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In this issue 

 
In the first paper of this issue of Survey Methodology, Estevao and Särndal consider the problem of 

calibration estimation in the context of two-phase sampling. The contributions of the paper include the 

choice of initial weights in the calibration procedure as well as the important problem of variance 

estimation. New variance estimators are proposed and results from a simulation study show that the 

proposed variance estimators are more efficient than the traditional ones. 

Next, Li and Valliant investigate the problem of the detection of influential units in linear regression 

analysis of survey data. They first give an expression for the hat matrix and its associated leverages 

(diagonal of the hat matrix) when a weighted least squares technique is used to estimate model parameters. 

They then propose a decomposition of the leverages and highlight that the leverage for a given unit can be 

large when either its survey weight is large or its vector of explanatory variables is far from the center. 

They illustrate the effect of influential units on both ordinary and weighted least squares using a numerical 

example. 

Beaumont and Bocci propose a bootstrap methodology for testing hypotheses about a vector of 

unknown model parameters when the sample has been drawn from a finite population. The technique uses 

model-based test statistics that incorporate the survey weights and can usually be obtained easily using 

standard software packages. Using a simulation study the authors show that the proposed method performs 

similarly to the Rao-Scott procedure, and better than the Wald and Bonferroni procedures when testing 

hypotheses about a vector of linear regression model parameters. 

The paper by Park, Choi and Choi present an interesting approach to nonresponse. Studies have shown 

that the voting behaviour of the undecided voters can have a significant impact on the final result of an 

election and that by considering these undecided voters, the accuracy of election forecasting can be 

improved. The authors present two Bayesian models whose priors depend on information from both 

respondents and undecided. They analyze an incomplete two-way contingency table using four sets of data 

from the 1998 Ohio state polls to illustrate how to use and interpret estimation results for the elections. 

Ghosh, Kim, Sinha, Maiti, Katzoff and Parsons develop hierarchical and empirical Bayes methods for 

estimation of proportions in small domains using unit-level models. They propose a hierarchical Bayes 

analogue of the generalized linear mixed model to obtain posterior means and posterior standard errors of 

the population small domain proportions. Using an approach based on the theory of optimal estimating 

functions, they also obtain emprical Bayes estimators and corresponding asymptotic mean square error 

estimators. The methods are illustrated using data from the National Health Interview Survey (NHIS) to 

obtain small domain estimates of the proportions of Asians without health insurance. 

In the McElroy and Holan paper, the problem of testing for residual seasonality in seasonally adjusted 

data is investigated. The authors propose a statistical significance test for peaks in the spectral density of the 

time series under consideration that is indicative of seasonality. The theory of the proposed method 

developed and is illustrated and compared with existing methods through both simulation and empirical 

studies. 

Gabler and Lahiri provide a model-assisted justification of the traditional interviewer variance formula 

for equal probability sampling with no spatial clustering. They then obtain, in the context of a complex 

sampling design, a definition of interviewer variability that appropriately accounts for unequal probabilities 

of selection and spatial clustering. They also propose a decomposition of total effects into effects due to 

weighting, spatial clustering and interviewers. Their results can help to more effectively understand and 

control sources of variability. 
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In their paper, Schouten, Cobben and Bethlehem investigate the problem of assessing the similarity 

between the response to a survey and the sample or population under investigation. They propose a 

representativeness indicator to replace response rates as a quality indicator for the impact of nonresponse 

bias. This indicator, called the R-indicator, is shown to be somewhat related to Cramer’s V measure for the 

association between response and auxiliary variables. In fact, the R-indicator is better viewed as a lack of 

association measure since a weaker association implies that there is no evidence that nonresponse has 

affected the composition of the observed data. The theoretical properties of the proposed indicator are 

developed and it is illustrated through empirical studies. 

Finally, in his article, Chauvet addresses the issue of balanced sampling when sizes in each stratum 

are too small for exact balancing. The author proposes an algorithm adapted to the Cube method, 

which guarantees balancing at the population level. A simulation study confirmed that the proposed 

method performed well. 

 

 

 

 

 

 

 

Harold Mantel, Deputy Editor 
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A new face on two-phase sampling with calibration estimators 

Victor M. Estevao and Carl-Erik Särndal 1 

Abstract 

This paper provides a framework for estimation by calibration in two-phase sampling designs. This work grew out of the 

continuing development of generalized estimation software at Statistics Canada. An important objective in this development 

is to provide a wide range of options for effective use of auxiliary information in different sampling designs. This objective 

is reflected in the general methodology for two-phase designs presented in this paper. 
 

We consider the traditional two-phase sampling design. A phase-one sample is drawn from the finite population and then a 

phase-two sample is drawn as a sub-sample of the first. The study variable, whose unknown population total is to be 

estimated, is observed only for the units in the phase-two sample. Arbitrary sampling designs are allowed in each phase of 

sampling. Different types of auxiliary information are identified for the computation of the calibration weights at each 

phase. The auxiliary variables and the study variables can be continuous or categorical. 
 

The paper contributes to four important areas in the general context of calibration for two-phase designs: 
 

(1) Three broad types of auxiliary information for two-phase designs are identified and used in the estimation. The 

information is incorporated into the weights in two steps: a phase-one calibration and a phase-two calibration. We 

discuss the composition of the appropriate auxiliary vectors for each step, and use a linearization method to arrive at the 

residuals that determine the asymptotic variance of the calibration estimator. 
 

(2) We examine the effect of alternative choices of starting weights for the calibration. The two “natural” choices for the 

starting weights generally produce slightly different estimators. However, under certain conditions, these two estimators 

have the same asymptotic variance. 
 

(3) We re-examine variance estimation for the two-phase calibration estimator. A new procedure is proposed that can 

improve significantly on the usual technique of conditioning on the phase-one sample. A simulation in section 10 serves 

to validate the advantage of this new method. 
 

(4) We compare the calibration approach with the traditional model-assisted regression technique which uses a linear 

regression fit at two levels. We show that the model-assisted estimator has properties similar to a two-phase calibration 

estimator. 

                                                           
1. Victor M. Estevao, Business Survey Methods Division, Statistics Canada, Ottawa, Ontario, Canada, K1A OT6. E-mail: victor.estevao@statcan.gc.ca; 

Carl-Erik Särndal, professor. E-mail: carl.sarndal@rogers.com. 

  

Key Words: Auxiliary information; Two-phase regression estimator; Starting weights; Separate residual variance 

estimator; Combined residual variance estimator. 

 

 

 

1. Introduction 

 
The term double sampling refers to sampling designs 

whose common feature is a selection of two probability 

samples, denoted 1s  and ,s  both of them subsets of the 

finite population of interest, given by {1, ..., , ...,U k=  

}.N  The sample 1s  is realized and observed prior to .s  A 

typical study variable is denoted by ;y  its value ky  is 

obtained only for the units .k s∈  The objective is to 

estimate the population y - total U kY y∑=  (if A  is a set 

of units, ,A U⊆  then we write A∑  as a short form for 

k A∈∑  when there is no ambiguity). 

Hidiroglou (2001) discusses two types of double 

sampling, nested and non-nested. This paper focuses on the 

nested type, usually referred to as two-phase sampling: The 

phase-two sample s  is a sub-sample from the phase-one 

sample 1s  drawn from ,U  so 1 .s s U⊆ ⊆  

Estimation for two-phase sampling has been examined in 

several earlier papers in a context where two kinds of 

auxiliary information are recognized and addressed by their 

levels: At the population level, the total 1U k∑ x  is known, 

where 1kx  is a vector known for every 1;k s∈  therefore, it 

is also known for every .k s∈  At the level of the first 

sample, the vector value 2kx  is observed for every 1,k s∈  

and is thereby known for every ;k s∈  the total 2U k∑ x  is 

unknown but can be estimated without design bias at the 1s -

level. Two arguments are found in the literature for 

incorporating these two types of auxiliary information in 

estimating :U kY y∑=  the regression fit argument and the 

calibration argument. Under certain conditions they can lead 

to identical estimators, but this is not so in general. 

The regression fit argument prevails in Särndal and 

Swensson (1987), Särndal, Swensson and Wretman (1992), 

Sitter (1997), Hidiroglou and Särndal (1998), Axelson 

(1998) and Hidiroglou, Rao and Haziza (2006). The 

calibration approach in Deville and Särndal (1992) was 

applied to two-phase sampling by Dupont (1995). She 

compares the resulting calibration estimators with those 

obtained from the regression approach. For the same 

auxiliary information, the two approaches may not give 
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identical estimators, although in practice the difference is 

likely to be of little consequence. Resampling for two-phase 

variance estimation is considered in Kott and Stukel (1997). 

Estevao and Särndal (2002) focus on the calibration 

argument and distinguish ten different ways to use all or part 

of the information available at the two levels. The present 

paper also focuses on the calibration approach. It extends 

earlier work by recognizing three (rather than two) types of 

auxiliary information, each having different characteristics. 

In the regression approach, it is natural to fit two linear 

least squares regressions. One set of regression-predicted 

y - values are produced for 1k s∈  using both 1kx  and 2kx  

as predictors; another set is produced for 1k s∈  using only 

the vector 1kx  as predictor. Both sets of predicted y -

values, as well as the known total 1 ,U k∑ x  are used to build 

the regression-type estimator of ,Y  in the manner described 

in section 9. 

The calibration approach is motivated by two factors: To 

create a set of weights that are consistent with known or 

estimated totals for the auxiliary variables and to reduce the 

variance of the estimates made for the study variable(s). We 

want the weights kw  in 2
ˆ

sP k kY w y∑=  to achieve 

consistency with the total 1U k∑ x  known at the level of the 

population and/or with an (approximately) unbiased 

estimate, made at the level of the phase-one sample, of the 

unknown 2 .U k∑ x  Since y is observed only at the ultimate 

level (the phase-two sample), consistency “at higher levels” 

on important auxiliary variables will often significantly 

reduce the variance of 2
ˆ .sP k kY w y∑=  We can distinguish 

two steps in the process leading to the weights ,kw  a 

phase-one calibration and a phase-two calibration. 

The two-phase sampling design is as follows: From the 

finite population of units {1, 2, ... , ... }U k N=  we 

select a phase-one sample 1.s  The known positive inclusion 

probability of unit k  is 1 1Pr ( ),k k sπ = ∈  and the 

phase-one design weight is 1 11 / .k ka = π  Certain variables 

may be observed for the units 1.k s∈  Then, conditionally 

on 1,s  we select a phase-two sample s  from 1.s  The known 

and positive conditional inclusion probability of k  is 

2 1Pr ( )k k s sπ = ∈ |  for 1,k s∈  and the conditional 

phase-two design weight is 2 21 / .k ka = π  (to keep the 

notation simple, we use 2kπ  and 2 ka  rather than the more 

suggestive 
12k s|π  and 

12 ;k sa |  it should be kept in mind that 

both 2kπ  and 2 ka  are conditional on the phase-one sample 

1s ). The combined or double-expansion design weight is 

1 2k k ka a a=  for .k s∈  The analysis of the estimators in 

this article is design based. The term “(approximately) 

unbiased” means “(approximately) design unbiased.” We 

assume mild conditions on the population and the two 

sampling designs, permitting us to discard lower order terms 

in the analysis of our estimators when the expected sizes of 

the phase-one and phase-two samples are sufficiently large. 

The double-expansion estimator k ks a y∑  is unbiased for 

.U kY y∑=  We can produce more efficient estimators by 

taking into account the available auxiliary information. 

Three types or sets of auxiliary variables (called x-variables) 

can be distinguished for two-phase sampling designs. These 

are denoted by ,⊕
X

†
X  and .�X  Their information 

characteristics are specified in the following table. 

 
Table 1.1 

Sets of auxiliary variables for calibration in two-phase sampling 
 

Set of 

auxiliary 
variables 

Auxiliary 

variable 
total over U 

Unit variable 

values for 

1k s∈∈∈∈  

Unit variable 

values for 
k s∈∈∈∈  

⊕
X  known known known 

†
X  known unknown known 
�
X  unknown known known 

 

Each set may contain any number of x-variables. The 

three sets are mutually exclusive. The properties in the last 

three columns apply to every x-variable in the correspon-

ding set. All x-variables used for calibration belong to one of 

these three sets. 

 
2. Phase-one calibration 

 
For the phase-one calibration, we use a vector 1kx  of 

auxiliary variables selected from the set .⊕X  While it is 

natural to let 1kx  consist of all the variables in ,⊕
X  the 

general presentation here allows us to define 1kx  to include 

some or even none of the variables in .⊕X  The phase-one 

calibration weights 1kw  are derived by modifying the 

phase-one starting weights 1ka  subject to the calibration 

constraint 
1 1 1 1 .Uk k ks w∑ ∑=x x  In our formulation, the 

calibration weights are given for 1k s∈  as 

( ){ }
1

1

1 1 1 1 1 1 1 1
ˆ1 ( )k k k k k ks

w a a
−

′ ′= + − ∑X X z x z  (2.1) 

where 1 1 ,U k∑=X x
11 1 1

ˆ
k ks a∑=X x  and 1kz  is an 

instrumental vector of the same dimension as 1 .kx  It 

replaces 2

1 1/k kσx  in the form of the model-assisted estimator 

described by Särndal, Swensson, Wretman (1992), and 

permits a more general specification of the calibration 

weights. The use of an instrumental vector is discussed in 

Estevao and Särndal (2000) and Deville (2002). Here and in 

the following, we always assume the invertibility of 

matrices such as the one over 1s  in (2.1) and those (over s  

and U ) appearing later. 

 
3. Phase-two calibration  

We use a vector kx  of auxiliary variables to produce a 

set of phase-two (or final) calibration weights .kw  They are 
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used to calculate 2
ˆ
P k ksY w y∑=  as our estimator of 

.U kY y∑=  The vector ( ) ( ) ( )( , , )k k t k w k a
′ ′ ′ ′=x x x x  has 

three components, as described below. No auxiliary variable 

can appear in more than one of the three vector components. 

These three components have different roles in the setup of 

the phase-two calibration equation k ks w∑ =x X  and in the 

determination of the phase-two calibration weights. 

The variables in the vector ( )k tx  are selected from 

among those in the set †.⊕ ∪X X  This means that the total 

( )U k t∑ x  is known and can be included in .X  Variables in 

1kx  are allowed to reoccur in ( ),k tx  and this is usually 

preferable in order to reduce the variance of the estimator. 

We can specify ( ) 1 ,k t k=x x  but our framework permits 

( )k tx  to include variables from †.X  This allows us to use 

variables with known population totals in situations where 

the variables are too expensive to collect for a large 

phase-one sample 1s  but are observable for the smaller 

phase-two sample .s  These variables are excluded from the 

phase-one calibration because they are unavailable for 

1.k s∈  

The variables in ( )k wx  and ( )k ax  are selected from 

among those  in  the  set  †⊕ ∪ ∪ �
X X X  provided they are 

not already included in ( ).k tx  The variables in ( )k wx  are 

those for which we want to satisfy the phase-two calibration 

equation 
1( ) 1 ( ),k k w k k ws sw w∑ ∑=x x  where the right-hand 

side is approximately unbiased for ( ).U k w∑ x  The variables 

in ( )k ax  are those for which we want to satisfy the 

phase-two calibration equation 
1( ) 1 ( ).k k a k k as sw a∑ ∑=x x  

Here, the right-hand side is unbiased for ( ).U k a∑ x  The 

inclusion of both ( )k wx  and ( )k ax  in the definition of kx  

allows us to calibrate on one or both of these vectors and 

provides a general framework for producing different 

estimators from the phase-two calibration. 

The phase-two calibration equation is ,k ks w∑ =x X  

where X  is the stacked auxiliary vector 

1

1

( )

1 ( )

1 ( )

.

k tU

k k w

k k a

s

s

w

a

 
 
 
 =
 
 
 
 

∑

∑

∑

x

X x

x

 (3.1) 

A specific variable can only occur once in .kx  

Otherwise, the calibration equation may be inconsistent and 

admit no solution. 

The starting weights for the phase-two calibration are 

denoted by ka
∗  for .k s∈  There is more than one 

reasonable choice for the .ka
∗  We consider two alternatives, 

both of which seem natural: (1) 1 2 ,k k k ka a a a∗ = =  and (2) 

1 2 ,k k ka w a∗ =  where 1kw  is the phase-one calibration 

weight given by (2.1). 

Given the starting weights ,ka
∗  we determine final weights 

kw  subject to the calibration equation .k ks w∑ =x X  These 

final weights are given for k s∈  by 

( ){ }1
ˆ1 ( )k k k k k ks

w a a
−∗ ∗′ ′= + − ∑X X z x z  (3.2) 

where ˆ
k ks a
∗∑=X x  is an unbiased or approximately 

unbiased estimator of ,X  depending on the composition of 

.kx  The instrumental variable kz  has the same dimension 

as .kx  The vectors 1kz  and kz  are assumed to be fixed 

functions of 1kx  and .kx  How to choose 1kz  and kz  is a 

topic we leave for others to address.  
4. Comparison of two options for  

       the starting weights 
 

The objective in this section is to analyze how the final 

weights kw  in 2
ˆ
P k ksY w y∑=  depend on the specification 

of the starting weights ka
∗  in (3.2). We consider two distinct 

cases based on whether or not the auxiliary variables kx  are 

used for the phase-two calibration. When we carry out the 

phase-two calibration, the two different choices for starting 

weights generally lead to different estimators. We show that 

these estimators are asymptotically equivalent under certain 

conditions, commonly found in practice. When we have no 

phase-two calibration, the two choices for starting weights 

lead to two other estimators that are usually less efficient 

than those obtained by performing the phase-two 

calibration. 
 
4.1 Estimators with phase-two calibration (x )≠≠≠≠

k
φφφφ   

As noted previously, there are two alternatives for the 

starting weights ka
∗  in (3.2): (1) 1 2 ,k k k ka a a a∗ = =  and (2) 

1 2 ,k k ka w a∗ =  where 1kw  is the phase-one calibration 

weight given by (2.1). We now provide a detailed analysis 

of the form of the estimator under these two choices. In this 

subsection, we look at the more interesting case where we 

perform the phase-two calibration ( k ≠x φ ). In the next 

subsection, we consider what happens when we do not carry 

out the phase-two calibration ( k =x φ ). 

Our procedure is as follows. First, we derive the 

linearized (asymptotic) form of 2
ˆ
PY  based on the general 

starting weights .ka
∗  Then we substitute the two choices for 

ka
∗  in this expression. We determine 2

ˆ
PY  based on the 

starting weights 1 2 .k k k ka a a a∗ = =  We denote this 

estimator by 2
ˆ
P aY  and derive its linearized form, 2 lin

ˆ .P aY  

Similarly, we obtain 2
ˆ
PY  based on the starting weights 

1 2 .k k ka w a∗ =  We refer to this estimator as 2
ˆ
P wY  and derive 

its linearized form, 2 lin
ˆ .P wY  These two forms are slightly 

different but we prove in Result 4.2 that 2 lin 2 lin
ˆ ˆ
P a P wY Y=  

under certain conditions. 
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We start by inserting the weights kw  into 2
ˆ
PY =  

k ksw y∑  and writing the estimator as 

1

1

2 ( ) ( ; )( ) 1 ( ) ( ; )( )

1 ( ) ( ; )( ) ( ; )

*

( ; ) ( ; )

ˆ

ˆ ˆ( ) ( )

P k t y t k k w y wU

k k a y a k y k

y y

s

s s

Y w

a a e
∗

′ ′= +

′+ +

′+ − −

∑ ∑

∑ ∑

x x

x x

x x

x B x B

x B

X X B B  (4.1)

 

where * 1
( ; )

ˆ  ( ) ,y k k k k k ks sa a y∗ − ∗∑ ∑′=xB z x z ( ; )y =xB  
1( )U Uk k k ky
−∑ ∑′z x z  and ( ; ) ( ; )( ) ( ; )( ) ( ; )( )( , , )y y t y w y a

′ ′ ′ ′=x x x xB B B B  

is the partitioning corresponding to ( ) ( )( , ,k k t k w
′ ′=x x x  

( )) .k a
′ ′x  Our subscript notation of the form 1 2( ; )v v  

identifies the variables in the regression. The term 2v  refers 

to the independent variables and 1v  identifies the dependent 

variable or variables. For simplicity, the instrumental 

vectors 1kz  and kz  are not included in the notation. 

The term ( ; ) ( ; )y k k k ye y ′= −x xx B  is defined for .k U∈  

Note that although ( ; )y ke x  looks like a regression residual, it 

does not arise as the result of fitting a proper regression 

model. We then develop the term 
1 1ks w∑ ( ) ( ; )( )k w y w

′
xx B  in 

(4.1) by inserting expression (2.1) for 1kw  and making use 

of the phase-one calibration equation 
1 1 1 1 .Uk k ks w∑ ∑=x x  

We obtain 

1

( ) 1 ( ) 11

( ) 1 ( ) 1

1 ( ) ( ; )( )

1 ( ; ) 1 ( ; )

1 1 ( ; ) ( ; )
ˆ ˆ( ) ( )

w w

w w

k k w y w

k k

s

s

w

a e

′ =

′ +

′+ − −

∑

∑

x

xB x xB x

xB x xB x

x B

X B

X X B B  (4.2)

 

where 
1 1( ) 1

1

( ; ) 1 1 1 1 1 ( ) ( ; )( )
ˆ ( )

w k k k k k k w y ws sa a−∑ ∑′ ′=xB x xB z x z x B  

converges in probability to (and is approximately unbiased 

for) 
( ) 1

1

( ; ) 1 1 1 ( ) ( ; )( )( ) ,
w

U Uk k k k w y w

−∑ ∑′ ′=xB x xB z x z x B  and 

( ) 1 ( ) 1( ; ) ( ) ( ; )( ) 1 ( ; )w wk k w y w ke ′ ′= −xB x x xB xx B x B  is defined for 

.k U∈  

We can interpret 
( ) 1( ; )w ke xB x  as a residual arising from a 

population fit based on a generalized regression of 

( ) ( ; )( )k w y w
′

xx B  as the dependent variable and 1kx  as the 

predictor vector. Replacing expression (4.2) into expression 

(4.1) for 2
ˆ
PY  leads to 

( ) 1

( ) 11

( ) 1 ( ) 1

2 ( ) ( ; )( ) 1 ( ; )

1 ( ) ( ; )( ) ( ; )

( ; )

1 1 ( ; ) ( ; )

*

( ; ) ( ; )

ˆ ( )

( )

ˆ ˆ( ) ( )

ˆ ˆ( ) ( ).

w

w

w w

P k t y t kU

k k a y a k

k y k

y y

s

s

Y

a e

a e∗

′ ′= +

′+ +

+

′+ − −

′+ − −

∑

∑

∑

x xB x

x xB x

x

xB x xB x

x x

x B x B

x B

X X B B

X X B B  (4.3)

 

The following result establishes the relationship between 

the estimators obtained for the two choices of starting 

weights.  
Result 4.1: The linearized forms of 2

ˆ
P aY  and 2

ˆ
P wY  are 

related by the equation 2 lin 2 lin
ˆ ˆ
P w P aY Y= +  

1 11 1 ( ; ) ( ; ) ( ; )
ˆ( ) ( ).y y

′− −x x x xX X B B B   
Proof  

We consider expression (4.3) under the two possible 

choices for .ka
∗  First, with ka

∗ = 1 2k k ka a a=  we obtain 

2
ˆ
P aY  given by 

( ) 1

( ) 11

( ) 1 ( ) 1

2 ( ) ( ; )( ) 1 ( ; )

1 ( ) ( ; )( ) ( ; )

( ; )

1 1 ( ; ) ( ; )

( ; ) ( ; )

ˆ ( )

( )

ˆ ˆ( ) ( )

ˆ ˆ( ) ( ).

w

w

w w

P a k t y t kU

k k a y a k

k y k

y y

s

s

Y

a e

a e

′ ′= +

′+ +

+

′+ − −

′+ − −

∑

∑

∑

x xB x

x xB x

x

xB x xB x

x x

x B x B

x B

X X B B

X X B B  (4.4)

 

The term 1
( ; )

ˆ ( )y k k k k k ks sa a y−∑ ∑′=xB z x z  converges 

in probability to (and is approximately unbiased for) 
1

( ; ) ( ) .U Uy k k k ky
−∑ ∑′=xB z x z  The first term is constant 

and does not contribute to the variance of 2
ˆ .P aY  The next 

two terms are random quantities, defined as sums over 1s  

and s  respectively. The last two terms are products of 

differences with zero or almost zero expectation. As for the 

product 
( ) 1 ( ) 11 1 ( ; ) ( ; )

ˆ ˆ( ) ( ),
w w

′− −xB x xB xX X B B  both differ-

ences are functions of the phase-one sample 1.s  We know 

that 1X̂  is unbiased for 1X  and 
( ) 1( ; )

ˆ
wxB xB  is approximately 

unbiased for 
( ) 1( ; ).wxB xB  Under fairly general conditions, 

( ) 1 ( ) 1

1

1 1 ( ; ) ( ; )
ˆ ˆ( ) ( )

w w
N − ′− − =xB x xB xX X B B 1

1( ),PO n−  where 

1n  is the expected size of 1,s  assumed sufficiently large. By 

a similar reasoning, 1 (N − −X ( ; ) ( ; )
ˆ ˆ) ( )y y
′ − =x xX B B  

1( ),PO n−  where n  is the expected size of s, also assumed 

sufficiently large. Consequently, we can drop the last two 

terms of (4.4), because they are of lower order than the 

preceding terms: 
1

1
1 ( )(k k asN a− ∑ ′x ( ; ) ( )y a +xB

( ) 1( ; ) )
w ke xB x  is 

1 2

1( )PO n−  and 1
( ; )k y ksN a e− ∑ x  is 1 2( ).PO n−  The first 

three terms define the linearized form of 2
ˆ ,P aY  

( ) 1

( ) 11

2 lin ( ) ( ; )( ) 1 ( ; )

1 ( ) ( ; )( ) ( ; )

( ; )

ˆ ( )

( )

.

w

w

P a k t y t kU

k k a y a k

k y k

s

s

Y

a e

a e

′ ′= +

′+ +

+

∑

∑

∑

x xB x

x xB x

x

x B x B

x B

 (4.5)

 

Now let us consider expression (4.3) under the second 

choice, 1 2 .k k ka w a∗ =  This leads to 2
ˆ
P wY  given by 
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( )

( ) 1

( ) 11

1

2 ( ) ( ; )( ) 1 ( ; )

1 ( ) ( ; )( ) ( ; )

( ; )

1

1 1 1 1 1 1 ( ; )

( ; ) ( ; )

ˆ ( )

( )

ˆ( )

ˆ ˆ( ) ( )

w

w

P w k t y t kU

k k a y a k

k y k

k k k k k y k

w

y y

s

s

s s

Y

a e

a e

a a e
−

′ ′= +

′+ +

+

′ ′+ −

′+ − −

∑

∑

∑

∑ ∑

x xB x

x xB x

x

x

x x

x B x B

x B

X X z x z

X X B B  (4.6)

 

where 1
( ; ) 1 2 1 2

ˆ ( )w
y k k k k k k k ks sw a w a y−∑ ∑′=xB z x z  and 

1 2
ˆ .k k ks w a∑=X x  The first three terms of 2

ˆ
P wY  are the 

same as those found in expression (4.4) for 2
ˆ .P aY  The 

fourth and fifth terms differ from their counterparts in (4.4). 

Although ( ; )
ˆ w

y xB  and X̂  are functions of the phase-one 

calibration weights 1 ,kw  we do not need to replace them in 

( ; )
ˆ w

y xB  and X̂  in the fifth term; this would simply split the 

lower order term ( ; ) ( ; )
ˆ ˆ( ) ( )w

y y
′− −x xX X B B  into other 

lower order terms. Therefore, we can drop the fifth term of 

(4.6) when the sample sizes are sufficiently large. The 

fourth term can be written as follows. 

( )

( )

( )

1

1 1

1 1 1

1 1

1

1

1

1 1 1 1 1 1 ( ; )

1 1 ( ; ) ( ; ) ( ; )

1 1 ( ; ) ( ; )

1 1 ( ; ) ( ; ) ( ; )

1

1 1 1 1 1

1 ( ; ) 1 1 ( ; )

ˆ( )

ˆ( ) ( )

ˆ ˆ( ) ( )

ˆ ˆ( ) ( )

ˆ( )

.

k k k k k y k

y y

y y

y

k k k

k k y k k k y k

s s

s

s

s s

a a e

a

a e a e

−

−

′ ′−

′= − −

′+ − −

′− − −

′ ′+ −

−

∑ ∑

∑

∑ ∑

x

x x x x

x x

x x x x x

x x

X X z x z

X X B B B

X X B B

X X B B B

X X z x

z z (4.7)

 

The quantities in this expression are defined as follows: 

1 11

1
( ; ) 1 1 1 1 1

ˆ ( )k k k k k ks sa a−∑ ∑′ ′=x xB z x z x  and 
1 1( ; )

ˆ
y s =xB  

1 1

1

1 1 1 1 1( ) .k k k k k ks sa a y−∑ ∑′z x z  The statistic 
1 1( ; )

ˆ
y sxB  can not 

be computed from the phase-one sample because the values 

ky  are only known for .k s∈  It is implicitly defined for 

the purpose of determining the linearized form. We can 

define such a construct in the same manner as 
( ) 1( ; )

ˆ
wxB xB  is a 

function of the unknown quantity ( ; )( )y wxB . Now     

1 1( ; )
ˆ

y sxB  is approximately unbiased for its corresponding 

population quantity 
1

1
( ; ) 1 1 1( ) .U Uy k k k ky

−∑ ∑′=xB z x z  

Similarly, 
1( ; )

ˆ
x xB  is approximately unbiased for 

1( ; ) =x xB  
1

1 1( )U k k

−∑ ′z x 1 .U k k∑ ′z x  As before, we can argue that the 

last three terms of (4.7) are of lower order than the first term 

1 11 1 ( ; ) ( ; ) ( ; )
ˆ( ) ( ),y y

′− −x x x xX X B B B  which provides the 

linear approximation. The substitution of this term into (4.6) 

leads to the linearized form of 2
ˆ ,P wY  

( ) 1

( ) 11

1 1

2 lin ( ) ( ; )( ) 1 ( ; )

1 ( ) ( ; )( ) ( ; )

( ; )

1 1 ( ; ) ( ; ) ( ; )

ˆ ( )

( )

ˆ( ) ( ).

w

w

P w k t y t kU

k k a y a k

k y k

y y

s

s

Y

a e

a e

′ ′= +

′+ +

+

′+ − −

∑

∑

∑

x xB x

x xB x

x

x x x x

x B x B

x B

X X B B B  (4.8)

 

Comparing (4.5) with (4.8), we see that 2 lin
ˆ
P wY =  

2 lin
ˆ
P aY +

1 11 1 ( ; ) ( ; ) ( ; )
ˆ( ) ( )y y

′− −x x x xX X B B B  as stated in 

the result. This completes the proof of result 4.1. 

Result 4.1 shows that in general, the linearized forms of 

2
ˆ
P wY  and 2

ˆ
P aY  are not the same. However, they are the 

same under certain conditions. Let us consider the case of 

nested calibration (not to be confused with nested 

sampling), meaning that kx  includes 1 .kx  Then kx  is of the 

form 1( , )k k k+′ ′ ′=x x x  where the vector k+x  is composed 

of the remaining variables. We now state and prove the 

following result.  
Result 4.2: If 1( , )k k k+′ ′ ′=x x x  and 1( , )k k k+′ ′ ′=z z z  then 

2 lin 2 lin
ˆ ˆ
P w P aY Y=  and 2

ˆ
P aY  and 2

ˆ
P wY  are 

asymptotically equivalent.  
Proof  

The proof follows from result 4.1 by showing 

1 1( ; ) ( ; ) ( ; )y y− =x x x xB B B 0  under the specified conditions. 

We have 

( ) ( )
1 1

1

( ; ) ( ; ) ( ; ) 1 1 1y y k k k kU U
h

−
′− = ∑ ∑x x x xB B B z x z  

where 1( ) ( ).U Uk k k k k k kh y y−∑ ∑′ ′= − x z x z  Since 

1  U k kh∑ =z 0  and we assume 1( , ) ,k k k+′ ′ ′=z z z  it follows 

1U k kh∑ =z 0  and 
1 1( ; ) ( ; ) ( ; ) .y y− =x x x xB B B 0  Therefore 

from result 4.1,  2 lin 2 lin
ˆ ˆ .P w P aY Y=  Since their linear 

forms are the same, 2
ˆ
P aY  and 2

ˆ
P wY  are asymptotically 

equivalent estimators. 

Interestingly, Result 4.2 only requires that we include 

1kx  somewhere within .kx  Obviously, it makes sense to 

include k1x  within the component )(tkx  of kx  because the 

1x -totals are known. However, we obtain the same 

asymptotic result as long as all variables in 1kx  are included 

somewhere in ( ) ( ) ( )( , , ) .k k t k w k a
′ ′ ′ ′=x x x x  In practice, we 

often find ( ) 1k t k=x x  with 1 1k k=z x  and k =z k =x  

1( , )k k+′ ′ ′x x  where k+x  is the vector for the remaining 

variables ( )k wx  and ( ).k ax  This satisfies the requirements 

for the asymptotic equivalence of 2
ˆ
P aY  and 2

ˆ .P wY  

To study the properties of 2
ˆ
P aY  and 2

ˆ
P wY  we work with 

their linearized forms given respectively by (4.5) and (4.8). 

With appropriate definitions for the residuals 0 ,ke 1ke  and 

2 ,ke  we can represent 2 lin
ˆ
P aY  and 2 lin

ˆ
P wY  as the sum of 

three terms: a constant term 0 ,U ke∑  a phase-one expansion 

term 
1 1 1 ,s k ka e∑  and a double-expansion term 2 ,s k ka e∑  
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1
2 lin 0 1 1 2
ˆ .P k k k k kU s s
Y e a e a e= + +∑ ∑ ∑  (4.9) 

This makes (4.9) a suitable starting point for studying the 

bias and the asymptotic variance of the two estimators 2
ˆ
P aY  

and 2
ˆ .P wY  

For the linearized form 2 lin
ˆ
P aY  given by (4.5), the three 

residual quantities are defined as follows for :k U∈  

( ) 1

( ) 1

0 ( ) ( ; )( ) 1 ( ; )

1 ( ) ( ; )( ) ( ) ( ; )( )

1 ( ; )

2 ( ) ( ; )( ) ( ) ( ; )( )

( ) ( ; )( ) .

w

w

k k t y t k

k k a y a k w y w

k

k k k t y t k w y w

k a y a

e

e

e y

′ ′= +

′ ′= +

′−

′ ′= − −

′−

x xB x

x x

xB x

x x

x

x B x B

x B x B

x B

x B x B

x B  (4.10)

 

Note that 2ke  is simply ( ; ) .y ke x  Similarly, for 2 lin
ˆ
P wY  

given by (4.8), the residuals have the following definitions 

for :k U∈  

( ) 1 1 1

( ) 1 1 1

0 ( ) ( ; )( )

1 ( ; ) ( ; ) ( ; ) ( ; )

1 ( ) ( ; )( ) ( ) ( ; )( )

1 ( ; ) ( ; ) ( ; ) ( ; )

2 ( ) ( ; )( )

( ) ( ; )( ) ( ) ( ; )( )

( )

( )

.

w

w

k k t y t

k y y

k k a y a k w y w

k y y

k k k t y t

k w y w k a y a

e

e

e y

′=

′+ + −

′ ′= +

′− + −

′= −

′ ′− −

x

xB x x x x x

x x

xB x x x x x

x

x x

x B

x B B B B

x B x B

x B B B B

x B

x B x B  (4.11)

 

Note that in both cases, 0 1 2k k k ke e e y+ + =  for every 

k, and hence 0 1 2( ) .U Uk k k ke e e y Y∑ ∑+ + = =  This 

additivity allows us to prove in section 5 that aPY2
ˆ  and 

2
ˆ
P wY  are approximately unbiased. To save space, we 

concentrate on the properties of 2
ˆ
P aY  in the remaining 

sections. However, the analysis is similar for 2
ˆ
P wY  and the 

method for variance estimation proposed in section 7 can 

also be used for this estimator. 
 
4.2 Estimators without the phase-two calibration 

(x )====
k

φφφφ   
If there is no phase-two calibration ( k =x φ ), then 

.k kw a∗=  Accordingly, the final weights are either kw =  

1 2k k ka a a=  or 1 2 .k k kw w a=  The first alternative gives 

the double-expansion estimator .k ks a y∑  The second 

produces a different estimator that is usually more efficient. 

However, both of these are generally inefficient compared 

to the estimators obtained by carrying out the phase-two 

calibration. The linearized form of the two-phase estimator 

with 1 2k k kw w a=  is obtained by writing it as follows. 

( )

( )

1 1

1 1 1

1

1

2 1 ( ; ) 1 ( ; )

1 1 ( ; ) ( ; )

1

1 1 1 1 1

1 1 1

ˆ ˆ

ˆ ˆ( ) ( )

ˆ( )

.

P y y k k

y y

k k k

k k k k k k

s

s

s

s s

Y a y

a

a y a y

−

′ ′= − +

′+ − −

′ ′+ −

−

∑

∑

∑ ∑

x x

x x

X B X B

X X B B

X X z x

z z  (4.12)

 

The terms 
1 1( ; )

ˆ
y sxB  and 

1( ; )y xB  were defined in the  

previous section. When the samples are sufficiently large, 

1 1

1

1 1 1 1 1 1 1 1
ˆ( ) ( ) ( )k k k k k k k k ks s sa a y a y−∑ ∑ ∑′ ′− −X X z x z z  and 

1 1 11 1 ( ; ) ( ; )
ˆ ˆ( ) ( )y ys′− −x xX X B B  are of lower order and 

can be ignored. This leads to the linearized form of this 

estimator. 

1 12 lin 1 ( ; ) 1 ( ; )
ˆ ˆ .P y y k ks
Y a y′= − + ∑x xX B X B  (4.13) 

We can also write this linearized form as a sum (4.9) of 

three residual terms, with the residuals 0 ,ke 1ke  and 2ke  

having following definitions for .k U∈  

1

1

0 1 ( ; )

1 1 ( ; )

2 .

k k y

k k y

k k

e

e

e y

′=

′= −

=

x

x

x B

x B

 (4.14)

 

These residuals show a resemblance to those given by 

(4.10) if we set k =x φ  and remove ( ; ).y xB  Note how 

1( ; )y xB  has the same role as 
( ) 1( ; )wxB xB  in (4.10). As before, 

0ke + 1 2k k ke e y+ =  for every ,k  and hence 0(U ke∑ +  

1 2 ) .Uk k ke e y Y∑+ = =  

The double-expansion estimator is a special case of this 

estimator when we also have 1 .k =x φ  This means that 

1( ; )y xB  is not defined. The corresponding definitions for 

0 ,ke 1ke  and 2ke  are simply 0 0,ke = 1 0ke =  and 2ke =  

ky  for .k U∈  

In the following sections, we examine the bias and 

variance of the two-phase calibration estimator 2
ˆ
P aY  and 

we propose a new method for estimation of variance. We 

can derive corresponding results when there is no phase-two 

calibration because the residuals for these two groups of 

estimators have similar properties and linearized form. The 

only difference occurs in the estimation of variance. We use 

the same variance estimator (as described in section 7) but 

the residuals are estimated by using 
11 1 ( ; )

ˆˆ k k y se ′= − xx B  

where 
1

1
( ; ) 1 1 1

ˆ ( ) ,y k k k k k ks ss a a y−∑ ∑′=xB z x z  and 

2ˆ .k ke y=  
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5. Bias and variance of the two-phase  

       calibration estimator ˆ
2P aY   

The two-phase calibration estimator 2
ˆ
P a k ksY w y∑=  is 

approximately unbiased for .U kY y∑=  To show this, we 

derive the expectation of the linearized form given by (4.9) 

via the usual method of conditioning on the phase-one 

sample 1.s  We have 
1 12 | 2( ) ( )k k k ks ss s sE a e E E a e∑ ∑= =  

11 1 2 2( ) ,Uk k kssE a e e∑ ∑=
11 1 1 1( ) ,Uk k kssE a e e∑ ∑=  and 0U ke∑  

is a constant term, so 

2 lin 0 1 2
ˆ( ) ( ) .P a k k k kU U

E Y e e e y Y= + + = =∑ ∑  

This shows that 2 lin
ˆ
P aY  is unbiased for .Y  By (4.4), 

2 2 lin
ˆ ˆ ,P a P aY Y R= +  so the bias of 2

ˆ
P aY  equals the 

expectation of ,R  which is the sum of the two lower order 

terms 
( ) 1 ( ) 11 1 ( ; ) ( ; )

ˆ ˆ( ) ( )
w w

′− −xB x xB xX X B B  and ˆ( )′−X X  

( ; ) ( ; )
ˆ( ).y y−x xB B  As pointed out in section 4, each of these 

terms has expectation close to zero. It follows that 2
ˆ
P aY  is 

approximately unbiased for .Y  

The variance of 2
ˆ
P a k ksY w y∑=  is closely approxi-

mated by the variance of the linearized form 2 lin
ˆ
P aY  given 

by (4.9) with residuals defined by (4.10). Its first term, 

0 ,kU e∑  is constant and does not contribute to the variance. 

Therefore, 

( )
1

2 lin 1 1 2
ˆ( ) .P a k k k ks s

V Y V a e a e= +∑ ∑  (5.1) 

We use (5.1) as the starting point for deriving a variance 

estimator for 2 lin
ˆ .P aY  Two different approaches can be used 

and it is of interest to compare them. The one in section 7 is 

new and more interesting because it produces a more 

efficient variance estimator than the one in section 8, 

derived by the traditional technique of conditioning on the 

phase-one sample 1.s  The residuals 1ke  and 2ke  given by 

(4.10) play an important role in both derivations. 

 
6. Preliminaries for variance estimation  

Our objective is to estimate the variance 2 lin
ˆ( )P aV Y  

given by (5.1). This is done in sections 7 and 8 by two 

different arguments. The residuals 1ke  and ke2  are defined 

for all k U∈  but they can not be computed. They must be 

replaced by estimates 1̂ke  and 2ˆ .ke  These estimates, formed 

in the image of (4.10) are 

( ) 1

1 ( ) ( ; )( ) ( ) ( ; )( )

ˆ1 1( ; )

2 ( ; )

( ) ( ; )( ) ( ) ( ; )( )

( ) ( ; )( )

ˆ ˆˆ

ˆ   for  

ˆˆ

ˆ ˆ

ˆ   for  

w

k k a y a k w y w

k

k k k y

k k t y t k w y w

k a y a

e

k s

e y

y

k s

′ ′= +

′− ∈

′= −

′ ′= − −

′− ∈

x x

xB x

x

x x

x

x B x B

x B

x B

x B x B

x B  (6.1)

 

where 

( ) 1

( ; )

( ; )( ) ( ; )( ) ( ; )( )

ˆ

ˆ ˆ ˆ( , , )

y k k k k k k

y t y w y a

s s
a a y

−
′=

′ ′ ′ ′=

∑ ∑x

x x x

B z x z

B B B

 

and (6.2) 

( )

( ) 1

1 1

ˆ( ; )

1

1 1 1 1 1 ( ) ( ; )( )

ˆ

ˆ .

w

k k k k k k w y ws s
a a

−

=

′ ′∑ ∑

xB x

x

B

z x z x B

 

The term 
( ) 1

ˆ( ; )
ˆ

wxB x
B  in the definition of 1̂ke  is the esti-

mate of 
( ) 1

1

( ; ) 1 1 1 ( ) ( ; )( ) ( )
w

U Uk k k k w y w

−∑ ∑′ ′=xB x xB z x z x B  in 

(4.10). Two replacements are required in 
( ) 1( ; )wxB xB  to arrive 

at 
( ) 1

ˆ( ; )
ˆ :

wxB x
B  First, sums over U  are replaced by ap-

propriately weighted sums over 1,s  giving 
( ) 1( ; )

ˆ
w

=xB xB  

1 1

1
1 1 1 1 1 ( ) ( ; )( )( ) .k k k k k k w y ws sa a−∑ ∑′ ′

xz x z x B  In this expres-

sion, ( ; )( )y wxB  is still unknown, so we replace it by its esti-

mate ( ; )( )
ˆ

y wxB  to arrive at 
( ) 1

ˆ( ; )
ˆ .

wxB x
B  

A key point to note is that estimates 1̂ke  can be obtained 

for 1,k s∈  because ( ),k ax ( )k wx  and 1kx  are all known for 

1,k s∈  but estimates 2ˆ ke  can only be made for ,k s∈  

because ky  is available only for .k s∈  The fact that the 

estimates 1̂ke  are available for 1k s∈  rather than k s∈  

allows us to construct (in section 7) a more efficient 

estimator of 2 lin
ˆ( )P aV Y  than the traditional approach to 

variance estimation (in section 8) where all estimated 

residuals are calculated only for .k s∈  

The design weights 1 11/ ,k ka = π 2 21/k ka = π  and 

1 2k k ka a a=  were defined in section 1. In the following 

sections, we also need the quantities given below, defined as 

functions of the second-order inclusion probabilities 

1 1Pr ( & )k k sπ = ∈
ℓ

ℓ  and 2 1Pr ( & ):k k s sπ = ∈ |
ℓ

ℓ  

1 1 2 2 1 2

1 1 1 1 2 2 2 2

1/ , 1/ ,

, ,

.

k k k k k k k

k k k k k k

k k k

a a a a a

D a a a D a a a

D a a a

= π = π =

= − = −

= −

ℓ ℓ ℓ ℓ ℓ ℓ ℓ

ℓ ℓ ℓ ℓ ℓ ℓ

ℓ ℓ ℓ

 

Here, 2kπ
ℓ
 and 2ka ℓ

 are conditional on the sample 1.s  

All first-order and second-order inclusion probabilities are 

assumed positive. Using this notation and the above results, 

we now develop two different variance estimators in the 

next two sections. 

 
7. The separate residual variance estimator 

 
The variance of 2 lin

ˆ
P aY  is given by (5.1), where ke1  and 

2ke  are defined by (4.10). It can be expanded as 
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( ) ( )

( )

1

1

2 lin 1 1 2

1 1 2

ˆ( )

2 Cov , .

P a k k k k

k k k k

s s

s s

V Y V a e V a e

a e a e

= +

+

∑ ∑

∑ ∑  (7.1)

 

If we knew the residuals 1ke  and 2 ,ke  unbiased estimates 

for these three components would be given respectively by 

1 1

1

1 1 1

2 2

1 2 1 2

,

,

2 .

k kk

k kk

k kk

s s

s s

s s

D e e

D e e

D a e e

∈ ∈

∈ ∈

∈ ∈

∑ ∑

∑ ∑

∑ ∑

ℓ ℓℓ

ℓ ℓℓ

ℓ ℓ ℓℓ
 (7.2)

 

The proof of unbiasedness is similar for all three 

components. For example, for the second one, we have 

( )

( )

( )

( ) ( )

( )

1 1

1 1 1

2 2

2 2 2

2 2

2

2 2 2

22

2 2

2

( / )

( / )

( / )

.

s s s k kk

s k k kk

k k kk U U

k k k kk U U U

k k k k

k k

s s

s s

s s

s

E E D e e

E D a e e

D a e e

a a a e e e

E a e E a e

V a e

| ∈ ∈

∈ ∈

∈ ∈

∈ ∈

=

=

= −

   = −   

=

∑ ∑

∑ ∑

∑ ∑

∑ ∑ ∑

∑ ∑

∑

ℓ ℓℓ

ℓ ℓ ℓℓ

ℓ ℓ ℓℓ

ℓ ℓ ℓℓ

 

We now replace the unknown residuals in (7.2) by the 

respective estimates given by (6.1); that is, 1ke  by 1̂ke  for 

1k s∈  and 2ke  by 2ˆ ke  for .k s∈  Then, the resulting 

three components are added to arrive at the “separate 

residual” variance estimator 

1 1

1

2 lin 1 1 1

2 2

1 2 1 2

ˆ ˆ ˆ ˆ( )

ˆ ˆ

ˆ ˆ2 .

sr P a k kk

k kk

k kk

s s

s s

s s

V Y D e e

D e e

D a e e

∈ ∈

∈ ∈

∈ ∈

=

+

+

∑ ∑

∑ ∑

∑ ∑

ℓ ℓℓ

ℓ ℓℓ

ℓ ℓ ℓℓ
 (7.3)

 

The term “separate residual” and the corresponding 

subscript sr reflect the fact that (7.3) keeps the residuals 

separate, where 1̂ke  is defined over the larger sample 1s  and 

2ˆ ke  over the smaller sample .s  The fact that residuals 

computed for the larger sample 1s  can be advantageous for 

variance estimation was recognized by Axelson (1998). 

However, his derivation differs from our calibration 

approach based on 1kx  and .kx  The technique for variance 

estimation of the two-phase regression estimator in 

Hidiroglou, Rao and Haziza (2006) has certain traits in 

common with our approach, but there are also considerable 

differences. 

 
8. The combined residual variance estimator 

 
We arrived at (7.3) by recognizing that the estimates 1̂ke  

are obtainable for 1.k s∈  The traditional approach, 

reviewed in this section, is to derive a variance estimator by 

conditioning on the phase-one sample 1.s  This produces a 

variance estimator where all required residuals are defined 

for .k s∈  Later, we compare it with the more efficient 

(7.3). From (5.1), we condition on the phase-one sample 1s  

to obtain 

( )

( )

( )

( )

( ) ( )

1 1 1

1 1 1

1 1 1

1 1

1 1 11

2 lin | 1 1 2

| 1 1 2

1 1 1 2

| 2

1 12 | 2

ˆ( )P a k k k k

k k k k

k k k k

k k

k k k k

s s s s s

s s s s s

s s s

s s s s

s s s ss s

V Y V E a e a e

E V a e a e

V a e a e

E V a e

V a e E V a e

= +

+ +

= +

+

= +

∑ ∑

∑ ∑

∑ ∑

∑

∑ ∑  (8.1)

 

where 12 1 2k k ke e e= +  is called the combined residual. 

From (4.10), we obtain the following. 

( ) 112 ( ) ( ; )( ) 1 ( ; )

2 ( ) ( ; )( ) ( ) ( ; )( )

( ) ( ; )( ) .

wk k k t y t k

k k k t y t k w y w

k a y a

e y

e y

′ ′= − −

′ ′= − −

′−

x xB x

x x

x

x B x B

x B x B

x B  (8.2)

 

It is straightforward to define estimators of the two 

components 
11 1 12( )k kssV a e∑  and 

1 1| 2( ).k kss s sE V a e∑  

Each of these has the form of a double sum over s because 

12ke  and 2ke  contain ky  which is only available for 

.k s∈  The first component uses 12 1 2ˆ ˆ ˆk k ke e e= + =  

( ) 1
ˆ( ) ( ; )( ) 1 ( ; )

ˆ ˆ
w

k k t y t ky ′ ′− −x xB x
x B x B  for .k s∈  We then 

have 1 2 12 12ˆ ˆk k k ks s D a e e∈ ∈∑ ∑ℓ ℓ ℓ ℓ
 as an estimator of 

11 1 12( ).k kssV a e∑  

For the second component, we use the residual estimates 

2 ( ; )
ˆˆ k k k ye y ′= − xx B  given by (6.1) for ,k s∈  and 

obtain 2 1 1 2 2ˆ ˆk k k ks sD a a e e∈ ∈∑ ∑ℓ ℓ ℓ ℓ
 as an estimator of 

1 1| 2( ).k kss s sE V a e∑  Summing the two estimated terms we 

have the following variance estimator, where the subscript 

cr indicates “combined residual”, 

2 lin 1 2 12 12

2 1 1 2 2

ˆ ˆ ˆ ˆ( )

ˆ ˆ .

cr P a k k kk

k k kk

s s

s s

V Y D a e e

D a a e e

∈ ∈

∈ ∈

=

+

∑ ∑

∑ ∑

ℓ ℓ ℓℓ

ℓ ℓ ℓℓ
 (8.3)
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Let us review how (7.3) and (8.3) differ. The separate 

residual variance estimator (7.3) starts with the expansion 

1 12 lin 1 1 2 1 1
ˆ( ) ( ) ( ) 2Cov( ,Pa k k k k k ks s sV Y V a e V a e a e∑ ∑ ∑= + +

2 ).k ksa e∑  We estimate these three components separately 

as functions of the residuals 1ke  and 2 .ke  The resulting 

variance expression has three terms: a double sum over 1s  

in terms of 1ke  and 1 ,e
ℓ

 a double sum over s  in terms of 

2ke  and 2 ,e
ℓ

 and a cross-sum over 1s  and s  in terms of 

1 1ke s∈  and 2 .e s∈
ℓ

 Finally, we arrive at (7.3) by 

estimating 1ke  by 1̂ke  for 1k s∈  and 2ke  by 2ˆ ke  for 

.k s∈  

The combined residual variance estimator (8.3) arises 

from the traditional conditioning on the phase-one sample 

1s  as 
1 1 1 12 lin | 2 lin | 2 lin

ˆ ˆ ˆ( ) ( ) ( ).P a P a P as s s s s sV Y V E Y E V Y= +  

This leads us to combine 1ke  and 2ke  as 12 1 2k k ke e e= +  

in the first term. The second term, 
1 1| 2 lin

ˆ( ),P as s sE V Y  is a 

function of 2 .ke  Since 12ke  and 2ke  can only be estimated 

over ,s  the resulting variance estimator becomes a sum of 

two terms, each of them expressed as a double sum over .s  

The separate residual estimator (7.3) is more efficient 

than the combined residual alternative (8.3), because it is 

based on residuals 1̂ke  obtained for the typically larger 

sample 1.s  The advantage of (7.3) over (8.3) is illustrated 

by the simulation in section 10. The approach behind the 

separate residual variance estimator (7.3) can be extended to 

three-phase sampling and other complex designs. In those 

extensions of the technique, we proceed in a similar manner, 

starting by a derivation of the linearized form through an 

expansion of the variance components and the determina-

tion of the appropriate residuals. 

 
9. A comparison with the two-phase  

       regression estimator  
Särndal, Swensson and Wretman (1992) developed a 

two-phase regression estimator for ,U kY y∑=  based on 

an earlier paper by Särndal and Swensson (1989). It is 

useful to see how this estimator, denoted here by reg
ˆ ,Y  

compares with the calibration estimator 2
ˆ
PY  considered in 

the preceding sections of this paper. When based on the 

same auxiliary information, the two estimators are “close” 

but not identical. This is because the estimator 2
ˆ
PY  is 

derived by calibration in each of the two phases, whereas 

the two-phase regression estimator regŶ  is derived by 

model-assisted reasoning. 

We now describe the two-phase regression estimator of 

Särndal, Swensson and Wretman (1992). Their derivation 

involves the fit of two linear regression models with the use 

of the available auxiliary data; one at “the top level” and the 

other at “the bottom level”. These authors develop a 

corresponding estimator of variance, via the traditional 

conditioning argument. We compare their variance 

estimator with the combined residual variance estimator 

(8.3), also developed by the conditioning argument. The two 

variance estimators do not agree exactly, because the point 

estimators are slightly different, but they are numerically 

close, as shown in this section. 

Let 1kx  be a vector of auxiliary variables with known 

population totals, and let 1 2( , ) ,k k k
′ ′ ′=x x x  where both 1kx  

and 2kx  are known vector values for 1.k s∈  The total 

1U k∑ x  is assumed known whereas the total 2U k∑ x  is 

unknown. The predicted values produced for 1k s∈  by the 

two regressions fitted at the “top level” and “bottom level” 

are given respectively by 

( ) ( )

1 1 1

1
2 2

1 1 1 1 1 1

ˆˆ

with

ˆ

k k s

s k k k k k k k ks s

y

a a y
−

′=

′= σ σ∑ ∑

x B

B x x x

 (9.1) 

and 

( ) 1
2 2

ˆˆ

with

ˆ / .

k k s

s k k k k k k k ks s

y

a a y
−

′=

′= σ σ∑ ∑

x B

B x x x

 (9.2) 

The resulting two-phase regression estimator regŶ  of 

U kY y∑=  is 

( )
1

reg 1 1 1 1
ˆ ˆ ˆ ˆ( )

ˆ( ).

k s k k kU

k k k

s

s

Y a y y

a y y

= ′ + −

+ −

∑ ∑

∑

x B

 (9.3)

 

Can regŶ  be interpreted as a calibration estimator? To 

answer this question, let us determine the implicit weights in 

(9.3). We can write reg
ˆ ,s k kY w y∑=  with weights kw  

identified by substituting (9.1) and (9.2) into (9.3) and 

simplifying. We find 1 2 ,k k k k k kw a g a a g= =  where the 

calibration factor kg  is given for k s∈  by 

( )

( )
( )

( )

1

1

1 1 1

1
2 2

1 1 1 1 1

1

1
2 2

1

.

k k k kU

k k k k k k

k k k k

k k k k k k

s

s

s s

s

g a

a

a a

a

−

−

= + − ′

′ σ σ

+ − ′

′ σ σ

∑ ∑

∑

∑ ∑

∑

x x

x x x

x x

x x x  (9.4)

 

The weights kw  are not explicitly stated in Särndal, 

Swensson and Wretman (1992). In what sense, if any, can 

kw  be considered a calibration weight? To examine this, we 

first replace ky  in (9.3) with 1 .k′x  Using (9.1) and (9.2) with 

1k ky ′= x  gives 1U k∑ ′x  as the right-hand side of (9.3). 

