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Waksberg Invited Paper Series 
 

The journal Survey Methodology has established an annual invited paper series in honour of Joseph 
Waksberg, who has made many important contributions to survey methodology. Each year a prominent 
survey researcher is chosen to author an article as part of the Waksberg Invited Paper Series. The paper 
reviews the development and current state of a significant topic within the field of survey methodology, and 
reflects the mixture of theory and practice that characterized Waksberg’s work.  

 
Please see the announcements at the end of the Journal for information about the nomination and 

selection process of the 2012 Waksberg Award. 
 
This issue of Survey Methodology opens with the tenth paper of the Waksberg Invited Paper Series. The 

editorial board would like to thank the members of the selection committee Daniel Kasprzyk (Chair), 
Elisabeth A. Martin, Mary E. Thompson and Wayne Fuller for having selected Danny Pfeffermann as the 
author of this year’s Waksberg Award paper. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2011 Waksberg Invited Paper 
 

Author: Danny Pfeffermann 
 
Danny Pfeffermann is Professor of statistics at the Hebrew University of Jerusalem, Israel, and at 
Southampton Statistical Sciences Research Institute (S3RI), University of Southampton, UK. For the 
past 15 years he is also a consultant for the US Bureau of Labor Statistics. His main research areas are 
analytic inference from complex sample surveys, seasonal adjustment and trend estimation, small area 
estimation, and more recently, observational studies and nonresponse. Danny served for two years as 
the president of the Israel Statistical Association and is the president elect of the International 
Association of Survey Statisticians (IASS). He is co-editor of the new two-volume handbook in 
Statistics on “Sample Surveys”.  
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Preface from the author 
 

It is a great honour to receive the award named after Joe Waksberg. I am old enough to have had the 
fortune of meeting Joe on several occasions, the last time being a whole day of professional meetings at 
Westat, discussing nothing else but my own modest contributions to survey sampling. What I remember 
from these meetings is Joe’s brilliance, profound knowledge and sharp intellect, even at his very advanced 
age. I would be lying if I say that I was able to answer all his critical questions. 

 
I feel even more honoured and privileged when I look at the list of all the eminent survey statisticians 

who received the award before me. While I am still trying to convince myself that I deserve being on that 
list, I am overwhelmed by all the sincere congratulations and good words from colleagues around the world 
and during the symposium. What can I say, I am very proud and grateful. 

 
On this occasion, I would like to commemorate also one of the founders and the long serving editor of 

Survey Methodology, the late M.P. Singh. In 1993 I published a paper in the International Statistical Review 
entitled “The role of sampling weights when modeling survey data”. This paper was well received and when 
I met M.P. a couple of years later, he sort of complained to me for not publishing the paper in Survey 
Methodology. Not having a convincing answer, I promised M.P. that one day I would write another paper on 
this topic and submit it to Survey Methodology. I feel that with the present paper I have kept my promise to 
M.P. Singh.  

 
Danny Pfeffermann 
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Modelling of complex survey data:  
Why model? Why is it a problem? How can we approach it? 

Danny Pfeffermann 1 

Abstract 
This article attempts to answer the three questions appearing in the title. It starts by discussing unique features of complex 
survey data not shared by other data sets, which require special attention but suggest a large variety of diverse inference 
procedures. Next a large number of different approaches proposed in the literature for handling these features are reviewed 
with discussion on their merits and limitations. The approaches differ in the conditions underlying their use, additional data 
required for their application, goodness of fit testing, the inference objectives that they accommodate, statistical efficiency, 
computational demands, and the skills required from analysts fitting the model. The last part of the paper presents 
simulation results, which compare the approaches when estimating linear regression coefficients from a stratified sample in 
terms of bias, variance, and coverage rates. It concludes with a short discussion of pending issues.  
 
Key Words: Informative sampling; NMAR nonresponse; Likelihood-based methods; Probability weighting; 

Randomization distribution; Sample model. 
 
 

1. Introduction  
Survey data are frequently used for analytic inference on 

statistical models, which are assumed to hold for the 
population from which the sample is taken. Familiar exam-
ples include the estimation of income elasticities from 
household surveys, the analysis of labour market dynamics 
from labour force surveys, comparisons of pupils’ achieve-
ments from educational surveys and the search for causal 
relationships between risk factors and disease prevalence 
from health surveys. An important common feature to all 
these examples is that interest lies in the structure of the 
models being estimated and what can be learnt from them. 
This is different from fitting models merely for prediction 
purposes, such as when predicting finite population totals or 
in small area estimation, where the structure and interpre-
tation of the model are of secondary importance. Models are 
also used implicitly for choosing the sampling design and 
estimators, such as in stratified sampling, or when defining 
weighting cells for nonresponse adjustments. However, in-
ference is typically based in these cases on the randomization 
distribution over all possible sample selections, and not on the 
model, which is known as ‘model assisted inference’.  

Survey data typically differ from other data sets in five 
main aspects.  

1. The samples are selected at random with known 
selection probabilities, which allows using the ran-
domization distribution over all possible sample 
selections as the basis for inference instead of the 
hypothetical distribution underlying the population 
model. As discussed below, a combination of the 
two distributions is in common use.  

2. The sample selection probabilities in at least some 
stages of the sample selection are often unequal; 
when these probabilities are related to the model 
outcome variable, the sampling process becomes 
informative and the model holding for the sample is 
then different from the target population model.  

3. Survey data are almost inevitably subject to various 
forms of nonresponse, often of considerable magni-
tude, which again may distort the population model 
if the response propensity is associated with the 
outcome of interest (not missing at random non-
response). 

4. The sample data are often clustered due to the use of 
multi-stage cluster samples. The clusters are ‘natural 
units’ (households, individuals in case of longitu-
dinal surveys…), implying that observations within 
the same cluster are correlated. 

5. The data available to the modeler may be masked 
(“swapped”, “contaminated”, suppressed”) in order 
to protect the anonymity of the respondents. When 
this is the case, the modeler’s data differ from the 
correct data.   

Many approaches have been proposed in the literature for 
estimating population models from complex survey data 
possessing these features, some of which are more familiar 
than the others. The approaches differ in the conditions 
underlying their use, the data required for their application, 
goodness of fit testing, the inference objectives that they 
accommodate, statistical efficiency, computational demands, 
and the skills required from analysts fitting the model. This 
heterogeneity means that there does not exists any single 
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approach that can be considered as best in all situations. 
That being the case, a fundamental question arising is which 
approach or approaches could or should be used for a given 
practical application.  

The present paper is divided into three parts. In the first 
part (Section 2) I elaborate on the first four features of 
complex survey data mentioned above. In the second part 
(Section 3) I review the various approaches proposed in the 
literature for dealing with these features, discussing their 
merits and limitations in light of the properties mentioned 
above. In the third part (Section 4) I present simulation 
results which compare the approaches when estimating a 
linear regression model from a stratified sample in terms of 
bias, variance, and coverage rates. I conclude with a short 
discussion of pending issues in Section 5.  

2. Why are survey data different  
       from other data?  

2.1 The problem of unequal sampling probabilities 
and nonresponse  

Consider a finite population {1, ..., }U N  with 
measurements { , x , z }i i iy  for unit 1, ..., ,i N  where y  
represents an outcome variable of interest, x  a vector of 
covariates and z  a vector of design variables used for the 
sample selection. The design variables may include some or 
all of the covariates, and in special cases also the outcome 
variable when known for all the population units, such as in 
case-control studies. The matrix 1[z , ..., z ]U NZ   is known 
to the sampler drawing the sample, but not necessarily to the 
analyst fitting the model. Denote by 1( , ..., )Ns     the 
selected sample, where i  is the sampling indicator taking 
the value 1 if unit i U  is drawn to the sample and 0 
otherwise. In practice, not all the sampled units necessarily 
respond, and we denote by iR  the response indicator; 

1(0)iR   if unit i S  responds (does not respond). 
The observed data may be viewed as the outcome of 

three random processes. The first process generates the 
vectors { , x , z }i i iy  for the N  population units. The second 
process selects a sample s  from U  at random by a sam-
pling design, Pr ( ) Pr ( | ).Us s Z  The third process selects 
the responding units. This process is obviously not part of 
the original sampling design and is often the result of ‘self 
selection’, although nonresponse could be caused by many 
other reasons. See Brick and Montaquila (2009) for a recent 
overview.  

When the sample selection probabilities and/or the re-
sponse probabilities are related to the values of the outcome 
variable even after conditioning on the model covariates, in 
the sense that Pr ( 1 | , x ) Pr ( 1 | x )i i i i iy      or Pr ( iR   
1 | , x , 1)i i iy   Pr ( | x ,i iR 1),i   the model holding 
for the observed outcomes is different from the population 
model. In symbols, ( |x ) ( |x ),o i i p i if y f y  where ( |x )o i if y  

represents the model holding for a unit selected to the sample 
and responding, and ( |x )p i if y  is the population model (the 
model holding for the population values). See Equations 
(2.1) and (2.2) below.  
Example 1. Suppose that the population model is the 
regression model, 2( | x ) (x , ),p i i if y N     and that the 
sample is selected with selection probabilities satisfying 

2
1 2Pr ( 1 | , x ) exp[ (x )],i i i i i iI y y y g       where 1  

and 2 0   are constants and (x )ig  is some nonstochastic 
function of the covariates. Simple use of Bayes theorem (see 
below) shows that the model holding for the sample 
outcomes is in this case, 2

1( | x ) [( x ) / ,s i i if y N C      
2 / ],C  where 2

2(1 2 ).C      Thus, although the sam-
ple residuals have again a normal distribution, the regression 
coefficients and the residual variance are different from their 
values under the population model. In the special case 

2 0,   the slope coefficients and the residual variance are 
the same as under the population model, but not the inter-
cept. If 1 0   as well, the sample selection probabilities 
satisfy Pr ( 1 | , x ) Pr (i i i iy     1 | x )i  and the two 
models are now the same.  

Following conventional terminology, when Pr ( i   
1 | , x ) Pr ( 1 | x )i i i iy     the sampling design is said to be 
informative. When Pr ( 1 | , x , 1) Pr ( | x ,i i i i i iR y R     

1),i   the nonresponse is not missing at random (NMAR 
nonresponse). Notice that whereas the sampling proba-
bilities are typically known to the analyst fitting the model, 
at least for the sampled units, the response probabilities are 
generally unknown and need to be modelled under NMAR 
nonresponse. Ignoring an informative sample or NMAR 
nonresponse and thus assuming implicitly that the model 
holding for the observed outcomes is the same as the target 
population model may yield large biases and erroneous 
inference. The books edited by Kasprzyk, Duncan, Kalton 
and Singh (1989), Skinner, Holt and Smith (1989) and 
Chambers and Skinner (2003) contain many discussions and 
illustrations of the effect of ignoring informative sampling 
or NMAR nonresponse. See also Pfeffermann (1993, 1996), 
Pfeffermann and Sverchkov (2009) and Pfeffermann and 
Sikov (2011) for further discussions and examples, with 
many other more recent references.  

In what follows, I use the abbreviation “pdf ” to define 
the probability density function when the outcome is 
continuous or the probability function when the outcome is 
discrete. Suppose first that there is no nonresponse. Follow-
ing Pfeffermann, Krieger and Rinott (1998a), the marginal 
sample pdf, ( | x )s i if y  defines the conditional pdf of iy  
given that unit i  is in the sample ( 1).i   By Bayes 
theorem, 

              

( | x ) ( | x , 1)

Pr ( 1 | x , ) ( | x )
,

Pr ( 1 | x )

s i i i i i

i i i p i i

i i

f y f y I

I y f y

I

 





 
(2.1)
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where ( | x )p i if y  is the corresponding population pdf. The 
probabilities Pr ( 1 | x , )i i iI y  are generally not the same 
as the sample selection probabilities Pr ( 1),i i     
which may depend on all the population values UZ  of the 
design variables. However, the use of the marginal sample 
pdf only requires modelling Pr ( 1 | x , ).i i iI y  Typically, 
Pr ( 1 | , , x ) ,i i i i iI y     in which case Pr ( 1 | ,i iI y  
x )i ( | ,x ),p i i iE y   where ( )pE   is the expectation under 
the population pdf.   
Remark 1. In practice, the covariates featuring in the 
population model need not be the same as the covariates 
featuring in the model of the conditional sample inclusion 
probabilities, Pr ( 1 | x , ).i i iI y  In fact, following the 
results in Pfeffermann and Landsman (2011), identifiability 
of the sample model often requires that the two sets of 
covariates are not identical. However, to simplify the 
presentation in this paper, I assume for convenience that the 
covariates contained in the population model and the 
covariates defining the conditional inclusion probabilities 
are the same, or alternatively, that x i  defines the union of 
the two sets of covariates.  

It follows from (2.1) that unless Pr ( 1 | x , )i i iI y   
Pr ( 1 | x ) ,i i iI y   the sample pdf is different from the 
population pdf, in which case the sampling design is 
informative and cannot be ignored in the inference process. 
In particular, it follows from (2.1) that under informative 
sampling,  

Pr ( 1 | x , )
( |x ) x ( |x ),

Pr ( 1 | x )
i i i i

s i i p i p i i
i i

I y y
E y E E y

I

  
   

 

where ( )sE   is the expectation under the sample pdf. 
Estimating ( | x )p i iE y  is often the main target of infer-
ence, illustrating that ignoring an informative sampling 
scheme and thus estimating implicitly ( | x )s i iE y  can bias 
the inference.  

Suppose now the existence of NMAR nonresponse. The 
marginal sample pdf (2.1) can be extended to this case by 
defining, 

( | x ) ( | x , 1, 1)

Pr ( 1 , x , 1) Pr ( 1 | , x ) ( |x )

Pr ( 1 | x , 1) Pr ( 1 | x )

Pr ( 1 , x , 1) ( | x )
.

Pr ( 1 | x , 1)

o i i i i i i

i i i i i i i p i i

i i i i i

i i i i s i i

i i i

f y f y I R

R y I I y f y

R I I

R y I f y

R I

  

  


  

 


 
(2.2)

 

Notice from (2.2) that unless Pr ( 1 | , x , 1)i i i iR y     
Pr ( | x , 1) ,i i i iR y    the pdf holding for the observed 
outcomes is different from the sample pdf. Here again I 
assume for convenience that the response probabilities 
depend on the same covariates as in the sample model. See 
Remark 1 above. 

The pdfs (2.1) and (2.2) define the marginal distributions 
of the outcome for a given unit. These definitions generalize 
very naturally to the joint pdf of two or more outcomes 
associated with different units. More generally, define for 
every plausible sample s U  the sample indicator ,sA  
such that 1sA   if s  is sampled and 0sA   otherwise, 
and assume for convenience full response. Denote the data 
associated with s by (y , x ).s s  The joint sample pdf of 
y | xs s  is then, 

          

(y | x ) (y | x , 1)

Pr ( 1 | y , x ) (y | x )
.

Pr ( 1 | x )

s s s s s s

s s s p s s

s s

f f A

A f

A

 






 
(2.3)

 

The pdf  (y | x )p s sf  can be general, allowing in particular 
for correlated measurements, but modelling the probability 
Pr ( 1 | y , x )s s sA   is practically only feasible if the 
sample can be decomposed into exclusive and exhaustive 
subsets ks  such that Pr ( 1 | y , x )s s sA   Pr (

kk sA   
1 | y , x )

k ks s  and Pr ( 1 | y , x )
k k ks s sA   satisfies the same 

model for all the subsets (see Example 2). In particular, if 
the population outcomes are independent given the co-
variates under the population model and Pr ( 1 | y ,s sA   
x )s  Pr ( 1 | , x ),i s i i iy    (2.3) takes the form 

       

Pr ( 1 | , x ) ( | x )
(y | x )

Pr ( 1 | x )

( | x ),

i i i p i i
s s s i s

i i

s i ii s

y f y
f

f y





 


 





  (2.4)

 

so that the sample outcomes are likewise independent.   
Example 2. Consider the case of a clustered population 

,l lU U   with independent measurements between 
clusters, such that (y | x )p U Uf (y | x ),

l ll p U Uf  where 
(y , x )U U  defines all the population values and (y , x )

l lU U  
the values in cluster .l  Let s  define the set of sampled 
clusters, assumed to be drawn independently with proba-
bilities Pr ( | y , x )

l lU Ul s  (y , x )
l lU Ur  for some func-

tion ( ),r   and suppose also that all the units in the sampled 
clusters are observed (single-stage cluster sampling). Then, 
Pr ( 1 | y , x )s U UA   (y , x )

k kk s U Ur  [1 (y ,
jj s Ur   

x )].
jU  Since for ,(y ,x ) (y ,x ),

k k k kU U s sk s   it follows that 
Pr ( 1 | y ,x )s s sA   (y ,x ) ,

k kk s s sr G   where for given 
covariates x ,

jU 1,j s  G is a constant satisfying, G   
[1 (y , x )] (y | x ) y .

j j j j jj s U U p U U Ur f d    The case of a 
non-clustered population with independent measurements 
and Poisson sampling of individual units is a special case 
where each cluster consists of a single element, giving rise 
to (2.4).  
Remark 2. The examples considered so far assume 
independent sampling, which preserves the independence of 
the outcomes after sampling, but this assumption can 
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usually be relaxed following a result proved and illustrated 
in Pfeffermann et al. (1998a). By this result, under some 
general regularity conditions and for many commonly used 
sampling schemes for selection with unequal probabilities, 
if the population measurements are independent, the sample 
measurements are asymptotically independent under the 
sample distribution. The asymptotic framework requires that 
the population size increases but the sample size is held 
fixed. As illustrated in section 2.3, the assumption of 
independent population measurements is often also not 
restrictive. 

So far, we suppressed for convenience from the notation 
the parameters underlying the population pdf and the 
sampling process. Consider, for example, the sample pdf 
(2.3). With added parameter notation, it can be written as  

Pr ( 1 y , x ; ) (y |x ; )
(y x ; , ) .

Pr ( 1 |x ; , )
s s s p s s

s s s
s s

A f
f

A

  
  

  
 (2.5) 

Thus, the conditional population and sample pdfs are 
different, unless 

      
Pr ( 1 y , x ; ) = Pr ( 1 x ; , ) y .s s s s s sA A       (2.6) 

When (2.6) holds, inference on the target parameter   can 
be implemented by fitting the population model to the 
sample data, ignoring the sample selection. Note that this 
conclusion refers to the selected sample defined by the event 

1.sA    
The condition (2.6) is a strong condition. In a funda-

mental article on missing values, Rubin (1976) establishes 
conditions under which the sampling process can be ignored 
for likelihood, Bayesian or sampling theory (repeated 
sampling from a model) inference, that is, conditions under 
which the population model defined by (y | x ; )p s sf   can 
be fitted to the observed data, depending on the inference 
method used. Little (1982) extends Rubin’s results by 
distinguishing between the sample selection and the 
response process. Another important distinction is that Little 
conditions on the population values UZ  of the design 
variables used for the sample selection. Inference on the 
target population model (y | x ; )p s sf   requires therefore 
integrating the conditional pdf of y | , xs U sZ  over the 
distribution of | xU sZ  (see Section 3). Sugden and Smith 
(1984) establish conditions under which a sampling process 
that depends on design variables Z  is ignorable, given 
partial information on the design. Let ( )s s Ud D z  contain 
all the available design information for a sample s such as 
strata membership (may only be known for the sampled 
units), sample selection probabilities etc. Using previous 
notation, a key condition for ignorability of the sampling 
process given the available design information is that 

| ,s U sA Z d  with “ ” meaning independence, implying 
Pr ( 1 | )s U UA Z z   Pr ( sA  1 | )sd  for any Uz  for 
which ( ) .s U sD z d  

For large scale multi-stage sample surveys with possibly 
many design variables, it is generally difficult and often 
impractical to check directly the conditions that permit 
ignoring the sample selection or nonresponse given the 
available design information. On the other hand, even when 
the sample pdf is different from the population pdf, it does 
not necessarily imply that inference that ignores the 
sampling process is wrong. As a simple illustration, con-
sider the special case of Example 1 where 2 0.   In this 
case the sample pdf is normal with the same slope coeffi-
cients and residual variance as under the population pdf. 
Thus, for inference about the slope coefficients one can 
ignore the sampling process. A similar result holds for 
logistic models when the sample selection depends on y  
but not on x.  See Pfeffermann et al. (1998a) for derivation 
of this result. Pfeffermann and Sverchkov (2009) review 
several test statistics proposed in the literature for assessing 
whether ignoring the sample selection is justified for the 
intended inference.  
2.2 The use of the randomization distribution for 

inference  
A unique feature of sample surveys is that the sample is 

selected at random by use of a sampling design [{ , Pr( )},s s  
].s S  The sampling design induces a (discrete) ran-

domization distribution for any statistic ,ysT  which is the 
conditional distribution over all possible sample selections, 
given the finite population values. Thus, the statistic ysT  
takes the value yst  with probability Pr ( ),s .s S  Classical 
survey sampling inference is based solely on this distri-
bution. For example, the familiar Horvitz-Thompson (HT) 
estimator HT,ysT  which takes the value HT ( / )i sys i it y   if 
sample s  is drawn, is randomization-unbiased for the finite 
population total 1TOT ,N

jy jy  since HTPr ( )s S yss t   
.yT  Its variance is, HTVar( )ysT  HT 2Pr ( ) ( ) .s S ys ys t T   No-

tice that in the case of nonresponse, the use of the ran-
domization distribution requires knowledge of the response 
probabilities, which in practice can only be estimated.     
The HT estimator takes in this case the form, HT

ysT   
ˆ/ [ Pr ( 1| 1)],i R i i i iy R I      where R  defines the sub-

sample of respondents. See Fuller (2002) for further 
discussion. 

The randomization distribution conditions on the realized 
population values. Consequently, it can be used for descrip-
tive inference on known functions of the finite population 
values, but not for analytic inference on a hypothesized 
model giving rise to these values. For this, one may consider 
the joint distribution over all possible sample outcomes for 
given population values (the randomization r-distribution) 
and all possible realizations of the finite population mea-
surements (the model p-distribution). See Binder and 
Roberts (2009) and the references therein. The combined 
r p  distribution offers an alternative framework of 
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inference to the use of the pdfs ( | x)sf y  or ( | x)of y  de-
fined before.  
Example 3: Suppose that the population model is ~iy  
Mult[{ }, ],kp K  such that Pr ( ) , 1, ..., ;p i ky k p k K    

1 1.K
k kp   Let Pr ( | ) .i ki s y k     Then, by (2.1), 

Pr ( )s iy k  1Pr ( | ) / K
ji k k j jy k i s p p      *,kp  or, 

*| ~ Mult({ }, ).i ky i s p K  Assuming independence of the 
observed outcomes and known selection probabilities, the 
maximum likelihood estimator (mle) of kp  based on the 
sample distribution is ( / ) /k k kp n  1( / ),K

j j jn   where 

kn  is the number of sampled units with outcome .iy k  
The use of the r p  distribution suggests estimating kp  by 
the HT estimator ˆkp  |(1 / ) (1 / ) ( / ) / .

ii y k k k kN n N     
The estimator ˆkp  is randomization-unbiased for k̂P   

/ ,kN N  where kN  is the number of population units with 
outcome ,jy k  and k̂P  is p-unbiased for ,kp  such that 
ˆkp  is r p -unbiased for .kp   

The obvious difference between the r p  distribution 
and the sample distribution, ( | x),sf y  is that the latter 
conditions on the observed sample of units (and hence the 
observed values of the covariates or the selected clusters in a 
cluster sample), whereas the r p  distribution accounts 
for all possible sample selections. Consequently, the use of 
the latter distribution does not lend itself in general to 
conditional inference. The use of the pdfs ( | x)sf y  or 

( | x)of y  requires modelling Pr ( 1 | x , )i i iI y  (Equation 
2.1) and Pr ( 1 , x , 1)i i i iR y I   in case of nonresponse 
(Equation 2.2), but it permits the computation (estimation) 
of the conditional pdf of the observed outcomes given the 
covariates, and hence the use of classical inference tools.   
2.3 Data obtained from a cluster sample  

Another special feature of survey data mentioned in the 
introduction is clustering, due to the use of multi-stage 
cluster samples. The clusters are ‘natural groups’ such as 
households, residence blocks, schools, or even individuals 
in the case of longitudinal surveys. Consequently, the out-
comes pertaining to the same cluster are generally corre-
lated, known as the intraclass correlation. It is important to 
emphasize that the clusters represent an existing population 
grouping, such that an intraclass correlation exists also 
under the population model.  

Pfeffermann and Smith (1985) review several classes of 
plausible regression models for clustered populations, and 
discuss how they can be estimated from the sample. A popu-
lation model in common use is the random intercept model, 

   

indep. indep.
2 2

x β ; 1, ..., , 1, ..., ;

~ (0, ); ~ (0, ),

ij ij i ij i

i u ij

y u i M j N

u N N 

     

  
 

(2.7)
 

where M  defines the number of clusters and iN  the num-
ber of units in cluster .i  The model assumes also ( )i ijE u    
0, , .i j  Notice that under this model 2 2Var( ) ,ij uy     

2( )ij il uE y y    for j l  and ( ) 0ij klE y y   for ,i k  
implying  

              

2 2 2Corr ( , ) / ( ) for ;

Corr ( , ) 0 for .

ij il u u

ij kl

y y j l

y y i k

     

 
 (2.8) 

Scott and Holt (1982) show that estimating β  in (2.7) by 
ordinary least squares (OLS) usually results in a small loss 
of efficiency, compared to the use of the optimal generalized 
least squares (GLS) estimator. However, ignoring the intra-
cluster correlation when estimating the variance of the OLS 
estimator may result in considerable variance underesti-
mation and hence wrong size and excessive powers of test 
statistics and too short confidence intervals.  

The results in Scott and Holt (1982) and Pfeffermann and 
Smith (1985) assume noninformative sampling and full 
response. When this is not the case, the model holding for 
the sample data is different from the corresponding popula-
tion model, although the clustered nature of the model is 
preserved as we now show. Consider the following two-
level population model: 

1

2

Level 1: | t ~ ( | t ; θ ), 1,...,

Level 2: | ( , x ) ~ ( | x , ; θ ), 1,..., ,

i i p i i

ij i ij p ij ij i i

u u i M

Y u f y u j N

 


(2.9) 

where p  and pf  denote the first and second-level pdfs 
with known covariates t i  and x ,ij  governed by the hyper-
parameters 1  and 2  respectively. The model (2.7) is a 
special case of (2.9) by which p  and pf  are normal pdfs 
with t 0i   (no covariates), 2

1 u    and 2
2 ( , ).     

Suppose that the sample is drawn by the following two-
stage sampling process. In the first stage a sample 1s  of 
m M  first-level units (clusters; say, schools) is selected 
with probabilities 1Pr ( )i i s    that may be correlated 
with the random effects iu  after conditioning on the 
covariates t .i  In the second stage a sub-sample 2is  of 

i in N  second-level units (ultimate sampling units; say, 
pupils) is sampled from each selected first-level unit i  with 
probabilities | 2 1Pr ( | )j i ij s i s     that may be corre-
lated with the outcomes ijy  after conditioning on the 
covariates x .ij  Denote by i  and |j i  the first and second-
stage sampling indicators. By (2.1), the two-level sample 
model holding for the observed data, corresponding to the 
population model (2.9) is, 

1

2

1 1

1 1

1 1

2 2

| 2 2

| 2 2

Level 1:
( | t ; , )

Pr ( 1 | , t ; ) ( | t ; )

Pr ( 1 | t ; , )
Level 2:

( | x , ; , )

Pr ( 1 | , x ; ) ( | x , ; θ )
,

Pr ( 1 | , x ; , )

i

s i i

i i i p i i

i i

s ij ij i

j i ij ij p ij ij i

j i i ij

f u

u u

f y u

y f y u

u

 
    


   

 
  


   

 (2.10) 
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where I assume | 2 |Pr ( 1 | , , x ; ) Pr (j i ij i ij j iy u     
 

21 | , x ; ).ij ijy    
Remark 3. By the independence result in Remark 2, if 

|ij iy u  are independent under the population model, they 
are asymptotically independent under the sample model. 
Similarly, if the random effects iu  are independent under 
the population model, they are asymptotically independent 
under the sample model. Thus, the sample model (2.10) is a 
genuine two-level model, although with different distribu-
tions and possibly more parameters. Evidently, the models 
(2.9) and (2.10) are different, unless |Pr ( 1 | ,j i ijy  x )ij 

 
|Pr ( j i  1 | , x )i iju  and Pr ( 1 | , t )i i iu   Pr ( i  1 | t ).i  

So far I assumed implicitly full response. Suppose, for 
example, that in sampled cluster (first level unit) i  only a 
sub-sample 2 2i ir s  respond, and denote by |j iR  the re-
sponse indicator. The second-level model for the observed 
outcomes is now,  

2

*
2 2 2 2

| |

*
| | 2 2 2

*
| | 2 2 2

Level 1:

( | x , ; , , )

( | x , , 1, 1)

Pr ( 1 ,x , 1; ) ( |x , ; , )
.

Pr ( 1 x , , 1; , , )
i

o i ij ij i

ij ij i j i j i

j i ij ij j i s ij ij i

j i ij i j i

f y u

f y u I R

R y I f y u

R u I

  

  

    


    
 (2.11)

 

The pdf (2.11) coupled with the level 1 pdf in (2.10) defines 
the model holding for the observed data in the case of 
informative cluster sampling and NMAR nonresponse.  

 
3. How can we estimate population models from 

      complex survey data?  
In this section I review the main approaches proposed in 

the literature to deal with the special features of complex 
survey data discussed in Section 2, and propose some 
modifications. In order to simplify the discussion, I consider 
the following set up used for the simulation study in 
Section 4.  
3.1 Population model and sampling design   

Consider a stratified population 1 ... HU U U    of 
size .N  Specifically, define for every unit j U  a random 
vector stratification indicator 1z ( , ..., )j j Hjz z   such that 

1Pr( 1) , 1H
hhj h hz p p    and hj U  if 1.hjz   The 

stratification is carried out independently between the units. 
Values of an outcome variable Y  are generated as jy   

2
0 1 0 1β β ; (0, ),j j j j j jx x N           where the 

jx ’s are fixed scalar covariates, 0 1 0 1(β , β , , )   are fixed 
coefficients and  

1

1
1.

H hj
j h

h

z

H p
    

Notice that j  is a random variable with mean zero and 
variance  

2 1

1 1
1,

H

h
h

V
pH

 

 
  
 

  

implying that for given covariates , ,j kx x  

0 1

2 2
0 1

( | )

β β , Var ( | )

( ) , Cov ( , | , )

0, .

p j j

j p j j

j p j k j k

E y x

x y x

x V y y x x

j k



 

   

 

 

(3.1)

 

However, for unit ,hj U   

0 0

2
1 1

| , z 1 ~ [( )

( + ) , ]; [(1/ ) 1].

j j hj h

h j h h

y x N

x Hp

    

       
 
(3.2)

 

Thus, the regression model in each stratum is the classical 
linear model with constant variance, but the intercepts and 
slopes change across the strata. 

The model defined by (3.1) and (3.2) is a realistic 
random coefficients regression model, which I think mimics 
many populations encountered in practice.  

We used systematic probability proportional to size 
(PPS) sampling within the strata for drawing the samples 
with the size variable defined as * 1.5max{min[(| |) ,j jz = q  
9], 1}; (1 , 1).j jq ~ N + x  There is nothing novel about the 
choice of this size variable except that it allows for a clear 
distinction between the variance of the various estimators. 
This size *

jz  does not depend on the outcome ,jy  and 
hence the sampling process within each stratum is non-
informative. However for disproportionate allocation of the 
sample between the strata, the sampling scheme is infor-
mative because of the different models operating in different 
strata, such that the observed outcomes carry information on 
the strata membership and Pr ( , ) Pr ( ).j j jj s | y x j s | x  

 
 

We focus on the estimation of the regression coefficients 

0 1(β , β )  in (3.1) as the target of inference and assume that 
the available sample information consists of the observed 
outcomes and covariates, the strata membership vectors hjz  
and the strata sizes, { }.hN   
3.2 Including the design variables among the 

covariates  
As implied by (2.3), the population model (pdf ), 
(y | x )p s sf  and the sample model (y | x )s s sf  are the 

same if Pr ( 1 | y , x ) Pr ( 1 | x ) y .s s s s s sA A     By 
(2.2), the response process is ignorable if Pr ( 1 ,i iR y 

 
x , 1)i iI   Pr ( 1 x , 1) .i i i iR I y    Thus, a possible 
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way to account for the sampling and response effects is to 
add to the model covariates all the variables and interactions 
determining the sample and response probabilities and then 
integrate them out in order to estimate the model of interest. 
Denote these variables by J Z L   with population 
values ,UJ  where L  defines the variables explaining the 
response probabilities. Assuming (y |x , )p s U Uf j  (y |x ,p s sf  

),Uj  the use of this approach requires to fit first the model 

   (y | x , ) (y , y | x , ) y ,p s s U U p s s U U sf J j f j d      (3.3) 

and then integrate, 

       (y | x ) (y | x , ) ( | x ) .p s s p s s U p U s Uf f j f j d j   (3.4) 

Variants of this approach can be found in DeMets and 
Halperin (1977), Holt, Smith and Winter (1980), Nathan 
and Holt (1980), Jewell (1985), Skinner (1994), Chambers 
and Skinner (2003, Chapter 2) and Gelman (2007).  

The use of the approach is appealing, and it has the 
advantage of allowing classical model based inference 
procedures once the variables U U UJ Z L   are included 
in the model, but it is often limited in practice for the 
following reasons: 

1.  It requires knowledge of the population values of all 
the variables determining the sample selection and 
response, and this information is usually unknown to 
the analyst fitting the model because of confi-
dentiality restrictions or other reasons. Even if 
known, including in the model all the geographic 
and operational variables used for the sampling 
design and the variables explaining the response 
may be formidable. 

2.  In practice there may be many covariates and many 
design variables, and modelling the relationship 
between the design variables and the covariates in 
order to integrate out the effect of the former 
variables can be complicated and may no longer 
reproduce the original target model.  

Feder (2011) proposes the following simple solution to 
this problem. Suppose first that the design variables and the 
covariates are known for every element in the population. 
The proposed solution consists of imputing the missing 
population outcomes using the model (y | x , )p s s U Uf J j  
fitted to the sample data, and then fitting the population 
model ( | x )p j jf y  using all the population values, with the 
missing outcomes replaced by their imputed values. When 
the design variables and the covariates are unknown for the 
non-sampled units, they need to be imputed as well. The 
imputation may be carried out by sampling with replace-
ment ( )N n  values (x , )i iz  from the sample values with 
probabilities 1( 1) / ( 1)n

ki i kp w w  


 on each draw, 
where the iw ’s are the sampling weights. See Pfeffermann 

and Sikov (2011) for justification of this procedure under 
the sample model and an extension for the case of NMAR 
nonresponse.  

3. The approach is not operational when the inclusion 
in the sample depends also on the outcome values, 
that is, *{ , }U U UZ Y Z  and Pr ( 1 | , ,s U UA Y X  * )UZ  *Pr ( 1 | , ).s U UA X Z  A classical example is 
case-control studies (Scott and Wild 2009), but a 
similar problem arises when the nonresponse is 
NMAR. 

