
RESEARCH REPORT

Energy Efficiency and Alternative Energy for Northern Homes Report

CMHC—HOME TO Canadians

Canada Mortgage and Housing Corporation (CMHC) has been Canada's national housing agency for more than 60 years.

Together with other housing stakeholders, we help ensure that Canada maintains one of the best housing systems in the world. We are committed to helping Canadians access a wide choice of quality, affordable homes, while making vibrant, healthy communities and cities a reality across the country.

For more information, visit our website at www.cmhc.ca

You can also reach us by phone at 1-800-668-2642 or by fax at 1-800-245-9274.

Outside Canada call 613-748-2003 or fax to 613-748-2016.

Canada Mortgage and Housing Corporation supports the Government of Canada policy on access to information for people with disabilities. If you wish to obtain this publication in alternative formats, call 1-800-668-2642.

Table of Contents

- 1. Introduction
 - 1.1. Stakeholders
 - 1.2. Purpose
 - 1.3. Target Audience
- 2. Community Listing
- 3. Energy Efficiency Measures
 - 3.1. Description
 - 3.2. Heat
 - 3.2.1. Behavioural Heat Conserving Measures
 - 3.2.2. Insulation
 - 3.2.3. Energy Efficient Windows
 - 3.2.4. Programmable Thermostats
 - 3.2.5. Building Envelope
 - 3.2.6. High Efficiency & Condensing Furnaces and Boilers
 - 3.2.7. Heat Recovery Ventilator
 - 3.2.8. Wastewater Heat Recovery
 - 3.2.9. Landscaping
 - 3.3. Electricity
 - 3.3.1. Behavioural Electricity Conserving Measures
 - 3.3.2. Energy Efficient Lighting
 - 3.3.3. Efficient Appliances
 - 3.4. Water
 - 3.4.1. Behavioural Water Conserving Measures
 - 3.4.2. Low Flow Fixtures
- 4. Alternative Energy
 - 4.1. Introduction
 - 4.2. Heat
 - 4.2.1. Passive Solar Heating
 - 4.2.2. Solar Water Heating
 - 4.2.3. Solar Air Heating
 - 4.2.4. Biomass Heating
 - 4.3. Electricity
 - 4.3.1. Photovoltaic Panels
 - 4.3.2. Wind Power
 - 4.3.3. Hybrid Systems
 - 4.3.4. Grid Connected Generation
 - 4.3.5. Off-Grid Generation
 - 4.4. Water
 - 4.4.1. Rainwater Collection
- 5. Cost Benefit Analysis
 - 5.1. Life Cycle Costing

- 5.2. Benefits
- 5.3. Stand Alone and Combination Systems
- 5.4. Current Utility Subsidies
- 5.5. How to Use the Payback Chart
- 5.6. Alternative Energy Payback Chart (NASA)
- 5.7. Alternative Energy Payback Chart (RETScreen)
- 6. Other Technologies
 - 6.1. Heat Pumps
 - 6.2. Fuel Cells
 - 6.3. Waste Water Treatment
 - 6.4. Microturbines
 - 6.5. Stirling Biomass Engine
 - 6.6. Micro Hydro

Appendices:

- Appendix A Detailed Community Data
- Appendix B Detailed Technical Information
- Appendix C Detailed Calculations for Economic Analysis
- Appendix D References

April 9, 2002

Commentary on the use of RETScreen Data

To whom it may concern:

Please consider the following comments with regard to the use of RETScreen weather data in the CMHC Alternative Energy for Northern Homes Report.

I have some concern over the scientific validity of the results from the RETScreen weather data as it was used to calculate payback periods for the use of wind turbines in the RETScreen portions of Section 5 and Appendix C. The model used to calculate these numbers initially was based on the NASA satellite data which provided a percentage of the time that the wind speed in a given place on the planetary grid was within particular bounds. This number was depended upon heavily in the calculations to determine the amount of time that a wind generator could be running and producing electricity. If you look at these percentages, you will find that there is a strong correlation between a high percentage and a low payback period as long as the Average Wind Speed number is above a minimum threshold.

In the RETScreen program from Natural Resources Canada, there is no reliance on such a number. The wind distribution is assumed to match a Weibull distribution (a statistically normal distribution that does not allow values below zero). The average wind speed number is then used to determine the placement of that Weibull curve. The amount of time that the wind speed is high enough to produce electricity is then calculated based on this assumed curve. In the report calculations, we have used the RETScreen Average Wind Speed values, but continue to use the NASA satellite percentage values to calculate the payback time for a given system. This is a poor scientific use of differing values. If the RETScreen data is to be used for this report at all, I would strongly recommend having a statistician re-work the calculations (using the methodology of the RETScreen program) to remove the NASA percentages from the RETScreen calculations and calculate payback values using a Weibull distribution for this section of the report. This would affect the Wind payback calculations and the Hybrid payback calculations, and remove any requirement to use some NASA data along with the RETScreen weather data. This is highly desirable as there is often a discrepancy between the Average Wind Speed numbers from each source as is shown in the Raw Data Sections of Appendix C.

The methods used when calculating payback periods for wind systems with the NASA data is scientifically sound and I do not recommend any further changes to these numbers aside from updating them with more current NASA Satellite Weather data as it becomes available.

Sincerely,

Elane Carr

Elaine Carr, A.D. Williams Engineering Inc.

1. INTRODUCTION

1.1 STAKEHOLDERS

- .1 Canada Mortgage and Housing Corporation (CMHC)
- .2 Arctic Energy Alliance (AEA)
- .3 Alaska Housing Finance Corporation (AHFC)

1.2 PURPOSE

The purpose of this study and report is to highlight the available energy efficiency and alternative energy technologies, products and systems for homes available on the market today with a proven track record for application in northern regions. Also covered are emerging technologies as well as some simple energy saving tools and behaviours. The motivation for this study is to decrease energy use and reliance on conventional non-renewable fuel sources. This would reduce energy costs and environmental impact from energy generation without negatively impacting the standard of living.

This report will be updated periodically as alternative technologies develop and more data becomes available on their use in northern communities.

1.3 TARGET AUDIENCE

The target audience for this report is anyone who owns a home, is planning to buy or build a home, or is responsible for housing in the northern regions of North America. The regions specifically covered are:

- .1 Alaska
- .2 Labrador
- .3 Northwest Territories
- .4 Nunavik
- .5 Nunavut
- .6 Yukon

Many of these systems and technologies have the most potential for benefit in remote communities because energy costs tend to be much higher than in larger centres due to transportation costs and lack of economies of scale. In these smaller centres, higher costs of living are often offset for homeowners by government subsidies for fuel, electricity, and transportation of goods. Unfortunately, these subsidies have the added effect of making alternative energy sources look less attractive to individual homeowners. In case of an abolition of these subsidies, information is included to help homeowners determine at what point these technologies would start to provide a substantial cost savings with or without subsidized energy costs.

The community specific information in this report is provided as a guideline for homeowners, but individuals and communities should assess the best combinations of conservation, passive systems, and mechanical systems that best suits their own unique needs and conditions.

2. COMMUNITY LISTING

REGION	COMMUNITY	POPULATION	LAT.	LONG.
ALASKA				
	Adak Station	106	51°45'N	176°45'W
	Akiachak	560	60°54'N	161°25'W
	Alakanuk	677	62°41'N	164°37'W
	Ambler	298	67°05'N	157°52'W
	Anaktuvuk Pass	312	68°08'N	151°45'W
	Anchorage	261,446	61° 13' N	149° 53' W
	Aniak	594	61°34'N	159°31'W
	Barrow	4,541	71° 17' N	156° 47' W
	Beaver	126	66°21'N	147°23'W
	Bethel	5,449	60°47'N	161°45'W
	Chevak	769	61°31'N	165°35'W
	Craig	2,124	55°'28N	133°09'W
	Dillingham	2,400	59°02'N	158°27'W
	Eagle City	171	64°47'N	141°12'W
	Elim	316	64°37'N	162°15'W
	Fairbanks/Fairbanks North Star	115,237	64°50'N	147°43'W
	Fort Yukon	565	66°34'N	145°16'W
	Galena	592	64°44'N	156°56'W
	Gambell	653	63°47'N	171°45'W
	Glenallen	494	62°07'N	145°33'W
	Homer	4,205	59°38'N	151°33'W
	Huslia	283	65°41'N	156°24'W
	Juneau	31,262	58°18'N	134°24'W
	Kaktovik	254	70°08'N	143°38'W
	Kaltag	251	64°20'N	158°43'W
	Ketchikan	8,295	55°20'N	131°38'W
	King Salmon	499	58°41'N	156°39'W
	Kipnuk	573	59°56'N	164°03'W
	Kodiak	20,864	57°47'N	152°24'W
	Kotzebue	3,000	66°54'N	162°35'W
	McGrath	408	62°57'N	155°35'W
	Metlakatla	1,499	55°07'N	131°34'W
	Mountain Village	757	62°05'N	163°43'W
	Napaskiak	395	60°42'N	161°54'W
	Nome	3,620	64°32'N	165°25'W
	Noorvik	634	66°50'N	161°03'W
	Prudhoe Bay (Deadhorse)	49	70°22'N	148°22'W
	Saint Mary's	482	62°03'N	163°10'W
	Saint Paul	585	57°07'N	170°16'W

Community Listing Cont'd:

REGION	COMMUNITY	POPULATION	LAT.	LONG.
	Sand Point	871	55°20'N	160°30'W
	Selawik	792	66°36'N	160°00'W
	Seward	3,085	66°07'N	149°26'W
	Shishmaref	547	66°15'N	166°04'W
	Sitka	8,788	57°03'N	135°20'W
	Skagway	880	59°27'N	135°18'W
	Tanana	300	65°10'N	152°04'W
	Togiak	824	59°04'N	160°24'W
	Tok	1,235	63°20'N	142°59'W
	Unalakleet	757	65°52'N	160°47'W
	Unalaska	4,283	53°52'N	166°32'W
	Valdez	4,271	61°07'N	146°16'W
	Wainwright	545	70°38'N	160°01'W
	Whittier	289	60°46'N	148°41'W
	Wragnell	2,569	56°28'N	132°22'W
LABRADOR				
	Davis Inlet (Utshimassits)	550	55° 53' N	60° 54' W
	Happy Valley - Goose Bay	8,655	53° 19' N	60° 20' W
	Hopedale	620	55° 28' N	60° 13' W
	Makkovik	367	55°05'N	59°11W
	Nain	995	56° 32' N	61° 41' W
	North West River	567	53° 32' N	60° 08' W
	Postville	225	54° 54' N	59° 47' W
	Rigolet	225	54° 11' N	58° 26' W
	Sheshatshiu	1,108	53° 31' N	60° 09' W
NORTHWES	TTERRITORIES			
	Aklavik	727	68°13'N	135'00'W
	Colville Lake	90	67'02'N	126'07'W
	Deline	616	65°10'N	123°25'W
	Dettah	195	62°25N	114'18W
	Enterprise	94	60°33'N	116'08'W
	Fort Good Hope	644	66°15'N	128'38'W
	Fort Liard	512	60°15'N	123'28'W
	Fort McPherson	878	67°26'N	134'53'W
	Fort Providence	748	61°21'N	117'39'W
	Fort Resolution	536	61'11'N	113'41'W
	Fort Simpson	1,257	61'51'N	121'22'W
	Fort Smith	2,441	60° 1'N	111°57'W
	Hay River & (Hay River Reserve)	3,611 (253)	60'51'N	115'44'W
	Holman	423	70'43'N	117'45'W

Community Listing Cont'd:

REGION	COMMUNITY	POPULATION	LAT.	LONG.
	Inuvik	3,296	68'21'N	133'43'W
	Jean Marie River	53	61'32'N	120'38'W
	Kakisa	36	60'56'N	117'25'W
	Lutselk'e	304	62'24'N	110'44'W
	Nahanni Butte	75	61'02'N	123'23'W
	Norman Wells	798	65'17'N	126'50'W
	Paulatuk	277	69'21'N	124'04'W
	Rae Lakes (Gameti)	256	64'09'N	117'20'W
	Rae-Edzo (Rae)	1,662	62'50'N	116'4'W
	Sachs Harbour	135	71'59N	125'14 ' W
	Trout Lake	68	60'266'N	121'156 ' W
	Tsiigehtchic	162	67'27'N	133'44'W
	Tuktoyaktuk	943	69'27'N	133'02'W
	Tulita	450	64'54'N	125'34'W
	Wekweti (Snare Lake)	135	64'116'N	114'116'W
	Wha Ti	418	63'08'N	117'06'W
	Wrigley	167	63'14'N	123'28'W
	Yellowknife	17,275	62'276'N	114'226'W
NUNAVIK		and the second sec		
	Akulivik	411	60° 48' N	78° 12' W
	Aupaluk	159	59° 18' N	69° 36' W
	Inukjuak	1,184	58° 27' N	78° 06' W
	lvujivik	274	62° 25' N	77° 55' W
	Kangiqsualujjuaq	648	58° 41' N	65° 57' W
	Kangiqsujuaq	479	61° 35' N	71° 57' W
	Kangirsuk	394	60° 01' N	70° 01' W
	Kuujjuaq	2,055	58° 06' N	68° 24' W
	Kuujjuarapik	1,210	55° 17' N	77° 45' W
	Puvirnituq	1,169	60° 02' N	77° 17' W
	Quaqtaq	257	61° 02' N	69° 37' W
	Salluit	1,143	62° 13' N	75° 39' W
	Tasiujaq	191	58° 42' N	69° 56' W
	Umiujaq	315	56° 33' N	76° 33' W
NUNAVUT				
	Arctic Bay	639	73°02N	85°10W
	Arviat	1,559	61°07'N	94°04'W
	Baker Lake	1,385	64°18'N	96° 5'W
	Bathurst Inlet	18	66°50'N	108°2'W
	Cambridge Bay	1,351	69° 07'N	105°3'W
1	Cape Dorset	1,118	64°14'N	76°32'W

Community Listing Cont'd:

REGION	COMMUNITY	POPULATION	LAT.	LONG.
	Chesterfield Inlet	337	63°20'N	90°43'W
	Clyde River	708	70°28'N	68°36'W
	Coral Harbour	669	64 [°] 12'N	83°22'W
	Gjoa Haven	879	68°38'N	95°52'W
	Grise Fiord	148	76 [°] 25'N	82°54'W
	Hall Beach	534	68°47'N	81°15'W
	Igloolik	1,174	69 [°] 23'N	81°48'W
	Iqaluit	4,220	63°45'N	68°32'W
	Kimmirut	397	62°51'N	69°53W
	Kugluktuk	1,201	67°50'N	115°06'W
	Nanisivik	287	73°02N	84°33'W
	Pangnirtung	1,243	66°09'N	65°43'W
	Pelly Bay (Kugaaruk)	496	68°26'N	89°43'W
	Pond Inlet	1,154	72°42'N	77°59'W
	Qikiqtarjuaq (Broughton Island)	488	67°33'N	63°47'W
	Rankin Inlet	2,058	62°49'N	92°05'W
	Repulse Bay	559	66°32N	86°15'W
	Resolute	198	74°43'N	94°59′W
	Sanikiluaq	631	56°32N	79°14'W
	Taloyoak	648	69°32'N	93°31'W
	Umingmaktok	51	67°42'	107°57'
	Whale Cove	301	62°10'N	92°36'W
YUKON				
	Beaver Creek	109	62° 23' N	140° 52' W
	Burwash Landing	81	61° 21' N	138° 59'W
	Carcross	423	60° 10' N	134° 42' W
	Carmacks	461	62° 05' N	136° 17' W
	Dawson	2,057	64°04'N	139°25'W
	Destruction Bay	34	61° 15' N	138° 48' W
	Faro	350	62°12'N	133°22'W
	Haines Junction	800	60° 45' N	137° 30' W
	Мауо	484	63° 35' N	135° 53' W
	Old Crow	300	67° 34' N	139° 50' W
	Pelly Crossing	287	62° 49' N	136° 34' W
	Ross River	397	61° 59' N	132° 26' W
	Tagish	158	60° 18' N	134° 16' W
	Teslin	454	60° 10' N	132° 43' W
	Watson Lake	1,690	60° 03' N	128° 42' W
	Whitehorse	19,157	60° 43' N	135° 03' W

APPENDIX A

DETAILED COMMUNITY DATA

APPENDIX B

DETAILED TECHNICAL INFORMATION Photovoltaics

PV TECHNOLOGIES

PV comes in many flavors, though the bulk of the material in use today is silicon-based. In general, PV materials are catagorized as either thick crystalline (sliced from boules or castings, or grown ribbons) or thin film (deposited in thin layers on a substrate) polycrystalline or amorphous. The following is information on the materials and technologies with application to photovoltaics.

Thick Crystalline Materials

Crystalline Silicon

Single-crystal silicon--Sliced from single-crystal boules of grown silicon, these wafers/cells are now cut as thin as 200 microns. Research cells have reached nearly 24-percent efficiency, with commercial modules of single-crystal cells exceeding 15-percent.

Multicrystalline silicon-Sliced from blocks of cast silicon, these wafers/cells are both less expensive to manufacture and less efficient than single-crystal silicon cells. Research cells approach 18-percent efficiency, and commercial modules approach 14-percent efficiency.

Edge-defined film-fed growth ribbons--Nearly single-crystal silicon ribbons grown from a crucible of molten silicon, drawn by capillary action between the faces of a graphite die.

Dendritic web--A film of single-crystal silicon pulled from a crucible of molten silicon, like a soap bubble, between two crystal dendrites.

Gallium Arsenide (GaAs)

A III-V semiconductor material from which high-efficiency photovoltaic cells are made, often used in concentrator systems and space power systems. Research cell efficiencies greater than 25 percent under 1-sun conditions, and nearly 28 percent under concentrated sunlight. Multijunction cells based on GaAs and related III-V alloys have exceeded 30-percent efficiency.

Thin-Film Materials

Amorphous Silicon (a-Si) A non-crystalline form of silcon, first used in photovoltaic materials in 1974. In 1996, amorphous silicon constituted more than 15 percent of the worldwide PV production. Small experimental a-Si modules have exceeded 10-percent efficiency, with commercial modules in the 5-7-percent range. Used mostly in consumer products, a-Si technology holds great promise in building-integrated systems, replacing tinted glass with semi-transparent modules.

Cadmium Telluride (CdTe)

A thin-film polycrystalline material, deposited by electrodeposition, spraying, and high-rate evaporation, holds the promise of low-cost production. Small laboratory devices approach 16-percent efficiency, with commercial-sized modules (7200-cm²) measured at 8.34-percent (NREL-measured total-area) efficiency and production modules at approximately 7 percent.

Copper Indium Diselenide (CuInSe₂, or CIS)

A thin-film polycrystalline material, which has reached a research efficiency of 17.7 percent, in 1996, with a prototype power module reaching 10.2 percent. The difficulty in taking this technology to a production level lies in the difficulty in avoiding the formation of defects during deposition that prevent the formation of uniform layers.

Concentrators

Concentrator systems use lenses or reflectors to focus sunlight onto the solar cells or modules. Lenses, with concentration ratios of 10x to 500x, typically Fresnel linear-focus or point-focus lenses, are most often made of an inexpensive plastic material engineered with refracting features that direct the sunlight onto a small or narrow area of cells. The cells are usually silicon. GaAs cells and other materials would have higher conversion efficiencies, and could operate at higher temperatures, but they are often substantially more expensive. Module efficiency can range upwards from 17%, and concentrator cells have been designed with conversion efficiencies in excess of 30%.

Reflectors can be used to augment power output, increasing the intensity of light on modules, or to extend the time that sufficient light falls on the modules.

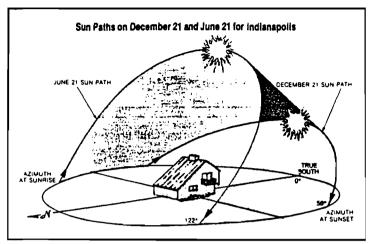
Concentrator system lenses are unable to focus scattered light, limiting their use to areas, like desert areas, with a substantial number of cloudless days on an annual basis.

What's New	History	Technology	Industry	Applications
Jobs	Calendar	Resources	FAQ	PV Home Page

Retur	n to the PV P	ower Home Page	

Planning and Sizing a Solar Electric System

In sizing a PV system the first two factors we work from are the sunlight levels or insolation values from your area and the daily power consumption of your electrical loads. Insolation


Insolation or sunlight intensity is measured in equivalent full sun hours. One hour of maximum, or 100% sunshine, received by a module equals one equivalent full sun hour. Even though the sun may be above the horizon, for example, 14 hours a day, this site may only receive six hours of equivalent full sun. Why? For two main reasons. One is reflection due to a high angle of the sun in relationship to your array. The second is also due to the high angle and the amount of the earth's atmosphere the light is passing through. When the sun is straight overhead the light is passing through the least amount of atmosphere. Early or late in the day the sunlight is passing through much more of the atmosphere due to its position in the sky.

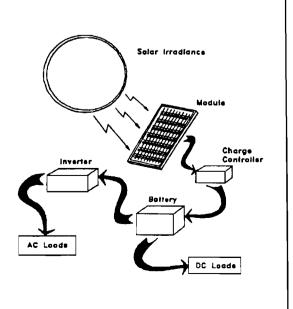
Our sun trackers can help reduce reflectance but cannot help with the increased atmosphere in the sun's path.

Because of these factors our most productive hours of sunlight are from 9:00 a.m. to 3:00 p.m. around solar noon. Before and after these times we are making power but at much lower levels.

When we size solar modules, we take these equivalent full sun hour figures per day and average them over a given period. See the charts below.

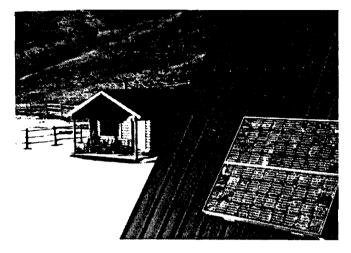
We like to work with two figures here: average annual equivalent full sun hours and average

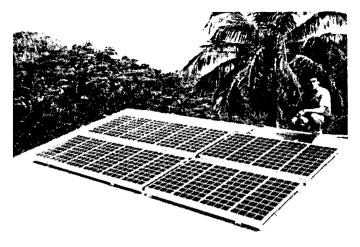
This diagram illustrates the path of the sun over varying seasons. Remember when selecting a site for your solar modules to pick a spot that is clear of shade from a minimum of 10 A.M. to 2 P.M. on December 21st. Even a limb from a deciduous tree will substantially reduce power output. These are averages, contact us for your exact insolation data.


Many solar sites are quite uncomplicated in terms of shading and aspect. You may already have a good idea of where the sun appears in the morning and disappears in the evening, as well as how low it swings in the winter sky. If your site is partially shaded, it may be necessary to determine exactly where the best placement of modules will be. We do have site analysis tools. If you need a more sophisticated site analysis, please contact us. We also have world-wide insolation data.

winter equivalent full sun hours. In most locations in the United States winter yields the least sunlight because of shorter days and increased cloud cover, as well as the sun's lower position in the sky.

The Basic Idea Is Simple


Photovoltaic modules (solar panels) convert sunlight into electricity. Wire conducts the electricity to batteries where it is stored until needed. On the way to the batteries, the electrical current passes through a controller (regulator) which will shut off the flow when the batteries become full.


For some appliances, electricity can be used directly from the batteries. This is "direct current" and it powers "DC" appliances such as car headlights, flashlights, portable radios, etc. To run most appliances found in the home, however, we need to use "alternating current" or "AC", the type which is found in wall sockets. This we can produce utilizing an inverter which transforms DC electricity from the batteries into AC. The inverter's AC output powers the circuit breaker box and the common outlets in your home.

System Components

Systems vary greatly due to variation in size and run times of differing loads. They can use as little as a single 5 watt module or hundreds of large modules. There really is no such thing as an "average" system, even within a single kind of use. However, the basic PV system can be divided into several major components. The following section lists these components and their functions.

Components of a Solar Electric System

Function
Generates electricity from sunlight
Regulates power to and from batteries
Overcurrent protection
Enclosure for paralleling module output
Stores electricity
Reports system status and power flows both instantaneously and cumulatively.

Component	Function
Inverter	Changes low voltage DC power to high voltage AC power
Generator	Provides backup AC power
Battery charger	Converts AC (generator power) to DC
Fixed Mount or Tracking Mount	Supports and aims modules toward sun
Powercenter	Combines: controllers, overcurrent protection and monitors in one enclosur

System Voltage Selection 12, 24 or 48 volts?

The nominal voltage of your system is usually determined by the system size. Small to medium systems, where most loads are DC, or a few loads are AC through an inverter, lend themselves to 12 volts nicely. Many lights and small appliances can be found at this voltage and efficiencies are high.

On the down side, 12 volt suffers from high line loss problems. The solar modules and loads cannot be far from the battery bank. (Review the wire loss tables in the Appendix.)

24 volt systems are suggested for medium to large systems. With 24 volts we have less wire loss problems and larger inverters are available. 24 volt DC appliances are more rare than 12 volt units. For this reason we lean heavily toward AC loads from these larger inverters. This simplifies wiring of the home to conventional AC wiring which exists in most homes and which any electrician can wire economically.

With the increased efficiency of AC lighting and the unlimited variety of low cost AC appliances, 24 volt systems, as well as 48 for large systems, have many advantages.

Solar Modules

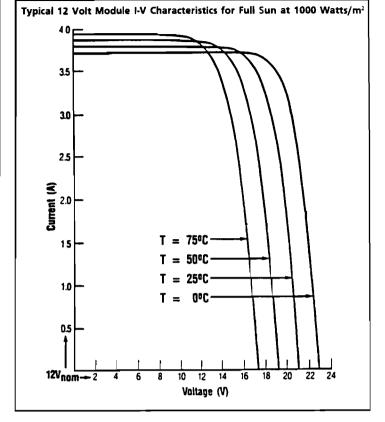
Power Characteristics

The current and power output of photovoltaic modules are approximately proportional to sunlight intensity. At a given intensity, a module's output current and operating voltage are determined by the characteristics of the load. If that load is a battery, the battery's internal resistance will dictate the module's operating voltage.

A module which is rated at 17 volts will put out less than its rated power when used in a battery system. This is because the working voltage will be between 12 and 15 volts. As wattage (power) is the product of volts times amps, the module output will be reduced.

For example: a 50 watt module working at 13.0 volts will produce 39.0 watts (13.0 volts x 3.0 amps = 39.0 watts).

This is important to remember when sizing a PV system.


An I-V curve as illustrated to the right is simply all of a module's possible operating points (voltage/ current combinations) at a given cell temperature and light intensity. Increases in cell temperature increase current but decrease voltage.

Maximum power is derived at the knee of the curve. Check the amperage generated at your batteries operating voltages to better illustrate the actual power developed at your voltages and temperatures.

Mixing Sizes and Brands of Modules

In most cases mixing dissimilar modules in the same array is not a problem. When paralleling units of different amperage ratings, the output of the array will simply be the sum of the combined amperages. When paralleling units of different voltages, the lower voltage units will simply begin to taper off sooner as high battery voltage is reached. If used for array direct power, the array voltage will be the approximate average module voltage.

When series connecting strings of dissimilar modules, however, the amperage will be approximately that of the weakest module in the string. It pays then, to pay attention to matching the modules connected in series.

Shading

PV modules are very sensitive to shading. Unlike a solar thermal panel which can tolerate some shading, many brands of PV modules cannot even be shaded by the branch of a leafless tree.

Once a solar cell or a portion of a cell is shaded it becomes a load and draws power instead of producing it Watch the amp meter of your system when a hand is passed over a module and you will see a substantial drop in output

Some solar modules offer protection from partial shading The advanced design of these modules include a diode between every cell, reducing partial shading problems.

Ask your solar professionals for more information if shade protection is needed.

Another rule of thumb - make sure no shading occurs between 9:00 a.m. and 3:00 p.m. around solar noon. Shading early or late is not much of a problem because these are low power producing hours anyway

Reverse current protection

PV modules will leak power back from your batteries during no sun periods if not protected. This leakage is very small but over long, no-sun periods, this loss can accumulate To prevent this we install a diode or protecting circuitry in the controller

All controllers that we sell have reverse leakage protection. The circuit opens over periods of no sun, allowing the charging circuit to stop any reverse flow A diode can also be used. This unit acts as a one way check valve-letting power flow in one direction to the batteries but not back to the PV module.

Module Mounting

Solar modules perform best when perpendicular to the sun's rays. Because tracking the sun is not always possible, we typically mount the modules facing due south.

A common question is the effectiveness of facing one module to the southeast, one due south and another southwest. While this may sound like a good idea, it is not. All modules facing due south will net the largest amount of power of any other arrangement second only to a sun tracker. Remember that the true south and magnetic south vary upon your site's declination. Call your local airport or us if you do not have this figure.

Tilt angle

Because the sun's position in the sky varies through the year (higher in summer and lower in winter), it's a good idea to provide for seasonal adjustment. The rule of thumb goes: latitude plus 15

degrees angle in winter and latitude minus 15 degrees in summer. Your latitude can be found on any good map of your area. If you wish to permanently mount the modules and not seasonally adjust the structure, fix your mount at a winter (minimal sun period) angle. This is when sunlight is limited, days are shorter and you want the system maximizing the available power. We offer a wide variety of mounts both fixed and tracking.

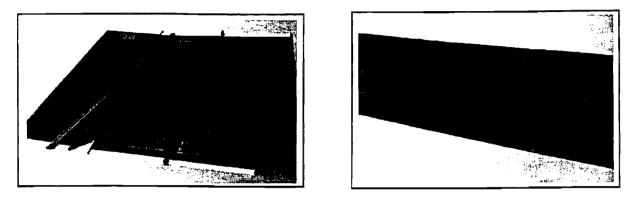
To Track the Sun ... or Not To Track...

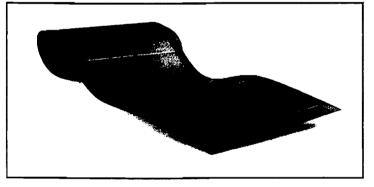
Trackers are used to increase the daily output of PV modules by keeping them faced as directly as possible toward the sun. The sun sees a wider surface, and the increased reflectivity that occurs at low angles of incidence is avoided. During the long days of summer when the sun is rising north of east and setting north of west, a tracker can increase the daily output of modules by 25 to 40 percent (we can help determine what you can expect). During the winter when the sun takes a low, short arc above the horizon, the tracker will contribute much less, perhaps 10 to 15 percent. The output of a tracker remains much more constant throughout the year in tropical climates.

We generally recommend trackers for spring, summer and fall applications, such as water pumping for livestock summer

pasture or small scale irrigation. For home power systems, we often do not recommend them because a household's power requirements are generally greatest in the winter just when the efficiency of the tracker is least. It often is a better choice to use a less expensive static mount and put the money into extra modules. In tropical and subtropical regions with less seasonal variation of sun and loads a tracker can make sense for a home system.

When calculating aiming error, rule of thumb is that a 10 degree aiming error will result in a loss of 2% of the solar module output, 20 degree-6%, 30 degree-14%, 40 degree-22%, 50 degree-35%, 60 degree-50%.


This table below compares insolation for fixed and tracking surfaces at three U.S. cities of varying latitudes. We have data for many locations broken down by the month, call if you would like the figures for your area.


	<u>Fixed Array</u> Summer position latitude -15 deg.	<u>Fixed Array</u> Winter position latitude +15 deg.	<u>One Axis Tracking</u> Summer latitude -15 deg.	<u>One Axis Tracking</u> Winter latitude +15 deg	<u>Two Axis Tracking</u> E&W, N&S
Albuquerque, NM					
January	4.49	5.74	5.87	6.84	6.92
July	7.78	6.38	10.45	9.48	10.60
Pittsburgh, PA					
January	2.02	2.38	2.36	2.67	2.69
July	5.59	4.69	7.04	6.42	7.14
Great Falls, MT					
January	2.51	3.07	2.96	3.43	3.46
July	7.62	6.24	11.25	10.37	11.44
Values are equivale	nt full sun hours per day				

Metal Roofing

Shingles

Field Applied Roofing Laminate

SOLAR METAL ROOFING	Rated Watts	Voltage (Vop)	Current (lop)	Voltage (Voc)	Current (Isc)	Length	Width	Weight
Architectural Standing Seam Panels	64	16.5	3.9	23.8	4.8	9' 7 1/8"	16"	2 lbs. (per ft.
Structural Standing Seam Panels	128	33	3.9	47.6	4.8	18'3"	16"	2 lbs. (per ft
SOLAR SHINGLES								
SHR-17	17	8.6	2	12	2.5	86.4"	12"	1.4 lbs. (perf
FIELD APPLIED ROOFING								
PVL-64	64	16.5	3.88	23.8	4.8	9' 4.13'	15.5"	9 lbs.
PVL-128	128	33	3.88	47.6	4.8	18'	15.5"	17 lbs.

Manufactured By:

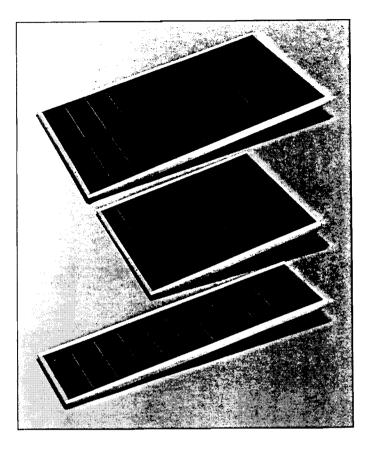
Offered By:

Bekaert ECD Solar Systems LLC 1100 West Maple Rd. Troy, MI 48084 (800) 843-3892 www.uni-solar.com

UNI-POWER_{IM} Solar Electric Modules

Specification Sheet

Models: US-64 US-42 US-32


- Modules Rating: 64, 42, 32 Watts
- Triple Junction Silicon Solar Cells
- Unbreakable Construction
- Polymer Encapsulation No Glass
- Anodized Aluminum Frame
- Bypass Diodes For Shadow Tolerance
- Weather Resistant Junction Box
- Twenty Year Limited Warranty

ach UNI-POWER solar electric module utilizes United Solar's proprietary Triple Junction silicon solar cells. These cells are made in a roll-to-roll deposition process on a continuous roll of stainless steel sheet metal. The result is a unique, flexible, lightweight cell.

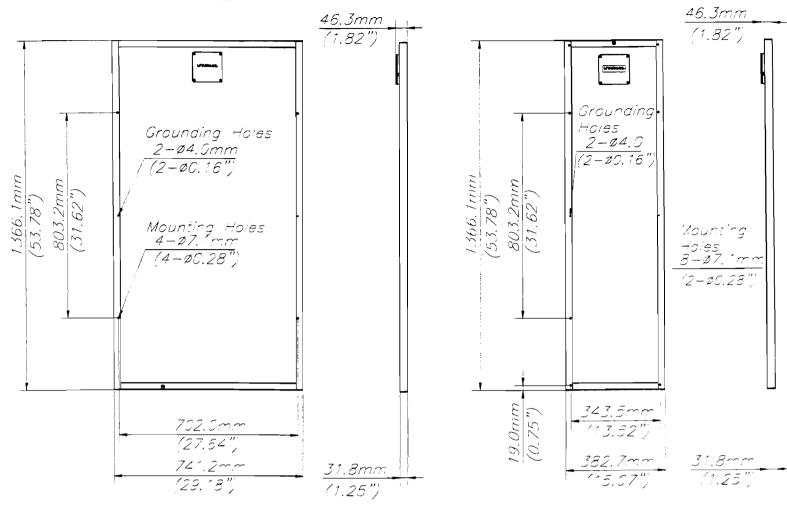
The modules are exceptionally durable. They are encapsulated in UV stabilized polymers and framed with anodized aluminum. A coated Galvalume steel backing plate provides stiffness. The polymer encapsulation includes EVA and fluoropolymer Tefzel_®, a DuPont film.

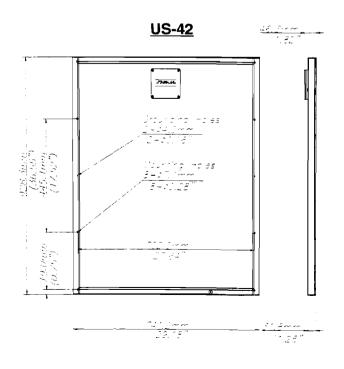
Bypass diodes are connected across each cell, allowing the modules to produce power even when partially shaded. Each module has a weather resistant junction box designed to accept 1/2" conduit. These modules are appropriate for all applications from simple single module requirements to high voltage grid-connected installations.

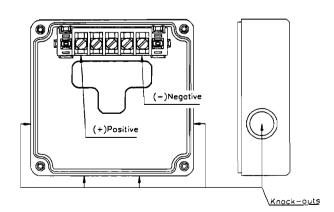
Triple Junction Technology

The heart of the new UNI-POWER modules is the Triple Junction silicon solar cell unique to United Solar. Each cell is composed of three semiconductor junctions stacked on top of each other. The bottom cell absorbs the red light; the middle cell absorbs the green light and the top cell absorbs the blue light. This spectrum splitting capability is the key to higher efficiency.

United Solar Systems Corp.

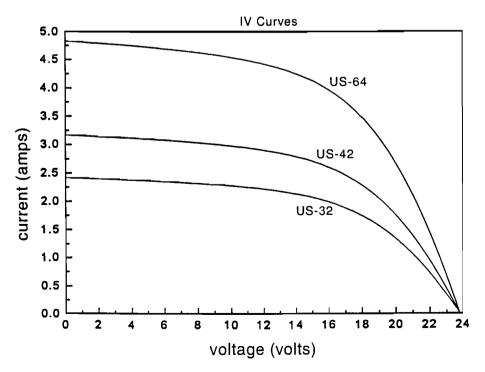

United Solar Systems Corp., a world leader in photovoltaics, is a joint venture of two of the world's most respected high technology companies, Energy Conversion Devices, Inc. (ECD) and Canon Inc. United Solar is devoted to the research, development, manufacturing and marketing of photovoltaic products.


Village power Water pumping Telecommunications Recreational vehicles Traffic control signals Remote homes Security lighting Parks & recreation Grid-connected systems


Dimensions

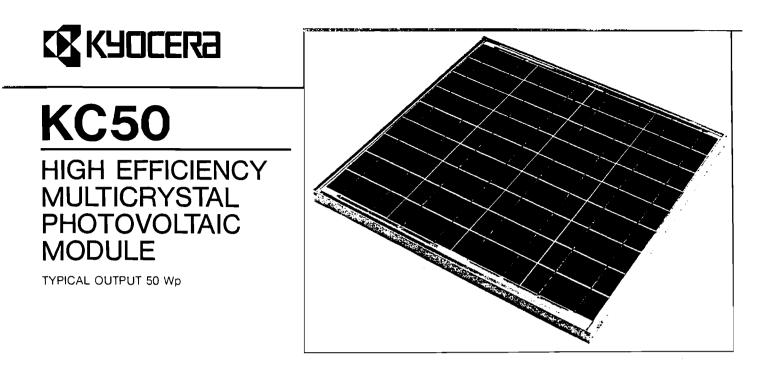
<u>US-64</u>

Specifications


	US-64	US-42	US-32
Rated Power (Watts)	64	42	32
Operating Voltage (Volts)	16.5	16.5	16.5
Operating Current (Amps)	3.88	2.54	1.94
Open Circuit Voltage (Volts)	23.8	23.8	23.8
Open Circuit Voltage (Volts) at -10°C and 1250 W/m ²	27.1	27.1	27.1
Short Circuit Current (Amps)	4.80	3.17	2.40
Short Circuit Current (Amps)* at 75°C and 1250 W/m ²	6.30	4.20	3.10
Series fuse rating (Amps)	8.0	6.0	4.0
Minimum blocking diode (Amps)	8.0	6.0	4.0
Weight (lbs./kgs.)	20.2/9.17	13.8/6.27	10.6/4.8

During initial 8-10 weeks of operation, the module has higher electrical output than rated output. The output power may be higher by 15%, the operating voltage may be higher by 11% and operating current may be higher by 4%.

Electrical specifications ($\pm 10\%$) are based on measurements performed at standard test conditions of 1000 W/m² irradiance, Air Mass 1.5, and Cell Temperature of 25° C after long-term stabilization. Performance may vary up to 10% from rated power due to low temperature operation, spectral and related effects.


Maximum system open circuit voltage 600 VDC.

* Refer to section 690-8 of the National Electric Code for an additional factor of 125% which may be applicable.

Electrical Characteristics of US-64, US-42 and US-32 Modules at Standard Test Conditions of 1000 W/m² of AM 1.5 Irradiance and Cell Temperature of 25°C.

Specifications subject to change without notice.

HIGHLIGHTS OF KYOCERA PHOTOVOLTAIC MODULES

Kyocera's advanced cell processing technology and automated production facilities have produced a highly efficient multicrystal photovoltaic modules.

The conversion efficiency of the Kyocera solar cell is over 14%.

These cells are encapsulated between a tempered glass cover and an EVA pottant with PVF back sheet to provide maximum protection from the severest environmental conditions.

The entire laminate is installed in an anodized aluminum frame to provide structural strength and ease of installation.

APPLICATIONS

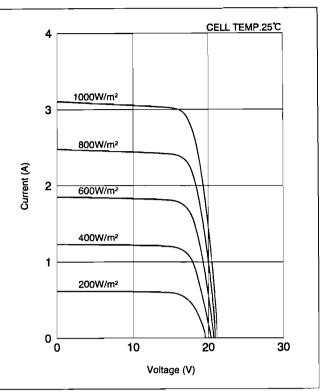
- Microwave/Radio repeater stations
- Electrification of villages in remote areas
- Medical facilities in rural areas
- Power source for summer vacation homes
- Emergency communication systems
- Water quality and environmental data monitoring systems
- Navigation lighthouses, and ocean buoys

- Pumping systems for irrigation, rural water supplies and livestock watering
- Aviation obstruction lights
- Cathodic protection systems
- Desalination systems
- Recreational vehicles
- Railroad signals
- Sailboat charging systems

SPECIFICATIONS

Electrical Specifications	1	Physical Specifications	(Unit: mm)
MODEL	KC50	-	
Maximum Power	50 Watts	<u>652</u> <u>54</u>	I
Maximum Power Voltage	16.7 Volts		
Maximum Power Current	3.00 Amps		+
Open Circuit Voltage	21.5 Volts		
Short-Circuit Current	3.10 Amps		
Length	639mm (25.2in.)		
Width	652mm (25.7in.)		• I [·]
Depth	54mm (2.1in.)		
Weight	5.0kg (11.0lbs.)	-	
		-	

Note: The electrical specifications are under test conditions of Irradiance of 1kW/m², Spectrum of 1.5 air mass and cell temperature of 25°C

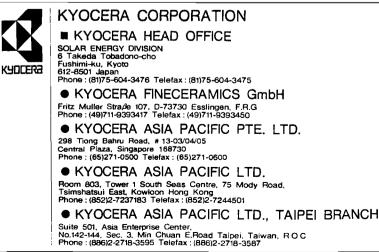

Kyocera reserves the right to modify these specifications without notice.

ELECTRICAL CHARACTERISTICS

Current-Voitare characteristics of Photovoltaic Module KC50 at various cell temperatures

IRRADIANCE:AM1.51kW/m2 4 3 75°C 5Ò℃ 25°C Current (A) 2 1 0 ∟ 0 10 20 30 Voltage (V)

Current-Voitare characteristics of Photovoltaic Module KC50 at various irradiance levels


QUALITY ASSURANCE

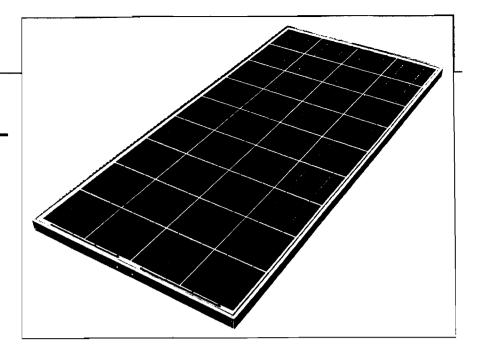
Kyocera multicrystal photovoltaic modules exceed government specifications for the following tests.

- Thermal cycling test
- Thermal shock test
- Thermal/Freezing and high humidity cycling test
- Electrical isolation test
- Hail impact test

- - Mechanical, wind and twist loading test
 - Salt mist test
 - Light and water-exposure test
 - Field exposure test

Please contact our office to obtain details without hesitation,

 Kvocera Solar, Inc. 7812 East Acoma Drive Scottsdale, AZ 85260 Phone: (480)948-8003 or (800)223-9580 Telefax: (480)483-6431 Kyocera Solar, Inc. -Sunelco Division 100 Skeels Street P O Box 787 Hamilton, MT 59840 Phone : (406)363-6924 or (800)338-6844 Telefax : (406)363-6046 • Kyocera Solar Pty, Ltd. 36 Windora Street, Unit 6 Stafford 4053 Queensland, Australia Phone : (61)7-3856-5388 Telefax : (61)7-3856-5443 Kyocera Solar Argentina S.A. Mejico 2145, (16400) Martinez Provincia de Buenos Aires Argentina Phone : (54)114-836-1040 Telefax : (54)114-836-0808 Kyocera Solar do Brazil Rua Pres Carlos de Campos 332-Laranjeiras 22231-080 Rio de Janeiro, RJ Brazil Phone : (55)2-1554-5554 Telefax : (55)2-1553-4894


The contents of this catalog are subject to change without prior notice for further improvement

KC120-1 HIGH EFFICIENCY

MULTICRYSTAL PHOTOVOLTAIC MODULE

TYPICAL OUTPUT 120 Wp

HIGHLIGHTS OF KYOCERA PHOTOVOLTAIC MODULES

Kyocera's advanced cell processing technology and automated production facilities have produced a highly efficient multicrystal photovoltaic modules.

The conversion efficiency of the Kyocera solar cell is over 14%.

These cells are encapsulated between a tempered glass cover and an EVA pottant with PVF back sheet to provide maximum protection from the severest environmental conditions.

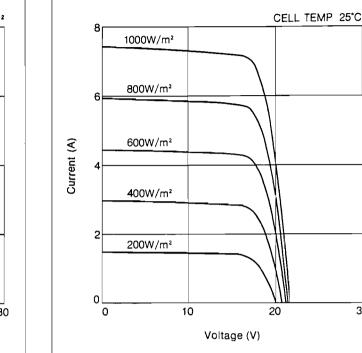
The entire laminate is installed in an anodized aluminum frame to provide structural strength and ease of installation

APPLICATIONS

- Microwave/Radio repeater stations
- Electrification of villages in remote areas
- Medical facilities in rural areas
- Power source for summer vacation homes
- Emergency communication systems
- Water quality and environmental data monitoring systems
- •Navigation lighthouses, and ocean buoys

- Pumping systems for irrigation, rural water supplies and livestock watering
- Aviation obstruction lights
- Cathodic protection systems
- Desalination systems
- Recreational vehicles
- Railroad signals
- Sailboat charging systems

SPECIFICATIONS



Note: The electrical specifications are under test conditions of Irradiance o 1kW/m², Spectrum of 1.5 air mass and cell temperature of 25°C

Kyocera reserves the right to modify these specifications without notice

ELECTRICAL CHARACTERISTICS

Current-Voltage characteristics of Photovoltaic Module KC120-1 at various cell temperatures

QUALITY ASSURANCE

Kyocera multicrystal photovoltaic modules exceed government specifications for the following tests.

- Thermal cycling test
- Thermal shock test
- Thermal/Freezing and high humidity cycling test
- Electrical isolation test
- Hail impact test

- •Mechanical, wind and twist loading test
- Salt mist test
- Light and water-exposure test
- Field exposure test

Please contact our office to obtain details without hesitation.

KYOCERA CORPORATION
 KYOCERA HEAD OFFICE
 SOLAR ENERGY DIVISION
 6 Takeda Tobadono-cho
 Fushimi-ku, Kyoto
 612-8501 Japan
 Phone : (075)604-3476 Telefax : (075)604-3475
 KYOCERA AMERICA INC.

8611 Balboa Avenue, San Diego, California 92123, U.S.A. Phone: (619)576-2647 Telex: ITT 4723069 Telefax: (619)569-9412

• KYOCERA FINECERAMICS GmbH Fritz Müller Straße 107, D-73730 Esslingen, F.R.G. Phone: (0711)9393417 Telefax: (0711)9393450

• KYOCERA ASIA PACIFIC LTD.

Room 803, Tower 1 South sea Centre, 75 Mody Road, Tsimshatsui East, Kowloon Hong Kong Phone: (02) 7237183 Telefax: (02) 7244501

• KYOCERA ASIA PACIFIC LTD., TAIPEI BRANCH

Suite 532,Asia Enterprise Center 602,Min Chuan E. Road Taipei, Taiwan Phone: 7183595 7183596 Telex: 13724 KYOCETWN Telefax: 7183587

• KYOCERA ASIA PACIFIC PTE. LTD.

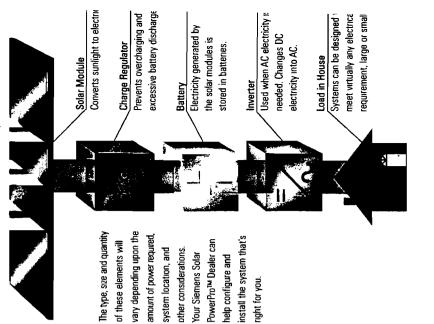
100 Beach Road, # 22.01/03 Shaw Towers, Singapore 0718 Phone: 2917900 Telex: 20133 Telefax: 2918468

The contents of this catalog are subject to change without prior notice for further improvement.

(Recycled Paper)

30

Current-Voltage characteristics of Photovoltaic Module KC120-1 at various irradiance levels



and water pumps in burning deserts. selves for years in some of the world's designed to give 25 years of troublefree use. They have proven themmillions of kilowatt hours daily to Utility-scale installations provide electricity works. Think of what it harshest climates. They power power entire communities. Solar Solar power is a primary power in freezing mountain locations source for thousands of home communications equipment owners throughout the world. Siemens Solar modules are can do for you.

Discover the comfort, convenience and sense of security Siemens Solar modules can provide. Discover "Power Anywhere."

Sunlight is the energy sourc

Sunlight

Siemens Solar Module | Quantity Required Two to Four SM55, SR50 or SM50H | One to Two Four to Six SR100 or SP75 SR100 Home with Microwave, Refrigerator, Toaster, Stereo Application Examples -4 to 6 Hours of usage See your dealer to select the appropriate modules Off-Grid Home - all lights, appliances Small Cabin - a few lightbulbs

www.siemenssolar.com © 1998 Siemens Solar 4650 Adohr Lane Camarillo, CA 93011 800-947-6527

Siemens Earthsafe Residential Kits

Earth Safe Residential Photovoltaic Kit

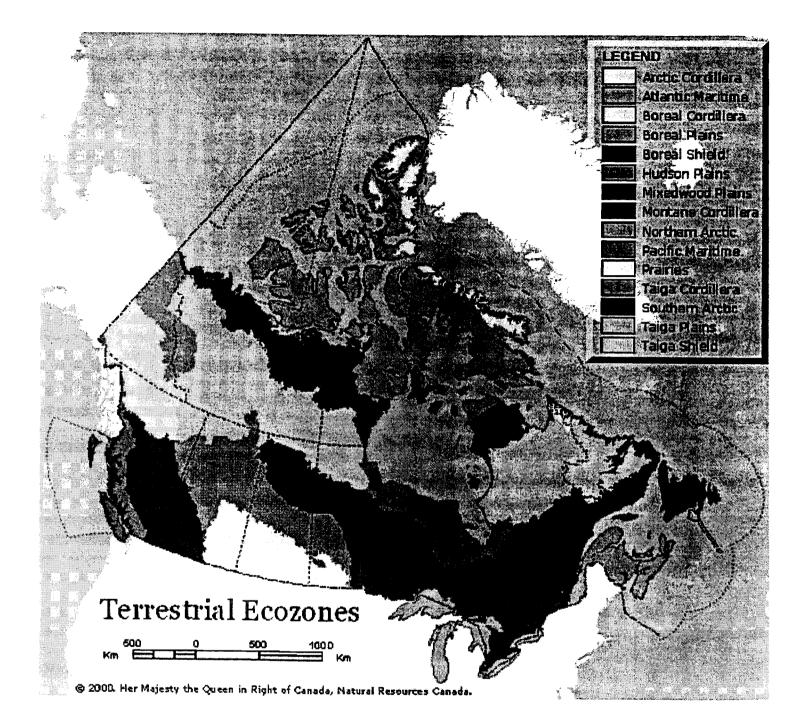
Siemens Solar offers a pre-engineered solar kit that enables homeowners to harness the power of the sun in a simplified, cost-effective way. The Earthsafe line of products provide utility-quality power and allow consumers to take advantage of net metering savings on their utility bills (where those programs are offered.)

In the past, solar electric systems were often designed for specific installations, which naturally increased installation costs. The systems each include solar panels and mounting hardware

configured for 300, 600, 900, 1500 or 2400 Watts. Suggested pricing starts at \$1,790.00 for the minimum (300 Watt) configuration, making Earthsafe kits among the lowest cost in the industry. Earthsafe systems are the only UL listed solar residential kits available on the market.

Earth Safe Kit #	Description	# of Inverters	List Price	SC Solar Price		
10-3-1	1 roof mount + 4 SP75's	1	\$1,790.00	\$1,667.80		
10-6-2	2 roof mounts + 8 SP75's	1	\$3,580.00	\$3,361.75		
10-9-3	3 roof mounts + 12 SP75's	1	\$5,370.00	\$5,055.70		
10-12-4	4 roof mounts + 16 SP75's]	\$7,160.00	\$6,749.65		
10-18-6	6 roof mounts + 24 SP75's	2	\$10,740.00	\$10,137.55		
10-21-7	7 roof mounts + 28 SP75's	2	\$12,530.00	\$11,831.50		
10-24-8	8 roof mounts + 32 SP75's	2	\$14,320.00	\$13,525.45		
20-6-2	2 roof mounts + 8 SP75's	1	\$3,580.00	\$3,361.75		
20-9-3	3 roof mounts + 12 SP75's	1	\$5,370.00	\$5,055.70		
20-15-4	5 roof mounts + 20 SP75's	J	\$8,950.00	\$8,443.60		
20-24-8	8 roof mounts + 32 SP75's	۱	\$14,320.00	\$13,525.45		

http://www.scsolar.com/earth_safe_residential_photovolt.htm


12/08/01

APPENDIX B

DETAILED TECHNICAL INFORMATION Biomass

⁸⁰²⁶⁴⁷AI (R02112) 6-99

Consumer Energy Information: EREC Reference Briefs

EREC Brief: Comparing Heating Fuels

Selecting the fuel and heating system best suited for your needs depends on many factors: the cost and availability of the fuel and heating appliance, the heating appliance's and heat delivery system's efficiency, the heat content of the fuel, maintenance costs, comfort, and combustion emissions. Fuels are measured in physical units, such as gallons of oil, tons of coal, and cubic feet of natural gas. They are also measured by heat content: Btu (British thermal units), Therms (about 100,000 Btu), or Calories. One Btu is the amount of energy needed to raise the temperature of one pound of water 1°F. One Btu equals 252 Calories. One calorie is the amount of energy needed to raise the temperature of one gram of water by 1°C. Electricity is commonly measured in kilowatt-hours (kilo means one thousand); one kilowatt-hour (kWh) equals to 3,413 Btu (860,076 calories).

Btu Content of Fuels

Since the actual heat content of different types of fuels varies, the approximate average values are often used. The table below provides a list of the average heat content of different fuels. The figures below are general references for residential heating applications only. Commercial and industrial users should obtain more precise values from their fuel vendors.

Table 1: Average Heat Content of Fuels

Fuel Type	No. of Btu/Unit (Kilocalories/Unit)
Kerosene (No. 1 Fuel Oil)	135,000/gallon (8,988/liter)
No. 2 Fuel Oil	140,000/gallon (9,320/liter)
Electricity	3,412/kWh (859/kWh)
Natural Gas	1,028,000/thousand cubic feet (7,336/cubic meter)
Propane	91,333/gallon (6,081/liter)
Bituminous Coal	23,000,000/ton (6,400,000/tonne)
Anthracite Coal	24,800,000/ton (5,670,000/tonne)
Hardwood (20% moisture)*	24,000,000/cord (1,687,500/cubic meter)
Pine (20% moisture)*	18,000,000/cord (1,265,625/cubic meter)
Pellets (for pellet stoves; premium)	16,500,000/ton (4,584,200/tonne)

* Note: The moisture content of wood can greatly affect its heating value

These standards of measurement make comparisons of fuel types possible. For example:

The heat content of 2,000 pounds (907.18 kilograms) of bituminous coal roughly equals that of 22,337 cubic feet (626 cubic meters) of natural gas.

The heat content of 1,000 cubic feet (28 cubic meters) of natural gas equals about 90 pounds (41 kilograms) of bituminous coal.

One million Btu (252,000 kilocalories) is the heat equivalent of approximately 80 pounds (36 kilograms) of anthracite coal, 250 pounds (113.4 kilograms) of air-dried hardwood, 11 gallons (41.6 liters) of propane, 293 kilowatt hours of electricity, or seven gallons (26.5 liters) of No. 2 heating oil.

The efficiency of the heating appliance is an important factor when determining the production cost of a given amount of heat. In general, the efficiency is determined by measuring how well an appliance turns fuel into useful heat. (The condition of the distribution or delivery system also affects the overall system efficiency.) Many heating appliances must meet U.S. Department of Energy standards; and manufacturers are required by Federal law to place energy efficiency labels on the appliances. Table 2 provides average efficiencies for common heating appliances.

Table 2: Estimated Average Fuel Combustion Efficiency

of Common Heating Appliances								
Fuel Type - Heating Equipment	Efficiency (%)							
Coal (bituminous)								
Central heating, hand-fired	45.0							
Central heating, stoker-fired	60.0							
Water heating, pot stove (50 gal.[227.3 liter]) Oil	14.5							
High efficiency central heating	89.0							
Typical central heating	78.0							
Water heater (50 gal.[2227.3 liter]) Gas	59.5							
High efficiency central heating	92.0							
Typical central heating	82.0							
Room heater, unvented	91.0							
Room heater, vented	78.0							
Water heater (50 gal.[227.3 liter]) Electricity	62.0							
Central heating, resistance	97.0							
Central heating, heat pump	200+							
Ground source heat pump	300+							
Water heaters (50 gal.[227.3 liter])	97.0							
Wood & Pellets								
Franklin stoves	30.0 - 40.0							
Stoves with circulating fans	40.0 - 70.0							
Catalytic stoves	65.0 - 75.0							
Pellet stoves	85.0 - 95.0							

Comparing Fuel Costs

You can use the following method to estimate the costs of producing one million Btu (252,000 kilocalories) of heat using different heating appliances and fuels. To do this, you need to know the efficiency of the appliance and the unit price of the fuel. Contact your utility or fuel supplier for the unit price of the fuel in question. Remember, the fuel price should not be the sole measure for selecting a heating appliance.

e.

