imputation for 
quantitative survey data. Journal of the American Statistical 
Association, 82, 58-68.  

Little, R.J.A., and Rubin, D.B. (1987). Statistical Analysis with 
Missing Data. New York: John Wiley & Sons, Inc.  

Liu, R.Y., Parelius, J.M. and Singh, K. (1999). Multivariate analysis 
by data depth: Descriptive statistics, graphics and inference. The 
Annals of Statistics, 27(3), 783-858.  

Maronna, R., and Zamar, R. (2002). Robust estimates of location and 
dispersion for high-dimensional datasets. Technometrics, 44(4), 
307-317.  

Maronna, R.A. (1976). Robust M-estimators of multivariate location 
and scatter. The Annals of Statistics, 4, 51-67.  

Maronna, R.A., and Yohai, V.J. (1995). The behaviour of the Stahel-
Donoho robust  multivariate estimator. Journal of the American 
Statistical Association, 90(429), 330-341.  

Novo, A.A., and Schafer, J.L. (2002). norm: Analysis of multivariate 
normal datasets with missing values. R package version 1.0-9.  



Survey Methodology, June 2008 103 
 

 

Statistics Canada, Catalogue No. 12-001-X 

R Development Core Team (2006). R: A Language and Environment 
for Statistical Computing. Vienna, Austria: R Foundation for 
Statistical Computing. ISBN 3-900051-07-0.  

Rocke, D., and Woodruff, D. (1993). Computation of robust estimates 
of multivariate location and shape. Statistica Neerlandica, 47, 27-
42.  

Rocke, D., and Woodruff, D. (1996). Identification of outlier in 
multivariate data. Journal of the American Statistical Association, 
91(435), 1047-1061.  

Rousseeuw, P. (1985). Multivariate estimation with high breakdown 
point. In Mathematical Statistics and Applications, Volume B,  
283-297. Elsevier.  

Rousseeuw, P.J., and Leroy, A.M. (1987). Robust Regression and 
Outlier Detection. New York: John Wiley & Sons, Inc.  

Schafer, J. (2000). Analysis of Incomplete Multivariate Data, Volume 
72 of Monographs on Statistics and Applied Probability. 
Chapman & Hall.  

Särndal, C.-E., Swensson, B. and Wretman, J. (1992). Model Assisted 
Survey Sampling. Springer.  

Stahel, W. (1981). Robuste Schätzungen: infinitesimale 
optimalitätund Schätzungen von Kovarianzmatrizen. Ph.D. Thesis, 
Swiss Federal Institute of Technology.  

Venables,W.N., and Ripley, B.D. (2002). Modern Applied Statistics 
with S (Fourth Ed.). New York: Springer. ISBN 0-387-95457-0.  

Wilks, S.S., and Gnanadesikan, R. (1964). Graphical methods for 
internal comparisons in multiresponse experiments. Annals of 
Mathematical Statistics, 35, 623-631. 

 





Survey Methodology, June 2008  105 
Vol. 34, No. 1, pp. 105-117 
Statistics Canada, Catalogue No. 12-001-X 

 

 

Respondent incentives in a multi-mode panel survey:  
Cumulative effects on nonresponse and bias 

Annette Jäckle and Peter Lynn 1 

Abstract 

Respondent incentives are increasingly used as a measure of combating falling response rates and resulting risks of 

nonresponse bias. Nonresponse in panel surveys is particularly problematic, since even low wave-on-wave nonresponse 

rates can lead to substantial cumulative losses; if nonresponse is differential, this may lead to increasing bias across waves. 

Although the effects of incentives have been studied extensively in cross-sectional contexts, little is known about cumulative 

effects across waves of a panel. We provide new evidence about the effects of continued incentive payments on attrition, 

bias and item nonresponse, using data from a large scale, multi-wave, mixed mode incentive experiment on a UK 

government panel survey of young people. In this study, incentives significantly reduced attrition, far outweighing negative 

effects on item response rates in terms of the amount of information collected by the survey per issued case. Incentives had 

proportionate effects on retention rates across a range of respondent characteristics and as a result did not reduce attrition 

bias in terms of those characteristics. The effects of incentives on retention rates were larger for unconditional than 

conditional incentives and larger in postal than telephone mode. Across waves, the effects on attrition decreased somewhat, 

although the effects on item nonresponse and the lack of effect on bias remained constant. The effects of incentives at later 

waves appeared to be independent of incentive treatments and mode of data collection at earlier waves. 
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1. Introduction 
 

Surveys around the world are facing declining response 

rates and, with this, increasing risks of nonresponse bias if 

nonrespondents’ characteristics systematically differ from 

respondents’ characteristics. For panel surveys this is partic-

ularly problematic, since even low nonresponse rates at each 

wave can lead to large cumulative losses. If nonresponse is 

differential, bias could increase with the duration of the 

panel. In order to boost participation rates, survey orga-

nisations increasingly offer respondent incentives. This 

paper provides new evidence on the cumulative effects of 

incentives on attrition, attrition bias and item nonresponse, 

using data from a large scale, multi-wave, mixed mode 

incentive experiment on a UK government panel survey of 

young people.  

The effects of incentives have been studied in many 

settings: monetary incentives increase response more than 

gifts or lotteries (Church 1993; Singer, Hoewyk, Gebler, 

Raghunathan and McGonagle 1999); unconditional incen-

tives (i.e., those incentives that are given at the time of the 

survey request) increase response more than conditional 

incentives (those that are promised in return for participa-

tion) (Church 1993; Goyder 1994; Hopkins and Gullickson 

1992; Singer et al. 1999); response rates increase with the 

value of the incentive (Armstrong 1975; Church 1993; Fox, 

Crask and Kim 1988; Hopkins and Gullickson 1992; 

Rodgers 2002; Yu and Cooper 1983); incentives have larger 

effects in studies with low response rates and larger effects 

in postal than interviewer administered surveys (Singer 

et al. 1999). Most evidence of differences between modes in 

the effect of incentives, however, stems from comparisons 

of separate studies and fails to control for differences in 

other measures affecting response. As a result, differences in 

the effects of incentives are not necessarily genuine mode 

effects. The study by Ryu, Couper and Marans (2006) is an 

exception. The authors compared the effects of monetary 

incentives and gifts in a mixed mode postal and face-to-face 

survey. Their study did not, however, include a no-incentive 

condition and so did not allow an evaluation of the 

magnitude of incentive effects across modes. We compared 

the effects of incentives in a mixed postal and computer-

assisted telephone interviewing (CATI) survey and, in 

postal mode, also examined the effects of conditional and 

unconditional incentives. 

Research on the effects of incentives has focused on 

response rates and little is known about the effects on bias, 

the ultimate reason for concern about low response. 

Incentive studies are mostly limited to studying effects on 

bias in sample composition and some studies have found 

that incentives disproportionately increase participation of 

respondents typically under-represented, for example those 

with low education (Singer, Van Hoewyk and Maher 2000), 

poor (James 1997), black or poor (Mack, Huggins, Keathley 

and Sundukchi 1998), of black or Indian minority ethnic 

groups, living in larger households or households with de-

pendent children, aged 0-20, or single (Stratford, Simmonds 

and Nicolaas 2003). Biases in sample composition are 
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however not necessarily correlated with biases in important 

survey estimates, especially since typically only a handful of 

compositional characteristics are studied. Ultimately, studies 

of nonresponse bias are limited by the lack of information 

about nonrespondents, a limitation which can be overcome 

to some extent by panel studies, where information about 

nonrespondents is available from waves prior to the 

dropout. We estimate the extent of bias due to attrition in 

terms of sample composition and survey variables. We then 

assess the effectiveness of incentives at reducing bias, 

exploiting the information on attriters available from the 

panel. 

Additionally, little is known about the effects of 

incentives over waves of a panel survey, whether the same 

treatment is administered repeatedly or whether the 

treatment changes between waves. In a review of the use of 

incentives in longitudinal studies, Laurie and Lynn (in 

press) concluded that, given the cost implications of 

changing incentive conditions, there was surprisingly little 

evidence about the longer term effects of such changes to 

guide survey practitioners. Quoting an internal memo-

randum of the US Census Bureau, Ward, Boggess, Selvavel 

and McMahon (2001) wrote (see page 2) that a “review of 

the well-known longitudinal studies (Downs 1999) found 

that all non-Census Bureau studies used a monetary 

incentive during each wave, but there had been no scientific 

tests to determine the effectiveness of the incentives”. If 

attrition leads to dropout of the least co-operative, the 

sample might increasingly be composed of committed 

respondents who are less responsive to incentives, because 

they are sufficiently motivated to participate even without 

the incentive (Laurie and Lynn in press). In this case, 

incentives may have decreasing marginal effects on 

response rates over the life of the panel. By the same token, 

incentives may have increasing effects on attrition bias, if 

they have disproportionate effect on sample members who 

would otherwise be more likely to drop out. Although some 

incentive studies have been carried out in the context of 

panels, they mostly only covered one wave, or examined the 

effect of changes in incentive treatment from one wave to 

the next. Martin, Abreu and Winters (2001) and Ward et al. 

(2001), for example, studied the effects of incentives on 

conversion rates of previous wave nonrespondents; Rodgers 

(2002) and Laurie (2007) examined the effects of changes in 

incentive values in a panel. The only studies which 

examined the effects of incentives over more than two 

waves appear to be those by James (1997), Mack, Huggins, 

Keathley and Sundukchi (1998) and Laurie and Lynn (in 

press), who reported that the positive effect of an incentive 

paid early in a panel persisted for several waves even 

without repeated incentive payment. These studies, 

however, only examined the effect of an incentive paid in a 

single wave and did not examine the cumulative effects of 

incentives offered over successive waves. We examine the 

cumulative effects of continued incentive payments across 

three waves spanning a time frame of three years, as well as 

the effects of changes from telephone to postal mode and 

from conditional to unconditional incentive treatment.  

Finally, there is conflicting evidence in the literature 

about the effects of incentives on data quality. Although 

concern is frequently voiced that incentives may lead to 

lower data quality, by marginally increasing the motivation 

of respondents who would otherwise have dropped out of 

the study and are not sufficiently able or motivated to 

respond diligently, existing studies have either found that 

incentives lead to improved respondent effort and less item 

nonresponse (James and Bolstein 1990; Mack et al. 1998; 

Singer et al. 2000), or have found no relationship (Berk, 

Mathiowetz, Ward and White 1987; Davern, Rockwood, 

Sherrod and Campbell 2003; Goyder 1994; Shettle and 

Mooney 1999; Singer et al. 1999; Teisl, Roe and Vayda 

2005; Tzamourani and Lynn 1999; Willimack, Schuman, 

Pennell and Lepkowski 1995). Item nonresponse is poten-

tially critical, because analysts typically only use cases with 

complete data. This leads to losses in efficiency due to 

reductions in sample sizes and, similar to unit nonresponse, 

can lead to biased estimates and invalid inference if item 

nonrespondents are not a random subset of the sample 

(Mason, Lesser and Traugott 2002). Problems of item 

nonresponse increase for multivariate analysis, if the 

patterns of missingness vary across items, and for analysis 

of change, which in addition depends on complete infor-

mation at different points in time. Since incentives may 

affect both unit and item nonresponse, it is then not clear 

what their net effect may be on repeated measures derived 

from a panel study. We examined the effect of incentives on 

item nonresponse rates and calculated their net effect on 

attrition and item response. 

