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In this issue 

 
This issue of Survey Methodology opens with the eighth paper in the annual invited paper series in 

honour of Joseph Waksberg. The editorial board would like to thank the members of the selection 

committee – Sharon Lohr, chair, Bob Groves, Leyla Mohadjer and Wayne Fuller – for having selected 

Mary Thompson as the author of this year’s Waksberg Award paper. 

In her paper entitled “International surveys: Motives and methodologies” Thompson discusses the 

challenges of organization and data collection that arise in conducting surveys in several countries 

simultaneously, and also issues in analyses that compare and contrast different countries included in the 

surveys. She describes several examples of international surveys, and illustrates the challenges by 

discussing issues arising in the International Tobacco Control survey in greater detail. She also considers 

several different methods for calibration of measurements and cross-cultural comparisons. 

Pascale and McGee present a study on the use of dependent interviewing which is used in many 

longitudinal surveys to ‘feed forward’ data from one wave to the next. Using recordings of field interviews, 

the authors use behavior coding to evaluate the effectiveness of dependent interviewing. The paper gives 

some interesting insight into how the type of data fed forward influence the way that interviewers ask the 

question. 

The paper by Xu, Shao, Palta and Wang deals with imputation of missing values in longitudinal surveys 

when the nonresponse pattern is not monotone. The authors assume that the nonresponse mechanism at the 

current period depends only on the last value of the variable to be imputed and that this variable follows a 

Markov chain. Imputation is performed through a series of nonparametric regression models. A bootstrap 

method is employed for variance estimation. The method is illustrated through the use of both simulated as 

well as real data. 

In the context of the prediction framework, Clark and Chambers propose an adaptive calibration 

approach for selecting an appropriate set of auxiliary information. They apply their method to a wide range 

of models. Results of a simulation study are presented confirming the good performance of the proposed 

methods. 

The variance estimation of estimators of change between two successive periods of a repeated survey is 

studied by Qualité and Tillé. In this article, we take into account, among others, the sampling design which 

uses a panel, total non-response, and the reduction of the sampling weights due to outliers and calibration. 

The proposed methodology is applied to the Swiss survey of value added. 

In his paper, Park considers the problem faced by analysts when using public-release data that have been 

modified for confidentiality purposes. In particular he looks at the effect of swapping primary sampling 

units (PSUs), commonly done to protect the identity of survey respondents, on the calculation of variances. 

He proposes a new PSU swapping algorithm and compares its effect on variance estimation both 

theoretically and empirically with some existing methods. 

Benedetti, Espa and Lafratta propose a sequential process to stratify a finite population. This process is 

for obtaining a multivariate stratification and uses an approach based on the development of a tree. With 

this process they produce successively finer and finer partitions of the population until the difference 

between the optimal sample sizes obtained in two consecutive steps is less than a predetermined level. The 

proposed approach is applied to the Italian Farm Structure Survey. 

Khan, Nand and Ahmed consider the problem of finding optimum stratum boundaries as the problem of 

determining optimum stratum widths. They formulate it as a mathematical programming problem and 

solve it by extending Bühler and Deutler’s (1975) dynamic programming approach. The paper is an 

extension of this dynamic programming approach to variables of interest following triangular and standard 

normal distributions. A small simulation study compares the proposed method to the cumulative square 

root ( f ) method of Dalenius and Hodges (1959) revealing gains in efficiency. 
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In their paper, Díaz-García and Cortez study the problem of allocation in multivariate stratified 

sampling. They express this problem as a non-linear problem of matrix optimization of integers constrained 

by a cost function or by a given sample size. They apply their method using data from a forest survey. 

Finally, the 2007 ISI (International Statistical Institute) Satellite Conference on Small Area Estimation, 

SAE 2007, produced a myriad of papers illustrating the latest small area techniques. Several of these papers 

were submitted to Survey Methodology. Two of them round out the current issue; we expect that more will 

be published in future issues. 

Falorsi and Righi develop a sampling strategy to obtain planned sample sizes for domains subject to pre-

determined sampling errors, particularly when the cross-classification of variables defining the different 

partitions would yield a number of strata larger than the overall sample size. The proposed method has the 

advantage of computational feasibility and the implementation of a small area strategy that comprises the 

sampling design and the estimation jointly and improves the efficiency of the direct domain estimators. 

In the last paper of this issue Pfeffermann, Terryn and Moura consider situations where the target 

response value is either zero or an observation from a continuous distribution, for example when assessing 

literacy skills with the possible outcome being either zero, indicating illiteracy, or a positive score 

measuring the level of literacy. Available methods, however, are not suitable for this kind of data because 

of the mixed distribution of the responses, having a large peak at zero juxtaposed to a continuous 

distribution for the rest of the responses. The authors develop a suitable two-part random effects model and 

show how to estimate the model and assess its goodness of fit, and how to compute small area estimators of 

interest and measure their precision. 

And finally, we are please to inform readers and authors that Survey Methodology is now cited in 

the ISI Web of knowledge, which included Current Contents/Social and Behaviorial Sciences, Social 

Sciences Citation Index, and the Science Citation Index Expanded, starting with the June 2007 issue. 

 

 

 

 

 

 

Harold Mantel, Deputy Editor 



Survey Methodology, December 2008   
Vol. 34, No. 2, pp. 129-130 
Statistics Canada, Catalogue No. 12-001-X 

129

 

Waksberg Invited Paper Series 
 

The journal Survey Methodology has established an annual invited paper series in honour of Joseph 

Waksberg, who has made many important contributions to survey methodology. Each year a prominent 

survey researcher is chosen to author an article as part of the Waksberg Invited Paper Series. The paper 

reviews the development and current state of a significant topic within the field of survey methodology, and 

reflects the mixture of theory and practice that characterized Waksberg’s work. The author receives a cash 

award made possible by a grant from Westat, in recognition of Joe Waksberg’s contributions during his 

many years of association with Westat. The grant is administered financially by the American Statistical 

Association. Previous winners are listed below. Their papers in the series have already appeared in Survey 

Methodology. 

 

 

Previous Waksberg Award Winners: 

 

Gad Nathan (2001) 

Wayne A. Fuller (2002) 

Tim Holt (2003) 

Norman Bradburn (2004) 

J.N.K. Rao (2005) 

Alastair Scott (2006) 

Carl-Erik Särndal (2007) 

Mary Thompson (2008) 

 

 

Nominations: 

 

The author of the 2010 Waksberg paper will be selected by a four-person committee appointed by Survey 

Methodology and the American Statistical Association. Nominations of individuals to be considered as 

authors or suggestions for topics should be sent to the chair of the committee, Leyla Mojadjer, by email to 

MOHADJL1@WEStat.com. Nominations and suggestions for topics must be received by February 27, 

2009. 

 

 

 

 

 

 

 

2008 Waksberg Invited Paper 

 

Author: Mary Thompson 

 

Mary Thompson is University Professor of Statistics at the University of Waterloo in Waterloo, Ontario. She 

is Co-Director of the University of Waterloo Survey Research Centre, and Director of the Data Management 

Centre for the International Tobacco Control Policy Evaluation Project. Her research interests over the years 

have focused on theory of estimation, particularly in complex surveys, and she is the author of a monograph 

entitled Theory of Sample Surveys, published in 1997. Recently, she has become particularly interested in 

the analysis of survey data relevant to latent variable models in the social and health sciences. 
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Leyla Mojadjer (Chair), Westat 
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Betsy Martin 

 

 

 

Past Chairs: 

 

Graham Kalton (1999 - 2001) 

Chris Skinner (2001 - 2002) 

David A. Binder (2002 - 2003) 

J. Michael Brick (2003 - 2004) 

David R. Bellhouse (2004 - 2005) 

Gordon Brackstone (2005 - 2006) 
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International surveys: Motives and methodologies 

Mary E. Thompson 1 

Abstract 

The context of the discussion is the increasing incidence of international surveys, of which one is the International Tobacco 
Control (ITC) Policy Evaluation Project, which began in 2002. The ITC country surveys are longitudinal, and their aim is to 
evaluate the effects of policy measures being introduced in various countries under the WHO Framework Convention on 
Tobacco Control. The challenges of organization, data collection and analysis in international surveys are reviewed and 
illustrated. Analysis is an increasingly important part of the motivation for large scale cross-cultural surveys. The 
fundamental challenge for analysis is to discern the real response (or lack of response) to policy change, separating it from 
the effects of data collection mode, differential non-response, external events, time-in-sample, culture, and language. Two 
problems relevant to statistical analysis are discussed. The first problem is the question of when and how to analyze pooled 
data from several countries, in order to strengthen conclusions which might be generally valid. While in some cases this 
seems to be straightforward, there are differing opinions on the extent to which pooling is possible and reasonable. It is 
suggested that for formal comparisons, random effects models are of conceptual use. The second problem is to find models 
of measurement across cultures and data collection modes which will enable calibration of continuous, binary and ordinal 
responses, and produce comparisons from which extraneous effects have been removed. It is noted that hierarchical models 
provide a natural way of relaxing requirements of model invariance across groups. 

                                                           
1. Mary E. Thompson, Department of Statistics and Actuarial Science, University of Waterloo. E-mail: methomps@uwaterloo.ca. 

  

Key Words: International surveys; Longitudinal surveys; Analysis of survey data; Random effects; Data collection 

mode effects; Hierarchical models; Measurement models. 
 
 

 

1. Introduction 

 
I have chosen the topic of international surveys since one 

such survey, the International Tobacco Control survey, has 

been a major part of my activity in the last few years, and 

there are some interesting intersections with the areas to 

which Joseph Waksberg gave his attention  –  particularly 

frames for telephone surveys, and the effects of stratification 

with widely varying sampling rates.  

The paper will begin with some discussion of the motifs 

and motives of international surveys and some examples. It 

will touch on the challenges of organization, data collection 

and analysis. Finally, it will consider two problems to be 

addressed in analysis: (i) survey sampling theory and the 

pooling of data from several countries, and (ii) measurement 

across data collection modes and cultures.  

The first large international survey was the World 

Fertility Survey, carried out in the 1970’s through the 

International Statistical Institute, and funded by the U.S. 

Agency for International Development and other sponsors. 

It was a very ambitious one-time survey. The WFS 

eventually surveyed over 330,000 women in 61 countries, at 

a cost of about $50 million. It gave countries important 

comparison data on family sizes, and led to policy measures 

on population planning in several participating countries. It 

also produced analytic projects in the hundreds, including 

path-breaking methodological studies, and laid the founda-

tion for international survey methodology, particularly in 

developing countries (Verma, Scott and O’Muircheartaigh 

1980; Cleland and Verma 1989).  

Another well known example is the Programme for 

International Student Assessment, a project of the Organi-

zation for Economic Co-operation and Development, begin-

ning in 2000. PISA is a continuing survey, carried out every 

3 years, with 15 year old youths in developed countries. It is 

growing in scope, with 67 countries expected to participate 

in 2009. The results allow countries to monitor the success 

of their education programs in providing verbal and 

quantitative literacy.  

The Global Youth Tobacco Survey is a one-time survey 

which began in 2002, sponsored by the World Health Orga-

nization and the Centers for Disease Control and Prevention. 

The GYTS has focused on surveying youth aged 13 to 15 

years in developing countries, and had carried out data 

collection in 129 countries by 2004. The objective is to 

measure tobacco use uptake among youth, and awareness of 

the associated health risks.  

The European Social Survey (ESS 2008) is an “acad-

emically-driven social survey” in over 30 nations, funded by 

European and national agencies, and designed to “chart and 

explain the interaction between Europe’s changing institu-

tions and the attitudes, beliefs and behaviour patterns of its 

diverse populations”.  

Even as the use of local and national surveys is growing 

everywhere, so too is the incidence of international surveys, 

carried out by international agencies, non-governmental 
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organizations and private sector firms. This burgeoning 

appears to be part of a trend toward global governance and 

concern for population health and well-being.  

I have seen the purposes of international surveys 

classified as epidemiology, surveillance, monitoring and 

evaluation of the effects of policy. Evidently these classi-

fications overlap. It can be argued that PISA, the GYTS and 

the ESS constitute surveillance and monitoring, because 

their data are related only indirectly to interventions. The 

WFS had a direct evaluation aspect, in countries that had 

introduced family planning programs. The International 

Tobacco Control (ITC) survey, to be discussed later in this 

section, is one of the few for which evaluation is the primary 

purpose.  

Apart from scientific concerns, another important role for 

an international survey is to engage the governments of the 

countries; it provides a way for them to participate in global 

policy development even in the face of political and 

economic obstacles. 

For the researcher, international surveys allow the com-

parison of the populations of countries, the possibility of 

interpretation of the differences, and sometimes even the 

possibility of shedding light on causes and effects  – 

typically with the underlying aim of improving conditions 

and informing policy.  

The International Tobacco Control Policy Evaluation 

Project (ITC Project) was initiated by Dr. Geoffrey T. Fong 

of Psychology at the University of Waterloo, with col-

laborators around the world (Fong, Cummings, Borland, 

Hastings, Hyland, Giovino, Hammond and Thompson 

2006; Thompson, Fong, Hammond, Boudreau, Dreizen, 

Hyland, Borland, Cummings, Hastings, Siahpush, 

Mackintosh and Laux 2006). The impetus was the WHO 

Framework Convention on Tobacco Control (FCTC), which 

was passed in May 2003, and has been ratified by over 150 

countries. By ratifying the treaty the participating countries 

pledge to introduce policy measures for tobacco control, 

such as strong health warning package labels, banning of 

cigarette advertising, and banning of smoking in public 

places. The necessity for national legislation has as a 

consequence that these measures are being introduced at 

various times and in various ways. For example, Canada in 

December 2000 introduced graphic warning labels, setting 

international precedents for the size of label (more than 50 

% of the package) and vivid colour images. Since then a few 

other countries have adopted this same practice, while 

others have legislated prominent text warnings. For the 

current status of health warning regulations around the 

world, see ITC (2008). The MPower Report (WHO 2008) 

describes the global tobacco policy environment and six 

policies of focus for the FCTC.  

The purpose of the ITC Project is to try to find out which 

measures are effective in reducing uptake of tobacco use, 

and in helping people already using tobacco to quit. 

Furthermore, it has the ambitious aim of trying to explain 

how those measures which are effective actually work. The 

investigating team includes social psychologists and 

specialists in social marketing, as well as epidemiologists 

and economists.  

By September 2008 the ITC Project was carrying out 

surveys in 17 countries, with more likely to be added. The 

surveys began in 2002, in Canada, the US, the UK and 

Australia. That year, in each of the four countries, approxi-

mately 2000 adult smokerswere recruited by telephone 

using a geographically stratified random digit dial (RDD) 

frame, of which the science has origins in the famous 

Mitofsky-Waksberg method (Waksberg 1978). The re-

cruited smokers were interviewed a week or two later, and 

have been followed up each year since then, regardless of 

whether they continued to smoke. Wave 6 for the ITC Four 

Country Survey was completed in February 2008.  

Because sufficient sample size is needed to evaluate the 

effects of measures introduced between the waves, dropouts 

at each wave have been replaced with a cohort of new 

recruits. In the ITC Four Country Survey, new recruits in 

each wave have been selected using the same design as in 

Wave 1, without any attempt to match the characteristics of 

the dropouts. Weights construction at each wave is 

effectively carried out separately for each cohort, adjusting 

for differential attrition by region and by age-sex group. 

This design has helped us to discern “time-in-sample” 

effects, and time-in-sample is entertained as an explanatory 

variable in analytic models (Thompson, Boudreau and 

Driezen 2005).  

The first national policy measures following 2002 were 

an advertising ban and enhanced warning labels in the UK, 

between Waves 1 and 2; graphic warning labels were 

introduced in Australia between Waves 4 and 5. In the ITC 

Four Country Survey we have what is sometimes called a 

natural experiment or quasi-experiment (Cook and 

Campbell 1979), where the non-policy countries serve as 

external controls; moreover, the longitudinal feature of the 

design provides internal control. The design has been 

replicated a number of times, with other sets of countries.  

For example, it became clear early on that Ireland would 

be the first country to adopt national smoke-free legislation, 

coming into effect in March 2004. The ITC collaborators 

were able to put together parallel surveys in Ireland and the 

UK before the law came into effect, and to visit the same 

people a year later. The samples were again recruited 

nationally using a random digit dial (RDD) frame. There 

were 755 smokers in Ireland and 411 smokers in the UK 

who were interviewed at both waves. One interesting 
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finding concerned support for a ban on smoking in pubs 

(Fong, Hyland, Borland, Hammond, Hastings, McNeill, 

Anderson, Cummings, Allwright, Mulcahy, Howell, 

Clancy, Thompson, Connolly and Driezen 2006). Figure 1 

shows the proportions supporting or strongly supporting the 

ban in bars and pubs, in the two countries, by wave.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1 Support for smoke-free legislation in two waves of 

ITC Ireland/UK Survey 

 

In the ITC sample of smokers the support increased 

between the two waves a little in the UK, and a great deal in 

Ireland. Moreover, the same survey showed no evidence 

that the reduction of smoking in public venues was 

associated with increased smoking in private venues. 

Showing broad acceptance of the smoke-free law by 

smokers, the ITC findings and others like them have helped 

bring about similar laws in Scotland, France, Germany, the 

rest of the UK, and the Netherlands. An ITC survey was 

carried out before and after the April 2006 implementation 

of the ban in Scotland, using the rest of the UK as the 

control, and the findings were replicated, except that by this 

time support in the rest of the UK had grown substantially 

(Hyland, Hassan, Higbee, Fong, Borland, Cummings, 

Thompson, Boudreau and Hastings 2008).  

The model used for testing was simple: a GEE model, 

where Y  is a binary measure of support for the ban, w  is 

country, t  is time, the wt  term represents an interaction, 

and x  is a vector of fixed individual level covariates:  

0 1

1 2

logit[ ( 1 )

Corr ( )

tP Y w x w t wt x

Y Y

= | , = α + α + γ + δ + β,

, = ρ.
 

The coefficient δ  represents the difference in increase in 

support in the two countries, and we tested the hypothesis 

0 0.H : δ =  There are other possible parametrizations, but 

this one has the advantage of matching the plot in Figure 1, 

which displays marginal proportions; the methodology is 

widely accepted, and supported by complex survey 

software.  

2. Challenges 

 
There are numerous challenges in carrying out an 

international survey. The WFS papers by Verma et al. 

(1980) and Cleland and Verma (1989) can be recommended 

for thoughtful discussions which are very little out of date. 

In this section we illustrate by describing some of the issues 

encountered by the ITC survey in organization and data 

collection.  

Unlike the WFS, the ITC survey has been funded in the 

first instance by national granting programs, primarily the 

National Institutes of Health in the United States, and the 

Canadian Institutes for Health Research. The central 

infrastructure, led by Dr. Fong at the University of Waterloo 

and by Dr. K. Michael Cummings at Roswell Park Cancer 

Institute in Buffalo, works directly with investigating teams 

and agencies in the various countries. We have had to learn 

how to work with widely varying societies, political systems 

and cultures. Survey costs and budgets alone differ 

surprisingly from country to country. When governments 

contribute funding, they have their own requirements, and 

data ownership agreements must be negotiated. Since the 

amount of infrastructure and expertise can be quite different 

from place to place, the close coordination of the ITC Four 

Country Survey is difficult to replicate more widely.  

For example, in the first half of 2008 the fieldwork was 

carried out for Wave 3 of a parallel survey (the ITC South-

East Asia Survey) in Thailand and Malaysia, which are 

geographically close, and similar in some ways, but 

different in many dimensions. Thailand is ethnically quite 

homogeneous, while Malaysia has three major ethnic 

groups and many minor ones. More than half the population 

of Thailand lives in rural areas, but most of the Malaysian 

population is urban, and residential mobility is high. 

Thailand has extensive experience with surveys, including 

cohort studies, but when Wave 1 began in 2005, Malaysia 

was attempting this kind of cohort study for the first time. 

We tried to prescribe parallel sampling designs in the two 

countries, but had to make compromises. For example, it 

was found at the time of Wave 1 that the official sampling 

frames had different sized building blocks at the lowest 

level, consisting of clusters of households. This difference 

made the sample of households rather more dispersed in 

Malaysia, which had the smaller blocks. The greater 

dispersion meant greater work and costs. (Design effects are 

still larger for Malaysia than for Thailand, because of more 

heterogeneity at the level of the first stage units.) 

An important aspect of the project is to try to build 

capacity for longitudinal health surveys in countries which 

are relatively new to this kind of work. We provide detailed 

protocols, training manuals, and data entry templates. We 

have learned to be more insistent on the identification of 
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local expertise, particularly statistical expertise. Day-to-day 

communication is carried out by email and teleconferences. 

Final data cleaning and construction of survey weights 

normally occur at the University of Waterloo, but some 

country teams have been eager to participate in these parts 

of the operation.  

We use telephone surveys, with recruitment by modified 

RDD, in the four original countries, as well as Ireland, 

South Korea, France and Germany; recruitment from the 

National Health Survey sample in New Zealand; and face to 

face surveys in Thailand, Malaysia Wave 1, China, 

Bangladesh, Mexico, and Uruguay.  

In Malaysia Wave 2 we intended face-to-face data 

collection, but since both recontact and new recruitment 

proved to be very difficult because of a combination of 

factors, we moved to telephone interviewing where feasible 

in some areas. There was limited scope for comparison of 

modes, but in the large and mainly urban state of Selangor, 

137 Wave 1 smokers (non-quitters) were reinterviewed 

face-to-face, and 63 were reinterviewed by telephone, 

making some tentative inferences possible. In Wave 3, an 

attempt was made to carry out both telephone and face-to-

face interviewing in some of the same census districts, to 

enable a better assessment of data collection mode effects, 

and this study is in progress. At the same time, the 

proportion of the ITC Malaysia smoker sample interviewed 

face-to-face has decreased steadily, from 100% in Wave 1, 

to 63.5% in Wave 2, 44.4% in Wave 3. In Wave 4, we 

expect that telephone will be used exclusively in the 

mainland states.  

The Wave 1 survey in the Netherlands has used parallel 

internet panel and RDD telephone interviewing, with 

sample sizes of about 400 and 1,800 respectively. This 

exercise will provide our best chance yet at being able to 

account for mode effects in modeling. These effects have 

been the subject of much research recently. For example, 

some studies have found that telephone respondents choose 

the extreme options of a Likert scale more of the time than 

web respondents do (Wichers and Zenderink 2006; Bronner 

and Kuijlen 2007).  

The internet sample in the Netherlands consists of 

smokers randomly sampled from a large pre-recruited multi-

purpose panel of about 200,000 people assembled by the 

firm TNS NIPO. The telephone sample, representing 

smokers accessible by land-line telephone, might well 

represent a different population of smokers. The low 

telephone response rates make clear that the public in the 

Netherlands is not as receptive to telephone surveys as the 

public in most of the other ITC countries. We requested that 

each group be asked about their accessibility by the other 

mode, so as to be able to use dual frame methods (Lohr and 

Rao 2000) to compute appropriate survey weights. We will 

also model propensity (Rosenbaum and Rubin 1984) for 

responding by telephone (say), given demographic variables 

and the accessibility variables, and control for propensity 

score in comparison of response patterns by mode.  

Response rates vary a great deal, even within the ITC 

Four Country Survey, the response rates and retention rates 

being highest in Australia, and lowest in the United States. 

Certainly this jeopardizes the ability to compare across 

countries, in the sense that we can only compare the 

populations represented by the respondents  –  those in each 

country who would respond if approached under our 

protocol. The situation looks slightly better if we break 

response rates down into components. For example, we 

have seen from call attempt outcomes, and from our 

knowledge of the increased use of call filtering devices, that 

US adults are much harder to contact and recontact than 

adult residents of the other three countries. However, once 

contact is established, the US agreement or non-refusal rate 

is very similar, upwards of 80 %, to those of the other three 

countries.  

We have measurement issues even for matters of fact, 

such as habits of tobacco purchase and use. In some 

countries like India, Bangladesh and Sudan, all under 

discussion for inclusion, there are many forms of tobacco in 

common use. For the developed countries, just keeping the 

list of cigarette brands current is a full time job. 

Compounding the difficulty is that whenever we ask about 

purchasing patterns or noticing advertisements we are 

asking people to remember what they have done over the 

previous two weeks, or some longer period. For the most 

part, we rely on self-report, and for a number of reasons 

self-report may not be accurate.  

For attitudes and beliefs we have known all along that the 

questions must be suited to the language and the literacy 

level of the participants, but we were still surprised and 

sobered to find a high incidence of item non-response in 

outlying areas of one country, suggesting great difficulty 

with attitude and belief questions. In our pilot survey in 

India, the survey took an average of 1.5 hours per 

participant, despite having been shortened and simplified.  

Psycho-social measurements need to be validated in each 

culture and language. For example, we have started to 

include a very short depression scale. Here is the version for 

the ITC Four Country Survey.   
• During the last month, have you often been bothered by 

little interest or pleasure in doing things?   
• During the last month, have you often been bothered by 

feeling down, depressed or hopeless?   
• In the last year, have you been told by a doctor or other 

health care provider that you have depression?  
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And here is the version that we finally came to for ITC 

China Wave 2, on the advice of other researchers who 

reported having been able to validate a version of it.  

Below is a list of ways that you might have felt or 

behaved. Please tell me how often you have felt this way 

during the past week.  
 

1. I did not feel like eating; my appetite was poor.  

2. I felt hopeful about the future.  

3. I felt sad.  

4. I felt that people dislike me.   
Ryder, Yang, Zhu, Yao, Yi, Heine and Bagby (2008) 

have released results of a very interesting comparative study 

of the expression of depression.  

The catalogue of measurement issues goes on. Even if 

the question is supposed to be the same in two languages, it 

may be hard to find equivalences. We try to ensure a good 

quality translation using committee translation or 

comparison of independent translations, but must often fall 

short of perfection. For example, literal translations of 

English into French or German are a fair amount longer, and 

it takes considerable skill to make a translation that runs 

smoothly over the telephone. Thrasher, Quah, Borland, 

Awang, Sirirassamee, Boado, Miller, Watts and Dorantes 

(2008) describe a study in cognitive testing of some of the 

most important questions, across several countries.  

There are more subtle cultural differences, particularly 

the degree to which respondents will give a socially 

desirable response. We have noticed what may be a higher 

tendency toward this among Mexicans and among 

anglophone Canadians. Johnson and Van de Vijver (2003) 

among others have discussed the possibility that cross-

national differences in socially desirable responses may be 

related to “cultural value systems such as in the individ-

ualism and collectivism dimension” of Hofstede (1980).  

In a longitudinal survey, we need to be concerned as well 

about the validity and reliability of repeated measures. As 

we have already indicated, it is common to observe what are 

called “time-in-sample effects”, where the response 

proportions tend to drift upward or downward as the cohort 

proceeds, just because of the fact of being measured.  

All these issues feed into the analytic challenges faced by 

researchers. Fundamentally, the aim of analysis must be to 

discern the real response (or lack of response) to policy 

change, separating it from the effects of data collection 

mode, differential non-response, external events, time-in-

sample, culture, and language. This is a daunting task.  

 
3. Pooling of data across countries  

In the traditional survey analysis paradigm (Binder 1983; 

Godambe and Thompson 1986; Skinner 1989), there is a 

model for the responses y  with parameter ,θ  and we 

imagine how we would estimate θ  if we had responses 

from the whole population, in a census. We would use an 

efficient unbiased estimating equation like this:  

1

( ) 0
N

i i

i

y
=

φ , θ = ,∑  

to define a census estimate. To obtain the sample estimate, 

we use a weighted sum of the sample estimating function 

terms:  

( ) 0i i i

i s

w y
∈

φ , θ =∑  

to give an approximately unbiased estimator of the census 

estimating function. The survey weights are constructed to 

take into account the sampling design, and under-

representation of some groups due to non-response and non-

coverage. The usual interpretation of iw  is the number of 

population members represented by .i  The use of this 

sample estimating function is appealing because of the 

likely reduction of bias due to informative sampling and 

non-response; but if the weights are highly variable and the 

model for the terms is correct, the second equation gives an 

inefficient way of estimating .θ  

Now when we are combining data from two countries 

with very different sampling fractions, as in the Ireland/UK 

survey, the weights for one country (the UK) will be much 

greater than the weights for the other country (Ireland). A 

literal application of the paradigm would have the data from 

the UK dominating the analysis. If the model is correct, the 

most efficient census estimate is the mean of y  over the 

two countries combined. But then the corresponding sample 

estimate is an inefficient use of the sample. This problem is 

similar to that arising in case-control studies, as discussed 

by Scott (2006).  

One way of producing better estimates while remaining 

in the traditional paradigm is to consider that the parameter 

value for the UK is ,θ − ∆  that the parameter value for 

Ireland is ,θ + ∆  and that we are trying to estimate ,θ  the 

arithmetic mean of the two. An efficient census estimating 

function system for θ  and ∆  is equivalent to one which 

separates into a part for each country. Since rescaling of 

weights within a country has then no effect on the point 

estimators and their properties, the survey-weighted sample 

version of that system yields efficient estimation.  

Moreover, the ensuing analysis is the approximately the 

same as we would obtain from the original paradigm if we 

had equal sample sizes in the two countries, and rescaled the 

weights to sum to sample size within each country. As noted 

by Scott (2006), rescaling the weights in this manner is a 

very common practice among epidemiologists. It is in a 

sense a partial application of the q -weight method of 
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Pfeffermann and Sverchkov (1999), where the inverse 

inclusion probability weight is divided by a kind of 

expectation of the weight, conditional on an explanatory 

variable (country).  

In estimating a mean parameter ,θ  a somewhat more 

appealing suggestion is to consider a random effects model, 

where ,Y u e= θ + +  and u  is a country random effect, 

then to develop a census estimating function system which 

is efficient for estimating the parameter .θ  For example, if  

1 1 1 2 2 2andi i i iY u e Y u e= θ + + = θ + +  

and if the variance components corresponding to u  and e  

are known, then the best combination of the two country 

means for estimating θ  is  

1 2(1 )aY a Y+ − ,  

where  

2 2
2

2 2
2

1 2

1
2

2 2

u e

e e
u

N
a

N N

 
 σ + σ / 

= . 
σ σ σ + +

  

 

Notice that if 2 0,uσ =  the census estimator becomes the 

mean of y  over the two countries combined. However, if 
2
uσ  is dominant, the best estimator is the arithmetic mean of 

the country means. From a pooled sample, the usual 

paradigm gives the same convex combination of within-

country sample-based mean estimators.  

More generally, we can replace θ  in each country census 

estimating function by ,uθ +  where again u  is a country 

random effect. Then the best combination of two country 

census estimating functions for θ  is  

1 2

1 1 1 1 2 2 2 2
1 1

( ) ( )
N N

i i i i
i i

c Y u c Y u
= =

φ , θ, + φ , θ,∑ ∑  

where 2 2 1

1 1 11 2 2 2 2[Var( ( )) ( Var( ))][N N N
i i ii ic E u E u= = =∑ ∑ ∑= φ | + φ |  

1( )],iE ∂φ /∂θ  and 2c  is defined symmetrically. If the first 

term in square brackets in 1c  dominates, the corresponding 

sample-based estimating function weights the terms 

comparably in the two samples.  

Even in the simple case of a mean, the parameters of the 

random effects model will not be known, and will be 

difficult to estimate when there are only two countries, but 

conceptually the model seems to be a useful one. When 

there are several reasonably similar countries or regions (for 

example the seven cities of the ITC China survey), linear 

models with random effects are estimable in the usual 

paradigm, as described for example in a more general 

setting by Pfeffermann, Skinner, Holmes, Goldstein and 

Rasbash (1998).  

As an aside, the GEE analysis of the Ireland data 

described earlier was a pooled analysis, and all its “effects” 

were regarded as fixed. The model is nearly “saturated”, 

with two time points and two countries accounting for the 

four main parameters. It is possible to see that with ordinary 

survey weights, the estimation of β  and ρ  would be 

dominated by the UK data. However, if β  and ρ  are 

known, then as in the case of the parameters θ  and ∆  in 

the example of the mean, the equations for the main 

parameters separate into two pairs, one pair for 0α  and ,γ  

and one pair for 0 1, ,α α γ  and ,δ  each involving weights 

from only one of the two countries. Thus the estimation of 

the main parameters is less affected by the scaling of the 

weights. If the estimation of β  were also important to us, 

we might consider it to be the mean of a country level 

random variable, leading naturally to each of the two 

samples having appropriate influence. (In fact, in our 

analysis, we did not do this; the weights were rescaled to 

sum to sample size within country.)  

The foregoing discussion of pooled analysis assumes that 

there exists a parameter θ  that has the same interpretation 

and relevance across countries. Most multi-country analyses 

start from this assumption. Indeed, de Leeuw and Hox 

(2003) state as a requirement for a meta-analysis that “all 

studies must estimate the same fixed parameter, and all 

variance is assumed to be sampling variance”. But in fact a 

central issue for debate is the question of when it is 

appropriate to make a model that is to apply to the data from 

several countries simultaneously. Sometimes it may be most 

appropriate simply to consider the country models to be 

separate but parallel. For example, in countries at different 

stages of development, introducing the same relative 

increase in real price of cigarettes can be expected to lead to 

decreases in cigarette consumption; but since the linear 

model is at best a useful local approximation to the complex 

relationship between price and consumption, there is no 

reason to suppose that the decreases will be of the same 

magnitude, or that the two regression estimates are 

measuring the same quantity.  

For another example, one of the models of interest to the 

ITC project is the mediational model of the figure 2, 

postulating how “noticing” health warning labels might 

affect intention to quit.  

The distribution at baseline of the intention to quit in the 

various countries is quite variable. The same is true for the 

other variables in the model. Is it reasonable to hope that the 

relationships among these variables might be less variable 

across countries? In fact it appears that for the original four 

countries, they are. Even though UK smokers were much 

the most likely to say they had no plan to quit, it was still the 

case for them that “health concern” (label-triggered 

consciousness of health effects) predicts quit intention, and 
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that “health concern” was elevated with increased noticing 

of labels (Hammond, Fong, Borland, Cummings, McNeill 

and Driezen 2007). Thus it is not unreasonable to explore a 

model like the one in Figure 2 for the data from the four 

countries, pooled. Regardless of weighting issues, in the 

regression of the mediator “health concern” on “noticing” 

health warning labels, and in the regression of intention to 

quit on both of these, we have found it convenient to take 

the country means to be fixed effects. On the other hand, 

since the estimated regression coefficients for the countries 

modeled separately vary moderately, it is natural in the 

pooled analysis to conceptualize the regression coefficients 

as having random country components.  

This discussion can be summarized and elaborated in the 

following points:  
 

• An analysis which pools data across countries should be 

adopted with caution. For such an analysis to be 

appropriate, the model structure (the regression 

equation and its variables) should be correct for all 

countries, and the assumption of common parameters 

should be supported by theory and observation. Robust 

variance estimation which respects the country 

sampling designs will be necessary when the sampling 

designs are complex.  

• If the set of parameters of a pooled model can (through 

transformation) be separated into disjoint subsets 

corresponding to the countries, the estimation of those 

parameters is not affected by large differences in 

sampling fractions among countries, and is not affected 

by rescalings of the weights within countries.  

• If a fixed mean or regression parameter is deemed to be 

common to the countries, estimation using inverse 

inclusion probability weights will be inefficient if the 

sampling fractions are widely variable.  

• Alternatives to simple weight rescaling are to make the 

mean or regression parameter a fixed effect varying by 

country (which leads to separation into disjoint subsets, 

but increases the number of parameters and removes 

the “common-ness”); or to make the mean or regression 

parameter a random effect, varying by country (which 

leads to approximate separation and retains the 

“common-ness”).  

• It is conceptually appealing to make the intercept fixed 

and the slope random, since baseline levels tend to vary 

much more by country than slopes do. In imple-

mentation, this approach requires enough countries to 

make estimation of variance components feasible, and a 

small number of random effects to be integrated.  

• When a pooled analysis is problematic, less formal 

comparison of the results of parallel country analyses 

may accomplish most of what is desired.  
 

4. Calibration of measurements and  

        cross-cultural comparisons  
The other statistical problem which I would like to 

highlight is the use of measurement models to try to 

calibrate measurements across modes and compare 

measurements across cultures. A common approach is to 

consider that with each questionnaire item we are measuring 

a construct, like “social denormalization” (perception of 

societal disapproval), and to think of the construct as a 

continuous variable .η  The distribution of ,η  conditional 

on explanatory variables, determines a distribution of 

responses to the questionnaire item.  

If we have several items of the same kind measuring a 

construct, a conceptual model for continuous measurements 

y  might be ik i k i ikY b a e= η + +  for item i  and participant 

.k  Here ib  represents a positive scaling for item , ii a  a 

location shift, and ike  a normal mean zero measurement 

error with variance 2
eiσ  not dependent on .k  Assume all ike  

to be independent, and independent of the .kη  (This is 

effectively an assumption that η  is the only latent 

determinant of .)Y  If we take the distribution of η  to be 

(0 1),N ,  as we may if η  is normal with no explanatory 

variables, then the distribution of ikY  is 2 2( ),i i eiN a b, + σ  

and for a single item ,i  the parameters ia  and 2 2
i eib + σ  are 

estimable from the marginal data on many participants. If 

there are at least two items with the same variances, then 

since the item responses for a participant have covariances 

of form 
1 2

,i ib b  all parameters are estimable from the 

marginal data on many participants. Given values for the 

item parameters, the value of η  for a participant can be 

“predicted” from the posterior distribution of ,η  given the 

participant’s item responses.  

 

 

 

 

 

 

 

 
 

Figure 2  Mediational model of policy effects: Warning labels 
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If the measurement y  is binary, it is common to take an 

Item Response Theory (IRT) model Prob( 1 )ik kY = |η =  

( )i k iH bη − γ  where H  is the standard normal or the 

logistic cumulative distribution function (c.d.f.). The 

parameter ib  is the “discrimination parameter” for the item, 

and iγ  is a threshold, such that the probability of response 1 

exceeds 1/2 when the construct scaled by ib  exceeds .iγ  

The unconditional probability that 1ikY =  is obtained by 

integrating with respect to the distribution of ,kη  given 

fixed explanatory variables for participant .k  In this 

simplest case it appears that at least 3 items are needed (with 

many participants) for all parameters to be estimable, since 

they would yield 7 joint probabilities for the estimation of 6 

parameters. Again, given values for the item parameters, the 

value of η  for a participant can be predicted, given his or 

her set of item responses. See for example Lu, Thomas and 

Zumbo (2005). Standard latent variable estimation software 

can be used to produce these inferences, and their analogues 

in the case of ordinal measurements.  

First let us consider the calibration problem. Suppose 

there are two data collection modes, and for item i  in mode 

j  with participant k  we have the continuous measurement  

( )ijk j i k i ijk j ijkY b a e= β η + + + α + ε .  

This model, in which jα  and jβ  do not depend on the item 

,i  might be appropriate for a set of items all of the same 

general type. Plausible examples are not abundant, but one 

such might be a series of questions of form: “What 

percentage of the time would you say you feel …”, where 

the respondent is asked to give a percentage over the 

telephone, or asked to mark a position on a line on paper.  

If we take the ia  and ib  to be the parameters of the items 

using the first data collection mode, we may set 1 0α =  and 

1 1.β =  If 2β  is greater than 1, there is a tendency for a 

wider variation, or more extreme responses, under the 

second collection mode. If 2α  is greater than 0, respondents 

tend to give a higher response under the second collection 

mode than under the first. Note that the samples for the two 

modes involve different participants. If we can assume that 

the distribution of η  is the same for the two mode samples 

(an assumption which effectively requires randomization to 

mode), we have the distribution of 1i kY  as before, 
2 2 2( ),i i eiN a b ε, + σ + σ  while the distribution of 2i kY  is  

2 2 2 2 2
2 2 2 2( )i i eiN a b εβ + α , β + β σ + σ .  

If 2 0,εσ =  then given data on one item i  in the two 

modes, we can estimate 2α  and 2,β  assuming 2β  is 

positive. If 2 0,εσ >  the parameters 2 2,α β  and 2
εσ  are 

estimable provided that there are at least two items 

available  –  of the same type, but with differing values of a  

and .b  

These considerations can be extended to the more usual 

case of items with ordinal responses, by imagining an 

ordinal response probability to be determined by an 

underlying continuous response. For binary data, we would 

most simply set  

( 1 ) ( ( ) )ijk k j i k i jP Y H b a= |η = β η + + α ,  

with 1 0α =  and 1 1.β =  If the distribution of kη  is the 

same for both modes, then from data on many participants 

and three items we can identify all parameters. Adding an 

explanatory variable would decrease the number of items 

required.  

The assumption that the distribution of η  is the same for 

the two mode samples is crucial for this kind of calibration, 

and is difficult to guarantee. It is satisfied if we have 

interpenetrating probability samples for the two modes in a 

single survey; then in principle we can imagine a mapping 

of responses from one mode to the other, through estimated 

values of 2α  and 2.β  We do not have to estimate the 

constructs themselves to do this. More rigorously, we can 

include 2α  and 2β  as parameters in a model for all 

responses to a set of similar items.  

In some developed countries, sampling frames for 

households and individuals appear to be moving in the 

direction of address registries and lists of persons. However, 

even when there is a common frame for (say) telephone and 

internet surveys, it is difficult to randomize respondents to 

data collection modes. The dependence of non-response on 

demographic variables may well be different for the modes. 

Moreover, the need to maximize response rates often 

dictates allowing respondents to choose. In principle, we 

might imagine that the distribution of η  might be shifted or 

tilted according to the “propensity” to choose one mode or 

the other. Having modeled this propensity in terms of 

explanatory variables, and having introduced one or two 

parameters for the dependence of the distribution of η  on 

the propensity, we could estimate the item parameters ia  

and ib  from the respondents for the first data collection 

mode. The estimation of the mapping parameters α  and β  

would follow in the same manner as before.  

In another kind of circumstance, we might use the two 

data collection modes in different groups of the population. 

In that case, the mode effect becomes part of the group 

effect; it cannot be disentangled from an underlying 

difference in the distribution of the construct.  

Trying to compare measurements across cultures or other 

groups is different from the calibration problem, since 

randomizing participants to groups, to keep the distribution 

of the construct constant, is out of the question. The 

common wisdom is that to compare the mean of a construct 

from one group to another, the measuring items must have 

the same relationship with the construct in the two groups. 
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When there are several constructs, to compare the 

relationship among constructs from one group to another 

requires a kind of “measurement invariance” or equivalence 

for all items involved. There is a vast literature on cross-

cultural comparisons and measurement. For example, 

Johnson (1998) lists fifty-two terms for cross-cultural 

equivalence that have been introduced by authors in various 

disciplines.  

The multi-group confirmatory factor analysis model is 

useful for continuous measurement items, and takes the 

form:  

g g g g g

k k kY e= τ + Λ η +  

where g

kY  is the vector of observed responses to the items 

for respondent k  in group ;g gΛ  is a matrix of slopes or 

“factor loadings”; the intercept vector gτ  indicates the 

expected value of g

kY  when 0;g

kη =  and g

ke  is a 

measurement error with 0 mean. Then ( )g g

kE Y = τ +  

,g gΛ κ  where gκ  is the mean of the construct η  in group 

.g  The variance-covariance matrix among the observed 

values g

ky  can be expressed as ( ) ,g g g g g

kV Y ′= Λ Φ Λ + Θ  

where gΦ  is the covariance matrix of the latent constructs 

and gΘ  is the diagonal matrix of measurement error 

variances. See de Jong, Steenkamp and Fox (2007), 

Davidov (2008) and references therein.  

The IRT version of the model can be defined in 

straightforward manner. Using the same parameter notation, 

in the case of binary items, we have  

( 1 ) ( )g g g g g

k k kP Y H= | η = τ + Λ η ,  

and there is a natural extension to the ordinal case.  

The model parameters are not identifiable unless some 

restrictions are made. In the multi-group confirmatory factor 

analysis model, many authors postulate a “marker” item for 

each construct, with a factor loading of 1 and an intercept of 

0 for all groups, so that the mean of the construct is 

identified in each group. This is a very strong assumption. 

Alternatively, we might imagine choosing the units for the 

constructs so that they are marginally N(0,1) within group 1. 

The parameters of the items (with sufficiently many items) 

are thus identified for group 1. If the variances and 

relationships of the path diagram are assumed to remain true 

in group 2, then we can test whether the item parameters 

also remain the same, and if not, try to redesign the set of 

items to produce something closer to measurement 

invariance. On the other hand, if the item parameters are 

constrained to remain the same, we can test whether the 

underlying joint distribution of the constructs is also the 

same. However, formal rejection of the null hypothesis is 

difficult to interpret. Following Rensvold and Cheung 

(1998), Barrera Ceballos (2007) has carried out this kind of 

multi-group analysis for the data of the ITC Mexico survey 

and the ITC Uruguay survey, replacing “health concern” in 

the model of Figure 2 by “social denormalization”, or the 

extent to which the respondent perceives society to 

disapprove of tobacco use. (The other two constructs are 

warning label salience and intention to quit.) The 

relationships appear unexpectedly different in the two 

countries under the constraints of measurement item 

invariance, a finding which could be due either to real 

societal differences or to an imperfect correspondence 

between the items themselves (i.e., failure of the 

constraints). Admittedly, with very few constructs having 

multiple items, the ITC survey instrument was not designed 

for this kind of analysis,  

Ultimately the relationships among the constructs are of 

paramount importance, along with the question of whether 

the relationships of the constructs can be said to be alike, 

though not necessarily identical, from group to group. This 

is so regardless of whether the marginal distributions of the 

constructs are the same, or whether measurement items have 

the same parameters from place to place, or mode to mode. 

Intuitively, the two kinds of restrictions of the previous 

paragraph seem too strong. A hierarchical approach of 

De Jong et al. (2007) offers a way forward.  

If item i  has C  ordered response options, we can write  

1 1( ) ( )

( )

g g g g g g g g

ik k i i c i c i k i c

g g g

i k i c

P Y c b H b

H b

, , − , −

,

= | η , , γ , γ = η − γ

− η − γ ,
 

1 .c … C= , ,  Here the factor loadings are replaced by the 

discrimination parameters ,b  and the intercepts are replaced 

by the thresholds .γ  Instead of insisting that these 

parameters are independent of group label before 

proceeding, the approach is to model them with group-

specific random effects:  
2

2
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(0 )

i

i

g g g
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The heterogeneity in the latent variable is modeled by a 

hierarchical structure:  
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With sufficiently many items, such a model is estimable, 

and can be fitted using Markov Chain Monte Carlo 

methods. The invariance tests of multi-group analysis can 

still be performed within this framework.  

 
5. Discussion and conclusions 

 
Again, the aim of analysis in the ITC context must be to 

discern the real response (or lack of response) to policy 
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change, separating it from the effects of data collection 

mode, differential non-response, external events, time-in-

sample, culture, and language. It may not be necessary to 

distinguish among all of the confounders, but it is important 

to allow them to contribute to the model. In this paper we 

have not addressed external events, which can be modelled 

in an obvious way if recognized. We have not discussed 

modelling attrition or time-in-sample effects in detail, but in 

principle, each one of them can be regarded as part of the 

mix. Those who are retained from wave to wave of a survey 

might be regarded as a kind of cultural group. On the other 

hand, time-in-sample effects are a particular kind of failure 

of measurement invariance, over time rather than from one 

group to another. A comprehensive analysis would take 

account of these, and of other effects of culture, language 

and data collection mode.  

It is by no means the case that the effects of policy would 

always be identifiable in a full model. But the chances 

increase if the design involves between country 

comparisons of longitudinal data, and the replication which 

comes from observing cohorts with different starting points.  

A unifying thread of the two previous sections is the 

introduction of random effects as a device. The device of 

introducing random effects for countries and groups in key 

parameters is natural, and (for large group samples) 

conceptually compatible with traditional survey analysis, 

based on weighted estimating functions. There are some 

obstacles to practical implementation, arising from 

identifiability and estimability limitations, and the 

calculation of likelihood functions if more than a few 

random effects are entertained. At the same time, with 

increasing availability of numerical methods to handle such 

models, further research to adapt them to complex 

international surveys should be very fruitful.  
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Using behavior coding to evaluate the effectiveness  
of dependent interviewing 

Joanne Pascale and Alice McGee 1 

Abstract 

Dependent interviewing (DI) is used in many longitudinal surveys to “feed forward” data from one wave to the next. 

Though it is a promising technique which has been demonstrated to enhance data quality in certain respects, relatively little 

is known about how it is actually administered in the field. This research seeks to address this issue through behavior 

coding. Various styles of DI were employed in the English Longitudinal Study of Ageing (ELSA) in January, 2006, and 

recordings were made of pilot field interviews. These recordings were analysed to determine whether the questions 

(particularly the DI aspects) were administered appropriately and to explore the respondent’s reaction to the fed-forward 

data. Of particular interest was whether respondents confirmed or challenged the previously-reported information, whether 

the prior wave data came into play when respondents were providing their current-wave answers, and how any 

discrepancies were negotiated by the interviewer and respondent. Also of interest was to examine the effectiveness of 

various styles of DI. For example, in some cases the prior wave data was brought forward and respondents were asked to 

explicitly confirm it; in other cases the previous data was read and respondents were asked if the situation was still the same. 

Results indicate varying levels of compliance in terms of initial question-reading, and suggest that some styles of DI may be 

more effective than others. 

                                                           
1. Joanne Pascale, US Census Bureau, 4600 Silver Hill Road, Washington DC 20233. E-mail: joanne.pascale@census.gov; Alice McGee, formerly with the 

National Centre for Social Research. 
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1. Introduction 

 
In recent years there has been increased interest in and 

use of “dependent interviewing” (or DI) in longitudinal 

surveys. DI (also known as “previously reported data” or 

PRD) is a technique whereby data collected from one wave 

are carried forward into the next wave in order to tailor 

question wording and skip patterns. For example, if at Wave 

1 a respondent reported working for Employer X, the Wave 

2 DI question would read: “Last time you said you worked 

for Employer X. Are you still working for Employer X?” 

This is in contrast to an “independent” (that is, non-DI) 

method whereby at Wave 2 the respondent would simply be 

asked “from scratch” if he/she was working, and the name 

of the employer. A related implementation of DI is to route 

respondents around detailed questions if the circumstances 

from one wave to another have not changed. For example, a 

detailed set of questions about Employer X may be asked in 

Wave 1 (such as the industry, number of employees, etc.), 

and if at Wave 2 the respondent reports they are still 

working for the same employer, those details need not be 

collected a second time.  

The proliferation of automated surveys has contributed to 

the increased use of DI, since the technique can be difficult 

and cumbersome to implement in a paper/pencil ques-

tionnaire. Another factor contributing to the interest in DI is 

its potential to enhance data quality in a number of ways. 

Generally DI can make for a smoother, smarter, more 

efficient interview by reminding respondents of their 

previous answers and allowing them to simply report 

whether anything has changed since then. Rigorous research 

evidence demonstrating this potential is beginning to 

emerge. For example, there is consistent evidence that DI 

reduces spurious change, particularly in employment 

characteristics (Polivka and Rothgeb 1993; Jäckle and Lynn 

2004). Another source of measurement error that has 

consistently plagued panel surveys is “seam bias.”  

The “seam” of a panel survey is the point where one 

wave is joined with the next wave. For example, in a panel 

survey with annual waves the seam is between December of 

one year and January of the following year. Seam bias 

occurs when more transitions (e.g.: from employment to 

unemployment) are observed from December to January 

than for any of the non-seam month pairs (e.g.: February to 

March, April to May). There is strong evidence that DI 

significantly reduces (though does not eliminate) this seam 

bias (Moore, Bates, Pascale and Okon 2006). In terms of 

respondents’ receptivity to DI, there is qualitative evidence 

that respondents want and expect it (Pascale and Mayer 

2004). In the summer of 2006 a major conference was 

organized to assess the “state of the art” of research on 

longitudinal studies and several papers demonstrated 

specific benefits of DI. An edited monograph book of 

selected papers is to be published by John Wiley and Sons 

in 2008 (http://www.iser.essex.ac.uk/ulsc/mols2006/).  

What the literature seems to lack up to now, however, is 

evidence of how DI is actually implemented in the field. 

The current research set out to address this gap. In particular 
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we use behavior coding to examine whether interviewers 

read questions as worded, focusing especially on the 

dependent words and phrases within the questions, and we 

examine respondents’ reactions to the dependent phrases  − 

that is, whether they affirm or dispute the previously-

collected data, and whether providing this information 

seems to help or hinder the reporting task. Finally we 

examine whether these behaviors seem to vary at all by 

“style” of DI  −  that is, the particular way that the 

previously-collected information is fed back to the 

respondent. The vehicle we use for this research is the 

English Longitudinal Study of Ageing (ELSA), carried out 

by the National Centre for Social Research (or “NatCen”) in 

collaboration with University College London and the 

Institute of Fiscal Studies. 

 
2. Methods 

 
2.1 ELSA: The survey vehicle  

ELSA is a study of people aged 50 and over and their 

younger partners. The study explores the dynamics of health 

and disability, family structure, public program partici-

pation, economic circumstances, and retirement. The ELSA 

sample was drawn from households that had previously 

responded to five years of the Health Survey for England 

(HSE) between 1998 and 2003. The first ELSA wave was 

administered in 2002 with 12,100 respondents, and follow-

up interviews have been conducted every two years to 

measure changes in health and social and economic cir-

cumstances. Dependent interviewing was embedded in the 

Wave 2 instrument but due to budget and schedule 

constraints, little evaluation was done prior to its imple-

mentation. Analysis of Wave 2 data, however, raised some 

concerns about the effect of DI. For example, roughly 20% 

of respondents who reported high blood pressure at Wave 1 

reported that they no longer had the condition at Wave 2. 

Due in part to this finding, the current research project was 

undertaken to generally assess the implementation of DI 

techniques in the field. Behavior coding was chosen as the 

evaluation method in order to carefully assess interviewer-

respondent interactions, and to measure the extent to which 

the questions were being administered as written.  
 
2.2 Field interviewing and recording  

The pilot phase of Wave 3 ELSA was conducted over a 4 

week period in January, 2006. Altogether 17 NatCen field 

interviewers from different areas around the United 

Kingdom conducted 123 individual interviews. The vast 

majority of the interviews (106) were conducted with 

individuals who had been interviewed in the prior ELSA 

wave, while 17 interviews were conducted with members of 

a refreshment sample who were new to ELSA but who had 

been interviewed in the HSE. Most of the analysis in this 

paper pertains to those individuals interviewed in the prior 

ELSA wave. However, for two items in the demographics 

section  −  LIVE (whether a household member still lives at 

the residence) and DOB (household member’s date of birth) 

−  both the prior-ELSA-wave and the refresher sample were 

included in the analysis since those items included data fed 

forward from the HSE interviews. That is, these two items 

included DI even for those refresher cases not interviewed 

in ELSA in the prior wave. All interviews were conducted 

face-to-face using a computer-assisted personal instrument 

(CAPI). The questionnaire included questions on a number 

of topics: household and individual demographics, health 

status, income and assets. Interviews were recorded using 

Computer Audio Recorded Interviewing (CARI), a software 

application that allows field interviews to be recorded 

directly onto computer laptops as digital sound files. A 

consent question asking respondents for permission to 

record the interview was embedded into the beginning of 

the questionnaire, and if respondents did not consent the 

recorder was not switched on. Furthermore, in some cases 

the sound files were corrupted and therefore could not be 

coded. Among the 123 individual interviews, 104 were 

coded, and among the 106 prior-ELSA-wave interviews, a 

total of 87 individual recordings were coded. In both cases 

the majority of the interview losses stemmed from non-

consent (versus corrupt sound files). 
 