Click Here for More Information about Country Side

<u>Retail_Info</u>

- Product Overview
- ▶ Support
- ► Newsletter
- Specifications
- Company Profile
- Press Releases
- Dealer Locator
- 🔒 Home Page
- Products

Multi Fuel

- ▶ Country Side
- Wood Burning
- Magnum ZC
- Magnum Masonry
- Furnaces
- Magnum
- Gas Burning

 Fireplace Heaters
- Space Savers
- Celebrity
- Viking
- **Request Information**
 - Retail Sales and
- Home Owners & Consumers
- Reseller Sales

AES_Resellers_Info____

- Log in
- You must have a username and password to view this area. Please call AES for registration. 1-800-495-3196
- Downloads

Don't forget to check out the product **specifications** in Adobe PDF format. If you don't have Adobe Acrobat Reader 4.0, you can **download** this free software from Adobe:

Relative Cost of Heat Corn / Wood Pellet Appliances

9

Multi-Fuel Stove

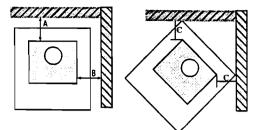
All heat output is measured in terms of BTU's. One BTU is the amount of heat needed to raise on pound of water one degree. Column 4 gives you a measure of the approximate cost of heat available from each alternative source of fuel. However, column 5 is the key column, as it incorporates the efficiency of a particular unit, to ensure the effective cost of that energy for heating your home.

It is important to realize that, even within a state, average energy or fuel prices can vary widely. So, to determine the specific cost comparisons in a particular region or Country, just change the price structure in Column 3 to determine the resulting costs on Column 4 and 5. Similarly, different efficiency levels can be substituted in Column 5 to allow flexibility here to test various heating units.

	* Prices may vary according to location	1 BTU Value per unit	2 Units Required to Produce 1,000,000 BTU'S	3 Fuel Price / Unit (approximate)	4 Total Cost to Produce 1,000,000 BTU'S	5 Effective Cost to Produce 1,000,000 BTU'S
on.	Dry Shelled Corn	9,000/pound	106.4/ pound = 1.9 bushels	\$1.75/ bus he l	\$3.46	@85% efficiency = \$4.07
	Electricity	3,413/KWH	293/KWH	7.5 cents/ KWH	\$21.98	@100% efficiency = \$21.98
ana (Natural Gas	100,020/cubic feet	1,030/cubic feet	\$1.30/100 cubic feet	\$13.39	@85% efficiency = \$15.75
i e	Fuel Oil	139,000/ gallon	7.1 gallons	\$1.00/gallon	\$7.19	@80% efficiency = \$8.98
	LP Gas	91,690/gallon	11 gallons	\$1.69/gallon	\$18.59	@80% efficiency = \$23.23
1	Wood	16,464,000/ CORD	.0607 cords	\$150.00/cord	\$9.11	@60% efficiency = \$15.18
	Wood Pellets	8,000/ pound	125 pounds .06 tons	\$175/ton	\$10.50	@87% efficiency = \$12.06

Corn Comparison

Now let's compare com to other fuel sources. An average home will burn 150 to 200 bushels of com a season, depending on the temperature.


1 BUSHEL OF SHELLED CORN = 5.5 GALLONS OF LP GAS

- 1 BUSHEL OF SHELLED CORN = 3.6 GALLONS OF FUEL OIL
- 1 BUSHEL OF SHELLED CORN = 148 KILOWATT HOURS OF ELECTRICITY
- 1 BUSHEL OF SHELLED CORN = 5.04 C.C.F. OF NATURAL GAS

About Country Side Multi-Fuel Stoves

WOOD-BURNING STOVES & INSERTS

Clearances

Before installation, we recommend you consult your local building official. If you use an approved protected wall system, some U.S. building codes allow for reduced wall clearances.

Note that Canadian clearances are based on testing to Canadian standards. See instruction manual for Canadian requirements.

	WALL CLEARANCES (inches)												
MODEL	A	В	C	D									
	BACK WALL TO STOVE	SIDE WALL TD STOVE	BACK WALL TO STOVE	STOVE BACK TO CENTER OF FLUE									
	Single Wall L-vent	Single Wall L-vent	Single Wall L-vent										
1900HT-M	<u>13-3/4</u> 6	<u>15</u> 15	<u>7-3/4</u> 5	9									
1500HT	<u>13</u> 8	<u>8-1/2</u> 9-1/2	<u>5</u> 5	5-3/4									
1003C	<u>16</u> 9**	<u>_16</u> 16	<u>15</u> 8**	9									
1400HT	<u>13</u> 8	<u>8-1/2</u> 9-1/2	5	-									

**May be reduced to 5.5* with pipe shield

	Insert to Combustibles or Trim (inches)												
MODEL	STOVE TOP TO MANTLE	STOVE TOP TO TRIM	STOVE SIDE TO TRIM	STOVE SIDE TO SIDE WALL	STOVE BACK TO CENTER OF FLUE								
BV400C	31	9	1	9	6								
BV4000C	32	24	9	17	5-1/2								
2800HT	27	16	6	6	6								

Appliance Specifications

MODEL	EL FEATURES						PERFORMANCE					SPECIFICATIONS									
	Catalytic	Non- Catalytic	Ash Drawer	Blower Fan	Gold Door	Mobile Home Compatible	EPA BTU Range	Maximum Bum Rate	Emission Rate (Grm/Hr)	Efficiency	Approx Heating Capacity	Burn Time (hours)	Shipping Weight (lbs)	Width (inches)	Depth (inches)	Height (inches)	Height with Flue (inches)	Flue Size (inches)	Fire Box Size (cubic ft)	Max Log Length (inches)	Fan Capacity {cubic f/mm
							LOW HIGH				Square Feet										
1400HT				*			11,700 37,000	58,730	6.6	63	1,500	6-8	285	27	21-1/2	26	28	6	1 85	20	160*
1900HT-M				*			11,500 39,000	61,900	2.5	63	2,000	6-8	380	27-3/4	27-1/2	33-1/2	32-3/4	6	2.0	18	160*
1500HT				*	*		11,700 37,000	58,700	6.6	63	1,500	6-8	345	27- 1/2	24	29-3/4	30-3⁄4	6	1 85	20	160 '
1003C				*			11,700 36,800	51,100	3.7	72	2,000	8-12	370	25-1/4	27	32-1/2	34-1/2	6	3.0	18	160 '
BV400C			*	Duai			11,000 48,100	66,800	3.0	72	2,400	8-12	455	29-1/2 F 21-1/2 R 48	<u>15-3/4</u> 26-1/4	20 ‡	32	8	3.7	24	500
BV4000C					*		6,500	56,800	19	72	2,000	8-10	390	<u>22-1/2</u> 42	<u></u>	21	32	6	2.4	18	250
2800HT				Duai			11,500 46,700	74,100	4 5	63	1,800	8-10	435	24F 23 R 42	15-1/2 28-1/4	20	32	6	2.9	18	500

Note that heating capacities are only approximations because so many factors influence the heatability of a home.

Specifications and clearances are subject to change without notice.

Standard feature * Optional ‡ Add 3 5" with optional Ash Drawerl

F = Front R = Rear Width of Surround

© 2001, Lennox Hearth Products All rights reserved

Lennox Hearth Products www lennoxhearthproducts com

Model	Width	Height	Depth	Heating Capacity, sq. ft.	Hopper Capacity	Burn Rate lbs./hr.	BTUs Per Hour	Ash Drawer	Ignitor
Afton Bay	26''	31"	23"	800-1800	60 lbs.	1.2-4.7	10,200-40,000	Full Pedestal	Yes
Prescott EX	24 3/4"	34"	26"	800-1800	65 lbs.	1.2-4.7	10,000-40,000	Full Pedestal	Yes
Prescott EXL	24 3/4"	31 3/4"	26"	800-1800	65 lbs.	1.2-4.7	10,000-40,000	Large Belly Pan	Yes
			Oregon A 814-23-90		ative Rules 23-909	<u></u>	Power Requir 120 Volts A.C. (200-250 watts)	ements	

Harman P61 Specifications

Built To A Standard, Not A Price

Harman Stoves Work!

BTU RANGE 8,000 to 61,000 HEATING CAPACITY 2,000 sg. ft. • HOPPER CAPACITY 72 lbs. • with optional hopper extension 132 lbs •FUEL Bio-Mass Pellets BLOWER SIZE 135 CFM •FLUE SIZE 3 in. OUTSIDE AIR SIZE 2-3/8 in. FUZE RATING 3 amp WEIGHT 249 lbs •HEIGHT 34-1/2 in. • WIDTH 23-1/2 in. • DEPTH 29-1/2 in. CLEARANCE TO COMBUSTABLES •) REAR 2 in. •) SIDE 18 in. • with rear side shields 10 in. • FRONT 16 in. • FLOOR TO CENTER OF FLUE 9 in.

and the second s

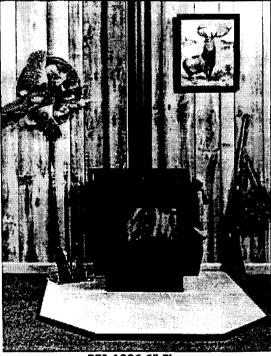
Return To Main Page

To Find A Dealer By Zip Code <u>Click Here...</u>
Please Fill Out The <u>Information Request Form?</u> For Additional Dealer Listing or other Info.
Are You Interested In <u>Becoming A Harman Stove Dealer?</u>
You Can Send Us <u>Email here.</u>

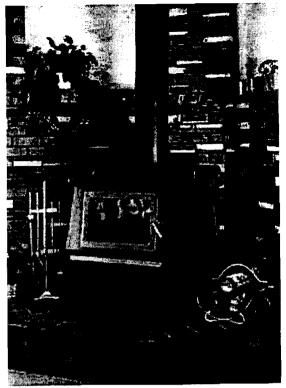
Please Note: There are no factory direct sales . You must go through a certified Harman Stove Company servicing dealership for purchasing stoves or parts.

Harman Stove Company

352 Mountain House Road


Blaze King Wood Products

KING & PRINCESS WOOD STOVES


Specifications	KEJ-1102	PEJ-1006
MIN HEAT OUTPUT	8,400 BTU/HR	6,400 BTU/HR
MAX HEAT OUTPUT	43,600 BTU/HR	40,000 BTU/HR
WOOD CAPACITY / OAK	90 lbs.	60 lbs.
WOOD CAPACITY / FIR	60 lbs.	40 lbs.
LOW BURN TIME	40 hours	20 hours
HIGH BURN TIME	8 hours	6 hours
BLOWER W/RHEOSTAT	130	CFM

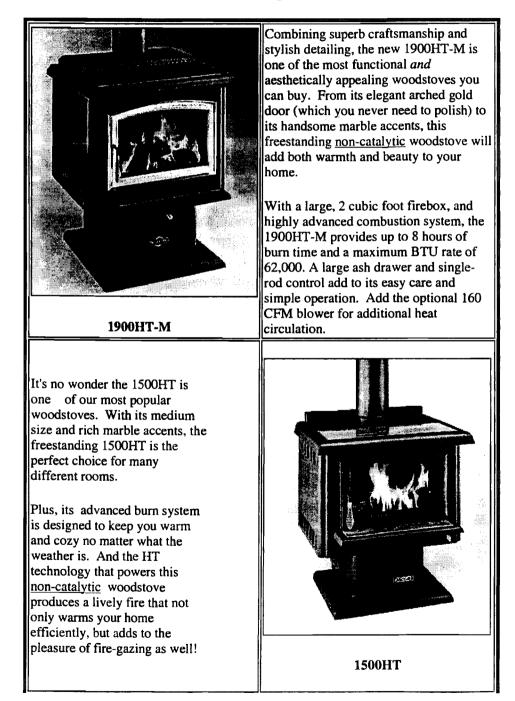
Blaze King Classic Models Feature Dual Blowers

Return to **Description** Wood Products | Home

PEJ-1006 6" Flue

KEJ-1102 8"

PEJ-1006L 6" Flue & Optional Ash Drawer


Blaze King Classic Wood Stoves

[About Us | Wood Products | Gas Products | Dealers | Parts/Service | Contact Us | Home]

The Earth Stove®

Our Freestanding Woodstoves

Fireplace Inserts

HOME DEALERS REQUEST INFO TECHNICAL INFO FACES

APPENDIX B

DETAILED TECHNICAL INFORMATION Solar Air Heating

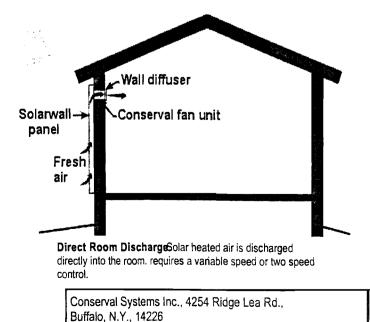
Conserval

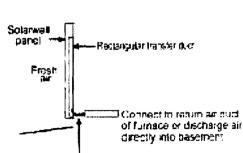
www.solarwall.com

Solar Residential Construction Manual

Six panel residential SOLARWALL® heater installed on the south west wall of home and connected to furnace return air.

Features


- metal construction
- install onto walls or roofs
- * attractive appearance
- * low cost
- * ideal for home or cottage


On a sunny day, this 110 sq.ft. SOLARWALL® heater, located in the gable, will raise the temperature of 150cfm of ventilation air about 50°F over ambiant.

Benefits

- * improves air quality
- provides ventilation air
- * reduces heat loss from wall
- * free heating of outside air
- * lower heating bills

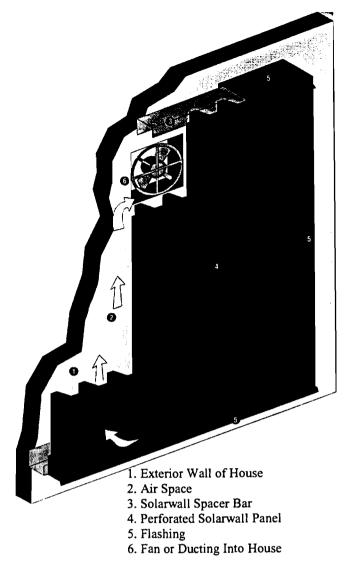
Ph. (716) 835-4903 Fax. (716) 835-4904

Conserval fair kind

Forced Air Furnace Connection and discharge is connected directly to the return air plenum of a forced air furnace. Wire fan directly to the furnace fan.

Conserval Engineering Inc., 200 Wildcat Rd. Toronto, Ont., M3J 2N5 Ph. (416) 661-7057 Fax (416) 661-7146

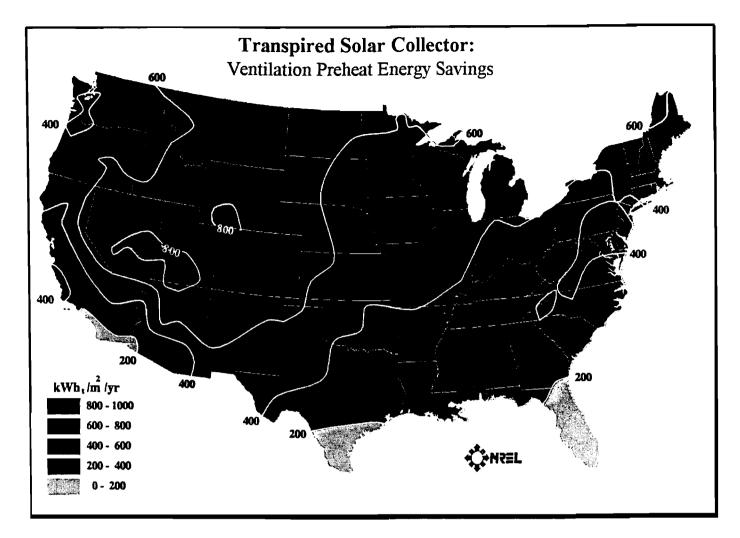
Solarwall Technology


Most commercial and industrial buildings replace their air once or twice every hour to provide fresh air and to get rid of contaminated air. Now your home can utilize the same Solarwall[®] technology that has solved indoor air quality problems in numerous industrial applications.

The patented Solarwall[®] fresh air heater is so efficient and cost effective that the U.S. Department of Energy's Inventions Program rated the Solarwall[®] heater in the top two percent of energy saving inventions.

The federally funded National Renewable Energy Laboratory in Colorado has called the Solarwall[®] system the most advanced solar thermal collector ever developed.

The Solarwall[®] heater has received the prestigious R&D 100 award, the Popular Science "Best of What's New Award" and numerous other international awards.


The Solarwall panels are available from Conserval. The panels can easily be installed onto a south wall as a do-it-yourself project. The solar heated air can be ducted from the panel directly into a room, heat recovery ventilator (HRV), or into a warm air furnace. On a sunny, winter day, the panel can produce a temperature rise of over 50°F (30°C) over the ambient air temperature.

Solar Heated Air

The SOLARWALL panels heat outside air and the amount of heat is based on volume of air passing through the solar panels and the degree of sunshine. The Air Temperature Rise curves (figure 2) can be used to calculate the temperature increase of the heated air. A sunny day has solar radiation between 250 to 300 Btu/hr/square foot of solar panel and a cloudy day may be as low as 50 Btu/hr/ft². Curves A to E show the amount of heat that will be generated for different volumes of air. Curve A shows one cubic foot per minute of air per square foot of SOLARWALL panel whereas curve E heats seven cfm/ft² or seven times more air but at a lower temperature increase. The temperature increase is from ambient air temperature since outside air is being drawn through the panels. The SOLARWALL panels can also be used for space heating needs in warmer months or whenever the temperature of the solar heated fresh air is above room temperature (70° F).

The first step is to determine the amount of outside air that is needed in the house or building. Carpets, press board, animals, smokers all contribute to gases and particles being released inside a house. Indoor air quality is important and the best way to solve the sick building syndrome is to bring in more fresh air. This is where SOLARWALL[®] can help. Most homes need half an air change per hour which translates into 100 cfm for a 1500 sq. ft. house. Half an air change is approximately equal to the air infiltration in many houses so adding solar heated fresh air will help to reduce or eliminate infiltration and drafts sometimes found in older leaky houses. In new air tight houses, it is important to plan for heated fresh air to maintain good air quality.

The next step is to determine the cost of energy used to heat the building. Electric heat is expressed in kWh units and one can merely take the cost per kWh from the electric bill and multiply it by the total annual energy savings. If the furnace uses gas, oil or propane, it will be necessary to convert the energy units. In order to compare costs of different fuels, use the following conversion factors. These numbers assume a 100% burner efficiency. Actual burner efficiency will range from 60% to 90% depending on fuel source and burner type.

Electric - normally 100% Gas and Propane - normally 70% for most older burners to 90% for condensing furnaces Oil - normally 60% to 80%

Useful Conversion Factors

1 kWh per square meter = 317 BTU per square foot 1 kWh = 3,413 BTU

1 MCF (1,000 cubic feet) natural gas contains 1,000,000 BTU of heat = 293 kWh

1 cubic meter of natural gas contains 35,300 BTU of heat = 10.3 kWh

- 1 gallon of fuel oil contains 138,000 BTU of heat = 40 kWh
- 1 cubic foot of propane contains 2,500 BTU of heat = 0.73 kWh
- 1 pound of propane contains 21,500 BTU of heat = 6.3 kWh

Example

A house in Milwaukee is installing 100 ft² (9.3 m²) of SOLARWALL panels to heat up to 150 cfm of air. From the NREL graph, the solar panels will save approximately 500 kWh /m² each year.

If the house is electrically heated and electricity costs \$0.10/kWh, the total savings are:

9.3 $m^2 x 500 kWh/m^2 x$ \$0.10/kWh = \$465 each year

If gas furnace with burner efficiency of 70% and gas costs \$6.00/MCF, total savings are:

 $9.3 \text{ m}^2 \text{ x } 500 \text{ kWh/m}^2 \text{ x } \$6.00/\text{MCF} / 293 \text{ kWh/MCF} / 0.7 = \136 each year

Heat Storage

The purpose of a heat storage bin is to store excess solar heat during the day for use at night. Experience has shown that a typical house with less than 200 ft² (20 m²) of solar collectors will not have enough solar heat collected to require a separate storage facility.

Systems with larger collector areas relative to the normal heat demand will require heat storage for the collected heat to be fully utilized. Retrofit systems which may encounter difficulty installing a rock storage bin could consider an external rock bin outside the house, or reducing the collector area and eliminating the storage, or else storing the excess heat in a domestic hot water preheating system.

In new construction there is more flexibility. Multi-day heat storage is possible but the size and cost of such a large rock bed makes them impractical. Most designs are based on accumulating the total solar heat collected during one sunny winter day. The size is thus based on the maximum daily solar radiation and the collector area used.

During the winter months when the heating requirements are high, a properly sized solar heating system with rock storage will provide only a few hours of stored solar heat each sunny day. In a typical cold season, often with cloudy conditions, stored heat will usually not be

sufficient for the night, and auxiliary heat will be needed. Rocks throughout the rockbed will then be at room temperature the next morning before solar heat collection begins. A storage system is advantageous during the spring and fall months when more sunshine is available and the heating requirements are lower. Unused stored heat can carry over to the next morning providing for the withdrawal of solar heat the day after it has been collected.

Recommendation

In order to achieve an economical solar heating installation, it is recommended that heat storage not be included at this time for SOLARWALL[®] projects with less than 200 square feet (20 square meters) of collectors. Since most homes will be in this group, heat storage is not included in this manual.

PRODUCT INFORMATION

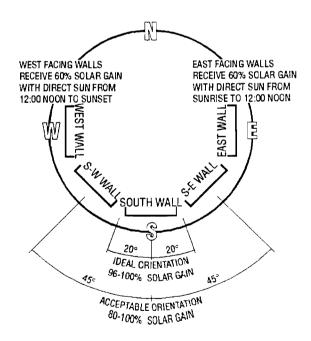
SOLARWALL Panels

The SOLARWALL panels are made from aluminum or galvanized steel and have a baked on, heat absorbing coating. Both steel and aluminum perform the same but aluminum is lighter and easier to cut. Black coated panels will absorb 95% of the radiation falling on its surface, grey 86%, dark brown 90%. Other colors may also be available in small quantities depending on material in stock.

The residential panels have been designed for shipment by UPS which tend to have lower shipping costs. This restricts the maximum size to approximately four feet by three feet. Panels longer than four feet can be made and shipped by other carriers. Shipments are generally made from Buffalo NY or Toronto Canada. If ordering panels for immediate shipment, please check with Conserval for availability. If planning for a new building with two or more months lead time, you may be able to obtain additional colors, profiles, and or custom length panels depending on work in progress.

Design Criteria

Collector Angle


The sun's position in the sky will vary depending on the latitude and the month of the year. In winter the sun will have a low angle relative to the horizon and it will reach a maximum angle in June. Solar heating is most efficient when the sun's rays are perpendicular to the solar collector. If the collector is to be used for space heating then the panel should be closer to vertical to maximize the winter sun angle. Solar designers have traditionally recommended that collectors used for space heating applications be sloped at the degree of latitude, plus 10° to 15°. By having the collectors at this slope, the incident radiation is maximized during the months in which there is a space heating requirement however, there are other factors to consider. Unless the collectors can be supported on a sloped roof near this angle, a collector support rack must be built. In areas where snow is common and may accumulate, the collector slope should be at least 45 degrees to allow the snow to slide off the panels.

A vertical collector will perform close to that of a 60 degree sloped collector without any ground reflectance. When ground reflectance is considered, a wall mounted panel actually performs better with as much as 15% to 30% higher gain depending on the amount of snow. A vertical wall mounting will generally be more cost effective for solar space heating than a sloped surface in northern latitudes.

Collector Orientation

The available solar gain for vertical solar heaters facing south, and between east and west is illustrated in Figure 4. The solar panels absorb most sunlight when facing south plus or minus 20°. If the south wall is not suitable, consider either or both east and west walls. If a large volume of air is to be heated, all three walls can be utilized. Remember, only the solar contribution is affected by collector orientation, the wall insulation benefit remains the same for all walls.

Fig. 4 Solar heating potential for vertical solar collector at different orientations.

Solar Heating Efficiency

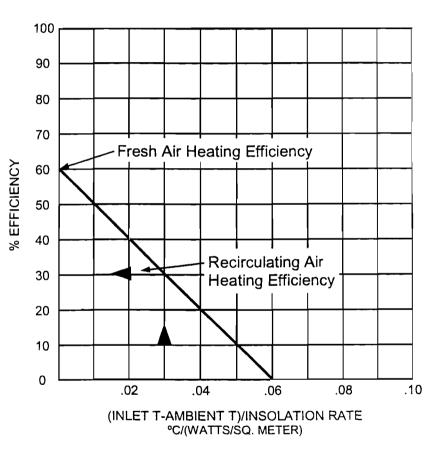
The efficiency of a solar collector is highest when the temperature of the air entering the solar panel equals ambient temperature. This occurs with the SOLARWALL heater since outside air always enters the system.

In space heating designs, building return air enters a solar panel to be heated above room temperature. On cold, overcast days, there may be insufficient solar energy to achieve this, whereas, the perforated panel heat gain, whether it be a raise of two or twenty degrees, is useful energy. The perforated panel heats outside air, not recirculated air, for maximum efficiency.

Performance Example

Using the solar efficiency curve in Figure 5, the solar performance of the perforated panel can be compared to conventional solar heating systems.

Assume:


Room Air Temperature: 20°C Outside Temperature: -10°C Solar Radiation: 1000 W/m²

(a) Recirculating room air through solar panels:

X-axis intercept (20-(-10)) 1000=0.03; therefore, efficiency is 30% from graph.

(b) Drawing ventilation (outside) air through solar panels: X-axis intercept (-10-(-10)) /1000=0; therefore, efficiency is 60% from graph.

Performance of the SOLARWALL system can be double that of recirculating solar heating designs.

Pick the Wall or Roof First

The SOLARWALL cladding absorbs most sunlight when facing south plus or minus 20°. If the south wall is not suitable, consider either or both east and west walls. If a large volume of air is to be heated, all three walls can be utilized. Only the solar contribution is affected by collector orientations. The wall insulation benefit remains the same.

Pick the Wall or Roof First

The SOLARWALL cladding absorbs most sunlight when facing south plus or minus 20°. If the south wall is not suitable, consider either or both east and west walls. If a large volume of air is to be heated, all three walls can be utilized. Only the solar contribution is affected by collector orientation, the wall insulation benefit remains the same.

By mounting the solar panels onto a south wall, there is an insulating effect on that wall. Heat losses from a building through the wall are picked up by the air stream and returned to the building when the fans are running. The wall acts as a huge heat exchanger recovering any heat loss. It provides an equivalent insulation value of RSI 10 or K value of 0.1.

If no wall is suitable or available, consider using a south facing roof. The slope of the roof should be at least 30° and preferably more. If snowfall occurs often at the proposed site, the minimum slope should be 45° to allow the snow to slide off the roof.

In new construction, the capital cost of a SOLARWALL cladding system is either similar to or slightly higher than conventional walls. In retrofit situations, the perforated solar cladding can be applied over most existing walls of block, metal, glazing, or precast concrete. A few obstructions on a wall should not present a problem.

Air Flow

Air in a solar wall system will normally travel in two directions. Once air enters the panels through the perforations it will travel vertically to the plenum or canopy at the top, then horizontally to nearest fan intake. It is important to balance air flows to ensure that air enters through the entire panel surface, otherwise, some of the solar heat may be lost.

Roofs

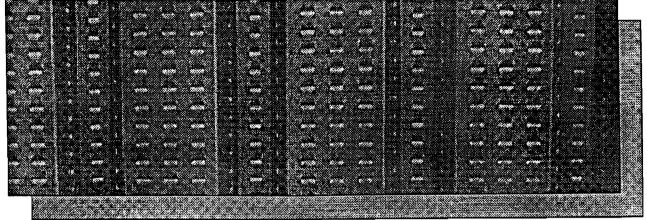
SOLARWALL panels can be roof-mounted provided snow can slide off and the main roof is waterproof. The solar sheets directly over the air intake opening must not be perforated to prevent water from entering air intake.

Designing SOLARWALL Heaters - Reference Guide

1. Decide on solar panel size and location. Is south wall suitable, if not, consider east or west walls. Note that a south wall may actually be south west, and the east wall would then be south east. In this case, both walls could be utilized effectively.

2. Determine volume of outside air required in building. Heat as much fresh air as possible. This will improve indoor air quality without increased fuel costs.

3. Calculate volume of air per area of solar heater, then refer to temperature chart to determine expected temperature rise.


4. Select colour, profile and type of canopy plenum.

SOLARWALL® Panels

The SOLARWALL panels must be fastened securely to a south facing wall or steep roof creating an air gap of three to four inches (thickness of a 2×4 or brick). Conserval offers a kit which combined with locally sourced lumber

will close off the sides and ends of the panels and also support the SOLARWALL panels off the wall.

SOLARWALL[®] SW100 Panel

SOLARWALL[®] Profile: SW100 Panel

Fan

A fan is needed to draw air through the solar panels. If the panels are connected to the return air on the house furnace fan and there is enough suction, a separate solar fan may not be required. Amount of air should be between 2 to 4 cfm per square foot of SOLARWALL panel. If a booster fan is needed, simply wire the solar fan to the furnace fan motor so they both operate at the same time. The solar fan can also have a manually operated on off switch.

If the fan discharges solar heated air directly into the house, then a fan and some type of control are necessary. Conserval offers a fan which will deliver up to 170 cfm of air. The volume of air will depend on resistence to airflow

Diffuser

The airflow recommended in the system sizing table is the minimum recommended. You may prefer to have more rather than less. To control the airflow from the caused by length of ducts, bends in ducts and air tightness of house. The fan manufactured by Comair Rotron, uses 24 V power and 25 watts, suitable for either ac or dc power sources. If dc, a 24 V photovoltaic panel (or 2-12 volt panels in series) may be used which will also act as solar controller turning on when solar energy is available and varying the speed as required. If ac power, Conserval supplies an ac/dc rectifier and a 24 volt transformer which allows installer to connect to 110 volt power supply.

Solar controllers, which turn the fan on and off depending on the amount of heat, are also available.

fan a manual diffuser can be used. Heating register diffusers are available from most building supply stores.

Fan and Controls

Conserval Model 200 Series Fan Unit

MODEL 201 - 6" Metal Duct Collar

Model 201

The fan unit comes complete with a low noise, long life brushless axial fan mounted in a sturdy steel housing. It features a backdraft damper to reduce air leakage when the system is not operating. The unit neatly fits into a 7" by 6" wall opening. The fan can supply up to 200 cfm and can operate on 24 volts DC, or 24 volts AC supplied by the Model T1 transformer below. Model 201 comes with a 6" metal duct collar on the intake and discharge. Specifications:Supply Voltage: 24 VAC; Power Consumption: 24wattsDimensions: 7" wide x 6" high x 8" deep; Weight: 4.5 lbs.

MODEL T1 Power Supply Transformer

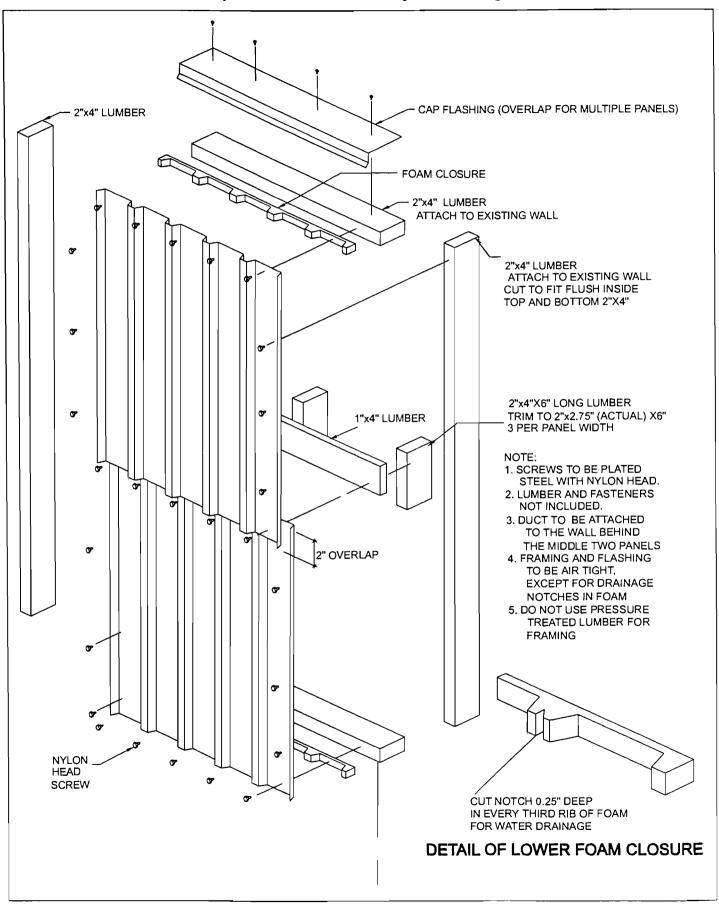
This CSA certified transformer steps down 120 volts AC to 24 volts AC @ 40 VA output to power the 200 series fan unit. It comes with stripped wire input leads and screw terminal output. It has a nipple locknut mount for flat surface installation and bracket for panel installation.

SOLARWALL® Control Options and Accessories

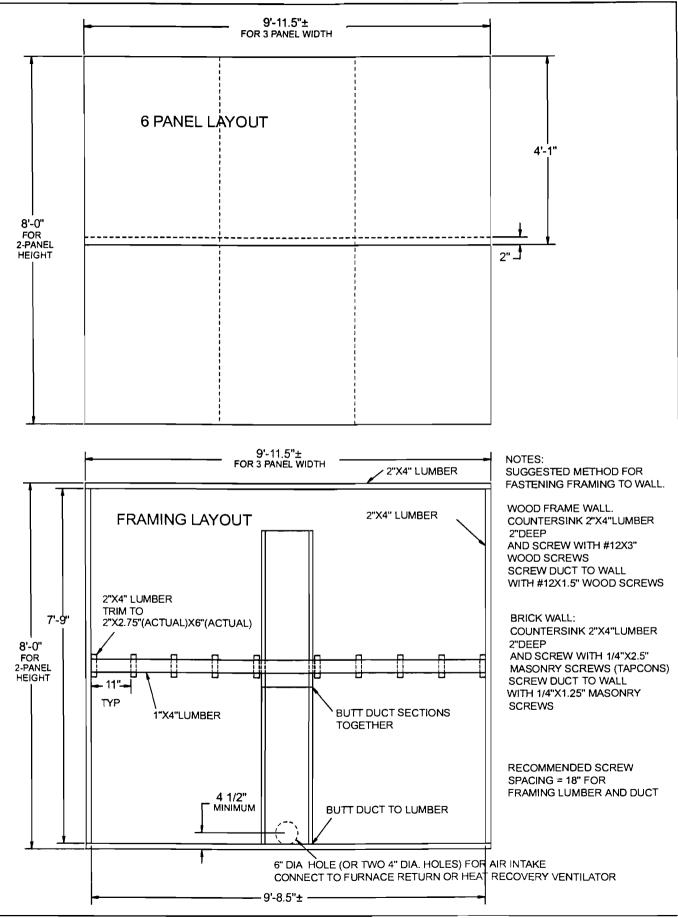
Different control options are available depending on how the system is to be used. If the system is connected to the return air duct of a forced air furnace, no control is required. Simply wire the supply transformer to the furnace fan motor so they both operate at the same time. The fan unit can be manually operated by switching power to the fan off and on. Automatic temperature control can be provided by using the model A350AA-1C control below. Automatic fan control can also be provided by using the solar electric panel below.

MODEL A350AA-1C Temperature Control - Fan Control Option

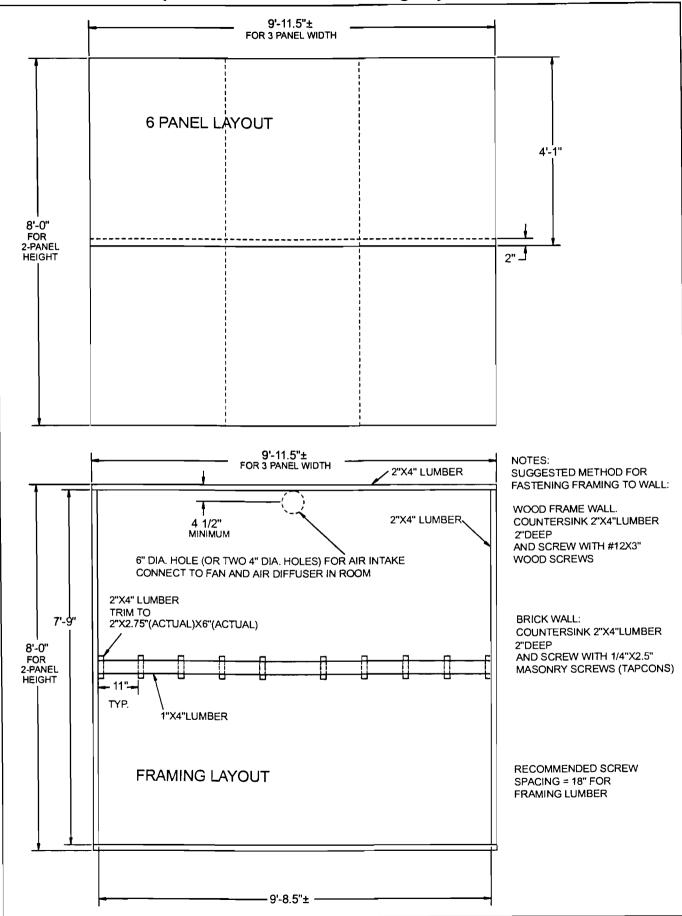
The temperature control is recommended if ducting the SOLARWALL[®] directly into a room. This advanced electronic control is designed to provide reliable, efficient operation of your SOLARWALL[®] air heating system. It will turn the Model 200 fan unit on when the temperature inside the SOLARWALL[®] panel is higher than the setpoint. It features fast and easy operation, 1 year limited warranty. It comes with an electronic temperature sensor.

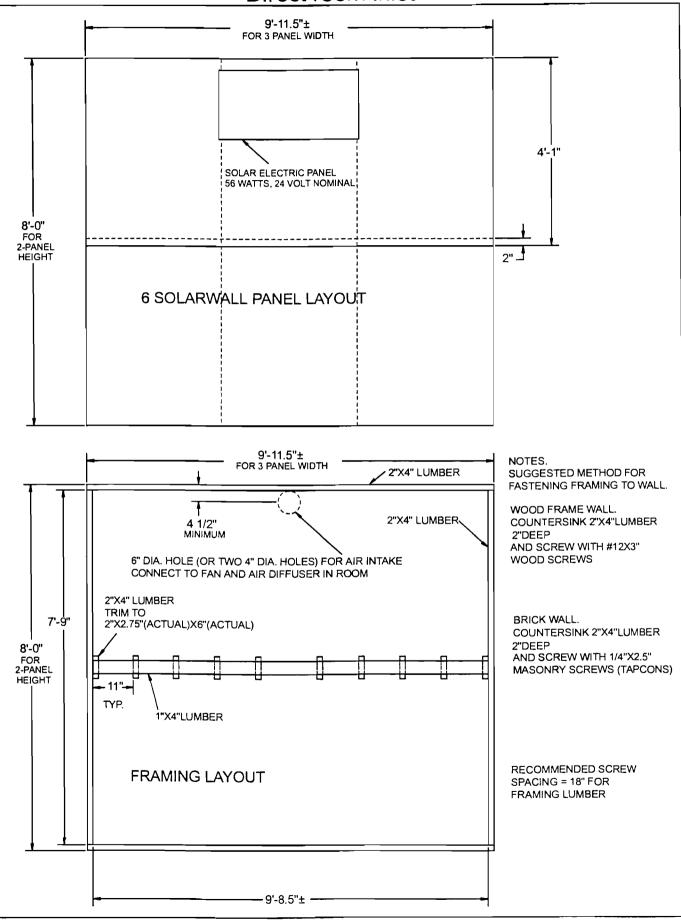

Manufacturer- Johnson Controls Specifications:Supply Voltage: 24 VAC Setpoint: -30 to 130°F Differential: 1-30°F

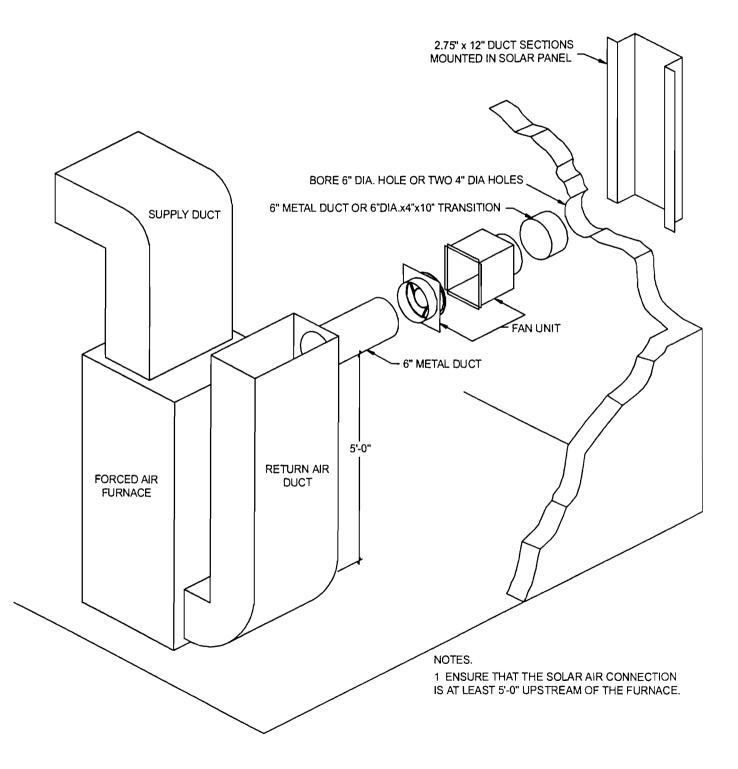
Solar Electric Panel (Photo-voltaic Module) - Fan Power and Control Option


This solar electric panel will provide both the power and control for the SOLARWALL[®] fan. When the sun shines the panel produces electricity and powers the fan, drawing heated air from the SOLARWALL[®] panels. At night the solar electric panel produces no electricity and the fan is automatically shut off. No connection into any home wiring is required, as this is a stand alone system. 56 watt, 24 volt DC nominal solar electric panel with tempered glass and anodized aluminum frame, complete with mounting hardware (to power Model 201 fan).

Manufacturer- Evergreen


SOLARWALL® panel assembly - using wood framing


SOLARWALL® panel and wood framing layout - basement inlet


SOLARWALL® panel and wood framing layout - direct room inlet

SOLARWALL[®] + solar electric panels and wood framing layout Direct room inlet

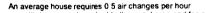
Fan to furnace assembly

SOLARWALL System Sizing and Option Chart

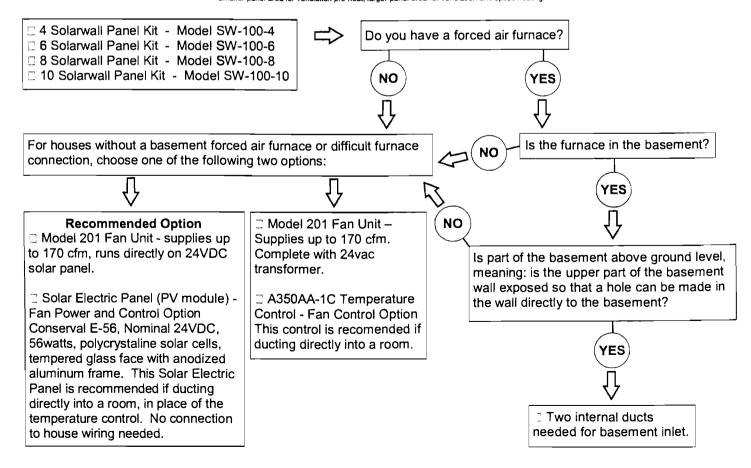
Do you have an unshaded wall facing south, southeast or southwest? Dash

Sorry, per next hour

NO


Sorry, perhaps your next house will have good exposure.

What size is your house?


Based on the table below, choose either a 4, 6, 8 or 10 panel kit which includes Solarwall panels, foam gasket (closure), plated steel nylon head screws (color matched) and cap flashings (color matched). This kit is for two rows of panels, one above the other. Call for assistance on other configurations.

Solarwall panel is fabricated from 26 gauge galvanized steel, black or brown coated. The panel has a ribbed profile and is approximately 49" long and 41.5" wide for coverage of 48" long x 39.4" wide.

HOUSE AREA (m²)	HOUSE AREA (ff ²)	AIR FLOW cfm	AIR FLOW (m ³ /h)	PANEL AREA (each panel is12 ft ²)	HEAT OUTPUT (maximum)
93	1,000	70	120	4 panels	5,300 btu/hr
140	1,500	100	170	6 panels	8,000 btu/hr
186	2,000	135	230	8 panels	10,600 btu/hr
232	2,500	170	290	10 panels	13,300 btu/hr

For homes with heavy smokes, double the panel area and fan size *Smaller panel area for ventilation pre-heat, larger panel area for ventilation and space heating

SOLARWALL PANEL ORDER FORM (US)	QTY.	PRICE	TOTAL
4 Solarwall Panel Kit- Model SW-100-4 □ black □ dark brown (check one) The kit includes the following, four Solarwall panels, foam closure, plated steel nylon head screws (color matched), two cap flashings (color matched), this kit is for two rows of two panels one above the other (call for assistance on other configurations). Solarwall panel is fabricated from 26 gauge galvanized steel black or dark brown coated. The panel has a ribbed profile and is approximately 49" long and 41.5" wide for coverage of 48" x 39.4". 60 lbs		X 199.00	
6 Solarwall Panel Kit- Model SW-100-6 \Box black \Box dark brown (check one) The kit includes the following, six Solarwall panels, foam closure, plated steel nylon head screws (color matched), three cap flashings (color matched), this kit is for two rows of three panels one above the other (call for assistance on other configurations). Solarwall panel is fabricated from 26 gauge galvanized steel black or dark brown coated. The panel has a ribbed profile and is approximately 49" long and 41.5" wide for coverage of 48" x 39.4". 85 lbs		X 298.00	
8 Solarwall Panel Kit- Model SW-100-8 ☐ black ☐ dark brown (check one) The kit includes the following, eight Solarwall panels, foam closure, plated steel nylon head screws (color matched), three cap flashings (color matched), this kit is for two rows of four panels one above the other (call for assistance on other configurations). Solarwall panel is fabricated from 26 gauge galvanized steel black or dark brown coated. The panel has a ribbed profile and is approximately 49" long and 41.5" wide for coverage of 48" x 39.4". 120 lbs		X 397.00	
10 Solarwall Panel Kit- Model SW-100-10 ☐ black ☐ dark brown (check one) The kit includes the following, ten Solarwall panels, foam closure, plated steel nylon head screws (color matched), three cap flashings (color matched), this kit is for two rows of five panels one above the other (call for assistance on other configurations). Solarwall panel is fabricated from 26 gauge galvanized steel black or dark brown coated. The panel has a ribbed profile and is approximately 49" long and 41.5" wide for coverage of 48" x 39.4". 145 lbs		X 495.00	
Internal duct - Basement Furnace Option Two 40" long ducts required for each of the above kits if ducting to basement furnace. 19 lbs		X 29.00	
A350AA-1C Temperature Control - Fan Control Option This control is recommended if ducting directly into a room. (requires fan model 201) 2 lbs		X 99.00	
Solar Electric Panel (PV module) - Fan Power and Control Option Conserval E-56, Nominal 24VDC, 56watts, polycrystalline solar cells, tempered glass face with anodized aluminum frame. This Solar Electric Panel is recommended if ducting directly into a room, in place of the temperature control. No connection to house wire needed. (Requires fan model 201) 32 lbs		X 399.00	
Extra Solarwall Panel Model SW-100 \square black \square dark brown (check one) Solarwall panel is fabricated from 26 gauge galvanized steel black or dark brown coated. The panel has a ribbed profile and is approximately 49" long and 41.5" wide for coverage of 48" x 39.4". 17 lbs		X 49 00	
Extra Screws \Box black \Box dark brown (check one) Order extra plated steel, nylon head screws with each extra panel (20 screws per panel). 2 lbs	Lot of 20 only	X 4.00	
Extra Foam ClosureOrder extra foam closure to seal edges of panel if installing in one horizontal row.Each piece is 36" long.1 lb		X 4.00	
Extra Top flashing [] black [] dark brown (check one)Order extra top flashing if installing panels in one horizontal row.3 lbs		X 25.00	
Conserval Model 201 Fan Unit The fan can supply up to 150 cfm and operates on 24 volts AC or DC. For 110 volt AC connections add transformer. 7 lbs		X 99 00	
24 VAC transformer 3 lbs		X 22.00	

Total From First Page	
Shipping and Handling	
Add the total weight in lbs. and multiply by \$1.30 for shipping and handling cost.	
Subtotal	
N. Y. Tax	
Total	

NAME:			
ADDRESS:			
CITY:	STATE:	ZIP:	
PHONE:	FAX#:		

Mail your order to Conserval Systems Inc. 4254 Ridge Lea Rd., Buffalo, NY 14226.

Payment can be made by personal check, certified check, MasterCard or Visa.

All orders will be shipped freight prepaid.

There is a \$12.00 freight charge for difficult delivery locations.

There is a 30% restocking fee on all returned orders.

We cannot ship to PO Boxes.

Delivery takes approximately two-three weeks.

CONSERVAL SYSTEMS INC.

4254 Ridge Lea Rd., Buffalo, NY 14226 Phone (716) 835-4903 Fax (716) 835-4904

Visit our web site at http://www.solarwall.com

Solarwall systems are protected by patents 1,196,825, 1,283,333, 1,326,619,4,774,932, 4,899,728 and 4,934,338. Solarwall is a registered trademark of Conserval Engineering Inc.

Conserval reserves the right to change specifications and/or prices without notice. Copyright © Conserval Systems Inc., 9/99

SOLARWALL PANEL ORDER FORM (CAN)	QTY.	PRICE	TOTAL
4 Solarwall Panel Kit- Model SW-100-4 \Box black \Box dark brown (check one) The kit includes the following, four Solarwall panels, foam closure, plated steel nylon head screws (color matched), two cap flashings (color matched), this kit is for two rows of two panels one above the other (call for assistance on other configurations). Solarwall panel is fabricated from 26 gauge galvanized steel black or dark brown coated. The panel has a ribbed profile and is approximately 49" long and 41.5" wide for coverage of 48" x 39.4". 60 lbs		X 298.00	
6 Solarwall Panel Kit- Model SW-100-6 \Box black \Box dark brown (check one) The kit includes the following, six Solarwall panels, foam closure, plated steel nylon head screws (color matched), three cap flashings (color matched), this kit is for two rows of three panels one above the other (call for assistance on other configurations). Solarwall panel is fabricated from 26 gauge galvanized steel black or dark brown coated. The panel has a ribbed profile and is approximately 49" long and 41.5" wide for coverage of 48" x 39.4". 85 lbs		X 447.00	
8 Solarwall Panel Kit- Model SW-100-8 \square black \square dark brown (check one) The kit includes the following, eight Solarwall panels, foam closure, plated steel nylon head screws (color matched), three cap flashings (color matched), this kit is for two rows of four panels one above the other (call for assistance on other configurations). Solarwall panel is fabricated from 26 gauge galvanized steel black or dark brown coated. The panel has a ribbed profile and is approximately 49" long and 41.5" wide for coverage of 48" x 39.4". 120 lbs		X 595.00	
10 Solarwall Panel Kit- Model SW-100-10 ☐ black ☐ dark brown (check one) The kit includes the following, ten Solarwall panels, foam closure, plated steel nylon head screws (color matched), three cap flashings (color matched), this kit is for two rows of five panels one above the other (call for assistance on other configurations). Solarwall panel is fabricated from 26 gauge galvanized steel black or dark brown coated. The panel has a ribbed profile and is approximately 49" long and 41.5" wide for coverage of 48" x 39.4". 145 lbs		X 742.00	
Internal duct - Basement Furnace Option Two 40" long ducts required for each of the above kits if ducting to basement furnace. 19 lbs		X 39.00	
A350AA-1C Temperature Control - Fan Control Option This control is recommended if ducting directly into a room. (requires fan model 201) 2 lbs		X 149.00	
Solar Electric Panel (PV module) - Fan Power and Control Option Conserval E-56, Nominal 24VDC, 56watts, polycrystalline solar cells, tempered glass face with anodized aluminum frame. This Solar Electric Panel is recommended if ducting directly into a room, in place of the temperature control. No connection to house wire needed. (Requires fan model 201) 32 lbs		X 549.00	
Extra Solarwall Panel Model SW-100 \square black \square dark brown (check one) Solarwall panel is fabricated from 26 gauge galvanized steel black or dark brown coated. The panel has a ribbed profile and is approximately 49" long and 41.5" wide for coverage of 48" x 39.4". 17 lbs		X 75.00	
Extra Screws \Box black \Box dark brown (check one) Order extra plated steel, nylon head screws with each extra panel (20 screws per panel). 2 lbs	Lot of 20 only	X 6.00	
Extra Foam ClosureOrder extra foam closure to seal edges of panel if installing in one horizontal row.Each piece is 36" long.1 lb		X 6.00	
Extra Top flashing _ black _ dark brown (check one) Order extra top flashing if installing panels in one horizontal row. 3 lbs		X 35.00	
Conserval Model 201 Fan Unit The fan can supply up to 150 cfm and operates on 24 volts AC or DC. For 110 volt AC connections add transformer. 7 lbs		X 149.00	
24 VAC transformer 3 lbs		X 29.00	

Total From First Page		
Shipping and Handling		i
Varies upon destination. Approximately \$70 for the 6 Solarwall Panel Kit (SW-100-6).		
Subtotal		
GST and PST (if applicable)		
Total		

NAME:			
ADDRESS:			
CITY:	PROVINCE:	POSTAL CODE:	
PHONE:	FAX#:		

Mail your order to Conserval Engineering, 200 Wildcat Rd., Toronto, Ontario, M3J2N5. Payment can be made by certified cheque. We cannot ship to PO Boxes. Delivery takes approximately two-three weeks.

CONSERVAL Engineering

200 Wildcat Rd., Toronto, Ontario, M3J2N5 Phone (416) 661-7057 Fax (416)661-7146

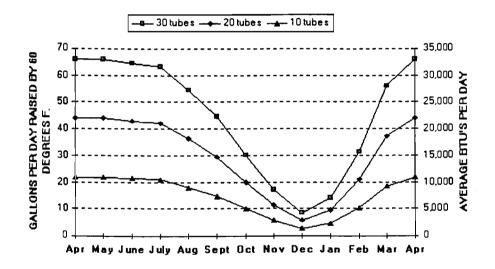
Visit our web site at http://www.solarwall.com

Solarwall systems are protected by patents 1,196,825, 1,283,333, 1,326,619,4,774,932, 4,899,728 and 4,934,338. Solarwall is a registered trademark of Conserval Engineering Inc.

Conserval reserves the right to change specifications and/or prices without notice. Copyright © Conserval Systems Inc., 9/99

APPENDIX B

DETAILED TECHNICAL INFORMATION Solar Water Heating



5560 Sterrett Place, Suite 115. Columbia, MD 21044 997-0778 Voice USA (410)

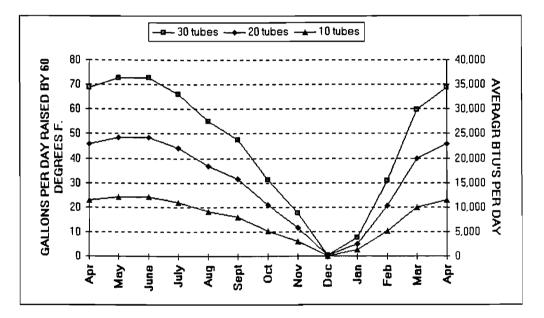
Anchorage, AK Annual Average Daily Solar Radiation

Latitude: 61.17 N Degrees Longitude: 85.73 W Degrees Elevation: 149 Meters System Tilt: Latitude Annual Total BTU's per square meter (10 tubes): 2,619,482

Please read the Collector Tube Efficiency and System Sizing sections before using this chart.

This page provides solar radiation values for Thermomax Solar Collectors and expected gallons of water raised by 60 degrees F. Radiation figures are from the Solar Radiation Data Manual, WBAN NO. 26451. Thermomax collector (average) efficiency of 70% (based on Florida Solar Energy Center, Solar Collector Test Report No. 97005) is used for this chart.

E-Mail: INFO@THERMOMAX.COM



5560 Sterrett Place, Suite 115. Columbia, MD 21044 997-0778 Voice USA (410)

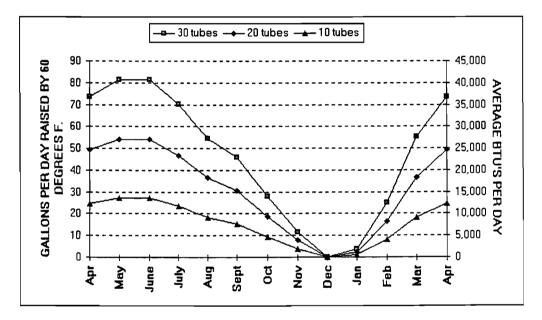
Fairbanks, AK Annual Average Daily Solar Radiation

Latitude: 64.82 N Degrees Longitude: 147.87 W Degrees Elevation: 138 Meters System Tilt: 50 Degrees Annual Total BTU's per square meter (10 tubes): 2,690,074

Please read the Collector Tube Efficiency and System Sizing sections before using this chart.

This page provides solar radiation values for Thermomax Solar Collectors and expected gallons of water raised by 60 degrees F. The average daily radiation data are from University of Wisconsin EES Report No. 44 - 2 (F - Chart Data). Thermomax collector (average) efficiency of 70% is used for this chart.

<u>E-Mail:</u> INFO@THERMOMAX.COM



5560 Sterrett Place, Suite 115. Columbia, MD 21044 997-0778 Voice USA (410)

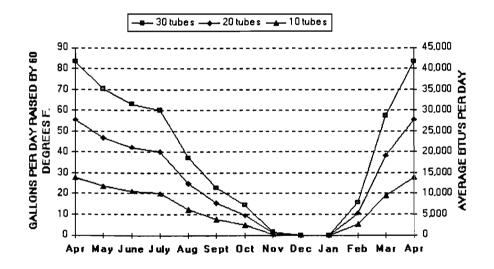
Bettles, AK Annual Average Daily Solar Radiation

Latitude: 66.92 N Degrees Longitude: 151.52 W Degrees Elevation: 205 Meters System Tilt: 40 Degrees Annual Total BTU's per square meter (10 tubes): 2,694,294

Please read the Collector Tube Efficiency and System Sizing sections before using this chart.

This page provides solar radiation values for Thermomax Solar Collectors and expected gallons of water raised by 60 degrees F. The average daily radiation data are from University of Wisconsin EES Report No. 44 - 2 (F - Chart Data). Thermomax collector (average) efficiency of 70% is used for this chart.

<u>E-Mail:</u> INFO@THERMOMAX.COM



5560 Sterrett Place, Suite 115. Columbia, MD 21044 997-0778 Voice USA (410)

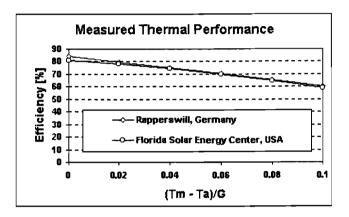
Barrow, AK Annual Average Daily Solar Radiation

Latitude: 71.30 N Degrees Longitude: 156.78 Elevation: 4 Meters System Tilt: Latitude Annual Total BTU's per square meter (10 tubes): 2,164,180

Please read the Collector Tube Efficiency and System Sizing sections before using this chart.

This page provides solar radiation values for Thermomax Solar Collectors and expected gallons of water raised by 60 degrees F. Radiation figures are from the Solar Radiation Data Manual, WBAN NO. 27502. Thermomax collector (average) efficiency of 70% (based on Florida Solar Energy Center, Solar Collector Test Report No. 97005) is used for this chart.

