ABUNDANCE AND DISTRIBUTION OF WATERBIRDS ON THE WEST COAST OF VANCOUVER ISLAND DURING SPRING 1999 AND WINTER 2000

Ramūnas Žydelis ${ }^{1}$, W. Sean Boyd ${ }^{2}$, André Breault ${ }^{2}$ and

Terrance M. Sullivan ${ }^{3}$

Pacific and Yukon Region 2005
Canadian Wildlife Service
Environmental Conservation Branch

Technical Report Series Number 437

ABUNDANCE AND DISTRIBUTION OF WATERBIRDS ON THE WEST COAST OF VANCOUVER ISLAND DURING SPRING 1999 AND WINTER 2000

Ramūnas Žydelis ${ }^{1}$, W. Sean Boyd ${ }^{2}$, André Breault ${ }^{2}$, and Terrance M. Sullivan ${ }^{3}$
${ }^{1}$ Centre for Wildlife Ecology, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6
${ }^{2}$ Pacific Wildlife Research Centre, Canadian Wildlife Service, Environment Canada, RR\#1, 5421 Robertson Road, Delta, British Columbia, V4K 3N2
${ }^{3}$ 3977Nicomekl Road, Surrey, British Columbia, V4P 2J9

This series may be cited as:
Žydelis, R., W. S. Boyd, A. Breault, and T. M. Sullivan. 2005.
Abundance and distribution of waterbirds on the west coast of Vancouver Island during spring 1999 and winter 2000.
Technical Report Series No. 437. Canadian Wildlife Service, Pacific and Yukon Region, British Columbia.

Issued under the Authority of the
Minister of Environment
Canadian Wildlife Service
© Her Majesty the Queen in Right of Canada, represented by the Minister of Environment, 2005.
Catalogue No. CW69-5/437E
ISBN 0-662-40398-3
ISSN 0831-6481

Copies may be obtained from:
Canadian Wildlife Service
Pacific and Yukon Region
5421 Robertson Road, RR \#1
Delta, British Columbia
Canada V4K 3N2

Abstract

This report presents the results of six aerial surveys of waterbirds conducted on the west coast of Vancouver Island during the spring of 1999 and the winter of 2000. The surveys covered approximately 50% of the 3900 km shoreline between Cape Scott and Port San Juan. During each survey, waterbird abundance was estimated in 274 pre-determined shorelinebased transects, each associated with a unique marine ecological unit (eco-unit). The replicated surveys of individual shoreline transects were processed to determine: 1) distribution and abundance of waterbirds on the near-shore portion of the west coast of Vancouver Island, 2) waterbird densities across marine ecological units and 3) seasonal variability in waterbird distribution and abundance. This report also identifies waterbird distribution and abundance at active spawning sites of Pacific Herring (Clupea pallasi) on the west coast. The purpose of the report is to provide spatial, habitat-based and species-specific information to wildlife managers or others interested in or involved with bird or near-shore management on the west coast of Vancouver Island.

The number of waterbirds observed along the nearshore during the surveys ranged from 22,000 to 34,000 in winter, climbed to nearly 48,000 in early spring during herring spawn, and then dropped to 11,000 during the last spring survey. Gulls were the most abundant group of waterbirds found on the west coast (comprising 26% of all birds in winter and 41% in spring), followed by scoters (18% in winter and 32% in spring) and loons (7% in winter and 9% in spring). Waterbirds were present in all of the eco-units surveyed during winter. The marine ecounit LCLLM, which covered 36% of the surveyed area, supported 35% of all waterbirds sighted. In spring the two areas supporting the most birds were Barkley Sound and Hesquiat Harbour. The largest bird aggregations in spring were observed in eco-units MBLLS and MCHLM, which respectively comprise only 2.4% and 1.4% of the study area. The overall mean density of birds in winter was 14.2 individuals per linear kilometer of shoreline. Marine eco-unit LBHLM supported the highest bird density (24 individuals per kilometer of shoreline) during the winter while the highest spring bird abundances were observed in eco-units MBLLS and MCHLM. In the spring, the largest bird concentrations were found in the sections of Barkley Sound and Hesquiat Harbour where there were extensive Pacific herring spawns. The key groups of birds aggregating at herring spawn were loons, scoters and gulls.

RÉSUMÉ

Nous présentons les résultats de six relevés aériens d'oiseaux aquatiques menés sur la côte ouest de l'île de Vancouver au printemps 1999 et à l'hiver 2000. Les relevés ont couvert environ 50% des 3900 km de la ligne de côte entre le cap Scott et Port San Juan. Durant chaque relevé, nous avons évalué l'abondance des oiseaux dans 274 transects côtiers préétablis, chacun étant associé à une seule unité écologique marine (éco-unité). Nous avons analysé les données des relevés répétés le long de chaque transect afin de déterminer: 1) la répartition et l'abondance des oiseaux aquatiques sur le littoral de la côte ouest de l'île de Vancouver; 2) les densités d'oiseaux dans les unités écologiques marines; et 3) la variabilité saisonnière de la répartition et de l'abondance des oiseaux. De plus, nous avons étudié la répartition et l'abondance des oiseaux aquatiques dans les frayères du hareng du Pacifique (Clupea pallasi) de la côte ouest. Le rapport vise à fournir des renseignements sur la répartition et l'habitat de chaque espèce d'oiseau aux gestionnaires de la faune ou à d'autres personnes intéressées par les oiseaux ou par l'aménagement du littoral sur la côte ouest de l'île.

Durant les relevés, le nombre d'oiseaux aquatiques observés sur la côte a varié de 22,000 à 34,000 en hiver, a grimpé à près de 48,000 tôt au printemps durant la fraye du hareng, puis a baissé à 11,000 durant le dernier relevé printanier. Les goélands et les mouettes constituaient le plus grand groupe d'oiseaux aquatiques observés sur la côte ouest (représentant 26% de tous les oiseaux présents en hiver et 41% au printemps), suivis par les macreuses (18\% des oiseaux présents en hiver et 32% au printemps) et les plongeons (7% des oiseaux présents en hiver et 9% au printemps). Nous avons observé des oiseaux aquatiques dans toutes les éco-unités ayant fait l'objet de relevés durant l'hiver. L'éco-unité marine de type LCLLM, qui représente 36% de la zone d'étude, a accueilli 35% de tous les oiseaux observés. Au printemps, les deux secteurs ayant accueilli le plus grand nombre d'oiseaux étaient la baie Barkley et le havre Hesquiat. De plus, nous avons observé les plus grandes concentrations d'oiseaux printanières dans les éco-unités de type MBLLS et MCHLM, qui représentent respectivement seulement 2.4% et 1.4% de la zone d'étude. Dans l'ensemble, la densité moyenne d'oiseaux en hiver était de 14,2 individus par kilomètre linéaire de côte. En hiver, nous avons mesuré les plus fortes densités d'oiseaux dans l'éco-unité de type LBHLM (24 individus par kilomètre de rivage) et, au printemps, les plus fortes abondances dans les éco-unités de type MBLLS et MCHLM. Au printemps, nous avons vu les plus fortes concentrations d'oiseaux dans les secteurs de la baie Barkley et du havre Hesquiat où on observe la fraye de grands bancs de hareng du Pacifique. Les principaux groupes d'oiseaux concentrés près des frayères de hareng étaient des plongeons, des macreuses, des goélands et des mouettes.

ACKNOWLEDGEMENTS

Like all such projects, this was a group effort. Sean Cullen assisted Terry Sullivan and André Breault with waterbird identification. Stephanie Hazlitt and Jeffrey Paleczny operated the on-board GPS, assisted the pilot with navigation, kept the airplane on transect and were responsible for recording the bird sightings and the location of all flocks sighted.

The surveys were flown with Mr. Bob "Eagle-Eye" Prescesky of Cooper Air Inc. He willingly shared his knowledge of the west coast, kept the crew's stomachs under control and skillfully and consistently delivered safe and smooth flying.

The geo-spatial component of this project was overseen by Jason Komaromi and Stephen Shisko of the Canadian Wildlife Service, working with Terry Sullivan. Data entry and quality control were done by Murray Lashmar, Saskia Arnesen, Krista Amey and Pippa Shepherd.

Peter Watts reviewed an earlier draft of the report. Special thanks go to Pippa Shepherd, who oversaw the re-organisation and re-write of earlier drafts of the report.

Funding for this project was supplied by The Nestucca Trust Fund and by the Canadian Wildlife Service.

TABLE OF CONTENTS

ABSTRACT I
RÉSUMÉ II
ACKNOWLEDGEMENTS III
LIST OF TABLES. V
LIST OF FIGURES VII

1. INTRODUCTION 1
2. METHODS1
2.1 Study Area 1
2.2 SURVEY DESIGN 5
2.2.1 Defining shoreline-based surveys 5
2.2.2 Survey effort 5
2.2.3 Species coverage 7
2.3 DATA PROCESSING7
2.3.1 Calculating waterbird abundance 7
2.3.2 Geographic and ecological reporting 7
2.3.3 Seasonal and Herring Spawn effects. 8
3. RESULTS AND DISCUSSION 8
3.1 OVERALL WATERBIRD AND MARINE MAMMAL ABUNDANCE 8
3.1.1 Waterbirds 8
3.1.2 Marine mammals 12
3.2 WATERBIRD ABUNDANCE AND DENSITIES BY MARINE ECO-UNIT 12
3.2.1 Waterbird abundance in winter 12
3.2.2 Waterbird abundance in spring 12
3.2.3 Waterbird densities in winter 20
3.2.4 Waterbird densities in spring 20
3.3 WATERBIRD ABUNDANCE AND DISTRIBUTION BY BIRD GROUP 32
3.3.1 Loons. 32
3.3.2 Grebes 40
3.3.3 Cormorants 47
3.3.4 Dabbling ducks 54
3.3.5 Scoters. 61
3.3.6 Goldeneyes 68
3.3.7 Mergansers 75
3.3.8 Gulls 82
3.4 WATERBIRDS ASSOCIATED WITH HERRING SPAWN 89
4. USE OF SURVEY RESULTS 92
REFERENCES 94
APPENDIX 1: TRANSECT START/END POINT COORDINATES 95
APPENDIX 2: DATA ON HERRING SPAWN. 97
APPENDIX 3: LIST OF ENGLISH AND SCIENTIFIC NAMES OF SPECIES MENTIONED IN THE REPORT 108

LIST OF TABLES

Table 1. Total lengths and surveyed lengths (in km) of eco-unit types between Cape Scott and Port San Juan on the west coast of Vancouver Island, B.C.
 4

Table 2. Themes, classes and description of eco-unit parameters of the British Columbia Marine Ecological Classification system used to delineate survey transects (from Zacharias and Howes 1998) 4
Table 3. Waterbird and marine mammal species and their total numbers observed during three surveys in winter 2000 (16-18 January, 21-23 January, 2-4 February) 9
Table 4. Waterbird and marine mammal species and their total numbers observed during three surveys in spring 1999 (13-15 March, 30 March - 1 April, 27-29 April) 11
Table 5. Waterbird abundance by eco-unit (mean of three winter 2000 surveys, "On transect and "Off transect"). The numbers in bold indicate the three highest values for each group of birds 14
Table 6. Waterbird abundance by eco-unit during the first winter survey on 16-18 January, 2000("On transect and "Off transect"). The numbers in bold indicate the three highest values for eachgroup of birds15
Table 7. Waterbird abundance by eco-unit during the second winter survey on 21-23 January, 2000 ("On transect and "Off transect"). The numbers in bold indicate the three highest values for each group of birds 16
Table 8. Waterbird abundance by eco-unit during the third winter survey on 2-4 February, 2000 ("On transect and "Off transect"). The numbers in bold indicate the three highest values for each group of birds 17
Table 9. Waterbird abundance by eco-unit during the first spring survey on 13-15 March, 1999 ("On transect", "Off transect" and "On spawn"). The numbers in bold indicate the three highest values for each group of birds 19
Table 10. Waterbird abundance by eco-unit during the second spring survey on 30 March -1 April, 1999 ("On transect", "Off transect" and "On spawn"). The numbers in bold indicate the three highest values for each group of birds 21
Table 11. Waterbird abundance by eco-unit during the third spring survey on 27-29 April, 1999 ("On transect", "Off transect" and "On spawn"). The numbers in bold indicate the three highest values for each group of birds 22
Table 12. Mean waterbird densities per eco-unit during three winter surveys in 2000. The numbers in bold indicate the three highest values for each group of birds. Eco-units covering less than 1% of the total survey length were not considered as representative and they are shown below the dashed line and in italics 24

Table 13. Mean waterbird densities per eco-unit during the first winter survey (16-18 January 2000). The numbers in bold indicate the three highest values for each group of birds. Eco-units covering less than 1% of the total survey length were not considered as representative and they are shown below the dashed line and in italics
Table 14. Mean waterbird densities per eco-unit during the second winter survey (21-23 January 2000). The numbers in bold indicate the three highest values for each group of birds. Eco-units covering less than 1% of the total survey length were not considered as representative and they are shown below the dashed line and in italics 26Table 15. Mean waterbird densities per eco-unit during the third winter survey (2-4 February 2000).The numbers in bold indicate the three highest values for each group of birds. Eco-units covering lessthan 1% of the total survey length were not considered as representative and they are shown below thedashed line and in italics27
Table 16. Mean waterbird densities per eco-unit during the first spring survey (13-15 March 1999). The numbers in bold indicate the three highest values for each group of birds. Eco-units covering less than 1% of the total survey length were not considered as representative and they are shown below the dashed line and in italics 29
Table 17. Mean waterbird densities per eco-unit during the second spring survey (30 March - 1 April 1999). The numbers in bold indicate the three highest values for each group of birds. Eco-units covering less than 1% of the total survey length were not considered as representative and they are shown below the dashed line and in italics 30
Table 18. Mean waterbird densities per eco-unit during the third spring survey (27-29 April 1999). The numbers in bold indicate the three highest values for each group of birds. Eco-units covering less than 1% of the total survey length were not considered as representative and they are shown below the dashed line and in italics 31
Table 19. Date, location, and description of Pacific herring (Clupea harengus) spawn sites observed during spring waterbird surveys on the west coast of Vancouver Island, B. C., in 1999 91
Table 20. Abundance and percentage of total number of birds at herring spawn locations during surveys in spring 1999 91
Table 21. Extrapolation of total wintering waterbird numbers for the entire west coast of Vancouver Island. Extrapolation was based on proportional coverage of each marine eco-unit and average linear densities within marine eco-units 93
Table 1-1. Transect start/end point coordinates, used during waterbird surveys along west coast of Vancouver Island in spring 1999 and winter 2000 95
Table 2-1. Explanation of terms and abbreviations provided next to DFO herring spawning maps 107

LIST OF FIGURES

Figure 1. Index map of study area divided into four subregions for mapping purposes: 1) North - Cape Scot to Brooks Peninsula; 2) North Central - Kyuquot Sound to Nootka Sound; 3) South
Central - Clayoquot Sound; 4) South - Pacific Rim National Park... 2

Figure 2. Marine eco-units along west coast of Vancouver Island.. 3
Figure 3. Location of shoreline-based transects between Cape Scott and Port San Juan on the west coast of Vancouver Island. Dots indicate transect start and end points, and each number represents transect ID 6