2.3 Dependent interviewing question wording  

Dependent interviewing was embedded in the instrument 

across three different topic areas: demographics, health 

conditions and vehicle ownership (see Figure 1). In the 

health condition section there were three broad categories of 

illnesses: eye, cardiovascular disease (CVD), and chronic 

conditions. Within each of these broad categories there were 

multiple specific illnesses asked about. For example under 

eye conditions there were four illnesses (such as glaucoma 

and cataracts). Items 4 and 5 were repeated for each illness 

or condition the respondent had reported in the prior wave. 

Five different styles of DI were used across these three 

topic areas, but as was mentioned earlier, no particular 

research guided those design decisions. As Figure 1 

indicates, each of the six items employed a slightly different 

style of DI. The first two items in the demographics section 

(LIVE, DOB) do provide previously-reported data but do 

not explicitly mention having gathered this data in the 

previous interview. Rather, the past data is simply presented 

and the respondent is asked to verify it. The third item 

(CHILD) explicitly states that the data was collected last 

time and the respondent is asked if the information is 

correct. Unlike the demographics questions, the health 
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questions were separated into two distinct items, which 

appeared on two different screens. The first (LAST-EYE) 

was simply a statement, informing the respondent of a 

particular illness they reported during the previous in-

terview. It was meant to be read as a statement and the 

respondent was not asked or expected to provide a response 

to this statement; rather the interviewer was meant to press 

the “enter” key in order for the second of the two-part series 

to appear. The second item (STILL-EYE) then asked 

whether the respondent still had the illness or condition. 

And finally for vehicle ownership the routine was somewhat 

similar to the health conditions questions; first a statement 

was read that informed the respondent of what they reported 

last time, and then a question was asked to determine if that 

condition still existed (that is: do you still own the vehicle?). 

The difference was that for the vehicle item the statement on 

the past condition and the question (“still have it”) were 

wrapped into one single item, while in the health section 

there were two distinct items  −  the statement and then the 

“still?” question. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1 Question wording of items using dependent 

interviewing  
 
2.4 Behavior coding  

In order to develop the code frame for behavior coding, 

we first listened to several recordings to get a general feel 

for the flow of the interview, the frequency and nature of 

non-standard interviewer behavior, and respondent’s reac-

tions to the questions. We determined that the “first ex-

change”  −  the interviewer’s initial reading of the question 

and the respondent’s first utterance in response to 

that  − was sufficiently rich for analysis and thus developed 

a code frame to capture only these behaviors, as well as a 

final outcome. Within these three behaviors (interviewer’s 

initial question-reading, respondent’s initial response, and 

outcome), we started out with a fairly standard code frame 

and adapted it based on the content of the recordings and 

our particular interest in learning about the functioning of 

the feed-forward phrases embedded within the questions 

(see Figure 2). For interviewer behavior we used three main 

code categories: (1) question was read as worded or with 

only a minor change that did not change the meaning of the 

question (2) question was read with a “major change” that 

changed or could change the meaning of the question and 

(3) the question was omitted. Within the major change code 

we developed two DI-specific codes. On the recordings it 

was rather common to hear interviewers changing a 

statement into a question. For example, in the health section 

the statement: “Our records show that last time you reported 

X condition” became a question because interviewers often 

added “Is that right?” Or, in some cases, interviewers used 

an intonation and a pause to turn the statement into a 

question  −  for example “Our records show that last time 

you reported X condition?” followed by a pause, waiting for 

an answer from the respondent. We should note that 

because coders were working directly from recordings, 

versus transcripts, they were able to make a judgment 

regarding the use of intonation to convey either a question 

or a statement. In other cases a question became a statement. 

For example in the demographics section the question 

“Does NAME still live here?” was modified to “And 

NAME still lives here.” (with no intonation indicating a 

question mark). Since these were the most frequently-

observed problems we created dedicated codes for them. 

In total there were 7 coders, drawn from both the survey 

methods and the operations units. Researchers conducted a 

half-day training which lasted 4 hours. The training covered 

the basic concepts of behavior coding, along with the study-

specific codes and how to apply them. The majority of 

training time was devoted to coding hypothetical examples 

of respondent-interviewer interactions and then discussing 

and comparing individual judgments and the rationale for 

those judgments in an attempt to apply codes consistently 

across coders. However, no formal reliability measures were 

implemented.   

Respondent codes were fairly standard, again with the 

exception of DI-specific codes. An “adequate” code meant 

that the respondent’s initial utterance fit into one of the 

response categories. We adapted this code to capture 

whether respondents affirmed or disputed the fed-forward 

data. There were also codes for a request for clarification 

and a rereading of the question, and a general “inadequate” 

code, meaning the respondent’s answer did not fit into any 

of the given response categories. Outcome codes were 

simply “adequate” and “inadequate.”  

 

A. Demographics 
1. LIVE: Does NAME still live here? 
2. DOB: Can I just check, is NAME’s date of birth [fill 

date of birth (DOB)]? 
3. CHILD: Our records show that when we last 

interviewed you, you had a child called NAME, whose 
date of birth is [DOB]. Are these details correct? 

 

B. Health Conditions 
4. LAST-EYE/CVD/CHRON: Our records show that 

when we last interviewed you in January 2004, you 
said you had had (or been told by a doctor that you had 
had) [fill EYE/CVD/CHRONIC CONDITION]. [press 
enter] 

5. STILL-EYE/CVD/CHRON: Do you still have [fill 
EYE/CVD/CHRONIC CONDITION]? 

 

C. Vehicle Ownership 
6. VEHICLE: Last time we saw you, you told us that you 

were the main user of a [MAKE OF VEHICLE], with 
a [LETTER] registration. Do you still have that 
vehicle? 
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Figure 2  Behavior codes 

 
 

 

 

3. Results 
 

Findings will first be presented for each topic area, then 

themes across topics will be discussed. Regarding the out-

come code, adequate answers were obtained in the vast 

majority of cases (upwards of 90% of the time) and there 

was little variation across items so those results are not 

shown.  
 
3.1 Demographic items  

In the demographics section, first regarding interviewer 

behavior, there was fairly wide variation in the extent to 

which interviewers adhered to standardized technique, 

ranging from 40-79%, depending on the item (See Table 

1A). Note that the base for any given item varies, in this 

table and others, for two reasons. First, as discussed in 

Section 2.2, the items LIVE and DOB were administered to 

both the prior-ELSA-wave sample and the refresher sample 

(a base of 104 coded interviews), while for all other items 

only the prior-ELSA-wave sample was used (a base of 87 

coded interviews). Second, analysis was conducted at the 

question level (versus person level) thus some items were 

administered multiple times for any given individual. For 

example LIVE was administered for each additional person 

living in the household, CHILD was administered only if 

there was a child in the household, and it was repeated for 

each additional child in the household. Furthermore, the 

health items were repeated for each illness within a given 

category. For example, if a respondent had reported six 

different types of cardiovascular conditions at the prior 

wave, the health questions would be repeated six times for 

that individual, once for each illness within the general 

category of cardiovascular conditions. 

 

 

 

Table 1A 
Interviewer behavior for demographic items 
 

Interviewer Behavior Code (in percent) Item 

 

Base 

(n) Read as 

 worded 

Question read  

as statement 

Other major  

change 

Omitted Other 

LIVE: Does NAME still live here? 120 40 33 4 18 5 

DOB: Can I just check, is NAME’s 
date of birth [DOB]? 

107 57 37 1 1 4 

CHILD: Our records show that when 
we last interviewed you, you had a 
child called NAME, whose date of 
birth is [DOB]. Are these details 
correct? 

84 79 8 11 0 2 

 

 

 

 

 

A. Interviewer Codes 
S: Standard; read as worded or with a minor 

change that did not change the meaning 
MC1: Fed-forward statement was read as a question 

(e.g.: “Last time you told us you had high blood 
pressure. Is that correct?”) 

MC2: Fed-forward question was read as a statement 
(e.g.: “And your date of birth was 25th May 
1933.”) 

MC3: Any other change that did or could change the 
meaning of the question 

O: Omission 
I/O: Recording was inaudible or the behavior does 

not fit into one of the above codes  
 

B. Respondent Codes 
AA: Adequate; acknowledged or did not dispute the 

fed-forward data 
AD: Adequate; disputed or challenged the fed-

forward data 
CL: Request for clarification 
IA: Inadequate answer or elaboration 
DK: Don’t know 
R: Refused 
I/O: Recording was inaudible or the behavior does 

not fit into one of the above codes  
 

C. Outcome Codes 
AA: Adequate; final response fit one of the given 

response categories 
IA: Inadequate; final response did not fit any of the 

response categories 
DK: Don’t know 
R: Refused 
I/O: Recording was inaudible or the behavior does 

not fit into one of the above codes  
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As was predicted from our earlier (unsystematic) 

listening of the recordings, for the most part when 

interviewers diverged from the script they turned the 

question into a statement (e.g.: “Is NAME’s date of birth 

January 1?” would become “And NAME’s date of birth is 

January 1.”). This behavior occurred 33-37% of the time for 

the first two items (LIVE and DOB) and only 8% of the 

time for the last item (CHILD). This may not be too 

surprising considering the nature of the items. Answers to 

the first two items may seem obvious  −  particularly at 

Wave 3  −  and interviewers may have been somewhat 

reluctant to ask a question with an obvious answer. Indeed 

LIVE was omitted altogether 18% of the time, and this 

could be because the interviewer was talking to the person 

referenced in the question. The third item, on the other hand, 

asks about someone else in the household (a child), the 

information is rather specific (name and date of birth) and 

the actual question (“are these details correct?”) may not 

seem to have an obvious answer. That is, it may seem like a 

more “legitimate” question to ask than asking a person, in 

what appears to be their home, “Do you still live here?” 

This could explain why this last item was read as worded so 

frequently  -  79% of the time. 

Turning to respondent behavior, on the whole respon-

dents provided a codeable answer straightaway more than 

80% of the time (see Table 1B). (Note that in some cases the 

base for respondent behavior on any given item is smaller 

than the base for interviewer behavior for that same item. 

This is due to a combination of interviewers omitting the 

item (in which case there was no respondent behavior to 

code) and missing data.) They rarely disputed the fed-

forward data (up to only 5% of the time), and most of the 

disputes stemmed from keying errors in the name or date of 

the birth previously recorded. 
 
3.2 Health items  

As noted above, the health questions were asked in two 

parts. First a statement about the condition reported during 

the prior wave was read, and then a question was asked to 

determine whether the condition still existed. Overall levels 

of “exact reading” of these items were moderate  −  ranging 

from 41-76% but generally in the low 60s (see Table 2A). 

When interviewers diverged from the script they tended to 

turn the statement into a question (20-38% of the time) by 

adding something along the lines of “Is that correct?” to the 

end of the statement. Interviewers would then often omit the 

actual question “Do you still have it?” altogether  −  13-18% 

of the time. The implications are important here, because it 

means the respondent is getting a fundamentally different 

question, specifically “Is it correct that you reported this 

condition last time?” versus “Do you still have this 

condition now?” 

Another problem was when the actual question “Do you 

still [have condition X]?” was read, interviewers often read 

it as a statement rather than a question: “And you still have 

it.”  −  3-16% of the time. This has serious implications for 

data quality as well, because the respondent is not being 

given the opportunity to think about whether they really do 

still have the condition; they are just being told they do. 

Regarding respondent behavior (Table 2B), there were 

fairly high levels of adequate behaviour  −  over 90% for 

both cardiovascular and chronic conditions  −  and 72% for 

eye conditions (however the base here was only 21 cases). 

Respondents disputed prior wave data for a variety of 

reasons. Some said they used to have the condition but no 

longer do, and this is essentially how the questionnaire was 

expected to operate. But in other cases the fed-forward data 

were problematic; respondents either denied that they’d 

reported the condition at the prior wave, or they disagreed 

with the characterization of the illness. For example, in one 

case an illness was recorded as cancer in the prior wave and 

when asked about it in the next wave the respondent said it 

wasn’t cancer. He wasn’t sure what the diagnosis was but 

said it was not cancer. In another case a respondent reported 

memory impairment at the prior wave but this particular 

condition was grouped in with other related illnesses in the 

instrument (“dementia, senility or memory impairment”). 

When the DI question appeared on the screen the 

interviewer only read “dementia” and the respondent refuted 

it. Only when the interviewer went back and read the full 

question, with all three conditions, did the respondent affirm 

that he had a memory impairment. And finally, in one case 

the presence of other household members seemed to be an 

issue. For example, when the respondent was told he’d 

reported a certain chronic condition at the prior wave he 

asked “Did I?” and his wife said “yes.”   
 
3.3 Vehicle item  

The vehicle item was similar to the health items  −  first 

providing a statement about what was recorded in the prior 

wave and then asking a question about whether the situation 

is still the same. A key difference, however, was that rather 

than presenting the statement and question as two distinct 

items on two different screens, they were rolled into one 

item. Across all items in the questionnaire the vehicle item 

had the highest level of interviewers reading the question as 

worded at 82% (see Table 3A). The problems identified in 

the health section  −  interviewers turning the statement into 

a question, or the question into a statement, or omitting the 

question  −  did not turn up very often here, perhaps because 

the style of DI was different. Specifically, interviewers did 

not have to have read a statement about the prior report but 

could move directly into the question: “Do you still have 

this vehicle?” By not displaying the statement on the prior 
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wave data as a distinct item, interviewers may have been 

less tempted to turn that statement into a question by asking, 

for example, “Is it correct that you reported this vehicle last 

time?” The result was that the intended question  −  whether 

the vehicle was still owned  −  was being asked, rather than 

an unintended question (“Did you report owning this vehicle 

last time?”). However, among the non-standard behaviors 

there were still several instances of interviewers (8% of the 

time) turning the question into a statement: “And you still 

own xx vehicle.” This could be a result of interviewers 

having seen the vehicle in question on their way to the 

doorstep.  

Respondent behavior here was similar to the health 

section. Respondents provided a codeable answer straight-

away 80% of the time (see Table 3B). They rarely disputed 

the fed-forward data (6% of the time), and reasons were 

mixed. One stemmed from keying errors in the fed-forward 

registration information, and two were based on real change 

(in one case the respondent had a different car; in the other 

case the respondent had given up driving).   

 

 

 
Table 1B 
Respondent behavior for demographic items 
 

Respondent behavior code (in percent) Item 
 

Base 
(n) Adequate; 

affirmed fed-
forward data 

Adequate; 
disputed fed-
forward data 

Clarification Inadequate Other 

LIVE: Does NAME still live here? 91 81 1 1 4 12 

DOB: Can I just check, is NAME’s date of 
birth [DOB]? 

102 91 0 0 0 9 

CHILD: Our records show that when we last 
interviewed you, you had a child called 
NAME, whose date of birth is [DOB]. Are 
these details correct? 

84 89 5 1 1 4 

 

 
Table 2A 
Interviewer behavior for health items 
 

Interviewer behavior code (in percent) Item 
 

Base 
(n) Read as 

worded 

Question 

read as 
statement 

Statement 

read as 
question 

Other 

major 
change 

Omitted Other 

LAST-EYE: Our records show that when 
we last interviewed you in January 2004, 
you said you had had (or been told by a 
doctor that you had had) [condition] 

21 62 na 38 0 0 0 

STILL-EYE: Do you still have 
[condition] 

19 63 16 na 5 16 0 

LAST-CVD: Our records show that 
when we last interviewed you in January 
2004, you said you had had (or been told 
by a doctor that you had had) [condition] 

100 63 na 20 17 0 0 

STILL-CVD: Do you still have 
[condition] 

79 76 3 na 8 13 1 

LAST-CHRON: Our records show that 
when we last interviewed you in January 
2004, you said you had had (or been told 
by a doctor that you had had) [condition] 

59 41 na 34 17 5 3 

STILL-CHRON: Do you still have 
[condition] 

51 61 14 na 2 18 6 
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Table 2B 
Respondent behavior for health items 
 

Respondent behavior code (in percent) Item 
 

Base 
(n) Adequate; 

affirmed fed-

forward data 

Adequate; 
disputed fed-

forward data 

Adequate* Inadequate Clarification Other 

LAST-EYE: Our records show that 
when we last interviewed you in 
January 2004, you said you had had (or 
been told by a doctor that you had had) 
[condition] 

21 62 10 [72] 10 5 15 

STILL-EYE: Do you still have 
[condition] 

16 na na 94 0 0 6 

LAST-CVD: Our records show that 
when we last interviewed you in 
January 2004, you said you had had (or 
been told by a doctor that you had had) 
[condition] 

100 87 5 [93] 4 0 4 

STILL-CVD: Do you still have 
[condition] 

67 na na 69 24 0 8 

LAST-CHRON: Our records show that 
when we last interviewed you in 
January 2004, you said you had had (or 
been told by a doctor that you had had) 
[condition] 

53 85 4 [89] 2 0 9 

STILL-CHRON: Do you still have 
[condition] 

35 na na 89 6 0 6 

* For “LAST-XX” items this column shows the sum of “Adequate; affirmed fed-forward data” and “Adequate; disputed fed-forward data” 

 

 

 
Table 3A 
Interviewer behavior for vehicle item 
 

Interviewer behavior code (in percent) Item 
 

Base 
(n) Read as 

worded 
Question read 
as statement 

Other 
major 
change 

Omitted Other 

VEHICLE: Last time we saw you, you told us that 
you were the main user of a [MAKE OF 
VEHICLE], with a [LETTER] registration. Do you 
still have that vehicle? 

51 82 8 2 4 4 

 

 

 
Table 3B 
Respondent behavior for vehicle item 
 

Respondent behavior code (in percent) Item 
 

Base 
(n) Adequate; 

affirmed fed-

forward data 

Adequate; 
disputed fed-

forward data 

Inadequate Clarification Other 

VEHICLE: Last time we saw you, you told us 
that you were the main user of a [MAKE OF 
VEHICLE], with a [LETTER] registration. Do 
you still have that vehicle? 

49 74 6 10 4 6 
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3.4 Interviewer-respondent interaction  
In addition to item-specific analysis we examined the 

relationship between interviewer and respondent behavior 

across all items. We found that whether interviewers read 

questions as worded, read questions as statements, or read 

statements as questions, respondents provided an adequate 

(and affirmative) answer 87.5% of the time. For other 

behaviors, cell sizes were too small to conduct meaningful 

analysis.   

 
4. Summary and recommendations 

 
The extent to which interviewers adhered to the 

standardized script varied quite a bit  −  questions were read 

as worded 40-82% of the time, depending on the particular 

item. When interviewers diverged from the script, the way 

they changed the wording varied by topic area and style of 

DI which, unfortunately, were confounded because each 

item had a unique style of DI. In the demographics and 

vehicle items, for the most part interviewers changed the 

question into a statement (“Does NAME still live here?” 

became “And NAME still lives here.”) In the health section 

interviewers read statements about what was reported last 

time as questions. Rather than simply reading the statement 

“Last time you reported X condition” interviewers would 

add “Is that correct?” (which is an ambiguous question) and 

often omitted the question “Do you still have condition x?” 

The result was that often the intended question  −  to 

determine whether the condition still exists  −  was obscured 

or omitted. 

For the most part respondents provided codeable answers 

on the first exchange 72-94% of the time. It was fairly 

uncommon for respondents to dispute the fed-forward data 

(0-10% of the time) but when they did it was for a variety of 

reasons. Some confirmed the prior wave report but said they 

no longer have the condition. Some denied the prior wave 

report, and some disagreed with the details of the fed-

forward data. Note that this first scenario is what we expect 

to happen in the instrument so it is actually a misnomer to 

say the respondent “disputed” the earlier report. Respon-

dents here are not disputing what they said earlier, but rather 

they are confirming their earlier report and then reporting 

change. However, when the code frame was developed we 

heard very few instances of respondents disputing the prior 

data at all; the majority of cases were respondents simply 

agreeing with the fed-forward data. We therefore failed to 

recognize that it would have been valuable to create separate 

codes for agreeing to the fed-forward data and reporting real 

change versus actually disputing the prior report. Even with 

the full dataset, however, the frequency with which respon-

dents did not simply agree to the prior wave data was too 

low for a rich analysis, and a larger dataset would be needed 

to address this issue.  

In terms of recommendations, these findings strongly 

suggest that questionnaire designers should avoid providing 

statements of prior wave data without an actual question, 

because interviewers are too tempted to turn these state-

ments into questions, which obscures the question on 

whether the prior wave situation still exists. If it is important 

to confirm or verify information reported in a prior wave, 

this should be done explicitly by adding a discrete question 

to the statement, such as: “Last time I recorded that you had 

condition X. Is that correct?” Subsequent questions could 

then be asked to determine whether the condition still exists. 

Separating the two concepts in this way would convey to the 

respondent that there are two distinct issues: one is whether 

the prior report was recorded accurately, and the other is 

whether the condition still exists. If researchers do not have 

a rationale for needing to confirm the accuracy of 

previously-recorded data, a more efficient approach would 

be to ask: “Last time I recorded that you had condition X. 

Do you still have condition X?” 

Our findings from the health conditions section suggest 

that for certain topic areas it is important to feed back prior 

wave data in the respondent’s own words as much as 

possible. When respondents’ descriptions of their illnesses 

was obscured by either the instrument or the interviewer 

grouping the illness with other conditions, respondents no 

longer recognized the illness they originally reported. 

Finally our findings suggest a more general recommend-

dation that the style of DI should be carefully tailored 

depending on the particular item. For example, for topics 

unlikely to change from one wave to the next (such as date 

of birth), avoid re-asking questions because interviewers 

often read them as statements or omit them altogether. For 

these topics it may be more effective to either explicitly 

verify the accuracy of the earlier report (as suggested 

above), or to avoid bringing back the information at all. A 

hybrid-type approach for a study with several waves would 

be to verify the accuracy of previously-recorded data in 

wave 2 and then accept the data as correct and avoid re-

affirming it in all later waves.  
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Imputation for nonmonotone last-value-dependent 
nonrespondents in longitudinal surveys 

Jing Xu, Jun Shao, Mari Palta and Lin Wang 1 

Abstract 

In longitudinal surveys nonresponse often occurs in a pattern that is not monotone. We consider estimation of time-

dependent means under the assumption that the nonresponse mechanism is last-value-dependent. Since the last value itself 

may be missing when nonresponse is nonmonotone, the nonresponse mechanism under consideration is nonignorable. We 

propose an imputation method by first deriving some regression imputation models according to the nonresponse 

mechanism and then applying nonparametric regression imputation. We assume that the longitudinal data follow a Markov 

chain with finite second-order moments. No other assumption is imposed on the joint distribution of longitudinal data and 

their nonresponse indicators. A bootstrap method is applied for variance estimation. Some simulation results and an 

example concerning the Current Employment Survey are presented.  

 

Key Words: Bootstrap; Nonmonotone missingness; Last-value-dependent; Nonignorable nonresponse; Nonparametric 

regression. 
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1. Introduction 
  

A survey is longitudinal if data are collected from every 

sampled unit at multiple time points. For example, in the 

Current Employment Survey (CES), commonly known as 

the payroll survey conducted by the U.S. Bureau of Labor 

Statistics, data are obtained from establishments on a 

monthly basis by mail, telephone, FAX, and electronic data 

entry (Butani, Harter and Wolter 1997). Other examples 

include the Survey of Income and Program Participation 

(SIPP) and many economic surveys conducted by the U.S. 

Census Bureau. Nonresponse occurs in longitudinal studies. 

We assume that every sampled unit responds at baseline 

(the first time point). Nonresponse is monotone if a unit not 

responding at some time does not return to the survey. 

Nonmonotone nonresponse, however, often occurs in 

surveys such as the CES and SIPP and entails a wider 

variety of nonresponse patterns.  

Let 1, , Ty y…  be the values of a variable from a sample 

unit, where T is the total number of time points, and 

1, , Tδ δ…  be the response indicators ( 1tδ =  if ty  is a 

respondent and 0tδ =  if ty  is a nonrespondent). Non-

response is completely at random if 1( , , )Tδ δ…  is 

statistically independent of 1( , , ),Ty y…  which rarely 

occurs in surveys. A more realistic assumption is that 

nonresponse at time point t depends on observed or 

unobserved past values 1 1, , .ty y −…  In this paper, we focus 

on a stronger assumption, the last-value-dependent 

nonresponse mechanism, i.e., nonresponse of ty  depends 

on the last value 1ty −  (observed or unobserved). The last-

value-dependent nonresponse mechanism is assumed in 

many economic surveys (e.g., the CES; see Butani, Harter 

and Wolter 1997). If nonresponse is also monotone, then 

either ty  is a nonrespondent with certainty or 1ty −  is 

observed. This is a special case of what is referred to as 

ignorable missingness (Little and Rubin 1987). For 

nonmonotone nonresponse, however, last-value-dependent 

nonresponse is nonignorable, as whether ty  is a respondent 

depends on 1ty −  that may be a nonrespondent.  

Existing methods for handling nonmonotone non-

response can be briefly described as follows. Under para-

metric modeling, methods such as the maximum likelihood, 

multiple imputation, or Bayesian analysis can be applied 

(e.g., Troxel, Harrington and Lipsitz 1998; Troxel, Lipsitz 

and Harrington 1998; Schafer 1997), if a suitable parametric 

model for the joint distribution of 1( , , )Ty y…  and 

1( , , )Tδ δ…  can be found. The validity of these methods, 

however, depends on whether parametric models are 

correctly specified. A simple linear regression imputation 

method (see, e.g., Butani et al. 1997) imputes a 

nonrespondent ty  by the predicted value under a fitted 

linear regression model between ty  and 1,ty −  where the 

regression model is fitted using data from sampled units 

with both ty  and 1ty −  observed and the prediction is made 

using the predictor being either the observed 1ty −  or a 

previously imputed value of a nonrespondent 1.ty −  Under 

the nonmonotone nonresponse mechanism (1), however, it 

can be shown that simple linear regression imputation is 

biased even if the linear regression model between ty  and 

1ty −  is correct. The bias is mainly caused by the erroneous 

way of using imputed 1ty −  values to impute missing ty  

values. A censoring approach creates a dataset with 

monotone nonresponse by discarding all respondents from a 

sampled unit after its first missing y-value. Methods 
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appropriate for monotone nonresponse (Paik 1997; Robins, 

Rotnitzky and Zhao 1995; Troxel, Lipsitz and Brennam 

1997) can then be applied to the reduced dataset. Although 

this approach produces correct estimators, it is not efficient 

when T is not small, since many respondents are discarded.  

The purpose of this article is to propose an imputation 

method for longitudinal surveys with nonmonotone non-

response and the last-value-dependent nonresponse 

mechanism (1). Imputation is commonly used to compen-

sate for nonresponse in survey problems (Kalton and 

Kasprzyk 1986; Rubin 1987). Once all nonrespondents are 

imputed, estimates of parameters (such as the mean of ty ) 

are computed using standard methods by treating imputed 

values as observations. Our proposed imputation method 

produces approximately unbiased and consistent estimators 

for the means of 1, , .Ty y…   

The rest of this paper is organized as follows. In Section 

2, we describe our assumptions. Section 3 describes the 

imputation process. Some properties of the resulting esti-

mators of population means are discussed in Section 4, 

together with the proposal of a bootstrap procedure for 

variance estimation. Section 5 contains some simulation 

results. An example related to the CES is presented in 

Section 6. The last section contains a summary.  

 
2. Assumption and imputation model 

 
Let P be a finite population indexed by 1, , ,i N= …  and 

let S be a sample of size n taken from P according to some 

sampling design. According to the sampling design, survey 

weights , ,iw i S∈  are constructed so that for any set of 

values { : },iz i P∈   

( )
1

,
N

s i i i
i S i

E w z z
∈ =

=∑ ∑   

where sE  is the expectation with respect to S. For each unit 

1, ( , , )i T ii P y y, ,∈ …  is a vector of items of interest obtained 

at time points 1, , .t T= …  When nonresponse is present, 

each unit also has the vector 1( , , )i T i, ,δ δ…  of response 

indicators. For simplicity, we may omit the index i in our 

discussion. 

We adopt a model-assisted approach by assuming that 

the vector 1 1( , , , , , )i T i i T iy y, , , ,δ δ… … ’s are independent and 

identically distributed (i.i.d.) from a superpopulation. The 

i.i.d. assumption can be relaxed by dividing P into several 

sub-populations (called imputation classes) so that the i.i.d. 

assumption approximately holds within each imputation 

class. Imputation classes are usually constructed using a 

categorical variable whose values are observed for all 

sampled units; for example, under stratified sampling, strata 

or unions of strata are often used as imputation classes. Each 

imputation class should contain a large number of sampled 

units. When there are many strata of small sizes, imputation 

classes are often obtained through poststratification 

(Valliant 1993) and/or combining small strata.  

Once imputation classes are constructed, imputation is 

done within each imputation class. Thus, for simplicity, 

from now on we assume that there is only one imputation 

class.  

Under the last-value-dependent nonresponse mechanism,  

1 1 1 1

1

( 1 )

( 1 ) 2 .

t T t t T

t t

P y y

P y t T

− +

−

δ = | , , ,δ , , δ , δ , , δ

= δ = | , = , ,

… … …

…
 
(1)

 

We do not make any other assumption on 1( 1 ).t tP y −δ = |  

When there is no nonresponse, we assume that 1( )Ty y, ...,  

is a Markov chain, i.e.,  

1 1( , , ) ( ), 2, , ,t T t tL y y y L y y t T−| = | =… …  (2) 

where ( )L ξ|ζ  denotes the conditional distribution of ξ  
given .ζ  We do not make any other assumption on 

1( )t tL y y −|  except that ty  has a finite second-order 

moment. In many economic surveys, the following 

assumption stronger than (2) is assumed:  

1 1 , 2, , ,t t t ty y y t T− −= β + | | ε = …  (3) 

where β  is an unknown parameter, tε ’s are independent of 

ty ’s, 1 0,ε =  and 2, , Tε ε…  have mean 0 and a common 

variance (e.g., the CES data; see Butani et al. 1997). Under 

(3), the best linear unbiased estimator of β  is the well 
known ratio estimator.  

To consider asymptotics, we adopt the frame work in 

Krewski and Rao (1981) and Bickel and Freedman (1984). 

We assume that the finite population P is a member of a 

sequence of finite populations indexed by v. All limiting 

processes are understood to be as .v→∞  As ,v→∞  the 

population size N and the sample size n increase to infinity. 

In sample surveys, the following regularity conditions on 

iw ’s are typically imposed:  

( ) 2
0 1max and Var ,i s i

i P
i S

n w b N n w b N
∈ ∈

≤ ≤∑  (4) 

where 0b  and 1b  are some positive constants and Vars  is 

the variance with respect to sampling. The first condition in 

(4) ensures that none of the weights iw  is disproportionately 

large (see Krewski and Rao 1981). The second condition in 

(4) means that Var ( )i Ss iw N∈∑ /  is at most of the order 1.n−  

Conditions in (4) are satisfied for stratified simple random 

sampling designs.  

 
3. Imputation process 

 
Our proposed imputation is a type of regression imputa-

tion. Thus, one of the key issues to our method is to find the 

right “predictors” for nonrespondents. For a nonrespondent 

, 2,ty t ≥  let r be the time point at which the unit has the last 



Survey Methodology, December 2008 155 
 

 

Statistics Canada, Catalogue No. 12-001-X 

observed value, i.e., ry  is observed but 1 1r t ty y y+ −, ..., ,  are 

nonrespondents. Under assumptions (1)-(2), we can use ry  

as a predictor in imputing .ty    
3.1 The case of 1r t= −= −= −= −    

We first consider the case of 1.r t= −  Let  

1 1 1 1( ) ( , 0, 1)t t t t t t ty E y y, − − − −φ = | δ = δ =  

be the conditional expectation (regression function) for a 

nonrespondent ty  with observed 1.ty −  If 1t t, −φ  is known, 

we can simply impute ty  by 1 1( ).t t ty, − −φ  But 1t t, −φ  is 

usually unknown. It is shown in the Appendix that 

assumption (1) implies that  

1 1 1 1( ) ( , 1, 1), 2, , .t t t t t t ty E y y t T, − − − −φ = | δ = δ = = …  (5) 

Thus, 1t t, −φ  can be estimated by regressing ty  on 1ty −  

using data from all sampled units having observed ty  and 

1.ty −   

The idea of using (5) for imputation is the same as that in 

the monotone nonresponse case treated by Paik (1997). 

Unlike the monotone nonresponse case, however, 1( )t t x, −φ  

may not be linear in x for nonmonotone nonresponse. 

Hence, we consider the nonparametric method in Cheng 

(1994) for regression. The kernel estimator of 1( )t t x, −φ  is  

1

1 1

1 1

ˆ ( )

,

t t

t i t i

i t t i t i i t t i

i S i S

x

x y x y
w I y w I

h h

, −

− , − ,
, − , , , − ,

∈ ∈

=φ

− −   
κ κ   
   

∑ ∑  

where ( )xκ  is a probability density function, > 0h  is a 

bandwidth, and  

1

1

1 1, 1 2, , .

0 otherwise,

t i t i

t t i

t T
I

, − ,
, − ,

δ = δ = =
= 


…
 

A nonrespondent ,t jy  with respondent 1,t jy −  is imputed by  

11
ˆ ( ).t jt j t t

yy − ,, , −
= φɶ  

Cheng (1994) suggested a bandwidth 2 /5 ,h Cn−=  where 

C is a constant. In general, C may be different from 

application to application, and should be chosen using 

techniques developed in the kernel estimation literature 

(e.g., Cheng 1994 and Chapter 5 of Härdle 1990) and/or 

empirical studies.   
3.2 The case of 1r t< −< −< −< −   

When 1,r t< −  the situation is more complicated. Let  

1( ) ( 0, 1).t r r t r t r ry E y y, +φ = | , δ = = δ = δ =⋯  

As nonresponse mechanism (1) is nonignorable, the 

expected value of ty  conditional on ry  with 1r t< −  is not 

equal for observed and missing ,ty  which precludes the use 

of observed ty  values as outcomes in estimating .t r,φ  It is 

explicitly shown by Xu (2007) that  

1 1 1 1

( )

( , 1, , , , 1)

t r r

t r t t t r r r

y

E y y a a

,

− − + +

φ

≠ | δ = δ = δ = δ =…
 
(6)

 

where 0ja =  or 1, 1, , 1.j r t= + −…  On the contrary, in 

the case of monotone nonresponse the two sides of (6) are 

the same (Paik 1997) so that the right hand side of (6) can 

be used as the regression imputation model and observed ty  

values can be used to estimate .t r,φ  

We have to find a conditional expectation of ty  (given 

ry  and some response status) that is equal to ( )t r ry,φ  and 

enables us to carry out imputation. It is shown in the 

Appendix that  

2 1( ) ( , 0, 1),

1, , 2, 2, , .

t r r t r t r r ry E y y

r t t T

, + +φ = | δ = = δ = δ = δ =

= − =

⋯

… …
 

(7)
 

To estimate t r,φ  by fitting regression according to (7), we 

do not have observed ty  values as outcomes in regression, 

because units defined by the right hand side of the equation 

in (7) have 0.tδ =  If we carry out imputation sequentially 

as 1, 2, ,1,r t t= − − …  then the ty  nonrespondents for 

units with 1 1r+δ =  have already been imputed. Thus, we 

can use these previously imputed ty  values as outcomes in 

regression. Although at each fixed time point t, imputation 

is carried out sequentially as 1, 2, ,1,r t t= − − …  imputa-

tion for different time points can be carried out at any order, 

because at any time point t, imputed values are used as 

outcomes at time point t only.  

Since t r,φ  is usually not linear, we use the kernel 

regression. For 2, ,t T= …  and 2, 3, ,1,r t t= − − …  the 

conditional expectation ( )t r x,φ  for any x  is estimated by  

,

ˆ ( )

,

t r

r i r i

i t r i i t r it i
i S i S

x

x y x y
w I w Iy

h h

,

,
, , , ,,

∈ ∈

φ

− −   
= κ κ   

   
∑ ∑ɶ

 
(8)

 

where 
t iy ,ɶ  is a previously imputed value and  

2 11 0, 1,

1, , 2, 2, , .

0 otherwise

t i r i r i r i

t r iI r t t T

, + , + , ,

, ,

δ = = δ = δ = δ =
= = − =
 ,

⋯

… …  

A nonrespondent t jy ,  with last respondent r jy ,  is imputed 

by  

ˆ ( ).r jt j t r
yy ,, ,

= φɶ  

The Markov chain assumption (2) ensures that using 

previously imputed values 
t iy ,ɶ  as outcomes in (8) produces 

an asymptotically valid estimator of t r,φ  (see result (11) in 

the Appendix).     
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3.3 An illustration  
To illustrate the previous described imputation process 

and how nonresponse patterns are grouped into imputation 

cells, we consider imputation at time point 4t =  (Table 1). 

The horizontal direction in Table 1 corresponds to 4 time 

points and the vertical direction corresponds to different 

nonresponse patterns, where each pattern is represented by a 

4-dimensional vector of 0’s and 1’s with 0 indicating a 

nonrespondent and 1 indicating a respondent. There are a 

total of 1 32 2 8T − = =  nonresponse patterns. According to 

the previously described imputation process, at step 1, we 

consider nonrespondents at time 4 with last respondents at 

time 3, which are patterns 3 and 4. According to imputation 

model (5), we fit a regression using data in patterns 7 and 8 

indicated by + (used as predictors) and ×  (used as 
outcomes) in the block in Table 1 under title step 1. Then, 

imputed values (indicated by ○ ) are obtained from the 

fitted regression using data indicated by * as predictors in 

the block under title step 1. Next, we focus on the block in 

Table 1 under title step 2. The nonrespondents at 4t =  with 

last respondents at time 2 are those in pattern 2. According 

to imputation model (7), we fit a regression using data in 

pattern 3 indicated by + (used as predictors) and ⊗  

(previously imputed values used as outcomes). Then, 

imputed values (indicated by ○ ) are obtained from the 

fitted regression using data indicated by * as predictors. 

Finally, we focus on the block in Table 1 under title step 3. 

The nonrespondents at 4t =  with last respondents at time 1 

are those in pattern 1. According to imputation model (7), 

we fit a regression using data in pattern 2 indicated by + 

(used as predictors) and ⊗  (previously imputed values used 

as outcomes). Then, imputed values (indicated by ○ ) are 

obtained from the fitted regression using data indicated by * 

as predictors.  
 
Table 1  
Illustration of imputation process at t = 4 
 

 Step 1: r = 3 Step 2: r = 2 Step 3: r = 1 

 Time Time Time 
Pattern 1 2 3 4 1 2 3 4 1 2 3 4 

(1,0,0,0)         *   ○  
(1,1,0,0)      *  ○  +   ⊗  
(1,1,1,0)   * ○   +  ⊗      
(1,0,1,0)   * ○          
(1,0,0,1)             
(1,1,0,1)             
(1,0,1,1)   + ×          
(1,1,1,1)   + ×          

 

:+   observed data used in regression fitting as predictors 

:×   observed data used in regression fitting as responses 

:⊗  imputed data used in regression fitting as responses 

*:  observed data used as predictors in imputation 

:○  imputed values 

 

4. Estimation of population means using 

           imputed data 
 

Let  tY  be the finite population mean at time point t. The 

sample mean based on observed and imputed data is  

ˆ ,i t it
i S

w yY ,
∈

=∑ ɶ  (9) 

where 
t iy ,ɶ  is equal to the observed value if 1t i,δ =  and is 

an imputed value if 0.t i,δ =  We now establish that, as an 

estimator for the population mean at time point ˆ, tt Y  in (9) 

is consistent and asymptotically normal under the 

asymptotic frame work described in Section 2.   
Theorem 1. Assume (1)-(2) and (4), and the asymptotic 

frame work described in Section 2. Assume further the 

following regularity conditions:    
(C1) 2( ) , 1, , .tE y t T< ∞ = …   
(C2) 0 ( 1) 1t rP I ,< = <  and 2[ ( ) ( )] ,t r r t r rE y p y, ,σ / < ∞  

where 1 1 1( ) ( 1 1),t t t t tp x P y x, − − −= δ = | = , δ = ( )t rp x, =  

1 1( 0 1t r r r tP y x + −δ = | = , δ = δ = , δ = =⋯ 2 0),r+δ =  

1, , 2,r t= −…  2 ( ) Var( , 1),t r t r t rx y y x I, ,σ = | = = t rI ,  

is the same as t r iI , ,  with t i,δ ’s replaced by tδ ’s, 

1, , 1, 2, , .r t t T= − =… …    
(C3) ( )t r x,φ  and ( ) ( ) ( )t r t r rg x p x f x, ,=  have bounded 

second derivatives such that  

2

,[{ ( ) ( )} ( )

{1 ( )}/ ( )

t r r t r r t r r

t r r t r r

E y y g y

p y g y

, ,

, ,

′′σ + φ

× − < ∞
 

 and  

2
, , ,[{ ( ) ( ) ( ) ( )}

{1 ( )}/ ( )] ,

t r r t r r t r r t r r

t r r t r r

E y g y y g y

p y g y

,

, ,

′′ ′ ′φ + φ

× − < ∞
 

where ( )rf x  is the probability density function of 

, 1, , 1, 2, , .ry r t t T= − =… …   
(K) The kernel function κ  is a bounded and symmetric 

probability density function on the real line with 

finite second moment.   
(B) The bandwidth h satisfies 2 2(log )nh n/ → ∞  and 

4 0nh →  as .n→∞    
Then, for 1, , ,t T= …   

2ˆ( ) (0 ),t t d tn Y N− µ → , σ  (10) 

where 2( ),t t tE yµ = σ  is an unknown parameter, and d→  

denotes convergence in distribution with respect to the joint 

distribution of 1 2( , , , , , )i T i i T iy y, , , ,δ δ… …  and sampling 

(model and design).  

The proof is given in the Appendix. Conditions (K) and 

(B) are exactly the same as those in Cheng (1994) and 
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conditions (C1)-(C3) are the same as those in Cheng (1994) 

applied to units defined by the right hand sides of (5)-(7). 

Because of the complexity of the imputation, it is 

difficult to obtain an explicit form of 2

tσ  in (9). We consider 

the bootstrap method. A correct bootstrap can be obtained 

by applying the imputation process in each of the bootstrap 

samples, i.e., by imputing each bootstrap data set exactly the 

way the original data set is imputed (Shao and Sitter 1996). 

More specifically, we proceed as follows.    
1. Within each imputation class, draw a bootstrap sample 

as a simple random sample with replacement from the 

sample, where the bootstrap sample size is the same as 

the number of sampled units in the imputation class. 

Combine the bootstrap samples to form *.S  The 

bootstrap data set contains all observed data, weights, 

and response indicators of units in *.S  
 

2. Apply the proposed imputation procedure to the 

bootstrap data set. Calculate the bootstrap analogue  
*ˆ .tY  

 

3. Independently repeat the previous steps B times to 

obtain *1 *ˆ ˆ, , .Bt tY Y…  The sample variance of *1ˆ , ,tY …  
*ˆ B

tY  is our bootstrap variance estimator for ˆ .tY   
Note that the bootstrap method requires a large amount 

of repeated computation, which is the price paid for 

replacing a theoretical derivation of asymptotic variances. 

One may also use other valid bootstrap methods for survey 

data described in Shao and Tu (1995, Chapter 6).  

Performance of the proposed bootstrap variance estima-

tor is evaluated by simulation in the next section.  

 
5. Simulation 

 
A simulation study was conducted to evaluate the 

performance of the proposed imputation method in terms of 

the estimation of the mean of .ty  We considered a sample 

of size 1,000. Each sample unit has longitudinal data of size  

4.T =  The population mean values for the 4 time points are 

1.33, 1.94, 2.73, and 3.67, respectively. Longitudinal data 

were generated according to two models. In the first model, 

1( , , )Ty y…  is multivariate normal and follows the AR(1) 

model with correlation coefficient 0.9 and standard error 1. 

In the second model, 1(log , , log )Ty y…  is multivariate 

normal and follows the AR(1) model with correlation 

coefficient 0.9 and standard error 1. All data at 1t =  are 

observed. For 2, , ,t T= …  nonrespondents were generated 

using  

1
1

1

exp{1 1 2 }
( 0 )

1 exp{1 1 2 }

t
t t

t

y
P y

y

−
−

−

− .
δ = | =

+ − .
 

for the case of normal data and  

1
1

1

exp{2 0 7 }
( 0 )

1 exp{2 0 7 }

t
t t

t

y
P y

y

−
−

−

− .
δ = | =

+ − .
 

for the case of log-normal data. These nonresponse models 

were chosen so that the unconditional probabilities of non-

response are about the same in the two cases (see Table 2).  

For comparison, we included five estimators in the 

simulation: the sample mean of complete data, which is 

used as the gold standard; the sample mean of respondents 

that ignores nonrespondents; the sample mean based on 

simple linear regression imputation described in Section 1; 

the sample mean based on censoring (as described in 

Section 1) and linear regression imputation for monotone 

missing data (Paik 1997); and the sample mean based on 

our proposed imputation procedure. In the nonparametric 

regression described in Sections 3.1 and 3.2, the standard 

normal density was used as the kernel ( )xκ  and the 

bandwidth h was chosen to be around 2/ 54 ,n−  which was 

used in the simulation in Cheng (1994).  

 
Table 2  
Unconditional probabilities of nonresponse in the simulation study 

 

   Nonresponse probability 

 Nonresponse pattern The normal case The log-normal case 

t = 3 Monotone (1,0,0) 0.14  0.16  
  (1,1,0) 0.12 0.26 0.09 0.25 
 Intermittent (1,0,1) 0.25 0.25 0.20 0.20 

 Complete (1,1,1) 0.49 0.49 0.55 0.55 

t = 4 Monotone (1,0,0,0) 0.04  0.06  
  (1,1,0,0) 0.02  0.02  
  (1,1,1,0) 0.04 0.10 0.02 0.10 

 Intermittent (1,0,0,1) 0.10  0.10  
  (1,0,1,0) 0.04  0.03  
  (1,0,1,1) 0.21  0.17  
  (1,1,0,1) 0.10 0.45 0.06 0.36 

 Complete (1,1,1,1) 0.45 0.45 0.54 0.54 
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Tables 3-4  report (based on 1,000 simulation runs) the 

relative bias and variance of mean estimators, the bootstrap 

variance estimator (based on 200 bootstrap replications), the 

coverage probability of approximate 95% confidence 

intervals (CI) obtained using point estimator 

1.96 bootstrap variance,± ×  and the length of CI. The 

results in Tables 3-4  can be summarized as follows.   
1. Bias. The proposed imputation method produces 

estimators with negligible bias in all cases under 

consideration. The sample mean of respondents 

only is clearly biased unless 1.t =  Although in 

some cases the values of the bias are small, the bias 

leads to very low coverage probability of the CI, 

because the variance of the sample mean is much 

smaller than its squared bias. The simple linear 

regression imputation method is correct only when 

2t =  and data are normally distributed. Its relative 

bias at 3t =  in the normal case is very small, but at 

4,t =  it has a relative bias of 1.1% that leads to a 

coverage probability 76.3% only for its CI. The 

method of censoring and linear regression 

imputation is correct in the normal case and has 

little bias. In the log-normal case, however, both 

the simple linear regression imputation and the 

method of censoring with linear regression 

imputation are biased, due to the fact that the 

regression functions are not linear.   

2. The bootstrap and CI. The bootstrap variance as an 

estimator of the variance of the mean estimator 

performs well in all cases, even when the mean 

estimator is biased. The related CI has a coverage 

probability close to the nominal level 95% when 

the mean estimator has no bias.  
3. Proposed imputation versus censoring. When 

censoring and linear regression imputation is used, 

the mean estimator is biased in the log-normal case 

and, thus, the proposed imputation method is 

clearly better. In the normal case, both methods are 

correct. However, the results in Table 3 show the 

effect of discarding observed data. When 2,t =  

censoring is better than the proposed imputation 

method, because no unit is actually censored and 

the censoring method uses the correct linear 

regression whereas the proposed imputation 

method fits a nonparametric regression. When 

3,t =  censoring is about the same as the proposed 

imputation method but when 4,t =  censoring is a 

lot worse than the proposed imputation method. 

From Table 2, on average 25% sample units are 

censored when 3t =  and 45% sample units are 

censored when 4.t =  The gain in using a correct 

linear regression is not enough to compensate the 

effect of discarding observed data, especially when 

4.T =   
 

Table 3  
Simulation results for estimation of means (Normal case) 

 

Method Quantity t = 1 t = 2 t = 3 t = 4 

complete data relative bias 0.0% 0.0% 0.0% 0.0% 

 variance 310×  0.962 0.981 1.052 1.033 

 bootstrap variance 1.002 1.002 1.002 1.006 

 coverage prob of CI 95.4% 94.9% 94.5% 94.5% 

 length of CI 0.124 0.124 0.124 0.124 

respondents relative bias  16.8% 8.3% 3.5% 

 variance 310×   1.319 1.240 1.051 

 bootstrap variance  1.364 1.178 1.062 

 coverage prob of CI  0.0% 0.0% 2.4% 

 length of CI  0.145 0.134 0.128 

simple linear relative bias  0.0% 0.0% 1.1% 

regression imputation variance 310×   1.121 1.434 1.185 

 bootstrap variance  1.172 1.466 1.192 

 coverage prob of CI  94.9% 94.7% 76.3% 

 length of CI  0.134 0.150 0.135 

censoring and linear relative bias  0.0% 0.0% 0.0% 

regression imputation variance 310×   1.121 1.437 1.642 

 bootstrap variance  1.172 1.476 1.819 

 coverage prob of CI  94.9% 94.7% 96.1% 

 length of CI  0.134 0.150 0.167 

proposed imputation relative bias  0.2% 0.3% 0.2% 

 variance 310×   1.196 1.438 1.264 

 bootstrap variance  1.231 1.401 1.224 

 coverage prob of CI  95.0% 93.7% 94.1% 

 length of CI  0.137 0.146 0.137 
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Table 4  
Simulation results for estimation of means (Log-normal case) 

 

Method Quantity t = 1 t = 2 t = 3 t = 4 

complete data relative bias 0.0% 0.0% 0.0% 0.0% 

 variance  0.069 0.172 0.383 1.074 

 bootstrap variance 0.067 0.161 0.418 1.138 

 coverage prob of CI 94.4% 93.8% 94.9% 94.6% 

 length of CI 1.008 1.557 2.511 4.142 

respondents relative bias  28.1% 18.8% 10.8% 

 variance   0.366 0.614 1.378 

 bootstrap variance  0.344 0.668 1.461 

 coverage prob of CI  0.1% 2.1% 31.6% 

 length of CI  2.267 3.171 4.690 

simple linear relative bias  7.0% 12.6% 12.5% 

regression imputation variance   0.266 0.877 1.589 

 bootstrap variance  0.240 0.807 1.611 

 coverage prob of CI  71.6% 39.3% 23.2% 

 length of CI  1.894 3.481 4.938 

censoring and linear relative bias  7.0% 12.1% 13.8% 

regression imputation variance   0.266 0.874 2.735 

 bootstrap variance  0.240 0.836 2.617 

 coverage prob of CI  71.6% 43.9% 36.4% 

 length of CI  1.894 3.540 6.277 

proposed imputation relative bias  0.1% 0.1% 0.1% 

 variance   0.189 0.447 1.119 

 bootstrap variance  0.179 0.482 1.236 

 coverage prob of CI  94.5% 95.7% 95.6% 

 length of CI  1.644 2.697 4.317 

 

6. An example 
 
 

In the CES introduced in Section 1, data for employment 

are collected from nonagricultural establishments on a 

monthly basis. In any particular month after the baseline, the 

nonresponse rate is about 20-40%  and nonresponse is 

nonmonotone. In CES, it is typically assumed that (1)-(2) 

hold. In fact, assumption (3) that is stronger than assumption 

(2) is often assumed (Butani, Harter and Wolter 1997). We 

consider a stratified simple random sample from a CES 

dataset (a subset of a sample from the 1980’s). Stratum 

sizes, sample size by stratum, and nonresponse rate by 

stratum are listed in Table 5. For each imputation method, 

imputation is carried out within a group of strata (group 1 = 

strata 1-4;  group 2 = strata 5-7; group 3 = strata 8-11; 

group 4 = stratum 12; group 5 = strata 13-15; group 6 = 

stratum 16).  

To estimate the employment counts from month 1 

(baseline) to month 8, we applied the five methods in the 

simulation study in Section 5. The kernel and bandwidth in 

nonparametric regression were the same as those in the 

simulation (Section 5). Since population employment counts 

are obtained once a year from Unemployment Insurance 

administrative records, nonrespondents in any month 

actually become available later so that the sample mean of 

complete data is available as a standard. The sample means 

based on different methods are reported in Table 6 together 

with their bootstrap variance estimates (based on bootstrap 

sample size 200). For the sample means based on respon-

dents and three imputation methods, we also computed the 

estimated relative bias defined as (sample mean/sample 

mean of complete data) 1.−  

The result in Table 6 shows that the sample mean based 

on the proposed imputation method is very comparable to 

the sample mean from the complete data, whereas the 

sample mean of respondents is clearly biased. Due to the 

fact that nonresponse is nonignorable, the simple linear 

regression imputation shows some bias starting from month 

4, although the estimated relative bias is at most 5.5% in 

absolute value. The method of censoring with linear 

regression imputation has some bias after month 4, probably 

due to the fact that data are not normally distributed so that 

fitting linear regression is not correct. Furthermore, it has 

larger estimated variances compared with the proposed 

method, indicating the effect of discarding observed data.  
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Table 5  
Stratum size, sample size, and nonresponse rate in the CES example 

 

 Stratum Sample Nonresponse percentage 
Stratum size size t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 

1 223 102 0 32.4 39.2 34.3 27.5 30.4 28.4 33.3 
2 1,649 110 0 28.2 31.8 30.0 34.5 33.6 26.4 29.1 
3 1,900 120 0 37.5 39.2 34.2 44.2 41.7 40.0 40.8 
4 419 98 0 41.8 48.0 35.7 38.8 44.9 38.8 38.8 
5 1,947 132 0 37.1 33.3 25.8 25.0 27.3 23.5 28.8 
6 2,391 180 0 41.1 36.1 42.8 37.8 39.4 39.4 38.3 
7 5,365 256 0 35.2 34.0 33.6 36.7 35.2 40.6 39.1 
8 2,330 201 0 30.3 36.8 40.3 34.8 37.3 37.3 37.8 
9 1,164 113 0 35.4 29.2 33.6 30.1 29.2 32.7 33.6 
10 593 106 0 37.7 44.3 40.6 47.2 41.5 37.7 32.1 
11 2,222 182 0 24.2 26.4 27.5 27.5 28.0 20.3 27.5 
12 6,880 512 0 40.0 39.6 40.6 41.0 41.4 39.8 38.9 
13 2,373 160 0 36.9 40.6 36.2 33.8 39.4 30.0 36.9 
14 50 42 0 40.5 38.1 28.6 45.2 33.3 33.3 31.0 
15 4,100 241 0 36.5 38.6 34.4 34.9 42.7 33.2 32.8 
16 3,951 412 0 37.9 36.9 36.9 38.1 40.3 40.5 39.3 

 
Table 6  
Estimates in the CES example 

 

Method Quantity t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 

complete data mean 38.05 38.41 38.70 38.95 39.16 38.91 38.79 38.81 

 �var  0.805 0.814 0.828 0.830 0.990 0.832 0.822 0.852 
respondents mean  54.03 54.31 54.15 55.08 55.15 54.20 54.50 

 �bias   40.7% 40.3% 39.0% 40.7% 41.7% 39.7% 40.4% 

 �var   1.647 1.488 1.506 1.990 1.708 1.413 1.491 
simple linear mean  38.45 38.72 39.33 38.81 41.04 40.54 39.79 

regression imputation �bias   0.1% 0.1% 1.0% -0.9% 5.5% 4.5% 2.5% 

 �var   0.821 0.834 0.866 0.963 1.979 1.465 1.008 
censoring and linear mean  38.45 38.71 39.17 38.25 40.46 40.34 40.30 

regression imputation �bias   0.1% 0.0% 0.6% -2.3% 4.0% 4.0% 3.8% 

 �var   0.821 0.833 0.881 1.289 1.497 1.630 1.660 
proposed imputation mean  38.37 38.68 38.97 39.10 39.05 38.72 38.88 

 �bias   -0.1% -0.1% 0.0% -0.1% 0.4% -0.2% 0.2% 

 �var   0.813 0.834 0.837 1.019 0.962 0.924 0.910 
�bias:  (sample mean / sample mean of complete data) - 1 
�var:  bootstrap variance estimate 

 

7. Concluding remarks 
 

For longitudinal data with nonmonotone nonresponse, 

we propose an imputation method under the assumptions 

that the nonresponse mechanism is last-value-dependent and 

the longitudinal data follow a Markov chain. Our method is 

nonparametric and produces consistent and asymptotically 

normally distributed estimators of population means. 