 
Remark 4. Including the design variables and the variables 
explaining the response in the model does not necessarily 
require integrating them out even if they are not part of the 
covariates of interest, as the following example shows.   
Example 4: Suppose that a sample of size n  is selected with 
probabilities defined by the population values of design 
variables Z and that all the sampled units respond. Let the 
population distribution of , ,Y X Z  be multivariate normal. 
The data available to the analyst consist of the sample 
values [y , x ]s s  and the population values .UZ  Using prop-
erties of the multivariate normal distribution, (y| )pE x 

 
0 yx x    for some coefficients 0(β , β ),yx  but the OLS 

estimate of yx  is biased because the sampling probabilities 
depend on Z,  which is correlated with .Y  The mle of yx  
for the case of a trivariate normal distribution is (DeMets 
and Halperin 1977), 

22 2ˆ ˆσ σ
β̂ 1 1 ,yz xz xzz z

yx xy xx
zz zz zz zz

s s s
= s + s +

s s s s

                
         

 (3.5) 

where -1
1 ( ) ( )n

iuv i s i ss n u u v v    and 2 -1
1ˆ N

iz N    
2( ) ,i Uz z  with ,s su v  and Uz  defining the corresponding 

sample and population means. Thus, the population values 
of Z  feature in this case in the optimal estimator of the 
target parameter .yx  Holt et al. (1980) extend this result to 
the case where , ,Y X Z  are vector variables. Nathan and 
Holt (1980) establish conditions under which ˆ

yx  is con-
sistent without the multivariate normality assumptions. 
Pfeffermann and Holmes (1985) study the robustness of the 
estimator to model misspecification.  
 
3.3 Using the sampling weights as surrogate for the 

design variables  
For situations where there are too many design variables 

determining the sample selection to include them all in the 
model, or when some or all of these variables are unknown 
to the analyst, it is often advocated to include in the model 
the sampling weights as surrogate of the design variables. 
Examples of the use of this approach can be found in 
DuMouchel and Duncan (1983), Särndal and Wright 
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(1984), Rubin (1985), Chambers, Dorfman and Wang 
(1998) and Wu and Fuller (2006).  

Rubin (1985) defines the vector 1( , ..., )Na = a a =  
( )Ua Z  to be an adequate summary of UZ  if Pr ( sA   

1 | ) Pr ( 1 | ).U sZ A a   The author shows that the vector 

1( , ..., )U N     of the sample inclusion probabilities is 
the coarsest possible adequate summary of ,UZ  though it 
may be too coarse. It follows therefore that for sampling 
designs such that Pr ( sA  1 | , ) Pr (U U sY Z A  1 | ),UZ  if 

U  is an adequate summary, the sample selection can be 
ignored for inference on the parameters of ( x , ).p s s Uf y |   
In order to estimate the target model ( x)pf y |  in this case, 
one can follow the same steps as in Section (3.2) with U  
taking the role of .UZ  

The use of this approach reduces the dimension of the 
added covariates but it requires knowledge of the sample 
inclusion probabilities (or the sampling weights) for all the 
population units, which may not be available in the case of a 
secondary analysis. The case of nonresponse is particularly 
problematic since the response probabilities are generally 
unknown and need to be estimated. Another major problem 
with this approach is that for general sampling designs, the 
vector U  may not be an adequate summary of .Z  Sugden 
and Smith (1984) and Smith (1988) establish necessary 
design information required for sampling ignorability.   
Remark 5. Even though the vector U  is not always an 
adequate summary of ,UZ  for sampling designs such that 
Pr ( 1 | , x , ) ,i i i i iI y     ( | x , )s i i if y    ( | x , ),p i i if y   
so that the marginal population and sample pdfs for a given 
sampled unit are nonetheless the same when adding i  to 
the covariates (see Skinner 1994).   
Remark 6. In the empirical set up described in Section 3.1 
there is a one to one correspondence between the design 
variables *(z , )j jz  and the sampling weights ( , ).h jw w   
3.4 Methods based on probability weighting  

So far we considered methods requiring knowledge of 
the variables J  determining the sample selection and 
response probabilities, or at least an adequate summary of 
them. The methods considered below only require knowl-
edge of the sampling weights for the responding sampled 
units. As such, they are restricted to situations of full 
response, or to cases where the response probabilities can be 
estimated sufficiently accurately, in which case the sam-
pling weight for a responding unit is the inverse of the 
product of the unit’s selection probability and its estimated 
response probability. Probability weighting (PW) is dis-
cussed in numerous articles; see the recent discussion in 
Pfeffermann and Sverchkov (2009) and the references 
therein. As before, we focus here on estimation of popula-
tion models. 

To introduce the idea, consider the case of a census with 
full response. Assuming independent outcomes, the model 
parameters, ,  are typically estimated in this case by 
solving census estimating equations of the form,  

                               
1

( , x ; ) 0.
N

j jj
u y


   (3.6) 

In the case of mle, ( , x ; ) ( / )log (y | x ;j j p j ju y f    ),
 
 

the thj  score. In practice, data are available for only a 
sample s U  and the equations (3.6) are replaced by their 
randomization unbiased Horvitz-Thompson estimator, 

                              ( , x ; ) 0,i i ii s
w u y


   (3.7) 

where the iw ’s are the sampling weights.   
Remark 7. When the census estimating equations (3.6) are 
the likelihood equations, the estimators obtained by solving 
(3.7) are known in the sampling literature as ‘pseudo mle’ 
(pmle). See Binder (1983), Skinner et al. (1989), 
Pfeffermann (1993, 1996) and Godambe and Thompson 
(2009) for discussion with many examples. This approach 
is implemented in many software packages such as SAS, 
STATA, SUDAAN, etc. 
 

Example 5. In the case of the standard linear regression 
model, the pmle or PW estimator of the vector coefficient β  
solves the equations pw

ˆ( x β ) x 0;i s i i i iw y    

                
1

pw
ˆ x x x .i i i i i ii s i s

w w y


 
       (3.8) 

The PW estimator of the residual variance is 2
pw̂   

2
pw

ˆ( x β ) / ( ),i s i si i i iw y w k     where dim(β).k   
For logistic regression, the pseudo likelihood equations 

(with no explicit solution) are, 

[ (x )] x 0; (x )

Pr ( 1 | x )

exp (x β) [1 exp(x β)].

i i i i i i ii s

p i i

i i

w y p p

y

/ +


 

 

 

  

 

(3.9)

 

Example 6. Let ( ; ) [ ( ) ( )]j j pu y y F       where 
( )pF   is the cumulative population distribution at   and 

( ) 1(0)a   when 0 ( 0).a a   The PW estimator of 
( )pF   is , pw

ˆ ( ) ( ) / ,i s ip i i iF w y w        the familiar 
Hàjek (1971) estimator.   

The notable property of PW estimators is that they are 
generally r p  consistent. (See Section 2.2 for definition 
of the r p  distribution). This can be seen by decom-
posing pw pw cen cen

ˆ ˆ ˆ ˆ( ) ( ) ( ),            where cen̂  is 
the (hypothetical) solution of the census equations (3.6). 
Under general conditions, 0.5

pw cen
ˆ ˆ( ) ( )pO n     and 

0.5
cen

ˆ( ) ( ),pO N      thus establishing the r p  con-
sistency of cen̂  under these conditions. The r p  vari-
ance of pw̂  can be decomposed as, 
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    pw pw pw
ˆ ˆ ˆVar ( ) [Var ( )] Var [ ( )].r p p r p rE E       (3.10) 

For single stage sampling, if n  is much smaller than N  as 
is usually the case, the second term on the right hand side of 
(3.10) is negligible compared to the first term, and 

pw
ˆVar ( )r p   can be estimated by the randomization vari-

ance estimator pw
ˆˆVar ( ).r   This result does not necessarily 

hold for cluster sampling since in this case pw
ˆVar ( )r   is 

typically of order (1/ )O m  where m  is the number of sam-
pled clusters, and under a suitable model pw

ˆVar [ ( )]p rE   is 
(1/ )O M  where M  is the number of population clusters. 

For pw
ˆˆVar ( )r   to be an adequate estimator of pw

ˆVar ( )r p   
in this case, m  must be much smaller than .M    
Remark 8. The consistency of PW estimators under correct 
population model specification may also be established 
under the sample distribution (Equation 2.1). Consider the 
estimator pw̂  in (3.8) and write 1

pw
ˆ β [ x x ]i s i i iw 

     
xi s i i iw   where the i ’s are the population model resid-

uals. The key result leading to the consistency of pw̂  under 
the sample distribution is that if Pr ( 1| , x , )i i i i iI y     
then ( )s i iE w   ( ) ( ) 0s i p iE w E    (follows from 3.14 
below). In fact, by viewing the covariates as random with 
( , x )i iy  having some joint distribution, 

2 2

β β

β arg min ( x β) arg min [ ( x β) ],p i i s i i iE y E w y    
 

   

implying that pw̂  is the optimal estimator (in weighted 
least-squares metric) of β  under the sample distribution of 
( , x ).i iy  See also (3.24) below. Godambe and Thompson 
(1986, 2009) establish and discuss other optimality proper-
ties of estimators solving estimating equations of the form 

( , x ; ) 0.i s i i iw u y    The following example shows how 
probability weighting can be used when modelling clustered 
populations.  
Example 7. Consider the population two-level (random 
intercept) model,  

2

Level 1:

~ (t , ), 1,...,i i uu N i M  
 

 (3.11) 

2
Level 2:

x β , ~ (0, ), 1...ij ij i ij ij iy u N j N        

where ij  and iu  are independent for all i  and .j  The 
unknown parameters are the vectors of coefficients 

(β , γ )=     and the variances ετ (σ , σ ) .2 2
u=   Assume full 

response. Under ignorable sampling of first and second-
level units, the mle of ( , τ)  is computed conveniently by 
iterating between the estimation of   for ‘known’   and 
the estimation of   for ‘known’ ,  with the ‘known’ values 
defined by the estimators from the previous iteration. The 
two sets of estimators on the rth iteration are the solutions of 
linear equations of the form, ( ) ( ) ( ),r r rP q R    ( ),rs  

with appropriate definition of the matrices ( ) ( )( , )r rP R  and 
the vectors ( ) ( )( , ), 1, 2, ...,r rq s r   (Goldstein 1986). When 
applied to all the population values, these equations define 
the census estimating equations.  

Suppose, as before, that a sample 1s  of first-level units is 
sampled with probabilities 1Pr ( ),i i s    and that sub-
samples 2is  of size i in N  are sampled from each selected 
first-level unit i  with probabilities | 2 1Pr ( | ).j i ij s i s     
The pmle for this model can be obtained by first expressing 
the elements of the matrices ( ) ( )( , )r rP R  and the vectors 

( ) ( )( , )r rq s  as sums over first and second-level units, and 
then estimating each population sum of the form 1

M
i id  by 

the H-T estimator 
1
( / ),i s i id   and each population sum of 

the form 1
iN

j ijd  by the H-T estimator 
2 |( / ).

ij s ij j id   See 
Pfeffermann, Skinner, Holmes, Goldstein and Rasbash 
(1998b). Pfeffermann and Sverchkov (2009) review other 
methods of probability weighting in two-level models. 

Probability weighting is in broad use both for estimation 
of finite-population quantities, referred to in the literature as 
descriptive inference, and for ‘analytic inference’ on popu-
lation models. The main attraction of this method is its 
simplicity. It is generally viewed as being ‘model free’, 
except when having to estimate the response probabilities, 
which is often based on models, and hence more robust than 
other methods, but when used for analytical inference, this 
view is questionable.  

Probability-weighted estimators are randomization 
consistent for the corresponding descriptive population 
quantities (CDPQ), defined as the (hypothetical) solutions 
of the census estimating equations. However, if the popu-
lation model is misspecified, the target CDPQ are not 
(model) p-consistent for the true model parameters and the 
PW estimators are not r p  consistent either. So, proba-
bility weighting provides no protection against model mis-
specification, although the estimated CDPQ may be useful 
for various kinds of inference. See Pfeffermann (1993) and 
Binder and Roberts (2009) for discussion and examples.  

Estimating the randomization variance of probability-
weighted estimators is generally simple, utilizing available 
techniques in finite population sampling. Binder (1983) 
developed a general approach for estimating the ran-
domization variance of estimators obtained as the solution 
of probability-weighted estimating equations; see also 
Binder and Roberts (2009) and Godambe and Thompson 
(2009). Fuller (1975), Binder (1983), Chambless and Boyle 
(1985) and Francisco and Fuller (1991) developed central 
limit theorems applicable to probability-weighted esti-
mators.  

In spite of these desirable properties of probability-
weighting, the method has some severe limitations: 

 
1. It is restricted mostly to point estimation. Prob-

abilistic inference like confidence intervals or 
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hypothesis testing generally requires large sample 
normality assumptions. In particular, the ran-
domization distribution does not lend itself to the 
use of classical inference methods such as like-
lihood-based or Bayesian inference. 

2. The variances of probability-weighted estimators 
are computed with respect to the randomization 
distribution and the use of this approach does not 
permit conditioning on the selected sample, for 
example, conditioning on the observed covariates 
or the selected clusters in a multi-level model.  

3. As often illustrated in the literature, probability-
weighted estimators generally have larger vari-
ances than model-based estimators, notably for 
small samples and large variation of the sampling 
weights.  

4. The use of the randomization distribution does not 
lend itself to prediction problems such as the 
prediction of the outcome for non-sampled units 
with known covariates under a regression model, 
or the prediction of small area means for areas 
with no samples in a small-area estimation 
problem.   

3.5 Modifications of the sampling weights  
When estimating finite population quantities, the sam-

pling weights are often modified by imposing calibration 
equations, which match the PW estimators of covariates for 
which the population totals are known with the actual totals. 
The use of calibration is particularly useful in the case of 
nonresponse; see Kott (2009) for recent discussion with 
references. We later discuss the use of empirical likelihood 
for analytical inference on population models, which also 
attempts to incorporate calibration equations, although in a 
different manner. Below, I review two modifications of the 
sampling weights aimed at reducing the variances of the 
weighted estimators of model parameters under the sample 
distribution (2.1). A combination of the two modifications is 
also considered.  

Magee (1998) considers a linear regression model but the 
results can be extended to other population models. The 
author shows that under certain moment assumptions, any 
estimator 1

mgβ̂ ( ) [ ( ) x x ] ( ) xi s i si i i i i i i ia w a w a y
      

with positive weights ( ) (x , )i ia a    is consistent for β  
under the sample distribution. The weights (x , )ia   belong 
to a parameterized family of functions with the vector 
parameter   chosen to minimize a scalar variance criterion 
such as the determinant or the trace of the asymptotic 
variance estimator,  

       

mg

1 2 2 2

1

ˆˆvar[β ( )]

ˆ( )x x ( ) x x

( )x x ,

i i i i i i i i ii s i s

i i i ii s

A a

w a w a

w a



 





       

   

 



 

(3.12)

 

where pw
ˆˆ ( x β ).i i iy     The choice of the function 

i(x , )a   is up to the analyst but the obvious idea is to 
choose a function that is believed to be approximately 
inversely proportional to the residual variance under the 
sample model. The resulting ‘Quasi-Aitken’ estimator is 
shown to have asymptotically a lower variance under the 
sample distribution than the probability-weighted estimator 

pw
ˆ .  Recall from Remark 8 that pw̂  is consistent for 

 
under the sample distribution, justifying comparing the 
asymptotic variances of the two estimators under this distri-
bution.  

Pfeffermann and Sverchkov (1999) propose another 
modification. Consider the population model, 

2 2(x ; ) ε , (ε x ) 0, (ε x ) ,j j j p j j p j jy = m + E | = E | =  (3.13) 

where (x ; )jm   has a known form. Let / ( x ).i i s i iq = w E w |  
The authors show that if Pr ( 1 | , , x ) ,i i i i iI y     

             ( | x ) ( x ) / ( | x ).p i i s i i i s i iE y E w y E w  (3.14) 

Thus, for vectors   in the plausible parameter space ,  

2

θ

2

θ

1
θ argmin {[ (x ; )] | x }

1
argmin { [ (x ; )] | x }.

p i i ii s

s i i i ii s

= E y m
n

= E q y m
n





 

 












 

The vector   can be estimated therefore by solving the 
minimization problem, 

                

2
1

1ˆ ˆθ arg min [ (x ; )] ;

ˆˆ / ( x ).

n
q i i ii

i i s i i

q y m
n

q = w E w |




  



 

(3.15)

 

The use of this estimator requires estimating ( | x )s i iE w  but 
under mild regularity conditions θ̂q  is consistent for θ  even 
when the expectation ( |x )s i iE w  is misspecified. See 
Pfeffermann and Sverchkov (2009) and Section 4.1 of this 
paper for examples of the specification and estimation of 

( | x ).s i iE w   
Example 8. Under the linear regression population model 
with constant variance,  
 
 



Survey Methodology, December 2011 125 
 

 
Statistics Canada, Catalogue No. 12-001-X 

                           
1ˆ ˆ ˆβ x x x .q i i i i i i

i s i s

= q q y


 

 
  
   (3.16) 

As easily verified, β̂q  is randomization consistent for the 
census regression coefficients 1

1[ x x / ( |x )]N
j j j s j jB E w 
   

1 x y / ( | x ),N
j j j s j jE w  and hence p r  consistent for ,  

even when ( | x )s i iE w  is misspecified.  
The obvious difference between the PW estimator pw̂  

and the estimator ˆ
q  is that the latter estimator uses the 

adjusted weights ˆ/ ( x ).i i s i iq w E w |  When the sample 
selection depends only on the covariates, the sampling 
process is ignorable. Hence, to protect against informative 
sampling, it is only necessary to account for the net 
sampling effects on the target conditional pdf of | x .i iy  
This is achieved by using the weights .iq  In contrast, the 
sampling weights iw  account for the sampling effects on 
the joint distribution of ( , x ).i iy  As a result, they tend to be 
more variable and the estimator pw̂  has a larger variance.  

A combination of the last two modifications is also 
possible and examined in Section 4. The simple idea 
proposed by Dr. Moshe Feder (private communication) is to 
apply the modification of Magee (1998) to the estimator β̂q  
instead of the estimator pwβ̂ ,  that is, use the estimator,  

        

mg

1

, ,

β̂ ( )

ˆ ˆ( )x x ( )x ,

q

i i q i i i i q i ii s i s

a

q a q a y





 



       (3.17)

 

where the vector parameter   is now chosen to minimize a 
scalar variance criterion of the asymptotic variance esti-
mator, mg

ˆˆvar[β ( )],qA a  computed similarly to (3.12).  
3.6 Likelihood based methods 
 
3.6.1 Use of the sample model for maximum 

likelihood estimation  
A natural way of estimating the population model 

parameters is by maximization of the sample likelihood. 
Assume first full response and that the sample observations 
are independent under the sample distribution. The like-
lihood has then the form, 

( , ; , x )

Pr ( 1 | x , ; ) ( | x ; )
.

Pr ( 1 | x ; , )

s s s

i i i p i i

i s
i i

L y

I y f y

I

 

  


  
 

(3.18)
 

As before, we assume Pr ( 1 | , , x ) ,i i i i iI y     implying 
Pr ( 1 | x , )i i iI y  ( | x , ).p i i iE y  By (3.14), The sample 
likelihood can be written therefore as, 

( x ; , ) ( | x ; )
( , ; , x ) .

( | , x ; )
s i i p i i

s s s i s
s i i i

E w f y
L y

E w y

  
  

  (3.19) 

The expectations on the right hand side of (3.19) are with 
respect to the sample pdf of the sampling weights. Thus, 

when the weights are known for the sampled units as is 
usually the case under full response, the expectations can be 
modelled and estimated by regressing iw  against ( , x ),i iy  
using classical model fitting procedures. Suppose first that 
the weights are continuous such as in probability propor-
tional to size (PPS) sampling with a continuous size vari-
able. For a given form of the population model, the expecta-
tions ( | , x ; )s i i iE w y   and ( | x ; , )s i iE w    can be obtained 
then in two steps:  

1. Identify and estimate ˆ ( | , x ; ) ( | ,s i i i s i iE w y E w y   
ˆx ; ),i   using the sample data. 

2. Integrate ˆ[1/ ( | , x ; )] ( | x ; )s i i p iE w y f y dy    to ob-
tain ˆ( |x ; ; ).p i iE     Compute, ˆ ˆ( |x ; , )s i iE w     

ˆ1/ ( |x ; , )p i iE     (follows from 3.14).  
Estimating the vector parameter   outside the likelihood 
and then substituting the estimate in (3.19) and maximizing 
the likelihood as a function of the vector parameter   only, 
usually yields more stable results than maximizing the 
likelihood over ( , )   simultaneously. 

Estimation of the expectations ( | , x ; )s i i iE w y   and 
( | x ; , )s i iE w    in the case of discrete inclusion proba-

bilities is similar.   
Example 9. Consider the case of multinomial-logistic 
regression with a discrete covariate x  and M possible 
values of the outcome .y  Assuming that ( |s i iE w y 

 , )im x k  is not a function of the model parameters, it can 
be estimated by ,mkw  the mean of the weights in cell 
( , ),m k  and thence ˆˆ Pr ( | , )mk p i ii s y m x k       
(1 / ).mkw  We obtain: 

     
*

*

*

1

Pr ( | ; )

[Pr ( | ; ) / ]
.

[Pr ( | ; ) / ]

s i i

p i i mk

M

p i i m k
m

y m x k

y m x k w

y m x k w


  

  

  
  (3.20) 

The sampling weights feature in the sample model, but this 
is not an application of classical probability weighting. 
Notice that with this approximation the parameters in the 
population and the sample model are the same. In our 
empirical study we use a similar approximation for the 
sample distribution by categorizing the values of a con-
tinuous outcome. See Pfeffermann and Sverchkov (1999) 
for other examples.  

Next consider the estimation of the vector parameter   
governing the population model. Under mild conditions,   
is the unique solution of the equations, 

  ,0 ,1 ,

( | x ) 0;

( , ,..., ) log ( | x ; ) / .

U p j jj U

j j j j k p j j

W E

f y


   

        


 
(3.21)

 

Pfeffermann and Sverchkov (2003) consider three different 
approaches for estimating .  The common feature of these 
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approaches is that the only data used for estimation are the 
observations {( , x , ), },i i iy w i s  similarly to the PW 
estimators and their modifications considered in Section 3.5. 
In Section 3.6.2 we consider the use of the ‘full likelihood’, 
which assumes knowledge of the covariates {x , },j j U  
and possibly also additional design information. 

The first approach redefines the parameter equations with 
respect to the sample model. Assuming that ( | x ;s i iE w  

, )   in (3.19) is differentiable with respect to ,  the 
sample model parameter equations are 1 ( ) i ss sW E   
{[ log ( |x ; , ) / ] | x } {[ log ( |i ss i i i s i s if y E E w      
 x ; , ) / ] | x } 0.i i     The vector   is estimated under 
this approach by solving the equations, 

  
1 , ( ) [ log ( | x ; , ) / ] 0.s e i s i i

i s

W E w


          (3.22) 

The second approach applies the relationship (3.14) to the 
parameter equations (3.21). For a random sample from the 
sample model, the equations are now 2 ( ) (i ss s iW E q   

| x ) 0,i i   where / ( | x ).i i s i iq w E w  The vector   is 
estimated under this approach by solving the equations, 

                             2 , ( ) 0.s e i i
i s

W q


     (3.23) 

The third approach uses the property that if   solves (3.21), 
then it solves also the equations, ( )UW  ( )j U p jE    

x[ ( | x )] 0,j U p j jE E    where x ( )E   is the expectation 
of x  (which is viewed as random) with respect to the 
population distribution. Hence, by (3.14), for a random 
sample from the sample model, the parameter equations are 

3 ( ) ( ) 0,i ss s i iW E w     with estimating equations, 

                              3 , ( ) 0.s e i i
i s

W w


     (3.24) 

Note that the equations (3.24) are the pseudo-likelihood 
equations (Remark 7).   
Remark 9. The use of the weights / ( | x )i i s i iq w E w  for 
population model parameter estimation has been justified 
already in Section 3.5 by reference to least-squares esti-
mation. See the discussion in that section regarding the dif-
ference between the use of the weights iq  and the weights 

.iw  Pfeffermann and Sverchkov (1999, 2003) illustrate that 
estimating   by solving the equations (3.23) yields esti-
mators with lower randomization variance than estimating 
  by solving the equations (3.24). Notice that under the 
assumption of a linear regression model operating in the 
population, the solution of (3.24) yields the PW estimator 
(3.8), and the solution of (3.23) yields the q-weighted 
estimator (3.16).   
Remark 10. The use of the sample model for estimation of 
multi-level population models is considered in Pfeffermann, 
Moura and Nascimento-Silva (2006), using the Bayesian 

approach. Pfeffermann and Sverchkov (2007) fit multi-level 
models for small area estimation under informative sam-
pling of areas and within the areas, following the frequentist 
approach.   

So far we assumed full response. Next consider the case 
of NMAR nonresponse. In this case the response process 
needs to be modelled as well. By (2.2) and with added 
parameter notation the ‘respondents’ likelihood takes the 
form, 

    

* *

1

* *

* *
1

( | x , 1, 1; , )

Pr ( 1 , x , 1; ) ( ; )
,

Pr ( 1 x , 1; , )

r

o i i i i
i

r
i i i i s i i

i i i i

L f y I R

R y I f y x

R I





    

   


   




 

(3.25)

 

where * ( , )     represents the parameters of the sample 
distribution under full response (Equation 3.19), and *  
represents the parameters of the response process. Notice 
that unlike the sampling probabilities Pr ( ),i i s    which 
are generally known and can be used for estimating the 
probabilities Pr ( 1 | , x ; )i i iI y   as explained before, the 
response probabilities are generally unknown.  

Chang and Kott (2008) propose a method of estimating 
the response probabilities, which uses known totals of 
calibration variables. The authors assume a parametric 
model for the response probabilities that may depend on the 
outcome value, and estimate the unknown parameters of this 
model by regressing the totals of the calibration variables 
against their H-T estimators. The weights used for the H-T 
estimators are the product of the sampling weights and the 
inverse of the response probabilities under the model. Let ic  
define the values of the calibration variables for unit i  and 
denote * *( , x ; ) Pr ( 1 , x , 1; ).i i i i i ip y R y I      Chang 
and Kott (2008) estimate the unknown parameters by setting 
the nonlinear regression equations, 

*
*

1

,
( , x ; )

r
U i

i
i i i

c
C w

p y

  
  

where 1
U N

j jC c  and *  is a vector of errors. The 
parameters *  are estimated by the iterative algorithm  

  1( 1) ( ) ( ) 1 ( ) ( )

( ) 1 ( )
( )

1

ˆ ˆˆ ˆ ˆ ˆ ˆ( ) ( ) ( )

ˆ ˆ ˆ( ) ( ) ,
ˆ( , ; )

j j j T j j

r
j T j U i

i j
i i i

H V H

c
H V C w

y v

 





      

 
     


 

(3.26)
 

where 

1( ) ( )( , ; )ˆ ˆ ˆ( )

r
i

i
i i ij j

c
w

y v
H



 
        




 and 1 ( )ˆ( )jV    
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is the inverse of the estimated quasi-randomization variance 
of  

1

,
( , ; )

r
i

i
i i i

c
w

y v    

computed at ( )ˆ .j     
Chang and Kott (2008) do not assume a model for the 

outcome and their approach is therefore restricted to 
estimation of the model for the response probabilities. 
Pfeffermann and Sikov (2011) use the likelihood (3.25) for 
estimating population models assuming noninformative 
sampling. Maximization of the likelihood is carried out by 
iterating between maximization of the likelihood with 
respect *  for given *,  and the solution of calibration 
equations with respect to *  for given *,  using known 
totals of calibration variables, similarly to Chang and Kott 
(2008). The ‘given’ parameters are the estimates from the 
previous iteration. The authors show how to estimate the 
distribution of the missing covariates and outcome for a 
nonresponding unit and use this distribution for imputing 
the missing outcomes and hence predicting the finite popu-
lation total of the outcome variable.  

Estimation of the population model by fitting the sample 
model has some important advantages not shared by the 
other approaches considered in this article. 
 

1.  Once the sample model is specified, it lends itself 
to standard model based inference such as like-
lihood based methods, Bayesian inference or semi-
parametric modelling. It is important to emphasize 
in this regard that the goodness of fit of the 
postulated population model can be evaluated by 
testing the goodness of fit of the sample model 
fitted to the observed outcomes, using classical 
model diagnostic techniques. See Krieger and 
Pfeffermann (1997) and Pfeffermann and Sikov 
(2011) for appropriate test statistics with illustra-
tions.  

2.  The sample likelihood provides a coherent way of 
handling NMAR nonresponse when estimating 
population models. Methods based on probability 
weighting require knowledge or good estimators 
of the response probabilities. The use of the full 
likelihood (see below) requires knowledge of the 
covariates of nonsampled units. 

3.  Application of this approach permits the use of 
conditional inference, given the sample of re-
sponding units, for example, conditioning on the 
observed covariates. 

4.  The models holding for the observed outcomes and 
the response probabilities define the model holding 
for the missing outcomes of the non-sampled units 
or the nonrespondents, which can be used for 

imputation of these outcomes. Methods based on 
probability weighting and variants thereof allow 
estimating the population model but under infor-
mative sampling and NMAR nonresponse, the 
population model cannot be used for prediction or 
imputation of the missing outcomes. See Sverchkov 
and Pfeffermann (2004) and Pfeffermann and Sikov 
(2011) for illustrations.  

5.  The use of the sample model enables testing whether 
the sampling process can be ignored. Pfeffermann 
and Sverchkov (2009) review several test statistics 
proposed in the literature for testing the ignorability 
of the sample selection.  

3.6.2 The full likelihood   
Theoretically, a more efficient way of estimating the 

unknown population model parameters is to base the 
likelihood on the joint distribution of the sample data and 
the sample membership indicators. Under full response, the 
full likelihood is then,  

        s

( , ; , y , x , x )

Pr ( 1 | , x ; ) ( x ; )

[1 Pr ( 1 | x ; , )],

f U s s s

i i i p i i
i s

j j
j

L

I y f y |

I





   

  

   







 

(3.27)

 

where 1{ , ..., }U NI I   is the vector of sample inclusion 
indicators and Pr ( 1| x ; , )j jI     Pr ( 1| , x ,j j jI y   

) ( | x , )p j j jf y dy   is the propensity score of unit j. The 
likelihood (3.27) assumes Pr ( |y , x ) Pr ( | ,k UU U U k kI y   

kx )  (Poisson sampling), but it can be generalized to other 
sampling designs. The full likelihood has the advantage of 
accounting for the sampling probabilities of units outside the 
sample, thus utilizing more information, but it requires 
knowledge of the covariates of all the population units. See, 
for example, Gelman, Carlin, Stern and Rubin (2003) and 
Little (2004). Modelling the joint distribution of the 
covariates for units outside the sample and integrating them 
out of the likelihood can be very complicated in practice and 
is formidable when there are many of them. Pfeffermann 
et al. (2006) compare empirically the use of the sample 
likelihood with the use of the full likelihood for multi-level 
models in a Bayesian context. The two approaches yield 
similar results, but this of course may not be the case in 
other applications.  

Another way of defining the full likelihood is by 
application of the Missing Information Principle (MIP, 
Orchard and Woodbury 1972). The basic idea is to express 
the sample score function as the conditional expectation of 
the population score function, given the sample data. 
Following Chambers and Skinner (2003, Chapter 2), define 
the full-sample likelihood as ( ) ( ; , x , , )fs s s U UL f y I z    
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where, as before, Uz  is a known matrix of population values 
underlying the sample selection and   defines the unknown 
model parameters. The corresponding full-population 
likelihood is ( ) ( ; y , x , , z )fU U U U UL f I    where yU   
(y , y )s s  and x (x , x ).U s s   The MIP principle states that, 

      

( ) ( / ) log[ ( )]

[( / ) log ( ) ,x , ,z ].

s fs

p fU s s U U

sc L

E L y I

    

    |
 
(3.28)

 

Another identity defines the relationship between the 
population likelihood information matrix and the sample 
likelihood information matrix. 

Breckling, Chambers, Dorfman, Tam and Welsh (1994) 
and Chambers et al. (1998) consider applications of the MIP 
to complex survey data. In particular, Chambers et al. 
(1998) study the use of the MIP when only limited design 
information is available and not the full information entailed 
in z .U  The authors show examples where the use of the 
MIP is more efficient than the use of the sample likelihood 

( , ; , x )s s sL y   defined by (3.19), which only uses the 
weights { , }.iw i s  The likelihood (3.28) can be extended 
to account for NMAR nonresponse but the application of 
this approach requires then knowledge of the population 
values of the variables explaining the response. The compu-
tation of the expectation in the right hand side of (3.29) may 
not be simple either, depending on the population model.   
Remark 11. The use of the MIP method in the simulation set 
up of Section (3.1) requires knowledge of the covariates and 
stratification membership for units outside the sample. We 
didn’t find a way of applying the method in this case 
without further assumptions on the joint distribution of the 
covariates and the design variables.   
3.6.3 Empirical likelihood   

In recent years there is a growing interest in the use of 
empirical likelihood (EL) methods for analyzing complex 
survey data. The EL method as originally proposed by 
Hartley and Rao (1968) in the survey sample context and by 
Owen (1988, 2001) combines the robustness of non-
parametric methods with the effectiveness of the likelihood 
approach. Two other important advantages of this method 
are that it lends itself very naturally to the use of calibration 
equations and that it enables the construction of confidence 
intervals without the need for variance estimation. 

Consider the model defined by (3.13) where for now we 
view the covariates as random, and denote g ( , x ) .i i iy    
Under some regularity conditions, the vector parameter   is 
the unique solution of the equation  

 (x; )
[ (x; )] 0.p

m
E y m

 
  


 

Let 1, ..., np p  be a set of probabilities corresponding to the 
observations 1(g , ..., g )n  such that ip  is the ‘jump’ (proba-
bility mass) of the population cumulative distribution 

(g )p iF  at g .i  It is assumed that pF  has its support on the 
observed values such that  

                 
1

(x ; )
[ (x ; )] 0.

n i
i i ii

m
p y m



 
  

  (3.29) 

Assuming independent observations, the EL of pF  is 

1( ) .n
ip iL F p  Notice that if ip  is a known function of 

some unknown parameters, ( )pL F  coincides with the 
standard parametric likelihood. The (nonparametric) EL 
estimators of the probabilities ip  are the solution ( )p

ip  of 
the maximization problem,  

              
1

11,...,
max s.t. 0, 1,

n

n n
i i iiip p

p p p


   (3.30) 

yielding ( ) 1 / , 1, ..., .p
ip n i n   For the linear regression 

case, (x ; ) x βi im    and by substituting ( )p
ip  for ip  in 

(3.29) and solving the equations we obtain the EL estimator 
of β  as el OLS

ˆ ˆβ β .  When finite population means CU  of 
variables C  measured in the sample are known, they can be 
added to the maximization problem (3.30) by adding the 
calibration constraints 1 c C .Un

i i ip   This additional 
information is expected to enhance the estimation of the   

ip ’s and hence the estimation of the unknown model 
parameters. See also Remark 12 below. 

