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In this issue 

 
This issue of Survey Methodology opens with the ninth paper in the annual Waksberg Award 

invited paper series in honour of Joseph Waksberg’s contributions to the theory and practice of 

survey methodology. The editorial board would like to thank the members of the selection committee 

– Bob Groves, chair, Leyla Mohadjer, Daniel Kasprzyk and Wayne Fuller – for having selected 

Graham Kalton as the author of this year’s Waksberg Award paper. 

In his paper entitled “Methods for oversampling rare subpopulations in social surveys” Kalton 

gives an overview of methods for sampling rare populations, what Kish called minor domains. After 

discussing general issues he describes several different methods including screening, stratification, 

two-phase sampling, multiple frames, multiplicity sampling, location sampling, and accumulating 

samples over time. He discusses the advantages and disadvantages of each method, and gives many 

examples of their use in surveys. In practice a combination of approaches is often used. 

Randomized response strategies are often used in order to reduce nonsampling errors such as 

nonresponse and measurement errors. They can also be used in the context of statistical disclosure 

control for public use microdata files. In his paper, Quatember proposes a standardization of 

randomized response techniques. The statistical properties of the standardized estimator are derived. 

He applies the proposed method to a survey on academic cheating behaviour.  

Xu and Lavallée consider the problem caused by link nonresponse when using the generalized 

weight share method in indirect sampling. Indirect sampling is used when selecting samples from a 

population that is not the target population of interest but is related to it. Biased estimates may occur 

when it is not known that a unit in the sampling population is related to a unit in the target population. 

The authors propose several weight adjustments to overcome the issue of link nonresponse. 

In the context of unit nonresponse, the weights of the respondents are often adjusted by the inverse 

of the estimated response probability. Da Silva and Opsomer propose to estimate the response 

probabilities using local polynomial regression. Results of a simulation study are presented 

confirming the good performance of the proposed method.  

In their paper, Van den Brakel and Krieg consider a multivariate structural time series model that 

accounts for the design of the Dutch Labour Force Survey. The model is used to estimate the 

unemployment rates. An empirical investigation demonstrates that the proposed model results in a 

significant increase in accuracy. 

Zhang considers estimation of cross-classifications where one margin of the cross-classification 

corresponds to small areas and where non-response varies from area to area. He develops a double 

mixed model approach that combines the fixed effects and random area effects of the small area 

model with the random effects from the missing data mechanism. The associated conditional mean 

squared error of prediction is approximated in terms of a three-part decomposition, corresponding to 

a naive prediction variance, a positive correction that accounts for the hypothetical parameter 

estimation uncertainty based on the latent complete data, and another positive correction for the extra 

variation due to the missing data. 

Souza, Moura and Migon propose a Bayesian small area estimation application using growth 

models that account for hierarchical and spatial relationships. They use this approach to obtain 

population predictions for the municipalities not sampled in the Brazilian Annual Household Survey 

and to increase the precision of the design-based estimates obtained for the sampled municipalities.  

Shao and Thompson investigate the problem of variance estimation when a weight adjustment is 

applied to deal with nonresponse in stratified business surveys. They derive two consistent 

linearization variance estimators under weak assumptions. Naive jackknife variance estimators do not 

work well unless the sampling fraction is negligible, which is not the case when there are certainty 

strata. They propose a modified jackknife variance estimator that is consistent even when there are 

certainty strata but the non-certainty strata must not have a large sampling fraction. They evaluate 

their variance estimators empirically using real data and a simulation study.  
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In his paper, Preston investigates the bootstrap variance estimation for multistage designs when 

units are selected using simple random sampling without replacement at each stage. He proposes an 

extension to the commonly used rescaled bootstrap estimator that assumes with replacement 

sampling or negligible sampling fractions at the first stage. The proposed estimator is compared with 

the rescaled and Bernoulli bootstrap estimators.  

Jang and Eltinge address the problem of estimating degrees of freedom values from stratified 

multistage designs when a small number of primary sampling units (PSUs) are selected per stratum. 

Due to the small number of PSUs selected, the traditional Satterthwaite-based degrees of freedom can 

be a severe underestimate. In their paper, they propose an alternative estimator of the degrees of 

freedom that uses the within PSU variances to provide auxiliary information on the relative 

magnitudes of the overall stratum-level variances. The proposed method is illustrated using data from 

the National Health and Nutrition Examination Survey (NHANES). 
The article by Wang and Bellhouse explores an application of nonparametric regression 

techniques to study the relationship between the response variable and covariates, as well as 
prediction using auxiliary information in the context of complex surveys. The work is an extension of 
Bellhouse and Stafford (2001) that used a simple nonparametric regression function to the case of 
several independent variables, including indicator variables that often appear in regression analysis 
using survey data. 
And finally, we are pleased to inform readers and authors that Survey Methodology will 

shortly be covered by SCOPUS in the Elsevier Bibliographic Databases starting with the June 
2008 issue. 

 

 

 

 

Harold Mantel, Deputy Editor 
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Waksberg Invited Paper Series 
 

The journal Survey Methodology has established an annual invited paper series in honour of Joseph 

Waksberg, who has made many important contributions to survey methodology. Each year a prominent 

survey researcher is chosen to author an article as part of the Waksberg Invited Paper Series. The paper 

reviews the development and current state of a significant topic within the field of survey methodology, and 

reflects the mixture of theory and practice that characterized Waksberg’s work. The author receives a cash 

award made possible by a grant from Westat, in recognition of Joe Waksberg’s contributions during his 

many years of association with Westat. The grant is administered financially by the American Statistical 

Association.  

 

 

Waksberg Award Winners: 

 

Gad Nathan (2001) 

Wayne A. Fuller (2002) 

Tim Holt (2003) 

Norman Bradburn (2004) 

J.N.K. Rao (2005) 

Alastair Scott (2006) 

Carl-Erik Särndal (2007) 

Mary Thompson (2008) 

Graham Kalton (2009) 

Ivan Fellegi (2010) 

 

 

 

Nominations: 

 

The author of the 2011 Waksberg paper will be selected by a four-person committee appointed by Survey 

Methodology and the American Statistical Association. Nominations of individuals to be considered as 

authors or suggestions for topics should be sent to the chair of the committee, Daniel Kasprzyk, by email to 

DKasprzyk@Mathematica-Mpr.com. Nominations and suggestions for topics must be received by 

February 28, 2010. 

 

 

 

 

2009 Waksberg Invited Paper 

 

Author: Graham Kalton 

 

Graham Kalton is Chairman of the Board of Directors and a Senior Vice President at Westat. He has a 

title of Research Professor in the Joint Program in Survey Methodology at the University of Maryland.  

Dr. Kalton has wide-ranging interests in survey methodology, and has published on several aspects of 

the subject, including sample design, nonresponse and imputation, panel surveys, question wording, 

and coding.He is a Fellow of the American Association for the Advancement of Science, a Fellow of 

the American Statistical Association, a National Associate of the National Academies, and an elected 

member of the International Statistical Institute. He delivered the annual Morris Hansen lecture in 

2000. 
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Methods for oversampling rare subpopulations in social surveys 

Graham Kalton 1 

Abstract 

Surveys are frequently required to produce estimates for subpopulations, sometimes for a single subpopulation and 

sometimes for several subpopulations in addition to the total population. When membership of a rare subpopulation (or 

domain) can be determined from the sampling frame, selecting the required domain sample size is relatively straightforward. 

In this case the main issue is the extent of oversampling to employ when survey estimates are required for several domains 

and for the total population. Sampling and oversampling rare domains whose members cannot be identified in advance 

present a major challenge. A variety of methods has been used in this situation. In addition to large-scale screening, these 

methods include disproportionate stratified sampling, two-phase sampling, the use of multiple frames, multiplicity sampling, 

location sampling, panel surveys, and the use of multi-purpose surveys. This paper illustrates the application of these 

methods in a range of social surveys. 

                                                           
1. Graham Kalton, Westat, 1600 Research Blvd., Rockville, MD 20850, U.S.A. E-mail: grahamkalton@westat.com. 

  

Key Words: Sample allocation; Screening; Disproportionate stratified sampling; Two-phase sampling; Multiple 

frames; Location sampling; Panel surveys; Multi-purpose surveys. 

 

 

 

1. Introduction 

 
I feel very privileged to have been invited to present this 

year’s paper in the Waksberg Invited Paper Series, a series 

that honors Joe Waksberg for his numerous contributions to 

survey methodology. I was extremely fortunate to have had 

the opportunity to work with Joe at Westat for many years 

and, as did many others, I benefited greatly from that expe-

rience. When faced with an intractable sampling problem, 

Joe had a flair for turning the problem on its end and 

producing a workable solution. Since the problem often 

concerned the sampling of rare populations, I have chosen 

to review methods for sampling rare populations for this 

paper. 

One of the major developments in survey research over 

the past several decades has been the continuously esca-

lating demand for estimates for smaller and smaller sub-

classes (subpopulations) of the general population. This 

paper focuses on those subclasses – termed domains – that 

are planned for separate analysis at the sample design stage. 

Some examples of domains that have been taken into 

account in the sample designs of various surveys include a 

country’s states or provinces, counties or districts; racial/ 

ethnic minorities; households living in poverty; recent 

births; persons over 80 years of age; recent immigrants; gay 

men; drug users; and disabled persons. When the domains 

are small (also known as rare populations), the need to 

provide adequate sample sizes for domain analysis can 

create major challenges in sample design. This paper 

reviews the different probability sampling methods that are 

used to generate samples for estimating the characteristics 

of rare populations with required levels of precision. 

Sampling methods for estimating the size of a rare 

population are not explicitly addressed, although similar 

methods are often applicable. However, capture-recapture 

and related methods are not addressed in this paper. 

An important issue for sample design is whether the aim 

of a survey is to produce estimates for a single domain or 

many domains. Although much of the literature on the 

sampling of rare populations discusses sample designs for a 

single rare domain (e.g., drug users), in practice surveys are 

often designed to produce estimates for many domains (e.g., 

each of the provinces in a country or several racial/ethnic 

groups). The U.S. National Health and Nutrition Exam-

ination Survey (NHANES) is an example of a survey 

designed to produce estimates for many domains, in this 

case defined by age, sex, race/ethnicity and low-income 

status (Mohadjer and Curtin 2008). In sample designs that 

include many domains, the domains may be mutually 

exclusive (e.g., provinces or the cells of the cross-

classification of age group and race/ethnicity) or they may 

be intersecting (e.g., domains defined separately by age 

group and by race/ethnicity). 

The size of a domain is a key consideration. Kish (1987) 

proposed a classification of major domains of perhaps 10 

percent or more of the total population, for which a general 

sample will usually produce reliable estimates; minor 

domains of 1 to 10 percent, for which the sampling methods 

in this paper are needed; mini-domains of 0.1 to 1 percent, 

estimates for which mostly require the use of statistical 

models; and rare types comprising less than 0.01 percent of 

the population, which generally cannot be handled by 

survey sampling methods. Many surveys aim to produce 

estimates for some major domains, some minor domains 

and occasionally even some mini-domains. 
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Since the sample sizes for most surveys are sufficient to 

produce estimates of reasonable precision for major 

domains, there is generally no need to adopt the kinds of 

oversampling procedures reviewed in this paper. However, 

there are some important design features that should be 

considered. It is, for example, valuable to take major 

domains into account in creating the strata for the survey. 

This consideration is of particular importance with 

geographically defined domains and multistage sampling. If 

a geographic domain is not made into a design stratum, the 

number of primary sampling units (PSUs) selected in that 

domain is a random variable; the sampled PSUs in strata 

that cut across the domain boundaries may or may not be in 

the domain, creating problems for domain estimation. It is 

also valuable to have a sizable number of sampled PSUs in 

each geographical domain in order to be able to compute 

direct variance estimates of reasonable precision, implying 

the need to spread the sample across a large number of 

PSUs. At the estimation stage, it is preferable, where 

possible, to apply nonresponse and noncoverage post-

stratification-type adjustments at the domain rather than the 

national level. Singh, Gambino and Mantel (1994) and 

Marker (2001) discuss design issues and Rao (2003, pages 

9-25) discusses estimation issues for major domains. Major 

domains will receive little attention in this paper. 

At the other end of the size continuum, even with the use 

of special probability sampling methods, the sample sizes 

possible for most surveys are not large enough to produce 

standard design-based, or direct, estimates of characteristics 

for multiple domains when many of the domains are mini-

domains or rare types. An obvious exception is a national 

population census, but censuses too have their limitations. 

Since they are conducted infrequently (in many countries 

only once a decade), their estimates are dated – a particular 

concern for mini-domains, which can experience rapid 

changes. Also, the content of a census must be severely 

limited in terms of the range of topics and depth of detail. 

Very large continuous surveys such as the American 

Community Survey (U.S. Census Bureau 2009a; Citro and 

Kalton 2007), the French rolling census (Durr 2005) and the 

German Microcensus (German Federal Statistical Office 

2009) have been developed to address the need for more up-

to-date data for small domains, but a restriction on content 

remains (although the content of the German Microcensus 

does vary over time). Other exceptions occur at the border 

between mini-domains and minor domains. For example, 

since 2007 the Canadian Community Health Survey has 

provided estimates on the health status of the populations of 

each of Canada’s 121 health regions based on an annual 

survey of around 65,000 persons aged 12 and over, with the 

production of annual and biennial data files (Statistics 

Canada 2008). By combining the samples across multiple 

years, researchers are able to produce estimates for rare 

populations of various types. 

In general, however, the maximum sample size possible 

for a survey on a specific topic is not adequate to yield a 

large set of mini-domain estimates of acceptable precision. 

Yet policy makers are making increasing demands for local 

area data at the mini-domain level. This demand for esti-

mates for mini-domains, mainly domains defined at least in 

part by geographical administrative units, is being addressed 

by the use of statistical modeling techniques, leading to 

model-dependent, indirect, small area estimates. Thus, for 

example, the U.S. Census Bureau’s Small Area Income and 

Poverty Estimates program produces indirect estimates of 

income and poverty statistics for 3,141 counties and 

estimates of poor school-age children for around 15,000 

school districts every year, based on data now collected in 

the American Community Survey and predictor variables 

obtained from other sources available at the local area level, 

such as tax data (U.S. Census Bureau 2009b). A compre-

hensive treatment of indirect estimation using small area 

estimation techniques, a methodology that falls outside the 

scope of this paper, can be found in Rao (2003).  

Apart from location sampling, discussed in Section 3.6, 

this paper also does not address the various methods that 

have been developed for sampling other types of mini-

domains of much interest to social researchers and epi-

demiologists, domains that are often “hidden populations” 

in that the activities defining them are clandestine, such as 

intravenous drug use (Watters and Biernacki 1989). A range 

of methods has been developed under the assumption that 

the members of the mini-domains know each other. The 

broad class of such designs is termed link-tracing designs 

(see the review by Thompson and Frank 2000). They are 

adaptive designs in that the units are selected sequentially, 

with those selected at later stages dependent on those 

selected earlier (Thompson and Seber 1996; Thompson 

2002).  

Snowball sampling was one of the early methods of an 

adaptive, chain-referral sample design. It starts with some 

initial sample of rare domain members (the seeds), and they 

in turn identify other members of the domain. While it bears 

a resemblance to network (multiplicity) sampling (described 

in Section 3.5), snowball sampling lacks the probability 

basis of the latter technique, i.e., known, non-zero, selection 

probabilities for all members of the domain. A version of 

snowball sampling has been termed respondent-driven 

sampling (RDS) (Heckathorn 1997, 2007). Volz and 

Heckathorn (2008) develop a theory for RDS that is based 

on four assumptions: (1) that respondents know how many 

members of the network are linked to them (the degree); (2) 

that respondents recruit others from their personal network 

at random; (3) that network connections are reciprocal; and 
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(4) that recruitment follows a Markov process. The need for 

these modeling assumptions for statistical inference is the 

difference between chain-referral sample designs and the 

conventional probability sample designs used in surveys 

which do not need to invoke such assumptions. It is 

apparent that RDS is appropriate only for mini-domains for 

which clear networks exist. The method is used mainly in 

local area settings, but Katzoff, Sirken and Thompson 

(2002) and Katzoff (2004) have suggested that the seeds 

could come from a large-scale survey, such as the U.S. 

National Health Interview Survey. 

This paper focuses on the use of probability sampling 

methods to produce standard design-based, or direct, 

estimates for characteristics of rare populations, building on 

previous reviews (e.g., Kish 1965a; Kalton and Anderson 

1986; Kalton 1993a, 2003; Sudman and Kalton 1986; 

Sudman, Sirken and Cowan 1988; and Flores Cervantes and 

Kalton 2008). Much of the literature deals with the sampling 

issues that arise when the rare population is the sole subject 

of study. However, as noted above, surveys are often 

required to produce estimates for many different domains as 

well as for the total population. Section 2 reviews the design 

issues involved when the survey has design objectives for 

multiple domains whose members can be identified from 

the sampling frame. The main part of the paper, Section 3, 

provides a review of a range of methods that have been used 

to sample rare populations whose members cannot be 

identified in advance. The paper ends with some concluding 

remarks in Section 4. 

 
2. Multi-domain allocations  

The issue of sample allocation arises when a survey is 

being designed to produce estimates for a number of 

different domains, for subclasses that cut across the 

domains, as well as for the total population. In most 

applications, domains vary considerably in size with at least 

some of them being rare domains.  

Assume that there are H mutually exclusive and 

exhaustive domains that are identified on the sampling 

frame. Under the commonly made assumptions that the 

variance of an estimate for domain h can be expressed as 

/ hV n  and that survey costs are the same across domains, 

the optimum allocation for estimating the overall population 

mean is ,h hn W∝  where hW  is the proportion of the 

population in domain h. Assuming that the domain 

estimates are all to have the same precision, the optimum 

allocation is /hn n H=  for all domains. These two 

allocations are in conflict when the hW  vary greatly, as 

often occurs when the domains are administrative areas of 

the country, such as states, provinces, counties or districts. 

In such cases, adopting the optimum allocation for one 

objective leads to a serious loss of precision for the other. 

However, a compromise allocation that falls between the 

two optimum allocations often works well for both 

objectives. 

Several compromise solutions exist. One, proposed by 

Kish (1976, 1988), is to determine the domain sample sizes 

by the following formula:  

2 2(1 ) ,h hn IW I H −∝ + −  

where I and (1 )I−  represent the relative importance of the 

national estimate and the domain (e.g., administrative 

district) estimates, respectively. If 1,I =  the allocation is a 

proportionate allocation, as optimum for the national 

estimate, whereas if 0,I =  the allocation is an equal 

allocation, as optimum for the domain estimates. The choice 

of I  is highly subjective, but I have found that I = 0.5 is 
often a good starting point, after which a careful review of 

the allocation can lead to modifications. Bankier (1988) has 

proposed a similar compromise solution, termed a power 

allocation. Applied to the current example, the domain 

sample sizes are determined from ,qh hn W∝  where q  is a 

power between 0 (equal allocation) and 1 (proportionate 

allocation). As an example, the 2007 Canadian Community 

Health Survey was designed to attach about equal impor-

tance to the estimates for provinces and health regions. The 

sample allocation to a province was based on its population 

size and its number of health regions. Within a province, the 

sample was allocated between health regions using the 

Bankier allocation with q = 0.5 (Statistics Canada 2008). 
A limitation to the Kish and Bankier procedures is that 

they may not allocate sufficient sample to small domains to 

produce estimates at the required level of precision. This 

limitation can be addressed by revising the initial allocations 

to satisfy precision requirements. An alternative approach 

addresses this limitation directly: the allocation is deter-

mined by fixing a core sample that will satisfy one of the 

objectives and then supplementing that sample as needed to 

satisfy the other objective. Singh, Gambino and Mantel 

(1994) describe such a design for the Canadian Labour 

Force Survey, with a core sample to provide national and 

provincial estimates and, where needed, supplemental 

samples to provide subprovincial estimates of acceptable 

precision. 

The Kish and Bankier schemes assume that the same 

precision level is required for all small domains. Longford 

(2006) describes a more general approach in which 

‘inferential priorities’ dP  are assigned to each domain d. As 

an example, he proposes setting the priorities as ,ad dP N=  

where dN  is the population size of domain d and a is a 

value chosen between 0 and 2. The value a = 0 corresponds 
to the Kish and Bankier equal domain sample size assump-

tion and 2a =  corresponds to an overall proportionate 
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allocation. An intermediate value of a attaches greater priority 

to larger domains. Longford also extends the approach to 

incorporate an inferential priority for the overall estimate.  

A more general approach to sample allocation is via 

mathematical programming, as has been proposed by a 

number of researchers (see, for example, Rodriguez Vera 

1982). This approach can accommodate unequal variances 

across domains, intersecting domains, and multiple 

estimates for each domain. The U.S. Early Childhood 

Longitudinal Study – Birth Cohort (ECLS-B) provides an 

example with intersecting domains, with the sample 

selected from birth certificate records that contained the 

requisite domain information. There were 10 domains of 

interest for the ECLS-B: births classified by race (5 

domains), birth weight (3 domains) and twins or non-twins 

(2 domains). The approach adopted first determined a 

minimum effective sample size (i.e., the actual sample size 

divided by the design effect) for each domain. With the 30 

cells of the cross-classification of birth weight, race/ 

ethnicity and twin/non-twin treated as strata, an allocation of 

the sample across the strata was then determined to 

minimize the overall sample size while satisfying the 

effective sample size requirements for all the domains 

(Green 2000). 

When there are multiple domains of interest and multi-

stage sampling is to be used, a variant of the usual measure 

of size for probability proportional to size (PPS) sampling 

can be useful for controlling the sample sizes in the sampled 

clusters (PSUs, second-stage units, etc.), provided that 

reasonable estimates of the domain population sizes are 

available by cluster. The requirements that all sampled 

clusters have approximately the same overall subsample 

size and that sampled units in each domain have equal 

probabilities of selection can both be met by sampling the 

clusters with standard PPS methods, but with a composite 

measure of size that takes account of the differing sampling 

rates for different domains (Folsom, Potter and Williams 

1987). As an example, in a survey of men in English 

prisons, the desired sampling fractions were 1 in 2 for civil 

prisoners ( ),C  1 in 21 for “star” prisoners who are normally 

serving their first term of imprisonment ( )S  and 1 in 45 for 

recidivists ( ).R  Prisons were selected at the first stage of 

sampling, with prison i being selected with probability 

proportional to its composite measure of size iR +  
2.2 20.3 ,i iS C+  where the multipliers are the sampling 

rates relative to the rate for recidivists (Morris 1965, pages 

303-306). 

 
3. Methods for oversampling rare domains  
The main focus of this paper is on the use of probability 

sampling methods to produce standard design-based, or 

direct, estimates for characteristics of rare populations, often 

minor domains in Kish’s terminology. As preparation for 

the subsequent discussion, it will be useful to note some 

features of different types of rare populations that, together 

with the survey’s mode of data collection, are influential in 

the choice of sampling methods that can be applied to 

generate required sample sizes for all domains. Some 

important features for consideration are summarized below:  
− Is a separate frame(s) available for sampling a rare 
population? Can those sampled be located for data 

collection? How up-to-date and complete is the 

frame? If an existing up-to-date frame contains 

only the rare population (with possibly a few other 

listings) and provides almost complete coverage, 

then sampling can follow standard methods. If no 

single frame gives adequate coverage but there are 

multiple frames that between them give good 

coverage, issues of multiple routes of selection 

arise (Section 3.4). 

− Is the rare population concentrated in certain, 
identifiable parts of the sampling frame, or is it 

fairly evenly spread throughout the frame? If it is 

concentrated, disproportionate stratification can be 

effective (Section 3.2). 

− If a sample is selected from a more general 
population, can a sampled person’s membership in 

the rare population be determined inexpensively, 

such as from responses to a few simple questions? 

If so, standard screening methods may be used 

(Section 3.1). If accurate determination requires 

expensive procedures, such as medical examina-

tions, a two-phase design may be useful (Section 

3.3). A related issue is whether some members of a 

rare population consider their membership to be 

sensitive; the likelihood that members may be 

tempted to deny their membership may influence 

the choice of survey administration mode and 

other aspects of screening. 

− Are members of the rare population readily 
identified by others? If so, some form of network, 

or multiplicity, sampling may be useful (Section 

3.5). 

− Are members of the rare population to be found at 
specific locations or events? If so, location 

sampling may be useful (Section 3.6). 

− Is the rare population defined by a constant 
characteristic (e.g., race/ethnicity) or by a recent 

event (e.g., a hospital stay)? The distinction 

between these two types of characteristics is 

important in considering the utility of panel 

surveys for sampling rare populations (Section 

3.7).  
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The following sections review a range of methods for 

sampling rare populations. Although the methods are 

discussed individually, some are interrelated and, in 

practice, a combination of methods is often used. 
 
3.1 Screening  
Some form of screening is generally needed when the 

sampling frame does not contain domain identifiers. This 

section considers a straightforward application of a screening 

design in which a large first-phase sample is selected to 

identify samples of the members of the domains of interest, 

without recourse to the techniques described in later 

sections. The first-phase sample size is the minimum sample 

size that will produce the required (or larger) sample sizes 

for all of the domains. The minimum first-phase sample size 

is determined by identifying the required sample size for 

one of the domains, with all of the sample members of that 

domain then being included in the second-phase sample. 

Subsamples of other domains are selected for the second-

phase sample at rates that generate the required domain 

sample sizes. If the survey is designed to collect data for 

only a subset of the domains (often only one domain), then 

none of the members of the other domains is selected for the 

second-phase sample. 

Since a very large screening sample size is needed to 

generate an adequate domain sample size when one (or 

more) of the domains of interest is a rare population, the 

cost of screening becomes a major concern. In addition to 

the sampling methods discussed in later sections, there are 

several strategies that can be employed to keep costs low:  
− Use an inexpensive mode of data collection, such 
as telephone interviewing or a mail questionnaire, 

for the screening. The second-phase data collection 

may be by the same mode or a different mode. 

− When possible and useful, permit the collection of 
screening data from persons other than those 

sampled. For example, other household members 

may be able to accurately report the rare popula-

tion status of the sampled member. See the 

discussion below and also Section 3.5 on multi-

plicity sampling.  

− When screening is carried out by face-to-face 
interviewing in a multistage design, it is efficient 

to select a large sample size in each cluster. 

Compact clusters can also be used. Costs are 

reduced, and the precision of domain estimates is 

not seriously harmed because the average domain 

sample sizes in the clusters will be relatively small.  
One possible means of reducing screening costs is to 

share the costs across more than one survey. For instance, 

the child component of the ongoing U.S. National 

Immunization Survey (NIS) is a quarterly telephone survey 

that screens households with landline telephone numbers to 

locate children aged 19 to 35 months, in order to ascertain 

vaccination coverage levels (Smith, Battaglia, Huggins, 

Hoaglin, Roden, Khare, Ezzati-Rice and Wright 2001; U.S. 

National Center for Health Statistics 2009b). The NIS large-

scale screening is also used to identify members of domains 

of interest for the State and Local Area Integrated 

Telephone Survey (SLAITS) program, which addresses a 

variety of other topics over time (U.S. National Center for 

Health Statistics 2009c). When sharing screening costs 

across a number of surveys, it is advantageous if the 

domains for the surveys are fairly disjoint sets in order to 

minimize the problems associated with screening some 

respondents into more than one survey.  

When no one is at home to complete a face-to-face 

screening for a household, it may be possible to obtain 

information from knowledgeable neighbors as to whether 

the household contains a member of the rare population 

(e.g., a child under 3 years of age). This approach (which is 

used in NHANES) can appreciably reduce data collection 

costs when a large proportion of the households do not 

contain members of the rare population. However, there is a 

danger that the approach may result in undercoverage; some 

protection is provided by requiring that, if the first neighbor 

interviewed indicates that the household does not include a 

member of the rare population(s), the other neighbor is also 

interviewed. Ethical issues also must be considered, 

particularly for the identification of rare populations that are 

sensitive in nature. 

An extension of the approach of collecting screening 

information from neighbors is known as focused 

enumeration. This technique, which is a form of multiplicity 

sampling (see Section 3.5), involves asking the respondent 

at each sampled, or “core”, address about the presence of 

members of the rare population in the n neighboring 

addresses on either side. In essence, the sample consists of 

2 1n +  addresses for each core address. If the respondent is 

unable to provide the screening information for one or more 

of the linked addresses, then the interviewer must make 

contact at another address. Focused enumeration has been 

used with n = 2 in the British Crime Survey (Bolling, Grant 
and Sinclair 2008) and the Health Survey of England (Erens, 

Prior, Korovessis, Calderwood, Brookes and Primatesta 

2001) to oversample ethnic minorities. A limitation of the 

technique is that it will likely produce some (possibly 

substantial) undercoverage. Evidence of the extent of under-

coverage can be obtained by comparing the prevalence of 

the rare population in the core sample with that in the linked 

addresses. 

In surveys that sample persons by first sampling house-

holds, survey designers often prefer to select one person per 
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household – perhaps allowing two persons to be sampled in 

large households – to avoid contamination effects and 

prevent a within-household clustering homogeneity effect 

on design effects. This design is not always the best (Clark 

and Steel 2007), and this particularly applies when rare 

populations are sampled. When rare population members 

are concentrated in certain households (e.g., minority 

populations), the size of the screening sample can be 

appreciably reduced if more than one person – even all 

eligible persons – can be taken in some households (see 

Hedges 1973). Elliott, Finch, Klein, Ma, Do, Beckett, Orr 

and Lurie (2008) suggest that, for oversampling American 

Indian/Alaskan Native and Chinese minorities in the United 

States, taking all eligible persons in a household has 

potential for U.S. health surveys. The NHANES maximizes 

the number of sampled persons per household. Since each 

respondent is remunerated for participation, households 

with more respondents receive more remuneration, a factor 

thought to increase response rates (Mohadjer and Curtin 

2008). Note that within-household homogeneity will have 

little effect on design effects when the data are analyzed by 

subgroup characteristics (e.g., age and sex) that cut across 

households. 

The use of large-scale screening to identify rare popu-

lations raises three issues, each of which could lead to a 

failure to achieve planned sample sizes unless precautions 

are taken. The first results from the fact that, with screening, 

the sample size for a rare population is a random variable. 

As a result, the achieved sample size may be larger or 

smaller than expected. When a minimum sample size is 

specified for a rare population, it may be wise to determine 

the sampling fraction to be used to ensure that there is, say, 

a 90 percent probability that the achieved sample size will 

be at least as large as the specified minimum. This 

procedure was used in determining the sampling fractions 

for the many age, sex and income subdomains for the 

Continuing Survey of Food Intakes by Individuals 1994-96 

(Goldman, Borrud and Berlin 1997). 

The second issue raised by large-scale screening is that 

the overall nonresponse rate must be considered. A sampled 

member of a rare population will be a nonrespondent if the 

screener information is not obtained, or if a member of the 

rare population is identified (perhaps by a proxy informant) 

but does not respond to the survey items. The overall 

nonresponse rate may well be much higher than would 

occur without the screening component. Furthermore, the 

survey designers must consider the nature of the rare 

domain and the ways in which members of that domain will 

react to the survey content. A survey in which new 

immigrants are asked about their immigration experiences 

might have a very different response rate than a survey in 

which war veterans are asked about the medical and other 

support services they are receiving. 

The third issue is that noncoverage can be a significant 

problem when large-scale screening is used to identify rare 

populations. One source of noncoverage relates to the 

sampling frame used for the screener sample. Even though a 

frame has good overall coverage, its coverage of a rare 

domain may be inadequate. For example, the noncoverage 

of a frame of landline telephone numbers is much higher for 

households of younger people than for the total population. 

The designers of landline telephone surveys of such rare 

domains as young children and college students therefore 

must carefully consider the potential for noncoverage 

biases. To address the problem of the substantial non-

coverage of poor people in telephone surveys, the National 

Survey of America’s Families, which was designed to track 

the well-being of children and adults in response to welfare 

reforms, included an area sample of households without 

telephones in conjunction with the main random digit 

dialing (RDD) telephone sample (Waksberg, Brick, Shapiro, 

Flores Cervantes and Bell 1997). 

Another source of noncoverage is a failure to identify 

some members of the rare population at the screening stage. 

In particular, when a survey aims to collect data only for 

members of a rare domain, some screening phase re-

spondents may falsely report, and some interviewers may 

falsely record, that the sampled persons are not members of 

that domain. These misclassifications may be inadvertent or 

they may be deliberately aimed at avoiding the second-

phase data collection. Misclassification error can give rise to 

serious levels of noncoverage, particularly when the rare 

population classification is based on responses to several 

questions, misreports to any one of which leads to a 

misclassification (Sudman 1972, 1976). When the survey 

oversamples one or more rare domains as part of a survey of 

the general population, misclassifications are uncovered at 

the second phase, thus avoiding noncoverage. However, 

misclassifications still result in a smaller sample sizes for 

rare domains; in addition, the variation in sampling weights 

between respondents selected as members of the rare 

domain and those sampled as members of another domain 

can lead to a serious loss of precision. Noncoverage is more 

likely to arise when screener data are collected from proxy 

informants. It is a particular problem with focused 

enumeration. 

In a number of surveys of rare populations, the 

proportion of rare population members identified has been 

much lower than prevalence benchmarks. For example, the 

1994 NIS had an appreciable shortfall in the identified 

proportion of children aged 19 to 35 months (4.1 percent 

compared to the predicted rate of 5 percent) (Camburn and 

Wright 1996). In the National Longitudinal Survey of Youth 

of 1997, only 75 percent of youth aged 12 to 23 years were 

located (Horrigan, Moore, Pedlow and Wolter 1999). These 

findings could be the result of higher nonresponse rates for 
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members of the rare population, frame noncoverage of 

various types, or misclassifications of domain membership. 

To produce the required sample size, an allowance for 

under-representation must be made at the design stage. The 

noncoverage of an age domain appears to be greatest at the 

domain boundaries, perhaps because respondents do not 

know exact ages (with those falsely screened out being lost 

and those falsely screened in being detected and dropped 

later) or because of deliberate misreporting to avoid the 

follow-up interview. To counteract this effect, it can be 

useful to start with an initial screening for all household 

members or for a broader age range and then narrow down 

to the required age range later on. 

Weighting adjustments can be used in an attempt to 

mitigate biases caused by nonresponse and noncoverage, 

but they are necessarily imperfect. Adjustments for a 

domain specific level of nonresponse require knowledge of 

the domain membership of nonrespondents, but that is often 

not available. Adjustments for noncoverage of a rare 

domain require accurate external data for the domain, data 

that are often not available. Indeed, one of the purposes for 

some rare domain surveys is to estimate the domain size. 

Noncoverage is a major potential source of error in the 

estimation of domain size. 
 
3.2 Disproportionate stratification  
A natural extension of the screening approach is to try to 

identify strata where the screening will be more productive. 

In the ideal circumstance, one or more strata that cover all of 

the rare population and none from outside that population 

are identified. That case requires no screening process. 

Otherwise, it is necessary to select samples from all the 

strata (apart from those known to contain no rare population 

members) to have complete coverage of the rare population. 

The use of disproportionate stratification, with higher 

sampling fractions in the strata where the prevalence of the 

rare population is higher, can reduce the amount of 

screening needed. 
 
3.2.1 Theoretical background  
Consider initially a survey designed to provide estimates 

for a single rare population. Waksberg (1973) carried out an 

early theoretical assessment of the value of disproportionate 

stratification for this case. Subsequent papers on this topic 

include those by Kalton and Anderson (1986) and Kalton 

(1993a, 2003). The theoretical results show that three main 

factors must be considered in determining the effectiveness 

of disproportionate stratification for sampling a single rare 

population: the prevalence rate in each stratum, the 

proportion of the rare population in each stratum, and the 

ratio of the full cost of data collection for members of the 

rare population to the screening cost involved in identifying 

members of that population. If it is assumed that (1) the 

element variances for the rare population are the same 

across strata and (2) the costs of data collection for members 

of the rare and non-rare populations are the same across 

strata, then, with simple random sampling within strata, the 

optimum sampling fraction in stratum h for minimizing the 

variance of an estimated mean for the rare population, 

subject to a fixed total budget, is given by 

( 1) 1
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where hP  is the proportion of the units in stratum h that are 

members of the rare population and c is the ratio of the data 

collection cost for a sampled member of the rare population 

to the cost for a member of the non-rare population (Kalton 

1993a). The following formula provides the ratio of the 

variance of the sample mean with the optimum dispro-

portionate stratified sampling fractions to that with a 

proportionate stratified sample of the same total cost: 
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where hA  is the proportion of the rare population in stratum 

h and P is the prevalence of the rare population in the full 

population.  

In general, the variability in the optimum sampling 

fractions across the strata, and the gains in precision for the 

sample mean, decline as c increases. Thus, if the main 

survey data collection cost is high – as, for instance, when 

the survey involves an expensive medical examination – or 

if the screening cost is very low, then disproportionate 

stratification may yield only minor gains in precision.  

When the main data collection cost adds nothing to the 

screening cost, the ratio of main data collection cost to 

screening cost will be 1.c =  In this limiting situation, the 

formulas given above simplify to h hf P∝  and R =  
2( ) ,h hA WΣ  where hW  is the proportion of the total 

population in stratum h. These simple formulas provide a 

useful indication of the maximum variation in optimum 

sampling fractions and the maximum gains in precision that 

can be achieved. The square root function in the optimum 

sampling fraction formula makes clear that the prevalences 

in the strata must vary a good deal if the sampling fractions 

are to differ appreciably from a proportionate allocation. For 

example, even if the prevalence in stratum A is four times as 

large as that in stratum B, the optimum sampling fraction in 

stratum A is only twice as large as that in stratum B. The 

gains in precision (1 )R−  are large when hA  is large when 

hW  is small and vice versa. With only two strata, a stratum 

with a prevalence five times as large as the overall 

prevalence (i.e., /hP P = 5) will yield gains in precision of 
25 percent or more ( (1 )R− ≥ 0.25) only if that stratum 
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includes at least 60 percent of the rare population (Kalton 

2003, Table 1). 

In summary, while generally useful, disproportionate 

stratification will yield substantial gains in efficiency only if 

three conditions hold: (1) the rare population must be much 

more prevalent in the oversampled strata; (2) the over-

sampled strata must contain a high proportion of the rare 

population; and (3) the cost of the main data collection per 

sampled unit must not be high. In many cases, not all of 

these three conditions can be met, in which case the gains 

will be modest.  

Furthermore, the results presented above are based on the 

assumption that the true prevalence of the rare population in 

each stratum is known, whereas in practice it will be out of 

date (for example, based on the last census) or will perhaps 

simply have been guesstimated. Errors in the prevalence 

estimates will reduce the precision gains achieved with 

disproportionate stratification and could even result in a loss 

of precision. A major overestimation of the prevalence of 

the rare population, and hence of the optimum sampling 

fraction, in the high-density stratum can result in a serious 

loss of precision for the survey estimates. It is therefore 

often preferable to adopt a conservative strategy, that is, to 

adopt a somewhat less disproportionate allocation, one that 

moves in the direction of a proportionate allocation.   
3.2.2 Applications  
When area sampling is used, data available from the last 

census and other sources can be used to allocate the area 

clusters to strata based on their prevalence estimates for the 

rare population. See Waksberg, Judkins and Massey (1997) 

for a detailed investigation of this approach for over-

sampling various racial/ethnic populations and the low-

income population using U.S. census blocks and block 

groups as clusters. Based on data from the 1990 Census, 

Waksberg and his colleagues found that the approach 

generally worked well for Blacks and Hispanics but not for 

the low-income population. While the low-income popu-

lation did exhibit high concentrations in some blocks and 

block groups, those areas did not cover a high proportion of 

that population.  

When the survey designers have access to a list frame 

with names, the names can be used to construct strata of 

likely members of some racial/ethnic groups. This situation 

arises, for instance, with lists of names and telephone 

numbers and when names are merged onto U.S. Postal 

Service (USPS) Delivery Sequence File addresses (no name 

merge is made in some cases). The allocation to strata can 

be based on surnames only or on a combination of surname 

and first name (and even other names also). Since women 

often adopt their husbands’ surnames, the allocation is 

generally more effective for men than women. Names can 

be reasonably effective for identifying Hispanics, Filipinos, 

Vietnamese, Japanese and Chinese, but not Blacks. A 

number of lists of names associated with different 

racial/ethnic groups have been compiled, such as the list of 

Spanish names compiled by the U.S. Census Bureau for the 

1990s (Word and Perkins 1996). Several commercial 

vendors have developed complex algorithms to perform 

racial/ethnic classifications based on names (see Fiscella 

and Fremont 2006 for further details). The use of names in 

identifying race and ethnicity has been of considerable 

interest to epidemiologists and demographers, who have 

conducted a number of evaluations of this method (e.g., 

Lauderdale and Kestenbaum 2000; Elliott, Morrison, 

Fremont, McCaffrey, Pantoja and Lurie 2009). They often 

assess the effectiveness of the method in terms of positive 

predictive value and sensitivity, which are the equivalents of 

prevalence and the proportion of members of the domain 

who are identified as such by the instrument used for the 

classification. In the sampling context, besides limitations in 

the instrument, researchers also need to take into account 

that sometimes names are not available and that some 

available names may be incorrect (for example, with 

address-based sampling, the names may be out-of-date, 

because the original family has moved out and a new family 

has moved into an address). These additional considerations 

serve to reduce the effectiveness of the name stratification, 

and depending on the particular circumstances, the 

reduction in effectiveness may be sizable.  

As with stratification in general, the stratification factors 

used for sampling rare populations do not have to be 

restricted to objective measures. They can equally be 

subjective classifications. The only consideration is how 

well they serve the needs of the stratification (see Kish 

1965b, pages 412-415, for an example of the effectiveness 

of the use of listers’ rapid classifications of dwellings into 

low, medium or high socio-economic status for dispropor-

tionate stratification). Elliott, McCaffrey, Perlman, Marshall 

and Hambarsoomians (2009) describe an effective applica-

tion of subjective stratification for sampling Cambodian 

immigrants in Long Beach, California. A local community 

expert rated all individual residences in sampled blocks as 

likely or unlikely to contain Cambodian households, based 

on externally observable cultural characteristics such as 

footwear outside the door and Buddhist altars. The 

residences allocated to the “likely” stratum (approximately 

20 percent) were then sampled at four times the rate than the 

rest. 

Sometimes, when the survey is concerned with pro-

ducing estimates only for a very rare population, dispro-

portionate stratification may still require an excessive 

amount of screening. In that circumstance, it may be 

necessary to sample from the strata where the prevalence is 
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highest, dropping the other strata and accepting some degree 

of noncoverage (or redefining the survey population to 

comprise only members of the rare population in the strata 

that were sampled). The Hispanic Health and Nutrition 

Examination Survey of 1982-84 (HHANES) provides an 

illustration. For its samples of Mexican Americans in the 

Southwest and Puerto Ricans in the New York City area, the 

HHANES sampled only from counties with large numbers 

and/or percentages of Hispanics, based on 1980 Census 

counts (Gonzalez, Ezzati, White, Massey, Lago and 

Waksberg 1985). 

As another example of this approach, Hedges (1979) 

describes a procedure for sampling a minority population 

that is more concentrated in some geographical districts, 

such as census enumeration districts. In this procedure, the 

districts are listed in order of their prevalence of members of 

the rare population (obtained, say, from the last census), and 

then the survey designers produce Lorenz curves of the 

cumulative distribution of rare population prevalence and 

the cumulative distribution of the proportions of rare popu-

lation members covered. With the cumulative prevalence 

declining as the cumulative coverage increases, the survey 

designers can use these distributions to select the combi-

nation of prevalence and proportion covered that best fulfills 

their requirements. The issue then to be faced is whether to 

make inferences to the covered population, or whether to 

make inferences to the full population by applying popu-

lation weighting adjustments in an attempt to address the 

noncoverage bias. 

When a domain is very rare but a portion of it is heavily 

concentrated in a stratum, researchers sometimes sample 

that stratum at a rate much higher than the optimum in order 

to generate a sizable number of cases. Although this 

approach may produce a large sample of the rare 

population, the effective sample size (i.e., the sample size 

divided by the design effect) will be smaller than if the 

optimum sampling fractions had been used. Thus, from the 

perspective of the standard survey design-based mode of 

inference, this approach is not appropriate. However, the 

researchers using this approach often argue for a model-

based mode of inference in which the sampling weights are 

ignored. In my view, ignoring the sampling weights is 

problematic. However, discussion of this issue is outside the 

scope of this paper.  
3.3 Two-phase sampling  
The screening approach treated in Sections 3.1 and 3.2 

assumes that identification of rare population members is 

relatively easy. When accurate identification is expensive, a 

two-phase design can be useful, starting with an imperfect 

screening classification at the first phase, to be followed up 

with accurate identification for a disproportionate stratified 

subsample at the second phase. Whether the two-phase 

approach is cost-effective depends in part on the relative 

costs of the imperfect classification and accurate identifica-

tion: since the imperfect classifications use up some of the 

study’s resources, they must be much less expensive than 

the accurate identification. Deming (1977) suggests that the 

ratio of the per-unit costs of the second- to the first-phase 

data collections should be at least 6:1. Also, the imperfect 

classification must be reasonably effective in order to gain 

major benefits from a second-phase disproportionate 

stratification. 

Two- or even three-phase sampling can often be useful in 

medical surveys of persons with specific health conditions. 

The first phase of the survey often consists of a screening 

questionnaire administered by survey interviewers, and the 

second phase is generally conducted by clinicians, often in a 

medical center. As one example, in a survey of epilepsy in 

Copiah County, Mississippi, Haerer, Anderson and 

Schoenberg (1986) first had survey interviewers administer 

to all households in the county a questionnaire that had been 

pretested to ensure that it had a high level of sensitivity for 

detecting persons with epilepsy. To avoid false negatives at 

this first phase, a broad screening net was used in 

identifying persons who would continue to the second 

phase. All those so identified were the subjects for the 

second phase of the survey, which consisted of brief 

neurological examinations conducted by a team of four 

senior neurologists in a public health clinic. 

A second example illustrates the use of another survey to 

serve as the first-phase data collection for studying a rare 

domain. In this case, the Health and Retirement Study 

(HRS) was used as the first phase for a study of dementia 

and other cognitive impairment in adults aged 70 or older. 

The HRS collects a wide range of measures on sample 

respondents, including a battery of cognitive measures. 

Using these measures, the HRS respondents were allocated 

to five cognitive strata, with a disproportionate stratified 

sample being selected for the second phase. The expensive 

second-phase data collection consisted of a 3- to 4-hour 

structured in-home assessment by a nurse and neuro-

psychology technician. The results of the assessment were 

then evaluated by a geropsychiatrist, a neurologist and a 

cognitive neuroscientist to assign a preliminary diagnosis 

for cognitive status, which was then reassessed in the light 

of data in the person’s medical records (Langa, Plassman, 

Wallace, et al. 2005). 

A third example is a three-phase design that was used in 

a pilot study to identify persons who would qualify for 

disability benefits from the U.S. Social Security Administra-

tion if they were to apply for them (Maffeo, Frey and Kalton 

2000). At the first phase, a knowledgeable household 

respondent was asked to provide information about the 
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disability beneficiary status and impairment status of all 

adults aged 18 to 69 years in the household. At the second 

phase, all those classified into a stratum of severely disabled 

nonbeneficiaries and samples of the other strata were 

interviewed in person and were then reclassified as 

necessary into likely disability strata for the third phase. At 

the third phase, a disproportionate stratified sample of 

persons was selected to undergo medical examinations in 

mobile examination centers. 

A fairly common practice with two-phase designs is to 

take no second- (or third-) phase sample from the stratum of 

those classified as nonmembers of the rare domain based on 

their responses at the previous phase. The proportion of the 

population in that stratum is usually very high, and the 

prevalence of the rare domain in it is very low (indeed, as in 

the Haerer, Anderson and Schoenberg (1986) study, the 

stratum is often conservatively defined with the aim of 

avoiding the inclusion of those who might possibly be 

members of the rare domain). As a result, a moderate-sized 

sample from this stratum will yield almost no members of 

the rare domain. However, the cut-off strategy of taking no 

sample from this stratum is risky. If the prevalence of the 

rare domain in this large stratum is more than minimal, a 

substantial proportion of the domain may go unrepresented 

in the final sample.  
3.4 Multiple frames  
Sometimes sampling frames exist that are more targeted 

on a rare population than a general frame, but they cover 

only part of the rare population. In this situation, it can be 

efficient to select the sample from more than one frame. For 

example, in the common case of oversampling ethnic 

minorities, there is sometimes a list frame available. The 

persons on the list can be classified based on their names as 

being likely to belong to a given ethnic group (e.g., Chinese, 

Korean, Pacific Islanders, Vietnamese) to create a second, 

incomplete sampling frame from which to sample, in 

addition to a more complete frame that has a lower 

prevalence of the rare population (see, e.g., Elliott et al. 

2008; Flores Cervantes and Kalton 2008). As with 

disproportionate stratification (Section 3.2), major benefits 

derive from this approach only when the second frame has a 

high prevalence and covers a sizable fraction of the rare 

population. See Lohr (2009) for a review of the issues 

involved in sampling from multiple frames. 

With multiple frames, some members of the rare 

population may be included on several frames, in which 

case they may have multiple routes of being selected into 

the sample. There are three broad approaches for addressing 

these multiplicities (Anderson and Kalton 1990; Kalton and 

Anderson 1986). When all the frames are list frames, as 

sometimes occurs in health studies, it may be possible to 

combine the frames into a single unduplicated list; however, 

this can often involve difficult record linkage problems. An 

alternative approach is to make the frames non-overlapping 

by using a unique identification rule that associates each 

member of the rare population with only one of the frames, 

treating the listings on the other frames as blanks (Kish 

1965b, pages 388-390). Samples are selected from each of 

the frames without regard to the duplication, but only the 

non-blank sampled listings are accepted for the final sample. 

This approach works best when searches can be made for 

each sampled unit on the other frames; if the frames are put 

in a priority order and the unit is found on a prior frame to 

the one from which the selection was made, the sampled 

listing would be treated as a blank. In this case, the frames 

are strata; the sampled units are treated as subclasses within 

the strata, allowing for the blank listings (Kish 1965b, pages 

132-139), and the analysis follows standard methods. 

The use of the unique identification approach can, 

however, be inefficient when the persons sampled from one 

frame have to be contacted to establish whether their listings 

are to be treated as real or blank for that frame. In this case, 

it is generally more economical to collect the survey data for 

all sampled persons (i.e., to accept the multiple routes of 

selection). There are, however, exceptions, as in the case of 

the National Survey of America’s Families. That survey 

used a combination of an area frame and an RDD telephone 

frame, with the area frame being used to cover only 

households without telephones (Waksberg, Brick et al. 

1997). It proved to be efficient to conduct a quick screening 

exercise with households on the area frame to eliminate 

households with telephones, retaining only the non-

telephone households for the survey. 

There are two general approaches for taking multiple 

routes of selection into account in computing selection 

probabilities (Bankier 1986; Kalton and Anderson 1986). 

One method calculates each sampled unit’s overall selection 

probability across all the frames and uses the inverse of that 

probability as the base weight for the analysis (leading to the 

Horvitz-Thompson estimator). For example, the overall 

selection probability for sampled unit i on two frames is 

1 2 1 2 1 2( ) [1 (1 )(1 )],i i i i i i ip p p p p p p= + − = − − −  where 

fip  is the probability of the unit’s selection from frame 

1,2.f =  A variant is to replace the overall selection 

probability with the expected number of selections (leading 

to the Hansen-Hurwitz estimator), which is easier to 

compute when multiple frames are involved. With only two 

frames, the expected number of selections is 1 2( ).i ip p+  

When selection probabilities are small, there is little 

difference between these two estimators.  

Adjustments to compensate for nonresponse and to 

calibrate sample totals to known population totals can either 

be made to the overall selection probabilities ip  or they can 
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be made to the fip  individually. A problem that can occur 

is that the survey designers do not know whether a 

nonresponding unit sampled from one frame is on another 

frame since that information is only collected in the 

interview. In this situation the ip  for nonresponding units 

cannot be directly computed and must be estimated in some 

fashion. When adjustments are made to the fip  individ-

ually, it is not possible to form nonresponse weighting 

classes that take membership on other frames into account. 

Instead, the designers must assume that, within weighting 

classes, the response rates are the same no matter how many 

frames a unit is on. 

In general, the application of the approach described 

above requires knowledge of each sampled unit’s selection 

probabilities for all of the frames, information that is not 

always available. When selection probabilities are not known 

for frames other than the frame(s) from which the unit is 

sampled (but presence/absence on the frames is known), an 

alternative approach, termed a weight share method by 

Lavallée (1995, 2007), can be used. Unbiased estimates of 

population totals are obtained if the weight for unit i is given 

by i j ij ijw w′= Σ α  where ijα  are any set of constants such 

that  1j ijΣ α =  when summed across the j frames, 

1/ij ijw p′ =  if unit i is selected from frame j with probability 

ijp  and 0ijw′ =  otherwise (Kalton and Brick 1995; 

Lavallée 2007). For many applications, it is reasonable to set 

ij jα = α  and then a good choice of jα  is / ,j j jn nα = Σɶ ɶ  

where jnɶ  is the effective sample size based on some average 

design effect (Chu, Brick and Kalton 1999). 

The second general approach for dealing with multiple 

routes of selection uses the multiple-frame methodology 

introduced by Hartley (1974), and the subject of much 

recent research (see, e.g., Lohr and Rao 2000 and 2006 and 

the references cited in those papers). In the case of two 

frames (A and B), the population can be divided into three 

mutually exclusive subsets labeled ,a A B= ∩  

b A B= ∩  and .ab A B= ∩  The sample can be divided 

into samples from a, b and ab, where the ab sample can be 

separated into respondents sampled from frame A and those 

sampled from frame B. The samples in subsets a and b have 

only one route of selection, and hence are readily handled in 

estimation. Totals for ab could be estimated from the 

sample from frame A or the sample from frame B, say, ˆ AabY  

or ˆ .BabY  The Hartley methodology takes a weighted average 

of these two estimators, ˆ ˆ ˆ(1 ) ,A B

ab ab abY Y Y= θ + − θ  where θ  
is chosen to minimize the variance of ˆ ,abY  taking into 

account that sample sizes and design effects differ between 

the two samples. Note that the dual-frame methodology is 

estimator specific, with different values of θ  for different 
estimators. Skinner (1991), Skinner and Rao (1996) and 

Lohr and Rao (2006) have proposed an alternative, pseudo-

maximum likelihood estimation approach that has the 

attraction of avoiding the problems associated with different 

values of θ  for different variables. Wu and Rao (2009) 
propose a multiplicity-based pseudo empirical likelihood 

approach for multiple frame surveys, including what they 

term a single-frame multiplicity-based approach that 

incorporates Lavallée’s weight share method as described 

above.  

When a dual- or multiple-frame design is used, it is often 

the case that one frame has complete coverage but a low 

prevalence of the rare population (e.g., an area frame) and 

the other frame(s) has a much higher prevalence of the rare 

population but incomplete coverage. Metcalf and Scott 

(2009), for example, combined an area sample with an 

electoral roll sample for the Auckland Diabetes, Heart and 

Health Survey, in which Pacific Islanders, Maoris and older 

people were domains of special interest. The electoral roll 

frame had the advantage of containing information about 

electors’ ages, as well as a special roll on which those who 

considered themselves to be of Maori descent could enroll. 

Furthermore, many people of Pacific descent could likely be 

identified by their names, since Pacific languages use fewer 

letters than English. A disproportionate stratified sample 

was selected from the electoral roll frame to oversample the 

domains of interest, and the sample from the area frame 

brought in people not on the electoral rolls. 

The National Incidence Study of Child Abuse and 

Neglect provides an example of a more complex situation 

(Winglee, Park, Rust, Liu and Shapiro 2007). That survey 

used many frames to increase its overall coverage of abused 

and neglected children. Child Protective Services (CPS) 

agencies in the sampled PSUs were the basis of the main 

sampling frame, while police, hospitals, schools, shelters, 

daycare centers and other agencies were the sources of other 

frames. The samples from CPS agencies were selected from 

list frames, but the samples from other agencies were drawn 

by sampling agencies, constructing rosters of relevant 

professional staff, and sampling staff who acted as 

informants about maltreated children. With these 

procedures, duplication across agencies cannot be 

ascertained, except in the case of CPS agencies and any of 

the other agencies. The design was therefore treated as a 

dual-frame design, with CPS as one frame and the 

combination of the other frames as the second frame (i.e., 

assuming no overlap between the other frames).  
3.5 Network sampling  
Network (or multiplicity) sampling expands on the 

standard screening approach by asking sampled persons (or 

addresses) to also serve as proxy informants to provide the 

screening information for persons who are linked to them in 

a clearly specified way (Sudman et al. 1988; Sirken 2004, 

2005). Relatives such as parents, siblings and children are 
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often used as the basis of linkages. A key requirement is that 

every member of the linkage must know and be willing to 

report the rare population membership statuses of all those 

linked to them. In a pilot study of male Vietnam veterans, 

Rothbart, Fine and Sudman (1982) included aunts and 

uncles as informants as well as parents and siblings, but 

found that aunts and uncles identified far fewer Vietnam 

veterans than expected. This apparent failure of aunts and 

uncles to report some veterans gives rise to a potential 

sampling bias, thus making their inclusion in the linkage 

rules problematic.  

The multiple routes of selection with network sampling 

need to be taken into account in determining selection 

probabilities in a similar manner to that described for 

multiple frames in the previous section. Conceptually, one 

can consider each member of the rare population divided 

into, say, l parts corresponding to the l informants for that 

member; it is then these parts that are sampled for the survey. 

See Lavallée (2007) for some theory behind the technique. 

When network sampling is used in surveys that collect 

data on the characteristics of rare population members, 

direct contact must be made with the members of the rare 

population identified by the initial informant. In this case, 

the informant has to be able to provide contact information 

for the rare population members. The linkage definition may 

be structured to facilitate the follow-up data collection. For 

example, with face-to-face interviewing, the linkage may be 

restricted to relatives living in a defined area close to the 

informant. 

Sudman and Freeman (1988) describe the application of 

network sampling in a telephone survey about access to 

health care, in which an oversample of persons with a 

chronic or serious illness was required. During an initial 

contact with the head of the household, linkages to the 

respondent’s or spouse’s parents, stepparents, siblings, 

grandparents and grandchildren under age 18 were 

identified and data were collected on their health status. The 

use of this network sampling design increased the number 

of chronically or seriously ill adults identified by about one-

third. However, about one in eight of the initial network 

informants with relatives were unable or unwilling to 

provide illness information for their network members, and 

70 percent did not provide complete location information, 

including 28 percent who provided neither name nor 

location information (thus making tracing impossible). The 

use of network sampling led to some false positives 

(persons reported as being chronically or seriously ill by the 

initial respondent but reporting themselves as well). A more 

serious concern is that the survey was not able to provide 

information on false negatives (this would have required 

following up a sample of network members reported to be 

well by the initial informant). 

Some forms of linkage have the added benefit that they 

can incorporate some rare population members who are not 

on the original sampling frame and would therefore 

otherwise be a component of noncoverage. For example, 

Brick (1990) describes a field test for the telephone-based 

National Household Education Survey (NHES) that used 

multiplicity sampling to increase the sample of 14- to 21-

year-olds, with a focus on school drop-outs. In a subsample 

of households, all women aged 28 to 65 were asked to 

provide information for all their 14- to 21-year-old children 

currently living elsewhere. Some of these children lived in 

telephone households and hence had two routes of selection. 

Others lived in non-telephone households and hence would 

not have been covered by the survey; their inclusion via the 

multiplicity design increased the coverage rate in 1989 by 

about 5 percent. However, the response rate for out-of-

household youth was much lower than that for in-household 

youth because of failure to reach the youth, particularly the 

youth living in non-telephone households. 

Tortora, Groves and Peytcheva (2008) provide another 

example, in this case using multiplicity sampling in an 

attempt to cover persons with only mobile telephones via an 

RDD sample of landline telephone numbers. Respondents 

to the RDD survey (itself a panel survey) were asked to 

provide information about parents, siblings and adult 

children living in mobile-only households. The results 

demonstrate some of the general issues with multiplicity 

sampling: knowledge about the mobile-only status of the 

network members depended on the cohesion of the network; 

there was widespread unwillingness to provide mobile 

telephone numbers; and many of those identified as mobile-

only households in fact also had a landline telephone. 

Network sampling has not been widely used in practice 

for surveys of rare population members. Some of the 

limitations of the method are illustrated by the studies 

described above. There is the risk that the sampled 

informant may not accurately report the rare population 

status of other members of the linkage, either deliberately or 

through lack of knowledge. Nonresponse for the main 

survey data collection is another concern. In addition, 

ethical issues can arise when sampled persons are asked 

about the rare population membership of those in their 

linkage when that membership is a sensitive matter. The 

benefits of network sampling are partially offset by the 

increased sampling errors arising from the variable weights 

that the method entails, and by the costs of locating the 

linked rare population members.  
3.6 Location sampling  
Location sampling is widely used to sample populations 

that have no fixed abode for both censuses and surveys: 

nomads may, for example, be sampled at waterpoints when 
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they take their animals for water, and homeless persons may 

be sampled at soup kitchens when they go for food (e.g., 

Kalton 1993a; Ardilly and Le Blanc 2001). A central feature 

of such uses of location sampling is that there is a time 

period involved, resulting in issues of multiplicity (Kalsbeek 

2003). A serious concern with the use of the technique is 

that it fails to cover those who do not visit any of the 

specified locations in the particular time period. 

Location sampling is used to sample rare mobile popu-

lations such as passengers at airports and visitors to a 

museum or national park. In such cases, the question arises 

as to whether the unit of analysis should be the visit or the 

visitor. When the visit is the appropriate unit, no issues of 

multiplicity arise (see, for example, the report on the U.S. 

National Hospital Discharge Survey by DeFrances, Lucas, 

Buie and Golosinskiy 2008). However, when the visitor is 

the unit of analysis, the fact that visitors may make multiple 

visits during the given time period must be taken into 

account (Kalton 1991; Sudman and Kalton 1986). One 

approach is to treat visits as eligible only if they are the first 

visits made during the time period for the survey. Another 

approach is to make multiplicity adjustments to the weights 

in the analysis; however, determining the number of visits 

made is problematic because some visits will occur after the 

sampled visit. 

Location sampling has also been used for sampling a 

variety of rare – often very rare – populations that tend to 

congregate in certain places. For example, Kanouse, Berry 

and Duan (1999) employed the technique to sample street 

prostitutes in Los Angeles County by sampling locations 

where street prostitution was known to occur, and by 

sampling time periods (days and shifts within days). Loca-

tion (center) sampling has also been used to sample legal 

and illegal immigrants in Italy (Meccati 2004). For a 2002 

survey of the immigrant population of Milan, 13 types of 

centers were identified, ranging from centers that provide 

partial lists from administrative sources (e.g., legal and work 

centers, language courses), centers that have counts of those 

attending (e.g., welfare service centers, cultural asso-

ciations), to centers with no frame information (e.g., malls, 

ethnic shops). 

Location sampling has often been used to sample men 

who have sex with men, with the locations being venues 

that such men frequent, such as gay bars, bathhouses and 

bookstores (Kalton 1993b, MacKellar, Valleroy, Karon, 

Lemp and Janssen 1996). Based on a cross-sectional 

telephone survey, Xia, Tholandi, Osmond, Pollack, Zhou, 

Ruiz and Catania (2006) found that men who visited gay 

venues more frequently had higher rates of high-risk sexual 

behaviors and also that the rates of high-risk behaviors 

varied by venue. These findings draw attention to the 

difficulty of generating a representative sample by location 

sampling. 

McKenzie and Mistiaen (2009) carried out an experiment 

to compare location (intercept) sampling with both area 

sampling and snowball techniques, for sampling Brazilians 

of Japanese descent (Nikkei) in Sao Paulo and Parana. The 

locations included places where the Nikkei often went (e.g., 

a sports club, a metro station, grocery stores and a Japanese 

cultural club) and events (e.g., a Japanese film and a 

Japanese food festival). Based on this experiment, they 

conclude that location sampling (and snowball sampling) 

oversampled persons more closely connected with the 

Nikkei community and thus did not produce representative 

samples. This not-unexpected finding highlights the concern 

about the use of location sampling for sampling rare 

populations in general, although not for sampling visits to 

specified sites.  
3.7 Accumulating or retaining samples over time  
When survey data collection is repeated over time, 

survey designers can take advantage of that feature in 

sampling rare populations (Kish 1999). An important 

distinction to be made is that between repeated and panel 

surveys. Samples of rare population members can readily be 

accumulated over time in repeated surveys. For example, 

the U.S. National Health Interview Survey is conducted on a 

weekly basis with nationally representative samples; sam-

ples of rare populations can be accumulated over one or 

more years until a sufficient sample size is achieved (U.S. 

National Center for Health Statistics 2009a). With accumu-

lation over time, the estimates produced are period, rather 

than point-in-time, estimates that can be difficult to interpret 

when the characteristics of analytic interest vary markedly 

over time (Citro and Kalton 2007). For example, how is a 3-

year period poverty rate for a rare minority population to be 

interpreted when the poverty rate has varied a great deal 

over the period? 

In considering the sampling of rare populations in panel 

surveys, it is important to distinguish between rare popu-

lations that are defined by static versus non-static charac-

teristics. No accumulation over time can be achieved in 

panel surveys for rare populations defined by static charac-

teristics such a race/ethnicity. However, if a sample of a 

static rare population is taken at one point in time, it can be 

useful to follow that sample in a panel to study that 

population’s characteristics at later time points, possibly 

with supplementary samples added to represent those who 

entered that population after the original sample was 

selected. Fecso, Baskin, Chu, Gray, Kalton and Phelps 

(2007) describe how this approach has been applied in 

sampling U.S. scientists and engineers over a decade. For 

the decade of the 1990s, the National Survey of College 

Graduates (NSCG) was conducted in 1993 with a stratified 

sample of college graduates selected from the 1990 Census 

of Population long-form sample records. Those found to be 
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scientists or engineers were then resurveyed in the NSCG in 

1995, 1997 and 1999. To represent new entrants to the 

target population, another survey – the Survey of Recent 

College Graduates – was conducted in the same years as the 

NSCG. A subsample of the recent college graduates was 

added in to the next round of the NSCG panel on each 

occasion. 

Panel surveys can be used to accumulate samples of non-

static rare populations, especially persons experiencing an 

event such as a birth or a divorce. The U.S. National 

Children’s Study, for instance, plans to follow a large 

sample of eligible women of child-bearing age over a period 

of about four years, enrolling those who become pregnant in 

the main study, a longitudinal study that will follow the 

children through to age 21 (National Children’s Study 2007, 

Michael and O’Muircheartaigh 2008). 

Finally, a large sample can be recruited into a panel and 

provide data that will identify members of a variety of rare 

populations that may be of future interest. They are then 

followed in the panel and, based on their rare population 

memberships, included in the samples for the surveys for 

which they qualify. Körner and Nimmergut (2004) describe 

a German “access panel” that could be used in this way, and 

there are now several probability-based Web panels that can 

serve this purpose (Callegaro and DiSogra 2008). However, 

a serious concern with such panels is the low response rates 

that are generally achieved. 