Thus, the weights k k kw a g=  satisfy 1k ksw∑ =x  

1 .U k∑ x  Next we replace ky  in (9.3) with 2 ,k′x  again using 

(9.1) and (9.2) to obtain 
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( )

( )
( )

1 1
1 2 1 1 1

1
2

1 1 1

2

1 2 1 .

k k k k k

k k k k

k k k k

s U s

s

s

a a

a

a

−

′ + − ′

′ σ

′ σ

∑ ∑ ∑

∑

∑

x x x

x x

x x  (9.5)

 

Although (9.5) is an approximately unbiased estimate of 

the unknown 2kx -total 2 ,kU∑ ′x  it does not have the usual 

form of the right-hand side of a phase-two calibration 

equation, such as 
1 1 2k ks a∑ ′x  or 

1 1 2 .k ks w∑ ′x  However, it is 

close. If we replace the two sums over s  with appropriately 

weighted sums over 1,s  then (9.5) becomes 
1 1 2k ks w∑ ′x  

where 1kw  is given by (2.1) with 2

1 1 1/ .k k k= σz x  Thus, the 

implicit weights kw  in regŶ  calibrate exactly on the known 

population 1kx -total, and they come close to calibrating on 

the estimated 2kx -total 
1 1 2 .k ks w∑ ′x  This suggests that regŶ  

should have properties similar to an estimator 2
ˆ
PY  obtained 

by defining kx  in 2
ˆ
PY  as 1 2( , )k k k

′ ′ ′=x x x  with ( )k t =x  

1 ,kx ( ) 2k w k=x x  and ( ) .k a =x φ  In addition, the form of 

the model-assisted estimator implies 2

1 1 1/k k k= σz x  and 
2/ .k k k= σz x  Since kx  includes 1kx  it is reasonable to 

define 2/k k k= σz x  as 2 2

1 1 2 2( / , / ) .k k k k k
′ ′ ′= σ σz x x  These 

specifications meet the requirements for asymptotic 

equivalence of 2
ˆ
P aY  and 2

ˆ
P wY  so we do not need to worry 

about the choice of starting weights in 2
ˆ .PY  We can simply 

work with 2
ˆ
P aY  as the estimator comparable to reg

ˆ .Y  Now, 

let us look at variance estimation for regŶ  and the estimator 

2
ˆ
P aY  under these specifications. 

The variance estimator of Särndal, Swensson and 

Wretman (1992) contains calibration factors denoted ksg  

and 
11 .ksg  They are not to be confused with kg  given by 

(9.4). If we disregard ksg  and 
11 ,ksg  both of which are near 

one and of limited numerical impact, their variance 

estimator is 

reg 1 2 1 1

2 1 1

ˆ ˆ ˆ ˆ( )

ˆ ˆ

k k k s sk

k k k s sk

s s

s s

V Y D a e e

D a a e e

∈ ∈

∈ ∈

=

+

∑ ∑

∑ ∑

ℓ ℓ ℓℓ

ℓ ℓ ℓℓ
 (9.6)

 

where, for ,k s∈  

1 1 1
ˆˆ k s k k se y ′= − x B   and  ˆˆ .k s k k se y ′= − x B  (9.7) 

Both components of (9.6) are double sums over ,s  

reflecting the fact that both 1̂k se  and ˆk se  can only be 

obtained for .k s∈  Formula (9.6) looks similar to formula 

(8.3) for the combined residual estimator but how different 

are the residuals in the two formulas? Let us look at the 

residuals for the comparable point estimator. As noted 

above, this estimator 2
ˆ
PY  has 1 2( , )k k k

′ ′ ′=x x x  with ( )k t =x  

1 ,kx ( ) 2 ,k w k=x x ( ) ,k a =x φ 2

1 1 1/k k k= σz x  and k =z  
2 2 2

1 1 2 2/ ( / , / ) .k k k k k k
′ ′ ′σ = σ σx x x  Under these specifications, 

the residuals 1̂ke  and 2ˆ ke  in (6.1) are given by 

(2 ) 1
ˆ1 2 ( ; )(2) 1 1( ; )

2 ( ; )

1 ( ; )(1) 2 ( ; )(2)

ˆ ˆˆ   for  

ˆˆ

ˆ ˆ   for  

k k y k

k k k y

k k y k y

e k s

e y

y k s

′ ′= − ∈

′= −

′ ′= − − ∈

x xB x

x

x x

x B x B

x B

x B x B  (9.8)

 

where ( ; ) ( ; )(1) ( ; )(2)
ˆ ˆ ˆ( , )y y y

′ ′ ′=x x xB B B  corresponds to the 

partitioning of 1 2( , )k k k
′ ′ ′=x x x  and from (6.2)  

( ) ( )

( )

( )

(2 ) 1 1

1

1

( ; )

1
2

ˆ 1 1 1 1( ; )

2

1 1 2 ( ; )(2) 1

ˆ

ˆ

ˆ .

y k k k k k k

k k k k

k k k y k

s s

s

s

a a y

a

a

−

−

′=

′= σ

′ σ

∑ ∑

∑

∑

x

xB x

x

B z x z

B x x

x x B  (9.9)

 

The residuals 2ˆ ke  in (9.8) are the same as ˆkse  in (9.7). 

But how do the residuals 12 1 2ˆ ˆ ˆ ,k k ke e e= +  obtained by 

adding in (9.8), relate to their counterparts 1̂kse  in (9.7)? To 

find this link, we first show that 2 1
1 1 1 1

ˆ ( / )s k k k ks a
−∑ ′= σB x x  

2
1 1/k k k ks a y∑ σx  can be written as 

( ) ( )
1 ( ; )(1)

1
2 2

1 1 1 1 2 ( ; )(2) 1

ˆ ˆ

ˆ/ / .

s y

k k k k k k k y ks s
a a

−

=

′ ′+ σ σ∑ ∑

x

x

B B

x x x x B (9.10)

 

To see this, we start with ( ; )
ˆ ,y xB  which by definition 

satisfies ( ; )
ˆ( ) .k k k k k k ys sa y a∑ ∑ ′= xz z x B  This equality 

can also be written as 1 ( ; )(1)
ˆ(k k k k k k ys sa y a∑ ∑ ′= +xz z x B  

2 ( ; )(2)
ˆ ).k y

′
xx B  Since 2 2

1 1 2 2( / , / ) ,k k k k k
′ ′ ′= σ σz x x  the component 

of this equation corresponding to 1kx  is 2

1 1/k k k ks a y∑ σ =x  
2 2

1 1 ( ; )(1) 1 1 2 ( ; )(2) 1
ˆ ˆ/ / .k k k y k k k k y ks sa a∑ ∑′ ′σ + σx xx x B x x B  Premulti-

plying both sides by 2 1

1 1 1( / ) ,k k k ks a
−∑ ′ σx x  we obtain (9.10). 

Then, starting with (9.8) and using the definition of 

(2 ) 1
ˆ( ; )

ˆ
xB x

B  given by (9.9), we have 

( ){
( )}

( 2) 1

1

1

12 1 2

ˆ1 ( ; )(1) 1 ( ; )

1
2

1 ( ; )(1) 1 1 1 1

2

1 1 2 ( ; )(2) 1

ˆ ˆ ˆ

ˆ ˆ

ˆ

ˆ .

k k k

k k y k

k k y k k k k

k k k y k

s

s

e e e

y

y a

a

−

= +

′ ′= − −

′ ′= − + σ

′ σ

∑

∑

x xB x

x

x

x B x B

x B x x

x x B

 

In the expression within curly brackets, let us replace the 

two 1ka -weighted sums over 1s  with the corresponding 

ka -weighted sums over ;s  the result is equal to 1
ˆ

sB  as 

given by (9.10). This means 12 1 1 1
ˆˆ ˆ .k k k s k se y e′≅ − =x B  

In summary, 12 1ˆ ˆk k se e≅  for k s∈  and 2ˆ ˆk k se e=  for 

.k s∈  Hence, the variance estimator (9.6) for the 

two-phase regression estimator regŶ  should be numerically 

close to the combined residual variance estimator (8.3) for 

the calibration estimator 2
ˆ
PY  defined in this section. We 

present empirical support for this through the simulation in 

next section. 
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10. Simulation 

 
In this section we present a small simulation to validate 

the claim that the separate residual variance estimator 

2 lin
ˆ ˆ( )sr P aV Y  given by (7.3) can be considerably more 

efficient than the combined residual variance estimator 

2 lin
ˆ ˆ( )cr P aV Y  given by (8.3), and that the behaviour of the 

latter is very similar to that of the two-phase regression 

estimator reg
ˆ ˆ( )V Y  given by (9.6). We created a population 

of 5,000N =  units in two steps as follows: First, the 

values 1 2( , )k ku u  for 1, 2, ..., 5,000k =  were generated 

by 5,000 realizations of the independent random variables 

1 ~ 2Gamma(4)ku  and 2 ~ 3Gamma(6),ku  where the 

Gamma( )a  distribution has density ( )f x = 1[ ( ) ]a −Γ  
1a xx e− −  for 0.x >  Secondly, the values of the variable of 

interest were created as 110k ky u= + + 23 ,k ku + ε  

1, 2, ... 5,000,k =  with ~ 5Normal(0),kε  where 

Normal(0)  is the standard Normal distribution with mean 0 

and variance 1. The target of estimation in the experiment is 

the population y -total 358,205.U kY y∑= =  For the phase-

one calibration, we used the auxiliary vector 1 1(1, )k ku ′=x  

and 1 1 .k k=z x  That is, the weights 1kw  for 1k s∈  were 

determined by calibration to the known total 1( , )U kN u∑ =  

(5,000, 39,611.8).  For the phase-two calibration we used 

( ) ( ) ( )( , , )k k t k w k a
′ ′ ′ ′=x x x x  with ( )k t =x 1(1, ) ,ku ′

( ) 2 ,k w ku=x  

( )k a =x φ  and .k k=z x  These specifications satisfy the 

conditions for asymptotic equivalence between 2
ˆ
P aY  and 

2
ˆ .P wY  Therefore, for this simulation, we can work with 

2
ˆ
P aY  and its linearized form 2 lin

ˆ .P aY  

For each phase-one sample 1,s  the final weights kw  for 

the estimator 2
ˆ

sP a k kY w y∑=  were determined by 

calibrating to the known totals given by the vector 

11 1 2( , , )U sk k kN u w u∑ ∑ = (5,000, 39,611.8, 
1 1 2 ).s k kw u∑  It 

is important to note that it was not necessary to have 

( )k a =x φ  in order to run a simulation to compare 

2 lin
ˆ ˆ( )sr P aV Y  and 2 lin

ˆ ˆ( ).cr P aV Y  However, we can not 

compare 2 lin
ˆ ˆ( )cr P aV Y  and reg

ˆ ˆ( )V Y  unless we define an 

estimator 2
ˆ
P aY  comparable to reg

ˆ ,Y  and to achieve this we 

need ( ) ,k a =x φ  as noted in section 9. 

We drew repeated sample pairs 1( , ),s s  where 1s  is an 

SRS of 1n  units from ,U  and s  is an SRS of n  units from 

1.s  Here SRS stands for simple random sampling without 

replacement. We worked with different size combinations 

1( , ):n n  (4000, 3000), (4000, 2000), (4000, 1000), (3000, 

2000), (3000, 1000) and (2000, 1000). If 1,n n=  two-

phase sampling is equivalent to one-phase sampling, and 

2 lin
ˆ ˆ( )sr P aV Y  and 2 lin

ˆ ˆ( )cr P aV Y  are identical. 

For each combination 1( , ),n n  we realized 100,000 

sample pairs 1( , ).s s  Based on the data for each of these 

outcomes, we computed the separate residual variance 

estimator 2 lin
ˆ ˆ( ),sr P aV Y  the combined residual variance 

estimator 2 lin
ˆ ˆ( )cr P aV Y  and the variance estimator reg

ˆ ˆ( ).V Y  

For this purpose, we used the respective expressions that 

follow from (7.3), (8.3) and (9.6) when SRS is specified at 

each phase. To save space, these expressions are not shown 

here. We obtained 100,000 realized values for each of the 

three variance estimators. Figure 10.1 shows the distribu-

tions of the 100,000 V̂ -values for 1n = 4,000 and 

n = 2,000. 

The figure shows strikingly different distributions for 

2 lin
ˆ ˆ( )sr P aV Y  and 2 lin

ˆ ˆ( )cr P aV Y . The distribution of the 

separate residual estimator 2 lin
ˆ ˆ( )sr P aV Y  is much more 

concentrated. Thus 2 lin
ˆ ˆ( )sr P aV Y  is more efficient than 

2 lin
ˆ ˆ( )cr P aV Y  and on average, it produces considerably 

shorter confidence intervals. We also note that the 

distribution of reg
ˆ ˆ( )V Y  is very similar to that of 

2 lin
ˆ ˆ( ).cr P aV Y  This supports our analysis in section 9. Similar 

results were obtained for the other sample sizes in the 

simulation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 10.1 Distribution of 100,000 realized values for ˆ ˆ
2 lin( ),

sr P a
V Y ˆ ˆ

2 lin( )
cr P a
V Y  and ˆ ˆ

reg( )V Y  
 

  

 

11,000 
 

10,000 

 

9,000 
 

8,000 
 

7,000 

 

6,000 
 

5,000 

 

4,000 

 

3,000 
 

2,000 

 

1,000 
 

0 

 

 

 
F 

r 

e 
q 

u 

e 
n 

c 

y 

         750,000    775,000       800,000      825,000                             750,000       775,000     800,000       825,000                        750,000       775,000     800,000       825,000            

                   
2 lin

ˆ ˆ( )
sr P a
V Y                                              

2 lin

ˆ ˆ( )
cr P a
V Y                                               

reg

ˆ ˆ( )V Y  



14 Estevao and Särndal: A new face on two-phase sampling with calibration estimators 

 

 

Statistics Canada, Catalogue No. 12-001-X 

To obtain a measure of the efficiency of the three 

variance estimators, we computed the simulation variance 

of the 100,000 V̂ -values. These simulation variances are 

shown in Table 10.1, Table 10.2 and Table 10.3. The 

numbers are dramatically lower for 2 lin
ˆ ˆ( )sr P aV Y  than for the 

other two. Table 10.4 shows the relative advantage of 

2 lin
ˆ ˆ( )sr P aV Y  over 2 lin

ˆ ˆ( ).cr P aV Y  For this population, the 

simulation variance of 2 lin
ˆ ˆ( )sr P aV Y  is less than half the 

simulation variance of 2 lin
ˆ ˆ( ).cr P aV Y  

 
 

 
Table 10.1 
Simulation variance for the separate residual variance 

estimator ˆ ˆ
2 lin( )

sr P a
V Y  

 

  n   

1n  3,000 2,000 1,000 

4,000 64.82 95.91 484.92 

3,000  1,179.62 1,806.79 

2,000   13,995.94 
 

Note: Actual values are the displayed values times 610 .  
 
 
 

Table 10.2 
Simulation variance for the combined residual variance 
estimator ˆ ˆ

2 lin( )
cr P a
V Y  

 

  n   

1n  3,000 2,000 1,000 

4,000 153.22 364.08 1,290.41 

3,000  2,449.05 6,855.69 

2,000   33,220.88 
 

Note: Actual values are the displayed values times 610 .  
 
 
 

Table 10.3 
Simulation variance for the variance estimator ˆ ˆ

reg( )V Y  
 

  n   

1n  3,000 2,000 1,000 

4,000 153.25 364.14 1,289.79 

3,000  2,449.36 6,854.52 

2,000   33,210.31 
 

Note: Actual values are the displayed values times 610 .  
 
 
 

Table 10.4 
Ratio of entries in Table 10.1 to corresponding entries in 

Table 10.2 
 

  n   

1n  3,000 2,000 1,000 

4,000 0.42 0.26 0.38 

3,000  0.48 0.26 

2,000   0.42 
 

 

 

 

11. Discussion 
 

In a design-based perspective on estimation for two-

phase sampling designs, one can follow a regression 

estimation approach or a calibration estimation approach. 

We concentrate on the calibration approach to create 

approximately design-unbiased estimators. The extent of the 

information available for the calibration holds the key to the 

efficiency of the estimates. We recognize in this paper that 

there are three different types of auxiliary variables 

associated with two-phase designs. They have different 

information characteristics. From these we define four 

different auxiliary vectors; one for the phase-one calibration 

and the other three for the phase-two calibration. The 

calibration approach is suitable for analyzing the resulting 

estimators in a systematic manner. As the paper shows, this 

approach also leads to a more efficient variance estimator 

than the traditional method for variance estimation in 

two-phase designs. 
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Survey weighted hat matrix and leverages 
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Abstract 

Regression diagnostics are geared toward identifying individual points or groups of points that have an important influence 
on a fitted model. When fitting a model with survey data, the sources of influence are the response variable Y, the predictor 
variables X, and the survey weights, W. This article discusses the use of the hat matrix and leverages to identify points that 
may be influential in fitting linear models due to large weights or values of predictors. We also contrast findings that an 
analyst will obtain if ordinary least squares is used rather than survey weighted least squares to determine which points are 
influential. 
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1. Introduction 

 
In some conventional linear regression diagnostics, it is 

often useful to measure the influence each data point can 

have in determining the values of parameter estimates and, 

in turn, fitted values. The hat matrix and its diagonal 

elements, referred to as leverages, are popular techniques 

that are used to identify the cases that have outlying values 

for predictor variables, and, therefore, may be influential in 

model fitting if they are also associated with unusual 

residuals. When there is more than one predictor variable   

in the regression, analysts can compute leverages to 

summarize the collective influence of the X values for each 

observation. 

In finite population estimation, a superpopulation 

assumption is usually used to build models. Suppose that 

some model fits reasonably well for the bulk of the 

population. For convenience, we will refer to this as the 

“true” model. However, the goal is usually to find a model 

that has some descriptive or predictive power, bearing in 

mind that no model is really “true”. The influence 

diagnostics should allow analysts to identify points that 

make estimated parameters deviate from that true model. 

Parameter estimates in linear regression using complex 

survey data are often derived from the pseudo maximum 

likelihood approach, outlined by Skinner, Holt and Smith 

(1989, Chapter 3), following ideas of Binder (1983). In this 

paper, we assume that the analyst has decided that an 

estimator involving sample weights is appropriate for his or 

her problem. As shown in later sections, the survey 

weighted hat matrix and leverages are useful for detecting 

potentially influential observations caused by not only 

extreme X values, but also by large sample weights. 

Previous survey literature has discussed the effect of 

outliers on some survey estimates, but does not give much 

attention to diagnostics for linear regression models. Deville 

and Särndal (1992), and Potter (1990, 1993) discuss some 

possibilities for locating or trimming extreme survey 

weights when the goal is to estimate population totals and 

other simple descriptive statistics. Hulliger (1995) and 

Moreno-Rebollo, Muñoz-Reyes and Muñoz-Pichardo 

(1999) address the effect of outliers on the Horvitz-

Thompson estimator of a population total. Smith (1987) 

demonstrates diagnostics based on case deletion and a form 

of the influence function. Zaslavsky, Schenker and Belin 

(2001), and Beaumont and Alavi (2004) use M-estimation 

based strategies to downweight the influential clusters or 

units. Chambers (1986), Gwet and Rivest (1992), Welsh 

and Ronchetti (1998), and Duchesne (1999) conduct 

research on outlier robust estimation techniques for totals.  

A perennial question among analysts of survey data is 

whether to use the survey weights or not when fitting 

models. The collections edited by Skinner et al. (1989) and 

Chambers and Skinner (2003) discuss this issue at length. 

Binder and Roberts (2003, Chapter 3), Chambers, Dorfman 

and Sverchkov (2003, Sections 11.2.3, 11.6), Chambers and 

Skinner (2003, Chapter 1), Korn and Graubard (1999, 

Sections 4.3, 4.4), Pfeffermann (1996), and Smith (1989, 

Chapter 6) describe the arguments pro and con. The details 

can be quite mathematical and abstract but are summarized 

succinctly by Skinner (2003, Section 6.2.3).  

We paraphrase Skinner (2003, Section 6.2.3) here in the 

context of fitting a linear model to predict some response Y  

based on a set of explanatory variables X. If the linear 

model is specified correctly and the sampling depends only 

on the explanatory variables in the model, then unweighted 

regression parameter estimates will be unbiased in a model-

based sense. In particular, the assumed conditions require 

that the survey weights are unrelated to Y conditional on the 

values of the X predictors. However, if sampling depends 

on factors that may be related to Y, even after conditioning 

on the values of the predictors, the unweighted parameter 
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estimators will be biased both with respect to the true model 

and in the design-based, repeated sampling sense. This 

situation is known as having an informative sample design 

in which the distribution of the sample values of Y is 

different from the population distribution. An example of 

this is given by Chambers, Dorfman and Sverchkov (2003, 

Section 11.2.3). If sample units are selected with 

probabilities proportional to some measure x of their size 

and Y is related to x, the sample distribution of Y will be 

skewed to the right of its population distribution. The 

situation in this example is similar to the one in our 

empirical study in section 5. 

Using the survey weights guards against the bias that 

may result from not accounting for an informative sample. 

Also, if the model is not correctly specified, the survey-

weighted regression still estimates a census parameter. That 

is, the weighted estimates are approximately unbiased for 

the best-fitting linear model that would be obtained if the 

entire finite population were in hand. In this paper, we 

assume that an analyst has made the decision to use weights 

in fitting a model, possibly for the reasons above, and 

provide one type of diagnostic for assessing the effects of 

certain data points. 

The hat matrix and leverages we present are the same 

ones that are produced by standard software packages when 

a weighted least squares regression is done. However, the 

literature is missing any discussion of their use and 

interpretation in the context of survey-weighted regression. 

Korn and Graubard (1999) is one of the few references that 

addresses any kind of diagnostics for models fitted from 

survey data. Leverages are among a series of diagnostic 

tools and will be more effective when evaluated with 

residuals. Many diagnostic statistics, such as the famous 

Cook’s distance (Cook 1977) turn out to have both 

leverages and residuals as components. 

The literature gives somewhat ambiguous guidance on 

how to deal with the influential observations once they are 

identified. An obvious, and perhaps naïve, solution is to 

remove the outliers and refit the model, which makes sense 

when the outliers result from improperly recorded data. A 

natural extension of this would be to devise an automatic 

approach where certain rules would be used to identify 

influential points, delete them, and refit the model. Our 

presumption in this article is that, after identification of 

influential points and careful consideration of the reasons 

for the influence, an analyst will determine whether the 

points should be excluded from fitting. This is in contrast to 

setting up some procedure that would automatically exclude 

points based on some cutoff values. 

The remainder of the paper is organized as follows. 

Section 2 describes the ordinary least squares hat matrix, 

leverages, and some of their properties. Sections 3 and 4 

cover the survey-weighted hat matrix and leverages plus a 

decomposition that shows how points can have large 

leverages. The extensions to survey data apply to both 

single- and multi-stage designs. Section 5 gives a numerical 

example using a single-stage sample of mental health 

organizations. The last section summarizes our findings and 

gives some directions for additional research. 

 
2. OLS hat matrix  

 
A working model is one that is being provisionally 

considered by an analyst for the structure that best describes 

a conceptual superpopulation. It may be revised after further 

assessment by adding predictors, dropping predictors, or 

making other changes to the form of the model. Suppose 

that the working linear model is 

2= + ,       ( ) =   V σY Xβ ε ε I  (1) 

where 1= ( , ..., ) ,TnY YY 1= ( , ..., )T

nX x x  with =ix  

1( , ..., ) ,Ti ipx x 1= ( , ..., ) ,Tpβ ββ  and 1= ( , ..., ) .Tnε εε  

Assuming the X matrix is of full rank, the ordinary least 

squares (OLS) estimate of β  is  

1 1ˆ ( ) ,T T T− −= =β X X X Y A X Y  (2) 

where T=A X X  is a square matrix and invertible. The 

fitted values Ŷ  corresponding to the observed values Y  

are  
1ˆˆ ,T−= = =Y Xβ XA X Y HY  

where 1 T−=H XA X  is called the hat matrix. This name 

was first introduced by Tukey (Belsley, Kuh and Welsch 

1980, Chapter 2; Hoaglin and Welsch 1978). The leverage, 
1 ,T

ii i ih −= x A x  is the thi  element on the diagonal of the hat 

matrix, which measures the impact of iY  on its own fitted 

value since ˆ .j j ii ij j ii i ij jY h Y h Y h Y≠∑ ∑= = +  If iih  

approaches 1, iY  has a crucial role in determining the value 

of ˆ.iY   
The OLS hat matrix and leverages have many special 

and useful properties:   
(i) H  is symmetric, or ;ij jih h=  

(ii) H  is idempotent, or 2,=H H  or 

( ) ;− =H I H 0  

(iii) =HX X  or ( ) ;− =I H X 0  

(iv) 0 1;iih≤ ≤  

(v) rank ( ) ,i iih p∑ = =X  which implies that the 

mean leverage is / ;h p n=  

if model (1) has an intercept, the following two properties 

hold: 

(vi) 1;i ijh∑ =  
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(vii) 11 / ( ) ( ),T

ii i ih n −= + − −x x A x x  where =x  

/ .n i n∑ x  

In a reasonably large data set, an individual leverage 

value iih  is usually considered extreme if it is more than 

twice the mean, /h p n=  (Belsley et al. 1980, Chapter 2). 

The existence of a gap between most of the cases and a few 

unusual cases in the empirical distribution of the leverages 

also provides evidence of outlying units. 

 
3. Survey weighted hat matrix 

 
The initial step in the pseudo maximum likelihood 

approach is to form the set of estimating equations that 

would be appropriate for a model if the entire finite 

population were observed. This set is a type of population 

total which is then estimated using design-based survey 

methods. Suppose that the underlying structural model is a 

fixed-effects linear model:  

2,     ~ ind (0, )T

i i i i iY N v= + ε ε σx β  (3) 

where iε  is independently normally distributed with mean 0 

and variance 2,iv σ  which is known except for the constant 
2.σ  The pseudo maximum likelihood estimator (PMLE) of 

β  is the solution to the set of estimating equations 
1 ( ) 0,T − − =X WV Y Xβ  with 1diag ( , ..., )nv v=V  and 

1diag ( , ..., ).nw w=W  Survey weights, which in proba-

bility samples are usually inversely proportional to inclusion 

probabilities, are used in the PMLE to account for an 

informative design in which the sample distribution of the 

Y ’s is likely to differ from that of the finite population. 

These equations can be solved explicitly as ˆ =β  
1 1 1( ) .T T− − −X WV X X WV Y  If we assume ,=V I  model 

(3) reduces to (1) and the survey-weighted (SW) estimator 

β̂  will consequently take the form of a weighted least 

squares estimator, 1ˆ ( ) .T T−=β X WX X WY  

When survey weights are accounted for in the regression, 

the predicted values become ˆ ,=Y HY  where the hat 

matrix includes the survey weights and is defined as  

1 1( )T T T− −= =H X X WX X W XA X W  

with .T=A X WX  The leverages on the diagonal of the hat 

matrix are 1 .T

ii i i ih w−= x A x  In this formulation, it is 

assumed that the analyst does not incorporate a V  matrix in 

the regression. However, results can be modified to 

incorporate V  simply by using * 1−=W WV  rather than 

.W  Unlike the unweighted hat matrix, the SW hat matrix is 

no longer symmetric for sampling designs with unequal 

selection probabilities (or, more generally, unequal 

weights). Properties (ii) – (vi) in section 2 still hold (e.g., see 

Valliant, Dorfman and Royall 2000, Chapter 5) provided the 

unweighted hat matrices were replaced by the weighted 

ones. In addition, the SW hat matrix has extra useful, and 

easily verified, properties as follows:  
a) 1 ;T T− =WH = WXA X W H W  

b) ( ) ;T T T T− − =X W I H = X W X H W 0  

c) 1 .T

i i ii i i i i iiw h w w w h−
′ ′ ′ ′ ′= =x A x  

 
The definition of the weighted leverages indicates that a 

large leverage may be caused by outlying X  values, an 

outlying weight, or both. Note that the formulas for the 

survey-weighted hat matrix and leverages apply regardless 

of whether the sample design uses strata or is single-stage or 

multi-stage. This is in contrast to diagnostics, like Cook’s D, 

that require estimated standard errors or covariance matrices 

that should be specialized to fit the sample design. 

 
4. Decomposition of leverages 

 
Leverages can be decomposed into components that 

separate the effect of the weight and the X  values for a 

unit. Suppose the working model is (1) and that the model 

contains an intercept, so that 

1

1

1  

   (   ),

1  

T

T

n

 
 

= ≡ 
  
 

x

X 1 X

x

⋮ ⋮  and 

1

1  ,

T

T

n

 
 

=  
  
 

x

X

x

⋮  

where 1 , 1( , , )T
i i i px x −=x …  are 1 ( 1)p× −  vectors, 1  is a 

1n ×  vector with all the elements equal to 1, and 1X  is a 

( 1)n p× −  matrix. The A  matrix is computed as 

1

1

1 11 1 1

ˆ ˆ     
(  ) ,

ˆ    

T TT T

X

T T T

X

N    
= = ≡        

    

1 W1 1 WX1 t
A W 1 X

X t AX W1 X WX
 

where ˆ
Xt  is a ( 1) 1p − ×  vector with elements ˆ

Xj =t  

i s i ijw x∈∑  and 1A  is a ( 1) ( 1)p p− × −  matrix. Using the 

inverse of a partitioned matrix,  

1 1

1

1 1

1 1

1 1

1

1 1 1 1ˆ ˆ ˆ
ˆ ˆ ˆ ˆ

1 ˆ                       
ˆ

1

ˆ
      

              

1
  

ˆ      (  )
  

    

T T

X X X

X

T T

W W W

W

T

W

W

N N N N

N

N

N

− −

−

− −

− −

− −

−

 + − 
 =
 
 −
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 + − 
=  

 − 

   −   = + −       

t S t t S

A

S t S

x S x x S

S x S

0 x
S x I

I
0 0
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where ˆˆ /W X N=x t  is a ( 1) 1p − ×  vector, and =S  

1
ˆˆ ˆ /T

X X N−A t t  is a ( 1) ( 1)p p− × −  matrix. Simplifying 

the hat matrix using the above inverse matrix, we obtain 

1

1
1 1

1

1
1

1
( ) ( )

ˆ

1
          ( , , ) .

ˆ

T

T T T T

W W

T T

W

T

W n W

T T

n W

N

N

−

−

−

=

 = + − − + 
 

  −
    = + − − 

   −   

H XA X W

11 X 1x S x 1 X W

x x

11 S x x x x W

x x
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Then, using the fact that N̂ nw=  with 1 / ,n
i iw w n=∑=  the 

leverage of thi  observation, or the thi  diagonal element of 

the weighted hat matrix ,H  is  

11 ˆ[1 ( ) ( )].Ti
ii i W i W

w
h N

n w

−= + − −x x S x x  

The quadratic form, 1( ) ( ),T

i W i W

−− −x x S x x  defines an 

ellipsoid centered at Wx  (e.g., see Weisberg 2005, Chapter 

8), and 1ˆ ( ) ( )T

i W i WN −− −x x S x x  is the Mahalanobis 

distance from ix  to .Wx  Consequently, a leverage can be 

large if (1) iw  is large, especially relative to the average 

weight ;w  or (2) ix  is far from the weighted average, ,Wx  

of the ,X  in the metric determined by the matrix .S  

For example, in a simple linear model with only one 

auxiliary variable, ,i i iy x= α + β + ε 2~ (0, ),iε σ  the 

leverage of the thi  observation is  

2

2
1

( )1 ˆ1 .
( )

W i i W
ii n

j j j W

w x x
h N

n w w x x=∑

 −
= + 

−  
 

where ˆ/ .iW i ix w x N∑=  

If the error terms in the model have a general variance 

structure ~ (0, )ε V  and V  is known, the hat matrix is 

then defined as 1 1T− −= XH XA WV  with 

1 1
1

1 1
1 1 1

   

  

/       /

.

/    /

T T

T T

T

i i i i i

s s

T

i i i i i i i
s s

w v w v

w v w v

− −

− −

 
 =
 
 

 
 

=  
  
 

∑ ∑

∑ ∑

1 WV 1 1 WV X
A

X V W1 X WV X

x

x x x

 

A formula for 1−
A  like the one above applies with ˆXV =t  

/ ,s i i iw v∑ x ˆ / ,sV i iN w v∑=  and 1
1 1
T

V

−= −S X WV X  
ˆˆ ˆ / .T

XV XV VNt t  If a general V  is used, ˆ
XVt  and ˆ

VN  no 

longer are design-based estimates of XT  and N  but are 

estimates of 1 /N
XV i iv∑=T x  and 1 1/ .N

V iN v∑=  The 

leverage of the thi  observation under this general model is  

1ˆ[1 ( ) ( )]
ˆ

Ti
ii V i WV V i WV

i V

w
h N

v N

−= + − −x x S x x . 

 
5. Numerical example 

 
As noted in section 1, arguments can be advanced to 

justify ignoring sample design features, generally, and 

weights, in particular, when fitting models. Roughly 

speaking, when a model conditions on all the design 

variables determining the sampling scheme and the model is 

correct for both the population and the sample, OLS 

regression can be used. Analysts may object to including 

design variables in a model because some are not 

scientifically interesting as predictors. In addition, 

conditioning on all design variables may not be possible, 

especially when the “sampling scheme” includes 

uncontrolled nonresponse that itself may be related to the 

response variable. As noted in section 1, SW provides a 

modicum of protection against having a misspecified model 

when the distribution of the sample Y ’s is different from 

that of the population due to the type of sample design used. 

Nevertheless, some analysts will contend that the sample 

design and survey weights can be ignored in specific 

applications and that OLS is appropriate. Thus, it is 

interesting to see how different the OLS diagnostics are 

from SW diagnostics in a real application. However, given a 

course of action, an analyst should use diagnostics 

consistent with the method of fitting. If OLS is used, the 

standard OLS diagnostics should be examined; if SW 

regression is used, SW diagnostics are appropriate. It may 

well be that different points are influential depending on 

whether one uses OLS or SW regression. 

In this section we examine the hat matrix and leverages 

in a regression example using the 1998 Survey of Mental 

Health Organizations (SMHO) conducted in the U.S., which 

collected data on specialty mental health care organizations 

and general hospital mental health care services. The sample 

for this survey was based on a stratified single-stage design 

with probability proportional to size (PPS) sampling 

(Manderscheid and Henderson 2002; Choudhry 2000). The 

measure of size (MOS) used in sampling was the number of 

“episodes”, defined as the number of patients/clients of an 

organization at the beginning of 1998 plus the number of 

new patients/clients added during calendar year 1998. Many 

of the analysis variables in the survey are related to the 

MOS, and their unweighted sample distributions will be 

different from the population distributions since the sample 

tends to have larger size units. Thus, this design is 

potentially informative as defined in Chambers and 

Skinner (2003).  
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The varying sizes of the mental health care organizations 

resulted in the values of collected variables in the sample 

having wide ranges, which may cause some observations to 

have relatively large influence on the parameter estimates of 

a linear regression. The model of interest in this study is to 

regress the total expenditure of a health organization, in 

1,000’s of dollars, on the number of beds set up and staffed 

for use and the number of additions of patients or clients 

during the reporting year. The SW estimator, ˆ =β  
1( ) ,T T−

X WX X WY  was used. Mimicking the procedure 

employed by most analysts, we did not incorporate a model 

variance matrix V in the estimate of the regression 

parameter. A total of 875 observations was used in the 

regression, each of which had non-missing values on the 

independent and dependent variables. 

Table 1 gives a summary of the quantile values of the 

variables involved in the regression, including the survey 

weights. The total expenditure has a maximum of 

519,863.3, which is almost 30,000 times the minimum, 

16.6. Although not as extreme as the total expenditure, the 

number of beds and the number of additions also have 

significant differences between their maxima and minima. 

Because the sample was selected using a PPS design, the 

sample weights were associated with the sizes of the mental 

health organizations, with a range from 1 to 158.86. The 

weights we use in analysis include a nonresponse 

adjustment which was done separately by design stratum. In 

some cases, units that were selected with certainty in the 

initial sample did not respond and some of the responding 

certainties had their weights adjusted to be larger than 1. A 

total of 157 organizations had a weight of 1 after the 

nonresponse adjustment.  

 
Table 1 

Quantiles of variables in SMHO regression 
 

 Quantiles 

Variables 0% 25% 50% 75% 100% 

Expenditure (1,000’s) 16.6 2,932.5 6,240.5 11,842.6 519,863.3 
# of Beds 0 6.5 36 93 2,405 
# of Additions 0 558.5 1,410 2,406 79,808 
Weights 1 1.42 2.48 7.76 158.86 

 
In the regressions that follow, we have included the units 

with weights of 1 in standard error estimation rather than 

excluding them, as would be the approach for handling 

certainties in purely design-based estimation. Including the 

certainties is consistent with the idea that a superpopulation 

model is being estimated and that slope coefficients would 

still have a variance even if a census were done. A sketch of 

the mathematical justification for doing this is model-

dependent (not design-based) and is given in the Appendix. 

Figure 1 shows scatterplots of expenditures versus beds 

and additions for the sample of 875 facilities (omitting one 

extremely large facility described below). In the first row, 

points are highlighted whose OLS leverage is greater than 

2 /p n = 0.007. The second row shows bubbleplots with the 

relative size of the bubbles proportional to the weight of 

each case. High SW leverage points are highlighted using 

the same cutoff of 0.007. The distributions of the predictors 

are quite skewed as noted in Table 1. There is also one very 

large facility that is not shown in Figure 1 because it distorts 

the scale of the plot. That facility (denoted as observation 

818 here) has (expenditures in 1,000’s; beds; additions) = 

($519,863.3; 2,405; 79,808) and has a survey weight of 

2.22. (Observation 818 was one of the cases noted earlier 

that was a certainty in the initial sample but received a 

nonresponse adjustment, and, thus, had a final weight larger 

than 1.) Because its data values are far out of line with those 

of the other organizations, this point has the potential to 

affect estimates. 

Table 2 reports the twenty observations with the largest 

SW leverages. The values of the leverages range from 0.022 

to 0.389, substantially greater than the level of the rough 

rule of thumb 0.007. This table also shows, for these twenty 

cases, the OLS unweighted leverages, the ratio of individual 

sample weight to average sample weight and the relative 

absolute distance between individual X values and their 

weighted means. We note that unit 818 has the highest 

weighted and unweighted leverages, mainly resulting from 

its extremely large number of beds and number of additions. 

Since this case has a less-than-average sample weight, the 

OLS leverage is even larger than the weighted one. There 

are other similar cases such as units 271, 179, 820, 157, 163, 

156, and 154, which are associated with either extreme 

number of beds, or extreme number of additions, or both –

but have small weights. Another type of outlier results from 

extreme sample weights, even if the values of their auxiliary 

variables are not very distinct from others. Units 672, 613, 

711, 801, and 611 all have sample weights more than 15 

times the average weight. Their weighted leverages are 

identified as large, whereas the unweighted leverages are 

not. There is also a noticeable gap between the weighted 

leverages for case 331 ( iih = 0.075) and for case 271 

( iih = 0.046).  
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Figure 1 Scatterplots of expenditures versus beds and additions. High leverage points 

based on OLS (SW) are highlighted in top (bottom) row 

 
Table 2 
Observations with 20 largest survey weighted leverages 

  

   Weights Beds Additions 

Obs ID OLS 
ii
h  Weighted 

ii
h  /

i
w w  1 1 1/W W

i
x x x| − || − || − || − |  2 2 2/W W

i
x x x| − || − || − || − |  

818 0.513 0.389 0.3 49.3 64.7 
189 0.037 0.245 3.4 17.7 0.3 
346 0.035 0.157 2.2 0.6 16.1 
366 0.017 0.105 3.0 0.7 11.1 
331 0.024 0.075 1.5 0.1 13.4 
271 0.068 0.046 0.4 23.7 0.0 
830 0.004 0.045 5.8 5.4 0.1 
628 0.056 0.045 0.4 1.0 20.3 
179 0.089 0.038 0.2 27.4 0.5 
672 0.002 0.034 24.2 1.0 0.8 
820 0.048 0.034 0.3 0.8 19.6 
207 0.012 0.030 1.3 9.5 0.3 
157 0.069 0.030 0.2 23.8 0.5 
163 0.017 0.027 0.8 11.4 0.8 
613 0.002 0.026 18.5 1.0 0.7 
711 0.002 0.024 16.8 1.0 0.9 
801 0.002 0.024 17.5 0.6 0.9 
156 0.055 0.023 0.2 20.9 0.9 
611 0.002 0.023 15.9 1.0 0.8 
154 0.051 0.022 0.2 20.5 0.1 

      w = 6.57      1
Wx = 47.83      2

Wx = 1,214.13 

Note: observation ID is the line number of an observation in the sample. 
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Sizes of the sample weights can make analysts reach 

different conclusions when they use weighted or un-

weighted leverages to identify potentially influential obser-

vations. Figure 2 shows a scatterplot of weighted leverages 

versus unweighted ones. The two reference lines were 

drawn at values of 0.007. Observation 818 is omitted since 

it would again distort the scale of the graph. Clearly, the 

high leverage points identified by the SW method only, 

located in area A, have significantly larger weights than the 

points in area B, which are identified by the OLS method 

only. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 Plot of survey weighted leverages versus OLS 

unweighted leverages 

 
Given that some potentially influential cases have been 

identified, the next step is to see what effect they have on 

parameter estimates. Table 3 shows the OLS and SW 

parameter estimates using all cases. Table 4 lists the OLS 

and SW estimates (i) omitting high leverage cases and (ii) 

omitting observation 818. High leverage points are those 

with iih > 0.007. However, note that different sets of points 

are high leverage in OLS and SW regressions. The standard 

errors are estimated via the usual OLS formula and the 

sandwich estimator (Binder 1983) for the SW estimates.  

Comparing Tables 3 and 4, we see that the OLS 

estimates change substantially after high leverage points are 

deleted (section (i) of Table 4). The OLS intercept, which is 

significant in both tables, jumps from negative to positive. 

The OLS slope for beds drops by about 26% (94.16 to 

69.27) when the high leverage points are dropped. The 

decrease is about 59% for the slope for additions. The SW 

estimates for beds and additions are also sensitive to the 

high leverage points with the slopes decreasing by 7% and 

46% respectively. In all cases, the slopes are significant so 

that the qualitative conclusion that expenditures is related to 

beds and additions holds with or without the high leverage 

points. However, predicted values will be quite different 

before and after omitting these points. 

The standard errors (SE’s) also decrease substantially 

when the high leverage points are omitted. For example, the 

SW standard error for beds drops from 13.14 to 6.75 (a 49% 

reduction); the SE for additions drops from 0.76 to 0.21 (a 

72% reduction). This is due to some points with extreme 

weights being removed in the SW regression. In contrast, 

the SE’s for the OLS estimates actually increase when the 

OLS high leverage points are omitted because the sample 

variance of the x’s decreases. This is another illustration of 

the considerable differences that can occur when applying 

the same type of diagnostic to OLS and SW regressions. 

 
Table 3 
OLS and SW parameter estimates of SMHO regression using all 

875 sample cases 
 

Independent OLS Estimation SW Estimation 

Variables Coefficient SE t Coefficient SE t 

Intercept -1,201.73 526.19 -2.28 514.08 1,157.71 0.44 

# of Beds 94.16 3.03 31.08 81.23 13.14 6.18 

# of Additions 2.31 0.13 18.50 1.84 0.76 2.43 

 
Table 4 
OLS and SW parameter estimates after from SMHO regression 
 

Independent OLS Estimation SW Estimation 

Variables Coefficient SE t Coefficient SE t 

(i) Deleting observations with leverages greater than 0.007  

Intercept 2,987.55 490.54 6.09 1,993.86 353.71 5.64 

# of Beds 69.27 4.35 15.94 75.82 6.75 11.23 

# of Additions 0.95 0.20 4.71 1.00 0.21 4.73 

(ii) Deleting observation 818   

Intercept 1,979.51 537.93 3.68 2,281.17 460.35 4.96 

# of Beds 81.80 2.92 27.98 68.69 8.04 8.54 

# of Additions 1.19 0.14 8.41 0.79 0.29 2.75 

 
Because point 818 is so obviously extreme, we also fitted 

the regression after dropping only that observation. The 

results are shown in section (ii) of Table 4. Omitting that 

single point causes noticeable changes in both OLS and SW 

parameter estimates. This also illustrates that a single point 

can affect the standard errors for estimated slopes in a 

survey-weighted regression, as is also the case in OLS. 

Observation 818 has a large residual (see Figure 3); omitting 

it results in the SE for Beds dropping from 13.14 in Table 3 

to 8.04 in Table 4. Note that if unit 818 had a large weight, 

then its residual would likely be smaller since it would have 

more affect on the fit. If so, the SE could actually be smaller 

when unit 818 is included.  
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Another point to be gleaned from Tables 3 and 4 is that 

the OLS and SW estimates are much closer to each other 

after the high leverage points are dropped than they are 

before. As shown in Table 5, the OLS estimates are 16 and 

26% larger than the SW estimates with all points but are 9 

and 5% less than SW after dropping points. 

 
Table 5 
Ratios of OLS and SW parameter estimates before and after 

deleting observations with leverages greater than 0.007 from 
SMHO regression 
 

 Ratio of OLS to SW estimates 

 With all points Dropping high leverage 

points 

Beds 1.16 0.91 
Additions 1.26 0.95 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3 Plot of fitted values versus Y values. Reference line 

is drawn at ˆY Y.====  The upper panel includes all 
points. The lower panel omits the extreme 
observation 818. High leverage points based on SW 

are solid, dark circles in each panel 

 

 

 

Leverages are usually combined with residuals to deter-

mine which points are influential in fitting the regression 

model because residuals can be used to detect discrepant Y 

values. A scatterplot of fitted values from the SW regression 

versus the Y values is shown in Figure 3. The high leverage 

points are labeled as dark solid circles. The vertical 

distances from the points to the 45 degree line imply the 

sizes of the residuals. The upper panel includes all 875 

sample points; the lower panel omits observation 818 to 

provide better resolution for the remaining points. Note that 

some observations have high leverages and small residuals, 

while others have low leverages and large residuals. The 

influence of these points on the regression can be further 

investigated using various tools that we will not cover here. 

For example, Cook’s distance, implicitly involving the 

leverage and residual, is designed to measure the effect of 

deleting a single observation on the overall parameter 

estimates. The adaptation of some basic OLS diagnostic 

statistics to survey data, such as DFBETAS and DFFITS, 

has been discussed under a single stage sampling design in 

Li and Valliant (2006). 

 
6. Conclusion 

 
Leverages and residuals are essential components of 

diagnostic statistics intended to identify substantial influ-

ence of a single observation or a group of observations on a 

fitted linear model. Survey data sets can contain influential 

observations whether one argues that the sample design is 

ignorable and ordinary least squares can be used, or that the 

design must be accounted for and survey weights used. The 

points that are influential in the two cases are not necessarily 

the same, as illustrated here.  

Once high leverage points are identified, an important 

question is how to deal with them for inference. Two 

options are to down-weight them or drop them from model-

fitting entirely. Down-weighting seems unsatisfactory in 

general since a point can have a high leverage not because 

of a large weight but rather due to having one or more 

unusual X’s. Down-weighting may be sensible from a 

model-based point-of-view, assuming the model itself is 

correctly specified. However, the design-based idea of 

estimating a census parameter may then be lost. If a point 

has a large leverage because of extreme X’s, then it may not 

follow the model at all and should be dropped.  

However, using a mechanical procedure that auto-

matically drops many influential observations with high 

leverages can lead to standard error estimates that are too 

small, resulting in confidence intervals that cover at less 

than the nominal rates and in inflated Type I error rates in 

hypothesis tests (Li 2007). This phenomenon is similar to 

well-known problems in stepwise regression (Hurvich and 
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Tsai 1990, Zhang 1992). Thus, a useful research topic 

appears to be developing inferential procedures for 

constructing confidence intervals and conducting hypothesis 

tests that account for the effects of dropping or down-

weighting points. 

For complex survey data, the hat matrix involves no 

design features except for sample weights and can be used 

to identify cases that have atypical weights or predictor 

values. Other diagnostic statistics, like Cook’s D, do contain 

variance estimates that need to account for complex sample 

design features such as stratification and clustering. The 

adaptation and extension of additional diagnostic ap-

proaches for survey analysis will be explored in the future. 
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Appendix 

 

Inclusion of certainties in standard  

error estimation 
 

In the empirical study in section 5, we included certainty 

units in the standard error calculations. The justification for 

doing this is sketched here. Under the general model (3),  

the model variance of 1ˆ ( ) ,T T−=β X WX X WY  the esti-

mator used in the empirical study, is 1ˆvar ( ) T

M

−=β A X  
1 2− σWVWXA  where T=A X WX  and diag ( ) .i i sv ∈=V  

The sandwich variance estimator used in the study reported 

in section 5 is defined as  

1 1ˆ( ) ( ) ( )
1

T

i ii s

n
v

n

− −
∈

= − −
−

∑β A z z z z A  (4) 

where i i i iw e=z x  with ˆ
i i ie Y= − x β  and =z  

/ .i s i i iw e n∈∑ x  This estimator is design consistent (see 

Binder 1983) in single-stage sampling if units are sampled 

with replacement with probabilities equal to 1,iw
−  and there 

are no certainty units. If the sample contains certainties, the 

formula for ˆ( )v β  would be modified to estimate the design-

based variance: certainties would be excluded from the 

sums in (4) and ,z  and n would be changed to ,ncn  the 

number of non-certainties. In the extreme case of a census, 

the design-based variance estimator would reduce to zero. 

The estimator in (4) is approximately model-unbiased 

under (3) regardless of whether the sample contains 

certainties or not. The middle matrix in (4) can be expanded 

as ( ) ( ) .T T T
i s i si i i i n∈ ∈∑ ∑− − = −z z z z z z zz  Assuming 

that ,T

i i ie Y≈ − x β  the model expectation under (3) of the 

first term is 2( )T T
i sM i iE ∈∑ = σz z X WVWX  while 

1 2( ) .T T

ME n n−= σzz X WVWX  Substituting these expec-

tations gives ˆ ˆ[ ( )] var ( ),M ME v =β β  which holds even 

when some units are certainties. This also shows that ˆ( )v β  

is robust in the sense of properly reflecting the contribution 

of heteroscedastic variances in (3) to the model-variance of 

β̂  even though V may be unknown and not accounted for in 

the estimation of .β  
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A practical bootstrap method for testing hypotheses from survey data 
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Abstract 
The bootstrap technique is becoming more and more popular in sample surveys conducted by national statistical agencies. 
In most of its implementations, several sets of bootstrap weights accompany the survey microdata file given to analysts. So 
far, the use of the technique in practice seems to have been mostly limited to variance estimation problems. In this paper, we 
propose a bootstrap methodology for testing hypotheses about a vector of unknown model parameters when the sample has 
been drawn from a finite population. The probability sampling design used to select the sample may be informative or not. 
Our method uses model-based test statistics that incorporate the survey weights. Such statistics are usually easily obtained 
using classical software packages. We approximate the distribution under the null hypothesis of these weighted model-based 
statistics by using bootstrap weights. An advantage of our bootstrap method over existing methods of hypothesis testing 
with survey data is that, once sets of bootstrap weights are provided to analysts, it is very easy to apply even when no 
specialized software dealing with complex surveys is available. Also, our simulation results suggest that, overall, it performs 
similarly to the Rao-Scott procedure and better than the Wald and Bonferroni procedures when testing hypotheses about a 
vector of linear regression model parameters. 
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1. Introduction  
The bootstrap technique is becoming more and more 

popular in sample surveys conducted by national statistical 
agencies. The main reasons seem to be that it can easily deal 
with several situations that would be difficult to handle 
otherwise (e.g., nonresponse weight adjustment, calibration, 
non-smooth statistics, etc.) and that it is convenient for 
analysts. In most of its implementations, several sets of 
bootstrap weights accompany the survey microdata file 
given to analysts; no other design information is provided. 
These weights are usually obtained by assuming that the 
first-stage sampling fractions are small enough that a 
without-replacement sampling design can be accurately 
approximated by a with-replacement sampling design. The 
reader is referred to Rao, Wu and Yue (1992) for a succinct 
but clear description of a method to construct bootstrap 
weights under this assumption when a stratified multistage 
sampling design has been used.  
So far, the use of the technique in practice seems to have 

been mostly limited to variance estimation problems (e.g., 
Langlet, Faucher and Lesage 2003; Yeo, Mantel, and Liu 
1999; and Hughes and Brodsky 1994). On the research side, 
efforts have been mainly oriented towards finding an 
appropriate bootstrap methodology for variance estimation 
when the sample is drawn without replacement from a finite 
population (see Sitter 1992; or Shao and Tu 1995, Chapter 
6, for a review of methods). Some authors have also studied 
the problem of determining bootstrap confidence intervals 

for a finite population parameter (e.g., Rao and Wu 1988; 
Kovar, Rao and Wu 1988; Sitter 1992; and Rao et al. 1992). 
To our knowledge, there does not seem to be any literature 
on hypothesis testing using the bootstrap technique in 
survey sampling although this problem has been studied in 
the context of classical statistics. The reader is referred to 
Hall and Wilson (1991) for a discussion on bootstrap tests 
of hypotheses and to Efron and Tibshirani (1993) for an 
excellent account of the bootstrap technique in classical 
statistics. It is worth noting the work of Graubard, Korn and 
Midthune (1997) who applied the classical parametric 
bootstrap method to survey data in order to test the fit of a 
logistic regression model. Their procedure is valid when 
sampling is not informative.   
The problem of hypothesis testing from complex survey 

data has been well studied in the last 30 years (e.g., Rao and 
Scott 1981; Fay 1985; Thomas and Rao 1987; Korn and 
Graubard 1990; Korn and Graubard 1991; Graubard and 
Korn 1993; Thomas, Singh and Roberts 1996; and Rao and 
Thomas 2003). However, except perhaps for estimating 
unknown variances/covariances involved in these methods, 
the bootstrap technique has apparently not yet been 
considered for testing hypotheses. The goal of this paper is 
thus to propose a bootstrap methodology for testing 
hypotheses about a vector of unknown model parameters 
when the sample has been drawn from a finite population. 
The probability sampling design used to select the sample 
may be informative or not. Informally speaking, sampling is 
informative when the model that holds for the selected 
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sample is different from the model that holds for the whole 
population; otherwise sampling is not informative.  
Our method uses model-based test statistics that 

incorporate the survey weights. Such statistics are usually 
easily obtained using classical software packages. We 
approximate the distribution under the null hypothesis of 
these weighted model-based statistics by using bootstrap 
weights. An advantage of our bootstrap method over 
existing methods of hypothesis testing with survey data is 
that, once sets of bootstrap weights are provided to analysts, 
it is very easy to apply even when no specialized software 
dealing with complex surveys is available.  
We introduce notation and the problem in section 2. In 

section 3, we describe and justify our proposed bootstrap 
methodology for testing hypotheses with survey data. A 
linear regression example is given in section 4 to illustrate 
the theory. We briefly describe the alternative Rao-Scott 
(Rao and Scott 1981), Wald and Bonferroni procedures in 
section 5 when testing hypotheses about a vector of linear 
regression model parameters. They are evaluated in section 
6 and compared to our proposed bootstrap procedure 
through a simulation study. Finally, we conclude in the last 
section with a short summary and discussion. 

