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For further information, please contact: 
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Fence method for nonparametric small area estimation 

Jiming Jiang, Thuan Nguyen and J. Sunil Rao 1 

Abstract 

This paper considers the problem of selecting nonparametric models for small area estimation, which recently have received 

much attention. We develop a procedure based on the idea of fence method (Jiang, Rao, Gu and Nguyen 2008) for selecting 

the mean function for the small areas from a class of approximating splines. Simulation results show impressive 

performance of the new procedure even when the number of small areas is fairly small. The method is applied to a hospital 

graft failure dataset for selecting a nonparametric Fay-Herriot type model. 

                                                           
1. Jiming Jiang, University of California, Davis. E-mail: jiang@wald.ucdavis.edu; Thuan Nguyen, Oregon Health and Science University; J. Sunil Rao, 

Case Western Reserve University. 

  

Key Words: Fay-Herriot Model; Fence method; Nonparametric model selection; Penalized spline; Small area 

estimation. 

 

 

 

1. Introduction 

 
Small area estimation (SAE) has received increasing 

attention in recent literature. Here the term small area 

typically refers to a population for which reliable statistics 

of interest cannot be produced due to certain limitations of 

the available data. Examples of small areas include a 

geographical region (e.g., a state, county, municipality, etc.), 

a demographic group (e.g., a specific age ×  sex ×  race 

group), a demographic group within a geographic region, 

etc. In absence of adequate direct samples from the small 

areas, methods have been developed in order to “borrow 

strength”. Statistical models, especially mixed effects 

models, have played important roles in SAE. See Rao 

(2003) for a comprehensive account of various methods 

used in SAE.  

While there is extensive literature on inference about 

small areas using mixed effects models, including esti-

mation of small area means which is a problem of mixed 

model prediction, estimation of the mean squared error 

(MSE) of the empirical best linear unbiased predictor 

(EBLUP; see Rao 2003), and prediction intervals (e.g., 

Chatterjee, Lahiri and Li 2007), model selection in SAE has 

received much less attention. However, the importance of 

model selection in SAE has been noted by prominent 

researchers in this field (e.g., Battese, Harter and Fuller 

1988, Ghosh and Rao 1994). Datta and Lahiri (2001) 

discussed a model selection method based on computation 

of the frequentist’s Bayes factor in choosing between a fixed 

effects model and a random effects model. They focused on 

the following one-way balanced random effects model for 

the sake of simplicity: ,ij i ijy u e= µ + + 1 ,i … m= , ,  

1 ,j … k= , ,  where the iu ’s and ije ’s are normally 

distributed with mean zero and variances 2

uσ  and 2,eσ  

respectively. As noted by the authors, the choice between a 

fixed effects model and a random effects one in this case is 

equivalent to testing the following one-sided hypothesis 

0H : 2 0uσ =  vs 1H :
2 0.uσ >  Note that, however, not all 

model selection problems can be formulated as hypothesis 

testing. Fabrizi and Lahiri (2004) developed a robust model 

selection method in the context of complex surveys. Meza 

and Lahiri (2005) demonstrated the limitations of Mallows’ 

pC  statistic in selecting the fixed covariates in a nested 

error regression model (Battese, Harter and Fuller 1988), 

defined as ,ij ij i ijy x u e′= β + + 1 ,i … m= , , 1 ,ij … n= , ,  

where ijy  is the observation, ijx  is a vector of fixed 

covariates, β  is a vector of unknown regression coef-

ficients, and iu ’s and ije ’s are the same as in the model 

above considered by Datta and Lahiri (2001). Simulation 

studies carried out by Meza and Lahiri (2005) showed that 

the pC  method without modification does not work well in 

the current mixed model setting when the variance 2

uσ  is 

large; on the other hand, a modified pC  criterion developed 

by these latter authors by adjusting the intra-cluster 

correlations performs similarly as the pC  in regression 

settings. It should be pointed out that all these studies are 

limited to linear mixed models, while model selection in 

SAE in a generalized linear mixed model (GLMM) setting 

has never been seriously addressed.  

Recently, Jiang et al. (2008) developed a new strategy 

for model selection, called fence methods. The authors noted 

a number of limitations of the traditional model selection 

strategies when applied to mixed model situations. For 

example, the BIC procedure (Schwarz 1978) relies on the 

effective sample size which is unclear in typical situations of 

SAE. To illustrate this, consider the nested error regression 

model introduced above. Clearly, the effective sample size 

is not the total number of observations 1 ,m
i in n=∑=  neither is 

proportional to ,m  the number of small areas unless all the 

in  are equal and fixed. The fence methods avoid such 
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limitations, and therefore are suitable to mixed model 

selection problems, including linear mixed models and 

GLMMs. The basic idea of fence is to build a statistical 

fence to isolate a subgroup of what are known as the correct 

models. Once the fence is constructed, the optimal model is 

selected from those within the fence according to a criterion 

which can incorporate quantities of practical interest. More 

details about the fence methods are given below.  

The focus of this paper is nonparametric models for 

SAE. These models have received much recent attention. In 

particular, Opsomer, Breidt, Claeskens, Kauermann and 

Ranalli (2007) proposed a spline-based nonparametric 

model for SAE. The idea is to approximate an unknown 

nonparametric small-area mean function by a penalized 

spline (P-spline). The authors then used a connection 

between P-splines and linear mixed models (Wand 2003) to 

formulate the approximating model as a linear mixed model, 

where the coefficients of the splines are treated as random 

effects. Consider, for simplicity, the case of univariate 

covariate. Then, a P-spline can be expressed as  

0 1

1 1

( ) ...

( ) ... ( )

p

p

p p

q q

f x x x

x x+ +

= β + β + + β

+ γ − κ + + γ − κ ,

ɶ

 (1)
 

where p  is the degree of the spline, q  is the number of 

knots, ,jκ 1 j q≤ ≤  are the knots, and ( 0)1 .xx x+ >=  

Clearly, a P-spline is characterized by , ,p q  and also the 

location of the knots. Note that, however, given , ,p q  the 

location of the knots can be selected by the space-filling 

algorithm implemented in R [cover.design()]. But the 

question how to choose p  and q  remains. The general 

“rule of thumb” is that p  is typically between 1 and 3, and 

q  proportional to the sample size, ,n  with 4 or 5 

observations per knot (Ruppert, Wand and Carroll 2003). 

But there may still be a lot of choices given the rule of 

thumb. For example, if 200,n =  the possible choices for q  

range from 40 to 50, which, combined with the range of 1 to 

3 for ,p  gives a total of 33 choices for the P-spline. Our 

new adaptive fence method offers a data-driven approach 

for choosing p  and q  for the spline-based SAE model.  

The rest of the paper is organized as follows. The fence 

methods are described in section 2. In section 3 we develop 

an adaptive fence procedure for the nonparametric model 

selection problem. In section 4 we demonstrate the finite 

sample performance of the new procedure with a series of 

simulation studies. In section 5 we consider a real-life data 

example involving a dataset from a medical survey which 

has been used for fitting a Fay-Herriot model (Fay and 

Herriot 1979). Some technical results are deferred to the 

appendix.  

 

2. Fence methods  
As mentioned, the basic idea of fence is to construct a 

statistical fence and then select an optimal model from those 

within the fence according to certain criterion of optimality, 

such as model simplicity. Let ( )M M MQ Q y= , θ  be a 

measure of lack-of-fit, where y  represents the vector of 

observations, M  indicates a candidate model, and Mθ  

denotes the vector of parameters under .M  Here by lack-of-

fit we mean that MQ  satisfies the basic requirement that 

E( )MQ  is minimized when M  is a true model, and Mθ  the 

true parameter vector under .M  Then, a candidate model 

M  is in the fence if  

,
ˆ ˆ ˆ
M nM M M

Q Q c≤ + σ ,ɶ ɶ  (2) 

where ˆ inf ,
M MM M MQ Qθ ∈Θ= Θ  being the parameter space 

under ,M Mɶ  is a model that minimizes ˆMQ  among 

,M ∈M  the set of candidate models, and 
,

ˆ
M M

σ ɶ  is an esti-

mate of the standard deviation of ˆ ˆ .M M
Q Q− ɶ  The constant 

nc  on the right side of (2) can be chosen as a fixed number 

(e.g., 1)nc =  or adaptively (see below).  

The calculation of ˆMQ  is usually straightforward. For 

example, in many cases MQ  can be chosen as the negative 

log-likelihood, or residual sum of squares. On the other 

hand, the computation of 
,

ˆ
M M

σ ɶ  can be quite challenging. 

Sometimes, even if an expression can be obtained for 

,
ˆ ,
M M

σ ɶ  its accuracy as an estimate of the standard deviation 

cannot be guaranteed in a finite sample situation. Jiang, 

Nguyen and Rao (2009) simplified an adaptive fence 

procedure proposed by Jiang et al. (2008). For simplicity, 

we assume that M  contains a full model, f ,M  of which 

each candidate model is a submodel. It follows that 

f .M M=ɶ  In the simplified adaptive procedure, the fence 

inequality (2) is replaced by  

f

ˆ ˆ
M M nQ Q c− ≤ ,  (3) 

where nc  is chosen adaptively as follows. For each 

,M ∈M  let 0( ) P { ( ) }p M M c M∗ ∗= =  be the empirical 

probability of selection for ,M  where 0 ( )M c  denotes the 

model selected by the fence procedure based on (3) with 

,nc c=  and P∗  is obtained by bootstrapping under f .M  For 

example, under a parametric model one can estimate the 

model parameters under fM  and then use a parametric 

bootstrap to draw samples under f .M  Suppose that B  

samples are drawn, then ( )p M∗  is simply the sample 

proportion (out of a total of B  samples) that M  is selected 

by the fence procedure based on (3) with the given .nc  Let 

max ( ).Mp p M∗ ∗
∈=
M

 Note that p∗  depends on .nc  Let 

nc
∗  be the nc  that maximizes p

∗  and this is our choice. 

Jiang et al. (2008) offers the following explanation of the 

motivation behind adaptive fence. Suppose that there is a 

true model among the candidate models, then, the optimal 

model is the one from which the data is generated, and 
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therefore should be the most likely given the data. Thus, 

given ,nc  one is looking for the model (using the fence 

procedure) that is most supported by the data or, in other 

words, one that has the highest (posterior) probability. The 

latter is estimated by bootstrapping. Note that although the 

bootstrap samples are generated under f ,M  they are almost 

the same as those generated under the optimal model. This 

is because the estimates corresponding to the zero parameters 

are expected to be close to zero, provided that the parameter 

estimators under fM  are consistent. One then pulls off the 

nc  that maximizes the (posterior) probability and this is the 

optimal choice.  

There are two extreme cases corresponding to 0nc =  

and nc = ∞  (i.e., very large). Note that if 0,nc =  then 

1.p∗ =  This is because when 0nc =  the procedure always 

chooses f .M  Similarly, if there is a unique simplest model 

(e.g., model with minimum dimension), say, ,M∗  then 

1p∗ =  for very large .nc  This is because, when nc  is large 

enough, all models are in the fence, hence the procedure 

always chooses ,M∗  if simplicity is used as the criterion of 

optimality for selecting the model within the fence. These 

two extreme cases are handled carefully in Jiang et al. 

(2008) and Jiang et al. (2009). However, as noted by Jiang 

et al. (2008), the procedures to handle the extreme cases, 

namely, the screen tests and baseline adjustment/threshhold 

checking, are rarely needed in practice. For example, in 

most applications there are a (large) number of candidate 

variables, and it is believed that only a (small) subset of 

them are important. This means that the optimal model is 

neither M∗  nor f .M  Therefore, there is no need to worry 

about the extreme cases, and the procedures to handle these 

cases can be skipped. In most applications a plot of p∗  

against nc  is W-shaped with the peak in the middle 

corresponding to .nc
∗  

The left plot of Figure 2 provides an illustration. This is a 

plot of p∗  against nc  for the example discussed in section 

5. The plot shows the typical “W” shape, as described, and 

the peak in the middle corresponds to where the optimal ,nc  

i.e., nc
∗  is.  

Jiang et al. (2009) established consistency of the 

simplified adaptive fence and studied its finite sample 

performance.  

 
3. Nonparametric SAE model selection  

For the simplicity of illustration we consider the 

following SAE model:  

( ) 1i i i i iy f X B u e i … m= + + , = , , ,  (4) 

where iy  is an 1in ×  vector representing the observations 

from the thi  small area; 1( ) [ ( )]
ii ij j nf X f x ≤ ≤=  with ( )f x  

being an unknown (smooth) function; iB  is an in b×  

known matrix; iu  is a 1b ×  vector of small-area specific 

random effects; and ie  is an 1in ×  vector of sampling 

errors. It is assumed that , ,i iu e 1i … m= , ,  are independent 

with (0 ),i iu N G,∼ ( ),i iG G= θ  and (0 ),i ie N R,∼ iR =  

( ),iR θ θ  being an unknown vector of variance components. 

Note that, besides ( ),if X  the model is the same as the 

standard “longitudinal” linear mixed model (e.g., Laird and 

Ware 1982, Datta and Lahiri 2000).  

The approximating spline model is given by replacing 

( )f x  by ( )f xɶ  in (1), where the coefficients β ’s and γ ’s 

are estimated by penalized least squares, i.e., by  

2 2minimizing y X Z| − β − γ | + λ | γ | ,  (5) 

where 1( ) ,i i my y ≤ ≤=  the th( )i j,  row of X  is (1 ijx …, , ,  

),p
ijx  the th( )i j,  row of Z  is 1[( ) ( ) ],p p

ij ij qx … x+ +− κ , , − κ  

1 ,i … m= , , 1 ,ij … n= , ,  and λ  is a penalty, or smoothing, 

parameter. To determine ,λ  Wand (2003) used the follow-

ing interesting connection to a linear mixed model. To 

illustrate the idea, let us consider a simple case in which 

0iB =  (i.e., there is no small-area random effects), and the 

components of ie  are independent and distributed as 
2(0 ).N , τ  If the γ ’s are treated as random effects which 

are independent and distributed as 2(0 ),N , σ  then the 

solution to (5) are the same as the best linear unbiased 

estimator (BLUE) for ,β  and the best linear unbiased 

predictor (BLUP) for ,γ  if λ  is identical to the ratio 
2 2.τ / σ  Thus, the value of λ  may be estimated by the 

maximum likelihood (ML), or restricted maximum like-

lihood (REML) estimators of 2σ  and 2τ  (e.g., Jiang 2007). 

However, there has been study suggesting that this approach 

is biased towards undersmoothing (Kauermann 2005). 

Consider, for example, a special case in which ( )f x  is, in 

fact, the quadratic spline with two knots given by (10). 

(Note that this function is smooth in that it has a continuous 

derivative.) It is clear that, in this case, the best approxi-

mating spline should be ( )f x  itself with only two knots, 

i.e., 2q =  (of course, one could use a spline with many 

knots to “approximate” the two-knot quadratic spline, but 

that would seem very inefficient in this case). However, if 

one uses the above linear mixed model connection, the ML 

(or REML) estimator of 2σ  is consistent only if q→∞  

(i.e., the number of appearances of the spline random effects 

goes to infinity). The seeming inconsistency has two worri-

some consequences: (i) the meaning of λ  may be concept-

tually difficult to interpret; (ii) the behavior of the estimator 

of λ  may be unpredictable.  

The fence method offers a natural approach to choosing 

the degree of the spline, ,p  the number of knots, ,q  and the 

smoothing parameter, λ  at the same time. Note, however, a 

major difference from the situations considered in Jiang 

et al. (2008) and Jiang et al. (2009) in that the true 

underlying model is not among the class of candidate 

models, i.e., the approximating splines (1). Furthermore, the 
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role of λ  in the model should be made clear: λ  controls the 

degree of smoothness of the underlying model. A natural 

measure of lack-of-fit is 2.MQ y X Z= | − β − γ |  However, 
ˆ
MQ  is not obtained by minimizing MQ  over β  and γ  

without constraint. Instead, we have 2ˆ ˆ ˆ ,MQ y X Z= | − β − γ |  

where β̂  and γ̂  are the solution to (5), and hence depends 

on .λ  The optimal λ  is to be selected by the fence method, 

together with p  and ,q  as described below.  

Another difference is that there may not be a full model 

among the candidate models. Therefore, the fence inequality 

(3) is replaced by the following:  

ˆ ˆ
M nM

Q Q c− ≤ ,ɶ  (6) 

where Mɶ  is the candidate model that has the minimum 
ˆ .MQ  We use the following criterion of optimality within the 

fence which combines model simplicity and smoothness. 

For the models within the fence, choose the one with the 

smallest ;q  if there are more than one such models, choose 

the model with the smallest .p  This gives the best choice of 

p  and .q  Once ,p q  are chosen, we choose the model 

within the fence with the largest .λ  Once again, note that λ  

is part of the model M  that is selected (or “estimated”) by 

the fence method. The tuning constant nc  is chosen 

adaptively using the simplified adaptive procedure of Jiang 

et al. (2009), where parametric bootstrap is used for 

computing p∗  (see section 2).  

The following theorem is proved in Appendix. For 

simplicity, assume that the matrix ( )W X Z=  is of full 

rank. Let ,n WW
P I P⊥ = −  where 1

m
i in n=∑=  and WP =  

1( ) .W W W W−′ ′   
Theorem. Computationally, the above fence procedure is 

equivalent to the following: (i) first use the (adaptive) fence 

to select p  and q  using (6) with 0λ =  and ˆM W
Q y P y⊥′=  

(see Lemma below), and same criterion as above for 

choosing ,p q  within the fence; (ii) let 0M ∗  denotes the 

model corresponding to the selected p  and ,q  find the 

maximum λ  such that  

*
0,

ˆ ˆ
nMM

Q Q c∗
λ
− ≤ ,ɶ  (7) 

where for any model M  with the corresponding X  and 

,Z  we have  

2

,

1 1 1

1 1 1

1 1 1 1

1 1 1 1

ˆ ˆ ˆ

ˆ ( )

ˆˆ ( ) ( )

( )

( )

M

q

q

q

Q y X Z

X V X X V y

I Z Z Z y X

X V X X X X Z I Z Z Z X

X V y X y X Z I Z Z Z y

λ λ λ

− − −
λ λ λ

− − −
λλ

− − − −
λ

− − − −
λ

= | − β − γ | ,

′ ′β = ,

′ ′= λ + λ − β ,γ

′ ′ ′ ′ ′= − λ + λ ,

′ ′ ′ ′ ′= − λ + λ ,

 

and nc
∗  is chosen by the adaptive fence procedure described 

in section 2 (Vλ  is defined below but not directly needed 

here for the computation because of the last two equations).  

Note that in step (i) of the Theorem one does not need to 

deal with .λ  The motivation for (7) is that this inequality is 

satisfied when 0,λ =  so one would like to see how far λ  

can go. In fact, the maximum λ  is a solution to the equation 

*
0,

ˆ ˆ .nMM
Q Q c∗

λ
− =ɶ  The purpose of the last two equations is 

to avoid direct inversion of 1 ,nV I ZZ−
λ

′= + λ  whose 

dimension is equal to ,n  the total sample size. Note that Vλ  

does not have a block diagonal structure because of ,ZZ ′  so 

if n  is large direct inversion of Vλ  may be computationally 

burdensome.  

The proof of the Theorem requires the following lemma, 

whose proof is given in Appendix.   
Lemma.  For  any  M   and  ,y ,

ˆ
MQ λ   is  an  increasing 

function of  λ   with  0 ,
ˆ ˆinf .M MQ Qλ> λ=  

 
4. Simulations 

 
We consider an extension of the Fay-Herriot model (Fay 

and Herriot 1979) in a nonparametric setting. The model can 

be expressed as  

( ) 1i i i iy f x v e i … m= + + , = , , ,  (8) 

where , ,i iv e 1i … m= , ,  are independent such that 

(0 ),iv N A,∼ (0 ),i ie N D,∼  where A  is unknown but the 

sampling variance iD  is assumed known. The main 

difference from the traditional Fay-Herriot model is ( ),if x  

where ( )f x  is an unknown smooth function.  

For simplicity we assume ,iD D= 1 .i m≤ ≤  Then, the 

model can be expressed as  

( ) 1i i iy f x i … m= + ε , = , , ,  (9) 

where 2(0 )i Nε , σ∼  with 2 ,A Dσ = +  which is unknown. 

Thus, the model is the same as the nonparametric regression 

model.  

We consider three different cases that cover various 

situations and aspects. In the first case, Case 1, the true 

underlying function is a linear function, ( ) 1 ,f x x= −  

0 1,x≤ ≤  hence the model reduces to the traditional Fay-

Herriot model. The goal is to find out if fence can validate 

the traditional Fay-Herriot model in the case that it is valid. 

In the second case, Case 2, the true underlying function is a 

quadratic spline with two knots, given by  

2 2 2( ) 1 2( 1) 2( 2) 0 3f x x x x x x+ += − + − − + − , ≤ ≤  (10) 

(the shape is half circle between 0 and 1 facing up, half 

circle between 1 and 2 facing down, and half circle between 

2 and 3 facing up). Note that this function is smooth in that 

it has a continuous derivative. Here we intend to investigate 

whether the fence can identify the true underlying function 

in the “perfect” situation, i.e., when ( )f x  itself is a spline. 

The last case, Case 3, is perhaps the most practical situation, 
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in which no spline can provide a perfect approximation to 

( ).f x  In other words, the true underlying function is not 

among the candidates. In this case ( )f x  is chosen as 

0 5sin(2 ),x. π 0 1,x≤ ≤  which is one of the functions 

considered by Kauermann (2005).  

We consider situations of small or medium sample size, 

namely, m = 10, 15 or 20 for Case I, m = 30, 40 or 50 for 

Case 2, and m = 10, 30 or 50 for Case 3. The covariate ix  

are generated from the Uniform[0 1],  distribution in Case 1, 

and from Uniform[0 3],  in Case 2; then fixed throughout 

the simulations. Following Kauermann (2005), we let ix  be 

the equidistant points in Case 3. The error standard deviation 

σ  in (9) is chosen as 0.2 in Case 1 and Case 2. This value is 

chosen such that the signal standard deviation in each case is 

about the same as the error standard deviation. As for Case 3, 

we consider three different values for ,σ 0.2, 0.5 and 1.0. 

These values are also of the same order as the signal standard 

deviation in this case.  

The candidate approximating splines for Case 1 and Case 

2 are the following: p = 0, 1, 2, 3, q = 0 and p = 1, 2, 3, 

q = 2, 5 (so there are a total of 10  candidates). As for Case 

3, following Kauermann (2005), we consider only linear 

splines (i.e., 1);p =  furthermore, we consider the number 

of knots in the range of the “rule of thumb” (i.e., roughly 4 

or 5 observations per knot; see section 1), plus the intercept 

model ( 0)p q= =  and the linear model ( 1,p = 0).q =  

Thus, for 10,m = 0 2 3;q = , ,  for m = 30, q = 0, 6, 7, 8; 

and for 50,m = 0 10 11 12 13.q = , , , ,  

Table 1 shows the results based on 100 simulations under 

Case 1 and Case 2. As in Jiang et al. (2009), we consider both 

the highest peak, that is, choosing nc  with the highest ,p∗  

and 95% lower bound (L.B.), that is, choosing a smaller nc  

corresponding to a peak of p∗  in order to be conservative, if 

the corresponding p∗  is greater than the 95% lower bound of 

the p∗  for any larger nc  that corresponds to a peak of .p∗  It 

is seen that performance of the adaptive fence is satisfactory 

even with the small sample size. Also, it appears that the 

confidence lower bound method works better in smaller 

sample, but makes almost no difference in larger sample. 

These are consistent with the findings of Jiang et al. (2009).  
Table 1 
Nonparametric model selection - Case 1 and Case 2. Reported 
are empirical probabilities, in terms of percentage, based on 

100 simulations that the optimal model is selected 
 

 Case 1 Case 2 

Sample size m ==== 10 m ==== 15 m ==== 20 m ==== 30 m ==== 40 m ==== 50 

Highest Peak 62 91 97 71 83 97 

Confidence L.B. 73 90 97 73 80 96 

 
Table 2 shows the results for Case 3. Note that, unlike 

Case 1 and Case 2, here there is no optimal model (an 

optimal model must be a true model according to our 

definition). So, instead of giving the empirical probabilities 

of selecting the optimal model, we give the empirical 

distribution of the selected models in each case. It is 

apparent that, as σ  increases, the distribution of the models 

selected becomes more spread out. A reverse pattern is 

observed as m  increases. The confidence lower bound 

method appears to perform better in picking up a model 

with splines. Within the models with splines, fence seems to 

overwhelmingly prefer fewer knots than more knots.  
 

Table 2 
Nonparametric model selection - Case 3. Reported are empirical distributions, in terms of percentage, of the selected models 
 

 Sample Size m ==== 10 m ==== 30 m ==== 50  
 # of Knots 0, 2, 3 0, 6, 7, 8 0, 10, 11, 12, 13 
  ( p, q) % ( p, q) % ( p, q) %  

0 2σ = .  Highest Peak (0, 0) 1 (1, 0) 9 (1, 10) 100  
  (1, 0) 31 (1, 6) 91   
  (1, 2) 68    
 Confidence L.B. (1, 0) 24 (1, 0) 9 (1, 10) 100  
  (1, 2) 76 (1, 6) 91  

0 5σ = .  Highest Peak (0, 0) 14 (1, 0) 21 (1, 0) 13  
  (1, 0) 27 (1, 6) 77 (1, 10) 84  
  (1, 2) 56 (1, 7) 2 (1, 11) 2  
  (1, 3) 3   (1, 12) 1  
 Confidence L.B. (0, 0) 8 (1, 0) 8 (1, 0) 2  
  (1, 0) 23 (1, 6) 89 (1, 10) 94  
  (1, 2) 65 (1, 7) 3 (1, 11) 2  
  (1, 3) 4   (1, 12) 2  

1σ =  Highest Peak (0, 0) 27 (0, 0) 15 (0, 0) 10  
  (1, 0) 20 (1, 0) 18 (1, 0) 26  
  (1, 2) 49 (1, 6) 63 (1, 10) 60  
  (1, 3) 4 (1, 7) 4 (1, 11) 2  
      (1, 12) 2  
 Confidence L.B. (0, 0) 20 (0, 0) 1 (0, 0) 2  
  (1, 0) 13 (1, 0) 13 (1, 0) 13  
  (1, 2) 59 (1, 6) 82 (1, 10) 80  
  (1, 3) 8 (1, 7) 4 (1, 11) 2  
      (1, 12) 3  
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Note that the fence procedure allows us to choose not 

only p  and q  but also λ  (see section 3). In each 

simulation we compute ˆ ˆ
λβ = β  and ˆ ˆ ,λγ = γ  given below (7), 

based on the λ  chosen by the adaptive fence. The fitted 

values are calculated by (1) with β  and γ  replaced by β̂  

and ˆ,γ  respectively. We then average the fitted values over 

the 100 simulations. Figure 1 shows the average fitted 

values for the three cases (m = 10, 30, 50) with σ = 0.2 

under Case 3. The true underlying function values, ( )if x =  

0.5 sin(2 ),ixπ 1i … m= , ,  are also plotted for comparison. 

 
5. A real-life data example  

We consider a dataset from Morris and Christiansen 

(1995) involving 23 hospitals (out of a total of 219 

hospitals) that had at least 50 kidney transplants during a 27 

month period (Table 3). The iy ’s are graft failure rates for 

kidney transplant operations, that is, iy = number of graft 

failures ,in/  where in  is the number of kidney transplants at 

hospital i  during the period of interest. The variance for 

graft failure rate, ,iD  is approximated by (0.2) (0.8) ,in/  

where 0.2 is the observed failure rate for all hospitals. Thus, 

iD  is assumed known. In addition, a severity index ix  is 

available for each hospital, which is the average fraction of 

females, blacks, children and extremely ill kidney recipients 

at hospital .i  The severity index is considered as a covariate. 
 
Table 3 

Hospital data from Morris and Christiansen (1995) 
 

Area iy  ix  iD  

1 0.302 0.112 0.055  

2 0.140 0.206 0.053  

3 0.203 0.104 0.052  

4 0.333 0.168 0.052  
5 0.347 0.337 0.047  

6 0.216 0.169 0.046  

7 0.156 0.211 0.046  
8 0.143 0.195 0.046  

9 0.220 0.221 0.044  

10 0.205 0.077 0.044  
11 0.209 0.195 0.042  

12 0.266 0.185 0.041  

13 0.240 0.202 0.041  
14 0.262 0.108 0.036  

15 0.144 0.204 0.036  

16 0.116 0.072 0.035  
17 0.201 0.142 0.033  

18 0.212 0.136 0.032  
19 0.189 0.172 0.031  

20 0.212 0.202 0.029  

21 0.166 0.087 0.029  
22 0.173 0.177 0.027  

23 0.165 0.072 0.025   
Ganesh (2009) proposed a Fay-Herriot model for the 

graft failure rates. as follows: 0 1 ,i i i iy x v e= β +β + +  where 

the iv ’s are hospital-specific random effects and ie ’s are 

sampling errors. It is assumed that ,i iv e  are independent 

with (0 )iv N A,∼  and (0 ).i ie N D,∼  Here the variance 

A  is unknown. Based on the model Ganesh obtained credi-

ble intervals for selected contrasts. However, inspections of 

the raw data suggest some nonlinear trends, which raises the 

question on whether the fixed effects part of the model can 

be made more flexible in its functional form.  

To answer this question, we consider the Fay-Herriot 

model as a special member of a class of approximating spline 

models discussed in section 3. More specifically, we assume  

( ) 1i i i iy f x v e i … m= + + , = , , ,  (11) 

where ( )f x  is an unknown smooth function and everything 

else are the same as in the Fay-Herriot model. We then 

consider the following class of approximating spline models:  

0 1

1 1

ˆ ( ) ...

( ) ... ( )

p

p

p p

q q

f x x x

x x+ +

= β + β + + β

+ γ − κ + + γ − κ  (12)
 

with p = 0, 1, 2, 3 and q = 0 ,1, …, 6 ( 0p =  is only for 

0).q =  Here the upper bound 6 is chosen according to the 

“rule-of-thumb” (because m = 23, so 4m/ = 5.75). Note 

that the Fay-Herriot model corresponds to the case p = 1 

and q = 0. The question is then to find the optimal model, in 

terms of p  and ,q  from this class.  

We apply the adaptive fence method described in section 

3 to this case. Here to obtain the bootstrap samples needed 

for obtaining ,nc
∗  we first compute the ML estimator under 

the model ,Mɶ  which minimizes ˆM W
Q y P y⊥′=  among the 

candidate models [i.e., (12); see Theorem in section 3], then 

draw parametric bootstrap samples under model Mɶ  with 

the ML estimators treated as the true parameters. This is 

reasonable because Mɶ  is the best approximating model in 

terms of the fit, even though under model (11) there may not 

be a true model among the candidate models. The bootstrap 

sample size is chosen as 100.  

The fence method selects the model p = 3 and q = 0, 

that is, a cubic function with no knots, as the optimal model. 

To make sure that the bootstrap sample size B = 100 is 

adequate, we repeated the analysis 100 times, each time 

using different bootstrap samples (recall in the adaptive 

fence one needs to draw bootstrap samples in order to 

determine ,nc
∗  so the question is whether different bootstrap 

samples lead to different results of model selection). All 

results led to the same model: a cubic function with no knots 

(even though the bootstrap-derived intermediate quantities, 

such as p∗  and ,nc
∗  varied across bootstraps). We also ran 

the data analysis using B = 1,000, and selected model 

remained the same. Thus, it appears that the bootstrap 

sample size B = 100 is adequate. The left figure of Figure 2 

shows the plot of p∗  against nc  in the adaptive fence 

model selection.  

 



Survey Methodology, June 2010 9 
 

 

Statistics Canada, Catalogue No. 12-001-X 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1 Case 3 Simulation. Top figure: Average fitted values for m ==== 10. Middle figure: Average fitted 
values for m ==== 30. Bottom figure: Average fitted values for m ==== 50. In all cases, the dots 
represent the fitted values, while the circles correspond to the true underlying function 

 

A few comparisons are always helpful. Our first 

comparison is to fence itself but with a more restricted space 

of candidate models. More specifically, we consider (12) 

with the restriction to linear splines only, i.e., 1,p =  and 

knots in the range of the “rule of thumb”, i.e., q = 4, 5, 6, 

plus the intercept model ( 0)p q= =  and the linear model 

( 1,p = 0).q =  In this case, the fence method selected a 

linear spline with four knots (i.e., 1,p = 4)q =  as the 

optimal model. The value of λ  corresponding to this model 

is approximately equal to 0.001. The plot of p∗  against nc  

for this model selection is very similar to the left figure of 

Figure 2, and therefore omitted. In addition, the right figure 

of Figure 2 shows the fitted values and curves under the two 

models selected by the fence from within the different 

model spaces as well as the original data points.  

A further comparison can be made by treating (11) as a 

generalized additive model (GAM) with heteroscedastic 

errors. A weighted fit can be obtained with the amount of 

smoothing optimized by using a generalized cross-

validation (GCV) criterion. Here the weights used are 

1 ( )i iw A D= / +  where the maximum likelihood estimate 

for A  is used as a plug-in estimate. Recall that the iD ’s are 

known. This fitted function is also overlayed in the right 

figure of Figure 2. Notice how closely this fitted function 

resembles the restricted space fence fit.  

To expand the class of models under consideration by 

GCV-based smoothing, we used the BRUTO procedure 

(Hastie and Tibshirani 1990) which augments the class of 

models to look at a null fit and a linear fit for the spline 

function; and embeds the resulting model selection (i.e., 

null, linear or smooth fits) into a weighted backfitting 

algorithm using GCV for computational efficiency. 

Interestingly here, BRUTO finds simply an overall linear fit 

for the fixed effects functional form. While certainly an 

interesting comparison, BRUTO’s theoretical properties for 

models like (11) have not really been studied in depth.  

Finally, as mentioned in section 3, by using the 

connection between P-spline and linear mixed model one 

can formulate (12) as a linear mixed model, where the spline 

coefficients are treated as random effects. The problem then 

becomes a (parametric) mixed model selection problem, 

hence the method of Jiang et al. (2009) can be applied. In 

fact, this was our initial approach to this dataset, and the 

model we found was the same as the one by BRUTO. 

However, we have some reservation about this approach, as 

explained in section 3. 
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Figure 2 Left: A plot of p*  against nc  from the search over the full model space. Right: The raw data and the 

fitted values and curves; dots and their curve correspond to the cubic function resulted from the full model 
search; squares and their lines correspond to the linear spline with 4 knots resulted from the restricted 

model search; green X’s and their lines represent the GAM fits 

 
6. Concluding remarks 

 
Although the focus of the current paper is nonparametric 

SAE model selection, our method may be applicable to 

spline-based mixed effects model selection problems in 

other areas, for example, in the analysis of longitudinal data 

(e.g., Wang 2005).  

In the case where a true model exists among the 

candidate models, such as Cases 1 and 2 in section 4, 

consistency of the proposed fence model selection method 

can be established in the same way as in Section 3 of Jiang 

et al. (2009) (although the result of the latter paper does not 

directly apply). However, practically, the situation that non-

parametric modeling is most useful is when a true model 

does not exist, or is not among the candidates, such as Case 

3 in section 4. In this case, no result of consistency can be 

proved, of course. It remains unclear what is a desirable 

asymptotic behavior to study in the latter case.  
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Appendix  

1. Proof of Lemma. Write ,
ˆ( ) .Mg Q λλ =  It can be shown 

(detail omitted) that ( ) 2 ,g y B A B yλ λ λ
′ ′ ′λ = λ  where Aλ =  

1( ) ,B W W BB B−′ ′ ′+λ 1( )B W W W BB B−
λ

′ ′= +λ  with B′ =  

(0 )qI  and ( ).W X Z=  Hence ( ) 0g ′ λ ≥  for 0.λ >  

Also ˆ
M MQ Q, λ →  as 0.λ →  

2. Proof of Theorem. Consider the fence inequality  

, ,
ˆ ˆ
M nM

Q Q cλ λ
− ≤ ,ɶɶ  (A.1) 

where ( )M, λ  minimizes ,
ˆ .MQ λ  Also consider the fence 

inequality using ˆ ,M W
Q y P y⊥′=  which is  

ˆ ˆ
M nM

Q Q c− ≤ .ɶ  (A.2) 

By Lemma, we must have 0,λ =  and ,M M= ɶ  hence 

,
ˆ ˆ .
M M

Q Q
λ
= ɶ  It follows, again by Lemma, that for the same 

,nc  (A.2) holds if and only if (A.1) holds for some .λ  

Therefore, the models within the fence, in terms of p  and 

,q  are the same under both procedures. It is then easy to 

see, according to the selection criterion, that the same model 

0 0 ( ),nM M c=  in terms of p  and ,q  will be selected under 

both procedures for the given .nc  It then follows that the nc
∗  

selected using the adaptive procedure will be the same under 

both procedures. Then, once again using the above 

argument, the optimal model 0 ,M ∗  in terms of p  and ,q  

will be the same under both procedures.  

The formulae below (7) can be derived using the 

expressions of BLUE and BLUP (e.g., Jiang 2007, §2.3.1) 

and the following identity (e.g., Sen and Srivastava 1990, 

page 275): If U  is n q×  and V  is ,q n×  then 
1 1 1 1 1 1( ) ( )qP UV P P U I VP U VP− − − − − −+ = − +  so long as 

the inverses exist.  
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Gross flow estimation in dual frame surveys 
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Abstract 

Gross flows are often used to study transitions in employment status or other categorical variables among individuals in a 

population. Dual frame longitudinal surveys, in which independent samples are selected from two frames to decrease survey 

costs or improve coverage, can present challenges for efficient and consistent estimation of gross flows because of complex 

designs and missing data in either or both samples. We propose estimators of gross flows in dual frame surveys and examine 

their asymptotic properties. We then estimate transitions in employment status using data from the Current Population 

Survey and the Survey of Income and Program Participation. 
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1. Introduction 
 

Many current surveys follow the same individuals at 

regular time intervals so that longitudinal quantities such as 

transitions in employment status and poverty status can be 

studied. The U.S. Current Population Survey (CPS; United 

States Census Bureau 2006), for example, uses a rotating 

panel design in which persons in a housing unit selected for 

the survey are interviewed for four consecutive months, 

rested for eight months, and then interviewed again for four 

consecutive months. This design allows estimation of 

quantities related to individuals’ changes over time. Since 

many survey responses are categorical, gross flows, which 

are transitions among states of a categorical variable over 

time, are particularly important.  

Table 1 displays the counts of a categorical variable 

measured at two times in a population of N  units. At time 

1, the variable can be in one of r  states and at time 2, the 

variable can be in one of c  states. To illustrate Table 1, we 

give the following example. In studying changes in 

employment status, we might have 2r =  and 2,c =  with 

state 0 representing unemployment and state 1 representing 

employment. Then 00X  gives the count of persons in the 

population who are unemployed at both times, 10X  is the 

number of persons who are employed at time 1 but un-

employed at time 2, 0X +  is the total number of persons who 

are unemployed at time 1, and so on. It is of interest to 

obtain estimates and standard errors of the gross flows ,klX  

0 1,k … r= , , − 0 1,l … c= , , −  using survey data. This 

can be complicated in practice because of missing data and 

other problems.  

While successive cross-sectional estimates can assess a 

change in unemployment rates over time, only a longi-

tudinal survey addresses issues such as persistence of 

unemployment in individuals. Gross flow estimation using 

survey data has been studied by many authors, including 

Chambers, Woyzbun and Pillig (1988), Hocking and 

Oxspring (1971), Blumenthal (1968), Chen and Fienberg 

(1974), Stasny (1984, 1987), and Stasny and Fienberg 

(1986). Most of this work considered methods for obtaining 

maximum likelihood (ML) estimators for expected cell 

values in contingency tables with partially cross-classified 

data. Pfeffermann, Skinner and Humphreys (1998) proposed 

estimators that account for misclassification in survey data. 

All of this work has assumed that a probability sample, 

usually a simple random sample, has been taken from a 

single sampling frame.  

 
Table 1 
Gross flow table for population 
 

   Time 2   

  0  1  2  ⋯⋯⋯⋯  1c −−−−   

 0  00X  01X   02X   ⋯   0 1cX , −  0X +   

Time 1  1  10X  11X   12X   ⋯   1 1cX , −  1X +   

 2  20X  21X   22X   ⋯   2 1cX , −  2X +   

 ⋮⋮⋮⋮   ⋮   ⋮   ⋮   ⋱   ⋮   ⋮   

 1r −−−−  1 0rX − ,  1 1rX − ,  1 2rX − ,   ⋯   1 1r cX − , −  1rX − , +  

  0X+  1X+  2X+  ⋯  
1cX+, −  N   

 
A number of longitudinal surveys, such as the Canadian 

National Longitudinal Survey of Children and Youth and 

the Canadian Household Panel Survey, have now started or 

are considering implementation of a dual frame or multiple 

frame design. In a multiple frame survey, probability 

samples are selected independently from two or more 

frames. Using more than one frame often gives better 

coverage of the population, and can achieve considerable 

cost savings in some populations. For example, the Assets 

and Health Dynamics Survey (Heeringa 1995), with the 

goal of estimating characteristics of the population aged 

over 65, used a dual frame survey in which frame A  was 
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the frame for a national general population survey and frame 

B  was a list of Medicare enrollees. The structure of this 

survey is illustrated in Figure 1. Frame A  covered the entire 

population but required extensive screening to identify 

individuals in the target population and was thus expensive 

to sample from; frame B  was less expensive to sample, but 

did not include the entire population. Kalton and Anderson 

(1986) described uses of dual frame surveys to sample rare 

populations; Blair and Blair (2006) argued that dual frame 

surveys can take advantage of less expensive sampling 

modes such as internet sampling when sampling rare 

populations.  

 

 

 

 

 

 

 

 

 

 

 
Figure 1 Frame B  is a subset of frame A  

 

 

 

 

 

 

 

 

 
Figure 2 Frames A  and B  are both incomplete but overlapping 

 
In other situations, both frames may be incomplete, as 

depicted in Figure 2. Hartley (1962, 1974) first proposed 

estimators for the dual frame survey design in Figure 2, 

when independent samples are taken from each frame. 

Subsequent developments are given in Bankier (1986), 

Fuller and Burmeister (1972), Skinner and Rao (1996), and 

Lohr and Rao (2000). Lohr and Rao (2006) summarized 

methods for estimating population quantities in cross-

sectional multiple frame surveys.  

In this paper, we propose estimators for gross flows that 

can be applied to dual frame surveys in which longitudinal 

information is collected in one or both samples. Units 

sampled in one or both surveys are followed over time; in 

some cases, additional units are sampled at later times to 

incorporate new population units or compensate for attri-

tion. A longitudinal dual frame survey presents additional 

challenges to those found in longitudinal single frame 

surveys or in cross-sectional dual frame surveys. Missing 

data can occur in the sample from either frame, and units 

may change frame membership between interviews in the 

survey. In addition, either sampling design may be complex, 

with stratification and clustering. In an overlapping dual 

frame survey such as that depicted in Figure 2, one wishes 

to use the information in the overlap as efficiently as 

possible. The problem studied in this article is to use all the 

information sampled from frame A  and frame B  to 

estimate the transition probabilities of the population.  

The article is organized as follows. In Section 2, we set 

up the research problem. In Section 3, we derive gross flow 

estimators in dual frame surveys for complex samples with 

possibly missing data. In Section 4, we derive asymptotic 

properties and discuss variance estimation. An application 

of our research to the Current Population Survey and Survey 

of Income and Program Participation is given in Section 5. 

Finally, we give our conclusions in Section 6.  

 
2. Notation and sample quantities  

Suppose there are two sampling frames, frame A  and 

frame ,B  which together cover the population of interest 

A B∪  as shown in Figure 2. In Hartley’s (1962) notation, 

there are three nonoverlapping domains: ,ca A B= ∩  

,cb A B= ∩  and ,ab A B= ∩  where c  denotes com-

plement of a set. The population sizes for frames A  and B  

are AN  and ,BN  with domain population sizes ,aN ,bN  

and .abN  We assume that AN  and BN  are known, but the 

population size A B abN N N N= + −  may be unknown. In 

this article, we assume that both the population and the 

frames are fixed over time. These are strong assumptions 

but in many longitudinal surveys the population of interest 

and the frames may be defined for time 1.  

Assume for this section that domain membership is 

constant over time. For simplicity of notation in this paper 

we assume that 2r =  and 2c =  so that there are two 

possible categories at each time; the general case is similar. 

Since the three domains are nonoverlapping, each popu-

lation count ,klX k = 0, 1, l = 0, 1, can be written as klX =  

kla klab klbX X X+ + ,  where kldX  is the number of popu-

lation units in domain d  that are in state k  at time 1 and 

state l  at time 2. The corresponding population and domain 

probabilities are kl klp X N= /  and kld kld dp X N= /  for 

{ }.d a ab b∈ , ,  

Independent probability samples, AS  and ,BS  with 

sample sizes An  and ,Bn  are taken from frames A  and .B  

Let A

iw  be the weight of sampled unit i  for the sample 

from frame A  and let B
jw  be the weight of sampled unit j  

for the sample from frame .B  We may take A

iw  to be the 

sampling weight 1[ ( )]AP i S −∈  or a Hájek-type weight 
1[ ( )]A AP i S N−∈ / (sum of sampling weights in ).AS  Other 

  A                     B 

        a                   ab 

    A                                                       B 
               a                ab             b 
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weighting schemes for longitudinal data, discussed in 

Verma, Betti and Ghellini (2007) and Lavallée (2007), 

might also be used. Let 1 2( )i i iy y= ,y  be the response for 

unit i  in ,AS  with 1,iy 2 {0 1 }iy M∈ , ,  where M  denotes 

that the value is missing. Then 1
ˆ ( )

A

A A
i Skla i iX w I y k∈∑= =  

2( ) ( )iI y l I i a= ∈  and 1
ˆ ( )

A

A A
i Sklab i iX w I y k∈∑= =  

2( ) ( )iI y l I i ab= ∈  estimate the population counts for the 

( )k l,  cell in domains a  and ab  from ,AS  for k,  

{0 1 }.l M∈ , ,   Let  1 2( )j j jy y= ,y   be the response for 

unit j  in ,BS  and let 1
ˆ ( )

B

B B
j Sklb j jX w I y k∈∑= =  

2( ) ( )jI y l I j b= ∈  and 1 2
ˆ ( ) ( )

B

B B
j Sklab j j jX w I y k I y l∈∑= = =  

( )I j ab∈  be the corresponding estimators from .BS  

In this paper, we assume that domain membership can be 

determined for every sample unit and that the responses iy  

have no classification error. Thus, we assume that we know 

whether each unit in the frame A  or frame B  sample 

belongs to the other frame or not. We also assume that there 

is no measurement error for iy  and j −y   in the employ-

ment example, this means that every respondent gives the 

correct response for his or her employment status. Thus, the 

methods we proposed in our article are sensitive to mis-

classification of observations into domains and into cells. If 

the domain means differ or if observations are classified 

incorrectly, the estimators of gross flows could be biased; 

Pfeffermann et al. (1998) discussed methods of accounting 

for misclassification in single frame surveys.  

The estimators from AS  are displayed in Table 2. A 

similar table may be constructed for the estimators from .BS  

We assume that each unit is sampled during one or both 

time periods. If there is no missing data, then all the 

estimated counts for cells ( )k M,  and ( )M l,  are zero. 

Using the exact or approximate unbiasedness of the esti-

mators, depending on whether the sampling or Hájek 

weights are used, when there is no missing data, ˆ[ ]A

klaE X ≈  

,klaX ˆ ˆ[ ] [ ]A B

klab klab klabE X E X X≈ ≈  and ˆ[ ] .B

klb klbE X X≈  

 
Table 2 

Estimators from the frame A  sample 
 

   Time 2   

   0 1 Missing  

 0 00
ˆ A

aX  01
ˆ A

aX  0
ˆ A

MaX  0
ˆ A

aX +  

domain a  1 10
ˆ A

aX  11
ˆ A

aX  1
ˆ A

MaX  1
ˆ A

aX +  

Time 1  Missing 0
ˆ A
M aX  1

ˆ A
M aX   ˆ A

M aX +  

 0 00
ˆ A

abX  01
ˆ A

abX  0
ˆ A

MabX  0
ˆ A

abX +  

domain ab  1 10
ˆ A

abX  11
ˆ A

abX  1
ˆ A

MabX  1
ˆ A

abX +  

  Missing 0
ˆ A
M abX  1

ˆ A
M abX   ˆ A

M abX +  

   0
ˆ AX +  1

ˆ AX +  ˆ A
MX +  ˆ

AN  

 

3. Gross flow estimators in dual frame surveys 
 

In this section, we derive gross flow estimators for com-

plex samples in dual frame surveys. A dual frame pseudo-

likelihood approach is used to account for the sampling 

designs and missing data mechanism. A dual frame ap-

proach can improve precision of the estimators and provide 

more flexibility to model the missing data mechanism. 

Methods in current use for handling missing data are based 

on standard statistical methods and fall into four general 

categories (Little and Rubin 2002): complete-case analysis, 

weighting methods, imputation methods and model-based 

methods. We adopt a model-based approach for the missing 

data. In this section, we first consider a simple setup with 

simple random samples from a population with no missing 

data. Then we add a model for the missing data mechanism. 

Finally, we discuss estimators for more complex survey 

designs.  
 
3.1 Simple random samples with complete data  

To motivate the estimator in the general case, we first 

study estimation of gross flows when there is no missing 

data and when the sample from each frame is a simple 

random sample. Then ˆ ,A A

kld A kld Ax n X N= /  for ,d a ab= ,  is 

the observed sample count in cell kl  and domain d  from 

;AS
ˆB B

kld B kld Bx n X N= /  for d b ab= ,  is the corresponding 

observed sample count from .BS  

If the sampling fractions are small, a multinomial ap-

proximation may be used for the likelihood. For the sample 

from frame ,A  there are eight cells with associated proba-

bilities ,A

kld kld d AP p N N= /  for {0 1}k l, ∈ ,  and { }.d a ab∈ ,  

The related probabilities for the sample from frame B  are 
B

kld kld d BP p N N= /  for {0 1}k l, ∈ ,  and { }.d b ab∈ ,  

Using the multinomial distribution and the assumption that 

the samples from the two frames are selected independently, 

the likelihood function is  

( ) ( ) ( )
A B
kld kldx xA B

ab kld kld

k l d k l d

L N P P
, , , ,

, ∝ × .∏ ∏p  

Although the likelihood is written for simplicity in terms of 
A

kldP  and ,B

kldP  the underlying parameters of interest are 

00 01 11( )a a bp p … p= , , ,p  and .abN  

Setting the partial derivatives of the loglikelihood with 

respect to the parameters equal to zero, the maximum 

likelihood estimators are ˆ
A

kla kla ap x n= / , ˆ B

klb klb bp x n= /  and 

( ) ( ),ˆ
A B A B

klab klab klab ab abp x x n n= + / +  where 
A

A
i Sabn ∈∑=  

( ),I i ab∈ ( ),
B

B
j Sabn I j ab∈∑= ∈ A A

a A abn n n= −  and B

bn =  

.B

B abn n−  The MLE for ,abN ˆ ,abN  is the smaller root of the 

quadratic equation  
2ˆ ˆ[ ] [ ]

[ ] 0

A B

A B ab A B B A ab A ab B ab

A B

ab ab A B

n n N n N n N n N n N N

n n N N

+ − + + +

+ + = .  (1)
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Finally, using the above results, we construct the MLEs for 

klX  and :klp  

ˆ ˆ ˆ ˆ( ) ( )ˆ ˆ ˆ

ˆ ˆ ˆ( ) ( )ˆ ˆ ˆ
ˆ

ˆ

kl A ab kla ab klab B ab klb

A ab kla ab klab B ab klb
kl

A B ab

X N N p N p N N p

N N p N p N N p
p

N N N

= − + + − .

− + + −
= .

+ −

 

These estimators are the same as those obtained by 

Skinner (1991). However, Skinner used the approximate 

normal distribution of the response mean y  in each domain 

to obtain the MLEs, while our estimators come from a 

multinomial model. The multinomial model allows us to 

include partially classified information from units observed 

at only one time period, as shown in the next section.  
 
3.2 Simple random samples with missing data  

In practice, individuals may appear in the sample at only 

one of the times. This can occur due to sample attrition 

(when members of the sample drop out during the course of 

a study) or other causes. In a rotating panel survey such as 

the CPS, persons rotating out of the survey at time 1 will not 

be contacted for time 2 and thus their time-2 employment 

status will be unknown. In other situations, one of the sam-

ples may be cross sectional, in which case all observations 

are measured at exactly one time.  
 
3.2.1 Model for missing data  

Blumenthal (1968), Chen and Fienberg (1974), Stasny 

(1984, 1987) and Stasny and Fienberg (1986) used a two-

phase procedure to model the missing data in a single 

sample. A model is proposed for the complete data, and then 

the missing data mechanism is modeled. We extend this 

procedure to our dual frame structures. One advantage of a 

dual frame survey is that it provides more flexibility for the 

missing data models.  

First, we assume that if all units were measured at both 

times, the model in Section 3.1 could be used. For the non-

response mechanism, assume that each observation in cell 

( )k l,  and domain d  from AS  has probability A

kldφ  of 

being missing at time 1 and probability A

kldψ  of being 

missing at time 2. We assume the unit cannot be missing at 

both times.  

This formulation assumes a constant probability that an 

observation will be missing within a given cell, domain, and 

frame. If data could be missing for different reasons, 

additional parameters could be used to distinguish obser-

vations that have partial classification because of, say, the 

rotating panel design, and observations that have partial 

classification because of nonresponse. In Section 5, we 

discuss an alternative approach that might be used with 

multiple mechanisms for missing data.  

For {0 1},k l, ∈ ,  the probability that a unit from AS  is 

observed in cell ( )k l,  and domain d  is  

(1 )A A A A

kld kld kld kldQ P= − φ − ψ .  

The probability that a unit from AS  is observed in cell 

( )k M,  and domain d  is  

1

0

A A A

kMd kld kld
l

Q P
=

= ψ .∑  

Similarly, the probability that a unit from AS  is observed in 

cell ( )M l,  and domain d  is  

1

0

A A A

Mld kld kld
k

Q P
=

= φ .∑  

The probabilities for frame B  are defined similarly with 

(1 ),B B B B

kld kld kld kldQ P= − φ −ψ 1
0

B B B
lkMd kld kldQ P=∑= ψ  and B

MldQ =  
1

0 .B B
k kld kldP=∑ φ  

Under this two phase model, and using the assumption of 

independence of the samples, the likelihood function for the 

two samples is:  

{0,1} {0,1} { , }

{0,1} {0,1} { , }

{0,1} { , }

{0,1} { , }

{0,1} { , }

{ , }

( , , , ) ( )

( )

( )

( )

( )

( )

p ψ φψ φψ φψ φ
A
kld

B
kld

A
kMd

A
Mld

B
kMd

B
Mld

xA

ab kld

k l d a ab

xB

kld

k l d b ab

xA

kMd

k d a ab

xA

Mld

l d a ab

xB

kMd

k d b ab

xB

Mld

d b ab

L N Q

Q

Q

Q

Q

Q

∈ ∈ ∈

∈ ∈ ∈

∈ ∈

∈ ∈

∈ ∈

∈

∝

×

×

×

×

×

∏ ∏ ∏

∏ ∏ ∏

∏ ∏

∏ ∏

∏ ∏

∏
{0,1}

,
l∈

∏

 

(2)

 

where ψψψψ  is the vector of A

kldψ ’s and B

kldψ ’s and φφφφ  is the 

vector of A

kldφ ’s and B

kldφ ’s. 