Suppose now that units are drawn to the sample (or 
respond) with unequal selection probabilities .i  In this 
case it is common to replace the objective empirical 
likelihood 1( ) n

ip iL F p  by the pseudo empirical like-
lihood 1pl ( ) ,iwn

ip iL F p  where, as before, 1/ .i iw    
Notice that 1pllog ( ) log( )n

ip i iL F w p  is the H-T esti-
mator of 1poplog ( ) log .N

ip iL F p  The pseudo EL esti-
mators of the ip ’s solve the maximization problem, 

           
1

1,...,
max i

n

n w
iip p

p


  1
s.t. 0, 1.

n
i ii

p p


   (3.31) 

See, e.g., Chen and Sitter (1999). It is easy to verify that in 
the absence of benchmark constraints, the solution of (3.31) 
is (pel)

1/ n
ii i ip w w  and by substituting (pel)

ip  for ip  in 
(3.29), pel pw

ˆ ˆβ ,   the PW estimator (3.8).  
The empirical likelihoods in (3.30) and (3.31) are with 

respect to the population distribution. Alternatively, one can 
obtain the EL estimator by defining the likelihood with 
respect to the sample distribution (g ) Pr ( 1| g )s i i if I   

(g ) / Pr ( 1),p i if I   where by denoting Pr ( 1| g ),i i iI    

1Pr ( 1) .n
ii i iI p    Following Kim (2009) and 

Chaudhuri, Handcock and Rendall (2010), the EL estimators 
of the probabilities ip  are obtained now as the solution of 
the maximization problem  



Survey Methodology, December 2011 129 
 

 
Statistics Canada, Catalogue No. 12-001-X 

       1
1 1,...,

1

max log( ) log  

s.t. 0, 1.
n

n n
i i i ii ip p

n
i ii

p n p

p p

 



    

 

 


 
(3.32)

 

The solution of (3.32) is sel 1 1
1/ n

ji i jp  
    and by 

substituting in (3.29),  

               
1

1 1
sel 1 1
β̂ x x x y .

n n
i i i i i ii i


 

 
       (3.33) 

The estimator selβ̂  has the same form as the PW estimator 

pw̂  in (3.8), but with the weights 1 1 / Pr ( | , x )i i ii s y    
instead of the sampling weights .iw  In practice, one has to 
replace the probabilities i  by sample estimates ˆ .i  See 
Section 4.  
Remark 12. The following possible enhancement to the 
estimation of the probabilities ip  was proposed to me by 
Dr. Jae Kim in a private communication. Assuming as 
before that Pr ( | , , x ) ,i i i ii s y     it follows that i   
Pr ( 1| , x ) ( | , x )i i i p i i iI y E y    and hence that [(p iE    

) | , x ] 0.i i iy   This suggests adding calibration constraints 
of the form  

                       
1

ˆ( ) ( , x ) 0
n

j j j j jj
p k y


     (3.34) 

to enhance the estimation of the probabilities { }ip  in (3.31), 
where ( , x ) ( )j j jk y k g  is some function of the observed 
outcome and covariates. Examples for plausible functions 
for the case of a single covariate x  are, ( ) ,j j jk g y x  

( ) /j j jk g y x  etc. The notable feature of the constraints 
(3.34) is that they do not require knowledge of population 
quantities like means of calibration variables, as is often 
assumed when advocating the EL approach for sample 
survey estimation. Clearly, when means UC  of calibration 
variables are known, constraints of the form 1 c CUn

i i ip   
may be added as well. See also Remark 14.  

4. Empirical study  
In this section I report the results of a simulation study 

aimed at assessing and comparing the performance of the 
methods discussed in Section 3. The simulation set up is 
described in Section 3.1 and we use 5H   strata. The 
target parameters are the regression coefficients    

0 1(β , β ) (2,1)  of the population expectation (3.1). The 
simulation study consists of generating 2,000 populations 
and samples (one sample from each population) and com-
puting the estimators, variance estimators and confidence 
intervals listed below for each sample. The population size 
is 5,000 with approximate strata sizes 363,  554,  842,hN   
1,278,  1,963.  (The strata sizes are random). The sample 
size is 300n   with 60hn   sampled units in each stratum. 
The sampling fractions are therefore highly variable across 
the strata.  

We generated population values of a single discrete 
covariate x  by first generating observations jx  from a 
Gamma distribution with mean 2 and variance 4, and then 
defining jx  to be the nearest integer to jx  if 5jx   and 

5jx   otherwise. The covariates are therefore x j   
(1, ) ,jx   with 0,1, ..., 5.jx   The population covariates 
were generated once and held fixed for all the populations.  

Figure 1 shows the population and sample pdfs of the 
outcome y  for 2, 3, 4, 5.x    

As can be seen, the population and sample pdfs differ, 
indicating the informativeness of the sampling process. 
Notice also that the population pdf  is not normal because 
the random coefficients 

 j  are not normal. 
We study the performance of the various methods in 

terms of bias, variance, variance estimation, and confidence 
interval coverage. We assume for all the methods that the 
only available information are the observed outcomes and 
covariates (y , x )hs hs  for every stratum ,h  the sample 
selection probabilities and the true strata sizes { }.hN  I 
believe that this is the practice in most real life applications.  
4.1 Estimators considered  
4.1.1 The OLS estimator olsβ̂ .  The use of this estimator 
ignores the sampling process.   
4.1.2 The estimator proposed by Feder (2011, see Section 
3.2). Application of this approach is in four steps. )i  fit a 
linear model with constant residual variance in each stratum, 

)ii  impute the missing covariate values for the non-sampled 
units by sampling with replacement ( )h hN n  values from 
the hn  observed values in stratum h  with probabilities 

1( 1) / ( 1)hn
khi hi hkp w w  


 on each draw, where the  

hiw ’s are the sampling weights when sampling from 
stratum .h  )iii  impute the missing y -values in each 
stratum by generating observations at random from the 
model fitted in Step ).i  )iv  fit the linear regression model 
of y  on x  by using all the population data, with the 
missing values for the non-sampled units replaced by the 
imputed values. We denote the resulting estimator by β̂ .f   
4.1.3 The PW estimator pwβ̂  (Equation 3.8).  
4.1.4 The estimator mgβ̂  proposed by Magee (1998, see 
Section 3.5). In our application we define ( ) (i ia x    
0.1)  and search for the optimal power   in the range 
[ 2, 2]  minimizing the determinant of the asymptotic 
variance estimator (3.12).   
4.1.5 The estimator β̂q  defined by (3.16). For the present 
study we do not assume any parametric model for the 
expectation ( | x )s i iE w  in the denominator of iq  and 
estimate ˆ ( | x )s i iE w  (x ),s iw  the mean of the observed 
sampling weights for units with x x .i  
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Figue 1 Population pdf (solid line) and sample pdf (dashed line) of y|x  
 
4.1.6 The modified q-weighted estimator mgβ̂ q  defined 
by (3.17). The weights ˆiq  are obtained as in 4.1.5 and the 
functions , ( )i qa   as in 4.1.4.  
 
4.1.7 Estimators derived by maximization of the sample 
likelihood (3.19). The use of this approach requires spe-
cifying the population pdf and the expectation ( | ,x ).s i i iE w y  
The unknown population model parameters are 2(β , )     
and we assume ( | x ; ) (x β,p i i if y N   2 ),  which as 
noted before and illustrated in Figure 1 is not the correct pdf 
since the random coefficients j  are not normal (see Sec-
tion 3.1). We estimated ( | , x ; )s i i iE w y   nonparametrically 
and set up the likelihood as follows:   

Let xi
s  define the sample of units with x xi  of size 

x .
i

m  We first divided the sample into (x )ic  homogeneous 
clusters based on the ascending values of the outcome y  
using the R function “hclust”. The (x )ic ’s are between 1 
and 7, depending on the sample size xi

m  (one cluster if 

x 10,
i

m   2 clusters if x 20, ..., 7
i

m   clusters if x 70).
i

m   
Denote by x ,i kb  the midpoint between the highest y-value in 
cluster k  and the lowest y-value in cluster ( 1),k k   
1, ..., (x ) 1,ic   and define x ,0 x , (x ), .

i i icb b     For 

x , 1 x ,i ik kb y b    we estimated ( | , x )s i i iE w y  by the mean 
( , x ) (x )s i k iw y w  of the sampling weights of units with y-

values in the same interval. Substituting ( | , x )s i i iE w y   
( , x )s i iw y  in (3.19) defines the sample likelihood used for 

the present simulation study as,  
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(x )
,x 1,x1

( ; , x )
( | x ; ) / ( , x )

,
[ ( ) ( )] / (x )i

i i

s s s

p i i s i i

ci s
p k p k k ik

L y
f y w y

F b F b w











 (4.1) 

where , x( ) ( | x ; )k

i

b
p k p iF b f y dy   (the CDF of the 

assumed normal pdf ).  
The approximation (4.1) is similar to the approximation 

(3.20) proposed for the case where both x  and y  are 
discrete.   
Remark 13. In order to facilitate the numerical optimizations 
used for the computation of the estimators mg mg

ˆ ˆβ , β q  and 
the maximum likelihood estimators in (4.1), we transformed 
the minimization problem min{ ( ): ( , )}f a b   to 
min{ [ ( )]: ( , )}f g      with the function ( )g   de-
fined as 1( ) [( ) tan ( )] / 0.5( ).g b a a b        Notice 
that every ( , )a b  has an image ; ( ) ,R g     and 

0argmin{ ( ): ( , )} ( )f a b g     where 0 argmin [ ( )].f g     
We used the R function nlm for the numerical opti-

mization, with the PW estimates as starting values. To 
prevent numerical overflows of the optimized function by 
evaluation of exponentials of large numbers, the maxi-
mization was limited to the intervals pw

ˆ{min[0.5 , pw̂   

pw pw pw pw
ˆ ˆ ˆ ˆˆ ˆ3se( )],max[1.5 , +3se( )]}     for ,  and pwˆ[0.5 ,  

pwˆ1.5 ]  for .    
4.1.8 The empirical likelihood estimator selβ̂  defined by 
(3.33). The computation of this estimator requires esti-
mating the probabilities Pr ( 1| y , x ) 1/i i i i sI E     
( | y , x ),i i iw  and we use the estimator ˆ ( | , x )s i i iE w y   

, ( , x )s k iw y  used for defining the likelihood (4.1), such that 
ˆ 1/ ( , x ).i k iw y    
4.2 Variance estimation  

We applied three approaches for variance estimation. 
The first approach estimates the randomization variance, the 
second approach estimates the variance under the sample 
model, while the third approach uses the nonparametric 
bootstrap method, which likewise estimates the variance 
under the sample model. 

Consider first the estimators defined by 4.1.1, 4.1.3 – 
4.1.6 and 4.1.8 in Section 4.1. All these estimators can be 
written in the generic form, 

                   

1

1 1

1
1

β̂ x x x y

[ ] x y ,

n n
t i i i i i i i ii i

n
s s s s i i i ii

w t w t

X W T X w t



 




   



 


 

(4.2)

 

where 1[x , ..., x ],s nX   1diag[ , ..., ]s nW w w  is the 
diagonal matrix with the sampling weights on the main 
diagonal and 1diag[ , ..., ],s nT t t  with the it ’s defined by 
the estimators. For olsβ̂ 1 / ,i it w  for selβ̂ 1 1ˆi i it w    and 
so forth. The randomization variance of these estimators is 
estimated as, 

  
1 1

1

ˆˆVar (β )

ˆ[ ] [Var x ][ ] ,

r t

n
s s s s r i i i it s s s si

X W T X w t e X W T X 


  
 
(4.3)

 

where ( x )it i ie y B   and B  is the census estimator. 
Using the double index ( )hj  to define the thj  unit in the 
sample hs  of size hn  drawn from straum ,h  we estimated  

 
1

5
,1 1

5
, , , ,1 1
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ˆVar

(  ) (  ) ,
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h

n
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w e

n
w e e w e e
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(4.4)

 

where ,
ˆx ( x β )hj t hj hj hj hj te t y    and 

, ,1

1
,hn

h t hj hj tj
h

e w e
n 

    

assuming with replacement sampling within the strata.  
A variance estimator under the sample model which 

accounts for possible heteroscedasticity is obtained as, 

sm

1 2 2 2 1

ˆˆVar (β )

ˆ[ ] x x [ ] ,

t

s s s s i i it i i s s s si s
X W T X w t e X W T X 


     

 
(4.5)

 

where ˆˆ ( x β ).it i i te y    Randomization and sample model 
variance estimators for the estimator in 4.1.2 are developed 
by Feder (2011). For the maximum likelihood estimator 
under the sample model with the likelihood defined by (4.1) 
we only estimate the variance under the sample model using 
the inverse information matrix. 

Finally, bootstrap variance estimators for all the esti-
mators are obtained by sampling with replacement n  units 
from the original sample and re-estimating each of the 
estimators using the same computations as for the original 
sample. Repeating the same process independently B  
times, the bootstrap variance estimator is,  

               

( ) ( )
1

( )
1

1ˆ ˆ ˆ ˆ ˆˆVar ( ) ( )( ) ;

1ˆ ˆ ,

B b b
BS b

B b
b

B

B





       

  




 

(4.6)

 

where ̂  represents any of the estimators defined by 4.1.1 – 
4.1.8 and ( )ˆ b  is the corresponding estimator computed for 
bootstrap sample , 1, ..., .b b B   
4.3 Computation of confidence intervals  

We consider two approaches of (1 )  level confidence 
interval (C.I.) computation. The first approach is the 
standard C.I.,  
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1
2

ˆ ˆˆβ . (β ), 0, 1,k kZ s e k


   

where β̂k  stands for any of the estimators considered and 
ˆ.̂ (β )ks e  is the corresponding estimator of the standard error 

as obtained by one of the methods listed before. The second, 
“basic bootstrap” approach uses the quantiles ( , )bs k   of 
the bootstrap estimators ( )β̂ b

k  to compute the C.I. 

ˆ ˆ2β , 1 , 2β , , 1, 2.
2 2k kbs k bs k k

                 
 

We tried also the use of the “studentized bootstrap method” 
but the coverage rates were not better with any of the 
estimators β̂ .k  See Remark 14 below. 

 
4.4 Simulation results  

Table 1 shows the empirical means of the estimates listed 
in Section 4.1 over the 2,000 populations and samples and 
the corresponding empirical standard errors (S.E.). Also 
shown are the square roots of the means of the variance 
estimates as obtained when estimating the randomization 
variance (“Ran.”) and when estimating the variance under 
the sample model (“S.M.”). Because of computing time 
limitations, the results for the bootstrap variance estimators 
(“BS”) are based on 300 bootstrap samples drawn from each 
of 500 original samples. These numbers of original and 
bootstrap samples were found to produce stable variance 
estimators. 

As expected, given the use of an informative sampling 
scheme, the OLS estimator has a relatively large bias of 
12% (5%) when estimating the intercept (slope). All the 
other estimators are virtually unbiased, except for mleβ̂ ,  
which has bias of  2% and 1.5%. The almost unbiasedness 
of the EL estimator selβ̂  is particularly encouraging given 
the somewhat crude nonparametric estimation of the proba-
bilities Pr ( | , x ).i i ii s y    Notice also that this estimator 
has similar empirical S.E. to those of the PW estimator. The 
small (but statistically significant) bias of mleβ̂  is explained 
by the fact that we assume a normal distribution under the 
population model, which as noted and illustrated before is 
incorrect. 

Regarding precision, the OLS estimator has the smallest 
S.E. but β̂ f  has almost the same S.E. (and is unbiased). 
This is explained by the fact that this estimator uses 
additional stratification information, not used by the other 
estimators. Note that mgβ̂ , mgβ̂ -q  and particularly β̂q  
outperform pwβ̂ ,  but mgβ̂ -q  does not improve over β̂ .q   

 

Remark 14. Following my presentation of this paper at the 
2011 Statistics Canada symposium, Jean-Francois Beaumont 
suggested to replace the weights 1ˆ i

  used for the compu-
tation of selβ̂  by the weights 1 1ˆ ˆ/ ( ),i s iE    so as to account 
for the net sampling effects on the conditional pdf ( | x),f y  
similarly to the use of the q-weights in ˆ .q  Notice that 
whereas the sampling weights iw  may depend on y, x  and 
possibly other variables, the weights 1ˆ i

  only depend on y  
and x.  Application of this idea did not affect the bias but 
the empirical S.E. of the modified estimators are 0.151 and 
0.053, smaller than the S.E. of selβ̂  and similar to the S.E. 
of β̂ .q  

Looking at the performance of the variance estimators, 
the first remarkable outcome is that the randomization and 
sample model variance estimators (Equations 4.4 and 4.5) 
are very similar for every estimator of the regression coef-
ficients, even though they are computed very differently. 
For olsβ̂ , pwβ̂  and β̂q  the variance estimators are almost 
unbiased but for the other estimators the variance estimators 
under-estimate the true variance. This is explained by the 
fact that these variance estimators ignore some of the 
operations involved in the computation of the estimated 
regression coefficients. Thus, in the case of the estimators 

mgβ̂  and mgβ̂ -q  the variance estimators do not account for 
the choice of the optimal weights ( ),ia   in the case of β̂ f  
the variance estimator does not account for the random 
imputation of the vectors ( , x )i iy  for ,i U s   and in the 
case of mleβ̂  and selβ̂  the variance estimators do not account 
for the estimation of the probabilities Pr ( | , x ).i ii s y  This 
under- estimation of the variance is corrected in almost all 
cases by use of the bootstrap method, see, in particular, the 
estimation of the variances of β̂ ,f mleβ̂  and selβ̂ .  

Figure 2 shows the empirical coverage rates of (1 )  -
level confidence intervals (C.I.) for 0.10, 0.05, 0.01,   
as obtained when applying the standard C.I. with the 
standard errors estimated by the BS method, and when 
using the basic bootstrap method. The figures in the 
horizontal axis are the nominal levels 

The coverage rates are almost always below the nominal 
levels but the under- coverage in the case of the standard 
C.I. is generally less than 4%. The two exceptions are when 
basing the confidence intervals on the OLS estimators (large 
under-coverage) and the mle estimator of the slope (under-
coverage of 7% at the 90% nominal level), which is 
explained by the bias of these estimators. The under-
coverage percentages when using the basic bootstrap 
method are generally slightly larger, except for the under-
coverage of the C.I. for the intercept based on selβ̂ ,  which is 
more pronounced.   
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Table 1  
Means, standard errors (S.E.) and square roots of means of variance estimates. Population model: ( )p jE y =

 ,2 + 1 j× x  2
jVar ( ) (1 + 0.2 ) V + 1p j jy x  

 

Method Intercept- 0β̂  Slope- ˆ
1β  

Mean 
Est. 

Emp. 
S.E. 

Mean 
Est. 

Emp. 
S.E.  Ran. S.M. BS Ran. S.M. BS 

olsβ̂  2.251 0.133 0.135 0.139 0.140 1.046 0.048 0.048 0.049 0.049 

β̂ f  2.006 0.133 0.126 0.126 0.135 0.999 0.051 0.041 0.041 0.052 

pwβ̂  2.008 0.166 0.167 0.169 0.157 0.998 0.059 0.055 0.055 0.056 

mgβ̂  2.017 0.158 0.154 0.156 0.154 0.995 0.056 0.050 0.050 0.055 

β̂q  2.011 0.153 0.157 0.159 0.147 0.999 0.054 0.051 0.051 0.052 

mg-β̂ q  2.020 0.156 0.152 0.154 0.153 0.996 0.055 0.049 0.050 0.054 

mleβ̂  1.960 0.159 ----- 0.143 0.152 1.026 0.054 ----- 0.046 0.053 

selβ̂  2.031 0.164 0.143 0.143 0.159 0.995 0.058 0.049 0.049 0.057 
  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 Coverage rates of standard (left) and BS (right) confidence intervals 

 
Remark 15. We computed also the standard C.I. with the 
S.E. estimated under the randomization distribution 
(Equation 4.4) and under the sample model (Equation 4.5), 
but except in the case of the estimators pwβ̂  and β̂ ,q  the 
under-coverage of these intervals was somewhat higher than 
the coverage rates in Figure 2 because of the under-
estimation of the true S.E. by these S.E. estimators 
discussed before. The same phenomenon was observed 
when using the “studentized bootstrap method” with these 
S.E. estimates, which again can be explained by the 

underestimation of the true S.E.’s. The use of more ad-
vanced bootstrap C.I. such as double-bootstrap may correct 
this under-coverage.  

 
5. Concluding remarks  

In this article I discuss alternative procedures proposed in 
the literature to account for informative sampling and 
NMAR nonresponse when modeling survey data. The 
empirical study is restricted so far to the case of linear 
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regression and single-stage sampling, and an obvious 
extension would be to consider other models and cluster 
sampling. The present study illustrates the unbiasedness or 
approximate unbiasedness of all the point estimators 
considered, but the standard variance estimators under-
estimate the true variances in most cases since they fail to 
account for the extra operations involved in computing the 
corresponding point estimators. The bootstrap variance 
estimators produce much better variance estimators in these 
cases. The confidence intervals applied in the present study 
yield small under-coverage in most cases, but they should 
be improved, possibly by use of more advanced bootstrap 
techniques. Another important extension mentioned in the 
paper, which we have not investigated empirically so far is 
to incorporate sample based calibration constraints in the 
empirical likelihood method when based on the sample 
distribution. 

We plan to apply the various methods to several real data 
sets. This would require the development of diagnostic 
procedures that would allow comparing the performance of 
the methods since unlike in a simulation study, the true 
distributions and model parameters are seldom known in 
real applications. 
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A Bayesian analysis of small area probabilities under a constraint 

Balgobin Nandram and Hasanjan Sayit 1 

Abstract 
In many sample surveys there are items requesting binary response (e.g., obese, not obese) from a number of small areas. 
Inference is required about the probability for a positive response (e.g., obese) in each area, the probability being the same 
for all individuals in each area and different across areas. Because of the sparseness of the data within areas, direct 
estimators are not reliable, and there is a need to use data from other areas to improve inference for a specific area. 
Essentially, a priori the areas are assumed to be similar, and a hierarchical Bayesian model, the standard beta-binomial 
model, is a natural choice. The innovation is that a practitioner may have much-needed additional prior information about a 
linear combination of the probabilities. For example, a weighted average of the probabilities is a parameter, and information 
can be elicited about this parameter, thereby making the Bayesian paradigm appropriate. We have modified the standard 
beta-binomial model for small areas to incorporate the prior information on the linear combination of the probabilities, 
which we call a constraint. Thus, there are three cases. The practitioner (a) does not specify a constraint, (b) specifies a 
constraint and the parameter completely, and (c) specifies a constraint and information which can be used to construct a 
prior distribution for the parameter. The griddy Gibbs sampler is used to fit the models. To illustrate our method, we use an 
example on obesity of children in the National Health and Nutrition Examination Survey in which the small areas are 
formed by crossing school (middle, high), ethnicity (white, black, Mexican) and gender (male, female). We use a simulation 
study to assess some of the statistical features of our method. We have shown that the gain in precision beyond (a) is in the 
order with (b) larger than (c). 
 
Key Words: Accept-reject algorithm; Binomial distribution; Generalized beta distribution; Griddy Gibbs sampler; 

Simulation. 
 
 

1. Introduction 
 
It is a standard practice to use models to “borrow 

strength” in small area estimation (Rao 2003). Owing to the 
sparseness of the data in each area, direct estimates for small 
areas are typically not reliable. Our procedure allows a 
practitioner to incorporate prior information about a linear 
combination of binomial probabilities, one for each area. 
This is a constraint that we include as a weighted average of 
the area probabilities in the standard beta-binomial model. 
The weighted average can be assumed known or unknown. 
In the case when this value is unknown, we consider the 
scenario when there is some information which can be 
elicited from an expert in the form of prior distribution. This 
is different from standard practice in design based survey 
sampling in which auxiliary information is incorporated as 
in ratio and regression estimators (Cochran 1977). When the 
value can be specified exactly, there will be an increase in 
precision because prior information is incorporated into the 
model. 

The beta-binomial model has been studied extensively. 
For example, Nandram and Sedransk (1993), Nandram 
(1998) and Nandram and Choi (2002) show how to do 
Bayesian predictive inference of finite population propor-
tions of the small areas for binomial and multinomial data. 
These models assume that the binomial probabilities share a 
common effect, thereby permitting adaptive pooling of the 

data from small areas (or clusters). However, it is possible to 
improve on these models further by including additional 
information using covariates via generalized linear models 
(e.g., see Ghosh, Natarajan, Stroud and Carlin 1998). It is 
worth noting that none of these works propose ways to 
incorporate prior information about linear combination of 
model parameters. Substantial gains in precision are ex-
pected when such prior information is incorporated in small 
area models; see Silvapulle and Sen (2006) for a book-
length discussion of constrained statistical inference. It is 
also worth noting that Lazar, Meeden and Nelson (2008) 
showed how to include constraints in nonparametric 
Bayesian approach via a Polya urn scheme to predictive 
distribution of finite population parameters. 

Our procedure is related to external benchmarking which 
occurs when a pre-specified estimator is obtained from 
external sources, such as a different survey, a census, or 
other administrative records. In benchmarking one wants the 
parts to add up to the whole. For example, when surveys are 
conducted over time, there are typically monthly surveys 
and annual surveys which are of much better quality than 
the monthly surveys. When the monthly surveys are esti-
mated such that these estimates add up to the annual survey 
totals, there is a protection against model failure and there-
fore improved estimates (i.e., reduced bias and possibly an 
increase in precision). These problems are prevalent in the 
government agencies especially in employment and sales; 



138 Nandram and Sayit: A Bayesian analysis of small area probabilities under a constraint 
 

 
Statistics Canada, Catalogue No. 12-001-X 

see Hillmer and Trabelsi (1987) for an example on retail 
sales of hardware stores from the U.S. Census Bureau. 

Prior information from external benchmarking will lead 
to improved precision but can produce severely biased 
estimators as well. This will depend on how different the 
current survey is from the prior ones. Nandram, Toto and 
Choi (2011) applied external benchmarking to estimate the 
finite population means of small areas. The constraint is the 
finite population mean for the entire population is a 
prespecified value which again can be obtained from a prior 
survey, census or administrative records. In our current 
work we are not incorporating information about a linear 
combination of the finite population values, but rather we 
are inputting information about a linear combination of the 
superpopulation parameters (in this case binomial proba-
bilities). 

We consider the problem in which binomial counts are 
obtained from similar small areas, and inference is required 
about the binomial probabilities. In the conclusion, we 
discuss how to extend our method to obtain the predictive 
distribution of finite population proportions. The standard 
beta-binomial model may be inadequate, and additional 
prior information must be incorporated. Our thesis is that 
there is an increase in precision over the standard beta-
binomial small area model when prior information about the 
weighted average of the probabilities (e.g., average of the 
probabilities) is incorporated. That is, we incorporate prior 
information about a linear combination of binomial proba-
bilities (a weighted average). The weights can be propor-
tional to population sizes, and under proportional allocation 
they can be proportional to the sample sizes themselves. The 
purpose of incorporating prior information about the bino-
mial probabilities is to increase precision, and at the same 
time one needs to control the bias. 

It is much easier for a survey practitioner to specify the 
value of the overall probability rather than the individual 
area probabilities. That is, the overall probability can be 
specified with relatively much less error than the individual 
probabilities. Of course, one can specify the overall proba-
bility using prior information (a prior survey, census or 
administrative records), and so the specification of the 
overall probability will depend on the quality of the prior 
information. Thus, the problem falls naturally within the 
Bayesian paradigm because we are incorporating prior 
information about a parameter via a distribution. Thus, there 
will be gains in precision because of the extra information. 
However, a practitioner can still proceed when there is no 
prior information. One can use the ratio of the total success 
and total sample size over areas to form a reasonable 
specification of the overall probability which is typically not 
of interest. This estimate will have much higher precision 
than the one for individual areas. There will still be gain in 

precision, but clearly such gain is due to using the current 
data (double use) and the constraint. 

One example of a survey in which reliable information 
can be obtained to perform the benchmarking is the Nation-
al Health Interview Survey (NHIS) which is conducted 
annually by the National Center for Health Statistics to 
assess an aspect of Health of the U.S. population. This is a 
population-based survey and there are many health indi-
cators of interest; one of these indicators is the number of 
doctor visits made in the past two weeks, and an informative 
quantity is the proportion of people who made at least one 
doctor visit last year (e.g., Nandram and Choi 2002). These 
proportions are useful for small domains formed by crossing 
age, race and sex for a particular state last year. Because the 
estimates over a state change very slowly over the previous 
years, the overall estimate from the year immediately pre-
ceding last year can be used as a reliable benchmark for last 
year. If a reliable estimate cannot be obtained for the 
benchmark, one can construct an informative prior distribu-
tion for it. For example, one can use the method of moments 
to equate the sample mean and sample variance of the 
overall estimates for the past few years to the mean and 
variance of a beta distribution to get a beta prior distribution. 
In either case, our procedure can be applied. 

The plan of this paper is as follows. In Section 2 we 
describe the methodology. Specifically, we describe the 
standard beta-binomial model, and we develop two addi-
tional models to incorporate the extra information using 
appropriate prior distributions. We also describe posterior 
inference and how to perform the nonstandard computa-
tions. In Section 3 we describe an illustrative example on 
obesity, and a simulation study to assess empirically the 
statistical properties of our models. Section 4 has con-
cluding remarks. We also discuss how to do Bayesian 
predictive inference for finite population proportions. While 
we discuss binary data, we also show how one can extend 
our method to polychotomous data.  

2. Methodology  
We show how to incorporate the constraint into the beta-

binomial model in two ways, thereby providing a set of 
alternative models. In Section 2.1 we describe the models 
and in Section 2.2 we describe posterior inference. We 
attempt to explain what the constraint does to the estimates 
of the probabilities using an approximation. In Section 2.3 
we describe the computation, and we describe a new 
algorithm as well.  
2.1 Models  
 

We assume that binary data are available from   small 
areas, and we assume that the probability that an individual 
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responds in the thi  area is , = 1, ..., .i i   Let in  be the 
number of individuals sampled from the thi  area, =i  
1, ..., .  Also let is  denote the number of individuals with 
the characteristic and =i i if n s  be the number of 
individuals without the characteristic in the thi  area, =i  
1, 2, ..., .  Then the standard beta-binomial hierarchical 
Bayesian model is  

                              
ind

| Binomial ( , ),i i i is n   (1) 

            
iid

| , Beta { , (1 ) }, = 1, ...,i i         (2) 

and 

                  
2

1
( , ) = , 0 < < 1, 0.

(1 )
p     

 
 (3) 

We use a shrinkage prior for  because it is proper and 
noninformative, and there are no conjugate priors. Priors of 
the form ( ) 1/p     are discouraged; see, for example, 
Gelman (2006). Other alternatives are half Cauchy densities 
and gamma densities (one would need to specify the hyper-
parameters). Henceforth, we will call the model specified by 
(1), (2) and (3) the unrestricted (UR) model or Model 1. 

We next describe the restricted model, which is an exten-
sion of the unrestricted model. We obtain a simple linear 
combination of the binomial probabilities. Letting =i  

/i is n  and  

= , = 1, ..., ,i
i

ii

n
i

n

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=1
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ii
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
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Thus, taking the i  unknown, the linear combination is 

=1 .i i i    
Therefore, we need to make an adjustment in (2) to 

incorporate the restriction, =1 =i i i     conditional on .  
We do so by introducing the variable =1= ;i i i      
so that the restriction is equivalent to = 0.  Now one of 
the variables, , = 1, , ,i i    is redundant. It is worth 
noting that one can choose any one of 1, ..., ,   and 
without loss of generality and for ease of exposition, we 
choose .  Thus, to incorporate the restriction, we trans-
form   to =1= ,i i i      keeping 1 1, ...,    un-
transformed, and we let ( ) 1 1= ( , , ) .     

As the jacobian is 1/ ,  
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Note that the joint prior density of ( )( , )  in (4) is well 
defined. We wish to take = 0  in (5) to incorporate the 
restriction, but when = 0  the joint density of ( )  is not 
well defined. 

We assume , ,    are independent a priori with 

1 2( , , ) = ( , ) ( ),p p p       where  

1 2

1
( , ) = , 0 < < 1, 0

(1 )
p     

 
 

as in (3), and 2 ( )p   is given by  

                        0 0 0 0Beta { , (1 ) }.       (6) 

For the restricted model we consider two scenarios. 
Letting 0 ,     becomes a point mass at 0,  and in 
this case 0=   is to be specified by a practitioner; we will 
call the adjusted model the fixed (FI) model or Model 2. We 
have a second scenario in which a practitioner specifies 0  
and 0  but not ;  we will call this adjusted model the 
informative (IN) model or Model 3. Thus, there are three 
models, including the unrestricted model. To provide a 
unified framework, we need all our priors to be proper. The 
exact value of   is likely to be unknown in most applica-
tions, and this can lead to estimates which are not internally 
coherent. 

It is worth noting that we have considered an additional 
model to help study the gain in precision of IN relative to FI. 
For comparison we want to impose a proper but noninfor-
mative prior on ,  so that Uniform (0, 1)   is not an 
unreasonable choice. Letting 0 0= 1/2, = 2,   we get 

Uniform (0, 1)   with this prior, and we will call the 
adjusted model the uniform (UN) model or Model 4; of 
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course, we do not need to specify 0  and 0.  It is worth 
noting that the prior corresponding to     is improper 
as it corresponds to Beta (0, 0).   We do not consider 
this model further; however, although UN does not have a 
constraint, we will consider it briefly throughout.  
2.2 Posterior inference   

We consider making posterior inference about ,i  
= 1, ..., .i   Let 1( , ..., )    and ( ) 1 1= ( , ..., ,i i   

1, ..., )i    [e.g., ( ) 1 1= ( , ..., )     as defined above]. 
We use Bayes’ theorem to find the joint posterior den-

sities of all parameters. First, under the unrestricted model 
specified by (1), (2) and (3) the joint posterior density of 

, ,   is  
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Lemma 1 Under the unrestricted model the joint posterior 
density, ( , , | ),g   s  is proper.  
A proof of Lemma 1 is given in Appendix A. 

Under the restricted model the joint posterior density of 
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1
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  

We get the pertinent joint posterior density by incorpora-
ting the constraint ( = 0)  into (8). That is, ( )( , , ,p    

( )| , 0) ( , , , , = 0 | ),p       s s  where  

( )

1 (1 ) 11

=1

1 (1 ) 11 1

=1 =1

=1

( , , , | , = 0)

(1 )

{ , (1 ) }

1

{ , (1 ) }

{ , (1 ) }

{ , (1 ) }

s fi i
i i

i i i

s f

i i i i
i i

i i

i

p

B s f

B s f

B s f

B

   

    

   

  


     

   
          
   

       
     

      
     



 







  

 

 



 s

1 (1 ) 10 0 0 0
2

1
(1 ) ,

(1 )

     




    
 

 (9)

 

1
=10 < <1, = 1, ..., , 0 < <1, > 0, ii i ii        

  
, 0 < < 1.   Note again that 1

=1= ( ) / .i i i
     

   
It is worth noting that the joint posterior density (9) incorpo-
rates the constraint, =1 = ,i i i     exactly because =  

1 1
=1 =1( ) / , .i ii i i i
               

   That is, the 
joint posterior density is not a function of ,  and posterior 
inference about   follows from the identity, = (    

1
=1 ) / .i i i
   

  Thus, there is absolutely no difference 
between   and =1 .i i i     
Theorem 1 Under the restricted model the joint posterior 
density, ( )( , , , | , 0),p      s  is proper.   
A proof of Theorem 1 is given in Appendix A. 