Because the asymptotic variances of the estimators of popu-

lation means are very complicated, we propose a simple 

bootstrap method for variance estimation. Some simulation 

results show that the proposed method works well. The CES 

is our motiving example and is used for illustration.  

In general, nonresponse of data at time point t may 

depend not only on the last value at time 1,t −  but also on 

other past values at time points prior to 1.t −  Furthermore, 

the longitudinal data may not be a Markov chain, i.e., there 

may be long time dependence among data from different 

time points. In either case, our proposed method is not 

applicable. A general method is still under development.  

 
Appendix 

 
Proof of (5) 

Let ( )L ξ  denote the distribution of ξ  and ( )L ξ | ζ  

denote the conditional distribution of ξ  given .ζ  Then,  
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where the third equality follows from (1). Similarly, we can 

show that  

1 1 1 1( , 1, 1) ( , 1).t t t t t t tL y y L y y− − − −| δ = δ = = | δ =  

Hence, 1 1 1 1( , 0, 1) ( , 1, 1)t t t t t t t tL y y L y y− − − −| δ = δ = = | δ = δ =  

and result (5) follows.   
Proof of (7)  

Using the same notation as in the previous proof, we 

have  
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where the last equality follows from (1). Similarly, we can 

show that  
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and result (7) follows.   
Proof of theorem 1 

Let ( 2, , )t T= …  be fixed and t rn , =  the number of units 

with 1, 1, , 1.t r iI r t, , = = −…  We first show that, for 

1,r t< −   
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where the last equality follows from assumption (2). Then  
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Hence, {( , ), 1, , }t ty t Tδ = …  is a Markov chain. 

Consequently,  
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Then, the left hand side of (11) is equal to  
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which is the right hand side of (11). 

It follows from the construction of 
t iy ,ɶ  described in 

Section 3, result (11), and the proof of Theorem 2.1 in 

Cheng (1994) that  
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and 
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Adaptive calibration for prediction of finite population totals 

Robert G. Clark and Raymond L. Chambers 1 

Abstract 

Sample weights can be calibrated to reflect the known population totals of a set of auxiliary variables. Predictors of finite 

population totals calculated using these weights have low bias if these variables are related to the variable of interest, but can 

have high variance if too many auxiliary variables are used. This article develops an “adaptive calibration” approach, where 

the auxiliary variables to be used in weighting are selected using sample data. Adaptively calibrated estimators are shown to 

have lower mean squared error and better coverage properties than non-adaptive estimators in many cases. 
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1. Introduction 

 
Predictors of finite population totals are commonly 

calculated by weighted sums of sample values. Auxiliary 

variables are often available, whose sample values and 

population totals are known. Weights can be constructed so 

that weighted sums of auxiliary variables agree with the 

known population totals, a process called calibration 

(Deville and Särndal 1992). Predictors of finite population 

totals based on calibrated weights generally have much 

lower prediction bias than predictors calculated without 

auxiliary information.  

Existing literature on finite population prediction 

essentially assumes that a set of useful auxiliary variables is 

chosen without reference to sample data. In practice, 

however, there may be a large set of potential auxiliary 

variables, not all of which should be used. Using additional 

auxiliary variables generally reduces the bias of calibrated 

predictors but increases the variance, so that using too many 

auxiliary variables can actually increase the mean squared 

error of calibrated predictors. The choice of which auxiliary 

variables to use is often not obvious, and sample data may 

be required to determine which set of auxiliary variables is 

appropriate for predictors of the totals of particular variables 

of interest. This paper develops methods for making this 

determination. Our approach may be called adaptive 

calibration, because the set of variables is chosen adaptively 

from sample data, rather than statically without reference to 

the sample at hand.  

The prediction framework to finite population estimation 

will be used (see for example Brewer 1963; Royall 1970; 

Valliant, Dorfman and Royall 2000). In this approach, the 

population values of the variables of interest are treated as 

random variables. The aim is to predict the population total 

(which is also a random variable) or other finite population 

quantities using sample data on the variable of interest, and 

population data on some auxiliary variables. The sample 

may have been selected using probability sampling or some 

other method, and is conditioned upon in inference. A 

stochastic model for the variable of interest is a central 

feature. One feature of the prediction framework is that mis-

specification of the model, for example due to omitting 

important auxiliary variables, can lead to substantial bias.  

An alternative framework is the model-assisted approach 

(Särndal, Swensson and Wretman 1992). In this approach, a 

stochastic model is used but the model plays a less crucial 

role. The randomized nature of sampling is exploited to 

ensure that estimators are approximately unbiased even if 

the model is incorrect. When the model is correct, both 

approaches give approximately unbiased estimators, but the 

model-based approach would generally give lower vari-

ances of estimators of interest. If the model is mis-specified, 

then model-based predictors and variance estimators may be 

more biased, however robust model-based methods have 

been developed to combat this problem. For example Royall 

and Herson (1973a, 1973b) discuss robust prediction and 

Royall and Cumberland (1978, 1981a, 1981b) developed 

variance estimators that are robust to heteroscedasticity. For 

comparisons of the prediction and model-assisted frame-

works, see for example Smith (1976) and Hansen, Madow 

and Tepping (1983). 

The problem of selecting a set of auxiliary variables in 

the model-assisted framework was considered by Silva and 

Skinner (1997) and Skinner and Silva (1997). They found 

that adding calibration variables reduces the mean squared 

error (MSE) up to a point, after which adding further 

variables increases the MSE. Choosing calibration variables 

adaptively, based on sample data, gave better estimates than 

either calibrating on all variables or no variables. The 

applicability of this work to model-based prediction is not 

clear, because the role of the model is very different in the 

two frameworks. Mis-specified models can lead to 
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substantially biased model-based predictors, whereas 

model-assisted estimators are approximately unbiased even 

if important variables are omitted. As a result, different 

strategies for model selection could be appropriate in the 

two frameworks. Moreover, the differences between alter-

native approaches would be expected to be more pro-

nounced in the prediction framework than in the model-

assisted framework.  

Chambers, Skinner and Wang (1999) proposed an 

approach for selecting calibration variables in the prediction 

framework, using forward, backward or stepwise selection. 

(This paper will henceforth be referred to as CSW.) The 

decision whether to omit (or add) a variable at each step was 

based on minimizing the estimated squared error of 

prediction (MSEP) for the predictor of interest. The 

approach was not evaluated by simulation study, and the 

estimators of MSEP used were not robust to hetero-

scedasticity.  

The purpose of this paper is to develop the basic 

approach of CSW to apply to a wider range of situations, 

including heteroscedastic populations and multi-stage 

samples, and to evaluate the approach using realistic 

simulation studies. Estimators of the MSEP which are 

robust to heteroscedasticity, and to correlation in the case of 

multi-stage surveys, will be used. The performance of the 

estimators will be evaluated by simulation from two 

populations: financial data on farms generated from a farm 

survey and labour force data from a population census.  

Following CSW, the basic approach will be to build a set 

of auxiliary variables using stepwise selection of variables, 

starting with some initial set. This algorithm builds up a set 

of auxiliary variables by a sequence of many decisions 

between two nested sets of variables. We compare several 

alternative criteria for deciding between two nested sets, 

including statistical significance and a number of alternative 

estimators of the mean squared error of prediction (MSEP). 

Three alternative estimators of MSEP are considered: a non-

robust estimator; an estimator of MSEP which is robust to 

heteroscedasticity; and an estimator which is robust both to 

heteroscedasticity and correlations within primary sampling 

units in multi-stage sampling.  

Section 2 contains notation and definitions. Section 3 

derives the difference in the MSEP of two predictors based 

on nested models, and develops several alternative estima-

tors of this difference. Section 4 contains simulation results 

for a farm survey and a multi-stage household survey. 

Section 5 is a discussion. We conclude that adaptive calibre-

tion generally performs better than static calibration, 

provided that a non-robust estimator of the MSEP, or 

statistical significance, is used as the objective in model 

selection.  

 

2. Notation and definitions  
 

A variable of interest iY  is observed for a sample s  of n  

units, which is a subset of a finite population U  containing 

N  units. The aim is to estimate the population total YT =  

i U iY∈∑  and other finite population quantities of .Y  A vector 

of auxiliary variables ix  is available for 1 ,i … n= , ,  with 

known population total .i Ux ∈∑= iT x  

Weighted estimators of YT  are given by ˆ ,i sY i iT w Y∈∑=  

where iw  can depend on the auxiliary variables but not on 

the variable of interest. A set of weights is said to be 

calibrated on ix  if i s iw∈∑ = .i xx T  

The best linear unbiased predictor (BLUP) based on a 

linear regression model is one example of a calibrated 

estimator. The most commonly used BLUP is based on the 

model  

2 2

[ ]

var[ ]

cov[ ] 0( )

i

i i i

i j

E Y

Y v

Y Y i j

=

= σ = σ

, = ≠

T

ixββββ

 (1) 

(with iv  assumed to be known) and is given by  

ˆˆ
Y i

i s i r

T Y
∈ ∈

= +∑ ∑ T

ixββββ  (2) 

where r U s= −  is the set of non-sample units and  

{ }
11 1ˆ

i i i

i s i s

v v Y
−− −

∈ ∈

= ∑ ∑β
T

i i ix x x  (3) 

is a weighted least squares estimator of .β  The BLUP can 

also be written in weighted form as  

ˆ
Y i i

i s

T w Y
∈

= ∑  

where the weights iw  are given by  

{ }
11 11 T

i j i
j s

w v v
−− −

∈

= + ∑ T

xr j j iT x x x  (4) 

and .i r∈∑=xr iT x  It is straightforward to verify that 

.i s iw∈∑ =i xx T  

For heteroscedastic data, it is usually difficult to model 

iv  reliably. In this case, robust estimators of the prediction 

variance of the BLUP are available, which do not rely on 

knowledge of iv  (Royall and Cumberland 1978, 1981a, 

1981b). For multi-stage samples, the assumption of 

independence may be violated. In this case, the BLUP based 

on (1) may still be used, and a robust ultimate cluster 

variance estimator of its prediction variance can be used 

(e.g., Valliant et al. 2000, Chapter 9). An alternative 

approach, which will not be considered here, would be to 

construct a BLUP based on a model that includes the 
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within-cluster correlations (Royall 1976). Section 3 will 

discuss robust and non-robust estimation of the mean 

squared error of prediction of the BLUP in more detail.  

A decision needs to be made on what to include in ix  in 

the BLUP. Stepwise selection, forward selection and 

backward selection are algorithms that can be used to decide 

which subset of the available auxiliary variables should be 

used. All three algorithms include many choices between 

two nested sets of auxiliary variables. Suppose the choice is 

between (A) using a predictor ˆ
AT  based on ix  and (B) 

using a predictor ˆ
BT  based on a subvector .1ix  We can 

partition ix  as ( ) .T= ,1 2

T T

i i ix x x  The number of elements of 

, 1i ix x  and 2ix  are denoted by ,p 1p  and 2,p  respectively.  

We similarly partition β  as ( ) .T= ,1 2β β βT T  Predictor ˆAT  

is unbiased under model A:  

[ ] .iE Y = = +1 1 2 2β β βT T T

i i ix x x  (5) 

The predictor ˆBT  is unbiased for model B,  

[ ] ,iE Y = 1 1βT ix  (6) 

which is the special case of model A where .=2β 0  

 
3. Estimation of the difference in the MSEP 

 
3.1 Comparing predictors from nested models  

 

Following CSW, our approach is to estimate the 

difference in the MSEPs of the two estimators:  

2 2ˆ ˆ[( ) ] [( ) ]A Y B YE T T E T T∆ = − − −  

where the expectations are evaluated with respect to model 

A, because model B is a special case of this model. 

Typically, ˆ
AT  will be less biased than ˆ

BT  but have higher 

variance. Either predictor can have higher or lower MSEP 

depending on the particular population and sample.  

For single stage sampling, it is usually reasonable to 

assume iY  and jY  independent for all .i j≠  Section 3.2 

will derive ∆  and an estimator of it in this case. Section 3.3 

will describe the instructive special case where variances are 

equal and BLUPs are used; this was the case considered by 

CSW. Section 3.4 extends this by describing a hetero-

scedasticity-robust estimator of .∆  Section 3.5 further 

extends the approach by deriving ∆  and an estimator of it 

for multi-stage sampling where there may be correlations 

between values from the same cluster.  

 
3.2 Estimating ∆∆∆∆  in single-stage sampling with 

known variance 
 

In addition to model (5), we assume in this subsection 

that iY  and jY  are independent for i j≠  and that 

2 2var[ ]i i iY v= σ = σ  where iv  are known. In this case, the 

MSEP of any predictor ˆ i s i iT w Y∈∑=  is given by  

{ }

{ }

2

2

2 2 2 2

ˆ ˆMSEP[ ] [( ) ]

var ( 1)
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Y

i i i i i i
i s i U i s i r
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T E T T

E w Y Y w Y Y

w w

   
   
      ∈ ∈ ∈ ∈

 
  
 ∈ ∈ ∈ ∈

= −

= − + − −

= − + σ + σ−

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑βT i ix x

 

Writing ,i s iw∈∑= −i xd x T  we can rewrite the MSEP as  

( )2 2 2ˆMSEP[ ] ( ) 1 .i i i

i s i r

T w
∈ ∈

= + − σ + σ∑ ∑T T
d dββββββββ  

Let i s Aiw∈∑= −A i xd x T  and .i s Biw∈∑= −B i xd x T  

Then ∆  is given by:  

2 22 2

ˆ ˆMSEP[ ] MSEP[ ]

( ) ( )

( 1) ( 1) .

A B

Ai i Bi i
i s i s

T T

w w
∈ ∈

∆ = −

= −

+ − σ − − σ∑ ∑

ββ ββT T T T

A A B Bd d d d

 (7)

 

To estimate ,∆  we first consider how to estimate β  and 

the variance of ˆ.β  The usual weighted least squares estima-

tor is 
1ˆ

x xyS S
−=β  where 1

i sx iS v−∈∑= T

i ix x  and 1
i sxy iS v−∈∑=  

.iYix  The usual estimator of the variance of β̂  is � ˆvar[ ] =β  
2 1

ˆ xS
−σ  where 2 2 1

( )ˆˆ ( ).i s i iY v n p−
∈∑σ = − / −β

T

ix  

We can estimate ( )ββT  unbiasedly by �ˆ ˆ ˆ( var[ ]).T −ββ β  

Hence the following is an unbiased estimator of :∆  

� �

2 22 2

ˆ ˆ ˆ ˆ ˆ ˆˆ ( var [ ]) ( var [ ])

ˆ( 1) ( 1) .ˆAi i Bi i
i s i s

w v w v
∈ ∈

∆ = − − −

+ − − −σ σ∑ ∑

ββ β ββ βT T T T

A A B Bd d d d

 (8)
 

Expression (7) applies, and estimator (8) is an unbiased 

estimator of it, for any weighted predictors ˆAT  and ˆ
BT .    

We are concerned with the special case where  ˆ
AT  and     

ˆ
BT  are BLUPs. In this case, ˆAT  is calibrated to xT  so that 

,= 0Ad  and so (8) simplifies to  

�

2 22 2

ˆ ˆ ˆˆ ( var [ ])

( 1) ( 1)ˆ ˆAi i Bi i
i s i s

w v w v
∈ ∈

∆ = − −

+ − − − .σ σ∑ ∑

ββ βT T

B Bd d

 (9)
 

 
3.3 An important special case  

In this Subsection, we make the assumptions stated in 

Section 3.2, and further assume that 1iv =  for all .i  We 

also assume that the dimension of 2ix  is 1, i.e. that we are 

considering whether or not one particular auxiliary variable 

from ix  is to be used in prediction. Expressions (7) and (9) 

simplify in this case. 
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Let iu  be the residual of a regression of 2ix  on :1ix  

2

1

2

T

i i

i
i s i s

u x C

C x
− 

 
 
 ∈ ∈

= −

= .∑ ∑

1

1 1 1

i

T

i i i

x

x x x
 

Using straightforward linear algebra operations, it can be 

shown that  

2β i

i r

u
∈

= − ∑β
T

Bd  

and that  

2
2 2 1

( 1) ( 1) i
Ai Bi u

i r
i s i s

uw w S
  −
  
 ∈∈ ∈

− − − = ∑∑ ∑  

where 2.i su iS u∈∑=  

Hence (7) becomes  

2 2
2 1 2

2
i i

u
i r i r

u uS
   −
      
   ∈ ∈

∆ = σ − β .∑ ∑  

CSW show that � 2 12
2

ˆvar [ ] ( ) .ˆ
T

i rB B i ud d u S −
∈∑β = σ  Hence 

(9) becomes  

2
2 1 2

2
ˆˆ ˆ(2 β )i

u
i r

u S
  −
  
 ∈

∆ = σ − .∑  

It is proposed that ˆ
AT  be adopted when ˆ 0,∆ <  and ˆ

BT  be 

used otherwise. It follows that we adopt ˆ
AT  whenever 

2 2 1

2
ˆ ˆ2 .uS

−β > σ  As noted by CSW, this is equivalent to 

adopting ˆ
AT  whenever 2 12

2
ˆ ( )ˆ uF S −= β / σ  is greater than 2. 

Notice that F  is the usual F-statistic for testing the null 

hypothesis that 2β 0.=  For large ,n  the cutoff for the F-

test at the 5% significance level is 3.96, whereas we have 

arrived at a cutoff of 2 for adopting the larger set of 

variables. Thus, the decision to use A instead of B on the 

basis of a test of significance requires more evidence against 

B than a simple comparison of the estimated MSEPs of ˆ
AT  

and ˆ
BT  would suggest. That is, using ∆̂  leads to larger 

models compared to using significance testing.  
 
3.4 Heteroscedasticity-robust estimation of ∆∆∆∆    

The estimators of ∆  in Sections 3.2 and 3.3 relied on 

knowing var[ ]iY  at least up to a constant of proportionality. 

In practice, variances are at best known approximately, and 

methods which do not rely on an assumption of known 

variance may perform better. We will use an estimator of 
2

iσ  which, assuming model (5), is approximately unbiased 

for 2

iσ  in general, and exactly unbiased if 2 2:iσ = σ  

22 ˆˆ ( )i i

n
Y

n p
σ = .−− β

T

ix  

(An alternative estimator would be 2 2ˆˆ ( ) ,i iYσ = − β
T

ix  as in 

Royall and Cumberland 1981b.) 

The estimator of β  would still be the weighted least 

squares estimator given by (3). The variance of β̂  is  

1

1

1 2 1

ˆvar[ ] var[ ]

var

.

x xy

x i
i s

x i x
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S Y
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−
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∈

− −

∈

=

 =
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This can be estimated by  

� ( )1 12
robust

ˆvar [ ] .ˆ ix x

i s

S S
− −

∈

= σ∑β
T

i ix x  

Hence we can estimate ∆  by  

�

�

robust

robust

2 2 2 2

ˆ ˆ ˆˆ ( var [ ])

ˆ ˆ ˆ( var [ ])

ˆ ˆ( 1) ( 1) .Ai i Bi i
i s i s

w w
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− −
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ββ β

ββ β
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T T

B B

d d

d d

 (10)

 

 

3.5 Estimation of ∆∆∆∆  in multi-stage sampling   
The estimators of ∆  in Sections 3.2, 3.3 and 3.4 all 

assumed that the values of Y  are independent for different 

units. In multi-stage sampling, a sample of primary 

sampling units (PSUs) is initially selected. A sample of units 

within the selected PSUs is then selected. For example, 

PSUs may be areas and units may be households or people; 

or PSUs could be schools and units could be students. 

Typically units from the same PSUs tend to be similar, so 

that values of iY  and jY  may be correlated if i  and j  

belong to the same PSU. This section develops an estimator 

of ∆  which is approximately unbiased even when there are 

correlations between values of Y  within the same PSU.  

Let Is  be the sample of PSUs, selected from the 

population .IU  Let gs  be the sample of units from PSU ,g  

where Ig s∈ . Let I I Ir U s= −  and .g g gr U s= −  We 

assume model (5), and further assume that iY  and jY  are 

uncorrelated for 1i g∈  and 2j g∈  if 1 2.g g≠  The values 

iY  and jY  may be correlated if i j≠  with .gi j U, ∈  

Let ˆ
i s i iT w Y∈∑=  be any predictor and let =d  

.i s iw∈∑ −i xx T  The bias of T̂  is ,βTd  as in Section 3.2. 

The variance of ˆ( )YT T−  is  

( )
( )

ˆvar[ ] var ( 1)
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It is further assumed that the variance of 
gi r iY∈∑  and the 

covariance between 
gi r iY∈∑  and ( )1

gi s i iw Y∈∑ −  are 

negligible relative to other terms. This is the case if cluster 

sampling is used (because in this case g gs U=  and gr  is 

empty) or if the sampling fraction within PSUs is small. The 

variance becomes  

ˆvar [ ] var ( 1) var
I g I g

Y i i i
g s i s g r i U

T T w Y Y   
   
   ∈ ∈ ∈ ∈   

− ≈ − + .∑ ∑ ∑ ∑  

Applying this to ,∆  we get: 

ˆ ˆMSEP[ ] MSEP[ ]

( ) ( ) var ( 1)

var ( 1) .

I g

I g

A B

T T

Ai i
g s i s

Bi i

g s i s

T T

w Y

w Y

 
 
 ∈ ∈ 

 
 
 ∈ ∈ 

∆= −

= − + −

− −

∑ ∑

∑ ∑

ββ ββT T

A A B Bd d d d

(11)

 

To estimate ,∆  we need estimators of the variance of ˆ,β  

and of ( ( 1) ).
gi s i iw Y∈∑ −  

Firstly, notice that  

1

1 1
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var .
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g s i s
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This can be estimated using the “ultimate cluster variance” 

method by  

�
2

1 1
ucv

ˆ( )ˆvar [ ] .
g

I

i
x x

i s
g s

YS S
 

− − 
  ∈ ∈

−= ∑∑ ββ
T

i ix x  

This is a well known estimator of the variance of a weighted 

sum from clustered data, and is equivalent to Valliant et al. 

(2000, 9.5.5, page 312). The variance has been called a 

“sandwich-level variance estimator using the cluster-level 

residuals” (Valliant et al. 2000) and an “ultimate cluster 

variance” (e.g., Wolter 1985 describes essentially the same 

idea in a randomization framework).  

The variance of ( ( 1) )
gi s i iw Y∈∑ −  can also be estimated 

by the ultimate cluster variance method:  

� ( ){ }
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Hence we can estimate ∆  by  
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4. Simulation study  
 
4.1 Simulation of farm survey  
 
Population and sampling scheme   

The population distribution of the auxiliary variables, the 

sample and population size, and heteroscedasticity and other 

properties of the variable of interest would all be expected to 

play a part in the performance of the adaptive BLUPs. To 

make a realistic assessment of the performance of these 

estimators, a simulation study based on a large, realistic 

population is needed.  

We generated a simulation population of 80,000 units, 

using sample data on 1652 farms from the 1988 Australian 

Agricultural and Grazing Industry Survey (AAGIS) as a 

starting point. Total cash crop was used as the survey 

variable of interest, and potential auxiliary variables 

included DSE (a derived size estimate), number of sheep, 

crops area, number of beef cattle, region (29 regions) and 

industry (5 industries). DSE was a linear combination of the 

sheep, crops area and beef cattle variables. The dataset also 

contained a sampling weight which was approximately 

equal to the inverse of the selection probability. 27 outliers 

with very large values of DSE were removed, as these 

would normally be placed in a completely enumerated 

stratum in a survey. A population of 80,000 was then 

constructed by probability proportional to size sampling 

with replacement, with probabilities proportional to the 

estimation weight on the original sample file.  

250 samples were then selected without replacement 

from the simulation population. The samples were stratified 

by Region and DSE, with DSE divided into four categories, 

to give 116 strata. The category boundaries were set such 

that the category sums of DSE were equal. Total sample 

sizes of 250, 500, 1,000 and 1,500 were simulated. The 

stratum sample sizes were proportional to the original 

AAGIS sample sizes by Region and DSE.  
 
Auxiliary variables and stepwise selection method   

Auxiliary variables were included corresponding to the 

model containing: an intercept; sheep (x1); crops area (x2); 

beef cattle (x3); Industry; interaction of Industry and x1, x2 

and x3; and Region. This gives a total of 52 potential 

auxiliary variables. Some of these variables are collinear, 

but are still included in the set of potential variables, to give 

the model selection process a wider choice of possible 

models. We also considered the set of 139 auxiliary 

variables which included this set as well as the interaction of 

Region and x1, x2 and x3. Models were constructed by 

forward selection starting with the intercept-only model. 

Variables were added based on which step most reduced the 

estimated MSEP, for several alternative estimators of ∆ . 
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Stepwise selection was also trialled but was substantially 

slower to run for the larger variable set, and did not greatly 

improve the efficiency of the adaptive BLUPs.  

An adaptive BLUP was also calculated based on 

statistical significance, with 0 05p < .  being the cutoff for 

inclusion. For each progressive model, the statistical 

significance of adding each of the variables not in the model 

was assessed, using a standard t-test. The variable with the 

lowest p-value was included in the model at each step. 

When there were no further significant variables which 

could be added, the procedure terminated and this was the 

model chosen.  

A number of modifications were needed for the forward 

selection algorithm to work reliably: auxiliary variables 

were not added to the model if they had a pairwise Pearson 

correlation of 0.95 or higher (or -0.95 or lower); and 

variables were not added if this would result in the 

calibration equations not being solvable.  
 
Estimators used   

Several BLUPs were calculated: with all auxiliary 

variables included; with just Intercept and DSE; and with 

auxiliary variables chosen by forward selection using the 

non-robust estimator of ∆  (described in Section 3.2) or the 

heteroscedasticity-robust estimator of ∆  (described in 

Section 3.4), from either the set of 52 or the set of 139 

potential auxiliary variables. (The larger set of 139 variables 

was only evaluated for sample sizes of 500 and above.)  

Ridge estimators (e.g., Bardsley and Chambers 1984) are 

an alternative approach to the problem of variable selection, 

so we included them in the simulation to compare their 

performance to that of the adaptive BLUPs. The estimators 

we have so far considered either include or exclude each 

variable. If a variable is included, then the weights must 

calibrate on that variable exactly, in the sense that 

.i s iw∈∑ =i xx T  Ridge regression introduces a penalty for 

non-calibration, but does not necessarily require that the 

weights provide perfect calibration for all variables. In ridge 

regression, the vector of sample weights w  is chosen to 

minimise  

2
2 1 1

1

( 1)
p

i ij xj
i i j

i s
i s j

w x Tw v c
 − −
  
 ∈∈ =

−− + .∑∑ ∑  

The jc  are non-negative cost coefficients indicating the 

priority to be placed on meeting calibration constraint .j  A 

value of 0 indicates that the constraint must be met precisely 

and larger cost coefficients result in placing less weight on 

the constraint. Thus the ridge estimator allows for a smooth 

reduction in the effective dimension of the model, by 

effectively interpolating between including a calibration 

variable ( 0)jc =  and excluding it ( ).jc = ∞   

Typically the jc  are set to ,jc
∗λ  where jc

∗  reflect a 

somewhat subjective assessment of the relative importance 

of each constraint, and λ  is chosen to ensure that the final 

weights iw  have reasonable properties, for example are all 

greater than or equal to 0, or to 1. We set jc
∗  to 0 for the 

constant (reflecting an intercept in the model), to 1 for 

1,x 2x  and 3,x  to 10 for the region indicators, to 5 for the 

industry indicators, and to 100 for interactions. The choice 

of jc
∗  was based on which variables were thought to be 

likely to be most useful. The value of λ  was numerically 

determined for each sample to be the smallest value such 

that all weights were greater than or equal to 1.  

All of the methods were based on the same procedure for 

modelling var [ ].M iY  Firstly, a simple model with the 

intercept, x1, x2 and x3 was fitted to the sample values of Y  

using ordinary least squares. The log of the squared 

residuals from this model were then regressed against the 

log of DSE. The fitted values of this model were raised to 

the power of e  to give estimates of 2

iσ  for each .i s∈  The 

estimated values of 2

iσ  were then truncated so that no 

values were more than 4 times, or less than one quarter, of 

the median value. This adjustment was made to avoid 

extreme values of 2

i

−σ  which might lead to instability in 

calculating weighted least squares estimates of ˆ.ββββ  Results 

were somewhat sensitive to the variance modelling 

procedure, particularly the final adjustment to avoid extreme 

values: BLUPs based on a crude variance model with 
2 DSEi iσ ∝  had variances around 10-20% higher than the 

BLUPs shown here.  
 
Results   

Table 1 shows the Relative Root Mean Squared Error 

(RRMSE) of the various calibrated predictors. The first four 

rows of the table are for the first set of auxiliary variables 

(52 potential variables) and the last three rows are for the 

second set (139 potential auxiliary variables). Biases are not 

shown but were generally a relatively small component of 

the mean squared error for all of the predictors shown, 

except for the BLUP based on an intercept and DSE model, 

which was quite biased. This was somewhat surprising as 

we expected that a good trade-off between bias and variance 

would imply that biases were a non-negligible component 

of the mean squared error. Details on the biases and relative 

variances of the predictors can be found in Tables A1 and 

A2 of Clark and Chambers (2008). 

Of the adaptive BLUPs, the significance criteria 

performed the best in all cases, followed by the nonrobust 

criteria, with the robust criteria performing worst. For the 

smaller set of 52 potential variables, the adaptive BLUPs 

based on the nonrobust and significance criteria performed 

better than the nonadaptive BLUPs for n = 250 and 

n = 500; for n = 1,000 and n = 1,500, they performed 
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slightly worse than the BLUP with all variables but better 

than the intercept and size BLUP. For the larger set of 139 

potential variables, the adaptive BLUPs based on the 

nonrobust and significance criteria performed better than the 

nonadaptive BLUPs for all sample sizes, particularly for 

smaller values of n.  

 

Table 1 

RRMSE (%) of AAGIS predictors of total cash crops 
 

# Vars       n BLUP Adaptive BLUP Ridge 

  all int+size nonrobust ∆̂∆∆∆  robust ∆̂∆∆∆  Sig.Test  

52  250 3.59  3.02  2.97  3.09  2.87  3.30  

 500 2.35  2.54  2.33  2.33  2.30  2.31  

 1,000 1.56  2.21  1.58  1.64  1.57  1.54  

 1,500 1.36  2.22  1.39  1.41  1.37  1.37  

139  500 3.52  2.54  2.99  3.44  2.29  2.27  

 1,000 1.77  2.21  1.75  1.92  1.72  1.59  

 1,500 1.56  2.22  1.51  1.64  1.42  1.42  

 

The Ridge estimator generally performed about as well 

as the best of the adaptive BLUPs when there were 52 

auxiliary variables, and slightly better when there were 139 

potential variables.  

Table 2 shows how many auxiliary variables were 

selected for the two adaptive BLUPs. The robust ∆̂  led to 

larger sets of auxiliary variables than the non-robust, with 

about 10 more auxiliary variables selected. The significance 

criteria led to even smaller variable sets (6-10 less variables 

than from the non-robust criteria).  

 
Table 2 

Mean (Interquartile range) of number of auxiliary 
variables selected in AAGIS 
 

# Vars n nonrobust ∆̂∆∆∆  robust ∆̂∆∆∆  Sig.Test 

52  250  16.0 (14.0-18.0)  26.9 (24.0-29.0)  9.6 (8.0-11.0)  

 500  18.6 (16.0-21.0)  27.4 (25.0-30.0)  11.5 (10.0-13.0)  

 1,000 23.6 (21.0-26.0)  29.6 (26.0-33.0)  14.4 (13.0-16.0)  

 1,500 27.3 (25.0-29.0)  32.3 (30.0-35.0)  17.2 (16.0-18.8)  

139  500  42.1 (37.0-47.0)  69.4 (62.0-75.0)  23.2 (21.0-26.0)  

 1,000 51.5 (47.0-56.0)  74.2 (69.0-79.8)  29.9 (27.0-33.0)  

 1,500 59.2 (55.0-64.0)  75.8 (71.0-81.0)  34.9 (32.0-38.0)  

  
Table 3 shows the confidence interval (CI) non-coverage 

of the various predictors. 90% CIs were defined as the 

estimator +/- 1.64 standard errors, where the variance was 

estimated using a heteroscedasticity-robust variance esti-

mator (Royall and Cumberland 1978). Following common 

practice, CIs were based on estimated variance not esti-

mated mean squared error of prediction. The simulation 

estimates of the non-coverage rates are fairly rough given 

that only 250 simulations were used. A larger simulation 

study could be used to give more precise estimates of 

coverage, but this was not pursued due to the 

computationally intensive nature of the stepwise selection 

process. Table 3 suggests that: the BLUP using just 

intercept plus size had high non-coverage as did the 

adaptive BLUP based on robust ˆ .∆  The other estimators 

generally had non-coverage rates close to the nominal 10%.  

 
Table 3 

Confidence interval non-coverage in AAGIS 
 

# Vars     n BLUP Adaptive BLUP Ridge 

     all int+size nonrobust ∆∆∆∆  robust ∆∆∆∆  Sig.Test  

52 250 10.0 6.4 10.4 16.8 11.2 10.0 

 500 8.0 13.2 12.0 17.2 10.8 8.0 

 1,000 7.6 20.4 9.2 12.0 8.4 8.4 

 1,500 8.8 34.8 9.2 13.2 9.6 8.8 

139 500 16.8 13.2 18.0 29.2 12.8 8.8 

 1,000 12.4 20.4 14.0 20.4 13.2 7.2 

 1,500 13.6 34.8 13.6 19.6 12.4 11.2 

 

Total cash crops is a major variable of interest in the 

AAGIS survey, but the totals of other variables are also 

important, including Farm Equity. For practical reasons, a 

single set of weights is normally used for all variables. Table 

4 shows how well the adaptive calibration weights designed 

for the Total Cash Crops (TCC) variable performed when 

used to estimate the total of Farm Equity. For the case of 52 

potential auxiliary variables, the adaptive BLUP weights 

chosen based on TCC (using non-robust ∆̂ ) performed 

reasonably well, as did the ridge estimator. Improvements 

could be made, however, by choosing auxiliary variables 

based on Equity.  
 
Table 4 

RRMSE (%) of AAGIS predictors of total equity 
 

# Vars       n BLUP Adaptive BLUP 

(nonrobust ∆̂∆∆∆ ) 

Ridge 

  all int+size based on  

TCC 

based on  

Equity 

 

52  250 6.85  6.45  6.51  6.13  6.78  

 500 4.44  4.44  4.61  4.40  4.28  

 1,000 3.09  3.12  3.42  3.14  3.10  

 1,500 2.54  2.58  2.90  2.58  2.54  

139  500 5.53  4.93  4.98  4.74  4.20  

 1,000 3.68  4.03  3.23  3.15  3.08  

 1,500 3.04  3.63  2.66  2.60  2.57  

 
 
4.2 Simulation of Labour Force Survey  
 
Population and Sampling Scheme   

A simulation population was constructed by selecting a 

simple random sample without replacement of 30,000 

people aged 15-64 from the 1% sample file of the 1991 

Australian Census of Population and Housing. The variable 

of interest was Employment (1 for employed people, 0 for 

others). The simulation population was divided into 
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simulated primary sampling units (PSUs) containing 75 

people each, in such a way that the intra-cluster correlation 

was 0.05. (This is a fairly typical intra-class correlation for 

the employment variable within primary sampling units in a 

household survey. See for example Clark and Steel 2002). 

The algorithm for defining clusters was to sort the data by a 

randomly generated 2(0 )N , γ  variable plus the employment 

variable, then to define clusters as sequential sets of 75 

people, where γ  was chosen so as to give the desired intra-

cluster correlation.  

The simulation consisted of 250 repeated two-stage 

samples. The first stage was a simple random sample 

without replacement of m  PSUs and the second stage was a 

simple random sample without replacement of 20 people 

from each selected PSU. The total sample size was set to be 

200 400n = ,  and 1,000 people. Most national household 

surveys have sample sizes much larger than this, but it is 

common to construct estimation post-strata within states or 

provinces, and the sample sizes for these areas would often 

be in the range 200-1,000.  

The potential auxiliary variables were age by sex, where 

age was recorded in single years for 16-24 year olds, then in 

five year age groups 25-29, 30-34, ..., 55-59 year olds, and 

60+ year olds.  
 
Non-response   

One of the main reasons why age and sex are used as 

auxiliary variables in household surveys is that non-

response is known to depend on age and sex. For example, 

young men are typically the group with the lowest response 

rates. Non-response was simulated by assuming that the 

logit of the probability of response was equal to 1 8. −  
2(( 50) 25)age −  for men, and 22 0 7(( 50) 25)age− . −  

for women. This model gave a response rate of 75%. The 

initial sample size was increased so that the final responding 

sample size was equal to 200 400n = ,  or 1,000.  
 
Auxiliary variables and stepwise selection method   

The potential auxiliary variables were based on age by 

sex cells. The definition of the x-variables is shown in Table 

5. This parameterization was chosen so that the auxiliary 

variables corresponding to specific ages or agegroups can be 

dropped while still giving a sensible model. For example, if 

all auxiliary variables were included except for 4 ,ix  then the 

model expected value for people aged 17 would be the same 

as those aged 16, rather than being equal to the intercept 

parameter. Even better results might be obtained from using 

more sophisticated parameterizations such as spline models 

and this will be investigated in a future study.  
 

 

 

Table 5 
Potential auxiliary variables in labour force 
survey simulation 
 

Variable  Definition   

1ix   1 (corresponding to intercept in model for Y )   

2ix   1 if person i male -1 if female  

3ix   1 if person i aged 16 or over   

4ix   1 if person i aged 17 or over   

⋮  ⋮  

12 ix ,   1 if person i aged 25 or over   

13 ix ,   1 if person i aged 30 or over   

⋮  ⋮  

19 ix ,   1 if person i aged 60 or over   

20 ix ,   3ix  if person i male 3ix−  if female 

⋮  ⋮  

36 ix ,   19 ix ,  if person i male 19 ix ,−  if female  

 
Stepwise selection was used to select variables, starting 

with the intercept-only model. At each step, variables could 

be added or removed, according to which gave the best 

reduction in the criteria. If the stepwise selection began 

cycling (for example, adding x1, then adding x2, then 

removing x1, then removing x2, then adding x1, etc), then 

the model building process stopped, and the the current 

model was used as the final model. The estimators of ∆  

used were the non-robust estimator, the robust (to 

heteroscedasticity) estimator and the ultimate cluster 

variance (UCV) estimator which is robust to hetero-

scedasticity and correlations within PSUs. Significance tests 

were not used as they would need to incorporate correlations 

within PSUs to be realistic. Results for the ridge estimator 

are not shown because negative weights rarely occurred in 

this simulation, so that this estimator performed very 

similarly to the BLUP using all auxiliary variables.  
 
Results   

Table 6 shows the RRMSE of the various adaptive and 

non-adaptive BLUPs. There was relatively little difference 

in RRMSE between the BLUP with intercept only and the 

BLUP with all auxiliary variables. It is therefore not 

surprising that at best minor gains were made by using the 

adaptive BLUPs rather than using the BLUP with all 

variables. The adaptive BLUP using the non-robust ∆̂  gave 

the lowest RRMSE in all cases.  
 

Table 6 

RRMSE of labour force survey predictors of employment 
 

       n BLUP Adaptive BLUP 

 all intercept nonrobust ∆̂∆∆∆  robust ∆̂∆∆∆  UCV ∆̂∆∆∆  

200  6.54  6.77  6.44  7.06  6.96  

400  4.72  4.76  4.61  4.72  4.65  

1,000  2.45  2.70  2.43  2.45  2.49  
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Table 7 shows the mean number of variables selected for 

each of the adaptive BLUPs. Of the 36 potential auxiliary 

variables, between about 5 and 9 variables were selected 

based on the non-robust ˆ .∆  The number of variables 

selected increased as the sample size increased. The 

heteroscedasticity-robust criterion resulted in larger sets of 

auxiliary variables, and the UCV criterion gave even larger 

sets.  

 
Table 7 

Mean (Interquartile range) of number of auxiliary 
variables selected in labour force simulation 

 

 n  Variable Selection Method   

 nonrobust  robust  UCV 

200  6.5 (5.0- 8.0)  13.4 (10.0-16.0)  16.1 (13.0-19.0)  

400  7.4 (6.0- 8.0)  12.1 (9.0-15.0)  14.5 (12.0-17.0)  

1,000  8.6 (7.0-10.0) 11.6 (10.0-13.0)  14.2 (12.0-17.0)  

 

 

Table 8 shows the confidence interval (CI) non-coverage 

of the various predictors. 90% CIs were defined as the 

estimator +/- 1.64 standard errors, where the variance was 

estimated using a UCV variance estimator. Table 8 shows 

that the BLUP using all auxiliary variables had high non-

coverage for 200n =  and 400. The adaptive BLUP using 

nonrobust ∆̂  had reasonably close to nominal coverage, 

while the other adaptive BLUPs had high non-coverage.  

 
Table 8 
Confidence interval non-coverage (%) for predictors of 
employment 
 

    n BLUP Adaptive BLUP   

   all  intercept  nonrobust ∆̂∆∆∆   robust ∆̂∆∆∆   UCV ∆̂∆∆∆   

200  17.6  12.0  12.0  20.0  24.0  

400  17.2  12.0  14.8  16.8  17.6  

1,000  6.4  11.6  7.6  6.8  9.6  

 
 

Table 9 shows how well the various weights performed 

when used to estimate a different variable, unemployment 

(equal to 1 for unemployed people and 0 otherwise). 

Adaptive BLUPs were calculated using the non-robust ˆ ,∆  

with the variable of interest given by Employment, and by 

Unemployment. The adaptive BLUP with variables chosen 

for Employment had RRMSE between the non-adaptive 

BLUP with all variables and the non-adaptive BLUP with 

intercept only. This suggests that this adaptive BLUP gives 

reasonable results even when applied to variables other than 

employment. The adaptive BLUP based on Unemploment 

actually had higher RRMSE. This may be because the 

auxiliary variables had little or no predictive power for 

unemployment, so that attempting to tailor the choice of 

auxiliary variables for this variable of interest did not work 

well.  

Table 9 
RRMSE of labour force survey predictors of 

unemployment 
 

       n BLUP Adaptive BLUP   

 all  intercept  based on emp  based on unemp  

200 36.3  32.6  34.5  36.0  

400 24.1  21.7  22.8  23.7  

1,000 14.5  14.2  14.1  14.2  

 
5. Discussion   

The simulation studies described here showed that 

adaptive BLUPs can give useful gains compared to simple 

non-adaptive alternatives. In both the farm survey and the 

labour force survey simulations, the adaptive BLUPs based 

on a nonrobust estimator of ∆  and based on significance 

testing both had lower MSEP than non-adaptive estimators 

in almost all cases. In the case of the farm survey, the gains 

were sometimes substantial compared to either always using 

the full model or always using the intercept plus size 

variable model. In the case of the labour force survey, the 

gains were minor. The adaptive BLUPs also gave 

reasonable confidence interval coverage.  

The adaptive BLUPs based on the robust and UCV 

criteria performed much worse than the other adaptive 

BLUPs. This is surprising, as the AAGIS data is known to 

be heteroscedastic and the Labour Force data was clustered 

suggesting that the UCV criteria should have given good 

results. Further analysis of the farms survey simulation 

showed that robust∆̂  had higher variances than nonrobust∆̂  in 

the great majority of cases, particularly for auxiliary 

variables with little predictive power - see the Appendix of 

Clark and Chambers 2008 for details. This suggests that the 

robust method would tend to select counter-productive 

auxiliary variables more often and could explain its poor 

performance.  

There was a general tendency for all of the adaptive 

procedures to choose too many auxiliary variables, but 

despite this, the adaptive estimators generally performed 

better than or similar to simple non-adaptive alternatives. 

We suggest that in practice, an automatic model search 

(using either a non-robust ∆̂  or a statistical significance 

criterion) should be used in conjunction with some 

subjective judgement. For example, models could be 

selected from several sets of potential auxiliary variables of 

different sizes. If the larger sets gave only small apparent 

improvements, then the statistician might decide to restrict 

to a smaller set, even if apparently slightly suboptimal.  

Ridge estimators also performed reasonably well in terms 

of RRMSE and confidence interval coverage. They 

generally gave similar results to the adaptive BLUPs for 

estimating the total of the variable of interest when the 

choice of auxiliary variables was based on this variable. 
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However, when the adaptive BLUP weights were applied to 

different variables, the ridge estimators performed slightly 

better. An even better approach may be adaptively choose 

both which auxiliary variables to include and how to apply 

ridging, based on some criterion calculated from the sample. 

This will be the topic of future research.  

One concern that has been raised with the prediction 

approach to finite population sampling is its non-robustness 

to the omission of important auxiliary variables. In our 

simulations from farm economic data and social data, the 

adaptive predictors had low bias and lower mean-squared 

error than the non-adaptive estimators in most of the wide 

range of cases in our simulation study, and were never 

substantially worse. Provided that all design variables are 

considered as potential auxiliary variables, adaptive 

calibration provides a robust and efficient strategy for finite 

population prediction.  

 
Acknowledgements 

 
This work was jointly supported by the Australian Re- 

search Council and the Australian Bureau of Statistics. An 

associate editor and two referees made detailed and 

thoughtful comments which considerably improved the 

paper.  

 
References 

 
Bardsley, P., and Chambers, R. (1984). Multipurpose estimation from 

unbalanced samples. Applied Statistics, 33(3), 290-299. 
 
Brewer, K.R.W. (1963). Ratio estimation and finite populations: 

Some results deductible from the assumption of an underlying 
stochastic process. Australian Journal of Statistics, 5, 93-105. 

 
Chambers, R., Skinner, C. and Wang, S. (1999). Intelligent 

calibration. Bulletin of the International Statistical Institute, 58(2), 
321-324. 

 
Clark, R.G., and Chambers, R.L. (2008). Adaptive calibration for 

prediction of finite population totals. University of Wollongong 
Centre for Statistical and Survey Methodology. Available from 
http://www.cssm.uow.edu.au. 

 
Clark, R.G., and Steel, D.G. (2002). The effect of using household as 

a sampling unit. International Statistical Review, 70(2), 289-314. 
 

Deville, J.-C., and Särndal, C.-E. (1992). Calibration estimators in 
survey sampling. Journal of the American Statistical Association, 
87(418), 376-382. 

 
Hansen, M., Madow, W. and Tepping, B. (1983). An evaluation of 

model-dependent and probability-sampling inferences in sample 
surveys. Journal of the American Statistical Association, 78, 776-
793. 

 
Royall, R.M. (1970). On finite population sampling theory under 

certain linear regression models. Biometrika, 57(2), 377-387. 
 
Royall, R.M. (1976). The linear least squares prediction approach to 

two-stage sampling. Journal of the American Statistical 
Association, 71(355), 657-664. 

 
Royall, R.M., and Cumberland, W.G. (1978). Variance estimation in 

finite population sampling. Journal of the American Statistical 
Association, 73(362), 351-358. 

 
Royall, R.M., and Cumberland, W.G. (1981a). An empirical study of 

the ratio estimator and estimators of its variance. Journal of the 
American Statistical Association, 76(373), 66-80. 

 
Royall, R.M., and Cumberland, W.G. (1981b). The finite-population 

linear regression estimator and estimators of its variance - an 
empirical study. Journal of the American Statistical Association, 
76(376), 924-930. 

 
Royall, R.M., and Herson, J. (1973a). Robust estimation in finite 

populations 1. Journal of the American Statistical Association, 
68(344), 880-889. 

 
Royall, R.M., and Herson, J. (1973b). Robust estimation in finite 

populations 2: Stratification on a size variable. Journal of the 
American Statistical Association, 68(344), 890-893. 

 
Särndal, C.-E., Swensson, B. and Wretman, J. (1992). Model assisted 

survey sampling. New York: Springer-Verlag.  
 
Silva, P.L.N., and Skinner, C. (1997). Variable selection for 

regression estimation in finite populations. Survey Methodology, 
23, 23-32. 

 
Skinner, C., and Silva, P.L.N. (1997). Variable selection for 

regression estimation in the presence of nonresponse. Proceedings 
of the Section on Survey Research Methods, American Statistical 
Association, 76-81. 

 
Smith, T.M.F. (1976). The foundations of survey sampling: a review. 

Journal of the Royal Statistical Society, Series A, 139(2), 183-202. 
 
Valliant, R., Dorfman, A.H. and Royall, R.M. (2000). Finite 

Population Sampling and Inference: A Prediction Approach. New 
York: John Wiley & Sons, Inc. 

 
Wolter, K.M. (1985). Introduction to variance estimation. New York: 

Springer-Verlag. 

 



Survey Methodology, December 2008  173 
Vol. 34, No. 2, pp. 173-181 
Statistics Canada, Catalogue No. 12-001-X 
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Abstract 

We propose a method for estimating the variance of estimators of changes over time, a method that takes account of all the 

components of these estimators: the sampling design, treatment of non-response, treatment of large companies, correlation 

of non-response from one wave to another, the effect of using a panel, robustification, and calibration using a ratio 

estimator. This method, which serves to determine the confidence intervals of changes over time, is then applied to the 

Swiss survey of value added. 
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1. Introduction 
 

In longitudinal surveys, the precision of changes over 

time depends directly on the rate of overlap of the samples. 

We begin by reviewing known results for disjoint simple 

designs (on this subject, see Kish 1965; Sen 1973; Wolter 

1985; Laniel 1988; Hidiroglou, Särndal and Binder (1995); 

Holmes and Skinner 2000; Nordberg 2000; Fuller and Rao 

2001; Berger 2004). Next, we calculate the variance of such 

changes for simple designs in which the samples overlap. 

When the sampling ratios are very low, most of these results 

are well known and are described, for example, in Caron 

and Ravalet (2000). Results that take account of finite 

population corrections can be seen in Tam (1984).  

We precisely calculated the variances of estimators for a 

larger class of sampling designs with a finite population. 

Finite population corrections can play a major role in 

business surveys, since large companies are sometimes 

selected with very high probabilities of inclusion. The 

calculations become much more complicated with a finite 

population for the following reason: if the size of the 

population is finite, two disjoint samples are not 

independent. If the population is infinite, two independent 

samples are disjoint. Several estimators are examined: the 

difference of the cross-sectional estimators; the difference 

estimated solely on the common portion; and relative 

changes. The calculations become even more complex 

when the population is dynamic (with births, deaths, 

changes of structure). The theory that we develop below is 

limited to the case in which the population does not change 

over time.  

In the first part, we describe the two-dimensional simple 

random sampling design (on this subject, see Goga 2003) 

and we give the corresponding Horvitz-Thompson 

estimators. We calculate the variance of the estimator of  

changes that is based on this sampling design. In a second 

part, we give the variance of other simple estimators: the 

relative change or the totals quotient, and the difference 

estimator based on the overlap of the samples. We then 

describe how these results adapt to the presence of ignorable 

non-response and the use of more complex estimators, 

which introduce weights modified to obtain calibrated 

estimators, or variables modified by a robustification 

procedure.  

These results for simple designs are easy to generalize to 

stratified designs, provided that companies do not change 

strata from one wave to the next. Lastly, we apply this 

method to the Swiss survey of value added, taking all 

components of the survey into account: stratification, the 

panel effect, non-response, correlation between non-

responses from one wave to the next, calibration using a 

ratio estimator, and robustification.  

 
2. Estimation of the difference 

      in simple designs 
 
 

Let there be a population {1, , , , }U k N= … …  of size N 

in which two samples are taken: 1s  and 2s  of respective 

sizes 1n  and 2 .n  These samples may have a common 

portion (see Figure 1).  

Assume that 1s  and 2s  are samples taken according to a 

simple design without replacement, and sizes 1n  and 2n  are 

therefore not random. Samples 1s  and 2s  can be broken 

down into three parts 1 2 2 1\ , \ ,A Bs s s s s s= =  and Cs =  

1 2 .Cs s s= ∩  Let 1| |, | |, | |,A A B B C C An s n s n s n n= = = = +  

2, .C B Cn n n n= +  The sizes of , ,A Bs s  and ,Cs  may be 

random. This design generalizes the following hypothetical 

cases:   
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– If samples 1s  and 2s  are selected independently, Cn  

is then a random variable;   
– If sample 1s  is selected first, and sample 2s  is 

selected in the complement of 1s  in U, then Cs  is 

empty and 0;Cn =   
– if sample 1s  is selected first, and sample 2s  consists 

of the union of a subsample of fixed size of 1s  and a 

sample of fixed size of the complement of 1s  in U, 

then Cn  is not random, and the situation is the same 

as in case A of Tam (1984). 

            

 

 

 

 

 

 

 

 
 

                Figure 1 Overlapping samples  
 

We make the additional hypothesis that conditional on 

, ,A Bn n  and ,Cn  samples , ,A Bs s  and ,Cs  are simple, 

without replacement and of fixed size. They come from the 

following sampling design:  
 
Definition 1. Two-dimensional simple fixed-size sampling 

design ( , , ):A B Cn n n  

simple 1 2( , | , , )

! ! !( )! if | |,

! | |, | |

0 otherwise,

A B C

A B C A B C A A

B B C C

p s s n n n

n n n N n n n n s

N n s n s

=

− − − =


= =



 

where 1 2 2 1\ , \A Bs s s s s s= =  and 1 2Cs s s= ∩  (on this 

subject, see Goga 2003).  
The law for drawing the pair 1 2( , ),s s  which we do not 

know in general, is thus assumed to be of the form 

1 2 simple 1 2 1 2( , ) ( , | , , )Pr (| | ).A B C Cp s s p s s n n n s s n= ∩ =  

Let there be two variables x and y whose values, taken on 

the units of U, are denoted respectively kx  and , .ky k U∈  

Variables x and y may represent the same variable measured 

at two different times. Also assume that x can be observed 

only for 1s  and y for 2 .s  The objective is to estimate the 

totals  

and ,k k

k U k U

X x Y y
∈ ∈

= =∑ ∑  

as well as the difference .Y X−  The Horvitz-Thompson 

estimators of X and Y are given by  

1 2

1 2

1 2

ˆ ˆand .k k
k s k s

N N
X x Y y

n n∈ ∈

= =∑ ∑  

2.1 Natural estimation of the difference  
2.1.1 Variance of the estimation of the difference  

A first approach for estimating Y X∆ = −  is to use the 

difference of the cross-sectional estimators 2 1
ˆ ˆ ˆ ,Y X∆ = −  

which is an unbiased estimator conditional on Cn  according 

to the following simple design:  

ˆ( | ) ,CE n Y X∆ = −  

and is therefore also unbiased under design p unconditional 

on .Cn    
Proposition 1: The variance of ∆̂  is:  

2 2 2 2

1 2

2

1 2

1 1 1 1ˆvar( )

( ) 1
2 ,

x y

C
xy

N S N S
n N n N

E n
N S

n n N

   ∆ = − + −   
   

 
− − 

 

 

(1)

 

where 

2 2 2 21 1
( ) , ( ) ,

1 1

1
( ) ( ).