 
2. Preliminaries  

We assume that a finite population U  of size N  has 
been generated according to a model, specified by the 
analyst, that describes the conditional distribution 
( | ; , ).U UF y X β θ  The N-vector Uy  contains the 

population values of a dependent variable , Uy X  is an N-
row matrix that contains the population values of a vector of 
independent variables ,x β  is an r-vector of unknown 
model parameters and θ  is a potential vector of additional 
unknown model parameters. We are interested in testing 
hypotheses about β  but not .θ  We also assume that, if the 
entire population U  could be observed, a test statistic 
( ; )t U c  would be used to test the multiple linear 
hypothesis 0H : =Hβ c  against the alternative hypothesis 

1H : .≠Hβ c  The Q r×  matrix H  is used to define the 
hypothesis to be tested and c is a Q-vector of constants 
specified by the analyst. Ideally, ( ; )t U c  is asymptotically 
pivotal; i.e., it has an asymptotic distribution that does not 
depend on any unknown parameter. We consider statistics 
that have the following quadratic form:  

1ˆ ˆ( ; ) ( ) { ( )} ( ),U Ut U U −′= − −c Hβ c A Hβ c   (2.1) 

where ˆUβ  is a consistent estimator of β  under the model 
and ( )UA  is some scaling matrix. Typically, ( )UA  is 
symmetric and positive definite. 
As an illustrative example, let us assume that ,ky  for all 

population units ,k U∈  are independently and identically 

distributed random variables with mean β  and variance θ  
and that we are interested in testing the null hypothesis 

0H : .cβ =  In this example, 1,Q = 1,r = 1=H  and 
,U U=X 1  where U1  is a population vector of one’s. A 

common test statistic for this problem is  

2ˆ( )
( ; ) ,

ˆ /
U

U

c
t U

N

β −
=

θ
c  (2.2) 

where ˆ /k UU ky N∈∑β =  and 2ˆ ˆ( ) /( 1).k UU k Uy N∈∑θ = −β −  
The statistic (2.2) has the same form as (2.1) if we let 

ˆ( ) / .UA U N= θ  This statistic is usually assumed to follow 
the distribution 2

1χ  or 1, 1NF −  under the null hypothesis.  
As is typically the case, a random sample s  of size n  is 

selected from the finite population U  according to a given 
probability sampling design ( ).p s  Since the dependent 
variable y and, possibly, the independent variables x are not 
observed for nonsample units, we may want to use the 
statistic ( ; )t s c  instead of ( ; ).t U c  In the above example, 
this would lead to 2ˆ ˆ( ; ) ( ) / ,s st s n c= β − θc  where ˆ sβ =  

/k s ky n∈∑  and 2ˆ ˆ( ) /( 1).k ss k sy n∈∑θ = − β −  However, if 
sampling is informative with respect to the model, it may be 
more appropriate and is undoubtedly more common to use a 
weighted test statistic of the form  

1ˆ ˆ ˆˆ ( , ; ) ( ) { ( , )} ( ).s ws s wst s s −′= − −w c Hβ c A w Hβ c  (2.3) 

The n-vector sw  contains the survey weight of sample 
unit k  in its thk  element, denoted by ,kw ˆ

wsβ  is a weighted 
estimator for β  and ˆ ( , )ssA w  is a weighted analogue to 
( )sA  in that each sample unit k is weighted by its survey 

weight kw  whereas there is no weighting with ( ).sA  We 
thus have ˆ ( , ) ( ),ss s=A 1 A  where s1  is a sample vector 
of one’s. As a result, the statistic ˆ ( , ; )st s w c  is also a 
weighted analogue to ( ; )t s c  and we have ˆ ( , ; )st s =1 c  
( ; ).t s c  If the statistic ( ; )t s c  can be computed using 
some classical software package, not necessarily developed 
to handle survey data, the statistic ˆ ( , ; )st s w c  can also be 
computed using the same software package provided that it 
can allow each observation to be weighted by its survey 
weight. 
Typically, the survey weight ,kw  for a unit ,k s∈  is 

equal to the inverse of its selection probability, which may 
then be calibrated to account for known external 
information (e.g., Deville and Särndal 1992). We assume 
that the sampling design and the survey weights are 
constructed so that the following two assumptions hold:  
Assumption 1: ˆ( ) ( , ),mp

wsn N− →β β 0 Σ  where 
mp→  denotes convergence in distribution under the 

model and the sampling design, and Σ  is the asymptotic 
variance-covariance matrix of ˆ

wsn β  under the model and 
the sampling design. The notation “m ” stands for the 
model while the notation “ p ” stands for the probability 
sampling design. 
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Assumption 2: ˆ ( , )sn sA w  is symmetric, positive definite 
and mp-consistent for some fixed symmetric positive 
definite scaling matrix .Aɶ   
Note that assumption 2 does not require ˆ ( , )ssA w  to be 

p-consistent for ( )UA . Indeed, ( )N UA  will be typically 
m-consistent for .Aɶ  Other choices could replace the 
weighted scaling matrix ˆ ( , )ssA w  in (2.3). For instance, it 
could be replaced by an estimator of the design variance of 
ˆ
wsHβ  under simple random sampling (e.g., Rao and Scott 

1981). An alternative choice is the common Wald statistic. 
It is obtained by replacing ˆ ( , )ssA w  in (2.3) by 

ˆˆ ( ),mp wsV Hβ  which is an mp-consistent estimator of 
ˆ( );mp wsV Hβ  the variance of ˆ

wsHβ  evaluated with respect 
to the model and the sampling design. As pointed out in the 
paragraph below (2.3), an advantage of using a scaling 
matrix ˆ ( , )ssA w  such that ˆ ( , ) ( )ss s=A 1 A  is that the 
resulting test statistic ˆ ( , ; )st s w c  can then be directly 
computed using classical software packages provided that 
they allow each observation to be weighted by its survey 
weight. It is thus more convenient for the users of survey 
data. 
Continuing the above example, we may define our 

weighted test statistic as  

2ˆ( )
ˆ ( , ; ) ,

ˆˆ ˆ{( 1)/( 1)} ( / )
ws

s

ws

c
t s

N n N

β −
=

− − θ
w c  (2.4) 

where ˆ ,k s kN w∈∑= ˆ /k s k sws k k kw y w∈ ∈∑ ∑β =  and ˆ wsθ =  
2ˆ ˆ( ) /( 1).k s k k wsw y N∈∑ − β −  In (2.4), the underlying 

weighted scaling matrix is ˆ ˆ( , ) {( 1)/( 1)}sA s N n= − −w  
ˆ ˆ( / ),ws Nθ  which does not depend on the way the weights are 
scaled. If they are rescaled so that ,k s kw n∈∑ =  which is 
typically done by analysts, then the factor ˆ( 1)/( 1)N n− −  
vanishes. The role of this factor, along with other regularity 
conditions, is to satisfy assumption 2. If the SAS® System is 
chosen, the test statistic (2.4) is obtained by using the 
WEIGHT statement in standard procedures. When the null 
hypothesis is true, it is well known that (2.4) unfortunately 
does not follow the distribution 2

1χ  or 1, 1nF −  under the 
model and the sampling design. 
To obtain a valid test procedure, we need to approximate 

the distribution of ˆ ( , ; )st s w c  under the null hypothesis. 
This can be achieved by using the following result:  
Result 1: 1ˆ ( , ; ) ,mp Q

qs q qt s =∑→ λ Ωw Hβ  where ,qλ  
for 1, ..., ,q Q=  are the eigenvalues of =Λ  

1( ) ( )− ′A HΣHɶ  and qΩ  are independent chi-square random 
variables with one degree of freedom.  
The proof of result 1 uses assumptions 1 and 2 and is 

given in the appendix. When the null hypothesis is true (i.e., 
),=Hβ c  we thus have 

1

ˆ ( , ; ) .
Q

mp

s q q
q

t s
=

→ λ Ω∑w c  (2.5) 

Rao and Scott (1981) used a similar result to construct 
their test procedures. They approximated a distribution like 
(2.5) by a scaled chi-square distribution that matches the 
estimated first two moments of the right-hand side of (2.5). 
Instead, we approximate the distribution of ˆ ( , ; )st s w c  
under the null hypothesis by using bootstrap weights. This is 
described in the next section. 
Before giving details of our test procedure, it is useful to 

note that ˆ ( , ; )st s w c  in (2.3) can be written as 

1

1

ˆ ˆ( , ; ) ( , ; )

ˆ ˆ2 ( ) { ( , )} ( )

ˆ( ) { ( , )} ( ).

s s

ws s

s

t s t s

s

s

−

−

=

′+ − −

′+ − −

w c w Hβ

Hβ Hβ A w Hβ c

Hβ c A w Hβ c (2.6)

 

Under the null hypothesis, the last two terms on the right-
hand side of (2.6) vanish and we have ˆ ( , ; )st s =w c  
ˆ ( , ; ).st s w Hβ  When the null hypothesis is false, the third 
term on the right-hand side of (2.6) dominates the others as 
the sample size increases since the first, second and third 
terms are (1),pO ( )pO n  and ( )pO n  respectively, 
provided that assumptions 1 and 2 hold. Also, since 
ˆ ( , )ssA w  is positive definite, the third term is always 
positive. Therefore, a large positive observed value of 
ˆ ( , ; )st s w c  compared to a large percentile of the 
distribution of ˆ ( , ; )st s w Hβ  is an indication that the null 
hypothesis may be wrong.   

3. The proposed bootstrap method  
Let *

kw  denote a random bootstrap weight for unit k, 
obtained using some bootstrap procedure such as that of 
Rao et al. (1992), and let *

sw  be the n-vector that contains 
the random bootstrap weight *

kw  in its thk  element. The 
bootstrap estimator *

ˆ
w s

β  is obtained similarly to ˆ wsβ  by 
replacing the survey weight kw  by its bootstrap version *

kw  
for each sample unit. We also denote by * ,bsw  for 

1, ..., ,b B=  the B  n-vectors containing the bootstrap 
weights *b

kw  in their thk  element. These B  vectors are 
drawn independently and have the same distribution as *

sw ; 
this distribution is called the bootstrap distribution and is 
denoted by the symbol ‘*’. The thb  bootstrap estimator 

*
ˆ

bw s
β  is defined in an obvious manner.  
Before describing our bootstrap test procedure, we first 

introduce three additional assumptions related to the 
construction of the bootstrap weights:  
Assumption 3: *

*ˆ ˆ ˆ( ) ( , ),wsw s
n N− →β β 0 Σ  where 

*→  denotes convergence in bootstrap distribution and 
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Σ̂  is the asymptotic bootstrap variance-covariance matrix 
of *

ˆ .
w s

n β   
Assumption 4: *ˆ ( , )sn sA w  is *-consistent for ˆ ( , ).sn sA w   
Assumption 5: Σ̂  is mp-consistent for .Σ   
Assumptions 3 and 4 are bootstrap analogues to 

assumptions 1 and 2 and should be satisfied with most 
bootstrap methods (e.g., those described in the review paper 
by Sitter 1992) and models (e.g., linear regression model, 
logistic regression model, etc.). The reader is referred to 
Shao and Tu (1995, Chapter 6; in particular section 6.4.4) 
for greater detail.  
A comment is in order about assumption 5. This 

assumption is equivalent to requiring that the bootstrap 
variance **

ˆ( )
w s

V β  be mp-consistent for 

ˆ ˆ ˆ( ) ( ) ( ).mp ws m p ws m p ws= +V β E V β V E β  (3.1) 

This means that the bootstrap distribution must reflect the 
variability due to both the model and the sampling design. 
Unfortunately, standard design-based bootstrap methods 
reflect only the variability due to the sampling design so that 
they only track the first term of the right-hand side of (3.1). 
Thus, these bootstrap methods do not satisfy assumption 5 
in general. However, when the overall sampling fraction 
/n N  is negligible, the second term of the right-hand side 

of (3.1) becomes negligible (e.g., see Binder and Roberts 
2003) so that the approximation ˆ ˆ( ) ( )mp ws m p ws≈V β E V β  is 
appropriate and design-based bootstrap methods can be 
used. In many household surveys, the overall sampling 
fraction is actually quite small. Indeed, bootstrap weights 
are often obtained under the assumption that the first-stage 
sampling fractions are small (e.g., Rao et al. 1992). 
Developing bootstrap procedures that capture both terms of 
(3.1) is an area for future research.  
Under assumptions 3 and 4, we obtain our second result:  

Result 2: **
1

ˆ ˆˆ ( , ; ) ,Q
qs ws q qt s =∑→ λ Ωw Hβ  where ˆ ,qλ  

for 1, ..., ,q Q=  are the eigenvalues of ˆ =Λ  
1ˆ ˆ[ ( , )] ( )sn s − ′A w HΣH  and qΩ  are again independent chi-

square random variables with one degree of freedom.  
The proof of result 2 is omitted as it is very similar to the 

proof of result 1 given in the appendix. From assumptions 2 
and 5, Λ̂  is mp-consistent for .Λ  Thus, using results 1 and 
2, the bootstrap distribution of * ˆˆ ( , ; )s wst s w Hβ  is asymp-
totically the same as the mp-distribution of ˆ ( , ; ),st s w Hβ  
which is itself the same as the mp-distribution of 
ˆ ( , ; )st s w c  under the null hypothesis; the distribution that 
we want to approximate. This suggests the following 
bootstrap test procedure:  
i) Obtain bootstrap weights, * ,bkw  for k s∈  and 

1, ..., .b B=  

ii) Compute * ˆˆ ( , ; ),b

s wst s w Hβ  for 1, ..., .b B=  
iii) Since a large value of ˆ ( , ; )st s w c  leads to rejecting 
the null hypothesis, compute the observed 
significance level (p -value) as  

* ˆˆ ˆ#{ ( , ; ) ( , ; )}
.

b

s ws st s t s

B

>w Hβ w c
 

 The null hypothesis is rejected if this value is lower 
than the significance level α  (e.g., 5%).  

Note that the statistic to be bootstrapped is 
* ˆˆ ( , ; )b

s wst s w Hβ  and not *ˆ ( , ; ).b

st s w c  The use of the 
latter would not properly reflect the distribution under the 
null hypothesis and would thus violate the first guideline in 
Hall and Wilson (1991). 
If ˆ ( , ; )st s w c  is pivotal then the second guideline of 

Hall and Wilson (1991) is also satisfied. The fact that 
( ; )t U c  is asymptotically pivotal certainly helps in 
obtaining a better bootstrap test procedure. However, it does 
not unfortunately guarantee that ˆ ( , ; )st s w c  is also 
asymptotically pivotal, particularly when sampling is 
informative. Nevertheless, failure to use a pivotal statistic 
does not invalidate the above test procedure and may not 
reduce its power. But, it may reduce the level accuracy of 
the test. As pointed out by Hall and Wilson (1991), it is 
sometimes appropriate to disregard the second guideline. 
The main advantage of using the simple (possibly non-
pivotal) statistic ˆ ( , ; )st s w c  in (2.3) and the bootstrap 
statistic * ˆˆ ( , ; )b

s wst s w Hβ  is that, once bootstrap weights 
have been provided on the microdata file, these statistics are 
easily obtained using classical software packages that ignore 
sampling design features. Moreover, we show in section 5, 
through a simulation study, that our bootstrap test procedure 
performs similarly to the Rao-Scott procedure and better 
than the Wald and Bonferroni procedures. 

 
4. A linear regression example  

To better illustrate the theory in a practical context, let us 
now assume that, conditional on ,UX  the random variables 
,ky  for ,k U∈  are independently distributed with mean 

E ( | )m k U ky ′=X x β  and variance V ( | ) ,m k Uy = θX  where 

kx  is an r-vector of linearly independent variables for unit 
.k  Recall that we are interested in testing the null 
hypothesis 0H : =Hβ c  against the alternative hypothesis 

1H : .≠Hβ c  If the entire population could be observed, the 
common statistic 

( )( )
11

( ; )

ˆ ˆ( ) ( )

ˆ

U k k Uk U

U

t U

Q

−−

∈

=

′ ′ ′− −

θ

∑

c

Hβ c H x x H Hβ c
 (4.1)
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could be used, where 

( ) 1ˆ
U k k k kk U k U

y
−

∈ ∈
′= ∑ ∑β x x x  

and 

2ˆ( )
ˆ .k k Uk U
U

y

N r

∈
′−

θ =
−

∑ x β
 

The statistic ( ; )t U c  in (4.1) follows the distribution 

,Q N rF −  under the null hypothesis. It reduces to (2.2) when 
1kQ r= = = =H x  in (4.1). 

A weighted sample version of (4.1), which can be written 
in the form of (2.3), is  

( )( ) 11

ˆ ( , ; )

ˆ ˆ( ) ( )
,

ˆ ˆ{( ) /( )}

s

ws k k k wsk s

ws

t s

w

Q N r n r

−−

∈

=

′ ′ ′− −

θ − −

∑

w c

Hβ c H x x H Hβ c

(4.2)

 

where 

( ) 1ˆ
ws k k k k k kk s k s

w w y
−

∈ ∈
′= ∑ ∑β x x x  (4.3) 

and 

2ˆ( )
ˆ .

ˆ
k k k wsk s

ws

w y

N r

∈
′−

θ =
−

∑ x β
 (4.4) 

For instance, the statistic ˆ ( , ; )st s w c  in (4.2) could be 
obtained by using the WEIGHT statement in the procedure 
REG of SAS as long as 0,kw >  for .k s∈  Note that it 
satisfies assumption 2 and does not depend on the way the 
weights are scaled. Again, if the weights are rescaled so that 

,k s kw n∈∑ =  the factor ˆ( )/( )N r n r− −  in (4.2) vanishes. 
The test statistic (4.2) reduces to (2.4) when Q r= =  

1k= =H x  in (4.2), (4.3) and (4.4). The bootstrap statistic 
* ˆˆ ( , ; )b

s wst s w Hβ  as well as *
ˆ

bw s
β  and *

ˆ
bw s

θ  are obtained 
similarly to ˆ ( , ; ),st s w c ˆ

wsβ  and ˆ wsθ  in (4.2), (4.3) and 
(4.4) respectively, except that kw  is replaced by *b

kw  and c 
is replaced by ˆ .wsHβ   
Remark 1: Note that *b

kw  is likely to be 0 for some units 
k s∈  (see, for example, Rao et al. 1992). In some software 
packages such as SAS, the number of observations used in 
the analysis of the thb  bootstrap replicate, * ,bn  is equal to 
the number of units k s∈  for which * 0.b

kw >  Such 
software packages may use *bn r−  instead of n r−  when 
computing the bootstrap statistic * ˆˆ ( , ; ).b

s wst s w Hβ  One 
must thus make sure that n r−  is used and, if not, that the 
bootstrap statistic computed from these packages is properly 
adjusted before applying the proposed bootstrap test 
procedure. One way of avoiding this problem is to add a 
very small positive value (e.g., 101 10−× ) to each bootstrap 

weight * ,bkw  for ,k s∈  so that no observation is excluded 
from the computation of * ˆˆ ( , ; ).b

s wst s w Hβ   
Remark 2: Let us define the bootstrap statistic *ˆ ( , ; )b

e st s w 0  
by replacing ky  by ˆ

k k k wse y ′= − x β  in *ˆ ( , ; ),b

st s w 0  for 
each .k s∈  It is not difficult to show that *ˆ ( , ; )b

e st s =w 0  
* ˆˆ( , ; )b

s wst s w Hβ  so that our bootstrap procedure can be 
implemented using either *ˆ ( , ; )b

e st s w 0  or * ˆˆ ( , ; )b

s wst s w Hβ  
when a linear regression model is used. The former may 
sometimes be more convenient with some software 
packages. This was the case in our simulation study since 
the use of *ˆ ( , ; )b

e st s w 0  allowed us to get rid of manually 
typing the values of ˆ

wsHβ  for each selected sample. An 
informal explanation for the equality *ˆ ( , ; )b

e st s =w 0  
* ˆˆ ( , ; )b

s wst s w Hβ  can be obtained by treating ˆ wsβ  as a 
fixed quantity, which is actually the case under the bootstrap 
distribution. The bootstrap statistic * ˆˆ ( , ; )b

s wst s w Hβ  can 
thus be interpreted as a statistic aiming at testing the null 
hypothesis *

0
ˆH : ws=Hβ Hβ  or, alternatively, *

0H : ,=Hγ 0  
where ˆ .ws= −γ β β  Still assuming that ˆ wsβ  is fixed, we 
can rewrite our linear model E ( | )m k U ky ′=X x β  as 
E ( | )m k U ke ′=X x γ . These observations seem to imply that 
using the bootstrap statistic *ˆ ( , ; )b

e st s w 0  is equivalent to 
using * ˆˆ ( , ; ),b

s wst s w Hβ  which is indeed true.   
Remark 3: We have already mentioned that the WEIGHT 
statement is necessary to obtain a weighted statistic if the 
proposed bootstrap test procedure is implemented using the 
procedure REG of SAS. Also, the TEST statement is 
necessary to request the desired statistics to be produced and 
the “ODS OUTPUT TESTANOVA =” statement to save 
these requested statistics in a SAS dataset specified by the 
user. 

 
5. Some alternative procedures  

    for linear regression  
In this section, we briefly describe some test procedures 

in the context of linear regression exposed in section 4; 
namely, two naïve procedures that are sometimes used in 
practice as well as specific implementations of the Rao-
Scott, Wald and Bonferroni procedures. They will all be 
evaluated in the simulation study in section 6.  
The Bonferroni, Wald and Rao-Scott procedures, 

described in sections 5.2, 5.3 and 5.4 respectively, all need 
an mp-consistent estimator ˆˆ ( )mp wsV β  of ˆ( ).mp wsV β  In the 
simulation study in section 6, we have used the bootstrap 
variance estimator 

* *1
ˆ ˆ ˆ ˆ( ) ( )

ˆˆ ( ) .
b b

B

ws wsw s w sb
mp ws

B

=
′− −

=
∑ β β β β

V β  (5.1) 
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It is worth noting that the validity of assumption 5 is thus 
not only required for our proposed bootstrap method but 
also for the Bonferroni, Wald and Rao-Scott methods.  
5.1 Two naïve procedures  
The weighted version of the naïve procedure consists of 

using the statistic ˆ ( , ; )st s w c  in (4.2), which is compared 
to the upper tail of the distribution , .Q n rF −  The unweighted 
version uses the statistic ˆ ( , ; ),st s 1 c  which is again 
compared to the upper tail of the distribution , .Q n rF −  Both 
procedures are not expected to work well under informative 
sampling but are still often used in practice, especially the 
weighted version. Note that if sampling is not informative, 
the unweighted version, that ignores the sampling design, 
leads to a simple, valid and reasonably powerful test.  
5.2 The Bonferroni procedure  
The Bonferroni procedure was studied by Korn and 

Graubard (1990). It is simple to use and was shown to work 
well in their empirical study. To describe this procedure, let 

q
′H  represent the thq  row of H  and qc  the 

thq  element of 
.c  Then, compute the Q  weighted statistics 

2ˆ( )
ˆ ( ; ) .

ˆˆ ( )
q ws qBON

q q

q mp ws q

c
t s c

′ −
=

′

H β

H V β H
 (5.2) 

The largest statistic ˆ ( ; )BON
q qt s c , for 1, ..., ,q Q=  is 

compared to the upper tail of the distribution 1, dF  with a 
revised significance level /Qα  instead of .α  The number 
of degrees of freedom d is equal to the number of sampled 
primary sampling units minus the number of strata. Note 
that this procedure depends in general on the model 
parametrization used.  
5.3 WALD F-procedure  
An F-version of the standard Wald chi-square statistic, 

with adjusted denominator degrees of freedom as proposed 
by Fellegi (1980), can be defined as 

1

ˆ ( ; )

1 ˆ ˆ ˆˆ( ) ( ( ) ) ( ).

W

ws mp ws ws

t s

d Q

Qd

−

=

− +
′ ′− −

c

Hβ c HV β H Hβ c
 
(5.3)

 

The statistic ˆ ( ; )Wt s c  is compared to the upper tail of the 
distribution , 1.Q d QF − +  This procedure is implemented in the 
software package SUDAAN (Research Triangle Institute 
2004).  
5.4 Rao-Scott F-procedure  
Another procedure consists of using an F-version (see 

Rao and Thomas 2003) of the second-order adjusted chi-
square statistic of Rao and Scott (1981), which is based on 

Satterthwaite’s correction for the number of degrees of 
freedom. We use an adaptation of these authors’ method for 
linear regression, as implemented in the software package 
SUDAAN (Research Triangle Institute 2004). The statistic 
is defined as  

2

1
SRS

1
ˆ ( ; )

(1 ) *

ˆ ˆ ˆˆ( ) ( ( ) ) ( ),

RS

ws ws ws

t s
a Q

−

=
λ +

′ ′− −

c

Hβ c HV β H Hβ c (5.4)

 

where SRS
ˆˆ
wsV (β )  is an estimator of the variance-covariance 

matrix of ˆ wsβ  under a simple random sampling design, λ  is 
the average of the eigenvalues of the generalized design 
effect matrix 1

SRS
ˆ ˆˆ ˆ[ ] ( ),-
ws mp wsV (β ) V β  a is the coefficient of 

variation of these eigenvalues and * 2/(1 ).Q Q a= +  The 
Rao-Scott F-statistic ˆ ( ; )RSt s c  is compared to the upper tail 
of the distribution *,

.
Q d

F  

 
6. Simulation study  

We performed a simulation study to investigate the level 
and power of the above test procedures in the case of 
informative and non-informative sampling. In sections 6.1 
and 6.2, we describe the population and sample creation 
respectively. We then define the null hypotheses to be tested 
in section 6.3, describe the methods evaluated in section 6.4 
and present simulation results in section 6.5.  
6.1 Generation of the populations  
We generated four populations of N = 10,000 units. 

First, a categorical variable kv  was generated independently 
for each population unit k  so that ,kv i=  for 1, ..., ,i I=  
with probability ( ) 1 / ,kP v i I= =  where I  is the number 
of categories of ,kv  which was set equal to 5. The 
dependent variable y was generated as  

1

( 1)
,

2k o k k

I
y v

+ = α + α − + σϕ 
 

 (6.1) 

where ~ (0, 1),k Nϕ 10oα =  and 3.σ =  The four 
populations that we generated only differ in the choice of 

1,α  which controls the correlation between y  and .v  We 
considered 1α = 0, 0.25, 0.50 and 0.75.  
6.2 Generation of samples and bootstrap weights  
From each of the above four populations, 5,000 stratified 

simple random samples of size 100 were selected without 
replacement under two different stratification scenarios 
aimed at simulating both informative and non-informative 
sampling. In the case of non-informative sampling, the 
strata correspond exactly to the five categories of variable v 
defined above. In the case of informative sampling, the 
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strata are defined by the cross-classification of variable v 
and another categorical variable z  that depends on the 
random error term kσϕ  in (6.1). For each population unit 
,k  variable z was created as follows: 1,kz =  if 0,kσϕ >  
and 2,kz =  otherwise. This leads to 10 strata in the 
informative case that are constructed by crossing the five 
categories of v with the two categories of .z  Each of the 10 
informative strata contains about 1,000 population units 
while each of the 5 non-informative strata contains about 
2,000 population units.  
Furthermore, two different stratum allocation schemes 

were used. The scheme, SCHEME_UNEQUAL, allocates 
the 100 sample units among the strata in the following way: 

 
Table 1 
Sample sizes for SCHEME_UNEQUAL 
 

 v v

z
 1 2 3 4 5 

 1 2 3 4 5 

1 4 4 16 4 28  

In
fo
rm
at
iv
e 

2 4 8 4 24 4  

N
on
-

in
fo
rm
at
iv
e 

8 12 20 28 32 

 
The second scheme, denoted SCHEME_EQUAL, 

assigns the same number of units in each stratum as follows: 

 
Table 2 
Sample sizes for SCHEME_EQUAL 
 

 v v

z
 1 2 3 4 5 

 1 2 3 4 5 

1 10 10 10 10 10  

In
fo
rm
at
iv
e 

2 10 10 10 10 10  

N
on
-

in
fo
rm
at
iv
e 

20 20 20 20 20 

 
The two different schemes lead to very different sets of 

survey weights. The weights resulting from the 
SCHEME_UNEQUAL allocation are much more variable 
than those from SCHEME_EQUAL. Note that we simply 
defined the survey weight kw  as the inverse of the selection 
probability of unit k.  
Finally, for each selected sample, 500 design-based 

bootstrap weights were calculated for each sampled unit, as 
described in Rao et al. (1992), among others. In our 
implementation of this methodology, each bootstrap sample 
was selected with replacement by stratified simple random 
sampling with 1hn −  draws from the hn  sample units in 
stratum .h  This methodology takes the sampling design 
variability into account (with a slight overestimation of the 
design variance due to assuming with-replacement 
sampling) but ignores the model variability. This is 
acceptable since the overall sampling fraction (1/100) is 
small.  

6.3 Null hypotheses  
For each selected sample, we modeled ky  as a function 

of kv  using an analysis of variance model. More 
specifically, we defined indicator variables 

1, if ,

0, otherwise,
k

ik

v i
x

=
= 


 

for 1, ..., ,i I=  and fitted the linear model 
1
10

I
ik i ik ky x−
=∑= β + β + ε  using the weighted least-

squares technique, where kε  is a random error term with 
mean 0 and constant variance. We considered testing the 
following two null hypotheses: 

TEST1: 0 1: 0H β =  

TEST2: 0 1 2 1: 0 .IH ... −β = β = = β =  

Note that both null hypotheses are true for the population 
with 1 0α =  while they are false for the other populations. 
The latter three populations are used to assess the power of 
the different test procedures under study.   
6.4 Test methods   
For each selected sample, we tested the above two null 

hypotheses using five different methods: the proposed 
bootstrap method, the naïve method (both unweighted and 
weighted versions) described in section 5.1, the Bonferroni 
method described in section 5.2, the Wald F method 
described in section 5.3 and the Rao-Scott F method 
described in section 5.4. Results for the naïve method are 
standard output in the software SAS whereas the Wald and 
Rao-Scott F-statistics are standard output in the SUDAAN 
statistical software, version 9. The Bonferroni statistics (5.2) 
are also obtained through SUDAAN. The proposed method 
is programmed in the statistical software SAS, version 8. 
In addition, we also performed the simulation study using 

a linearized variance estimator in the Wald, Rao-Scott and 
Bonferroni methods instead of the bootstrap variance 
estimator (5.1). Rejection rates obtained using the linearized 
variance estimator were slightly lower but quite similar to 
those obtained using (5.1). Given this observation and that 
our focus is on bootstrap methods, we neither show nor 
discuss these additional results in the next section.   
6.5 Simulation results   
For each population, stratification scenario, allocation 

scheme, null hypothesis and method, we calculated the 
rejection rate in percentage over the 5,000 selected samples 
(using a 5% significance level). Results are given below in 
tables 3A, 3B, 4A and 4B. The results are more striking and 
more interesting for the null hypothesis TEST2 than the null 
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hypothesis TEST1. We will thus focus our discussion of the 
results on the former. 
Tables 3A and 3B contain the results in the case of 

informative sampling, which is of more interest to us. Let us 
discuss first results in table 3A for SCHEME_UNEQUAL. 
Both naïve methods perform poorly as they do not properly 
exploit sampling design information. On the one hand, the 
unweighted version is definitely too liberal as its rejection 
rate is far above 5% under the null hypothesis. On the other 
hand, the weighted version is too conservative and 
significantly lacks power when compared to other methods. 
The Wald method is too liberal with a rejection rate of 
15.8% when 0H  is true. The simple Bonferroni method 
improves the situation although it is still too liberal with a 
rejection rate of 11.4% when 0H  is true. This result is 
somewhat surprising as the Bonferroni method is known to 
be (asymptotically) conservative. A referee suggested that 
we consider an improved Bonferroni method such as that 
developed by Benjamini and Hochberg (1995). In this 
simulation study, such a method would not help as it always 
rejects more often than the standard Bonferroni method. The 
Rao-Scott method significantly outperforms the Wald and 
Bonferroni methods under the null hypothesis with a 
rejection rate of 6.8%. The proposed bootstrap method is 
comparable to the proven but more complicated Rao-Scott 
method with perhaps even a slight improvement in the level 

with a rejection rate of 6.2% when 0H  is true. However, the 
Rao-Scott method is slightly more powerful than the 
proposed bootstrap method.  
Table 3B contains results under SCHEME_EQUAL in 

the informative sampling scenario. Here, the weighted and 
unweighted versions of the naïve method yield similar 
results since the variability of the survey weights is quite 
small. Even in this case, the naïve method is definitely too 
conservative, which results in an extremely low power. All 
other methods are comparable both in terms of level ( 0H  
true) and power ( 0H  false) although the Wald method is 
still slightly too liberal compared to the Bonferroni, Rao-
Scott and proposed bootstrap methods with a rejection rate 
of 7.9% when 0H  is true.  
Tables 4A and 4B contain the results in the case of non-

informative sampling. Again, let us discuss first results in 
table 4A for SCHEME_UNEQUAL. As expected, the naïve 
unweighted method performs well here while the naïve 
weighted method becomes too liberal with a rejection rate 
of 12.8% when 0H  is true. In terms of the level, the 
proposed method is competitive to the naïve unweighted 
method and even slightly conservative. It outperforms the 
Wald method and is slightly better than the Bonferroni and 
Rao-Scott methods. Its power is however slightly less than 
these latter two competitors but still acceptable.  
  

Table 3A 
Rejection rates at the 5% significance level under SCHEME_UNEQUAL and informative 

sampling  
 

SCHEME_UNEQUAL Informative Sampling 

Ho TRUE 

1α =α =α =α = 0 
Ho FALSE 

1α =α =α =α = 0.25 
Ho FALSE 

1α =α =α =α = 0.50 
Ho FALSE 

1α =α =α =α = 0.75 

Method Test1 Test2 Test1 Test2 Test1 Test2 Test1 Test2 

Naïve Unweighted 37.5 100.0 85.3 100.0 98.8 100.0 100.0 100.0 
Naïve Weighted 1.7 0.4 14.5 4.6 58.0 33.6 90.3 78.6 
Wald 8.0 15.8 30.9 37.1 71.8 73.9 93.1 95.4 
Rao-Scott 8.0 6.8 30.9 21.1 71.8 61.7 93.1 91.8 
Bonferroni 8.0 11.4 30.9 32.6 71.8 68.8 93.1 91.9 
Proposed Bootstrap 7.4 6.2 29.4 19.7 70.2 59.7 92.8 91.0 

    
Table 3B 

Rejection rates at the 5% significance level under SCHEME_EQUAL and informative 
sampling  
 

SCHEME_EQUAL Informative Sampling 
Ho TRUE 

1α =α =α =α = 0 

Ho FALSE 

1α =α =α =α = 0.25 

Ho FALSE 

1α =α =α =α = 0.50 

Ho FALSE 

1α =α =α =α = 0.75 
Method Test1 Test2 Test1 Test2 Test1 Test2 Test1 Test2 

Naïve Unweighted 0.1 0.0 6.7 0.3 58.1 16.5 97.2 79.7 
Naïve Weighted 0.1 0.0 6.3 0.3 56.8 18.2 97.0 81.4 
Wald 5.8 7.9 43.6 37.5 93.7 92.3 99.9 100.0 
Rao-Scott 5.8 5.5 43.6 32.1 93.7 90.4 99.9 99.9 
Bonferroni 5.8 6.2 43.6 33.6 93.7 88.6 99.9 99.8 
Proposed Bootstrap 2.3 5.1 42.3 31.0 93.6 89.6 99.9 99.9 
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Table 4A 

Rejection rates at the 5% significance level under SCHEME_UNEQUAL and non-
informative sampling  
 

SCHEME_UNEQUAL Non-Informative Sampling 

Ho TRUE 

1α =α =α =α = 0 

Ho FALSE 

1α =α =α =α = 0.25 

Ho FALSE 

1α =α =α =α = 0.50 

Ho FALSE 

1α =α =α =α = 0.75 

Method Test1 Test2 Test1 Test2 Test1 Test2 Test1 Test2 

Naïve Unweighted 4.2 4.7 13.5 11.2 39.9 34.6 71.8 70.5 

Naïve Weighted 11.4 12.8 24.6 23.0 56.8 50.2 83.8 81.2 

Wald 7.6 8.6 16.8 17.8 42.9 42.6 72.5 76.2 

Rao-Scott 7.6 6.4 16.8 12.3 42.9 32.1 72.5 72.5 

Bonferroni 7.6 7.1 16.8 16.5 42.9 42.1 72.5 75.0 

Proposed Bootstrap 6.3 4.5 14.4 9.2 38.5 26.4 68.2 56.4 

 
Table 4B 

Rejection rates at the 5% significance level under SCHEME_EQUAL and non-informative 
sampling 
 

SCHEME_EQUAL Non-Informative Sampling 

Ho TRUE 

1α =α =α =α = 0 

Ho FALSE 

1α =α =α =α = 0.25 

Ho FALSE 

1α =α =α =α = 0.50 

Ho FALSE 

1α =α =α =α = 0.75 

Method Test1 Test2 Test1 Test2 Test1 Test2 Test1 Test2 

Naïve Unweighted 4.9 4.5 17.2 12.4 54.3 42.2 88.2 81.7 

Naïve Weighted 5.0 4.5 17.4 12.5 54.7 42.7 88.3 81.9 

Wald 5.7 6.9 18.8 16.3 56.6 48.9 88.9 85.0 

Rao-Scott 5.7 5.0 18.8 13.1 56.6 49.2 88.9 82.6 

Bonferroni 5.7 5.4 18.8 13.7 56.6 45.1 88.9 81.8 

Proposed Bootstrap 5.0 3.3 16.4 10.0 53.2 36.5 86.8 77.6 

 
 
Table 4B contains results under SCHEME_EQUAL in 

the non-informative sampling scenario. In this table, the 
methods do not appear to differ drastically. As expected, the 
naïve method (both weighted and unweighted versions) 
performs well although it did not outperform the Rao-Scott 
and Bonferroni methods in this simulation study. The 
proposed method is still slightly conservative in this non-
informative scenario and has slightly less power than the 
other methods.  
To investigate the effect of large samples on the test 

procedures, we also performed some simulations with 
sample sizes that are ten times larger than in the original 
setup, as suggested by one reviewer. That is, we considered 
a population size of 100,000 and selected 1,000 samples of 
size 1,000 thus deliberately keeping the same small 
sampling fraction. From this setup, we obtained results 
when 0H  is true, shown in table 5, for both informative and 
non-informative sampling under unequal stratum allocation. 
As expected, all the methods other than the naïve ones have 
similar rejection rates that are indeed slightly lower than 
5%. This illustrates that the differences between the 
methods become less important as the sample size increases. 
 
 

Table 5 
Rejection rates at the 5% significance level under 
SCHEME_UNEQUAL 
 

SCHEME_UNEQUAL Informative Non-
informative 

Ho TRUE 

1α =α =α =α = 0 
Ho TRUE 

1α =α =α =α = 0 

Method Test1 Test2 Test1 Test2 

Naïve Unweighted 100.0 100.0 3.7 3.8 
Naïve Weighted 1.3 0.7 9.3 10.5 
Wald 4.6 4.5 3.2 4.1 
Rao-Scott 4.6 3.8 3.2 3.8 
Bonferroni 4.6 4.5 3.2 3.6 
Proposed Bootstrap 4.4 3.6 2.9 3.8 
 
Overall, our proposed bootstrap method was the best in 

terms of the level, followed closely by the Rao-Scott method. 
It gave somewhat conservative results in the non-informative 
sampling scenarios. This was accompanied by a slight loss of 
power. The Rao-Scott method is a good alternative if users 
have access to an appropriate software package. The 
Bonferroni method is simple to use but may be too liberal and 
the Wald method is even worse. The naïve methods may 
have serious deficiencies, either in the level or in the power, 
although the naïve unweighted method is viable if one is 
reasonably sure that sampling is not informative. 
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7. Summary and discussion  
We have proposed a general and simple bootstrap 

procedure for testing hypotheses from survey data, which 
could also be applied outside the survey sampling field. Our 
procedure uses classical model-based test statistics and is 
thus easy to implement for analysts using classical software 
packages. We have shown in a simulation study that it 
performed well in the context of a linear regression model. 
These good results are encouraging and may suggest that 
our proposed bootstrap procedure could be useful with other 
more complicated models and other statistics. The idea 
could also be easily adapted for the construction of 
bootstrap confidence intervals.  
One could also consider bootstrapping an asymptotically 

pivotal statistic such as the Rao-Scott statistic (5.4). This 
would however involve double bootstrapping if ˆˆ ( )mp wsV β  
is estimated using the bootstrap technique as in (5.1). 
Double bootstrapping requires generating another set of 
bootstrap replicates for each initial bootstrap replicate. 
Although better test procedures could potentially be 
obtained, double bootstrapping may not be convenient for 
analysts. By focusing on simpler statistics that do not 
involve the bootstrap technique, our test procedure avoids 
double bootstrapping and remains simple.  
The properties of our method depend not only on the 

choice of the test statistic but also on the construction of the 
bootstrap weights. Typically, bootstrap weights capture the 
first two design moments of the sampling error, which 
should be sufficient in most cases to satisfy our bootstrap 
assumptions 3, 4 and 5. Bootstrap weights that also capture 
the third design moment could perhaps be useful for 
improving the level accuracy of the bootstrap test. This 
needs further investigation. Finally, as already pointed out in 
section 3, standard design-based bootstrap weights satisfy 
assumption 5 only when the overall sampling fraction is 
negligible so that the model portion of the total variance 
(3.1) is negligible. Research is needed to develop proper 
bootstrap weights, when a non-negligible sampling fraction 
is used, that capture both the model and the design portions 
of the total variance.  
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Appendix  
Proof of result 1  
From assumption 1, we can easily see that  

ˆ( ) ( , ).mp

wsn N ′− →Hβ Hβ 0 HΣH  (A.1) 

Using a standard result on quadratic forms (e.g., Seber 
1984, page 540) and equation (A.1), we obtain  
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where ,qλ  for 1, ..., ,q Q=  are the eigenvalues of =Λ  
1( ) ( )− ′A HΣHɶ  and qΩ  are independent chi-square random 

variables with one degree of freedom. Therefore, from (A.2) 
and assumption 2, we have 
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Bayesian methods for an incomplete two-way contingency table with 
application to the Ohio (Buckeye State) Polls 
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Abstract 

We use a Bayesian method to resolve the boundary solution problem of the maximum likelihood (ML) estimate in an 

incomplete two-way contingency table, using a loglinear model and Dirichlet priors. We compare five Dirichlet priors in 

estimating multinomial cell probabilities under nonignorable nonresponse. Three priors among them have been used for an 

incomplete one-way table, while the remaining two new priors are newly proposed to reflect the difference in the response 

patterns between respondents and the undecided. The Bayesian estimates with the previous three priors do not always 

perform better than ML estimates unlike previous studies, whereas the two new priors perform better than both the previous 

three priors and the ML estimates whenever a boundary solution occurs. We use four sets of data from the 1998 Ohio state 

polls to illustrate how to use and interpret estimation results for the elections. We use simulation studies to compare 

performance of the five Bayesian estimates under nonignorable nonresponse. 
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1. Introduction 

 
The problem of nonresponse is common in most surveys 

becoming a serious issue as the nonresponse rate increases 

(De Heer 1999; Groves and Couper 1998). When survey 

data is summarized in a two-way contingency table, the 

table includes fully classified counts, partially classified 

counts (i.e., item nonresponse), and unclassified counts (i.e., 

unit nonresponse). For example, in the Ohio (Buckeye 

State) Poll (BSP) (Chen and Stasny 2003), one category 

involves the voting preference (candidates A,B,C, or unde-

cided) and the other category is the likelihood of voting 

(likely to vote, not likely to vote, and undecided). First 

supplemental margin contains data only on the voting 

preference, second contains data only on the likelihood of 

voting, and third is only the number of unit nonresponses 

(both responses unknown). Our interest is to incorporate 

these missing observations into estimating the true support 

for each candidate and to present Bayesian models to predict 

the winner. 

In some surveys, the undecided answers are treated as a 

valid response category when the respondents do not have 

strong preference for a candidate and voting intention 

(Smith 1984; Rubin, Stern and Vehovar 1995). Many 

studies, however, have shown that the voting behavior of 

the undecided voters can have a significant impact on the 

final result and that by considering these undecided voters, 

the accuracy of election forecasting can be improved (Perry 

1979; Fenwick, Wiseman, Becker and Heiman 1982; Myers 

and O’Connor 1983; Kim 1995; Chen and Stasny 2003; 

Martin, Traugott and Kennedy 2005). Perry (1979), among 

them, showed that the undecided percentage in a poll is 

likely to be greater than the true percentage by presenting an 

empirical evidence using a secret ballot approach. Kim 

(1995) also indicated that these undecided voters are critical, 

especially in cases where the number of undecided voters is 

greater than the gap between the two leading runners in an 

election race. Three of our empirical studies in Section 3 

belong to this critical case. Fenwick et al. (1982) and Kim 

(1995) applied a discriminant analysis to the October 1980 

poll data in Massachusetts and the 1992 USA presidential 

election, from which they allocated the undecided voters to 

candidates to show that undecided voters generally do not 

vote in the same proportions as their decided counterparts. 

When the focus is on the candidate the undecided voter may 

vote for, undecided responses are better treated as missing 

data (Myers and O’Connor 1983). As indicated in Flannelly, 

Flannelly and McLeod (2000) and Lau (1994), the 

forecasting error for the actual election results increases as 

the rate of undecided voters increases. To overcome this 

problem, Monterola, Lim, Garcia and Saloma (2001) 

applied a neural network approach to classify undecided 

voters in a public opinion survey. Smith, Skinner and Clarke 

(1999) and Molenberghs, Kenward and Goetghebeur (2001) 

utilized model based imputation methods for the 1992 

British General Election Panel Survey and the 1991 

Slovenian plebiscite public opinion survey. Because our 

main goal is to obtain more accurate forecasts by allocating 

undecided voters to proper cell, we treat undecided voters as 

missing observations in the same way as these researchers 

handled them. 
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Nonresponse (or undecided, equivalently) can be distin-

guished by three types of nonresponses (Little and Rubin 

2002, page 11): missing completely at random (MCAR) 

means that the probability of a nonresponse on a variable of 

interest is independent of all survey variables including 

itself; missing at random (MAR) means that the probability 

of a nonresponse depends only on the observed data; 

missing not at random (MNAR) means that the probability 

of nonresponse depends on the unobserved values. Models 

for MCAR or MAR are called ignorable nonresponse 

models while models for MNAR are called nonignorable. 

For example, in a pre-election survey, if the respondents do 

not answer with their preference of a candidate, although 

they support a particular candidate, the pattern for candidate 

preference can be different between the respondents and 

nonrespondents. Then, the nonresponse mechanism is 

nonignorable. When data is assumed to be MCAR, the 

effect of nonresponse can be removed in likelihood 

inference (Little and Rubin 2002, page 11). However, when 

the nonrespondents follow a response pattern different from 

that of the respondents, discarding nonresponses or mis-

specifying the nonresponse mechanism leads to larger 

variances and biases in estimation (Chen 1972; Park and 

Brown 1994). 

When nonresponse is nonignorable in contingency 

tables, ML estimation often yields boundary solutions 

where the probability of nonresponse is estimated to be 

zero in some cells. These boundary solutions often provide 

a local maximum of the likelihood function. In this case, 

the maximum likelihood (ML) estimates of the loglinear 

model parameters cannot have a unique solution and 

usually have large standard deviations (see Section 4 or 

Baker, Rosenberger and Dersimonian (1992) and Park and 

Brown (1994) for more detailed discussions). 

The conditions where the ML estimate falls on the 

boundary solution have been proposed in a one-way 

contingency table (Baker and Laird 1988; Michiels and 

Molenbergs 1997). The geometric explanation for the 

boundary solution of the ML estimate was presented (Smith 

et al. 1999; Clark 2002). Baker et al. (1992) presented a 

sufficient and necessary condition under which the ML 

estimate can have a boundary solution in a two-way 

contingency table. 

To overcome such a boundary problem in the ML 

estimate under the existence of nonignorable nonresponses, 

Park and Brown (1994) and Park (1998) proposed Bayesian 

approach using empirical priors based only on respondent 

information. Clogg, Rubin, Schenker and Schultz (1991) 

used constant prior for an incomplete one-way contingency 

table. Although they showed that, under nonignorable 

nonresponse, Bayesian methods provided smaller mean 

squared errors (MSE) than ML estimate in estimating cell 

expectations, our simulation study shows that this is 

generally not true in an incomplete two-way contingency 

table. Thus, we present two Bayesian models whose priors 

depend on information from both respondents and 

undecided. We, then, apply each to analyze incomplete two-

way contingency table. An extension to a multi-way table is 

straightforward. We can easily apply this extension to 

weighted data from stratified or cluster sampling using 

appropriate covariates (see Section 2.2). 

The remainder of this paper is divided into four sections. 

In Section 2, we consider Bayesian models with five 

different priors and present a generalized expectation 

maximization (EM) algorithm to estimate cell probabilities. 

In Section 3, we apply the Bayesian models to four 

empirical data sets from the Buckeye State Poll (BSP) and 

compare the Bayesian estimates with the ML estimate and 

the actual election results. In Section 4, we use simulation 

studies to compare MSEs and biases of the Bayesian 

estimates from different missing percentages and response 

patterns of the respondents and nonrespondents. In this 

section, we also calculate the coverage probability to 

examine the performance of the Bayesian estimates. Section 

5 includes some concluding remarks. 

 
2. Bayesian models 

 
We discuss five Bayesian estimates to accommodate 

nonignorable nonresponse in an incomplete two-way 

contingency table. We present an EM algorithm to tackle 

the nonresponse problem in a two-way contingency table in 

Section 2.1. Then, in Section 2.2, we specify five priors and 

extend our approach to a multi-way contingency table. 

Let 1X  and 2X  be response variables indexed by I  and 

J  categories, respectively, in a two-way contingency table. 

We also let 1 = 1R  when 1X  is observed and 1 = 2R  when 

1X  is missing. Similarly, 2 = 1R  when 2X  is observed and 

2 = 2R  when 2X  is missing. Then the full array of 1,X  

2,X 1,R  and 2R  constructs a 2 2I J× × ×  contingency 

table in which we have completely classified counts, 

partially classified counts, and unclassified counts. To 

distinguish these three types of observations, let ijkly  be the 

count belonging to the thi  category of 1,X  the thj  category 

of 2,X  the thk  value of 1,R  and the thl  value of 2.R  Thus, 

11ijy  is used for the completely classified counts, 12iy +  and 

21jy+  for the respective column and row supplemental 

margins, and 22y++  for the unclassified counts. We assume 

a multinomial distribution for these three types of 

observations to have the following log likelihood:  

11 11 12 12

21 21 22 22

= log( ) log( )

log( ) log( )

ij ij i i

i j i

j j
j

l y y

y y

+ +

+ + ++ ++

⋅ π + ⋅ π

+ ⋅ π + ⋅ π

∑∑ ∑

∑  (1)
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where 1 2 1 2= Pr[ = , = , = , = ]ijkl X i X j R k R lπ  and 

, , ,= i j k l ijklN y∑  is fixed. 

Since this likelihood function involves more parameters 

than degrees of freedom available for estimation, we link 

ijklπ  to relevant covariates using a loglinear function. Since 

no explanatory variable is available, we do not use any 

explanatory variables. However, the loglinear model can 

easily incorporate explanatory variables in the same way as 

it incorporates the categorical variables (see Baker and Laird 

1988 and Park and Brown 1994 for details). 

A nonignorable nonresponse model for all of the 

variables 1 2 1, , ,X X R  and 2R  is defined by  

0
1 2 1 2

1 1 2 2 1 2 1 2

log( ) =

for  = 1, , ,  = 1, , ,  = 1, 2, and  = 1, 2

i j k l

ijkl X X R R

ik jl ij kl

X R X R X X R R

m

i I j J k l

β + β + β + β + β

+ β + β + β + β

… …  (2)

 

where =ijkl ijklm N ⋅ π  is the expected cell count for the 
th( , , , )i j k l  category and the sum of each β -term over any 

of its respective super script(s) is zero. 

This loglinear model is saturated since the number of 

parameters is exactly the same as the number of cells 

observed from the incomplete two-way contingency table. 

This model is also a nonignorable nonresponse model 

because of the interaction terms between 1X  and 1R  and 

between 2X  and 2,R  implying that the nonresponse of 

each response variable depends on its own status. The 

loglinear model is a tool frequently used for analyzing 

incomplete contingency tables with nonignorable non-

responses. Let p  be the number of parameters (i.e., β ) to 

be estimated. We introduce the 1p ×  design vector ijklz  to 

indicate the affiliation of the observation belonging to the 
th( , , , )i j k l  category. Then the loglinear model given in (2) 

can be rewritten as  

log = Zm β  (3) 

where the 2 2I J× × ×  vector m  is the cell expectation 

and β  is the vector representation of the β s. To avoid a 

boundary solution of the ML estimate in model (2), we 

impose Dirichlet priors to the cell probabilities 11 12( , ,ij ijπ π  

21 22, )ij ijπ π  as given by  

11 12 21 22
11 12 21 22
ij ij ij ij
ij ij ij ij

i j

δ δ δ δ
π ⋅ π ⋅ π ⋅ π∏∏  (4) 

where the hyper parameters, the ijklδ s are specified in 

Section 2.2. These Dirichlet priors produce an explicit and 

convenient form of a posterior distribution because they are 

conjugated to a multinomial distribution (Clogg et al. 1991; 

Park and Brown 1994; Forster and Smith 1998). Together 

with (3), the multinomial distribution of (1) for 

observations, and the prior distribution (4), we have the 

following log posterior distribution:  

( )
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( )
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( )

11 11

11
, , ,

12 12

12

, , ,

21 21

21

, , ,

22 22

= ( )

log exp( )

log exp( )

log exp( )

log exp( )

log exp( )

log exp( )

pos ij ij
i j

ij ijkl
i j i j k l

i ij
i j

i ijkl

i i j k l

j ij
j i

j ijkl

j i j k l

ij
i j

l y

y

y

y

y

y

y

+

+

+

+

++

⋅ ⋅

− ⋅ ⋅

+ ⋅ ⋅

− ⋅ ⋅

+ ⋅ ⋅

− ⋅ ⋅

+ ⋅ ⋅

∑∑

∑∑ ∑

∑ ∑

∑ ∑

∑ ∑

∑ ∑

∑∑

z β

z β

z β

z β

z β

z β

z β

( )

( )

22
, , ,

, , ,

, , , , , ,

log exp( )

( )

log exp( ) .

ijkl
i j k l

ijkl ijkl
i j k l

ijkl ijkl
i j k l i j k l
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z β

z β
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Equation (5) is rather complex and thus we use the EM 

algorithm to estimate the parameters (i.e., β ). 
 
2.1 The EM algorithm  

We maximize the posterior distribution given in (5) over 

the parameter β  using the generalized expectation maxi-

mization (GEM) algorithm (Dempster, Laird and Rubin 

1977) with the following E and M steps.  

E-step: Using augmented 12 21, ,ij ijy y  and 22ijy  for 

= 1, ...,i I  and = 1, ..., ,j J  the posterior (5) can be 

written as  

.pos 11 11 11

12 12 12

21 21 21

22 22 22

= ( ) log( )

( ) log( )

( ) log( )

( ) log( ).

a ij ij ij
i j

ij ij ij

i j

ij ij ij
i j

ij ij ij
i j

l y

y

y

y

+ δ π

+ + δ π

+ + δ π

+ + δ π

∑∑

∑∑

∑∑

∑∑  (6)

 

To determine the expected augmented log posterior in 

(6), we average over the missing counts 12 21, ,ij ijy y  and 

22ijy  conditioning on the current parameter estimates, old,ijklπ  

and the marginal sums 12 21, ,i jy y+ +  and 22:y++  
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old .pos 11 11 11

old

old 12 12 12 12

old

old 21 21 21 21

old

old 22 22 22 22

[ ] = ( ) log( )

( [ | , ] ) log( )

( [ | , ] ) log( )

( [ | , ] ) log( ).
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i j

ij ijkl i ij ij
i j
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+ π +δ ⋅ π

+ π +δ ⋅ π

∑∑

∑∑

∑∑

∑∑

 

(7)

 

Since 12 21, ,ij ijy y  and 22ijy  are multinomial random 

variates conditioned on the respective marginal sum 12,iy +  

21,jy+  and 22,y++  the conditional expectations in the 

equation (7) are given by  

old

12old

old 12 12 12 old

12

old

21old

old 21 21 21 old

21

( | , ) = ,

( | , ) = ,

ij

ij ijkl i i

i

ij

ij ijkl j j

j

m
E y y y

m

m
E y y y

m

+ +
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π

π

 

and 

old

22old

old 22 22 22 old

22

( | , ) =
ij

ij ijkl

m
E y y y

m
++ ++

++

π  

where old old= .ijkl ijklm N ⋅ π  

M-step: In this step, we maximize the expected log 

posterior (7) using the pseudo observations 11 =ijyɶ 11ijy +  
old old

11 12 12 12 12 12, = / ,ij ij i ij i ijy y m m+ +δ +δɶ
old old

21 21 21 21= /ij j ij jy y m m+ + +ɶ  

21,ijδ  and old old
22 22 22 22 22= / .ij ij ijy y m m++ ++ + δɶ  We impose the 

constraints on these pseudo observations so that their 

marginal sums are the same as the corresponding marginal 

sums of observations: 11 11= ,y y++ ++ɶ 12 12= ,i iy y+ +ɶ 21 =jy+ɶ  

21,jy+  and 22 22= .y y++ ++ɶ  Under these constraints, the 

pseudo observations are now  
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Then, the expected log posterior function (7) becomes  

*
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This equation has the same form as the likelihood obtained 

from a four-way contingency table with fully observed cell 

counts *
ijkly s. Thus, using the iterative re-weighted least 

squares method (Agresti 2002, page 342), we obtain the 

maximum posterior estimator (MPE) of β  as follows:  

( 1) 1 1 1 ( )ˆ ˆ= ( ,t T T t

t tZ V Z) Z V+ − − − γβ  

where ( )tγ  has element ( ) ( ) ( ) ( )= log ( ) /t t t t
ijkl ijkl ijkl ijkl ijklm y m mγ + −  

and ( ) 1ˆ = [diag( )] .t

tV
−m  We finally iterate these E and 

M-steps until a convergence criterion is achieved. The 

convergence criterion we use is 610 ,−ε ≤  where ε  is the 

difference between two consecutive log posterior functions. 

Let obs 11 12 21 22= ( , , , )ij i jY y y y y+ + ++  and mis =Y  

12 21 22( , , )ij ij ijy y y  for = 1, ,i I…  and = 1, ,j J…  be the 

observed count vector and the missing count vector, 

respectively. Then the log posterior distribution (5) can be 

written as  

pos obs obs mis

mis obs

= ( | ) = ( | , )

log ( | , ).

l l Y l Y Y

f Y Y−

β β

β  (8)
 

By taking differentiation twice with respect to ,β  (8) 

yields  

2 2

obs obs mis

2

mis obs

( | ) ( | , )
=

log ( | , )

= [diag( ) / ]

[diag( ) ] ,

T T

T

T T

T T

l Y l Y Y

f Y Y

N

AB

∂ ∂
∂ ∂ ∂ ∂

∂
−
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− −

+ −

β β

β β β β

β

β β

Z m mm Z

Z π ππ Z  (9)

 

where π  is vector expression of cell probabilities ijklπ  and 

,A B  are given by 

 



Survey Methodology, June 2009 41 
 

 

Statistics Canada, Catalogue No. 12-001-X 

2
1212

1212 12
2

21 21

2121 21

2
2222

2222 22

0 0 0 0

0 diag 0 0

0 0 diag 0

0 0 0 diag

iji

ii i

j ij

jj j

ij

my

my
A

y m

my

my

my

+

++ +

+

++ +

++

++++ ++

 
 
 
  
  + δ  =
  
  

+ δ   
  
   + δ  

 

 

and 

12

21

22

0 0 0 0

0 0 0
= .

0 0 0

0 0 0

IJ

IJ

IJ

I B
B

I B

I B

 
 

− 
 −
  − 

 

Here, to save the space and since there is no difficulty to 

extend for general i  and 12 21, , ,j B B  and 22B  are illustrated 

only for = 2I  and = 3:J  
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.  

We observe that the observed data information 
2

obs( | ) / Tl Y∂ ∂ ∂β β β  is equal to the augmented data 

information minus the missing data information. As shown 

in Gelman, Carlin, Stern and Rubin (2004, page 103), the 

inverse of the observed data information evaluated at the 

MPE of β  is the variance of the MPE of .β  
 
2.2 Specification of priors  

To complete the EM algorithm, we need to determine the 

hyper-parameters, ijklδ s. We set the sum of priors 

, , ,i j k l ijkl∑ δ  equal to the number of parameters involved in 

the loglinear model, ,p  as suggested by Clogg et al. (1991). 

Under this constraint, we propose five types of priors as 

follows. We first allocate ijklδ  for the MPE of ijklm  to 

shrink toward the MLE obtained under ignorable non-

response. That is, we determine ijklδ  depending only on the 

known response counts 11ijy  and call them respondent-

driven priors. 