We note the difference between the densities for the 
unrestricted model in (7) and the restricted model in (9). 
Essentially, the term  

1 (1 ) 11 1

=1 =1

1 (1 ) 10 0 0 0

1

(1 )

s f

i i i i
i i

    

     

   
          

           

   

 
  

 
 

in (9) replaces 
1 (1 ) 1
(1 )

s f      
   in (7). Note that in 

(9),  
1

=1= .i ii

   



 




 

Let = , = (1 ) , = 1, ..., .i i i ia s b f i        Also 
let  

1

=1,=
j jj j i

i
i

c




     


 


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and 
1

=1,= , = 1, ..., 1.
j jj j i

i
i

d i




   




 

  

Then,  

( )

1 1 1 1

( | , , , , , = 0)

(1 ) ( ) ( ) ,

i i

a b b ai i
i i i i i i

p

c d
   

    

        

 s
 

(10)
 

< < , = 1, ..., 1.i i ic d i   Note that this density func-
tion consists of two terms 

1 1
(1 )

a bi i
i i

 
   and 

1
( )

b
i ic

    
1

( ) ;
a

i id
    note the interchange between a  and b  in 

the second term. The first term is the conditional posterior 
density under the unrestricted model, and the second term is 
a generalized beta density [i.e., a beta ( , )b a   distribution 
in the interval ( , )].i ic d  Thus, the unrestricted beta density 
is adjusted by the generalized beta density. In the rest of the 
paper we denote by GenBeta ( , , , )a b c d  the generalized 
beta random variable with density function,  

1 1 1( ) = ( ) ( ) / {( ) ( , )},

, > 1, > 1.

a b a bp x x c d x d c B a b

c x d a b

     

 
 

That is, ( ) / ( ) Beta( , )X c d c a b    if and only if 
GenBeta ( , , , ).X a b c d  

It is worth noting that we have ordered the areas in order 
of their counts (smallest to largest). This is convenient and 
advantageous both theoretically and computationally. 

In order to explain the gain in precision, we attempt to 
study (10) further by making two approximations. First, 
because the restriction under study is rather mild we do not 
expect ic  to be much different from 0  and id  to be much 
different from 1. Under this assumption, we can approxi-
mate (10) by  

( )

1 1 1 1

( | , , , , , = 0)

( ) ( ) ( ) ( ) ,

< < .

a i i

a b b ai i
i i i i i i i i

i i i

p

c d c d

c d

   

    

        



 

 s

 

Then, incorporating the normalization constant into 

( )( | , , , , , 0),a i ip       s  we have  

( )

1 1 1 1

1 1 1 1

1 1

1

1 1

( | , , , , , = 0)

( ) ( ) ( ) ( )
=

( ) ( ) ( ) ( )

( ) ( )
=

( ) ( , )

( ) ( )

[( )

a i i

a b b ai i
i i i i i i i i

d a b b ai i i
i i i i i i i i ici

a bi i
i i i i

a bi i
i i i i

b a

i i i i
b

i i

p

c d c d

c d c d d

c d

d c B a b

c d

E c

   

   

 

 

 



    

     

      

   



   


 



 

 

 



 s

1 1
, < < ,

( ) ]
i i ia

i i

c d
d

 
  

(11)

 

where the expectation is taken over the generalized Beta 
distribution GenBeta ( , , , ), = 1, ..., 1.i i i i ia b c d i   But 
under this latter density, 

1 1
( ) ( )

b a

i i i ic d
       is an 

unbiased estimator of 
1 1

[( ) ( ) ].
b a

i i i iE c d
       In addi-

tion, by construction a  and b  are relatively large and 
therefore 

1 1
( ) ( )

b a

i i i ic d
      and its variance are ex-

pected to be small. Then, our second approximation is  

1 1 1 1
( ) ( ) [( ) ( ) ].

b a b a
i i i i i i i ic d E c d

                (12) 

Therefore, combining (11) and (12), our final approximation 
of (10) is  

( )| , , , , , = 0 GenBeta( , , , ).i i i i i ia b c d     s   (13) 

It follows from (13) that  

( )( | , , , , , = 0) ( ) ( | , , )r i i i i i u iE c d c E           s s  

and  

( )

2

Var ( | , , , , , = 0)

( ) Var ( | , , ),

r i i

i i u id c

    

    

 s

s  (14)
 

where u  refers to the unrestricted model and r  restricted 
model. Note that when = 0ic  and = 1,id  we get 

( | ) =r iE   ( | )u iE    and Var ( | ) = Var ( | ).r u      Gen-
erally though the estimates of i  will be a bit different from 
one scenario to the other. It is also interesting that 
Var ( | ) Var ( | )r i u i      at least approximately. Thus, 
the restriction =1 =i i i     will reduce variability, when 
the i  are estimated. This is true because the , =i i  
1, ..., ,  belong to an 1  dimensional simplex in the   
dimensional hypercube while for the unrestricted model 

, = 1, ..., ,i i   belong to the   dimensional hypercube. 
We expect the largest gain in precision when   is 
completely specified, followed by the case when 0  is 
specified and 0 >> 2,  and the least gain in precision when 

Uniform(0, 1).   
 
2.3 Computation   

We show how to draw samples from the unrestricted and 
restricted models. For the unrestricted model we are able to 
draw random samples from (7) without using Markov chain 
Monte Carlo methods. However, for the restricted model we 
use the griddy Gibbs sampler (Ritter and Tanner 1992) to 
draw samples from (9).  
2.3.1 Unrestricted model   

We collapse over the ,i  draw samples from ( , | )p   s  
using random draws from a bivariate grid, and finally obtain 
samples from the Rao-Blackwellized densities | , , .i   s   
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Then, 

ind

| , , Beta{ , (1 ) }, = 1, ..., ,i i is f i         s   (15) 

and integrating out ,  we get 

2
=1

{ , (1 ) } 1
( , | ) ,

{ , (1 ) } (1 )
i i

i

B s f
p

B

     
   

     


s  

0 < < 1, > 0.   Letting = / 1,     we have  

=1 =
1

( , | )

{ , (1 ) }
, 0 < , < 1.

{ , (1 ) }
i i

i

p

B s f

B 




 

      
       



s

 

First we draw , |  s  using a bivariate grid on 2(0, 1)  
to obtain a sample of M 10,000 values of ( ) ( )( , ),h h   

( ) ( ) ( )1, ..., , /1 .h h hh M       Then we perform a data 
augmentation in (15) to obtain ( ), 1, 2, ..., ,h h M   using 
a composition method. That is, we simply draw i   

( ) ( ) ( ) ( )Beta{ ), (1 ) }, 1, ..., ,h h h h
i is f i h          

1, ..., .M  
To perform the bivariate grid method for sampling from 

the posterior density of ( , ),   we divide the interval (0, 1)  
into 100 sub-intervals; so there are 10,000 little squares in 
the original unit square. We obtain the heights of the poste-
rior density (without the normalization constant) at the 
center of each of the 10,000 squares. Because these little 
squares have the same area, the heights of the bivariate 
density are proportional to the posterior probabilities that 
( , )   fall in each of these squares. Thus, we have con-
structed a joint posterior probability mass function of 
( , )   on very fine grids. It is easy to draw a sample from 
the discrete bivariate probability mass function by using the 
cumulative distribution method. This is actually a random 
draw of one of the 10,000 squares with probabilities propor-
tional to the heights of the little squares. Then within the 
selected square we choose a point at random by drawing 
two uniform random variables (i.e., uniform random jit-
tering). Indeed, this is a very accurate random draw from the 
joint posterior density of ( , ).   We draw M  10,000 
samples from this approximation for posterior inference in a 
standard Monte Carlo procedure with independent samples, 
not a Markov chain. Because of the random jittering the 
numbers are different with probability one.  
 
2.3.2 Restricted model 
 

We show how to draw samples from the restricted model 
using the Gibbs sampler. The joint conditional posterior 
density of 1 1, ...,    is 

 
1 1

1
1 (1 ) 1

=1

1 (1 ) 11 1

=1 =1

( , ..., | , , , , = 0)

(1 )
s fi i
i i

i

s f

i i i i
i i

p 


   

    

     

   

   
            
   



 




  



s

 

(16)

 

where  

1

1
=1

=1

< , < < , = .
i i

i
i i

i



    
        










  


 

Thus, we would obtain samples of 1 1, ...,    and we 
set 

 1

=1
=

i ii

   




 




 

to complete the vector 1, ..., .   That is, the constraint is 
obtained exactly. The conditional posterior density of   is  

( )

1 (1 ) 11 1

=1 =1

1 (1 ) 10 0 0 0

( | , , , , = 0)

(1 ) ,

s f

i i i i
i i

p
    

     

   

   
             
   

   

 



  



s

(17)

 

where 
1 1

=1 =1
< < .i i i ii i

         
  

The joint conditional posterior density of   and  is  

( )

(1 )

2

( , | , , , = 0)

1
,

[ ( , (1 ) )] (1 )

p

q r

B

  

   

 
     





s

 (18)
 

=1 =10 < < 1, > 0, = , = (1 ).i ii iq r        

To perform the Gibbs sampler, we need to draw samples 
from (16), (17) and (18), each in turn, until convergence. 
We draw ,   from ( )( , | , , )p    s  in a manner similar 
to drawing from ( )( , | )p     in the unrestricted model. It 
is more difficult to draw sample from (16) and (17). 
However, we use essentially the same method to draw 
samples from the conditional posterior density of , =i i  
1, ..., 1,  obtained from (16) and   from (17) which are 
both proportional to the product of two density functions, 
one is a truncated beta density and the other a generalized 
beta density. We next develop some theory to draw a 
sample from such a density. For this purpose, we state and 
prove Lemma 2 and Theorem 2. 
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The density function of interest is  

          1 2( ) = ( ) ( ), 0 < < 1,f x A f x f x c x d   (19) 

where  

 
1 1

1
1 1

(1 )
( ) = , < < , , > 0,

(1 )

g h

d g h

c

x x
f x c x d g h

x x dx

 

 




 (20) 

1 1 1
2 ( ) = ( ) ( ) / {( ) ( , )},

< < , , > 1,

a b a bf x x c d x d c B a b

c x d a b

     

 (21)
 

and, of course,  

                             1 2= 1 ( ) ( ) .
d

c
A f x f x dx  (22) 

It is worth noting that we are not assuming , > 1.g h  If 
this was the case, then 1( )f x  and 2 ( )f x  will be both log-
concave, thereby making ( )f x  logconcave, and in this case 
one can draw a sample from ( )f x  using the adaptive rejec-
tion sampler (ARS, Gilks and Wild 1992). We are providing 
a specialized algorithm to draw a sample from ( )f x  which 
is not logconcave. Even if 1( )f x  was logconcave (i.e., 

, > 1)g h  this specialized algorithm will still be better than 
the ARS because the ARS is a general purpose algorithm; 
see Robert and Casella (1999, page 59). Our algorithm 
requires less computation and does not need logconcavity; 
even if there is logconcavity the ARS can perform poorly in 
the tails of the density function.  
Lemma 2 Consider the density functions 1( )f x  and 2 ( )f x  
with , > 1.a b   
(a) Then  

1 1

2
< <

(1 )
( ) = , = ( 1) / ( 2).sup

( ) ( , )

a b

c x d

f x a a b
d c B a b

   
   


 

(b) For any > 0, > 0g h  there exist two constants 1H  
and 2H  such that  

1
1 20 < < .H A H    

A proof of Lemma 2 is given in Appendix A.  
Theorem 2 Let , ( )g hF   be the cdf of Beta ( , )g h  random 
variable and 1

, ( )g hF    be its inverse. Let 

ind

, Uniform (0, 1),U V   

and let  
1
, , ,= { ( ) (1 ) ( )}.g h g h g hX F UF d U F c    

If for two real numbers , > 1,a b  
 

1 1

2

1
,

1( )

a b

a b

X c d X
V

d c

 

 

              
 

where = ( 1) / ( 2),a a b     then X  has the density 

1 2( ) = ( ) ( ).f x Af x f x   
A proof of Theorem 2 is given in Appendix A. 

Theorem 1 gives us the following algorithm for drawing 
samples from 1 1 1 1( ) (1 ) ( ) ( ) ,g h a bf c d             

< < , , > 0, , > 1.c d g h a b   
Algorithm  
(a) Draw Uniform(0, 1)U  and set  

1
, , ,= { ( ) (1 ) ( )}.g h g h g hF UF d U F c    

(b) Draw Uniform(0, 1).V   If 

1 1

2

1
,

1( )

a b

a b

c d
V

d c

 

 

                  

accept ,  otherwise go to ( ).a  

 
Because the binomial sample sizes are arranged in 

increasing order, in any application it will be true that 
, > 1a b  and , > 0g h  (possibly greater than 1 as well). 

Thus, the algorithm will work. Indeed, in all our examples 
(one presented here) and simulation exercises the algorithm 
runs very quickly. 

Now, we show how to draw , = 1, ..., ,i i   and .  
For ,i  

( , )

1 1 1 1

( | , , , , , = 0)

(1 ) ( ) ( ) , < < ,

i i

a b b ai i
i i i i i i i i i

p

c d c d
   

    

        



 

s
 

where ( , )i   is the vector containing the elements of   
except for i  and ,  and = , = (1 ) ,i i i ia s b f     

 = 1, ..., ,i 
 

1

=1,

1

=1,

= ,

= , = 1, ..., 1.

i i i i
j j i

i i i i
j j i

c

d i









 
        
 

 
       
 













 

Apply the theorem to ( )( | , , , , ), 1, 1,i ip a b      s  
1, ..., 1.i    

For ,  we have  
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1 (1 ) 1 1 10 0 0 0

( | , , , , = 0)

(1 ) ( ) ( ) , < < ,
a b

p

c d c d
       

   

           

s
 

where  

1 1

=1 =1
= , = .i i i ii i

c d
        


  

Again, apply the theorem, > 1, > 1.a b   
When   is fully specified (i.e.,   is not random), we do 

not have to draw .  However, when Uniform(0, 1)   
a priori 0 0( = 1/2, = 2),   we have a simplification. In 
this case,  

( )| , , , , = 0 GenBeta ( , , , )a b c d     
s   

and = ( ) ,c d c X     where Beta ( , ),X a b   has the 
required density. 

For both the unrestricted and restricted models we use 
10,000 iterates to make posterior inference about the bino-
mial probabilities, .i  Under the unrestricted model these 
are simply random draws and no monitoring is required. For 
the restricted model, running the griddy Gibbs sampler, we 
drew 11,000 iterates, used 1,000 as a “burn in” (a conserva-
tive number because convergence occur much earlier as 
evident in the trace plots) and we found negligible correla-
tions among the iterates. Thus, we used 10,000 iterates to 
make inference about the binomial probabilities. For both 
the unrestricted and the three restricted models it takes only 
a few seconds on our 2 833 MHz alpha computer.  

3. Numerical studies   
In Section 3.1 we describe an illustrative example to 

show the main features of the restriction. In Section 3.2 we 
describe a simulation study to show frequentist properties of 
the Bayes estimators, and we show deeper insight into the 
differences among the four scenarios. Note again that when 
we performed the computations, it is convenient to order the 
domain sizes so that the largest domain comes last.  
3.1 Illustrative example   

We have used data in the third National Health and 
Nutrition Examination (NHANES) Survey to illustrate our 
method. We have studied body mass index for teenagers, 
and we have data on the sample obtained. The domains 
(small areas) are formed by crossing ethnicity (white, black, 
Mexican) and sex (male, female). We have separated out the 
teenagers with respect to whether they were in middle 

school or high school at the time of the survey. Thus, there 
are 12 small domains. The data are presented in the first four 
columns of Table 1 by domain. Note that domains MWM, 
MBF, MWF and HBF are relatively sparse with 4, 2, 5, 5 
obese teenagers respectively; for the twelve domains the 
sample consists of 959 with 130 obese teenagers (i.e., the 
overall proportion of obese individuals is 0.136 approxi-
mately). In column 4 of Table 1 we have also presented the 
direct estimates by domains, and these estimates range from 
0.069 to 0.228. The estimates for the smallest domains will 
be unreliable. Moreover, when the beta-binomial models are 
used, these estimates will regress to the overall sample mean 
of 0.136, creating a possible bias. Our method is expected to 
increase precision beyond the unrestricted model because 
the restricted model uses more information about the 
weighted sum. Clearly, predictors based on either the 
restricted model or the beta-binomial model are biased if the 
specified model is wrong. 

We have taken 0 = 0.136, the overall sample propor-
tion, and 0 = 959,  the total sample size. Less optimistic 
choices can be used. For example, 0 = 100,  say; but this 
choice makes very little difference. However, it is worth 
noting that using the observed data to specify the prior 
distribution can artificially decrease the posterior variance. 
Typically a survey practitioner will have an appropriate 
specification from a prior survey or a census. One cannot 
specify values for 0  and 0  which are completely out of 
line and will create huge biases. Here 0  is a prior sample 
size and 0  is a prior mean of .  This method permits a 
sensible value for ;  we are essentially adding a degree of 
uncertainty about knowledge of the linear combination. 
Thus, these specifications are not unreasonable. 

We have applied our method as described for the four 
scenarios. In the other columns of Table 1 we study the 
estimates of the small area probabilities. We present the 
posterior mean (PM), posterior standard deviation (PSD), 

2 2ˆRMSE = ( PM) PSD ,    

where ̂  is the direct estimate, and the 95% highest 
posteriori density (HPD) interval (Int). As is expected, the 
PSDs are roughly in the increasing order: Model 2, Model 3, 
Model 4 and Model 1; in some cases the differences are 
important. The PMs for Models 1, 2 and 3 are mostly 
similar, but for Model 4 the PMs are mostly smaller than the 
other three models. There is much improvement of Models 
2 and 3 over Model 1 at least in terms of precision. This 
gain becomes less important for Model 4, the model with 
the greatest uncertainty about .  
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Table 1 
Comparison of the four models using posterior mean (PM), posterior standard deviation, root mean square error (RMSE), and 
95% credible HPD intervals (Int) of i  by domain (D) for the NHANES data 
 

D   s   n   ̂    PM   PSD   RMSE   Int   PM   PSD   RMSE   Int 

      Model 1    Model 2 
1   4   47   0.085   0.114   0.033   0.044  (0.051, 0.179)   0.111   0.032  0.041  (0.049, 0.170) 
2   2   29   0.069   0.112   0.037   0.057  (0.042, 0.183)   0.111   0.036   0.055  (0.041, 0.178) 
3   10   44   0.227   0.175   0.044   0.068  (0.100, 0.264)   0.177   0.041   0.065  (0.108, 0.260) 
4   5   62   0.081   0.107   0.030   0.040  (0.047, 0.159)   0.107   0.027   0.038  (0.054, 0.160) 
5   10   74   0.135   0.134   0.030   0.030  (0.077, 0.194)   0.134   0.028   0.028  (0.080, 0.190) 
6   12   69   0.174   0.158   0.036   0.039  (0.089, 0.227)   0.155   0.031   0.036  (0.095, 0.214) 
7   8   79   0.101   0.116   0.028   0.031  (0.065, 0.173)   0.115   0.027   0.030  (0.065, 0.166) 
8   5   62   0.081   0.107   0.030   0.040  (0.052, 0.169)   0.105   0.029   0.038  (0.042, 0.153) 
9   28  123   0.228   0.196   0.036   0.048  (0.129, 0.262)   0.196   0.032   0.045  (0.131, 0.253) 
10   10  111   0.090   0.106   0.026   0.030  (0.059, 0.155)   0.105   0.024   0.028  (0.061, 0.150) 
11   16  122   0.131   0.132   0.026   0.026  (0.083, 0.183)   0.130   0.023   0.023  (0.090, 0.179) 
12   20  137   0.146   0.144   0.026   0.026  (0.094, 0.194)   0.141   0.022   0.023  (0.100, 0.184) 
      Model 3    Model 4 

1   4   47   0.085   0.111   0.033   0.042  (0.044, 0.169)   0.109   0.032   0.040  (0.050, 0.172) 
2   2   29   0.069   0.111   0.037   0.056  (0.039, 0.179)   0.108   0.036   0.053  (0.037, 0.173) 
3   10   44   0.227   0.175   0.043   0.068  (0.093, 0.260)   0.170   0.044   0.072  (0.091, 0.255) 
4   5   62   0.081   0.106   0.029   0.038  (0.050, 0.160)   0.103   0.030   0.038  (0.048, 0.164) 
5   10   74   0.135   0.134   0.029   0.029  (0.077, 0.189)   0.129   0.030   0.030  (0.067, 0.184) 
6   12   79   0.174   0.156   0.034   0.038  (0.090, 0.217)   0.151   0.036   0.043  (0.087, 0.222) 
7   8   69   0.101   0.118   0.028   0.033  (0.062, 0.171)   0.111   0.028   0.029  (0.061, 0.167) 
8   5   62   0.081   0.107   0.030   0.040  (0.051, 0.165)   0.102   0.030   0.036  (0.050, 0.159) 
9   28  123   0.228   0.195   0.034   0.047  (0.138, 0.265)   0.189   0.035   0.052  (0.123, 0.255) 
10   10  111   0.090   0.107   0.024   0.029  (0.062, 0.156)   0.104   0.025   0.029  (0.051, 0.149) 
11   16  122   0.131   0.132   0.024   0.024  (0.086, 0.179)   0.126   0.025   0.025  (0.083, 0.179) 
12   20  137   0.146   0.143   0.024   0.024  (0.095, 0.191)   0.137   0.025   0.027  (0.091, 0.189) 

 

Note: The four models are: Model 1 - no restriction; Model 2 - fixed ;  Model 3 - informative prior for ;  Model 4 - uniform prior for .  
Domains are formed by crossing school (middle school - M, high school - H), race (white - W, black - B, mexican american - M) and sex 
(male - M, female - F). Thus, the domains are: 1-MWM, 2-MBF, 3-MMM, 4-MWF, 5-MBM, 6-MMF, 7-HWM, 8-HBF, 9-HMM, 10-
HWF, 11- HBM, 12-HMF (e.g., the first domain consists of middle school white boys). n  is the number of teenagers and s  the number of 
obese teenagers in each domain. Data are taken from the 35 largest counties in the US. An estimate of the overall probability is 
130 / 959 0.136,  and for the first domain ˆ = 4 / 47 = 0.085;p  the numerical standard errors are all smaller than 0.001; 

2 2ˆRMSE = ( PM) PSD .    
 

 
We also study very briefly the nuisance parameter .  We 

note that the weighted average of the direct estimators of the 
small areas is 0.136 (more accurately 0.1355599). When   
is held fixed at 0.1355599, the weighted average of the 
posterior means is 0.136. When   has the informative prior, 
the weighted average of the posterior means is 0.136, and 
for   the PM is 0.136, the PSD is 0.008, and a 95% HPD 
interval for   is (0.122, 0.152). When   has the uniform 
prior, the weighted average of the posterior means is 0.132, 
and for   the PM is 0.131, the PSD is 0.011, and a 95% 
HPD interval for   is (0.110, 0.151). This shows the 
deficiencies of the uniform prior which we use only for 
comparison. It is worth noting that 1 1, ,    and   are 
computed first. Then   is obtained by subtraction. This is 
done at each iterate of the Gibbs sampler. Then, the 
posterior summaries for =1i i i    and   are computed. So 
there will be very minor discrepancies which are due to 
rounding. 

Finally, we have selected the four smallest domains to 
compare the posterior densities of the probabilities. We have 
used the Parzen-Rosenblatt kernel density estimator to 
estimate the posterior densities; see Silverman (1986) for 
details. Figure 1 compares the estimated posterior densities 
for the four models. It is interesting that as the domain sizes 
increase, the four models get closer together. Also, for all 
cases the tails of the distributions in each panel are very 
similar; the differences in these distributions though lie in 
the modal intervals (i.e., interval containing the mode), and 
their heights. As expected, the posterior density correspon-
ding to the unrestricted model is the shortest, simply 
because it has more variability. Model 4 has posterior 
density shifted to the left and is slightly bimodal for the 
smallest domain. Thus, inference about the modes of these 
distributions will be different. But inference involving the 
tails will not be so different; except for Model 4, 95% 
credible intervals will be similar. 
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Figure 1 Plots of the estimated posterior densities of 1 2 4, , ,    and 7  for the four models and NHANES data 
 
 
3.2 Simulation study   

We use a simulation study to assess the statistical 
properties of our method. We want to see if the gain in 
precision persists and to see how the estimators of the 
probabilities are shifted. We also study the frequentist 
properties of the estimators of the probabilities. In the 
description of the simulation it is convenient to use the 
abbreviated names of the models which are UR (Model 1, 
no restriction), FI (Model 2, fixed ),  IN (Model 3, 

informative prior for )  and UN (Model 4, uniform prior 
for ).  

We set 0 = 0.15, 0 0=   and 0 = 100.  We have 
selected three values of = 12, 24, 36, 12 being the number 
of areas in the NHANES data. We drew the sample sizes 
from a uniform density in (25, 150), again to reflect the 
NHANES data. First, we generated 

iid

0 0 0 0Beta{ , (1 ) }, = 1, ..., .i i        
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To do this latter task, we drew sets of  i  until 0   
1

=1 0 ;i i iw     
  set 1

=10= ( ) / .i i i w    
   Then, 

we generated 
ind

Binomial ( , ).i i is n   

We have generated 1,000 data sets in this manner for each 
of = 12, 24, 36. Then, we fit the four models (one 
unrestricted and three restricted models). The process is 
very fast (i.e., for samples sizes of 12, 24, 30 there were 
respectively 22, 90, 153 rejects in the 1,000 samples). We fit 
each data set using random samples for the unrestricted 
model and the griddy Gibbs sampler for the restricted 
models. We fit the 1,000 data sets in a couple of hours on 
our on our 2 833  MHz alpha computer. 

For these 1,000 simulations we study PM, the coverage 
(C), the bias (B), PSD, RMSE and width (W) of the 95% 
credible intervals. For each domain we compute the bias 
PM ,   then we average these values over all domains 
and simulation runs, and this quantity we now call .B  
Associated with B  we also computed ,AB  the average of 
| PM |.   Similarly, we have computed  

2 2RMSE = (PM ) PSD    

for each domain and each simulation run and we average 
these over all domains and simulation runs. Note that the 
true probabilities, ,i  are known by design. We obtain the 
coverage (C) by computing the proportion of all intervals 
containing the true value of i  over all domains and 
simulation runs. We also obtain the average of the widths of 
the 95% credible intervals. Numerical standard errors are 
obtained for all quantities. 

In Table 2 we study the estimates of the small area 
probabilities. It is convenient to use the shorter names of the 
four models for our discussion. For IN the PMs are close to 
the nominal value of 0.15, but for UN the PMs are smaller 
than the nominal value particularly for UN at = 12. We 
observe that the coverage for all the models UR, FI and UN 
are always larger than the nominal value of 95%, but for 
model IN these coverages are smaller than the nominal 
value of 95%. A similar difference exists for the bias; while 
the bias is small for all models, models UR, FI (the specified 
value of   is 0.15) and UN have negative biases but IN has 
positive bias. Except for = 36 IN has the largest AB. The 
PSDs are mostly similar and the RMSEs share the same 
features; there are some differences at = 12. The four 
models get similar as   increases; when   is large there 
appears to be no need for our method. However, again the 
gain in precision appears to be in the increasing order FI, IN, 
UN and UR. 

In most applications the exact value of   is unknown. 
Therefore, the PSDs of the ,i  under the situation where   
is assumed known, are likely to underestimate the true 
PSDs. So we study the deviations of the PSDs of IN and 
UN from those of FI, and we compute the ratios, 1 =R  

IN FIPSD / PSD  and 2 UN FI= PSD / PSD .R  In Table 3 we 
present the five-number summaries of these ratios by 
sample size. Most of the ratios are around 1 (i.e., inter-
quartile range) with some tendency for them to be larger 
than 1. (Note that the maxima at =  and = 24 are out-
liers possibly due to bad simulated samples.) Thus, overall 
the PSDs under IN and UN are not much larger under FI. 

 
 

Table 2 
Simulation: Comparison of the four models using coverage (C), bias and average absolute bias (B and AB), posterior standard 
deviation (PSD), root mean squared error (RMSE) and width of the 95% credible intervals (W) of i  
 

    Model    C   B   AB   PSD   RMSE   W 

12   UR   0.9600.0018 -0.0020.0003 0.02310.00016 0.0330.0001 0.0430.0001 0.1250.0003 

  FI   0.9610.0018 -0.0000.0003 0.02190.00020 0.0310.0001 0.0400.0001 0.1180.0003 

  IN   0.9460.0021 0.0050.0003 0.02750.00066 0.0320.0001 0.0430.0001 0.1220.0002 

  UN   0.9560.0019 -0.0000.0003 0.02610.00019 0.0320.0001 0.0420.0001 0.1220.0003 

24   UR   0.9570.0013 -0.0010.0002 0.02290.00012 0.0310.0000 0.0410.0001 0.1190.0002 

  FI   0.9570.0013 -0.0000.0002 0.02240.00013 0.0300.0000 0.0400.0001 0.1160.0002 

  IN   0.9430.0015 0.0060.0002 0.02520.00058 0.0300.0000 0.0410.0001 0.1160.0001 

  UN   0.9520.0014 -0.0000.0002 0.02360.00012 0.0310.0002 0.0410.0002 0.1180.0005 

36   UR   0.9600.0010 -0.0010.0001 0.02240.00009 0.0300.0000 0.0400.0001 0.1170.0001 

  FI   0.9610.0010 -0.0000.0001 0.02180.00009 0.0300.0000 0.0390.0001 0.1150.0001 

  IN   0.9480.0012 0.0050.0002 0.02240.00009 0.0300.0000 0.0400.0001 0.1140.0001 

  UN   0.9570.0011 -0.0000.0001 0.02280.00010 0.0300.0000 0.0400.0001 0.1160.0001 
 

Note: The four models are: Model 1 - no restriction (UR); Model 2 - fixed   (FI); Model 3 - informative prior for   (IN); Model 4 - uniform 
prior for   (UN). 2 2RMSE= ( PM) PSD .    The notation ba  means a  is an estimate and b  is the standard error. 
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Table 3 
Simulation: A study of the posterior standard deviation (PSD) 
of the i  using five number summaries of the ratios, 1R  and 

2R , by sample size 
 

    Ratio    Min   1Q    Med   3Q    Max  

12   1R     0.673   0.972   1.032   1.091   5.329 

  2R     0.022   0.984   1.034   1.086   85.370 

24   1R     0.019   0.965   1.005   1.047   16.017 

  2R     0.024   0.979   1.014   1.049  486.960 

36   1R     0.690   0.962   0.998   1.034   1.236 

  2R     0.837   0.979   1.011   1.044   1.243 
 

Note: 1 IN FI= PSD / PSDR  and 2 UN FI= PSD / PSD .R  The five 
summaries are minimum (min), first quartile 1( ),Q  median 
(med), third quartile 3( )Q  and maximum (max).  

In Table 4 we study the estimate of   for the two 
pertinent models IN and UN. For both models the coverage 
probabilities are smaller than the nominal value, and the 
coverage for UN is smaller than the interval for IN. Bias is 
small for both models, positive for IN and negative for UN. 

Except for = 36 IN has by far the larger AB. The PSDs 
and RMSEs are generally smaller for IN, and the widths of 
the 95% credible intervals are significantly smaller for IN. It 
appears that it is difficult to estimate   under UN, but IN 
appears to be somewhat better. 

In Table 5 we present more detailed result (i.e., by 
domain) for the case when the number of domains is 12. To 
show further gains in precision, we have reduced the sample 
size to half as much [i.e., we drew the sample sizes uni-
formly in the interval (12, 75)]. We present the posterior 
standard deviation and the posterior root mean square error, 
averaged over the simulation runs. Again the standard errors 
are presented. We note that all the probability contents (not 
presented) are at least the nominal value of 95%. The 
numerical standard errors are small in all cases. The PSDs 
and RMSEs are in the right order. Note that because the 
sample sizes are arranged in order from smallest to largest, 
there is a decrease in the PSDs and RMSEs as the domain 
numbers go up. 

 
 

Table 4 
Simulation: Comparison of the informative (IN) and the uniform (UN) models using posterior mean (PM), coverage (C), bias and 
average absolute bias (B and AB), posterior standard deviation (PSD), root mean squared error (RMSE) and width of the 95% 
credible intervals (W) of  i  
 

    Model    PM   C   B   AB   PSD   RMSE   W  
12   IN   0.1490.0012 0.8530.0112 0.0000.0003  0.001520.00081  0.0080.0000 0.0120.0002 0.0300.0001 
  UN   0.1380.0005 0.8810.0102 -0.0120.0004  0.000380.00003 0.0110.0001 0.0160.0002 0.0420.0002 

24   IN   0.1530.0015 0.8330.0118  0.0030.0015  0.002120.00103  0.0070.0006 0.0120.0015 0.0240.0015 
  UN   0.1450.0029 0.8420.0115  -0.0050.0003   0.000120.00006 0.0080.0001 0.0120.0002 0.0300.0002 

36   IN   0.1500.0002 0.8280.0119 0.0000.0002  0.000040.00000 0.0040.0000 0.0070.0001 0.0170.0001 
  UN   0.1450.0003 0.7940.0128  -0.0050.0002 0.000090.00000 0.0060.0000 0.0100.0001  0.0240.0001 

 

Note: The two models considered are: Model 3 – informative prior for   and model 4 - uniform prior for .  RMSE =   
2 2

0( PM) PSD .  
 
The notation ba  means a  is an estimate and b  is the standard error. 

 
Table 5 
Simulation: Comparison of the four models using posterior standard deviation and root mean square error (RMSE) of i  by 
domain (D) 
 

   Unrestricted    Fixed    Informative    Uniform 
D   PSD   RMSE   PSD   RMSE   PSD   RMSE   PSD   RMSE 
1  0.0480.0003 0.0570.0004  0.0460.0003 0.0540.0004 0.0450.0002  0.0560.0005  0.0470.0004  0.0560.0005 
2  0.0460.0003 0.0550.0004 0.0440.0003 0.0530.0004 0.0440.0002 0.0540.0005  0.0450.0004  0.0540.0005 
3  0.0440.0002 0.0530.0004 0.0420.0002 0.0500.0004 0.0420.0002  0.0520.0005 0.0430.0003  0.0510.0004 
4  0.0420.0002 0.0500.0004  0.0400.0002 0.0470.0004 0.0400.0002  0.0500.0004  0.0410.0002  0.0490.0004 
5  0.0410.0002 0.0490.0004  0.0380.0002 0.0460.0004 0.0390.0002  0.0480.0004 0.0390.0003 0.0480.0005 
6  0.0400.0002 0.0480.0004  0.0370.0002 0.0450.0004 0.0370.0002  0.0480.0004  0.0380.0003  0.0470.0005 
7  0.0380.0002 0.0460.0004 0.0350.0002 0.0430.0003 0.0360.0002  0.0460.0004  0.0370.0003  0.0450.0004 
8  0.0370.0002 0.0450.0003 0.0340.0002 0.0410.0003 0.0360.0002   0.0460.0004 0.0360.0003  0.0440.0004 
9  0.0360.0002 0.0440.0003 0.0330.0002 0.0400.0004 0.0340.0001  0.0440.0004  0.0350.0003  0.0420.0004 
10  0.0350.0002 0.0430.0003  0.0320.0002 0.0390.0003 0.0340.0001  0.0440.0004   0.0340.0003  0.0420.0004 
11  0.0340.0001 0.0420.0003 0.0310.0002 0.0380.0003 0.0330.0001  0.0420.0004  0.0330.0003  0.0410.0004 
12  0.0350.0002 0.0470.0005  0.0310.0002 0.0420.0004 0.0340.0003  0.0470.0006  0.0340.0007  0.0460.0008 

 

Note: The four models are: Model 1 - no restriction; Model 2 - fixed ;  Model 3 - informative prior for ;  Model 4 - uniform prior for 
. 2 2RMSE= ( PM) PSD .i    The notation ba  means a  is an estimate and b  is the standard error. Here 12 domains are used 

and the original simulated sample sizes are divided by 2. 
     



Survey Methodology, December 2011 149 
 

 
Statistics Canada, Catalogue No. 12-001-X 

We study the posterior density of 1  for = 12, and we 
compare the four models. Again we use the Parzen-
Rosenblatt density estimator. In Figure 2 we present the 
estimated posterior densities (Parzen-Rosenblatt) averaged 
over the 1,000 runs for = 12. We obtain the same results 
as for the BMI data. Again the tails are similar. FI is the 
tallest density and UN is the shortest. UN is slightly shifted 
to the left of IN. In Figure 3 we present a systematic sample 
of 10 densities from the 1,000 simulation runs by model. 
We can see large variation among the 10 estimated posterior 
densities. Again we can see that FI is tallest; UR, FI and UN 
show similar variation with IN slightly taller. Thus, it is 
important to take the average for comparison as in Figure 2. 