1

x k y k
k U k U

xy k k

k U

S x X S y Y
N N

S x X y Y
N

∈ ∈

∈

= − = −
− −

= − −
−

∑ ∑

∑
 

The demonstration of (1) is appended.   
2.1.2 Specific cases and precision gain  

Result (1) can be used to deal directly with the following 

specific cases of co-ordination:   
– if the two samples form a  panel, 1 2,Cn n n= =  

then 

2 2 21 1ˆvar( ) ( 2 ) ;x y xy

C

N S S S
n N

 ∆ = − + − 
 

 

– if the samples are disjoint (also see Ardilly and 

Tillé 2003, pages 24-28), 0,Cn =  and  

2 2 2 2

1 2

1 1 1 1ˆvar( )

2 .

x y

xy

N S N S
n N n N

NS

   ∆ = − + −   
   

+

 

Surprisingly, the covariance does not depend on the 

sizes of the samples. It is negative if x and y are 

positively correlated, and it becomes negligible in 

relation to the variance terms when the size of the 

population is large;  
 

– if q is the set rate of overlap of the two samples and 

1 2 ,n n n= =  we are back to case A developed by 

Tam (1984). We then obtain ,Cn qn=  and  

   s1       s2 
 

       sA                                   sC                              sB 
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2 2 2 21 1 1ˆvar( ) ( ) 2 ;x y xy

q
N S S N S

n N n N

   ∆ = − + − −   
   

 

– if the two samples are independent, ( )CE n =  

1 2 / ,n n N  and we have 

2 2 2 2

IND

1 2

1 1 1 1ˆvar ( ) .x yN S N S
n N n N

   ∆ = − + −   
   

 

If the size of the population is large and if the variables x 

and y have dispersions that are close to one another, the gain 

(or loss) of precision due to co-ordination in relation to the 

selection of two samples independently is 

IND

ˆvar( )
1 ,

ˆvar ( )
G q

∆
= ≈ − ρ

∆
 (2) 

where ρ  is the coefficient of correlation between x and 
, /xy x yy S S Sρ =  and q is the overlap rate, q =  

1 22 ( ) /( ).CE n n n+  Expression (2) provides a simple multi-

plicative coefficient serving to take account of the effect of 

correlation and overlap.  
2.1.3 Estimation of the variance of ∆̂∆∆∆   

To estimate the variance, two cases must be considered:   
– if ( )CE n  is known, which may be the case (for 

example, when the two samples are known to be 

independent), then 

� 2 2 2 2

1 2

1 2

2

1 2

1 1 1 1ˆvar( )

( ) 1
2 .

x y

C
xyC

N s N s
n N n N

E n
N s

n n N

   ∆ = − + −   
   

 
− − 

 

 

(3)

 

where  

1 2

2 2 2 2

1 1 2 2

1 2

1 1
( ) , ( ) ,

1 1
x k y k

s s

s x x s y y
n n

= − = −
− −
∑ ∑  

 and 

1
( ) ( ).

1
C

xyC k C k C
sC

s x x y y
n

= − −
−
∑  

 This estimator is unbiased, but it can sometimes 

take on negative values;  

– if ( )CE n  is not known, the only information 

concerning co-ordination is .Cn  

� 2 2 2 2

1 2

1 2

2

1 2

1 1 1 1ˆvar( )

1
2 .

x y

C
xyC

N s N s
n N n N

n
N s

n n N

   ∆ = − + −   
   

 
− − 

 

 

(4)

 

 

This estimator is unbiased conditional on Cn  and is 

therefore also unconditionally unbiased. It can also 

sometimes take on negative values. We will see 

further on that in some applications involving non-

response, ( )CE n  is not known.  
 

To use estimator (3), it is necessary to have at least two 

units in the overlap of the samples ( 2),Cn ≥  unless 

1 2( ) / .CE n n n N=  If 1 2( ) / ,CE n n n N=  which is the case 

where the two samples are independent, the third term of 

estimator (3) is nil. As to estimator (4), it is not defined 

when 1,Cn =  unless 1 2 .n n N=    
2.2 Estimation using the common portion  

The difference can also be estimated using only the 

common portion of the sample, which yields the estimator  

ˆ ( ),C C CN y x∆ = −  

with 1/
Ck sC C ky n y∈∑=  and 1/ .

Ck sC C kx n x∈∑=  This 

estimator is unbiased unconditionally and conditionally on 

.Cn   
2.2.1 Estimation of the variance of ˆ

C
∆∆∆∆   

The conditional variance of ˆ C∆  is equal to  

2 2 21 1ˆvar( | ) ( 2 ).C C y x xy

C

n N S S S
n N

 ∆ = − + − 
 

 

The unconditional variance is equal to  

2 2 21 1ˆvar( ) ( 2 ).C y x xy

C

N E S S S
n N

  ∆ = − + −  
  

 

This unconditional variance may be difficult to calculate 

when Cn  is random.   
2.2.2 Comparison of the variances of ∆̂∆∆∆  and ˆ

C
∆∆∆∆    

If we want to compare the two estimators of the 

difference, we can calculate  

2 2

1

2 2 2

2 1 2

1 1ˆ ˆvar( ) var( )

( )1 1 1
2 .

C y

C

C
x xy

C C

N E S
n n

E n
N E S N E S

n n n n n

  ∆ − ∆ = −  
  

      + − − −      
      

 

If 2 2 2
1 2 , ,x yn n n S S S= = = =  and (1/ ) 1/ ( ),C CE n E n≈  

then we obtain 

2 2 2 2 2

2 2

ˆ ˆvar( ) var( )

1 1
[ 1] 2 2 [ 1]

2
(1 ) [ (1 ) 1],

C

q N S q N S
qn qn

N S
q q

qn

∆ − ∆

≈ − − − ρ

= − ρ + −
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where 1 22 ( ) /( )Cq E n n n= +  is the overlap rate. The 

estimator ˆ C∆  is therefore more precise than ∆̂  if  

1
.

1 q
ρ ≥

+
 

For example, if 0.7,q =  it is preferable to use only the 

common portion once 1/(1 0.7) 0.588ρ ≥ + ≈  (on this 

subject, see Caron and Ravalet 2000, page 346). In cases 

where the overlap is sizable and the correlation is high, the 

estimator based on the difference of the cross-sectional 

estimators is therefore not very relevant.  

 
3. Taking unit non-response into account 

 
Non-response is considered to be independent of the 

selection design. According to the model, each unit decides 

randomly whether or not to respond, and the probabilities of 

response are equal between units. This is the most 

elementary model. However, if a unit does not respond in 

the first wave, it is highly probable that it will also not 

respond in the second wave. The model takes this 

dependency into account by considering separately four 

cases:   
– the unit responds in both the first wave and the 

second;  

– the unit responds in the first wave but not in the 

second;  

– the unit does not respond in the first wave but it 

responds in the second;  

– the unit responds in neither the first wave nor the 

second.   
Non-response is commonly modelled by a multivariate 

Bernoullian design, which means that the probability of 

responding is the same for all statistical units and also that 

one unit decides to respond independently of the response of 

the other units. The non-response design is as follows:  

cardcard card card
( , , , ) ,CA B Drr r r

A B C D A B C Dq r r r r = φ φ φ φ  

where , , , ,A B C Dr r r r U⊂  and , , ,A B C Dr r r r  are mutually 

exclusive, and where  
– 

card Ar

Aφ  is the probability of responding in wave 1 

but not in wave 2;  

– 
card Br

Bφ  is the probability of responding in wave 2 

but not in wave 1;  

– 
card Cr

Cφ  is the probability of responding in both 

wave 1 and wave 2;  

– 
card Dr

Dφ  is the probability of responding in neither 

wave 1 nor wave 2.  
 

The modelled non-response phase thus consists in 

selecting four disjoint samples according to Bernoullian 

designs with different intensities. Since it is assumed to be 

independent of the sampling design, conditional on the 

sample sizes observed, the design resulting from the 

selection and the non-response is a simple multivariate 

design. If inference is conducted conditional on the sample 

sizes, the estimation of probabilities , , ,A B C Dφ φ φ φ  is not 

necessary and an unbiased inference can be conducted, as if 

dealing with a simple design. The theory of the preceding 

section therefore applies directly to the respondents, and all 

the information on the overlap of the two samples is found 

in | |,Cs  regardless of whether this overlap is due to the 

design or to the link that exists between non-responses in the 

two waves. Note that even if the model is fairly simple, it 

takes account of the fact that if a unit has not responded in 

one wave, it will probably be less likely to respond in the 

following wave. Also, this model will be applied in 

relatively small, homogeneous strata.  

 
4. Other measures of changes over time 

 
The measurement of change over time is not always 

expressed in terms of differences. Such change is often 

measured in the form of a quotient or a relative difference. 

We therefore consider the following three measures:  
 

– the difference 2 1
ˆ ˆ ˆ ;Y X∆ = −    

– the relative change 2 1 1 2 1
ˆ ˆ ˆ ˆ ˆ ˆ( ) / / 1;R Y X X Y X∆ = − = −   

– the quotient 2 1
ˆ ˆ ˆ/ .Q Y X=   

 
The variance of ∆̂  may be expressed simply as a 

function of the estimators of variance of 2Ŷ  and 1X̂  and the 

estimator of their covariance (see expression 4). The 

variance of ˆ R∆  is equal to the variance of ˆ.Q  They may be 

approached and then estimated using a residuals technique 

(on this subject, see Woodruff 1971; Binder and Patak 1994; 

Deville and Särndal 1992; Deville 1999), 

� �

� � � � � � �2
2 1 1 2

2

1

ˆˆvar( ) var( )

1 ˆ ˆvar( ) var( ) 2 cov( , ) .
ˆ

R Q

Y Q X Q X Y
X

∆ =

 = + − 
 

This variance can thus be simply estimated once we have 

estimators of 2 1
ˆ ˆvar( ), var( )Y X  and 1 2

ˆ ˆcov( , ).X Y  

 
5. Ratio estimation and robustification  

Two techniques are commonly used for estimating the 

results of sample surveys: the use of a ratio estimator to 
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calibrate on the total of a dummy variable, and robustifi-

cation of the estimators. These techniques must be taken 

into account in determining the precision of the final results.   
5.1 Calibration  

If an estimator is calibrated on known totals, the variance 

may be estimated simply by a residuals technique (see 

Woodruff 1971; Binder and Patak 1994; Deville and 

Särndal 1992; Deville 1999). For example, if 1kz  and 2kz  

are column vectors of dummy variables on which the 

estimators 1CalX̂  and 2CalŶ  are calibrated in waves 1 and 2, 

then the variances can be estimated by a residuals technique: 

1Cal 1
ˆ ˆvar( ) var( )X E≈  and 2Cal 2

ˆ ˆvar( ) var( ),Y E≈  where 1Ê  

et 2Ê  are Horvitz-Thompson estimators of the totals of the 

residuals, with the latter being given for a simple design and 

for the generalized regression estimator by:  

1 1 1

2 2 2

ˆ ,

ˆ ,

k k k

k k k

e x

e y

′= −

′= −

z B

z B
 

with  

( )
( )

1 1

2 2

1

1 1 1 1 1 1 1

1

2 2 2 2 2 2 2

ˆ ,

ˆ ,

k k k k k k
k s k s

k k k k k k

k s k s

q q x

q q y

−

∈ ∈

−

∈ ∈

′=

′=

∑ ∑

∑ ∑

B z z z

B z z z

 

where , 1, 2,kjq j =  is a coefficient that serves to take 

account of possible heteroscedasticity.  

In the case of a sampling design with unequal 

probabilities, e.g., a stratified sampling design such as in the 

Swiss survey of value added, the residuals are obtained by 

using a weighted regression. It is sufficient to replace 1B̂  

and 2B̂  respectively by  

1 1

1

1 1 1 1 1 1
1

1 1

ˆ , andk k k k k k

k s k sk k

q q x
−

∈ ∈

′ 
=  π π 
∑ ∑

z z z
B  (5) 

2 2

1

2 2 2 2 2 2
2

2 2

ˆ ,k k k k k k

k s k sk k

q q y
−

∈ ∈

′ 
=  π π 
∑ ∑

z z z
B  (6) 

where kjπ  is the probability of inclusion of unit k in the 

sample for wave , 1, 2.j j =   
5.2 Robustification  

It is often useful to apply a robustification technique 

which offers a way to treat outliers. Simply consider that 

outliers have been detected and the weights of the 

individuals whose values are considered outliers have been 

modified by a factor ( )kju s  in wave j. This factor is 

included between 0 and 1 and is equal to 1 for units that 

have values considered normal. The variance of the 

robustified estimator can be approached by advancing the 

classical hypothesis that weights ( )kju s  depend only 

slightly on the sample s that was drawn (see Hulliger 1999). 

All that is needed, then, is to replace the variables kx  and 

ky  observed by 1k ku x  and 2k ku y  in the variance 

estimators.  

By bringing together all the components of the mean 

square error of a change over time so as to take account of 

all components of that variance - namely the design, the 

panel effect, non-response, calibration and robustification -

we obtain, for the relative change in a stratum,  

� �

� � � � � � �2
1 1 1 2

1

ˆˆMSE( ) MSE( )

1 ˆ ˆvar( ) var( ) 2 cov( , ) ,
ˆ

R Q

EU Q EU Q EU EU
X

∆ = =

 + −   (7)
 

where  

1 2

2
1 2

1 2 1

ˆ
ˆˆ ˆ, , ,

ˆk k
R R

YN N
X x Y y Q

m m X
= = =∑ ∑  

1 1 1 1 1

2 2 2 2 2

ˆ ,

ˆ ,

k k k k k

k k k k k

eu u x u

eu u y u

′= −

′= −

z B

z B
 

�
�

, , 1, 2,
j

j
jj kj

Rj

EUN
EU eu EU j

m N
= = =∑  

1 1

2 2

1
2 2

1 1 1 1 1 1 1
1

1 1

1
2 2

2 2 2 2 2 2 2
2

2 2

ˆ ,

ˆ .

k k k k k k k k

k D k Dk k

k k k k k k k k

k D k Dk k

q u q u x

q u q u y

−

∈ ∈

−

∈ ∈

 ′
=   π π 

 ′
=   π π 

∑ ∑

∑ ∑

z z z
B

z z z
B

 

� �

2 2

var( )

1 1 1
( ) , 1, 2,

1
j

j

jkj
Rj j

EU

N eu EU j
m N m

=

 − − =  − 
∑

 

� ��
1 2

2

1 1

1 2

2 2

cov( , )

1 1
( )

1

( ).

C

C
k

RC

k

EU EU

m
N eu EU

m m N m

eu EU

=

 
− −  − 

× −

∑  

 
1R  and 2R  designate the set of respondents in the first and 

the second waves in the stratum, 1 1| |,m R= 2m = 2| |,R  

1 2| CR R R= ∩  and 1 2| |.Cm R R= ∩ 1D  and 2D  are the sets 

of respondents in the two waves in the domain in which the 

calibration was carried out.  
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6. The Swiss survey of value added 
 
6.1 Description of survey  

The Swiss survey of value added is a survey of 

companies, conducted annually. Its purpose is to provide 

estimators of the main parameters of output in Switzerland: 

the value of gross output, the amount of intermediate 

consumption, the value added created by companies, and 

the cost of labour. The sampling design used is a stratified 

sampling of companies. In 1999, a sample of 11,210 

companies (employing at least two persons) was selected 

and surveyed. This sample was run again in 2000 and 2001. 

Over that period, then, this is a panel survey. In the absence 

of a business register making it possible to identify births 

and deaths, the population of companies was considered 

constant during this period. The only adjustment to the 

annual data is made using a ratio estimation on the total of 

full-time equivalents (FTEs) per activity domain, available 

from an external source.  

Stratification is based on the first two digits of the  

Nomenclature Générale des Activités économiques (general 

classification of economic activities) (NOGA2) and the size 

of the company (see Renfer 2000). In each activity stratum, 

three size strata are created: small companies employing 2-

19 persons in FTE, medium-size companies, from 20 to M 

FTE, and large companies of more than M FTE. The 

stratum containing large companies is a take-all stratum, 

while small and medium-size companies are selected 

randomly with different sampling rates. The boundary  M is 

chosen differently in each activity stratum in order to obtain 

optimum precision. In these three waves, approximately 

6,000 establishments responded. The response rate for large 

companies, which all had to be surveyed, was close to 71% 

and was higher than the rate for small and medium-size 

companies. It was decided after the fact to treat some very 

large companies separately according to the “surprise” 

stratum methodology of Hidiroglou and Srinath (1981), 

considering that the response rate for the largest companies 

may well be better because they have an administrative 

structure better suited to responding to the survey questions. 

If they were assigned a weight equal to that of other large 

companies, this would introduce a bias as well as excessive 

variability. The “surprise” poststrata contain the 5% largest 

companies in the survey file. The latter were then 

considered as having, in effect, all been surveyed, and they 

received a weight of 1. No other treatment (calibration, 

robustification) was applied to them. The take-some strata 

consisting of small, medium-size and large companies were 

updated and some strata (size classes) containing few 

companies were later collapsed. If we accept the hypothesis 

that the very large companies were all taken, then the 

resulting estimator is unbiased and the variance related to 

very large companies is nil. We can therefore calculate only 

the variance in the other, updated strata.  

During the survey, companies were again asked their 

category of economic activity. The estimates are based on 

these reported NOGA2s not on the NOGA2s in the sample 

frame. A calibration on the number of full-time equivalents 

(FTEs) provided by the business register is then conducted 

using a quotient estimator for the “reported” NOGA2 

domains.  

Finally, a robustification technique was used to lop the 

distribution of certain variables in the sample of small, 

medium-size and large companies (see Hulliger 1999; 

Peters, Renfer and Hulliger 2001). The weights of 

establishments whose values are considered outliers were 

modified by a factor ( )kju s  included between 0 and 1. This 

factor is equal to 1 for companies that have values that are 

considered normal.   
6.2 Variance of the change in value added  

The objective is to estimate correctly the variance of 

estimators of change in value added (see Renfer 2000; 

Peters et al. 2001). In computing variances according to the 

hypothesis of independence of the samples, we largely 

overestimate the variance of changes, because the “value 

added” variables in times 1t  and 2t  are positively 

correlated. Correctly taking account of all aspects of the 

sampling design and the adjustment should provide better 

variance estimates. The study focuses on the 1999, 2000 and 

2001 waves of the survey. Between these three dates, the 

raw sample was not modified. The fact that the sample 

remained fixed should make it possible to reliably estimate 

changes, but a response rate hovering around 50% may 

cause us to lose the benefit of the panel, if the number of 

respondents common to successive waves is low. The case 

of change between two survey waves where the sample has 

been updated, and where there are therefore two different 

raw samples and reference populations, is an entirely 

different problem.  

In the present case, the fact that low variances were 

obtained can be attributed to the combined effect of several 

factors:  
 

1. Optimal design: The sampling design was 

optimized. According to the optimal stratification, 

large companies have higher probabilities of 

inclusion. The stratum of companies contributing 

the most to value added is a take-all stratum. For 

this reason, the cross-sectional estimators have a 

low variance.   
2. High response fraction: In the take-all stratum of 

large companies, the response rate approaches 

70%. The finite population correction ( ) /N n N−  
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can therefore divide the variance by 3 compared to 

the case of an infinite population.   
3. Panel effect: The sample is a panel, which is the 

best strategy for estimating changes over time.   
4. Correlation of non-response: The non-response in 

one wave is strongly related to the previous wave 

and therefore does not greatly degrade the panel.   
5. Correlation of variables between waves: The value 

added variables in times t and 1t +  are highly 

correlated, since they are the same variable 

estimated at two different points in time.   
6. Calibration: The estimators are calibrated in the 

strata on a variable related to the variable of 

interest; the variance of the estimators can then be 

written as a residual variance.   
Of the 11,210 companies selected in 1999, 

approximately 5,200 responded in 1999 and 2000, and 

5,300 responded in the 2000 and 2001 waves. Thus the size 

of the panel is relatively modest, and the treatment of non-

response will therefore have a major impact on the results. 

To make variance estimates, we have assumed that non-

response is ignorable (missing completely at random) within 

the take-some strata.  

In each wave, estimates are made in the reported 

NOGA2 domains. This implies the possibility of a change 

of domain on the part of companies, and it is necessary to 

try to factor this into longitudinal estimates. We decided to 

ignore the impact of these changes initially, and to consider 

for the estimation of covariance that the domains are fixed 

and given by the value reported in the first of the two 

consecutive waves. This simplification is not inappropriate, 

since only 30 companies changed domain between 1999 

and 2000, and only 25 did so between 2000 and 2001, 

representing respectively less than 0.5% and 0.2% of the 

FTEs in the sample. Calibration is carried out each year, and 

it can be taken into account using a residuals technique. As 

with estimating the variance of the cross-sectional esti-

mators, robustification is taken into account by reweighting 

the survey variables.  

With realistic assumptions, all components of the 

variance may be taken into account by means of the general 

expression (7). This expression is applied within each 

stratum and it covers all the components of the survey of 

value added: the panel effect, non-response, stratification, 

calibration and robustification. The estimators for the survey 

of value added are ratio estimators, and in this case the 

calculation of residuals is simplified. This is because in the 

case of the ratio, the regression coefficients given in (5) and 

(6) are calculated having only one dummy variable, and 

therefore kj kjz=z  is scalar. Also, we take  1/ ,kj kjq z=  for 

1, 2,j =  and with robustification taken into account, we 

thus obtain: 

1 1 1 1 1

2 2 2 2 2

ˆ ,

ˆ ,

k k k k k

k k k k k

eu u x B u z

eu u y B u z

= −

= −
 

where 

1

1

2

2

1 1

1

1 1 1

2 2

2

2 2 2

/
ˆ ,

/

/
ˆ .

/

k k kD

k k kD

k k kD

k k kD

u x
B

u z

u y
B

u z

π
=

π

π
=

π

∑
∑
∑
∑

 

 
6.3 Variance estimation of changes   

We made estimates of the standard deviations of changes 

in gross output values and value added figures calculated by 

the Swiss Federal Statistical Office. These estimates take 

into consideration all the aspects described above. We 

compared them with the estimated standard deviations that 

would have been obtained under the assumption that the 

draws for the different waves are independent. Over the 

various activity strata, the standard deviations that take 

account of the correlation between the survey waves are 

41% lower than those based on the assumption of inde-

pendence. This makes it possible to have much smaller 

confidence intervals than those calculated before this study, 

which were more quickly obtained but less precise. 

However, the gain is not the same in all activity strata. The 

following tables show standard deviations (SDs), calculated 

for the five largest activity strata (NOGA), of changes over 

time in the value of gross output ( OV∆ ) and of value added 

( VA∆ ) between 1999 and 2000. The standard deviation that 

would have been obtained by ignoring the correlation 

between samples ( indSD ) is also included in the tables, 

along with the “gain” in precision realized by taking this 

correlation into account.  
Table 1 
Change in gross output value between 1999 and 2000 and 
standard deviations (in billions of Swiss francs) 
 

Stratum ∆∆∆∆OV  indSD  SD Gain (%) 

1 3.31 2.35 0.87 63 
2 -0.77 4.38 1.98 55 
3 3.07 2.11 0.94 56 
4 4.33 1.10 1.00 09 
5 -0.09 0.81 0.53 35  

Table 2 
Change in value added between 1999 and 2000 standard 
deviations (in billions of Swiss francs) 
 

Stratum ∆∆∆∆VΑ  indSD  SD Gain (%) 

1 1.96 0.91 0.32 65 
2 0.68 2.99 1.04 65 
3 1.90 1.47 0.72 51 
4 0.36 0.47 0.45 05 
5 -0.36 0.59 0.43 27 
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Appendix 

 

Demonstration of proposition 1 
 

It is well known that  

2 2

1

1

1 1ˆvar( ) xX N S
n N

 = − 
 

 

and 

2 2

2

2

1 1ˆvar( ) .yY N S
n N

 = − 
 

 

It is thus sufficient to calculate 1 2
ˆ ˆcov( , ).X Y  We note  

1 2

1 2

1 1
, ,

1 1
,

,

A C

B C

A k C k

k s k sA C

B k C k
k s k sB C

A A C C B B C C

x x x x
n n

y y y y
n n

n x n x n y n y
x y

n n

∈ ∈

∈ ∈

= =

= = ,

+ +
= = ,

∑ ∑

∑ ∑  

and therefore 1 1X̂ N x=  and 2 2
ˆ .Y N y=  We must still 

calculate  

[ ]
1 2 1 2

1 2

cov( ) cov( )

cov ( ) ( )

A B C

A B C A B C

x y E x y n n n

E x n n n E y n n n

, = , | , ,

+ | , , , | , , .
 

Since 1x  and 2y  are unbiased conditional on , ,A Bn n  and 

,Cn  

[ ]1 2cov ( | , , ), ( | , , ) cov( , ) 0.A B C A B CE x n n n E y n n n X Y= =  

We therefore obtain 

1 2 1 2cov( , ) cov( , | , , ).A B Cx y E x y n n n=  

Conditional on , ,A Bn n  and ,Cn  we are in case A of Tam 

(1984, theorem 1). The conditional variance is equal to 

1 2

1 2

1
cov( , | , , ) C

A B C xy

n
x y n n n S

n n N

 
= − 
 

 

and therefore  

1 2

1 2

( ) 1
cov( , ) .C

xy

E n
x y S

n n N

 
= − 
 

 

 

Now, 

2

1 2 1 2
ˆ ˆcov( , ) cov( , ),X Y N x y=  

enabling us to obtain the  result (1).  

 
References 

 
Ardilly, P., and Tillé, Y. (2003). Exercices corrigés de méthodes de 

sondage. Paris: Ellipses.   
Berger, Y.G. (2004). Variance estimation for measures of change in 

probability sampling. Canadian Journal of Statistics, 32, 4, 451-
467.   

Binder, D.A., and Patak, Z. (1994). Use of estimating functions for 
estimation from complex surveys. Journal of the American 
Statistical Association, 89, 1035-1043.   

Caron, N., and Ravalet, P. (2000). Estimation dans les enquêtes 
répétées : application à l’enquête Emploi en continu. Technical 
report, 0005. Méthodologie Statistique, INSEE, Paris.   

Deville, J.-C. (1999). Variance estimation for complex statistics and 
estimators: Linearization and residual techniques. Survey 
Methodology, 25, 193-203.   

Deville, J.-C., and Särndal, C.-E. (1992). Calibration estimators in 
survey sampling. Journal of the American Statistical Association, 
87, 376-382.   

Fuller, W.A., and Rao, J.N.K. (2001). A regression composite 
estimator with application to the Canadian Labour Force Survey. 
Survey Methodology, 27, 45-51.   

Goga, C. (2003). Estimation de la variance dans les sondages à 
plusieurs échantillons et prise en compte de l’information 
auxiliaire par des modèles nonparamétriques. Ph.D. Dissertation, 
Université de Rennes II, Haute Bretagne, France.   

Hidiroglou, M., Särndal, C.-E. and Binder, D. (1995). Weighting and 
Estimation in Business Surveys. Business Survey Methods, (Eds. 
B.G. Cox, D.A. Binder, B.N. Chinnappa, A. Christianson, 
M. Colledge and P.S. Kott), New York: John Wiley & Sons, Inc., 
477-502.  

Hidiroglou, M.A., and Srinath, K.P. (1981). Some estimators of a 
population total from simple random samples containing large 
units. Journal of the American Statistical Association, 76, 690-
695.   

Holmes, D.J., and Skinner, C.J. (2000). Variance Estimation for 
Labour Force Survey Estimates of Level and Change. Technical 
report, Government Statistical Service Methodology Series, 21, 
London, England.   

Hulliger, B. (1999). Simple and robust estimators for sampling. 
Proceedings of the Section on Survey Research Methods, 
American Statistical Association, 54-63.   

Kish, L. (1965). Survey Sampling. New York: John Wiley & Sons, 
Inc.   

Laniel, N. 1988. (1988). Variances for a rotating sample from a 
changing population. Proceedings of the Business and Economic 
Statistics Section, American Statistical Association, 246-250.   

Nordberg, L. (2000). On variance estimation for measure of change 
when samples are coordinated by the use of permanent random 
numbers. Journal of Official Statistics, 16, 363-378.   

Peters, R., Renfer, J.-P. and Hulliger, B. (2001). Statistique de la 
valeur ajoutée : procédure d’extrapolation des données. Technical 
report, Swiss Federal Statistical Office.  



Survey Methodology, December 2008 181 
 

 

Statistics Canada, Catalogue No. 12-001-X 

Renfer, J.-P. (2000). Enquête sur la production et la valeur ajoutée : 
échantillonnage complémentaire. Technical report, Swiss Federal 
Statistical Office.   

Sen, A.R. (1973). Theory and application of sampling on repeated 
occasions with several auxiliary variables. Biometrics, 29, 381-
385.   

Tam, S.M. (1984). On covariances from overlapping samples. The 
American Statistician, 38, (4), 288-289.   

Wolter, K.M. (1985). Introduction to Variance Estimation. New 
York: Spinger-Verlag.  

Woodruff, R.S. (1971). A simple method for approximating de 
variance of a complicated estimate. Journal of the American 
Statistical Association, 66, 411-414. 

 

 





Survey Methodology, December 2008  183 
Vol. 34, No. 2, pp. 183-194 
Statistics Canada, Catalogue No. 12-001-X 

 

PSU masking and variance estimation in complex surveys 

Inho Park 1 

Abstract 

The analysis of stratified multistage sample data requires the use of design information such as stratum and primary 
sampling unit (PSU) identifiers, or associated replicate weights, in variance estimation. In some public release data files, 
such design information is masked as an effort to avoid their disclosure risk and yet to allow the user to obtain valid variance 
estimation. For example, in area surveys with a limited number of PSUs, the original PSUs are split or/and recombined to 
construct pseudo-PSUs with swapped second or subsequent stage sampling units. Such PSU masking methods, however, 
obviously distort the clustering structure of the sample design, yielding biased variance estimates possibly with certain 
systematic patterns between two variance estimates from the unmasked and masked PSU identifiers. Some of the previous 
work observed patterns in the ratio of the masked and unmasked variance estimates when plotted against the unmasked 
design effect. This paper investigates the effect of PSU masking on variance estimates under cluster sampling regarding 
various aspects including the clustering structure and the degree of masking. Also, we seek a PSU masking strategy through 
swapping of subsequent stage sampling units that helps reduce the resulting biases of the variance estimates. For illustration, 
we used data from the National Health Interview Survey (NHIS) with some artificial modification. The proposed strategy 
performs very well in reducing the biases of variance estimates. Both theory and empirical results indicate that the effect of 
PSU masking on variance estimates is modest with minimal swapping of subsequent stage sampling units. The proposed 
masking strategy has been applied to the 2003-2004 National Health and Nutrition Examination Survey (NHANES) data 
release. 
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1. Introduction 
 

The analysis of stratified multistage sample data requires 

the use of design information such as stratum and primary 

sampling unit (PSU) identifiers, or associated replicate 

weights, in variance estimation. In large surveys, PSUs 

often consist of single or multiple counties. Some external 

sources that are publicly available such as Census data can 

provide extremely detailed PSU-level demographics. Even 

with their name suppressed, inclusion of PSU identifiers in 

public release data files alone can pose an identification risk 

by allowing their linkage to external sources. Thus, PSU 

identifiers are often masked as an effort (1) to reduce the 

risk of data disclosure and (2) yet to allow the user to obtain 

valid variance estimation. Mayda, Mohl and Tambay (1996) 

addressed the potential risk of data disclosure that is 

associated with the inclusion of the original PSU identifiers 

in the public release data files and considered the stratum-

collapsing method by Rust (1986) for balancing out the 

aforementioned two needs. Due to a potential inconsistency 

of the variance estimation under the stratum-collapsing 

method indicated by Valliant (1996), Yung (1997) 

suggested constructing a set of average bootstrap replicate 

weights. Lu (2004) demonstrated that supplying replicate 

weights and giving the stratum and PSU identifiers are 

practically equivalent in the viewpoint of confidentiality, 

since one can be easily obtained from the others. Shah 

(2001) discussed ways to create pseudo-strata and pseudo-

PSUs given a set of balanced repeated replication weights. 

Eltinge (1999) proposed a method similar to the stratum-

collapsing methods. Lu, Brick and Sitter (2006) also 

established conditions for the consistency of the variance 

estimator under the stratum-collapsing method and also 

proposed stratum-grouping algorithms yielding efficient and 

consistent stratum-collapsed variance estimators.  

With a limited number of PSUs in the sample, the 

stratum-collapsing method is not appealing due to 

insufficient degrees of freedom for variance estimation. 

Dohrmann, Curtin, Mohadjer, Montaquila and Le (2002), 

Dohrmann, Lu, Park, Sitter and Curtin (2005) dealt with 

such situations and considered two PSU masking methods. 

The first method splits each PSU into two pseudo-PSUs 

(sets of ultimate sampling units within the PSUs), arbitrarily 

doubling degrees of freedom for variance estimation. The 

second method constructs the pseudo-PSUs by swapping 

second-stage sampling units (SSUs) between the original 

PSUs, retaining the original degrees of freedom for variance 

estimation. That is, the PSU and stratum assignments of all 

ultimate sampling units in one SSU are switched to those in 

the matched SSU. This method can be generalized so that 

the original PSUs are divided into one or more splits and are 

recombined to construct pseudo-PSUs with swapped PSU 

splits. This approach is different from data swapping 

(Dalenius and Reiss 1982), which is often used for 
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protecting confidentiality in a way that values of sensitive 

survey variables are switched among individual records. 

Because of the resulting distortion in the clustering structure 

of the sample design, the two PSU masking methods can 

result in biased variance estimates possibly with certain 

systematic patterns between two variance estimates from the 

unmasked and masked PSU identifiers. Dohrmann et al. 

(2005) observed decreasing funnel-shape curvature patterns 

in the ratio of the masked and unmasked variance estimates 

of a sample mean when plotted against the design effect. 

They explained such patterns based on an approximate 

relationship of the variance estimate that is monotone in the 

intracluster correlation coefficient (ICC) of Kish’s design 

effect formula.  

This paper focuses on the issues related to the second 

PSU masking method that swaps subsequent stage sampling 

units among the original PSUs and discusses its effect on 

variance estimates. Section 2 deals with the effect of PSU 

masking on the variance regarding aspects of the clustering 

structure such as ICC and means and sizes of PSU-splits for 

swapping under a single-stage cluster sample design. 

Section 3 investigates how the degree of swapping in PSU 

masking is related to the bias in the variance utilizing a 

parametric model for cluster sampling. Section 4 considers a 

PSU masking strategy through SSU swapping that helps 

reduce the PSU masking effects on variance estimates and 

thus the resulting biases under complex surveys. Section 5 

briefly reviews the recent work by Dohrmann et al. (2002, 

2005) and also presents application results of the proposed 

masking strategy to data from the National Health Interview 

Survey (NHIS) with some artificial modification. Finally, 

Section 6 includes some discussions.  

 
2. Effect of distortion in clustering structure on 

        variance of sample mean 
 

Cluster sampling, often used in surveys for its cost and 

logistic reasons, is a major source of the increase in the 

variance of an estimator compared with a simple random 

sample due to the similarity of sampling units within the 

clusters. Standard sampling texts such as Särndal, Swensson 

and Wretman (1992, Section 8.7) provide formulae for the 

variance of a sample mean in terms of the ICC, cluster sizes 

and means of a survey variable .y  It indicates that 

clustering in the sample design should reveal its impact on 

the variance through them. In this section, we examine how 

the distortion in the clustering structure of the sample design 

affects the variance of a sample mean when the PSUs are 

masked through swapping their splits between the two 

PSUs. For our discussion in this section, we consider a 

single-stage probability-proportional-to-size (PPS) sampling 

of PSUs. This sampling scheme is rather simple but still 

complex enough to reveal the effect of PSU masking on the 

variance in relation to these three components.  
 
2.1 Variance under single-stage PPS cluster 

sampling   
Suppose that a population U  of M  units is grouped into 

N  PSUs of iM  units each. A random sample of n  PSUs is 

drawn with probabilities ip 1( 1)N
i ip=∑ =  and every unit in a 

sampled PSU is included in the sample. For simplicity, we 

assume the selection of PSUs is with replacement. The 

weighted sample mean 1
1 11 1

ˆ ( )i iM Mn n
i ij jij ij ijY w w y

−
= == =∑ ∑ ∑ ∑=  

is an estimator of the population mean 1
1 1

iMN
i j ijY M y−
= =∑ ∑=  

of survey variable ,y  where  1( )ij iw np −=   and   ijy  denote 

the sampling weight and the value of y  for the thj  unit of 

PSU ,i  respectively. Let 1 ,n
i im M=∑= 2 1( 1)yS M −= −  

2
1 1( ) ,iMN

i j ijy Y= =∑ ∑ − 1
1
iM

i ji ijM yY
−

=∑=  denote the sample 

size, the population variance and the PSU means of ,y  

respectively. Assuming N  is large so that ( 1) 1,N N/ − ≐  

its approximate variance can be written as  

1 2

1 1 1

1

1 1 2 2

1

ˆ( ) [1 ( 1) ]

( ) ( ) ( )

( ) ( )

y yU

N

ii i i i
i

N

ii i
i

V Y S m S M

mN p M M M p YY

mMN p M YY

−

− − −

=

− −

=

| + − ρ

+ − − ,

− ,

∑

∑

≐

≐  (1)

 

where S  denotes the sample index set, 2 21yU yw yS Sρ = − /  is 

the ICC and 2 1 2
1 1( ) ( )iMN

i ijyw ijS M N y Y
−

= =∑ ∑= − −  is the 

within-PSU mean square deviation. The derivation of (1) is 

given in the Appendix.  

For a common special case of ,i ip M∝  that is, PPS 

sampling, (1) is simplified as  

1 2

1 2

1

ˆ( ) [1 ( 1) ]

( ) ( )

y yU

N

i i
i

V Y S m S M

mN M Y Y

−

−

=

| + − ρ

−∑

≐

≐  (2)
 

and the ICC is expressed as  

1 2

1

1 2

ˆ( )
( 1)

y

yU

y

V Y S m S
M

m S

−
−

−

 | −
 ρ − .
  

≐  (3) 

The second approximation in (2) indicates that PSUs with 

larger 2( )i iM Y Y−  contribute more to the variance. The 

ICC in (3) reveals the precision loss (in a rough sense) of 

per-cluster relative increase in the variance of 1 2 ,ym S−  the 

variance of the simple sample mean 1
( )ij S ijy m y−

∈∑=  that 

could have been obtained from the same sized with-

replacement simple random samples.  

A complex survey often involves the above single-stage 

PPS sampling or other (additional) complex design (e.g., 

stratification, multi-stage sampling and unequal selection 

probabilities) or estimation features (e.g., nonresponse 
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adjustments and calibration adjustments). For example, if 

ip  had been disproportional to size or further subsampling 

had been involved to induce unequal weights, then the 

corresponding complex feature might have come into the 

picture in variance estimation. The associated impact on 

variance estimation of complex samples will be discussed in 

detail in Section 4.  
 
2.2 Means and sizes of PSU-splits   

To mask the PSUs, consider that the first two PSUs in 

the sample are each split into two sets of units, 1U =  

11 12U U∪  and 2 21 22U U U= ∪  say, and the two pseudo-

PSUs, 1 11 22U U U∗ = ∪  and 2 21 12U U U∗ = ∪  are 

constructed by swapping 12U  and 22U  between the two 

PSUs. Let S  and S∗  denote the unmasked and masked 

sample index sets, respectively. Let ˆ( )V Y S∗|  denote the 

variance of Ŷ  associated with the pseudo-PSUs (also 

assuming the other non-sampled PSUs in U  remain the 

same). Also, let *,iY ,iY
∗

iM ∗  denote the mean and total of 

y  and the size of the thi  pseudo-PSU, respectively. 

Assuming 0Y =  without loss of generality, the difference 

between the masked and unmasked variances is written 

from (2) as  

( )( )

1 *2 2

1 2

1 * *

1 2

ˆ ˆ( ) ( )

( ) ( )

( )

i i i i
i

i i i i i i i i

i

V Y S V Y S

mN M Y M Y

mN M Y M Y M Y M Y

∗

− ∗

= ,

− ∗ ∗

= ,

| − |

− ,

+ − .

∑

∑

≐

≐ (4)

 

Expression (4) shows that the difference in variance due to 

PSU masking depends upon the changes in PSU quantities 

i iM Y ’s. If ilY  and ilM  denote the total and size of PSU 

split ,ilU  respectively, for 1 2,i l, = ,  then 1i iY Y= +  

2,iY 1 2,i i iY Y Y∗
′= + 1 2i i iM M M= +  and 1 2i i iM M M∗

′= +  for 

1 2.i i′≠ = ,  It is clear from (4) that the variance will not 

change under PSU masking if the following condition 

holds: 

* 1 2 1 2

1 2 1 2

or i i i i
i i i i

i i i i

Y Y Y Y
M Y M Y

M M M M

∗ ′

′

+ +
= = .

+ +
 (5) 

This result is a bit surprising since by naive intuition one 

may think that PSU-splits for swapping with *
i iY Y=  will 

preserve the variance. To better understand (5), consider the 

following three cases. If 12 22,M M=  then (5) implies 

12 22Y Y=  or 12 22,Y Y=  where il il ilY Y M= /  denotes the 

mean of .ilU  If 12 22,Y Y=  then (5) implies 12 22M M=  or 

12 22 .Y Y=  If 12 22,Y Y=  then (5) can be written as 

1 1 2 2 2( 1) ( ) 0i i i i i i i i iM Y M M Y M M M M∗ ∗
′/ − + / − =  for 

1, 2,i =  holding when 12 22.M M=  It is clearly 

demonstrated from all of the three cases that the variance 

will not change if the PSU-splits for swapping are formed 

equal in both size and mean.  
 
2.3 Change in ICC  

The effect of the clustering structure distortion on 

variance can also be investigated through the ratio of the 

masked and unmasked variances. Let yU
∗ρ  denote the 

masked ICC, that is, the ICC defined with the masked PSU 

identifiers. From (3), it is clear that the difference between 

the masked and unmasked ICCs is proportional to the 

difference between the corresponding variances, that is,  

1 2 1 ˆ ˆ[ ( 1) ] [ ( ) ( )]yU yU ym M S V Y S V Y S
∗ − − ∗ρ − ρ − | − | .≐  

The second approximation in (2) indicates that the 

change in ICC depends upon how the PSU-splits are formed 

for swapping, that is, the change in 2( ) .i iM Y Y−  From 

(2), the ratio of the masked and unmasked variances is given 

as  
1

1

( 1)ˆ( , )
( 1)

yU

yU

M
RV Y S S

M

∗ −
∗

−

ρ + −
| .

ρ + −
≐  (6) 

See, also, Dohrmann et al. (2005, equation 8). Under the 

relationship of yU y yUc∗ρ = ρ  for any given 0,yc >  (6) is 

monotone in .yUρ  Also, the ratio is very unstable when 

yUρ  or yU
∗ρ  is near 1( 1) ,M −− −  the lower bound of the 

ICC, because both numerator and denominator with their 

ICCs being near the lower bound are all close to zero. It 

indicates that any variable of such kind will be greatly 

influenced by PSU masking.  

In general, surveys collect more than one variable and 

thus PSU masking based on one variable may not preserve 

well the ICC and thus not the variance of other variables. To 

better understand such an aspect, consider situations where 

the PSU masking results in both fixed and random distortion 

of the ICC written as yU y yUc e∗ρ = ρ +  for 0 02 0 2,y− . <ρ < .  

where 0 7 1 0 1 3,yc = . , . , . 2(0 0 05 )e N , .∼  and m M= =  
2 100.yS =  The constant coefficient yc  and the error term e  

in the model, respectively, allow deterministic and random 

perturbation in the ICC of the corresponding variable due to 

masking. Figure 1 displays the resulting ratio of the masked 

and unmasked standard errors (square-root of variances) 

against the ICC of the sample design. Three scatter plots in 

Figure 1 are all similar in their funnel shape with a wide 

variation for very small .yUρ  However, their generic 

patterns depend on the magnitude of .yc  For example, 

1yc <  produces a decreasing pattern, 1yc >  an increasing 

pattern, and 1yc =  a non-monotonic pattern, respectively. 

As will be discussed in Section 3.2, the case of 1yc >  may 

rarely occur.  

The above discussion may not be extended straight-

forwardly to other complex survey situations, mainly be-

cause surveys often involve complex sample design features 
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such as stratification, three or higher-stage selection and 

unequal probability sampling. Under such circumstances, 

the ICC may not be easily defined and the variance may not 

be approximated well in the form of (2) (see, e.g., Park 

(2004) and references cited therein). Nonetheless, the 

discussion in this section is still helpful to understand the 

effect of PSU masking on variance estimates in general.  

 
3. Effect of degree of PSU masking on variance 

        of sample mean 
 

The more the clustering structure is distorted, the larger 

the bias in variance estimation. To study such a relationship, 

we consider a parametric model used for two-stage sam-

pling. Suppose that two-stage sampling selects n  PSUs and 

m  units within each sampled PSU. Following Valliant, 

Dorfman and Royall (2000, page 248), we assume a 

sampled value ijy  for the thj  unit of PSU i  is generated 

from the following model:  
2

2

if

( ) Cov ( ) if

0 otherwise,

yi

ij yi ij i j yi yi

i i j j

E y & y y i i j j′ ′ξ ξ

 ′ ′σ = , = ,
 ′ ′ξ: = µ , = σ ρ = , ≠ ,



 

where 2
yi yiµ , σ  and yiρ  are the mean, variance and correla-

tion of units within PSU ,i  respectively. The variance of a 

sample mean 1
1 12

( ) n m
i j ijst

nm yy
−

= =∑ ∑=  is written as 

1 2

2
( ) ( ) [1 ( 1) ]yu yust

V S nm my
−

ξ | = σ + − ρ ,  (7) 

where 2 1 2 2 2
1 1 1( )n n n

i i iyu yi yu yi yi yin−
= = =∑ ∑ ∑σ = σ , ρ = σ ρ / σ  and S  

denotes the sample index set. Note that yuρ  can be inter-

preted as the (pooled or 2
yiσ −weighted) ICC under the 

model .ξ  

Let β  denote the relative size of PSU splits to be 
swapped between the PSUs 1i  and 2 .i  For simplicity, we as-

sume mβ  to be an integer value, which is the number of 

units in each split for swapping. Let S∗  denote the masked 

sample index set. The variance of 
2sty  with S∗  can be 

written as  

1 1 2 2

2 2 2

2 2
( ) ( ) ( 1) ( )yi yi yi yist st

V S V S ny y
∗ −

ξ ξ| = | + γ − σ ρ +σ ρ , (8) 

for 2 2(1 ) .γ = β + −β  The proof of (8) is given in the 

Appendix. Note that 1 1 0− < γ − <  for 0 1.< β <  The ratio 

of the masked and unmasked variances is written as  

1 1 2 2

2 2

2 2

( )
( ) 1 ( 1)

[1 ( 1) ]

yi yi yi yi
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yu yu

RV S S my
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Figure 1 Ratios of the masked and unmasked standard errors against original intracluster correlation coefficient 
with varying the effect of PSU masking under a model 

∗ρ = ρ +ρ = ρ +ρ = ρ +ρ = ρ +yU y yUc e  with . 2(0, 0 05 )e N∼∼∼∼  for 
0 7, 1 0, 1 3= . . .= . . .= . . .= . . .yc  and 

2
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The variance will not change if swapping is done such that 

1 1 2 2

2 2 0,yi yi yi yiσ ρ + σ ρ =  that is, the correlations within the 

corresponding PSU being opposite in their direction. 

Otherwise, the change in variance will be at the rate of 

( 1) 0m γ − <  for 
1 1 2 2

2 2 0.yi yi yi yiσ ρ + σ ρ ≠  

In general, units tend to be more similar within a PSU 

than across PSUs with yiρ  being small and positive in many 

populations (e.g., Valliant et al. 2000, Section 8.2.3). Thus, 

it is more likely that 
1 1 2 2

2 2 0yi yi yi yiσ ρ +σ ρ >  unless 2 0yiσ ≐  for 

all 1 2i i i= ,  and the masked variance is prone to be smaller 

than the unmasked variance, that is, 
2

( ) 1.
st

RV S Sy
∗

ξ | , <  

Figure 2 depicts the change in standard error against the 

unmasked (or baseline) ICC yuρ  with varying the propor-

tion of units to be swapped between the two PSUs. Figure 2 

shows that the more units that are swapped, the more the 

variance is changed, indicating that minimal swapping (i.e., 

PSU masking) should be done in order to not induce serious 

bias in the variance. Also, Figure 2 exhibits the L-shape 

decreasing pattern of the standard error ratio in the ICC, that 

is, indicating overestimation for negative ICCs but under-

estimation for positive ICCs. Therefore, under PSU 

masking, we can expect patterns of either kind 0 7yc = .  

(decreasing but random) or 1 0yc = .  (pure random) in 

Figure 1, with the latter being the best results attainable with 

minimal masking. In Section 4, we propose a PSU masking 

strategy through SSU swapping that helps produce a pattern 

of the second kind in the resulting variance ratios. In Section 

5, we apply the proposed strategy to artificial survey data 

with varying proportions of swapping.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2 Ratios of the masked and unmasked stan-

dard errors 2( , )
∗∗∗∗

ξξξξ ||||stRV S Sy  against the 
ICC with varying the proportion of 
swapping units from each PSU. 

2 2σ ≡σ =σ ≡σ =σ ≡σ =σ ≡σ =yu yi  

25,ρ ≡ρρ ≡ρρ ≡ρρ ≡ρyu yi  for all , 10,====i n 16,m ====  for β=β=β=β=  

. , . , .(0 1 0 2 0 3)  and 
-1

0.5( 1) 0.2− − ≤ρ ≤− − ≤ρ ≤− − ≤ρ ≤− − ≤ρ ≤yum  
 

 

4. PSU masking strategy for limiting biases  

        in variance estimation 
 

Many large-scale surveys involve several stages of 

sampling with unequal selection probabilities. Under such 

circumstances, the second stage or subsequent stage 

sampling units can be a natural choice for swapping to 

create pseudo-PSUs for operational reasons. For example, in 

the recent data releases of the National Health and Nutrition 

Examination Survey (NHANES) (Dohrmann et al. 2005) 

are included the pseudo-PSU identifiers constructed by 

swapping SSUs between the original PSUs. In this section, 

we consider SSU swapping for the purpose of PSU masking 

under stratified multi-stage sampling and their effect on 

variance estimates. We suggest a SSU swapping strategy 

based on the contribution of SSUs to variance estimates.  
 
4.1 SSUs in variance estimation under stratified 

multistage sampling   
Suppose that a finite population U  of M  units is 

partitioned into N  PSUs and similar PSUs in a number of 

characteristics are grouped to form a total of H  strata. 

Suppose also that each stratum consists of hN  PSUs and 

each PSU contains hiN  SSUs with hijN  ultimate sampling 

units, where 1
H
h hN N=∑=  and 1 1 1 .h hiN NH

h i j hijM N= = =∑ ∑ ∑=  

Assume that the first stage sampling selects 2hn =  PSUs 

within each stratum independently across strata and the 

second stage and subsequent stage sampling select, in turn, 

hin  SSUs within each sampled PSU ( )hi  and hijn  ultimate 

units within each sampled SSU ( ),hij  where 1 ,h … H= , ,  

1 hi … n= , ,  and 1 .hij … n= , ,  Associated with the 

sampled ultimate unit ( )hijk S∈  is the observed value hijky  

of survey variable y  and the sample weight ,hijkw  where 

1 hijk … n= , ,  and S  denotes the sample index set. The 

population total 1 1 1 1
hijh hi

NN NH
h i j k hijkY y= = = =∑ ∑ ∑ ∑=  and size M  are 

estimated by ( )
ˆ

hijk S hijk hijkY w y∈∑=  and ( )
ˆ ,hijk S hijkM w∈∑=  

respectively. Also, the population mean Y Y M= /  is 

estimated by ˆ ˆ ˆY Y M= /  and its Taylor series variance 

estimator (e.g., Shao and Tu 1995) is given by  

2

1 2

1

ˆ( )
2

H
h h

h

z z
v Y S

=

− 
| = , 

 
∑  (10) 

where 1 1( ) 2hijhi
nn

j khi hi hijk hijkz z y w z= =∑ ∑= =  are the estimated 

stratum totals of 1 ˆˆ( ) ( )hijk hijk hijkz z y M y Y
−= = −  for 

PSU ( ).hi  

Writing hiz  in (10) in the units of SSUs, we can see 

SSUs’ contribution to the variance estimate, thus helping 

find better SSU swapping strategies to limit biases in the 

variance estimates. If hijw  and k hijw |  denote the SSU 

sampling weights and the conditional ultimate sampling unit 

weights, respectively, then .hijk hij k hijw w w |= ×  Let ˆ
hijN =  

1
hijn

k k hijw= |∑  and 1
1

ˆ ˆ hijn

khij hij k hij hijkY N w y
−

= |∑=  denote the estimated 
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size and sample mean of SSU ( ),hij  respectively. The 

quantities hiz  in (10) can now be written as  

1

2
hin

hi hij hij
j

z w z
=

= ,∑  (11) 

where  

1

1

ˆ ˆˆ ˆ ( )
hijn

hij k hij hijk hij hij

k

z w z M N Y Y
−

|
=

= = − .∑  

It is clear from (10) and (11) that the contribution of the 

sampled SSUs to the variance estimate is through three 

components ˆˆ{ }hij hij hijw N Y, ,  of SSU ( ).hij  In Section 4.2, 

we will examine closely the effect of PSU masking on 

variance estimates through SSU swapping.  
 
4.2 Effect of SSU swapping on variance estimates   

We now assume that two SSUs ( )a a ah i j  and ( )b b bh i j  

are to be swapped between two PSUs ( ) ( ).a a b bh i h i≠  

Then, the masked variance estimate can be written from 

(10) as  

2 2

1 2 1 2

{ }

ˆ( )

ˆ( )
2 2

a b

h h h h

h h h

v Y S

z z z z
v Y S

∗

∗ ∗

∈ ,

| =

  − −  | + − ,   
    

∑
 
(12)

 

where hiz∗  denotes the quantity hiz  in (11) with the sample 

index set S∗  altered due to swapping. Let ai′  and bi  denote 

the other PSUs in strata ah  and ,bh  respectively, and define 

( ) 2 2 .l jhi j hi hij hij hil hilz z w z w z≠∑= − =  Then, (12) can be 

written as  

0 0
ˆ ˆ( ) ( ) ( ) ( )v Y S v Y S e y g y∗| = | + ,  (13) 

where 0 ( ) 2( )
a a a a a a b b b b b bh i j h i j h i j h i je y w z w z= −  is the 

difference in the quantity 1 ˆ ˆˆ2 2 ( )hij hij hij hijw z w M Y Y
−= −  

of the two SSUs to be swapped and  

( ) ( )

0 1
( ) ( )

[ ] if
( )

2 [( ) ( )] if

a a a b b b

a a a a a b b b b b

h i j h i j a b

h i h i j h i h i j a b

z z h h
g y

z z z z h h−
′ ′

− = ,
= 

− − − ≠ ,
 

is a function of 2 hij hijw z  of the SSUs to be retained in the 

original PSUs. Note that, for 0a bh h r= ,  can also be 

expressed 1
0 ( ) ( ) ( ) ( )2 [( ) ( )]

b b b a a a a a a b b bh i j h i j h i j h i jg z z z z−= − − − .  
It shows that the effect of SSU swapping on the variance 

estimate will be negligible if the two SSUs for swapping are 

paired in such a way that the product of 0 ( )e y  and 0 ( )g y  is 

close to zero. In other words, the change in the variance 

estimate under SSU swapping can be controlled when a 

segment pair is formed taking into account all three compo-

nents ˆˆ{ }hij hij hijw N Y, ,  so as to minimize 0 0( ) ( )e y g y×  as 

similar to the case under single-stage PPS cluster sampling 

in Section 2.2. 