 
4. Concluding remarks  

This paper has presented a brief overview of the range of 

methods used in sample surveys for sampling and 

oversampling rare populations, primarily those classified by 

Kish as minor domains (the references cited provide more 

details). Although the methods have been discussed 

separately, in practice they are often combined, particularly 

when there are several rare domains of interest. As an 

example, the California Health Interview Survey, conducted 

by telephone, has used a combination of disproportionate 

stratification (oversampling telephone exchanges where the 

prevalence of the Korean and Vietnamese populations of 

interest is higher) and a dual-frame design (RDD methods 

supplemented with a frame of likely Korean and 

Vietnamese names). In many cases, the art of constructing 

an effective probability sample design for a rare population 

is to apply some combination of methods in a creative 

fashion.  

As another example, the Pew Research Center telephone 

survey of Muslim Americans employed three sampling 

methods to sample this very rare population (Pew Research 

Center 2007). One component of the design was a geograph-

ically stratified RDD sample, with disproportionate stratified 

sampling from strata defined in terms of the prevalence of 

Muslim Americans. The stratum with the lowest prevalence 

was treated as a cut-off stratum and excluded. The second 

component was a recontact sample of Muslim Americans 

drawn from Pew’s interview database of recent surveys. The 

third component was an RDD sample selected from a list of 

likely Muslim Americans provided by a commercial 

vendor. To avoid duplicate routes of selection between the 

geographical strata and the commercial vendor list, 

telephone numbers selected from the geographical strata 

were matched against the commercial vendor list and 

dropped from the geographical strata sample if a match was 

found. 

Not only are the various sampling techniques often used 

in combination in sample designs for rare populations, but 

several of the techniques are interrelated. For example, 

multiple frames can be treated by unique identification (see 

Section 3.4), which in effect is simply disproportionate 

stratification. Whereas the whole population is classified 

into strata for disproportionate stratification, the same 

approach is adopted with two-phase sampling, but the 

classification into strata is applied only to members of the 

first-phase sample. The theory of network sampling is 

similar to that of multiple-frame sampling, when the latter 

technique uses inverse overall selection probabilities as 

weights in the analysis. These interrelationships help to 

explain the similarities in the theoretical underpinnings of 

the techniques. 
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A standardization of randomized response strategies 
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Abstract 

Randomized response strategies, which have originally been developed as statistical methods to reduce nonresponse as well 

as untruthful answering, can also be applied in the field of statistical disclosure control for public use microdata files. In this 

paper a standardization of randomized response techniques for the estimation of proportions of identifying or sensitive 

attributes is presented. The statistical properties of the standardized estimator are derived for general probability sampling. 

In order to analyse the effect of different choices of the method’s implicit “design parameters” on the performance of the 

estimator we have to include measures of privacy protection in our considerations. These yield variance-optimum design 

parameters given a certain level of privacy protection. To this end the variables have to be classified into different categories 

of sensitivity. A real-data example applies the technique in a survey on academic cheating behaviour. 
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1. Introduction 
 

The occurence of nonresponse and the unwillingness to 

provide the true answers are natural in survey sampling. 

They may result in an estimator of population parameters, 

which has a bias of unknown magnitude and a high 

variance. A responsible user therefore cannot ignore the 

presence of nonresponse and untruthful answering.  

Let U  be the universe of N  population units and AU  be 

a subset of AN  elements, that belong to a class A  of a 

categorial variable under study. Moreover let c

AU  be the 

group of c

AN  elements, that do not belong to this class 

( ,cA AU U U= ∪ 0c

A AU U∩ = , ).c

A AN N N= +  Let  

1 if unit ,

0 otherwise

A

i

i U
x

∈
= 


 

( 1 2 )i N= , , ...,  and the parameter of interest be the 

relative size Aπ  of subpopulation :AU  

iU A
A

x N

N N
π = =

∑
 (1) 

( U ix∑  is abbreviated notation for ).i U ix∈∑  In a probability 

sample s  (see for instance: Särndal, Swensson and 

Wretman 1992, page 8f) an estimator of Aπ  can be 

calculated from the Horvitz-Thompson estimator of AN  by  

dir 1
ˆ i
A s

i

x

N
π = ⋅

π
∑  (2) 

( 0iπ >  is the probability that unit i  will be included in the 

sample), if the question “Are you a member of group ?AU ” 

(or an equivalent question) is asked directly (dir). This 

estimator is unbiased, if all ix ’s ( 1 2 )i n= , , ...,  are 

observed truthfully. In the presence of unit or item 

nonresponse with respect to a variable under study the 

sample s  is divided into a “response set” r s⊂  of size rn  

and a “missing set” m s⊂  of size mn ( ,s r m= ∪  

0r m∩ = , ).r mn n n= +  For variables of a highly 

personal, embarrassing matter (like drug addiction, diseases, 

sexual behaviour, tax evasion, alcoholism, domestic 

violence or involvement in crimes) r  is furthermore 

divided into a set t  of tn  sample units, who answer 

truthfully, and a set u  of size ,un  who answer untruthfully 

( ,r t u= ∪ 0t u∩ = , ).r t un n n= +  Estimator (2) must 

then be rewritten as:  

dir 1
ˆ i i i
A t u m

i i i

x x x

N

 
π = ⋅ + + . 

π π π 
∑ ∑ ∑  (3) 

Evidently the elements of set u  cannot be identified and 

the ix ’s of m  are not observable. This imposes errors of 

measurement and nonreponse on the estimation. Therefore 

everything should be done to keep the untruthful answering 

rate as well as the nonresponse rate as low as possible.  

Survey design features, which clearly affect both the 

quantity and the quality of the information asked from the 

respondents (see for instance: Groves, Fowler, Couper, 

Lepkowski, Singer and Tourangeau 2004, Section 6.7), are 

strongly related to the sample units’ concerns about “data 

confidentiality” and “perceived protection of privacy”. The 

first term refers to the respondents’ desire to keep replies out 

of hands of uninvolved persons, whereas the second refers 

to the wish to withhold information from absolutely 

anybody. Singer, Mathiowetz and Couper (1993) and 

Singer, van Hoewyk and Neugebauer (2003) report on two 

successive U.S. population surveys, that the higher these 

concerns are the lower is the probability of the respondent’s 

participation in the survey (page 470ff and page 375ff).  



144 Quatember: A standardization of randomized response strategies 

 

 

Statistics Canada, Catalogue No. 12-001-X 

What can statisticians contribute to this important field of 

research? For awkward questions the use of randomized 

response strategies at the survey’s design stage may reduce 

the rates of nonresponse and of untruthful answering due to 

a perceived increase of privacy protection. A common 

characteristic of these methods is that instead of the direct 

questioning on the sensitive subject a questioning design is 

used, which does not enable the data collector to identify the 

(randomly selected) question on which the respondent has 

given the answer, although it does still allow to estimate the 

parameter under study. The idea is to reduce in this way the 

individuals’ fear of an embarrassing “outing” to make sure 

that the responding person is willing to cooperate. To 

achieve this goal the respondent clearly has to understand 

how the questioning design does protect his or her privacy 

(cf. Landsheer, van der Heijden and van Gils 1999, page 

6ff).  

Pioneering work in this field was published by Warner 

(1965). In his questioning design each respondent has to 

answer randomly either with probability 1p  the question 

“Are you a member of group ?AU ” or with probability 

2 11p p= −  the alternative “Are you a member of group 

?cAU ” 1(0 1).p< <  Since then various randomized 

response techniques with differing randomization devices 

have been proposed (for a review see: Chaudhuri and 

Mukerjee 1987, Nathan 1988 or Tracy and Mangat 1996). 

All of these strategies make use of randomly selected 

questions or answers, though some of them use different 

random devices depending on the respondent’s possession 

or nonpossession of a certain attribute (see for example: 

Kuk 1990; Mangat 1994; Kim and Warde 2005).  

Warner (1971) was the first to note that these techniques 

are also applicable as methods of masking confidential 

micro-data sets to allow their release for public use (cf. ibd., 

page 887). Such microdata sets might contain variables, 

which allow the direct identification of survey units like the 

name or an identification number, but also variables, which 

contain sensitive information on an individual. To protect 

the survey units against disclosure it might not suffice to 

delete the variables, which are directly linked to entities, 

because some of the units might still be identifiable by the 

rest of their records. Statistical disclosure control is nothing 

else but a balancing act between the protection of the 

anonymity of the survey units and the preservation of 

information contained in the data (cf. Skinner, Marsh, 

Openshaw and Wymer 1994). Methods of data masking can 

be classified into three categories (cf. Domingo-Ferrer and 

Mateo-Sanz 2002 or Winkler 2004): (1) The global 

recoding of variables into less detailed categories or larger 

intervals (see for instance: Willenborg and de Waal 1996, 

page 5f) or the local recoding using different grouping 

schemes at unit level (cf. Hua and Pei 2008, page 215f). (2) 

The local suppression of certain variables for survey units 

with a high risk of re-identification by simply setting their 

values at “missing” (cf. Willenborg and de Waal 1996, page 

77). (3) The substitution of true values of a variable by other 

values.  

One of the strategies of the third category is the micro-

aggregation of variables (cf. Defays and Anwar 1998). 

Therein the true variable values are for example sorted by 

size and then divided into (small) groups. Within each group 

data aggregates are released instead of the original 

observations. Another such method is data-swapping, where 

data from units with a high risk of re-identification are 

interchanged with data from another subset of survey units 

(cf. Dalenius and Reiss 1982). Another technique of 

substituting identifying or sensitive information is the 

addition of noise to the observed values, meaning that the 

outcome of a random experiment is added to each datum (cf. 

Dalenius 1977 or Fuller 1993). Finally also the randomized 

response techniques can be used to mask identifying or 

sensitive variables. In this case either the survey units 

already perform the data masking at the survey’s design 

stage or the statistical agency applies the probability 

mechanism of the technique before the release of the 

microdata file (cf. Rosenberg 1980, Kim 1987, Gouweleeuw, 

Kooiman, Willenborg and de Wolf 1998, or van den Hout 

and van der Heijden 2002).  

All methods of statistical disclosure control protect the 

survey units’ privacy by a loss of information, which can be 

seen as the price that has to be paid for it. To be able to 

appropriately adjust the estimation process the user of the 

microdata file has to be informed about the details of the 

masking procedure.  

A new standardization of the techniques of randomized 

response follows in Section 2 of this paper. Furthermore the 

statistical properties of the standardized estimator are derived 

for general probability sampling. In Section 3 the essential 

perspective of privacy protection is described. The question, 

which of the special cases included in the standardization is 

most efficient, is answered in the subsequent Section 4. 

Section 5 contains a real-data example, which demonstrates 

the application of the recommendations of Section 4 in a 

survey on academic cheating behaviour.  

 
2. Standardizing randomized response strategies 
 

Let us formulate the following standardization of the 

randomized response strategies: Each respondent has either 

to answer randomly with probability   
– 1p  the question “Are you a member of group ?AU ”,  

– 2p  the question “Are you a member of group ?cAU ” 

or  
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– 3p  the question “Are you a member of group ?BU ”  

or is instructed just to say  

– “yes” with probability 4p  or  

– “no” with probability 5p   

 
5

1( 1,i ip=∑ = 0 1ip≤ ≤  for 1 2 5).i = , , ...,  The BN  

elements of group BU  are characterized by the possession 

of a completely innocuous attribute B  (for instance a 

season B  of birth), that should not be related to the 

possession or nonpossession of attribute .A  This 

nonsensitive question on membership of group BU  was 

introduced as an alternative to the question on membership 

of AU  by Horvitz, Shah and Simmons (1967) to further 

reduce the respondent’s perception of the sensitivity of the 

procedure. B BN Nπ = /  (with 0 1)B< π <  is the relative 

size of group .B BU π  and the probabilities 1 2 5, , ...,p p p  

are the design parameters of our standardized randomized 

response technique.  

Let  

1 if unit answers “yes”

0 otherwise
i

i
y

,
= 


 

( 1 2 , ).i n= , , ...  For an element i  the probability of a 

“yes”-answer with respect to the randomized response 

questioning design R  is for given :x  

1 2

3 4

( 1) (1 )R i i i

B i

P y p x p x

p p a x b

= = ⋅ + ⋅ −

+ ⋅ π + = ⋅ +  (4)
 

with 1 2a p p≡ −  and 2 3 4.Bb p p p≡ + ⋅ π +  Then the 

term  

ˆ i
i

y b
x

a

−
=  

is unbiased for the true value ( 0).ix a ≠  Using these 

“substitutes” for ix  (and assuming full cooperation of the 

respondents) the following theorems apply:   
Theorem 1: For a probability sampling design with 

inclusion probabilities iπ  the following unbiased estimator 

of parameter Aπ  is given:  

ˆ1
ˆ i
A s

i

x

N
π = ⋅ .

π
∑  (5) 

 
Theorem 2: For a probability sampling design P  the 

variance of the standardized estimator ˆ Aπ  (5) is given by  

2 2

1 (1 ) 1
( )ˆ

1 2

i
P A P s U

i i

i

U
i

x b b
V V

N a

xb a

a

   ⋅ −
π = ⋅ + ⋅   π π 

− ⋅ − 
+ ⋅ .π 

∑ ∑

∑  (6)

 

For the proofs of both theorems see the Appendix. The 

first summand within the outer brackets of (6) refers to the 

variance of the Horvitz-Thompson estimator for the total 

U ix∑  for a probability sampling design P  when the 

question on membership of AU  is asked directly. The 

second one can be seen as the price we have to pay in terms 

of accuracy for the privacy protection offered by the 

randomized response questioning design. Apparently this 

variance can be estimated unbiasedly by inserting an 

unbiased estimator ˆ ( / )sP i iV x∑ π  for ( / )sP i iV x∑ π  and 
2/ˆs i ix∑ π  for / .U i ix∑ π  

For simple random sampling without replacement for 

instance estimator (5) is given by  

ˆ
ˆ

y

A

b

a

π −
π =  (7) 

with / ,ˆ sy iy n∑π =  the proportion of “yes”-answers in the 

sample. In this case the variance (6) of the standardized 

estimator ˆ Aπ  is given by  

2

(1 )
( )ˆ

1

1 (1 ) 1 2

A A
A

A

N n
V

n N

b b b a

n aa

 
 
 
 
 

π ⋅ − π −
π = ⋅

−
⋅ − − ⋅ −

+ ⋅ + ⋅ π .
 

(8)

 

This theoretical variance is unbiasedly estimated by  

�

2

(1 )ˆ ˆ
( )ˆ

1

1 (1 ) 1 2
ˆ

A A
A

A

N n
V

n N

b b b a

n aa

π ⋅ − π −
π = ⋅

−
⋅ − − ⋅ − + ⋅ + ⋅ π . 

 
 (9)

 

To be able to calculate ˆ Aπ  at all, the question on 

membership of AU  (or ,cAU  but we will ignore this 

possibility subsequently without loss of generality) must be 

included in the questioning design with 1 0.p >  There is a 

total of 16 combinations of this question with the four other 

questions or answers (see: Table 1). These combinations can 

be described as special cases of our standardized response 

strategy. For example choosing 1 1p =  leads to the direct 

questioning on the subject. If we let 10 1p< <  and 

2 11p p= −  the standardized questioning design turns into 

Warner’s procedure. For 10 1p< <  and 3 11p p= −  one 

gets Horvitz et al.’s technique with known Bπ  (see: 

Greenberg, Abul-Ela, Simmons and Horvitz 1969). (For 

other special cases already published as to the best of our 

knowledge, the reader is referred to the “References”-

column of Table 1).  

The question, that arises directly from these consider-

ations, is how to choose the design parameters of the 

standardized response technique to find out the strategies 

that perform best. We will answer this question in Section 4. 

But for this purpose we have to include the level of privacy 

protection, which results from choosing these parameters 

differently, in our considerations.  
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Table 1 
All special cases of the standardized randomized response 
strategy 
 

Design Questions/Answers References 
 

AU  c
A

U  BU  yes no  

ST1 •      Direct questioning 

ST2 •  •     Warner (1965)1 
ST3 •   •    Greenberg et al. (1969)2 

ST4 •    •    

ST5 •     •   
ST6 •  •  •     

ST7 •  •   •    

ST8 •  •    •  Quatember (2007)3 
ST9 •   •  •    

ST10 •   •   •  Singh, Horn, Singh and Mangat (2003)4 

ST11 •    •  •  Fidler and Kleinknecht (1977)5 
ST12 •  •  •  •    

ST13 •  •  •   •   

ST14 •  •   •  •   
ST15 •   •  •  •   

ST16 •  •  •  •  •   
 

1. A two-stage version was presented by Mangat and Singh (1990)  

2. A two-stage version was presented by Mangat (1992)  

3. This is a one-stage version of Mangat, Singh and Singh (1993)  

4. This is a one-stage version of Singh, Singh, Mangat and Tracy 

(1994)  

5. A two-stage version was presented by Singh, Singh, Mangat and 

Tracy (1995)  

 
3. Privacy protection 

 
To be able to compare the efficiency of questioning 

designs with different design parameters it is apparently 

inevitable to measure the loss of the respondents’ privacy 

induced by these parameters. The following ratios 1λ  and 

0λ  of conditional probabilities may be used for this purpose 

(cf. for example the similar “measures of jeopardy” in 

Leysieffer and Warner 1976, page 650):  

max[ ( ) ( )]

min[ ( ) ( )]

c

i A i A
j c

i A i A

P y j i U P y j i U

P y j i U P y j i U

= | ∈ , = | ∈
λ =

= | ∈ , = | ∈
 (10) 

(1 ; 1 0).j j≤ λ ≤ ∞ = ,  

For 1j =  (10) refers to the privacy protection with 

respect to a “yes”-, for 0j =  with respect to a “no”-

answer. For the standardized questioning design these “λ -

measures” of loss of privacy are given by  

1

max[ ]

min[ ]

a b b

a b b

+ ;
λ =

+ ;
 (11) 

and  

0

max[1 ( ) 1 ]

min[1 ( ) 1 ]

a b b

a b b

− + ; −
λ = .

− + ; −
 (12) 

1 0 1λ = λ =  indicates a totally protected privacy. This 

means that the answer of the responding unit contains 

absolutely no information on the subject under study. This 

applies for 0.a =  The more the λ -measures differ from 

unity, the more information about the characteristic under 

study is contained in the answer on the record. At the same 

time the efficiency of the estimation increases (see below), 

but the individual’s protection against the data collector 

decreases. For the direct questioning design with 1 1,p =  

where no masking of the variable is done at all, these 

measures are given by 1 0 .λ = λ = ∞  

Let the values 1 opt,λ  and 0 opt,λ  be the maximum λ -

values of (11) and (12), that the agency considers to allow 

enough disclosure protection for the records. In the case of 

the strategy’s usage as to avoid nonresponse and untruthful 

answering in surveys we may also model the respondents’ 

willingness to cooperate as a function of perceived privacy 

protection. If the privacy of the respondents is sufficiently 

protected by the randomization device their full cooperation 

is assumed. Exceeding the limits 1 opt,λ  and/or 0 opt,λ  would 

then automatically introduce untruthful answering and 

nonresponse into the survey and therefore set us back to the 

starting point of the problem. Fidler and Kleinknecht (1977) 

showed in their study for design 11ST  (Table 1) containing 

nine variables of very different levels of sensitivity, that 

their choice of the design parameters 1 4( 10 /16,p p= =  

5 3/16)p =  yielded nearly full and truthful response for 

each variable including sexual behaviour (ibd., page 1048). 

Inserting these values in (11) and (12) gives 1 0λ = λ =  

13/ 3.  This finding corresponds in the main with results that 

can be derived from the experiment by Soeken and 

Macready (1982) and with recommendations given by 

Greenberg et al. (1969). Therefore choosing 1 opt,λ  and/or 

0 opt,λ  close to a value of 4 could be a good choice for most 

variables, when the standardized randomized response 

method is used to avoid refusals and untruthful answering of 

respondents in a survey.  

Without loss of generality let us assume subsequently, 

that we will choose the two categories of the variable under 

study in such way, that the membership of AU  is at least as 

sensitive as the membership of 1 opt 0 opt(1c
AU , ,≤ λ ≤ λ ≤  

).∞  From (11) and (12) the terms a  and b  can be 

expressed by the λ -values 1λ  and 0λ . Their sum is given 

by:  

0

1 0

1
1

1
1

a b

−
λ

+ =
−
λ ⋅ λ

 (13) 

with  

1 0

1 0

1 1
1

1
1

b

 ⋅ − λ λ =
−
λ ⋅ λ

 (14) 



Survey Methodology, December 2009 147 
 

 

Statistics Canada, Catalogue No. 12-001-X 

and  

1 0

1 0

1 1
1 1

1
1

a

   − ⋅ −   λ λ   = .
−
λ ⋅ λ

 (15) 

We keep the double ratios on the right of (14) and (15)  

to find easily the limits for 1λ → ∞  and 0λ → ∞  

respectively.  

This means that for a given sampling design P  the 

extent of the term 2( (1 ) / ) (1/ ) (1 2U ib b a b∑⋅ − ⋅ π + − ⋅ −  

/ ) ( / )U i ia a x∑⋅ π  in the variance expression (6) does not 

depend on a single value of the design parameters, but on 

their aggregated effect on the loss of privacy measured by 

1λ  and 0λ . Questioning designs with the same λ -values 

are equally efficient. Designs with larger 1λ  and/or 0λ  are 

less efficient than designs with lower λ ’s.  

 
4. Optimum questioning designs 

 
It does depend on the type of re-identification risk or 

sensitivity of the subject under study which of the special 

cases of the standardized randomized response strategy of 

Table 1 can be most efficient for given λ -measures. 

Strategies 5ST  and 8ST  can never perform best, because 

they do always protect a “no”-answer more than a “yes”.  

For a nonidentifying (or nonsensitive) variable (like for 

instance the season of birth), where 1 opt 0 opt, ,λ = λ = ∞  

applies, only the direct questioning design ( 1ST  of Table 1) 

can achieve the variance-optimum performance (see Table 

2, which shows these values of the design parameters, 

which guarantee the best performance of the estimator ;ˆ Aπ  

to be able to use Table 2 properly the categorial variable 

under study has to be classified according to the following 

categories: 1:C  The variable is not sensitive at all 1 opt( ,λ =  

0 opt );,λ = ∞ 2:C  Only the membership of group AU  is 

sensitive, but not of 1 opt 0 opt( );c
AU , ,λ < λ = ∞ 3:C  The 

membership of both groups AU  and c

AU  is sensitive, but 

not equally 1 opt 0 opt( );, ,λ < λ < ∞ 4:C  The membership of 

AU  and of c

AU  is equally sensitive 1 opt 0 opt( ),, ,λ = λ < ∞  

which shows these values of the design parameters, which 

guarantee the best performance of the estimator ).ˆ Aπ  

Although the other designs can be used for such variables, 

they do unnecessarily protect the privacy of the respondents 

in some way. This has to be paid by a loss of accuracy of the 

estimation of .Aπ  But for 1 1p = ( 1a =  and 0)b =  the 

variance of ˆ Aπ  (5) turns to the common formula of the 

direct questioning with the assumption of full response: 
2( ) 1/ ( / ).ˆ sP A P i iV N V x∑π = ⋅ π  

For a variable, of which only the membership of ,AU  but 

not of c

AU  is sensitive (for instance: AU = set of drug users 

within the last year; c

AU )AU U= −  there is 1 opt 0 opt, ,λ < λ =  

.∞  Calculating (14) and (15) for 11 < λ < ∞  and 

0λ → ∞  gives 1a b= −  and inserting this into (6) leads 

to the following expression for the variance of the estimator:  

2

( )ˆ

1 1

1

P A

i i
P s U U

i i i

V

x xb
V

bN

π =

    
⋅ + ⋅ − .    

π − π π     
∑ ∑ ∑

 
(16)

 

Looking for those values of the design parameters, for 

which the standardized randomized response strategy can 

achieve this variance and for which equations (14) to (15) 

hold, we do find that in this case there is only one solution! 

The only questioning design, that is able to perform 

optimally, is 4ST . Its variance-optimum design parameters 

are given by 1 1 1( 1) /p = λ − λ  and 4 11p p= −  (see Table 

2). This means, that with probability 1 1 1( 1) /p = λ − λ  a 

respondent is asked the question on membership of AU  and 

with the remaining probability he or she is instructed to say 

“yes”. In this way the data collector is only able to conclude 

from a “no”-answer directly on the nonsensitive non-

possession of A  but not from a “yes”-answer on the 

possession of this sensitive or identifying attribute.  

Questioning design 1ST  is not applicable for such 

subjects, because it does not protect the respondent’s 

privacy in case of a “yes”-answer at all. All the other 

procedures protect a “no”-answer more than necessary. 

Therefore they may be used, but they cannot achieve the 

efficiency of 4.ST  

If the membership of both AU  and c

AU  is sensitive, so 

that the variable is sensitive as a whole (for instance: AU =  

set of married people, who had at least one sexual 

intercourse with their partners last week; c

AU ),AU U= −  

1 opt 0 opt, ,λ ≤ λ < ∞  applies. In this case neither the direct 

questioning on the subject nor design 4ST  can be used 

because they are not able to protect both possible answers.  

The other designs are applicable for such topics, but 

Warner’s design cannot achieve the efficiency of the others, 

if 1 opt 0 opt., ,λ < λ  The reason is that this design always 

protects the respondent’s privacy with respect to a “yes”-

answer equally to a “no”-answer. But if 1 opt 0 opt, ,λ = λ  

despite to the claims of some publications in the past (see 

for instance: Greenberg et al. 1969, page 526f, Mangat and 

Singh 1990, page 440, Singh et al. 2003, page 518f) there is 

not one randomized response technique that can perform 

better than Warner’s technique 2ST  with the optimum 

design parameters 1p  and 2p  according to Table 2. For 

7ST  this is only valid for 1 opt 0 opt., ,λ < λ  Therefore 7ST  

is the perfect supplement of 2,ST  for which the very 

opposite is true.  
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Table 2 
Optimum design parameters for given 1λ  and 0λ  and different types of sensitivity of the variable under study 
 

Questioning design (Subject category) Variance-optimum design parameters 

1ST  1( )C  1 1p =  

2ST  4( )C  1

1
1 1

,p
λ
λ +

= 2 11p p= −  

3ST  3 4( )C C,  0

1 0

1

2
,B

λ −
λ +λ −

π = 1 0

1 0

( 1) ( 1)

1 1
,p

λ − ⋅ λ −
λ ⋅λ −

= 3 11p p= −  

4ST  2( )C  1

1

1

1 ,p
λ −
λ

= 4 11p p= −  

6ST  4( )C  0 5,Bπ = . 1:p
1 1

1 1

1

11 1
,p

λ − λ
λ + λ +

< < 1

1

1

2 1 1
,p p

λ −
λ +

= −  

3 1 21p p p= − −  

6ST  3( )C  
Bπ :

0

1 0

1

2
1,B

λ −
λ +λ −

< π <  

1 0 1 0

1 0 1 0

( 1) ( 1) ( 1) ( 1) (1 )

1 1 ( 1) (2 1)
,B B

B

p
λ − ⋅ λ − λ − ⋅π − λ − ⋅ −π
λ ⋅λ − λ ⋅λ − ⋅ π −

= +  

1 0

1 0

( 1) ( 1)

2 1 1
,p p

λ − ⋅ λ −
λ ⋅λ −

= − 3 1 21p p p= − −  

7ST  3( )C  1 0 0

1 0
1 1

,p
λ ⋅λ −λ
λ ⋅λ −

= 1

1 0

1

2 1
,p

λ −
λ ⋅λ −

= 4 1 21p p p= − −  

9ST  3 4( )C C,  
:Bπ

0

1 0

1

2
0 ,B

λ −
λ +λ −

< π < 1 0

1 0

( 1) ( 1)

1 1
,p

λ − ⋅ λ −
λ ⋅λ −

=  

1

1 0

1

3 ( 1) (1 )
,

B

p
λ −

λ ⋅λ − ⋅ −π
= 4 1 31p p p= − −  

10ST  3 4( )C C,  
:Bπ

0

1 0

1

2
1,B

λ −
λ +λ −

< π < 1 0

1 0

( 1) ( 1)

1 1
,p

λ − ⋅ λ −
λ ⋅λ −

=  

0

1 0

1

3 ( 1)
,

B

p
λ −

λ ⋅λ − ⋅π
= 5 1 31p p p= − −  

11ST  3 4( )C C,  1 0

1 0

( 1) ( 1)

1 1
,p

λ − ⋅ λ −
λ ⋅λ −

= 0

1 0

1

4 1
,p

λ −
λ ⋅λ −

= 5 1 41p p p= − −  

12ST  3 4( )C C,  
1:p

1 0 1 0 0

1 0 1 0

( 1) ( 1)

11 1
,p

λ − ⋅ λ − λ ⋅λ −λ
λ ⋅λ − λ ⋅λ −

< < 1 0

1 0

( 1) ( 1)

2 1 1
,p p

λ − ⋅ λ −
λ ⋅λ −

= −  

:Bπ
0 2 1 0

1 0 2 1 0

1 ( 1)

2 2 ( 1)
0 ,

p

B p

λ − − ⋅ λ ⋅λ −
λ +λ − − ⋅ λ ⋅λ −

< π < 1 2 1 0

1 0

1 ( 1)

3 ( 1) (1 )
,

B

p
p

λ − − ⋅ λ ⋅λ −
λ ⋅λ − ⋅ −π

=  

3
4 1

1 ii
p p

=
= −∑  

13ST  3 4( )C C,  
1:p

1 0 1 0 0

1 0 1 0

( 1) ( 1)

11 1
,p

λ − ⋅ λ − λ ⋅λ −λ
λ ⋅λ − λ ⋅λ −

< < 1 0

1 0

( 1) ( 1)

2 1 1
,p p

λ − ⋅ λ −
λ ⋅λ −

= −  

:Bπ
0 2 1 0

1 0 2 1 0

1 ( 1)

2 2 ( 1)
1,

p

Bp

λ − − ⋅ λ ⋅λ −
λ +λ − − ⋅ λ ⋅λ −

< π < 0 2 1 0

1 0

1 ( 1)

3 ( 1)
,

B

p
p

λ − − ⋅ λ ⋅λ −
λ ⋅λ − ⋅π

=  

3
5 1

1 ii
p p

=
= −∑  

14ST  3 4( )C C,  
1:p

1 0 1 0 0

1 0 1 0

( 1) ( 1)

11 1
,p

λ − ⋅ λ − λ ⋅λ −λ
λ ⋅λ − λ ⋅λ −

< < 1 0

1 0

( 1) ( 1)

2 1 1
,p p

λ − ⋅ λ −
λ ⋅λ −

= −  

0

1 0

1

4 21
,p p

λ −
λ ⋅λ −

= − 5 1 2 41p p p p= − − −  

15ST  3 4( )C C,  :Bπ 0 1,B< π < 1 0

1 0

( 1) ( 1)

1 1
,p

λ − ⋅ λ −
λ ⋅λ −

=  

3:p
1

1 0

1

3 ( 1) (1 )
0 ,

B

p
λ −

λ ⋅λ − ⋅ −π
< < 0

1 0

1

4 31
,Bp p

λ −
λ ⋅λ −

= − ⋅ π  

5 1 3 41p p p p= − − −  

16ST  3 4( )C C,  :Bπ 0 1,B< π < 1:p
1 0 1 0 0

1 0 1 0

( 1) ( 1)

11 1
,p

λ − ⋅ λ − λ ⋅λ −λ
λ ⋅λ − λ ⋅λ −

< <  

1 0

1 0

( 1) ( 1)

2 1 1
,p p

λ − ⋅ λ −
λ ⋅λ −

= − 3:p
1 0 0

1 0
3 11

0 ,p p
λ ⋅λ −λ
λ ⋅λ −

< < −  

0

1 0

1

4 2 31
,Bp p p

λ −
λ ⋅λ −

= − − ⋅ π 4
5 1

1 ii
p p

=
= −∑  
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All others of the designs of Table 1 like 11ST  or 14ST  

can perform equally efficient for 1 opt 0 opt ,, ,λ ≤ λ < ∞  if the 

design parameters are chosen according to the restrictions 

(14) to (15). Among them Greenberg et al.’s strategy with 

known Bπ ( 3)ST  has on the one hand the advantage over 

Warner’s design to be able to perform optimally also if 

1 opt 0 opt., ,λ < λ  On the other hand, however, it has the 

disadvantage (like 6),ST  that the size Bπ  of subpopulation 

BU  is completely predetermined (or at least bounded by an 

interval), if we want to achieve the optimum efficiency. This 

means in practice, that we have to find a subpopulation not 

related to the possession and nonpossession of attribute A  

and of appropriate relative size to be able to achieve the 

estimator’s optimum accuracy. In principle this also applies 

to 9,ST 10,ST 12ST  and 13,ST  but looking at the 

presettings of design parameter ,Bπ  it turns out that 9ST  

and 10ST  as well as 12ST  and 13ST  perfectly 

complement each other so that in fact any subset BU  of the 

population can be used. Finally the most complex special 

cases, 15ST  and 16,ST  of our standardized randomized 

response strategy can both be used with any subpopulation 

BU U⊂  to achieve the best performance.  

 
5. A real-data example 

 
An empirical study was carried out to demonstrate the 

applicability of the strategy as a questioning design. For this 

purpose the population of 80 students, who attended the 

author’s course on “Statistics II” at the Johannes Kepler 

University in Linz (Austria) during the spring term of 2009, 

volunteered for the survey. The subject under study was 

academic cheating behaviour. To this end cheating was 

defined as any behaviour, that was not allowed in the 

written exams (including just looking at the test scripts of 

other students or the use of forbidden documents). It is 

beyond doubt that this subject is sensitive for such a 

population. Moreover during the survey all of the students 

were sitting in one lecture room. The parameter of interest 

was the proportion of the population of students, that fudged 

on at least one of the exams of the previous semester 

(including the exam of the author’s course on “Statistics I”). 

Therefore it is beyond reasonable doubt to assume, that 

direct questioning on the subject would have resulted into a 

substantial underestimation of this proportion. An empirical 

study of Scheers and Dayton (1987) for instance showed 

very small proportions for almost all different cheating 

behaviours asked, when the subject in question was asked 

directly. The use of Greenberg’s randomized response 

strategy 3ST  lead to a significant increase of these 

proportions (ibd., page 68).  

Apparently, for the variable of interest the membership 

of group ,AU  formed by the “cheaters”, is sensitive, but not 

the membership of the complementary set c

AU . Therefore in 

accordance with the recommendations of Section 4 we 

decided to use questioning design 4ST  for our survey and 

to compare it with Warner’s strategy 2.ST  The λ -values 

of loss of privacy were fixed at 1 4λ =  and 0 .λ = ∞  From 

Table 2 we calculated 1p = 0.75 and 4p = 0.25 as the 

variance-optimum design parameters of 4.ST  To achieve 

these probabilities the students were asked to throw two dice 

without showing the result to somebody else and answer in 

a questionnaire the question “Did you cheat at the exams at 

least one time?” only if the sum of the numbers on the dice 

was 5 to 10. Otherwise they should just respond “yes”.  

Previous to the survey some effort was made to explain 

the consequences of this randomization strategy on the 

privacy protection. After giving the answer on the first sheet 

of the questionnaire, only these sheets were collected. 63 out 

of the 80 persons answered “yes”. 20 of 80 students were 

expected to do so, because they received the “say yes-

instruction”. Therefore expected 43 of 60 other students 

should have answered “yes” on the sensitive question. The 

estimator for Aπ  is given by  

4

44

1

ˆ 0 7875 0 25
0 716ˆ

0 75

ST

yST

A

p

p

π − . − .
π = = = . .

.
ɺ  

For this population survey the estimated variance of ˆ Aπ  

is then  

� 4 4 31

1

1
( ) (1 ) 1 181 10ˆ ˆ

ST ST

A A

p
V

n p

−−
π = ⋅ − π = . ⋅ .

⋅
 

After this questioning design was completed, the students 

were asked directly on the second sheet of the questionnaire, 

whether they had truthfully answered the first question or 

not. Only four students said that this was not the case. This 

means, that – if that’s true – it is likely that 4 more students 

did actually cheat. The next question to answer was, if they 

would still cooperate, if 1p  (of 4)ST  would be higher than 

0.75. 32 of 80 students agreed to do so, but the others did 

not. Obviously (at least) four of them did not cooperate 

when 1p  was 0.75. 

Finally, Warner’s technique was applied with the same 

sensitive question as 4ST  before. To come close to a 1λ -

level of 4 – indicating the same loss of privacy as to a “yes”-

answer for both questioning designs –, the sum of the 

numbers of two dice had to be 3 to 9 to apply a design 

parameter 1 0 805.p = . ɺ  The λ -measures of loss of privacy 

for this choice are given by 1 0λ = λ = 4.143, indicating a 

slightly higher loss of privacy compared to 4.ST  With a 

probability of 0 805. ɺ  the students had to answer “Are you a 

member of ?AU ” and with the remaining probability the 

alternative “Are you a member of ?cAU ”.  

Now only 38 of 80 persons gave a “yes”-answer. This 

results in an estimated proportion of “cheaters” of  
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2

22

1 2

ˆ 0 475 0 194
0 4590ˆ

0 61

ST

yST

A

p

p p

π − . − .
π = = = . .
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ɺ
ɺ ɺ

ɺ
 

Additionally to the slight increase of the objective loss of 

privacy there is another reasonable explanation for this 

significantly lower result. Although 1λ  did not change that 

much, some test persons must have been irritated by the 

raise of 1p  up to 0 805. ɺ  after being asked for 4,ST  if they 

would still cooperate, if 1p  would be higher than 0.75. Not 

being able to distinguish between the loss of privacy caused 

by different design parameters in different questioning 

designs, some of the “cheaters” did not want to answer 

truthfully again. Just to demonstrate the effect of the 

different questioning designs on the efficiency of the 

estimation process we calculate the estimator of the variance 

of 2:ˆ
ST

Aπ  

� 2 31 1

2
1

(1 )
( ) 5 243 10ˆ

(2 1)

ST

A

p p
V

n p

−⋅ −
π = = . ⋅ .

⋅ −
 

The reason for this considerable increase of the estimated 

variance is, that Warner’s strategy does protect a “no”-

answer always in the same way as a “yes”. Since in our case 

a “no”-answer does not have to be protected at all, this 

unnecessary protection has to be paid in terms of accuracy.  

 
6. Summary 

 
Randomized response strategies have originally been 

developed to reduce the nonreponse as well as the untruthful 

answering rate for sensitive subjects in sample surveys, but 

they can be applied as masking techniques for public use 

microdata files as well. The standardization of these 

techniques for the estimation of proportions developed in 

this paper provides an opportunity to derive a general 

formula for the variance of the estimator under probability 

sampling. Different questioning designs, partly published, 

partly – to the best of our knowledge – unpublished up to 

now, can be regarded as special cases of the standardized 

strategy (see Table 1). For the purpose of a comparison of 

the accuracy of these designs it is essential to include the 

levels of privacy protection offered by them in our 

considerations. Doing this by means of the “λ -measures” 

of loss of privacy explicated in Section 3 a completely new 

picture has to be painted in comparison to almost all 

publications in the past as far as the author knows them. It 

turns out that the identifying or sensitive subjects have to be 

classified into different categories in order to find the 

variance-minimum questioning designs for a given privacy 

protection (see Table 2). The first category consists of 

subjects, which are not sensitive at all. The second 

comprises topics, where only the possession but not the 

nonpossession of a certain attribute is embarrassing to the 

respondents. The last category is formed by subjects, which 

are sensitive as a whole.  

For subjects out of the first category it is clear enough 

that no strategy can be more efficient than the direct 

questioning on the subject ( 1ST  of Table 1).  

Concerning topics of the second category there is just 

one design available, that can achieve the minimum 

variance of the estimator. This is the questioning design in 

which each respondent either with probability 1p  has to 

answer the question on membership of the sensitive group 

or with probability 11 p−  is instructed to answer “yes” 

( 4).ST  All the other special cases of the standardized 

strategy protect the interviewee’s privacy not only in case of 

a “yes”-answer like 4ST  does, but also in case of a “no”-

answer. Therefore their performances cannot reach the 

minimum achievable level.  

For subjects out of the third category it is shown, that 

contrary to the claim of other publications, there is not one 

single strategy available that can perform better than 

Warner’s of 1965 as long as the membership of the 

subgroup under investigation is equally sensitive to the 

membership of its complement. A lot of other designs are 

equally efficient as Warner’s but not a single one is more 

efficient.  

For the variables of this category, where the membership 

of one group is sensitive, but not equally sensitive as the 

membership of the complementary one, the situation 

changes dramatically: Compared under the same levels of 

privacy protection Warner’s technique is not able to achieve 

the best achievable performance of the standardized 

randomized design anymore, whereas many other strategies 

can. For some of the designs including the question on 

membership of a nonsensitive subpopulation not related to 

the attribute under study, it is required to find an adequate 

subpopulation of predetermined relative size. Other designs 

can be used with subpopulations of any size and are 

therefore more practicable. Therefore a data collector or 

publisher could select that one of the equally efficient 

designs, that seems to be more easily applicable than the 

others.  

 
Acknowledgements 

 
The author is very grateful to the Associate Editor and 

two referees for their valuable comments and suggestions. 

 

 

 

 

 



Survey Methodology, December 2009 151 
 

 

Statistics Canada, Catalogue No. 12-001-X 

Appendix 

 

Proofs of theorems 1 and 2 
 

Proof of Theorem 1:  

ˆ1
( )ˆ

1 1
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E x

N N

  
π = ⋅ |   π  

 
= ⋅ = ⋅ = π . 

π 

∑

∑ ∑
 

The variance of estimator (5) is given by  
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Because the covariance ( , ) 0ˆ ˆR i jC x x s| = ∀ ,i j≠  for 

the second summand of ( )ˆ AV π  applies  
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For ( )ˆR iV x  we have  
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This completes the proof of Theorem 2.  
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Treatments for link nonresponse in indirect sampling 
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Abstract 
We examine overcoming the overestimation in using generalized weight share method (GWSM) caused by link 
nonresponse in indirect sampling. A few adjustment methods incorporating link nonresponse in using GWSM have been 
constructed for situations both with and without the availability of auxiliary variables. A simulation study on a longitudinal 
survey is presented using some of the adjustment methods we recommend. The simulation results show that these adjusted 
GWSMs perform well in reducing both estimation bias and variance. The advancement in bias reduction is significant. 
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1. Introduction  
Indirect sampling refers to selecting samples from the 

population which is not, but it is related to, the target 
population of interest. Such a sampling scheme is often 
carried out when we do not have sampling frames for the 
target population, but have sampling frames for another 
population which is related to it. We call the latter sampling 
population. For an example in Lavallée (2007), we consider 
the situation where the estimate is concerned with young 
children belonging to families, but we only have a list of 
parents’ names as our sampling frame. Consequently, we 
must first select a sample of parents before we can select the 
sample of children. In this typical indirect sampling 
situation. The sampling population is that of parents while 
the target population is that of children. We note that the 
children of a particular family can be selected through either 
the father or the mother. Figure 1 provides a simple 
illustration for this indirect sampling scheme (Figure 1.2, 
Lavallée 2007). 

There is a sizeable amount of literature concerning 
estimation problems that are associated with indirect 
sampling, a few of which we name here. Initially, estimation 
methods for production of cross-sectional estimates using 
longitudinal household survey are discussed in Ernst (1989). 
This study presents weight share method in the context of 
longitudinal survey and also shows that this method 
provides an unbiased estimator for the total for any 
characteristic in the population of interest. Kalton and Brick 
(1995) conclude that such a method also provides minimal 
variance of estimated population total for some simple 
sampling schemes for the longitudinal household panel 
survey. Lavallée (1995) extends weight share method in a 
completely general context of indirect sampling which 
includes longitudinal survey as its particular example, called 
generalized weight share method (GWSM). This work 
justifies that this weighting scheme provides unbiased 

estimates irrespective of sampling schemes in obtaining a 
sample in the sampling population. As with any other 
weighting scheme, in the process of GWSM implemen-
tation an adjustment for a variety of nonresponse problems 
must be made. Lavallée (2001) provides adjusted GWSM 
incorporating possible total nonresponse problems in 
indirect sampling. In indirect sampling there is another type 
of nonresponse called link nonresponse, termed by Lavallée 
(2001) as “relationship nonresponse,” which is associated 
with a situation where it is impossible to determine, or 
where one has failed to determine, whether or not a unit in 
the sampling population is related to a unit in the target 
population. Lavallée (2001) points out the problem of 
overestimation in using GWSM when link nonresponse 
occurs and leaves finding suitable adjustment of GWSM for 
link nonresponse as a rather open question. This present 
study focuses on developing treatments of estimation bias 
caused by such link nonresponse.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 Indirect sampling of children 
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The rest of this work has been arranged in the following 
sections. Notation and the problem defined are described in 
Section 2. We propose a few modification methods in using 
GWSM incorporating link nonresponse in Section 3. A 
simulation study using a real life data set is presented in 
Section 4 with a few closing remarks in Section 5. We note 
that we show the advances of the new methods provided in 
this paper through a simulation study while other theoretical 
contributions relevant to this problem can be found in 
Lavallée (2002), Deville and Lavallée (2006), and Lavallée 
(2007). 

 
2. Notation and problem  

We use AU  and BU  to denote sampling population and 
target population respectively. Then, AU  is the population 
related to BU  with a known sampling frame. We let 

, ,A As M  and Am  be a selected sample from ,AU  the 
number of units in ,AU  and the number of units in As  
respectively. We use A

jπ  to represent the selection 
probability of thj  unit in AU  with > 0A

jπ  and 

1 .
A A AM

j j m=∑ π =  We also make use of the notation: 
, , ,B B

iM N U  and B

iM  to be the number of units in ,BU  the 
number of clusters in ,BU  the thi  cluster of BU  with 

1 ,N B B

i iU U=∪ =  and the number of units in thi  cluster .BiU   
We define ,j ikl   as an indicator variable of link existence: 

, 1j ikl =  indicates that there is a link between thj  unit in 
AU  and thk  unit in ,BiU  while , 0j ikl =  indicates 

otherwise. We also define ,
B
j iL  as the total number of links 

existing between unit j of AU  and units of ,BiU  i.e., 

1, , .
B
iMB

kj i j ikL l=∑=  Let B

iL  be the total number of links 
existing between units of AU  and units of ,BiU  i.e., 

1 , .
AMB B

ji j iL L=∑=  We denote the value of the characteristics 
for the thk  unit of thi  cluster in population BU  by ,iky  and 
the total of all iky s′  by  .BY  Then, we have 

1 1 .
B
iMB N

i k ikY y= =∑ ∑=  
We let BΩ  denote the clusters in BU  where there is at 

least one unit ik  such that , 1j ikl =  for some thj  unit in ,As  
and we say that it can be identified by units j in ,As  i.e., 
such i satisfies 1 1 , > 0.

BA
iMB M

j ki j ikL l= =∑ ∑=  The number of 
clusters in BΩ  is n. After sampling we relabeled the clusters 
in BΩ  as 1, 2, , .i n= …  We let ikw  refer to the estimation 
weight assigned to thk  unit of thi  cluster, A

iΩ  refer to the 
set of units in AU  that have links to some units in B

iU  with 
,Bi∈Ω  and AΩ  refer to the set of units in AU  that have 

links to some units in ,BΩ  i.e., { | 0}.B
A B

i j ij L∈Ω ,∑Ω = ≠  
We use A

is  to indicate the set of units in As  that have links 
to some units in B

iU  with .Bi∈Ω  We let , ,A A

iT T  and A

im  
denote the number of units in ,AΩ  the number of units in 

,AiΩ  and the number of units in A

is  respectively. Finally, we 
make use of the following three indicators: let jt  be the 
indicator variable of being selected in : 1A

js t =  indicates 

that thj  unit in AU  is in As  and 0jt =  indicates otherwise; 
let L

jt  be the indicator variable of being included in As  for 
units in : 1A L

jtΩ =  indicates that thj  unit in AΩ  is in As  
and 0L

jt =  indicates otherwise; and let ,
L
j it  be the indicator 

variable of being included in A

is  for units in ,: 1A L
i j itΩ =  

indicates that thj  unit in A

iΩ  is in A

is  and , 1L
j it =  indicates 

otherwise.  
Our goal is to estimate the total ,BY  the parameter of our 

interest, for target population BU  which is divided into N 
clusters. In order to do so, we select a sample As  from AU  
with selection probability .Ajπ  Then we identify BΩ  using 

, 0.j ikl ≠  All units of the clusters in BΩ  are surveyed where 

iky  and the set of ,j ikl  are measured.  
By applying the GWSM, an estimation weight ikw  will 

be assigned to each unit k of surveyed cluster i’s. Such 
weights can be chosen in an appropriate manner so that the 
estimator of :BY   

1 1

ˆ
B
iMn

B

ik ik

i k

w yY
= =

=∑ ∑  (1) 

performs well in estimating .BY   
We are interested in estimating the quantity BY  using  

ˆ .BY  According to Horvitz and Thompson (1952), let ikw  be 
inverse of selection probability, ,ikπ  of the thk  individual 
of B

iU  in the target population. Then ˆ BY  gives an unbiased 
estimator for .BY  However, the computation for ikπ  is 
difficult or even impossible in the present case, due to the 
complication in the indirect sampling scheme. Therefore, 
GWSM is introduced to address this issue. For readers’ 
convenience, here we outline the GWSM in computing the 
weights for each cluster that has been observed.   

Step 1: Provide the initial weights ikw′   

1

;
AM

j

ik j ik A
j j

t
w l ,

=

′ =
π

∑  (2) 

 
Step 2: Compute B

iL   

1 1

;
B A
iM M

B

i j ik
k j

L l ,
= =

=∑ ∑  (3) 

 
Step 3: Obtain final weight iw   

1 ;

B
iM

ik
k

i B

i

w

w
L

=

′
=
∑

 (4) 

 
Step 4: Set ik iw w=  for all k in thi  cluster.    
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It follows Theorem in Section 3 of Lavallée (2001) that 

1

1 1

ˆ

A

B
i

M
jB

j i A Mn
j jB

ikB
i ki

t
L

yY
L

,
=

= =

π
=

∑
∑ ∑  (5) 

 
offers an unbiased estimator for BY  provided all links ,j ikl  
can be correctly identified. The estimation weights assigned 
in (5) are 

1
, for all units in cluster when in ;

0 when is not in .

A

ik

M
jB

j i A
j j B

B

i

B

w

t
L

k i i
L

i

,
=

=




π
Ω


 , Ω

∑
(6)

 

A simple example is illustrated in Figure 2. We aim to 
estimate the total BY  linked to the target population .BU  
Suppose that we select the units 1,j =  and 2 from .AU  By 
selecting the unit 1,j =  we survey the units of cluster 1.i =  
Likewise, by selecting the unit 2,j =  we survey the units 
of clusters 1,i =  and 2. We therefore have {1, 2}.BΩ =  For 
each unit k of clusters i of ,BΩ  we calculate the initial 
weights ikw′  in (2), the total number of links existing 
between units of AU  and units of , ,B B

i iU L  and the final 
weights .ikw  Then, according to (5) the resulting estimator 
for BY  is as below (see Lavallée 2007, pages 17-18 for 
more details): 

11
1 2

12 21 22 23
1 2 2 2 2

1 1 1
ˆ

2

1 1 1 1 1 1
.

2 3 3 3

B

A A

A A A A A

yY

y y y y

 
= + 

π π 

 
+ + + + + 

π π π π π 

 

(7)

 

We note that for the estimator with known , ,j ikl  the only 
assumption for unbiasedness is to have 0B

iL >  for all 
clusters i′ s in .BU  That is, every cluster of the target 
population must have at least one link from .AU  We know 
that if some links were missing, then the estimator (5) would 
be biased. When link nonresponse occurs, as indicated in 
Lavallée (2001), B

iL  can not be determined. Traditionally, 
using total links observed to replace this unknown quantity 
results in overestimation on BY  since some link com-
ponents are actually missing in summation .BiL  Our pro-
posed study focus is on just such a problem, and we attempt 
to adjust the estimation weights ikw  by estimating B

iL  so as 
to obtain a better performance of estimation on .BY   
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2 Example of links in indirect sampling 

 
3. Treatments of biased estimation problems  
As indicated in Section 1, the biased estimation using 

GWSM occurs due to link nonresponse problems. In this 
situation, not all of the composition in B

iL  can be identified 
or observed. Although the links between units in As  and 
units in BU  can normally be determined in practice, the 
parts of links outside As  are often difficult or even 
impossible to identify. We say that such units have missing 
links with .BU  Let A A A\ s∆ = Ω  be the set of units with 
possible missing links. Then, 

1 1

.
B B
i i

A A

M M
B

i j ik j ik
k kj s j

L l l, ,
= =∈ ∈∆

= +∑ ∑ ∑ ∑  (8) 

If we carry out the GWSM without taking these missing 
links into account, we use the total of observed ,j ikl  as *B

iL  
instead to compute ˆ BY  using  

0

*

1 1

,
B B
i i

A A

M M
B

i j ik j ik
k kj s j

L l l, ,
= =∈ ∈∆

= +∑ ∑ ∑ ∑  (9) 

where 0
A∆  is a subset of A∆  and only contains the units 

whose links are observed. The cost is overestimation of BY  
in using (5) since  

*.B B

i iL L≥  
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We suggest a few methods for applying GWSM under 
consideration of link nonresponse by estimating .BiL   
3.1 Estimating B

iL  without availability of auxiliary 

variables  
3.1.1 Estimating B

iL  by proportional adjustment for 

each individual cluster (Method 1)  
To address the link nonresponse problem, we focus on 

estimating B

iL  using the known information about the links 
within .As  To compute the weights in (6) using GWSM, we 
only need to estimate B

iL  for those .Bi∈Ω  For any ,Bi∈Ω   

,
1

.
A
iT

B B

i j i
j

L L
=

=∑  (10) 

A general estimator for this total can be expressed as  

, ,
1

ˆ ,
A
iT

B L B

i j i j i
j

L w L
=

=∑  (11) 

where ,
L
j iw  is a random weight that takes the value , 0L

j iw =  
if j is not in the sample .Ais  For each ,Bi∈Ω  we use the 
known link information between A

is  and B

iU  to estimate 
the link information between A

iΩ  and .BiU  The expectation 
of ˆBiL  is  

, ,
1

ˆ( ) ( ) .
A
iT

B L B

i j i j i
j

E L E w L
=

=∑  (12) 

By comparing (10) and (12), it can be observed that ˆBiL  is 
unbiased for B

iL  for any weighting scheme with ,( ) 1L
j iE w =  

for all j.  
First of all, we adopt the Horvitz-Thompson estimator 

(Horvitz & Thompson 1952), also called π  estimator 
(Särndal, Swensson, and Wretman 1991). Note that, by the 
definition of ,A A A

i i isΩ Ω ⊃  for all i. We imitate a procedure 
for estimating the number of links in A

iΩ  using that in .Ais  
The procedure is to select a “sample” A

is  from the 
“population” .AiΩ  Let ,

L
j iπ  be the probability of j (which is 

in A

iΩ ) being included in .Ais  Then, let  

1 , is in ,

0, is in .

L A
L j i i
j i A A

i i

j s
w

j \ s

,
,

 /π
= 

Ω
 (13) 

According to Corollary 3.1 in Cassel, Särndal, and Wretman 
(1977), this weighting scheme provides an unbiased 
estimator for .BiL  We have  

1

ˆ .
A
i

B LT
j i jB

i L
j j i

L t
L

,

= ,

=
π

∑  (14) 

It provides us with an asymptotically unbiased (proof 
follows) estimator of :BY  

1

1 1

1

.

A

B
i

A
i

M
jB

j i A Mn
j jB

ikB LT
i kj i j i

L
j j i

t
L

yY
L t

,
=

= =, ,

= ,

π
=

π

∑
∑ ∑

∑
ɶ  (15) 

In order to show its unbiasedness, we employ Taylor’s 
expansion. According to Corollary 5.1.5 (Fuller 1996), we 
obtain  

2
2

1
2

1 1 1 ˆ ˆ( ) ([ ] )
ˆ ( )

1 ˆ(2 ) ( ).
( )

B B B B

i i i iB BB
i ii

B B

i i pB

i

L L O L L
L LL

L L O n
L

−

= − − + −

= − +

 

It follows that  

1/ 2
2

1 1 ˆlim (2 ) 0.
ˆ ( )

B B

i iB B
i i

p n L L
L L

   
 − − = 
    

  

Therefore, by Theorem 5.2.1 (Fuller 1996), the limiting 
distribution of 1/ 2 ˆ[1/ ]B

in L  is the limiting distribution of 
1/ 2 2 ˆ[1/( ) (2 )].B B B

i i in L L L−  We note that BYɶ  is a function of 
both random variable: ,jt  and random variable: , ;

L
j it  

therefore we denote the expectation of BYɶ  with respect to 

jt  by ( )
jt

E ⋅  and that with respect to ,
L
j it  by 

,
( ).L

j it
E ⋅  Hence, 

asymptotically we have  

2
1 1

1 1

1 1 1

( )

1
2

( )

1

A
i

L
j j i

BA
i

BA
i

j

B

B LTn
j i j iB

t i Lt B
i j j ii

MM
jB B

j i ikA
j kj

Mn M
jB

t j i ikB A
i j ki j

E Y

L t
E E L

L

t
L y

t
E L y

L

,

, ,

= = ,

,
= =

,
= = =

   
 ≈ −   π  


Ωπ  

 
=   π 

∑ ∑

∑ ∑

∑ ∑ ∑

ɶ

 

(16)

 

1 1 1

1

ˆ( ).

BA
i

j

j

Mn M
jB

t j i ikB A
i j ki j

B

t

t
E L y

L

E Y

,
= = =

  
 =    π  

=

∑ ∑ ∑
 

(17)
 

According to Lavallée (1995), ˆ( ) .
j

B B

tE Y Y=  Therefore, 
BYɶ  is an approximately unbiased estimator of .BY  
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Now we need to compute , .
L
j iπ  It is a function of A

jπ  yet 
it depends on how A

is  affects on ,BiU  therefore on .AiΩ  
Such an effect is difficult to track and varies from case to 
case; however, we can give a general estimate of it. The first 
approach we propose in this paper is to estimate selection 
probability, ,

L
j iπ  using the proportion of the units in As  

which take in .AΩ  Namely  

(1) .ˆ
A

L i
j i A

i

m

T
, =π  (18) 

Therefore,  

,(1)
(1)

1 ,

,
1

ˆ
ˆ

.

A
i

A
i

B LT
j i jB

i L
j j i

A m
Bi
j iA

ji

L t
L

T
L

m

=

=

=
π

=

∑

∑

 

(19)

 

and  

,
1(1) (1)

1 1 1 1

,
1

ˆ ,

A

B B
i i

A
i

M
jB

j i A M Mn n
j jB

ik i ikA m
i k i kBi

j iA
ji

t
L

Y y w y
T

L
m

=

= = = =

=

π
= =

∑
∑ ∑ ∑ ∑

∑
 (20) 

with 

1(1)

1

A

A
i

Bm
j i

AA
j ji

i A m
i B

j i

j

L

m
w

T
L

,

=

,
=

π
= .

∑

∑
 (21) 

We revisit the example in Figure 2, assuming that there 
are two link nonresponses that happened between the unit 

3j =  in AU  and the units 1, 2k =  of cluster 2i =  in .BU  
If we use the GWSM without adjustment in (5), the 
resulting estimator for BY  is no longer (7). We have instead 

11 12
1 2 1 2

21 22 23
2 2 2

1 1 1 1 1 1
ˆ

2 2

1 1 1
,

B

A A A A

A A A

y yY

y y y

   
= + + +   

π π π π   

+ + +
π π π

 

(22)

 

which is biased. In order to apply (20), we first compute 
/ .A A

i im T  Then the resulting weights using Method (1) in 
(21) for this example is shown in Table 1. Therefore, this 
modified method provides the estimator: 

11 12
1 2 1 2

21 22 23
2 2 2

1 1 1 1 1 1
ˆ

2 2

1 1 1
,

2 2 2

B

A A A A

A A A

y yY

y y y

   
= + + +   

π π π π   

+ + +
π π π

 

(23)

 

which is less biased than (22). 

Table 1 
Initial weights, total number of responded links, and final weights 
from (21) 
 

i k ′ikw  B
iL  A

im  A
iT  /A A

i im T  (1)
iw  

1 1 11/ Aπ  1 2 2 1 1 21/ 2(1/ 1/ )A Aπ + π  

1 2 21/ Aπ  1 2 2 1 1 21/ 2(1/ 1/ )A Aπ + π  

2 1 0 0 (missing) 1 2 1/2 21/ 2 Aπ  

2 2 21/ Aπ  1 (one link 

is missing) 

1 2 1/2 21/ 2 Aπ  

2 3 0 0 1 2 1/2 21/ 2 Aπ  

 
3.1.2 Estimating B

iL  by overall proportional 

adjustment (Method 2 )  
In the previous approach, the information regarding A

im  
and A

iT  is needed for every i. Suppose we ignore the 
variation of A

iΩ  among all i, then we simply propose that  

,*

1

A B LT
j i jB

i L
j j

L t
L

=

=
π

∑  (24) 

using link information in As  to estimate the link 
information in ,AT  where L

jt  being the indicator variable 
for being in As  from .AΩ  Now we need to compute .Ljπ  
Again it is a function of A

jπ  and yet it depends on the 
complexity of effects of As  on ,BΩ  hence to .AΩ  While 
the computation is difficult and varies from case to case 
without a general form, we can usually give a rough 
estimate of it.  

The second approach we propose in this paper is to 
estimate L

jπ  using the proportion of the units in As  which 
appear in ,AΩ  i.e., * / .L A A

j m Tπ =  It informs us that  

(2)

1

ˆ .
AA m

B B

i j iA
j

T
L L

m
,

=

= ∑  (25) 

For simple random designs with or without stratification, 
(2)ˆB
jL  provides an unbiased estimator for .BiL  For more 

complex designs, it provides a model-based unbiased 
estimator under assumption (A) as follows:  

(A) Suppose that for any cluster i, the average of total 
existing links associated with all units in the sample As  is 
the same as that of existing links associated with all units in 

,AU  i.e., 

1 1 .

A A
m M

B B

j i j i
j j

A A

L L

m T

, ,
= ==
∑ ∑

 (26) 

So, the estimation weights are provided by  
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1(2) (2)

1

, for all units in cluster .

A

A

M
jB

j i AA
j j

ik i A M
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j i j
j

t
L

m
w w k i

T
L t

,
=

,
=

π
= =

∑

∑
 (27) 

It follows that BY  can be estimated by  

1(2) (2)

1 1 1 1

1

ˆ ,

A

B B
i i

A

Bm
j i

AA M Mn n
j jB

ik i ikA m
i k i kB

j i
j

L

m
y w yY

T
L

,

=

= = = =
,

=

π
= =

∑
∑ ∑ ∑ ∑

∑
 (28) 

We recall the example in Figure 2 with two link 
nonresponses that happened between the unit 3j =  in AU  
and the units 1, 2k =  of cluster 2i =  in .BU  In order to 
apply (28), we first compute / .A Am T  For this example, we 
have 2,Am =  and 3.AT =  Then the resulting estimator for 

BY  using the adjustment Method (2) for this example is  

11 12
1 2 1 2

21 22 23
2 2 2

2 1 1 1 1 1 1
ˆ

3 2 2

1 1 1
.

B

A A A A

A A A

y yY

y y y

    
= + + +    

π π π π    


+ + + 

π π π 

 

(29)

 

Therefore, this adjustment made in (28) is different from 
Method (1) for this example.  

We know that (1or 2) (1or 2)ˆ ˆvar( ) var{ ( )}B B AY E Y s= | +  
(1 or 2)ˆ{var( )}.B AE Y s|  The inner expectation and variance 

(conditional on As ) are taken over all possible sets of 
“responding” , ,j ikl  given the sample As  while the outer 
expectation and variance are taken over all possible sample  

.As  Generally, the adjustments made above will not 
eliminate the second term which depends on the 
randomness of , .j ikl   
3.2 Estimating B

iL  with availability of auxiliary 

variables  
3.2.1 Estimating j,ikl  using logistic model  

The estimation methods for B

iL  proposed in Section 3.1 
are simple to apply and do not need additional information. 
However, sometimes the assumption can be violated which 
results in an undesirable estimate. For instance, ,

B
j iL  may 

depend on some characteristics of unit j and cluster i. 
We assume that the probability of a link between a unit 

in sampling population and a unit in target population 
depends on some auxiliary variables through a logistic 
regression model. We may estimate this probability function 
so that the estimation of the quantity of interest in the target 
population is desirable. Let , ,( 1)j ik j ikP P l= =  which is 

affected by some variable vector A
jx  in AU  and B

ikx  
in .BU  

We may fit the logistic model 

log
1

j ik A B
j ik

j ik

P

P

,

,

 
′ ′= +  − 
a x b x  (30) 

using the observed links and their corresponding 
characteristic variables. The unknown parameter vectors a  
and b  can be estimated. Then, for those ,j ikl s′  which can 
not be identified we suggest to impute them with their 
probability estimates:  

ˆˆ

, ˆˆ
ˆ ,

1

A B
j ik

A B
j ik

j ik

e
P

e

′ ′+

′ ′+
=

+

a x b x

a x b x
 (31) 

where ˆˆ( , )a b  is an estimator for ( , ),a b  for instance, we use 
the weighted maximum likelihood (pseudolikelihood) 
estimator. We then have  

0 0

0 0

(3)
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ˆˆ
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ˆ ˆ

.
1

A A A A A

A BB
j iki

A B
j ikA A A A A
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i j i j i

j s j s

M

j i
kj s j s

L L L

e
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e

, ,
∈ ∪∆ ∈Ω ∪∆

′ ′+

, ′ ′+
=∈ ∪∆ ∈Ω ∪∆

= +

= +
+

∑ ∑

∑ ∑ ∑
a x b x

a x b x

 

(32)

 

After replacing B

iL  with (3)ˆB
iL  in (5), (5) provides us with a 

consistent estimator for BY  when the model specified in 
(30) is correct and ˆˆ( , )a b  is consistent. Note that there are 
alternatives for the logistic model, such as logit and 
complementary log-log models. See Draper and Smith 
(1998) for details. Their research also states that the choice 
of which model should be employed is not always clear in 
practice.   
3.2.2 Directly estimating B

iL  use log-linear model  
We consider that there is a variable vector B

ix  which 
affects the value of .BiL  This indicates that the total number 
of links in a cluster only varies according to the 
characteristics of the cluster itself. Using the log-linear 
model, we can propose (33) below:  

log( ) .B T B

i iL = θ x  (33) 

If the fit is reasonable, B

iL  can be estimated directly by 

ˆ(4)ˆ ,
T B

iB

iL eθ= x  (34) 

where θ̂  is an estimator for .θ  When θ̂  is consistent then 
after replacing B

iL  with (4)ˆB
iL  in (5), (5) provides a 

consistent estimator for .BY  We note that (4)ˆB
iL  might be 

non-integer valued, and therefore might have to be rounded 
to the nearest integer value.  
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4. Simulation study  
When the production of cross-sectional estimates at a 

particular point in time after the initial point is also of 
interest in a longitudinal survey design, it becomes a 
practical example of an indirect sampling problem. Since 
the population changes over time, the target population is 
not the same as the initial population which the longitudinal 
sample is selected from. In this section we will use Survey 
of Labour and Income Dynamics (SLID) as an example to 
demonstrate the performance of one of the estimators we 
introduced in Section 3.1.  