 
2. Hypotheses tested  

The outcomes measured for this analysis were the 

attrition rate, item nonresponse rate and attrition bias. 

Attrition was an absorbing state, since the survey did not re-

issue nonrespondents at later waves. Item nonresponse was 

measured as the number of non-filtered items missing, either 

due to refusals or ‘don’t know’ answers. (Non-filtered items 

are those which apply to all sample members: items for 

which eligibility is determined by the response to an earlier 

question are excluded from our measure of item non-

response.) Attrition bias was measured in terms of socio-

demographic characteristics and wave 1 survey measures. 

These three outcome measures were used to test the 

following: 
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H1: Effects of incentives on attrition, item nonresponse and 

attrition bias.  

In previous studies incentives have generally increased 

response rates, be it because norms of social exchange 

oblige the respondent to return a “favour” (norm of 

reciprocity, Gouldner 1960) or because the incentive 

substitutes for a lack of motivation to participate for 

other reasons, such as civic duty or topic interest 

(leverage-salience theory, Groves, Singer and Corning 

2000). Incentives may in addition motivate respon-

dents to provide better quality responses, reducing item 

nonresponse. At the same time incentives may change 

the sample composition to include more respondents 

who are not diligent about answering the survey 

questions, and as a result increase item nonresponse. 

Finally, incentives may have differential effects on 

attrition across sample members. Those with a high 

propensity to participate in the survey without the 

incentive may be less likely to be affected by 

incentives, while those more likely to drop out of the 

survey may be more susceptible. As a result, incentives 

may reduce attrition bias. 

Null hypothesis H1: Incentives have no effect on 

attrition, item nonresponse or attrition bias. 

 

H2: Effects of incentives across waves.  

The effect of incentives in increasing unit and item 

response rates may weaken across waves, if attrition 

leads to dropout of the least motivated sample mem-

bers and the remaining members are sufficiently moti-

vated to participate for other reasons and hence less 

susceptible to incentives (Laurie and Lynn in press). 

However, the extent to which incentives reduce non-

response bias could increase over waves, if incentives 

disproportionately retain those in the sample who are 

most likely to otherwise drop out.  

 Null hypothesis H2: The effects of incentives do not 

change across waves. 

 

H3: Effects of unconditional and conditional incentives in a 

panel context.  

Previous studies, carried out on cross-sectional sur-

veys, suggest that unconditional incentives have larger 

effects on unit nonresponse, possibly because the pre-

payment signals that the survey organisation trusts the 

sample member will participate, reinforcing the norm 

of reciprocity. Whether the different incentive condi-

tions have different effects on item nonresponse is not 

clear.  

 Null hypothesis H3: Unconditional and conditional 

incentives have similar effects in a panel context. 

 

H4: Effects of incentives in postal and telephone mode.  

Comparisons of previous studies suggest that incen-

tives have a larger effect in postal mode, possibly 

because in telephone mode the interviewer already 

functions as an external motivator to increase both unit 

and item response (Singer et al. 1999) and the scope 

for additional improvements is smaller. The same may 

not necessarily be true in a panel context where the 

effect of mode on response may be mediated by the 

respondent’s experience of previous waves. 

 Null hypothesis H4: Incentives have similar effects in 

postal and telephone mode. 

 

H5: Effects of changes over waves in mode or incentive 

treatment.  

Compared to sample members allocated to the same 

mode and treatment across waves, those who were 

allocated to different treatments or different modes 

may differ in their experiences of previous survey 

waves and their expectations about future waves. As a 

result, the effect of incentives may not only be 

conditional on mode at the current wave, but may be 

influenced by the incentive treatment and mode in 

previous waves. 

 Null hypothesis H5: Changes in mode or incentive 

treatment over waves do not have lasting effects. 

 

H6: Effects of incentives across ability levels.  

Sample members with low education levels are typi-

cally more likely to drop out of surveys. If incentives 

reduce attrition bias, they should therefore dispropor-

tionately reduce attrition among lower achievers. Low 

ability respondents may at the same time be more 

likely to provide incomplete responses, if they find the 

task of completing the postal questionnaire more 

difficult. Therefore, incentives may increase mean 

levels of item nonresponse. 

 Null hypothesis H6: Incentives have similar effects 

across ability levels. 

 
3. Study design  

The Youth Cohort Study of England and Wales (YCS) 

investigates transitions from compulsory education to 

further or higher education or the labour market and 

typically samples cohorts of 16 to 17 year-olds every two 

years, who are surveyed on several occasions at annual 

intervals. The incentives experiment was embedded in 

waves 2, 3 and 4 of cohort 10. The survey is managed and 

funded by the Department for Children, Schools and 

Families, who jointly designed the incentive experiment 
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with the National Centre for Social Research, the survey 

contractors for waves 2 and 3 of YCS cohort 10. 
 
3.1 The survey 
 

The population studied in the YCS cohort 10 consisted of 

pupils in England and Wales who had reached minimum 

school leaving age of 16 in the 1998/1999 school year 

(Russell and Phelps 2001), that is, a one year age cohort of 

pupils born between 1-9-1982 and 31-8-1983. A 10% 

random sample was drawn from the registers of schools 

(excluding special schools and schools with fewer than 20 

pupils of that age) in 1999, by asking schools to provide the 

names and addresses of pupils born on the 5
th
, 15

th
 and 25

th
 

of every month. From the resulting file of 31,424 names and 

addresses a systematic random sample of 25,000 pupils was 

drawn. The first wave of the survey took place a year later 

in spring 2000, the second at the end of 2000, the third in 

spring 2002 and the fourth in spring 2003. Nonrespondents 

were not issued in subsequent waves and, as a result, 

attrition was monotonic.  

Wave 1 was a postal survey with telephone follow-up    

of nonrespondents after 4 mailings (initial questionnaire 

mailing and three reminders). Based on reported exami-

nation results, wave 1 respondents were classified as either 

‘higher achievers’ (if they had obtained 5 General Certif-

icate of Secondary Education examination passes at grades 

A* to C) or ‘lower achievers’ otherwise. This led to around 

one-third of wave 1 respondents being classified as lower 

achievers. At wave 2 roughly one third of issued sample 

members were randomly selected for additional questions 

on particular topics and assigned to computer assisted 

telephone interviewing (CATI). In addition to the core 

questionnaire, telephone respondents were administered a 

module on decisions about entering higher education (for 

higher achievers) or on educational and employment 

aspirations (for lower achievers). The remaining sample 

members were administered the core questionnaires by post. 

At wave 3 all lower achievers received the core mail 

questionnaire, although the telephone module continued to 

be carried for a third of higher achievers. At wave 4 all 

respondents were assigned to the core postal survey. Figure 

1 illustrates the allocation to modes and incentives. 

The core questionnaire remained mainly unchanged for 

the three experimental waves. Telephone respondents were 

asked the core questions before the additional modules. The 

core questionnaire was the same as the postal questionnaire, 

although some items were adapted for administration over 

the telephone. The average telephone interview took around 

20 minutes. (The questionnaires and technical reports are 

available via the UK Data Archive in the appendices of the 

YCS User Guide at http://www.data-archive.ac.uk/ 

findingdata/snDescription.asp?sn=4571&key=YCS.) 

 
3.2 The incentives experiment 

 
Facing growing concerns over declining response rates, 

an experiment was introduced in the second wave of cohort 

10, to study the effect of incentive payments on response 

rates and nonresponse bias. A proportion of wave 1 

respondents on both the postal and telephone surveys were 

sent a GBP5 voucher (approx. USD10 or EUR7), while the 

control groups received no such incentive. Additionally, in 

the postal survey the incentives were either unconditional 

(the incentive was sent with the initial mailing) or 

conditional (the voucher was promised in the original 

mailing, but only sent on receipt of a completed 

questionnaire). At waves 3 and 4, all incentives were paid 

unconditionally. 

 

 

 

 

 

 

 

Wave 1 

Postal core questionnaire. Reported exam results used to classify respondents for wave 2 

allocation. 

 Higher Achievers Lower Achievers 

Wave 2 Tx Tu Px Pu Pc Tx Tu Px Pu Pc 

Wave 3 Tx Tu Px Pu -- -- -- Px Pu -- 

Wave 4 -- -- Px Pu -- -- -- Px Pu -- 

Questionnaire Core + Higher 

education 

Core Core + Education 

and employment 

Core 

Notes: T = telephone, P = postal, x = control, u = unconditional incentive, c = conditional incentive. Arrows 

indicate changes in incentive treatment or mode allocation between waves. 

Figure 1 Experimental design 
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3.3 Allocation of respondents to modes and incentive 

treatments  
At wave 2, wave 1 respondents were randomly assigned 

to either telephone or postal mode. The allocation of 

incentive treatments was however done at the school level 

(randomised cluster assignment by mode). Each school 

represented in the sample was allocated to one telephone 

treatment (control or incentive) and independently allocated 

to one, potentially different, postal treatment (control, 

unconditional incentive or conditional incentive), so that all 

sample members from the same school approached in the 

same mode received the same incentive treatment. 

The 4,712 wave 1 lower achiever respondents were 

stratified by identification number within school within 

Government Office Region and alternately allocated to 

telephone and postal treatments. We have excluded from the 

analysis 627 cases for which there was no valid telephone 

number on file, as those amongst this group who had been 

allocated to telephone mode were approached by post. 

Consequently, analysis of lower achievers is restricted to 

2,097 approached by telephone and 1,988 approached by 

post.  

A similar procedure was carried out for higher achievers, 

except that a larger proportion was allocated to postal 

treatment. There were 8,909 wave 1 higher achiever 

respondents of which 751 had no valid telephone number 

and are excluded from the analysis. After these exclusions 

there are 2,922 higher achievers allocated to telephone mode 

and 5,236 allocated to postal mode. 

For the allocation of schools to incentive treatment 

groups, the schools containing telephone sample members 

(i.e. all schools apart from a few of the very smallest schools 

with fewer than five pupils in the sample) were stratified 

according to the ratio of lower to higher achievers in the 

sample and randomly assigned to incentive treatments 

within strata. (The proportion of schools assigned to 

incentives was 1/2 if the ratio of lower to higher achievers in 

the sample was ≥ 2; 1/3 for 1/2 ≤ ratio < 2 and 1/4 for all 

remaining schools.) The procedure was repeated for the 

allocation of schools in the postal treatment groups, where 

those selected for incentive treatment were randomly split 

into a conditional and an unconditional treatment group. 

(The proportions allocated to incentives were 2/3 if the ratio 

was ≥ 2; 1/3 for 0 ≤ ratio < 1/2 and 1/6 for all other schools.) 

All estimates of significance presented in this text account 

for the clustered sampling design of the incentive 

experiment.  

Table 1 shows the issued sample sizes at each wave for 

the different treatment and mode combinations, excluding 

cases of known ineligibility who had either moved abroad 

or died (n = 13 at wave 2; n = 3 at wave 3). Ineligible cases 

at wave 4 are not identified in the data, but the number is 

likely to be small. The analysis also excludes wave 1 

respondents for whom no telephone number was known at 

the time of the allocation to modes for wave 2, as described 

above, and 117 higher achievers assigned to telephone mode 

at wave 2, who responded by post and were subsequently 

allocated to postal mode. 