The expression in (2) is for the most general model, in 

which both surveys are longitudinal and both have missing 

data at each time period. If frame A  uses a rotating panel 

survey, for example, then all of the probabilities A

kldQ  are 

nonzero: the units in the panels measured at both time 

periods will be included in the estimators A

kldx  for 

{0 1}k l, ∈ , , the units in the panels leaving the survey after 

time 1 will be included in the estimators ,A

kMdx  and the units 

in the incoming panels will be included in the estimators 

.A

Mldx  Depending on the structure of the surveys, some of 

the factors in (2) may be omitted. For example, if the survey 

from frame B  is a repeated cross-sectional survey with 

small sampling fraction, the probabilities B

kldQ  for 

{0 1}k l, ∈ ,  will be close to zero, and we would omit those 

factors from the likelihood.  
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The likelihood in (2) can be written as a product of a 

factor with abN  and a factor containing the remaining 

parameters. As a consequence, the MLE for abN  is again 

the smaller root of the equation in (1). We discuss the 

estimators of the remaining parameters in the next section.  
 
3.2.2 Model identifiability and reduced models  

A problem with maximizing the likelihood in (2) is that 

under the general model there are a total of 42 parameters 

while the two samples have only 32 observed cell counts. 

Thus we cannot estimate all the parameters under the most 

general model. But we can consider models with reduced 

parameterizations, as done in Chen and Fienberg (1974) for 

single frame surveys. The dual frame situation, in fact, gives 

much more flexibility for modeling the missing data 

because of the independent information from the two 

samples about domain .ab  

We first state conditions for a reduced model to be 

locally identifiable. Let θθθθ  denote the s -vector of para-

meters of interest; in our case, θθθθ  would include linearly 

independent components of ,p ,abN N/  and parameters for 

the missing data mechanism. In the likelihood in (2), the 

probabilities from the independent multinomial samples are 
A

kldQ  and .B

kldQ  These probabilities may be written as 

functions of ,θθθθ  with 00( ) ( )Q θθθθA A A

a lMabQ … Q= , ,  a g -vector 

of the nonzero A

kldQ ’s and 00( ) ( )Q θθθθB B B

b lMabQ … Q= , ,  a q -

vector of the nonzero B

kldQ ’s. When all cells in Table 2 and 

the analogous table for frame B  have nonzero probabilities, 

g q= = 16. Let ( )D D DA B
′ ′ ′= ,  be the derivative matrix 

of the transformation, with ( )
A

A αβ α β= ∂ /∂θD Q  and 

( )
B

B δβ δ β= ∂ /∂θD Q  for 1 1,… gα = , , − 1 1,… qδ = , , −  

and 1 .… sβ = , ,  Then, using Theorems 3, 4 and 5 in 

Catchpole and Morgan (1997), the model is locally iden-

tifiable if the matrix D  is of full rank. The proof for the dual 

frame situation is given in Lu (2007). 

In a dual frame survey, we consider two types of models 

for the missing data. In a Type (1) model, the probabilities 

of missing time-1 or time-2 information for cell ( )k l,  is the 

same for each domain within a frame, i.e., A A

kla klabφ = φ =  

,klAφ ,A A

kla klab klAψ = ψ = ψ B B

klb klab klBφ = φ = φ  and B

klbψ =  

.B

klab klBψ = ψ  In this type of model, we estimate the φ ’s 

and ψ ’s separately from each sample. It might be consid-

ered when the samples from the two frames are collected 

using different modes. For example, if the frame A  sample 

is a mail survey and the frame B  sample is a cell phone 

survey, one might expect different probabilities of dropout 

from the two samples.  

In a Type (2) model, the probabilities of having missing 

data are the same in each domain, i.e., .A B

klab klab klabφ = φ = φ  

This type of model might be considered when nonresponse 

is expected to be related to the cell membership, and frame 

membership is thought to have little effect on nonresponse. 

For example, if the two surveys have similar types of 

designs and administrative procedures, a Type (2) model 

might be appropriate.  

For each type of model, we may need to place additional 

restrictions on the parameters in order to solve the likelihood 

equations. Following Stasny and Fienberg (1986) the 

following are possible restrictions:  

1( ) ( )Model1 kl t l kl t k−: φ = λ , ψ = λ  (3) 

1Model 2 kl t kl t−: φ = λ , ψ = λ  

Model 3 kl l kl k: φ = λ , ψ = λ  

1( )Model 4 kl t l kl t−: φ = λ , ψ = λ  

1 ( )Model 5 .kl t kl t k−: φ = λ , ψ = λ  

Under model 1, the probability that an individual is a 

nonrespondent in a given time period depends on the given 

time period and the individual’s classification in the 

observed time period. Under model 2, the probability that an 

individual is a nonrespondent in a given time period 

depends only on the given time period. Under model 3, the 

probability that an individual is a nonrespondent in a given 

time period depends only on the individual’s classification 

in the observed time period. Under model 4, the probability 

that an individual is a nonrespondent at time 1 depends on 

that time period and the individual’s classification in the 

observed month, and the probability that an individual is a 

nonrespondent at time 2 depends only on the time period 2. 

Under model 5, the probability that an individual is a 

nonrespondent at time 1 depends only on the time period, 

and the probability that an individual is a nonrespondent at 

time 2 depends on the time period and the individual’s 

classification in the observed month. Many other models are 

possible in addition to these five models for each type. 

Using the derivative matrices, it is easily shown that 

Models 1-5 are all identifiable.  

In general, we will not have closed form solutions for the 

parameter estimates and the parameters must be estimated 

using an iterative method. We use the function ‘nlm’ in R 

(www.r-project.org) to calculate parameter estimates; the 

code is available from the authors.  

 
3.3 Estimators from complex samples  

When either or both samples are collected with a com-

plex design, using the cell counts directly in the likelihood 

in (2) will give estimators that are not design-consistent. 

Skinner and Rao (1996) used a pseudo-maximum likelihood 

(PML) method to obtain design-consistent estimators in 

cross-sectional dual frame surveys. They showed that, 

unlike the estimators of Hartley (1962) and Fuller and 
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Burmeister (1972), the PML estimators for different re-

sponse variables used the same set of modified weights and 

thus were internally consistent.  

We propose to study estimators inspired by the PML 

method for gross flows in dual frame longitudinal complex 

surveys that allow for missing data at either time period in 

either sample. The basic idea is to use a working assumption 

of a multinomial distribution from a finite population to give 

the form of the estimators and use a design effect to adjust 

the cell counts to reflect the complex survey design.  

In the simple random sampling case, A

kld Ax n/  is a design-

consistent estimator of .A

kldQ  To obtain a pseudo-likelihood 

for general sampling designs, we replace A

kld Ax n/  by 
ˆ ,A

kld AX N/  a design-consistent estimator of A

kldQ  under the 

complex sampling design, in the likelihood (2). Define 
ˆA A

kld A kld Ax n X N= /  and ˆ ,B B

kld A kld Bx n X N= /  where, follow-

ing Skinner and Rao (1996), we allow An  and Bn  to be 

arbitrary constants. Note that if AN  or BN  is unknown, it 

may be estimated by ˆ AN  or ˆ BN  instead.  

The pseudo-likelihood has the same form as (2), with 

,A

kldx ,B

kldx An  and Bn  replaced by ,A

kldx ,B

kldx An  and ,Bn  

respectively. Iterative procedures are then used to find the 

pseudo-MLEs of the quantities of interest ,kldp ,φφφφ ψψψψ  and 

.abN  By the fact that the pseudo-likelihood factors, ˆ abN  is 

found to be the smaller of the roots of  

2ˆ[ ]

ˆ ˆ ˆ[ ]

ˆ ˆ[ ] 0

A B ab PML

A B

A B B A A ab B ab ab PML

A B

A ab B B ab A

n n N

n N n N n N n N N

n N N n N N

,

,

+

− + + +

+ + = .  (4)

 

In a complex survey, particularly when clustering is 

involved, the actual sample sizes An  and Bn  do not 

necessarily reflect the relative amounts of information from 

the samples. We thus suggest taking An  and Bn  to be the 

effective sample size for each sample, with A An n= /  

(design effect of )AS  and B Bn n= / (design effect of ).BS  

The design effect of an estimator µ̂  is the ratio  

[ ( ) from complex survey design]ˆ

[ ( ) from SRS of same size]ˆ

V

V

µ
.

µ
 

The design effect is usually different for different 

variables. For estimating gross flows, however, the only 

estimators used from the component surveys are estimated 

cell counts, and we might expect that in many surveys the 

design effects for the estimators ˆ A

kldX  would all be similar, 

and would also be similar to the design effect of the 

estimator ˆ .AabN  We thus, as in Skinner and Rao (1996), 

suggest using the design effect for the estimator ˆ A

abN  in 

determining ,An  and the design effect for the estimator ˆ B

abN  

in determining .Bn  If the design effects of the other 

variables are indeed identical, then the resulting PMLEs will 

minimize the variances of the estimated quantities; if they 

differ, the PMLEs will not be optimal but they will be 

consistent and in most situations will be close to the optimal 

values (Lohr and Rao 2006). If the design effect for ˆ A

abN  is 

unavailable, as would occur, for example, if the survey were 

poststratified to ,A

abN  then we suggest using a generalized 

design effect, computed by taking an average or weighted 

average of design effects from other variables in the survey.  

 
4. Properties of the estimators  

In this section, we will investigate properties of the 

estimators. We derive asymptotic variances, discuss jack-

knife variance estimators, and perform a small simulation 

study to explore the properties.   
4.1 Properties  

We consider the general case in which stratified multi-

stage samples are taken from each frame. The estimators of 

population totals are the standard Horvitz-Thompson or 

Hájek estimators from complex surveys. From frame ,A  the 

parameter vector [( ) ]Qηηηη A

A ab AN N′ ′= , /  is estimated by 
ˆ ˆ[( ) ] ,ˆ Qηηηη

A A

ab AA
N N′ ′= , /  where ˆ ˆ ;A A

kld kld AQ X N= /  similarly, 

[( ) ]Qηηηη B

B ab BN N′ ′= , /  is estimated by ˆ[( )ˆ Qηηηη
B

B
′= ,  

ˆ ]B

ab BN N ′/  with ˆ ˆ .B B

kld kld BQ X N= /   
Theorem 1: Let ˆ ˆ ˆ( )η η ηη η ηη η ηη η ηA B

′ ′ ′= ,  and ( ) .η η ηη η ηη η ηη η ηA B
′ ′ ′= ,  Assume 

that the regularity conditions on the inclusion probabilities 

in Isaki and Fuller (1982) hold for each sample. Let Anɶ  and 

Bnɶ  be the number of primary sampling units in frames A  

and ,B  respectively, and let .A Bn n n= +ɶ ɶ ɶ  Assume that Anɶ  

and Bnɶ  both increase such that A Bn n/ → γɶ ɶ  for some 

0 1.< γ <  Then η̂ηηη  is consistent for ,ηηηη  and  

1/ 2 ˆ( ) (0 )η η Ση η Ση η Ση η Σd
n N− → , ,ɶ  (5) 

where ΣΣΣΣ  is a block-diagonal matrix with blocks ΣΣΣΣA  and 

,ΣΣΣΣB ΣΣΣΣA  is the asymptotic covariance matrix of 
1/ 2
η̂ηηηA

nɶ  and 

ΣΣΣΣB  is the asymptotic covariance matrix of 
1/ 2 .η̂ηηηB
nɶ  If, in 

addition, it is assumed that abN N/ → κ  for some 

0 1< κ <  and that the model is identifiable, then θ̂θθθ  is 

consistent for ,θθθθ  where ,θθθθ  the parameter of interest, 

consists of components of ,p ,abN N/ φφφφ  and ,ψψψψ  and θ̂θθθ  is 

the pseudo-maximum likelihood estimator of .θθθθ  Further-

more, 1/ 2 ˆ( )θ θθ θθ θθ θn −ɶ  is asymptotically normal with mean 0  

and asymptotic variance ,H H H HΣ ΣΣ ΣΣ ΣΣ ΣA A A B B B
′ ′+  where 

FH  is the derivative matrix of the function θθθθ  with respect 

to the parameters ηηηηF  for frames { }.F A B∈ ,   
Proof. With gross flows, observed values of all variables are 

0 or 1. Thus the boundedness conditions in Lemmas 1 and 2 

of Isaki and Fuller (1982) are met, and the estimators of 

frame A  are consistent and asymptotically normal with  

1/ 2 ( ) [0 ( (1 )) ]ˆ η Ση Ση Ση Σηηηη
d

A A AA
n N− → , γ/ + γ .ɶ  
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The same argument applies to give consistency and 

asymptotic normality for the vector of estimators from 

frame ,B  with  

1 2 ( ) [0 (1 ( (1 ))) ]ˆ η Ση Ση Ση Σηηηη
d

B B BB
n N/ − → , − γ/ + γ .ɶ  

Combining these two asymptotic results, and using the 

independence of the sampling designs along with Slutsky’s 

theorem, gives (5). The limiting distribution of 1/ 2 ˆ( )θ θθ θθ θθ θn −ɶ  

follows by the delta method, since the parameters in θθθθ  are 

all twice continuously differentiable functions of those in 

.ηηηη  Since the parameter estimators cannot always be defined 

explicitly as a function of other statistics from the sample, 

we may derive the matrices AH  and BH  by linearizing   

the score equations (Binder 1983). The assumption that 

(0 1)abN N/ → κ ∈ ,  guarantees that the linearization is 

well-defined.  

Theorem 1 shows that linearization can be used to 

estimate the variances of parameters of interest. In many 

situations, however, the matrices AH  and BH  are high-

dimensional and the linearized variance estimators have 

complex form. A practical way to estimate the variances of 

the estimators is to use the jackknife estimator proposed by 

Lohr and Rao (2000). Under the regularity conditions in 

their Theorem 4, the jackknife and linearization variance 

estimators are asymptotically equivalent. The form of the 

jackknife variance estimator is ˆ ˆ ˆ( ) ( ) ( ),θ θ θθ θ θθ θ θθ θ θJK A Bv v v= +  

where Av  is a jackknife estimator obtained by deleting one 

primary sampling unit at a time from frame A  while using 

the full data set for frame ,B  and Bv  is a jackknife 

estimator obtained by deleting one primary sampling unit at 

a time from frame B  while using the full data set for 

frame .A  
 
4.2 Simulation study  

Theorem 1 shows that the dual frame estimators are 

consistent for the corresponding population quantities under 

the modeled missing data mechanism. We performed a 

small simulation study to investigate properties for moderate 

sample sizes with overlapping frames. We generated the 

data following the simulation study in Skinner and Rao 

(1996), with a aN Nγ = /  and .b bN Nγ = /  A cluster 

sample from frame A  was generated with Anɶ  psus and m  

observations in each psu, and a simple random sample of 

Bn  observations was generated for frame .B  We generated 

the clustered binary responses for the sample from frame A  

by generating correlated multivariate normal random 

vectors and then using the probit function to convert the 

continuous responses to binary responses.  

After generating the sample, we calculated the estimators 

of the probabilities of the union of frame A  and frame ,B  

average of the absolute value of the bias and empirical mean 

squared error (EMSE) under different settings. The EMSE 

of a given estimator, Ŷ  is calculated as:  

2

1

1 ˆEMSE ( )
R

r
r

Y Y
R =

= − ,∑  (6) 

where ˆrY  is the value of Ŷ  for the thr  simulation run. In 

our simulation study, we used R = 100.  

The simulation study was performed with factors: (1) 

:aγ  0.2 or 0.4, (2) :bγ  0.2 or 0.4, (3) clustering parameter 

ρ:  0.3, (4) missing data mechanism: the probability that an 

individual is a nonrespondent in a given month depends on 

the time period and the individual’s classification in the 

observed period; or missing completely at random, (5) 

amount of missing data: close to 10% or close to 20%, (6) 

sample sizes: :Anɶ  10, 100 or 500; m: 5, :Bn  100, 1,000 or 

5,000. All runs used probability parameters a :p  (0.3, 

0.1, 0.2, 0.4), ab :p (0.3, 0.1, 0.1, 0.5), and b :p  (0.4, 0.1, 

0.1, 0.4). Table 3 shows the results of the simulation study 

with missing data generated under Model 1 and fitted with 

both Model 1 and the model using complete records only.  
 
Table 3 

Results from the simulation study for missing data generated 
under Model 1. Case (1) fits the correct model: Model 1; Case 
(2) uses complete records only. Bias is the average absolute 

bias for the population gross flow proportions ;klp  EMSE is 
the average empirical mean squared error for the ;klp  the 
proportions used to generate the missing data are ( 1)0t −−−−λ =λ =λ =λ =  
0.141, ( 1)1t −−−−λ =λ =λ =λ = 0.070, ( )0tλ =λ =λ =λ = 0.137 and ( )1tλ =λ =λ =λ = 0.068. Here, 

Anɶɶɶɶ  is the number of psus in sample A  with psu size 5 and Bn  
is the number of elements in sample B  
 

Anɶɶɶɶ   
Bn    

00p   01p   10p   11p   

10 100 Estimator  0.311  0.120  0.149  0.420  

Case 1  Bias  0.040  0.029  0.029  0.040  

  EMSE 0.002  0.001  0.001  0.002  

   
1(0)t−λ  1(1)t−λ  (0)tλ  ( )tλ   

  Estimator 0.159  0.095  0.146 0.094   

  EMSE 0.001  0.001  0.002  0.001   

10 100 Estimator  0.286 0.120  0.146 0.448  

Case 2  Bias  0.048  0.029  0.029  0.041  

  EMSE 0.004  0.001  0.001  0.002  

100 1,000 Estimator  0.321  0.092  0.138  0.449  

Case 1  Bias  0.015  0.011  0.009  0.015  

  EMSE 3.337e-04  1.798e-04  1.418e-04  3.256e-04  

   
1(0)t−λ  1(1)t−λ  (0)tλ  ( )tλ   

  Estimator 0.145  0.074  0.123  0.068   

  EMSE 2.642e-04  9.389e-05  3.917e-04  8.206e-05  

100 1,000 Estimator  0.293  0.092  0.135  0.480  

Case 2  Bias  0.0280  0.011 0.010  0.040  

  EMSE 0.001  1.839e-04  1.711e-04  0.002  

500 5,000 Estimator  0.321  0.093  0.135  0.452  

Case 1  Bias  0.006 0.008  0.007  0.012  

  EMSE 4.960e-05  7.162e-05  6.381e-05  1.857e-04  

   
1(0)t−λ  1(1)t−λ  (0)tλ  ( )tλ   

  Estimator 0.140  0.071  0.123  0.064   

  EMSE 4.466e-05  1.818e-05  2.288e-04  3.545e-05  

500 5,000 Estimator  0.292  0.092  0.132  0.483  

Case 2  Bias  0.028 0.008 0.008 0.043  

  EMSE 8.265e-04  7.642e-05  9.571e-05  1.906e-03  
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When data are missing at random, all models give 

estimators of the gross flow proportions klp  that are 

approximately unbiased so we do not report the results here. 

From Table 3, both the correct model and the analysis of 

complete records only produce biased estimators of the 

klp ’s. With larger sample sizes, however, the bias persists 

in the analysis that uses complete records only, while it 

diminishes when Model 1 is fit. This example has relatively 

small probabilities of missing data. With larger amounts of 

missing data, the contrast between the estimators is more 

pronounced.  

 
5. Application 

 
In this section, we apply our results to data from the 

Survey of Income and Program Participation (SIPP) and the 

Current Population Survey (CPS) within Arizona. Both CPS 

and SIPP are longitudinal stratified multistage panel 

surveys. We treat SIPP and CPS as a dual frame survey with 

the same target population: the Arizona population 18 years 

old to 64 years old. Using information from both surveys, 

we want to model the transition probabilities of employment 

status changes from January 2001 to January 2002 of people 

between 18 years old and 64 years old. Note that, strictly 

speaking, these two surveys are not designed as a dual frame 

survey. They use different questions for the labor force 

variables. Although we recoded the variables according to 

the labor force definitions in CPS, it is possible that these 

different question wordings and orderings produce bias 

when combining the information. We use this as an example 

because a real longitudinal dual frame data is not available. 

Nevertheless, the example shows the potential gains in 

efficiency by combining the information from two surveys 

in estimating gross flows.  

Both surveys have target population the noninstitu-

tionalized civilian population of the United States. We 

consider a subset of the population: the population in the 

labor force from 18 years old to 64 years old. So AN =  

B abN N=  and the estimation problem is a special case of 

the theory given in Section 3. The longitudinal file for the 

2001 and 2002 SIPP (Westat 2001) uses one panel. We 

merged Wave 1 (where January 2001 records are stored), 

Wave 4 (where January 2002 records are stored) and the 

longitudinal weight file, in which the weights are adjusted to 

sum to the population count. Since the longitudinal panel 

weights have been adjusted for the nonresponse, we 

consider this as a no missing data case. The resulted 

weighted gross flow table from SIPP is given in Table 4.  

For the CPS, the rotation group design introduces 

partially classified data. January 2001 and January 2002 

have 50 percent of the sample in common. We use these 

50% of the data together with the partially classified data to 

perform the analysis. The weight variable we use is a cross-

sectional weight with cross-sectional nonresponse and 

calibration adjustments (United States Census Bureau 

2006). For individuals present in the survey for only one of 

the years, we use the weight from that year. For persons 

present in both Jan 2001 and Jan 2002, we use the average 

of the two weights. The rule that we chose the average of 

the two weights is to minimize the variance of the 

composite estimator. The population group we used is the 

18-64 age group, and we excluded persons who were not in 

that category during both years. The weighted gross flow 

table from CPS is in Table 5.  
 
Table 4 

Gross flow table for SIPP, in Arizona 
 

  Jan 2002   

  Employed Unemployed

January 2001  Employed  2,491,029 73,204

 Unemployed  30,698 30,160

   2,625,091 

 
Table 5 
Gross flow table for CPS, in Arizona 
 

  January 2002  

  Employed Unemployed Missing

January 2001  Employed  1,129,656 38,848 689,497

 Unemployed  41,586 8,211 36,041

 Missing 606,549 57,549 

   2,607,937 

 
Since SIPP is considered as a no missing data case, we 

assumed kl klφ = ψ = 0 and use a Type 1 model in the data 

analysis. We adjusted each weight in the CPS data by the 

factor 2,625,091/2,607,937 to reach a single population total 

between the two time periods and a single population total 

between the two surveys. The number of observations in 

SIPP (frame )A  after combining January 2001 and January 

2002 are 551 and the design effect for unemployment is 

about 1.76, so An = 551/1.76 = 313. The design effect for 

unemployment in CPS (frame )B  is about 1.229, so Bn =  

1,020/1.229 = 830. Because the likelihood factors, the 

estimated parameters of probabilities from the five models 

(3) are all the same. We list the estimated probabilities and 

the standard errors from SIPP, CPS and data combining 

these two surveys in Table 6.  

 
Table 6 
Estimated transition probabilities using SIPP, CPS, and the 

dual frame method with SIPP and CPS. Standard errors are 
given in parentheses 
 

 
00p  01p  10p  11p   

SIPP 0.9489 

(0.0124) 

0.0279 

(0.0093) 

0.0117 

(0.0061) 

0.0115  

(0.0060)  

CPS 0.9088 

(0.0100) 

0.0454 

(0.0072)  

0.0353 

(0.0064) 

0.0106  

(0.0035)  

SIPP and CPS  0.9230 

(0.0080) 

0.0381 

(0.0058) 

0.0262  

(0.0050) 

0.0127  

(0.0030)  
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Due to confidentiality issues, no clustering information is 

available in the CPS public-use data sets. We used a product 

of the published design effect and the variance from 

multinomial sampling to estimate the variances from both 

SIPP and CPS data. The result from Theorem 1 was applied 

to estimate the variances of ˆklp  for k l, = 0, 1. In this 

special situation, the variance estimate from the combina-

tion of the two data sets is reduced to 2( ( ))A A Bn n n/ +  
2( ( )) ,A B A B BV n n n V+ / +  where AV  denotes the variance 

estimate from SIPP data and BV  denotes the variance 

estimate from CPS data. Table 6 shows that the standard 

errors are reduced by using the dual frame method.  

We also performed goodness-of-fit tests, developed in Lu 

(2007), for the five models in (3). The parameter estimates 

from the five models and results from the goodness-of-fit 

tests, are listed in Table 7. All five models fit the data well, 

so we recommend adopting the simplest model, Model 3, 

for the data.   
Table 7 

Estimated parameters and results of goodness of fit tests 
 

 Estimated Parameters df Corrected G 
2 p-value 

Model 1 1(0)t−λ  1(1)t−λ  (0)tλ  (1)tλ  3 3.03 0.39  

 0.246 0.395 0.277  0.302   

Model 2 1t−λ  tλ    5 8.58 0.12  

 0.255 0.278   

Model 3 0λ  1λ    5 6.61 0.25  

 0.262 0.353   

Model 4 1(0)t−λ  1(1)t−λ  tλ   4 4.10 0.39  

 0.246 0.397 0.278  

Model 5 1t−λ  (0)tλ  (1)tλ   4 6.74 0.15  

 0.255 0.277 0.313  

 
With the limited information available on the public-use 

data sets, we used simple weight adjustments to make the 

estimated population counts consistent with known totals. 

The SIPP and CPS weights in the data sets have already 

been calibrated and adjusted for nonresponse, so that the 

models for missing data mostly reflect the rotating panel 

design rather than attrition due to moving and other 

activities that might be related to employment status.  

Future research on these models might include using 

different weighting adjustments for the longitudinal surveys. 

In addition, different parameters could be used to distin-

guish observations that have partial classification because of 

the rotating panel design, and observations that have partial 

classification because of nonresponse. To do so, we could 

introduce a Markov Chain model similar to the one 

proposed by Stasny (1987). In the complete data model, 

individuals are allocated to the table according to a single 

multinomial distribution. At the second step of the process, 

which is also unobserved, each individual may be chosen to 

either rotate out of the sample after the interview for month 

1t −  or rotate into the sample before the month t  interview 

according to the sampling plan. Finally, in the third step of 

the process, each remaining individual may either lose its 

row classification or lose its column classification by other 

reasons. Using this model, we can model the nonresponse  

at both times (i.e., lose both the row and the column 

classifications).  
 

6. Conclusions  
In this article, we developed statistical methods for 

estimating gross flows from dual frame surveys. These 

methods are necessary to estimate changes in poverty status 

or employment status over time. We developed pseudo-

maximum likelihood estimators that use the dual frame 

structure and the properties of the two survey designs. Our 

models also account for effects of missing data when an 

individual drops out of the survey or when a rotation panel 

design is used, so they allow full use of partial information 

that may be provided by some households. We use a 

jackknife method to estimate the variance of estimators and 

examine the properties of the estimators. The results have 

been applied to real datasets.  

In this paper, the categories of the gross flow tables are 

defined independently from the sample outcomes. It is also 

possible to define the categories based on values that depend 

on the sample. For example, in social surveys, the poverty 

line might be defined using a percentile from the sample and 

the categories defined as “Below the poverty line” and 

“Above the poverty line.” Methods from this paper can be 

used to estimate gross flows if the category definitions 

depend on the sample, but the variance estimators need to 

account for the effect of estimating the category boundaries.  

Although the results in this paper are for dual frame 

surveys, the methods are general and could be extended to 

more than two surveys using PML estimators developed in 

Lohr and Rao (2006). As the number of frames increases, 

however, so does the complexity of possible missing data 

mechanisms. Misclassification error may also be more 

prevalent with a larger number of frames.  

Our research is done in the context of survey sampling, 

but it also applies to other settings in which data could be 

combined from two independent sources. As it becomes 

increasingly difficult for a single survey to cover the entire 

population of interest, we believe these methods for 

estimating gross flows can provide better coverage of the 

population with less expense. They also allow for 

supplementing a general population survey with surveys of 

specific subpopulations of interest.   
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Bayesian penalized spline model-based inference for finite population 
proportion in unequal probability sampling 

Qixuan Chen, Michael R. Elliott and Roderick J.A. Little 1 

Abstract 

We propose a Bayesian Penalized Spline Predictive (BPSP) estimator for a finite population proportion in an unequal 

probability sampling setting. This new method allows the probabilities of inclusion to be directly incorporated into the 

estimation of a population proportion, using a probit regression of the binary outcome on the penalized spline of the 

inclusion probabilities. The posterior predictive distribution of the population proportion is obtained using Gibbs sampling. 

The advantages of the BPSP estimator over the Hájek (HK), Generalized Regression (GR), and parametric model-based 

prediction estimators are demonstrated by simulation studies and a real example in tax auditing. Simulation studies show 

that the BPSP estimator is more efficient, and its 95% credible interval provides better confidence coverage with shorter 

average width than the HK and GR estimators, especially when the population proportion is close to zero or one or when the 

sample is small. Compared to linear model-based predictive estimators, the BPSP estimators are robust to model 

misspecification and influential observations in the sample. 
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1. Introduction 

 
Unequal probability sampling designs are commonly 

employed in data collection by science and government. 

Perhaps the simplest unequal probability design is stratified 

sampling, which samples units from different strata with 

different inclusion probabilities. Another important form of 

unequal probability sampling is probability-proportional-to-

size (pps) sampling, in which the inclusion probability is 

proportional to the value of a size variable measured for all 

population units.  

An unequal probability sampling design such as pps 

sampling is often used for efficient estimation of population 

means of continuous variables, for which the variance 

increases with size of unit. However, inferences about 

discrete variables are often also of interest in a multipurpose 

survey (e.g., Lehtonen and Veijanen 1998, Lehtonen, 

Särndal and Veijanen 2005). In this paper, we focus on 

methods of inference for finite population proportions from 

unequal probability sampling designs, based on an auxiliary 

variable measured for all the units in the population. We use 

pps sampling as a specific design to illustrate and assess our 

methods.  

The inclusion probabilities play important and somewhat 

different roles in design-based and model-based inference 

from unequal probability survey samples (Smith 1976, 1994; 

Kish 1995; Little 2004). In design-based inference, survey 

variables are fixed, and inference is based on the distribution 

of the sample inclusion indicators; the standard design-based 

approaches to estimation such as the Horvitz-Thompson 

(HT) estimator (1952) and its extensions weight sampled 

units by the inverse of their inclusion probabilities. These 

estimators are design consistent (Isaki and Fuller 1982) and 

provide reliable inferences in large samples without the need 

for modeling assumptions. However, these estimators are 

potentially very inefficient, as illustrated in Basu’s (1971) 

famous elephant example. Also, variance estimation is cum-

bersome because it requires second-order inclusion proba-

bilities. Corresponding confidence intervals are based on 

asymptotic theory, and may deviate from nominal levels for 

moderate or small sample sizes.  

Model-based inference predicts values of survey vari-

ables in the non-sampled units by including the inclusion 

probabilities as covariates in the prediction model (Little 

2004). Model-based prediction estimators are consistent and 

efficient under the assumed model, but are subject to bias 

when the underlying model is misspecified. This limitation 

motivates the development of flexible statistical models that 

are more robust to model misspecification. For continuous 

survey data, Zheng and Little (2003) estimated the finite 

population total using a nonparametric regression on a 

penalized spline (p-spline) of the inclusion probabilities. We 

propose here Bayesian P-Spline Predictive (BPSP) esti-

mators that are suitable for a binary, as opposed to contin-

uous, outcome. We adopt a Bayesian approach to inference 

for this model, since Bayesian methods often yield better 

inference for small sample problems, and are conveniently 

implemented for our proposed model via the Gibbs’ 

sampler. In this approach, auxiliary variables other than the 

inclusion probability can also be included in the model, but 
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the inclusion probability is singled out since modeling of 

this variable is prone to model misspecification. 

We compare the performance of BPSP estimators with 

Hájek (HK, Horvitz-Thompson-type) estimators and with 

Generalized Regression (GR) estimators for a binary out-

come proposed by Lehtonen and Veijanen (1998). The GR 

approach is a popular model-assisted modification of the 

design-based estimators that combines predictions from a 

model with design-weighted model residuals (Montanari 

1998), to yield estimates that are approximately design 

unbiased.  

Zheng and Little (2003; 2005) compared HT, p-spline 

prediction, and GR estimates of the total of a continuous 

survey variable by simulation. They found that p-spline 

model-based estimators had better root mean squared error 

than the other methods, and with jackknife standard errors 

providing superior confidence coverage to HT or GR 

inferences. We conduct similar comparisons for inference 

about a population proportion for a binary outcome, and 

show similar advantages for our BPSP estimator over the 

HK and GR alternatives.  

 
2. Design-based estimator 

 
Suppose that we have a finite population consisting of N  

identifiable units. Let Y  be the binary survey variable of 

interest and 1
1

N
i ip N Y−
=∑=  be the proportion of the 

population for which 1.Y =  Let iπ  denote the probability 

of inclusion for unit ,i  which is assumed to be known for all 

units in the finite population before a sample is drawn. An 

unequal probability random sample s  with elements 

1,... ny y  is then drawn from the finite population according 

to the inclusion probabilities 1, ..., .Nπ π  The design-based 

HK estimator in the discussion of Basu (1971) is defined as 

HK

/

ˆ .
1/

i i

i s

i

i s

y

p ∈

∈

π
=

π

∑

∑
 (1) 

The variance for HKp̂  can be estimated via linearization of 

the Yates-Grundy estimator (1953) of totals,  
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(2)

 

The Yates-Grundy variance estimator requires pairwise 

inclusion probabilities. When the pairwise inclusion proba-

bilities are not available, as in our simulations, the approxi-

mate formula proposed by Hartley and Rao (1962),  

2 2 2

2 3
1

1

1 1
( ) ,

ij i j

N

i j i j i j k
k

n

n

n n

n n =

−
π ≈ π π

− −
+ π π + π π − π π π∑

 

has frequently been used. An approximate 1 − α  level 
confidence interval for the population proportion HKp̂  is 

then obtained based on the normal approximation.  

 
3. Bayesian P-Spline Predictive (BPSP) estimator 
 
Royall (1970) argued for the use of models for finite-

population descriptive inferences by predicting the un-

observed values based on models, since model-based 

inferences should be more efficient than design-based 

inferences. To model the relationship between the binary 

outcome Y  and the continuous inclusion probability ,π  we 

need to fit a binary regression of Y  on .π  Parametric binary 
regressions, such as the linear or quadratic logistic or probit 

model, may not be adequate in fitting the data. One solution 

for this problem of inflexibility is to fit a binary regression 

on a spline of π  by adding some knots. However, too many 
knots may result in the roughness of model fit. One way to 

overcome this problem is to retain all of the knots but to 

constrain their influence, by fitting a binary p-spline 

regression model.  

Common methods for modeling a binary outcome are 

logistic and probit regressions, and they generally give 

similar results. We choose to adopt probit models in our 

study for computational convenience. The probit regression 

model for binary outcomes has an underlying truncated 

normal regression structure on latent continuous data. If the 

latent continuous data are known, the parameters in binary 

p-spline regression models can be estimated using standard 

approaches for normal p-spline regression models. In a 

Bayesian context, the posterior distribution of parameters in 

the probit p-spline model can be computed using Gibbs 

sampling (Albert and Chib 1993; Ruppert, Wand and 

Carroll 2003, chapter 16). In contrast, the logistic p-spline 

regression model requires a more complicated computation 

procedure such as the Metropolis-Hastings algorithm. The 

computational advantage makes the probit link function 

more desirable than the logit link function in Bayesian 

binary p-spline regression models.  

There are various types of p-splines. When applying p-

splines, we need to make choices on the degree and knot 

locations, and the basis functions used to present the model. 

We choose to use the truncated polynomial p-splines 

because they are simple and intuitive. More numerically 

stable estimators can be obtained using B-splines via 

orthogonalizing the truncated power bases (Eilers and Marx 
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1996). The probit truncated polynomial p-spline regression 

model has a generalized linear mixed model representation, 

1

0
1 1

( ( , , )) ( )
p m

k p

i i k i l i l
k l

E y b b k−
+

= =

Φ | β π = β + β π + π −∑ ∑  (3) 

2~ (0, )lb N τ  

1, ..., ; 1, ..., ,l m i n= =  

where 1( )−Φ ⋅  denote the inverse CDF of a standard normal 
distribution, and the constants 1 ... mk k< <  are m  selected 

fixed knots. A function such as ( ) pi k +π −  is called a 

truncated polynomial spline basis function with power ,p  

where ( ) pu +  is equal to { ( 0)}pu I u× ≥  for any real 

number .u  Since the truncated polynomial spline basis 

function has 1p −  continuous derivatives, higher values of 

p  lead to smoother spline functions. By specifying a 

normal distribution for ,b  the influence of the m  knots is 

constrained in Model (3), which is equivalent to smooth the 

splines via the penalized likelihood.  

The parameters in Model (3) can be estimated using 

generalized linear mixed model methods. An alternative 

Bayesian approach that simplifies computation is to assume 

weak prior and hyperprior distributions and use Gibbs 

sampling to obtain draws from the posterior distributions of 

the parameters as follow: the probit regression model for 

binary responses has an underlying normal regression 

structure on latent continuous data; if the latent data are 

known, the posterior distribution of the parameters can be 

computed using standard results for normal regression 

models; and given the posterior distribution of the para-

meters, the latent continuous data can be simulated from a 

suitable truncated normal distribution. (Ruppert et al. 2003, 

page 290) The detailed algorithm of Gibbs sampling is in 

the Appendix. In addition, the Bayesian inference for p-

spline regression can also been implemented using 

WinBUGS, the standard Bayesian analysis software 

(Crainiceanu, Ruppert and Wand 2005).  

The posterior distribution of the population proportion is 

simulated by generating a large number D  of draws and 

using the predictive estimator form ( ) 1

PRˆ (d
i s ip N y−
∈∑= +  

( )ˆ ),d
j s jy∉∑  where ( )ˆ d

jy  is a draw from the posterior 

predictive distribution of the thj  non-sampled unit of the 

binary outcome. The average of these draws simulates the 

Bayesian P-Spline Predictive (BPSP) estimator of the finite 

population proportion, and is denoted as BPSPˆ ,p  where 

1 ( )

BPSP PR
1

ˆ ˆ .
D

d

d

p D p−

=

= ∑  (4) 

The Bayesian analog of a 100 (1 )%× − α  confidence 

interval for the population proportion is a 100 (1 )%× − α  

credible interval, which can be formed in a number of 

different ways. We split the tail area α  equally between the 
upper and lower endpoints in the simulations. 

Firth and Bennett (1998) showed that any parametric 

logistic regression model containing an intercept term and 

the inverse of inclusion probabilities as a covariate, fitted by 

ordinary, unweighted maximum likelihood, was “internally 

bias calibrated” (IBC) for population proportions, and thus 

yields design consistency. This property is also true for 

logistic truncated polynomial p-spline regression models on 

the inverse of inclusion probabilities, fitted via penalized 

likelihood. With the probit link function used instead of the 

logit link function and fitted via Markov chain Monte Carlo 

algorithm instead of maximum penalized likelihood, the 

BPSP estimator may no longer have the IBC property. 

However, the similarity between the probit model and the 

logistic model implies that the predictive estimator based on 

a probit p-spline regression model is approximately design-

consistent. We believe that obtaining efficient estimates 

with close to nominal confidence coverage in finite samples 

is more important than exact design consistency. 

 
4. Generalized Regression (GR) estimator 

 
For the estimation of class frequencies of a discrete 

response variable, Lehtonen and Veijanen (1998) proposed 

a GR estimator GRt̂  of the total, which combines the 

predicted values ˆˆ Pr ( 1 )i i iy Y= = | π  based on a suitable 

model and the HT estimator for the residuals ˆi i ir y y= −  

of the sampled units,  

GR
1

ˆ ˆ / .
N

i i i
i i s

t y r
= ∈

= + π∑ ∑  (5) 

The GR estimator in Equation (5) is then used in constructing 

an estimator for population proportions by dividing by the 

known population size N  (Duchesne 2003),  

GR _1
1

1
ˆ ˆ / .

N

i i i
i i s

p y r
N = ∈

 
= + π 

 
∑ ∑  (6) 

We also consider here another version of the GR 

estimator for the estimation of finite population proportions, 

in which the denominator of the bias calibration term for the 

residuals ir  is the estimated population size 1/ ,i s i∈∑ π  

( )( ) 1

GR _ 2
1

1
ˆ ˆ / 1/ .

N

i i i i
i i s i s

p y r
N

−

= ∈ ∈

= + π π∑ ∑ ∑  (7) 

For the variance estimate of (6), we use the variance 

estimator of the estimated total of a discrete response 

variable, given by Lehtonen and Veijanen (1998), divided 

by 2.N  For the variance estimate of (7), we apply the 
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Taylor linearization technique (Särndal, Swensson and 

Wretman 1992, page 182). These two variance estimators 

are shown in equations (8) and (9), respectively. 

GR _1 2

1ˆ ˆ( ) ,kl k l k l

k s l s kl k l

r r
V p

N ∈ ∈

π − π π
=

π π π
∑∑  (8) 

( ) 2

GR _ 2
ˆ ˆ( ) 1/ ,kl k l k l

i
i s k s l s kl k l

e e
V p

−

∈ ∈ ∈

π − π π
= π

π π π
∑ ∑∑  (9) 

where 1( / ) ( 1/ ) .i s i sk k i i ie r r −
∈ ∈∑ ∑= − π π  These variance 

estimators also require pairwise inclusion probabilities, 

which can be approximated by the method of Hartley and 

Rao (1962).  

However, the Hartley and Rao approximation may lead 

to bias in the variance estimator. Thus, we also consider the 

jackknife method for variance estimation (Shao and Wu 

1989). The sample is stratified into /n G  strata each of size 

G  with similar values of inclusion probabilities, and the G  

subgroups are then constructed by selecting one element at a 

time from each stratum without replacement (Zheng and 

Little 2005). Let ( )ˆ gp  be the same GR estimators in (6) and 

(7) calculated from the reduced sample without the elements 

in the thg  subgroup, and let p  be the average of the G  

estimators based on the G  reduced samples. The jackknife 

variance estimator of GRp̂  is  

2

jackknife GR ( )
1

1ˆ ˆ ˆ( ) ( ) .
G

g
g

G
V p p p

G =

−
= −∑  (10) 

A design-weighted logistic regression model on other 

covariates was used as the assisting model to predict ˆiy  in 

the GR estimators for binary outcomes (Lehtonen and 

Veijanen 1998; Lehtonen et al. 2005). Since our interest 

here is in comparisons of GR estimators with the BPSP 

estimator, we apply the estimators (6) and (7) with linear 

probit regression models and probit p-spline models, as 

described in detail in Section 5. For the GR estimator using 

a linear probit model as the assisting model, we use the 

inclusion probability as a covariate as well as a weight in 

our simulations.  

 
5. Simulation study 

 
5.1 Design of the simulation study 
 
Simulation studies are conducted to study the perfor-

mance of the BPSP estimator compared with the HK 

estimator, the GR estimators, and the linear model-based 

predictive estimators for a variety of populations in pps 

sampling. We present the simulation results for the 

following six estimators: 

a) HK, the Hájek estimator defined by equation (1).  

b) LR, predictive estimator of the form 1

LRp̂ N −=  
LRˆ( )i s j si jy y∈ ∉∑ ∑+  with prediction LRˆ jy  obtained 

with the maximum likelihood predictions from the 

linear logistic regression model containing a constant 

term and the reciprocal inclusion probability as the 

covariate. LR has the IBC property, and hence is 

design-consistent. LR is exactly the same as its GR 

estimator in equation (6).  

c) PR, predictive estimator of the form 1

PRp̂ N −=  
PRˆ( )i s j si jy y∈ ∉∑ ∑+  with prediction PRˆ jy  from the 

Bayesian linear probit model containing an intercept 

term and the inclusion probability as the covariate. 

d) PR_GR, the GR estimator in equation (7), where ˆiy  

is the prediction for unit i  with unknown parameters 

replaced by weighted maximum likelihood estimates 

from the probit model with a constant term and the 

inclusion probability as the covariate. 

e) BPSP, the BPSP estimator defined by equation (4) 

with 1p =  and inverse-gamma prior distribution for 
2τ  and using 15 knots. 

f) BPSP_GR, the GR estimator in equation (7), where 

ˆiy  is the posterior mean of Pr ( 1 )i iY = | π  from the 

BPSP model. 
 
We only report the simulation results based on the linear 

splines for the BPSP estimator, since simulations not shown 

here suggest that linear splines perform as well as quadratic 

splines or cubic splines in all the simulation scenarios. We 

choose two fixed numbers of knots (15 or 30), and place 

knots at evenly spaced sample percentiles. The choices of 

knots work well and a number of 15 knots is good enough 

to catch the curvatures in our simulations. In addition, the 

GR estimators in (6) perform similarly to the estimators in 

(7); some differences between these estimators emerge in 

the real application in Section 6, leading us to prefer (7) 

over (6).  

We simulated two artificial populations of size 2,000, 

using two different distributions, with sampling rates of 5% 

and 10%, where the size variable takes the consecutive 

integer values 71, 72, ..., 2,070. The inclusion probabilities 

in the population were then calculated as proportional to the 

size variable, with the maximum value about 30 times the 

minimum values.  

Continuous data Z  were first generated from normal 

distributions with mean structure ( )f π  and constant error 

variance 0.04. Two different mean structures ( )f π  were 

simulated: a linearly increasing function (LINUP) ( )if π =  

1 ik π  and an exponential function (EXP) ( )if π =  

2exp( 4.64 ).ik− + π  To make the range of Z  similar 

across different mean structures, 1k  takes values of 3 and 6, 

and 2k  takes values of 26 and 52, when the sampling rate is 
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10% and 5%, respectively. Figure 1 plots the two 

populations. We then generated the binary outcome variable 

1,Y  where 1Y  is equal to one if Z  is less than or equal to its 

superpopulation 10
th
 percentile, otherwise 1Y  is equal to 

zero. Similarly, we generated the binary outcomes 2Y  and 

3Y  by using the superpopulation 50
th
 and 90

th
 percentiles of 

Z  as cut-off values. The target of inference here is the 

population proportion with Y  equal to one.  

In each simulation replicate, a finite population was 

generated before a sample was drawn, and the true finite 

population proportion with Y  equal to one was calculated 

and denoted as .p  A pps sample was then drawn 

systematically from a randomly ordered list of the finite 

population. For each population and sample size 

combination, 1,000 replicates were obtained and the six 

estimators were compared in terms of empirical bias, root 

mean squared error (RMSE), and the non-coverage rate of 

the 95% confidence /credible interval. Simulation results are 

presented in Tables 1 through 3. Let ˆ ip  be an estimate of 

ip  based on the 
thi  pps sample, the empirical bias and 

RMSE are defined as follow, 

1,000

1

1
ˆBias ( ),

1,000
i i

i

p p
=

= −∑  

1,000
2

1

1
ˆRMSE ( ) .

1,000
i i

i

p p
=

= −∑  

 
5.2 Simulation results  
Figure 2 shows the posterior means of Pr ( 1 )i iY = | π  

and 95% credible intervals based on the Bayesian probit 

linear p-spline model for a random pps sample from the 

EXP case. The upper left plot is the scatter plot of the 

continuous variable Z  in a pps sample, with three 

horizontal parallel lines superimposed, representing the 

superpopulation 10
th
, 50

th
, and 90

th
 percentiles, respectively. 

In the upper right plot, the binary variable ,Y  defined as 1 if 

Z  is less than or equal to the superpopulation 10
th
 

percentile, are plotted with black circles, and the 

superpopulation Pr ( 1 )i iY = | π  are plotted with a solid 

black curve. The solid grey curve and two dashed grey 

curves are the posterior means of Pr ( 1 )i iY = | π  and 95% 

credible intervals based on the Bayesian probit linear p-

spline regression model. The other two plots are similar to 

the upper right plot, but with superpopulation 50
th
 and 90

th
 

percentiles as cut-off values in defining .Y  These plots 

show that the true probabilities of 1Y =  fall within the 

95% credible intervals, and are close to the posterior means 

of Pr ( 1 ).i iY = | π  We conclude that the Bayesian probit p-

spline regression model fits well for the binary outcomes in 

the nonlinear case.  

Table 1 shows the empirical bias (×10
3
) for the six 

estimators in the two populations generated via LINUP and 

EXP. Overall the design-based estimators (a, d, and f) are 

less biased than the model-based estimators (b, c, and e). In 

the LINUP case, the linear probit regression model is 

correctly specified, so that the empirical bias of the PR 

estimators are similar to the empirical bias of the BPSP 

estimator; while in the EXP case, a nonlinear probit 

regression is needed to fit the data, and thus the PR 

estimator is more biased than the BPSP estimator when the 

true population proportions are 0.1 and 0.5. However, the 

LR estimator has similar to the BPSP estimator empirical 

bias because of the IBC property. Compared to the model-

based PR and BPSP estimators, the PR_GR and BPSP_GR 

estimator reduce the bias by adding the bias calibration 

term. Moreover, no matter which assisting models were 

used, both GR estimators achieve similar empirical bias. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1 Two simulated artificial populations (N = 2,000) 
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Figure 2 A random pps sample from the EXP case (n = 200, N = 2,000): (a) scatter plot of Z; the three 

grey lines are the superpopulation 10th, 50th, and 90th percentiles, respectively. (b) black 
circles are observed units of binary survey variable Y in the sample, defined as Y = I (Z ≤ 
10th percentile); the grey solid and dashed curves are posterior means of Pr(Yi = 1|πi) and 

95% credible intervals, respectively, simulated based on a probit p-spline model on π; and 
the black curve is the superpopulation Pr(Yi = 1|πi). (c) similar to (b), but with Y = I (Z ≤ 50

th 
percentile). (d) similar to (b), but with Y = I (Z ≤ 90th percentile) 

 
Table 1 
Empirical bias × 1,000 of six estimators (Minimum absolute bias within a row is in italic print) 

 

Population n True prop. HK LR PR PR_GR BPSP BPSP_GR 

0.10 -0.01 13.0 10.3 1.6 8.0 1.2 

0.50 -4.0 -2.9 -4.3 -3.0 -5.2 -3.3 

100 

0.90 -0.4 0.3 -2.5 0.3 -2.9 0.08 

0.10 2.5 7.9 5.8 1.5 5.1 1.4 

0.50 3.3 -0.1 -1.3 -0.06 -1.7 -0.2 

LINUP 

 

 

 

 

 

200 

0.90 1.6 0.4 -1.0 0.3 -1.2 0.3 

0.10 1.2 18.1 25.8 4.7 17.0 3.9 

0.50 -4.0 -3.5 12.5 -1.6 -1.4 -3.4 

100 

0.90 -1.3 -0.2 -1.0 -0.1 -1.0 -0.2 

0.10 3.1 11.0 22.1 3.5 13.4 2.7 

0.50 3.8 -0.6 14.0 0.4 0.01 -0.7 

EXP 

 

 

 

 

 

200 

0.90 2.3 0.1 -0.7 0.1 -0.7 0.02 
   

 

Table 2 shows the empirical root mean squared error 

(×10
3
) for the six estimators. The BPSP estimator has much 

smaller empirical root mean squared error than the HK 

estimator, except when p  is 0.1 in the EXP case. Overall 

the PR estimator performs similarly to the BPSP estimator. 

To protect again model misspecification, the GR estimators 

lose some efficiency compared to their corresponding 

model-based predictive estimators. The PR_GR estimator 

has similar to the BPSP_GR estimator RMSE, but both of 

the two GR estimators have smaller RMSE compared to the 

HK estimator by using assisting models. 

Table 3 shows the noncoverage probability (×10
2
) of 

95% confidence/credible intervals, the probability that the 

true finite population proportion is outside the 95% CI of the 
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estimators. To calculate the variances of estimators, we use 

the Yates-Grundy variance estimator as defined in equation 

(2) for the HK estimator; use jackknife resampling method 

defined by equation (10) for the LR estimator; and use both 

the linearization (V1) method defined by equation (9) and 

the jackknife resampling (V2) method for the PR_GR and 

BPSP_GR estimators. Overall, the confidence coverage of 

credible interval for the BPSP estimator is closer to the 

nominal level than the other five estimators, especially when 

the population proportion p  is close to zero or one or when 

few observations are selected into sample in the tails. 

Specifically, the BPSP estimator achieves significant 

improvement in coverage when p  is close to zero in both 

the LINUP and EXP cases, since little data are included in 

the sample from the lower tail of the two populations. Note 

that the improved coverage of the BPSP estimator is 

achieved with intervals that are narrower on average than 

those of the HK, LR, PR_GR, and BPSP_GR estimators. 

Similar to the empirical bias and RMSE, the BPSP_GR 

does not improve the coverage in comparison to the PR_GR 

estimator by using a flexible assisting model. 

The choice of prior and hyperprior distributions in mixed 

models can have a big effect on inferences. We used a prior 

distribution 6(0,10 )N  for the fixed effects parameters, .iβ  

In our simulations, we report results based on a proper 

inverse-gamma prior distribution for 2,τ  namely 
2 IG (0.1,0.1).τ ∝  To assess sensitivity to the choice of 

prior distributions, we also computed results using 
2 IG (0.01,0.01)τ ∝  and 2 IG (0.001,0.001),τ ∝  as well 

as an improper uniform prior distribution on τ  (Gelman 
2006). These different priors had little impact on posterior 

inference of the proportion of interest.  

 
6. Example of tax auditing  

We now compare the BPSP estimator with alternative 

methods on a real population involving income tax auditing 

data (Compumine 2007). The data set consists of 3,119 

Swedish income tax returns for persons who during the year 

sold mutual funds managed in a foreign country. The 

outcome of interest Y is whether the income tax return is 

incorrect (coded as 1 for incorrect, and 0 for correct), and it 

is measured for all observations in this data set. We treated 

the 3,119 income tax returns as a finite population here, so 

that the true population proportion of incorrect income tax 

returns is 0.517. Since the amount of the realized positive 

profit is an important feature for determining the amount the 

tax payer has hidden from taxation for his return of income 

from the sale of a foreign fund, it was chosen as the size 

variable used in drawing pps sampling. When the primary 

measure of interest is the total amount the tax payer has 

hidden from taxation, it is reasonable to assign a value of 1 

Swedish Krona to negative profits, the minimum amount of 

the positive profits, where negative values are not allowed in 

the size variable. 

One thousand repeated systematic pps samples of size 

300 and 600 were drawn without replacement from 

randomly ordered population lists. The returns with largest 

profits were included with certainty into the samples of size 

300 and 600: there were 78 and 241 such returns respec-

tively. Figure 3 shows that the probability of inclusion has a 

right-skewed distribution for the population even after 

excluding the observations with inclusion probability of 1.  

We applied the same six estimators as in the simulation 

study with 30 knots on the pps samples, and compared their 

performances in terms of empirical bias, RMSE, and 

average width and noncoverage rate of the 95% confidence/ 

credible interval. For the BPSP estimator, a fixed number of 

30 knots are placed at evenly spaced sample percentiles of 

the inclusion probabilities. For the GR estimators, neither 

the linearization nor the jackknife variance estimator has 

predominantly better performance than the other, we present 

the inference based on the linearization variance estimator 

for simple calculation. We report the GR estimators based 

on both equations (6) and (7). The results are displayed in 

Table 4.  