 
 
 
 

4. Concluding remarks   
We have extended the beta-binomial model of small area 

estimation to accommodate a prior specification of a 
weighted average of the area probabilities. We have used 
the Bayesian approach which is particularly attractive for 
problems with awkward likelihood functions as in our 
application with the constraint of the weighted average of 
the beta-binomial model. We viewed the constraint as prior 
knowledge which can be precise or less informative. The 
griddy Gibbs sampler is used to fit the models, thereby 
avoiding the more sophisticated Metropolis-Hastings sam-
pler. We have developed a theory which permits sampling 
from a density function which is proportional to the product 
of a truncated beta-binomial density and a generalized beta 
density. We have found that overall our complete algorithm 
forming the griddy Gibbs sampler runs efficiently and fast. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2 Plots of the estimated posterior densities of 1  by model when there are 12 domains 
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Figure 3 Plots of the estimated posterior densities of 1  for a systematic sample of size 10 from the 1,000 runs by model when 

there are 12 domains 
 
 

We have shown that there could be gains in precision 
when extra information is incorporated into the beta-bino-
mial model. We have considered three scenarios in which a 
survey practitioner (a) can not specify any constraint (stan-
dard beta-binomial model for small areas), (b) can specify a 
constraint and the parameter completely, and (c) can specify 
a constraint and information which can be used to construct 
a prior distribution for the parameter. Our example on 
obesity of children in the National Health and Nutrition 
Examination Survey and simulation study showed that the 
gain in precision beyond (a) is in an order with (b) larger 
than (c). As the exact algebraic arguments are difficult, we 
obtained an analytical approximation which shows that 
indeed there could be gain in precision of (b) over (a). For 
comparison we have considered a fourth scenario in which 
  has vague information, and as expected, it turned to be 
rather uninteresting and inefficient. 

It is straight forward to make Bayesian predictive infer-
ence about the finite population mean of each small area. 
Let = /i i iP T N  denote the finite population proportion for 
the thi  area, where =1= ,

Ni
ji ijT y ijy  are the binary re-

sponses, and ,iN  the number of individuals in the thi  area, 
is assumed known. Now ( ) ( )= ,s ns

i i iT t t  where ( )s
it  and 

( )ns
it  are respectively the sample total and the nonsample to-

tal. Now under any of the models ( ) | Binomial ( ,ns
i i it n   

)i  and ( ) ( )( | ) ( | ) ( | ) ,ns ns
i s i i s ip t p t p d   y y  where 

1= ( , , ) .s y y y  Thus, it is easy to obtain the empirical 
posterior density of iP  using a sampling-based method. 
Nandram and Sedransk (1993) obtained some analytical 
features of iP  when  is known, but not with the constraint; 
see also Nandram (1998). 

We mention a generalization of our restricted beta-bino-
mial hierarchical Bayesian model to the Dirichlet-multi-
nomial model (e.g., Nandram 1998). Let iy  be c-vector of 
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cell counts (i.e., number of people possessing one of c  
traits), and let in  denote the sample sizes within the thi  
area, = 1, , .i    We assume  

ind

| Multinomial( ,i i in y
iid

), , , Dirichlet ( )i i        

with =1 .i i iw     Finally 0 0Dirichlet ( ),  where 

0  and 0  are to be specified, and independently ( , ) =p   
2

=1( 1)!/(1 ) , 0 < < 1, = 1, , , = 1.c
kk kk k c      With 

k constraints this problem is much more complex, but we 
plan to work on it. Other extensions to nonignorable non-
response (Nandram and Choi 2002) and two-way categori-
cal tables are possible.  
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Appendix A  
Proofs of lemmas 1, 2 and theorems 1, 2  

Proof of lemma 1  
This is a special case of a general result. Using the 

multiplication rule and because the prior is proper, it is clear 
that the joint density of , , ,  s  “integrates” to one. 
Therefore, the joint posterior density of , ,   given s  is 
proper.  
Proof of theorem 1  

Let = {( , , , ): 0 < < 1, = 1, ..., , 0 < <i i       
1

=11, > 0, , 0 < < 1, = (i i i
            

 
 1

=1 ) / }i i i
   

  and = {( , , ): 0 < < 1, =i i      
1, ..., , 0 < < 1, > 0};   note that .   

Let ( , , | )g   s  denote the right-hand side of the 
unrestricted posterior density in (7) and ( )( , , , | ,p    s  

= 0)  denote the right-hand side of the restricted posterior 
density in (9). Noting that 1

=1= ( ) / ,i i i
     

   we 
observe that 

( )

1 (1 ) 10 0 0 0

( , , , | , = 0) =

( , , | ) (1 ) , ( , , , ) .

p

g
     

   

        



 



 

s

s
 

Because 
1 (1 ) 10 0 0 0(1 )

         is proportional to the 
density function of beta random variable, we have  

( )( , , , | , = 0) =

( , , | ) ( , , | ) ,

p s d d d d

A g s d d d A g d d d

      

        


 



 


 

 

   s
 

where 0 0 0 0= { , (1 ) }A B       is the beta function. By 
lemma 1, ( , , | ) .g d d d       


s   Thus, ( )( , ,p   

, | , 0)   s  is proper.  
Proof of Lemma 2 (a)  

This can be proved in two ways. The second derivative 
of 2log{ ( )}f x  is negative in ( , ),c d  and so the first 
derivative, when set to zero, provides a unique mode which 
is (1 ) .d c    Alternatively, because ( ) / ( )X c d c    
Beta ( , )a b  with , > 1,a b  there is a unique mode for 
( ) / ( ),X c d c   and this translates to (1 ) ;d c     
note that (1 )d c     is a point in ( , ).c d  Thus, 
substituting (1 )d c     into 2 ( ),f x  we have  

1 1
2

< <

( ) = (1 ) / ( ) ( , ).sup a b

c x d

f x d c B a b      

 
Proof of Lemma 2 (b)  

Because , > 1,a b x x c   and 1 ,x d x    it is 
true that  

1 1 2 2( ) ( ) ,
d a g b h

c
A D x c d x dx         

where 1
, ,= ( ) ( , ) ( , ){ ( ) ( )}a b

g h g hD d c B a b B g h F d F c    
and , ( )g hF x  is the cdf of a standard beta random variable in 
(0, 1).  Note that because <c d  (strictly) and , ( )g hF x  is 
monotone increasing in (0, 1), , ,( ) ( ) > 0g h g hF d F c  
(strictly). By comparison with the generalized beta density 
[i.e., Beta ( 1, 1, , )],a g b h c d     the integral is 

3( ) ( 1, 1).a b g hd c B a g b h         Thus,  
2

1
1

, ,

( ) ( 1, 1)
= > 0.

( , ) ( , ){ ( ) ( )}

g h

g h g h

d c B a g b h
A H

B a b B g h F d F c

 
     



 

Also, we have  

1
1 2

< <

( ) ( ) .sup
d

c c x d

A f x f x dx    

Then by Lemma 2 (a),  
1 1 1 1

1
1

2

(1 ) (1 )
( ) =

( ) ( , ) ( ) ( , )

= < .

a b a b
d

c
A f x dx

d c B a b d c B a b

H

   
      


 




 

 
Proof of theorem 2  

To show the claim, we calculate the cdf ( )XF   of the 
random variable X  defined in the Theorem. We have  

1
, , ,

, , ,

, , , ,

, ,

, ,

( ) = ( )

= [ { ( ) (1 ) ( )} ]

= [ ( ) (1 ) ( ) ( )]

= [ { ( ) ( )} ( ) ( )]

( ) ( )
= .

( ) ( )

X

g h g h g h

g h g h g h

g h g h g h g h

g h g h

g h g h

F x P X x

P F UF d U F c x

P UF d U F c F x

P U F d F c F x F c

F x F c
P U

F d F c





  

  

  

 
 

  
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Now, since Uniform(0, 1),U   from the above expres-
sion for ( ),XF   we have ( ) = 1XF x  if x d  and ( ) =XF x  
0 if .x c  When ,c x d   we have  

, ,

, ,

( ) ( )
( ) = .

( ) ( )
g h g h

X
g h g h

F x F c
F x

F d F c




 

This shows that X  has the truncated beta density 1( )f x  
in (20). 

Now, looking to use the accept-reject algorithm, consider  

2
1

( )
= ( ).

( )

f x
Af x

f x
 

By Lemma 2, we have  

1 1

2
< < < <1

( ) (1 )
= ( ) = < .sup sup

( ) ( ) ( , )

a b

c d c d

f x
A f x A

f x d c B a b

 

 

    
 

 
 

Thus, by the accept-reject algorithm, if  

1 1

2

1
,

1( )

a b

a b

X c d X
V

d c

 

 

              
 

then X  has the density ( )f x  in (19). 
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On bias-robust mean squared error  
estimation for pseudo-linear small area estimators 

Ray Chambers, Hukum Chandra and Nikos Tzavidis 1 

Abstract 
We propose a method of mean squared error (MSE) estimation for estimators of finite population domain means that can be 
expressed in pseudo-linear form, i.e., as weighted sums of sample values. In particular, it can be used for estimating the 
MSE of the empirical best linear unbiased predictor, the model-based direct estimator and the M-quantile predictor. The 
proposed method represents an extension of the ideas in Royall and Cumberland (1978) and leads to MSE estimators that 
are simpler to implement, and potentially more bias-robust, than those suggested in the small area literature. However, it 
should be noted that the MSE estimators defined using this method can also exhibit large variability when the area-specific 
sample sizes are very small. We illustrate the performance of the method through extensive model-based and design-based 
simulation, with the latter based on two realistic survey data sets containing small area information. 
 
Key Words: Best linear unbiased prediction; M-quantile model; Model-based direct estimation; Random effects 

model; Small area estimation. 
 
 

1. Introduction 
 
Linear models, and linear predictors based on these 

models, are widely used in survey-based inference. Howev-
er, such models run the risk of misspecification, particularly 
with regard to second order and higher moments. Bias-
robust methods for estimating the mean squared error 
(MSE) of linear predictors of finite population quantities, 
i.e., methods that remain approximately unbiased under 
failure of assumptions about second order and higher mo-
ments, have been developed. Valliant, Dorfman and Royall 
(2000, Chapter 5) discuss bias-robust MSE estimation for 
such predictors when a population is assumed to follow a 
linear model. 

In this paper we address a subsidiary problem, which is 
that of bias-robust MSE estimation for estimators of finite 
population domain means that can be expressed in pseudo-
linear form, i.e., as weighted sums, but where the weights 
can depend on the sample values of the variable of interest. 
An important application, and one that motivates our 
approach, is small area inference. Consequently from now 
on we use ‘area’ to refer to a domain of interest. Our ap-
proach represents an extension of the ideas in Royall and 
Cumberland (1978) and appears to lead to simpler to 
implement MSE estimators than those that have been 
suggested in the small area literature. 

The structure of the paper is as follows. In section 2 we 
discuss MSE estimation under an area-specific linear model. 
That is, we focus on estimation of the conditional MSE. We 
then show how our approach can be used for estimating the 
MSE of three different small area linear predictors when 

they are expressed in pseudo-linear form, (a) the empirical 
best linear unbiased predictor or EBLUP (Henderson 1953); 
(b) the model-based direct estimator (MBDE) of Chandra 
and Chambers (2009); and (c) the M-quantile predictor 
(Chambers and Tzavidis 2006). In section 3 we present 
results from a series of simulation studies that illustrate the 
model-based and the design-based properties of our 
approach to MSE estimation. Finally, in section 4 we sum-
marize our main findings. Throughout, we use either i or h 
to index the D small areas of interest, and either j or k to 
index the distinct population units in these areas.  

2. Bias-robust MSE estimation for 
      pseudo-linear estimators  

2.1 MSE estimation under an area-specific linear 
model  

We consider the situation where we have a finite 
population of size N from which a sample of size n is drawn. 
We assume that this population consists of D non-over-
lapping domains, each one of which contains sampled units, 
with small realised sample sizes in each of the sampled 
domains. As noted earlier, and following standard practice, 
we refer to these domains as areas from now on. We assume 
also that there is a known number iN  of population units in 
area i, with in  of these sampled. The total number of units 
in the population is 1 ,D

i iN N  with corresponding total 
sample size 1 .D

i in n  In what follows, we use s to denote 
the collection of units in sample, with is  the subset drawn 
from area i, and use expressions like j i  and j s  to 
refer to the units making up area i and sample s respectively. 
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Linear models are often used to motivate estimators for 
population means. However, when estimates are required 
for the corresponding area means, it is usually not realistic 
to assume that a linear model that applies to the population 
as a whole also applies within each area. We therefore adopt 
a conditional approach, and consider MSE estimation for 
estimators of area means when different linear models apply 
within different areas. In particular, we focus on estimators 
that can be expressed as weighted sums of the sample 
values, referring to them as ‘linear’ in what follows to indi-
cate that they have a linear structure. 

To start, let jy  denote the value of Y for unit j of the 
population and suppose that this unit is in area i. We also 
assume an area-specific linear model for jy  of the form 

                                   
.T

j j i jy e x   (1) 

Here jx  is a 1p   vector of unit level auxiliary variables 
for unit j, i  is a 1p   vector of area-specific regression 
coefficients and je  is a unit level random effect with mean 
zero and variance 2

j  that is uncorrelated between different 
population units. We do not make any assumptions about 

2
j  at this point. Note that throughout this paper we assume 

that the sampling method used is non-informative for the 
population values of Y given the corresponding values of the 
auxiliary variables and knowledge of the area affiliations of 
the population units. As a consequence, (1) applies at both 
sample and population level. 

Let sy  denote the column vector of sample values of jy  
and let { ; }is ijw j s w  denote the column vector of 
fixed weights such that ˆ T

j si is s ij jm w y w y  is a linear 
estimator of 1 .j ii i jm N y

  By ‘fixed’ here we mean that 
these weights do not depend on the sample values of Y. 
Moreover, we assume 1( )ij iw O n  for 1, ( )i ij ij s w o n   
for ,ij s  and 1.j s ijw   Here is  denotes the in  sample 
units from area i. The bias of ˆ im  under (1) is then 

       
 1

ˆ( )  ,
h

D T T
i i ij j h i ih j s

E m m w
 

    x x   (2) 

where ix  denotes the vector of average values of the 
auxiliary variables in area i. Similarly, the prediction 
variance of ˆ im  under (1) is 

 
 2 2 2 2

1
ˆVar( ) ,

h i

D
i i i ij j jh j s j r

m m N a
  

        (3) 

where ir  denotes the non-sampled units in area i and 
( ).ij i ija N w I j i    We use ( )I A  to denote the indicator 

function for event A, so ( )I j i  takes the value 1 if popu-
lation unit j is from area i and is zero otherwise. Note that 
since ija  is 1( )i iO N n  for ,ij s  the first term within the 
braces in (3) is the leading term of this prediction variance if 

iN  is large compared to .in  

Let .j h  We consider the important special case 
where ( | ) T

j j j j hE y  x x   is estimated by 
ˆˆ T

j j h  x   ,k s kj ky   with the kj  corresponding to 
suitable weights. Then 

( )
ˆ (1 )j j jj j kj kk s j

y y y
 

        

and so 

 2 2 2 2 2
( )

ˆVar( ) (1 ) ( / )j j j jj kj k jk s j
y

 
           (4) 

under (1). Here ( )s j  denotes the sample s  with unit j  
excluded. If in addition ˆ j  is unbiased for j  under (1), i.e., 

                                    
ˆ( ) 0,j jE y     (5) 

we can then adopt the approach of Royall and Cumberland 
(1978) and estimate (3) by 

 2 2 1 2 2
1

ˆˆ ˆ ˆ ˆ( ) ( ) ,
h i

D
i i ij j j j jh j s j r

V m N a y 
  

        (6) 

where 2 2
( )

ˆ ˆ(1 ) k s jj jj kj kj         and 2 2ˆ ˆ ˆ/ .kj k j     
Usually, the estimates 2ˆ j  of the residual variances in (6) 
are derived under a ‘working model’ refinement to (1). In 
the situation of most concern to us, where the sample sizes 
within the different areas are too small to reliably estimate 
area-specific variability, a pooling assumption can be made, 
i.e., 2 2 ,j    in which case we put 

  1
2 2 1 2 2 2

( )
ˆ ˆ ˆ(1 ) ( ) .j jj kj j jj s k s j

n y



  

           

In this case (6) becomes 

 2 2 1 1 2ˆˆ ˆ ˆ( ) ( ) ( ) ,i i ij i i j j jj s
V m N a N n n y  


       (7) 

where now 2 2
( )

ˆ (1 ) .k s jj jj kj        Since any as-
sumptions regarding 2

j  in the working model extension of 
(1) only affect second order terms in (3), the estimator (7) is 
bias-robust, i.e., it remains approximately unbiased under 
misspecification of the second order moments of this 
working model. 

A corresponding estimator of the MSE of ˆ im  under (1) 
follows directly. This is 

                        
2ˆ ˆ ˆˆ ˆ ˆ( ) ( ) ( ),i i iM m V m B m   (8) 

where 

            
1

1
ˆ ˆ ˆ ˆ( )  

h

D
i ij j i jh j s j i

B m w N 
  

       (9) 

is the obvious unbiased estimator of (2). 
Use of the square of the unbiased estimator (9) of the bias 

of ˆ im  in the conditional MSE estimator (8) can be criticised 
because this term is not itself unbiased for the squared bias 
term in MSE. This can be corrected by replacing (9) by 
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2ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ( ) ( ) ( ) { ( )},i i i iM m V m B m V B m    (10) 

where ˆ ˆ ˆ{ ( )}iV B m  is a suitable estimator of the variance of 
(9). However, we do not recommend use of (10). To see 
this, let 1

1
ˆD

h hD
   and put ˆ ,h h d    where ˆ

h  
is the estimator of h  implied by the weights .kj  Further-
more, put 

hj shi ijw w  and 1 ,
hj swhi hi ij jw w

x x  so 

1 1h

D D
h j s hwi ij j hi whiw w     x x x  is the estimate of ix  

based on the weights .ijw  Finally, let T T
hi h h i i  x d x d  

and put 1 .D
hi hi hiw    Then (9) can be written 

 

 

1

1 1

1

ˆ ˆ( ) ( )

( )

( )

( )

( ) .

T
i wi i

D T T
hi whi h i ih

T
wi i

D DT T T
hi whi h h hi h h i ih h

T
wi i

D T
hi whi h h ih

B m

w

w w

w



 



 

 

 

   

 

   



 



x x

x d x d

x x

x x d x d x d

x x

x x d







(11)

 

Typically, D  will be large and the leading term in the 
variance of (9) will be the variance of i  in (11). If this 
leading term is large, then ˆ ˆ ˆ{ ( )}iV B m  will also be large, and 
(10) could take negative values. We therefore recommend 
that (8), rather than (10), be used. An immediate conse-
quence is that (8) is then a conservative estimator of the 
MSE of ˆ im  under (1). This may be acceptable provided that 
the variance of i  is small. However, for very small values 
of in  this variance can be large, causing (8) to substantially 
overestimate the actual MSE of ˆ .im  We therefore recom-
mend a preliminary empirical assessment of the size of the 
variance of i  relative to the value of (7) in this situation. If 
this assessment indicates that the variance of i  dominates 
(7), then (8) should not be used.  
2.2 MSE estimation for pseudo-linear small area 

estimators  
The approach to conditional MSE estimation outlined in 

the previous sub-section assumed that the weights defining 
the linear estimator ˆ im  do not depend on the sample values 
of Y. However, most small area estimators do not satisfy this 
condition, in the sense that they are pseudo-linear in 
structure, with weights that do depend on these sample 
values. For example, the Best Linear Unbiased Predictor 
(BLUP) of im  under the linear mixed model variant of (1) 
where the area-specific regression parameters i  are 
independent and identically distributed realisations of a 
random variable with expected value   and covariance 
matrix ,  can be written as a weighted sum of the sample 

values of Y where the weights depend on   (see Royall 
1976). Consequently, the empirical version of this predictor, 
the widely used EBLUP, is computed by substituting an 
efficient sample estimate of   (e.g., the REML estimate) 
into the BLUP weights. If the linear mixed model 
assumption is true, this sample estimator of   converges to 
the true value and consequently the EBLUP weights 
converge to the BLUP weights. That is, for large values of 
the overall sample size n, we can treat the EBLUP weights 
as fixed and use the MSE estimator (8) for the EBLUP. Of 
course, the EBLUP weights are not really fixed, and so (8) 
is therefore an approximation to the true MSE of the 
EBLUP that ignores the contribution to this MSE arising 
from the variability in estimation of .  However, this 
potential underestimation needs to be balanced against the 
bias robustness of (8) under misspecification of the second 
order moments of Y.   

An important advantage of (8) is that it can be used with 
a range of small area estimators that can be expressed in 
pseudo-linear form. In particular, many small area 
estimators developed under models that are variants of (1) 
can be written in this form, i.e., as weighted sums of the 
sample values of Y. To illustrate, we now focus on three 
such estimators: the EBLUP (Rao 2003, Chapter 6), the 
Model-Based Direct Estimator (MBDE) of Chandra and 
Chambers (2009) and the M-quantile predictor of Chambers 
and Tzavidis (2006). Each of these estimators can be written 
in pseudo-linear form, with weights that satisfy ijw   

1( )iO n  for ij s  and 1( )ij iw o n  for ,ij s  and so (8) 
can be used.  
2.2.1 MSE estimation for the EBLUP  

We first consider the well-known EBLUP for im  based 
on a unit level linear mixed model extension of (1) of the 
form 

                               i i i i i  y X Z u e  (12) 

where iy  is the iN -vector of population values of jy  in 
area i, iX  is the corresponding iN p  matrix of auxiliary 
variable values ,jx iZ  is the iN q  component of iX  
corresponding to the q random components of , iu  is the 
associated q-vector of area-specific random effects and ie  is 
the iN -vector of individual random effects. It is typically 
assumed that the area and individual effects are mutually 
independent, with the area effects independently and 
identically distributed as (0, )N   and the individual 
effects independently and identically distributed as 

2(0, ).N   See Rao (2003, Chapter 6) for development of 
the underlying theory of this predictor. We note that the 
EBLUP can be written in pseudo-linear form, 

              
EBLUP EBLUP EBLUPˆ ( )T
i ij j is sj s

m w y


  w y  (13) 
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where 

EBLUP EBLUP

1 1

( )

ˆ ˆ ˆ ˆ[ { ( ) } ].

is ij

T T T T
i is s r n s s ss sr ir

w

N  



   

w

H X I H X   
 

Here ir  is the vector of size N n  that ‘picks out’ the 
non-sampled units in area i, sX  and rX  are the matrices of 
order n p  and ( )N n p   respectively of the sample 
and non-sample values of the auxiliary variables, nI  is the 
identity matrix of order n, 1 1 1ˆ ˆ ˆ( ) ,T T

s s ss s s ss
  H X X X  ˆ

ss   
2 ˆˆ diag{ ; 1,..., }T

n is is i D  I Z Z  and ˆˆ diag{ ;T
sr is ir Z Z   

1, ..., }.i D  Here ( )is irZ Z  is the sample (non-sample) 
component of iZ  and 2̂  and ̂  are suitable (e.g., ML or 
REML) estimates of the variance components of (12). 

Given this setup, estimation of the conditional MSE of 
the EBLUP can be carried out using (8) with weights 
defined following (13). In turn, this requires that we have 
access to unbiased estimators ˆ j  of the area specific 
individual expected values .j  However, such estimators 
may be unstable when area sample sizes are small. Conse-
quently, it is tempting to replace ˆ j  by the EBLUP for ,jy  
i.e.,

 
EBLUP EBLUE EBLUPˆ ˆˆ ,T T
j j j iy  x z u  where EBLUE̂  denotes 

the Empirical Best Linear Unbiased Estimator of   in the 
linear mixed model (12) and EBLUPˆiu  denotes the predicted 
area effect for the area i that contains observation j. Unfortu-
nately, because of the well-known shrinkage effect asso-
ciated with EBLUPs, this approach is not recommended. To 
illustrate this, we note that ˆ ˆ( )iV m  in (8) uses 2ˆ( )j jy    as 
an estimator of 2( ) .j jE y    The bias in this estimator is 
therefore 

2 2

2

ˆ( ) ( )

ˆ ˆ2 ( ) ( ) ( )

ˆ ˆ{( ) (2 )}

j j j j

j j j j j j

j j j j j

E y E y

E y E

E y

   

          

       

 

so we anticipate that ˆ ˆ( )iV m  will be negatively biased if 
ˆ ˆ{( )(2 )}j j j j jE y        is positive and vice versa. 

Now let sample unit j be from area i and consider the special 
case of a random intercept model for ,jy  i.e., jy   

T
j i ju e x   where iu  is the random effect for area i and 

je  is a random individual effect uncorrelated with .iu  Here 
.T

j j iu  x   Suppose that we have a large overall 
sample size, allowing us to replace EBLUE̂  by .  The 
EBLUP EBLUPˆ ˆj jy   can then be approximated by j   

,T
j i iu x   where i  is a ‘shrinkage’ factor. It follows 

that 

2 2( )(2 ) 2 ( 1) ( 1)j j j j j i i i i iy u e u               

so 2 2 2 2ˆ( ) ( ) ( 1) .j j j j i uE y E y          That is, we 
expect ˆ ˆ( )iV m  to be positively biased if we use the shrunken 

EBLUP EBLUPˆ jy  to define ˆ .j  We also note that this bias 
disappears (approximately) if we ‘unshrink’ the residual 
component of this EBLUP. For example, in the case of the 
popular random intercepts model, we use 

EBLUE EBLUE EBLUEˆ ˆ ˆˆ ( ) ( )T T T
j j is is is j isy y      x x x x    

where isy  and isx  denote the sample means of Y and X 
respectively in area i. Given (12) is the working model, a 
general expression for such an ‘unshrunken’ estimator is 

                                
EBLUEˆˆ T T

j j j i   x z u  (14) 

where 1 EBLUEˆ( ) ( )T T
i is is is is isy u Z Z Z X   is the unshrunken 

predictor of the random effect for area i. It is not difficult to 
see that then ˆ k sj kj ky    where ( ),kj ijsk ijskc b I k i     
with 

1 1 1 1

( ; )

ˆ ˆ( ) { ( ) }

ijs ijsk

T T T
ss s s ss s j is is is is j

c k s

   

 

 

c

X X X x X Z Z Z z 
 

and 1( ; ) ( ) .T
ijs ijsk i is is is jb k s   b Z Z Z z  Note that these 

kj ’s are also used to calculate the value of ˆ
j  defined 

immediately after (7). 
Finally, we observe that when (14) is used in (8), the 

estimated bias (9) becomes 

 EBLUP

1

ˆ ˆ( )
h

D T
T

i ij j h i ij s
h

B m




    w z u z u  

since the EBLUP weights (13) are ‘locally calibrated’ on X, 
i.e., EBLUP .j s ij j iw x x  It follows that in this case the 
variable i  defined immediately before (11) takes the form 

EBLUP
1

D T T
i hi h h i ih

w


    z u z u  

where EBLUP EBLUP.
hj shi ijw w  For a large enough overall 

sample size i  can be approximated by 

BLUP 1
1

1

BLUP 1
1

( ) ( )

( ) ( )

{ ( ) }

D T T T
i hi h hs hs hs hs hsh

T T T
i is is is is is

D T T T
h hi h h hs hs hs hs
h i

w y

y

w










  

 

 





z Z Z Z X

z Z Z Z X

z u Z Z Z e



  

where BLUP
hiw  is the BLUP equivalent of EBLUP.hiw  The 

variance of i  can therefore be estimated via 

      EBLUP 2 2 1
1ˆ ˆ ˆ( ) ( ) { ( ) } .

D T T
hi hi h hs hs h
h i

V w 



    z Z Z z  (15) 

If ˆ( )iV   is small relative to the value of (7) in this case, 
then (8) can be used to estimate the MSE of the EBLUP. 
However, when in  is very small, this condition may not 
hold. In such cases it may be advisable to consider more 
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model-dependent MSE estimators like the Prasad-Rao (PR) 
MSE estimator (Prasad and Rao 1990; Rao 2003, section 
7.2.3). When a random means model is assumed, but the 
between area variability is very small relative to the within 
area variability, this advice extends to moderate area sample 
sizes as we now show.  
2.2.2 MSE estimation for the EBLUP under the 

random means model  
The random means model is the special case of (12) 

where ,j i jy u e     with 2~ (0, )i uu N   and ~je  
2(0, ).N   The EBLUE of   is then 1

ˆ ˆD
h h hsy    with 

ˆ i  1 1 1 1 1
1ˆ ˆ( ) { ( ) }D

hi hn n    
   and 2 2ˆ ˆ ˆ/ ,u     and 

the EBLUP (13) is defined by weights of the form 

 

EBLUP 1
1

1

ˆ ˆ(1 ) (1 ) ( )

ˆ(1 ) ( )

D
ij i i h hh

i i i i

w f n I j h

f f n I j i






     

    


 

with 1ˆ ˆ ˆ(1 ) .i i in n       For ,j h ˆ k sj kj ky     

hsy  and so  

2 2
( )

1 2 2 1

ˆ (1 )

(1 ) ( 1) ( 1) .

j jj kjk s j

h h h h hn n n n n

 

  

     

     
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It follows that the estimator (7) of the conditional prediction 
variance of EBLUPˆ im  in this case is 

EBLUP 2 2 2 2
1

1 1 2

1 2

ˆ ˆ ˆˆ( ) (1 ) {(1 )

( ) }
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i i i h hh

i i h h
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V m f n

N n n n s

n s


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 



    

 

       


 

where 2 1 2( 1) ( ) ,
hj sh h j hss n y y

    while from (9) the 
estimator of the conditional prediction bias of EBLUPˆ im  is 

EBLUP ˆˆ ˆˆ( ) (1 ) (1 ) ( ).i i i isB m f y       For h i  we also 
then have 
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w w
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
 

when we ignore 1( )iO N   terms. A similar approximation to 
(15) therefore leads to 

EBLUP 2 2 1 2
1
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2
1

ˆ ˆ ˆ( ) ( ) ( )

ˆ ˆ1
ˆ .

ˆ1

D
hi hi u h
h i

D h h
h
h i i h

V w n

n

n n








    

     
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


 

Suppose now that the sample size in every small area is the 
same, i.e., .in m  Then ,n mD 1ˆ h D   and the ap-
proximation to ˆ ( )iV   above takes the form 

 
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  

while the corresponding approximation to EBLUPˆ ˆ( )iV m  is 

  
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Comparing these approximations to ˆ( )iV   and EBLUPˆ ˆ( )iV m  
we see that if ˆm  is small (e.g., when m  and ̂  are both 
small) then these terms will be of similar magnitude. In this 
situation we expect (8) to overestimate the true MSE of the 
EBLUP. In particular, the approximation to (8) when ˆm  is 
small and iN  is large is 

 2
EBLUP 1 1 2 1

1
1

ˆ ˆ( ) .
D

D
i h is hsh

h

M m n D s y D y  




 
   

 
   (16) 

Note that the expectation of the squared residual on the right 
hand side of (16) when ˆm  is small is 1 2(1 ) ( uD    

1 2 ) (1)m O    and so it is the leading term in this esti-
mator in this situation. This expression can be compared 
with the corresponding one for the MSE estimator of the 
EBLUP suggested by Prasad and Rao (1990). Under the 
random means model, the PR MSE estimator is 

 
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where 2 2ˆ ˆ ˆi i un      and 
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Assuming ,in m ˆm  is small and iN  is large, 
EBLUP

PR
ˆ ˆ( )iM m  has the approximation 
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            EBLUP 2 1 1 2
PR

ˆ ˆ ˆ ˆ( ) { 2( ) } .i uM m n n D        (17) 

Comparing (16) and (17) we can see that the instability and 
the overestimation associated with the use of (8) in this 
situation are both due to the use of the square of the single 
degree of freedom area level residual 1

1
D
his hsy D y
  as 

an estimator of 2.u  This reinforces earlier comments that 
(8) should not generally be used for estimating the MSE of 
the EBLUP if the area sample sizes are very small or, in the 
special case of the random means model, for moderate area 
sample sizes when the between area variability is very small 
relative to the within area variability. 

 
2.2.3 MSE estimation for the MBDE  

The second predictor of im  that we consider is the 
Model-Based Direct Estimator (MBDE) described in 
Chandra and Chambers (2009). This is based on the same 
linear mixed model (12) as the EBLUP, with the MBDE 
predictor defined as 

               MBDE MBDE MBDEˆ ( )T
i ij j is sj s

m w y


  w y  (18) 

where  

                    
EBLUP

MBDE
EBLUP

( )
.

( )
i j

ij
i kk s

I j s w
w

I k s w






 (19) 

Here ( )iI j s  is the indicator function for unit j to be in 
the area i sample, and EBLUP EBLUP( )s jww  is the vector of 
weights that defines the EBLUP for the population total of 
the jy  under (12), i.e., 

EBLUP EBLUP 1ˆ ˆ ˆ ˆ( ) { ( ) }T T T T
s j n s r n s s ss sr N nw 

    1 I 1w H X H X    

where n1 ( )N n1  denotes the unit vector of size n ( )N n  
and ˆ

sH  was defined in section 2.2.1. In this case pseudo-
linearisation based estimation of the area-specific MSE of 
the MBDE is carried out using (8), with weights defined by 
(19). Note that the estimated expected values used in (8) 
when applied to the MBDE are the same as the unshrunken 
estimates (14) used with the EBLUP, reflecting the fact that 
both the MBDE and the EBLUP are based on the same 
linear mixed model (12). However, the MBDE weights (19) 
are not locally calibrated, and so the squared bias term in (8) 
cannot be ignored when estimating the MSE of this 
predictor. Furthermore, since 

MBDE MBDE 0
h

hi ijj s
w w


   

for ,h i  we have 0i   for the MBDE and so the bias 
estimator (9) works well in this case.  

2.2.4 MSE estimation for the M-quantile estimator  
The third estimator that we consider is based on the M-

quantile modelling approach described in Chambers and 
Tzavidis (2006). This approach does not assume an under-
lying linear mixed model, relying instead on characterising 
the relationship between jy  and jx  in area i in terms of the 
linear M-quantile model that best ‘fits’ the sample jy  
values from this area. That is, this approach replaces (12) by 
a model of the form 

                                 ( )i i i iq y X e  (20) 

where ( )q  denotes the coefficient vector of a linear model 
for the regression M-quantile of order q for the population 
values of Y and X, and iq  denotes the M-quantile coefficient 
of area i. Given an estimate ˆiq  of ,iq  an iteratively re-
weighted least squares (IRLS) algorithm is used to calculate 
an estimate 

                1ˆ ˆ ˆ ˆ( ) ( ) ( )i s s i s s s i sq q q
  X W X X W y  (21) 

of ( )iq  in (20), and a non-sample value of jy  in area i is 
then predicted by ˆˆ ˆ( ).T

j j iy q x   Here ˆ( )s iqW  is the 
diagonal matrix of final weights used in the IRLS algorithm. 