In addition, by writing 

1 2 0

0 0 1
1 2 1 2 0

( ) if
( )

2 ( ) ( ) if

a a

a a b b

h h a b

h h h h a b

z z e h h
g g e

z z z z e h h−  
  

− − = ,
= = 

− − − − ≠ ,
 

(13) can be expressed as a quadratic function of 0 ( )e y  for 

given { : { , }, 1, 2}.hi a bz h h h i= =  For ,a bh h=  we can 

show that *ˆ ˆ( ) ( )v Y S v Y S| > |  only for 0e  in between zero 

and 1 2( ).
a bh hz z−  When   1 2 0,

a bh hz z− ≐  it may be more 

likely that *ˆ ˆ( ) ( ).v Y S v Y S| = |  Similar arguments can be 

made for .a bh h≠  
 
4.3 Sequential SSU swapping with multiple 

matching characteristics  
Suppose that there are a total of Jn  SSUs in the sample 

and only R  of them are chosen to form pairs for swapping, 

where 1 1
hnH

h iJ hin n= =∑ ∑=  and 1 .JR n≤ <  Assume that a 

fixed number of R  SSUs is chosen in accordance with a 

certain data risk-utility tradeoff consideration. See, for 

example, Gomatam, Karr and Sanil (2005) for some related 

discussion concerning data swapping. In addition, assume 

that their sequential order for the matching process is given 

as 1 2 Rj j … j, , ,  say. For example, at first, all possible pairs 

are formed for each of the R  SSUs and the best pair is 

picked based on a certain distance measure such as (12). 

The order of the R  SSUs for the (main) matching process is 

then determined according to the ascending order of the 

distances of the R  best pairs.  

Let 1rS −  denote the altered sample index set after the 
th( 1)r −  SSU pair has been formed and swapped, where 

1r … R= , ,  and 0 .S S≡  Let 1
( )
r
jS −  denote the sample index 

set with SSUs rj  and j  being swapped for 1.rS −  Then, the 

change in the variance estimate caused by swapping the thr  

SSU rj  and any other SSU that was not involved in the 

( 1)r −  previous match(es) can be written as  

1 1
( )

1 1

ˆ ˆ( ) ( ) ( )

( ) ( )

r r

r j

r r

y j v Y S v Y S

e y r g y r

− −

− −

δ , = | − |

= , , ,  (14)
 

where 1( )re y r− ,  and 1( )rg y r− ,  are defined similarly as in 

(13) but with 1rS −  and 1
( ) .
r
jS −  Clearly, the choice of the best 

match for the thr  SSU depends on the ( 1)r −  previous 

match(es) and thus the matching process should be viewed 

as a sequential process. Note that those SSUs that were 

matched and swapped in the previous match(es) should be 

excluded in the current search.  

In addition, more than one characteristic can be 

considered for matching, with the hope that they will be 

related to many other survey variables so as to minimize the 

bias in the associated variance estimate. Suppose that q  
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matching characteristics are chosen with care, say =x  

1 2( )qx x … x ′, , ,  (e.g., Dohrmann et al. 2005, for some 

related discussion). To measure the distance between SSUs 

rj  and ,j  any distance measure of the form  

1 1
( )

1

ˆ ˆ( ) [ ] [ ]
q

r r

r l l j l
l

D j c v X S v X S− −

=

| = | − |∑x  (15) 

or  

1
( )

1

ˆ ˆ( ) [ ] [ ]
q

r

r l l j l
l

j c v X S v X S−

=

∆ | = | − |∑x  (16) 

can be considered with any reasonable choice of positive 

coefficients .lc  For example, 1lc ≡  simply considers the 

absolute difference in the variance estimates of ˆ ,lX lc =  
1ˆ( )lv X S −|  the absolute difference in variance estimates 

relative to the original variance estimates, 1
l lc X −=  the 

absolute difference in relative variance estimates. The first 

distance measure (15) considers the change in the variance 

estimate due to swapping segments of the thr  pair. The 

second distance measure (16) takes into account the 

cumulative swapping effect of all the r  segment pairs.  

Matching constraints can be set, for example, to prohibit 

the pairing of SSUs from the same PSU and to apply a 

threshold of the proportion of SSUs from each PSU to be 

swapped (Lu 2004). Let 1{ }A RJ j … j= , ,  denote the index 

set of R  SSUs that are considered for forming swapping 

pairs and let BJ  denote all possible SSUs that can be 

matched satisfying a given set of matching constraints. For 

simplicity, consider that the pairing of SSUs is not allowed 

within ,AJ  that is, .A BJ J∩ =∅  If ( )rD j∗ | x  denotes the 

chosen distance measure for SSUs rj  and ,j  then a 

sequential SSU swapping algorithm for limiting the biases 

of variance estimates can be given as follows:   
Step 1. Set 1,r = r

A AJ J=  and ;r

B BJ J=   
Step 2. For each of the ( 1)R r− +  SSUs in ,rAJ  compute 

( )rD∗ ⋅ | x  for all SSUs in ;rBJ   
Step 3. Choose the best match with the smallest ( ),rD∗ ⋅ | x  

that is, find rj′  such that ( )r rD j∗ ′ | =x  

( );min r
Bj J rD j∗

∈ | x   
Step 4. Set 1,r r= +  and drop the chosen pair from the 

searching pool, that is, set 1 \ { }r r

A A rJ J j−=  and 

update r

BJ  accordingly, where 1 \{ };r r

B B rJ J j− ′⊆   
Step 5. If 1,r R= +  then stop; otherwise repeat Steps 2-4. 
 

This SSU matching (or swapping) approach basically 

searches for the pair at the thr  matching that is best in a 

sense of minimizing the change in variance estimates due to 

the corresponding SSU swapping. With a large number of 

SSUs, this method will lead to a scatter plot similar to that 

of 1 0yc = .  in Figure 1 (i.e., a random perturbation with a 

funnel-shape pattern).  

A choice of more sophisticated optimality criterion 

applied to { 1 }lc l … q: = , ,  may help improve the above 

method to reduce the magnitude of such random pertur-

bation in variance estimates. Also, if one uses multivariate 

techniques such as principal component analysis to develop 

some kind of scores (e.g., one or more principal component 

axes) from a larger number of continuous characteristics, the 

magnitude of such random perturbations in the variance 

estimates may be further reduced. In Section 5, we give 

examples regarding SSU swapping. 

 
5. Examples  

5.1 Previous work  
For a sample design with no stratification but a small 

number of PSUs, Dohrmann et al. (2002) considered 

various methods of splitting PSUs into pseudo-PSUs in 

order to use the delete-one jackknife variance estimation 

method. Their basic idea is to double the number of masked 

PSUs by keeping the split PSUs as separate masked PSUs, 

thus hoping to reduce data disclosure risk as a result of the 

broken linkage between the true and masked PSUs. In their 

empirical study, noticeable underestimation patterns were 

present for the resulting variance estimates for variables 

with large design effects, which resemble the plot of 

0 7yc = .  in Figure 1. Let S  and †S  denote the unmasked 

and masked sample index sets respectively. Let ijw  denote 

the sample weight and let ijy  denote the observed value of 

y  for the thj  sampled unit in PSU .i  To explain the 

observed underestimation patterns, Dohrmann et al. (2005) 

derived the following relationship  

† 2
1 2

1

1 1ˆ ˆ( ) ( ) ( )
2 1 (2 1)

n

i i
i

n
v Y S v Y S z z

n n n
, ,

=

−
| = | + − ,

− −
∑  

where 2
g ij Sg i ij ijz w z
,∈, ∑=  are the PSU-split totals of 

1( ) ( )ij ij ijij ij ij ij ij ijz w y w y w−∑ ∑ ∑= − /  and u iS ,  are the 

index sets of the 
thu  split of PSU i  for 1i … n= , ,  and 

1 2.u = ,  It indicates that the resulting variance estimate is 

about a half of the unmasked one plus a positive value 

reflecting the between PSU-split totals of ijz  within the 

PSUs. If u iS ,  are formed such that 1 2 ,i iz z, ,≐  this PSU-

splitting method leads to about a half of the unmasked 

variance estimate and thus the masked variance estimate 

could be doubled to get close to the unmasked value.  

For the two-PSU-per-stratum design, Dohrmann et al. 

(2005) considered an alternative approach under which the 

pseudo-PSUs are constructed by swapping SSUs between 

the PSUs. As discussed in Section 1, this approach can be 

viewed as dividing the PSUs into one or more splits and 

recombining them to construct pseudo-PSUs with swapped 

PSU splits. For simplicity, we assume that each PSU is 

divided into two splits 1 hiS ,  and 2 .hiS ,  If it is done so with 
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†
1 1 1 1 2h h hS S S, ,= ∪  and †

2 2 1 2 2 ,h h hS S S, ,= ∪  then the 

masked variance estimate can be written as  

†

1

ˆ ˆ( ) ( ) ( ) ( )
H

h h
h

v Y S v Y S e y g y
=

| = | + ,∑  (17) 

where 1 2 2 1( )h h he y z z, ,= −  is the difference between the 

PSU-split totals of 1 2hS ,  and 2 1hS ,  to be swapped and 

1 1 2 2( )h h hg y z z, ,= −  is the difference between the PSU-split 

totals of 1 1hS ,  and 2 2hS ,  to be retained in the original PSUs. 

The proof of (17) is given in the Appendix. Equation (17) 

indicates that a similar strategy for splitting PSUs would 

help preserve the magnitude of the original variance 

estimate. Dohrmann et al. (2005) adopted a probability-

based record linkage technique (Fellegi and Sunter 1969) to 

form pairs of SSUs for swapping that are similar in their 

means ˆhijY  for several characteristics, with the hope that the 

terms he  in (17) are all close to zero. Dohrmann et al. 

(2005) demonstrated that the PSU-recombination method 

can help reduce the biases of variance estimates and the 

resulting underestimation patterns to some degree as 

compared to the PSU-split method used in Dohrmann et al. 

(2002). To increase speed and flexibility, Lu (2004) 

developed SSU-swapping algorithms based on sequentially 

evaluating distance measures between SSU means without 

directly considering the impact of successive swapping on 

the bias of the variance estimate. As discussed in Section 

4.2, the effect of SSU swapping on variance estimates can 

be further reduced by direct consideration of SSU’s 

contribution to the variance estimates. In the next section, 

we apply both strategies, one by Dohrmann et al. (2005) and 

the other proposed in Section 4.2, to artificial data from a 

complex survey.  

 
5.2 Data example   

To illustrate the effect of PSU masking on variance 

estimates of sample means, we used real survey data from 

the 1993 National Health Interview Survey (NHIS) Year 

2000 Health objectives Public Use Data File (PUF) with 

some artificial modification. The NHIS is an annual 

household health interview survey of the civilian non-

institutionalized population of the United States. The NHIS 

involves a typical multistage, stratified sample design, with 

the first stage PSUs consisting of counties or metropolitan 

areas and the second stage SSUs consisting of segments 

(that is, a small number of households in a small geographic 

area) within sampled PSUs. This specific Year 2000 topic 

questionnaire was administered to one adult sample person 

per family only in the last half of 1993. The NHIS data used 

here and its documentation are available from National 

Center for Health Statistics (1994) or the United States 

Centers for Disease Control National Center for Health 

Statistics website (http://www.cdc.gov/nchs/about/major/ 

nhis/quest_data_related_doc.htm).  

This PUF contains the stratum and PSU identifiers, and 

sample person’s final weights for the purpose of variance 

estimation. For our example, we used only ten strata but 

limited their number of PSUs to two per stratum. Two of the 

selected strata, 110 and 520, were restricted to their two 

largest PSUs, (181,410) and (048,233), respectively, and the 

other eight strata, 102, 142, 192, 211, 261, 300, 561 and 571 

contain only two PSUs. The PUF also includes the SSU 

identifiers but not their sample weights. To generate SSU 

sample weights ,hijw  we employed a two-way nested 

random effects model to fit log log loghijk hij k hijw w w |= +  

such that ( )log hij hi j hiw = µ + α +β  and ( )log ,k hij k hijw | = ε  

where µ  is a common value, hiα  is the random effect of 

PSU ( ),hi ( )j hiβ  is the random effect of SSU j  nested 

within PSU ( )hi  and ( )k hijε  is the random effect of sampled 

person k  within SSU ( ).hij  We restricted our study to 

include only those SSUs with five or more sampled persons, 

giving a total of 293 SSUs in the analysis. The resulting 

weight decomposition ( )hij k hijw w |,  may involve possible 

model misspecification but it suffices our need for the 

illustration, since both hijw  and k hijw |  are all positive under 

the model. To obtain SSU pairs for swapping, we used six 

socio-demographic variables, denoted as 1 2 6 .x x … x, , ,  

They are listed in Table 1 with their description, definition, 

overall sample mean and squared root of design effect (i.e., 

design factor or deft  in short). The sample means of these 

variables range from 0.05 to 0.63 and the design factors 

from 1.285 to 8.511.   
Table 1 

Variables used for matching  
 

Variable  Description  Definition  Sample 

mean  

Design 

factor  

1x   Male  SEX=1  0.49  1.285  

2x   Hispanicity  HISPANIC  0.14  8.511  

  = 00, 01, ..., 08  0.14  8.511  

3x   Married couple  MARSTAT = 1,2  0.63  3.209  

4x   College or  
higher education 

EDUCR = 4, 5, 6  0.45  2.902  

5x   High family 
income of  
$50k or higher 

INCFAMR = 8  0.23  3.558  

6x   Has household  
air been tested  
for Radon? 

TESTRDN = 1  0.05  2.191  

 
We applied the two SSU matching strategies discussed in 

Section 4 and Section 5.1, respectively. The first strategy 

employs a distance measure (15) for any SSU pair ( )a br r,  

with 1lc ≡  for all 1 6.l …= , ,  Let 1rS −  and rS  denote the 

two sample index sets after the th( 1)r −  and thr  swapping, 

respectively. Then the distance of the thr  matching pair of 

the first strategy (variance-matching) is written as  



Survey Methodology, December 2008 191 
 

 
Statistics Canada, Catalogue No. 12-001-X 

6
1

1

ˆ ˆ( ) ( ) ( )r r

r l l
l

D v v X S v X S −

=

| = | − | ,∑x  

where ˆ( )rlv X S|  and 1ˆ( )r

lv X S −|  represent the variance 

estimates of ˆ
lX  for the thl  matching characteristic with rS  

and 1rS −  respectively. The smaller the distance is, the 

smaller the biases of variance estimates arises from 

swapping the thr  matching pair. The second strategy by 

Dohrmann et al. (2005) is to pair SSUs that are similar in 

their sample means of the six matching characteristics. This 

strategy (mean-matching) defines the distance of the thr  

matching pair as:  
6

1

ˆ ˆ( )
a br l r l r

l

d X X, ,
=

µ | = − ,∑x  

where ˆ
il rX ,  represents the SSU sample mean of SSU ir  

( )i a b= ,  for matching characteristic .lx  

Table 2 lists standard error ratios of the six matching 

characteristics at each matching in the sequential order for 

each strategy with 18 swapping pairs (representing about 

12% of the SSUs in the study). The first strategy, shown in 

the left panel of the table, gave a moderate but slightly 

increasing range of variations in standard error ratios over 

the sequence of the 18 swapping pairs. The second strategy, 

shown in the right panel of the table, produced a rather 

wider range of variation in standard error ratios over the 

sequence with its dramatic changes from the thirteenth and 

higher pairs in the swapping sequence. Although both 

strategies tend to lose their control over the biases in the 

variance estimates for higher orders of the swapping se-

quence, the first strategy was quite successful in controlling 

the biases of the variance estimates for a relatively large 

number of swapping pairs.  

Figure 3 plots the standard error ratios against the design 

factors for the two strategies varying the number of SSUs 

swapped. These three sets included 6 (4%), 12 (8%) and 18 

(12%) SSU pairs (percentage of SSUs involved in 

swapping), respectively. Each plot includes two sets of 

characteristics, 6 matching characteristics marked with the 

corresponding numbers as listed in Table 1 and 92 

characteristics marked with ×  that are not used in matching. 
For the scenario with only 4% of the SSUs swapped, the 

difference between the two strategies is negligible for both 

sets of characteristics. However, as the percentage of SSUs 

swapped increases, the perturbation in the variance 

estimates becomes greater for both strategies and both sets 

of characteristics. This result indicates that a small 

percentage of swapping should occur, reinforcing the 

findings of Section 3. In addition, the standard error ratios 

are clustered more closely to the line of one (i.e., small 

biases of the masked variance estimates) with the first 

strategy than with the second strategy. The second strategy 

produced a rather steeply decreasing pattern over the design 

factor even for the six matching characteristics. That is, the 

mean-matching strategy is seen more poignant for the 

variables used for matching.  
 

   
Table 2 

Standard error ratios by swapping sequence: Comparison of the two matching criteria with 12% (18 pairs) SSU swapping 
 

 Variance-matching    Mean-matching 

Swapping Sequence 1x   2x   3x   4x   5x   6x       1x   2x   3x   4x   5x   6x   

1  0.999  1.000  1.000  0.998  1.000  0.998  0.998  1.000  1.000  1.002  1.002  1.001   

2  1.002  1.000  1.000  1.000  1.000  0.996  0.999  1.000  1.000  1.002  1.001  1.001   

3  1.004  1.000  1.000  1.001  1.000  0.996  0.998  1.000  0.999  0.997  0.994  1.001   

4  1.012  1.001  0.999  1.000  1.000  0.989  1.025  1.000  0.999  1.001  0.994  1.016   

5  1.009  1.001  1.000  0.998  1.001  0.988  1.021  1.004  0.964  0.968  0.951  1.013   

6  1.007  1.000  1.000  1.000  1.003  0.988  1.020  1.004  0.964  0.968  0.955  1.015   

7  1.011  1.000  1.000  1.002  1.003  1.008  1.020  1.004  0.964  0.970  0.954  1.017   

8  1.016  1.000  0.997  1.002  1.003  1.026  1.022  0.998  0.957  0.963  0.964  1.005   

9  1.009  0.998  1.000  1.002  1.003  1.020  1.021  0.997  0.955  0.965  0.982  1.034   

10  1.007  0.996  1.001  1.010  1.006  1.014  1.019  0.997  0.931  0.960  0.972  1.033   

11  1.014  0.994  1.005  1.010  1.001  1.012  1.020  0.995  0.946  0.953  0.989  1.034   

12  1.029  0.995  1.003  1.013  1.011  1.036  1.021  0.991  0.946  0.953  0.987  1.035   

13  1.064  0.992  1.003  1.001  1.008  1.047  1.035  0.990  0.946  0.932  0.967  1.114   

14  1.008  0.991  1.000  1.007  1.022  1.044  1.031  0.955  0.946  0.929  0.952  1.103   

15  1.042  0.988  0.984  1.017  1.015  1.044  1.052  0.955  0.946  0.922  0.952  1.124   

16  1.012  0.982  0.986  1.024  1.041  1.042  1.107  0.939  0.936  0.920  0.942  1.128   

17  0.987  0.978  1.000  1.016  1.009  1.021  1.107  0.878  0.936  0.927  0.935  1.123   

18  1.029  0.943  1.000  0.970  0.947  1.042  1.014  0.538  0.946  0.841  0.945  1.106   

See Table 1 for the description of the six matching characteristics ( 1 6x … x, , ).  
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Figure 3 Ratio of Standard Errors vs. Baseline Design Factors. Six numbers represent the points of the 

corresponding matching characteristics and ××××  marks represent those of 92 characteristics not used 
in matching 

 
 

6. Discussion 
 

In this paper, we investigated the effect of PSU masking 

on variance estimates in complex surveys. Obviously, PSU 

masking distorts the clustering structure of the original 

sample design, possibly yielding systematic biases in the 

analysis of the resulting data as seen in Sections 2, 3 and 

5.2. The proposed PSU masking strategy in Section 4 can 

help reduce such biases but still leave a random perturbation 

in the variance estimation and thus a loss of inferential 

efficiency. Research on the effect of PSU masking would be 

interesting on other types of complex data analyses such as 

regression and multivariate analyses. Although PSU 

masking can provide disclosure control, the degree of 

masking should be minimal to limit the resulting biases of 

variance estimates as discussed in Sections 3 and 5.2.  

In addition, the reduction of the identification risk 

incurred by SSU masking may be better understood by 

writing the distance between the masked sample PSU mean 

and the PSU mean in the population as follows:  
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† †

ˆ ˆ ˆ ˆ( ) ( )
hi U hi S hi S hi Uhi S hi S

Y Y Y Y Y Y| | | || |
− = − + − ,  (18) 

where †

ˆ
hi S

Y
|

 and ˆ
hi SY |  denote the masked and unmasked 

PSU means in the sample, respectively, and hi UY |  denote the 

PSU mean in the population that may be available to an 

intruder (i.e., a malicious data user) from external sources 

such as Census data. One can show easily that the first term 

in the right-hand side of (18) is not equal to zero, in general, 

with PSU masking. †

ˆ
hi S

Y
|

 and ,hiUY |  together with non-

neglible sample variation of the second term in the right-

hand side of (18), are never equal except by rare chance. 

Dohrmann et al. (2005) compare †

ˆ{ }
hi S

Y
|

 of the sample to 

{ }hi UY |  of the population by a stylish stem-and-leaf diagram 

to demonstrate how hard it would be for an intruder to 

identify a sampled PSU in the public release data files in 

association with two aspects: 1) few pairs of †

ˆ( )
hi Uhi S

Y Y ||
,  

being close to each other; and 2) many unsampled PSU’s 

with population values similar to †

ˆ{ }
hi S

Y
|

 or { }hi UY |  of the 

sampled PSUs. Some forms of probabilistic measurements 

may be interesting to evaluate identification risk reduction 

(e.g., Eltinge 1999) but are beyond the scope of this paper. 

The proposed masking strategy has been applied to the 

2003-2004 National Health and Nutrition Examination 

Survey (NHANES) release (Park, Dohrmann, Montaquila, 

Mohadjer and Curtin 2006).  
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Proof of equation (1)  
From Park and Lee (2004, Section 4.2),  
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where 2 ˆDeft ( )Y S|  represents the design effect of Ŷ  for a 

given ,S  the second and the last approximations follow 

from ( 1) 1N N− / ≐  and the third equation from 

2 1 2
1[1 ( 1) ] ( 1) ( ) ,N

iy yU i iS M N M Y Y−
=∑+ − ρ − −≐  which 

completes the proof.  
 
Proof of equation (8)  

By definition, the variance of the sample PSU total 

ji ijy y∑=  is 2 2( ) ( 1)i yi yi yiV y S m m mξ | = σ + − σ ρ  for 

1 .i … n= , ,  Suppose that { ( 1) 1 }ijy j m … n: = β − + , ,  for 

the two PSUs i a=  and b  are to be switched between the 

PSUs. Then these two PSUs have their variance changed to 
2 2( ) (1 ) (1 )[ (1 ) 1]

a a a a
V y S m m m∗

ξ | = − β σ + −β − β − σ ρ +  
2 2( 1)b b bm m mβσ + β β − σ ρ  and to ( )bV y S∗

ξ |  being the 

same with switching the indices a  and .b  Since 

(1 ) [ (1 ) 1] ( 1) ( 1),m m m m m m−β −β − + β β − = γ −  the 

proof is completed from observing  
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Proof of equation (13)   

Suppose that two PSUs ( 1)h  and ( 1)k  from two 

different strata h k≠  are to be reconstructed by swapping 

each of their SSUs, ( 1 )
a

h j  and ( 1 ).
b

k j  Let 
hk
e =  

1 1 1 12( )
a a b bh j h j k j k jw y w y−  denote the difference between the 

contributions of the two SSUs to 
hi
z  in (11). Let 1( )ah jz =  

1 12
aj j h j h jw z≠∑  and 1( ) 1 12

bb
j jk j k j k jz w z≠∑=  denote, respec-

tively, 
hi
z  excluding the contributions from the SSUs to be 

swapped. By noting that 1 1 ,
h h hk
z z e∗ = − 2 2,h h

z z∗ = 1kz
∗ =  

1 ,
k hk
z e+  it follows from (12) that  
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and thus, (13) holds with 1

2 1( )2 {[ ]
ahk h h jg z z−= − −  

2 1( )[ ]}.
bk k jz z−  The proofs for the other three cases are 

similar. When ,h k=  we have 1 12(
a ahh h j h je w z= −  

1 1 ),
b bh j h jw z 1 1h h hh

z z e∗ = −  and 2 2 .
h h hh
z z e∗ = −  The proof is 

completed by letting 1

2( ) 1( ) 1( )2 {[ ] [
b a ahh h j h j h jg z z z−= − − −  

2( ) 1( ) 2( )]} .
b b bh j h j h jz z z= −  

 
Proof of equation (17)   

By definition, we have 1 2hi hi hiz z z, ,= +  and †

yi i hiz z ,= +   

i hiz ,  for any h  and .i  Thus, observing † †

1 2 1h h h
z z z− = −  

2 12 1 22( )
hh h zz z
,, −+  and 1 2 1 2 2 1 1 1h h h h hz z z z z, , ,− + − = −  

2 2 ,hz ,  we have  
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which completes the proof.  
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A tree-based approach to forming strata in  
multipurpose business surveys 

Roberto Benedetti, Giuseppe Espa and Giovanni Lafratta 1 

Abstract 

The design of a stratified simple random sample without replacement from a finite population deals with two main issues: 

the definition of a rule to partition the population into strata, and the allocation of sampling units in the selected strata. This 

article examines a tree-based strategy which plans to approach jointly these issues when the survey is multipurpose and 

multivariate information, quantitative or qualitative, is available. Strata are formed through a hierarchical divisive algorithm 

that selects finer and finer partitions by minimizing, at each step, the sample allocation required to achieve the precision 

levels set for each surveyed variable. In this way, large numbers of constraints can be satisfied without drastically increasing 

the sample size, and also without discarding variables selected for stratification or diminishing the number of their class 

intervals. Furthermore, the algorithm tends not to define empty or almost empty strata, thus avoiding the need for strata 

collapsing aggregations. The procedure was applied to redesign the Italian Farm Structure Survey. The results indicate that 

the gain in efficiency held using our strategy is nontrivial. For a given sample size, this procedure achieves the required 

precision by exploiting a number of strata which is usually a very small fraction of the number of strata available when 

combining all possible classes from any of the covariates. 
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1. Introduction 
 

Many business surveys employ stratified sampling 

procedures in which simple random sampling without 

replacement is executed within each stratum (see, e.g., 

Sigman and Monsour 1995, and, for farm surveys, Vogel 

1995). Usually the list frame from which units are selected 

is set up using administrative or census information, 

represented by a rich data base of auxiliary variables, each 

of which can be potentially exploited to form strata. 

Furthermore, such surveys are often also multipurpose, and 

given precision levels must be achieved in estimating 

multiple variables under study.  

The goal of satisfying such a large number of constraints 

without drastically increasing the sample size is commonly 

considered as strictly related to the choice of the number of 

stratifying variables and of their class intervals (Kish and 

Anderson 1978). This is due to the well known fact that 

finer partitions of the population introduce more information 

useful for the reduction of estimation variances, but, on the 

other hand, their application implies higher risks for units to 

become jumpers.  

Let us indicate as the atomised stratification that one 

obtained forming strata by combination of all possible 

classes from any of the covariates in use. If the 

corresponding number of such basic strata, or atoms, 

exceeds a given threshold imposed by practical restrictions, 

it seems unavoidable to redesign the survey selecting a 

smaller number of stratifying variables or creating fewer 

classes from each of them. Notwithstanding, it can be noted 

that another way of obviating such an unsatisfactory 

situation can be based on the following argument: the 

atomised stratification can really be interpreted as an 

extreme solution to the problem of strata formation, since, 

between the cases of no stratification and using the atomised 

stratification, there exists a full range of opportunities to 

select a stratification whose subpopulations can be obtained 

as unions of atoms.  

Our proposal is to accomplish this selection through the 

definition of a tree-based stratified design. We form strata 

by means of a hierarchical divisive algorithm that selects 

finer and finer partitions by minimizing, at each step, the 

sample allocation required to achieve the precision levels set 

for each surveyed variable. The procedure is sequential, and 

determines a path from the null stratification, i.e., that one 

whose single stratum matches the population, to the 

atomised one. At each step, we select which variable is to be 

used to define the new, more disaggregated partition: each 

stratum in the current partition is split on any covariate, 

using in turn all of its available classes, and the one that 

better decreases the global allocation size is selected.  

Bloch and Segal (1989) discussed the application of 

classification tree methods (see, e.g., Breiman, Friedman, 

Olshen and Stone 1984) to strata formation, but their focus 
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was mainly on strata interpretation about the relationships 

between the covariates and a unique outcome variable. 

Instead, our rules to partition the population are directly 

oriented to the optimal allocation of sampling units in the 

selected strata. The classical methods which deal with the 

univariate case (Dalenius and Hodges 1959; Singh 1971; 

Lavallée and Hidiroglou 1988; Hedlin 2000; Lu and Sitter 

2002; Gunning and Horgan 2004; for a review see Horgan 

2006) can’t be easily extended to cover the case where one 

seeks to exploit multiple covariates for stratification. The 

solutions proposed in this literature are, as a consequence, of 

poor practical value if the survey is multipurpose and 

information on multiple covariates is available. In such a 

context, methods to satisfy a large number of constraints on 

errors when minimizing the sample size were proposed by 

Bethel (1985, 1989) and Chromy (1987). Valliant and 

Gentle (1997) also approached the problem for two-stage 

sampling frameworks. For a given stratification, we choose 

to apply the Bethel’s allocation rule and henceforth the 

procedure selects subsequent partitions by minimizing the 

survey cost function corresponding to the stratifications 

consisting of the currently unsplit strata and of the available 

split substrata.  

According to what we have said before, our position in 

the grand picture of multivariate stratification follows the 

goal by Kish and Anderson (1978), namely bringing some 

results in the field of stratified sampling towards the needs 

of survey practice. Practitioners daily perform multivariate 

(several variables available for stratification) and multi-

purpose (several variables and many other statistics are the 

main objectives of survey efforts) surveys. Thus, the aim of 

our approach consists in giving the possibility of combining 

stratification and sample allocation. This means that we are 

concerned with the choice of the number of stratifying 

variables, of the number of class intervals for each variable 

and of the optimal Bethel’s allocation to strata. As of this 

choice, our methodology cannot be reduced to the standard 

solution of the multivariate stratification problem, i.e., the 

use of multivariate techniques such as cluster analysis and 

principal components (see, for example, Mulvey 1983, Pla 

1991 and Jarque 1981). As a matter of fact, this branch of 

literature does not use (or uses only indirectly) the variables 

of interest, but only the auxiliary variables, and the alloca-

tion issue is neglected. It would be even less justifiable to 

reduce our approach to the ones reviewed by Särndal, 

Swensson and Wretman (1992, section 12.6 and 12.7): the 

techniques presented in section 12.6 combine stratification 

and multivariate sample allocation, but are not multi-

purpose, whereas the methods of section 12.7 are multi-

purpose but are based on predetermined strata.  

The paper is organized as follows. Section 2 introduces 

the procedure we propose for the computation of 

stratification trees. We thoroughly describe the algorithm 

used to generate the sequence of stratifications, and we 

show how it can be represented as a classification tree. 

Stopping criteria are also discussed to determine how they 

can affect the optimal number of strata. In Section 3 we 

examine how a stratification tree can be exploited to design 

the European Community survey on the structure of 

agricultural holdings, also known as Farm Structure Survey 

(FSS). We illustrate our stratification technique identifying a 

tree-based set of strata and allocations using a basic set of 

atoms defined by means of multivariate information 

collected during the fifth Agricultural General Census held 

in Italy in the year 2000. Finally, Section 4 is devoted to 

some concluding remarks, focusing on issues regarding the 

practice of forming strata by trees and discussing how the 

procedure can be used to better manage multipurpose 

surveys based on stratified designs.  

 
2. A procedure to generate multivariate 

        stratification trees  
 

Consider a finite population P  of N  units, on which 

variables 1 g Gy … y … y, , , ,  are to be surveyed to estimate 

their totals using a stratification on ,P  i.e., a collection F of 

FH  nonempty subpopulations, called strata, partitioning .P  

Our problem is how to select F  in order to minimize the 

corresponding overall sample allocation Fn  in a way such 

that, for 1 ,g … G= , ,  the coefficient of variation (CV )g  

corresponding to the thg  variate of interest is not greater 

than the desired level of precision, say 0.gε >  

For a given ,F  such minimization is executed by com-

puting the Bethel’s (1985) sample allocation rule. More 

thoroughly, let us indicate by ,hn 1 ,Fh … H= , ,  the sample 

allocation in stratum .h  The global survey cost corre-

sponding to F  can thus be given as follows 

1 1
( ) F

F

H

H F h hh
f n … n c c n

=
, , = + ,∑  

where Fc  is a fixed cost independent from F =n  

1( ) ,
FHn … n ′, ,  and hc  represents the cost to sample one unit 

in stratum .h  Furthermore, let gY  be the total in P  of the 
thg  response variable, hN  the size of the thh  stratum of ,F  

and 2
h gS ,  the variance of gy  in stratum .h  Then the thg  

constraint on the required precision can be expressed as: 

2 2

2 2 2 2 2

1 1

2 2

1 2 2 2

1

(CV )

1

F F

F

F

H Hh h g

g g h h g g gh h
h

H h h g

Hh

g g h h g hh

N S
N S Y

n

N S

Y N S n

,
,= =

,
=  

 ,= 

≤ ε ≡ − ≤ ε

≡ ≤ ,
ε +

∑ ∑

∑
∑

 

so that, if we consider the following quantities, referred to as 

the standardized precision units,  
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2 2 2 2 2

1

FH

h g h h g g g h h gh
N S Y N S

 
 , , ,= 

ξ = ε + ,∑  

the problem of optimal allocation for F  can be expressed 

as follows: 

1

min ( )

subject to / 1 1

1/ 0 1

F

F

H

h g hh

h F

f

n g … G

n h … H

,=
ξ ≤ , = , , ,

> , = , , .
∑

n

 

Bethel (1989) derived the solution to such problem, say hn
∗,  

1 ,Fh … H= , ,  as follows: 

1 11 1

1/

if 0

otherwise

F

h

G GG H

h l g l g g h gg h g g gg l

n

c c

∗

 ∗ ∗∗  , ,, = == = 

=

 α ξ α ξ > ,α ξ

+∞ ,

∑ ∑∑ ∑

 

where 1/ ,G
gg g g

∗
=∑α = λ λ  and gλ  is the Lagrangian 

multiplier of the constraint on the maximum error allowed 

estimating the thg  surveyed variable, and indicates whether 

the thg  constraint is “active” in the allocation problem 

solution (namely, if 0,g
∗α =  then the constraint is not 

active). The corresponding global optimal allocation is thus 

given by setting 1 .FH
hF hn n∗=∑=  

Let us now assume that total estimates and their 

variances are available for any of a given set of 1M >  

basic strata 1 ,m MA … A … A, , , ,  so that we can rely on two 

M G×  matrices, respectively of totals ( )m gY ,=T  and 

estimation variances 2( ),m gS ,=V  and the sizes ,mN  

1 .m … M= , ,  The definition of such strata, which in the 

sequel will be referred to as atoms, is based on a set of 

covariates 1 k KX … X … X, , , ,  as follows. Let i kx ,  be the 

value of kX  measured on unit ,i P∈  and consider the set 

of distinct values observed for kX  in ,P kΞ =  
{ }.i kx i P x x ,∈ : ∃ ∈ : =ℝ  We build 1| |K

k kM =∏= Ξ  

atoms, one for every vector 1( )m m Ka … a, ,, ,  in the Cartesian 

product 1 ,K

k k=Ξ = ⊗ Ξ  by setting for 1m … M= , ,  

1

K

m m kk
A A ,=
= ,∩  

where { }.m k i k m kA i P x a, , ,= ∈ : =  In the case where the 

covariates kX  are continuous, the set kΞ  will contain N  

not empty atoms. As the algorithm is hierarchical divisive, 

the number of final atoms does not affect at all the steps of 

the algorithm. Only the initial phase of construction of the 

aggregate statistics and, at most, the memory allocation are 

impacted. Our empirical experience suggests that the 

computing times do not change much if the size of the 

atoms is equal to 1. On the contrary, continuous or ordered 

variables speed up the algorithm, as the number of possible 

binary partitions is, if the number of values is the same, 

much smaller with respect to the case of categorical 

variables. One verifies that this construction does yield a 

stratification: each unit of the population appears in one 

atom, and in one only. To illustrate our definitions, let us 

refer to the data shown in Table 1, where a simple example 

is described in which a set of 9M =  atoms (obtained 

exploiting 2K =  covariates both having 3 distinct values, 

namely 1, 2, and 3) is assumed to constitute the basic 

stratification to survey 2G =  variables, whose totals and 

estimation variances are also reported, together with atom 

sizes. In this context, we have 1 2 {1 2 3},Ξ = Ξ = , ,  and, 

for example, 8A  is the subpopulation whose elements i  are 

such that 1 8 1 3ix a, ,= ≡  and 2 8 2 2.ix a, ,= ≡   
Table 1 

Example data for 9 atoms and 2 surveyed variates 
 

Atoms  Surveyed Variates 

Id Definition Sizes  Totals Variances 

m  1m
a ,,,,  2m

a ,,,,  
m

N   1m
Y ,,,,  2m

Y ,,,,  2
1m

S ,,,,  2
2m

S ,,,,  

1 1 1 1,000  10 10 16 25 

2 1 2 1,000  10 10 16 4 

3 1 3 1,000  10 10 16 4 

4 2 1 1,000  10 10 16 25 

5 2 2 1,000  10 10 16 4 

6 2 3 1,000  10 10 16 4 

7 3 1 1,000  10 10 4 25 

8 3 2 1,000  10 10 4 16 

9 3 3 1,000  10 10 4 16 

 
The procedure we propose generates a sequence of 

stratifications which can be represented as a classification 

tree. Define the level l  of a given node ν  in the tree as the 
number of arcs in the (unique) chain connecting node ν  to 
the root node, and let us indicate with lr  the number of 

nodes sharing the same level .l  Since only one node will be 

split at each level, we have 1lr l= +  for every .l  At each 

level 0l ≥  the procedure determines a class lF  of lr  

nonempty subpopulations in which P  can be partitioned, 

putting them in a one-to-one correspondence with the nodes 

of level .l  The strata in lF  are all candidates for being split 

on any given covariate ,kX  and, following Bethel (1989), 

the sample allocation is computed which optimally 

minimizes the survey cost function for the stratification 

consisting of the unsplit strata in lF  and the two substrata 

which define the current split. The best split at level l  is 

identified as the most favorable in terms of decreasing 

sample allocation, with respect to that characterizing ,lF  

than any other possible split on any of the covariates in use. 

The optimal allocation corresponding to the stratification 

defined by such best split, indicated by 1,b ln , +  is taken as 

the optimal sample size at level 1,l +  and is considered as 

an upper bound value constraining allocations in the 

successive level of classification. At initialization, we set 

0 { },F P=  whose single stratum is thus equivalent to the 

entire population, and the best sample size 0bn ,  is computed 
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as the maximum among those optimal sizes obtained taking 

into account, separately, every single precision level gε  set 

about the thg  surveyed variate: 

2 2

0 2 2 2
1

max
g

b
g … G

g g g

N S
n

Y N S
,

= , ,
= ,

ε +
 

where gY  is the total estimate for gy  on P  and 2
gS  is the 

corresponding variance (see, for the optimum allocation 

with only one item, Cochran 1977, pages 97-106, and 

Särndal et al. 1992, pages 104-109).  

When 0,l >  the set of strata 1,lF −  optimal at step 1,l −  

is analyzed. The best sample allocation at step , ,b ll n ,  is 

initially set equal to 1,b ln , −  and, for each stratum 1lU F −∈  

and every auxiliary variable ,kX  the following algorithm is 

executed. Let UA  be the set of atoms contained in the 

current stratum ,U  so that UU A= ∪  holds true, and let 

( )m A  be a function returning the index assigned to any 

atom 0( ( )A m A m=  if and only if 
0
),mA A=  then we can 

express the set of values taken on by kX  for units contained 

in any atom of UA  as follows: 

( ){ }k U m A kQ q A A q a ,= ∈ : ∃ ∈ : = .ℝ  

If kX  is an ordered variate, for every q  in kQ  other than 

max( )kQ  the stratum U  is partitioned into sets 1 1qU U ,=  

and 2 2qU U ,=  as follows: 

1 ( ){ }q U m A kU A A a q, ,= ∈ : ≤ ,∪  

and 2qU ,  is the relative complement of 1qU ,  in ,U  i.e., the 

set of all i U∈  which are not in 1:qU ,  

2 1q qU U \ U, ,= .  

In our example, for a stratum U  defined as 1 2 8A A A∪ ∪  

we have 1 2 8{ },UA A A A= , , 1 {1 3}Q = ,  and 2 {1 2}Q = ,  

(see Table 1), so that our algorithm would try to split U  in 

1 1 2U A A= ∪  and 2 8U A=  using 1,X  and in 1 1U A=  

and 2 2 8U A A= ∪  using 2.X  If, on the contrary, kX  is 

unordered, U  is instead partitioned in sets 1U  and 2U  for 

every proper subset 1U  of ,U  with 2 1.U U \ U=  

We thus have a corresponding candidate stratification, 

namely 

1 1 2( { }) { } { }lF \ U U U−= ∪ ∪ ,C  

which includes all the strata in 1lF −  other than ,U  and, in 

addition, 1U  and 2.U  For every stratum C  in the collection 

,C  the total estimates of ,gY 1 ,g … G= , ,  

( )C g m A gA A
Y Y, ,∈

= ,∑
C

 

and their corresponding variances 

(

)

2 1 2

( )

1 1 2

( )

( 1) ( 1)

( ) ,

C g C A m A gA A

A A m A g C C gA A

S N N S

N N Y N Y

−
, ,∈

− −
, ,∈

= − −

+ −

∑

∑

C

C

 

are computed, and the sample allocation nC  is thus obtained 

applying the Bethel’s rule. If ,b ln n ,<C  then the split 

1 2( )U U,  becomes the current best one, the best 

stratification candidate ∗C  becomes C  and b ln ,  is updated 

to .nC  In this way, the divisive procedure which achieves 

the best result, i.e., the smallest sample size, is selected to 

generate the next optimal strata: 

lF
∗= .C  

In the framework of our example, for precision levels 

1 2ε = ε = 0.1, let us describe the optimal split at level 
1,l =  i.e., that one splitting the entire population in two 

strata. Using the data described in Table 1, the algorithm 

indicates that the best split of U P=  is based on variable 

2,X  and is obtained by setting  

1 ( )

1 2 4 5 7 8

{ 2}P m A kU A A a

A A A A A A

,= ∈ : ≤

= ∪ ∪ ∪ ∪ ∪ ,

∪
 

and correspondingly 2 1 3 6 9.U P \ U A A A= = ∪ ∪  Such 

optimal division is represented in Figure 1, where, for every 

stratum, its size, its definition in terms of included atoms, 

the current allocation, and the estimation statistics are 

thoroughly reported.  

Issues concerning the optimal number of strata are taken 

into account by defining the stopping criteria of the tree 

generating procedure. We decide to stop the algorithm if the 

relative difference between the optimal sample size at the 

current level and the optimal one at the previous level is 

smaller than a given parameter 0:δ >  

1 1( )b l b l b ln n n, − , , −δ > − / .  (1) 

Since the Bethel’s algorithm converges to a vector whose 

range is ( ) 1
,0

l +, +∞  its entries must be rounded to the 

corresponding nearest integers towards infinity; as a 

consequence, especially in presence of many small strata, a 

given allocation is likely to yield a sample size greater than 

the previous one. Also, in this case, we decided to stop our 

procedure. To avoid too small and henceforth statistically 

unstable strata, additional rules can be set to avoid further 

disaggregations of current strata if the corresponding 

substrata have cardinalities smaller than a predefined 

minimum stratum size. Complexities in survey management 

can also be easily mitigated by imposing a maximum 

number of strata.  
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Figure 1 The first optimal split for the example data 

 

 

This approach, performing an exhaustive search in each 

single split, guarantees that the corresponding stratification 

and allocation are optimal, but only conditionally to the 

splits previously executed. We know that monotonicity of 

solutions and conditional optimality of each sub-tree 

obtained by splitting recursively each node are necessary 

but not sufficient conditions for a binary tree to be optimal. 

In order to guarantee the overall optimality, to these 

conditions we should add the requirement that an optimal 

stratification in, say, H  strata, can only be obtained by 

partitioning one of the nodes of the optimal stratification in 

1H −  strata. In other words, we should assume that an 

optimal partition in H  strata is a subspace of the optimal 

partition in 1H −  strata, which implies that partitioning a 

given stratum will not modify the objective function - i.e., 

the allocation - in the remaining 1H −  strata. However, 

this assumption is rarely true in practical survey 

applications, since splitting a stratum usually induces a 

modification of the optimal allocations in all the remaining 

unsplit strata.  

The proposed algorithm, inspired by the sequential and 

recursive nature of binary trees, can be considered as an 

heuristic approach to the problem of multivariate strati-

fication, which enables us to detect good, nearly-optimal, 

strata at the cost of a reasonable computational burden. As a 

result, this technique is effective in partitioning populations 

making use of large sets of both continuous and qualitative 

auxiliary stratifying variables. In addition, the simple 

structure of binary trees implies a great flexibility in the 

introduction of any number of additional constraints, such as 

lower limits on the number of units in each stratum.  

 
3. Forming strata for the Italian  

        Farm Structure Survey 
 

For the requirements of European Community 

agricultural policies, the Farm Structure Survey (FSS) is 

executed, every two years, as a census update (Council 

Regulation (EEC) No 70/66), collecting data on techno-

economic variables characterizing EU farms. It represents 

the primary source of information for the EUROFARM 

project (Council Regulation (EEC) No 571/88), a set of data 

banks to be used for processing Community surveys on the 

structure of agricultural holdings. Member States are 

responsible for taking all appropriate steps to carry out the 

FSS in their territories, and they are also free to select a 

sampling criterion, but the questionnaire and the precision 

required, at a national level, for the estimates of the study 

variables are fixed by Community regulations (see EC 

Regulations No 837/90 and No 959/93, and subsequent 

Commission Decisions 1998/377/EC and 2000/115/EC).  

To illustrate our stratification technique, we execute the 

algorithm described in Section 2 to design the italian FSS 

and identify a tree-based set of strata and allocations using 

multivariate information. All the algorithms have been 

implemented by one of the authors in MATLAB language; 

a Win32 console application has also been developed in 

C++ to enable software execution in batch mode.The design 

  

 

2X ≤ 2 2 2X<  Optimal split 
 

 Variate: 2X  

 Code: 2 

Stratum Id: 3 
 

  Atoms: 3, 6, 9 

  Size: 3,000 

  Allocation: 2,710 
 

  Variates: 1Y  2Y  

  Totals: 30 30 

  Variances: 11.99 7.99 

Stratum Id: 2 
 

  Atoms: 1, 2, 4, 5, 7, 8 

  Size: 6,000 

  Allocation: 6,000 
 

  Variates: 1Y  2Y  

  Totals: 60 60 

  Variances: 11.99 16.48 

Stratum Id: 1 
 

  Atoms: 1, …, 9 

  Size: 9,000 

  Allocation: 8,995 
 

  Variates: 1Y  2Y  

  Totals: 90 90 

  Variances: 11.99 13.65 
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exploits the frame of farms listed during the fifth 

Agricultural General Census held in Italy in the fall of 2000. 

ISTAT, the Italian national statistical institute, is responsible 

for updates of such frame based on integration of 

administrative records, but were not available at the moment 

of this writing. For the procedure to be initialised, we need a 

set of atoms into which the population of the italian 

agricultural holdings must be partitioned. This set of basic 

strata is obtained by aggregation of farms sharing the same 

classes of seven covariates. We select four variables related 

to land use and livestocks, namely utilised agricultural area 

(UAA), number of bovine animals (NBA), number of pigs 

(NP), and number of sheep and goats (NSG). To take into 

account the geographical characteristics of the holdings, we 

also added, as a stratification variable, the altitude of the 

farm (ALT). Finally, we collected information about 

holding administration and organization by means of two 

variables referred to as legal personality of the holder (LP), 

and type of tenure of the holding (TT).  

Ranges of the covariates concerning the farming 

structure are divided into four classes for number of bovine 

animals (NBA= 0, 1≤ NBA< 10, 10≤ NBA< 50, 50≤  
NBA), number of pigs (NP= 0, 1≤ NP< 500, 500≤  NP<  
1,000, 1,000≤ NP), and number of sheep and goats (NSG=  
0, 1≤ NSG< 250, 250≤ NSG< 500, 500≤  NSG), and into 
seven classes for utilised agricultural area (UAA= 0, 
0< UAA< 1, 1≤ UAA< 5, 5≤ UAA< 10, 10≤ UAA< 50, 
50≤ UAA< 100, UAA≥ 100 ha). The range of altitude 
values is divided into five classes: inland mountains, coastal 

mountains, inland hills, coastal hills, and flat lands. Classes 

for the legal personality of the holder are defined in order to 

discriminate among sole holders, legal persons (companies) 

and groups of physical persons (partnership) in a group 

holding, cooperative enterprises, associations of holders, 

public institutions, and, finally, legal personalities other than 

the previous ones (e.g., consortia), which will be referred to 

as the residual ones. Holdings are also stratified taking into 

account their type of tenure, by discerning among owner-

farmed (with further subclasses based on farm labour force 

categories: family labour, prevalent family labour, prevalent 

non-family labour), tenant-farmed, shared-farmed agri-

cultural areas, and modes of tenure other than the previous 

ones. Combining all possible classes from any of the 

selected covariates leads to 2,964 nonempty atoms, the 

starting point of the procedure.  

We put under study 12 land use variables, whose list is 

reported in Table 2. For every surveyed variable, totals and 

variances in each atom are computed elaborating the 

available Census data, enabling us to execute the Bethel’s 

algorithm at each step of our procedure. Additional 

parameters needed to identify our stopping criteria are set as 

follows. The maximum number of strata is defined as 300, 

and we decide to disallow strata having a size smaller than 

10. A tolerance about the relative difference between 

optimal sample sizes at subsequent levels is introduced 

setting 0δ =  in equation (1), so the algorithm is stopped if 

1b l b ln n, − ,<  for some level 0.l ≥     
Table 2 

Surveyed variables in the Italian farm structure survey and 

their precision levels 
 

 Required CV 

Surveyed variable Requested  

by FSS 

   Achieved by 

   Atomised  

stratification 

Stratification 

tree 

Cereals 1.00  0.98 0.98 

Vineyards 3.00  1.38 1.38 

Olive plants 3.00  1.11 1.11 

Fodder roots and brassicas 3.00  2.39 2.40 

Industrial plants 3.00  2.22 2.23 

Forage plants 3.00  1.37 1.39 

Vegetables 3.00  3.03 3.03 

Fallow land 3.00  2.69 2.78 

Number of Bovine Animals 1.00  0.99 1.00 

Number of Pigs 2.00  0.80 0.82 

Number of Sheep 2.00  1.99 2.01 

Number of Goats 2.00  1.92 1.98 
   

Convergence was achieved since the maximum number 

of strata was reached and no other stopping rule was 

activated for 300.l <  Figure 2 shows the optimal 

allocations b ln ,  plotted as a function of the number of strata 

,lr 1 300l …= , ,  on a logarithmic scale, i.e., against 

log ( ).b ln ,  It can be noted that the relative difference 

between subsequent allocations rapidly decreases, with the 

first ten splits being the more important with respect to such 

behaviour: in fact, by setting δ = 10% the procedure would 

reach convergence at step 7.l =  

Figure 3 displays a diagram of the stratification tree 

generated up to level 7. In order to optimize the global 

allocation, our splitting criterion recursively created smaller 

and smaller strata. The first split is on the legal personality 

of the holder, LP, and atoms have been included in the left 

daughter stratum if the class of variable LP they assume was 

sole holder, public institution, or a residual one. Such split is 

the optimal split at level 1, since it corresponds to a partition 

of the entire population, the only stratum available at level 

0, that best decreases the sample allocation. This mainly 

indicates that farms organized by sole holders behave 

differently from those managed by more complex legal 

persons, such as companies, partnerships, associations, or 

cooperative enterprises. The second split is on the number 

of bovine animals, NBA. It creates two new substrata of 

stratum 2 (see the bottom side of Figure 3), namely strata 4 

and 5, as follows: the new stratum 4 is defined as the union 

of such atoms in stratum 2 for which condition NBA 10>  
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holds true, while stratum 5 is the relative complement of 

stratum 4 in stratum 2. In this way, the algorithm detects the 

best decrement of the overall sample size (passing from 

1,570,313 to 689,404 sampled units, see the right side of 

Figure 3) by recognizing that farms characterized by 

medium or large bovine livestocks need to be treated 

separately for sole held farms. The third split is instead on 

the utilized agricultural area, UUA. Here, stratum 4 is 

partitioned between atoms for which variable UUA is less 

than 100 ha (stratum 6) and remaining ones (stratum 7). 

Both these new strata are also divided, in successive steps, 

namely steps 4 to 7 (see the left side of Figure 3), on 

variables NP and NSG: more thoroughly, the procedure 

suggests to distinguish farms having no sheep or goat 

livestocks (NSG 0),=  or characterized by large livestocks 

of pigs (NP 500).≥  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2 Step by Step Sample Sizes. The optimal 

allocations 
b l
n ,,,,  are shown as a function of the 

number of strata 
l
r  exploited by the tree-

based sampling design at steps 0 299.l …= , ,= , ,= , ,= , ,  

A logarithmic scale is applied to the 
horizontal axis, so that 

b l
n ,,,,  is plotted against 

log( ).
l
r  As the number of strata increases, 

the tree-based stratification design attains its 
goals using a rapidly decreasing global 
sample size, since the procedure greatly 

improves the sampling efficiency in its first 
ten steps of execution 

 

To evaluate the efficiency of the tree-based sampling 

design, we calculate the best allocation corresponding to the 

atomised stratification, which determined a sample of 

89,522 units. By inspecting the stratification tree, it can be 

noted that a very similar overall allocation corresponds to 

the best stratification obtained at level 102:l =  in fact, for 

such partition of 103 strata the sample size is equal to 

89,509. This means that, for the same sample size, our 

algorithm achieves the precision requested for the survey by 

exploiting a number of strata, 103, which is a very small 

fraction of 2,964, the number of available atoms, henceforth 

enabling an easier organization of the survey. Another 

noticeable advantage of our procedure consists in avoiding 

unstable strata: it is worth noting that 1,618 of the 2,964 

atoms have a size equal to or less than 5, while the 

minimum size of any of the optimal strata at level 102 is 16, 

so that, as a consequence, there is no need to introduce any 

strata collapsing procedure. Further comparisons can be 

obtained contrasting the levels of precision achieved 

implementing, respectively, the atomised stratification and 

the stratification tree at step 102. Such levels, as reported in 

Table 2, can be considered very similar for the two designs. 

In fact, we observed that, for the atomised stratification, the 

Bethel’s allocation was actively constrained on the precision 

regarding three surveyed variates, namely Cereals, 

Vegetables and Number of Sheep. With respect to the strata 

corresponding to level 102 of the tree, the previous 

constraints also happened to be active, even if another 

constraint, that on variable Number of Goats, also resulted 

tight for the optimization, with achieved precision levels 

increased from 1.92% to 1.98%. Such findings suggest that, 

with respect to the atomised partition, the tree can be used to 

detect a more compact stratification of the population, still 

preserving the achieved precision levels and the overall 

sample size.  