The sample design for SLID is detailed in Lavallée 
(1993). Some terminologies we use in this report - such as 
cohabitants, initially-present individuals, and initially-absent 
individuals - follow Lavallée (1995). Initially-absent indi-
viduals in the population are individuals who were not part 
of the population in the year the longitudinal sample was 
selected, but are considered in the later sample; included 
among these are newborns and immigrants. After the initial 
year of selection, the population contains longitudinal 
individuals, initially-present individuals and initially-absent 
individuals. Focusing on the households containing at least 
one longitudinal individual (i.e., longitudinal households), 
initially-present and initially-absent individuals who join 
these households are referred to as cohabitants.  

In this specific example, AU  is the population at the 
initial year, say 0 ,yr  of the longitudinal survey, and BU  is 
the population at any of the following years, say year ,tyr  
after the initial year. The sample As  is all the longitudinal 
individuals. ,j iL  is a binary variable; it values 1 if 
individual j lives in thi  household at ;0tyr  otherwise. B

iL  
is the total number of longitudinal persons and initially-
present cohabitants at 0yr  who lives in thi  household at 

.tyr  
For a longitudinal individual the link would be one to 

one. For cohabitants there is a significant possibility that this 
link will be impossible to identify a few years past the initial 
year, for reasons such as new birth and immigration; further, 
the greater proportion of cohabitants occupying the target 
population, the larger this possibility becomes. For instance, 
in survey panel 3 in SLID, cohabitants represent 7.8 
percents out of 47,377 individuals in the year of 2000 which 
is one year after the initial year. This increases to 13.87 
percent in the year 2002 (3 years later), and 15.22 percent in 
2003 (4 years later). We can see that the link nonresponses 
can not be overlooked in such a significant proportion of 
cohabitants. Due to the availability of observed information, 
we implement the approach of estimating B

iL  by two kinds 
of proportional adjustments, which we proposed in Section 
3.1.1 and 3.1.2. In order to test the performance of the 
estimates obtained by these approaches, we carry out a 

simulation study using SLID data. Cross-sectional esti-
mations for four income variables are of interest for the year 
of 2003. These four variables are: total income before taxes; 
total income after taxes; earnings (includes wages and 
salaries before deductions and self-employment income); 
and wages and salaries before deductions (also called 
employment income). We are interested in the total of the 
population incomes for all these variables. These four 
quantities of interest have been estimated at both the 
national level and the provincial level.  

For a longitudinal survey, the total number of links in 
cluster i are generally not more than the total number of 
individuals in this cluster and not less than the number of 
longitudinal individuals in this cluster. Since B

iT  is 
unknown, we replace B

iT  by B

iM  in (5) in our simulation 
study. 

First, we assume that the links between all units selected 
in the initial year (1999) and all units in the whole 
population in 2003 are correctly specified. Then we 
compute the totals using GWSM. We use it as our 
estimation target, the “truth.” 

Second, we randomly take away 50 percent of the links 
associated with initially-present individuals by setting up at 
random some initially present cohabitants as initially absent 
ones. The number of links taken makes up approximately 
6.3 percent of the total population with which we are 
interested, with a size of 30,224. Without any adjustment, 
we recalculate the estimates using GWSM. We use it as our 
estimation benchmark, the “placebo.” 

Third, we estimate the same quantities using GWSM 
with proportional adjustment approaches, Method (1) and 
(2) in Section 3.1, to see whether the estimates are close 
enough to the “truth” and how much improvement these 
adjustments make.  

This simulation study using SLID data demonstrates that 
the proposed method performs very well in overcoming the 
overestimation problems that arise from link nonresponse.  

We denote  

1mean

1

1
A

A

m
B

j i A
j j

i m
B

j i
j

L

w

L

,
=

,
=

π
=
∑

∑
 (35) 

Then, using Method (1) and (2) in Section 3.1 we 
estimate  BY  by  

(1) mean
mean

1 1

ˆ ,
B
iA Mn

B i
i ikA

i ki

m
Y w y

T= =

=∑ ∑  (36) 

and 
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(2) mean
mean

1 1

ˆ ,
B
iA Mn

B

i ikA
i k

m
Y w y

T = =

= ∑ ∑  (37) 

respectively.  
We note that mean

iw  is the average weight of longitudinal 
persons who live in thi  household at .tyr  Therefore, it is 
also reasonable to use median weight:  

median 1
the median of , 1, 2, , .Ai A

j

w j m= =
π

…  (38) 

instead to enhance the robustness of the estimates. Namely, 
we estimate BY  as well by 

(1) median
median

1 1

ˆ ,
B
iA Mn

B i
i ikA

i ki

m
Y w y

T= =

=∑ ∑  (39) 

and 

(2) median
median

1 1

ˆ .
B
iA Mn

B

i ikA
i k

m
Y w y

T = =

= ∑ ∑  (40) 

The comparison for these proposed methods with and 
without incorporation in nonresponse problems both using 
mean and median weight within each household are 
presented in Tables 2-5.  

The next four tables give the result for the performance 
of our estimate using relative error defined as: 

 

estimate - “truth”
100%.

“truth”
×  

 

 
Table 2 
Total income before taxes (in Canadian dollars) 
 

Province Estimates by GWSM 

without missing links 

Estimates by GWSM 

with missing links 

Estimates by adjusted 

GWSM using mean 

Estimates by adjusted  

GWSM using median 

NFL 9,261,958,108 9,788,749,735 9,317,420,236 9,304,530,248 

PEI 2,720,448,008 2,858,506,466 2,735,943,043 2,734,922,451 

NS 18,277,017,251 19,573,546,299 18,140,076,618 18,067,144,557 

NB 15,297,155,323 16,281,178,934 15,291,696,585 15,236,482,035 

QC 1.57839E+11 1.69664E+11 1.56533E+11 1.56405E+11 

ON 2.895E+11 3.07642E+11 2.85409E+11 2.85599E+11 

MA 23,436,397,548 25,043,168,032 23,632,717,226 23,553,543,216 

SK 20,185,285,649 21,595,804,296 20,163,683,598 20,095,359,071 

AB 69,063,402,292 74,576,351,600 68,716,661,193 68,582,541,733 

BC 81,749,374,346 86,593,614,506 81,387,640,982 81,248,680,715 

National 6.8733E+11 7.33617E+11 6.8286E+11 6.82356E+11 

 
Table 3 
Total income after taxes (in Canadian dollars) 
 

Province Estimates by GWSM 

without missing links 

Estimates by GWSM 

with missing links 

Estimates by adjusted 

GWSM using mean 

Estimates by adjusted  

GWSM using median 

NFL 7,846,587,557 8,287,351,908 7,892,754,014 7,882,437,105 

PEI 2,300,092,795 2,416,503,441 2,314,256,124 2,313,544,320 

NS 15,154,508,564 16,257,679,161 15,080,155,194 15,020,088,623 

NB 12,878,350,198 13,718,260,686 12,894,700,593 12,849,252,205 

QC 1.27632E+11 1.37514E+11 1.27118E+11 1.26999E+11 

ON 2.3788E+11 2.53073E+11 2.35192E+11 2.3534E+11 

MA 19,541,510,220 20,877,377,918 19,713,628,649 19,649,142,217 

SK 16,894,929,025 18,073,635,883 16,890,410,993 16,834,787,407 

AB 57,466,974,767 62,055,315,246 57,183,814,491 57,073,904,623 

BC 68,710,569,670 72,770,595,462 68,431,531,373 68,309,055,749 

National 5.66306E+11 6.05044E+11 5.63958E+11 5.63518E+11 
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Table 4 
Earnings (in Canadian dollars) 
 

Province Estimates by GWSM 

without missing links 

Estimates by GWSM 

with missing links 

Estimates by adjusted 

GWSM using mean 

Estimates by adjusted  

GWSM using median 

NFL 6,433,112,169 6,837,522,157 6,541,306,193 6,530,174,122 

PEI 1,898,192,704 2,019,341,995 1,964,066,449 1,962,669,664 

NS 12,772,667,160 13,809,197,160 12,999,111,234 12,939,785,579 

NB 11,250,688,811 12,030,378,710 11,411,530,716 11,370,222,533 

QC 1.18878E+11 1.28949E+11 1.19797E+11 1.19717E+11 

ON 2.27577E+11 2.43404E+11 2.26812E+11 2.27092E+11 

MA 17,560,695,670 18,995,682,322 18,066,353,153 18,001,882,362 

SK 15,159,319,031 16,340,668,148 15,381,733,004 15,319,210,228 

AB 56,152,023,359 61,059,244,608 56,540,145,524 56,418,889,147 

BC 60,532,655,979 64,499,398,960 61,192,920,832 61,085,986,951 

National 5.28214E+11 5.67945E+11 5.3199E+11 5.31722E+11 

 
 
Table 5 
Wages and salaries before deductions (in Canadian dollars) 
 

Province Estimates by GWSM 

without missing links 

Estimates by GWSM 

with missing links 

Estimates by adjusted 

GWSM using mean 

Estimates by adjusted  

GWSM using median 

NFL 6,180,713,343 6,572,345,010 6,283,079,555 6,272,429,515 

PEI 1,636,344,440 1,747,755,878 1,713,809,312 1,713,157,676 

NS 12,327,220,137 13,341,912,666 12,579,519,733 12,521,159,025 

NB 10,742,381,379 11,508,445,078 10,961,105,589 10,921,102,477 

QC 1.08636E+11 1.18092E+11 1.10024E+11 1.09898E+11 

ON 2.07331E+11 2.22043E+11 2.07265E+11 2.07495E+11 

MA 16,146,993,217 17,504,024,442 16,701,823,718 16,641,840,086 

SK 13,982,423,360 15,129,217,320 14,311,467,435 14,255,519,224 

AB 52,594,490,290 57,359,188,114 53,195,227,508 53,077,388,907 

BC 56,206,787,033 59,886,429,369 56,875,663,895 56,764,297,512 

National 4.85784E+11 5.23184E+11 4.91116E+11 4.90763E+11 

 
 
Table 6 
Comparison of relative errors in estimating income before taxes (%) 
 

Province GWSM 

with missing links 

Method (1) 

using mean 

Method (1) 

using median 

Method (2) 

using mean 

Method (2) 

using median 

NFL 5.688 0.599 0.460 1.059 2.397 

PEI 5.075 0.570 0.532 2.859 4.063 

NS 7.094 0.749 1.148 3.549 2.459 

NB 6.433 0.037 0.397 2.693 2.987 

QC 7.492 0.828 0.909 4.372 2.896 

ON 6.267 1.413 1.348 4.691 1.771 

MA 6.856 0.838 0.500 1.644 3.654 

SK 6.988 0.107 0.446 2.480 2.598 

AB 7.982 0.502 0.696 3.185 2.407 

BC 5.926 0.442 0.612 3.995 3.343 

National 6.734 0.650 0.724 3.868 2.662 
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Table 7 
Comparison of relative errors in estimating income after taxes (%) 
 

Province GWSM 

with missing links 

Method (1) 

using mean 

Method (1) 

using median 

Method (2) 

using mean 

Method (2) 

using median 

NFL 5.617 0.588 0.457 1.101 2.409 

PEI 5.061 0.616 0.585 2.832 4.121 

NS 7.279 0.491 0.887 3.338 2.765 

NB 6.522 0.127 0.226 2.539 3.150 

QC 7.742 0.403 0.496 3.991 3.375 

ON 6.387 1.130 1.068 4.432 2.081 

MA 6.836 0.881 0.551 1.645 3.733 

SK 6.977 0.027 0.356 2.406 2.675 

AB 7.984 0.493 0.684 3.180 2.415 

BC 5.909 0.406 0.584 3.989 3.419 

National 6.841 0.415 0.492 3.657 2.927 

 
 

Table 8 
Comparison of relative errors in estimating earnings (%) 
 

Province GWSM 

with missing links 

Method (1) 

using mean 

Method (1) 

using median 

Method (2) 

using mean 

Method (2) 

using median 

NFL 6.286 1.682 1.509 0.041 3.585 

PEI 6.382 3.470 3.397 0.0739 7.115 

NS 8.115 1.773 1.308 1.265 5.281 

NB 6.930 1.430 1.062 1.279 4.512 

QC 8.472 0.773 0.706 2.827 4.560 

ON 6.955 0.336 0.213 3.760 2.920 

MA 8.172 2.879 2.512 0.291 5.835 

SK 7.793 1.467 1.055 0.979 4.324 

AB 8.739 0.691 0.475 2.140 3.777 

BC 6.553 1.091 0.914 2.643 5.081 

National 7.522 0.715 0.664 2.628 4.131 
  
They show that our estimates using both method (1) and 
method (2) perform very well in terms of reducing bias. 
Method (1) does work better than Method (2) overall, yet 
the improvement from Method (1) to Method (2) is much 
less compared to that made by moving from without 
adjustment to method (2). Since Method (2) provides us 
with high quality and involves much less information than 
Method (1), Method (2) is recommended. 

Now, we focus on Method (2) using mean, which gives 
the estimate (2)

mean
ˆ ,BY  to analyze how its variance performs in 

terms of estimating .BY  We use the bootstrap technique to 
estimate the variance of (2)

mean
ˆ BY  at both the national level and 

the provincial level. The bootstrap used for our simulation in 
this paper is the classical Bootstrap with replacement, where 
bootstrapping is performed at the first stage of sampling. 
The bootstrap weights taken here are provided with the 
SLID data, and incorporate all the necessary adjustments. 
See Lévesque (2001), and LaRoche (2003) for details on the 
use of the Bootstrap for SLID. The improvement in 

reducing the variance is not as large as in reducing bias; 
however, it is revealed in this simulation study that the 
proposed method provides a smaller variance as well 
compared to applying GWSM without an adjustment for 
missing links. See Table 10 for the results.  

The simulation results presented here are based on a 
single sample of SLID and a single random removal of the 
links of initially-present individuals. For a complete 
assessment of the properties of the above estimators, a 
Monte-Carlo process would have been suitable. Such 
simulations have been performed by Hurand (2006) based 
on agricultural data. In these simulations, 1,000 samples 
have been selected and for each selected sample, the worst-
case-scenario has been used, i.e., all links from the non-
sample units have been removed. The results of these 
simulations showed that proportional adjustment and global 
proportional adjustment are the two methods whose 
estimates are, on average, the closest to the real total, and 
whose biases are negligible. 
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Table 9 
Comparison of relative errors in estimating wages and salaries before deductions (%) 
 

Province GWSM 

with missing links 

Method (1) 

using mean 

Method (1) 

using median 

Method (2) 

using mean 

Method (2) 

using median 

NFL 6.336 1.656 1.484 0.1012 3.593 

PEI 6.809 4.734 4.694 1.056 8.424 

NS 8.231 2.047 1.573 0.939 5.509 

NB 7.131 2.036 1.664 0.685 5.133 

QC 8.704 1.278 1.162 2.294 5.070 

ON 7.096 0.0317 0.0791 3.473 3.265 

MA 8.404 3.436 3.065 0.787 6.469 

SK 8.202 2.353 1.953 0.107 5.213 

AB 9.059 1.142 0.918 1.713 4.247 

BC 6.547 1.190 0.992 2.565 5.234 

National 7.699 1.098 1.025 2.251 4.541 

 
Table 10 
Comparison of standard deviation estimates 
 

Variables Total income  

before taxes 

Total income 

after taxes 

Earnings Wages and salaries 

before deductions 

National  GWSM with missing links 9,677,258,789 7,343,792,762 8,850,202,075 8,468,718,449 

level Method (2) using mean 9,471,103,083 7,238,715,323 8,593,015,854 8,232,428,642 

Ontario GWSM with missing links 7,888,106,377 6,101,001,739 7,245,688,373 7,149,203,530 

 Method (2) using mean 7,601,169,501 5,939,509,894 6,952,217,872 6,831,300,511 

Quebec GWSM with missing links 4,341,215,711 3,113,247,130 3,772,369,180 3,162,277,660 

 Method (2) using mean 4,160,251,472 2,974,248,451 3,668,996,929 3,100,868,366 

 
5. Closing remarks  

We have constructed four estimation methods to address 
the link nonresponse problem in indirect sampling. The 
simulation results in this article show that the adjustments 
methods we have presented in the example for using 
GWSM incorporating the link nonresponse performs well in 
terms of both reducing the estimation bias and providing an 
overall improvement in variance. The advancement in bias 
reduction seems significant. The implementation of the 
methods proposed in Section 3.2 for real data sets will be 
studied in the near future.  

The following significant observations emerged from our 
study:   

1. Adjustment methods are simple to apply.   
2. In a more general situation, such as , >1j iL  for 

some j’s, (35) represents the weighted mean 
weighted by , .

B
j iL  Accordingly the median 

approach delivered by (39) and (40) can be 
modified using a generalized version of median – 
“weighted” median. Namely, we replace (38) by 

median 1
the median ofi A

j

w =
π

 

 where 1, 2,1, 2, , ;1, 2, , ; ;1, 2, ,B B
i ij L L= … … … …  

,
.A

B

m i
L    

3. Some valid link responses outside As  can not be 
used in estimating B

iL  by the methods proposed in 
Section 3.1. However, this valid information would 
be beneficial to the approaches by predicting ,j ikl  
using auxiliary variables, as can be seen in 
Section 3.2.1.  
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Nonparametric propensity weighting for survey  
nonresponse through local polynomial regression 

Damião N. da Silva and Jean D. Opsomer 1 

Abstract 

Propensity weighting is a procedure to adjust for unit nonresponse in surveys. A form of implementing this procedure 

consists of dividing the sampling weights by estimates of the probabilities that the sampled units respond to the survey. 

Typically, these estimates are obtained by fitting parametric models, such as logistic regression. The resulting adjusted 

estimators may become biased when the specified parametric models are incorrect. To avoid misspecifying such a model, 

we consider nonparametric estimation of the response probabilities by local polynomial regression. We study the asymptotic 

properties of the resulting estimator under quasi-randomization. The practical behavior of the proposed nonresponse 

adjustment approach is evaluated on NHANES data. 
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1. Introduction 
 

Propensity weighting is a procedure that is often applied 

in sampling surveys to compensate for unit nonresponse. 

Under this type of nonresponse, complete data collection is 

accomplished at only a part of the units selected to the 

sample, which are termed as the respondents. The 

propensity weighting procedure operates by increasing the 

sampling weights of the respondents in the sample using 

estimates of the probabilities that they responded to the 

survey. These probabilities are also referred to as response 

propensities in virtue of their analogy with the propensity 

score theory of Rosenbaum and Rubin (1983) for 

observational studies, incorporated into survey nonresponse 

problems by David, Little, Samuhel and Triest (1983). 

General descriptions of propensity weighting to adjust 

classical survey estimators for nonresponse can be seen, for 

example, in Nargundkar and Joshi (1975), Cassel, Särndal 

and Wretman (1983) and Groves, Dillman, Eltinge and Little 

(2002). Traditionally, the way the procedure is implemented 

estimates the response probabilities with parametric regres-

sion curves, such as logistic, probit or exponential models. 

See Alho (1990), Folsom (1991), Ekholm and Laaksonen 

(1991) and Iannacchione, Milne and Folsom (1991) for 

earlier references. A recent theoretical account of the 

statistical properties of the procedure is given in Kim and 

Kim (2007). These parametric models are readily fitted as 

generalized linear models. However, an important and 

sometimes overlooked part of this procedure is the specifica-

tion of the form of the link function to relate the response 

propensities and a linear predictor of the auxiliary informa-

tion. If this function, which we shall refer to as the response 

propensity function, is misspecified, the resulting adjusted 

estimators of the population quantities are likely to be biased.  

Another approach to estimate the response propensities is 

through nonparametric methods. The main motivation to 

use such methods is that the parametric form for the 

response propensity function need not be specified. In this 

sense, these methods offer an appealing alternative to the 

choice of a link function, as raised by Laaksonen (2006), or 

when a parametric model is difficult to specify a priori. In 

this context, Giommi (1984) proposed using kernel 

smoothing, in the form of the Nadaraya-Watson estimator, 

to estimate the response probabilities. Da Silva and 

Opsomer (2006) established the consistency of Giommi’s 

estimator for the population mean and derived rates for the 

asymptotic bias and the variance. Theoretical properties of a 

Jackknife variance estimator were also studied. 

In this article, we extend the results of Da Silva and 

Opsomer (2006) in two directions. First, we consider the 

estimation of the response propensities by local polynomial 

regression, a nonparametric technique described, for 

instance, in Wand and Jones (1995). Compared to kernel 

smoothing, local polynomial regression improves the local 

approximation to the unknown propensity function, which 

results in better practical and theoretical properties. It is also 

much more prevalent as a smoothing method in practice, 

with implementations available in most major statistical 

programs. Second, we apply the nonparametric propensity 

score estimation approach to data from the National Health 

and Nutrition Examination Survey (NHANES), which 

makes it possible to compare several nonresponse 

adjustment methods, both parametric and nonparametric, in 

a realistic setting.  

In Section 2, we introduce the weighting procedure and 

the estimation of the response propensities. The theoretical 

properties of the adjusted estimators are discussed in Section 

3. In section 4, we describe how to adapt a replication 
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variance procedure to estimate the variance of the proposed 

adjusted estimators. Finally, in Section 5, we demonstrate 

the finite sample properties of the estimators by means of a 

simulation experiment using data from NHANES.  

 
2. Weighting by local polynomial regression 

 
Consider a population of Nν  units, denoted by Uν =  

{1 2 }.… Nν, , ,  Suppose that a sample sν  is drawn from 

,Uν  according to some probabilistic sampling design 

( ).p sν  Let nν  be the size of sν  and i iνπ = π =  

Pr{ } ( )s i si s p s
ν ν: ∈ν ν∑∈ =  be the inclusion probability of 

unit ,i  for all .i Uν∈  It is of interest to estimate the 

population mean of a study variable ,y  namely 
1 ,i U iN N yy

νν

−
∈ν ∑=  where iy  denotes the value of y  for 

the thi  unit of .Uν  We assume that the values ix  of an 

auxiliary variable x  are fully observed throughout the 

sample. Let 1( , , ),Ny … y
νν =y  and similarly for .vx  

When the sample contains unit nonresponse, we only 

observe the values of the study variables for the units in a 

subset .r sν ν⊂  To account for the information lost in the 

estimation of the parameters of interest, it becomes 

necessary to model the response process. To define this 

response model, let iR  be an indicator variable assuming 

the value one if the unit i  respond to the survey, and the 
value zero otherwise, for all .i sν∈  We assume that, given 

the sample, the response indicators are independent 

Bernouilli random variables with  

Pr{ 1 } ( ) for alli i iR i s x i sνν νν= | ∈ , , = φ ≡ φ , ∈ ,y x  (1) 

where the exact form of the response propensity function 
( )φ ⋅  is unspecified, but it is assumed to be a smooth 

function of ix  with ( ) (0 1].φ ⋅ ∈ ,  The relationship in (1) 

defines a nonresponse process said to be ignorable, in the 

sense that the response propensities are independent of the 

values of any study variable, conditional on the covariate x  

(see Lohr 1999, page 265). The theory developed here, 

therefore, does not intend to handle non-ignorable response 

mechanisms.  

If all response propensities were known, resulting 

weighting adjustments could be obtained by applying a two-

phase estimation approach. For instance, two possible 

estimators of the population mean Ny ν
 would be given by  

1 11
i i i i

i s

y Ry
N

ν

− −
πφν

∈ν

= π φ∑  (2) 

and 

1 1 1 1

rat i i i i i i i
i s i s

y R Ry
ν ν

− − − −
, πφν

∈ ∈

= π φ π φ ,∑ ∑  (3) 

which are forms of adjustments for the Horvitz-Thompson 

and the Hájek estimators to compensate for the unit non-

response. The same ideas can be used to obtain propensity 

weighting adjustments for the generalized regression esti-

mator for estimation in the presence of nonresponse (Cassel 

et al. 1983).  
Estimators (2) and (3) are unbiased and nearly unbiased 

for Ny ν
 respectively, under the quasi-randomization 

approach of Oh and Scheuren (1983), where the statistical 

properties are evaluated using the joint distribution of the 

sampling design and the response model. However, the 

response propensities are usually unknown in practice and 

we need to replace the iφ  in (2) and (3) by estimates ˆ ,iφ  

satisfying ˆ0 1.i< φ ≤  The resulting propensity weighting 

estimators are therefore  

1 1
ˆ

1 ˆ
i i i i

i s

y Ry
N

ν

− −
πφν

∈ν

= π φ∑  (4) 

and  

1 1 1 1
ˆrat

ˆ ˆ
i i i i i i i

i s i s

y R Ry
ν ν

− − − −
, πφν

∈ ∈

= π φ π φ .∑ ∑  (5) 

The latter formula has the advantage of being location-scale 

invariant, because the summation of its adjusted weights 
1 1 1 1ˆ ˆ

i si i i i i iR R
ν

− − − −
∈∑π φ / π φ  is equal to one, and does not 

require the population size Nν  to be known.  

In order to implement the propensity weighting esti-

mators (4) and (5), it is necessary to estimate the response 

propensities ˆ .iφ  Da Silva and Opsomer (2006) used kernel 

regression for this purpose. The procedure we consider here 

is local polynomial regression, which can be described as 

follows. Let ( )K ⋅  be a continuous and positive kernel 

function and hν  be its bandwidth. Define the ( 1)N kν × +  

matrix  

1 11 ( ) ( )

1 ( ) ( )

k
i i

Ui

k
N i N i

x x x x

x x x x
ν ν

 
 
 
 
 
 
 
 
 
  

− −

= ,

− −

X

⋯

⋮ ⋮ ⋮

⋯

 

the N Nν ν×  matrix  

1
diag 1

j i
Ui

x x
K j N

h h

 
  
 ν 

ν ν  

− 
= : ≤ ≤ . 

 
W  

and population vector of response indicators U =R  

1 2( , , , ) .NR R … R
ν
′  The vector UR  would be known if, 

instead of the sample ,sν  a census was considered from the 

population .Uν  In that case, the local polynomial regression 

estimator of degree k  of ( ),i ixφ = φ  based on the whole 

population, would be given by the fit  
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1

1
ˆ ( )Ui Ui Ui Ui Ui Ui U

−′ ′ ′φ = ,X W X X W Re  (6) 

where je  denotes the thj  column of the identity matrix of 

order 1k +  and it is assumed that Ui Ui Ui′X W X  is non-

singular.  

Since the values of the response indicators are only 

observed for those units selected into the sample, the 

population fit (6) is unfeasible. However, defining siX  as 

the ( 1)n kν × +  matrix formed with the rows of UiX  

corresponding to the units ,j sν∈  

1
diag

j i
si

j

x x
K j s

h h

 
  
 ν 

ν ν  

− 
= : ∈ 

π  
W  

and ( ) ,s jR j sν ′= : ∈R  then a sample-based local 

polynomial regression estimator of degree k  of ( )i ixφ = φ  

is given by  

1

1
ˆ ˆ ˆo
i si sie −′φ = T t  (7) 

where  

( )1 1

1 1
ˆ ˆˆ ˆ( , ) { } , ( )

( )

k k
si si si pq p q si p p

si si si si si s

T t+ +
, , = , =≡

′ ′= ,

T t

X W X X W R

 

and it is assumed that ˆ
siT  is invertible. An special case of 

(7) is obtained by considering 0,k =  which corresponds to 

the kernel regression estimator of Da Silva and Opsomer 

(2006). Other special cases from (7) are the local linear, the 

local quadratic and the local cubic response propensity 

estimators, which result from the local fit of polynomials of 

degree one, two and three, respectively.  

In practice, when ˆ
siT  happens to be singular, a simple 

procedure to insure that ˆ o
iφ  is well defined is choosing a 

bandwidth large enough to guarantee at least 1k +  values 

of jR  in the window [ ],i ix h x hν ν− , +  for all .i sν∈  If 

this window does not contain enough responses indicators 

and the bandwidth has to remain fixed, another approach 

has to be considered. To this purpose, we adopt here the 

adjustment made by Breidt and Opsomer (2000) and define 

the sample-based local polynomial regression estimator of 

degree k  of ( )i ixφ = φ  by  

1

1
1

ˆ ˆ ˆ( ) diagi si six k h i s
N

−

ν ν
ν

  δ
′φ , , = + , ∈ .     
T te  (8) 

where 1δ  is some small positive constant. The smaller order 

terms 1 Nνδ /  added to the main diagonal of ˆ
siT  are 

sufficient to make the resulting adjusted matrix invertible 

for any .hν  As a consequence, ɵ ( )ix k hνφ , ,  will be well 

defined, for all .i sν∈  However, another technical 

difficulty to use ˆ ( )ix k hνφ , ,  as a propensity weighting 

adjustment arises because the response propensity estimator 

(8) can indeed become arbitrarily close to zero. To tackle 

this problem, we bound ˆ ( )ix k hνφ , ,  away from zero by 

considering the estimator  

1

2
ˆ ˆmax{ ( ) ( ) }i ix k h N h −

ν ν νφ = φ , , , δ ,  (9) 

for some constant 2 0.δ >  This idea is related to the 

adjustment made by Da Silva and Opsomer (2006) for the 

kernel regression estimator.  

 
3. Asymptotic properties 

 
In this section, we present the properties of the propensity 

weighting estimators (4) and (5) under estimation of the 

response propensities by the local polynomial estimator (9). 

The assumptions, lemmas and outlines of the proofs for the 

following results are given in the Appendix, and a complete 

theoretical investigation can be found in Da Silva and 

Opsomer (2008). The full derivations are not reported in this 

article, because they follow the general approach described 

in Da Silva and Opsomer (2006). We consider an 

asymptotic framework by which the population Uν  is 

embedded into the increasing sequence of populations 

1 1{ } .U N N ∞
ν ν ν+ ν=: <  From each ,Uν  a sample sν  of size 

1( )n n nν ν ν−≥  is selected according to a sampling design 

( ).pν ⋅  This framework is commonly adopted in asymptotic 

studies of survey estimators. See Isaki and Fuller (1982) for 

an early reference.  

As a population-based approximation for ( ),i ixφ ≡ φ  we 

shall consider in the derivation of most results in this section 

the population fit by local polynomial regression  

1

1 1( )i i i i ix k h i U−
ν ν′ ′φ ≡ φ , , = ≡ , ∈ ,B T tɶ ɶ e e  (10) 

where  

1 1

11
{ }( ) ( ( ) )

ˆ ˆE( , ) ( )

k k
i pqi i i p pp q

si si Ui Ui Ui Ui Ui U

T t
+ +

, , =, =
, ≡ ,

′ ′≡ = , ,

T t

T t X W X X W φφφφ
 

the matrices UiX  and UiW  are as in (6) and U =φφφφ  

1 2( ( ), ( ), , ( )) .Nx x … x
ν

′φ φ φ  The following theorem states the 

asymptotic properties of ˆy πφν  under a set of assumptions in 

the Appendix. These assumptions are regularity conditions 

on the sampling design and the finite population, both of 

which are standard infinite population asymptotics, 

ignorability conditions on the nonresponse mechanism, and 

a set of standard regularity conditions related to the local 

polynomial regression of the response propensity function.  
 
Theorem 1. Assume the assumptions (A1)-(A4), (B1)-(B3) 

and (C1)-(C5) in the Appendix hold. Consider the 
estimation of the population mean Ny ν

 by the propensity 
weighting estimator ˆy πφν  defined in (4), and suppose the 
response propensities are estimated by ˆ ,iφ  the local 
polynomial regression estimator of degree k  in (9). Let  



168 da Silva and Opsomer: Nonparametric propensity weighting for survey nonresponse 

 

 

Statistics Canada, Catalogue No. 12-001-X 

1 1

ˆ

1
ˆi i i i

i s

y Ry
N

ν

− −
πψν

∈ν

= π ψ ,∑  (11) 

where  

1 1 2 1

1
ˆˆˆ ( )i i i i si si i

− − − −′ψ = φ − φ − ,T t T Bɶ ɶ e  

ˆ
sit  and ˆ

siT  are given in (7) and ,iφɶ ,iB iT  are defined in 
(10). Then,  

2
ˆ ˆ 2 2

1
E[( ) ]y y O

n h
πψνπφν

ν ν

 
− =  

 
 (12) 

and the bias and variance of ˆyπψν  satisfy  

ˆ

(3 2)

1

E[ ]

1

1

N

k

k

B y y

O h O k even
n h

O h O k odd
n h

νν πψν

+ / 
 ν 

ν ν

+ 
 ν 

ν ν

≡ −

  
+ ,  

 
= 
  

+ ,  
  

 (13)
 

and  

ˆ

1
Var[ ] Oy

n hπψν
ν ν

 
= . 

 
 (14) 

Results (12) and (13) imply that the propensity weighting 

estimator ˆ ,y πφν  using a response propensity estimator based 

on local polynomial regression, is asymptotically unbiased 

for the population mean Ny ν
 under the joint distribution of 

the sampling design and the response model (1). Combining 

this result with (14), then we obtain that  

ˆ

1
ˆ pNy Oy

n hνπφν
ν ν

 
= + ,  

 
 (15) 

when the bandwidth satisfies  

( )
( )

1

2 4

1

2 3

, even,

, odd.

k
v

v

k
v

O n k
h

O n k

−
+

−
+




= 



 (16) 

Hence, without assuming a parametric form for the response 

propensity function ( ),φ ⋅ ˆy πφν  is consistent for the popula-

tion mean with respect to the sampling design and the 

response model, as long as the response propensities are a 

smooth function of the covariate .x  As a price paid for this 

robustness, the rate of convergence is of order n hν ν  

instead of the usual parametric rate .nν  However, as the 

degree of the local polynomial k  increases, the rate of 

convergence improves. Since the kernel regression esti-

mator in Da Silva and Opsomer (2006) is equivalent to the 

case 0,k =  local polynomial regression with higher degree 

is asymptotically superior to kernel regression in the context 

of a nonresponse adjustment. This theoretical finding is 

consistent with that in other contexts (see e.g., Wand and 

Jones 1995, page 130). 

Expression (11) on Theorem 1 generalizes another 

finding from Da Silva and Opsomer (2006) to the case of 

local polynomial regression, which is that the asymptotic 

weights 1ˆ i
−ψ  cannot be approximated by the inverse of 

response propensities 1

i
−φ  (or their population-level esti-

mators 1).i
−φɶ  One immediate consequence is that the esti-

mator ˆy πφν  is not asymptotically equivalent to y πφν  in (2).  

The following corollary provides an asymptotic distribu-

tion for ˆ ,y πφν  assuming the asymptotic normality of ˆ .y πψν   
Corollary 1. Assume the conditions of Theorem 1 hold. 
Suppose that the sampling design and the response model 
are such that  

ˆ

1 2

ˆ

(0 1)
[Var( )]

N By y
as

y
ν νπψν

/
πψν

− −
→ , ν → ∞,L

N  

where Bν  is defined in (13). If additionally  

ˆlim ( )Var( ) (0 )n h yν ν πψνν→∞
∈ , ∞ ,  

then  

ˆ

1 2

ˆ

(0 1)
[Var( )]

N By y

y
ν νπφν

/
πψν

− −
→ , .L

N  

We now discuss the properties of the ratio-based version 

of propensity weighting estimator given in (5). Based on the 

results for ˆ ,y πφν  standard ratio estimation theory can be 

used to derive asymptotic results for ˆrat
.y , πφν  In particular, 

under the same assumptions the asymptotic rates for the 

approximate bias and variance of ˆraty , πφν  are the same as 

those in Theorem 1, and the asymptotic distribution of 

ˆraty , πφν  is given in the following result.   
Theorem 2. Assume the conditions of Theorem 1 hold. 
Suppose the population mean is to be estimated by the 
propensity weighted estimator ˆraty , πφν  of (5) and the 
response propensities are estimated by ˆ ,iφ  the local 
polynomial regression estimator of degree k  defined in (8). 
Let  

1 1
ˆ

1
ˆ ( )i i i iN

i s

e y Ry
N ν

ν

− −
πψν

∈ν

= π ψ − ,∑  

where the weights 1ˆ i
−ψ  are given in Theorem 1. Suppose 

that  

ˆ ˆ

1 2

ˆ

E( )
(0 1)

[Var( )]

e e
as

e

πψν πψν

/
πψν

−
→ , ν → ∞,L

N  
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and  

ˆlim ( )Var( ) (0 )n h eν ν πψν
ν→∞

∈ , ∞ .  

Then,  

ˆ ratrat

1 2

ˆ

(0 1)
[Var( )]

N By y

e
ν , ν, πφν

/
πψν

− −
→ ,L

N  

as ,ν → ∞  where 1
rat ( ),kB O h +
, ν ν=  if k  is odd, and 

(3 2)
rat ( ),kB O h + /
, ν ν=  if k  is even. 

 
4. Variance estimation 

 
As noted in Section 3, the estimator ˆy πφν  is not 

asymptotically equivalent to ,y πφν  so that approximating 

the asymptotic variance of the former by that of the latter is 

typically incorrect. In fact, a proof that the asymptotic 

variance of y πφν  overestimates the variance of ˆy πφν  is 

given by Kim and Kim (2007) when the response 

propensities are assumed to follow a parametric model. In 

the present context, the asymptotic variance of ˆy πφν  is  

1 1

ˆ

1
ˆVar[ ] Var i i i i

i s

R yy
N

ν

 
 − −
 πψν   ∈ν 

= π ψ ,∑  

with 1ˆ i
−ψ  given in Theorem 1. As was previously noted in 

Da Silva and Opsomer (2006) for the simpler case of a zero 

degree polynomial, the high level of complexity in the 

expression makes direct estimation of this variance 

impractical, and a replication method was proposed instead. 

We briefly outline the procedure here, which is extended to 

local polynomials of degree .k  We omit the theoretical 

derivations. 

We start from a set of replicate weights in the absence of 

nonresponse, defined for estimating the variance of a linear 

estimator  

ɵ 1
i i

i s

w y
N

ν∈ν

θ = .∑  

The replicate variance estimator for ɵθ  is defined as  

� ɵ ɵ ɵ( ) 2

1

V( ) ( )
L

c
ν

=

θ = − θ ,θ∑ ℓ

ℓ

ℓ

 (17) 

where  

ɵ
( ) ( )1

1, 2, ,i i
i s

w y … L
N

ν

ν
∈ν

= , = ,θ ∑ℓ ℓ
ℓ  

denotes a set of Lν  replicates for ɵ,θ ( )

iw
ℓ  are sampling 

weights associated with the th
ℓ  replicate and c

ℓ
 is factor 

that depends on the replication procedure. Examples of 

replication procedures satisfying (17) use variants of the 

Jackknife method or the Balanced Repeated Replication 

technique. The process to adapt the replication procedure to 

estimating the variance of ˆy πφν  and ˆraty , πφν  is straight-

forward. The needed replicates of these adjusted estimators, 

namely 
( )

ˆy
πφν
ℓ

 and 
( )

ˆrat
,y

, πφν
ℓ

 are obtained by replacing the 
1

i iw −= π  by ( )

iw
ℓ  in (4) and (5), respectively, and also in 

the computations needed to produce the ˆ
iφ  in (9). In section 

5.4 below, we evaluate the practical performance of the 

replication variance procedure on NHANES data.  

 
5. Application to NHANES data 

 
5.1 The NHANES design  

We evaluate the performance of the local polynomial 

adjusted estimators on real data. We consider the 2005-2006 

release of the National Health and Nutrition Examination 

Survey (NHANES), which is conducted by the National 

Center for Health Statistics, Centers for Disease Control and 

Prevention (NCHS/CDC), of the U.S. Department of Health 

and Human Services. This survey consists of a stratified, 

multistage sample of the U.S. civilian non-institutionalized 

population. A general overview of the sample formation is 

as follows:   
(i) within each stratum, primary sampling units 

(PSUs) consisting of counties or grouped smaller 

counties are selected by sampling with probabilities 

proportional to a measure of size;  

(ii) from the sampled PSUs, groups of city blocks 

(segments) containing clusters of households are 

selected also by sampling with probability 

proportional to size;  

(iii) in the selected segments, clusters of households are 

randomly selected with varying selection 

probabilities to oversample groups of age, ethnic, 

or income in certain geographic areas; and  

(iv) in the selected households, one or more participants 

are selected randomly.  
 

The public release of NHANES data has two important 

aspects. First, to reduce disclosure risks, the stratified, four-

stage survey is condensed in a stratified one-stage design, 

with neither the new stratum variable nor the new PSU 

variable corresponding to the same variables in the original 

design. Secondly, the base sampling weights, obtained by 

reciprocal of the inclusion probabilities of the survey 

participants, are not released. The weights provided reflect 

adjustments made to the base weights to account for unit 

nonresponse, in the interview and exam portions of the 

survey, and to produce estimates satisfying known 

population controls.  
 



170 da Silva and Opsomer: Nonparametric propensity weighting for survey nonresponse 

 

 

Statistics Canada, Catalogue No. 12-001-X 

5.2 The simulation experiment  
In order to empirically evaluate the local polynomial 

estimators as adjustments for nonresponse in complex 

surveys, we will apply an artificially generated source of 

unit nonresponse to the public-release NHANES dataset. 

The nonresponse mechanism will be taken as a smooth 

function of the age in years of the survey participant (AGE). 

For this comparison, we chose as study variables four 

characteristics related to heart diseases, namely the systolic 

blood pressure (SBP), the diastolic blood pressure (DBP), 

the indicator of hypertension (HTN) and the indicator of 

high serum total cholesterol (HTC). All of these were 

measured on survey participants who were 18 years or 

older. The systolic and diastolic variables were obtained as 

the average of the corresponding measurements in a set of 

up to four readings. Hypertension was defined for 

individuals having systolic blood pressure of 140 mm Hg or 

higher or a mean diastolic blood pressure of 90 mm Hg or 

higher or currently taking medication to lower high blood 

pressure. High serum total cholesterol was considered when 

the individual had a total serum cholesterol greater than or 

equal to 240 mg/dL. The unweighted sample correlations 

among these and the AGE variable are 0.481 (SBP), 0.118 

(DBP), 0.552 (HTN) and 0.060 (HTC), respectively. Hence, 

it is reasonable to postulate that unit nonresponse related to 

age is likely to have different effects on survey estimators 

for these four variables.  

The total number of eligible individuals in the NHANES 

dataset is 4,727. We generated unit nonresponse for the four 

variables of interest according to two logistic response 

propensity functions of the auxiliary variable x  taken by the 

age (in years) of the survey participant minus 18. These 

functions consider a linear and a nonlinear predictor of x  as 

follows   
Linear predictor: 

1

0 1( ) {1 exp[ ( )]}I x x −φ = + − β + β  

Nonlinear predictor: 

12 2

0 1 2 3 4 5

( )

{1 exp[ ( cos( )sin( ))]}

II x

x x x x
−

φ =

,+ − β +β +β +β β /π β /π
 

 
where the regression coefficients 0 5, ...,β β  were chosen so 

that the response propensity functions give an overall 

nonresponse rate of about 30% when applied to the sample 

values of .x  In both cases, we kept the NHANES sample 

fixed and generated B = 1,000 independent response 

indicator vectors by Poisson sampling.  

The following six nonresponse adjustments were evalu-

ated on these data. Note that in all cases we reported the 

ratio versions (5) of the estimators, because they were found 

to be much more precise than the Horvitz-Thompson 

versions.   
1. True response probabilities: ˆ ( ), .i ix i sνφ = φ ∈  

2. Logistic regression adjustment: ˆ
iφ  obtained as the 

estimated probabilities from a logistic regression of 

each response vector on ,x  using a polynomial in x  

of degree one as the linear predictor.  

3. Weighted local polynomial regression of degree k  

and bandwidth :hν ˆ ˆ ( )i ix k hνφ = φ , ,  given by (8), 

with ,i sν∈ k = 0, 1, 2, 3, hν = 0.15, 0.25, 0.50 and 

the Epanechnikov kernel function  

2( ) (3 4) (1 ) { 1}K t x I x= / − | | ≤ .  

4. Unweighted local polynomial regression of degree k  

and bandwidth :hν  the same as above but not 

including the sampling weights in (8) to obtain the 
ˆ ˆ ( ).i ix k hνφ = φ , ,  This might be somewhat easier to 

compute in practice and should lead to similar results, 

even if it does not, strictly speaking, follow the 

pseudo-randomization theory of Section 3.  

5. Weighting within cell: within each stratum, respon-

dents and nonrespondents were classified into four 

classes of age based on the sample quartiles of this 

variable. This procedure subdivided the sample in a 

total of 60 cells. Let gs  and rgs  denote respectively 

the set of sampled elements and the set of responding 

elements in the thg  cell. Then, the WC adjustment is 

defined by taking 

ˆ rg i

g

i s w

i
ii s
w

∈

∈

φ = ,
∑
∑

 

for all respondents .rgi s∈  

6. Naive: ˆ 1,iφ = .i sν∈  
 
5.3 Bias and robustness against a misspecified 

response propensity function  
When the full sample without artificial nonresponse is 

used, the Hájek estimated means for the four study variables 

are respectively SBP = 122.19 mm Hg, DBP = 70.29 mm Hg, 

HTN = 29.04% and HTC = 15.76%. Table 1 gives the 

percentage bias relative to those means across response sets 

obtained for every adjustment procedure in this simulation 

experiment. For both weighted and unweighted Local 

Polynomial Regression adjusted estimators, we only display 

the results for the bandwidth hν = 0.25, but those for other 

bandwidth values are similar. We instead show the results 

for different degrees of the local polynomial, so that the 

effect of moving from local constant to higher order 

polynomials can be evaluated.  
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Table 1 

Relative biases (%) of nonresponse-adjusted estimators for mean systolic blood pressure (SBP), diastolic blood pressure (DBP), 
indicator of hypertension (HTN) and indicator of high serum total cholesterol (HTC), based on 1,000 response sets for two 
propensity functions of the age of the survey participant in NHANES 2005-2006 
 

 Logistic propensity function  
(linear predictor) 

Logistic propensity function  
(nonlinear predictor) 

Type of adjustment  SBP DBP HTN HTC SBP DBP HTN HTC 

True Response Propensities 0.01 0.01 -0.01 0.04 -0.00 -0.00 0.01 -0.22 

Logistic Regression 0.01 0.00 -0.03 0.03 0.47 -1.67 6.49 -6.76 

Weighted Local Polynomial           

Regression:         

 Degree 0 0.27  0.34  3.39  2.41  -0.20  -0.39  -1.20  -2.27   

 Degree 1 0.00  0.04  -0.03  0.20  -0.01  -0.49  0.34  -2.36   

 Degree 2 0.01  0.01  0.03  0.07  0.03  -0.05  0.51  -0.27   

 Degree 3 0.01  0.01  -0.02  0.04  -0.03  -0.05  -0.24  -0.44   

Unweighted Local Polynomial         

Regression:         

 Degree 0 0.11  0.24  1.34  1.53  -0.17  -0.47  -0.98  -2.70   

 Degree 1 0.01  0.05  -0.00  0.25  -0.01  -0.57  0.34  -2.69   

 Degree 2 0.01  0.01  -0.00  0.07  0.01  -0.07  0.26  -0.40   

 Degree 3 0.00  0.01  -0.06  0.03  -0.03  -0.06  -0.29  -0.48   

Weighting Within Cell 0.08  0.08  0.84  0.69  -0.11  -0.07  -0.84  -0.48   

Naive  1.62  0.80  20.49  8.04  -1.30  -1.60  -15.61  -10.77    
 

Among the estimators affected by the generated 

nonresponse, the worst bias performances are clearly for the 

unadjusted “Naive” estimator. As displayed in the last row of 

Table 1, the biases are higher in the estimation of the 

prevalence of hypertension and the mean systolic blood 

pressure, as these are the characteristics of the study 

variables with higher correlations with the AGE variable, 

and also for the prevalence of high serum total cholesterol. 

The biases of the Naive estimator can be successfully 

reduced with the true response propensity estimator, any of 

the local polynomial regression adjusted estimators, the 

weighting-within cell estimator or with the logistic adjusted 

estimator, if the model for the propensity function is 

correctly specified. The best performances in terms of small 

bias are obtained using the estimator adjusted by the true 

response propensities, because it is conditionally unbiased 

for the full sample estimates. The logistic adjustment when it 

is applied under the correct model, given by the propensity 

function with a linear predictor, also gives nearly unbiased 

estimates. For the second propensity function, where the 

form of the predictor is not well captured by the logistic 

regression fit of a regression line, this adjustment yields a 

conditionally biased estimator.  

The averages of the local polynomial regression estimates 

become generally closer to the full sample estimates by 

increasing the degree of the polynomial fitted, with the 

largest jump when moving from a local constant to a local 

linear estimator. Hence, it seems that local polynomial 

regression is indeed superior to kernel regression in this 

context. There is very little difference between the weighted 

and unweighted forms of this adjustment and both 

procedures have overall smaller conditional biases than the 

biases of the weighting-within cell estimator, when they are 

implemented by fitting locally a polynomial of order greater 

than zero to estimate the response propensities. The zero 

degree propensity weighted and unweighted adjusted 

estimators have smaller biases at smaller bandwidths, as we 

observed with the bandwidth 0.15, for instance, but smaller 

bandwidths tend to increase the variance of the estimators. 

Overall, both weighted and unweighted local polynomial 

regression adjustments outperform the parametric logistic 

adjustment when the response model is misspecified. By 

implementing the local polynomial adjustments with degrees 

above one, their performances are similar to the one of the 

logistic adjustment under the correct specification of the 

response model.   
5.4 Variance and variance estimation  

Table 2 shows the variance of the adjustment methods 

considered here across the nonresponse replicates, and we 

normalized them by the variance for the true response 

propensity adjustment for clarity. Interestingly, there appears 

to be an inverse relationship between the magnitude of the 

relative biases in Table 1 and the variances in this table. In 

those cases where the relative bias was small (the weighted 

and unweighted local polynomial regression, the weighting 

within cell as well as the logistic regression adjustment for 

the linear propensity function), all the methods appear to 

result in roughly similar variances. There is a tendency for 

higher degree local polynomials to be more variable than 

lower degree ones, and this is particularly noticeable for the 

nonlinear propensity function, where a clear jump is seen 

when one moves from degree 1 (local linear) to 2 (local 

quadratic). Overall, it seems that local linear regression, 

either weighted or unweighted, offers a good compromise 

between the bias and the variance of the nonresponse 

adjustment procedure.  
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Table 2 

Normalized Monte Carlo variances of nonresponse-adjusted estimators for mean systolic blood pressure (SBP), diastolic blood 
pressure (DBP), indicator of hypertension (HTN) and indicator of high serum total cholesterol (HTC), based on 1,000 response sets 
for two propensity functions of the age of the survey participant in NHANES 2005-2006 
 

 Logistic propensity function  
(linear predictor) 

Logistic propensity function  
(nonlinear predictor) 

Type of adjustment  SBP DBP HTN HTC SBP DBP HTN HTC 

True Response Propensities 100.0  100.0  100.0  100.0  100.0  100.0  100.0  100.0   

Logistic Regression 85.9  92.4  79.5  96.5  63.9  61.5  54.1  52.0   

Weighted Local Polynomial           

Regression:         

 Degree 0 74.9  81.2  65.7  92.1  70.3  67.0  67.4  75.0   

 Degree 1 81.8  89.5  66.2  92.7  73.6  69.8  68.9  76.0   

 Degree 2 81.3  89.8  65.5  94.0  90.3  81.7  88.0  96.1   

 Degree 3 82.3  90.2  65.8  93.1  90.1  82.2  87.7  96.2   

Unweighted Local Polynomial         

Regression:         

 Degree 0 82.2  85.8  77.6  95.8  71.9  69.2  70.7  74.7   

 Degree 1 85.6  90.1  79.4  95.7  74.4  71.1  71.2  74.6   

 Degree 2 86.6  91.3  79.3  96.1  91.8  84.5  91.8  96.8   

 Degree 3 87.3  91.5  78.5  95.0  91.2  84.7  91.2  96.9   

Weighting Within Cell 79.7  89.1  62.1  91.6  82.5  77.0  81.1  92.3   

Naive  71.3  58.0  81.7  74.6  48.6  48.7  45.5  45.1     
 

The above simulation results showed the behavior of 

several nonresponse adjustments in the NHANES setting. 

We now consider the replication variance estimation 

approach of Section 4 and evaluate its usefulness as a 

sample-based measure of uncertainty for the nonresponse-

adjusted estimators in the same setting. We implemented 

(17) with the Jackknife method. Since NHANES does not 

provide information on the joint sample inclusion 

probabilities, we could not apply a full Jackknife variance 

estimator as in, for instance, Berger and Skinner (2005), as a 

means to account for the selection of units with varying 

probabilities in the survey. Because of this, we assumed the 

within-stratum designs in NHANES could be approximated 

by cluster sampling with replacement and rewrite (17) in the 

form proposed by Rust (1985),  

ɵ ( ) 2

1

ˆ ˆV̂ ( ) ( )
t

T
tj

JK t
t j s

c
= ∈

θ = θ − θ ,∑ ∑  (18) 

where ts  denote the set of units in sample from the tht  

NHANES stratum, 1 2 , tt … T n= , , ,  be the number of 

units selected to , ( 1)t t t ts c n n= − /  and ( )ˆ tjθ  is obtained 

from (5) by replacing the iw  with the replication weights  

( )
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PSU
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These weights were also applied in the estimation of the 

response propensities for the weighted local polynomial 

regression procedure adjustment procedure.  

The Jackknife variance estimator (18) was applied to 

each response vector from the two propensity functions, 

yielding estimates ɵˆ ( ( )),JKv bθ 1, 2, , ,b … B=  for all 

adjusted estimators in the experiment. For the sake of 

comparison, it would be informative to produce estimates of 

the corresponding variances by the Monte Carlo method. 

However, as the NHANES sample is fixed, the Monte Carlo 

variance of the point estimates ɵ ( )bθ  across response 

vectors estimates only the conditional variance ˆVar( )sνθ|  

with respect to the response model. Since  

ɵ ɵ ɵVar( ) Var(E( )) E(Var( ))s sν νθ = θ| + θ| ,  

where the “inner” moments are taken with respect to the 

response model given the sample and the “outer” moments 

are with respect to the sampling design, the design variance 

of ɵE( )sνθ|  needs to be accounted for in order to have a 

valid estimation target for ˆV̂ ( ).JK θ  Using the fact that 

weighted and unweighted local polynomial regression and 

weighting within cell all produce approximately condi-

tionally unbiased estimators of the full sample estimator, 

rat
,i s i si i iw y wy

ν ν∈ ∈π, ∑ ∑= /  for the two response pro-

pensities functions, we decided to use the Jackknife variance 

estimator of ratyπ,  as a “proxy” for ɵVar(E( )).sνθ|  Hence, 

our “comparison variance” will be defined as  

2

rat
1

1ˆ ˆ ˆˆ ˆ( ) ( ) ( ( ) )
1

B

C JK
b

v v by
Bπ,

=

θ = + θ − θ .
−
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Using ˆˆ ( )Cv θ  instead of the true variance will tend to 

underestimate any bias issues associated with the use of the 

jackknife variance estimator for the full sample estimator. 

However, it will show how well the replication procedure 

manages to capture the nonresponse variability.  

Table 3 gives relative biases of the Jackknife variance 

estimators obtained in this experiment. The results show that 

the jackknife variance estimator performs reasonably well 

for both nonresponse mechanisms and all estimators 

considered. The weighted local polynomial regression 

adjusted procedure appears to yield estimated variances in 

greater consonance with the comparison variance than when 

the procedure is implemented by its unweighted version. 

The results for the nonlinear predictor function exhibit more 

bias than those for the linear predictor, with more 

pronounced positive and negative biases present for the 

former for all the variables. As discussed in Da Silva and 

Opsomer (2006), replication methods for nonresponse-

adjusted estimators often ignore a component of the total 

variance, which includes the effect of both sampling and the 

response mechanism. We therefore conjecture that the 

different bias behaviors exhibited for the different variables 

could be due to this missing variance component.  

 
6. Concluding remarks 

 
In this article, we studied properties of nonparametric 

propensity weighting as an adjustment procedure for survey 

nonresponse. The local polynomial regression technique is 

seen to offer a flexible way of constructing new survey 

adjustments for nonresponse. The results in the article 

extend those in Da Silva and Opsomer (2006) by allowing 

the use of local polynomials of arbitrary degree, which 

offers both theoretical and practical advantages over zero-

degree kernel regression.  

In addition to its good theoretical properties, the 

estimator was shown in the simulation experiment to be 

competitive with an estimator based on a correctly specified 

parametric model in terms of bias and variance, while 

protecting against a potentially misspecified model. The 

weighting-cell estimator is similarly robust against model 

misspecification, but a particular advantage of nonpara-

metric regression methods over weighting cell approaches is 

the connection to broad classes of modeling techniques 

available in the non-survey literature. Extensions of the 

methodology we described here to semiparametric and 

(generalized) additive models (Hastie and Tibshirani 1986) 

are readily formulated and should work well in a wide range 

of potential response model scenarios, including situations 

with multiple covariates that are both categorical and 

continuous. A detailed discussion of these extensions is 

beyond the scope of the current paper, however.  

In Section 5, we applied the nonparametric nonresponse 

adjustment to NHANES data by modeling the response 

probability as a smooth function of the age of the 

respondents, and weighting the data by the inverses of the 

estimated response probabilities. The same approach can be 

used in other survey datasets whenever continuous 

covariates related to the response probability are available 

for all elements in the original sample. This provides a 

viable alternative to the commonly used weighting-within-

cell approach for situations in which cells are constructed by 

“binning” one or several continuous variables.  

 

 

 
Table 3 
Relative biases (%) of the Jackknife variance estimators of estimators of the mean systolic blood pressure (SBP), diastolic blood 

pressure (DBP), indicator of hypertension (HTN) and indicator of high serum total cholesterol (HTC), based on 1,000 response sets 
for two propensity functions of the age of the survey participant in NHANES 2005-2006 
 

 Logistic propensity function  
(linear predictor) 

Logistic propensity function  
(nonlinear predictor) 

Type of adjustment  SBP DBP HTN HTC SBP DBP HTN HTC 

True Response Propensities 0.55  -0.47  -0.06  0.16  0.92  -0.26  -1.03  -2.76   

Weighted Local Polynomial           

Regression:         

 Degree 0 -0.66  2.33  2.74  4.44  1.63  -2.27  -5.12  -9.44   

 Degree 1 -0.31  -1.03  0.31  1.87  5.27  4.03  2.60  -9.95   

 Degree 2 -0.14  -0.76  0.41  0.49  0.25  0.65  -2.60  -3.60   

 Degree 3 -0.27  -1.03  0.39  0.48  0.19  0.45  -2.19  -3.02   

Unweighted Local Polynomial         

Regression:         

 Degree 0 2.00  2.77  3.57  5.56  5.73  0.31  1.83  -10.22   

 Degree 1 2.02  1.06  2.63  2.61  7.46  5.57  4.33  -10.43   

 Degree 2 2.26  1.07  2.88  1.36  4.16  3.81  1.62  -2.94   

 Degree 3 2.21  1.01  2.94  1.46  3.45  3.65  0.96  -2.63   

Weighting Within Cell -1.15  1.70  -0.47  5.16  2.69  -6.91  3.06  -5.88    
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There are still a number of open issues that need to be 

further investigated with respect to implementation of the 

method in actual surveys, whether in the univariate case 

described in detail here or in the various model extensions 

just mentioned. An important practical issue is the selection 

of estimator settings such as the degree of the local 

polynomial and the bandwidth. As noted in the non-

parametric literature (e.g., Fan and Gijbels 1996, page 77) 

and also confirmed in the simulations, higher degree 

polynomials reduce the bias but increase the variance, so 

that polynomials of degree 1k =  or 2 are generally 

recommended as a good compromise. More critical is the 

choice of bandwidth parameter. In our simulations, the 

results were only modestly sensitive to the choice of 

bandwidth within a “reasonable” range of values, i.e., ones 
ensuring that the number of observations used for estimating 

( )xφ  at any x  does not become too small (see discussion at 

the end of Section 2), or that is so large that the fit cannot 

capture changes in ( )φ ⋅  over the range of .x  As a rule of 

thumb, we would recommend considering values for h  that 

are within 20% and 50% of the range of x  as a good place 

to start, and making a final determination by looking at both 

model diagnostics for the model fit ɵ ( )xφ  and weight 

diagnostics for the adjusted survey weights 1ˆ( ) ,i i
−π φ  

similarly as would be done when constructing cell-based 

weights.  
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Appendix 

 
A.1 Assumptions  

We now state the assumptions needed to derive our main 

results. A detailed discussion of these assumptions is 

provided in Da Silva and Opsomer (2008). Consider the 

asymptotic framework of Section 3. Let 1(v I= ,I  

2 ..., )NI I
ν
′,  be the sample inclusion indicator vector for the 

thν  population. Suppressing the ν  for ease of notation, let 

Pr( 1),i iIπ = =  and let  

( )
1 ... d 1

E ( )
k

k

j j j jI, , =
∆ ≡ − π∏

ℓ ℓℓ
 (19) 

denote higher moments for the sample inclusion indicators 

1 2
, , ...,

kj j jI I I  with respect to the sampling design. We 

assume that there are positive constants 1 2 6, , ,…λ λ λ  such 

that:   
(A1) 1

1 2 ;iN n i U−
ν ν νλ < π < λ < ∞, ∀ ∈  

 

(A2) 1 ,N n−
ν ν → π  for some 0 1,< π <  as ;ν → ∞  

 

(A3) For  distinct 1 2, ..., ,kj j j Uν, ∈  where 2k = ,  
3, ..., 8,  

2

1
1

2

1

31

...,
1

41

( 1) if is even

( 1) if is odd

k

k
k

k

j j
k

N n k

N n k
−

−

ν=

,
−

ν=

 − + λ , 
|∆ |≤

 − + λ 

∏

∏

ℓ

ℓ

ℓ

ℓ

 

 

(A4) 1lim ( )i U iN y
ν

−
∈ν→∞ ν ∑ =µ∈ −∞, ∞  and 1 4

i U iN y
ν

−
∈ν ∑ | | ≤  

5,λ  for all 1.ν ≥  

 

Let 1 2( , ..., )v NR R R
ν
′= ,R  denote the response 

indicator vector for the ν -th population. In addition to the 

assumptions on the sampling design and the population 

distribution of the variable ,Y  we will also need the 

following assumptions on the response mechanism:   
(B1) 1 2, , ..., NR R R

ν
 are independent random variables;  

 

(B2)
 
Pr{ 1 }

Pr{ 1 } ;

i v v

i v i

R

R i U

ν

ν

= | , , =

= | ≡ φ , ∀ ∈

I xy

x
 

 

(B3) ( ) ,i ix i Uνφ = φ , ∀ ∈  where ( )φ ⋅  is a th( 2)k +  

continuously differentiable function with 

6 ( ) 1.λ < φ ⋅ ≤  The first derivative ( )′φ ⋅  has a finite 

number of sign changes.  
 

Regarding the distribution of the ix  and the kernel 

estimator, we assume that:   
(C1) For all 1,ν ≥ 1 2, ..., Nx x x

ν
,  are realizations of 

random variables 1 2, ..., NX X X
ν

,  independent and 

identically distributed with distribution ( )XF x =  

( ) ,
x

Xf t dt−∞∫  where ( )Xf ⋅  is a continuous and 

positive probability density function on a compact 

set [ ];X Xa b,  
 

(C2) The kernel function ( )K ⋅  is a bounded and 

continuous probability density, which is symmetric 

around zero and supported on [-1, 1]; 
 

(C3) 
1 4

1
( ) ;kz K z dz+

−∫ | | < ∞  
 

(C4) For all 1,ν ≥ { }hν  is a sequence of bandwidths 

satisfying 0 1,hν< ≤ 0,hν → 2n hν ν → ∞  and 

log ,N h Nν ν ν/ → ∞  as ;ν → ∞  
 

(C5) The first derivative ( )Xf ′ ⋅  is continuously 

differentiable and contains a finite number of sign 

changes on supp( ).Xf  The first derivative ( )K ′ ⋅  has 

a finite number of sign changes on supp( );K  
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(C6) The matrix 1

iN −
νT  is non-singular for all i Uν∈  

and all 1.ν ≥  
 
A.2 Technical derivations  

Complete proofs are in Da Silva and Opsomer (2008). 

The proof of Theorem 1 relies on bounding the moments of 

the difference ˆ v  y yπψ πφν− ɶ  under the combined design and 

response model probability mechanism, followed by 

deriving the rates of convergence for the bias and variance 

of the linearized estimator ˆ .y πψν  This is done in a series of 

six lemmas, which are stated here without proof. The proof 

of Theorem 2 is based on the result of Theorem 1, followed 

by an additional linearization of the ratio form.  

For notational simplicity in what follows, we suppressed 

the fact that the results are conditional on the sequences 

1( , , )v Nx … x
ν

=x  in the populations .Uν  However, the 

results in these lemmas are shown to hold with probability 

one over these sequences in Da Silva and Opsomer (2008), 

as was also done in Da Silva and Opsomer (2006). Hence, 

the results can be interpreted to hold for all population 

sequences, except on a set of probability 0 with respect to 

the distribution of the .vx   
Lemma 1. Assume that assumptions (C1)-(C5) hold. 
Consider ( ) ( ) ,

x hDK x z K z dz
,

∫µ , = ℓ

ℓ
 where x hD

ν, =  
{ ( ) supp( )} supp( ).Xt x ht f K: + ∈ ∩  Then, for all 0= ,ℓ  
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Lemma 2. Assume that assumptions (C1)-(C5) hold. 
Consider the population fit ( ),i ix k hνφ = φ , ,ɶ ɶ ,i Uν∈  
defined in (10). Hence, for all ,i Uν∈  there exists positive 
bounded terms 1( ),ic x 2 ( )ic x  and 3 ( ),ic x  such that if ix  in 
an interior point of supp( )Xf   

2 2

1

1 1

2

( ) ( )
( )

( ) ( )

k k
i

i i
k k

i

c x h o h k is even
x

c x h o h k is odd

+ +
ν ν

+ +
ν ν

 +
φ − φ = 

 +

ɶ  

and if ix  in a boundary point of supp( )Xf  
1 1

3( ) ( ) ( )k k
i i ix c x h o h+ +

ν νφ − φ = + ,ɶ  

where all the smaller order terms hold uniformly in .i Uν∈   
Lemma 3. Assume that assumptions (C1) and (C4) hold. 
Then,  

i) For [0 )p ∈ ,∞  fixed,  

{ }

1
limsup

j

p

x h x x h
j U

I
N h ν ν

ν

− ≤ ≤ +
ν→∞ ∈ν ν

  < ∞, 
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∑  

  uniformly in ;x  
 

ii) { [0 ] (1 1]}

1
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2 jx h h
j U

I
N h ν ν
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∈ , ∪ − ,
ν→∞ ∈ν ν

< ∞;∑  

iii) { ( 1 ]}

1
limsup .

jx h h
j U

I
N ν ν
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∈ , −
ν→∞ ∈ν
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iv) there  exists ,∗ν  independent of ,x  such that 
whenever ,∗ν ≥ ν  

{ } 1
jx x h

j U

I k
ν

ν

| − |≤
∈

≥ + ;∑  

  
Lemma 4. Suppose the assumptions of Theorem 1 hold. 
Consider the matrices ˆ ˆ{ }si si pqT ,=T  and { }i si pqT ,=T  and 
the vectors ˆ ˆ{ },si si pt ,=t { }i i pt ,=t  and { }i i pB ,=B  
given in (7) and (10). Then,  

i) the 1
i pqN T−

ν ,  and 1
i pN t−

ν ,  are uniformly bounded 
in ,i Uν∈  for all 1, ..., 1;p q k, = +  

ii) the ˆ
si pqT ,  and ŝi pt ,  satisfy  
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4 41 1
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  uniformly in ;i Uν∈  
iii) the  random variable 1

1
ˆˆ( )i si si i

−′ −T t T Be  satisfies  

1

1

1ˆˆmaxE ( ( ) )i si si i i i
i U

I R O
n hν

−
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ν ν
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−
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 
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Lemma 5. Suppose the assumptions of Theorem 1 hold. 
Then, for all 1ν ≥   

i) the  reciprocal of iφɶ  is uniformly bounded in 
;i Uν∈  

ii) the  partial derivatives of 1ˆ
i
−φ  of orders one up to 

four, when evaluated at ˆ ,si i=T T ˆ ,si i=t t 1 0δ =  

and 2 0,δ =  are uniformly bounded in ;i Uν∈  

iii) 4ˆE( )i
−φ  is uniformly bounded in ;i Uν∈  

iv) the  reciprocal of ˆ iφ  satisfies  
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− − − −
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′φ = φ − φ −

 
+ ε + , 
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T t T Bɶ ɶ e
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uniformly in ,i Uν∈  where the iνε  are random 
variables such that  

2

2 2

1
maxE i
i U

O
n hν

 
 ν ∈

ν ν

 
ε = . 