The first type of respondent-driven prior is, for all 

= 1, ,i I…  and = 1, , ,j J…  

11 11

11 11 12 12 21
11 11

11 11

21 22 22
11 11

= , = , 

= , and =  

ij ij

ij ij ij

ij ij

ij

y y

y y

y y

y y

++ ++

++ ++

δ ∇ δ ∇ δ

∇ δ ∇  (10)
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where = /kl klp y y++ ++++∇ ⋅  for = 1, 2k  and = 1, 2.l  

The second type of respondent-driven prior gives no prior 

(i.e, no need of prior as described below) on 11ijπ  in the first 

type of priors. That is, the second type is the same as the 

first type except 11 = 0ijδ  for all i  and .j  In the case of a 

one-way contingency table (i.e., either 1X  or 2X  is fully 

observed without missing information) and 22 = 0,y++  the 

first type is reduced to the priors used in Park (1998), 

whereas the second type is reduced to the priors used in 

Park and Brown (1994). These two types of respondent-

driven priors may be too simplistic because the non-

respondents are usually assumed to have a different 

response pattern from the respondents under a nonignorable 

nonresponse model. For example, the candidate preference 

of nonrespondents could be different from that of 

respondents in a pre-election survey. 

In order to define the third type of prior, denote ˆ ijklm  as 

the MLE for .ijklm  The closed form of ˆ ijklm  can be obtained 

from Baker et al. (1992) where some ˆ ijklm  could be zero 

because of boundary solutions. For example, when a 

supplemental column margin has a boundary solution in an 

incomplete 2 2×  table, the MLEs are 1 11 1 11ˆ = ,j jm y  

2 11 2 11 21

2 11 12 11
2 11 21

( )
ˆ ˆ ˆ= , =

j j

j ij ij j

y y y
m m m b

y y
+ +

+ ++

+
+

 

where jb  is the solution of 2
=1 11 12= ,j ij j iy b y +∑ 1 21ˆ = 0,jm  

21
2 21 2 11 1 22

2 11

ˆ ˆ ˆ= , = 0,j j j

y
m m m

y
++

+
 

and 2 22 2 12 22 2 12ˆ ˆ= / .j jm m y y++ +  Therefore, these ML 

estimates accommodate both the information of respondents 

and nonrespondents, as well. The ML estimates can also be 

obtained from our EM algorithm in Section 2.1 by setting 

= 0ijklδ  for all , ,i j k  and .l  Using these ML estimates, 

we define the third type of prior as  

11

11 11 12
11

12

12
12

21

21 21
21

ˆ
= , 

ˆ

ˆ 1 1= ,
ˆ 2
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ˆ 2
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and (11) 
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ˆ 1 1=
ˆ 2

ij

ij

m

m I J++

 
δ ∇ ⋅ + ⋅ ⋅ 

 

where ˆ ˆ= /kl klp m m++ ++++∇ ⋅  for , = 1, 2,k l  and the term 

1/IJ  is the constant prior of Clogg et al. (1991) to prevent 

possible boundary solutions for 12 21, ,ij ijm m  and 22ijm  (also 

see the fifth prior below). Thus, we allocate the third prior of 

ijklδ  for the MPE of ijklm  to shrink toward the ML obtained 

under the nonignorable nonresponse, whereas the first prior 

is obtained under an ignorable nonresponse model. 

The fourth type of prior is defined by letting 11 = 0ijδ  in 

(11) as we did in obtaining the second type of prior from the 

first type. The last type of prior is from Clogg et al. (1991) 

defined as  

( ) ( )11 12 21
1 1= 0, = , = , 

3 3ij ij ij

p p

I J I J
δ δ ⋅ δ ⋅

⋅ ⋅
 

and (12) 

( )22
1= .

3ij

p

I J
δ ⋅

⋅
 

These five types of priors are summarized in Table 1 and 

are compared in the next section using empirical data and 

simulation studies. 

 

 
Table 1 

Five types of priors δδδδ ijkl  ( ˆ ijklm  is MLE, I and J are the numbers of row and columns in a two-way table, and p is the 
number of parameters) 
 

 11δδδδ ij  12δδδδ ij  21δδδδ ij  22δδδδ ij   
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Up to this point, we have presented methods for a two-

way table, and ijkly  is defined for the count of the ( , )i j  cell 

of the thi  row and thj  column (i.e., 1 2= , = ),X i X j  and 

indicator 1R  for a missing row and 2R  for a missing 

column (i.e., 1 2= , = ).R k R l  This can be easily extended 

to the 3-way table. Denote ijklmny  to be the th( , , )i j k  cell 

count for the three response variables (i.e., 1 = ,X i  

2 = ,X j  and 3 = )X k  and respective missing rows and 

columns (i.e., 1 = ,R l  2 = ,R m  and 3 =R n  for 

, , = 1, 2).l m n  Thus, = 111lmn  implies that all of the 

three variables are observed, = 112lmn  implies that 1X  

and 2X  are observed but 3X  is missing; similarly for 

= 121,122, 211, 212, 221, 222;lmn  1  is for observed and 

2  designates missing. Accordingly, the EM algorithm and 

priors for an incomplete three-way contingency table can be 

defined. The conditional expectation in the E-step for the 
th( , , )i j k  cell with unknown information of k  margin is 

old
112old

old 112 112 112 old
112

( | , ) = .
ijk

ijk ijklmn ij ij

ij

m
E y y y

m
+ +

+

π  

Similarly,  

old
122old

old 122 122 122 old
122

( | , ) = .
ijk

ijk ijklmn i i

i

m
E y y y

m
++ ++

++

π  

and 
old

222old

old 222 222 222 old
222

( | , ) = .
ijk

ijk ijklmn

m
E y y y

m
+++ +++

+++

π  

Other expectations and five types of priors can be similarly 

defined. 

The Buckeye state poll is a Random Digit Dialing 

(RDD). No modification is necessary for the Bayesian 

procedures if the RDD is strictly a self-weighting survey 

(Lavrakas 1993; Potthoff 1994). However, RDD is not 

always done by a self-weighting design. For example, a 

telephone sample comprises a sample of households, not 

persons. If one person is interviewed in a household, a 

weight should be superimposed on the response by the 

number of persons in the household. A weight is also 

needed for the households with more than one telephone 

number. If an accurate estimate of the total number of 

households is available, stratification by region or state is 

possible and weighting must be considered in a 

comprehensive analysis. RDD was used in the 1998 Ohio 

election surveys. In this study, our method and models do 

not include weighting from stratification, clustering, and 

other factors leading to different probabilities of selection in 

a telephone survey. 

However, further extension can be made for such 

weighting. A simple extension below shows how to 

accommodate a typical stratification. In a three-way table, 

let 3X  be the third response variable indexed by h  

( = 1, , )h H…  that is assumed to be always observed. The 

H  categories can be strata in a stratified sampling. Since 

3X  is always observed, the corresponding missingness 

variable 3R  is equal to 1 and its observation can be denoted 

by 1.ijhlmy  Then, we can write the following log likelihood 

for each stratum :h  

111 11 121 12
=1 =1 =1

211 21 221 22
=1

= log( ) log( )

log( ) log( )

I J I

h ijh ijh i h i h
i j i

J

jh jhk h h
j

l y y

y y

+ +

+ + ++ ++

π + π

+ π + π

∑∑ ∑

∑
 

where 1 2 1 2 3= [ = , = , = , = | = ]ijhlm P X i X j R l R m X hπ . 

Thus, the terminology 3X  used for a three-way table acts as 

an indicator for strata. For each stratum ,h  the likelihood of 

(13) is exactly the same as that of a 2-way table. 

Then, a log linear model for the cell expectation 

=ijhlm h ijhlmm N ⋅ π  can be defined in a similar way as in (2) 

where , , ,= i j l mh ijhlmN y∑  for each = 1, 2, ..., .h H  A 

nonignorable nonresponse model is given by  

0
1 2 1

2 1 2 1 1 2 2

log( ) =

.

i j l
ijhlm h X h X h R h

m ij il jm
R h X X h X R h X R h

m β + β + β + β

+ β + β + β + β  (13)

 

To avoid a boundary solution problem as in Section 2, we 

use the Dirichlet priors for ijhlmπ   

11 12 21 22
11 12 21 22 .ijh ijh ijh ijh

ijh ijh ijh ijh
i j

δ δ δ δ
π ⋅ π ⋅ π ⋅ π∏∏  

Then, we follow exactly the same procedures as shown 

in Section 2 to estimate the cell expectations ijhlmm  for each 

= 1, 2 , .h H…  The estimate of the th( , )i j  cell expectation 

is  

=1 ,

ˆ ˆ( ) =
H

ij h ijhlm
h l m

E y w m∑ ∑  

where hw  is the known weight for the thh  stratum and 

ˆ ijhlmm  is the ijhlmm  evaluated at the MPE of .β  For 

example, = / hh h hw N N∑  is for a stratified sample where 

hN  is the population size of the thh  stratum. 

The variance-covariance matrix of an approximation to 

the distribution of m̂  is  

ˆ ˆˆVar( )
T∂ ∂

∂ ∂MPE
m mβ
β β

 (14) 

where m̂  is a vector expression of the cell estimates 

ˆ ,ijhlmm ˆ
MPEβ  is the MPE of β  and its variance ˆVar( )MPEβ  

is given by the inverse of (9), and / = hN∂ ∂ ×m β  

ˆ ˆ ˆ[diag( ) ]T−π ππ Z  where π̂  has  
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( , , , , )

ˆexp( )
ˆˆ = ( ) =

ˆexp( )

ijhlm

ijhlm ijhlm

kk i j h l m∈

π π
∑

MPE

MPE

MPE

z β
β

z β
 

as its typical element. 

 
3. An application to a Buckeye State Poll 

 
In forecasting the winner in a poll, the accuracy of the 

poll often depends on how to handle undecided voters who 

are likely to vote but who have not yet decided their 

preference for a candidate. We compare the Bayesian 

estimates based on the five types of priors with the ML 

estimate using the Buckeye State Poll (BSP) conducted in 

1998 by the Center for Survey Research at Ohio State 

University. The BSP surveys produced incomplete two-way 

contingency tables with one category being candidate 

preference and the other category being the likelihood of 

voting in the November 1998 races for Ohio Governor, 

Attorney-General, Mayor of Columbus, and Treasurer. 

Table 2 summarizes these four polls and shows a substantial 

number of undecided voters. 

For comparison, we consider the following ignorable 

Model 1 and the two nonignorable nonresponse Model 2 

and Model 3.  

0
1 2 1

2 1 2 1 2

Model 1: log( ) =

,

i j k

ijkl X X R

l ij kl

R X X R R

m β + β + β + β

+ β + β + β
 

0
1 2 1 2

1 1 2 2 1 2 1 2

Model 2: log( ) =

,

i j k l

ijkl X X R R

ik jl ij kl

X R X R X X R R

m β + β + β + β + β

+ β + β + β + β
 

0
1 2 1 2

1 2 2 1 1 2 1 2

Model 3: log( ) =

.

i j k l

ijkl X X R R

il jk ij kl

X R X R X X R R

m β + β + β + β + β

+ β + β + β + β
 

Model 1 is missing completely at random, and cases with 

missing data can be ignorable in likelihood inferences. 

Model 2 and Model 3 are nonignorable where the 

probability of missing a variable depends on itself in Model 

2 while the probability in Model 3 depends on the other 

variable. Note that the ML estimates in Model 1 and Model 

3 are not on the boundary of the parameter space as shown 

by Baker et al. (1992). Moreover, since we found that, 

under Model 1 and Model 3, all of the five Bayesian 

estimates for the expected cell counts are not only fairly 

close to the ML estimate and their standard deviations are 

almost the same, we only present the ML estimates for 

Model 1 and Model 3. 

We denote the ML estimates under ignorable Model 1, 

nonignorable Model 2, and nonignorable Model 3 by 

1 ,MLIG  2 ,MLNON  and 3 ,MLNON  respectively. IG  and 

NON  stand for ignorable and nonignorable, respectively. 

We also let 2BE

iNON  be the Bayesian estimator using the 
thi  type of priors under Model 2. That is, 12

BENON  uses 

the respondent-driven priors of (10) and 22BENON  is the 

same priors as 12
BENON  except  for  11 = 0.ijδ  Similarly, 

32BENON  is given by (11) and 42BENON  is the same priors 

except for 11 = 0.ijδ  52BENON  is the Bayesian estimate 

using the constant priors of (12). In addition, we can use the 

Stasny method (1986, 1988) to estimate the expected cell 

counts under Model 1 and Model 3 that she implicitly 

assumed. However, her estimates appear to be exactly the 

same as 1 .MLIG  

 

 
Table 2 

Observed data for BSP pre-election surveys 
 

 Governor race Attorney-general race 

 Fisher Taft Others Undecided Montgomery Cordray Undecided 

Likely to vote 112 140 23 61 197 82 57 

Unlikely to vote 96 108 21 73 161 65 75 

Undecided 7 11 1 4 15 4 0 

 Mayor race Treasurer race 

 Coleman Teater Espy Undecided Deters Donofrio Undecided 

Likely to vote 40 32 25 30 127 119 90 

Unlikely to vote 37 47 41 56 127 90 84 

Undecided 0 2 1 0 10 7 0 
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The top table in Table 3 shows predicted values of 

elections using only “likely to vote” for the four races and 

their standard deviations in parentheses. The standard 

deviations are close to each other and show significant 

differences between the first and second leading candidates, 

except in the race for Mayor. This table also includes the 

actual election results and shows whether or not the ML 

estimates fall into the boundary solutions. 

The bottom table shows the predictions of elections using 

both “likely to vote” and “unlikely to vote” to see what 

happens if those who responded to “unlikely to vote” 

actually voted. Comparing the two tables, we may conclude 

that the winners for Governor, Attorney-General, and the 

Treasurer’s elections remained unchanged regardless of the 

likelihood of voting, whereas the winner could have 

changed in the Mayor’s election if most of those who were 

“unlikely to vote” actually voted. 

Based on Table 3, we can classify the 7 estimates, except 

2 ,MLNON  into two groups: 32 ,BENON  42 ,BENON  and 

52BENON  to the first group and the remaining four 

estimates, 12 ,BENON  22 ,BENON  1 ,MLIG  and 3MLNON  to 

the second group. As expected, since the priors ijklδ  for 

12
BENON  and 22BENON  are so defined that the estimate of 

ijklm  shrinks toward the ML under an ignorable 

nonresponse model, these two Bayesian estimates are very 

close to 1MLIG  and hence have little advantage over the 

1 .MLIG  It is also interesting to note that 3MLNON  is almost 

the same as 1MLIG  although their loglinear models are 

differently specified. 

There is no general criterion to evaluate whether an 

ignorable nonresponse model or a nonignorable non-

response model is appropriate. However, as stated in Chen 

and Stasny (2003), the assumption of nonignorability for a 

nonresponse may be a reasonable assumption in the 

Buckeye State Poll study because people might be reluctant 

to express their preference for an unpopular candidate, or 

their current preferences are not firm or accurate at the time 

of the interview. In this regard, the 12 ,BENON 22 ,BENON  

and 3MLNON  may not be appropriate in these particular 

case studies because they are almost the same as the 1MLIG  

of Model 1. 

 

 
Table 3 
Prediction of elections based on the October 98 and April 98 Buckeye State Polls (the unit is % and the numbers in parentheses 

are standard deviations) 
 

 Governor  Mayor Attorney-General Treasurer 

 Fisher Taft Others  Coleman Teater Espy Mongomery Cordray Deters Donofrio 

 Likely to vote only used 

2MLNON  33.2(2.75) 42.1(3.00) 24.8  31.5(4.65) 25.3(4.23) 43.2 75.6(3.71) 24.4 57.0(3.48) 43.0 

12
BENON  40.6(3.04) 48.5(3.27) 10.9  38.1(5.14) 34.2(4.78) 27.7 72.1(3.61) 27.9 52.7(3.36) 47.3 

22BENON  40.9(3.01) 50.7(3.20) 8.40  39.9(5.04) 33.6(4.83) 26.5 71.0(3.59) 29.0 52.1(3.34) 47.9 

32BENON  35.8(2.85) 44.5(3.08) 19.7  35.6(4.87) 29.3(4.51) 35.1 63.0(3.67) 37.0 54.3(3.41) 45.7 

42BENON  36.3(2.87) 45.2(3.11) 18.6  35.9(4.91) 29.4(4.52) 34.6 63.0(3.64) 37.0 53.9(3.40) 46.1 

52BENON  38.9(2.99) 47.4(3.20) 13.7  37.7(4.99) 33.6(4.77) 28.7 66.0(3.54) 34.0 51.5(3.32) 48.5 

1MLIG  40.6(3.03) 51.2(3.28) 8.20  40.8(5.16) 33.4(4.76) 25.8 70.9(3.59) 29.1 51.8(3.32) 48.2 

3MLNON  40.6(3.03) 51.2(3.28) 8.20  40.9(5.16) 33.3(4.75) 25.8 70.9(3.58) 29.1 51.7(3.32) 48.3 

Actual result 45 50 5  39 37 24 63 37 57 43 

Boundary yes  yes yes no 

 Likely to vote +  Unlikely to vote 

2MLNON  32.7(1.83) 39.4(1.91) 27.8  24.8(2.45) 26.2(2.49) 49.0 77.0(1.64) 23.0 60.2(1.93) 39.8 

12
BENON  41.3(1.93) 46.4(1.96) 12.3  30.7(2.68) 37.1(2.75) 32.2 72.8(1.74) 27.2 56.0(1.96) 44.0 

22BENON  41.9(1.93) 49.2(1.95) 8.90  32.7(2.63) 36.5(2.76) 30.8 71.4(1.77) 28.6 55.3(1.96) 44.7 

32BENON  35.4(1.87) 41.8(1.93) 22.7  27.8(2.55) 30.5(2.62) 41.7 61.0(1.72) 39.0 57.6(1.95) 42.4 

42BENON  36.0(1.88) 42.6(1.93) 21.4  28.7(2.57) 30.6(2.62) 40.7 60.9(1.75) 39.1 57.2(1.95) 42.8 

52BENON  39.1(1.91) 45.1(1.95) 15.8  30.7(2.63) 35.8(2.74) 33.5 64.8(1.88) 35.2 54.8(1.96) 45.2 

1MLIG  41.5(1.96) 49.8(1.96) 8.70  33.9(2.70) 36.1(2.74) 29.9 71.2(1.78) 28.8 55.0(1.96) 45.0 

3MLNON  41.5(1.96) 49.8(1.96) 8.70  34.1(2.71) 36.0(2.74) 29.9 71.1(1.78) 28.9 55.0(1.96) 45.0 
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Compared to actual election results, 2MLNON  gives the 

worst prediction for Governor, Mayor, and Attorney-

General because the 2MLNON  lies on a boundary solution; 

whereas it provides the best prediction for Treasurer 

because it does not lie on a boundary solution. In the 

Attorney-General’s election, 32BENON  and 42BENON  not 

only predicted the exact actual result but also are quite 

different from the other estimates. Since 32BENON  and 

42BENON  have the priors to reflect different response 

patterns between respondents and the undecided, we can 

infer that the undecided voters in the Attorney-General race 

have quite different preference for the candidate from the 

respondents (i.e., 32BENON  and 42BENON  allocate 19.4 % 

of the undecided voters who are likely to vote for 

Montgomery and 80.6% for Cordray, whereas the data in 

Table 2 indicates the percentage of Montgomery vs  

Cordray is 29.4% vs  70.6% among respondents who are 

likely to vote).  

To see this difference between the respondents and 

undecided voters in terms of parameter estimates and to 

examine the effect of occurrence of the boundary solution 

on the estimates under the nonignorable Model 2, we 

present the ML estimates and 32BENON  estimates and their 

corresponding standard deviations for the Attorney-General 

race in Table 4. Because of a boundary solution, all of the 

ML estimates have too large standard deviations as 

expected. On the other hand, 32BENON  is very stable. Since 
11

1 2
= 0.0472X Xβ  is the smallest and its standard deviation is 

relatively large, we neglect 11

1 2
X Xβ  to avoid complexity of 

interpretation. Under 11

1 2
= 0,X Xβ   it is not difficult to show 

that, using the estimates of 32BENON  in Table 4, 

1 1 1 11

1 1 1
2 1

log = 2( ) = 0.09
j l

X X R
j l

m

m
β + β  

and 

1 2 1 11

1 1 1
2 2

log = 2( ) = 1.3916
j l

X X R
j l

m

m
β − β  

for each fixed j  and ,l  and 

1 111 1

2 2 2
2 1

log = 2( ) = 0.8982i k
X X R

i k

m

m
β + β  

and 

1 111 2

2 2 2
2 2

log = 2( ) = 1.4942i k
X X R

i k

m

m
β − β −  

for each fixed i  and .k  Thus, by 

1 1 1 11

1 1 1
2 1

log = 2( ) = 0.09,
j l

X X R
j l

m

m
β + β  

those who are likely to vote (i.e., = 1i ) are 1.09 times (i.e., 
0.09e ) more than those who are unlikely to vote (i.e., = 2i ) 

among respondents ( = 1k ), whereas, by 

1 2 1 11

1 1 1
2 2

log = 2( ) = 1.3916,
j l

X X R
j l

m

m
β − β  

likely voters of = 1i  are 4.02 times (i.e., 1.3916e ) more than 

unlikely voters of = 2i  among undecided ( = 2k ); by  

1 111 1

2 2 2
2 1

log = 2( ) = 0.8982,i k
X X R

i k

m

m
β + β  

those who vote for Montgomery are 2.46 times more than 

those who vote for Cordray among respondents; whereas, 

by  

1 111 2

2 2 2
2 2

log = 2( ) = 1.4942,i k
X X R

i k

m

m
β − β −  

unlikely voters are 4.46 times more than likely voters 

among the undecided. This implies that the response pattern 

is much different between respondents and the undecided. 

 

 
Table 4 
ML and the third type Bayesian Estimates under nonignorable Model 2 for Attorney-General (the standard deviations 
are in parentheses) 
 

 0ββββ  
1

1
ββββX  1

2
ββββX  

1

1
ββββR  1

2
ββββR  11

1 1
ββββX R  11

2 2
ββββX R  11

1 2
ββββX X  

11

1 2
ββββR R  

-1.9487 3.2134 4.8496 4.8186 2.0283 -2.7594 -0.0452 -1.5588 
2MLNON  -3.3735 

(3.120) (8.515) (3.996) (8.871) (3.120) (8.512) (0.045) (2.501) 

0.3704 -0.1490 3.3024 2.2942 -0.3254 0.5981 0.0472 -1.5450 

32BENON  0.6860 
(0.118) (0.052) (2.501) (2.501) (0.117) (0.052) (0.041) (2.501) 
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The extent of this difference can be measured by the 

most important terms,  11

1 1
X Rβ  and  11

2 2
,X Rβ  in the nonigno-

rable nonresponse model, Model 2. Since 

11 1111 2111

1 1
1121 2121

/1= log = 0.3254
4 /X R

m m

m m
β −  

and 

11 111111 1211

2 2 1 1
1112 1212

/1= log = 0.5981,
4 /X R X R

m m

m m
β β  

is the log-odds ratio that shows the log difference between 

the ratio of the number of those “likely to vote” to that of 

those “unlikely to vote” among the decided voters for 

Montgomery and the same ratio among the undecided 

voters who prefer Montgomery but who do not express their 

likelihood of voting. Whereas, 11

2 2
X Rβ  is the log-odds ratio 

that shows the log difference between the ratio of the 

number of voters for Montgomery to the voters for Cordray 

among the decided who are likely to vote and the same ratio 

among the undecided voters who are likely to vote but who 

do not express their candidate preference. Thus, among 

voters for Montgomery, the possibility for the undecided 

voters to vote relative to not voting is about 3.67 times  

4 0.3254 11111 2111

1121 2121

/
. ., = = 3.67

/

m m
ie e

m m
×− − 

 
 

 

larger than the possibility of the decided, implying that 

Montgomery needs a strategy to raise the turnout of voters. 

On the other hand, among those likely to vote, the 

supporting rate of the decided for Montgomery is about 

10.94 times  

4 0.59811111 1211

1112 1212

/
. ., = = 10.94

/

m m
ie e

m m
× 

 
 

 

larger than the undecided voters for Montgomery, implying 

that most of the undecided voters not exposing their 

preference of candidate are likely to vote for Cordray as the 

Attorney-General. This also confirms the popular account 

that voters are inclined to remain “undecided” in a poll if 

they support the candidate who is seen as inferior in a race 

and that the voters are inclined to abstain from voting if they 

support the candidate who certainly dominates the race. 

 
4. Simulation study  

We consider a 2 2×  contingency table with supplemen-

tal margins to compare the performance of the five Bayesian 

estimates described in Section 2 for different missing 

percentages and different response patterns under the 

following nonignorable nonresponse model (i.e., Model 2):  

0
1 2 1 2

1 1 2 2 1 2 1 2

log( ) =

.

i j k l

ijkl X X R R

ik jl ij kl

X R X R X X R R

m β + β + β + β + β

+ β + β + β + β
 

Thus, we only compare 2MLNON  and 2BE

iNON  for 

= 1, ..., 5i  in this simulation study. 

Since there are two levels in all of 1 2 1, , ,X X R  and 2,R  

there are 8 parameters to be determined for the simulation 

study. From the equations of  

11 111111 2111 1111 1211

1 1 2 2
1121 2121 1112 1212

/ /
4 = log and 4 = log ,

/ /X R X R

m m m m

m m m m
β β  

11 11

1 1 2 2
= = 0X R X Rβ β  

means that there is no difference in the response pattern 

between respondents and undecided. The bigger 11

1 1
X Rβ  and 

11

2 2
X Rβ  are, the more different the response pattern between 

respondents and undecided voters is. We vary these two 

parameters from 0.2 to 0.8 with an increment of 0.2. We set 

the missing percentage to 20% and 30% by adjusting 1

1
Xβ  

and 1

1
Rβ  and fixing 

1111 1211 1111 1112

2111 2211 1112 1122

/ /
= 5, = 2,

/ /

m m m m

m m m m
 

and 

= = 1,000.ijklijkl
N m∑  

This implies that the size and missing percentage for the cell 

of 1 = 1X  and 2 = 1X  are approximately 5 times and 2 

times the size of the other three cells, respectively. 

We generate a large number of samples { , , , ,ijkly i j k  

= 1, 2}l  from the above setting until we have 1,000 

random samples with boundary solutions and the other 

1,000 with no boundary solutions. The occurrence of a 

boundary solution is determined by the criterion given in 

Michiels and Molenberghs (1997) (also see Clarke (2002), 

Smith et al. (1999) for more details). Using 11 12{ , ,ij iy y +  

21 22, , , , = 1, 2}jy y i j+ ++  obtained from the generated 

data, the expected cell counts ijklm ’s are estimated by each 

of the five Bayesian estimates and the ML estimate 

described in Section 2. 

We calculate mean squared errors (MSEs) and absolute 

biases of 1 52 , 2 , ..., 2BE BE

MLNON NON NON  for { ,kl ijklm∑  

, = 1, 2}.i j  Then we take the mean over the four MSEs 

and the four absolute biases, which we obtain from each 

estimate to see the overall performance of the estimate. 

Similarly, we calculate mean MSEs and mean absolute 

biases for 12 21 22{ , , = 1, 2}ij ij ijm m m i j+ +  to see the 

performance of each estimate in imputing the nonresponses.  
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Table 5 shows the ratios of the mean MSEs and mean 

absolute biases of the five Bayesian estimates (i.e., 

1 52 , ..., 2 ),BE BENON NON  relative to the ML estimate (i.e., 

2 )MLNON  when the boundary solutions occur; whereas 

Table 5 shows the ratios when no boundary occurs. Thus, 

values less than 1 imply that the corresponding Bayesian 

estimate has a smaller mean MSE or a smaller mean 

absolute bias than the ML estimate. Both tables only show 

the cases for 11 11

1 1 2 2
<X R X Rβ β  and for 20% of the missing 

percentage because the MSEs and biases are almost 

symmetric about the coordinate of 11 11

1 1 2 2
( , ).X R X Rβ β  They 

increase as we increase the missing percentage to 30% 

while keeping the same patterns of the MSEs and biases as 

those of the missing 20%. 

Table 5, where a boundary solution occurs, shows that 

1 3 42 , 2 , 2BE BE BENON NON NON  have smaller MSEs than 

the ML estimate (i.e., 2 )MLNON  for all values of 11

1 1
X Rβ  

and     11

2 2
,X Rβ     except 11 11

1 1 2 2
( , ) = (0.8, 0.8).X R X Rβ β  Here, 

32BENON  has a smaller MSE than the ML estimate. This is 

true for the absolute biases. On the other hand, Table 6, 

where no boundary solution occurs, shows that only 

32BENON  is comparable to the ML estimate in the MSE 

although it is slightly biased. In particular, 32BENON  has a 

smaller MSE than the ML estimate as long as 11

1 1
0.8X Rβ ≠  

or 11

2 2
0.8X Rβ ≠  (i.e., The response pattern between 

respondents and nonrespondents is not very different.). 

 

 

 

Table 5 

Ratios of mean MSEs and mean absolute biases of Bayesian estimates relative to the ML estimate when boundary solutions occur 
under a 20% missing percentage (the ratios for absolute biases are in parentheses) 
 

 ,11 11

1 1 2 2
(β β )X R X R

 
12
BE

NON  
22
BE

NON  
32
BE

NON  
42
BE

NON  
52
BE

NON  

(0.2, 0.2) 0.68(0.66) 0.47(0.22) 0.76(0.76) 0.65(0.48) 0.42(0.05) 

(0.2, 0.4) 0.68(0.48) 0.57(0.20) 0.77(0.68) 0.60(0.29) 0.56(0.30) 

(0.2, 0.6) 0.67(0.23) 0.73(0.66) 0.77(0.57) 0.64(0.10) 0.69(0.64) 

(0.2, 0.8) 0.77(0.26) 1.08(1.55) 0.83(0.43) 0.76(0.28) 0.95(1.34) 

(0.4, 0.4) 0.65(0.32) 0.69(0.57) 0.76(0.63) 0.61(0.17) 0.65(0.52) 

(0.4, 0.6) 0.58(0.14) 0.83(0.90) 0.71(0.56) 0.56(0.06) 0.69(0.71) 

(0.4, 0.8) 0.75(0.36) 1.46(2.07) 0.78(0.36) 0.74(0.42) 1.12(1.61) 

(0.6, 0.6) 0.66(0.22) 1.35(1.73) 0.73(0.43) 0.66(0.16) 1.01(1.29) 

(0.6, 0.8) 0.85(0.87) 2.27(3.19) 0.76(0.17) 0.83(0.81) 1.52(2.35) 

For 

11 12 21{ ij ij ijm m m+ + 22, , = 1, 2}ijm i j+  

(0.8, 0.8) 1.12(1.93) 3.58(5.49) 0.83(0.24) 1.04(1.67) 2.18(3.95) 

(0.2, 0.2) 0.57(0.63) 0.27(0.13) 0.69(0.74) 0.41(0.40) 0.28(0.31) 

(0.2, 0.4) 0.54(0.46) 0.37(0.34) 0.68(0.68) 0.42(0.24) 0.44(0.57) 

(0.2, 0.6) 0.51(0.19) 0.69(0.94) 0.65(0.55) 0.47(0.10) 0.69(0.88) 

(0.2, 0.8) 0.63(0.35) 1.39(2.08) 0.71(0.34) 0.62(0.47) 1.11(1.52) 

(0.4, 0.4) 0.49(0.35) 0.54(0.64) 0.65(0.64) 0.42(0.17) 0.57(0.76) 

(0.4, 0.6) 0.48(0.17) 0.98(1.24) 0.62(0.51) 0.45(0.17) 0.85(1.04) 

(0.4, 0.8) 0.62(0.44) 1.81(2.33) 0.67(0.35) 0.61(0.55) 1.35(1.81) 

(0.6, 0.6) 0.55(0.42) 1.70(1.90) 0.63(0.41) 0.54(0.40) 1.28(1.51) 

(0.6, 0.8) 0.78(0.92) 2.91(3.43) 0.69(0.14) 0.75(0.92) 1.96(2.64) 

For 

12 21{ ij ijm m+ + 22 , , = 1, 2}ijm i j  

(0.8, 0.8) 1.13(1.96) 4.63(5.72) 0.75(0.33) 1.02(1.77) 2.86(4.24) 
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Table 6 

Ratios of mean MSEs and mean absolute biases of Bayesian estimates relative to the ML estimate when no boundary solution 
occurs under a 20% missing percentage (the ratios for absolute biases are in parentheses) 
 

 ,11 11

1 1 2 2
(β β )X R X R

 
12
BE

NON  
22
BE

NON  
32
BE

NON  
42
BE

NON  
52
BE

NON  

(0.2, 0.2) 0.99(3.37) 1.05(7.00) 0.94(2.51) 0.93(4.89) 1.06(8.96) 

(0.2, 0.4) 0.98(2.57) 1.21(5.13) 0.97(1.89) 1.00(3.26) 1.24(5.56) 

(0.2, 0.6) 1.04(2.18) 1.52(3.84) 0.95(1.67) 1.06(2.38) 1.43(3.71) 

(0.2, 0.8) 1.12(2.04) 1.75(3.53) 1.00(1.48) 1.13(2.14) 1.52(3.21) 

(0.4, 0.4) 1.03(2.40) 1.49(4.66) 0.97(1.69) 1.05(2.74) 1.39(4.46) 

(0.4, 0.6) 1.20(2.17)  2.11(3.85)  1.00(1.52)  1.22(2.24)  1.78(3.42) 

(0.4, 0.8) 1.28(2.09)  2.36(3.67)  1.05(1.45)  1.26(2.09)  1.86(3.12)  

(0.6, 0.6) 1.22(2.16)  2.49(3.90)  0.96(1.48)  1.21(2.15)  1.90(3.32)  

(0.6, 0.8) 1.52(1.99)  3.19(3.39)  1.11(1.38)  1.45(1.91)  2.29(2.77)  

For 

11 12 21{ ij ij ijm m m+ + 22, , = 1, 2}ijm i j+  

(0.8, 0.8) 1.66(1.96)  3.64(3.27)  1.14(1.36)  1.52(1.83)  2.43(2.59)  

(0.2, 0.2) 0.88(2.59)  0.89(5.66)  0.87(2.26)  0.89(4.55)  1.21(8.69)  

(0.2, 0.4) 0.93(2.40)  1.27(4.86)  0.93(1.78)  1.00(3.08)  1.50(5.29)  

(0.2, 0.6) 1.09(2.11)  1.93(3.97)  0.98(1.40)  1.15(2.29)  1.85(3.61)  

(0.2, 0.8) 1.24(2.13)  2.36(3.90)  1.02(1.48)  1.27(2.18)  2.06(3.19)  

(0.4, 0.4) 1.03(2.18)  1.81(4.30)  0.96(1.60)  1.12(2.62)  1.85(4.39)  

(0.4, 0.6) 1.23(2.28)  2.62(4.28)  0.99(1.48)  1.29(2.42)  2.28(3.80)  

(0.4, 0.8) 1.42(2.05)  3.26(3.70)  1.07(1.42)  1.44(2.07)  2.53(3.09)  

(0.6, 0.6) 1.33(2.07)  3.22(3.95)  0.99(1.36)  1.36(2.14)  2.54(3.43)  

(0.6, 0.8) 1.65(2.09)  4.14(3.74)  1.13(1.43)  1.61(2.07)  2.98(3.13)  

For 

12 21{ ij ijm m+ + 22 , , = 1, 2}ijm i j  

 

(0.8, 0.8) 1.91(2.02)  4.48(3.50)  1.16(1.39)  1.66(1.93)  3.03(2.83)  

 

Park and Brown (1994) used 22BENON  to estimate 

expected cell counts in an incomplete one-way table under a 

nonignorable nonresponse mechanism. They showed by 

simulation studies that 22BENON  has a smaller MSE than 

the ML estimate although it is biased more than the ML. 

However, larger values than 1 for 22BENON  in Table 5 and 

Table 6 indicate that this is not true in an incomplete two-

way table regardless of the boundary solution and that 

Bayesian methods are not always better than the ML even 

when a boundary solution occurs. A reason that our 

simulation results differ from those of Park and Brown 

(1994) when a boundary solution occurs is attributed to the 

choice of 11 11

1 1 2 2
( , )X R X Rβ β  where Park and Brown performed 

their simulation only for 11 11

1 1 2 2
= = 0.34.X R X Rβ β  As shown 

in Table 5, 22BENON  is  better than the ML when 
11

1 1
0.4X Rβ ≤  and 11

2 2
0.4,X Rβ ≤  whereas 22BENON  is worse 

than the ML when the response pattern between respondents 

and nonrespondents is much different (i.e., 11

1 1
0.6X Rβ ≥  or 

11

2 2
0.6).X Rβ ≥  

 

Table 7 provides the mean of the standard deviations and 

the 95% coverage probabilities for 11

1 1
.X Rβ  Here, we used the 

variance formula given in (9) to calculate the standard 

deviations and the 95% coverage probabilities are the 

coverage rates for nominal 95% confidence intervals. When 

a boundary solution occurs, although the coverage 

probability of the ML estimate is closest to the 95% nominal 

coverage level, the ML estimate has too large a standard 

deviation to use in practice. Such large standard deviations 

are due to the boundary problem of the ML estimate. The 

coverage probabilities of 32BENON  are the closest to the 

95% nominal coverage level among the Bayesian estimates, 

while those of the other Bayesian estimates are generally 

smaller than the 95% nominal coverage level. This implies 

that the Bayesian estimates other than 32BENON  under-

estimate their standard deviations. 
 

When no boundary solution occurs (the second table in 

Table 7), the standard deviations of the ML estimate are 

much more stable, compared to those for the boundary 

solution case. The coverage probability decreases as 11

1 1
X Rβ  

and 11

2 2
X Rβ  increase. In particular, the coverage probabilities 

of  1 2, ,BE BENON NON  and 5

BENON  are seriously smaller 

than the 95% nominal coverage level when the response 

pattern between the respondents and undecided voters is 

much different (i.e., 11

1 1
0.6X Rβ ≥  and 11

2 2
0.6).X Rβ ≥  
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Table 7 
Mean of standard deviations and 95% coverage probabilities (in parentheses) for 11

1 1
ββββX R  

 

 ,11 11

1 1 2 2
(β β )X R X R

 2MLNON  
12
BE

NON  
22
BE

NON  
32
BE

NON  
42
BE

NON  
52
BE

NON  

(0.2, 0.2) 89.5(0.974)  0.082(0.978)  0.064(0.978)  0.093(0.973)  0.071(0.972)  0.060(0.957)  

(0.2, 0.4) 158.3(0.959)  0.072(0.963)  0.096(0.963)  0.079(0.958)  0.066(0.958)  0.058(0.940)  

(0.2, 0.6) 135.3(0.940)  0.065(0.941)  0.057(0.941)  0.071(0.941)  0.062(0.939)  0.056(0.922)  

(0.2, 0.8) 57.4(0.930)  0.070(0.938)  0.061(0.935)  0.076(0.928)  0.066(0.928) 0.060(0.908) 

(0.4, 0.4) 153.4(0.961)  0.079(0.920)  0.061(0.913)  0.096(0.956)  0.072(0.949)  0.060(0.911)  

(0.4, 0.6) 82.2(0.955)  0.072(0.893)  0.059(0.883)  0.086(0.951)  0.069(0.940)  0.058(0.874) 

(0.4, 0.8) 51.2(0.933)  0.071(0.862)  0.059(0.849)  0.084(0.926)  0.068(0.917)  0.059(0.846)  

(0.6, 0.6) 175.5(0.946)  0.077(0.820)  0.060(0.781)  0.101(0.943)  0.074(0.921)  0.061(0.823) 

(0.6, 0.8) 159.6(0.924)  0.071(0.728)  0.057(0.657)  0.089(0.913)  0.069(0.880)  0.058(0.737) 

boundary 

(0.8, 0.8) 72.8(0.920)  0.070(0.572)  0.056(0.330)  0.093(0.900)  0.070(0.842)  0.058(0.607) 

(0.2, 0.2) 0.068(0.949)  0.060(0.959)  0.056(0.959)  0.062(0.937)  0.058(0.935)  0.055(0.922) 

(0.2, 0.4) 0.066(0.960)  0.060(0.970)  0.056(0.970)  0.061(0.935)  0.058(0.931)  0.055(0.951) 

(0.2, 0.6) 0.064(0.940)  0.058(0.945)  0.055(0.945)  0.059(0.959)  0.057(0.919)  0.054(0.909) 

(0.2, 0.8) 0.069(0.933)  0.063(0.944)  0.059(0.941)  0.065(0.926)  0.062(0.925)  0.058(0.920) 

(0.4, 0.4) 0.074(0.910)  0.061(0.836)  0.055(0.828)  0.064(0.899)  0.059(0.884)  0.055(0.824) 

(0.4, 0.6) 0.074(0.915)  0.060(0.815)  0.055(0.806)  0.064(0.922)  0.059(0.879)  0.055(0.792) 

(0.4, 0.8) 0.073(0.891)  0.061(0.786)  0.056(0.771)  0.064(0.873)  0.060(0.852)  0.056(0.763) 

(0.6, 0.6) 0.078(0.859)  0.061(0.567)  0.055(0.470)  0.067(0.853)  0.061(0.795)  0.056(0.572) 

(0.6, 0.8) 0.076(0.843)  0.060(0.515)  0.054(0.402)  0.065(0.817)  0.060(0.767)  0.055(0.556) 

no-boundary 

(0.8, 0.8) 0.080(0.755)  0.059(0.110)  0.053(0.017)  0.065(0.728)  0.059(0.607)  0.055(0.158) 

 

 

5. Concluding remarks 
 

We investigated the Bayesian analysis for incomplete 

two-way contingency tables with nonignorable non-

response. In this situation, the ML estimates often fall on the 

boundary solution. These boundary solutions can yield 
2 > 0G  even for a saturated model (Baker et al. 1992; Park 

and Brown 1994). This means that the 2G  may not be 

appropriate as a statistic for model specification. To avoid 

the boundary solution problem and to obtain a statistic such 

as a Bayes factor for model specification regardless of a 

boundary solution, we proposed Bayesian estimation 

methods using five different priors. Two of them are new 

and the remaining three have been previously used for 

analyzing an incomplete one-way table. These two new 

priors accommodate different response patterns between 

respondents and nonrespondents. 

Data analysis shows that these new two priors are more 

reasonable in the sense that they accommodate the 

nonignorable nonresponse mechanism better and produce 

estimates close to the actual results. Moreover, with the 

previous three priors, our simulation study shows that the 

Bayesian estimates can have larger MSEs than those of the 

ML estimates for a contingency table with no boundary 

solution and a boundary solution as well, contrary to the 

previous studies. However, when a boundary solution 

occurs, the two new priors perform better than the previous 

three priors and the ML estimates in the sense that they have 

generally smaller MSEs, smaller biases, and coverage 

probabilities closer to the nominal coverage level. 

We have briefly discussed the weighting issues at Section 

2.2. However, these issues need much more rigorous 

discussion than we did in that section. Our discussion can be 

further extended to include not only different weights but 

also response biases and other sources of biases and 

variations. These problems can be carefully developed on an 

extended paper at a later time. 
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Hierarchical and empirical Bayes small  
domain estimation of the proportion of persons  

without health insurance for minority subpopulations 

Malay Ghosh, Dalho Kim, Karabi Sinha, Tapabrata Maiti, Myron Katzoff and Van L. Parsons 1 

Abstract 

The paper considers small domain estimation of the proportion of persons without health insurance for different minority 

groups. The small domains are cross-classified by age, sex and other demographic characteristics. Both hierarchical and 

empirical Bayes estimation methods are used. Also, second order accurate approximations of the mean squared errors of the 

empirical Bayes estimators and bias-corrected estimators of these mean squared errors are provided. The general 

methodology is illustrated with estimates of the proportion of uninsured persons for several cross-sections of the Asian 

subpopulation. 
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1. Introduction 
  
The main motivation behind this work was small domain 

estimation of the proportion of individuals without health 

insurance for different minority subpopulations. The small 

domains were constructed on the basis of age, sex, race and 

the region where the person belongs. The National Health 

Interview Survey (NHIS) data provide the individual level 

binary response (that is whether or not a person has health 

insurance) along with individual level covariates. The data 

can be obtained at http://www.cdc.gov/nchs/nhis.htm. The 

design of NHIS is discussed in Botman, Moore, Moriarity 

and Parsons (2000).  

In a typical year the NHIS samples dwelling units, the 

collective members of each unit being referred to as a 

household, and members with a “strong” relationship being 

referred to as a family. (Structural units are more explicitly 

defined in Chapter 5.2 in the Census document at 

www.census.gov/prod/2002pubs/tp63rv.pdf). Each year the 

NHIS data contain about 40,000 households, of which over 

98% are one-family households, and contain about 100,000 

persons. For “family-type” questions, e.g., on insurance 

coverage, all adults at home are invited to participate in the 

interview, but proxy adult response is also allowed. 

Children require an adult proxy.  

The original survey for any given year contains data on 

more than 100,000 individuals and on over 800 variables. 

Of these individuals, we have information on the primary 

response variable, namely whether a person has health 

insurance or not. In addition, there is information on 

demographic characteristics such as age, sex, race, region, 

education, income status, medical condition, disability 

conditions (if any) and many other socio-economic factors.  

For the entire US population, the direct estimates for 

these domains, namely the weighted sample proportions, are 

fairly reliable, since the sample size for each domain is 

reasonably large. This need not be the case though when our 

analysis is targeted towards specific subpopulations, such as 

Hispanics, Asians and similar minority sectors of the 

community.  

For a targeted minority subpopulation, the sample size in 

a domain is not always very large. Hence, the direct 

estimates may not be very reliable, being accompanied with 

large standard errors and coefficients of variation. This calls 

for the use of small domain estimation techniques, where 

indirect estimates are obtained for these domains based on 

implicit or explicit models. These models help building a 

link between these domains, and thus produce typically 

estimates of greater precision by borrowing strength.  

We employ both hierarchical Bayes (HB) and empirical 

Bayes (EB) methodology to obtain small domain estimates 

and find also the associated measures of precision. The 

analysis is based on a HB analogue of the generalized linear 

mixed model (GLMM) to obtain posterior means and 

posterior standard errors of the population small domain 

proportions. The method was proposed in Ghosh, Natarajan, 

Stroud and Carlin (1998). The EB approach is based on the 

theory of optimal estimating functions. We obtain EB esti-

mators and the corresponding approximate mean squared 

error estimators by an asymptotic method analogous to that 

of Prasad and Rao (1990) and Ghosh and Maiti (2004). 

While the procedure of Ghosh and Maiti (2004) is based on 

area-level data, the present approach uses unit level data. 

Hence, by necessity, one needs some modification of the 

procedure proposed in Ghosh and Maiti (2004) in 

developing the estimators. Also, the general methodology, 
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like that of Ghosh and Maiti is not restricted only to binary 

data. The methodology is applicable to the natural 

exponential family with quadratic variance functions. 

(Morris 1982, 1983). The development of mean squared 

errors of the estimates under the proposed model is 

somewhat simpler than that of Ghosh and Maiti (2004) for 

the binary case. Moreover, like Ghosh and Maiti (2004), our 

analysis utilizes the survey weights along with the model to 

derive the small domain estimates. Thus, our method, in 

some sense, can be regarded as design-assisted model-based 

estimation.  

Survey weights attached to individual sampling units are 

usually proportional to inverses of their selection probabili-

ties. They are often used to produce design-unbiased estima-

tors. The classic example is the celebrated Horvitz-

Thompson estimator. However, while such estimators guard 

against model failure, they may result in loss of efficiency if 

the assumed model is true. For example, in a simple 

Bayesian set up, if i iy | θ  are independently distributed 
N( ,1),iθ  while iθ  are independently and identically distri-
buted N( , ), ( 1, , ),A i nµ = …  then the Bayes estimator 

(posterior mean) of 1
1

n
i in−
=∑θ = θ  is 1

1
n
in−
=∑  

[(1 ) ] (1 ) ,iB y B B y B− + µ = − + µ  where 1(1 ) .B A −= +  

This estimator has Bayes risk 1(1 )n B− −  under the assumed 

model. On the other hand, the estimator 1
n
i i iw y=∑  of ,θ  

with 1 1n
i iw=∑ =  has Bayes risk 1(1 )n B− − +  

2
1[(1 ) ] .n

i i iE B y B w y=∑− + µ −  If, however, the assumed 

model is not true, for example, iθ  are independently and 
identically distributed N( , ), ( 1, , ),A i nµ = …  where A 

departs widely from 0,A  then the Bayes risk of the estimator 

(1 )B y B− + µ  of θ  has Bayes risk 1

0(1 )n B− − +  
2 2 1

0 0 0( ) ( ) , (1 ) ,B B y B A −− − µ = +  which can be quite 

larger than the corresponding Bayes risk of 1
n
i i iw y=∑  

depending of course on 0,B µ  and the .iw   
The present paper produces small domain estimates of 

the proportion of uninsured persons for the Asian popula-

tion. The estimates and measures of precision are based both 

on the hierarchical Bayesian model as well as the EB model. 

The analysis was done for all the individual years 1997-

2000. For brevity, the results are reported only for the year 

2000. We carried out a similar analysis for the Hispanic 

population also. In this case, the number of small domains 

was 336. Since the methodology was the same as that for 

the Asians, to save space, we have not included in this paper 

that analysis as well.  

The Asian group is formally composed of the (1) 

Chinese, (2) Filipino, (3) Asian Indian, and (4) others such 

as Koreans, Vietnamese, Japanese, Hawaiian, Samoan, 

Guamanian etc. These individuals are assigned to specific 

domains depending on their age, race, gender and the region 

they come from. There are 3 age-groups (0-17, 18-64 and 

65+), 2 Genders, 4 Races and 4 Regions depending on the 

size of the Metropolitan Statistical Area (< 499,999; 
500,000-999,999; 1,000,000-2,499,999 > 2,500,000). Thus, 
the total number of domains equals 3 2 4 4 96.× × × =  

When the individuals are distributed to their respective 

domains, it turns out that many of the domains contain only 

a few observations. Indeed, there are several domains with a 

sample of size 1, while one domain has sample size zero.  

The outline of the remaining sections is as follows. 

Section 2 addresses the selection of covariates for the 

Asians. Section 3 discusses the general HB methodology 

needed for obtaining the small domain estimates and the 

associated measures of precision. Section 4 discusses the 

adequacy of the proposed HB model. Section 5 discusses an 

alternative EB methodology, finds second order correct (to 

be made precise later) mean squared errors (MSE’s) of the 

proposed EB estimators, and also second order correct 

approximation of these MSE’s. Section 6 finds the small 

domain estimates and the corresponding measures of 

precision for the Asian subpopulation in 2000 using both the 

HB and the EB methodology, and these estimates are 

compared with the direct estimates. Some concluding 

remarks are made in Section 7. 

 
2. Selection of covariates   

As mentioned in the introduction, the number of 

covariates exceeds 800. Inclusion of all of them in the initial 

model is impractical and unnecessary. We started with what 

we deemed to be a meaningful set of 6 covariates and used a 

fully stepwise selection process (with a significance level of 

0.05) to finally come up with the best model.  

The six covariates that we considered were: (1) legal 

marital status, (2) family size, (3) education level, (4) total 

earnings from the previous year, (5) total family income, 

and (6) full time working status.  

After the stepwise procedure, our final model included, 

along with the intercept term, the covariates family size, 

education level, and total family income.  

Since the SURVEYREG procedure in SAS Version 8 

fits linear regression models and produces hypothesis tests 

and estimates for survey data, we used this procedure for 

our covariate selection. Logistic regression for covariate 

selection was not available at the time when this research 

was done. It may be noted though that SURVEYREG 

acounts for clustering and unequal weighting, and produces 

standard errors that correctly account for complex survey 

designs. 
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3. Hierarchical Bayesian analysis 
 
A general one-parameter exponential family model is 

given by  

( ) exp[ { ( )}] ( ; ),ij ij ij ij ij ij ij ijf y y h y| θ = ξ θ − ψ θ ξ  (3.1) 

1, , , 1, , .ij n i k= =… …  Here ijy  is the response of the 
thj  

unit in the thi  small domain, while ,ijξ  the “so-called” 

overdispersion parameters are assumed to be known, and 

are taken as 1 without loss of generality. This is because one 

can otherwise work with the transformed parameters. 

.ij ij ijζ = ξ θ  The function h is a positive function which 

depends on the ,ijy  but not on the .ijθ  If ijy  is binary with 

success probability ,ijp  then logit( ).ij ijpθ =  In our 

example, ,ijy  the response of the 
thj  individual in the thi  

small domain, is 1 or 0 depending on whether the person 

does not or does have health insurance. We are interested in 

estimation of 1 ,in
j ij ijiw
w p=∑=µ  the domain specific 

weighted averages of the population proportions. In this 

case, the direct estimator of 
iwµ  is 1 .in

j ij ijw y=∑  These direct 

estimators are usually subject to large standard errors and 

coefficients of variation. The survey weights ijw  are 

assumed to be known, and are normalized so that 

1 1in
j ijw=∑ =  for all 1, , .i k= …  It must be admitted though 

that often in practice, the ijw  are only estimates, for 

example taking into account post-stratification and non-

response. However, the actual mechanism used to generate 

these weights are unavailable to secondary users of the data, 

and we need to assume the weights to be known. Another 

important example, not specifically considered in this paper, 

is Poisson( ),ij ijy λ∼  so that log( ).ij ijθ = λ  One can use a 

Poisson model here based on the domain level counts of 

uninsured people The difficulty lies in the fact that in the 

present example, we have individual level and not domain 

level covariates. Modelling the counts via domain-level 

covariates is not possible in this situation.  

In this section, we discuss how to carry out the analysis 

for the general hierarchical Bayesian model when we are 

interested in estimating ( ) ( ).ij ij ij ijE y ′µ = | θ = ψ θ  Since 

( ) var( ),ij ij ij ijy′′ψ θ = | θ µ  is a one-to-one function of .ijθ  

In particular, ij ijpµ =  in the binary case. Specific 

applications will be considered in Section 5.  

The next stage of the model is  

; 1, , , 1, , ,T
ij ij i iu j n i kθ = + = =… …x b  (3.2) 

where ijx  are the design vectors, or equivalently the 

predictor vectors, b is the vector of regression parameters, 

and iu  are the random effects. It is assumed that iu  are iid 
2N(0, ).uσ  Also, let 

111 1 1( , , , , , , ),
k

T
n k knx= … … …X x x x  

and assume that X is a full rank matrix.  

Finally, it is assumed that b and 2

uσ  are mutually 
independent, where b has the improper uniform prior on, 

,PR  and 2

uσ  has an inverse gamma distribution with 
parameters 2 2.c d/ . / i.e., 2 2 2 2 1( ) exp( / 2 ) ( ) ,d

u u uc − / −π σ ∝ − σ σ  

0.c >  

Let 
111 1 1( , , , , , , ) ,

k

T
n k kny y y y= … … …y  and =θθθθ  

111 1 1( , , , , , , ) .
k

T
n k knθ θ θ θ… … …  Then the joint posterior is 

given by  

2

1 1

2 2 2

2
1 1

2 2 1

2

( , , ) ( )

1
( ) exp ( )

2

( ) exp .
2

i

i

nk

u ij ij

i j

nm
k T

u ij ij
i ju

d

u

u

f y

c

= =

− /

= =

− / −

π σ | ∝ |θ

 
× σ − θ − 

σ 

 × σ − σ 

∏∏

∑∑

b y

x b

θθθθ

(3.3)

 

This is a nonconjugate Bayesian analysis, and is not 

implementable analytically. Instead, we use the Markov 

chain Monte Carlo (MCMC) numerical integration 

technique. In particular, we employ the Gibbs sampler. The 

general MCMC technique is discussed in many places. A 

convenient reference is Tanner (1996, Chapter 6).  

In order to implement the Gibbs sampler, we need to find 

the full conditionals of ,ijθ b  and 2 .uσ  The full conditionals 

are given by  

2

1 12

2 1 2 1

2 2

2

( )
, , IG , ;

2 2

, , (( ) , ( ) );

1
, , ( )exp ( ) .

2

ik n T

ij iji j

u

T T T

u u

T

ij u ij ij ij ij

u

c k d

N

f y

= =

− −

 θ − + + σ |  
 

| σ σ

 θ | σ | θ − θ − σ 

∑ ∑
∼

∼

∼

x b
b y

b y X X X y X X

b y x b

θθθθ

θθθθ  

Our data analysis is based on generating samples from the 

above conditionals specialized to the binary case. Gene-

ration of samples from the conditionals of 2

uσ  and b is 
standard. This is not so for the ,ijθ  and requires the 

Metropolis-Hastings algorithm. For a discussion of this 

algorithm, we refer once again to Tanner (1996).  

If 
( )
ˆ
r

ijµ  denotes the sampled value of ijµ  generated from 
the thr  draw, and the number of draws is R, then the Monte 

Carlo estimate of ( )ijE µ | y  is ( )1
1 .ˆ

rR
r ij

R−
=∑ µ  Similarly, the 

Monte-Carlo estimate of var( )ijµ | y  is ( )1 2
1( )ˆ

rR
r ij

R−
=∑ −µ  

( )1 2
1( ) .ˆ

rR
r ij

R−
=∑ µ  Finally, Monte-Carlo estimate of cov( ,ijµ  

)i j′ ′µ | y  is given by ( ) ( ) ( )1 1
1 1( ) ( )ˆ ˆ ˆ

r r rR R
r rij i j ij

R R− −
= =′ ′∑ ∑−µ µ µ  

( )1
1( ).ˆ

rR
r i j

R−
= ′ ′∑ µ  Based on these calculations, it is now 

immediate to find 1[ ] ( )in
j ij ijiw

E w E=∑| = µ |µ y y  and 
2

11[ ] ( )i

i

n
j j nj ij ij ij ijiw

V w V w w′≤ ≠ ≤ ′=∑ ∑| = µ | +µ y y  Cov( ,ijµ  

).ij′µ | y  In contrast, the direct unbiased estimator of 
iwµ  is 

given by 1 .in
j ij ijiw
w yy =∑=  However, as noted earlier, for 

many of these domains, the sample sizes are so small that 

these unbiased estimators are subject to large standard errors 

and coefficients of variation.  
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4. Empirical Bayes estimation 
 
Once again, let ijy  denote the response of the 

thj  unit in 

the thi  small domain ( 1, , ; 1, , ).ij n i k= =… …  Also, we 

assume the exponential family model for the ijy  as given in 

(3.1), but it is assumed in addition that the ijy  has a 

probability function or a probability density function 

belonging to the natural exponential family quadratic 

variance function (NEF-QVF) class. We may recall that 

( ) ( ).ij ij ij ijE y ′µ = | θ = ψ θ  With the quadratic variance 

function structure, 0 1Var( ) ( )ij ij ij ijy Q v v| θ = µ = + µ +  
2

2 ,ijv µ  where 0 1,v v  and 2v  are not simultaneously zero. 