 

 

Table 2 
Empirical RMSE × 1,000 of six estimators (Minimum RMSE within a row is in italic print) 

 

Population n True prop. HK LR PR PR_GR BPSP BPSP_GR 

0.10 55.1 57.1 46.3 51.3 47.2 51.7 

0.50 65.2 50.8 47.1 49.7 47.7 50.0 

100 

0.90 26.3 22.6 23.3 22.7 23.5 22.9 

0.10 39.3 40.9 31.8 36.1 32.0 36.2 

0.50 45.7 35.9 32.8 34.3 32.8 34.6 

LINUP 

 

 

 

 

 

200 

0.90 17.8 15.4 15.5 15.4 15.5 15.3 

0.10 51.2 60.1 54.4 51.6 51.8 52.4 

0.50 66.1 56.0 43.0 53.2 47.0 51.7 

100 

0.90 24.2 12.4 12.3 12.4 12.3 12.3 

0.10 35.9 42.4 39.6 35.6 36.0 36.2 

0.50 45.1 38.9 31.3 36.1 32.1 35.1 

0.90 15.8 8.0 8.1 8.0 8.0 8.0 

EXP 

 

 

 

 

 

200 
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Table 3 
Noncoverage rate of 95% CI × 100 of six estimators (noncoverage rate within a row closest to 5 is in italic print) 

 

PR_GR BPSP_GR Population n True 
prop. 

HK LR PR 

V1 V2 

BPSP 

V1 V2 

0.10 16.2 18.0 8.4 20.9 16.1 9.0 18.4 14.2 

0.50 7.5 9.4 5.0 7.2 7.6 4.4 7.3 7.1 

100 

0.90 7.4 11.4 5.7 8.0 9.4 5.4 8.4 7.1 

0.10 10.8 12.6 6.4 13.9 10.9 6.2 12.6 9.4 

0.50 5.5 8.3 5.5 6.2 5.9 5.1 6.0 5.5 

LINUP 

 

 

 

 

 

200 

0.90 6.0 8.4 4.4 6.1 4.4 4.7 6.3 5.5 

0.10 15.0 18.1 10.5 19.4 14.8 9.2 18.4 14.4 

0.50 7.4 13.5 12.2 9.0 11.4 8.9 10.2 8.4 

100 

0.90 6.1 10.5 7.9 9.9 7.6 7.0 9.8 7.2 

0.10 10.8 13.3 9.9 12.5 11.7 7.5 12.4 9.4 

0.50 6.0 11.5 14.3 7.2 8.5 6.2 7.5 6.9 

EXP 

200 

0.90 5.5 8.8 5.5 6.8 4.6 5.5 6.6 3.7 

* V1: variance estimator using linearization; V2: jackknife variance estimator. 
 

 

 
 

 
 

 

 
 

 
 

 

Table 4 shows that the BPSP estimator has slightly 

increased bias but smaller RMSE, shorter average width and 

closer to the nominal level credible interval than the design-

based estimators (a), (d), and (f). Results not shown here 

indicate that the BPSP estimator with a uniform prior 

distribution has slightly better performance than that with 

inverse-gamma prior distribution with respect to empirical 

bias, RMSE, and coverage rate, because there are more 

fluctuations in the data and the uniform prior allows the 

fitted function to have more flexibility. The BPSP_GR 

estimator is less biased, but achieves less efficiency and 

worse coverage rate than the BPSP estimator. The 

predictive estimator using the probit linear regression model 

as prediction model performs poorly here since the model is 

misspecified, but its GR estimator does reduce bias and 

RMSE and improve coverage rate. The BPSP_GR estimator 

based on equation (6) performs very poorly in terms of 

RMSE compared to the estimator in equation (7), because a 

situation similar to that in Basu’s (1971) circus elephant 

example occurs, where one or more observations having 

very low inclusion probabilities are selected into the sample 

and hence receive large weights. However, the PR_GR 

estimator in equation (6) performs as well as that in equation 

(7) with predictions obtained from the weighted maximum 

likelihood estimates, where inclusion probability is used as a 

covariate as well as the sample weights. Overall, the GR 

estimator in equation (7) is more desirable than that in 

equation (6). As the sample size increases from 300 to 600, 

the noncoverage probability of the 95% credible interval of 

the BPSP estimator approaches the nominal level of 5% 

quickly from 14% to 5%, but the coverages are consistently 

below the nominal level for the other estimators.  

Compared to the linear model-based predictive esti-

mators, the BPSP estimator is robust not only to model 

misspecification, but also to the influential observations in 

the sample. To demonstrate the robustness to the influential 

observations, we compare the changes in the model fitting 

using probit p-spline models, linear probit model, and 

quadratic probit model based on the pps sample only in 

Figure 4, and based on the pps sample as well as the 

observations with inclusion probabilities of 1 in Figure 5. In 

each figure, the population is stratified by the 100 quantiles 

of the probabilities of inclusion, and the true probabilities of 

1Y =  are calculated and plotted with a black dot for each 

stratum. The grey curves are the posterior means of 

Pr ( 1 )i iY = | π  from 10 random pps samples using 3,000-

iterate Gibbs sampler and linear spline in the left plot, using 

linear probit regression in the middle plot, and using 

quadratic probit regression in the right plot. Figure 4 shows 

that the probit p-spline regression model is more flexible in 

catching the pattern among the observations than the 

parametric models. From Figure 4 to Figure 5, the posterior 

means of Pr ( 1 )i iY = | π  do not change except for those 

with very large inclusion probabilities using the p-spline 

model. However, the posterior means curves change 

dramatically using the quadratic probit regression. These 

comparisons indicate that probit p-spline regression model 

is less likely affected by influential observations, and hence 

is a good choice of prediction model in the model-based 

inference.  

 
7. Discussion  

Bayesian inferences based on the p-spline model 

outperform the HK estimator, the GR estimators, and linear 

model-based prediction estimators in our simulations. The 

BPSP estimators are more efficient than the HK and GR 

estimators, and despite slightly higher empirical bias, their 

95% credible intervals provide better confidence coverage 

and shorter average interval width, especially when the 

population proportion is closer to zero or one and few data 

are selected into the sample in the tails. This suggests the 

importance of current research in estimating finite 

population prevalence of rare events. 
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The BPSP estimator is a natural extension of the regular 

linear regression model-based estimators of finite popu-

lation proportions. Compared to linear model-based predict-

tive estimators, the BPSP estimator achieves robustness to 

model misspecification and influential observations in the 

sample by using a flexible p-spline model, without much 

loss of efficiency for the sample sizes considered. Therefore, 

the BPSP estimator is easy to understand while requires 

complex computation. However, with the availability of 

WinBUGS, the Bayesian statistical software, the BPSP 

estimator can be easily implemented by survey practitioners. 

 
Table 4 
Comparison of various estimators for empirical bias, root mean squared error, and average width and noncoverage rate of 95% 
CI, in the tax return example 
 

               bias*100              RMSE*100                 average width*100                noncoverage*100 Methods 

300 600 300 600 300 600 300 600 

HK -2.4 -1.8 12.4 10.2 36 29 14.1 10.2 

LR 6.7 5.5 11.9 9.2 27 21 43.5 45.6 

PR -11.6 -10.1 12.4 10.6 18 14 69.8 83.4 

PR_GR1 -1.2 -0.4 11.5 8.7 31 25 22.4 16.8 

PR_GR2 -1.2 -0.3 11.5 8.8 33 26 16.1 11.4 

BPSP -6.8 -2.7 9.3 5.2 27 19 14.2 5.0 

BPSP_GR1  -3.0 -0.5 102.6 56.9 77 57 14.4 9.2 

BPSP_GR2  -0.7 0.2 12.0 10.1 34 26 15.9 12.8 

* GR_1: GR estimators using equation (6);  
   GR_2: GR estimators using equation (7). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3 Box plots of the probabilities of inclusion for two sample sizes in the tax auditing example 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4 Predictions based on pps samples only in the tax auditing example, X-axis: inclusion 

probabilities π, Y-axis: P(Y = 1|π); black dots are the true P(Y = 1|π) within each percentile 
of π; grey curves are ten realizations of the posterior means of P(Y = 1|π). The prediction 
models are (a) probit linear p-spline regression, (b) linear probit regression, (c) quadratic 

probit regression 

                                          n = 300                                                                           n = 600          
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Figure 5 Predictions based on the combined data of pps samples and the observations sampled with 

certainty in the tax auditing example, X-axis: inclusion probabilities π, Y-axis: P(Y = 1|π); 

black dots are the true P(Y = 1|π) within each percentile of π; grey curves are ten 
realizations of the posterior mean of P(Y = 1|π). The prediction models are (a) probit 
linear p-spline regression, (b) linear probit regression, (c) quadratic probit regression 

 

 

The BPSP estimators are not sensitive to two choices of 

prior distributions of 2τ  considered here, though it appears 

from the tax auditing example that the uniform prior yields 

slightly smaller bias and RMSE, shorter 95% credible 

intervals, and better coverage when a nonlinear prediction 

model is needed. The tax auditing example also shows that 

in the GR estimator, an estimated population size using the 

sum of inverse inclusion probabilities is more desirable than 

the true population size when one or more observations with 

very low inclusion probability are included in the sample, 

since the GR estimator with denominator N  has high 

variance and low efficiency in this case. 

The design-based estimators and their 95% confidence 

intervals can provide valid inferences for population propor-

tions when the sample is large. However, these asymptotic 

properties do not appear to hold when the sample size is 

moderate or small. The BPSP approach can provide more 

valid inferences for small samples, especially when the true 

population proportion to be estimated is close to 0 or 1, 

although confidence coverage appears to be less than 

nominal when the sample size gets small, and lack of 

parsimony of the model is an issue. When estimating 

proportions away from tails, the BPSP estimator leads to 

slightly smaller RMSE and closer to the nominal level 

confidence coverage than the HK and GR estimators, but 

the improvement is not so significant as in the tails. In this 

scenario, to avoid the complex computation of the BPSP 

estimator, the PR_GR estimator based on equation (7) is an 

alternative to the survey practitioners.  

The choice of variance estimator is problematic for some 

unequal probability designs for the design-based estimators, 

but the Bayesian p-spline prediction approach provides a 

simulation approximation of the full posterior distribution of 

the population proportion. Extra work is not needed to 

estimate the variance or 95% credible interval for the BPSP 

estimator, as it can be obtained simultaneously with the 

point estimators. In Zheng and Little (2005), three variance 

estimators of the p-spline model-based estimator for finite 

population total in a pps sample were compared, including 

the model-based empirical Bayes variance estimator, the 

jackknife variance estimate, and the balanced repeated 

replication (BRR) variance estimate. The simulation studies 

showed that the jackknife method worked well, whereas the 

BRR method tended to yield conservative standard errors 

and the model-based empirical Bayes estimator was 

vulnerable to misspecification of the variance structure. In 

the present work, the 1 − α  level credible interval for the 
BPSP estimator of population proportion is constructed by 

splitting α  equally between the upper and lower endpoints 
of the posterior distribution of .p  This pure Bayesian 

approach based on draws from the posterior distributions 

seems to work well in our setting and avoids the heavy 

computation associated with the jackknife and BRR 

method. 

The BPSP estimator we propose here can be extended to 

include additional auxiliary covariates by adding linear 

terms for these variables. For domain estimation, an 

interaction term between the spline of inclusion probabilities 

and the domain indicator should also be modeled. Both the 

additive effects of auxiliary variables and the interaction 

between the domain indicator and inclusion probabilities 

can be represented in a mixed model (Ruppert et al. 2003, 

page 231) and estimated using Gibbs sampling or 

WinBUGS (Crainiceanu et al. 2005). The BPSP estimator 

for finite population proportions can also be extended to a 

more general case of a polychotomous response. The Gibbs 
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sampling approach for the binary case can be generalized to 

the case of ordered categories, and can be applied to the 

unordered categories with a latent multinomial distribution 

(Albert and Chib 1993). Another extension for the BPSP 

estimator is in the small area estimation, by combing small 

area random effects with the smooth spline on the inclusion 

probabilities (Opsomer, Claeskens, Ranalli, Kauermann and 

Breidt 2008). This extension will be the focus of future 

research.  

Finally, one reviewer questioned whether the proposed 

approach can be applied in a multipurpose survey with 

many outcomes, since the modeling procedure does not 

provide a single set of weights and needs to be repeated for 

all variables of interest. It is true that our methods are more 

computationally intensive than existing approaches, but the 

BPSP method can be easily implemented with a Gibbs 

sampling algorithm or using WinBUGS, so computing is 

not a major obstacle. We point out that the simulations in 

the paper involved repeating the iterative Gibbs analysis 

6,000 times, so an equivalent level of computation on a 

single survey of comparable size would allow the imple-

mentation of the BPSP method for 6,000 outcomes! These 

were done on a garden-variety laptop PC. While we do not 

advocate automatic use of any analytical method, design or 

model-based, our point is that computational complexity is 

no longer a major obstacle to applying these methods. We 

suggest that the statistical properties of a method are more 

important than computing time, given modern day com-

puting resources. 
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Appendix  

Algorithm of Gibbs sampling  
Model (3) can also be written in the matrix form, 

1( ( , , , )) ( ) ,i iE y b X Z X Zb−Φ | β = β + 1,...,i n=  

0 1( , , ..., ) ,Tpβ = β β β 2

1( ,..., ) ~ (0, )m m mb b b N I= τ  

1 1 11 1

1

( ) ... ( )1 ...

. . ... . . ... .

, .. . ... . . ... .

. . ... . . ... .

1 ... ( ) ... ( )

p pp

m

p p p
n n n n m

k k

X Z

k k

+ +

+ +

   π − π −π π
  
  

= =  
  
  π π π − π −   

 

The algorithm of Gibbs sampling for estimating the 

parameters in Model (3) is as follows:   
a) The probit regression model for the binary outcome 

1[ , ..., ]Tny y y=  corresponds to a normal regression 

model for a latent continuous data * *

1[ , ...,y y=  
* ] ,Tny  which has a truncated multivariate normal 

distribution with mean ( )X Zbβ +  and identity 

covariance matrix (Albert and Chib 1993), and iy  is 

the indicator that * 0.iy >  With some initial values of 

( , ),bβ  values of the latent continuous data *

iy  can 

be simulated.  

b) Specifying a proper flat normal prior distribution 
6(0,10 )N  on β  and an inverse gamma distribution 

IG (0.1,0.1)  on 2,τ  the posterior distribution of 
2( , , )bβ τ  given the simulated latent continuous data 

*y  is  

2 *

2 1 *

1

2 1

2 2

( , ) | ,

~ MVN (( / ) ,

( / ) )

| , ~ IG (0.1 / 2, 0.1 / 2),

T T

m p

T

b y

C C D C y

C C D

b m b

−
+ +

−

β τ

+ τ

+ τ

τ β + + || ||

 

(11)

 

where [ , ]C X Z=  and D  is a diagonal matrix with 

1p +  values of 10
-6
 followed by m  ones on the 

diagonal. Gelman (2006) recommended a uniform 

prior distribution on ,τ  which results in the posterior 
distribution for 2τ  as  

2 2| , ~ IG (( 1) / 2, / 2)b m bτ β − || ||  (12) 

c) At iteration ,t  draws of ( ) ( ) 2( )( , , )t t tbβ τ  from the 

posterior distribution in equation (11) or (12) are used 

to generate new latent data *( )ˆ ty  conditional on 

observed binary variable y for the sample, and to 

obtain the posterior predicted values ( )ˆ ty  for non-

sample units. We then can obtain draws from the 

posterior distribution of the finite population 

proportion at iteration t  as 

( )( ) 1 ( )

PRˆ ˆt t

i j
i s j s

p N y y−

∈ ∉

= +∑ ∑  
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The effect of nonresponse adjustments on variance estimation 

David Haziza, Katherine Jenny Thompson and Wesley Yung  1 

Abstract 

Many surveys employ weight adjustment procedures to reduce nonresponse bias. These adjustments make use of available 

auxiliary data. This paper addresses the issue of jackknife variance estimation for estimators that have been adjusted for 

nonresponse. Using the reverse approach for variance estimation proposed by Fay (1991) and Shao and Steel (1999), we 

study the effect of not re-calculating the nonresponse weight adjustment within each jackknife replicate. We show that the 

resulting ‘shortcut’ jackknife variance estimator tends to overestimate the true variance of point estimators in the case of 

several weight adjustment procedures used in practice. These theoretical results are confirmed through a simulation study 

where we compare the shortcut jackknife variance estimator with the full jackknife variance estimator obtained by re-

calculating the nonresponse weight adjustment within each jackknife replicate. 

                                                           
1. David Haziza, Département de mathématiques et de statistique, Université de Montréal, Montréal, H3C 3J7, Canada. E-mail: 

David.haziza@umontreal.ca; Katherine Jenny Thompson, U.S. Census Bureau, Washington, DC 20233. E-mail: Katherine.J.Thompson@census.gov; 

Wesley Yung, Statistics Canada, Ottawa, Ontario, K1A 0T6. E-mail: wesley.yung@statcan.gc.ca. 

  

Key Words: Calibration; Nonresponse adjustment; Unit nonresponse; Jackknife variance estimator; Linearization 

variance estimator. 

 

 

 

1. Introduction 

 
Unit nonresponse, which occurs when, for a sample unit, 

all the survey variables are missing or when not enough 

usable information is available, is unavoidable in surveys. 

To address this, the nonrespondents are deleted from the 

data file and the survey weights of the respondents are 

adjusted to compensate for the deletions. The primary 

objective of a weight adjustment procedure is to reduce the 

nonresponse bias, which is introduced when respondents 

and nonrespondents are different with respect to the survey 

variables. Key to achieving an efficient bias reduction is the 

use of powerful auxiliary information available for both 

respondents and nonrespondents.  

In this paper, we consider jackknife variance estimation 

in the presence of unit nonresponse. This variance 

estimation method is widely used in practice because of its 

theoretical properties and computational ease. In contrast to 

Taylor linearization procedures, the jackknife method does 

not require a separate derivation for each parameter of 

interest nor the second-order inclusion probabilities that 

may be difficult to obtain in complex surveys. When using a 

jackknife variance estimator in the context of nonresponse, 

there is some question of whether or not the nonresponse 

adjustment needs to be replicated (e.g., Valliant 2004). In 

this paper, we consider two jackknife variance estimators: 

(i) a full jackknife variance estimator which recalculates the 

nonresponse adjustment factor within each jackknife 

replicate and (ii) a shortcut jackknife variance estimator, 

which does not. The shortcut jackknife variance estimator is 

convenient in practice but its theoretical properties were not, 

to our knowledge, fully studied in the literature. Production 

reasons tend to drive the usage of a shortcut jackknife 

variance estimator, since the full jackknife variance 

estimator in the context of stratified sampling can be quite 

time-consuming and computer resource-intensive, espe-

cially when a survey utilizes a large number of weighting 

cells. Some recent studies conducted at the U.S. Census 

Bureau (Thompson 2005 and Ozcoskun, Thompson and 

Williams 2005) found negligible differences between 

variance estimates obtained using a fully replicated weight 

adjustment procedure and those obtained using a “shortcut” 

procedure with stratified jackknife, delete-a-group jack-

knife, and modified half sample variance estimators. 

Two types of adjustment procedures are commonly used 

in practice. The first, called nonresponse propensity 

weighting (NPW), consists of first modeling the response 

propensities and using the inverse of the estimated 

propensities as the weighting adjustment. The estimated 

response propensities are typically obtained by fitting a 

parametric model (e.g., logistic regression model) or by 

fitting a nonparametric model; e.g., Da Silva and Opsomer 

(2006). A special case of NPW, which is very popular in 

practice, consists of first dividing the respondents and 

nonrespondents into weighting classes and adjusting the 

design weights of respondents by the inverse of the response 

rate within each class. These classes are formed on the basis 

of auxiliary information recorded for all units in the sample; 

see, for example, Eltinge and Yansaneh (1997) and Little 

(1986). The second type of adjustment procedures, called 

nonresponse calibration weighting (NCW) can be seen as 

an extension of the calibration approach (Deville and 

Särndal 1992) adapted to the context of unit nonresponse. 

The reader is referred to Särndal and Lundström (2005), 

Kott (2006) and Brick and Montaquila (2008) for a 

comprehensive overview of NPW and NWC. In some 
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situations, NPW and NCW lead to the same estimator; for 

example, the count-adjusted estimator presented below (see 

expression (1.4)). In this paper, we focus on NCW. The 

problem of variance estimation in the context of NPW has 

been recently studied by Kim and Kim (2007).  

Consider a finite population U  of size .N  The objective 

is to estimate the population total ,i U i
Y y∈= ∑  of a variable 

of interest .y  Suppose that a random sample s  of size n  is 

selected from U  according to a given design ( ).p s  In the 

case of complete data, a basic estimator of Y  is the well- 

known expansion estimator given by 

ˆ
i i

i s

Y d yπ
∈

= ∑  (1.1) 

where 1/
i i
d = π  denotes the design weight attached to unit 

i and ( )
i

P i sπ = ∈  denotes its first-order probability of 

inclusion in the sample. In the presence of unit nonresponse, 

only a subset of s is observed, and so the computation of Ŷπ  

in (1.1) is not possible. 

To define a nonresponse adjusted estimator of ,Y  we 

assume that a vector of auxiliary variables x  is available for 

all the sampled units (respondents and nonrespondents) so 

that the vector of estimated totals, ˆ ,i s i id∈π =∑X x  is 

available. We also assume that a vector of instrumental 

variables ,z of the same dimension as ,x  is available for the 

respondents. Let ir  be a response indicator attached to unit 

i  such that 1ir =  if unit i  is a responding unit and 0,ir =  

otherwise. To estimate ,Y  we consider calibration esti-

mators of the form  

CAL
ˆ ,

i i i

i s

Y w r y
∈

= ∑  (1.2)  

where i i iw d g=  and ig  is a nonresponse weighting 

adjustment factor attached to unit i  and given by 

1ˆ ˆ ˆ1 ( ) ,
i r r i
g −

π ′= + −X X T z  (1.3) 

where ˆ i sr i i id r∈=∑X x  and ˆ i sr i i i id r∈ ′=∑T z x . When i =z  

/ ,i iνx  where iν  is a known constant, then the estimator 
(1.3) is identical to the InfoS estimator given in Särndal and 

Lundström (2005, equation 7.15). The properties of the 

estimator (1.2) were studied by Deville (2002), Sautory 

(2003), Särndal and Lundström (2005) and Kott (2006), 

among others.  

In this paper, the properties (e.g., bias and variance) of 

CALŶ  are studied using the nonresponse model (NM) 

approach, under which inference is made with respect to the 

joint distribution induced by the sampling design and the 

nonresponse mechanism, ( ),q |r I  where 
1

( )NI I ′= , ...,Ι  

is the vector of sample selection indicators such that 1iI =  

if unit i is selected in the sample and 0,iI =  otherwise and 

1
( )Nr r ′= , ...,r  is the vector of response indicators. Let 

( 1 1)i i ip P r I= = | , =I  be the response probability for 

unit .i  We assume that 0ip >  for all i  and that the units 

respond independently of one another; that is, ijp =  
( 1, 1 1, 1, ) .i j i j i jP r r I I i j p p= = | , = = ≠ =I   

The estimator 
CAL
Ŷ  is asymptotically unbiased for the 

true total Y  if (i) 1 1
i i
p− ′= + λ z  for all ,i U∈  where λ  is 

a vector of unknown constants or (ii) 
i i
y ′= x β  for all 

,i U∈  where β  is a vector of constants; see Särndal and 

Lundström (2005, chapter 9.5). If the condition (i) is 

satisfied, the point estimator 
CAL
Ŷ  is asymptotically 

unbiased for Y  regardless of the variable of interest y  

being estimated. Also, it follows from (ii) that 
CAL
Ŷ  has a 

small bias if the residuals ,
i i i
E y ′= − x B  are small, where 

=B
1( ) .i U i Ui i i i

y−
∈ ∈′∑ ∑z x z  Therefore, the bias of the 

estimator 
CAL
Ŷ  is small if the vector x  explains the variable 

of interest .y  In the case of several variables of interest, 

note that the vector x  may explain a given variable of 

interest well but may not be related to all, in which case 

some estimates could be potentially biased. We assume that 

CAL
Ŷ  is asymptotically unbiased for ,Y  so that the bias of 

the estimators under consideration is not an issue in the 

reminder of the paper. 

We consider three special cases of (1.2) that are of 

interest in practice (see also Kalton and Flores-Cervantes 

2003). First, let 
1

( , ..., , ..., )
i ic iC

′= δ δ δδ  be a C -vector of 

weighting class indicators attached to unit i  such that 

1
ic

δ =  if unit i  belongs to class c  and 0,
ic

δ =  otherwise 

for 1, ..., .c C=  If ,
i i i
= =x z δ  the adjustment factor 

i
g  

given by (1.3) reduces to ˆ ˆ/ ,
i c rc ic
g N N= δ  where ˆ

c
N =  

i s i ic
d∈ δ∑  and ˆ .i src i i ic

N d r∈= δ∑  That is, the nonresponse 

weighting adjustment factor for a weighting cell is 

calculated as the sample-weighted number of sampled units 

in the weighting cell divided by the sample-weighted 

number of responding units in the weighting cell. We refer 

to this weight adjustment procedure as the count adjustment 

procedure. It follows that the estimator (1.2) reduces to the 

count adjusted estimator 

count

1

ˆ
ˆ ˆ ,

ˆ

C
c

rc

c rc

N
Y Y

N=

= ∑  (1.4) 

where 

ˆ .
rc i i ic i

i s

Y d r y
∈

= δ∑  

The second special case of (1.2) assumes that a 

continuous variable x is available for all the sampled 

units. Let 
1

( , ..., , ..., )
i i i ic i iC i

x x x ′= δ δ δx  and .
i i
=z δ  In 

this case, the adjustment factor 
i
g  given by (1.3) reduces 

to ˆ ˆ/
i c rc ic
g X X= δ  if unit i  belongs to class ,c  where 

ˆ
c
X = i s i ic i

d x∈ δ∑  and ˆ .i src i i ic i
X d r x∈= δ∑  Here, the 

nonresponse weighting adjustment factor for a weighting 

class c is the sum of the sample-weighted auxiliary data 

for units in the weighting cell divided by the sum of the 
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sample-weighted auxiliary data for all responding units in 

the weighting cell. We refer to this weight adjustment 

procedure as the ratio adjustment procedure. The esti-

mator (1.2) reduces to the ratio adjusted estimator 

ratio

1

ˆ
ˆ ˆ .

ˆ

C
c

rc

c rc

X
Y Y

X=

= ∑  (1.5) 

Note that the count adjusted estimator (1.4) is a special 

case of the ratio adjusted estimator when 1
i
x =  for all the 

sampled population units.  

Finally, if 
1 1

( , ..., , ..., , , ...,
i i i ic iC i i

x= = δ δ δ δx z  

, ..., ) ,
ic i iC i
x x ′δ δ  we obtain another special case of (1.2). In 

this case, the adjustment factor 
i
g  given by (1.3) reduces to 

2

( )ˆ 1 ( ) ,
( )

i rc

i c c rc

i ic i rc

i s

x x
g N x x

r x x
∈

 
− = + − δ −

  
∑

 

if unit i  belongs to class ,c  where ˆ ˆ/
c c c
x X N=  and 

ˆ ˆ/ .
rc rc rc
x X N= We refer to this weight adjustment proce-

dure as the simple linear regression adjustment procedure. 

The estimator (1.2) reduces to the simple linear regression 

adjusted estimator 

1

ˆ ˆ ˆ ˆ[ ( ) ],
C

slreg c rc c rc rc

c

Y N Y x x B
=

= + −∑
ɺ

 (1.6) 

where 

  
2

( ) ( )
ˆ .

( )

i i ci i rc i rc

i s

rc

i i ic i rc

i s

d r x x y y

B
d r x x

∈

∈

− −
=

−

∑
∑

δ

δ
 

The estimators (1.4)-(1.6) use some form of weighting 

adjustment within classes. All of them are asymptotically 

unbiased for Y if the units have equal response probabilities 

within classes (i.e., a uniform nonresponse mechanism 

within classes). This condition is a special case of condition 

(i) discussed above.  

In this paper, we show that the shortcut jackknife 

variance estimator that treats the adjustment factors as fixed, 

tends to overestimate the true variance of 
CAL
ˆ ,Y  at least in 

some simple cases. We build on earlier research by 

Thompson and Yung (2006) who derived expressions of the 

linearization version for both the full and shortcut jackknife 

variance estimators and evaluated these expressions empir-

ically using data from the Annual Capital Expenditures 

Survey (ACES), conducted at the U.S. Census Bureau. In 

the context of NPW, it is interesting to note that Kim and 

Kim (2007) showed that treating the estimated response 

probabilities as fixed leads to an overestimation of the true 

variance when the sampling weights are not used in 

estimating these probabilities. Beaumont (2005) obtained 

similar results in the context of imputation when the 

response probabilities are estimated using a logistic 

regression model. 

In Section 2, we discuss the full and shortcut jackknife 

variance estimators and show that the shortcut estimator is 

asymptotically biased. The severity of this bias is evaluated 

for two commonly used sample designs in Section 3. 

Section 4 presents the results of a simulation study com-

paring the full and shortcut jackknife variance estimators. 

We conclude in Section 5 with some general observations. 

 
2. Jackknife variance estimation  

Traditionally, variance estimation in the context of 

nonresponse has been performed using the two-phase 

framework, which consists of viewing nonresponse as a 

second-phase of selection. Instead, we consider the reverse 

framework that was proposed by Fay (1991) and further 

developed by Shao and Steel (1999). This framework 

provides a theoretical basis for studying the properties of 

jackknife variance estimators and can be described as 

follows: first, applying the nonresponse mechanism, the 

population U  is randomly divided into a population of 

respondents 
r

U  and a population of nonrespondents .
m

U  

Then, given ( ),
r m

U U,  the random sample s  is selected 

according to the chosen sampling design. The total variance 

of 
CAL
Ŷ  can be expressed as  

CAL CAL CAL
ˆ ˆ ˆ( ) ( ) ( ),

q p q p
V Y E V Y V E Y= | + |r r  (2.1) 

where (.)pE  and (.)pV  denote the expectation and the 

variance with respect to the sampling design and (.)qE  and 

(.)qV  denote the expectation and variance with respect to 

the nonresponse mechanism, ( | ).q r I  

In this section, we focus on stratified simple random 

sampling, which is the design typically used in business 

surveys. With this sample design, the population U  is 

partitioned into L  strata 
1
, ...,

L
U U  of size 

1
, ..., ,

L
N N  

respectively. A simple random sample without replacement 

,
h
s  of size ,

h
n  is selected from stratum , 1, ..., .h h L=  

Each within-stratum sample is selected independently, and 

we assume that 2
h
n ≥  for all .h  In this context, the design 

weight of unit i  in stratum h  is / .
hi h h
d N n=  A full 

jackknife variance estimator of 
CAL
ˆ ,Y  under stratified simple 

random sampling, is obtained as follows:   
(i) remove unit ( )g j  from the sample, 1, ..., ;g L=  

1, ..., ;
h

j n=  

(ii) adjust the design weights 
hi
d  to obtain the jack-

knife weights ( ),hi g jd  where ( )hi g jd  is given by  

( )

0 if ( )  ( )

if ,   
1

otherwise

g

hi g j gi

g

hi

hi g j

n
d d h g i j

n

d

 =



= = ≠
−



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(iii) compute the estimator CAL( )
ˆ

g jY in the same way as 

CAL
Ŷ  with the jackknife weights ( )hi g jd  instead of 

the design weights ;
hi
d  that is, CAL( )

ˆ
g jY = ( )hi s∈∑  

( ) ,hi g j hi hiw r y  where ( ) ( ) ( )hi g j hi g j hi g jw d g=  with 

( )hi g jg = 1

( ) ( ) ( )
ˆ ˆ ˆ1 ( ) ,g j r g j r g j hi

−
π ′+ −X X T z  ( )

ˆ
g jπ =X  

( )( ) ( ) ( )
ˆ,i s hi shi g j hi r g j hi g j hi hid d r∈ ∈=∑ ∑x X x  and ( )

ˆ
r g j =T  

( ) ( ) .hi s hi g j hi hi hid r∈ ′∑ z x  

(iv) replace the unit deleted in step (i) back into the 

sample;  

(v) repeat steps (i)-(iv) for all ( )g j  units, g =  
1, ..., ; 1, ..., .

h
L j n=  

 
Note that the nonresponse adjustment factors 

hi
g  are 

recalculated in each replicate. This leads to the full jackknife 

variance estimator   

2

CAL( ) CAL

1

1
ˆ ˆ( ) .

h

L
g

JF g j

g j sg

n
v Y Y

n= ∈

−
= −∑ ∑  (2.2) 

The variance estimator 
JF
v  is an estimator of the first 

term on the right hand side of (2.1), CAL
ˆ( ).q pE V Y | r This 

term represents the design variance that we would have 

obtained if the responding units were selected using 

stratified simple random sampling with replacement, or 

equivalently, if the stratum sampling fractions, ( / )
h h
n N  are 

negligible. In other words, the full jackknife variance 

estimator (2.2) is an estimator of the sampling variance 

conditional on the vector of response indicators .r  

Therefore, 
JF
v  is asymptotically unbiased and consistent for 

CAL
ˆ( )q pE V Y | r  under stratified simple random sampling 

with replacement sampling regardless of the validity of the 

underlying assumptions. Note that since 
JF
v  is an estimator 

of a sampling variance, it can be readily obtained using 

software designed for complete-data jackknife variance 

estimation. In other words, no specialized software is 

needed. Also, note that the second term on the right hand 

side of (2.1), CAL
ˆ( ),q pV E Y | r  is not accounted for. Thus, the 

full jackknife variance estimator does not track the second 

term in (2.1). However, the contribution of this term to the 

total variance is negligible if the stratum sampling fractions, 

/ ,
h h
n N  are negligible. As a result, 

JF
v  is asymptotically 

unbiased and consistent for the total variance, 
CAL
ˆ( ).V Y  

That is, CAL
ˆ( ) ( ).pq JFE v V Y≈  Since the goal of the research 

is to compare the full and shortcut jackknife estimators, in 

the remainder of the paper, we assume that the stratum 

sampling fractions are negligible and focus on estimates of 

totals, so that we can omit the estimation of the second term 

in (2.1). We note that even if the second term is not 

negligible, our comparisons are valid as both the full 

jackknife and shortcut estimators would underestimate the 

total variance by the same term. 

A shortcut jackknife variance estimator of 
CAL
Ŷ  is given 

by  

* 2

CAL( ) CAL

1

1
ˆ ˆ( ) ,

h

L
g

JS g j

g j sg

n
v Y Y

n= ∈

−
= −∑ ∑  (2.3) 

 where *
( )CAL( ) ( )

ˆ .hi sg j hi g j hi hi hiY d g r y∈= ∑  Note that the 

nonresponse weighting adjustment factors 
hi
g  are not 

recalculated in each jackknife replicate. In other words, the 

factors 
hi
g  are treated as constants, which is inappropriate 

since they depend on the sample and the set of respondents. 

Therefore, we have CAL
ˆ( ) ( ),pq JSE v V Y≠  in general, and 

the shortcut variance estimator, ,
JS
v  is biased. 

To study the magnitude of the bias of ,
JS
v  we consider 

the difference of the two jackknife variance estimators, 

.
JS JF

D v v= −  Since the variance estimator 
JF
v  is an 

asymptotically unbiased estimator of the term CAL
ˆ( ),pV Y | r  

it is asymptotically equivalent to a variance estimator 

obtained using a first-order Taylor expansion. The resulting 

variance estimator, denoted by ,
JF
vɶ  is the linearization 

jackknife variance estimator studied by Yung and Rao 

(2000). Similarly, the shortcut jackknife variance estimator 

JS
v  is asymptotically equivalent to a variance estimator of 

CAL
ˆ( )pV Y | r  obtained by treating the nonresponse weighting 

adjustment factors 
hi
g  as constants. We denote this variance 

estimator by .
JS
vɶ  The quantity D  can thus be approximated 

by .
JS JF

D v v= −ɶ ɶ ɶ  For this approximation to be valid, we 

assume the number of respondents to be large.  

Noting that CAL
ˆBias( ) ( ) ( ) 0,JF pq JFv E v V Y= − ≈  it fol-

lows that the bias of CAL
ˆ, Bias( ) ( ) ( ),JS JS pq JSv v E v V Y= −  

can be approximated by ( ) ( ).pq pqE D E D≈ ɶ  Let ( )v y  

denote the variance estimator of the complete data estimator 

(1.1). Using a first-order Taylor expansion, it can be shown 

that an estimator of CAL
ˆ( )pV Y | r  is given by 

ˆ( )
JF
v v= ξɶ  (2.4) 

where 

ˆˆ ,
hi r hi hi hihi

g r e′= +ξ x B  

with ˆ( )
hi hi hi ir
e y ′= − x B  and 1

( )
ˆ ˆ .hi sr r hi hi hi hi

d r y−
∈= ∑B T z  

On the other hand, treating the 
hi
g ’s as constants implies 

that 
CAL
Ŷ  is linear in the design weights .

hi
d  It follows that 

JS
vɶ  is given by 

( ),
JS
v v= ψɶ  (2.5) 

where .
hi hi hi hi

g r yψ =  

For example, for either a fixed size or a random size 

sampling design, a possible variance estimator is  

ˆ ˆ ,JF ij i j

i s j s

v
∈ ∈

= ∆ ξ ξ∑∑ɶ  

where ( ) /ij ij i j ij i j∆ = π − π π π π π  and ijπ  is the second-

order inclusion probability of units i  and .j  Note that 

.
ii i

π = π  Similarly, we have 
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.JS ij i j

i s j s

v
∈ ∈

= ∆ ψ ψ∑∑ɶ  

 
3. Bias of 

JS
v  in some special cases 

 
3.1 Simple random sampling without replacement  

In this section, we assume that the sample s  has been 

selected according to simple random sampling without 

replacement. We also assume that the sampling fraction 

/n N  is negligible and that the number of respondents r is 

large. Finally, we assume a single weighting class. Although 

the above situation is not realistic in practice, it provides 

some insight into the asymptotic bias of .
JS
v  

In the case of the ratio adjusted estimator (1.5), we can 

show that Dɶ  is approximately given by 

2
2

2 2

2 2

2 2 2 2

1 ( )

ˆ2 1

ˆ+ ,

yr er

r

exr

r

r r

r xr x r

r r

N r x
D s s

r n x

sx x
R

x x n

x x
R s s y

x x

  = − −  
   

    
+ −    

     

      − +    
       

ɶ

 (3.1)

 

where ( , ) 1/ ( , )i sr r i i i
x y r r x y∈= ∑  denote the mean of the 

respondents for variable x and y respectively and r is the 

number of respondents, ˆ / ,
r r r
R y x= 2 1/( 1) i sxr i

s r r∈= − ∑  
2( ) ,

i r
x x− 22 1/ ( 1) ( )i sx i

s n x x∈= − −∑  with 1/ ,i s i
x n x∈= ∑  

22 ˆ1/( 1) ( )i ser i i r i
s r r y R x∈= − −∑  and 1/( 1) i sexr i

s r r∈= − ∑  

(
i
y − ˆ ) .

r i i
R x x  If we further assume that all units have equal 

response probabilities (i.e., a uniform response mechanism), 

we have / 1p

r
x x →  and 2 2/ 1.p

xr x
s s →  In this case, the 

asymptotic bias of 
JS
v  is given by 

2

2
2

2 2

Bias ( ) ( )

1
( )

1 CV( ) CV( )
2 ,

CV( ) CV( ) CV( )

JS pq

pq

pq

y xy

v E D

N r
E

E r n

x x
S

y y y

≈

  ≈ −  
  

 
+ ρ − 

 

ɶ

 

(3.2)

 

where CV( ) /
x

x S X=  and CV( ) /yy S Y=  denote the 

population coefficients of variation for variables x  and ,y  

respectively with 
22

1/( 1) ( )i Uy iS N y Y∈= − −∑  and Y =  
1/ ,i U iN y∈∑ 2

xS  and X  are defined similarly, and xyρ  

denotes the finite population coefficient of correlation for 

variables x  and .y  From (3.2), it follows that the 

asymptotic bias of JSv  is nonnegative if and only if 

2

0 2

1 CV( )
,

2 CV( )

Y x
B

x

 +
<  

 
 (3.3) 

provided 0 ( / ) 1,pqE r n< <  where 0 1B Y B X= −  is the 

finite population intercept of the least squares line when 

regressing y  on x  with 

1 2

( ) ( )

.
( )

i i

i U

i

i U

x X y Y

B
x X

∈

∈

− −
=

−

∑

∑
 

From (3.2), it is clear that the bias of JSv  increases if (i) 

the expected response rate ( / )pqE r n  decreases; (ii) xyρ  

increases; (iii) CV( )y  decreases; or (iv) CV( )x  increases. 

Also, it follows from (3.3) that JSv  overestimates the true 

variance when the intercept 0B  is not too large. Table 1 

illustrates the relationship between CV( )x  and the 

condition in (3.3). For example, when CV( ) 0,x = JSv  

always overestimates the true variance since, in this case, 

the condition (3.3) reduces to 0 ,B < ∞  which is always 

satisfied. This result is not surprising because when 

CV( ) 0,x =  the x -values are all equal and the ratio 

adjusted estimator (1.5) is identical to the count adjusted 

estimator (1.4). As we discuss below, JSv  always over-

estimates the true variance in this case. When CV( )x  is 

large (e.g., CV( ) 2),x = JSv  overestimates the true variance 

if and only if 0 0.625B Y<  The latter condition is satisfied 

if the intercept is not “too far” from the origin. Therefore, if 

the relationship between y and x goes through the origin 

(i.e., if the ratio model holds), the shortcut variance 

estimator will overestimate the true variance. However, if 

the ratio adjusted estimator is used when the ratio model 

does not hold, such as when 0 0.625 ,B Y≥  the shortcut 

variance estimator JSv  will underestimate the true variance. 

In conclusion, we can expect JSv  to overestimate the true 

variance when a ratio adjustment procedure is used unless 

the ratio model is highly misspecified for the data at hand, 

which could happen, for example, if the variables y and x 

are negatively correlated.   
Table 1 

Relationship between CV( )x  and the condition in (3.3) 
 

CV( )x  2

2

1 CV( )

2 CV( )

Y x

x

    ++++
    
    

 

0 ∞  

0.1 50.5Y  

0.5 2.5Y  

1 2Y  

1.5 0.722Y  

2 0.625Y  

 
Turning to the count adjusted estimator (1.4), we let 

1ix =  for all i  in (3.1) and obtain 

2
21 .
r

N r
D y

r n

 = − 
 

ɶ  (3.4) 
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It follows from (3.4) that the relative bias of ,JSv  

CAL
ˆRB( ) Bias ( ) / ( ),JS JSv v V Y=  can be approximated by by 

( )pqE RDɶ  where / .JFRD D v=ɶ ɶ ɶ  Under a uniform nonresponse 

mechanism, straightforward algebra leads to  

2

1
RB( ) ( ) 1 .

CV( )
JS pq pq

r
v E RD E

n y

  ≈ ≈ −  
  

ɶ  (3.5) 

The expression (3.5) shows that, in the case of the count 

adjusted estimator (1.4), JSv  always overestimates the true 

variance. The magnitude of the overestimation increases as 

the expected response rate ( / )pqE r n  decreases or when 

CV( )y  decreases. For example, if the expected response 

rate is equal to 70% and CV( ) 1,y =  we have ( )pqE RD =ɶ  

1.3 so the shortcut jackknife variance estimator, ,JSv  is on 

average 30% larger than the true variance of CAL
ˆ .Y  On the 

other hand, if the response rate is equal to 70% and 

CV( ) 0.5,y =  we have ( ) 5.3,pqE RD =ɶ  in which case the 

overestimation is considerable.  

Finally, we turn to the case of the simple linear regres-

sion adjusted estimator (1.6). Under a uniform nonresponse 

mechanism, it can be shown that the asymptotic bias of 
JS
v  

is given by  

2

2 2

2

Bias ( ) ( )

1
( )

1
0.

CV( )

JS pq

pq

pq

y xy

v E D

N r
E

E r n

S
y

≈

  ≈ −  
  

 
+ρ ≥ 

 

ɶ

 (3.6)

 

From (3.6), it follows that JSv  always overestimates the 

true variance in the case of the simple linear regression 

adjusted estimator (1.6). The bias (3.6) increases if (i) the 

expected response rate decreases; (ii) 2

xyρ  increases; or (iii) 

CV( )y  decreases.   
3.2 Stratified simple random sampling: Weighting 

classes are identical to strata  
In this section, we assume that the weighting classes 

coincide with the original design strata. This situation is not 

uncommon in practice, especially in business surveys. If the 

strata are such that the units within stratum have approxi-

mately equal response propensities (i.e., uniform response 

within stratum), expressions for the bias of 
JS
v  are readily 

obtained from expressions (3.2), (3.4) and (3.6). 

For the ratio adjusted estimator, expression (3.2) can be 

readily extended to the case of stratified simple random 

sampling to obtain 

2

1

2

2

2 2

Bias ( ) ( )

1
( )

CV ( ) CV ( )1
2 ,

CV ( ) CV ( ) CV ( )

JS pq

L

h h

pq

h pq h h

h h

yh hxy

h h h

v E D

N r
E

E r n

x x
S

y y y

=

≈

  
≈ −     

 
+ ρ − 

 

∑

ɶ

(3.7)

 

where the quantities ,
h
r CV ( ),

h
x CV ( ),

h
y

2

yh
S  and 

hxy
ρ  cor-

respond to ,r CV( ),x CV( ),y 2

y
S  and 

xy
ρ  computed in each 

stratum. 

For the count adjusted estimator, expression (3.4) can be 

readily extended to the case of stratified simple random 

sampling to obtain 

22

2
1

Bias ( ) ( )

1 .
( ) CV ( )

JS pq

L
yhh h

pq

h pq h h h

v E D

SN r
E

E r n y=

≈

  
≈ −     
∑

ɶ

 (3.8)
 

Finally, for the simple linear regression adjusted esti-

mator, expression (3.6) can be readily extended to the case 

of stratified simple random sampling to obtain 

2

1

2 2

2

Bias ( ) ( )

1
( )

1
.

CV ( )

JS pq

L

h h

pq

h pq h h

yh hxy

h

v E D

N r
E

E r n

S
y

=

≈

  
≈ −     

 
+ ρ 

 

∑

ɶ

 (3.9) 

From the expressions (3.7)-(3.9), it follows that the use of 

the shortcut jackknife variance estimator requires some 

caution. Indeed, even if the bias of the shortcut jackknife 

variance estimator is small in each stratum, they might sum 

up to a considerable bias at the population level if the biases 

are in the same direction. 

 
4. Simulation study  

 
A simulation study was performed to compare the 

statistical properties of the shortcut and the full jackknife 

variance estimators under varying conditions. Five different 

stratified populations of 30,000 units each with two 

variables were generated. First, the x-values were generated 

from a Gamma distribution with parameters α  and .λ  Then 

given the x-values, the y-values were generated according to 

the following model:  

0 1 ,hi hi hiy x= β + β + ε  

where 2~ (0, ).hi hN εε σ  The variance and 2

hεσ  was set such 

that the coefficient of correlation (denoted )xyρ  between 

hix  and hiy  is equal to 0.7 in all the populations. Each 

population was stratified into three strata, each with 10,000 

units. The parameters of the simulated populations appear in 

Table 2. 

Population 1 fits the ratio model very well with an 

intercept of zero in all strata. Population 2 has a non-

negligible intercept term in all three strata. Population 3 is a 

mix of populations 1 and 2, where the ratio model fits well 

for strata 2 and 3 but not for stratum 1. Population 4 is 
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similar to population 1 except units in strata 1 and 2 have a 

70% chance of reporting a zero. This population is intended 

to mimic the situation of the Annual Capital Expenditures 

Survey (ACES) of the U.S. Census Bureau, which provided 

the motivation for this research. The ACES employs a 

shortcut jackknife variance estimator that, empirically, has 

been shown to be close to the full jackknife variance 

estimates. Its population is characterized with many zeros 

for capital expenditures in the majority of sampled small 

and medium businesses, with the majority of the reported 

expenditures being provided by large businesses. Population 

5 was generated to show that the shortcut estimator for the 

ratio adjusted estimator can actually have a negative bias 

when the ratio model is misspecified (demonstrated in 

expression (3.3) for a simple random sample). For this 

population, the intercept term is highly significant in all 

strata. 
 
Table 2 
Population parameters 
 

Population 
0ββββ  

(Within Stratum) 
1ββββ  

(Within Stratum) 

 1 2 3 1 2 3 

αααα  λλλλ  CV( )x

 

CV( )y

 

1 0 0 0 2 4 6 4 5 50% 76% 

2 120 240 360 2 4 6 4 5 50% 44% 

3 120 0 0 2 4 6 4 5 50% 51% 
4 0 0 0 2 4 6 4 5 50% 134% 

5 50 200 300 0.5 1 2 4 5 200% 63% 

 
From each population, 5,000 stratified simple random 

samples of size 300 (100 units per stratum) were drawn. In 

each sample, nonresponse was generated using a uniform 

response mechanism within each stratum with probabilities 

of response equal to 60% in stratum 1, 70% in stratum 2 and 

90% in stratum 3. This response pattern is not uncommon in 

business surveys where more follow-up is performed for the 

medium and large size units (strata 2 and 3).  

In each sample, both the count adjusted and the ratio 

adjusted estimators, given respectively by (1.4) and (1.5), 

were calculated using the strata as weighting classes. The 

variance of the point estimators was estimated by JFv  and 

,JSv  given respectively by (2.2) and (2.3). As a measure of 

the bias of a variance estimator ,v  we used the Monte Carlo 

percent relative bias given by  

( )5,000
MC CAL

MC

1 MC CAL

ˆMSE ( )1
RB ( ) 100,

ˆ5,000 MSE ( )

t

t

v Y
v

Y=

−
= ×∑  

where ( )tv  is the variance estimate obtained from the tht  

sample, and MC CAL
ˆMSE ( )Y  is the Monte Carlo Mean 

Squared Error (MSE) defined by 

50,000
( ) 2

MC CAL CAL

1

1ˆ ˆMSE ( ) ( ) ,
50,000

t

t

Y Y Y
=

= −∑  

where ( )

CAL
ˆ tY  is the (ratio or count adjusted) estimate of Y  for 

the tht  sample. Table 3 shows the Monte Carlo percent 

relative bias for both the count adjusted and the ratio 

adjusted estimators. 
 
Table 3 

Monte Carlo percent relative bias for the shortcut and full 
jackknife variance estimators 
 

Count adjusted estimator Ratio adjusted estimator Population 

MCRB ( )JSv  
MCRB ( )JFv  

MCRB ( )JSv  
MCRB ( )JFv  

1 57.3% 1.1% 80.5% -0.3% 

2 877.1% 0.4% 364.7% 0.5% 

3 220.7% 0.6% 185.9% -0.2% 

4 21.6% 0.6% 29.1% 1.4% 

5 266.4% 0.2% -67.2% 5.0% 

 
As expected, the shortcut estimator overestimates the 

Monte Carlo MSE for the count adjusted estimator for all 

populations. The overestimation varies from approximately 

20% in population 4 to over 800% in population 2. From 

expression (3.8), we see that the bias of JSv  depends on the 

response rate and 2.hy  Population 2 has a large intercept 

term which increases CV ( )h y  in all strata, which in turn 

increases the bias of .JSv  Population 3 is similar to 

population 2 except only the first stratum has a large 

intercept term. As expected, the bias of JSv  in this 

population is between those of populations 1 and 2. 

Population 4 is the one generated to mimic the ACES 

population with some units’ values replaced by zero in strata 

1 and 2. The Monte Carlo relative bias of 21.6% is, for the 

most part, coming from the third stratum where no units 

have been replaced with zero (this can be seen using 

expression (3.8)). In comparison, for all five populations the 

full jackknife variance estimator is tracking the Monte Carlo 

MSE very well with absolute relative biases less than 1.1%. 

Turning to the ratio adjusted estimator, we see that the 

full jackknife variance estimator again tracks the Monte 

Carlo MSE relatively well for all populations with absolute 

relative biases less than 5%. The shortcut estimator, on the 

other hand, has relative biases varying from -67% to 364%. 

Looking at expression (3.7), we see that for a fixed response 

rate the bias depends on the CV ( ),h y CV ( )h x  and hxyρ . 

Due to the large intercept terms in the second population, 

hy  are large and the corresponding CV ( )h y  are smaller 

than in the other populations. Thus, the last term in 

expression (3.7) is quite large and the resulting relative bias 

of JSv  is also large. This is also seen for population 3 except 

to a lesser extent since only the first stratum has an intercept 

term. The opposite effect is seen in population 4, where the 

introduction of zeros has significantly increased CV ( )h y  

which has in turn reduced the Monte Carle percent relative 

bias of the shortcut estimator. 
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Additional simulations were performed using the some 

of the populations described in Table 2 but with varying 

response rates. The results are not presented here as they 

were as expected. That is, the bias of the shortcut estimator 

deceased as the response rate increased (with all the other 

parameters remaining fixed). The full jackknife estimator 

continued to track the Monte Carlo MSE very well. 

 
5. Conclusion 

 
In this paper, we evaluated both theoretically and 

empirically a shortcut jackknife variance estimator that does 

not re-calculate the nonresponse adjustment factors within 

each jackknife replicate, specifically considering three 

different nonresponse weighting adjustment procedures. We 

showed in the context of stratified simple random sampling 

that the shortcut jackknife variance estimator tends to 

overestimate the true variance of the estimators. In the 

context of the ratio adjustment procedure, however, the 

shortcut jackknife variance estimator may underestimate the 

true variance if the ratio model is not appropriate for the 

data at hand. 

One justification for the use of a shortcut procedure in a 

replicate variance estimation method is to save time and 

computing resources. If these are truly issues and the 

program has consistently high unit response rates in all 

weighting cells, then while there are clearly theoretical 

advantages to replicating the weight adjustment procedure, 

there may be little or no practical advantage. Having said 

that, the conditions for “practical” equivalence between the 

full and shortcut procedure variance estimators are 

extremely restrictive, and we have demonstrated that small 

changes in underlying data conditions can easily violate 

these conditions. If computational concerns with a full 

jackknife are truly an issue, then the authors recommend the 

linearization jackknife variance estimation approach which 

has the same asymptotic properties as the full jackknife, but 

is computationally quick and computer overhead “free” (in 

terms of replicate storage). See Thompson and Yung (2006) 

for expressions for the linearization jackknife variance 

estimator for both the count and ratio adjusted estimators. 

Given these viable alternatives, we recommend against the 

use of a shortcut procedure variance estimator. 
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A comparison of variance estimators for poststratification  
to estimated control totals 

Jill A. Dever and Richard Valliant 1 

Abstract 

Calibration techniques, such as poststratification, use auxiliary information to improve the efficiency of survey estimates. 

The control totals, to which sample weights are poststratified (or calibrated), are assumed to be population values. Often, 

however, the controls are estimated from other surveys. Many researchers apply traditional poststratification variance 

estimators to situations where the control totals are estimated, thus assuming that any additional sampling variance 

associated with these controls is negligible. The goal of the research presented here is to evaluate variance estimators for 

stratified, multi-stage designs under estimated-control (EC) poststratification using design-unbiased controls. We compare 

the theoretical and empirical properties of linearization and jackknife variance estimators for a poststratified estimator of a 

population total. Illustrations are given of the effects on variances from different levels of precision in the estimated 

controls. Our research suggests (i) traditional variance estimators can seriously underestimate the theoretical variance, and 

(ii) two EC poststratification variance estimators can mitigate the negative bias. 
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1. Introduction 

 
Poststratified estimators, and other calibration estimators, 

are used in many types of surveys to reduce variances or to 

correct for frame deficiencies. Specific examples include 

large U.S. government surveys, such as the Consumer 

Expenditure Survey (see, e.g., Jayasuriya and Valliant 1996); 

surveys of specialized populations, such as the U.S. 