 
 

 
Lemma 6. Suppose the assumptions of Theorem 1 hold. 
Define the random variables ,y πφνɶ d πφνɶ  and πφνε ɶ  as  

1 1 1 1
1

( )

1 ˆˆ(1 ( ) )i i i i si si i i i i
i s

y d

e y R
N

ν

πφνπφνπφν

− − − −
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ɶ ɶ
 

Then,  

(3 2)
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( )
E( )
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k

N
k

O h k even
y y

O h k odd
ν

+ /
ν

πφν
+

ν

 ,
− = 

 ,
ɶ  (23) 

1
Var ( ) ,Oy

nπφν
ν

 
=  

 
ɶ  (24) 

2 1
(E[ ] E[ ])d d Â O

n hπφν πφν
ν ν

 
′, =  

 
ɶ ɶ  (25) 

and  

2

2 2

1
E( ) O

n hπφν
ν ν

 
ε = . 

 
ɶ  (26) 
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Abstract 

In this paper a multivariate structural time series model is described that accounts for the panel design of the Dutch Labour 

Force Survey and is applied to estimate monthly unemployment rates. Compared to the generalized regression estimator, 

this approach results in a substantial increase of the accuracy due to a reduction of the standard error and the explicit 

modelling of the bias between the subsequent waves. 
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1. Introduction 

 
The Dutch Labour Force Survey (LFS) is based on a 

rotating panel design. Each month a sample of addresses is 

drawn and data are collected by means of computer assisted 

personal interviewing of the residing households. The 

sampled households are re-interviewed by telephone four 

times at quarterly intervals. The estimation procedure of this 

survey is based on the generalized regression (GREG) 

estimator, developed by Särndal, Swensson and Wretman 

(1992). 

Due to the following properties, GREG estimators are 

very attractive to produce official releases in a regular 

production environment and are therefore widely applied by 

national statistical institutes. First, GREG estimators are 

approximately design-unbiased, which provides a form of 

robustness in the case of large sample sizes. These 

estimators are derived from a linear regression model that 

specifies the relationship between the values of a certain 

target parameter and a set of auxiliary variables for which 

the totals in the finite target population are known. If this 

linear regression model explains the variation of the target 

variable reasonably well, then this might reduce the design 

variance as well as the bias due to selective nonresponse, 

Särndal and Swensson (1987), Bethlehem (1988), and 

Särndal and Lundström (2005). Model misspecification, on 

the other hand, might result in an increase of the design 

variance but the point estimates remain approximately 

design unbiased. Second, GREG estimators are often used 

to produce one set of weights for the estimation of all target 

parameters of a multi-purpose sample survey. This is not 

only convenient but also enforces consistency between the 

marginal totals of different publication tables. 

There are two major problems with the rotating panel 

design of the LFS and the way that the GREG estimator is 

applied in the estimation procedure. First, there are 

substantial systematic differences between the subsequent 

waves of the panel due to mode- and panel effects. This is a 

well-known problem for rotating panel designs, and is in the 

literature referred to as rotation group bias (RGB), see 

Bailar (1975). In the LFS, the level of the unemployment 

rate in the subsequent waves is substantially smaller 

compared to the first wave. There are also systematic 

differences between the seasonal effects of the subsequent 

waves. 

A second problem is that the monthly sample size of the 

LFS is too small to rely on the GREG estimator to produce 

official statistics about the monthly employment and 

unemployment. GREG estimators have a relatively large 

design variance in the case of small sample sizes. Therefore, 

in the LFS, each month the samples observed in the 

preceding three months are used to estimate quarterly 

figures about the labour market situation. The major 

drawback of this approach is that the real monthly seasonal 

pattern in the unemployment rate is smoothed out. Also 

structural changes in unemployment appear delayed in the 

series of quarterly figures. 

Since the monthly sample size is too small to apply 

design-based or direct survey estimators, model-based esti-

mation procedures might be used to produce sufficiently 

reliable statistics. In the case of continuously conducted 

surveys, a structural time series model can be applied to use 

information from preceding samples to improve the 

accuracy of the estimates. This model can be extended to 

account for the RGB and the autocorrelation (AC) between 

the different panels of the LFS. This approach makes 

efficient use of the rotating panel design of the LFS in 

estimating  monthly  figures  about  the  labour  market,   

and is originally proposed by Pfeffermann (1991) and 

Pfeffermann, Feder and Signorelli (1998). These techniques 

are applied in this paper to estimate the monthly unemploy-

ment rate of the LFS. Other references to authors that apply 
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time series models to develop estimates for periodic surveys 

are Scott and Smith (1974), Scott, Smith and Jones (1977), 

Tam (1987), Binder and Dick (1989, 1990), Bell and 

Hillmer (1990), Tiller (1992), Rao and Yu (1994), 

Pfeffermann and Burck (1990), Pfeffermann and Rubin-

Bleuer (1993), Pfeffermann and Tiller (2006), Harvey and 

Chung (2000), and Feder (2001).  

Composite estimators can be considered as an alternative 

to time series models. They are developed under the 

traditional design-based approach, to use information 

observed in previous periods from periodic surveys with a 

rotating panel design, to improve the precision of level and 

change estimates. Some key references to composite esti-

mators are Hansen, Hurwitz and Meadow (1953), Rao and 

Graham (1964), Gurney and Daly (1965), Cantwell (1990), 

Singh (1996), Gambino, Kennedy and Singh (2001), Singh, 

Kennedy and Wu (2001) and Fuller and Rao (2001). 

In Section 2, the survey design of the LFS is summarised. 

A structural time series model that accounts for the rotating 

panel design of the LFS is developed in Sections 3 and 4. 

The results are detailed in Section 5. Some general remarks 

are made in Section 6. 

 
2. The dutch Labour Force Survey 

 
2.1 Sample design  

The objective of the Dutch LFS is to provide reliable 

information about the labour market. Each month a sample 

of addresses is selected from which households are 

identified that can be regarded as the ultimate sampling 

units. The target population of the LFS consists of the non-

institutionalised population aged 15 years and over residing 

in the Netherlands. The sampling frame is a list of all known 

occupied addresses in the Netherlands, which is derived 

from the municipal basic registration of population data. 

The LFS is based on a stratified two-stage cluster design of 

addresses. Strata are formed by geographical regions. 

Municipalities are considered as primary sampling units and 

addresses as secondary sampling units. All households 

residing at an address, up to a maximum of three, are 

included in the sample (in the Netherlands, there is generally 

one household per address). Since most target parameters of 

the LFS concern people aged 15 through 64 years, addresses 

with only persons aged 65 years and over are undersampled.  

In October 1999, the LFS changed from a continuous 

survey to a rotating panel design. In the first wave, data are 

collected by means of computer assisted personal inter-

viewing (CAPI). For all members of the selected house-

holds, demographic variables are observed. For the target 

variables only persons aged 15 years and over are inter-

viewed. When a household member cannot be contacted, 

proxy interviewing is allowed by members of the same 

household. Households, in which one or more of the 

selected persons do not respond for themselves or in a proxy 

interview, are treated as nonresponding households. The 

respondents aged 15 through 64 years are re-interviewed 

four times at quarterly intervals by means of computer 

assisted telephone interviewing (CATI). During these re-

interviews a condensed questionnaire is applied to establish 

changes in the labour market position of the respondents. 

Proxy interviewing is also allowed during these re-

interviews. The monthly gross sample size averaged about 

8,000 addresses when the LFS first changed to a rotating 

panel design. The monthly sample size gradually declined to 

about 6,500 addresses in 2008. During this period about 

65% completely responding households are obtained. 
 
2.2 Rotation group bias  

The rotating panel design, described in Section 2.1, results 

in systematic differences between the estimates of the 

unemployment rate of the successive waves in one time 

period. In the literature, this phenomenon is known as RGB, 

see e.g., Bailar (1975), Kumar and Lee (1983) and 

Pfeffermann (1991). The RGB in the LFS results in a 

systematic underestimation of the level of the unemployment 

rate in the CATI waves but also in systematic differences 

between the seasonal patterns. The RGB is a consequence of 

the following strongly confounded factors: 

 

− Selective nonresponse between the subsequent waves, 

i.e., panel attrition. 

− Systematic differences between the populations that are 

reached with the CAPI and CATI modes. It is anticipated 

that these differences are relatively small, since 

telephone numbers are asked during the first interview. 

As a result, secret numbers and cell-phone numbers are 

also called.  

− Mode-effects, i.e., systematic differences in the data due 

to the fact that the interviews are conducted by telephone 

instead of face to face. Under the CAPI mode the 

interview speed is lower, respondents are more engaged 

with the interview and are more likely to exert the 

required cognitive effort to answer questions carefully. 

Also less socially desirable answers are obtained under 

the CAPI mode due to the personal contact with the 

interviewer. As a result, less measurement errors are 

expected under the CAPI mode (Holbrook, Green and 

Krosnick 2003, and Roberts 2007). Van den Brakel 

(2008) describes an experiment where the CAPI and 

CATI data collection modes are compared in the first 

wave of the LFS. It follows that the estimated 

unemployment rate is significantly smaller under the 

CATI mode. 
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− The fraction of proxy interviews is larger under the 

CATI mode (Van den Brakel 2008). This might result in 

an increased amount of measurement errors. 

− Effects due to differences between the CAPI question-

naire and the CATI questionnaire. The CATI 

questionnaire is a strongly condensed version of the 

CAPI questionnaire since the re-interviews focus on 

changes in the labour market position of the respondents. 

− Panel effects, i.e., systematic changes in the behaviour of 

the respondents in the panel. For example, questions 

about activities to find a job in the first wave might 

increase the search activities of the unemployed 

respondents in the panel. Respondents might also adjust 

their answers in the subsequent waves systematically, 

since they learn how to keep the routing through the 

questionnaire as short as possible.   
It is assumed that the estimates based on the first wave 

are the most reliable, since CAPI generally results in a 

higher data quality and the first wave does not suffer from 

the panel effects mentioned above. In order to minimize the 

effects of the RGB, the second, third, fourth and fifth waves 

are currently calibrated to the first wave as will be described 

in Section 2.3.  
 
2.3 Regular estimation procedure  

Target parameters about the employment and un-

employment are defined as population totals or as ratios of 

two population totals. The unemployment rate, which is 

investigated in this paper, is defined as the ratio of the total 

unemployment to the total labour force. This population 

parameter is estimated as the ratio of the GREG estimate for 

the total unemployed labour force to the estimated total 

labour force. Each month estimates about the employment 

and unemployment for the preceding three months are 

published. 

In an attempt to correct for the RGB, a rather laborious 

weighting procedure is used in the regular estimation 

procedure. The most important steps are summarized here. 

First, the inclusion probabilities are derived, which reflect 

the sampling design described above as well as the different 

response rates between geographical regions. Subsequently, 

the inclusion weights of each CATI wave are calibrated 

with the GREG estimator to the labour force status observed 

in the first wave. In the next step, the calibrated weights of 

the CATI waves and the inclusion weights of the CAPI 

wave are used as the design or starting weights of the 

GREG estimator, using a weighting scheme that is based on 

a combination of different socio-demographic classifica-

tions. The integrated method for weighting persons and 

families of Lemaître and Dufour (1987) is applied to obtain 

equal weights for persons belonging to the same household. 

Finally, a bounding algorithm proposed by Huang and 

Fuller (1978) is applied to avoid negative weights. This 

estimation procedure is conducted with the software 

package Bascula, Nieuwenbroek and Boonstra (2002). 

Since this weighting procedure hardly corrects for the 

RGB, an additional rigid correction is applied. For the most 

important parameters the ratio between the estimates based 

on CAPI only and the estimates based on all waves is 

computed using the data of 12 preceding quarters. Estimates 

for the preceding three months are multiplied by this ratio to 

correct for RGB.   
2.4 Monthly GREG estimates based on monthly 

data  
In Section 3, a structural time series model is developed 

to estimate the monthly unemployment rate. The input data 

for this time series model are the GREG estimates for the 

monthly unemployment rate using the monthly sample data 

of the separate waves. Let tθ  denote the true but unknown 

unemployment rate for month .t  Now t j

tY
−  denotes the 

GREG estimate of the unemployment rate of month ,t  

based on the sample which entered the panel in month 

.t j−  For the period of January 2001 until December 2008 

each month five independent GREG estimates for the same 

parameter tθ  are produced, using the five separate waves 

that are observed each month, i.e., t j

tY
−  for j = 0, 3, 6, 9, 

12. These estimates are defined as   

,

,

,

t j

y tt j

t t j

z t

t
Y

t

−
−

−
=  (2.1) 

with ,
t j
y tt −  and ,

t j
z tt −  the GREG estimates for the unemployed 

labour force and the labour force at time ,t  based on the 

sample that entered the panel at .t j−  

The separate monthly waves are weighted with a reduced 

version of the weighting scheme that is applied in the 

regular weighting procedure for the quarterly figures. The 

estimates based on the CATI data are not adjusted to correct 

for RGB, since a multivariate time series model is applied to 

correct for this bias. 

The variance of (2.1) can be estimated with 
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t j t j T t j t j T
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e y Y z− − − −

=

= − − −∑ x b x b  

Here ,
t j
kl ty −  is a binary variable taking value one if the thl  

person belonging to the thk  household that entered the 

sample at time t j−  belongs to the unemployed labour 

force at time t  and zero otherwise, ,
t j
kl tz −  a binary variable 

taking value one if the thl  person of the thk  household 
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belongs to the labour force at time t  and zero otherwise, 

klx  a vector with the auxiliary information of the thl  person 

belonging to the thk  household used in the weighting 

scheme of the GREG estimator, yb  and zb  the regression 

coefficient of the regression function of ,
t j
kl ty −  respectively 

,
t j
kl tz −  on ,klx kw  the regression weight of household ,k  

,
t j
h tn −  the number of completely responding households of 

stratum 1, ..., ,h H=  at time t  of the sample that entered 

the panel at ,t j−  and km  the number of persons aged 15 

years and over belonging to the thk  household. Recall from 

Section 2.3 that persons belonging to the same household 

have equal weights due to the application of the integrated 

method for weighting persons and families of Lemaître and 

Dufour (1987). Formula (2.2) is the variance estimation 

procedure implemented in Bascula to approximate the 

variance of the ratio of two GREG estimators. 

The estimates for the monthly unemployment rate 

obtained with the structural time series approach will be 

compared in Section 5.3 with monthly estimates based on 

the GREG estimator using the data observed in the five 

waves. For this comparison a slightly simplified version of 

the procedure described in Section 2.3 is applied to combine 

the data observed in the different waves to obtain monthly 

GREG estimates. First, a GREG estimate tY  is computed 

using the data observed in the five waves using the same 

weighting procedure used in the regular production process 

to estimate quarterly figures, see Section 2.3. The weighting 

scheme is slightly simplified because less data are available. 

Subsequently a correction factor based on the preceding 

three years is computed as: 

35

0

35

0

.

t j

t j
j

t

t j

j

Y

c

Y

−
−

=

−
=

=
∑

∑
 (2.3) 

Finally, the corrected estimate is computed: 

.c

t t tY c Y=  (2.4) 

Because the series start at January 2001, tc  can be 

computed from December 2003. To get a corrected GREG 

estimate for all months, December2003c  is used in formula (2.4) 

for the periods preceding December 2003. The variance of 

(2.4) is approximated by 2var( ) var( ),c

t t tY c Y=  where 

var( ),tY  is computed with formula (2.2), using the data of 

all waves accordingly.   
3. Time series model  

Direct estimators, like the Horvitz-Thompson estimator 

or the GREG estimator, assume that the monthly 

unemployment rate tθ  is a fixed but unknown population 

parameter. Under this design-based approach, an estimator 

for tθ  for cross-sectional surveys only uses the data 

observed at time .t  Data from the past are only used in the 

case of partially overlapping samples in a panel design, but 

not in the case of repeatedly conducted cross-sectional 

designs. Scott and Smith (1974) proposed to consider the 

population parameter tθ  as a realization of a stochastic 

process that can be described with a time series model. 

Under this assumption, data observed in preceding periods 

1, 2, ...,t t− −  can be used to improve the estimator for 

,tθ  even in the case of non-overlapping sample surveys.  

Recall from Section 2.4 that t j

tY
−  denotes the GREG 

estimator for tθ  based on the panel observed at time ,t  

which entered the survey for the first time at .t j−  Due to 

the applied rotation pattern, each month a vector t =Y  
3 6 9 12( )t t t t t T

t t t t tY Y Y Y Y− − − −  is observed. According to 

Pfeffermann (1991), this vector can be modelled as 

5 ,t t t t t= θ + + +Y 1 λ γ e  (3.1) 

with 51  a five dimensional vector with each element equal 

to one, 0 3 6 9 12( )Tt t t t t t= λ λ λ λ λλ  and 0 3 6 9 12( )Tt t t t t t= γ γ γ γ γγ  

vectors with time dependent components that account for 

the RGB in the trend and the RGB in the seasonal 

components respectively, and 3 6 9 12( )t t t t t T

t t t t t te e e e e− − − −=e  

the corresponding survey errors for each panel estimate. 

Time series models for the different components in (3.1), 

i.e., the population parameter ,tθ  the RGB for the trend ,tλ  

the RGB for the seasonal patterns ,tγ  and the survey errors 

,te  are developed in Sections 3.1 through 3.3.  
 
3.1 Time series model for the population parameter  

With a structural time series model, the population 

parameter tθ  in (3.1) can be decomposed in a trend 

component, a seasonal component, and an irregular 

component, i.e.: 

,t t t tL Sθ = + + ε  (3.2) 

where tL  denotes a stochastic trend component, tS  a 

stochastic seasonal component, and tε  the irregular 

component. For the stochastic trend component the so-

called local linear trend model is used, which is defined by 

the following set of equations: 
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The parameters tL  and tR  are referred to as the trend and 

the slope parameter respectively. The seasonal component is 

modelled with the trigonometric form 

6

,
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,t l t
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= ∑  (3.4) 
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The irregular component tε  contains the unexplained 

variation and is modelled as a white noise process: 

2 if
( ) 0, Cov( , )

0 if .
t t t

t t
E

t t

ε

′

 ′σ =
ε = ε ε = 

 ′≠

 (3.6) 

 
3.2 Time series model for rotation group bias  

The systematic differences between the trend and the 

seasonal components of the subsequent waves are modelled 

in (3.1) with tλ  and .tγ  Additional restrictions for the 

elements of both vectors are required to identify model 

(3.1). Here it is assumed that an unbiased estimate for tθ  is 

obtained with the first wave, which is observed by CAPI, 

i.e., .ttY  This implies that the first component of tλ  and tγ  

equals zero. Now tλ  measures the systematic differences in 

the trend of the second, third, fourth and fifth wave with 

respect to the first wave. The components of tλ  are defined 

as: 

0
1 , ,0, , 3, 6, 9,12,j j

t t t j t j− λλ = λ = λ + η =  (3.7) 

   

, ,

2

, , , ,

( ) 0,

if and
Cov( , )

0 if or .

j t

j t j t

E

t t j j

t t' j j'

λ

λ

′ ′λ λ

η =

 ′ ′σ = =
η η = 

 ≠ ≠

 

Furthermore tγ  measures the systematic differences in 

the seasonal components with respect to the first wave. This 

implies that 0 0.tγ =  The other components of tγ  are 

defined as trigonometric functions, which are of the form of 

(3.5). The variance of the disturbances of the seasonal 

components are assumed to be equal for all waves and is 

denoted by 2.γσ  

To borrow information across the panel waves, the RGB 

for the trend as well as the RGB for the seasonal 

components are modelled as time invariant components, i.e., 
2 2 0.λ γσ = σ =  As a kind of model diagnostic, the model 

initially allows for time dependent components. The 

maximum likelihood estimates for 2

λσ  and 2
γσ  are close to 

zero in this application. If this is not the case, it might be 

possible to allow for separate time independent RGB 

components for different time intervals.  
 
3.3 Time series model for the survey errors  

Finally a time series model for the survey errors in (3.1) 

is developed, which uses the direct estimates for the 

variance and AC’s for the survey errors of the different 

panels as prior information. From (3.1) it follows that the 

survey errors for the first wave are defined as .t t

t t te Y= − θ  

For the second, third, fourth and fifth wave, they are defined 

as ,t j t j j j

t t t t te Y− −= − θ − λ − γ  for j = 3, 6, 9, 12.  

Direct estimates for the variances of the survey errors for 

the separate panels are obtained with (2.2). These estimates 

are smoothed by modelling the variance estimates for the 

separate panels with a linear regression model Var( )t j

tY
− =  

0 1 ( / )j j t j t j

t tb b Y n− −+ + error, where t j

tn
−  denotes the sample 

size at time t of the sample that entered the panel at .t j−  

The rotating panel design implies sample overlap with 

panels observed in the past. The sample of the first wave 

enters the panel for the first time at time t, so there is no 

sample overlap with panels observed in the past. 

Consequently, the survey errors of the first wave, ,tte  are 

not correlated with survey errors in the past. The survey 

error of the second wave, i.e., 3,t

te
−  is correlated with the 

survey error of the first wave that entered the panel three 

months earlier, i.e., 3

3

t

te
−
− . In a similar way, the survey error 

of the third wave, i.e., 6,t

te
−  is correlated with 6

3

t

te
−
−  and 

6

6.t

te
−
−  The survey error of the fourth wave, i.e., 9,t

te
−  is 

correlated with 9

3 ,t

te
−
−

9

6

t

te
−
−  and 9

9.t

te
−
−  Finally, the survey error 

of the fifth wave, i.e., 12,t

te
−  is correlated with 

12

3 ,t

te
−
−

12

6 ,t

te
−
−

12

9

t

te
−
−  and 12

12.t

te
−
−  

The AC’s between the survey errors of the subsequent 

waves are estimated using the approach proposed by 

Pfeffermann et al. (1998). Since the real survey errors 

cannot be observed directly, this approach starts with 

calculating the autocovariances for the pseudo survey errors, 

which are defined as ( ),t j

t tY Y− −  where tY  denotes the 

average of the five panel estimates t j

tY
−  at time .t  The 

autocovariances of the pseudo survey errors for a separate 

wave are influenced by the autocovariances of the real 

survey errors of the other waves, since the pseudo survey 
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errors are defined as the deviation of a panel estimate with 

the average of all panel estimates obtained at time .t  

Equation (4) of Pfeffermann et al. (1998) specifies the 

relation between the autocovariances of the pseudo survey 

errors and the real survey errors. From this equation, it 

follows that the autocovariances of the real survey errors 

can be derived from the autocovariances of the pseudo 

survey errors by 1 ,k k

−=φ F C  with kC  a vector containing 

the five autocovariances of the pseudo survey errors at lag 

,k kφ  a vector containing the five autocovariances of the 

survey errors at lag ,k  and F  a M M×  dimensional 

matrix where the diagonal elements equal 2( 1/ )M M−  

and the off-diagonal elements 2(1/ ) .M  Here M  denotes 

the number of waves of the panel design (M =  5 in this 

application). The AC’s and the partial autocorrelations 

(PAC) of the survey errors of the subsequent waves are 

given in Table 3.1. 
 
Table 3.1 
Correlations and partial autocorrelations for the survey errors of 

the separate panels 
 

wave  lag 

  1 2 3 4 

1 AC -0.029 0.264 0.022 0.230 

 PAC -0.029 0.263 0.038 0.175 

2 AC 0.291 0.135 0.035 -0.250 

 PAC 0.291 0.054 -0.020 -0.287 

3 AC 0.240 0.120 0.087 0.219 

 PAC 0.240 0.066 0.047 0.194 

4 AC 0.442 0.253 0.122 0.156 

 PAC 0.442 0.072 -0.016 0.115 

5 AC 0.249 0.298 -0.183 0.127 

 PAC 0.249 0.252 -0.344 0.218 

Mean* AC 0.306 0.224 -0.030 0.127 

 PAC 0.306 0.144 -0.150 0.162 
 

Underlined AC’s and PAC’s refer to waves with sample overlap 
*): Means are based on the waves with sample overlap. 

 
The standard errors of the estimated AC’s equal 1/ ,T  

where T  denotes the number of observations. This implies 

that correlations with an absolute value larger than 0.21 are 

significantly different from zero at a 5% significance level. 

The lags in Table 3.1 refer to three months periods, so lag 

one equals a time lag of three months, lag two a time lag of 

six months, etc. 

The AC’s in Table 3.1, which are based on overlapping 

samples, are underlined. The AC’s for the overlapping 

samples are positive as might be expected. An exception is 

the AC at lag three for the fifth wave, which has a negative 

value. This correlation, however, is not significantly 

different from zero. The AC’s for lag one of the overlapping 

samples are all significantly different from zero. For lag 

two, the AC’s of the overlapping samples are significantly 

different from zero for the fourth and the fifth wave, but not 

for the third wave. The AC’s that are based on non-

overlapping samples are sometimes unexpectedly large, e.g., 

lag two and four of the first wave and lag four of the third 

wave. The AC for lag four of the second wave, on the other 

hand, has a surprisingly large negative value. 

Pfeffermann et al. (1998) also report large positive AC’s 

for lags with non overlapping samples. In their case this can 

be explained since samples are replaced in small geograph-

ical regions. In the Dutch LFS sample replacement takes 

place at the national level. There is no good explanation 

why the AC’s for the non overlapping samples are 

sometimes small and sometimes take significant positive as 

well as negative values. To obtain more stable estimates, the 

AC’s are averaged over the waves which are based on 

overlapping samples. Thus the mean AC for lag one is the 

average of the AC for the second, third, fourth and fifth 

wave, etc. The values are reported in the last two rows of 

Table 3.1. The standard errors of the PAC’s of order 1p +  

and higher for an AR( )p  equal T/1 , Box and Jenkins 

(1970). This implies that the PAC’s are not significantly 

different from zero for lags two and higher if an AR(1) 

model with a correlation coefficient of 0.306 is assumed to 

capture the AC of the survey errors for the second, third, 

fourth and fifth wave. 

The direct estimates for the variance and covariance 

structure of the survey errors are combined in the time series 

model  using  the  following  general  form  of  the  survey 

error model t j t j t j

t t te k e− − −= ɶ  where Var( ),t j t j

t tk Y− −=  see 

Binder and Dick (1990). This allows for non homogeneous 

variance in the survey errors, that arise e.g., due to the 

gradually decreasing sample size over the last decade.  

Since the first wave is uncorrelated with survey errors 

obtained in the past, it is assumed that t

teɶ  is white noise with 

( ) 0t

tE e =ɶ  and Var( ) 1.t

te =ɶ  As a result, the variance of 

the survey error equals 2Var( ) ( ) ,t t

t te k=  which is equal to 

the direct estimate of the variance of the GREG estimate for 

the first wave. For the second, third, fourth and fifth wave, it 

is assumed that 3 ,t j t j t j

t t te e− − −
−= ρ + νɶ ɶ  with ρ = 0.306, and 

2 if
( ) 0, Cov( , )

0 if .

t j t j t j

t t t

t t
E

t t

ν′− − −
′

 ′σ =
ν = ν ν = 

 ′≠

 

Since t j

te
−
ɶ  is an AR(1) process, Var( )t j

te
− =ɶ  

2 2/ (1 ).νσ − ρ  To enforce that Var( )t j

te
−  equals the direct 

estimate for the variance of the GREG estimate, it follows 

that 2 2(1 ).νσ = − ρ   
3.4 Final time series model for the monthly 

unemployment rate  
The time series model for the vector with GREG esti-

mates tY  is obtained by inserting the different components 

developed in Sections 3.1 through 3.3 into (3.1). This model 
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uses the five monthly GREG estimates as input data to 

obtain model-based estimates for the monthly unemploy-

ment rate. The component for the population parameter tθ  

in (3.2), developed in Section 3.1, takes advantages of 

sample information observed in the past to improve the 

precision of the estimated monthly unemployment rate. The 

components for the RGB, developed in Section 3.2, account 

for the systematic differences between the five monthly 

GREG estimates to avoid that the estimated monthly un-

employment rate is incurred with this bias. The component 

for the survey errors, developed in Section 3.3, accounts for 

the AC between the five GREG estimates that are based on 

the same sample, observed with quarterly intervals. 

Although this approach is model-based, it accounts for the 

complexity of the survey design of the LFS, since the 

GREG estimates are used as input data. 

 
4. State space representation 

 
The time series model for the five monthly GREG 

estimates developed in Section 3 can be expressed in the 

state space representation, see Harvey (1989) or Durbin and 

Koopman (2001). A state space model consists of a 

measurement equation and a transition equation. The 

measurement equation, which is sometimes also called the 

signal equation, specifies how the observations depend on a 

linear combination of the state vector that contains the 

unobserved state variables for the trend, seasonal, RGB and 

the survey errors. The transition equation, which is 

sometimes also referred to as the system equation, specifies 

how the state vector evolves in time. The state space 

representation of the model developed in Section 3 is given 

by Van den Brakel and Krieg (2009).   

Under the assumption of normally distributed error 

terms, the Kalman filter can be applied to obtain optimal 

estimates for the state vector. Estimates for state variables 

for period t based on the information available up to and 

including period t are referred to as the filtered estimates. 

The filtered estimates of past state vectors can be updated, if 

new data become available. This procedure is referred to as 

smoothing and results in smoothed estimates that are based 

on the completely observed time series. So the smoothed 

estimate for the state vector for period t also accounts for the 

information made available after time period t. In this paper, 

the Kalman filter estimates for the state variables are 

smoothed with the fixed interval smoother. See Harvey 

(1989), and Durbin and Koopman (2001) for technical 

details. 

The analysis is conducted with software developed in Ox 

in combination with the subroutines of SsfPack 3.0, see 

Doornik (1998) and Koopman, Shephard and Doornik 

(2008). All state variables are non-stationary with the 

exception of the survey errors. The non-stationary variables 

are initialised with a diffuse prior, i.e., the expectation of the 

initial states are equal to zero and the initial covariance 

matrix of the states is diagonal with large diagonal elements. 

The survey errors are stationary and therefore initialised 

with a proper prior. The initial values for the survey errors 

are equal to zero and the covariance matrix is available from 

the model developed for the survey errors in Section 3.3. In 

Ssfpack 3.0 an exact diffuse log-likelihood function is 

obtained with the procedure proposed by Koopman (1997). 

 
5. Results 

 
5.1 Preliminary analyses  

With the GREG estimator monthly estimates for the 

unemployment rate are obtained for each wave as described 

in Section 2.4. In Figure 5.1 the unemployment rate based 

on the CAPI wave is compared with the average of the four 

CATI waves. The graph shows that the unemployment rate 

observed with the first wave is systematically higher than 

for the other four waves.  

The five time series obtained with the different waves are 

modelled with the time series model proposed in Sections 3 

and 4. Preliminary analyses indicate that the estimates for 

the RGB of the seasonal effects in the second wave are not 

significantly different from zero and the RGB for the 

seasonal effects of the third, fourth and fifth wave are not 

significantly different from each other. Therefore the model 

is simplified to one with a single RGB seasonal effect. See 

Van den Brakel and Krieg (2009) for the state space 

representation. 

 
 
 
 

 

 

 

 

 

 

 

 

  
Figure 5.1 RGB monthly unemployment rate based on GREG 

estimates 

  
5.2 Estimation results for the time series model  

Maximum likelihood estimates for the hyperpara-

meters, i.e., the variance components of the stochastic 

processes for the state variables are obtained using a 
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numerical optimization procedure (BFGS algorithm, 

Doornik 1998). To avoid negative variance estimates, the 

log-transformed variances are estimated. The maximum 

likelihood estimates for the log-transformed variance of 

the level of the trend 2( ),Lσ  the seasonal component 
2( ),ωσ  the RGB of the trend 2( )λσ  and the RGB of the 

seasonals tend 2( )λσ  tend to large negative values with 

extremely large standard errors. These variance compo-

nents are therefore put to zero in the final model. The 

estimation results for the remaining hyperparameters are 

presented in Table 5.1. 

 

 
Table 5.1 
Maximum likelihood estimates hyperparameters 
 

Hyperparameter Ln-transformed 

variance comp. 

      Variance components 

 Estimate St. error      Estimate 95% conf. interval 

    Lower b. Upper b. 

Slope 2( )Rσ  -17.226 0.549      0.182E-3 0.106E-3 0.311E-3 

Irregular comp. 2( )εσ  -13.480 0.482      1.183E-3 0.737E-3 1.897E-3 

 

 

The smoothed Kalman filter estimates for the un-

employment rate tθ  are given in Figure 5.2. These are the 

estimates for the monthly unemployment rate, based on the 

smooth trend model and a seasonal component, corrected 

for the RGB between the five GREG estimates. The local 

linear trend model simplified to a smooth trend model since 
2 0.Lσ =  The trend component is time dependent since the 

maximum likelihood estimate of the hyperparameter for the 

slope is positive (see Table 5.1). The seasonal component is 

also time independent, since 2 0.ωσ =  Therefore the esti-

mated seasonal effects obtained with the trigonometric form 

are exactly the same as the results obtained with the well 

known dummy variable seasonal model. The smoothed 

Kalman filter estimates for the trend and the seasonal 

component are plotted in Figures 5.3 and 5.4 respectively. 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

Figure 5.2 Smoothed Kalman filter estimates for the monthly 
unemployment rate 

 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
  
Figure 5.3 Smoothed Kalman filter estimates for the trend of the 

monthly unemployment rate 

 

 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

Figure 5.4 Smoothed Kalman filter estimates for the seasonal 
effect of the monthly unemployment rate 

  
The Kalman filter estimates for the RGB of the trend are 

time independent. The smoothed Kalman filter estimates for 

the RGB are given in Table 5.2. The model beautifully 

detects a slightly increasing bias in the trend of the 

subsequent waves. The estimates for the RGB of the four 

CATI waves are significantly different from zero. 
 
Table 5.2 
Smoothed Kalman filter estimates RGB trend 
 

Wave RGB St. error 

2 -0.75 0.04 

3 -0.86 0.04 

4 -0.96 0.05 

5 -1.10 0.05 

 
An interesting empirical result of this application is the 

finding of the seasonality in the RGB. The Kalman filter 

estimates for the RGB of the seasonal effects are also time 

independent. Therefore, a sequence of likelihood ratio tests 

is conducted to reach the finally selected model and to test 

whether the seasonality effects in the RGB of this model are 

jointly significantly different form zero. Consider the 

following nested models: 
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− M1: separate and fixed RGB in the seasonality for 

wave two, three, four and five 

− M2: equal to M1 where the RGB in the seasonality 

of wave two is equal to zero 

− M3: equal to M2 with equal RGB in the seasonality 

of wave three, four and five 

− M4: RGB in the seasonality of wave two, three, four 

and five is equal zero 
 

The results of the likelihood ratio tests of this sequence of 

models are specified in Table 5.3. 
 
 
Table 5.3 
Likelihood-ratio tests for RGB in seasonality 
 

Model Log 

likelihood 

Null 

hypothesis 

Likh. ratio 

stat. 

D.f. p-value 

M1 1,592.9     

M2 1,585.5 M2 = M1 14.7 11 0.19568 

M3 1,573.7 M3 = M2 23.7 22 0.36422 

M4 1,559.9 M4 = M3 27.6 11 0.00373 

 
 

Testing the hypothesis that M2 equals M1 shows that the 

seasonality of the second wave is not significantly different 

from the first wave. Testing the hypothesis that M3 equals 

M2 shows that the RGB in the seasonality of the third, 

fourth and fifth wave are not significantly different. Testing 

the hypothesis that M4 equals M3 shows that the RGB of 

seasonal effects in last three waves are jointly significantly 

different from zero. 

The smoothed Kalman filter estimates for the RGB of the 

seasonal effects for wave three, four and five are given in 

Figure 5.5. The smoothed Kalman filter estimates of the 

seasonal effects are compared with the smoothed estimates 

for the RGB of the seasonal effects in Figure 5.6. 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
Figure 5.5 Smoothed Kalman filter estimates for the RGB of the 

seasonal effects in the third, fourth and fifth wave 

 
 
 

 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

Figure 5.6 Comparison of smoothed Kalman filter estimates for 
the RGB of the seasonal effects in the third, fourth and 
fifth wave and the seasonal effects in 2008 

 
It follows from Figure 5.5 that the seasonal effects in 

February, March, April, August and October in the third, 

fourth and fifth wave are significantly different from the 

first and the second wave. Figure 5.6 shows that the RGB in 

the seasonal effects largely nullifies the seasonal effects in 

these months. The seasonal effects in the last three waves 

are, apparently, less pronounced than in the first two waves. 

The different factors that contribute to the RGB in both     

the trend and the seasonal patterns are summarised in 

Section 2.2. 
 
5.3 Comparison with GREG estimates  

In this section the monthly GREG estimates for the 

unemployment rate and their standard errors are compared 

with the filtered model estimates. The filtered estimates are 

used since they are based on the complete set of information 

that would be available in the regular production process to 

produce a model-based estimate for the monthly unemploy-

ment rate for month .t  

The GREG estimates based on the CAPI wave for the 

monthly unemployment rates are compared with the filtered 

model estimates in Figure 5.7. Some of the peaks and dips 

in the series of the GREG estimates are partially considered 

as survey errors under the structural time series model and 

flattened out in the filtered estimates for the series. Some of 

these peaks and dips are preserved since they are considered 

as seasonal effects under the time series model. It also 

follows that the filtered estimates are corrected for the RGB 

since the filtered series is at the same level as the series of 

the GREG estimates based on the CAPI wave. This is 

enforced with the assumption that the model parameters for 

the RGB for the first wave are zero (Section 3.2). This 

implies that the CATI waves are benchmarked to the 

outcomes of the first wave. 
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Figure 5.7 Filtered estimates and GREG estimates based on the 

CAPI wave for the monthly  unemployment rate 

 
The procedure applied in the regular estimation 

procedure of the LFS, to combine the CATI and the CAPI 

waves, is also used to estimate monthly unemployment 

figures. The GREG estimates for the monthly unemploy-

ment rates based on the five waves, using formula (2.4), are 

compared with the filtered estimates in Figure 5.8. Both 

estimates for the monthly unemployment rate follow the 

same level, since they are both benchmarked to the 

outcomes of the first wave. The GREG estimator is 

benchmarked in a rather rigid way using ratio (2.3), which is 

assumed to be constant in advance over a period of three 

years. The filtered estimates are benchmarked in a more 

subtle way through the explicit modelling of the trend and 

the seasonality in the RGB. The seasonality in the RGB 

indicates that the assumption of a constant RGB is not 

tenable. The monthly GREG estimates based on all waves 

are also compared with the GREG estimates based on the 

CAPI wave in Figure 5.9. 

The ratio correction applied in formula (2.4) to the 

GREG estimates based on all waves removes the RGB in 

the trend, but does not correct for the RGB in the seasonal 

patterns. This follows from Figure 5.8 and 5.9. The series of 

the GREG estimates based on all waves follows the same 

level as the GREG estimates based on the CAPI wave 

(Figure 5.9). There are, however, subtle differences between 

the filtered estimates and the GREG estimates based on all 

waves (Figures 5.8). They partially arise because some of 

the dips and peaks in the GREG estimates are considered as 

survey errors by the time series model but they are also the 

result of systematic differences in the seasonal patterns 

between the subsequent waves. For example, the model 

estimates in February and March are larger in 2003, 2005 

and 2006, and smaller in August in 2004, 2005 and 2006. 

The standard errors of the monthly GREG estimates 

based on all waves, the CAPI wave and the filtered 

estimates are compared with each other in Figure 5.10. The 

standard errors for the GREG estimates are computed as 

described in Section 2.4. Standard errors of the filtered 

estimates are obtained by the standard recursion formulas of 

the Kalman filter, see Harvey (1989) or Durbin and 

Koopman (2001). The Kalman filter recursion assumes that 

the fitted state space model is the truth. As a result the 

standard errors for the filtered estimates do not reflect the 

additional variation induced by the use of likelihood 

estimates for the variance components in the state space 

model and are therefore too optimistic. 

 

 

 

 

 

 

 

 

 

 

 

 

  
Figure 5.8 Filtered estimates and GREG estimates based on all 

waves for the monthly unemployment rate 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 

 

Figure 5.9 GREG estimates based on the CAPI wave and based 
on all waves for the monthly unemployment rate 

 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 
Figure 5.10 Standard errors of the GREG and filtered estimates 

for the monthly unemployment rate 
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As expected, the standard errors of the GREG estimates 

based on all waves are smaller than the standard errors of 

the GREG estimates based on the CAPI wave, since they 

are based on more data. The standard errors of the filtered 

estimates are smaller than the GREG estimates based on all 

waves, since the time series model uses additional sample 

information from preceding periods. The standard errors of 

the filtered estimates are slightly but continuously de-

creasing during the period 2003 to 2008.  

The size and complexity of the applied time series model, 

is large compared to the length of the series available to fit 

the model. The final model that is applied to a five 

dimensional series which is monthly observed during a 

period of eight years contains 41 state variables. Therefore it 

is worthwhile to consider more parsimonious models, which 

might reduce the standard errors of the filtered estimates. 

Furthermore, the GREG estimate contains a bias since the 

RGB contains a seasonal effect, which is not reflected by its 

standard error. Therefore, the efficiency obtained by 

borrowing sample information from the past by relying on a 

time series model is illustrated more clearly if the standard 

error of the GREG estimates using all waves is compared 

with the standard error obtained with a time series model 

that accounts for the RGB in the trend only. Therefore a 

time series model without a component for the RGB in the 

seasonal pattern is applied to the data to illustrate the 

variance reduction by borrowing strength over time. The 

filtered estimates for the monthly unemployment rates based 

on a model with and without a component for the RGB in 

the seasonal pattern are compared in Figure 5.11.  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.11 Filtered estimates of the monthly unemployment rate 

for two different time series models 

 
The model without a component for the RGB of the 

seasonal effects assumes a seasonal effect for the population 

parameter tθ  that is based on an average of the seasonal 

effects of the five waves. The absolute values of the 

seasonal effects in February, March, and August are smaller 

under the simplified model, resulting in a lower estimate for 

the monthly unemployment rate in February and March and 

a larger estimate in August. This results in a more 

pronounced seasonal pattern in the filtered series obtained 

with the complete model. 

The standard errors of the filtered estimates obtained 

with the two time series models and the standard errors of 

the GREG estimates using all waves are compared in Figure 

5.12. The standard error of the filtered estimates of the 

simplified time series model is substantially smaller than the 

standard error of the GREG estimates using all waves. The 

simplification of the time series model by ignoring the RGB 

for the seasonal effects, results in a further reduction of the 

standard error at the cost of an increased bias in the seasonal 

effects. Under the model assumption that the estimates 

based on the first wave are unbiased, the time series model 

that accounts for the RGB in the seasonal effects is 

preferred, since it removes the bias in the seasonal pattern. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.12 Standard errors of the GREG estimates based on all 

waves and filtered estimates for two different time 
series models for the monthly unemployment rate 

 
Discussion 

 
In this paper a multivariate structural time series model is 

applied to the monthly data of the LFS that accounts for the 

rotating panel design of this survey. This approach is 

initially proposed by Pfeffermann (1991) and extended in 

this paper with a component that models systematic 

differences in the seasonal effects between the subsequent 

waves. Compared with the GREG estimator, which is 

currently applied in the regular LFS, the time series model 

results in a substantial increase of the accuracy of the 

estimates of the unemployment rate. Firstly, the model 

explicitly estimates the RGB in the trend and the seasonal 

patterns between the first CAPI wave and the four 

subsequent CATI waves. Secondly, the time series model 

borrows strength from data observed in preceding periods 

via the assumed model for the population parameter and the 

AC between the survey errors of the different panels. 
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The RGB induced by the rotating panel design is 

substantial. The bias in the trend results in an under-

estimation of the unemployment rate in the subsequent 

waves and its magnitude slightly decreases from -0.8 

percent points in the second wave to -1.1 percent points in 

the fifth wave. The seasonal patterns of the first two waves 

and the last three waves are also significantly different, 

since the seasonal pattern in the last three waves is less 

pronounced. 

A parsimonious time series model that accounts for the 

RGB in the trend but not for the RGB in the seasonal 

pattern, results in a further reduction of the standard error of 

the filtered estimates. This, however, results in a biased 

seasonal pattern in the monthly estimates of the unemploy-

ment rates. Since the standard errors of the filtered estimates 

obtained under this parsimonious model do not reflect this 

bias, a time series model that accounts for both the RGB in 

the trend and the seasonal pattern is preferred. 

The time series model is identified by adopting a 

restriction for the RGB parameters which assumes that the 

first wave is observed without bias. This implies that the 

estimates based on the first wave are used to benchmark the 

subsequent waves. If this restriction is used, then an all out 

effort in each part of the statistical process is required to 

reduce possible bias in the first wave, e.g., by using the most 

appropriate data collection mode, reducing nonresponse, 

optimizing the weighting scheme, etc. Based on external 

information about the bias in the different waves, the 

restrictions for the RGB components might be adjusted. 

The time series approach explored in this paper is 

appropriate to produce model-based estimates for monthly 

unemployment figures. Statistics Netherlands, however, is 

generally rather reserved in the application of model-based 

estimation procedures for the production of official 

statistics. Model misspecification might result in severely 

biased estimates. This bias is not reflected in the standard 

errors of the Kalman filter estimates. Extensive model 

selection and evaluation is therefore required for each 

separate target variable. This hampers a straightforward 

application of such estimation techniques, since there is 

generally limited time available for the analysis phase of the 

regular production process of official releases.  

There is, on the other hand, a case for having official 

series that are based on model-based procedures with 

appropriate methodology and quality descriptions for 

situations where direct estimators do not result in 

sufficiently reliable estimates. The RGB observed under the 

rotating panel design of the LFS clearly illustrates the 

existence of non-sampling errors such as measurement 

errors and panel attrition. Therefore the traditional concepts 

that observations obtained from sampling units are true 

fixed values observed without error and that the respondents 

can be considered as a representative probability sample 

from the target population, generally assumed in design-

based sampling theory, are not tenable under such designs. 

The application of direct estimators in the case of 

measurement errors and selective panel attrition will result 

in severely biased estimates. In the regular estimation 

procedure a ratio correction is applied to the GREG 

estimates, which is based on the implicit model assumption 

that the bias is constant over a period of three years. The 

time series model applied in this paper can be used to 

produce estimates that are corrected for the bias introduced 

by these non-sampling errors in a more advanced way.  

This estimation procedure is also applicable in situations 

where small sample sizes result in unacceptable large 

standard errors. Small sample sizes arise if official statistics 

are required for small domains or for short data collection 

periods like the monthly unemployment figures in the LFS. 

Most surveys conducted by national statistical institutes 

operate continuously in time and are based on cross-

sectional or rotating panel designs. Consequently, estima-

tion procedures based on time series models that use sample 

information observed in preceding periods are particularly 

interesting.  

The time series model yields estimates for the trend and 

seasonal components of the population parameter. Season-

ally adjusted parameter estimates and their estimation errors 

are therefore obtained as a by-product of this estimation 

procedure. Another major advantage is that this approach 

accounts for the AC in the survey errors due to the rotating 

panel design. Pfeffermann et al. (1998) show that ignoring 

these AC, for example with the Henderson filters in X-12-

ARIMA (Findley, Monsell, Bell, Otto and Chen 1998), 

results in spurious trend estimates. 

The model can be improved in several ways. Information 

about registered unemployment and related variables, 

available in the register of the Office for Employment and 

Income, can be used as auxiliary variables in the models. If 

longer series become available, an additional cyclic compo-

nent might be required to capture economic fluctuations. 

Another possible improvement is detection and modelling 

of outliers. Furthermore the model needs to be extended to 

estimate monthly unemployment rates for different domains 

using sample information collected in the past as well as 

cross-sectional data from other small areas, using the 

approach proposed by Pfeffermann and Burck (1990) and 

Pfeffermann and Tiller (2006). 
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Estimates for small area compositions subjected 
 to informative missing data 

Li-Chun Zhang 1 

Abstract 

Estimation of small area (or domain) compositions may suffer from informative missing data, if the probability of missing 

varies across the categories of interest as well as the small areas. We develop a double mixed modeling approach that 

combines a random effects mixed model for the underlying complete data with a random effects mixed model of the 

differential missing-data mechanism. The effect of sampling design can be incorporated through a quasi-likelihood sampling 

model. The associated conditional mean squared error of prediction is approximated in terms of a three-part decomposition, 

corresponding to a naive prediction variance, a positive correction that accounts for the hypothetical parameter estimation 

uncertainty based on the latent complete data, and another positive correction for the extra variation due to the missing data. 

We illustrate our approach with an application to the estimation of Municipality household compositions based on the 

Norwegian register household data, which suffer from informative under-registration of the dwelling identity number. 
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1. Introduction 
 

Small area (or domain) population counts cross-classified 

by various social-economic characteristics are increasingly 

demanded for fund allocation, regional planning and social-

economic research. Purcell and Kish (1980) outlined the so-

called “Structure preserving estimation” (SPREE), which 

operates by modifying the small area estimates in a way so 

that they vary from one area to another in accordance with 

the variation that exists in another known auxiliary table of 

the same dimension. Typically the auxiliary table is obtained 

from a previous census, or some administrative register 

containing similar information. Zhang and Chambers (2004) 

developed a generalized SPREE (GSPREE) approach. Both 

fixed effects and random effects mixed models were 

introduced, and the restricted log-linear model underlying 

SPREE was shown to be a special case. This provides means 

for reducing the potential bias of the traditional SPREE 

estimates. We refer to Ghosh, Natarajan, Stroud and Carlin 

(1998) and Longford (1999) for alternative hierarchical and 

empirical Bayes approaches to this type of data.  

In this paper we extend the GSPREE approach to 

situations subjected to missing data. This can be useful in 

sample surveys where nonresponse is unavoidable. We 

concentrate on small area compositions that can be arranged 

in a two-way table, where one of the two dimensions refers 

to the small areas and the other refers to the categories of 

interest. The cell counts summarize to a fixed area total that 

may or may not be known. For instance, each person 

between 16 and 74 years of age can be classified according 

to the labour force status “employed”, “unemployed” and 

“not in the labour force”. The sum of the three counts inside 

a small area is the total number of persons between 16 and 

74 years of age within this area.  

In the context of small area composition we say that the 

missing-data mechanism is informative provided it varies 

across the categories of interest. As such it is also not 

missing-at-random (Rubin 1976). In addition, the overall 

rate of missing differs across the areas. Differential 

missingness as such leads to distortion of the underlying 

complete data, and bias if the estimation is carried out as if 

the observed data were complete. We propose a double 

mixed modeling approach that combines the random effects 

mixed model for the underlying complete data with a 

random effects mixed model of the missing-data 

mechanism. The double-smoothing approach is outlined in 

Section 2.  

It should be noted that national statistical offices that 

conduct large scale surveys will have accounted for missing 

data by weighting adjustments or imputation. This, how-

ever, will have been done at levels that are significantly 

higher than the small areas, and will be for variables that do 

not necessarily correspond to those of interest for the small 

areas. When available, the adjusted totals can be 

incorporated into the GSPREE as marginal totals for 

iterative proportional fitting (IPF). But modeling of the 

differential probabilities of missing across the small areas 

will generally remain a matter of interest.  

It should also be noticed that informative missing data as 

such makes it less straightforward to assess the potential 

bias of any estimation approach. SPREE may be biased on 

two accounts: (i) the underlying restricted log-linear 

assumptions are likely to be unrealistic, (ii) direct IPF may 

fail to account for the differential probabilities of missing 
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adequately. The proposed double mixed modeling approach 

deals with problem (i) by GSPREE modeling of the 

underlying complete data, and it deals with problem (ii) by 

introducing a more flexible missing-data model, as we shall 

discuss in Section 2.2. Nevertheless, bias is likely to persist 

to a certain extent. Since the estimation of model parameters 

and random effects is more complicated under the double 

mixed modeling approach, alternative estimation methods 

that are able to preserve the computational simplicity of 

SPREE, while making more adequate adjustment for 

informative missing data, are worth investigating in future.  

When it comes to the assessment of estimation un-

certainty, Booth and Hobert (1998) argued for the 

conditional mean squared error of prediction (CMSEP) 

given the observed data. We extend their approach and 

derive approximate CMSEP in the current multivariate 

incomplete-data situation. This results in a three-part 

decomposition of the CMSEP, corresponding to a naive 

prediction variance, a positive correction that accounts for 

the hypothetical estimation uncertainty of the parameters 

based on the latent complete data, and another positive 

correction for the extra variation due to the missing data. 

The details are given in Section 3.  

Estimation procedures for the parameters, the CMSEP 

and the small area compositions are described in Section 4. 

In Section 5 we apply our approach to derive estimates of 

the Municipality household compositions based on the 

Norwegian household register, which suffers from infor-

mative under-registration of the dwelling identity number 

(DIN). A summary is given in Section 6. 

 
2. Double mixed modeling  

2.1 Random effects mixed model in the complete-

data case  
2.1.1 Models for finite population  

The small area counts can be arranged in a two-way 

contingency table, denoted by { },akX=X  where 

1, ,a A= …  indexes the small areas and 1, ,k K= …  the 

categories of interest. The interest of estimation is the 

within-area proportions given by  

1

K
X

ak ak a ak aj
j

X X X X.
=

θ = / = ∑  

referred to as compositions since 1.X
k ak∑ θ =  Typically 

under the GSPREE approach we assume that the marginal 

totals  { }aX .  and { },kX .  also known as the allocation 

structure, are either known or can be reliably estimated, in 

which case estimating { }X

akθ  is equivalent to estimating 

{ }.akX  For simplicity we then make no distinction between 

counts and compositions in the exposition. Otherwise, 

without the allocation structure, one can still use our 

approach to estimate { }X

akθ  but not { }.akX   

Assume that we have available an auxiliary table of the 

same dimension, denoted by 0 0{ },akX=X  and the 

corresponding within-area proportions 0{ }.akθ  To model 

1( , , )X X X T

a a aKθ = θ θ…  we use the multinomial standardized-

log (mslog) link function, given by  

1

1

log log
K

X X X

ak ak aj
j

K −

=

µ = θ − θ∑  (1) 

and similarly for 0

akµ  and 0 .akθ  Zhang and Chambers (2004) 

introduced the following generalized linear structural mixed 

model (GLSMM) 

0X

ak k ak akvµ = λ + βµ +  

where (2) 

1 1

0 and 0
K K

k ak
k k

v
= =

λ = =∑ ∑  

and (1) 2( , , )Ta a aKv v=v …  assumes a multivariate normal 

distribution with covariance matrix ( ),G G= δ  where δ  

contains the variance parameters. Notice that there is no 

area-specific term in (2) because 0 0.k kak akµ∑ ∑= µ =  The 

term “structural” refers to the fact that this is a model of the 

finite-population parameters { }X

akθ  directly, although the 

emphasis is not common in the small area estimation 

literature. For instance, the well-known Fay-Herriot model 

(Fay and Herriot 1979) is “structural” in the same sense.  

There is an important interpretation of the model (2) in 

terms of the log-linear interactions of { }akθ  due to the 

choice of the link function (1), i.e.,  

X X

ak k akµ = α + α  (3) 

where by the standard theory of log-linear models (e.g., 

Agresti 2002), we have  

0log log log X X X X X

ak a ak a k akX X .= + θ = α + α + α + α  

for 1

0 ( ) log ,X
a k akAK X−
,∑α =  and 1 logX

ka akK X− ∑α = −  

0 ,Xα  and 1

0log ,X X
ak akA X− ∑α = − α  and X

akα =  

0log ,X X X

ak a kX − α − α − α  such that X X
a ka k∑ ∑α = α =  

0.X X
a kak ak∑ ∑α = α =  We refer to (3) as the log-linear 

identity, and we refer to the log-linear parameters X

akα  as 

the (first-order) interactions of the compositions X

akθ  as well 

as the counts .akX  Similar identity holds for 0 .akµ  Zhang 

and Chambers (2004) showed that the GLSMM is 

equivalent to the following proportional interactions mixed 

model (PIMM)  

0 1 2( ).X
ak ak ak pv O A− /α = βα + +  (4) 

The parameters kλ ’s in (2) do not entail any model 

restriction beyond the PIMM, and they do not affect the 
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interactions. The parameter β  is called the proportionality 

coefficient. Clearly, SPREE based directly on the asso-

ciation structure 0{ }akX  amounts to setting 1β ≡  and 

0.akv ≡  We therefore refer to the model (2) as a GSPREE 

model, which contain both fixed and random effects 

extensions of the SPREE model. 
 
2.1.2 Model for sample  

To complete the model specification we assume sample 

classifications { }.akx=x  Let 

1 1( , , ) ( ( ), , ( ))T T

a a aK a K at t t t= =t x x… …  

be such that ( ) ( ) ,X

ak ak akE t E t| = | = θv X  where { }.akv=v  

The expectation is typically with respect to the sampling 

design. However, it can also be taken under a suitable model 

of the sampling distribution, such as a multinomial model 

for ax  provided simple random sampling within each area. 

We therefore make no distinction in the notation.  

We assume that at  is independent of a′t  for ,a a′≠  and 

put  

1 1( ) ( ) and Cov( , ) ( )ak k a ak aj kj aV t t t= ν ω = ν ωX X  (5) 

where ( )kω ⋅  and ( )kjω ⋅  are specified variance and 

covariance functions, and 1ν  is the dispersion parameter 

that may or may not be known. This is essentially the quasi-

likelihood set-up for dependent data (McCullagh and Nelder 

1989). The dependence on aX  allows us to incorporate the 

sampling design effect, in which case the expectations in (5) 

may be evaluated with respect to the sampling distribution. 

This is an important reason why we do not directly assume 

that the distribution of at  belongs to the exponential family, 

as e.g., in the generalized linear mixed models (Breslow and 

Clayton 1993). 
 
2.1.3 Parameter estimation  

Zhang and Chambers (2004) outline an iterative 

weighted least square (IWLS) algorithm for the GLSMM 

(2), which is a variation of the PQL approach (Schall 1991; 

Breslow and Clayton 1993). Let 1( , , ) .X X T

a a aKµ = µ µ…  The 

GLSMM (2) can formally be given by  

(1)( )a a a ag H Bµ = θ = ζ + v  

where ( )ag θ  is the mslog link function, and ζ =  

2( , , , ) ,TKλ λ β…  and (1) 2( , , ) .Ta a aKv v=v …  The K K×  

design matrix aH  and ( 1)K K× −  design matrix B are, 

respectively,  

0 1
1

1 1

[ ] and

T

K
a K K a

K K

H B B
I

 
 −
 × −   − × − 

−
= µ =

1
 

where 1 is a vector of 1 and I is an identity matrix. Define 

the working variables  

def.

and ( )X

a a a a a a a a aH B Q= µ + = ζ+ + = − θz e v e e t  (6) 

where X X

a aQ = ∂µ /∂θ  is the Jacobian matrix of partial 

derivatives. Denote by aR  the conditional covariance 

matrix of at  given X

aθ  defined by (5). Under the PQL 

approach we assume that ae  has an approximate multi-

variate normal distribution with covariance matrix ,TaQR Q  

and apply standard methods for linear mixed models 

(LMM) to the linearized data (6). Variants of the PQL 

approach differ in the estimation of the variance parameters 

.δ  The details are omitted here. 
 
2.1.4 On model hierarchy  

The GLSMM (2) is specified at the finite population level. 

More generally, we may consider the finite population { }akX  

to be randomly generated from an infinite super-population. 

Let akθ  be the within-area probability that a unit of the super-

population belongs to the cell ( , ),a k  where 1.k ak∑ θ =  

Conditional on ,ka akX X. ∑=  the within-area counts 

1( , , )Ta aKX X…  follow the multinomial distribution with 

parameters 1( , , ) .Ta aKθ θ…  A multinomial standardized-log 

mixed model (MSLMM) of { }akθ  is given by 

0

ak k ak akvµ = λ + βµ +  

where (7) 

1 1

0 and 0
K K

k ak
k k

v
= =

λ = =∑ ∑  

where akµ  is given by aθ  through the mslog link function. 

Unlike the GLSMM (2), the equation (7) defines a 

regression model. There are then three different hierarchy 

one may choose from in the sample survey situation:    
1. Assume the GLSMM (2) for the finite population 

and the quasi-likelihood model (5) for the sample, 

yielding the GSPREE approach of Zhang and 

Chambers (2004).    
2. Assume the MSLMM (7) for the super-population 

and model sample data at  based on aθ  directly, 

yielding a purely model-based two-level approach.    
3. Assume the MSLMM (7) for the super-population, 

and assume that the finite population totals aX  

follow the multinomial distribution given ,aθ  and 

assume the quasi-likelihood model (5) given ,aX  

yielding a general three-level model.  
 

Provided the finite population is large, it makes little 

difference in practice to adopt the GSPREE approach, in 
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which case one does not have to deal explicitly with one 

extra level of hierarchy. But the distinction between (2) and 

(7) becomes necessary if the areas are so small that the 

stochastic variation in aX  is not negligible compared to the 

sampling variation in ax  (or at ). In our application later, 

we have register data that would have given us the 

interested population counts { }akX  had they not suffered 

from missing data. And the small area level of aggregation 

is so detailed that the stochastic variation in aX  can not be 

ignored. We therefore adapt the GSPREE approach by (a) 

adopting the MSLMM (7) instead of the GLSMM (2), and 

(b) modeling aX  as a ‘sample’, albeit a very large one, 

from the super-population directly.  
 
2.2 A random effects mixed model of missing data  

Missing data add another level of stochastic variation on 

top of the underlying complete data. In the exposition 

below, we consider the sample counts { }akx  as the 

complete data, which is the most common situation in 

practice. Our application later in Section 5 can be viewed as 

a special case where .=X x   

Denote by 1( , , )Ta a aKy y=y …  the observed cell counts, 

for 1, , .a A= …  Suppose that, conditional on akx  and a 

random effect ,ab   

( )ak ak a ak akE y x b x p| , =  

and (8) 

2( ) (1 )ak ak a ak ak akV y x b c p p| , = ν −  

where akc  is a known constant, and 2ν  is the dispersion 

parameter. We assume that aky  is independent of ajy  for 

,k j≠  i.e., missing data are independent from one cell to 

another. Let the units in the complete sample cell ( , )a k  be 

indexed by 1, , .aki n= …  Let , 1i akr =  if the thi  unit is 

observed, and 0i akr , =  if it is missing. The parameter akp  

is the assumed probability of 1i akr , =  inside cell ( , ).a k  To 

see this, let ,i akx  be the contribution of the thi  unit to ,akx  

i.e., 1 ,akn
iak i akx x= ,∑=  such that aky =  1

akn
i i ak i akr x= , ,∑  and  

1

1 1

( , , , )

( ) ( 1 ) .

ak

ak ak

ak ak n ak a

n n

i ak i ak a i ak i ak a ak ak
i i

E y x x b

x E r b x P r b x p

, ,

, , , ,
= =

| =

| = = | =∑ ∑

…

 

Notice that akp  does not depend on the value of ,i akx ,  but 

only the position of the unit in the two-way table. We 

assume that akp  depends on ab  through the logistic link 

function given by  

log( (1 ))ak ak ak k ap p bη = / − = ξ +  

where (9) 
2(0, ).ab N σ∼  

The fixed effects kξ ’s allow the probability of missing to 

depend on the categories of interest, the area-level random 

effect ab  allows it to vary across the areas in addition.  

Obviously, under the assumptions (8) and (9), the 

missing data cause bias in the estimates of the kλ ’s, if the 

observed table y is treated as if it were complete. Moreover, 

it distorts the estimation of the first-order interactions 

{ }.X

akα  We have,  

log ( ) where log(1 exp( )).ak k a ak ak k ap b b= ξ + − γ γ = + ξ +  

The first-order interactions of { }akp  are then given by 

( ),p

ak akak a k. . ..α = − = − γ − − +γ γ γ γɶ  for the row and 

column means 
a.γ  and 

k.γ  and the overall mean ...γ  These 

are non-zero unless .kξ = ξ  By (8) the interactions of the 

expected observed table are given by  

( , )E x p x x

ak ak ak ak akak

|α = α + α = α − ≠ αγy x b
ɶ  

such that the estimates of { }X

akα  will be biased if y is treated 

as x.  

It is worth noting that, as far as the estimation of the 

interactions is concerned, it is in principle possible to treat 

the observed table y  as if it were the complete table x  

under a particular missing-data model given by  

log .ak k ap b′ ′= ξ +  (10) 

This is because the first-order interactions of { }akp  are all 

zero under (10), in which case we have ( ) .E

ak ak

|α = αy x x  

Disregarding the range restrictions, the assumption (10) 

defines an informative missing-data mechanism where the 

probability of missing varies across the categories of 

interest, while the area effect modifies all the within-area 

probabilities of missing by a factor exp( ),ab′  such that 

1 exp( ) exp( )K
j jak aj k jp p=∑ ∑′ ′/ = ξ / ξ  remains constant. The 

model (9), however, is more flexible since it allows the 

random effects to affect the interactions. Both (9) and (10) 

will be examined in Section 5.  