Morris (1982, 1983) has characterized distributions 

belonging to the NEF-QVF family. The family consists of 

the six basic distributions, namely, (i) Bernoulli, (ii) 

Poisson, (iii) normal with known variance, (iv) geometric, 

(v) exponential, (vi) hyperbolic secant, and their convolu-

tions. In this way, binomial, negative binomial and gamma 

distributions also belong to this family. For the Bernoulli 

distribution, 0 10, 1v v= =  and 2 1.v = −  For the Poisson 

distribution, 0 2 0v v= =  and 1 1.v =  For the normal 

distribution with known variance 2 2
0, , 1ij v−σ ξ = σ =  and 

1 2 0.v v= =  Once again we will assume without loss of 

generality that 1.ijξ =   

We propose in this section EB estimators of the small 

domain means. To this end, we begin with the general NEF-

QVF family of distributions along with a conjugate prior for 

the canonical parameter of the exponential model. Together 

they constitute an overdispersed NEF-QVF family of 

distributions. Specifically, we consider the conjugate prior 

with pdf  

( ) exp[ { ( )}] ( , )ij ij ij ij ijm C mπ θ = λ θ −ψ θ λ  (4.1) 

for ,ijθ  where ( ), 1, , ; 1, , .T
ij ij im g j n i k= = =… …x b  Here  

ijx  is the design vector associated with the 
thj  unit in the 

thi  small domain, and g is the link function. Then (Morris 

1983),  

2( ) ; var( ) ( ) ( ),ij ij ij ijE m Q m vµ = µ = / λ −  (4.2) 

where we assume that 2max(0, ).vλ >  Since var( )ijµ  is 

strictly decreasing in ,λ  we may interpret the latter as the 
precision parameter.  

We first obtain the Bayes estimator of .ijµ  This is given 

by (Morris 1983)  

1
( ) ( ).

1 1
ij ij ij ijE y y m

λ
µ | = +

λ + λ +
b  

The above can also be viewed as the best linear unbiased 

predictor (BLUP) of .ijµ  To see this, we calculate  

2

2

( ) ( ) ; cov( , ) var( )

1
( ) ( ); var( ) ( ).

ij ij ij ij ij ij

ij ij ij

E y E m y

Q m v y Q m
v

= µ = µ = µ

λ +
= / λ − =

λ −

 

Hence, the BLUP of ijµ  is given by  

cov( , )
( ) ( ( ))

var( )

1
( ).

1 1

ij ij

ij ij ij

ij

ij ij

y
m y m

y

y m

µ
+ −

λ
= +

λ + λ +

b b

b

 

(4.3)

 

Thus the Bayes estimator of 1
in
j ij ijiw
w=∑= µµ  is given by 

1 ( ).in
j ij ij ijw E y=∑ µ |   

In practice, however, b and λ  are unknown, and need to 
be estimated from the marginals of the .ijy  However, 

except for the normal distribution, these marginals are fairly 

complicated, and finding MLE’s from the marginal likeli-

hoods can become quite formidable. Instead, we find 

estimates based on some optimal unbiased estimating 

equations (Godambe and Thompson 1989) which requires 

only evaluation of the first four moments of these marginals.  

To this end, we begin with the the elementary unbiased esti-

mating functions 1ij ij ijig y m= −  and 2
2 ( )ij ij ijg y m= − −  

2( 1) /( ) ( ).ijv V mλ + λ −  In order to construct the optimal 

estimating equations, let  

1 2

1 2

.

ij ij

T
ij

ij ij

g g
E E

g g
E E

 ∂ ∂    
− −    

∂ ∂    =
 ∂ ∂   
− −    

∂λ ∂λ    

b b
D  

Also, let  

2 3

2
3 4 2

,
ij ij

ij

ij ij ij

 
 
 
 
  

µ µ
=

µ µ −µ
ΣΣΣΣ  

where ( )rrij ij ijE y mµ = −  is the thr  central moment of ijy  

based on its marginal distribution. The optimal estimating 

equations are then given by 1
1 1 ,ink T

ij iji j ij
−

= =∑ ∑ = 0gD ΣΣΣΣ  where  

1 2( ) .Tij ij ijg g=g  We obtain estimates of b and λ  (if they 
exist) by solving these equations. The solutions of these 

equations are found by the Nelder-Meade algorithm. 

Unfortunately, the above method fails for binary data. In 

this case, 2 1v = −  so that var( )ijy  does not depend on .λ  
Indeed, the marginal beta-binary distributions of the ijy  are 

unidentifiable in .λ  A simple way to verify this is that if 
Bin(1, ),y p p| ∼  and Beta( , (1 )),p m mλ λ −∼  then 

( ) ( ) ,E y E p m= =  and a binary distribution is completely 

characterized by its mean. The problem does not occur for a 

Binomial(n, p) distribution with 2n ≥  since with the same 

marginal for p, the mgf of the marginal distribution of the 

binomial y is [( exp( ) 1 ) ]nE p t p+ −  which depends on .λ   
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For binary 1 2, / / 0ij ij ijy g g∂ ∂λ = ∂ ∂λ =  so that the 

second element of the vector 1
1 1

ink T
ij iji j ij

−
= =∑ ∑ gD ΣΣΣΣ  is zero. 

Accordingly, the proposed estimating equations approach 

fails to estimate .λ  The basic data, to be considered in our 
application, is binary, and this necessitates modification of 

the proposed procedure.  

We have thus considered the optimal estimating function 

(for known λ ) 

1 1

[( ) (var( )] ,
ink

ij

ij ij ij
i j

m
y m y

= =

∂
− / =

∂
∑∑ 0

b
 

since 1 / / .ij ijg m∂ ∂ = −∂ ∂b b  It may be noted also that in this 

case var( ) ( ) (1 ).ij ij ij ijy V m m m= = −  Also, with the logistic 

representation, ( ) exp( ) [1 exp( )],T T
ij ij ijm = / +b x b x b  one gets 

/ (1 ) .ij ij ij ijm m m∂ ∂ = − −b x  Thus b  is estimated from the 

estimating equations 1 11 1 .i in nk k
i ij jij ij ij ijy m= == =∑ ∑ ∑ ∑=x x  

Denoting this estimator by ˆ,b  the EB estimator of ijµ  is 
given by  

EB 1 ˆ( ).ˆ
1 1

ij ijij
y m

λ
= +µ

λ + λ +
b  (4.4) 

Accordingly, the EB estimator of 
iwµ  is 

EB EB

1
ˆ .ˆin

j ij ijiw
w=∑= µµ   

The procedure described above assumes a known .λ  
One can find estimates for the ijµ  for different choices of 
.λ  In this article, we have tried 0 1, 0.5λ = .  and 1, and have 

compared the estimates with the corresponding HB 

estimates. 

Next, in this section, we find the mean squared errors 

(MSE) and also the estimated MSE’s of 
EBˆ
iwµ  assuming 

known .λ  We state two theorems in this section. Some 
notations are needed before stating these theorems. Let 

111 1 1Diag( , , , , , , )
kn k knm m m m= … … …M  and ( ) T=b X MΣΣΣΣ  

1 1( ) (1 ) .in Tk
i j ij ij ij ijm m= =∑ ∑− = −I M X x x  Also, let Tn =  

1 .
k
i in=∑  It is assumed that 1 in C≤ ≤  for every i, so that 

( ),T en O k=  where eO  denotes the exact order. The two 

theorems are now given below.   
Theorem 1. Assume ( ) ( ),eO k=bΣΣΣΣ  i.e., each element of 

( )bΣΣΣΣ  is bounded below by some constant 1,C  and is 

bounded above by some constant 2,C  where 10 C<  

2 .C< < ∞  Then an approximate expression for EBˆMSE( )
iwµ  

correct up to 1( )O k −  is given by  

EB 2

2
1

2

2
1

1

1

ˆMSE( ) ( )(1 ( ))
( 1)

( )(1 ( ))
( 1)

( ) ( )(1 ( )) .

i

i

i

n

ij ij ijiw
j

T
n

ij ij ij ij
j

n

ij ij ij ij
j

w m b m b

w m b m b

w m b m b

=

=

−

=

λ
−µ

λ +

 λ
+ − λ +  

 
× − 

 

∑

∑

∑

≐

x

b xΣΣΣΣ

 

(4.5)

 

Theorem 2. Assume ( ) ( ).eO k=bΣΣΣΣ  Then the following 

approximation to 
EBˆMSE( )µ  holds correct up to 1( ).O k −   

2
1

1
1

1

1

2 2 1

2

2
1

ˆ ˆ ˆ ˆ( )(1 ( )) (1 2 ( )) ( )
(1 )

ˆ ˆ( ( ) ( ))

1ˆ ˆ(1 ( )) ( )
2

ˆ ˆ( ( ) ( ))

ˆ ˆ ˆ( )(1 ( )) ( )

ˆ ˆ( )(1 (
( 1)

i

i

n

ij ij ij ij
j

ij

p

T

ij ij ij ij

n

ij ij ij

j

m m m m

tr

m

tr

m m

w m m

=

−

−

−

−

=

λ
− − −+ λ 

 
 

. 
 .−  

. 
  
 


+ − 



λ
+ −

λ +

∑

∑

b b b b

b K b

b b

b K b

b b x b x

b

ΣΣΣΣ

ΣΣΣΣ

ΣΣΣΣ

ΣΣΣΣ

1

1

))

ˆ ˆ ˆ( ) ( )(1 ( )) .
i

T

ij

n

ij ij ij ij
j

w m m−

=

 
 
 

 
× − 

 
∑

b x

b b b xΣΣΣΣ

 

(4.6)

 

The proofs of these theorems are deferred to the 

Appendix. We will apply these results in finding approxi-

mate estimates of MSE’s of EB estimators in the next 

section. However, before that, the following point is worth 

noting.  

If one denotes the coefficient of 2(1 )λ/ + λ  by ˆ( )iB b  and 

the coefficient of 2 2(1 )λ / + λ  by ˆ( )iC b  in Theorem 2, then 

noting that ˆ( ) (1)iB b O=  and 1ˆ( ) ( ),iC b O k −=  for large 
ˆ, MSE( )k µ  is maximized at ˆ ˆ ˆˆ ( ( )) /( ( ) 2 ( ))i i iB b B b C bλ = −  

which is typically very close to 1. The resulting prior with 

λ̂  replacing λ  is the data adaptive approximate least 
favorable prior. In the example to be considered, this 

estimated λ  turns out to be 1.003 which conforms the 
above observation. 

 
5. Small domain estimates for Asians 

 
We first describe how the small domains are constructed. 

Consider the 4-tuple 1 2 3 4( , , , ),k k k k  where 1 1, 2, 3k =  or 4 

according as the person is Chinese, Filipino, Asian Indian or 

Islanders. Next 2 1k =  or 2 according as the person is a male 

or a female. Then 3 1, 2k =  or 3 according as the person 

belongs to the age-group 0-17, 18-64 or 65+. Finally, 

4 1, 2, 3k =  or 4 according as the person belongs to a 

Metropolitan Statistical Area (MSA) of size 499,999,≤  

500,000 - 999,999, 1,000,000 - 2,499,999 or 2,500,000.≥  

A small domain is now numbered by the formula 

1 2 3 424( 1) 12( 1) 4( 1)k k k k− + − + − +  corresponding to the 

4-tuple 1 2 3 4( , , , ).k k k k  For example, the small domain 

consisting of Filipino females belonging to the age-group 
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18-64 and a MSA of size 500,000 999,999−  is numbered 

42.  

The basic data consist of 1ijy =  or 0 if the thj  individual 

in the thi  small domain does not (does) have health 

insurance;  

ijw =ɶ  the sampling weight attached to the thj  unit in the 
thi  small domain;  

ijw =  1
in
jij ijw w=∑/ɶ ɶ  so that 1 1in

j ijw=∑ =  for each i.  
 

1ijx =  the family size of the thj  unit in the thi  small 

domain;  

2ijx =  the education level of the thj  unit in the thi  small 

domain;  

3ijx =  total family income of the thj  unit in the thi  small 

domain;  

 

Let ( ).ij ijp E y=  For the HB analysis, we model  

0 1 1 2 2 3 3logit( ) ,

1, , , 1, , 96.

ij ij ij ij ij i

i

p b b x b x b x u

j n i

θ = = + + + +

= =… …

 

The direct domain estimates are given by 1 .ˆ in
j ij ijiw
w yp =∑=  

The corresponding hierarchical Bayes estimates are given 

by 
HB

1 ( ).ˆ in

j ij ijiw
w E pp =∑= | y  We use MCMC as described in 

Section 2 to obtain these estimates. They are referred to in 

the table as HB. The associated posterior standard errors are 

referred to as se(HB).  Our hyperprior considers: 

0.2, 0.02, 0.002;c = 0.2, 0.02, 0.002.d =  The results are 

very insensitive to the choice of the hyperpriors, and are 

reported only for 0.02.c d= =  In addition, we have EB 

estimators for different choices of the parameter .λ  The 
results are reported for 0.1, 0.5λ =  and 1.  

Table 1 provides the various estimates of uninsured 

Asian people and the associated standard errors for the 

different small domains for the year 2000. Domain 2 is 

excluded due to zero sample size. Domain 2 refers to Male 

Filipinos in the age group 0-17 belonging to MSA’s of size 

500,000 - 999,999. The measures of precision (posterior 

s.d.’s) associated with the HB estimates are denoted by 

se (HB) and are given by the formula 2se (HB) =  

1var( ).in
j ij ijw p=∑ | y  One of the advantages of the HB or EB 

estimates is that for domains with very small sample sizes, 

often the direct estimates of the proportion of uninsured is 

zero, whereas the former provide small but non-zero 

estimates. We chose not to collapse the direct estimates for 

domains with very small sample sizes. The unit level 

covariates were quite distinct, and there was no meaningful 

way to combine them. We note also that when 0.5,λ =  i.e., 

the direct and synthetic estimates have 1: 2 weight ratio, the 

EB and HB estimates are very close.  
 

Table 1  
Small domain estimates of the proportions of uninsured Asians: Year 2000 

 

Domain in  Direct ’97-’99 
average 

HB se (HB) EB 
λ = 0.5 

EB 
λ = 1 

se (EB) 
λ = 0.5 

se (EB) 
λ = 1 

1 10 0.126 0.034 0.133 0.043 0.148 0.158 0.057 0.060 
2 0 - 0.085 - - - - - - 
3 24 0.063 0.016 0.074 0.025 0.076 0.082 0.037 0.039 
4 28 0.146 0.105 0.150 0.027 0.163 0.171 0.041 0.043 
5 20 0.138 0.265 0.143 0.032 0.153 0.160 0.043 0.046 
6 17 0.112 0.124 0.120 0.032 0.134 0.144 0.019 0.021 
7 78 0.097 0.100 0.104 0.015 0.107 0.112 0.022 0.024 
8 66 0.274 0.229 0.253 0.023 0.240 0.224 0.072 0.076 
9 5 0.173 0.000 0.164 0.061 0.160 0.154 0.078 0.082 
10 6 0.000 0.000 0.033 0.051 0.082 0.123 0.070 0.074 
11 7 0.000 0.084 0.032 0.047 0.090 0.134 0.054 0.057 
12 11 0.335 0.000 0.302 0.056 0.275 0.245 0.060 0.064 
13 7 0.134 0.061 0.134 0.045 0.130 0.128 0.103 0.110 
14 2 0.000 0.151 0.020 0.064 0.026 0.039 0.031 0.033 
15 27 0.000 0.104 0.023 0.023 0.035 0.052 0.032 0.034 
16 29 0.113 0.191 0.119 0.024 0.123 0.127 0.033 0.035 
17 27 0.120 0.223 0.127 0.025 0.141 0.152 0.044 0.047 
18 14 0.000 0.106 0.024 0.030 0.041 0.062 0.019 0.021 
19 77 0.131 0.111 0.133 0.015 0.133 0.134 0.021 0.023 
20 75 0.223 0.222 0.213 0.018 0.207 0.200 0.089 0.095 
21 3 0.000 0.000 0.022 0.056 0.028 0.043 0.070 0.074 
22 6 0.000 0.184 0.026 0.045 0.052 0.079 0.071 0.075 
23 8 0.000 0.022 0.037 0.050 0.108 0.162 0.063 0.067 
24 9 0.000 0.000 0.029 0.042 0.062 0.093 0.052 0.055 
25 10 0.000 0.083 0.023 0.034 0.031 0.046 0.061 0.065 
26 6 0.000 0.018 0.020 0.039 0.029 0.044 0.031 0.033 
27 32 0.098 0.041 0.105 0.023 0.108 0.114 0.035 0.037 
28 23 0.000 0.092 0.024 0.025 0.037 0.055 0.032 0.034 
29 25 0.187 0.211 0.173 0.030 0.151 0.134 0.035 0.037 
30 23 0.227 0.076 0.210 0.032 0.188 0.169 0.021 0.022 
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Table 1 (continued) 

Small domain estimates of the proportions of uninsured Asians: Year 2000 
 

Domain in  Direct ’97-’99 
average 

HB se (HB) EB 

λ = 0.5 

EB 

λ = 1 

se (EB) 

λ = 0.5 

se (EB) 

λ = 1 

31 71 0.118 0.059 0.123 0.016 0.125 0.128 0.024 0.026 
32 50 0.109 0.156 0.113 0.019 0.112 0.113 0.113 0.120 
33 2 0.000 0.000 0.024 0.071 0.037 0.055 0.115 0.122 
34 2 0.000 0.000 0.026 0.073 0.047 0.070 0.058 0.061 
35 8 0.108 0.000 0.113 0.042 0.112 0.114 0.067 0.071 
36 7 0.000 0.000 0.030 0.045 0.065 0.098 0.051 0.054 
37 9 0.062 0.197 0.069 0.035 0.062 0.063 0.036 0.038 
38 17 0.000 0.019 0.019 0.024 0.023 0.034 0.037 0.040 
39 24 0.117 0.022 0.124 0.028 0.134 0.142 0.040 0.043 
40 20 0.000 0.070 0.028 0.029 0.052 0.078 0.025 0.027 
41 50 0.163 0.145 0.160 0.020 0.156 0.153 0.027 0.029 
42 38 0.141 0.114 0.139 0.021 0.133 0.130 0.020 0.022 
43 76 0.104 0.090 0.112 0.016 0.120 0.128 0.020 0.022 
44 73 0.142 0.149 0.142 0.016 0.139 0.137 0.119 0.127 
45 2 0.000 0.000 0.027 0.076 0.051 0.076 0.090 0.095 
46 3 0.000 0.052 0.021 0.056 0.023 0.035 0.052 0.055 
47 10 0.000 0.072 0.024 0.034 0.044 0.066 0.068 0.072 
48 7 0.000 0.172 0.029 0.045 0.068 0.102 0.051 0.054 
49 10 0.087 0.364 0.095 0.037 0.099 0.105 0.078 0.083 
50 5 0.000 0.000 0.027 0.050 0.053 0.080 0.032 0.034 
51 23 0.038 0.092 0.053 0.023 0.056 0.066 0.037 0.039 
52 21 0.243 0.195 0.223 0.037 0.198 0.176 0.030 0.032 
53 31 0.114 0.184 0.120 0.022 0.121 0.124 0.040 0.042 
54 18 0.202 0.169 0.195 0.031 0.188 0.182 0.019 0.020 
55 74 0.094 0.115 0.102 0.015 0.102 0.106 0.019 0.020 
56 83 0.204 0.296 0.192 0.017 0.178 0.165 0.133 0.141 
57 2 0.000 0.124 0.029 0.082 0.062 0.092 0.146 0.154 
58 1 0.000 0.000 0.019 0.087 0.023 0.035 0.000 0.000 
59 2 0.000 0.196 0.020 0.063 0.021 0.032 0.103 0.194 
60 8 0.112 0.116 0.120 0.044 0.132 0.143 0.059 0.063 
61 16 0.202 0.140 0.187 0.036 0.169 0.152 0.040 0.043 
62 3 0.301 0.163 0.276 0.086 0.252 0.227 0.100 0.107 
63 33 0.055 0.093 0.069 0.020 0.073 0.082 0.028 0.030 
64 28 0.105 0.275 0.112 0.024 0.115 0.120 0.032 0.034 
65 33 0.126 0.133 0.129 0.021 0.126 0.126 0.029 0.031 
66 13 0.393 0.290 0.350 0.054 0.323 0.288 0.048 0.051 
67 70 0.080 0.136 0.089 0.015 0.088 0.093 0.019 0.021 
68 75 0.179 0.233 0.171 0.017 0.159 0.149 0.019 0.021 
69 1 0.000 0.000 0.851 0.248 0.705 0.558 0.163 0.173 
70 2 0.361 0.000 0.331 0.098 0.299 0.268 0.119 0.126 
71 4 0.000 0.091 0.023 0.050 0.032 0.048 0.077 0.082 
72 2 0.000 0.182 0.045 0.101 0.157 0.236 0.155 0.165 
73 45 0.271 0.144 0.256 0.026 0.256 0.249 0.028 0.030 
74 10 0.000 0.044 0.024 0.034 0.034 0.051 0.051 0.055 
75 83 0.149 0.097 0.150 0.016 0.160 0.166 0.020 0.021 
76 59 0.113 0.205 0.120 0.018 0.128 0.136 0.023 0.024 
77 68 0.338 0.224 0.313 0.025 0.302 0.284 0.023 0.024 
78 39 0.098 0.138 0.103 0.020 0.102 0.104 0.026 0.028 
79 122 0.110 0.163 0.117 0.013 0.125 0.133 0.016 0.017 
80 125 0.308 0.314 0.281 0.020 0.262 0.239 0.016 0.017 
81 7 0.000 0.000 0.029 0.043 0.066 0.099 0.065 0.069 
82 12 0.000 0.045 0.025 0.032 0.047 0.070 0.048 0.051 
83 13 0.049 0.017 0.068 0.035 0.088 0.108 0.050 0.053 
84 4 0.000 0.061 0.028 0.056 0.060 0.091 0.088 0.093 
85 32 0.189 0.113 0.193 0.027 0.217 0.231 0.035 0.037 
86 10 0.136 0.056 0.137 0.036 0.127 0.123 0.051 0.054 
87 52 0.192 0.098 0.185 0.021 0.184 0.180 0.024 0.026 
88 65 0.153 0.120 0.155 0.018 0.162 0.166 0.022 0.024 
89 71 0.285 0.210 0.265 0.022 0.256 0.242 0.022 0.023 
90 57 0.086 0.146 0.095 0.017 0.102 0.110 0.022 0.024 
91 153 0.149 0.167 0.150 0.011 0.156 0.160 0.014 0.015 
92 138 0.308 0.285 0.283 0.020 0.266 0.244 0.015 0.017 
93 10 0.000 0.000 0.030 0.041 0.073 0.110 0.059 0.063 
94 16 0.067 0.015 0.081 0.029 0.090 0.101 0.042 0.044 
95 18 0.108 0.018 0.123 0.032 0.145 0.163 0.046 0.049 
96 14 0.111 0.087 0.125 0.039 0.160 0.185 0.050 0.053 
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The HB estimates of the proportion of uninsured for 

Asians vary in the 2%-35% range for the different small 

domains excluding domain 69. Admittedly, the EB and HB 

estimates for domain 69 are very adversely affected due to 

small sample size. We also report the standard errors asso-

ciated with the HB estimates, and estimated approximate 

root mean squares accompanying the EB estimates. The 

proposed approach largely overcomes the valid criticism 

that naive EB estimates of standard errors (which ignore the 
1( )O k −  term) are typically underestimates. We have also 

provided a column giving the 3-year average of the direct 

estimates in 1997-1999. This is primarily to examine 

whether domains with zero direct estimates in 2000 also 

possess the same feature in other years, and also for compa-

rison of EB and HB estimates with these estimates rather 

than the direct estimates. It turns out that with very few 

exceptions, the 1997-1999 average do not conform very 

much to the direct estimates. However, domain 69 still has 

zero direct estimate.  

Table 2 provides the summary table for the proprtion of 

uninsured for the three age groups 0-17, 18-64 and 65+ 

individually for Chinese (Asian 1), Filipino (Asian 2), Asian 

Indian (Asian 3) and other Asians (Asian 4). It turns out that 

at this higher level of aggregation, both the EB and HB 

small domain estimates are fairly close to the corresponding 

direct estimates except possibly for the age-group 65+. This 

seems to be quite satisfactory, since at this level of 

aggregation, the direct estimates often serve as benchmarks 

for comparison purpose. 

 
Table 2  
Proportions without health insurance coverage by age group and 

Asian group in 2000 
 

 Direct HB EB ( 0.5)λ =λ =λ =λ =  EB ( )λ = 1λ = 1λ = 1λ = 1  
0-17 years     

Total 0.120 0.126 0.131 0.137 
Asian 1 0.087 0.097 0.105 0.114 
Asian 2 0.046 0.062 0.071 0.083 
Asian 3 0.113 0.117 0.114 0.114 
Asian 4 0.165 0.165 0.171 0.175 

18-64 years     
Total 0.177 0.172 0.168 0.164 

Asian 1 0.162 0.160 0.160 0.159 
Asian 2 0.137 0.137 0.135 0.134 
Asian 3 0.150 0.147 0.141 0.137 
Asian 4 0.219 0.208 0.203 0.195 

65+ years     
Total 0.063 0.080 0.103 0.123 

Asian 1 0.083 0.097 0.123 0.143 
Asian 2 0.021 0.043 0.064 0.085 
Asian 3 0.119 0.126 0.136 0.145 
Asian 4 0.055 0.075 0.100 0.123 

 
 
  

6. Model diagnostics and implementation of the 

      hierarchical Bayesian model 
 
We followed Gelman and Rubin (1992) for the 

implementation and convergence diagnostics of the Gibbs 

sampler. In particular we took 5 chains each of size 1,000 

with an initial burning period of 1,000 iterations. We 

checked the potential scale reduction factors for conver-

gence and these appeared to be very close to unity (= 1 at 

convergence) for each one of the parameters. A number of 

other diagnostics criteria are available in the literature, and 

are implemented via the software CODA. A partial output is 

provided in the Figure 1. The left side shows the overlap of 

the 5 parallel chains, and the right side shows the posterior 

inference for each parameter and the deviance (-2  log 

likelihood). For details regarding the description of the 

software that we used, we refer to Appendix C of Gelman, 

Carlin, Stern and Rubin (2004).  

A Bayesian way to check the fit of a model to data is to 

draw simulated values from the posterior predictive 

distribution of replicated data and compare these samples to 

observed data. A wide departure between the generated and 

the observed data indicates lack of fit of the model. 

Following Gelman et al. (2004), we calculated the Bayesian 

p-values for checking the goodness-of-fit of the proposed 

Bayesian models. The general rationale behind such 

calculations is as follows. Let y denote the vector of 

observed data, ξ  the vector of unknown parameters, 
( )f y | ξ  the density of y given ξ  and ( ),yΠ ξ |  the 

posterior density of ξ  given y. Suppose one has drawn 
samples (1) ( ), , Rξ ξ…  from this posterior distribution using 

MCMC simulation. Simulate now R hypothetical replicates 

of the data, say (1) ( ), , ,Ry y…  where ( ), ( 1, , )ly l R= …  is 

drawn from the conditional distribution of y given the 

simulated ( ) .lξ  If the model is reasonably accurate, these 

hypothetical replicates should be similar to the observed 

data y. This is formally done by first choosing a divergence 

variable, say ( , )d y ξ  which will have an extreme value if 
the data y are in complete disagreement with the given 

model. Then a p-value is estimated by the proportion of 

cases in which the simulated divergence variable exceeds 

the realized value of the same. Thus the estimated p-value 

(usually referred to as the posterior predictive p-value) is 

equal to ( ) ( ) ( )

1
1 [ ( ) ( )]

,l l l

R
l d y d y

R I−
= ,ξ ≥ ,ξ∑  where I is the usual 

indicator function. One way of checking the goodness of fit 

of the model is by a scatter plot of realized values  
( )( , )ld y ξ  against the predictive values ( ) ( )( , )l ld y ξ  on the 

same scale. A good fit is indicated by about half the points 

in the scatter plot falling above the 045  line, and half falling 

below. In other words, for large samples, the estimated p-

value will not be far away from one half. Of course, one 

may also carry out a graphical analysis by using different 
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80% interval for each chain    R-hat             medians and 80% intervals 

   -1       0         1          2       1     1.5    2+ 
             1.5 

 
alpha0    1 

 
             0.5 

-1         0         1          2       1     1.5    2+ 

* array truncated for lack of space 

           0.05  
alpha1   0  
         -0.05 
           -0.1 

                0.1  
alpha2    0.05  
                  0 

              -0.09 

                1.6  
alpha3     1.4  
                1.2 
                   1 

                0.7  
sigma       0.6  
                0.5 
                0.4 

                 1 
 

*p          0.8 
 

              0.6 

               2,340 
 

deviance 2,320 
 

               2,300 

plots for different subgroups, thereby allowing visualization 

of possible local model failure which may otherwise be 

obscured in the aggregate plot.  

There are several possible choices of the divergence 

variable d. We considered a particular one in the present 

case. Noting that ( ) exp( ) /(1 exp( )),ij ij ij ij ijE Y p p| = = θ + θ  

one can consider the squared standardized residuals 
( ) 2 ( ) ( )(( ) ) / ( (1 )),l l l

ij ij ij ijy p p p− −  where ( ) ( )exp( ) /l l
ij ijp = θ  

( )(1 exp( ))l
ij+ θ  are the generated values of the ijp  from the 

thl  iteration. Then the divergence variable d is  

( ) 295
( )

( ) ( )
1 1

( ) ( ) 295
( ) ( )

( ) ( )
1 1

( )
( )

(1 )

( )
( , ) .

(1 )

i

i

ln
ij ijl

l l
i j ij ij

l ln
ij ijl l

l l
i j ij ij

y p
d y p

p p

y p
d y p

p p

= =

= =

−
, =

−

−
=

−

∑∑

∑∑

 

Clearly, there are other possible choices of d. Gelfand and 

Ghosh (1998) proposed a number of divergence measures, 

and studied their properties.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Bugs model at  “asian_model.bug”, 5 chains, each with 1,000 iterations 
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For the hierarchical Bayesian logistic regression model, 

the estimated p-value is 0.4216 for ( , ) (0 02, 0 02).c d = . .  

The other choices of ( )c d,  produce similar values. The p-

value bigger than 0.3 is usually treated as a good fit. Thus 

the proposed HB procedure seems to work well in this 

situation. 

We have also calculated the Dp =  var(deviance)/2 and 
the deviance information criterion DIC or the estimated 

predictive deviance. The Dp  can be thought of as the 

number of ‘unconstrained parameters in the model, where a 

parameter is counted as 1 if it is a part of the original model 

(data distribution) and is 0 if it is associated with any prior 

distribution. The DIC is estimated as  

( ) ˆˆ ˆDIC 2 ( , ) ( , )lD y D y= θ − θ  

where ˆˆ ( , )D y θ  is the deviance calulated at the estimated 
parameters and ( )ˆ ( , )lD y θ  is the esimated deviance using 

posterior simulation. For details, see Gelman et al. (2004).  

For our HB analysis 56 75Dp = .  and DIC = 2,414.41. 

Usually the Dp  and DIC are used as criteria of model 

fitting and to select the model with best predictive power. 

Thus, we fit also the simple logistic regression model 

(current model without any random effects) which means 

that there is no data pooling, and the estimated Dp  and DIC 

are 22.60 and 2,379.55 respectively. The corresponding p- 

value is 0.3848. Thus the proposed model seems to fit the 

data reasonably well 

 
7. Summary, future work and discussion 

 
Estimating the proportion of uninsured people, especially 

among the minorities, is definitely a problem of great 

importance, and is likely to affect the policy making of 

Federal and State agencies. We have just started addressing 

this very important issue, and have provided both empirical 

and hierarchical Bayesian small domain estimates for the 

Asian subpopulation cross-classified by age, sex and other 

demographic characteristics. We have also discussed the 

adequacy of our model fit via posterior predictive p-value. 

Much work remains to be done however. In particular, we 

want to extend the present findings to the analysis of 

bivariate and multivariate binary data.  

As pointed out by a reviewer, the present analysis ignores 

household clustering in the likelihood, since the original 

survey was a household survey, and very definitely, 

insurance coverage is correlated within households. How-

ever, we have assumed only a conditionally independent 

hierarchical model given the covariates and the random 

effects. Once, we have assigned distributions to the random 

effects, and subsequently distributions to the regression 

coefficients and the variance components, dependence is 

built automatically in the final model, both at the unit and 

domain levels. Moreover, as mentioned earlier, adequacy of 

the hierarchical Bayesian model has been tested through 

posterior predictive p-values.  

As a final comment, the research presented here is for 

illustrative purposes only. Implementation of this method 

for policy related matters would require further considera-

tuions of the methods and adherence to institutional 

standards for official policy release.  
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Hence,  

2

EB EB

1

2

1

ˆMSE( ) ( )ˆ ˆ

( ) .ˆ

i

i

n
B

ij ij ijiw
j

n
B

ij ijij
j

E w p p

E w pp

=

=

 
= −µ  

 

 
+ − 

 

∑

∑

 

(A.1)

 

But  

2

2 2

1 1

( ) ( ) .ˆ ˆ
i in n

B B

ij ij ij ijij ij
j j

E w p w E pp p
= =

 
− = − 

 
∑ ∑  

Next we calculate  

2

2

2

2
2

2

2 2

2

2

2 2

( )ˆ

1
( )

1 1

1
( ) ( ( ) )
1 1

1
( ) ( )

( 1) ( 1)

2
( )( ( ) )

( 1)

1
( (1 )) ( ) 0

( 1) ( 1)

1

B

ijij

ij ij ij

ij ij ij ij

ij ij ij ij

ij ij ij ij

ij ij ij

E pp

E y m p

E y p m p

E y p E m p

E y p m p

E p p V p

 
 
 

−

λ = + − λ + λ + 

λ = − + − λ + λ + 

λ= − + −
λ + λ +

λ+ − −
λ +

λ
= − + +

λ + λ +

=

b

b

b

b

2

2

2

2

( )(1 ( ))
( 1)( 1)

( )(1 ( ))

1( 1)

( )(1 ( ))
,

( 1)

ij ij

ij ij

ij ij

m m

m m

m m

 λ
− λ +λ +  

− λ
+  

λ +λ +  

λ −
=

λ +

b b

b b

b b

 

so that  

2

1

2

2
1

( )ˆ

( )(1 ( )).
( 1)

i

i

n
B

ij ijij
j

n

ij ij ij

j

E w pp

w m m

=

=

 
− 

 

λ
= −

λ +

∑

∑ b b

 

(A.2)

 

Finally, we calculate,  

2

EB

1

2
2

2
1

2
22

2
1

1

( )ˆ ˆ

ˆ( ( ) ( ))
( 1)

ˆ( ( ) ( ))
( 1)

ˆ( ( ) ( ))

ˆ( ( ) ( )) .

i

i

i

i

n
B

ij ij ij
j

n

ij ij ij

j

n

ij ij ij
j

ij ij ijij
j j n

ij ij

E w p p

E w m m

E w m m

w w m m

m m

′

′

′ ′

=

=

=

≤ ≠ ≤

 
− 

 

 λ
= − λ +  

λ
= −λ + 

+ −


− 



∑

∑

∑

∑ ∑

b b

b b

b b

b b

 

(A.3)

 

 

By two-step Taylor expansion,  
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The first neglected term is 
3ˆ( ).pO || − ||b b  From Sarkar and 

Ghosh (1998), ˆ −b b  is asymptotically 1N(0, ( )),− bΣΣΣΣ  where 

( )bΣΣΣΣ  is defined before Theorem 1. With the assumption 
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In order to find ˆ ˆ[( )( ) ],TE − −b b b b  we proceed as follows:  
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which is correct up to 1( )TO n−  by our assumption.  
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Now, again by a two-step Taylor expansion,  
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Since ( ),T en O k=  the theorem follows.  
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A nonparametric test for residual seasonality 

Tucker McElroy and Scott Holan 1 

Abstract 

Peaks in the spectrum of a stationary process are indicative of the presence of stochastic periodic phenomena, such as a 

stochastic seasonal effect. This work proposes to measure and test for the presence of such spectral peaks via assessing their 

aggregate slope and convexity. Our method is developed nonparametrically, and thus may be useful during a preliminary 

analysis of a series. The technique is also useful for detecting the presence of residual seasonality in seasonally adjusted 

data. The diagnostic is investigated through simulation and an extensive case study using data from the U.S. Census Bureau 

and the Organization for Economic Co-operation and Development (OECD). 
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1. Introduction 
 

The presence of a peak in the spectrum of a stationary 

process is indicative of periodic behavior, such as 

seasonality or a trading day effect. There is a widespread 

interest in the identification of such peaks in the engineering 

and econometrics literature, since a pronounced spectral 

node will exert a potent influence on the dynamics of the 

stochastic process. A peak indicates a range of frequencies 

that offer a relatively large contribution to the overall 

variance of the stochastic process. If the strength of the 

peak, assessed through its height and width relative to 

neighboring values, is sufficiently pronounced, any model 

of the dynamics that ignores the corresponding periodicities 

will be misspecified. In both engineering and econometrics, 

one may be interested in signal extraction or forecasting, 

both of which are sensitive to the presence of spectral peaks. 

By a spectral peak, we refer to a region of the spectral 

density that has greater spectral mass than its immediate 

neighbors; a more precise definition is developed below. 

Due to the applications that we have in mind, our peaks 

have finite height, and thus correspond to stochastic periodic 

effects in a stationary process. Thus, we are not principally 

concerned with the detection of fixed (deterministic) 

periodic effects, nor with nonstationary periodic phenomena 

(though we make some extensions to this case in Section 3.4 

below), as both of these correspond to a spectral peak with 

infinite height. The vast literature dealing with the detection 

of fixed effects is discussed in Priestley (1981); for our 

applications the periodic aspects of the data are not fixed, 

but instead evolve over time. 

In this paper we focus on the application to seasonal 

adjustment. Specifically, we concentrate on so-called 

seasonal peaks, which may occur at the seasonal frequencies 

(assuming a monthly sampling interval) / 6, 2 / 6, 3 / 6,π π π  

4 / 6, 5 / 6,π π  and 6 / 6.π  The detection of seasonality and 

residual seasonality presents an important practical problem 

in federal statistics, and the spectrum is a natural tool 

towards this end. The frequency domain approach to the 

detection and analysis of seasonality enjoys wide popularity, 

because it provides a very natural way to view quasi-

periodic behavior. In fact, seasonality is  −  informally 

speaking  −  characterized by the presence of at least one 

seasonal peak in the spectrum (Nerlove 1964). Frequency 

domain methods are now employed in X-12-ARIMA 

(Findley, Monsell, Bell, Otto and Chen 1998) and are part 

of TRAMO-SEATS (Maravall and Caporello 2004), the 

two most widely-used seasonal adjustment programs 

available to the public. Note that frequency domain methods 

can be implemented via either a parametric (i.e., model-

based) or nonparametric approach. We develop a non-

parametric diagnostic, which can be invoked to determine 

the efficacy of any seasonal adjustment procedure, either 

model-based or nonparametric. As noted in Findley, 

Monsell, Bell, Otto, and Chen (1998), the use of fixed 

periodic functions alone to model seasonality is typically 

inadequate for economic data (also see the discussion in 

Bell and Hillmer 1984). 

Spectral peaks at seasonal frequencies in a seasonally 

adjusted series may indicate inadequacy of the seasonal 

filters  −  see Soukup and Findley (1999) for a discussion. 

At a minimum, seasonal adjustment filters should remove 

nonstationary seasonality and any fixed periodic effects  − 

those phenomena in the observed series that contribute a 

seasonal pole to the spectrum. However, there is a 

consensus among seasonal adjusters that it is also desirable 

to remove some aspects of the stationary seasonality as 

well  − hence the explosion of effort in developing model-

based seasonal adjustment filters (Bell and Hillmer 1984). 
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The most important prior literature on this topic is 

Soukup and Findley (1999), which proposes using an 

autoregressive spectrum to find “visually significant” peaks 

– essentially the value of the spectrum at each seasonal 

frequency (or trading day frequency) is compared to its 

nearest neighbors, and is classified as a peak if the 

discrepancy is suitably large. This method is currently 

implemented in the X-12-ARIMA program from the U.S. 

Census Bureau (2002). One limitation of this approach is 

that it has really no statistical component: the significance is 

not statistical – i.e., it is not associated with a hypothesis test 

– and the thresholds to determine “visual significance” are 

determined in an ad hoc fashion. This paper provides a 

statistical significance test for peak detection, and can thus 

be used to offer supplementary statistical evidence of the 

presence of a peak. 

Another related paper is Newton and Pagano (1983), 

which develops consistent estimators for the local maxi-

mizers of the spectrum. Our approach is slightly different, in 

that we already know the frequencies of interest (the six 

seasonal frequencies) but seek to test for the presence of a 

statistically significant peak. Viewing the true spectral 

density f  as a smooth function (this can be quantified 

through sufficiently rapid decay of the autocovariance 

function), a peak is a frequency 0λ  such that  

0 0( ) 0 ( ) 0,f fλ = λ <ɺ ɺɺ  (1) 

where fɺ  and fɺɺ  denote first and second derivatives. 

Clearly, the second derivative must be negative with some 

significance in order for the concept to be meaningful. Upon 

further reflection, it seems that examining the infinitesimal 

geometry of f  at the single point 0λ  is naïve, since any 

small spike in the side of a monotonic function may satisfy 

(1) while being dissociated from more intuitive notions of 

what constitutes a peak. Therefore, we must have negative 

convexity in a reasonably large neighborhood of 0.λ  This 

thinking leads to the diagnostic of this paper: aggregate 

measures of the slope and convexity of the spectral density, 

appropriately normalized. Mathematically, these will take 

the form of kernel-smoothed periodogram estimates, but 

without the bandwidth being dependent on sample size. 

In Section 2 we develop the mathematical ideas of this 

method, illustrated through two carefully chosen choices of 

kernels. Section 3 shows how statistical estimators can be 

formulated, and how statistical peak hypotheses can be 

tested. The methodology is tested in Section 4; simulations 

provide a finite sample description of the size and power of 

our test. We further demonstrate the utility of our methods 

through an extensive case study involving 130 time series 

from the U.S. Census Bureau and the Organization for 

Economic Co-operation and Development (OECD). We  

use some concepts from the multiple testing literature 

(Hochberg 1988) to combine tests based on the individual 

frequencies together into one diagnostic. Section 5 con-

cludes, and all theorems and proofs are left to the Appendix. 

 
2. Measuring the local geometry of the spectrum 
 

We begin by discussing the geometry of the spectral 

density (or spectrum) of the time series under consideration. 

The starting point is to consider measures of slope and 

convexity of the spectrum that are completely deterministic 

(cf. the approach of Newton and Pagano 1983); later in 

Section 3 we will consider statistical measures. In Section 

2.1 we introduce the concepts of slope and convexity 

measures. The relevancy of these measures to peak 

identification is discussed in 2.2, while 2.3 provides two 

simple kernels as explicit examples. 

Suppose that, after suitable transformations and 

differencing if necessary, 1 2, , ..., nX X X  is a sample from 

a zero-mean stationary stochastic process. We will use the 

notation 1 2( , , ..., ) .nX X X X ′=  The spectral density 

( )f λ  is well-defined so long as the autocovariance function 

( )f hγ  is absolutely summable, and is given by 

( ) ( ) ih

f
h

f h e
∞

− λ

=−∞

λ = γ∑  (2) 

with 1i = −  and [ , ].λ ∈ −π π  It follows that the 

inverse Fourier transform yields 

1
( ) ( ) ,

2

ih

f h f e d
π λ

−π
γ = λ λ

π ∫  (3) 

a relation that we will use repeatedly in the sequel. Of 

course this relationship between gγ  and g  holds for any 

integrable function ,g  not just a spectral density. Further-

more, denoting the Toeplitz matrix associated with gγ  by 

( ),gΣ  it follows that 

( )1
( ) ( ) ( ) .

2

i j k

jk gg j k g e d
π − λ

−π
Σ = γ − = λ λ

π ∫  

Now from (2), f  is d  times continuously differentiable 

if ( ) .d
h fh h∞
=−∞∑ | | | γ | < ∞  We assume that f  is twice 

continuously differentiable for the remainder of the paper 

(this space of functions will be abbreviated as 2 ).C  
 
2.1 Measures of slope and convexity  

The local geometry of a 2C  function can be described 

through its first and second derivatives; an aggregate 

measure of these derivatives is obtained by integrating over 

a band of frequencies. Alternatively, one may integrate 

against a function A  that has compact support over this 

band, so long as A  provides a suitable proxy for integration 

over the band. We denote this integral via the general device 

of a functional ,Aθ  where 
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1
( ) ( ) ( ) .

2
A f A f d

π

−π
θ = λ λ λ

π ∫  (4) 

The function A  will be referred to as the “kernel” of this 

functional. Hence the aggregate slope and convexity 

measures are defined by ( )A fθ ɺ  and ( ),A fθ ɺɺ  where each 

dot denotes a single derivative. These functionals give a 

summary measure of slope and convexity of f  over some 

band [ / 2, / 2] [0, ],µ − β µ + β ⊂ π  and the corresponding 

kernels will therefore be denoted , .Aβ µ  We consider 

kernels with the following properties: (i) ,Aβ µ  is a 
2C  

function on [ , ];−π π  (ii) ,Aβ µ  is zero outside the band 

[ / 2, / 2];µ − β µ + β  (iii) ,Aβ µ  is symmetric about µ  on 
this band; (iv) , ( / 2) 0.Aβ µ µ ± β =ɺ  Condition (iii) ensures 

that the location of the peak in f  is not shifted by 

employing the kernel , .Aβ µ  Note that we do not impose that 

the total integral of ,Aβ µ  be unity, because later we will 

employ a normalization that will automatically account for 

the total mass of the kernel. Now by (iv) and integration by 

parts in (4), we obtain 

, ,

, ,

( ) ( )

( ) ( ).

A A

A A

f f

f f

β µ β µ

β µ β µ

θ = −θ

θ = θ

ɺ

ɺɺ

ɺ

ɺɺ
 

(5)
 

These formulas are convenient, because they only require 

a knowledge of ,f  not its derivatives (assuming that we can 

compute ,Aβ µ
ɺ  and , ).Aβ µ

ɺɺ  Following the extensive 

literature on kernels in nonparametric regression and 

spectral density estimation, we can start with an even kernel 

A  defined on the band [ , ]−π π  that satisfies (i) and 

( ) 0.A ±π =ɺ  Then ,Aβ µ  is defined via 

,

2 2
( ) ( ) ,A Aβ µ

π π λ = λ − µ β β 
 

and is zero outside the band of frequencies [ / 2,µ − β  

/ 2].µ + β  Clearly we must impose 2β ≤ µ  and 

2( ),β ≤ π − µ  so that [ / 2, / 2] [0, ];µ − β µ + β ⊂ π  

and the kernel ,Aβ µ  satisfies conditions (i)-(iv). Note that 

we cannot construct these types of measures for µ  equal to 
0 or .π  Using a change of variables, we see that 

,
( ) exp{ } ( / 2 ),A Ah ih h

β µ
γ = µ γ β π  (6) 

so that the effect of β  and µ  are in some sense separable. 

Note that we typically evaluate Aγ  at non-integer values, so 

these relations are obtained by extending (3) to non-integer 

arguments. The fact that 
,Aβ µ

γ  is complex-valued may seem 

troubling, but actually only its real portion will enter into 

our statistical estimators. Of course, we are ultimately 

interested in ,Aβ µ
ɺ  and , ,Aβ µ

ɺɺ  which are given by  

2

, 2

4 2
( ) ( ) ,A Aβ µ

π π λ = λ − µ ββ  
ɺ ɺ  

and  

3

, 3

8 2
( ) ( ) .A Aβ µ

π π λ = λ − µ ββ  
ɺɺ ɺɺ  

Later, we will consider the squares of such kernels, and 

their corresponding inverse Fourier transforms. Hence 

assuming that [ / 2, / 2] [0, ],µ − β µ + β ⊂ π  the squares 

are given by 

4
2 2

, 4

16 2
( ) ( )A Aβ µ

π π λ = λ − µ ββ  
ɺ ɺ  

and  

6
2 2

, 6

64 2
( ) ( ) .A Aβ µ

π π λ = λ − µ ββ  
ɺɺ ɺɺ  

Finally, we notice from (4) that we can rewrite ( )A fθ  as 

( ) ( ) ( ).A A f
h

f h h
∞

=−∞

θ = γ γ∑  (7) 

Thus it may be advantageous to determine the ( )A hγ  

sequence from the kernel .A  Taking the inverse Fourier 

Transform of the above slope and convexity kernels, we can 

construct ,( ),Aβ µΣ ɺ ,( ),Aβ µΣ ɺɺ 2
,( )Aβ µΣ ɺ  and 2

,( ),Aβ µΣ ɺɺ  as 

follows: 

,

,

2 2
,

2 2
,

2

2

3

3

5

5

2
( ) exp{ } ( / 2 ),

4
( ) exp{ } ( / 2 ),

8
( ) exp{ } ( / 2 ),

32
( ) exp{ } ( / 2 ).

AA

AA

AA

AA

h ih h

h ih h

h ih h

h ih h

β µ

β µ

β µ

β µ

π
γ = µ γ β π

β

π
γ = µ γ β π

β

π
γ = µ γ β π

β

π
γ = µ γ β π

β

ɺɺ

ɺɺɺɺ

ɺɺ

ɺɺɺɺ
 (8)

 

Thus, if we have the time-domain information ( )f hγ  for 

the process { },tX  we can compute slope and convexity 

measures using (7) given the inverse Fourier transform 

sequence of the appropriate kernels. Since ( )f hγ  is a 

symmetric sequence, we only need to consider the real 

portion of ( )A hγ  if it happens to be complex. 
 
2.2 Troughs and peaks  

The aggregate measures of spectral slope and convexity 

previously described provide the building blocks for 

determinants of the local spectral geometry. Our overall 

interest is in determining whether a given interval of the 

spectrum is a peak or a trough (or is monotonic). In the 

second order geometry of calculus, a local maximum has 

the defining property that the first derivative is zero and the 
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second derivative is strictly negative. Obviously this re-

quires looking, sequentially, at a slope measure and a con-

vexity measure, defined over the same band of frequencies. 

In order to test for the presence of a peak, the sequential 

approach can be seen as making inferential statements about 

,
( )A f

β µ
θ ɺ  and 

,
( ).A f

β µ
θ ɺɺ  Note, in making these inferential 

statements we choose µ  ahead of time, according to where 
in the spectrum we wish to detect a peak (or trough); β  is 
chosen according to which frequencies we wish to exclude, 

a decision based on how local we wish our viewpoint of the 

spectrum to be. Then we say that µ  is a β -aggregate peak 
(with respect to )A  of the spectrum if 

( ) 0 and ( ) 0.A Af fθ = θ <ɺ ɺɺ  

The sequential aspect comes from the idea that we gen-

erally determine whether ( ) 0A fθ =ɺ  first, and then deter-

mine the convexity; this will become more apparent when 

we consider statistical testing in Section 3.2. In a similar 

manner we define a β -aggregate trough when ( ) 0.A fθ >ɺɺ  

In terms of hypothesis testing for a peak, we have 

(1) (1)

0

(2) (2)

0

: ( ) 0 . : ( ) 0

: ( ) 0 . : ( ) 0.

A a A

A a A

H f vs H f

H f vs H f

θ = θ ≠

θ = θ <

ɺ ɺ

ɺɺ ɺɺ
 

The unusual aspect of this hypothesis test is that we wish 

to fail to reject (1)

0H  first, and then conditional on this test 

we want to reject (2)

0H  in favor of the alternative (2).aH  
 
2.3 Examples of kernels  

There are a host of kernels that satisfy conditions (i) 

through (iv); we can simply borrow from the literature on 

nonparametric density estimation. For example, the Parzen 

and Tukey-Hanning (TH) kernels (discussed in Priestley 

1981) are suitable, whereas the Bartlett and Daniell kernels 

are inappropriate, since (iv) does not hold. In general, one 

only needs to use (8) to determine the inverse Fourier 

transforms. In this section, we consider two examples: 

Quartic and TH. The advantage of these kernels is that they 

have easily computable first and second derivatives, and 

their inverse Fourier transforms can be obtained explicitly. 
 
Example 1: Quartic Kernel  

We begin by considering a polynomial kernel of degree 

four, namely a quartic. Imposing all of the constraints (i) 

through (iv) yields the following form: 

4 2 2 4

4

3 2

4

2 2

4

15
( ) ( 2 ),

8

15
( ) (4 4 ), and

8

15
( ) (12 4 ).

8

A

A

A

λ = λ − π λ + π
π

λ = π − π λ
π

λ = π − π
π

ɺ

ɺɺ

 

Taking the inverse Fourier transform of the slope and 

convexity kernels (and their squares) yields 

2

2

2

5 2 3 4

2

5 2 3

4 3

9 3 4

2

5 6 7

4

11

15 sin 3 cos 3sin
( ) ,

15 sin 3 cos 3sin
( ) ,

225 2 sin 18 cos
( )

78 sin 180 cos 18sin
,

225 sin 6
( )

4

A

A

A

A

i h h h
h

h h h

h h h
h

h h h

h h
h

h h

h h h

h h h

h
h

h

 π π π π π γ = + − 
π  

 π π π π π γ = + − 
π 

 π π π π
γ = − −

π 

π π π π π
+ + − 



 π π π
γ = +

π

ɺ

ɺɺ

ɺ

ɺɺ

3

2

2

3 4 5

cos

24 sin 54 cos 54sin
,

h

h

h h h

h h h

π

π π π π π
− − + 



 

to which we apply (8) and obtain 

,

,

2
,

2
,

2 3 4

2 2 3

3 3 4

5 6 7

30 sin 3cos 3sin
( ) exp{ } ,

30 sin 3cos 3sin
( ) exp{ } ,

1,800 2sin 18cos
( ) exp{ }

78sin 180cos 180sin
, and

1,8
( )

A

A

A

A

i k k k
h ih

k k k

k k k
h ih

k k k

k k
h ih

k k

k k k

k k k

h

β µ

β µ

β µ

β µ

 γ = µ + − 
β  

 γ = µ + − 
β π 

π γ = µ +
β 
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

γ =

ɺ

ɺɺ

ɺ

ɺɺ 5 2

3 4 5

00 sin 6cos
exp{ }

24sin 54cos 54sin
,

k k
ih

k k

k k k

k k k

µ +
β π
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

 

where /2.k h= β  Note that 2
,

3(0) 240 /(7 )
Aβ µ
γ = π β
ɺ

 and 

2
,

(0)
Aβ µ
γ =
ɺɺ

5360 /( )β π  follow by application of L’Hopital’s 

rule. These formulas allow us to construct the appropriate 

Toeplitz matrices for the diagnostic (as discussed in Section 

3.1 below, it suffices to consider the real part of these 

sequences). 
 
Example 2: TH Kernel  

A similar shape to the quartic can be obtained through 

the use of a cosine function. The following choice satisfies 

all the stated conditions on a kernel: 

1
( ) (1 cos ),

2

1
( ) ( sin ), and

2

1
( ) ( cos ).

2

A

A

A

λ = + λ
π

λ = − λ
π

λ = − λ
π

ɺ

ɺɺ
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This function is identical to the Tukey-Hanning lag 

window, though here we apply it as a spectral window (see 

Priestley 1981). Hereafter it will be referred to as the TH 

kernel. Taking the inverse Fourier transform of the slope 

and convexity kernels (and their squares) yields 

2

2

2

2

3

3

sin ( 1) sin ( 1)
( ) ,

1 14

1 sin ( 1) sin ( 1)
( ) ,

1 14

1 2sin sin ( 2) sin ( 2)
( ) , and

2 216

1 2sin sin ( 2) sin ( 2)
( ) .

2 216

A

A

A

A

i h h
h

h h

h h
h

h h

h h h
h

h h h

h h h
h

h h h
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π + π − γ =− + 
+ − π

π π + π − γ = − − + −π 

π π + π − γ = + + + −π 

ɺ

ɺɺ

ɺ
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Now applying (8) yields 
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,
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,
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,

2

3

3

5
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2
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where / 2.k h= β  Note that 2
,

3(0) /
Aβ µ
γ = π β
ɺ

 and 

2
,

3 5(0) 4 /
Aβ µ
γ = π β
ɺɺ

 follow by application of L’Hopital’s 

rule (using the convention that sin (0) / 0 1).=  These 

formulas allow us to construct the appropriate Toeplitz 

matrices for the diagnostic (again, as discussed in Section 

3.1 below, it suffices to consider the real part of these 

sequences). 