Table 1 also documents the observed wave-on-wave and 

cumulative response rates (AAPOR RR1). The rates are 

shown by achievement level and sequential mode/incentive 

combination. Wave-on-wave response rates for the higher 

achiever sample allocated to telephone control at wave 2 

and moved to postal control at wave 4 (Col 1) were, for 

example, 76.82%, 69.13% and 72.21%. The issued numbers 

of cases declined from 2,075 to 1,101 across the three 

waves, because nonrespondents were not issued in 

subsequent waves.  
 

 

Table 1 Conditional and cumulative response rates 
 

  Higher Achievers Lower Achievers 

Wave 
Response 

Rate % 
TxTxPx TuTuPu PxPxPx PuPuPu PcPuPu TxPxPx TuPuPu PxPxPx PuPuPu PcPuPu 

2 Conditional 76.82 80.91 78.23 86.45 82.32 65.21 70.41 64.93 75.00 71.35 

 (Issued n) (2,075) (728) (3,262) (1,004) (967) (1,282) (811) (807) (608) (569) 

3 Conditional 69.13 73.17 73.07 81.91 81.36 59.09 70.93 63.36 71.93 70.20 

 (Issued n) (1,594) (589) (2,551) (868) (794) (836) (571) (524) (456) (406) 

 Cumulative 53.11 59.20 57.16 70.82 66.94 38.53 49.94 41.14 53.95 50.09 

4 Conditional 72.21 85.61 76.11 85.65 86.82 63.16 74.26 65.36 75.30 81.34 

 (Issued n) (1,101) (431) (1,863) (711) (645) (494) (404) (332) (328) (284) 

 Cumulative 38.31 50.69 43.48 60.66 58.03 24.34 36.99 26.89 40.63 40.60 

Notes: AAPOR Response Rate 1. Treatment groups are identified by T = telephone, P = postal, x = control, u = unconditional incentive, 
c = conditional incentive. Tx Tx Px for example, refers to the sample allocated to telephone control at waves 2 and 3 and to postal control at 
wave 4. Conditional response rates are conditional on response at the previous wave. The base is the number of issued cases, which 
excludes previous wave nonrespondents and ineligible cases. Cumulative response rates are the percentage of wave 1 respondents 
remaining in the respondent sample. The base is the wave 2 number of issued cases, excluding three higher achievers ineligible at wave 3 
(1 Px Px Px and 2 Pc Pu Pu).  
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4. Outcome measures and methods  
 

The analysis is based on the sample of wave 1 

respondents, since allocation to experimental treatments 

used information collected in the first wave and the 

corresponding characteristics of wave 1 nonrespondents are 

unknown. Our focus is therefore on attrition, conditional 

upon wave 1 response. This is the aspect of non-response 

that is particular to panel surveys, though of course it must 

be recognised that the characteristics of attrition are 

conditional on the characteristics of wave 1 response. The 

response rate at wave 1 (AAPOR RR1) was 54.80%, 

excluding 5 cases of known ineligibility (Russell and Phelps 

2001). This section describes the outcome measures and 

methods used to evaluate the hypotheses about the effects of 

incentives.  
 
4.1 Attrition  

To test the effect of incentives on attrition, we estimated 

the probability of attrition as a function of the experimental 

design variables (telephone mode, unconditional incentives, 

conditional incentives, lower achievers) and their 

interactions. For each of the three experimental waves 

(t = 2, 3, 4), we estimated a separate probit model of the 

probability of attrition, in each case using the wave 1 

respondent sample as the base: 
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+ β + β

+ β + ε  (1)

 

where F is the probit link function. The estimated 

coefficients and standard errors from this model were then 

used to calculate predicted probabilities of attrition under 

different treatment conditions and to test for differences due 

to incentives. 
 
4.2 Item nonresponse  

To test the effect of incentives on item nonresponse, we 

estimated count models of the number of items missing, 

using all non-filtered items from the core questionnaires in 

waves 2 (n = 44), 3 (n = 48) and 4 (n = 46), where ‘don’t 

know’ was counted as a missing value. We used the same 

specification of the predictors as for model (1) to estimate 

separate negative binomial regression models for each of the 

three experimental waves, conditional on response to the 

given wave. (Overdispersion meant that Poisson models did 

not fit the data: the P-value of the Likelihood Ratio test of 

equal mean and variance was 0.0000 for all three waves.) 

The estimated coefficients and standard errors from these 

models were used to calculate predicted item nonresponse 

under different treatment conditions and to test for 

differences due to incentives. 
 
4.3 Attrition bias  

To test the effect of incentives on attrition bias, we 

estimated the probability of attrition using model (1) but 

including wave 1 respondent characteristics and their 

interactions with the experimental design variables as 

predictors. We estimated separate probit models for attrition 

at each of the experimental waves (t = 2, 3, 4) and for each 

characteristic, again using the wave 1 respondent sample as 

the base: 
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where 11β  to 19β  are the coefficients for the interactions of 

the characteristic with the design variables. The coefficient 

for the respondent characteristic, 10,β  provides information 

about the direction, magnitude and, in combination with its 

standard error, the significance of attrition bias for the 

postal, no incentive, higher achiever reference group. The 

interaction of the characteristic and the incentive indicators 

provide information about the change in attrition bias due to 

incentives. The significance of all interactions presented in 

this text was calculated following recommendations for 

nonlinear models by Norton, Wang and Ai (2004) using the 

command ‘predictnl’ in Stata version 9. 

The characteristics tested were gender, school type, exam 

results, current activity (full-time education, employment, 

not in education, employment or training (“neet”)), 

experience of unemployment, studying for vocational or 

academic qualifications, household composition (living with 

parent, partner, neither) and a set of attitudinal questions 

about employment and training. The wording of all 

questions is documented in Table 6. The characteristics 

chosen were those for which respondents and non-

respondents could be expected to differ, based on previous 

studies of nonresponse in the YCS and other surveys and on 

nonresponse theories (Groves and Couper 1998; Lynn, 

Purdon, Hedges and McAleese 1994).  
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4.4 Reported results 
 

Since coefficients from non-linear models cannot be 

interpreted substantively (Long 1997), we report predicted 

values based on the model estimates, rather than coeffi-

cients. Unless stated otherwise, the results are for the higher 

achiever group. To convey a sense of the magnitude of 

differences in outcomes across treatments, we report 

transformations of the predicted values, comparing each 

treatment with the comparison group, the higher achiever 

postal control.  

 
5. Attrition, item nonresponse and attrition  

        bias in the control groups 

 
As a background to the evaluation of the effects of 

incentives, this section documents the extent of attrition, 

item nonresponse and attrition bias in the control groups, 

highlighting differences across waves, achievement levels 

and modes. Throughout the discussion the higher achiever 

postal no-incentive group is the reference category, with 

which all other treatments are compared. 

 
5.1 Attrition 
 

The predicted cumulative attrition rate among higher 

achievers allocated to the postal control group, increased 

from 21.77% in wave 2 to 56.53% in wave 4 (Table 2, Col 

1). For lower achievers (Col 2), attrition rates in the postal 

control group were 61% higher at wave 2, but this 

difference decreased across waves to 29% at wave 4. The 

difference by achievement level was nonetheless significant 

in all three waves (P-value of 4β  = 0.0000 for t = 2, 3, 4). In 

telephone mode (Col 3), attrition rates in the control group 

were not significantly different at wave 2, but 9% higher at 

wave 3 (P-value of 5β  = 0.0034 for t = 3). This is contrary 

to findings from other studies, where nonresponse is 

generally lower in telephone mode due to the role of the 

interviewer in persuading respondents to take part in the 

survey. One possible reason for finding the opposite in this 

study is that for both the postal and CATI treatment groups, 

further attempts to obtain responses from initial non-

respondents were made by telephone, so that only the postal 

group had a multi-mode treatment. Secondly, the burden of 

the wave 2 survey (measured by the interview length) was 

higher for the telephone respondents due to the additional 

modules, possibly leading to higher nonresponse at wave 3 

than among the postal sample. The predicted cumulative 

response rates, which were the base for the calculation of 

percentage differences across treatment groups, are docu-

mented in the first three columns of Table 5.    

5.2 Item nonresponse  
The predicted number of missing items in the higher 

achiever postal control group was 2.89 at wave 2, falling to 

1.75 at wave 4 (Table 3, Col 1). For lower achievers (Col. 

2), the expected count for the control group was 21% higher 

at wave 2, with the gap increasing to 45% at wave 4. The 

differences by achievement level were significant in all 

three waves (P ≤  0.0001 for 4,β  t = 2, 3, 4). For telephone 

mode (Col 3), the predicted count was 4% lower at wave 2 

and 12% lower at wave 3 (P = 0.0000 for 5,β  t = 2, 3), 

compared with postal mode. The predicted item non-

response counts, used as the base for the calculations 

presented in Table 3, are documented in columns 4 to 6 of 

Table 5. 

 
5.3 Attrition bias 
 

Nonresponse in the higher achiever postal control group 

was differential for all of the domains tested (Table 4). The 

respondent samples significantly over-represented those 

living with their parents, in full-time education or studying 

for academic qualifications. Predicted attrition rates for 

those in full-time education in the higher achiever postal 

control group, for example, were 14% lower than for those 

not in full-time education at wave 2, with the difference 

increasing to 17% by wave 4 (P = 0.0000 for 10,β  t = 

2, 3, 4). At the same time, the respondent samples under-

represented males, those in secondary modern schools, with 

low or no exam results, who thought employers did not give 

young people the right training and that making plans for 

the future was a waste of time, those in full-time employ-

ment, those who had experienced unemployment and those 

who were studying for vocational qualifications. Bias was 

particularly strong with respect to qualifications. Those 

without any or with very low exam qualifications were 

around 50% more likely to have attrited from the sample by 

waves 3 and 4, compared to sample members with better 

qualifications. Similarly, those in full-time employment 

were 17% more likely than those not in employment (most 

of whom were still in education) to drop out at wave 2, with 

the difference increasing to 22% by wave 4. 

Including background information used by the YCS for 

weighting (gender, school type, exam results and region) in 

the models did not affect the bias for any of the charac-

teristics (in each wave and for each item, the P-value > 0.05 

from Wald tests of the equality of 10β  estimated with and 

without background characteristics; not reported), except for 

bias with respect to qualifications, which was somewhat 

reduced when the background information was included.  

The extent of attrition bias was mostly stable across 

waves, except for a few characteristics. In the higher 

achiever postal control sample, the under-representation of 

males significantly increased from waves 2 to 4 (P-value 
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from a Wald test of the equality of 10β  across the two 

waves = 0.0295; not reported). For some of the other 

characteristics, the bias significantly decreased across 

waves. Nonresponse bias associated with attending a 

modern school fell between waves 3 and 4 and bias 

associated with not having any qualifications fell between 

waves 2 and 3 and again between waves 3 and 4.  