Department of Defense Survey of Health Related Behaviors 

among Military Personnel (Bray, Hourani, Rae, Dever, 

Brown, Vincus, Pemberton, Marsden, Faulkner and 

Vandermaas-Peeler 2003); and a myriad of surveys outside 

the U.S. including the Canadian Retail Trade Survey (see, 

e.g., Hidiroglou and Patak 2006), the Swedish Labour Force 

Survey (Mirza and Hörngren 2002), and the British 

Household Panel Survey (Taylor, Brice, Buck and Prentice-

Lane 2007).  

Calibration estimators, such as those generated under 

poststratification, are used to minimize errors associated with 

incomplete sampling frames (i.e., undercoverage) and with 

sampling and nonresponse (see, e.g., Särndal, Swensson and 

Wretman 1992; Lessler and Kalsbeek 1992; Kott 2006). For 

example, estimates from the Behavioral Risk Factor 

Surveillance System (BRFSS), a nationwide random-digit-

dial (RDD) telephone survey conducted by the U.S. Centers 

for Disease Control and Prevention (CDC), are poststratified 

to counts that include households with and without landline 

telephone service (Centers for Disease Control and 

Prevention 2006). The decrease in the errors is linked to the 

association of the population control totals with the frame 

undercoverage, patterns of non-ignorable nonresponse, and 

the variable of interest (Kim, Li and Valliant 2007).  

When relevant population controls do not exist, many 

researchers use survey-estimated control totals, and apply 

traditional variance formulae as if the controls were known 

without error. For example, Nadimpalli, Judkins and Chu 

(2004) adjusted weights for the 2003 National Survey of 

Parents and Youth to the number of U.S. households with 

children ages 9-18 estimated from the Current Population 

Survey (CPS) using a ratio-raking algorithm (www.census. 

gov/cps). Estimates of how people in the U.S. spend their 

time can be calculated from The American Time Use Survey 

using weights that have been poststratified to projected 

estimates from the U.S. decennial Census (Killion 2006). 

More recently, researchers at the Pew Research Centers 

calibrated weights for a set of 2008 U.S. presidential pre-

election surveys to population estimates from the March 

2007 CPS, as well as to estimates on telephone usage 

patterns from the July-December 2007 National Health 

Interview Survey (Keeter, Dimock and Christian 2008). 

The goal of our research is to develop and evaluate 

variance estimators for point estimates with weights that 

contain a poststratification adjustment to a set of survey-

estimated control totals. We label the methodology which 

properly accounts for the estimated controls as estimated-

control (EC) poststratification. In this paper, we focus 

specifically on the EC poststratified (ECPS) estimator of a 

population total for data collected from a stratified, multi-

stage design, where the first-stage sampling units are selected 

with replacement. The remainder of this section gives a brief 

review of weight calibration and poststratification. Section 2 
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contains an explicit definition of the ECPS estimator under 

study, followed in Section 3 by an evaluation of the bias 

properties. Through a theoretical evaluation (Section 4) and a 

simulation study, we compare variance estimators developed 

for the ECPS estimator with a variance estimator chosen 

under the naïve “population control total” assumption. Both 

linearization and replication variance estimators are 

examined in our research. We provide illustrations on the 

effects of different levels of precision in the estimated 

controls on the variance estimates. The specifications for the 

simulation study are detailed in Section 5, followed by a 

summary of the results (Section 6). We conclude the paper 

with a brief summary and an overview of future research in 

this area. 

Calibration estimators (Deville and Särndal 1992), such 

as a poststratified estimator of a population total, borrow 

strength from auxiliary information to improve the effi-

ciency of survey estimates over simpler weighting methods. 

When the auxiliary variables are (linearly) related to the set 

of key survey variables, calibration estimators can be very 

efficient.  

The general form of a traditional or fixed-control 

calibration estimator is best described as an expansion 

estimator or “linear weighting” estimator as discussed in 

Estevao and Särndal (2000). Define s to be the set of sample 

elements from a probability sample, and 1/k kd = π  to be 

the design weight for element k such that Pr ( ).k k sπ = ∈  

An estimated population total of a variable y is ŷt =  

,k s k kw y∈∑  where the calibration weight ( )k k kw a d=  for 

the thk  element defined as a function of the design weight, 

,kd  and a calibration-adjustment factor, ,ka  also known as 

a g-weight (Särndal et al. 1992). The calibration weights are 

calculated by minimizing a specified function that measures 

the distance between the design and calibration weights 

subject to a set of constraints defined as:  

ˆ
Ux Ax=t t  (1) 

where ,k UUx k∈∑=t x  the vector of population controls 

(counts) corresponding to the ( 1)G G ≥  auxiliary 

variables; ˆ ,k sx k kw∈∑=t x  the estimated population 

controls corresponding to the components of ;Uxt  and kx  is 

a vector of length G  containing auxiliary or benchmark 

variable values for element k. Note that kx  may contain 

ones and zeros to indicate the presence or absence of a 

certain characteristic (e.g., age 18-25), or larger values (e.g., 

number of children). An example of such a calibration 

system is the generalized least squares (or chi-square) 

distance function 2( ) /
Ak s k k k kw d c d∈∑ −  that is minimized 

subject to the constraints in (1). This system generates a 

closed-form solution called the generalized regression 

estimator (GREG) for 1kc =  (Deville and Särndal 1992). 

The poststratified estimator is a special case of the GREG.  

Variance estimation techniques for the poststratified 

estimator, and more generally for the GREG, have been 

widely studied. Binder (1995) demonstrates techniques used 

to calculate a Taylor linearization variance estimator for the 

GREG. Additional references for the linearization variance 

estimator under poststratification (and calibration more 

generally) include Deville, Särndal and Sautory (1993), 

Demnati and Rao (2004), and Hidiroglou and Patak (2006). 

Särndal, Swensson and Wretman (1989) developed an 

approximate linearization variance for the GREG of a 

population total as a function of the population residuals 

from a specified model and the design weights ( ).kd  

Valliant (1993) and Yung and Rao (1996) modified the 

residual-based variance estimator by multiplying the sample 

residuals by the calibration weights ( ).k k kw a d=  They 

demonstrated that this revised estimator, created by lin-

earizing the associated jackknife, reduced the bias asso-

ciated with the original formula. This variance estimator is 

also discussed in Särndal et al. (1992), Stukel, Hidiroglou 

and Särndal (1996), and in Chapter 11 of Särndal and 

Lundström (2005). Properties of replication variance 

estimators (i.e., jackknife and BRR) have been examined in, 

for example, Valliant (1993), Rust and Rao (1996), Canty 

and Davison (1999), Théberge (1999), Rao and Shao 

(1999), Yung and Rao (1996; 2000), and Kott (2006).  

An assumption in the articles above is that the control 

totals, to which the auxiliary sample estimates are adjusted, 

are either true population values known without error, or are 

taken from an independent, highly precise survey that is 

much larger than the survey requiring calibration. In some 

cases, however, these controls are estimated from other 

surveys with non-negligible sampling variances. For 

example, there are efforts to calibrate Web panel surveys to 

separate, higher-quality reference surveys that are not much 

larger than the panel surveys themselves (e.g., Krotki 2007; 

Terhanian, Bremer, Smith and Thomas 2000).  

Many researchers apply formulae developed for tradi-

tional poststratification even though the controls have been 

estimated. The tacit assumption is that any additional error 

(variance and bias) associated with these controls is 

negligible and can be ignored. Currently, the validity of this 

assumption can not be checked until a complete picture of 

EC poststratification has been developed. 

 
2. The estimated-control poststratified estimator  

To facilitate our discussion of the estimated-control post-

stratified estimator, we label the survey requiring post-

stratification as the analytic survey and the source of the 

control totals as the benchmark survey. In practice, more 

than one benchmark survey may be tapped for the control 

totals. However, we will assume only one benchmark 
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survey for the theoretical development so that control total 

variances and covariances are estimable. 

Let U represent the finite target population containing N  

elements and k Uy kt y∈∑=  represent the population total of 

interest for a variable y. Let As  represent a random sample 

of size An  from the frame AU  for the analytic survey. A 

random sample Bs  of size Bn  is selected for the benchmark 

survey from the corresponding sampling frame .BU  We 

allow the possibility that each of the frames, AU  and ,BU  

do not completely cover the target population U. However, 

coverage is treated as a random event so that all elements in 

the target population have a positive probability of being 

covered by either the analytic or the benchmark survey 

frame.  

As a convention throughout the paper, an “A” subscript 

signifies an association with the analytic survey such as a 

sample design parameter or an estimate. A “B” subscript 

identifies the benchmark survey quantities. These subscripts 

are absent from the parameters associated with the 

population of interest, i.e., .yt  

For the stratified, multi-stage design assumed for the 

analytic survey, ( 2)Ah Ahm m ≥  primary sampling units 

(PSUs), indexed by i, are selected with replacement from a 

total of AhM  PSUs in the thh  design stratum ( 1, ,h H= …  

with 2).H ≥  We assume that Ahin  elements, each indexed 

by k, are selected from AhiN  in PSU hi in such a way that 

an unbiased estimate of the PSU total can be made. The 

design weight, ,kd  is calculated as the inverse of the 

unconditional inclusion probability for ,Ahik s∈  the set of 

analytic survey elements within the thhi  PSU. Thus, ,An  

the size of the analytic survey sample, is calculated as 

1 1 .AhmH
h iA Ahin n= =∑ ∑=  Elements for the benchmark survey are 

randomly drawn from the corresponding sampling frame; 

no explicit specifications are made for the random sampling 

method. 

Poststratification can be used to correct for sampling and 

coverage errors. Therefore, we allow undercoverage in the 

analytic-survey, as well as, the benchmark-survey sampling 

frames. Additionally, we do not consider the effects of 

nonresponse.  

Suppose that the population U can be divided into 

1, ...,g G=  mutually exclusive and exhaustive poststrata. 

When the population count of elements, ,gN  is known for 

each poststratum, the traditional poststratified estimator of a 

total for y is defined as  

1

ˆ
ˆ ,

ˆ

G
Ayg

yPS g
g Ag

t
t N

N=

= ∑  (2) 

where ky  is the value of the analysis variable y for element 

k; ˆ ,
Ak sAyg gk k kt d y∈∑= δ  the total of y in poststratum g esti-

mated from the analytic survey data; ˆ
AgN = ,

Ak s gk kd∈∑ δ  

the analytic survey estimated total in poststratum g; and 

1gkδ =  indicates membership in the thg  poststratum and 

zero otherwise. Note that Âygt  may also be expressed as 
ˆ ,

Agk sAyg k kt d y∈∑=  where Ags  indicates the set of analytic 

survey elements in poststratum g. The “hat” notation in the 

expression above is used to distinguish a population 

estimator (e.g., ˆ )AgN  from the known population parameter 

(e.g., ).gN  If the count of elements in poststratum g is 

estimated by setting 1ky =  in the formula for ˆ ,Aygt  then 

ŷPSt  equals .gN  In this sense, ŷPSt  is poststratified to the 

population counts 1, , .GN N…  

In certain situations, however, the population counts are 

not available and must be estimated from a benchmark 

survey. Define the ECPS estimator of a population total of a 

variable y as  

1

ˆ
ˆˆ .

ˆ

G
Ayg

yP Bg
g Ag

t
t N

N=

= ∑  (3) 

The number of population elements in the thg  

poststratum ( 1, , )g G= …  estimated from the benchmark 

survey is denoted as ˆ ,
Bgl sBg lN w∈∑=  where Bgs  is the set 

of sample elements in poststratum g from the benchmark 

survey and lw  is the weight associated with the thl  

element. The calibration-adjustment factors applied to the 

analytic survey design weights for ŷPt  are calculated as 
ˆ ˆ/k Bg Aga N N=  for .Agk s∈  

Relating the poststratified estimators to the calibration 

system discussed in the previous section, ˆ
Axt  is a G-length 

vector of estimated population counts for each poststratum 

such that 1
ˆ ˆ ˆ( , , ) ,Ax Ax AxGt t ′=t …  where ˆ

Âxg Agt N≡ =  

Ak s k gkd∈∑ δ  and 1k gkx ≡ δ =  if the element k is a 

member of the thg  poststratum and 0 otherwise. The vector 

Uxt  corresponds either to 1( , , )GN N ′=N …  for the ŷPSt  

estimator given in (2), or to 1
ˆ ˆ ˆ( , , ) ,B B BGN N ′=N …  a 

1G ×  vector of benchmark control estimates, for the ŷPt  

estimator given in (3). 

The estimator ŷPt  can be expressed in matrix notation as 
ˆˆ

ŷP B At ′= N Y  where 
1ˆ ˆ ˆ( ) ,A A Ay

−=Y N t  a 1G ×  vector of 

analytic survey estimates of the form 1 1
ˆ ˆˆ[ / , ,A A At N=Y …  

ˆˆ / ] ;AG AGt N ′
1

ˆ ˆ ˆdiag ( , , ),A A AGN N=N …  a diagonal matrix 

of poststratum totals estimated from the analytic survey; and 

1
ˆ ˆ ˆ[ , , ]Ay A AGt t ′=t …  is a 1G ×  vector of poststratum 

totals for the outcome variable estimated from the analytic 

survey. The remaining variables associated with the matrix 

notation were defined previously. 

An effective poststratification adjustment can reduce the 

bias in the resulting point estimates and will either reduce or 

minimally inflate the variance in comparison to the 

unadjusted weight. This effect is well known for traditional 

poststratification; we provide the comparative evaluation 

under an estimated-control setting in the next sections. 
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3. Bias in the ECPS of a population total 
 

Traditional poststratification is known for reducing the 

bias associated with an incomplete sampling frame. This 

reduction is most successful when poststrata are formed 

such that the within-poststratum correlation of ky  with the 

probability of the thk  element being included on the 

sampling frame is very near zero (Kim, Li and Valliant 2007).  

To evaluate the (unconditional) design-based bias for 
ˆ ,yPt  we must account for the random property of four 

components – the analytic and benchmark sample designs 

and the population coverage propensities for the 

corresponding sampling frames. Following the work of 

Kim, Li and Valliant (2007, equation 2), the approximate 

design bias of ŷPt  as an estimator of the population total 

k Uy kt y∈∑=  is calculated as 

1

1

ˆ ˆBias ( ) ( )

1 Cov( , )

yP yP y

G
Bg

yg Bg g Ag Ag
g g

t E t t

N
t N y

N

−

=

= −

   
≅ − + φ φ  

    
∑

 
(4)

 

where gN  is the population size for the set of elements gU  

within poststratum g; ˆ( ),Bg BgN E N=  the expected value 

of the poststratum estimates under the benchmark survey 

design; Cov( , )g Agy φ = 1 ( ) ( ),
gk Ug k g Ak AgN y y−

∈∑ − φ − φ  

the population covariance between the outcome variable 

( )ky  and the coverage propensities ( )Akφ  within post-

stratum ;g / ,g yg gy t N=  the thg  poststratum mean of 

;y ,
gk Uyg kt y∈∑=  the population total of y within 

poststratum g; and / ,Ag Ag gN Nφ =  the average coverage 

propensity within the poststratum under the analytic survey 

design with ˆ( ).Ag AgN E N=  Note that the population total 

may also be expressed as .gy ygt t∑=  

Components of the bias are zero only under certain 

conditions. (i) If Bg gN N=  for all g  (i.e., no coverage 

errors in the benchmark sampling frame), then the bias is 

dependent only on the association between the outcome 

variable and the coverage propensities, Cov( , ).g Agy φ  The 

value of ˆBias ( )yPt  then reduces to the formula provided in 

Kim, Li and Valliant (2007, equation 2) for the traditional 

poststratified estimator, ˆ .yPSt  (ii) If the coverage proba-

bilities are constant within each poststratum (i.e., ,Ak Agφ =φ  

gk U∈  for all ),g  then the second bias component is zero. 

Only if both conditions are satisfied can we say that ŷPt  is 

approximately unbiased. Some may argue that a “perfect” 

combination of poststrata could be formed such that the 

positive and negative components cancel; however, we 

believe this likelihood to be so rare as to be virtually 

impossible. 

Having examined bias, we present an evaluation of the 

variance of ˆ .yPt  For some estimators, the contribution of the 

bias (squared) to the total mean square error (MSE) is small 

relative to the variance. 

4. Variance estimation for the ECPS 
 

Variance estimators have been developed for traditional 

poststratification and are available in software designed to 

analyze survey data, e.g., R
®
 (R Development Core Team 

2009), SAS
®
 (SAS Institute Inc. 2009), Stata

®
 (StataCorp 

2010), and SUDAAN
®
 (Research Triangle Institute 2008). 

However, limited work has been completed on variance 

estimation for EC poststratification.  

Four EC variance estimators for ŷPt  that account for the 

variance in the control totals are presented in the following 

subsections after defining the population sampling variance. 

They include one newly developed linearization variance 

estimator, and three delete-one-PSU (delete-one) jackknife 

variance estimators. With the delete-one jackknife, repli-

cates are created by sequentially deleting one PSU and 

adjusting the weights for the remaining PSUs within the 

corresponding design stratum. This results in a total of 

1
H
hA Ahm m=∑=  replicates calculated by summing the num-

ber of analytic-survey PSUs per stratum ( )Ahm  across the H 

strata ( 1, ..., ).h H=  

An effective variance estimator will reproduce the 

corresponding population sampling variance in expectation. 

The approximate (or asymptotic) population sampling 

variance of ˆˆ
ŷP B At ′= N Y  has the following form: 

ˆˆˆAV( ) 2 Cov( , )yP B A B A B A B A B A

B A B A B A

t ′ ′ ′= + +

′ ′= +

N V N Y N Y N Y V Y

N V N Y V Y
 
(5)

 

where ˆ( ),B BE=N N  a vector of expected values for the 

benchmark poststratum counts within the G  poststrata; 

1
ˆ ˆ ˆ( , , )B B BGN N ′=N …  is a G-length vector of control totals 

estimated from the benchmark survey; AY  is a G -length 

vector with population components of the form Agy =  

/ ;Ayg Agt N AV  is the population (variance-)covariance matrix 

of the estimated components of the vector ;AY  and BV  is 

the covariance matrix of the G  benchmark control 

estimates ˆ .BN  The first component, ,B A B
′N V N  is the 

approximate variance for the traditional poststratified 

estimator ˆ ,yPSt  i.e., the benchmark estimates are treated as 

fixed. The component, ,A B A
′Y V Y  is the variance associated 

with the benchmark estimates conditioned on the analytic 

survey sample; this is the EC poststratification variance 

component. Because we assume that the analytic and 

benchmark surveys are independent, the covariance of 

estimates from the two surveys is, by definition, zero. 

Hence, the component ˆˆCov( , )B AN Y  above is eliminated 

from the expression. 

Krewski and Rao (1981), Rao and Wu (1985), and others 

demonstrated the asymptotic consistency of the linearization 

and jackknife variance estimators for nonlinear functions. 

However, this examination needs to be extended to the EC 

poststratification. We discuss the set of EC variance 
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estimators for the population sampling variance below 

identified or developed for our research. The sample 

estimators were calculated by substituting sample estimates 

for the corresponding variance parameters. We begin with 

an evaluation of a traditional or naïve poststratified variance 

estimator that does not account for the variation in the 

estimated controls.  
4.1 A traditional variance estimator for EC 

poststratification (Naïve)   
A variety of variance estimators have been developed for 

poststratification estimators. With all of the methods, the 

controls are assumed to be fixed and known without error. 

Therefore, ,A B A
′Y V Y  the second (positive) component in 

expression (5), is zero because B =V 0  by assumption. The 

linearization variance estimator has the form  

Naïve
ˆ ˆ ˆˆvar ( )yP B A Bt ′= N V N  (6) 

where ˆ
BN  is the vector of the G  benchmark control total 

estimates, and ˆ
AV  is the estimated covariance matrix of the 

estimates 1 1
ˆ ˆ ˆˆ ˆ( / , , / ).A Ay A AyG AGt N t N=Y …  Because the 

second component in the second line of (5) is not estimated, 

any variance formula developed for traditional post-

stratification will by definition underestimate the population 

sampling variance. However, highly precise benchmark 

estimates may contribute a negligible EC-poststratification 

variance component to the overall estimate. Thus, the 

difference between the estimates for traditional and EC 

poststratification will for these situations also be negligible.  
4.2 Taylor series linearization (ECTS)  

A linearization variance estimator for the ŷPt  has the 

form: 

ECTS
ˆ ˆˆ ˆ ˆ ˆˆvar ( )yP B A B A B At ′ ′= +N V N Y V Y  (7) 

where ˆ
BV  is the estimated benchmark covariance matrix for 

the set of G control totals. The remaining terms are defined 

for expression (6). The ECTS formula is a function of the 

variance under traditional poststratification and an additive 

inflation term associated with the variation in the 

benchmark controls, i.e., ECTS Naïve
ˆ ˆvar ( ) = var ( )yP yPt t +  

ˆ ˆˆ .A B A
′Y V Y  

Ideally, the benchmark survey analysis file would be 

available to calculate the values for ˆ .BV  However, 

researchers may have to rely on published estimates for only 

the marginal control totals, i.e., point and variance estimates 

by one characteristic instead of the counts and covariance 

estimates for a set of characteristics. The implications of 

having limited information are discussed further in 

Section 4.4. 

 

  

4.3 Fuller two-phase jackknife method (ECF2)  
Isaki, Tsay and Fuller (2004) applied a two-phase delete-

one jackknife variance estimator developed by Fuller (1998) 

to an EC poststratification situation. The premise behind 

Fuller’s methodology (ECF2) is to take a spectral 

(eigenvalue) decomposition of the benchmark covariance 

matrix ˆ( ),BV  develop benchmark adjustments that are a 

function of the resulting eigenvalues and eigenvectors, and 

add the adjustments to the vector of benchmark controls 
ˆ( )BN  to create a set of replicate controls. A randomly 

chosen subset of the Am  replicates is poststratified to the G  

constructed replicate controls where the total number of 

PSUs must equal or exceed the number of poststrata, i.e., 

.Am G≥  Specifically, the benchmark control total for the 
thr  replicate is defined as  

( ) ( )
ˆ ˆ ˆB r B h rc ′= +N N z  (8) 

where 1( ) ( ) ( )ˆ ˆ ;G
gr r g r g= |∑′ ′= δ δz z /( 1),h Ah Ahc m m= −  a 

constant related to the delete-one jackknife variance 

method; ( )rδ  is a zero/one indicator that identifies the G  

(out of )Am  randomly chosen replicates to receive an 

adjustment; ( ) 1g r|δ =  if the thg  component of the 

benchmark covariance decomposition is randomly chosen 

for the assignment given that replicate r is selected for 

adjustment; and ˆˆˆ ,g g g= λz q  a function of an eigenvector 

( ˆ
gq ) and the associated eigenvalue ˆ( )gλ  where 

1
ˆ ˆ ˆ ,G

gB g g=∑ ′=V z z  by definition. Thus, given that ( ) 1rδ =  

for a particular replicate, a single indicator ( )g r|δ  must also 

equal one; however, if ( ) 0,rδ =  then all indicators ( )g r|δ  

equal zero. 

The delete-one jackknife can take multiple forms 

depending on the centering value. We chose the somewhat 

conservative variance estimator centered about the full-

sample estimate for our research 4(v  in Wolter 2007, 

section 4.5). The delete-one jackknife variance estimator, 

ECF2
ˆvar ( ),yPt  is calculated as follows under the Fuller 

method for a stratified, multi-stage design.  

2

ECF2 ( )

1 1

2

( ) ( ) ( )
1 1

( 1)
ˆ ˆvar ( ) ( )

( 1) ˆˆ ˆ ˆ( )

Ah

Ah

mH
Ah

yP yP r yP

h rAh

mH
Ah

yP r yP h r A r
h rAh

m
t t t

m

m
t t c

m

= =

= =

−
= −

−
′= − +

∑ ∑

∑ ∑ z B

ɺɺ

(9)

 

where the terms in (9) are defined below. Note that the 

association of the thr  replicate to a particular design stratum 

is defined through the stratum membership of the eliminated 

PSU. The replicate estimates in (9) are defined as    

( )Âyg rt = ( )Ah Ahih i s k si r gk k kd d y∈ ∈∑ ∑ ∑ δ  and ( )
ˆ
Ag rN =  

( ) ,
Ah Ahih i s k si r gk kd d∈ ∈∑ ∑ ∑ δ  where the PSU-subsampling 

weights are calculated as 
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( )

0 if ,  

1 if  for and 

/( 1) if  but .

Ah

i r Ah Ah

Ah Ah

r i i s

d h h r s i s

m m r i h h

′

= ∈

 ′= ≠ ∈ ∈

 ′− ≠ =

 (10) 

The remaining terms in (9) are ( ) ( ) ( )
ˆ ˆˆ / ,A r Ayg r Ag rt N=B  the 

estimated mean of the outcome variable within poststratum 

g and replicate ;r  

( ) ( ) ( ) ( )1
ˆ ˆˆ( / ),

G

yP r Bg r Ayg r Ag rg
t N t N

=
= ∑ɺɺ  (11) 

a function of replicate estimates with ( )
ˆ
Bg rN  defined as the 

thg  component in expression (8); ( )ŷP rt  is the replicate 

estimate under traditional poststratification, namely 

1 ( ) ( )
ˆ ˆˆ( / );G

g Bg Ayg r Ag rN t N=∑  and ŷPt  is the estimated total 

given in expression (3) calculated from the complete sample 

file. Squaring the terms in (9) results in a variance 

component conditioned on the benchmark controls, a 

component due to the benchmark control variability, and a 

cross-term of lower order that is approximately equal to zero 

in expectation. The design-expectation of the resulting 

jackknife variance estimator is asymptotically equivalent to 
ˆAV( )yPt  in (5) only if the respective components are 

calculated with values from design-consistent estimators. 

Fuller (1998) also demonstrated that the jackknife variance 

of the replicate controls, ECF2
ˆvar ( ),BN  reproduces the 

estimated benchmark covariance matrix ˆ
BV  for every 

sample. 

Currently no software exists to calculate the ECF2. The 

six steps needed to calculate ECF2
ˆvar ( )yPt  using any 

appropriate programmable package are as follows:  

 

1. Calculate the full-sample estimate ŷPt  using 

expression (3). 

2. Determine the G eigenvalues ˆ
gλ  and eigenvectors 

ˆ
gq  for ˆ ,BV  and calculate the replicate adjustments 

ˆˆˆ .g g g= λz q  Concatenate the G G×  matrix of 

ˆ gz ’s with a ( )AG m G× −  matrix of zeros, and 

randomly sort the columns. Call this new AG m×  

matrix ˆ .Z  

3. Calculate a vector of length Am  with values equal to 

/( 1)h Ah Ahc m m= −  ordering from 1h =  to .H  

Populate each row of a AG m×  matrix, called ,C  

with this vector, i.e., the row values are repeated . The 

mA-length vector of jackknife stratum weights, ,RW  

is created with components equal to ( 1) /Ah Ahm m−  

where the deleted PSU is extracted from stratum h. 

4. Calculate the Hadamard (or element-wise) product 

(Searle 1982, page 49) of Ẑ  and C  denoted as 
ˆ .•Z C  Replicate the vector ˆ

BN  into the columns of 

a AG m×  matrix and add to ˆ .•Z C  This new 

AG m×  matrix, called ˆ ,BRN  contains the replicate 

benchmark controls discussed in expression (8) for all 

Am  replicates. 

5. Calculate the replicate estimates ( )
ˆ
Ag ry =  

( ) ( )
ˆˆ /Ayg r Ag rt N  by removing in-turn one PSU from the 

analytic survey sample file, adjusting the weights for 

the remaining PSUs ( RW  values), and summing the 

weighted values for the numerator and denominator 

within poststratum g. Call the resulting AG m×  

matrix  ˆ .RY  

6. Calculate the Am  replicate estimates, ( ),yP rtɺɺ  by first 

multiplying the elements ˆ
BRN  by ˆ

RY  and summing 

down the rows within a column. Next, subtract ŷPt  

from each of the Am  values and square the terms, 

multiply by the PSU-subsampling weight adjustments 

specified in (10), and sum across the Am  estimates. 

The resulting value is the estimated variance using the 

Fuller method, ECF2
ˆvar ( ).yPt  

 
4.4 Nadimpalli-Judkins-Chu jackknife method 

(ECNJC)  
Nadimpalli et al. (2004) developed a delete-one jackknife 

variance estimator that randomly perturbs the control totals 

for the complete set of replicates instead of adjusting only a 

subsample of replicates as discussed for the ECF2. The 

benchmark survey replicate control totals have the following 

form: 

( ) ( )
ˆˆ ˆ

B r B h h B rc R= +N N S ηηηη  (12) 

where /( 1),h Ah Ahc m m= −  as with the ECF2; 

1/( ) ,h AhR H m=  a function of the total number of 

analytic-survey strata ( )H  and PSUs ( );Ahm ˆ
BS  is a 

diagonal matrix of estimated standard errors for the 

benchmark controls; and ( )rηηηη  is a G -length vector of 

values randomly generated for each replicate from the 

standard normal distribution. The remaining terms are 

specified for the ECF2 following expression (8). Note that 

the covariance estimates included in the ECF2, i.e., the off-

diagonal values of ˆ ,BV  are set to zero for the ECNJC. 

The corresponding delete-one jackknife variance 

estimator of the poststratified total is calculated as follows: 

2

ECNJC ( )
1 1

( )
1 1

2

( ) ( )

( 1)
ˆ ˆvar ( ) ( )

( 1)
ˆ ˆ(

ˆ ˆ ) ,

Ah

Ah

mH
Ah

yP yP r yP
h rAh

mH
Ah

yP r yP
h rAh

h h r B A r

m
t t t

m

m
t t

m

c R

= =

= =

−
= −

−
= −

′+

∑ ∑

∑ ∑

S B

ɺɺ

ηηηη (13)

 

where ( )yP rtɺɺ  is computed as described for the ECF2 in (11) 

but  with  ( )
ˆ
Bg rN  defined by the thg  component in (12). 

Unlike the ECF2, the sample variance of the ECNJC 
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replicate controls given in (12) reproduces the benchmark 

covariance matrix BV  in expectation only if the covariance 

terms are truly zero (see Appendix A for details). If BV  is 

not diagonal, ECNJCvar  fails this test. 

Use of the ECNJC would be plausible in two cases: (i) 

the complete benchmark covariance matrix for the controls 

is unavailable (e.g., estimates taken from a previous report), 

or (ii) the covariance terms are negative so that the resulting 

values defined by (12) would lead to conservative variance 

estimates. The diagonal matrix for ˆ
BS  would be correct if 

the estimated poststratum counts were actually uncorrelated. 

However this is unlikely because of the multinomial 

structure of ˆ .BN  Given the setup for the ECNJC, the 

expectation of the variance estimator will not approximate 
ˆAV( )yPt  in (5); the bias term is related to the difference 

between the design expectation of 2ˆ
BS  and .BV  

 
4.5 Multivariate normal jackknife method (ECMV)  

The multivariate normal method (ECMV) is a 

generalization of the ECNJC and to our knowledge is first 

discussed in this paper. The ECMV uses the complete 

covariance matrix ˆ
BV  and relies on large-sample theory so 

that the control total adjustments may be modeled as 

coming from a G-dimensional multivariate normal (MVN) 

distribution. The replicate controls for the ECMV have the 

form 

( ) ( )
ˆ ˆ ˆ
B r B h h rc R= +N N εεεε  (14) 

where ( )
ˆ
rεεεε  is a G-length vector of random variables such 

that   ( )
ˆ
rεεεε

i.i.d.

∼ ˆMVN ( , );G B0 V /( 1);h Ah Ahc m m= −  and 

1/( ).h AhR H m=  

The delete-one jackknife variance estimator for the 

ECMV is calculated as 

2

ECMV ( )
1 1

( )
1 1

2

( ) ( )

( 1)
ˆ ˆvar ( ) ( )

( 1)
ˆ ˆ(

ˆˆ ) ,

Ah

Ah

mH
Ah

yP yP r yP
h rAh

mH
Ah

yP r yP
h rAh

h h r A r

m
t t t

m

m
t t

m

c R

= =

= =

−
= −

−
= −

′+

∑ ∑

∑ ∑

B

ɺɺ

εεεε  (15)

 

where ( )yP rtɺɺ  is computed as described for the ECF2 in (11) 

but  with  ( )
ˆ
Bg rN  defined by the thg  component in (14). 

Unlike the Fuller method, ECMV
ˆ ˆvar ( ) ;B B≠N V  instead, the 

ECMV must rely on the design-based properties of the 

estimator. The design expectation of this estimator is 

evaluated with respect to the MVN distribution conditioned 

on the benchmark estimates ( ),Eε  and then with respect to 

the benchmark survey design ( ).BE  As shown in 

Appendix B.1, 

ECMV
ˆ ˆ[ (var ( ) )] ( ).B B B BE E B E| =N Vε  (16) 

If ˆ
BV  is an approximately unbiased estimator of ,BV  

then the population covariance matrix is reproduced with 

this method.  

Under the Fuller two-phase method, ECF2
ˆVar[var ( )]B =N  

ˆVar ( )BV  because ECF2
ˆ ˆvar ( ) .B B=N V  To compare ECF2 

and ECMV further, note that if we define 1ky =  in the 

analytic survey, then ˆˆ .yP Bt ′= 1 N  As shown in 

Appendix B.2,  

ECMV

2

*

ˆVar[var ( )]

2ˆ ˆ ˆVar [ ] [ ( ) ] Var [ ]

B

B B B B B B

A

E
Hm

′ =

′ ′ ′+ >

1 N

1 V 1 1 V 1 1 V 1  (17)
 

where Am
∗  is the harmonic mean of the PSU sample sizes 

per stratum in the analytic survey. This suggests that the 

ECF2var  and the ECMVvar  have similar large sample 

expectations, though in practice the ECMV is likely to be 

more variable than the ECF2. We examine this issue 

through a simulation study described in the next section. 

 
5. Description of simulation study 

 
We complement the theoretical evaluation of the five 

variance estimators discussed in the previous section with 

an analysis of simulation results. 
 
5.1 Simulation parameters  

The simulation population is a random subset of the 2003 

National Health Interview Survey (NHIS) public-use file 

containing records for 21,664 adults. These records were 

divided into 25 strata, each containing six PSUs. Samples 

were selected from this “population” using a two-stage 

design. Two PSUs were selected with replacement using 

probabilities proportional to the total number of adults (PPS) 

within the PSU. From within each sample PSU, we selected 

simple random samples of ( )Ahin =  20 and 40 persons 

without replacement giving total sample sizes of 1,000 and 

2,000, respectively. Two within-PSU sample sizes were 

considered for this study to evaluate the effects of smaller 

analytic survey variance components, calculated by 

increasing ,An  on the variance of ˆ .yPt  For each 

combination of PSU and person-level samples (i.e., 50 

PSUs and either 1,000 or 2,000 persons), we selected 4,000 

simulation samples. We calculated the estimated population 

totals and associated variances for two binary NHIS 

variables: NOTCOV = 1 indicates that an adult did not have 

health insurance coverage in the 12 months prior to the 

NHIS interview (approximately 17 percent of the 

population); and PDMED12M = 1 indicates that an adult 

delayed medical care because of cost in the 12 months prior 

to the interview (approximately 7 percent of the population). 
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We exclude nonresponse from consideration in our current 

simulation study to minimize factors that might affect our 

comparisons. (Note: The interview questions for these 

variables can be found in the family core instrument at 

ftp://ftp.cdc.gov/pub/Health_Statistics/NCHS/Survey_Quest

ionnaires/NHIS/2003/qfamilyx.pdf. Responses from ques-

tions FHI.070 and FAU.010/FAU.020 were used to 

generate the variables NOTCOV and PDMED12M, 

respectively). 

Poststratification may reduce variances slightly. How-

ever, in household surveys, this technique is mainly used to 

correct for sampling frame undercoverage, as well as other 

problems inherent with surveys. Each of the 4,000 

simulation samples was selected to mimic a sampling frame 

for the analytic survey that suffers from differential 

undercoverage, such as those used for many telephone 

surveys. Sixteen (G = 16) poststratification cells were 

defined by an eight-level age variable crossed with gender. 

The coverage rates for the 16 cells were created based on 

the population means for each age group by gender and 

range in value from 0.5 to 0.9. A coverage rate equal to 1.0 

would indicate full coverage. Before each sample was 

selected, the frame was designated as a stratified random 

subsample of the full population of 21,664. For example, 90 

percent of the male population 65-69 years of age was 

randomly selected to be in the sampling frame for the 

NOTCOV simulations. This process of subsetting the 

population to the frame was independently implemented for 

each sample and for each outcome variable. 

We suspect that the decision for researchers to use either 

a traditional or an EC poststratification variance estimator 

depends on the precision of the control totals. We calculated 

the benchmark covariance matrix ˆ( )BV  from the complete 

NHIS public-use data file (92,148 records) and ratio 

adjusted the values to reflect a sample size comparable with 

our simulation population (N = 21,664). The off-diagonal 

values of ˆ
BV  range from -0.05 to 0.75 with a mean value of 

0.22. From this matrix we calculated four covariance 

matrices for the simulation by dividing the original matrix 

by the adjustment factors 1.0, 3.6, 18, and 72. The 

adjustments reflect benchmark surveys with an approximate 

effective sample size of 21,700, 6,000 (≈ 21,700/3.6), 1,200, 

and less than 500, respectively. 

The simulation was conducted in R
®
 (Lumley 2009; R 

Development Core Team 2009) because of its extensive 

capabilities for analyzing survey data and efficiency with 

simulated analyses. Code was developed to calculate the 

linearization and replicate variance estimates for the EC 

poststratified estimator discussed above because the relevant 

code does not currently exist. 
 
 

5.2 Evaluation criteria  
The empirical results for the five variance estimators 

discussed in the previous section (Naïve, ECTS, ECF2, 

ECNJC, and ECMV) are compared using three measures 

across the 1, ,j = … 4,000 simulation samples, and the two 

outcome variables (NOTCOV and PDMED12M). The 

measures include: (i) the estimated percent relative bias of 

the variance estimator, ˆ(1/ 4,000 var ( ) mse)/mse
j

j yPt∑ −  

where ˆvar ( )
jyP

t  is one of the five variance estimates 

evaluated for sample j and mse is the mean square error of 

ŷPt  defined below; (ii) the 95% confidence interval 

coverage rate, 1 / 2ˆ1/ 4,000 (| | )j jI z z −α∑ ≤  where ˆ jz =  

ˆ ˆ( ) / var( );
j jyP y yPt t t−  and, (iii) the standard deviation of 

the estimated standard errors, calculated as the square root 

of 2ˆ ˆ1/(4,000 1) ( var ( ) 1/ 4,000 var ( )) .
j j

j jyP yPt t∑ ∑− −  

The  relative  bias  and  the root mean square error of our 

point estimators are calculated as ˆ1/ 4,000 ( ) /
j

j yP y yt t t∑ −  

and 2ˆmse 1/ 4,000 ( ) ,
j

s yP yt t∑= −  respectively.  
6. Simulation study results  

6.1 Point estimator  
To justify the need for poststratification, we initially 

evaluated the Horvitz-Thompson estimate ( )
As k kd y∑  for 

the two outcome variables. This estimator is known to be 

design-unbiased under pristine conditions. The percent 

relative bias indicates that the HT estimator is negatively 

biased, underestimating the population total by 38 percent 

for NOTCOV and 41 percent for PDMED12M. These large 

values show that some correction is needed to adjust for the 

non-negligible levels of bias. The percent relative bias for 

the poststratified estimator ŷPt  was much lower – the ŷPt  is 

positively biased by no more than two percent for both 

outcome variables.  
6.2 Variance estimators  

Adding to the theoretical evaluation discussed in Section 

4, the empirical results for an effective variance estimator 

should possess a percent relative bias either near zero or 

somewhat positive for a conservative measure (see Section 

5.2 for the formula of the percent relative bias).  

The percent relative biases generated from our simulation 

study are provided in Table 1. Bias estimates for the Naïve 

and ECNJC variance estimators are larger than for the other 

EC estimators for all our simulations. Estimates for the 

ECTS are somewhat smaller than the values calculated for 

the ECF2 and ECMV estimators for relatively small 

benchmark surveys. However, the differences are negligible 

as the size of the benchmark survey increases. 
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Table 1 

Percent relative bias estimates for five variance estimators by outcome variable and relative size of the benchmark survey to the 
analytic survey 
 

Relative Size ( ====A
n 1,000) Relative Size ( ====

A
n 2,000) 

Outcome Variable 
Variance 
Estimator 0.3 1.2 6.0 21.7 0.2 0.6 3.0 10.8 

NOTCOV Naïve -50.3 -23 -10.7 -9.2 -56.0 -31 -14.2 -12.2 
 ECTS -4.5 -4.5 -6.1 -7.7 -0.2 -8.4 -8.2 -10.1 
 ECF2 -4.7 -4.6 -5.8 -7.5 0.1 -8.2 -8.3 -10.1 
 ECNJC -36.7 -17.1 -8.9 -8.2 -40 -24.2 -11.9 -11.1 
 ECMV -4.3 -4.1 -6.0 -7.5 -0.2 -8.1 -8.1 -10.0 

PDMED12M Naïve -34.4 -14.5 -5.7 -3.9 -48.1 -23.4 -10 -10.1 
 ECTS -3.3 -3.7 -2.7 -2.6 -4.7 -6.4 -5.1 -7.8 
 ECF2 -3.5 -3.5 -2.4 -2.3 -4.6 -6.8 -5.2 -7.8 
 ECNJC -24.5 -10.5 -4.0 -2.7 -35.1 -17.6 -7.6 -8.4 
 ECMV -3.0 -3.3 -2.4 -2.2 -4.3 -6.3 -5.0 -7.7 

 

The traditional poststratified estimator (Naïve) was most 

negatively biased among those compared as expected. 

When the benchmark survey is smaller than the analytic 

survey (and therefore produces estimates less precise than 

the analytic survey), the Naïve estimator is negatively 

biased by as much as 56 percent. The level of bias improved 

as the relative size of the benchmark survey increased; 

however, the Naïve estimator still resulted in, at best, a four 

percent underestimate. The ECNJC estimator fared slightly 

better than the Naïve estimator though the bias (-2.7 to -40 

percent) is still larger than the other EC variance estimators, 

which range between -10.1 and 0.1 percent.  

For a small benchmark survey relative to the size of the 

analytic survey (i.e., relative size less than one), the levels of 

(absolute) bias dramatically increased for the Naïve and 

ECNJC estimators. The opposite effect is noted for the other 

EC variance estimators. The variance component associated 

with the benchmark survey, e.g., ˆ ˆˆ
A B A
′Y V Y  shown for 

ECTSvar  in (7), becomes the dominate term within the EC 

variance estimators as the precision of the benchmark 

survey estimates decreases. Thus the benchmark variance 

component somewhat corrects for the underestimation 

associated with the analytic variance component. Additional 

research is needed to determine if a threshold exists for 

when such a counterbalance of bias can occur. The overall 

negative bias of our estimates is similar to the bias of 

linearization variance estimators as shown in another 

context by Rao and Wu (1985, section 4) and Wu (1985). 

However, further research is also needed to determine how 

to minimize the underestimation. 

Note that the relative sizes of 21.7 when An = 1,000 and 

10.8 when An = 2,000 both imply benchmark survey 

sample sizes of about 21,600. Thus the 2( / )BO M m  

component of the variance, ,A B A
′Y V Y  is more prominent 

for the estimates in Table 1 based on An = 2,000. This leads 

to larger relative biases in these estimates, relative to those 

produced under An = 1,000, even though the analytic 

survey sample size is larger.  

The patterns exhibited for the percent relative bias are 

reflected in the coverage rates for the 95 percent confidence 

intervals for the estimated totals but are not provided for 

sake of brevity. The Naïve and ECNJC estimators are more 

likely to experience confidence intervals coverage rates 

below 95 percent.  These rates approach the appropriate 

level as the precision of the benchmark survey estimates 

improves. However, the remaining EC variance estimators 

had coverage rates near acceptable levels regardless of the 

relative size of the surveys and therefore are more robust.  

The discussion so far suggests that there are minimal 

theoretical, as well as empirical, differences between the 

ECTS, ECF2, and ECMV methods. We finally look to the 

standard deviation of the estimated standard errors (SEs) in 

an attempt to distinguish the estimators. An examination of 

this variability can provide insight on the (empirical) 

stability of the variance estimators, i.e., an unstable variance 

estimator could generate a poor variance estimate based on 

the nuances of a particular sample. Table 2 contains the 

percent relative increase in the standard deviations for the 

ECF2 and the ECMV both in comparison to the ECTS. 

The variation in the ECMV variance estimates was 

noticeably larger than for ECF2 but only for relatively small 

benchmark surveys. The difference increased as the size of 

the analytic survey increased. This suggests that the ECF2 

may be preferred over the ECMV due to increased stability 

in the variance estimates. However, further research is being 

conducted on the threshold for when the instability can 

affect the estimates.  
7. Conclusions and future work  

The theoretical and analytical work discussed in this paper 

support the need for a new methodology to address post-

stratification using estimated control totals, i.e., estimated-

control (EC) poststratification. Traditional variance estimators 

can severely underestimate the population sampling variance 

resulting in, for example, incorrect decisions for hypothesis 

tests and sub-optimal sample allocations when the design is 

implemented in the future.  
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Table 2 
Percent increase in instability of variance estimates relative to the ects by outcome variable and relative size of the benchmark survey 
 

Relative Size ( ====A
n 1,000) Relative Size ( ====A

n 2,000) 

Outcome Variable 

Variance 

Estimator 0.3 1.2 6.0 21.7 0.2 0.6 3.0 10.8 

NOTCOV ECF2 12.0 5.5 2.3 0.2 15.1 8.4 2.1 0.6 

 ECMV   21.2 7.4 1.8 0.3 30.8 8.5 2.4 0.7 

PDMED12M ECF2 7.7 3.8 1.1 0.4 12.0 6.3 2.1 0.7 

 ECMV 11.5 4.0 0.9 0.5 22.6 7.6 2.2 1.1 

 

The EC linearization variance estimator ECTSvar  in 

expression (7) shows promise for EC poststratification. This 

estimator is especially effective at reducing the percent 

relative bias experienced with the Naïve variance estimator in 

(6) when the benchmark survey is small relative to the 

analytic survey. The replication variance estimator ECF2var  

given in (9) is recommended specifically for studies requiring 

replicate weights such as when public-use analysis files are 

released without sampling design information to further 

protect data confidentiality and respondent privacy. The 

alternative replication estimator ECMVvar  also performed well 

and is somewhat easier to implement than ECF2var .  

Implementation of the recommended variance estimators 

requires specialized computer programs because the 

capabilities are currently not available in standard software. 

The linearization estimator may be more approachable 

because implementation involves a modification to available 

variance estimates, e.g., ECTS ECPS Naïve ECPS
ˆ ˆvar ( ) var ( )y yt t= +  

ˆ ˆˆ .A B A
′Y V Y  We provide a step-by-step discussion of the 

procedures required for the ECF2var  (see Section 4.3) to 

facilitate the creation of the computer program. 

Extensions to this research to be presented at a later date 

include a generalization to linear calibration, to other 

statistics including a ratio-estimated mean, and to domain 

estimation. We additionally are investigating whether 

threshold values are identifiable which determine (i) when 

there are negligible differences between traditional and EC 

variance estimation, and (ii) when the benchmark controls 

are too imprecise to use for calibration. We also plan to 

investigate the theoretical implications of measurement 

errors in the analytic as well as the benchmark surveys. 
 

Acknowledgements  
This work was competed as part of the first author’s 

doctoral dissertation at the Joint Program in Survey 

Methodology, University of Maryland. She thanks the 

members of her committee, Richard Valliant, Phillip Kott, 

Frauke Kreuter, Stephen Miller and Paul Smith for their 

guidance. The authors also thank the associate editor and 

referees for their constructive comments which clarified the 

presentation. 
 

Appendix A  
Derivation of ˆ

ECNJCvar (N )
B
  

For the following derivations, let Eε  represent the 

expectation with respect to a standard normal distribution. 

All other terms are defined in the body of the paper. 

ECNJC ( ) ( )
1 1

( )
1 1

1ˆ ˆ ˆ ˆ ˆvar ( ) ( ) ( )

1 1ˆ ˆ

Ah

Ah

mH
Ah

B B r B B r B
h rAh

mH

B r B
h rAh

m

m

H m

= =

= =

− ′= − −

 
=  

 

∑ ∑

∑ ∑

N N N N N

S SΚΚΚΚ

 

where ( ) ( ) ( )r r r
′Κ = η ηΚ = η ηΚ = η ηΚ = η η , a G G×  cross-product matrix of 

standard normal values; and 2ˆ ˆdiag ( ).B B=S V  Because 

( )( ) ,r GEε = IΚΚΚΚ  a G-dimension identity matrix, we have 

ECNJC
ˆ ˆ[var ( )] diag( ).B BEε =N V  Therefore, ECNJC

ˆvar ( )BN  

does not reproduce ˆ
BV  in expectation. 

 
Appendix B  

Evaluation of the ECMV  
For the following derivations, let BE  and VarB  represent 

the expectation and variance with respect to the benchmark 

survey sampling design. Also, let Eε  and Varε  represent the 

expectation and variance with respect to the G-dimensional 

multivariate normal distribution, ˆMVN ( , ).G B0 V  All other 

terms are defined in the body of the paper.  
B.1: Derivation of ˆ

ECMV[var (N )]
B

E  given in (15)  
Using expression (14) and 2 /( 1),h Ah Ahc m m= −  

ECMV
1

( ) ( )
1

( ) ( )
1 1

1 1

( 1)ˆ[var ( )]

ˆ ˆ ˆ ˆ( ) ( ) ,

1 1
ˆ ˆ( )

1 1 ˆ ˆ( ) ( ).

Ah

Ah

Ah

H
Ah

B B
h Ah

m

B r B B r B
r

mH

B r r
h rAh

mH

B B B B
h rAh

m
E E E

m

B

E E B
H m

E E
H m

=

=

= =

= =

  −
=  




′− − 



 
′= | 

 

= =

∑

∑

∑ ∑

∑ ∑

N

N N N N

V V

ε

ε ε εε εε εε ε
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B.2: Derivation of ˆ
ECMVVar[var (N )]

B
 given in (15)  

When 1ky =  so that ˆˆ ,yP Bt ′= 1 N ECMV
ˆvar ( )B′ =1 N  

1 1
1 1 ( ) ( )

ˆ ˆ .AhmH
h rAh r rH m− −
= =∑ ∑ ′ ′1 1ε εε εε εε ε  Using the formula for the 

variance of a quadratic form (Searle 1982, section 13.5), we 

have 

ECMV

( ) ( )
1 1

( ) ( )2 2
1 1

1 1

2
1

ˆVar[var ( )]

1 1
ˆ ˆVar ( )

1 1
ˆ ˆVar ( )

1 1 ˆVar

1 1 ˆ ˆ{2 ( )}

Var [

Ah

Ah

Ah

B

mH

B r r
h rAh

mH

B r r
h rAh

mH

B B
h rAh

H

B B B

h Ah

B

E B
H m

E B
H m

H m

E tr
mH

ε
= =

ε
= =

= =

=

′

 
′ ′= | 

 

 
′ ′+ | 

 

 
′=  

 

 
′ ′+  

 

=

∑ ∑

∑ ∑

∑ ∑

∑

1 N

1 1

1 1

1 V 1

11 V 11 V

ε εε εε εε ε

ε εε εε εε ε

22ˆ ˆ] [ ( ) ],B B B

A

E
Hm∗

′ ′+1 V 1 1 V 1

 

where 1 1 1
1( )H

hA Ahm H m∗ − − −
=∑=  is the harmonic mean 

of .Ahm  
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Some contributions to jackknifing two-phase sampling estimators 

Patrick J. Farrell and Sarjinder Singh 1 

Abstract 

In this paper, the problem of estimating the variance of various estimators of the population mean in two-phase sampling has 

been considered by jackknifing the two-phase calibrated weights of Hidiroglou and Särndal (1995, 1998). Several estimators 

of population mean available in the literature are shown to be the special cases of the technique developed here, including 

those suggested by Rao and Sitter (1995) and Sitter (1997). By following Raj (1965) and Srivenkataramana and Tracy 

(1989), some new estimators of the population mean are introduced and their variances are estimated through the proposed 

jackknife procedure. The variance of the chain ratio and regression type estimators due to Chand (1975) are also estimated 

using the jackknife. A simulation study is conducted to assess the efficiency of the proposed jackknife estimators relative to 

the usual estimators of variance. 
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1. Introduction 
 

Hidiroglou and Särndal (1995, 1998) have pointed out 

that two-phase sampling for the estimation of finite popu-

lation attributes is a powerful and cost-effective technique, 

and hence plays an eminent role in survey sampling. Two-

phase sampling can be described as follows. Consider a 

finite population that we shall denote by {1,Ω =  

2, , , , }.i N… …  Suppose that information is available on a 

variable Z  across the entire population; that is, the values 

iZ  for all 1, ..., ,i N=  are known, implying that the popu-

lation mean, ,Z  is also known. A first-phase probability 

sample 1,s 1 ,s ⊂ Ω  of size m  is drawn from the population 

with selection probabilities 1 .iπ  Thus, the first-phase 

sampling weights can be defined as 1 11/ .i id = π  Assume 

that for this sample, information is collected on a variable 

,X  which is then paired with the information on Z  for each 

of the m  units, giving rise to the data {( , )i ix z | 1}i s∈  for 

1, ..., .i m=  Once the first-phase sample 1s  has been 

drawn, a second-phase sample 2,s 2 1 ,s s⊂ ⊂ Ω  of size n  

is selected from 1s  with selection probabilities 
12 ,i i s|π = π  

allowing for the second-phase sampling weights to be 

defined as 2 21/ .i id = π  In the second-phase sample, 

information is now collected on a variable Y  for each 

selected unit. This information is linked to that previously 

available on Z  and X  for these units, giving rise to the 

data {( , , )i i ix y z | 2}i s∈  for 1, ..., .i n=  Suppose that 

interest lies in estimating the population mean ,Y  and on 

the variance of the estimator employed. 

Let 
11 1 1/o

i si i iw d d∈∑=  denote the first-phase normalized 

original design weights. The usual estimator of the 

population mean X  is given by 

1

1 1
ˆ ,
o o

i i
i s

X w x
∈

= ∑  

while a calibrated first-phase estimator of X  is  

1

1 1
ˆ ,
c c

i i
i s

X w x
∈

= ∑  

where the 1

c

iw  are calibrated weights such that the chi-

square distance function 

1

2

1 1 1 1 1{( ) / ( )},c o o

i i i i
i s

D w w w q
∈

= −∑  (1.1) 

is minimized subject to 

1

1 .c

i i
i s

w z Z
∈

=∑  (1.2) 

In (1.1), the 1iq  are a set of suitably chosen weights. 