Tzavidis, Marchetti and Chambers (2010) note that value 
of the M-quantile estimator suggested in Chambers and 
Tzavidis (2006) can be interpreted as the expected value of 
Y in area i with respect to a biased estimator of the 
distribution function of this variable in the area. They 
therefore develop an improved M-quantile estimator, re-
placing this biased distribution function estimator by the 
Chambers and Dunstan (1986) distribution function esti-
mator under the area-specific model (1). This corresponds to 
predicting im  by 

                     MQ MQ MQˆ ( )T
i ij j is sj s

m w y


  w y  (22) 

where  

MQ 1

1 1ˆ ˆ(1 ) ( ) { ( ) } ( ).

is i is

T
i i s i s s s i s ir is

n

N n q q



 



  

w

W X X W X x x


 

Here isx  and irx  are the vectors of sample and non-sample 
means of the jx  in area i. It is not difficult to show that the 
weights following (22) are locally calibrated. Furthermore, 
if we then put ˆˆ ˆ( ),T

j j iq  x   where ˆ ˆ( )iq  is defined by 
(21),  it is easy to see that (9) is zero and so the area-specific 
MSE of the bias-corrected M-quantile estimator (22) can be 
estimated using just the estimated prediction variance 
component (7). Since the constant ˆ

j  in (7) is typically very 
close to one under M-quantile estimation, we set it equal to 
this value whenever we compute values of (7) that relate to 
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small area estimation (SAE) under the M-quantile mod-
elling approach. 

As we have already done with the EBLUP, we note that 
use of (7) implicitly treats the weights defining (22) as fixed, 
which is actually not the case since the matrix ˆ( )s iqW  is a 
function of the sample values of Y. An immediate 
consequence is that pseudo-linearisation based estimation of 
the MSE of the M-quantile predictor via (7) is a first order 
approximation to the true MSE of this estimator. Never-
theless, since accounting for weight variability in the defini-
tion of the M-quantile estimator considerably complicates 
estimation of its MSE - see Street, Carroll and Ruppert 
(1988) for an examination of this issue in the context of 
‘standard’ M-estimation of regression coefficients - it is of 
interest to see how the relatively simple estimator (7) 
performs when used to estimate this MSE.  
2.3 MSE estimation for the pseudo-linear synthetic 

EBLUP  
In many SAE applications there are areas that contain no 

sample, and hence synthetic estimation is used. Although 
such estimators do not fit into the class of pseudo-linear 
estimators considered in this paper, the ideas behind the 
conditional MSE estimator (8) can be applied here as well. 
To see this, assume that these areas are numbered last, i.e., if 
D  areas have non-zero sample then 0hn   for h D  
and 0hn   for .h D  For i D  the ‘synthetic 
EBLUP’ for im  is 

              

SYN-EBLUP EBLUE SYN-EBLUP

SYN-EBLUP
1

ˆˆ ( )

h

T T
i i is s

D
ij jh j s

m

w y


 

 

  

x w y
 

(23)

 

where  

SYN-EBLUP SYN-EBLUP ˆ( ) .T
is ij s iw w H x  

Clearly (23) is a pseudo-linear estimator, and so we can use 
(7) to estimate its prediction variance, observing that since 

0,in  EBLUP
ij i ija N w  and so (7) becomes 

       

SYN-EBLUP

SYN-EBLUP 2 1 1 1 2
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V m

w N n y  




   
 
(24)

 

Unfortunately, since there is no sample in area i, we cannot 
use (9) to estimate the area-specific bias (2) of SYN-EBLUPˆ .im  
However, under the linear mixed model (12), this bias has 
expected value 

 
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The conditional expectation of the square of this expected 
bias, given the area effects ( ; 1, , )s hu h D  u  for the 
sampled areas, is 
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which immediately suggests that for a non-sampled area i 
we estimate the squared bias of the synthetic estimator 

SYN-EBLUPˆ im  by 
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(25)

 

Here hu  is the ‘unshrunken’ estimated effect for sampled 
area h – see (14). Our proposed MSE estimator for 

SYN-EBLUPˆ im  is then the sum of (24) and (25). Note that, 
unlike (8), this MSE estimator includes no information from 
area i, and so is not an estimator of the area-specific MSE of 
(23). In particular, its validity depends completely on the 
mixed model (12) holding, and so it is not robust to 
misspecification of this model. 

 
3. Simulation studies of  

      the proposed MSE estimator  
In this section we describe results from five simulation 

studies that aim at assessing the performance of the ap-
proach to conditional MSE estimation described in the 
previous section. Three of these studies are model-based 
simulations, with population data generated from the linear 
mixed model (12). The remaining two are design-based 
simulations, with population data derived from two real 
survey datasets where linear SAE is of interest. 

Given our focus on bias-robustness, the main perfor-
mance indicator for an MSE estimator in all five studies is 
its median relative bias, defined by 

 1 1
1

ˆRB( ) median ( ) 100.
K

i ik iki
M M K M M 


    

Here the subscript i indexes the small areas and the subscript 
k indexes the K Monte Carlo simulations, with ˆ

ikM  de-
noting the simulation k value of the MSE estimator in area i, 
and iM  denotes the actual (i.e., Monte Carlo) MSE in area 
i. Since we would naturally prefer to use the more stable of 
two approximately unbiased MSE estimators, we also 
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measured the stability of an MSE estimator by its median 
percent relative root mean squared error, 

2

1
1

ˆ
RRMSE( ) median 100.

K ik i
ki

i

M M
M K

M




       
   

  

Although the purpose of this paper is not to compare 
different methods of SAE, it is useful to relate MSE 
estimation performance for a particular method of SAE to 
the actual estimation performance of this method. We 
therefore provide two measures of the relative performance 
of the SAE methods that were used in our simulations. 
These are the median percent relative bias 

  1 1
1

ˆRB( ) median 100
K

i ik ikki
m m K m m 


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and the median percent relative root mean squared error 
2

1
1

ˆ
RRMSE( ) median 100

K ik ik
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ik

m m
m K

m




      
   

  

of the estimates ˆ ikm  generated by an estimation method. 
Note that 1

1
K
ki ikm K m
  here.  

3.1 Model-based simulations  
The first model-based simulation study was based on 

population data generated under the mixed model (12) with 
Gaussian random effects. It used a population size of N   
15,000, with D  30 small areas. Population sizes in the 
small areas were uniformly distributed over the interval 
[443, 542] and kept fixed over simulations. At each simu-
lation, population values for Y were generated under the 
random intercepts model 500 1.5 ,j j i jy x u e     
with jx  drawn from a chi-squared distribution with 20 
degrees of freedom. The area effects iu  and individual 

effects je  were independently drawn from 2(0, )uN   and 
2(0, )N   distributions respectively, with the values of u  

and   shown in rows SIM1-A and SIM1-B of Table 1. A 
sample of size 600n   was selected from each simulated 
population, with area sample sizes proportional to the fixed 
area populations, resulting in a median area sample size of 

in  20. Sampling was via stratified random sampling, with 
the strata defined by the small areas. A total of K  1,000 
simulations were carried out. 

Conditions for the second model-based simulation study 
were the same as in the first, with the exception that the area 
level random effects and the individual level random effects 
were independently drawn from mean corrected chi-square 
distributions respectively. The corresponding values of the 
area level and individual level variances are shown in rows 
SIM2-A and SIM2-B in Table 1. Finally, in the third model-
based simulation study conditions were kept the same as in 
SIM1-A and SIM1-B for areas 1-25, but in areas 26-30 the 
area effects were independently drawn from a normal 
distribution with a larger variance. We refer to this as a 
Mixture in Table 1, with variances for areas 1-25 shown in 
rows SIM3-A and SIM3-B, and variances for areas 26-30 
shown in rows SIM3-A* and SIM3B*. Our objective in this 
third simulation was to investigate the behaviour of the 
different methods of MSE estimation for ‘outlier’ areas, and 
so we show values relating to areas 1-25 and 26-30 
separately in Tables 2 and 4. We also replicated all three 
scenarios above using a reduced overall sample size of 

150n   (with median area sample size 5).in   These 
additional simulations allowed us to investigate the effect of 
reduced sample sizes on the performance of the MSE 
estimators. 

 
 
 

Table 1 
Parameter values used in model-based simulations 
 

Type Simulation 2
u  2  2 2 2 1( )u u

       

Gaussian SIM1-A 10.40 94.09 0.1 

SIM1-B 40.32 94.09 0.3 

Chi-square SIM2-A 2.0 10.0 0.1667 

SIM2-B 4.0 10.0 0.2857 

Mixture (areas 1-25) SIM3-A 10.40 94.09 0.10 

SIM3-B 40.32 94.09 0.30 

Mixture (areas 26-30) SIM3-A* 225.0 94.09 0.7051 

SIM3-B* 225.0 94.09 0.7051 
 
 
 
 



Survey Methodology, December 2011 161 
 

 
Statistics Canada, Catalogue No. 12-001-X 

Table 2 
Median relative biases RB(m) and median relative root mean squared errors RRMSE(m) of estimators of small area means in model-
based simulations 
 

Weighting Method Simulation
SIM1-A SIM1-B SIM2-A SIM2-B SIM3-A SIM3-B SIM3-A* SIM3-B*

RB(m), median in  20
Regression 0.005 0.005 0.000 0.000 0.004 0.004 0.006 0.006
EBLUP, (13) 0.005 0.006 0.004 -0.002 0.004 0.005 0.006 0.005
MBDE, (18) 0.006 0.006 0.005 -0.008 0.007 0.007 0.001 0.001
M-quantile, (22) 0.009 0.008 -0.002 0.002 0.015 0.015 -0.013 -0.013

RRMSE(m), median in  20
Regression 0.40 0.40 0.13 0.13 0.40 0.40 0.41 0.41
EBLUP, (13) 0.35 0.38 0.12 0.13 0.37 0.38 0.45 0.42
MBDE, (18) 0.55 0.55 0.41 0.43 0.56 0.56 0.55 0.55
M-quantile, (22) 0.41 0.41 0.13 0.13 0.41 0.41 0.36 0.36

RB(m), median in  5
Regression -0.002 -0.003 -0.001 0.002 -0.003 -0.004 0.011 0.011
EBLUP, (13) 0.001 0.005 -0.002 0.003 0.002 -0.001 0.008 0.011
MBDE, (18) -0.002 -0.002 -0.005 0.004 -0.001 -0.002 -0.002 -0.002
M-quantile, (22) -0.001 -0.001 -0.001 0.001 -0.003 -0.003 0.014 0.014

RRMSE(m), median in  5
Regression 0.81 0.81 0.26 0.26 0.82 0.82 0.80 0.80
EBLUP, (13) 0.53 0.69 0.19 0.22 0.61 0.71 1.00 0.87
MBDE, (18) 1.13 1.13 0.83 0.83 1.13 1.13 1.13 1.13
M-quantile, (22) 0.81 0.81 0.26 0.26 0.81 0.81 0.80 0.80 
 

 
Table 2 shows the median bias RB(m) and median 

relative root mean squared error RRMSE(m) of the SAE 
methods investigated in our simulations for the two sample 
sizes (n  600 and 150). These are the synthetic regression 
estimator (see Rao 2003, page 136), the EBLUP with 
weights defined by (13), the MBDE with weights defined 
by (18) and the M-quantile estimator defined by the weights 
(22). The differences between the various SAE estimators in 
Table 2 are essentially as one would expect. Bias is not 
really an issue (to be expected given the population data 
follow a linear model in all cases), while for Simulation 
scenarios 1 and 2 the indirect estimator (EBLUP) is the 
most efficient in terms of RRMSE. The M-quantile 
estimator is the best performer for SIM3-A* and SIM3-B* 
with 20in   but its difference from the regression 
synthetic estimator reduces for the scenario with the smaller 
area-specific sample sizes. Note that in this case the M-
quantile weights (22) are based on an outlier-robust estimate 
of the M-quantile coefficient ˆiq  for area i, defined by the 
median (rather than the mean) of the M-quantile coefficients 
of sampled units in this area. Further, as the sample sizes 
decrease, the RRMSEs of all estimators increase, but their 
relative performances remain the same. Under normality the 
EBLUP is better than the M-quantile estimator but the 
differences between these two estimators become smaller as 
we move away from normality, with the M-quantile esti-
mator more efficient in the mixture model scenarios. 

Table 3 sets out the various MSE estimators investigated 
in our simulations that are based on the approach proposed in 
this paper. These are collectively referred to as “conditional” 

MSE estimators below. In Table 4 we show the perfor-
mances of MSE estimators for the small area estimators 
considered in Table 2. Note that in addition to the 
conditional MSE estimators, we provide results for three 
other MSE estimators for the EBLUP, with PR0 denoting 
the estimator suggested by Prasad and Rao (1990), see Rao 
(2003, section 6.2.6). It is noteworthy that PR0 is not an 
estimator of the area-specific MSE of the EBLUP, but of its 
MSE under the mixed linear model (12), i.e., averaged over 
possible realisations of the area effect. In contrast, the MSE 
estimators PR1 and PR2 in Table 4 are the area-specific 
versions of PR0 suggested in Rao (2003, section 6.3.2 
expressions 6.3.15 and 6.3.16 respectively). Finally, we note 
that the MSE estimator of the synthetic regression estimator 
that we used in our simulations is its variance estimator 
based on a fixed effects population regression model. We 
denote it by VReg. 

The results set out in Table 4 focus on the median biases 
RB(M ) and median relative root mean squared error 
RRMSE(M ) of the various MSE estimators. Not surprisingly, 
given that all its underlying assumptions are met, the PR0 
estimator and its area-specific alternatives, PR1 and PR2, 
perform very well in both normal scenarios (SIM1-A and 
SIM1-B) and both chi-squared scenarios (SIM2-A and 
SIM2-B), with virtually no bias ( 20)in   or small bias 
when within area sample sizes are very small. For the MSE 
estimator of the synthetic regression estimator, on the other 
hand, we see substantial relative bias under all simulation 
scenarios. 
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Table 3 
Definitions of conditional MSE estimators for different weighting methods 
 

Weighting Method Definition of ˆ ,j j i   MSE Estimator 

EBLUP (13) (14) (8) 

MBDE (18) (14) (8) 

M-quantile (22) ˆ ˆ( )T
j ix q  (7) with ˆ 1j   

Synthetic EBLUP (23) (14) (24) + (25) 

 
 
 
Table 4 
Median relative biases RB(M) and median relative root mean squared errors RRMSE(M) for MSE estimators in model-based simulations 
 

Weighting 
Method 

MSE 
Estimator 

Simulation 
SIM1-A SIM1-B SIM2-A SIM2-B SIM3-A SIM3-B SIM3-A* SIM3-B* 

RB(M), median in  20 

Regression VReg 7.59 21.82 11.81 20.78 23.66 34.27 23.97 34.64 
EBLUP, (13) PR0 -0.83 -0.72 0.56 1.16 3.44 0.71 -15.65 -6.51 
 PR1 -0.97 -0.72 0.64 1.08 2.94 0.56 -13.70 -5.81 
 PR2 -0.92 -0.72 0.64 1.16 3.20 0.61 -14.65 -6.19 
 Conditional 3.89 -0.89 3.06 0.93 -0.05 -0.54 -2.56 -1.59 
MBDE, (18) Conditional -0.81 -0.80 -0.06 -0.42 -0.75 -0.75 -0.98 -0.98 
M-quantile, (22) Conditional -3.10 -1.66 -0.09 -1.90 -5.04 -3.17 11.26 11.04 

RRMSE(M), median in  20 

Regression VReg 18 51 30 53 59 85 60 86 
EBLUP, (13) PR0 12 7 15 10 11 7 29 14 
 PR1 14 7 17 11 10 7 27 13 
 PR2 12 7 16 10 11 7 28 13 
 Conditional 62 31 70 49 31 30 42 32 
MBDE, (18) Conditional 70 70 126 128 71 71 67 67 
M-quantile, (22) Conditional 32 34 49 48 31 32 48 48 

RB(M), median in  5 

Regression VReg 5.59 19.17 10.35 19.12 20.92 30.91 22.93 33.00 
EBLUP, (13) PR0 3.51 -0.20 2.42 1.19 12.79 3.86 -30.64 -15.92 
 PR1 3.04 -0.50 2.13 1.00 10.84 3.10 -25.77 -13.62 
 PR2 3.16 -0.31 2.31 1.11 11.81 3.48 -28.16 -14.77 
 Conditional 37.52 4.38 24.11 8.93 8.18 1.50 -0.66 -0.68 
MBDE, (18) Conditional -0.24 -0.21 0.02 -0.09 -0.62 -0.33 1.29 1.24 
M-quantile, (22) Conditional -7.60 -6.17 5.70 5.00 -5.95 -5.60 5.89 3.60 

RRMSE(M), median in  5 

Regression VReg 17 46 33 51 54 78 59 83 
EBLUP, (13) PR0 31 14 33 22 36 16 53 31 
 PR1 48 18 44 28 34 16 48 29 
 PR2 36 15 36 24 34 15 50 29 
 Conditional 234 81 193 121 86 66 86 70 
MBDE, (18) Conditional 79 79 133 129 79 79 83 83 
M-quantile, (22) Conditional 62 63 90 97 63 63 122 102 

 
 
The conditional MSE estimator for the EBLUP shows 

positive bias under both the normal (SIM1A) and chi-
squared (SIM2A) scenarios, particularly for moderate intra-
cluster correlation (3.89% and 37.52% for the normal 
scenario with 20 and 5 units in each area respectively and 
3.06% and 24.11% for the chi-squared scenario with 20 and 
5 units in each area respectively). This bias increases with 
decreasing sample size. However, things change when we 

examine the results for the outlier components of the 
mixture model scenarios (SIM3-A* and SIM3-B*). Here we 
see a substantial negative bias for all three versions of PR 
(ranging from -30.64% to -5.81% depending on the area 
sample sizes). In comparison, the conditional MSE 
estimator for the EBLUP now shows a smaller negative bias 
(-2.56% and -0.66%) while the same MSE estimator applied 
to the M-quantile estimator shows an upward bias. The 
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conditional MSE estimator for the MBDE is essentially 
unbiased. Given that as far as MSE estimation is concerned, 
positive bias is preferable to negative bias, it seems clear 
that the proposed conditional MSE estimator is better able to 
handle this outlier situation. Figure 1 graphically illustrates 
this point for sample size n  600. Here we show the area-
specific RMSEs and the average (over the simulations) of 
the estimated RMSEs in each of the 30 areas for the mixture 
simulations SIM3-A and SIM3-A*, with the vertical line 
delineating the five ‘outlier’ areas. In the top panel of this 
plot we see that the PR0 estimator is unable to detect the 
step increase in the MSE of the EBLUP for these ‘outlier’ 
areas, being biased slightly high in the ‘well-behaved’ areas 
and then biased rather low in the ‘outlier’ areas. In contrast, 
the conditional MSE estimator for the EBLUP and the 
MBDE tracks the area specific RMSEs rather well, while 
the same MSE estimator based on M-quantile weights tends 
to be biased low in the ‘well-behaved’ areas, and biased 
high in the ‘outlier’ areas, which can be argued as being 
perhaps a rather better outcome than that recorded by the 
PR0 estimator in this simulation. It should be noted here that 
in certain circumstances an assumed model can be revised 
after outlier detection. However, this requires a sufficiently 
large number of detected outliers to permit their separate 
modelling. This is unlikely to happen in practice. Also, 
particular care must be taken with extrapolation of these 
results to the case of very small area sample sizes because of 
the instability that the conditional MSE estimator can 
exhibit in this case. 

Table 4 also shows the relative RMSEs of the different 
MSE estimators across the three types of model-based 
simulation. Here we see that all three versions of the PR 
estimator of the MSE of the EBLUP are more stable than 
the conditional MSE estimator of the EBLUP (12% for PR 
vs. 62% for the conditional MSE for SIM1-A with 20in   
and 31% for PR vs. 234% for the conditional MSE for 
SIM1-A with 5).in   These differences decrease under 
scenarios SIM3-A* and SIM3-B*, however, although the 
PR MSE estimator remains more stable (13% for PR vs. 
32% for the conditional MSE estimator for SIM3-B* with 

20in   and 29% for the PR MSE estimator vs. 70% for 
the conditional MSE estimator for SIM3-B* with 5).in   
The same is true for the conditional MSE estimators of the 
MBDE and the M-quantile estimators. Essentially, given 
sample data that follow a mixed linear model, the PR MSE 
estimator of MSE is very stable, while the conditional MSE 
estimator is more variable. 

In summary, although all methods of MSE estimation 
that we evaluated exhibited some bias for very small area 
sample sizes, our model-based simulation results provide 
evidence that for larger area sample sizes the conditional 

MSE estimation method (8) is bias robust when applied to 
the three pseudo-linear small area estimators EBLUP, 
MBDE and M-quantile. For very small area sample sizes its 
bias robustness is less evident. As one might expect, the 
model dependent ‘area-averaged’ MSE estimator PR0 for 
the EBLUP exhibits bias under model failure. The fact that 
we observed rather similar behaviour for the area-specific 
versions PR1 and PR2 of this MSE estimator indicates that 
‘area specific’ does not necessarily mean ‘bias robust’. In 
particular, the fact that PR1 and PR2 behave very similarly 
to PR0 may be because the area-specific components of 
PR1 and PR2 are of lower order and all three MSE 
estimators have the same leading term, which is not area-
specific. Our results also show that the conditional MSE 
estimator (8) is much more variable than the model 
dependent PR MSE estimator, even for moderate area 
sample sizes. 

 
3.2 Design-based simulations  

What happens when, as in real life, we cannot be 
confident that our data follow a linear mixed model? In 
order to investigate this situation, we report results from two 
design-based simulation studies, both based on realistic 
populations, where a linear model assumption is essentially 
an approximation. The first involved a sample of 3,591 
households spread across D  36 districts of Albania that 
participated in the 2002 Albanian Living Standards Mea-
surement Study. This sample was bootstrapped to create a 
realistic population of N  724,782 households by re-
sampling with replacement with probability proportional to 
a household’s sample weight. A total of K  1,000 inde-
pendent stratified random samples were then drawn from 
this bootstrap population, with total sample size equal to that 
of the original sample and with districts defining the strata. 
Sample sizes within districts were the same as in the original 
sample, and varied between 8 and 688 (with median district 
sample size equal to 56). The Y variable of interest was 
household per capita consumption expenditure (HCE) and X 
was defined by three zero-one variables (ownership of tele-
vision, parabolic antenna and land). The aim was to estimate 
the average value of HCE for each district. In the original 
2002 survey, the linear relationship between HCE and the 
three variables making up X was rather weak, with very low 
predictive power. In particular, only ownership of land was 
significantly related to HCE at the five percent level. This fit 
was considerably improved by extending the linear model to 
include random intercepts, defined by independent district 
effects. These explained approximately 10 per cent of the 
residual variation in this model. 
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Figure 1 Area specific values of true RMSE (solid line) and average estimated RMSE (dashed line) obtained in the mixture-based 

simulations SIM3-A and SIM3-A*. Values for the PR0 estimator are indicated by   while those for the conditional estimator 
are indicated by . Plots show results for the EBLUP (top), MBDE (centre) and M-quantile (bottom) estimators. Vertical line 
separates areas 26-30 with ‘outlier’ effects from ‘well-behaved’ areas 1-25. Total sample size is 600 with area-specific sample 
sizes equal to 20 
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The second design-based simulation study was based on 
an ‘outlier free’ version of the population of Australian 
broadacre farms that was used in the simulation studies 
reported in Chambers and Tzavidis (2006) and Chandra and 
Chambers (2009). In particular, this population was defined 
by bootstrapping a sub-sample of 1,579 ‘non-outlier’ farms 
that participated in the Australian Agricultural and Grazing 
Industries Survey (AAGIS) to create a population of N   
78,072 farms by re-sampling from the original AAGIS 
sample with probability proportional to a farm’s sample 
weight. The small areas of interest in this case were the 
D  28 broadacre farming regions represented in this sub-
sample. The design-based simulation was carried out by 
selecting K  1,000 independent stratified random samples 
from this bootstrap population, with strata defined by the 
regions and with stratum sample sizes defined by those in 
the original AAGIS sample. These sample sizes vary from 6 
to 117, with a median region sample size of 53. Here Y is 
Total Cash Costs (TCC) associated with operation of the 
farm, and X is a vector that includes farm area (Area), 
effects for six post-strata defined by three climatic zones and 
two farm size bands as well as the interactions of these 
variables. In the original AAGIS sample the relationship 
between TCC and Area varies significantly between the six 
post-strata, with an overall Rsquared value of approximately 
0.46 after the deletion of two outliers. The fixed effects in 
the prediction model were therefore specified as corre-
sponding to a separate linear fit of TCC in terms of Area in 
each post-stratum. Random effects (necessary for computa-
tion of the EBLUP and the MBDE, but not the M-quantile 
predictor) were defined as independent regional effects (i.e., 
a random intercepts specification) on the basis that in the 
original AAGIS sample the between region variance 
component explains about 3 per cent of the total residual 
variability with the two outliers removed. The aim was to 
estimate the regional averages of TCC. 

Tables 5 and 6 show the median relative biases and the 
median relative RMSEs of different estimators and corre-
sponding estimators of the MSEs of these estimators based 
on the K  1,000 independent stratified samples taken from 
the Albanian and AAGIS populations respectively. It is 
noteworthy that in spite of the fact that the linear mixed 
models fitted to both the Albanian and AAGIS data appear 
reasonable, the gains from adoption of SAE methods based 
on them do not lead to substantial improvements in effi-
ciency given the original regional sample sizes for these 
surveys. On the other hand, the M-quantile estimator, which 
is not based on a random effects specification, works well 
both in terms of bias and MSE for the AAGIS population in 
this case (Table 6, Median in  53), while the EBLUP, al-
though the best performer in terms of MSE for the Albanian 
population (Table 5, Median in  56), also records the 
highest biases (albeit still small, with the largest less than 
2%) for both populations given the original area sample 
sizes. The survey regression estimator performs well, al-
though for both populations there are indirect estimators that 
perform somewhat better. Design-based simulations based 
on the Albanian and AAGIS populations were also carried 
out using smaller area sample sizes than in the original 
surveys. In particular, the overall sample size was reduced 
for the Albanian population to n   291 (with a median 
district sample size of 9).  Similarly, the overall sample size 
was reduced for the AAGIS population to n  233 (with a 
median regional sample size of 8). As expected the RMSE 
of the point estimators increases as the area sample sizes 
decrease. Overall, the EBLUP improves its RMSE perfor-
mance relative to all other estimators given these smaller 
sample sizes. However, since the realism of these reduced 
sample size designs is somewhat questionable, we do not 
place too much emphasis on results derived from them, 
noting only that they are useful for assessing the perfor-
mance of MSE estimators with realistic data and with very 
small sample sizes. 

 
Table 5 
Performances of estimators of regional means and their MSE estimators – Albanian household population 
 

Weighting Method                     Median in  56                            Median in  9 
Estimator RB(m) RRMSE(m) RB(m) RRMSE(m) 
Regression 0.04 6.25 -0.13 16.56 
EBLUP, (13) 0.42 5.90 1.62 12.42 
MBDE, (18) 0.03 6.14 0.04 16.92 
M-quantile, (22) 0.04 6.07 -0.05 16.60 
Method/MSE RB(M) RRMSE(M) RB(M) RRMSE(M) 
Regression /VReg 17.6 42 11.2 42 
EBLUP/PR0 14.6 44 10.5 50 
EBLUP/PR1 14.4 43 8.8 48 
EBLUP/PR2 14.5 43 9.7 48 
EBLUP/Conditional 0.1 24 7.7 99 
MBDE/Conditional -0.8 25 -5.5 64 
M-quantile/Conditional 2.9 27 -2.0 75 
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Table 6 
Performances of estimators of regional means and their MSE estimators – AAGIS farm population 
 

Weighting Method                            Median in  53                                 Median in  8 
Estimator RB(m) RRMSE(m) RB(m) RRMSE(m) 
Regression 0.03 13.36 0.08 29.83 
EBLUP, (13) 1.64 13.53 0.92 25.82 
MBDE, (18) -0.73 14.26 -1.02 37.77 
M-quantile, (22) -0.04 11.68 -0.15 32.22 
Method/MSE RB(M) RRMSE(M) RB(M) RRMSE(M) 
Regression /VReg 74.1 406 54.7 867 
EBLUP/PR0 22.4 131 17.7 374 
EBLUP/PR1 19.5 137 19.0 367 
EBLUP/PR2 21.0 123 31.1 444 
EBLUP/Conditional 5.5 132 17.8 255 
MBDE/Conditional -0.5 181 0.9 318 
M-quantile/Conditional -0.7 69 -1.9 212 

 
 
Focusing on the simulation results obtained using the 

original regional sample sizes, we see that all three PR-
based MSE estimators for the EBLUP display a substantial 
upward bias in both sets of design-based simulations as well 
as larger (Albanian population, Table 5) or comparable 
(AAGIS population, Table 6) instability to the conditional 
MSE estimators. For the Albanian population all three 
versions of the conditional MSE estimator are essentially 
unbiased whereas for the AAGIS population all three 
versions of the conditional MSE estimator display small or 
moderate bias. 

It is noteworthy that for the Albanian population (Table 
5) the relative performances of the PR MSE estimators 
improve with smaller samples. However, this is because the 
conditional MSE estimators then become more unstable. 
For these very small area samples the conditional MSE 
estimator is less biased than the PR MSE estimator (7.7% 
vs. 10.5%) but is also more unstable (RRMSE of conditional 
MSE estimator is 99% vs. 50% for the PR MSE estimator).  
This is, however, not the case for the AAGIS population 
with median in  8. In this case, the PR-based MSE esti-
mators perform badly, with the conditional MSE estimators 
being both less biased and more stable.  

The MSE estimator of the regression estimator exhibits 
moderate or high bias for both populations and all simula-
tion scenarios. For the Albanian population it appears to be 
competitive to the other MSE estimators in terms of 
RRMSE but for the AAGIS population it is clearly less 
stable than the other MSE estimators. Finally, the condi-
tional MSE estimator of the M-quantile estimator performs 
well with small relative bias and good stability for all sim-
ulation scenarios and both populations with the exception of 
the Albanian population with median in  9 where its 
RRMSE is 75%. 

An insight into the reasons for these differences in 
behaviour can be obtained by examining the area specific 
RMSE values displayed in Figure 2 for the Albanian 

population and in Figure 3 for the AAGIS population. Note 
that in both cases the sample sizes are those from the orig-
inal surveys. Thus, in Figure 2 we see that all three condi-
tional MSE estimators track the district-specific design-
based RMSEs of their respective estimators exceptionally 
well. In contrast, the PR0 estimator does not seem to be able 
to capture between district differences in the design-based 
RMSE of the EBLUP. In Figure 3 we see that the condi-
tional estimator of the MSE of the M-quantile estimator 
performs extremely well in all regions, with the corre-
sponding estimator of the MSE of the MBDE also 
performing well in all regions except one (region 6) where it 
substantially overestimates the design-based RMSE of this 
predictor. This region is noteworthy because samples that 
are unbalanced with respect to Area within the region lead 
to negative weights under the assumed linear mixed model. 
The picture becomes more complex when one considers the 
region-specific RMSE estimation performance of the 
EBLUP in Figure 3. Here we see that the conditional 
estimator of the MSE of the EBLUP clearly tracks the 
region-specific design-based RMSE of this predictor better 
than the PR0 MSE estimator. With the exception of region 6 
(where sample balance is a problem), there seems to be little 
regional variation in the value of the PR0 estimator of the 
RMSE of the EBLUP, indicating a serious bias problem. 

As noted earlier, it is not uncommon to want to produce 
an estimate for a small area where there is no sample. In 
such cases, one has to rely completely on the correctness of 
the model specification. In Table 7 we illustrate the 
importance of this assumption by contrasting the estimation 
and MSE estimation performances of the EBLUP for 
sampled areas with that of the Synthetic EBLUP for areas 
where no sample data are available. Two situations are 
shown. The first is a modification of the model-based SIM1-
A simulation with a small average sample size and with five 
zero sample areas. The second is a similar small sample 
modification of the design-based simulation based on the 
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AAGIS population, with four zero sample areas. It is clear 
that when the model underpinning the EBLUP actually 
holds (i.e., SIM1-A), estimation and MSE estimation (either 
based on PR0, or on the conditional alternative) works well. 
The problem is that when there is some doubt about how 
well this model holds (as in the AAGIS population), then 
the EBLUP can fail, and our estimator of its MSE can also 

fail to identify this problem. This is nicely illustrated by the 
results for the AAGIS population in Table 7 where we see 
that both the PR0 and conditional MSE estimators for the 
Synthetic EBLUP completely fail to identify the large 
positive bias of the Synthetic EBLUP and so end up with a 
large downward bias. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2 District level values of true design-based RMSE (solid line) and average estimated RMSE (dashed line) obtained in the design-

based simulations using the Albanian household population. Districts are ordered in terms of increasing population size. 
Values for the PR0 estimator are indicated by  while those for the conditional estimator are indicated by . Plots show results 
for the EBLUP (top), MBDE (centre) and M-quantile (bottom) estimators 
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Figure 3 Regional values of true design-based RMSE (solid line) and average estimated RMSE (dashed line) obtained in the design-
based simulations using the AAGIS farm population. Regions are ordered in terms of increasing population size. Values for the 
PR0 estimator are indicated by   while those for the conditional estimator are indicated by . Plots show results for the 
EBLUP (top), MBDE (centre) and M-quantile (bottom) estimators 

 
 

Table 7 
Performance of EBLUP and MSE estimators when there are areas with zero sample 
 

 Weighting Method/ Estimator SIM1-A, median in  10 AAGIS, median in  9 
  RB(m) RRMSE(m) RB(m) RRMSE(m)
Areas with in  0 (13)/EBLUP 0.00 0.52 2.29 24.94
Areas with in  0 (23)/Synthetic EBLUP -0.05 1.25 87.45 96.46
 MSE Estimator RB(M) RRMSE(M) RB(M) RRMSE(M) 

Areas with in  0 
(13)/PR0 0.5 11 29.91 760
(13)/Conditional 0.7 50 23.87 298

Areas with in  0 (23)/PR0 -1.8 35 -29.07 601
(23)/Conditional -3.6 34 -31.45 101
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4. Conclusions and discussion 
 

In this paper we propose a bias-robust and easily 
implemented method of estimating the conditional MSE of 
pseudo-linear estimators of small area means (and totals). 
Our empirical results show that this method of MSE 
estimation performs reasonably well in terms of bias when 
used to estimate the model-based MSE and the design-based 
MSE of the three rather different pseudo-linear estimators 
considered in this paper. However, this improved bias 
performance comes at the cost of increased variability. In 
particular, when area sample sizes are very small, we do not 
recommend use of our proposed method of MSE estimation 
for a conditionally biased estimator like the EBLUP. 

The EBLUP is widely used in SAE, and in this context 
the model-dependent MSE estimator PR0 for the EBLUP 
suggested by Prasad and Rao (1990) is unbiased when its 
model assumptions are valid (SIM1-A/B and SIM2-A/B in 
our model-based simulations) but is biased in the presence 
of outlier area effects (SIM3-A/A* and SIM3-B/B*). It was 
also the most stable MSE estimator in the model-based 
simulations. However, its area-averaged construction meant 
that it did not track the area-specific MSE of the EBLUP in 
both our design-based simulations, where the correctness of 
the assumed linear mixed model could only be considered 
as approximate. This suggests that our proposed conditional 
MSE estimation method should be considered as an 
alternative to PR0 in situations where there is some doubt 
about the correctness of the specification of the small area 
linear mixed model or where the area sample sizes are not 
small. Some idea of what constitutes a small sample size can 
be deduced from the empirical results presented in this 
paper. 

If there is doubt about the validity of the assumed linear 
mixed model, the user could consider estimation based on a 
more widely applicable alternative model, e.g., the M-
quantile model, or replace the EBLUP by a more outlier-
robust alternative (Sinha and Rao 2009).  In the former case 
the approach that we propose in this paper is currently the 
only analytical approach to MSE estimation, while in the 
latter case it provides an analytic alternative to more 
computationally intensive bootstrap methods of MSE 
estimation. Note however, that for very small area-specific 
sample sizes the bias-robust MSE estimator proposed in this 
paper remains unstable. 