E-Mail: INFO@THERMOMAX.COM



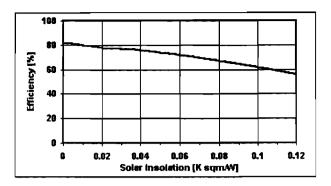
Collector Tube Efficiency

SOLAR COLLECTOR EFFICIENCY

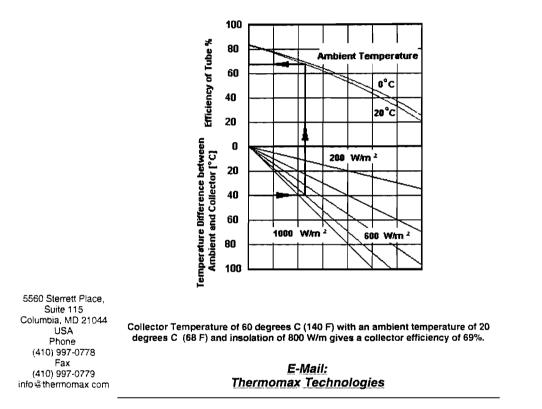
Thermomax collectors are tested by European and North American authorities. The test results of <u>Institute SPF at the</u> <u>Hochschul Rapperswil</u> of Switzerland leads to following thermal performance equations (Test Report No. 264, August 1997):

Efficiency of Collector = 0.84 - 2.02 (Tm-Ta)/G - 0.0046G[(Tm-Ta)/G]**2

Tests conducted by **Florida Solar Energy Center** of USA (FSEC Solar Collector Test Report No. 97005, May 1998) is in very good agreement with the performance test reported by SPF Institute:


Efficiency of Collector = 0.82 - 2.19 (Tm-Ta)/GEfficiency of Collector = $0.81 - 1.23 (Tm-Ta)/G - 0.0122G[(Tm-Ta)/G]^{**2}$

where:


Tm = mean collector temperature, (Toutlet+Tirlet)/2 [C] Ta = ambient air temperature [C] G = Solar irradiance [W/sq m]

These test results are shown in the following graph: (G= 800 W/sq m)

Thermomax offers following measured efficiency curve of the Thermomax and Mazdon collector system:

Thermomax evacuated solar collectors are specifically designed for all-year-round operation in regions with cold winters and also locations with high humidity such as the tropics. The following chart shows a practical approach to find collector tube efficiency for various insolation levels.

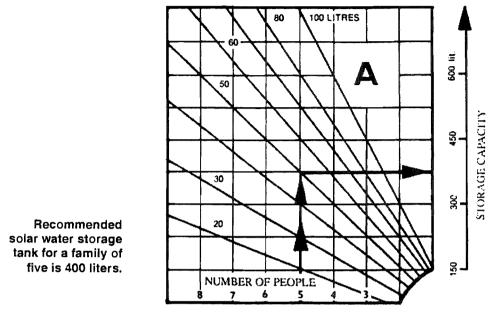
Collector Dimensions | System Sizing | Installation Photos | Application | Design Considerations Solar Energy Products | Electronic Products

General The most common application of Thermomax Solar Collector is domestic Information water heating, because hot water is needed year-round. When designing

- a solar water heating system, decide first how much hot water will be used per average day. Other information you will need is: Insolation, Hours of Sunshine per Year Orientation, Deviation from North/South line
- Inclination, Difference between local Latitude and Roof Angle International units of measurement are used for scientific communities..
- Step 1 Size the system based on number of People using hot water ...
- Step 2 Using local data, find hot water consumption per day, per person. ASHRAE recommends 20 gallons per day, per person.
- Step 3 Select the Solar Water Heater tank size.
- Step 4 Find Solar Insolation and hours of Sunshine per year.
- Step 5 Select the Solar Collector Installation location.
- Step 6 Calculate deviation from true North/South line.
- Step 7 Find local Latitude
- Step 8 Find Roof Angle or installation Tilt Angle.
- Step 9 Calculate the difference between local Latitude and Roof Angle.
- Step 10 Estimate Thermomax Tubes required.
- Step 11 Contact your local dealer for Delivery and Pricing information
- Example in the following four pages we are going to size a solar water heating system for a family of five. They have a hot water requirement of 50 liters per day, per person, with a local Annual Insolation of 1400 hours. Orientation of the roof is 30° West of South. The local Latitude is 45° and the roof angle 35° (inclination difference 10°). If your property is located in the US, go directly to US Insolation Charts.
 - Hot Water Consumption and Storage Capacity
 - Solar Insolation
 - Orientation
 - Inclination

Solar Heating Systems

Solar Electric Systems



Electronics Surface Mount Technologies

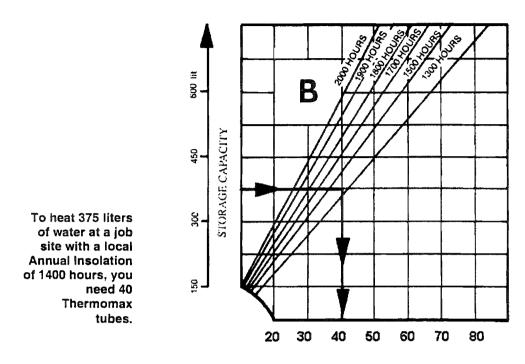
Consulting, Project Management Services

Hot Water Consumption and Storage Capacity

General Information When designing a Thermomax domestic solar water heating system for a family of five, determine first how much hot water the family will be using per average day. ASHRAE recommends 20 gallons per day per person.

The solar water heater storage tank for a family of five with a hot water consumption of 50 liters per day, per person is 375 liters as shown. In the United States, with higher hot water consumption, a 120-gallon tank is used.

The home may have a dishwasher, washing machine, several children taking daily showers or baths during the day, and all of this water usage must be figured into the total water needs.


Go To Next Step

Example In the following four pages we are going to size a solar water heating system for a family of five. They have a hot water requirement of 50 liters per day, per person, with a local Annual Insolation of 1400 hours. Orientation of the roof is 30° West of South. The local Latitude is 45° and the roof angle 35° (inclination difference 10°). If your property is located in the US, go directly to US Insolation Charts.

- Hot Water Consumption and Storage Capacity
- Solar Insolation
- Orientation
- Inclination

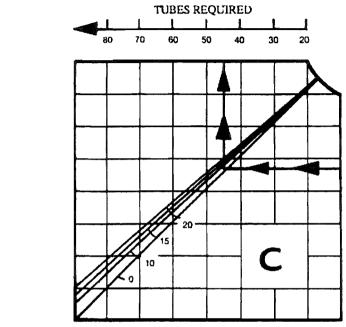
Solar Insolation

General When designing a Thermomax domestic solar water heating system Information for a family of five, determine first how much hot water the family will be using per average day. ASHRAE recommends 20 gallons per day per person.

Next find latitude, the amount of solar insolation, and number of hours of available sunshine at the job site location.

THERMOMAX can provide you with the expected solar energy figures for any month of the year.

Once the amount of hot water that must be supplied by solar heating system is known, use the above chart to find how many Thermomax tubes you need. The chart suggests 40 Tubes.


Go To Next Step

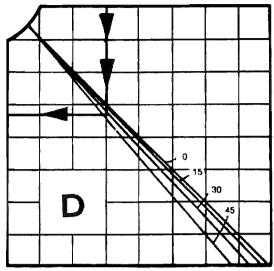
Example In the following four pages we are going to size a solar water heating system for a family of five. They have a hot water requirement of 50 liters per day, per person, with a local Annual Insolation of 1400 hours. Orientation of the roof is 30° West of South. The local Latitude is 45° and the roof angle 35° (inclination difference 10°). If your property is located in the US, go directly to US Insolation Charts.

- Hot Water Consumption and Storage Capacity
- Solar Insolation
- Orientation
- Inclination

Solar Collector Inclination Angle of Inclination Difference between Local Latitude and Roof Angle

To heat 375 liters of water at a job site with a local Annual Insolation of 1400 hours, roof orientation of 30 ° West of South, and an inclination difference of 10 °, you need 45 Thermomax tubes.

General Information The most desired angle of Inclination to mount the solar collector is the local Latitude. Positive difference between Latitude and Roof angle results better system performance in winter. Lower Solar Collector mounting angle than the local Latitude will result in greater system performance in summer. Variations of Solar Collector tilt angle for architectural reasons can be compensated with additional Thermomax tubes.


45 Thermomax tubes will supply hot water requirement of the above example by following Thermomax suggestions. For best result a 375 liters solar hot water storage tank should be used.

Example In the following four pages we are going to size a solar water heating system for a family of five. They have a hot water requirement of 50 liters per day, per person, with a local Annual Insolation of 1400 hours. Orientation of the roof is 30° West of South. The local Latitude is 45° and the roof angle 35° (inclination difference 10°). If your property is located in the US, go directly to US Insolation Charts.

- Hot Water Consumption and Storage Capacity
- Solar Insolation
- Orientation
- Inclination

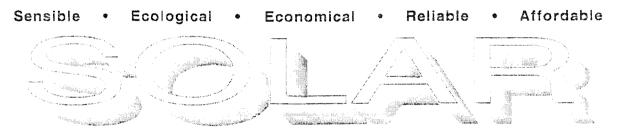
Orientation

To heat 375 liters of water at a job site with a local Annual Insolation of 1400 hours, roof orientation of 30 degrees West of South, you need 43 Thermomax tubes.

General Information The Solar Insolation charts are based on a Solar

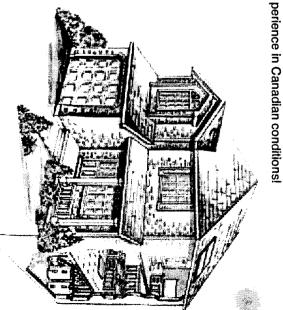
Collector facing true South/North line. When Solar Collectors are mounted east or west of true south/north, there is some loss of insolation. But it is not measurable at 5 degrees east or west. By angling the Solar Collector to face westward in the Northern Hemisphere, a greater amount of solar insolation can be absorbed in the late afternoon. However, there is some loss of solar insolation during the course of the day, when the Solar Collectors are mounted east of true south. A good deal of morning solar insolation is lost at the same time.

The following above chart suggests a correction parameter for deviation from North/South line.


When designing a Thermomax domestic solar water heating system, determine first how much hot water the family will be using per average day. Next find latitude, the amount of solar insolation, and number of hours of available sunshine at the job site location. Use the above chart to correct the effect of orientation of the roof (east/west orientation deviation).

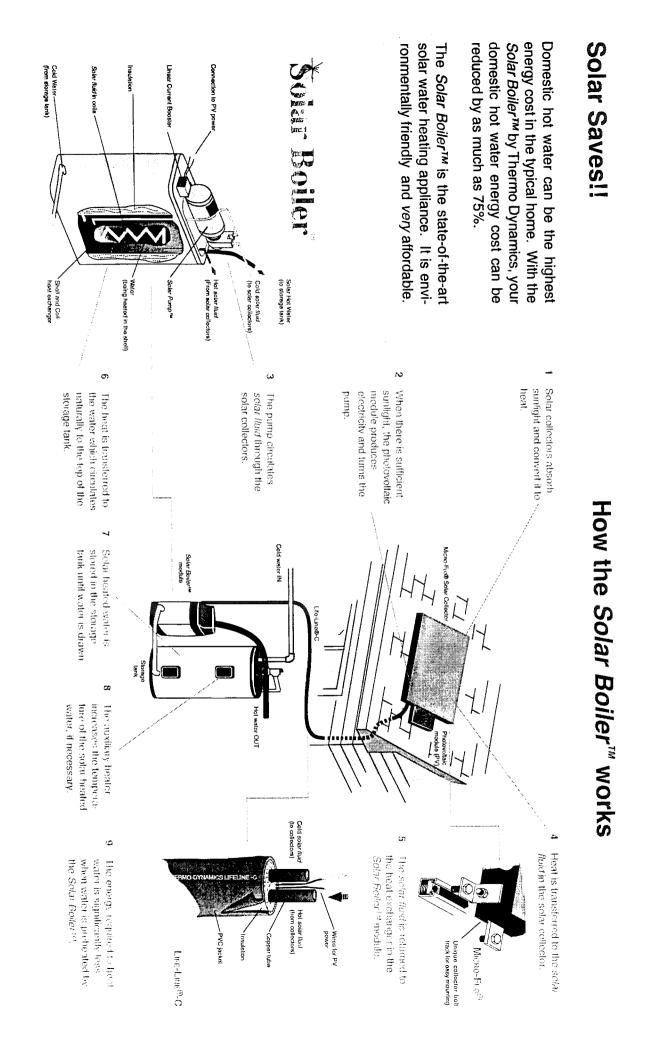
Go To Next Step

Example In the following four pages we are going to size a solar water heating system for a family of five. They have a hot water requirement of 50 liters per day, per person, with a local Annual Insolation of 1400 hours. Orientation of the roof is 30° West of South. The local Latitude is 45° and the roof angle 35° (inclination difference 10°). If your property is located in the US, go directly to US Insolation Charts.


- Hot Water Consumption and Storage Capacity
- Solar Insolation
- Orientation

Call now for more information and a <i>free</i> site Inspection, with NO obligations.	Solar energy is a sound investment in everyone's future <i>today</i> .	(PV) module controls the operation of the Solar Boller ¹⁷⁴ . The solar loop circulator, connected to the PV module, turns only when there is solar energy to heat the water in the storage tank.	The operation of the Solar Boiler Th is fully automatic throughout the entire year. A solar-powered photovoltaic	lired – for final heating, if required.	The Solar Boiler TM is used as a pre- heater in conjunction with your conventional domestic water heater. Cold water enters the Solar Boiler TM where it is heated by free, clean solar energy. The heated water is then delivered to a conventional water	 energy – is good for our environment does not pollute – even the pump used to circulate fluid from the solar collectors to the Solar BoilerTM heat exchanger is powered by the sun. 	A clean, renewable source of energy The Solar Boller ^{1M} uses renewable
Tei: (902) 468-1001 Fax: (902) 468-1002 email: solarinfo@thermo-dynamics.com Web: http://www.thermo-dynamics.com	Thermo Dynamics Ltd. 44 Borden Avenue Dartmouth, Nova Scotla Canada B3B 1C8	THERMO	<i>Solar BoilerTM</i> module makes it easy to install in both new construction and existing homes.	 Small diameter tubing, Life-Line⁴¹C, between the solar collectors and the 	 Micro-Flo[®] solar collectors have a unique bolt track design. This allows the mounting brackets to be fixed anywhere around the perimeter of the collector to ensure proper alignment with roof trusses. 	 All hardware necessary to integrate the Sclar BoilerTM with your conventional domestic water heater is included. 	Installation is easy Installation of the Solar Boiler ^{IM} is

SOLAR ELECTRIC HOT WATER


Thermo Dynamics Ltd., the largest manufacturer of solar water heaters in Canada, has developed the most efficient and reliable solar water heater in the world. This is the Thermo Dynamics *Solar Boiler*TM, with fifteen years of experience in Canadian conditions!

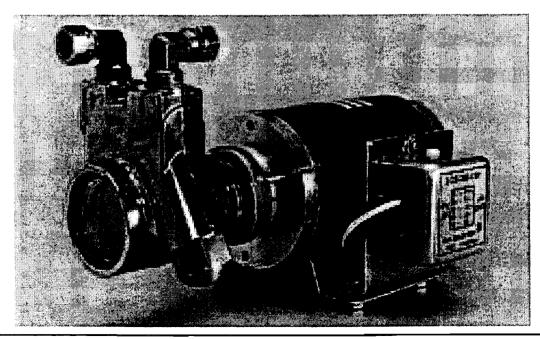
The Solar BoilerTM uses photovoltaic (PV) solar power, the sun's energy converted into electricity, and solar thermal collectors, to produce the cleanest, least expensive energy for hot water.

The Solar BoilerTM comes complete with a 10 year warranty from Thermo Dynamics Ltd.

Now is your opportunity to save money and reduce pollution by cutting your electricity and oil consumption. Now is the time for you to **GO SOLAR!!**

Solar Pump

Sensible, Ecological, Economical, Reliable The BEST Little Pump in the World !!


System Description

The sun powers the Solar Pump[™]. No batteries, no gasoline or diesel generator are required- only low-voltage, solar-generated electricity, eternally available and pollution free. The Solar Pump[™] system utilises a positive-displacement vane pump driven by a DC motor. A photovoltaic (PV) module drives the DC motor using a current booster that provides high performance at all levels of solar irradiance.

System Applications

The Solar Pump[™] is the perfect pump for a solar water heater. There are no electronic controller and temperature sensors to install, with none of the associated high-voltage wiring. For single-family home solar water heaters a 10 - 20 watt PV module is usually adequate. The PV module powers the Solar Pump[™] that circulates the solar collector fluid at the optimal flow rate to maximise the delivery of heat from the solar collectors. Installers love the Solar Pump[™] - it is so much easier to install than the conventional controller-based systems. Homeowners appreciate the fact that ALL the energy used to produce their solar-heated water comes from the sun, and none from the electrical grid. The Solar Pump[™] is also suitable for low-flow irrigation and general water pumping.

System Advantages The Solar Pump[™] will run 2000 hours per year in mid-latitude countries. Assuming your application requires a 35-watt PV module you can save 200 kilowatt-hours of purchased electricity each year if using the Solar Pump[™], or 2000 kilowatt-hours over the 10-year warranty period of the pump. These savings will more than cover the additional costs of the Solar Pump[™] relative to a standard "plug-in" pump. Not only is it economical to use the Solar Pump[™], but by using solar energy you reduce pollution. In fact, the Solar Pump[™] will eliminate up to two tonnes of CO2 emissions per year!!

Solar Pump™

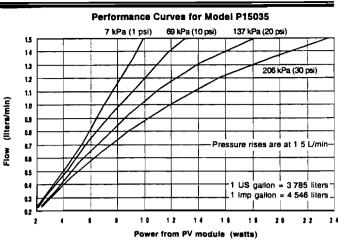
Technical Specifications

Consider all the advantages:

- quiet, maintenance-free operation
- self-priming, positive displacement
- life expectancy of more than 20 years
- 10-year warranty
- · easy and inexpensive to install
- provides for a healthier environment
- less exposure to electromagnetic fields (EMF)

System Configuration:

- sliding-vane brass pump with integral strainer
- DC motor complete with mounting feet
- pump-motor V-band coupling
- 3-ampere linear current booster
- · PV module, sized for your application


Pump

The pump is a brass body, vane pump, with special clearances and seals for high temperature protection to 90°C. Maximum pressure rise is 400 kPa, (60 psi). At the inlet and outlet ports the pump has standard compression fittings for 3/8" OD tube (9.53 mm OD); 1/2" OD (12.7 mm OD) with models P34100 and P45125.

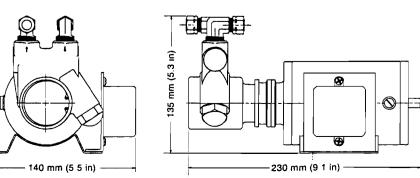
With the Solar Pump[™] flow rates range from 0.3 L/min (0.1 USGPM) with model P15035 at zero pressure rise and low solar irradiance to 4.5 L/min (1.2 USGPM) with model P45125 at 400 kPa (60 psi) pressure rise and full sun. The Solar Pump[™] operates in low sunlight - even at one-fifth of a full sun (200 W/m²).

The Solar Pump[™] is engineered for long life and super efficient operation to enable you to use the lowest possible power PV module. The Solar Pump[™] is equipped with a built-in strainer (100 mesh/125 micron). No parts are subject to corrosion - all wetted parts are stainless steel, brass and carbon. Each Solar Pump[™] is backed by a 10-year warranty.

The Solar $Pump^{TM}$ is a positive displacement pump, which means no time or equipment is required to purge air from the circulation loop. It is also self-priming, with a maximum suction lift of 2 meters (6 feet).

DC Motor

The Solar Pump[™] motor, because of its efficient design, is larger than motors designed to operate at 110 to 240 volts AC. Unlike standard motors that use electrical coils and electric current to create the magnetic field, which wastes precious electricity, we use efficient permanent magnets. To produce the torque required to boost the pressure of the pumped liquid we use a heavy-duty, large-diameter armature with thick copper windings to reduce parasitic power consumption. The result is amazing - even in very weak sun the motor produces enough power to start the pump, power that is produced in the "greenest" of all possible methods.


With durability and reliability in mind, the motor brushes and commutator are designed such that they will never require replacement when the motor is driven by a PV module under 50 watts peak power.

PV Module

Depending on the flow and pressure requirements of your application a 10 to 50 watt PV module powers the Solar PumpTM. A PV module with V_{mp} of 16-17 volts is required, which is typical of PV modules with 36 crystalline cells or 13 amorphous cells. Tell us your flow and pressure requirements and we will specify the correct pump model and PV module.

Linear Current Booster

The linear current booster (LCB) maximises the power delivery of the PV module to the DC motor. At full sun the PV module drives the motor at full speed. At lower sunlight levels the LCB converts PV power into high motor current to start the motor and keep it running at low RPM. This control strategy provides a flow rate proportional to the intensity of the solar radiation. The LCB is rated for up to 3 amperes of current from the PV module.

Maximum Flow Rates

Model #	Liters/min	USGPH	
P15035	15	24	
P19050	1.9	30	
P24070	2.4	38	
P34100	3.4	54	
P45125	4 5	71	

Weight = 3.9 kg (8 5 lbs)

Solar Energy

Solar Radiation

Solar Economics Economic Benefits of a typical Solcan Residential SDHW

Solcan SDHW system cost - \$3,400 plus taxes 2 - 4 ft x 6.5 ft panel (4.8 sq m) 1 - storage tank @ 225 L (60 gal) 1 - pump 1 - controller Installation cost - \$500 including labour and materials

Typical output: 2.2 GJ/yr. sq m = 2.2 GJ/yr. sq m x 4.8 sq m = 10.6 GJ/yr = 10.6 x 278 kWh/ GJ = 2.946 kWh

Monitoring the results for 15 comparable solar DHW systems in the Halifax area from May 1990 to September 1991 (TDL Field Trials Demonstration report to EMR, November 1991) showed :

* area of solar collectors was 2 @ 2.6 sq m. = 5.2 sq m.

* mean annual solar energy delivered was 3,235 kWh/ year or 11.6 GJ/year

--> 11.6 GJ/year / 5.2 sq m. = 2.23 GJ/ year. sq m

* average hot water consumption was 278 litres per day

* average solar fraction was 48%. i.e. 48% of hot water needs came from solar.

Cost: \$3,400 + \$500 = \$3,900 \$3.900 / 10.6 GJ/year = \$368/ annual GJ or \$3,900 x 2000 ÷ 10.6 GJ/ year x 278 kWh/ GJ = \$2,645/kW

The Economic Activity Associated with Solar HW Heating Ontario uses approximately 5,540 GWh of electricity for residential hot water heaters (which represents 40% of HW heating) whereas Quebec uses 5340 GWh.

Assume a 10% penetration by SDHW in Ontario which would displace 554,000,000 kWh. This would represent a total of 554,000,000 kWh @ 3,000 kWh per SDHW system = 184,700 solar water heaters. The resulting economic activity could be 184,700 x 2,900 = 553,600,000 in total or 555 million a year for 10 years.

Assume 6 man-days to sell, manufacture and install a SDHW system, including overhead. There would also be maintenance and service jobs created. In one year of 200 man-days there will be over 550 manyears of work to sell, manufacture and install 18,470 solar DHW systems.

Environmental Benefits

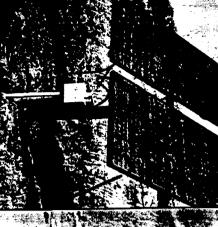
The environmental costs of SO2, CO2 and other gases are estimated to be $6\phi/kWh$ (Active Solar Heating in Canada to the Year 2010, EMR 1992). One residential solar system displacing 3000 kWh (a) $6\phi/kWh$ would reduce environmental damage by \$180 in one year or \$900 over 5 years. The SDHW system would reduce demand by 3,000 kWh \div 2,000hrs = 1.5kW

The marginal cost of electricity is \$2,000 to \$4,000/kW for Ontario Hydro and the peak load power cost for Quebec Hydro is about 60c/kWh. The potential savings are 3,000kWh x \$2000/kW ÷ 2,000 hrs = \$3,000 in avoided cost, plus 3,000 kWh x 60c/kWh x peak factor (use 30%) = \$540 if solar displacement occurs at summer peak. In 1990 Hydro had to buy 10% of its power requirements (13.2 TWh) of which 11 TWh came from US at price of 3.2c/kWh. Acid rain was consequently produced in the USA and not in Canada.

APPENDIX B

DETAILED TECHNICAL INFORMATION Wind


battery charging wind turbines. In only four years, over 18,000 AIRs have been installed in 150 countries. Just a few years ago, we introduced a new concept in


scheduled maintenance. data collection, heavy-duty towers, costly installation and AIR, you don't have to spend a fortune on lengthy wind design and installation, the AIR breaks all the rules. With an When it comes to conventional thinking of wind turbine

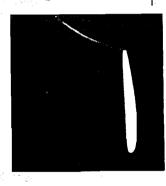
Simple to use:

- Automatic regulation and operation
- As convenient as a solar panel
- Can be installed in a few hours
- Only two moving parts
- Requires no maintenance

stem to supply a consistent supply of 2.45

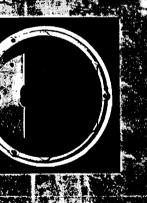
Call your dealer of Southwe

accessories. 🔪 🕍 information on toward and Windpower for complete



reliability and quieter operation all in the same size turbine. Now, the AIR 403 has more power, greater efficiency, high

PERFORMANCE


approaches the theoretical An airfoil so advanced it limits of efficiency.

and windings that increase airfoil, the 403's alternator Combined with the new rated power by 30% and 50% in low winds. uses new arced magnets

Unlike any other wind turbine design, the CONTROL-

spi exclusive AutobrakeTM slows the plades to a siler regulator automatically

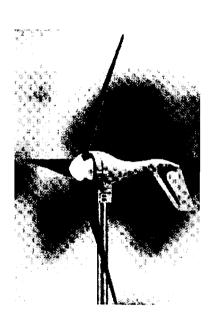
reliability in high winds clearance for greater design doubles up-to-tower Int and linis **Dio** R

a new meaning to simple AIR allows it to be installed new low cost tower kits add just about anywhere. These

installation

The flexible design of the

IOWER NITS



Inc.

Alternative Energy Supply and Design Toll Free: 1 877-OASISMT (877-627-4768)

e-mail: <u>info@oasismontana.com</u> Home Page: <u>www.oasismontana.com</u>

Air 403 Wind Turbine Generators

The folks at Southwest Windpower have improved this wind turbine, with a design that changes the way the world looks at wind power! With a three year warranty, this wind generator is an excellent addition for battery charging in cloudy weather or the lower light conditions of winter. The units are light-weight and easy to install, suited for adding to your solar power system or for marine or mountaintop installation. Please look over our information on these popular, low-cost units, and do not hesitate to <u>e-mail us</u> if you need anything or have questions our site doesn't answer.

Air 403, 12 or 24V: \$499

Air 403 Marine, 12 or 24V: \$795

Air Industrial, 12 or 24V: \$995

Three year warranty on all Air 403 units

For more accessories and pricing see below!

ROOF MOUNT KITS

Because of the small size and simplicity of mounting the Air 403 turbine, there are a variety of mounting options. If you know of a welder or metal fabricator, you may wish to come up with your own custom design for your installation.

There are simple roof tower mounts that offer low cost and easy installations for single or multiple Air 403 turbines. The kits are designed with effective built-in vibration isolation mounts, and can be installed alongside a truss, going through the roof, or on the side of a building. An optional roof seal is available.

Guyed tower kits are also available, available is 25 or 47 ft. heights; they are the standard for simple and durable tower installations. These towers tilt-up for easy erection. All parts are threaded--no welding is required. Screw-type anchors are available as an option. All parts are included except the schedule 40 2" pipe. The Air 403 requires a 1 1/2" pipe for the last four feet.

Roof Mount Kit \$85	36" Augers \$59
Roof Mount Kit with Seal \$105	48" Augers \$69
Roof Seal Only \$30	Stop Switch (50A Toggle Switch) \$19
Air Marine Tower Hardware Kit	Amp Meter, 30A \$25
\$169	Amp Meter and Shunt \$49
(for aluminum powder coated masts)	(for 12V units)
Air Marine Aluminum Pole Set \$179	Air 403 Land Unit \$499 Air 403 Marine Unit
(9 ft - 3m - pole and stays only)	\$795
25 ft (7.6m) Guyed Tower Kit \$199	Air 403 Industrial Unit \$995
47 ft (14.3m) Guyed Tower Kit \$249	

Windseeker 502 and 503 - 500 watt units, maintenance-free; silent operation. Uses 2" pipe that is easy to erect and inexpensive (not included). Comes with a "smart" voltage regulator. Available in 12, 24 or 48 VDC. Two year warranty.

Windseeker 502, 12VDC \$895 Windseeker 502, 24VDV \$895

Windseeker 503, 12VDC \$1075 Windseeker 503, 24VDC \$1075.

403 Exploded	AIR 403 Home	403 wiring	Multi 403	<u>Air 403</u>
view	pg	<u>diagram</u>	wiring	FAQ
Used/Surplus	LP Appliances	Oasis Home page	Contact us	<u>Newsletter</u>

Oasis Montana Inc. Alternative Energy Supply and Design 436 Red Fox Lane Stevensville, MT 59870

<u>E-mail us</u> for free information on system sizing; or order our Design Guide & Product Catalog for \$10.00 (\$18.00 for international customers)

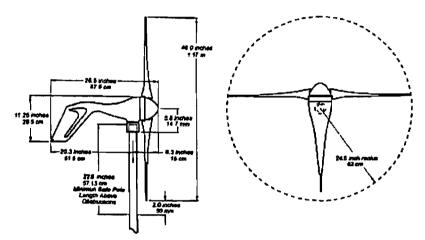
Go To Our Quick Link Site Map

mailto: info@oasismontana.com Home Page www.oasismontana.com

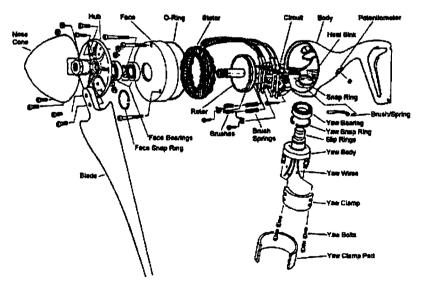
Toll Free : 1(877-OASISMT) 1(877-627-4768) or 1(877-OASISPV) 1(877-627-4778) Fax: 406-777-2632

Revised 02/28/01

Inc.


Alternative Energy Supply and Design Toll Free: 1 877-OASISMT (877-627-4768)

e-mail: info@oasismontana.com Home Page: www.oasismontana.com


Air 403 Wind Turbine Generators

Exploded view of the Air 403 Units:

7.2 Sphere of Operation

^{7.3} Exploded View of AIR

Inc.

Alternative Energy Supply and Design Toll Free: 1 877-OASISMT (877-627-4768)

e-mail: info@oasismontana.com Home Page: www.oasismontana.com

Air 403 Wind Turbine Generators

Basic Wiring Information about the Air 403 Units :

Choose the appropriate wining diagram below for proper wining information.

A. Single AIR 403 Wiring

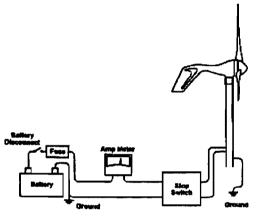


Figure 3

B. AIR 403 in A System With Soler Penels (Hybrid System)

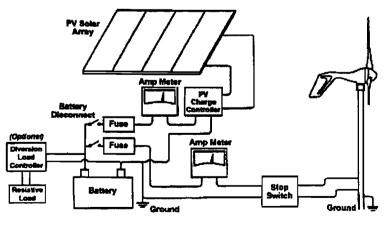


Figure 4

NOTE: In this drawing the AIR 403's Internal regulator is used. A diversion type external regulator can also be used.

Inc.

Alternative Energy Supply and Design Toll Free: 1 877-OASISMT (877-627-4768)

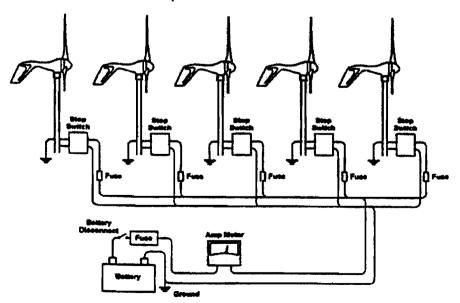
e-mail: info@oasismontana.com Home Page: www.oasismontana.com

Multi Air 403 Wiring Diagram

MULTIPLE AIR 403 INSTALLATION

There are two methods to wire multiple Air 403s.

1) Each turbine directly wired to the battery


Each turbine operates as an independent system separate from other solar panels, gas generators or any other battery charging sources. If the turbine has its own fuse, stop switch, and wires, the turbine is able to individually communicate and charge the battery or battery bank.

2) Each turbine wired to a bus bar

If you plan to wire two or more turbines to a "bus" and then run one set of wires from the bus bar to the battery, you can use each turbine's internal regulator or install an external regulator. If you use an external regulator, use a diversion style ("dump load") regulator that turns excess power into heat for heating air or water. When wiring multiple turbines, it's possible to reduce your wiring costs by using a bus bar system.

Mounting to Tower

The Air 403 is designed to be mounted on a 1 1/2" schedule 40 steel or aluminum pipe (do not use plastic!). The outside diameter of the pipe should be 1.875" (48 mm). There's a soft coupling inside the yaw shaft mount that is designed to provide a good, tight fit and to dampen some of the noise that is transmitted down the tower. The clamp and soft coupling design will accommodate small variations in diameter; however, if you use something other that a 1.5" SCH 40 (48mm) pipe, be certain the unit has a secure fit prior to installation.

There are three Proven Wind Turbines to choose from with the following common features :-

Proven WT600 at British Telecom Microwave Station

- downwind configuration stable, does not need a separate tail
- <u>award winning blade technology</u> Proven WTs can run off-load without overspeeding!
- high build quality using stainless steel, galvanised steel or plastic throughout marine site ready
- low rpm permanent magnet generator for good output in wide range of wind speeds
- low rpm and shaped blade tips contribute to very low noise output
- no gearbox so no maintenance and no annoying gear box "whine"
- mechanical disc brake (WT2500 and WT6000) - operated from base of tower

Proven WT600 at British Telecom Microwave Station

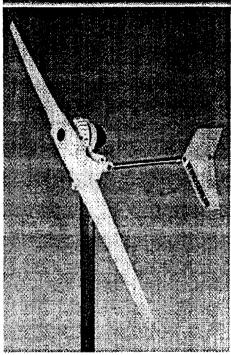
Model	WT600	WT2500	WT6000
Rated Power (Watts)	600 Watts	2500 Watts	6000 Watts
Rotor Diameter (metres)	2.55	3.5	5.5
Cut-in windspeed (m/s)	2.5	2.5	2.5
Rated windspeed (m/s)	10	12	10
Cut-out windspeed	none!	none!	none!
Maximum windspeed (m/s)	>70	>70	>70
Head Weight	70	190	450
Warranty	2 years	2 years	2 years
Rated RPM	500	300	200

Click here to see pictures of our WT6000 6kW wind turbine.

Click here to a typical layout for energy storage and control equipment.

HOME Copyright© '97-May, 2000 Proven Engineering Products Ltd

PROVEN WORLD FRIENDLY ENERGY RETAIL PRICE LIST - October 2000


Product Code		Description		
		600W WIND TURBINES & TOWERS		
WT600/	012	600 Watt wind generator (12V output)	£1,700	
WT600/	024	600 Watt wind generator (24V output)	£1,700	
WT600/	048	600 Watt wind generator (48V output)	£1,700	
GM600/	650	6.5 m mast with 4 guyed anchors. Includes base plate, anchor hairpins, gin pole, guy ropes	£535	
GM600/	1300	13m mast (2 sections) with 4 guyed anchors. Includes base plate, anchor hairpins, gin pole,	£1,020	
TM600/	550	Tilt-up self supporting wind turbine mast (5.5m) including foundation kit, plans & gin pole	£990	
TM110/	600	Tower mount for WT600 for use with own mast. Supplied ungalvanised on request	£95	
		2.5kW WIND TURBINES & TOWERS		
WT2500/	024	2.5kW wind turbine/generator (24V output)	£3,385	
WT2500/	120	2.5kW wind turbine/generator (120V output)	£3,385	
WT2500/	048	2.5kW wind turbine/generator (48V output)	£3,385	
TM650/	2500	Tilt-up self supporting wind turbine mast (6.5m) including foundation kit, plans & gin pole	£1,580	
TM150/	2500	Wind turbine mount for use with own mast. (Ungalvanised on request)	£140	
TM1100/	2500	Tilt-up self supporting wind turbine mast (11m) including foundation kit, plans & gin pole	£2,950	
TWT508			£360	
1441300		Tirfor winch with 20 metres wire rope + strop (suitable for WT600/WT2500) 6kW WIND TURBINES & TOWERS	200	
WT6000/	048	6kW wind turbine/generator (48V output)	£7,17	
		6kW wind turbine/generator (120V output)	£7,175	
WT6000/	120	6kW wind turbine/generator (240V output)		
WT6000/	240		£7,17	
TM900/	6000	Tilt-up self supporting wind turbine mast (9m) including foundation kit and plans & gin pole	£2,850	
TM160/	6000	Wind turbine mount for use with own mast (ungalvanised on request)	£19	
TWT532		Tirfor winch with 20 metres wire rope + strop (suitable for WT6000)	£720	
BB 4 -				
BP245		BP Solar 45 Watt peak 12V	£180	
BP275		BP Solar 75 Watt peak 12V	£29	
BP585		BP Solar 85 Watt peak 12V	£35	
SIE110		Siemens mono crystalline 110 Watt peak 12V or 24V output available	£50	
KYO110		Kyocera polycrystalline 110Watt peak 12V	£44	
		600W WIND TURBINE CONTROLLERS FOR BATTERY CHARGING		
ECM600/	012	12V WT600 charge controller with high voltage control. Includes MCB Isolator (No Meters) 500mmHx300mmWx200mmD.	£37(
ECM600/	024 0	48 24V or 48V WT600 controller with high voltage charge control. Includes MCB Isolator (No Meters). 500mmHx300mmWx200mmD.	£32(
MET600/		Analogue Volt and Ammeters for use with ECM600 Controllers	£16	
ECM601/	024 C	48 WT600 controller suitable for telecoms applications. Supplied in IP65 box. Includes	£47	
		Voltmeter, Ammeter, Adjustable LV relay and system status LEDs.		
		2.5kW WIND TURBINE CONTROLLERS FOR BATTERY CHARGING AND DIRECT HEATING	i	
ECM2501/	024	48 2.5kW 24V DC battery charging controller. Includes 2 DC and 3 AC divert load connections, Volt/Ammeters plus 8 system status indicators. 600mmHx300Wx200D Suitable for use with a	£97	
ECM2502/	024	DC system or DC/AC using an inverter. 148 2.5kW 24V DC battery charging controller Includes 3 AC divert load connections,	£85	
ECM2503/	120	Volt/Ammeters plus 8 system status indicators. 600mmHx300Wx200D Suitable for an AC 2.5kW 120V heating controller. Volt and Ammeters 400mmHx250Wx200D (Additional connections for PV input to battery charging controllers on request)	£61	

		6kW WIND TURBINE CONTROLLERS FOR BATTERY CHARGING AND DIRECT	
ECM6001/	048	6kW 48V DC battery charging controller. Includes 2 DC and 3 AC divert load connections, Volt/Ammeters plus 8 system status indicators. 600mmHx400Wx200D Suitable for use with a DC system or DC/AC using an inverter.	£1,150
ECM6002/	048	6kW 48V DC battery charging controller Includes 3 AC divert load connections, Volt/Ammeters plus 8 system status indicators. 600mmHx300Wx200D Suitable for an AC	£1,045
ECM6003/	120	6kW 120V heating controller. Volt and Ammeters 400mmHx250Wx200D	£795
ECM6003/	240	6kW 240V heating controller. Volt and Ammeters 400mmHx250Wx200D	£740
		(Additional connections for PV input to battery charging controllers on request)	

			INVERTERS & BATTERIES	
INV602/	024		250 Watt sine wave Piccolo Inverter (24V input)	£177
INV603/	024		600Watt sinewave Domino Inverter (24V input)	£446
INV2503/	012/	024	1.5kW 230Vac TRACE semi-sine inverter (12V or 24V input) with 3 stage charger (70 Amp or	£696
INV2504/	024		2.4kW 230Vac TRACE semi-sine inverter (24V input) with 70 Amp 3 stage charger	£942
INV2510/	024		2.5kW 230Vac TRACE sinewave inverter (24V input) with 65 Amp 3 stage charger	£1,463
INV2509/	012		2.6kW 230Vac TRACE sinewave inverter (12V input) with 150 Amp 3 stage charger	£1,955
INV2507/	024 /	048	3.3kW 230Vac TRACE sinewave inverter (24V or 48V input) with 3 stage charger (100 Amp or	£2,361
INV2508/	048		4.5kW 230Vac TRACE sinewave inverter (48V input) with 60 Amp 3 stage charger	£2,697
LNK2508			Linking unit to allow two TRACE sinewave inverters to be stacked in parallel	£235
			Large range of other inverters & batteries available - Prices on application	
BAT2423			24Volt 230 Amp. hour, low maintenance battery. Supplied as 2 12V blocks each 580mmLx280Wx300H and 66kg	£595
		_		
			ACCESSORIES	
PWL01			Proven Windlogger containing anemometer and LCD display. Records instantaneous and ave	£93.62
CAB024			3-core amoured cable for WT2500/024/048, terminated at controller end (per metre)	£7.60
CAB120			3-core amoured cable for WT2500/120, terminated at controller end (per metre)	£2.25
JB2501/			Cable Kit for WT2500/WT6000 (useful when using large cable diameters) IP66 3-phase	£70
6001			junction box with stud mounts. Supplied with glands for WT2500/WT6000 flexible armoured	
RES1000/	024		1kW 24V Resistive heating element for use with ECM2501 & ECM6001	£82
RES1000/	048		1kW 48V Resistive heating element for use with ECM2501 & ECM6001	£82
HBX2500/	024	048	Custom stainless steel heater box containg 2 RES1000 24V or 48V heating elements. Ideal for use as DC divert load with ECM2501 or ECM6001	£295
IM120/	2500		2.5kW 120Vac immersion heater with thermostat fitted for the WT2500/120	£72
IMM504/	230		4 off 500Watt Immersion elements plus a thermostat all in a standard 21/4" BSP fitting	£108
FUS/	100		DC removable fuse and fuse holder rated at 100 Amps	£52
FUS/	200		DC removable fuse and fuse holder rated at 200 Amps	£123
DIS200			DC Double Pole Disconnect (Includes 200 Amp DC Fuse)	£230
FAC30			32 Amp 230Vac Double Pole Isolator/MCB suitable for inverter output	£95
LINK10/	024	048	DC Amp Hour Meter to record battery performance. Digital Volt & Ammeter. Shows Amp- Hour in Battery, kWh meter. Shows overall charge/discharge efficiency of battery & time remaining. Price includes shunt & fuses required.	£234
			EXPORT PACKING CASES	
DOVCOI				0455
BOX601			Sturdy export packing case for 1 WT600 wind turbine 1.4m x 1.4 x 0.5 110kg	£155
BOX2501			Sturdy export packing case for 1 WT2500 wind turbine 1.8m x 1.9m x 0.6m 300kg	£225
BOX6001			Sturdy export packing cases for 1 WT6000 wind turbine 2.4m x 2.2m x 1.2m 550kg	£325

OVER 12 YEARS OF PROVEN RELIABILITY

WINDSEEKER 502

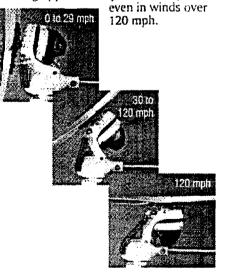
- ⅔ 2 Blade Design
- **¥** Lighter Weight
- ✓ Economical

ioecifications

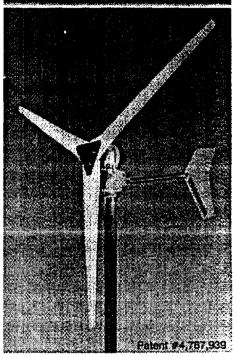
¥ Rotor Diameter	: 60" (1.52 meters)
Y Weight:	502: 19.5 lbs (8.8 kg) 503: 22.5 lbs (10.2 kg)
Y Start up windsp	eed: 7 mph (3 m/s)
+ Output:	500 Watts
Alternator:	PM 3 phase brushless
∲Output Voltage:	: 12V: Preset 14.8 - 24V: Preset 29-5

Y Voltages available: 12, 24, 36, 48

Easy to install, low cost tower designs available.

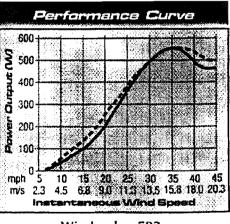

For over a decade, the Windseeker has set the standard for affordable, reliable wind power. With its unique patented upward-furling design, the Windseeker produces power dependably, in low wind to the extremes of stormy mountain tops. Thousands of Windseekers can be found in use around the world.

Standard Features


- Y Double ball bearing yaw shaft
- A Corrosion Resistant, durable powder coated finish
- A Cast aluminum and stainless steel construction
- Y-Brushless neodymium permanent magnet alternator
- Y Precision aircraft quality rotor
- Huilt-in voltage regulator
- A Marine and Industrial versions available

2 YEAR WARRANTY

Exclusive to Windseeker: Other turbines cut output by as much as 90% once the wind governor is activated. The Windseeker's output drops only 15%. retaining approximately 85% of full power,



WINDSEEKER 503

7• 3 Blade Design

F Smoother and Quieter Operation Y- High Wind Stability

Windseeker 502 Windseeker 503 Performance calculated at sea level

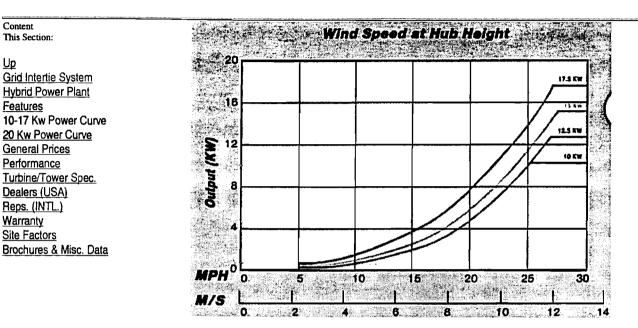
Southwest Windpower

Renewable Energy Made Simple

2131 N. First Street • Flagstaff, Arizona 86004 USA • Tel 520-779-9463 Ext 398 • Fax 520-779-1485 www.windenergy.com • E-mail info@windenergy.com

Specifications are subject to charge without more: WINDSEERLRIS a trademark of Southwest Windpower, his

Wind Generator	Comparisons
----------------	-------------


Wind Generator Comparisons				
Model Watts Co		Cost	Special Features	
Aerogen 3	48	\$775	very strong	
Rutland 500	60	\$500	only 8.5 lbs.	
Windstream	96	\$497	regulator +\$89	
Helius	150	\$497	kit form (difficult)	
Rutland 910	180	\$650	starts 4 mph wind	
Aerogen 5	192	\$1950	very strong	
Air 403	475	\$595	Improved on Air303; Industrial model avail.	
Windseeker 502	550	\$850	90% @120 mph	
Whisper 600	600	\$990	regulator +\$260	
Windseeker 602	650	\$950	90% @120 mph	
Windseeker 503	550	\$950	"super quiet"	
Outback 5'2"	780	\$1769	AC 3-phase	
Outback 6'2"	900	\$1769	AC 3-phase	
Whisper 1000	1000	\$2590	regulator +\$260	
Bergey	1500	\$4795	super durable	
NorthWind 3	3000	\$13k	harsh environ.	
Bergey	10 kw	\$16k	super durable	
NorthWind 12	12 kw	\$46k	harsh environ.	
Monopteros	30 kw	\$69k	Big	
Atlantic Orient	50kw	\$60k	Used at NREL	

For larger models and more detailed specifications, order our \$12 Wind Generator booklet.

We now have more on .pdf format! See our <u>detailed product specs</u> page or contact us for an email .pdf!

Please email comments or questions to info@jademountain.com

10-17 Kw Power Curve

[Home] [Company Info.] [News] [Products] [Contact] [Links] [Search]

Copyright 1999 Wind Turbine Industries Corporation. All Rights Reserved Worldwide.

webmaster@windturbine.net

Grid Intertie System

Basics, Specifications & Pricing

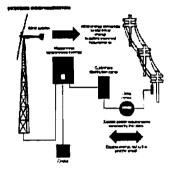
Up

Content

This Section:

Grid Intertie System <u>Hybrid Power Plant</u> <u>Features</u> <u>10-17 Kw Power Curve</u> <u>20 Kw Power Curve</u> <u>20 Kw Power Curve</u> <u>General Prices</u> <u>Performance</u> <u>Turbine/Tower Spec.</u> <u>Dealers (USA)</u> <u>Reps. (INTL.)</u> <u>Warranty</u> <u>Site Factors</u> Brochures & Misc. Data

Basics


The Jacobs[®] Grid Intertie System takes the power that the wind plant produces and converts it to useable energy and transfers it to the utility grid (power company) through the customers circuit breaker panel. When the customers usage exceeds the wind systems output, the additional power required is drawn from the utility grid. If the electrical needs are satisfied by the wind system, no power is used from the utility. During periods of sustained high winds the system may produce more power than is consumed, a financial return can be realized by selling the excess power to the utility company and through net energy savings. The Grid Intertie System is not a backup power system, if the utility power goes out, the control shuts down until the utility power comes back on.

Basic system consists of the following:

• Wind Turbine

Specification

- Grid Intertie Controls
- Tower & Hinges

Basic configuration of a Grid Intertie System.

(Click to enlarge picture)

<u>+</u>
Synchronous - Current Source, Line Commutated 37" x 28" x 14" 22" x 19" x 14" 135 lbs. 175 lbs.
10 - 20kw
0 - 180 vac, 3 phase, 0 - 40 hz 0 - 210 vdc, power transfer @ 40 vdc 208 - 250 vac, 50 or 60 hz, single phase
+/- 10% +/- 1%
0.95 @ full load
< 5% @ full load
95%
35 - 110 deg. F.
0 - 90 % relative humidity without condensation

Back to Top

Performance

Content This Section:	Model No.	23-10	23-12.5	26-15	26 -17.5	29-20			
mas Section.	Max. Output (Kw)	10	12.5	15	17.5	20			
<u>Up</u>	Rotor Diameter (Ft.)	23	23	26	26	29			
Grid Intertie System	Rated Wind Speed (mp	oh)25	27	26	27	26			
Hybrid Power Plant									
<u>Features</u> 10-17 Kw Power Curve			Estimate	Estimated Annual Output (KWH)					
20 Kw Power Curve	Wind Speed (MPH)								
General Prices	10	10486	10521	11363	14729	19727			
Performance									
Turbine/Tower Spec.	11	13618	13800	14966	19320	25704			
Dealers (USA)									
<u>Reps. (INTL.)</u> Warranty	12	17044	17486	19065	24479	32297			
Site Factors									
Brochures & Misc. Data	13	20648	21472	23558	30060	39289			
	14	24321	25643	28317	35900	46468			
	15	27969	29887	33217	41841	53646			
	16	31515	34103	38135	47744	60665			
		01010	5.105	50155		00000			
	17	34899	38205	42963	53486	67398			
	17	5,077	50205	.2705	55 100	0,0,0			
	18	38073	42119	47609	58966	73743			
	10	50075	76117	77007	50700	15175			

All outputs are based on Rayleigh Distribution, outputs will vary depending on tower height.

[Home] [Company Info.] [News] [Products] [Contact] [Links] [Search]

Copyright 1999 Wind Turbine Industries Corporation. All Rights Reserved Worldwide.

webmaster@windturbine.net

APPENDIX B

DETAILED TECHNICAL INFORMATION Batteries

NEWS & BAR

SYSTEM DEBINA

RESOURCES

COMPANY

CONSERVATION

DALINE DATA COMPLET

REQUESTION

CONTACT / CORRAND

DEALER ST DEALER

HOME / MAINERAGE

1-800-265-8898

LOCAL PHONE (250) 544-0488

[250] 544-0478

VEYANESE RD VICTORIA BC CANADA - VBM 2021

CONTACT

©Copyright 2000

Energy Alternatives

ADDRESS B-6782

FORUMS

YSTEM SIGN

USTAINABLE LIVING

CHAREE

CONTROLLS

BATTERY

Batteries

Storage batteries are the heart of an independent power system. They store electricity for use at a later time when a charging source (sun, wind, water or generator) is not available. They also provide a reserve of available energy to run loads that require more power than that provided by the charging source.

Batteries wear out and must eventually be replaced. Regular monitoring and maintenance will extend the life span of your battery bank and save you money. The deeper they are discharged, the shorter their life span will be. Batteries contain toxic materials and should be disposed of properly.

Choosing a Battery

There are many types of batteries available. Many are unsuitable for an independent power system. Choosing the right type of battery is the first step in designing a reliable renewable energy system.

Car Batteries

Car batteries are designed to provide a brief, high current for engine starting, not for deep discharge applications. The ICold Cranking AmpsO rating does not indicate the battery is storage capacity. The thin plates in these batteries are good for a quick release of energy, but deep discharging will cause rapid deterioration. These are a poor choice for alternative energy systems.

Motive Power Batteries

STORE

Motive batteries are deep-cycle batteries used to provide energy for electric vehicles such as golf carts and forklifts. They have thick plates that will withstand many deep discharge cycles. These are used for most independent power systems as they are durable, have good storage capacity and are cost effective. These are usually in a 2, 6 or 12V casing. Typically, the golf cart batteries will last four to seven years, while the Global-Yuasa forklift batteries will last 10 to 20 years.

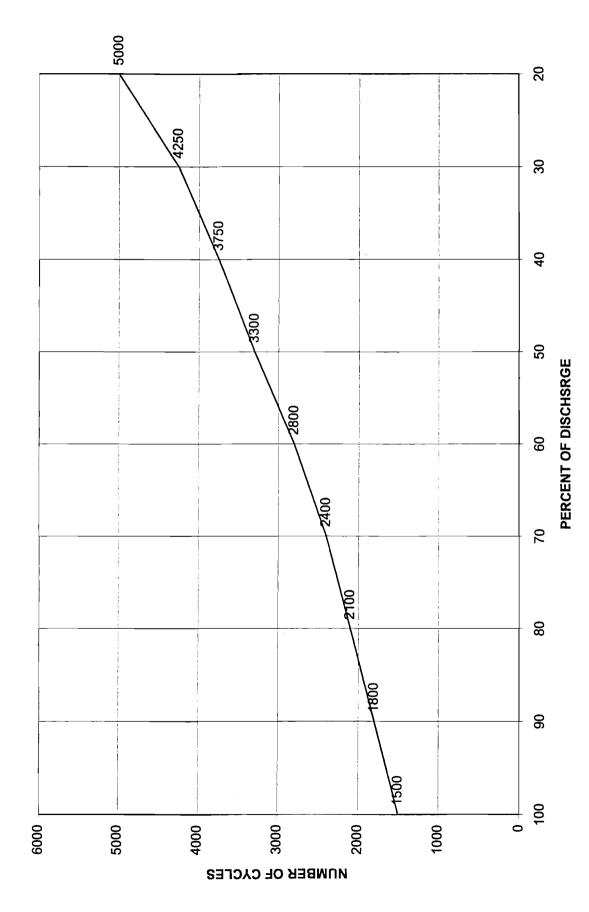
Stationary Batteries

These cells, common known as utility backup cells are used by telephone companies for back-up power supply systems. They are often designed with calcium alloy plates which are not for deep cycling, so they are poor batteries for a most renewable energy systems. However, they may be suitable for use in systems where there is no requirement for autonomy such as a micro hydro installation. When batteries are used this way, also referred to as Ifloat serviceÓ. they are storing reserve energy for peak load demands. Stationary 2V cells frequently come in a clear casing.

Gel (sealed) Batteries

Gel cells are filled with an electrolyte that is in the form of a gel or sponge. It is not possible to service this type of battery or replace the electrolyte. They have a much shorter life and cost considerably more than liquid filled batteries. These batteries require no maintenance, tolerate low temperatures, do not spill and do not produce corrosive gases. They are good at remote sites where maintenance is not possible and cold weather prevails. Precise charge control is critical.

RV and Marine Batteries


These Batteries are a compromise between engine starting batteries and deep cycle batteries. The plates are similar to the engine starting batteries and will not withstand repeated deep discharging. They are adequate for small (under 200 amp / hours) systems and might last 2 to 4 years. These are not a true deep discharge battery despite the claims on the label to be a Ideep cycleO battery.