Minimization of (1.1) subject to (1.2) leads to the first-phase 

calibrated weights 

( ){ }( )
1 1

2

1 1 1 1 1 1 1( ) .
c o o o o

i i i i i i i i i i

i s i s

w w q w z q w z Z w z
∈ ∈

= + −∑ ∑  

Thus, a first-phase calibrated estimator of X  is given by 

( )
1 1

1 1 1 1
ˆ ˆ ,
c o o

i i i i
i s i s

X w x Z w z
∈ ∈

= + β −∑ ∑  

where 

     ( ) ( )
1 1

2

1 1 1 1 1
ˆ .o o

i i i i i i i
i s i s

q w x z q w z
∈ ∈

β = ∑ ∑  

Now, let 
22 1 2 1 2/o

i si i i i iw d d d d∈∑=  denote the second-

phase normalized design weights. The usual estimator of Y  

is given by 
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2

2 2
ˆ .
o o

i i
i s

Y w y
∈

= ∑  

Let us consider the second-phase calibrated estimator of Y  

as 

2

2
ˆ ,
c c

i i
i s

Y w y
∈

= ∑  (1.3) 

where the 2

c

iw  are the second-phase calibrated weights such 

that the chi-square distance function 

2

2

2 2 2 2 2{( ) / ( )},c o o

i i i i
i s

D w w w q
∈

= −∑  (1.4) 

is minimized subject to the calibration constraint 

2

2 1
ˆ .

c c

i i
i s

w x X
∈

=∑  (1.5) 

Minimization of (1.4) subject to (1.5) leads to the second-

phase calibrated weights 

( ){ }
2 2

2 2

2

2 2 2 2 1 2
ˆ( ) .

c o

i i

o o c o

i i i i i i i i
i s i s

w w

q w x q w x X w x
∈ ∈

=

 + − 
 

∑ ∑
 

Thus, the second-phase calibrated estimator of Y  specified 

in (1.3) can be written as 

2 2 1 2 1 2 1
ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ( ) ( ),c o o o oY Y X X Z Z= + β − + β β −  (1.6) 

where 
11 1

ˆ ,o o
i s i iZ w z∈∑=  

11 1
ˆ ,o o

i s i iX w x∈∑=  
22 2

ˆ ,o o
i s i iX w x∈∑=  

22 2
ˆ ,o o

i s i iY w y∈∑=  and 

( ) ( )
2 2

2

2 2 2 2 2
ˆ .o o

i i i i i i i
i s i s

q w x y q w x
∈ ∈

β = ∑ ∑  

Hidiroglou and Särndal (1995, 1998) and Singh (2000) 

have considered the problem of estimating the variance of 

the calibrated estimator ˆ cY  in (1.6) by using a design-based 

approach. In a more general context, Rao and Sitter (1995) 

and Sitter (1997) have pointed out that under simple random 

sampling without replacement (SRSWOR), a jackknife 

technique can be used to estimate the variances of the ratio 

and regression estimators for a population mean. These 

authors have also reported that the use of the jackknife for 

estimating variance is more convenient and efficient than 

the traditional techniques based on estimates of moments. 

Of late, a number of authors have investigated the use of 

jackknife procedures for estimating variances (See Arnab 

and Singh 2006, Berger 2007, Berger and Skinner 2005, 

Chen and Shao 2001, and Kovar and Chen 1994). Fuller 

(1998), Kim, Navarro and Fuller (2000, 2006), Kim and 

Sitter (2003), and Kott and Stukel (1997) have suggested an 

approach for estimating the variance in two-stage sampling. 

Fuller (1998) and Kim and Sitter (2003) address the regres-

sion estimator. In particular, consider the generalized regres-

sion estimator of population total 

2

DS
ˆ ,i i

i s

Y y
∈

= α∑  

due to Deville and Särndal (1992). Following Kim et al. 

(2000, 2006), for each 2,k s∈  specify the jackknife esti-

mator of population total as 

2

( )

Kim
\

ˆ ,k

i i
i s k

Y y
∈

= α∑  (1.7) 

and the chi-square distance between the design and 

calibration weights as 

2

( ) ( ) *( ) 2 ( ) ( )

( )
\

(1/ 2) {( ) / ( )}.k k k k k

k i i i i i
i s k

D w w w q
∈

= α −∑  (1.8) 

Minimizing (1.8) subject to the condition 

2 1

( ) ( )

\ \

,k k

i i i i
i s k i s k

x w x
∈ ∈

α =∑ ∑  

leads to jackknifed calibrated weights given by 

( ){ }
{ }

2

2 2

( ) ( ) *( ) ( ) ( ) ( ) ( )

\

( ) ( ) *( )

\ \

( )

.

k k k k k k k

i i i i i i i i
i s k

k k k

i i i i i
i s k i s k

w w w q x w q

w x w w x

∈

∈ ∈

α = +

−

∑

∑ ∑
 

It would appear that Kim et al. (2006) readjusted these 

weights as 

( )
2

( )

( )
1 2

if

if ( ).

k

i
k

i
k

i

k s

j s sw

∈α
α = 

∈ −

 

For such a readjustment, the estimator in (1.7) is equivalent 

to that of Rao and Sitter (1995). 

In the present paper, we consider a new jackknife 

technique to estimate the variance of the estimator ˆ cY  under 

the two-phase setup by following Hidiroglou and Särndal 

(1995, 1998). Similar to Kim et al. (2006), the estimator 

proposed by Rao and Sitter (1995) is shown to be a special 

case of the proposed method. However, our approach differs 

from that of Fuller (1998) Kim and Sitter (2003), Kim et al. 

(2000, 2006) in that we consider calibration at both the first 

and second phases, thus allowing for the development of the 

technique for chain ratio and chain regression type esti-

mators. We also investigate, via a simulation study, the 

efficiency of the jackknife estimators of variance relative to 

the usual estimators. 

 
2. Estimation of variance using jackknifing 

 
In what follows, we assume that a single stage design is 

employed at both of the two phases in the sampling process. 
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Let ˆ ( )cY j  be a calibrated estimator of the population mean, 

,Y  obtained by dropping the thj  unit from the sample 1s  of 

m  units. We prove in the Appendix that the jackknife 

estimator of the population mean in two phase-sampling can 

be written as 

2 2 1 2

1 2 1 2

2 2 1 1

1 2 1 1 2

ˆ ˆ ˆˆ( ) ( ) { ( ) ( )}

ˆˆ ˆ( ) ( ){ ( )} if

ˆ ( )

ˆ ˆ ˆˆ { ( ) }

ˆˆ ˆ( ) { ( )} if ( )

o o o

o

c

o o o

o

Y j j X j X j

j j Z Z j j s

Y j

Y X j X

j Z Z j j s s

 +β −

+ β β − ∈



= 

 + β −

+ β β − ∈ −

(2.1) 

where the quantity 1 1 1 1 1
ˆ ˆ ˆ( ) { /(1 )}{
o o o o o

j jZ j Z w w Z= + − −  

},jz  the terms 1
ˆ ( ),oX j 2

ˆ ( ),oX j  and 2
ˆ ( )oY j  are defined in 

an analogous manner, 1 1 1 1 1
ˆ ˆ ˆ( ) { ( )}/o

j j j j jj q w z x zβ =β + −β  

1

2 2
1 1 1 1{ },o o

i sj j j i i iq w z q w z∈∑−  and 2 2 2 2
ˆ ˆ( ) { o

j j jj q w xβ = β +  

1

2 2
2 2 2 2 2

ˆ( )}/{ }.o o
i sj j j j j i i iy x q w x q w x∈∑− β −  The modified 

jackknife estimator of variance of ˆ cY  is then given by 

1

2

JACK
ˆ ˆ ˆˆ ( ) {( 1) / } { ( ) } .
c c c

j s

V Y m m Y j Y
∈

= − −∑  (2.2) 

We show in the appendix that this estimator is consistent. 

Note that we can write that 

2 2 1 2 2

2 2 2

2 1 1 2

ˆ ˆ( ) ( ) ( ) ( )

ˆˆ ˆ ( ) if( )

ˆ ( ) if ( )

c c

j j j d j

j j sY j Y

j j s s

ε + β ε + β

+ β δ ∈− =

β ε ∈ −

(2.3) 

where the terms in (2.3) are given by 1( )jε =  

1 1 1 1
ˆ ˆ ˆˆ{ ( ) } ( ){ ( ) },o o oX j X j Z j Z− − β −  2 2 2

ˆ ˆ( ) { ( ) }o oj Y j Yε = − −  

2 2 2 1 2 1
ˆ ˆ ˆˆ ˆ ˆ( ){ ( ) } ( ) ( ){ ( ) },o o oj X j X j j Z j Zβ − − β β −  2 ( )d j =  

1 2
ˆ ˆ{ ( ) ( )}o oX j X j−  and 2 2 1 1

ˆ ˆ ˆ( ) { ( ) } ( ){o oj X j X j Zδ = − −β −  

1 1 1
ˆ ˆˆ( )} { }.o oZ j Z Z− β −   The 1( )jε  term is analogous to the 

error term associated with the regression of the auxiliary 

variable ix  on ,iz  for 1,i s∈  while 2 ( )jε  is analogous to 

the error term associated with the regression of the study 

variable iy  on both ix  and iz  simultaneously, for 2.i s∈  

Provided that 2,j s∈  the 2 ( )d j  term reflects the difference 

in the jackknife first and second phase sample means for the 

variable ,X  while 2 ( )jδ  denotes an adjustment to 2 ( )d j  

obtained by using information on the auxiliary variable .Z  

Using (2.3) in (2.2), the jackknife estimator of variance 

of the estimator ˆ cY  is given by 

2 2

2

2

2

1

JACK

2 2 2

2 2 2

2

2 2 2 1

2 1 2

2 2 2 1 2

2 2

2 1

ˆˆ ( ) {( 1) / }

ˆ( ) ( ) ( )

ˆ ( ){ ( ) 2 ( )}

ˆ2 ( ) ( )

ˆ ˆ2 ( ) ( ){ ( ) ( )}

ˆ ( ) .

c

j s j s

j s

j s

j s

j s

V Y m m

j j d j

j j j

j j

j d j j j

j

∈ ∈

∈

∈

∈

∈

= −

 ε + β


+ β δ δ + ε

+ β ε ε

+ β β ε + δ

+ β ε


∑ ∑

∑

∑

∑

∑  (2.4)

 

Note that the expression given in (2.4) is exact. It can be 

used to estimate the variance of several estimators available 

in the literature.  
3. Special cases  

In the next section, we demonstrate that the estimator 

proposed by Rao and Sitter (1995), Sitter (1997), Raj 

(1965), Srivenkataramana and Tracy (1989), Chand (1975), 

and Ahmed (1997) can be viewed as special cases of the 

proposed technique. 
 
Case 3.1: Rao and Sitter (1995)  

If 1 1
ˆ ˆc oX X=  (no first-phase calibration is made) and 

2 1/ ,i iq x=  then the calibrated estimator of Y  becomes 

( ) ( ) ( ){ }
2 2 2

2 1 2
ˆ .
c o o o

r i i i i i i

i s i s i s

Y w y w x w x
∈ ∈ ∈

= ∑ ∑ ∑  

If the first-phase sample 1s  is selected according to 

SRSWOR such that the first-phase design weights are given 

by 1 / ,id N m=  and the second-phase sample 2s  is selected 

from 1s  by SRSWOR such that 2 / ,id m n=  then the 

calibrated estimator of the population mean becomes 

RS
ˆ ( / ),cY y x x′=  (3.1) 

where 
2

/ ,i s iy y n∈∑=  
2

/ ,i s ix x n∈∑=  and 
1

/ .i s ix x m∈
′ ∑=  

The jackknife mechanism in (2.1) becomes 

2

RS

1 2

( ) ( )
if

( ) ( 1)
ˆ ( )

( )
( / ) if ( ).

( 1)

j j

j
c

j

ny y mx x
j s

nx x m

Y j

mx x
y x j s s

m

′

′

 − −
∈

− −
= 

 −
 ∈ −

−

 (3.2) 

Setting ˆ / ,R y x=  the difference between (3.2) and (3.1) 

can be written as 
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RS RS

2

1 2

ˆ ˆ( )

ˆ( ) ( )( )ˆ if
( 1) ( ) ( 1)

( )
ˆ if ( ).

( 1)

c c

j j j

j

Y j Y

x x y Rxx j
R j s

m x j n

x x
R j s s

m

′ ′

′

− =

 − −
− − ∈

− −

 −
− ∈ −

−

 (3.3)

 

Expression (3.3) is exactly the same as reported by Rao 

and Sitter (1995). Assuming that ( ) / ( ) / ,x j x j x x′ ′≈  then 

the approximate jackknife estimator of variance is given by 

2

2

1

2
2

JACK RS

2

2

ˆ( )ˆˆ ( )
( 1)

ˆ( ) ( )
ˆ2

1

( )
ˆ .

( 1)

c i i

i s

j j j

j s

j

j s

y Rxx
V Y

x n n

x x y Rxx
R

x n

x x
R

m m

∈

∈

∈

′

′′

′

  −
≈  

− 

− − 
+  

− 

−
+

−

∑

∑

∑

 

Thus, the Rao and Sitter (1995) estimator is a special case of 

the proposed jackknife technique. 
 
Case 3.2: Sitter (1997)  

In Case 3.1, if we consider 2 1,iq =  then the calibrated 

estimator under SRSWOR becomes 

*ˆ ( ),c

lrY y b x x′= + −  (3.4) 

where 
2 2

* 2/i s i si i ib x y x∈ ∈∑ ∑=  denotes an estimator of the 

regression coefficient β  that is slightly different from the 

one considered by Sitter (1997). The jackknife mechanism 

takes the form 

2

*

*

2 2

2

*

1 2

ˆ ( )

( )

1

if
1 1

if ( ).
1

c

lr

j j j
j

i j
i s

j j

j

Y j

x y b xny y b
x xn

mx x nx x
j s

m n

mx x
y b j s sx

m

∈

′

′

=

  −−  + +  − −    
  − − ∈ − − − 
  − + ∈ − −
 − 

∑

(3.5)

 

If we set * *( ) ( ),j j jd y y b x x= − − −  * { ( )j ja x x j= −  

( )}/ ,x j K′  and * 2 / ,j jk x K=  where 2 2( 1) ,xK n s nx= − +  

then the difference between (3.5) and (3.4) can be written as 

*

*

2*

*

*

1 2

ˆ ˆ( )

( ) ( 1)
if

( 1)
1

(1 )

( )
if ( )

( 1)

c c

lr lr

j

j

j

j

j

Y j Y

d

x x n
b j s

m a

k

x x
b j s s

m

′

′

− =


 − −− − ∈
 −   +  −  


−− ∈ − −

 

which is similar to the expression reported by Sitter (1997). 
 
Case 3.3: Raj (1965)  

In order to consider this case, we assume that the initial 

sample 1s  of size m  is selected with replacement according 

to probabilities ip  proportional to , 1, 2, ..., .iz i N=  

Information on the auxiliary variable X  is collected on this 

first-phase sample, 1.s  The second-phase sample, specified 

to be of size ,n  is a subsample of 1s  selected without 

replacement using equal probabilities. It is for 2s  that 

information on Y  is collected. Under this sampling scheme, 

1 11/ 1/( )i i id mp= π =  and 2 / .id m n=  Thus, 1

o

iw =  

1
(1/ )/ (1/ )i si ip p∈∑  and 

22 (1/ ) / (1/ ).o
i si i iw p p∈∑=  Note also 

that  for  this  scheme, 1 1
ˆ ˆ ;c oX X=  thus no first-phase cali-

bration is made. If 2 1/ ,i iq x=  then the calibrated estimator 
ˆ cY  becomes 

Raj 2 1 2
ˆ ˆ ˆ ˆ( / ),
c o o o

Y Y X X=  (3.6) 

where 
2 22

ˆ ( / ) / (1/ ),o
i s i si i iY y p p∈ ∈∑ ∑=  

22
ˆ ( / ) /o

i s i iX x p∈∑=  

2
(1/ ),i s ip∈∑  and 

1 11
ˆ ( / ) / (1/ ).o

i s i si i iX x p p∈ ∈∑ ∑=  Thus, 

alternatively 
2 1 2Raj

ˆ { ( / ) ( / )}/{ ( / )
c

i s i s i si i i i i iY y p x p x p∈ ∈ ∈∑ ∑ ∑=  

1
(1/ )}.i s ip∈∑  

Under the sampling scheme described above, the 

jackknife estimator of population mean is 

1
2 2

2

Raj

1
2 1 2

2

ˆ ( )ˆ ( ) if
ˆ ( )

ˆ ( )
ˆ ( )ˆ if ( )
ˆ

o
o

o

c

o
o

o

X j
Y j j s

X j
Y j

X j
Y j s s

X


∈


= 


∈ −



 (3.7) 

where 

2 2 2

2 2

2

2
ˆ ( )

( / ) (1/ ) (1/ ) ( / )
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(1/ )(1/ ) (1/ )

1
(1/ )

o

i i j i i i
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j
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i s i s

i
i s
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y p p p y p

y
pp p
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∈ ∈ ∈

∈ ∈

∈

=

 
 + − 
 −  

∑ ∑ ∑

∑ ∑
∑
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and 2
ˆ ( )oX j  and 1

ˆ ( )oX j  are defined analogously. If R̂ =  

2 2
ˆ ˆ/o oY X  and 

22 (1/ ) / (1/ ),o
i sj j iw p p∈∑=  the difference 

between (3.7) and (3.6) can easily be written as 

Raj Raj

1
2

2

1 1 2

1 1 1 2

ˆ ˆ( )

ˆ ( ) ˆ( )
ˆ ( )

ˆ ˆˆ{ ( ) } if

ˆ ˆˆ{ ( ) } if ( ).

c c

o
o

j j jo

o o

o o

Y j Y

X j
w y Rx

X j

R X j X j s

R X j X j s s

− =


− −





+ − ∈

 − ∈ −

  

Thus, the jackknife estimator of variance of the estimator 

Raj
ˆ cY  is given by 

2

1

2

JACK Raj

2

2 21
2

2

2 2

1 1

1
2 1 1

2

ˆˆ ( )

ˆ ( )1 ˆ( ) ( )
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ˆ ˆˆ { ( ) }
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c

o
o

j j jo
j s

o o

j s

o
o o o

j j jo
j s

V Y

X jm
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R X j X

X j
R w y Rx X j X

X j

∈

∈

∈

=

−  −


+ −


− − − 



∑

∑

∑

  

Following Rao and Sitter (1995), if we assume 1
ˆ ( ) /oX j  

2 1 2
ˆ ˆ ˆ( ) / ,o o oX j X X≈  then the jackknife estimator of variance 

of Raj
ˆ cY  takes the form 

2

1

2

JACK Raj

2 2 2

1 2 2

2 2

1 1

1 2 2 1 1

ˆˆ ( )

1 ˆ ˆ ˆ{ / } ( ) ( )
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∈

∈

∈
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−  −


+ −


− − − 

∑

∑

∑

 

 
Case 3.4: Srivenkataramana and Tracy (1989)  

In order to consider this case, as in Raj (1965), we 

assume that the initial sample 1s  of size m  is selected with 

replacement according to probabilities proportional to .iz  

However, the subsample, 2,s  of n  units is now selected 

with replacement using probabilities proportional to / .i ix z  

As a result, 
11 (1/ ) / (1/ )o

i si i iw z z∈∑=  and 2 (1/ ) /o

i iw x=  

2
(1/ ).i s ix∈∑  Similar to Raj (1965), no first-phase 

calibration is made; thus 1 1
ˆ ˆ .c oX X=  Hence, if 2 1/ ,i iq x=  

then the calibrated estimator ˆ cY  is 

ST 2 1 2
ˆ ˆ ˆ ˆ( / ),c o o oY Y X X=  (3.8) 

where 
2 22

ˆ ( / ) / (1/ ),o
i s i si i iY y x x∈ ∈∑ ∑=  

22
ˆ / (1/ ),o

i s iX n x∈∑=  

and 
1 11

ˆ ( / ) / (1/ ).o
i s i si i iX x z z∈ ∈∑ ∑=  Thus, alternatively ST

ˆ cY =  

2 1 1
{ ( / ) ( / )}/{ (1/ )}.i s i s i si i i i iy x x z n z∈ ∈ ∈∑ ∑ ∑  

Under the sampling scheme described above, the 

jackknife estimator of population mean is 

2 1 2 2

ST

2 1 2 1 2

ˆ ˆ ˆ( ){ ( ) / ( )} if
ˆ ( )

ˆ ˆ ˆ{ ( ) / } if ( )
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 (3.9) 

where 
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 

∑ ∑
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The terms 2
ˆ ( )oX j  and 1

ˆ ( )oX j are defined similarly; that is 

2 2 2

2

1ˆ ( ) ,
(1/ ) (1/ ) 1 (1/ )

o

j

i j i i
i s i s i s

n n
X j x

x x x x
∈ ∈ ∈
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  

∑ ∑ ∑
 

while 1
ˆ ( )oX j  can be written as 

1 1
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If 
2

ˆ ( / ) /i s i iR y x n∈∑=  and 
22 (1/ ) / (1/ ),o

i sj j iw x x∈∑=  the 

difference between (3.9) and (3.8) is given by 

ST ST

1
2 1 1 2

2
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Following Rao and Sitter (1995), if we assume 

1 2 1 2
ˆ ˆ ˆ ˆ( ) / ( ) / ,o o o oX j X j X X≈  then the jackknife estimator of 

variance of ST
ˆ cY  takes the form 
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Case 3.5: Chand (1975)  
In order to consider this case, the first-phase sample 1s  of 

size m  is selected using SRSWOR, and both auxiliary 
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variables Z  and X  are observed on the chosen units. The 

subsample, 2 ,s  of n  units is also selected using SRSWOR. 

Obviously, 1 /id N m=  and 2 / ,id m n=  so that 1

o

iw =  

1/m  and 2 1/ .o

iw n=  If 1 1/i iq z=  and 2 1/ ,i iq x=  then 

the calibrated estimator ˆ cY  becomes 

Ch
ˆ ( / )( / ),cY y x x Z z′ ′=  (3.10) 

where 

2

/ ,i
i s

y y n
∈

= ∑
2

/ ,i
i s

x x n
∈

= ∑
1

/ ,i
i s

x x m
∈

′ = ∑  

and 
1

/ .i s iz z m∈
′ ∑=  The jackknife estimator of Y  is  
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 (3.11) 

where ( ) ( ) /( 1),jy j ny y n= − −  ( ) ( ) /( 1),jx j nx x n= − −  

( ) ( ) /( 1),jx j mx x m′ ′= − −  and finally ( ) (z j mz′ ′= −  

) /( 1).jz m −  If we let 1
ˆ /R x z′ ′=  (an estimator of 1R =  

/ )X Z  and 2
ˆ /R y x=  (an estimator of 2 / ),R Y X=  

and similarly, let 1
ˆ ( ) ( ) / ( )R j x j z j′ ′=  and 2

ˆ ( )R j =  

( ) / ( ),y j x j  the difference between (3.11) and (3.10) can 

be written as 

Ch Ch
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where we can write in (3.12) that 2 ( ) { ( ) }j y j yε = − −  

2 1 2
ˆ ˆ ˆ( ) { ( ) } ( ) ( ){ ( ) },R j x j x R j R j z j Z′− − −  2 ( ) { ( )d j x j′= −  

},x ′  2 1 1
ˆ ˆ( ) { ( ) ( )} ( ){ ( )} {j x j x j R j Z z j R Z′ ′δ = − − − − −  

},z ′  and finally that the term 1( ) { ( ) }j x j x′ ′ε = − −  

1
ˆ ( ){ ( ) }.R j z j Z′ −  Thus the jackknife estimator of variance 

of  the  estimator  Ch
ˆ cY   is  given  by 
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Case 3.6: Ahmed (1997)  
Consider the same sample design as in Case 3.5. Rather 

than 1 1/i iq z=  and 2 1/i iq x=  as in Chand (1975), we set 1iq =  

2iq = 1, and 2 1/ ,i iq x=  then the calibrated estimator reduces 

to 
* * *

Chlr 2 1 2
ˆ ( ) ( ),cY y b x x b b Z z′ ′= + − + −  (3.13) 

where 
2 2

* 2

2 /i s i si i ib x y x∈ ∈∑ ∑=  and 
1 1

* 2

1 / .i s i si i ib x z z∈ ∈∑ ∑=  

Note that (3.13) is a chain regression type estimator similar 

to Ahmed (1997). Letting * * *
2 2 2( ) { ( ) /j j jb j b x y b x= + −  

2

2 2( )}i sj ix x∈∑−  and 
1

* * * 2 2
1 1 1( ) { ( ) /( )},i sj j j j ib j b z x b z z z∈∑= + − −  

after jackknifing the estimator Chlr
ˆ cY  becomes 
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(3.14)

 

The difference between (3.14) and (3.13) can be written as 

Chlr Chlr
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*
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( ) if ( )

c cY j Y

j b j b j d j b j j s

b j j s s

− =

ε + ε + + δ ∈


ε ∈ −
 (3.15)

 

where we can write in (3.15) that 2 ( ) { ( )j y jε = −  
* * *

2 1 2} ( ){ ( ) } ( ) ( ){ ( ) },y b j x j x b j b j z j Z′− − − −  2 ( )d j =  

{ ( ) },x j x′ ′−  *

2 1( ) { ( ) ( )} ( ){ ( )}j x j x j b j Z z j′ ′δ = − − − −  
*

1{ },b Z z ′−  and finally that the term 1( ) { ( )j x j′ε = −  
*

1} ( ){ ( ) }.x b j z j Z′ ′− −  Thus the jackknife estimator of 

variance of the estimator Chlr
ˆ cY  is given by 

2 2

2

2

2

1

JACK Chlr

2 * 2 2

2 2 2

* 2

2 2 2 1

*

2 1 2

* *

2 2 2 1 2

* 2 2

2 1

ˆˆ ( )

{( 1) / } ( ) { ( )} ( )

{ ( )} ( ){ ( ) 2 ( )}

2 ( ) ( )

2 ( ) ( ){ ( ) ( )}

{ } ( ) .

c

j s j s

j s

j s

j s

j s

V Y

m m j b j d j

b j j j j

b j j

b b j d j j j

b j

∈ ∈

∈

∈

∈

∈

=

− ε +

+ δ δ + ε

+ ε ε

+ ε +δ

+ ε


∑ ∑

∑

∑

∑

∑

 

 
4. Simulation study 

 
In this section, we present the results of simulation 

studies designed to investigate the performance of the 

proposed jackknife procedure for estimating the variance of 

four of the two-phase estimators of population mean 
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presented in Section 3. Specifically, we consider the Rao 

and Sitter (1995) ratio-type estimator, the Sitter (1997) 

regression-type estimator, the Chand (1975) chain ratio-type 

estimator, and the Ahmed (1997) chain regression-type 

estimator. Initially, we describe and report the results of 

simulations that were conducted for the Sitter and Rao 

(1995) and Sitter (1997) estimators. This is followed by a 

discussion and summary of similar simulations on the 

Chand (1975) and Ahmed (1997) estimators. Unlike the 

case for the ratio and regression estimators, since complete 

information on a second auxiliary variable Z is required for 

the entire population in order to apply the two chain 

estimators, the simulations that were conducted for these 

two estimators are somewhat more complicated than those 

performed for the ratio and regression estimators.  
4.1 Simulation study: Rao and Sitter (1995) and 

Sitter (1997)  
For purposes of the first set of simulations, we assume 

that a first-phase sample of m  units is selected from a 

population of N  units, and only the auxiliary variable X  is 

measured. From the first-phase sample of m  units, we then 

select a second-phase sample of n  units by SRSWOR in 

which both the study variable, ,Y  and the auxiliary variable, 

,X  are measured. 

We began by creating a population of N  units consisting 

of ( , )i iX Y  pairs using the model 

,g

i i i iY X X= β + ε  

with β = 10. Initially, we set g = 0 and N = 500. For each 

, 1, ..., ,i i N=  we generated iX  from a gamma 

distribution with a shape parameter of 3.1 and a scale 

parameter of one, and iε  from a standard normal. From the 

resulting population of ( , )i iX Y  pairs, we selected 1,000 

first-phase sample of m = 100 units, and from each of these 

samples, we selected 10,000 second-phase samples of n =  

20 units. 

Under the sampling scheme used here, Rao and Sitter 

(1995) proposed the ratio estimator 

RS
ˆ ( / ),cY y x x′=  (4.1) 

which has approximate variance 

1 1 2 1 1 2

RS
ˆ( ) ( ) ( ) ,
c

d yV Y n m S m N S
− − − −= − + −  

where 

2 1 2

1

( 1) [( ) ( )]
N

d i i
i

S N Y Y R X X−

=

= − − − −∑  

and 

2 1 2

1

( 1) ( ) ,
N

y i
i

S N Y Y−

=

= − −∑  

with 1 / ,N
i iY Y N=∑= 1 / ,N

i iX X N=∑=  and / .R Y X=  For 

the tht  second phase sample (t = 1, …, 10,000) drawn from 

the thk  first phase sample (k = 1, …, 1,000), we computed 

the usual estimator of variance 

2 2

RS ( ) ( )

1 1 1 1ˆˆ [( ( )] ,c

d t k y t kV Y t k s s
n m m N

| |
   | = − + −   
   

 (4.2) 

where the sample variances are 

2 1 2

( ) ( ) ( ) ( ) ( ) ( )
1

( 1) [( ) ( )]
n

d t k i t k t k t k i t k t k
i

s n y y r x x−
| | | | | |

=

= − − − −∑  

and 

2 1 2

( ) ( ) ( )
1

( 1) ( )
n

y t k i t k t k
i

s n y y−
| | |

=

= − −∑  

with ( )t ky | = 1 ( ) /
n
i i t ky n= |∑  and 1( ) ( ) / .n

it k i t kx x n=| |∑=  In 

addition, ( )t kr | = ( ) ( )/ .t k t ky x| |  We also computed the 

jackknife estimator of variance 

JACK RS

2

( ) ( )

( ) ( )
1 ( ) ( )

ˆˆ [( ( )]

( )1
( ) ,

( )

c

m
t k t k

t k t k
j t k t k

V Y t k

x j xm
y j y

m x j x

| |
|

= | |

′ ′

| =

 −
− 

  
∑

 

(4.3)

 

and the ratio of estimated variances 

RS JACK RS
ˆ ˆˆ ˆRV( ) [( ( )] / [( ( )].c ct k V Y t k V Y t k| = | |  

We then computed the average of the RV( )t k| over all k  

and ,t  which is given by 

1,000 10,000

1 1

1
RV RV( ).

10,000,000 k t

t k
= =

= |∑ ∑  

We also determined empirical estimates of the biases in 

(4.2) and (4.3) by computing 

1,000 10,000

RS RS
1 1

1 ˆ ˆˆEBU { [( ( )] ( )},
10,000,000

c c

k t

V Y t k V Y
= =

= | −∑ ∑  

and 

1,000 10,000

JACK RS RS
1 1

1 ˆ ˆˆEBJ { [( ( )] ( )}.
10,000,000

c c

k t

V Y t k V Y
= =

= | −∑ ∑  

Note that the estimator given in (4.2) is unbiased.  Finally, 

we calculated the relative efficiency of the usual estimator 

of variance to the jackknife estimator according to  

1,000 10,000
2

RS RS
1 1

1,000 10,000
2

JACK RS RS
1 1

ˆ ˆˆ{ [( ( )] ( )}

RE .
ˆ ˆˆ{ [ ( )] ( )}

c c

k t

c c

k t

V Y t k V Y

V Y t k V Y

= =

= =

 
| − 

 =
 

| − 
 

∑ ∑

∑ ∑
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Using the same generated population of N = 500, we 

repeated the simulation; however we used m = 400 and 

n = 80 instead. We then created four additional populations 

of size N = 500 using g = 0.5, 1.0, 1.5, and 2.0. For each 

of these four populations, we repeated the two simulations 

described above where in the first simulation, m = 100 with 

n = 20, and in the second simulation, m = 400 and n = 80. 

Finally, to study the effect of population size, we then 

repeated all the simulations based on the different values of 

, ,g m  and n  when N = 500 for three additional values of 

,N  namely 5,000, 50,000, and 500,000. The results 

obtained for RV, EBU, EBJ, and RE for each of these 

simulations are presented in Table 1. 

The results for RE in Table 1 suggest that as the 

population size N  tends to infinity (as considered by Rao 

and Sitter 1995), the jackknife estimator of variance remains 

more efficient than the usual unbiased estimator of variance. 

It is also the case for very large N  that the values for RV 

tend to one. However, considering the cases where N =  

500, if the population size is relatively small, not only are 

the values for RV noticeably smaller than one, but the 

jackknife estimator of variance seems to be significantly 

biased. In addition, the jackknife estimator appears to be 

much less efficient than the usual unbiased estimator of 

variance, especially when m  and n  are large. Of note here 

is the fact that Rao and Sitter (1995) and Sitter (1997) state 

that it is not clear how to fix the finite population correction 

factors in the jackknife estimator of variance in two-phase 

sampling. This would seem to be an area where further 

research could be fruitful, since it would appear that when 

the population size is small, it might be worthwhile to adjust 

the finite population correction factors instead of directly 

applying the jackknife technique according to the approach 

proposed here. Note that Kim et al. (2006) have incorpo-

rated a finite population correction factor in a special case. 

 
Table 1 
Comparison of the jackknife and usual estimators of variance of the ratio estimator of the population mean when β = 10 and the 

auxiliary variable, X, follows a gamma distribution with a shape parameter of 3.1 and a scale parameter of one 
 

N m n g RV EBU EBJ RE 

500 100 20 0.0 

0.5 

1.0 
1.5 

2.0 

0.801 

0.800 

0.805 
0.816 

0.840 

0.006 

0.010 

-0.071 
-0.358 

-0.720 

0.542 

0.579 

0.561 
0.575 

1.777 

1.521 

1.310 

1.267 
1.149 

0.935 

5,000 100 20 0.0 

0.5 
1.0 

1.5 

2.0 

0.979 

0.976 
0.965 

0.936 

0.916 

-0.028 

0.007 
0.023 

-0.073 

-1.103 

0.042 

0.096 
0.172 

0.337 

0.493 

4.015 

3.709 
3.210 

1.308 

0.967 
50,000 100 20 0.0 

0.5 

1.0 
1.5 

2.0 

1.001 

0.998 

0.981 
0.937 

0.924 

-0.002 

0.107 

0.101 
-0.211 

-0.355 

0.003 

0.126 

0.196 
0.167 

0.940 

6.241 

4.936 

2.965 
1.558 

1.005 

500,000 100 20 0.0 
0.5 

1.0 
1.5 

2.0 

1.001 
0.999 

0.993 
0.940 

0.907 

-0.057 
0.014 

0.185 
-0.235 

-1.054 

-0.054 
0.024 

0.229 
0.122 

0.530 

4.730 
4.669 

3.223 
1.420 

1.009 

500 400 80 0.0 
0.5 

1.0 

1.5 
2.0 

0.214 
0.237 

0.320 

0.530 
0.733 

0.000 
-0.001 

0.000 

-0.001 
-0.012 

0.520 
0.523 

0.544 

0.616 
1.091 

0.002 
0.002 

0.006 

0.066 
0.452 

5,000 400 80 0.0 

0.5 
1.0 

1.5 

2.0 

0.919 

0.920 
0.922 

0.930 

0.940 

-0.003 

-0.001 
0.003 

-0.028 

-0.089 

0.061 

0.064 
0.077 

0.077 

0.184 

2.687 

2.505 
2.058 

1.372 

1.088 
50,000 400 80 0.0 

0.5 

1.0 
1.5 

2.0 

0.991 

0.991 

0.991 
0.980 

0.967 

-0.008 

0.004 

0.000 
-0.024 

-0.171 

-0.001 

0.012 

0.009 
-0.001 

-0.040 

4.550 

5.276 

4.163 
1.777 

1.099 

500,000 400 80 0.0 
0.5 

1.0 

1.5 
2.0 

1.000 
0.999 

0.993 

0.992 
0.971 

0.009 
0.001 

-0.001 

-0.022 
-0.179 

0.009 
0.001 

0.006 

-0.018 
-0.079 

5.501 
5.180 

3.852 

1.809 
1.136 
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We also considered the Sitter (1997) regression esti-

mator, and repeated the entire simulation study that was 

performed using the ratio estimator in (4.1). Specifically, 

rather than (4.1), we made use of the estimator 

*ˆ ( ),c

SY y b x x′= + −  (4.4) 

which has approximate variance 

1 1 2 1 1 2ˆ( ) ( ) ( ) ,
c

S d yV Y n m S m N S
− − − −= − + −  (4.5) 

where 

2 1 2

POP
1

( 1) [( ) ( )]
N

d i i
i

S N Y Y X X−

=

= − − − β −∑  

with 

2

POP
1 1

/ .
N N

i i i
i i

X Y X
= =

β = ∑ ∑  

For each different combination of , , ,N g m  and n  used in 

the simulation study, we computed 

1 1 2 1 1 2

( )( )
ˆˆ [( ( )] ( ) ( ) ,c

S y t kd t k
V Y t k n m s m N s− − − −

|| = − + −  (4.6) 

for the tht  second phase sample drawn from the thk  first 

phase sample, where the sample variance 

2 1 * 2

( ) ( ) ( ) ( ) ( ) ( )
1

( 1) [( ) ( )] .
n

d t k i t k t k t k i t k t k
i

s n y y b x x−
| | | | | |

=

= − − − −∑  

We also computed the jackknife estimator of variance 

JACK

*

( ) ( ) ( ) ( )
1

* 2

ˆˆ [( ( )]

1
[ ( ) ( ){ ( ) ( )}

{ ( )}] .

c

S

m

t k t k t k t k
j

V Y t k

m
y j b j x j x j

m

y b x x

| | | |
=

′

′

| =

−
+ −

− + −

∑  

(4.7)

 

For each different combination of , , ,N g m  and ,n  

equations (4.5) through (4.7) were used to compute values 

for RV, EBU, EBJ, and RE analogous to those given in 

Table 1 for the estimator in (4.1). The results obtained were 

extremely similar to those for the ratio estimator. 
 
4.2 Simulation study: Chand (1975) and 

Ahmed (1997)  
For purposes of the second set of simulations, we now 

assume that when the first-phase sample of m  units is 

selected from the population of size ,N  information on two 

auxiliary variables X  and Z  is collected. When the 

second-phase sample of size n  is selected from the first-

phase sample, the study variable Y  is measured, along with 

the two auxiliary variables X  and .Z  Note also that the 

auxiliary variable Z  is assumed to be known for the entire 

population. 

We began by creating a population of N = 500 units of 

( , , )i i iX Z Y  observations using 

1 2 ,i i i iY X Z= β + β + ε  

with 1β = 3.5 and 2β = 2.5. For each , 1, ..., ,i i N=  we 

generated iX  from a gamma distribution with a shape 

parameter of 2.2 and a scale parameter of one, iZ  from a 

gamma distribution with a shape parameter of 0.1 and a 

scale parameter of one, and iε  from a standard normal. 

From the resulting population of ( , , )i i iX Z Y  observations, 

we selected 1,000 first-phase sample of m = 100 units, and 

from each of these samples, we selected 10,000 second-

phase samples of n = 20 units. 

Following Chand (1975), a chain ratio estimator under 

two-phase sampling is given by 

Ch
ˆ ( / ) ( / ),cY y x x Z z′ ′=  

which has approximate variance 

2 1

1 1 2 1 1 2

Ch
ˆ( ) ( ) ( ) ,
c

d dV Y n m S m N S
− − − −= − + −  (4.8) 

where 

2

2 1 2

2
1

( 1) [( ) ( )]
N

d i i
i

S N Y Y R X X−

=

= − − − −∑  

and 

1

2 1 2

1
1

( 1) [( ) ( )]
N

d i i
i

S N Y Y R Z Z−

=

= − − − −∑  

with 

1

/ ,
N

i
i

Y Y N
=

= ∑
1

/ ,
N

i
i

X X N
=

= ∑
1

/ ,
N

i
i

Z Z N
=

= ∑
 

1 / ,R Y Z=  and 2 / .R Y X=  In the simulation study, we 

computed 

2 1

1 1 2 1 1 2

Ch ( ) ( )
ˆˆ [( ( )] ( ) ( ) ,
c

d t k d t kV Y t k n m s m N s
− − − −

| || = − + −  (4.9) 

for the tht  second phase sample drawn from the thk  first 

phase sample, where the sample variances 

2

2 1 2

( ) ( ) ( ) 2( ) ( ) ( )
1

( 1) [( ) ( )]
n

d t k i t k t k t k i t k t k
i

s n y y r x x−
| | | | | |

=

= − − − −∑  

with 

2( ) ( ) ( )
/

t k t k t k
r y x=  

and 
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1

2 1 2

( ) ( ) ( ) 1( ) ( ) ( )
1

( 1) [( ) ( )]
n

d t k i t k t k t k i t k t k
i

s n y y r z z−
| | | | | |

=

= − − − −∑  

with 1( ) ( ) ( )/ .t k t k t kr y z| | |=  We also computed the jackknife 

estimator of variance 

JACK Ch

( )

( )
1 ( ) ( )

2

( )

( )

( ) ( )

ˆˆ [( ( )]

( )1
( )

( ) ( )

.

c

m
t k

t k
j t k t k

t k

t k

t k t k

V Y t k

x jm Z
y j

m x j z j

x Z
y

x z

|
|

= | |

|
|

| |

′

′

′

′

| =

−




− 



∑  

(4.10)

 

Using the same generated population of N = 500, we 

repeated the simulation; however we used m = 400 and 

n = 80 instead. We then created three additional 

populations of size N = 500 using 1β = 0.5 with 2β = 0.5, 

1β = 3.5 with 2β = 0.5, and 1β = 0.5 with 2β = 2.5. For 

each of these three populations, we repeated the two 

simulations described above where in the first simulation, 

m = 100 with n = 20, and in the second simulation, 

m = 400 and n = 80. Finally, to study the effect of 

population size, we then repeated all the simulations based 

on the different values of 1 2, , ,mβ β  and n  when N = 500 

for three additional values of ,N  namely 5,000, 50,000, and 

500,000. For each different combination of 1 2, , , ,N mβ β  

and ,n  equations (4.8) through (4.10) were used to compute 

values for RV, EBU, EBJ, and RE analogous to those given 

in Table 1 for the estimator in (4.1). The results are provided 

in Table 2. 

Generally speaking, the findings based on the results in 

Table 2 are similar to those arrived at for the estimators 

based on (4.1) and (4.4). In particular, the jackknife 

estimator of variance is more efficient than the usual 

estimator when the population size is sufficiently large. 

However, also of note is the fact that this efficiency seems 

to be related to the magnitude of the regression coefficients 

1β  and 2;β  that is, the jackknife estimator appears to 

achieve relatively greater efficiency for cases where the 

coefficient associated with the auxiliary variable ,X  is large 

relative to the analogous coefficient linked to .Z  
 
 
Table 2 

Comparison of the jackknife and usual estimators of variance of the chain ratio estimator of the population mean where the 
auxiliary variable, X, follows a gamma distribution with a shape parameter of 2.2 and a scale parameter of one, and the auxiliary 
variable, Z, follows a gamma distribution with a shape parameter of 0.1 and a scale parameter of one 
 

m n β1 β2 N RV EBU EBJ RE 

100 20 3.5 2.5 500 

5,000 
50,000 

500,000 

0.769 

0.831 
0.818 

0.852 

0.000 

-0.012 
-0.006 

0.001 

0.027 

0.020 
0.028 

0.036 

1.063 

2.282 
1.785 

1.993 

100 20 0.5 0.5 500 

5,000 
50,000 

500,000 

0.911 

0.943 
0.948 

0.946 

-0.001 

-0.001 
0.000 

0.000 

0.004 

0.002 
0.003 

0.003 

0.791 

0.888 
0.896 

0.899 

100 20 3.5 0.5 500 
5,000 

50,000 

500,000 

0.845 
0.932 

0.947 

0.947 

-0.001 
-0.011 

-0.005 

0.000 

0.015 
0.000 

0.004 

0.010 

1.674 
3.632 

3.221 

3.637 
100 20 0.5 2.5 500 

5,000 

50,000 
500,000 

0.866 

0.858 

0.855 
0.855 

-0.001 

-0.003 

-0.001 
0.000 

0.009 

0.008 

0.010 
0.012 

0.668 

0.775 

0.670 
0.697 

400 80 3.5 2.5 500 
5,000 

50,000 

500,000 

0.540 
0.780 

0.819 

0.810 

0.000 
-0.001 

0.000 

-0.001 

0.013 
0.009 

0.008 

0.006 

0.044 
1.346 

1.878 

1.953 
400 80 0.5 0.5 500 

5,000 

50,000 
500,000 

0.817 

0.956 

0.973 
0.973 

0.000 

0.000 

0.000 
0.000 

0.003 

0.000 

0.001 
0.000 

0.254 

0.885 

0.946 
0.963 

400 80 3.5 0.5 500 

5,000 
50,000 

500,000 

0.579 

0.907 
0.954 

0.950 

0.000 

-0.001 
0.000 

-0.001 

0.010 

0.003 
0.002 

0.001 

0.041 

3.158 
3.845 

4.853 

400 80 0.5 2.5 500 
5,000 

50,000 

500,000 

0.787 
0.862 

0.873 

0.875 

0.000 
0.000 

0.000 

0.000 

0.004 
0.002 

0.003 

0.002 

0.222 
0.570 

0.698 

0.595 
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Finally, an analogous simulation study was performed 

using the regression estimator of Ahmed (1997). However, 

the populations were created using 1β = 10 with 2β = 0.5, 

1β = 100 with 2β = 0.5, 1β = 0.5 with 2β = 10, and 

1β = 10 with 2β = 10. As before when the estimators of 

Rao and Sitter (1995), Sitter (1997), and Chand (1975) were 

considered, provided that the population is sufficiently large, 

the jackknife estimator of variance seems to be more 

efficient than the usual estimator. 

 
5. Conclusion and discussion 

 
In this paper, the problem of estimating the variance of 

various estimators of the population mean in two-phase 

sampling has been considered by jackknifing the famous 

two-phase calibrated weights of Hidiroglou and Särndal 

(1995, 1998). Simulation studies based on ratio, regression, 

and chain-type estimators suggest that provided that the 

population size is large enough and the first and second-

phase samples are relatively small, the jackknife estimator 

of variance is more efficient than the usual estimator of 

variance, regardless of the estimator for the population mean 

that is considered. For small populations, it might be 

worthwhile to adjust the finite population correction factors 

instead of directly applying the jackknife technique. This is 

an area where further research could be conducted.  
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Appendix 

 
Derivation of the jackknife estimator in (2.1) 
 

In this part of the appendix, we prove (2.1) for the 

jackknifed estimator of the population mean in two phase-

sampling. First, note that 1 1 1 1
ˆ ˆ( ) j jj t eβ = β +  and 2

ˆ ( )jβ =  

2 2 2
ˆ ,j jt eβ +  where 

1

2 2
1 1 1 1 1 1 1/ ( ),o o o

i sj j j j j j j i i it q w z q w z q w z∈∑= −  

1 1
ˆ ,j j je x z= − β  

1

2 2
2 2 2 2 2 2 2/( ),o o o

i sj j j j j j j i i it q w x q w x q w x∈∑= −  

and 2 2
ˆ .j j je y x= − β  We also have 1 1

ˆ ˆ( )o oZ j Z= +  

1 1
ˆ( ),
o

j jh Z z− 1 1 1 1
ˆ ˆ ˆ( ) ( ),
o o o

j jX j X h X x= + −  2 2
ˆ ˆ( )o oX j X= +  

2 2
ˆ( ),
o

j jh X x−  and 2 2 2 2
ˆ ˆ ˆ( ) ( ),
o o o

j jY j Y h Y y= + −  where 

1 1 1/(1 )o o
j j jh w w= −  and 2 2 2/(1 ).o o

j j jh w w= −  
 

Using these results, for 2,j s∈  we have 

2 2 1 2 1 2 1

2 2 2 1 2

2 1 1 2 2

1 1 2 1 1 1 2 1 1

1 2 2 1 2 2 1 1 1

1 2 1 1

ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ( ) ( ) ( )

ˆ ˆ ˆ( ) ( )

ˆ ˆˆ { ( ) ( )}

ˆ ˆˆ ˆ( ) ( )

ˆ ˆˆ ˆ( ) ( )

ˆˆ ˆ ( )

c o o o o

o o

j j j j

o o
j j j j

o o

j j j j j j

o o

j j j j j j

o

j j

Y j Y X X Z Z

h Y y t e X X

h X x h X x

t e Z Z t e h Z z

t e Z Z t e h Z z

h Z z

= + β − + β β −

+ − + −

+ β − − −

+ β − − β −

+ β − − β −

− β β − .

 

Similarly, for 1 2( ),j s s∈ −  we have 

2 2 1 2 1 2 1

2 1 1 1 1 2 1

1 1 2 1 1

1 2 1 1 1

ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ( ) ( ) ( )

ˆ ˆˆ ˆ( ) ( )

ˆˆ ( )

ˆ ˆˆ ˆ {( ) ( )}.

c o o o o

o o

j j j j

o

j j j j

o o

j j

Y j Y X X Z Z

h X x t e Z Z

t e h Z z

Z Z h Z z

= + β − + β β −

+ β − + β −

− β −

+ β β − − −

 

Thus for 2,j s∈  

2 2 2 2 2

1 2 1

2 1 1 1 1

2 1 2

2 2 1

1 1 1 1

ˆ ˆ ˆ ˆ ˆ ˆˆ( ) { ( ) } ( ){ ( ) }

ˆˆ ˆ( ) ( ){ ( ) }

ˆ ˆ ˆˆ ˆ[{ ( ) } ( ){ ( ) }]

ˆ ˆˆ ( ){ ( ) }

ˆ ˆˆ [{ ( ) ( )}

ˆ ˆˆ ˆ( ){ ( )} { }],

c c o o o o

o

o o o

o o

o o

o o

Y j Y Y j Y j X j X

j j Z j Z

X j X j Z j Z

j X j X

X j X j

j Z Z j Z Z

− = − − β −

− β β −

+ β − − β −

+ β −

+ β −

− β − − β −

 

and for 1 2( ),j s s∈ −  

2 1 1 1 1
ˆ ˆ ˆ ˆ ˆˆ ˆ( ) [{ ( ) } ( ){ ( ) }],c c o o oY j Y X j X j Z j Z− = β − − β −  

which proves (2.1). 
 
Consistency of the estimator of variance in (2.2)  

In this part of the appendix, we prove that the estimator 

JACK
ˆˆ ( )cV Y  in (2.2) is consistent. First, note that the 

variance of the estimator ˆ cY  defined in (1.6) can be 

approximated as: 
2

2 2 1 2 1 2

2 2

1 2 1

2 2 1 2 2

1 2 2 1

2

1 2 1 1 2 1

ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) [ ( ) ( ) 2Cov( , )]

ˆ( )

ˆ ˆ ˆ ˆ2 [Cov( , ) Cov( , )]

ˆ ˆ2 Cov( , )

ˆ ˆ ˆ ˆ2 [Cov( , ) Cov( , )].

c o o o o o

o

o o o o

o o

o o o o

V Y V Y V X V X X X

V Z

Y X Y X

Y Z

X Z X Z

≈ + β + −

+ β β

+ β −

− β β

− β β −
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If it is assumed that 1 1
ˆ ( ) ,jβ ≈ β 2 2

ˆ ( ) ,jβ ≈ β  and similar to 

Rao and Sitter (1995), that ( ) / ( ) / ,n r n rx j x j x x≈  it is quite 

straightforward to show that 

2 2

2

2

2

2 2 2 2

2 2 2 2 2

2 2 2 1 1

2 2 2 2 2

2

2 1 1 2 2

1 2 2 2
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Y j Y X j X
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Y j Y

∈ ∈ ∈

∈

∈

∈

− ≈ − +β −

+ β − −

− β − −

− β − −

− β β −

∑ ∑ ∑

∑

∑

∑

2

2

1 1

2

1 2 2 2 1 1

2 2

2 1 1

2 2

1 1 1

2

1 2 1 1 1 1

ˆ ˆ[ ( ) ]

ˆ ˆ ˆ ˆˆ ˆ2 [ ( ) ][ ( ) ]

ˆ ˆˆ [ ( ) ]

ˆ ˆˆ [ ( ) ]

ˆ ˆ ˆ ˆˆ ˆ2 [ ( ) ][ ( ) ].

o o

j s

o o o o

j s

o o

j s

o o

j s

o o o o

j s

Z j Z

X j X Z j Z

X j X

Z j Z

X j X Z j Z

∈

∈

∈

∈

∈

−

− β β − −

+ β −

+ β −

− β β − −

∑

∑

∑

∑

∑  

Since the ten terms on the right hand side of this equation 

for 2ˆ ˆ[ ( ) ]c c
j s Y j Y∈∑ −  are the consistent estimators of the 

analogous ten terms in the equation above for ˆ( ),cV Y  it 

may be concluded that the jackknife estimator of variance in 

(2.2) is consistent. 
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A comparison of sample set restriction procedures 
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Abstract 

For many designs, there is a nonzero probability of selecting a sample that provides poor estimates for known quantities. 

Stratified random sampling reduces the set of such possible samples by fixing the sample size within each stratum. 

However, undesirable samples are still possible with stratification. Rejective sampling removes poor performing samples by 

only retaining a sample if specified functions of sample estimates are within a tolerance of known values. The resulting 

samples are often said to be balanced on the function of the variables used in the rejection procedure. We provide 

modifications to the rejection procedure of Fuller (2009a) that allow more flexibility on the rejection rules. Through 

simulation, we compare estimation properties of a rejective sampling procedure to those of cube sampling. 

                                                           
1. Cindy L. Yu is an assistant professor in the Department of Statistics and the Center for Survey Statistics and Methodology at Iowa State University, 

Ames, IA 50010. E-mail: cindyyu@iastate.edu; Jason C. Legg is a postdoctoral researcher at the Center for Survey Statistics and Methodology at Iowa 

State University, Ames, IA 50010. E-mail: jason-legg@hotmail.com. 

  

Key Words: Rejection sampling; Cube sampling; Stratification; Balanced sampling. 

 

 

 

1. Introduction 
 

A common practice in survey sampling is to utilize 

known population information about auxiliary variables to 

improve estimators of means and totals of characteristics of 

interest. When population control means or totals for an 

auxiliary variable are known, regression and other cali-

bration estimators are often utilized. Let ( )i i iy p, , ,x 1i = ,  
2 ,N, ...,  be a sequence of real vectors, where each ix  is a 

k  dimensional vector, and a sample A  be selected from 

1 1 1[( ) ( )]N N N NF y p y p= , , , ..., , ,x x  using a sample design 

with inclusion probabilities ip  and joint inclusion proba-

bilities .ijp  Suppose the population mean of ,ix ,Nx  is 

known. Consider the regression estimator of the population 

mean of the form  

reg
ˆ ,Ny ′= z ββββ  (1) 

where iz  contains design variables and ,ix Nz  is the popu-

lation mean of ,iz  and β̂βββ  is a regression coefficient 
estimator. For many designs, β̂βββ  of the form  

1

2 2ˆ
i i i i i i i i

i A i A

p p y

− 
 − −
 
 
∈ ∈ 

′= φ φ ,∑ ∑ββββ z z z  (2) 

where iφ  are constants determined by the design, will be 

asymptotically efficient. Some examples of iφ  choices are 

(1 )i ipφ = −  for Poisson sampling and for stratified random 

sampling, 1( 1) ( )hi h h hN N n−φ = − −  for element i  in 

stratum .h  If we assume there is a vector d  such that  

2 1
i i i ip p− −′φ =z d  (3) 

for all ,i  then estimator (1) is design consistent (Fuller 

2002). The regression coefficient estimator (2) converges 

together with  

1

1 1

1 1

N N

N i i i i i i i i

i i

p p y

− 
 − −
 
 
= = 

′= φ φ .∑ ∑z z zββββ  

As an example of applying equation (3), suppose we plan to 

select a Poisson sample and want to regress on a single 

covariate 1ix  through the origin. If we add 1(1 )i ip p−−  into 

iz  to make 
1

1( [1 ] ),i i i ix p p−′ = , −z  then (1) will be design 

consistent for Ny  since (3) is satisfied by setting ′ =d  

(0 1).,  If we further assume that a column of ones is in the 

column space of the regression variables ,iz  then for these 

iφ  values, estimator (1) nearly attains the minimum 

asymptotic variance for design consistent regression esti-

mators under certain regularity conditions (Rao 1994). An 

alternative approach to constructing a regression estimator is 

to start with a design consistent estimator, such as the 

generalized regression estimator of Särndal (1980), and 

determine the best coefficient given that form of the esti-

mator. Starting with a design consistent form removes the 

need to satisfy (3). Condition (3) allows estimator (1) to be 

expressed in the form of a generalized regression estimator 

(Fuller 2009b, pages 116-117).  