A future line of research could be to compare the analytic 
MSE estimation method proposed in this paper with 
bootstrap-based MSE estimators, e.g., the nonparametric 
bootstrap MSE estimator of the M-quantile estimator 
proposed by Tzavidis, Marchetti and Chambers (2010), and 
the bootstrap MSE estimator for the Robust EBLUP 
estimator proposed by Sinha and Rao (2009). A key issue in 

this investigation will be to investigate whether alternative 
bootstrap MSE estimators are more stable, especially for 
small area-specific sample sizes. 

The extension of the conditional MSE approach to non-
linear SAE situations remains to be done. However, since 
this approach is closely linked to robust population level 
MSE estimation based on Taylor series linearisation (as well 
as jackknife estimation of MSE, see Valliant, Dorfman and 
Royall 2000, section 5.4.2), it should be possible to develop 
appropriate extensions for corresponding small area non-
linear estimation methods. Although the relevant results are 
not provided here, some evidence for this is that the 
conditional MSE estimation method described in this paper 
has already been used to estimate the MSE of the MBDE 
when it is applied to variables that do not lend themselves to 
linear mixed modelling, e.g., those with a high proportion of 
zero values (Chandra and Chambers 2009), and categorical 
variables (Chandra, Chambers and Salvati 2011). More 
recently, the approach has also been used to estimate the 
MSE of geographically weighted M-quantile small area 
estimators in situations where the small area values are 
spatially correlated (Salvati, Tzavidis, Pratesi and Chambers 
2011). It has also been used by Salvati, Chandra, Ranalli 
and Chambers (2010) to estimate the MSE of small area 
estimators based on a nonparametric small area model 
(Opsomer, Claeskens, Ranalli, Kauermann and Breidt 
2008). 

As is clear from the development in this paper, our 
preferred approach to MSE estimation assumes that the 
MSE of real interest is that defined by the area-specific 
model (1). This is in contrast to the usual approach to 
defining MSE in SAE, which adopts an area-averaged MSE 
concept as the appropriate measure of the accuracy of a 
small area estimator. As pointed out by Longford (2007), 
the ultimate aim in SAE is to make inferences about small 
area characteristics conditional on the realised (but 
unknown) values of small area effects, i.e., with respect to 
(1). One can consider this to be a design-based objective (as 
in Longford 2007), or, as we prefer, a model-based ob-
jective that does not quite fit into the usual random effects 
framework for SAE. In either case we are interested in 
variability that is with respect to fixed area-specific expected 
values. This is consistent with the concept of variability that 
is typically applied in population level inference. 
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Variance estimation under composite  
imputation: The methodology behind SEVANI 

Jean-François Beaumont and Joël Bissonnette 1 

Abstract 
Composite imputation is often used in business surveys. The term “composite” means that more than a single imputation 
method is used to impute missing values for a variable of interest. The literature on variance estimation in the presence of 
composite imputation is rather limited. To deal with this problem, we consider an extension of the methodology developed 
by Särndal (1992). Our extension is quite general and easy to implement provided that linear imputation methods are used to 
fill in the missing values. This class of imputation methods contains linear regression imputation, donor imputation and 
auxiliary value imputation, sometimes called cold-deck or substitution imputation. It thus covers the most common methods 
used by national statistical agencies for the imputation of missing values. Our methodology has been implemented in the 
System for the Estimation of Variance due to Nonresponse and Imputation (SEVANI) developed at Statistics Canada. Its 
performance is evaluated in a simulation study. 
 
Key Words: Auxiliary value imputation; Composite imputation; Donor imputation; Imputation model; Linear imputation; 

Regression imputation; SEVANI. 
 
 

1. Introduction 
 
Composite imputation is often used in business surveys. 

The term “composite” means that more than a single impu-
tation method is used to impute missing values for a vari-
able of interest. The choice of a method over another one 
depends on the availability of auxiliary variables. For 
instance, ratio imputation could be used to impute a missing 
value when an auxiliary value is available; otherwise, mean 
imputation could be an alternative. 

The problem of estimating the variance in the presence of 
a single imputation method has been extensively studied in 
the literature; e.g., two excellent reviews of this topic are: 
Lee, Rancourt and Särndal (2001) and Haziza (2009). 
Although the use of composite imputation occurs frequently 
in practice, there is little literature on estimating its variance. 
The literature includes a jackknife variance estimator that 
was proposed and evaluated empirically in Rancourt, Lee 
and Särndal (1993). Sitter and Rao (1997) developed further 
the theory and obtained design-consistent linearization and 
jackknife variance estimators. In both papers, two imputa-
tion methods were considered, with ratio imputation being 
one of the methods, simple random sampling was used and 
uniform nonresponse was assumed. Later, Felx and 
Rancourt (2001) extended the general methodology pro-
posed in Särndal (1992) and Deville and Särndal (1994) to 
composite imputation using simplifying assumptions. 
Finally, Shao and Steel (1999) developed an interesting and 
general reverse approach to variance estimation to deal with 
composite imputation (see also Kim and Rao 2009). Shao 
and Steel (1999) claimed that their reverse approach leads to 

derivations that are less involved than those found in Deville 
and Särndal (1994). We do not fully agree with this state-
ment. Our results indicate that, in general, our extension to 
Särndal’s approach actually leads to simpler derivations 
than those obtained with the Shao and Steel approach. The 
reverse approach may however become quite attractive 
when the sampling fraction is negligible and a replication 
variance estimation technique is chosen (see section 7 for 
greater detail). 

We consider the methodology proposed by Särndal 
(1992) as a starting point. It requires the validity of an 
imputation model; i.e., a model for the variable being 
imputed. At first glance, the extension of this methodology 
to composite imputation seems to be quite tedious, as noted 
by Shao and Steel (1999), until we notice that most 
imputation methods used in practice lead to imputed esti-
mators that are linear in the observed values of the variable 
of interest. This considerably simplifies the derivation of a 
variance estimator even when there is a single imputation 
method. For the estimation of the sampling portion of the 
overall variance, we use a methodology (see Beaumont and 
Bocci 2009) that is slightly different than the one proposed 
by Särndal (1992). This allows us to simplify the derivations 
further. This research has been implemented in version 2 of 
the System for the Estimation of Variance due to Non-
response and Imputation (SEVANI), which is developed at 
Statistics Canada (see Beaumont, Bissonnette and Bocci 
2010). 

The paper is structured as follows. In section 2, some 
notation is introduced and composite imputation is ex-
plained. Linear imputation is defined in section 3. Our 
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approach to inference and our main assumptions are de-
scribed in section 4. In section 5, a number of results are 
stated regarding variance estimation under composite impu-
tation. Section 6 presents the results of a simulation study 
that assesses the performance of our variance estimator. The 
reverse approach is briefly discussed in section 7 to high-
light the differences with our approach. Finally, a short 
conclusion is given in section 8. 

 
2. What is composite imputation?  

Suppose that we are interested in estimating the popu-
lation domain total ,k U k kd y   where U is the finite 
population of size N, y is the variable of interest and d is a 
domain indicator variable indicating whether population 
unit k is in the domain of interest ( 1)kd   or not ( 0).kd   
A sample s of size n is selected from the finite population U 
according to a probability sampling design ( ).p s  In the 
absence of missing values,   can be estimated by the 
Horvitz-Thompson estimator ˆ ,k s k k kw d y   where 

1/k kw    is the design weight and k  is the selection 
probability of unit k. Although it is possible to extend our 
results to calibration estimators, it is not considered in this 
paper to keep matters simple. 

Variable y can be missing for some of the sampled units 
but we assume that the domain indicator variable d is 
always observed for those units. The set of sampled units 
with an observed y-value, called the set of respondents, is 
denoted by .rs  It is assumed to have been generated 
according to a nonresponse mechanism ( | ).rq s s  The set of 
nonrespondents is denoted by .m rs s s   It is further split 
into J mutually exclusive subsets, ( ),j

ms 1, ..., ,j J  such 
that ( )

1 ,J j
m j ms s   if composite imputation with 1J   

imputation methods is used. All the missing y-values within 
a given subset ( )j

ms  are imputed with the same method j. 
However, different imputation methods are used to impute 
missing values in different subsets. The resulting imputed 
estimator can be expressed as 

                  

( )

*

*

1

ˆ

,

r m

j
r m

I k k k k k k
k s k s

J

k k k k k k
k s j k s

w d y w d y

w d y w d y

 

  

  

 

 

    (2.1)
 

where *
ky  is the imputed y-value for unit k. 

Composite imputation is quite frequent in business 
surveys. It is used because there are missing values in 
auxiliary variables used for imputation. To fix ideas, let kx  
be the complete vector of auxiliary variables for unit k. 
Ideally, all the missing y-values would be imputed using a 
single imputation method based on the complete vector .kx  
Unfortunately, there may be missing values in the auxiliary 

variables so that, for some nonrespondents, we cannot use 

kx  to impute their missing y-value; we can only use a 
subset of .kx  We denote as obs,kx  the vector of observed 
auxiliary variables for unit k. This vector does not 
necessarily contain the same observed variables from one 
unit to the next. To impute the missing y-value of a given 
unit k, an imputation method is chosen based on the 
available auxiliary variables obs.kx  Since there may be a 
number of nonresponse patterns in the complete vector of 
auxiliary variables, the imputation strategy may contain a 
number of imputation methods.  
Example:   
The variance estimation issues raised by composite imputa-
tion can be better understood by considering the following 
example. Suppose that the complete vector of auxiliary 
variables for unit k is 1 2( , ),k k kx xx  where 1kx  is strongly 
related to ky  but subject to missing values while 2kx  is set 
to a constant for all sampled units 2( 1,kx  ).k s  Ideally, 

1kx  is used to impute ky  if it is missing. If 1kx  is not avail-
able, only 2kx  can be used. Table 1 summarizes the infor-
mation available for the different subsets of the sample s. 

 
Table 1 
Available information when there is one auxiliary variable 1x  
and a constant 2x  
 

Subsets y  1x  2x  obsx  

rs  
(1)
rs  O O O 1 2( , )x x  
(2)
rs  O M O 2(M, )x  

ms  
(1)
ms  M O O 1 2( , )x x  
(2)
ms  M M O 2(M, )x  

O: Observed; M: Missing.  
The set of nonrespondents ms  is divided into the subsets 

(1)
ms  and (2)

ms  depending on the availability of 1.x  Similarly, 
the set of respondents is divided into subsets (1)

rs  and (2).rs  
In this example, we could use ratio imputation to impute 
missing y-values in (1)

ms  and mean imputation to impute 
missing y-values in (2).ms  Note that simple linear regression 
imputation could be used instead of ratio imputation (if it 
better fits the data). We have chosen ratio imputation in this 
example for its simplicity and because it is frequently used 
in business surveys.  

Only the respondents in (1)
rs  can be used to impute 

missing y-values in (1)
ms  through ratio imputation. The im-

puted value for a unit k in (1)
ms  is (1)

* (1)
1 /

rl sk k l ly x y   
(1)

(1)
1 ,

rl s l lx   where (1)
l  is some weight used for ratio 

imputation (imputation method 1). Typical choices are: 
(1)
l lw   (design-weighted imputation) or (1) 1l   (un-

weighted imputation). For mean imputation, the respondents 
in (2)

rs  as well as those in (1)
rs  can be used to impute 
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missing y-values in (2).ms  In practice, it is common to use 
both sets of respondents to improve the stability of the 
imputed mean. The imputed value for a unit k in (2)

ms  is  

* (2) (2) ,
r r

k l l ll s l s
y y

 
     

where (2)
l  is a weight used for mean imputation (impu-

tation method 2). (Typical choices of (2)
l  are the same as 

those for (1) ;l  i.e., (2)
l  lw  or (2) 1.)l   This implies 

that units in (1)
rs  can be contributors to both imputation 

methods. This raises issues for variance estimation of the 
resulting composite imputation estimator. These issues will 
be addressed in section 5. 

 
3. What is linear imputation?  

The imputation method j is said to be linear if the 
imputed value *

ky  for a sample unit ( )j
mk s  can be written 

in the linear form 

                              * ( ) ( )
0 .

r

j j
k k lk l

l s

y y


     (3.1) 

The quantities ( )
0

j
k  and ( ),j

lk  for ,rl s  are obtained 
without using y-values, but may depend on s and .rs  The 
linear form (3.1) is satisfied by several of the most common 
imputation methods in practice such as (weighted or 
unweighted) linear regression imputation, donor imputation 
and auxiliary value imputation. A nice review of these 
methods is found in Haziza (2009). Note that auxiliary value 
imputation does not use the y-values of respondents; i.e., 

* ( )
0

j
k ky    (see Beaumont, Haziza and Bocci 2011). For 

donor imputation, the imputed value *
ky  is equal to the y-

value of a suitably chosen respondent (donor) so that 
( )
0 0j

k   and ( ) 0j
lk   for all but one respondent .rl s  

Detailed expressions for ( )
0

j
k  and ( )j

lk  are given in the 
Methodology Guide of SEVANI (Beaumont, Bissonnette 
and Bocci 2010), which is available on request from the 
authors.  

Let ( )
( ) *

j
m

j
k sI k k kw d y   be the contribution of impu-

tation method j to the estimator ˆ .I  Using (3.1), ( )j
I  can 

be decomposed as follows: 

             

( )

( ) ( )

( ) *

( ) ( )
0

( ) ( )
0 ,

j
m

j j
rm m

r

j
I k k k

k s

j j
k k k l k k lk

l sk s k s

j j
d dl l

l s

w d y

w d y w d

W W y



 



 

   

 



  



 

(3.2)

 

where ( )
( ) ( )

0 0j
m

j j
k sd k k kW w d   and ( )

( ) ( ).j
m

j j
k sdl k k lkW w d   

Using (3.2), the imputed estimator (2.1) can be expressed in 
the linear form: 

                  

( )

1

( ) ( )
0

ˆ

( ) ,
r

r

J
j

I k k k I
k s j

d k k dk k
k s

w d y

W w d W y

 

 



   

  

 


 

(3.3)
 

where ( ) ( )
10 0

jJ
jd dW W
  and ( ) ( )

1 .jJ
jdk dkW W
  

Continuing with the example introduced at the end of 
section 2, we observe that, for ratio imputation, (1)

0 0k   
and (1) (1) (1)

1 1/ ,
rl slk l k l lx x     for ,rl s  with (1) 0,l   

for (2).rl s  For mean imputation, we have (2)
0 0k   and 

(2) (2) (2)/ ,
rl slk l l     for .rl s  Consequently, (1)

0dW   
0, (2)

0 0,dW    

(1)
(1) (1) (1)

1 1
m r

dl l k k k k kk s k s
W w d x x

 
     

and (2)
(2) (2) (2)/ .

m rk s k sdl l k k kW w d      This implies that 
( )

0dW    0 and ( ) (1) (2).dk dk dkW W W    

 
4. Approach to inference and main assumptions  

We consider three sources of variability when evaluating 
expectations and variances of the imputed estimator: the 
variability due to the imputation model, the sampling design 
and the nonresponse mechanism. Note that the use of an 
imputation model to make inference in the presence of 
imputation can be found in Rubin (1987), Hidiroglou (1989) 
and Särndal (1992). In what follows, we will use the 
subscripts m, p and q to denote the expectations, variances 
and covariances evaluated with respect to the imputation 
model, sampling design and nonresponse mechanism 
respectively.  

We consider the following imputation model to describe 
the relationship between the y-variable and the vector obsx  
of observed auxiliary variables: 

                             

obs

obs 2

obs

( | )

( | )

cov ( , | ) 0 ,

m k k

m k k

m k l

E y

V y

y y

 

 



X

X

X

 (4.1) 

for k l  and , .k l U  The population matrix obsX  
contains the vectors of observed auxiliary variables, obs,kx  
for ,k U  and k  and 2

k  are functions of obs.kx  
Asymptotically m-unbiased and m-consistent estimators of 

k  and 2
k  are denoted by ˆ k  and 2ˆ k  respectively. Since 

we will always condition on obs,X  we exclude this condi-
tioning from the notation to simplify it. For instance, 

obs( | )m kE y X  will be written as ( ).m kE y  
In model (4.1), we condition on the observed auxiliary 

variables. Since the nonresponse pattern in the vector x is 
not the same for all the nonrespondents, a separate condi-
tional model must be validated and fitted for each non-
response pattern. In principle, these conditional models 
should be used to determine the imputation methods chosen. 
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Note that model (4.1) reduces to the standard conditional 
model (e.g., Särndal 1992) when the vector x of auxiliary 
variables is not subject to missing values.  
Remark: The validity of the variance estimation method in 
section 5 requires k  and 2

k  to be correctly specified. Al-
though a parametric form for k  may often be acceptable, it 
may be more difficult to determine a suitable parametric 
form for 2.k  To avoid this issue and obtain some robustness 
against misspecification of the model variance, 2

k  can be 
estimated non parametrically; see the empirical study of 
Beaumont, Haziza and Bocci (2011) for an illustration of 
this property under auxiliary value imputation. In the 
context of donor imputation, Beaumont and Bocci (2009) 
showed empirically that nonparametric estimation of both 

k  and 2,k  via penalized smoothing splines, reduced sig-
nificantly the vulnerability of our variance estimator to mis-
specifications of the model mean and variance. 

In addition to the imputation model (4.1), we also assume 
that: 

            obs obs( | , , , , ) ( | ),rF s s FY X Z D Y X  (4.2) 

where ( )F   denotes the distribution function, Y and D are 
N-element vectors containing respectively ky  and kd  as 
their kth element, and Z is a N-row matrix of design infor-
mation, which implicitly or explicitly contains information 
about the selection probabilities k  and joint selection 
probabilities ,kl  for , .k l U  This assumption, often 
implicit in other papers, allows us to treat the response 
indicators, the domain indicators and the design information 
as fixed when taking model expectations and variances. A 
careful choice of the auxiliary variables is necessary to 
satisfy this assumption. For instance, the design information 
and the domain indicators should be considered as potential 
auxiliary variables. 

The imputation strategy given in our example started in 
section 2 could be justified by a model with 1 1k kx    and 

2 2
1 1 ,k kx    for (1)

rk s  or (1),mk s  and 2k    and 
2 2

2,k    for (2)
rk s  or (2).mk s  The model parameters 

1 2, ,  2
1  and 2

2  are unknown. Note that if the 1kx ’s are 
assumed to be identically distributed random variables with 
mean x  and variance 2,x  then 2 1 x     and 2

2   
2 2 2
1 1 .x x      The imputed values * ˆ ,k ky    for ,mk s  

are obtained by estimating the model parameters 1  and 2  
from the observed data. For instance, the m-unbiased 
estimators of 1  and 2  could be chosen as  

(1) (1)
(1) (1)

1 1
ˆ

r r
k k k kk s k s

y x
 

      

and 

(2) (2)
(2) (2)

2
ˆ

r r
k k kk s k s

y
 

      

respectively. This would lead to 1 1
ˆˆ ,k kx    for (1)

rk s  
or (1),mk s  and 2

ˆˆ ,k    for (2)
rk s  or (2).mk s  As in 

section 2, one could also consider the potentially more 
efficient estimator * (2) (2)

2
ˆ /

r rk s k sk k ky       instead of 

2
ˆ .  Unfortunately, *

2̂  is biased under the model since 

           
(1)

(2)
1 1 2

*
2 2 (2)

( )
ˆ( | , ) .r

r

k k
k s

m r
k

k s

x

E s s




   

   





 (4.3) 

As pointed out above, if the 1kx ’s are assumed to be 
identically distributed random variables with mean x  and 
variance 2,x 2 1 x     and equation (4.3) can be 
rewritten as  

              
(1) (1)

(1)

*
2 2

(2) (2)
1

1 (2) (2)

ˆ( | , )

( )

.r r

r r

m r

k k k x
k s k s

k k
k s k s

E s s

x
 

 

  

   

 
 

 

 

 
(4.4)

 

It can be shown under weak conditions that *
2

ˆ( | ,mE s  

2) (1 / )r ps O n    so that the model bias of *
2̂  is 

asymptotically negligible. However, since *
2

ˆvar ( | , )m rs s   
(1 / ),pO n  the squared model bias is not necessarily 

asymptotically negligible compared to the model variance 
of *

2
ˆ .  At least, *

2̂  is m-consistent for 2.  From (4.3) or 
(4.4), we can see that the model bias of *

2̂  can be 
controlled by assigning a smaller weight (2)

k  to units 
(1)
rk s  relative to units (2).rk s  For instance, one could 

consider using (2) / ,k kw n   for (1)
rk s  and some 

0,   and (2) ,k kw   for (2).rk s  In the extreme case 
where (2) 0,k   for (1),rk s *

2̂  is model-unbiased be-
cause it is equal to 2

ˆ .  Note that the model bias of *
2̂  could 

be larger than (1 / )pO n  if 1 ,kx (1),rk s  have a mean 
different from 1 ,kx (2).rk s  In such case, controlling the 
model bias of *

2̂  might be more important. 
In the case of donor imputation, a fourth source of 

variability needs to be considered when donors are ran-
domly selected among respondents to impute nonre-
spondents. In this paper, the subscript q will implicitly 
indicate that moments are evaluated with respect to the joint 
distribution induced by the nonresponse mechanism and the 
random donor selection mechanism. As a result, when 
conditioning on ,rs  as in (4.2), it should be kept in mind 
that conditioning is not only on the set of respondents but 
also on the set of selected donors.   

5. Variance estimation  
Särndal (1992) expresses the total error of the imputed 

estimator as: 
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                     ˆ ˆ ˆ ˆ( ) ( ),I I            (5.1) 

where the first term on the right-hand side of (5.1) is called 
the sampling error and the second term is called the 
nonresponse error. Using the assumptions given in section 4 
and ˆ( ) 0,pE      the overall bias of the imputed esti-
mator reduces to ˆ( ) ,mpq I pq mE E B     where mB   

ˆ ˆ( | , )m I rE s s    is the (conditional) model bias of the 
imputed estimator. Using (2.1), the model bias can be 
expressed as 

               
( )

*

1

( | , ).
j

m

J

m k k m k k r
j k s

B w d E y y s s
 

    (5.2) 

This means that the model bias and the overall bias 
vanish if the model expectation of the imputation error, 

* ,k ky y  is zero, for ( )j
mk s  and 1, ..., .j J  In princi-

ple, an imputation strategy should be chosen so that this 
condition is satisfied (at least approximately). This is 
typically assumed in the literature (e.g., Särndal 1992; Shao 
and Steel 1999). 

In the example introduced in section 2, the model bias 
(5.2) reduces to 

 ( 2)

*
2 2

ˆ( | , ).
m

m k k m r
k s

B w d E s s


     

An expression for *
2 2

ˆ( | , )m rE s s    is given by (4.3) 
or (4.4). As noted in the paragraph that follows equation 
(4.4), the model bias, ,mB  can be controlled by assigning a 
smaller weight (2)

k  to units (1)
rk s  relative to units 

(2).rk s  It is also small if the number of nonrespondents 
imputed by method 2 is small. Note that our variance (or 
Mean Squared Error, MSE) estimation approach requires 
the slightly weaker assumption that ( | )q mE B s  is negligible 
(see section 5.3). 

Using (5.1), Särndal (1992) decomposed the overall 
MSE into three components: 

2 2ˆ ˆ ˆ ˆ( ) var ( ) {( ) | , }

ˆ ˆ ˆ2 {( ) ( ) | , }.

mpq I m p pq m I r

pq m I r

E E E E s s

E E s s

        

     
 
(5.3)

 

The overall MSE (5.3) becomes approximately equiva-
lent to the overall variance, ˆvar ( ),mpq I    when the over-
all bias is negligible. The first, second and third terms on the 
right-hand side of (5.3) are referred to as the sampling 
variance, the nonresponse variance and the mixed compo-
nent respectively. The sum of the last two terms can be 
called the nonresponse component since these terms would 
disappear if there were no nonresponse. The nonresponse 
component is simply the difference between the overall 
MSE/variance and the sampling variance. In what follows, 
we develop an estimator for each of these three terms. 

  

5.1 Estimation of the sampling variance 
 

Let ( )v y  be a p-unbiased estimator of ˆvar ( )p   that 
would be used under complete response. The typical 
Horvitz-Thompson estimator is 

           ( ) ( ) ( ),kl k l
k k k l l l

k s l s kl

v y w d y w d y
 

   


  (5.4) 

where kl  is the joint selection probability of units k and l. 
In the presence of nonresponse, ORD

ˆ ( )V v y  is the naïve 
sampling variance estimator that treats the imputed values 
as true values, where y  is the imputed y-variable; i.e., 

,k ky y   for ,rk s  and *,k ky y   for .mk s  
Särndal (1992) proposed the following mpq-unbiased 

estimator of the sampling variance SAM
ˆvar ( ):m pV E   

SAM ORD DIF
ˆ ˆ ˆ ,V V V   

where DIFV̂  is an m-unbiased estimator of DIF ( ( )mV E v y   

ORD
ˆ | , ).rV s s  Unfortunately, the expression for DIFV̂  is usu-

ally tedious to derive, and it is even more so when compos-
ite imputation is used. 

Beaumont and Bocci (2009) simplified Särndal’s 
derivations by conditioning on ,rY  the vector containing the 
responding y-values. More explicitly, let C

DIF ( ( )mV E v y   

ORD
ˆ | , , )r rV s s Y  and C

DIFV̂  be an m-unbiased estimator of 
C

DIF;V  i.e., C C
DIF DIF
ˆ( | , , ) .m r rE V s s VY  Our mpq-unbiased 

sampling variance estimator is C C
SAM ORD DIF
ˆ ˆ ˆ .V V V   Since 

ORDV̂  is a constant when conditioning on s, rs  and ,rY  
C

SAMV̂  can simply be obtained by estimating ( ( )| ,mE v y s  
, ).r rs Y  If (5.4) is used,  

  2 2( ( ) | , , ) ( ) (1 ) ,
m

m r r k k k k
k s

E v y s s v y w d




    Y  (5.5) 

where ,k ky y
   for ,rk s  and ,k ky    for .mk s  

An estimator C
SAMV̂  of (5.5) is obtained by replacing the 

unknown mean k  and unknown variance 2
k  in (5.5) by 

m-unbiased (or at least m-consistent) estimators ˆ k  and 2ˆ .k  
This estimator is easy to compute provided a software 
package that treats the complete response case is available 
to obtain the first term on the right-hand side of (5.5). The 
general formula (5.5) can be used for every imputation 
strategy. The only difference between different imputation 
strategies lies in the choice of the imputation model and the 
estimators ˆ k  and 2ˆ .k   
5.2 Estimation of the nonresponse variance  

An mpq-unbiased estimator of the nonresponse variance 
2

NR
ˆ ˆ{( ) | , }pq m I rV E E s s     is obtained by finding an 

m-unbiased estimator of 
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    2 2ˆ ˆ ˆ ˆ{( ) | , } var {( ) | , } .m I r m I r mE s s s s B         (5.6) 

Using ˆ
I  defined in the first equation of (3.3), the 

nonresponse error with composite imputation can be 
decomposed into J components: 

( ) ( )

1

ˆ ˆ ( ),
J

j j
I I

j

        

where ( )
( ) .j

m

j
k s k k kw d y   Each of these J components, 

( ) ( ),j j
I    is associated with a different imputation 

method. Since *
ky  only involves observed y-values, ( )j

I   
( )

*
j

mk s k k kw d y  only involves observed y-values as well and 
thus ( )j

I  and ( )j  are independent under the model. 
Therefore, the model variance of the nonresponse error can 
be written as 

( ) ( )

1 1

( )

1

ˆ ˆvar {( ) | , } cov ( , | , )

var ( | , ).

J J
i j

m I r m I I r
i j

J
j

m r
j

s s s s

s s

 



     

 



  (5.7)

 

Note that the covariances ( ) ( )cov ( , | , ),i j
m I I rs s   for 

,i j  are not necessarily negligible because some ob-
served y-values can be used for more than one imputation 
method. 

The derivations of the model variance (5.7) could be 
quite involved when several imputation methods are used 
because of the non-negligible covariances. The algebra can 
be greatly simplified for linear imputation methods. By 
using the second equation given in (3.3), the nonresponse 
error can be expressed as 

          ( ) ( )
0

ˆ ˆ .
r m

I d dk k k k k
k s k s

W W y w d y 

 

        (5.8) 

Since the nonresponse error is linear in the y-values, its 
model variance is given by 

( ) 2 2 2 2ˆ ˆvar {( ) | , } ( ) .
r m

m I r dk k k k k
k s k s

s s W w d

 

         (5.9) 

If the model bias mB  is negligible, an mpq-unbiased 
estimator NRV̂  of the nonresponse variance NRV  is obtained 
by replacing 2

k  in (5.9) by an m-unbiased (and m-
consistent) estimator 2ˆ .k  If the model bias is not negligible, 
it can be estimated by an m-consistent estimator ˆ

mB  and, 
using equation (5.6), the nonresponse variance estimator 

NRV̂  can be replaced by 2
NR

ˆ ˆ .mV B  Note that 2ˆ
mB  is m-

consistent for 2
mB  provided that ˆ

mB  is m-consistent for  
.mB  The estimator ˆ

mB  can be found by using (5.8) and 
writing the model bias as 

           ( ) ( )
0

ˆ ˆ( | , )

.
r m

m m I r

d dk k k k k
k s k s

B E s s

W W w d 

 

   

       
(5.10)

 

The estimator ˆ
mB  is obtained by replacing k  in (5.10) 

by an m-consistent estimator ˆ .k   
5.3 Estimation of the mixed component  

An mpq-unbiased estimator of the mixed component 

MIX
ˆ ˆ ˆ2 {( ) ( ) | , }pq m I rV E E s s        

is obtained by finding an m-unbiased estimator of 

ˆ ˆ ˆ2 {( ) ( ) | , }

ˆ ˆ ˆ2cov {( ), ( ) | , }

ˆ2 {( ) | , }.

m I r

m I r

m m r

E s s

s s

B E s s

      

     

     (5.11)

 

Since both the nonresponse error and the sampling error 
are linear in the y-values, using (5.8) we obtain: 

( ) 2 2

ˆ ˆ ˆ2cov {( ) ( ) | , }

2 ( 1) 2 ( 1) .
r m

m I r

dk k k k k k k k
k s k s

s s

W w d w w d

 

      

       
(5.12)

 

If the model bias mB  is negligible, an mpq-unbiased 
estimator MIXV̂  of the mixed component MIXV  is obtained 
by replacing 2

k  in (5.12) by an m-unbiased (and m-
consistent) estimator 2ˆ .k  Note that the mixed component is 
not necessarily negligible (Brick, Kalton and Kim 2004) 
and, moreover, it has been found to often be negative in 
practice. 

If the model bias mB  is not negligible, it may not be 
possible to easily estimate the second component on the 
right-hand side of (5.11). The reason is that ˆ{( )| ,mE s  

}rs  involves knowing obs
kx  as well as the domain indicator 

variable d for the nonsampled portion of the population; this 
information may not be available. This problem can be 
bypassed by changing the inferential framework. The full 
multivariate distribution between y, x and d can be modeled 
instead of conditioning on d and obs.x  We did not 
implement this idea in SEVANI because it leads to a more 
complex modeling task and makes it difficult to obtain a 
general variance expression that is easy to implement. 
Ignoring the second component on the right-hand side of 
(5.11) should not be of great concern in practice when the 
model bias is not too large. In section 5.4, we provide a 
diagnostic that can be helpful for determining whether the 
model bias is important or not. 
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The mixed component can also be written as 

MIX
ˆ ˆ ˆ2 {( ) ( ) | , }

ˆ ˆ ˆ2 [cov {( ), ( ) | , }]

ˆ2 [ ( | ) {( ) | }].

pq m I r

pq m I r

p q m m

V E E s s

E s s

E E B s E s

      

      

   

 

Expression (5.12) can therefore be used to obtain an 
estimator of MIXV  provided that ( | )q mE B s  is negligible. 
This is a weaker assumption than requiring mB  to be 
negligible since this assumption is satisfied when either mB  
or ˆ ˆ( | )q IE s    is negligible. For instance, in our earlier 
example, mB  may not be negligible but, if 1kd   and 

(1) (2) ,k k kw    ˆ ˆ( | ) 0q IE s     under uniform non-
response (see Sitter and Rao 1997).  
5.4 Estimation of the overall MSE/variance  

The overall MSE, or overall variance if the overall bias is 
negligible, 

2
TOT SAM NR MIX

ˆ( )mpq IV E V V V        

can be estimated by C
TOT SAM NR MIX
ˆ ˆ ˆ ˆV V V V    if the 

model bias, ,mB  is negligible. The nonresponse component 
estimator is NR MIX

ˆ ˆ .V V  From a user’s perspective, the 
estimator TOTV̂  is of greater interest than its individual 
components. A user may nevertheless be interested in the 
estimator of the sampling variance, C

SAM
ˆ ,V  or the ratio 

C
SAM TOT
ˆ ˆ/ .V V  The latter estimates the contribution of the 

sampling variance to the overall variance.  
As pointed out in section 5.2, if the model bias is not 

negligible, the nonresponse variance can be estimated by 
2

NR
ˆ ˆ

mV B  instead of NR
ˆ .V  This leads to the overall MSE 

estimator C 2
TOT, ADJ SAM NR MIX
ˆ ˆ ˆ ˆ ˆ( ) .mV V V B V     

A statistic that can be useful as a diagnostic to determine 
the magnitude of the model bias is either TOT

ˆ ˆ
mB V    or 

TOT, ADJ
ˆ ˆ .mB V    A large value of any of these two statis-

tics may be an indication that the model bias is not negligible 
and that the composite imputation procedure should be ques-
tioned. The advantage of TOT,ADJ

ˆ ˆ
mB V    over TOT

ˆ ˆ
mB V    

is that it is bounded; i.e.,  

TOT,ADJ
ˆ ˆ0 / 1.mB V     

 
5.5 Random regression imputation  

A random regression residual ke  is sometimes added to 
the regression imputed value *

ky  to preserve the natural 
variability of the y-variable. We suggest that the random 
residuals ke  be generated independently with *( | ,kE e s  

) 0rs   and 2
* ˆvar ( | , ) ,k r ke s s    where the subscript * 

indicates that the expectation and variance are taken with 
respect to the random imputation mechanism. This leads to 

the imputed value * * ,R
k k k ky y r e   with 1kr   if unit k 

has been imputed with a random residual added and 0kr   
otherwise. The imputed estimator (2.1) with *

ky  replaced by 
*R
ky  is denoted by *ˆ ˆ .

mk sI I k k k kw d r e     Since 

*( | , ) 0,k rE e s s   adding a random residual does not 
introduce any bias in the imputed estimator. The overall 
MSE of *ˆ

I  can be expressed as 

* 2 2 *
* *

ˆ ˆ ˆ( ) ( ) var ( | , ).mpq I mpq I mpq I rE E E s s          (5.13) 

The first term on the right-hand side of (5.13) is 
estimated as in section 5.4. The second term is estimated by 

                       * 2 2
*

ˆ ˆvar ( | , ) .
m

I r k k k k
k s

s s w d r


    (5.14) 

 
6. Simulation study  

We conducted a Monte-Carlo simulation study to assess 
the methodology described in section 5. A bivariate popu-
lation of 400N   units was generated that contains an 
auxiliary variable x and a variable of interest y. For each 
population unit, the auxiliary variable was generated 
according to a gamma distribution with mean 48 and 
variance 768. The variable of interest y was generated 
conditionally on x from a gamma distribution with mean 
1.5x  and variance 16 .x  Half of the population was 
randomly assigned a missing value to x. As no domain of 
interest was generated,   is the overall population total of 
variable y.  