©Copyright 2000 Energy Alternatives

PREVIOUS	 NEXT
20	

CYCLE LIFE VS. DEPTH OF DISCHARGE 500 / 5000 series batteries / cells

SOLAR

DEEP CYCLE-BY SURRETTE - NON BREAKABLE CONSTRUCTION

VOLTS 6 DIMENSIONS 259 MM 22 INCHES WDTH 286 MM 11.25 INCHES WDTH 286 MM 11.25 INCHES WEIGHT DRY 116 KG 256 LBS WEIGHT WET 116 KG 256 LBS OUTAINER CONTAINER POLYPROPYLENE-HEAT SEALED TO INNER CONTAINER OUTER COVER NOUTER CONTAINER INCHES SINP FILTO OUTER CONTAINER OUTER COVER ABOVE PLATES 92.08 MM 3.625 INCHES PLATE DIMENSION 273.05 MM 10.75 INCHES INCHES MIDTH 142.88 MM 5.625 INCHES INCHES MIDTH 273.05 MM 10.75 INCHES MIDTH 142.88 MM 5.625 INCHES MIDTH	BATTERY TYPE	6 CS 25P S		
LENGTH WIDTH 559 MM 22 INCHES 286 MM 11.25 INCHES 11.25 INCHES WEIGHT DRY WEIGHT WET 116 KG 256 LBS 318 LBS CONTAINER CONSTRUCTION INNER CONTAINER INNER CONTAINER OUTER COVER POLYPROPYLENE - HEAT SEALED TO INNER CONTAINER POLYPROPYLENE - HEAT SEALED TO INNER CONTAINER OUTER COVER NOTE CONTAINER POLYPROPYLENE - HEAT SEALED TO INNER CONTAINER OUTER CONTAINER OUTER COVER POLYPROPYLENE - HEAT SEALED TO INNER CONTAINER INCRECONTAINER OUTER CONTAINER OUTER COVER HIGH DENSITY POLYETHYLENE SNAP FIT TO OUTER CONTAINER INCRECONTAINER OUTER COVER HIGH DENSITY POLYETHYLENE SNAP FIT TO OUTER CONTAINER INCRECONTAINER OUTER COLVER ABOVE PLATES 92.08 MM 3.625 INCRES FLEGTROLYTE RESERVE ABOVE PLATES 92.08 MM 3.625 INCRES MIDTH HEIGHT 273.05 MM 10.75 INCRES NUDTH HEIGHT 73.05 MM 10.85 INCRES NUDTH HEIGHT 142.88 MM 5.625 INCRES NUDTH HEIGHT 142.85 MM 5.625 INCRES INSULATION POSITIVE PLATE ENVELOPENT INTERCONTER MICKNESS 10.75 INCHES <t< th=""><th>VOLTS</th><th>6</th><th></th><th></th></t<>	VOLTS	6		
WEIGHT DRY WEIGHT WET116 KG 145 KG26 LBS 318 LBSCONTAINER CONSTRUCTION INNER CONTAINER OUTER CONTAINER PLATES PER CELLPOLYPROPYLENE-HEAT SEALED TO INNER CONTAINERPLATES PER CELL25ELECTROLYTE RESERVE WIDTH HEIGHT WIDTH 	LENGTH			
WEIGHT WET 145 KG 318 LBS CONTAINER CONSTRUCTION INNER CONTAINER INNER COVER POLYPROPYLENE-HEAT SEALED TO INNER CONTAINER OUTER CONTAINER OUTER CONTAINER POLYPROPYLENE-HEAT SEALED TO INNER CONTAINER OUTER CONTAINER TO INNER CONTAINER TO INNER CONTAINER OUTER CONTAINER OUTER COVER HIGH DENSITY POLYETHYLENE SNAP FIT TO UTER CONTAINER TO INNER CONTAINER PLATES PER CELL 25 ELECTROLYTE RESERVE ABOVE PLATES 92.08 MM 3.625 INCHES POSITIVE PLATE DIMENSION HEIGHT 273.05 MM 10.75 INCHES NUDTH HEIGHT 273.05 MM 0.265 INCHES NEGATIVE PLATE DIMENSION HEIGHT 273.05 MM 0.265 INCHES NIDTH HEIGHT 273.05 MM 0.75 INCHES NIDTH HEIGHT 273.05 MM 0.75 INCHES NIDTH HEIGHT 273.05 MM 0.75 INCHES NIDSULATION POSITIVE PLATE DIMENSION HEIGHT LIZES SPECIFIC GRAVITY 10.75 INCHES CAPACITY AT THE 100 HOUR RATE 1.265 SPECIFIC GRAVITY 1156 12 CAPACITY AT THE 20 HOUR RATE 1.265 SPECIFIC GRAVITY 1156 12	HEIGHT	464 MM	18.25	INCHES
INNER CONTAINER INNER COVERPOLYPROPYLENE POLYPROPYLENE-HEAT SEALED TO INNER CONTAINER OUTER CONTAINER OUTER CONTAINERPOLYPROPYLENE-HEAT SEALED TO INNER CONTAINER UNTER CONTAINEROUTER CONTAINER OUTER COVERHIGH DENSITY POLYETHYLENE SNAP FIT TO OUTER CONTAINERHIGH DENSITY POLYETHYLENE SNAP FIT TO OUTER CONTAINERPLATES PER CELL25ELECTROLYTE RESERVE MUDTHABOVE PLATES92.08 MM3.625INCHESPOSITIVE PLATE DIMENSION HEIGHT WIDTH273.05 MM10.75INCHESHEIGHT WIDTH273.05 MM10.75INCHESNEGATIVE PLATE DIMENSION HEIGHT HICKNESS0.73 MM10.75INCHESNEGATIVE PLATE DIMENSION HEIGHT HICKNESS0.73 MM10.75INCHESNEGATIVE PLATE DIMENSION HEIGHT HICKNESS0.185INCHESINCHESNEGATIVE PLATE DIMENSION HEIGHT HICKNESS0.175INCHESINCHESNEGATIVE PLATE DIMENSION HEIGHT HICKNESS10.75INCHESINCHESNEGATIVE PLATE DIMENSION HICKNESS10.75INCHESINCHESNEGATIVE PLATE DIMENSION HICKNESS10.75INCHESINCHESNEGATIVE PLATE DIMENSION HICKNESS10.75INCHESINCHESNEGATIVE PLATE DIMENSION HICKNESS10.75INCHESINCHESNEGATIVE PLATE DIMENSION HICKNESS10.75INCHESINCHESCAPACITY AT THE 100 HOUR RATE CAPACITY AT THE 100 HOUR RATE CAPACITY AT THE 20 HOUR RATE CAPACITY AT				
INNER COVERPOLYPROPYLENE-HEAT SEALED TO INNER CONTAINER OUTER COVERPOLYPROPYLENE-HEAT SEALED TO INNER CONTAINER SNAP FIT TO OUTER CONTAINEROUTER COVERHIGH DENSITY POLYETHYLENE SNAP FIT TO OUTER CONTAINERHIGH DENSITY POLYETHYLENE SNAP FIT TO OUTER CONTAINERPLATES PER CELL25ELECTROLYTE RESERVEABOVE PLATES92.08 MM3.625INCHESPOSITIVE PLATE DIMENSION HEIGHT WIDTH273.05 MM10.75 INCHES 10.75 INCHESINCHESNEGATIVE PLATE DIMENSION HEIGHT WIDTH273.05 MM0.266 INCHESNEGATIVE PLATE DIMENSION HEIGHT WIDTH273.05 MM10.75 INCHES 10.75 INCHESNEGATIVE PLATE DIMENSION HEIGHT WIDTH142.88 MM5.625 INCHESNEGATIVE PLATE DIMENSION HEIGHT WIDTH142.88 MM5.625 INCHESNEGATIVE PLATE DIMENSION HEIGHT WIDTH142.88 MM5.625 INCHESINSULATIONPOSITIVE PLATE LOPED VERTICAL SLYVERNOPSIINSULATIONPOSITIVE PLATE LOPED VERTICAL SLYVERPOSITIVE PLATE DIVENTIONCAPACITY AT THE 100 HOUR RATE CAPACITY AT THE 20 HOUR RATE 1.265 SPECIFIC GRAVITY109115CAPACITY AT THE 40 HOUR RATE CAPACITY AT THE 60 HOUR RATE CAPACITY	CONTAINER CONSTRUCTION			
OUTER COVERHIGH DENSITY POLYETHYLEN SNAP FIT TO OUTER CONTAINERPLATES PER CELL25ELECTROLYTE RESERVEABOVE PLATES92.08 MM3.625INCHESPOSITIVE PLATE DIMENSION HEIGHT773.05 MM10.75INCHESMUDTH142.88 MM5.625INCHESNEGATIVE PLATE DIMENSION HEIGHT773.05 MM10.75INCHESMUDTH142.88 MM5.625INCHESNEGATIVE PLATE DIMENSION HEIGHT273.05 MM10.75INCHESNEGATIVE PLATE DIMENSION HEIGHT273.05 MM10.75INCHESNEGATIVE PLATE DIMENSION HEIGHT273.05 MM10.75INCHESNEGATIVE PLATE DIMENSION HEIGHT273.05 MM10.75INCHESNEGATIVE PLATE DIMENSION HEIGHT273.05 MM10.75INCHESCAPACITY ATTE DIMENSION HICKNESS273.05 MM10.75INCHESNEGATIVE PLATE DIMENSION WIDTH142.88 MM5.625INCHESINSULATION CAPACITY ATTHE 100 HOUR RATE273.05 MM10.75INCHESCAPACITY AT THE 100 HOUR RATE1.265 SPECIFIC GRAVITY115612CAPACITY AT THE 20 HOUR RATE1.265 SPECIFIC GRAVITY109115CAPACITY AT THE 20 HOUR RATE1.265 SPECIFIC GRAVITY631105CAPACITY AT THE 20 HOUR RATE1.265 SPECIFIC GRAVITY631105CAPACITY AT THE 3 HOUR RATE1.265 SPECIFIC GRAVITY631105CAPACITY AT THE 10 HOUR RATE1.265 SPECIFIC GRAVITY631105CAPACITY AT THE 20 HOUR RATE<		POLYPROPYLEN TO INNER CONT	IE-HEAT SEAL AINER	
ELECTROLYTE RESERVEABOVE PLATES92.08 MM3.625INCHESPOSITIVE PLATE DIMENSION HEIGHT WIDTH THICKNESS273.05 MM10.75 INCHES INCHESNEGATIVE PLATE DIMENSION HEIGHT HEIGHT 		HIGH DENSITY F	OLYETHYLEN	E
POSITIVE PLATE DIMENSION HEIGHT WIDTH THICKNESS273.05 MM 10.75 INCHES 142.88 MM 5.625 INCHES 6.73 MM 0.265 INCHESNEGATIVE PLATE DIMENSION HEIGHT WIDTH THICKNESS273.05 MM 10.75 INCHES 1.025 INCHESNEGATIVE PLATE DIMENSION HEIGHT WIDTH THICKNESS273.05 MM 10.75 INCHES 1.025 INCHESINSULATION CAPACITY AT THE 100 HOUR RATE CAPACITY AT THE 20 HOUR RATE CAPACITY AT THE 3 HOUR RATE CAPACITY AT THE 4 HOUR RATE CAPACITY AT THE 2 HOUR RATE CAPACITY AT THE 1 H	PLATES PER CELL	25	5	
HEIGHT 273.05 MM 10.75 INCHES WIDTH 142.88 MM 5.625 INCHES THICKNESS 6.73 MM 0.265 INCHES NEGATIVE PLATE DIMENSION 10.75 INCHES HEIGHT 273.05 MM 10.75 INCHES WIDTH 142.88 MM 5.625 INCHES INSULATION POSITIVE PLATE ENVELOPED VERTICAL SLYVER TERMINALS FLAG WITH LEAD NUTS AND BOLTS PER HOUR CAPACITY AT THE 100 HOUR RATE 1.265 SPECIFIC GRAVITY 1156 CAPACITY AT THE 20 HOUR RATE 1.265 SPECIFIC GRAVITY 1091 15 CAPACITY AT THE 20 HOUR RATE 1.265 SPECIFIC GRAVITY 705 71 CAPACITY AT THE 10 HOUR RATE 1.265 SPECIFIC GRAVITY	ELECTROLYTE RESERVE	ABOVE PLATES 92.08 MM	3.625	INCHES
WIDTH THICKNESS 142.88 MM 5.625 INCHES 0.265 INCHES NEGATIVE PLATE DIMENSION HEIGHT WIDTH THICKNESS 273.05 MM 10.75 INCHES 142.88 MM 5.625 INCHES WIDTH THICKNESS 273.05 MM 10.75 INCHES 10.75 INCHES WIDTH THICKNESS 273.05 MM 10.75 INCHES 10.75 INCHES INSULATION POSITIVE PLATE ENVELOPED VERTICAL SLYVER 10.78 INCHES TERMINALS FLAG WITH LEAD NUTS AND BOLTS AMPS PER HOUR CAPACITY AT THE 100 HOUR RATE 1.265 SPECIFIC GRAVITY 1156 12 CAPACITY AT THE 100 HOUR RATE 1.265 SPECIFIC GRAVITY 1091 15 CAPACITY AT THE 20 HOUR RATE 1.265 SPECIFIC GRAVITY 631 105 CAPACITY AT THE 20 HOUR RATE 1.265 SPECIFIC GRAVITY 631 105 CAPACITY AT THE 8 HOUR RATE 1.265 SPECIFIC GRAVITY 631 105 CAPACITY AT THE 8 HOUR RATE 1.265 SPECIFIC GRAVITY 538 139 CAPACITY AT THE 6 HOUR RATE 1.265 SPECIFIC GRAVITY 558 139 CAPACITY AT THE 6 HOUR RATE 1.265 SPECIFIC GRAVITY 558 139 CAPACITY	POSITIVE PLATE DIMENSION			
THICKNESS6.73 MM0.265 INCHESNEGATIVE PLATE DIMENSION273.05 MM10.75 INCHESHEIGHT273.05 MM10.75 INCHESWIDTH142.88 MM5.625 INCHESTHICKNESS4.70 MM0.185 INCHESINSULATIONPOSITIVE PLATE ENVELOPEDVERTICAL SLYVERVERTICAL SLYVERTERMINALSFLAG WITH LEAD NUTS AND BOLTSCAPACITY AT THE 100 HOUR RATE1.265 SPECIFIC GRAVITY1156CAPACITY AT THE 72 HOUR RATE1.265 SPECIFIC GRAVITY1091CAPACITY AT THE 20 HOUR RATE1.265 SPECIFIC GRAVITY410CAPACITY AT THE 10 HOUR RATE1.265 SPECIFIC GRAVITY70571CAPACITY AT THE 8 HOUR RATE1.265 SPECIFIC GRAVITY67284CAPACITY AT THE 8 HOUR RATE1.265 SPECIFIC GRAVITY631105CAPACITY AT THE 8 HOUR RATE1.265 SPECIFIC GRAVITY631105CAPACITY AT THE 8 HOUR RATE1.265 SPECIFIC GRAVITY599120CAPACITY AT THE 8 HOUR RATE1.265 SPECIFIC GRAVITY599120CAPACITY AT THE 8 HOUR RATE1.265 SPECIFIC GRAVITY558139CAPACITY AT THE 6 HOUR RATE1.265 SPECIFIC GRAVITY558139CAPACITY AT THE 4 HOUR RATE1.265 SPECIFIC GRAVITY558139CAPACITY AT THE 2 HOUR RATE1.265 SPECIFIC GRAVITY558139CAPACITY AT THE 1 HOUR RATE1.265 SPECIFIC GRAVITY336336	HEIGHT	273.05 MM	10.75	INCHES
NEGATIVE PLATE DIMENSIONHEIGHT WIDTH273.05 MM10.75 INCHESWIDTH THICKNESS142.88 MM5.625 INCHESINSULATIONPOSITIVE PLATE ENVELOPED VERTICAL SLYVERTERMINALSPOSITIVE PLATE ENVELOPED VERTICAL SLYVERCAPACITY AT THE 100 HOUR RATE CAPACITY AT THE 72 HOUR RATE CAPACITY AT THE 20 HOUR RATE 				
HEIGHT WIDTH THICKNESS273.05 MM 142.88 MM 4.70 MM10.75 INCHES 5.625 INCHES 142.88 MM 0.185 INCHESINSULATION TERMINALSPOSITIVE PLATE ENVELOPED VERTICAL SLYVER FLAG WITH LEAD NUTS AND BOLTSCAPACITY AT THE 100 HOUR RATE CAPACITY AT THE 27 HOUR RATE CAPACITY AT THE 20 HOUR RATE CAPACITY AT THE 20 HOUR RATE CAPACITY AT THE 20 HOUR RATE CAPACITY AT THE 10 HOUR RATE CAPACITY AT THE 3 HOUR RATE CAPACITY AT THE 3 HOUR RATE CAPACITY AT THE 3 HOUR RATE CAPACITY AT THE 6 HOUR RATE CAPACITY AT THE 6 HOUR RATE CAPACITY AT THE 6 HOUR RATE CAPACITY AT THE 5 HOUR RATE CAPACITY AT THE 5 HOUR RATE CAPACITY AT THE 4 HOUR RATE CAPACITY AT THE 4 HOUR RATE CAPACITY AT THE 2 HOUR RATE CAPACITY AT THE 2 HOUR RATE CAPACITY AT THE 2 HOUR RATE CAPACITY AT THE 4 HOUR RATE CAPACITY AT THE 4 HOUR RATE CAPACITY AT THE 2 HOUR RATE CAPACITY AT THE 1 HOUR RATE CA		6.73 MM	0.265	INCHES
WIDTH THICKNESS142.88 MM 4.70 MM5.625 INCHES 0.185 INCHESINSULATIONPOSITIVE PLATE ENVELOPED VERTICAL SLYVERTERMINALSPOSITIVE PLATE ENVELOPED VERTICAL SLYVERCAPACITY AT THE 100 HOUR RATE CAPACITY AT THE 72 HOUR RATE CAPACITY AT THE 20 HOUR RATE CAPACITY AT THE 3 HOUR RATE CAPACITY AT THE 10 HOUR RATE CAPACITY AT THE 3 HOUR RATE CAPACITY AT THE 3 HOUR RATE CAPACITY AT THE 3 HOUR RATE CAPACITY AT THE 4 HOUR RATE CAPACITY AT THE 4 HOUR RATE CAPACITY AT THE 4 HOUR RATE CAPACITY AT THE 2 HOUR RATE CAPACITY AT THE 1 HOUR RATE CAPACITY AT THE 1 HOUR RATE CAPACITY AT THE 1 HOUR RATE CAPACITY AT THE 2 HOUR RATE CAPACITY AT THE 2 HOUR RATE CAPACITY AT THE 1 HO		272 OF NM	40.75	
THICKNESS4.70 MM0.185 INCHESINSULATIONPOSITIVE PLATE ENVELOPED VERTICAL SLYVERSubstrateTERMINALSPLAG WITH LEAD NUTS AND BOLTSCAPACITY AT THE 100 HOUR RATE1.265 SPECIFIC GRAVITYAMPS AMP. HRS.CAPACITY AT THE 72 HOUR RATE1.265 SPECIFIC GRAVITY115612CAPACITY AT THE 72 HOUR RATE1.265 SPECIFIC GRAVITY109115CAPACITY AT THE 72 HOUR RATE1.265 SPECIFIC GRAVITY70571CAPACITY AT THE 20 HOUR RATE1.265 SPECIFIC GRAVITY631105CAPACITY AT THE 20 HOUR RATE1.265 SPECIFIC GRAVITY631105CAPACITY AT THE 8 HOUR RATE1.265 SPECIFIC GRAVITY631105CAPACITY AT THE 8 HOUR RATE1.265 SPECIFIC GRAVITY599120CAPACITY AT THE 6 HOUR RATE1.265 SPECIFIC GRAVITY558139CAPACITY AT THE 5 HOUR RATE1.265 SPECIFIC GRAVITY558139CAPACITY AT THE 4 HOUR RATE1.265 SPECIFIC GRAVITY558139CAPACITY AT THE 2 HOUR RATE1.265 SPECIFIC GRAVITY538139CAPACITY AT THE 2 HOUR RATE1.265 SPECIFIC GRAVITY538139CAPACITY AT THE 2 HOUR RATE1.265 SPECIFIC GRAVITY443221CAPACITY AT THE 1 HOUR RATE1.265 SPECIFIC GRAVITY336336			-	
INSULATIONPOSITIVE PLATE ENVELOPED VERTICAL SLYVERTERMINALSPLAG WITH LEAD NUTS AND BOLTSCAPACITY AT THE 100 HOUR RATE1.265 SPECIFIC GRAVITYAMPS AMP. HRS.CAPACITY AT THE 100 HOUR RATE1.265 SPECIFIC GRAVITY115612CAPACITY AT THE 20 HOUR RATE1.265 SPECIFIC GRAVITY109115CAPACITY AT THE 20 HOUR RATE1.265 SPECIFIC GRAVITY82041CAPACITY AT THE 10 HOUR RATE1.265 SPECIFIC GRAVITY70571CAPACITY AT THE 10 HOUR RATE1.265 SPECIFIC GRAVITY67284CAPACITY AT THE 8 HOUR RATE1.265 SPECIFIC GRAVITY631105CAPACITY AT THE 6 HOUR RATE1.265 SPECIFIC GRAVITY599120CAPACITY AT THE 6 HOUR RATE1.265 SPECIFIC GRAVITY558139CAPACITY AT THE 5 HOUR RATE1.265 SPECIFIC GRAVITY558139CAPACITY AT THE 4 HOUR RATE1.265 SPECIFIC GRAVITY443221CAPACITY AT THE 2 HOUR RATE1.265 SPECIFIC GRAVITY336336				
VERTICAL SLYVER FLAG WITH LEAD NUTS AND BOLTSTERMINALSFLAG WITH LEAD NUTS AND BOLTSCAPACITY AT THE 100 HOUR RATE1.265 SPECIFIC GRAVITYAMPS AMP. HRS.CAPACITY AT THE 100 HOUR RATE1.265 SPECIFIC GRAVITY115612CAPACITY AT THE 72 HOUR RATE1.265 SPECIFIC GRAVITY109115CAPACITY AT THE 20 HOUR RATE1.265 SPECIFIC GRAVITY82041CAPACITY AT THE 10 HOUR RATE1.265 SPECIFIC GRAVITY70571CAPACITY AT THE 8 HOUR RATE1.265 SPECIFIC GRAVITY67284CAPACITY AT THE 8 HOUR RATE1.265 SPECIFIC GRAVITY631105CAPACITY AT THE 8 HOUR RATE1.265 SPECIFIC GRAVITY599120CAPACITY AT THE 6 HOUR RATE1.265 SPECIFIC GRAVITY558139CAPACITY AT THE 5 HOUR RATE1.265 SPECIFIC GRAVITY558139CAPACITY AT THE 4 HOUR RATE1.265 SPECIFIC GRAVITY558139CAPACITY AT THE 2 HOUR RATE1.265 SPECIFIC GRAVITY336336		4.70 1010	0.165	INCHES
TERMINALSFLAG WITH LEAD NUTS AND BOLTSCAPACITYAMPS PER HOURCAPACITY AT THE 100 HOUR RATE1.265 SPECIFIC GRAVITY115612CAPACITY AT THE 72 HOUR RATE1.265 SPECIFIC GRAVITY109115CAPACITY AT THE 20 HOUR RATE1.265 SPECIFIC GRAVITY82041CAPACITY AT THE 10 HOUR RATE1.265 SPECIFIC GRAVITY70571CAPACITY AT THE 8 HOUR RATE1.265 SPECIFIC GRAVITY67284CAPACITY AT THE 8 HOUR RATE1.265 SPECIFIC GRAVITY631105CAPACITY AT THE 6 HOUR RATE1.265 SPECIFIC GRAVITY599120CAPACITY AT THE 5 HOUR RATE1.265 SPECIFIC GRAVITY558139CAPACITY AT THE 4 HOUR RATE1.265 SPECIFIC GRAVITY558139CAPACITY AT THE 2 HOUR RATE1.265 SPECIFIC GRAVITY443221CAPACITY AT THE 1 HOUR RATE1.265 SPECIFIC GRAVITY336336	INSULATION			
CAPACITY AMP. HRS.AMPS PER HOURCAPACITY AT THE 100 HOUR RATE CAPACITY AT THE 72 HOUR RATE1.265 SPECIFIC GRAVITY115612CAPACITY AT THE 72 HOUR RATE1.265 SPECIFIC GRAVITY109115CAPACITY AT THE 20 HOUR RATE1.265 SPECIFIC GRAVITY82041CAPACITY AT THE 10 HOUR RATE1.265 SPECIFIC GRAVITY70571CAPACITY AT THE 8 HOUR RATE1.265 SPECIFIC GRAVITY67284CAPACITY AT THE 8 HOUR RATE1.265 SPECIFIC GRAVITY631105CAPACITY AT THE 6 HOUR RATE1.265 SPECIFIC GRAVITY599120CAPACITY AT THE 5 HOUR RATE1.265 SPECIFIC GRAVITY558139CAPACITY AT THE 4 HOUR RATE1.265 SPECIFIC GRAVITY558139CAPACITY AT THE 2 HOUR RATE1.265 SPECIFIC GRAVITY336336				T O
AMP. HRS.PER HOURCAPACITY AT THE 100 HOUR RATE1.265 SPECIFIC GRAVITY115612CAPACITY AT THE 72 HOUR RATE1.265 SPECIFIC GRAVITY109115CAPACITY AT THE 20 HOUR RATE1.265 SPECIFIC GRAVITY82041CAPACITY AT THE 10 HOUR RATE1.265 SPECIFIC GRAVITY70571CAPACITY AT THE 8 HOUR RATE1.265 SPECIFIC GRAVITY67284CAPACITY AT THE 6 HOUR RATE1.265 SPECIFIC GRAVITY631105CAPACITY AT THE 5 HOUR RATE1.265 SPECIFIC GRAVITY599120CAPACITY AT THE 4 HOUR RATE1.265 SPECIFIC GRAVITY558139CAPACITY AT THE 2 HOUR RATE1.265 SPECIFIC GRAVITY443221CAPACITY AT THE 1 HOUR RATE1.265 SPECIFIC GRAVITY336336	TERMINALS	FLAG WITH LEAD N	JIS AND BUL	15
CAPACITY AT THE 72 HOUR RATE1.265 SPECIFIC GRAVITY109115CAPACITY AT THE 20 HOUR RATE1.265 SPECIFIC GRAVITY82041CAPACITY AT THE 10 HOUR RATE1.265 SPECIFIC GRAVITY70571CAPACITY AT THE 8 HOUR RATE1.265 SPECIFIC GRAVITY67284CAPACITY AT THE 6 HOUR RATE1.265 SPECIFIC GRAVITY631105CAPACITY AT THE 5 HOUR RATE1.265 SPECIFIC GRAVITY599120CAPACITY AT THE 4 HOUR RATE1.265 SPECIFIC GRAVITY558139CAPACITY AT THE 2 HOUR RATE1.265 SPECIFIC GRAVITY443221CAPACITY AT THE 1 HOUR RATE1.265 SPECIFIC GRAVITY336336			AMP. HRS.	PER HOUR
CAPACITY AT THE 20 HOUR RATE1.265 SPECIFIC GRAVITY82041CAPACITY AT THE 10 HOUR RATE1.265 SPECIFIC GRAVITY70571CAPACITY AT THE 8 HOUR RATE1.265 SPECIFIC GRAVITY67284CAPACITY AT THE 6 HOUR RATE1.265 SPECIFIC GRAVITY631105CAPACITY AT THE 5 HOUR RATE1.265 SPECIFIC GRAVITY599120CAPACITY AT THE 4 HOUR RATE1.265 SPECIFIC GRAVITY558139CAPACITY AT THE 2 HOUR RATE1.265 SPECIFIC GRAVITY443221CAPACITY AT THE 1 HOUR RATE1.265 SPECIFIC GRAVITY336336				
CAPACITY AT THE 10 HOUR RATE1.265 SPECIFIC GRAVITY70571CAPACITY AT THE 8 HOUR RATE1.265 SPECIFIC GRAVITY67284CAPACITY AT THE 6 HOUR RATE1.265 SPECIFIC GRAVITY631105CAPACITY AT THE 5 HOUR RATE1.265 SPECIFIC GRAVITY599120CAPACITY AT THE 4 HOUR RATE1.265 SPECIFIC GRAVITY558139CAPACITY AT THE 2 HOUR RATE1.265 SPECIFIC GRAVITY443221CAPACITY AT THE 1 HOUR RATE1.265 SPECIFIC GRAVITY336336				
CAPACITY AT THE 8 HOUR RATE1.265 SPECIFIC GRAVITY67284CAPACITY AT THE 6 HOUR RATE1.265 SPECIFIC GRAVITY631105CAPACITY AT THE 5 HOUR RATE1.265 SPECIFIC GRAVITY599120CAPACITY AT THE 4 HOUR RATE1.265 SPECIFIC GRAVITY558139CAPACITY AT THE 2 HOUR RATE1.265 SPECIFIC GRAVITY558139CAPACITY AT THE 2 HOUR RATE1.265 SPECIFIC GRAVITY443221CAPACITY AT THE 1 HOUR RATE1.265 SPECIFIC GRAVITY336336				
CAPACITY AT THE 6 HOUR RATE1.265 SPECIFIC GRAVITY631105CAPACITY AT THE 5 HOUR RATE1.265 SPECIFIC GRAVITY599120CAPACITY AT THE 4 HOUR RATE1.265 SPECIFIC GRAVITY558139CAPACITY AT THE 2 HOUR RATE1.265 SPECIFIC GRAVITY443221CAPACITY AT THE 1 HOUR RATE1.265 SPECIFIC GRAVITY336336				
CAPACITY AT THE 5 HOUR RATE1.265 SPECIFIC GRAVITY599120CAPACITY AT THE 4 HOUR RATE1.265 SPECIFIC GRAVITY558139CAPACITY AT THE 2 HOUR RATE1.265 SPECIFIC GRAVITY443221CAPACITY AT THE 1 HOUR RATE1.265 SPECIFIC GRAVITY336336				
CAPACITY AT THE 4 HOUR RATE1.265 SPECIFIC GRAVITY558139CAPACITY AT THE 2 HOUR RATE1.265 SPECIFIC GRAVITY443221CAPACITY AT THE 1 HOUR RATE1.265 SPECIFIC GRAVITY336336				
CAPACITY AT THE 2 HOUR RATE1.265 SPECIFIC GRAVITY443221CAPACITY AT THE 1 HOUR RATE1.265 SPECIFIC GRAVITY336336				
CAPACITY AT THE 1 HOUR RATE 1.265 SPECIFIC GRAVITY 336 336				
	CAPACITY AT THE 1/2 HOUR RATE	1.265 SPECIFIC GRAVITY	180	361

SOLAR

DEEP CYCLE-NON BREAKABLE CONSTRUCTION BATTERY TYPE 4-KS-21PS VOLTS 4 DIMENSIONS LENGTH 400 MM **15.75 INCHES** WIDTH 238 MM **9.38 INCHES** HEIGHT 629 MM 24.75 INCHES WEIGHT DRY 85 KG 186 LBS. WEIGHT WET 267 LBS. 121 KG CONTAINER CONSTRUCTION POLYPROPYLENE INNER CONTAINER **INNER COVER** POLYPROPYLENE-HEAT SEALED TO INNER CONTAINER OUTER CONTAINER HIGH DENSITY POLYETHYLENE OUTER COVER HIGH DENSITY POLYETHYLENE SNAP FIT TO OUTER CONTAINER HANDLES MOLDED PLATES PER CELL 21 ELECTROLYTE RESERVE ABOVE PLATES 92.08 MM 3.625 POSITIVE PLATE DIMENSION HEIGHT 431.80 MM **17 INCHES** WIDTH 142.88 MM 5.625 INCHES THICKNESS 6.99 MM 0.275 INCHES NEGATIVE PLATE DIMENSION HEIGHT 431.80 MM **17 INCHES** WIDTH 142.88 MM **5.625 INCHES** THICKNESS **0.18 INCHES** 4.57 MM POSITIVE PLATE ENVELOPED INSULATION PLUS HEAVY GLASS TERMINALS FLAG WITH LEAD NUTS AND BOLTS CAP. CAPACITY AT THE 100 HOUR RATE 1.265 SP. GR. 1557 CAPACITY AT THE 72 HOUR RATE 1.265 SP. GR. 1468 CAPACITY AT THE 50 HOUR RATE 1.265 SP. GR. 1358 CAPACITY AT THE 24 HOUR RATE 1.265 SP. GR. 1148 CAPACITY AT THE 20 HOUR RATE 1.265 SP. GR. 1104 CAPACITY AT THE 10 HOUR RATE 1.265 SP. GR. 949 CAPACITY AT THE 8 HOUR RATE 1.265 SP. GR. 905 1.265 SP. GR. 850

CAPACITY AT THE 6 HOUR RATE CAPACITY AT THE 5 HOUR RATE CAPACITY AT THE 4 HOUR RATE CAPACITY AT THE 2 HOUR RATE CAPACITY AT THE 1 HOUR RATE

806

751

596

453

1.265 SP. GR.

1.265 SP. GR.

1.265 SP. GR.

1.265 SP. GR.

INCHES

AMPS

16

20

27

48

55

95

113

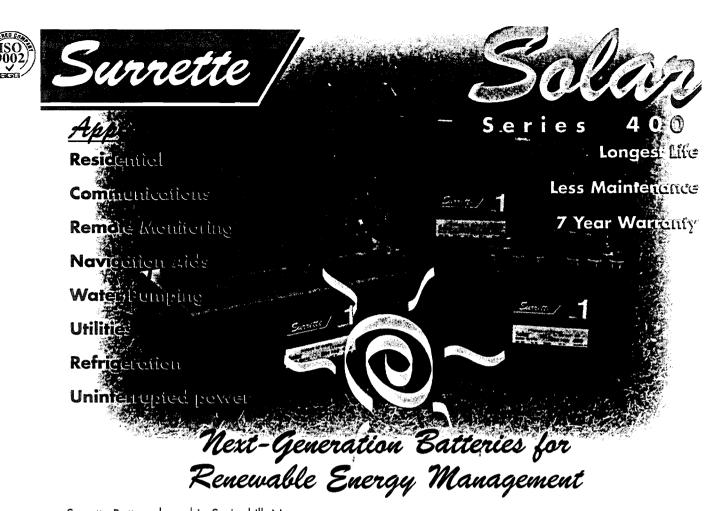
142

161

188

298

453


SOLAR

DEEP CYCLE-NON BREAKABLE CONSTRUCTION

BATTERY TYPE	4-KS-25PS		
VOLTS	4		
DIMENSIONS LENGTH WIDTH HEIGHT	400 MM 273 MM 629 MM	10.75	5 INCHES
WEIGH⊤ DRY WEIGHT WET	100 KG 143 KG		
CONTAINER CONSTRUCTION INNER CONTAINER INNER COVER OUTER CONTAINER OUTER COVER HANDLES	POLYPROPYLENE TO INNER CONTAI HIGH DENSITY PO HIGH DENSITY PO	-HEAT SE INER ILYETHYLI ILYETHYLI	ENE
PLATES PER CELL	25		
ELECTROLYTE RESERVE ABOVE PLATES	92.08 MM	3.625	INCHES
POSITIVE PLATE DIMENSION HEIGHT WIDTH THICKNESS NEGATIVE PLATE DIMENSION HEIGHT WIDTH THICKNESS	431.80 MM 142.88 MM 6.99 MM 431.80 MM 142.88 MM 4.57 MM	5.625 0.275 17 5.625 0.18	5 INCHES 5 INCHES 7 INCHES 5 INCHES 3 INCHES
INSULATION	AGTH 400 MM 15.75 INCHES GHT 273 MM 10.75 INCHES GHT 629 MM 24.75 INCHES DNSTRUCTION 100 KG 220 LBS. IER CONTAINER POLYPROPYLENE FER COVER POLYPROPYLENE TER CONTAINER POLYPROPYLENE TER CONTAINER HIGH DENSITY POLYETHYLENE TER COVER SNAP FIT TO OUTER CONTAINER VIDLES MOLDED ELL 25 RESERVE ABOVE PLATES 92.08 MM 3.625 INCHES GHT 431.80 MM 17 INCHES CKNESS 6.99 MM 0.275 INCHES GHT 431.80 MM 17 INCHES TH 142.88 MM 5.625 INCHES GHT 431.80 MM 17 INCHES TH 142.88 MM 5.625 INCHES GHT 431.80 MM 17 INCHES TH 142.88 MM 5.625 INCHES CKNESS 6.99 MM 0.275 INCHES GHT 431.80 MM 17 INCHES TH 126.58 P. GR. 180 INCHES DITH 1265 SP.		
	FLAG WITH LEAD NUT		AMPS
CAPACITY AT THE 100 HOUR RATE CAPACITY AT THE 72 HOUR RATE CAPACITY AT THE 20 HOUR RATE CAPACITY AT THE 10 HOUR RATE CAPACITY AT THE 8 HOUR RATE CAPACITY AT THE 6 HOUR RATE	1.265 SP. GR. 1.265 SP. GR. 1.265 SP. GR. 1.265 SP. GR. 1.265 SP. GR.	1800 1350 1161 1107 1020	25 68 116 138 170
CAPACITY AT THE 5 HOUR RATE CAPACITY AT THE 4 HOUR RATE CAPACITY AT THE 2 HOUR RATE CAPACITY AT THE 1 HOUR RATE	1.265 SP. GR. 1.265 SP. GR.	918 729	197 230 365 554

CAPACITY AT THE 1/2 HOUR RATE

1.265 SP. GR.

Surrette Battery, based in Springhill, Nova Scotia, has been manufacturing deep cycle batteries of the highest quality for more than 60 years. Our series 400 system of batteries, manufactured specifically for solar and other renewable energy applications, are designed to offer up to 12 years of life.

Specs-at-a-Glance: Voltage: 6, 8 & 12 Plate Alloy: 4% Antimony Post Type: Flag (Typical) Charge Voltage (77F): Float 2.2 -2.23 VPC, Bulk 2.37 - 2.4 VPC Specific Gravity: 1.265 Electrolyte: Sulfuric Acid

Feature:

Use of thickest plate, highest density active material in plate construction

Benefit: • Unsurpassed cycling service -10 year average life

Feature:

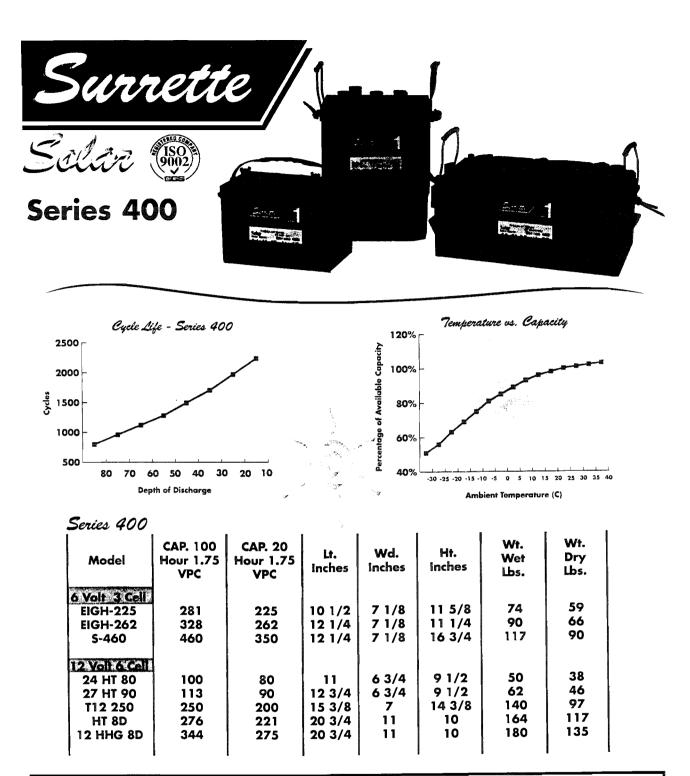
Many of our batteries are constructed with structural foam containers

Benefits:

- Less weight
- Greater rigidity
- Greater durability

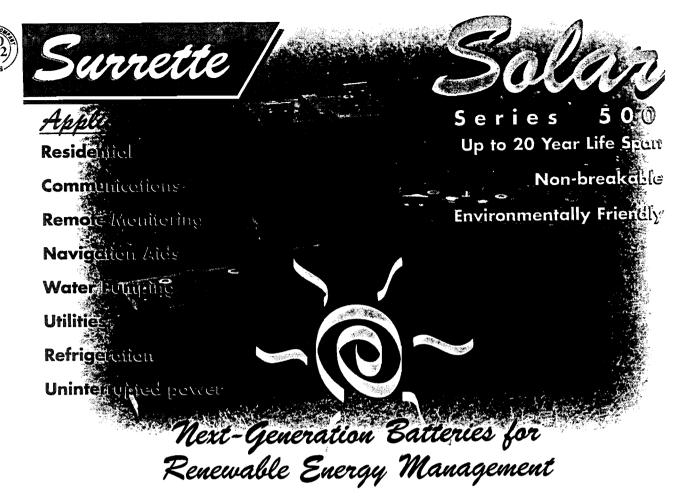
Feature: Enveloped Separators

- Benefits: Ability to remove sediment chamber, eliminating separator misalignment, treeing or shorting.
 - Also allows for higher plates to be used in the same sized cell, which yields greater capacity.



Feature: Increased Liquid Reserve

Benefit:


Less

maintenance

Warranty Information:

The Surrette Warranty - Series 400 Failure within 24 months from date placed in service yields FREE replacement, not including freight charges from factory to destination. After the first 24 months of service, defective batteries will be adjusted for a period of up to 84 months from date first in service at prices in effect at time of adjustment. Certain Restrictions Apply - contact your local representative for more details. Contact: Canada, BOM 1X0. Tel: (902) 597-3767 Fax: (902) 597-8447 Or your nearest distributor:

Surrette Battery, based in Springhill, Nova Scotia, has been manufacturing deep cycle batteries of the highest quality for more than 60 years. Our series 500 system of batteries, manufactured specifically for solar and other renewable energy applications, are designed to offer up to 20 years of life thanks in part to their "Non-Breakable" Dual Container (Modular) Construction.

Spees-at-a-Glance:

Benefits: • Ability to remove sediment

Voltage: various configurations Plate Alloy: 4% Antimony Post Type: Flag (Typical) Charge Voltage (77F): Float 2.2 -2.23 VPC, Bulk 2.37 - 2.4 VPC Specific Gravity: 1.265 Electrolyte: Sulfuric Acid

chamber, eliminating separator

Also allows for higher plates to

be used in the same sized cell,

which yields greater capacity

misalignment, treeing or shorting

Feature:

Dual Container Modular Construction

- Benefits: Elimination of stray current
 - Environmentally friendly
 - No acid leakage
 - Easy on-site assembly/disassembly, with no special tools or skills required
 - Drastic reduction in connections, which eliminates many points of failure, increasing charging efficiency

Feature:

Coupling our thick plate design with the highest density active material

Benefit:

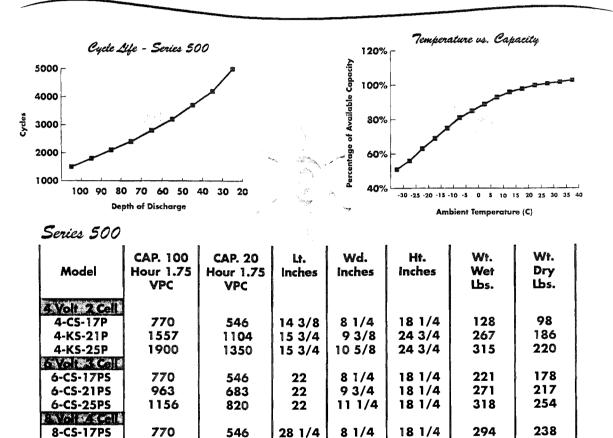
 Unsurpassed cycling service -15 year average life

Feature:

Enveloped Separators

Feature: Increased Liquid Reserve

Benefit:


Less
 maintenance

OCT.00

Series 500 - Solan **Dual Container Construction**

Surrette Series 500 batteries are enhanced by their non-breakable dual container construction. Each cell is assembled in its own inner container - eliminating breakage due to rough handling and abuse, acid leakage, and short circuits due to the accumulation of moisture and dirt and other foreign objects. Cell replacement is clean and quick - allowing the battery to be assembled or repaired on location, without special skills or tools.

28 1/4

22

The Surrette Warranty - Series 500
Failure within 36 months from date placed in
service yields FREE replacement, not including
freight charges from factory to destination.

1156

503

820

357

8-CS-25PS

1. 18.90 12-CS-11PS

Warranty Information:

freight ch After the first 36 months of service, defective batteries will be adjusted for a period of up to 120 months from date first in service at prices in effect at time of adjustment. Certain Restrictions Apply - contact your local representative for more details.

Surrette Battery Co. Ltd., 1 Station Rd P.O. Box 2020, Springhill, NS, Contact: Canada, BOM 1X0 Tel: (902) 597-3767 Fax: (902) 597-8447 Or your nearest distributor:

11 1/4

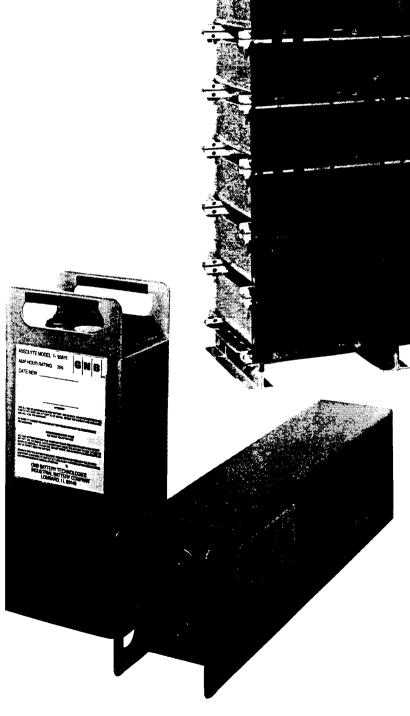
11 1/4

18 1/4

18 1/4

342

220


424

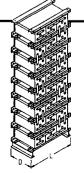
272

Section 62.61

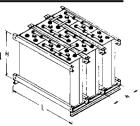
- 5000 cycles at 20% D.O.D.
 (1200 cycles at 80% D.O.D.)
- 145-6385AH
 @ 100 Hour Rate
- Single Cell and stackable modules
- Recyclable to world standards
 - UL recognized component

hotovoltaic and Alternative Energy Batteries

Absolyte IIP Stackable Module Weights and Dimensions


		NOM	STACKING DIMENSIONS								DOMESTIC		EXPORT	
	VOLTS	AH Cap	LENGTH		WIDTH		DEPTH OR HEIGHT*		UNPACKED WEIGHT		PACKED WEIGHT		PACKED WEIGHT	
		(100 HR)	IN	мм	IN	ММ	IN	MM	LBS	KGS	LBS	KGS	LBS	KGS
50A														
6-50A05	12	145	17.19	437	8.53	217	16.22	412	157	71	176	80	228	104
6-50A07	12	220	21.69	551	8.53	217	16.22	412	209	95	228	104	280	127
6-50A09	12	290	26.19	665	8.53	217	16.22	412	252	114	271	123	323	147
6-50A11	12	365	30.69	780	8.53	217	16.22	412	313	142	332	151	384	174
6-50A13	12	440	35.19	894	8.53	217	16.22	412	356	162	381	173	433	197
6-50A15	12	510	39.69	1008	8.59	218	16.22	412	417	189	442	201	494	224
90A											-			_
6-90A05	12	245	17.19	437	8.53	217	23.56	599	235	107	254	115	322	14
6-90A07	12	365	21.69	551	8.53	217	23.56	599	316	143	335	152	413	187
6-90A09	12	490	26.19	665	8.53	217	23.56	599	396	180	415	188	493	224
6-90A11	12	610	30.69	780	8.53	217	23.56	599	477	216	502	228	581	26
6-90A13	12	730	35.19	894	8.53	217	23.56	599	557	253	582	264	661	30
6-90A15	12	855	39.69	1008	8.59	218	23.56	599	637	289	668	303	747	33
3-90A17	6	975	24.50	622	8.59	218	23.56	599	376	171	395	179	474	21
3-90A19	6	1100	26.75	679	8.59	218	23.56	599	416	189	435	197	514	23
3-90A21	6	1220	29.00	737	8.59	218	23.56	599	456	207	478	217	557	25
3-90A23	6	1340	31.25	794	8.59	218	23.56	599	497	226	522	237	601	27
3-90A25	6	1465	33.50	851	8.59	218	23.56	599	538	244	564	256	642	29
3-90A27	6	1585	35.75	908	8.59	218	23.56	599	578	262	606	275	68 5	31
100A														
3-100A13	6	800	19.93	506	8.53	217	26.38	670	328	149	356	162	436	19
3-100A15	6	<u>9</u> 30	22.18	<u>5</u> 63	8.59	218	26.38	670	374	170	408	185	489	22
<u>3-100A17</u>	6	1065	24.50	622	8.59	218	26.38	670	424	192	446	202	528	24
3-100A19	6	1200	26.75	679	8.59	218	26.38	670	470	213	491	223	574	26
3-100A21	6	1330	29.00	737	8.59	218	26.38	670	515	234	539	245	623	28
3-100A23	6	1460	31.25	794	8.59	218	26.38	670	561	255	589	267	674	30
3-100A25	6	1595	33.50	851	8.59	218	26.38	670	608	276	637	289	723	32
3-100A27	6	1730	35.75	908	8.59	218	26.38	670	653	296	684	310	772	35
3-100A29	6	1860	38.00	965	8.59	218	26.38	670	704	319	736	334	824	37
3-100A31	6	1995	40.25	1022	8.59	218	26.38	<u>670</u>	750	340	783	355	873	39
3-100A33	6	2130	42.50	1080	8.59	218	26.38	670	7 9 5	361	829	376	920	41
1-1 <u>00A39</u>	2	2400	<u>19.93</u>	506	8.53	217	26.38	670	328	149	356	162	436	19
1-100A45	2	2795	22.18	563	8.59	218	26.38	670	374	170	408	185	489	22
1-100A51	2	3190	24.50	622	8.59	218	26.38	670	424	192	446	202	528	24
1-100A57	2	3590	<u>26.75</u>	679	8.59	218	26.38	670	470	213	491	223	574	26
1-100A63	2	3990	29.00	737	8.59	218	26.38	670	515	234	539	245	623	28
<u>1-100A69</u>	2_	4390	<u>31.25</u>	794	8.59	218	26.38	670	561	255	589	267	674	<u>30</u>
1-100A75	2	4790	<u>33.50</u>	851	8.59	<u>218</u>	26.38	670	608	276	637	289	723	32
1-100A81	2	5185	35.75	908	8.59	218	26.38	670	653	296	684	310	772	35
1-100A87	2	5585	38.00	965	8.59	218	26.38	670	704	319	736	334	824	<u>37</u>
1-100A93	2	5985	40.25	1022	8.59	218	26.38	670	750	340	783	355	873	39
1-100A99	2	6385	42.50	1080	8.59	218	26.38	670	795	361	829	376	920	41

*Includes 77mm (3") additional for Module Cover Assembly NOTE: Design and / or specification subject to change without notice. If questions arise, contact your local GNB sales representative for clarification

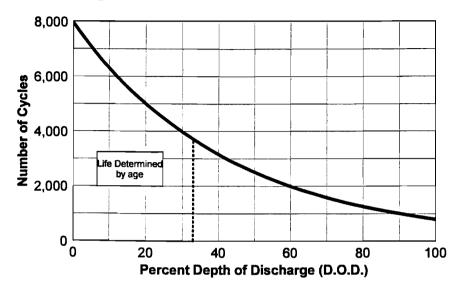

ASSEMBLY **CONFIGURATIONS** Horizontal Stack Assembly

(Preferred)

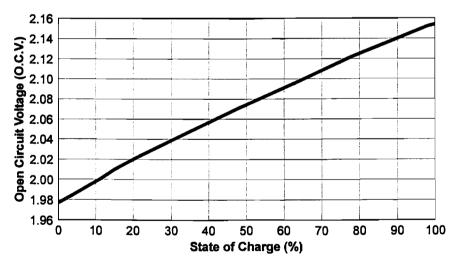
Depth is overall, including module cover assembly. Add 102mm (4") for bottom I-beam supports to determine total height (width) of assembled horizontal stack.

Vertical Assembly, Side-by-side Height is overall, including module cover assembly. Add 51mm (2") for bottom channel support to determine final height.

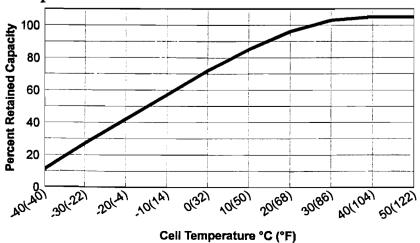
Photovoltaic and Alternative Energy Batteries


Absolyte IIP Performance Characteristics Amperes to 1.75 Volts Per Cell @ 25°C (77°F)

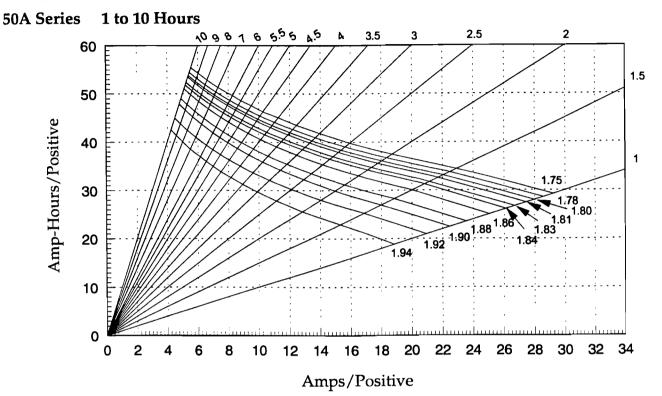
CELL					HO	URS				
TYPE	120	100	72	48	36	24	20	12	10	8
50A		_						-		
50A05	1.2	1.4	1.9	2.8	3.6	5.1	6.0	9.3	11	13
50A07	1.8	2.1	2.9	4.2	5.5	7.7	9.1	14	16	19
50A09	2.4	2.9	3.9	5.6	7.3	10	12	18	22	26
50A11	3.0	3.6	4.9	7.1	9.1	13	15	23	27	33
50A13	3.7	4.3	5.9	8.5	11	15	18	28	33	39
50A15	4.3	5.1	6.9	9.9	12	18	21	32	38	46
50A17	4.8	5.9	7.9	11	15	21	24	37	44	53
50A19	5.4	6.6	8.9	13	16	23	27	42	49	59
50A21	6.0	7.4	9.9	14	18	26	31	47	55	66
50A23	6.6	8.1	11	16	20	29	34	51	60	73
50A25	7.2	8.8	12	17	22	31	37	56	65	79
50A27	7.8	9.6	13	19	24	34	40	61	71	86
90A		-I			1			1		
90A05	2.0	2.4	3.2	4.7	6.0	8.6	10	15	18	21
90A07	3.0	3.6	4.9	7.0	9.1	12	15	23	27	32
90A09	4.0	4.8	6.5	9.4	12	17	20	31	36	43
90A11	5.0	6.0	8.1	11	15	21	25	39	46	54
90A13	6.1	7.2	9.8	14	18	25	30	47	55	65
90A15	7.1	8.4	11	16	21	30	35	55	64	76
90A17	8.1	9.6	13	18	24	34	40	63	73	87
90A19	9.1	10	14	21	27	38	45	71	82	98
90A21	10	12	16	23	30	43	50	79	92	109
90A23	11	13	18	26	33	47	55	87	101	120
90A25	12	14	19	28	36	51	60	95	110	131
90A27	13	15	21	30	39	56	65	103	119	142
100A		10		00	00	00	00	100	0	
100A13	6.7	7.9	10	15	20	29	34	54	62	75
100/115	7.8	9.2	10	18	23	33	40	63	73	87
100A17	8.9	10	14	20	26	38	45	72	83	100
100A19	10	11	16	23	30	43	51	81	94	112
100A13	11	13	10	25	33	43	57	90	104	125
100A21	12	14	19	23	36	53	63	99	115	123
100A25	13	14	21	31	40	58	68	108	125	150
100A25 100A27	14	15	21	33	40	62	74	117	125	162
100A27	14	17	23	33	43	67	80	127	135	175
100A29	16	10	25	30	46 50	72	85	136	146	175
100A31	16	21	28	<u>38</u> 41		72	91	136	156	200
100A33	20		30		53	87	102			200
100A39	20	23		45	60			162	186	225
		27	36	54	69 78	99	120	189	219	
100A51	26	30	42	60	78	114	135	216	249	300
100A57	30	33	48	69	90	129	153	243	282	336
100A63	33	39	51	75	99	144	171	270	312	375
100A69	36	42	57	84	108	159	189	297	345	411
100A75	39	45	63	93	120	174	204	324	375	450
100A81	42	51	69	99	129	186	222	351	405	486
100A87	45	54	75	108	138	201	240	381	438	525
100A93	48	57	78	114	150	216	255	408	468	561
100A99	51	63	84	123	159	231	273	435	501	6 0 0


GNB ABSOLYTE IP Photovoltaic and Alternative Energy Batteries

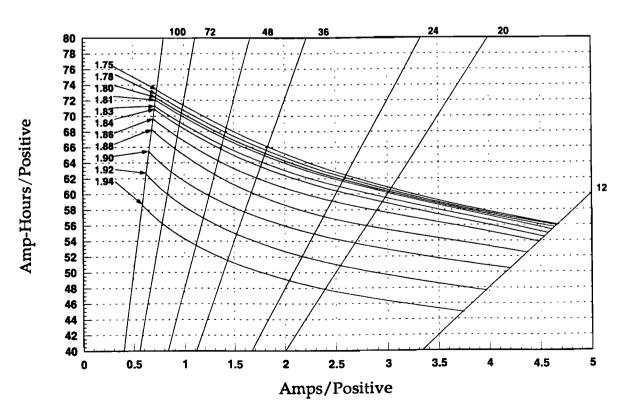
Absolyte IIP Performance Characteristics


Cycle Life vs. Depth of Discharge [at 25°C (77°F)]

Open Circuit Voltage vs. State of Charge [at 25°C (77°F)]



Capacity Retention vs. Temperature



Photovoltaic and Alternative Energy Batteries

Absolyte IIP Performance Curves @ 25°C (77°F)

Z

SPECI

Photovoltaic and Alternative Energy VRLA Batteries

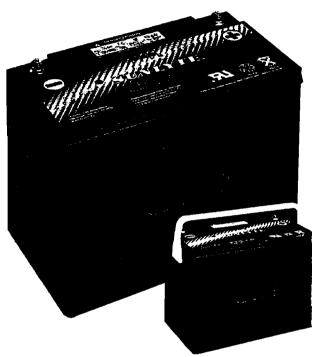
12-5000X

6 Cell, 12 Volt Valve-Regulated Lead-Acid Battery

100 Ah at 100 Hour Rate

INNOVATIVE FEATURES

Valve-Regulated Lead-Acid Design


- Never requires watering
- · Spillproof and leak proof
- Explosion resistant
- Horizontal or vertical operation
- No gases escape under normal charging
- · Operates at low internal pressure
- Increased operating safety

Immobilized Electrolyte

- Extended partial state of charge operation (at reduced capacities)
- Freezing tolerant
- Minimized need for equalization

Proprietary MFX Alloy

- Deep cycle capability
- Long life
- Low self-discharge rate

SPECIFICATIONS

Container and Cover - Reinforced polypropylene Separators - Spun glass, microporous matrix Safety Vent - 5 PSI nominal, self resealing Self-Discharge - 0.5-1.0% per week Terminals - Heavy duty copper alloy

Charge Voltage - 2.25-2.35 VPC @ 25°C (77 (30 amp max. current) Positive Plate — Patented MFX alloy Negative Plate — Lead calcium Estimated Cycle Life — {8 hour rate to 1.75 VPC @ 25°C (77°F 300 cycles @ 80% DOD 600 cycles @ 50% DOD

1,000 cycles @ 20% DOD

PHYSICAL CHARACTERISTICS

			Nominal D	imensions			We	ight
	Len	gth	Wi	dth	He	ight	Net	Each
Туре	In	mm	ln	mm	In	mm	Lbs	Kgs
12-5000X	12.05	307	6.85	175	8.80	224	67	30.5

Section 62.26

Photovoltaic and Alternative Energy VRLA Batter

SUNlyte[®] 12-5000X Perfromance Specifications Amperes @ 25°C (77°F)

GLOBAL OPERATIONS

NORTH AMERICA (World Headquarters) GNB Technologies

Lombard, Illinois U.S.A. TEL: 1.630.629.5200 FAX: 1.630.629.2635

GNB Technologies Mississauga, Ontario Canada TEL: 1.905.624.1107 FAX: 1.905.624.1801

EUROPE

 GNB Technologies

 Aalst, Belgium

 TEL:
 32.53.76.93.00

 FAX:
 32.53.77.75.56

GNB Technologies High Wycombe Bucks, U.K. TEL: 44.1494.637.100

FAX: 44.1494.637.101

MIDDLE EAST/AFRICA GNB Technologies Abu Dhabi, U.A.E. TEL: 971.2.226235

FAX: 971.2.227644 JAPAN

GNB Technologies Japan Tokyo, Japan TEL: 81.3.5325.6281 FAX: 81.3.5325.2063

AUSTRALIA

 GNB Technologies

 Padstow, N.S.W. Australia

 TEL:
 61.2.9722.5700

 FAX:
 61.2.9774.2966

NEW ZEALAND

GNB Technologies Lower Hutt, New Zealand TEL: 64.45.684.269 FAX: 64.45.686.687

SOUTH EAST ASIA

GNB Technologies S.E. Asia Singapore TEL: 65.546.2866 FAX: 65.546.2966

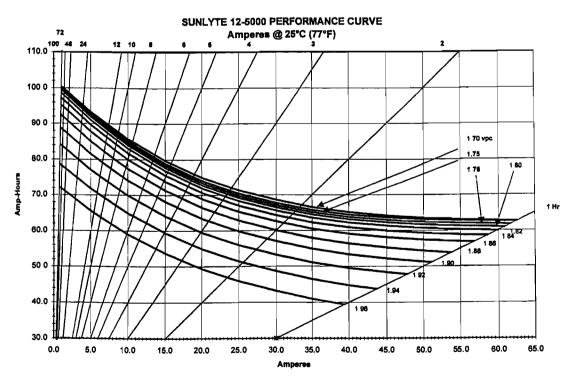
CHINA/HONG KONG GNB Technologies

Kowloon, Hong Kong TEL: 852.2.956.6688 FAX: 852.2.956.2161

LATIN AMERICA

 GNB Technologies

 Atlanta, Georgia U.S.A.