For lower achievers there were few differences in the 

extent of attrition bias (not reported). Bias by gender, that is 

the difference in predicted nonresponse rates between males 

and females, was 12% less than for higher achievers at wave 

4 (P-value of the interaction between achievement level and 

gender was 0.0425 for t = 4), and bias by full-time 

employment was 4% less at wave 2 (P-value = 0.0269 for 

t = 2); bias according to attitudes on training provided by 

employers was 9% higher at wave 2 (P-value = 0.0056); 

bias according to whether studying for academic or 

vocational qualifications was higher at wave 2 (22% and 

13%), 6% lower and 1% higher at wave 3, and lower at 

wave 4 (81% and 92%).  

 

 

 

 

Table 2 Effect of incentives on attrition rates 
 

 Control groups Incentives Incentives by ability Incentives by mode and ability 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) 

Wave ha

xP  
la ha

x x

ha

x

P - P

P

 
ha ha

x x

ha

x

T - P

P

 
ha ha

u x

ha

x

P - P

P

 
( )

(4)

ha ha ha

c x x

ha

P - P /P  (4)

(4)

la

ha

 ( )

( )

la la la

c x x

ha ha ha

c x x

P - P /P

P - P /P

 ( )

(4)

ha ha ha

u x x

ha

T -T /T  ( )

( )

la la la

u x x

ha ha ha

u x x

T -T /T

T -T /T

 

2 21.77 0.6112 0.0650 -0.3777 0.4966 0.7602 0.9763 0.4669 0.8471 

(P-Value)  (0.0000) (0.2268) (0.0000) (0.0142) (0.5085) (0.4332) (0.0556) (0.6810) 

3 42.86 0.3734 0.0941 -0.3191 0.7066 0.6820 0.6743 0.4074 1.4275 

(P-Value)  (0.0000) (0.0034) (0.0000) (0.0592) (0.7834) (0.8287) (0.0057) (0.0861) 

4 56.53 0.2933 - -0.3040 0.8402 0.6179 0.7340 0.6597 0.8338 

(P-Value)  (0.0000) - (0.0000) (0.2244) (0.2535) (0.8177) (0.0911) (0.9265) 

Notes: P = postal, T = telephone, x = control, u = unconditional incentive, c = conditional incentive, ha = higher achievers, la = lower 
achievers. Column (1) shows the predicted attrition rate for the postal control higher achiever sample. The remaining columns show 
proportionate change in predicted rates. P-values of columns 2-4 represent standard errors of the main effects in the probit model; 
column 5 represents P-values from a Wald test of the equality of the coefficients for conditional and unconditional incentives; columns 
7-9 represent P-values for the relevant interactions calculated using ‘predictnl’ in Stata version 9, according to Norton et al. (2004).  

 

 

 

 

Table 3 Effect of incentives on item nonresponse (counts) 
 

 Control groups Incentives Incentives by ability Incentives by mode and ability 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) 

Wave ha

xP  
la ha

x x

ha

x

P - P

P

 
ha ha

x x

ha

x

T - P

P

 
ha ha

u x

ha

x

P - P

P

 
( )

(4)

ha ha ha

c x x

ha

P - P /P  (4)

(4)

la

ha

 ( )

( )

la la la

c x x

ha ha ha

c x x

P - P /P

P - P /P

 ( )

(4)

ha ha ha

u x x

ha

T -T /T  ( )

( )

la la la

u x x

ha ha ha

u x x

T -T /T

T -T /T

 

2 2.89 0.2068 -0.9579 0.1008 1.3849 2.4825 0.6927 0.1820 -0.4094 

(P-Value)  (0.0005) (0.0000) (0.0173) (0.4790) (0.1308) (0.6472) (0.6251) (0.9202) 

3 2.54 0.3879 -0.8828 0.1660 1.5599 1.6788 1.2445 -0.9526 -0.1378 

(P-Value)  (0.0001) (0.0000) (0.0049) (0.2372) (0.4339) (0.6796) (0.0442) (0.3890) 

4 1.75 0.4533 - 0.0085 17.5491 16.8405 0.4621 13.8706 2.3073 

(P-Value)  (0.0013) - (0.9262) (0.2133) (0.4724) (0.6481) (0.5049) (0.4530) 

Notes: P = postal, T = telephone, x = control, u = unconditional incentive, c = conditional incentive, ha = higher achievers, 
la = lower achievers. Column (1) shows the predicted number of missing items of 44 non-branched items at wave 2, 48 at wave 3 
and 46 at wave 4. The remaining columns show proportionate change in predicted item nonresponse counts. P-values of columns 
2-4 represent standard errors of the exponentiated coefficients from the count model; column 5 represents P-values from a Wald 
test of the equality of the exponentiated coefficients for conditional and unconditional incentives; columns 7-9 represent P-values 
for the relevant interactions calculated using’predictnl’ in Stata version 9, according to Norton et al.(2004).  

 

 

 



Survey Methodology, June 2008 113 
 

 

Statistics Canada, Catalogue No. 12-001-X 

Table 4 Attrition bias (higher achiever postal control group) 
 

 Wave 2 P-Value Wave 3 P-Value Wave 4 P-Value 

Male 0.0807 (0.0000) 0.1330 (0.0000) 0.1474 (0.0000) 

School type       

Comprehensive 16 0.0196 (0.2645) 0.0102 (0.6178) 0.0259 (0.2060) 

Comprehensive 18 -0.0197 (0.1966) -0.0138 (0.4444) -0.0200 (0.2650) 
Selective -0.0188 (0.3661) -0.0547 (0.0407) -0.0213 (0.4577) 

Modern 0.2310 (0.0001) 0.2423 (0.0004) 0.1597 (0.0261) 

Independent -0.0142 (0.4639) 0.0147 (0.5245) -0.0068 (0.7756) 
Exam results       

5+ grades A-C -0.0977 (0.1778) -0.0866 (0.3060) -0.1795 (0.0320) 
1-4 grades A-C 0.0831 (0.2857) 0.0721 (0.4298) 0.1696 (0.0606) 

5+ grades D-G 0.0324 (0.8769) 0.0715 (0.7739) 0.1849 (0.4536) 

1-4 grades D-G -0.2177 (0.0000) 0.5714 (0.0000) 0.4347 (0.0000) 
None 0.7826 (0.0000) 0.5716 (0.0000) 0.4348 (0.0000) 

Attitudes        

Employers don’t give training 0.0842 (0.0000) 0.0882 (0.0000) 0.0798 (0.0001) 
Training more important than pay 0.0108 (0.4808) -0.0070 (0.6979) -0.0062 (0.7370) 

Plans for future are a waste of time 0.0656 (0.0959) 0.1457 (0.0015) 0.1371 (0.0030) 

Information about opportunities 0.0034 (0.8431) -0.0204 (0.3266) -0.0236 (0.2549) 
Enough support planning future 0.0063 (0.6771) 0.0043 (0.8233) -0.0105 (0.5848) 

Current activity       

In full-time education -0.1371 (0.0000) -0.1462 (0.0000) -0.1728 (0.0000) 
In full-time employment 0.1661 (0.0003) 0.1983 (0.0001) 0.2201 (0.0000) 

Neither in employment, education or training 0.0898 (0.1387) 0.1036 (0.1495) 0.1098 (0.1184) 

ILO unemployed 0.0112 (0.6272) 0.0573 (0.0421) 0.0475 (0.0879) 
Unemployed during past 12 months 0.0246 (0.4216) 0.0731 (0.0523) 0.0891 (0.0146) 

Studying for academic qualifications -0.1173 (0.0000) -0.1351 (0.0000) -0.1341 (0.0000) 

Studying for vocational qualifications 0.0677 (0.0001) 0.0882 (0.0000) 0.0721 (0.0003) 
Living arrangements       

Living with parent -0.1348 (0.0111) -0.1916 (0.0027) -0.1033 (0.0986) 

Living with partner 0.0904 (0.4457) -0.0441 (0.7475) -0.1042 (0.4525) 
 

Notes: Predicted differences in attrition rates based on 10,
ˆ ,tβ  i.e., prediction for each category compared to all residual categories. Each 

table entry is from a different model as explained in the text. P-values based upon estimated standard errors of the coefficient for the 
characteristic in the probit model. 
 
 
 

Attrition bias in telephone mode was no different from 

postal mode, except for differential nonresponse by gender: 

the bias was 7% less at wave 2, 2% less at wave 3 and 1% 

more at wave 4 (P-value of the interaction between tele-

phone mode and gender was ≤ 0.002 for t = 2, 3, 4). 

 
6. Evaluation of hypotheses 

 
The evidence discussed here is summarised in Table 2 

(effects of incentives on attrition), Table 3 (effects on item 

nonresponse), Table 4 (effects on attrition bias) and Table 5 

(net effect on unit and item nonresponse).    
H1: Effects of incentives on attrition rate, attrition bias and 

item nonresponse. 

Incentives reduced attrition and increased item non-

response but did not impact on attrition bias. Un-

conditional incentives reduced cumulative attrition in 

the postal higher achiever sample (Table 2, Col 4) by 

38% (corresponding to an 8 percentage point dif-

ference) at wave 2, 32% at wave 3 and 30% at wave 4 

(P-value of 2β  = 0.0000 for t = 2, 3, 4). At the same 

time, the incentive increased item nonresponse by 10% 

at wave 2 and 17% at wave 3 (P-value of 2 0.05β ≤  

for t = 2, 3), but had no effect at wave 4 (Table 3, Col 

4). The difference across waves was however not 

significant (see H2).  

Incentives had a proportionate effect on attrition across 

all respondent characteristics tested and therefore did 

not reduce attrition bias: the P-value of the interaction 

of unconditional incentives and respondent characteris-

tics was > 0.05 for all characteristics and waves (not 

reported). The exception was the proportion of pupils 

in ‘modern’ schools who were under-represented in all 

three waves. (Modern schools were the smallest cate-

gory, representing only 2.8% of the wave 1 respondent 

sample.) Unconditional incentives reduced this bias by 

60%, 47% and 78% at waves 2, 3 and 4 respectively 

(P-values of the interaction of incentives and modern 

school ≤ 0.01 for t = 2, 3, 4). 
 

Since incentives had a positive effect on unit response 

and a negative effect on item response, Table 5 

documents the net effect on the amount of information 

collected in the survey. The benefits of incentives in 

terms of unit nonresponse clearly outweighed the cost 

in terms of item nonresponse. For each sample person 

issued at wave 2, the predicted unit and item response 
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rates for the postal higher achiever sample implied that 

by wave 4, 40% more valid items were collected with 

unconditional incentives compared to the control 

group. For lower achievers, 50% more information 

was collected with incentives. This is, however, a 

crude measure of the net effect of incentives, since in a 

multivariate analysis or for analyses of change, 

different patterns of missingness across items or across 

waves may lead to large numbers of cases being 

dropped by pairwise deletion.  
H2: Effects of incentives across waves. 

The effect on attrition decreased somewhat across 

waves, while the effects on item nonresponse and attri-

tion bias were constant. Incentives reduced attrition by 

38% at wave 2, 32% at wave 3 and 30% at wave 4 

(Table 2, Col 4). The effects were similar at waves 2 

and 3, but significantly different between waves 2 and 

4 and between waves 3 and 4 (P-value from a Wald 

test of the equality of 2β  across waves was ≤ 0.05). 