 
4. Concluding remarks 

 
The tree-based strategy for multipurpose surveys 

examined in this article is planned to jointly define a rule to 

partition the population and to allocate sampling units in 

strata formed exploiting multivariate information, 

quantitative or qualitative. A hierarchical divisive algorithm 

selects finer partitions by minimizing, at each step, the 

sample allocation needed to achieve the required precision 

levels. In this way, large numbers of constraints can be 

satisfied without drastically increasing the number of strata. 

In addition, variables selected for stratification are not 

discarded merely on the basis of practical considerations, 

nor the number of their class intervals is diminished. 

Furthermore, the algorithm avoids creating empty or almost 

empty strata, thus excluding the need for ex post strata 

aggregations aimed at a better evaluation of in stratum 

estimation variances.  

Notwithstanding, some points of criticism can be raised 

about our proposal. Theoretically, our procedure cannot be 

considered as a multiresponse generalization of the well 

known classification regression tree method, where the aim 

is that of exploiting the relationships between the covariates 

and a unique outcome variable. In fact, even if we deal with 
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Number of strata 
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multipurpose surveys, our approach consists in partitioning 

the available information so as to optimise only one 

variable, namely the sampling allocation in strata. 

Furthermore, the sampling strategy obtained through our 

methodology does not necessarily represent a global 

optimum: in fact, the procedure constitutes a forward strata 

selection algorithm, and, as a consequence, the search for 

optimality at a given step is conditioned on the stratification 

currently in use, i.e., that one based upon the splits 

previously executed: there is no guarantee that the 

stratification selected by the procedure at a certain step l  

will be the optimal one, even solely among all the possible 

partitions in 1l +  subsets of the population. In some 

situations, the use of other methods such as dynamic 

programming can be used for conducting an efficient 

exhaustive search for the globally optimal stratification (see 

Bühler and Deutler 1975, and Lavallée 1988).  

The procedure was applied to redesign the Italian Farm 

Structure Survey. The results indicate gains in efficiency 

held using our strategy: for a given sample size, our 

procedure achieves the requested precision by exploiting a 

number of strata which is usually a very small fraction of 

the number of strata available when combining all possible 

classes from any of the covariates. In addition, allowing for 

more strata, the algorithm detects further sampling strategies 

for which the constraints are satisfied with sample sizes 

smaller than the one corresponding to the atomised strati-

fication. The final sampling choice obviously depends upon 

the survey overall cost function. For this purpose, strati-

fication trees can be applied to take into consideration the 

fact that an increasing number of strata usually implies 

larger costs due to survey organization issues, but also 

corresponds to smaller sample sizes, which lead to 

decreasing unitary costs. Forming strata by trees can thus be 

useful to manage the survey in an easier way, as a tool to 

assist the selection of the stratified sampling design which is 

suited to collect information about the multivariate 

phenomenon under study.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

Figure 3 Stratification Tree Diagram. The bottom side of the horizontal axis is labeled with the stratum identifier, a 

number that uniquely represents the corresponding subpopulation inside the stratification procedure. Sizes of 
such strata are reported on the top side. The left side of the vertical axis displays the sequence of steps from 0 to 
7, while the right side accounts for the global optimal allocations corresponding to such steps. Double bordered 

blocks represent split strata. Daughter strata are linked to their parents through elbow lines, and, when not 
further split in subsequent steps, they are shown as single bordered blocks. For left daughter strata, the covariate 
on which the split happened and the condition it satisfied when defining the left substratum are reported above 

the corresponding elbow line. The number inside a given block is the sample allocation the procedure assigns, to 
the corresponding stratum, during the step at which the block is positioned. Since a stratum can remain unsplit in 
steps successive to that in which it is created, but its sample allocation can vary from one step to the other, dashed 

blocks are used to report modifications of stratum sample sizes  
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Determining the optimum strata boundary points  
using dynamic programming 

Mohammad G. Mostafa Khan, Niraj Nand and Nesar Ahmad 1 

Abstract 

Optimum stratification is the method of choosing the best boundaries that make strata internally homogeneous, given some 

sample allocation. In order to make the strata internally homogenous, the strata should be constructed in such a way that the 

strata variances for the characteristic under study be as small as possible. This could be achieved effectively by having the 

distribution of the main study variable known and create strata by cutting the range of the distribution at suitable points. If 

the frequency distribution of the study variable is unknown, it may be approximated from the past experience or some prior 

knowledge obtained at a recent study. In this paper the problem of finding Optimum Strata Boundaries (OSB) is considered 

as the problem of determining Optimum Strata Widths (OSW). The problem is formulated as a Mathematical Programming 

Problem (MPP), which minimizes the variance of the estimated population parameter under Neyman allocation subject to 

the restriction that sum of the widths of all the strata is equal to the total range of the distribution. The distributions of the 

study variable are considered as continuous with Triangular and Standard Normal density functions. The formulated MPPs, 

which turn out to be multistage decision problems, can then be solved using dynamic programming technique proposed by 

Bühler and Deutler (1975). Numerical examples are presented to illustrate the computational details. The results obtained 

are also compared with the method of Dalenius and Hodges (1959) with an example of normal distribution. 
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1. Introduction 
 

The basic consideration involved in the determination of 

optimum strata boundaries (OSB) is that the strata should be 

internally as homogenous as possible, that is, the stratum 

variances 2

hσ  should be as small as possible, given some 

sample allocation. When a single characteristic is under 

study and the distribution of the study variable is available, 

the OSB can be determined by cutting the range of this 

distribution at suitable points. This problem of determining 

the OSB was first discussed by Dalenius (1950), when the 

study variable itself is used as stratification variable. He 

presented a set of minimal equations that could be solved 

for finding OSB. Unfortunately these equations could not 

usually be solved because of their implicit nature. Hence 

attempts have been made by several authors to obtain the 

approximate strata boundaries using classical methods. 

Given the number of strata, Dalenius and Gurney (1951) 

suggested that the strata boundaries be determined when 

h hW σ  remain constant, where hW  is the weight of stratum 

.h  Mahalanobis (1952) and Hansen and Hurwitz (1953) 

have suggested that the strata boundaries can be determined 

when h hW µ  remain constant. Aoyama (1954) suggested an 

approximate rule and recommended to make strata of equal 

width 1,h hx x −−  where 1hx −  and hx  are the boundaries of 

stratum .h  Ekman (1959) determined the strata boundaries 

with the condition that 1( )h h hW x x −− = constant. Dalenius 

and Hodges (1959) recommended to construct the strata by 

taking equal intervals on the cumulative of ( ).f x  Sethi 

(1963) proposed a method to work out the boundaries given 

by the calculus equations 
2 2 2 2

1 1 1

1

( ) ( )h h h h h h

h h

x x + + +

+

− µ + σ − µ + σ
=

σ σ
 

for a standard continuous distribution resembling the study 

population.  

In a comparison on some of the classical approximate 

methods, the Ekman method and the Dalenius and Hodges 

method are proved to work consistently well (see Cochran 

1961, Hess, Sethi and Balakrishnan 1966, Murthy 1967) but 

the later is more convenient and easier to apply (see 

Nicoloni 2001).  

Unnithan (1978) suggested an iterative method using 

Shanno’s modified Newton method for determining the 

strata boundaries that leads to a local minimum of the 

variance for Neyman allocation, if a suitable initial solution 

is chosen. The procedure is proved to be faster than the 

Dalenius and Hodges iterative procedure. Later on Unnithan 

and Nair (1995) gave a method of selecting an appropriate 

starting point for modified Newton method that may lead to 

a global minimum of the variance.  

Lavallée and Hidiroglou (1988) proposed an algorithm to 

construct stratum boundaries for a power allocated stratified 

sample of non-certainty sample units. Hidiroglou and 
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Srinath (1993) presented a more general form of the 

algorithm, which by assigning different values to operating 

parameters yields a power allocation, a Neyman allocation, 

or a combination of these allocations. Sweet and Sigman 

(1995) and Rivest (2002) reviewed Lavallée and Hidiroglou 

algorithm and proposed their modified versions of the 

algorithm that incorporate the different relationships 

between the stratification and study variables. Detlefsen and 

Veum (1991) investigated the Lavallée and Hidiroglou 

algorithm for several strata and observed that the 

algorithm’s convergence was slow or non-existent. They 

also found that different starting points lead to different 

OSBs for the same population.  

Niemiro (1999) proposed a random search method in the 

stratification problem but the algorithm did not guarantee 

that it leads to global optimum. Furthermore, it would go 

wrong in a case of a large population, as it requires too 

many iteration steps (see Kozak 2004).  

Nicolini (2001) suggested a method, named Natural 

Class Method (NCM), to oppose the most utilized Dalenius 

and Hodges method but neither method was proved to be 

more efficient than other.  

Lednicki and Wieczorkowski (2003) presented a method 

of stratification using the simplex method of Nelder and 

Mead (1965). Later Kozak (2004) presented the modified 

random search algorithm as a method of the optimal 

stratification. The Kozak algorithm was quite faster and 

efficient as compared to Rivest, and Lednicki and 

Wieczorkowski but it could not guarantee that the algorithm 

leads to the global optimum.  

Bühler and Deutler (1975) formulated the problem of 

determining OSB as an optimization problem that can be 

solved by a dynamic programming technique. This 

approach is also used by Lavallée (1987, 1988) for 

determining the OSB which would divide the population 

domain of two stratification variables into distinct subsets 

such that the precision of the variables of interest is 

maximized.  

Khan, Khan and Ahsan (2002) considered the problem of 

finding OSB as an equivalent problem of determining 

Optimum Strata Width (OSW). The authors formulated the 

problem of OSW as a Mathematical Programming Problem 

(MPP). Following the Bühler and Deutler’s dynamic 

programming approach, they solve the MPP that gives exact 

solution, if the frequency distribution of the study variable is 

known and the number of strata is fixed in advance. Khan 

et al. (2002) applied their procedure to work out OSB to the 

population having uniform and right triangular distribution. 

Later Khan, Najmussehar and Ahsan (2005) extended this 

dynamic programming approach for determining the OSB 

for an exponential study variable also.  

In this paper the problem of determining OSB for the 

study variables with Triangular and Standard Normal 

distributions are discussed. Viewing the fact that these 

problems are equivalent to the problems of determining 

OSW, we formulate the problems as MPPs and solve them 

by following Bühler and Deutler’s dynamic programming 

approach. The formulated MPPs minimize the variance of 

the estimated population parameter under Neyman 

allocation subjected to a restriction that sum of the widths of 

all the strata is equal to the total range of the distribution of 

the study variable. In Section 2, a review of dynamic 

programming approach proposed by Bühler and Deutler 

(1975) is presented. In Section 3, the details of the 

formulation of the problems of OSW as MPPs are provided. 

The solution procedure using dynamic programming 

technique to solve the MPPs is discussed in Section 4. The 

computational details of the solution procedure is illustrated 

with numerical examples in Section 5. Finally, in Section 6, 

an investigation is carried out to compare the results 

obtained by the dynamic programming method and the cum 

f  method of Dalenius and Hodges (1959) with an 

example from a population of normal distribution. It reveals 

that the proposed dynamic programming method yields a 

gain in efficiency over the cum f  method. 

 
2. Determination of OSB using dynamic 

      programming techniques: A review of  

      Bühler and Deutler’s approach 
 

Let X  be a random study variable, discrete or contin-

uous, with probability density function ( ),f x .a x b≤ ≤  To 

estimate the population mean µ  by a stratified sample, X  

is partitioned into L  strata 1 1 2 1[ ] ( ] ( ]La x x x … x b−, , , , , ,  

such that 

0 1 2 1L La x x x x x b−= ≤ ≤ ≤, ..., ≤ ≤ = .  (1) 

Suppose that from stratum h ( 1 2 ),h … L= , , ,  which 

contains hN  units, a sample of size hn  with units hjy  

( 1 2 1 2 )hh … L j … n= , , , ; = , , ,  is selected. Then the 

stratified mean 1
L
hst h hx W x=∑=  is an unbiased estimate of 

µ  with variance  

2

1

1
( )

L
h

st h h
h h

W
V x W

n N=

 
= σ − , 

 
∑  (2) 

where ,h hW N N= / 11/ ,hn
jh h hjx n y=∑= 2 [1/ ( 1)]h hNσ = − ×  

2

1
( )hN

hj hj
y=∑ − µ  and 11/ .hN

jh h hjN y=∑µ =  

When the frequency function ( )f x  is known, the values 

of hW  and hσ  in (2) can be obtained by  

1

( )
h

h

x

h x
W f x dx

−

= ,∫  (3) 
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1

2 2 21
( )

h

h

x

h hx
h

x f x dx
W −

σ = − µ ,∫  (4) 

where 

1

1
( )

h

h

x

h x
h

x f x dx
W −

µ = ∫  (5) 

is the mean and 1( )h hx x− ,  are the boundaries of thh  

stratum.  

Then (2) reads as the function of strata boundary points 

and sample sizes, that is, 

1 1 1( ) ( )st st L LV x V x x … x n … n−= | , , , , , .
 

If hn  are fixed, the objective of the optimum 

stratification is to determine stratum boundary points 

1 1( )Lx … x −, ,  such that ( )stV x  is minimum. Further, if the 

sampling ratios h hn N/  are small or the sampling is with 

replacement, then the following optimization problems are 

obtained, depending on the type of allocation of total sample 

size 1( )L
h hn n=∑=  to strata.   

1. Proportional allocation ( )h hn n W= ⋅   

2

1

0 1 2 1

Minimize

subject to

L

h h
h

L L

W

a x x x x x b

=

−

σ

= ≤ ≤ ≤, ...,≤ ≤ =

∑

 (6)

 

2. Equal allocation ( )hn n L= /  

2 2

1

0 1 2 1

Minimize

subject to

L

h h
h

L L

W

a x x x x x b

=

−

σ

= ≤ ≤ ≤, ..., ≤ ≤ =

∑

 (7)

 

3. Neyman allocation 1( )L
hh h h h hn n W W=∑= ⋅ σ / σ   

1

0 1 2 1

Minimize

subject to .

L

h h
h

L L

W

a x x x x x b

=

−

σ

= ≤ ≤ ≤, ..., ≤ ≤ =

∑

 (8)

 

 

The problems (6) to (8) have the following structure:  

1

1

0 1 2 1

Minimize ( )

subject to

L

h h h

h

L L

x x

a x x x x x b

−
=

−

φ , ,

= ≤ ≤ ≤, ..., ≤ ≤ = .

∑

 (9)

 

Bühler and Deutler (1975) have suggested a recursive 

optimization method for solving (9) using a dynamic 

programming technique as follows:  

Consider an optimization problem with the special 

structure:  

1
1

1

1

0

Minimize ( )

subject to ( )

( )

1 2 ,

m

h h h
h

h h h h

h h

h h h

u z y

z v z y

z Z

y S z

z z h m

−
=

−

−

, ,

= , ,

∈ ,

∈ ,

′= ; = , , ...,

∑

 (10)

 

where m = number of stages, hu = stage return functions, 

hv = stage transformation functions, hZ = state spaces, 

hS = decision spaces, and z′ = initial state. Then a dynamic 

programming procedure using Bellman’s principle of 

optimality (Bellman 1957) can be used to solve (10).  

If 0 1, , , [ ], [ ],L h h hm L z a z b Z a b Z a b y−= = = = , = , −  

1 1( ) [0 ]h h hS z b z− −= , −  with 1 1,h hz Z− −∈ 1( )h h hu z y− , =  

1 1( )h h h hz y z− −φ , +  with 1( ),h h hy S z −∈ 1( )h h hv z y− , =  

1,h hy z −+  then (10) is transformed to the following 

problem:  

1 1
1

1

1

0

Minimize ( )

subject to

[ ]

[0 ]

1 2

L

h h h h
h

h h h

h

h h

L

z y z

z y z

z a b

y b z

z a z b h L

− −
=

−

−

φ , + ,

= + ,

∈ , ,

∈ , − ,

= , = ; = , , ..., .

∑

 (11)

 

The problem (11) is an equivalent problem of (9) as they 

hold the following results:  
 
1. If 1 1( )Lx … x∗ ∗

−, ,  is an optimum solution of (9), then 

1,h h hy x x∗ ∗ ∗
−= − h hz x∗ ∗=  is an optimum of (11).   

2. If ( 1 ),hy h … L∗ = , , ( 1 1)hz h … L∗ = , , −  is an 

optimum solution of (11), then ( 1 1)h hx z h … L∗ ∗= = , , −  

is an optimum solution of (9).  
 

If 1( )h hz −Φ  is the optimum value of objective function at 

stage h  with the available state 1,hz −  then the backward 

recursive equation to solve (11) using a dynamic 

programming technique is given by  

1 1 1 1

1

( ) min[ ( ) ( )

]

h h h h h h h h

h h h

z z y z z

z y z

− − − +

−

Φ = φ , + + Φ |

= +  (12)
 

on 1( )h h hy S z −∈  with initially 1 0.L+Φ ≡  
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3. Formulation of the problem  

       of OSW as an MPP 
 

In this section the Bühler and Deutler’s approach 

discussed above is extended for a study variable with a 

continuous density function ( ).f x  The problem (11) is 

transformed into an equivalent problem of determining 

OSW by considering 1 1h h h h hy z z x x− −= − = −  as strata 

widths and then the objective function and the constraints 

are constructed as functions of .hy  The MPP is treated as a 

multistage decision problem in which at each stage the value 

of the OSW and hence the OSB for a stratum is worked out 

using dynamic programming technique with a forward 

recursive equation.  

Let ( )f x  be the frequency function and 0x  and Lx  are 

the smallest and largest values of .x  If the population mean 

is estimated under Neyman allocation, then the problem of 

determining the strata boundaries is to cut up the range,  

0Lx x d− = ,  (13) 

at intermediate points 1 2 1Lx x x −≤ ≤, ..., ≤  such that 

1
L
h h hW=∑ σ  in (8) is minimum.  

Consider that ( )f x  has n  piece-wise continuous linear 

or non-linear functions as follows:  

1 0 0 1

2 1 2

1

( )

( )
( )

( )n n n L

g x x a x a

g x a x a
f x

g x a x a x−

; = ≤ ≤ ,
 ; < ≤ ,

= 

 ; < ≤ = .

⋮
 (14) 

Also assume that out of L  strata, il  be the number of 

strata to be formed under the density function ( )ig x ;  
1 2 .i n= , , ..,  and 1 .n

i il L=∑ =  

If ( )f x  in (14) is integrable, using the expressions (3), 

(4) and (5), ,hW 2

hσ  and hµ  are obtained as a function of the 

boundary points hx  and 1.hx −  Thus the objective function in 

(8) could be expressed as a function of boundary points hx  

and 1hx −  only. Let  

1( ) .h h h h hx x W−φ , = σ  

Note that the above function has different values for 

different density functions in (14).  

Thus, the problem (8) can be treated as an optimization 

problem to find 1 2 1, , ..., Lx x x −  as stated in (9).  

Let 1 0h h hy x x −= − ≥  denote the width of the thh  

( 1 2 )h L= , , ...,  stratum.  

With the above definition of ,hy  the range of the 

distribution given in (13) is expressed as the function of the 

stratum widths as:  

1 0
1 1

( )
L L

h h h L
h h

y x x x x d−
= =

= − = − = .∑ ∑  (15) 

The thk  stratification point ; 1 2 1kx k L= , , ..., −  is then 

expressed as:  

0 1 2

1

k k

k k

x x y y y

x y−

= + + + ... +

= + ,
 

which is a function of thk  stratum width and th( 1)k −  

stratum boundary.  

Considering k kz x=  and adding (15) as a constraint, the 

problem (11) can be rewritten as an equivalent problem of 

determining OSW as:  

1
1

1

Minimize ( )

subject to

and 0 1 2

L

h h h
h

L

h
h

h

y x

y d

y h L

−
=

=

φ , ,

= ,

≥ ; = , , ..., .

∑

∑

 (16)

 

Initially, 0x  is known. Therefore, the first term, that is, 

1 1 0( )y xφ ,  in the objective function of the MPP (16) is a 

function of 1y  alone. Once 1y  is known, the next 

stratification point 1x = 0 1x y+  will be known and the 

second term in the objective function 2 2 1( )y xφ ,  will 

become a function of 2y  alone.  

Therefore, stating the objective function as a function of 

hy  alone the MPP (16) is expressed as:  

1

1

Minimize ( )

subject to

and 0 1 2

L

h h
h

L

h
h

h

y

y d

y h L

=

=

φ ,

= ,

≥ ; = , , ..., .

∑

∑

 (17)

 

The Sections 3.1 and 3.2 illustrate the formulation of the 

problem of determining OSW as an MPP for Triangular and 

Standard Normal study variables respectively.  
 
3.1 MPP for triangular distribution  

Let the study variable x  be following the Triangular 

distribution on the interval [a, b] with the probability density 

function:  

2( )

( ) ( )
( )

2( )

( ) ( )

x a
a x c

b a c a
f x

b x
c x b

b a b c

− ; ≤ ≤ − −
= 

− ; < ≤ , − −

 (18) 

where a  is a location parameter, b  is a scale parameter and 

c  is the shape parameter.  

It has two piece-wise functions.  

When ,a x c≤ ≤  from (18) and using (3), (5) and (4), 

, ,h hW µ  and 2

hσ  are obtained as:  
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( 2 )

( ) ( )

h h h
h

y y a
W

b a c a

+
= ,

− −
 (19) 

2

1 1

2
2 2

3

2

h h h h h h

h

h h

y y x ay a x

y a

− −+ − +
µ = ,

+
 

and 

2 2 2
2

2

[ 6 6 ]
,

18( 2 )

h h h h h
h

h h

y y a y a

y a

+ +
σ =

+
 (20) 

where 1,h h hy x x −= − 1h ha x a−= −  and 1 .h ha x x c−≤ ≤ ≤  

Thus from (19) and (20),  

2 2 26 6

3 2( ) ( )

h h h h h

h h

y y a y a
W

b a c a

+ +
σ = .

− −
 (21) 

Similarly, when ,c x b< ≤  from (18) and using (3), (5) 

and (4), it can be demonstrated that  

(2 )

( ) ( )

h h h
h

y b y
W

b a b c

−
= ,

− −
 (22) 

2

1 13 3 6 2

3(2 )

h h h h h h h
h

h h

b y y x b x y

b y

− −− + −
µ = ,

−
 

and 
2 2 2

2

2

(6 6 )
,

18(2 )

h h h h h
h

h h

y b b y y

b y

− +
σ =

−
 (23) 

where 1,h h hy x x −= − 1h hb b x −= −  and 1 .h hc x x b−< ≤ ≤  

Thus, from (22) and (23),  

2 2 26 6

3 2( ) ( )

h h h h h

h h

y b b y y
W

b a b c

− +
σ = .

− −
 (24) 

Let 1λ  and 2λ  be the last and the first stratum formed 

under the first and second piece-wise function of (18) 

respectively. If any stratum (say, )l  falls under both 

functions, then 1λ  and 2λ  are not considered to be two 

different strata but the fractions of the same thl  stratum. 

Then, using (21) and (24) the MPP (17) could be expressed 

as the problem of determining the OSW for the study 

variable with Triangular frequency function as:  

1

2

2 2 2

1

2 2 2

1

6 6
Minimize

3 2( ) ( )

6 6
,

3 2( )( )

subject to

and 0 1 2 ,

h h h h h

h

L
h h h h h

h

L

h
h

h

y y a y a

b a c a

y b b y y

b a b c

y d

y h L

λ

=

=λ

=

 + +


− −

− + 
+ 

− − 

= ,

≥ ; = , , ...,

∑

∑

∑

 (25)

 

where .d b a= −  
 

3.2 MPP for normal distribution  
The study variable x is said to have a Standard Normal 

distribution if its probability density function is given by  

21
( ) exp

2 2

x
f x x

 
= − ; − ∞ < < ∞. 

π  
 

As in section 3.1, using the definition (3), (5) and (4), it 

can be seen that  

1 1

2 2

2

h h h

h

y x x
erf erf

W

− −+   −   
   = ,  (26) 

2 2

1 1

1 1

( )
2 exp exp

2 2

2 2

h h h

h

h h h

x y x

y x x
erf erf

− −

− −

    +
− − −    

     µ = ,
 +    

π −    
    

 

and 

2
2 1 1

1

2

1 1
1

2

1 1
1

2

1 1
1

2

1

2 exp
2 2

( )
( )exp

2 2

exp
2 2

( )
( )exp

2 2

2

h h h
h h

h h h h
h h

h h
h

h h h
h h

h h

x y x
x erf

y x y x
y x erf

x x
x erf

y x x
y x erf

y x
erf

− −
−

− −
−

− −
−

− −
−

−

    + 
σ = π −    

    

 + + 
− + −   

  

   
− −   

  

 +  
+ + −   

  

+
+ π 


1

2
2 2

1 1

2

1 1

2

( )
2 exp exp

2 2

2 2

h

h h h

h h h

x
erf

x y x

y x x
erf erf

−

− −

− −

   
−   

   

     +
− − − −     

       

 +    
÷ π −    

    
 (27)

 

where 1,h h hy x x −= − 1( ) ( ) (2 )h herf x erf x −− = π ×  

1

2exp( )h

h

x

x
u du

−
∫ −  and 1 2 .h L= , , ...,  

Therefore, using the values in (26) and (27) the MPP (17) 

can be expressed as  
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2

1 1
1

1

2

1 1
1

2

1 1
1

2

1 1
1

1
Minimize Sqrt exp

2 2 2 2

( )
( )exp

2 2

exp
2 2

( )
( )exp

2 2

1

L
h h h

h
h

h h h h
h h

h h
h

h h h
h h

x y x
x erf

y x y x
y x erf

x x
x erf

y x x
y x erf

− −
−

=

− −
−

− −
−

− −
−

    + 
−    π     

 + + 
− + −   

  

   
− −   

  

 +  
+ + −   

  

+

∑

2

1 1

2
2 2

1 1

4 2 2

( )1
exp exp

2 2 2

h h h

h h h

y x x
erf erf

x y x

− −

− −

 +    
−    

    

     +
− − − −     

π        
 

1

subject to

and 0 1 2

L

h

h

h

y d

y h L

=

=

≥ ; = , , ..., .

∑

 (28)

 

 
4. The solution procedure using dynamic 

      programming technique 
 

The MPP (17) is a multistage decision problem in which 

the objective function and the constraints are separable of 

,hy  which allow us to use a dynamic programming 

technique as illustrated by Bühler and Deutler (1975) for the 

problem (11).  

Consider the following subproblem of (17) for first 

( )k L<  strata:  

1

1

Minimize ( )

subject to

and 0 1 2 ,

k

h h
h

k

h k
h

h

y

y d

y h k

=

=

φ ,

= ,

≥ ; = , , ...,

∑

∑

 (29)

 

where kd d<  is the total width available for division into 

k  strata or the state value at stage .k  Note that kd d=  for 

.k L=  

The transformation functions are given by  

1 2

1 1 2 1

2 1 2 2 1 1

2 1 2 3 3

1 1 2 2

k k

k k k k

k k k k

d y y y

d y y y d y

d y y y d y

d y y d y

d y d y

− −

− − − −

= + + ... + ,

= + + ... + = − ,

= + + ... + = − ,

= + = − ,

= = − .

⋮ ⋮

 

Let ( )k kdΦ  denote the minimum value of the objective 

function of (29), that is,  

]

1 1

( ) min ( )

and 0 1 2 , .

k k

k k h h h k
h h

h

d y y d

y h k

= =


Φ = φ = ,



≥ ; = , , ...∑

∑ ∑
 

With the above definition of ( ),k kdΦ  the MPP (17) is 

equivalent to finding ( )L dΦ  recursively by finding 

( )k kdΦ  for 1 2k L= , , ...,  and 0 kd d≤ ≤ .   
We can write:  

1 1

1 1

( ) min ( ) ( )

and 0 1 2 , 1.

k k

k k k k h h h k k

h h

h

d y y y d y

y h k

− −

= =


Φ = φ + φ = − ,




≥ ; = , , ... − 


∑

∑

∑
 

For a fixed value of ;ky 0 ,k ky d≤ ≤  

1 1

1 1

( ) ( )

min ( )

and 0 1 2 , 1 .

k k k k

k k

h h h k k
h h

h

d y

y y d y

y h k

− −

= =

Φ = φ


+ φ = − ,




≥ ; = , , ... − 


∑ ∑

∑

 

Using the Bellman’s principle of optimality, we write a 

forward recursive equation, instead of backward recursive 

equation as suggested by Bühler and Deutler in (12), for 

using dynamic programming technique as:  

[ ]1
0

( ) min ( ) ( ) 2
k k

k k k k k k k
y d

d y d y k−
≤ ≤

Φ = φ +Φ − , ≥ .  (30) 

For the first stage, that is, for 1:k =  

1 1 1 1 1 1( ) ( )d d y d∗Φ = φ ⇒ = ,  (31) 

where 1 1y d∗ =  is the optimum width of the first stratum. 

The relations (30) and (31) are solved recursively for each 

1 2k L= , , ...,  and 0 ,kd d≤ ≤  and ( )L dΦ  is obtained. 

From ( )L dΦ  the optimum width of thL  stratum, ,Ly
∗  is 

obtained. From 1( )L Ld y∗−Φ −  the optimum width of 
th( 1)L −  stratum, 1,Ly

∗
−  is obtained and so on until 1y

∗  is 

obtained. 

Note that depending upon the piece-wise function(s) in 

(14) under which the stratum is formed, ( )k kyφ  in (30) will 

take different value for each ky  as follows:  
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1 0 for some ( 1 2 )k k k iy x x a a i i n−= − ≤ − , = , , ...,  

and, 

1[ ] for some ( 1 2 )k i ix a a i i n−∈ , , = , , ..., .  

 
5. Numerical illustrations  

In this section the computational details of the solution 

procedure discussed in section 4 for the MPPs (25) and (28) 

are presented.   
5.1 Triangular distribution  

Let us assume that 0 0,a x= = 1c =  and 2.Lb x= =  

This implies that 0 2Ld x x= − =  and the MPP (25) is 

expressed as:  

1

2

2 2 2

1

2 2 2

1

6 6
Minimize

6 2

6 6

6 2

subject to 2

and 0 1 2 ,

h h h h h

h

L
h h h h h

h

L

h
h

h

y y a y a

y b b y y

y

y h L

λ

=

=λ

=

 + +



− + 
+ ,



= ,

≥ ; = , , ...,

∑

∑

∑

 (32)

 

where 1h ha x −=  and 12 .h hb x −= −  

Using (30) and (31), the recursive equations for solving 

MPP (32) can be stated as:  

For the first stage ( 1)k =  

3

1
1 1 1 1( ) at

6 2

d
d y dΦ = = ,  (33) 

and for the stages ( 2)k ≥  

2 2 2

1

2 2 2

1

( )

6 6
min ( )

6 2

if 0 1,

6 6
min ( )

6 2

if 1 2,

k k

k k k k k

k k k

k

k k k k k

k k k

k

d

y y a y a
d y

d

y b b y y
d y

d

−

−

Φ =

  + +
 +Φ − 
   
 ≤ ≤

  − +
 +Φ − 
   
 < ≤

 
(34)

 

where the min function is on 0 ,k ky d≤ ≤ 1k ka x −= =  

k kd y−  and 12 2 .k k k kb x d y−= − = − +  

 

 

 

 

Substituting this values of ka  and ,kb  (34) becomes  

2 2

1

2 2

1

( )

6( )
min ( )

6 2

if 0 1

6(2 )(2 )
min ( )

6 2

if 1 2,

k k

k k k k k

k k k

k

k k k k k

k k k

k

d

y y d y d
d y

d

y y d y d
d y

d

−

−

Φ =

  + −
 +Φ − 
   
 ≤ ≤ ,

  + − + −
 +Φ − 
   
 < ≤

 
(35)

 

where the min function is on 0 .k ky d≤ ≤  

Then solving the recursive equations (33) and (35) by 

executing a computer program developed for the solution 

procedure given in section 4, the OSWs are obtained. The 

results of optimum strata widths hy
∗  and hence the optimum 

strata boundaries hx
∗  along with the values of the objective 

function 1 ( )L
h h hy=∑ φ  for 2 3 4 5L = , , ,  and 6  are 

presented in Table 1.  

 
Table 1 

Optimum strata widths and boundaries of triangular 
distribution 
 

No. of 

strata  

L   

Optimum Strata 

Widths (OSW)  

( )hy
∗∗∗∗  

Optimum Strata  

Boundaries  

(OSB)  

1( )h h hx x y∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗
−−−−= += += += +  

Optimum values of  

the objective function  

∑ ∑
1 1

( )
L L

h h h h
h h

y W
= == == == =

φ = σφ = σφ = σφ = σ  

1y
∗ = 1.000000 1x

∗ = 1.000000 

2 
2y
∗ = 1.000000  0.2357022604 

1y
∗ = 0.838081 1x

∗ = 0.838081 

2y
∗ = 0.411608 2x

∗ = 1.249689 3 

3y
∗ = 0.750311  

0.1655523797 

1y
∗ = 0.645751 1x

∗ = 0.645751 

2y
∗ = 0.354249 2x

∗ = 1.000000 

3y
∗ = 0.354249 3x

∗ = 1.354249 4 

4y
∗ = 0.645751  

0.1226262641 

1y
∗ = 0.582819 1x

∗ = 0.582819 

2y
∗ = 0.319725 2x

∗ = 0.902544 

3y
∗ = 0.252176 3x

∗ = 1.154720 

4y
∗ = 0.299439 4x

∗ = 1.454159 
5 

5y
∗ = 0.545841  

0.0998893913 

1y
∗ = 0.497369 1x

∗ = 0.497369 

2y
∗ = 0.272849 2x

∗ = 0.770218 

3y
∗ = 0.229782 3x

∗ = 1.000000 

4y
∗ = 0.229782 4x

∗ = 1.229782 

5y
∗ = 0.272849 5x

∗ = 1.502631 

6 

6y
∗ = 0.497369  

0.0829362498 
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5.2 Normal distribution  
Let x  follow the Standard Normal distribution in the 

interval 0( ).Lx x,  For the purpose of illustration, we assume 

that 0 4x = −  and 4.Lx =  Then 8,d =  which gives MPP 

(28) as:  

1

2

1 1
1

2

1 1
1

2

1 1
1

2

1 1
1

1
Minimize Sqrt

2 2

exp
2 2
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( )exp

2 2
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2 2
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( )exp

2 2

L

h

h h h
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h h h h
h h

h h
h

h h h
h h

x y x
x erf

y x y x
y x erf

x x
x erf

y x x
y x erf

=

− −
−

− −
−

− −
−

− −
−

  
  ×
  π

   + 
−    

   

 + + 
− + −   

  

   
− −   

  

  +
+ + −  

  

∑

2

1 1

2
2 2

1 1

1

4 2 2

( )1
exp exp ,

2 2 2

h h h

h h h

y x x
erf erf

x y x

− −

− −


  

 +    
+ −    

    

     +
 − − − −    

π        

 

1

subject to 8

and 0 1 2

L

h

h

h

y

y h L

=

= ,

≥ ; = , , ..., .

∑

 (36)

 

We have  

1 0 1 2 1

1 2 1

1

4

4

4

k k

k

k

k k

x x y y y

y y y

d

d y

− −

−

−

= + + + ... +

= − + + + ... +

= −

= − − .

 

Substituting this value of 1kx −  in (36) and using (30) and 

(31), the recursive equations for solving MPP (36) are 

obtained as:  

For first stage ( 1):k =  

1
1 1

2

1 1
1

2

1
1

2

1

( 4)1 1
( ) Sqrt exp

2 2 2 2

( 4) ( 4)
( 4)exp

2 2

1 1
exp

2 2

( 4) 1
( 4)exp

2 2

( 4)1 1

4 2 2

d
d erf

d d
d erf

erf

d
d erf

d
erf erf

    −   Φ = − −       π     

 − − 
− − −   

  

   + − −   
   

  −  + − − −       

−   + − − 
  

2
2

1( 4)1 1
exp exp

2 2 2

d

 
 

 

    −  − − − −    π         
 (37)

 

at 1 1,y d=  

and for the stages 2:k ≥  

0

2

2

2

2

1
( ) min Sqrt

2 2

( 4) 4
( 4)exp

2 2

( 4) 4
( 4)exp

2 2

( 4) ( 4)
( 4)exp

2 2

( 4) (
( 4)exp

2

k k

k k
y d

k k k
k k

k k
k

k k k k
k k

k k
k

d

d y d
d y erf

d d
d erf

d y d y
d y erf

d d
d erf

≤ ≤

 Φ = × 
π

  − − − 
− − −    

   

 − − 
− − −   

  

 − − − − 
− − − −   

  

 −
+ − − 

 

2

2
2 2

1

4)

2

4 ( 4)1

4 2 2

( 4) ( 4)1
exp exp

2 2 2

( )

k

k k k

k k k

k k k

y

d d y
erf erf

d y d

d y−

 − − 
    

 − − −    
+ −    

    

     − − −
− − − −     

π        


+ Φ − .


 (38)

 

Solving the recursive equations (37) and (38), the 

optimum strata widths hy
∗  and hence the optimum strata 

boundaries hx
∗  are obtained. Table 2 shows these results 

along with the values of the objective function 1 ( )L
h h hy=∑ φ  

for 2 3 4 5L = , , ,  and 6.  

 

 

 



Survey Methodology, December 2008 213 
 

 

Statistics Canada, Catalogue No. 12-001-X 

Table 2 

Optimum strata widths and boundaries of standard normal 
distribution 
 

No. of 

strata 

L  

Optimum Strata 

Widths (OSW)  

( )hy
∗∗∗∗  

Optimum Strata 

Boundaries  

(OSB)  

1( )h h hx x y∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗
−−−−= += += += +  

Optimum values of  

the objective function  

∑ ∑
1 1

( )
L L

h h h h
h h

y W
= == == == =

φ = σφ = σφ = σφ = σ  

1y
∗ = 4.000000  1x

∗ = 0.000000  

2 
2y
∗ = 4.000000   0.6021710931 

1y
∗ = 3.450300  1x

∗ = -0.549700  

2y
∗ = 1.099400  2x

∗ = 0.549700  3 

3y
∗ = 3.450300   

0.4265717619 

1y
∗ = 3.124570  1x

∗ = -0.875430  

2y
∗ = 0.875430 2x

∗ = 0.000000  

3y
∗ = 0.875430  3x

∗ = 0.875430  4 

4y
∗ = 3.124570   

0.3297899642 

1y
∗ = 2.896360  1x

∗ = -1.103640  

2y
∗ = 0.767900  2x

∗ = -0.335740  

3y
∗ = 0.671480  3x

∗ = 0.335740  

4y
∗ = 0.767900  4x

∗ = 1.103640  
5 

5y
∗ = 2.896360   

0.2686646379 

1y
∗ = 2.722440  1x

∗ = -1.277560 

2y
∗ = 0.702200  2x

∗ = -0.575360 

3y
∗ = 0.575360  3x

∗ = 0.000000 

4y
∗ = 0.575360  4x

∗ = 0.575360 

5y
∗ = 0.702200  5x

∗ = 1.277560 

6 

6y
∗ = 2.722440  6x

∗ = 4.000000 

0.2265979522 

 
 

 
Table 3 
Frequency distribution of x  and cum ( )f x  
 

Class Frequency ( )f x  Cum ( )f x  

(-3.98)-(-3.58) 2  1.4  

(-3.58)-(-3.18) 6  3.8  

(-3.18)-(-2.78) 23  8.6  

(-2.78)-(-2.38) 59  16.3  

(-2.38)-(-1.98) 155  28.7  

(-1.98)-(-1.58) 296  45.9  

(-1.58)-(-1.18) 630  71.0  

(-1.18)-(-0.783) 1,015  102.9  

(-0.783)-(-0.383) 1,361  139.8  

(-0.383)-0.017 1,551  179.2  

0.017-0.417 1,495  217.9  

0.417-0.817 1,315  254.2  

0.817-1.22 1,003  285.9  

1.22-1.62 613  310.7  

1.62-2.02 285  327.6  

2.02-2.42 128  338.9  

2.42-2.82 38  345.1  

2.82-3.22 18  349.3  

3.22-3.62 7  351.9  

 
 

 

6. Discussion 
 

In this section we will undertake a numerical 

investigation into the effectiveness of the dynamic 

programming method to the Dalenius and Hodges’ cum 

f  method, which is the most frequently used and better 

known method. For this purpose, we have generated data of 

size N = 10,000 for a population with standard normal 

density function 2( ) (1 2 )exp( 2),f x x= / π − /  which have 

been grouped into 19 equal classes. In Table 3 the class 

frequencies are given in column 2 while their cumulative 

roots are given in column 3.  

For this example the smallest and the largest values of x  

are 0x = -3.98 and Lx = 3.62 respectively. Therefore, the 
range of the distribution d = 7.60. 

The OSB are determined for this distribution by using 

cum f  method and also dynamic programming method. 

For each L = 2, 3, 4, 5 and 6 the variance 1
L
h h hW=∑ σ  is 

calculated, which is used for the efficiency of the two 

methods of stratification. The results of this investigation are 

given in Table 4. From the last column of table it can be 

seen that the OSB obtained by dynamic programming 

method are more efficient for all L = 1, 2, ..., 6. Although, 
the efficiency of cum f  method depends on the initial 

choice of the number of classes but there is no theory which 

gives the best number of classes (see Hedlin 2000).  
 
Table 4 

Relative efficiency of dynamic programming method 
 

L  (Cum f  method) Dynamic programming 

method 

Relative 

efficiency  

 OSB ∑ 1
L

h hh
W==== σσσσ  OSB ∑ 1

L
h hh

W==== σσσσ   

2 -0.017  0.60131  -0.00034  0.60126  100.00832  

3 -0.783  0.43177  -0.55015  0.42576  101.41159  
 0.417   0.54884   

4 -0.783  0.33067  -0.87593  0.32905  100.49233  

 -0.017   -0.00081   
 0.817   0.87395   

5 -1.18  0.27066  -1.10418  0.26799  100.99631  

 -3.83   -0.33656   
 0.417   0.33452   

 1.22   1.10147   
6 -1.18  0.24242  -1.27813  0.22598  107.27498  

 -0.783   -0.57619   

 -0.017   -0.00115   
 0.417   0.57369   

 1.22   1.27462   

 
Finally, the other methods available in the literature such 

as Aoyama (1954), Ekman (1959), Sethi (1963), etc. are 

mostly classical methods to obtain approximate strata 

boundaries. Many authors such as Unithan (1978), Lavallée 

and Hidiroglou (1988), Sweet and Sigman (1995), Rivest 

(2002), etc. suggested iterative procedures. These iterative 

procedure require initial approximate solutions. Also there is 

no guarantee that an iterative procedure will give the global 

minimum in the absence of a suitable approximate initial 
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solution and the variance function have more than one local 

minimum. The advantage of the dynamic programming 

method is that it gives the global minimum of the objective 

function and it does not require any initial approximate 

solutions.  
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Multi-objective optimisation for optimum allocation in  
multivariate stratified sampling 

José A. Díaz-García and Liliana Ulloa Cortez 1 

Abstract 
This paper considers the optimum allocation in multivariate stratified sampling as a nonlinear matrix optimisation of 
integers. As a particular case, a nonlinear problem of the multi-objective optimisation of integers is studied. A full detailed 
example including some of proposed techniques is provided at the end of the work. 
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1. Introduction  
One of the areas of statistics that is most commonly used 

in all fields of scientific investigation is that of probabilistic 
sampling. An effective sampling technique within a popula-
tion represents an appropriate extraction of useful data 
which provides meaningful knowledge of the important 
aspects of the population. Stratified sampling is one of the 
classical methods for obtaining such information. This 
method considers the computation of the stratum sample 
size, which can be computed by various procedures, but 
optimum allocation has been found to be a useful approach. 
Optimum allocation is considered as a non-linear optimisa-
tion problem in which the objective function is the variance 
subject to a cost restriction, or vice versa. Traditionally, this 
problem has been solved by using the Cauchy-Schwarz 
(Stuart 1954) inequality, cited in Cochran (1977) or 
Lagrange’s multiplier method, see Sukhatme, Sukhatme, 
Sukhatme and Asok (1984).  

Classical sampling theory considers a single decision 
variable or parameter; for example, in our case, univariate 
stratified sampling studies one parameter, the sample size 
and its strata allocation, see Cochran (1977), Sukhatme et al. 
(1984) and Thompson (1997). Moreover, in the context of 
stratified sampling, some multivariate approaches have been 
proposed whereby the sample size and its allocation within 
strata take diverse characteristics into consideration, see 
Sukhatme et al. (1984) and Arthanari and Dodge (1981), 
among others.  

When the optimum allocation is performed, and the cost 
function is the objective function, subject to certain variance 
restrictions in the different characteristics, then the problem 
can be reduced to a question of classical mathematical 
programming, and for this purpose there are two well-
known approaches: Arthanari and Dodge (1981), from a 

deterministic point of view; and Prékopa (1978), from a 
stochastic position. In the latter case, the problem can be 
solved by using any of the techniques presented in Díaz-
García and Garay (2007).  

Alternatively, if we wish to minimise the variances 
subject to a cost function, or to a given sample size, then 
sereral approaches can be adopted to solve this, see 
Sukhatme et al. (1984). However, the above-mentioned 
approaches do not solve the over-sampling problem, i.e., 
when the sample size in one or more strata is larger than the 
stratum size; furthermore, the sample sizes obtained are not 
integers, and must be approximated. Moreover, as we shall 
see, all the previously published approaches in this area are 
particular cases of the multi-objective optimisation 
technique. If these problems could be overcome, then we 
would have a formal overview and a unified theory for 
resolving the problem of optimum allocation in multivariate 
stratified sampling, and would be able to consider all the 
literature (both theory and practice) on multi-objective 
optimisation and related questions.  

In this paper we study optimum allocation in multivariate 
stratified sampling as a nonlinear problem of matrix optimi-
sation of integers constrained by a cost function or by a 
given sample size. Making certain assumptions, we propose 
a way to solve the problem, through several particular 
techniques, see subsection 3.1. The second aim of the paper 
is related to the following fact: if we define a particular 
vectorial function of the objective function of the matrix 
optimisation problem, then in subsection 3.2 we show that 
the optimum allocation in multivariate stratified sampling 
also can be studied as a non-linear problem of the multi-
objective optimisation of integers. In subsections 3.2.1 and 
3.2.2 we propose different techniques for solving these 
problems. Finally, in section 4, some of the techniques 
described are applied to a numerical example from forestry. 

  



216 Díaz-García and Cortez: Multi-objective optimisation for optimum allocation in multivariate stratified sampling 

 

 
Statistics Canada, Catalogue No. 12-001-X 

2. Multivariate stratified sampling  
Consider a population of size N, divided into H sub-

populations (strata). We wish to find a representative sample 
of size n and an optimum allocation in the strata meeting the 
following requirements: i) to minimise the variance of the 
estimated mean subject, to a budgetary constraint; or ii) to 
minimise the cost subject to a constraint on the variances; 
this is the classical problem in optimum allocation in 
univariate stratified sampling, see Cochran (1977), 
Sukhatme et al. (1984) and Thompson (1997). However, if 
we consider more than one characteristic (variable) then the 
problem is known as optimum allocation in multivariate 
stratified sampling. For a formal expression of the problem 
of optimum allocation in stratified sampling, consider the 
following notation.  

 
2.1 Notation  

The subindex 1, 2, ,h H= …  denotes the stratum, 
1, 2, , hi N= …  the unit within stratum h and 1, 2, ,j G= …  

denotes the characteristic (variable). Moreover:   
hN  Total  number  of  units  within 

stratum  h 

hn  Number of units from the sample 
in stratum h 

j

hiy  
Value obtained for the thi  unit in 
stratum h of the thj  characteristic 

1( , , )Hn n ′=n …  Vector of the number of units in 
the sample 

h
h

N
W

N
=  Relative size of stratum h 

1

hN
j

hi
j i

h

h

y

Y
N

==
∑

 
Population mean in stratum h of 
the   thj  characteristic 

1

hn
j

hi
j i
h

h

y

y
n

==
∑

 
Sample mean in stratum h of the 

thj  characteristic 

1( , , )G

h h hy y ′=y …  Sample mean vector in stratum h 

ST
1

H
j j

h h
h

y W y
=

=∑  
Estimator of the population mean 
in multivariate stratified sampling 
for the thj  characteristic 

1
ST ST ST( , , )Gy y ′=y …  

Estimator of the population mean 
vector in multivariate stratified 
sampling  

 
 
 

jkhs  
Sample covariance in stratum h of 
the thj  and thk  characteristics, 
where 

 

1

2

2 1

( )( )
, and

1

( )

1

h

jk

h

jj

n
j j k k

hi h hi h
i

h

h

n
j j

hi h
i

h hj

h

y y y y

s
n

y y

s s
n

=

=

− −
=

−

−
=

−

∑

∑

 

STCov( )y  Variance-covariance matrix of STy  

�
STCov( )y  

Estimator of the variance-covari-
ance matrix of ST,y  where 
�

STCov( ) ≡y �STCov( )y  and 

�

� � �

� � �

� � �

1 1 2 1
ST ST ST ST ST

22 1 2
STST ST ST ST

ST

1 2
STST ST ST ST

Var( ) Cov( , ) Cov( , )

Var( )Cov( , ) Cov( , )
Cov( )

Var( )Cov( , ) Cov( , )

G

G

GG G

y y y y y

yy y y y

yy y y y

 
 
 
= 
 
 
 

y

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

 

�
ST STCov( , )j ky y  

Estimated covariance of ST
jy and 

ST
ky  where  

� �

�

� �

ST ST ST ST

2

ST ST
1 1

2 2 2

ST ST ST
1 1

Cov( , ) Cov( , ), with

Cov( , ) , and

Cov( , ) Var ( )

jk jk

i j j k

H H
h h h hj k

h hh

H H
h hj h hjj j j

h hh

y y y y

W s W s
y y

n N

W s W s
y y y

n N

= =

= =

≡

= −

≡ = −

∑ ∑

∑ ∑

 

hc  Cost per sampling unit in stratum h  

 
Finally, let ST( ) ,G

u ∈ℜV y  such that � 1
ST ST( ) (Var( ),u y=V y  

�
ST, Var( )) ,Gy ′…  where if ,G ′∈ℜa a  denotes the transpose 

of a. 

 
3. A new approach for the problem of optimum 

       allocation in multivariate stratified sampling  
In this section we propose optimum allocation in 

multivariate stratified sampling as a matrix optimisation 
problem,   for   which  a  number  of  possible  solutions  are  
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studied. We observe that the multi-objective optimisation 
problem is a particular case of a matrix optimisation. In the 
same sense, we note that optimum allocation in multivariate 
stratified sampling can be seen as a multi-objective optimi-
sation problem. In each case, the respective solutions are 
straightforwardly derived.  
3.1 Matrix optimisation  

Formally, optimum allocation in stratified sampling can 
be studied by performing the following nonlinear matrix 
optimisation problem: 

�
ST

0

minCov( )

subject to

,c C′ + =

n
y

c n

 (1) 

where C is the total cost, 0c  is a fixed cost and 

1( , , ).Hc c′ =c …   
Note that the solutions proposed for problem (1) take real 

values, and thus the sample sizes hn  must be integers. We 
must also address the problem of over-sampling, that is, 
when h hn N≥  for at least some h, see Arvanitis and Afonja 
(1971). In order to overcome these two complications, we 
propose the following alternative approach to (1). 

�
ST

0

minCov( )

subject to

2 , 1, 2, ,

,

h h

n

c C

n N h H

n

′ + =

≤ ≤ =

∈

n
y

c n

…

ℕ

 (2) 

where ℕ  denotes the set of natural numbers.  
Obviously, the difficulty of expressing the problem in 

this way lies in defining the meaning of the minimum of a 
matrix function. The idea of minimising a matrix function, 
and in particular the matrix of variance-covariance, has been 
studied with respect to various areas of statistical theory. For 
example, when the regression estimators are determined for 
a multivariate general linear model, this is done by 
minimising the determinant or the trace of sums of squares 
and sums of products matrix of the erro, see Giri (1977). 
Similarly, the choice or comparison of some experimental 
design models is done by minimising a function of the 
variance-covariance matrix of treatment estimators, see 
Khuri and Cornell (1987) and Azaïs and Druilhet (1997).  

Fortunately, it is possible to reduce the nonlinear matrix 
minimisation problem (2) to a univariate nonlinear minimi-
sation problem by taking into account the following 
considerations (note that the prodecure described here is just 

one of various possible options, see Ríos, Ríos Insua and 
Ríos Insua (1989) and Miettinen (1999)). Observe that 
�

STCov( )y  is an explicit function of n, and so it must be 
denoted as as � �

ST STCov( ) Cov( ( )).≡y y n  Also, assume that 
�

STCov( ( ))y n  is a positive definite matrix for all n, 
�

STCov( ( )) > .y n 0  Now, let 1n  and 2n  be two possible 
values of the vector n and let �

ST 1Cov( ( ))= −B y n  
�

ST 2Cov( ( )).y n  We say that 

� �
ST 1 ST 2Cov( ( )) Cov( ( )) ,< ⇔ <y n y n B 0  (3) 

i.e., if the matrix B is a negative definite matrix. Moreover, 
note that � SSTT 1Cov( ( ))y n  and � SSTT 2Cov( ( )),y n  are diagonal-
izable. Then, let 

1
Dn  and 

2
Dn  be the diagonal matrixes 

associated with � SSTT 1Cov( ( ))y n  and � SSTT 2Cov( ( )),y n  respec-
tively, with 

1 1 1diag( , , ), > > >0G GD = α α α αn … ⋯  and 

2 1 1diag( , , ), > > >0,G GD = τ τ τ τn … ⋯  where jα  and jτ  
denote the eigenvalues of �

SSTT 1Cov( ( ))y n  and 
�

SSTT 2Cov( ( )),y n  respectively. Thus, expression (3) can 
alternatively be presented as: 

� �
1 2SSTT 1 SSTT 2Cov( ( )) Cov( ( )) ,D D< ⇔ − <n ny n y n 0  

i.e., 

� �
SSTT 1 SSTT 2

1, ,

Cov( ( )) Cov( ( )) 0j j

j G=

< ⇔ α − τ <y n y n
…

 
and (4) 

� �
SSTT 1 SSTT 2Cov( ( )) Cov( ( )),≠y n y n  

which defines a weak Pareto order, see Steuer (1986), Ríos 
et al. (1989) and Miettinen (1999). Then from Steuer 
(1986), Ríos et al. (1989) and Miettinen (1999), there exist a 
function : ,S →ℜf  such that 

� �

�( ) �( )
SSTT 1 SSTT 2

SSTT 1 SSTT 2

Cov( ( )) Cov( ( ))

Cov( ( )) Cov( ( )) .