Figure 4. Total numbers of all birds counted per survey during three winter and three spring surveys.
See methods for survey date10
Figure 5. Percentage of all birds observed within different marine eco-units in winter (black bars). Shaded zone indicates percentage of area covered by each eco-unit 13
Figure 6. Percentage of all birds observed within different marine eco-units during spring first, second and third surveys (black bars). Shaded zone indicates percentage of area covered by each eco-unit. 18
Figure 7. Linear densities of all birds observed within different marine eco-units during winter surveys (black bars). Dashed line indicates the mean density of birds within entire study area 23
Figure 8. Linear densities of all birds observed within different marine eco-units during spring surveys (black bars). Dashed line indicates the mean density of birds within entire study area 28
Figure 9. Loon abundance during winter and spring surveys. See methods for survey date 33Figure 10. Percentage of loons observed within different marine eco-units. Black bars indicate thepercentage of all loons in each eco-unit during winter (mean of 3 surveys) and during three separatespring surveys. Shaded bars indicate the percentage of the survey area covered by each eco-unit.34
Figure 11. Average linear densities of loons in different marine eco-units in winter (mean of 3 surveys) and during 3 spring surveys (black bars). Dashed line indicates mean density of birds within the entire study area 35
Figure 12. Abundance and distribution of loons during winter (mean of 3 winter surveys) 36
Figure 13. Abundance and distribution of loons during the first spring survey (13-15 March 1999) 37
Figure 14. Abundance and distribution of loons during the second spring survey (30 March -1 April1999)38
Figure 15. Abundance and distribution of loons during the third spring survey (27-29 April 1999) 39
Figure 16. Grebe abundance during winter and spring surveys. See methods for survey date 40
Figure 17. Percentage of grebes observed within different marine eco-units. Black bars indicate thepercentage of all grebes in each eco-unit during winter (mean of 3 surveys) and during three separatespring surveys. Shaded bars indicate the percentage of the survey area covered by each eco-unit.41
Figure 18. Average linear densities of grebes in different marine eco-units in winter (mean of 3surveys) and during 3 spring surveys (black bars). Dashed line indicates mean density of birds withinthe entire study area.42
Figure 19. Abundance and distribution of grebes during winter (mean of 3 winter surveys) 43
Figure 20. Abundance and distribution of grebes during the first spring survey (13-15 March 1999) 44
Figure 21. Abundance and distribution of grebes during the second spring survey (30 March - 1 April 1999) 45
Figure 22. Abundance and distribution of grebes during the third spring survey (27-29 April 1999) 46
Figure 23. Cormorant abundance during winter and spring surveys. See methods for survey date 47
Figure 24. Percentage of cormorants observed within different marine eco-units. Black bars indicate the percentage of all cormorants in each eco-unit during winter (mean of 3 surveys) and during three separate spring surveys. Shaded bars indicate the percentage of the survey area covered by each eco-unit 48
Figure 25. Average linear densities of cormorants in different marine eco-units in winter (mean of 3 surveys) and during 3 spring surveys (black bars). Dashed line indicates mean density of birds within the entire study area 49
Figure 26. Abundance and distribution of cormorants during winter (mean of 3 winter surveys) 50
Figure 27. Abundance and distribution of cormorants during the first spring survey (13-15 March 1999) 51
Figure 28. Abundance and distribution of cormorants during the second spring survey (30 March- 1 April 1999) 52
Figure 29. Abundance and distribution of cormorants during the third spring survey (27-29 April 1999) 53
Figure 30. Dabbling duck abundance during winter and spring surveys. See methods for survey date. 54
Figure 31. Percentage of dabbling ducks observed within different marine eco-units. Black bars indicate the percentage of all dabbling ducks in each eco-unit during winter (mean of 3 surveys) and during three separate spring surveys. Shaded bars indicate the percentage of the survey area covered by each eco-unit 55
Figure 32. Average linear densities of dabbling ducks in different marine eco-units in winter (mean of 3 surveys) and during 3 spring surveys (black bars). Dashed line indicates mean density of birds within the entire study area 56
Figure 33. Abundance and distribution of dabbling ducks during winter (mean of 3 winter surveys) 57
Figure 34. Abundance and distribution of dabbling ducks during the first spring survey (13-15 March 1999) 58
Figure 35. Abundance and distribution of dabbling ducks during the second spring survey (30 March- 1 April 1999) 59
Figure 36. Abundance and distribution of dabbling ducks during the third spring survey (27-29 April 1999). 60
Figure 37. Scoter abundance during winter and spring surveys. See methods for survey date 61

Abstract

Figure 38. Percentage of scoters observed within different marine eco-units. Black bars indicate the percentage of all scoters in each eco-unit during winter (mean of 3 surveys) and during three separate spring surveys. Shaded bars indicate the percentage of the survey area covered by each eco-unit

Figure 39. Average linear densities of scoters in different marine eco-units in winter (mean of 3 surveys)
and during 3 spring surveys (black bars). Dashed line indicates mean density of birds within the entire
study area 63
Figure 40. Abundance and distribution of scoters during winter (mean of 3 winter surveys) 64
Figure 41. Abundance and distribution of scoters during the first spring survey (13-15 March 1999). 65
Figure 42. Abundance and distribution of scoters during the second spring survey (30 March - 1
April 1999)66
Figure 43. Abundance and distribution of scoters during the third spring survey (27-29 April 1999) 67
Figure 44. Goldeneye abundance during winter and spring surveys. See methods for survey date 68
Figure 45. Percentage of goldeneyes observed within different marine eco-units. Black bars indicate the percentage of all goldeneyes in each eco-unit during winter (mean of 3 surveys) and during three separate spring surveys. Shaded bars indicate the percentage of the survey area covered by each eco-unit 69
Figure 46. Average linear densities of goldeneyes in different marine eco-units in winter (mean of 3 surveys) and during 3 spring surveys (black bars). Dashed line indicates mean density of birds within the entire study area 70
Figure 47. Abundance and distribution of goldeneyes during winter (mean of 3 winter surveys) 71
Figure 48. Abundance and distribution of goldeneyes during the first spring survey (13-15 March 1999) 72
Figure 49. Abundance and distribution of goldeneyes during the second spring survey (30 March -1 April 1999) 73
Figure 50. Abundance and distribution of goldeneyes during the third spring survey (27-29 April 1999) 74
Figure 51. Merganser abundance during winter and spring surveys. See methods for survey date 75
Figure 52. Percentage of mergansers observed within different marine eco-units. Black bars indicate the percentage of all mergansers in each eco-unit during winter (mean of 3 surveys) and during three separate spring surveys. Shaded bars indicate the percentage of the survey area covered by each eco-unit 76
Figure 53. Average linear densities of mergansers in different marine eco-units in winter (mean of 3 surveys) and during 3 spring surveys (black bars). Dashed line indicates mean density of birds within the entire study area 77
Figure 54. Abundance and distribution of mergansers during winter (mean of 3 winter surveys) 78

Figure 55. Abundance and distribution of mergansers during the first spring survey (13-15 March
1999)
Figure 56. Abundance and distribution of mergansers during the second spring survey (30 March - 1
April 1999) 80
Figure 57. Abundance and distribution of mergansers during the third spring survey (27-29 April 1999) 81
Figure 58. Gull abundance during winter and spring surveys. See methods for survey date 82
Figure 59. Percentage of gulls observed within different marine eco-units. Black bars indicate the percentage of all gulls in each eco-unit during winter (mean of 3 surveys) and during three separate spring surveys. Shaded bars indicate the percentage of the survey area covered by each eco-unit 83
Figure 60. Average linear densities of gulls in different marine eco-units in winter (mean of 3 surveys) and during 3 spring surveys (black bars). Dashed line indicates mean density of birds within the entire study area 84
Figure 61. Abundance and distribution of gulls during winter (mean of 3 winter surveys) 85
Figure 62. Abundance and distribution of gulls during the first spring survey (13-15 March 1999) 86
Figure 63. Abundance and distribution of gulls during the second spring survey (30 March - 1 April 1999) 87
Figure 64. Abundance and distribution of gulls during the third spring survey (27-29 April 1999) 88
Figure 65. Herring spawn locations observed during three spring surveys in 1999; A - 13-15 March 1999; B - 30 March - 1 April 1999; C - 27-29 April 1999 90

1. INTRODUCTION

This report presents the results of six aerial surveys of waterbirds conducted on the west coast of Vancouver Island in 1999 and 2000. The surveys were funded by the Nestucca Trust Fund, established after the December 1988 spill of 875,000 liters of oil in Washington State by the "Nestucca" barge. The spill resulted in the loss of an estimated 56,250 birds representing 31 species (Burger 1993). Oiled birds were found along the entire west coast of Vancouver Island, and oil was detected as far north as Bella-Bella on the mainland coast (Rodway et al. 1989). The Nestucca spill highlighted the need for comprehensive data on waterbird distribution and abundance on the British Columbia coast, particularly to assist with the management and the assessment of the impacts of spills on waterbird populations.

We employed an aerial survey method to estimate waterbird abundance in near-shore areas of the west coast of Vancouver Island between Cape Scott and Port San Juan. Prior to the surveys, the shoreline was divided into distinct transects associated with unique marine ecological units. Replicated surveys were used to produce a large-scale assessment of waterbird distribution and abundance, evaluate habitat-species relationships, and assess seasonal variability, particularly as they related to Pacific Herring spawn. The purpose of the report is to provide spatial, habitat-based and species-specific information to wildlife managers or others interested in waterbird and near-shore management. The results of this study could be used as background material on waterbird abundance and distribution along west coast of Vancouver Island. Also, the habitat-based survey design allows for an extrapolation to unsurveyed areas to infer expected waterbird abundance and distribution under natural conditions.

2. METHODS

2.1 Study Area

There are approximately 3870 km of coastline between Cape Scott and Port San Juan on the west coast of Vancouver Island, of which 1964 km (50.8%) were surveyed in this project. For compilation purposes, the study area was subdivided into four subregions: 1) Cape Scott to Brooks Peninsula; 2) Kyuquot Sound to Nootka Sound; 3) Clayoquot Sound; and 4) Pacific Rim National Park (Fig. 1).

Figure 1. Index map of study area divided into four subregions for mapping purposes: 1) North - Cape Scot to Brooks Peninsula; 2) North Central - Kyuquot Sound to Nootka Sound; 3) South Central Clayoquot Sound; 4) South - Pacific Rim National Park.

The west coast of Vancouver Island contains 22 marine eco-units as identified in the Marine Ecological Classification system (Zacharias and Howes 1998) (Fig. 2, Table 1). In this system, eco-units are delineated by physical parameters such as wave exposure, water depth, bottom relief, water current, and type of substrate (Table 2).

Figure 2. Marine eco-units along west coast of Vancouver Island.

Table 1. Total lengths and surveyed lengths (in km) of eco-unit types between Cape Scott and Port San Juan on the west coast of Vancouver Island, B.C.

Eco-unit	Total km	Total \%	Surveyed km	Surveyed \%
HBHLH	356.3	9.2	187.0	52.5
HBHLS	60.9	1.6	41.9	68.8
HBLLH	121.6	3.1	84.6	69.6
HBLLS	254.1	6.6	165.6	65.1
HCHLH	240.6	6.2	145.1	60.3
HCHLS	47.1	1.2	35.4	75.2
HCLLH	110.8	2.9	79.2	71.5
HCLLM	3.5	0.1	2.7	77.6
HCLLS	13.6	0.4	9.6	70.5
LBHLH	61.1	1.6	40.1	65.6
LBHLM	143.8	3.7	64.8	45.1
LBLLS	60.5	1.6	45.9	75.9
LCHLH	105.5	2.7	41.0	38.9
LCHLM	440.1	11.4	174.0	39.5
LCLLH	47.8	1.2	11.1	23.2
LCLLM	1473.2	38.1	713.9	48.5
MBHLH	54.9	1.4	18.4	33.5
MBLLS	94.2	2.4	52.2	55.5
MCHLM	54.1	1.4	28.2	52.1
MCHLS	24.7	0.6	6.3	25.3
MCLLM	81.3	2.1	13.1	16.1
MCLLS	20.1	0.5	4.6	22.9
Total	$\mathbf{3 8 6 9 . 8}$	$\mathbf{1 0 0 . 0}$	$\mathbf{1 9 6 4 . 4}$	$\mathbf{5 0 . 8}$

${ }^{1}$ The letters of each eco-unit type correspond to physical features of the site. The letters, in sequence, represent wave exposure, water depth, bottom relief, water currents and bottom substrate (see Table 2 for parameter definitions).

Table 2. Themes, classes and description of eco-unit parameters of the British Columbia Marine Ecological Classification system used to delineate survey transects (from Zacharias and Howes 1998).

Theme	Class	Description
Wave Exposure	High (H)	Fetch $>500 \mathrm{~km}$. Ocean swell environment
	Moderate (M)	Fetch $50-500 \mathrm{~km}$. Some swell areas; open sound and straits
Water Depth	Low (L)	Fetch < 50 km . Protected areas; some small sounds and straits
	Photic (B)	$0-20 \mathrm{~m}$
	Shallow C)	$20-200 \mathrm{~m}$
	Moderate (D)	$200-1,000 \mathrm{~m}$
Bottom Relief	Abyssal (E)	$>1000 \mathrm{~m}$
	High (H)	Abundant cover and diversity of bottom habitats
Water Currents	Low (L)	Smooth or gently undulating bottom
	Low (L)	Maximum current > 3 knots
Substrate	Hard (H)	Maximum current < 3 knots
	Sand (S)	Bedrock, boulders, cobble, and some sand/gravel areas
	Mud (M)	Sand, gravel/sand, and some muddy areas
	Unknown (U)	Not sampled sandy mud

2.2 Survey design

2.2.1 Defining shoreline-based surveys

Surveys were designed by dividing the coastline into 274 shoreline-based transects, ranging from 0.7 km to 21.9 km in length (Mean $\pm \mathrm{SD}=7.2 \pm 3.4 \mathrm{~km}$). Each transect was comprised of a single marine eco-unit type and all 22 marine eco-units were represented (Figs. 2-3, Table 1). The start and end locations of each survey transect, which are summarized in Appendix 1, were determined using three criteria. First, way-points were positioned on marine eco-unit boundaries, determined using Geographic Information Systems (GIS) data from the Land Use Coordination Office of the Province of British Columbia (Zacharias and Howes 1998). Second, way-points were positioned at the heads of inlets to separate inlets from estuaries. Finally, large marine eco-units were further sub-divided into units not more than 22 km apart (or ~ 10 min. flight time). Way-points were programmed into a hand-held GPS unit to ensure that the survey route was replicated during subsequent surveys.

2.2.2 Survey effort

Six aerial surveys were conducted in total, three during spring 1999 (13-15 March, 30 March-1 April and 27-29 April) and three during winter 2000 (16-18 January, 21-23 January and 2-4 February). Each survey took three consecutive days to complete and covered the entire study area. All surveys were conducted in a Cessna 206 float plane, flying at 80-90 knots (kt), 45-60 m above sea level and 50-100 m off-shore. Two observers, both in the rear of the aircraft, recorded all birds along transect within 50 m of either side of the plane. A third person, seated in the front, recorded the observations and ensured that the pilot followed the survey route.
Groups of birds off the transect route were treated as point counts and their locations were recorded with a Garmin hand held Global Positioning System (GPS) unit. A 35 mm camera with ISO-800 film was used to photograph large concentrations of birds, which were later counted in the lab.

Figure 3. Location of shoreline-based transects between Cape Scott and Port San Juan on the west coast of Vancouver Island. Dots indicate transect start and end points, and each number represents transect ID.

2.2.3 Species coverage

All waterbird species plus sightings of Bald Eagles and marine mammals were recorded. For the assessment of waterbird abundance and density distribution, related species were merged into the following categories: loons, grebes, cormorants, dabbling ducks, scoters, goldeneyes, mergansers and gulls. Abundance and distribution of swans, geese, herons, shorebirds and alcids were not analyzed separately, but those taxonomic groups were included into the category All birds.

2.3 Data processing

2.3.1 Calculating waterbird abundance

Counts from both sides of the aircraft, photo counts and point counts were summed to determine the total number of birds present. During winter surveys, bird numbers were tallied under two categories: 1) on the transect route; 2) off the transect route. Birds on the transect route were those observed within 50 m of either side of the aircraft. Birds observed off the transect route were typically in large flocks. During spring counts, bird observations were recorded as 1) associated with the herring spawn sites, which included individuals both on and off the transect route; 2) non-spawning sites, which, similar to the winter surveys, were categorized into on and off the transect route. The data presented in this report have not been adjusted by Visibility Correction Factors (VCF).

2.3.2 Geographic and ecological reporting

Waterbird abundance and distribution are presented in three ways in this report.

1) Total bird abundance within marine eco-units, which was assessed to identify the ecounits supporting most and least waterbirds. All birds counted "On transect", "Off transect", and on "On spawn" were included and summed for each eco-unit.
2) Bird densities within marine eco-units, which were calculated to assess the importance of specific eco-units to birds. Bird density was calculated as a number of birds counted "On transect" per linear kilometer of shoreline. Each transect was treated as a sampling unit to calculate bird densities within different eco-units. Eco-units with cumulative transect length less than 1% of the total coastline surveyed were not considered representative for bird density estimates. The data, however, are presented in tables.
3) Total number of birds per survey mapped for the west coast of Vancouver Island, which was used to demonstrate the geographical distribution of birds. All birds counted "On transect", "Off transect", and on "On spawn" were included.

Results were mapped ranking number of birds per transect into five classes using the "Natural Breaks" classification method available in ArcView 3.2 software (ESRI, 1999). This classification method identifies breakpoints between classes using Jenk's optimization statistical formula (Slocum 1999). The Jenk's method minimizes the sum of the variance within each of the classes. "Natural Breaks" finds groupings and patterns inherent in the input data.

2.3.3 Seasonal and Herring Spawn effects

Although spring surveys were conducted in 1999 prior winter surveys carried out in 2000, in this report we present data following the sequence of seasons - i.e. results from winter data are followed by spring data. Data were summarized for each survey separately. Also, mean values were obtained from three winter surveys, since it was assumed that winter surveys could be treated as replicates, whereas records from spring surveys were not averaged due to strong influence of herring spawn and bird migration on overall bird abundance and distribution during each survey.