Although the relative effect of incentives decreased, 

the absolute effect increased across waves (-17 per-

centage points at wave 4, compared to -8 and -14 at 

waves 2 and 3, see Table 5). The effect of incentives 

on item nonresponse was not significantly different 

across waves (P-value of equality of 2β  across waves 

was  > 0.05), although the predicted numbers of miss-

ing items fell across waves. Similarly, the effects of 

incentives on attrition bias did not differ across waves.  
H3: Conditional compared to unconditional incentives. 

Unconditional incentives had a greater effect in re-

ducing attrition than conditional incentives, but similar 

effects on item nonresponse and attrition bias. For 

higher achievers, the conditional incentives used at 

wave 2 were only half as effective at reducing attrition 

as unconditional incentives (Table 2, Col 5) and the 

difference between the two conditions was significant 

(P-value from a Wald test of the equality of 2β  and 3β  

was 0.0142). At the same time, conditional incentives 

increased item nonresponse by 38% more than un-

conditional incentives (Table 3, Col 5), but the differ-

ence was not significant. Conditional incentives some-

what reduced attrition bias for a single characteristic: 

sample members in the control group studying for 

vocational qualifications at wave 1 were 6.8% more 

likely to drop out than those not studying for 

vocational qualifications. With conditional incentives 

the difference was 6.4% (P-value of the interaction of 

conditional incentives with this characteristic was 

≤ 0.05 for t = 2).   
H4: Differential effects by mode. 

Incentives had more effect on attrition and item 

nonresponse in postal than telephone mode, but no 

effect on attrition bias in either mode. In telephone 

mode, unconditional incentives had less than half the 

effect on attrition they had in postal mode for the 

higher achiever group (Table 2, Col 8). The difference 

was significant at wave 3 (P-value of the interaction 

between telephone mode and unconditional incentives 

was 0.0057) but not at wave 2. At wave 3, incentives 

increased item nonresponse 5% less in telephone mode 

than in postal mode (P-value of the interaction was 

0.0442), but the difference at wave 2 was not sig-

nificant. The lack of effect of unconditional incentives 

on attrition was no different across the two modes.  
H5: Effects of changes in mode or incentive treatment. 

Changing the incentive condition or mode did not have 

lasting effects. Changing the treatment from condi-

tional to unconditional incentives had no lasting effect 

on either attrition or item nonresponse (P > 0.05 from 

Wald tests of the equality of 2β  and 3β  for t = 3, 4) 

and the effects after the change in treatment were 

similar to those for the sample allocated to uncondi-

tional incentives from the start (Tables 2 and 3, Col 5). 

Changing the survey mode from telephone to postal 

did not have a lasting effect on attrition or item 

nonresponse either (P = value of the interaction for 

telephone mode and unconditional incentives > 0.05 at 

t = 4) and the effects after the change in mode were no 

different from the effects for the sample allocated to 

postal unconditional incentives from the start (Tables 2 

and 3, Col 8).   
H6: Differential effects by ability level. 

The effects of incentives were similar across achieve-

ment levels. Differences between achievement levels 

in the proportional effects of unconditional and condi-

tional incentives on attrition and item nonresponse, 

were not significant (Cols 6 and 7 in Tables 2 and 3 

report the P-values of the interactions of achievement 

level with each of the incentive treatments), since the 

absolute effects were comparable. Unconditional in-

centives, for example, reduced attrition at wave 2 by 8 

percentage points among higher achievers and 10 

percentage points among lower achievers. However, 

since the level of nonresponse in the control group was 

61% higher for the lower achiever group, the similar 

absolute effect implied a smaller proportional effect of 

only 76% of the effect for higher achievers. 

Similarly, the difference between modes was not dif-

ferential by achievement (Tables 2 and 3, Col 9 report 

the P-values of the interaction between achievement 

level, unconditional incentives and telephone mode) 

and the lack of effect on attrition bias was no different 

for lower achievers (not reported).  
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Table 5 Net effect of incentives on unit and item response 
 

  Predicted cumulative RR (%) Predicted mean # INR 

# valid items per unit issued at w2: 

incentive/control 

  w2 w3 w4 w2 w3 w4 w2 w3 w4 

Higher Px 78.23 57.14 43.47 2.89 2.54 1.75 - - - 

Achievers Pu 86.45 70.82 60.66 3.19 2.96 1.77 1.097 1.228 1.395 

 Pc 82.32 66.80 57.91 3.30 3.20 2.01 1.042 1.152 1.324 

 Tx 76.82 53.11 38.31 0.12 0.30 1.61 - - - 

 Tu 80.91 59.20 50.69 0.12 0.25 1.80 1.053 1.116 1.317 

Lower Px 64.93 41.14 26.89 3.49 3.52 2.54 - - - 

Achievers Pu 75.00 53.95 40.63 4.37 4.51 2.91 1.130 1.282 1.498 

 Pc 71.35 50.09 40.60 3.83 4.66 2.72 1.090 1.186 1.504 

 Tx 65.21 38.53 24.34 0.50 3.48 2.35 - - - 

 Tu 70.41 49.94 36.99 0.49 3.56 2.99 1.080 1.294 1.498 

Notes: RR = response rate, INR = item nonresponse, # = number. T = telephone, P = postal, x = control, u = unconditional incentive, 
c = conditional incentive. Calculation based on 44 non-branched items at wave 2, 48 at wave 3 and 46 at wave 4. The number of valid items 
is calculated as RR4*(44-INR2 + 48-INR3 + 46-INR4).     

Table 6 Question wording of items included in analysis of nonresponse bias 
 

Variable Question wording 

Year 11 exam results “Please tell us: a) Which GCSE subjects you studied in Years 10 and 11, b) Which GCSE subjects you have taken an exam in, 
c) Your GCSE results (do not record any re-sit results obtained in Year 11).” 

Attitudes: “Here are some things which people have said. We would like to know what you think. Please put a cross in one box for each 

statement: Agree, Disagree, Don’t know.” 

ATT: employers Agree: “Most employers don’t give young people the right king of training at work.” 

ATT: training/pay Agree: “In looking for a job, I am more concerned to find one with training than one that pays the best.” 

ATT: plans Agree: “I think that making plans for the future is a waste of time.” 

ATT: information Agree: “I know how to find out about future work, training or education opportunities.” 

ATT: support Agree: “I get enough support in planning my future.” 

Current activity: “Please put a cross against one box to tell us your main activity at the moment: a) Out of work/unemployed, b) Modern 
Apprenticeship, National Traineeship, Youth Training or other government supported training, c) In a full-time job (over 30 

hours a week), d) In a part-time job (if this is your main activity), e) In full-time education at school or college, f) Looking 

after home or family, g) Doing something else (please specify).” 

In ft education In full-time education. 

In ft employment In full-time employment. 

NEET Not in employment, education or training. 

ILO unemployed Unemployed and searching for job among economically active (YCS derived variable). 

Unemployed  Unemployed in one or more months from April 1999 to March 2000: “We would also like to know what you have been doing 

over the past months. Please put a cross in one box for each month to show us what you were doing for all, or most of each 
month”. 

Response options as for current activity, including ‘On holiday’.  

Studying (ac) Yes: “At present, are you studying for GCSE, A/S or A-level qualifications?” 

Studying (voc) Yes: “At present, are you studying for any GNVQs (General National Vocational Qualifications)?” or “At present, are you 

studying for NVQ (National Vocational Qualification) or any other vocational or professional qualification including BTEC, 

City & Guilds or RSA qualifications?” 

Household: “Who lives in the same household as you? a) Father, b) Stepfather, c) Mother, d) Stepmother, e) Your own children,  

f) Brothers and sisters g) Other persons (please write in their relationship to you).” 

Living with parent Living with one or more of father, stepfather, mother or stepmother. 

Living with partner Living with boyfriend, girlfriend, husband, wife or partner. 
 
 
 

 
 
 
 
 
 

7. Summary and discussion 

 
This study has provided new evidence on the effects of 

continued incentive payments in a multi-mode panel study. 

We tested the effects of incentives on attrition, item 

nonresponse and attrition bias and whether these effects 

changed across waves. We also tested whether conditional 

and unconditional incentives had similar effects, whether 

incentive effects were differential across modes and ability 

levels, and whether changes in the incentive treatment or 

mode had lasting impact on the effect of incentives in 

subsequent waves.  

The findings showed that unconditional incentives 

significantly reduced attrition and, although they also 
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increased item nonresponse, the net effect on the amount of 

information collected by the survey was positive. Incentives 

had proportionate effects across a range of respondent 

characteristics and as a result did not impact on attrition bias 

in terms of those characteristics. Item nonresponse increased 

more with unconditional than conditional incentives, and 

more in postal than in telephone mode. Attrition bias was 

not affected by either incentive treatment in either mode. 

Across waves, incentives had a somewhat decreasing effect 

on attrition, but similar effects on item nonresponse. The 

lack of effect on attrition bias was also a constant across 

waves. Changes in incentive treatment from conditional to 

unconditional, and in mode from telephone to postal, did not 

affect outcomes at later waves.  

The findings imply that respondent incentives are an 

effective means of maintaining sample sizes of a panel and 

ensuring its value in terms of efficiency of estimation and 

feasibility of subgroup analyses. Among lower achievers, 

fully 50% more information was collected during the three 

experimental waves, in terms of the number of valid items 

per case issued at the start. Incentives were safe, in the sense 

that increased response rates did not inadvertently increase 

nonresponse bias in terms of observed characteristics.  

Changes in incentive treatment did not have lasting 

effect; however, in this study the only change implemented 

was an improvement for the respondent, from conditional to 

unconditional incentives. Expectations formed on the basis 

of previous incentive treatments may well mean that 

changes have lasting effect, if the change reduces the value 

of the incentive in the eyes of the respondent (see, Singer, 

Van Hoewyk and Maher 1998).  

Incentives had no effect on attrition bias. We could 

however not evaluate the effect on bias of nonresponse at 

wave 1. Ideally, we would assess both the magnitude of bias 

due to nonresponse at wave 1 and due to subsequent 

attrition, and the effects of incentives on both. It is possible 

that nonresponse at wave 1 is more detrimental in terms of 

bias than later attrition, especially in studies such as the 

present one with low initial response rates. In this case, the 

effect of incentives on bias at wave 1 may be more 

important than any effect on bias caused by attrition. In 

addition, the discussion of the effects of incentives on 

attrition bias has focused entirely on observed 

characteristics and although incentives did not have 

differential effects in terms of these, they may nonetheless 

have differential effects in terms of unobserved factors. If 

this were the case, the use of respondent incentives could 

introduce sample selection bias in multivariate estimates, if 

the unobservables determining the responsiveness to 

incentives are correlated with outcomes measured by the 

survey (Kennedy 2003). For example, if responsiveness to 

incentives depends on time preferences for money and this 

factor also determines the decision to leave further 

education and work instead, then models of the 

determinants of educational outcomes will lead to biased 

estimates.  

Finally, there was little evidence that the respondent 

sample became less sensitive to incentives across waves as 

potentially less committed sample members dropped out. 