When auxiliary information is known at the unit level, 

the auxiliary information can also be incorporated into the 

sample design. For example in one classic case, the model 

with  

0 1i i i iy x x= β + β + ε ,  (4) 

2ind(0 )iε , σ∼  and cov( ) 0i ixε , =  is assumed for the 

population .NF  From Isaki and Fuller (1982), the optimal 

inclusion probabilities for the regression estimator are those 

that are proportional to the square root of the design 

variances, i.e., i ip x∝  in this case. A possible sampling 

procedure is Poisson sampling with inclusion probabilities  
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1

1

N

i i N i

i

p x n x

− 
 
 
 
= 

= ,∑  (5) 

where 1
N
iN in p=∑=  is a specified target sample size. A 

second common design when model (4) is assumed is to 

stratify the population based on .x  Strata are determined by 

setting the boundaries such that the sum of the sorted ix  

values in each stratum are approximately equal. An equal 

number of units in each stratum are selected. This stratifica-

tion design has the inclusion probabilities close to (5), and 

was shown to have an anticipated variance close to the best 

purposive sample model variance in the two-per-stratum 

case (Fuller 1981).  

Another way to incorporate information from an auxil-

iary variable into the design is balancing. A sample A  is 

balanced for variable z  if  

1 1 1
HT

1

.
N

i i i N

i A i

N p N− − −

∈ =

= = =∑ ∑z z z z  (6) 

A design is balanced for z  if every sample with positive 

probability is balanced for .z  Balancing can be thought of 

as calibration by design. To illustrate the effect of balancing, 

consider an equal inclusion probability design and i =z  

(1 ) .ix ′,  The conditional prediction variance of regy  under 

model (4) is  

reg HT HT HT

2
HT 1 HT

( , ) { ( ) }

ˆ( ) ( )

N N

N

V y y x E V u F x

x x V x

− | = | | ,

+ − β | , ,

x x

x  (7) 

where .i i iu x= ε  For a balanced design, the second term in 

(7) is 0, which suggests we might improve the estimator by 

balancing on .x  In practice, a combination of balancing and 

calibration will often outperform either technique used 

alone.  

Balanced sample designs have some additional practical 

value. For many designs, there is a nonzero probability of 

selecting a sample that contains undesirable auxiliary 

variable values. For example, an undesirable sample could 

be a sample with insufficient sample allocation for domains 

or a sample with a large number of extreme values of 

auxiliary variables. Although stratified designs reduce the 

set of such possible samples by fixing the sample size 

within each stratum, undesirable samples could still be 

possible. For example, some stratified samples might have 

some negative weights from using regression estimators. 

Balancing can remove poor performing samples by only 

retaining samples with estimates close to known quantities 

and with only positive weights for regression estimators.  

Balanced sampling was proposed by Royall and 

Cumberland (1981) as a way to reduce model bias from 

incorrectly specified polynomial superpopulation models. 

Valliant, Dorfman and Royall (2000) discuss the implica-

tions of balancing from a prediction approach to sampling. 

Deville and Tillé (2004) investigated methods of selecting 

balanced samples within the design-based framework 

described above. See also Tillé (2006 Chapter 8) for a 

detailed treatment of balancing. In practice, finding a 

perfectly balanced design may not be possible. Very tight 

balancing can lead to a design with some extreme joint 

inclusion probabilities, including zero inclusion proba-

bilities. Therefore, partial balancing is done in practice.  

In this paper, we compare design properties through 

simulation studies of two balancing procedures, the rejective 

sampling of Fuller (2009a) and the cube sampling of Tillé 

(2006). We also provide modifications to Fuller’s rejective 

sampling procedure that allow for more flexibility in 

balancing. In Section 2, the rejective sampling and the cube 

sampling are described. Properties of the inclusion proba-

bilities of the two balancing procedures are compared in 

Section 3. In Section 4, some simulation results using 

balanced samples are presented. In Section 5, we provide 

adjustments to the rejective procedure. Concluding remarks 

are made in Section 6.  

 
2. Balanced sampling procedures  

Rejection sampling involves discarding any sample that 

does not meet a specified balancing tolerance. Fuller 

(2009a) presents one condition for rejecting a sample and 

Royall and Herson (1973) give another. In Fuller’s 

procedure with the balancing variable vector ,z  a sample is 

selected under a specified initial design and retained if  

1
HT HT HT( ) [ ( )] ( )N N NV F −′− | − < γz z z z z  (8) 

for some constant 0,γ >  where HTz  is the Horvitz-

Thompson mean estimator for variable ,z NF  is the given 

finite population,  

2 1 1
HT

1 1

( ) ( )
N N

N ij i j i i i j
i j

V F N p p p p p− − −

= =

′| = − ,∑∑z z z  

ip  is the inclusion probability for unit i  and ijp  is the joint 

inclusion probability of unit i  and unit j  under the initial 

design. Otherwise, the sample is rejected, a new sample is 

selected under the initial design, and condition (8) is 

checked for the new sample. If the original design has a 

central limit theorem, the left side of (8) is asymptotically a 
2χ  random variable with degrees of freedom equal to the 

number of auxiliary variables. An approximate rejection rate 

can be set using the quantiles of a 2χ  distribution for .γ  
Choice of a rejection rate will depend on objectives of each 

individual survey. Low rejection rates may not reduce the 

variance by a large amount, but provide sufficient comfort 

to a researcher that a very poor sample will not be selected. 

On the other hand, high rejection rates could provide large 

reductions in the variance, but the resulting samples could 
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have insufficient sample size to accommodate unplanned 

domain analysis. For example, if a researcher decides to 

conduct domain analysis on the tail of the distribution of a 

balancing variable, the joint inclusion probabilities could be 

small leading to few units in the domain for many samples.  

The cube method was developed by Tillé and Deville 

and is described in Tillé (2006). The cube method attempts 

to select a balanced sample with predetermined first-order 

inclusion probabilities. If the first-order inclusion vector 

does not lead to a balanced design, an additional step of 

minimizing a cost constraint is used. Unlike the rejection 

procedure, higher order initial inclusion probabilities are not 

prespecified. The cost minimization step maintains the 

specified initial first-order inclusion probabilities.  

As a way to understand the cube procedure, Tillé (2006) 

describes sampling geometrically. The set of all possible 

samples is defined to be the set of vectors for vertices of an 

N  dimensional unit cube. For example, if 3,N =  the 

vertex (0 1 1), ,  denotes a sample containing units two and 

three. Using the balancing equation (6) and desired ip  for 

1 ,i … N= , ,  a balancing plane is created. Any sample 

where the balancing plane intersects a vertex of the unit N  

dimensional cube is a balanced sample. The design is 

balanced if every point of intersection between the 

balancing plane and the unit cube is a vertex of the unit 

cube. The cube sampling procedure begins by selecting a 

vector on the balancing plane, then a random walk from the 

initial point to an edge of the unit cube is done. Tillé refers 

to the random walk step as the flight phase. If the edge point 

at the end of the random walk is a vertex of the unit cube, 

the sample is selected. Otherwise, a cost minimization 

procedure is used to convert the fractional components of 

the edge vector to integers. The integer components of the 

edge vector are not changed in the cost minimization step. 

Tillé refers to the cost minimization step as the landing 

phase. Rejection sampling with high rejection rates 

produces results similar to cube sampling.  

Other procedures besides rejection and cube sampling 

can be used to obtain nearly balanced samples. For example, 

stratification with boundaries determined by the x  variables 

can also introduce some balancing effects to samples (Fuller 

1981). Deciding the number of variables to use in the 

rejection and cube sampling procedures is essentially the 

same process as deciding how many variables to include in 

a regression estimator.  

Software has been developed for selecting cube samples. 

For rejection sampling, standard software packages can be 

used to select a sample and compute (8). A loop needs to be 

written to complete the procedure. Programs for selecting 

cube samples have been written for SAS and R. See 

Rousseau and Tardieu (2004) for SAS and Matei and Tillé 

(2005) for R, and details of the procedures implemented are 

addressed in Deville and Tillé (2004). The R program 

available in the sampling library was used in the simulations 

in this paper. Because the cost minimization step of cube 

sampling is computationally intensive for more than 20 

balancing variables, a variable suppression step is recom-

mended for the landing phase in the programs.  

 
3. Inclusion probabilities  

Let iπ  be the first-order inclusion probability for unit i  

and ijπ  be the joint inclusion probability for unit i  and j  

under a balanced design. Both rejective and cube sampling 

require initial first-order inclusion probabilities as inputs. 

The first-order inclusion probabilities are different than the 

initial values for rejection sampling. For rejection sampling, 

units closer to the population mean will have a slightly 

higher inclusion probability than units far from the mean. 

Cube sampling maintains the first-order inclusion proba-

bilities from the initial specification. That is, for cube 

sampling .i ipπ =  Although for rejection sampling ,i ipπ ≠  

in general, the estimators considered will still use ip  rather 

than .iπ  

To illustrate differences between initial and final 

inclusion probabilities, samples of size 20 from a population 

of 100 units were simulated. The population of x -values 

was generated as random variables from a standard normal 

distribution. The rejection procedure used simple random 

sampling as the initial design and balanced on .x  The cube 

sample procedure used a balancing vector of ( ) ,i i ip x ′= ,z  

where 20 100ip = /  for all .i  The inclusion of ip  in the 

balancing vector for cube sampling was to control the 

sample size so that the resulting design would be 

comparable to using an initial design of simple random 

sample design in the rejection sampling simulation. First-

order inclusion probabilities were estimated using a Monte 

Carlo simulation of size 100,000 (Figure 1). The curve was 

obtained by nonparametric fitting. An approximate 90% 

rejection rate was used for the rejection sampling. From 

rejection sampling theory, first-order inclusion probabilities 

are approximately a quadratic function of the distance 

i Nx x−  for an equal probability initial sample design (Fuller 

2009a). The plot suggests that all first-order inclusion 

probabilities are 0.2 for the cube sample design. As 

expected, Figure 1 indicates the cube method maintains the 

specified first-order inclusion probabilities, but the rejective 

does not. As a result, the Horvitz-Thompson estimator using 

the initial inclusion probabilities ( )ip  and the rejective 

samples is biased.  
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Figure 1 Simulated first-order inclusion probabilities. The 

balancing variable for the rejective method is 
,====i iz x  and for the cube method is ( , ) ,′′′′====i i iz p x  

where ====ip 20/100 

 
The joint inclusion probabilities for the rejection 

sampling procedure differ from those of the initial design. A 

pair of units i  and j  are likely to have a high joint 

inclusion probability if 2i j Nx x x+ −  is close to zero for an 

equal probability initial sample design. The joint inclusion 

probabilities were estimated from simulated samples of size 

20 from 100 (Figure 2). The joint inclusion probability for 

simple random sampling is 0.038. The rejection sampling 

joint inclusion probabilities are approximately a quadratic 

function of .i jx x+  The plot of cube sampling joint 

inclusion probabilities against i jx x+  appears to have 

sharper angles than the rejection joint inclusion proba-

bilities. High joint inclusion probabilities for the cube design 

are associated with pairs of units that are on the far opposite 

sides of .Nx  That is, for the sample value of ,i jx x+  those 

pairs with a large value of i jx x| | + | |  have a large 
probability of inclusion (Figure 3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 Simulated second-order inclusion probabilities. The 
balancing variable for the rejective method is 

,====i iz x  and for the cube method is ( , ) ,′′′′====i i iz p x  
where ====ip 20/100 

 
The Horvitz-Thompson estimator using the initial 

inclusion probabilities under rejection sampling has an 
1( )pO n−  bias while the Horvitz-Thompson estimator under 

cube sampling is unbiased. The standard Horvitz-Thompson 

variance estimator is biased for both procedures. Using 

Monte Carlo methods, the inclusion probabilities can be 

estimated so that nearly unbiased Horvitz-Thompson 

estimators can be used. However, for a large population, 

simulating enough samples to give a precise estimate of the 

joint inclusion probability for each pair of units is 

impractical. An alternative approach to variance estimation 

is to use a regression estimator and the variance estimator 

for the regression estimator. This is intuitively appealing 

because balancing is similar to regression through design. 
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Upon using the regression estimator, the bias of the 

regression estimator under both cube and rejective methods 

is of the same order. For rejective sampling, Fuller (2009a) 

gives conditions for the consistency of the variance 

estimator for the regression estimator. For cube sampling, 

Deville and Tillé (2005) and Tillé (2006) suggest using the 

variance estimator for a regression estimator furnishes a 

good approximation to the variance of the Horvitz-

Thompson estimator. The variance estimators proposed by 

Deville and Tillé (2005) perform well when the joint 

inclusion probabilities of the resulting cube design are 

approximately equal to joint inclusion probabilities from a 

Poisson design. In the simulation studies of Section 4, the 

variance estimators proposed in Fuller (2009a) and Deville 

and Tillé (2005) are evaluated.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3 Simulated second-order inclusion probabilities with 

absolute sums of .x  The balancing variable for the 
rejective method is ,====i iz x  and for the cube 
method is ( , ) ,′′′′====i i iz p x  where ====ip 20/100 

 

4. Simulation of the regression estimator 

 
A population of size 100 was generated from the model  

20 55i i i i iy x x x= + . + ε  (9) 

iid (0 0 4)i Nε , . ,∼  where the ix  are fixed values in the 

range of 0 to 4 (Figure 4). Seventy-two of the x  values 

were randomly simulated values less than 1.15 from a 

standard exponential distribution. The remaining 28 values, 

ranging from 0.18 to 4.0, were deterministically added to 

form the data set of .x  The fixed x  values were selected to 

be fairly right skewed so that some large and small strata 

when stratifying the population on x  with approximately 

equal within-stratum sum of sorted ix  will be produced. 

The population was held fixed after initial selection. Model 

(9) contains a quadratic term, and was picked to simulate 

performance of the design and estimator strategy when 

model (4) was assumed in design and estimation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 Simulation population under model (9) 

 
We consider Poisson sampling and two-per-stratum 

stratified random sampling as initial designs. Strata were 

determined by setting the boundary so that the within 

stratum sum of sorted ix  was roughly equal for all strata. 

The sample size was set to 20, and ten strata were formed. 

The stratum sizes were 35, 15, 11, 9, 8, 7, 5, 4, 3, and 3. The 

rejection procedure used a stratified two-per stratum sample 

selection with equal inclusion probabilities within a stratum. 

The stratum boundaries were chosen this way so that the 

inclusion probability of unit i  is closely proportional to ,ix  

which is the optimal inclusion probability under model (9) 

(Ikasi and Fuller 1982). Such a stratified design can also 

partially balanced on x  through a standard design. Balance 
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in the stratified random sampling design is achieved using a 

step function to approximate a line. The stratified design 

will also be partially balanced on 2.x  The stratified random 

sample design is intended to illustrate how much more one 

can benefit from additional balancing. Two units per stratum 

were drawn in order to obtain the maximum number of 

strata while still permitting unbiased variance estimation. 

Fuller (1981) showed that, in the two-per-stratum case, this 

stratified design has an anticipated variance close to the best 

purposive model variance under (4). Initial inclusion 

probabilities for the Poisson design with expected sample 

size 20 were set to the initial inclusion probabilities of the 

stratified design.  

The regression estimator considered in this paper is in the 

form of (1) with β̂βββ  defined in (2). The regression variable 
z  is a vector of auxiliary variables that contains design 

variables and .x  For the Poisson designs, we used 
1(1 (1 ) )i i i i ip x p p− ′= , , , −z  as the vector of balancing 

variables and as the regression variable vector. The first 

variable provides control for population size, the second 

variable is a control for sample size, the third variable 

provides balance on ,x  and the fourth variable guarantees 

that the regression estimator is design consistent. See 

condition (3) for the design consistency of regy  and set 

(0 0 0 1) .′= , , ,d  For two-per-stratum stratified samples, the 

vector of balancing variables is 1 2 10( )i i i ix I I I, , , ...,  for cube 

sampling, where hiI  are the stratum indicator variables 

defined as  

1 unit in stratum

0 otherwise
hi

i h
I


= 


 

for 1 2 10.h …= , , ,  Only the x  variable is included in the 

rejective balancing procedure since the sample from this 

initial design is automatically balanced on the stratum 

indicator variables. The regression variable vector for both 

balancing procedures is 1 10( ) .i i i ix I I ′= , , ...,z  

For the initial designs, the variance estimators for regy  

are the variance estimators of the mean of i i i Ne y ′= − z ββββ  

calculated with ˆ ,ie  where ˆˆ .i i ie y ′= − z ββββ  For Poisson 

sampling, the variance estimator is  

1 1 4
reg

3 2 1

ˆ ˆ( ) ( )

ˆ(1 ) ˆ

N zz i i
i A

i i i zz N

V y n s n p

p e

− − −

∈

−

′= −

′× − ,

∑z M z

z M z  (10) 

where  

  1 2ˆ (1 )zz i i i i

i A

N p p− −

∈

′= − ,∑M z z  

and s  is the number of variables in .z  Derivation of (10) is 

provided in the appendix.  

For stratified random sampling with two-per-stratum, the 

variance estimator for regy  is  

1 1 2
reg

1

1 2
, 1 2

2
1 2

ˆ ( ) ( 1) [(1 )

ˆ{0 5 ( ) ( )}

( ˆ ˆ )]

H

h

h

h N zz h h h h h

h h

V y H H W

W W

e e

− /

=

−

= − −

. + − φ −

× − ,

∑

z z M z z

 (11) 

where  

1 2
,

ˆ

h

zz h h i i h i
i A

N p− −

∈

′= φ ,∑M z z  

hA  is the sample set in stratum ,h ,h h hW n N= / hφ =  
1( 1) ( 2)h hN N−− −  for units in stratum ,h hiz  is the 

auxiliary variable vector iz  in stratum ,h  

ˆˆ ( )hi hi h hi he y y ′= − − − ,z z ββββ  

hy  and hz  are stratum means of hiy  and ,hiz  respectively, 

and H = 10 is the number of strata. The derivation of (11) 

follows the same approach to the one in appendix and has 

been omitted.  

For rejective sampling, the same variance estimators (10) 

and (11) using the initial design inclusion probabilities, were 

used to compute the variance estimator of regy  for rejective 

samples. Fuller (2009a) proved that the large sample prop-

erties of the regression estimator for the rejective sample are 

the same as those of the regression estimator for the original 

inclusion procedure under some regularity conditions. For 

cube sampling, a variance estimator proposed by Deville 

and Tillé (2005) was evaluated for regy  using cube samples.  

Let ( )p ⋅  denote the initial design and ( )π ⋅  be the 

resulting scheme after balancing. The number of samples 

selected was 30,000 for each Monte Carlo simulation under 

initial designs, cube sampling and rejective sampling with 

both 90% and 95% rejection rates. The Horvitz-Thompson 

estimator HTy  and the regression estimator regy  were 

constructed using initial inclusion probabilities .ip  Note 

that for rejection sampling, the Horvitz-Thompson estimator 

using the initial inclusion probabilities is not the Horvitz-

Thompson estimator under the balanced designs. For each 

initial design, the following quantities were computed in the 

simulation studies.  
 

• HT( )pV y  (or reg( )):pV y  Monte Carlo variance of the 

Horvitz-Thompson estimator (or the regression esti-

mator) using samples from initial designs.  

• HT( )V yπ  (or reg( )):V yπ  Monte Carlo variance of the 

Horvitz-Thompson estimator (or the regression esti-

mator) for balanced samples.  

• HTbias ( )yπ  (or regbias ( )):yπ  Monte Carlo bias of the 

Horvitz-Thompson estimator (or the regression esti-

mator) using balanced samples.      
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For cube samples,   
• reg

ˆ ( ):DTV y  estimated variance of the regression 

estimator using the variance estimators in Deville and 

Tillé (2005) and each cube sample.  

• reg
ˆave( ( )):DTV y  Monte Carlo average of reg

ˆ ( )DTV y  

using all cube samples.   
Deville and Tillé (2005) recommend several variance 

estimators based on a Poisson sampling approximation with 

corrections for known constraints in the design variance. 

The first three estimators in Deville and Tillé (2005) have 

minor differences, therefore only the second estimator was 

used in the simulation studies. Deville and Tillé (2005) also 

propose the fourth estimator, but that estimator requires 

solving a nonlinear equation system, which would have 

been computationally expensive to add to the simulation. 

However, the fourth estimator could perform better than the 

other cases for stratified designs, since their fourth estimator 

reproduces the variance of a stratified random sample when 

the balancing vector contains stratum indicators.   
For rejective samples,   
• reg

ˆ( ):V y  estimated variance of the regression estimator 

using equation (10) (or (11)) for the Poisson (or two-

per-stratum stratified) initial design and each balanced 

sample.  

• reg
ˆave( ( )):V y  Monte Carlo average of reg

ˆ ( )V y  using 

all balanced samples.   
In the simulations, reg

ˆ ( )V y  was also computed for cube 

samples, for comparison.  

Table 1 reports the estimates for the Poisson design. The 

variance of the Horvitz-Thompson mean under initial 

Poisson sampling with expected sample size 20 and no 

balancing is HT( )pV y = 0.08. The variances in Table 1 are 

standardized by HT( ),pV y  and the biases are standardized 

by HT( ).pV y  The Horvitz-Thompson estimator is 

unbiased under the cube method designs, because cube 

sampling retains the first order inclusion probabilities. The 

Horvitz-Thompson estimator using initial design inclusion 

probabilities is biased under rejective sampling since the 

inclusion probabilities differ from the initial design inclu-

sion probabilities, as indicated in Figure 1. The bias of the 

regression estimator under rejective sampling is less than the 

bias of the Horvitz-Thompson estimator with initial design 

inclusion probabilities. The bias of regy  under both cube 

and rejective procedures is of the same order. Increasing the 

rejection rate increases the bias of regy  for the rejection 

designs. However, the biases in regy  under both balancing 

procedures and rejection rates are negligible relative to the 

Monte Carlo variances. For the Horvitz-Thompson esti-

mator using initial design inclusion probabilities, the gain 

from using the balanced sample is substantial for both cube 

and rejective methods. The mean squared errors are further 

reduced by using the regression estimator along with either 

balancing procedures. The gain from using the regression 

estimator is larger for rejective sampling than for cube 

sampling, likely due to the cube method achieving tighter 

balance than the rejective method. Both procedures lead to 

similar variances for the regression estimator. The variance 

of the regression estimator under the Poisson initial design 

is reg( )pV y = 0.249 (relative to HT( )).pV y  By comparing 

0.249 to the fourth row of Table 1, we can see that the gain 

from using the balanced samples on the regression estimator 

is moderate. The result is consistent with the finding in 

Fuller (2009a) that the variance reduction in regy  by using 

rejective samples is due to a second order correction. The 

variance estimator of regy  using (10) has small bias for both 

cube and rejective samples ( reg
ˆave( ( ))V y  in Table 1). The 

variance estimator reg
ˆ ( )DTV y  proposed in Deville and Tillé 

(2005) performed similarly as reg
ˆ ( )V y  in (10) since the 

second variance estimator in Deville and Tillé (2005) is very 

close to (10) for Poisson sampling. This result supports the 

claim that the Poisson approximation assumption in the 

variance estimators of Deville and Tillé (2005) is satisfied 

for the Poisson design case.  

 
Table 1 
Properties of samples based on Poisson sampling of expected 

size 20. HT( ) ====pV y 0.08 and reg HT( ) / ( ) ====p pV y V y 0.249 
 

 Cube Rej. 

90% 

Rej. 

95% 

HT HTbias ( ) / ( )py V yπ  -0.002 -0.016 -0.007 

reg HTbias ( ) / ( )py V yπ  -0.002 0.002 0.005 

HT HT( ) / ( )pV y V yπ  0.142 0.270 0.220 

reg HT( ) / ( )pV y V yπ  0.131 0.136 0.129 

reg HT
ˆave( ( )) / ( )pV y V y  0.122 0.123 0.121 

reg HT
ˆave( ( )) / ( )DT pV y V y  0.120 - - 

 
In Table 2, estimates under the initial two-per-stratum 

stratification design are reported. The variance of the 

Horvitz-Thompson mean under the initial stratification 

design is HT( )pV y = 0.011 and all estimates are standardized 

by this value. Since stratification in this initial design 

controls for most of the effect of x  on ,y  the regression 

estimator is not a large improvement over the Horvitz-

Thompson estimator using initial design inclusion proba-

bilities. The bias and variance of HTy  are close to those of 

regy  under both cube and rejective methods. The larger 

estimated bias in HTy  under cube sampling is due to Monte 

Carlo error. The gain from balancing on x  is not large, 

compared to the gain in the Poisson example. However, 

with this highly controlled initial stratified design, in which 
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the initial samples are already partially balanced on ,x  there 

still can be a modest benefit from additional balancing and 

using regy  estimators. This result is seen for regy  by 

comparing the fourth row of Table 2 to the variance of regy  

under the initial design reg( )pV y = 0.987. Therefore, in this 
case a good strategy is to combine stratification, balancing, 

and regression, which is a similar conclusion drawn in 

Deville and Tillé (2004). The variance estimator reg
ˆ ( )V y  

using (11) gives estimates on average for the regression 

estimator variances under both cube and rejective 

procedures that are close to the true variances. However, the 

variance estimator reg
ˆ ( )DTV y  proposed by Deville and Tillé 

(2005) performed poorly for cube sampling. A possible 

reason is that the Poisson sampling approximation in the 

second variance estimator of Deville and Tillé (2005) 

assumes joint inclusion probabilities that are far from the 

actual joint inclusion probabilities in the small strata. The 

joint inclusion probabilities in the small strata are closer to 

those of stratified random sampling than Poisson sampling. 

This issue might explain why reg
ˆ ( )V y  in (11) using the 

initial two-per-stratum inclusion probabilities is less biased 

than reg
ˆ ( )DTV y  in this case.  

 
Table 2 
Properties of samples based on stratified sampling of size 20. 

HT( ) ====pV y 0.011 and reg HT( ) / ( ) ====p pV y V y 0.987 
 

 Cube Rej. 

90% 

Rej. 

95% 

HT HTbias ( ) / ( )py V yπ  -0.028 0.014 0.010 

reg HTbias ( ) / ( )py V yπ  -0.013 0.014 0.010 

HT HT( ) / ( )pV y V yπ  0.910 0.866 0.813 

reg HT( ) / ( )pV y V yπ  0.929 0.865 0.813 

reg HT
ˆave( ( )) / ( )pV y V y  0.907 0.881 0.775 

reg HT
ˆave( ( )) / ( )DT pV y V y  0.792 - - 

 
To assess large sample properties of the balancing 

procedures, the size of the Poisson simulation was 

quadrupled. The population was replicated four times and a 

sample of expected size 80 was selected. The Horvitz-

Thompson variance of a mean under the Poisson design is 

HT( )pV y = 0.020 and the regression estimator variance is 

reg( )pV y = 0.132. The resulting relative variances and biases 
are close to the results for samples of size 20 (Table 3). The 

simulation results agree with the theoretical result of Fuller 

(2009a) that the regression estimator is an 1 2( )pO n− /  

estimator after rejection of the type used in this paper. 

Although it has not been proven here, regression estimator 

after cube sampling appears to possesses similar properties 

to the regression estimator using rejection sampling.  

 

Table 3 
Properties of samples based on Poisson sampling of expected 
size 80. HT( ) ====pV y 0.02 and reg HT( ) / ( ) ====p pV y V y 0.132 
 

 Cube Rej. 

90% 

Rej. 

95% 

HT HTbias ( ) / ( )py V yπ  0.002 -0.006 -0.007 

reg HTbias ( ) / ( )py V yπ  0.002 0.000 -0.001 

HT HT( ) / ( )pV y V yπ  0.127 0.267 0.224 

reg HT( ) / ( )pV y V yπ  0.122 0.124 0.123 

reg HT
ˆave( ( )) / ( )pV y V y  0.121 0.121 0.121 

reg HT
ˆave( ( )) / ( )DT pV y V y  0.121 - - 

 
5. Adjustments to the rejection procedure 

 
Fuller’s rejection sampling procedure treats all balancing 

variables with the same importance. For a large number of 

balancing variables, exact balance on all variables cannot be 

expected and the approximation could be poor for some 

important variables. Therefore, a practitioner may want to 

have tighter balance on a subset of the balancing variables. 

As an example, a researcher may want to use Poisson 

sampling for simplicity but also have some control on the 

random sample size. A random sample size can complicate 

study planning and is a large contributor to the variance of 

estimators. Balanced sampling can be used to reduce the 

variation in sample sizes by balancing on the variable ,ip  

which is the initial first-order inclusion probability. For 

Fuller’s rejection procedure, the variance of the sample size 

increases when the number of balancing variables increases 

and the rejection rate is held constant. The rejection 

procedure can be altered so that the ip  balance is tighter 

than the balance for other variables.  

One approach to increasing the balancing on a subset of 

variables is to change the rejection test function. The order 

of the approximation to the first and second-order inclusion 

probabilities in Fuller (2009a) remains the same when the 

variance matrix in the rejection quadratic form is replaced 

with a symmetric positive definite matrix of the same order.  

To determine weights for weighted rejection sampling, it 

is convenient to transform the balancing variables so that 

HT( )NV F|z  is a diagonal matrix. The weighted rejection 

sampling test statistic is  

1 2
HT, HT, ,

1

( ) ( )
m

q q N q N q
q

c V z F z z−

=

| − ,∑  (12) 

where m  is the number of balancing variables, qz  is the thq  

balancing variable, and qc  are selected weights. The weight 

on the first variable 1i iz p=  can be set large relative to the 

weights on other variables to reduce variation in sample size. 

The transformation is the Gramm-Schmidt transformation 

using the design variances under the initial design. Balancing 
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is done on the transformed variables, but the first variable is 

not transformed. The transformed variables have uncorre-

lated Horvitz-Thompson estimators. Balancing on the trans-

formed variables will still balance the original variables since 

each transformed variable is a residual from a regression 

operation on preceeding variables.  

Equation (12) can be paralleled to the penalty term of the 

distance function underlying ridge calibration. See Rao and 

Singh (1997), Beaumont and Bocci (2008), and Chambers 

(1996). Specifically, selection of the qc  weights is similar to 

the problem of selecting appropriate costs in ridge cali-

bration. Thus, rejection sampling using (12) can be viewed 

as incorporating ridge calibration at the design stage.  

A second way to produce tighter balance on a subset of 

variables is to do rejection separately for subsets. A test 

statistic is produced for each subset and a sample must be 

accepted by all of the tests to be accepted. In the Poisson 

case, one test statistic may reject if the sample size is not 

within a specified tolerance of the expected sample size. 

This second approach requires some additional assumptions 

beyond those in Fuller (2009a), but a similar argument can 

be used to justify the procedure.  

To prove the convergence properties of the multiple test 

rejection procedure, it is convenient to consider two subsets 

of balancing variables and think of rejection being done 

sequentially on each subset. We call the two subset rejection 

procedure a two-step rejective sampling procedure. Suppose 

1 2( )i i i
′ ′ ′= ,z z z  is the balancing vector and the original design 

is denoted as ( ).p ⋅  The procedure is as follows.   
Step 1: Select a sample using ( )p ⋅  and reject samples 

with the balancing condition (8) on the first subset 1,z  

1
1 HT,1 ,1 HT,1 HT,1 ,1 1( ) ( ) ( ) .N N NQ V F −′= − | − < γz z z z z  

Step 2: Use the accepted sample from step 1 to check the 

balancing condition (8) on the second subset 2,z  

1
2 HT, 2 , 2 HT, 2 HT, 2 , 2 2( ) ( ) ( ) .N N NQ V F −′= − | − < γz z z z z  

Reject the sample if the condition is not satisfied and repeat 

Step 1.  

In both weighted and two-step procedures, trial and error 

is likely needed to choose γ ’s in practice. In the weighted 
procedure, the quadratic form becomes a sum of multiples 

of 2χ  random variables, which makes selection of γ  more 
difficult than in the unweighted case. We used moment 

matching approximations to select γ ’s that provide rejec-
tion rates close to desired, but then resorted to small 

simulations to determine the rejection rate as a function of 

.γ  For the two-step procedure, we used a 2χ  approximation 

to select a 1γ  that gave approximately the desired rejection 

rate at the first step, and used second 2χ  approximation to 

select an initial 2γ  that gave approximately the desired 

rejection rate at the second step. The second parameter 2γ  

was adjusted in order to achieve the target overall rejection 

rate. The choice of γ ’s in the two-step procedure is sub-
jective because many combinations of 1γ  and 2γ  can 

produce the same overall rate. In practice, a practitioner 

likely will set a tight bound for the first variable subset and 

loose bounds on the remaining balancing variables.  

The large sample mean and variance of the regression 

estimator under the two-step rejective sample are the same 

as those of the regression estimator for the original design. 

Also, the usual estimator of variance under the original 

design for the regression estimator is appropriate for the 

two-step rejective sample. The proof of this statement is an 

extension of the proof in Fuller (2009a) and can be provided 

upon request.  

To examine some properties of the two procedures, the 

Monte Carlo simulations for the Poisson initial sample 

design were repeated with the variable ip  separated from 

the other three variables. The balancing vector was trans-

formed so that the variance matrix of the Horvitz-Thompson 

total estimators was diagonal. For the weighting procedure, 

the weight on the ip  component of the quadratic form was 

set to 1.5, the weights on the other components were set to 

1, and γ  was set to 0.627. This weighting procedure 
restricted the samples to those with sample sizes ranging 

from 18 to 22. For the two-step procedure, any sample with 

a sample size outside of the range from 18 to 22 was 

rejected in the first step and then the quadratic form for the 

remaining three variables was checked using a γ  of 0.63 for 
the second step. Given the good performance of the variance 

estimator reg
ˆ ( )V y  in (10), Table 4 only contains its Monte 

Carlo averages values reg
ˆave( ( )).V y  

 
Table 4 
Properties of rejection samples with adjustments based on 

Poisson sampling of expected size 20, and 95% rejection rate 
 

 Weighted Two-step 

HT HTbias ( ) / ( )py V yπ  -0.005 -0.014 

reg HTbias ( ) / ( )py V yπ  0.003 0.002 

HT HT( ) / ( )pV y V yπ  0.210 0.217 

reg HT( ) / ( )pV y V yπ  0.132 0.132 

reg HT
ˆave( ( )) / ( )pV y V y  0.121 0.121 

( )V nπ  1.237 1.902 

 
Results for expected sample size of 20 and a rejection 

rate near 95% were similar for the two adjustment 

procedures (Table 4). The Horvitz-Thompson estimator for 

the weighted procedure performed slightly better than the 

Horvitz-Thompson estimator for the two-step procedure. A 

reason for this discrepancy is that the weighted procedure 
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had much less variation in sample sizes ( ( )V nπ  in the last 

row of Table 4). Additional simulations with larger expected 

sample sizes gave similar relative variances. The regression 

estimator performed at roughly the same efficiency for the 

two procedures. The Horvitz-Thompson estimators using 

the initial design inclusion probabilities for these adjustment 

procedure performed slightly better than the Horvitz-

Thompson estimator for the rejection procedure that did not 

place additional control on the sample size.  

 
6. Discussion 

 
Rejection sampling and cube sampling produce roughly 

equally performing regression estimators. Balancing pro-

vides major gains when the initial design provides little 

control on the auxiliary values entering samples. A well 

stratified sample design provides many of the benefits of 

balancing on a continuous variable. However, further bal-

ancing after stratification can still yield small mean squared 

error gains for regression estimators. Additionally, bal-

ancing could be used to prevent negative weights produced 

by regression estimators (Fuller 2009a).  

For the simulations, the rejection rate was fixed at 90% 

for the larger population. When the population and sample 

sizes are increased, the rejection rate can be increased while 

still maintaining a large set of possible samples. Additional 

simulations were carried out with rejection rates near 99%, 

but the results were not presented since the differences 

between the results with 95% and with 99% were very small 

and the bias of regy  remained negligible. The marginal 

variance reduction due to balancing decreases as the 

balancing condition is tightened.  

In some special cases, an investigator may want to 

balance tightly on some variables and weakly on others. 

Gains can be made by choosing different weights for 

different variables or by dividing the variables into separate 

test sets. The weighted and two-step rejection procedures 

performed comparably, so the decision between procedures 

will largely be based on the ease of implementation.  
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Appendix 
 
Start with  

reg reg( ) ( ).N N NV y F V y y F| = − |  

Let  

N N Ny ′= z ββββ  

and note  

i i N Niy e′= +z ββββ  

1

2 2ˆ ( )i i i i i i i i N i

i A i A

p p e

− 
 − −
 
 ∈ ∈ 

′ ′= φ φ +∑ ∑z z z zβ ββ ββ ββ β  

1

1 2 1 2ˆ .N i i i i i i i i

i A i A

N p N p e

− 
 − − − −
 
 ∈ ∈ 

′= + φ φ∑ ∑β ββ ββ ββ β z z z  (13) 

Under assumptions (design consistency standard 

assumptions)  

1 2 1 1 1 2( ).i i i i i i i i p

i A i U

N p N p O n− − − − − /

∈ ∈

′ ′φ = φ +∑ ∑z z z z  

Write  

1 1 .i i i i zz N

i U

N p− −
,

∈

′φ =∑ z z M  

Use the same argument to expand the 1 2
i A i i i iN p e− −
∈∑ φz  

term. Then the expansion of (13) is  

1 1 2 1ˆ ( ).N zz N i i i i p

i A

N p e O n− − − −
,

∈

= + φ +∑β ββ ββ ββ β M z  

For construction of confidence intervals for 
Ny  it is enough 

to consider the variance of the linearized term. Therefore 

consider in the notation of Särndal, Swensson, and Wretman 

(1992),  

1 1
reg HTAV( ) ( )N zz N N zz N Ny V F− −

, ,
′= |z M b M z  

where  
1 .i i i i ip e−= φb z  

The variance of the HT estimator for the mean of ib  under 

Poisson sampling is  

1(1 ) .i i i i

i U

p p−

∈

′−∑ b b  

Next apply that 1 ipφ = −  to obtain the asymptotic variance 

approximation to the linearized part of regy   

1 3 3 2 1
regAV( ) (1 ) .N zz N i i i i i zz N N

i U

y p p e− − −
, ,

∈

′ ′= −∑z M z z M z  
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The variance estimator is obtained by replacing the popu-

lation totals with HT estimators under Poisson sampling and 

incorporating a degree of freedom correction to the front of 

( )n n s/ −  due to the small sample size.  
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The multidimensional integral business survey response model 
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Abstract 

Knowledge of the causes of measurement errors in business surveys is limited, even though such errors may compromise 

the accuracy of the micro data and economic indicators derived from them. This article, based on an empirical study with a 

focus from the business perspective, presents new research findings on the response process in business surveys. It proposes 

the Multidimensional Integral Business Survey Response (MIBSR) model as a tool for investigating the response process 

and explaining its outcomes, and as the foundation of any strategy dedicated to reducing and preventing measurement 

errors. 
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1. Introduction 
 

Measurement errors represent the gap between an ideal 

measurement and the obtained survey response (Groves, 

Fowler, Couper, Lepkowski, Singer and Tourangeau 2004). 

To efficiently prevent or reduce the occurrence of measure-

ment errors, it is necessary to know how the process of 

responding to survey questions evolves and what influences 

its course. Because work to reduce errors in business 

surveys has traditionally focused on sampling, frame, and 

nonresponse errors and, to a lesser extent, on measurement 

errors (Willimack, Lyberg, Martin, Japec and Whitridge 

2004), knowledge of measurement errors and the underlying 

causal mechanisms is still largely limited in business 

surveys. This article attempts to fill that gap. 

Most studies that examine the causes of measurement 

errors in business surveys are a product of pretesting 

research. As a result, most such studies are hypothetical (e.g., 

Morrison, Stettler and Anderson 2002) or tentative (e.g., 

Phipps, Butani and Chun 1995) as opposed to being based on 

actual data collection (e.g., Hak, Willimack and Anderson 

2003). The abundance of pretesting results, which are usually 

bound to a particular survey, contrasts with the scarcity of 

quality assessment research (e.g., Giesen and Hak 2005) and 

with the shortage of generalization and linkages to the 

response process. Many studies focus on a particular aspect 

of the response process. For instance, Ponikowski and Meily 

(1989) examined the availability of data that business 

surveys require; Ramirez (1996) investigated respondent 

selection in business surveys; Jenkins and Dillman (1997) 

considered the design of business questionnaires; O’Brien 

(2000) and Willimack (2007) explored the respondent’s role 

in the establishment survey response; Greenia, Lane and 

Willimack (2001) concentrated on business perceptions of 

confidentiality and on the closely connected issue of data 

sharing among statistical organizations; and Willimack 

(2003) exposed comprehension issues. Recently, more 

attention has been dedicated to the development and testing 

of electronic business questionnaires (e.g., Snijkers, Onat and 

Visschers 2007) and their editing (e.g., Nichols, Murphy, 

Anderson, Willimack and Sigman 2005), while more 

frequent complaints about the costs that statistical reporting 

imposes on the business community have triggered research 

on the response burden (e.g., Hedlin, Dale, Haraldsen and 

Jones 2005). 

The first study to systematically address the entire 

response process in establishment surveys was a general 

model of the survey response process for factual 

information, which Edwards and Cantor (1991) presented. 

Biemer and Fecso (1995) combined the cognitive model of 

Edwards and Cantor’s (1991) survey response with a 

statistical model that tried to quantify measurement errors 

by their sources. Another attempt to grasp the entire 

response process in business surveys was made in 1998-

1999, when the U.S. Census Bureau conducted unstructured 

qualitative interviews on statistical reporting. The study 

served as a basis for two business survey response models: 

the hybrid response model for establishment surveys by 

Sudman, Willimack, Nichols and Mesenbourg (2000) and 

the complete model by Willimack and Nichols (2001). Most 

recently, Lorenc (2006) suggested examining the entire 

response process on the basis of the idea of socially 

distributed cognition and using an establishment as a unit of 

observation.  

These models identify many essential aspects of the 

response process in business surveys and offer some 

concepts for them, but they treat many issues only partially. 

This was an incentive for a comprehensive study of the 

response process of a selected business survey making 

possible further development of the business survey 

response model. This article presents the Multidimensional 

Integral Business Survey Response (MIBSR) model and 

discusses its contributions. 
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2. Empirical study 
 

The aim of the empirical study was to build a conceptual 

framework of the response process – a response model – by 

examining from start to finish the actual response process to 

a typical business survey in a real business environment. 

The qualitative research interview was the primary method 

of investigation. The method was implemented using 

various techniques (mainly retrospective probing and 

ethnographic interviewing but also thinking aloud), two 

modes (in person and by telephone), and different inter-

viewees (people from the participating business, question-

naire administration experts from the statistical organization, 

and subject-matter experts). In some cases on-site observa-

tion and analyses of micro data complemented those 

techniques. Considering all the variables, a range of ap-

proaches had to be developed (for more details, see Bavdaž 

2009). On-site visits were arranged around two consecutive 

deadlines for the questionnaire’s completion in 2005. An 

attempt was made to contact all key people involved in the 

response process. 

The selected survey – the Quarterly Survey on Trade –

was a business survey conducted by the Statistical Office of 

the Republic of Slovenia on a sample of approximately 

1,600 legal units performing trade activities. It had classic 

characteristics of business surveys: a recurring mandatory 

governmental mail survey. Its instrument was an eight-page 

paper questionnaire and instruction and classification 

booklets. The questionnaire consisted of an introductory text 

and four sections, one referring to the business as a whole 

and the other three each referring to one kind of trade 

activity (commission trade, wholesale, and retail). All 

sections asked for sales and employment data. In addition, 

there were questions on sales breakdowns, stock, activity 

codes, and size and number of stores. Nonresponding units 

received up to three reminders and, ultimately, a telephone 

call. The final response rates were generally high, greater 

than 90%. Major deviations and inconsistencies discovered 

during editing procedures also required telephone calls to 

businesses. 

The final sample in this study consisted of 28 businesses 

required to complete the Quarterly Survey on Trade. 

Previous studies resulting in models of the response process 

applicable to business surveys were based on small samples 

as well: 24 establishments (Edwards and Cantor 1991), 30 

large multiunit companies (Sudman et al. 2000; Willimack 

and Nichols 2001), and 7 schools (Lorenc 2006). This is 

consistent with exploratory interview studies, which tend to 

have small sample sizes of “around 15 ± 10” (see Kvale 

1996, page 102). The selection of businesses aimed to cover 

the heterogeneity of response processes. Because business 

size can be defined as the single most important business 

characteristic that is assumed to influence or be related to 

the characteristics of the response process (e.g., O’Brien 

2000), businesses were selected from all size classes. 

Several measures boosted the validity of the research 

design. The businesses were selected from different size 

classes, including some of the largest ones in trade but also 

some from nontrade primary business activity. A few 

businesses refused to cooperate, mainly because of the work 

overload. Nevertheless, caution is necessary when applying 

findings to nontrade and overworked businesses. The study 

included people with different roles in the response process. 

Substantial effort was made to obtain participation and 

organize visits during the time the respondents were 

completing the questionnaire or right afterward so as to 

minimize the loss of information from their memory. The 

short time lags that occurred in some cases did not seem to 

be so damaging for remembering a frequently repeated and 

well-documented process, given the advance announcement 

of the impending on-site visit. Interview questions directed 

respondents to report how they last filled out the 

questionnaire (e.g., when the books closed that month, how 

much time they spent, who signed the form and how fast), 

and respondents generally supported their reports by data 

from paper and electronic documentation they used to fill 

out the questionnaire. All this helped distinguish their last 

engagement from the usual one. 

The interview as the primary research method was in 

some cases combined with observation. The interviews 

were tape-recorded and transcribed. More repeating patterns 

emerged as the fieldwork progressed, though diminishing 

returns of each consecutive on-site visit were noted toward 

the end of the fieldwork. The findings from the on-site visits 

were compared with the observations of the survey staff and 

subject-matter experts, quantitative data (where available), 

and previously published research. Alternative explanations 

were considered. Last but not least, the selection of a typical 

business survey made the generalization to other business 

surveys more plausible. As Yin (2003) suggests, all steps in 

the research were carefully documented to establish a chain 

of evidence and ensure high reliability of findings. 

 
3. The MIBSR model 

 
3.1 Presentation of the model   

One of the main study results is the Multidimensional 

Integral Business Survey Response (MIBSR) model, which 

integrates previous research findings and new findings from 

my empirical study. The MIBSR model explicitly distin-

guishes between processes occurring at the individual level 

and others taking place at the organizational level, which is 

the business level in this case (see Figure 1). The cognitive 
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processes of comprehension, retrieval, judgment, and 

response occurring at the individual level are taken from 

Tourangeau’s (1984) response model. They reflect the 

mental processes of people involved in the survey response 

that relate to the actual answering of particular survey 

questions as compared to the processes that refer to the 

organization, information support, and authorization of such 

answering, which occur at the business level. Contrary to 

the typical situation of surveys of individuals, parts of the 

process, such as requesting data from another participant or 

retrieving data from business records, are visible through 

participants’ physical actions. By using the survey level, the 

MIBSR model also allows for the possibility of conceptu-

alizing the response process over several implementations of 

a survey or over several surveys (indicated by the arrows in 

Figure 1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1 MIBSR model 

 
The survey response task may involve several business 

participants who can enter and exit the response process at 

various points in time; but for the sake of clarity and 

simplicity, they are all depicted together. Business partici-

pants take part in organizational processes while going 

through their own cognitive processes; thus, they are a 

unifying link between processes at the individual and 

organizational levels. They may adopt one or more of the 

roles with a different influence on the response process, 

namely a gate-keeper (e.g., a receptionist, boundary-span-

ning unit), an authority, a response coordinator, a data 

provider, or a respondent. Although Figure 1 presents 

participants from a single business organization, successful 

completion of the task may require either the participation 

of people who provide outsourced activities or communi-

cation with survey staff. 

The response process is triggered when the survey 

instrument crosses the business’s boundaries. The MIBSR 

model addresses the business response to a survey request 

presupposing a positive decision about participation in the 

survey. The examination of this decision, potentially leading 

to nonresponse, goes beyond the scope of this article even 

though it represents a natural introduction into the response 

process and may influence its course. The model suggests 

the most typical sequence of processes, although in practice 

some may be left out, repeated, or occurring in a different 

sequence. The following sections focus only on elaborated 

and newly added insights into the response process. 

 
3.2 Organizational level 
 
3.2.1 Organization of the survey response  

Participation in a survey generally entails some prepa-

ratory activities due to work distribution and specialization 

in organizations. It requires an answer about who will 

perform the survey response task and when it will be done; 

both answers provide clues about how the task will be 

carried out. The study provided evidence that the two steps 

could be intrinsically linked. In fact, the selection of people 

for the survey response may itself indicate the priority 

assigned to the task in the organization. For instance, in 

some accounting firms and larger businesses, chiefs 

performed the task themselves, although they could have 

delegated the task, which may indicate a certain importance 

of the task, while the fact that many respondents received 

the task as novices may indicate its low priority. In contrast, 

priorities at the individual level were not always consistent 

with priorities at the organizational level. For instance, even 

if tax reporting gained higher priority than statistical 

reporting at the organizational level, this was irrelevant for a 

survey respondent not involved in tax reporting. I therefore 

examined the selection of business participants and the 

scheduling of the survey response task together within the 

organization of the survey response. The result is an 

expanded list of factors potentially influencing the organi-

zation of the survey response task (see Figure 2). 

Tradition, customary practices, established procedures, 

and information location mainly influence the selection of 

business participants, which is an organizational matter, 

while other factors operate at both the organizational and the 

individual levels. Tradition dictates reliance on previous 

participants in recurring surveys when the same people 

repeatedly participate in the response process of the same 

(longitudinal) survey. Some study respondents claimed they 

had been “filling it out for years.” Some had been filling it 

out since they started the job or since a colleague retired, 

went on a longer sick leave, left the job, and so on.  
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Figure 2 Factors influencing the organization of survey response 

 
Many processes in organizations draw on customary 

practices and established procedures, which leads to the 

selection of the usual participants. This means that even 

when a new survey request reaches the business, the 

business will likely proceed in the same way as with 

previous survey requests because of the relatively stable 

distribution of work. In fact, some of the respondents in this 

study explained that the survey questionnaire would often 

be directed to the same department or person, who usually 

replied to such requests even if no formal policy on surveys 

existed. As one respondent clarified, “They prefer to bring 

them to me – this is the only policy.” Some respondents 

knew which types of surveys they received, saying, for 

instance, “I’m doing all statistics except wages,” or “I’m 

doing all statistics, also for the Bank of Slovenia, except 

Intrastat.” Even in larger businesses, the same person often 

filled out several different survey questionnaires; one person 

completed all survey questionnaires that required financial 

data, be it for the Bank of Slovenia, the Statistical Office, or 

the Agency for Public Legal Records; others provided a list 

of specific surveys that they would complete, such as 

surveys on investments, fixed assets, value added, and so 

on.  

Information location is an essential factor that influences 

the selection of business participants from the perspective of 

measurement errors. It refers to sufficient knowledge to 

provide an accurate survey response, including adequate 

access to records, if necessary. In this study, many 

respondents expressed that they had been chosen because of 

their access to data, for instance, “I have the data and I know 

how to retrieve them.” 

Competing tasks relates to the assignment of people and 

order to the tasks. It usually influences the choice of 

business participants at the organizational level when 

alternative possible participants are compared, as well as the 

scheduling of the survey response task at the individual 

level when the priorities of a participant’s several tasks are 

considered. Study respondents in several, mainly smaller 

businesses agreed that they give low priority to the survey 

response task when they schedule their work: “VAT (value-

added tax), debt recovery, bookkeeping . . . all has priority 

over statistics.” Another respondent said that she “wouldn’t 

think of doing the survey on the day all the book entries are 

done” but instead checks “the balance sheet, . . . liabilities, 

how the payments stand, how much debt there is, the 

financial situation.” Another explained the work process as 

“internal reporting first, current affaires next, statistical 

reporting afterwards.” In a few larger businesses, however, 

respondents said that they completed survey questionnaires 

as soon as data became available or final. 

Similarly, attitudes to the survey response task can be 

examined at the organizational level through formal policies 

on surveys and the informal reactions of authorities as well 

as individual perceptions. Businesses in this study did not 

have any formal policies on surveys, though the discourse of 

authorities in some companies indicated their negative 

attitudes: “it’s only statistics; prepare something.” Organi-

zational attitudes may affect the organization of the survey 

response, through potential consequences for the business, 

particularly opportunity costs, penalties, and damage to the 

public image. Most participants expressed a negative 

attitude toward surveys, describing them as “a necessary 

evil” and “redundant” or “additional” work. Individual 

attitudes toward surveys may contribute to the early, timely, 

or late scheduling of the task; they may also influence an 

individual’s inclusion or exclusion in the survey response 

task. 
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Record formation and data delivery are primary in the 

scheduling of the response tasks. The timing of record 

formation determines when the records with required data 

about the business were created and took on the acceptable 

or desirable form, especially when the data become final. 

Respondents in larger businesses and businesses with 

foreign ownership typically referred to internal deadlines for 

“closing the books” or the VAT submission deadline. Data 

delivery is relevant in those cases where the participant must 

rely on other people to deliver required data. This partic-

ularly applied to accounting firms in this study. However, 

the timing of record formation and data delivery may vary 

by the kind of data requested, so that the latest record 

formation and the latest data delivery, eventually, determine 

the actual scheduling. For instance, some respondents 

explained that more time was necessary to get the correct 

value of stock because of lags in recording incoming 

invoices as compared to sales figures. 

After the organization of the survey response task, the 

task can be realized, though it is sometimes necessary to 

further refine the selection of business participants or the 

scheduling to provide for all requested items, absence from 

work, and other circumstances. 
 
3.2.2 Retrieval of information from the business 

information system  
The capacity of the business information system (BIS) is 

the key factor that influences the response process and its 

outcome in business surveys. The BIS does not consist of 

the technological element only; it also includes people 

(Avison and Elliot 2006). The human capacity of the BIS 

relevant for the business survey response is mainly reflected 

in cognitive processes at the individual level (see section 

3.3), while its technological capacity is determined through 

business records at the organizational level. The study 

showed that formation of business records depends on 

internal and external factors, though the line between the 

two groups is blurred (see Figure 3). 

External factors – legal obligations, standards, and 

benchmark practices – are imposed on companies from the 

environment and dictate the content of business records 

through cogency or the threat of sanctions. Legislation, 

regulations, and other forms of power with the law set out 

legal obligations. With respect to that, study respondents 

mainly mentioned mandatory compliance with accounting 

standards and the requirements of tax authorities. The latter 

could refer to the business as a whole (e.g., VAT reports) or 

to particular items (e.g., excise duties on tobacco products). 

Other mandatory requirements may relate to contributions, 

securities, insurance, environmental issues, and so on. 

Participants usually noted the compulsory character of 

governmental business surveys, although the lack of 

sanctions for nonresponse or a late response made some 

participants question this; furthermore, changing record 

formation for statistical purposes only was unthinkable to 

most study participants. Standards are a softer form of 

external factors: they are not mandatory, but are expected to 

be followed in most cases. Two examples from the study 

include the use of a classification based on the European 

Article Number barcode standard and recommendations 

from accounting authorities. The study suggested that 

standards were not used in the case of specific reasons; for 

instance, the information systems of the smallest retailers 

did not support barcode use. Benchmark practices are the 

least influential group of external factors. They refer to good 

examples of practice that have gained some recognition and 

authority by reputation (and not by law or institutional 

power). For instance, some study respondents mentioned 

obsolete software versus current standards, while others 

stressed powerful capabilities of their software and its 

positive influence on data provision.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3 Factors of record formation 

 
External factors drive data homogeneity and com-

parability in business records across companies, at least 

within similar economic activities. They provide the 

framework in which companies develop their own solutions 

for business records according to internal factors unless 

adhering to compulsory requirements more than fully 

satisfies data needs for running the business as was the case 

in small, local companies. Internal factors of record 

formation include characteristics of business activity, such 

as the size, type, and diversity of the business activity; 
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embeddedness in the business environment; and the 

disposition to forming records. 