3. RESULTS AND DISCUSSION

3.1 Overall waterbird and marine mammal abundance

3.1.1 Waterbirds

Over the three winter surveys in 2000, a total of 86,066 waterbirds were observed (Table 3), including 74,515 birds (86.6%) on the transect route and 11,720 birds (13.4%) off the route. The number of waterbirds detected per survey increased over the duration of winter surveys (Table 3; Fig. 4). Over the three winter 2000 surveys combined, gulls were most abundant waterbirds (26.4\%), followed by scoters (18.4\%), goldeneyes (8.9\%), grebes (7.9\%) and loons (7.2\%).

Over the three spring surveys in 1999, a total of 106,804 waterbirds were observed (Table 4), including 53,550 (50.1%) on the transect route, 10,820 birds (10.1%) off the transect route and a further 42,434 birds (39.7%) associated with herring spawn. The waterbirds detected during the first and second surveys were similar in both numbers and relative

Table 3. Waterbird and marine mammal species and their total numbers observed during three surveys in winter 2000 (16-18 January, 21-23 January, 2-4 February).

Species	Survey 1		Survey 2		Survey 3		All 3 surveys	
	TOTAL	Total \%						
Pacific Loon	5	0.0	14	0.0	1335	3.9	1354	1.6
Common Loon	82	0.4	654	2.2	22	0.1	758	0.9
Unidentified Loons	25	0.1	145	0.5	3956	11.7	4126	4.8
Horned Grebe	24	0.1	62	0.2	61	0.2	147	0.2
Red-necked Grebe	532	2.4	348	1.2	899	2.7	1779	2.1
Western Grebe	1343	6.1	1486	4.9	990	2.9	3819	4.4
Unidentified Grebes	29	0.1	246	0.8	751	2.2	1026	1.2
Double-crested Cormorant	269	1.2	90	0.3	92	0.3	451	0.5
Pelagic Cormorant	444	2.0	243	0.8	176	0.5	863	1.0
Unidentified Cormorants	726	3.3	1219	4.0	1400	4.1	3345	3.9
Great Blue Heron	18	0.1	33	0.1	24	0.1	75	0.1
Unidentified Swans	142	0.6	150	0.5	126	0.4	418	0.5
Brant	0	0.0	0	0.0	0	0.0	0	0.0
Canada Goose	728	3.3	721	2.4	370	1.1	1819	2.1
Green-winged Teal	2	0.0	0	0.0	0	0.0	2	0.0
Mallard	756	3.4	804	2.7	577	1.7	2137	2.5
American Wigeon	260	1.2	82	0.3	637	1.9	979	1.1
Unidentified dabbling ducks	789	3.6	328	1.1	284	0.8	1401	1.6
Unidentified Scaup	56	0.3	65	0.2	80	0.2	201	0.2
Harlequin Duck	47	0.2	25	0.1	16	0.0	88	0.1
Long-tailed Duck	37	0.2	43	0.1	73	0.2	153	0.2
Black Scoter	95	0.4	171	0.6	646	1.9	912	1.1
Surf Scoter	2890	13.0	2961	9.8	2472	7.3	8323	9.7
White-winged Scoter	36	0.2	199	0.7	52	0.2	287	0.3
Unidentified Scoters	784	3.5	2430	8.0	3133	9.3	6347	7.4
Common Goldeneye	46	0.2	16	0.1	12	0.0	74	0.1
Barrows Goldeneye	65	0.3	431	1.4	67	0.2	563	0.7
Unidentified Goldeneye	1797	8.1	3215	10.6	2003	5.9	7015	8.1
Bufflehead	586	2.6	738	2.4	571	1.7	1895	2.2
Hooded Merganser	1	0.0	14	0.0	0	0.0	15	0.0
Common Merganser	590	2.7	719	2.4	1128	3.3	2437	2.8
Red-breasted Merganser	82	0.4	68	0.2	101	0.3	251	0.3
Unidentified Merganser	84	0.4	195	0.6	123	0.4	402	0.5
Bald Eagle	123	0.6	409	1.4	182	0.5	714	0.8
Black Oystercatcher	7	0.0	61	0.2	89	0.3	157	0.2
Black Turnstone	0	0.0	0	0.0	83	0.2	83	0.1
Surfbird	321	1.4	884	2.9	886	2.6	2091	2.4
Unidentified shorebirds	1095	4.9	2465	8.2	1430	4.2	4990	5.8
Mew Gull	159	0.7	198	0.7	146	0.4	503	0.6
Herring Gull	8	0.0	7	0.0	2	0.0	17	0.0
Glaucous Gull	793	3.6	734	2.4	666	2.0	2193	2.5
Unidentified Gulls	5674	25.6	6828	22.6	7498	22.2	20000	23.2
Common Murre	39	0.2	10	0.0	70	0.2	119	0.1
Pigeon Guillemot	0	0.0	0	0.0	0	0.0	0	0.0
Marbled Murrelet	57	0.3	70	0.2	65	0.2	192	0.2
Unidentified Alcids	21	0.1	11	0.0	175	0.5	207	0.2
Belted Kingfisher	3	0.0	8	0.0	3	0.0	14	0.0
Unidentified waterbirds	501	2.3	621	2.1	371	1.1	1493	1.7
All birds	22171	100	30221	100	33843	100	86235	100
Sea Otter	69	4.3	251	13.3	373	15.3	693	11.6
River Otter	2	0.1	0	0.0	1	0.0	3	0.1
Unidentified Sea Lion	1204	74.2	1456	77.0	1830	75.0	4490	75.4
Harbour Seal	348	21.4	180	9.5	236	9.7	764	12.8
Killer Whale	0	0.0	3	0.2	0	0.0	3	0.1
Grey Whale	0	0.0	0	0.0	0	0.0	0	0.0
Unidentified Porpoise	0	0.0	0	0.0	0	0.0	0	0.0
All marine mammals	1623	100	1890	100	2440	100	5953	100

Figure 4. Total numbers of all birds counted per survey during three winter and three spring surveys. See methods for survey date.

Table 4. Waterbird and marine mammal species and their total numbers observed during three surveys in spring 1999 (13-15 March, 30 March - 1 April, 27-29 April).

Species	Survey 1		Survey 2		Survey 3		All 3 surveys	
	TOTAL	total \%						
Pacific Loon	7569	15.9	1397	2.9	633	5.6	9599	9.0
Common Loon	20	0.0	26	0.1	66	0.6	112	0.1
Unidentified Loons	56	0.1	15	0.0	51	0.5	122	0.1
Horned Grebe	46	0.1	54	0.1	17	0.2	117	0.1
Red-necked Grebe	3	0.0	264	0.6	81	0.7	348	0.3
Western Grebe	1121	2.4	1382	2.9	306	2.7	2809	2.6
Unidentified Grebes	7	0.0	59	0.1	0	0.0	66	0.1
Double-crested Cormorant	136	0.3	111	0.2	34	0.3	281	0.3
Pelagic Cormorant	505	1.1	565	1.2	144	1.3	1214	1.1
Unidentified Cormorants	245	0.5	708	1.5	61	0.5	1014	0.9
Great Blue Heron	7	0.0	25	0.1	2	0.0	34	0.0
Unidentified Swans	22	0.0	2	0.0	0	0.0	24	0.0
Brant	0	0.0	0	0.0	445	3.9	445	0.4
Canada Goose	586	1.2	812	1.7	234	2.1	1632	1.5
Green-winged Teal	0	0.0	0	0.0	0	0.0	0	0.0
Mallard	159	0.3	580	1.2	238	2.1	977	0.9
American Wigeon	4	0.0	45	0.1	15	0.1	64	0.1
Unidentified dabbling ducks	536	1.1	259	0.5	244	2.2	1039	1.0
Unidentified Scaup	249	0.5	92	0.2	12	0.1	353	0.3
Harlequin Duck	17	0.0	0	0.0	2	0.0	19	0.0
Long-tailed Duck	37	0.1	100	0.2	13	0.1	150	0.1
Black Scoter	9	0.0	7	0.0	0	0.0	16	0.0
Surf Scoter	4369	9.2	16820	35.1	1870	16.5	23059	21.6
White-winged Scoter	129	0.3	43	0.1	0	0.0	172	0.2
Unidentified Scoters	5550	11.7	4593	9.6	835	7.4	10978	10.3
Common Goldeneye	0	0.0	439	0.9	36	0.3	475	0.4
Barrows Goldeneye	0	0.0	457	1.0	0	0.0	457	0.4
Unidentified Goldeneye	770	1.6	714	1.5	89	0.8	1573	1.5
Bufflehead	781	1.6	979	2.0	318	2.8	2078	1.9
Hooded Merganser	0	0.0	0	0.0	0	0.0	0	0.0
Common Merganser	831	1.7	1028	2.1	269	2.4	2128	2.0
Red-breasted Merganser	9	0.0	13	0.0	97	0.9	119	0.1
Unidentified Merganser	0	0.0	0	0.0	0	0.0	0	0.0
Bald Eagle	332	0.7	446	0.9	229	2.0	1007	0.9
Black Oystercatcher	19	0.0	4	0.0	1	0.0	24	0.0
Black Turnstone	0	0.0	0	0.0	0	0.0	0	0.0
Surfbird	0	0.0	0	0.0	0	0.0	0	0.0
Unidentified shorebirds	25	0.1	0	0.0	0	0.0	25	0.0
Mew Gull	254	0.5	347	0.7	73	0.6	674	0.6
Herring Gull	24	0.1	4	0.0	1	0.0	29	0.0
Glaucous Gull	1556	3.3	784	1.6	905	8.0	3245	3.0
Unidentified Gulls	21264	44.7	14546	30.4	3857	34.1	39667	37.1
Common Murre	1	0.0	1	0.0	6	0.1	8	0.0
Pigeon Guillemot	7	0.0	2	0.0	2	0.0	11	0.0
Marbled Murrelet	12	0.0	77	0.2	7	0.1	96	0.1
Unidentified Alcids	27	0.1	10	0.0	2	0.0	39	0.0
Belted Kingfisher	1	0.0	0	0.0	0	0.0	1	0.0
Unidentified waterbirds	321	0.7	75	0.2	108	1.0	504	0.5
All birds	47616	100.0	47885	100.0	11303	100.0	106804	100
Sea Otter	100	14.3	163	10.3	235	22.0	498	14.9
River Otter	0	0.0	0	0.0	0	0.0	0	0.0
Sea Lion spp.	538	77.2	1183	74.8	540	50.7	2261	67.6
Harbour Seal	51	7.3	199	12.6	281	26.4	531	15.9
Killer Whale	0	0.0	0	0.0	0	0.0	0	0.0
Grey Whale	8	1.1	33	2.1	4	0.4	45	1.3
Porpoise spp.	0	0.0	3	0.2	6	0.6	9	0.3
All marine mammals	697	100.0	1581	100.0	1066	100.0	3344	100

proportions among taxa. However, the number of waterbirds observed during the third survey was substantially lower (Table 4, Fig. 4). Over all spring 1999 surveys, gulls were the most frequently observed waterbirds (40.7\%), followed by scoters (32.1\%) and loons (9.2\%) (Table 4).

3.1.2 Marine mammals

Over the winter 2000 surveys, a total of 5953 marine mammals were observed (Table 3). Sealions were most frequently observed (75.4\%), followed by harbour seals (12.8\%) and sea otters (11.6\%).

Over the spring 1999 surveys, 3,344 marine mammals were observed (Table 4). Again, Sealions were most frequently observed (67.6\%), followed by harbour seals (15.9\%), and sea otters (14.9\%).

3.2 Waterbird abundance and densities by marine eco-unit

3.2.1 Waterbird abundance in winter

The greatest abundance of waterbirds occurred in eco-units LCLLM, HBLLS, MBLLS, LCHLM, and LBHLM during winter. These eco-units supported $35 \%, 10 \%, 9 \%, 9 \%$ and 8% of all birds, respectively (Fig. 5, Tables 5-8). Three of these eco-units (LCLLM, HBLLS, LCHLM) covered an extensive proportion of the shoreline surveyed ($36 \%, 9 \%$ and 9%, respectively), however, the remaining two covered only 2.7% (MBLLS) and 3.4% (LBHLM) of the surveyed shoreline (Table 1). Four of the five most heavily used eco-units (LCLLM, HBLLS, LCHLM, LBHLM) supported high numbers of waterbirds in all three surveys (Tables 5-8). The importance of eco-unit MBLLS was due to the occurrence of a high number of loons in one transect during the third winter survey.

Bird abundance by taxonomic group is reported for each marine eco-unit and each survey in Tables 5 to 8.

3.2.2 Waterbird abundance in spring

During the first spring survey (13-15 March 1999), eco-unit MBLLS supported the highest number of birds (49.9\%), followed by LCLLM and LCHLM, where 18.9% and 7.8% of all birds occurred, respectively (Fig. 6, Table 9). Large herring spawn occurred in eco-unit MBLLS (chapter 3.4 in this report) and the highest numbers of loons, cormorants, scoters, mergansers and gulls were recorded specifically in this habitat. During the second spring survey (30 March 4 April 1999) eco-unit MCHLM supported the highest number of birds, followed by LCLLM and

Figure 5. Percentage of all birds observed within different marine eco-units in winter (black bars). Shaded zone indicates percentage of area covered by each eco-unit.

Table 5. Waterbird abundance by eco-unit (mean of three winter 2000 surveys, "On transect" and "Off transect"). The numbers in bold indicate the three highest values for each group of birds.

Eco-unit	Length km	Length $\%$	All birds*	Loons	Grebes	Cormo- rants	Dabbling ducks	Scoters	Golden- eyes	Mergan- sers	Gulls
LCLLM	695	35.9	$\mathbf{1 0 0 5 2}$	55	$\mathbf{8 7 8}$	198	$\mathbf{4 0 2}$	$\mathbf{2 0 6 9}$	$\mathbf{1 8 9 4}$	$\mathbf{4 1 8}$	$\mathbf{2 5 3 1}$
HBHLH	187	9.7	1427	21	33	194	20	282	33	39	488
LCHLM	168	8.7	2467	17	496	36	98	331	$\mathbf{2 6 5}$	$\mathbf{1 4 3}$	$\mathbf{7 3 5}$
HBLLS	166	8.6	2992	151	97	353	59	261	24	62	$\mathbf{1 3 9 8}$
HCHLH	145	7.5	1213	27	77	88	44	354	41	40	273
HBLLH	83	4.3	494	8	14	97	0	14	17	4	203
HCLLH	79	4.1	934	8	10	103	0	32	4	1	698
LBHLM	65	3.4	2144	18	192	52	$\mathbf{6 4 8}$	$\mathbf{5 6 0}$	35	53	165
MBLLS	52	2.7	2497	1267	231	30	15	$\mathbf{5 0 4}$	$\mathbf{6 7}$	$\mathbf{1 2 5}$	89
LBLLS	46	2.4	885	34	72	55	0	449	15	16	118
HBHLS	41	2.1	752	7	6	71	50	122	3	20	288
LCHLH	41	2.1	802	418	24	142	2	34	2	6	53
HCHLS	35	1.8	224	1	26	5	9	49	39	12	64
LBHLH	35	1.8	575	1	22	12	156	44	63	30	99
MCHLM	28	1.5	361	6	18	16	2	50	33	23	87
MBHLH	18	1.0	314	34	7	22	0	33	7	10	188
MCLLM	13	0.7	289	1	5	11	0	83	2	22	11
LCLLH	11	0.6	81	1	43	1	2	0	8	5	16
HCLLS	10	0.5	51	0	1	15	0	4	0	1	19
MCHLS	6	0.3	21	0	1	2	0	0	0	0	14
MCLLS	5	0.2	12	0	1	0	0	8	0	0	1
HCLLM	3	0.1	101	0	1	12	0	7	0	0	25
Total	1932	100	28689	2076	2256	1514	1506	5288	2551	1030	7563

* in addition to waterbird taxonomic groups listed in the table, column All birds includes abundance of swans, geese, shorebirds, alcids, and Bald Eagles, which numbers are given in Tables 3 and 4.

Table 6. Waterbird abundance by eco-unit during the first winter survey on 16-18 January, 2000 ("On transect" and "Off transect"). The numbers in bold indicate the three highest values for each group of birds.