 TEL:
 1.770.551.9136

 FAX:
 1.770.206.9650

INDIA

GNB Technologies Bangalore, India TEL: 91.80.527.4425 FAX: 91.80.527.4424

							Hours						
End Voltage	100	72	48	24	12	10	8	6	5	4	3	2	1
1.70 Final Volts per Cell	1.0	1.4	2.1	4.0	7.5	8.7	10.6	13.6	15.8	19.0	24.0	33.6	62.0
1.75 Final Volts per Cell	1.0	1.4	2.0	4.0	7.4	8.7	10.5	13.5	15.7	18.8	23.8	33.2	62.
1.78 Final Volts per Cell	1.0	1.4	2.0	4.0	7.4	8.7	10.5	13.4	15.6	18.7	23.6	33.0	61.
1.80 Final Volts per Cell	1.0	1.4	2.0	4.0	7.3	8.6	10.4	13.3	15.5	18.6	23.4	32.7	60.
1.82 Final Volts per Cell	1.0	1.4	2.0	3.9	7.3	8.5	10.3	13.2	15.3	18.4	23.2	32.3	59.
1.84 Final Volts per Cell	1.0	1.3	2,0	3.9	7.2	8.4	10.2	13.0	15.1	18.1	22.9	31.8	58.
1.86 Final Volts per Cell	1.0	1.3	1.9	3.8	7.1	8.3	10.0	12.8	14.8	17.8	22.4	31.1	56.
1.88 Final Volts per Cell	0.9	1.3	1.9	3.7	6.9	8.0	9.7	12.4	14.4	17.3	21.8	30.0	53.
1.90 Final Volts per Cell	0.9	1.2	1.8	3.6	6.6	7.7	9.4	12.0	13.9	16.7	20.9	28.8	51.
1.92 Final Volts per Cell	0.8	1.2	1.7	3.4	6.3	7.4	8.9	11.4	13.2	15.9	19.9	27.3	47.
1.94 Final Volts per Cell	0.8	1.1	1.6	3.2	5.9	6.9	8.4	10.7	12.4	14.9	18.7	25.6	43.
1.96 Final Volts per Cell	0.7	1.0	1.5	2.9	5.4	6.4	7.7	9.9	11.5	13.8	17.3	23.5	39.

APPENDIX B

DETAILED TECHNICAL INFORMATION Inverters (Grid Tied)

Connecting The Sun To Your Utility Meter

Trace Engineering's new Sun Tie (ST) solar electric inverters are designed, built and priced to make the benefits of site-generated PV power easy for anyone to attain. The Sun Tie operates interactively with the utility, without the use of batteries. Made specifically for new, small-scale, independent power producers, the ST is a perfect choice for anyone interested in participating in the emerging Green Power market. The ST is

available in four models with output capacity of 1.0, 1.5, 2.0 and 2.5 kVA.

Distributed generation, using the power of the sun, is a win - win choice for the environment, utility companies and consumers alike. With this form of electrical distribution, solar PV power is generated and inverted at the location where it's used. Solar electricity helps reduce the need for new large-scale—and often environmentally harmful—generating stations and distribution lines.

Consumers can have lower electricity bills because any PV power they generate is either used in their home or business or, when there is excess, sold to the utility company. "Net Metering" is one way electricity is exchanged between the power grid and solar generators. Net Metering programs are available from many utility companies, contact your local electricity provider for details.

Utilities benefit from increased solar generation by gaining the ability to resell the PV power they purchase to environmentally conscious customers at premium Green Power rates. Consumer generated, solar electricity can also help utility companies meet their growth requirements at lower capital costs.

Introducing the Sun Tie

All-in-One Design

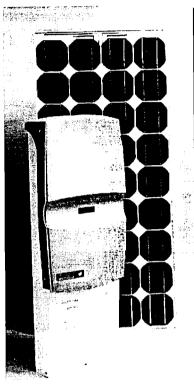
All NEC (U.S. National Electrical Code) required DC input and AC output connections, disconnects and circuit breakers are housed within the Sun Tie's compact case. A built in LCD panel provides easy-to-read system status and daily cumulative power production information.

Works With Any Type of PV Technology

The ST is designed to optimize the output from all types of solar electric technologies. The open circuit voltage window of the Sun Tie ranges up to 125 VDC so both conventional Crystalline and newer Thin Film PV modules can be used.

Maximum Power Point Tracking

The Sun Tie uses sophisticated software to track and adjust the output of the PV array. Our Maximum Power Point Tracking (MPPT) software, which samples once a minute, ensures complete harvest of the sun's energy all day long.


Expandable

Multiple ST inverters can be connected to a utility grid so that additional generating capacity may be added in a fully modular manner.

High Efficiency, Long Life Design

The high frequency, solid state design of the ST inverter is extremely efficient. The inverter efficiency is over 90%, with peak efficiencies of 94%. Built and designed in the U.S.A. by Trace Engineering, makers of the worlds most reliable inverters, the Sun Tie is sure to provide many years of trouble free service and carries a two year warranty.

* The Sun Tie is shown with optional protective rain shield which is required for outdoor installation of the inverter.

ST Series Inverter*

Standard Features:

Sun Tie—Utility interactive inverter, 240 VAC 60 Hz output. Includes factory installed DC and AC input/output breakers, combination DC and AC lightning arrestor.

Options:

STRS—Protective rain shield, required for out door installation of ST Series inverters

Certifications:

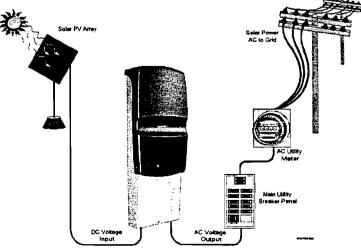
UL Listed—The Sun Tie is UL Listed to UL 1741 and cUL Listed to CSA 22.2. The ST is designed to comply with IEEE 929.

Note:

ST1000 and **ST2000** models do not include PV ground fault interrupters and PV combiner boards. Trace offers a PV ground fault interrupter (**PVGFP**) which requires an enclosure (not included) and a UL Listed 10 circuit combiner box (**TCB10**). Both of these items can be ordered separately.

P/N 974-0100-01-01 Rev A 05/00

5916 195" N.E. Arlington, WA 98223 USA


Sun Tie Utility Interactive Solar Electric Inverter

Model	ST1000	ST1500	ST2000	ST2500	
AC Voltage – Nominal		240	VAC		
DC Input Voltage Range- Nominal		52 - 8	35 VDC		
Minimum Perational DC Input		42	VDC		
Minimum Wake-up DC Input Voltage		70	VDC		
AC Voltage - Min/Max		211-254 VAC (Nor	th American mode	ls)	
Maximum Power Point Tracking	52	2 – 85 VDC (For full			
Absolute Maximum PV Open Circuit Voltage		125	VDC		
AC Output Characteristics	_	Currer	t source		
Frequency - Nominal) Hz		
Frequency Window - Min/Max			5 Hz Default		
Continuous AC Output @ 25 °C	1.0 kVA	1.5 kVA	2.0 kVA	2.5 kVA	
Efficiency - Peak		92%	94%		
AC Output Waveform		ine wave, high freq	requency PWM controlled		
Total Harmonic Distortion	Less than 5% at rated power per IEEE 929 and UL 1741				
AC Disconnect		0 VAC rated circuit			
DC Disconnect	t Single pole 100 Amp DC rated circuit breaker				
Specified Temperature Range					
Islanding Protection	Over/under A detecti	C Voltage and frequ on – Meets IEEE 929	ency detection plu and UL 1741 req	is active islanding uirements.	
User Display		umeric LCD displays power (watts) and (watt			
Enclosure Type	Powe	der coated aluminur	n enclosure, fully s	creened	
Dimensions - Inverter Only		3.25" H x 5.3" D (33			
Weight – Inverter Only			. (16 kg)		
Dimensions – Shipping	15.75" W x 3	37.75" H x 9.5" D [3	9.4 cm W x 94.4 c	m x 23.8 cm D)	
Weight – Shipping		40 lbs	. (18 kg)	<u>.</u>	
Mounting		Vertical wa	ll mount only		
Certifications	ŪL	Listed to UL 1741 a	and CSA 22.2 #107	7.1-95	

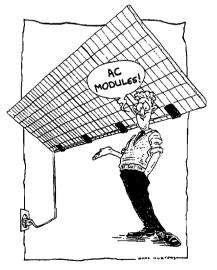
Specifications subject to change without notice

Standard	d Features a	Ind Options		
Model	ST1000	ST1500	ST2000	ST2500
PV Ground Fault Protection System		Standard		Standard
PV combiner board with 6 fused inputs 20 Amp max per input		Standard	-	Standard
Surge arrestor - Combined AC/DC protection	Standard	Standard	Standard	Standard
Rain Shield (STRS) – Protective rain shield Required for outdoor installation	Optional	Optional	Optional	Optional

The Sun Tie connects all the elements of a utilit interactive solar electric system together.

Available From:

A Modular Way to Connect Solar Electric Panels to a Utility Grid


Trace Engineering is leading the way once again with our new miniature utility interactive inverter- the AC PV module. Designed to fit on the back of an individual 24 volt PV solar module (or 2 12 volt modules wired in series), this totally weather proof inverter produces utility grade power suitable for supply to a power distribution grid. With a single 24 volt solar PV module you can begin to reduce your electricity bill and dependence on the utility grid. As finances allow additional AC modules may be added, increasing the power output of your personal utility company.

These units are designed to "sell back" power only. They will not operate as back up power supplies or with batteries.. Check with your Trace dealer and local utility before connecting to the grid.

Benefits of AC PV modules

- each inverter works independently if one fails, the other AC PV modules will keep on providing power into the utility grid
- high modularity allows easy system expansion, start with one module and easily add more to the system as money and time allow
- · low minimum system size, one solar panel coupled with one AC PV module is all that is needed
- use of standard AC installation methods and components
- reduced losses in wiring, no DC wire runs
- maximises system performance since each PV module operates at its peak power point (peak power point tracking)
- no need for power robbing string or bypass diodes
- less potential for lightning damage because of reduced DC wiring
- weather proof, encapsulated construction protects electronics
- no special mounting enclosure required; compact dimensions - 5.4" x 4.2" x 1.2" (136 x 108 x 30mm), designed to attach to the back of a PV module
- compatible with most solar modules
- reduced electrical bills

i<u>cen</u>ntique

An advanced original and revolutionary design: the smallest utility interactive inverter in the world!

Contraction of the second s

Model MicroSin

SPECIFICATIONS

Model	Voltage Range	Frequency Range
MS100	108 - 132 Vac	59 - 61 Hz
MS100U	216 - 262 Vac	59 - 61 Hz
MS100E	216 - 262 Vac	49 - 51 Hz
input power	0.4 Watts to 110 Watts	S

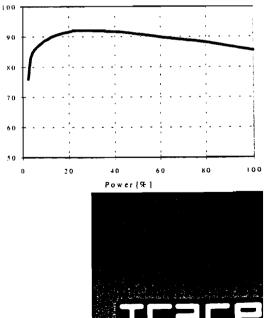
Input voltage window	24 to 50 VDC
Maximum open circuit	50 VDC
voltage	
Minimum DC voltage for	29 VDC
full rated output power	
Starting power	0.4 Watts
Operating temperature	-4°F to 176°F (-20°C to +80 °C)
Efficiency	89% average, 92.5% maximum
*Frequency range	adjustable: 59 - 61 Hz
Distortion (THD)	less than 5% above 25 watts
	less than 3% at full power
Size (encapsulated)	5.4" x 4.2" x 1.2" (108 x 108 x 30 mm)

*UL/ETL, NEC and utility requirements are pending at this time.

*The optional OKE485 interface and software is required to change the voltage and frequency window and access the built-in metering system PV Module not included. Specifications subject to change without notice

Features of the MicroSine AC PV module inverter

- high efficiency comparable to traditional utility interactive inverters (89% average, 92.5% peak)
- very good power quality meets European and IEEE standards
- good performance on electromagnetic compatibility, meeting the EMC standards VDE0871, both classes A and B
- very low stand-by power of 0.003 Watts
- built-in islanding protection frequency and voltage are monitored continuously, as well as the waveform's zero crossing
- extremely low light operation when connected to a 100 Watt PV module, power will be produced with as little as 15 Watts per square meter of solar irradiation
- built-in computer interface allows monitoring of each AC PV module system - total kilowatt-hours delivered, internal inverter temperature, AC output current, utility grid AC voltage and DC voltage of the PV module is available via an RS485 port
- field adjustable voltage and frequency limits (When using the optional OKE485 interface and software)
- engineered and tested for an expected operating life of over 20 years


Options:

• MSCA - Communications Adapter connects up to 127 MicroSine inverters to a PC type computer serial port. Includes RS485-232 adapter and DOS based software (twisted pair, two wire cable not included).

O OKE-Services

Grid-Connected Photovoltaic Inverter GC-1000 Model Series

Description

The GC-1000 is a 1KW DC-to-AC grid-tied inverter designed for residential and commercial on-site power generation systems. Manufactured for both indoor and outdoor use, this complete inverter package meets all code requirements and provides maximum efficiency, reliability, and ease of installation. The inverter can be purchased as a single unit or as part of a packaged system which includes a string combiner, GFI protection, and DC and AC disconnects. An optional interactive data monitor is also available.

Standard Features

- 1000 Watt, single-phase AC output at 25 °C
- 93% peak efficiency with DC input range of 52 to 92 Volts*
- Maximum Power Point Tracking over 55 to 70 VDC input range
- No-load power consumption of only 2.4 Watts
- Nighttime losses eliminated by using control power from PV array
- Meets UL 1741 and IEEE 929 requirements including anti-islanding and under/over frequency and voltage shift detection
- Automatically limits array current at high temperatures
- UL Listed, NEC Article 690-compliant
- Standard outdoor-rated enclosure
- Innovative thermal design requires no fans and maximizes efficiency
- Removable casing allows for easy installation
- Rugged, industrial-rated components with low inverter parts count
- Standard five-year warranty
- Certified by the California Energy Commission

Optional Code-Compliant Package System

String Combiner

- Detachable outdoor-rated combiner housing allows for wiring flexibility and alternate DC disconnect location
- Fused 10 Amp, six input combiner accepts up to #8 AWG wire from each string
- Six string combiner inputs allow for a wide range of PV module configurations/power

GFI, DC/AC Disconnects, and Surge Protection

- Tandem DC/GFI Disconnect disables the array under system ground fault conditions (meets requirements of NEC Article 690-5 for residential rooftop installations)
- Optional AC Disconnect provides means for local inverter output disconnect
- Weatherproof disconnect boot allows easy access for fault isolation and servicing
- AC silicon oxide surge protector required for warranty coverage

Specifications	
DC Input	
Input Range*	V/60 V MPP nominal; 100 V max.
Operating Input Range	to 92 VDC standard; 44 to 75 VDC low voltage version
Utility Feedback Current	A max.
Array Short-Circuit Current 25	A max. total
AC Output	
Output Voltage† 120	0 V nominal; 106 to 127 VAC operating
Output Frequency [†] 60	Hz nominal; 59.5 to 60.5 Hz operating
Output Current 8.0	A max.; < 5% THD
Performance	Mechanical
Temp. Range40 to +60 °C	Weight 43 lbs. net, 45 lbs. ship
Efficiency	Dimensions 19"x8"x6.5" inverter alone
Tare Losses 2.4 Watts	
	Enclosure Outdoor rated

*Low input voltage (36 V nominal) version available. †220/240 V, 50 Hz versions also available

28 Riverview Mill PO Box 262 Wilton, NH 03086 USA

Phone: (603) 654-9322

Fax: (603) 654-9324

Email: info@advancedenergy.com

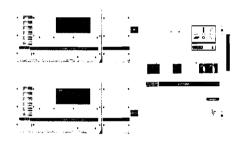
Web:

Advanced Energy is the recognized leader in

the recognized leader in the innovative design and manufacture of utilityinteractive inverters.

TRACE Backup Electric System Packages

Change Harder Model SW2512/S SW4048/S SW554/S SW4048/S SW554/S SW4048/S SW554/S SW4048/S SW554/S SW4048/S SW554/S SW4048/S SW554/S SW564/S SW554/S SW564/S SW50/S SW50/S SW564/	2010 - 1, 2010 - 10 - 10 - 10 - 10 - 10 - 10 - 10	SW SERIE	5 BACKUP ELEC	TRIC SYSTEMS			LOWI	R-COST BACK	LP ELECTRIC SYS	TEMS
Automatic Transfer Image: Constraint of the constraint	Backup Electric System Irace inverter Model & Output Votage System Rating Continuous Power Maximum Power Nominal Input Votage Max. Charging Current Max. Charging Power Number of AC Inputs Transfer Relay Rating Transfer Time (typical) Transfer Time (max.) AC Output Waveform Voltage Regulation	SW2512/S 120 VAC 2,000 watts 2,500 VA 7,200 watts 12 VDC 150 amps	SW4048/S 120 VAC 3,500 watts 4,000 VA 9,400 watts 48 VDC 60 amps	5,000SW SW5548/S 120 VAC 5,000 watts 5,500 VA 9,400 watts 48 VDC 75 amps 3,600 watts 2 60 amps 16 ms 34 ms sinewave	SW4048/D 120/240 VAC 7,000 watts 8,000 VA 18,700 watts 48 VDC 120 amps	SW5548/D 120/240 VAC 10,000 watts 11,000 VA 18,700 watts 48 VDC 150 amps	TS512SB 120 VAC 400 watts 500 VA 1,900 watts 12 VDC 15 amps 180 watts 1 15 amps 16 ms 34 ms modified sw +/- 10%	DR1524 120 VAC 1,000 watts 1,500 VA 4.800 watts 24 VDC 35 amps	DR2424 120 VAC 2,000 watts 2,500 VA 8,600 watts 24 VDC 70 amps 1,680 watts 1 30 amps 16 ms 34 ms modified sinewave +/- 5%	120 VAC 3,000 wat 3,600 VA 12,000 wat
Stage Batery Charger V V V V Generator Starting V V V V V Generator Support V V V V V Utility Sell Back V V V V V PLC Compatible* V V V V V Battery Bank Sizing Minimum Size † 2 KWh 3.5 KWh 5 KWh 7 KWh 10 KWh 400 Wh 1 KWh 2 KWh 3 KWh Standard Size † 8 8 KWh 14 KWh 20 KWh 28 KWh 40 KWh 1 6 KWh 8 KWh 12 KWh Generator Guidelines Minimum Size 4.0 KW 5.0 KW 6.0 KW 8.5 KW 11.0 KW 900 watts 4 0 KW 6 0 KW 6 0 KW						1				
Generator Starting V V V Generator Support V V V Utility Sell Back V V V PLC Compatible* V V V Battery Bank Sizing Minimum Size † 2 hours at 1/2 rated power 2 KWh 3.5 KWh Standard Size † 8 hours at 1/2 rated power 8 KWh 14 KWh 20 KWh 28 KWh 40 KWh 1 6 KWh 8 hours at 1/2 rated power 8 KWh 14 KWh 20 KWh 28 kWh 40 KWh 1 6 KWh 8 KWh 12 KWh Generator Guidelines Minimum Size 4.0 KW 5.0 KW 6.0 KW 8.5 KW 11.0 KW 900 watts 4 0 KW 6 0 KW 6 0 KW				<u> </u>	<u> </u>	-				
Generator Support Image: Compatible State Image: Compatible State Utility Sell Back Image: Compatible State Image: Compatible State PLC Compatible State Image: Compatible State Image: Compatible State Battery Bank Sizing Image: Compatible State Image: Compatible State Battery Bank Sizing Image: Compatible State Image: Compatible State Battery Bank Sizing Image: Compatible State Image: Compatible State Standard Size † 8 KWh 14 KWh 20 KWh 28 KWh 40 KWh 1 6 KWh 4 KWh 8 KWh 12 KWh Generator Guidelines Image: Compatible State Image: Compatible State Image: Compatible State 11.0 KW 900 watts 4 0 KW 6 0 KW 6 0 KW		and the second se				-				•
Utility Sell Back V V V PLC Compatible* V V V Battery Bank Sizing Minimum Size † 2 hours at 1/2 rated power 2 KWh 3.5 KWh 5 KWh 5 KWh 7 KWh 10 KWh 4 KWh 3.5 KWh 5 KWh 7 KWh 8 hours at 1/2 rated power 8 KWh 14 KWh 20 KWh 28 KWh 40 KWh 1 5 KWh 4 KWh 8 hours at 1/2 rated power 8 KWh 14 KWh 20 KWh 28 kWh 40 KWh 1 5 KWh 4 KWh 8 KWh 12 KWh 5.0 KW 6.0 KW 8.5 KW 11.0 KW 900 watts 4 0 KW 6 0 KW	-									
PLC Compatible* V V Battery Bank Sizing Minimum Size † 2 hours at 1/2 rated power 2 KWh 3.5 KWh 5 KWh 7 KWh 10 KWh 400 Wh 1 KWh 2 KWh 3 KWh 2 hours at 1/2 rated power 2 KWh 3 KWh 8 hours at 1/2 rated power 8 KWh 14 KWh 20 KWh 28 KWh 40 KWh 16 KWh 8 hours at 1/2 rated power 8 KWh 14 KWh 20 KWh 2 hours at 1/2 rated power 8 KWh 14 KWh 20 KWh 2 hours at 1/2 rated power 8 KWh 14 KWh 20 KWh 3 hours at 1/2 rated power 8 KWh 14 KWh 20 KWh 2 hours at 1/2 rated power 8 KWh 14 KWh 20 KWh 3 hours at 1/2 rated power 8 KWh 14 KWh 20 KWh 3 hours at 1/2 rated power 8 KWh 14 KWh 20 KWh 3 hours at 1/2 rated power 8 KWh 14 KWh 20 KWh 3 hours at 1/2 rated power 8 KWh 14 KWh 20 KWh 3 kub 14 KWh 20 KWh 10 KW 10 KW 3 kub 14 KWh 5.0 KW 6.0 KW 6.0 KW				<u>+</u>			_			
Minimum Size † 2 KWh 3.5 KWh 5 KWh 7 KWh 10 KWh 400 Wh 1 KWh 2 KWh 3 KWh 2 hours at 1/2 rated power 2 KWh 3.5 KWh 5 KWh 7 KWh 10 KWh 400 Wh 1 KWh 2 KWh 3 KWh Standard Size † 8 hours at 1/2 rated power 8 KWh 14 KWh 20 KWh 28 KWh 40 KWh 1 6 KWh 4 KWh 8 KWh 12 KWh Generator Guidelines Minimum Size 4.0 KW 5.0 KW 6.0 KW 8.5 KW 11.0 KW 900 watts 4 0 KW 6 0 KW 6 0 KW	PLC Compatible *							-		
Generator Guidelines Minimum Size 4.0 KW 5.0 KW 6.0 KW 8.5 KW 11.0 KW 900 watts 4.0 KW 6.0 KW 6.0 KW	Battery Bank Sizing Minimum Size † 2 hours at 1/2 rated power Standard Size † 8 hours at 1/2 rated power			-						3 KWh 12 KWh
Minimum Size 4.0 KW 5.0 KW 6.0 KW 8.5 KW 11.0 KW 900 watts 4.0 KW 6.0 KW 6.0 KW	Generator Guidelines									
		4.0 504	5 0 MM	6.0.121		11.0 1014	000 watta	10.00	E O KW	6.0 KW


SW Series Power Panel

Battery Needs

Trace backup electric systems use special highquality electric storage batteries. Trace dealers can customize a system based on the amount of power you want in reserve. We normally recommend an eight-hour battery bank to allow operation without a generator, or to keep a generator off for long periods. An adjustable "quiet period" (typically set for nighttime hours) is a standard feature on systems in Trace's SW series

Recharging the System

A Trace backup system automatically recharges when utility power is restored Trace SW (sine wave) inverters can also automatically start and stop a generator as needed during a long outage. Trace systems may also be recharged from renewable energy sources such as solar panels and wind generators, as well as emerging technologies such as fuel cells

Power Center with two SW Series inverters

Speed of Operation

In a power outage or brownout, Trace systems typically transfer to battery power in less than 16 milliseconds (less than 1/50th of a second). Even the worst-case transfer time, 34 milliseconds (less than 1/25th of a second), is so fast that computers and other appliances will continue operating without a glitch

System Installation

A Trace backup system integrates with your home's electric system and must be installed by a qualified installer Typically, a **Trace Power Panel**" or **Power Center**" is mounted on a wall near your main circuit breaker panel. But it may also be installed elsewhere if another location is more convenient, or even outdoors using a **Trace Power Module**" enclosure Ask your Trace dealer to help you select the installation system that best meets your needs

Complete Power Module System with cover removed

Available from

POWERFUL SOLUTIONS

WWW. fraceengineering.com 5916 195th St. N E Arlington. WA USA 98223

Printed on recycled paper

List of Certified Inverters

California Energy Commission Emerging Technologies Buydown Program

Updated: June 26, 2001

Mfr Name	Inverter Model No.	Description	Power Rating	Peak Efficiency	Certified
Bergey Windpower Co.	Gridtek 10	10kW, 240Vac split-phase, utility interactive inverter	10000	92.0	Yes
Trace Engineering	PS2512AE	2.5 kVA. 12Vdc, 120Vac, stand alone, sine wave inverter	2500	90.0	Yes
Trace Engineering	PS2524AE	2.5 kVA. 24Vdc, 120Vac, stand alone, sine wave inverter	2500	92.0	Yes
Trace Engineering	SW2512	2.5 kVA, 12Vdc, 120Vac, grid tie with battery backup, sine wave inverter	2500	90.0	Yes (1)
Trace Engineering	SW4048U	4.0 kVA, 48Vdc, 240Vac, grid tie with battery backup, sine wave inverter	4000	95.0	Yes (1)
Trace Engineering	SW5548U	5.5 kVA, 48Vdc, 240Vac, grid tie with battery backup, sine wave inverter	5500	96.0	Yes (1)
Trace Engineering	UX1112	1.1 kVA, 12Vdc, 120Vac, stand alone, modified sinewave inverter	1100	90.0	Yes
Trace Engineering	UX1112SB	1.1 kVA, 12Vdc, 120Vac, stand alone, mod. sinewave inverter w/stby batt. chgr.	1100	90.0	Yes
Trace Engineering	UX1412	1.4 kVA, 12Vdc, 120Vac, stand alone, modified sinewave inverter	1400	92.0	Yes
Trace Engineering	UX1412SB	1.4 kVA, 12Vdc, 120Vac, stand alone, mod. sinewave inverter w/stby batt. chgr.	1400	92.0	Yes
Trace Engineering	UX612	0.6 kVA, 12Vdc, 120Vac, stand alone, modified sinewave inverter	600	92.0	Yes
Trace Engineering	UX612SB	0.6 kVA, 12Vdc, 120Vac, stand alone, mod. sinewave inverter w/stby batt. chgr.	600	92.0	Yes
Xantrex Technology, Inc.	BWT10240	10kW, 240Vac split-phase, utility interactive inverter	10000	92.0	Yes

Xantrex Technology, Inc.	DR1512	1.5 kVA, 12Vdc, 120Vac, stand alone, modified sine wave inverter	1500	94.0	Yes
Xantrex Technology, Inc.	DR1524	1.5 kVA, 24Vdc, 120Vac, stand alone, modified sine wave inverter	1500	94.0	Yes
Xantrex Technology, Inc.	DR2412	2.4 kVA, 12Vdc, 120Vac, stand alone, modified sine wave inverter	2400	94.0	Yes
Xantrex Technology, Inc.	DR2424	2.4 kVA, 24Vdc, 120Vac, stand alone, modified sine wave inverter	2400	95.0	Yes
Xantrex Technology, Inc.	DR3624	3.6 kVA, 24Vdc, 120Vac, stand alone, modified sine wave inverter	3600	95.0	Yes
Xantrex Technology, Inc.	PV-10208	10kW 208Vac/3phase Utility Interactive Inverter	10000	95.0	Yes
Xantrex Technology, Inc.	PV-15208	15kW 208Vac/3phase Utility Interactive Inverter	15000	96.0	Yes
Xantrex Technology, Inc.	PV-20208	20kW 208Vac/3phase Utility Interactive Inverter	20000	96.0	Yes
Xantrex Technology, Inc.	PV-5208	5kW, 208Vac/3 phase, photovoltaic utility interactive inverter	5000	95.0	Yes
Xantrex Technology, Inc.	ST1000	1.0kVA, 42-85Vdc, 240Vac, grid tie, sine wave inverter	1000	92.0	Yes
Xantrex Technology, Inc.	S⊤1500	1.5kVA, 42-85Vdc, 240Vac, grid tie, sine wave inverter	1500	92.0	Yes
Xantrex Technology, Inc.	ST2000	2.0kVA, 42-85Vdc, 240Vac, grid tie, sine wave inverter	2000	94.0	Yes
Xantrex Technology, Inc.	S⊤2500	2.5kVA, 42-85Vdc, 240Vac, grid tie, sine wave inverter	2500	94.0	Yes
Xantrex Technology, Inc.	SW4024	4.0 kVA, 24Vdc, 120Vac, grid tie with battery backup, sine wave inverter	4000	94.0	Yes
Xantrex Technology, Inc.	SW4048	4.0 kVa, 48Vdc, 120Vac, grid tie with battery backup, sine wave inverter	4000	95.0	Yes
Xantrex Technology, Inc.	SW5548	5.5 kVA, 48Vdc, 120Vac, grid tie with battery backup, sine wave inverter	5500	96.0	Yes

APPENDIX C

DETAILED CALCULATIONS FOR ECONOMIC ANALYSIS

Appendix C Assumptions for Calculations

Heat Loss for average home:24.5MJ/HDD (15KW (51MBH) at -35C)Average Home Electrical Consumption 1.4 Kw> 1000 KWhr/monthConventional Fuel Conversion Efficiency80%Ventilation Rate:50LPS
Domestic Hot Water Consumption (L/day) 200
Diesel Fuel Energy Content (MJ/litre) 37
Propane Fuel Energy Content (MJ/liq.litre) 25.5
Kerosene Fuel Energy Content (MJ/litre) 35
Assume Diesel fuel is used as home heating oil where multiple heating fuels are available
Assume Can/US Exchange Rate of \$0.63US/\$1CDN
Assume Alaska Shipping Costs Approx. \$0.20US/lb from Seattle to Anchorage and \$0.50US/lb from Anchorage to any other community via Postal Service. (Source: Lynden Transport Ltd.)
No discounting of future spending or savings for inflation
Decommissioning costs are divided yearly over expected life of system
Assume transportation cost from Seattle for central & southern Alaska communities
Assume transportation cost from Edmonton via Hay River for north shore Alaska communities
Assume transportation cost from Edmonton for NWT
Assume transportation cost from Churchill or Montreal for Nunavut
Assume transportation cost from Montreal for Nunavik
Assume transportation cost from Montreal for Northern Labrador
Note: See CMHC Northern Cost Comparison Database to confirm shipping costs to
your community
Generator Electricity Conversion Efficiency is 25%
In communities where no electricity grid exists, electrical costs were calculated based on

incremental cost of fuel to generate electricity with a diesel generator.

		BIOMASS					SOLAR	AIR HEA	ring
REGION	COMMUNITY	<u> </u>	. .			0	0	D l-	
		Cost	Savings	Payback	5yr payback	Cost	Savings	Раубаск	5yr payback
ALASKA		¢0.400	NI/A	NI/A	¢19.60	¢0.400	¢101	10 E	¢70.02
	Adak Station	\$2,490	N/A	N/A N/A	\$18.69	\$2,422 \$2,422	\$131 \$197	18.5 12.3	\$72.03 \$80.55
	Akiachak	\$2,490	N/A N/A	N/A N/A	\$15.60	\$2,422			\$83.98
	Alakanuk	\$2,490			\$15.13		\$129	18.8	
	Ambler	\$2,490	N/A N/A	N/A	\$14.64	\$2,422	\$242	10.0	\$80.55
	Anaktuvuk Pass	\$2,490		N/A	\$14.46	\$2,422 \$2,335	\$70 \$93	34.7 25.2	\$79.82 \$83.77
	Anchorage	\$2,140 \$2,490	\$681	3.1	\$15.28 \$15.27			14.2	
	Aniak		N/A	N/A		\$2,422 \$2,313	\$171	14.2	\$79.46 \$85.06
	Barrow	\$2,051	N/A	N/A	\$13.44	\$2,313	\$159 \$194		\$65.06 \$72.92
	Beaver	\$2,490	\$2,479 N/A	1.0	\$14.59	\$2,422	\$184 \$102	13.2	\$72.92
	Bethel	\$2,490		N/A	\$15.60		\$103	23.5	\$85.61
	Chevak	\$2,490	N/A	N/A	\$15.37	\$2,422 \$2,422	\$143	16.9	\$76.38
	Craig	\$2,490	\$714	3.5	\$17.28		\$120	20.1	
	Dillingham	\$2,490	N/A	N/A	\$15.88	\$2,422	\$102	23.9	\$79.82
	Eagle City	\$2,490	\$1,141	2.2	\$14.92	\$2,422	\$126	19.3	\$73.23
	Elim	\$2,490	N/A	N/A	\$14.84	\$2,422	\$157	15.4	\$80.92
	Fairbanks/Fairbanks North Star Borough	\$2,490	\$701	3.5	\$14.82	\$2,422	\$99	24.5	\$75.73
	Fort Yukon	\$2,490	\$2,492	1.0	\$14.47	\$2,422	\$181	13.4	\$72.92
	Galena	\$2,490		1.1	\$14.90	\$2,422	\$171	14.1	\$75.73
	Gambell	\$2,490	N/A	N/A	\$14.91	\$2,422	\$137	17.6	\$87.73
	Glenallen	\$2,490	\$625	4.0	\$15.28	\$2,422	\$91	26.5	\$81.66
	Homer	\$2,490	\$437	5.7	\$16.96	\$2,422	\$99	24.5	\$75.73
	Huslia	\$2,490	\$2,824	0.9	\$14.80	\$2,422	\$195	12.4	\$77.38
	Juneau	\$2,490	\$855	2.9	\$15.46	\$2,422	\$111	21.7	\$76.71
	Kaktovik	\$2,037	N/A	N/A	\$13.51	\$2,309	\$84	27.5	\$82.05
	Kaltag	\$2,490	N/A	N/A	\$14.78	\$2,422	\$175	13.9	\$76.71
	Ketchikan	\$2,490	\$683	3.6	\$16.56	\$2,422	\$120	20.3	\$71.74
	King Salmon	\$2,490	N/A	N/A	\$16.06	\$2,422	\$95	25.4	\$78.41
	Kipnuk	\$2,490	N/A	N/A	\$15.99	\$2,422	\$131	18.4	\$80.92
	Kodiak	\$2,490	\$604	4.1	\$17.61	\$2,422	\$124	19.6	\$71.17
	Kotzebue	\$2,490	N/A	N/A	\$14.70	\$2,422	\$119	20.3	\$83.59
	McGrath	\$2,490	\$2,053	1.2	\$15.41	\$2,422	\$174	13.9	\$77.05
	Metlakatla	\$2,490	\$809	3.1	\$16.56	\$2,422	\$128	18.9	\$71.74
	Mountain Village	\$2,490		N/A	\$15.09	\$2,422		16.2	\$82.42
	Napaskiak	\$2,490		N/A	\$15.60	\$2,422	\$103	23.5	\$80.55
	Nome	\$2,490		N/A	\$14.87	\$2,422		23.3	\$85.61
	Noorvik	\$2,490		N/A	\$14.73	\$2,422		17.4	\$82.42
	Prudhoe Bay (Deadhorse)	\$2,037		N/A	\$13.56	\$2,309		8.7	\$81.66
	Saint Mary's	\$2,490		N/A	\$15.09	\$2,422		13.5	\$82.42
	Saint Paul	\$2,490		N/A	\$16.99	\$2,422		25.2	\$82.04
	Sand Point	\$2,490		N/A	\$18.18	\$2,422		24.3	\$75.41
	Selawik	\$2,490		N/A	\$14.74	\$2,422		16.0	\$81.29
	Seward	\$2,490		3.5	\$14.72	\$2,422		24.0	\$74.46
	Shishmaref	\$2,490		N/A	\$14.55	\$2,422		18.7	\$88.16
	Sitka	\$2,490		5.4	\$16.26	\$2,422		26.2	\$78.76
	Skagway	\$2,490		4.9	\$15.32	\$2,422		26.3	\$76.71
	Tanana	\$2,490		5.5	\$14.92	\$2,422		28.1	\$77.05
	Togiak	\$2,490		N/A	\$15.99	\$2,422		14.3	\$79.82
	Tok	\$2,490		15.7	\$15.04	\$2,422		31.8	\$73.84
	Unalakleet	\$2,490		N/A	\$14.79	\$2,422		17.5	\$79.82
	Unalaska	\$2,490	N/A	N/A	\$18.77	\$2,422	\$170	14.2	\$71.74

		S	SOLAR WATER HEATING				PHOTOVOLTAIC					
REGION	COMMUNITY	Cost	Sovinge	Payback	5yr payback	Cost	Savinas	Payback	5yr payback			
ALASKA		COSI	Savings	FayDack	Syl payback	0031	Savings	Tayback	Буг рауваск			
	Adak Station	\$3,622	-\$58	9999.0	\$0.77	\$24,623	-\$73	9999.0	\$2.53			
	Akiachak	\$3,622	\$192	18.9	\$0.87	\$24,623	\$415	59.4	\$2.83			
	Alakanuk	\$3,622	\$177	20.4	\$0.90	\$24,623		63.7	\$2.95			
	Ambler	\$3,622	\$194	18.6	\$0.87	\$24,623		58.6	\$2.83			
	Anaktuvuk Pass	\$3,622	\$82	44.0	\$0.86	\$24,623		122.4	\$2.80			
	Anchorage	\$3,535		52.2	\$0.91	\$24,106		139.7	\$2.99			
	Aniak	\$3,622		19.2	\$0.85	\$24,623		60.1	\$2.79			
	Barrow	\$3,513		49.9	\$0.93	\$23,974		134.9	\$3.05			
	Beaver	\$3,622	\$96	37.9	\$0.78	\$24,623		108.4	\$2.56			
	Bethel	\$3,622		25.6	\$0.87	\$24,623		77.8	\$2.83			
	Chevak	\$3,622		21.1	\$0.92	\$24,623		65.6	\$3.01			
	Craig	\$3,622		34.9	\$0.82	\$24,623		101.3	\$2.68			
	Dillingham	\$3,622		25.6	\$0.86	\$24,623		77.6	\$2.80			
	Eagle City	\$3,622		35.8	\$0.79	\$24,623		103.4	\$2.57			
	Elim	\$3,622		19.5	\$0.87	\$24,623		60.9	\$2.84			
	Fairbanks/Fairbanks North	, , _	\$114	31.7	\$0.81	\$24,623		93.4	\$2.66			
	Star Borough	\$3,622										
	Fort Yukon	\$3,622		20.7	\$0.78	\$24,623	\$382	64.5	\$2.56			
	Galena	\$3,622		14.5	\$0.81	\$24,623		46.5	\$2.66			
	Gambell	\$3,622		21.5	\$0.94	\$24,623		66.6	\$3.08			
	Glenallen	\$3,622		16.6	\$0.88	\$24,623		52.8	\$2.87			
	Homer	\$3,622		46.6	\$0.81	\$24,623		128.2	\$2.66			
	Huslia	\$3,622		18.4	\$0.83	\$24,623		57.8	\$2.72			
	Juneau	\$3,622	\$96	37.9	\$0.82	\$24,623	\$227	108.5	\$2.69			
	Kaktovik	\$3,509		48.6	\$0.90	\$23,954	\$181	132.1	\$2.94			
	Kaltag	\$3,622	\$195	18.6	\$0.82	\$24,623	\$421	58.4	\$2.69			
	Ketchikan	\$3,622	\$103	35.2	\$0.77	\$24,623	\$241	102.0	\$2.52			
	King Salmon	\$3,622	\$57	63.7	\$0.84	\$24,623	\$151	162.7	\$2.75			
	Kipnuk	\$3,622	\$145	25.0	\$0.87	\$24,623		76.2	\$2.84			
	Kodiak	\$3,622		17.7	\$0.77	\$24,623		55.9	\$2.50			
	Kotzebue	\$3,622		28.5	\$0.90	\$24,623		85.3	\$2.94			
	McGrath	\$3,622		25.9	\$0.83	\$24,623		78. <u>5</u>	\$2.71			
	Metlakatla	\$3,622		40.2	\$0.77	\$24,623		113.8	\$2.52			
	Mountain Village	\$3,622		19.8	\$0.89	\$24,623		61.9	\$2.89			
	Napaskiak	\$3,622		13.1	\$0.87	\$24,623		42.5	\$2.83			
	Nome	\$3,622		26.1	\$0.92	\$24,623		78.9	\$3.01			
	Noorvik	\$3,622		19.5	\$0.89	\$24,623		61.0	\$2.89			
	Prudhoe Bay (Deadhorse)	\$3,509		9999.0	\$0.89	\$23,954		9999.0	\$2.93			
	Saint Mary's	\$3,622		20.1	\$0.89	\$24,623		62.7	\$2.89			
	Saint Paul	\$3,622		12.0	\$0.88	\$24,623		39.2	\$2.88			
	Sand Point	\$3,622		28.1	\$0.81	\$24,623		84.3	\$2.65			
	Selawik	\$3,622		19.1	\$0.87	\$24,623		60.0	\$2.86			
	Seward	\$3,622		42.8	\$0.80	\$24,623		119.7	\$2.62			
	Shishmaref	\$3,622		21.6	\$0.95	\$24,623		67.0	\$3.10			
	Sitka	\$3,622		41.5	\$0.85	\$24,623		116.9	\$2.77			
	Skagway	\$3,622		27.8	\$0.82	\$24,623		83.5	\$2.69			
	Tanana	\$3,622		11.2	\$0.83	\$24,623		36.7	\$2.71			
	Togiak	\$3,622		19.1	\$0.86	\$24,623	_	60.0	\$2.80			
	Tok	\$3,622		26.0	\$0.79	\$24,623		78.9	\$2.59			
	Unalakleet	\$3,622		26.4	\$0.86	\$24,623		79.8	\$2.80			
	Unalaska	\$3,622	\$166	21.9	\$0.77	\$24,623	3 \$364	67.6	\$2.52			

Appendix	С·	Calculations
----------	----	---------------------

			WI	ND	HYBRID						
REGION	COMMUNITY		. .	D		0		Evel Ceet	Davhaak	E. 14	
		Cost	Savings	Payback	5yr	Cost	Savings	Fuel Cost	Раураск	5yr	
ALASKA		¢7 600	¢60	0000.0	¢0.04	\$29,245	-\$132	\$959	9999.0	\$0.80	
	Adak Station	\$7,633 \$7,633	-\$62 \$469	9999.0 16.3		\$29,245 \$29,245	\$887	\$939	99999.0	\$2.71	
	Akiachak							\$2,598	999 <u>9.0</u> 99999.0	\$2.04	
	Alakanuk	\$7,633	\$621 \$405	12.3		\$29,245 \$29,245	\$828	\$5,025	99999.0	\$3.20	
	Ambler	\$7,633	\$405	18.9		\$29,245 \$29,245		\$5,025 \$1,424	99999.0	\$1.83	
	Anaktuvuk Pass	\$7,633	\$287	26.6			\$492 \$499	\$1,424 \$1,975	99999.0	\$1.87	
	Anchorage	\$7,466	\$323	23.1	\$0.61	\$29,245	\$499 \$534	\$3,945	99999.0	\$4.02	
	Aniak	\$7,633	\$121	63.1			\$678	\$3,94 <u>5</u> \$2,960	99999.0	\$4.02	
	Barrow	\$7,424	\$497	14.9		\$28,487 \$29,245	\$070 \$240	\$2,900	99999.0	\$4.10	
	Beaver	\$7,633	\$9 \$9	835.3 21.1		\$29,245	\$240 \$682	\$2,156	99999.0	\$2.21	
	Bethel	\$7,633	\$362					\$2,1 <u>50</u> \$2,800	99999.0	\$1.92	
	Chevak	\$7,633	\$723	10.6		\$29,245	\$1,101 \$398	\$2,500	99999.0	\$2.73	
	Craig	\$7,633	\$151	50.5	\$1.27	\$29,245 \$29,245		\$2,524	99999.0	\$1.82	
	Dillingham	\$7,633	\$499	15.3 428.6	\$0.62		\$820 \$259	\$1,939	99999.0	\$3.56	
	Eagle City	\$7,633	\$18 \$222		\$3.19			\$2,716	99999.0	\$2.92	
	Elim	\$7,633	\$333	22.9 106.8	\$2.14		\$338	\$2,201	99999.0	\$3.12	
	Fairbanks/Fairbanks North Star Borough	\$7,633	\$71								
	Fort Yukon	\$7,633	-\$4	9999.0		\$29,245	\$382	\$3,935	9999.0	\$4.51	
	Galena	\$7,633	\$14	551.6		\$29,245		\$3,908	9999.0	\$4.67	
	Gambell	\$7,633		5.7		\$29,245		\$1,932	9999.0	\$1.17	
	Glenallen	\$7,6 <u>33</u>	\$653	11.7		\$29,245		\$1,866	9999.0	\$1.94	
	Homer	\$7,633	\$145	52.5		\$29,245		\$2,031	9999.0	\$2.39	
	Huslia	\$7,633		1115.8		\$29,245		\$4,529	9999.0	\$5.02	
	Juneau	\$7,633	\$39	195.0		\$29,245		\$2,529	9999.0	\$3.43	
	Kaktovik	\$7,417	\$328	22.6		\$28,464		\$1,785	9999.0	\$1.82	
	Kaltag	\$7,633		9999.0		\$29,245		\$4,042	9999.0	\$4.80	
	Ketchikan	\$7,633		221.0		\$29,245		\$2,499	9999.0	\$3.27	
	King Salmon	\$7,633		28.6		\$29,245		\$1,767	9999.0	\$1.73	
	Kipnuk	\$7,633		9.2		\$29,245		\$2,058	9999.0	\$1.41	
	Kodiak	\$7,633		7.6		\$29,245		\$1,585	9999.0	\$1.23	
	Kotzebue	\$7,633		17.9		\$29,245		\$2,470	9999.0	\$2.11	
	McGrath	\$7,633		25.8		\$29,245		\$3,443	9999.0	\$2.65	
	Metlakatla	\$7,633		284.6		\$29,245		\$2,674	9999.0	\$3.34	
	Mountain Village	\$7,633		13.7		\$29,245		\$3,018	99999.0	\$2.25	
	Napaskiak	\$7,633		11.8	\$0.83	\$29,245	\$1,233	\$2,156	99999.0	\$2.21	
	Nome	\$7,633		10.1		\$29,245					
	Noorvik	\$7,633		13.3		\$29,245		\$2,808	9999.0	\$2.18	
	Prudhoe Bay (Deadhorse)	\$7,417		9999.0		\$28,464		\$5,181	9999.0	\$2.47	
	Saint Mary's	\$7,633		13.9		\$29,245		\$3,612	9999.0	\$2.40	
	Saint Paul	\$7,633		3.3		\$29,245			15.8	\$0.93	
	Sand Point	\$7,633		10.2		\$29,245			9999.0	\$1.22 \$2.50	
<u> </u>	Selawik	\$7,633		16.5		\$29,245		\$3,147	99999.0 99999.0	\$3.19	
	Seward	\$7,633		223.8		\$29,245		\$2,214		\$3.19	
	Shishmaref	\$7,633		11.3		\$29,245			9999.0	\$2.01	
	Sitka	\$7,633		79.8		\$29,245		\$2,101	9999.0	\$3.32	
	Skagway	\$7,633		138.8		\$29,245		\$2,125	99999.0	\$3.76	
	Tanana	\$7,633		133.3		\$29,245		\$2,070	9999.0	\$1.84	
	Togiak	\$7,633		9.9		\$29,245			99999.0		
	Tok	\$7,633		31.0		\$29,245		\$1,528	9999.0	\$2.16	
	Unalakleet	\$7,633		37.0		\$29,245		\$3,046	9999.0	_	
	Unalaska	<u> \$7,633</u>	\$1,374	5.6	<u> </u> \$0.24	\$29,245	5 \$1,741	\$1,308	67.5	\$0.86	

			BI	OMASS			SOLAR		
REGION	COMMUNITY								
		Cost	Savings		5yr payback	Cost			5yr payback
	Valdez	\$2,490	\$622	4.0	\$16.01	\$2,422	\$89	27.1	\$87.73
	Wainwright	\$2,490	N/A	N/A	\$14.16	\$2,422	\$179	13.5	\$89.95
	Whittier	\$2,490	\$463	5.4	\$17.57	\$2,422	\$96	25.3	\$82.42
	Wragnell	\$2,490	\$702	3.5	\$16.10	\$2,422	\$107	22.6	\$77.72
LABRAD									
	Davis Inlet (Utshimassits)	\$2,292	\$1,059	2.2	\$15.09	\$2,373	\$131	18.1	\$70.01
	Happy Valley - Goose Bay	\$2,292	\$962	2.4	\$15.52	\$2,373	\$146	16.3	\$63.37
	Hopedale	\$2,292	\$1,124	2.0	\$15.09	\$2,373	\$135	17.6	\$70.01
	Makkovik	\$2,292	\$1,050	2.2	\$15.13	\$2,373	\$131	18.1	\$70.01
	Nain	\$2,292	N/A	N/A	\$14.88	\$2,373	\$132	18.0	\$73.57
	North West River	\$2,292	\$965	2.4	\$15.52	\$2,373		16.2	\$63.37
	Postville	\$2,292	\$1,005	2.3	\$15.32	\$2,373		17.3	\$67.04
	Rigolet	\$2,292	\$1,117	2.1	\$15.37	\$2,373	\$143	16.5	\$67.82
	Sheshatshiu	\$2,292	\$965	2.4	\$15.52	\$2,373	\$146	16.2	\$63.37
NORTHW	EST TERRITORIES								
	Aklavik	\$2,106	\$1,098	1.9	\$13.66	\$2,327	\$98	23.7	\$80.32
	Colville Lake	\$2,882	\$2,998	1.0	\$14.71	\$2,520	\$194	13.0	\$76.46
	Deline	\$2,002	\$2,004	1.0	\$13.68	\$2,300	\$150	15.3	\$71.66
	Dettah	\$2,002	\$235	8.5	\$13.74	\$2,300	\$86	26.7	\$63.55
	Enterprise	\$2,001	\$323	6.2	\$14.07	\$2,300	\$96	24.1	\$61.68
	Fort Good Hope	\$2,002	\$1,763	1.1	\$13.96	\$2,301	\$158	14.6	\$66.83
	Fort Liard	\$2,002	\$1,224	1.6	\$14.57	\$2,301	\$153	15.0	\$62. <u>37</u>
	Fort McPherson	\$2,003	\$1,841	1.1	\$13.67	\$2,301	\$136	16.9	\$75.19
	Fort Providence	\$2,002	\$463	4.3	\$13.90	\$2,300		23.3	\$63.31
	Fort Resolution	\$2,002	\$450	4.4	\$13.85	\$2,300		22.7	\$61.24
	Fort Simpson	\$2,002	\$1,636	1.2	\$14.14	\$2,300		14.0	\$63.55
	Fort Smith	\$2,002	\$150	13.4	\$14.04	\$2,300		26.5	\$61.24
	Hay River & (Hay River	\$2,001	\$326	6.1	\$14.05		\$96	24.0	\$61.46
	Reserve)					\$2,300			
	Holman	\$2,194	N/A	N/A	\$13.29	\$2,349		16.1	\$78.48
	Inuvik	\$2,003	\$792	2.5	\$13.44	\$2,301	\$90	25.7	\$76.55
	Jean Marie River	\$2,002	\$1,833	1.1	\$14.04	\$2,300		13.4	\$63.55
	Kakisa	\$2,001	\$412	4.9	\$14.11	\$2,300		23.0	\$62.14
	Lutselk'e	\$2,082	\$1,845	1.1	\$13.91	\$2,321		14.3	\$65.58
	Nahanni Butte	\$2,019		1.3	\$14.46	\$2,305		13.9	\$63.66
	Norman Wells	\$2,002		5.0	\$14.03	\$2,300		26.1	\$69.30
	Paulatuk	\$2,182		N/A	\$13.62	\$2,345		15.8	\$75.62
	Rae Lakes (Gameti)	\$2,028		0.8	\$13.61	\$2,307		12.4	\$66.75
	Rae-Edzo (Rae)	\$2,002		8.5	\$13.73	\$2,300		26.8	\$63.79
	Sachs Harbour	\$2,174		N/A	\$13.72	\$2,343		17.6	\$84.48
ļ	Trout Lake	\$2,001		1.2	\$14.33	\$2,300		13.1	\$62.37
	Tsiigehtchic	\$2,003		N/A	\$13.63	\$2,301		16.0	\$73.87
	Tuktoyaktuk	\$2,131		N/A	\$13.48	\$2,333		27.0	\$80.16
	Tulita	\$2,002		1.2	\$14.16	\$2,300		15.1	\$69.02
L	Wekweti	\$2,029		0.8	\$13.63	\$2,307		12.2	\$67.02
	Wha Ti	\$2,024		0.9	\$13.69	\$2,306		12.6	\$64.68
	Wrigley	\$2,002		1.2	\$14.07	\$2,300	-	14.5	\$65.52
	Yellowknife	\$2,002	\$235	8.5	\$13.74	\$2,300	\$86	26.7	\$63.55
NUNAVI					A 15 - 1		A :		Amo
	Akulivik	\$2,050		N/A	\$13.71	\$2,313		14.8	\$70.53
	Aupaluk	\$2,050		N/A	\$13.77	\$2,313		17.1	\$80.99
	<u> In</u> ukjuak	\$2,050	N/A	N/A	\$13.89	\$2,313	\$158	14.6	\$69.95

Appendix	С-	Calculations
----------	----	--------------

		SOLAR WATER HEATING			PHOTOVOLTAIC				
REGION	COMMUNITY								
		Cost			5yr payback	Cost			5yr payback
	Valdez	\$3,622	\$165	22.0	\$0.94	\$24,623	\$362	<u>68.1</u>	\$3.08
	Wainwright	\$3,622	\$67	54.4	\$0.97	\$24,623	\$170	144.6	\$3.16
	Whittier	\$3,622	\$78	46.5	\$0.89	\$24,623	\$192	127.9	\$2.89
	Wragnell	\$3,622	\$101	35.9	\$0.84	\$24,623	\$238	103.6	\$ <u>2.73</u>
LABRAD									
	Davis Inlet (Utshimassits)	\$3,573	\$91	<u>39.4</u>	\$0.76	\$24,330	\$218	111.8	\$2.48
	Happy Valley - Goose Bay	\$3,573	-\$5	9999.0	\$0.69	\$24,330	\$30	808.9	\$2.24
	Hopedale	\$3,573	\$91	39.4	\$0.76	\$24,330	\$218	111.8	\$2.48
	Makkovik	\$3,573	\$91	<u>39.4</u>	\$0.76	\$24,330	\$218	111.8	\$2.48
	Nain	\$3,573	\$84	42.8	\$0.80	\$24,330	\$203	119.6	\$2.6 <u>1</u>
	North West River	\$3,573		<u>9999.0</u>	\$0.6 <u>9</u>	\$24,330	\$30	808.9	\$2.24
	Postville	\$3,573		36.7	\$0.73	\$24,330	\$230	105.6	\$2.37
	Rigolet	\$3,573		37.4	\$0.73	\$24,330	\$227	107.2	\$2.40
	Sheshatshiu	\$3,573	-\$5	9999.0	\$0.69	\$24,330	\$30	808.9	\$2.24
NORTHW	EST TERRITORIES								
	Aklavik	\$3,527	\$306	11.5	\$0.88	\$24,057	\$639	37.6	\$2.87
	Colville Lake	\$3,720		1.7	\$0.81	\$25,201		5.8	\$2.64
	Deline	\$3,500		9.7	\$0.79	\$23,902	\$748	32.0	\$2.57
	Dettah	\$3,500		32.0	\$0.70	\$23,903		94.2	\$2.28
	Enterprise	\$3, <u>500</u>		32.5	\$0.68	\$23,902	\$251	95.4	\$2.21
	Fort Good Hope	\$3,501	\$530	6.6	\$0.73	\$23,903		22.2	\$2.40
	Fort Liard	\$3,501	\$473	7.4	\$0.68	\$23,903		24.8	\$2.24
	Fort McPherson	\$3,501	\$326	10.7	\$0.82	\$23,904		35.3	\$2.70
	Fort Providence	\$3,500		29.0	\$0.69	\$23,903		86.5	\$2.27
	Fort Resolution	\$3,500	\$240	14.6	\$0.67	\$23,902	\$510	46.9	\$2.20
	Fort Simpson	\$3,500		12.2	\$0.70	\$23,903	\$599	39.9	\$2.28
	Fort Smith	\$3,500	\$77	45.6	\$0.67	\$23,903	\$190	125.6	\$2.20
	Hay River & (Hay River		\$108	32.3	\$0.67	\$23,902	\$252	94.9	\$2.21
	Reserve)	\$3,500							
	Holman	\$3,549		6.9	\$0.85	\$24,186	\$1,044	23.2	\$2.79
	Inuvik	\$3,501		15.5	\$0.84	\$23,904	\$480	49.7	\$2.75
	Jean Marie River	\$3,500		2.4	\$0.70	\$23,903	\$2,910	8.2	\$2.28
	Kakisa	\$3,500	\$125	28.0	\$0.68	\$23,902	\$284	84.1	\$2.23
	Lutselk'e	\$3,521		8.6	\$0.72	\$24,021	\$840	28.6	\$2.35
	Nahanni Butte	\$3,505	\$2,029	1.7	\$0.70	\$23,928	\$4,008	6.0	\$2.28
	Norman Wells	\$3,500		17.1	\$0.76	\$23,902		54.4	\$2.49
	Paulatuk	\$3,545	\$528	6.7	\$0.82	\$24,168	\$1,072	22.5	\$2.69
	Rae Lakes (Gameti)	\$3,507		4.4	\$0.73	\$23,941			\$2.39
	Rae-Edzo (Rae)	\$3,500		14.5	\$0.70	\$23,903		46.7	\$2.29
	Sachs Harbour	\$3,543		5.8	\$0.92		\$1,228	19.7	\$3.01
	Trout Lake	\$3,500		9.1	\$0.68	\$23,902		30.2	\$2.24
	Tsiigehtchic	\$3,501		6.2	\$0.81		\$1,146		\$2.65
	Tuktoyaktuk	\$3,533		10.3	\$0.87	\$24,093	\$712	33.8	\$2.86
	Tulita	\$3,500		5.4	\$0.76	\$23,902			\$2.48
	Wekweti	\$3,507		12.0	\$0.73	\$23,943		39.3	\$2.40
	Wha Ti	\$3,506		5.7	\$0.71		\$1,237		\$2.32
	Wrigley	\$3,500		5.1	\$0.72	\$23,902			\$2.35
	Yellowknife	\$3,500		40.8	\$0.70	\$23,903		114.9	\$2.28
NUNAVI		, ,							
	Akulivik	\$3,513	\$12	284.1	\$0.77	\$23,974	\$64	373.0	\$2.53
	Aupaluk	\$3,513		1072.2	\$0.89	\$23,974		515.6	\$2.90
	Inukjuak	\$3,513		271.2	\$0.77	\$23,974		366.5	\$2.51