The size of the business activity plays a crucial role in 

record formation because it leads to a differential overview 

of an activity. In the study, most larger companies had an 

abundance of data. Business records provide information that 

cannot be gained from participation or observation only. 

That said, the size of the business activity is relative, 

especially if the size is observed only within legal boundaries 

or national borders. Therefore, it is better to speak about the 

embeddedness in networks of various kinds. In the study, for 

instance, a couple of smaller businesses had a foreign owner 

that demanded comprehensive reports to overcome the 

distance and manage the business remotely, and another 

small business had to use the sophisticated software of a 

business partner because it was its major supplier. The study 

also showed how different types of activities influenced the 

kind of available records; for example, wholesale businesses 

that typically put recipients on their invoices had more 

information on their buyers than businesses in retail that 

typically issued receipts without indicating the name. High 

diversity of business activities also is a major challenge for 

record formation in most businesses; in general, smaller 

businesses had renounced the use of detailed records and 

were forced to make estimates instead. Last, disposition 

refers to the prevailing attitudes of people in the business to 

various aspects of record formation, such as the inclination 

toward data, information technology, and change. Some 

businesses relied heavily on evidence-based decision making 

and thought highly of data; others showed enthusiasm for the 

possibilities of information technology, but a few others saw 

no usefulness in data. 

Factors of record formation influence the availability of 

data in business records and their compliance with survey 

definitions. Data availability appears at the intersection of 

technological and human capacity in the business; 

knowledge is required to extract data from the BIS 

conditional on their existence. Several levels of answer 

availability in the BIS apply to survey questions (see 

Figure 4); their naming was inspired by the determination of 

cognitive states in Beatty and Herrmann (2002) and is in 

principle consistent with that proposed by Lorenc (2007): 

 

(a) A datum is accessible – the required answer may be 

readily available. In this study, a typical example is 

total sales revenue, which is readily available to a 

person in accounting, or the number of employees, 

which is readily available to a person in the 

personnel department. 

(b) A datum is generable – the required answer is not 

readily available to any person; the available data 

represent a basis for generating the required answer 

through manipulation. In the study, for instance, 

sales revenue in a particular trade activity was not 

always readily available, but it was possible to derive 

the exact figure by consulting two separate records 

(e.g., the general ledger and commercial records). 

(c) A datum is estimable – the required answer is not 

readily available to any person; the available data 

represent an approximation of the required answer or 

a basis for estimating the required answer through 

manipulation. In the study, a sales breakdown by 

commodity groups (e.g., food, beverages, clothes, 

footwear) was often estimated by recategorizing 

available groups; however, those categories were 

sometimes too aggregated or too diverse to allow for 

an exact match (e.g., Christmas products, Easter 

gifts, discontinued products). 

(d) A datum is inconceivable – no available data lead to 

the required answer or its approximation; some bases 

for generating or estimating the required answer exist 

but require an unimaginable effort to produce it. For 

instance, a company would have to classify more 

than ten thousand invoices monthly to arrive at an 

exact breakdown of sales by kind of buyers. 

(e) A datum is nonexistent – there are no bases for 

estimating the required answer. In the study, a cash-

and-carry store could not distinguish between 

different kinds of buyers because they issued the 

same kind of nameless invoices to all customers, 

companies and individuals. 
 

Because data availability varies across people in a 

business, it may be useful to determine answer availability 

at the individual level. In this case, a distinction has to be 

made between an answer that someone can obtain directly 

and an answer that they can access only through another 

person. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4 Levels of answer availability and likely response outcome 
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The final response outcome is conditional on the level of 

answer availability and may range from an exact datum to 

item nonresponse (see Figure 4). A measurement error 

occurs whenever the response outcome deviates from the 

exact datum. When a datum is accessible or generable, the 

response outcome is likely to be an exact datum, although 

the possibilities of committing a measurement error increase 

if data have to be accessed through other people or 

manipulated. When a datum is estimable, the response 

outcome may be an approximation with a negligible mea-

surement error or an estimate with a minor or substantial 

measurement error. An inconceivable datum may, at best, 

lead to a rough estimate. When respondents have no 

adequate bases to provide a response, they may make wild 

guesses resulting in blunders or skip the question, which 

leads to item nonresponse.  
 
3.2.3 Authorization of the business response  

Authorization is the final opportunity for corrective 

actions before the business response is forwarded to the 

survey organization and documentation archived. Most 

businesses in this study found this organizational step 

inconsequential and even skipped it. In more than half of 

businesses, respondents signed the questionnaire themselves 

because “they have the mandate to sign such things” and 

“the director is very rarely present” or “does not deal with 

such things.” Still, even in those cases, some respondents 

mentioned that the director had been informed about that 

procedure. In several businesses, the superior signed the 

questionnaire for the sake of formality and no verification 

procedures were in place because “the director trusts us” or 

“doesn’t have the necessary data,” or because “we work this 

way.” 

A superior was typically present in the largest compa-

nies, through formal authorization or informal notification. 

Internal verification was rare, which could be the 

consequence of preceding consultations with the superior. 

Accounting firms usually delivered the completed question-

naire to the business for signature, though businesses 

sometimes also signed the blank questionnaire in advance.  
 
3.3 Individual level  

Given the level of answer availability in the BIS, it rests 

on the performance of cognitive processes and accom-

panying physical actions (especially interaction with 

computers) at the individual level to determine the final 

response outcome. The MIBSR model proposes that three 

inherently linked types of knowledge are relevant for these 

processes: knowledge of business reality, knowledge of 

record formation, and knowledge of business records (see 

Figure 5). Although it may be difficult to disentangle the 

three types of knowledge in practice, the study seems to 

suggest that every type is particularly influential for one 

kind of cognitive process. 

The division of cognitive processes into comprehension, 

retrieval, judgment, and response derives from Tourangeau’s 

(1984) response model. In business surveys, these processes 

may not be defined as easily as in surveys of individuals 

because the initial organization of the response may involve 

only a brief and superficial consideration of the survey task 

with barely any impact on the later response process or a 

thoughtful reflection on the questions. The study mainly 

focused on respondents’ cognitive processes because it is 

their task to answer survey questions. Nevertheless, ob-

servations of other business participants are provided where 

available. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 Knowledge relevant to the business survey response 
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3.3.1 Comprehension  
In comprehension processes, respondents interpret the 

survey request for data, which usually is in the form of 

labels instead of questions. The MIBSR model suggests 

that, for comprehension processes, knowledge of business 

reality is particularly important. Business reality refers to the 

activities the business performs to subsist and to the division 

of work across locations and individuals. Knowledge of 

business reality thus presupposes acquaintance with every 

aspect of the business: who does what, what activities the 

business is involved in and how they are carried out, how 

decisions are made, why the business situation is as it is, 

how it evolved through time, and so on. Because larger 

businesses tend to be complex with technical and social 

divisions of labor, establishment of branches, organizational 

hierarchy, and decision-making structure (Tomaskovic-

Devey, Leiter and Thompson 1994), it can be expected that 

fragmentation of the knowledge of the business’s reality 

increases with business size. 

This knowledge is essential in establishing whether 

survey questions are applicable to the business and 

providing correct answers afterward. In fact, no business in 

the study filled out all survey items. Respondents had to fill 

out only sections that applied to the kinds of trade they 

performed. Survey questions also required them to select 

applicable commodity groups, kinds of employment, kinds 

of buyers in wholesale, kinds of payment in retail, and so 

on. The required knowledge of business reality was 

occasionally specific: one respondent, for instance, needed 

information about the relationship between the company as 

the franchisor and their franchisees to avoid double counting 

or skipping some items across the businesses.  

A major obstacle to using knowledge of business reality 

for correctly understanding survey questions was the 

incomprehension of economic and accounting concepts or 

their confounding with other concepts. For instance, one 

respondent had problems distinguishing between the 

concept of trade, which includes repackaging of goods, and 

the concept of production, which entails some transformation 

of goods beyond repackaging; a few respondents pondered 

over trade rendered on a commission basis because their 

activity was trade but accounting treated it as a service; 

many respondents associated retail with a store rather than 

with individuals as final consumers, regardless of the kind 

of buyer; one respondent defined wholesale as “everything 

that is not paid with cash” instead of linking it to nonfinal 

consumption; some respondents did not understand that 

“nontrade and nonmanufacturing organizations” were 

service providers; others did not understand the difference 

between merchandise and material, because the latter is an 

input to production (not trade) in accounting terminology 

and takes on another meaning in colloquial language, such 

as construction or building material.  

Study respondents often used their own definitions to 

interpret survey questions. The same is true for those 

business participants who provided data on request without 

actually seeing the questionnaire and/or instruction booklet. 

This, for instance, happened in a few larger businesses 

where data providers completely relied on their own 

definitions of the sales space when providing data on store 

distribution by size of the sales space because additional 

explanations were given only in the instruction booklet. 
 
3.3.2 Retrieval  

In retrieval processes, the data and information required 

for the survey response are located and brought forth. In 

business surveys, the data usually reside in business records, 

not in memories, but knowledge is crucial for their 

extraction and interpretation. The retrieval thus mainly rests 

on knowledge of the business records, which refers to the 

contents and location of business records in the business and 

the possibilities of data access, including familiarity with 

applications and the people in charge of them. 

Study respondents mainly exhibited good knowledge of 

the business records they worked with. In a couple of 

businesses where superiors participated in the response 

process, the superiors were not abreast of all details of the 

records and had an assistant perform the retrieval—but they 

had excellent insight into the business reality and knew how 

it converted into records. Even perfect knowledge of the 

business records, however, did not always suffice for exact 

answers. When the business records did not register all 

necessary data, knowledge of the business reality became 

critical for making correct inferences and good estimates. 

This sometimes happened in larger businesses and 

accounting firms where respondents knew the records very 

well, including the chart of accounts and its codes, but knew 

the assortment of merchandise only vaguely. As a result, 

they had to use estimates when classifying sales by 

commodity groups, as their acquaintance with the business 

activity was incomparable to a comprehensive, firsthand 

insight of sales personnel. In smaller businesses, lack of 

necessary data in records sometimes meant complete 

reliance on memory instead of records; a respondent, for 

instance, arrived at employment in wholesale by retrieving 

the number of people in relevant workplaces, namely 

chauffeurs, people who worked in the warehouse, 

salespeople, and office clerks.  
3.3.3 Judgment  

Judgment refers to the compilation of all retrieved data 

and information to formulate an answer. In this study, it 

frequently entailed some data manipulation or handling, 
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such as summation, balance with a residual, recategorization, 

and application of proportions. Judgment is mainly supported 

by knowledge of record formation. This knowledge provides 

information on how the business reality translates into 

business records and ensures that captured data are not 

considered isolated figures, codes, or words but take on a 

certain meaning representing the processes and objects 

measured. It therefore represents a link between knowledge 

of the business reality and knowledge of the business 

records (see Figure 5). Its importance was, for instance, 

noted during the observation of a respondent who was 

filling out the questionnaire and had to struggle with an 

inconsistency in the retrieved sales data. To identify the 

mistake, she systematically analyzed nonsales activities in 

the observed period and the correctness of their encoding in 

the records to finally discover a transaction that should not 

have been included in the sales figures. 

However, lack of knowledge could not explain some 

judgments with an unfavorable response outcome, so the 

study looked more closely into principles that guided judg-

ment. Among the most pervasive principles encountered in 

the survey response process under study was the principle of 

continuity, which advocates the use of the same response 

strategy in recurring surveys – even if this leads to errors. 

Continuity was sometimes considered within a year but also 

across years. It seemed to be strengthened by the lack of 

negative feedback from the statistical organization and its 

presumed satisfaction with the data. The study identified 

several respondents who used detailed procedures of 

calculation that were quite obsolete. A respondent even 

erroneously left out the section of commission trade but 

would not change the procedure during the year to avoid 

disrupting the reported data.  

Two other principles were identified in relation to the 

principle of continuity: the principle of consistency and the 

principle of disregarding the exceptional. The principle of 

consistency implies use of the same or similar response 

strategies in the same survey questionnaire. For instance, a 

respondent who attributed various items of merchandise to 

only one commodity group in wholesale did the same in 

retail; a respondent who estimated wholesale turnover from 

VAT figures used the same approach to retail turnover, and 

so on. The principle of disregarding the exceptional implies 

ignoring new, one-off, or temporary activities. For instance, 

a study respondent inadvertently reported a temporary 

activity not reported in the questionnaire; another confessed 

the exclusion of new activities from reporting because their 

success was uncertain. The question, however, is how to set 

boundaries on the novelty and on the temporariness and 

when precisely such activities become representative of the 

business. 

The principle of disregarding the exceptional is also 

related to the principle of disregarding the marginal, which 

advises ignoring those activities that are perceived as 

marginal to the business. For instance, some study respon-

dents disregarded some items in sales breakdowns if they 

represented less than one percent of activity. The impact of 

the principle depends on the use of the collected data. It 

should be inconsequential if the aim is to estimate national 

totals or change. However, sales of a specific commodity 

group may be marginal to a large business but not marginal 

for the market of that commodity group.  

The business perspective principle advocates the priority 

of the business perspective as compared to a statistical 

request. In the study, data on existing organizational units 

were judged acceptable despite their divergence from the 

required units; data on various packages (e.g., a newspaper 

supplemented with a book) that were relevant from the 

business perspective were not disentangled for statistical 

purposes.  
3.3.4 Response  

The response component refers to the processes of 

mapping a judgment onto a response category and editing 

the response (Tourangeau, Rips and Rasinski 2000). In 

business surveys, mapping usually translates into matching 

available data from the BIS with response categories 

offered, which provides room for a specific form of 

measurement error: misclassification. For instance, when 

respondents had problems fitting available sales data into 

the provided classification scheme, they often chose the 

closest category, the main category, or the category “other.” 

The study also identified the presence of editing 

processes that show different aspects of business sensitivity. 

Some study respondents checked whether their selection of 

the decisive activity code was consistent with their 

registered activity, which may show a fear of nonconformity 

with administrative requirements. Not reporting people who 

helped in family businesses may reveal tax evasion. 

Although many respondents agreed that the data they 

reported in the questionnaire were considered confidential, 

there was scarce evidence of hindrance for disclosing the 

data to the statistical organization (e.g., not reporting 

detailed data on newly introduced activities).   
3.4 Survey level  

The MIBSR model introduces the possibility of concep-

tualizing the response process over several implementations 

of a survey or over several surveys. It thus conceptually 

enables the observation of how the elements of survey 

design, which is under the control of survey organization, 

influence the response process. 
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The study focused on the impact of recurrence on the 

response process. In repeated administrations of the survey 

to the same business, the organization of the survey re-

sponse became less relevant or irrelevant if it was a perfect 

replica of the preceding administration. The cognitive 

processes at the individual level were characterized by 

routine when the same business participants performed 

them. Many respondents admitted that they had not read the 

whole questionnaire, let alone the instructions in a repeat 

questionnaire. This also occurred in businesses that agreed 

to be observed while completing the questionnaire: after 

respondents gave the questionnaire a swift scan for any 

changes, they plunged into the retrieval processes based on 

the previously completed questionnaire or on other 

documentation and supporting notes. The comprehension 

step was thus performed superficially and pertained more to 

understanding completion of the previous questionnaire than 

it did to understanding survey requests. The retrieval 

procedures followed the previously established course and 

exhibited learning-curve effects. The respondent’s judgment 

clung to the initial approach and was unlikely to change. 

The recurrence frequently loosened up a respondent’s 

supervision and reduced the importance of the authorization 

or even omitted it. 

Given the appointment to the survey task of the same 

people or usual units in the business, many of them sooner 

or later had contact with survey staff, despite the common 

self-administrative mode of data collection in business 

surveys. Such contact could occur early in the response 

process and influence the respondent’s comprehension and 

judgment. This was rarely the case in the study; only a few 

respondents asked for explanations the first time they 

participated in the survey and another respondent asked for 

help when the business’s activity changed. Contacts in 

which respondents requested postponement of the deadline 

did not seem to influence the subsequent response process, 

though the same could not be claimed for respondents who 

resisted participation. All other contacts happened during a 

follow-up when the response process, or parts thereof, had 

to be performed again, which could result in an adjusted 

survey response. Although respondents mainly acknowl-

edged the politeness of the survey staff, their calls signaled 

that something was wrong: a missed deadline, an item 

missing in the questionnaire, an inconsistency in the 

reported data. The rareness of such contacts made a 

significant impression on respondents because these 

contacts were often the only type of feedback from the 

statistical organization. 

In contrast, respondents did not always appreciate a lack 

of feedback. They expected feedback from the statistical 

organization after they first participated in the survey, but 

this generally did not happen. The lack of reaction made 

them confident in their approach, thus reinforcing the 

principle of continuity in their judgment. However, many 

respondents reported at least one piece of data that was not 

completely accurate (or not as accurate as they would expect 

the data should be) and they perceived the lack of 

complaints as satisfaction with bad data. Some respondents 

were convinced that the statistical organization knew about 

their business activity, which is why they rarely provided 

textual descriptions of seasonal oscillations. Given these 

observations, it is not surprising that several respondents 

expressed doubts about the accuracy of statistical data or 

questioned the accuracy of data that others provided. The 

right feedback may not only be important for that particular 

survey but also for participation in other surveys because it 

contributes to general perceptions on surveys and statistics. 

 
4. Discussion of model’s contributions 

 
The dominance of written communication between the 

survey organization and businesses has moved business 

participants away from the center of statistical production 

and reduced the possibilities of insights into the process of 

responding to survey requests and the causes of measure-

ment errors. By studying the response mechanisms and 

influencing factors, response models help bring these 

insights out and design approaches that turn this knowledge 

into an advantage. This section discusses the contributions 

of the MIBSR model with respect to previous response 

models applicable to business surveys. 

 
4.1 Model construction 
 

Two approaches were encountered in construction of 

previous models: adding some organizational steps to the 

core cognitive processes from Tourangeau’s cognitive 

model of survey response (Biemer and Fecso 1995; 

Edwards and Cantor 1991; Sudman et al. 2000; Willimack 

and Nichols 2001) or using the organization as the unit of 

observation (Lorenc 2006). The MIBSR model explicitly 

links the processes to the level at which they occur: cog-

nitive processes to the individual level and organizational 

processes to the organizational (in our case, the business) 

level. It also foresees the observation of the response 

process over several implementations of the same survey or 

over several surveys with different designs, which is 

particularly interesting for governmental surveys. By 

analyzing complex response processes at the appropriate 

level of observation, the MIBSR model sets up a framework 

that can also be used for quantitative modeling and 

experimental design. 
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4.2 Insights at the organizational level  
Previous models treated initial organizational arrange-

ments in the context of respondent selection (Biemer and 

Fecso 1995; Edwards and Cantor 1991) or in separate steps 

of respondent selection and the assessment of priorities, the 

latter ranking statistical reporting to the government lower 

than most other business reporting activities (Sudman et al. 

2000; Willimack and Nichols 2001). They also identified 

several factors that influence respondent selection, espe-

cially the functional role, authority level, and position with 

regard to the information system (Edwards and Cantor 

1991), knowledge of the information system, terms and 

definitions (Biemer and Fecso 1995), competing job respon-

sibilities and access to the data (Sudman et al. 2000). The 

MIBSR model integrates all preparatory activities in the 

organization of survey response and suggests an expanded 

list of influencing factors. The organization of survey 

response now acknowledges that delegation of the task may 

also include selection of other business participants beyond 

respondents and that priority of competing tasks is just one 

of the factors influencing the task’s scheduling.  

All previous models have paid considerable attention to 

record formation. The MIBSR model suggests a different 

systematization and extension of factors of record 

formation, initially grouped into management, regulation, 

and standards by Willimack and Nichols (2001). Because it 

is generally unlikely that the requirements of statistical 

reporting are an actual factor of record formation, the 

MIBSR model may assist the survey organization in its 

endeavors to exert influence on record formation and 

eventually obtain requested data. Taking into account 

technological and human capacity of the BIS, the MIBSR 

model defines several levels of answer availability based on 

the extent to which the answer conforms to required survey 

definitions and proposes the likely response outcome. In 

authorization of the business response, the MIBSR model 

reiterates the possibility of internal verification that Sudman 

et al. (2000) and Willimack and Nichols (2001) propose for 

the release step. Authorization is more likely sought out 

when the survey response involves legally separate units 

and more formalized and centralized organizations. 
 
4.3 Insights at the individual level  

At the individual level, which deals with comprehension, 

retrieval, judgment, and response (Tourangeau 1984), the 

MIBSR model further elaborates on the knowledge relevant 

to cognitive processes. Willimack and Nichols (2001) 

emphasized personal knowledge for answers directly from 

memory and knowledge of the records. The MIBSR model 

suggests that a thorough understanding of the data in 

business records and their appropriate use in the survey 

response require knowledge of the whole chain of data 

generation, from knowledge of business reality to knowledge 

of record formation and knowledge of business records. 

As far as comprehension processes are concerned, 

Edwards and Cantor (1991) have acknowledged the prob-

lematic use of jargon, and Sudman et al. (2000) have 

pointed to the problematic deviation of required economic 

concepts from accounting standards. The MIBSR model 

goes even further to explain that the errors may result from a 

broader issue of incomprehension of economic and account-

ing concepts or their confounding with other concepts.  

The MIBSR model identifies several principles that help 

understand the underlying judgment processes in business 

surveys, which are consistent with examples manifesting the 

principles of continuity and consistency by Sudman, et al. 

(2000) and Willimack, Nichols and Sudman (2002), 

respectively. These principles may also reflect satisficing 

(Simon 1957) or inertia. The use of inappropriate principles, 

especially the principle of continuity, is particularly 

strengthened by the lack of survey feedback.  

In the cognitive processes of responding, the MIBSR 

model exposes the problem of matching in business surveys, 

thus adding to the rounding error that Sudman et al. (2000) 

discuss. It also integrates different aspects of business 

sensitivity that Edwards and Cantor (1991) have discussed 

as part of the communication step, and Sudman et al. (2000) 

have discussed as part of the release step. The model treats 

them at the individual level where the editing occurs if the 

data are indeed sensitive. 
 
4.4 Insights at the survey level  

Previous models have concentrated on a single 

occurrence of the response process in a particular business 

survey, while the MIBSR model extends to several 

occurrences and several surveys. Among the many 

dimensions at the survey level, the study systematically 

analyzed the impact of recurrence and contact with the 

survey staff on the response process, which represents a 

further elaboration of specific instances already mentioned 

in previous models in the context of retrieval, such as 

rehearsal of the look-up (Edwards and Cantor 1991) or 

documentation of previous completions supporting retrieval 

(Sudman et al. 2000). In addition, the MIBSR model allows 

for the presence of a contagious effect transmitting the 

experience in one business survey to other business surveys. 

 
5. Conclusion 

 
Survey organizations usually have to set aside a con-

siderable amount of resources for processing survey data 

because the processes of responding to survey questions in 

the businesses are not performed satisfactorily. The MIBSR 

model provides further evidence on how the processes are 
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carried out and what influences them. It offers insights into 

the business perspective, which are valuable for efficiently 

seeking solutions to improve the processes and, cones-

quently, reduce or eliminate measurement errors. The model 

may also serve as a framework for the documentation and 

systematization of existing and future knowledge on the 

causes of measurement errors in business surveys. It may be 

used as a preceding step of empirical studies on measure-

ment errors and for a consistent explanation of empirical 

findings. Future research should continue with the appli-

cation of the qualitative research methods to the study of 

particular dimensions of the response process, other 

business participants besides respondents and other kinds of 

business surveys. It should also embark on quantitative 

modeling of the response process and verifying the 

effectiveness of suggested improvements with experiments. 

Last, it should look into the interactions with other kinds of 

nonsampling errors. 

 
Acknowledgements 

 
This article is an outcome of doctoral research. The 

author thanks the Statistical Office of the Republic of 

Slovenia for its co-operation and Lea Bregar (University of 

Ljubljana), Lars Lyberg (Statistics Sweden, Stockholm 

University) and Jaak Billiet (Catholic University of Leuven) 

for their guidance and support. I also thank the associate 

editor and anonymous referees for their helpful comments 

on an earlier version of this article. 

 
References  

Avison, D., and Elliot, S. (2006). Scoping the discipline of 
information systems. Information Systems: The State of the Field, 
(Eds., J.L. King and K. Lyytinen). Hoboken: John Wiley & Sons, 
Inc., 3-18. 

 
Bavdaž, M. (2009). Conducting research on the response process in 

business surveys. Statistical Journal of the IAOS, 26, 1-14. 
 
Beatty, P., and Herrmann, D. (2002). To answer or not to answer: 

Decisions processes related to survey item nonresponse. Survey 
Nonresponse, (Eds., R.M. Groves, D.A. Dillman, J.L. Eltinge and 
R.J.A. Little). New York: John Wiley & Sons, Inc., 71-85. 

 
Biemer, P.P., and Fecso, R.S. (1995). Evaluating and controlling 

measurement error in business surveys. Business Survey Methods, 
(Eds., B.G. Cox et al.). New York: Wiley-Interscience, 257-281. 

 
Edwards, W.S., and Cantor, D. (1991). Toward a response model in 

establishment surveys. Measurement Errors in Surveys, (Eds., 
P.P. Biemer, R.M. Groves, L.E. Lyberg, N.A. Mathiowetz and 
S. Sudman). New York: Wiley-Interscience, 211-233. 

 
Giesen, D., and Hak, T. (2005). The response process model in 

business surveys: Lessons learned by using a multi-method 
approach. FCSM Conference Papers, Federal Committee on 
Statistical Methodology. 

Greenia, N., Lane, J. and Willimack, D. (2001). Perceptions of 
confidentiality protection at statistical agencies: Some evidence 
from data on businesses and households. Statistical Journal of the 
United Nations ECE, 18, 309-314. 

 
Groves, R.M., Fowler, F.J., JR., Couper, M.P., Lepkowski, J.M., 

Singer, E. and Tourangeau, R. (2004). Survey Methodology. 
Hoboken: Wiley-Interscience. 

 
Hak, T., Willimack, D.K. and Anderson, A.E. (2003). Response 

process and burden in establishment surveys. Proceedings of the 
Section on Government Statistics, American Statistical 
Association, 1724-1730. 

 
Hedlin, D., Dale, T., Haraldsen, G. and Jones, J. (2005). Developing 
Methods for Assessing Perceived Response Burden. Eurostat. 

 
Jenkins, C.R., and Dillman, D.A. (1997). Towards a theory of self-

administered questionnaire design. Survey Measurement and 
Process Quality, (Eds., L.E. Lyberg et al.). New York: Wiley-
Interscience, 165-196. 

 
Kvale, S. (1996). InterViews: An Introduction to Qualitative Research 
Interviewing. Thousand Oaks: Sage Publications. 

 
Lorenc, B. (2006). Two topics in survey methodology: Modelling the 

response process in establishment surveys; inference from 
nonprobability samples using the double samples setup. Doctoral 
dissertation, Department of Statistics, Stockholm University. 

 
Lorenc, B. (2007). Using the theory of socially distributed cognition 

to study the establishment survey response process. Proceedings 
of the Third International Conference on Establishment Surveys, 
Montreal, Canada, American Statistical Association, 881-891. 

 
Morrison, R.L., Stettler, K. and Anderson, A.E. (2002). Using 

vignettes in cognitive research on establishment surveys. 
International Conference on Questionnaire Development, 
Evaluation and Testing Methods, Charleston, American Statistical 
Association. 

 
Nichols, E.M., Murphy, E.D., Anderson, A.E., Willimack, D.K. and 

Sigman, R.S. (2005). Designing interactive edits for U.S. 
Electronic Economic Surveys and Censuses: Issues and 
guidelines. Research Report Series (Survey Methodology 2005-
03), U.S. Census Bureau. 

 
O’Brien, E.M. (2000). Respondent role as a factor in establishment 

survey response. Proceedings of the Second International 
Conference on Establishment Surveys, American Statistical 
Association, 1462-1467. 

 
Phipps, P.A., Butani, S.J. and Chun, Y.I. (1995). Research on 

establishment-survey questionnaire design. Journal of Business & 
Economic Statistics, 13, 337-346. 

 
Ponikowski, C.H., and Meily, S.A. (1989). Controlling response error 

in an establishment survey. Proceedings of the Surveys Research 
Methods Section, American Statistical Association, 258-263. 

 
Ramirez, C. (1996). Respondent selection in mail surveys of 

establishments: Personalization and organizational roles. 
Proceedings of the Survey Research Methods Section, American 
Statistical Association, 974-979. 

 
Simon, H. (1957). Models of man: Social and rational. New York: 

John Wiley & Sons, Inc. 
 
Snijkers, G., Onat, E. and Visschers, R. (2007). The annual structural 

business survey: Developing and testing an electronic form. 
Proceedings of the Third International Conference on 
Establishment Surveys, Montreal, Canada, American Statistical 
Association, 317-326. 



Survey Methodology, June 2010 93 
 

 

Statistics Canada, Catalogue No. 12-001-X 

Sudman, S., Willimack, D.K., Nichols, E. and Mesenbourg, T.L. 
(2000). Exploratory research at the U.S. Census Bureau on the 
survey response process in large companies. Proceedings of the 
Second International Conference on Establishment Surveys, 
American Statistical Association, 327-337. 

 
Tomaskovic-Devey, D., Leiter, J. and Thompson, S. (1994). 

Organizational survey nonresponse. Administrative Science 
Quarterly, 39, 439-457. 

 
Tourangeau, R. (1984). Cognitive science and survey methods. 
Cognitive Aspects of Survey Methodology: Building a Bridge 
between Disciplines, (Eds., T.B. Jabine, M.L. Straf, J.M. Tanur 
and R. Tourangeau). Washington, D.C.: National Academy Press, 
73-100. 

 
Tourangeau, R., Rips, L.J. and Rasinski, K.A. (2000). The Psychology 
of Survey Response. Cambridge, England: Cambridge University 
Press. 

 
Willimack, D.K. (2003). Business respondents’ perspectives on 

alternative employment arrangements and implications for 
employment statistics. Proceedings of the Section on Government 
Statistics, American Statistical Association, 4559-4570. 

 

Willimack, D.K. (2007). Considering the establishment survey 
response process in the context of the administrative sciences. 
Proceedings of the Third International Conference on 
Establishment Surveys, Montreal, Canada, American Statistical 
Association, 892-903. 

 
Willimack, D.K., Lyberg, L.E., Martin, J., Japec, L. and Whitridge, P. 

(2004). Evolution and adaptation of questionnaire development, 
evaluation, and testing methods for establishment surveys. 
Methods for Testing and Evaluating Survey Questionnaires, (Eds., 
S. Presser et al.). Hoboken: Wiley-Interscience, 385-407. 

 
Willimack, D.K., and Nichols, E. (2001). Building an alternative 

response process model for business surveys. Proceedings of the 
Survey Research Methods Section, American Statistical 
Association. 

 
Willimack, D.K., Nichols, E. and Sudman, S. (2002). Understanding 

unit and item nonresponse in business surveys. Survey 
Nonresponse, (Eds., R.M. Groves, D.A. Dillman, J.L. Eltinge and 
R.J.A. Little). New York: John Wiley & Sons, Inc., 213-227. 

 
Yin, R.K. (2003). Case Study Research: Design and Methods. 

Thousand Oaks: Sage Publications. 

 

 
 
 
 
 



 
 
 
 
 
 
 
 
 



Survey Methodology, June 2010  95 
Vol. 36, No. 1, pp. 95-109 
Statistics Canada, Catalogue No. 12-001-X 

 

Examining survey participation and response quality:  
The significance of topic salience and incentives 

Lazarus Adua and Jeff S. Sharp 1 

Abstract 

Nonresponse bias has been a long-standing issue in survey research (Brehm 1993; Dillman, Eltinge, Groves and Little 
2002), with numerous studies seeking to identify factors that affect both item and unit response. To contribute to the broader 
goal of minimizing survey nonresponse, this study considers several factors that can impact survey nonresponse, using a 
2007 Animal Welfare Survey Conducted in Ohio, USA. In particular, the paper examines the extent to which topic salience 
and incentives affect survey participation and item nonresponse, drawing on the leverage-saliency theory (Groves, Singer 
and Corning 2000). We find that participation in a survey is affected by its subject context (as this exerts either positive or 
negative leverage on sampled units) and prepaid incentives, which is consistent with the leverage-saliency theory. Our 
expectations are also confirmed by the finding that item nonresponse, our proxy for response quality, does vary by 
proximity to agriculture and the environment (residential location, knowledge about how food is grown, and views about the 
importance of animal welfare). However, the data suggests that item nonresponse does not vary according to whether or not 
a respondent received incentives. 
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1. Introduction 
 
Nonresponse bias has been a long-standing issue in 

survey research, as it affects all survey research regardless 

of mode (Nathan 2001). As a result, numerous studies have 

sought to identify factors that affect both item and unit 

response/nonresponse in various survey modes (Grove 

2006; Trussell and Lavrakas 2004; Davern, Rockwood, 

Sherrod and Campbell 2003; Teitler, Reichman and 

Sprachman 2003; Singer, Van Hoewyk and Maher 2000; 

Singer, Van Hoewyk, Maher 1998; James and Bolstein 

1992). While these studies have generated insightful and 

useful information about the factors that affect survey 

participation, questions about survey response still remain 

pertinent to the field of survey research in general and to our 

substantive work in particular. We are interested in 

expanding on the thoughts of Groves et al. (2000) by 

investigating whether specific characteristics of sampled 

units or demographic subpopulations in relation to a 

survey’s topical context affect the response patterns. In our 

ongoing research assessing the general public’s attitudes and 

behaviours related to the agricultural and environmental 

domain, we have become increasingly concerned about the 

level of survey participation and item nonresponse in 

distinct subpopulations. In our case, one concern is that unit 

and item nonresponse may vary among individuals or 

households that are more or less physically or socially 

proximate to the agricultural landscape, which is the focal 

area of our public opinion surveys. 

To contribute to the broader goal of minimizing item and 

unit nonresponse and address some of our concerns, we 

reconsider several factors that can impact survey partici-

pation and item nonresponse. Specifically, we examine the 

effects of a survey’s subject context (that is, its main focus) 

on survey participation and item nonresponse. We anticipate 

that participation in a survey will be systematically affected 

by how salient the survey’s topic is to each sampled unit 

This expectation draws on the leverage-saliency theory 

(Groves et al. 2000), which anticipates that a variety of 

factors related to a survey’s main features or features made 

prominent during survey administration might impact 

participation. Our research will also reconsider the effects of 

prepaid incentives on survey response. Given that offering 

incentives to sampled units has remained an enduring and 

widespread practice in the survey industry, we think it 

behoves survey researchers to periodically reassess the 

relationship between incentives and survey participation, 

using varying contexts. Such a continuous assessment of the 

utility of incorporating incentives into surveys is important 

because we cannot assume that incentives will always work 

as intended. 

In the next section, we briefly describe the problem of 

survey nonresponse and then review research on how 

increasing the salience of some survey features and offering 

prepaid incentives affect participation and item non-

response. The final two sections will cover the research 

design and results of the study.  
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2. Survey nonresponse and  

       potential consequences 
 
Survey nonresponse describes the situation in which a 

sampled unit fails either to participate in the survey 

altogether (unit nonresponse) or to respond to one or more 

survey items (item nonresponse). Survey nonresponse has 

been a long-standing issue in survey research. Singer (2006) 

observes that “analysis of JSTOR statistical journals dates 

the first nonresponse article from 1945 and the Public 

Opinion Quarterly index’s earliest reference is from 1948” 

(page 637). However, well-established and nascent survey 

projects alike are experiencing steadily declining response 

rates despite this awareness. For example, the University of 

Michigan’s Survey of Consumer Attitudes (SCA) has 

witnessed a drop in response rate from about 72 percent in 

1979 to about 60 percent in 1996 and a low of 48 percent in 

2003 (Curtin, Presser and Singer 2005).  

Survey nonresponse at both the unit and item levels 

obviously represents a major challenge to survey research, 

given its potential for generating nonsampling errors in 

parameter estimates (Brehm 1993; Dillman et al. 2002; 

Groves and Cooper 1998). For example, nonresponse may 

lead to biased point estimators, variance inflation for point 

estimators, and biases in estimators of precision (Dillman 

et al. 2002; Groves and Cooper 1998). Although unit and 

item nonresponse mean different things conceptually in the 

survey literature, their effects on a statistical estimate are 

generally the same (Groves, Fowler, Jr., Couper, Lepkowski, 

Singer and Tourangeau 2004).  

While a number of recent studies suggest that low (unit) 

response rates may not have serious adverse effects on data 

quality (Curtin, Presser and Singer 2000; Keeter, Miller, 

Kohut, Groves and Presser 2000; Visser, Krosnick, Marquette 

and Curtin 1996), the fact still remains that unit nonresponse 

can have negative consequences for statistical estimates 

under certain circumstances. As a result, finding creative 

ways to increase response rates so that all types of sampled 

units are represented adequately in the sample remains a key 

goal in survey research. For item nonresponse, it may be 

true that advances in post-survey techniques for handling 

missing data, such as hot-deck and cold-deck imputations, 

mean imputation, multiple imputation, and multiple 

imputation and deletion, have made it possible to reduce the 

challenges this poses. However, the ideal situation and, in 

fact, a primary goal of survey design and implementation is 

to minimize item nonresponse to the greatest extent 

possible. This is because the norm in some fields, especially 

in microeconomics, is to use only the original data 

(Cameron and Trivedi 2009). 
 

3. Making salient key features of a survey  

       and survey participation  
 
The extent to which a sampled unit views some features 

of a survey as more or less important affects the respondent’s 

likelihood of participating in the survey (Groves et al. 

2000). Groves et al. (2000) comment on the interviewing 

tactics of experienced interviewers, arguing that what 

interviewers actually do when they tailor their queries or 

remarks to the concerns of respondents is “to heighten the 

salience of some features of the request, those they judge 

will be favorably received by the household” (page 299). 

Building on Groves and Cooper (1998), Groves et al. (2000) 

propose what they call the leverage-saliency theory to 

explain how sampled units make the decision to participate 

or decline to participate in a survey. This theory essentially 

states that there are some attributes (leverage) of a survey 

that may be viewed negatively or positively by the 

respondent, and that how these attributes are made salient 

during the survey request process affects the likelihood of 

participation. If attributes viewed positively by a sampled 

unit (positive leverage) are made salient during the survey 

request, there is a higher chance that the respondent agrees 

to participate in the survey, all other things being equal. On 

the other hand, the likelihood of a sampled unit participating 

in a survey will be hurt if attributes that are viewed 

negatively by the respondent are made salient during the 

survey request.  

Groves et al. (2000) empirically support this theoretical 

position. They present civic engagement (measured by 

community involvement) and incentives as leverages on 

survey participation, successfully showing that both attributes 

positively affect the likelihood of participation, with the 

effect of incentives diminishing among sampled units with 

higher civic engagement. In using civic engagement as a 

measure of a survey’s leverage on sampled units, Groves 

et al. (2000) observe that leverage is not measured directly. 

Instead, it may be gleaned from some characteristic(s) of 

respondents in relation to the survey or its features, which 

may exert a positive or negative influence on the likelihood 

of participation. There is also evidence that when survey 

requests are tailored to the concerns of sampled units or to 

what they consider to be important, the likelihood of their 

participation is enhanced (Dillman 2000; Groves and 

Cooper 1998).  

Based on the leverage-saliency theoretical proposition, 

we expect higher rates of participation from respondents 

whose characteristics make them more likely to view 

important attributes (leverage) of a survey positively. 

Correspondingly, we also expect those whose characteristics 

make them less likely to view such attributes positively to 

participate in the survey at lower rates. In our particular area 
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of research, we anticipate that sampled units’ proximity to 

the agricultural and rural landscape (the contextual focus of 

our on-going survey) will affect participation in the survey 

and item nonresponse. This logic also applies to our 

expectations about respondents who claim greater knowledge 

of how food is produced and who also view animal welfare 

as important (a central sub-theme of this particular work). 

We thus draw from the leverage-salience theoretical 

proposition to propose the following hypotheses.  
1. Our survey’s focus on agriculture and the environ-

ment, which was made salient in its design, is 

expected to exert a positive leverage on respondents 

with greater social and physical proximity to 

agriculture and the rural environment (that is, those 

residing in more rural places). We thus hypothesize 

that participation rates will vary according to 

residential location. 

2. We expect respondents with a closer proximity to 

agriculture and the rural landscape to be more 

diligent in completing the survey than those not in 

close proximity, as the former are more likely to be 

motivated by the survey’s subject matter (that is, its 

positive leverage). We thus hypothesize that item 

nonresponse will vary by proximity to agriculture 

and the rural landscape.  

3. Sampled units who have greater knowledge of how 

their food is grown as well as those who view 

animal welfare as important will have fewer item 

nonresponses. Presumably, such respondents will 

have a greater interest in the survey’s focus on 

agriculture and the environment, and therefore 

exhibit more diligence in completing the survey.  

 
4. Incentives and survey participation 

 
The use of various forms of incentives, particularly 

prepaid (monetary) incentives, has become a common 

practice in survey research. While the practical rationale for 

offering incentives to sampled units is to encourage 

participation, the theoretical root of this practice is in part 

traceable to the social exchange theory (Dillman 1978). The 

social exchange theory assumes that people’s actions are 

primarily motivated by the returns they expect or obtain 

from engaging in an activity (Weisberg 2005). Gouldner 

(1960) elaborates on the norm of reciprocity, which is 

related to the social exchange theory, observing that “insofar 

as men live under such a rule of reciprocity, when one party 

benefits another, an obligation is generated. The recipient is 

now indebted to the donor, and he remains so until he 

repays” (page 174). In Gouldner’s view, the norm of 

reciprocity makes two demands on people: (1) people 

should help those who have helped them, and (2) people 

should not injure those who have helped them (Gouldner 

1960, page 171).  

Dillman (1978) uses the social exchange theory and 

particularly the social norm of reciprocity to argue that 

relatively small gestures (such as personalized letters, 

incentives, and reminder letters) can evoke reciprocation 

from sampled households in terms of inclination to 

participate in a survey. Also, Weisberg (2005) notes that 

social exchange is a theory that possibly explains the 

relationship between incentives and survey participation, 

observing that “[f]rom this perspective, giving the re-

spondent a monetary incentive to participate in the survey 

can be seen as a kindness that evokes a norm of reciprocity” 

(page 165).  

To devise ‘ways and means’ to bolster survey response 

rates as well as to test the social exchange theory in relation 

to incentive use in survey research, a number of experi-

mental studies have examined the relationship between 

providing incentives to respondents and survey partici-

pation. While some of these studies have focused primarily 

on the effects of incentives on response rate and item 

nonresponse (Grove, Couper, Presser, Singer, Tourangeau, 

Acosta and Nelson 2006; Trussell and Lavrakas 2004; 

James and Bolstein 1992; Church 1993; Singer 2000; 

Yammarino, Skinner and Childers 1991; Fox, Crask and 

Kim 1988), others have examined the effects of incentives 

on respondent expectations and views about surveys (James 

and Bolstein 1990; and Singer et al. 1998). Consistent with 

the main proposition of the exchange theory and the norm of 

reciprocity, many of these studies report a positive 

relationship between incentives and response rates (Singer 

et al. 2000; Groves, Couper, Presser, Singer, Tourangeau, 

Acosta and Nelson 2006; Church 1993; Trussell and 

Lavrakas 2004; Goyder 1982; and Yu and Cooper 1983).  

While many studies confirm the importance of incentives 

in encouraging survey participation, the empirically 

informed verdict on the relationship between incentives and 

survey participation is by no means unanimous. In a meta-

analysis of experimental and quasi-experimental studies 

involving incentive conditions, Church (1993) reports that 

1% of the studies utilized found no evidence of incentives 

affecting participation. Church also states that 10% of the 74 

studies analyzed actually reported a negative relationship 

between the incentive conditions and survey participation. 

In fact, this reality partly prompted Groves et al. (2000) to 

propose the leverage-saliency theory to help explain why 

“incentives sometimes work” but “sometimes don’t” (page 

299). Given that findings related to the effects of incentives 

on survey participation are moderately mixed, as well as the 

fact that the subject matter of the survey we are studying 

differs from many previous studies, we find it necessary to 
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assess incentive effects on survey participation in conjunction 

with our examination of the relationship between agricultural 

proximity (our survey’s contextual focus) and response. 

Also, we believe it is important to periodically assess the 

utility of using incentives in survey research, despite the fact 

that this subject has received a lot of attention in the past.  

Another important incentive-related issue is the potential 

higher item nonresponse impacts of inducing reluctant 

respondents to participate in a survey (see Hansen 1980). 

The potential harm exists in that using persuasions such as 

incentives might elicit information from respondents who 

are careless or indifferent when answering questions, 

ultimately damaging the quality of the information obtained 

in this way (Singer et al. 2000). Owing to this concern, a 

number of studies have examined the relationship between 

incentives and item nonresponse, many of which suggest 

that incentives do not seriously harm response quality; that 

is, incentives do not generate higher item nonresponse 

(Singer et al. 2000; Singer et al. 1998; Shettle and Mooney 

1999 and Davern et al. 2003). In fact, Singer et al. (2000) 

actually report that prepaid incentives help to reduce item 

nonresponse, an often-used measure of response or data 

quality. However, they also report that respondents who 

received incentives were more likely to give optimistic 

answers in some cases and be more pessimistic in others 

(involving different variables). In our case, a critical concern 

is that urban respondents induced to participate may provide 

lower quality data (as measured by nonresponse) than 

respondents more proximate to the agricultural and rural 

landscape. 

In summarizing the review, we find that the research 

generally suggests that incentives help improve response 

rates in surveys, with little or no effect on item nonresponse. 

Although this is generally the case, some findings on the 

relationship do deviate from this expectation (Church 1993). 

Also, while many studies find that providing prepaid 

incentives does not affect item nonresponse, the work of 

Singer et al. (2000) suggests that providing incentives can 

compromise data quality via the mechanism of optimism or 

pessimism bias. Given these caveats, as well as the fact that 

most prior work on the relationship between incentives and 

survey participation was based on bivariate analysis 

(incentive and survey participation), we find it necessary to 

reconsider the impact of incentives on survey nonresponse 

while taking into account the effects of residential location 

in space and socioeconomic status. Thus, drawing from this 

literature on how incentives are related to survey 

participation and item nonresponse, we make the following 

hypotheses. 

 
1. Respondents who received incentives will participate 

in the survey at higher rates than non-recipients, net 

the effects of proximity to the agricultural and rural 

landscape and socioeconomic status. 

2. Incentives will be negatively related to item non-

response. That is, surveys completed by respondents 

who received incentives will have fewer missing 

data points than those completed by respondents 

who did not receive incentives, controlling for the 

effects of respondents’ proximity to the survey’s 

subject and other covariates. 

 
5. Study design  

This paper is based on a survey of public views regarding 

food, agricultural and environmental issues, with a special 

focus on farm animal welfare. The target population of the 

survey was Ohio households. An initial sample of 3,000 

respondents (along with their residential addresses) was 

drawn for the study via stratified random sampling: one-half 

(1,500) from Ohio’s 22 core metropolitan counties and the 

second half (1,500) from the state’s 66 metropolitan fringe 

or non metropolitan counties. The number of households in 

the core metropolitan counties differed from those in the 

metropolitan fringe or non metropolitan counties, making 

the sample a disproportionate random sample. To account 

for the unequal probability of selection across the two strata, 

we conducted weighted analysis for this paper.  

The sample we used was obtained from Experian, a U.S.-

based credit reporting bureau and private list vender. The 

sample was drawn from a sample frame (database) 

consisting of Ohio households along with their residential 

addresses. While we do not pretend that this sample frame 

covers all Ohio households, we believe that it is one of the 

most reliable and up-to-date lists and databases in the U.S. 

from which one can draw a sample. According to Experian, 

the database is updated monthly.  

The survey followed a modified tailored design method 

(Dillman 2000) with up to four mailings sent to potential 

respondents during the spring of 2007. The first mailing was 

a pre-notification letter sent to each sampled unit, followed 

shortly by the survey packages. The third mailing was a 

reminder postcard sent to respondents thanking them for 

participating in the study or encouraging them to complete 

and return the survey if they had not yet done so. In the 

fourth mailing, replacement survey packages were mailed to 

respondents who had not returned completed questionnaires 

about 10 days after the postcard was mailed out. Of these 

four contacts with the respondents, three had information 

that focused specifically on the subject or topic of the 

survey. The pre-notification letter and the cover letters for 

the initial and replacement survey packages specifically 

conveyed to respondents the subject matter of the survey. 

Also, the graphics printed on the cover page of the survey 
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(images of farm animals) were selected to further convey 

this subject matter.  

The addresses of sampled units were geo-coded and 

placed in a locational field (see details later in this section) 

to locate them geographically across the rural-urban 

continuum. This allowed us to conduct analyses of how 

sampled units’ proximity to the agricultural landscape is 

related to their likelihood of participating in the survey. We 

recognize that some urban residents may have frequent 

social and physical interactions with agriculture and the 

rural landscape; however, this kind of interaction, along 

with its effects on support for agriculture and the 

environment, is highest among those residing in more rural 

and open country places (Freudenburg 1991; Sharp and 

Adua 2009). A randomized experiment involving incentives 

was also built into the survey. The first survey packages 

mailed to a randomly-selected half of the sampled units 

included $2.00 (two one dollar bills) incentives, while the 

other half of the sample received the same package but 

without any incentives. In doing this experiment, our 

pragmatic objective was to assess the effectiveness of our 

practice of enclosing modest cash incentives in survey 

packages to improve participation in our ongoing surveys of 

the Ohio public. Similar to Groves et al.’s (2000) expecta-

tions about the effect of community involvement on levels 

of participation, we also anticipated that households located 

in close proximity to agriculture and the rural landscape 

would participate at high levels in our study independent of 

the incentive, perhaps to the extent that a token financial 

incentive might be deemed unnecessary in future iterations 

of the survey. 
 
5.1 Analytic strategy  
Two sets of statistical analyses are conducted in this 

paper. The first set of analyses focuses on survey partici-

pation (response rate). First, we examine the proportion of 

successfully contacted sampled units who complete and 

return surveys by residential location along the rural-urban 

continuum, a proxy for geographic proximity to agriculture 

and rural areas of the state (an assumption we justify in a 

later section), and by incentive status. Following the 

American Association of Public Opinion Research’s 

(AAPOR) 2008 guidelines for codes disposition, we defined 

successfully contacted sampled units as (i) those from 

whom we received completed surveys by the end of the data 

collection phase of the project, and (ii) those from whom we 

received neither a completed survey nor the survey package 

back from the United States Postal Service (USPS) as 

undeliverable. In our contract with the USPS, we requested 

that all mails that could not be delivered due to wrong 

address or absence of forwarding information be returned to 

us. The sampled units to which these undeliverable mails 

were addressed were classified as units we were un-

successful in contacting. We also employ logistic regression 

to further analyze the likelihood of survey participation 

(coded 1 = responded; 0 = did not respond), using 

residential location along the rural-urban continuum and 

incentive status as the primary predictors, while simulta-

neously controlling for the effects of socioeconomic status 

at respondents’ block group level as per the 2000 U.S. 

population census. We control for the effect of socio-

economic status because previous studies suggest it has 

some relationship with survey participation (Davern et al. 

2003; Singer et al. 2000). 

The second set of analyses focuses on item nonresponse. 

In this analysis, we conduct partial proportional ordered 

logistic regression analysis (generalized ordered logit) on the 

first two item nonresponse variables (0 = no missing items; 

1 = some missing items; and 2 = numerous missing items), 

once again employing residential location along the rural-

urban continuum and incentive status as the primary 

independent variables while controlling for the effects of 

several other variables. Generalized ordered logit (partial 

proportional odds) is employed rather than ordered logit 

because some predictors in these models violated the 

proportional odds assumption of ordered logistic regression. 

By using partial proportional odds modeling, we are able to 

constrain the relationship between those independent and 

dependent variables that met the proportional odds assump-

tion of ordered logistic regression while allowing the rela-

tionships that failed this assumption to vary. To analyze the 

third item nonresponse variables, we employed logistic 

regression. This variable was recoded into a dichotomy (see 

the section on operationalization of variables for more 

details). 
 
5.2 Operationalizing dependent variables   
Survey Participation: Survey participation (response 

rate) is measured by computing the number of completed 

surveys received from respondents (eligible participating 

cases) as a proportion of the sampled units contacted 

successfully (all eligible cases). This measure of survey 

participation is in conformity with AAPOR guidelines for 

measuring response rates. Undeliverable surveys returned 

by the USPS without additional information, such as 

forwarding address or address correction, were treated as 

ineligibles. Cases for which we neither received completed 

surveys nor any other information about the cases from the 

USPS were treated as eligible based on the recommendation 

of the AAPOR’s 2008 revised standard definitions of codes 

disposition and outcome rates. To conduct the logistic 

regression analysis of response likelihood, we coded all 

successfully contacted sampled units (eligible cases) as 1 

(returned a completed questionnaire) or 0 (did not return a 
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completed questionnaire). We provide no descriptive 

statistics for this variable here as the analysis section, 

especially the marginals of the contingency tables, provides 

a good sense of the distribution of this variable.  

Response quality: Response quality is measured by the 

occurrence of item nonresponse (see Davern et al. 2003; and 

Kaldenberg, Koenig and Becker 1994). To compute item 

nonresponse, missing data points for all respondents 

participating in the survey were summed across three subsets 

of items in the survey instrument to generate three item 

nonresponse variables: item nonresponse I, item nonresponse 

II and item nonresponse III. The item nonresponse I variable 

was created from items that, in our estimation, exerted 

comparatively the lowest cognitive demand on respondents, 

including such items as demographics and opinion questions 

that did not require very much introspection. The item 

nonresponse II variable was created from items that exerted 

comparatively higher cognitive demands on respondents 

than those used to create item nonresponse I, such as 

questions that required significant recall efforts and opinion 

questions that required a high level of introspection. The 

third variable is constructed from items that exerted 

comparatively the highest cognitive demand on respondents, 

such as knowledge questions and questions that required 

some understanding of concepts associated with animal 

husbandry. 

In summing across these variables, we did not treat 

‘Don’t Know’ answers as item nonresponse, given that the 

survey had a couple of knowledge questions for which a 

‘Don’t Know’ response could be a legitimate answer. The 

item nonresponse variable also does not include “refused to 

answer” responses, as this option was not provided in 

questions used in the creation of the variables. We also 

excluded from these variables questions that respondents 

were directed to skip if they found them to be inapplicable.  

Owing to the fact that the distribution of these variables 

was heavily skewed (see Table 1), the item nonresponse I 

and nonresponse II variables were regrouped into three 

ordinal categories (0 = no missing items; 1 = some missing 

items; and 2 = numerous missing items) and analyzed using 

generalized ordered logit. The first category (0) included 

cases without any item nonresponse, while the second 

category (1) included cases with between 1 and 9 incidences 

of nonresponse. The third category (2) included cases with 

10 or more item nonresponses. For our analysis, we also 

regrouped the item nonresponse III variable into a 

dichotomy: 0 (no missing cases) and 1 (1 or more missing 

cases). This variable was regrouped differently from the first 

two because very few cases (only 19) satisfied the criteria 

for classification as “numerous missing cases” (Table 1). To 

verify whether our regrouping of these variables masked 

variances in item nonresponse within the groups (cases 

grouped together) that may be explained by our two 

independent variables (residential location, i.e. an indicator 

of interest in the survey topic, and incentives), we conducted 

a one-way analysis of variance for these grouped cases. 