Eco-unit	Length km	Length $\%$	All birds*	Loons	Grebes	Cormo- rants	Dabbling ducks	Scoters	Golden- eyes	Mergan- sers	Gulls
LCLLM	696.0	36.0	8523	$\mathbf{1 8}$	$\mathbf{7 3 4}$	$\mathbf{2 0 8}$	$\mathbf{4 2 7}$	$\mathbf{1 9 2 4}$	$\mathbf{1 3 4 1}$	$\mathbf{2 6 7}$	$\mathbf{2 3 7 4}$
HBHLH	187.0	9.7	1327	15	8	$\mathbf{3 4 0}$	20	285	13	22	444
LCHLM	169.9	8.8	2348	6	582	41	147	$\mathbf{3 5 8}$	$\mathbf{2 7 0}$	$\mathbf{9 7}$	$\mathbf{5 0 6}$
HBLLS	165.6	8.6	2294	17	31	$\mathbf{2 9 1}$	25	115	13	97	1357
HCHLH	145.1	7.5	961	7	39	86	61	191	38	59	316
HCLLH	79.2	4.1	549	3	11	45	0	6	4	0	427
HBLLH	78.5	4.1	387	7	11	86	0	25	16	9	178
LBHLM	64.8	3.3	2364	6	91	73	962	$\mathbf{2 9 2}$	15	25	218
MBLLS	52.2	2.7	647	7	60	55	0	242	$\mathbf{6 6}$	68	81
LBLLS	45.9	2.4	681	8	188	53	0	119	18	16	63
HBHLS	41.0	2.1	493	6	3	63	0	87	3	10	242
LCHLH	41.0	2.1	158	6	36	17	7	0	2	8	44
LBHLH	40.1	2.1	437	1	17	22	147	22	0	32	51
HCHLS	35.4	1.8	154	0	35	10	0	53	21	10	18
MCHLM	28.2	1.5	448	3	29	12	5	71	56	17	135
MBHLH	18.4	0.9	102	0	1	5	0	8	20	0	46
MCLLM	13.1	0.7	73	1	11	2	0	4	5	13	23
LCLLH	11.1	0.6	70	1	41	0	6	0	7	4	8
HCLLS	9.6	0.5	39	0	0	14	0	3	0	2	16
MCHLS	6.3	0.3	51	0	0	0	0	0	0	0	40
MCLLS	4.6	0.2	3	0	0	0	0	0	0	0	1
HCLLM	2.7	0.1	60	0	0	15	0	0	0	0	45
Total	1935.5	100	22169	112	1928	1438	1807	3805	1908	756	6633

* in addition to waterbird taxonomic groups listed in the table, column All birds includes abundance of swans, geese, shorebirds, alcids, and Bald Eagles, which numbers are given in Tables 3 and 4.

Table 7. Waterbird abundance by eco-unit during the second winter survey on 21-23 January, 2000 ("On transect" and "Off transect"). The numbers in bold indicate the three highest values for each group of birds.

Eco-unit	Length km	Length $\%$	All birds*	Loons	Grebes	Cormo- rants	Dabbling ducks	Scoters	Golden- eyes	Mergan- sers	Gulls
LCLLM	681.4	35.6	$\mathbf{1 1 2 5 4}$	$\mathbf{6 3}$	$\mathbf{9 2 3}$	$\mathbf{2 3 4}$	$\mathbf{3 1 4}$	$\mathbf{2 0 5 2}$	$\mathbf{2 8 7 3}$	$\mathbf{3 5 8}$	$\mathbf{2 3 5 5}$
HBHLH	187.0	9.8	1696	36	41	137	9	438	71	54	507
HBLLS	165.6	8.6	3760	417	13	366	139	279	43	72	$\mathbf{1 7 0 2}$
LCHLM	164.8	8.6	2947	18	744	23	84	319	$\mathbf{3 4 1}$	115	960
HCHLH	145.1	7.6	1149	31	48	126	68	267	29	29	165
HBLLH	84.6	4.4	812	4	29	82	0	5	34	4	312
HCLLH	79.2	4.1	958	7	18	98	0	21	9	1	643
LBHLM	64.8	3.4	1965	22	150	51	$\mathbf{2 8 8}$	811	27	11	241
MBLLS	52.2	2.7	1126	20	32	25	32	428	$\mathbf{7 6}$	164	64
LBLLS	45.9	2.4	1138	56	23	107	0	596	20	20	198
HBHLS	41.0	2.1	867	9	1	58	98	228	4	44	282
LCHLH	41.0	2.1	270	8	27	117	0	24	2	4	27
HCHLS	35.4	1.8	277	1	14	0	20	83	28	12	100
LBHLH	33.1	1.7	570	2	4	12	162	63	$\mathbf{7 6}$	34	31
MCHLM	28.2	1.5	370	11	19	22	0	10	25	26	106
MBHLH	18.4	1.0	274	101	0	25	0	90	0	26	21
MCLLM	13.1	0.7	407	1	5	20	0	13	0	4	7
LCLLH	11.1	0.6	80	1	45	2	0	0	4	4	21
HCLLS	9.6	0.5	36	0	0	3	0	6	0	0	0
MCHLS	6.3	0.3	9	0	2	5	0	0	0	0	2
MCLLS	4.6	0.2	25	0	0	0	0	25	0	0	0
HCLLM	2.7	0.1	165	1	1	5	0	0	0	0	8
Total	1914.9	100	30155	809	2139	1518	1214	5758	3662	982	7752

* in addition to waterbird taxonomic groups listed in the table, column All birds includes abundance of swans, geese, shorebirds, alcids, and Bald Eagles, which numbers are given in Tables 3 and 4.

Table 8. Waterbird abundance by eco-unit during the third winter survey on 2-4 February, 2000 ("On transect" and "Off transect"). The numbers in bold indicate the three highest values for each group of birds.

Eco-unit	Length km	Length $\%$	All birds*	Loons	Grebes	Cormo- rants	Dabbling ducks	Scoters	Golden- eyes	Mergan- sers	Gulls
LCLLM	706.0	36.3	$\mathbf{1 0 3 8 0}$	$\mathbf{8 4}$	$\mathbf{9 7 8}$	151	$\mathbf{4 6 5}$	$\mathbf{2 2 3 2}$	$\mathbf{1 4 6 7}$	$\mathbf{6 2 8}$	$\mathbf{2 8 6 5}$
HBHLH	187.0	9.6	1259	11	50	106	30	124	16	42	512
LCHLM	169.9	8.7	2105	27	162	43	63	316	$\mathbf{1 8 4}$	$\mathbf{2 1 8}$	738
HBLLS	165.6	8.5	$\mathbf{2 9 2 2}$	18	248	401	13	389	17	18	$\mathbf{1 1 3 4}$
HCHLH	145.1	7.5	1530	43	144	53	2	603	55	31	337
HBLLH	84.6	4.3	283	12	2	124	0	12	2	0	118
HCLLH	79.2	4.1	1294	14	2	165	0	68	0	2	1024
LBHLM	64.8	3.3	2103	27	336	31	$\mathbf{6 9 5}$	576	62	122	35
MBLLS	52.2	2.7	5717	3773	602	11	12	841	59	144	123
LBLLS	45.9	2.4	837	38	6	4	0	631	6	13	94
HBHLS	41.9	2.2	895	7	13	92	53	52	1	5	341
LCHLH	41.0	2.1	1978	1241	8	292	0	77	2	5	87
HCHLS	35.4	1.8	241	2	29	5	7	10	67	13	74
LBHLH	33.1	1.7	719	1	45	2	158	46	112	24	215
MCHLM	28.2	1.4	265	5	5	13	0	69	18	26	21
MBHLH	18.4	0.9	567	2	21	35	0	0	0	5	498
MCLLM	13.1	0.7	388	0	0	11	0	231	0	48	4
LCLLH	11.1	0.6	94	1	44	1	0	0	14	8	20
HCLLS	9.6	0.5	77	0	2	29	0	3	0	0	41
MCHLS	6.3	0.3	2	0	0	0	0	0	0	0	0
MCLLS	4.6	0.2	7	0	2	1	0	0	0	0	3
HCLLM	2.7	0.1	79	0	1	15	0	22	0	0	21
Total	1904.7		33742	5306	2700	1585	1498	6302	2082	1352	8305

* in addition to waterbird taxonomic groups listed in the table, column All birds includes abundance of swans, geese, shorebirds, alcids, and Bald Eagles, which numbers are given in Tables 3 and 4.

Figure 6. Percentage of all birds observed within different marine eco-units during spring first, second and third surveys (black bars). Shaded zone indicates percentage of area covered by each eco-unit.

Table 9. Waterbird abundance by eco-unit during the first spring survey on 13-15 March, 1999 ("On transect", "Off transect" and "On spawn"). The numbers in bold indicate the three highest values for each group of birds.

Eco-unit	Length km	Length \%	$\underset{\text { birds* }}{\text { All }}$	Loons	Grebes	Cormorants	Dabbling ducks	Scoters	Goldeneyes	$\begin{gathered} \text { Mergan- } \\ \text { sers } \\ \hline \end{gathered}$	Gulls
LCLLM	630.2	36.5	8921	125	449	175	516	1216	549	297	4962
HBLLS	160.4	9.3	3135	307	46	173	0	722	1	8	1799
HBHLH	159.9	9.3	1151	10	171	61	3	350	21	10	503
LCHLM	141.1	8.2	3679	19	79	31	0	206	34	58	3149
HCHLH	114.0	6.6	652	6	20	28	75	141	13	11	304
HCLLH	79.2	4.6	252	12	8	56	0	37	0	3	118
LBHLM	64.8	3.8	1138	8	22	8	4	370	12	46	115
HBLLH	54.6	3.2	115	15	10	34	0	22	0	0	30
MBLLS	52.2	3.0	23599	7076	176	192	55	6188	24	319	9195
LCHLH	42.1	2.4	222	8	45	31	0	27	0	4	94
HBHLS	41.9	2.4	298	5	58	2	0	61	2	0	116
LBHLH	40.1	2.3	1590	1	37	21	0	350	8	11	760
HCHLS	35.4	2.1	113	0	7	1	13	7	14	11	49
MCHLM	24.6	1.4	1014	8	0	1	0	28	49	9	890
LBLLS	23.6	1.4	733	29	2	37	0	197	1	0	453
MBHLH	18.4	1.1	225	0	25	1	33	53	20	0	38
HCLLM	15.6	0.9	8	0	0	3	0	3	0	0	1
MCLLM	13.1	0.8	188	10	3	1	0	56	10	9	94
LCLLH	11.1	0.6	63	0	16	0	0	2	4	10	21
MCHLS	3.3	0.2	196	1	0	0	0	1	0	0	194
Total	1725.5	100	47292	7640	1174	856	699	10037	762	806	22885

* in addition to waterbird taxonomic groups listed in the table, column All birds includes abundance of swans, geese, shorebirds, alcids, and Bald Eagles, which numbers are given in Tables 3 and 4.

MBLLS, which supported $34.4 \%, 21.9 \%$ and 13.1% of all birds, respectively (Fig. 6, Table 10). Similar to the previous spring survey, the highest abundance of birds in eco-units MCHLM and MBLLS coincided with herring spawn (chapter 3.4 in this report). The third spring survey (27-29 April 1999) was distinguished by generally low numbers of all birds (Figs. 5-6, Table 11). Ecounits LCLLM, HBLLS, and LCHLM supported the highest number of birds ($26.6 \%, 16.3 \%$ and 12.6%, respectively). The variability of bird distribution across marine eco-units in spring could be related to the occurrence of herring spawn in specific locations and the unequal response of different bird species to these events as well as spring migration of birds along the coast.

3.2.3 Waterbird densities in winter

The overall mean density of waterbirds in winter was 14.2 birds per linear kilometer of shoreline. Eco-units LBHLM, LBLLS, and MBLLS supported the highest densities whereas ecounits HCHLS, HBLLH, and HBHLH supported lowest densities (Fig. 7, Table 12).

Bird densities varied across eco-unit types, presumably indicating specific habitat preferences (Table 12). High variation in bird densities and use of different eco-units also was observed between winter surveys (Fig. 7, Tables 13-15).

3.2.4 Waterbird densities in spring

The overall density of waterbirds was 18.2 birds per linear kilometer during the first spring survey, 15.8 birds/km on the second survey and 5.3 birds/km during the third survey (Fig. $8)$.

Eco-units MBLLS and MCHLM supported the highest waterbird densities during the first and second spring surveys (Fig. 8). Intensive herring spawn occurred within these eco-units. Eco-units MBLLS, HBHLS and HBLLS supported the highest bird densities during the third spring survey (Fig. 8). Bird densities were substantially lower during the third spring survey, relative to the previous spring surveys. Waterbirds also appeared to be more dispersed over the different eco-units during the third survey (Fig. 8, Tables 16-18).

Note: bird densities in marine eco-units supporting fish spawn are underrepresented, since the majority of birds counted on such areas were ascribed to the category "on spawn", which has not been used in density estimates (see methods for details).

Table 10. Waterbird abundance by eco-unit during the second spring survey on 30 March - 1 April, 1999 ("On transect", "Off transect" and "On spawn"). The numbers in bold indicate the three highest values for each group of birds.

Eco-unit	$\begin{gathered} \text { Length } \\ \mathrm{km} \\ \hline \end{gathered}$	$\begin{aligned} & \text { Length } \\ & \% \end{aligned}$	$\begin{gathered} \text { All } \\ \text { birds* } \end{gathered}$	Loons	Grebes	Cormorants	Dabbling ducks	Scoters	Goldeneyes	$\begin{gathered} \text { Mergan- } \\ \text { sers } \\ \hline \end{gathered}$	Gulls
LCLLM	680.3	37.8	10419	22	744	413	470	1217	1141	507	4927
HBHLH	180.7	10.0	448	12	32	40	0	160	19	23	101
LCHLM	158.7	8.8	1773	6	196	30	72	76	69	91	1039
HBLLS	136.7	7.6	3331	11	38	124	8	520	6	36	2515
HCHLH	136.7	7.6	633	8	14	49	6	6	70	65	343
HBLLH	84.6	4.7	240	1	3	39	0	6	0	0	80
HCLLH	79.2	4.4	163	2	8	12	0	0	0	1	120
LBHLM	59.0	3.3	958	5	123	63	12	175	70	21	43
MBLLS	52.2	2.9	6248	7	418	163	120	1404	5	113	3633
LCHLH	41.0	2.3	3943	924	38	103	0	2410	28	5	361
HCHLS	35.4	2.0	126	2	36	14	0	5	22	19	16
LBHLH	33.1	1.8	1198	2	6	0	100	250	96	48	665
HBHLS	31.9	1.8	277	3	15	14	46	155	8	1	14
MBHLH	18.4	1.0	139	3	9	18	50	0	0	0	11
MCHLM	18.1	1.0	16367	404	45	294	0	14597	62	82	843
LBLLS	14.6	0.8	125	4	2	2	0	97	0	1	12
MCLLM	13.1	0.7	379	1	4	6	0	60	4	22	275
LCLLH	11.1	0.6	5	0	0	0	0	1	2	0	1
HCLLS	8.7	0.5	428	1	20	0	0	30	0	0	377
MCLLS	4.6	0.3	62	0	7	0	0	1	6	6	6
MCHLS	3.3	0.2	316	0	0	0	0	255	0	0	61
Total	1801.5	100	47578	1418	1758	1384	884	21425	1608	1041	15443

* in addition to waterbird taxonomic groups listed in the table, column All birds includes abundance of swans, geese, shorebirds, alcids, and Bald Eagles, which numbers are given in Tables 3 and 4.

Table 11. Waterbird abundance by eco-unit during the third spring survey on 27-29 April, 1999 ("On transect", "Off transect" and "On spawn"). The numbers in bold indicate the three highest values for each group of birds.

Eco-unit	Length km	Length $\%$	All birds*	Loons	Grebes	Cormo- rants	Dabbling ducks	Scoters	Golden- eyes	Mergan- sers	Gulls
LCLLM	698.6	37.0	$\mathbf{3 0 0 3}$	41	$\mathbf{1 7 8}$	$\mathbf{6 1}$	$\mathbf{2 1 8}$	434	$\mathbf{7 5}$	$\mathbf{1 8 4}$	$\mathbf{1 3 9 3}$
HBHLH	187.0	9.9	557	23	13	10	0	26	$\mathbf{3 4}$	6	419
LCHLM	172.7	9.1	1429	16	26	$\mathbf{3 7}$	14	122	$\mathbf{6}$	20	$\mathbf{6 9 2}$
HBLLS	165.6	8.8	1846	464	36	12	0	540	0	3	$\mathbf{7 3 4}$
HCHLH	136.3	7.2	655	55	31	22	16	77	2	13	367
HCLLH	79.2	4.2	279	25	6	21	0	12	0	0	209
LBHLM	64.8	3.4	71	11	1	4	0	4	0	24	23
MBLLS	52.2	2.8	671	13	28	1	$\mathbf{2 4 0}$	7	0	49	269
LBLLS	45.9	2.4	1148	57	63	2	0	813	0	3	56
HBLLH	44.8	2.4	298	0	1	47	0	5	0	0	244
HBHLS	41.0	2.2	745	4	1	3	0	594	0	2	133
LCHLH	41.0	2.2	78	15	0	10	0	0	0	6	38
HCHLS	35.4	1.9	28	2	6	1	9	0	0	3	5
LBHLH	33.1	1.8	84	2	1	1	0	0	2	34	31
MCHLM	28.2	1.5	153	12	5	0	0	17	2	16	88
MBHLH	18.4	1.0	95	3	5	0	0	54	0	1	6
MCLLM	13.1	0.7	60	0	0	4	0	0	0	0	51
LCLLH	11.1	0.6	36	1	3	0	0	0	4	2	21
HCLLS	9.6	0.5	37	5	0	2	0	0	0	0	29
MCLLS	4.6	0.2	0	0	0	0	0	0	0	0	0
MCHLS	3.3	0.2	11	1	0	1	0	0	0	0	9
HCLLM	2.7	0.1	19	0	0	0	0	0	0	0	19
Total	1888.5	100	11303	750	404	239	497	2705	125	366	4836

* in addition to waterbird taxonomic groups listed in the table, column All birds includes abundance of swans, geese, shorebirds, alcids, and Bald Eagles, which numbers are given in Tables 3 and 4.