Appendix	С-	Calculations
----------	----	--------------

			Wi	ND		HYBRID					
REGION	COMMUNITY	<u> </u>			F	Cast	Caulana	Fuel Cent	Baubaak	5.ur	
	· · · · ·			Payback	5yr	Cost	\$1,123	Fuel Cost \$1,810	99999.0	5yr \$1.67	
	Valdez	\$7,633	\$757	10.1		\$29,245 \$29,245	\$546	\$3,723	99999.0	\$2.20	
	Wainwright	\$7,633	\$373	20.5		\$29,245 \$29,245	\$346 \$837	\$3,7 <u>23</u> \$1,410	99999.0	\$1.17	
	Whittier	\$7,633	\$641	11.9					99999.0	\$3.48	
	Wragnell	\$7,633	\$40	189.2	\$2.64	\$29,245	\$281	\$2,482	9999.0	\$3.40	
LABRAD		AT 500	0504	40.4	00.07	000 000	0700	01 CC1	99999.0	\$1.21	
	Davis Inlet (Utshimassits)	\$7,538	\$561	13.4	\$0.37		\$78 <u>2</u> \$5	\$1,661	999 <u>9.0</u> 99999.0	\$2.93	
	Happy Valley - Goose Bay	\$7,538	-\$29	99999.0	\$2.21	\$28,903	৯০ \$782	\$2, <u>628</u> \$1,706	99999.0	\$1.22	
	Hopedale	\$7,538	\$561	13.4	\$0.37		\$793	\$1,640	99999.0	\$1.19	
	Makkovik	\$7,538	\$572	13.2		\$28,903		\$1,682	99999.0	\$1.17	
	Nain	\$7,538	\$608	12.4		\$28,903			99999.0	\$2.93	
	North West River	\$7,538	-\$29	9999.0	\$2.21		\$5	\$2,631		\$2.29	
	Postville	\$7,538	\$166	45.3	\$1.00			\$2,416	999 <u>9.0</u> 9999.0	\$2.33	
	Rigolet	\$7,538	\$168	44.8	\$1.00			\$2,550		\$2.93	
	Sheshatshiu	\$7,538	-\$29	9999.0	\$2.21	\$28,903	\$5	\$2,631	9999.0	\$2.93	
NORTHV	VEST TERRITORIES		A		<u> </u>	000 500	00.40	00.404	0000.0	0.50	
	Aklavik	\$7,450	\$205	36.3		\$28,583		\$2,481	99999.0 29.4	\$3.56 \$4.38	
	Colville Lake	\$7,819		9.0	\$3.94		\$5,188	\$4,170			
	Deline	\$7,401	\$30	242.7		\$28,403		\$3,429	9999.0	\$4.40	
	Dettah	\$7,401	-\$27	99999.0		\$28,403	\$230	\$1,757	9999.0	\$3.21	
	Enterprise	\$7,401	-\$31	99999.0		\$28,403		\$1,868	9999.0	\$3.20	
	Fort Good Hope	\$7,401	\$281	26.3		\$28,404		\$3,174	9999.0	\$3.42	
	Fort Liard	\$7,401	\$23	323.7		\$28,404		\$2,968	99999.0	\$3.74	
	Fort McPherson	\$7,401	\$86	86.3		\$28,405		\$3,258	9999.0	\$4.21	
	Fort Providence	\$7,401	-\$31	9999.0		\$28,403		\$1,995	9999.0	\$3.35	
	Fort Resolution	\$7,401	-\$6	9999.0		\$28,403		\$1,957	9999.0	\$3.21	
	Fort Simpson	\$7,401	-\$6	9999.0		\$28,403		\$3,245	9999.0	\$3.93	
	Fort Smith	\$7,401		9999.0		\$28,403		\$1,682	99999.0	\$3.05	
	Hay River & (Hay River	\$7,401	-\$28	9999.0	\$6.77	\$28,403	\$227	\$1,863	99999.0	\$3.16	
	Reserve)							00.007	0000.0	0.44	
	Holman	\$7,492		6.4		\$28,735			99999.0	\$2.41	
	Inuvik	\$7,401		57.7		\$28,405		\$2,188	9999.0	\$3.37	
	Jean Marie River	\$7,401		39.7		\$28,403			99999.0	\$3.99	
	Kakisa	\$7,401		9999.0		\$28,403		\$1,972	99999.0	\$3.31	
	Lutselk'e	\$7,439		81.6		\$28,542		\$3,241	99999.0	\$3.74	
	Nahanni Butte	\$7,409		21.2		\$28,432			26.0	\$3.88	
	Norman Wells	\$7,401	\$26	288.3	\$4.62	\$28,403	\$468	\$1,966	99999.0		
	Paulatuk		\$1,589			\$28,714					
	Rae Lakes (Gameti)	\$7,413		57.9		\$28,448			9999.0		
	Rae-Edzo (Rae)	\$7,401		9999.0		\$28,403		\$1,761	99999.0		
	Sachs Harbour	\$7,482				\$28,699			14.3	\$1.47	
	Trout Lake	\$7,401		12039.0		8 \$28,403		\$3,389	9999.0		
	Tsiigehtchic	\$7,401		29.9		2 \$28,405			9999.0		
	Tuktoyaktuk	\$7,462		7.6		\$28,626			99999.0		
	Tulita	\$7,401		56.9		3 \$28,403			99999.0		
	Wekweti	\$7,414		79.5		5 \$28,450		\$3,852	9999.0		
	Wha Ti	\$7,411		104.5		6 \$28,442			99999.0		
	Wrigley	\$7,401		73.1		5 \$28,403			9999.0		
	Yellowknife	\$7,401	-\$32	9999.0	\$6.77	7 \$28,403	3 \$179	\$1,757	9999.0	\$3.2	
NUNAVI	K										
	Akulivik	\$7,424	_	67.9		1 \$28,486		\$2,712			
	Aupaluk	\$7,424		56.8	_	7 \$28,486		\$2,695	9999.0		
	Inukjuak	\$7,424	\$114	64.9	\$0.63	3 \$28,486	5 \$183	\$2,682	9999.0	\$1.9	

			Bi	OMASS			SOLAR	SOLAR AIR HEAT		
REGION	COMMUNITY									
		Cost	Savings		5yr payback	Cost	Savings		5yr payback	
	lvujivik	\$2,050	N/A	N/A	\$13.63	\$2,313	\$144	16.0	\$76.25	
	Kangiqsualujjuaq	\$2,050	N/A	N/A	\$13.96	\$2,313		16.7	\$79.47	
	Kangiqsujuaq	\$2,050	N/A	N/A	\$13.67	\$2,313		17.7	\$83.80	
	Kangirsuk	\$2,050	N/A	N/A	\$13.69	\$2,313		17.5	\$82.98	
	Kuujjuaq	\$2,050	N/A	N/A	\$13.89	\$2,313		16.5	\$7 <u>8.37</u>	
	Kuujjuarapik	\$2,050	N/A	N/A	\$14.47	\$2,313		13.2	\$63.16	
	Puvirnituq	\$2,050	N/A	N/A	\$13.71	\$2,313		14.3	\$68.53	
	Quaqtaq	\$2,050	N/A	N/A	\$13.68	\$2,313		17.5	\$82.98	
	Salluit	\$2,050	N/A	N/A	\$13.64	\$2,313		15.8	\$75.23	
	Tasiujaq	\$2,050	N/A	N/A	\$13.86	\$2,313		16.4	\$78. <u>00</u>	
	Umiujaq	\$2,050	N/A	N/A	\$14.23	\$2,313	\$171	13.5	\$64.85	
NUNAVU										
	Arctic Bay	\$2,052	N/A	N/A	\$12.91	\$2,313		20.8	\$88.64	
	Arviat	\$2,095	N/A	N/A	\$13.61	\$2,324	\$149	15.6	\$69.70	
	Baker Lake	\$2,095	N/A	N/A	\$13.24	\$2,324		15.2	\$68.86	
	Bathurst Inlet	\$2,255	N/A	N/A	\$13.54	\$2,364		15.4	\$72.37	
	Cambridge Bay	\$2,255	N/A	N/A	\$13.22	\$2,364	\$138	17.1	\$80.07	
	Cape Dorset	\$2,051	N/A	N/A	\$13.44	\$2,313		19.6	\$82.58	
	Chesterfield Inlet	\$2,095	N/A	N/A	\$13.48	\$2,324	\$143	16.2	\$72.37	
	Clyde River	\$2,052	N/A	N/A	\$13.23	\$2,313	\$108	21.3	\$89.58	
	Coral Harbour	\$2,095	N/A	N/A	\$13.37	\$2,324	\$126	18.5	\$82.96	
	Gjoa Haven	\$2,280	N/A	N/A	\$13.18	\$2,370	\$139	17.1	\$85.01	
	Grise Fiord	\$2,052	N/A	N/A	\$13.08	\$2,313	\$111	20.9	\$90.05	
	Hall Beach	\$2,055	N/A	N/A	\$12.96	\$2,314	\$114	20.3	\$86.41	
	Igloolik	\$2,055	N/A	N/A	\$12.83	\$2,314	\$117	19.8	\$83.43	
	Iqaluit	\$2,041	N/A	N/A	\$13.55	\$2,310	\$93	25.0	\$78.65	
	Kimmirut	\$2,051	N/A	N/A	\$13.63	\$2,313	\$123	18.8	\$79.48	
	Kugluktuk	\$2,232	N/A	N/A	\$13.52	\$2,358	\$141	16.7	\$74.70	
	Nanisivik	\$2,052	N/A	N/A	\$12.93	\$2,313	\$135	17.2	\$88.64	
	Pangnirtung	\$2,051	N/A	N/A	\$13.46	\$2,313		18.4	\$78.01	
	Pelly Bay (Kugaaruk)	\$2,052	N/A	N/A	\$12.98	\$2,313		16.5	\$85.51	
	Pond Inlet	\$2,052	N/A	N/A	\$13.05	\$2,313		20.0	\$84.23	
	Qikiqtarjuaq (Broughton Island)	\$2,052	N/A	N/A	\$13.43	\$2,313	\$106	21.8	\$85.94	
	Rankin Inlet	\$2,095	N/A	N/A	\$13.55	\$2,324		15.9	\$71.16	
	Repulse Bay	\$2,055		N/A	\$13.13	\$2,314		18.5	\$81.04	
	Resolute	\$2,052		N/A	\$12.63	\$2,313		19.2	\$87.27	
	Sanikiluaq	\$2,056		N/A	\$14.22	\$2,314		17.3	\$71.47	
	Taloyoak	\$2,292		N/A	\$13.23	\$2,373		17.4	\$86.81	
	Umingmaktok	\$2,255		N/A	\$13.41	\$2,364		16.1	\$73.60	
	Whale Cove	\$2,095		N/A	\$13.55	\$2,324		16.1	\$71.16	
YUKON										
	Beaver Creek	\$2,006	\$783	2.6	\$14.34	\$2,301	\$108	21.3	\$70.49	
	Burwash Landing	\$2,006		2.9	\$14.45	\$2,301		21.7	\$69.33	
	Carcross	\$2,006		2.6	\$14.42	\$2,301		20.4	\$68.21	
	Carmacks	\$2,006		2.2	\$14.36	\$2,301		19.6	\$68.48	
	Dawson	\$2,006		2.3	\$14.19	\$2,301	\$113	20.3	\$68.76	
	Destruction Bay	\$2,006		2.9	\$14.45	\$2,301	\$106	21.7	\$69.33	
	Faro	\$2,006		2.0	\$14.43	\$2,301		18.7	\$68.48	
	Haines Junction	\$2,006		3.0	\$14.60	\$2,301		22.7	\$72.30	
	Mayo	\$2,006		2.1	\$14.34	\$2,301		19.5	\$69.05	

		S	OLAR W	ATER HE	ATING		PHOT	OVOLTA	С
REGION	COMMUNITY								
		Cost			5yr payback	Cost			5yr payback
ļ	lvujivik	\$3,513		495.6	\$0.83	\$23,974	\$54	444.4	\$2.73
	Kangiqsualujjuaq	\$3,513		789.6	\$0.87	\$23,974	\$49	491.4	\$2.85
	Kangiqsujuaq	\$3,513		2870.6	\$0.92	\$23,974	\$42	564.3	\$3.00
	Kangirsuk	\$3,513		1940.6	\$0.91	\$23,974	\$44	549.5	\$2.97
	Kuujjuaq	\$3,513		659.2	\$0.86	\$23,974	\$51	474.6	\$2.81
	Kuujjuarapik	\$3,513		170.7	\$0.69	\$23,974	\$80	298.5	\$2.26
	Puvirnituq	\$3,513		243.6	\$0.75	\$23,974	\$68	351.1	\$2.45
	Quaqtaq	\$3,513		1940.6	\$0.91	\$23,974	\$44	549.5	\$2.97
	Salluit	\$3,513		440.9	\$0.82	\$23,974	\$56	430.7	\$2.69
	Tasiujaq	\$3,513		624.8	\$0.85	\$23,974	\$51	469.3	\$2.79
	Umiujaq	\$3,513	\$19	189.6	\$0.71	\$23,974	\$76	314.2	\$2.32
NUNAVU									
	Arctic Bay	\$3,513		10.3	\$0.97	\$23,976	\$708	33.9	\$3.17
	Arviat	\$3,524		8.9	\$0.76	\$24,040	\$816	29.5	\$2.49
	Baker Lake	\$3,524		10.2	\$0.75	\$24,040	\$715	33.6	\$2.46
	Bathurst Inlet	\$3,564		12.6	\$0.79	\$24,276	\$594	40.9	\$2.57
	Cambridge Bay	\$3,564		10.9	\$0.87	\$24,276	\$680	35.7	\$2.84
	Cape Dorset	\$3,513		12.3	\$0.90	\$23,975	\$598	40.1	\$2.96
	Chesterfield Inlet	\$3,524		7.1	\$0.79	\$24,040		23.9	\$2.59
	Clyde River	\$3,513		12.0	\$0.98	\$23,976		39.2	\$3.21
	Coral Harbour	\$3,524		8.7	\$0.91	\$24,040		28.7	\$2.97
	Gjoa Haven	\$3,570		9.1	\$0.92	\$24,313		30.1	\$3.01
	Grise Fiord	\$3,513		7.8	\$0.99	\$23,976		26.2	\$3.23
	Hall Beach	\$3,514		9.4	\$0.95	\$23,982		31.0	\$3.09
	Igloolik	\$3,514		14.9	\$0.91	\$23,982	\$501	47.8	\$2.99
	Iqaluit	\$3,510		14.8	\$0.86	\$23,960		47.6	\$2.82
	Kimmirut	\$3,513		5.8	\$0.87	\$23,975		19.7	\$2.85
	Kugluktuk	\$3,558		7.3	\$0.81	\$24,242		24.3	\$2.65
	Nanisivik	\$3,513		9999.0	\$0.97	\$23,976		9999.0	\$3.17
	Pangnirtung	\$3,513		11.9	\$0.85	\$23,975		38.8	\$2.79
	Pelly Bay (Kugaaruk)	\$3,513		7.1	\$0.94	\$23,976		23.9	\$3.06
	Pond Inlet	\$3,513		8.5	\$0.92	\$23,976		28.2	\$3.02
	Qikiqtarjuaq (Broughton Island)	\$3,513		9.8	\$0.94	\$23,976		32.3	\$3.08
	Rankin Inlet	\$3,524		12.5	\$0.78	\$24,040		40.7	\$2.54
	Repulse Bay	\$3,514		9.7	\$0.89	\$23,982		31.9	\$2.90
	Resolute	\$3,513		8.3	\$0.95	\$23,976		27.5	\$3.13
	Sanikiluaq	\$3,514		8.7	\$0.78	\$23,983		29.0	\$2.56
	Taloyoak	\$3,573		7.8	\$0.94	\$24,330		26.0	\$3.08
	Umingmaktok	\$3,564		13.2	\$0.80	\$24,276		42.8	\$2.61
	Whale Cove	\$3,524	\$983	3.6	\$0.78	\$24,040	\$1,963	12.2	\$2.54
YUKON								<u> </u>	
	Beaver Creek	\$3,501		46.7	\$0.77	\$23,908		128.0	\$2.53
	Burwash Landing	\$3,501		60.2	\$0.76	\$23,908		155.5	\$2.49
	Carcross	\$3,501	,	58.3	\$0.75	\$23,908		151.8	\$2.45
	Carmacks	\$3,501		58.8	\$0.75	\$23,908		152.7	\$2.46
	Dawson	\$3,501		59.2	\$0.75	\$23,908		153.6	\$2.47
	Destruction Bay	\$3,501		45.4	\$0.76	\$23,908		125.1	\$2.49
	Faro	\$3,501		58.8	\$0.75	\$23,908		152.7	\$2.46
	Haines Junction	\$3,501		65.6	\$0.79	\$23,908		165.5	\$2.59
	Mayo	\$3,501		59.7	\$0.76	\$23,908		154.5	\$2.48
	Old Crow	\$3,677	\$191	19.2	\$0.86	\$24,945	\$414	60.3	\$2.80

			WI	ND				HYBRID		
REGION	COMMUNITY	a .			_		<u> </u>		_	_
		Cost		Payback		Cost		Fuel Cost		5yr
	lvujivik	\$7,424	\$118	62.7	\$0.61		\$176	\$2,718	9999.0	\$1.98
	Kangiqsualujjuaq	\$7,424		651.9	\$1.50		\$64	\$3,274	9999.0	\$3.32
	Kangiqsujuaq	\$7,424		36.6		\$28,486		\$2,358	9999.0	\$1.54
	Kangirsuk	\$7,424	\$173	42.8		\$28,486	\$220	\$2,498	9999.0	\$1.69
	Kuujjuaq	\$7,424	\$17	441.7		\$28,486		\$3,238	9999.0	\$3.19
	Kuujjuarapik	\$7,424	\$80	93.3		\$28,486	\$163	\$2,780	9999.0	\$2.08
	Puvirnituq	\$7,424		65.5		\$28,486	\$185	\$2,672	9999.0	\$1.92
	Quaqtaq	\$7,424	\$184	40.4		\$28,486	\$231	\$2,446	9999.0	\$1.63
	Salluit	\$7,424	\$136	54.7		\$28,486		\$2,624	9999.0	\$1.85
	Tasiujaq	\$7,424		841.1		\$28,486	\$63	\$3,275	9999.0	\$3.33
	Umiujaq	\$7,424	\$37	198.3	\$1.11	\$28,486	\$117	\$3,009	9999.0	\$2.53
NUNAVU	T									
	Arctic Bay	\$7,425	\$923	8.0		\$28,489		\$2,733	9999.0	\$2.47
	Arviat	\$7,445		4.7		\$28,563		\$2,131	105.7	\$1.43
	Baker Lake	\$7,445		8.5		\$28,563		\$2,572	9999.0	\$1.94
	Bathurst Inlet	\$7,521	\$717	10.5		\$28,839		\$2,724	99999.0	\$2.07
	Cambridge Bay	\$7,521	\$857	8.8		\$28,839		\$2,833	99999.0	\$2.27
	Cape Dorset	\$7,424		5.2		\$28,488		\$2,125	99999.0	\$1.51
	Chesterfield Inlet	\$7,445		4.1		\$28,563		\$2,271	52.6	\$1.57
	Clyde River	\$7,425		6.7		\$28,489		\$2,494	9999.0	\$2.02
	Coral Harbour		\$1,417	5.3		\$28,563		\$2,579	9999.0	\$1.95
	Gjoa Haven		\$1,032	7.3		\$28,883		\$3,088	99999.0	\$2.45
	Grise Fiord	\$7,425		5.1		\$28,489		\$2,645	9999.0	\$2.21
	Hall Beach	\$7,426		5.0		\$28,496		\$2,420	9999.0	\$1.86
	Igloolik	\$7,426		11.4	\$0.76	\$28,496	\$1,159	\$2,639	99999.0	\$2.31
	lqaluit	\$7,419		9.9	\$0.64	\$28,470	\$1,256	\$1,880	99999.0	\$1.85
	Kimmirut	\$7,424	\$2,217	3.3	\$0.51	\$28,488	\$3,435	\$2,298	25.0	\$1.72
	Kugluktuk	\$7,510	\$866	8.7	\$0.97	\$28,800	\$1,869	\$2,835	9999.0	\$2.52
	Nanisivik	\$7,425	-\$62	99999.0	\$0.78	\$28,489	-\$132	\$3,267	99999.0	\$2.59
	Pangnirtung	\$7,424	\$921	8.1	\$0.62	\$28,488	\$1,542	\$2,461	99999.0	\$1.96
	Pelly Bay (Kugaaruk)	\$7,425	\$1,486	5.0	\$0.68	\$28,489	\$2,492	\$3,127	99999.0	\$2.31
	Pond Inlet	\$7,425	\$1,292	5.7	\$0.65	\$28,489	\$2,145	\$2,536	99999.0	\$2.10
	Qikiqtarjuaq (Broughton Island)	\$7,425	\$1,945	3.8	\$0.40	\$28,489	\$2,690	\$1,936	37.8	\$1.42
	Rankin Inlet	\$7,445	\$1,420	5.2	\$0.36	\$28,563	\$2,014	\$1,926	323.4	\$1.25
	Repulse Bay		\$1,071	6.9		\$28,496		\$2,630	99999.0	\$2.12
	Resolute	\$7,425	\$911	8.1		\$28,489			99999.0	\$2.79
	Sanikiluaq	\$7,427		3.4		\$28,497		\$1,655	21.0	\$1.13
	Taloyoak	\$7,538	\$1,295	5.8		\$28,903		\$3,053	9999.0	\$2.38
	Umingmaktok	\$7,521		11.0		\$28,839		\$2,690	9999.0	\$2.10
	Whale Cove	\$7,445		1.7		\$28,563		\$1,903	6.3	\$1.25
YUKON			. ,							
	Beaver Creek	\$7,403	\$101	73.4	\$1.28	\$28,410	\$291	\$2,212	9999.0	\$2.57
	Burwash Landing	\$7,403		99999.0		\$28,410		\$2,341	9999.0	\$3.55
	Carcross	\$7,403		113.4		\$28,410		\$2,243	9999.0	\$2.62
	Carmacks	\$7,403		9999.0		\$28,410		\$2,538	9999.0	\$3.59
	Dawson	\$7,403		9999.0		\$28,410		\$2,475	99999.0	\$3.66
	Destruction Bay	\$7,403		9999.0		\$28,410		\$2,341	99999.0	\$3.55
	Faro	\$7,403		220.6		\$28,410		\$2,525	99999.0	\$2.98
	Haines Junction	\$7,403		9999.0		\$28,410		\$2,355	99999.0	\$3.65
	Mayo	\$7,403		2271.8		\$28,410		\$2,520	99999.0	\$3.31
L	Old Crow	\$7,737		41.1		\$29,622		\$2,559	99999.0	\$3.15

			BIOMASS					SOLAR AIR HEATING				
REGION	COMMUNITY											
		Cost	Savings	Payback	5yr payback	Cost	Savings	Payback	5yr payback			
	Pelly Crossing	\$2,006	\$932	2.2	\$14.36	\$2,301	\$119	19.3	\$68.48			
	Ross River	\$2,006	\$984	2.0	\$14.43	\$2,301	\$126	18.2	\$66.85			
	Tagish	\$2,006	\$786	2.6	\$14.42	\$2,301	\$113	20.4	\$68.21			
	Teslin	\$2,005	\$910	2.2	\$14.41	\$2,301	\$122	18.8	\$66.85			
	Watson Lake	\$2,005	\$549	3.7	\$14.51	\$2,301	\$104	22.1	\$66.06			
	Whitehorse	\$2,005	\$784	2.6	\$14.42	\$2,301	\$11 <u>0</u>	20.8	\$69.61			

Appendix C -	Calculations
--------------	--------------

		S	OLAR W	ATER HE	ATING	PHOTOVOLTAIC					
REGION	COMMUNITY										
		Cost	Savings	Payback	5yr payback	Cost	Savings	Payback	5yr payback		
	Pelly Crossing	\$3,501	\$79	44.4	\$0.75	\$23,908	\$194	123.0	\$2.46		
	Ross River	\$3,501	\$78	44.7	\$0.73	\$23,908	\$193	123.8	\$2.40		
	Tagish	\$3,501	\$60	58.3	\$0.75	\$23,908	\$158	151.8	\$2.45		
	Teslin	\$3,501	\$62	56.1	\$0.73	\$23,907	\$162	147.4	\$2.40		
	Watson Lake	\$3,501	\$64	54.8	\$0.72	\$23,908	\$165	144.9	\$2.37		
	Whitehorse	\$3,501	\$58	60.7	\$0.76	\$23,907	\$153	156.4	\$2.50		

		WIND				HYBRID					
REGION	COMMUNITY										
		Cost	Savings	Payback	5yr	Cost	Savings	Fuel Cost	Payback	5yr	
	Pelly Crossing	\$7,403	-\$15	99999.0	\$4.42	\$28,410	\$183	\$2,576	9999.0	\$3.61	
	Ross River	\$7,403	\$57	129.7	\$1.71	\$28,410	\$254	\$2,489	9999.0	\$2.84	
	Tagish	\$7,403	\$65	113.4	\$1.41	\$28,410	\$226	\$2,243	9999.0	\$2.62	
	Teslin	\$7,402	\$154	48.1	\$0.83	\$28,408	\$319	\$2,156	9999.0	\$2.05	
	Watson Lake	\$7,403	\$237	31.3	\$0.60	\$28,409	\$405	\$1,670	9999.0	\$1.62	
	Whitehorse	\$7,402	\$3	2271.7	\$2.75	\$28,408	\$159	\$2,387	9999.0	\$3.28	

			BI	OMASS			SOLAR	AIR HEA	ſING
REGION	COMMUNITY	<u> </u>	. .				<u>.</u>		h
LABRADO	ND	Cost	Savings	Payback	5yr payback	Cost	Savings	Раубаск	5yr payback
LADNAU	Davis Inlet (Utshimassits)	\$2,292	\$988	2.3	\$15.40	\$2,373	\$131	18.1	\$70.01
			\$962	2.3	\$15.52	\$2,373		16.3	\$63.37
	Hopedale	\$2,292	\$1,049	2.4	\$15.40	\$2,373		17.6	\$70.01
	Makkovik	\$2,292	\$988	2.2	\$15.40	\$2,373		18.1	\$70.01
	Nain	\$2,292	\$900 N/A	N/A	\$15.26	\$2,373		18.0	\$73.57
	Postville	\$2,292	\$988	2.3	\$15.40	\$2,373		17.3	\$67.04
·	Rigolet	\$2,292	\$995	2.3	\$15.92	\$2,373		16.5	\$67.82
	EST TERRITORIES	\$2,292	- 4 990	2.3	\$10.92	φ2,373	\$143	10.5	\$07.02
	Aklavik	\$2,106	\$1,015	2.1	\$13.90	\$2,327	\$98	23.7	\$80.32
	Colville Lake	\$2,882	\$2,529	1.1	\$15.48	\$2,520		13.0	\$76.46
	Deline	\$2,002	\$2, <u>529</u> \$1,730	1.1	\$13.48	\$2,320		15.0	\$71.66
	Dettah	\$2,002	\$1,730 \$185	10.8	\$14.17	\$2,300		26.7	\$63.55
	Enterprise	\$2,002	\$267	7.5	\$14.63	\$2,300		24.1	\$61.68
	Fort Good Hope	\$2,001	\$207 \$1,784	1.1	\$13.92	\$2,301	\$158	14.6	\$66.83
	Fort Liard	\$2,002	\$1,784	1.1	\$13.92	\$2,301	\$153	14.0	\$62.37
	Fort McPherson	\$2,002	\$1,781	1.0	\$14.00	\$2,301		16.9	\$75.19
	Fort Providence	\$2,003	\$376	5.3	\$13.78	\$2,300		23.3	\$63.31
			\$360	5.6	\$14.52	\$2,300		23.3	\$61.24
	Fort Resolution	\$2,002 \$2,002	\$360	1.4	\$14.52 \$14.55	\$2,300		14.0	\$63.55
	Fort Simpson			1.4	\$14.55 \$14.71	\$2,300		26.5	\$61.24
	Fort Smith	\$2,002	\$110 \$267	7.5	\$14.71 \$14.63	\$2,300	\$96	20.5	\$61.46
	Hay River & (Hay River	\$2,001	\$267	/.5	\$14.03	60.000		24.0	
	Reserve)	0 104			<u> </u>	\$2,300 \$2,349		16.1	\$78.48
	Holman	\$2,194	N/A	N/A	\$13.61			25.7	\$76.55
	Inuvik	\$2,003	\$721	2.8	\$13.70	\$2,301			
	Jean Marie River	\$2,002	\$1,594	1.3	\$14.55	\$2,300		13.4	\$63.55 \$62.14
	Kakisa	\$2,001	\$359	5.6	\$14.52	\$2,300		23.0	
	Lutselk'e	\$2,082	\$1,596	1.3	\$14.43	\$2,321	\$162	14.3	\$65.58
	Nahanni Butte	\$2,019	\$1,298	1.6	\$15.17	\$2,305		13.9	\$63.66
	Norman Wells	\$2,002	\$385	5.2	\$14.17	\$2,300		26.1	\$69.30
	Paulatuk	\$2,182	N/A	N/A	\$13.93	\$2,345		15.8	\$75.62
	Rae Lakes (Gameti)	\$2,028	\$2,122	1.0	\$14.35	\$2,307		12.4	\$66.75
	Rae-Edzo (Rae)	\$2,002	\$185	10.8	\$14.31	\$2,300 \$2,343		26.8	\$63.79
	Sachs Harbour	\$2,174	N/A	N/A 1.3	\$13.45	\$2,343		17.6 13.1	\$84.48 \$62.37
	Trout Lake	\$2,001	\$1,594		\$14.55				
	Tsiigehtchic	\$2,003		N/A	\$13.70	\$2,301	+ +	16.0	\$73.87
	Tuktoyaktuk	\$2,131	N/A	N/A	\$13.70	\$2,333		27.0	\$80.16
	Tulita	\$2,002	\$1,681	1.2	\$14.12	\$2,300		15.1	\$69.02
	Wekweti	\$2,029		0.9	\$14.35			12.2	\$67.02 \$64.68
	Wha Ti	\$2,024		1.0	\$14.34	\$2,306		12.6	
	Wrigley Yellowknife	\$2,002		1.3	\$14.31	\$2,300		14.5	\$65.52
NUNAVI		\$2,002	\$185	10.8	\$14.31	\$2,300	\$86	26.7	\$63.55
NUNAVI		\$0.0E0	NI/A	NI/A	¢14.10	\$2.210	¢157	14.8	\$70.53
	Akulivik	\$2,050		N/A	\$14.12	\$2,313 \$2,313			
	Aupaluk	\$2,050		N/A	\$14.34	\$2,313		17.1	\$80.99 \$69.95
	Inukjuak	\$2,050		N/A	\$14.12			14.6	
	Ivujivik	\$2,050		N/A	\$13.51	\$2,313		16.0	\$76.25
	Kangiqsualujjuaq	\$2,050		N/A	\$14.34	\$2,313		16.7	\$79.47
	Kangiqsujuaq	\$2,050		N/A	\$14.07	\$2,313		17.7	\$83.80
	Kangirsuk	\$2,050		N/A	\$14.07	\$2,313		17.5	\$82.98
	Kuujjuaq	\$2,050		N/A	\$14.29	\$2,313		16.5	\$78.37
	Kuujjuarapik	\$2,050	N/A	N/A	\$14.50	\$2,313	8 \$176	13.2	\$63.16

		S	OLAR W	ATER HE	ĀTING		PHOT	OVOLTAI	С
REGION	COMMUNITY								
		Cost	Savings	Payback	5yr payback	Cost	Savings	Payback	5yr payback
LABRADO	DR		¥						
	Davis Inlet (Utshimassits)	\$3,573	\$91	39.4	\$0.76	\$24,330	\$218	111.8	\$2.48
	Happy Valley - Goose Bay	\$3,573	-\$5	9999.0	\$0.69	\$24,330	\$30	808.9	\$2.24
	Hopedale	\$3,573	\$91	39.4	\$0.76	\$24,330	\$218	111.8	\$2.48
	Makkovik	\$3,573	\$91	39.4	\$0.76	\$24,330	\$218	111.8	\$2.48
	Nain	\$3,573	\$84	42.8	\$0.80	\$24,330	\$203	119.6	\$2.61
	Postville	\$3,573	\$97	36.7	\$0.73	\$24,330	\$230	105.6	\$2.37
	Rigolet	\$3,573	\$96	37.4	\$0.73	\$24,330	\$227	107.2	\$2.40
NORTHW	EST TERRITORIES								
	Aklavik	\$3,527	\$306	11.5	\$0.88	\$24,057	\$639	37.6	\$2.87
	Colville Lake	\$3,720		1.7	\$0.81	\$25,201	\$4,312	5.8	\$2.64
	Deline	\$3,500	\$362	9.7	\$0.79	\$23,902		32.0	\$2.57
	Dettah	\$3,500	\$109	32.0	\$0.70	\$23,903		94.2	\$2.28
	Enterprise	\$3,500	\$108	32.5	\$0.68	\$23,902		95.4	\$2.21
	Fort Good Hope	\$3,501	\$530	6.6	\$0.73	\$23,903		22.2	\$2.40
	Fort Liard	\$3,501	\$473	7.4	\$0.68	\$23,903	\$965	24.8	\$2.24
	Fort McPherson	\$3,501	\$326	10.7	\$0.82	\$23,904		35.3	\$2.70
	Fort Providence	\$3,500		29.0	\$0.69	\$23,903		86.5	\$2.27
	Fort Resolution	\$3,500		14.6	\$0.67	\$23,902		46.9	\$2.20
	Fort Simpson	\$3,500		12.2	\$0.70	\$23,903		39.9	\$2.28
	Fort Smith	\$3,500		45.6	\$0.67	\$23,903		125.6	\$2.20
	Hay River & (Hay River		\$108	32.3	\$0.67	\$23,902	\$252	94.9	\$2.21
	Reserve)	\$3,500							
	Holman	\$3,549		6.9	\$0.85	\$24,186		23.2	\$2.79
	Inuvik	\$3,501	\$225	15.5	\$0.84	\$23,904		49.7	\$2.75
	Jean Marie River	\$3,500		2.4	\$0.70	\$23,903		8.2	\$2.28
	Kakisa	\$3,500		28.0	\$0.68	\$23,902		84.1	\$2.23
	Lutselk'e	\$3,521	\$409	8.6	\$0.72	\$24,021		28.6	\$2.35
	Nahanni Butte	\$3,505		1.7	\$0.70	\$23,928		6.0	\$2.28
	Norman Wells	\$3,500		17.1	\$0.76	\$23,902		54.4	\$2.49
	Paulatuk	\$3,545		6.7	\$0.82		\$1,072		\$2.69
	Rae Lakes (Gameti)	\$3,507		4.4	\$0.73	\$23,941			\$2.39
	Rae-Edzo (Rae)	\$3,500		14.5	\$0.70	\$23,903		46.7	\$2.29
	Sachs Harbour	\$3,543		5.8	\$0.92	\$24,156			\$3.01
	Trout Lake	\$3,500		9.1	\$0.68	\$23,902		30.2	\$2.24
	Tsiigehtchic	\$3,501	\$566	6.2	\$0.81	\$23,904			\$2.65
	Tuktoyaktuk	\$3,533		10.3	\$0.87	\$24,093		33.8	\$2.86
	Tulita	\$3,500		5.4	\$0.76	\$23,902		18.4	\$2.48
	Wekweti	\$3,507		12.0	\$0.73	\$23,943		39.3	\$2.40
	Wha Ti	\$3,506		5.7	\$0.71		\$1,237		\$2.32
	Wrigley	\$3,500		5.1	\$0.72		\$1,382		\$2.35
	Yellowknife	\$3,500	\$86	40.8	\$0.70	\$23,903	\$208	114.9	\$2.28
NUNAVI		0.540	040	0044	00 77	000.074	0 04	070.0	¢0.50
	Akulivik	\$3,513		284.1	\$0.77	\$23,974		373.0	\$2.53
	Aupaluk	\$3,513		1072.2	\$0.89	\$23,974		515.6	\$2.90
	Inukjuak	\$3,513		271.2	\$0.77	\$23,974		366.5	\$2.51
	Ivujivik	\$3,513		495.6	\$0.83	\$23,974		444.4	\$2.73
	Kangiqsualujjuaq	\$3,513		789.6	\$0.87	\$23,974		491.4	\$2.85
	Kangiqsujuaq	\$3,513		2870.6	\$0.92	\$23,974		564.3	\$3.00
	Kangirsuk	\$3,513		1940.6	\$0.91	\$23,974		549.5	\$2.97
	Kuujjuaq	\$3,513		659.2	\$0.86	\$23,974		474.6	\$2.81
	Kuujjuarapik	\$3,513	\$21	170.7	\$0.69	\$23,974	\$80	298.5	\$2.26

Appendix C - RETScreen Calculations

Appendix C -	RETScreen	Calculations
--------------	-----------	--------------

		WIND				HYBRID					
REGION	COMMUNITY	Cost	Savings	Payback	5yr	Cost	Savinos	Fuel Cost	Payhack	5yr	
LABRADO	DR	0031	Ouvings	Taybaok	yı	0031	Ouvings		Tayback	- Oyr	
	Davis Inlet (Utshimassits)	\$7,538	\$503	15.0	\$0.41	\$28,903	\$724	\$1,775	9999.0	\$1.31	
	Happy Valley - Goose Bay	\$7,538	\$0	67973.7		\$28,903	\$34	\$2,452	99999.0	\$2.38	
	Hopedale	\$7,538	\$503	15.0		\$28,903		\$1,823	9999.0	\$1.32	
	Makkovik	\$7,538	\$503	15.0		\$28,903	\$724	\$1,775	9999.0	\$1.31	
	Nain	\$7,538	\$525	14.4		\$28,903	\$731	\$1,855	9999.0	\$1.31	
	Postville	\$7,538	\$291	25.9		\$28,903	\$525	\$2,169	99999.0	\$1.80	
	Rigolet	\$7,538		27.0		\$28,903		\$2,319	9999.0	\$1.87	
NORTHW	EST TERRITORIES					<i><i><i>q</i>=0,000</i></i>		<i>, , , , , , , , , , , , , , , , , , , </i>		÷ ·····	
	Aklavik	\$7,450	\$252	29.5	\$2.07	\$28,583	\$895	\$2,452	99999.0	\$3.38	
	Colville Lake	\$7,819		5.3		\$29,921		\$4,054	17.2	\$3.89	
	Deline	\$7,401	\$111	66.8		\$28,403		\$3,365	9999.0	\$4.02	
	Dettah	\$7,401	\$21	357.4		\$28,403	\$278	\$1,700	9999.0	\$2.82	
	Enterprise	\$7,401	-\$3	9999.0		\$28,403		\$1,831	9999.0	\$2.95	
	Fort Good Hope	\$7,401	\$333	22.2		\$28,404		\$3,143	9999.0	\$3.30	
	Fort Liard	\$7,401	\$29	254.4		\$28,404	\$997	\$2,964	9999.0	\$3.72	
	Fort McPherson	\$7,401	\$143	51.8		\$28,405	\$824	\$3,212	9999.0	\$3.94	
	Fort Providence	\$7,401	-\$25	9999.0		\$28,403	\$255	\$1,988	99999.0	\$3.30	
	Fort Resolution	\$7,401	\$43	172.4		\$28,403	\$556	\$1,920	9999.0	\$2.97	
	Fort Simpson	\$7,401	\$36	205.0		\$28,403		\$3,200	99999.0	\$3.70	
	Fort Smith	\$7,401	-\$8	99999.0		\$28,403		\$1,646	9999.0	\$2.80	
	Hay River & (Hay River	\$7,401	\$1	8345.5		\$28,403	\$256	\$1,824	99999.0	\$2.91	
	Reserve)		Ψ	0040.0	\$0.02	Ψ20,400	Ψ230	Ψ1,024	0000.0	Ψ2.51	
	Holman	\$7,492	\$1,939	3.9	\$0.50	\$28,735	\$2,987	\$2,567	68.5	\$1.72	
	Inuvik	\$7,401	\$150	49.2		\$28,405		\$2,172	9999.0	\$3.27	
	Jean Marie River	\$7,401	\$373	19.8		\$28,403		\$3,349	99999.0	\$3.76	
	Kakisa	\$7,401	-\$27	99999.0		\$28,403		\$1,964	99999.0	\$3.26	
	Lutselk'e	\$7,439	\$269	27.7		\$28,542		\$3,104	99999.0	\$3.16	
	Nahanni Butte	\$7,409		11.7		\$28,432		\$3,220	20.0	\$3.63	
	Norman Wells	\$7,403	\$87	85.0		\$28,403		\$1,919	99999.0	\$3.07	
	Paulatuk	\$7,486		7.8	-	\$28,714		\$3,025	99999.0	\$2.57	
	Rae Lakes (Gameti)	\$7,413		19.5		\$28,448		\$3,744	99999.0	\$3.72	
	Rae-Edzo (Rae)	\$7,401	\$77	96.7		\$28,403		\$1,708	99999.0	\$2.87	
	Sachs Harbour	\$7,401		2.3		\$28,699		\$2,215	12.5	\$1.39	
	Trout Lake	\$7,401	\$52	143.7		\$28,403		\$3,344	99999.0	\$3.73	
	Tsiigehtchic	\$7,401		21.6		\$28,403		\$3,344	99999.0	\$3.73	
	Tuktoyaktuk		\$343 \$1,171	6.4		\$28,626			181.8	\$1.73	
	Tulita	\$7,402				\$28,403					
	Wekweti	\$7,401	\$276 \$253	26.8 29.3				\$3,236 \$3,661	99999.0 99999.0	\$3.71 \$3.21	
	Wha Ti					\$28,450					
	Wrigley	\$7,411		29.4		\$28,442		\$3,549	9999.0	\$3.61	
	Yellowknife	\$7,401	\$194	38.2		\$28,403		\$3,204	9999.0	\$3.72	
NUNAVIK		\$7,401	\$9	809.8	⊅∠.Ծ/	\$28,403	\$220	\$1,700	9999.0	\$2.82	
NUNAVI		¢7 404	0000	25.7	¢0.44	000 400	¢076	¢0.000	0000.0	¢1 44	
	Akulivik	\$7,424		35.7		\$28,486		\$2,223	9999.0	\$1.41	
	Aupaluk	\$7,424		55.5		\$28,486		\$2,680	9999.0	\$1.93	
	Inukjuak	\$7,424		35.1		\$28,486		\$2,201	9999.0	\$1.39	
	lvujivik Konstantulius s	\$7,424		39.3		\$28,486		\$2,369	99999.0	\$1.55	
	Kangiqsualujjuaq	\$7,424		132.7		\$28,486		\$3,053	9999.0	\$2.64	
	Kangiqsujuaq	\$7,424		28.8		\$28,486		\$2,085	99999.0	\$1.30	
	Kangirsuk	\$7,424		29.2		\$28,486		\$2,098	99999.0	\$1.31	
	Kuujjuaq	\$7,424		146.8		\$28,486		\$3,071	9999.0	\$2.69	
	Kuujjuarapik	\$7,424	\$111	66.8	\$0.64	\$28,486	\$195	\$2,624	99999.0	\$1.85	

Appendix C -	RETScreen	Calculations
--------------	-----------	--------------

		BIOMASS			SOLAR AIR HEATING				
REGION	COMMUNITY								
		Cost	Savings	Payback	5yr payback	Cost	Savings	Payback	5yr payback
	Puvirnituq	\$2,050	N/A	N/A	\$14.12	\$2,313		14.3	\$68.53
	Quaqtaq	\$2,050	N/A	N/A	\$14.07	\$2,313	\$132	17.5	\$82.98
	Salluit	\$2,050	N/A	N/A	\$13.51	\$2,313	\$146	15.8	\$75.23
	Tasiujaq	\$2,050	N/A	N/A	\$14.34	\$2,313	\$141	16.4	\$78.00
	Umiujaq	\$2,050	N/A	N/A	\$14.54	\$2,313	\$171	13.5	\$64.85
NUNAVU									
	Arctic Bay	\$2,052	N/A	N/A	\$13.28	\$2,313	\$111	20.8	\$88.64
	Arviat	\$2,095	N/A	N/A	\$13.59	\$2,324	\$149	15.6	\$69.70
	Baker Lake	\$2,095	N/A	N/A	\$13.51	\$2,324	\$153	15.2	\$68.86
	Bathurst Inlet	\$2,255	N/A	N/A	\$13.43	\$2,364	\$153	15.4	\$72.37
	Cambridge Bay	\$2,255	N/A	N/A	\$13.43	\$2,364	\$138	17.1	\$80.07
	Cape Dorset	\$2,051	N/A	N/A	\$13.53	\$2,313	\$118	19.6	\$82.58
	Chesterfield Inlet	\$2,095	N/A	N/A	\$13.59	\$2,324	\$143	16.2	\$72.37
	Clyde River	\$2,052	N/A	N/A	\$13.44	\$2,313	\$108	21.3	\$89.58
	Coral Harbour	\$2,095	N/A	N/A	\$13.57	\$2,324	\$126	18.5	\$82.96
	Gjoa Haven	\$2,280	N/A	N/A	\$13.42	\$2,370	\$139	17.1	\$85.01
	Grise Fiord	\$2,052	N/A	N/A	\$13.28	\$2,313		20.9	\$90.05
	Hall Beach	\$2,055	N/A	N/A	\$13.26	\$2,314	\$114	20.3	\$86.41
	Igloolik	\$2,055	N/A	N/A	\$13.26	\$2,314	\$117	19.8	\$83.43
	Iqaluit	\$2,041	N/A	N/A	\$13.74	\$2,310		25.0	\$78.65
	Kimmirut	\$2,051	N/A	N/A	\$13.76	\$2,313		18.8	\$79.48
	Kugluktuk	\$2,232	N/A	N/A	\$13.76	\$2,358		16.7	\$74.70
	Nanisivik	\$2,052	N/A	N/A	\$13.28	\$2,313		17.2	\$88.64
	Pangnirtung	\$2,051	N/A	N/A	\$13.76	\$2,313		18.4	\$78.01
	Pelly Bay (Kugaaruk)	\$2,052	N/A	N/A	\$13.19	\$2,313		16.5	\$85.51
	Pond Inlet	\$2,052	N/A	N/A	\$13.19	\$2,313		20.0	\$84.23
	Qikiqtarjuaq (Broughton	\$2,052	N/A	N/A	\$13.53		\$106	21.8	\$85.94
	Island)					\$2,313			
	Rankin Inlet	\$2,095	N/A	N/A	\$13.59	\$2,324		15.9	\$71.16
	Repulse Bay	\$2,055	N/A	N/A	\$13.52	\$2,314		18.5	\$81.04
	Resolute	\$2,052	N/A	N/A	\$13.07	\$2,313		19.2	\$87.27
	Sanikiluaq	\$2,056	N/A	N/A	\$14.13	\$2,314		17.3	\$71.47
	Taloyoak	\$2,292	N/A	N/A	\$13.43	\$2,373		17.4	\$86.81
	Whale Cove	\$2,095	N/A	N/A	\$13.59	\$2,324		16.1	\$71.16
YUKON		+=,			¥				
	Beaver Creek	\$2,006	\$827	2.4	\$14.15	\$2,301	\$108	21.3	\$70.49
	Burwash Landing	\$2,006	\$674	3.0	\$14.54	\$2,301		21.7	\$69.33
	Carcross	\$2,006	\$646	3.1	\$15.16	\$2,301		20.4	\$68.21
	Carmacks	\$2,006	· · · · · · · · · · · · · · · · · · ·	2.4	\$14.56	\$2,301	\$118	19.6	\$68.48
	Dawson	\$2,006		2.4	\$14.34	\$2,301		20.3	\$68.76
	Destruction Bay	\$2,006		2.7	\$14.18	\$2,301		21.7	\$69.33
	Faro	\$2,006		2.5	\$15.18	\$2,301	\$123	18.7	\$68.48
	Haines Junction	\$2,006		3.1	\$14.71	\$2,301	\$102	22.7	\$72.30
	Mayo	\$2,006		2.3	\$14.60	\$2,301	\$118	19.5	\$69.05
	Old Crow	\$2,709		2.1	\$14.55	\$2,477		21.9	\$80.51
	Pelly Crossing	\$2,006		2.2	\$14.42	\$2,301	\$119	19.3	\$68.48
	Ross River	\$2,006		2.5	\$15.18	\$2,301		18.2	\$66.85
	Tagish	\$2,006	\$668	3.0	\$15.03	\$2,301	\$113	20.4	\$68.21
	Teslin	\$2,005		2.6	\$15.03	\$2,301	\$122	18.8	\$66.85
	Watson Lake	\$2,005		3.9	\$14.69	\$2,301		22.1	\$66.06
	Whitehorse	\$2,005		3.1	\$15.17	\$2,301		20.8	\$69.61

Appendix C - RETScreen Calculations

		S	OLAR W	ATER HE	ATING	PHOTOVOLTAIC			
REGION	COMMUNITY					- ·		.	
	— • • •	Cost	Savings		5yr payback	Cost			5yr payback
	Puvimituq	\$3,513		243.6	\$0.75	\$23,974	\$68	351.1	\$2.45
	Quaqtaq	\$3,513		1940.6	\$0.91	\$23,974	\$44	549.5	\$2.97
	Salluit	\$3,513		440.9	\$0.82	\$23,974	\$56	430.7	\$2.69
	Tasiujaq	\$3,513		624.8	\$0.85	\$23,974	\$51	469.3	\$2.79
	Umiujaq	\$3,513	\$19	189.6	\$0.71	\$23,974	\$76	314.2	\$2.32
NUNAVU		AO 510	AA (A		* * *=	AAA A70	A=00		<u> </u>
	Arctic Bay	\$3,513		10.3	\$0.97	\$23,976	\$708	33.9	\$3.17
	Arviat	\$3,524		8.9	\$0.76	\$24,040		29.5	\$2.49
	Baker Lake	\$3,524		10.2	\$0.75	\$24,040		33.6	\$2.46
	Bathurst Inlet	\$3,564		12.6	\$0.79	\$24,276		40.9	\$2.57
	Cambridge Bay	\$3,564		10.9	\$0.87	\$24,276		35.7	\$2.84
	Cape Dorset	\$3,513		12.3	\$0.90	\$23,975	\$598	40.1	\$2.96
	Chesterfield Inlet	\$3,524		7.1	\$0.79	\$24,040		23.9	\$2.59
	Clyde River	\$3,513		12.0	\$0.98	\$23,976		39.2	\$3.21
	Coral Harbour	\$3,524		8.7	\$0.91	\$24,040		28.7	\$2.97
	Gjoa Haven	\$3,570		9.1	\$0.92	\$24,313		30.1	\$3.01
	Grise Fiord	\$3,513		7.8	\$0.99	\$23,976		26.2	\$3.23
	Hall Beach	\$3,514		9.4	\$0.95	\$23,982		31.0	\$3.09
	Igloolik	\$3,514		14.9	\$0.91	\$23,982	\$501	47.8	\$2.99
	Iqaluit	\$3,510		14.8	\$0.86	\$23,960		47.6	\$2.82
	Kimmirut	\$3,513		5.8	\$0.87	\$23,975		19.7	\$2.85
	Kugluktuk	\$3,558		7.3	\$0.81	\$24,242		24.3	\$2.65
	Nanisivik	\$3,513		9999.0	\$0.97	\$23,976		9999.0	\$3.17
	Pangnirtung	\$3,513		11.9	\$0.85	\$23,975		38.8	\$2.79
	Pelly Bay (Kugaaruk)	\$3,513		7.1	\$0.94	\$23,976		23.9	\$3.06
	Pond Inlet	\$3,513		8.5	\$0.92	\$23,976		28.2	\$3.02
	Qikiqtarjuaq (Broughton		\$359	9.8	\$0.94	\$23,976	\$741	32.3	\$3.08
	Island)	\$3,513							
	Rankin Inlet	\$3,524		12.5	\$0.78	\$24,040	\$591	40.7	\$2.54
	Repulse Bay	\$3,514		9.7	\$0.89	\$23,982		31.9	\$2.90
	Resolute	\$3,513		8.3	\$0.95	\$23,976		27.5	\$3.13
	Sanikiluaq	\$3,514		8.7	\$0.78	\$23,983		29.0	\$2.56
	Taloyoak	\$3,573		7.8	\$0.94	\$24,330		26.0	\$3.08
	Whale Cove	\$3,524	\$983	3.6	\$0.78	\$24,040	\$1,963	12.2	\$2.54
YUKON									
	Beaver Creek	\$3,501	+	46.7	\$0.77	\$23,908		128.0	\$2.53
	Burwash Landing	\$3,501		60.2	\$0.76	\$23,908		155.5	\$2.49
	Carcross	\$3,501		58.3	\$0.75	\$23,908		151.8	\$2.45
	Carmacks	\$3,501		58.8	\$0.75	\$23,908		152.7	\$2.46
	Dawson	\$3,501		59.2	\$0.75	\$23,908		153.6	\$2.47
	Destruction Bay	\$3,501		45.4	\$0.76	\$23,908		125.1	\$2.49
	Faro	\$3,501		58.8	\$0.75	\$23,908		152.7	\$2.46
	Haines Junction	\$3,501		65.6	\$0.79	\$23,908		165.5	\$2.59
	Mayo	\$3,501		59.7	\$0.76	\$23,908		154.5	\$2.48
	Old Crow	\$3,677		19.2	\$0.86	\$24,945		60.3	\$2.80
	Pelly Crossing	\$3,501		44.4	\$0.75	\$23,908		123.0	\$2.46
	Ross River	\$3,501		44.7	\$0.73	\$23,908		123.8	\$2.40
	Tagish	\$3,501		58.3	\$0.75	\$23,908		151.8	\$2.45
	Teslin	\$3,501		56.1	\$0.73	\$23,907		147.4	\$2.40
	Watson Lake	\$3,501		54.8	\$0.72	\$23,908		144.9	\$2.37
	Whitehorse	\$3,501	\$58	60.7	\$0.76	\$23,907	\$153	156.4	\$2.50

			WI	ND				HYBRID		
REGION	COMMUNITY	A (. .		-		<u> </u>		.	_
		Cost		Payback	5yr	Cost		Fuel Cost		5yr
	Puvirnituq	\$7,424	\$212	35.1		\$28,486	\$283	\$2,186	9999.0	\$1.38
	Quaqtaq	\$7,424	\$254	29.2		\$28,486	\$301	\$2,098	9999.0	\$1.31
	Salluit	\$7,424	\$195	38.1		\$28,486	\$254	\$2,330	9999.0	\$1.51
	Tasiujaq	\$7,424	\$48	155.0		\$28,486		\$3,082	9999.0	\$2.72
	Umiujaq	\$7,424	\$96	77.4	\$0.70	\$28,486	\$176	\$2,719	9999.0	\$1.98
NUNAVU										
	Arctic Bay	\$7,425	\$756	9.8		\$28,489		\$2,838	9999.0	\$2.76
	Arviat		\$1,824	4.1		\$28,563		\$1,954	41.4	\$1.28
	Baker Lake		\$1,550	4.8		\$28,563		\$2,002	107.3	\$1.30
	Bathurst Inlet	\$7,521		5.6		\$28,839		\$2,089	9999.0	\$1.33
	Cambridge Bay	\$7,521		4.5		\$28,839		\$2,188	183.6	\$1.42
	Cape Dorset		\$1,079	6.9		\$28,488		\$2,391	9999.0	\$1.85
	Chesterfield Inlet	\$7,445		3.1		\$28,563		\$1,928	19.4	\$1.26
	Clyde River	\$7,425	\$852	8.7		\$28,489		\$2,675	9999.0	\$2.40
	Coral Harbour	\$7,445		3.7		\$28,563		\$2,207	43.1	\$1.48
	Gjoa Haven	\$7,533		3.7		\$28,883		\$2,409	69.0	\$1.51
	Grise Fiord	\$7,425	\$1,090	6.8	\$0.88	\$28,489	\$2,009	\$2,831	9999.0	\$2.65
	Hall Beach	\$7,426	\$2,056	3.6	\$0.39	\$28,496	\$2,833	\$2,078	37.8	\$1.44
	Igloolik		\$1,188	6.3	\$0.44	\$28,496	\$1,692	\$2,160	99999.0	\$1.54
	Iqaluit	\$7,419		7.6		\$28,470		\$1,718	99999.0	\$1.56
	Kimmirut		\$2,365	3.1		\$28,488		\$2,236	21.1	\$1.63
	Kugluktuk		\$1,381	5.4		\$28,800		\$2,540	9999.0	\$1.94
	Nanisivik	\$7,425		9999.0		\$28,489		\$3,402	99999.0	\$2.92
	Pangnirtung		\$1,171	6.3		\$28,488		\$2,262	9999.0	\$1.67
	Pelly Bay (Kugaaruk)		\$2,570	2.9		\$28,489		\$2,510	26.7	\$1.52
	Pond Inlet	\$7,425		8.3	\$0.93	\$28,489	\$1,745	\$2,758	9999.0	\$2.61
	Qikiqtarjuaq (Broughton Island)	\$7,425		5.4		\$28,489		\$2,265	9999.0	\$1.85
	Rankin Inlet	\$7,445	\$1,498	5.0	\$0.34	\$28,563	\$2,092	\$1,851	118.5	\$1.20
	Repulse Bay	\$7,426		4.1		\$28,496		\$2,145	69.7	\$1.46
	Resolute	\$7,425		4.0		\$28,489		\$2,484	125.0	\$1.77
	Sanikiluaq	\$7,427	\$1,974	3.8		\$28,497		\$1,790	28.0	\$1.23
	Taloyoak	\$7,538		3.2		\$28,903		\$2,413	31.9	\$1.52
	Whale Cove	\$7,445		1.6		\$28,563		\$1,829	5.9	\$1.19
YUKON		\$7,445	ψ+,710	1.0	ψ0.04	φ20,303	\$0,004	\$1,029	5.5	[ψ1.15
TONON	Beaver Creek	\$7,403	\$3	2780.7	63.03	\$28,410	\$193	\$2,392	9999.0	\$3.42
	Burwash Landing	\$7,403	\$3 \$7	1008.0	\$2.20	\$28,410	\$164		99999.0	
	Carcross	\$7,403		182.6		\$28,410 \$28,410		\$2,201	9999.0	\$2.83
		\$7,403		422.2		\$28,410		\$2,450	99999.0	\$3.11
	Carmacks Dawson	\$7,403		99999.0		\$28,410		\$2,450	9999.0	\$3.71
				99999.0					-	
<u> </u>	Destruction Bay	\$7,403				\$28,410		\$2,361	9999.0	\$3.69
	Faro	\$7,403		378.2		\$28,410		\$2,558	9999.0	\$3.13
	Haines Junction	\$7,403		9999.0		\$28,410		\$2,364	9999.0	\$3.72
	Mayo	\$7,403		9999.0		\$28,410		\$2,563	9999.0	\$3.55
	Old Crow	\$7,737	\$235	32.9		\$29,622		\$2,512	9999.0	\$2.95
L	Pelly Crossing	\$7,403		9999.0		\$28,410		\$2,594	99999.0	\$3.73
	Ross River	\$7,403		60.5		\$28,410		\$2,353	9999.0	\$2.39
	Tagish	\$7,403		182.6		\$28,410		\$2,297	9999.0	\$2.83
	Teslin	\$7,402		88.9		\$28,408		\$2,317	9999.0	\$2.49
	Watson Lake	\$7,403		57.3		\$28,409		\$1,879	9999.0	\$2.09
	Whitehorse	\$7,402	\$52	143.4	\$1.58	\$28,408	\$208	\$2,283	99999.0	\$2.77