Finally, we notice that allowing for component-wise 

random effects in the model (9) may cause identification 

problems. For instance, assume simple random sampling 

from the finite population, in which case the interactions of 

the expected complete table are given by ( ) .E X

ak ak

|α = αx X  

With component-wise akb  in the model (9) we have 

log ,ak k ak akp b= ξ + + γ  where log(1 exp( )).ak k akbγ = + ξ +  

It follows from (4) and (8) that the interactions of the 

expected table ( , )E |y x b  is given by 0

ak akvβα + +  

.ak ak
b − γɶ  But there is no information in the observed data 

to distinguish between the two random effects akv  and .akb  
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3. Conditional mean squared errors of prediction 
 

We adopt the approach of Booth and Hobert (1998) and 

use the CMSEP as a measure of the uncertainty in 

prediction. Like them we consider the CMSEP on the 

linear-predictor scale. In vector form the akµ ’s in (1) belong 

to the following class of linear functions  

a a a aH Bµ = ζ + v  (11) 

where aµ  is the area-specific vector of linear predictors, 

and ζ  is the vector of fixed effects, and av  is the vector of 

area-specific random effects, and aH  and aB  are the 

corresponding design matrices. All the quantities have been 

specified in (6) for the GLSMM (2), where we actually have 

.aB B=  But we shall adopt the slightly more general 

formulation (11) in the following. Let ζ̂  and ˆ av  be, 

respectively, the estimates of ζ  and av  based on obser-

vations subjected to missing data, denoted by ay  for 

1, , .a A= …  The CMSEP of ˆ ˆˆ a a aa
H B= ζ +µ v  is defined 

as  

CMSEP {( )( ) }.ˆ ˆ
T

a a a aa a
E= − µ − µ |µ µ y  

We introduce first a decomposition through the 

hypothetical best predictor (BP) based on ,ax  given by 

a
=µɺ ( , , ) ( , , ),a a a a a aE H B Eµ | ζ δ = ζ + | ζ δx v x  when the 

parameters are known. We have  

CMSEP { (( )( ) ) }

{( )( ) }ˆ ˆ

{ Cov( ) }

{( )( ) }ˆ ˆ

T

a a a a aa a

T

aa a a a

T

a a a a a a

T

aa a a a

E E

E

E B B

E

= − µ − µ | |µ µ

+ − − |µ µ µ µ

= , | |

+ − − |µ µ µ µ

x y

y

v v x y

y

ɺ ɺ

ɺ ɺ

ɺ ɺ

 

because aa
− µµɺ  and ˆ

a a
−µ µɺ  are conditionally independent 

of each other given :a µ − µx ɺ  depends on the random 

effects ,av  whereas ˆ
a a
−µ µɺ  depends on random variations 

in the other areas. Next, for the second term on the right-

hand side, we introduce a decomposition through the 

hypothetical estimated best predictor (EBP) based on the 

complete data x, denoted by ,aa aa
H B v= ζ +µ ɶɶ ɶ  where 

( , )ζ δɶ ɶ  are the parameter estimates based on x, and 

( , , ).a a av E= | ζ δv x ɶ ɶɶ  We have  

{( )( ) } {( )( ) }ˆ ˆ ˆ ˆ

{ (( )( ) )}

{ (( )( ) )}ˆ ˆ

{( )( ) }

{ (( )( ) )}.ˆ ˆ

T T

aa a a a a a a a

T

a a a a

T

a a a a

T

a a a a

T

a a a a

E E

E E

E E

E

E E

− − | ≈ − −µ µ µ µ µ µ µ µ

= − − |µ µ µ µ

+ − − |µ µ µ µ

= − −µ µ µ µ

+ − − |µ µ µ µ

y

x

x

x

ɺ ɺ ɺ ɺ

ɶ ɺ ɶ ɺ

ɶ ɶ

ɶ ɺ ɶ ɺ

ɶ ɶ

 

The first approximation is correct to the order of 1( ),pO A−  

and can be justified as the number of areas tends to infinity. 

Intuitively, this makes sense if the information from any 

single area is asymptotically negligible compared to the 

information from all the other areas together. Next, the 

decomposition follows because 
a a
−µ µɶ ɺ  and ˆ

a a
−µ µɶ  are 

independent of each other given x: the former is a constant 

given .x  

In this way, we obtain an approximate CMSEP with a 

three-part decomposition  

1 2 3CMSEP ( ; , ) ( , ) ( ; , , )a a a a ah h h≈ ζ δ + ζ δ + ζ δ ψx x ɶ ɶ  

where ψ  contains the parameters of the conditional 

distribution of  ay  given ,ax  and  

def.

1 ( ; , ) Cov( , ) T

a a a a a a ah B Bζ δ = |x v v x  (12) 

def.

2 ( , ) {( )( ) }Ta a a a a
h Eζ δ = − −µ µ µ µɶ ɺ ɶ ɺ  (13) 

def.

3 ( ; , , ) {( )( ) }.ˆ ˆ
T

a a a a a
h Eζ δ ψ = − − |µ µ µ µx xɶ ɶ ɶ ɶ  (14) 

The three h-terms correspond, respectively, to a conditional 

prediction variance due to the random effects, a positive 

correction that accounts for the uncertainty in the estimation 

of the parameters based on the latent complete data, i.e., the 

sampling variation, and another positive correction for the 

extra variation due to the randomness in the missing data. 

Alternative approximations are possible. For instance, one 

might use { Cov( , ) }T

a a a a a aE B B| |v v x y  instead of 1 ,ah  or 

replace 3ah  with the unconditional {( )ˆ
a a

E −µ µɶ  

( ) }.ˆ
T

a a
−µ µɶ  The expressions (12) - (14) are chosen 

because they produce a clean separation between the 

sampling variation in the complete data and the extra 

variation owing to the missingness given the complete data. 

The difference from the CMSEP in the complete-data case 

(Booth and Hobert 1998) comes down to the third term 3 .ah  

 
4. Estimation 

 
4.1 Parameter estimation  

The structure of the data suggests an iterative procedure 

similar to the EM algorithm (Dempster, Laird and Rubin 

1977). Given the current values of the parameters and the 

random effects, we calculate at the E-step the conditional 

expected complete two-way table ( , ).E |x y m  At the M-

step we estimate the two random effects mixed models 

separately by some maximum penalized quasi-likelihood 

(MPQL) procedures. Iterations between the two yield an 

EMPQL algorithm.  
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For the E-step, let , 1i akI =  if the sample unit i belongs to 

the th( , )a k  cell, and , 0i akI =  otherwise. The value is 

observed provided , 1,i akr =  but is unknown if , 0.i akr =  Let 

akθ  be the generic compositions, depending of the adopted 

model. Suppose that  

,[ 1 ]i ak ak akP I i s d= | ∈ = θ  

where s denotes the complete sample, and akd  is some 

known constant which accounts for the eventual sampling 

design effect. For example, simple random sampling implies 

that 1akd =  for all ( , ).a k  An example of 1akd ≠  is when 

the sampling units are households, which are selected by a 

probability proportional to the household size. Let akm =  

,; 0 , , .
i aki rak ak i ak i akx y I x=∑− =  We have ( , )ak a aE x m .| =y  

( ),ak ak ay E m m .+ |  where  

{ }

0

( ) ( 0)

[ 1 0]

(1 ) (1 ) .

i ak

ak a i ak i ak i ak
i r

a i ak i ak

a ak ak ak aj aj aj
j

E m m E I r x

m P I r

m p d p d

,

. , , ,
; =

. , ,

.

| = | =

= = | =

= − θ − θ

∑

∑

 

(15)

 

Having thus ‘completed’ the sample data, we move to the 

MPQL-step, where we apply the IWLS algorithm outlined 

in Section 2.1.3, respectively, to the complete-data model 

and the missing-data model conditional on the complete 

data.   
4.2 Estimation of CMSEP  

Evaluating the CMSEP at the estimated parameter values 

yields a plug-in estimate of the CMSEP. Of the three h-

terms, 1ah  is of the order (1),pO  whereas both 2ah  and 3ah  

are of the order 1( ),pO A−  when the number of areas tends 

to infinity while the within-area sample sizes remain 

bounded. The results of Booth and Hobert (1998) and 

Prasad and Rao (1990), obtained in the univariate complete-

data case, suggest that the bias in the plug-in estimate 1
ˆ
ah  is 

of the same order as 2
ˆ
ah  and 3

ˆ .ah  These authors developed 

second-order correction through the Taylor expansion. We 

do not pursue such second-order asymptotics in this paper. 

Approximate expressions of the h-terms that accompany the 

EMPQL algorithm are given below. 

Take first 1ah  by (12). Based on the linearized data (6), 

the covariance matrix Cov( , )a a a|v v z  does not depend on 

either az  or  .ax  This is convenient because we then have  

1

1

( ; , ) Cov( , )

( )

T

a a a a a a a

T T

a a a a a

h B B

B G GB V B G B
−

ζ δ ≈ |

= −

x v v z
 

(16)

 

where T T

a a a aV B GB QR Q= +  is the marginal covariance 

matrix of .az   

Next, take 2ah  by (13). Let ( , ) .T T Tφ = ζ δ  Expanding φɶ  
around φ  yields ( ),aa a

′− ≈ µ φ − φµ µ ɶɺɶ ɺ  where ,a a
′µ = ∂µ /∂φɺ ɺ  

such that  

2 Cov( , ) .Ta a ah ′ ′≈ µ φ φ µɶ ɶɺ ɺ  (17) 

Based on (6) we derive ,aa aa
H D= ζ +µ uɺ ɺ  where 

1T

a a a aD B GB V −=  and .a a aH= − ζu zɺ  Denote by I the 

identity matrix. The partial derivatives in 
a
′µɺ  are given by  

( )a aa
I D H∂ /∂ζ = −µɺ  

and 
1( ) ( ) ( ) T

j a j a a a j a a aa
D I D B G B V −∂ /∂δ = ∂ /∂δ = − ∂ /∂δµ u uɺ ɺɺ  

where jδ  is the thj  variance parameter in the covariance 

matrix ( )G δ  of .av  To obtain Cov( , ),φ φɶ ɶ  suppose that the 

PQL approach is based on the following quasi log-

likelihood  

a

a

=∑ℓ ℓ  

and 

11 1
log ( ) ( ).

2 2

T

a a a a a a aV H V H−= − | | − − ζ − ζz zℓ  

The so-called sandwich formula yields then  

1 1
2 2

2 2
1

Cov( , ) .

TA
a a

a

− −

=

    ∂ ∂ ∂ ∂  
φ φ = − −      ∂φ ∂φ∂φ ∂φ       

∑
ℓ ℓℓ ℓ

ɶ ɶ  

Finally, take 3ah  by (14). Similarly as above we have 

( )a a a aa
I D H D= − ζ +µ zɶɶ ɶ ɶɶ  evaluated at ,φ = φɶ  and ˆ

a
=µ  

ˆˆ ˆ( ) ˆ ,a a a aI D H D− ζ + z  where ˆ az  is derived from ˆ
a =t  

ˆ( )at x  for ˆ ˆˆ ( , ; , ).a a a aE m .= | φ ψx x y  Expanding φ̂  around 

φɶ  and retain only the leading term, we obtain  

ˆ ( )a a a a a a aDµ − µ ≈ µ − µ = −z z
⌣ ⌣ɶɶ ɶ ɶ  

where ( ) ,a a a aa
I D H D= − ζ +µ z

⌣⌣ ɶɶ ɶ  and az
⌣

 is derived from 

( )a a=t t x
⌣ ⌣

 for ˆ( , ; , ).a a a aE m .= | φ ψx x y
⌣ ɶ  That is, we ignore 

the terms involving ˆ .φ − φɶ  The remaining variation in az
⌣

 is 

due to the estimation of the missing-data model alone. 

Expanding ψ̂  around ,ψ  we obtain, by the chain rule,  

3
ˆ ˆCov( , ) T

a a ah C C≈ ψ ψ | x  

and (18) 

a a a a a
a a

a a a a

C D

φ=φ,ψ

 ∂ ∂ ∂ ∂ ∂η      
=       ∂ ∂ ∂ ∂η ∂ψ      

z t x p

t x p
ɶ

 

where we assume that ˆ( )E ψ | = ψx  and [ ] .a aE | =z x z
⌣

ɶ  

Whereas the sandwich formula yields ˆ ˆCov( , )ψ ψ | x  under 

the conditional model of y given x, similarly to Cov( , )φ φɶ ɶ  

above.  
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4.3 Estimation of small area compositions  
Suppose first that the GLSMM, defined by (2) and in 

combination with (5), has been estimated, upon which we 

obtain ,ˆ
X

aµ  and ˆ exp( ) exp( ).ˆ ˆ
X XX

jak ak aj∑θ = /µ µ  

When the marginal totals aX .  and kX .  are known, it 

makes sense to apply the IPF, starting with the estimated 

table ˆ{ }.X

akθ  The difference from SPREE, which starts with 

the auxiliary table 0,X  is that the interactions have been re-

estimated. On convergence we obtain the estimated small 

area counts, denoted by ˆ ˆ{ },akX=X  and the corresponding 

compositions, denoted by 
ˆ ˆ ˆ ,
X

jak ak ajX X∑θ = /  which are 

different  from  the  direct  model  estimates  ˆ X
akθ  that have 

provided the starting values for the IPF.  

Often in practice, while the area totals { }aX .  may be 

known, the marginal totals { }kX .  need to be estimated 

based on the survey data available, separately using a 

method that is appropriate for the aggregated level. The IPF 

is still worth considering as long as these estimated marginal 

totals are judged to be more reliable and/or less biased than 

the aggregated small area estimates ˆ .X
a a akX .∑ θ  The reason 

is that the estimated interactions ˆ X

akα  are preserved in the 

IPF, i.e., 
ˆ

.ˆ
X X

akakα = α  By the log-linear identity (3), the 

difference between the direct model estimate ˆ X
akθ  and final 

estimate X̂

akθ  is due to the difference in the estimates of the 

main effects { }.X

kα  Thus, less biased estimates of { }kX .  

are expected to yield less biased estimates of { }Xkα  and, 

thereby, less biased estimates of { }.X

akθ  

Suppose next that the MSLMM (7) combined with (5) 

have been estimated. We may express the interest of 

estimation, i.e., { },X

akµ  in terms of az  defined as  

X x X

a a a a a a a a a a

X x X X x X

a a a a a

H B H B

H

|

| |

= ζ + + = ζ + + +

= µ + = ζ + +

z v e v e e

e v e

 

where ( )X X

a a aQ= θ − θe  and ( ).x X X

a a aQ| = − θe t  In 

accordance we have ,X x X

a a aR R R |= +  where X

aR =  

Cov( , )X X

a a aθ θ | θ  and Cov( , ).x X X

a a a aR | = | θt t  It follows 

that  

1ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ( ) ( ).ˆ
X T X T

a a a a a a aa
H B GB QR Q V H−= ζ + + − ζµ z  (19) 

The rest follows as above where X

aµ  is estimated directly 

under the GLSMM.  
 

5. Example: Register-based small area 

      household compositions  
5.1 Register household data  

Register-based household data have undergone consid-

erable development in Norway. One of the goals is to 

produce detailed household statistics that traditionally are 

only available from the census. For this purpose the 

registration of a unique dwelling identity number (DIN) was 

initiated in the last census in 2001. The work is not yet 

completed, and the DIN is still missing for about 6% of the 

people residing in the country. The rate of missing is 

differential as it varies over the household type as well as 

across the Municipalities, the latter of which is a reflection 

of the overall effort of the local administration regarding the 

registration of the DINs.  

A household register can be complied in a year after the 

census based on a number of data sources. The most 

important ones include the central population register 

(CPR), the DIN-register and the census household file 

(CH01). Even without the DIN a register household can be 

compiled based on the other information available. But the 

result suffers from informative under-registration of the 

DIN. For instance, a typical source of bias is cohabitants 

living without children, because such a couple appear as two 

single-person households in the CPR, unless they have 

already been identified as a household in the CH01. 

Nevertheless, historic as well as cross-country comparisons 

suggest that the national totals are acceptable. A more 

urgent problem lies on lower levels of aggregation. For 

example, changes from the census in 2001 are unlikely large 

in certain Municipalities, including the capital city Oslo 

where the increase in the proportion of single-person 

households is almost three times as high as it is in the rest of 

the country - see top-left plot in Figure 1. And a large part of 

the problem in Oslo can be explained by a combination of 

high proportion of cohabitants living without children and 

low DIN-registration rate (indeed, the lowest in the 

country).  

 
5.2 Set-up of data 
 

We shall illustrate our approach using these register 

household data. The target population contains all persons 

living at multiple-dwelling addresses at the beginning of 

year 2005, who do not belong to households of married 

people or registered partners; the latter household types are 

excluded because the DIN is not critical for compiling the 

households of these people. There is no distinction between 

the finite population and the sample in this case, i.e., .=X x  

The households that have registered DINs are treated as the 

‘observed’ sample y, whereas the households that do not 

have registered DINs are viewed as the missing. In this way 

the population consists of 713,387 persons, of which 

558,136 persons have registered DINs. The overall rate of 

missing is about 22%.  
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Figure 1 Difference between estimates of proportion of Single-person households and census counts in 2001 against log 

Municipality size: Register households (top-left), Households with registered DINs (top-right), SPREE based on 

census (middle-left), DirSPREE based on households with registered DINs (middle-right), SupGSPREE of 
super-population proportions (bottom-left), and ImpGRSREE of imputed finite-population proportions 
(bottom-right). The dashed line marks no difference 

 

 

Let the Municipalities be the small areas of this study, 

where 433.A =  The households are classified into 4 

categories: 1k =  for “Single-person”, 2k =  for “Single-

parent”, 3k =  for “Cohabitants”, and 4k =  for “Other”, 

i.e., 4.K =  Let i index the households, and let ix  be the 

number of persons living in the household. Let ak akX x=  

be the number of persons in the th( , )a k  cell in the 

population, and let aky  be the corresponding ‘observed’ cell 

count. Let akN  be the number of households in the th( , )a k  

cell, and let akn  be the corresponding number of ‘observed’ 

households. Notice that only the total number of persons is 

known in each area, but not the total number of households. 

However, provided cell-specific probability of DIN-

registrations, an estimator of akN  based on ˆ
akX  is given by 

ˆ ˆ .ak ak ak akN n X y= /  We shall therefore concentrate on the 

estimation of akX  here.  

Let 0{ }akX  be the corresponding cell counts from the last 

census in 2001. Let ak ak akX y m′ ′= +  be the register counts 

in 2005, where akm′  is the number of persons without the 

DIN. A register household can be considered as a form of 

imputed household that may suffer from informative 

missing of DINs. The register area total is correct, i.e., 
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,a aX X. .′ =  and the national totals { }kX .′  are considered 

acceptable. The question is whether estimates of { }akX  can 

be derived, based on the ‘observed’ y and the allocation 

structure { }aX .  and { },kX .′  that better accounts for the 

differential missing DINs.   
5.3 Set-up of model  

Scatter plots of the register first-order interactions { }X

ak

′α  

against the census interactions 0{ }akα  provide motivation for 

the PIMM (4). To chose between the GLSMM (2) and the 

MSLMM (7), we look at the difference between the register 

proportion X

ak

′θ  and the corresponding census proportion 
0 ,akθ  i.e., 0 ,X

ak ak

′θ − θ  plotted against log :aX .  the case of 

1k =  is shown in the top-left plot of Figure 1. Clearly, the 

variance of the difference increases as aX .  decreases, and is 

not constant of .aX .  Notice that we are dealing with 

estimation at a very low level of aggregation here, where 

e.g., the median value of all { }akX ′  is only 70. We therefore 

adopt the model (7) for ,akθ  the quasi-likelihood (5) for 

,ak akX x=  and the quasi-likelihood (8) and the model (9) 

for .aky   

For the quasi-likelihood (5) we assume 1 1.ν =  Let 

.ak ak at X X .= /  We have  

1 (2) 2

.( ) (1 )ak a ak ak a aV t N X X−
.= θ − θ /  

and 
1 (2) 2

.Cov( , ) .ak aj a ak aj a at t N X X−
.= − θ θ /  

where 2(2)
1
aN

a i i ax NX
.

= .∑= /  and . .a a aX X N. .= /  Since 1,ix ≥  

we have (2) 2

. ,a aX X≥  and over-dispersion compared to the 

Multinomial- ( , )a aN . θ  distribution. We calculate the factor 
(2) 2

.a aX X′ ′/  based on the register data, which is then used as 
(2) 2
a aX X ./  in the estimation below. Moreover, for the quasi-

likelihood (8) we assume 2 1,ν =  and  

( ) ( )
1

2 2

( )

( ) .

akn

ak ak i ak i ak
i

i ak i ak ak i ak
i i

V y n V r x

x V r c x

, ,
=

, , ,

 
| =  

 

= ⇒ =

∑

∑ ∑
 

 
5.4 Estimation results  

Six different estimators of the proportion of Single-

person households (i.e., for 1k = ) are illustrated in Figure 1.  

To start with, we have the direct register proportions 1

X

a

′θ  

in the top-left plot, and the ‘observed’ proportions 1

y

aθ  in the 

top-right plot. On average the proportion is increased based 

on the entire register compared to the census in 2001, 

whereas it is slightly decreased according to the ‘observed’ 

part only. This demonstrates that the missing DINs are 

informative, as explained before. Inclusion of the register 

households without the DINs raises the proportion of 

Single-person households. But the result is implausible in 

some of the largest Municipalities. Of course, large bias also 

exists among the smaller Municipalities, but these are not 

easily detectable in a plot like this one.  

Next, in the middle-left plot of Figure 1, estimates are 

obtained by SPREE using the census counts 0{ }akX  as the 

starting values. For the simple two-way table here, this yields 

an almost constant adjustment of the census proportions, with 

negligible change in the between-area variation. In the 

middle-right plot, estimates are obtained by SPREE using the 

‘observed’ table { }aky  as the starting values. Notice that, to 

start with the observed sample counts would be too unstable 

to be useful in usual survey sampling situations, but it is a 

viable option here because of the large amount of ‘observed’ 

data. To distinguish from the standard SPREE we shall refer 

to it as the direct SPREE (DirSPREE). As noted earlier, 

DirSPREE is unbiased under the assumption (10) of 

informative missingness. Indeed, it is seen to lead to useful 

adjustments for the largest Municipalities.  

In the bottom-row plots of Figure 1, estimates are 

obtained using the double-mixed modeling approach. The 

estimates of the bottom-left plot are obtained by the IPF 

starting with the estimated super-population compositions 
ˆ{ },akθ  denoted by SupGSPREE. The extreme post-censal 

development in the largest Municipalities are reduced. But 

the changes from the census-proportions are clearly over-

shrunk towards to the population average for the smaller 

areas. The variation is e.g., much less than that of 0

ak ak
′θ − θ  

in the top-left plot. The estimates of the bottom-right plot 

are derived from the imputed finite-population counts, 

denoted by ImpGSPREE, which are calculated at the E-step 

of the EMPQL algorithm. The estimates for the largest 

Municipalities are similar to those of SupGSPREE, and the 

variation in the changes from the census-proportions is 

similar to that of DirSPREE.  
5.5 Estimation of CMSEP  

Approximate CMSEP of the ImpGSPREE compositions 

can be derived similarly as in Section 3. Denote by ˆ
akX  the 

ImpGSPREE count, and by akXɺ  the BP based on known 

conditional distribution of aX  given ( , ).a am .y  We have  

ˆCMSEP( ) {( )( ) , }

ˆ ˆ{( )( ) }.

T

a a a a a a a

T

a a a a

E m

E

.≈ − − |

+ − −

X X X X X y

X X X X

ɺ ɺ

ɺ ɺ
 

Moreover, let φɶ  be the hypothetical estimate of φ  based on 

the complete data ,=x X  and let ψ̂  be the estimate of ψ  

based on the observed data. Let 1Q  and 2Q  be, respectively, 

the Jacobian matrix of partial derivatives a∂ /∂φXɺ  and 

.a∂ /∂ψXɺ  We have  

1 1 2 2

ˆ ˆ{( )( ) }

{( )( ) }

ˆ ˆ{( )( ) }

ˆ ˆCov( , ) Cov( , ) .

T

a a a a

T

a a a a

T

a a a a

T T

E

E

E

Q Q Q Q

− −

≈ − −

+ − − |

≈ φ φ + ψ ψ |

X X X X

X X X X

X X X X X

X

ɺ ɺ

ɶ ɺ ɶ ɺ

ɶ ɶ
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Together, these lead to a three-part decomposition of the 

CMSEP similar to (12) - (14). In the estimation of the 

CMSEP below we ignore the effect of IPF. This is justified 

in our case because the IPF essentially amounts to a 

constant multiplicative adjustment very close to unity, as 

can be seen in the middle-left plot in Figure 1.  

The CMSEP of a DirSPREE count is calculated as a 

‘sampling’ variance that is induced by missing-at-random 

within each cell of the two-way table, plus a squared bias 

term which is estimated by the squared difference between 

the ImpGSPREE count and the corresponding DirSPREE 

count, provided the assumption (9) is a more appropriate 

model for the missing data than the assumption (10). 

The estimated root CMSEPs (rcmsep) are given in Figure 

2. On average both are decreasing as the Municipality size 

increases. However, for some of the largest Municipalities, 

the CMSEP of the DirSPREE proportion is abnormally 

large for Single-person and Cohabitants households due to 

the bias term. On the whole the CMSEP of the 

ImpGSPREE composition is clearly smaller than that of the 

DirSPREE. The 1ah -term, corresponding to the prediction 

variance of ,aX  is by far the dominating contribution to the 

CMSEP (over 99% in many areas). This is understandable 

since there are over 550 thousand people in the ‘observed’ 

sample, such that the uncertainty in parameter estimation is 

comparatively negligible. But the quoted percentage will be 

lower in a sample survey situation, as the estimation 

uncertainty summarized in terms 2ah  and 3ah  increases.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2 Estimated root conditional mean squared error of prediction (rcmsep) of DirSPREE (circle) 

and ImpGSPREE (triangle) of Municipality household proportions 
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6. Summary 
 

In the above we outlined a double-mixed modeling 

approach that extends the GSPREE methodology to estima-

tion of small area compositions subjected to differential 

missing data. An approximate CMSEP was derived which 

contains a three-part decomposition, corresponding to the 

prediction variance of the unknown random effect, the 

sampling variance in the absence of missing data, and the 

extra variance due to the missing data, respectively. The 

approach was applied to the Norwegian register household 

data, which yielded useful adjustments for informative 

missing of dwelling identity numbers.  
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Small area population prediction via hierarchical models 
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Abstract 

This paper proposes an approach for small area prediction based on data obtained from periodic surveys and censuses. We 

apply our approach to obtain population predictions for the municipalities not sampled in the Brazilian annual Household 

Survey (PNAD), as well as to increase the precision of the design-based estimates obtained for the sampled municipalities. 

In addition to the data provided by the PNAD, we use census demographic data from 1991 and 2000, as well as a complete 

population count conducted in 1996. Hierarchically non-structured and spatially structured growth models that gain strength 

from all the sampled municipalities are proposed and compared. 
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1. Introduction 
 
Like many other countries, the demand for detailed and 

updated small area statistics has been steadily growing in 

Brazil. This increasing demand is motivated by the need to 

have a more precise picture of subregions and has been 

driven by issues of distribution, equity and disparity. For 

instance, there may exist subregions or subgroups that are 

not keeping up with the overall average in certain respects. 

Therefore, there is a need to identify such regions and to 

have statistical information at that geographical level before 

taking any possible remedial action. Besides these national 

requirements, local authorities are faced with the need of 

having reliable estimates, such as demographic charac-

teristics, for analysis, planning and administration purposes.  

In Brazil, one important example of the demand for 

reliable estimates is related to how constitutionally mandated 

federal revenue sharing is apportioned annually to the 

various municipalities (Brazil is a federated republic made 

up of states and the Federal District. The states are divided 

into municipalities, which share characteristics of cities and 

counties - they can contain more than one urban area, but 

they have a single mayor and municipal council). The 

predicted number of inhabitants in a municipality is used by 

the federal government as a criterion to distribute funding. 

Hence, there is a need to obtain reliable municipal popu-

lation forecasts in order to fairly apply this criterion, 

regulated by federal law.  

An important source of demographic data is the annual 

Household Survey (PNAD). However, this survey is not 

designed to produce estimates at the municipal level. In 

other words, apart from a few municipalities, the municipal 

sample sizes are not large enough to yield acceptable 

standard errors when the direct survey estimates are used. 

Furthermore, a considerable number of municipalities are 

not sampled at all.  

The current approach to obtain municipal population 

estimates is based on making prediction for a larger area at 

first, and then using some auxiliary information to allocate 

the total predicted population to the municipalities. In turn, 

prediction for a larger area is done by assuming that birth, 

mortality and migration rates are the same for all 

municipalities. The major drawback of this approach is that 

it relies on the assumed model evolution. It does not take 

into account all uncertainties and does not provide, in 

general, error measures of the estimates.  

The small area estimation problem has received attention 

in the statistical literature due to the growing demand for 

detailed statistical information from the public and private 

sectors. An excellent and updated account of methods and 

applications of small area estimation can be found in Rao 

(2003). The main source of small area data is provided by 

periodic surveys whose sample sizes are not large enough to 

provide reliable estimates for the areas. One way of tackling 

this problem is to gain strength from all areas and through 

other sources of related data. As stated in Pfeffermann 

(2002), the sources of data suitable for this task can be 

classified into two categories: data obtained from other 

similar areas with respect to the characteristic of interest and 

past data obtained for the characteristic of interest and 

auxiliary information. In our demographic context, the main 

source of related data is provided by the 1991 and 2000 

censuses and a complete count of the population carried out 

in 1996.  

The aim of this work is to obtain estimates of the 

municipal populations based on survey data provided by the 

PNAD and census data. A non-structured hierarchical 

model is proposed and its fitness and predictive power are 
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evaluated. We also consider a spatially structured hier-

archical model, in the spirit of Moura and Migon (2002), 

since the population per area and its growth pattern might be 

related to the development of its neighboring areas. For the 

sake of simplicity, from now on we respectively call the 

non-structured hierarchical and spatially structured hier-

archical models as the Hierarchical model and Spatial 

model.  

In Section 2 the main data sources used in this work are 

described. In Section 3, the proposed models and a model 

selection criteria are presented. Applications with real and a 

simulated data are presented in Section 4. Finally, Section 5 

contains a brief summary with an outline for future research. 

 
2. Data set 

 
The input data for the models introduced in Section 3 are 

taken from the annual Household Surveys (PNADs) from 

1992 to 1999, the 1991 and 2000 census data and a complete 

enumeration of the population carried out in 1996. In order to 

evaluate the proposed approach, the municipalities of São 

Paulo State are considered as the areas of interest.  

In this section we present a brief description of these data 

sources, reporting their main advantages and limitations. The 

population direct estimates of sampled municipalities were 

obtained from the PNAD. As explained in Section 3, these 

estimates are regarded as the input data for making inference 

about our target parameters. The two censuses and the 1996 

population count are also utilized in our application.  

The Brazilian Demographic Census is the main source of 

information about the population. It is carried out every ten 

years, usually in the beginning of the decade. Although the 

objective is to count all the population, some enumeration 

errors are found. The magnitude of the errors is evaluated 

through a post enumeration survey carried out soon after the 

completion of the census.  

The annual Household Survey (PNAD) is designed to 

produce basic information about the socioeconomic 

situation of the country. The investigation unit is the 

household, for which yearly information about the number 

of dwellers, their gender, education level, employment, etc. 

is collected. The survey is not carried out in a census year, 

and was also not conducted in 1994 for administrative 

reasons. The sample is selected by a three-stage cluster 

sampling design. The primary and secondary units are 

respectively the municipality and enumeration areas (with 

250 households on average). The municipalities are 

stratified according to their population sizes as obtained 

from the last census. In the first stage, all municipalities 

belonging to the metropolitan regions and the state capitals 

(which in Brazil are normally the largest cities in the 

respective states) are sampled. The municipalities whose 

populations are greater than some cutoff value are also 

included in the sample with probability one. The ones left are 

stratified and two of them are sampled from each stratum 

with probability proportional to their population sizes.  

The enumeration areas are sampled with probability 

proportional to the number of households residing in the 

area in the last census. Finally, in the last stage the house-

holds are sampled systematically with equal probability 

from a list, which is updated at the beginning of the survey. 

The municipalities and enumeration districts are kept the 

same in all the surveys carried out in the same decade, while 

households are sampled every year.  

Since each area is sampled with probability proportional 

to its respective number of households, it could be argued 

that the sampling mechanism is informative with respect to 

the population of the area. However, since the response 

variable actually used in this work is the area density, it is 

reasonable to assume that the sample selection mechanism is 

not relevant. Thus, this issue is not exploited in this work. A 

good reference about how to make small area inference 

under informative sampling is Pfeffermann and Sverchkov 

(2007). We also recommend Pfeffermann, Moura and Silva 

(2006) for readers interested in how to employ a Bayesian 

approach to hierarchically modeling under informative 

sampling.  

 
3. Model specification 

 
3.1 Exponential growth model 
 
Let ty  be sample values of a distribution belonging to an 

exponential family with expected value given by tπ =  
( )t tE y | θ  where tθ  is a vector of unknown parameters.  
An important and wide class of exponential growth 

models parameterized by ( )α, β, γ, φ  is defined as:  

1[ exp( )]t t /φπ = α + β γ .  (1) 

Some special well-known cases in the literature are: 
 
(1) Logistic: with 1,φ = − 1 exp( );t t−π = α + β γ  

 

(2) Gompertz: with 0,φ =  defining (1) as log( )tπ =  
exp( );tα + β γ  

 

(3) Modified exponential: with 1, exp( ).t tφ = π =α+β γ  

 

The main advantage of using model (1) is the possibility 

of keeping the observations ty  in the original scale, 

changing only the trajectory of ,tπ  making interpretation 

easy. Furthermore, the time intervals do not need to be of 

the same length, allowing the data to come from different 

reference sources (see Section 4 for further details).  

When exp( ) 1,ψ = γ <  the process is non-explosive, 

implying that tπ  converges to 
1/φα  when ,t → ∞  with the 
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convention that for 0,φ =  this quantity is equal to log( ).α  

When 1,ψ >  the curves are concave for 0φ ≥  and 

0,β >  leading to an explosive process. This class of 

models is called the generalized exponential growth model. 

Migon and Gamerman (1993) show how the exponential 

growth model can be viewed as a particular case of a 

general dynamic model.  

 
3.2 Hierarchical growth models  
In this paper our main parameters of interest itπ  are 

nonlinear exponential growth functions with some parameters 

that are hierarchically or spatially structured. Spatially 

structured models provide alternative ways for connecting 

similar neighboring areas. We further assume that the 

sampling variance 2

itσ  follows a model that depends on the 

sample size in the respective municipality. In this work, 

hierarchical and spatial models are fitted and compared.  

We assume that the population sizes are available for all 

the m  municipalities of São Paulo State for the census 

years of 1991 and 2000, as well as the complete population 

count in 1996. From now on, we simply refer to them as the 

census data. In order to improve the hypothesis of 

exchangeability of the parameters describing the mean of 

the process, our response variables are set as the sampled 

municipal density estimates instead of the municipal 

population estimates. See also the end of Section 2 for 

further reasons for using the densities.  

For each period, estimates of these quantities are 

available only for k m<  first-stage units municipalities of 

the PNAD sample. In order to estimate the municipal 

density, we simply divide the total population estimate by 

the respective municipal area.  

Let ity  be the population density obtained from the 

census data or estimated by the PNAD at time 1t t …n, = ,  

for the thi  municipality, 1 .i … m= , ,  Our aim is to make 

inferences about the true population density itπ  for the 

population of all municipalities, including those that are not 

sampled. In the next section, true municipal population 

densities itπ  are modeled via a stochastic nonlinear hier-

archical growth function. We assume that the random 

quantities ity  are normally distributed with mean itπ  and 

variance 2.itσ  

We use a Bayesian approach in this work. Therefore, 

predictions are described by probability distributions, giving 

the opportunity for users to analyze the uncertainties 

involved in the decision process. This fact is one of the 

advantages, among many others, of using this kind of 

approach.  

Only in the census years are the ity  obtained for all the 

municipalities of São Paulo State. Although the census 

attempts to obtain complete enumeration of the whole 

population, coverage errors can occur. The following model 

is assumed therefore for the census data and the data 

obtained from the PNAD, with exception that the variances 
2

itσ  are set to be smaller for the census data (see Section 3.4 

and also the final remarks in Section 5): 

2

1

2

2

(0 )

{ exp( )}

(0 )

(0 )

i i

i i

it it it it it

it i i

i

i

y N

t

N

N

α

γ

/φ

α α ξ

γ γ ξ

= π + ε , ε , σ

π = α + β γ

α = α+ ξ , ξ , σ

γ = γ + ξ , ξ , σ

∼

∼

∼

 (2) 

where the prior distributions of ,α β  and γ  are given by: 
2( ),N α αα µ , σ∼

2( ),N β ββ µ , σ∼

2( ).N γ γγ µ , σ∼  It should 

be noted that information from all areas is obtained through 

the hierarchical structure of the parameters ,iα  and .iγ  

Another way of borrowing information between munic-

ipalities is to assume that iα  are spatially structured (see 

Section 3.3). Supposing that the mean itπ  is non-explosive, 

the parameter 1/φα  can be regarded as the value at which the 

mean municipal population stabilizes. The parameters β  
and γ  affect the evolution of the density over time. The 
prior distributions of ,α β  and γ  can be chosen by taking 
advantage of some prior demographic knowledge of the 

expected population evolution. In our application, we set 

1,φ =  implying that for 0t =  the true value density in 

each municipality is given by .iα + β  The hierarchical 
structure imposed on the parameters ,iα  implies that the 

expected value of the true density for any municipality at 

0t =  is .α + β  To assume that the growth parameters, ,iγ  

have a hierarchical structure means that the densities have 

different growth rates but share the same mean. A small 

simulation study (see Section 4.1) guides us to keep the β  
parameter fixed for all areas, without any loss of generality, 

since the levels are still different for different municipalities. 

In all models considered in our application, we assume that 
2 2 ( ),G a b−
α α α ατ = σ ,∼

2 2 ( ).G a b−
γ γ γ γτ = σ ,∼  In order to 

assign vague priors, in Section 4.2 we set small values for 

the parameters related to these precision prior distributions.  

The assumption that the mean function itπ  is given by an 

exponential growth curve allows adjusting for increasing or 

decreasing population density. The sources of data used 

have different reference data and are not equally spaced in 

time. In this case, the use of an exponential growth curve 

yields an extra advantage, since we can simply make a scale 

of time in order to conform with the different data sources, 

as explained in the application section 4.  
3.3 Spatial model  
In the Hierarchical model presented in the previous 

section, the information from all areas is combined in order 

to predict the population of a particular area. However, it is 

reasonable to assume that two or more neighboring 

municipalities have more similar demographic densities 
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than two other arbitrarily chosen ones. The regional 

structure is represented in the joint prior distribution of the 

random spatial effects. We consider that two areas are 

neighbors if they share a border.  

In our proposed model, the demographic density in an 

area i  at time ,t ,itπ  is affected by its neighboring areas by 

adding random spatial effects 
iα

δ  to the parameters ,iα  

that is, ,
ii αα = α + δ  where α  is a term representing the 

intercept. Therefore, iα  vary only with the spatial effect, 

representing a local effect, while the growth parameters 

iγ ’s are regarded as similar among all areas (overall effect).  
The relationship between neighboring areas is defined in 

the prior distributions of .
iα

δ  The prior joint distribution of 

1
( )

mα α α
′δ = δ , ..., δ  given the hyperparameter 2 ,ασ  is 

defined as in Mollié (1996):  

2 2

2 2
1

1 1
( ) exp ( )

2 i k

m

ikm
i k i

p w
 
 
 α α α α/  

= <α α 

δ | σ ∝ − δ − δ
σ σ

∑∑  (3) 

where ikw  are the weights associated with the regional 

structure. The weights were chosen such that 1,ikw =  if i  

and k  are contiguous, and 0,ikw =  otherwise. The 

distribution of 2

α αδ | σ  is evidently improper, since we can 

add any constant to all of the 
iα

δ  and 2( )p α αδ | σ  is not 

affected. Thus, we must impose a constraint to ensure that 

the model is identifiable. We set 1 0
i

m
i= α∑ δ =  and assign a 

uniform prior distribution on the whole real line to the 

intercept .α  It is not difficult to see that this procedure leads 
to a proper ( 1)m −  dimensional likelihood density, see 

Besag and Kooperang (1995) for further details.  

The prior conditional distribution of ,
iα

δ  given the 

effects 
kα

δ  of the remaining areas and the hyperparameter 
2 ,ασ  is normal with mean and variance given by:  

2

2
2

[ ]

Var[ ]

i k i

i k

i

E k i

k i
w

α α α α

α
α α α

+

δ | δ , ∈ ∂ , σ = δ

σ
δ | δ , ∈ ∂ , σ =

 

where 
iα

δ  denotes the arithmetic mean of the 
jαδ  for 

k i∈ ∂  (the contiguous areas of ),i  and 1
m
ki ikw w=+ ∑=  is 

the number of neighboring municipalities of .i  

Figure 1 shows the demographic densities of São Paulo 

municipalities in 1991. These municipalities tend to be 

concentrated geographically according to density classes. 

This suggests that the spatial model can be usefully applied. 
 
3.4 Modeling the sampling variances  
Since we use data from two different sources, it makes 

sense to assume that the sampling variances vary over time. 

Furthermore, we can also consider that the variances change 

with the areas.  

For the years in which the data are provided by the 

PNAD, we assume the following model for the sampling 

variances:  

2
0 1log( ) (1 )it inσ = η + η . /  (4) 

with in  representing the number of enumeration areas 

sampled in the thi  area. This model captures the expectation 

that the variance gets smaller as the sample size increases.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1 Population densities of São Paulo municipalities in 1991 

 

  

 

 Density in Km2 
 

            4 – 69 
 

            70 – 184 
 

            185 – 357 
 

            358 – 668 
 

            669 – 1,470 
 

            1,471 – 2,478 
 

            2,479 – 6,313 
 

            6,314 – 9,968 



Survey Methodology, December 2009 207 
 

 

Statistics Canada, Catalogue No. 12-001-X 

For the years that the censuses were carried out, we 

assumed that 2

itσ  is known and 2log( ) log( )it itvσ =  where 

itv  is calculated in such a way that the census coverage error 

is 5% for all areas. This hypothesis implies that the true 

population in each area for census years lies in the interval 

given by the observed population in the census plus or 

minus 5% of this value. Therefore, for the census years we 

set the standard deviation as: 0 05 ( 2).it ityσ = . ∗ /  Assum-

ing known variance in the census years is a way of giving 

more weight to census data, since one would expect a 

complete census to provide more reliable information than 

survey data. Independent normal distributions are assumed 

for the parameters 0η  and 1:η ( ) 0 1.
k kk N kη ηη µ , φ ; = ,∼  

In order to assign vague priors to the η ’s, we set both prior 
means as zero and large values for the ηφ ’s. See Section 4.2 

for details.  
 
3.5 Summary of the models  
The prior distributions of the common parameters of the 

Spatial and Hierarchical models are the same as already 

described for the former. The distributions of the random 

spatial effects are specified in Section 3.3. The variance 2

itσ  

in the Spatial model was stated as in the Hierarchical model. 

A summary of the models in Section 4 is presented in Table 

1. For the sake of simplicity, the application was carried out 

by fixing 1φ =  in both models.   
 
3.6 Computational issues  
The posterior distributions of the parameters for the 

models proposed cannot be obtained in closed forms. 

Therefore, it is necessary to use numerical approximation 

methods. One alternative, often used and easy to implement, 

is to generate samples of these distributions based on the 

Markov Chain Monte Carlo (MCMC) algorithm. Since the 

full conditional distributions of all the model parameters 

have closed form, except for the vector 1( ),k= γ , ..., γγγγγ  we 

employed the Gibbs sampler algorithm with one acceptance/ 

rejection algorithm step for sampling from the vector .γγγγ  Let 

itπ  be the population density in the thi  area at time .t  The 

following steps summarize how to sample from the 

posterior distribution of :itπ   

1. Generate ( ) ( ) ( ) ( ) ( ) 2( ) 2( ) ( )
0

l l l l l l l l
i i α γα , β , γ , α , γ , τ , τ , η  and 

( )

1

lη  for 1 ,l M= , ...,  where M  is the number of 

MCMC samples generated from the full conditional 

distributions of all model parameters including the 

random effects;  
 

2. Calculate ( ) ( ) ( ) ( )exp( );l l l l

it i i tπ = α + β γ   
 
Three informal checks for convergence, based on 

graphical techniques, were applied for assessing the 

convergence when fitting our proposed models. They 

consist of observing the histogram, the trace and the 

autocorrelation function for each of the sampled values 

calculated. The histogram analysis allows us to identify 

possible departures from convergence, such as the presence 

of multiple modes. The trace of the multiple chains 

simulated in parallel, each one with different starting points 

and overdispersed with respect to the target distribution, 

provides a rough indication of stationary behavior when the 

sequences of values tend to oscillate in the same region. The 

plot of the autocorrelation function allows identifying 

whether the sampling can be regarded as independent. 

In addition to these informal checks, other more formal 

criteria were applied. The criteria introduced by Brooks and 

Gelman (1998) and implemented in WinBugs 1.4 

(Spiegelhalter, Thomas, Best and Lunn 2004) permit 

diagnosing whether dispersion within chains is larger than 

dispersion between chains. Consider I  parallel chain and a 

parameter of interest .λ  Let j

iλ  be the thj  value of the thi  

chain, for 1i K= , ...,  and 1 .j J= , ...,  Then the 

variances between chains B̂  and within chains Ŵ  are 

given by  

1 2

1

ˆ ( 1) ( )
K

i
i

B J K −

=

= − λ − λ∑  

and 

{ } 1 2

1 1

ˆ ( )( 1)
K J

j

i i
i j

W K J
−

= =

= λ − λ− ∑∑  

where iλ  and λ  respectively are the average of obser-
vations of chain , 1i i K= , ...,  and the global average. 

Under convergence, all these K J  values are drawn from 

the posterior of λ  and the variance of λ  can be consistently 
estimated by ˆ ˆ,B W  and the weighted average 2

ˆ λσ =  
ˆ ˆ(1 1 ) (1 ) .J W J B− / + /  

 

Table 1 
Summary of the models employed  
 

model  parameters  variance  prior distribution   

Hierarchical  
ii αα = α + ξ   2

0 1log( ) (1 ),it inσ = η + η /   
0 00 ( )N η ηη µ , φ∼    

 β   for survey data  
1 11 ( )N η ηη µ , φ∼    

 
ii γγ = γ + ξ   2

itσ  is assumed to be   

  known for census data   

Spatial  
ii αα = α + δ   2

0 1log( ) (1 )it inσ = η + η /   2 2( , )
i ii iN wα α,− α α α +δ | δ , τ δ τ /∼    

 β   in the survey  
1

0
i

m
i α= δ =∑    

 
ii γγ = γ + ξ   2

itσ  is assumed to be  
0 00 ( )N η ηη µ , φ∼    

  known for census data  
1 11 ( )N η ηη µ , φ∼    
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If the chains have not yet converged, then initial values 

will still be influencing the trajectories and 2
ˆ λσ  will 

overestimate 2

λσ  until stationarity be reached. On the other 

hand, before convergence, Ŵ  will tend to underestimate 
2.λσ  Following these reasoning, Brooks and Gelman (1998) 

proposed an iterated graphical approach, which is 

implemented in WinBugs 1.4. It allows to check if: (i) the 

weighted posterior variance estimated 2
ˆ λσ  and the within-

chain variance Ŵ  stabilize as a function of ,J  and (ii) the 

variance reduction factor, 2ˆ ˆ/ ,ˆR Wλ= σ  approaches 1.  
 

4. Application  
In this section we present two applications of our 

approach, the first one with a simulated data set and the 

second one with the real data set that motivated this work. 

The simulation study aims to check if the parameters of 

interest are being properly estimated, as well as to perform 

some sensitivity analysis with respect to the form of the 

prior distributions used for fitting the model.   
4.1 Application to simulated data  
We carried out a small simulation study fitting the 

Hierarchical and Spatial models presented in Section 3. The 

true model hyperparameters related to the growth curve 

were fixed as 40,α = 25,β = 0 05.γ = .  Thus, we are 

considering a situation where the population size approxi-

mately doubles in 25 years. The parameters related to the 

sampling variance model were fixed as 0 6 5,η = . 1η = 0.5. 
Finally, the precision parameters were respectively set as 
2

ατ = 0.0001 and 2
γτ = 400. The precision 2

ατ  and 2
γτ  were 

fixed to be in agreement with the scales of the quantities 

they respectively measure. The intercept presents more 

relative variation between areas than the growth parameter, 

which is expected in practical situations.  

Since it is well recognized that the form of the priors has 

more impact on the component of variance parameters than 

the fixed parameters, we fitted the simulated data using two 

different vague priors for the parameters related to the 

variances: uniform for the standard deviation, which is one 

of the priors recommended by Gelman (2006) for linear hier-

archical models, and gamma for the precision, commonly 

used as the default in some computational packages. In the 

first case, we assigned (0 1,000)Uασ ,∼  and γσ ∼  
(0 100),U ,  where 1α ασ = / τ  and 1 .γ γσ = / τ  In the 

second case, we considered 2 (0 001 0 001)Gατ . , .∼  and 
2 (0 001 0 001).Gγτ . , .∼  For the other parameters, we set 

( ),Uα −∞, +∞∼  for the Spatial Model (see Section 3.3 

for further details) and 6(0 10 )Nα ,∼  for the Hierarchical 

model. For the others parameters we set 6(0 10 ),Nβ ,∼  
2(0 10 ),Nγ ,∼

4

0 (0 10 )Nη ,∼  and 4

1 (0 10 )Nη ,∼  for 

both models. The effect of the number of small areas is also 

investigated. We simulated separate data from the Hier-

archical and Spatial models with 60m =  and m = 100 

areas in each case. For each combination of the number of 

areas and the model employed we generated 200 data sets. 

Therefore, a total of 800 sets of artificial data was simulated. 

The distribution of the sample sizes within the areas is the 

same for the simulated data sets with 60 and 100 areas. 

Table 2 presents the relative frequencies of the small areas 

sample sizes for the both simulated data sets. These sample 

sizes are very similar to the sample sizes in the real data that 

underlines this simulation study. The number of neighbors 

employed in the spatial model varies from 1 to 12 and each 

area has on average 5 neighbors. We considered a total 

period of 9n =  years. 
 
Table 2  

Relative frequencies of the small area samples sizes for both 
simulated data sets 
 

Sample size  Relative frequency   

2  0.05   

5  0.20   

8  0.25   

10  0.25   

12  0.20   

15  0.05    
In order to get rid of chain correlation, we generated 

20,000 samples after discarding the first 10,000. There is no 

evidence for non-convergence of the Hierarchical and the 

Spatial model parameters. A careful analysis of some outputs 

obtained from the MCMC samples for some simulation sets 

suggests that convergence was achieved for all model 

parameters. We assessed the statistical properties of the 

population density ( )itπ  estimates by investigating the 

average of the absolute relative error of the estimates (ARE) 

and the mean square error (MSE), respectively given by:  
( ) ( )200

( )
1

ˆ1
ARE

200

l l

i t i t

i t l
l i t

, ,
,

= ,

|π − π |
=

π
∑  

and 
200

2( ) ( )

1

1
MSE ,( )ˆ

200

l l
i t i t i t

l
, , ,

=

= π − π∑  

1 ,i m= , ..., 1 .t n= , ...,  There is no much variation, as 

far as the ARE values are concerned. For the two models 

fitted and both small area sample sizes tried, the ARE values 

are around 1.5%. 

Table 3 shows a summary of the MSE values obtained 

from the simulations carried out under the Spatial and 

Hierarchical models with 60 and 100 areas and respectively 

assigning gamma and uniform priors to the precision and to 

the standard deviation of the parameters related to the 

variance. It can be seen from Table 3 that the MSEs are not 

affected by the use of different vague priors. It is noteworthy 

that increasing the number of areas from 60 to 100 results in 

a small decrease of 6% in the median of the MSE for the 

Spatial model. However, for the case of the Hierarchical 

model, the decrease is about 13%.  
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Table 3 

Summary of mean square error distribution for the spatial and hierarchical models 
 

Gamma prior Uniform prior Model Num. of areas  

1st Qu. Median  3rd Qu. 1st Qu. Median  3rd Qu. 

60  0.398  1.741  3.574  0.394  1.737  3.595   Spatial  

100  0.525  1.637  3.538  0.524  1.641  3.517   

60  0.542  2.218  6.262  0.646  2.223  6.278   Hierarchical  

100  0.594  1.959  5.593  0.596  1.960  5.619            
 

We also investigated the percentage coverage of nominal 

95% credible intervals. The results are presented in Table 4. 

As far as this simulation study is concerned, the intervals for 

the parameters of interest have in general the correct 

coverage percentages for both models investigated and these 

results do not depend on wether we have 60 or 100 areas. 

However, with a small number of areas we could face 

convergence problems unless we tighten the priors for the 

hyperparameters. The simulation study reveals that the 

population prediction is not affected by the forms of the 

vague priors assigned to the variance of the intercept term.  

 
Table 4 
The coverage rates of nominal 95% credible intervals for the 

population densities 
 

Gamma prior Uniform prior Model  Num. of 

Areas  coverage(%) coverage(%) 

60  96  96   Spatial  

100  96  96   

60  94  94   Hierarchical  

100  95  95   
    

 
We analyzed the model fit when data generated from a 

model were fitted by the correct and the wrong models. 

Figure 2 presents the mean square error for the following 

situations: (a) data generated from the Spatial model and 

fitted by the Spatial and Hierarchical models and (b) data 

generated from the Hierarchical model and fitted by the 

Spatial and Hierarchical models. Since the form of the 

priors assigned to the parameters related to the variance 

does not affect the inference, we set uniform priors for both 

models. The ARE measures are shown in Figure 3.  

It can be seen from Figure 2 that when the data are 

generated from the simpler model (Hierarchical) the more 

complex estimation procedures (Spatial) do not suffer any 

appreciable worsening of efficiency. On the other hand 

when the data are generated from the more complex model 

(Spatial) the simpler estimator (Hierarchical) has some 

inferior properties. However, this result does not hold for the 

ARE measurements. Figure 3 shows that fitting the model 

not used for generating the data results in appreciable 

increase in the relative bias. As it might be expected, model 

fitting and diagnostics are crucial in order to get suitable 

prediction of the small area population.  

 

4.2 Application to real data  
The PNAD data sets from 1992 to 1999, (excluding 1994 

and 1996) and the population census data of 1991, 1996 and 

2001 were used in our application. Our areas of interest are 

all the municipalities in São Paulo State, a total of 572 areas, 

of which 111 areas were sampled by the PNAD survey. 

Figure 4 shows the areas sampled by the PNAD, classified 

by the sampling definition: areas belong to metropolitan 

regions and self-representing areas (sampled with probability 

equal to 1) and non-self-representing areas. It should be 

noted that the census and PNAD have different periods of 

reference. We set 0t =  for the 1991 census. Thus, the 

values of t  for the data provided by the PNAD are equal to 

the number of years between the reference period of the 

1991 census and the respective PNAD. For instance, a 

survey datum provided by the PNAD 18 months after the 

1991 census corresponds to 1 5.t = .  

Figure 5 shows the estimated coefficient of variation of 

the direct estimator by areas’sample sizes. These estimates 

are based on PNAD data. It can be seen that these 

coefficients of variation vary considerably with the areas 

and tend to decrease as the sample size increases. The high 

values of these coefficients show the difficulty in using only 

the direct estimator to provide municipal estimates. Further-

more, we cannot make any prediction for nonsampled areas 

by using only the direct estimators.  
4.3 Specification of the prior distributions  
The mean of the normal prior distributions of the 

parameters ,α β  and ,γ  related to the population evolution, 
were assigned by first expanding the function α +  
exp( )tβ γ  around zero in a Taylor series up to the second 

order and then equating the resulting expression to the 

values of the mean density in the 1991 and 2000 censuses 

and the 1996 population count. In the absence of prior 

information, we considered a reasonably large value 6(10 )  

for the prior variances of ,α β  and .γ  Thus, we set α ∼  
( )U −∞, +∞  (see Section 3.3 for further details), for the 

Spatial Model and 6(370 10 ),Nα ,∼  for the Hierarchical 

model and 6(726 10 ),Nβ ,∼

6(0 04 10 )Nγ . ,∼  for both 

models. The reason for this adjustment is to obtain a reason-

able value of the prior means, but one that is essentially 

vague. Regarding the precisions and 0 1, ,η η  we assigned 

relatively vague priors: 2 Ga(0 001 0 001),ατ . , .∼

2
γτ ∼  

Ga(0 001 0 001),. , . 6

0 (0 10 )Nη ,∼  and 6

1 (0 10 ).Nη ,∼  
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Figure 2 Box plots of mean square error (MSE) for the cases: (a) data generated 

from the Spatial model and respectively fitted by the Spatial and 

Hierarchical models and (b) data generated from the Hierarchical model 
and respectively fitted by the Spatial and Hierarchical models 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3 Box plots of absolute relative error (ARE) for the cases: (a) data 
generated from the Spatial model and respectively fitted by the Spatial 

and Hierarchical models and (b) data generated from the Hierarchical 
model and respectively fitted by the Spatial and Hierarchical models 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4 São Paulo municipalities sampled by the PNAD classified by the sampling definition 
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Figure 5 Boxplot of the coefficients of variation of the direct population estimates 

 

 

 

4.4 Some results  
We generated 20,000 samples after discarding the first 

5,000. There is no evidence for non-convergence of the 

Hierarchical and the Spatial model parameters. A careful 

analysis of the MCMC outputs suggests that convergence 

was achieved for all model parameters. We summarize the 

results obtained by fitting the Hierarchical model (3) to the 

data provided by the PNAD survey. The posterior means of 

the model parameters were used as the point estimates. 

Table 5 presents these estimates together with the respective 

square root of the posterior variance. It can be seen from 

Table 5 that the estimate of 1η  is significantly positive, 
which agrees with what is expected by equation 4: the 

greater the sample size, the smaller 2.itσ  

 
Table 5 
Summary of the model (2) parameter posterior distributions 
 

parameter  posterior mean  posterior std   

α  892.500 202.000 

β  105.700 1.278 

γ  0.072 0.008 

0η  10.620 0.133 

1η  3.185 0.484 

2
ατ  2.174E-7 2.961E-8 

2
γτ  139.000 19.560 

 

Figure 6 shows that the posterior means of the 

parameters αααα  and γγγγ  that index the hierarchical model seem 
to be spatially distributed. The parameters of neighboring 

areas seem more alike than those of distant areas, which 

suggests applying the Spatial model. 
 
4.5 Model selection  
The Expected Prediction Deviance (EPD) (Gelfand and 

Ghosh 1998) measure was applied to help choose the most 

suitable model. The EPD measure is the sum of two terms. 

The first term, denoted by ,G  can be interpreted as a 

goodness-of-fit measure and the second term, denoted by ,P  

as a penalty term for underfitted as well as overfitted models. 

The respective expressions for G  and P  are given by: 
rep 2

1 1( ( ))m n
i t it itG y E y M= =∑ ∑= − |  and rep

1 1 ( ),m n
i t itP V y M= =∑ ∑= |  

where the expectations and the variances are with respect to 

the posterior predictive distribution associated with a future 

observation rep( )ity  of ity  generated under the assumed 

model (M). According to this criterion, the smaller its value, 

the better the model. As can be seen in Table 6, the EPD 

criterion slightly favors the Spatial model.   

 

4.6 Analysis of the results  
The most disaggregated level for which the PNAD 

provides precise estimates is the metropolitan region, which 

is a set of contiguous municipalities. In order to validate the 

results obtained with the spatial model, population estimates 

for the greater São Paulo metropolitan region were 
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compared to the official statistics projections. The posterior 

distribution of 1
r
it it iA=∑µ = π ∗  is easily obtained by 

adding ( ) ( )
1

l lr
it it iA=∑µ = π ∗  to the MCMC algorithm, where 

tµ  represents the total population of the metropolitan region 
at time t  and r  is the number of municipalities belonging 

to that metropolitan region.  

 
Table 6  
Measures for selecting models for demographic density 
 

Model  G   P   EPD    

Hierarchical  1.37E+09  6.14E+09  7.51E+09   

Spatial  1.05E+09  6.19E+09  7.24E+09   

 
Figure 7 compares the population estimates ( )tµ  of the 

São Paulo metropolitan region obtained by the Spatial 

model and the official statistics. The solid lines represent the 

limits of the 95% credible intervals of ,tµ  while the dotted 

line shows the respective point estimates. The symbol (+) 

represents the observed official statistics. It is noteworthy 

that some official statistics projections are outside of the 

credibles inferior limit (including the 1991 Census). This 

indicates that further investigations should be made in order 

to find out the reasons for these discrepancies. However, 

when we compare them at municipality level, the overall 

conclusion is that the model predictions and official statistics 

reasonable agree. The 95% credible intervals contains 92.4% 

of the official statistics projections. The average of the 

absolute relative error (ARE) between the estimated popu-

lation density and the official statistics projection are 3%. 

These ARE measures are on average nearly the same for 

selected and non-selected municipalities.   

Figure 8 compares the point estimates of the population 

sizes ( )itµ  with the official projection statistics and the 

official census population sizes for a sampled municipality. 

The official projection methodology assumes that a set of 

small areas and a larger area, which contains them, have the 

same population growth rate pattern. The population of the 

larger area is projected by a component method and then 

proportionally allocated to the small areas. The component 

method uses data from the most recent census as well as the 

number of births and deaths and net migrations obtained 

from administrative records. The component method 

projects the population for a time t  by adding the 

population in a previous time with the number of births and 

net migrations and subtracting the number of deaths in the 

same time interval.  

The solid lines represent the 95% credible intervals for 

itµ  obtained by the Spatial model, while the dotted line 

shows the respective posterior means. The symbol (+) 

represents the official population projection for the inter-

census period and the observed population in the census 

years. It is noteworthy that the point estimates are relatively 

close to the official projection statistics and the population 

obtained in the census year. This indicates that the use of the 

proposed model yields reliable estimates at municipality 

levels, with the extra advantage of providing a measure of 

the respective error.  

We also analyze the estimates obtained for some 

municipalities not sampled in the PNAD. Figure 9 shows 

the model predictions, the 95% credible intervals, the 

official projection statistics and the observed population 

values in the censuses for a non-sampled municipality (+). It 

can be seen that the predictions obtained by the Spatial 

model reasonably agree with the official figures.  

 
5. Final remarks 

 
The model used in this article identifies the population 

growth trend of the municipalities. Reasonable estimates of 

the municipal populations are obtained for years with survey 

data, as well as for the years where census data are 

available. The point estimates have good precision and 

reasonably agree with estimates obtained for larger areas 

using other technique. The past information can be updated 

as soon as estimates become available from a new census or 

survey. Furthermore, the proposed approach provides the 

probability distribution of the quantity of interest, aiding the 

decision-making process.  

Further work should be done in order to allow for 

autocorrelation of the parameters of interest over time. Extra 

information about the sampling variance estimates of the 

direct estimators could also be regarded as additional data. 

The assumption that the census coverage error is distributed 

symmetrically around zero could be relaxed by assigning a 

non-symmetric distribution to it. However a good 

knowledge of the shape of the distribution is required, 

which might be difficult in practice.   
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Figure 6 Posterior means of the parameters αααα  and γγγγ  obtained by the hierarchical model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 7 Comparison between the population sizes predicted by the spatial model and the 
official statistics (+) for the metropolitan region 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8 Comparison between the population sizes predicted by the spatial model and the 

official statistics (+) for a sampled municipality 
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Figure 9 Population sizes predicted by the spatial model and the official statistics (+) for a 

non-sampled municipality 
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Variance estimation in the presence of nonrespondents  
and certainty strata 

Jun Shao and Katherine J. Thompson 1 

Abstract 

Business surveys often use a one-stage stratified simple random sampling without replacement design with some certainty 
strata. Although weight adjustment is typically applied for unit nonresponse, the variability due to nonresponse may be 
omitted in practice when estimating variances. This is problematic especially when there are certainty strata. We derive 
some variance estimators that are consistent when the number of sampled units in each weighting cell is large, using the 
jackknife, linearization, and modified jackknife methods. The derived variance estimators are first applied to empirical data 
from the Annual Capital Expenditures Survey conducted by the U.S. Census Bureau and are then examined in a simulation 
study. 

                                                           
1. Jun Shao, University of Wisconsin-Madison and U.S. Census Bureau; Katherine J. Thompson, U.S. Census Bureau. E-mail: shao@stat.wisc.edu. 

  

Key Words: Covariate dependent nonresponse; Jackknife; Linearization; Ratio adjustment; Uniform nonresponse. 
 
 

 

1. Introduction 
 

Many business surveys use a one-stage stratified simple 

random sample without replacement design. Because of the 

skewness of the sampled populations, these designs 

generally include both certainty and non-certainty strata. 

With such designs, the sampling rates in the non-certainty 

strata are generally negligible (e.g., less than 20 percent in 

all strata). However, if the ultimate sampling unit is large 

business entity such as a company, the size of the universe is 

much smaller and often sampling fractions should not be 

ignored in computation of variance estimates. 

Most surveys have nonresponse. We consider surveys 

using weighting adjustment for nonresponse. For certainty 

strata, there is no sampling error and, hence, standard 

variance formulas do not include any component for certain-

ty strata. When nonresponse is present, however, there is an 

estimation error even in a certainty stratum, which is often 

an appreciable component of the total estimation error.  

The purpose of this paper is to develop some methods for 

variance estimation that take into account the weighting 

adjustment for nonresponse and the existence of certainty 

strata. After introducing notation and assumptions in 

Section 2, we show that the jackknife and linearization 

variance estimators ignoring nonresponse in certainty strata, 

which are often currently used in many surveys, under-

estimate the true variance of the weight adjusted estimated 

population total. By directly deriving an approximate 

variance formula, we obtain two consistent variance esti-

mators. These variance estimators are also consistent if there 

are non-certainty strata with large sampling fractions. A 

modified jackknife variance estimator taking into account 

the variability due to nonresponse in certainty strata is also 

derived.  

In Section 3, we compare variance estimators using five 

years’ of data from the Annual Capital Expenditures Survey 

(ACES) conducted by the U.S. Census Bureau. Simulation 

results are presented in Section 4 using a population 

generated from 2003 ACES data. Our simulation results 

show that the variance estimators ignoring certainty strata 

have large negative biases; the derived consistent variance 

estimators perform well when stratum sample sizes are all 

large and perform inconsistently otherwise; and the 

jackknife variance estimator ignoring all sampling fractions 

overestimates. Some concluding remarks are given in 

Section 5.  