This finding is consistent with Laurie (2007), who reported 

that an increase in the value of an incentive in the British 

Household Panel Survey significantly increased response, 

even after 14 waves of the panel, with already high annual 

response rates of around 95% each year. Since previous 

studies have found that the effects of one-off incentives can 

carry over across waves (James 1997; Laurie and Lynn in 

press; Mack et al. 1998), a formal test of marginal effects of 

incentives would however require comparisons with a 

treatment group only offered an incentive at the first wave. 
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Balancing sample design goals for the National Health  
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Abstract 

The National Health and Nutrition Examination Survey (NHANES) is one of a series of health-related programs sponsored by the United 
States National Center for Health Statistics. A unique feature of NHANES is the administration of a complete medical examination for each 

respondent in the sample. To standardize administration, these examinations are carried out in mobile examination centers. The examination 

includes physical measurements, tests such as eye and dental examinations, and the collection of blood and urine specimens for laboratory 
testing. NHANES is an ongoing annual health survey of the noninstitutionalized civilian population of the United States. The major analytic 

goals of NHANES include estimating the number and percentage of persons in the U.S. population and in designated subgroups with 

selected diseases and risk factors. The sample design for NHANES must create a balance between the requirements for efficient annual and 
multiyear samples and the flexibility that allows changes in key design parameters to make the survey more responsive to the needs of the 

research and health policy communities. This paper discusses the challenges involved in designing and implementing a sample selection 

process that satisfies the goals of NHANES. 
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1. Introduction 
 

The National Health and Nutrition Examination Survey 

(NHANES) is one of a series of health-related programs 

sponsored by the United States Centers for Disease Control 

and Prevention through its National Center for Health 

Statistics (NCHS). The NHANES surveys have been used 

to assess the health and nutritional status of the non-

institutionalized civilian population of the United States for 

over 45 years. The data collected in NHANES are used to 

estimate the prevalence of major diseases and risk factors 

for diseases. The nutritional data from NHANES provide 

temporal monitoring for the nation with respect to such 

factors as diet, cholesterol, hypertension, iron deficiency, 

anemia, and obesity. NHANES has also been designed to 

assess the relationship between diet, health, and the 

environment so that nutritional assessments can be linked to 

such diseases as cardiovascular disease, diabetes, hyperten-

sion, and osteoporosis.  

Data collection for NHANES includes at least three 

stages: a household screener, an interview, and a medical 

examination. The primary objective of the screener is to 

determine whether any household members are eligible for 

the interview and examination. The screener collects basic 

information on household composition and demographic 

characteristics. The interview collects household-, family-, 

and person-level data on demographic and socioeconomic 

background, health, and nutritional characteristics. Upon 

completion of the interview, respondents are asked to partic-

ipate in a medical examination. To standardize adminis-

tration and protocols, these examinations are carried out in a 

specially designed and equipped mobile examination center 

(MEC). The examination includes physical measurements, 

tests such as eye and dental examinations, physiological 

measurements, and the collection of blood and urine 

specimens for laboratory testing. The NHANES website 

(http://www.cdc.gov/nchs/ nhanes.htm) provides detailed 

information about the NHANES medical components. 

The development of an efficient design has involved 

consideration of several design issues unique to NHANES 

in addition to the ones normally involved in survey samples. 

This paper is focused on the unique and challenging aspects 

of the NHANES design. However, it is helpful to provide an 

overall summary of the NHANES design, as given below, 

before discussing the unique features.  

The NHANES sample represents the total non-

institutionalized civilian population of the United States. 

Active military and institutionalized persons are not part of 

the population of inference. NHANES is not an equal 

probability design; sampling fractions are set to “over-

sample” Mexican Americans (and Hispanics in the 2007 

and beyond samples), black Americans, low-income 

white/other Americans, persons below age 20, and persons 

above age 60. A four-stage sample design is being used. The 

primary sampling units (PSUs), often referred to as stands, 

are selected from a frame of all U.S. counties. The PSUs are 

mostly single counties; in a few cases, adjacent counties are 

combined to keep PSUs above a certain minimum size. 

There are close to 3,000 PSUs in the NHANES sampling 

frame. NHANES PSUs are selected with probabilities 

proportionate to a measure of size (PPS). There are 15 

stands in each annual sample. 

The second sampling stage is area segments comprising 

Census blocks or combinations of blocks. Because PSUs 
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vary in size, there is some variability in segment size and in 

the number of segments per PSU. Segments are formed with 

an average of about 150 households (or dwelling units) per 

segment. An average of about 5,000 segments are created 

within each PSU, and an average of 24 segments are 

sampled. The sample is designed to produce approximately 

equal sample sizes per PSU, and most PSUs have exactly 24 

segments. The segments are also selected with PPS. The 

measures of size (MOS) of the segments, when combined 

with the subsampling rates used within the segments, 

provide approximately equal numbers of sample persons 

(SPs) per segment, although the relative variation in 

workload is greater among segments than among PSUs. 

The third stage of sample selection consists of house-

holds and noninstitutional group quarters, such as dormi-

tories. In a given PSU, following the selection of segments, 

all dwelling units (DUs) in the sampled segments are listed, 

and a subsample of households and group quarters within 

the DUs are designated for screening in order to identify 

potential SPs for interview and examination. SPs within the 

households or group quarters are the fourth stage of sample 

selection. All eligible members within a household are 

listed, and a subsample of individuals is selected. The 

subsampling rates for households within segments and for 

individuals within households are determined in advance. 

The combination of screening and differential sampling 

rates provides the increased sample size for those 

demographic subdomains of special interest (age, sex, 

race/ethnicity, and income). For example, in the 30 PSUs in 

which data were collected during the 2-year data cycle 

2005-2006, 716 segments were selected and 26,529 

households were selected for screening. After being 

screened for age, sex, and race/ethnicity composition and 

low-income status, 6,372 households had one or more 

individuals selected into the sample. A total of 12,862 

individuals were selected, of whom 9,950 completed 

interviews and examinations. 

The NHANES examination requires both highly 

specialized personnel and laboratory processing of collected 

specimens. As a result, examination components can be 

very costly to implement. To limit costs and reduce 

respondent burden, certain examination components are 

administered to only a subsample of MEC respondents. A 

single subsampling algorithm controls the amount of 

overlap among the various subsamples to allow analyses of 

correlations between various examinations and laboratory 

components. The SP’s assignments to subsamples are fully 

determined before the SP arrives at the MEC. 

The data collected in NHANES surveys have been 

extremely important in providing needed information about 

the health and nutritional status of the U.S. population. As a 

result, beginning with NHANES 1999, the survey has been 

implemented as a continuous, ongoing, annual survey 

(Montaquila, Mohadjer and Khare 1998). It is critical to 

devote a lot of attention to the development and mainte-

nance of an efficient sample design for such an important 

and complex survey. This paper discusses the challenges 

involved in designing and implementing a sample selection 

process that satisfies the multiple goals of NHANES. The 

paper focuses on the sample design used through 2006 (in 

response to emerging analytical requirements, some aspects 

of the sample design changed starting in 2007). 

Section 2 outlines the major purposes and goals of the 

survey, followed by an overview of the major factors 

affecting the design given in Section 3. The unique features 

of the NHANES sample design are described in Section 4. 

Finally, Section 5 provides a brief summary of the paper. 

 
2. Major purposes and goals of NHANES 

 
NHANES is an ongoing annual health survey of the 

noninstitutionalized civilian population of the United States. 

The main objectives of NHANES are to (1) estimate the 

national prevalence of selected diseases and risk factors; (2) 

estimate national population reference distributions of 

selected health parameters and environmental contaminants; 

(3) document and investigate reasons for secular trends in 

selected diseases and risk factors; (4) contribute to the 

understanding of disease etiology; (5) investigate the natural 

history of selected diseases; (6) study the relationship 

between diet, nutrition, environment, genetics, and health; 

and (7) explore emerging public health issues. 

 
3. Major factors affecting sample design 

 
As mentioned above, a unique feature of NHANES is the 

complete medical examination carried out in the MECs. In 

addition, the design needs to produce efficient sample sizes 

for a large number of subdomains of the general population. 

Many health and nutritional characteristics differ consid-

erably by age, sex, and race/ethnicity and are also affected 

by income status. As a result, most analyses of NHANES 

data are conducted for defined age categories within various 

socioeconomic subgroups of the population. Therefore, the 

survey is designed to produce efficient sample sizes for a 

very large number of subdomains of the U.S. population.  

In general, the sample design for NHANES must create a 

balance between the requirements for efficient subdomain 

samples and the need for an efficient workload for 

examination staff at the MEC, while keeping response rates 

as high as possible. More specifically, the NHANES design 

attempts to (1) obtain prespecified self-weighting sample 

sizes for a set of about 75 predesignated subdomains; (2) 
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produce sample sizes per PSU that will result in an efficient 

workload for the interview and examination staff at the 

MEC; (3) design samples that are likely to achieve high 

response rates; (4) be as cost effective as possible; (5) 

produce efficient annual samples; (6) allow for accumu-

lation of samples, especially for rare subdomains or rare 

diseases over time; and (7) be flexible to allow changes in 

key parameters, including sampling domains, and sampling 

rates to respond to emerging health issues. 

In the remainder of this section, we provide brief sum-

maries of how each of these seven goals affects the design 

and implementation of NHANES. 

NHANES subdomains - The sample design for NHANES 

meets a prespecified level of precision for cross-sectional 

data and comparisons over time for a set of predesignated 

subdomains. Specifically, 77 sampling domains (in the 2006 

sample) are defined by race/ethnicity, sex, age, income, and 

pregnancy status. The sample includes oversamples of 

blacks, Mexicans, the very young, adolescents, the elderly, 

pregnant women, and the low-income population.  

When estimates of universe totals for the entire 

population are considered to be of the greatest importance, 

then the best available estimate of the total population is 

used as an MOS in the sample selection process. For 

NHANES, where the interest is in subdomains of the total 

population, an alternative MOS is needed to improve the 

accuracy of the estimates and provide better control of the 

sample size. Section 4 describes the MOS used for sampling 

PSUs and segments in NHANES. 

The objective of oversampling (using differential 

probabilities of selection) is to achieve a sample containing 

proportionately more members of certain population 

subdomains than there are in the population. The goal is to 

obtain adequate sample sizes to make inferences for 

subdomains representing relatively small proportions of the 

total universe of interest and to do it in such a way as to 

minimize variances for the budget available for the survey. 

Different oversampling strategies are used depending on the 

domains of interest. For example, oversampling of the 

minority subpopulations is accomplished through stratifying 

geographic areas by concentration of these minority groups 

and selecting segments in high-density areas at a higher rate. 

On the other hand, a large screening sample may be 

required to oversample persons within specific age 

categories. The subsection on Cost Ratios below describes 

why oversampling procedures used in NHANES are 

different from those commonly used in many area frame 

sample surveys. 

Workload for mobile examination centers (MECs) - The 

MEC consists of four specially designed and equipped 

trailers and contains all of the medical equipment. Each 

trailer is approximately 45 feet long and 10 feet wide. 

Detachable truck tractors drive the trailers from one location 

to another. MECs travel to survey locations throughout the 

country. The trailers are set up side by side and connected 

by enclosed passageways. The area in the MEC is divided 

into rooms to allow privacy during the examinations and 

interviews. The examination includes a variety of physical 

and dental assessments and measurements, laboratory tests, 

and health interviews. 