Figure 7. Linear densities of all birds observed within different marine eco-units during winter surveys (black bars). Dashed line indicates the mean density of birds within entire study area.

Table 12. Mean waterbird densities per eco-unit during three winter surveys in 2000 . The numbers in bold indicate the three highest values for each group of birds. Eco-units covering less than 1% of the total survey length were not considered as representative and they are shown below the dashed line and in italics.

Eco-unit	Length km	Length \%	$\begin{gathered} \text { All } \\ \text { birds* } \end{gathered}$	Loons	Grebes	Cormorants	Dabbling ducks	Scoters	Goldeneyes	Mergansers	Gulls
LCLLM	2083.5	36.0	16.0	0.1	1.6	0.4	0.6	2.9	3.1	0.7	4.3
HBHLH	560.9	9.7	8.6	0.1	0.2	1.0	0.1	2.0	0.2	0.2	2.9
LCHLM	504.7	8.7	14.4	0.1	1.7	0.3	0.4	2.3	1.6	0.8	5.1
HBLLS	496.7	8.6	16.0	0.1	0.3	2.1	0.3	1.6	0.1	0.4	8.2
HCHLH	435.3	7.5	9.3	0.1	0.3	0.6	0.3	2.4	0.3	0.3	2.1
HBLLH	247.7	4.3	6.0	0.1	0.2	1.2	0.0	0.2	0.3	0.1	2.4
HCLLH	237.7	4.1	12.6	0.1	0.1	1.4	0.0	0.4	0.1	0.0	9.5
LBHLM	194.4	3.4	24.3	0.3	0.9	0.9	4.8	7.2	0.5	0.4	2.6
MBLLS	156.7	2.7	16.3	0.3	1.1	0.6	0.3	6.3	1.2	2.2	1.5
LBLLS	137.7	2.4	16.5	0.7	0.6	1.1	0.0	8.2	0.4	0.4	2.2
HBHLS	123.9	2.1	16.0	0.2	0.1	1.0	1.3	2.6	0.1	0.5	6.1
LCHLH	123.0	2.1	9.2	0.8	0.6	2.8	0.1	0.8	0.0	0.1	1.1
HCHLS	106.2	1.8	5.9	0.0	0.5	0.1	0.3	1.2	1.1	0.3	1.6
LBHLH	106.2	1.8	15.6	0.0	0.6	0.4	3.9	1.2	1.8	0.8	3.0
MCHLM	84.5	1.5	14.0	0.4	0.6	0.6	0.1	2.1	1.1	0.7	3.2
MBHLH	55.1	0.9	12.9	0.1	0.4	0.8	0.0	0.1	0.4	0.1	10.2
MCLLM	39.2	0.7	15.8	0.0	0.4	0.7	0.0	1.6	0.2	1.6	0.9
LCLLH	33.2	0.6	7.0	0.1	3.4	0.1	0.2	0.0	0.9	0.5	1.4
HCLLS	28.8	0.5	11.1	0.0	0.0	1.5	0.0	0.2	0.0	0.0	7.8
MCHLS	18.8	0.3	3.4	0.0	0.1	0.3	0.0	0.0	0.0	0.0	2.3
MCLLS	13.8	0.2	2.5	0.0	0.1	0.1	0.0	1.8	0.0	0.0	0.3
HCLLM	8.1	0.1	37.5	0.1	0.2	4.3	0.0	2.7	0.0	0.0	9.1
Total	5795.9	100	14.2	0.2	1.0	0.8	0.6	2.7	1.6	0.6	4.2

* in addition to densities of waterbird taxonomic groups listed in the table, column All birds includes densities of
swans, geese, shorebirds, alcids, and Bald Eagles, which numbers are given in Tables 3 and 4.

Table 13. Mean waterbird densities per eco-unit during the first winter survey (16-18 January 2000). The numbers in bold indicate the three highest values for each group of birds. Eco-units covering less than 1% of the total survey length were not considered as representative and they are shown below the dashed line and in italics.

Ecounit	Length km	$\begin{gathered} \text { Length } \\ \% \\ \hline \end{gathered}$	$\begin{gathered} \text { All } \\ \text { birds* } \end{gathered}$	Loons	Grebes	Cormorants	Dabbling ducks	Scoters	Goldeneyes	Mergansers	Gulls
LCLLM	696.0	36.0	12.7	0.0	0.9	0.4	0.7	2.3	2.1	0.5	3.9
HBHLH	187.0	9.7	7.8	0.1	0.0	1.7	0.1	2.1	0.1	0.1	2.4
LCHLM	169.9	8. 8	14.7	0.0	2.1	0.3	0.6	2.5	1.5	0.5	4.9
HBLLS	165.6	8.5	12.8	0.1	0.2	1.8	0.2	0.7	0.1	0.6	7.5
HCHLH	145.1	7.5	7.3	0.0	0.2	0.6	0.4	1.6	0.3	0.4	2.5
HCLLH	79.2	4.1	6.6	0.0	0.1	0.6	0.0	0.1	0.1	0.0	5.0
HBLLH	78.5	4.1	5.1	0.1	0.2	1.2	0.0	0.3	0.2	0.1	2.4
LBHLM	64.8	3.4	29.1	0.1	1.3	1.2	5.3	3.8	0.3	0.5	3.6
MBLLS	52.2	2.7	11.9	0.1	1.0	1.0	0.0	5.0	1.1	1.1	1.3
LBLLS	45.9	2.4	11.1	0.2	1.2	1.1	0.0	1.9	0.5	0.4	0.7
HBHLS	41.0	2.1	10.9	0.1	0.1	1.4	0.0	2.0	0.1	0.3	5.3
LCHLH	41.0	2.1	3.9	0.1	1.0	0.4	0.2	0.0	0.1	0.2	1.0
LBHLH	40.1	2.1	9.7	0.0	0.4	0.6	3.1	0.5	0.0	0.8	1.2
HCHLS	35.4	1.8	3.1	0.0	0.2	0.2	0.0	1.3	0.5	0.2	0.4
MCHLM	28.2	1.5	16.0	0.1	1.1	0.5	0.2	2.9	1.9	0.5	4.7
MBHLH	18.4	0.9	5.5	0.0	0.1	0.3	0.0	0.4	1.1	0.0	2.5
MCLLM	13.1	0.7	6.1	0.1	1.0	0.2	0.0	0.4	0.5	1.1	1.7
LCLLH	11.1	0.6	6.0	0.1	3.2	0.0	0.7	0.0	0.8	0.3	0.7
HCLLS	9.6	0.5	8.0	0.0	0.0	0.8	0.0	0.2	0.0	0.1	4.8
MCHLS	6.3	0.3	8.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6.7
MCLLS	4.6	0.2	0.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2
HCLLM	2.7	0.1	22.2	0.0	0.0	5.6	0.0	0.0	0.0	0.0	16.7
Total	1935.5	100	11.6	0.1	0.8	0.7	0.6	1.9	1.1	0.4	3.7

* in addition to densities of waterbird taxonomic groups listed in the table, column All birds includes densities of swans, geese, shorebirds, alcids, and Bald Eagles, which numbers are given in Tables 3 and 4.

Table 14. Mean waterbird densities per eco-unit during the second winter survey (21-23 January 2000). The numbers in bold indicate the three highest values for each group of birds. Eco-units covering less than 1% of the total survey length were not considered as representative and they are shown below the dashed line and in italics.

Eco-unit	Length km	$\begin{gathered} \text { Length } \\ \% \\ \hline \end{gathered}$	$\begin{gathered} \text { All } \\ \text { birds* } \end{gathered}$	Loons	Grebes	Cormorants	Dabbling ducks	Scoters	Goldeneyes	$\begin{gathered} \text { Mergan- } \\ \text { sers } \\ \hline \end{gathered}$	Gulls
LCLLM	681.4	35.6	19.2	0.1	1.9	0.5	0.6	3.2	5.1	0.5	4.5
HBHLH	187.0	9.8	9.6	0.2	0.3	0.6	0.1	2.6	0.4	0.3	3.0
HBLLS	165.6	8.7	18.8	0.1	0.1	2.0	0.8	1.5	0.2	0.4	9.5
LCHLM	164.8	8.6	16.6	0.1	2.1	0.2	0.3	2.2	2.1	0.7	6.1
HCHLH	145.1	7.6	9.3	0.2	0.3	0.8	0.5	1.5	0.2	0.2	1.1
HBLLH	84.6	4.4	9.7	0.0	0.3	1.1	0.0	0.1	0.6	0.1	3.3
HCLLH	79.2	4.1	11.5	0.1	0.2	1.1	0.0	0.3	0.1	0.0	7.6
LBHLM	64.8	3.4	29.2	0.3	1.1	0.9	5.6	10.6	0.5	0.2	3.6
MBLLS	52.2	2.7	20.7	0.5	0.5	0.5	0.6	8.2	1.5	2.9	1.1
LBLLS	45.9	2.4	15.5	1.1	0.5	2.2	0.0	4.3	0.5	0.5	4.1
HBHLS	41.0	2.1	21.9	0.2	0.0	1.3	3.1	5.0	0.2	1.1	6.3
LCHLH	41.0	2.1	4.7	0.2	0.7	1.1	0.0	0.6	0.0	0.1	0.7
HCHLS	35.4	1.9	7.3	0.0	0.3	0.0	0.8	2.0	0.7	0.3	2.6
LBHLH	33.1	1.7	15.8	0.0	0.1	0.4	4.0	1.8	2.1	1.0	1.1
MCHLM	28.2	1.5	14.8	0.9	0.7	0.6	0.0	0.3	0.8	0.8	4.3
MBHLH	18.4	0.9	2.2	0.1	0.0	0.3	0.0	0.0	0.0	0.1	1.1
MCLLM	13.1	0.7	27.4	0.1	0.3	1.3	0.0	1.2	0.0	0.4	0.6
LCLLH	11.1	0.6	6.7	0.1	3.6	0.2	0.0	0.0	0.4	0.4	1.7
HCLLS	9.6	0.5	2.1	0.0	0.0	0.2	0.0	0.3	0.0	0.0	0.0
MCHLS	6.3	0.3	1.4	0.0	0.3	0.8	0.0	0.0	0.0	0.0	0.3
MCLLS	4.6	0.2	5.4	0.0	0.0	0.0	0.0	5.4	0.0	0.0	0.0
HCLLM	2.7	0.1	61.1	0.4	0.4	1.9	0.0	0.0	0.0	0.0	3.0
Total	1914.9	100	16.4	0.2	1.1	0.8	0.7	2.8	2.4	0.5	4.3

* in addition to densities of waterbird taxonomic groups listed in the table, column All birds includes densities of swans, geese, shorebirds, alcids, and Bald Eagles, which numbers are given in Tables 3 and 4.

Table 15. Mean waterbird densities per eco-unit during the third winter survey (2-4 February 2000). The numbers in bold indicate the three highest values for each group of birds. Eco-units covering less than 1% of the total survey length were not considered as representative and they are shown below the dashed line and in italics.

Eco-unit	Length km	Length $\%$	$\begin{gathered} \text { All } \\ \text { birds* } \end{gathered}$	Loons	Grebes	Cormorants	Dabbling ducks	Scoters	Goldeneyes	$\begin{gathered} \text { Mergan- } \\ \text { sers } \\ \hline \end{gathered}$	Gulls
LCLLM	706.0	36.3	16.2	0.1	2.0	0.2	0.7	3.2	2.2	1.1	4.6
HBHLH	187.0	9.6	8.4	0.1	0.3	0.7	0.2	1.3	0.1	0.3	3.4
LCHLM	169.9	8.7	12.0	0.2	0.8	0.4	0.2	2.2	1.1	1.3	4.3
HBLLS	165.6	8.5	16.5	0.1	0.8	2.6	0.1	2.6	0.1	0.1	7.7
HCHLH	145.1	7.5	11.4	0.2	0.5	0.4	0.0	4.0	0.4	0.3	2.7
HBLLH	84.6	4.4	3.1	0.1	0.0	1.2	0.0	0.1	0.0	0.0	1.4
HCLLH	79.2	4.1	19.7	0.2	0.0	2.5	0.0	0.8	0.0	0.0	16.0
LBHLM	64.8	3.3	14.8	0.4	0.3	0.5	3.5	7.3	0.9	0.5	0.7
MBLLS	52.2	2.7	16.3	0.3	1.8	0.2	0.2	5.9	1.0	2.5	2.1
LBLLS	45.9	2.4	22.9	0.7	0.1	0.1	0.0	18.5	0.2	0.4	1.9
HBHLS	41.9	2.2	15.2	0.1	0.3	0.3	0.9	1.0	0.0	0.1	6.7
LCHLH	41.0	2.1	19.1	2.0	0.2	7.0	0.0	1.9	0.1	0.1	1.5
HCHLS	35.4	1.8	7.1	0.0	1.0	0.2	0.2	0.2	2.2	0.3	1.9
LBHLH	33.1	1.7	22.4	0.0	1.2	0.1	4.9	1.5	3.7	0.7	7.0
MCHLM	28.2	1.5	11.3	0.3	0.1	0.6	0.0	3.1	0.6	0.9	0.7
MBHLH	18.4	0.9	30.8	0.1	1.1	1.9	0.0	0.0	0.0	0.3	27.1
MCLLM	13.1	0.7	13.8	0.0	0.0	0.7	0.0	3.2	0.0	3.4	0.3
LCLLH	11.1	0.6	8.2	0.1	3.4	0.1	0.0	0.0	1.4	0.9	1.7
HCLLS	9.6	0.5	23.2	0.0	0.1	3.6	0.0	0.2	0.0	0.0	18.7
MCHLS	6.3	0.3	0.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MCLLS	4.6	0.2	1.5	0.0	0.4	0.2	0.0	0.0	0.0	0.0	0.7
HCLLM	2.7	0.1	29.3	0.0	0.4	5.6	0.0	8.2	0.0	0.0	7.8
Total	1945.5	100	14.7	0.2	1.1	0.8	0.5	3.3	1.2	0.7	4.5

* in addition to densities of waterbird taxonomic groups listed in the table, column All birds includes densities of swans, geese, shorebirds, alcids, and Bald Eagles, which numbers are given in Tables 3 and 4.

Figure 8. Linear densities of all birds observed within different marine eco-units during spring surveys (black bars). Dashed line indicates the mean density of birds within entire study area.

Table 16. Mean waterbird densities per eco-unit during the first spring survey (13-15 March 1999). The numbers in bold indicate the three highest values for each group of birds. Eco-units covering less than 1% of the total survey length were not considered as representative and they are shown below the dashed line and in italics.