Appendix	С-	Raw	Data
----------	----	-----	------

REGION	COMMUNITY	TREES	WIND SPEED	WIND	SOLAR INSOLATION	
		AVAILABLE?	(average, m/s)	FREQUENCY	kWh/m²/day (yearly	
		(Yes or No)		(% above 3 m/s)	average)	
ALASKA						
	Adak Station	N	8.48	95%	2.46	
	Akiachak	N	3.39	68%	2.20	
	Alakanuk	N	3.77	80%	2.11	
	Ambler	N	3.13	64%	2.20	
	Anaktuvuk Pass	N	3.44	79%	2.22	
	Anchorage	Y	3.99	77%	2.04	
	Aniak	N	2.39	34%	2.23	
	Barrow	N	4.90	87%	1.99	
	Beaver	Y	2.13	26%	2.43	
	Bethel	N	3.39	68%	2.20	
	Chevak	N	4.20	83%	2.07	
	Craig	Y	3.50	43%	2.32	
	Dillingham	N	3.79	81%	2.22	
	Eagle City	Y	2.21	27%	2.42	
	Elim	N	2.96	59%	2.19	
	Fairbanks/Fairbanks North	Y	2.41	37%	2.34	
	Star Borough					
	Fort Yukon	Y	1.87	16%	2.43	
	Galena	Y	1.89	15%	2.34	
1	Gambell	N	6.73	92%	2.02	
	Glenallen	Y	3.55	78%	2.17	
	Homer	Y	3.45	51%	2.34	
	Huslia	Y	1.90	16%	2.29	
	Juneau	Y	2.34	32%	2.31	
	Kaktovik	N	3.80	80%	2.06	
	Kaltag	N	1.85	15%	2.31	
	Ketchikan	Y	2.43	30%	2.47	
	King Salmon	N	3.84	83%	2.26	
	Kipnuk	N	5.39	88%	2.19	
	Kodiak	Y	5.68	88%	2.49	
	Kotzebue	N	3.49	79%	2.12	
	McGrath	Y	3.20	64%	2.30	
	Metlakatla	Y	2.43	30%	2.47	
	Mountain Village	N	3.48	78 <u>%</u>	2.15	
	Napaskiak	N	3.39	68%	2.20	
	Nome	N	4.96	85%	2.07	
	Noorvik	N	3.49	79%	2.15	
	Prudhoe Bay (Deadhorse)	N	3.98	84%	2.07	
	Saint Mary's	N	3.48	78%	2.15	
	Saint Paul	N	7.46	94%	2.16	
	Sand Point	N	5.69	88%	2.35	
	Selawik	N	3.25	70%	2 <u>.18</u>	
	Seward	Y	2.32	34%	2.38	
	Shishmaref	N	4.00	81%	2.01	
	Sitka	Y	3.25	37%	2.25	

*Electricity, Heating and Shipping costs valid at April 2001

Appendix C	- Raw Data
------------	------------

REGION	COMMUNITY	HEATING	ELECTRICITY	HEATING	SHIPPING
-		DEGREE DAYS	COST	COST	COST
		BELOW 18°C	(\$Can/KWhr)	(\$Can/GJ)	(\$Can/kg)
				((, , , , , , , , , , , , , , , , , ,	(1) 37
ALASKA					
	Adak Station	4769	\$0.000	\$20.16	\$2.45
	Akiachak	7597	\$0.276	\$33.46	\$2.45
	Alakanuk	8352	\$0.271	\$23.17	\$2.45
	Ambler	9308	\$0.279	\$40.76	\$2.45
	Anaktuvuk Pass	9723	\$0.154	\$12.44	\$2.45
	Anchorage	7157	\$0.150	\$17.59	\$0.70
	Aniak	8117	\$0.270	\$28.74	\$2.45
	Barrow	11086	\$0.157	\$30.03	\$0.25
	Beaver	9424	\$0.154	\$28.31	\$2.45
	Bethel	7597	\$0.221	\$18.02	\$2.45
	Chevak	7944	\$0.270	\$26.17	\$2.45
	Craig	5742	\$0.170	\$19.73	\$2.45
	Dillingham	7202	\$0.219	\$17.59	\$2.45
	Eagle City	8728	\$0.160	\$19.73	\$2.45
	Elim	8899	\$0.271	\$27.03	\$2.45
	Fairbanks/Fairbanks North	8941	\$0.179	\$16.30	\$2.45
	Star Borough				•
	Fort Yukon	9704	\$0.233	\$27.89	\$2.45
	Galena	8772	\$0.321	\$27.46	\$2.45
	Gambell	8747	\$0.273	\$25.74	\$2.45
	Glenallen	8093	\$0.310	\$16.30	\$2.45
	Homer	6019	\$0.141	\$16.30	\$2.45
	Huslia	8967	\$0.271	\$31.75	\$2.45
	Juneau	7806	\$0.162	\$18.45	\$2.45
	Kaktovik	10798	\$0.154	\$15.87	\$0.18
	Kaltag	9007	\$0.267	\$28.31	\$2.45
	Ketchikan	6411	\$0.159	\$18.45	\$2.45
	King Salmon	6982	\$0.124	\$16.30	\$2.45
	Kipnuk	7068	\$0.225	\$22.74	\$2.45
	Kodiak	5481	\$0.257	\$18.88	\$2.45
	Kotzebue	9179	\$0.213	\$21.45	\$2.45
	McGrath	7875	\$0.210	\$28.31	\$2.45
	Metlakatla	6411	\$0.146	\$19.73	\$2.45
	Mountain Village	8419	\$0.273	\$26.17	\$2.45
	Napaskiak	7597	\$0.370	\$18.02	\$2.45
	Nome	8832	\$0.232	\$19.31	\$2.45
	Noorvik	9120	\$0.276	\$24.45	\$2.45
	Prudhoe Bay (Deadhorse)	10620	\$0.000	\$47.67	\$0.18
	Saint Mary's	8419	\$0.270	\$31.32	\$2.45
	Saint Paul	5995	\$0.405	\$17.16	\$2.45
	Sand Point	5079	\$0.194	\$16.30	\$2.45
	Selawik	9106	\$0.276	\$26.17	\$2.45
	Seward	9130	\$0.146	\$16.30	\$2.45
	Shishmaref	9519	\$0.273	\$24.45	\$2.45
	Sitka	6737	\$0.157	\$15.87	\$2.45

Appendix C - Raw Data

REGION	COMMUNITY	TREES	WIND SPEED	WIND	SOLAR INSOLATION
		AVAILABLE?		FREQUENCY	kWh/m²/day (yearly
		(Yes or No)	((% above 3 m/s)	average)
		,		· · · ·	avoragoj
	Skagway	Y	2.28	31%	2.31
	Tanana	Y	1.97	_18%	2.30
	Togiak	N	4.37	84%	2.22
	Tok	Y	3.03	61%	2.40
	Unalakleet	N	2.83	53%	2.22
	Unalaska	N	8.21	95%	2.47
	Valdez	Y	4.52	81%	2.02
	Wainwright	N	4.03	84%	1.97
	Whittier	Y	6.22	88%	2.15
	Wragnell	Y	2.33	31%	2.28
LABRAD					
	Davis Inlet (Utshimassits)	Y	6.39	80%	2.48
	Happy Valley - Goose Bay	Y	2.37	36%	2.74
	Hopedale	Y	6.39	80%	2.48
	Makkovik	Y	6.50	80%	2.48
	Nain	N	6.62	83%	2.36
	North West River	Y	2.37	36%	2.74
	Postville	Y	3.75	50%	2.59
	Rigolet	Y	3.78	50%	2.56
_	Sheshatshiu	Y	2.37	36%	2.74
NORTH	NEST TERRITORIES				
	Aklavik	Y	2.55	30%	2.12
	Colville Lake	Y	2.06	24%	2.41
	Deline	Y	1.82	14%	2.35
	Dettah	Y	1.82	15%	2.65
	Enterprise	Y	1.79	14%	2.73
	Fort Good Hope	Y	2.26	32%	2.52
	Fort Liard	Y	1.77	12%	2.70
	Fort McPherson	Y	2.02	21%	2.24
	Fort Providence	Y	1.77	13%	2.66
	Fort Resolution	Y	1.81	14%	2.75
	Fort Simpson	Y	1.78	12%	2.65
	Fort Smith	Y	1.87	16%	2.75
	Hay River & (Hay River	Y	1.82	15%	2.74
	Reserve)				
	Holman	N	3.13	74%	<u>2.19</u>
	Inuvik	Y	2.51	29%	2.20
	Jean Marie River	Y	1.77	12%	2.65
	Kakisa	Y	1.74	12%	2.71
	Lutselk'e	Y	1.99	21%	2.59
	Nahanni Butte	Y	1.84	14%	2.65
	Norman Wells	Y	2.00	20%	2.43
	Paulatuk	N	4.50	70%	2.27
	Rae Lakes (Gameti)	Y	1.85	15%	2.53
	Rae-Edzo (Rae)	Y	1.81	14%	2.64
	Sachs Harbour	N	5.36	88%	2.03

Appendix C) -	Raw	Data
------------	-----	-----	------

REGION	COMMUNITY	HEATING DEGREE DAYS	ELECTRICITY COST	HEATING COST	SHIPPING COST
		BELOW 18°C	(\$Can/KWhr)	(\$Can/GJ)	(\$Can/kg)
	Skagway	8019	\$0.198	\$15.44	\$2.45
	Tanana	8735	\$0.403	\$14.59	\$2.45
	Togiak	7066	\$0.271	\$28.60	\$2.45
	Tok	8502	\$0.200	\$12.44	\$2.45
	Unalakleet	8989	\$0.214	\$23.60	\$2.45
	Unalaska	4724	\$0.221	\$25.88	\$2.45
	Valdez	7044	\$0.268	\$17.16	\$2.45
	Wainwright	10487	\$0.154	\$34.05	\$2.45
	Whittier	5509	\$0.154	\$17.16	\$2.45
	Wragnell	6932	\$0.170	\$18.02	\$2.45
LABRAD					
	Davis Inlet (Utshimassits)	7865	\$0.146	\$20.08	\$1.46
	Happy Valley - Goose Bay	7213	\$0.047	\$20.08	\$1.46
	Hopedale	7865	\$0.146	\$20.62	\$1.46
	Makkovik	7804	\$0.146	\$20.08	\$1.46
	Nain	8231	\$0.146	\$21.16	\$1.46
	North West River	7213	\$0.047	\$20.11	\$1.46
	Postville	7498	\$0.146	\$20.08	\$1.46
	Rigolet	7428	\$0.146	\$21.16	\$1 <u>.</u> 46
	Sheshatshiu	7213	\$0.047	\$20.11	\$1.46
NORTH	NEST TERBITORIES				
	Aklavik	10575	\$0.419	\$17.84	\$0.53
	Colville Lake	10344	\$ <u>2.266</u>	\$30.00	\$4.41
	Deline	10096	\$0.435	\$24.05	\$0.01
	Dettah	9914	\$0.154	\$12.65	\$0.01
	Enterprise	9011	\$0.148	\$13.51	\$0.01
	Fort Good Hope	9312	\$0.569	\$23.51	\$0.01
	Fort Liard	7934	\$0.479	\$21.35	<u>\$0.01</u>
	Fort McPherson	10116	\$0.418	\$22.97	\$0.01
	Fort Providence	9470	\$0.164	\$14.32	\$0.01
	Fort Resolution	9598	\$0.264	\$14.19	<u>\$0.01</u>
	Fort Simpson	8860	\$0.316	\$23.24	\$0.01
	Fort Smith	9083	\$0.119	\$12.24	\$0.01
	Hay River & (Hay River	9079	\$0.148	\$13.51	\$0.01
	Reserve)				
	Holman	12326	\$0.636	\$25.14	\$0.97
	Inuvik	10897	\$0.314	\$15.78	\$0.01
	Jean Marie River	9095	\$1.402	\$24.32	\$0.01
	Kakisa	8933	\$0.164	\$14.19	\$0.01
	Lutselk'e	9716	\$0.439	\$23.51	\$0.41
	Nahanni Butte	8212	\$1.918	\$23.51	\$0.09
	Norman Wells	9131	\$0.263	\$14.05	\$0.01
	Paulatuk	10999	\$0.628	\$24.59	\$0.91
	Rae Lakes (Gameti)	10405	\$0.821	\$27.57	\$0.14
	Rae-Edzo (Rae)	9928	\$0.276	\$12.65	\$0.01
	Sachs Harbour	10638	\$0.798	\$24.86	\$0.87

REGION	COMMUNITY	TREES	WIND SPEED	WIND	SOLAR INSOLATION
		AVAILABLE?		FREQUENCY	kWh/m ² /day (yearly
		(Yes or No)	(utorugo, 11, 0)	(% above 3 m/s)	average)
				(/0 0000 0 11/0)	average)
	Trout Lake	Y	1.71	11%	2.70
	Tsiigehtchic	N	2.14	26%	2.28
	Tuktoyaktuk	N	4.05	67%	2.13
	Tulita	Y	1.93	17%	2.44
	Wekweti (Snare Lake)	Y	2.12	26%	2.52
	Wha Ti	Y	1.82	14%	2.61
	Wrigley	Y	1.85	15%	2.57
	Yellowknife	Y	1.82	15%	2.65
NUNAVI					
	Akulivik	N	3.55	81%	2.40
	Aupaluk	N	4.43	73%	2.09
	Inukjuak	N	3.61	82%	2.42
	lvujivik	N	3.74	81%	2.22
	Kangiqsualujjuaq	N	2.80	44%	2.13
	Kangiqsujuaq	N	5.05	88%	2.02
	Kangirsuk	N	4.54	87%	2.04
	Kuujjuaq	N	3.15	42%	2.16
	Kuujjuarapik	N	4.17	57%	2.68
	Puvirnituq	N	3.59	82%	2.47
<u> </u>	Quaqtaq	N	4.74	87%	2.04
	Salluit	N	4.00	83%	2.25
	Tasiujaq	N	2.90	41%	2.17
	Umiujaq	N	3.21	52%	2.61
NUNAVL			0.21	0270	
	Arctic Bay	N	3.13	74%	1.91
	Arviat	N N	5.23	83%	2.44
	Baker Lake	N	3.49	81%	2.47
	Bathurst Inlet	N	3.36	80%	2.39
	Cambridge Bay	N	3.25	78%	2.16
	Cape Dorset	N	5.07	86%	2.05
	Chesterfield Inlet	N N	4.56	86%	2.35
	Clyde River	N	3.85	81%	1.89
	Coral Harbour	N	3.96	81%	2.05
	Gjoa Haven	N	3.21	76%	2.04
	Grise Fiord	N N	3.45	81%	1.88
	Hall Beach	N	4.30	80%	1.96
	Igloolik	N	3.38	72%	2.03
	Iqaluit	N	3.60	81%	2.15
	Kimmirut	N	4.32	84%	2.13
	Kugluktuk	N	2.96	65%	2.31
L	Nanisivik	N N	3.16	75%	1.91
		N	3 67	I 81%	Z.17
	Pangnirtung	N N	3.67 3.47	81% 79%	<u>2.17</u> 1.98
	Pangnirtung Pelly Bay (Kugaaruk)	N	3.47	79%	1.98
	Pangnirtung				

Appendix	С-	Raw	Data
Appendix	\mathbf{U}	11011	Daia

REGION	COMMUNITY	HEATING	ELECTRICITY	HEATING	SHIPPING
		DEGREE DAYS	COST	COST	COST
		BELOW 18°C	(\$Can/KWhr)	(\$Can/GJ)	(\$Can/kg)
			(+ • • • • • • • • • • • • • • • • • • •	(000,000)	(¢¢¢an,g)
	Trout Lake	8424	\$0.399	\$24.32	\$0.01
	Tsiigehtchic	10255	\$0.666	\$23.78	\$0.01
	Tuktoyaktuk	11287	\$0.459	\$15.78	\$0.66
	Tulita	8797	\$0.702	\$23.51	\$0.01
	Wekweti (Snare Lake)	10343	\$0.338	\$28.11	\$0.14
	Wha Ti	10138	\$0.625	\$26.22	\$0.12
	Wrigley	9019	\$0.705	\$23.24	\$0.01
	Yellowknife	9914	\$0.132	\$12.65	\$0.01
NUNAVI					
	Akulivik	10179	\$0.071	\$24.55	\$0.25
	Aupaluk	10016	\$0.071	\$24.55	\$0.25
	Inukjuak	9659	\$0.071	\$24.55	\$0.25
	Ivujivik	10443	\$0.071	\$24.55	\$0.25
	Kangiqsualujjuaq	9473	\$0.071	\$24.55	\$0.25
	Kangiqsujuaq	10311	\$0.071	\$24.55	\$0.25
	Kangirsuk	10245	\$0.071	\$24.55	\$0.25
	Kuujjuaq	9676	\$0.071	\$24.55	\$0 .25
	Kuujjuarapik	8285	\$0.071	\$24.55	\$0.25
	Puvirnituq	10190	\$0.071	\$24.55	\$0.25
	Quaqtaq	10284	\$0.071	\$24.55	\$0.25
	Salluit	10407	\$0.071	\$24.55	\$0.25
	Tasiujaq	9736	\$0.071	\$24.55	\$0.25
	Umiujaq	8818	\$0.071	\$24.55	\$0.25
NUNAVU	-				
	Arctic Bay	13447	\$0.510	\$22.24	\$0.26
	Arviat	10687	\$0.454	\$23.05	\$0.47
	Baker Lake	12079	\$0.398	\$23.32	\$0.47
	Bathurst Inlet	11598	\$0.348	\$24.14	\$1.27
	Cambridge Bay	12910	\$0.434	\$24.14	\$1.27
	Cape Dorset	11091	\$0.408	\$21.97	\$0.26
	Chesterfield Inlet	11120	\$0.571	\$23.05	\$0.47
	Clyde River	11928	\$0.451	\$21.97	\$0.26
	Coral Harbour	11535	\$0.553	\$23.32	\$0.47
	Gjoa Haven	13184	\$0.538	\$25.76	\$1.40
	Grise Fiord	12595	\$0.656	\$22.51	\$0.26
	Hall Beach	13189	\$0.538	\$22.24	\$0.28
	Igloolik	13919	\$0.353	\$21.97	\$0.28
L	Iqaluit	10656	\$0.334	\$16.65	\$0.20
	Kimmirut	10458	\$0.753	\$21.97	\$0.26
	Kugluktuk	11569	\$0.578	\$23.05	\$1.16
	Nanisivik	13350	\$0.000	\$26.73	\$0.26
	Pangnirtung	11027	\$0.397	\$21.97	\$0.26
	Pelly Bay (Kugaaruk)	13065	\$0.677	\$26.73	\$0.26
L	Pond Inlet	12727	\$0.571	\$21.97	\$0.26
	Qikiqtarjuaq (Broughton	11126	\$0.515	\$20.62	\$0.26
	Island)				

REGION	COMMUNITY	TREES	WIND SPEED	WIND	SOLAR INSOLATION
		AVAILABLE?	(average, m/s)	FREQUENCY	kWh/m²/day (yearly
		(Yes or No)		(% above 3 m/s)	average)
					<u> </u>
	Rankin Inlet	N	5.70	90%	2.39
	Repulse Bay	N	3.41	81%	2.09
	Resolute	N	2.87	67%	1.94
	Sanikiluaq	N	6.17	92%	2.37
	Taloyoak	N	3.28	79%	2.00
	Umingmaktok	N	3.33	79%	2.35
	Whale Cove	N	5.70	90%	2.39
YUKON					
	Beaver Creek	Y	2.77	52%	2.39
	Burwash Landing	Y	1.98	21%	2.43
	Carcross	Y	2.73	48%	2.47
	Carmacks	Y	1.99	21%	2.46
	Dawson	Y	1.96	18%	2.45
	Destruction Bay	Y	1.98	21%	2.43
	Faro	Y	2.46	40%	2.46
	Haines Junction	Y	2.01	22%	2.33
	Мауо	Y	2.24	30%	2.44
	Old Crow	Y	2.53	44%	2.25
	Pelly Crossing	Y	1.99	21%	2.46
	Ross River	Y	2.52	43%	2.52
	Tagish	Y	2.73	48%	2.47
	Teslin	Y	3.27	68%	2.52
	Watson Lake	Y	3.75	82%	2.55
	Whitehorse	Y	2.24	30%	2.42

Appendix C - Raw Data

REGION	COMMUNITY	HEATING	ELECTRICITY	HEATING	SHIPPING
		DEGREE DAYS	COST	COST	COST
		BELOW 18°C	(\$Can/KWhr)	(\$Can/GJ)	(\$Can/kg)
	Rankin Inlet	10892	\$0.346	\$23.05	\$0.47
	Repulse Bay	12376	\$0.492	\$22.78	\$0.28
	Resolute	15095	\$0.607	\$23.59	\$0.26
	Sanikiluag	8853	\$0.474	\$21.43	\$0.28
	Taloyoak	13004	\$0.628	\$25.76	\$1.46
	Umingmaktok	12100	\$0.340	\$23.59	\$1 <u>.27</u>
	Whale Cove	10892	\$1.061	\$22.78	\$0.47
YUKON					
	Beaver Creek	8427	\$0.1 <u>36</u>	\$17.30	\$0.03
	Burwash Landing	8180	\$0.116	\$16.76	\$0.03
	Carcross	8255	\$0.1 <u>16</u>	\$17.46	\$0.03
	Carmacks	8385	\$0.11 <u>6</u>	\$18.22	\$0.03
	Dawson	8742	\$0.116	\$17.65	\$0.03
	Destruction Bay	8180	\$0.136	\$16.76	\$0.03
	Faro	8235	\$0.116	\$19.05	\$0.03
	Haines Junction	7892	\$0.116	\$16.76	\$0.03
	Мауо	8424	<u>\$0.116</u>	\$18.46	\$0.03
	Old Crow	9588	\$0.270	\$19.19	\$3.54
	Pelly Crossing	8385	\$0.136	\$18.49	\$0.03
	Ross River	8227	\$0.132	\$19.05	\$0.03
	Tagish	8255	\$0.116	\$17.46	\$0.03
	Teslin	8266	\$0.116	\$18.43	\$0.02
	Watson Lake	8078	\$0.116	\$15.70	\$0.03
	Whitehorse	8237	\$0.116	\$17.46	\$0.02

Appendix C - Raw Data

REGION	COMMUNITY	TREES	WIND SPEED	WIND	SOLAR INSOLATION
		AVAILABLE?		FREQUENCY	kWh/m²/day (yearly
		(Yes or No)	((% above 3 m/s)	average)
		. , ,			
LABRAD	OR State				
	Davis Inlet (Utshimassits)	Y	5.80	80%	2.48
	Happy Valley - Goose Bay	Y	4.40	36%	2.74
	Hopedale	Y	5.80	80%	2.48
	Makkovik	Y	5.80	80%	2.48
	Nain	Ν	5.80	83%	2.36
	Postville	Y	5.80	50%	2.59
	Rigolet	Y	5.60	50%	2.56
NORTHV	VEST TERRITORIES				
	Aklavik	Y	3.00	30%	2.12
	Colville Lake	Y	3.40	24%	2.41
	Deline	Y	3.40	14%	2.35
	Dettah	Y	4.30	15%	2.65
	Enterprise	Y	3.40	14%	2.73
	Fort Good Hope	Y	2.60	32%	2.52
	Fort Liard	Y	1.90	12%	2.70
	Fort McPherson	Y	2.80	21%	2.24
	Fort Providence	Y	2.10	13%	2.66
	Fort Resolution	Y	3.40	14%	2.75
	Fort Simpson	Y	3.10	12%	2.65
	Fort Smith	Y	3.40	16%	2.75
	Hay River & (Hay River	Y	3.40	15%	2.74
1	Reserve)				
	Hoiman	N	5.10	74%	2.19
	Inuvik	Y	2.80	29%	2.20
	Jean Marie River	Y Y	3.10	12%	2.65
	Kakisa	Y	2.10	12%	2.71
	Lutselk'e	Y	4.30	21%	2.59
	Nahanni Butte	Y	3.10	14%	2.65
	Norman Wells	Y	3.40	20%	2.43
	Paulatuk	N	2.80	70%	2.27
	Rae Lakes (Gameti)	Y	4.30	15%	2.53
	Rae-Edzo (Rae)	Ý	4.30	14%	2.64
	Sachs Harbour		5.70	88%	2.03
	Trout Lake	Y	3.10	11%	2.70
	Tsiigehtchic	N	2.80	26%	2.28
	Tuktoyaktuk	N	4.80	67%	2.13
	Tulita	Y	3.40	17%	2.44
	Wekweti (Snare Lake)	Y	4.30	26%	2.52
	Wha Ti	Y	4.30	14%	2.61
	Wrigley	Y	2.90	15%	2.57
— —	Yellowknife	Y	4.30	15%	2.65
NUNAV	K				
	Akulivik	N	5.60	81%	2.40
	Aupaluk	N	4.50	73%	2.09
	Inukjuak	N	5.60	82%	2.42

Appendix C - RETScreen Raw Data

REGION	COMMUNITY	HEATING	ELECTRICITY	HEATING	SHIPPING
		DEGREE DAYS	COST	COST	COST
		BELOW 18°C	(\$Can/KWhr)	(\$Can/GJ)	(\$Can/kg)
				(@0017.00)	(¢ean/ng)
LABRAD	OR			1. A	
	Davis Inlet (Utshimassits)	7385	\$0.146	\$20.08	\$1.46
	Happy Valley - Goose Bay	7213	\$0.047	\$20.08	\$1.46
	Hopedale	7385	\$0.146	\$20.62	\$1.46
	Makkovik	7385	\$0.146	\$20.08	\$1.46
	Nain	7596	\$0.146	\$21.16	\$1.46
	Postville	7385	\$0.146	\$20.08	\$1.46
	Rigolet	6685	\$0.146	\$21.16	\$1.46
NORTHV	VEST TERRITORIES				
	Aklavik	9849	\$0.419	\$17.84	\$0.53
	Colville Lake	8782	\$2.266	\$30.00	\$4.41
	Deline	8782	\$0.435	\$24.05	\$0.01
	Dettah	8477	\$0.154	\$12.65	\$0.01
	Enterprise	7830	\$0.148	\$13.51	\$0.01
	Fort Good Hope	9415	\$0.569	\$23.51	\$0.01
	Fort Liard	7389	\$0.479	\$21.35	\$0.01
	Fort McPherson	9804	\$0.418	\$22.97	\$0.01
	Fort Providence	8031	\$0.164	\$14.32	\$0.01
	Fort Resolution	8043	\$0.264	\$14.19	\$0.01
	Fort Simpson	7976	\$0.316	\$23.24	\$0.01
	Fort Smith	7692	\$0.119	\$12.24	\$0.01
	Hay River & (Hay River	7830	\$0.148	\$13.51	\$0.01
	Reserve)				
	Holman	11086	\$0.636	\$25.14	\$0.97
	Inuvik	10040	\$0.314	\$15.78	\$0.01
	Jean Marie River	7976	\$1.402	\$24.32	\$0.01
	Kakisa	8031	\$0.164	\$14.19	\$0.01
	Lutselk'e	8477	\$0.439	\$23.51	\$0.41
	Nahanni Butte	6995	\$1.918	\$23.51	\$0.09
	Norman Wells	8782	\$0.263	\$14.05	\$0.01
	Paulatuk	10040	\$0.628	\$24.59	\$0.91
	Rae Lakes (Gameti)	8477	\$0.821	\$27.57	\$0.14
	Rae-Edzo (Rae)	8477	\$0.276	\$12.65	\$0.01
	Sachs Harbour	11592	\$0.798	\$24.86	\$0.87
	Trout Lake	7976	\$0.399	\$24.32	\$0.01
	Tsiigehtchic	10040	\$0.666	\$23.78	\$0.01
	Tuktoyaktuk	10530	\$0.459	\$15.78	\$0.66
	Tulita	8903	\$0.702	\$23.51	\$0.01
	Wekweti (Snare Lake)	8477	\$0.338	\$28.11	\$0.14
	Wha Ti	8477	\$0.625	\$26.22	\$0.12
	Wrigley	8464	\$0.705	\$23.24	\$0.01
	Yellowknife	8477	\$0.132	\$12.65	\$0.01
NUNAVI					
	Akulivik	9063	\$0.071	\$24.55	\$0.25
	Aupaluk	8561	\$0.071	\$24.55	\$0.25
	Inukjuak	9063	\$0.071	\$24.55	\$0.25

REGION	COMMUNITY	TREES	WIND SPEED	WIND	SOLAR INSOLATION
		AVAILABLE?	(average, m/s)	FREQUENCY	kWh/m²/day (yearly
		(Yes or No)		(% above 3 m/s)	average)
	lvujivik	N	5.20	81%	2.22
	Kangiqsualujjuaq	N	4.50	44%	2.13
	Kangiqsujuaq	N	6.10	88%	2.02
	Kangirsuk	N	6.10	87%	2.04
	Kuujjuaq	N	4.50	42%	2.16
	Kuujjuarapik	N	5.10	57%	2.68
	Puvirnituq	N	5.60	82%	2.47
	Quaqtaq	N	6.10	87%	2.04
	Salluit	N	5.20	83%	2.25
	Tasiujaq	N	4.50	41%	2.17
	Umiujaq	N	5.10	52%	2.61
NUNAVU					
	Arctic Bay	N	2.60	74%	1.91
	Arviat	N	6.00	83%	2.44
	Baker Lake	N	6.00	81%	2.47
	Bathurst Inlet	N	6.10	80%	2.39
	Cambridge Bay	N	6.10	78%	2.16
	Cape Dorset	N	3.90	86%	2.05
	Chesterfield Inlet	N	6.00	86%	2.35
	Clyde River	N	3.00	81%	1.89
	Coral Harbour	N	5.60	81%	2.05
	Gjoa Haven	N	6.10	76%	2.04
	Grise Fiord	N	2.60	81%	1.88
	Hall Beach	N	5.90	80%	1.96
	Igloolik	N	5.90	72%	2.03
	Igaluit	N	4.60	81%	2.15
	Kimmirut	N	4.60	84%	2.13
	Kugluktuk	N	4.60	65%	2.31
	Nanisivik	N	2.60	75%	1.91
	Pangnirtung	N	4.60	81%	2.17
	Pelly Bay (Kugaaruk)	N	5.90	79%	1.98
	Pond Inlet	N	2.60	77%	2.01
	Qikiqtarjuaq (Broughton Island)	N	3.80	88%	1.97
	Rankin Inlet	N	6.00	90%	2.39
	Repulse Bay	N	5.60	81%	2.09
	Resolute	N	5.60	67%	1.94
	Sanikiluag	N	5.60	92%	2.37
	Taloyoak	N	5.90	79%	2.00
	Whale Cove	N	6.00	90%	2.39
YUKON					
And the second se			J		and a second

Appendix C - RETScreen Raw Data

*Electricity, Heating and Shipping costs valid at April 2001

Y Y

Y

Y

Y

1.10

3.40

2.20

3.90

1.80

52%

21%

48%

21%

18%

2.39

2.43

2.47

2.46

2.45

Beaver Creek

Carcross

Carmacks

Dawson

Burwash Landing

REGION	COMMUNITY	HEATING	ELECTRICITY	HEATING	SHIPPING
		DEGREE DAYS	COST	COST	COST
		BELOW 18°C	(\$Can/KWhr)	(\$Can/GJ)	(\$Can/kg)
		DELOWING	(¢oull/ntm)	(000,00)	(00017/19)
	lvujivik	10828	\$0.071	\$24.55	\$0.25
	Kangiqsualujjuaq	8561	\$0.071	\$24.55	\$0.25
	Kangiqsujuaq	9181	\$0.071	\$24.55	\$0.25
	Kangirsuk	9181	\$0.071	\$24.55	\$0.25
	Kuujjuaq	8675	\$0.071	\$24.55	\$0.25
	Kuujjuarapik	8230	\$0.071	\$24.55	\$0.25
	Puvirnitug	9063	\$0.071	\$24.55	\$0.25
	Quaqtaq	9181	\$0.071	\$24.55	\$0.25
	Salluit	10828	\$0.071	\$24.55	\$0.25
	Tasiujaq	8561	\$0.071	\$24.55	\$0.25
	Umiujaq	8160	\$0.071	\$24.55	\$0.25
NUNAVU					
	Arctic Bay	11693	\$0 .510	\$22.24	\$0.26
	Arviat	10768	\$0.454	\$23.05	\$0.47
	Baker Lake	11011	\$0.398	\$23.32	\$0.47
	Bathurst Inlet	11991	\$0.348	\$24.14	\$1.27
	Cambridge Bay	11991	\$0.434	\$24.14	\$1.27
	Cape Dorset	10783	\$0.408	\$21.97	\$0.26
	Chesterfield Inlet	10768	\$0.571	\$23.05	\$0.47
	Clyde River	11097	\$0.451	\$21.97	\$0.26
	Coral Harbour	10828	\$0.553	\$23.32	\$0.47
	Gjoa Haven	12148	\$0.538	\$25.76	\$1.40
	Grise Fiord	11693	\$0.656	\$22.51	\$0.26
	Hall Beach	11810	\$0.538	\$22.24	\$0.28
	Igloolik	11810	\$0.353	\$21.97	\$0.28
	Iqaluit	10050	\$0.334	\$16.65	\$0.20
	Kimmirut	10050	\$0.753	\$21.97	\$0.26
	Kugluktuk	10758	\$0.578	\$23.05	\$1.16
	Nanisivik	11693	\$0.000	\$26.73	\$0.26
	Pangnirtung	10050	\$0.397	\$21.97	\$0.26
	Pelly Bay (Kugaaruk)	12102	\$0.677	\$26.73	\$0.26
	Pond Inlet	12102	\$0.571	\$21.97	\$0.26
	Qikiqtarjuaq (Broughton	10783	\$0.515	\$20.62	\$0.26
	Island)				
	Rankin Inlet	10768	\$0.346	\$23.05	\$0.47
	Repulse Bay	10828	\$0.492	\$22.78	\$0.28
	Resolute	12630	\$0.607	\$23.59	\$0.26
	Sanikiluaq	9063	\$0.474	\$21.43	\$0.28
	Taloyoak	12148	\$0.628	\$25.76	\$1.46
	Whale Cove	10768	\$1.061	\$22.78	\$0.47
YUKON					
	Beaver Creek	8838	\$0.136	\$17.30	\$0.0 <u>3</u>
	Burwash Landing	8018	\$0.116	\$16.76	\$0.03
	Carcross	6964	\$0.116	\$17.46	\$0.03
	Carmacks	7970	\$0.116	\$18.22	\$0.03
	Dawson	8409	\$0.116	\$17.65	\$0.03

REGION	COMMUNITY	TREES AVAILABLE? (Yes or No)	WIND SPEED (average, m/s)	WIND FREQUENCY (% above 3 m/s)	SOLAR INSOLATION kWh/m ² /day (yearly average)
	Destruction Bay	Y	1.50	21%	2.43
	Faro	Y	2.10	40%	2.46
	Haines Junction	Y	1.80	22%	2.33
	Mayo	Y	1.60	30%	2.44
	Old Crow	Y	3.00	44%	2.25
	Pelly Crossing	Y	1.60	2 <u>1%</u>	2.46
	Ross River	Y	3.90	43%	2.52
	Tagish	Y	2.20	48%	2.47
	Teslin	Y	2.20	68%	2.52
	Watson Lake	Y	2.40	82%	2.55
	Whitehorse	Y	3.90	30%	2.42

Appendix C - RETScreen Raw Data

REGION	COMMUNITY	HEATING	ELECTRICITY	HEATING	SHIPPING
		DEGREE DAYS	COST	COST	COST
		BELOW 18°C	(\$Can/KWhr)	(\$Can/GJ)	(\$Can/kg)
	Destruction Bay	8773	\$0.1 <u>36</u>	\$16.7 <u>6</u>	\$0.03
	Faro	6947	\$0. <u>1</u> 16	\$19.0 <u>5</u>	\$0.03
	Haines Junction	7699	\$0.116	\$16.76	\$ <u>0.03</u>
	Mayo	7891	\$0.116	\$18.46	\$0.03
	Old Crow	10207	\$0.270	\$19.19	\$3.54
	Pelly Crossing	8251	\$0.136	\$18.49	\$0.03
	Ross River	6947	\$0.132	\$19.05	\$0.03
	Tagish	7167	\$0.116	\$17.46	\$0.03
	Teslin	7167	\$0.116	\$18.43	\$0.02
	Watson Lake	7725	\$0.116	\$15.70	\$0.03
	Whitehorse	6947	\$0.116	\$17.46	\$0.02

Appendix C - RETScreen Raw Data

Appendix C - Biomass

BIOMASS SYSTEM COST ANALYSIS:

Initial Purchase (\$Can) Shipping Weight (kg) Installation (\$Can) Operation (\$/KWHR) Maintenance (\$CAN/yr) Decommission (\$Can)	Woodstove \$1,500 200 \$500 0 \$100 \$200
Expected Life (years)	25
SHIPPING WEIGHT (KG) TOTAL INITIAL COST TOTAL YEARLY COST	200 \$2,000 \$108

Sample Calculation

	Heating Degree Days	MJ/HDD	Pecentage of Total Heat	Heat Fuel Cost \$Can/GJ		Wood Heat Cost \$Can/GJ	Wood Conversion Efficiency	Savings/yr (wood no cost)	Savings/yr (purchased wood)
Town Name	9000	24.5	50%	\$13.50	80%	\$9.09	70%	\$1,860.47	\$428.65
	Shipping Cost \$Can/KG	Total Cost Of Shipping	Total Initial Cost	Yearly Cost		Payback no cost wood (Years)	Payback purchased wood (Years)		
	\$5.00	\$1,000.00	\$3,000.00	\$108		1.7	9.4		

Assumptions

Assumptions	
Heating Conversion Efficiency	70%
Percentage of Total Heat	50%
Price of Cord of wood (\$Can)	\$200
Energy/cord (GJ)	22
Biomass Energy Cost (\$/GJ)	\$9.09

Appendix C - Photovoltaic PHOTOVOLTAIC SYSTEM COST ANALYSIS:

	Array	Batteries	Inverter	Other		
Initial Purchase (\$Can)	\$20,000	\$0	\$2,000	\$500		
Shipping Weight (kg)	250	0	20	25		
Installation (\$Can)	\$1,000	\$0	\$200	\$200		
Operation (\$/KWHR)	0	0	0	0		
Maintenance (\$CAN/yr)	\$50	\$0	\$0	\$0		
Decommission (\$Can)	\$500	\$0	\$100	\$100		
Expected Life (years)	30					
TOTAL INITIAL COST	\$21,000	\$0	\$2,200	\$700		
TOTAL YEARLY COST	\$67	\$0	\$3	\$3		
	295					
SHIPPING WEIGHT (KG) TOTAL INITIAL COST	295 \$23,900					
TOTAL INITIAL COST	\$23,900 \$73					
TOTAL TEARLY COST	\$13					
Sample Calculation						
	Solar	Array Size	Efficiency	Days/yr	Electrical	TOTAL
	Insolation	, -	,	, ,	Cost	SAVINGS
						/yr
Town Name	2.5	20	0.11	365	\$0.50	\$1,003.75
	Shipping	Total Cost	Total Initial	Yearly		Payback
	Cost	Of Shipping	Cost	Cost		(Years)
	\$5.00	\$1,475.00	\$25,375.00	\$73		27.3
• • • • • • • • •						
Assumptions		4 1 0/				
Solar Conversion Efficiency	/	11%				

20

Solar Conversion Efficiency Array Size (m2) Assume Grid-Connected System

Appendix C - Solar Air

SOLAR AIR HEATING SYSTEM COST ANALYSIS:

Initial Purchase (\$Can) Shipping Weight (kg) Installation (\$Can) Operation (\$/KWHR) Maintenance (\$CAN/yr) Decommission (\$Can)	Complete Kit \$1,500 50 \$800 0 \$0 \$0 \$200	2 days labour				
Expected Life (years)	30					
SHIPPING WEIGHT (KG) TOTAL INITIAL COST TOTAL YEARLY COST	50 \$2,300 \$7					
Sample Calculation	Solar Insolation (KWhr/m2/day)	Solar Heating Conversion	Seasonal Resource Factor	Heat Fuel Cost \$Can/GJ	Fuel Conversion	Savings/yr
Town Name	2.5	Efficiency 75%	75%	\$13.50	Efficiency 80%	\$93.55
	Shipping Cost	Total Cost Of	Total Initial Cost	Yearly Cost		Payback
	\$Can/KG \$5.00	Shipping \$250.00	\$2,300.00	\$7		(Years) 26.5
<u>Assumptions</u> Solar Heating Conversion Ef Panel Size (m2) Specific Heat of Air (J/L*K) Seasonal Resource Factor	ficiency 3 1.19 75%	75%	Weight			
Ventilation Rate (Lps) Average OAT Avg Vent Heat Required	50 -7 35.2					
(KWHr/Day)	30.Z					

Appendix C - Solar Water

Seasonal Electricity Cost Savings/yr

\$0.15

Yearly Cost

\$58

\$153.98

Payback

(Years)

36.5

Resource (\$Can/KWHR)

Factor 75%

Total Initial

Cost

\$3,500.00

SOLAR WATER HEATING SYSTEM COST ANALYSIS:

Initial Purchase (\$Can) Shipping Weight (kg) Installation (\$Can) Operation (\$/KWHR) Maintenance (\$CAN/yr) Decommission (\$Can)	Complete Kit \$3,000 50 \$500 0 \$50 \$200	
Expected Life (years)	25	
SHIPPING WEIGHT (KG) TOTAL INITIAL COST TOTAL YEARLY COST	50 \$3,500 \$58	
Sample Calculation		
	Solar Insolation (KWhr/m2/day)	Conversion
Town Name	2.5	Efficiency 75%
	Shipping Cost \$Can/KG \$5.00	Total Cost Of Shipping \$250.00
Assumptions Solar Heating Conversion Efficier Panel Size (m2) Specific Heat of Water (KJ/L*C) Seasonal Resource Factor Hot Water Temp Rise (C)	1cy 2 4.2 75% 45	75%
Domestic Hot Water Usage Avg DHW Heat Required	200	L/Day
(KWHR/Day)	10.5	

Appendix C - Wind

WIND ENERGY SYSTEM COST ANALYSIS

Initial Purchase (\$Can) Shipping Weight (kg) Installation (\$Can) Operation (\$/KWHR)	Turbine \$4,000 50 \$500 0	Batteries \$0 0 \$0 0	Inverter \$2,000 20 \$200 0	Other \$500 25 \$200 0
Maintenance (\$CAN/yr) Decommission (\$Can) Expected Life (years)	\$50 \$100 25	\$0 \$0	\$0 \$100	\$0 \$100
TOTAL INITIAL COST TOTAL YEARLY COST	\$4,500 \$54	\$0 \$0	\$2,200 \$4	\$700 \$4

SHIPPING	95
TOTAL INITIAL COST	\$7,400
TOTAL YEARLY COST	\$62

Sample Calculation

Town Name	Wind Speed 9	Wind Frequency 80%	Output Factor (KW/m/s) 0.095	Number of Turbines 1	Hours/yr 8760	Electrical Cost \$0.50	TOTAL SAVINGS/yr \$3,003.43
	Shipping Cost \$5.00	Total Cost Of Shipping \$475.00	Total Initial Cost \$7,875.00	Yearly Cost \$62		Payback (Years) 2.7	

Assumptions

Wind Turbine output factor	(KW/m/s) 0.0	095
Turbine Rated Output (W)	1000	
Turbine Rated Speed(m/s)	10.5	
Number of Turbines	1	
Assume Grid-Connected Sy	ystem	

Appendix C - Hybrid

HYBRID PV/WIND/DIESEL ENERGY SYSTEM COST ANALYSIS

Initial Purchase (\$Can) Shipping Weight (kg) Installation (\$Can) Operation (\$/KWHR) Maintenance (\$CAN/yr) Decommission (\$Can)	Turbine \$4,000 50 \$500 0 \$50 \$100	PV Array \$20,000 250 \$1,000 0 \$50 \$500	Genset \$0 0 \$0 0 \$0 \$0 \$0	Batteries \$0 0 \$0 0 \$0 \$0	Inverter \$2,000 20 \$200 0 \$0 \$100	Other \$500 25 \$200 0 \$0 \$100	
Expected Life (years)	25						
TOTAL INITIAL COST TOTAL YEARLY COST	\$4,500 \$54	\$21,000 \$70	\$0 \$0	\$0 \$0	\$2,200 \$4	\$700 \$4	
SHIPPING TOTAL INITIAL COST TOTAL YEARLY COST	345 \$28,400 \$132						
Sample Calculation							
	Wind Speed	Wind Frequency	Output Factor (KW/m/s)	Number of Turbines	Hours/yr	Electrical Cost	Total Savings/yr
Town Name	9	80%	`0.095´	1	8760	\$0.50	\$3,003.43
Town Name	Solar Insolation 2.5	Array Size 20	PV Cell Efficiency 11%	Days/yr 365	Electrical Cost \$0.50	Total Savings/yr \$1,003.75	
Town Name						\$1,003.75	
	Fuel Cost (\$Can/L)	Fuel Energy Content (KW*Hr/L)	Conversion Efficiency	Required KW*Hr/yr	Fuel Cost/yr		
Town Name	\$0.50	10.4	25%	3986	\$766.47		
	Shipping Cost \$5.00	Total Cost Of Shipping \$1,725.00	Total Initial Cost \$30,125.00	Yearly Cost \$898		Payback (Years) 14.3	
Assumptions Wind Turbine output factor (H		0.095					

Turbine Rated Output (W) Turbine Rated Speed(m/s) Number of Turbines

Solar Conversion Efficiency Array Size (m2)

Genset Efficiency Assume Grid-Connected System 25%

Appendix C - Oil/Propane Furnace

OIL/PROPANE FURNACE SYSTEM COST COMPARISON:

Initial Purchase (\$Can) Shipping Weight (kg) Installation (\$Can) Operation (\$/MJ) Maintenance (\$CAN/yr) Decommission (\$Can)	Furnace \$1,000 150 \$500 ?? Depends on local fuel costs \$100 \$200
Expected Life (years)	25
SHIPPING TOTAL INITIAL COST TOTAL YEARLY COST	150 \$1,500 \$108

80%

Assumptions

Heating Conversion Efficiency

Appendix C - 1 Oil/Propane Furnace

Appendix C - Electric DHW

ELECTRIC DOMESTIC HOT WATER SYSTEM COST COMPARISON:

Initial Purchase (\$Can) Shipping Weight (kg) Installation (\$Can) Operation (\$/MJ) Maintenance (\$CAN/yr) Decommission (\$Can) Expected Life (years)	Heater \$500 \$200 Varies \$50 \$200	Depends on local electricity costs (see Raw Data)
SHIPPING TOTAL INITIAL COST TOTAL YEARLY COST	50 \$700 \$63	
<u>Assumptions</u> Domestic Hot Water Usage Avg DHW Heat Required (KWHR/Day)	200 10.5	L/Day

APPENDIX D REFERENCES

APPENDIX D

1.1 **REFERENCES – PUBLICATIONS**

- Canadian Renewable Energy Guide, 2nd Edition; Solar Energy Society of Canada .1 Inc., 1999.
- .2 Photovoltaics in Cold Climates; Ross and Royer, 1999.
- .3 Tap The Sun, Passive Solar Techniques and Home Designs; CMHC, 1999.
- .4 Building Science for a Cold Climate; Hutcheon and Handegord, 1989
- .5 Independent Energy Guide; Jeffrey, 1995
- .6 Solar Design Manual for Alaska; Seifert, 1981
- .7 Photovoltaics System Design Manual; CANMET, 1991
- Model National Energy Code for Houses; National Research Council, 1997 .8
- .9 Renewable Energy Technologies Project Assessment Tool; Natural Resources Canada, 1998
- Technologies For Use In On-Site Wastewater Recycling Within Cold And Remote .10 Regions; Johnson and Christensen, 2000
- Canadian Solar Energy Catalogue, Soltek Solar Energy Ltd., 2000 .11
- Powersource Renewable Energy Guide, Powersource Energy Systems Inc., 2000 Solar Electric Products Catalog, 9th Edition, Kyocera Solar Inc. .12
- .13
- Stand Alone Wind Energy Systems, A Buyers Guide .14
 - Natural Resources Canada, 2000 (ISBN 0-662-28254-X)

1.2 **REFERENCES - WEB SITES**

.1 **Alternative Energy Organizations & Information Sites**

.1 Canadian Solar Industries Association www.cansia.ca Canadian Wind Energy Association .2 www.canwea.ca .3 American Wind Energy Association www.awea.org **Environment** Canada .4 www.ec.gc.ca .5 Natural Resources Canada www.nrcan.gc.ca International Association for Energy Efficient .6 www.iaeel.org Lighting .7 www.advancedbuildings.org Advanced Buildings Technologies & Practices International Solar Energy Society .8 www.ises.org .9 www.ases.org American Solar Energy Society www.solarenergysociety.ca Canadian Solar Energy Society .10 World-Wide Information System for Renewable .11 wire.ises.org Energy

.12 .13 .14	www.climatechangesolutions.com www.pembina.org www.crest.org	Canadian Climate Change Solution Examples Pembina Institute Centre for Renewable Energy and Sustainable
	2	Technologies
.15	www.ewea.org	European Wind Energy Association
.16	www.nrel.gov	National Renewable Energy Association of the Unites States
.17	www.eren.doe.gov	Energy Efficiency and Renewable Energy Network
.18	www.thenaturalhome.com/passive solar.html	The Natural Home Building Source
.19	www.eren.doe.gov/erec/factsheets	Passive Solar Design for the Home, U.S. Dept of
	/passive_solar.html	Energy
.20	www.nrcan.gc.ca/es/erb/reed/publ	Solar Water Heating Systems- A Buyers Guide,
01	ic_e.htm	Natural Resources Canada, 2000
.21	www.eren.doe.gov/erec/factsheets /solrwatr.html	Solar Water Heating Consumer Fact Sheet -US Department of Energy, Energy Efficiency and
	/son watt.tittii	Renewable Energy Network
.22	www.nrcan.gc.ca/es/erb/reed/air_e	Natural Resources Canada – Solar Air Heating
	.htm	C C
.23	www.solarwall.com	Conserval Solarwall
.24	www.nrcan.gc.ca/es/erb/reed/woo	Guide to Residential Wood Heating, Natural
~-	d/index.html	Resources Canada
.25	www.woodheat.org	Wood Heat Organization Inc
.26	www.eren.doe.gov/consumerinfo/ refbriefs/bc8.html	Pellet Fuel Appliances and Pellet Fuels, U.S. Dept of Energy
.27	www.pelletheat.org	Pellet Fuels Institute
.27	www.pellet.org/index.html	B.C. Pellet Fuel Manufacturers
.29	www.eren.doe.gov/RE/solar_phot	Photovotaics, U.S. Dept of Energy
	ovoltaics.html	
	www.eren.doe.gov/pv	
.30	www.sandia.gov/pv/	Photovoltaic Program, Sandia Laboratory
.31	cedrl.mets.nrcan.gc.ca/e/pubs_e.ht	CANMET Energy Diversification Research
22	ml	Laboratory (CEDRL) Publications
.32	www.canwea.org	Canadian Wind Energy Association American Wind Energy Association
.33 .34	www.awea.org www.eren.doe.gov/wind	Wind Energy Program, U.S. Dept of Energy
.35	cedrl.mets.nrcan.gc.ca/e/index_e.h	CANMET Energy Diversification Research
	tml	Laboratory
.36	www.tracegridtie.com	Trace Grid Tie Information
.37	www.traceoffgrid.com	Trace Off Grid Information
.38	www.twdb.state.tx.us/assistance/c	Texas Water Development Board – Rainwater
•	onservation/rain.htm	harvesting
.39	www.aea.nt.ca/main.htm?tips.htm	Arctic Energy Alliance - energy saving tips
	&1	

.40	www.eren.doe.gov/consumerinfo/ energy_savers/	U.S. Dept of Energy - energy savers
.41	www.ornl.gov/roofs+walls/ insulation	U.S. Dept of Energy - insulation fact sheet
.42	www.naima.org	North American Insulation Manufacturers Association
.43	www.cellulose.org	Cellulose Insulation Manufacturers Association
.44	buildingsgroup.nrcan.gc.ca/PDFs/ Guide_e.pdf	Consumers Guide To Buying Energy Efficient Windows – Natural Resources Canada, Office of Energy Efficiency; 1998
.45 .46	www.efficientwindows.org energy-publications.nrcan.gc.ca/ pub/renovate/Air_Leakage_Contr ol.cfm	Efficient Windows Collaborative Air Leakage Control, Natural Resources Canada
.47	www.southface.org/home/sfpubs/t echshts/airseal.pdf	Air Sealing Bulletin, Southface Energy Institute
.48	r2000.chba.ca/consumers/home.ht ml	R-2000 HOME Program Office of Energy Efficiency Natural Resources Canada
.49	energy-publications.nrcan.gc.ca/ pub/home/heating_with_gas.cfm	Heating with Gas, Natural Resources Canada
.50	energy-publications.nrcan.gc.ca/ pub/home/heating_with_oil.cfm	Heating with Oil, Natural Resources Canada
.51	www.eren.doe.gov/consumerinfo/ refbriefs/ea5.html	US Department of Energy, Energy Efficiency and Renewable Energy Network, Reference Brief 'Energy Recovery Ventilation for Residences'
.52	www.hvi.org/directory	Home Ventilation Institute, Certified Products Directory
.53	www.endlessshower.com	GFX Heat Recovery Systems
.54	www.ext.colostate.edu/pubs/garde n/07225.html	Landscaping for Energy Conservation-Colorado State University
.55	www.eren.doe.gov/erec/factsheets /landscape.html	Landscaping for Energy Efficiency - U.S. Department of Energy
.56	www.aea.nt.ca/main.htm?tips.htm &1	Arctic Energy Alliance - energy saving tips
.57	www.eren.doe.gov/consumerinfo/ energy_savers/	U.S. Dept of Energy - energy savers
.58	www.theledlight.com	The LED light store
.59	www.bulbs.com/lightingguide/ho melighting.asp	Home lighting guide, Bulbs.com
.60	energy-publications.nrcan.gc.ca/ pub/home/Household_Lighting.cf m	Energy efficient home lighting, Natural Resources Canada
.61	energy-publications.nrcan.gc.ca/	Buying Energy Efficient Appliances, Natural

Buying Energy Efficient Appliances, U.S.