 
2. Main results 

 
Consider a stratified sample without replacement from a 

finite population containing H  strata. Let hn  and hN  be 

the sample and population size of stratum ,h  respectively, 

hjy  be a variable of interest that may have nonresponse, and 

hjx  be a covariate that takes positive values and does not 

have nonresponse, where j  is the index of population unit 

and h  is the index for stratum. Using the sample-response 

path considered by Fay (1991) and Shao and Steel (1999), 

we view the finite population as a census with ,y x  values 

and nonrespondents, i.e., each unit j  in stratum h  of the 

finite population is associated with an indicator ( 1hjI =  if 

hjy  is a respondent and 0=  if hjy  is a nonrespondent). Our 

sample is taken from this finite population, and if unit j  in 

stratum h  is in the sample, hjy  is a respondent if 1hjI =  

and a nonrespondent if 0.hjI =  

Let sE  and sV  be the expectation and variance, 

respectively, with respect to sampling and , ,m mE V  and mP  

be the expectation, variance, and probability, respectively, 
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with respect to the model m  specified in one of the 

following assumptions.  
Assumption M. Values of ( )hj hj hjy x I, ,  in the finite 

population are independently generated from a 

superpopulation model .m  The finite population is 

divided into P  sub-populations such that, within sub-

population ,p  the response probability (m hjP I =  

1 ) ( 1 ) 0,hj hj m hj hjy x P I x| , = = | > ( ) ,m hj hj p hjE y x x| = β  

and 2( ) ,m hj hj p hjV y x x| = σ  where pβ  and pσ  are 

unknown parameters depending on .p  
 

Assumption P. The finite population is divided into P  

sub-populations such that, under a superpopulation 

model, ( 1 ) 0m hj hj hj pP I y x= | , = π >  is constant 

within sub-population .p  
 

The sub-population in Assumption M or Assumption P is 

called nonresponse adjustment weighting cell (or weighting 

cell for short), since we handle nonrespondents by weight 

adjustment within each weighting cell. (If imputation is 

applied within each sub-population, then sub-populations 

are called imputation cells.) In applications, weighting cells 

may be strata, or unions of strata (strata are collapsed when 

they have insufficient respondents), or may cut across strata. 

Assumption M involves a prediction model between hjy  

and hjx  and a covariate-dependent response mechanism 

within each weighting cell. The response mechanism under 

Assumption P is the within-weighting-cell uniform response 

mechanism and is often referred to as the quasi-random 

response model. Assumption P is stronger than Assumption 

M in terms of the response mechanism. However, 

Assumption M requires an explicit model between hjy  and 

hjx  within each weighting cell. In this paper we assume 

either Assumption M or Assumption P. Estimators that can 

be justified under Assumption P are referred to as the 

“quasi-randomization” estimators (Oh and Scheuren 1983).  

When we study asymptotic consistency of estimators, we 

consider the limiting process of pk → ∞  for all p  with 

fixed H  and ,P  where pk  is the sample size in weighting 

cell .p  If weighting cells are the same as strata or unions of 

strata, then pk → ∞  is the same as hn → ∞  for all .h  

After the ratio-adjustment for nonresponse, we consider 

the following estimator of the total of y -values in the finite 

population:  

ˆ ˆ
ˆ ˆ

ˆ ˆ
h

p p

hj phj hj hj pr

p h j s ppr pr

X X
Y w I y Y

X X

 
 
 
 
 ∈  

= δ = ,∑∑ ∑ ∑  (1) 

where p  is the index for weighting cell, hs  is the sample in 

stratum , phjh δ  is the indicator for the weighting cell ,p  

and hjw  is the survey weight constructed for the stratified 

sampling,  

ˆ ˆ

h h

p hj phj hj pr hj phj hj hj
h j s h j s

X w x X w I x
∈ ∈

= δ , = δ ,∑ ∑ ∑ ∑  

and  
ˆ

h

pr hj phj hj hj
h j s

Y w I y
∈

= δ .∑ ∑  

In the special case where weighting cells are the same as 

strata,  

ˆ
ˆ ˆ

ˆ
h

hr
h hr

X
Y Y

X
= ,∑  (2) 

where  
ˆ ˆ

h h

h hj hj hr hj hj hj
j s j s

X w x X w x I
∈ ∈

= , = ,∑ ∑  

and 
ˆ

h

hr hj hj hj
j s

Y w y I
∈

= .∑  

When the covariate ˆ1,hjx Y≡  is referred to as the count 

estimator. The count estimator controls respondent estimates 

to frame population totals. When the weighting cells are the 

same as strata, the count estimator uses the unweighted cell 

response rates, as recommended in Vartivarian and Little 

(2002).  

Under Assumption M or P,  

ˆ ˆ( ) ( ) 0m s s mE E Y Y E E Y Y− = − = ,  

where Y  is the finite population total of y  values, and the 

total variance  

ˆ ˆ ˆ( ) [ ( )] [ ( ) ]m s m s m sV Y Y E V Y V E Y Y, − = + − .  

Let 1
ˆ[ ( )]m sV E V Y=  and 2

ˆ[ ( ) ].m sV V E Y Y= −  To estimate 

1,V  it suffices to estimate the sampling variance ˆ( ).sV Y  

Since Ŷ  defined by (1) is a sum of ratios and each of ˆ ,pX  
ˆ ,prX  and ˆ

prY  is a weighted total of variables and 

indicators, we can apply the stratified jackknife variance 

estimator  

2

1 ( ) ( )

1 1ˆ ˆ1
h h

h h
J hj hk

h j s k sh h h

n n
v Y Y

N n n∈ ∈

   −
= − −       
∑ ∑ ∑  (3) 

(see Wolter 1985 or Shao and Tu 1995), where ( )
ˆ
hjY  is the 

jackknife analog of Ŷ  when unit j  in stratum h  is deleted. 

Note that sampling fractions are incorporated in this 

formula. When pk → ∞  for all weighting cells, the 

standard result for the complete data case (see, e.g., Krewski 

and Rao 1981) implies that the jackknife estimator 1Jv  is 

consistent for the sampling variance ˆ( ),sV Y  under 

Assumption M or P. Since 1V  is the expectation of ˆ( ),sV Y  

1Jv  is also consistent for 1V  under some minor conditions.  

Since the function in (1) is the sum of ratios and data in 

different weighting cells are independent, a linearization 

estimator of ˆ( )sV Y  can be derived using Taylor’s expansion. 
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When weighting cells are the same as strata, for example, Ŷ  

is given by (2) and is a separate ratio estimator whose 

linearization variance estimator can be obtained using 

standard techniques. An alternative way to derive a lin-

earization variance estimator is to linearize the jackknife 

estimator 1Jv  (Thompson and Yung 2006). The resulting 

estimator is  

1

2

ˆ
( )

ˆ1

ˆ
( ) ,

ˆ

h

ph
L ph hj phj hj phj

h j s ph pr

pr

ph hj hj phj

pr

Xn
v e w e I

n X

Y
x w x

X

∈

 
= − δ

−  


+ − δ 



∑ ∑ ∑
 

(4)

 

where ˆ ˆ( / ) ,phj hj pr pr hje y Y X x= − 1 ,
hj sph h hj phj hj phje n w e I−

∈∑= δ  

and 1 .
hj sph h hj hj phjx n w x−

∈∑= δ  The estimator in (4) is 

exactly the same as the standard linearization variance 

estimator for the separate ratio estimator in (2) when 

weighting cells are the same as strata. Like 1 1,J Lv v  is 

consistent for 1V  when pk → ∞  under Assumption M or 

P, which follows from the standard result for the complete 

data case (Krewski and Rao 1981).  

Since ratio is a smooth function, under Assumption M 

or P,  

ˆ ˆ ˆ ˆ( ) ( )
ˆ( )

ˆ ˆ( )

p pr s p s pr p pr

s s

p p p prpr s pr

X Y E X E Y X Y
E Y E

XX E X

 
= ≈ = , 

 
 

∑ ∑ ∑  

where  

h

h

h

p phj hj
h j

pr phj hj hj
h j

pr phj hj hj

h j

X x

X I x

Y I y

∈

∈

∈

= δ ,

= δ ,

= δ ,

∑ ∑

∑ ∑

∑ ∑

P

P

P

 

and hP  is the finite population in stratum .h  Let pY  be the 

same as pX  with hjx  replaced by .hjy  Then  
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Note that 2V  is small if the nonresponse rate is low 2( 0V =  

if there is no nonresponse) or if the model under 

Assumption M is highly predictive. If the overall sampling 

fraction, ,h hh hn N∑ ∑/  converges to 0, then 2 1V V/  

converges to 0 and, hence 1Lv  and 1Jv  are consistent 

estimators of the total variance 1 2 1
ˆ( ) .m sV Y V V V, = + ≈  

Note that 1V  does not contain the variation from certainty 

strata due to nonresponse. Because the y -values from 

certainty strata are influential in the total Y  in many 

surveys, and because in applications it is difficult to tell how 

small h hh hn N∑ ∑/  has to be for the convergence 2 1 0V V/ →  

to take place, it is necessary to estimate 2.V  

Under Assumption M, let , ,m mE Vɶ ɶ  and mC
ɶ  be the condi-

tional expectation, variance, and covariance, respectively, 

given all x -values and response indicators. Since  
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Under Assumption P, let I

mV  be the variance with respect to 

hjI ’s. Since  
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Since pX  and prX  can be estimated by ˆ
pX  and ˆ ,prX  

respectively, to estimate 2V  we only need to find an esti-

mator of 2
pσ  or 2.pS  Under Assumption M, a regression 

estimator of pβ  is ˆ ˆ
pr prY X/  and a consistent estimator of 

2
pσ  based on regression residuals is  
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From the theory of sampling, 2ˆ pσ  is also a consistent 

estimator of 2
pS  under Assumption P. Hence, under 

Assumption M or P, a consistent estimator of 2V  is  

2

2
2

ˆ
ˆˆ

ˆ
p

L p p

p pr

X
v X

X

 
= σ − . 

 
 

∑  (5) 

The subscript L  indicates that this estimator is based on 

linearization. 

In some applications h hh hn N∑ ∑/  is negligible and non-

response in noncertainty strata has negligible contribution to 

the variance component 2,V  i.e., 

2
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where the subscript c  stands for certainty strata,  
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and C  is the collection of indices of certainty strata. A 

consistent jackknife estimator of 2V  can be obtained as 

follows. Note that , ,cp cprX X  and cprY  are estimators, since 

h hs=P  for ,h ∈ C  but cpY  is not an estimator because of 

nonresponse. Thus, we cannot apply the jackknife to the 

function .cp cpr cpr cpX Y X Y/ −  From the previous derivation 

we note that, under Assumption M,  
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Similarly, under Assumption P, the result holds with mV
ɶ  

replaced by .ImV  Hence, we can apply the jackknife to the 

estimator .cp cpr cprX Y X/  Let  

1
cpr cp cpr

p cp cpr

X X Y
Y

X X

 
= −   
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∑
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and ( )hjY
⌣

 be the jackknife analog of Y
⌣
 after unit j  in 

h ∈ C  is deleted, when we treat cp cpr cprX Y X/  as esti-

mators. Then a jackknife estimator of 2V  is  
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( h hn N=  and h hs = P  when ).h ∈ C  The factor 

1 /cpr cpX X−  in the formula for Yɶ  makes the 

appropriate adjustment for nonresponse. Under Assumption 

P, /cpr cp pX X ≈ π  is the response rate, which can be view 

as a “sampling” fraction for certainty strata.  

The resulting jackknife estimator of the total variance 

1 2V V+  is then 1 2.J Jv v+  Since h hn N=  (i.e., 

1 / 0)h hn N− =  if stratum h  is a certainty stratum, it is 

easy to see that 1 2J Jv v+  is equal to  
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Compared with the jackknife variance estimator 1Jv  in (3), 

Jv  in (7) addresses the variability due to nonresponse in 

certainty strata, whereas 1Jv  does not. Under (6) and 

Assumption M or P, Jv  is consistent.  

Finally, the jackknife estimator that ignores all sampling 

fractions is:  

2

( ) ( )

1 1ˆ ˆ

h h

h
J hj hk

h j s k sh h

n
v Y Y

n n∈ ∈

 −
= − .  

 
∑ ∑ ∑ɶ  (8) 

This estimator seems to be conservative, although it is not 

theoretically justified.  

In summary, we have the following estimators of the 

total variance  ˆ( ):m sV Y,   
1. The jackknife estimator 1Jv  defined in (3), which 

underestimates when 2 1V V/  is not negligible. 

2. The linearization estimator 1Lv  defined in (4), 

which is asymptotically equivalent to 1.Jv  

3. 1 2L L Lv v v= +  with 2Lv  is defined in (5), which is 

consistent.  

4. 1 2,JL J Lv v v= +  which is asymptotically equivalent 

to .Lv  

5. The jackknife variance estimator Jv  defined in (7), 

which is consistent when (6) holds.   

6. The jackknife estimator .Jvɶ  
 

Under stratified simple random sampling and Assump-

tion P, Lv  is approximately the same as the variance 

estimator obtained by treating the set of respondents as an 

additional phase of the stratified simple random sample (i.e., 

a two-phase sample design) and applying standard variance 

formula (when 1)hjx ≡  or the variance formula for 

calibration estimators (Kott 1994, Särndal, Swensson and 

Wretman 1992, and Hidiroglou and Särndal 1998). This 

variance estimator, however, is not consistent when 

Assumption P does not hold.  
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3. Empirical comparisons  
In this section, we apply the variance estimators 

described in Section 2 to five years of empirical data from 

the employer component of the ACES introduced in Section 

1. Section 3.1 provides background on the ACES analysis 

variables, sample design, and estimation procedures. Section 

3.2 presents the empirical comparisons.   
3.1 Background of ACES  

The ACES collects data about the nature and level of 

capital expenditures in non-farm businesses operating 

within the United States. Respondents report capital 

expenditures, broken down by type (expenditures on 

Structures and expenditures on Equipment) for the calendar 

year in all subsidiaries and divisions for all operations 

within the United States.  

The ACES universe contains two sub-populations: 

employer companies (ACE-1) and non-employer (ACE-2) 

companies. (A nonemployer company is one that has no 

paid employees, has annual business receipts of $1,000 or 

more ($1 or more in the construction industries), and is 

subject to federal income taxes. Most nonemployers are 

self-employed individuals operating very small un-

incorporated businesses, which may or may not be the 

owner’s principal source of income). Different forms are 

mailed to sample units depending on whether they are ACE-

1 companies or ACE-2 companies. New ACE-1 and ACE-2 

samples are selected each year, both with stratified simple 

random sample without replacement designs. The ACE-1 

sample comprises approximately seventy-five percent of the 

ACES sample (roughly 46,000 companies selected per year 

for ACE-1, and 15,000 selected per year for ACE-2). In the 

ACE-1 design, units are stratified into size-class strata 

within each industry on the sampling frame. There are five 

separate ACE-1 strata in each industry, consisting of one 

certainty stratum (referred to as stratum 10) and four non-

certainty strata defined by company size within industry 

(denoted by 2A through 2D, ranked from largest to smallest 

within industry), with approximately 500 non-certainty 

strata in each year’s design. Sampling fractions in the 

large-size class-within-industry strata (2A) can be fairly 

high: in most years, approximately 55% of the sample in 2A 

strata are sampled at rates between 0.5 and 1. Sampling 

fractions in the other three size class within-industry strata 

are usually less than 0.20. Design weights range from 1 to 

1,000, depending on industry and size-class strata. The 

ACE-2 component is much less highly stratified, with 

between a total of six to eight size-class strata used each 

year, and sampling fractions less than 0.01 in all strata. Our 

empirical analysis is restricted to the ACE-1 component of 

the survey, which meets all of the conditions described in 

the previous section.  

The ACES publishes total and year-to-year change 

estimates. Estimates are published for the entire survey, and 

by industry code as indicated by the respondent units (not 

necessarily the industry code on the sampling frame). If 

there is no nonresponse, variances are estimated using the 

delete-a-group jackknife variance estimator (Kott 2001). To 

account for unit nonresponse, the ACE-1 component uses 

the ratio-adjustment procedure presented in Section 2 with 

administrative payroll data as the auxiliary variable x . 

Weighting cells are the design strata, provided that there is 

at least one respondent in the cell. Cell collapsing is 

extremely rare and is hereafter ignored in this paper. More 

details concerning the ACES survey design, methodology, 

and data limitations are available on-line at http://www. 

census.gov/csd/ace.  

Although the ACE-1 survey design is fairly typical for a 

business survey, the collected data are not. Smaller 

companies often report legitimate values of zero for capital 

expenditures, and consequently the majority of the estimates 

are often obtained from the certainty and large non-certainty 

(2A) companies. As the capital expenditures are further 

cross-classified, the incidence of reported zeros (especially 

among smaller companies) increases.   
 
3.2 Comparisons  

To assess the effect of the unit non-response weight 

adjustment procedure on the ACE-1 standard errors, we 

computed variance estimates from unit nonresponse 

adjusted ACE-1 data using the ratio estimator with payroll 

as the auxiliary variable, in four industries, each with high 

sampling rates in the large company non-certainty strata 

(2A). The selected industries represent a cross-section of the 

sectors represented in the ACES. These industries and their 

North American Industrial Classification System (NAICS) 

codes are: Oil and Gas Extraction (211100), Nonmetallic 

Mineral Mining and Quarrying (212300), Other Miscel-

laneous Manufacturing (339900), and Architectural, Engi-

neering, and Related Services (541300). In subsequent 

tables and discussions, industries are referred to by their 

NAICS code.  

Table 1 presents variance estimate comparisons using 

five years’ of ACE-1 survey data for three characteristics: 

the total capital expenditures (Total), capital expenditures on 

structures (Structures), and capital expenditures on equip-

ment (Equipment). For comparison, the variance estimates 

are presented as a ratio to 1Jv  in Table 1. The estimated 

totals are also included. (Note that these totals are not the 

same as the published estimates, since they are computed 

using the industry classification on the frame, not the 

industry classification provided by the respondent).  

As expected, the jackknife estimator 1Jv  and the 

linearization jackknife estimator 1Lv  are very close for all 
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variables. The consistent variance estimators ( Lv  and )JLv  

are all noticeably larger than their corresponding jackknife 

counterparts 1( Lv  and 1).Jv  In general, most capital 

expenditures are reported by certainty or large non-certainty 

companies, so effect on variance estimation of including 

non-respondent component in the variance estimator is 

noticeable. The jackknife estimator ,Jv  which adjusts for 

the effect of certainty strata, is generally between 1Jv  and 

.JLv  In some cases, Jv  is equal to or very close to 1,Jv  

indicating that the variability due to nonresponse mainly 

comes from non-certainty strata with large sampling 

fractions. The jackknife estimate ,Jvɶ  which ignores 

sampling fractions, is much larger than any other estimates.  

 
4. Simulation results  

In this section, we present a simulation study using data 

modeled from the ACE-1 industries presented in the 

previous section. Section 4.1 describes the simulation 

settings. Section 4.2 presents and summarizes the results.   
4.1 Simulation settings  

We modeled our population using respondent data from 

the 2003 data collection of the three key items collected by 

the survey (Total, Structures, and Equipment). Frame data 

for the auxiliary variable (payroll) were available for all 

units. The complete population data were generated using 

the SIMDAT algorithm (Thompson 2000) with modeling 

cells equal to sampling strata and population size equal to 

the original frame size in each cell. Table 2 provides sam-

pling fractions and correlation coefficients with the payroll 

for the modeled data in each stratum.  

In the simulation, stratified simple random samples were 

selected from the generated population. We examine the 

statistical properties of the six variance estimators described 

in Section 2 over repeated samples under the following two 

different response mechanisms applied to the sample data: 
 

1. The covariate-dependent response mechanism ob-

tained by randomly applying response propensities 

modeled from the survey data with payroll as the 

covariate, which yields very high probabilities of 

responding to the large units and very small 

probabilities to the small (non-certainty) units;   

2. The within-stratum uniform response mechanism 

obtained by using the observed survey response rate 

as the within-stratum response probability.   
On the average, response probabilities in the individual 

stratum within industry were 0.85, 0.76. 0.77, 0.76, and 0.68 

for strata 10, 2A, 2B, 2C, and 2D, respectively.  

We selected 5,000 samples from the population, 

computed Ŷ  in (1) from each sample with nonresponse and 

weight adjustment, and computed the empirical mean and 

variance of the 5,000 Ŷ  values. This was done for each 

industry and each item, with two adjustment methods: the 

ratio and count estimators. When Ŷ  is the ratio estimator 

using the payroll as the auxiliary variable, the absolute value 

of the empirical relative bias is under 1.4% and is smaller 

than 1% in most cases. For the count estimator under the 

within-stratum uniform response mechanism, its absolute 

value of the empirical relative bias is under 0.5%. The count 

estimator is not approximately unbiased in theory under the 

covariate-dependent response mechanism. In the simulation, 

however, its absolute value of the empirical relative bias is 

under 1% in most cases and has a maximum value of 2.7%. 

The empirical variance of the 5,000 Ŷ  values was used as 

the “true value” of the variance of .̂Y   
4.2 Results  

In 2,000 of the 5,000 samples, we computed the six 

different variance estimates for all three items, four in-

dustries, and two weight adjustment methods. We examined 

the statistical properties of each of variance estimator over 

repeated samples using the relative bias (RB) defined as  

the average of 2 000 variance estimates
1

the true variance

,
− ,  

the stability (ST) defined as  

the empirical mean squared error of variance estimate

the true variance
,  

and the error rate (ER) defined as the empirical propor-

tion of the approximate 90% confidence intervals ˆ(Y ±  

1 645 variance estimate. ) from 2,000 samples that do 

not contain the true population total.  

Tables 3 and 4 respectively report the simulation results 

under the two response mechanisms. The results from these 

tables can be summarized as follows.  
 

1. Two variance estimators ignoring 2 1, JV v  and 1,Lv  

have large negative relative biases in general. The 

error rates of the related confidence intervals are 

also large.  

2. Two consistent variance estimators, Lv  and ,JLv  

have very similar performances and are generally 

much better than 1Jv  and 1Lv  in terms of the 

relative bias and the error rate of the related 

confidence intervals.  

3. The jackknife variance estimator Jv  performs well 

in industries 339900 and 541300, but may have 

large positive relative biases in industries 211000 

and 212300. We think that this is a “small sample” 

effect, since Jv  is justified by asymptotic 

consistency and the sizes of the certainty strata in 

industries 211000 and 212300 are 26 and 30, 

respectively (Table 2). The sizes of the certainty 
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strata for the other two industries are 158 and 160, 

respectively. In fact, the performance of Lv  and JLv  

is generally better in industries 339900 and 541300.  

4. In some cases Jv  has more than 10% negative 

relative biases, which is caused by the fact that some 

non-certainty strata have large sampling fractions, 

i.e., the approximation (6) does not hold enough.  

5. The jackknife variance estimator Jvɶ  ignoring all 

sampling fractions has very large positive relative 

biases and is too conservative.  

 
5. Concluding remarks  

When nonresponse is present in certainty strata (or strata 

with large sampling fractions), the jackknife and the 

linearization variance estimators that ignore certainty strata 

(or strata with large sampling fractions) are not acceptable 

because of their large negative biases. We derive two 

asymptotically unbiased and consistent variance estimators 

by adding an extra term that accounts the variability from 

nonresponse in certainty strata (or strata with large sampling 

fractions). We also derive a modified jackknife estimator 

that is consistent when the certainty strata are the only strata 

that contribute to the variance due to nonresponse (i.e., 

Assumption (6) holds).  

Our simulation results show that the three derived 

variance estimators perform well when stratum sample sizes 

are all large and perform inconsistently otherwise, and that 

the jackknife variance estimator that ignores all sampling 

fractions is very conservative.  

Compared with the linearization method, the jackknife 

requires more computational resources but it has other 

advantages such as being easy to program, using a single 

recipe for different problems, and not requiring complicated 

or separate derivations for different estimators. Our 

linearization variance estimator given in (4) is in fact 

obtained by linearizing the jackknife estimator in (3).  

 
 
 

Table 1 
Variance estimates for Ŷ  with ratio adjustment in ACE-1 survey 
 

Industry Item Year Ŷ  1Jv  
1

1

L

J

v

v
 

1

L

J

v

v
 

1

JL

J

v

v
 

1

J

J

v

v
 

1

ɶ
J

J

v

v
 

211000 Total 2002 1.63E+7  4.63E+11  0.97  1.14  1.17  1.00  17.3   

  2003 2.28E+7  6.87E+12  0.95  1.21  1.26  1.00  2.81   

  2004 2.30E+7  2.45E+12  0.98  1.23  1.25  1.00  4.77   

  2005 3.08E+7  4.29E+12  0.98  1.22  1.24  1.19  4.77   

  2006 4.18E+7  6.29E+12  0.99  1.17  1.19  1.00  8.78   

 Structures 2002 1.31E+7  3.99E+11  0.97  1.14  1.17  1.00  15.3   

  2003 1.86E+7  5.78E+12  0.94  1.22  1.27  1.00  2.78   

  2004 1.70E+7  8.39E+11  0.99  1.42  1.43  1.00  11.3   

  2005 2.64E+7  3.84E+12  0.98  1.22  1.24  1.16  4.64   

  2006 3.55E+7  5.41E+12  0.99  1.19  1.21  1.00  8.76   

 Equipment 2002 3.20E+6  6.14E+10  0.98  1.15  1.17  1.00  7.26   

  2003 4.18E+6  8.39E+11  0.97  1.22  1.24  1.00  1.70   

  2004 6.01E+6  1.54E+12  0.97  1.13  1.16  1.00  1.39   

  2005 4.33E+6  1.34E+11  0.97  1.22  1.25  1.15  6.17   

  2006 6.31E+6  7.14E+11  0.99  1.12  1.13  1.00  2.68   

212300 Total 2002 1.56E+6  4.14E+10  0.81  1.06  1.24  1.20  3.19   

  2003 1.33E+6  1.21E+10  0.94  1.18  1.24  1.36  5.43   

  2004 2.01E+6  2.86E+10  0.96  1.60  1.65  2.20  6.04   

  2005 1.96E+6  1.93E+10  0.98  1.12  1.14  2.30  6.04   

  2006 2.28E+6  2.19E+10  0.96  1.26  1.30  3.22  11.7   

 Structures 2002 2.22E+5  4.36E+8  1.00  1.11  1.11  1.64  8.61   

  2003 1.49E+5  2.27E+8  0.96  1.28  1.32  1.48  7.32   

  2004 4.14E+5  1.03E+8  0.96  46.6  46.6  75.3  426   

  2005 2.23E+5  9.33E+8  0.99  1.12  1.13  1.32  1.88   

  2006 2.20E+5  1.88E+9  0.97  1.20  1.22  1.19  2.29   

 Equipment 2002 1.33E+6  4.05E+10  0.81  1.06  1.25  1.15  2.86   

  2003 1.18E+6  1.13E+10  0.94  1.20  1.26  1.32  5.07   

  2004 1.60E+6  2.82E+10  0.96  1.40  1.44  1.53  3.30   

  2005 1.73E+6  1.62E+10  0.97  1.16  1.19  2.33  6.69   

  2006 2.06E+6  2.14E+10  0.96  1.26  1.30  2.94  10.8   
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Table 1 (continued) 
Variance estimates for Ŷ  with ratio adjustment in ACE-1 survey 
 

Industry Item Year Ŷ  1J
v  1

1

L

J

v

v
 

1

L

J

v

v
 

1

JL

J

v

v
 

1

J

J

v

v
 

1

ɶ
J

J

v

v
 

339900 Total 2002 1.75E+6  1.94E+10  0.99  1.27  1.29  1.10  3.71   

  2003 1.58E+6  2.99E+10  0.98  1.24  1.27  1.10  1.60   

  2004 1.70E+6  1.00E+10  0.99  1.40  1.40  1.69  4.61   

  2005 1.77E+6  2.55E+10  0.99  1.28  1.29  1.25  3.02   

  2006 1.94E+6  5.51E+10  0.99  1.23  1.25  1.12  2.15   

 Structures 2002 2.99E+5  1.21E+9  0.99  1.24  1.24  1.09  3.55   

  2003 1.93E+5  8.54E+8  0.99  1.27  1.28  1.09  1.75   

  2004 2.10E+5  2.00E+8  0.99  1.86  1.87  2.08  5.89   

  2005 2.56E+5  5.07E+8  0.99  1.80  1.81  1.97  9.61   

  2006 5.97E+5  4.93E+10  0.99  1.19  1.20  1.01  1.16   

 Equipment 2002 1.45E+6  1.62E+10  0.99  1.27  1.28  1.07  3.02   

  2003 1.39E+6  2.71E+10  0.97  1.24  1.27  1.09  1.58   

  2004 1.49E+6  9.14E+9  0.99  1.40  1.41  1.62  4.61   

  2005 1.51E+6  2.45E+10  0.99  1.22  1.23  1.15  2.12   

  2006 1.34E+6  5.65E+9  0.99  1.42  1.43  1.60  6.20   

541300 Total 2002 3.38E+6  2.32E+10  0.99  1.47  1.48  1.67  5.02   

  2003 3.09E+6  2.61E+10  0.99  1.26  1.27  1.05  1.62   

  2004 3.97E+6  1.12E+11  1.00  1.23  1.23  1.03  1.37   

  2005 4.94E+6  2.54E+11  1.00  1.20  1.20  1.04  1.71   

  2006 4.96E+6  2.82E+10  1.00  1.40  1.40  1.75  8.36   

 Structures 2002 7.41E+5  6.32E+9  1.00  1.70  1.71  1.64  7.47   

  2003 4.29E+5  3.32E+9  1.00  1.29  1.29  1.01  1.33   

  2004 6.96E+5  4.38E+10  1.00  1.22  1.22  1.00  1.40   

  2005 7.12E+5  9.00E+9  1.00  1.25  1.25  1.08  2.08   

  2006 8.73E+5  3.44E+9  1.00  1.58  1.59  1.63  9.88   

 Equipment 2002 2.96E+6  1.39E+10  0.99  1.37  1.38  1.54  3.95   

  2003 2.66E+6  1.94E+10  0.99  1.25  1.26  1.05  1.59   

  2004 3.27E+6  5.83E+10  1.00  1.22  1.23  1.04  1.29   

  2005 4.23E+6  2.40E+11  1.00  1.19  1.20  1.03  1.59   

  2006 4.09E+6  2.35E+10  1.00  1.27  1.28  1.49  5.47   

 
 
Table 2 

Population characteristics for the simulation study   
 

  Population  Sampling  Correlation with Payroll   

Industry  Stratum  size  fraction  Total  Structures  Equipment   

211000  10  26  1.00  0.65  0.53  0.95   

 2A  128  0.77  0.68  0.66  0.22   

 2B  372  0.11  0.57  0.51  0.51   

 2C  1,800  0.02  -0.07  0.00  -0.10   

 2D  10,406  0.00  0.28  0.00  0.28   

212300  10  30  1.00  0.96  0.95  0.94   

 2A  108  0.37  0.85  0.74  0.77   

 2B  414  0.07  0.03  0.76  -0.03   

 2C  1,310  0.03  0.42  0.13  0.43   

 2D  4,762  0.01  0.44  -0.22  0.44   

339900  10  158  1.00  0.80  0.40  0.80   

 2A  498  0.26  0.40  0.04  0.51   

 2B  2,048  0.05  0.20  0.24  0.18   

 2C  6,310  0.02  0.19  0.48  0.09   

 2D  25,288  0.00  0.37  0.67  0.36   

541300  10  160  1.00  0.60  0.56  0.59   

 2A  959  0.38  0.20  0.39  0.06   

 2B  4,531  0.06  0.28  0.13  0.27   

 2C  17,913  0.01  0.08  0.06  0.08   

 2D  67,440  0.00  0.13  -0.01  0.15   
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Table 3 

Simulation results (in %) for variance estimation under covariate-dependent response mechanism   
 

Estimate Item Industry  1Jv  1Lv  
L
v  

JL
v  

J
v  ɶ

J
v  

Ratio  Total  211000  RB  -35.8  -38.1  -10.3  -8.0  39.1  113.9   
   ST  49.8  50.4  47.4  48.6 252.9  182.9  
   ER  19.6  19.8  12.2  11.8  10.7  1.1   
  212300  RB  -20.4  -22.2  -4.48  -2.69  54.8  266.4   
   ST  30.3  31.1  26.8  27.3  139.1  268.8   
   ER  12.6  12.6  9.9  9.6  6.3  0.1   
  339900  RB  -21.2  -22.5  0.26  1.55  -5.34  52.5   
   ST  47.3  47.0  55.0  56.0  43.9  67.8   
   ER  14.3  14.6  10.4  10.3  10.0  2.6   
  541300  RB  -20.7  -21.0  3.83  4.08  -11.6  18.4   
   ST  32.7  32.8  34.9  35.0  29.4  32.0   
   ER  12.6  12.7  8.6  8.6  10.7  6.2   

 Structures  211000  RB  -38.0  -40.1  -11.9  -9.59  33.9  108.1   
   ST  51.3  51.9  48.5  49.6  244.4  180.8   
   ER  20.9  21.1  12.9  12.6  11.1  1.1   
  212300  RB  -23.2  -23.9  -12.4  -11.6  33.2  341.5   
   ST  31.5  32.0  27.1  27.0  95.0  344.3   
   ER  12.3  12.3  10.4  10.3  6.9  0.1   
  339900  RB  -20.0  -20.4  -6.31  -5.88  -10.9  39.8   
   ST  42.5  42.7  42.3  42.3  39.9  64.0   
   ER  15.9  16.0  12.7  12.6  13.2  5.4   
  541300  RB  -20.0  -20.1  0.09  0.33  -15.9  15.7   
   ST  42.6  42.5  50.5  50.7  41.1  42.7   
   ER  13.1  13.2  9.9  9.9  12.0  6.5   

 Equipment  211000  RB  -15.0  -17.3  14.1  16.4  -9.37  27.9   
   ST  63.9  62.6  87.7  90.0  64.1  69.6   
   ER  16.2  16.7  13.3  13.0  14.7  6.7   
  212300  RB  -21.4  -23.3  -4.13  -2.21  39.7  201.1   
   ST  31.7  32.5  28.4  29.0  113.7  204.4   
   ER  13.3  13.5  10.2  10.1  7.7  0.2   
  339900  RB  -21.4  -22.8  1.18  2.57  -7.29  50.8   
   ST  51.2  50.9  60.8  61.9  47.9  69.2   
   ER  15.5  15.8  11.6  11.4  11.0  2.3   
  541300  RB  -19.7  -19.9  6.16  6.43  -11.9  12.8   
   ST  33.8  33.9  38.4  38.5  31.0  30.9   
   ER  12.5  12.5  8.9  8.9  11.0  7.0   

Count  Total  211000  RB  -30.1  -31.9  0.05  1.85  1.05  103.1   
   ST  50.4  50.5  55.9  57.3  46.7  113.4   
   ER  15.3  15.6  9.0  8.8  8.7  1.0   
  212300  RB  -33.2  -34.6  -6.30  -4.96  17.6  204.5   
   ST  38.7  39.6  27.7  27.8  42.8  208.6   
   ER  14.1  14.7  9.1  8.7  6.9  0.4   
  339900  RB  -23.9  -24.6  1.73  2.44  -14.2  46.4   
   ST  47.5  47.4  55.2  55.7  43.4  62.4   
   ER  13.4  13.5  9.1  9.1  10.7  2.5   
  541300  RB  -22.9  -23.2  1.68  1.94  -18.8  15.4   
   ST  32.9  33.0  32.0  32.2  30.2  28.9   
   ER  11.5  11.6  7.2  7.1  10.6  5.2   

 Structures  211000  RB  -30.3  -32.2  -0.15  1.65  -1.27  101.5   
   ST  51.3  51.3  57.3  58.7  46.7  112.3   
   ER  15.8  16.3  9.6  9.4  9.2  0.8   
  212300  RB  -37.4  -38.0  -13.5  -12.9  3.53  250.2   
   ST  41.6  42.0  28.9  28.8  32.2  254.8   
   ER  15.4  15.6  9.6  9.5  8.1  0.4   
  339900  RB  -20.0  -20.3  -4.33  -4.00  -14.5  38.6   
   ST  42.3  42.4  42.4  42.4  40.1  62.8   
   ER  14.6  14.7  11.9  11.8  13.6  5.0   
  541300  RB  -20.9  -21.2  -0.54  -0.32  -18.9  14.5   
   ST  41.6  41.6  47.8  48.0  40.6  40.9   
   ER  12.5  12.5  9.1  9.1  12.1  6.0   

 Equipment  211000  RB  -17.8  -20.0  11.2  13.3  -13.0  26.6   
   ST  58.9  58.0  76.4  78.4  57.7  64.1   
   ER  15.7  15.8  12.5  12.3  14.5  6.1   
  212300  RB  -30.7  -32.2  -4.74  -3.27  12.1  164.3   
   ST  37.6  38.6  29.1  29.3  38.7  168.9   
   ER  14.1  14.5  9.6  9.5  7.9  0.6   
  339900  RB  -24.1  -24.9  2.52  3.27  -15.2  45.0   
   ST  51.2  51.1  61.0  61.5  47.7  64.1   
   ER  14.8  15.1  9.9  9.8  11.9  2.3   
  541300  RB  -21.6  -21.9  4.10  4.39  -18.1  10.1   
   ST  33.6  33.7  35.2  35.3  31.5  28.2  
   ER  11.1  11.1  7.2  7.1  10.3  5.9   
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Table 4 

Simulation results (in %) for variance estimation under within-stratum uniform response mechanism   
 

Estimate Item Industry  1Jv  1Lv  
L
v  

JL
v  

J
v  ɶ

J
v  

Ratio  Total  211000  RB  -49.2  -50.4  -17.2  -16.0  89.2  138.4   
   ST  55.4  56.1  43.7  43.9  310.5  258.3   
   ER  26.9  27.1  13.9  13.8  9.10  1.80   
  212300  RB  -5.42  -7.99  16.1  18.7  111.7  337.2   
   ST  28.9  28.5  37.4  39.6  179.2  341.7   
   ER  13.5  13.8  9.85  9.50  5.85  0.05   
  339900  RB  -9.37  -10.5  18.0  19.2  16.5  83.8   
   ST  45.8  45.4  59.0  60.1  48.4  95.6   
   ER  14.5  14.7  9.55  9.55  8.60  2.65   
  541300  RB  -8.83  -9.03  18.2  18.4  6.62  44.5   
   ST  26.7  26.8  36.6  36.7  28.2  52.3   
   ER  12.6  12.6  8.45  8.45  9.70  5.35   

 Structures  211000  RB  -52.6  -53.7  -19.2  -18.0  78.4  128.0   
   ST  58.0  58.7  45.3  45.4  290.8  248.5   
   ER  28.7  29.0  15.1  14.9  9.80  2.25   
  212300  RB  -16.2  -18.1  9.92  11.9  63.5  356.2   
   ST  32.0  32.4  37.1  38.5  108.6  361.9   
   ER  15.5  16.0  10.9  10.7  6.65  0.35   
  339900  RB  -13.2  -13.6  13.9  14.3  1.15  54.9   
   ST  47.8  47.8  59.2  59.5  46.3  82.7   
   ER  17.2  17.2  12.6  12.5  13.8  6.40   
  541300  RB  -8.9  -9.2  19.2  19.5  -2.22  36.0   
   ST  39.4  39.3  53.7  54.0  38.6  55.9   
   ER  12.9  12.9  8.85  8.85  11.3  6.85   

 Equipment  211000  RB  -1.1  -2.75  27.5  29.1  12.8  60.1   
   ST  64.4  63.2  88.6  90.3  71.1  89.8   
   ER  15.3  15.6  12.0  12.0  12.7  5.10   
  212300  RB  -6.3  -8.96  16.8  19.4  90.0  263.1   
   ST  30.3  29.8  39.3  41.6  148.6  269.1   
   ER  13.9  14.2  10.1  9.60  6.75  0.15   
  339900  RB  -8.84  -10.1  19.5  20.7  15.8  84.6   
   ST  50.8  50.3  65.7  66.9  52.9  98.8   
   ER  15.1  15.3  10.3  10.3  9.50  2.45   
  541300  RB  -6.89  -7.1  19.9  20.1  6.76  38.5   
   ST  28.6  28.6  40.0  40.1  30.1  48.3   
   ER  12.4  12.4  8.60  8.55  10.3  5.90   

Count  Total  211000  RB  -27.8  -29.0  14.2  15.4  16.3  149.5   
   ST  47.4  47.5  53.1  54.2  44.4  158.1   
   ER  16.0  16.2  8.30  8.30  7.45  1.85   
  212300  RB  -33.5  -34.9  15.3  16.7  23.9  219.9   
   ST  40.0  40.9  38.5  39.5  39.4  228.5   
   ER  18.8  19.3  9.80  9.65  8.55  1.90   
  339900  RB  -16.5  -17.1  20.2  20.8  4.21  75.7   
   ST  45.1  44.0  57.9  58.5  42.4  87.6   
   ER  15.6  15.8  9.40  9.35  10.8  3.20   
  541300  RB  -9.61  -9.81  18.9  19.1  -0.77  45.0   
   ST  26.5  26.5  36.0  36.1  24.7  52.2   
   ER  12.4  12.4  8.55  8.55  11.3  4.85   

 Structures  211000  RB  -27.5  -28.7  14.5  15.7  14.6  149.0   
   ST  48.1  48.1  54.5  55.6  45.1  157.6   
   ER  17.1  17.5  9.05  9.00  8.50  2.05   
  212300  RB  -39.4  -40.4  11.6  12.6  10.1  238.5   
   ST  44.8  45.5  38.8  39.6  32.1  248.4   
   ER  20.2  20.7  9.95  9.85  10.3  1.80   
  339900  RB  -14.2  -14.6  13.6  14.0  -3.55  53.5   
   ST  47.1  47.0  57.3  57.6  45.1  80.5   
   ER  17.6  17.7  12.1  12.1  14.7  6.30   
  541300  RB  -9.54  -9.76  20.0  20.2  -5.32  36.0   
   ST  39.1  39.0  53.3  53.5  38.3  55.8   
   ER  12.6  12.6  9.05  9.05  11.9  6.55   

 Equipment  211000  RB  -8.12  -9.64  22.7  24.2  1.56  54.3   
   ST  58.0  57.1  76.2  77.7  57.5  82.1   
   ER  16.5  16.7  12.4  12.4  14.6  6.45   
  212300  RB  -28.5  -30.0  17.1  18.6  21.5  189.7   
   ST  37.6  38.4  40.9  42.0  38.2  198.9   
   ER  18.1  18.5  9.95  9.80  9.25  1.75   
  339900  RB  -15.8  -16.4  21.8  22.5  4.69  76.8   
   ST  49.5  49.3  64.6  65.2  47.4  91.1   
   ER  16.4  16.5  9.45  9.40  11.4  3.20   
  541300  RB  -7.53  -7.74  20.2  20.4  0.26  38.8   
   ST  28.2  28.2  39.2  39.4  27.2  48.0   
   ER  12.7  12.7  8.30  8.25  11.3  5.65   
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Rescaled bootstrap for stratified multistage sampling 

John Preston 1 

Abstract 

In large scaled sample surveys it is common practice to employ stratified multistage designs where units are selected using 

simple random sampling without replacement at each stage. Variance estimation for these types of designs can be quite 

cumbersome to implement, particularly for non-linear estimators. Various bootstrap methods for variance estimation have 

been proposed, but most of these are restricted to single-stage designs or two-stage cluster designs. An extension of the 

rescaled bootstrap method (Rao and Wu 1988) to stratified multistage designs is proposed which can easily be extended to 

any number of stages. The proposed method is suitable for a wide range of reweighting techniques, including the general 

class of calibration estimators. A Monte Carlo simulation study was conducted to examine the performance of the proposed 

multistage rescaled bootstrap variance estimator. 
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1. Introduction 

 
Stratified multistage sampling designs are especially 

suited to large scaled sampled surveys because of the 

advantage of clustering collection effort. Various methods 

exist for variance estimation for these complex survey de-

signs. The most commonly used methods are the linearization 

(or Taylor) method, and resampling methods, such as the 

jackknife, balance repeated replication and the bootstrap. The 

linearization method can be quite cumbersome to implement 

for complex survey designs as it requires the derivation of 

separate variance formulae for each non-linear estimator. 

Some approximations are normally required for the variance 

of non-linear functions, such as ratios and correlation and 

regression coefficients, and functionals, such as quantiles. 

On the other hand, the various resampling methods 

employ a single variance formulae for all estimators. The 

replication methods can reflect the effects of a wide range of 

reweighting techniques, including calibration, and adjust-

ments due to provider non-response and population under- 

coverage. The jackknife and balance repeated replication 

methods are only applicable to stratified multistage designs 

where the clusters are sampled with replacement or the first-

stage sampling fractions are negligible. A number of 

different bootstrap methods for finite population sampling 

have been proposed in the literature, including the with-

replacement bootstrap (McCarthy and Snowden 1985), the 

rescaled bootstrap (Rao and Wu 1988), the mirror match 

bootstrap (Sitter 1992a), and the without-replacement 

bootstrap (Gross 1980; Bickel and Freedman 1984; Sitter 

1992b). A summary of these bootstrap methods can be found 

in Shao and Tu (1995).  

Most of these bootstrap methods are restricted to single-

stage designs or multistage designs where the first-stage 

sampling units are selected with replacement or the 

first-stage sampling fractions are small in most strata. 

However, in many large scaled sample surveys it is common 

practice to employ highly stratified multistage designs where 

units are selected using simple random sampling without 

replacement at each stage. Some typical examples of these 

types of surveys are employer-employee surveys, such as the 

Survey of Employee Earnings and Hours (ABS 2008), and 

school-student surveys, such as the National Survey on the 

Use of Tobacco by Australian Secondary School Students 

(White and Hayman 2006). 

McCarthy and Snowden (1985) proposed an extension of 

their with-replacement bootstrap to two-stage sampling in 

the special case of equal cluster sizes and equal within cluster 

sample sizes, while Rao and Wu (1988) and Sitter (1992a) 

have given extensions of their rescaled bootstrap and mirror 

match bootstrap methods to two-stage cluster sampling. 

More recently, Funaoka, Saigo, Sitter and Toida (2006) 

proposed two Bernoulli-type bootstrap methods, the general 

Bernoulli bootstrap and the short cut Bernoulli bootstrap, 

which can easily handle multistage stratified designs where 

units are selected using simple random sampling without 

replacement at each stage. The general Bernoulli bootstrap 

has the advantage that it can handle any combination of 

sample sizes, but it requires a much larger number of random 

number generations than the short cut Bernoulli bootstrap. 

In this paper, an extension of the rescaled bootstrap 

procedure to stratified multistage sampling where units are 

selected using simple random sampling without replacement 

at each stage is proposed. In Section 2, the notation for 

stratified multistage sampling is introduced. In Section 3, the 

extension of the rescaled bootstrap estimator to multistage 

sampling is described. The main findings of a simulation 

study are reported in Section 4. Some concluding remarks 

are provided in Section 5. 
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2. Stratified multistage sampling 
 

For simplicity, the case of stratified three-stage sampling 

is presented. Consider a finite population U  divided into 

H  nonoverlapping strata 1{ , ..., },HU U U=  where hU  is 

comprised of 1hN  primary sampling units (PSU’s). At the 

first-stage, a simple random sample without replacement 

(SRSWOR) of 1hn  PSU’s are selected with selection 

probabilities 1 1 1/hi h hn Nπ =  within each stratum .h  

Suppose selected PSU i  in stratum h  is comprised of 2hiN  

secondary sampling units (SSU’s). At the second-stage, a 

SRSWOR of size 2hin  SSU’s are selected with selection 

probabilities 2 2 2/hij hi hin Nπ =  within each selected PSU. 

Suppose selected SSU j  in selected PSU i  in stratum h  is 

comprised of 3hijN  ultimate sampling units (USU’s). At the 

third-stage, a SRSWOR of size 3hijn  USU’s are selected 

with selection probabilities 3 3 3/hijk hij hijn Nπ =  within each 

selected SSU. 

The objective is to estimate the population total Y =  
31 2

1 1 1 1 ,hijh hi
NN NH

h i j k hijky= = = =∑ ∑ ∑ ∑  where hijky  is the value for the 

variable of interest y  for USU k  in SSU j  in PSU i  in 

stratum .h  An unbiased estimate of Y  is given by: 

31 2
31 2

1 1 1 1 11 2 3

ˆ ˆ
hijh hi

nn nH H
hijh hi

h hijk
h h i j kh hi hij

NN N
Y Y y

n n n= = = = =

= =∑ ∑ ∑ ∑ ∑  

where 1

11 1
ˆ ˆ( / ) ,hn

ih h h hiY N n Y=∑= 2

12 2
ˆ ˆ( / ) hin

jhi hi hi hijY N n Y=∑=  

and 3

13 3
ˆ ( / ) .hijn

khij hij hij hijkY N n y=∑=  This estimator can also 

be written as 31 2

1 1 1 1
ˆ ,hijh hi

nn nH
h i j k hijk hijkY w y= = = =∑ ∑ ∑ ∑=  where hijkw =  

1 2 3 1 1 2 2 3 3( / ) ( / ) ( / )hi hij hijk h h hi hi hij hijw w w N n N n N n=  is the 

sampling weight for USU k  in SSU j  in PSU i  in 

stratum .h  

An unbiased estimate of ˆVar ( )Y  is given by (Särndal, 

Swensson and Wretman 1992): 

1

1 2

2
21

1 1
1 1

2
21 2

2 2
1 11 2

2
3 21 2

3 3
1 1 11 2 3

ˆ ˆVar ( ) (1 )

(1 )

(1 )

h

h hi

H
h

h h
h h

nH
h hi

hi hi
h ih hi

n nH
hijh hi

hij hij
h i jh hi hij

N
Y f s

n

N N
f s

n n

NN N
f s

n n n

=

= =

= = =

= −

+ −

+ −

∑

∑ ∑

∑ ∑ ∑  (2.1)

 

where 1 1 1( / ),h h hf n N= 2 2 2( / ),hi hi hif n N= 3 3 3( / ),hij hij hijf n N=  

1

1 1
ˆ ˆ / ,hn

ih hi hY Y n=∑= 2

1 2
ˆ ˆ / ,hin

jhi hij hiY Y n=∑= 3

1 3/ ,hijn

khij hijk hijy y n=∑=  

12 2
11 1

ˆ ˆ( ) /( 1),hn
ih hi h hs Y Y n=∑= − −  22 2

12 2
ˆ ˆ( ) /( 1)hin

jhi hij hi his Y Y n=∑= − −  

and 32 2
13 3( ) / ( 1).hijn

khij hijk hij hijs y y n=∑= − −  

 

 

3. Rescaled bootstrap for stratified  

       multistage sampling 
 

Rao and Wu (1988) proposed a rescaling of the standard 

bootstrap method for various sampling designs including 

stratified sampling. Since the rescaling factors are applied to 

the survey data values, this method is only applicable to 

smooth statistics. Rao, Wu and Yue (1992) presented a 

modification to this rescaled bootstrap method where the 

rescaling factors are applied to the survey weights, rather 

than the survey data values. This modified rescaled 

bootstrap method is equivalent to the original rescaled 

bootstrap method, but has the added advantage that it is 

applicable to non-smooth statistics as well as smooth 

statistics. Kovar, Rao and Wu (1988) showed that when 

using a bootstrap sample size of * 1h hn n= −  the rescaled 

bootstrap estimator performed well for smooth statistics. 

Although bootstrap samples are usually selected with 

replacement, Chipperfield and Preston (2007) modified the 

rescaled bootstrap method to the situation where the 

bootstrap samples are selected without replacement. Under 

this without replacement rescaled bootstrap method it can be 

shown that the choice of either * / 2h hn n=     or *

hn =  

/ 2hn    is optimal, where the operators  x  and  x  

round the argument x  down and up respectively to the 

nearest integer. The choice of * / 2h hn n=     has the 

desirable property that the bootstrap weights will never be 

negative. 

For simplicity, the case of stratified three-stage sampling 

is presented, but the proposed procedure can easily be 

extended to any number of stages. The without replacement 

rescaled bootstrap procedure for stratified three-stage 

sampling is as follows:  
(a) Draw a simple random sample of *

1hn  PSU’s without 

replacement from the 1hn  PSU’s in the sample. Let 1hiδ  be 

equal to 1 if PSU i  in stratum h  is selected and 0 

otherwise. Calculate the PSU bootstrap weights: 

* 1
1 1 1 1 1*

1

1 h
hi hi h h hi

h

n
w w

n

 
= − λ + λ δ 

 
 

where * *

1 1 1 1 1(1 ) /( ).h h h h hn f n nλ = − −   
(b) Within each of the PSU’s in the sample, draw a simple 

random sample of *

2hin  SSU’s without replacement from the 

2hin  SSU’s in the sample. Let 2hiδ  be equal to 1 if SSU j  

in PSU i  in stratum h  is selected and 0 otherwise. 

Calculate the conditional SSU bootstrap weights: 
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*

2

1 1
2 1 1 1* *

1 1

1 1 2
2 1 2 1 2* * *

1 1 2

1

hij

hi h
hij h h hi

hi h

h h hi
hi hi hi hi hij

h h hi

w

w n
w

w n

n n n

n n n

=


− λ + λ δ




− λ δ +λ δ δ 


 

 

where * *

2 2 1 2 2 2(1 ) /( ).hi hi h hi hi hin f f n nλ = − −   
(c) Within each of the SSU’s in the sample, draw a simple 

random sample of *
3hijn  USU’s without replacement from 

the 3hijn  USU’s in the sample. Let 3hijkδ  be equal to 1 if 

USU k  in SSU j  in PSU i  in stratum h  is selected and 0 

otherwise. Calculate the conditional USU bootstrap weights: 

*

3

21 1
3 1 1 1* * *

1 2 1

1 1 2
2 1 2 1 2* * *

1 1 2

1 2
3 1 2* *

1 2

31 2
3 1 2 3* * *

1 2 3

1

hijk

hijhi h
hijk h h hi

hi hij h

h h hi
hi hi hi hi hij

h h hi

h hi
hij hi hij

h hi

hijh hi
hij hi hij hijk

h hi hij

w

ww n
w

w w n

n n n

n n n

n n

n n

nn n

n n n

=


− λ + λ δ



− λ δ + λ δ δ

− λ δ δ


+ λ δ δ δ 



   

where 
* *

3 3 1 2 3 3 3(1 ) / ( ).hij hij h hi hij hij hijn f f f n nλ = − −   
(d) Calculate the bootstrap estimates: 

31 2
* * *

1 1 1 1

ˆˆ ˆ, ( )
hijh hi

nn nH

hijk hijk
h i j k

Y w y g Y
= = = =

= θ =∑∑∑ ∑  

where * * * *
1 2 3 .hijk hi hij hijkw w w w=   

(e) Independently repeat steps (a) to (d) a large number of 

times, ,B  and calculate the bootstrap estimates, (1)ˆ ,θ  
(2) ( )ˆ ˆ, ..., .Bθ θ   

(f) The bootstrap variance estimator of θ̂  is given by: 

2

* *
ˆ ˆ ˆVar ( ) ( ( ))E Eθ = θ − θ  (3.1) 

or the Monte Carlo approximation: 

( ) 2

1

1ˆ ˆ ˆVar ( ) ( )
1

B
b

bB =

θ = θ − θ
−
∑  

where ( )
1

ˆ ˆ / .B b
b B=∑θ = θ  

It is shown in the Appendix that the multistage rescaled 

bootstrap variance estimator for stratified three-stage 

sampling as defined by (3.1) reduces to the standard 

unbiased three-stage variance estimator (2.1) in the case of 

θ̂  being a linear estimator. The choice of *

1 1 / 2 ,h hn n=     

*

2 2 / 2hi hin n=     and *
33

/ 2hijhij
nn =     will be optimal and 

will have the desirable property that the bootstrap weights 

will never be negative. 

The proposed procedure can easily be extended to   

any number of stages by adding terms of the form 
1 1* * *
1 1( ( / ) ) ( ( / ) ) ( / )R R

r rR r r r R r r r R R Rn n n n n n− −
= =∏ ∏−λ δ + λ δ δ  

at each stage, ,R  to the bootstrap weight adjustments, where 
1* *
1( ) (1 ) / ( ).R

rR R r R R Rn f f n n−
=∏λ = − −  

Yeo, Mantel and Liu (1999) presented an enhancement 

to the rescaled bootstrap which accounted for adjustments 

made to the design weights, such as post-stratification. For 

example, consider a simple case of non-integrated cali-

bration using auxiliary information for two-stage stratified 

sampling (Estevao and Särndal 2006), which has the dual 

objectives of producing estimates for both a first-stage 

variable of interest ( )1 1hi U hiY y∈∑=  as well as a second-

stage variable of interest, ( )2 2 .hij U hijY y∈∑=  Assume there 

exists:  
(i) a set of p  first-stage auxiliary variables 1hix  for which 

the population totals ( )1 1hi U hi∈∑=X x  are known, and 

where the population totals are generated from a list frame 

of PSU’s for which the 1hix  are known for every PSU in the 

population; and 
 

(ii) a set of q  second-stage auxiliary variables 2hijx  for 

which the population totals ( )2 2hij U hij∈∑=X x  are known, 

where the population totals are acquired from an external 

source.  
The auxiliary variables can be used to form the first-stage 

and second-stage calibration estimators: 

 
1

CAL1 1 1
( )

ˆ
hi hi

hi s

Y w y
∈

= ∑ ɶ    

2

CAL2 12 2
( )

ˆ
hij hij

hij s

Y w y
∈

= ∑ ɶ    

where the first-stage calibration weights, 1 ,hiwɶ  and the 

combined first-stage and second-stage calibration weights, 

12 ,hijwɶ  are given by: 

    
1

1

1 1 1 1 1
( )

1

1 1 1 1

( )

1

T

hi hi hi hi
hi s

T

hi hi hi hi

hi s

w w w

w

∈

−

∈

  
= + −    

 
     

∑

∑

ɶ X x

x x x  

 

2

2

12 1 2 2 1 2 2
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1

1 2 2 2 2
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1

.
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hij s

T

hi hij hij hij hij

hij s

w w w w w

w w

∈

−

∈

  
= + −    

 
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Then the multistage rescaled bootstrap method can easily 

be modified in a similar manner to handle these calibration 

estimators by replacing step (d) in the procedure as follows:  
(d) Calculate the first-stage and second-stage calibrated 

bootstrap weights in the same manner as the first-stage and 

second-stage calibrated weights: 

  
( )

( )

1

1

* * *

1 1 1 1 1

1

*

1 1 1 1

1

T

hi hi hi hi
hi s

T

hi hi hi hi

hi s

w w w

w

∈

−

∈

  
= + −    

 
     

∑

∑

ɶ X x

x x x

  

( )

( )

2

2

* * * * *

12 1 2 2 1 2 2

1

* *

1 2 2 2 2

1

.

T

hij hi hij hi hij hij
hij s

T

hi hij hij hij hij

hij s

w w w w w

w w

∈

−

∈

  
= + −    

 
     

∑

∑

ɶ X x

x x x

  

The first-stage and second-stage calibrated bootstrap 

estimates are calculated as: 

 

1

* *

CAL1 1 1
( )

ˆ
hi hi

hi s

Y w y
∈

= ∑ ɶ    

2

* *

CAL2 12 2
( )

ˆ .hij hij
hij s

Y w y
∈

= ∑ ɶ    

This procedure can easily be modified to any type of 

calibration and extended to any number of stages. This 

modification of the rescaled bootstrap takes into account 

adjustments made to the design weights due to calibration. 

Ideally all adjustments made to the design weights, 

including adjustments due to provider non- response and 

population under-coverage should also be made to the 

bootstrap weights. 

 
4. Simulation study 

 
A Monte Carlo simulation study was conducted to 

examine the performance of the multistage rescaled 

bootstrap variance estimator. The study was restricted to 

stratified two-stage sampling. The simulation study was 

based on ten artificial populations, each of which was 

stratified into H = 5 strata, with 1hN = 50 first-stage units 

within each stratum, and 2hiN = 40 second-stage units 

within each first-stage unit.  

Firstly, the first-stage auxiliary variable 1hix  for each 

first-stage unit i  in stratum h  was generated from the 

normal distribution 2

1 1 1 1( , (1 ) / ).x h x b x b x bN µ − ρ σ ρ  Sec-

ondly, the second-stage auxiliary variable, 2 ,hijx  and the 

second-stage target variables, 2hijy  and 2 ,hijz  for each 

second-stage unit j  within first-stage unit i  in stratum h  

were then generated from the multivariate normal 

distribution 3 2 2( , )hi hiN µ Σµ Σµ Σµ Σ  where 2hiµµµµ  is the mean vector: 

2

2 2

2

x hi

hi y hi

z hi

µ 
 
 = µ
 
 µ 

µµµµ  

with 2 2 2 1 ,x hi y hi z hi hixµ = µ = µ =  and 2hiΣΣΣΣ  is the 

variance-covariance matrix: 

2

2 2 2 2 2 2 2

2
2 2 2 2 2 2 2 2

2

2 2 2 2 2 2 2

x hi xy hi x hi y hi xz hi x hi z hi

hi xy hi x hi y hi y hi yz hi y hi z hi

xz hi x hi z hi yz hi y hi z hi z hi

 σ ρ σ σ ρ σ σ
 
 = ρ σ σ σ ρ σ σ
 
 
ρ σ σ ρ σ σ σ  

ΣΣΣΣ

 

with 2 2 2 2
2 2 2 2 2 2(1 ) / .x hi y hi z hi w hi w hi w hiσ = σ = σ = − ρ σ ρ  

The parameter values that were kept stable across all ten 

populations were 1 25 ( 1),x h hµ = × + 2

1b hσ = 10, 2

2w hiσ =  

100, 2 2xy hi xz hiρ = ρ = 0.75 and 2yz hiρ = 0.50. The para-

meter values that were varied across the ten populations 

were 1 ,hf  the first-stage sampling fractions, 2 ,hif  the 

second-stage sampling fractions, 1b hρ  and 2 .w hiρ  These 

parameter values are presented in Table 1.  

 
Table 1 
Characteristics of simulation populations 
 

 1hf  2hif  bρρρρ  wρρρρ  

Pop I 0.1 0.1 0.75 0.75 

Pop II 0.1 0.1 0.25 0.75 

Pop III 0.1 0.5 0.75 0.75 

Pop IV 0.1 0.5 0.25 0.75 

Pop V 0.1 0.5 0.25 0.25 

Pop VI 0.5 0.1 0.75 0.75 

Pop VII 0.5 0.1 0.75 0.25 

Pop VIII 0.5 0.1 0.25 0.25 

Pop IX 0.3 0.3 0.75 0.25 

Pop X 0.3 0.3 0.25 0.25 

 
The parameters of interest used in the simulation study 

were the population mean, ,yµ  the population ratio, yzR =  

/ ,y zµ µ  the population correlation coefficient, yzρ =  

/ ,yz y zσ σ σ  the population regression coefficient, yzβ =  
2/ ,yz yσ σ  and the population median, .yM  

In order to estimate these parameters of interest using the 

multistage bootstrap variance estimators, a total of S =  

20,000 independent two-stage simple random samples were 

selected without replacement from each of the ten artificial 

populations. In addition, a grand total of T = 100,000 

independent two-stage simple random samples were selected 

without replacement from each of the ten artificial 
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populations in order to estimate the true population variances 

for the parameters of interest. The multistage bootstrap 

variance estimators were calculated using B = 100 bootstrap 

samples. 

The accuracy of the multistage bootstrap variance 

estimators were compared using the relative biases (RB) and 

the relative root mean square error (RRMSE). These 

measures were calculated as: 

        
*

1

1 1 ˆ ˆ ˆRB (Var ( ) Var ( ))
ˆ ˆVar ( )

S

s
s

Y Y
Y S =

 
= − 

 
∑  

2

*

1

1 1 ˆ ˆ ˆRRMSE (Var ( ) Var ( ))
ˆ ˆVar ( )

S

s

s

Y Y
SY =

= −∑  

where 1 2
1

ˆ ˆ ˆVar ( ) ( )T
t tY T Y Y−
=∑= −  is the estimated true 

population variance, and *
ˆVar ( )sY  are the multistage 

bootstrap variance estimators for the ths  simulation sample. 

The multistage rescaled bootstrap variance estimator 

(MRBE) was compared against the single-stage rescaled 

bootstrap variance estimator (SRBE) and the multistage 

general Bernoulli bootstrap variance estimator (BBE) 

proposed by Funaoka et al. (2006), with bootstrap samples 

using the non-calibration estimation weights, hijw =  

1 2 .hi hijw w  The relative biases and relative root mean square 

errors of MRBE, SRBE and BBE using the non-calibration 

estimation weights for the ten artificial populations are 

given in Tables 2 and 3. 

In the case of linear functions, such as means, and non-

linear functions, such as ratios, correlation coefficients and 

regression coefficients, the MRBE performed better than the 

SRBE and BBE with respect to relative bias and relative 

root mean square error. While the MRBE performed 

consistently well across all ten artificial populations, the 

SRBE only performed well for artificial populations III, IV 

and V, where the first-stage sampling fractions were small 

1( hf = 0.1) and the second-stage sampling fractions were 

large 2( hif = 0.5), and the BBE only performed well for 

artificial populations VI, VII and VIII, where the first-stage 

sampling fractions were large 1( hf = 0.5) and the second-

stage sampling fractions were small 2( hif = 0.1). These 

sampling fractions were similar to the first-stage and 

second-stage sampling fractions used in the simulation 

study presented in Funaoka et al. (2006). The different 

levels of correlation between the first-stage units, and 

between the second-stage units within the first-stage units, 

controlled by varying the parameters bρ  and ,wρ  had little 

impact on the performance of the variance estimators. 
 

 
 
 

 
Table 2 
Relative bias (%) of variance estimators 
 

 Mean ( )yµµµµ  Mean ( )zµµµµ  Ratio ( )yzR  

 MRBE SRBE BBE MRBE SRBE BBE MRBE SRBE BBE 

Pop I -0.28 -6.73 27.10 0.42 -6.63 27.32 0.00 -9.07 36.22 

Pop II -0.05 -2.21 11.83 0.59 -1.64 12.54 -0.43 -9.26 36.40 

Pop III -0.79 -2.63 3.62 -0.93 -2.66 3.40 -0.17 -5.30 5.19 
Pop IV -0.23 -0.52 3.60 -0.18 -0.46 3.61 0.53 -4.65 5.98 

Pop V 0.15 -1.60 4.55 0.15 -1.64 4.54 0.52 -4.85 6.41 

Pop VI 0.70 -39.18 -0.34 0.65 -39.36 -0.28 1.57 -46.40 1.30 
Pop VII 0.19 -46.19 -0.26 -0.06 -46.48 -0.57 -0.27 -48.19 -0.73 

Pop VIII 0.37 -38.62 -0.41 0.23 -39.36 -0.46 -0.26 -47.93 -0.62 

Pop IX 0.42 -20.85 -7.76 -0.51 -20.03 -8.41 0.13 -23.13 -8.87 
Pop X -0.56 -12.35 -6.08 0.70 -10.87 -6.93 -0.72 -23.70 -9.51 

 Correlation 

Coefficient ( )yzρρρρ  

Regression 

Coefficient ( )yzββββ  

 

Median ( )yM  

 MRBE SRBE BBE MRBE SRBE BBE MRBE SRBE BBE 

Pop I -2.31 -10.23 32.17 -0.08 -9.05 36.41 19.04 -19.86 33.21 

Pop II -1.51 -8.41 29.65 0.05 -8.74 36.41 19.29 2.42 40.85 

Pop III 0.36 -4.37 5.69 0.05 -5.12 5.42 7.50 4.28 9.72 
Pop IV 2.18 -0.60 7.17 0.28 -5.05 5.70 17.40 16.17 34.37 

Pop V 0.79 -2.71 5.95 0.26 -5.40 6.34 8.29 4.78 11.49 

Pop VI 0.32 -46.67 0.14 0.89 -46.59 0.69 13.57 -33.56 9.15 
Pop VII -0.07 -46.78 -0.39 -0.21 -47.85 -0.60 14.68 -38.16 11.86 

Pop VIII 0.31 -44.25 -0.27 -0.09 -47.54 -0.55 2.09 -38.90 -0.64 

Pop IX -0.93 -23.02 -9.30 -0.20 -23.48 -9.20 8.08 -17.23 -1.97 
Pop X -0.82 -19.35 -8.24 -1.02 -23.89 -9.75 2.10 -13.84 -5.46 

 

Note: The largest simulation error on the relative biases was less than 0.7%. 
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In the case of non-smooth statistics, such as medians, 

both the MRBE and the BBE tended to overestimate the 

true population variances, while the SRBE tended to 

underestimate the true population variances. Furthermore, 

the relative root mean square errors for medians were up 

to 3 times larger than the relative root mean square errors 

for means. The MRBE performed better than the BBE for 

the artificial populations I to V where the first-stage 

sampling fractions were smaller 1( hf = 0.1), while the 

BBE performed slightly better than the MRBE for the 

artificial populations VI to X where the first-stage 

sampling fractions were larger 1( hf = 0.3 or 0.5). 