 
3. Statistical methodology 

 
Of course we do not typically have knowledge of the 

spectrum ,f  and thus it is usually necessary to form 

estimates from the data. In this section we describe 

statistical estimates of slope and convexity measures that are 

consistent and simple to compute in the time-domain. Under 

some mild additional assumptions, these estimates are 

asymptotically normal, which will be advantageous when 

performing hypothesis tests. In Section 3.1 the statistical 

estimates are defined, and their asymptotic properties are 

discussed. Section 3.2 discusses the application to peak 

testing, and 3.3 gives an extension to joint peak testing, 

which facilitates an important application in seasonal 

adjustment. Section 3.4 discusses extensions to trend 

nonstationary data.  
3.1 Estimators of slope and convexity  

We begin by noting that the quadratic form (for any 

integrable function )g  

1 1
( ) ( ) ( ) ,

2
X g X g I d

n

π

−π
′Σ = λ λ λ

π ∫  

where I  denotes the periodogram. Although the pe-

riodogram is typically defined at the Fourier frequencies 

(2 / ; 1, ..., / 2 )j n j nπ =  we define it at a continuous 

band of frequencies as follows 
2

1

1

1

1
( )

( ) , [ , ]

n
it

t

t

n
it

h n

I X e
n

R h e

− λ

=

−
− λ

= −

λ =

= λ ∈ −π π

∑

∑  (9)

 

with ( )R h  equal to the sample (uncentered) autocovariance 

function. This gives an elegant way of passing from the 

time-domain to the frequency-domain, and is well-known in 

the time series literature (see Taniguchi and Kakizawa 

2000). Moreover, such integrals of the periodogram are 

generally consistent, i.e., 
. .

( ) ( )
a s

g gI fθ →θ  as ,n → ∞  

under mild conditions discussed below (note that the 

inconsistency of the periodogram is resolved by the spectral 

aggregation against the function ,g  as shown in the 

Appendix). Therefore, we obtain statistical estimates of the 

slope and convexity measures f  by using a “plug in” 

approach, i.e., we simply replace f  by I  in 
,
.Aβ µ

θ  In 

particular, 

, ,

, ,

,

,

1ˆ ( ) ( ) ( ) , and

1ˆ ( ) ( ) ( ) .

A A

A A

f I X A X
n

f I X A X
n

β µ β µ

β µ β µ

β µ

β µ

′θ = −θ = − Σ

′θ = θ = Σ

ɺ

ɺɺ

ɺ ɺ

ɺɺ ɺɺ  (10)

 

This definition makes use of (5), which accounts for the 

minus sign in the slope measure. In order to compute the 

estimate, we utilize the time-domain representation 

(expressed as a quadratic form). This representation is 

convenient in that we only need determine a suitable length 

of the sequences 
,

( )
A

h
β µ

γ ɺ  and 
,

( ),
A

h
β µ

γ ɺɺ  form the Toeplitz 

matrices ,( )Aβ µΣ ɺ  and ,( ),Aβ µΣ ɺɺ  and then compute the 

quadratic forms. Note that the inverse Fourier transforms of 

,Aβ µ
ɺ  and ,Aβ µ

ɺɺ  need only be determined once (see Section 

2.3 for some explicit examples) and can be done ahead of 

time, and then applied repeatedly to many different time 

series. 

In order to compute the time domain representation of 

the slope and convexity measures in (10), we utilize (8), 
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e.g., see the formulas in Examples 1 and 2. Of course, this 

will in general result in ,( )Aβ µΣ ɺ  and ,( )Aβ µΣ ɺɺ  being 

complex. However, even if ( )gΣ  (where g  can be , ,Aβ µ  

, ,Aβ µ
ɺ  or , )Aβ µ

ɺɺ  is a complex Toeplitz matrix, ( )X g X′Σ  

will always be real. From (8), it is easy to see that 

( )g M i NΣ = +  where M  is real, symmetric, and 

Toeplitz, and N  is real, skew-symmetric, and Toeplitz. 

Hence 0X NX′ =  for any vector ,X  so that ( )X g X′Σ =  
.X M X′  Therefore, for the purposes of computing the 

statistical slope and convexity measures, we may take the 

real part of ( )A hγ  in (8). 

Not only are these statistical estimates consistent, they 

are also asymptotically normal under some additional 

conditions (discussed in the Appendix). However, in order 

to construct a suitable normalization it will be necessary to 

estimate their variation. The asymptotic variance of ( )g Iθ  

is 2

2( )
g

fθ  (if g  is supported on [0, ]),π  which can be 

consistently estimated via 2

2( ) / 2.
g
Iθ  (The factor of 2 is 

required, since the integral of 2I  tends to the corresponding 

integral of 22 f – see Chiu (1988)). This can be given a 

time-domain representation as follows. Let R =  
{ (1 ), ..., (0), ..., ( 1)}R n R R n ′− −  be a 2 1n −  vector 

of sample autocovariances, and let 2( )gΣ  be 2 1n −  

dimensional in the following formula: 2( ) / 2R g R′Σ =  
2

2( ) / 2.
g
Iθ  This relationship can be easily verified using (9). 

Thus we will normalize ( )g Iθ  by the square root of 

2

2( ) / 2.
g
Iθ  Hence our normalized statistical measures of 

slope and convexity are given by 

,
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,
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β µ
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ɺ

ɺ

ɺ

ɺ
 

and  

,

,

2
,

,

2 2

,

( ) ( )1
( ) ,

( ) / 2 ( ) / 2

A

A

A

I X A X
I

nI R A R

β µ

β µ

β µ

β µ

β µ
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ψ = − =

′θ Σ

ɺɺ

ɺɺ

ɺɺ
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where the dimensions of the Σ  matrices are either n  or 

2 1n −  as appropriate. The asymptotic properties of 

,

( )
A

I
β µ

ψ ɺ  and 
,

( )
A

I
β µ

ψ ɺɺ  are discussed in the Appendix. In 

summary, both  
,

( )
A

n I
β µ

− ψ ɺ  and  
,

( )
A

n I
β µ

ψ ɺɺ  are 

marginally asymptotically (0, 1)N  under (1)

0H  and    
(2)

0H  respectively and the assumptions discussed in the 

Appendix. Simulations indicate that the variance 

normalization is slow to converge, and its correlation 

with numerator causes a degree of non-normality in 

smaller samples. Based on the histogram of the 

distribution simulated under a Gaussian white noise Null 

hypothesis with n = 360 and 10,000 replications (Figure 
1) there is close agreement to the normal distribution, 

except at the extremes in the tails. Section 4 explores this 

behavior further through simulation studies. 
 

3.2 Applications to single peak testing 
 

We now consider the application to peak testing. Recall 

that we have an initial Null Hypothesis (1)

0H  that we must 

fail to reject in order to proceed. This can be interpreted as 

saying there is insufficient evidence to conclude that the first 

derivative (slope) of the spectral density is significantly 

different from zero. Now we know that 
,

( )
A

n I
β µ

− ψ ɺ  is 

asymptotically (0, 1)N  under (1)

0H  and the assumptions 

discussed in the Appendix. If we further suppose that a 

sufficiently small value x  is obtained for the test statistic, 

we will not be able to reject (1)

0H  with any confidence. In 

that case, we can consider the hypothesis (2)

0 ,H  which we 

seek to reject; this is tested via 
,

( ).
A

n I
β µ

ψ ɺɺ  Although 

,

( )
A

n I
β µ

− ψ ɺ  and 
,

( )
A

n I
β µ

ψ ɺɺ  are asymptotically corre-

lated  (see Theorem 1 of  the  Appendix) we will consider 

the slope and convexity tests as if they were done separately 

(this correlation can be estimated, and used to determine the 

distribution of the convexity diagnostic conditional on the 

slope diagnostic; however, the interpretation of p -values 

becomes muddled. For simplicity, we treat the tests 

separately, one at a time, and do not explicitly account for 

the correlation). Our testing procedure is then conducted as 

follows: 
 

1. Perform the 2-sided test of (1)

0H  using 

,

( ).
A

n I
β µ

− ψ ɺ  

2. Let p  be the p -value associated with the first test 

statistic’s value 
,

( ),
A

x n I
β µ

= − ψ ɺ  with x  and p  

related by 2 ( ).p x= Φ −| |  

3. If p > 0.05 (or some other pre-determined tolerance 

level) proceed; else conclude that there is no peak 

present. 

4. Perform the lower 1-sided test of (2)

0H  using 

,

( ).
A

n I
β µ

ψ ɺɺ  

5. Reject   (2)

0H  and conclude that there is a peak if 

,

1( ) ( ),
A

n I
β µ

−ψ < Φ αɺɺ  where α  is the level of the 

convexity test. 

 
3.3 Joint peak testing: Application to seasonal 

adjustment  
 

We now consider the situation where we wish to test for 

several spectral peaks simultaneously. Clearly we could 

design a kernel with several nodes, one at each peak, but 

this would merely be the sum of several individual spectral 

peak diagnostics. It would have the disadvantage that a 

significant spectral peak in one place could cancel a 

significant spectral trough elsewhere. Therefore, we would 

prefer a test that examines a set of spectral diagnostics 

within a multiple testing paradigm. 
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For example, consider the context of testing for spectral 

peaks in seasonally adjusted data. There are six seasonal 

peaks of interest, but we must restrict attention to five due to 

aliasing problems (the peak at frequency π  cannot be 
identified). If one or more of the spectral peaks is signif-

icant, we must reject our seasonal adjustment procedure 

(since it has failed to remove all of the peaks); therefore, we 

are in a multiple testing situation, and will utilize a method 

that controls the familywise error rate (FWER) proposed by 

Hochberg (1988) and described in Benjamini and Hochberg 

(page 294, 1995). Restricting attention to the issue of 

convexity, we have Null Hypotheses (2)

0H  for each of the 

five seasonal frequencies. In our setting, the procedure of 

Hochberg (1988) is to compute p -values for the convexity 

test at each of the five seasonal frequencies, and order them 

as (1) (2) (3) (4) (5),p p p p p≤ ≤ ≤ ≤  with corresponding Null 

Hypotheses denoted by ( ).iH  For a specified FWER of 

level α  (e.g., α = 0.05), let k  be the largest i  for which 

( ) /(6 ) ;ip i i≤ − α  then reject all ( )iH  for .i k≤  

When using such a procedure, we should make Type I 

errors – i.e., identifying at least one seasonal frequency as 

having negative convexity when none is present – roughly 

α  proportion of the time (if we were to restrict attention to 
(2)

0 ,H  the convexity hypothesis). The advantage of the 

Hochberg familywise error rate approach (H-FWER) is that 

it dramatically improves the statistical power compared to 

other methods. The validity of this method requires 

independence of the test statistics under consideration, and 

so for this reason we take five kernels 1 5, ...,A A  – centered 

at the seasonal frequencies / 6, ..., 5 / 6π π  respectively –

that have disjoint support. Then Theorem 1 can be 

generalized to obtain asymptotic independence of the five 

convexity test statistics (see the discussion after Theorem 1 

in the Appendix). Of course, we also conduct five separate 

tests of the slope at each seasonal frequency, where we must 

fail to reject in each case in order to proceed. 

As a final remark, we note that in practice a seasonal 

adjustment is rarely rejected on the basis of significant 

spectral mass at the fifth seasonal frequency of 5 / 6π  

(Findley 2006). This is partly due to the difficulty in 

assigning an interpretation to this frequency. Therefore, 

practitioners may be more interested in a “four-peak test” 

that focuses on the first four seasonal frequencies; one 

obtains this test by an obvious modification of the H-FWER 

procedure described above. 
 
3.4 Extending to nonstationary data  

The methodology given above assumes that the data are 

a sample from a stationary process. However, in the context 

of seasonal adjustment, it is usually the case that the 

seasonally adjusted data are once or twice integrated. In this 

case one would difference the seasonally adjusted data once 

or twice, and then apply the diagnostics. Now application of 

the differencing operators 1 B−  and 2(1 )B−  are 

essentially high-pass filters, which can be expected to 

attenuate residual spectral peaks close to frequency zero (in 

particular, the first seasonal frequency at / 6).π  Thus it may 

be desirable to apply the diagnostic to the pseudo-spectrum 

instead; this can be done if the support of the kernel is 

bounded away from the poles in the spectral density. 

Suppose that the observed data are now 1 , ...,d nY Y−  for 

d  the order of trend differencing (so usually d = 1 or 2). 
When the observed data are differenced, we obtain the 

sample ,X  which is strictly stationary. The pseudo-spectral 

density of the tY{ }  process is  ( ) ( ) 1 ,i dg f e− λ −2λ = λ | − |  

where f  is the spectrum of { }.tX  This pseudo-spectrum 

could be estimated via ˆ ( ) ( ) 1 ,i dg I e− λ −2λ = λ | − |  where I  is 

the periodogram of X  as before; this is the re-coloring 

approach of Nerlove (1964). Then ( )A gθ  is well-defined so 

long as ( ) 1 i dA e− λ −2λ | − |  is an integrable function; 

essentially we must ensure that frequency zero is excluded 

from the support of the kernel .A  Since A  is centered 

around seasonal frequencies in practice, we can easily 

contrive this condition. The corresponding estimator is then 

ˆ ( ) ( ),A Ab
g Iθ = θ ɺɺɺɺ  

where ( ) 1 .i db e− λ −2λ = | − |  The estimator is well-defined 

if Abɺɺ  is integrable; moreover the asymptotic properties 

discussed in the Appendix for the stationary case extend to 

this case as well, so long as Abɺɺ  is bounded. 

This extension may be more appealing to some 

researchers. However, the cost is that the inverse Fourier 

transform of Abɺɺ  must be determined, which requires some 

additional mathematical work. In the simulation studies and 

data illustrations in Section 4 we trend difference the 

seasonally adjusted data, but do not implement the 

correction factor b  in the kernel. 

 
4. Empirical studies 

 
Having developed the theoretical aspects of the spectral 

diagnostic, we now turn to its performance in practice. We 

first present some results obtained from simulation, which 

provide insight into the size and power properties of the test 

statistic in finite samples. Then we investigate the size and 

power empirically, by applying the spectral diagnostics to a 

suite of 130 time series (65 U.S. Census Bureau series and 

65 OECD series); we consider both the original and the 

seasonally adjusted series, and make comparisons to the 

Visual Significance, M7 and M8 quality control diagnostics 

of X-12-ARIMA (U.S. Census Bureau 2002). Additional 

empirical studies can be found in Evans, Holan and 

McElroy (2006). 
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4.1 Simulation study  
To evaluate the performance of our diagnostics we 

conducted several simulations. The first set of simulations 

examines size (level) for the single peak diagnostic. For this 

simulation we considered the slope and convexity 

diagnostics separately. Although in practice, when consid-

ering the slope diagnostic, we wish to fail to reject the Null 

hypothesis (1)

0H ,  here we are interested in empirically 

investigating the distributional properties, and so we impose 

the usual definition of size for this study. So we simulated 

Gaussian white noise which satisfies the assumptions of 

Theorem 1 as well as satisfying ( ) ( ) 0,
A A
I Iψ = ψ =ɺ ɺɺ  so 

that (1)

0H  and (2)

0H  are true. Of course, there are many 

processes for which both (1)

0H  and (2)

0H  are true simul-

taneously – for example, any process with locally flat 

spectral density; however, due to asymptotic considerations 

it suffices to consider white noise. For a (large) sample size 

of n = 360, using the TH kernel with / 6µ = π  and 

/ 6β = π  (this corresponds to a kernel centered on the 

interval [0, / 6]),π  10,000 repetitions yields an empirical 

distribution of the normalized diagnostics, ( )
A
Iψ ɺ  and 

( ),
A
Iψ ɺɺ  whose histograms are displayed in Figure 1. 

Henceforth, let δ  and α  denote the levels associated with 

the slope and convexity tests respectively. Note that in this 

case we define level to mean the probability of rejecting 
( )

0H ( 1, 2)j j =  when ( )

0H j  is true. Although, in practice, 

in the case of the slope hypothesis we wish to fail to reject 

we follow the strict definition of level and assume (for the 

purposes of this simulation) that the null hypothesis (1)

0H  for 

the slope holds true. Similarly the null hypothesis for the 

convexity is (2)

0H .  Both the slope and convexity hypotheses 

are evaluated independently. Table 1 summarizes the results 

using both kernels from Section 2, for various sample sizes; 

the indicated ,δ α -levels are for the nominal 5 percent 

level. Additionally, other choices of µ  and β  (not shown 
here) yielded similar results. As depicted in this study, in 

smaller samples, we observed skewness in the distribution 

which seems to be due to correlation between ( )A Iθ  and 

2

2( ).
A
Iθ  Also, note that the size for the convexity test is 

larger for the quartic kernel than for the TH kernel. 

Next we consider the empirical power for our single peak 

diagnostic. In this setting we evaluate the power based on a 

joint test of the slope and convexity. Specifically, we wish 

to fail to reject (1)

0H  while simultaneously rejecting (2)

0H ,  at 

δ = α = 0.05, and thus correctly identify spectral peaks. 
Since our composite Null hypothesis is that there is no peak, 

the Alternative hypothesis includes processes such as the 

(2)AR  given by 
2 2(1 2 cos ) t tB B X− ρ ω + ρ = ε  (11) 

with white noise variance 2,σ  associated with some fixed 

frequency [0, ].ω ∈ π  The spectrum associated with the 

process in (11) is given by 2( ) 1 2 cos if e− λλ = σ | − ρ ω +  
2 2 2,ie− λ −ρ |  which is maximized at 1

0 cos (cos (1−λ = ω +  
2 ) / 2 ).ρ ρ  Therefore one can explore the power of a peak-

testing procedure by simulating from (11) with various 

choices of , ,ρ ω  and .σ  Table 2 presents the result of 10,000 

simulations, of various sample sizes, from the (2)AR  cycle 

model given in (11) with peak at / 6µ = π  and bandwidth 

set at / 6.β = π  The peak strength is parametrized through 

,ρ  which we vary from 0.85 to 0.95; clearly (1)

0H  and (2)Ha  

are both true for this model. In other words, there are spectral 

peaks, of different heights, at / 6.λ = π  This AR  cycle 

model was chosen because it provides a convenient para-

metrization of spectral peak location and shape. Additionally, 

this choice of β  is compatible with the seasonal adjustment 
setting, as this provides the maximum window width while 

avoiding overlapping spectral peaks. As expected, the power 

of our diagnostic increases with sample size and peakedness, 

ranging from 0.227 (quartic kernel) in small samples having 

weak spectral peak to ≈ 0.95 (TH kernel) in larger samples 
having a more pronounced spectral peak (see Table 2). Note 

that in this procedure the innovation variance is set equal to 

one, but it is immaterial due to the normalization of the 

diagnostic. In summary, both the quartic and TH kernels 

possess decent size and power properties. Generally, the 

quartic kernel seems to have superior size and power, so it 

would be preferable for spectra of this form (note that the 

lower power of the TH kernel is in part due to its being under-

sized). Additionally, it seems that smaller values of β  (results 
not shown) require a greater sample size; a smaller β  
corresponds to a more refined “viewing” of the spectral peak, 

which would require more data to handle the resolution. 

Although the individual peak testing scenario provides the 

foundation for our joint testing framework, as noted, the joint 

testing framework provides important methodology for 

applications in federal statistics. The application of impor-

tance is the evaluation of effective seasonal adjustment 

through the exploration of residual seasonality. Thus, it is of 

particular interest to know how our multiple testing approach 

performs in simulation. Therefore, in order to investigate the 

size and power associated with our joint test, we simulated 

10,000 repetitions from a Gaussian white noise process and 

from an (25)AR  model obtained as a fit to the Current 

Employment Series (Employed Males, aged 16 to 19). Our 

goal in the power study was to construct an ( )AR p  process 

(because of its ease in simulation and desirable theoretical 

properties as a parametric spectral estimator – see Parzen 

1983) with (stationary) spectral peaks that are realistic, or 

close to what might be found in practice. Thus we obtain our 

(25)AR  model – fitted via maximum likelihood using 

AIC  – which has similar seasonal dynamics (local spectral 

behavior) to the Current Employment Series (CES). 
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Figure 1 Histogram of distribution of 
,
( )ɺA

n I
β µβ µβ µβ µ

− ψ− ψ− ψ− ψ (a) and 
,
( )ɺɺA

n I
β µβ µβ µβ µ

ψψψψ (b) under a Gaussian white noise Null 

hypothesis using the TH kernel.  The  sample  size  is  n ==== 360  with 10,000 replications 

 

 

 
Table 1 
Results of size simulation for the single peak diagnostic. Here / 6µ = β = πµ = β = πµ = β = πµ = β = π  and 10,000 repetitions were used. The slope and convexity 
diagnostics were investigated separately for both the quartic and TH kernels 
 

Size for Single Peak  /6µ = β = πµ = β = πµ = β = πµ = β = π  

 Slope Convexity 

 Quartic Kernel TH Kernel Quartic Kernel TH Kernel 

n  Mean Stdev δδδδ -level Mean Stdev δδδδ -level Mean Stdev αααα -level Mean Stdev αααα -level 

120 0.003 0.903 0.007 -0.011 0.903 0.008 -0.065 0.852 0.032 0.025 0.888 0.018 

144 -0.004 0.920 0.014 -0.011 0.927 0.015 -0.077 0.882 0.042 0.006 0.892 0.025 

180 -0.003 0.942 0.022 0.002 0.920 0.017 -0.071 0.892 0.043 0.005 0.902 0.028 

288 0.003 0.954 0.027 -0.002 0.950 0.025 -0.072 0.921 0.051 -0.006 0.926 0.033 

360 0.003 0.962 0.032 -0.009 0.954 0.031 -0.056 0.922 0.051 0.006 0.951 0.040 

 

 

 
Table 2 
Results of power simulation for the single peak diagnostic. Here / 6µ = β = πµ = β = πµ = β = πµ = β = π  and 10,000 repetitions were used. The alternative 
hypothesis is given by the (2)AR  model defined by (11). The slope and convexity diagnostics were investigated simultaneously for 

both the quartic and TH kernels using δ = α =δ = α =δ = α =δ = α = 0.05 for both tests (see Section 4.1) 
 

Power for Single Peak  /6 - ( , ) =µ = β = π δ αµ = β = π δ αµ = β = π δ αµ = β = π δ α (0.05, 0.05) 

 Quartic Kernel TH Kernel 

n  ρ =ρ =ρ =ρ = 0.85 ρ =ρ =ρ =ρ = 0.90 ρ =ρ =ρ =ρ = 0.95 ρ =ρ =ρ =ρ = 0.85 ρ =ρ =ρ =ρ = 0.90 ρ =ρ =ρ =ρ = 0.95 

120 0.227 0.438 0.758 0.147 0.335 0.670 

144 0.287 0.532 0.856 0.208 0.431 0.799 

180 0.354 0.643 0.923 0.272 0.567 0.901 

288 0.447 0.755 0.949 0.372 0.706 0.950 

360 0.601 0.872 0.937 0.537 0.859 0.948 
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To evaluate size we considered both a test based on 

convexity alone and a test based on the slope and convexity 

simultaneously. The tests based on convexity alone (C) 

were performed at the nominal α -levels of 0.05 and 0.10, 

using the H-FWER method to control the FWER. The tests 

based on both the slope and convexity simultaneously (S, C) 

were performed as follows: 
 

1. Perform multiple tests of convexity, (2)

0H ,  using the 

H-FWER method to control the FWER at level α  

(which is either 0.05 or 0.10). 

2. For any peaks found significant in Step 1 perform 

individual slope test, (1)

0H ,  at level δ  (which is either 
0.10 or 0.25). Note here we wish to fail to reject (1)

0H  

in order to declare any “peaks” as statistically 

significant. 

3. Declare there is a statistically significant peak if 

Step 1 finds any seasonal frequency with significant 

aggregate convexity in the spectrum, and if Step 2 

simultaneously fails to find any significant aggregate 

slope for the corresponding seasonal frequency. 
 

The results of this simulation are summarized in Table 3. 

One aspect of this procedure that deserves further 

explanation is Step 2 where δ  (the level for the slope test) is 
taken equal to 0.10 and 0.25. Although the slope testing 

aspect of the procedure is conducted on an individual peak 

basis, it seems reasonable to try and be conservative. The 

issue here is that even if some of the individual slope tests 

are rejected we may still proceed in other cases. Thus the 

situation encountered here differs from the classical “no 

peaks” hypothesis which can be rejected if a single peak is 

found. Of course, since we are conducting each slope 

hypothesis test on an individual peak basis, any δ -level 
greater than 0.05 would be considered more conservative. 

While we cannot expect the combined procedure (S, C) 

to have size approaching the nominal (because using the 

slope test throws off the Type I error rate), neither is the size 

highly accurate in the case of using the convexity test alone 

(C), as can be seen by examining the α = 0.10 case with 
n = 288, 360. Here the convexity for the quartic kernel is 
over-sized, whereas in the single peak case the convexity 

test has accurate size (Table 1) for these sample sizes. Note 

that H-FWER only produces an approximately correctly 

sized procedure; another factor is that the five peak tests are 

only asymptotically independent. It is for these reasons that 

the empirical size found in Table 3 differ somewhat from 

the nominal levels. 

To investigate power we considered the same 3 step 

procedure as outlined above. However, for this simulation 

we only considered joint slope - convexity testing and 

examined four pairs of ( , )δ α  levels; ( , )δ α =  
(0.10, 0.05), (0.25, 0.05), (0.10, 0.10) and (0.25, 0.10). The 

results of this simulation (Table 4) indicate tremendous 

power even at sample sizes as small as n = 120. This is 
extremely important as n = 120 is representative of the size 
samples encountered in practice when conducting seasonal 

adjustment (i.e., 10 years of monthly data). For samples 

sizes n = 144, greater than 90% power was achieved. 
 
Table 3 
Results of size simulation for the multiple peak diagnostic. Here 10,000 repetitions were used. The convexity test was investigated 

separately with the FWER controlled at α =α =α =α = 0.05 and α =α =α =α = 0.10 using the H-FWER method. Additionally, the slope and convexity 
diagnostics were investigated simultaneously using the H-FWER method for the convexity controlling the FWER at α =α =α =α = 0.05 and 
α =α =α =α = 0.10, while the slope was evaluated at δ =δ =δ =δ = 0.25 and δ =δ =δ =δ = 0.10. Both the quartic and TH kernels were used for both tests (see 

Section 4.1) 
 

Size for Multiple Peaks H-FWER 

 C = 0.05 (S, C) = (0.10, 0.05) (S, C) = (0.25, 0.05) C = 0.10 (S, C) = (0.10, 0.10) (S, C) = (0.25, 0.10) 

n  Quartic TH Quartic TH Quartic TH Quartic TH Quartic TH Quartic TH 

120 0.006 0.002 0.006 0.002 0.005 0.002 0.076 0.047 0.070 0.044 0.076 0.046 

144 0.009 0.002 0.011 0.002 0.008 0.003 0.087 0.053 0.090 0.051 0.086 0.050 

180 0.019 0.005 0.020 0.006 0.017 0.005 0.107 0.062 0.097 0.059 0.093 0.057 

288 0.031 0.009 0.026 0.008 0.025 0.008 0.117 0.069 0.116 0.069 0.112 0.068 

360 0.042 0.012 0.045 0.019 0.035 0.015 0.140 0.087 0.133 0.084 0.129 0.087 

 
 
Table 4 
Results of power simulation for the multiple peak diagnostic. Here 10,000 repetitions were used. The slope and convexity 

diagnostics were investigated simultaneously using the H-FWER method for the convexity controlling the FWER at α =α =α =α = 0.05 and 
α =α =α =α = 0.10. For the slope δ =δ =δ =δ = 0.25 and δ =δ =δ =δ = 0.10. Both the quartic and TH kernels were used for both tests (see Section 4.1) 
 

Power for Multiple Peaks H-FWER 

 (0.10, 0.05) (0.25, 0.05) (0.10, 0.10) (0.25, 0.10) 

n  Quartic TH Quartic TH Quartic TH Quartic TH 

120 0.877 0.897 0.860 0.881 0.997 0.997 0.996 0.998 

144 0.943 0.952 0.942 0.950 0.999 1.00 0.999 1.00 

180 0.989 0.992 0.989 0.992 1.00 1.00 0.999 1.00 

288 1.00 1.00 0.999 0.999 1.00 1.00 0.999 1.00 

360 1.00 1.00 0.998 0.999 1.00 1.00 0.998 0.999 
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4.2 Case studies  
We also considered 130 time series, 65 from the U.S. 

Census Bureau and 65 from OECD. These series consist of 

35 U.S. Manufacturing series, 10 U.S. Housing series, 10 

U.S. Import/Export series, and 10 U.S. Retail series; there 

are also 22 German series, 15 Euro-area series, 11 French 

series, and 17 Great Britain series from OECD, covering the 

sectors of manufacturing, retail, wholesale, foreign trade, 

unemployment, and industry. For every series, we computed 

the seasonal peak tests for both the raw data (logged) and 

the seasonally adjusted data (logged) – using the x11 

specification of X-12-ARIMA – with both the quartic and 

TH kernels. We employed the H-FWER procedure 

controlling the FWER at α = 0.05, 0.10, and where the 
threshold for the slope tests was δ = 0.25 and δ = 0.10 at 
each peak (see Section 4.1). Note that δ = 0.25 and 
δ = 0.10 produced similar results and thus, for the sake of 

brevity, only results for δ = 0.10 are presented here. The 
results for δ = 0.25 are available upon request from the 

first author. For both the raw and seasonally adjusted data, a 

single trend difference was used (as is the case for the 

Visual Significance diagnostic, described below) before 

applying the seasonal peaks test. 

In addition, we present the M7 and M8 statistics as well 

as the results of the Visual Significance (VS) diagnostic 

both before and after adjustment. The M7 quality control 

statistic measures the amount of stable seasonality relative 

to the moving seasonality in the original series, with values 

greater than 1 indicating that the seasonality in the series is 

not identifiable (Lothian and Morry 1978); similarly, the 

M8 statistic measures the size of the fluctuations in the 

seasonal component, with a similar interpretation. We also 

considered the robust nonparametric Kruskal-Wallis test 

(U.S. Census Bureau 2002) for the presence of seasonality 

assuming stability. VS is based on an (30)AR  spectrum 

estimate of the raw and seasonally adjusted series, and is 

described in Soukup and Findley (1999). For Tables 5-10, 

each cell entry lists which seasonal frequencies were found 

to have a significant peak, with j  corresponding to / 6jπ  

for 1, 2, 3, 4, 5;j =  an entry of 0  indicates that no 

peaks were detected. For the M7 and M8 diagnostics, only 

the value is reported since there is no associated p -value 

(and they are only pertinent to the raw series). 

The results of this empirical study can be found in Tables 

5-10. All of the Kruskal-Wallis statistics were significant 

with p = 0.000, so these are not reported in the tables. The 
set of columns corresponding to the “Original Data” 

heading can be seen as giving empirical power (for each 

subset of series), assuming that each series is indeed 

seasonal and has seasonal spectral peaks. That is, the Total “ 

correct ” number gives the proportion of times each method 

correctly identified seasonality, and hence this proportion is 

a crude proxy for empirical power. We also report the 

average number of peaks that were identified, which is an 

empirical measure of the efficacy of the methods (the more 

peaks correctly identified, the better). The set of columns for 

“SA Data” gives an empirical size (for each subset of 

series), assuming that seasonal adjustment has indeed 

removed the spectral peaks. These are rough considerations, 

since we do not really know a priori whether the SA Data 

has been adequately adjusted. 

The VS identifies all of the raw series as seasonal and 

most of the SA series as having no spectral seasonal peaks; 

the M7 and M8 diagnostics perform similarly, though of 

course they do not indicate which seasonal peaks are present 

in the raw data. Our procedure indicates a few cases (when 

α = 0.10 for the convexity tests) where the adjustment may 

be inadequate, but these are within the scope of the expected 

proportion of Type I errors. For the raw series, the empirical 

power (i.e., total proportion correct) for our method ranges 

between 0.66 and 0.89, with higher power for the α = 0.10 
level, as expected. In many cases the indicated peaks are the 

same as VS, but sometimes are quite different. Note that the 

average number of peaks detected for raw series was 

typically much higher for our procedure over the VS 

method, which often had an average around 3.2. When the 

α  level was increased from 0.05 to 0.10, our method 

naturally increased in the average number of peaks detected; 

VS cannot be tuned in this way. Conversely, for SA data the 

average number of peaks detected tended to be less than one 

for our method (with the exception of the German series). 

The results are fairly similar for the quartic and TH 

kernels. Although the M7, M8, and VS diagnostics have 

slightly better performance than our spectral peak procedure 

with α = 0.10, it is important to note that our method 

provides a level of detail that M7 and M8 cannot replicate, 

while the VS diagnostic does not provide a p -value for any 

of the peaks (neither do M7 or M8). Overall, we find the 

results to be very encouraging and informative. 

 
5. Conclusion  

This paper presents an innovative approach to the 

statistical identification of spectral peaks. The convexity 

diagnostic computes an average of the periodogram 

weighted by the second derivative of a typical kernel, such 

as the Tukey-Hanning lag window. Implicitly this type of 

statistic involves a comparison of an average of the peri-

odogram near a given frequency to its average somewhat 

further out; this follows from the general shape of , .Aβ µ
ɺ  

The slope diagnostic helps to screen out cases where there is 

negative convexity but also a large increase/decrease in the 

spectrum. That the method actually works as intended is 

borne out by the simulations and analysis results reported in 

Tables 1-10. 
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Table 5 
Data analyses for 35 Manufacturing Series (U.S. Census Bureau) comparing our multiple peak diagnostic with VS, M7, and M8 
diagnostics. Our multiple peak diagnostic uses the H-FWER method to control the FWER at α =α =α =α = 0.05 and α =α =α =α = 0.10 and examines 

the slope at δ =δ =δ =δ = 0.10 (see Section 4.2) 
 

Data Analyzes – Manufacturing Series 

 Original Data SA Data 

 H-FWER 0.10/0.05 H-FWER 0.10/0.10 VS M7 M8 H-FWER 0.10/0.05 H-FWER 0.10/0.10 VS 

series quartic TH quartic TH    quartic TH quartic TH  

1M  2345 1235 2345 1235 12 0.24 0.39 0  0  0  0  0  

2M  12345 12345 12345 12345 1235 0.20 0.32 0  0  0  0  0  

3M  12345 12345 12345 12345 1235 0.28 0.46 0  0  0  0  0  

4M  0  0  12345 0  12 0.28 0.44 0  0  0  0  0  

5M  12345 12345 12345 12345 12345 0.27 0.47 0  0  12345 12345 0  

6M  0  0  123 123 12 0.28 0.49 0  0  0  0  0  

7M  0  0  123 123 24 0.50 0.79 0  0  0  0  0  

8M  12345 12345 12345 12345 12345 0.18 0.37 0  0  0  0  0  

9M  12345 12345 12345 12345 124 0.42 0.73 0  0  0  0  0  

10M  0  0  0  0  1 0.38 0.72 0  0  0  0  0  

11M  0  0  12345 1234 123 0.15 0.27 0  0  0  0  0  

12M  1234 1234 12345 12345 1234 0.30 0.54 0  0  0  0  0  

14M  0  0  1234 1234 1234 0.24 0.39 0  0  0  0  0  

15M  12345 12345 12345 12345 12345 0.23 0.43 0  0  0  0  0  

16M  1234 1234 1234 1234 1234 0.23 0.40 0  0  0  0  0  

17M  0  0  1234 12345 12 0.64 0.66 0  0  0  0  0  

18M  12345 12345 12345 12345 245 0.20 0.37 0  0  0  0  0  

19M  0  0  0  0  4 0.86 1.00 0  0  0  0  0  

20M  0  0  0  12345 4 0.56 0.84 0  0  0  0  0  

21M  12345 12345 12345 12345 1234 0.37 0.58 0  0  0  0  0  

22M  12345 12345 12345 12345 1234 0.26 0.45 0  0  0  0  0  

23M  12345 12345 12345 12345 1234 0.20 0.47 0  0  0  0  0  

24M  12345 12345 12345 12345 2345 0.26 0.43 0  0  0  0  0  

25M  12345 12345 12345 12345 12345 0.27 0.42 0  0  0  0  0  

26M  12345 12345 12345 12345 1235 0.37 0.62 0  0  0  0  0  

27M  1345 1234 1345 1234 2345 0.25 0.22 0  0  0  0  0  

28M  0  0  0  0  24 0.57 0.44 0  0  0  0  0  

29M  0  12345 12345 12345 24 0.78 1.13 0  0  0  0  0  

30M  123 1234 12345 12345 245 0.45 0.65 0  0  0  0  0  

31M  0  0  123 123 4 0.64 0.46 0  0  1234 1234 0  

32M  1235 12345 1235 12345 12345 0.21 0.37 0  0  0  0  0  

33M  12345 12345 12345 1234 1234 0.24 0.38 0  0  0  0  0  

34M  12345 12345 12345 12345 234 0.46 0.85 0  0  0  0  0  

35M  12345 12345 12345 12345 2345 0.25 0.66 0  0  0  0  0  

36M  12345 12345 12345 12345 123 1.32 1.56 0  0  0  0  0  

Total “correct” 23/35 24/35 31/35 31/35 35/35 34/35 33/35 35/35 35/35 33/35 33/35 35/35 

Average Number 3.09 3.29 4.09 4.09 3.23   0 0 0.26 0.26 0 

 

 
 



Survey Methodology, June 2009 79 
 

 

Statistics Canada, Catalogue No. 12-001-X 

Table 6 

Data analyses for 30 U.S Census Bureau Series (10 Housing, 10 Import/Export and 10 Retail Sales) comparing our multiple peak 
diagnostic with VS, M7, and M8 diagnostics. Our multiple peak diagnostic uses the H-FWER method to control the FWER at 
α =α =α =α = 0.05 and α =α =α =α = 0.10 and examines the slope at δ =δ =δ =δ = 0.10 (see Section 4.2) 
 

Data Analyzes – Manufacturing Series 

 Original Data SA Data 

 H-FWER 0.10/0.05 H-FWER 0.10/0.10 VS M7 M8 H-FWER 0.10/0.05 H-FWER 0.10/0.10 VS 

series quartic TH quartic TH    quartic TH quartic TH  

MW1Fam 12345 12345 12345 12345 12 0.13 0.25 0  0  0  0  0  

NWTot 12345 12345 12345 12345 12 0.18 0.31 0  0  0  0  0  

NE1Fam 12345 12345 12345 12345 12 0.16 0.33 0  0  0  0  0  

NETot 12345 12345 12345 12345 123 0.25 0.27 0  0  0  0  0  

S1Fam 12345 12345 12345 12345 125 0.22 0.47 0  0  0  0  0  

STot 124 124 1245 1245 125 0.29 0.57 0  0  0  0  0  

US1Fam 12345 12345 12345 12345 125 0.17 0.39 0  0  0  0  0  

USTot 12345 12345 12345 12345 125 0.20 0.42 0  0  0  0  0  

W1Fam 1234 1234 12345 12345 125 0.21 0.44 0  0  0  0  0  

WTot 1234 1234 12345 1234 12 0.27 0.56 0  0  0  0  0  

Total “correct”  10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 

Import/Export Series 

 Original Data SA Data 

 H-FWER 0.10/0.05 H-FWER 0.10/0.10 VS M7 M8 H-FWER 0.10/0.05 H-FWER 0.10/0.10 VS 

series quartic TH quartic TH    quartic TH quartic TH  

M00120 12345 0  12345 12345 125 0.23 0.48 0  0  0  0  0  

M00190 12345 12345 12345 12345 1235 0.38 0.59 0  0  0  0  0  

M3000 12345 12345 12345 12345 234 0.48 0.95 0  0  0  0  0  

M3010 1234 1234 1234 12345 2345 0.52 0.88 0  0  0  0  0  

M12060 12345 12345 12345 12345 123 0.53 0.77 0  0  0  0  0  

X3 12345 12345 12345 12345 2345 0.57 0.94 0  0  0  0  0  

X00300 134 134 134 134 2 0.56 0.97 0  0  0  0  0  

X3020 12345 12345 12345 12345 12345 0.39 0.70 0  0  0  0  0  

X3022 12345 12345 12345 12345 23 0.69 1.04 0  0  0  0  0  

X10140 1234 1234 1234 1234 15 0.29 0.47 0  0  0  0  0  

Total “correct”  10/10 9/10 10/10 10/10 10/10 10/10 9/10 10/10 10/10 10/10 10/10 10/10 

Retail Series 

 Original Data SA Data 

 H-FWER 0.10/0.05 H-FWER 0.10/0.10 VS M7 M8 H-FWER 0.10/0.05 H-FWER 0.10/0.10 VS 

series quartic TH quartic TH    quartic TH quartic TH  

s0b441x0 12345 12345 12345 12345 135 0.22 0.41 0  0  0  0  0  

s0b 44000 12345 12345 12345 12345 2345 0.12 0.26 0  0  0  0  0  

s0b 44100 12345 12345 12345 12345 135 0.21 0.40 0  0  0  0  0  

s0b 44130 12345 12345 12345 12345 1235 0.21 0.42 0  0  0  0  0  

s0b 44200 12345 12345 12345 12345 12345 0.13 0.27 0  0  0  0  0  

s0b 44300 1234 12345 1234 12345 12345 0.12 0.18 0  0  0  0  0  

s0b 44312 1234 1234 1234 1234 12345 0.31 0.48 0  0  0  0  0  

s0b 44400 12345 12345 12345 12345 1235 0.16 0.32 0  0  0  0  0  

s0b 44410 12345 12345 12345 12345 1235 0.14 0.32 0  0  0  0  0  

s0b 44500 12345 12345 12345 12345 235 0.14 0.23 0  0  0  0  0  

Total “correct”  10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 

Grand Total “correct”  30/30 29/30 30/30 30/30 30/30 30/30 29/30 30/30 30/30 30/30 30/30 30/30 

Average Number 4.67 4.5 4.77 4.8 3.23   0 0 0 0 0 
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Table 7 
Data analyses for 22 German OECD Series comparing our multiple peak diagnostic with VS, M7, and M8 diagnostics. Our 
multiple peak diagnostic uses the H-FWER method to control the FWER at α =α =α =α = 0.05 and α =α =α =α = 0.10 and examines the slope at 

δ =δ =δ =δ = 0.10 (see Section 4.2) 
 

Data Analyzes – OECD DEU 

 Original Data SA Data 

Series H-FWER 0.10/0.05 H-FWER 0.10/0.10 VS M7 M8 H-FWER 0.10/0.05 H-FWER 0.10/0.10 VS 

DEU quartic TH quartic TH    quartic TH quartic TH  

PRMNCG03 12345 12345 12345 12345 12345 0.17 0.33 0  0  0  0  0  

PRMNCS01 1234 1234 1234 1234 235 0.25 0.79 0  0  0  0  0  

PRMNIG01 12345 12345 12345 12345 12345 0.28 0.48 0  0  0  0  0  

PRMNTO01 134 134 134 134 12345 0.26 0.46 0  0  0  0  0  

PRMNVG01 1235 1235 1235 1235 2345 0.29 0.46 0  0  0  0  0  

SLMNCD01 1245 1235 1245 1235 23 0.22 0.40 0  0  0  0  0  

SLMNCN01 1345 2345 1345 2345 123 0.37 0.72 0  0  0  0  0  

SLMNDM01 2345 2345 2345 2345 123 0.32 0.63 0  0  0  0  0  

SLMNEX01 12345 12345 12345 12345 12 0.32 0.51 1:5 0  12345 12345 0  

SLMNIG01 2345 2345 2345 2345 123 0.21 0.65 0  0  0  0  0  

SLMNTO01 245 345 245 345 23 0.20 0.66 0  0  234 0  0  

SLRTCR01 1345 1345 1345 1345 1234 0.19 0.51 0  0  0  0  0  

SLRTTO01 12345 12345 12345 12345 12345 0.12 0.25 0  0  0  0  0  

SLRTTO02 12345 12345 12345 12345 12345 0.13 0.29 0  0  0  0  0  

SLWHTO01 2345 2345 2345 2345 123 0.20 0.62 0  0  134 123 0  

SLWHTO02 2345 2345 2345 2345 123 0.20 0.62 0  0  134 123 0  

UNLVRG01 23 23 23 23 124 0.23 0.48 0  0  1 0  5 

UNLVSUMA 345 345 345 345 12 0.30 0.53 12 0  1245 12345 0  

UNLVSUTT 234 234 234 234 12 0.24 0.53 0  0  45 45 25 

UNRTRG01 235 1245 235 1245 123 0.19 0.59 0  0  2345 2345 0  

XTEXVA01 1234 1234 1234 1234 23 0.28 0.77 0  0  0  0  0  

XTIMVA01 234 1234 2345 12345 23 0.31 0.95 0  0  0  0  0  

Total “correct”  22/22 22/22 22/22 22/22 22/22 22/22 22/22 20/22 22/22 14/22 16/22 20/22 

Average Number 3.86 3.95 3.91 4.00 3.23   0 0 1.14 1.00 0.14 

 

 
Table 8 
Data analyses for 15 Euro-area OECD Series comparing our multiple peak diagnostic with VS, M7, and M8 diagnostics. Our 
multiple peak diagnostic uses the H-FWER method to control the FWER at α =α =α =α = 0.05 and α =α =α =α = 0.10 and examines the slope at 

δ =δ =δ =δ = 0.10 (see Section 4.2) 
 

Data Analyzes – OECD EMU 

 Original Data SA Data 

series H-FWER 0.10/0.05 H-FWER 0.10/0.10 VS M7 M8 H-FWER 0.10/0.05 H-FWER 0.10/0.10 VS 

EMU quartic TH quartic TH    quartic TH quartic TH  

PRCNTO01 345 1345 345 1345 12345 0.14 0.44 0  0  0  0  0  

PRINTO01 12345 12345 12345 12345 12345 0.10 0.23 0  0  0  0  0  

PRMNCG03 1245 1245 1245 1245 12345 0.12 0.32 1 1 1234 1234 0  

PRMNCS01 1234 12345 1234 12345 1234 0.22 0.47 0  0  0  0  0  

PRMNIG01 12345 12345 12345 12345 2345 0.15 0.27 0  0  0  0  0  

PRMNTO01 2345 2345 2345 2345 2345 0.14 0.23 0  0  1 0  0  

PRMNVG01 1234 12345 1234 12345 2345 0.13 0.23 0  0  0  0  0  

SLMNCN02 12345 12345 12345 12345 123 0.31 0.57 0  0  0  0  0  

SLMNIG02 12345 12345 12345 12345 23 0.21 0.45 0  0  0  0  0  

SLMNTO02 1345 2345 1345 2345 23 0.20 0.41 24 0  24 34 0  

SLMNVG02 12345 12345 12345 12345 2345 0.17 0.30 1 1 1245 1345 0  

SLRTTO01 12345 12345 12345 12345 12345 0.05 0.12 0  0  0  0  0  

SLRTTO02 12345 12345 12345 12345 12345 0.05 0.11 0  0  0  0  0  

XTEXVA01 1345 2345 1345 2345 23 0.31 0.57 0  0  12 12 0  

XTIMVA01 2345 2345 2345 2345 23 0.40 0.72 0  0  0  0  0  

Total “correct”  15/15 15/15 15/15 15/15 15/15 15/15 15/15 12/15 13/15 10/15 11/15 15/15 

Average Number 4.40 4.60 4.40 4.60 3.73   0.20 0.13 0.87 0.80 0 
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Table 9 

Data analyses for 11 French OECD Series comparing our multiple peak diagnostic with VS, M7, and M8 diagnostics. Our multiple 
peak diagnostic uses the H-FWER method to control the FWER at α =α =α =α = 0.05 and α =α =α =α = 0.10 and examines the slope at δ =δ =δ =δ = 0.10 (see 
Section 4.2) 
 

Data Analyzes – OECD FRA 

 Original Data SA Data 

series H-FWER 0.10/0.05 H-FWER 0.10/0.10 VS M7 M8 H-FWER 0.10/0.05 H-FWER 0.10/0.10 VS 

FRA quartic TH quartic TH    quartic TH quartic TH  

PRAFAG01 12345 12345 12345 12345 123 0.13 0.29 0  0  0  0  0  

PRNCTO01 2345 2345 2345 2345 235 0.14 0.44 0  0  0  0  0  

PRMNCG01 12345 12345 12345 12345 234 0.15 0.38 1 1 1 1 0  

PRMNCS01 12345 12345 12345 12345 234 0.25 0.58 0  0  0  0  0  

PRMNIG01 12345 12345 12345 12345 12345 0.11 0.26 0  0  0  0  0  

PRMNTO01 12345 12345 12345 12345 12345 0.16 0.29 123 123 123 1234 0  

PRMNVE01 12345 12345 12345 12345 12345 0.24 0.34 0  0  1245 1245 0  

SLRTCR01 1345 2345 1345 2345 123 0.27 0.71 0  0  0  0  0  

SLRTTO02 12345 12345 12345 12345 12345 0.16 0.36 0  0  0  0  0  

XTEXVA01 1345 1345 1345 1345 23 0.14 0.44 0  0  0  0  0  

XTIMVA01 1245 1245 1245 1245 23 0.18 0.54 0  0  0  0  0  

Total “correct”  11/11 11/11 11/11 11/11 11/11 11/11 11/11 9/11 9/11 8/11 8/11 11/11 

Average Number 4.64 4.64 4.64 4.64 3.55   0.36 0.36 0.73 0.81 0 

 

 
Table 10 
Data analyses for 17 Great Britain OECD Series comparing our multiple peak diagnostic with VS, M7, and M8 diagnostics. Our 

multiple peak diagnostic uses the H-FWER method to control the FWER at α =α =α =α = 0.05 and α =α =α =α = 0.10 and examines the slope at 
δ =δ =δ =δ = 0.10 (see Section 4.2) 
 

Data Analyzes – OECD GBR 

 Original Data SA Data 

series H-FWER 0.10/0.05 H-FWER 0.10/0.10 VS M7 M8 H-FWER 0.10/0.05 H-FWER 0.10/0.10 VS 

GBR quartic TH quartic TH    quartic TH quartic TH  

PPIAMP01 1234 1234 1234 1234 24 0.56 1.58 0  0  0  0  0  

PPIAMP02 1 1 123 123 2 0.53 0.92 0  0  0  0  0  

PPIPFU01 1345 12345 1345 12345 12 0.64 0.59 0  0  0  0  0  

PRINTO01 1345 1345 1345 1345 23 0.16 0.40 0  0  0  0  0  

PRMNCG02 2345 2345 2345 2345 123 0.23 0.56 0  0  0  0  0  

PRMNCG03 12345 12345 12345 12345 123 0.20 0.49 0  0  0  0  0  

PRMNCS01 123 12 123 1234 12 0.68 1.31 0  0  0  0  0  

PRMNIG01 2345 2345 2345 2345 123 0.15 0.47 1 0  0  0  0  

PRMNTO01 1345 1345 1345 1345 23 0.17 0.45 0  0  0  0  0  

PRMNVE02 12345 12345 12345 12345 12345 0.25 0.76 0  0  0  0  0  

PRMNVE03 1234 1234 1234 1234 234 0.29 0.91 0  0  0  0  0  

PRMNVG01 124 134 124 134 234 0.18 0.58 0  0  0  0  0  

SLRTCR03 1345 1345 1345 1345 124 0.42 0.74 124 123 124 123 0  

SLRTTO02 12345 12345 12345 12345 12345 0.05 0.15 1234 0  1234 12345 0  

UNLVRG01 12345 12345 12345 12345 1245 0.63 0.61 0  0  0  0  0  

XTEXVA01 134 134 1345 1345 23 0.34 1.02 0  0  0  0  0  

XTIMVA01 23 23 23 23 23 0.31 0.90 0  0  0  0  0  

Total “correct”  17/17 17/17 17/17 17/17 17/17 17/17 14/17 14/17 16/17 13/17 15/17 17/17 

Average Number 3.76 3.76 3.94 4.06 2.76   0.47 0.18 0.53 0.47 0 
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For the multiple peak-testing scenario, we employ known 

results from the multiple testing literature (i.e., the 

applications to controlling FWER) to combine the p-values 

from the five seasonal frequencies in such a way to 

dramatically increase statistical power, as demonstrated in 

Table 4. Although there is some departure in the size (Table 

3) for the multiple peak testing, the results are still quite 

usable. On a typical batch of seasonal series, the number of 

Type I errors are as expected, and the power is quite decent 

(Tables 5-10). While our method compares quite favorably 

to the VS, M7, and M8 diagnostics, neither of the 

diagnostics provide a p -value and only the former can 

distinguish which spectral peaks are contributing to seasonal 

behavior. This aspect is important to the seasonal adjuster, 

who wants to know not only that there may be residual 

seasonality, but also at what seasonal frequencies, so as to 

take appropriate action to alter the seasonal adjustment 

filters (this can be done by smoothing over additional years, 

which is accomplished by changing the seasonal filters in X-

11-ARIMA; alternatively, one might consider shortening 

the series. For current research on a model-based approach 

to designing SA filters targeted for specific seasonal 

frequencies, see Aston, Findley, McElroy, Wills, and Martin 

(2007)). 

The choice of kernel surely has some impact on the 

results, although we found little difference in practice 

between the quartic and TH kernels; the TH may be 

marginally more powerful. Of course, plenty of other 

popular kernels may also be utilized by a practitioner, and 

we have only chosen two that seemed intuitive and straight-

forward to implement. The choice of the location µ  is 
clearly dictated by the characterization of seasonality. Since 

statistical power generally decreased with ,β  we always 

recommend taking the maximal β  such that the kernel 
supports are disjoint, which guarantees the asymptotic 

independence property of the various diagnostics that is 

crucial to our multiple testing method. 

Finally, the asymptotic results require that the data be 

differenced to stationarity. Recognizing that economic time 

series are typically nonstationary, it is desirable to trend-

difference seasonally adjusted data before applying our 

diagnostic. This differencing may dampen the detection of 

the first seasonal peak, so practitioners may “re-color” the 

data as described in Section 3.4. 
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Appendix 

 
Here we derive asymptotic formulas for the statistical 

measures Aψ  of slope and convexity. These results can then 

be applied in the testing paradigm to get asymptotic critical 

values. Some mild conditions on the data are required for 

the asymptotic theory; we follow the material in Taniguchi 

and Kakizawa (2000, Section 3.1.1). Condition (B), due to 

Brillinger (1981), states that the process is strictly stationary 

and condition (B1) of Taniguchi and Kakizawa (2000, page 

55) holds. Condition (HT), due to Hosoya and Taniguchi 

(1982), states that the process has a linear representation, 

and conditions (H1) through (H6) of Taniguchi and 

Kakizawa (2000, pages 55-56) hold. Assumption 1 (8) of 

Chiu (1988) is a summability condition on various higher 

order cumulants, which is satisfied, for example, by a 

Gaussian process with spectral density in 2.C  None of these 

conditions are stringent; for example, a causal linear process 

with fourth moments satisfies (HT). The main result is a 

joint convergence of any two measures ( );A Iψ  e.g., these 

can be a slope and convexity measure with the same kernel 

.A  We present the general theorem that covers these two 

cases.  
Theorem 1 Suppose that the fourth order cumulants of { }tX  

vanish; that either condition (B) or (HT) holds; and that 

Assumption 1 (8) of Chiu (1988) holds. Let the kernels A  

and B  satisfy conditions (i) through (iv) of Section 2.1. 

Then 
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Proof. First we establish that 2 2

. .2 2( ) 2 ( ).
a s

A A
I fθ → θ  

Since the kernel A  is continuous in an interval (such as 

[ / 2, / 2]),µ − β µ + β  this result follows directly from 

Corollary 1 of Chiu (1988), noting that they deal with the 

Riemann sums approximation to the integral functional 

(Chiu (1988) also defines the periodogram with a 2π  
factor). Of course the same results holds with B  in place of 

.A  Secondly, consider the joint convergence of ( )A Iθ  and 
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( ).B Iθ  We use the Cramer-Wold device, and apply Lemma 

3.1.1 of Taniguchi and Kakizawa (2000), appropriately 

generalized to include non-even functions (cf. Theorem 3 of 

Chiu (1988)). Hence for any ,x y  real, 
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using Slutsky’s Theorem (Bickel and Doksum 1977), where 

the kernel C  is defined by 
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By taking x  and y  to be zero and one in various 

combinations, we deduce the stated variance matrix .V  

Next we discuss the multiple-peak testing scenario. So 

suppose that we have a finite collection of kernels iA  for 

1, 2, ..., ,i d=  each of which satisfies the assumptions of 

Section 2. Then we can easily generalize Theorem 1 from 

two to d  kernels as follows. The asymptotic covariance 

matrix V  will have thij  entry 

2 2

2

2 2

( )
.

( ) ( )

i j

i j

A A

A A

f

f f

θ

θ θ
 

Thus, if the support for any two kernels is disjoint we obtain 

asymptotic independence, and can therefore invoke the H-

FWER multiple testing procedure. 
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On the definition and interpretation of interviewer variability  
for a complex sampling design 

Siegfried Gabler and Partha Lahiri 1 

Abstract 

Interviewer variability is a major component of variability of survey statistics. Different strategies related to question 

formatting, question phrasing, interviewer training, interviewer workload, interviewer experience and interviewer 

assignment are employed in an effort to reduce interviewer variability. The traditional formula for measuring interviewer 

variability, commonly referred to as the interviewer effect, is given by int int: _ 1 ( 1) ,ieff deff int n= = + − ρ  where intρ  

and intn  are the intra-interviewer correlation and the simple average of the interviewer workloads, respectively. In this 

article, we provide a model-assisted justification of this well-known formula for equal probability of selection methods 

(epsem) with no spatial clustering in the sample and equal interviewer workload. However, spatial clustering and unequal 

weighting are both very common in large scale surveys. In the context of a complex sampling design, we obtain an 

appropriate formula for the interviewer variability that takes into consideration unequal probability of selection and spatial 

clustering. Our formula provides a more accurate assessment of interviewer effects and thus is helpful in allocating more 

reasonable amount of funds to control the interviewer variability. We also propose a decomposition of the overall effect into 

effects due to weighting, spatial clustering and interviewers. Such a decomposition is helpful in understanding ways to 

reduce total variance by different means. 
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1. Introduction 
 

A major source of measurement errors in surveys is due 

to the interviewer. This fact was recognized as early as 1929 

by Rice and later by many survey researchers. Factors such 

as the quality of questionnaire design and the interviewer 

can influence the interviewer effects on survey statistics.  

The interviewer can introduce homogeneity in survey 

data, which generally reduces the effective sample size and 

thereby increases the total variance of a survey estimator. 