Because of the logistical issues related to the traveling 

MECs, the sample size in each sampled location must be 

derived ahead of time and considered fixed so that field 

operations can be scheduled in an efficient and manageable 

way. Also, it is necessary to establish a firm time schedule 

for each stand so that appointments can be made for 

examinations. It is not possible to change the time schedule 

since it must be coordinated with the MEC’s visits to other 

stands, which are also planned in advance. 

Response rates - Achieving high response rates is a 

concern for practically every sample survey. With 

NHANES, this is a particular challenge because of the 

extensive nature of the interviews and examinations. 

Remunerations have been used in NHANES as a means of 

improving response rates. In addition, NHANES has an 

extensive outreach program that includes contacts with local 

organizations and individuals to gain cooperation, as well as 

local media coverage to reach as many SPs as possible. As a 

sample design issue, one approach that has been proven to 

favorably affect response rates is selecting larger sample 

sizes within sampled households. One of the factors thought 

to be responsible for the increased response rates in 

multiple-SP households is that each person is given 

remuneration for his or her time and participation, and it is 

generally more convenient for household members to come 

to the MEC at the same time. Table 1 shows the exami-

nation response rates for SPs coming from households 

where only one person was selected compared to the 

response rates for SPs coming from multiple-SP house-

holds. As the table indicates, response rates increase by 

about 4 to 7 percent depending on the type of household. 

NHANES is, therefore, designed to maximize the 

number of SPs per household. Such an approach is feasible 

for studies like NHANES, where the sample is composed of 

a large number of subdomains. That is, the effect of within-

household clustering is not a large concern for NHANES 

because most analyses are done within age-sex-specific 

subdomains (or some limited groups of subdomains) and 

there is generally little within-household clustering at the 

subdomain level. The average number of SPs selected per 

household (in households where at least one SP was 

selected) within the defined sampling domains ranges from 

1 to 1.24 in the 1999-2006 sample. Combining the domains 

down to 12 to 15 domains by collapsing over age and/or 
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race/ethnicity will result in average numbers ranging from 

1.01 to 1.37 SPs per household. Therefore, some level of 

clustering is present to the extent that collapsed domains are 

used for analysis. Note that the SP sample is basically used 

for SP-level analysis (e.g., health and nutrition statistics). 

The clustering of SPs is, of course, higher at the family and 

household levels. However, household- or family-level 

variables are used for such analysis (e.g., household dust 

levels, family income, or insurance). Refer to Curtin and 

Mohadjer (2008) for a discussion of the impact of clus-

tering, and unequal probabilities of selection of subdomains, 

on the precision levels of various estimates. 

 
Table 1   
Examination response rates by number of SPs in household, by 
household type, in 1999-2006 NHANES sample 
 

Number of SPs  

selected per household 

Response rate (%) Household type 

One SP Two or  

more SPs 

One SP Two or 

more SPs 

Black/Mexican 4,892 20,222 76.5 82.3 

Other low-income1 1,362 3,349 77.6 84.5 

Other non-low-income 5,597 15,508 68.8 72.6 
1 The Other group includes all SPs who are not Black or Mexican. 

The low-income threshold is set at 130 percent of poverty. 

 
Cost ratios - The field data collection cost in area survey 

samples includes the cost of listing DUs, screening 

households to locate eligible respondents, and conducting 

the interview to collect data. In NHANES, the data 

collection phase includes both the household interview and 

the MEC examination. NHANES requires highly spe-

cialized medical equipment, personnel, and laboratory 

processing. As a result, the cost of an examination is very 

high compared to other costs in the survey. In fact, the cost 

of listing and screening is only about 3 to 4 percent of the 

cost of interviewing and examination. This cost ratio (the 

cost of interviewing and examination relative to the cost of 

listing and screening) greatly affects the design of 

NHANES. 

As mentioned above, many of the predesignated 

subdomains of NHANES require some method of 

oversampling to achieve the required sample sizes. For the 

minority populations, substantial reductions in screening are 

possible with oversampling of highly concentrated minority 

areas. In general, an optimum design is developed by 

ascertaining the effect on cost and variance of alternative 

sampling procedures and choosing the one that minimizes 

the variance for a fixed cost. In the evaluation of trade-offs 

between cost and variance, suppose that a particular 

oversampling strategy reduces the number of households to 

be listed and screened while increasing the variance for 

most statistics. The savings brought about by the reduction 

in cost of listing and screening could be used to increase the 

size of the sample and thereby lower the variance. However, 

in NHANES, listing and screening a household is only a 

very small fraction of the cost, and thus, it takes very large 

savings in listing and screening costs to justify a moderate 

increase in variance. As a result, the oversampling 

procedures established for the survey reflect the NHANES 

cost ratio and are different from those of typical area 

surveys. 

Annual and multiyear samples - To facilitate potential 

linkage with other large-scale surveys, to retain flexibility in 

the sample design, and to allow for the production of annual 

estimates for broad subdomains, NHANES became a 

continuous, annual survey starting in 1999. The travel 

requirements for nationally representative annual samples in 

the United States are challenging. Three MECs – two of 

which are stationed at PSUs and one of which is traveling at 

any given time – work on a very carefully designed 

schedule to meet the design requirements of the study. 

The ability to make meaningful inferences from any 

survey is affected by both the precision of the estimates 

themselves and the precision of the variances of the 

estimates used in the analysis. One of the main limitations 

of an NHANES annual sample is the small number of PSUs 

(15 per year), which results in a small number of degrees of 

freedom for both estimation and analysis and thus design-

based variance estimates that are relatively imprecise. 

Additionally, the effective sample sizes for most sub-

domains are too small in annual samples. Most subdomain 

analyses will need to accumulate a number of annual 

samples to provide both precision and statistical power for 

comparisons. The procedures for combining years of the 

survey must be relatively simple, and appropriate for 

commercial software packages, to maximize the usefulness 

to the wide variety of users of the NHANES data. Thus, it is 

critical to employ a sample design that allows efficient 

accumulation of the annual samples across years. 

Flexible design - A critical objective of NHANES is to 

explore emerging public health issues. The survey needs to 

be flexible and able to adapt to changing requirements and 

new challenges. Thus, the sample design must balance the 

need for efficient subdomain samples with the flexibility 

needed to make changes in key parameters. To date, the 

current NHANES design has been able to incorporate some 

changes in subdomain definitions and sampling rates when 

these changes have been made after the selection of PSUs. 

However, in extreme circumstances, substantial changes in 

subdomain definitions or sample size requirements would 

necessitate the selection of a new PSU sample. 
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4. Unique features of the NHANES design 

 
The factors described in Section 3 have played major 

roles in the development of the sample design and have 

resulted in some design features that are unique to 

NHANES. The unique features of the sample design include 

(1) weighted PSU and segment MOS; (2) efficient annual 

and multiyear samples; (3) maximized number of SPs per 

household; (4) controlled sample sizes for PSUs; (5) 

sequential release of the PSU sample; (6) special methods to 

deal with deterioration of the efficiency of the optimum 

design over time; and (7) special methods to reduce the risk 

of data disclosure through geographic identification.   

The following paragraphs briefly describe these unique 

features of the NHANES design. 

Clustering and measures of size (MOS) - In NHANES, 

the sample size must be large enough to produce an efficient 

workload for each PSU, considering the time and the cost 

involved in moving a MEC between survey locations and 

the time required to set up and break down the MECs for 

travel. Experience gained in earlier NHANES surveys has 

indicated that an average of 340 examined SPs is an 

approximately optimum number that provides the maximum 

number of PSUs while keeping the sample size in each area 

large enough to justify the costs associated with moving the 

MECs. In addition, the PSUs for NHANES are typically 

defined as individual counties to reduce the amount of travel 

necessary for respondents to visit a MEC, and thereby 

increase the likelihood of achieving high response rates. 

The NHANES sample is designed to yield a self-

weighting sample for each sampling subdomain while 

producing an efficient workload in each PSU. PSUs and 

segments are selected with probabilities proportionate to a 

weighted MOS, reflecting the PSU population in 

subdomains of interest. The selection probability of a PSU 

determines the maximum rate at which persons residing in 

that particular PSU can be selected. Refer to Vital and 

Health Statistics, Series 2, No. 113, September 1992, 

CDC/NCHS, available at http://www.cdc.gov/nchs/ 

products/pubs/pubd/series/sr02/120-101/120-101.htm, for a 

description of the MOS used in NHANES. 

Annual and multiyear samples and stratification - One 

way to achieve nationally representative annual samples is 

to select an independent sample of PSUs each year. Because 

of the limited number of NHANES PSUs and the fact that 

PSUs are selected proportionate to size, this approach would 

be likely to lead to substantial overlap in PSUs from year to 

year. Sample overlap, even at the PSU level, could lead to 

loss of precision in survey estimates when survey years are 

combined (due to increased clustering of the sample). Thus, 

rather than sampling PSUs independently each year, the 

approach in NHANES has been to select a 6-year sample, 

from a nested structure of major and minor strata (as 

described below), and then allocate one PSU from each 

major stratum to each year. This nested structure for the 6-

year sample avoids overlap of non-self-representing PSUs 

during the 6 years.  

The design for the NHANES 6-year sample is a stratified 

two-PSU-per-stratum design and has been developed with 

the primary goal of efficiency for the 6-year sample, as well 

as efficient multiyear samples. The stratification scheme is 

designed to ensure that the PSUs comprising the annual and 

multiyear samples are distributed evenly in terms of 

geography and certain population characteristics.  

The NHANES design (through 2006) included 18 self-

representing PSUs. These PSUs ranged from those that 

were self-representing for the annual samples to those that 

were self-representing for 3-year or 6-year samples. These 

PSUs were assigned such that each year had an equal 

number of self-representing PSUs, with 3-year self-

representing PSUs being 3 years apart. The non-self-

representing PSUs were stratified into 12 major strata, 

defined based on geography and the metropolitan statistical 

area status of the PSUs. Seventy-two minor strata were 

defined based on the demographics of the PSUs. The minor 

strata were constructed to be of equal size to the extent 

possible (in terms of total MOS). The variables used to form 

the boundaries of the minor strata were minority status and 

the percentages of the population below poverty level. Each 

major stratum included six minor strata, and one PSU was 

selected from each of these final strata. Within each major 

stratum, minor strata were paired to create pseudo-strata. 

Each pair was randomly assigned to the study 3 years apart. 

The assignment of the pairs to the particular sets of study 

years and the assignment of the study years within the pair 

were random within the first major stratum, and all other 

major strata followed the same pattern.  

This stratification scheme resulted in a sample of 72 non-

self-representing PSUs that produces efficient annual and 

multiyear estimates without compromising the efficiency of 

the 6-year estimates. The 6-year sample has a one-PSU-per-

minor-stratum design (or a two-PSU-per-pseudo-stratum 

design), and each annual sample has a one-PSU-per-major-

stratum design. In addition, this design allows for the 

flexibility needed to address changes in the sample 

requirements (if a new sample needs to be selected), since 

the first 3 years of the sample follow a one-PSU-per pseudo-

stratum design. 