<

⇔ <

y n y n

f y n f y n

 
(5)

 

where � ( 1) / 2
STCov( ( )) G GS +∈ ⊂ℜy n  and S is the set of 

positive definite matrixes. From (5), Steuer (1986), Ríos 
et al. (1989) and Miettinen (1999) proof that the non-linear 
matrix minimisation problem (2) is reduced in the following 
univariate non-linear minimisation problem 

�( )ST

0
1

min Cov( )

subject to

2 , 1, 2, ,

;

H

h h

h

h h

h

c n c C

n N h H

n

=

+ =

≤ ≤ =

∈

∑

n
f y

…

ℕ

 (6) 
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Unfortunately or fortunately the function ( )⋅f  is not 
unique. For example, in other statistical contexts we see the 
following commonly used functions ( ),⋅f  see Giri (1977):   
1. The trace of the matrix �

STCov( ( ));y n  
� �

ST ST(Cov( ( ))) tr (Cov( ( ))).=f y n y n   
2. The determinant of the matrix � STCov( ( ));y n  

� �
ST ST(Cov( ( ))) Cov( ( )) .=f y n y n   

3. The sum of all the elements of the matrix 
�

STCov( ( ));y n  

� �
ST ST ST

, 1

(Cov( ( ))) Cov( , ).
G

j k

j k

y y
=

= ∑f y n  

4. � �
ST max ST(Cov( ( ))) (Cov( ( ))),= λf y n y n  where maxλ  

is the maximum eigenvalue of the matrix 
�

STCov( ( )).y n   
5. � �

ST min ST(Cov( ( ))) (Cov( ( ))),= λf y n y n  where minλ  
is the minimum eigenvalue of the matrix 
�

STCov( ( )).y n   
6. � �

ST ST(Cov( ( ))) (Cov( ( ))),j= λf y n y n  where jλ  is 
the thj  eigenvalue of the matrix � STCov( ( )),y n  
among others.  

In particular Dalenius (1957), studied the problem (6) when 
� �

ST ST(Cov( ( ))) Cov( ( )) ,=f y n y n  in other words, the 
minimisation of the generalised variance � STCov( ( )) ,y n  
see also Arvanitis and Afonja (1971).   
3.2 Multi-objectibve optimisation  

Let us now, consider the vectorial function : ,GS →ℜF  
such that �

ST ST(Cov( )) ( ).u=F y V y  An alternative way of 
establishing problem (2) is 

�

�

1
ST

ST

ST

0

Var( )

min ( ) min

Var( )

subject to

2 , 1, 2, ,

,

u

G

h h

h

y

y

c C

n N h H

n

 
 

=  
 
 

′ + =

≤ ≤ =

∈

n n
V y

c n

⋮

…

ℕ

 (7) 

which is a nonlinear problem of the multi-objective optimi-
sation of integers, see Steuer (1986), Ríos et al. (1989) and 
Miettinen (1999).  

In the sampling context, observe that in multi-objective 
optimisation problems, there rarely exists a point *n  which 
is considered as an optimum, i.e., few cases satisfy the 
requirement that � *

STVar( ( ))jy n  is minimum for all 
1, , .j G= …  This justifies the following notion of the 

Pareto point (which is more weakly defined than an 
optimum point):  

We say that *
ST( )uV y  is a Pareto point of  

ST( ),uV y  if there is no other point 1
ST( )uV y  

such that 1 *
ST ST( ) ( ),u u≤V y V y  i.e., for all j, 

� �1 *
ST STVar( ) Var( )j jy y≤  and 1

ST( )u ≠V y  
*

ST( ).uV y   
Existence criteria for Pareto points of a multi-objective 
optimisation problem are established in Ríos et al. (1989) 
and Miettinen (1999). In particular we have:   

Given ST( ): H G

u ℜ →ℜV y  and let us consider a 
non empty compact N H⊂ ℕ  such that N  is the 
set of all possible values of n determined by the 
restrictions in (7). If � STVar( )jy  is an upper semi-
continuous for each 1, , ,j G= …  then the 

problem (7) has a Pareto optimal solution.   
On the other hand, Steuer (1986), Ríos et al. (1989) and 
Miettinen (1999) studied the extension of scalar 
optimisation (Kuhn-Tucker’s conditions) to the vectorial 
case. In particular, they proposed necessary conditions for 
Pareto solutions, which become sufficient conditions if: N is 
convex; the functions � STVar( ), 1, ,j j G=y …  are convex; 
and the Lagrange generalised multipliers ,jδ  associated 
with each function � STVar( ),jy  are positive, > 0jδ  for all j. 
Note that the above results for the existence of a Pareto 
solution and for Kuhn-Tucker’s conditions are valid when 
the optimisation problem is continuous, i.e., when the 
variables hn  are continuous ones, for all 1, , .h H= …  
However, it should be recalled that in order to obtain the 
solution to an integer optimisation problem, it is normal to 
make the initial assumption that such a problem is one of 
continuous optimisation. First we derive the solution to the 
problem of continuous optimisation, and then, by means of 
heuristic or branch-and-bound methods, progress to solving 
that of integer optimisation. In this context, in the case of 
optimising integers, in a practical case, it is sufficient to see 
that the corresponding problem of continuous optimisation 
has an optimum Pareto solution, and to confirm that the set 
N  of all the possible values of n contains at least one ∈n N 
for which all the coordinates are integers.  

Methods for solving a multi-objective optimisation 
problem are based on the information possessed about a 
particular problem. There are three possible scenarios; when 
the investigator possesses: complete, partial or null 
information, see Ríos et al. (1989), Miettinen (1999) and 
Steuer (1986) In a stratified sampling context, complete 
information means that, the investigator knows the popu-
lation in such a way that it is possible to propose a value 
function (Value function: This is a function : Hφ ℜ →ℜ  
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such that denoting ST ST( ) ( ( ))u u≡V y V y n  we have that 
* *

SSTT ST 1 SSTTmin ( ( )) min ( ( )) ( ( ( )))u u u< ⇔ φ <V y n V y n V y n  
*

ST 1 1( ( ( ))), .)uφ ≠V y n n n  reflecting the importance of each 
variance of the studied characteristics, this possibility, today, 
is very rarely encountered. In partial information, the 
investigator knows the main characteristic of the study very 
well and this is sufficient support for the research. Finally, 
under null information, which is the most common situation, 
the researcher only possesses information about the estima-
tors of the parameter of the experiment, and with this 
material an appropriate solution can be found.  

For reasons of space it is impossible to give an 
exhaustive explanation of all the techniques proposed for 
solving multi-objective optimisation problems (7), see Ríos 
et al. (1989), Miettinen (1999) and Steuer (1986) for a 
detailed description. Moreover, there are heuristic methods, 
instead of the classical methods, by which the problem may 
be addressed in an alternative way, see Jones et al. (2002). 
As an illustration, we present below a survey of two 
commonly used techniques; the first one studies the 
complete information stage (the value function, also termed 
the utility function) and the second one, the null information 
scenario (a method based on distances).  
3.2.1 Value function  

As mentioned above, this method belongs to the 
complete information case, in which the investigator is able 
to summarise the importance of all the studied 
characteristics in a real function, see the next paragraph (see 
also Ríos et al. (1989), Miettinen (1999) and Steuer (1986), 
among others).  

Under the value function technique, problem (7) is 
expressed as follows: 

ST

0
1

min ( ( )),

subject to

2 , 1, 2, ,

,

u

H

h h

h

h h

h

y

c n c C

n N h H

n

=

φ

+ =

≤ ≤ =

∈

∑

n
V

…

ℕ

 (8) 

where ( )φ ⋅  is a scalar function that summarises the 
importance of each of the variances of the G characteristics.  

Clearly, many of the approaches described in the litera-
ture on the question of optimum allocation in multivariate 
stratified sampling, such as compromise assignation, com-
promise assignation minimising total relative loss, and 
compromise assignation taking the mean of the optimum 

values, see Sakhatme et al. (1984), are particular cases of 
the above-mentioned method.  

Note that the value function ( )φ ⋅  may take an infinite 
number of forms, which represents a fundamental obstacle 
to defining it. However, some simple functions have given 
excellent results in the applications and they can be 
considered as promising approaches. One of these particular 
forms is the weighting method. Under this approach, 
problem (8) can be expressed as: 

�
ST

1

0
1

min Var( ),

subject to

2 , 1, 2, ,

,

G
j

j

j

H

h h

h

h h

h

w y

c n c C

n N h H

n

=

=

+ =

≤ ≤ =

∈

∑

∑

n

…

ℕ

 

such that 1 1, 0 1, 2, , ;G
j j jw w j G=∑ = ≥ ∀ = …  where jw  

weights the importance of each characteristic. 
Among the multi-objective techniques we find that the 

value function method is, in general, the most commonly 
applied, because its properties have been studied with most 
detail, see Ríos et al. (1989), Miettinen (1999), Steuer 
(1986), and the references therein.   
3.2.2 Distance-based method  

Sometimes, the researcher does not have sufficient 
previous information about the variables, or it is difficult to 
decide which are the most important characteristics of the 
experiment. In such cases, the method of this section is very 
useful, because it does not need many antecedents; more-
over, it only requires a vector of ideal goals, which is 
determined with the null information expressed in the 
problem, see Ríos et al. (1989) and Steuer (1986).  

Then, problem (7) is solved by obtaining the optimum 
values via the minimisation of the distance between the 
optimum and the vector of targets.  

Let jθ  be the ideal point or goal for the objective 
�

STVar( ), 1, , ,jy j G= …  i.e., the vector of targets ΘΘΘΘ  is given 
by 

1

.

G

θ 
 =  
 θ 

⋮ΘΘΘΘ  

Note that the vector of targets ΘΘΘΘ  can be calculated 
without additional information, which is a great advantage 
of  this  method.  In  fact, it is computed by minimising each  
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objective � STVar( ), 1, ,jy j G= …  separately, such that the 
vector ΘΘΘΘ  is defined as the vector of its individual minima, 
and this is achieved by solving the following G non-linear 
minimisation problems of integers, see Rao (1979): 

�
ST

0
1

min Var( ),

subject to

2

1, 2, ,

,

j

H

h h

h

h n

h

y

c n c C

n N

h H

n

=

+ =

≤ ≤

=

∈

∑

n

…

ℕ

 

for 1, , .j G= …  
Once the vector ΘΘΘΘ  has been computed, we study the 

optimisation problem with the new objective function, 
namely 

ST

0
1

min ( ( ), )

subject to

2 , 1, 2, ,

,

u

H

h h

h

h h

h

d

c n c C

n N h H

n

=

+ =

≤ ≤ =

∈

∑

n
V y

…

ℕ

ΘΘΘΘ

 (9) 

where ( , )d ⋅ ⋅  denotes a general distance function. In 
particular, when the program (9) is applied to the Euclidean 
distance, we have 

�
2

ST
1

0
1

min Var( )

subject to

2 , 1, 2, ,

.

G
j

j

j

H

h h

h

h h

h

y

c n c C

n N h H
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=

 − θ 

+ =

≤ ≤ =
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∑

n

…

ℕ

 

Alternatively, another distance has been proposed by Khuri 
and Cornell (1987):  

�( )2ST

2
1

0
1

Var( )
min

subject to

2 , 1, 2, ,

.

jG
j

j j

H

h h

h

h h

h

y

c n c C

n N h H

n
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+ =
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∑

n
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ℕ

 

Remarks:    
1. Note that we have used the cost restriction 

1 0
H
h h hc n c C=∑ + =  in every optimisation method. 

However, in some situations, we do not restrict the 
costs but we have restrictions for the availability of 
man-hours for carrying out a survey, or restrictions 
on the total available time for performing the survey, 
etc. These limitations can be described by using the 
following expression, see Arthanari and Dodge 
(1981):  

1

.
H

h
h

n n
=

=∑  

2. Note that the multi-objective optimisation methods 
proposed here are general and they need to be 
adjusted in some particular problems; for instance, 
we do not consider the unit (magnitude) of each 
variance in the respective sums for the value 
function. We suggest a solution, namely to replace 
the variance of each characteristic by its 
corresponding coefficient of variation 

�
ST STVar( ) / , 1. , ;j jy y j G= …  

then, the use of Khuri and Cornell’s distance is more 
recommendable than is the use of the Euclidean 
distance.    

3. It is desirable to consider estimators other than a 
mean estimator, for example the national mean 
estimator, or the comparison of regional means, etc. 
In particular, the associated editor recommended 
estimators of the following type:  

�

1

H
G

h h
h

w
=

= ∈ℜ∑T y  (10) 

where several weights hw  could even be used for the 
same variable. For instance, if one of the weights hw   
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is 1, another is -1, and the others are 0, then we can 
compute the difference between two means of two 
different strata. In general, we can optimise problem 
(2) substituting the objective function � STCov( ),y  by 
any function of interest. For example, we could use 
the estimated variance-covariance matrix � ˆCov( )T  of 
the estimator (10), among many other options.  

 
4. A numerical example  

The input information was taken from Arvanitis and 
Afonja (1971) which is a forest survey conducted in 
Humbolt County, California. The population was sub-
divided into nine strata on the basis of the timber volume 
per unit area, as determined from aerial photographs. The 
two variables included in this example are the basal area 
(BA) (In forestry terminology, ‘Basal area’ is the area of a 
plant perpendicular to the longitudinal axis of a tree at 4.5 
feet above ground) in square feet, and the net volume in 
cubic feet (Vol.), both expressed on a per acre basis. The 
variances, covariances and the number of units within 
stratum h are listed in Table 1.   

Table 1 
Variances, covariances and the number of units within 
each stratum 

 

 Variance  

Stratum hN  BA Vol. Covariance 

1 11,131 1,557 554,830 28,980 
2 65,857 3,575 1,430,600 61,591 
3 106,936 3,163 1,997,100 72,369 
4 72,872 6,095 5,587,900 166,120 
5 78,260 10,470 10,603,000 293,960 
6 51,401 8,406 15,828,000 357,300 
7 24,050 20,115 26,643,000 663,300 
8 46,113 9,718 13,603,000 346,810 
9 102,985 2,478 1,061,800 39,872  

For this example, the matrix optimisation problem under 
approach (2) is 

� �

� �

1 1 2
ST ST ST

2 1 2
ST ST ST

9

1

Var( ) Cov( , )
min

Cov( , ) Var( )

subject to

1,000

2 , 1, , 9

.

h
h

h h

h

y y y

y y y

n

n N h

n

=

 
 
 
 

=

≤ ≤ =

∈

∑

n

…

ℕ

 (11) 

Table 2 shows the optimisation solutions obtained by 
some of the methods described in Sections 2 and 3; 
specifically, we present the solutions via the trace, the 
determinant, the value function, the Euclidean distance and 
the Khuri and Cornell distance. We also include the 
optimum allocation for each characteristic, BA and Vol. (the 
first two rows in Table 2). The last two columns show the 
minimum values of the individual variances for the 
respective optimum allocations identified by each method. 
The results were computed using the commercial software 
Hyper LINGO/PC, release 6.0, see Winston (1995). The 
default optimisation methods used by LINGO to solve the 
nonlinear integer optimisation programs are Generalised 
Reduced Gradient (GRG) and branch-and-bound methods, 
see Bazaraa et al. (2006). Some technical details of the 
computations are the following: the maximum number of 
iterations of the methods presented in Table 2 was 1,193 
(determinant problem) and the mean execution time for all 
the programs was 1 second. Finally, note that the greatest 
discrepancy found by the different methods among the sizes 
of the strata occurred when minimising the generalised 
variance � STCov| ( )|.y  Beyond doubt, this is because it is the 
only method presented in Table 2 that takes into account the 
covariance between the two characteristics studied.    

Table 2 
Sample sizes and estimator of variances for the different allocations calculated 

 

Allocation 1n  2n  3n  4n  5n  6n  7n  8n  9n  � 1
STVar y( )( )( )( )  � 2

STVar y( )( )( )( )  

BA 10 94 144 136 191 113 81 109 122 5.591 5,441.105 

Vol. 7 62 119 136 200 161 98 134 83 5.953 5,139.531 

�( )STtr Cov( )y  7 62 119 135 200 161 98 134 84 5.591 5,139.531 

�
STCov( )y  9 93 128 129 193 123 86 106 133 5.616 5,403.876 

Value Function a 7 62 119 135 200 161 98 134 84 5.591 5,139.531 
b

Ed  7 62 119 136 200 160 98 134 84 5.944 5,139.557 
c

KCd  10 86 137 135 192 126 86 115 113 5.613 5,308.11 
 a  1 2 0.50w w= =  
 b  Euclidean distances 
 c  

Khuri and Cornell distance 
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5. Conclusions  
It is difficult to suggest rules for choosing a method in 

matrix optimisation (2) when there are important numerical 
differences between two of them. For example, Table 2 
shows opposing results in the optimum allocations and the 
minimum variances for the trace and the determinant 
techniques. A similar situation occurs in the criterion 
selection for testing hypotheses in the MANOVA problem, 
see Giri (1977). In fact, the existence of general criteria 
based on power tests is not sufficient for an objective 
decision to be made and the final choice depends on the skill 
of the investigator.  

However, when the problem of optimum allocation in 
multivariate stratified sampling is considered as a nonlinear 
problem of the multi-objective optimisation of integers, we 
can give some general suggestions to reduce the number of 
appropriate methods in accordance with each situation. First 
we need to recognise the research context of the problem 
(i.e., total information, partial information or null infor-
mation). Then, we can decide the technique according to the 
available information. It is important to note that the 
solution for an allocation problem should be achieved by the 
implementation of a single method. For this reason, the 
results obtained for any example are comparable only within 
the context in which the example was established. 
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A balanced sampling approach for multi-way stratification 
designs for small area estimation 

Piero Demetrio Falorsi and Paolo Righi 1 

Abstract 

The present work illustrates a sampling strategy useful for obtaining planned sample size for domains belonging to different 

partitions of the population and in order to guarantee the sampling errors of domain estimates be lower than given 

thresholds. The sampling strategy that covers the multivariate multi-domain case is useful when the overall sample size is 

bounded and consequently the standard solution of using a stratified sample with the strata given by cross-classification of 

variables defining the different partitions is not feasible since the number of strata is larger than the overall sample size. The 

proposed sampling strategy is based on the use of balanced sampling selection technique and on a GREG-type estimation. 

The main advantages of the solution is the computational feasibility which allows one to easily implement an overall small 

area strategy considering jointly the sampling design and the estimator and improving the efficiency of the direct domain 

estimators. An empirical simulation on real population data and different domain estimators shows the empirical properties 

of the examined sample strategy. 
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1. Introduction 
 
The small area problem is usually considered to be 

treated via estimation. However, if the domain indicator 

variables are available for each unit in the population there 

are opportunities to be exploited at the survey design stage. 

This condition is usually met in the business survey context 

where the domain indicator variables are available in the 

business register. As noted by Singh, Gambino and Mantel 

(1994), there is a need to develop an overall strategy that 

deals with small area problems, involving both planning 

sample design and estimation aspects. In this framework, it 

is crucial to control the sample size for each domain of 

interest, so that the domain is treated as a planned domain, at 

design stage, for which it is possible to produce direct 

estimates with a prefixed level of precision. In general, with 

a design-based approach to the inference, the presence of 

sample units in each domain allows one to compute domain 

estimates although not always reliably. Furthermore, in the 

model-based or model-assisted approach, the presence of 

sample units in each estimation domain allows one to use 

models with specific small area effects, giving more accu-

rate estimates of the parameters of interest at small area 

level (Lehtonen, Särndal and Veijanen 2003). Marker 

(1999, 2001) deals with the problems of sampling design 

issues in small area context suggesting sample strategies, 

based on stratification and over-sampling, increasing the 

number of small areas for which accurate direct estimation 

is possible. These strategies are feasible in case of nested 

domains, but they may be unfeasible when the aim of the 

survey is to produce estimates for two or more partitions of 

the population. A standard solution to obtain planned sam-

ple sizes for the domains of two or more partitions is to use 

a stratified sample in which strata are identified by cross-

classification of variables defining the different partitions. In 

the following, this design will be denoted as cross-

classification design. In many practical situations, however 

the cross-classification design is unsuitable since it needs 

the selection of at least a number of sampling units as large 

as the product of the number of categories of the 

stratification variables. Cochran well illustrates (1977, page 

124) this problem giving a clear example in which the cross-

classification design is unfeasible. 

The above background is typical of the business survey 

context. The European Council Regulation on Structural 

Business Statistics establishes that the parameters of interest 

refer to estimation domains defined by three different 

partition subsets of the population of enterprises. For 

instance, as we may note by table 1.1, in Italy the total 

number of estimation domains is 1,821; while the number of 

non-empty strata of the cross-classification design is larger 

than 37,000. 

In order to overcome some problems of cross-

classification designs, an easy strategy is to drop one or more 

stratifying variables or to group some of the categories. 

Nevertheless, some planned domains become unplanned and 

some of them can have small or null sample size.  

Many methods have been proposed in the literature to 

keep under control the sample size in all the categories of the 

stratifying variables without using cross-classification 

design. These methods are generally referred to as multi-way 

stratification techniques, and have been developed under two 
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main approaches: (i) Latin Squares or Latin Lattices schemes 

(Jessen 1970); (ii) controlled rounding problems via linear 

programming (Lu and Sitter 2002). Both approaches have 

some drawbacks which have limited the use of multi-way 

stratification techniques as a standard solution for planning 

the survey sampling designs in real survey contexts. Indeed, 

as described in Falorsi, Orsini and Righi (2006), it is not 

possible to implement the Latin Lattices schemes in many 

real survey contexts; as for example if there are no 

population units in one or more cross-classification strata. 

The main weakness of the linear programming approach is 

the computational complexity. The sampling strategy 

considered in this paper does not suffer from the disad-

vantages of the above mentioned methods and allows one the 

control of the sample sizes for domains of interest, which are 

defined by different partitions of the reference population. 

Furthermore it guarantees that the sampling errors of domain 

estimates are lower than the given thresholds. 

The proposed sampling strategy is based on the use of 

both a balanced sampling selection technique (Deville and 

Tillé 2004) and a GREG-type estimation (Lehtonen et al. 

2003). As shown in the study on empirical data herein 

illustrated and in Falorsi and Righi (2008), the main 

advantages of this solution is the computational feasibility 

and the efficiency, that is the sampling errors for multi-

domain-multivariate case are reasonably close to those 

defined by the optimal univariate solutions. This allows one 

to fairly implement an overall small-area strategy con-

sidering jointly the sampling design and the estimator and 

improving the efficiency of the direct domain estimators.  

In some survey context, the proposed sampling strategy 

might define a too large overall sample size for assuring the 

prefixed bound of the direct domain estimates sampling 

errors. This may happen due to a too large number of 

domains of a given population partition. If the overall sample 

size is bounded by budget constraints, then the proposed 

sampling strategy with direct estimators may be not feasible. 

Therefore, it could be necessary to adopt an indirect small-

area estimator in order to control the mean square errors of 

partition domain estimates. However, the proposed approach 

may be easily extended to a strategy using the direct 

estimator and the indirect small area estimators for the 

partitions requiring a too large overall sample size for 

bounding the sampling errors.  

The paper is organised as follows. Section 2 states the 

problem, introduces the essential notation and describes the 

overall sampling strategy. Section 3 shows the algorithms for 

finding the inclusion probabilities and the corresponding 

planned domain sample sizes. Sections 4 and 5 illustrate two 

extensions of the sampling strategy. In section 4 the case in 

which the variance criterion is represented by the anticipated 

variance is studied. An extension to the case of a simple 

small area indirect estimator is presented in section 5. The 

main results of an empirical study on a real population of 

Italian enterprises are shown in section 6. Some brief 

conclusions are finally underlined in section 7. 

 
2. The sampling strategy 

 
2.1 Parameters of interest  
In order to define formally the problem, let us denote 

with U  a population of N  elements and with b  a specific 

partition of ( 1, ..., )U b B=  in which thb  partition defines 

bM  different non overlapping domains, bdU ( 1, ...,d =  

),bM  of size bdN  being 1
bM

d bdN N=∑ =  and, finally let 

1
B
b bM Q=∑ =  be the overall number of domains.  

Let ,r ky  and bd kδ  denote respectively the value of the 
thr ( 1, ..., )r R=  variable of interest in the thk  population 

unit and the domain membership indicator, being 1bd kδ =  

if bdk U∈  and 0,bd kδ =  otherwise. Let us suppose that 

the bd kδ  values are known for each unit in the population. 

The parameters of interest are the M Q R= ×  domains 

totals 

, ,

(  = 1, ..., ; = 1, ..., ; = 1, ...,  ).

bd

bd r r k bd k r k
k U k U

b

t y y

r R b B d M

∈ ∈

= δ =∑ ∑
 

(2.1.1)

 

The expression (2.1.1) defines a multivariate-multi-

domain problem since there are R  variables of interest 

(multivariate aspect) and 1Q >  domains (multi-domain 

aspect). 

  
Table 1.1 

Number of domains of the Italian Structural Business Statistics Survey by partition 
 

Partitions Number of domains 

Economic activity class  (4-digits of the NACE rev.1 classification)  465 

Economic activity group (3-digits of the NACE rev.1 classification) by Size class1  395 

Economic activity division (2-digits of the NACE rev.1 classification) by Region1 
 

961 

Total number of estimation domains 1,821 
1 Size classes are defined in terms of number of persons employed. 
2 Regions are 21 including autonomous provinces. 
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2.2 A concise description of the sampling strategy  
Let us suppose that, in order to estimate the bd rt  

parameters, a sample s  of fixed size n  is selected from 

population ,U  with inclusion probabilities ( ).k k Uπ ∈  Let 

bd bds s U= ∩  be the sample of bdn  units belonging to the 

bdU  domain (with 1 ),bM
d bdn n=∑ =  being  

,
bd bd

bd k k
k U k U

n
∈ ∈

= λ = π∑ ∑  (2.2.1) 

with 1kλ =  if k s∈  and 0kλ =  otherwise. 

The sample is selected by a multi-way stratification 

technique developed under the balanced sampling frame-

work guaranteeing that the selected sample respects the 

following balancing equations 

,
ˆ
htt t=z z  (2.2.2) 

where ,
ˆ

k Uht k k kt a∈∑= λz z  denote the Horvitz-Thompson 

estimates of ,k U kt ∈∑=z z  being kz  a value vector of 

auxiliary variables known for each population unit at the 

design stage and 1/ .k ka = π  A suitable specification of the 

kz  vectors can assure that the realized sample sizes, ,bdn  

are equal to fixed quantities known in advance, as described 

in section 2.3. 

The estimates of ,bd rt  denoted with , greg
ˆ ,bd rt  are obtained 

with the modified GREG estimator (Rao 2003, page 20), 

given by: 

, greg ,
ˆ

bd r bd k r k

k s

t w y
∈

= ∑  (2.2.3) 

where 

1

,
ˆ( ) ( / ) /

bd k k bd k

bd bd ht k k k k k k kk s

w a

t t a c a c
−

∈

= δ

′ ′+ −   ∑x x x x x

 

denote the sampling weights, kx  indicates a value vector of 

the auxiliary variables, kc  is a known constant, being 

bdk Ubd kt ∈∑=x x  and ,
ˆ .

bdk sbd ht k kt a∈∑=x x  The estimator 

(2.2.3), may be derived under the following working super 

population model 

, ,r k k r r ky ′= +εx β  (2.2.4) 

where rβ  is an unknown vector of fixed regression para-

meters and ,r kε  is the random residual. The model expecta-

tion, ,mE  and model variances, ,mV  are respectively given 

by ( ) 0;m r kE ε = 2
,( ) ;m r k k rV cε = σ , ,( , ) 0m r k r iE ε ε =  if 

.k i≠  

The approximated sampling variance of the modified 

GREG estimator under balanced sampling is: 

2

, greg , ,
1ˆ ˆ( | ) 1 ,p bd r ht bd r k
kk U

NV t t t
N Q

∈

 = = − η − π 
∑z z  (2.2.5) 

being 

, ,

,
,

for
,

for

r k k bd bd

bd r k
k bd bd

k U

k U

ε

ε

′ε − ∈
η =  ′− ∈

z

z

z B

z B
 (2.2.6) 

where  

1

, ,(1/ 1) (1/ 1),bd k k k k r k bd k kk U
k U

−
ε ∈

∈

′= π − ε δ π −  ∑ ∑zB z z z  

being 
bd

U  the subset of U  complementary to .bdU  A proof 

of (2.2.5) is given in section 2.5.  

The inclusion probabilities, ,kπ  and the domain sample 

sizes, ,bdn  are determined with a procedure which attempts 

to minimize the overall sample size, ,n  guaranteeing that 

the sampling variances are lower than prefixed level of pre-

cision thresholds, , greg ,
ˆ ˆ: ( | )bd r p bd r ht bd rV V t t t V= ≤z z ( 1, ...,b=  

; 1, ..., ; 1, ..., ).bB d M r R= =  The technical details are 

described in section 3. 

Let us note that two different sets of covariates have been 

introduced in order to underline that the set of covariates 

available at the design stage ( z  variables) could be different 

from the set available at the estimation stage (x variables) 

even if in many practical situations they could be the same. 

As for example the covariates at estimation stage could be 

updated with respect to those available at the design stage. 

In our context (see section 2.3) the kz  vectors are 

characterized as specified by the expression (2.3.2) being 

defined only by the domain membership indicator variables 

and by the inclusion probabilities, while the kx  vectors 

could contain the values of some other variables more 

explicative of the phenomena of interest. For instance, in the 

business survey context the x  variables could include, 

among others, the number of employees or the turnover.  
2.3 The balanced sampling for marginal 

stratification  
Multi-way stratification designs can be treated in the 

context of the balanced sampling. 

The definition of a balanced sample depends on the 

assumed inferential framework. In the model based 

approach, a sample is defined as balanced on a set of 

auxiliary variables if there is the equality between the 

sample and the known population means of the auxiliary 

variables (Valliant, Dorfman and Royall 2000). Following 

the design based (or model assisted approach) considered in 

this paper, a sample is balanced when the Horvitz-

Thompson estimates of the auxiliary variables totals are 

equal to their known population totals (Deville and Tillé 

2004). 

For defining the balanced sampling in the design or 

model assisted approach, let us introduce the general 

definition of sampling design as a probability distribution 

( )p ⋅  on the set S  of all the subset s  of the population U  
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such that ( ) 1,s p s∈∑ =S  where ( )p s  is the probability of 

the sample s to be drawn. Each set s may be represented by 

the outcome 1( , ..., , ..., )k N
′ = λ λ λλ  of a vector of N  

random variables. Let 1( , ..., , ..., )k N
′ = π π ππ  be the vector 

of inclusion probabilities, where ( ) ( ) ,spE p s∈∑= = Sπ λ λ  

being ( )pE ⋅  the expected value over repeated sampling. Let 

1( , ..., , ..., )k k hk Qkz z z′ =z  be a vector of Q  auxiliary vari-

ables available for each population unit. The sampling 

design ( )p s  with inclusion probabilities π  is said to be 

balanced with respect to the Q  auxiliary variables if and 

only if it satisfies the balancing equations given by (2.2.2) 

for all s S∈  such that ( ) 0.p s >  

Let us suppose that a vector of inclusion probabilities ,π  

consistent with the marginal sampling distributions bdn  

( 1, ..., ; 1, ..., ),bb B d M= =  is available, that is  

( 1, ..., ; 1, ..., ).
bd

bd k b
k U

n b B d M
∈

= π = =∑  (2.3.1) 

Multi-way stratification design represents a special case 

of balanced design where for unit k  the auxiliary variable 

vector is given by 

1

11

(0, ..., , ..., 0, ..., 0, ..., , ..., 0)

( , ..., , ..., ).
B

b b B

k k k

Q

k k bd k BM k

= =

′ = π π

= π δ δ δ

z
������� �������

���������������

 (2.3.2)

 

The expression (2.3.2) defines the kz  as vectors of 

( )Q B−  zeros and with B  entries equal to kπ  in the 

places indicating the domains which the unit k  belongs to. 

When defining the kz  vector as (2.3.2), if condition 

(2.3.1) holds, the selection of sample satisfying the system 

of balancing equations (2.2.2), ( ) / ,k U k sk k k k∈ ∈∑ ∑λ π =z z  

guarantees that the bdn  values are non random quantities. 

The left hand-side of the balancing equation (2.2.2) is 

( ) / ,
bdk U k Uk bd k k k k bdn∈ ∈∑ ∑π δ λ π = λ =  while the right 

hand-side is .
bdk U k Uk bd k k bdn∈ ∈∑ ∑π δ = π =  

Deville and Tillé (2004) proposed the cube method that 

allows one the selection of balanced (or approximately 

balanced) samples for a large set of auxiliary variables and 

with respect to different vectors of inclusion probabilities. In 

particular, Deville and Tillé (2000) show that with 

specification (2.3.2) of the kz  vectors, the balancing 

equations (2.2.2) can be exactly satisfied. The cube method 

is implemented by an enhanced algorithm for large data sets 

(Chauvet and Tillé 2006) available in a free software code 

that may be downloaded in the website http://www.insee.fr/ 

fr/nom_df_met/outils_stat/cube/accueil_cube.htm .  
 
2.4 The modified direct GREG estimator   
Following Lehtonen et al. (2003), the estimator (2.2.3), 

may be expressed under the general form  

, greg , , ,
ˆ ( )

bd bd

bd r r k k r k r k
k U k s

t y a y y
∈ ∈

= + −∑ ∑ɶ ɶ  (2.4.1) 

where ,r kyɶ  denotes the prediction of ,r ky  under the 

assumed super population model. The predictions ,{ ;r kyɶ  

}k U∈  differ from one model specification to another, 

depending on the functional form and from the choice of the 

auxiliary variables. The estimator (2.2.3) is derived under 

the working super-population model (2.2.4). The predictions 

,r kyɶ  are then obtained by 

,
ˆ ,r k k ry ′= x βɶ  (2.4.2) 

being  

( ) 1

,
ˆ / / .r k k k k k r k k k

k s k s

a c y a c
−

∈ ∈

′= ∑ ∑β x x x  (2.4.3) 

Let us observe that the linear model (2.2.4) allows one to 

define the estimator only knowing the domain totals of the 

auxiliary information and the kx  values for the sampling 

units. However, knowing the kx  values for every ,k U∈  it 

is possible to build an estimators with more efficient 

predictions ,r kyɶ  obtained by generalized linear models 

(Lehtonen and Veijanen 1998) or non parametric regression 

techniques (Montanari and Ranalli 2003). 

As noted by Rao (2003, page 20) the estimator (2.2.3) is 

approximately design unbiased as the overall sample size 

increases, even if the domain sample size bdn  is small. 

Moreover, the sum of the , greg
ˆ

bd rt  estimates over all the 

domains of a partitions is benchmarked to the usual GREG 

estimate of the total, 1 , greg ,
ˆ [1bM

k sd bd r r k kt y a∈=∑ ∑= +  
1( ) ( / ) / ].k U k s k sk k k k k k k k ka a c c−

∈ ∈ ∈∑ ∑ ∑′ ′−x x x x x  
 
2.5 Sampling variances  
In order to derive the expression of the variance (2.2.5), 

consider the results given by Deville and Tillé (2005). They 

have proposed approximating the variance of the Horvitz-

Thompson estimator , ,
ˆ

k sr ht r k kt y a∈∑=  of the total rt =  

, ,k U r ky∈∑  by supposing that the balanced sampling can be 

viewed as a conditional Poisson sampling and assuming 

that, at least for large sample sizes, the inclusion proba-

bilities kπ  well approximate the inclusion probabilities of 

the Poisson design. Assuming that, through Poisson sam-

pling, the vector , ,
ˆ ˆ( , )r ht htt t′ ′z  has approximately a multi-

normal distribution, the authors suggest a good approxi-

mation of the sampling variance given by  

( )
( )

, , , , ,

, , ,

, ,

2

, ,

ˆ ˆ ˆ ˆ( | ) ( ( ) )

ˆ ˆ( )

( )

1 1 ( )

p r ht ht p r ht ht y

p r ht ht y

p k r k k y
k s

r k k y
kk U

V t t t V t t t

V t t

V a y

N y
N Q

∈

∈

′= = + −

′= −

′= −

′≅ − −
− π

∑

∑

z z z z z

z z

z

z

B

B

z B

z B

 

(2.5.1)
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where 1
, ,[ (1/ 1)] (1/ 1).k U k Uy k k k k r k ky−

∈ ∈∑ ∑′= π − π −zB z z z  

The expression (2.5.1) has been validated by a set of 

simulations. 

Let us consider, now, the linear approximation, *
, greg
ˆ ,bd rt  

of the GREG estimator, the derivation of which may be 

obtained according to Särndal, Swensson and Wretman 

(1992, pages 450-451) 

*

, greg , greg ,

,

ˆ ˆ

.

bd bd

bd

bd r bd r k r k r k
k U k s

k r k r k bd k
k U k s

t t a

a

∈ ∈

∈ ∈

′≅ = + ε

′= + ε δ

∑ ∑

∑ ∑

x β

x β

 

(2.5.2)

 

On the basis of expressions (2.5.1) and (2.5.2), it is 

possible to derive the following result 

( )
( )
( )
( )

*

, greg , , greg ,

, ,

, , ,

, ,

,

2

,

ˆ ˆ ˆ ˆ( | ) ( | )

ˆ|

ˆ( )

(

1 1 ,

p bd r ht p bd r ht

p k r k bd k ht
k s

p k r k bd k ht bd
k s

p k r k bd k k bd
k s

p k bd r k

k s

bd r k
kk U

V t t t V t t t

V a t t

V a t t

V a

V a

N
N Q

∈

ε
∈

ε
∈

∈

∈

= ≅ =

= ε δ =

′= ε δ + −

′= ε δ −

= η

 ≅ − η − π 

∑

∑

∑

∑

∑

z z z z

z z

z z z

z

B

z B
 

where 2
,bd r kη  is defined in (2.2.6). 

The approximated sampling variance of , greg
ˆ

bd rt  depends 

on the residuals of the whole set of units, because of 

balanced selection. Therefore, the units not belonging to 

bdU  have an influence on the sampling variance of the 

estimator.  

Let us examine now the univariate unidomain case and 

assume that the survey has an unique target parameter, .bd rt  

Furthermore, let us suppose that the selected sample 

respects the balancing equations, ,
ˆ ,htt t=z z  being fixed the 

overall sample size n. 

Following the arguments proposed by Särndal et al. 

(1992; Result 12.2.1, page 452), it is trivial to prove that, in 

this sampling context, each unit k could be selected with 

( )Q R×  different optimal inclusion probabilities, ,bd r kπɺɺ  

( 1, ..., ; 1, ..., ; 1, ..., )bb B d M r R= = =  

, , , ,bd r k bd r k bd r i

i U

n
∈

π = | η | | η |∑ɺɺ  

which allow one to attain the ( )Q R×  different lower 

bounds, *
| ,bd r nV  of the approximated variances: 

( )

*

, greg , |

2 2

, ,

ˆ ˆ( | )

1 .

p bd r ht bd r n

bd r k bd r k
k U k U

V t t t V

N
N Q n

∈ ∈

= ≥ =

 | η | − η
−   

∑ ∑

z z

 

Let us finally underline that in Tillé and Favre (2005) is 

given a criterion for obtaining a prediction ,
ˆ

bd r kη  of the 

,bd r kη  values, that may be used in repeated sampling 

contexts.  

 
3. Sampling algorithms for the determination  

        of the domain sample sizes 
 
The inclusion probabilities kπ  and the derived domain 

sample sizes, ,
bdk Ubd kn ∈∑= π  are obtained with a two steps 

procedure: (i) in the first step, denoted as optimization, the 

preliminary inclusion probabilities, ,k′π  are determined 

solving a minimum constrained problem; (ii) in the second 

step, denoted as calibration, the inclusion probabilities, ,kπ  

are obtained as a slight modification of the ;k′π  the cali-

bration problem is implemented for assuring that the domain 

sample sizes bdn  are integers. 

As illustrated in the following, the kπ  values may be 

expressed as implicit functions of the unknown residuals 
2
, .bd r kη  But, in real survey context, the determination of the 

inclusion probabilities kπ  may be done using the predict-

tions 2
,

ˆ
bd r kη  instead of 2

, .bd r kη  This is a general problem 

concerning the planning the sampling designs, because the 

variances are generally unknown quantities that may be 

suitably estimated. In repeated survey contexts the effect of 

using the estimates 2
,

ˆ
bd r kη  as a replacement for 2

,bd r kη  may 

be tested by computing the sampling variances after the data 

collection. The empirical results may then be used for 

introducing proper adjustments in planning the next survey 

design. However, as illustrated in the empirical analysis and 

in Falorsi and Righi (2008), the proposed strategy seems to 

be efficient and sufficiently robust with respect to small 

departures of ideal conditions.   

The sections 3.1 and 3.2 respectively describe the two 

steps of the algorithm for the determination of the domain 

sample sizes. A simplified allocation rule, which seems to 

be worthwhile in many real survey contexts, is described in 

section 3.3.  
 
3.1 First step: Optimization    
The inclusion probabilities k

′π  can be defined as solution 

of the following non linear programming problem with N  

unknowns, ,k′π  and ( )N Q R+ ×  constraints 
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( )

2

,

Min

1 1

( 1, ..., ; 1, ..., ; 1, ..., )

0 1 ( 1, ..., ).

k
k U

bd r k bd r
kk U

b

k

N V
N Q

b B d M r R

k N

∈

∈

′π



   − η ≤ ′ − π 


= = =



′< π ≤ =

∑

∑  (3.1.1) 

A numerical solution to (3.1.1) may be derived 

considering the algorithms developed for the multivariate 

allocation in stratified surveys. Such algorithms allow one to 

find the unknown values 0 ( 1, 2, ...)hv h> =  which 

represent the solution of the following non linear problem 

Min ( )h h∑ ν  under the constraints ,h rh h rA A∑ ν ≤  where 

rhA  and ( 1, 2, ...)rA r =  are known positive quantities. 

Bethel (1989) invokes the Kuhn-Tucker theorem to show 

that there exists a solution to the above problem. He 

describes a simple algorithm and discusses its convergence 

properties. Chromy (1987) develops an algorithm, suitable 

for automated spreadsheets but without an explicit proof that 

always converges. A slight modification of the Chromy’s 

algorithm  –  able to solve the problem (3.1.1) guaranteeing 

the inequalities 0 1 ( 1, ..., )k k N′< π ≤ =  are respected  –

is described herein in the following. After the Initialization, 

the algorithm finds the k
′π  values by iterating the two actions 

of Calculus and Check. As far as the convergence issue is 

concerned, it is worthwhile to note that the Chromy’s 

algorithm have been mostly used for stratified sampling 

design, and indeed, the documentation refers to stratified 

samples. In the applied sampling literature, there is a lot of 

empirical proofs of the successful use of the algorithm in this 

sampling context. Let us note that the modification of the 

Chromy’s algorithm, herein proposed, treats the sampling 

units as strata and the resulting allocation, being fractional, 

defines the inclusion probabilities. Also in this case there is 

no formal proof that the proposed modified algorithm 

converges. Nevertheless, in all the different empirical 

experiments developed by the authors the algorithm has 

always converged and no critical conditions have been 

encountered.   
Initialization: at initial iteration ( 0),τ =  set 1k

τγ =  

( 1, ..., ).k N=  

Calculus: the generic iteration ( 1, 2, ...)τ =  consists of a 

sequence of steps denoted with (0, 1, 2, ...).u =   
• At initial step ( 0),u =  set , 1u

bd r

τ φ =  and calculate 

2

0 , .bd r bd r k k

k U

NV
N Q

τ τ

∈

= η γ
− ∑  

• At subsequent steps ( 1, 2, ...),u =  calculate the values 

of the following equations 

,

1/ 2

, 2

,

1 1 1

(1 ) .
b

u

k

MB R
u

k k bd r bd r k

b d r

N
N Q

τ

τ τ τ

= = =

π =

 
− γ + γ φ η − 

∑∑∑
 
(3.1.2)

 

, 2

,,
1 ,

u

bd r bd r k ku
k U k

NV
N Q

τ τ
τ

∈

= η γ
− π∑  

and (3.1.3) 
, ,

0 .
u u

bd r bd r bd rV V Vτ τ τ′ = +  

• If the following two conditions: 

,u
bd r bd rV Vτ ′ ≤  and , ,( ) 0,u u

bd r bd r bd rV Vτ τ ′φ − =  (3.1.4) 

 are respected (for all 1, ..., ; 1, ..., ;bb B d M r= = =  
1, ..., )R  then the action of Calculus stops and the inclu-

sion probabilities k
τπ  are those calculated in equation 

(3.1.2). Otherwise, the updated quantities , 1u
bd r

τ + φ  are 

computed 

, 1 , , , 2[ /( )]u u u u
bd r bd r bd r bd r bd rV V Vτ + τ τ τ τ′φ = φ −  (3.1.5) 

 and the equations (3.1.2) and (3.1.3) are calculated at 

1,u +  over and over again with , 1u
bd r

τ + φ  replacing 
,u
bd r
τ φ  until conditions (3.1.4) are respected. 

 

Check: if the condition 1k
τπ ≤  is true for all ,k  then the 

algorithm stops and the k
′π  values are set equal to k

′π =  
.k

τπ  Otherwise the k
τγ  values are updated as 1 1k

τ+ γ =  if 

1τ
kπ ≤  and 1 0k

τ+ γ =  if 1.τ
kπ >  The calculus is iterated 

at 1τ +  with 1
k

τ+ γ  replacing .k
τγ  A SAS macro that 

allows one to solve the problem (3.1.1) has been developed 

by the authors of this paper and may be released on demand. 
 
3.2 Second step: Calibration  
The quantities bdn  are defined, first, by rounding the 

results of the Q  sums, ( 1, ..., ; 1, ..., ).
bdk U k bb B d M∈∑ ′π = =  

Sometimes a further data manipulation could be necessary 

in order to assure the condition 1
bM

d bdn n=∑ =  for each .b  

The probabilities kπ  are then obtained as solution of 

calibration problem  

Min ( ; )

,

( 1, , ; 1, , 1),

bd

k k
k U

k k bd
k U k U

b

G

n n

b = … B  d = … M

∈

∈ ∈

  ′π π   


 π = π =



−

∑

∑ ∑
 (3.2.1) 

where, ( ; )k kG ′π π  is a distance function between kπ  and 

.k′π  Note that (3.2.1) may be solved by the well known 

Iterative Proportional Fitting algorithm (Bishop, Fienberg 

and Holland 1975) or the Generalized Iterative Propor-

tional Fitting algorithm (GIPF; Dykstra and Wollan 1987) 
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procedures. The logarithmic distance function ( ; )k kG ′π π =  
ln( / )k k k

′π π π − ( )k k
′π + π  avoids to define the kπ  proba-

bilities lower than 0, while GIPF prevents to obtain kπ  

values larger than 1. 
 
3.3 A simplified allocation rule  
In many real survey contexts in which the overall sample 

size n  is fixed and there is not enough information to obtain 

good predictions 2
,

ˆ
bd r kη  of the 2

,bd r kη  values, the following 

procedure may be implemented. Firstly the marginal sample 

sizes bdn  are determined by a quite simple rule  

( / ) (1 ) / ,bd b bd b bn n N N n M= α + − α  (3.3.1) 

being (0 1)b bα ≤ α ≤  a fixed constant which have to be 

properly defined. The (3.3.1) turns out to be a compromise 

between the allocation proportional to population size 

( 1)bα =  and the allocation uniform for each domain of a 

given partition ( 0).bα =  

The probabilities kπ  are then obtained as solution of the 

calibration problem (3.2.1) where the marginal sample sizes 

are computed as above indicated and the initial probabilities 

k
′π  are set uniformly equal to / .k n N′π =  The resulting 

inclusion probabilities are no more optimal, in the sense 

above described and do not guarantee that the sampling 

variances are lower than prefixed level of precision 

thresholds. However they are computed with a reasonable 

procedure, which may be fairly implemented and thus 

representing an interesting point of reference with respect to 

any real survey context. 

 
4. The anticipated variance  

A frequently used criterion for planning the sampling 

strategies is that of controlling the anticipated variance, 

which may be defined as: 

2
, greg , , greg ,
ˆ ˆ ˆ ˆAV( | ) ( | ) .bd r ht m p bd r bd r htt t t E E t t t t= = − =z z z z  (4.1) 

The following result may be derived under the 

assumptions of the model (2.2.4) and using the results given 

in section (2.5): 

, greg ,
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2
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2

,

, ,
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,
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ˆ ˆ( | )
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m r k
kk U

k bd
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r k k bd
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t t t
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N
N Q

N
N Q

N
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∈

ε
∈

ε
∈

∈
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  = − ε  − π 
  ′− − π 

  ′− − ε  − π  
 = − η − π 

∑

∑

∑

∑

z z

z z

z
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(4.2)

 

being 

2 2 2 2
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(1 ) if

otherwise
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′=Z z { }1

1
diag 1/ 1 .

N

U k k

−
== π −Ω  The expression 

(4.2) has been derived using the following two results  
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where 1diag{ } ,N

bd r k bd k kc == δV  and 1diag{1} .N

N k==I   

The result (4.2) shows that it is possible to define a 

sampling strategy which aims at controlling the anticipated 

variances. Indeed, if the quantities 2
,

a
bd r kη  (or their proper 

predictions 2
,

ˆ )a
bd r kη  are used as a replacement for the 

residuals 2
, ,bd r kη  the problem (3.1.1) defines a sampling 

design which allows one to guarantee the following condi-

tions , greg ,
ˆ ˆAV( | )bd r ht bd rt t t V= ≤z z ( 1, ..., ; 1, ...,b B d= =  

; 1, ..., ).bM r R=  

An interesting result is the following. In the special case 

of a single partition, if the inclusion probabilities, ,kπ  and 

the heteroschedastic factors, ,kc  are quite constant in each 

domain, then the selection of a balanced sample decreases 

the anticipated variance. This result is demonstrated in 

Falorsi and Righi (2008).   

 
5. Brief extension to the case of a simple small 

        area indirect estimator  
If a given population partition defines a too large number 

of domains, it could happen that the budget constraints 

oblige to define a too large prefixed sampling errors of the 

direct estimators of the domains of the partition; in this 

situation, it could be necessary to adopt an indirect small-

area estimator, in order to control the mean square errors of 

partition domain estimates. Herein in the following we will 

show as the sampling strategy, described in sections 2 and 3, 

may be extended to the case of a simple small area indirect 

estimator. Let us consider the enough general case in which 



230 Falorsi and Righi: A balanced sampling approach for multi-way stratification designs for small area estimation 

 

 

Statistics Canada, Catalogue No. 12-001-X 

the vector kx  of the auxiliary covariates has an intercept, 

such as .k sbd bd kN w∈∑=  

Let bɺɺ  denote the partition for which it is necessary to 

adopt a small area indirect estimator and let us consider the 

model (7.1.1) described in Rao (2005, page 116). In the 

herein studied context, the model for direct estimator, 

, greg , greg
ˆ ˆ / ,r rbd bd bd
t t N=ɺɺ ɺɺ ɺɺ  of the bdɺɺ domain may be defined as 

, greg
ˆ

( 1, ..., ; 1, ..., )

r r r rbd bd bd bd bd

b

t h v u

d M r R

′= + +

= =

a φɺɺ ɺɺ ɺɺ ɺɺ ɺɺ

ɺɺ  (5.1)
 

where 
bd
aɺɺ  is a 1p ×  vector of area level covariates, rφ  is 

an unknown 1p ×  vector of regression coefficients, 
bd
hɺɺ  is 

a known quantity related to the thbdɺɺ  domain, rbd
vɺɺ ∼  

2iid(0, )rb νσɺɺ  independent of the sampling error rbd
uɺɺ ∼  ap-

proximately 2ind(0, ),rtbd
σɺɺ  being 2

, greg ,
ˆ ˆ( |rt p r htbd bd

V t tσ = =zɺɺ ɺɺ  
2) / .
bd

t Nz ɺɺ  For known 
2

rb νσɺɺ  and 2

rtbd
σɺɺ  values, the BLUP 

estimator of rbd
tɺɺ  is  

, blup , greg
ˆˆ ˆ( (1 ) )r r r r rbd bd bd bd bd bd

t N t ′= γ + − γ a φɺɺ ɺɺ ɺɺ ɺɺ ɺɺ ɺɺ  (5.2) 

being  

2 2 2 2 2/( )r r rt rbd b bd bd b bd
h hν νγ = σ σ + σɺɺ ɺɺ ɺɺ ɺɺ ɺɺ ɺɺ  (5.3) 

and 
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2 2 2

1
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d

M

r rt rbl bl bd b bd
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ν
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∑

∑

φ a a

a

ɺɺ

ɺɺ

ɺɺ ɺɺ ɺɺ ɺɺ ɺɺ

ɺɺ ɺɺ ɺɺ ɺɺ ɺɺ  (5.4)

 

The MSE of the BLUP estimator  is  

2 2 2

, blup

1

2 2 2

1

ˆMSE( ) (1 )

( ) .
b

r r rt rbd bd bd bd bd

M

rt rbd bd bd bd b bd bd
d

t N

h

−

ν
=


= γ σ + − γ



 
′ ′ σ + σ     

∑a a a a
ɺɺ

ɺɺ ɺɺ ɺɺ ɺɺ ɺɺ

ɺɺ ɺɺ ɺɺ ɺɺ ɺɺ ɺɺ ɺɺ

 

(5.5)

 

Looking at expressions (5.3) and (5.5), it is possible to 

note that for a given values of the variance 2 ,rb νσɺɺ  it is 

possible to control the , blup
ˆMSE( )rbd
tɺɺ  in planning the 

sampling design, by defining a proper value of the variance 
2 .rtbd

σɺɺ  The following iterative procedure finds the k
′π  

inclusion probabilities which guarantee the minimum sam-

ple size and assure the respects of the following constraints: 

, greg ,
ˆ ˆ( | )p bd r ht bd rV t t t V= ≤z z  (for ;b b d≠ =ɺɺ 1, ..., ;bM  

1, ..., )r R=  and , blup
ˆMSE( ) (r rbd bd
t V d≤ =ɺɺ ɺɺ 1, ..., ;

b
M ɺɺ  

1,..., ).r R=  
 
Initialization: at initial iteration ( 0)j =  find the j

k
′π  

inclusion probabilities, solution of the problem (3.1.1), 

using the constraints , greg ,
ˆ ˆ( | )p r ht bd rbd

V t t t V= ≤z zɺɺ  (for 

1, ..., ;b B= 1, ..., ; 1, ..., ).bd M r R= =  
 
Iteration: the generic iteration ( 1, 2, ...)j =  is articulated as 

follows.  
• Calculate 2 2 1[ / ( ( ))] [(1/ )j j

k Urt kbdbd
N N N Q −

∈∑σ = − π −ɺɺɺɺ  
2

,1] r kbd
ηɺɺ ( 1, ..., ; 1, ..., ).

b
d M r R= =ɺɺ  

• Calculate j

rbd
γɺɺ  and , blup

ˆMSE( )j
rbd
tɺɺ ( 1, ..., ;

b
d M= ɺɺ  

r = 1, ..., )R  respectively by means of equation (5.3) 

and (5.5) by using the sampling variances 2j

rtbd
σɺɺ  instead 

of 2 .rtbd
σɺɺ  

• Calculate 2 2
, blup
ˆeff MSE( ) /( ).j j j

r r rtbd bdbd bd
t N= σɺɺ ɺɺɺɺ ɺɺ  

• Find the j

k
′π  inclusion probabilities, solution of the 

problem (3.1.1), using the 2 2

, , eff (j j

r k r k rbd bd bd
dη = η =ɺɺ ɺɺ ɺɺ  

1, ..., ; 1, ..., ; 1, ..., )
b

M r R k N= =ɺɺ  as replacement 

for the 2
,r kbd

ηɺɺ  values.  
Check: if the following condition is satisfied, for a small 

quantity 1, | ,j j
k U k kv v−
∈∑ | π − π ≤  then the algorithm 

stops and the inclusion probabilities k
′π  are those calculated 

at iteration .j  Otherwise, the iteration is calculated over and 

over again until the above condition is respected. 

 
6. Empirical analysis  

In order to verify the empirical properties of the proposed 

sampling strategy, two experiments have been implemented. 

Both experiments have showed good performances of the 

proposed strategy. The first experiment, on artificial data, is 

described in Falorsi and Righi (2008); the whole sampling 

strategy proposed in section 2 is implemented including the 

sampling allocation described in sections 3.1 and 3.2. The 

second experiment, based on a simulation on real enterprise 

data, is described herein in the following.  