The within interviewer homogeneity has been traditionally 

measured by the intra-interviewer correlation coefficient 

int.ρ  The magnitude of the intra-interviewer correlation was 

studied by many researchers, mostly in the context of 

telephone surveys without any spatial clustering effects 

(Kish 1962; Gray 1956; Hanson and Marks 1958; Tucker 

1983; Groves and Magilavy 1986; Heeb and Gmel 2001, 

and others). Researchers have argued that the nature of the 

survey items may affect the value of int.ρ  Attitude items 

and complex factual items are considered more sensitive to 

the intra-interviewer correlation than simple factual items 

are (Collins and Butcher 1982; Feather 1973; Fellegi 1964; 

Gray 1956; Hansen, Hurwitz and Bershad 1961). According 

to Groves (1989), values above 0.1 are seldom observed. 

See Schnell and Kreuter (2005) for further discussion on 

this issue. 

As noted by several researchers, the standard interviewer 

effect formula int int1 ( 1)n+ − ρ suggests that even with a 

small intra-interviewer correlation, the interviewer effect 

could be substantial simply due to a high average 

interviewer workload. For example, when int 0.01ρ =  and 

int 70n =  we have 1.69ieff =  (Schnell and Kreuter 

2005). Note that a high average interviewer workload (e.g., 

between 60 and 70) is very common in telephone surveys 

(Tucker 1983; Groves and Magilavy 1986). For the 

European Social Survey, Philippens and Loosveldt (2004) 

provided box plots of the intra-interviewer correlations and 

the interviewer workloads for 18 participating countries.  

The interviewer effect or variance is generally defined as 

the inflation to the total variance caused solely by the 

interviewers. For an epsem design with equal interviewer 

workload, the interviewer variance for the sample mean is 

simply given by int int1 ( 1) ,n+ − ρ  where intn  is the 

common interviewer workload. For complex surveys with 

unequal interviewer workload, survey researchers frequently 

use a simple modification of this formula where the 

common interviewer workload is replaced by the average 

interviewer workload, i.e., the formula int int1 ( 1) .n+ − ρ
 
In 

Section 2, we argue that this standard formula 

int int1 ( 1)n+ − ρ  cannot be interpreted as an inflation to the 

total variance caused by the interviewers even for an epsem 

design with unequal interviewer workload. In Sections 2-4, 

we observe that the interviewer variance definition depends 
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on the nature of the complex sampling design and also on 

the interviewer workload assignment. In this paper, we 

provide appropriate definitions of the interviewer variance 

in different survey scenarios. A reliable definition of the 

interviewer variance is helpful in determining actions that 

need to be taken in order to reduce interviewer variability. 

This paper is foremost applicable to the planning of surveys 

rather than analyzing survey data. In other words, in this 

paper we have concentrated on the definitions and 

interpretation of the interviewer variability and not on 

estimating it from a given survey. 

In Section 2, we consider an epsem design with no 

spatial clustering and provide a model-assisted interpretation 

of .ieff  We show that for the equal interviewer workload 

ieff  is simply the ratio of the variances of the sample mean 

under a correlated model that accounts for the homogeneity 

of the observations collected by the same interviewer and a 

simple uncorrelated model that fails to account for such 

homogeneity. Thus, multiplying the variance of the sample 

mean for simple random sampling by the ieff  one can 

obtain the total variance of the sample mean that 

incorporates both the sampling and the interviewer 

variability. This is a very intuitive interpretation of ieff  and 

complements the model-assisted justification given earlier 

by Kish (1962). In this section, we also show that for an 

epsem design ieff  is lower than the model-assisted 

interviewer effect formula if the interviewer workload varies 

and the intra-interviewer correlation is positive. Thus, the 

survey designer who uses ieff  would give less effort to 

control interviewer variability than is really needed. In this 

situation, an appropriate interviewer effect formula can be 

obtained from ieff  when a weighted average interviewer 

workload is used in place of the usual simple average. 

In Section 3, we entertain the possibility of unequal 

weighting but no spatial clustering. We obtain a model-

assisted interpretation for ieff  if and only if the respondents 

interviewed by the same interviewer share the same 

sampling weight and the interviewer workload is inversely 

proportional to the square of the common weight for the 

interviewer. Interestingly, unlike the epsem design, equal 

interviewer workload does not necessarily guarantee a 

model-assisted interpretation for .ieff  When there is an 

equal interviewer workload and there is at least one 

interviewer for which the respondents do not all share the 

same sampling weight, we show that ieff  is always higher 

than the model-assisted formula. We also point out the 

factors that cause the difference between these two 

formulae. These results have a practical relevance in terms 

of saving survey costs. To be specific, the survey designer 

who uses ieff  is likely to allocate more funds to control 

interviewer variability than is really needed. We have also 

cited some situations where ieff  could have an under-

estimation problem and thus survey designers who use ieff  

could give less emphasis to control the interviewer effects. 

Our formula provides a more accurate assessment of 

interviewer variability and thus is helpful in the allocation of 

more reasonable amount of funds to control the interviewer 

variability. Furthermore, the change in planning formulae 

will affect the sample size.  

In many large scale sample surveys, due to various 

organizational and financial reasons such as the absence of a 

general population register or to reduce the overall survey 

costs, a multi-stage clustered sampling design is considered 

to be a cost-efficient alternative to simple random sampling. 

Under a multi-stage clustered sampling design, respondents 

who live in close spatial proximity of each other get 

selected. Respondents living in the same spatial cluster tend 

to share similar attitudes because of their similar socio-

economic background and hence increase the internal 

homogeneity of the survey data. This spatial homogeneity 

violates the iid (independently identically distributed) 

assumption frequently used in standard statistical inferential 

procedures and so does the clustering within the 

interviewers. This fact has been recognized by many survey 

researchers and adjustments to various statistical procedures 

and the related software issues have been addressed in the 

literature (see Rao and Scott 1984; Skinner, Holt and Smith 

1989; Biemer and Trewin 1997; Chambers and Skinner 

2003; among others). In Section 4, we present a new 

definition of the interviewer variability in the presence of 

unequal weighting and spatial clustering. In the presence of 

spatial clustering, we argue that ieff  generally has a 

tendency to overestimate the interviewer variability. Thus 

for complex surveys involving spatial clustering, ieff  may 

unnecessarily give a false alarm regarding the magnitude of 

the interviewer variability. 

In Section 5, we discuss the effects due to the combined 

effects of weighting, spatial clustering and the interviewer. 

The formula for overall effects offers an accurate 

determination of the sample size at the planning stage. We 

provide a nice factorization of the overall effects into the 

effects due to weighting, clustering and interviewer. Such a 

decomposition of the overall effects can be useful in 

understanding ways to reduce the total variance by different 

means. In discussing Verma, Scott and O’Muircheartaigh 

(1980), Hedges mentioned the need for such an overall 

effect formula. We generalize a formula earlier proposed by 

Davis and Scott (1995) to a non-epsem design and for a 

general correlation model valid for both discrete and 

continuous data. We present proofs of all the technical 

results in the Appendix. 
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2. EPSEM design with no spatial clustering 
 

Let iky  denote the observation obtained from the thk  

respondent interviewed by the thi  interviewer 

( 1, ..., ; 1, ... ).ii I k n= =  Define 1 ,I
i in n=∑=  the total 

sample size, 1 11/ ,inI
i k iky n y= =∑ ∑=  the unweighted sample 

mean, and 1int ( ) ,I
i i in a n=∑=a  a weighted average of the 

interviewer workload, where ia  is an arbitrary weight 

attached to the thi  interviewer workload and =a  

1( , ..., ).Ia a  

We shall first provide a model-assisted justification of the 

traditional interviewer effect formula, i.e., 1ieff = +  

int int( 1) ,n − ρ  where intn  is the unweighted average of 

interviewer workload. Note that int int 0( ),n n= a  with 

0 01 0 0( , ..., ),  1/I ia a a I= =a  and 0( ).ieff ieff= a  Using 

Result 1 given in the Appendix, we get 

2

1

1 int 1 int

Var ( )
( ) 1 [ ( ) 1] ,

Var ( )

M

M

y
ieff n

y
= = + − ρa a  

where 1 11 1( , ..., ),Ia a=a  with 1 / .i ia n n=  In the above, 

1
Var ( )M y  and 

2
Var ( )M y  are the variances of y  under the 

following two models, respectively, 

2

1

2

2

2 int

if , ,
: Cov( , )

0 otherwise,

if , ,

: Cov( , ) if , ,

0 otherwise.

ik i k

ik i k

i i k k
M y y

i i k k

M y y i i k k

′ ′

′ ′

 ′ ′σ = =
= 


 ′ ′σ = =
 ′ ′= ρ σ = ≠



 

Note that unlike model 1,M  model 2M  introduces 

homogeneity of the observations collected by the same 

interviewer.  
Remark 2.1: It follows from the corollary to Result 1, given 

in the Appendix, that for int 0,ρ > 1( )ieff ieff=a  if and 

only if /in n I=  for all ,i  i.e., if and only if each 

interviewer has the same workload. For the balanced case, 

Kish (1962) provided a model-assisted justification of ieff  

using a linear mixed model, which is a special case of 2M . 

For the unbalanced case, it is interesting to note the 

similarity between the interviewer variability formula 

1( )ieff a  and the design effects formula given in (A3) of 

Holt in discussing Verma et al. (1980).  
Remark 2.2: It follows from the corollary to Result 1 that if 

int 0ρ >  and in ’s are not equal then 1( ) .ieff ieff>a   
In the following example, we demonstrate the extent to 

which 1( )ieff a  and ieff  could differ for different 

interviewer workload patterns.   

Example 1: In Table 1, we consider three different workload 

assignments for ten interviewers, each with n = 790. Case 
A) represents the most variable workload assignment with a 

standard deviation =  68.3; Case B) is nearly balanced with 

a standard deviation =  9.5; Case C) corresponds to the 

equal interviewer assignment.   
Table 1 

Three different interviewer workload assignments (Example 1) 
 

 Interviewer workload pattern 

Interviewer A) B) C) 

1 4 70 79 
2 10 70 79 
3 20 70 79 
4 34 70 79 
5 52 70 79 
6 74 88 79 
7 100 88 79 
8 130 88 79 
9 164 88 79 
10 202 88 79 

n 790 790 790 

int 1( )n a  132 80 79 

 
Let 1; 1;( ),  ( ),A Bieff ieffa a  and 1;( )Cieff ieff=a  denote 

1( ),ieff a  the model-assisted interviewer variance formula 

corresponding to the cases A, B and C, respectively. For 

int 0ρ >  the function 1( )ieff a  is Schur-convex, which 

explains the fact 1; 1; 1;( ) ( ) ( ) .A B Cieff ieff ieff ieff≥ ≥ =a a a  

Figure 1 provides the values of the interviewer variance 

obtained from the standard formula (i.e., )ieff  and our 

model-assisted interview variance formula for all 

combinations of the two influencing factors, i.e., weighted 

average of interviewer workload and the intra-interviewer 

correlation. From Figure 1, it is interesting to note that ieff  

could underreport by about 100%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1 A graph of 1(a )ieff  vs. intρρρρ  for different int 1(a )n  
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3. Unequal weighting with no spatial clustering 
 

In this section, we consider the situation when we have 

unequal weights. Let ikw  be the survey weight attached to 

the thk  respondent interviewed by the thi  interviewer. In 

this situation, a weighted mean /i k i kw ik ik iky w y w∑ ∑ ∑ ∑=  

is a popular estimator of the finite population mean (See 

Brewer 1963; Hájek 1971) and the model-assisted 

interviewer variance formula is given by  

2

1

2

int 2

Var ( )

Var
.

( )
1 1

ik

i k

i

M

i

w

w

M w k
k

y
ieff

w

y w
= =

  
  
  + ρ − 
 
 

∑ ∑

∑∑
 

See Result 1 given in the Appendix. 

Define 11/ ,in

ki i ikw n w=∑=  the average survey weight 

for the thi  interviewer and 2 2 2 =1/ ,ki i ik in w w∑σ −  the 

variance of the survey weights for the thi  interviewer. It can 

be shown that  

int1 ( 1),w wief nf ρ −= +  

where  

2 2

2 2
.

i i

i
w

i i i i
i i

n w

n
n w n

=
+ σ

∑

∑ ∑
 

Note that, in general, wieff  cannot be written in the form 

int int1 ( ( ) 1)wieff n= + ρ −a  with 1.i ia∑ =   
Remark 3.1: From Result 2 in the Appendix, we have  

2( ),wieff ieff≤ a  

where 

2

2 21 2 2 2
( , ..., ),  with .

ik

k
I i

ik
i k

w

a a a
w

= =
∑

∑∑
a  

In the above, for int 0,ρ > 2( )wieff ieff= a  if and only if all 
2

iσ are zero. Thus, 2( )ieff a  can be interpreted as a 

conservative interviewer variance.  

Equality holds if and only if ik iw w=  for all i  and k  in 

which case  

*

2( ),  wieff ieff= a  

where 

2
* * * *

2 21 2 2 2
( , ..., ),  with  .i i

I i

i i
i

n w
a a a

n w
= =

∑
a  

Thus, the formulae *

2 and ( ) wieff ieff a are equivalent if and 

only if the survey weights are all the same for a given 

interviewer. One example of such a design is an epsem 

design for which we have  

*

2
i

i

n
a

n
=  

and  

*

2 1( ) ( ). wieff ieff ieff= =a a  

Now we shall try to understand the factors that explain 

the difference between wieff  and .ieff  To this end, define 
 

1 111/ / ,inI I
i ik ik i iw n w n n w= ==∑ ∑ ∑= =  the average survey 

weight for all interviewers, 
 

2
1 ( ) ,I

i i iSSB n w w=∑= −  the between interviewer sum of 

squares of the survey weights, 
 

2 2
1 11( ) ,inI I

i ik ik i i iSSW w w n= ==∑ ∑ ∑= − = σ  the within inter-

viewer sum of squares of the survey weights, 
 

,SST SSB SSW= +  the total sum of squares of the survey 

weights, 
 

/ ,w SSW SSTτ =  an indicator of the relative contribution of 

the within interviewer variability of survey weights to the 

total variability, 
 

/ / ,wCV SST n w=  the coefficient of variation of the 

survey weights in the entire sample. 
 

It can be shown that (see Result 4) 

2int
int2

1 int

1

w

I
i

i i
i

ieff ieff

n n
n w SSW

nSST nw =

−

  
= − − ρ  

+    
∑  (1)

 

2int
int2

1 int

1
(1 )

I
i

i i
iw

n n
n w SSW

nCV SST−
=

  
= − − ρ  

+    
∑  (2) 

2

1 intint
int2

1

1 .
1

I
i

i i
iw

w

n
n w

nn

SSWCV

=

−

  
−  

τ   = − ρ 
 +

∑
 (3) 

Remark 3.2: We can use formula (1) in any situation. For 

epsem designs, we have  

int
int

1 int

1 .
I

i
w i

i

n n
ieff ieff n

n n=

 
− = ρ − 

 
∑  

Note that an application of the Cauchy-Schwarz 

inequality suggests 0wieff ieff ≥−  with equality if and 

only if / for all .in n I i=  
 

Remark 3.3: We can use (2) if 0,SST ≠ i.e., if the design is 

not epsem. If int 0,ρ >  (2) implies 
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0 wieff ieff− ≤  if and only if 2

1 int

1 .
I

i
i i

i

n
n w SSW

n=

 
− ≤ 

 
∑  

If high interviewer workload tends to be associated with 

small average survey weights and vice versa and 0,SSW ≠  

we can expect ieff  to be a conservative value of the actual 

interviewer variance wieff . In Example 2, c) and d), we 

have such a situation. 

Now, we have wieff ieff=  if and only if ik iw w=  (or, 

equivalently, SSW =  0) and 2 2/ 1/ii i i in w n w I∑ =  for all i  

and ,k  i.e., wieff ieff=  if and only if ik iw w=  and 

1/i iw n∝  for all i  and .k  

Thus, for a non-epsem design, equal interviewer 

workload does not necessarily provide us a model-assisted 

interpretation for .ieff  For example, if the survey weights 

vary within at least one interviewer, we will not have a 

model-assisted interpretation of .ieff  Obviously, for an 

epsem design the two formulae are equivalent if and only if 

we have equal interviewer workload.  
Remark 3.4: If the interviewer workload is the same for all 

interviewers, we have 

int
int21

w
w

w

n
ieff ieff

CV −

τ
− = − ρ

+
 

(assume 0).SST ≠  Thus, ieff  is a conservative value of the 

actual interviewer effect .wieff  Furthermore, | |wieff ieff−  is 

an increasing function of the common interviewer workload 

intn  and 2/ (1 )w wCV −τ +  (for fixed 2,wCV −  the latter is an 

increasing function of ).wτ  The same interviewer workload 

is given in Example 2 a).  
Remark 3.5: We can use formula (3) if SSW > 0, i.e., if 

there is at least one interviewer for which weights are not all 

equal.   
Example 2. 
 

Table 2 presents eight different combinations of 
2( , , )i i in w σ . The first combination assumes equal in  values 

but unequal weights. The second combination assumes 
2 2.i iw ∝ σ  The other six combinations show all possible 

ordering of int int 1 int 2, ( ), , ( )wn n n na a  and, therefore, ,ieff  

1 2( ), , ( )wieff ieff ieffa a  taking into consideration that 

1( )ieff ieff≤ a  and 2( ).wieff ieff≤ a  
 

 

 
Table 2 

Ordering of interviewer effects formulae for several parameter combinations (Example 2); in the 
last column 

int
ρ =ρ =ρ =ρ = 0.01 

 

 i
n  

i
w  2

i
σσσσ  

int
n  int 1

(a )n  
w
n  int 2

(a )n  Interviewer effects /
w

ieff ieff
 

a) 25 

25 

25 

25 

1.022 

1.036 

0.998 

0.945 

0.299 

0.375 

0.276 

0.260 

25 25 19.20 25 
1 2

( ) ( )
w

ieff ieff ieff ieff= = >a a  1.003 

b) 10 

20 

30 

40 

1 

1 

1 

1 

1 

1 

1 

1 

25 30 15 30 
1 2

( ) ( )
w

ieff ieff ieff ieff< < =a a  1.007 

c) 10 

20 

30 

40 

1 

1 

1 

1 

1 

2 

3 

4 

25 30 7.5 32.5 
1 2

( ) ( )
w

ieff ieff ieff ieff< < <a a  1.023 

d) 10 

20 

30 

40 

1 

1 

1 

1 

4 

3 

2 

1 

25 30 10 26.7 
2 1

( ) ( )
w

ieff ieff ieff ieff< < <a a  1.015 

e) 10 

20 

30 

40 

4  

2  

0.333  

0.250 

144  

 9  

 0.555  

 0.125 

25 30 1.80 11.71 
2 1

( ) ( )
w

ieff ieff ieff ieff< < <a a  0.998 

f) 10 

20 

30 

40 

0.333 

0.666 

1  

1.333 

0.025 

0.075 

0.125 

0.175 

25 30 31.82 35.26 
1 2

( ) ( )
w

ieff ieff ieff ieff< < <a a  1.015 

g) 10 

20 

30 

40 

1 

1 

1 

1 

0.010  

0.020  

0.030  

0.040 

25 30 29.13 30.10 
1 2

( ) ( )
w

ieff ieff ieff ieff< < <a a  0.999 

h) 10 

20 

30 

40 

1 

1 

1 

1 

0.004  

0.003  

0.002  

0.001 

25 30 29.94 29.99 
2 1

( ) ( )
w

ieff ieff ieff ieff< < <a a  0.998 
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In the example, .i i in w n∑ =  We now explain the eight 

different patterns.   
a) Since all in  are equal, 1 2( ) ( ).ieff ieff ieff= =a a  

Moreover, wieff  is smaller than the rest because of 

the fact that 2 >iσ 0. 
 

b) Since 2

iσ  are relatively large, .wieff ieff<  Also, 
2

iσ = 2

ic w⋅  implies 1 2( ) ( ).ieff ieff=a a  
 

c) Since 2

iσ  are relatively large, .wieff ieff<  Moreover, 

since 2 2

i iw + σ  and in  are both increasing, we have 

1 2( ) ( ).ieff ieff<a a  
 

d) Since 2

iσ  are relatively large, .wieff ieff<  Since 
2 2

i iw +σ  is decreasing and in  is increasing, we have 

2 1( ) ( ).ieff ieff<a a  
 

e) Since 2

iσ  are relatively large, .wieff ieff<  Also, 
2 2 and  i iw σ  are decreasing and in  is increasing 

implying 2 1( ) ( ).ieff ieff<a a  
 

f) The fact that 2

iw  and in  are increasing implies that 

;wieff ieff>  since 2

iσ  and in  are both increasing, 

we have 1 2( ) ( ).ieff ieff<a a  
 

g) Since 2

iw  and in  are increasing, we have 

wieff ieff>  and since 2

iσ  is increasing, we have 

1( )ieff <a 2( ).ieff a  Moreover, 1( )wieff ieff< a  

since 2

iσ  is smaller than that in f). 
 

h) Since 2

iw  and in  are increasing, we have wieff >  
ieff  and since 2

iσ  is decreasing, we have 2( )ieff <a  

1( ).ieff a  

 
4. Unequal weighting and spatial clustering  
In this section, we obtain an appropriate interviewer 

variance formula in the presence of spatial clustering and 

unequal probability of selection. Consider the situation 

when more than one interviewer work independently in the 

same psu and the respondents in each psu are randomly 

assigned to the interviewers. We shall assume that no 

interviewer works in more than one psu. Such a design was 

considered in Biemer and Stokes (1985). Now we shall 

separate the interviewer effect from psu effect (i.e., spatial 

clustering) and unequal weighting. Let piky  and pikw  be the 

observation and the associated survey weight for the thk  

respondent in the thp  psu interviewed by the thi  

interviewer ( 1, ..., ; 1, ... ; 1, ..., ).p pip P i I k n= = =  Let 

1
pI

ip pin n=∑=  be the number of sampling units in psu p. 

 

 

 

 

In this case, we use the following weighted average to 

estimate the finite population mean: 

1 1 1

1 1 1

.

piP

piP

nIP

pik pik
p i k

w nIP

pik
p i k

w y

y

w

= = =

= = =

=
∑∑∑

∑∑∑
 

Define 

4

3

,

Var ( )
,

Var ( )

M w

s w

M w

y
ieff

y
=  

where the suffixes s  and w  signify the presence of spatial 

clustering and unequal weighting. In the above, 
3

Var ( )M wy  

and 
4

Var ( )M wy  are the variances of wy  under the following 

two models respectively 

2

2

3

2

2

4
2

if , ,

:  Cov( , )  if  ,

0 otherwise

if , ,

if  ,
:  Cov( , )

if  , ,

0 if  

pik p i k C

C

pik p i k

p p i i k k

M y y p p k k

p p i i k k

p p i i
M y y

p p i i k k

p p

′ ′ ′

′ ′ ′

 ′ ′ ′σ = = =
 ′ ′= ρ σ = ≠



 ′ ′ ′σ = = =


′ ′ρ σ = ≠
= 

′ ′ ′ρσ = = ≠


′≠

 

In the above, Cρ  is the intra-psu correlation and ρ  is the 
combined interviewer and psu intra-class correlation. Define 

int ,Cρ = ρ−ρ  intra-interviewer correlation. Usually, int 0.ρ >  

From Result 5, we have 

int
, int

psu

( ) 1
1 ,

1 ( ( ) 1)

w
s w

C w

n
ieff

n

−
= + ρ

+ ρ −

A

b
 

where 

2

1, ...,

1, ..., 2

1 1 1

(( ))   and  
p p pi

pi pi

w wpi i I wpi I nP
p P

pik
p i k

n w
a a

w

=
=

= = =

= =

∑∑∑
A  

with 

2

1

int
1 2

1 1 1

1
,

( ) ,

pi

piP

P

p pi

n

pi pik

kpi

nIP

pikIP
p i k

w wpi pi I nP
p i

pik
p i k

w w
n

w

n a n

w

=

=

= = =

=

 
  
 = =

∑

∑∑ ∑
∑∑

∑∑∑
A

 

and  
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2

1, ,

2

1 1 1

( )   and  ,
p pi

p p

w wp p P wp I nP

pik
p i k

n w
b b

w

=

= = =

= =

∑∑∑
b

…

 

with 

1 1

1 1
,

p pi pI n I

p pik pi pi
i k ip p

w w n w
n n= =

= =∑∑ ∑  

and 

2

1

psu
1 2

1 1 1

( ) .

piP

p pi

nIP

pik
P

p i k

w wp p I nP
p

pik
p i k

w

n b n

w

=

=

= = =

 
  
 = =

∑ ∑∑
∑

∑∑∑
b  

Note that int psu( ) ( )w wn n≤A b  with equality if and only 

if 1.PI =  Also note that int ( )wn A  is invariant of the 

allocation of the interviewers to the psu’s while psu ( )wn b  is 

not.  
Remark 4.1: If Cρ = 0 we get 

, int int1 ( ( ) 1).s w wieff n= + ρ −A  

This formula is similar to wieff  given in Section 2. Thus, 

all the comments given in Remark 2.1 apply here. Note that 

int ( ),wn A  just like ,wn  cannot be generally written in the 

form 1 11 1int ( )   with  1;p pI IP P
p pi iw wpi pi wpin a n a= == =∑ ∑ ∑ ∑= =A  

the same comment applies to psu ( ).wn b   
Remark 4.2: Define 

int
1

( ) ,  where (( )),  with ,
PIP

pi

pi pi pi pi
p i

n
n a n a a

n=

= = =∑∑A A  

and  

psu 1
1

( ) ,  where  ( , ..., ) with .
P

p

p p P p
p

n
n b n b b b

n=

= = =∑b b  

If Cρ ≠ 0 but we have an epsem design, then we drop the 
suffix w  in , .s wieff  Note that 

int
int

psu

psuint int

psu psu

( ) 1
1

1 [ ( ) 1]

( ( ) 1)( ) 1
1

( ) 1 1 ( ( ) 1)

s

C

C

C C

n
ieff

n

nn

n n

−
= + ρ

+ ρ −

ρ −ρ −
= + ⋅ ⋅

ρ − + ρ −

A

b

bA

b b

 

 

 

so that 

int int int int

psu psu

( ) 1 ( )
1 1 .

( ) 1 ( )
s

C C

n n
ieff

n n

ρ − ρ
< + ⋅ < + ⋅

ρ − ρ

A A

b b
 

It can be readily seen that the right side of the inequality 

increases with the ratios int / Cρ ρ  and  

int

psu

( ) 1
.

( ) 1

n

n

−

−

A

b
 

We have 

int
psu

int
int int

psu

( ) 1
[1 ( ( ) 1)]

1
( 1).

1 ( ( ) 1)

C

s

C

n
n

n
ieff ieff n

n

−
− +ρ −

−
− =ρ −

+ρ −

A
b

b
 

Thus, for int >ρ 0, 

sieff ieff<  if and only if  

int
psu

int

( ) 1
: 1 ( ( ) 1) ,

1
s C

n
Deff n

n

−
= +ρ − >

−

A
b  

i.e., if and only if the design effect due to the spatial 

clustering is larger than the ratio of the weighted average of 

the interviewer workload –1 and the average interviewer 

workload –1. If the interviewer workload is the same for all 

the interviewers, the right hand side of the inequality is 1 

and so the inequality is always valid. It is interesting to note 

that 4 sieff ieff≈ ⋅  if int psu0.1, 0.05, ( ) 140,C n bρ = ρ = =  

and int 70.n =   
Remark 4.3: In the general case, we have 

int
, int int

psu

( ) 1
( 1) .

1 ( ( ) 1)

w
s w

C w

n
ieff ieff n

n

 −
− = ρ − −  + ρ − 

A

b
 

Thus, for int >ρ 0, 

,s wieff ieff<  if and only if  

int
, psu

int

( ) 1
: 1 ( ( ) 1) ,

1

w
s w C w

n
Deff n

n

−
= + ρ − >

−

A
b  

i.e., if and only if 

*int int

int psu

( )
: ,  say.

( 1) ( ( ) 1)

w
C C

w

n n

n n

−
ρ > = ρ

− −

A

b
 

In Example 2 (see Table 3), ieff  is a conservative value for 

,s wieff  for a) to e) if >Cρ 0. The same holds for f) to h) if 

>Cρ 0.004. 
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Table 3 
Average interviewer workloads for several parameter combinations (Example 2); 

,
/

s w
ieff ieff  for 

int
ρρρρ = 0.01 and 

C
ρρρρ = 0.02 

 

     1,3IA = ( )= ( )= ( )= ( )
 

2,2IA = ( )= ( )= ( )= ( )
 

3,1IA = ( )= ( )= ( )= ( )
 

 i
n  

i
w  2

i
σσσσ  

int
n  int

( )
w

n A  
psu
(b )

w
n  *

C
ρρρρ  

,s w

ieff

ieff  int
( )

w
n A  

psu
(b )

w
n  *

C
ρρρρ  

,s w

ieff

ieff  int
( )

w
n A  

psu
(b )

w
n  *

C
ρρρρ  

,s w

ieff

ieff  

a) 25 

25 

25 

25 

1.022 

1.036 

0.998 

0.945 

0.299 

0.375 

0.276 

0.260 

25 19.202 47.528 -0.005 1.133 19.202 38.389 -0.006 1.123 19.202 49.039 -0.005 1.135 

b) 10 

20 

30 

40 

1 

1 

1 

1 

1 

1 

1 

1 

25 15 41 -0.010 1.151 15 29 -0.015 1.138 15 26 -0.017 1.134 

c) 10 

20 

30 

40 

1 

1 

1 

1 

1 

2 

3 

4 

25 7.5 20.5 -0.037 1.185 7.5 14.5 -0.054 1.180 7.5 13 -0.061 1.178 

d) 10 

20 

30 

40 

1 

1 

1 

1 

4 

3 

2 

1 

25 10 27.333 -0.024 1.171 10 19.333 -0.034 1.163 10 17.333 -0.038 1.161 

e) 10 

20 

30 

40 

4  

2  

0.333  

0.250 

144  

 9  

 0.555 

 0.125 

25 1.801 2.755 -0.551 1.230 1.801 3.603 -0.371 1.231 1.801 4.344 -0.289 1.231 

f) 10 

20 

30 

40 

0.333 

0.666 

1  

1.333 

0.025 

0.075 

0.125 

0.175 

25 31.820 75.685 0.004 1.104 31.820 58.427 0.005 1.084 31.820 40.629 0.007 1.058 

g) 10 

20 

30 

40 

1 

1 

1 

1 

0.010  

0.020  

0.030  

0.040 

25 29.126 79.612 0.002 1.118 29.126 56.311 0.003 1.094 29.126 50.485 0.003 1.086 

h) 10 

20 

30 

40 

1 

1 

1 

1 

0.004  

0.003  

0.002  

0.001 

25 29.940 81.836 0.003 1.117 29.940 57.884 0.004 1.092 29.940 51.896 0.004 1.084 

 

 

If a household and a person within the household are 

selected at random, then the weights are often independent 

of the psu and the interviewer and depend only on the 

household sizes. In such a situation, the household sizes 

form the weighting classes. For weighting classes, we define 

 
:pijm  number of sampling units in psu p  assigned to 

interviewer i  belonging to weighting class ,j  
 

1 :pI

ipj pijm m=∑=  number of sampling units in psu p  

belonging to weighting class ,j  
 

1 1 :pIP
p ij pijm m= =∑ ∑=  number of sampling units belonging to 

weighting class .j  
 
Thus, 
 

1 :J
jpi pijn m=∑=  number of sampling units in psu p  

assigned to interviewer ,i  
 

11 :pI J
jip pijn m==∑ ∑=  number of sampling units in psu ,p  

 

1 11 :pIP J
p ji pijn m= ==∑ ∑ ∑=  sample size. 

 
 

Furthermore, 

2 2

1 1 1 1 1 1

int

22

11 1 1

( )

piP P

p pi

nIP IP J

pik j pij
p i k p i j

w I n JP

j jpik
jp i k

w w m

n

w mw

= = = = = =

== = =

   
    
   = =

∑∑ ∑ ∑∑ ∑

∑∑∑∑
A  

and  

( )
2

2

1 1

psu

22

11 1 1

( ) ,

piP

p pi

nIP P

pik j pj
p i k p j

w I n JP

j jpik
jp i k

w w m

n

w mw

= =

== = =

 
  
 = =

∑ ∑∑ ∑ ∑

∑∑∑∑
b  

are ratios of quadratic forms in 1( , ..., ).Jw w=w  

 
5. Overall effects  

The overall effects take into account unequal weighting, 

spatial clustering, and the interview effects and can be 

viewed as a generalization to the traditional design effects. 

Multiplying the SRS variance for the unweighted sample 

mean by the overall effects will provide the total variance 

estimator.  
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4

*
1

int

Var ( )
,

Var ( )

M w

w s

M

y
eff eff eff eff

y
= = × ×  

where 

( )
( )

( )
( )

( )
( )

*
1

*
1

3

*
1

4

3

int ,

Var
,  

Var

Var
,  

Var

Var
.

Var

wM

w

M

M w

s

wM

M w

s w

M w

y
eff

y

y
eff

y

y
eff ieff

y

=

=

= =

 

In the above, *
1

Var
M

is with respect to the following 

model:  

2
*

1

if , , ,  
:  Cov( , )

0   otherwise. 
pik p i k

p p i i k k
M y y ′ ′ ′

 ′ ′ ′σ = = == 


 

It can be shown that 

2

1 1 1

2

1 1 1

2 2

1 1 1 1

int

2 2

1 1 1 1 1 1

1 1 1

p pi

p pi

p pi piP

p pi p pi

I nP

pik
p i k

I nP

pik
p i k

I n nIP P

pik pik
p i k p i k

C I n I nP P

pik pik
p i k p i k

n w

eff

w

w w

w w

= = =

= = =

= = = =

= = = = = =

=
 
  
 
     
             × +ρ − +ρ −  
  
   
  

∑∑∑

∑∑∑

∑ ∑∑ ∑∑ ∑

∑∑∑ ∑∑∑
.

 
 
 
 
 
    

 

The relative contributions of weighting, spatial clustering, 

and interviewer effects to the overall effects are given by  

2

1 1 1

2

1 1 1

psu

psu

int

psu

Re ,  

1 ( ( ) 1)
Re ,  

( ) 1
1

1 ( ( ) 1)
Re .

p pi

p pi

I nP

pik
p i k

I nP

pik
p i k

w

C w

s

w

C w

I

n w

w

eff
eff

n
eff

eff

n A

n
eff

eff

= = =

= = =

 
  
 =

+ ρ −
=

−
+ ρ

+ ρ −
=

∑∑∑

∑∑∑

b

b

 

In Figure 2, we present three dimensional graphs of the 

relative contributions of weighting, spatial clustering, and 

interviewer effects to the overall effects for different 

combinations of intra-cluster and intra-interviewer correla-

tions for different patterns of weights given in cases a), f) and 

h) of Table 3 with (1, 3),IA =  where ( , )IA a b=  indicates 

that the first a of the four interviewers are in psu 1 and the last 

b interviewers are in psu 2.  

Remark 5.1: From Result 6, we get 

int1 1 1 .C

n n
eff

P I

   ≥ + ρ − + ρ −   
   

 

The right side is the overall effect if the same number of 

interviewers with equal workload is assigned to each psu. It 

is interesting to note the similarity between the right hand 

side of the above inequality and the design effects formula 

given in (3.1) of Hansen, Hurwitz and Madow (1953, Vol. I, 

page 370). To claim the similarity, we need to treat the 

secondary sampling units as the units belonging to an 

interviewer. In this connection, we also note the formula 

(3.7) given in Hansen et al. (1953, Vol. II, page 292) for the 

case .I P=   
Remark 5.2: When we have the same weighting classes 

across psu × interviewer, we have 

2

1

2

1

2 2

1 1 1 1 1

int

2 2

1 1

1 1 1 .

P

J

j j
j

J

j j
j

IP J P J

j pj j pij

p j p i j

C J J

j j j j
j j

n w m

eff

w m

w m w m

w m w m

=

=

= = = = =

= =

=
 
 
 

              
       × +ρ − +ρ −    
    
    
     

∑

∑

∑ ∑ ∑∑ ∑

∑ ∑
 

Remark 5.3: Consider the special case 

pi j

pij

n m
m

n
=  

in which we allow variation in weights within psu × 
interviewer classes, but we constrain the weights to have the 

same relative frequency distribution in each class, i.e., the 

means and the variances of the weights within the classes do 

not depend on the class (Lynn and Gabler 2004). It is easy 

to see that in this case 

2

1

2

1

2

2

1 1

2
2

1

2

2
1

int 2
1 12

1

1 1

1 .
P

J

j j
j

J

j j
j

J P

j j p
j p

C J

j j
j

J

j j IP
j pi

J
p i

j j

j

n w m

eff

w m

w m n

n
w m

w m
n

n
w m

=

=

= =

=

=

= =

=

=
 
 
 
   
   
   × +ρ −  
  

   
  
  
  + ρ −  
 

  

∑

∑

∑ ∑

∑

∑
∑∑

∑
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Figure 2 Relative contributions of weighting, design and interviewer effects to the overall effects for cases a), f) and h) in 

Example 2 for the case IA = (1, 3) 

 

 

 

 

Using the same argument given in the proof of Result 6, 

we get 

2
2

1

int2
1 1

psu int int

1 1 1

1 ( ( ) 1) ( ( ) 1).

P

P

p IP
p pi

C
p i

C

n
n

eff
nn

n n

=

= =

 
    ≥ + ρ − + ρ −       

= + ρ − + ρ −

∑
∑∑

b A

 

This means that the overall effect is larger than the 

overall effect for an epsem design (see Remark 5.4).   
Remark 5.4: For an epsem design, we have 

psu int int1 ( ( ) 1) ( ( ) 1),Ceff n n= + ρ − + ρ −b A  

where  

2 2

1 1

psu int( )  and ( ) .

PIP P

p pi
p p i

n n

n n
n n

= == =
∑ ∑∑

b A  

Note that Davis and Scott (1995) obtained this formula 

for the special case of the following linear mixed model: 

,pik i p piky = µ + α + β + ε  

where  is the overall effect, ,  i pµ α β  are random effects 

due to the interviewer ,i  psu p and pikε  is the pure error. 

They assumed that the random effects are independent with 

pik

2 2 2~ (0, ), ~ (0, ) and ~ (0, ).i pN N Nα β εα σ β σ ε σ  

For the above linear mixed model, it is easy to check that 

22

int 2 2 2 2 2 2
 and  .c

βα

α β ε α β ε

σσ
ρ = ρ =

σ + σ + σ σ + σ + σ
 

However, it is instructive to note that the definition eff does 

not require intρ and cρ to be strictly positive and the 

definition goes beyond the linear mixed model. For 

example, the definition applies to the following example:  

                                       a)  Re effw                                                                                                     a)  Re effs                                                                                              a)  Re effI    

          1.0 

   

        0.5 

   

 0.000 
 

   0.005 

    0.010 
 

    0.015 
 

              0.020   0.000 

 

        0.005 

 

    0.010 

 

     0.015 

   

     0.020 

   

   cρ  

   

   intρ  

   

    0.0 

          1.0 

   

        0.5 

   

 0.000 
 

   0.005 

   0.010 
 

   0.015 
 

              0.020   0.000 

 

        0.005 

 

    0.010 

 

     0.015 

   

     0.020 

 

   cρ  

   

   intρ  

   
    0.0 

        1.0 

   

       0.5 

   

 0.000 
 

 0.005 

  0.010 
 

    0.015 
 

            0.020        0.000 

 

       0.005 

 

   0.010 

 

    0.015 

   

    0.020 

   

   cρ  

   

   intρ  

   

   0.0 

   

  0.000 

   

   cρ  

           0.020 

         0.015 

   

   intρ  

 

       0.010 

          0.005  
              0.020   0.000 

           

        1.0 

            0.5 

 

     
           0.015 

 

         0.005 
     

     0. 010 

   

          0.0    

  0.000 

   

   cρ  

           0.020 

         0.015 

   

   intρ  

 

       0.010 

          0.005  
              0.020   0.000 

           

        1.0 

            0.5 

 

     
           0.015 

 

        0.005 
     

     0. 010 

   

          0.0    
  0.000 

   

   cρ  

           0.020 

         0.015 

   

   intρ  

 

       0.010 

          0.005  
              0.020   0.000 

           

       1.0 

         

            0.5 

 

     
        0.015 

 

       0.005 
     

     0. 010 

   

         0.0 

   

   cρ  

 

          0.020 

              0.015 

   

   intρ  

 

        0.010 

            0.005  
              0.020   0.000 

          
      1.0 

             

           0.5 

 

     
        0.015 

 
         0.005      

   0. 010 

   

         0.0 

   

   cρ  

 

          0.020 

              0.015 

   

   intρ  

 

        0.010 

            0.005  
           0.020        0.000 

          
      1.0 

             

           0.5 

 

     
        0.015 

 
         0.005      

   0. 010 

   

         0.0  

 0.000 

   

   cρ  

 

        0.020            

            0.015 
   

   intρ  

 

        0.010 

            0.005  
              0.020   0.000 

          
    1.0 

             

           0.5 

 

     
      0.015 

 
       0.005      

0. 010 

   

        0.0  

 0.000 

   
  0.000 
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Example 3: A simple model for binary data.  
Assuming 0 <min( , ) < <α β θ 1, we define the following 

model: 

For all pin  different respondents of interviewer i  in 

psu .p  
 

1 2( , )pik pikP Y x Y x′= =  

                2x  

 1x  
1 0 Total 

1 α  θ − α  θ  
0 θ − α  1 2− θ + α  1 − θ  

Total θ  1 − θ  1 

 
For all pin  respondents of interviewer i  and psu p  and 

all pin ′  respondents of interviewer i′  and psu .p  
 

1 2( , )pik pi kP Y x Y x′ ′= =  

                2x  

 1x  
1 0 Total 

1 β  θ − α  θ  
0 θ − α  1 2− θ + β  1 − θ  

Total θ  1 − θ  1 

 
For all pn  respondents of psu p  and all pn ′  respondents 

of psu .p′  
 

1 2( , )pik p i kP Y x Y x′ ′ ′= =  

                2x  

 1x  
1 0 Total 

1 2θ  (1 )θ − θ  θ  

0 (1 )θ − θ  2
(1 )− θ  1 − θ  

Total θ  1 − θ  1 

 
Therefore, we have 

2

2

( )   for all  , , ,

Var ( ) (1 )  for all  , , ,

Cov( , )

Var ( )Var ( )

  for all  ,   and  ,
(1 )

Cov( , )

Var ( )Var ( )

  for all   and  
(1 )

pik

pik

pik pik

pik pik

pik pi k

C

pik pi k

E Y p i k

Y p i k

Y Y

Y Y

p i k k

Y Y

Y Y

p

′

′

′ ′

′ ′

= θ

= θ − θ

ρ =

α − θ
′= ≠

θ − θ

ρ =

β − θ
=
θ − θ

,i i′≠

 

 

which is a special case of Model 4M  with 2σ =  

Var ( ) (1 ).pikY = θ − θ  Note that both Cρ  and ρ  may be 

negative and int Cρ = ρ − ρ  is positive if and only if 

α > β .  
Remark 5.5: For an epsem design with common psu size 

/ ,b n P=  we have 

int int1 ( 1) ( ( ) 1).Ceff b n A= + ρ − + ρ −  

Remark 5.6: In discussing Verma et al. (1980), Holt 

considered the case when there is no interviewer variability 

and psu is the weighting class, i.e., the case when int 0ρ =  

and  for all  , , .pik pw w p i k=  In this case eff  reduces to 

2 2 2

1 1

2
2

1
1

1 1 .

P P

p p p p
p p

C P
P

p p
p p

p
p

n n w n w

eff

n wn w

= =

=
=

  
  
  = × + ρ −
            

∑ ∑

∑∑
 

Note that the above formula can be obtained from 

equation (A4) of Holt in discussing Verma et al. (1980), 

after correcting an obvious typo (i.e., deleting n  in the 

denominator), choosing his choice of survey weight and 

some algebra. Design effect formulae in the absence of the 

interviewer effects were considered by many authors. See 

Kish (1965), Verma et al. (1980), Skinner (1986), Valliant 

(1987), Skinner et al. (1989), Gabler, Häder and Lahiri 

(1999), Lynn and Gabler (2004), Kalton, Brick and Lê 

(2005) and others.  

 
6. Concluding remarks 

 
We have noticed that the standard interviewer effects 

formula could have either an overestimation or under-

estimation problem depending on the situation. For 

example, it could severely underestimate the interviewer 

effects in an epsem sampling design with different 

interviewer workloads. Interestingly, spatial correlation can 

turn this underestimation to an overestimation. In the former 

case, the survey designer who uses the standard interviewer 

effect formula may pay little attention to control the 

interviewer effect. In the latter case, a high value of the 

interviewer effect may unnecessarily raise concerns about 

the quality of data connected with the interviewer. This may 

trigger allocation of a higher portion of budget than is 

necessary to reduce the interviewer effect, which may be 

already much lower than the value obtained by an 

application of the standard formula. The paper is an attempt 

to define and interpret interviewer effects that are 

appropriate in different complex survey situations.  
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We have considered the case when an interviewer is 

assigned only in one psu. The case when an interviewer 

works in different psu’s is also important and will be 

considered in a later paper. The weights used in the 

proposed formulae only account for sampling weights as 

they are planned at the design stage, but do not necessarily 

reflect the actual weights attached to each case once the data 

are collected. In other words, our interviewer effect 

formulae do not incorporate the effects due to nonresponse 

and post-stratification adjustments. The formulae presented 

in the paper are mainly useful in the planning and design 

stage when we have some ideas about the intra-interviewer 

and spatial correlations.  

Reliable estimation of int c and ρ ρ  is important. Although 

there are some papers that deal with the estimation of 

int c and ,ρ ρ  there is certainly a need to advance research in 

this important area. In comparing the two sources of 

homogeneity, Hansen et al. (1961) found that the 

interviewer variability was often larger than the sampling 

variability. In many surveys, such an evaluation, which 

requires estimation of the intra-interviewer and intra-cluster 

correlations, is either difficult or even impossible because 

the interviewer effects are often confounded with the spatial 

clustering effects. The use of an interpenetrating design, first 

proposed by Mahalanobis (1946), where respondents are 

randomly assigned to the interviewers, is a way to get 

around the problem. In practice, the implementation of such 

a design in a large scale sample survey is difficult, but some 

approximated interpenetrated designs can be applied 

(Hansen et al. 1961, Bailar, Bailey and Stevens 1977, 

Bailey, Moore and Bailar 1978, Collins and Butcher 1982, 

O’Muircheartaigh and Campanelli 1998). Multi-level 

models have been used as a partial remedy to the problem 

(Hox and De Leeuw 1994, Davis and Scott 1995, 

O’Muircheartaigh and Campanelli 1998, Scott and Davis 

2001). We have not considered the problem of the esti-

mation of the intra-interviewer and intra-cluster correlations. 

This is an important problem and will be considered in a 

later paper.  

In practice, interviewer or design effects are computed 

for many items using the same formula and a summary 

measure such as the median interviewer or design effect is 

taken for the planning and design of the survey. So far as the 

issues related to handling multiple items are concerned, one 

may continue to follow one’s own protocol; the only change 

we may suggest is to use our new definitions for interviewer 

effects or overall effects whenever applicable. The use of 

our formula may suggest overall effects, which may be 

much lower than the standard formula. This, in turn, may 

suggest lower sample size and hence may save survey costs. 
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and some algebra. 
 
Corollary: Assume int 0 and 1/ .ikw nρ > =  Using Result 1 

and the Cauchy-Schwarz inequality, we get  

2

1 int int( ) 1 1 1 1 .
i

i

n
n

ieff ieff
n I

 
  = +ρ − ≥ +ρ − =     

 

∑
a  

 
Result 2. 2( ),wieff ieff≤ a  where  

2

2 21 2 2 2
( , ..., ) with .

ik

k
I i

ik
i k

w

a a a
w

= =
∑

∑∑
a  

 
Proof: Using the Cauchy-Schwarz inequality, we have 
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is the average survey weight for the thi  interviewer. Thus, 

we have int 2 int 21 [ ( ) 1] ( ).wieff n ieff≤ + − ρ =a a  

The equality holds if and only if  for all  and ik iw w i k=  

in which case *
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If all weights are non-negative, then 
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with equality if and only if 2 2( 1)i i in wσ = −  for all i  or if 

all in  are equal. 

The inequality follows from the logarithmic concavity of 
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Now the result follows using algebra.  
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and some algebra.  
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Indicators for the representativeness of survey response 

Barry Schouten, Fannie Cobben and Jelke Bethlehem 1 

Abstract 

Many survey organisations focus on the response rate as being the quality indicator for the impact of non-response bias. As 

a consequence, they implement a variety of measures to reduce non-response or to maintain response at some acceptable 

level. However, response rates alone are not good indicators of non-response bias. In general, higher response rates do not 

imply smaller non-response bias. The literature gives many examples of this (e.g., Groves and Peytcheva 2006, Keeter, 

Miller, Kohut, Groves and Presser 2000, Schouten 2004).  
We introduce a number of concepts and an indicator to assess the similarity between the response and the sample of a 

survey. Such quality indicators, which we call R-indicators, may serve as counterparts to survey response rates and are 

primarily directed at evaluating the non-response bias. These indicators may facilitate analysis of survey response over time, 

between various fieldwork strategies or data collection modes. We apply the R-indicators to two practical examples. 
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1. Introduction  
It is a well-developed finding in the survey methodol-

ogical literature that response rates by themselves are poor 

indicators of non-response bias, see e.g., Curtin, Presser and 

Singer (2000), Groves, Presser and Dipko (2004), Groves 

(2006), Groves and Peytcheva (2006), Keeter et al. (2000), 

Merkle and Edelman (2002), Heerwegh, Abts and Loosveldt 

(2007) and Schouten (2004). However, the field has yet to 

propose alternative indicators of non-response that may be 

less ambiguous as indicators of survey quality.  

We propose an indicator, which we call an R-indicator 

(‘R’ for representativeness), for the similarity between the 

response to a survey and the sample or the population under 

investigation. This similarity can be referred to as “repre-

sentative response”. In the literature, there are many differ-

ent interpretations of the ‘representativeness’ concept. See 

Kruskal and Mosteller (1979a, b and c) for a thorough 

investigation of the statistical and non-statistical literature. 

Rubin (1976) introduced the concept of ignorable non-

response; the minimal conditions that allow for unbiased 

estimation of a statistic. Some authors explicitly define 

representativeness. Hájek (1981) links “representative” to 

the estimation of population parameters; the pair formed by 

an estimator and a missing-data mechanism are repre-

sentative when, with probability one, the estimator is equal 

to the population parameter. Following Hajèk’s definition, 

calibration estimators (e.g., Särndal, Swensson and Wretman 

2003) are representative for the auxiliary variables that are 

calibrated. Bertino (2006) defines a so-called univariate 

representativeness index for continuous random variables. 

This index is a distribution-free measure based on the 

Cramér – Von Mises statistic. Kohler (2007) defines what he 

calls an internal criterion for representativeness. His 

univariate criterion resembles the Z-statistic for population 

means. 

We separate the concept of representativeness from the 

estimation of a specific population parameter but relate this 

concept to the impact on the overall composition of 

response. By separating indicators from a specific para-

meter, they can be used as tools for comparing different 

surveys and surveys over time, and for a comparison of 

different data collection strategies and modes. Also, the 

measure gives a multivariate perspective of the dissimilarity 

between sample and response. 

The R-indicator that we propose employs estimated 

response probabilities. The estimation of response 

probabilities implies that the R-indicator itself is a random 

variable, and, consequently, has a precision and possibly a 

bias. The sample size of a survey, therefore, plays an 

important role in the assessment of the R-indicator as we 

will show. However, this dependence exists for any 

measure; small surveys simply do not allow for strong 

conclusions about the missing-data mechanism. 

We show that the proposed R-indicator relates to 

Cramèr’s V measure for the association between response 

and auxiliary variables. In fact, we view the R-indicator as a 

lack-of-association measure. The weaker the association the 

better, as this implies there is no evidence that non-response 

has affected the composition of the observed data. 

In order to be able to use R-indicators as tools for 

monitoring and comparing survey quality in the future, they 

need to have the features of a measure. That is, we want an 

R-indicator to be interpretable, measurable, able to be 

normalized and also to satisfy the mathematical properties of 

a measure. Especially since the interpretation and normal-

ization are not straightforward features.  
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We apply the R-indicator to two studies that were 

conducted at Statistics Netherlands in 2005 and 2006. The 

objectives of those studies were the comparison of different 

data collection strategies. The studies involved different data 

collection modes and different non-response follow-up 

strategies. For each of the studies, a detailed analysis was 

done and documented. These studies are, therefore, suited to 

an empirical validation of the R-indicator. We compare the 

values of the R-indicator to the conclusions in the analyses. 

We refer to Schouten and Cobben (2007) and Cobben and 

Schouten (2007) for more illustrations and empirical 

investigations. 

In section 2, we start with a discussion of the concept of 

representative response. Next, in section 3, we define the 

mathematical notation for our R-indicator. Section 4 is 

devoted to the features of the R-indicator. Section 5 

describes the application of the R-indicator to the field 

studies. Finally, section 6 contains a discussion.  

 
2. The concept of representative response 

 
We, first, discuss what it means when a survey respon-

dent pool is representative of the sample. Next, we make the 

concept of representativeness mathematically rigorous by 

giving it a definition. 

 
2.1 What does representative mean?  
Literature warns us not to single-mindedly focus on 

response rates as an indicator of survey quality. This can 

easily be illustrated by an example from the 1998 Dutch 

survey POLS (short for Permanent Onderzoek Leefsituatie 

or Integrated Survey on Household Living Conditions in 

English). 

Table 1 contains the one- and two-month POLS survey 

estimates for the proportion of the Dutch population that 

receives a form of social allowance and the proportion that 

has at least one parent that was born outside the Netherlands. 

Both variables are taken from registry data and are 

artificially treated as survey items by deleting their values 

for non-respondents The sample proportions are also given 

in Table 1. After one month, the response rate was 47.2%, 

while after the full two-month interview period, the rate was 

59.7%. In the 1998 POLS, the first month was CAPI 

(Computer Assisted Personal Interview). Non-respondents 

after the first month were allocated to CATI (Computer 

Assisted Telephone Interview) when they had a listed, land-

line phone. Otherwise, they were allocated once more to 

CAPI. Hence, the second interview month gave another 

12.5% of response. However, from table 1 we can see that 

after the second month, the survey estimates have a larger 

bias than after the first month. 
 
Table 1 
Response means in POLS for the first month of interviews and 

the full two-month interview period 
 

Variable After  

1 month 

After  

2 months 

Sample 

Receiving social allowance 10.5% 10.4% 12.1% 

Non-native 12.9% 12.5% 15.0% 

Response rate 47.2% 59.7% 100% 

 
From the example, it seems clear that the increased effort 

led to a less representative response with respect to both 

auxiliary variables. But what do we mean by representative 

in general? 

It turns out that the term “representative” is often used 

with hesitation in the statistical literature. Kruskal and 

Mosteller (1979a, b and c) make an extensive inventory of 

the use of the word “representative” in the literature and 

identify nine interpretations. A number of interpretations 

they have found are omnipresent in the statistical literature. 

The statistical interpretations that Kruskal and Mosteller 

named ‘absence of selective forces’, ‘miniature of the 

population’, and ‘typical or ideal cases’ relate to probability 

sampling, quota sampling and purposive sampling. In the 

next section, we will propose a definition that corresponds to 

the ‘absence of selective forces’ interpretation. First, we will 

explain why we make this choice. 

The concept of representative response is also closely 

related to the missing-data mechanisms Missing-Completely-

at-Random (MCAR), Missing-at-Random (MAR) and Not-

Missing-at-Random (NMAR) that are often referred to in the 

literature, see Little and Rubin (2002). A missing-data 

mechanism is MCAR when the probability of response does 

not depend on the survey topic of interest. The mechanism is 

MAR if the response probability depends on observed data 

only, which is, hence, a weaker assumption than MCAR. If 

the probability depends on missing data also, then the 

mechanism is said to be NMAR. These mechanisms, in fact, 

find their origin in model-based statistical theory. Somewhat 

loosely interpreted with respect to a survey topic, MCAR 

means that respondents are on average the same as non-

respondents, MAR means that within known subpopulations, 

respondents are on average the same as non-respondents, and 

NMAR implies that even within subpopulations, respondents 

are different. The addition of the survey topic is essential. 

Within one questionnaire, some survey items can be MCAR, 

while other items are MAR or NMAR. Furthermore, the 

MAR assumption for one survey item holds for a particular 

stratification of the population. A different item may need a 

different stratification. 
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Given that we wish to monitor and compare the response 

to different surveys in topic or time, it is not appealing to 

define a representative response as dependent on the survey 

topic itself nor as dependent on the estimator used. We focus 

instead on the quality of data collection and not on the 

estimation. This setting leads us to compare the response 

composition to that of the sample. Clearly, the survey topics 

influence the probability that households participate in the 

survey, but the influence cannot be measured or tested and, 

hence, from our perspective, this influence cannot be the 

input for assessing response quality. We propose to judge 

the composition of response by pre-defined sets of variables 

that are observed outside of the survey and can be employed 

for each survey under investigation. We want the respondent 

selection to be as close as possible to a ‘simple random 

sample of the survey sample’, i.e., with as little relation as 

possible between response and characteristics that distin-

guish units from each other. The latter can be interpreted as 

having selective forces which are absent in the selection of 

respondents, or as MCAR with respect to all possible survey 

variables. 
 
2.2 Definition of a representative response subset  
Let 1, 2, 3, ,i N= …  be the unit labels for the popu-

lation. By is  we denote the 0-1-sample indicator, i.e., when 

unit i  is sampled, it takes the value 1 and 0 otherwise. By ir  

we denote the 0-1-response indicator for unit .i  If unit i  is 

sampled and did respond then 1.ir =  It is 0 otherwise. The 

sample size is .n  Finally, iπ  denotes the first-order inclu-

sion probability of unit .i  

The key to our definitions lies in the individual response 

propensities. Let iρ  be the probability that unit i  responds 

when it is sampled.  