Energy Efficiency and Renewable Energy

Network, U.S. Department of Energy - Energy

Department of Energy

Savers

pub/home/Buying_and_Using_EE Resources Canada _Appliances.cfm

- .62 www.eren.doe.gov/buildings/buyi ng_appliances.html
- www.eren.doe.gov/consumerinfo/ .63 energy_savers/
- .64 www.toiletology.com/low-Toiletology 101 – Low Consumption Toilets flow.shtml

.65 www.terrylove.com/crtoilet.htm Terry Love's Consumer toilet reports, low flow toilets

- eartheasy.com/liev_lowflow_aerat Eartheasy - Low Flow Aerators .66 ors.htm Energy Solutions Centre, Whitehorse
- .67 www.nrgsc.yk.ca

.2 **Alternative Energy Manufacturers and Suppliers Sites**

www.kyocerasolar.com Kyocera Solar Inc. .1 .2 www.solarwall.com Conserval Solarwall System .3 www.lenbrooksolar.com Lenbrook Energy Systems Solteck Solar Energy Ltd .4 www.soltek.ca .5 Photowatt International www.photowatt.com .6 www.thermo-dynamics.com Thermo Dynamics Limited .7 www.solcan.com Solcan Ltd .8 www.thermomax.com Thermomax .9 enviro-fire.com Sherwood Industries Ltd. .10 www.harmanstoves.com Harman Stove Company .11 www.solarwall.com **Conserval Engineering** Lennox Hearth Products .12 www.whitfield.com. www.earthstove.com www.magnumfireplace.com/index .13 American Energy Systems, Inc. .cfm .14 www.kyocerasolar.com Kyocera Solar, Inc. Siemens Solar .15 www.siemenssolar.com .16 www.bpsolar.com **BP** Solar .17 www.windenergy.com Southwest Windpower Inc .18 www.almac.co.uk/proven Proven Engineering Products Ltd Bergey Wind Power Co. .19 www.bergey.com **Rutland Wind Turbines** .20 www.able-solar.co.nz/rutland.htm Bergey Wind Turbines www.bergey.com/Products/VPkg. .21 Hybrid.7.5.htm .22 www.tracetechnologies.com **Trace Technologies** www.advancedenergy.com Advanced Energy Inc .23

.24www.owenscorning.comOwens Corning.25www.dow.com/styrofoamDow.26www.icynene.comIcynene	
.27 www.rayomax.com Ray-O-Max Windows	
.28 www.allweatherwindows.com All Weather Windows	
1 1	
ucts/set_prod.htm .30 customer.honeywell.com/catalog/ Honeywell	
pages/prod_search.asp .31 www.olsenhvac.com Olsen	
.33 www.weil-mclain.com Weil-McLain	т
.34 www.lifebreath.com Nutech Energy System	s Inc.
.35 www.lychonia.com Stirling Technology	
.36 www.broan.com Broan	
.37 www.bryant.com Bryant	
.38 www.carrier.com Carrier Corporation	
.39 www.doucetteindustries.com Doucette Industries Ind	
.40 www.inventure.ca The Winston Works	
.41 www.gelighting.com General Electric	
.42 www.sylvania.com Osram Sylvania	
.43 www.lighting.philips.com Philips	
.44 www.sunfrost.com Sun Frost	
.45 www.equatorappl.com Equator appliances	
.46 www.craneplumbing.com Crane Plumbing	
.47 www.kohlerco.com Kohler Plumbing	
.48 www.fct.ca Fuel Cell Technologie	5
.49 www.enerworks.com Enerworks Inc.	
.50 www.economad.com Eco-Nomad	

.3 Community Information Sites

.1	www.assembly.gov.nt.ca/NewNWT/index.html
----	--

- .2 www.yukoncommunities.yk.ca/home.html
- .3 www.dced.state.ak.us/mra/CF_BLOCK.htm
- .4 www.nlfm.nf.ca/nlfm.htm
- .5 www.gov.nu.ca/Nunavut/Communities/nc.htm
- .6 www.inuitfinearts.com/images/communities/nun avik/NUNAVIK.htm

NWT Community Information Yukon Community Information Alaska Community Information Newfoundland and Labrador Community Information Nunavut Community Information Nunavik Community Information

1.3 FIELD RESEARCH

- .1 Healthy House Wastewater treatment system, Ndilo, May 20, 2000
- .2 Canada's Energy Efficiency Conference: Natural Resources Canada, Office of Energy
- .3 Efficiency (OEE), Ottawa, October 10^{th} to 12^{th} , 2000
- .4 Tap The Sun: CMHC Passive Solar Design Workshop, Halifax, October 21st 2000
- .5 Rise and Shine 2000: Solar Energy Of Canada Inc. (SESCI) Annual Conference, Halifax, October 21st to 24th 2000.
- .6 Eco-Solar Home Tour, Edmonton, October 28th, 2000
- .7 Off-Grid Northern Home, Prelude Lake, N.W.T. November 12,2001

1.4 CONTACTS/INTERVIEWS

- .1 Dr Doug Dale, University of Alberta, Edmonton AB
- .2 Mark Ackerman, University of Alberta, Edmonton AB
- .3 Dr Brian Fleck, University of Alberta, Edmonton AB
- .4 Gordon Howell, Howell-Mayhew Engineering, Edmonton AB
- .5 Brian McCluskey, Arctic Energy Alliance, Yellowknife NT
- .6 Ron Alward, Natural Resources Canada, Varennes, QC
- .7 Sylvain Martel, Natural Resources Canada, Varennes QC
- .8 Richard Seifert, University of Alaska, Fairbanks AK
- .9 Paul R. Sajko, Thermo Dynamics Ltd., Dartmouth NS
- .10 Richard Kadulski, Richard Kadulski Architect, Vancouver BC
- .11 Tracey Forest, University of Waterloo, Waterloo ON
- .12 Bill Fandrick, Northern Solutions, Yellowknife NT

1.5 SHIPPING INFORMATION SOURCES

- .1 Air North Airlines, Whitehorse YK
- .2 Northwest Transport Ltd., Edmonton AB
- .3 Northern Transport Company Limited, Hay River NT & Iqualuit NU
- .4 Lynden Transport Inc., Anchorage AK
- .5 Northwest Transport Alaska, Anchorage AK

AVAILABILITY OF INSTALLATIONMAINTENANCE SKILLED LABOUR RATING (1 to 5)	In general, contractors must be mobilized from Anchorage and Fairbanks to go to rural communities. The rural communities generally have populations less than 2000 and are not connected to other parts of Alaska through a road system.	2	2	-	-	ν	2	ę	-	n	2	2	2	-	-	v	2	2	2	2	n	-	w	-
TRANSPORTATION AVAILABLE INS		air & sea plane access year round; barge delivery during the summer	air access year round; barge delivery in the summer	air year round, barge in the summer	air year round, barge in the summer	air, water, road & rail access year round	air access year round; barge in the summer	air access in the summer	air access year round; barge in the summer	air access year round; float plane; barge in the summer	air access year round; barge in the	air access year round;barge and terry service	air access year round; barge in the summer	air access year round, road access in the summer	air access year round; freight needs to be lightered in from Nome	air, road, rail access year round	air access year round; road access in the summer	air access year round; barge access in the summer	air access year round	air and road access year round	air, water and road access year round	air access year round; barge access in the summer	air and water access year round,	air access year round
GEOTHERMAL AVAILABLE	he use in the use in the use systim springs autoses ine by		°N N	Q	Q	°N N	Q	oN	Yes	No	N	Yes	Q	°Z	No	Yes	°N N	ő	۶	N	Q	No	No	No
SUBSIDIES HEATING	<u> </u>					0.816 fuel adjustment offered by Anchorage Municipal light and Power																		
HEATING COSTS	47¢/litre - 2nd grade fuel 784/litre - 1st reade fuel	/8¢/litre - 1st grade tuel; \$1.23 - propane	.54¢/litre - 1st grade fuel; \$1.36 - propane	95¢/litre - 1st grade heating fuel: \$1.39 - propane			- 1st grade heating	70¢/litre 1st grade fuel; propane - 31¢/litre	66¢/litre - 1st grade fuel	42¢/litre - 1st grade fuel; 36¢/litre - 2nd grade fuel; \$1.17/litre - propane; \$225.00/cord wood	61¢/litre - 1st grade fuel	46¢/litre - 1st grade fuel; 43¢ - 2nd grade fuel; 42¢/litre - propane; \$75/cord wood	41¢/litre - 1st grade fuel; .38 - 2nd Grade fuel; 92¢ - propoane; \$125/cord wood	46¢/litre - 1st grade fuel; 53¢/litre - propane; \$125./cord wood	63¢/litre - 1st grade fuel; \$1.58/litre - propane	38¢/litre - 1si grade fuel; 36¢/litre - 2nd grade fuel; 43¢/litre - propoane; \$115./cord wood	65¢/litre - 1st grade fuel; 84¢/litre - propane	64¢/litre - 1st grade fuel; \$1.00/litre - propane	60¢/litre - 1st grade fuel; \$1.37./litre - propane	38¢/litre - 1st grade fuel; 37¢/litre - 2nd grade fuel; 35¢/litre - propane	38¢/litre - 1st grade fuel; 37¢/litre - 2nd grade fuel; 43¢/litre - propane	74¢/litre - 1st grade fuel; 95¢/litre - propane	43¢/litre - 1st grade fuel; 42¢/litre - 2nd grade fuel; 40¢/litre - propane; \$150./cord wood	37¢/itre - 1st grade fuel; \$1.61/litre - propane
ELECTRICAL COSTS SUBSIDIES ELECTRICAL (IN US CURRENCY FOR ALASKA) AS OF APRIL 2001	The goal of the PCE The goal of the PCE economic assistance to customers in rural areas of Alaska where, in many instances, the kilowatt- instances, the kilowatt- instances, the kilowatt- incre urban areas of the state. The program seeks higher than the charge in more urban areas of the state. The program seeks to equalize the power cost per kilowatt-hour statewide. However, even with PCE urtal electric costs are 2-3 times higher than urban energy costs.			Yes		°2	Yes	°.	Yes	Yes	Yes	Yes	Yes		Yes		Yes	Yes	Yes	°Z	°Z	Yes	°Z	Yes
ELECTRICAL COSTS (IN US CURRENCY FOR ALASKA) AS OF APRIL 2001	0.0¢/kWh 1.7 46/kWh	17.4¢/kWn	17.1¢/kWh	17.6¢/kWh	9.7¢/kWh	\$6.56/month and 8.803¢/kWh	17.0¢/kWh	9.9¢/kWh	9.7¢/kWh	13.9¢/kWh	17.0¢/kWh	10.7¢/kWh	13.8¢/kWh	10.1¢/kWh	17.1¢/kWh	11.3¢/kWh	14.7¢/kWh	20.2¢/kWh	17.2¢/kWh	19.5¢/kWh	8.9¢/kWh	17.1¢/kWh	10.2¢/kWh	9.7¢/kWh 1
CURRENT ELECTRICAL		Akiacnak Native communities Electric Company	AVEC	AVEC	North Stope Borough Power & Light	Chugach Electric Association; Anchorage Municipal Light & Power	Aniak Light & Power Company	Barrow Utilities & Electric Cooperative - Also Supplies Natural Gas	seaver Joint Utilities	Bethel Utilities Corporation	AVEC	Alaska Power & Telephone	Nushugak Electric Cooperative	Alaska Power Company	AVEC	Golden Valley Electric Association; Aurora Energy	Gwitchyaa Zee Utility Company	City of Galena	AVEC	Copper Valley Electric Association	Homer Electric Association	AVEC	Alaska Electric Light & Power Company	North Stope Borough Power & Light Page A - 1
HEATING DEGREE DAYS BELOW 18°C	4769		8352	9308	9723	7157	8117	11086	9424		7944	5742	7202				9704	8772	8747	8093	6019	8967	7806	10798
	E E	μø	Зm	88m	643m	308m	26m	13m	37m	23m	23m	1014m	26m	249m	61m	132m	132m	46m	8m	496m	24m	55m	шg	15m
LONG.	176°45'W	W.62-101	164°37'W	157°52'W	151°45'W	149° 53' W	159°31'W	156° 47' W	147°23'W	161°45'W	165°35'W	133°09'W	158°27'W	141°12'W	162°15'W	147°43'W	145°16'W	156°56'W	171°45'W	145°33'W	151°33'W	156°24'W	134°24'W	143°38'W
LAT.	51°45'N	N.55.00	62°41'N	67°05'N	N.80-89	61° 13' N	61°34'N	71° 17' N	66°21'N	60°47'N	61°31'N	55°28N	59°02'N	64°47'N	64°37'N	64°50'N	66°34'N	64°44'N	63°47'N	62°07'N	59°38'N	65°41'N	58°18'N	N,80°07
ATION onthly e (year)	2 Max 2 Max 2 Max 2 Max 2 Max 2 Max 2 Max 2 Max 2 Max 2 Max 2 Max 2 Max	2.02	2.61	2.55	2.52	2.45	2.63	2.43	2.70	2.62	2.62	2.71	2.63	2.71	2.66	2.63	2.66	2.69	2.58	2.51	2.71	267	2.63	2.52
SOLAR INSOLATION kWh/m²/day (monthly average) Max/Min/Average (year)	2.46 2.14 0.279 2.46 2.14 2.79 2.70 1.82 2.62			20 1.85	22 1.90		2.23 1.87	1.99 1.49	2.43 2.11		2.07 1.62	2.32 1.97					2.43 2.11	2.34 2.03	2.02 1.62	2.17 1.84	2.34 1.95	2.29 1.98	2.31 1.99	2.06 1.55
FREQUENCY OF S WIND SPEED k (% above 3 m/s) M:	95 95 46 400 2 2 46 400 2 2 46 400 2 2 2 46 400 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			64 2.20	79 2.22			87 1.5	26 2.		83 21	43		27 2.				15 2.	92 2.		51	16 2.	32	80
WIND SPEED FREC (M/S) WIN (% al	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	۶.5 ۲	3.77	3.13	3.44	3.99	2.39	4.90	2.13	3.39	4.20	3.50	3.79	2.21	2.96	2.41	1.87	1.89	6.73	3.55	3.45	1.90	2.34	3.80 data
POPULATION WIND (A	106 7560 8			298	312 3	f6			126 2		269 2				316	82		. 292	653 (283	5	254 254 rom NASA satellite
COMMUNITY POPL	<u>5</u>				Anaktuvuk Pass									, ity		⁻ airbanks Borough	kon							Kaktovik 254 3.80 Note: All weather information from NASA satellite data
	ALASKA Adak Station	AKIAGNE	Alakanuk	Ambler	Anaktuv	Anchorage	Aniak	Barrow	Beaver	Bethel	Chevak	Craig	Dillingham	Eagle City	Elim	Fairbar North S	Fort Yukon	Galena	Gambell	Glenallen	Homer	Huslia	Juneau	Kaktovik Note: All we

Energy Efficiency and Alternative Energy for Northern Homes Report CMHC

Energy Efficiency and Alternative Energy for Northern Homes Report CMHC

INSTALLATIONARINTENANCE SKILLED LABOUR RATING (1 to 5)	service 1	e P	2	service 2	۵		3	N	service			2 Service	n	~								service 3						0 N					
	air access year round; barge service in the summer	air and water access year round	air access year round	air access year round; barge service in the summer		air access year round; barge service	in the summer	air, water (seasoriar)	air access year round; barge service in the summer	air access year round; barge service in the summer	air access year round; barge service in the summer	air access vear round: barge s	in the summer	air access year round	air access year round; road access for trucks	air access year round; barge service in the summer	air access year round; barge service in the summer	air access year round; barge service in the summer	air access year round; barge service in the summer	air, road and rail access year	air access year round	air access year round; barge service in the summer	air, water, road and rail service year	air access year round; barge service in the summer	air access year round; barge access	air and road access year round	air access year round; barge access	in the summer air, water	air, water and road access year round	air access year round; barge access in the summer	air, water, road and rail access year round	air access and barge service year round	
AVAILABLE	N	Kes	Ž	Ñ	2	2 N		2	oz	°2	Ŝ	No		Ŷ	Ň	No	Ŷ	No	Ŷ	ON N	°N	Yes	°N N	Y es	Ŷ	°N N	N	Yes	°Z	QN	ON N	Ž	
	66¢/litre - 1st grade fuel	43e/litte - 1st grade tuel; 42e/litte - 2nd grade tuel; 51e/litte - propane; 51e.0./ond.uncod	956/litre - 1st grade fuel;	53¢/litre - 1st grade fuel	44¢/itre - 1st grade fuel; 43¢/itre - 2nd grade fuel; 88¢/itre - propane;	\$160./cord wood 50¢/litre - 1st grade tuel; 31¢	- propane Georitine - 1st create friel:	\$1.29/litre - propane	46¢/itre - for 26 litres; 47¢/itre - 13 to 26 litres; 49¢/litre - 12 litres or less	61¢/itre - 1st grade fuel; \$1 25/itre - tronane	Napaskiak gets all of their supply from Bethel 42¢/itre - 1st grade tuel; 36¢/itre - 2nd grade tuel; \$1.17/itre nronane: \$750 M/cont word	45¢/litre - 1st arade fuel:	44¢/litre - 2nd grade fuel;95¢ - propane	57¢/itre - 1st grade fuel; \$1.57/litre - propane		73¢/litre - 1st grade fuel; \$1.26/litre - oropane	40¢/litre - 2nd grade tuel	38¢/litre - 1st grade fuel	61¢/litre - 2nd grade fuel	38¢/itre - 1st grade fuel; 37¢/itre - 2nd grade fuel; 42¢/itre - noncane	57¢/fitre - 1st grade fuel; \$1.52/fitre - propane	37¢/litre - 1st grade tuel; 33¢ - 2nd grade tuel; 63¢ - probane: \$75./cond wood	36¢/litre - 1st grade fuel; 33¢/litre - 2nd orade fuel	34¢/litre - 1st grade from barge; 55¢/litre - 1st grade from plane; 33¢/litre - 2nd grade fuel; \$125/cord wood		29¢/litte - 1st grde tuel; 27¢/litte - 2nd grade fuel; 41¢/litte - nnnane	55¢/itre - 1st grade fuel;	\$1.62/litre - propane	40¢/litre - 1st grade fuel; 38¢/litre - 2nd grade fuel; 40.40t+rscrossed		40¢/litre - 1st grade fuel; 38¢/litre - 2nd orade fuel	42¢/litre - 1st grade fuel; 41¢/litre - 2nd grade fuel;	45¢/litre - propane;
	Yes	0 Z	Yes	Yes	Ŷ	Yes	Vac	59 L	S	Yes	Yes	Yes		Yes	No	Yes	Yes	Yes	Yes	Ň	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Z	Xes	2		
(IN US CURRENCY FOR ALASKA) AS OF APRIL 2001	16.8¢/kWh	10¢/kWh	7.8¢/kWh	14.2¢/kWh	16.2¢/kWh		13.4¢/kWh	13.2¢/kWh	9.2¢/kWh	17.2¢/kWh		23.3¢/kWh	14.6¢/kWh	17.4¢/kWh	0e/kWh	17¢/kWh	25.5¢/kWh	12.2¢/kWh	17.4¢/kWh	9 2 <i>e</i> /Wh	17.2¢/kWh	9.9¢/kWh	12.5¢/kWh		23.46/MH	12 fa/kWh		13.5¢/kWh 13.9¢/kWh	16 Q <i>4</i> /Wh	9.7¢/Wh	9.7¢/kWh		
SOURCE	AVEC	Ketchikan Public Utilities	Naknek Electric Association	Kipnuk Light Plant	Kodiak Electric Association	Kotzebue Electric Association	McGrath Linht & Doutor		Metlakalta Power & Light	AVEC	Napaksiak Electrical Utility	Nome Joint Utility Systems		AVEC	Arctic Utilities Inc.	AVEC	St. Paul Municipal Electric Utility	San Point Electric Inc.	AVEC	Seward Electric System	AVEC	Sitka Electric Department	Alaska Power Company	Tanana Power Company	AVEC	Alaska Power Company	Unalakteet Valley Electric	Cooperative Unalaska Electric Utility	Copper Valley Electric Association	North Stope Borough Power & Light	Chugach Electric Association	Wragnell Municipal Light & Power	
DAYS BELOW 18°C	2006	6411	6982	7068	5481	9179	7875	C 10 1	6411	8419	7597	8832		9120	10620	8419	5995	5079	9106	9130	9519	6737	8019	8735	7066	8502	6969	4724	7044	10487	5509	6932	
	61m	27m	17m	6m	22m	Зm	103m	1001	ę	102m	۳	11		25m	14m	95m	13m	6m	8m	2m	Зm	6m	13m	69m	6m	509m	6m	2m	36m	9m	9m	13m	
	158°43'W	131°38'W	156°39'W	164°03'W	152°24'W	162°35'W	1 EE 09E'IM		131°34'W	163°43'W	161°54'W	165°25'W		161°03'W	148°22'W	163°10'W	170°16'W	160°30'W	160°00'W	149°26'W	166°04'W	135°20'W	135°18'W	152°04'W	160°24'W	142°59'W	160°47'W	166°32'W	146°16'W	160°01'W	148°41'W	132°22'W	_
	64°20'N	55°20'N	58°41'N	59°56'N	57°47'N	66°54'N	62°57'N		55°07'N	62°05'N	60°42'N	64°32'N		N,05-99	70°22'N	62°03'N	N,20°73	55°20'N	66°36'N	96°07'N	66°15'N	57°03'N	59°27'N	65°10'N	59°04'N	63°20'N	65°52'N	53°52'N	61°07'N	70°38'N	60°46'N	56°28'N	-
onthly (vear)	2.69	2.83	2.70	2.63	2.87	2.63	264	to vi	2.83	2.61	2.62	2.62		2.62	2.50	2.61	2.53	2.67	2.64	2.67	2.67	2.58	2.63	2.62	2.63	2.72	2.68	2.84	2.41	2.44	2.52	2.68	
kWh/m²/day (monthly average) Max/Min/Average (vear)	2.31 1.98	7 2.09	6 1.89	9 1.83	9 2.07	2 1.73			2.09	5 1.75	0 1.82	7 1.67		5 1.77	1.58	5 175	6 1.87	35 2.08	1.80	38 2.05		25 1.93	31 2.03	30 1.95	22 1.85	40 2.08	22 1.87	_	02 1.68	97 1.52	15 1.81	28 1.89	
		2.47	1 2.26	2.19	2.49	9 2.12			2.47	3 2.15	3 2.20	5 2.07		9 2.15	4 2.07	8 2.15	4 2.16	8 2.35	0 2.18	4 2.38		7 2.25	1 2.31	2.30	84 2.22	1 2.40	3 2.22		81 2.02	84 1.97	88 2.15	31 2.28	
WIND SPEED (% above 3 m/s)	15	30	83	88	88	6/	E4	5	30	78	68	85		6/	84	78	64	88	20	34	81	37	31		¢	61	53	6	œ	8	8	5	
(W/S)	1.85	2.43	3.84	5.39	5.68	3.49	06 6	0.40	2.43	3.48	3.39	4.96		3.49	3.98	3.48	7.46	5.69	3.25	2.32	4.00	3.25	2.28	1.97	4.37	3.03	2.83	8.21	4.52	4.03	6.22	2.33	
	251	8,295	499	573	20,864	3,000	108	001	1,499	757	395	3,620		634	49	482	585	871	792	3,085	547	8,788	880	300	824	1,235	757	4,283	4,271	545	289	2,569	
	Kaltag	Ketchikan	King Salmon	Kipnuk	Kodiak		Kotzebue	McGrath	Metlakatla	Mountain Village		Napaskiak	Nome	Noorvik	Printhoa Bay (Deadho	Saint Marv's	Saint Paul	Sand Point	Selawik	Seward	Shishmaref	Sitka	Skanwav		Tariata Toxiot	- oglan Tok	-	Unalakleet Unalaska	- COLICI	Waitowricht	Whittier		

Note: All weather information from NASA satellite data

2
0
0
2
2
Ö
ā
~
2

AVAILABILITY OF INSTALLATION/MAINTENANCE SKILLED LABOUR RATING (1 to 5)		m	-	-	-	-	-	-	-	2	~	-	-	-	N	2
	Snowmobile, Air, Boat (in Summer). No Road.	Snowrnobile, Air, Boat, Road	Snowmobile, Air, Boat (in Summer). No Road.	Boat and Plane in Summer, Snowmobile and Air in Winter. No Road.	Snowmobile, Air, Boat (in Summer). No Road.	Road.	Snowmobile, Air, Summer Boat (in Summer)	Snowmobile, Air, Boat (in Summer). No Road.	Road, Plane and Boat in Summer, Road and Plane in Winter	Air year round and summer barge, ice roads in winter	Air year round	Limited air year round and winter road to Tulita	Road year round; road year round except during break-up and freeze-	Road year round	Air year round and summer barge, winter road	Air and road year round
GEUTHERMAL AVAILABLE	2	°N N	2	2	2	2	Ŷ	2	Ž	2	Š	°2	Ŷ	Ê	2	Yes
SUBSIDIES HEATING	Ŷ	Ŷ	2 2	Ž	Ž	N N	2 2	Ž	°N N							
HEALING COSIS	74.36. Residents use an oil/wood combo of 50/50	74.36. Residents use 95% electric heat and a 5% oil/wood combo	76.36. Residents use 80% oil and 20% wood combo.	74.3¢. Most residents use wood. Others use a 50/50 oil/wood combo.	78.3¢. Most residents use a 90% oil and 10% wood combo.	74.4c. 60% heated by electricity and 40% are an oil/wood combo.	74.36. Residents use 80% wood and 20% oil combo.	78.3¢ Most homes burn wood and a few use oil.	74.4¢. 60% heated by electricity and 40% are an oil/wood combo.		\$1.11/L - P50 Heating; \$1.23/L - P50 low suplhur Diesel	89¢/L - P50 Heating; \$1.01 - low sulphur Diesel		.50¢/L - Iow sulphur Diesel	.87¢/L - P50 Heating: .98¢/L - P50 low sulphur Diesel	.79¢/L - P50 low sulphur Diesel
SUBSIDIES ELECTRICAL	2	Q	° Z	°z	Ŝ	°N N	Ŝ	Ŝ	°Z	This community receives This community receives "Territorial Support" in the amount of17410 for the first 700 kWh	This community receives "Territorial Support" in the amount of .17410 for the first 700 kWh	This community receives "Territorial Support" in the amount of .17410 for the first 700 kWh	oN	Ŷ	This community receives "Territorial Support" in the F amount of .17410 for the first 700 kWh	This community receives
ELECTHICAL CUSTS (IN US CURRENCY FOR ALASKA) AS OF APRIL 2001	\$16.31/month basic charge and 1st 700 kWh 億 6.77 <i>c</i> /Wh and nex 300 kWh 億 9.571 <i>c</i> /Wh . All over 1000 億 12.975 <i>c</i> /kWh	\$6./month basic charge and 1st 600 kWh @ 4.1¢/kWh and all hours over 600 at 3.3¢/kWh	\$16.31/month basic charge and 1st 700 kWh @ 6.776/Wh and next 300 kWh @ next 300 kWh @ 15716/Wh. All over 1000 @ 12 9756/WWh	516.31/month basic charge and 1st 700 kWh @ 6.77¢/Wh and next 300 Wh @ next 300 Wh @ 1000 @ 12 975¢/Wh	\$16.31/month basic charge and 1st 700 kWh @ 6.77¢/kWh and next 300 kWh @ 9.571¢/kWh. All over 1000 @ 12 975¢/kWh	\$6./month basic charge and 1st 600 kWh @ 4.1¢/kWh and all hours over 600 at 3.3¢/kWh	516.31/month basic charge and 1st 700 kWh @ 6.77¢/kWh and next 300 kWh @ next 300 kWh ④ 1000 @ 12 975¢/kWh	\$16.31/month basic charge and 1st 700 kWh @ 6.77 <i>c</i> /Wh and next 300 kWh @ 9.571 <i>c</i> /Wh. All over 1000 @ 12.975 <i>c</i> /WWh	\$6./month basic charge and 1st 600 kWh @ 4.1¢/kWh and all hours over 600 at 3.3¢/kWh		\$18.00+ 187.66¢ & 224.82¢ for Govt per kWh	\$18.00+ 41.71¢ & 41.71¢ for Govt per kWh	\$18.00+ 13.57¢ for Govt per kWh	\$18.00 + Supply Charge of 8.5 cents/kWh + fuel charge of 4.48 cents/kWh	\$18.00+ 50.87¢ & 55.06¢ for Govt per kWh	\$18.00+ 42.27¢ & 46.09¢ for Govt per kWh
		Newfoundland and Labrador Hydro	Newfoundland and Labrador Hydro - Diesel Generators	Newfoundland and Labrador Hydro - Diesel Generators	Newfoundland and Labrador Hydro - Diesel Generators	Newfoundland and Labrador Hydro	Newfoundland and Labrador Hydro - Diesel Generators	Newfoundland and Labrador Hydro - Diesel Generators	Newfoundland and Labrador Hydro	NWTPC - 1350 kW diesel generated power		NWTPC - 1280kW capacity diesel power	Hydro		NWTPC - 810kW capacity diesel generated power	Diesel
HEALING DEGREE DAYS BELOW 18°C	7865	7213	7865	7804	8231	7213	7498	7428	7213	10575	10344	10096	9914	9011	9312	7934
ELEV.	13m	46m	10 ¹	71m	۳	13m	59m	55m	13m	11m	274m	167.6m	205m	Unknown	52m	213m
LONG	60° 54' W	60° 20' W	60° 13' W	59°11W	61° 41' W	60° 08' W	59° 47' W	58° 26' W	60° 09' W	135'00W	126'07'W	123'25'W	114'18W	116'08'W	128'38'W	123'28'W
	23. N	53° 19' N	55° 28' N	55°05'N	56° 32' N	53° 32' N	54° 54' N	54° 11' N	53° 31' N	68'13'N	67'02'N	65'10'N	62'25N	60'33'N	66'15'N	60'15'N
		3.20	5.89	2.89	2.86	3:20	3.04	3.03	3.20 5.		2.70	2.76	2.94	5.96	2.81	2.99
SOLAH INSOLATION kWh/m ² /day (monthly average) Max/Min/Average (year)	2.09	2.35	5.09	515	1.83	2.35	2.18	2.13	2.35		2.08	2.02	2.38	2.41	2.16	2.31
	2.48	2.74	2.48	2.48 -	2.36	2.74	5.59	2.56	2.74	2.12	2.41	2.35	2.65	2.73	2.52	2.70
WIND SPEED (% above 3 m/s)	80	36	8	80	8	36	20	20	36	30	24	14	15	4	32	12
Ë	6.39	2.37	6.39	6.50	6.62	2.37	3.75	3.78	2.37	2.55	2.06	1.82	1.82	1.79	2.26	1.77
201	550	8,655	620	367	3 95	567	225	225	1108	727	06	616	195	94	644	512
<u>-</u>	Davis Inlet (Utshimassits)	Happy Valley - Goose Bay	Hopedale	Makkovik	Nain	North West River	Postville	Rigolet	Sheshatshiu	Aklavik	Colville Lake	Deline	Dettah	Enterprise	Fort Good Hope	Fort Liard

Note: All weather information from NASA satellite data

AVAILABILITY OF INSTALLATION/MAINTENANCE SKILLED LABOUR RATING (1 to 5)	5	5	2	n	r	en e	-	m	-	-	-	-	~	-	-	-	-	-	-	-
TRANSPORTATION AVAILABLE	Ferry, and barge in summer	Road year round except during break-up and freeze-up; ferry service in summer and ice road in winter; chartered aircraft	Air year round; road year round except during break-up and freeze- up	Air and road year round		Air and road year round	Air year round and summer barge	Road year round except during break-up and freeze-up	Chartered aircraft, summer barge and winter ice road	Road year round; float plane in summer	Air year round and summer barge.	Air year round: summer barge and winter ice road	Air year round and summer barge, ice roads in winter	Air year round and summer barge	Air year round and winter ice road	Air year round and winter ice road	Air year round and summer barge	Chartered aircraft; winter road	Air year round and summer barge	Air year round and summer barge, ice roads in winter
GEOTHERMAL AVAILABLE	NO	Ŷ	°N N	Ŷ	Š	Ž	Ŷ	° Z	Ŷ	°N N	No	Yes	2 Z	Ž	No	°Z	Ž	2	Ŷ	0 Z
SUBSIDIES HEATING											-									
	.85¢/L - P50 Heating: .96¢/L . P50 Iow sulphur Diesel		52.5¢/L P50 low sulphur Diesel		.4530/L - P40 low sulphur Diesel	.50¢/L - P50 low sulphur Diesel	.93¢/L - P50 Heating; \$1.05/L - P50 low sulphur Diesel	Use heating fuel or natural gas. Fuel: 58.4¢/L; Gas: \$12.95/g/(natural gas must a 15% less than heating oil); low sulphur diesel - 55¢/L	.90¢/L - P50 Heating; \$1.01/L - P50 low sulphur Diesel	52.5¢/L - P50 low sulphur Diesel	.87¢/L - P50 Heating: .98¢/L P50 Iow sulphur Diesel	.87¢/L - P50 heating; .98¢/L - P50 low sulphur Diesel	\$5.37/thousand cubic feet - natural gas: .52¢/Litre - P50 low sulphur Diesel	.91¢/L - P50 Heating; \$1.04/L - P50 low sulphur Diesel	\$1.02/L - P50 Heating; \$1.12/L - P50 low sulphur Diesel		. 92¢/L - P50 Heating; \$1.04 - P50 Iow sulphur Diesel	.90¢/L - P50 Heating; t \$1.02/L - P50 low sulphur Diesel	. 88¢/L - P50 Heating; \$1.02 - P50 Iow sulphur Diesel	
ELECTRICAL COSTS SUBSIDIES ELECTRICAL (IN US CURRENCY FOR ALASKA) AS OF APRIL 2001	This community receives "Territorial Support" in the amount of .17410 for the first 700 kWh	This community receives "Territorial Support" in the amount of .17410 for the first 700 kWh	This community receives "Territorial Support" in the amount of .17410 for the first 700 kWh			Ŷ	This community receives "Territorial Support" in the amount of 17410 for the first 700 kWh	This community receives I "Territorial Support" in the amount of .17410 for the first 700 kWh	This community receives "Territorial Support" in the amount of .17410 for the first 700 kWh	This community receives 5 "Territorial Support" in the E amount of .17410 for the first 700 kWh	This community receives "Territorial Support" in the P amount of .17410 for the first 700 kWh	This community receives "Territorial Support" in the amount of .17410 for the first 700 kWh		This community receives "Territorial Support" in the amount of .17410 for the first 700 kWh	This community receives "Territorial Support" in the amount of .17410 for the first 700 kWh		This community receives "Territorial Support" in the amount of 17410 for the first 700 kWh	1 0	This community receives "Territorial Support" in the amount of .17410 for the first 700 kWh	This community receives "Territorial Support" in the amount of .17410 for the first 700 kWh
2 × 5	\$18.00+ 39.95¢ & 39.95¢ for Govt per kWh	1		\$18.00+ 29.81¢ & 29.81¢ for Govt per kWh	\$18.00+ 10.14¢ & n/a cents for Govt per kWh	\$18.00 + Supply Charge of 8.5 cents/kWh + fuel charge of 4.48 cents/kWh	\$18.00+ 59.69¢ & 61.76¢ for Govt per kWh	\$18.00+ 29.55¢ & 29.55¢ for Govt per kWh	\$18.00+ 49.86¢ & 138.41¢ for Govt per kWh	\$18.00+14.63¢/kWh	\$18.00+ 42.12¢ & 42.12¢ for Govt per kWh	\$18.00+ 56.81¢ & 190.00¢ for Govt per kWh	\$18.00+ 24.47 & 24.47 cents for Govt per kWh	\$18.00+ 61.04 & 61.04 cents for Govt per kWh	\$18.00+ 50.77 & 80.26 cents for Govt per kWh	\$18.00+ 12.25 & 25.79 cents for Govt per kWh	\$18.00+ 62.56 & 78.03 cents for Govt per kWh	\$18.00+38.10/kWh	\$18.00+ 64.81 & 64.81 cents for Govt per kWh	\$18.00+ 44.14 & 44.14 cents for Govt per kWh
ARENT ELECTRICAL SOURCE	Diesel	Diesel			Hydro	Hydro	Diesel	Mainly natural gas, some low sulphur diesel	Diesel	Wood/Diesel	Diesel	Diesel	Natural Gas	Diesel	Diesel	Hydro	Diesel	Diesel	Diesel	Diesel
HEATING DEGREE DAYS BELOW 18°C	10116	9470	9598	8860	9083	6206	12326	10897	9095	8933	9716	8212	9131	10999	10405	9928	10638	8424	10255	11287
	43m	161.5m	164m	168m	203m	164m	35.7	S9m	143m	Unknown	179m	183m	67m	ъ	213m	156m	87m	498m	23m	18m
LONG.	134'53'W	117 ['] 39'W	113'41'W	121'22'W	111°57'W	115'44'W	117'45'W	133'43'W	120'38'W	117'25'W	110'44'W	123'23'W	126'50'W	124'04'W	117'20'W	116'4'W	125'14'W	121'156'W	133'44'W	133'02'W
LAT.	67'26'N	61'21'N	61'11'N	61'51'N	60° 1'N	60'51'N	70'43'N	68'21'N	61'32'N	60'56'N	62'24'N	61'02'N	65'17'N	69'21'N	64'09'N	62'50'N	71'59N	60'266'N	67'27'N	69'27'N
LATION monthly () ge (year)	2.57	2.93	3.00	2.91	2.98	2.98	2.55	2.55	2.90	2.94	2.88	2.94	2.74	2.59	2.90	2.95	2.48	2.96	2.60	2.51
SOLAR INSOLATION kWh/m²/day (monthly average) /ax/Min/Average (year	2.24 1.94 2.57	2.66 2.31			2.75 2.45	2.74 2.44		2.20 1.85	2.65 2.29	2.71 2.38	2.59 2.28	2.65 2.25	2.43 2.11	2.27 1.84	2.53 2.27	2.64 2.35	2.03 1.52	2.70 2.35	2.28 1.98	2.13 1.77
VCY OF PEED 3 m/s)	21 2	13			16 2	15 2	74 2	29	12 2	12 2	21 2	14	20	70	15	14	88	1	26	67 2
EED	2.02	1.77	1.81	1.78	1.87	1.82	3.13	2.51	1.77	1.74	1.99	1.84	2.00	4.50	1.85	1.81	5.36	1.71	2.14	4.05
TION	878	748	536	1257	2441	3611 (253)	423	3296	83	36	304	75	798	277	256	1662	135	68	162	943
∠	Fort McPherson	Fort Providence	Fort Resolution	Fort Simpson	Fort Smith	Hay River & (Hay River Reserve)	Holman	huvik	Jean Marie River	Kakisa	Lutselk'e	Nahanni Butte	Norman Wells	Paulatuk	Rae Lakes (Gameti)	Rae-Edzo (Rae)	Sachs Harbour	Trout Lake	Tsiigehtchic	Tuktovaktuk

Page A - 4

Note: All weather information from NASA satellite data

Energy Efficiency and Alternative Energy for Northern Homes Report CMHC

AVAILATIONMAINTENANCE INSTALLATIONMAINTENANCE SKILLED LABOUR RATING (1 to 5)	2	-	-	-	4	-				-	2	-	-	-	-	2	2	5	-	2	-	-		N	en e	2	-	e e
TRANSPORTATION AVAILABLE	Air year round and summer barge, ice roads in winter	Air year round	Air year round and winter ice road	Air year round and summer barge, ice roads in winter	Air year round; road year round except during break-up and freeze-	No Road. Air and Boat in Summer				No Road. Air and Boat in Summer.	No Road. Air and Boat in Summer.	No Road. Air and Boat in Summer	No Road. Air and Boat in Summer.	No Road. Air and Boat in Summer.	No Road. Air and Boat in Summer.	No Road. Air and Boat in Summer.	No Road. Air and Boat in Summer.	No Road. Air and Boat in Summer.	No Road. Air and Boat in Summer.	No Road. Air and Boat in Summer.	No Road. Air and Boat in Summer.	No Road. Air and Boat in Summer.	Als and a removal based	Ar and summer parge	Air and summer barge	Air and summer barge	Air and summer barge	Air and summer barge
GEOTHERMAL AVAILABLE	Š	Ñ	N	°N N	Ŷ	R				No	Q	Q	N	No	Q	Q	No	No	N	No	No	Na		2	ê	Ŷ	Ŝ	õ
SUBSIDIES HEATING						Yes - Cost of ail bill up to	30% less than what it would have cost to heat with	electricity - tumace maintenance also	reimbursed. All by Hydro Quebec and managed by Makivik. Hydro encourages	Same As Above	Same As Above	Same As Above	Same As Above	Same As Above	Same As Above	Same As Above	Same As Above	Same As Above	Same As Above	Same As Above		Same As Above	Vac	20 20	Yes	Yes	ŶŹ	Yes
HEATING COSTS	.87¢/L - P50 Haating: .98¢/L ⁻ P50 Iow sulphur Diesel	\$1.04/L - P50 Heating: \$1.16/L - P50 low sulphur Diesel	.97¢/L - P50 Heating; \$1.08/L - P50 - Iow sulphur Diesel	.88¢/L - P50 Heating: .97¢/L - P50 Iow sulphur Diesel	46.8¢/L - P50 Heating; 47.4¢/L - Propane;	Residents use home heating				Residents use home heating	Residents use home heating	Residents use home heating	Residents use home heating	Residents use home heating	Residents use home heating	Residents use home heating	Residents use home heating	Residents use home heating oil - \$0,9082/litre	Residents use home heating oil - \$0.8760/litre	Residents use home heating oil - \$0.9082/litre	Residents use home heating oil - \$0.9082/litre	Residents use home heating			\$0.853/L	\$0.863/L	\$0.893/L	\$0.893/L
SUBSIDIES ELECTRICAL	This community receives "Territorial Support" in the amount of .17410 for the first 700 kWh	This community receives "Territorial Support" in the amount of .17410 for the first 700 kWh	This community receives "Territorial Support" in the amount of .17410 for the first 700 kWh	This community receives "Territorial Support" in the amount of .17410 for the first 700 kWh	.0	No on Electricity but Hydro	Quebec subsidizes oil to encourage building	owners to use all		Same As Above	Same As Above	Same As Above	Same As Above	Same As Above	Same As Above	Same As Above	Same As Above	Same As Above	Same As Above	Same As Above	Same As Above	Same As Above	Mass active domostic	vor-gov t ournesic preceive "Territorial Support" subsidy. They're charged 15.22¢/kWh on first 700 kWh after which they pay regular rate. An extra fuel stabilization rider of 3.4¢/kWh.	Same As Above	Same As Above	°Z	Same As Above ¢
ELECTRICAL COSTS (IN US CURRENCY FOR ALASKA) AS OF APRIL 2001	\$18.00+ 60.50 & 68.36 cents for Govt per kWh	\$18.00+31.95/kWh	\$18.00+ 49.44 & 60.74 cents for Govt per kWh	N 5	\$15.00+ 0.1172/kWh & .0973/ cents for Govt per kWh	39¢/day plus	or the first and then	5.9/¢/kWh for the remaining consumption.	Eacn community nas diesel generators.	Same As Above	Same As Above	Same As Above	Same As Above	Same As Above	Same As Above	Same As Above	Same As Above	Same As Above	Same As Above	Same As Above	Same As Above	Same As Above	010 00, 40164 Noo	a to uot - 49 15 vor 10 govt domestic & -4915 v for Govt domestic per c kWh f f f f	\$18.00+ 43.59¢ Non- gov't domestic & 43.59¢ for Gov't domestic per kWh	\$18.00+ .3796¢ Non- gov't domestic & .3796¢ for Gov't domestic per kWh	V/N	\$18.00+ .4163¢ Non- gov't domestic & .4163¢ for Gov't domestic per kwh
RENT ELECTRICAL SOURCE	Diesel	Diesel	Diesel	Diesel	Hydro	Hydro Quebec - Diesel		<u>4</u> 3 c. 5		Hydro Quebec - Diesel Generated Dower Diant	Generated Fower Flam Hydro Quebec - Diesel Generated Power Plant	Hydro Quebec - Diesel Generated Power Plant	Hydro Quebec - Diesel	Hydro Quebec - Diesel Generated Dower Diant	Hydro Quebec - Diesel Generated Power Plant	Hydro Quebec - Diesel Generated Power Plant	Hydro Quebec - Diesel Generated Power Plant	Hydro Quebec - Diesel Generated Power Plant	Hydro Quebec - Diesel Generated Power Plant		Diesel Generated Power Plant i Diesel Generated Power Plant i	Nunavut Power Corporation - Diesel Generated Power Plant	Nunavut Power Corporation - I	Bathurst has its own diesel generator for the lodge and the local people use their own generators	Nunavut Power Corporation - Diesel Generated Power Plant			
EGREE W 18°C	8797	10343	10138	9019	9914	10179				10016	9659	10443	9473	10311	10245	9676	8285	10190	10284	10407	9736	8818	7442+	/ 111 0	10687	12079	11598	12910
EV.	97.5m	368m	271m	150m	205m	20m				36m	Зm	25m	60m	156m	117m	34m	21m	23m	32m	226m	37m	74m	30.5	5	9.75m	18m	12m	27m
LONG.	125'34'W	114'116'W	117'06'W	123'28'W	114'226'W	78° 12' W				69° 36' W	78° 06' W	77° 55' W	65° 57' W	71° 57' W	70° 01' W	68° 24' W	77° 45' W	77° 17' W	69° 37' W	75° 39' W	69° 56' W	76° 33' W	10000	MOLSR	94°04'W	96° 5'W	108°2'W	105°3'W
	64'54'N	64'116'N 1	63'08'N	63'14'N	62'276'N 1	60° 48' N				59° 18' N	58° 27' N	62° 25' N	58° 41' N	61° 35' N	60° 01' N	58° 06' N	55° 17' N	60° 02' N	61° 02' N	62° 13' N	58° 42' N	56° 33' N		N20.67	61°07'N	64°18'N	66°50'N	N,20 °69
		2.89		2.88	2.94	2.72 (2.53	2.82	2.63	2.65	2.47	2.46	2.63	3.02	2.82	2.46	2.62	2.65	3.02	3.75	0	2.76	2.79	2.80	2.51
SOLAR INSOLATION kWh/m²/day (monthly average) Max/Min/Average (year)	2.13	2.22	2.32	2.24	2.38	2.04				1.65	2.01	1.86	1.64	1.63	1.63	1.69	2.33	2.11	1.67	1.91	1.71	2.21		2	2.04	2.13	2.00	1.80
	2.44	2.52	2.61	2.57	2.65	2.40				2.09	2.42	2.22	2.13	2.02	2.04	2.16	2.68	2.47	2.04	2.25	2.17	2.61	10	<u>.</u>	2.44	2.47	2.39	2.16
FREQUENCY OF WIND SPEED (% above 3 m/s)	17	26	14	15	15	18				73	82	81	44	88	87	42	57	82	87	83	41	52	77	<u>†</u>	8	8	80	28
EED	1.93	2.12	1.82	1.85	1.82	3.55				4.43	3.61	3.74	2.80	5.05	4.54	3.15	4.17	3.59	4.74	4.00	2.90	3.21	6 F 6	<u>2</u> 5	5.23	3.49	3.36	3.25
NOIL	450	135	418	167	17275	411				159	1184	274	648	479	394	2055	1210	1169	257	1143	191	315	063	n 0	1559	1385	18	1351
REGION COMMUNITY P	Tulita	Wekweti	Wha Ti	Wrigley	Yellowknife	NUNAVIK Akulivik				Aupaluk	Inukjuak	łvujivik	Kangiqsualujjuaq	Kangiqsujuaq	Kangirsuk	Kuujjuaq	Kuujjuarapik	Puvirnituq	Quaqtaq	Salluit	Tasiujaq	Umiujaq			Arviat	Baker Lake	Bathurst Inlet	Cambridge Bay

Page A - 5

Energy Efficiency and Alternative Energy for Northern Homes Report CMHC

Note: All weather information from NASA satellite data

Energy Efficiency and Alternative Energy for Northern Homes Report CMHC

AVAILABILITY OF INSTALLATIONMAINTENANCE SKILLED LABOUR RATING (1 to 5)		-	~	-	~	-	-	e.	w		e.	-	m	-	ε	-	4	-	-
TRANSPORTATION AVAILABLE	Air and summer barge	Air and summer barge	Air and summer barge	Air and summer barge	Air and summer barge	Air and summer barge	Air and summer barge	Air and summer barge	Air and summer barge	Air and summer barge	Air and summer barge	Air and summer barge	Air and summer barge	Air and summer barge	Air and summer barge	Air and summer barge	Air and summer barge	Air and summer barge	Air and summer barge
GEOTHERMAL AVAILABLE	°N N	S	Ŷ	ŝ	°Z	° N	S	ê	ê	ê	°N N	Ŷ	Ž	Ž	Ž	°2	S	٥ ۷	°Z
SUBSIDIES HEATING	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Xes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
HEATING COSTS	\$0.813/L	\$0.853/L	\$0.813/L	\$0.863/L	\$0.95 <i>3</i> /L	\$0.833/L	\$0.823/L	\$0.813/L	\$0.616/L	\$0.813/L	\$0.853/L	Mine brings in 15,000,000L/year and supplies mine & residences at no cost.	\$0.813/L	\$0.989/L	\$0.813/L	0.763/L	\$0.853/L	\$0.843/L	\$0.873/L
SUBSIDIES ELECTRICAL	Same As Above Si	Same As Above	Same As Above	Same As Above	Same As Above	Same As Above	Same As Above	Same As Above \$	Same As Above \$	Same As Above	Same As Above	Yes k	Same As Above	Same As Above	Same As Above	Same As Above	Same As Above	Same As Above	Same As Above
ELECTRICAL COSTS (IN US CURRENCY FOR ALASKA) AS OF APRIL 2001	\$18.00+ .3688¢ Non- gov't domestic & .3896¢ for Gov't domestic per kWh		\$18.00+ .4299¢ Non- gov't domestic & .4329¢ for Gov't domestic per kWh	\$18.00+ .5347¢ Non- gov't domestic & .5347¢ for Gov't domestic per kWh	\$18.00+ .5015¢ Non- : gov't domestic & .5195¢ for Gov't domestic per kWh	\$18.00+ .5183¢ Non- t gov't domestic & .6375¢ for Gov't domestic per kWh	\$18.00+ .4989¢ Non- t gov't domestic & .5199¢ for Gov't domestic per kWh	\$18.00+ .3346¢ Non- t gov't domestic & .3346¢ tor Gov't domestic per kWh	\$18.00+.3158¢ Non- t gov't domestic & .3158¢ for Gov't domestic per kWh	\$18.00+ .7349¢ Non- t gov't domestic & .7349¢ for Gov't domestic per kWh	\$18.00+ .5261¢ Non- t gov't domestic & .5603¢ for Gov't domestic per kWh	Free		\$18.00+.6589¢ Non- t gov't domestic & .6589¢ for Gov't domestic per kWh	\$18.00+.5067¢ Non- t gov't domestic & .5534¢ for Gov't domestic per kWh	\$18.00+.4282¢ Non- t gov't domestic & 4969¢ for Gov't domestic per kWh	\$18.00+.3282¢ Non- t gov't domestic & .3282¢ for Gov't domestic per kWh	<pre>\$18.00+.4736¢ Non- t gov't domestic & .4736¢ for Gov't domestic per kWh</pre>	\$18.00+ .5773¢ Non- t gov't domestic & .5887¢ for Gov't domestic per kWh
CURRENT ELECTRICAL SOURCE	Nunavut Power Corporation - Diesel Generated Power Plant	Nunavut Power Corporation - Diesel Generated Power Plant	Nunavut Power Corporation - Diesel Generated Power Plant	Nunavut Power Corporation - Diesel Generated Power Plant	Nunavut Power Corporation - Diesel Generated Power Plant	Nunavut Power Corporation - Diesel Generated Power Plant	Nunavut Power Corporation - Diesel Generated Power Plant	Nunavut Power Corporation - Diesel Generated Power Plant	Nunavut Power Corporation - Diesel Generated Power Plant	Nunavut Power Corporation - Diesel Generated Power Plant	Nunavut Power Corporation - Diesel Generated Power Plant	Mine has their own generator and they provide electricity to the town (all houses belong to mine) within the rent.	Nunavut Power Corporation - Diesel Generated Power Plant	Nunavut Power Corporation - Diesel Generated Power Plant	Nunavut Power Corporation - Diesel Generated Power Plant	Nunavut Power Corporation - Diesel Generated Power Plant	Nunavut Power Corporation - Diesel Generated Power Plant	Nunavut Power Corporation - Diesel Generated Power Plant	Nunavut Power Corporation - Diesel Generated Power Plant
GREE N 18°C	11091	11120		11535	13184	12595	13189	13919	10656	10458	11569	13350	11027	13065	12727	11126	10892	12376	15095
ELEV.	56m	θű	25m	64m	45.7m	44.6m	۳. 8	53m	34m	61 .	22.5m	639.5m	25m	322m	57m	587 m	32m	24m	67m
LONG.	76°32'W	90°43'W	68°36'W	83°22'W	95°52'W	82°54'W	81°15'W	81°48'W	68°32'W	69°53W	115°06'W	84°33'W	65°43'W	89°43'W	77°59'W	63°47'W	92°05'W	86°15'W	94°59'W
LAT.	64°14'N	63°20'N	70°28'N	64°12'N	68°38'N	76°25'N	68°47'N	69°23'N	63°45'N	62°51'N	67°50'N	73°02N	N.60°99	68°26'N	72°42'N	67°33'N	62°49'N	66°32N	74°43'N
ATION nonthly) je (year)	2.62	2.68	2.39	2.51	2.49	2.19	2.57	2.53	2.61	2.52	2.72	2.26	2.57	2.36	2.35	2.34	2.70	2.47	2.28
SOLAR INSOLATION kWh/m ² /day (monthly average) Max/Min/Average (year)	5 1.69			5 1.66		1.63	96 1.53	33 1.68	5 1.81	1.81	31 1.90	91 1.53	17 1.70		01 1.68	97 1.57	39 2.00	2.09 1.75	1.94 1.47
CY OF PEED 3 m/s)	86 2.0			81 2.05		81 1.88	80 1.96	72 2.03	81 2.15	84 2.13	65 2.31	75 1.91			77 2.01	88 1.97	90 2.39	81 2.0	67 1.5
EED)	5.07	4.56	3.85	3.96	3.21	3.45	4.30	3.38	3.60	4.32	2.96	3.16	3.67	3.47	3.69	5.31	5.70	3.41	2.87
NOL	1118	337	208	669	879	148	534	1174	4220	397	1201	287	1243	496	1154	488	2058	559	198
NITY	Cape Dorset	Chesterfield Inlet	Clyde River	Coral Harbour	Gjoa Haven	Grise Fiord	Hall Beach	Igloolik	lqaluit	Kimmirut	Kugluktuk	Nanisivik	Pangnirtung	Pelly Bay (Kugaaruk)	Pond Inlet	Qikiqtarjuaq (Broughton Island)	Rankin Inlet	Repulse Bay	Resolute

 AVAILABILITY OF INSTALLATION/MAINTENANCE SKILLED LABOUR RATING (1 to 5) 	-	2	-	-		-	-	5	2	-	2	n	-	-	-	2	-	-	n	w
TRANSPORTATION AVAILABLE	Air and summer barge	Air and summer barge	Air and summer barge	Air and summer barge	Road year round	Road year round	Road year round	Road year round	Road year round	Road year round	Road year round	Road year round	Road year round	Air year round, no road (Assume goods trucked to Whitehorse, then flown in)	Road year round	Road year round	Road year round	Road year round	Road year round	Road year round
GEOTHERMAL AVAILABLE	Ž	ŝ	Ø	°Z	Ø	°N N	°N N	Ŷ	Ŷ	Ŷ	ŝ	°Z	Yes	°Z	Ŷ	Š	Ž	°2	°2	Yes
SUBSIDIES HEATING	Yes	Yes	Yes	Yes																
HEATING COSTS	\$0.793/L	\$0.953/L	\$0.873/L	\$0.843/L	Furnace Oil: 64.0; Propane: 63.4 (500 gallon tank cost)	Furnace Oil: 62.0; Propane: 61.4 (500 gallon tank cost)	Furnace oil: 64.6; Propane: 58.2 (500 gallon tank cost)	Furnace Oil: 67.4; Propane: 61.4 (500 gallon tank cost)	Furnace oit: 65.3; Propane: 68.7 (500 gallon tank cost)	Furnace Oil: 62.0; Propane: 61.4 (500 gallon tank cost)	Furmace Oil: 70.5; Propane: 62.4 (500 gallon tank cost)	Furnace Oil: 62.0; Propane: 61.4 (500 gallon tank cost)	Furnace Oil: 68.3; Propane: 63.5 (500 gallon tank cost)		Furmace Oil: 68.4; Propane: 62.4 (500 gallon tank cost)	Furnace Oil: 70.5; Propane: 62.4 (500 gallon tank cost)	Furnace oil: 64.6; Propane: 58.2 (500 gallon tank cost)	Furnace Oil: 68.2; Propane: 60.3 (500 gallon tank cost)	Furnace Oil: 58.1; Propane: 57.7 (500 gallon tank cost)	Furnace oil: 64.6; Propane: 58.2 (500 gallon tank cost)
SUBSIDIES ELECTRICAL	Same As Above	Same As Above	N	Same As Above	es - a subsidy on all non- overment residential	es - a subsidy on all non- overment residential	es - a subsidy on all non- lovemment residential	es - a subsidy on all non- lovemment residential	Yes - a subsidy on all non- government residential	Yes - a subsidy on all non- government residential	Yes - a subsidy on all non- government residential	Yes - a subsidy on all non- government residential	Yes - a subsidy on all non- government residential	Yes - a subsidy on all non- government residential	Yes - a subsidy on all non- government residential	Yes - a subsidy on all non- government residential	Yes - a subsidy on all non- govemment residential	Yes - a subsidy on all non- government residential	Yes - a subsidy on all non- government residential	Yes - a subsidy on all non- government residential
ELECTRICAL COSTS (IN US CURRENCY FOR ALASKA) AS OF APRIL 2001	\$18.00+.4557¢ Non- gov't domestic & .4557¢ for Gov't domestic per kWh	\$18.00+ .5582¢ Non- gov't domestic & .6098¢ for Gov't domestic per kWh	N/A	\$18.00+ .6203¢ Non- gov't domestic & 1.043 for Gov't domestic per kWh	\$11.90/month and 9.86 Y \$/Wh 1st 1,000 kWh g	then 12:35 ¢ over 1,000 kWh \$11:90/month and 9.86 ¢KWh 1st 1,000 kWh hMh 10:45 ¢ over 1,000	\$11.90/month and 9.86 \$/kWh 1st 1,000 kWh then 10.45 ¢ over 1,000 kWh	\$11.90/month and 9.86 \$1.90/month and 9.86 \$1.000 kWh \$1.000 kWh \$1.000 kWh \$1.000 kWh	\$11.90/month and 9.86 ¢/kWh 1st 1,000 kWh then 10.45 ¢ over 1,000 kWh	\$11.90/month and 9.86 \$/kWh 1st 1,000 kWh then 12.36 ¢ over 1,000 kWh	\$11.90/month and 9.86 &/kWh 1st 1,000 kWh then 10.45 ¢ over 1,000	\$11.90/month and 9.86 ¢/kWh 1st 1,000 kWh then 10.45 ¢ over 1,000	\$11.90/month and 9.86 ¢/kWh 1st 1,000 kWh then 10.45 ¢ over 1,000 kWh	\$11.90/month and 9.86 ¢/kWh 1st 1,000 kWh then 25.77 ¢ over 1,000 kWh	\$11.90/month and 9.86 ¢/kWh 1st 1,000 kWh then 12.36 ¢ over 1,000 kWh	\$11.90/month and 9.86 \$/kWh 1st 1,000 kWh then 11.98 ¢ over 1,000 kWh	\$11.90/month and 9.86 \$/KWh 1st 1,000 kWh then 10.45 ¢ over 1,000 kWh	\$11.90/month and 9.86 \$/kWh 1st 1,000 kWh then 10.45 ¢ over 1,000 kWh	\$11.90/month and 9.86 \$/kWh 1st 1,000 kWh then 10 45 ¢ over 1 000	\$11.90/month and 9.86 \$11.90/month and 9.86 ¢/kWh 1st 1,000 kWh g then 10.45 ¢ over 1,000 kWh
CURRENT ELECTRICAL SOURCE	Nunavut Power Corporation - Diesel Generated Power Plant	- ti	Each person who wishes to have power uses their own generator	Nunavut Power Corporation - Diesel Generated Power Plant	Electrical Co Ltd. & Energy Corp Small	Ulesel Yukon Electrical Co Ltd. & Yukon Energy Corp Hydro		Yukon Electrical Co Ltd. & Yukon Energy Corp Hydro	Yukon Electrical Co. Ltd. & Yukon Energy Corp Large Diesel		Yukon Electrical Co Ltd. & Yukon Energy Corp Hydro	Yukon Electrical Co Ltd. & Yukon Energy Corp Hydro	Yukon Electrical Co Ltd. & Yukon Energy Corp Hydro	Yukon Electrical Co Ltd. & Yukon Energy Corp Diesel	Yukon Electrical Co Ltd. & Yukon Energy Corp Small Diesel	Yukon Electrical Co Lid. & Yukon Energy Corp Hydro	Yukon Electrical Co Ltd. & Yukon Energy Corp Hydro	Yukon Electrical Co Ltd. & Yukon Energy Corp Hydro	Yukon Electrical Co. Ltd. & Yukon Energy Corp Large Diesel	Electrical Co Ltd. & Energy Corp Hydro
HEATING DEGREE DAYS BELOW 18°C	8853	13004	12100	10892	8427	8180	8255	8385	8742	8180	8235	7892	8424	9588	8385	8227	8255	8266	8078	8237
ELEV.	33m	26m	12m	20m	649m	799m	659m	525m	370m	781m	717m	599m	504m	250m	454m	705m	650m	705m	689m	703m
LONG.	79°14'W	93°31'W	107°57'	92°36'W	140° 52' W	138° 59'W	134° 42' W	136° 17' W	139°25'W	138° 48' W	133°22'W	137° 30' W	135° 53' W	139° 50' W	136° 34' W	132° 26' W	134° 16' W	132° 43' W	128° 42' W	135° 03' W
LAT.	56°32N	69°32'N	67°42'	62°10'N	62° 23' N	61° 21' N	60° 10' N	62° 05' N	64°04'N	61° 15' N	62°12'N	60° 45' N	63° 35' N	67° 34' N	62° 49' N	61° 59' N	60° 18' N	60° 10' N	60° 03' N	60° 43' N
ATION nonthly e (year)	2.80	2.38	2.72	2.70	2.69	2.75	2.79	2.73	2.74	2.75	2.74	2.66	2.73	2.53	2.73	2.85	2.79	2.84	2.89	2.73
SOLAR INSOLATION kWh/m²/day (monthly average) Max/Min/Average (year)	1.96	1.50	1.97	2.00	9 2.11	3 2.13	2.17	2.20	5 2.17	3 2:13	5 2.19	3 2.04	4 2.17	5 1.97	3 2.20	2.21	7 2.17	2.21	5 2.23	2 2.13
	2.37	2.00	2.35	2.39	2.39	2.43	2.47	2.46	2.45	2.43	2.46	2.33	2.44	2.25	2.46	2.52	2.47	2.52	2.55	2.42
FREQU WIND (% abo	92	62	62	6	52	51	48	21	18	51	40	52	90	44	51	43	48	89	82	90
WIND SPEED (M/S)	6.17	3.28	3.33	5.70	2.77	1.98	2.73	1.99	1.96	1.98	2.46	2.01	2.24	2.53	1.99	2.52	2.73	3.27	3.75	2.24
NOIL	631	648	51	301	109	8	423	461	2057	34	350	800	484	300	287	397	158	454	1690	19,157
REGION COMMUNITY	Sanikiluaq	Taloyoak	Umingmaktok	Whale Cove	YUKON Beaver Creek	Burwash Landing	Carcross	Carmacks	Dawson	Destruction Bay	Faro	Haines Junction	Mayo	Old Crow	Pelly Crossing	Ross River	Taoish	Teslin	Watson Lake	Whitehorse