Maximized number of SPs per household - After the 

sample of screened households is identified, a sample of 

persons to be interviewed and examined from individual 

households is selected. All eligible members within a 

household are listed, and a subsample of individuals is 

selected based on sex, age, race/ethnicity, and income (all 
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pregnant women are selected with certainty). SPs are 

selected at rates established to ensure that the target sample 

sizes by subdomains will be achieved.  

The sample of SPs is selected in a way that maximizes 

the average number of SPs per household in order to 

increase the overall response rate in the survey. If inde-

pendent random selections are made for the subdomains, in 

most cases only one person in a household would be 

selected and the average sample size per household would 

be quite low, not much above 1. Therefore, instead of 

unrestricted randomization, a pseudo-random procedure is 

used that maximizes the number of SPs per households. 

Refer to Waksberg and Mohadjer (1991) for a description of 

the approach. 

Controlled sample sizes per PSU - The sample size in 

each PSU (stand) that is actually generated from a self-

weighting sample in each domain is based on a number of 

assumptions such as the age and race/ethnicity distribution 

in the PSU. These assumptions hold only approximately. 

Once the sample sizes have been calculated, they are treated 

as quotas, and the number of SPs in each stand is forced to 

adhere closely to the quota. The reason for this procedure is 

to have a manageable and efficient field operation. It is 

necessary to establish a firm, and fixed, time schedule for 

each stand so that appointments can be made for SP 

examinations. The time schedule obviously takes into 

account the expected number of SPs in each stand. As 

mentioned above, it is difficult to change the time schedule 

for a stand since it must be coordinated with the MEC’s 

visits to other stands, which are also planned in advance. 

There is no way of knowing in advance whether the 

assigned quota for a particular stand is lower or higher than 

what would arise from self-weighting samples within the 

various domains. Part of the reason for the uncertainty is 

that the MOS used for sample selection is based on the latest 

decennial Census and may not be quite up to date. The issue 

is further complicated by variations in response rates from 

stand to stand, as well as sampling variation in the number 

of identified SPs. Consequently, it is necessary to use a 

sample selection procedure that can produce samples that 

are either somewhat larger or somewhat smaller than those 

arising from the application of the self-weighting sampling 

rates. 

Sequential release of the sample in each stand - To 

accomplish the above objective, an initial sample is selected 

in each stand that uses sampling rates 50 percent larger than 

those required to attain the target sample sizes in each 

domain. Each stand’s initial sample is then divided into a 

group of subsamples. Each subsample is a systematic sub-

sample of the initial sample, with the households sequenced 

by segment number and a temporary, geographically based 

sequence number prior to subsampling. Thus, each 

subsample cuts across all segments, except when limited by 

sample size. 

As a general rule, the 50 percent subsample (i.e., 

subsample A) is released to the interviewers first. The yield 

from this subsample is monitored and used to project 

estimates of the total number of SPs expected when 

screening of this subsample has been completed. Based on 

these figures, additional subsamples are released as needed. 

The sample is monitored on a daily basis to determine 

whether additional subsample releases are required.  

The one operational problem with the procedure for 

monitoring the sample yield is that it cannot completely 

control the subdomain sample sizes. The distribution of 

subdomains differs, to some extent, from the expected 

numbers based on the most recent Census data (used to 

derive the sampling rates). Experience with NHANES 

indicates that some population changes that will affect the 

sample sizes can be expected. Other factors that affect 

subdomain sample yield are patterns of nonresponse and 

undercoverage in stands. One option to correct the shortfall 

(or overage) in subdomain sample sizes is to change the 

sampling rates in future stands. However, such changes will 

increase heterogeneity in sample weights, thus adversely 

affecting the precision of the subdomain estimates, and are 

not advisable except under extreme circumstances. 

Dealing with deterioration of the efficiency of the 

optimum design over time in a tightly controlled sample - 

The usual practice in area samples is to list all households in 

the sample segments and apply a prespecified sampling rate 

to the listed households. This approach gives all households 

the desired probabilities of selection. For example, if the 

sampling rate is 50 percent, then one-half of the housing 

units listed in the segments will be included in the sample. If 

the number of housing units has tripled due to new 

construction (i.e., housing units built since the most recent 

decennial Census), the same sampling rate will produce 

three times as many interviews and examinations as the 

number originally expected. Such dramatic changes in the 

segment size are expected when the data collection period is 

several years after the most recent decennial Census for 

which data files are available. 

For NHANES, highly variable sample sizes are not 

feasible because of the scheduling requirements of the 

MECs. Subsampling within PSUs, in an effort to obtain 

equal sample sizes across PSUs, is not recommended either, 

because it will introduce unequal weighting factors that 

would reduce the efficiency of the sample. 

NHANES has used two procedures to update the 

segment MOS: (1) creation of new construction segments 

and (2) two-phase sampling to update the MOS. A third 

approach under consideration involves using purchased 

commercial address listings to update the MOS in a two-

phase sample design. 
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Under the new construction approach (Bell, Mohadjer, 

Montaquila and Rizzo 1999), newly constructed units are 

excluded from area segments and new segments are created 

based on U.S. Census Bureau information on permits issued 

for new construction since the most recent decennial 

Census. New construction segments comprise clusters of 

building permits issued during one or several adjoining 

months by a building permit office. Census Bureau files 

from the Building Permits Survey are used as sources of the 

data on the number of residential building permits issued by 

the building permit offices. 

Two-phase sampling is used in a number of statistical 

applications. One of the applications of two-phase sampling 

is to update a sampling frame when the sample is to be 

selected with respect to an MOS but a reliable estimate of 

the MOS is not available. With this approach, a larger 

sample of units (segments, in the case of NHANES) is 

selected. An updated value of MOS is then collected for this 

larger sample (also referred to as the first-phase sample). 

The final sample of units (segments) is selected from the 

first-phase sample using the updated MOS. 

Starting in 2000, the NHANES segment MOS has been 

updated (for stands for which such updating seemed 

necessary) using a two-phase sampling procedure 

(Montaquila, Bell, Mohadjer and Rizzo 1999). In these 

cases, listers travel to the stand to obtain a count of the 

number of DUs in each segment in the first-phase sample. 

Using the listers’ counts, an updated MOS that reflects the 

ratio of the actual number of DUs to the expected number of 

DUs is calculated for each first-phase segment. The final 

sample of segments is then selected by subsampling from 

the first-phase segments using the updated MOS. 

Risk of data disclosure through geographic 

identification - In today’s world, confidentiality concerns 

and the risk of data disclosure present real challenges to 

survey sponsors. The ability to identify survey respondents, 

either through unique combinations available on a single 

data file or by linking different databases, is of great 

concern. This is particularly true for NHANES, because of 

the extensive amount of sensitive data collected on each SP 

and the small number of PSUs in the sample. Therefore, 

NHANES evaluates the risk of disclosure on two fronts: 

geographic disclosure and disclosure from individual 

characteristics. Various methods (limited or suppressed data 

release) are used by NCHS to mask the individual 

characteristics that have a high risk of identifying 

individuals in the NHANES sample. Sensitive, limited, or 

non-released data items are available through a Research 

Data Center. At this time, only national estimates can be 

produced from publicly available data files; detailed 

geographic analyses must be done in the Research Data 

Center. 

Although only national estimates can be produced, the 

direct estimation of sampling errors for those national 

estimates requires the release of design variables such as 

stratum and PSU identifiers. Typically, these variables 

indicate that a group of SPs are all in the same county but do 

not identify that county. Geographic disclosure is of a 

particular concern because (1) NHANES has a small 

number of PSUs, (2) PSUs are limited in geography to one 

county, and (3) an extensive amount of outreach activity is 

conducted within each PSU to improve response rates. The 

outreach program includes contacting various organizations 

and individuals at each stand to seek their support and using 

media (newspapers, television, and radio) to reach as many 

SPs as possible. It is therefore relatively easy to determine 

the counties in the NHANES sample. The racial/ethnic 

composition of a county, along with metropolitan/non-

metropolitan status, is enough information to correctly 

match a list of known counties with groups identified as a 

county cluster on the public data file. To limit geographic 

disclosure, probabilistic record swapping methods are used 

at the second stage of sampling (segment swapping) to 

create masked variance units. The goal is to reduce the risk 

of identifying individuals by masking their location. Refer 

to Park, Dohrmann, Montaquila, Mohadjer and Curtin 

(2006) for a description of the swapping procedures applied 

to the NHANES sample. 

 
5. Summary and conclusions 

 
A unique feature of NHANES is the complete medical 

examination carried out in the MECs. In addition, the 

survey is designed to produce efficient sample sizes for a 

large number of subdomains of the U.S. population, since 

most analyses of NHANES data are conducted for defined 

age categories within various socioeconomic subgroups of 

the population. Thus, the sample design for NHANES must 

create a balance between the requirements for efficient 

subdomain samples and the need for an efficient workload 

for examination staff at the MEC, while keeping response 

rates as high as possible. In addition, the design must be as 

cost effective as possible, produce efficient annual samples, 

and allow for accumulation of samples for rare subdomains 

or rare diseases over time. Furthermore, the design must be 

flexible to allow for changes in key parameters, including 

sampling domains, and sampling rates to respond to 

emerging health issues. 

The above requirements result in a very complex design 

with some design features that are unique to NHANES. In 

particular, the current sample is designed to produce 

efficient annual and multiyear samples. NHANES uses 

weighted PSU and segment MOS to yield self-weighting 
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samples for each subdomain, while producing an efficient 

workload in each PSU. Once the sample sizes are 

calculated, they are treated as quotas. The sample sizes are 

strictly controlled in each PSU to create a manageable and 

efficient field operation. A very large screening sample is 

used to oversample most of the age and income 

subdomains, and oversampling of highly concentrated areas 

is used for some of the very rare minority subdomains. The 

sample of SPs is selected using a pseudo-random procedure 

to maximize the average number of SPs per household 

because it has appeared to increase the overall response rate 

in previous surveys. 

The challenges described in this paper are focused on the 

main aspects of the NHANES. There remain many other 

features unique to NHANES that analysts must take into 

account when analyzing data from the survey. For example, 

not only are there very few PSUs in each annual sample, but 

data collected within these PSUs are not randomly collected 

across the seasons. In particular, if there is a seasonal by 

geographic region interaction for a variable of interest, the 

current NHANES design will not be able to estimate it. 

Because of the small number of PSUs in each data release 

cycle, any contextual data linkage at the geographic level 

must be done in the NCHS Research Data Center. Because 

of the many subsamples within NHANES, special care must 

be taken to use the appropriate subsample weight; for 

example, estimates for undiagnosed diabetes must use the 

special fasting weight. 

To facilitate the efficient use of MECs for data collection, 

there has been no attempt to randomly allocate the sample 

of PSUs across time in annual samples. However, the time 

dimension plays a major role in some health indicators, such 

as nutrition. Furthermore, analysis of nutrition data may also 

be affected by the complex nature of the design and data 

collection. Special sample weights constructed for the 2 

days of the 24-hour recall data account for variation in the 

number of examinations by day of the week. A web-based 

tutorial is now being developed to provide assistance in the 

analysis of NHANES nutrition data. A general tutorial for 

design-based analysis of NHANES data can be found at 

http://www.cdc.gov/nchs/tutorials/. 
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