Eco-unit	Length km	$\begin{gathered} \text { Length } \\ \% \end{gathered}$	All birds*	Loons	Grebes	Cormorants	Dabbling ducks	Scoters	Goldeneyes	$\begin{gathered} \text { Mergan- } \\ \text { sers } \\ \hline \end{gathered}$	Gulls
LCLLM	627.5	37.7	18.5	0.3	0.8	0.3	1.0	2.1	0.9	0.7	11.3
HBHLH	159.9	9.6	7.4	0.1	1.1	0.4	0.0	2.2	0.2	0.1	3.2
HBLLS	150.9	9.1	27.9	2.3	0.4	1.4	0.0	5.9	0.0	0.0	15.8
LCHLM	141.1	8.5	16.9	0.1	0.6	0.2	0.0	1.5	0.2	0.3	13.2
HCHLH	98.6	5.9	5.1	0.1	0.1	0.2	0.8	1.4	0.1	0.1	2.3
HCLLH	68.6	4.1	2.8	0.2	0.1	0.7	0.0	0.5	0.0	0.0	1.0
LBHLM	64.8	3.9	20.7	0.1	0.3	0.1	0.1	6.8	0.3	0.7	1.5
HBLLH	54.6	3.3	2.1	0.3	0.1	1.0	0.0	0.2	0.0	0.0	0.5
LCHLH	42.1	2.5	6.9	0.6	0.0	1.2	0.0	2.1	0.0	0.1	2.5
HBHLS	41.9	2.5	14.2	0.3	6.3	0.1	0.0	3.7	0.0	0.0	2.7
LBHLH	40.1	2.4	10.4	0.0	0.9	0.2	0.0	0.0	0.1	0.0	6.7
HCHLS	35.4	2.1	3.0	0.0	0.2	0.0	0.3	0.2	0.4	0.3	1.2
MBLLS	29.9	1.8	75.2	17.7	0.0	5.4	1.6	1.4	0.4	3.1	44.3
MCHLM	24.6	1.5	59.2	0.8	0.0	0.0	0.0	1.5	3.8	0.3	49.7
LBLLS	23.6	1.4	29.5	1.1	0.1	1.5	0.0	10.1	0.0	0.0	16.1
MBHLH	18.4	1.1	12.2	0.0	1.4	0.1	1.8	2.9	1.1	0.0	2.1
HCLLM	15.6	0.9	0.5	0.0	0.0	0.2	0.0	0.2	0.0	0.0	0.1
MCLLM	13.1	0.8	15.7	0.9	0.2	0.1	0.0	4.0	0.9	0.8	8.3
LCLLH	11.1	0.7	6.4	0.0	1.6	0.0	0.0	0.2	0.4	1.1	2.1
MCHLS	3.3	0.2	59.6	0.3	0.0	0.0	0.0	0.3	0.0	0.0	59.0
Total	1665.0	100.0	18.2	0.8	0.7	0.5	0.5	2.5	0.6	0.4	10.7

* in addition to densities of waterbird taxonomic groups listed in the table, column All birds includes densities of swans, geese, shorebirds, alcids, and Bald Eagles, which numbers are given in Tables 3 and 4.

Table 17. Mean waterbird densities per eco-unit during the second spring survey (30 March -1 April 1999). The numbers in bold indicate the three highest values for each group of birds. Eco-units covering less than 1% of the total survey length were not considered as representative and they are shown below the dashed line and in italics.

Eco-unit	Length km	$\begin{gathered} \text { Length } \\ \% \\ \hline \end{gathered}$	$\begin{gathered} \text { All } \\ \text { birds* }^{*} \end{gathered}$	Loons	Grebes	Cormorants	Dabbling ducks	Scoters	Goldeneyes	Mergansers	Gulls
LCLLM	675.3	39.4	14.6	0.1	1.0	0.2	0.7	2.0	1.4	1.0	6.4
LCHLM	158.7	9.3	10.1	0.0	0.4	0.2	0.5	0.5	0.4	0.6	6.1
HBHLH	143.5	8.4	3.0	0.1	0.2	0.2	0.0	1.1	0.1	0.2	0.7
HCHLH	136.7	8.0	5.3	0.1	0.1	0.4	0.1	0.0	0.5	0.4	3.2
HBLLS	127.2	7.4	34.9	0.1	0.3	0.7	0.1	0.5	0.0	0.0	32.5
HBLLH	84.6	4.9	2.0	0.0	0.0	0.6	0.0	0.1	0.0	0.0	1.1
HCLLH	66.6	3.9	2.3	0.0	0.1	0.1	0.0	0.0	0.0	0.0	1.9
LBHLM	59.0	3.4	15.7	0.1	2.5	1.0	0.1	3.0	1.1	0.4	0.7
LCHLH	41.0	2.4	5.1	0.3	0.8	0.4	0.0	0.0	0.6	0.1	1.2
HCHLS	35.4	2.1	3.6	0.1	0.8	0.5	0.0	0.1	0.6	0.5	0.5
LBHLH	33.1	1.9	32.6	0.1	0.1	0.0	4.0	6.2	3.7	1.2	16.4
HBHLS	31.9	1.9	9.5	0.1	0.4	0.4	1.3	5.8	0.3	0.0	0.5
MBLLS	29.9	1.7	93.2	0.1	0.3	1.7	3.5	6.8	0.0	0.2	78.3
MBHLH	18.4	1.1	7.6	0.2	0.5	1.0	2.7	0.0	0.0	0.0	0.6
MCHLM	18.1	1.1	43.3	0.1	0.1	0.4	0.0	0.0	2.5	4.3	32.5
LBLLS	14.6	0.9	11.7	0.3	0.1	0.2	0.0	9.4	0.0	0.1	0.9
MCLLM	13.1	0.8	27.5	0.1	0.3	0.4	0.0	5.5	0.4	1.8	18.5
LCLLH	11.1	0.6	0.5	0.0	0.0	0.0	0.0	0.1	0.2	0.0	0.1
HCLLS	8.7	0.5	49.4	0.1	2.3	0.0	0.0	3.5	0.0	0.0	43.5
MCLLS	4.6	0.3	13.5	0.0	1.5	0.0	0.0	0.2	1.3	1.3	1.3
MCHLS	3.3	0.2	96.1	0.0	0.0	0.0	0.0	77.6	0.0	0.0	18.6
Total	1714.7	100	15.8	0.1	0.7	0.4	0.6	2.0	0.9	0.7	9.1

* in addition to densities of waterbird taxonomic groups listed in the table, column All birds includes densities of swans, geese, shorebirds, alcids, and Bald Eagles, which numbers are given in Tables 3 and 4.

Table 18. Mean waterbird densities per eco-unit during the third spring survey (27-29 April 1999). The numbers in bold indicate the three highest values for each group of birds. Eco-units covering less than 1% of the total survey length were not considered as representative and they are shown below the dashed line and in italics.

Eco-unit	Length km	Length $\%$	All birds*	Loons	Grebes	Cormo- rants	Dabbling ducks	Scoters	Golden- eyes	Mergan- sers	Gulls

* in addition to densities of waterbird taxonomic groups listed in the table, column All birds includes densities of swans, geese, shorebirds, alcids, and Bald Eagles, which numbers are given in Tables 3 and 4.

3.3 Waterbird abundance and distribution by bird group

3.3.1 Loons

"Loons" includes Pacific Loons, Common Loons and unidentified loons. Pacific Loons made up 93% of all identified loons (Tables 3-4).

Loon abundance varied between surveys: the highest numbers were observed during the third winter (5313 birds) and the first spring counts (7645 birds), and the lowest in early winter and late spring surveys (112 and 750 birds respectively) (Fig. 9). The majority of wintering loons were observed in marine eco-units MBLLS and LCHLH and occurred in low numbers over the rest of the area surveyed (Fig. 10; Table 5). The majority of loons during the first spring survey were recorded in marine eco-unit MBLLS (Fig. 10, Table 9). Eco-units LCHLM and MCHLM supported the highest number of loons during the second spring survey (Fig. 10, Table 10). Marine eco-unit HBLLS supported the highest percentage of birds during the third spring survey (Figs. 10, Table 11). The linear density of loons varied across marine eco-units in different surveys and corresponded closely to the eco-units where the highest numbers of loons were recorded (Fig. 11, Tables 12-18). Loon densities, however, could not be compared between surveys, because an appreciable proportion of the loons were counted "On spawn" during spring surveys. Only birds counted "On transect" were included in the density calculations (see methods for detailed description).

Loons were observed throughout the entire coast during the winter, with the largest aggregations in Hesquiat Harbour and Barkley Sound (Fig.12). The majority of loons recorded during the first spring survey (13-15 March 1999), were primarily observed in Hesquiat Harbour, where herring spawn occurred (Fig. 13). During the second spring survey (30 March - 1 April 1999), the largest aggregation occurred in Barkley Sound, another important herring spawning location (Fig. 14). During the third spring survey (27-29 April 1999) loons were dispersed over the west coast of Vancouver Island (Fig. 15).

Figure 9. Loon abundance during winter and spring surveys. See methods for survey date.

winter (mean of 3 surveys)

second spring survey (30 March - 1 April 1999)

first spring survey (13-15 March 1999)

third spring survey (27-29 April 1999)

Figure 10. Percentage of loons observed within different marine eco-units. Black bars indicate the percentage of all loons in each eco-unit during winter (mean of 3 surveys) and during three separate spring surveys. Shaded bars indicate the percentage of the survey area covered by each eco-unit.

Figure 11. Average linear densities of loons in different marine eco-units in winter (mean of 3 surveys) and during 3 spring surveys (black bars). Dashed line indicates mean density of birds within the entire study area.

Figure 12. Abundance and distribution of loons during winter (mean of 3 winter surveys).

Figure 13. Abundance and distribution of loons during the first spring survey (13-15 March 1999).

Figure 14. Abundance and distribution of loons during the second spring survey (30 March - 1 April 1999).

Figure 15. Abundance and distribution of loons during the third spring survey (27-29 April 1999).

3.3.2 Grebes

"Grebes" includes Horned Grebes, Red-necked Grebes, Western Grebes and unidentified grebes. Western Grebes were the most abundant and made up 67% of all identified grebes in winter and 86% in spring (Tables 3-4). The Red-necked Grebe was the second most abundant grebe species in winter, accounting for 31% of all identified grebes (Tables 3-4).

Grebe abundance increased with each winter survey (range = 1928-2701 birds) and winter abundance was higher than that observed during the spring surveys (range $=404-1759$ birds) (Fig. 16). Grebes were observed within all eco-unit types, with a slightly higher percentage of birds occurring in eco-units with low to moderate exposure to wave and wind action (Fig. 17). The linear density of grebes varied across marine eco-units in different surveys and there was no single eco-unit that constantly supported a high density of these birds (Fig. 18, Tables 12-18).

Wintering grebes were widespread across the entire west coast of Vancouver Island, and were more abundant in inlets and bays (Fig. 19). Grebe geographical distribution and use of marine ecounit in spring was similar to those observed in winter (Figs. 20-22).

Figure 16. Grebe abundance during winter and spring surveys. See methods for survey date.

Figure 17. Percentage of grebes observed within different marine eco-units. Black bars indicate the percentage of all grebes in each eco-unit during winter (mean of 3 surveys) and during three separate spring surveys. Shaded bars indicate the percentage of the survey area covered by each eco-unit.

Figure 18. Average linear densities of grebes in different marine eco-units in winter (mean of 3 surveys) and during 3 spring surveys (black bars). Dashed line indicates mean density of birds within the entire study area.

Figure 19. Abundance and distribution of grebes during winter (mean of 3 winter surveys)

Figure 20. Abundance and distribution of grebes during the first spring survey (13-15 March 1999).

Figure 21. Abundance and distribution of grebes during the second spring survey (30 March -1 April 1999).

Figure 22. Abundance and distribution of grebes during the third spring survey (27-29 April 1999).

3.3.3 Cormorants

"Cormorants" include Double-crested Cormorant, Pelagic Cormorant and unidentified cormorants. Pelagic Cormorants made up 66% of all identified cormorants in winter and 81% in spring (Tables 3-4).

Cormorant abundance was similar during winter surveys (1439-1668 birds) but more variable and lower during spring counts (239-1384 birds) (Fig. 23). Wintering cormorants were observed in all marine eco-units, with eco-units HBLLS, HBHLH and LCLLM supporting the highest number of individuals (Fig. 24; Table 5). In spring, high numbers of cormorants were also observed in eco-units where herring spawn occurred: MBLLS and MCHLM (Fig. 24, Tables 9-10). The linear density of cormorants varied across marine eco-units: in winter cormorant density was highest in eco-units LCHLH, HBLLS and HCLLH; during the first spring survey the highest density was observed in ecounit MBLLS, during the second spring survey densities were highest in MBLLS, LBHLM and MBHLH eco-units, and during the third spring survey in eco-unit HBLLH (Fig. 25, Tables 12-18).

Wintering cormorants were widespread over the entire study area, with higher numbers on the open coastline (Fig. 26). During spring surveys, cormorants also occurred over the entire study area. However, some birds positively responded to herring spawn and higher aggregations were observed in Hesquiat Harbour during the first spring survey and in Barkley Sound during the second spring survey (Figs. 27-29). These sites supported major herring spawns in spring 1999 (see chapter 3.4 for details).

Figure 23. Cormorant abundance during winter and spring surveys. See methods for survey date.

Figure 24. Percentage of cormorants observed within different marine eco-units. Black bars indicate the percentage of all cormorants in each eco-unit during winter (mean of 3 surveys) and during three separate spring surveys. Shaded bars indicate the percentage of the survey area covered by each eco-unit.

Figure 25. Average linear densities of cormorants in different marine eco-units in winter (mean of 3 surveys) and during 3 spring surveys (black bars). Dashed line indicates mean density of birds within the entire study area.

Figure 26. Abundance and distribution of cormorants during winter (mean of 3 winter surveys)

Figure 27. Abundance and distribution of cormorants during the first spring survey (13-15 March 1999).

Figure 28. Abundance and distribution of cormorants during the second spring survey (30 March- 1 April 1999).

Figure 29. Abundance and distribution of cormorants during the third spring survey (27-29 April 1999).

3.3.4 Dabbling ducks

"Dabbling ducks" includes Green-winged Teal, Mallard, American Wigeon and unidentified dabbling ducks. Mallards were the most numerous dabbling ducks, comprising 69% of all identified dabbling duck species in winter and 94% in spring (Tables 3-4).

Dabbling duck abundance was approximately twice as high during winter surveys (1214-1807 birds) as in the spring (497-884 birds) (Fig. 30). Marine eco-units LBHLM, LCLLM and LBHLH supported the highest number of dabbling ducks in winter (Fig. 31, Table 5) and marine eco-units LCLLM and MBLLS were the most intensively used in spring (Fig. 31, Tables 9-11). The highest linear density of dabbling ducks in winter was observed in marine eco-units LBHLM and LBHLH (Fig. 32, Tables 12-18). Eco-unit MBLLS supported the highest density of dabbling ducks during all three spring counts (Fig. 32, Tables 16-18). Geographically, dabbling ducks were widespread, found primarily in inlets and bays both in winter and spring periods (Figs. 33-36).

Figure 30. Dabbling duck abundance during winter and spring surveys. See methods for survey date.

Figure 31. Percentage of dabbling ducks observed within different marine eco-units. Black bars indicate the percentage of all dabbling ducks in each eco-unit during winter (mean of 3 surveys) and during three separate spring surveys. Shaded bars indicate the percentage of the survey area covered by each eco-unit.

Figure 32. Average linear densities of dabbling ducks in different marine eco-units in winter (mean of 3 surveys) and during 3 spring surveys (black bars). Dashed line indicates mean density of birds within the entire study area.

Figure 33. Abundance and distribution of dabbling ducks during winter (mean of 3 winter surveys).

Figure 34. Abundance and distribution of dabbling ducks during the first spring survey (13-15 March 1999).

Figure 35. Abundance and distribution of dabbling ducks during the second spring survey (30 March- 1 April 1999).

Figure 36. Abundance and distribution of dabbling ducks during the third spring survey (27-29 April 1999).

3.3.5 Scoters

"Scoters" includes Black Scoter, Surf Scoter, White-winged Scoter and unidentified scoters. Surf Scoters made up 87\% of all identified scoters in winter and 99\% in spring (Tables 3-4).

Scoter abundance increased with each winter survey from ca. 3800 observed during the first count to ca. 6300 during the third survey (Fig. 37). The first and second spring counts yielded considerably more birds than recorded in winter surveys (Fig. 37), with 10,000 and 21,500 birds observed. The majority of wintering scoters were observed in marine eco-units LCLLM, LBHLM, LBLLS and MBLLS (Fig. 38; Table 5). Marine eco-units MBLLS and MCHLM held the highest number of scoters during the first and second spring surveys respectively. The highest numbers of scoters during the third spring survey were observed in marine eco-units LBLLS, HBHLS and HBLLS (Fig. 38, Tables 9-11). The linear density of wintering scoters was the highest in marine eco-units LBLLS, LBHLM and MBLLS (Fig. 39, Tables 12-18). Bird densities, however, cannot be compared between different surveys since the majority of scoters were counted "On spawn" during spring surveys, whereas only birds counted "On transect" were included into density calculations (see methods for more detailed description). Wintering scoters were widespread over the entire study area, with higher numbers occurring in protected inlets than exposed segments of the coastline (Fig. 40). During the first spring survey (13-15 March 1999) the majority of scoters aggregated in Hesquiat Harbour (ecounit MBLLS), where herring spawn was extensive (Fig. 41). The highest number of scoters was recorded during the second spring survey (30 March -1 April 1999), when most birds concentrated in Barkley Sound (eco-unit MCHLM) (Fig. 42), where another extensive herring spawn took place (see chapter 3.4). Observed scoter abundance dropped to less than 3000 birds during the third spring survey (27-29 April 1999), when Clayoquot Sound and Vargas Island area supported the largest concentrations (Fig. 43).