Within these groups, none of the three item nonresponse 

variables varied significantly by residential location or 

incentives. Descriptive statistics for all three item 

nonresponse variables are reported in Table 1.  

 
Table 1 

Descriptive statistics for item nonresponse variables 
 

 Item 

nonresponse 

I 

Item 

nonresponse 

II 

Item 

nonresponse 

III 

Statistics before recoding    
  N 971 971 971 
  Mean 3.11 2.34 1.6 
  Standard deviation 5.06 5.93 3.25 
  Minimum value 0 0 0 
  Maximum value 44 48 29 
 
Statistics after recoding 

into groups 

   

  Zero missing 30.07% 59.53% 54.69% 
  Some missing 62.31% 32.65% 43.36% 
  Numerous missing 7.62% 7.83% 1.96% 

 
5.3 Operationalizing independent and control 

variables  
Residential Location: The survey’s focus on agricultural 

and environmental issues was made salient during the 

survey request (via the pre-notification letters, the cover 

letters and the design of the survey instrument), which can 

affect participation negatively or positively depending on 

each respondent’s residential location along the rural-urban 

continuum. Residential location is an indicator of 

respondents’ differentiated social and physical proximity to 

agriculture and the rural landscape. This is because prox-

imity can increase the social and/or physical interactions 

with the subject. The association between proximity and 

environmental concern has been proposed and tested 

numerous times by social scientists (Dunlap and Heffernan 

1975; Freudenburg 1991; Sharp and Adua 2009). We go a 

step beyond hypothesizing attitudinal differences associated 

with proximity and anticipate different levels of survey 

participation; indeed, we hypothesize that sampled units 

residing closer to agriculture and the rural landscape will 

participate in the survey at higher rates than those in core 

urban places. As a result, the subject matter of our survey is 

expected to serve as a positive leverage on sampled units 

residing closer to agriculture and the rural landscape. While 

this may not be a direct measure of leverage, it is consistent 

with Groves et al.’s (2000) suggestion that the leverage a 

given survey exerts on a sampled unit can be measured 

indirectly by relying on pertinent characteristics of the 
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sampled unit. In using the spatial residential characteristics 

of sampled units, we are relying on the fact that sampled 

units residing in more rural and open country areas have a 

higher likelihood of social and physical interaction with the 

agricultural and rural landscape than those in more 

urbanized places (see Table 2). In both 2006 and 2007, 

higher proportions of residents of exurban townships and 

rural areas (a combination of rural city/village and rural 

townships) visited a working farm than residents of core 

urban places, as shown in Table 2. We acknowledge that 

using information from our own respondents to show the 

association between residential location and visits to farms 

may be problematic. However, this information is 

corroborated by information from a different sample, the 

2006 Ohio Survey.  

To determine the residential location of the sampled 

units, each respondent’s residential address was geocoded 

and assigned to one of four location fields – urban, 

suburban, exurban or rural – using ESRI’s ArcView 

geocoding. Sampled units living in the exurban and rural 

fields were further distinguished as residing in either 

incorporated places (city/village) or township places (open 

country). This process of characterizing sampled units as 

living in urban, suburban, exurban, or rural places has 

previously been employed successfully in the field of 

regional science (Audirac 1999; Sharp and Clark 2008).  

In this study, this variable has been grouped into five 

categories: (1) core urban, (2) suburban places, (3) exurban 

city/village, (4) exurban township and (5) rural places (cites/ 

villages and townships). The ordering of the categories does 

not suggest a monotonic increasing order in terms of 

proximity to agriculture and the rural landscape between 

categories 1 and 5. Instead, this variable should be seen as a 

nominal variable with categories that can be grouped into 

blocks based on proximity to agriculture and the rural 

landscape: block 1(categories 1 and 2) has the lowest 

proximity, block 2 (category 3) has intermediate proximity 

and block 3 (categories 4 and 5) has the highest proximity. 

Between the blocks, the categories are monotonic increasing 

in terms of proximity to agriculture and the rural landscape, 

but within the blocks the pattern is less certain. Here, too, 

we provide no descriptive statistics for this variable as the 

analysis section provides an ample sense of how the variable 

is distributed.  

Knowledge of Food Production and Support for Animal 

Welfare: Two other indicators of survey leverage used in the 

analysis are two survey items that measured sampled units’ 

knowledge of how their food is produced and their views 

about the importance of animal welfare. The first asked, 

“How knowledgeable are you about how your food is 

grown? Please indicate on a scale of 1 to 7 your level of 

knowledge.” This item had a mean of 4.47 and a standard 

deviation of 1.60. The second item asked, “Thinking about 

farm animals in general, how important is this issue to you? 

Please indicate on a scale of 1 (not important) to 7 (very 

important).” This item had a mean score of 4.50 and a 

standard deviation of 1.68. These two indicators are used in 

analyses pertaining only to the item nonresponse variables. 

Incentive Status: Sampled units’ incentive status 

(received versus did not receive incentive) is a primary 

independent variable in the regression models. Incentive 

status is dummy-coded as 0 (did not receive incentive) and 1 

(received incentives). Again, we provide no descriptive 

statistics for this variable because the analysis provides a 

good sense of the variable’s distribution.  

Control Variables: Control variables operationalized in 

one or more of the analysis conducted in this study include 

Age (respondent’s age as of his/her last birthday), Education 

(highest level of education completed), Ethnicity (white = 1; 

all others = 0) and Gender (male = 0 and female = 1), as well 

as the per capita and disposable median household income of 

each sampled unit’s block group as per the 2000 population 

census. We control for the effects of these variables because 

previous studies suggest they can affect item nonresponse 

(Davern et al. 2003; Singer et al. 2000). Descriptive statistics 

for these purely control variables are shown in Table 3. 

 
Table 2 
Frequency of visiting or touring a working farm 
 

2006 Ohio Surveya 2007 Animal Welfare Surveyb 

Residential location 

Never/ 

seldom 

Occasional/ 

frequently 

 

Totalc 
Never/ 

seldom 

Occasionally/ 

frequently Totalc 

Core urban 90.4% 9.6% 100% (185) 81.0% 19.0% 100% (121) 

Suburban place 87.5% 12.5% 100% (536) 83.7% 16.3% 100% (285) 

Exurban city/village (Incorporated) 78.6% 21.4% 100% (217) 76.4% 23.6% 100% (124) 

Exurban township (Unincorporated) 74.9% 25.1% 100% (434) 67.9% 32.1% 100% (264) 

Rural place 73.1% 26.9% 100% (238) 70.6% 29.4% 100% (136) 

Total 80.6% 19.4% 100% (1,610) 74.2% 25.8% 100% (930) 
a Second-order corrected chi-square (3.61) = 43.3; P = 0.0000 (corrected for survey design effects) 
b Second-order corrected chi-square (3.67) = 16.7; P = 0.001 (corrected for survey design effects) 
c In parentheses are the total number of eligible cases from each residential category. 
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Table 3 
Descriptive statistics for control variables 
 

 Mean/percent Standard deviation 

 Education:   
 High school and lower 36.8% - 
 Some college 32.3% - 
 Bachelor’s degree 13.7% - 
 Grad/professional work & higher 17.2% - 
 
Gender:  

  

 Male 48.2% - 
 Female 51.8% - 
 
Ethnicity: 

  

 White 91.7% - 
 Non-white 8.3% - 
 
Age: 51.9 15.8 
Block level mean household income, 2000 49,842.3 25,258.7 
Block level median household income, 2000 42,616.3 16,728.6 

 
 
 

6. Results 
 
To evaluate survey participation, we use both bivariate 

analysis (contingency tables) and logistic regression 

modeling. For the contingency tables, we use Pearson chi-

squared statistics corrected for survey design with Rao and 

Scott’s (1984) second-order correction. We do this because 

survey design features such as stratification and clustering 

can affect tests of association (Lohr 1999). To limit the 

length of this paper, we follow a different analytical plan for 

the item nonresponse set of variables. For this set, we 

conduct only multivariate analysis (logistic regression). 

Moving straight to multivariate analysis allows us to 

examine the partial effects of the various predictors used in 

the models while keeping the paper brief.  
 
6.1 Bivariate results for survey participation  
The bivariate analysis suggests that survey participation 

varies significantly by proximity to the agricultural and rural 

landscape (residential location along the rural-urban 

continuum). As shown in Table 4, respondents residing in 

geographically more rural places (rural and exurban 

township residents) have higher rates of participating in the 

survey than those residing in geographically more urban 

places (core urban and suburban residents). The analysis 

also shows that those in the intermediate exurban 

incorporated places (cities and villages) were slightly more 

likely to participate than core urban residents. A second-

order corrected chi-square test (Rao and Scott 1984) of the 

relationship between survey participation and residential 

location was significant (χ = 14.2; df = 3.7; and p = 0.003). 

Our analysis is consistent with previous studies, also 

finding that prepaid incentives significantly increase survey 

participation (Table 5). Despite the fact that the context of 

the survey used for our analysis differs markedly from 

previous studies examining the effects of incentives, we find 

that the response rate for successfully contacted incentive 

recipients was 43.7% compared with 26.9% for successfully 

contacted sampled units who did not receive prepaid 

incentives. The second-order corrected chi-square test of 

this bivariate relationship is also statistically significant 

(χ = 73.8; df = 1; p = 0.000). In fact, our analysis suggests 

that eliminating incentives altogether substantially hurts 

participation rates for all categories of respondents regard-

less of proximity to the agricultural and rural landscape, 

although this effect is highest for residents in core urban 

places (Table 6). This finding provides support for our 

ongoing practice of using prepaid monetary incentives to 

help bolster our response rates with no discrimination 

between whether respondents reside in rural or urban 

locales. It also reaffirms the importance of incentives in 

survey research.  
 
6.2 Logistic regression model for survey 

participation  
Multivariate analysis further suggests that the likelihood 

of survey participation varies significantly by proximity to 

agriculture and the rural landscape, statistically holding 

constant the effects of incentive status (received versus did 

not receive incentive). Residents of suburban places, 

exurban townships, and rural places are significantly more 

likely to participate in the survey than residents of core 

urban places (Table 7). For example, residents of exurban 

townships and rural places have higher odds (0.60 log odds 

and 0.37 log odds, respectively) of participating than those 

of core urban places.  
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Table 4 

Participation rate by residential location 
 

Residential location Responded Did not respond Totala 

Core urban 29.5%  70.5%  100% (424) 

Suburban place 32.6% 67.4% 100% (917) 

Exurban city/village (Incorporated) 33.1% 66.9% 100% (379) 

Exurban township (Unincorporated) 40.5% 59.5% 100% (684) 

Rural place 35.8% 64.2% 100% (405) 

Total 35.4% 65.6%  100% (2,809) 
Second-order corrected chi-square (3.7) = 14.2; P = 0.003 (corrected for survey design effects) 
a In parentheses are the total number of eligible cases from each residential category 
 
 
Table 5 
Survey response by incentive status 
 

Incentive status Responded Did not respond Totala 

Incentive 43.7% 56.3% 100% (1,410) 

No incentive 26.9% 73.1% 100% (1,401) 

Tota1 35.4% 64.6% 100% (2,811) 
Second-order corrected chi-square (1) = 73.8; P = 0.000 (corrected for survey design effects) 
a In parentheses are the total number of eligible cases by incentive status 
 
 
Table 6 
Response rate by incentives and residential location along the rural-urban continuum 
 

 Incentive recipients Non-recipients of incentive Response difference 

Core urban 0.41 0.19 0.22 

Suburban place 0.41 0.24 0.17 

Exurban city/village (Incorporated) 0.39 0.27 0.12 

Exurban township (Unincorporated) 0.48 0.31 0.17 

Rural place 0.44 0.27 0.17 

Total 0.43 0.26 0.17 

 
 

Logistic regression analysis also seems to confirm our 

earlier finding that the likelihood of participating varies 

significantly by whether or not a sampled unit received 

incentives. Respondents who received incentives had higher 

odds (0.73 log odds) of participating in the survey than 

those who did not receive incentives, controlling for 

proximity to agriculture and the rural landscape as well as 

the gender (female = 1) of the householder randomly 

assigned as the preferred household member to complete 

and return the survey (Table 7).  

Because socioeconomic status varies significantly by 

residential location across space (Lobao 1990) and affects 

survey response (Davern et al. 2003; Singer et al. 2000), we 

endeavored to control for the potential effects of per capita 

income and household income (socioeconomic status) on 

the likelihood of survey participation using hierarchical 

linear modeling (HLM). To do this, respondents were linked 

to their block groups and block group characteristics 

(specifically, block group per capita income and block 

group household median income) as per the 2000 U.S. 

population census. For the HLM analysis, we initially 

estimated a fully unconditional model (that is, an ANOVA) 

to determine whether the likelihood of survey participation 

varied significantly across the block groups. In hierarchical 

linear modeling, estimating a fully unconditional model 

(model without predictors at all levels of the analysis) is 

typically used to determine whether the dependent variable 

varies by the level two (or higher) unit of analysis, such as a 

neighborhood, block group or school district. This initial 

model (ANOVA) often helps researchers determine whether 

to proceed with multi-level analysis. Our initial HLM 

analysis (ANOVA) did not reveal any significant variation 

in the likelihood of survey participation across the block 

groups (tau = 0.04; p = 0.493). While this finding suggests 

the average probability of survey participation is about the 

same for all block groups despite their different per capita 
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and household disposable median incomes, we acknowledge 

potential instability in this HLM model given that sample 

cases per block group were generally low. This may have 

led to our finding of no significant variation in the like-

lihood of participation across the block group (potential 

Type II error). Despite this potential problem with our fully 

unconditional model, we did not proceed with the fully 

conditional multi-level analysis. 

 
6.3 Logistic regression model for item nonresponse 
 
As noted earlier in this section, our analysis of item 

nonresponse is limited to multivariate modeling, and we do 

this primarily to keep the paper brief while achieving our 

objective of assessing the partial effects of our main 

independent variables. The data suggest that the anticipated 

leverage of the survey’s subject is only modestly related to 

item nonresponse. With respect to item nonresponse I (that 

is, the variables created from questions with the least 

cognitive demand on respondents in the survey), the 

analysis suggests that respondents in exurban township 

areas have lower item nonresponse (-0.74 log odds) than 

those residing in core urban areas, although this difference 

disappears at the higher values of this variable (Table 8, 

Columns 2 and 3). However, for item nonresponse II (the 

item nonresponse variables created from questions more 

cognitively demanding than those used in item nonresponse 

I) we find that residents of exurban townships and rural 

places are more likely to have higher item nonresponses 

(0.85 and 0.82 log odds, respectively) than residents of core 

urban areas (Table 8 Column 4). In terms of item 

nonresponse III (the item nonresponse variables created 

from the most cognitively demanding questions), the 

analysis did not reveal any significant difference by 

residential location, our proxy for level of interest in the 

survey’s topic. 

Supporting the anticipated effect of interest in a survey’s 

topic on item nonresponse, the analysis also suggests that 

respondents’ knowledge of how food is produced is 

significantly related to item nonresponse. In terms of item 

nonresponse II, the data shows that respondents who 

reported knowing how food is produced have lower log 

odds (-0.13) of item nonresponse than those who reported 

having less knowledge of how food is produced (Table 8, 

Column 4). This relationship is stronger at higher values of 

the variable: knowledge of how food is produced has lower 

log odds (-0.35) of item nonresponse when the category 

value shifts from 0 to 1 (Table 8 Column 5). This result 

suggests that the positive leverage of the survey’s topic may 

have resulted in greater care in the completion of the survey 

among respondents with greater knowledge of how food is 

produced. We also find that respondents’ views about the 

importance of animal welfare, a central subtheme of this 

particular survey, are positively related to item nonresponse 

(Table 8, Column 4). As shown in Table 8, a one unit 

increase in viewing animal welfare as important leads to a 

0.09 unit increase in the log odds of item nonresponse 

(specifically item nonresponse II). This finding is 

inconsistent with our expectations.  

In terms of the effects of incentives, we find no 

significant relationship between incentives and any of the 

three measures of item nonresponse (Table 8, Columns 2, 4 

and 6), contrary to our expectation. 

 
 
Table 7 
Logistic regressiona of likelihood of participation  
 

 Log odds of participation 

 b Std. Error 

Incentive status   
 Did not receive incentive (Ref)  - 
 Received incentive   0.73*** 0.09 
 

Residential location   
 Core urban residents (Ref)      - - 
 Suburban residents   0.27* 0.13 
 Exurban city/village residents   0.25 0.15 
 Exurban township residents   0.60*** 0.13 
 Rural residents   0.37* 0.15 
 First option to respond (Female = 1) -0.05 0.09 
 

Model statistics   
 Intercept -1.42*** 
 Wald χ (df = 6) 93.25*** 

Significance: ***< 0.001; **< 0.01; and *< 0.05 
a In this model we tested for potential interaction effects between residential location and incentives. We found no evidence of such an 
interaction effect.  
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Table 8 

Logistic regression modelsa for item nonresponse 
 

 Item nonresponse Ib Item nonresponse IIb Item nonresponse IIIc 

 No 
missing: 

log odds 

Some 
missing: 

log odds 

No 
missing: 

log odds 

Some 
missing: 

log odds 

 

 

Log odds 

Incentive status      

 Did not receive incentive -     

 Received incentive 0.16 

(0.16) 

 0.10 

(0.17) 

 -0.01 

(0.17) 

 

Subject salience –Residential location 

     

 Core urban residents -     

 Suburban residents 

 

-0.14 

(0.26) 

 0.54 

(0.29) 

 -0.18 

(0.25) 

 Exurban city/village residents 

 

-0.36 

(0.31) 

 0.30 

(0.34) 

 -0.24 

(0.29) 

 Exurban township residents 

 

  -0.74** 

(0.27) 

0.30 

(0.40) 

    0.85** 

(0.30) 

 -0.12 

(0.26) 

 Residents of rural places 

 

-0.21 

(0.3) 

     0.82** 

(0.31) 

 0.08 

(0.29) 

Subject salience –Food knowledge and animal 
welfare 

     

 Knowledge about how food is  produced -0.07 

(0.05) 

 -0.13* 

(0.05) 

    -0.35*** 

(0.09) 

-0.02 

(0.06) 

 Importance of animal welfare 

 

0.10 

(0.05) 

  0.09* 

(0.04) 

 0.10 

(0.05) 

Controls      

 Education:      

 High school and lower      

 Some college 

 

    -0.79*** 

(0.20) 

 0.13 

(0.19) 

 0.07 

(0.19) 

 Bachelor’s degree 

 

    -1.08*** 

(0.23) 

 -0.32 

(0.27) 

 -0.52 

(0.29) 

 Grad/professional work & higher 

 

    -0.99*** 

(0.24) 

 0.12 

(0.24) 

 -0.38 

(0.24) 

 Age 

 

      0.03*** 

(0.01) 

      0.04*** 

(0.00) 

       0.03*** 

(0.01) 

 Gender (Female = 1) 

 

0.03 

(0.17) 

     0.53** 

(0.17) 

 0.21 

(0.17) 

 White  

 

-0.38 

(0.32) 

 -0.05 

(0.28) 

 -0.51 

(0.32) 

Model statistics      

 Intercept 0.16 -4.36 -3.56 -5.07 -3.07 

 Wald chi-squared  85.80 93.25 54.87 

 N 828 828 828 

 

Significance: ***< 0.001; **< 0.01; and *< 0.05 
Standard errors shown in parentheses. 
a We tested for potential interaction effects between residential location and incentives, between age and incentives and between ethnicity 
(white) and incentives in these models following Singer et al. (2000). We found no evidence of such interaction effects. 

b The item nonresponse I and II models are partially constrained proportional odds logit models. This is because some of the predictors of 
these models violated the parallel lines assumption. These predictors were thus allowed to vary, while the remaining ones were 
constrained. William’s (2006) gologit2 stata program code was used to estimate the model. 

c This model is a logistic regression model with a binary dependent variable (variable recoded into two categories). 
d Degrees of freedom are 14, 14, and 13 for the low cognitive, mid cognitive, and high cognitive models, respectively. 
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In terms of the control variables, we find that education is 

significantly related to item nonresponse, which is 

consistent with the earlier findings of Singer et al. (2000). In 

our case, respondents with some college work, a bachelor’s 

degree, or some graduate/professional work have lower 

odds (-0.79, -1.08, and -0.99 log odds respectively) of 

missing cases for the survey questions with the lowest 

cognitive demand (item nonresponse I) than those with only 

a high school education or less (Table 8, Column 2). 

Surprisingly, item nonresponse related to the survey 

questions that were comparatively higher in cognitive 

demand (that is, item nonresponse II and item nonresponse 

III) did not differ by education (Table 8, Columns 4 and 6). 

We also find positive relationships between age and all three 

measures of item nonresponse (Table 8, Columns 2, 4, and 

6), which is consistent with Singer et al. (2000). Equally 

consistent with the earlier work of Singer et al. (2000), the 

analysis reveals that female respondents are more likely to 

have missing data points than male respondents (Table 8, 

Column 4). However, the effect of gender on item 

nonresponse in our study is limited to those survey 

questions with a medium level of cognitive demand (the 

item nonresponse II variable). 

 
7. Discussion and conclusions 

 
In this study, we examined factors related to both unit 

and item nonresponse in survey research, focusing on 

interest in a survey’s topic and prepaid incentives. The 

obvious reason for carrying out this analysis is the fact that 

nonresponse (unit or item) represents a major challenge to 

survey research given its potential for generating non-

sampling errors in parameter estimates (Brehm 1993; 

Dillman et al. 2002; Groves and Cooper 1998). As 

previously noted, nonresponse can lead to biased point 

estimators, variance inflation for point estimators, and biases 

in estimators of precision (Dillman et al. 2002; Groves and 

Cooper 1998). Therefore, our primary goal is to provide 

information that will help researchers understand and deal 

appropriately with nonresponse, that is, minimize unit 

nonresponse and correctly understand and handle missing 

cases (item nonresponse).  

Our analysis reveals that the likelihood of participation in 

this survey on agriculture and the environment varies 

significantly by sampled units’ proximity to the agricultural 

and rural landscape (residential location). Our analysis is 

consistent with our first hypothesis and the theoretical 

proposition of leverage-salience, as we find that residents of 

exurban townships and rural places are all significantly 

more likely to participate in the survey than residents of core 

urban places. The pattern of relationships revealed in this 

analysis is most likely explained by the fact that respondents 

residing in exurban townships and rural places have a higher 

chance of interacting with the agricultural and rural 

landscape than those residing in core urban places (see Table 

2). Thus, we suggest that respondents residing closer to the 

agricultural and rural landscape participated at higher rates in 

the survey due to the positive leverage of the survey’s focus 

on the agricultural and environmental domain.  

We also find some relationship between interest in the 

survey’s topic (measured by proximity to the agricultural 

and rural landscape) and response quality (measured by item 

nonresponse). In support of our second hypothesis, modest 

evidence in this study suggests that item nonresponse varies 

by proximity to the agricultural and rural landscape. For 

item nonresponse I, the data suggest that residents of 

exurban township areas are less likely to have missing data 

points than residents of core urban places, whereas residents 

of both exurban townships and rural places are more likely 

to have missing data points for item nonresponse II. Missing 

cases associated with questions with the highest cognitive 

demand (item nonresponse III) did not vary by residential 

location (interest in the survey’s topic). These findings 

suggest that residents of the more rural places (exurban 

townships and rural places) fare worse than those of core 

urban places when missing cases involve survey questions 

with a moderate level of cognitive demand. Although this 

result is intriguing, we are unable to explain why it is the 

case. One possible argument would be the educational 

difference between residents of core urban and rural places, 

but this study statistically controls for the effects of 

education. Further work certainly needs to be done on this 

subject.  

Knowledge of how food is produced, another indicator of 

proximity to agriculture and the rural landscape, is 

negatively related to item nonresponse, which is consistent 

with our expectation (hypothesis 3) and the leverage-

saliency theory. As the knowledge of how food is produced 

is related to the broader topic of the survey, we believe that 

making the survey’s focus on agriculture and the 

environment salient in our request for participation in the 

survey may have generated higher diligence in questionnaire 

completion among respondents who knew or cared enough 

to know how food is produced. However, our analysis also 

suggests that support for animal welfare is positively related 

to item nonresponse, which is inconsistent with hypothesis 

3. These findings highlight the need to look closely at 

factors related to a survey’s topic as potential covariates of 

item nonresponse and its corollary, nonresponse error. 

Although the survey used in this study focused on 

agriculture and the environment, our findings in relation to 

the survey’s topic may have implications for surveys that 

focus on other sectors. There is reason to believe that unit 
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and item nonresponse can be affected by respondents’ 

proximity to or level of interest in any survey topic or 

industry of focus, especially if this aspect of the survey is 

made salient during the request for participation. For 

example, if a survey focuses on the automotive industry and 

this feature is made salient during the request for 

participation, it is very likely that this information will affect 

the response pattern. In essence, these findings suggest that 

researchers designing surveys need to think critically about 

how the survey’s subject context, such as the industry or 

sector on which it focuses, might affect participation from 

subpopulations within the sample list. While this gener-

alization may be reasonable, we believe similar studies 

focusing on other sectors will be required before we can 

draw firm conclusions.  

We next discuss the relationship between prepaid 

incentives on the one hand and survey participation and item 

nonresponse on the other. With respect to the relationship 

between incentives and response, our study suggests that 

prepaid incentives generally increase the likelihood of a 

respondent participating in a survey, even if proximity to 

agriculture and the rural landscape (the survey subject 

context) is taken into account. Our findings are consistent 

with hypothesis four and the previous literature (Singer 

et al. 2000; Groves 2006; Church 1993; Trussell and 

Lavrakas 2004; Goyder 1982; and Yu and Cooper 1983), as 

they show that recipients of prepaid incentives were 

significantly more likely to participate in the survey than 

non-recipients, controlling for other variables in the logistic 

regression model. The analysis demonstrates that elimi-

nating incentives altogether hurts the likelihood of 

participation regardless of respondents’ residential context. 

While we may not have overtly identified prepaid incentives 

with the leverage-saliency theory of Groves et al. (2000) in 

the earlier sections of our discussion for the sake of 

analytical convenience, our findings in relation to this 

variable also provide further empirical support for this 

theory. Our findings clearly suggest that token financial 

incentives enclosed with each survey package helped 

increase participation from both metropolitan and non-

metropolitan areas of Ohio, although this effect was higher 

in the former. This result provides fresh justification for the 

widespread use of incentives to bolster response rates. As 

indicated earlier in this paper, the widespread use of prepaid 

incentives in surveys makes it necessary to periodically 

assess the utility of this practice. Our finding also suggests 

the need to check for potential response bias if incentives 

are provided to only a section of the sampled respondents, 

such as when prepaid incentives are targeted at those 

assessed as being less likely to participate. 

In terms of the relationship between incentives and item 

nonresponse, we find no significant variation in missing 

data points between respondents who received monetary 

incentives and those who did not, contrary to our fifth 

hypothesis. This finding, which controls for the effects of 

residential location (proximity to the agricultural and rural 

landscape) and other pertinent variables, is consistent with 

the earlier work of Davern et al. (2003), who failed to find 

any relationship between incentives and the number of 

imputations for missing data points. Thus, while the use of 

monetary incentives correlates significantly with unit 

nonresponse (outright nonparticipation in a survey), we find 

no relationship between incentives and item nonresponse 

(failure to respond to some questions on a questionnaire). 

Thus, providing incentives to a respondent does not 

necessarily lead to greater diligence in survey completion.  

The analysis revealed some interesting results with 

respect to the relationship between some of the control 

variables and item nonresponse. While education, age and 

gender were used in this study primarily as control 

variables, the fact that they were found to be significantly 

related to item nonresponse raises practical concerns about 

handling missing cases in survey data. Before choosing 

between the various techniques for handling missing cases 

(see Fuchs and Kenett 2007), analysts will need to check for 

potential nonresponse bias resulting from the effects of these 

variables, especially if they will be part of an analysis.  
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Evaluating within household selection rules under a multi-stage design 

Tom Krenzke, Lin Li and Keith Rust 1 

Abstract 

The 2003 National Assessment of Adult Literacy (NAAL) and the international Adult Literacy and Lifeskills (ALL) surveys 

each involved stratified multi-stage area sample designs. During the last stage, a household roster was constructed, the 

eligibility status of each individual was determined, and the selection procedure was invoked to randomly select one or two 

eligible persons within the household. The objective of this paper is to evaluate the within-household selection rules under a 

multi-stage design while improving the procedure in future literacy surveys. The analysis is based on the current US 

household size distribution and intracluster correlation coefficients using the adult literacy data.  In our evaluation, several 

feasible household selection rules are studied, considering effects from clustering, differential sampling rates, cost per 

interview, and household burden. In doing so, an evaluation of within-household sampling under a two-stage design is 

extended to a four-stage design and some generalizations are made to multi-stage samples with different cost ratios. 
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1. Introduction 

 
The 2003 National Assessment of Adult Literacy 

(NAAL), conducted for the National Center for Education 

Statistics, provided an indicator of the nation’s progress in 

English literacy for researchers, practitioners, policymakers, 

and the general public. As in the 1992 National Adult 

Literacy Study (NALS), adults were assessed in households 

in prose, document and quantitative literacy. The booklet 

designs were based on the 1992 NALS to allow for the 

measurement of trends between 1992 and 2003.  

In order to reduce the cost of interviewers traveling to 

households, the NAAL involved a stratified four-stage 

cluster design that resulted in 18,500 completed assessments 

administered to adults age 16 and older. In the NAAL, 

counties were grouped to form Primary Sampling Units 

(PSUs), which were stratified and selected in the first stage. 

In the second stage, Secondary Sampling Units (SSUs) were 

formed and selected within the sampled PSUs. The SSUs 

were individual census blocks, or groups of adjacent blocks 

with at least 60 households (HHs) formed within tract 

boundaries. Subsequently, households were selected within 

SSUs, and one sample person (1 SP) was randomly selected 

for household sizes up to 3( 3),B ≤  and two persons (2 SPs) 

were selected for household sizes greater than 3( 3),B>  

where B  denotes the number of eligible persons per house-

hold. This rule followed the within-household sampling 

approach used in the first cycle of NAAL (NCES 2001), 

conducted in 1992. An evaluation of the selection rule was 

conducted using the current US household size distribution 

and intraclass correlation coefficients computed from the 

2003 survey. In doing so, an evaluation of within-household 

sampling under a two-stage design (Clark and Steel 2007) is 

extended to a four-stage design, as used in the NAAL 

survey and some generalizations are made to multi-stage 

samples with different cost ratios. 

The data used for the evaluation include literacy mea-

sures from three scales derived from three types of literacy - 

prose, document, and quantitative. For more information 

about the NAAL types of literacy, refer to http://nces.ed. 

gov/NAAL/fr_tasks.asp. Two types of estimates are used; 

averages (e.g., average prose literacy score) and percentage 

of adults at some level of literacy (e.g., percentage Below 

Basic prose literacy). For a discussion of the literacy levels 

used in NAAL, see http://nces.ed.gov/NAAL/perf_levels.asp. 

In addition to the NAAL data, the evaluation also uses US 

sample data from the international Adult Literacy and 

Lifeskills (ALL), which was conducted by Statistics 

Canada. The US sample in 2003, sponsored by NCES, was 

part of a comparative study that measured the skills of adults 

in several countries. Similar to the NAAL, the ALL was a 

multi-stage clustered sample survey and measured prose and 

document literacy, as well as numeracy (OECD 2005). The 

NAAL sample was much larger (18,500 completes) than the 

ALL sample (3,400 completes), and the target population 

for NAAL included ages 16+ while the target population for 

ALL included 16 to 65 year olds. Table 1 provides a 

summary of each survey’s design and structure.  
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Table 1 
Features of the NAAL and ALL surveys 
 

Survey Area sample Completes Data collection Assessments Ages Within-HH sampling rule 

NAAL PSUs, SSUs 

households, Persons 

18,500 Screener 

Interview 

Assessment 

Prose 

Document 

Quantitative 

16+ B ≤ 3, b = 1 

B > 3, 

b = 2 

       

ALL PSUs, SSUs, 

households, Persons 

3,400 Screener 

Interview 

Assessment 

Prose 

Document 

Numeracy 

16-65 B ≤ 3, b = 1 

B > 3, b = 2 

Note: PSU = Primary Sampling Unit, SSU = Secondary Sampling Unit, b = sample size, B = household size. 
 

 

A discussion of the design considerations that helped 

form the evaluation of the within-household sampling rules 

is provided in Section 2. Section 3 discusses the compu-

tation of intra-household correlations under multi-stage 

sample designs and focuses on incorporating the clustering 

impact from the initial stages of sample selection when 

deciding on a within-household selection rule. An eval-

uation of selection rules was conducted using data from the 

in-person adult literacy surveys and the results are provided 

in Section 4. Finally, a brief summary is given in Section 5.  

 
2. Design considerations  

 
There are a number of factors that need to be considered 

when evaluating the within-households selection rules for 

surveys such as NAAL and ALL. The remainder of this 

section will discuss the impact of the following factors on 

within-household sampling: household burden, clustering 

persons within households, differential sampling rates, 

multi-stage sampling, cost considerations, computerized 

systems, domains of interest and household composition.  

Household burden. For the adult literacy surveys, the 

interview and the assessment take about an hour and a half 

to administer in total. Therefore, one concern about 

selecting more than one person per household is the increase 

of burden to the household and the impact on response rates. 

However, there is no significant difference (0.05 signif-

icance level) in the refusal rates between 1- and 2-SP 

households in ALL and NAAL as shown in Table 2. 

Clustering persons within households. Kish (1965) 

discusses the benefits of a cluster sample to a simple 

random sample. A cluster sample typically has a lower cost 

per person, however the unit variance is higher and it causes 

greater complexities in statistical analysis. Kish introduced 

the concept of a design effect (DEFF), which measures the 

increase in variance due to deviations from a simple random 

sample, such as clustering persons within households. Many 

surveys limit the selection to one sample person (SP) per 

household because of concerns over the increased clustering 

effect (i.e., increasing effect on variance estimates) asso-

ciated with multiple SPs per household. The DEFF due to 

clustering can be expressed as: DEFFclu 1 ( 1)b= + −  Rho, 

where ( / ) ,B B Bb M M b M∑= = number of households of 
size ,B M = number of households, and Bb = sample size 
of persons within households of size B  (Kish 1965). This 

DEFF component increases when the sample size within a 

household increases or when the value of the intracluster 

correlation (Rho) increases. As given in Cochran (1977), 

Rho can be approximated as: 

2

2
Rho 1 ,wσ= −

σ
 

where  

2 2

.
1 1

( ) / ( ),
a b

w ij i
i j

y y n a
= =

σ = − −∑∑  

and 

2 2

..
1 1

( ) / ( 1),
a b

ij
i j

y y n
= =

σ = − −∑∑  

where a  is the number of sampled households, and b  is the 

number of sampled persons per household. The DEFF due 

to clustering is examined further for different within-house-

hold sampling rules in the next section. 

Differential sampling rates. A clustering effect is not the 

only factor that increases the variance. Increases in variance 

are also due to differential sampling rates (resulting in 

differential weights). Under a 1 SP per household strategy, 

the increase is directly related to the variation in household 

size since the sampling rate could vary from 1 out of 1 to 1 

out of 7 or more. The DEFF due to differential sampling 

rates is expressed as: DEFFwgt ( / ) ( ),B B B Bp k p k∑ ∑=  

where / ,B B Bp N N N= = number of eligible persons in the 

population in households of size ,B N = number of eligible 
persons in the population, and Bk = sampling rate within 

households of size B  (Kish 1965). Under certain 

conditions, the overall DEFF can be expressed as the 

product of the clustering and differential sampling rate 

components: DEFF = DEFFclu × DEFFwgt. Kalton, Brick 

and Lê (2005) suggest this product is applicable when the 

weights are random or approximately random.  
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Table 2 

Refusal rates by 1- and 2-SP households for the adult literacy surveys 
 

Survey Subgroup Refusal rate % 

NAAL 1-SP households 
2-SP households 

16.3 
15.7 

ALL 1-SP households 
2-SP households 

17.6 
16.2 

Note: SP = sample person. 
 

To arrive at a self-weighting sample, persons within 

households would need to be selected at a constant rate. 

However, a rate-based approach is not preferred in most 

surveys since it would result in walking away from a portion 

of single-person households and, thus, would increase the 

cost of the survey. We limit the alternative rules under 

consideration to those with a minimum of 1 SP per house-

hold. Out of concern for burdening households, the maxi-

mum sample size was set to two. The sampling rules under 

consideration are:  
1. Take1: 1 SP no matter the household size. 

2. Rule2: 1 SP for household sizes up to 2; otherwise 2 

SPs are selected. 

3. NAAL3: 1SP for household sizes up to 3; otherwise 

2 SPs are selected. 

4. Rule4: 1 SP for household sizes up to 4; otherwise 2 

SPs are selected. 

5. Frac5: take at least 1 SP, but no more than 2 SPs and 

the sample size is a fraction. That is, if the sample 

size for a household with two eligible persons is 1.6, 

then two persons are selected 60 percent of the time 

at random, and one person is selected 40 percent of 

the time.    
While the Take1 approach does not attempt to reduce the 

DEFF due to differential sampling rates, it is not subject to a 

clustering impact. However, the other four approaches listed 

above provide a reduction in the differential sampling rate 

component while introducing a clustering effect. In the case 

of Frac5, under the assumption that π -weights are used, as 

assumed throughout this paper, the approach would result in 

the most reduction in the differential sampling rate 

component. The π -weights approach is based on the 

unconditional selection probability of the person within the 

household. If the actual sample size within a household is 

used in the form of ratio weights, the differential sampling 

rate increases the benefit is less clear and depends on Rho. 

Figure 1 illustrates the best options under a two-stage house-

hold design with fixed effective sample size of persons, 

without any cost considerations. The US national household 

size distribution from the 2007 Current Population Survey 

was used for this illustration. As shown in Figure 1, the 

fractional approach is the best rule for a wide range of 

values of Rho. The fractional approach can be programmed 

into a computerized system when enumerating and selecting 

household members (more discussion on computerized 

systems follows). If computerized systems are not available 

for screening, then the best approach for low values of Rho 

is the more clustered approach, Rule2; and the NAAL3 rule 

is best for Rho values greater than about 0.34.  

Multi-stage sampling. For multi-stage area designs, the 

clustering impact of sampling within households is affected 

by the clustering due to PSUs and SSUs. As pointed out by 

Kish (1965), the clustering of households and persons 

within PSUs and SSUs increases the sampling variance (i.e., 

units within PSUs and SSUs are more similar to each other). 

The incremental impact of clustering within households 

may be dampened by the domination of the PSU and SSU 

variance components (however, the magnitude of the impact 

will differ depending on the type of estimate and variable). 

That is, more persons within a household can be selected for 

surveys with a large amount of clustering due to the first 

two stages of sampling. Details of this distinction are 

provided in Section 3. 

Cost considerations. The cost of screening a household in 

a 1 SP per household design versus the cost of interviewing/ 

assessing a second person in a household is investigated in an 

extensive analysis presented later . 

Computerized systems. Computerized systems, such as 

Computer-Assisted Personal Interview (CAPI), have the 

capability of handling fractional sample sizes. That is, the 

random selection of 1 or 2 SPs given a pre-assigned 

fractional sample size can be programmed. Computerized 

systems also have the capability of sorting the list of eligible 

persons and selecting 2 SPs with a systematic random 

sample. Another benefit is that the selection program can be 

tested and validated prior to data collection. 

Domains of interest. As mentioned earlier, optimal 

within household  sampling depends on the magnitude of 

the clustering effect associated with the variable of interest. 

The clustering effect may be much smaller when the 

variable is associated with a subgroup of the population, 

rather than the entire population. For example, when a key 

reporting domain is gender in a survey of the adult 

population, the reporting category of males is likely to have 

an average of 1 SP per household and less likely to have 

2 male SPs which would introduce a clustering effect. 

Therefore, when there are multiple domains of interest in a 

typical household, it is often beneficial to select more than 1 

SP within a household. Refer to Mohadjer and Curtin 

(2008) for an example of design considerations for a survey 

with focus on multiple subgroups of the population. 
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Figure 1 Initial analysis of within-household selection rules 

 

 

 

 

Household composition. Lastly, one may want to 

consider the household composition and relationships of 

persons within a household when devising the selection 

rule. Table 3 displays values of Rho for various relation-

ships between household members, for household with 2 

SPs in the NAAL survey. Rho varies greatly by household 

member relationships. The relationships were derived from 

gender and age.  

 
3. Estimation of intra-household Rho and DEFF 

        under multi-stage sampling 
 

The discussion about Rho thus far has been related to a 

two-stage design, but both NAAL and ALL have four stages 

of sampling. The total variance can be decomposed into four 

between-variance terms attributable to PSUs, SSUs, house-

holds and persons, as follows: 

2 2 2 2 2
PSU SSU(PSU) HH(SSU) PERS(HH).Tσ = σ + σ + σ + σ  

As shown below, when applying a two-stage approach to 

estimate Rho for a four-stage sample design, the numerator 

not only contains the between household component, but 

also contains contributions from the between PSU and 

between SSU components inflating the values of Rho for 

our purpose. 

2 2 2 2
PERS(HH) PSU SSU(PSU) HH(SSU)

2 2
Rho 1 .

T T

σ σ + σ + σ
= − =

σ σ
 

Therefore, when evaluating rules for within-household 

sampling under a multi-stage design, we assume the PSU 

and SSU design will be the same in the future. This can be 

accomplished by limiting our focus to within SSU sampling. 

Therefore, the computation of Rho is contained within 

SSUs, that is, it is done in a compact manner without effect 

from the PSU and SSU components. We refer to this as the 

compact (i.e., within SSU) Rho denoted by Rho
*
, expressed 

as:  
2

HH(SSU)*

2 2

HH(SSU) PERS(HH)

Rho .
σ

=
σ + σ

 

Using the compact Rho
*
, we now derive the estimated 

DEFF under a multi-stage sample design for the purpose of 

determining optimal within-household sample sizes. The 

variance of an estimate ˆ( )θ  with b  persons per household 

can be decomposed as: 

ˆVar( )θ =
2 2 22
SSU(PSU) HH(SSU) PERS(HH)PSU

PSU SSU HH HHn n n bn

σ σ σσ
+ + +  

where, 
PSU

,n
SSU

,n
HH

n  and 
HH

bn  are the sample sizes of 

PSUs, SSUs, households and persons, respectively. 
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Table 3 

Rho for NAAL assessment scores by household member relationships 
 

Estimate Siblings Child-guardian Married Others 

Number of households with 2 SPs 111 205 180 434 
Average prose score 0.42 0.35 0.70 0.59 
Average document score 0.40 0.27 0.72 0.54 
Average quantitative score 0.46 0.36 0.63 0.56 
Percentage Below Basic prose 0.52 0.41 0.79 0.67 
Percentage Below Basic document 0.54 0.40 0.78 0.60 
Percentage Below Basic quantitative 0.51 0.41 0.77 0.65 

 

 

Then the DEFF due to clustering, relative to taking one 

person per household and HHbn  households is: 
HH

clu

2 2 22
SSU(PSU) HH(SSU) PERS(HH)PSU

PSU SSU HH HH

2 2 22
SSU(PSU) HH(SSU) PERS(HH)PSU

PSU SSU HH HH

22
SSU(PSU) 2 2 2PSU
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1
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n n bn bn
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n n bn
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σ σ σσ
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+ + +
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σσ
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 
 
  +

σ σ

+ + −
=

+
 

where,  

22
SSU(PSU)PSU

HH

PSU SSU*

2 2
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Alternatively, HH

cluDEFF  can be expressed as: 

*
HH

clu *

**

( 1)Rho
DEFF 1

1

1 ( 1)Rho

b

k

b

−
= +

+
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where, 

*
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The **Rho  measure is a useful expression for the intra-

household correlation under a multi-stage design, which is 

equal to *Rho  when 2 2
PSU SSU(PSU) 0.σ = σ =  The compact 

*Rho  measure is useful for evaluating optimal sample sizes 

while varying the variance ratio *.k  Note, however, that in 

general **Rho  is a function of PSU SSU,n n  and the total 

sample size of persons, whereas *Rho  does not depend on 

these.  

As shown in Table 4, the variance ratio *,k  which is the 

variance from the first two stages divided by the variance 

from the last two stages, for a one person per household 

design, ranges from 0.68 to 1.61 across types of assessments 

and estimates for the ALL survey. 

Table 5 shows estimates for Rho (computed under a two-

stage design assumption), the compact *Rho  and **Rho  

(computed under a multi-stage design assumption where 
* 1)k =  for average NAAL and ALL literacy assessment 

scores. When including the clustering impact from the first 

two stages of the four-stage design, the values of the 

compact *Rho  and **Rho  are much smaller than Rho. For 

example, the two-stage Rho for the NAAL average prose 

score is 0.57 and the compact *Rho  is equal to 0.33 and 
**Rho  is equal to 0.17. The table also shows that values of 

the compact *Rho  for average scores are at about the same 

level for NAAL (range from 0.32 to 0.33) and ALL (range 
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from 0.29 to 0.39). There is some variation by the type of 

estimate as well; values of *Rho
 
for ALL are 0 to 0.2 lower 

for the percentage in Level 1 or 2 than for the average 

scores. Values of *Rho
 
can also vary by household size as 

shown in Figure 2 in Appendix A. 

 
4. Evaluation and results  

We compared the current sampling rules with optimal 

sampling rules by minimizing a variance-cost (VC) 

function, which is the product of the DEFFs (i.e., variance 

increase) due to clustering and weighting, and a cost 

function that is used by Kish (1965):  

HH* HH
clu wgtVC DEFF DEFF ,p

c
n c

b

 
= × × + 

 
 

where pc = cost per added person and HHc = cost per added 
household. Note that /n b  represents the number of 

sampled households. To account for the differential 

clustering effects for each household size ,B  we replace 
HH

cluDEFF  with: 

* *

HH*

clu *

(1 ( 1)Rho )

DEFF
1

B
B B

B

M
k b

M

k

+ + −

=
+

∑
 

where *RhoB  is computed as described in Appendix A. 

Note that the VC function represents the additional cost 

of increasing the overall sample size to offset the increase in 

variance due to the DEFF components. Table 6 provides the 

results for optimal integer solutions as computed by a 

computational algorithm which is described in Appendix B. 

The table shows that as the cost ratio increases from 0.5 to 1 

for * 1,k =  we would want to take more persons per 

household, that is, 2 out of 2 instead of 1 out of 2. As the 

variance ratio goes from 1 to 3 for optimal integer solutions, 

the only change is for household size of 2 and cost ratio of 

0.5. That is, when the variance ratio is equal to 3, it is 

beneficial to take 2 out of 2 instead of 1 out of 2. 

Table 6 also gives the results when fractional sample 

sizes are allowed. The variance and cost ratios for NAAL 

and ALL tend to be about 1, where it appears that selecting 

1 out of 1, 1.6 out of 2, and 2 otherwise is the best rule. The 

effects of cost and variance ratios are clearer under the 

fractional sample sizes when compared to the integer 

solutions. 

If the cost of conducting a screener is small in relation to 

the cost of interviewing, then variances can be reduced 

using the fractional walk-away approach. Table 6 shows 

optimal walk-away sample sizes. Under this approach, for 

example, a sample size of 0.9 indicates that we walk away 

from 10 percent of the households where 1.B =  If the cost 

of screening is a very small portion of the cost of 

interviewing, then the optimal design may involve walking 

away from many more households. 

Under the likely NAAL/ALL parameters for cost ratios 

HH( / 1)pC C =  and variance ratios *( 1),k =  when 

compared to the Take1 approach, the VC function can be 

reduced by about 9 percent by using the NAAL/ALL 

sampling rule, 19 percent by using the optimal integer 

solution, 20.4 percent using the optimal fractional solution, 

and 20.6 using the optimal walk-away approach. In general, 

the gains from deviating from the Take1 approach grow as 

the cost per additional households (i.e., screening) increases. 

The average cluster sizes for each approach are given in 

Table 7. For the NAAL and optimal integer rule, the 

average cluster size indicates the percentage of households 

with 2 SPs. For example about 6 percent of the households 

would have 2 SPs under the NAAL3 strategy.   

 
Table 4 

Values of *k  for the ALL sample 
 

ALL estimate *k  
Average prose score 0.95 
Average document score 1.56 
Average quantitative/numeracy score 1.13 
Percentage in Level 1 or 2 prose 0.68 
Percentage in Level 1 or 2 document 1.61 
Percentage in Level 1 or 2 numeracy 1.10 

 
Table 5 
Values for Rho, *Rho ,  and **Rho  for literacy assessment scores 
 

 Rho  *Rho  **Rho  
Estimate NAAL ALL NAAL ALL NAAL ALL 
Number of households with 2 SPs 930 162 930 162 930 162 
Average prose score 0.57 0.60 0.33 0.38 0.17 0.19 
Average document score 0.53 0.50 0.33 0.29 0.17 0.15 
Average quantitative/numeracy score 0.54 0.58 0.32 0.39 0.16 0.20 
Percentage Below Basic(NAAL)/Level 1or 2 (ALL) prose 0.65 0.44 0.42 0.28 0.21 0.14 
Percentage Below Basic (NAAL)/Level 1 or 2 (ALL) document 0.61 0.37 0.39 0.28 0.20 0.14 
Percentage Below Basic quantitative (NAAL)/Level 1 or 2 (ALL) numeracy 0.62 0.36 0.40 0.17 0.20 0.09 

Note: **Rho  is computed assuming *k =1. 
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Table 6 
Optimal expected number of persons per household by type of person sampling method and household size (B) 
 

  Person Sampling Method 

  Integer Fractional Walk-away 

k* CHH /  Cp B = 1 B = 2 B = 3 B = 4 B = 1 B = 2 B = 3 B = 4 B = 1 B = 2 B = 3 B = 4 

1 0.5 1 1 2 2 1 1.4 2 2 0.6 1.3 2 2 

1 1 1 2 2 2 1 1.6 2 2 0.9 1.6 2 2 

1 2 1 2 2 2 1 1.9 2 2 1 1.9 2 2 

3 0.5 1 2 2 2 1 1.6 2 2 0.8 1.5 2 2 

3 1 1 2 2 2 1 1.8 2 2 1 1.8 2 2 

3 2 1 2 2 2 1 2 2 2 1 2 2 2 

 
Table 7 

Percent reduction of NAAL3 and optimal solutions from Take1 strategy and average cluster sizes 
 

  Percentage reduction from Take1 strategy Average cluster sizes 

k* CHH /  Cp NAAL3 Integer Fractional Walk- away NAAL3 Integer Fractional Walk- away 

1 0.5 8.2 13.0 15.8 18.0 1.06 1.18 1.38 1.21 

1 1 9.1 19.2 20.4 20.6 1.06 1.68 1.48 1.45 

1 2 9.9 26.1 26.1 26.1 1.06 1.68 1.63 1.63 

3 0.5 8.6 17.3 18.7 19.0 1.06 1.68 1.48 1.37 

3 1 9.5 23.7 23.9 23.9 1.06 1.68 1.58 1.58 

3 2 10.4 30.2 30.2 30.2 1.06 1.68 1.68 1.68 
 

 

 
 

 

 

 
 

 

 

 

Lastly, a sensitivity analysis was conducted by varying 

the values of Rho
*
. A regression model was fit on the 

percentage reduction from the Take1 strategy of the VC 

function, with the independent variables being the approach 

(NAAL3, integer, fractional, walk-away), cost ratio (0.1, 

0.5, 1, 2, 10), variance ratio (1, 3, 5) and Rho
*
 (+/- 0.1). For 

the range of data, Rho
*
 had a limited impact (parameter 

estimate -7.4 with an associated standard error of 4.5) on the 

percentage reduction of the VC function, while the other 

factors had more of an impact. 

 
5. Summary  

Several design considerations were taken into account 

when evaluating the within - household selection rule for the 

NAAL and ALL surveys, including taking into account 

clustering effects from initial stages of sampling. To 

facilitate the evaluation, we formulate a way to incorporate 

PSU and SSU variance contributions into the computation 

of the DEFF due to clustering and the intra-household 

correlation when deciding how many persons and how 

many households to select in a multi-stage sample design. In 

doing so, we introduce compact Rho
*
 measure, which is 

computed within the SSU so it is not impacted by the PSU 

and SSU variance components. This is useful when 

determining the DEFF due to clustering within households, 

while varying the contribution to the total variance from the 

PSU and SSU stages of selection in multi-stage sample 

designs. The measure **Rho  is introduced as an expression 

for the intra-household correlation under a multi-stage 

design, taking into consideration the contribution to total 

variance from the first two stages of selection.  

In addition, a computational algorithm was developed to 

compute optimal sample size solutions, incorporating the 

DEFFs due to clustering, differential sampling rates, and 

costs. 

In general, the main factors on the percentage reduction 

of the VC function from the Take1 approach are the level of 

dominance from the PSU and SSU variance components in 

multi-stage sampling, the cost ratio and the rule used. For 

the range of data evaluated, Rho
* 
had limited impact on the 

reduction in VC from the Take1 approach. In general, the 

NAAL rule improves on the widely-used Take1 approach. 

The optimal integer rule improves on the NAAL rule. 

However, the optimal fractional rule has limited gains over 

the optimal integer rule. The optimal walk-away rule has 

gains over the other rules for lower cost ratios. Lastly, when 

the first two variance components dominate and cost ratio is 

high, then the integer, fractional and walk-away rules are 

essentially the same. 
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Appendix A 
 

Estimates of Rho* by household size  
Survey estimates are not attainable for Rho

*
 by house-

hold size since only 1 SP was selected for household size of 

3 or less and since the sample size was too small to create 

estimates for each household size of 4 or more. Therefore, 

estimates of Rho
*
 by household size are modeled using 

Census data. Figure 2 shows Rho
* 
on the y-axis and 

household size on the x-axis. The upper line is from the US 

Census public-use microdata sample (PUMS) file for 

education attainment for ages 25+. The upper line shows 

that education attainment is more similar among households 

with two adults, perhaps more likely to be married couples. 

It shows a drop off when going from two to three adults. We 

captured the variation in households size by computing the 

ratio of Rho
* 
for the NAAL prose literacy scores to the Rho 

for the Census PUMS education attainment among 

households with 3B>  and applying the ratio to the PUMS 

Rho across all household sizes. The resulting values are the 

estimates of compact *RhoB  for 1, 2, ...11.B =  

 

 

 

 

 

 

 

 

Appendix B 
 

Computational algorithm  
A computational algorithm was developed to arrive at 

optimal within-household sample sizes for each household 

size .B  The algorithm was constructed to generate optimal 

integer or fractional solutions that capture the effects of 

clustering, differential sampling rates and cost, under the 

constraints of at least one selected person per household and 

no more than 2. Here are the steps of the algorithm (all 

processing runs converged within four iterations):  
− Initialize by setting 1b =  for all values of B  

(Take1). 

− Compute HH*
clu wgt HHDEFF , DEFF , , ,pc c  and VC(0). 

− Do 1I =  to 5. 

− Do B = 1 to 11. 

− Compute HH*
clu wgt HHDEFF , DEFF , , ,pc c  and 

VC for all 1 2,Bb≤ ≤  given the set of ,Bb  

for all .B B′ ≠  

− Identify the Bb  with the smallest value of 

VC. 

− End. 

− If VC( ) VC( 1)I I= −  then stop. 

− End. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 Estimates of Rho* for NAAL by household size 
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