The interpretation of a response propensity is not 

straightforward by itself. We follow a model-assisted 

approach, i.e., the only randomness is in the sample and 

response indicators. A response probability is a feature of a 

labelled and identifiable unit, a biased coin that the unit 

carries in a pocket, so to speak, and is, therefore, inseparable 

from that unit. With a little effort, however, all concepts can 

be translated into a model-based context. 

First, we give a strong definition.  
Definition (strong): A response subset is representative with 

respect to the sample if the response propensities iρ  are the 

same for all units in the population 

[ 1 | 1] , ,i i iP r s iρ = = = = ρ ∀  (1) 

and if the response of a unit is independent of the response 

of all other units.  
If a missing-data mechanism would satisfy the strong 

definition, then the mechanism would correspond to 

Missing-Completely-at-Random (MCAR) with respect to all 

possible survey questions. Although the definition is ap-

pealing, the validity of it can never be tested in practice. We 

have no replicates of the response of one single unit. We, 

therefore, also construct a weak definition that can be tested 

in practice.  
Definition (weak): A response subset is representative of a 

categorical variable X  with H  categories if the average 

response propensity over the categories is constant 

1

1
, for 1, 2, , ,

hN

h hk
kh

h H
N =

ρ = ρ = ρ =∑ …  (2) 

where hN  is the population size of category ,h hkρ  is the 

response propensity of unit k  in class h  and summation is 

over all units in this category.  
The weak definition corresponds to a missing-data 

mechanism that is MCAR with respect to ,X  as MCAR 

states that we cannot distinguish respondents from non-

respondents based on knowledge of .X  

 
3. R-indicators 

 
In the previous section, we defined strong and weak 

representative response. Both definitions make use of 

individual response probabilities that are unknown in 

practice. First, we start with a population R-indicator. From 

there on, we base the same R-indicator on a sample and on 

estimated response propensities. 
 
3.1 Population R-indicators  
We first consider the hypothetical situation where the 

individual response propensities are known. Clearly, in that 

case we can even test the strong definition and we simply 

want to measure the amount of variation in the response 

propensities; the more variation, the less representative in 

the strong sense. Let 1 2( , , , )N
′ρ = ρ ρ ρ…  be a vector of 

response propensities, let 1  (1, 1, , 1)′= …  be the N -

vector of ones, and let 0ρ = × ρ1  be the vector 

consisting of the average population propensity. 

Any distance function d  in [0, 1]N  would suffice in 

order to measure the deviation from a strong representative 

response by calculating 0( , ).d ρ ρ  Note that the height of 

the overall response does not play a role. The Euclidean 

distance is a straightforward distance function. When 

applied to a distance between ρ  and 0,ρ  this measure is 

proportional to the standard deviation of the response 

probabilities 

2

1

1
( ) ( ) .

1

N

i

i

S
N =

ρ = ρ − ρ
−

∑  (3) 
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It is not difficult to show that 

1
( ) (1 ) .

2
S ρ ≤ ρ − ρ ≤  (4) 

We want the R-indicator to take values on the interval 

[0, 1] with the value 1 being strong representativeness and 

the value 0 being the maximum deviation from strong 

representativeness. We propose the R-indicator ,R  which is 

defined by 

( ) 1 2 ( ).R Sρ = − ρ  (5) 

Note that the minimum value of (5) depends on the 

response rate, see figure 1. For 1 2,ρ =  it has a minimum 

value of 0. For 0ρ =  and 1,ρ =  clearly no variation is 

possible and the minimum value is 1. Paradoxically, the 

lower bound increases when the response rate decreases 

from 1/ 2  to 0. For a low response rate, there is less room 

for individual response propensities to have a large variation. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1 Minimum value of R-indicator (5) as a 

function of the average response propensity  
One may view R  as a lack of association measure. When 

( ) 1R ρ =  there is no relation between any survey item and 

the missing-data mechanism. We show that R  in fact has a 

close relation to the well-known 2χ -statistic that is often 

used to test independence and goodness-of-fit.  

Suppose that the response propensities are only different 

for classes h  defined by a categorical variable .X  Let hρ  

and hf  be, respectively, the response propensity and the 

population function of class ,h  i.e., 

, for 1, 2, , .h
h

N
f h H

N
= = …  (6) 

Hence, for all i  with iX h=  the response propensity is 

.i hρ = ρ  

Since the variance of the response propensities is the sum 

of the ‘between’ and ‘within’ variances over classes ,h  and 

the within variances are assumed to be zero, it holds that 

2 2

1

2 2

1 1

1
( ) ( )

1

( ) ( ) .
1

H

h h
h

H H

h h h h
h h

S N
N

N
f f

N

=

= =

ρ = ρ − ρ
−

= ρ − ρ ≈ ρ − ρ
−

∑

∑ ∑

ɶ

 (7)

 

The 2χ -statistic measures the distance between observed 

and expected proportions. However, it is only a true distance 

function in the mathematical sense for fixed marginal 

distributions hf  and .ρ  We can apply the 2χ -statistic to X  

in order to ‘measure’ the distance between the true response 

behaviour and the response behaviour that is expected when 

response is independent of .X  In other words, we measure 

the deviation from weak representativeness with respect 

to .X  

We can rewrite the 2χ -statistic to get 

2
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1
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2 2

1 1

2
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2
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ρ − ρ
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∑

∑
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∑

ɶ  (8)

 

An association measure that transforms the 2χ -statistic to 

the [0, 1] interval, see e.g., Agresti (2002), is Cramèr’s V 

2

,
(min{ , } 1)

V
N C R

χ
=

−
 (9) 

where C  and R  are, respectively, the number of columns 

and rows in the underlying contingency table. Cramèr’s V 

attains a value 0 if observed proportions exactly match 

expected proportions and its maximum is 1. In our case, the 

denominator equals N  since the response indicator has only 

two categories: response and non-response. As a conse-

quence, (9) changes into 

2 1
( ).

(1 )

N
V S

N N

χ −
= = ρ

ρ − ρ
ɶ  (10) 

From (10) we can see that for large ,N  Cramèr’s V is ap-

proximately equal to the standard deviation of the response 

propensities standardized by the maximal standard deviation 

(1 )ρ − ρ  for a fixed average response propensity .ρ  
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3.2 Response-based R-indicators  
In section 3.1, we assumed that we know the individual 

response propensities. Of course, in practice these 

propensities are unknown. Furthermore, in a survey, we only 

have information about the response behaviour of sample 

units. We, therefore, have to find alternatives to the 

indicators .R  An obvious way to do this is to use response-

based estimators for the individual response propensities and 

the average response propensity.  

We let ˆ iρ  denote an estimator for iρ  which uses all or a 

subset of the available auxiliary variables. Methods that 

support such estimation are, for instance, logistic or probit 

regression models (Agresti 2002) and CHAID classification 

trees (Kass 1980). By ρ̂  we denote the weighted sample 

average of the estimated response propensities, i.e.,  

1

1ˆ ˆ ,
N

i
i

i i

s

N =

ρ = ρ
π

∑  (11) 

where we use the inclusion weights. 

We replace R  by the estimators R̂  

2

1

1ˆ ˆˆ( ) 1 2 ( ) .
1

N
i

i
i i

s
R

N =

ρ = − ρ − ρ
− π
∑  (12) 

Note that in (12) there are in fact two estimation steps 

based on different probability mechanisms. The response 

propensities themselves are estimated and the variation in 

the propensities is estimated. We return to the consequences 

of the two estimation steps in section 4. 
 
3.3 Example  
We apply the proposed R-indicators to the survey data 

from the 1998 POLS that we described in section 2.1. Recall 

that the survey was a combination of face-to-face and 

telephone interviewing in which the first month was CAPI 

only. The sample size was close to 40,000 and the response 

rate was approximately 60%. We linked the fieldwork 

administration to the sample and deduced whether each 

contact attempt resulted in a response. This way, we can 

monitor the pattern of the R-indicator during the fieldwork 

period. 

For the estimation of response rates we used a logistic 

regression model with region, ethnic background and age as 

independent variables. Region was a classification with 16 

categories, the 12 provinces and the four largest cities  − 

Amsterdam, Rotterdam, The Hague and Utrecht  −  as 

separate categories. Ethnic background has seven categories: 

native, Moroccan, Turkish, Surinam, Dutch Antilles, other 

non-western non-native and other western non-native. The 

classification is based on the country of birth of the parents 

of the selected person. The age variable has three categories: 

0 – 34 years, 35 – 54 years, and 55 years and older. 

In figure 2, R̂  is plotted against the response rate for the 

first six contact attempts in POLS. The leftmost value 

corresponds to the respondent pool after one attempt was 

made. For each additional attempt, the response rate in-

creases but the indicator shows a drop in representativeness. 

This result confirms the findings in Schouten (2004). 

 
 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 2 R-indicator for first six contact attempts in 

POLS 1998 

 
4. Features of R-indicators 

 
In section 3, we propose a candidate indicator for repre-

sentativeness. However, other indicators can be constructed. 

There are many association measures or fit indexes, e.g., 

Goodman and Kruskal (1979), Bentler (1990) and Marsh, 

Balla and McDonald (1988). Association measures have a 

strong relation to R-indicators. Essentially, R-indicators 

attempt to measure in a multivariate setting the lack of 

association. In this section, we discuss the desired features of 

R-indicators. We show that the proposed R-indicator R  

allows for a straightforward upper bound on the non-

response bias. 
 
4.1 Features in general  
We want R-indicators to be based on a distance function 

or metric in the mathematical sense. The triangle inequality 

property of a distance function allows for a partial ordering 

of the variation in response propensities which enables 

interpretation. A distance function can easily be derived 

from any mathematical norm. In section 3, we chose to use 

the Euclidean norm as this norm is commonly used. The 

Euclidean norm led us to an R-indicator that uses the 

standard deviation of response propensities. Other norms, 

like the supremum norm, would lead us to alternative 

distance functions. In section 4.3, however, we show that the 

Euclidean norm based R-indicators have interesting 

normalization features. 
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We must make a subtle distinction between R-indicators 

and distance functions. Distance functions are symmetric 

while an R-indicator measures a deviation with respect to a 

specific point, namely the situation where all response 

propensities are equal. If we change the vector of individual 

propensities, then this point is in most cases shifted. 

However, if we fix the average response propensity, then the 

distance function facilitates interpretation. 

Apart from a relation to a distance function, we want to 

be able to measure, interpret and normalize the R-indicators. 

In section 3.2, we already derived response-based estimators 

for ‘population’ R-indicators that are not measurable when 

response propensities are unknown and all we have is the 

response to a survey. Hence, we made R-indicators mea-

surable by switching to estimators. The other two features 

are discussed separately in the next two sections. 

 
4.2 Interpretation 
 
The second feature of R-indicators is the ease with which 

we can interpret their values and the concept they are 

measuring. We moved to an estimator for an R-indicator that 

is based on the samples of surveys and on estimators of 

individual response probabilities. Both have far-reaching 

consequences for the interpretation and comparison of the 

R-indicator. 

Since the R-indicator is an estimator itself, it is also a 

random variable. This means that it depends on the sample, 

i.e., it is potentially biased and has a certain accuracy. But 

what is it estimating? 

Let us first assume that the sample size is arbitrarily large 

so that precision does not play a role and also suppose the 

selection of a model for response propensities is no issue. In 

other words, we are able to fit any model for any fixed set of 

auxiliary variables. 

There is a strong relation between the R-indicator and the 

availability and use of auxiliary variables. In section 2, we 

defined strong and weak representativeness. Even in the case 

where we are able to fit any model, we are not able to 

estimate response propensities beyond the ‘resolution’ of the 

available auxiliary variables. Hence, we can only draw 

conclusions about weak representativeness with respect to 

the set of auxiliary variables. This implies that whenever an 

R-indicator is used, it is necessary to complement its value 

by the set of covariates that served as a grid to estimate 

individual response propensities. If the R-indicator is used 

for comparative purposes, then those sets must be the same. 

We must add that it is not necessary for all auxiliary 

variables to be used for the estimation of propensities, since 

they may not add any explanatory power to the model. 

However, the same sets should be available. The R-indicator 

then measures a deviation from weak representativeness.  

The R-indicator does not capture differences in response 

probabilities within subgroups of the population other than 

the subgroups defined by the classes of .X  If we let 

1, 2, ,h H= …  again denote strata defined by ,X hN  be 

the size of stratum ,h  and hρ  be the population average of 

the response probabilities in stratum ,h  then it is not 

difficult to show that R̂  is a consistent estimator of 

2

1

1
( ) 1 2 ( ) ,

1

H

X h h

h

R N
N =

ρ = − ρ − ρ
−
∑  (13) 

when standard models like logistic regression or linear 

regression are used to estimate the response probabilities. Of 

course, (13) and (5) may be different. 

In practice, the sample size is not arbitrarily large. The 

sample size affects both estimation steps; the estimation of 

response propensities and the estimation of the R-indicator 

using a sample.  

If we knew the individual response propensities, then the 

sample-based estimation of the R-indicator would only lead 

to variance and not to bias. We would be able to estimate the 

population R-indicator without bias. Hence, for small 

sample sizes, the estimators would have a small precision 

which could be accounted for by using confidence intervals 

instead of merely point estimators. 

The implications for the estimation of response proba-

bilities are, however, different because of model selection 

and model fit. There are two alternatives. Either one imposes 

a model to estimate propensities fixing the covariates 

beforehand, or one lets the model be dependent on the 

significant contribution of covariates with respect to some 

predefined level. In the first case, again no bias is introduced 

but the standard error may be affected by over fitting. In the 

second case, the model for the estimation of response 

propensities depends on the size of the sample; the larger the 

sample, the more interactions that are accepted as sig-

nificant. Although it is standard statistical practice to fit 

models based on a significance level, model selection may 

introduce bias and variance to the estimation of any R-

indicator. This can be easily understood by going to the 

extreme of a sample of, say, size 10. For such a small 

sample, no interaction between response behaviour and 

auxiliary characteristics will be accepted, leaving an empty 

model and an estimated R-indicator of 1. Small samples 

simply do not allow for the estimation of response 

propensities. In general, a smaller sample size will, thus, 

lead to a more optimistic view on representativeness. 

We should make a further subtle distinction. It is possible 

that, for one survey, a lot of interactions contribute to the 

prediction of response propensities but each one contributes 

very little, while in another survey there is only one but it 

strongly contributes a single interaction. None of the small 

contributions may be significant, but together they are as 
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strong as the one large contribution that is significant. 

Hence, we would be more optimistic in the first example 

even if sample sizes would be comparable. 

These observations show that one should always use an 

R-indicator with some care. It cannot be viewed as separate 

from the auxiliary variables that were used to compute it. 

Furthermore, the sample size has an impact on both bias and 

precision. 
 
4.3 Normalization  
The third important feature is the normalization of an R-

indicator. We want to be able to attach bounds to an R-

indicator so that the scale of an R-indicator, and, hence, 

changes in the R-indicator get a meaning. Clearly, the 

interpretation issues that we raised in the previous section 

also affect the normalization of the R-indicator. Therefore, in 

this section we assume the ideal situation where we can 

estimate response propensities without bias. This assumption 

holds for large surveys. We discuss the normalization of the 

R-indicator  R̂ . 
 
4.3.1 Maximal absolute bias and maximal root mean 

square error  
We show that for any survey item ,Y  the R-indicator can 

be used to set upper bounds to the non-response bias and to 

the root mean square error (RMSE) of adjusted response 

means. We use these bounds of the R-indicator to show the 

impact under worst-case scenarios. 

Let Y  be some variable that is measured in a survey and 

let HTŷ  be the Horvitz-Thompson estimator for the popu-

lation mean based on the survey response. It can be shown 

(e.g., Bethlehem 1988, Särndal and Lundström 2005) that its 

bias HT
ˆ( )B y  is approximately equal to  

HT

( , )
ˆ( ) ,

C y
B y

ρ
=

ρ
 (14) 

with 1( , ) 1/ ( ) ( )N
i i iC y N y y=∑ρ = − ρ − ρ  the population 

covariance between the survey items and the response 

probabilities. For a close approximation of the variance 
2

HT
ˆ( )s y  of HTŷ  we refer to Bethlehem (1988).  

A normalization of R  is found by the Cauchy-Schwarz 

inequality. This inequality states that the covariance between 

any two variables is bounded in absolute sense by the 

product of the standard deviations of the two variables. We 

can translate this to bounds for the bias (14) of HTŷ  

HT

( ) ( ) (1 ( )) ( )ˆ| ( )|
2

( , ).m

S S y R S y
B y

B y

ρ − ρ
≤ =

ρ ρ

= ρ  (15)

 

 

Clearly, we do not know the upper bound ( , )mB yρ  in 

(15) but we can estimate it using the sample and the 

estimated response probabilities. We denote the estimator by 
ˆ ˆ( , ).mB yρ  

In a similar way, we can set a bound to the root mean 

square error (RMSE) of HT
ˆ .y  It holds approximately that 

2 2

HT HT HT

2 2

HT

ˆ ˆ ˆRMSE( ) ( ) ( )

ˆ( , ) ( )

( , ).

m

m

y B y s y

B y s y

E y

= +

≤ ρ +

= ρ  (16)

 

Again, we do not know ( , ).mE yρ  Instead, we use the 

sample-based estimator that employs the estimated response 

probabilities, denoted by ˆ ˆ( , ).mE yρ  

The bounds ˆ ˆ( , )mB yρ  and ˆ ˆ( , )mE yρ  are different for 

each survey item .y  For comparison purposes it is, 

therefore, convenient to define a hypothetical survey item. 

We suppose that ˆ( ) 0.5.S y =  The corresponding bounds 

we denote by ˆ ˆ( )mB ρ  and ˆ ˆ( ).mE ρ  They are equal to 

ˆ ˆ(1 ( ))ˆ ˆ( )
ˆ4

m

R
B

− ρ
ρ =

ρ
 (17) 

2 2

HT
ˆ ˆ ˆˆ ˆ ˆ( ) ( ) ( ).m mE B s yρ = ρ +  (18) 

We compute (17) and (18) in all studies described in 

section 5. We have to note that (17) and (18) are again 

random variables that have a certain precision and that are 

potentially biased. 
 
4.3.2 Response-representativeness functions  
In the previous section, we used the R-indicator to set 

upper bounds to the non-response bias and to the root mean 

square error of the (adjusted) response mean. Conversely, 

we may set a lower bound to the R-indicator by demanding 

that either the absolute non-response bias or the root mean 

square error is smaller than some prescribed value. Such a 

lower bound may be chosen as one of the ingredients of 

quality restrictions put upon the survey data by a user of the 

survey. If a user does not want the non-response bias or root 

mean square to exceed a certain value, then the R-indicator 

must be bigger than the corresponding bound. 

Clearly, lower bounds to the R-indicator depend on the 

survey item. Therefore, again we restrict ourselves a 

hypothetical survey item for which ˆ( ) 0.5.S y =  

It is not difficult to show from (17) that if we demand that  

ˆ ˆ( ) ,mB ρ ≤ γ  (19) 

then it must hold that 

 



108 Schouten, Cobben and Bethlehem: Indicators for the representativeness of survey response 

 

 

Statistics Canada, Catalogue No. 12-001-X 

1
ˆ ˆ ˆ1 4 ( , ).R r≥ − ρ γ = γ ρ  (20) 

Analogously, using (18) and demanding that 

ˆ ˆ( ) ,mE ρ ≤ γ  (21) 

we arrive at 

2 2

HT 2
ˆ ˆ ˆ ˆˆ1 4 ( ) ( , ).R s y r≥ − ρ γ − = γ ρ  (22) 

In (20) and (22) we let 1
ˆ( , )r γ ρ  and 2

ˆ( , )r γ ρ  denote 

lower limits to the R-indicator. In the following section, we 

refer to 1
ˆ( , )r γ ρ  and 2

ˆ( , )r γ ρ  as response-representativeness 

functions. We compute them for the studies in section 5. 
 
4.3.3 Example  
We again illustrate the normalization with the same 

example used in sections 2.1 and 3.3. Figure 3 contains the 

response-representativeness function 1
ˆ( , )r γ ρ  and the 

observed R-indicators R̂  for the six contact attempts in 

POLS 1998. Three values of γ  are chosen, 0.1;γ =  

0.075γ =  and 0.05.γ =  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3 Lower bounds for R-indicator R̂  for the first 

six contact attempts of POLS 1998. Lower 

bounds are based on 0.1,γ =γ =γ =γ = 0.075γ =γ =γ =γ = and 
0.05γ =γ =γ =γ =  

 
Figure 3 indicates that after the second contact attempt, 

the values of the R-indicator exceed the lower bound 

corresponding to the 10%-level. After four attempts, the R-

indicator is close to the 7.5%-level. However, the values 

never exceed the other lower bound that is based on the 5%-

level. 

In figure 4, the maximal absolute bias ˆ ˆ( )mB ρ  is plotted 

against the response rate of the six contact attempts. After 

the third contact attempt, the R-indicator has converged on a 

value around 8%.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4 Maximal absolute bias for the first six contact 

attempts of POLS 1998 

 
5. Application of the R-indicator 

 
In this section, we apply the R-indicator to two studies 

that investigate different non-response follow-up strategies 

and different combinations of data collection modes. The 

first study involves the Dutch Labour Force Survey (LFS). 

The study is an investigation of both the call-back approach 

(Hansen and Hurwitz 1946) and the basic-question approach 

(Kersten and Bethlehem 1984). The second study deals with 

mixed-mode data collection designs applied to the Dutch 

Safety Monitor survey.  

In sections 5.2 and 5.3 we take a closer look at the studies 

in connection with the representativeness of their different 

fieldwork strategies. First, in section 5.1 we describe how 

we approximate standard errors. 
 
5.1 Standard error and confidence interval  
If we want to compare the values of the R-indicator for 

different surveys or data collection strategies, we need to 

estimate their standard errors. 

The R-indicator R̂  involves the sample standard 

deviation of the estimated response probabilities. This means 

that there are two random processes involved. The first 

process is the sampling of the population. The second 

process is the response mechanism of the sampled units. If 

the true response probabilities were known, then drawing a 

sample would still introduce uncertainty about the popu-

lation R-indicator and, hence, lead to a certain loss of 

precision. However, since we do not know the true response 

probabilities, these probabilities are estimated using the 

sample. This introduces additional precision loss. 

An analytical derivation of the standard error of R̂  is not 

straightforward due to the estimation of the response prob-

abilities. In this paper, we are resigned to naïve numerical 
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approximations of the standard error. We estimate the 

standard error of the R-indicator by non-parametric boot-

strapping (Efron and Tibshirani 1993). The non-parametric 

bootstrap estimates the standard error of the R-indicator by 

drawing a number 1, 2, ,b B= …  of so-called bootstrap 

samples. These are samples drawn independently and with 

replacement from the original dataset, of the same size n as 

the original dataset. The R-indicator is calculated for every 

bootstrap sample b. We thus obtain B replications of the R-

indicator; 
BTˆ , 1, 2, , .bR b B= …  The standard error for 

the empirical distribution of these B  replications is an 

estimate for the standard error of the R-indicator, that is 

BT BT BT 2

1

1 ˆˆ( )
1

B

R bb
s R R

B =
= −

−
∑  (23) 

where 
BT BT

1
ˆ ˆ1/ B

b bR B R=∑=  is the average estimated R-

indicator. 

In the approximations, we take 200B =  for all studies. 

We experimented with larger numbers of B  of up to 

500,B =  but found that in all cases, the estimate of the 

standard error had converged by 200.B =  

We determine 100(1 )%− α  confidence intervals by 

assuming a normal approximation of the distribution of R̂  

employing the estimated standard errors using (23)  

BT BT
1

ˆ( )RCI R sα −α= ± ξ ×  (24) 

with 1−αξ  the 1 − α  quantile of the standard normal 

distribution. 
 
5.2 Labour Force Survey; follow-up study 2005  
From July to December 2005, Statistics Netherlands 

conducted a large-scale follow-up of non-respondents in the 

Dutch Labour Force Survey (LFS). In the study, two 

samples of non-respondents in the LFS were approached 

once more using either a call-back approach (Hansen and 

Hurwitz 1946) or a basic-question approach (Kersten and 

Bethlehem 1984). The samples consisted of LFS households 

that refused, were not processed or were not contacted in the 

LFS for the months July – October. In the design of the 

follow-up study, we used the recommendations in the 

studies by Stoop (2005) and Voogt (2004). 

The main characteristics of the call-back and basic-

question approaches applied to the LFS are given in Table 2. 

For more details, we refer to Schouten (2007) and Cobben 

and Schouten (2007). The call-back approach employed the 

original household questionnaire in CAPI, while the basic-

question approach used short questionnaires in a mixed-

mode setting. The mixed-mode design involved web, paper 

and CATI. CATI was used for all households with a listed 

phone number. Households without a listed phone number 

received an advance letter, a paper questionnaire and a login 

to a secure website containing the web questionnaire. 

Respondents were left the choice to fill in either the paper or 

web questionnaire. 

 
Table 2 

Characteristics of the two approaches in the follow-up study 
 

Call-back approach Basic-question approach 

• LFS questionnaire to be 
answered by all members of 

the household in CAPI 
 

• 28 interviewers 
geographically selected from 

historically best-performing 

interviewers 
 

• Interviewer was different 
from interviewer that 

received non-response 
 

• Interviewers received 
additional training in 

doorstep interaction 
 

• Extended fieldwork period 
of two months 

 

• Interviewer could offer 
incentives 

 

• Interviewers could receive a 
bonus 

 

• A paper summary of the 
characteristics of the non-

responding household was 

sent to the interviewer 
 

• Allocation of address one 
week after non-response 

• A strongly condensed 
questionnaire with key 

questions of the LFS which 

takes between 1 and 3 

minutes to answer or fill in 
 

• Mixed-mode data collection 
design using web, paper 

and CATI 
 

• The questionnaire was to be 
answered by one person per 

household following the 

next birthday method 
 

• The timing is one week 
after the household is 

processed as a non-response 

 
The sample size of the LFS pilot was 074,18=n  

households, of which 11,275 households responded. The 

non-responding households were stratified according to the 

cause of non-response. Households that were not processed 

or contacted, and households that refused were eligible for a 

follow-up. It was considered to be unethical to follow-up 

households that did not respond due to other causes like 

illness. In total, 6,171 households were eligible. From these 

households, two simple random samples were drawn of size 

775. In the analyses, the non-sampled eligible households 

were left out. The sampled eligible households received a 

weight accordingly. The 11,275 LFS respondents and the 

628 ineligible households all received a weight of one. This 

implies that the inclusion probabilities are unequal for this 

example. 

Schouten (2007) compared the LFS respondents to the 

converted and persistent non-respondents in the call-back 

approach using a large set of demographic and socio-

economic characteristics. He used logistic regression models 

to predict the type of response. He concluded that the 
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converted non-respondents in the call-back approach are 

different from the LFS respondents with respect to the 

selected auxiliary variables. Furthermore, he found no 

evidence that the converted non-respondents were different 

from persistent non-respondents with respect to the same 

characteristics. These findings have led to the conclusion 

that the combined response of the LFS and call-back 

approach is more representative with respect to the selected 

auxiliary variables. 

The additional response in the basic question approach 

was analyzed by Cobben and Schouten (2007) using the 

same set of auxiliary variables and employing the same 

logistic regression models. For this follow-up, the findings 

were different for households with and without a listed 

phone number. When restricted to listed households, they 

found the same results as for the call-back approach; the 

response becomes more representative after the addition of 

the listed basic-question respondents. However, for the 

overall population, i.e., including the unlisted households, 

the inverse was found. The basic-question approach gives 

‘more of the same’ and, hence, sharpens the contrast 

between respondents and non-respondents. Combining LFS 

response with basic-question response leads to a less 

representative composition. In the logistic regression models 

by Cobben and Schouten (2007) the 0-1 indicators for 

having a listed phone number and having a paid job gave a 

significant contribution.  

Cobben and Schouten (2007) and Schouten (2007) used 

the set of auxiliary variables listed in Table 3. The auxiliary 

variables were linked to the sample from various registers 

and administrative data. The variables in logistic regression 

models for response probabilities were selected when the 

variables gave a significant contribution at the 5% level. 

Otherwise, they were excluded. 

 
Table 3 

The auxiliary variables in the studies by Schouten (2007) and 
Cobben and Schouten (2007). The household core is the head of 
the household and his or her partner if present 
 

Variable 

Household has a listed phone number 

Region of the country in 4 classes 

Province and 4 largest cities 

Average age in 6 classes 

Ethnic group in 4 classes 

Degree of urbanization in 5 classes 

Household type in 6 classes 

Gender 

Average house value at zip code level in 11 classes 

At least one member of household core is self-employed 

At least one member of household core has a subscription to the CWI  

At least one member of household core receives social allowance 

At least one member of household core has a paid job 

At least one member of household core receives disability allowance 

 

Table 4 shows the weighted sample size, response rate, 
ˆ,R BT

0.05CI , ˆmB  and ˆ
mE  for the response to the LFS, the 

response of the LFS combined with the call-back response 

and the response of the LFS combined with the basic-

question response. The standard errors are relatively large 

with respect to the studies in subsequent sections due to the 

weighting. There is an increase in R̂  when the call-back 

respondents are added to the LFS respondents. As both the 

response rate and the R-indicator increase, the maximal 

absolute bias ˆmB  decreases. The confidence intervals BT
0.05CI  

for the LFS response and the combined LFS and call-back 

response overlap. However, the one-sided null hypothesis 

0 LFS LFS CB: 0H R R +− ≥  is rejected at the 5%-level. 

 
Table 4 
Weighted sample size, response rate, R-indicator, confidence 

interval, maximal bias and maximal RMSE for LFS, LFS plus call-
back, and LFS plus basic-question for the extended set of auxiliary 
variables 
 

Response n Rate R̂  .
BT
0 05CI  ˆ

mB  ˆ
mE  

LFS 18,074 62.2% 80.1% (77.5-82.7) 8.0% 8.0% 

LFS + call-back 18,074 76.9% 85.1% (82.4-87.8) 4.8% 4.9% 

LFS + basic-question 18,074 75.6% 78.0% (75.6-80.4) 7.3% 7.3% 

 
In Table 4, there is a decrease in R̂  when we compare 

the LFS response to the combined response with the basic-

question approach. This decrease is not significant. mB̂  

slightly decreases. In Table 5, this comparison is restricted to 

households with a listed phone number. The R-indicator in 

general is much higher than for all the households. Because 

the sample size is now smaller, the estimated standard errors 

are larger as is reflected in the width of the confidence 

interval. mB̂  is decreased. For the combined response in the 

LFS and the basic-question approach, we see an increase of 

R̂  but again this increase is not significant. mB̂  decreases. 

 
Table 5 
Sample size, response rate, R-indicator, confidence interval, 

maximal bias and maximal RMSE for LFS, and LFS plus 
basic-question restricted to households with listed phone 
numbers and for the extended set of auxiliary variables 
 

Response n Rate R̂  .
BT
0 05CI  ˆ

mB  ˆ
mE  

LFS 10,135 68.5% 86.3% (83.1-89.5) 5.0% 5.1% 

LFS + basic-question 10,135 83.0% 87.5% (84.3-90.7) 3.8% 3.8% 

 
We find in the example of the LFS follow-up that the R-

indicators confirm the conclusions for the call-back ap-

proach and the basic question approach. Furthermore, the 

increase in the R-indicator that follows by adding the call-

back response is significant at the 5% level. 
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5.3 Safety Monitor; pilot mixed-mode 2006 

 
In 2006, Statistics Netherlands conducted a pilot on the 

Safety Monitor to investigate mixed-mode data collection 

strategies. See Cobben, Janssen, Berkel and Brakel (2007) 

for details. The regular Safety Monitor surveys individuals 

of 15 years and older in the Netherlands about issues that 

relate to safety and police performance. The Safety Monitor 

is a mixed-mode survey. Persons with a listed phone number 

are approached by CATI. Persons that cannot be reached by 

telephone are approached by CAPI. In the 2006 pilot, the 

possibility of using the Internet as one of the modes in a 

mixed-mode strategy was evaluated. Persons in the pilot 

were first approached with a web survey. Non-respondents 

to the web survey were re-approached by CATI when they 

had a listed phone number and by CAPI otherwise. In Table 

6 we give the response rates for the normal survey, the pilot 

response to the web only, and the response to the pilot as a 

whole. The response to the web survey alone is low. Only 

30% of the persons filled in the web questionnaire. This 

implied that close to 70% of the sampled units were re-

allocated to either CAPI or CATI. This resulted in an 

additional response of approximately 35%. The overall 

response rate is slightly lower than that of the normal survey. 

Fouwels, Janssen and Wetzels (2006) performed a 

univariate analysis of response compositions. They argue 

that the response rate is lower for the pilot but that this 

decrease is quite stable over various demographic sub-

groups. They observe a univariate decline in response rate 

for the auxiliary variables age, ethnic group, degree of 

urbanization and type of household. However, they do find 

indications that the response becomes less representative 

when the comparison is restricted to the web respondents 

only. This holds, not surprisingly, especially for the age of 

the sampled persons. 

Table 6 contains the sample size, response rate, ˆ,R  
BT
0.05CI , ˆmB  and ˆmE  for three groups: the regular survey, the 

pilot survey restricted to web and the pilot survey as a 

whole. The auxiliary variables age, ethnic group, degree of 

urbanization and type of household were linked from 

registers and were selected in the logistic model for the 

response probabilities. Table 6 shows that the R-indicator for 

the web response is lower than that of the regular survey. 

The corresponding p -value is close to 5%. As a cones-

quence of both a low response rate and a low R-indicator, 

the maximal absolute bias ˆmB  is more than twice as high as 

for the regular survey. However, for the pilot as a whole, 

both the R-indicator and ˆmB  are close to the values of the 

regular survey. Due to the smaller sample size of the pilot, 

the estimated standard errors are larger than in the regular 

survey. 

 
 

Table 6 

Sample size, response rate, R-indicator, confidence interval, 
maximal bias and maximal RMSE for response for the regular 
Safety Monitor, the pilot with web only and the pilot with web 

and CAPI/CATI follow-up 
 

Response n Rate R̂  .
BT
0 05CI  ˆ

mB  ˆ
mE  

Regular 30,139 68.9% 81.4% (80.3-82.4) 6.8% 6.8% 

Pilot - web 3,615 30.2% 77.8% (75.1-80.5) 18.3% 18.4% 

Pilot - web plus 3,615 64.7% 81.2% (78.3-84.0) 7.3% 7.4% 

 
The findings in Table 6 do not contradict those of 

Fouwels et al. (2006). We also find that the web response in 

the pilot has a less balanced composition, whereas the 

composition of the full pilot response is not markedly worse 

than that of the Safety Monitor itself. 

 
6. Discussion 

 
We have three main objectives in this paper: a math-

ematically rigorous definition and perception of repre-

sentative response, the construction of a potential indicator 

for representativeness, and the empirical illustrations of the 

indicator’s use. As we saw, the proposed indicator is an 

example of what we call R-indicators, where ‘R’ stands for 

representativeness. With the empirical illustration, we want 

to find support for the idea that such R-indicators are 

valuable tools in the comparison of different surveys and 

data collection strategies. R-indicators are useful if they 

confirm findings in elaborate analyses of studies that involve 

multiple surveys in time or on a topic.  

The R-indicator in this paper is promising because it can 

easily be computed and allows for interpretation and 

normalization when response propensities can be estimated 

without error. The application to real survey data shows that 

the R-indicator confirms earlier analyses of the non-response 

composition. Other R-indicators can, of course, simply be 

constructed by choosing different distance functions be-

tween vectors of response propensities. The R-indicator and 

graphical displays showed in this paper can be computed 

using most standard statistical software packages.  

The computation of R-indicators is sample-based and 

employs models for individual response propensities. Hence, 

R-indicators are random variables themselves and there are 

two estimation steps that influence their bias and variance. 

However, it is mostly the modelling of response propensities 

that has important implications. The restriction to the sample 

for the estimation of R-indicators implies that those 

indicators are less precise, but this restriction does not 

introduce a bias asymptotically. Model selection and model 

fit usually are performed by choosing a significance level 

and adding only those interactions to the model that give a 

significant contribution. The latter means that the size of the 
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sample and the availability of auxiliary variables play an 

important role in the estimation of response propensities. 

Bias may be introduced by the model selection strategy. 

There are various obvious approaches for dealing with the 

dependence on the size of the sample. One may not do a 

model selection but fix a stratification beforehand. That way, 

bias is avoided but standard errors are not controlled and 

may be considerable. One may also let empirical validation 

be the input to develop ‘best practices’ for R-indicators. 

We applied the proposed R-indicator to two studies that 

were conducted at Statistics Netherlands in recent years, and 

that were thoroughly investigated by other authors. The 

increase or decrease in the R-indicator conforms to the more 

detailed analyses done by these authors. We, therefore, 

conclude that R-indicators can be valuable tools. However, 

more empirical evidence is clearly needed.  

The application of the R-indicator showed that there is no 

clear relation between response rate and representativeness 

of response. Larger response rates do not necessarily lead to 

a more balanced response. Not surprisingly, we do find that 

higher response rates reduce the risk of non-response bias. 

The higher the response rate, the smaller the maximal 

absolute bias of survey items. 

Application to the selected studies showed that standard 

errors do decrease with increasing sample size as expected, 

but they are still relatively large for modest sample sizes. For 

example, for a sample size of 3,600, we found a standard 

error of approximately 1.3%. Hence, if we assume a normal 

distribution, then the 95% confidence interval has an 

approximate width of 5.4%. The sample size of the LFS is 

about 30,000 units. The standard error is approximately 

0.5% and the corresponding 95% confidence interval is 

approximately 2% wide. The standard errors are larger than 

we expected.  

This paper contains a first empirical study of an R-

indicator and its standard error. Much more theoretical and 

empirical research is necessary to fully understand R-

indicators and their properties. First, we did not consider 

survey items at all. Clearly, it is imperative that we do this in 

the future. However, as we already argued, R-indicators are 

dependent on the set of auxiliary variables. It can, therefore, 

be conjectured that, as for non-response adjustment 

methods, the extent to which R-indicators predict non-

response bias of survey items is dependent on the missing-

data mechanism. In a missing-data mechanism that is 

strongly non-ignorable, R-indicators will not do a good job. 

However, without knowledge about the missing-data 

mechanism, no other indicator would either. For this reason, 

we constructed the notion of maximal absolute bias, as this 

gives a limit to non-response bias under the worst-case 

scenario. A second topic of future research is a theoretical 

derivation of the standard error of the R-indicator used in 

this paper. The non-parametric bootstrap errors only give 

naïve approximations. However, if we want R-indicators to 

play a more active role in the comparison of different 

strategies, then we need (approximate) closed forms. Third, 

we will need to investigate the relation between the selection 

and number of auxiliary variables and the standard errors of 

the R-indicator. 
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Stratified balanced sampling 

Guillaume Chauvet 1 

Abstract 
In the selection of a sample, a current practice is to define a sampling design stratified on subpopulations. This reduces the 
variance of the Horvitz-Thompson estimator in comparison with direct sampling if the strata are highly homogeneous with 
respect to the variable of interest. If auxiliary variables are available for each individual, sampling can be improved through 
balanced sampling within each stratum, and the Horvitz-Thompson estimator will be more precise if the auxiliary variables 
are strongly correlated with the variable of interest. However, if the sample allocation is small in some strata, balanced 
sampling will be only very approximate. In this paper, we propose a method of selecting a sample that is balanced across the 
entire population while maintaining a fixed allocation within each stratum. We show that in the important special case of 
size-2 sampling in each stratum, the precision of the Horvitz-Thompson estimator is improved if the variable of interest is 
well explained by balancing variables over the entire population. An application to rotational sampling is also presented. 
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1. Introduction  
In the case of stratified sampling, a population U  is 

partitioned into H  subpopulations 1hU h … H, = , ,  
called strata, in which samples hS , 1h … H= , ,  are 
selected according to independent sampling designs ,hp  

1, ..., ,h H=  respectively. The inclusion probability of 
unit k  is the probability kπ  that unit k  is in the sample, 
and the joint inclusion probability is the probability klπ  that 
two distinct units k  and l  are jointly in the sample. We will 
write ( )k k U∈= πππππ  and ( ) .

hk k U∈= πhππππ  We assume that 
within each stratum ,hU  design ( )hp .  is of fixed size. In 
particular, then, we have 

hk U k∈∑ π = , 1, ..., ,hn h H=  
where hn  denotes the allocation in stratum .hU  In the rest 
of the paper, we assume that all sample sizes for stratum hn  
are integers. 

The Horvitz-Thompson estimator ˆ /k S k kt ∈π ∑= π =z z  

1 ,ˆhH
h t= π∑ z  where ˆ / ,

h

h
k S k kt ∈π ∑= πz z  provides an unbiased 

estimate of t =z 1 ,hH
k t=∑ z  where 

h

h
k U kt ∈∑=z z  denotes the 

total of the variable (vector) z  over hU . In the particular 
case where k =z ky  is scalar, the variance of the Horvitz-
Thompson estimator is given by the Sen-Yates-Grundy 
variance formula:  

2

1

1ˆVar ( ) ( )
2

h

H
k l

y k l kl
h k l U k l

y y
t π

= ≠ ∈

 
= π π − π − . 

π π 
∑ ∑  (1) 

This variance is small if the strata are homogeneous with 
respect to the variable of interest, specifically if /k ky π  is 
approximately constant within each stratum. 

If a vector 1( )qx … x= , ,x  of q  auxiliary variables is 
available prior to sample selection for each individual in the 
population, the sampling within each stratum can be 
improved with the cube algorithm (Deville and Tillé 2004), 

which selects balanced samples. Sampling design ( )hp .  is 
said to be balanced on the x  variables if the equations  

ˆ hh tt π =x x  (2) 

are exactly satisfied. The variance of the Horvitz-Thompson 
estimator is therefore zero for the estimate of the total of the 
balancing variables. In the particular case where ,=x ππππ  i.e., 
if the inclusion probability is the only balancing variable, (2) 
reduces to  

1
h h

k h
k S k U

n
∈ ∈

= π = .∑ ∑  (3) 

Hence, stratified sampling of fixed size in each stratum is 
a particular case of balanced sampling. For any given 
number of constraints, an exactly balanced sample generally 
cannot be found. Suppose, for example, that population hU  
contains 100 individuals on whom is defined a variable x  
with two possible values, 0 and 1, and that 53 individuals in 
the population have the value 0 for that variable. Selecting a 
size-10 equal-probability sample balanced on variable x  
would mean selecting a sample containing 5,3 individuals 
for whom x = 0 and 4,7 individuals for whom x = 1, 
which is impossible. Consequently, the goal is generally to 
select an approximately balanced sample, such that  

.ˆ hh tt πx x≃  (4) 

With the cube method (Deville and Tillé 2004), we can 
select approximately balanced samples on any number of 
variables, maintaining exactly a predetermined set of 
inclusion probabilities .ππππ  The method is composed of two 
phases: the flight phase and the landing phase. At each step 
in the flight phase, we decide at random to either select or 
permanently discard one of the population units. At the end 
of the flight phase, we have, in each stratum ,hU  a vector 
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( ) [0 1]
h

N
k k U

∗ ∗
∈= π ∈ ,hππππ  that satisfies the following 

conditions:  

( )E ∗ = ,h hπ ππ ππ ππ π  (5) 

h h

k
k k

k U k Uk

∗

∈ ∈

π = ,
π

∑ ∑
x

x  (6) 

Card{ 0 1}h kk U q∗∈ ; < π < ≤ ,  (7) 

where E  denotes the expectation for the sampling method 
used in the flight phase. The vector ∗hππππ  gives the outcome 
of the flight phase: k

∗π  is 1 if unit k  is selected, 0 if it is 
rejected, and between 0 and 1 only if the decision has not 
been made for unit k  after the flight phase. Equations (5) 
and (6) ensure that the inclusion probabilities and balancing 
constraints are maintained perfectly at the end of the flight 
phase. Equation (7) ensures that a decision remains to be 
made for no more than q  individuals in each stratum ,hU  
where q  is the number of balancing variables. The flight 
phase ends when the balancing constraints can no longer be 
exactly satisfied. The landing phase consists in defining, 
conditionally on the outcome of the flight phase, an optimal 
sampling design defined on the remaining population .V  
This design is optimal in that it makes it possible to 
complete the sampling while minimizing the variance, 
conditionally on the outcome of the flight phase, of the 
Horvitz-Thompson estimator of the balancing variables . 
The remaining units are sampled, conditionally on the 
outcome of the flight phase, with inclusion probabilities 
( ) ,k k V

∗
∈π  so that the units’ unconditional inclusion probabil-

ities ( )k k V∈π  are maintained exactly.  
The measure of entropy associated with a sampling 

design ( )p .  defined on population U  is given by  

( ) ( ) log ( ( ))
s U

I p p s p s
⊂

= − ,∑  

with the convention 0 log (0) 0.=  Deville and Tillé 
(2005) have shown that the balanced design with maximum 
entropy compared with other sampling designs balanced on 
the same variables and with the same inclusion probabilities 
can be regarded as the conditional of a Poisson design. 
Assuming the asymptotic normality of a multivariate 
Horvitz-Thompson estimator in the case of a Poisson 
design, they derived a variance approximation formula for 
the Horvitz-Thompson estimator for a balanced sampling 
design. In the case of stratified balanced sampling, we have  

2

2
1

ˆVar ( ) ( )
h

H
k

y k k
h k U k

b
t yπ

= ∈

− β
π

∑ ∑ hx≃  (8) 

where 1( / / ) / / .
h hl U l Ul l l l l l l l l lb b y−

∈ ∈∑ ∑′β = π π π πh x x x  
Deville and Tillé (2005) offer several approximations for 

the .kb  The simplest is kb = (1 ).k kπ − π  The variance of 
the Horvitz-Thompson estimator will be small if, in each 
stratum, variable of interest y is well explained by balancing 
variables .x  

Sampling will be balanced in each stratum if the number 
of balancing variables remains small relative to the sample 
size. In some cases, however, the allocation to each stratum 
is too small for balanced sampling: if the stratification of the 
population is very granular, a current practice is to select a 
size-2 sample in each stratum. In that case, the only 
condition that can be imposed is a fixed sample size in each 
stratum.  

In the next section, we propose an algorithm based on the 
cube method that ensures balanced sampling across the 
entire population for selected variables and exactly main-
tains the desired allocation within each stratum. Hence, the 
samples are no longer selected independently in each 
stratum. Precision is improved in comparison with stratified 
sampling with fixed sample size in each stratum if the 
balancing variables are strongly correlated with the variable 
of interest across the entire population. The algorithm also 
has the advantage of ensuring approximate balancing in 
each stratum, and the larger the sample size allocated to the 
stratum, the more balanced the sampling will be.  

 
2. Stratified balanced sampling with pooling  

      of landing phases   
If sample S  is selected from U  in accordance with the 

stratified balanced sampling procedure described in section 
1, sampling will be balanced in each stratum as long as the 
landing phase affects a small number of individuals relative 
to the sample size. Specifically, equation (7) shows that the 
number of balancing variables must be small relative to the 
sample allocation in each stratum. In some cases, that 
constraint cannot be satisfied. The population is often 
partitioned into very small groups to make the results more 
relevant, which means decreasing the sample selected in 
each stratum; the limit generally used is a size-2 sample, 
which produces an unbiased variance estimator. 

Again, we take the case of a population U  divided into 
H  strata 1 ,HU … U, ,  for which a vector ( )k k k

′ ′= π ,x z  
of auxiliary variables is known. We assume that the variable 

kπ  is one of the balancing constraints, to ensure fixed-size 
sampling. Where the allocation to each stratum is too small 
for balanced sampling to apply constraints other than fixed 
size in each stratum, algorithm 1 provides an alternative 
sampling method. A flight phase is carried out inde-
pendently in each of the H  strata: we write ∗ =hππππ  
( )

hk k U h∗
∈π , = 1 … H,  for the probability vectors obtained 

at the end of those flight phases, ( ) ,k k V

∗ ∗
∈= πππππ  where V  

denotes the units that have not yet been sampled or rejected, 
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and k

∗ =x
1

( 1 1 / ) .
Hk k U k k U k k k…∗ ∗ ∗

∈ ∈ ′ ′π , , π , π πz  The proba-
bility vector obtained after a final flight phase over the set of 
remaining units is written ( ) .k k V

∗∗ ∗∗
∈= πππππ  The set of units 

in stratum hU  that have not yet been sampled or rejected at 
the end of this new flight phase is denoted .hW   
Algorithm 1: Stratified balanced sampling with pooling of 
landing phases 
 

Step 1. Carry out a flight phase, with balancing variables 

kx  and inclusion probabilities ,kπ  independently 
in each stratum .hU  

Step 2. Carry out a flight phase, with balancing variables 

k

∗
x  and inclusion probabilities ,k

∗π  on the set V  of 
units remaining at the end of step 1.  

Step 3. Select a fixed-size sample from each subpopulation 
,hW  with inclusion probabilities .k

∗∗π   
The algorithm is based on a method used by the Institut 

National de la Statistique et des Études Économiques 
(INSEE) to select the primary units of the 1999 Master 
Sample. The Master Sample is a sample of dwellings 
selected in the 1999 Census for use as a sample frame for 
household surveys. A detailed description of the sampling 
design for the Master Sample is provided in Bourdalle, 
Christine and Wilms (2000). The dwellings are first 
grouped into urban units and rural units. In the subpopu-
lation of units with fewer than 100,000 residents, a sample 
of about 6% is selected. We have four auxiliary variables 
(taxable net income and three age groups). The expected 
number of sample units is too small for stratified sampling 
by region, with balanced sampling on the four variables in 
each region. The regions were therefore grouped into eight 
super-regions, and the sampling processes were coor-
dinated in such a way as to ensure both overall balanced 
sampling for the four auxiliary variables in each super-
region and a fixed sample size in each region.  

A similar method was proposed by Rousseau and 
Tardieu (2004) for the selection of balanced samples from 
large frames using the CUBE macro available on INSEE’s 
Web site. The macro’s run time is approximately pro-
portional to the square of the population size. Note that 
Chauvet and Tillé (2006) proposed a fast method of 
balanced sampling whose run time depends only on the size 
of the population and which can select balanced samples 
directly from very large populations. The algorithm was 
programmed into an SAS macro (see Chauvet and Tillé, 
2005) and is also available in the R Sampling Package 
prepared by Matei and Tillé (2006). In both programs, the 
second flight phase is performed by adding a constraint 
associated with each stratum to balancing variables k

∗
x  and 

maintaining the fixed-size condition in each stratum. 
Using inclusion probabilities vector ∗ππππ  conditionally on 

the outcome of step 1 ensures that inclusion probabilities 

vector ππππ  is maintained by deconditioning from the outcome 
of step 1. At the end of step 1, equation (6) implies that  

0 1 1

1 ,
hh k h k

k k
k k

k Uk U k Uk k

h …H
∗ ∗

∗

∈∈ / <π < ∈ /π =

∀ = π = −
π π

∑ ∑ ∑
x x

x  

and summing these expressions yields  

1k

k k
k k

k V k U k Uk k
∗

∗

∈ ∈ ∈ /π =

π = − .
π π

∑ ∑ ∑
x x

x  

At the end of step 2, equation (6) leads to  

,k k
k k

k V k Vk k

∗∗ ∗

∈ ∈

π = π
π π

∑ ∑
x x

 

and combining the last two expressions, we get  

1

,
k

k k
k k

k V k Uk Uk k
∗

∗∗

∈ ∈∈ /π =

π + =
π π

∑ ∑ ∑
x x

x  (9) 

which ensures that balanced sampling on the variables kx  is 
maintained exactly at the end of step 2. Step 3 completes the 
sampling process while maintaining the fixed-size constraint 
within each stratum hU  and can be carried out by means of 
a linear program to limit the lack of balance (see Deville and 
Tillé 2004). 

The variance can be approximated with the variance 
formula proposed by Deville and Tillé (2005), if each flight 
phase in algorithm 1 is carried out with high entropy. 
Entropy can be increased substantially by performing a 
random sort on the population prior to sampling. In this 
case, the balancing variables are both the kz  variables and 
the variables given by the product of the inclusion 
probabilities and the stratum membership indicators, which 
ensure a fixed sample size in each stratum. We have  

2

2
ˆVar ( ) ( )k
y k k

k U k

b
t yπ

∈

′− γ
π

∑ a≃  (10) 

with 
1

( 1 1 )
Hk k k U k k U k…∈ ∈ ′ ′= π , , π ,a z  and  

1

l l l l
l l

l U l Ul l l l

y
b b

−

∈ ∈

′ 
γ = . 

π π π π 
∑ ∑

a a a
 

We can use the variance estimator  

2

3
ˆ ˆ( ) ( )k
y k k

k S k

b
v t yπ

∈

′= − γ
π

∑ a  (11) 

proposed by Deville and Tillé (2005, page 578), with  

1

ˆ l l l l l l

l S l Sl l l l l l

b b y
−

∈ ∈

′ 
γ = . 

π π π π π π 
∑ ∑

a a a
 

As shown in the variance approximation formula (10), it 
is important to note that the independence of the samples 
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from the various strata is lost with the proposed stratified 
balanced sampling method. The samples from strata 

1 HU … U, ,  are coordinated to ensure overall balance across 
the whole population, which strips them of their inde-
pendence. The Horvitz-Thompson estimator ˆhyt π  of total yht  
remains unbiased. Its approximate variance is derived from 
equation (10) by replacing ky  with 1 ,

hk k Uy ∈  and is given 
by  

2
2

ˆVar ( ) ( 1 ( ) )
h

h hk
y k k U k

k U k

b
t yπ ∈

∈

′≈ − γ
π

∑ a  (12) 

with 
1

( 1 1 )
Hk k k U k k U k…∈ ∈ ′ ′= π , , π ,a z  and  
1

h

h l l l l
l l

l U l Ul l l l

y
b b

−

∈ ∈

′ 
γ = . 

π π π π 
∑ ∑

a a a
 

In the particular case where the inference does not apply 
to the entire population but to a domain D that consists of a 
small number of strata, balanced sampling overall on the z  
variables will be of little benefit. The variance of the 
Horvitz-Thompson estimator ˆDyt π  of total 

D
yt  for variable y  

for that domain will be close to the variance for stratified 
sampling, which is given by equation (1).   

3. Quantitative results   
In this section, we carry out a brief simulation study to 

test the performance of our sampling algorithm. First, we 
generate a finite population of 1,000, partitioned into 25 
strata of equal size containing four variables: two variables 
of interest, 1y  and 2;y  and two auxiliary variables, 1x  and 

2.x  Variables 1x  and 2x  are generated with a gamma 
distribution with parameters 4 and 25. Variable 1y  is 
generated within stratum hU  using the model  

1 1h hy = α + ε .  (13) 

The hε  are generated with a normal distribution with 
mean 0 and variance 2.hσ  The model used to generate the 
values of 1y  is given by (13), with 1 20h hα =  and variance 

2
hσ  selected to produce a coefficient of determination 2R  

approximately equal to 0.60 in each stratum. Variable 2y  is 
generated with the model  

2 2 2 1 2 2y x x= α + β + γ + η.  (14) 

The η  are generated with a normal distribution with 
mean 0 and variance 2.ρ  The model used to generate the 
values of 2y  is given by (14), with 2α = 500, 2 2β = γ = 5, 
and variance 2ρ  selected to produce a coefficient of 
determination 2R  approximately equal to 0,60. 

We are interested in estimating the total of variables 1y  
and 2.y  We select a sample of n = 25 ( n = 50 respectively) 
units with equal probabilities using three sampling designs:   

Design 1: Stratified simple random sampling in each 
stratum  

Design 2: Sampling balanced on variables 1, xπ  and 2x  
Design 3: Stratified sampling balanced on variables 

1, xπ  and 2,x  with pooling of the landing 
phases   

In the case of stratified sampling, we have an allocation 
of size 1 (2 respectively) in each stratum. In the balanced 
designs, each flight phase is preceded by a random sort of 
the population. The variance associated with design 1 is 
calculated directly. The variance associated with designs 2 
and 3 is approximated on the basis of 10,000 simulations. 
The results are presented in Table 1.   
Table 1 
Variance associated with the estimate of the total of two 

variables for a stratified design, a balanced design and a 
stratified balanced design with pooling of landing phases 
 

 n = 25 n = 50 

 Total var. 

1y  

Total var. 

2y  

Total var. 

1y  

Total var. 

2y  

Method ( 810×××× ) ( 910×××× ) ( 810×××× ) ( 910×××× ) 

Design 1  6.05  7.13  2.95  3.48  
Design 2  14.31  3.05  7.02  1.40  
Design 3  6.00  3.63  2.98  1.54   
In each case, the proposed sampling design is comparable 

with the better of the two strategies. If the variable of interest 
is approximately constant across all strata, the proposed 
algorithm produces the same results as the stratified design. 
If the balancing variables are highly explanatory, the results 
produced by our algorithm and by direct balanced sampling 
are equivalent. The slight loss of precision comes from the 
landing phase: in the case of direct balanced sampling, we 
attempt to complete the sampling while limiting the lack of 
balance. With the proposed algorithm, the selected solution 
is suboptimal because we are imposing the additional 
constraint of a fixed size in each stratum. 

In the case of stratified balanced sampling with pooling 
of the landing phases, Table 2 shows the variance given by 
10,000 simulations and the variance given by the approxi-
mation formula (10).   
Table 2 

Comparison of the variance given by 10,000 simulations and 
the variance given by the approximation formula in the case of 
the estimation of two totals for a stratified balanced sampling 

design with pooling of landing phases 
 

 n = 25 n = 50 

 Total 1y  Total 2y  Total 1y  Total 2y  

 ( 810×××× ) ( 910×××× ) ( 810×××× ) ( 910×××× ) 

Simulation var.  6.0  3.6  3.0  1.5  
Approximated var.  5.9  2.7  2.9  1.3  
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The approximation formula proposed by Deville and 
Tillé (2005) is close to exact if the variance associated with 
the landing phase is small relative to the variance associated 
with the flight phase. In the case of the 2y  variable, the 
balancing variables are highly explanatory. The variance is 
therefore larger for the landing phase than for the flight 
phase, and the approximation formula understates the actual 
variance. The variance associated with the landing phase 
will be considered in future studies.  
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