Figure 37. Scoter abundance during winter and spring surveys. See methods for survey date.

Figure 38. Percentage of scoters observed within different marine eco-units. Black bars indicate the percentage of all scoters in each eco-unit during winter (mean of 3 surveys) and during three separate spring surveys. Shaded bars indicate the percentage of the survey area covered by each eco-unit.

Figure 39. Average linear densities of scoters in different marine eco-units in winter (mean of 3 surveys) and during 3 spring surveys (black bars). Dashed line indicates mean density of birds within the entire study area.

Figure 40. Abundance and distribution of scoters during winter (mean of 3 winter surveys)

Figure 41. Abundance and distribution of scoters during the first spring survey (13-15 March 1999).

Figure 42. Abundance and distribution of scoters during the second spring survey (30 March - 1 April 1999).

Figure 43. Abundance and distribution of scoters during the third spring survey (27-29 April 1999).

3.3.6 Goldeneyes

"Goldeneyes" includes Common Goldeneye, Barrows Goldeneye and unidentified goldeneyes. Barrows Goldeneyes made up 88% of all identified goldeneyes in winter, but proportions of both species were nearly equal in spring (Tables 3-4).

Goldeneyes were generally more numerous in winter than in spring and the highest number (3662 birds) recorded during the second winter survey (Fig 44). The highest number of goldeneyes in spring was observed during the second survey (1610 birds) and only 125 individuals were counted during the last spring survey (Fig. 44). Marine eco-unit LCLLM supported the highest number of goldeneyes during all counts (Fig. 45, Tables 5-11). The same marine eco-unit (LCLLM) also supported above-average goldeneye densities during each survey (Fig. 46). However, different ecounits, usually covering only small proportion of the entire study area, peaked with high goldeneye densities during different surveys: MCHLM during the first spring survey, LBHLH and MCHLM during the second spring survey, and HBHLH during the third spring survey (Fig. 46, Tables 12-18). Wintering goldeneyes were widespread over the entire study area, but most birds were found in protected inlets and bays (Fig. 47). Generally the same distribution pattern was observed during spring surveys (Figs. 48-50).

Figure 44. Goldeneye abundance during winter and spring surveys. See methods for survey date.

Figure 45. Percentage of goldeneyes observed within different marine eco-units. Black bars indicate the percentage of all goldeneyes in each eco-unit during winter (mean of 3 surveys) and during three separate spring surveys. Shaded bars indicate the percentage of the survey area covered by each eco-unit.

Figure 46. Average linear densities of goldeneyes in different marine eco-units in winter (mean of 3 surveys) and during 3 spring surveys (black bars). Dashed line indicates mean density of birds within the entire study area.

Figure 47. Abundance and distribution of goldeneyes during winter (mean of 3 winter surveys).

Figure 48. Abundance and distribution of goldeneyes during the first spring survey (13-15 March 1999).

Figure 49. Abundance and distribution of goldeneyes during the second spring survey (30 March - 1 April 1999).

Figure 50. Abundance and distribution of goldeneyes during the third spring survey (27-29 April 1999).

3.3.7 Mergansers

"Mergansers" includes Common Merganser, Red-breasted Merganser and unidentified mergansers. Common Mergansers made up 90% and 95% of all identified mergansers in winter and spring respectively (Tables 3-4).

Merganser abundance ranged from ca. 800 to ca. 1300 birds during different winter and spring surveys and only the late spring survey yielded fewer than 400 birds (Fig. 51). Marine eco-units LCLLM and MBLLS supported the highest number of mergansers (Fig. 52; Tables 511). Marine eco-unit MBLLS supported the highest linear densities of mergansers during all surveys, except the second spring survey (Fig. 53; Tables 12-18). A large herring spawn took place in eco-unit MBLLS during the second spring survey, with the majority of birds recorded as "On spawn". Merganser geographical distribution patterns were similar during winter and spring, with birds tending to be observed in protected bays and inlets over the entire study area (Figs. 54-57).

Figure 51. Merganser abundance during winter and spring surveys. See methods for survey date.

Figure 52. Percentage of mergansers observed within different marine eco-units. Black bars indicate the percentage of all mergansers in each eco-unit during winter (mean of 3 surveys) and during three separate spring surveys. Shaded bars indicate the percentage of the survey area covered by each eco-unit.

Figure 53. Average linear densities of mergansers in different marine eco-units in winter (mean of 3 surveys) and during 3 spring surveys (black bars). Dashed line indicates mean density of birds within the entire study area.

Figure 54. Abundance and distribution of mergansers during winter (mean of 3 winter surveys).

Figure 55. Abundance and distribution of mergansers during the first spring survey (13-15 March 1999).

Figure 56. Abundance and distribution of mergansers during the second spring survey (30 March - 1 April 1999).

Figure 57. Abundance and distribution of mergansers during the third spring survey (27-29 April 1999).

3.3.8 Gulls

"Gulls" includes Mew Gull, Herring Gull, Glaucous Gull and unidentified gulls. Glaucous Gulls made up 81% of all identified gulls during winter and spring counts (Tables 3-4).

Gulls were the most abundant group of birds observed in the study area during the winter and spring counts. Gull abundance was relatively stable throughout the winter, with surveys averaging at ca. 7500 individuals. During the first spring survey nearly 23,000 birds counted, and more than 15,500 gulls recorded during the second spring survey (Fig. 58). Winter gull distribution was nearly proportional to the area covered by each eco-unit, and only eco-units HBLLS and HCLLH supported more birds than expected (Fig. 59; Table 5). During the first and the second spring surveys eco-unit MBLLS supported more birds than expected (Fig. 59; Tables 9-11). The highest linear densities of gulls in winter were detected in eco-units HCLLH, HBLLS and HBHLS in winter (Fig. 60; Tables 12-15). During spring surveys, bird densities also were high in eco-units associated with herring spawning sites (MBLLS and MCHLM) (Fig. 60, Tables 16-18). Geographically, gulls were widespread over the entire study area both in winter and spring periods (Figs. 61-64).

Figure 58. Gull abundance during winter and spring surveys. See methods for survey date.

Figure 59. Percentage of gulls observed within different marine eco-units. Black bars indicate the percentage of all gulls in each eco-unit during winter (mean of 3 surveys) and during three separate spring surveys. Shaded bars indicate the percentage of the survey area covered by each eco-unit.

Figure 60. Average linear densities of gulls in different marine eco-units in winter (mean of 3 surveys) and during 3 spring surveys (black bars). Dashed line indicates mean density of birds within the entire study area.

Figure 61. Abundance and distribution of gulls during winter (mean of 3 winter surveys).

Figure 62. Abundance and distribution of gulls during the first spring survey (13-15 March 1999).

Figure 63. Abundance and distribution of gulls during the second spring survey (30 March - 1 April 1999).

Figure 64. Abundance and distribution of gulls during the third spring survey (27-29 April 1999).

3.4 Waterbirds associated with herring spawn

Herring spawn clearly influenced the abundance and distribution pattern of waterbirds on the west coast of Vancouver Island. During bird surveys in spring 1999, Pacific herring were observed spawning at 11 sites (Fig. 65, Table 19). The spawns ranged from small, restricted ones with little or no waterbirds present, to large spawns with thousands of birds, $40-50$ whales, hundreds of sea lions, and close to 100 sea otters. The largest spawns occurred in ecounits with moderate to low wave exposure, while spawns occurring in highly exposed eco-units tended to be smaller and have few waterbirds present. Eco-units MBLLS and MCHLM supported large herring spawns and had the greatest number of birds during the first two spring surveys (Table 19). Herring spawn locations identified during the bird surveys (Fig. 65) matched those described by the Department of Fisheries and Oceans (DFO) for the west coast of Vancouver Island (Table 19, Appendix 2). The largest herring spawn events occurred in western Barkley Sound and in Hesquiat Harbour, where spawning occurred over an extensive area and prolonged period of time.

More than 20,000 waterbirds (or nearly half of the total number observed) and about 200 marine mammals were found at spawn sites during each of the first two spring surveys in 1999 (Table 20). Loons and scoters demonstrated the strongest response to herring spawn. More than 90% of all loons detected during the first spring survey and 23% during the second spring survey were at spawn sites. Nearly 62% of all scoters were recorded at herring spawns during the first spring survey and 74% during the second. Grebes, cormorants, mergansers and gulls showed moderate responses to herring spawn, with on average $20-30 \%$ of observed birds associated with herring spawn sites during the first and second spring surveys (Table 20). Dabbling ducks and goldeneyes were not observed aggregating at herring spawning sites.

Figure 65. Herring spawn locations observed during three spring surveys in 1999; A - 13-15 March 1999; B - 30 March - 1 April 1999; C - 27-29 April 1999.

Table 19. Date, location, and description of Pacific herring (Clupea harengus) spawn sites observed during spring waterbird surveys on the west coast of Vancouver Island, B. C., in 1999.

Date	Location	Eco-unit	Comments
14 March	Southeast coast of Brooks Peninsula (transect 55)	HCHLH	Small spawn: 10 Western Grebes, 4 Pelagic Cormorants, 1 goldeneye, 37 gulls
14 March			
Checleset Bay/Bunsby Island	LCLLM	1 Western Grebe, Bald Eagle	

${ }^{1}$ The letters of each eco-unit correspond to physical features of the site. The letters, in sequence, represent wave exposure ($\mathrm{H}=$ high; $\mathrm{M}=$ Moderate; $\mathrm{L}=$ Low), Water Depth ($\mathrm{B}=$ Photic; C = Shallow; D = Moderate; $\mathrm{E}=$ Abyssal), Bottom Relief ($\mathrm{H}=$ High; $\mathrm{L}=$ Low), Water Currents ($\mathrm{H}=$ High; $\mathrm{L}=$ Low) and Bottom Substrate (H = Hard; S = Sand; M = Mud; U = Unknown) (Zacharias and Howes 1998).

Table 20. Abundance and percentage of total number of birds at herring spawn locations during surveys in spring 1999.

	Spring-1 (1999/03/13-15)		Spring-2	
	On spawn	(1999/03/30-04/01)		
	7,077	92.6	On spawn	\% of total
Loons	187	15.9	332	23.1
Grebes	185	20.9	419	23.8
Cormorants	0	0.0	371	26.8
Dabbling Ducks	6,187	61.5	0	0.0
Scoters	9	1.2	15,887	74.0
Goldeneyes	236	28.1	68	4.2
Mergansers	9,188	39.8	122	11.7
Gulls	23,397	49.1	20,352	21.4
All birds				43.6
		32.3	196	
Marine mammals	225			12.4

4. USE OF SURVEY RESULTS

Aerial surveys indicate that the west coast of Vancouver Island supports a numerous and diverse community of waterbirds in winter, and is important for staging birds during spring migration.

Our survey design, which was linked to marine eco-units (Zacharias and Howes, 1998), permitted similar effort across replicate surveys. It also allowed us to relate waterbird species abundance and distribution patterns to general environmental features. However, marine ecounits are too coarse to assess specific habitat preferences; waterbirds likely respond to habitat features at a much finer scale in the near-shore zone. Nevertheless, survey design linked to marine eco-units, could be used to extrapolate waterbird abundance and distribution over a large-scale. To illustrate this, we extrapolated winter waterbird abundance for unsurveyed shoreline sections of the west coast of Vancouver Island in three different ways:

1) Proportional projection of abundance per marine eco-unit yielded a total number of 56,514 birds (Table 21).
2) Extrapolation, based on mean linear density within each marine eco-unit, resulted in a total number of $54,112 \pm 17,907(\pm$ Cl; Table 21).
3) Estimation of the total abundance based on mean linear density of birds per transect, without accounting for eco-units, yielded a total number of $62,604 \pm 10,315(\pm \mathrm{CI})$.

Extrapolations using either of above three methods suggested rather similar estimates. However, proportional projection does not account for variability, whereas the extrapolation methods based on linear densities allow for the calculation of confidence intervals.

Table 21. Extrapolation of total wintering waterbird numbers for the entire west coast of Vancouver Island. Extrapolation was based on proportional coverage of each marine eco-unit and average linear densities within marine eco-units.

Marine ecounit	Total length, km	Percent of total length	Surveyed length, km	Percent surveyed	Observed number of birds (mean of 3 winter surveys)	Proportional projection of waterbird numbers	Mean winter density	Conf. Intervals	Extrapolation of waterbird abundance		
										Mean	$\begin{gathered} \text { Upper } \\ 95 \% \\ \text { limit } \\ \hline \end{gathered}$
HBHLH	356.3	9.2	187.0	52.5	1,427	2,720	8.6	3.32	1,881	3,065	4,249
HBHLS	60.9	1.6	41.9	68.8	752	1,093	16.0	5.93	613	974	1,336
HBLLH	121.6	3.1	84.6	69.6	494	710	6.0	2.70	401	729	1,057
HBLLS	254.1	6.6	165.6	65.1	2,992	4,593	16.0	3.68	3,129	4,065	5,001
HCHLH	240.6	6.2	145.1	60.3	1,213	2,012	9.3	3.24	1,468	2,247	3,026
HCHLS	47.1	1.2	35.4	75.2	224	298	5.9	2.66	150	276	401
HCLLH	110.8	2.9	79.2	71.5	934	1,306	12.6	8.02	507	1,396	2,285
HCLLM	3.5	0.1	2.7	77.6	101	131	37.5	23.45	49	131	212
HCLLS	13.6	0.4	9.6	70.5	51	72	11.1	12.60	0	151	322
LBHLH	61.1	1.6	40.1	65.6	575	876	15.6	7.47	497	954	1,410
LBHLM	143.8	3.7	64.8	45.1	2,144	4,759	24.3	12.27	1,736	3,501	5,266
LBLLS	60.5	1.6	45.9	75.9	885	1167	16.5	11.59	297	998	1,698
LCHLH	105.5	2.7	41.0	38.9	802	2,063	9.2	6.28	312	974	1,637
LCHLM	440.1	11.4	174.0	39.5	2,467	6,239	14.4	4.69	4,268	6,330	8,392
LCLLH	47.8	1.2	11.1	23.2	81	351	7.0	2.11	233	334	435
LCLLM	1473.2	38.1	713.9	48.5	10,052	20,746	16.0	2.76	19,501	23,567	27,632
MBHLH	54.9	1.4	18.4	33.5	314	939	12.9	17.73	0	706	1,680
MBLLS	94.2	2.4	52.2	55.5	2,497	4,502	16.3	5.56	1,012	1,535	2,059
MCHLM	54.1	1.4	28.2	52.1	361	693	14.0	6.58	404	760	1,116
MCHLS	24.7	0.6	6.3	25.3	21	82	3.4	5.16	0	85	212
MCLLM	81.3	2.1	13.1	16.1	289	1,801	15.8	14.76	83	1,283	2,482
MCLLS	20.1	0.5	4.6	22.9	12	51	2.5	2.88	0	51	109
Total	3869.8	100.0	1964.4	50.8	28,689	56,514			36,543	54,112	72,019

REFERENCES

Burger, A.E. 1993. Effects of the Nestucca oil spill on seabirds along the coast of Vancouver Island in 1989. Technical Report Series No. 179. Canadian Wildlife Service, Pacific and Yukon Region, British Columbia.
Rodway, M.S., M.J.F. Lemon, J-P. L. Savard and R. McKelvey. 1989. Nestucca oil spill: impact assessment on avian populations and habitat. Technical Report Series No. 68. Canadian Wildlife Service, Pacific and Yukon Region, British Columbia.

Slocum, T. A. 1999. Thematic Cartography and Visualization: Upper Saddle River, Prentice Hall, NJ.

Zacharias, M.A., and D.E. Howes, 1998. An analysis of marine protected areas in British Columbia using a Marine Ecological Classification. Natural Areas Journal 18: 4-13.

APPENDIX 1: Transect start/end point coordinates

Table 1-1. Transect start/end point coordinates, used during waterbird surveys along west coast of Vancouver Island in spring 1999 and winter 2000.