The analysis has been carried out on the 1999 population 

of the enterprises from 1 to 99 employees belonging to the 

Computer and related economic activities (2-digits of the 

NACE rev.1 classification. The data base used for the 

simulation study has N = 10,392 enterprises. The value 

added and labour cost are the variables of interest chosen in 

the simulation. The variable values are available for each 

unit in the population by an administrative data source. We 

consider two partitions: (DOM1) geographical region with 

20 marginal domains; (DOM2) Economic activity group (3-

digits of the NACE rev.1 classification with 6 different 

groups) by Size class (defined in terms of number of persons 

employed: 1 = 1 4;−  2 = 5 9;−  3 = 10 19;−  4 = 20 99)−  

with 24 marginal domains. Therefore, the overall number of 

marginal domains is 44, while the number of the cross-

classification strata is 480 but only 360 strata have one or 

more population units.  
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In this study n  is set equal to to 360. Five sampling 

designs have been considered, as reported in table 6.1. The 

first two benchmarking designs are two simple one-way 

stratification designs with simple random sampling without 

replacement in each stratum. The first design herein referred 

as STDOM1 is stratified by partition 1 and the second one, 

STDOM2, is stratified by partition 2. The marginal sample 

sizes for STDOM1 have been defined by (3.3.1). The 

parameter 1α  and the related marginal sample sizes 1dn  

( 1, ..., 20)d =  guarantee the percent Coefficient of 

Variation (CV) of the Horvitz-Thompson estimates of totals 

of the auxiliary variable number of employers be lower than 

than 34.5% for all domain of the partition 1. Analougsly, the 

parameter value 2α  has been defined by means of (3.3.1), 

assuring that, with the STDOM2 sample design, the percent 

CV of the Horvitz-Thompson estimates of totals of the 

auxiliary variable are lower than 8.7% for all the domains of 

the partition 2. In the following we refer to the domains with 

the planned sample size greater than the sample size 

deriving from an allocation rule with 1 ( 1, 2)b bα = =  as 

small domains. These domains need to be oversampled to 

bound the sampling errors (Marker 2001). 

We note that the above allocation rules are straight-

forward to implement in any real survey contexts. Two 

balanced sample designs are examined respecting the 

marginal sample sizes defined by STDOM1 for the first 

partition and by STDOM2 for the second one: the BAL 

design consider the balancing equations (2.2.2) with the 

specification (2.3.2) of the kz  vector; the BALPOP samples 

satisfy (or approximately satisfy) the following balancing 

equations k s k bd k k bdn∈∑ π δ π =  and k s bd k k∈∑ δ π =  

bdN ( 1, ..., ; 1, ..., ).bb B d M= =  The probabilities kπ  of 

both designs have been obtained with the simplified proce-

dure described in section 3.3. Furthermore, the comparison 

has been completed considering a coordinated design 

(referred as CPAR) selecting a single sample for each 

marginal population with Pareto Sampling (Särndal and 

Lundström 2005) and assuring the maximum overlap of the 

two samples. The marginal sample sizes, respectively 

defined by the STDOM1 and STDOM2 designs, are 

satisfied only as expectation over repeated sampling in the 

CPAR design; the inclusion probabilities are computed with 

the iterative procedure described in Falorsi et al. (2006). 

Five hundred Monte Carlo samples have been selected for 

each sampling design.  

For each sample, the estimates of the domain totals have 

been computed by the Horvitz-Thompson (HT) estimator, 

modified GREG (greg) estimator and synthetic (syn) esti-

mator, expressed as ,syn ,
ˆ .

bdk Ubd r r kt y∈∑= ɶ  As far as the esti-

mators using auxiliary information are concerned, two 

simple homoschedastic linear models have been imple-

mented: the model (6.1) uses 10 auxiliary variables, six of 

them are the economic activity group membership indica-

tors, and the remaining four are the size class membership 

indicators; the model (6.2) uses the 44 domain membership 

indicator variables. The linear model (6.1) is expressed by 

( )m k h jE y = β + β  for ,h jk U U∈ ∩  (6.1) 

where hU  is the population of enterprises of th (h h =  
1, ..., 6)  economic activity group and jU  is the population 

of enterprises of th ( 1, ..., 4)j j =  size class of the number 

of employers and hβ  and jβ  are the fixed effects of the thh  

economic activity group and of the thj  size class. 

The linear model (6.2) is 

1 2( )m k d dE y = β + β  for 1 2 ,d dk U U∈ ∩  (6.2) 

where 1dβ  and 2dβ  are the separate domain-specific effects.  

 
Table 6.1 
Sampling design used in the simulation study 
 

Sampling Design Abbreviation 

Stratified by Partition 1 with SRSWOR* in 

each stratum 

   STDOM1 

Stratified by Partition 2 with SRSWOR* in 

each stratum 

   STDOM2 

Balanced sampling on the marginal sample 

sizes and on population sizes  

   BALPOP 

Balanced sampling on the marginal sample 

sizes  

   BAL 

Coordinated Pareto sampling     CPAR 

*SRSWOR: Simple Random Sampling Without Replacement 

 
We point out that the main aim of the experiment is to 

compare different sampling designs using the same 

estimator. In this context, the choice of the best model does 

not represent a central issue; hence, we have considered two 

quite general feasible models that can be implemented in all 

situations of planned domains. The model (6.1) is somewhat 

more reliable, since the estimates of the regression 

parameters are based on large sample sizes; while in model 

(6.2) it is possible to evaluate the effect of planning the 

domain sample sizes, although the estimates of each 

regression parameter are based on small sample sizes. Using 

the model (6.2) the syn and the greg estimators give 

identical results. In the following each sampling strategy is 

indicated in short by the couple (dis, est), where dis 

indicates one of the 5 sample designs referred in table 6.1 

and est assumes the categories HT, syn, and greg above 

indicated. 

In the following the analysis is based on the set of small 

domains. Two quality measures have been computed: the 

average Absolute mean Relative Bias (ARB)  and the 

average Relative Mean Square Error (RMSE)  expressed 

by 
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500

,est
1

ARB (dis,est)

1 1
ˆ (dis) 100,

500card( )

F

i

bd r bd r bd r
bd F i

t t t
F ∈ =

=

 − × ∑ ∑
 

500
2

2

,est
1

RMSE (dis,est)

1 1
ˆ (dis) 100

500card( )

F

i

bd r bd r bd r
bd F i

t t t
F ∈ =

=

 
 − ×  

 
∑ ∑

 

denoting with: F  a specific subset of the marginal 

domains; card( )F  the cardinality of ,est
ˆ; (dis)i

bd rF t  the thi  

Monte Carlo sample estimate ( 1, ..., 500)i =  of the total 

bd rt  in the strategy (dis, est). In particular, F  represents 

alternatively the subset of small domains of DOM1, DOM2 

or the overall set of small domains (of both DOM1 and 

DOM2). 

The Monte Carlo simulation study highlights that the 

multi-way stratification techniques proposed in this paper 

are able to take bias and variability under control with 

respect to two benchmark strategies (STDOM1 and 

STDOM2) collapsing one of the two stratification variables. 

The main results of the experiment referred to the small 

domains set are shown in table 6.2. The table is organised in 

four blocks: the first one illustrates the quality measures of 

the HT estimator; the second and third block are dedicated 

respectively to the syn and greg estimators based on 10 

auxiliary variables (model (6.1)); the forth block presents 

the results of syn or greg estimators based on the 44 domain 

membership indicator variables (model (6.2)). We restrict 

the comments only on the value added variable, but similar 

consideration could be expressed for the labour cost 

variable. In general, the comments are referred to the overall 

set of small domains.  

Examining firstly the HT estimator, we observe the 

following.  
• The two benchmark designs (STDOM1 and STDOM2) 

have an RMSE  value for the unplanned domains equal 

to 148.28% and 107.49% respectively. These values 

cause the large RMSE  values computed for the overall 

set of small domains and respectively equal to 102.74% 

and 55.23%. 

• The STDOM2 shows better results than those attained 

by STDOM1. This finding is explained by the fact that 

the STDOM2 stratification criterion is correlated with 

the variables of interest and takes under control a larger 

number of small domains than the STDOM1 

stratification. 

• As far as the overall set of small domains, the BALPOP 

is the more efficient design, both in terms of ARB  

(1.06%) and RMSE  (32.58%), even if BAL is only 

slightly worse.  

• The strategy adopting the coordinated sampling shows 

worse values with respect to balanced sampling but it 

performs better in terms of RMSE  than benchmark 

strategies.  

Considering the synthetic estimator based on 10 auxiliary 

variables, some issues may be pointed out. 

• All designs are characterized by a large bias. The 

STDOM1 has an ARB  equal to 13.99% (although it 

has an unacceptable RMSE  that is equal to 65.16%). 

The rest of the designs have the ARB  values higher 

than 18%. This evidence gives a warning against the 

use of synthetic estimator.  

• The STDOM2 design has the lowest RMSE  (26.16%), 

because of a strong reduction of the DOM1 variance. 

However, the ARB  value (20.34%) is the largest than 

all designs. 

• The behaviour of balanced and coordinated designs in 

terms of  bias and variance are more or less equal. The 

BAL has the lowest ARB  (18.33%) and RMSE  

(31.61%) values. 

The experimental results of the greg estimator suggest 

some considerations. 

• All the designs show strong improvements of the 

quality measures. In general, the ARB  measure has a 

remarkable reduction with respect to the same indicator 

computed on the synthetic estimator. Only the 

STDOM1 still presents a high ARB  value (7.40%). 

• In the STDOM2, the reduction of the bias is more than 

compensated from the increase of the variability. This 

produces an RMSE  equal to 34.05%. 

• Both the balanced and the coordinated designs have 

good performances, though the balanced designs are 

slightly better being the RMSE  roughly equal to the 

23%.   
Finally in the fourth block we note that the syn or greg 

estimator based on 44 auxiliary variables show analogous 

results to those of the greg estimator based on 10 auxiliary 

variables. The balanced designs are the best with slight 

preference for the BALPOP sampling.  

As general findings, the balanced designs seem to 

guarantee a good strategy to take under control bias and 

variance of the overall set of the small domains.  

The conclusion is that for all blocks, BALPOP generally 

shows the best overall performance with respect to bias and 

accuracy. The strategy based on the BALPOP sample 

design coupled with the greg estimator with the ten auxiliary 

variables (block 3) is a safe choice for both value added and 

labour cost. The BAL design performs well too. Moreover, 

the results show that the synthetic estimator of block 2 must 

be considered carefully because the bias can be unex-

pectedly large and the squared bias would be the dominating 

part of the RMSE. 
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Table 6.2 
Average Absolute Relative Bias (ARB)  and Relative Mean Square Error (RMSE)  of small domain sampling strategies 

 

Value Added Labour Cost 

DOM1 DOM2 Overall DOM1 DOM2 Overall 
Sampling 

Design 
ARB  RMSE  ARB  RMSE  ARB  RMSE  ARB  RMSE  ARB  RMSE  ARB  RMSE  

  Horvitz-Thompson estimator (block 1) 

STDOM1 1.79 43.19 8.18 148.28 5.41 102.74 1.72 42.82 6.86 155.87 4.63 106.88 

STDOM2 3.42 107.49 0.47 15.26 1.75 55.23 3.32 105.66 0.46 12.66 1.70 52.96 

BALPOP 0.77 24.86 1.29 38.49 1.06 32.58 0.74 23.60 1.20 34.26 1.00 29.64 

BAL 0.84 25.43 1.45 40.61 1.19 34.03 0.79 24.22 1.57 35.80 1.23 30.78 

CPAR 1.35 32.52 2.18 53.85 2.18 44.60 1.44 31.68 2.62 51.44 2.11 42.88 

 Synthetic estimator with 10 auxiliary variables (block 2) 

STDOM1 14.22 18.88 13.81 100.55 13.99 65.16 12.29 18.40 9.25 95.03 10.57 61.83 

STDOM2 24.82 33.96 14.48 15.96 20.34 26.16 13.13 14.79 12.46 23.11 12.75 19.51 

BALPOP 13.68 17.51 24.98 43.98 20.09 32.51 11.89 15.60 12.35 33.08 12.15 25.50 

BAL 14.92 18.46 21.82 41.66 18.83 31.61 13.37 16.91 10.41 32.64 11.69 25.82 

CPAR 13.68 17.83 23.45 44.63 19.22 33.02 11.82 16.13 11.69 34.93 11.75 26.78 

 Modified GREG estimator with 10 auxiliary variables (block 3) 

STDOM1 2.35 30.13 11.26 119.95 7.40 81.03 1.86 29.28 11.79 119.23 7.49 80.25 

STDOM2 3.98 58.62 0.95 15.26 2.26 34.05 2.90 52.66 0.93 12.66 1.78 29.99 

BALPOP 1.11 19.41 2.20 25.80 1.73 23.03 1.01 16.42 1.99 21.73 1.57 19.43 

BAL 1.63 19.41 1.76 26.11 1.70 23.21 1.21 16.72 2.08 21.96 1.70 19.69 

CPAR 1.04 21.27 1.63 29.30 1.37 25.82 1.03 18.27 1.11 24.60 1.08 21.86 

 Synthetic or Modified GREG estimator with 44 auxiliary variables (block 4) 

STDOM1 3.39 31.30 27.48 63.22 17.04 49.39 2.76 30.80 28.67 63.05 17.44 49.08 

STDOM2 17.24 102.24 1.37 20.65 8.25 56.00 23.00 102.64 1.42 19.10 10.77 55.30 

BALPOP 1.07 20.71 1.97 26.98 1.58 24.26 1.08 17.62 1.93 24.07 1.56 21.27 

BAL 1.47 20.36 2.13 28.46 1.84 24.95 1.41 17.66 2.02 25.10 1.75 21.88 

CPAR 1.79 23.38 2.22 32.39 2.03 28.48 1.65 20.73 2.08 30.39 1.90 26.21 

 

 

7. Conclusions  

 
This work illustrates an efficient sampling strategy useful 

for obtaining planned sample size for domains belonging to 

different partitions of the population and in order to 

guarantee that sampling errors of domain estimates are 

lower than given thresholds. The sampling strategy, that 

covers the multivariate-multi-domain case, is useful when 

the overall sample size is bounded. In these instances the 

standard solution, using a stratified sample with the strata 

given by the cross-classification of variables defining the 

different partitions, is not feasible since the number of strata 

is larger than the overall sample size.  

The sampling strategy which is proposed is based on the 

use of the balanced sampling selection technique and on a 

GREG-type estimator. The proposal may be easily extended 

to a strategy employing the use of both direct and indirect 

small area estimators. 

The easy feasibility is one of the main advantages of the 

proposed solution since it is implemented by algorithms that 

are either based on free software tools or suitable for 

automated spreadsheets. But some other interesting aspects 

seem to appear. 

The empirical analysis of real enterprise data shows good 

performances of the proposed strategy, which seems to be 

robust even when departing from ideal conditions (i.e., the 

estimates appear to be of high quality even when the 

inclusion probabilities of the sample differ from the optimal 

ones). These results encourage additional work to give a 

systematic account of conditions under which the proposed 

method will have good performance. 

Furthermore, the proposed strategy does seems to work 

well for large datasets, in terms of computer time, and 

therefore it seems to be suitable for large scale surveys. 

Finally, the approach represents an original overall small 

area sampling strategy, which jointly considers the sampling 

design and the estimator. The paper deeply analyzes the 

design issues, but more research is needed to study more 

carefully the estimation issues. In particular, future research 

should be focused on the improvement of the model-based 
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or model-assisted estimators due to the presence of sample 

units in each estimation domain, allowing the use of models 

with specific small area effects and giving more accurate 

estimates of the parameters of interest at small area level. 

These aspects seem to be an appealing strength to be 

investigated. 
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Small area estimation under a two-part random effects model with 
application to estimation of literacy in developing countries 

Danny Pfeffermann, Bénédicte Terryn and Fernando A.S. Moura 1 

Abstract 

This paper considers situations where the target response value is either zero or an observation from a continuous 

distribution. A typical example analyzed in the paper is the assessment of literacy proficiency with the possible outcome 

being either zero, indicating illiteracy, or a positive score measuring the level of literacy. Our interest is in how to obtain 

valid estimates of the average response, or the proportion of positive responses in small areas, for which only small samples 

or no samples are available. As in other small area estimation problems, the small sample sizes in at least some of the 

sampled areas and/or the existence of nonsampled areas requires the use of model based methods. Available methods, 

however, are not suitable for this kind of data because of the mixed distribution of the responses, having a large peak at zero, 

juxtaposed to a continuous distribution for the rest of the responses. We develop, therefore, a suitable two-part random 

effects model and show how to fit the model and assess its goodness of fit, and how to compute the small area estimators of 

interest and measure their precision. The proposed method is illustrated using simulated data and data obtained from a 

literacy survey conducted in Cambodia. 
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1. Introduction 

 
In this paper we consider situations where the target 

response value is either zero or an observation from a 

continuous distribution. A typical example analyzed in the 

paper is the assessment of literacy proficiency based on a 

written test with the possible outcome being either zero, 

indicating illiteracy, or a positive score in a given range 

measuring the level of literacy. Another example is the 

consumption of illicit drugs (or certain food items), where a 

zero value indicates “no consumption”, whereas a positive 

outcome measures the amount consumed. Our interest lies 

in how to obtain valid estimates of the average response 

(average literacy level in our example), or the proportion of 

positive responses (proportion of literate people), in small 

areas for which only small samples or no samples are 

available. As in other small area estimation problems, the 

small sample sizes within the sampled areas and the 

existence of nonsampled areas requires the use of model 

based methods.  

We propose the use of a two-part random effects model 

and show how to fit the model and assess its goodness of fit, 

and how to obtain the small area estimates of interest and 

measure their precision. The first part of the model specifies 

the probability of a zero score. The second part specifies the 

distribution of the positive scores. Although the model is not 

new and is used in other applications, (see, e.g., Olsen and 

Schafer 2001 and the discussion and references in that 

paper), to the best of our knowledge this kind of mixed 

distribution has not been considered before in the small area 

estimation literature. Notice that the zero scores in our 

application are ‘structural’ (true) zeroes. There exists a 

related body of literature that handles excess of zeros in 

count data, which may arise from a combination of 

overdispersion or true zero inflation. Zero inflated data are 

data that have a larger proportion of zeros than expected 

from pure count (Poisson) data. See, e.g., Barry and Welsh 

(2002).  

The first part of our model is the logistic function, used to 

model the probability of a positive score. The second part is 

a linear model with normal error terms fitted to the non-zero 

responses. Both models include individual and area level 

covariates, as well as area random effects that account for 

variations not explained by the covariates. The model allows 

for correlations between the corresponding random effects 

of the two parts and is fitted by application of Markov Chain 

Monte Carlo (MCMC) simulations.  

The two-part model is fitted to data collected as part of 

the national literacy household survey carried out in 

Cambodia in 1999, known as the ‘Assessment of the 

Functional Literacy Levels of the Adult Population’. Figure 

1 displays the histogram of the literacy scores observed for 

this survey. In this application we produce small area 

estimates for districts of residence and nested villages, 

requiring the use of a two-part three-level random effects 

model. We assess the goodness of fit of the model by use of 

simple descriptive statistics and by simulating data from the 

model. The use of simulations enables also to compare the 

results of fitting the ‘full’ two-part model with results 

obtained by fitting the two parts of the model separately, 
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without accounting for the correlations between the random 

effects in the two parts. Another comparison of interest is to 

results obtained when ignoring the special nature of the data 

and fitting the linear part to all the responses, ignoring the 

existence of many zero scores.  

In order to facilitate the presentation and discussion in 

the rest of the paper, we consider literacy scores measured 

for individuals residing in villages nested in districts, but as 

noted above, the model considered in this paper can be used 

for many other important applications.  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1 Histogram of literacy scores in the national 

literacy survey in Cambodia, 1999 

 
2. Model and small area predictors  

 
2.1 The two-part model   

Let y  define the response (literacy test score in our 

application) and R  the covariate variables and random 

effects. Then,  

( ) ( , 0) Pr ( 0 )

( , 0) Pr ( 0 )

( , 0) Pr ( 0 ).

E y R r E y R r y y R r

E y R r y y R r

E y R r y y R r

| = = | = = = | =

+ | = > > | =

= | = > > | =  (1)

 

For the small area estimation problem considered in this 

paper we apply a nested three-level model with districts of 

residence defining the first level, villages defining the 

second level and individuals defining the third level. For 

individual k  residing in village j  of district ,i  with 

covariates and random effects ,ijkR r=  we have therefore 

the relationship,  

( )

( , 0)Pr ( 0 ).

ijk ijk

ijk ijk ijk ijk ijk

E y R r

E y R r y y R r

| = =

| = > > | =  (2)

 

In what follows we model the two parts in the right hand 

side of (2). For individuals with positive responses we 

assume the ‘linear mixed model’,  

2 2 2

;

(0, ); (0, ); (0, ),

ijk ijk i ij ijk

i u ij v ijk

y x u v

u N v N N ε

′= β + + + ε

σ σ ε σ∼ ∼ ∼

 
(3)

 

where ijkx  represents individual and area level values of 

covariates, iu  is a random district effect and ijv  is a nested 

random village effect. The random effects iu  and ,ijv  and 

the residual terms ijkε  are assumed to be mutually 

independent between and within the districts and villages. 

They account for the variation of the individual scores not 

explained by the covariates, and define the correlations 

between the scores of individuals residing in the same 

village and the correlations between the scores of 

individuals residing in the same district but in different 

villages.  

2 2 2 2 2

2 2 2 2

Corr ( , )

( ) /( ) if , ,

/( ) if , .

0 if

ijk i j k

u v u v

u u v

y y

i i j j k k

i i j j

i i

′ ′ ′

ε

ε

=

′ ′ ′ σ + σ σ + σ + σ = = ≠
 ′ ′σ σ + σ + σ = ≠
 ′≠

(4)
 

For the probabilities of positive responses (the second 

part of Equation (2)), we assume the ‘generalized linear 

mixed model’,  

* *

* * *

* * *

* * *

* 2 * 2

exp( )
Pr ( 0 , , )

1 exp( )

(0, ); (0, ),

ijk i ij

ijk ijk ijk i ij

ijk i ij

i iju v

x u v
p y x u v

x u v

u N v N

′ γ + +
= > | =

′+ γ + +

σ σ∼ ∼

 

(5)

 

implying that *logit( ) log( /(1 ))ijk ijk ijk ijkp p p x′= − = γ +  
* *.i iju v+  Here again, *

iu  and *
ijv  represent independent 

random district and village effects not accounted for by the 

covariates * .ijkx  Notice that the covariates ijkx  in Equation 

(3) and the covariates *
ijkx  in Equation (5) may differ, see 

the empirical study in Section 4.   
Remark 1. One could argue that the mixed linear model (3) 

with the added normality assumptions implies a correspon-

ding probit model for the probabilities .ijkp  This, however, 

is not true since the model (3) is only assumed for the 

positive scores. It follows that the parameters of the two 

models can be assumed to be distinct in the sense of Rubin 

(1976).  

We allow for nonzero correlations between the district 

random effects in the two parts, and similarly for the village 

random effects. This is a reasonable assumption since it can 

be expected that for given values of the covariates, an 

individual residing in an area characterized by high literacy 

scores will have a higher probability of a positive score than 

an individual residing in an area with low scores. The 

magnitude of these correlations and the importance of 
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accounting for them when fitting the model depends on the 

prediction power of the covariates available for the two 

parts of the model, or alternatively, on the variances of the 

random effects, (the higher the prediction power of the 

covariates, the lower are the variances). The correlations are 

modelled by assuming,  

* *

* 2 * 2( , ); ( , ).i i u i ij ij v iju u v v
u u N K u v v N K v

| |
| σ | σ∼ ∼  (6) 

Figure 2 provides supporting evidence for this propo-

sition using the sample data from the center of Cambodia 

that is used for the empirical study in Section 4. (The 

empirical correlations between the variables measured on 

the two axes are 0.25 for villages and 0.38 for districts.)   
2.2 Parameters of interest and predictors  

For village ( , )i j  of size ,ijN  the small area parameters 

of interest are the true mean of the literacy scores, ijY =  

1 / ,ijN

k ijk ijy N=∑  and the proportion of positive scores, ijP =  

1I ( 0) / ,ijN

k ijk ijy N=∑ >  where I ( 0) 1ijky > =  if 0ijky >  

and is 0 otherwise. Notice that the means are computed over 

all the individuals, including individuals with zero scores. 

Under the model (2), the mean is predicted as, 

ˆ ˆ ,
ij ij

ij ijk ijk ijk S k S
Y y y N

∈ ∉
=  + 
 ∑ ∑  (7) 

where ijS  defines the sample from village ( , ).i j  By (3) 

and (5), the missing scores can be predicted under the 

frequentist approach as, 

* * *

* * *

ˆ ˆ ˆexp( )
ˆˆ ˆ ˆ[ ],

ˆ ˆ ˆ1 exp( )

ijk i ij

ijk ijk i ij

ijk i ij

x u v
y x u v

x u v

′ γ + +
′= × β + +

′+ γ + +
 (8) 

where 
* *ˆ ˆ ˆ ˆ ˆ ˆ, , , , ,i i i iju v u vβ γ  define appropriate sample esti-

mates, see next section. One could add an estimate ˆ ijkε  to 

the estimated mean, ˆ ˆ ˆ( ),ijk i ijx u v′ β + +  obtained either by 

drawing from the 2ˆ(0, )N εσ  distribution, or by selecting at 

random an estimated residual, , , ,
ˆˆ (i j k i j k i j ky x′ ′ ′ ′ ′ ′ ′ ′ ′′ε = − β −  

ˆ ˆ )i i ju v′ ′ ′−  from the estimated residuals computed for the 

sampled individuals. Adding estimates ˆ ijkε  to the estimated 

mean values reflects more closely the variability of the 

positive responses. Under the Bayesian approach, the 

missing scores are predicted by drawing at random from 

their predictive distribution, see next section. 

By (5), the proportion ijP  is predicted under the 

frequentist approach as, 

1ˆ ˆI ( 0) I ( 0) ,
ij ij

ij ijk ijkk S k S
ij

P y y
N ∈ ∉

 = > + > ∑ ∑  (9) 

where 
* * *

* * *

ˆ ˆ ˆexp( )
Î ( 0) .

ˆ ˆ ˆ1 exp( )

ijk i ij

ijk

ijk i ij

x u v
y

x u v

′ γ + +
> =

′+ γ + +
 

A Bayesian solution consists of predicting the indicators 

I ( 0)ijky >  by drawing at random from their predictive 

distribution. 

The district means and proportions are predicted 

analogously, which is the same as computing the weighted 

average of the corresponding village predictors, with the 

weights defined by the relative village sizes. 
 

Remark 2. The computation of the predictor defined by (7) 

and (8) requires knowledge of the covariates *x , xijk ijk  for 

every unit in the population. Similarly, the computation of the 

predictor in (9) requires knowledge of the covariates *xijk  for 

every unit in the population. This is generally true for all 

generalized linear mixed models. Information on the auxiliary 

covariate variables is often obtained from censuses or other 

administrative records. In the absence of such information, 

the missing covariates can be imputed by drawing at random 

from their estimated parametric distribution or empirical 

distribution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2 Proportion of positive scores by average of positive scores for districts and 

villages in center of Cambodia. National literacy survey, 1999   
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3. Inference 

 
The use of the small area predictors defined by (7)-(9) 

requires estimating the fixed parameters (hyperparameters) 
2 2 2( , , , )u v εβ σ σ σ  of the linear part (Equation 3), the fixed 

parameters * *

2 2( , , , , )u v u u v v
K K

| |
γ σ σ  of the logistic part 

(Equations 5, 6), and predicting the random effects 
* *{( , ; , )}.i ij i iju v u v  Methods for estimating fixed and ran-

dom effects when fitting linear mixed models, or gener-

alized linear mixed models alone, have been developed over 

the last two decades under both the frequentist and the 

Bayesian paradigms. The use of these methods permits also 

the computation of estimators of the mean square error 

(MSE) or the Bayes risk of the small area predictors that 

account for hyper parameter estimation to correct order. See 

the book by Rao (2003) and the more recent article by Jiang 

and Lahiri (2005) for thorough reviews and discussions. 

However, the two-part model defined by (2)-(6) has not 

been considered in the small area literature, and in what 

follows we consider a few possibilities of fitting this model. 
 
3.1 Full likelihood based inference  

Define, I 1(0)ijk =  if 0( 0)ijkY > =  and denote, ijkr =  
( , , ),ijk i ijx u v * * * *( , , ).ijk ijk i ijr x u v=  For given vectors *, ,ijk ijkr r  

the likelihood for the two-part model takes the form, 

I I (1 I )

, ,

( ) [ ( , 0)] (1 ) ,ijk ijk ijk

ijk ijk ijk ijk ijk

i j k s

L p f y r y p
−

∈

= | > −∏  (10) 

where ijs s= ∪  denotes the sample from all the villages, 

ijkp  is defined by (5) and ( , 0)ijk ijk ijkf y r y| >  is the normal 

density with mean ( )ijk i ijx u v′ β + +  and variance 2

εσ  

(Equation 3). The use of this likelihood for inference is, 

however, problematic because the random effects {( , ;i iju v  
* *, )}i iju v  are in fact unobservable. One possibility, there-

fore, is to integrate the likelihood over the joint (normal) 

distribution of the random effects as defined by (3) (5) and 

(6), and maximize the integrated likelihood with respect to 

the fixed (hyper) parameters 2 2 2( , , , )u v εβ σ σ σ  and ( , ,uKγ  

* *

2 2, , ).v u u v v
K

| |
σ σ  Having estimated the fixed parameters, the 

random effects can be predicted by their expected values 

given the data (with the maximum likelihood estimates held 

fixed), which requires another set of integrations. Olsen and 

Schafer (2001) consider a two-part model for fitting 

longitudinal data and approximate the integrated likelihood 

by a high order multivariate Laplace approximation 

(Raudenbush, Yang and Yosef 2000). The authors calculate 

empirical Bayes predictors of the random effects by use of 

importance sampling (Tanner 1996), setting the fixed 

parameters at their maximum likelihood estimates. The 

application of this procedure, however, is very complicated 

computationally, and the mean square estimators of the 

errors (MSE) of the small area predictors obtained this way 

fail to account for the variation induced by estimating the 

fixed parameters. The contribution to the total MSE from 

estimating the fixed parameters can not be ignored in 

general, unless the numbers of sampled districts and villages 

are very large. 
 
3.2 Separate model fitting  

The idea here is to fit the two parts of the model 

separately, and then combine the estimates for computing 

the small area predictor defined by (7) and (8). The 

predictor in (9) is obtained directly from fitting the second 

part only. As mentioned earlier, the fitting of the separate 

parts has been studied extensively in the literature and 

computer softwares are readily available, particularly for 

linear mixed models. It is important to note in this regard 

that under the present two-part model, the predictors (7)-(9) 

are nonlinear functions of the data and even when the hyper 

parameters are known, no explicit formulae are available for 

the prediction MSEs. Estimating the MSE under the 

frequentist approach with bias of small order requires 

therefore developing new appropriate approximations or 

resampling procedures, which in the case of the predictor 
ˆ
ijY  defined by (7) and (8), account for the correlations 

between the data in the two parts. This is further 

complicated by the fact that by fitting the two parts 

separately, it is not clear how to estimate the coefficients 

( , )u vK K  defining the correlations between the random 

effects in the two parts (Equation 6). A Jackknife procedure 

for estimating the prediction MSE of the predictor in (9) 

under separate model fitting has been developed by Jiang, 

Lahiri and Wan (2002). Bootstrap estimators applicable to 

this predictor, again under separate model fitting, are studied 

in Hall and Maiti (2006). 
 
3.3 Bayesian inference under the two-part model  

The use of Bayesian methods requires specification of 

prior distributions for the fixed parameters underlying the 

two-part model (the coefficients , , ,u vK Kβ γ  and the 

variances * *

2 2 2 2 2, , , , ),u v u u v vε | |
σ σ σ σ σ  but with the aid of 

Markov Chain Monte Carlo (MCMC) simulations, the 

application of this approach permits sampling from the 

posterior distribution of the fixed parameters and the 

random effects, and hence sampling from the predictive 

distribution of the unobserved responses. Thus, the use of 

this approach yields the whole posterior distribution of the 

small area parameters of interest, allowing thereby the 

computation of correct MSE (posterior variance) measures 

or confidence (credibility) intervals that account for all the 

sources of variation. As discussed above, estimation of the 

prediction MSE under the previous approaches is 

problematic, particularly with regard to the predictor ˆ
ijY  

defined by (7) and (8). Computer software is available to 
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perform all the necessary computations but it should be 

noted that with complex models, the computations can be 

intensive and time consuming. 

In the empirical study of this article we followed the 

Bayesian approach using the WinBUGS software 

(Spiegelhalter, Thomas and Best 2003). This software is 

known to be “user friendly”, and based on our past 

experience it operates very well. Clearly, there are many 

other software available for MCMC simulations, such as 

MLwiN (Rasbash, Browne, Goldstein, Yang, Plewis, Healy, 

Woodhouse, Draper, Langford and Lewis 2002) or R 

(Development Core Team 2008). 

WinBUGS implements the MCMC algorithm with the 

Gibbs sampler (Gelfand and Smith 1990). The Gibbs sam-

pler samples alternately from the conditional distribution of 

each of the fixed and random parameters (random effects), 

given the data and the remaining parameters. It defines a 

Markov chain, which under some regularity conditions 

converges to a realization from the joint posterior distri-

bution of all the model parameters. Thus, at the end of the 

sampling process (upon convergence), the algorithm pro-

duces a (single) realization of each of the fixed and random 

parameters from their joint posterior distribution given the 

data. The realizations are denoted below by a tilde above the 

symbols. Realizations ijkyɶ  from the posterior distribution of 

ijky  are obtained by randomly drawing I 1ijk =ɶ  (or 0) with 

probabilities ijkpɶ  (or 1 );ijkp− ɶ * * *exp( )ijk ijk i ijp x u v′= γ + + ×ɶɶ ɶ ɶ  
* * * 1[1 exp( )] ,ijk i ijx u v −′+ γ + +ɶ ɶ ɶ  and defining, 

( ) I .ijk ijk i ij ijk ijky x u v′= β + + + ε ×ɶ ɶɶɶ ɶ ɶ  (11) 

Substituting ijkyɶ  for ˆijky  in (7) and Iijk
ɶ  for Îijk  in (9) yields 

a single sampled value of the mean ijY  and the proportion 

ijP  from their respective posterior distributions, for every 

village ( , ).i j  Repeating the same process independently a 

large number of times (using parallel chains, see below) 

yields an empirical approximation to the posterior distribu-

tion of the mean and the proportion. The true village means 

are then predicted by averaging the corresponding sampled 

values in all the chains and similarly for the village propor-

tions. The MSE (Bayes risk) is estimated by computing the 

empirical variance of the sampled values. Credibility 

(confidence) intervals with coverage rates of (1 )− α  are 

defined by the / 2α  and (1 / 2)− α  level quantiles of the 

empirical posterior distribution. The same procedure is 

applied for predicting the district means and proportions, 

and the corresponding for computing prediction variance 

and credibility intervals. 

In practice, the use of parallel chains for producing 

independent realizations from the posterior distributions is 

often too time consuming, in which case the samples can be 

generated from a single long chain or a few chains, but 

selecting only every thr  sampled value (after convergence), 

thus reducing as much as possible the correlations between 

adjacent sampled values. 

 
4. Empirical results 

 
4.1 Data and model  

We use data from the 1999 survey, ‘Assessment of the 

Functional Literacy Levels of the Adult Population’ in 

Cambodia for the empirical illustrations. This is a household 

survey, interviewing 6,548 adults and administering a 

literacy test consisting of 20 tasks in the Khmer language, 

with scores ranging from 0 to 100 (see Figure 1 in the 

introduction). The survey used a stratified multi-stage 

sampling design with the strata defined by the 24 provinces 

that comprise the country. Each of the provinces is divided 

into districts, and about half of them were selected to the 

sample (a total of 96 districts out of the 184 districts in the 

country). Two communes were sampled from each of the 

selected districts and other than in a few cases, three villages 

were selected from each of the sampled communes. Finally, 

households were sampled in each village and one adult 

selected from each household, alternating according to age 

and sex. The sampling design at each stage was systematic 

sampling. The number of households selected in each 

village was the same for all the villages belonging to the 

same province. The total province sample sizes were 

allocated proportionally to the province population sizes. 

The small areas of interest are the districts and villages. 

In the present study we restrict to the 50 rural districts 

sampled in provinces located in the center of the country, 

for which the same model is expected to hold. In these 50 

districts 5 districts had samples of 20 adults or less, and the 

remaining 45 districts had samples of 41 to 120 adults. The 

number of villages in the reduced data set is 286, with 47 

villages having samples of 9 or less adults and 193 villages 

having samples of 10 to 19 adults. The total number of 

adults in the sample is n = 4,028. 
Table 1 shows the results obtained when fitting the full 

two part model to the sample data, using the Bayesian 

methodology and software described in Section 3.3. The 

covariate (regressor) variables in the two models have been 

selected by application of some standard model selection 

procedures. All the covariates except for age, education and 

household size are dummy variables, taking the value 1 

when the variable definition is satisfied. We used normal 

prior distributions with large variances for the elements of 

the vector coefficients , ,β γ  and uniform priors with large 

(but finite) range for the standard deviations underlying the 

two parts of the model and the coefficients uK  and vK  in 

Equation 6. By default, WinBUGS automatically selects the 

method of sampling from the conditional distribution of 
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each of the fixed and random parameters when applying the 

Gibbs sampler. Notice that the conditional distributions 

don’t have a closed-form under the present full model. The 

software selects an acceptance/rejection method for the 

logistic part, and slice sampling (Neal 2000) for most of the 

other parameters and random effects. 

For the MCMC simulations we generated a chain of 

length 50,000, discarded the first 5,000 sampled values as 

“burn in”, and then thinned the chain by taking every th150  

sample value. Discarding the first 5,000 sampled values was 

found sufficient to guarantee the convergence of the chain, 

using some informal commonly used graphical techniques. 

These include comparing the histograms of the posterior 

distributions of the various parameters based on different 

sub-sequences of the chain, inspecting the traces of several 

chains simulated in parallel, each with different starting 

values to check for stabilization of the chain, and plotting 

the autocorrelations of the sampled values to verify 

independence after appropriate thinning. See Gamerman 

and Lopes (2006) for further discussion and illustrations, 

including more formal tests of convergence. Note also that 

the simulation results in Section 4, using the model fitted to 

the real data and generating a separate chain of length 

50,000 for each simulation and discarding the first 5,000 

values as “burn in” yield very satisfactory results, thus 

providing another indication for the convergence of the 

chain after the first 5,000 values. 

The estimated K-coefficients and variances of the 

random effects imply, � *Corr ( , )i iu u = 0.45; �
*

Corr ( , )ij ijv v =  
0.21. Interestingly, the correlations are close to the empirical 

correlations reported at the end of Section 2.1, using the raw 

means. 

The main results emerging from Table 1 can be 

summarized as follows. All the regressor coefficients are 

highly significant (based on standard t-tests) and generally 

have anticipated signs. Other variables considered for 

inclusion in the two models were found to be nonsignificant. 

The variances of the random effects are highly significant in 

both models, indicating their contribution in explaining the 

variation of the scores, or the probabilities of positive 

scores, not explained by the covariates included in the two 

models. 

As a further diagnostic for the logistic mixed model we 

show in Figure 3 a scatter plot of the observed proportions 

of positive scores (I 1)ijk =  against the average of the 

predicted probabilities of positive scores under the model, in 

groups of 50 individuals defined by the ordered values of 

the predicted probabilities. The plotted values are almost on 

a straight line, showing a good fit. Figure 4 shows a 

histogram of the estimated standardized residuals of the 

mixed linear part, ˆˆ ˆˆ /SD( ) (ijk ijk ijk ijk ijkz y x′= ε ε = − β −  
ˆˆ ˆ ) /SD( ),i ij ijku v− ε  where ˆSD( )ijkε  is the empirical 

standard deviation of the estimated residuals. Although not a 

‘perfect’ bell shape, the histogram does not indicate severe 

divergence from a normal distribution. 

 
Table 1 
Estimated parameters and standard errors (Std Err.) when fitting the two-part model 
 

 Linear part Logistic part 

Regressors Estimate Std Err. Estimate               Std Err. 

 Constant 0β̂ = 6.90 4.00 0γ̂ = -6.48 0.58 

 Years at school 1β̂ = 7.28 0.53 1γ̂ = 2.16 0.12 

 Years at school2 2β̂ = -0.24 0.05 2γ̂ = -0.13 0.01 

 Attended literacy program - - 3γ̂ = 2.44 0.27 

 Helped by interviewer - - 4γ̂ = 2.00 0.17 

 Low income 5β̂ = -2.61 0.88 5γ̂ = -0.35 0.14 

 Civil servant/professional 6β̂ = 13.91 1.89 - - 

 Gender (1 for female) 7β̂ = -1.60 0.81 7γ̂ = -0.59 0.14 

 Household size (adults) 8β̂ = 0.94 0.29 - - 

 Age 9β̂ = 0.84 0.16 9γ̂ = 0.14 0.02 

 Age2 10β̂ = -0.01 0.002 10γ̂ = -0.002 0.00 

Variances Estimate Std Err. Estimate               Std Err. 

 Between Districts 2ˆ uσ = 66.31 16.72 *
2ˆ
u

σ = 1.28 0.34 

 Between Villages 2ˆ vσ = 66.58 10.45 *
2ˆ
v

σ = 0.86 0.19 

 Residual 2ˆ εσ = 322.0 10.12 - - 

K-Coefficients (Equation 6)* Estimate Std Err. 

 District random effects ˆ
uK = 0.06 0.02 

 Village random effects ˆ
vK = 0.02 0.01 
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Figure 3 Observed and predicted probabilities of positive scores 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4  Histogram of standardized residuals for the linear part   
As a final assessment of the goodness of fit of the two part 

model, we generated 200 new data sets of size n = 4,028 
from the estimated two-part model of Table 1, using the same 

covariates as for the original sample. The test scores where 

generated by generating random effects and residuals 

( , , )i ij ijku v ε  with estimated variances 2 2 2ˆ ˆ ˆ( , , )u v εσ σ σ  (Equa-

tion 3), generating random effects * *( , )i iju v  using Equation 

(6) with estimated coefficients and variances *

2

|
ˆ ˆ( , ,u u u
K σ  

*

2

|
ˆ ˆ, )vK ν ν

σ   drawing at random 1 or 0 with probabilities 
* * * * * * 1Pr (I 1) exp( ) [1 exp( )]ijk ijk i ij ijk i ijx u v x u v −′ ′= = γ + + × + γ+ +  

(Equation 5), and in the case of 1, generating the nonzero 

scores ˆ
ijk ijk i ij ijky x u v′= β + + + ε  (Equation 3). The 

variance *ˆ
u u

2
|

σ  was computed as *

2ˆ
u u|

σ =  *

2 2 2ˆˆ ˆ( ),u uu
Kσ − σ  and 

similarly for *

2ˆ
v v|

σ  (Equation 6). Next we calculated for each 

data set the score means and proportions for each village and 

district and used them to compute empirical confidence 

intervals based on the 200 means and proportions. Table 2 

shows the proportions of times that the empirical confidence 

intervals (C.I.) contain the corresponding actual sample 

values in the Cambodia survey. 

The results in Table 2 show very close coverage rates to 

the nominal values for the villages, but under-coverage of 

up to 10% for the districts, which is probably explained by 

the fact that the latter rates are based on only 50 districts. 
 
4.2 Simulation study  

The purpose of the simulation experiment is to study the 

effectiveness of the two-part model for producing small area 

predictors and associated measures of prediction errors. The 

simulation experiment enables also to compare the results 

obtained under this model with results obtained when fitting 

the two parts of the model separately, ignoring the correla-

tions between the corresponding random effects in the two 

parts, and with the results obtained when fitting a linear 

mixed model to all the responses, ignoring the accumulation 

of zero scores. To this end, we generated 300 new popula-

tions of N = 4,028 scores and 300 new samples of size 
n = 1,026, similar to the generation of the data sets used for 
the computation of the confidence intervals in Table 2, but 

from a model with fewer regressors than in the model shown 

in Table 1. In the logistic part we included 4 regressors: 

‘number of years at school’, ‘attendance of a literacy 

programme’, ‘helped by the interviewer’ and ‘having low 

income’. In the linear part we included 5 regressors: ‘number 

of years at school’, ‘gender’, ‘household size’, ‘age’, and 

‘age
2
’. In order to set parameter values, we fitted separately 

the linear part and the logistic part with the fewer regressors 

to the original sample data. The correlations between the 

random effects of the logistic and the linear parts were set to 

0.5 at both the district and the village level. 
 
 

 
 
Table 2 
Proportions of times that the empirical confidence intervals contain the actual sample 
means and proportions 
 

    Empirical 90% C.I. Empirical 95% C.I. 

Small areas Districts Villages Districts Villages 

Number of areas 50 286 50 286 

% Coverage of proportions 80% 88% 88% 95% 

% Coverage of means 88% 89% 90% 94% 
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The district and village means (proportions) in the 

simulated populations were taken as the true district and 

village means (proportions), thus allowing us to assess the 

performance of the various predictors. As noted in Remark 

2 in Section 2.2, the prediction of small areas means and 

proportions under the two-part model requires knowledge of 

the covariates for all the population units. This requirement 

was satisfied in the simulation study since the simulated 

populations use the regressors of the original sample of the 

4,028 individuals. In order to specify sampled values for the 

regressor variables, we sampled 1,026 individuals and used 

the sampled regressors for all the 300 samples. Half of the 

individuals in half of the 286 villages were included in the 

sample, except for villages with fewer than 5 adults in the 

original dataset, where all the individuals were sampled. 

This minimum size criterion was applied in order to avoid 

computational problems when running the simulations (see 

Section 4.3). The sample contained individuals from all the 

50 rural districts, with 1 district having a sample of size 4, 4 

districts having a sample of size 9, 17 districts having 

samples of size 15 dn≤ ≤ 20, and the remaining 28 districts 
having samples of size 21 dn≤ ≤ 30. As mentioned above, 

the sample contained individuals from half of the 286 

villages, with 29 villages having samples of size 2 vn≤ ≤ 5, 
109 villages having samples of size 6 vn≤ ≤ 10, and 5 
villages having samples of size 11 vn≤ ≤ 19. 

The results of the simulation study are shown in Tables 3 

and 4 and in Figures 5-6. Table 3 shows the mean estimates 

of the model coefficients and the root mean square errors 

(RMSE) over the 300 simulations, as obtained when fitting 

the three models to the sample data; A- the full two-part 

model that accounts for the correlations between the district 

and village random effects in the two parts of the model, B- 

the two part model that ignores the correlations between the 

district and village random effects in the two parts, that is, 

when fitting the two parts separately, and C- the linear 

mixed model defined by (3) but fitted to all the responses, 

including the zero scores. This model ignores the accumu-

lation of zero scores, but in order to make it more 

comparable to the two part model, we included in this 

model all the regressors included in either the logistic or the 

linear part of the two-part model. The linear mixed model 

can practically only be used for predicting the district and 

village means. For comparability reasons we fitted all the 

three models using the WinBUGS software (thus following 

the Bayesian paradigm), but it is important to mention that 

fitting the models B and C using the MLwiN software 

(Rasbash et al. 2002), which is much faster, yields very 

similar results. 

Table 3 exhibits only minor differences between the mean 

estimates and RMSEs when fitting the full model or when 

fitting the two parts separately. For the linear part the mean 

estimates are very close to the corresponding true coefficients, 

indicating lack of bias. For the logistic part the mean 

estimates are again close to the true coefficients although the 

estimated biases are statistically significant based on the 

conventional t-statistic. The fact that the RMSEs are similar 

when fitting the full model and when fitting the two parts 

separately suggests that under the present simulation set-up, 

accounting for the correlations between the random effects in 

the two parts does not improve the estimation of the model 

regression coefficients. In contrast, the results in Table 4 

reveal much smaller biases and RMSEs when estimating the 

variances of the logistic model by fitting the full model, 

although the estimation of the “between villages” variance is 

still highly biased. The estimation of the correlations between 

the random effects of the two parts is satisfactory. Finally, as 

indicated by both tables, fitting the mixed linear model, 

ignoring the accumulation of zeroes generally yields highly 

biased estimators and consequently large RMSEs, which of 

course is not surprising. 

Figure 5 shows the bias and RMSE when predicting the 

true district and village means and proportions under the 

three models. Let ˆ r
aU  represent any of the predictors under 

the three models (means or proportions) for a given area a  

as obtained in simulation ,r  and denote by r

aU  the 

corresponding true predicted value. The bias and RMSE 

were calculated as, 

300

1

1/ 2300 2

1

ˆBias ( ) / 300;

ˆRMSE ( ) / 300 .

r r

a a ar

r r

a a ar

U U

U U

=

=

= −

 = − 

∑

∑
 

(12)

 

The figures pertaining to villages are based on the 273 

villages (out of the 286) where sampling took place. (As 

mentioned before, all the individuals in villages with fewer 

than 5 adults in the original dataset were included in the 

sample.) 

The clear conclusion from Figures 5a, 5c, 5e and 5g is 

that the use of the mixed linear model alone for predicting 

the district and village means yields biased predictors in 

both sampled and nonsampled areas, and hence large 

RMSEs. Note, however, that the RMSEs of the predictors 

produced under the linear model for villages without 

samples are similar to the RMSEs obtained under the two-

part model. This outcome is probably explained by the fact 

that the mixed linear model is much simpler and depends on 

fewer parameters than the two part model, resulting in 

smaller prediction variances in villages with no samples 

than the prediction variances of the two-part model 

predictors. Figures (5a)-(5d) show that the predictors 

produced under the two-part model, whether fitted jointly or 

separately are basically unbiased, despite the bias in the 

estimation of some of the parameters of the logistic part 

noticed in Tables 3 and 4. Figures (5e)-(5h) don’t show any 
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appreciable difference in the RMSE between the use of the 

full model or by fitting the two parts separately, which was 

noted also in Tables 3 and 4. 

Figure 6 shows the percentage of times that 95% 

credibility intervals, produced under the three models, cover 

the true district or village means and proportions. See 

Section 3.3 for the construction of credibility interval 

boundaries when using MCMC simulations. The prominent 

conclusion emerging from Figure 6 is that ignoring the 

accumulation of zeroes and fitting the linear mixed model 

alone yields for most areas coverage rates for the true area 

means that are very different from the nominal 95% rate, 

with particularly low rates for villages with samples. The 

fitting of the full model yields somewhat better coverage 

rates for the district means than the fitting of the two parts 

separately, but the coverage rates of the district proportions 

are similar under the two methods. There seems to be little 

difference in the credibility intervals for the village means 

when fitting the full model or the two-parts separately, but it 

is interesting to note that the use of the full model yields 

better coverage rates in 77 per cent of the villages, whereas 

fitting the two parts separately yields better coverage rates in 

only 15 per cent of the villages. In the remaining villages the 

use of the two methods yields the same coverage rates. In 

the case of the village proportions, the two methods yield 

similar credibility intervals, except in a few cases where the 

use of the full model is seen to be generally better. 

 
Table 3 
Means and RMSE of estimators of model coefficients under the three models 
 

  Simulation mean Simulation RMSE 

Coefficient True value Full model Separate fit Linear model Full model Separate fit Linear model 

Linear part 

0β  9.38 8.83 9.73 1.90 6.95 6.95 9.21 

1β  4.97 4.97 4.87 12.59 0.32 0.33 7.63 

2β  -1.65 -1.61 -1.58 -3.24 2.05 2.05 2.27 

3β  1.02 1.05 1.05 1.75 0.57 0.57 0.86 

4β  0.94 0.97 0.96 1.51 0.27 0.26 0.60 

5β  -0.01 -0.01 -0.01 -0.02 0.00 0.00 0.01 

Logistic part 

0γ  -4.09 -4.38 -4.38           - 0.58 0.59           - 

1γ  1.63 1.73 1.73           - 0.18 0.19           - 

2γ  1.98 2.13 2.13 2.55* 0.41 0.42 7.33* 

3γ  2.06 2.41 2.41 2.05* 0.65 0.65 2.64* 

4γ  -0.35 -0.34 -0.34 0.38* 0.30 0.30 1.37* 

*Estimates obtained when including these regressors in the linear model. 

 
Table 4 
Means and RMSE of estimators of model variances and correlations under the three models 
 

  Simulation mean Simulation RMSE 

 True value Full model Separate fit Linear model Full model Separate fit Linear model 

Variances – linear part 

District 60.40 62.23 60.66 103.46 24.52 24.87 46.52 

Village 65.44 70.37 70.36 111.97 24.84 25.75 49.74 

Residual 336.00 338.31 338.61 696.82 23.76 24.04 361.64 

Variances – logistic part 

District 0.92 1.08 1.50 - 0.61 0.91 - 

Village 0.57 0.91 1.15 - 0.70 0.94 - 

K-factors 

District 0.071 0.075 - - 0.016 - - 

Village 0.054 0.055 - - 0.012 - - 

Correlations between random effects of the two parts 

District 0.500 0.506 - - 0.151 - - 

Village 0.500 0.459 - - 0.148 - - 
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Figure 5 BIAS and RMSE of predictors of area means and proportions 
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Figure 6  Coverage rates of 95% credibility intervals for area means and proportions 
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As already noted, fitting the full model, accounting for the 

correlations between the district and village random effects 

in the two parts is computationally intensive and not always 

stable. In particular, we encountered severe computation 

problems when fitting the full model with very small 

samples from most of the villages. For example, for a sample 

of 750 individuals from 264 villages, such that almost half of 

the villages had sample sizes of 1 or 2, the sampled values 
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from the posterior distributions generated by the Gibbs 

sampler were found to be strongly correlated even at very 

high lags, over 1,000 lags for the village random effects and 

the correlation between the village random effects in the two 

parts, and still over 500 lags after tightening the prior 

distributions, which required extremely long chains to obtain 

sufficient data for inference. This makes it excessively 

computer intensive and almost impossible to verify 

convergence of some of the posterior distributions. For this 

reason we selected samples of size 1,026 in our simulation 

study, with at least 2 individuals from every village. 

 
5. Summary 

 
The most important message emerging from this paper is 

that ignoring the accumulation of zeroes and fitting a linear 

mixed model to the whole data set can result in highly 

biased predictors and wrong coverage rates of credibility 

intervals. Clearly, the magnitude of the bias and the 

performance of the credibility intervals will depend in this 

case on the percentage of zero scores. Fitting a two-part 

model to such data generally yields unbiased predictors and 

credibility intervals with acceptable coverage rates. Fitting 

the full two-part model, accounting for the correlations 

between the random effects of the two parts is the best 

choice, but it improved the predictions in our simulation 

study only marginally, despite the use of correlations of 0.5 

between the district and village random effects in the two 

parts.  

In this study we used MCMC simulations for fitting the 

models and computing the small area predictors and their 

variances. The use of this approach requires specifying prior 

distributions, which can affect the inference, particularly 

with a small number of sampled areas even when specifying 

noninformative priors. See Pfeffermann, Moura and Silva 

(2006) for recent discussion and illustrations. The other 

problem with the use of MCMC simulations is that it is very 

computing intensive. Furthermore, the use of this approach 

can become unstable if there are only few observations in 

the sampled areas. An alternative approach is therefore to fit 

the full two part model following the frequency approach. 

Available software include MLwiN (Goldstein 2003) and 

aML (Lillard and Panis 2003), but the use of these or other 

softwares requires modifications to the estimation of the 

prediction variance that account for the errors in the 

estimation of the fixed model parameters. Resampling 

methods like the bootstrap or jackknife could be considered 

for this purpose, but they require new developments 

appropriate for this model. 
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