This overestimation of the multistage rescaled boot-

strap for medians was similar to the findings shown in the 

studies by Kovar et al. (1988) and Rao et al. (1992) for 

the single-stage rescaled bootstrap. It should be noted that 

the original rescaled bootstrap introduced by Rao and Wu 

(1988) was developed only for smooth statistics, such as 

means, ratios, and correlation and regression coefficients. 

The MRBE was examined using the calibration 

estimation weights, 1 2 ,hij hi hijw w w=ɶ ɶ  which satisfy the 

calibration constraint ( ) 2 1 2 2 2,shij hi hij hijw w x X∈∑ =ɶ  where 

( )2 2hij U hijX x∈∑=  is the population total for the second-

stage auxiliary variable. The relative biases and relative 

root mean square errors of the MRBE using the 

calibration estimation weights for the four artificial 

populations II, IV, VII and IX are given in Table 4. 

 

 
Table 3 
Relative root mean square error (%) of variance estimators 
 

 Mean ( )yµµµµ  Mean ( )zµµµµ  Ratio ( )yzR  

 MRBE SRBE BBE MRBE SRBE BBE MRBE SRBE BBE 

Pop I 31.9 32.1 44.6 31.7 31.8 44.4 31.8 32.3 51.4 

Pop II 33.9 33.8 38.2 33.4 33.3 38.1 32.2 32.9 51.7 

Pop III 33.8 33.8 35.9 33.0 33.0 35.0 33.0 33.1 35.1 
Pop IV 35.3 35.3 37.4 35.2 35.2 37.3 32.8 32.8 35.0 

Pop V 32.0 31.9 34.2 34.3 34.2 36.5 33.0 33.1 35.6 

Pop VI 16.4 40.7 16.5 16.4 40.9 16.5 16.5 47.5 16.5 
Pop VII 16.1 47.4 16.4 16.1 47.8 16.4 16.1 49.0 16.1 

Pop VIII 16.3 40.3 16.5 16.7 40.9 16.3 16.2 48.8 16.1 

Pop IX 19.2 26.7 20.0 19.3 26.3 20.0 19.2 28.6 20.2 
Pop X 19.8 22.4 20.2 19.9 21.6 20.3 19.1 29.0 20.6 

 Correlation 

Coefficient ( )yzρρρρ  

Regression 

Coefficient ( )yzββββ  

 

Median ( )yM  

 MRBE SRBE BBE MRBE SRBE BBE MRBE SRBE BBE 

Pop I 47.8 46.3 68.7 36.6 37.2 55.3 88.7 80.1 89.8 

Pop II 48.4 47.1 66.6 37.4 37.9 55.6 93.4 91.0 115.9 

Pop III 35.9 35.6 38.4 37.5 37.6 39.9 80.4 80.3 81.1 
Pop IV 42.6 42.2 45.4 38.0 38.0 40.3 97.5 96.6 127.3 

Pop V 40.3 40.0 43.3 37.3 37.5 40.1 31.5 30.7 63.3 

Pop VI 21.6 48.4 21.7 16.9 47.8 17.0 55.3 51.4 52.0 
Pop VII 21.4 48.4 21.3 16.9 49.0 16.8 53.5 51.4 51.4 

Pop VIII 21.6 46.3 21.5 17.0 48.6 16.9 41.8 49.7 40.3 

Pop IX 21.5 29.4 22.5 20.5 29.9 21.6 46.1 42.7 42.7 
Pop X 22.7 27.8 23.4 20.6 30.2 21.9 39.7 38.9 37.9 

 
Table 4 
Relative bias (%) and relative root mean square error (%) of rescaled bootstrap variance estimator 
 

 
yµµµµ  yzR  yzρρρρ  yzββββ  yM  

Relative Bias (%) 

Pop II -0.42 -0.29 -1.51 -0.08 20.98 

Pop IV 0.40 0.49 1.83 0.08 18.28 
Pop VII -0.22 -0.24 -0.03 -0.28 12.24 

Pop IX 0.62 0.19 -1.00 -0.20 7.24 

Relative Root Mean Square Error (%) 
Pop II 32.6 32.4 48.4 37.3 97.8 

Pop IV 32.8 32.8 44.6 37.9 99.4 

Pop VII 16.2 16.1 21.5 16.9 50.0 
Pop IX 19.1 19.2 21.6 20.5 43.8 

Note: The largest simulation error on the relative biases was less than 0.6%. 
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The relative biases and relative root mean square errors of 

the MRBE using the calibration estimation weights were 

similar to those using the non-calibration estimation weights. 

 
5. Conclusion 

 
This paper extends the rescaled bootstrap procedure to 

multistage sampling where units are selected using simple 

random sampling without replacement at each stage. Under 

the proposed multistage rescaled bootstrap method, the 

bootstrap samples are selected without replacement and 

rescaling factors are applied to the survey weights. This 

proposed method is relatively simple to implement and 

requires considerably less random number generations than 

the multistage general Bernoulli bootstrap method. The 

proposed method is also suitable for a wide range of 

reweighting techniques, including calibration, and adjust-

ments due to provider non-response and population under- 

coverage. Furthermore, the results of the Monte Carlo 

simulation study indicate that the multistage rescaled boot-

strap performs much better than the single-stage rescaled 

bootstrap and the multistage Bernoulli bootstrap for smooth 

statistics, such as means, ratios, and correlation and re-

gression coefficients.  

 
Appendix 

 
In this Appendix it is shown that the multistage rescaled 

bootstrap variance estimator for stratified three-stage sam-

pling reduces to the standard unbiased three-stage variance 

estimator (2.1) in the case of θ̂  being the linear estimator, 
31 2* *

1 1 1 1
ˆ .hijh hi

nn nH
h i j k hijk hijkY w y= = = =∑ ∑ ∑ ∑=  The bootstrap variance 

estimator of *Ŷ  is given by: 

* *

1* 2* 3*

* *

1* 2* 3* 1* 2* 3*

ˆ ˆVar ( ) Var ( ( ( )))

ˆ ˆ(Var ( ( ))) ( (Var ( ))).

Y E E Y

E E Y E E Y

=

+ +
 

Using standard results on the expectation and variance 

with respect to the SRSWOR bootstrap sampling and some 

tedious but straightforward algebra, the components of 

bootstrap variance estimator are given below. The 

conditional expectation of *Ŷ  given 3s  is 

1 2

*

3*

1
1 2 1 1 1*

1 1 1 1

1 1 2
2 1 2 1 2* * *

1 1 2
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ˆ
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and the conditional variance of *Ŷ  given 3s  is 

1 2

*

3*

2

3 21 2
1 2 3 3* *
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The conditional expectation of *

3*
ˆ( )E Y  and *

3*
ˆVar ( )Y  

given 2s  are 

    
1

* 1
2* 3* 1 1 1 1*

1 1 1

ˆ ˆ( ( )) (1 )
hnH

h
i h h hi hi

h i h

n
E E Y w Y

n= =
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and the conditional variance of *

3*
ˆ( )E Y  given 2s  is 

1 2
* 21 2

2* 3* 1 2 2*
1 1 21

ˆVar ( ( )) (1 ) .
hnH

h hi
hi hi hi

h i hih

N N
E Y f s

nn= =
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Finally, the conditional expectation of *

2* 3*
ˆ(Var ( ))E Y  

and *

2* 3*
ˆVar ( ( ))E Y  given 1s  are 

 1 2
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1* 2* 3*
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hnH

h hi
hi hi

h ih hi

N N
E E Y f s
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which are equal to the third and second terms of (2.1) 

respectively, and the conditional variance of *

2* 3*
ˆ( ( ))E E Y  

given 1s  is 

2
* 21

1* 2* 3* 1 1
1 1

ˆVar ( ( ( ))) (1 )
H

h
h h

h h

N
E E Y f s

n=

= −∑  

which is equal to the first term of (2.1). 

 
References 

 
Australian Bureau of Statistics (ABS) (2008). Employee Earnings and 

Hours, Catalogue Number 6306.0. 
 
Bickel, P.J., and Freedman, D.A. (1984). Asymptotic normality and 

the bootstrap in stratified sampling. Annals of Statistics, 12, 470-
482. 

 
Chipperfield, J., and Preston, J. (2007). Efficient bootstrap for 

business surveys. Survey Methodology, 33, 167-172. 
 
 
 



234 Preston: Rescaled bootstrap for stratified multistage sampling 

 

 

Statistics Canada, Catalogue No. 12-001-X 

Estevao, V., and Särndal, C.-E. (2006). Survey estimates by 
calibration on complex auxiliary information. International 
Statistical Review, 74, 127-147. 

 
Funaoka, F., Saigo, H., Sitter, R.R. and Toida, T. (2006). Bernoulli 

bootstrap for stratified multistage sampling. Survey Methodology, 
32, 151-156. 

 
Gross, S. (1980). Median estimation in sample surveys. Proceedings 

of the Section on Survey Research Methods, 181-184. 
 
Kovar, J.G., Rao, J.N.K. and Wu, C.F.J. (1988). Bootstrap and other 

methods to measure errors in survey estimates. Canadian Journal 
of Statistics, 16, 25-45. 

 
McCarthy, P.J., and Snowden, C.B. (1985). The bootstrap and finite 

population sampling. Vital and Health Statistics (Series 2 No 95), 
Public Health Service Publication 85-1369, Washington, DC: U.S. 
Government Printing Office. 

 
Rao, J.N.K., and Wu, C.F.J. (1988). Resampling inference with 

complex survey data. Journal of the American Statistical 
Association, 83, 231-241. 

 
Rao, J.N.K., Wu, C.F.J. and Yue, K. (1992). Some recent work on 

resampling methods for complex surveys. Survey Methodology, 
18, 209-217. 

 

Särndal, C.-E., Swenson, B. and Wretman, J. (1992). Model Assisted 
Survey Sampling. New York: Springer-Verlag. 

 
Shao, J., and Tu, D. (1995). The Jackknife and Bootstrap. New York: 

Springer-Verlag. 
 
Sitter, R.R. (1992a). A resampling procedure for complex survey 

data. Journal of the American Statistical Association, 87, 755-765. 
 
Sitter, R.R. (1992b). Comparing three bootstrap methods for survey 

data. Canadian Journal of Statistics, 20, 135-154. 
 
White, V., and Hayman J. (2006). Smoking behaviours of Australian 

secondary students in 2005. National Drug Strategy Monograph 
Series No. 59. Canberra: Australian Government Department of 
Health and Ageing. 

 
Yeo, D., Mantel, H. and Liu T.-P. (1999). Bootstrap variance 

estimation for the National Population Health Survey. 
Proceedings of the Section on Survey Research Methods, 
American Statistical Association, 778-783. 

 
 
 
 

 

 
 
 
 
 



Survey Methodology, December 2009  235 
Vol. 35, No. 2, pp. 235-245 
Statistics Canada, Catalogue No. 12-001-X 

 

Use of within-primary-sample-unit variances to assess  
the stability of a standard design-based variance estimator 

Donsig Jang and John L. Eltinge 1 

Abstract 

In analysis of sample survey data, degrees-of-freedom quantities are often used to assess the stability of design-based 

variance estimators. For example, these degrees-of-freedom values are used in construction of confidence intervals based on 

t distribution approximations; and of related t tests. In addition, a small degrees-of-freedom term provides a qualitative 

indication of the possible limitations of a given variance estimator in a specific application. Degrees-of-freedom calculations 

sometimes are based on forms of the Satterthwaite approximation. These Satterthwaite-based calculations depend primarily 

on the relative magnitudes of stratum-level variances. However, for designs involving a small number of primary units 

selected per stratum, standard stratum-level variance estimators provide limited information on the true stratum variances. 

For such cases, customary Satterthwaite-based calculations can be problematic, especially in analyses for subpopulations 

that are concentrated in a relatively small number of strata. To address this problem, this paper uses estimated within-

primary-sample-unit (within PSU) variances to provide auxiliary information regarding the relative magnitudes of the 

overall stratum-level variances. Analytic results indicate that the resulting degrees-of-freedom estimator will be better than 

modified Satterthwaite-type estimators provided: (a) the overall stratum-level variances are approximately proportional to 

the corresponding within-stratum variances; and (b) the variances of the within-PSU variance estimators are relatively small. 

In addition, this paper develops errors-in-variables methods that can be used to check conditions (a) and (b) empirically. For 

these model checks, we develop simulation-based reference distributions, which differ substantially from reference 

distributions based on customary large-sample normal approximations. The proposed methods are applied to four variables 

from the U.S. Third National Health and Nutrition Examination Survey (NHANES III). 
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1. Introduction 
 
1.1 Motivating example: Inference for special 

subpopulations in NHANES III  
This work arose from a study of inference for geograph-

ically concentrated subpopulations in the U.S. Third National 

Health and Nutrition Examination Survey (NHANES III). 

For some general background on NHANES III, see National 

Center for Health Statistics (1996). In many analyses, 

NHANES III data are treated as arising from a stratified 

multistage sample design that uses 49 strata and two primary 

sample units (PSUs) per stratum. Consequently, formal 

inferences from NHANES III data (e.g., construction of 

confidence intervals) often use the assumption that the 

associated variance estimators are based on approximately 

49 degrees of freedom and are thus relatively stable. 

However, the Mexican-American subpopulation is 

concentrated in a relatively small number of strata, so 

associated variance estimators may be less stable (i.e., have 

greater sampling variability) than would be indicated by the 

nominal 49 degrees of freedom term. Consequently, it is 

important to use an appropriate estimator of the true degrees 

of freedom associated with variance estimators for such 

subpopulations, and to modify confidence interval calcu-

lations accordingly. Development of an appropriate degrees-

of-freedom estimator can be complicated by moderate or 

severe heterogeneity in the underlying stratum-level 

variances. Such complications arose in the analysis of the 

four NHANES III variables listed in Table 1.1. Section 5 will 

consider inference for the means of these four variables for 

the subpopulation of Mexican-Americans aged 20-29. 

 
Table 1.1 
Four NHANES III variables 
 

Variable Name Description 

BMPWT 
 

HAR3 
 

TCRESULT 
 

HDRESULT 

Weight (kg) 
 

Do you smoke cigarettes now? (0/1) 
 

Serum total cholesterol (mg/dL) 
 

HDL cholesterol (mg/dL) 

 
1.2 Stability of design-based variance estimators  
Suppose we have a population partitioned into L strata, 

with hN  PSUs in stratum h  for 1, 2, ..., .h L=  Under a 
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stratified multistage sampling design, we select hn  PSUs, 

with replacement, and with per-draw selection probability 

hip  for PSU i  within stratum h  where 1 1.hN
i hip=∑ =  Thus, 

a total of 1
L
h hn n=∑=  PSUs are selected. Within selected 

PSU ( , ), hih i n  secondary sample units (SSUs) are selected 

with replacement and with per-draw selection probabilities 

,hijp  where 1 1hiN
j hijp=∑ =  and hiN  is the number of SSUs in 

PSU ( , ).h i  For a given survey item, let hY  be the 

population total for stratum ,h  and define the overall 

population total 1 .L
h hY Y=∑=  The total Y  may correspond 

to a total either for the full population or for a specified 

subpopulation.  

Our goal is to construct a confidence interval for the total 

.Y  Let ˆhijY  be an unbiased estimator of ,hijY  the population 

total for secondary unit j  in primary unit i  in stratum .h  

Then a customary design-based estimator of Y  is Ŷ =  

1
ˆ ,L

h hY=∑  where 1 1
1

ˆ ˆ ;hn
ih h hi hiY n p Y− −
=∑= 1 ˆ

hi hip Y−  is a design 

unbiased estimator of hY  based on data obtained from PSU 

i  in stratum ;h  and 1 1
1

ˆ ˆhin
jhi hi hij hijY n p Y− −
=∑=  is an unbiased 

estimator of ,hiY  the population total for PSU i  in 

stratum .h  

Under the standard condition that sampling is inde-

pendent across strata, the variance of Ŷ  can be written, 

1
ˆ( ) L

h hV Y V=∑=  where ˆVar( ).h hV Y=  Throughout the 

remainder of this paper, we will call the hV  terms the 

stratum-level variances, and we will assume that 2hn ≥  for 

all 1, 2, ..., .h L=  Note that hV  depends on the sample 

design used within stratum ,h  and is distinct from the 

within-stratum variance of element-level Y  values. A 

simple unbiased estimator for ˆ( )V Y  is 1
ˆ ˆ ˆ( ) L

h hV Y V=∑=  

where 1 1 1 2
1

ˆ ˆ ˆ( 1) ( ) ;hn

hh h h hi hi hV n n p Y Y− − −
=∑= − −  see, e.g., 

Wolter (1985, page 44). Note that the estimator ˆhV  is a 

multiple of a sum of squared differences among the terms 
1 ˆ .hi hip Y−  In addition, under regularity conditions the random 

variables 1 ˆ
hi hip Y−  will be approximately normally distributed 

for a given stratum .h  Consequently, the overall stratum-

level variance estimators ˆhV  generally will approximately 

satisfy the following condition.  
(C.1) For 1, 2, ..., ,h L=  the terms 1 ˆ( 1)h h hV n V− −  are 

distributed as independent chi-square random 

variables with 1hn −  degrees of freedom, 

respectively, where 2.hn ≥   
Under condition (C.1), 1ˆ ˆ ˆ{ ( )} ( )V Y dV Y−  has the same 

first and second moments as a chi-square random variable 

with d  degrees of freedom, where d  is the solution to the 

equation,  
2ˆ ˆ ˆ2{ ( )} { ( )}  0V Y V V Y d− =  (1.1) 

or equivalently 

1
def

1 2 2

1

ˆ  ( 1) { ( )}=
L

h h
h

d n V V Y

−

−

=

 
− 

 
∑  (1.2) 

where 1 2
1

ˆ ˆ{ ( )} 2( 1) .L
h h hV V Y n V−
=∑= −  Direct substitution 

of ˆhV  for hV  and ˆ ˆ( )V Y  for ˆ( )V Y  in expression (1.2) leads 

to the Satterthwaite (1946)-type degrees-of-freedom 

estimator, 
1

1 2 2

1

ˆ ˆ ˆ ˆ( 1) { ( )} .
L

S h h

h

d n V V Y

−

−

=

 
= − 

 
∑  (1.3) 

For some general background on ˆSd  and related estimators, 

see, e.g., Smith (1936), Satterthwaite (1941, 1946), Cochran 

(1977, page 96) and Kendall, Stuart and Ord (1983, pages 

91-92). In constructing confidence intervals for a 

subpopulation parameter, Casady, Dorfman and Wang 

(1998) use Bayesian ideas to develop related degrees-of-

freedom measures for a Student’s t - statistic. 

For designs in which hn  is large for all ,h  the error in 

estimation of hV  is relatively small, and ˆSd  can provide a 

satisfactory estimator of expression (1.2). However, many 

large-scale surveys use small ,hn  e.g., 2.hn =  For small-

hn  cases, condition (C.1) and routine algebra lead to the 

expectation result 2 1 2ˆ( ) ( 1) ( 1) .h h h hE V n n V−= − +  This 

implies that the standard Satterthwaite degrees-of-freedom 

estimator ˆSd  can severely underestimate d, and that the cor-

responding confidence interval 1/ 2
ˆ ,1 / 2

ˆ ˆ ˆ{ ( )}
Sd

Y t V Y
−α

±  may 

have a true coverage rate substantially below the nominal 

rate 1 .− α  Consequently, Jang (1996) considered an 

alternative degrees-of-freedom estimator, 

1ˆ ˆ(3 14) (9 ) .mS Sd L L d−= +  (1.4) 

for the two-PSUs-per-stratum design. 
 
1.3 Use of auxiliary stratum-level data  
For cases in which there is moderate heterogeneity 

among the hV  terms, simulation work by Jang (1996) 

indicated that ˆmSd  performs relatively well. However, if 

there is substantial heterogeneity among the stratum 

variances (i.e., if 1L d−  is relatively small), then ˆmSd  may be 

unsatisfactory. The fundamental problem is that when the 

hn  values are relatively small, the estimators 
ˆ ,hV  by 

themselves, do not provide sufficient information regarding 

the relative magnitudes of the true stratum-level variances 

.hV  In some cases, a variance estimator based on auxiliary 

data is expected to be more stable than the customary 

design-based estimator; see e.g., Isaki (1983). Similarly, 

auxiliary sources of information can be used to evaluate the 

relative magnitudes of the variances .hV  

The remainder of this paper will focus on auxiliary 

information provided by relationships between the overall 

stratum-level variances hV  and associated within-PSU 

variances. Recall from Wolter (1985, page 41) the 

decomposition, 

ˆVar( ) ,h Bh WhY V V= +  (1.5) 
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where 1
1Var{ ( ) }hn

iBh h hi hiV n p Y−
=∑=  is the between-PSU vari-

ance, 1 2
1 2( )hN

iWh h hi hiV n p −
=∑= σ  is the within-PSU variance, 

ˆ( PSU , stratum )hi hiY E Y i h= |  and 2

2
ˆVar( PSU ,hi hiY iσ = |  

stratum  ).h  In addition, define 1
1 .L

W h WhV VL
−

=∑=  

Estimators of WhV  can provide useful auxiliary 

information on the relative magnitudes of hV  for two 

reasons. First, for designs with a small hn  and relatively 

large ,hin  the within-PSU variance estimators ˆWhV  may be 

considerably more stable than ˆ .hV  Second, in some 

applications (e.g., some of the examples presented in 

Section 5 below), observed variance estimates are consistent 

with a model under which hV  is proportional to ,WhV  i.e.,  

1h WhV V= β  for all 1, ..., ,h L=  (1.6) 

where 1β  is a fixed constant. The proportionality 

relationship (1.6) would arise if both BhV  and WhV  are 

proportional to a common scale factor, e.g., ( )hY
α  for some 

power .α  Under relationship (1.6), expression (1.2) may be 
rewritten,  

1 2

1 2

1 1

( 1) .
L L

h Wh Wh
h h

d n V V

−

−

= =

   
= −   

   
∑ ∑  (1.7) 

Consequently, given a set of stable within-PSU variance 

estimators ˆ
WhV  and associated variance-of-variance-

estimators � ˆVar( ),WhV  

�{ } ( )1 2
1 2

1 1
ˆ ˆ ˆ ˆ( 1) [ Var( )]

L L

WS h Wh Wh Whh h
d n V V V

−
−

= =
= − −∑ ∑  (1.8) 

is an alternative estimator of .d  

Section 2 considers some of the properties of ˆ .WSd  

Section 3.1 uses errors-in-variables tests to check the 

adequacy of the proportionality condition (1.6). Section 3.2 

presents two related diagnostics for the relationship between 

hV  and auxiliary variables, and for the magnitude of the 

error in the observed auxiliary variables ˆWhV . 

A simulation study in Section 4 explores conditions 

under which the proposed new estimator ˆWSd  may perform 

better than ˆ .mSd  This assessment considers both the 

estimation of d as such, and the performance of confidence 

intervals for .Y  Section 5 applies the proposed estimator to 

four variables from NHANES III, with emphasis on cases 

for which differences between the proposed estimators ˆWSd  

and ˆmSd  have a substantial practical effect on assessment of 

the stability of the variance estimator ˆ ˆ( ).V Y  Section 6 

reviews the methods developed in this paper and considers 

some possible extensions. 

 

 

 

2. An estimator based on auxiliary information 
 
2.1 A within-PSU variance estimator  
A simple estimator of WhV  is 

2 2 2

2
1

ˆ ,ˆ
hn

Wh h hi hi
i

V n p− −

=

= σ∑  (2.1) 

where 1 1 1 2
12

ˆ ˆ( 1) ( ) .ˆ hin
jhi hi hi hij hij hin n p Y Y− − −
=∑σ = − −  Note that 

2

2ˆ hiσ  is approximately unbiased for 2

2hiσ  under a with-

replacement sampling design within PSU i  in stratum ;h  

or under simple random sampling without replacement and 

with a small sampling fraction, 1 .hi hi hif N n−=  Standard sam-

pling theory shows that ˆWhV  is approximately unbiased for 

.WhV  Then an approximately unbiased estimator of 
ˆVar( )WhV  is 

� 1 1 2

1

ˆ ˆ ˆVar( ) ( 1) ( ) ,
hn

Wh h h Whi Wh
i

V n n V V− −

=

= − −∑  (2.2) 

where 1 2 2

2
ˆ ;ˆWhi h hi hiV n p− −= σ  see, e.g., Eltinge and Jang (1996) 

and references cited therein. Note that the overall stratum-

level variance estimators ˆhV  are functions of the sample 

means of  1 ˆ
hij hijp Y−  over PSUs in stratum .h  In addition, the 

estimators ˆWhV  are functions of sample variances of the 
1 ˆ

hij hijp Y−  within the PSU ( , ).h i  Thus, for variables Y  for 

which 1 ˆ
hij hijp Y−  are approximately normally distributed 

within stratum ,h  the estimators ˆhV  and ˆWhV  are approxi-

mately independent. 
 
2.2 Properties of ˆWSd   
In the remainder of this paper, the estimator ˆWSd  defined 

in expression (1.8) will use � ˆVar( )WhV as defined in 

expression (2.2). Also, the remainder of this paper will use 

several asymptotic results. These results will use the 

condition that the number of strata, ,L  is increasing, while 

stratum-level PSU and SSU sample sizes hn  and hm  are 

allowed to remain small. This is in keeping with many 

practical multi-stage designs that use 2hn =  and moderate 

values of .hm  See, e.g., Krewski and Rao (1981) for a 

detailed development of large - L  asymptotic results. The 

proof of Result 2.1 is routine and is thus omitted.  
 
Result 2.1. Assume that ˆ( ) (1)  for  1, 2, 3, 4r

WhE V O r= =  

and define 

1

1

ˆ ˆ
L

W Wh
h

V L V−

=

= ∑  

and (2.3) 

�1 1 2

(2)
1

ˆ ˆ ˆ( 1) { Var( )}.
L

w h Wh Wh
h

V L n V V− −

=

= − −∑  
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Then ˆWV  and (2)
ˆ
WV  are consistent estimators of WV  and 

1 1 2
1( 1) ,L

h h WhL n V− −
=∑ −  respectively. In addition, 1 ˆ

WSL d−  is a 

consistent estimator of 1 .WSL d−  

Section 1 suggested that in some cases, the auxiliary-data 

based estimator ˆWSd  might be more stable than the modified 

Satterthwaite estimator ˆ .mSd  To examine this idea, we will 

compare the variances of ˆWSd  and ˆmSd  under condition 

(C.1) and the following additional assumptions.  
(C.2) For 1,  2,  ..., ,h L= 1 ˆ( 1)Wh h WhV m V− −  are distri-

buted as independent chi-square random vari-

ables with 1hm −  degrees of freedom, respect-

tively, where hm  is the number of SSUs in 

stratum ;h  and are mutually independent of ˆ .hV   
(C.3) For all 1,  2,  ..., ,h L= 2;hn =  and 0hm m=  for 

some fixed positive integer 0 2.m ≥  
 
Arguments similar to those for condition (C.1) indicate that 

condition (C.2) may be satisfied approximately if within a 

given PSU ( , ),h i  the hm  random variables 1 ˆ
hij hijp Y−  are 

approximately independent and identically distributed 

normal random variables. Condition (C.3) restricts attention 

to the common case 2.hn =  In addition, condition (C.3) 

requires that an equal number, 0,m  of secondary units be 

selected within each selected PSU. This allows 

simplification of the resulting approximations for the 

variances of ˆ ,WSd  as presented in Result 2.2. 

 

Result 2.2. Assume conditions (C.1), (C.2), (C.3), and (1.6), 

and define 
2 2

2 2
24 Var( ),A Ba A−= µ µ

2 2

3 3
2 24 Cov( , ),A Bb A B−= µ µ  

and 
2 2

4 4
2Var( ),A Bc B−=µ µ  where 1

12
ˆ ,L

h WhA L V−
=∑= 2B =  

�1 2
1
ˆ ˆ{ Var( )},L

h Wh WhL V V−
=∑ − 2A WVµ =  and 1 2

12 .L
hB WhL V−
=∑µ =  

Then   
(i) the variances of the leading terms in Taylor expansions 

of 1 ˆ( )WSL d d− −  and 1 ˆ( )mSL d d− −  are, respectively, 

VLW a b c= − +  

 and 

( )
2

0
0

0

4( 1)1 9
V 1 .

9 3 14 3( 2)
Lm

mL
m a b c

L m

   −
= − − +  + +   

 

(ii) for all 0 lim ( , , ),Lm g a b c→∞≥ lim limL Lm L LWV V→∞ →∞≥  

where  

{ }
1

2 2 2

( , , ) {2(3 3 4 )}

11 144 144 153 288 216 216 .

g a b c a b c

c a b c ab ac bc

−= − +

+ + + − + −

 

 

 

(iii) for 0 10,m ≥ lim limL Lm L LWV V→∞ →∞≥  regardless of 

the values of the limiting moments 
2 2

lim ( , ,L A B→∞ µ µ  
1 3 1 4

1 1, ).L L
h hWh WhL V L V− −
= =∑ ∑   

Result 2.2 indicates that for large ˆ, WSL d  may be 

preferable to ˆ ,mSd  provided: (1) the proportionality 

condition (1.6) is satisfied; and (2) the secondary unit 

sample size 0m  exceeds the lower bound given by 

( , , )g a b c  (thus ensuring relatively small variances of the 
ˆ ).WhV  This motivates the use of within-PSU variances to 

assess the stability of survey variance estimators, especially 

under sample designs with small numbers of PSUs per 

stratum. For some additional discussion of this point, and 

some specific diagnostics to check the stability of ˆ ,WhV  see 

Eltinge and Jang (1996) and references cited therein. For the 

four cases considered in Table 1.1 and studied further in 

Section 4 below, ( , , )g a b c  is equal to 4.7, 4.3, 4.6, and 4.8 

respectively, while the NHANES III application had the 

mean of the hm  values approximately equal to 22. In 

addition, we are treating WhV  values as fixed, and Result 2.2 

depends on the limiting moments of these WhV  terms. 

Suppose that /Wh WV V  had the same moments as / ,F f  

where F  follows a chi-square distribution on f  degrees of 

freedom. Then f = ∞  corresponds to the case in which 

Wh WV V=  for all ,h  which corresponds to the case in 

which the true d  in (1.1) equals the customary value of 

.n L−  

 
3. Testing the proportionality condition  

3.1 An errors-in-variables model for hV  and WhV   
Development of the alternative estimator ˆWSd  in Section 

1, and evaluation of its properties in Section 2, depended 

heavily on the proportionality condition (1.6). One may test 

the adequacy of this condition through the following steps. 

First, note that condition (1.6) is a special case of the 

following model,  
(C.4) For all 1, 2, ..., ,h L=  

0 1h Wh hV V q= β + β +  (3.1) 

 where 0 1 and β β  are constants, and hq  is an 

equation error with mean zero and variance 

.qqhσ   
Second, recall that hV  and WhV  are unknown quantities, for 

which we have the unbiased estimators ˆhV  and ˆ ,WhV  

respectively. Using the errors-in-variables model notation in 

Fuller (1987), define the estimation errors 

ˆ ˆ        and        .h h h h Wh Whe V V u V V= − = −  (3.2) 
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Under conditions (C.1) and (C.2), the vector ( , )h he u ′  is 
distributed with a mean vector equal to (0,0)′  and a 
variance-covariance matrix equal to diag( , )eeh uuhσ σ  where 

1 2( 1) 2eeh h hn V−σ = −  and 1 2( 1) 2 .uuh h whm V−σ = −  Under 

the additional condition (C.3), these variance terms simplify 

to 22eeh hVσ =  and ( ) 1 2

0 1 2 .uuh Whm V
−

σ = −  

Expressions (3.1) and (3.2) define an errors-in-variables 

regression model with heterogeneous measurement error 

variances and non-normal errors. In addition � ˆVar( )WhV  

defined in expression (2.2) is an unbiased estimator of ,uuhσ  

and thus provides identifying information for the parameters 

0 1,β β  and qqhσ  in model (3.1) – (3.2). A direct application 

of Fuller (1987, pages 187-189) with equal weights then 

gives the consistent estimators (for increasing ),L  

1

0 1
1

1

2

1 .
1 1

ˆˆ ˆˆ ,

ˆ ˆˆ ˆ ˆ ˆ( ) ( ) ,ˆ

L

h W
h

L L

Wh W uu Wh W h
h h

L V V

V V V V V

−

=

−

= =

β = − β

 
β = − − σ − 

 

∑

∑ ∑  (3.3)

 

and  

1 1

.
1

1 2

0 1

2

1

ˆ max 0, ( 1)

ˆ ˆˆ ˆ{( 2) ( )

ˆ( )} ,ˆ ˆ

L

qq h
h

h Wh

eeh uuh

L n

L L V V

− −

=

−


σ = −



− − β − β


− σ + β σ 

∑

 (3.4)

 

where  

�
. 1

ˆVar( ),ˆ
L

uu Whh
V

=
σ = ∑ 1

1

ˆ ˆ ,
L

W Whh
V L V

−
=

= ∑  

and (3.5) 

1 2ˆ2( 1)ˆ eeh h hn V−σ = +  

from condition (C.1). In addition, direct application of Fuller 

(1987, page 188) leads to variance estimators 0
ˆˆ ( )V β  and 

1
ˆˆ ( ),V β  say; details are available from the authors. 
 
3.2 Two related diagnostics  
In keeping with condition (C.4), the proposed estimator 

ˆ
WSd  is intended for cases in which the ˆWhV  provide useful 

auxiliary information on the relative magnitudes of the 

overall stratum-level variances .hV  To identify such cases, 

one simple diagnostic is the ratio 1 2

1
ˆˆ ˆ ˆ ˆ{ ( )} { ( )h WhV V V V− β +  

},ˆ qqhσ  i.e., the ratio of estimators of the variances of the 

approximate distributions of ˆ
h hV V−  and 1

ˆ ,Wh hV Vβ −  

respectively, under model (3.1) – (3.2). If this ratio is 

substantially less than unity, then use of ˆWSd  may be 

indicated. 

 

In addition, the performance of the estimator ˆWSd  

depends heavily on the magnitude of .ˆ uuσ  relative to the 

variability of the true within-PSU variances .WhV  Define an 

estimator of the reliability ratio (Fuller 1987, page 3) 

1

2 2

.
1 1

ˆ ˆˆ ˆˆ max 0, ( ) ( ) ˆ
L L

xx Wh W Wh W uu
h h

V V V V

−

= =

     
κ = − − −σ    

     
∑ ∑ . 

The values of ˆ xxκ  are between 0 and 1; and values of 

ˆ xxκ  close to unity indicate relatively small errors in the 

estimation of within-PSU variances. Conversely, small 

values of ˆ xxκ  (e.g., ˆ 0.7)xxκ <  may indicate that the 

methods of Sections 3.1 – 3.2 may not perform well, due to 

the relatively large sampling errors in the auxiliary 

information ˆ .WhV  The numerical work in Sections 4 and 5 

below will consider these diagnostics further. 

The work in this section is based on the assumption that 

. 0.qqσ >  One may develop related diagnostics applicable 

to the case of no equation errors, i.e., . 0;qqσ =  details are 

available from the authors.  
4. A simulation study  

4.1 Design of the study  
We now use a simulation study to evaluate the properties 

of our degrees-of-freedom estimators, and related variates, 

under moderate-sample-size conditions. We set up the 

simulation procedure as follows. 

We considered four sets of hV  values from the NHANES 

III example for the Mexican-American subpopulation 

introduced in Section 1.1. Those four sets of hV  are the 

estimated ˆhV  values from the variables BMPWT, HAR3, 

TCRESULT and HDRESULT, respectively, and are listed 

in Table 4.1. For each case, we used 0 1( , ) (0, 1)β β =  and 

0,qqσ =  in keeping with the results of Section 3, and thus 

.Wh hV V=  Then, for each 1,  ...,  ,h L=  we obtained 

10,000 realizations of the initial estimators 1 2 1
ˆ ˆ ˆ( , , ,h h WhY Y V  

2
ˆ )WhV  by assuming that the ˆhiY  are distributed as a normal 

random variable with mean zero and variance 2
-1

;hV  that 
1 ˆ( 1)Wh hi WhiV m V− −  is distributed as a chi-square random 

variable with 1him −  degrees of freedom, where 11him =  

for all h  and ;i  and the ˆhiY  and ˆWhiV  are mutually 

independent. Note that in our data from NHANES III, the 

average number of secondary units for each PSU i  in 

stratum h  is about 11. For each replication, we computed 
2

1 2
ˆ ˆ ˆ( )h h hV Y Y= −  and 1

1 2
ˆ ˆ ˆ2 ( ),Wh Wh WhV V V−= +  and then 

carried out an errors-in-variables regression of ˆhV  on ˆWhV  

with measurement error variance � ˆVar( )ˆ uuh WhVσ =  using 

formula (2.2). This produced the coefficient estimators 

0 1
ˆ ˆ( , ),β β  and the degrees-of-freedom estimators ˆ

mSd  

and ˆWSd . 
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Table 4.1 
“True” variances hV  used in simulation studies 
 

Stratum Case 1 Case 2 Case 3 Case 4 

1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

2 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

3 1.56E-04 7.67E-05 1.45E-02 1.76E-02 

4 2.01E-04 3.57E-06 5.60E-02 4.55E-03 

5 2.82E-04 4.88E-07 1.54E-03 2.91E-03 

6 4.36E-04 0.00E+00 3.73E-03 8.60E-04 

7 7.30E-04 2.14E-06 1.69E-02 1.13E-05 

8 8.80E-04 1.30E-05 2.72E-02 1.40E-03 

9 1.65E-03 1.16E-06 9.24E-03 1.35E-04 

10 1.70E-03 9.46E-07 2.24E-03 1.77E-03 

11 2.73E-03 0.00E+00 2.54E-04 1.32E-03 

12 2.91E-03 5.40E-06 2.75E-02 6.40E-03 

13 4.95E-03 3.73E-07 1.15E-02 5.38E-03 

14 7.25E-03 2.90E-04 3.75E-02 6.97E-02 

15 9.06E-03 9.81E-05 3.46E-01 7.58E-01 

16 1.14E-02 7.47E-06 1.54E-02 4.75E-03 

17 2.69E-02 9.65E-05 7.99E-02 1.01E-03 

18 4.00E-02 1.12E-04 1.44E-01 1.77E-01 

19 4.27E-02 2.68E-06 8.59E-02 3.88E-02 

20 6.05E-02 7.57E-06 2.68E+00 7.18E-02 

21 6.45E-02 1.17E-04 1.65E-01 4.52E-04 

22 1.08E-01 1.05E-04 5.41E-01 1.98E-03 

 

 

4.2 Coverage rates of t-based confidence intervals  
For the four specified cases, Table 4.2 presents the 

simulated non-coverage probabilities obtained for t - based 

confidence intervals for the population mean Y  that used 

the corresponding ˆ.d  For the severely heterogeneous cases 

(Cases 3 and 4), none of the degrees of freedom measures 

(not even the true )d  leads to confidence intervals with 

coverage rates meeting the nominal rates 1 .− α  That is, in 

extreme cases, the general Satterthwaite approach can be 

problematic for construction of confidence intervals, 

regardless of whether ˆ, ,mSd d  or ˆWSd  is used to determine 

the t  multiplier. 

For Cases 1 and 2, the hV  values display less severe 

heterogeneity than in Cases 3 and 4. Table 4.2 shows that 

the simulated coverage probabilities with the true d  for 

these two cases are slightly above 0.95. This overcoverage 

may be attributable to the fact that the variance estimator 
ˆ ˆ( )V Y  is not distributed exactly as a multiple of a 2

dχ  

random variable, due to the heterogeneity of the .hV  Use of 

the standard degrees-of-freedom term n L−  or the 

modified estimator ˆmSd  produces confidence intervals with 

coverage rates below the nominal level of 95%. On the 

other hand, use of our auxiliary-data-based term ˆWSd  gives 

simulation based coverage rates close to the nominal 0.95 

level. 

Tables 4.3a and 4.3b display the empirical distributions of 

d̂  and ˆ2 d
t  for the estimators ˆmSd  and ˆ .WSd  The simulated 

standard deviation of ˆ
WSd

t  is smaller than that of ˆ .
mSd

t  In 

addition, the mean and median of ˆ
WSd

t  are slightly larger than 

those of ˆ .
mSd

t  This is consistent with the undercoverage of 

the intervals based on ˆ .
mSd

t  Thus, under conditions similar to 

those for Cases 1 and 2 (or under conditions with less 

heterogeneity of ),hV  it is worthwhile to consider the use of 
ˆ
WSd  as a degrees-of-freedom estimator. 

 
5. Application to a health survey 

 
5.1 Preliminary model checks  
We applied our proposed methods to the NHANES III 

data described in Section 1. It is important to check the 

modeling assumptions before we apply the proposed 

stability measures. First, for the Mexican-American sub-

population described in Section 1, Table 5.1 gives values of 

ˆ xxκ  for the four variables which all have ˆ xxκ  values greater 

than 0.7. 

Second, Figure 5.1 displays the scatter plots of ˆhV  

against ˆWhV  for the four variables with equal scales used for 

the horizontal and vertical axes. It shows that a linear 

relationship for the corresponding variables is plausible 

even if the relation would not be perfect and there are some 

outliers. Consequently, those four variables might be appro-

priate for the auxiliary-data-based method developed in 

Sections 2 and 3. 
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Table 4.2 

Observed non-coverage rates for nominal 95% confidence intervals with =h WhV V  in simulation study 
 

 Case 1 Case 2 Case 3 Case 4 

             True dS 6.26 6.04 2.38 2.20 

Non-Coverage with 
sd

t  0.0428 0.0443 0.0162 0.0164 

Non-Coverage with n Lt −  0.0744 0.0788 0.1220 0.1263 

Non-Coverage with ˆ
mSd

t  0.0552 0.0567 0.0911 0.0905 

Non-Coverage with ˆ
WSd

t  0.0428 0.0466 0.0224 0.0220 

 

 

 
Table 4.3a 
Means and quantiles of degrees-of-freedom estimators ˆmSd  and ˆ :WSd  Cases 1 and 2 
 

Cases True d Est. 1Mean d̂  SD( d̂ ) 2Q(0.05) Q(0.25) Q(0.50) Q(0.75) Q(0.95) 

1 6.26 ˆ
mSd  9.33 3.33 4.45 6.86 9.01 11.41 15.30 

  ˆ
WSd  6.52 0.82 5.06 5.99 6.57 7.10 7.78 

2 6.04 ˆ
mSd  8.87 2.95 4.35 6.69 8.72 10.97 13.99 

  ˆ
WSd  6.34 0.96 4.67 5.69 6.42 7.06 7.80 

 

1 Mean denotes the average of the estimates, taken across all 10,000 replications. 
2 Q

.
( )  indicates the quantile of the estimator, taken across all 10,000 replications. 

 

 

 
Table 4.3b 
Simulated non-coverage probabilities; and means and quantiles of t-multipliers for nominal 95% confidence intervals: 
Unequal true variances, cases 1 and 2 
 

Cases Est. 1 ˆ1 − α− α− α− α  2
M(2 )ααααt  (2 )ααααSD t  3Q(0.05) Q(0.25) Q(0.50) Q(0.75) Q(0.95) 

1 ˆ
mSd  0.0552 4.62 0.36 4.26 4.38 4.52 4.75 5.37 

 ˆ
WSd  0.0428 4.83 0.16 4.64 4.72 4.80 4.90 5.13 

 n - L 0.0744 4.15       

 True dS 0.0428 4.85       

2 ˆ
mSd  0.0567 4.66 0.36 4.29 4.41 4.55 4.78 5.41 

 ˆ
WSd  0.0466 4.87 0.21 4.64 4.72 4.83 4.97 5.28 

 n - L 0.0788 4.15       

 True dS 0.0443 4.89       
1 ˆ1− α  is the simulated non-coverage probability of confidence intervals computed using estimated d.f.’s 
2 

0.975M(2 )t  is the average of twice of the 97.5% t-percentile value 
3 Q (.)  indicates the quantile of ˆ0.975,

2 ,
d

t  taken across all replications. 

 

 

 
Table 5.1 

,κ̂κκκ xx  estimates of model parameters, model diagnostics, and degrees of freedom estimates for four NHANES III variables 
(Mexican-American (Age 20-29) subgroup) 
 

Variables κ̂κκκ xx  
0
ɶββββ  se(

0
ɶββββ ) 

1
ɶββββ  se(

1
ɶββββ ) Simulation based 

p-value for 

0 0: 0β =β =β =β =H  

Simulation based  

p-value for 

0 1: 1β =β =β =β =H  

σ̂σσσqq.  ˆqqr  ˆ
mSd  ˆ

WSd  

BMPWT 0.75 -0.0013 0.0039 1.135 0.5429 0.3815 0.3541 -0.000 -0.43 15.49 10.04 

HAR3 0.75 -0.000009 0.000012 1.095 0.3991 0.4229 0.3400 0.000 -0.83 14.94 8.30 

TCRESULT 0.88 -0.146 0.0493 2.879 0.6252 0.0606 0.2259 -0.178 -0.77 5.88 6.59 

HDRESULT 0.90 -0.042 0.0098 6.650 0.9988 <0.0001 0.1506 -0.017 -0.91 5.45 5.93 
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           Figure 5.1 Plot of ˆWhV  vs. ˆhV  for M-A (Age 20-29), Variable = BMPWT 

 

5.2 An ad hoc test of 0σ =σ =σ =σ =qq.  under condition (C.1)  
For all four variables considered in Table 5.1, the direct 

estimates ˆ qqσ  of equation error variance (3.4) were negative 

or close to zero. That suggests that our 2χ -based estimator 

of eehσ  as given in Section 3.1 might be too conservative or 

that .qqσ  is indeed close to zero. This suggests that we need 

to re-examine the distributional assumption (C.1) in the 

NHANES III example. To do this, we considered the 

simulated distribution of q̂qr
def

= ˆ / ,ˆqq eeσ σ  where division by 

ˆ eeσ  is used to avoid scale problems. The conditions and 

simulation design were as described in Section 4.1.  

Table 5.2 reports results for ˆ eeσ  from expression (3.5), 

and ˆ qqσ  computed from expression (3.4) with 0β̂  set equal 

to zero and with 1
ˆ ,β  computed from expression (3.3). Table 

5.2 reports the mean, standard deviation and selected 

quantiles of the simulated distribution of .q̂qr  for the four 

variables. Table 5.3 reports the corresponding quantities for 

,q̂qr  computed from ˆ qqσ  given by expression (3.4) and with 

0β̂  and 1β̂  computed from expression (3.3). 

The results reported in Tables 5.2 and 5.3 lead to an ad 

hoc test of 0: 0.qqH σ =  Specifically, if the observed ratio 

q̂qr  falls above the upper 0.95 simulated quantile, then the 

assumption that 0qqσ =  may be problematic. Conversely, 

an observed q̂qr  below the .05 simulated quantiles in Tables 

5.2 or 5.3 might indicate that ˆ eehσ  is conservative, or may 

indicate violation of other parts of condition (C.1). 

From Table 5.1, the values of q̂qr  for the variables are 

between -0.91 to -0.43. Except for HDRESULT, we do not 

have any strong evidence of violation of the model 

assumptions. However, for HDRESULT, the ratio q̂qr =  
-0.91 falls between the 0.01 and 0.05 quantiles reported in 

Table 5.2 and 5.3 for case 4. In general, values of q̂qr  that 

fall above the 0.95 or 0.99 quantiles of Tables 5.2 or 5.3 

would be consistent with values of .qqσ  greater than zero. 

The observed value q̂qr = -0.91 is not necessarily consistent 
with . 0,qqσ >  but may indicate violation of one or more 

conditions in (C.1)-(C.4). 
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Table 5.2 

Means and quantiles of ˆ ˆ ˆ= -1σ σσ σσ σσ σqq ee qq.r ˆ
0
( 0)ββββ =  

 

Cases 1M( ˆqqr ) SD( ˆqqr ) 2Q(0.01) Q(0.05) Q(0.10) Q(0.25) Q(0.50) Q(0.75) Q(0.90) Q(0.95) Q(0.99) 

 

1 

 

2 

 

3 

 

4 

 

-0.50 

 

-0.48 

 

-0.19 

 

-0.20 

 

0.66 

 

0.68 

 

0.42 

 

0.39 

 

   -1.71   -1.30    -1.15    -0.99   -0.79     0.16     0.54     0.60    0.65 

 

   -1.72   -1.32    -1.16    -0.99   -0.76     0.23     0.57     0.62    0.66 

 

   -1.01   -0.84    -0.74    -0.53   -0.20     0.17     0.38     0.46    0.55 

 

   -1.00   -0.82    -0.72    -0.51   -0.20     0.11     0.34     0.44    0.56 
 

1 M denotes the average of the estimates, taken across all 10,000 replications. 
2 Q(.) indicates the quantile of the estimator, taken across all 10,000 replications. 

 
Table 5.3 

Means and quantiles of ˆˆ ˆ
-1 σσσσσσσσqq ee qq.=r  

 

Cases 1M( ˆqqr ) SD( ˆqqr ) 2Q(0.01) Q(0.05) Q(0.10) Q(0.25) Q(0.50) Q(0.75) Q(0.90) Q(0.95) Q(0.99) 

 

1 

 

2 

 

3 

 

4 

 

-0.56 

 

-0.56 

 

-0.24 

 

-0.24 

 

0.62 

 

0.62 

 

0.42 

 

0.38 

 

   -1.85   -1.34   -1.17   -1.00   -0.80       0.05    0.38     0.44    0.52 

 

   -1.91   -1.37   -1.18   -1.00   -0.78     0.06    0.35     0.42    0.50 

 

   -1.16   -0.90   -0.79   -0.57   -0.22     0.12    0.29     0.36    0.45 

 

   -1.09   -0.87   -0.75   -0.53   -0.22     0.06    0.25     0.33    0.44 
 

1 M denotes the average of the estimates, taken across all 10,000 replications. 
2 Q(.) indicates the quantile of the estimator, taken across all 10,000 replications. 

 

 

 
5.3 Coefficient estimates and degrees-of-freedom 

estimates  
Because our data were consistent with . 0qqσ =  for all 

four cases, we used the methods of Fuller (1987, page 124) 

to produce estimates of 0β  and 1β  appropriate for a model 

(3.1) – (3.2) with no equation error; details are available 

from the authors. Table 5.1 also reports the resulting 

coefficient estimates 0βɶ  and 1,βɶ  and their standard errors, 

0( )se βɶ  and 1( ).se βɶ  Recall from Section 3.1 that under 

model (3.1) – (3.2), if 0 0β =  and 1 0,β ≠  then each 

stratum variance hV  is a constant multiple of the within-

PSU variance ,WhV  and ˆWSd  in (1.8) may be an appropriate 

estimator of d. Section 5.2 already considered the condition 

. 0.qqσ =  To test the null hypothesis 0 0: 0,H β =  we use 

the test statistic, 0 0 0/ ( ).t se= β βɶ ɶ  In some practical errors-

in-variables work, quantities like 0t  are compared with a 

standard normal or t  reference distribution. However, 

simulation work based on the four cases from Section 4.1 

indicated that the null distribution of 0t  deviated 

substantially from these customary reference distributions. 

This is due to the very skewed distributions of the response 

variables ˆhV  used in the errors-in-variables regression. 

Consequently, we used standard methods to develop a 

simulation-based reference distribution for 0.t  Column 7 of 

Table 5.1 reports the resulting left-tailed p - value. (Due to 

negative point estimates 0,βɶ  we have chosen to report the 

left-tailed p - values here. In other cases, it may be of 

interest to report right-tailed or two-tailed p - values for 

0 ).β  There is strong evidence against 0 0: 0H β =  for the 

variable HDRESULT, and the moderate evidence against 

0 0: 0H β =  for TCRESULT. Thus, it may not be appro-

priate to use ˆWSd  for these two variables. Now consider the 

slope coefficient 1,β  and suppose that 0qqhσ =  so 0hq =  

with probability one. Then expressions (1.5) and (3.1), and 

the nonnegativity of BhV  implies that 0 Bh h WhV V V≤ = − =  

0 1( 1) .WhVβ + β −  Consequently, if 0 0,β =  then 1 1β ≥  

and 1 1β =  is equivalent to .h WhV V=  This final condition 

is of practical interest because some authors have noted 

cases in which BhV  is small relative to ,WhV  or equivalently, 

.h WhV V≐  See for example, Wolter (1985, page 46). To test 

0 1: 1H β =  against the one-sided alternative 1 1: 1,H β >  

we used the statistic 1 1 1( 1) / ( )t se= β − βɶ ɶ . For reasons 

similar to those for 0,t  we developed simulation-based 

reference distributions for 1t  under each of Cases 1 through 

4. Column 8 of Table 5.1 reports the resulting one-tailed 

p -values. 

The last two columns of Table 5.1 report the degree-of-

freedom estimators ˆmSd  and ˆ .WSd  For HAR3 and BMPWT, 
ˆ
mSd  gives substantially larger values than ˆ .WSd  
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6. Discussion 
 
This paper has considered estimation of a degrees-of-

freedom term d used to quantify the variability of a standard 

design based variance estimator ˆ ˆ( ).V Y  The fundamental 

issue is that under a design involving heterogeneous 

stratum-level variances and small numbers of primary 

sample units selected per stratum, the Satterthwaite-type 

estimator ˆmSd  may perform poorly. We developed an 

alternative estimator ˆWSd  based on within-primary-sample 

unit variance estimators ˆ .WhV  This alternative estimator is a 

solution to an unbiased estimating equation (1.1) for ,d  

provided the proportionality condition (1.6) is satisfied. 

Also, the variance of the approximate distribution of ˆWSd  is 

smaller than that of ˆ ,mSd  provided the number of secondary 

sample units selected within each primary unit is large, in 

the sense defined by Result 2.2. 

Section 3 developed errors-in-variables methods for 

testing the adequacy of the proportionality condition (1.6), 

and suggested some related diagnostics. The simulation 

study in Section 4, in conjunction with the data analysis in 

Section 5, indicated that under moderate amounts of 

heterogeneity, ˆWSd  can perform better than ˆ ,mSd  in terms of 

the distributional properties of these estimators of ,d  and in 

terms of the coverage rates and widths of associated 

confidence intervals for the population totals .Y  However, 

as one would expect from standard large-sample theory, 

neither estimator performs well under severe heterogeneity. 

One could in principle consider use of the errors-in-

variables estimators 0 1 .
ˆ ˆ ˆ( ,  ,  ),qqβ β σ  in conjunction with the 

ˆ
hV  and ˆ ,WhV  to construct an alternative estimator of d  that 

will be consistent under the general errors-in-variables 

model (3.1) - (3.2), and will not require the restrictive 

condition (1.6). However, simulation results in Jang (1996) 

indicated that the resulting estimator ˆ ,EIVd  say, did not 

perform well under the design conditions used in Section 5. 

The principal results of Sections 1 through 3 extend 

readily from the within-primary-unit variances WhV  to more 

general auxiliary variables .hX  For such extensions, the 

principal issues remain the adequacy of the proportionality 

approximation (1.6); and the amount of sampling error in 

the auxiliary estimators ˆ ,hX  say, relative to the error in the 

basic stratum-level variance estimator ˆ .hV  
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Appendix A 

 
Proof of result 2.2 
 
Consider a nonlinear function 1 2B A−  of two estimators 

A  and B  with means Aµ  and ,Bµ  respectively. Then, the 

variance of the leading term of a Taylor expansion of 
1 2B A−  is 

2 3 4

2 3 4

4
Var( ) 4 Cov( , ) Var( )A A A

B B B

A A B B
µ µ µ

− +
µ µ µ

.(A.1) 

Now we define the following two estimators: 1

1
ˆ
SL d− =  

1 2
1 1B A−  and 1 1 2

2 2 2
ˆ ,SL d B A− −=  where 1

11
ˆ ,L

h hA L V−
=∑= 1B =  

1 2
1
ˆ ,L

h hL V−
=∑  1

12
ˆ ,L

h WhA L V−
=∑=  and 1 2

12
ˆ{L

h WhB L V−
=∑= −  

� ˆVar( )}.WhV  

Assume conditions (C.1), (C.2) and (C.3). In addition, 

define  
1

ˆ
ˆ

SLd
F   and  

2
ˆ

ˆ
SLd

F  to be the leading terms of Taylor 

expansions of 
1 1

1 1 2

1
ˆ
S B AL d− −− µ µ  and 

2 2

1 1 2
2

ˆ ,S B AL d− −− µ µ  

respectively. Also, recall that if D  is distributed as a chi-

square random variable on d  degrees of freedom, then 

( ) 2 ,V D d= 3( ) ( 2)( 4),E D d d d= + +  and 2( )V D =  
8 ( 2) ( 3).d d d+ +  Then the corresponding components of 

1
ˆ

ˆVar( )
SLd

F  and 
2

ˆ
ˆVar( )

SLd
F  in (A.1) are 

2 2

1
1

1 2 2

2 0
1

2 4

1
1

2 2 4

2 0 0
1

2 3

1 1

1

Var( ) 2 ,

Var( ) 2( 1)

Var( ) 96 ,

Var( ) 8( 1) ( 1)

Cov( , ) 12 ,

L

h
h

L

Wh
h

L

h
h

L

Wh
h

L

h

h

A L V

A m L V

B L V

B m m L V

A B L V

−

=

− −

=

−

=

− −

=

−

=

=

= −

=

= − +

=

∑

∑

∑

∑

∑

 

and (A.2) 

1 2 3

2 2 0
1

Cov( , ) 4( 1) .
L

Wh
h

A B m L V− −

=

= − ∑  

Since we assume 2hn =  and 0hm m=  for all h =  
1, 2, ..., ,L  we have 

1 1 1

1
ˆ ˆ(3 14) (9 )mS SL d L L L d− − −= +  (A.3) 

and 

1 1

2
ˆ ˆ
WS SL d L d− −= . (A.4) 
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Under condition (1.6), 1 1 2,A Aµ = β µ  

2

1 1 2

2

1 0 1 2

1 2 4

1 0 0 1 2

3 ,

Var( ) ( 1) Var( ),

Var( ) 12( 1) ( 1) Var( )

B B

A m A

B m m B
−

µ = β µ

= − β

= + − β

 

and 

3

1 1 0 1 2 2Cov( , ) 3( 1) Cov( , )A B m A B= − β  (A.5) 

Substituting (A.5) into (A.1) leads to, 

1

2

2

2

2

2

2

ˆ

2

0 22

3

0 2 23

42

0
24

0

2

0
0 0

0

ˆVar( )

4
( 1) Var( )
9

4
( 1)Cov( , )

9

4( 1)
Var( )

27( 1)

4( 1)1 1
( 1) ( 1)
9 9 27( 2)

SLd

A

B

A

B

A

B

F

m A

m A B

m
B

m

m
m a m b c

m

µ
= −

µ

µ
− −

µ

µ−
+

+ µ

−
= − − − +

+

 

(A.6)

 

where 1 ˆVar( ) .WSL d a b c− = − +  With large ˆ
ˆ,Var(F )

mSLd
L =  

1 2

0 0 0 0( 1) ( 1) {3( 2)} 4( 1) .m a m b m m c−− − − + + −  Thus for 

large ˆ ˆ 0 0
ˆ ˆ, ( ) ( ) ( 2) ( 2)

mS WSLd Ld
L V F V F m a m b− − − − +≐  

1 2

0 0 0{3( 2)} (4 11 2) .m m m c−+ − −  Therefore, limL LmV→∞ −  
lim 0L LWV→∞ ≥  if 1

0 lim {2(3 3 4 )} {11Lm a b c c−
→∞≥ − + +  

2 2 2144 144 153 288 216 216 }.a b c ab ac bc+ + − + −  In 

particular, lim limL Lm L LWV V→∞ →∞−  becomes greater than 

or equal to zero when 0 10m =  regardless of values of a, b, 

and c. Because it is an increasing function in 0,m  for all 

values of 0 10,m ≥ lim lim .L Lm L LWV V→∞ →∞≥  
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Semiparametric regression model for complex survey data 

Zilin Wang and David R. Bellhouse 1 

Abstract 

A semiparametric regression model is developed for complex surveys. In this model, the explanatory variables are 

represented separately as a nonparametric part and a parametric linear part. The estimation techniques combine 

nonparametric local polynomial regression estimation and least squares estimation. Asymptotic results such as consistency 

and normality of the estimators of regression coefficients and the regression functions have also been developed. Success of 

the performance of the methods and the properties of estimates have been shown by simulation and empirical examples with 

the Ontario Health Survey 1990. 
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1. Introduction 

 
In practice, many surveys are used to explore a relation-

ship between a response variable and explanatory variables 

and to build predictive models. Hence, it is necessary to 

develop techniques that apply stochastic regression models 

to survey data. Although nonparametric regression tech-

niques have been widely applied in many fields of statistics, 

not much attention has been paid to them in the field of 

complex surveys due to the complexity of the data structure. 

The correlation induced by clustering and unequal proba-

bilities of selection of the sample cause survey data to be 

neither independent nor identically distributed. As a result, 

standard nonparametric regression methods are often inap-

propriate for analyzing sample survey data.  

There is some work, for instance Breidt and Opsomer 

(2000), Montanari and Ranalli (2005), and Zheng and Little 

(2004), on nonparametric regression techniques that have 

been developed for survey data. However, as in the conven-

tional way of applying regression techniques, most of this 

work uses model-assisted approaches to estimate descriptive 

population quantities and parameters related to the de-

scriptive quantities. In this paper, we are interested in the 

application of nonparametric regression techniques to 

exploring the relationship between the response variable and 

covariates, as well as prediction using auxiliary information. 

Bellhouse and Stafford (2001) extended a local polynomial 

regression technique to conduct flexible regression model-

ling for complex survey data. However, their paper dealt 

only with a simple nonparametric regression function. Here 

we extend their enquiry to a case of several independent 

variables, including indicator variables that often appear in 

regression analysis for survey data.  

We consider a partially linear semi-parametric regression 

function defined as ( ) ( ),E G| , = +y X z X zββββ  where 

( )G ⋅  is an arbitrary function and ββββ  is an unknown 

dimensionalp−  parameter vector. In this semi-parametric 

regression model, the explanatory variables are represented 

separately in two parts: a nonparametric part and a 

parametric linear part. It is of interest to estimate both the 

functional form of the nonparametric part of the model and 

the parameters that are included in the parametric part of the 

model. We put the categorical explanatory variables and 

continuous variables with assumed linear dependence in the 

parametric part of the model, ,Xββββ  and a variable with little 

information on the functional form in the nonparametric part 

of the model, ( ).G z  This partial linear semi-parametric 

model not only has a priori motivation as a data analytic tool 

and retains an important interpretive feature, it also eases the 

high dimensional problem created by factors and some 

covariates by including them in the parametric part of the 

model.  

A similar model has been developed for independently 

and identically distributed data independently by Robinson 

(1988) and Speckman (1988). In these papers, the esti-

mation is conducted in three steps. In the first step, the 

means of the response variable and the parametric 

independent variables, conditional on the nonparametric 

variable, are treated as a function of that variable and 

smoothed; in the second step, the linear coefficients are 

estimated by regressing the residuals from the smoothed 

response variable on the residuals from the smoothed 

parametric covariates; finally, the difference between the 

response variable and its prediction from the regression 

model is smoothed in a similar manner to provide an 

estimate of the nonparametric part of the regression 

function. It has been shown in Robinson (1988) and 

Speckman (1988) that the resulting estimators are root-n  

consistent when the model is correct and the data points are 

independent and identically distributed. The objective of our 

paper is to apply this smoothing technique to survey data 

while allowing for a complex sampling scheme.  
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We use the local polynomial regression estimation 

technique developed in Bellhouse and Stafford (2001) to 

conduct all the smoothing during the estimation process. A 

key element in accomplishing the local polynomial regres-

sion technique from Bellhouse and Stafford (2001) is 

binning, which follows the work of Bellhouse and Stafford 

(1999) in density estimation. In many survey data sets, a 

continuous variable may be naturally binned; for example 

age may be recorded as age last birthday. In general, bins 

correspond to the disjoint sets of values of a continuous 

covariate, and thus can be regarded as domains. At the level 

of the sample, we estimate the domain mean of the variable 

of interest by dividing the weighted sum of the variable 

within the domain by the sum of the weights within the 

domain. In Bellhouse and Stafford (2001), the response 

variable is binned according to the values of the covariate, 

and discretized, and the domain means of the response 

variable are smoothed to obtain the regression function. 

When the sample size is large and the number of bins is 

relatively small, then estimators based on binning are 

functions of domain estimators whose inferential properties 

can be readily derived from results in Shao (1996) and 

Serfling (1980). One of the practical advantages to binning 

is that it can reveal information on an obscured trend in a 

complex survey, which is sometimes quite important when 

the scale of the complex survey data set is large. There are, 

usually, multiple observations at each set of covariate values 

in these data sets.  

An example that illustrates these features of binned data 

is taken from the Ontario Health Survey. The survey was 

conducted by Statistics Canada in 1990 with 61,239 

individuals living in Ontario, Canada. The data were 

obtained by a stratified two-stage clustered design. The 

strata were the urban and rural areas covered by each of the 

public health units in the province of Ontario. Within each 

stratum enumeration areas were randomly selected, as were 

households within each enumeration area. The purpose of 

this survey is to measure the health status of the people of 

Ontario and to collect data relating to the risk factors of 

major causes of mortality and morbidity in Ontario. In this 

example, we examine people’s weight as a function of age. 

In the Ontario Health Survey, age was given only to age last 

birthday. The measurement we use for a proxy of weight 

here is called body mass index (BMI) which is calculated as 

weight in kilograms divided by the square of height in 

meters. BMI is used as one of the indicator of a person’s 

obesity level. Normally, a person with a BMI below 18 is 

considered underweight and a BMI greater than 30 suggests 

obesity. BMI is used as an appropriate measure only for all 

persons between the ages of 18 and 64 with the exception of 

pregnant and breast feeding women. Consequently the 

sample size is reduced to 44,457 eligible respondents that 

have 47 distinct possible ages or bins.  

In the left panel of Figure 1, the age trend of body mass 

index is plotted. It is readily seen that the “black cloud"-like 

scatterplot masks the relationship between age and body 

mass index. Now, if we calculate mean of the body mass 

index at each distinct point of age, and plot the binned mean 

estimates of the body mass index versus age, we can obtain 

the plot in the right panel of Figure 1. It is obvious that a 

binned mean provides more visual information than the raw 

data does. Large-scale data sets not only can result in non-

informative plots, they also make the estimation process 

computationally very cumbersome. Hence, it is natural in 

complex survey data analysis to bin the data into domains 

according to distinct values of a discretized covariate. 