Point ID	LAT	LONG	Point ID	LAT	LONG	Point ID	LAT	LONG
1	503452	-127 2625	55	500752	-127 4109	105	495217	-1265548
2	503425	-127 3109	56	501034	-127 3743	106	495749	-1265626
3	503335	-127 3349	57	501021	-127 3730	107	495804	-1265549
4	503455	-127 3710	58	500729	-127 3801	108	495553	-12654 44
5	503546	-127 4553	59	500801	-127 3852	109	495738	-12653 47
6	503708	-12752 25	60	500600	-127 4506	110	495732	-12653 45
7	503851	-128 0035	61	500512	-127 3755	111	495543	-12654 38
8	503953	-128 1715	62	500644	-1273540	112	495208	-12654 33
9	503821	-128 1942	63	500739	-127 3236	113	495317	-126 4855
10	503530	-128 1526	64	501044	-127 2744	114	495806	-1265121
11	503216	-128 1311	65	501042	-127 2719	115	495808	-126 5041
12	503027	-128 0948	66	500720	-127 3060	116	495324	-126 4614
13	502739	-128 0351	67	500631	-127 3224	117	495134	-126 4023
14	502638	-128 0238	68	500635	-127 2953	118	495441	-126 3942
15	502955	-128 0512	69	500757	-127 2659	119	495441	-126 3913
16	502920	-128 0258	70	500733	-127 2626	120	494944	-126 3913
17	503214	-128 0026	71	500644	-127 2850	121	494755	-126 4427
18	503201	-128 0017	72	500209	-127 2522	122	494759	-126 4929
19	503001	-128 0202	73	500239	-127 1809	123	494559	-126 5142
20	502812	-128 0033	74	500444	-127 1624	124	494536	-1265451
21	502815	-1275802	75	500812	-127 1804	125	494329	-126 5709
22	502846	-12753 47	76	500716	-127 1732	126	494314	-1265659
23	502944	-127 4729	77	500717	-127 1754	127	494018	-12653 02
24	503059	-127 4234	78	500832	-127 1754	128	493717	-126 4942
25	503201	-127 3912	79	501052	-127 1839	129	493616	-126 4355
26	503049	-127 3552	80	501036	-127 1816	130	493527	-126 4151
27	502733	-127 3126	81	500738	-127 1512	131	493531	-126 3706
28	502432	-127 2915	82	500546	-127 1015	132	493624	-126 3701
29	502201	-127 2624	83	500738	-127 0560	133	493809	-126 3528
30	502203	-127 2656	84	500802	-127 0530	134	494053	-126 3149
31	502413	-127 2960	85	500443	-127 0926	135	493906	-126 2860
32	502644	-127 3160	86	500403	-127 0718	136	493630	-126 3123
33	502928	-127 3512	87	500341	-127 0718	137	493515	-126 3255
34	502927	-127 4106	88	500337	-127 1022	138	493503	-126 3323
35	502856	-127 4628	89	500331	-127 1045	139	493206	-126 3413
36	502812	-127 5114	90	500123	-127 1155	140	493024	-126 3329
37	502730	-1275608	91	500137	-127 0644	141	492639	-126 3321
38	502609	-1275621	92	500111	-127 0644	142	492234	-126 3260
43	502103	-12759 43	93	500006	-127 0920	143	492335	-126 2748
44	501909	-127 5707	94	495955	-127 0924	144	492641	-126 2746
45	501827	-12750 24	95	495958	-127 1120	145	492651	-126 2556
46	501851	-127 4548	96	495760	-127 1512	146	492446	-126 2428
47	501834	-127 4605	97	495408	-127 1135	147	492243	-126 1957
48	501735	-1275135	98	495125	-127 0813	148	492103	-126 1628
49	501445	-127 4642	99	495104	-127 0023	149	492054	-126 1546
50	501407	-127 4550	100	495213	-1265954	150	492127	-126 1523
51	501326	-127 4719	101	495539	-127 0230	151	492418	-126 1520
52	501009	-1275052	102	495524	-127 0204	152	492643	-126 1614
53	500748	-12755 22	103	495227	-126 5917	153	492543	-126 1758
54	500451	-127 4812	104	495137	-1265808	154	492548	-126 1814

Table 1-1 continued....

Point ID	LAT	LONG	Point ID	LAT	LONG	Point ID	LAT	LONG
155	492713	-126 1643	205	490719	-125 4807	255	485745	-125 0358
156	493000	-126 1744	206	490853	-125 4739	256	485825	-125 0207
157	492958	-126 1715	207	491154	-125 4738	257	485635	-125 0111
158	492715	-126 1558	208	491143	-125 4647	258	485506	-125 0055
159	492606	-126 1506	209	490859	-125 5744	259	485630	-125 0245
160	492526	-126 1413	210	491033	-125 5727	260	485715	-125 0402
161	492407	-126 0902	211	491142	-125 5632	261	485530	-125 0629
162	492527	-126 0726	212	491237	-125 5822	262	485303	-12509 04
163	492605	-126 0317	213	491303	-126 0044	263	485160	-125 1023
164	492546	-126 0224	214	491258	-126 0108	264	485347	-125 0525
165	492513	-126 0412	215	491219	-126 0226	265	485603	-125 1351
166	492437	-126 0736	216	491458	-126 0457	266	485650	-125 1940
167	492337	-126 0457	217	491542	-126 0321	267	485632	-125 1951
168	492027	-126 0337	218	491745	-126 0343	268	485421	-125 1532
169	491918	-126 0000	219	491832	-126 0452	269	485358	-125 1536
170	492039	-125 5857	220	491947	-126 0437	270	485443	-125 2111
171	492234	-125 5711	221	492137	-126 0452	271	485419	-125 2149
172	492432	-125 5449	222	492325	-126 0604	272	485235	-125 1627
173	492430	-125 5356	223	492320	-126 0956	273	484652	-125 1232
174	492225	-125 5601	224	492342	-126 1354	274	484614	-125 0923
175	492002	-125 5712	225	492138	-126 1402	275	484552	-125 0759
176	491805	-125 5814	226	491851	-126 1416	276	484311	-125 0525
177	491823	-126 0059	227	491650	-126 1257	277	484204	-124 5830
178	491712	-126 0156	228	491605	-126 1035	278	484013	-124 5133
179	491441	-126 0048	229	491523	-126 0814	279	483639	-124 4501
180	491347	-125 5757	230	490909	-125 5526	280	483407	-124 3718
181	491613	-125 5419	231	490633	-125 5255	281	483234	-124 2949
182	491526	-125 5208	232	490343	-125 4921	282	483208	-124 2723
183	491723	-125 4958	233	490308	-125 4321	283	483021	-124 2003
184	491926	-125 4837	234	490034	-125 4047	284	482743	-124 1309
185	492115	-125 4731	235	485832	-125 3710	285	482555	-124 0624
186	492103	-125 4702	236	485518	-125 3240			
187	491909	-125 4739	237	485534	-125 3138			
188	491657	-125 4824	238	485729	-125 3421			
189	491449	-125 4847	239	485758	-125 3406			
190	491452	-125 4532	240	485518	-125 3037			
191	491458	-125 4414	241	485637	-125 2646			
192	491315	-125 4517	242	485849	-125 2332			
193	491320	-125 4620	243	490029	-125 2145			
194	491403	-125 4746	244	490209	-125 2120			
195	491415	-125 4942	245	490131	-125 1759			
196	491428	-125 5310	246	485958	-125 1824			
197	491326	-125 5559	247	485819	-125 1905			
198	491152	-125 5526	248	485807	-125 1858			
199	491019	-125 5438	249	485643	-125 1416			
200	491156	-125 5307	250	485828	-125 1139			
201	491235	-125 5137	251	490208	-125 0923			
202	491215	-125 5117	252	490207	-125 0845			
203	491012	-125 5156	253	485906	-125 0948			
204	490802	-125 5115	254	485926	-1250738			

APPENDIX 2: Data on herring spawn

Herring spawning locations in 1999 from DFO website:

http://www.pac.dfo-mpo.gc.ca/sci/herring/herspawn/GIF/BC South.GIF
(Last accessed on 15 July 2004)

HERRING SPAWN SUMMARY - Region 6: west coast Vancouver Island (rectangle) Spawn Habitat Index = Sum of [length*median(width*layers)]
Wgt = Mean spawn date (Day Of Year) weighted by Spawn Habitat Index (see p. 103 for details)

Year	1999
Total records	43
Spawn habitat index	2095246
Total length, m	57910
Mean width, m	106
Mean layers	1.79
Spawn date (DOY)	
Mean	81.4 (Mar-22)
St.Dev.	8.51
Wgt	$*$
Min	63 (Mar-4)
Max	90 (Mar-31)
Diver survey, \%	99

HERRING SPAWN SUMMARY - Section 232 (West Barkley Sound)
Spawn Habitat Index = Sum of [length*median(width*layers)
Wgt = Mean spawn date (Day Of Year) weighted by Spawn Habitat Index (see p. 103 for details)

Year	1999
Total records	5
Spawn habitat index	266679
Total length, m	5400
Mean width, m	228
Mean layers	2.04
Spawn date (DOY)	
Mean	82.2 (Mar - 23
St.Dev.	4.60
Wgt	81.8 (Mar - 22
Min	79 (Mar-20)
Max	89 (Mar-30)
Diver survey, \%	100

HERRING SPAWN SUMMARY - Section 242 (Hesquiat Harbour)
Spawn Habitat Index = Sum of [length*median(width*layers)
Wgt = Mean spawn date (Day Of Year) weighted by Spawn Habitat Index (see p. 103 for details)

Year	1999
Total records	7
Spawn habitat index	373957
Total length, m	10150
Mean width, m	88
Mean layers	0.79
Spawn date (DOY)	
Mean	79.6 (Mar - 20)
St.Dev.	9.50
Wgt	77.8 (Mar - 18)
Min	65(Mar-6)
Max	89 (Mar-30)
Diver survey, \%	100

HERRING SPAWN SUMMARY - Section 243 (Sydney Inlet)
Spawn Habitat Index = Sum of [length*median(width*layers)
Wgt = Mean spawn date (Day Of Year) weighted by Spawn Habitat Index (see p. 103 for details)

Year
1999
Total records
Spawn habitat index
Total length, m
Mean width, m
Mean layers
Spawn date (DOY)
Mean
St.Dev.
Wgt
Min
Max
Diver survey, \%

6
263697
13750
88
2.19
88.0 (Mar - 29)
1.00
*
87 (Mar - 28)
89 (Mar-30)
100

HERRING SPAWN SUMMARY - Section 244 (Millar Channel)
Spawn Habitat Index = Sum of [length*median(width*layers)
Wgt = Mean spawn date (Day Of Year) weighted by Spawn Habitat Index (see p. 103 for details)

Year
1999
Total records
Spawn habitat index
Total length, m
Mean width, m
Mean layers
Spawn date (DOY)
Mean
St.Dev.
Wgt
Min
Max
Diver survey, \%

3
91884
4150
30
1.08
88.0 (Mar-29)
0.00
88.0 (Mar-29)

88 (Mar-29)
88 (Mar-29)
100

HERRING SPAWN SUMMARY - Section 245 (Vargas Island) Spawn Habitat Index = Sum of [length*median(width*layers)
Wgt = Mean spawn date (Day Of Year) weighted by Spawn Habitat Index (see p. 103 for details)

Year
Total records
Spawn habitat index
1999

Total length, m
Mean width, m
Mean layers
Spawn date (DOY)
Mean
St.Dev.
Wgt
Min
Max
Diver survey, \%

2 81686
1950
58 2.49
90.0 (Mar-31)
0.00
90.0 (Mar-31)

90 (Mar-31)
90 (Mar-31)
87

HERRING SPAWN SUMMARY - Section 252 (Nootka Sound)
Spawn Habitat Index = Sum of [length*median(width*layers)
Wgt = Mean spawn date (Day Of Year) weighted by Spawn Habitat Index (see p. 103 for details)

Year	1999
Total records	7
Spawn habitat index	171201
Total length, m	6250
Mean width, m	112
Mean layers	3.53
Spawn date (DOY)	
Mean	80.0 (Mar-21)
St.Dev.	2.45
Wgt	$*$
Min	75 (Mar-16)
Max	81 (Mar-22)
Diver survey, \%	100

HERRING SPAWN SUMMARY - Section 253 (Esperanza Inlet)
Spawn Habitat Index = Sum of [length*median(width*layers)
Wgt = Mean spawn date (Day Of Year) weighted by Spawn Habitat Index (see p. 103 for details)

Year	1999
Total records	5
Spawn habitat index	445058
Total length, m	7550
Mean width, m	191
Mean layers	1.81
Spawn date (DOY)	
Mean	63.3(Mar-4)
St.Dev.	0.58
Wgt	*
Min	63 (Mar-4)
Max	64 (Mar-5)
Diver survey, \%	100

HERRING SPAWN SUMMARY - Section 272 (Brooks Bay)
Spawn Habitat Index = Sum of [length*median(width*layers)
Wgt = Mean spawn date (Day Of Year) weighted by Spawn Habitat Index (see p. 103 for details)

Year	1999
Total records	2
Spawn habitat index	9287
Total length, m	270
Mean width, m	30
Mean layers	1.33
Spawn date (DOY)	
Mean	0
St.Dev.	0
Wgt	$*$
Min	0
Max	0
	74

HERRING SPAWN SUMMARY - Section 273 (Forward Inlet)
Spawn Habitat Index = Sum of [length*median(width*layers)
Wgt = Mean spawn date (Day Of Year) weighted by Spawn Habitat Index (see p. 103 for details)

Year
1999
Total records
Spawn habitat index
6
Total length, m
Mean width, m
Mean layers
Spawn date (DOY)
Mean 0

St.Dev.
WGT
Min 0
Max
Diver survey, \% 97

Table 2-1. Explanation of terms and abbreviations provided next to DFO herring spawning maps.

Year	Calendar year of spawn survey
Total records	Total number of spawn records (spawning events).
Spawn Habitat Index	Sum of the product of each measured spawn length (m) and the median of the product of each spawn width (m) and egg layers adjusted by percent cover and pooled geographically.
Total length	Total length (along shoreline) of the spawning area (m).
Mean width	Mean width (perpendicular to shoreline) of the spawning area (m).
Mean layers	Mean number of egg layers (spawn thickness or egg density).
Mean date	Mean spawn date (Day-Of-Year, DOY). Stdev date
Standard deviation of the mean spawn date. Wgt date	Mean spawn date (Day-Of-Year, DOY) - the date is adjusted by the Spawn different sites within statistical areas or herring sections. Earliest spawn date (Day-Of-Year, DOY).
Min date	Latest spawn date (Day-Of-Year, DOY) Max date
Piver Survey	Percentage of recorded spawn deposition assessed by SCUBA divers.

APPENDIX 3: List of English and Scientific names of species mentioned in the report

English name	Scientific name
FISH	
Pacific Herring	Clupea pallasi
BIRDS	
Pacific Loon	Gavia pacifica
Common Loon	Gavia immer
Unidentified Loons	Gavia sp.
Horned Grebe	Podiceps auritus
Red-necked Grebe	Podiceps grisigena
Western Grebe	Aechmophorus occidentalis
Unidentified Grebes	Podicepididae
Double-crested Cormorant	Phalacrocorax auritus
Pelagic Cormorant	Phalacrocorax pelagicus
Unidentified Cormorants	Phalacrocorax sp.
Great Blue Heron	Ardea herodias
Unidentified Swans	Cygnus sp.
Brant	Branta bernicla
Canada Goose	Branta canadensis
Green-winged Teal	Anas crecca
Mallard	Anas platyrhynchos
American Wigeon	Anas americana
Unidentified dabbling ducks	Anas sp.
Unidentified Scaup	Aythya marila, A. affinis
Harlequin Duck	Histrionicus histrionicus
Long-tailed Duck	Clangula hyemalis
Black Scoter	Melanitta nigra
Surf Scoter	Melanitta perspicillata
White-winged Scoter	Melanitta fusca
Unidentified Scoters	Melanitta sp.
Common Goldeneye	Bucephala clangula
Barrows Goldeneye	Bucephala islandica
Unidentified Goldeneye	Bucephala clangula, B. islandica
Bufflehead	Bucephala albeola
Hooded Merganser	Lophodytes cucullatus
Common Merganser	Mergus merganser
Red-breasted Merganser	Mergus serrator
Unidentified Merganser	Mergus sp.
Bald Eagle	Haliaeetus leucocephalus
Black Oystercatcher	Haematopus bachmani
Black Turnstone	Arenaria melanocephala
Surfbird	Aphriza virgata
Mew Gull	Larus canus
Herring Gull	Larus argentatus
Glaucous Gull	Larus hyperboreus
Unidentified Gulls	Larus sp.
Common Murre	Uria aalge
Pigeon Guillemot	Cepphus columba
Marbled Murrelet	Brachyramphus marmoratus
Unidentified Alcids	Alcidae
Belted Kingfisher	Ceryle alcyon
MARINE MAMMALS	
Sea Otter	Enhydra lutris
River Otter	Lontra canadensis
Harbour Seal	Phoca vitulina
Killer Whale	Orcinus orca
Grey Whale	Eschrichtius robustus