Further, estimators from binning are functions of domain 

estimators.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Comparison of the scatter plots of the binned and unbinned data from the Ontario health survey 
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One drawback to binning is that number of bins cannot 

grow asymptotically with the population if the data are 

naturally binned, as with the age variable in the above 

example. In such a case, the population level nonparametric 

estimators will remain biased as estimators of super-

population functions due to a fixed bin size. In our 

framework, we assume that the bins induced by the distinct 

values of the covariate are the same in the population as in 

the sample; similarly in smoothing we will take the 

bandwidth to be the same at the population level as at the 

sampling level. We will show that the sample estimators are 

design consistent estimators of the corresponding finite 

population parameters and functions, though not of their 

superpopulation counterparts. In the Ontario Health Survey 

data example, the same set of distinct ages appears in both 

the population and the sample.  

The paper is organized as follows. Superpopulation 

working models leading to the estimation procedures in 

survey data are introduced in Section 2. In Section 3, we 

derive all the moments of the estimates obtained and 

establish some asymptotic results. A simulation study and 

an empirical illustration of the estimation method carried out 

using the 1990 Ontario Health Survey (1992) appear in 

Section 4 and Section 5. Section 6 concludes with a 

discussion of assumptions made and some future work. The 

Proofs of all lemmas and theorems in Section 3 are given in 

an appendix. 

 
2. Semiparametric regression model  

      and its estimation 
 
We take a typical approach to complex survey data 

analysis. First, we assume a working model on the finite 

population under the assumption of independent obser-

vations. Model parameter estimates then become the finite 

population parameters, or census parameters, to be esti-

mated from the survey sample. Once the finite population 

target parameters have been defined we assume a more 

realistic model on the finite population in order to obtain 

inferences about these parameters. This is done in the next 

section. Consider a finite population of size N  with a vector 

of measurements ( )k k ky z, ,x  attached to unit ,k k =  
1, ..., ,N  where ky  represents an observation of the 

response variable and ( )k kz,x  represents a vector of 

observations of the explanatory variables with length 

1.p +  As a working model we imagine that the response 

variable is generated by the following partial linear 

regression model,  

( )G= + +Y z Xβ εβ εβ εβ ε  (1) 

where Y  is the vector of responses and εεεε  has entries that 
are independent and identically distributed with mean zero 

and constant variance. The function ( )G ⋅  is an arbitrary 
function of z  and ββββ  is an unknown p -dimensional 

parameter vector. The N p×  matrix X  corresponds to the 

linear part of the model and contains either continuous or 

discrete explanatory variables which are random. The term 

( )G z  is the nonparametric part of the model. We assume 

that z  is non-stochastic and measured on a continuous 

scale, discretized into D  distinct values. Additionally, it is 

imagined that ( ) .E | , =z X 0εεεε  There is no interaction 

between X  and z  in the model.  

We are interested in estimating population level versions 

of ( )G ⋅  and the parameters .ββββ  We first develop expressions 
for these, guided by the estimation procedures in Robinson 

(1988) and Speckman (1988). In particular, we begin by 

taking the expectation of both sides of (1) conditional on :z  

( ) ( ) ( )E E G| = | + .Y z X z zββββ  (2) 

Then we subtract (2) from (1) to obtain  

( )( ) ( )E E− | = − | + .Y Y z X X z β εβ εβ εβ ε  (3) 

To define the population version of ββββ  in (3), we will replace 
( )E |Y z  and ( )E |X z  in (3) by their population level 

estimates and estimate ββββ  by the method of least squares.  
For the population level estimates of ( )E |Y z  and 

( ),E |X z  we adopt the local polynomial smoother in Jones 

(1989), in which binning is an essential part of the 

operation. Let the discretized Z  variable take values 

1 ..., ;Dz z,  let the vectors of means in the bins of 1 ..., Dz z,  

be 1( , ..., )DY Y=Y  and 1( , ..., )j j jDX X=X  for 

1 ..., ,j p= ,  respectively. Also, let dP  be the population 

proportion of observations in the thd  bin for 1 ..., .d D= ,  

Then denote the population smoothed conditional ex-

pectations of Y  and jX  at the point dz  by ( )dm zy  and 

( ),j dm z  respectively. Given that ( )K ⋅  is a kernel function 
satisfying ( ) 1K t dt∫ =  and 2( )K t dt∫ < ∞  and h  is the 
bandwidth and using the principle of local polynomial 

regression technique, we minimize  

2

0 1
1

{ ( ) ..., ( ) }
D

qd
d d d q d d

d

d d

P
z z z zY

h

z z
K

h

′=

′ ′− α − α − , − α −

′ − 
×  

 

∑

 (4)

 

and  

2

0 1
1

{ ( ) ..., ( ) }
D

qd
jd d d q d d

d

d d

P
z z z zX

h

z z
K

h

′=

′ ′− γ − γ − , − γ −

′ − 
×  

 

∑

 (5)

 

with respect to α ’s and γ ’s so that the population esti-
mated (smoothed) conditional expectations of y  and jX  
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on ,dz ( )dm zy  and ( ),j dm z  are the solutions of 0α  and 0γ  
for equations (4) and (5). Specifically,  

1( ) ( )T T T
jj dm z −= W We Z K Z Z K X  

and 

1( ) ( )T T T
dm z −=y W We Z K Z Z K Y  

where q  is the degree of the polynomial smoother, e  is a 

( 1) 1q + ×  vector in the form of (1 0 0 ..., 0) ,T, , ,  and Z  

and WK  are respectively defined as  

1 1

2 2

1 ... ( )

1 ... ( )

1 ... ( )

q

d d

q

d d

q

D d D d

z z z z

z z z z

z z z z

 
 
 
 
 
 
 
 
 
 
 
 
 
 

− −

− −
=

− −

Z

⋮ ⋮ ⋮ ⋮

 (6) 

and 1 1
ˆ ˆdiag ( (( ) / ), ..., (( ) / )) / .d D D dPK z z h P K z z h h= − −WK   

With the census estimators of the conditional expecta-

tions ( )j dm z  and ( ),dm zy  we define a N p×  matrix XM  

and a 1N ×  vector yM  as,  

1 1 2 1 1

1 1 2 1 1

1 2

1 2

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

p

p

D D p D

D D p D

m z m z m z

m z m z m z

m z m z m z

m z m z m z

  
  
  
  

   
 
 =
 
  
  
  
  
    

XM

⋯

⋮ ⋮ ⋮ ⋮

⋯

⋮ ⋮

⋯

⋮ ⋮ ⋮ ⋮

⋯

 

and (7) 

1

1

( )

( )

.

( )

( )

D

D

m z

m z

m z

m z

  
  
  
  

   
 
 =
 
  
  
  
  
    

y

y

y

y

y

M

⋮

⋮

⋮

 

Note that the thd  blocks of XM  and yM  are of the 

dimensions of dN p×  and 1,dN ×  respectively, where 

dN  be number of observations that fall in the thd  bin and 

.dN N∑ =  Replacing the conditional expectation matrix, 

( ),E |X z  and vector, ( ),E |Y z  in (3) with their estimates, 

XM  and ,yM  and using the general estimating equations 

framework suggested by Godambe and Thompson (1986) 

for the least squares estimation, we can obtain the finite 

population versions parameters (census estimators) of ,ββββ  

namely ,B  by solving  

1

1

1

( ) ( ) ( )

( ) ( )

N
T

k xk k yk
k

N
T

k xk k xk
k

p

y M
=

=

×

= − −

− − −

= ,

∑

∑

u θ x M

x M x M B

0  (8)

 

where xkM  is the thk  row of the N p×  matrix XM  and 

ykM  is the thk  element of the 1N ×  vector .yM  The finite 

population parameter vector Tθ  is composed of ( T ,B  

( ) ( ) ),T,x ym z m z  where ( )xm z  is a vector of the form 

1( ( ) ..., ( ) )T T
p,m z m z  with 1( ) ( ( ) ..., ( ))j j j Dm z m z= ,m z  

for 1 ...,j p= ,  and 1( ) ( ( ) ..., ( )).Dm z m z= ,y y ym z  Hence, 

the closed form expression for the estimator (census 

parameter) B  is  

1(( ) ( )) ( ) ( )T T−= − − − − .X X X yB X M X M X M Y M  

Once B  is obtained, the difference between the response 

variable Y  and the product XB  is treated as the dependent 

random variable and the function ( )G ⋅  is estimated in 
accordance with the following model  

( )G− = + .Y XB z εεεε  

The finite population version of ( )G z  at ,dz  namely 

( ),dg z  is  

1( ) ( ) ( )T T T

dg z −= − ,W We Z K Z Z K Y XB  

where X  is a D p×  matrix of the form 1( , ..., ).pX X  

Realistically, we cannot access the whole population. 

Instead, we can only observe a sample drawn from the 

population using a certain probability sampling design. Let 

s  be the set of n  sample units with sample ( )k k k ky z w, , ,x  

for ,k ∈ s  where kw  is the sampling weight for unit .k  

Additionally, we assume that there is complete response so 

that the inclusion probability is equal to the reciprocal of the 

sampling weight. We assume further that the bins induced 

by the distinct values of z  are preserved from the 

population to the sample. This is appropriate in a variable 

such as age recorded to age last birthday.  

Using the local polynomial regression technique for 

complex survey data in Bellhouse and Stafford (2001), we 

use the sampling versions of the objective functions in (4) 

and (5) as follows,  

2

0 1
1

ˆ
{ ( ) ..., ( ) }

D
qd

d d q d dd
d

d d

p
z z z zy

h

z z
K

h

′=

′ ′− α − α − , −α −

′ − 
×  

 

∑

 (9)
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and  

2

0 1
1

ˆ
{ ( ) ..., ( ) }

D
qd

jd d d q d d
d

d d

p
z z z zx

h

z z
K

h

′=

′ ′− γ − γ − , ,− γ −

′ − 
× , 

 

∑

(10)

 

where y  and jx  are sample estimators of Y  and jX  and 

are of the forms 
1

( ..., )T
Dy y,  and 1( , ..., ) ,Tj jDx x  

respectively, and ˆ
dp  is the weighted sample proportion of 

observations in bin .d  Consequently, we have the survey 

estimator of ( )m zy  and ( )jm z  at ,dz  given by  

1ˆ ˆ( ) ( )ˆ
T T T

j d jzm
−= W We Z K Z Z K x  

and (11) 

1ˆ ˆˆ ( ) ( )T T T
dm z −= ,y W We Z K Z Z K y  

where Z  has the same form as in (6) and ˆ WK  is defined as  

11

1ˆ diag ( (( ) ) ..., (( ) )).ˆ ˆd D dD
K z z h K z z hp p

h
= − / , − /WK  

We can also construct the n p×  matrix ˆ XM  and 1n ×  

vector ˆ yM  using the same method that we used to construct 

XM  and yM  in equations (7). That is, we use sampling 

estimators ˆ ( )j dm z  and ˆ ( )dm zy  that are shown in (11) to 

obtain  

1 2

1 2

1 2

1 2

1 1 1

1 1 1

ˆ ˆ ˆ( ) ( ) ( )

ˆ ˆ ˆ( ) ( ) ( )

ˆ

ˆ ˆ ˆ( ) ( ) ( )

ˆ ˆ ˆ( ) ( ) ( )

p

p

p

p

D D D

D D D

m z m z m z

m z m z m z

m z m z m z
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⋮ ⋮ ⋮ ⋮

⋯

 

and 
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ˆ ( )
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D

m z

m z

m z
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  
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y
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Let dn  be the number of observations in the thd  bin such 

that .dn n∑ =  Similar to XM  and yM  in (7), the thd  

blocks of ˆ XM  and ˆ yM  are of the dimensions of dn p×  

and 1,dn ×  respectively.  

Analogous to the population estimating equation (8), the 

sampling estimating equation for B  is  

ˆ ˆ ˆˆ ( ) ( ) ( )

ˆ ˆ ˆ( ) ( )

T

k xk k xk k
k

T

k xk k xk k

k

y M w

w

∈

∈

= − −

− − −

= ,

∑

∑

u θ x M

x M x M B

0

s

s

 (12)

 

where ˆ ˆ ˆ ˆ( , ( ) ( ) )
T T T= ,x yθ B m z m z  is the sampling esti-

mator of ( , ( ) ( ) ).T T T= ,x yθ B m z m z  Note that a similar 

approach was considered by Fuller (1975) and Binder 

(1983). Nevertheless, the solution to (12) provides the 

closed form of B̂  as  

1ˆ ˆ ˆ ˆ ˆ(( ) ( )) ( ) ( )T T
n n

−= − − − − ,X X X yB x M W x M x M W y M  

where nW  is an n n×  weight matrix with design weights 

kw  on the diagonal entry for ,k ∈ s y  is an 1n ×  vector 

containing the sample observations of the response variable 

and x  is an n p×  matrix consisting of the sample 

observations of the covariates.  

Using the sample estimates of B  and denoting x  as a 

D p×  matrix of the form 1( ..., ),p,x x  we can obtain the 

sampling estimate of ( )dg z  as  

1ˆ ˆ ˆˆ ( ) ( ) ( )T T T

dg z −= − .W We Z K Z Z K y xB  

Again, if q  and h  are the same as for ˆ ( ),j dm z  the 

expression for ˆ ( )dg z  simplifies.  

When applying local polynomial regression techniques to 

obtain the estimators of conditional expectations as well as 

the arbitrary function ( ),G ⋅  we need to choose an ap-
propriate bandwidth .h  Because binning is involved in all 

aspects of the estimation process and since we assume that 

bins induced by the distinct values of z  are preserved from 

the population to the sample, we argue that the same 

bandwidth should be used for obtaining both the census 

estimators and the sample estimators. Since we do not have 

all the observations of the finite population, we use the 

sample to choose the appropriate band width. In this paper, 

we adopt the method in Fan and Gijbels (1995), where the 

authors developed a data-driven bandwidth selector that 

combines the ideas of the plug-in and the cross-validation 

methods for the identically and independently distributed 

data. When applying this data-driven method to our case, 

criteria, such as the residual sum of squares and mean 

square error, of the resulting estimates of the conditional ex-

pectations are needed. By noting that those criteria depend 

on the estimated conditional expectations or regression 

functions and the derivatives of the regression functions, we 
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can use the objective functions defined in (9) and (10) to 

obtain not only the survey estimates of regression functions, 

but also the derivatives of the regression functions. For more 

details, see Wang (2004). 

 
3. Design properties of sampling estimators  
 
3.1 Notation and assumptions  
In showing design properties of the estimators, we follow 

Särndal, Swensson and Wretman (1992) and Isaki and 

Fuller (1982) in considering a nested sequence of popula-

tions ,Uν  for 1 2 ...,ν = , ,  such that 1 2 3 ... .U U U⊂ ⊂ ⊂  

All population quantities, sample sizes and values, and 

survey estimators are indexed by .ν  However, for ease of 
notation we drop ν  as a subscript for these quantities. We 
denote the expectation and variance with respect to 

sampling design as pE  and Var ,p  respectively, and in 

accordance with the above nested populations, we define 

design-based consistency and asymptotic unbiasedness as in 

Thompson (1997, page 167). 

In what follows, the development of the asymptotic 

results for the estimators will depend on the asymptotic 

normality and consistency of the estimates of means and 

totals. We will not restrict ourselves to specific sampling 

designs; instead, we assume that all the survey totals that 

appear in the estimators are of the Horvitz-Thompson type. 

Hence, the consistency and asymptotic normality of 

estimators are subject to the standard regularity conditions 

on the sampling designs for the consistency and normality 

of Horvitz-Thompson type estimators, which have been 

studied by Madow (1948), Hàjek (1960), Bickel and 

Freedman (1983), Krewski and Rao (1981) and Shao 

(1996). The aforementioned literature shares some restrict-

tions on the sampling design. An implication of these 

restrictions is that no survey weight is disproportionately 

large, the total number of first stage sampled clusters or 

primary sampling units is increasing, but with a growing 

gap between sample and population. In addition, a Liapunov 

- type condition ensures that the variables ,z x  and y  

develop in a regular manner as ν  tends to infinity.  
We will use the result that any vector of estimators of 

totals from binned data is asymptotically multivariate 

normal, provided that the conditions in the previous 

paragraph are met and the number of domains is fixed. This 

is obtained through application of results in Shao (1996, 

page 211) and Serfling (1980, page 18). Shao (1996) shows 

that in this framework any smooth function of estimates of 

totals is asymptotically normal. An estimate of a domain 

mean is one such smooth function. Likewise, any linear 

combination of different domain mean estimates is a smooth 

function of survey estimates of totals. For our purposes, the 

bins form the domains and hence any vector of bin means is 

asymptotically multivariate normal. The asymptotic result 

used here depends on having a fixed number of bins. 

However, it can be incorporated in principle into a theory of 

the superpopulation parameters, as for example in the 

approach of Buskirk and Lohr (2005). 

Define ˆ ( )ξ =m z ˆ ˆ( ( ) ( ) )T T,x ym z m z  as the survey esti-

mator of ( )ξ =m z ( ( ) ( ) ) .T T,x ym z m z  Using a Taylor 

linearization technique on (12) and letting ε  denote a 
quantity approaching 0 and as θ̂θθθ  approached to ,θθθθ  we have  

ˆ ˆ ˆˆ ˆ( ) ( ) ( ) ( ) ( ( )

ˆ( )) || ||

B ξ

ξ

− − +

− + − ε,

u B B u U m z

m z

≐ ξξξξθ θ θθ θ θθ θ θθ θ θ

θ θθ θθ θθ θ  (13)

 

where ˆ ( )u θθθθ  is a linear sampling estimator of ( )u θθθθ  in (8) 

and is of the form  

ˆ ( ) ( ) ( )

( ) ( )

T

k xk k yk k
k

T

k xk k xk k
k

y M w

w

∈

∈

= − −

− − − ;

∑

∑
s

s

u x M

x M x M B

θθθθ

 (14)

 

ˆ ( )Bu θθθθ  is the gradient of B̂  obtained from ˆ ( );u θθθθ  and 
ˆ ( )Uξξξξ θθθθ  is a ( 1)p p D× +  matrix whose components are 

the first derivatives of ˆ ( )u θθθθ  with respect to ( )ξm z . Denote 

by ( )Bu θθθθ  and ( )Uξξξξ θθθθ  the population parameters 

corresponding to ˆ ( )Bu θθθθ  and ˆ ( ),Uξξξξ θθθθ  respectively.  

In addition to the aforementioned regularity conditions, 

we impose the following conditions, letting N  denote a 

neighbourhood of the true value of the parameters of 

interest.   
C1. lim ( ) Nν→∞ /u θθθθ  exists and is finite for all θθθθ  and 

.N   
C2. lim ( ) Nν→∞ / =B Bu Hθθθθ  and BH  is of full rank 

and is invertible for all θθθθ  and .N    
C3. lim ( ) ( )Nν→∞ ξ/ =U Hξξξξ θ θθ θθ θθ θ  and ( )ξH θθθθ  has a 

finite determinant for all θθθθ  and .N   
C4. ˆ ˆlim ( ( ) ) V( ( ))Var pn Nν→∞ / =u uθ θθ θθ θθ θ  where Var p  

is the design-based variance and ˆ( ( ))V u θθθθ  is a 

positive-definite variance matrix for all θθθθ  and 
.N   

C5. lim d dN Nν→∞ / = ω  and lim n N fν→∞ / =  with 

both dω  and f  are constants between 0 and 1.   
C6. Let 1( )T T T

d

−= W WA e Z K Z Z K  be the popula-

tion smoothing matrix; then lim dν→∞ A  exists 

and is finite for 1 ..., .d D= ,   
C7. ˆ ˆlim ( ( )) V( ( )).Var

p
nν→∞ =m z m zξ ξξ ξξ ξξ ξ   

C8. Matrices of population values T

WZ K Z  and 

( )Bu θθθθ  are invertible, as well as their sampling 

estimators ˆT

WZ K Z  and ˆˆ ( ).Bu θθθθ  
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3.2 Asymptotic properties of B̂   
The proofs of all lemmas and theorems in this and the 

following section may be found in the Appendix. From the 

Taylor linearization results in (13), we know that the 

properties of B̂  are dependent on those of ˆ ( ),u θθθθ ˆ ( ),Bu θθθθ  
ˆ ( )Uξξξξ θθθθ  and ˆ ( );m zξξξξ  their properties are stated in the 

following two Lemmas.   
Lemma 1. If conditions 1 4C C−  are satisfied, we have 

as :ν → ∞   
 

1) ˆ ˆ( ( ) ( )) ( V( ( )))n N N− / → , ;u u 0 uθ θ θθ θ θθ θ θθ θ θ   

2) ˆ| ( ) ( )|B B N− /u uθ θθ θθ θθ θ  and ˆ| ( ) ( )|−U Uξ ξξ ξξ ξξ ξθ θθ θθ θθ θ  converge to 0  

in probability for θθθθ  and ;N   

3) ˆ| ( ) ( )| N− /u uθ θθ θθ θθ θ  converges to zero in probability. 
 
Lemma 2. Under conditions 5C  to 7,C ˆ( ( )n −m zξξξξ  

( )) (1)pO= .m zξξξξ  
 

Building on Lemmas 1 and 2, we have the asymptotic 

normality of B̂  in Theorem 1.  
 
Theorem 1. Under conditions 1C  to 7,C  assuming the 

parameter space contains a neighbourhood of the parameter 

of interest, we have as ν  goes to infinity:  
 

1) ˆ ˆ( ) ( V( ))
d

n N− → ,B B 0 B  where ˆ ˆV( ) lim ( );Var pnν→∞=B B   

2) ˆ| |−B B  converges to zero in probability.  
To obtain approximate moments for ˆ ,B  we take 

expectations on both sides of equation (13), which yields  

ˆˆ ˆ( ( ) ( )) ( ( ))

ˆ ˆ{ ( )[ ( ) ( )]}

ˆ( )

p p

p

p

E E

E

E

ξ ξ

− −

+ −

+ || − || ε.

Bu θ B B u θ

U θ m z m z

θ θ

≐

ξξξξ  

(15)

 

The assumption that the second moments of the estimates 

are bounded makes the last term of equation (15) vanish in 

the limit. Following along the lines of Binder (1983), we 

have  

ˆˆ ˆ( ( )) (( )) ( ( ))

ˆ ˆ( ( )) {[ ( ) ( )]}

p p p

p p

E E E

E E ξ ξ

− −

+ − .

Bu θ B B u θ

U θ m z m z

≐

ξξξξ

 

The survey totals that define the vector ˆ ( )u θ  and matrix 

ˆ ( )Bu θ  are Horvitz-Thompson-type estimators and they are 

unbiased (Thompson 1997). Hence, ˆ( ( )) ( )pE =u θ u θ  and 

ˆ( ( )) ( ).pE =B Bu θ u θ  Since ( )u θ  is the estimating equation 

for the partial linear coefficients defined in (8), it is equal to 

a 1 p×  zero vector. Further, it has been shown in Bellhouse 

and Stafford (2001) that ˆ ( )m zξξξξ  is an asymptotically 

unbiased estimator of ( ).m zξξξξ  Hence, ˆ( ) ((pE− −Bu θ B  

)) ,B 0≐  or, based on the conditions that ( )Bu θ  is 

invertible and 1( )−Bu θ  is finite, we have ˆ( ) .pE B B≐  

Taking the variance of both sides of equation (13) and 

using the approximated variance-covariance matrices of 

ˆ ( )u θ  and ˆ ( ),m zξξξξ  we obtain the asymptotic variance of B̂  

as  

1

1

ˆVar ( ) ( )

ˆ(Var ( ( )) ( ) ( ( Cov ( )) ) ( )

2( )( ) ( ) ) ( ( ) )

p

T T

p p

T T T

pI

−

−

+ ⊗ ,

+ ⊗ ⊗ ,

B

B

B u θ

u θ U θ A J x y A U θ

C A U θ u θ

≐

ξ ξξ ξξ ξξ ξ

ξξξξℓ ℓℓ ℓℓ ℓℓ ℓ (16)

 

where ˆVar ( ( ))p u θ  is a p p×  matrix composed of 

variances of totals in the vector ˆ ( )u θ  and Cov ( )p ,x y  is 

the variance-covariance matrix of the binned means of the 

parametric covariates and the response variable. The 

matrices J  and ℓℓℓℓ  are the D D×  unit matrix and the 

1 D×  unit vector, respectively. Finally, we have  

1 1

1 2

1

0 0 0

0 0 0

0 0 0

0 0 0

p

p

p D

I

I

I

+

+

+

⊗ 
 ⊗ =
 
  ⊗ 

A

A
A

A

⋱
 

and  

1 1 1 1

1

ˆ ˆ ˆCov ( , ) Cov ( , ) Cov ( , )

,

ˆ ˆ ˆCov ( , ) Cov ( , ) Cov ( , )

p p p p

p p p p p p p

 
 

=  
 
 

t x t x t y

C

t x t x t y

⋯

⋮ ⋮ ⋮ ⋮

⋯

 

where, for 1 ..., ,j p= , ˆ
jt  is a 1D ×  vector whose thd  

entry is ( )
dk jk jkw u∈∑ s θ  and 1( )T T T

d

−= W WA e Z K Z Z K  

for 1 ..., .d D= ,  

Replacing ,θ ˆVar ( ( )),p u θ Cov ( ),p ,x y A  and C  by 

their sample estimators, we have the survey estimator of the 

variance of ˆ :B  

�

� �

1

1

ˆˆ ˆVar ( ) ( )

ˆ ˆ ˆ ˆ ˆˆ ˆˆ(Var ( ( )) ( ) ( ( Cov ( )) ) ( )

ˆ ˆ ˆ ˆˆ ˆ2( ) ( ) ( ) ) ( ( ) ) ,

p

T T
p p

T T T T

pI

−

−

=

+ ⊗ ,

+ ⊗ ⊗

B

B

B u θ

u θ U θ A J x y A U θ

C A U θ u θ

ξ ξξ ξξ ξξ ξ

ξξξξℓ ℓℓ ℓℓ ℓℓ ℓ

 

where Â  is the survey estimator of A  and is composed of 
1ˆ ˆ ˆ( ) .T T T

d

−= W WA e Z K Z Z K  

 
3.3 Asymptotic properties of ˆ ( )⋅⋅⋅⋅g   
Define ˆ= −r y xB  to be the sample estimator of 

.= −R Y XB  A linearization around the population 

parameters, as well as design unbiasedness of domain 

means and ˆ ,B  leads to the asymptotic design unbiasedness 

of .r  Reexpressing ˆ ( ),dg z  we have ˆˆ ( ) .d dg z = A r  In 
ˆ ,dA  we can expand 1ˆ( )T −

WZ K Z  using the Taylor series 

expansion that 1( )−+ = − + −2I G I G G ⋯  given that 

G  is a symmetric and invertible matrix. Using the first two 

terms of the expansion, we can show that ˆ( )p dE A  is 

approximately .dA  Hence, we have the asymptotic design 
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unbiasedness of ˆ ( ).dg z  With the same technique, the 

approximate asymptotic design-based variance of ˆ ( )dg z  is 

obtained as  

ˆVar ( ( )) Var ( ) T
p d d p dg z = ,A r A  

where, given that 1(1 ..., ),pB B= , − , −Q  

1

Var ( ) ( )Cov ( ) ( )

ˆVar ( )

ˆ2( )Cov ( )

ˆ2( )Cov ( )

T

p D p D

T

p

T

D p

p
T

D p j
j=

⊗ , ⊗

+

− ⊗ ,

− ⊗ , .∑

r Q I x y Q I

X B X

Q I y B X

Q I x B X

≐

 

Given the estimated variance of ,r  namely  

� �

�

�

�

1

ˆ ˆVar ( ) ( )Cov ( ) ( )

ˆVar ( )

ˆ2( )Cov ( )

ˆ ˆ2( )Cov ( ) ,

T
p pD D

T
p

T
pD

p
T

pD j

j=

= ⊗ , ⊗

+

− ⊗ ,

− ⊗ ,∑

r Q I x y Q I

x B x

Q I y B x

Q I x B x

 

the estimated variance of ˆ ( )dg z  is � ˆVar ( ( ))p dg z =  
�ˆ ˆVar ( ) T

pd d .A r A  

The asymptotic normality of ˆ ( )g ⋅  is also dependent on 
the normality of ,r  which is shown in the following 

Lemma.   
Lemma 3. Under conditions 1C  to 7C  and assuming that 

the dimension of r  is finite, we have as ν  goes to infinity  

( ) ( V( )),
d

n N− → ,r R 0 r  

where 

V( ) lim Var ( ).pnν→∞=r r  

 
Based on the asymptotic normality developed in Lemma 3 

and the estimator of the variance of ˆ ( ),dg z  we establish the 

asymptotic properties of ˆ ( )dg z  in the following Theorem.   
Theorem 2. Under conditions 1C  to 7,C  we have as ν  

goes to infinity:  

1) ˆ ( ) ( ) 0;
P

d dg z g z| − | →  

2) ˆ( ( )dg z − � ˆ( )) Var ( ( )) (0 1).
d

pd dg z g z N/ → ,  

 

4. Simulation studies  
 
4.1 Design of experiment   
The simulation study implemented here was designed to 

illustrate the theoretical results in Theorems 1 and 2. We 

generated the data in a two-step process that mimicked a 

superpopulation approach to sampling. First, we generated 

the finite population and then the sample was selected from 

it. In particular, we considered a finite population of 

500L =  clusters with ( )iM M= = 20,000 in each. The 
population observations for the measurement of interest ijy  

were obtained from the model  

0 1 1 2 2

40
0 5exp

10

ij ij ij

ij

i ij

y x x

z

= β + β + β

− 
+ . + µ + ε 

 
 (17)

 

for 1 ...,i L= ,  and 1 ...,j M= ,  where the error terms iµ  

and ijε  are mutually independent with 2(0 )i N µµ , σ∼  and 
2(0 ).ij N εε , σ∼  We set 2 2 2

µ εσ = σ + σ  so that the 

intracluster correlation coefficient is 2 2.µρ = σ /σ  Among 

the covariates in the model, both 1ijx  and 2ijx  were treated 

as the parametric linear part of the model and ijz  as the 

nonparametric part. We generated the 1ijx  from the 

Bernoulli(1/2) distribution and the 2ijx  from the Uniform(0, 

1) distribution. The ijz  were generated from the age 

distribution of the Canadian population (according to the 

1996 census) for the 18 to 64 age range and were inde-

pendent of the error terms. Results for the values 0 1,β =  

1 2,β = 2 3,β = 2 3σ =  and ρ = 0, 0.2, 0.5 are reported in 
this study. A two-stage sampling design, with 

( 10 25 50 100)l = , , ,  clusters chosen at random from L  

and (m = 1,000) secondary sampling units chosen at random 
from each cluster of size ,M  was used for the study. For 

each sample size and value of ,ρ  the simulation was 

repeated 300 times. At the population level, we applied the 

bandwidth selection method from Fan and Gijbels (1995) 

and determined that the bandwidths for estimating the 

conditional expectations of 1X  and 2X  on z  were 1.2 and 

1.5 respectively. When smoothing the residuals to estimate 

( ),g z  the bandwidth was 0.6.  
 
4.2 Results   
Using the generated finite population, we found that the 

census estimates were 1B = 2.01 and 2B = 3.00. To check 
the design unbiasedness and efficiency of ˆ ,B  we calculated 

the simulated squared bias (Bias 2 ), which is the square of 

the difference between the average of the simulated 

estimates and the census estimates. In addition, the ratio of 

the average variance estimates to the simulated variance of 

each estimator of a linear coefficients (RVar) is presented to 

show the validity of the variance estimator ˆVar ( ).p B  To 
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evaluate the normality of ˆ ,B  we standardized the estimates 

of linear coefficients using the empirical standard deviation 

and population value of B  and graphed the quantile - 

quantile plots of the standardized values.  

Applying the semiparametric technique in Speckman 

(1988) to the model (17), we obtained census estimates 

( )g z  for 18 ..., 64.z = ,  To evaluate the design accuracy 

of ˆ ( ),g z  we took the difference between ˆ ( )g z  and ( )g z  

at each distinct point. The average of the squares of the 

differences over 47 distinct values of z  is then reported as 

ABias 2 . Two mean square errors were computed to check 

the design efficiency of ˆ ( )g z  and convergence of 
� ˆVar ( ( )).p g z  One of the mean square errors is the average 

of the estimates of the integrated mean square error 

(AIMSE), which is obtained by first summing the 
� ˆVar ( ( ))p g z  over 18 ..., 64z = ,  for each simulation and 

then taking the average of the sums over the total number of 

simulations. The simulated integrated mean square error 

(IMSE) is another mean square error and was computed by 

summing up the simulated mean square error at each 

distinct point of .z  The average of the ratios of the 

simulated mean of � ˆVar ( ( ))p g z  to the simulated variance of 

ˆ ( )g z  (Reff) shows the convergence of � ˆVar ( ( )).p g z  In 

addition, we computed the coverage of the pointwise 95% 

confidence interval at each distinct point of .z  

The results on the properties of ˆ ,B � ˆVar ( ),p B ˆ ( )g z  and 
� ˆVar ( ( ))p g z  are found in Tables 1 and 2 and Figures 2 and 

3. Tables 1 and 2 show information about accuracy and 

precision of the simulated estimates of B̂  and ˆ ( ).g ⋅  Figure 
2 gives the quantile-quantile plots of the sample 

standardized value of 2
ˆ .B  Note that the quantile-quantile 

plots for 1B̂  behave in a similar way to those for 2
ˆ .B  Figure 

3 graphs the coverage of the 95% confidence intervals for 

( ).g ⋅  In Figures 2 and 3, we only report the cases where 

l = 10, 25, 100 and ρ = 0, 0.5. The overall performance of 
the estimators agrees with the theory in Theorems 1 and 2.  

Table 1 confirms the design unbiasedness of ˆ .B  It also 

shows that as the sample size increases, the performances of 

the estimates of the linear coefficients improve for all the 

error structures. In particular, the squared bias and variance 

of B̂  decreases as the number of primary samples increases. 

The estimated variance of B̂  gets closer to the simulated 

variance of B̂  as the sample size increases; this confirms 

the consistency of the variance estimates of ˆ .B  Comparing 

the variances and biases of B̂  in the cases that ρ = 0.2 and 
ρ = 0.5 to the case where ρ = 0, we found that the 
intracluster correlation (cluster effects) did not affect the 

performance of B̂ . This may be because the within cluster 

sample size was large.  

Observing Figure 2, we find that both the number of 

primaries sampled and the cluster effect play some role in 

the normality of ˆ .B  In particular, when the primary sample 

size is low, for instance l = 10, normality of the 
standardized B̂  shows some deviation from the theory for 

both ρ = 0 and ρ = 0.5. When l  increases to 25, we find 
that performance of B̂  for ρ = 0 starts to recover whereas, 
for ρ = 0.5, there is no improvement until l = 100. 
Empirically, this finding suggests that when the number of 

clusters is low, we should not rely on the theoretical 

normality of the estimates of the coefficient; instead, we 

may want to use t  distribution to carry out the inference.  

As for the results of the nonparametric part of the esti-

mation, Table 2 shows that the average estimated integrated 

mean square errors are very close to the simulated integrated 

mean square errors for all the sample sizes and error 

structures. Design unbiasedness is again confirmed with the 

average squared bias (ABias 2 ). The values of average ratio 

of the estimated variance to the simulated variance (RVar), 

which are close to 1 for all cases, are in line with the design 

consistency of the estimator of the variance of ˆ ( ).g z  The 

integrated mean square errors of ˆ ( )g ⋅  are influenced by the 
intracluster correlations. This can be shown by the fact that 

the approach to zero of both integrated mean square error 

and average estimated integrated mean square error is 

slower in the cases where ρ = 0.2 and ρ = 0.5 than in the 
case where ρ = 0.  

 
Table 1 
Simulation results for point estimators of B̂  
 

  ρ =ρ =ρ =ρ = 0 ρ =ρ =ρ =ρ = 0.2 ρ =ρ =ρ =ρ = 0.5 

 l  Bias2 Var Rvar Bias2 Var Rvar Bias2 Var Rvar 

  ( ×××× 10-6) ( ×××× 10-3)  ( ×××× 10-6) ( ×××× 10-3)  ( ×××× 10-6) ( ×××× 10-3)  

1B̂  10 5.77 1.07 1.13 3.12 1.1 1.01 0.23 1.19 1.33 

 25 9.97 0.46 1.07 0.38 0.44 1.08 0.30 0.53 0.98 

 50 0.54 0.21 1.08 0.13 0.27 0.93 0.026 0.21 1.18 

 100 0.22 0.13 0.96 0.019 0.11 1.06 0.039 0.13 0.98 

2B̂  10 0.36 3.32 1.13 1.54 3.74 0.92 1.26 3.5 1.78 

 25 0.64 1.31 1.10 2.40 1.34 1.06 0.14 1.42 1.03 

 50 0.31 0.75 0.94 1.27 0.85 0.94 0.16 0.76 0.97 

 100 0.15 0.38 0.94 1.11 0.38 0.98 0.072 0.33 1.03 
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Figure 2 Quantile – quantile plots for standardized ˆ2B  

 

 

 

 

 
Table 2 

Bias and efficiency of ˆ ( )g z  
 

ρρρρ  l  AIMSE IMSE ABias2 RVar 

    ( ×××× 10-5)  

0 10 0.37 0.42 5.29 1.27 

 25 0.15 0.17 3.20 1.10 

 50 0.074 0.086 3.29 1.09 

 100 0.037 0.044 2.34 1.08 

0.2 10 2.95 3.25 6.13 0.91 

 25 1.22 1.17 3.71 1.04 

 50 0.74 0.54 2.34 1.0 

 100 0.26 0.27 7.08 0.98 

0.5 10 8.143 8.877 3.73 0.92 

 25 3.155 3.073 6.56 1.03 

 50 1.461 1.599 2.86 1.15 

 100 0.659 0.607 3.59 1.09  
The coverage of the point-wise 95% confidence intervals 

for ( )g ⋅  in Figure 3 varies between between 85% and 96%. 
The coverage improves as the sample size increases. The 

performance of ˆ ( )g ⋅  is, however, more sensitive to the 

lower effective sample size caused by the intracluster 

correlation. In particular, the coverages of the 95% 

confidence intervals in the cases of ρ = 0.2 and ρ = 0.5 are 
smaller than the 95% nominal confidence level when 

l = 10. The coverage improves as the number of primary 
sampling units increases for the cases of ρ = 0 and ρ = 0.2. 
For ρ = 0.5, the undercoverage is still present when the 
sample size increases to 100. It is also seen that at z = 18 or 

64, the coverages are higher even than the nominal level; 

this is because the boundary effect of the local polynomial 

regression estimation causes larger bias at the two 

boundaries of the data. For ρ = 0.5, the effective sample 
size is low so that the boundary effect becomes severe, 

creating the downward spikes at 18 and 63.  

It is worth pointing out that although the size of the 

primary sampling units is large (1,000), the sampling 

fraction is very small (0.05). Hence, this performance of the 

estimates would not change even though the size of the 

primary sampling units is small.  
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Figure 3 Coverage of the 95% confidence point-wise intervals for ( )g z  

 

 

 

5. Empirical illustrations 

 
We now return to the example introduced in Section 1. 

For the purpose of illustrating the partial linear model, we 

examine the effects of age, gender, smoking status and 

physical activity on the body mass index (BMI) and the 

desired body mass index (DBMI). Similar to the measure 

BMI, DBMI is a derived variable for the question asking 

about the desired weight of a person. Since people stop 

growing for the age group for which we are interested, we 

use the actual height when calculating DBMI. We use age 

as the nonparametric covariate and treat the other factors as 

discrete variables. Since there are only 47 distinct points in 

the age variable, we bin the data set according to age. The 

bin size is set to unity such that there are 47 bins, with 

midpoints being 18, 19, …, 64. Among all the categorical 

explanatory variables, gender has two levels, male = 1 and 

female = 0; smoking status includes levels such as former 

smoker = 0, never smoked = 1, occasional smoker = 2, daily 

smoker = 3; and physical activeness is divided into three 

levels: active = 0, moderately active = 1 and inactive = 2. 

The regression models are (a) 11 1BMI (age)g= + + εXB  

and (b) 22 2DBMI (age) ,g= + + εXB  where X  is the 

design matrix including all the indicator variables.  
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Table 3 lists all the survey estimates of the linear 

coefficients in the models (a) and (b). On comparing BMI 

by gender, we found that male BMI is higher. Using former 

smoker as the base category, the coefficients of smoking 

status are all negative and significant, which suggests that 

former smokers tend to be heavier than people with other 

types of smoking status. The estimates also indicate that 

inactive people have higher BMI. With respect to the 

DBMI, p -values suggest that most of the life style related 

factors are not significant.  

 
Table 3 

Results for semiparametric regression models (a) and 
(b) (Values in the parenthesis are the standard errors) 
 

Variable ˆ
1B  p -value ˆ

2B  p -value 

Gender 1.45 0.00 2.80 0.00 

 (0.05)  (0.05)  

Never Smoked -0.45 0.00 -0.06 0.34 

 (0.10)  (0.06)  

Occasional Smoker -0.31 0.04 -0.00 0.96 

 (0.17)  (0.10)  

Daily Smoker -0.61 0.00 -0.12 0.03 

 (0.09)  (0.06)  

Moderately Active -0.33 0.00 -0.07 0.24 

 (0.09)  (0.06)  

Active -0.50 0.00 -0.14 0.07 

 (0.09)  (0.09)  

 

In Figure 4, the estimated functions of age, 
1
(Age)ĝ  and 

2
(Age),ĝ  and their confidence bands are plotted versus 

different ages. It is found that, in both cases, the BMI and 

the DBMI are increasing functions of age.  

Figure 5 gives the estimated functions of age, 
1
(Age)ĝ  

and 
2
(Age),ĝ  for active and moderately active people. If 

we look at the age effect for female and male separately, we 

find that for females who are either active or moderately 

active on average the DBMI is lower than the BMI, whereas 

males with the same intensity of physical activity desire to 

be heavier before age 21. In addition, we also compare the 

age trends in the BMI and the DBMI for both the females 

and males. Due to the inconsistency between the female and 

male trends, we can conclude that there are interactions 

between the gender factor and age. 

 
6. Conclusion  

 
With the assistance of a partial linear model, we extend 

semi-parametric regression techniques to complex survey 

data. Asymptotic properties of the survey estimators are 

developed. Computation of the variance estimates of both 

the linear coefficients and the regression function rely on the 

variance estimates of survey totals and means. Provided that 

we obtain the required variance estimates of survey totals 

and means, we can apply this method using standard 

statistical packages.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4 Estimated age trends in BMI and DBMI with 95% pointwise confidence intervals 
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Figure 5 A comparison of estimated age trends in BMI to DBMI for both female and male who are active and 

moderately active 

 

 

In the partial linear working model, we assume that there 

is no interaction between the parametric component and the 

nonparametric component. However, the empirical example 

of the age trends of the body mass index has illustrated that 

this assumption needs to be checked. In future work, we will 

relax the no interaction assumption. A direct approach to 

modelling interaction terms is to let the nonparametric 

component appear linearly in the interaction term. That is, 

we define the partial linear model as  

( ) ( )G H= + + + .y z X X zβ εβ εβ εβ ε  

By testing the departure of ( )H z  from zero, we can detect 

the existence of interaction.  

When estimating conditional expectation on the 

nonparametric components for indicator discrete random 

variables, we propose to use generalized linear or additive 

models to conduct the estimation.  

 
Appendix 

 
A.1 Proof of lemma 1   
Observing that entries of ˆ ( ),u θ ˆ ( )Bu θ  and ˆ ( )U θξξξξ  are 

either sample totals or ratios of sample totals, we can apply 

Lemmas 1.2.5 and 1.2.6 in Wang (2004) to establish this 

Lemma.  
 
A.2 Proof of lemma 2   
Each entry of ˆ ( )m zξξξξ  is just an estimated regression 

function with the local polynomial technique developed by 

Bellhouse and Stafford (2001). Theorem 2.2.1 in Wang 

(2004) shows that ˆ ( )m zξξξξ  is root- n  consistent. Hence, since 

the dimension of ˆ ( )m zξξξξ  is finite, we can show that 

ˆ( ( ) ( ))n −m z m zξ ξξ ξξ ξξ ξ  is bounded in probability.  

A.3 Proof of theorem 1   
Since for the true ,θ  we have ( ) ,=u θ 0  we can rewrite 

equation (13) as follows:  

( )

ˆ ( ) ˆ( )

ˆ ˆˆ( ( ) ( )) ( ) ( ) ( )

ˆ

Bn

N

n n

N N

n

N

− −

 
− + − 

 

+ || − ||ε.

u θ
B B

u θ u θ U θ m z m z

θ θ

≐

ξ ξ ξξ ξ ξξ ξ ξξ ξ ξ  

The standard argument in Rao (1973, page 387) yields 

ˆ/ 0.
P

n N || − ||ε →θ θ  

Using the condition that the sampling fraction f n N= /  is 

constant as ν  goes to infinity, we have,  

( )

1
ˆ ( )ˆ( )

ˆ ˆˆ( ( ) ( )) ( ) ( ) ( )

Bn
N

n f n

N n

−
 

− = − 
 

 
− + − . 

 

u θ
B B

u θ u θ U θ m z m zξ ξ ξξ ξ ξξ ξ ξξ ξ ξ

 

Following from the results in Lemma 1, both 1ˆ( ( ) )N −/Bu θ  

and ˆ ( )mU θ
ξξξξ

 converge to their population values in proba-

bility. Lemma 2 indicates that the vector ˆ( ( )n z −mξξξξ  

( )) (1).pz O=mξξξξ  Thus, ˆ( ) ( ( ) ( ))f n n/ −m z m zξ ξξ ξξ ξξ ξ  con-

verges to a zero vector in probability as n  goes to infinity. 

Finally, from the normality of ˆ( ( ) ( )) /n N−u θ u θ  stated 

in Lemma 1, we use the Slutsky Theorem to show the 

asymptotic normality of ˆ .B  
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A.4 Proof of lemma 3   
Given that ˆ ,= −r y xB  we have ( )n − =r R  

ˆ[( ) ]n − − .y xB R  Based on Theorem 1, we know that in 

the limit as ν  goes to infinity, B̂  converges to B  in proba-
bility. Hence, we have ( )n −r R ≐ (( ) )n − − .y xB R  

The thd  entry of ( )−y xB  is,  

1 1

1 1

1
( )

ˆ d

d d pd p

k k k pk pk
d

y x B x B

w y x B x B
N ∈

− − − =

− − − .∑ s

⋯

⋯
 

That is, ( )−y xB  is merely a vector of estimated binned 

means. Using the result from Shao (1996) on functions of 

sample means and “Cramer-Wold device” results found in 

Serfling (1980, page 18), we see that ( )n − −y xB R  

converges to a random vector distributed normally. Thus, 

using this indirect Slutsky idea, we have proved the 

normality of ˆ( ) [( ) ].n n− = − −r R y xB R  
 
A.5 Proof of theorem 2   
The proof follows the same argument that ˆ ( )dg z  is a 

function of domain mean and proportions as does in the 

proof of theorem 2.2.1 in Wang (2004).  

 
Acknowledgements 

 
This work is supported by a grant from the Natural 

Sciences and Engineering Research Council (NSERC) of 

Canada. The authors are grateful to Mary Thompson for her 

valuable comments and suggestions on the early draft of this 

paper. The authors also wish to thank the Associate editor 

and two referees for their very helpful comments.  

 
References 

 
Bellhouse, D.R., and Stafford, J.E. (1999). Density estimation from 
complex survey. Statistca Sinica, 9, 407-424.  

 
Bellhouse, D.R., and Stafford, J.E. (2001). Local polynomial 
regression in complex survey. Survey Methodology, 27, 197-203.  

 
Bickel, P.J., and Freedman, D.A. (1983). Asymptotic normality and 
the bootstrap in stratified sampling. The Annals of Statistics, 12, 
470-482.  

 
Binder, D.A. (1983). On the variance of asymptotically normal 
estimators from complex surveys. International Statistical Review, 
51, 279-292.  

 
Breidt, F.J., and Opsomer, J.D. (2000). Local polynomial regression 
estimators in survey sampling. The Annals of Statistics, 28, 1026-
1053.  

 

Buskirk, D.T., and Lohr, L.S. (2005). Asymptotic properties of kernel 
density estimation with complex survey data. Journal of Statistical 
Planning and Inference, 128, 165-190.  

 
Fan, J., and Gijbels, I. (1995). Data-driven bandwidth selection in 
local polynomial fitting: Variable bandwidth and spatial adaption. 
Journal of the Royal Statistical Society, series B, 57, 371-394.  

 
Fuller, W.A. (1975). Regression analysis for sample surveys. 

Sankhyā, C, 37, 117-132.  
 
Godambe, V.P., and Thompson, M.E. (1986). Parameters of 
superpopulation and survey population: Their relationship and 
estimation. International Statistical Review, 54, 127-138.  

 
Hàjek, J. (1960). Limiting distributions in simple random sampling 
from a finite population. Magyar Tudoanyos Akademia Budapest 
Matematikai Kutato Intezet Koelemenyei, 5, 361-374.  

 
Isaki, C.T., and Fuller, W.A. (1982). Survey design under the 
regression super-population model. Journal of the American 
Statistical Association, 77, 89-96.  

 
Jones, M.C. (1989). Discretized and interpolated kernel density 
estimates. Journal of the American Statistical Association, 84, 
733-741.  

 
Krewski, D., and Rao, J.N.K. (1981). Inference from stratified 
samples: Properties of the linearization, jackknife and balance 
repeated replication methods. The Annals of Statistics, 9, 1010-
1019.  

 
Madow, W.G. (1948). On the limiting distributions of estimates based 
on samples from finite universes. Annals of Mathematical 
Statistics, 19, 535–545.  

 
Montanari, G.E., and Ranalli, M.G. (2005). Nonparametric model 
calibration estimation in survey sampling. Journal of the 
American Statistical Association, 100, 1429-1442.  

 
Ontario Health Survey (1992). Ontario Health Survey: User’s Guide. 
Ministry of Health, Toronto, Ontario, Canada.  

 
Rao, C.R. (1973). Linear Statistical Inference and its Applications 
(2nd Ed.). New York: John Wiley & Sons, Inc. 

 
Robinson, P. (1988). Root-n-consistent semiparametric regression. 

Econometrica, 56, 931-954.  
 
Särndal, C.-E., Swensson, B. and Wretman, J. (1992). Model Assisted 

Survey Sampling. New York: Springer-Verlag. 
 
Serfling, R.J. (1980). Approximation Theorem of Mathematical 

Statistics. New York: John Wiley & Sons, Inc. 
 
Shao, J. (1996). Resampling methods in sample survey. Statistics, 27, 
203-254.  

 
Speckman, P. (1988). Kernel smoothing in partial linear models. 

Journal of the Royal Statistical Society, Series B, 50, 413-436.  
 
Thompson, M.E. (1997). Theory of Sample Survey (1st Ed.). New 
York: Chapman and Hall. 

 
Wang, Z. (2004). Some Nonparametric Regression Techniques for 

Complex Survey Data. Unpublished Ph.D. thesis, The University 
of Western Ontario, London, Ontario, Canada.  

 
Zheng, H., and Little, R.J.A. (2004). Penalized spline nonparametric 
mixed models for inference about a finite population mean from 
two-stage samples. Survey Methodology, 30, 209-218.  

 



  261 

 
 

ACKNOWLEDGEMENTS 

 
Survey Methodology wishes to thank the following people who have provided help or served as referees for one or more papers 

during 2009.  
 
R. Andridge, Ohio State University 

J.-F. Beaumont, Statistics Canada 

E. Berg, Iowa State University 

J.M. Brick, Westat, Inc. 

D. Cantor, Westat Inc. 

P. Cantwell, U.S. Bureau of the Census 

R. Chambers, University of Wollongong, Australia 

D. Chapman, Federal Deposit Insurance Corporation 

A.-S. Charest, Carnegie-Mellon University 

S. Chatterjee, University of Minnesota 

M. Cohen, National Academy of Sciences/Committee on National Statistics 

S. Cohen, National Science Foundation 

M.P. Couper, University of Michigan 

R. Curtin, National Centre for Health Statistics 

E. Dagum, University of Bologna 

G. Datta, University of Georgia 

P.-P. de Wolf, Statistics Netherlands 

P. Dick, Statistics Canada 

J. Dixon, Bureau of Labor Statistics 

J.L. Eltinge, U.S. Bureau of Labor Statistics 

V. Estevao, Statistics Canada 

E. Fabrizi, University of Bergamo, Italy 

W.A. Fuller, Iowa State University 

J. Gambino, Statistics Canada 

M. Ghosh, Univerisy of Florida 

S. Godbout, Statistics Canada 

C. Goga, Université de Bourgogne 

B. Gross, ABS 

R.M. Groves, U.S. Census Bureau 

R. Harter, National Opinion Research Centre 

S. Haslett, Massey University, New Zealand 

D. Haziza, Université de Montréal 

M.A. Hidiroglou, Statistics Canada 

G. James, Office for National Statistics, UK 

L. Jang, Statistics Canada 

J. Jiang, University of California, Davis 

D. Judkins, Westat Inc. 

C. Julien, Statistics Canada 

D. Kasprzyk, Mathematica Policy Research 

R.S. Kenett, KPA Ltd., Raanana, Israel and University of Torino, Italy 

J.-K. Kim, Iowa Stat University 

J.-M. Kim, University of Minnesota-Morris 

P. Kokic, CSIRO 

P. Kott, National Agricultural Statistics Service 

S. Laaksonen, University of Helsinki 

D. Ladiray, INSEE 

P. Lahiri, JPSM, University of Maryland 

P. Lavallée, Statistics Canada 

C. Leon, Statistics Canada 

R. Little, University of Michigan 

B. Liu, Westat Inc. 

L. Mach, Statistics Canada 

T. Maiti, Iowa State University 

H. Mantel, Statistics Canada 

J. Maples, U.S. Census Bureau 

A. Matei, Université de Neuchâtel, Suisse 

C. McLaren, Office for National Statistics, UK 

Y. McNab, UBC 

F. Mecatti, University of Milan-Bicocca, Italy 

S.M. Miller, Bureau of Labor Statistics 

L. Mohadjer, Westat Inc. 

G.E. Montinari, University of Perugia, Italy 

F.A.S. Moura, Universidade do Brasil-UFRJ 

Y. Mpetsheni, Statistics South Africa 

G. Nathan, Hebrew University 

T. Nayak, George Washington University 

J. Opsomer, Colorado State University 

S.P. Paben, Bureau of Labor Statistics 

M. Park, Korea University 

Z. Patak, Statistics Canada 

D. Pfeffermann, Hebrew University 

N.G.N. Prasad, University of Alberta 

M. Pratesi, Università di Pisa 

L. Qualité, Université de Neuchâtel 

J.N.K. Rao, Carleton University 

T.J. Rao, Indian Statistical Institute 

J. Reiter, Duke University 

L.-P. Rivest, Université Laval 

S. Rubin-Bleuer, Statistics Canada 

A. Ruiz-Gazen, Université des Sciences Sociales de Toulouse 

H. Saigo, Waseda University 

N. Salvati, Università di Pisa 

C.-E. Särndal, Université de Montréal 

O. Sautory, INSEE 

N. Schenker, National Center for Health Statistics 

F.J. Scheuren, National Opinion Research Center 

G. Shapiro, Independent consultant 

N. Shlomo, University of Southampton 

D.B.N. Silva, Office for National statistics, U.K. 

P. do N. Silva, University of Southampton 

S. Sinha, Carleton University 

C.J. Skinner, University of Southampton 

E. Slud, University of Maryland and US Census Bureau 

E. Stasny, Ohio State University 

D. Steel, University of Wollongong 

L. Stokes, Southern Methodist University 

M. Thompson, University of Waterloo 

Y. Tillé, Université de Neuchâtel 

R. Vaillant, University of Maryland 

V.J. Verma, Università degli Studi di Siena 

C. Walker, Statistics Canada 

D. Willimack, U.S. Census Bureau 

K.M. Wolter, Iowa State University 

C. Wu, University of Waterloo 

W. Yung, Statistics Canada 

A. Zaslavsky, Harvard Medical School 

F. Zhang, National Science Foundation

 
Acknowledgements are also due to those who assisted during the production of the 2009 issues: Eric Rancourt of Corporate 

Planning and Evaluation Division, Céline Ethier of Statistical Research and Innovation Division, Christine Cousineau of 

Household Survey Methods Division, Nick Budko and Carole Jean-Marie of Business Survey Methods Division, Cécile 

Bourque, Louise Demers, Anne-Marie Fleury, Roberto Guido, Liliane Lanoie, Denis Coutu, Darquise Pellerin and Isabelle 

Poliquin (Dissemination Division), Sheri Buck (Systems Development Division) and Sylvie Dupont (Official Languages and 

Translation Division). 

 



 
 
 
 
 
 
 
 
 



JOURNAL OF OFFICIAL STATISTICS 
 

An International Review Published by Statistics Sweden 
 
JOS is a scholarly quarterly that specializes in statistical methodology and applications. Survey methodology and other issues 

pertinent to the production of statistics at national offices and other statistical organizations are emphasized. All manuscripts 

are rigorously reviewed by independent referees and members of the Editorial Board. 

 
Contents 

Volume 25, No. 2, 2009     
Control Charts as a Tool for Data Quality Control 

 Carl E. Pierchala, Jyoti Surti............................................................................................................................................ 167      
Using Variation in Response Rates of Demographic Subgroups as Evidence of Nonresponse  

Bias in Survey Estimates 

 Emilia Peytcheva, Robert M. Groves ............................................................................................................................. 193      
Analyzing Contact Sequences in Call Record Data. Potential and Limitations of Sequence Indicators  

for Nonresponse Adjustments in the European Social Survey 

 Frauke Kreuter, Ulrich Kohler ........................................................................................................................................ 203      
Design and Estimation for Split Questionnaire Surveys 

 James O. Chipperfield, David G. Steel ........................................................................................................................... 227      
Multiply Imputed Synthetic Data: Evaluation of Hierarchical Bayesian Imputation Models 

 Patrick Graham, Jim Young, Richard Penny ................................................................................................................. 245      
The Quasi-multinomial Distribution as a Tool for Disclosure Risk Assessment 

 Nobuaki Hoshino.............................................................................................................................................................. 269      
Book and Software Reviews ....................................................................................................................................................... 293                                   

 



Contents 

Volume 25, No. 3, 2009     
The Presentation of a Web Survey, Nonresponse and Measurement Error among Members of Web Panel 

 Roger Tourangeau, Robert M. Groves, Courtney Kennedy, Ting Yan........................................................................ 299      
Cooperation in Centralised CATI Household Panel Surveys – A Contact-based Multilevel Analysis to  

Examine Interviewer, Respondent, and Fieldwork Process Effects 

 Oliver Lipps...................................................................................................................................................................... 323      
Seam Effects in Quantitative Responses 

 Frederick G. Conrad, Lance J. Rips, Scott S. Fricker .................................................................................................... 339      
Testing a Cue-list to Aid Attitude Recall in Surveys: A Field Experiment 

 Wander van der Vaart ...................................................................................................................................................... 363      
Multipurpose Weighting for Small Area Estimation 

 Hukum Chandra, Ray Chambers .................................................................................................................................... 379      
A Note on the Effect of Auxiliary Information on the Variance of Cluster Sampling 

 Nina Hagesæther, Li-Chun Zhang .................................................................................................................................. 397      
Beyond Objective Priors for the Bayesian Bootstrap Analysis of Survey Data 

 Cinzia Carota .................................................................................................................................................................... 405      
Modeling Stock Trading Day Effects Under Flow Day-of-Week Effect Constraints 

 David F. Findley, Brian C. Monsell................................................................................................................................ 415      
 

  
All inquires about submissions and subscriptions should be directed to jos@scb.se 

 

 



The Canadian Journal of Statistics La revue canadienne de statistique  
  
CONTENTS TABLE DES MATIÈRES 
 

 
Volume 37, No. 1, March/mars 2009 

  
Paul GUSTAFSON 
 Editor’s report/Rapport du Rédacteur en chef ....................................................................................................................................1 
 
Ehab F. ABD-ELFATTAH & Ronald W. BUTLER 
 Log-rank permutation tests for trend: saddlepoint p-values and survival rate confidence intervals ...................................................5 
 
Imad BOU-HAMAD, Denis LAROCQUE, Hatem BEN-AMEUR, Louise C. MÂSSE, Frank VITARO & Richard E. TREMBLAY 
 Discrete-time survival trees ..............................................................................................................................................................17 
 
Jerry BRUNNER & Peter C. AUSTIN 
 Inflation of type I error rate in multiple regression when independent variables are measured with error .......................................33 
 
Jesse FREY 
 An exact multinomial test for equivalence .......................................................................................................................................47 
 
Timothy HANSON, Wesley JOHNSON & Purushottam LAUD 
 Semiparametric inference for survival models with step process covariates ....................................................................................60 
 
Mhamed MESFIOUI, Jean-François QUESSY & Marie-Hélène TOUPIN 
 On a new goodness-of-fit process for families of copulas................................................................................................................80 
 
Xiao WANG 
 Nonparametric estimation of the shape function in a gamma process for degradation data ...........................................................102 
 
Chunming ZHANG, Yuan JIANG & Zuofeng SHANG 
 New aspects of Bregman divergence in regression and classification with parametric and nonparametric estimation ..................119 
 
Acknowledgement of referees’ services/Remerciements aux membres des jurys .......................................................................................140 
 
Volume 37 (2009): Subscription rates/Frais d’abonnement ........................................................................................................................141 
    

Volume 37, No. 2, June/juin 2009 
  
Tim B. SWARTZ, Paramjit S. GILL & Saman MUTHUKUMARANA 
 Modelling and simulation for one-day cricket................................................................................................................................143 
 
D.A.S. FRASER, A. WONG & Y. SUN 
 Three enigmatic examples and inference from likelihood..............................................................................................................161 
 
Baojiang CHEN, Grace Y. YI & Richard J. COOK 
 Likelihood analysis of joint marginal and conditional models for longitudinal categorical data....................................................182 
 
Vittorio ADDONA, Masoud ASGHARIAN & David B. WOLFSON 
 On the incidence-prevalence relation and length-biased sampling.................................................................................................206 
 
Sanjoy K. SINHA 
 Bootstrap tests for variance components in generalized linear mixed models................................................................................219 
 
Liang PENG 
 A practical method for analysing heavy tailed data........................................................................................................................235 
 
José E. CHACÓN 
 Data-driven choice of the smoothing parametrization for kernel density estimators......................................................................249 
 
Peng ZHANG, Zhenguo QIU, Yuejiao FU & Peter X.-K. SONG 
 Robust transformation mixed-effects models for longitudinal continuous proportional data .........................................................266 
 
Xu ZHENG 
 Testing heteroscedasticity in nonlinear and nonparametric regressions .........................................................................................282 
 
Sujit K. SAHU, Dipak K. DEY & Márcia D. BRANCO 
 Erratum: A new class of multivariate skew distributions with applications to Bayesian regression models..................................301 
 
Volume 37 (2009): Subscription rates/Frais d’abonnement ........................................................................................................................303 
  



Volume 37, No. 3, September/septembre 2009 
  
Gail IVANOFF, Associate Editor, CJS 
 In memory of André Robert Dabrowski .........................................................................................................................................305 
  
Herold DEHLING 
 André Dabrowski’s work on limit theorems and weak dependence...............................................................................................307 
  
André DABROWSKI, Jiyeon LEE & David R. McDONALD 
 Large deviations of multiclass M/G/1 queues.................................................................................................................................327 
  
André DABROWSKI, Gail IVANOFF & Rafał KULIK 
 Some notes on Poisson limits for empirical point processes ..........................................................................................................347 
  
 

Raphael GOTTARDO & Adrian RAFTERY 
 Bayesian robust transformation and variable selection: a unified approach ...................................................................................361 
  
Sanjoy K. SINHA & J.N.K. RAO 
 Robust small area estimation..........................................................................................................................................................381 
  
Jean-François BEAUMONT & Cynthia BOCCI 
 Variance estimation when donor imputation is used to fill in missing values ................................................................................400 
  
Hongmei ZHANG 
 Designing sampling plans to capture rare objects...........................................................................................................................417 
  
Lang WU, Wei LIU & Juxin LIU 
 A longitudinal study of children’s aggressive behaviours based on multivariate mixed models with incomplete data..................435 
  
Lieven DESMET & Irène GIJBELS 
 Local linear fitting and improved estimation near peaks ................................................................................................................453 
  
Jaechoul LEE & Kyungduk KO 
 First-order bias correction for fractionally integrated time series...................................................................................................476 
  
Volume 37 (2009): Subscription rates/Frais d’abonnement ........................................................................................................................494 
   



GUIDELINES FOR MANUSCRIPTS 

 
Before finalizing your text for submission, please examine a recent issue of Survey Methodology (Vol. 32, No. 2 and onward) 

as a guide and note particularly the points below. Articles must be submitted in machine-readable form, preferably in Word. 

A pdf or paper copy may be required for formulas and figures. 

 

1. Layout 
 
1.1 Documents should be typed entirely double spaced with margins of at least 1½ inches on all sides. 

1.2 The documents should be divided into numbered sections with suitable verbal titles. 

1.3 The name (fully spelled out) and address of each author should be given as a footnote on the first page of the 

manuscript. 

1.4 Acknowledgements should appear at the end of the text. 

1.5 Any appendix should be placed after the acknowledgements but before the list of references. 

 

2. Abstract 
 

The manuscript should begin with an abstract consisting of one paragraph followed by three to six key words. Avoid 

mathematical expressions in the abstract. 

 

3. Style 
 
3.1 Avoid footnotes, abbreviations, and acronyms. 

3.2 Mathematical symbols will be italicized unless specified otherwise except for functional symbols such as “exp(·)” 

and “log(·)”, etc. 

3.3 Short formulae should be left in the text but everything in the text should fit in single spacing.  Long and important 

equations should be separated from the text and numbered consecutively with arabic numerals on the right if they are 

to be referred to later. 

3.4 Write fractions in the text using a solidus. 

3.5 Distinguish between ambiguous characters, (e.g., w, ;ω  o, O, 0; l, 1). 

3.6 Italics are used for emphasis.  

 

4. Figures and Tables 
 
4.1 All figures and tables should be numbered consecutively with arabic numerals, with titles that are as self explanatory 

as possible, at the bottom for figures and at the top for tables. 

 

5. References 
 
5.1 References in the text should be cited with authors’ names and the date of publication.  If part of a reference is cited, 

indicate after the reference, e.g., Cochran (1977, page 164). 

5.2 The list of references at the end of the manuscript should be arranged alphabetically and for the same author 

chronologically. Distinguish publications of the same author in the same year by attaching a, b, c to the year of 

publication. Journal titles should not be abbreviated.  Follow the same format used in recent issues. 

 

6. Short Notes 
 
6.1 Documents submitted for the short notes section must have a maximum of 3,000 words. 

 