Ten thousand samples were selected from this population 
using simple random sampling without replacement. We 
considered two sample sizes: 100n   and 250.n   For 
each sample, nonresponse to variable y was generated 
independently from one unit to another with a nonresponse 
probability of 0.3. We used the same imputation strategy as 
in the example in section 2 with (1) 1,l   for (1),rl s  and 

(2) 1,l   for .rl s  Nonrespondents to variable y with an 
observed x-value were imputed by ratio imputation while 
those with a missing x-value were imputed by mean 
imputation.  

The population y-values were kept fixed throughout the 
replications of the simulation experiment; each replication 
consisted of selecting a sample and then generating 
nonresponse to variable y. If we had strictly followed the 
theoretical development in section 5, we would have 
generated new y-values at each replication according to the 
imputation model. However, it is more common in the 
literature to fix the population y-values when conducting a 
simulation experiment. For instance, our simulation set-up is 
essentially the same as the one discussed in Rancourt, Lee 
and Särndal (1993), who also considered composite 
imputation. 



178 Beaumont and Bissonnette: Variance estimation under composite imputation 
 

 
Statistics Canada, Catalogue No. 12-001-X 

We computed the Monte-Carlo sampling variance and 
overall MSE as MC 2

1SAM
ˆ( ) /R

r rV R     and MC
TOTV   

2
1 ,

ˆ( ) /R
r I r R     respectively, where the subscript r 

indicates that estimates are computed using the thr  replicate 
and R  10,000. The Monte-Carlo relative bias of any 
estimator of SAM,V  say SAM,v  is computed as SAMRB( )V   

MC MC
1 SAM, SAM SAM( ) / ( ).R

r rv V V R   Similarly, we computed 
the Monte-Carlo relative bias of an estimator of TOT,V  
denoted as TOTRB( ),V  and the Monte-Carlo relative bias of 
an estimator of SAM TOT/ ,V V  denoted as SAM TOTRB( / )V V . 
Finally, we computed the Monte-Carlo coverage rates of 
confidence intervals for   with a 95% confidence level 
assuming that ˆ

I  is normally distributed. 
The results of our simulation study are given in table 2. 

In the columns labeled SEVANI, the sampling variance, 

SAM,V  and the overall MSE, TOT,V  are estimated for each 
sample by C

SAMV̂  and TOT, ADJV̂  respectively (see section 
5.4). We have also obtained results by replacing TOT, ADJV̂  
by TOT

ˆ .V  We do not report these additional results in table 2 
as they were quite close to those obtained with TOT, ADJ

ˆ .V  
This suggests that the model bias mB  is not important in this 
case. In the columns labeled Naïve, both the sampling 
variance and the overall MSE are estimated by ORDV̂  (see 
section 5.1). 

 
Table 2 
Results of the simulation study 
 

 
n 100 n 250 

SEVANI Naïve SEVANI Naïve 

SAMRB( )V  2.82% -17.59% 3.02% -17.68%

SAM TOTRB( / )V V  8.30% - 5.84% - 

TOTRB( )V  -5.07% -40.68% -2.66% -52.89%

Coverage Rate 93.38% 86.20% 94.42% 81.80%

 
These results show that the methodology described in 

section 5 and implemented in SEVANI is better than the 
naïve variance estimator for the estimation of the compo-
nents of variance and the construction of confidence 
intervals. The use of SEVANI leads to small Monte-Carlo 
relative biases and coverage rates close to the targeted 
nominal rate (95%). Our methodology is also useful for 
users who would like to estimate the contribution of the 
sampling variance to the overall MSE; i.e., SAM TOT/ .V V  
Note that MC MC

SAM TOT/V V  is 71.98% for 100n   and 57.23% 
for 250.n   Since MC MC

SAM TOT/V V  is not close to 100% even 
for 100,n   the effects of nonresponse and imputation 
cannot be systematically ignored when estimating the 
overall MSE.  

7. The reverse approach  
Shao and Steel (1999) proposed a reverse approach to 

variance estimation developed to deal with composite 
imputation. They assumed that the overall bias is negligible 
and suggested the following decomposition of the overall 
variance: 

             

2

2

ˆ ˆ( ) var ( | )

ˆ{ ( | ) } ,

mpq I mq p I r

mq p I r

E E U

E E U

    

   
 

(7.1)
 

where rU  is a conceptual population of respondents. The 
inner expectation and variance in the right side of (7.1) are 
taken with respect to the sampling design. Unfortunately, 
the imputed estimator ˆ

I  is generally not linear with respect 
to the sampling design even though it is linear with respect 
to the observed y-values. Therefore, the imputed estimator 
ˆ

I  is typically linearized (e.g., Shao and Steel 1999; Kim 
and Rao 2009). More explicitly, the quantities ( )

0
j
k  and 

( )j
lk  often depend on the sample in a nonlinear way; e.g., 

this is true with linear regression imputation (see the 
example at the end of section 3) and donor imputation. It is 
not always straightforward to account for the sampling 
variability of ( )

0
j
k  and ( )j

lk  when using (7.1). For example, 
there is no literature on the use of the reverse approach to 
estimate the variance under nearest-neighbour imputation. 
Moreover, since each composite imputation strategy yields 
its own linearized imputed estimator, it is not an easy task to 
implement this methodology in a generalized software 
package. 

Using our approach, the inner expectation in the 
expressions for the nonresponse variance,  

2
NR

ˆ ˆ{( ) | , },pq m I rV E E s s     

and the mixed component,  

MIX
ˆ ˆ ˆ2 {( ) ( ) | , },pq m I rV E E s s        

are taken with respect to the imputation model (condi-
tionally on s and ).rs  The imputed estimator is linear and 
the derivations are straightforward because the quantities 

( )
0

j
k  and ( )j

lk  are constructed without using the y-values. 
The estimation of the sampling variance, SAM mV E  

ˆvar ( ),p   does not involve these two quantities (see equation 
5.5); thus, their possible non-linearity with respect to the 
sampling design does not cause any difficulty. This implies 
that nearest-neighbour imputation can be easily handled 
with our approach (see Beaumont and Bocci 2009).  

It is for all the above reasons that we believe that the 
reverse approach might be more cumbersome to implement 
in a generalized software package than our approach. This 
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does not mean that the reverse approach is not useful. In-
deed, both approaches lead to identical variance estimators 
when a census is conducted. Beaumont, Haziza and Bocci 
(2011) showed that they also lead to identical variance 
estimators under auxiliary value imputation (because ( )

0
j
k  

and ( )j
lk  do not depend on s and ).rs  Both approaches 

depend on the correct specification of the imputation model 
and no approach is expected to systematically outperform 
the other.  

The reverse approach may have a practical advantage 
over our approach when the sampling fraction is negligible. 
In such case, Shao and Steel (1999) showed that the second 
component on the right side of (7.1) can be neglected. The 
first component is estimated by finding a design-based 
estimator of ˆvar ( | ).p I rU  If a replication variance esti-
mation technique (e.g., the jackknife or the bootstrap) is 
chosen for the estimation of ˆvar ( | ),p I rU  the whole 
approach becomes quite attractive and practical. Also, it 
does not depend on the validity of the imputation model; in 
particular, the correct specification of the model variance 

2.k  The jackknife variance estimators of Rancourt, Lee and 
Särndal (1993) and Sitter and Rao (1997) can be justified by 
this approach. 

 
8. Conclusion 

 
Our methodology for composite imputation has been 

implemented in version 2 of SEVANI because of its ease of 
implementation and generality. It works for most imputation 
methods used in practice, as most imputation methods are 
linear. The variance computations are the same for every 
composite imputation strategy once the quantities ( )

0 ,dW   
( ),dkW  ˆ k  and 2ˆ k  have been computed. This eases the 

development of a generalized system.  
Although we have focused on the estimation of a domain 

total using the Horvitz-Thompson estimator, SEVANI can 
also deal with domain means and calibration estimators. 
Parametric and nonparametric methods of estimating k  
and 2

k  are also available. Greater detail can be found in the 
Methodology Guide of SEVANI (Beaumont, Bissonnette 
and Bocci 2010) available upon request from the authors. 
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1. Introduction  
The United States (U.S.) Census Bureau Demographic 

Survey Sample Redesign Program, among other things, is 
responsible for research into improving the designs of U.S. 
demographic surveys, particularly focused on the design of 
survey sampling. Historically, the research into improving 
sample design has been restricted to the “mainstream” 
methods like basic stratification, multi-stage designs, sys-
tematic sampling, probability-proportional-to-size sampling, 
clustering, and simple random sampling. Over the past thirty 
years or more, we have increasingly faced reduced response 
rates and higher costs coupled with an increasing demand 
for more data on all types of populations. More recently, 
dramatic increases in computing power and availability of 
auxiliary data from administrative records have indicated 
that we may have more options than we did when we 
established our current methodology. Thus, we began an 
initiative to explore alternative sampling methods. 

 
2. History of innovation in demographic  

      survey sampling at the U.S. Census Bureau  
The U.S. Census Bureau was created by the Permanent 

Census Act of 1902. Up until the late 1930s, the U.S. 
Census Bureau’s demographic work was mostly focused on 
the logistics of running each decennial census and a myriad 
of special censuses. After the 1930 decennial census, the 
Census Bureau began research into sampling using the 
census data (Stephan 1948).  

Then, in 1937, the Census Bureau took its first major step 
into sample survey sampling with the 1937 Enumerative 
Check Census of Unemployment, which used a cluster 
sample of counties in support of a register census of the 
unemployed (Dedrick 1938). About the same time, the Cen-
sus Bureau brought in sampling experts (e.g., W. Edwards 
Deming and Federick Stephan) in its decennial census 
expansion to assist in designing a sample survey in 
conjunction with the 1940 Decennial Census using a five 
percent systematic sample (Stephan, Deming and Hansen 
1940). In 1942, the Sample Survey of Unemployment was 
moved from the Works Progress Administration to the Cen-
sus Bureau. This survey was already a three-stage sample 
with county primary sampling units (PSUs), systematic 
sampling of blocks, and sampling listed housing units in 

stage three (Frankel and Stock 1942). After its transfer to the 
Census Bureau (and a name change to the Monthly Report 
on the Labor Force (MRLF)), it was extensively redesigned 
in 1943, dramatically improving its efficiency using larger 
primary sampling units (PSUs) and probability propor-
tionate to size for selection (Duncan and Shelton 1978). 
Later the survey was changed to improve month-to-month 
and year-to-year comparisons using a more complex 
overlapping sample approach in which a given household 
remains in sample for four months, is out of the survey for 
eight months and then is back into the sample for four 
months. Its name was also changed in 1947 to the Current 
Population Survey (CPS). Still, the basic sampling concept 
remained multi-stage sample design with county or county 
group PSUs. It remains that way to present though there are 
vast differences in the within-PSU sampling methods (U.S. 
Bureau of Labor Statistics and U.S. Census Bureau 2006). 
Over the last 60 years, the U.S. Census Bureau has designed 
many additional demographic surveys. Some of those sur-
veys use the same two-stage design idea used in the CPS, 
like the Consumer Expenditures Surveys, the Survey of 
Income and Program Participation, the National Crime 
Victimization Survey, and the National Health Interview 
Survey. Some others are two-stage with selection of a list 
source followed by sampling from the lists like the Schools 
and Staffing Survey, the Private School Survey, and the 
Survey of Inmates of Local Jails. Still other are stratified 
samples from a sampled frame, such as the National Survey 
of College Graduates that has sampled from the Decennial 
Census Long Form, and the American Time Use Survey 
that samples from the CPS. In the early 1990s, The U.S. 
Census Bureau initiated the development of the use of 
continuous measurement as a possible replacement for the 
Decennial Census Long Form. Those efforts have since 
evolved into the current American Community Survey, 
which, starting 2010, will provide continual mid-decade 
estimates down to the block group level. The Census 
Bureau’s goal for improving our sampling methodology to 
the present leads us to explore alternative sample designs.  

3. Alternative survey sample  
      design seminar series  

The exploration into alternative methods of sampling 
began with an initial seminar series that was held at the U.S. 
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Census Bureau. It consisted of three seminar presentations 
of such methods covering the statistical bases of the 
methods and their limitations, especially when applied to the 
types of demographic surveys conducted by the U.S. Census 
Bureau. Each presentation also included discussant com-
ments by Professor Jean Opsomer from Colorado State 
University. Three articles were then developed providing 
greater detail on each topic and a final discussant article 
covering the three subjects.  

 On 26 September 2007, Professor Steven K. Thompson 
from Simon Fraser University gave a presentation on 
his research into network sampling, spatial sampling, 
and adaptive sampling.  

 On 9 January 2008, Professor Sharon Lohr from 
Arizona State University gave a presentation on her 
research into sampling using overlapping frames.  

 On 4 June 2008, Professor Yves Tillé from University 
of Neuchatel gave a presentation on his research into 
balanced sampling.   

The articles resulting from this project that follow are: 
 
“Adaptive network and spatial sampling,” by Steven 
Thompson;  
“Alternative survey sample designs: Sampling with multiple 
overlapping frames,” by Sharon Lohr;  
“Ten years of balanced sampling with the cube method: An 
appraisal,” by Yves Tillé; and   
“Innovations in survey sampling design: Discussion of three 
contributions presented at the U.S. Census Bureau,” by Jean 
Opsomer. 

 
4. Next steps  

Following these three presentations, it was decided to 
conduct further research into these methods and their 
application to either existing U.S. Census Bureau Demo-
graphic surveys or to potential new surveys. There is 
already an urgent need for using multiple overlapping 
frames methods applied to the National Survey of College 
Graduates to deal with an old-cohort/new-cohort problem 
and a possible use of state hunting and fishing license 
registries as a second frame for the Fishing, Hunting, and 
Wildlife-Associated Recreation survey. We have plans to 
look at balanced sampling, particularly for selecting 

geographic primary sampling units. Lastly, the methods of 
adaptive sampling have the potential for us to accept 
surveys that we traditionally have not taken on, as well as 
providing a lower cost alternative for surveys that meet 
certain criteria. 

 
5. Summary  

This exploration into these three areas of alternative 
sample designs is just the beginning of our seminar series 
and of our intentions to explore methods to improve our 
demographic survey sample design methods. Future antic-
ipated subjects include alternative listing methods, Kish’s 
half-open interval approach to growth updates and coverage 
improvement, responsive survey designs, rejective sampling 
procedures, and model-assisted sampling. 
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Abstract 
This paper describes recent developments in adaptive sampling strategies and introduces new variations on those strategies. 
Recent developments described included targeted random walk designs and adaptive web sampling. These designs are 
particularly suited for sampling in networks; for example, for finding a sample of people from a hidden human population 
by following social links from sample individuals to find additional members of the hidden population to add to the sample. 
Each of these designs can also be translated into spatial settings to produce flexible new spatial adaptive strategies for 
sampling unevenly distributed populations. Variations on these sampling strategies include versions in which the network or 
spatial links have unequal weights and are followed with unequal probabilities. 
 
Key Words: Network sampling; Snowball sampling; Random walk; Markov chain; Adaptive web sampling. 
 
 

1. Introduction 
 
An adaptive sampling design is a procedure for selecting 

the sample in which the probabilities of selecting the set of 
sample units from the population depend on values of the 
variable of interest observed during the survey. In a spatial 
setting, adaptive sampling is exemplified by a survey in 
which, whenever a unit in the sample is observed to have an 
unusually high or otherwise interesting value of the variable 
of interest, nearby units may be added to the sample. In a 
network setting such as a socially networked human sub-
population, a link-tracing design may be used to adaptively 
follow social links from sample individuals to locate and 
add additional members of the subpopulation to the sample. 

In spatial settings the development of adaptive designs 
has been motivated by such problems as estimating the 
abundance of rare, clustered plant and animal species, as-
sessment of unevenly distributed environmental pollutants, 
and surveys of geographically clustered subpopulations of 
people. In network settings the development of adaptive 
network sampling designs has been motivated by problems 
in sampling people with rare diseases, sampling hidden 
populations such as those at high risk for HIV/AIDS or 
other epidemics, and sampling through computer and 
communications networks. 

Zacks (1969) and Basu (1969) recognized that in most 
cases the optimal sampling would in principle be an 
adaptive one. With a Bayes model for the population, at any 
step part way through a sampling procedure, one can do as 
well or better than a conventional design by selecting the 
remaining sample to give the lowest mean square error 
conditional on the observed sample values so far. The 
overall mean square error is the expected value of the 
conditional mean square error. The underlying mathematical 
principle is that the integral of the minimum of a set of 
functions is smaller, or nor larger than, the minimum of the 

integrals. Results on optimal adaptive adaptive strategies are 
described and extended in Thompson and Seber (1996) and 
exemplified in Chao and Thompson (2001). 

In spite of the early theoretical results and motivation 
from field surveys, the importance of adaptive designs was 
not widely recognized for several decades in either theory or 
practice. The practical importance of adaptive sampling 
strategies became evident as statistical thinking was brought 
to bear on problems in natural resource management and 
environmental protection. The development of adaptive 
link-tracing designs for reaching hidden human populations 
has attained strategic importance for such problems as 
understanding and alleviating the global HIV epidemic. In 
addition, new interest in adaptive sampling methods is being 
spurred by problems of expense and effort in social surveys 
of all types. 

Adaptive designs such as those described in this paper 
often serve as high yield designs in that sample values of 
variables of interest tend to be higher on average than 
population means of the same variables. Although this is 
often a desired characteristic itself in studies of rare popula-
tions, simple sample data summaries such as sample means 
and sample proportions are generally not good estimates of 
population means or proportions. Instead, effective design-
based and model-bases estimators of population quantities 
have been developed for use with adaptive designs. 

With design-based estimators, properties such as un-
biasedness or consistency depend solely on the way the 
sample is selected and not on assumptions about what the 
population may be like. Model-based estimators such as 
maximum likelihood or Bayes estimators on the other hand 
require use of a statistical model, usually involving un-
known parameter values, describing the population of in-
terest. Design-based estimators for adaptive designs are 
described in Thompson and Seber (1996), Thompson 
(2006a, b), and earlier papers. 
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Basic results for model-based approaches to inference 
with adaptive designs were given in Thompson and Seber 
(1996), which showed that likelihood-based methods such 
as maximum likelihood and Bayes inference would be more 
effective than other model based approaches (for example, 
the linear unbiased prediction approach) with adaptive 
designs. Maximum likelihood estimation and the likelihood 
based approach more generally with link-tracing designs 
were described in Thompson and Frank (2000). Bayes esti-
mation with link tracing designs was used in Chow and 
Thompson (2003). A method combining model and design 
based features was used in Felix-Medina and Thompson 
(2004). Bayes estimation using Markov chain Monte Carlo 
(MCMC) with adaptive web sampling designs is described 
in Kwanisai (2005, 2006). 

 
2. Adaptive sampling in network settings  

A population has network structure if there are links or 
relationships between any of the units in the population. 
Mathematically, such a population is described as a graph, 
consisting of a set of nodes and a set of edges or arcs 
between nodes. More generally, each relationship between a 
pair of nodes may have a weight denoting the strength of 
value associated with the relationship. 

Human populations have an inherent network structure 
arising from social relationships. As will be noted later, 
spatial relationships also give a network structure to many 
populations. Network populations also arise in computing 
networks, communications, gene regulation and metabolic 
networks. 

Network structure in populations is important for two 
reasons. First, the network relationships may be of interest 
in themselves to researchers. For example, with contagious 
disease epidemics it is important to know the nature and 
pattern of the social contacts through which the disease 
spreads. Second, the network structure can be used to help 
in obtaining a sample from a population that is otherwise 
difficult to sample. For example, in the study of hidden 
populations at risk for HIV/AIDS, including drug injectors, 
commercial sex workers, and others, often the only way in 
many cases to obtain a sample large enough for the study is 
to follow social links from initial sample individuals to find 
more members of the hidden population. 

Most network sampling designs which follow links are 
inherently adaptive in that the link values used in the 
selection are variables of interest that are generally not 
known prior to the survey. Further, in some studies it may 
be of interest to follow links with higher probability from 
sample individuals with high values of variables associated 
with behavioral risk. 

A class of designs called multiplicity sampling or simply 
network sampling was introduced my Birnbaum and Sirken 
(1965), along with design-unbiased estimators of population 
quantities. The approach was developed further by Sirken 
(1970, 1972a, b) and others and is described in Thompson 
(2002). In these designs the units on which observations are 
made are obtained by first selecting “selection units”, to 
which the observational units are linked. Motivation for 
these strategies came from problems in public health in 
which commonly used estimates were found to be biased 
because of the unequal numbers of such links. The simplest 
of the unbiased estimators in terms of computations was the 
“multiplicity estimator” which simply divided the observed 
value of a variable of interest measured on an observational 
unit by its “multiplicity”, the number of selection units to 
which it is linked. Horvitz-Thompson estimators for the 
strategy were also introduced. The following decades saw 
many variations on this strategy published in the statistics 
and substantive literatures. 

In snowball sampling an initial sample of nodes is 
selected by some design such as simple random sampling, 
and every link out is followed to add connected nodes to the 
sample. This process is continued for a specified number of 
steps, or “waves”. More generally, a subsample such as a 
fixed number of links are followed at each wave. Frank 
(1971, 1977a, b, 1978a, b, 1979) framed the problem as one 
of sampling in graphs worked out design-based estimators 
for many cases of snowball designs including designs with 
unequal initial selection probabilities and estimators for 
population quantities such as totals and means of variables 
associated with nodes or individuals, as well as of popula-
tion link quantities such as mean degree, where degree of a 
node is defined as the number of links out (or in) from that 
node. Frank and Snijders (1994) introduced a number of 
design-based and model-based estimators for one wave 
snowball designs motivated by the problem of estimating 
the number of injection drug users in a city. 

In a random walk design an initial node is selected at 
random. From the links out from that node one link is 
selected at random and followed to add the connected node 
to the sample. This process is continued for a specified 
number of waves, with one unit selected at each wave. If the 
sampling is with replacement the design is a Markov chain, 
with the state of the chain at each step being the identity of 
the node selected at that step. Properties of such designs, 
cast as Markov chains in graphs, such as the limiting or 
stationary probabilities were examined in the statistics and 
probability literatures (Lovász 1993). Random walk designs 
were introduced into the social network literature by 
Klovdahl (1989) with the motivation of reaching into a 
hidden human population farther away from the initial 
sample than possible with the same sample size using a 
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snowball design. In the computing science literature, Brin 
and Page (1998) used the concept of a stationary distribution 
of a random walk in a graph in developing a search engine 
and web page ranking algorithm, evoking the metaphor of a 
“random surfer” to describe the process of a random walk 
following hyper-links from web page to web page. 

Heckathorn (1997, 2002) and Salganik and Heckathorn 
(2004) described a sampling methodology referred to as 
“respondent driven sampling” in which members of a hid-
den population were motivated to recruit other members of 
the population into the sample using a system of coupons. A 
simple estimator of population totals and means, in which 
each observation is weighted by the reciprocal of that 
person’s degree, was used with these designs based on the 
limiting distribution of a with-replacement random walk in a 
network having symmetric links and a single connected 
component. The coupon-based methodologies developed 
with these designs have proven to be highly effective in 
recruiting samples of substantial size from hidden popula-
tions in a number of settings. 

The notational setup for sampling in networks follows. 
There is a population of units or nodes labeled 1, 2, ..., N  
with associated variables of interest 1 2, , ..., .Ny y y  Asso-
ciated with each pair of nodes ( , )i j  is a link-indicator or 
weight, so that the collection { ; , = 1, ..., }ijw i j N  are vari-
ables of interest associated with pairs of nodes. 

In the network context a sample s  is a subset (1)s  of 
nodes and a subset (2)s  of the pairs of nodes, that is, 

(1) (2)= ( , ).s s s  Thus the sample consists of a sample of 
nodes, on which node variables y  of interest are recorded, 
and a sample of pairs of nodes, for which the values of 
relationship variables w  are recorded. 

Figure 1 shows a network-structured population which 
will be used to illustrate some of the network sampling 
designs described in this paper. In terms of a human popula-
tion with social network structure, the red or dark colored 
nodes could represent individuals with high values of 
variables of interest, for example indicating a risk-related 
behavior such as injecting drug use. The light colored or 
yellow nodes would represent the individuals without the 
high-risk characteristic of interest. The links between indi-
viduals would represent social relationships such as having 
meals together, drug-using relationships, or sexual contacts. 

Figure 2 shows an initial simple random sample of five 
nodes selected from the network-structured population. A 
one-wave snowball sample selected by following every link 
out from the initial sample is shown in Figure 3, and a two-
wave snowball sample from the same initial sample is shown 
in Figure 4. Note that with a fixed number of waves, a 
snowball sample can grow very fast. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 A population with network structure 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 A random sample of nodes 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 One-wave snowball sample 
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Figure 4 Two-wave snowball sample  

With a snowball sampling designs and many other link-
tracing designs, sample data summaries such as a sample 
mean or sample proportions are not good estimators of the 
analogous population characteristics. The reason is that 
under the design different units have different probabilities 
of selection, dependent on the population link structure. 
Figure 5 shows the population with the size of each node 
proportional to the probability of selecting that node. Since 
high-risk individuals tend to have more links hence higher 
probabilities of inclusion in the sample, the sample mean 
would tend to overestimate the population mean. In the 
same way, the average degree of such a sample would tend 
to overestimate the mean degree of the population network. 

With the one-wave snowball design in a setting with 
symmetric links the inclusion probabilities for sample nodes 
can be easily calculated as proportional to the node degrees. 
With asymmetric links or with snowball designs of more 
than one wave it is not in general possible to calculate node 
inclusion probabilities from the sample data. Methods for 
calculating design-unbiased estimators of population node 
and link characteristics with such designs are described in 
the section on adaptive web sampling later in this paper. 

Figure 6 shows a snowball sample from this same 
network population starting with one randomly selected 
unit. Since the population consists of more than a single 
connected component a strict random walk design would be 
stuck in whatever component it started in. It is therefore 
desirable to provide in the design some small probability at 
each step of selecting the next unit by simple random 
sampling or some other conventional design, or at least 
allowing a random jump whenever a walk is found to be 
stuck in a component. 

Figure 7 shows the stationary selection probabilities for 
the random walk through the network shown. Although 
these probabilities in this population are not simply 
proportional to node degrees it can be seen that nodes with 

high degree do tend to have high selection probabilities. 
Also, since high risk individuals in this population tend to 
have high selection probability under this design, sample 
summaries such as sample mean and sample proportion are 
not unbiased estimators of population means and propor-
tions. For unbiased estimates the methods of later sections 
of this paper would have to be used. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5 One-wave snowball sample selection probabilities 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6 A random walk sample from the same population 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 7 Random walk limit selection probabilities 
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2.1 Targeted random walk designs  
One of the early motivations for using random walk 

designs with hidden populations was to penetrate deeper 
into the population, that is, farther from the initial sample 
and thereby obtain a more representative sample of the 
population. When the probabilities of selecting a given 
person by such a method are calculated either step by step or 
in their stationary limit, they are not in general equal but 
depend on the link and degree structure. With the moti-
vation first to find a method for selecting a sample through a 
network such that the stationary probabilities would be the 
same for each person or node, uniform and targeted random 
walk sampling designs were developed (Thompson 2006a). 
An additional motivation was to find a more flexible and 
adaptable way to sample through a network. 

Since a random walk with replacement through a graph 
or network is a Markov chain, ideas of Markov chain Monte 
Carlo can be applied to produce a different Markov chain 
having desired stationary probabilities. At each step of the 
sampling the state of the chain is the current node added to 
the sample. The stationary probabilities of the chain corre-
spond to the stationary selection probabilities for each 
person or node. With a targeted walk design the random 
walk design is tweaked at each step, based on out-degree of 
each node, to obtain a design with specified limiting 
selection probabilities. 

Suppose that at some step in the sampling person i  is the 
last person who has been added to the sample. Using a 
random walk procedure we randomly select one of the links 
out from that person, and that link leads to person ,j  who is 
now our tentative selection. A screening interview reveals 
that person j  has more links out than person ,i  so that the 
conditional probability of going from i  to j  as we just did 
is larger than the conditional probability in the reverse 
direction, since the transition probabilities are related to the 
reciprocal of the number of links out. Therefore we calculate 
a probability less than one and accept person j  into the 
sample only with that probability. If our tentative selection 
is not accepted we independently again choose a link out 
from person .i  The probability of acceptance of the candi-
date link is based on the Hastings (1970) generalization of 
the Metropolis algorithm. The acceptance probability 
depends on the desired target selection probabilities, the 
number of links out from the current node and the candidate 
node, and the probability of going in either direction with a 
random jump if that is part of the design (Thompson 2006a). 

Note that the method depends only on links out, which 
can usually be determined for sample members, whereas 
links in to sample individuals usually can not be determined. 
Therefore the method applies to directional as well as sym-
metric networks. 

A uniform walk design is the special case in which the 
targeted stationary selection probabilities are all equal. A 
targeted random walk design could be used for example to 
obtain a sample from a hidden population in which an 
individual with a certain high-risk behavior would have 
selection probability twice that of an individual without the 
behavioral characteristic. 

It is the sample of accepted people or nodes that has the 
desired stationary selection probabilities. If the tentative 
selections had been interviewed thoroughly also, not only 
the screening interview about out-degree, then in principle 
the estimates from the accepted sample could be improved 
using the Rao-Blackwell method (Casella and Robert 1996). 
That would involve calculation of the probabilities of 
getting the same data with different accept-reject results and 
in different orders of selection. With each of the different 
accept scenarios the estimate would be computed using the 
accepted set and each value weighted by the ordered 
selection and acceptance probabilities. In most cases there 
are too many combinations for exact calculation, and a more 
practical approach would be the Markov chain resampling 
method at the inference stage described in a later section of 
this paper. It is not clear that in practice it would be desir-
able to compute the improved estimators using the data 
since full interviews rather than screening interviews would 
be required for those not initially accepted, the computations 
for the improvement are potentially demanding, and the 
calculation depends on knowing the selection probabilities 
for the initial sample, which is not needed for the simple 
estimators. 

With a targeted walk design in which the target stationary 
selection probability i  of node i  is proportional to ,ic  an 
asymptotically consistent estimator, based on the limiting 
probabilities, is provided by the generalized ratio estimator  

/
ˆ =

1 /

i i
a

i
a

y c

c





s

s

 

where iy  is the value of the variable of interest for the thi  
node and as  is the sample of selected nodes. In this type of 
estimator the relative values of target probabilities need be 
specified since the proportionality constant cancels out. 

Note that a straight Horvitz-Thompson or Hansen-
Hurwitz estimator can not be used because the propor-
tionality constant in the inclusion probabilities is unknown, 
whereas in the generalized ratio estimator it cancels out. 
Again the limiting probabilities on which the estimator is 
based hold exactly for the with-replacement design. For the 
without-replacement variation, the properties of the targeted 
strategies were fairly closely approximated by the with-
replacement properties in the empirical comparisons 
(Thompson 2006a). 
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2.1.1 Designs using weighted links  
Many studies of socially networked populations concep-

tualize the network as having nodes (people) and lines or 
arrows representing the links or relationships between 
people. The network is characterized by an incidence matrix 
of 0s and 1s indicating when there is a link from node (row) 
i  to node (column) .j  In many real situations, however, 
more than one type of link may be of interest and links may 
have different weights representing differing strengths of a 
relationship. For example, in studies of risk behaviors and 
interventions in relation the the HIV epidemic, two types of 
links of high interest are sexual relationships and drug 
injecting relationships. Other social relationships, such as 
friendships and living arrangements, may also be of interest 
to investigators and may be useful in finding members of 
the population. These types of relationships may have 
weights corresponding to frequency of encounters, geo-
graphic proximity, or other measures of strength. 

In the basic form of weighted link designs we consider, 
in which one link from the most recently selected person is 
selected from the links out from that person, the selection is 
made with probability proportional to link weight. More 
generally, the selection could be made based on that weight 
but not necessarily proportional to it. However, we could 
then redefine the weight to be proportional to the probability 
we have under the design of following that weight, so that 
the following result would still apply. 

The following derivation shows that under suitable 
conditions the stationary selection probability for each 
person with such a design is proportional to the sum of the 
link weights out from that person. The result applies for a 
population in which it is possible to reach any one person 
from another following some path in which each link has 
weight greater than zero. That is, the population has a single 
component. 

For such a condition to hold it is advantageous to have at 
least some probability of following common but weak links. 
For example, a study of a sexually transmissible epidemic 
may want to focus with high probability on sexual links. But 
sexual links do not connect the population into a single 
component. Therefore, some smaller probability is allowed 
in the design for following friendship or geographic links, 
which represent weaker relationships between people and 
are of less inherent interest to investigators but serve to 
connect the population. Thus, the combination of different 
types of links in this situation turn the population into a 
single component for purposes of the design.  
2.1.2 Stationary distribution of weighted link 

Markov chain design  
In this section we derive the stationary distribution of a 

weighted link design in a single component situation. Keep 

in mind that we may create the single component property 
through innovative use of geographic links in combination 
with social links. 

Let ijw  be the weight of a link between node i  and node 
,j  and assume that these links are symmetric, so that 

= .ij jiw w  Consider a random walk design, with replace-
ment, in which the transition probability to node ,j  given 
the walk is at node ,i  is proportional to .ijw  That is, one 
link is selected out from node i  with probability propor-
tional to weight. The transition probability is thus =ijP  

/ .ij iw w   The sum = ji ijw w   is the total weight out from 
node ,i  generalizing the concept of degree with equally 
weighted nodes. 

Suppose the graph has only a single component, that is, 
any node in the graph can be reached from any other node 
by a path in which every link has positive weight. Then the 
stationary probability for node i  is proportional to .iw   

Suppose that the probability that the walk is at node i  at 
time t  is = / ,i iw w   for = 1, ..., ,i N  where =w  

,i j ijw   the total of all the weights. Then the probability 
that the process is at node i  at time 1t   is j j jiP   by 
the law of total probability. In terms of the link weights, this 
sum is ( / ) ( / ) = / .j jj ji j jiw w w w w w      Because of the 
symmetry of the weighted links, this becomes / ,iw w   so 
that if node i  has this probability at time t  it has the same 
probability at time 1,t   so that these are the stationary 
probabilities of the process. By induction, once the process 
reaches it’s stationary distribution it remains in it for every 
step thereafter. In practice, especially with small sample 
sizes or with different design variations, the stationary 
distribution serves as an approximation to the exact distri-
bution. 

If the weights are not symmetric, the selection probabili-
ties of the random walk design will still approach a station-
ary distribution provided there is only a single component 
or, if not, that the design incorporates random jumps. How-
ever, with the directional weighted links, the stationary 
distribution is no longer of the simple form that can be 
calculated from sample data.  
2.1.3 Different uses of weighted link designs  

Variations of weighted link designs could prove useful in 
situations of the following types. 

(1) Designs using general weights of links, on a con-
tinuous or discrete scale, representing strength or im-
portance of relationships and probability of following 
them. 

(2) Situations with two types of links, represented by 
two weights, such as social networks with strong and 
weak relationship links, or an HIV-at-risk study fo-
cusing on both sexual contacts and drug using rela-
tionships. 
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(3) Survey settings in which links represent the geo-
graphic or “random jump” part of the design, or the 
seed design. For example, all people within a given 
geographic stratum are linked by a geographic link, 
or all the people who visit any of the venues on an 
ethnographic map are thereby linked. 

(4) In a situation where a sampling frame exists but the 
frame covers only part of the population, all units 
within the frame can be considered to be connected 
by a “frame link”. Venue-based sampling typically 
forms one example of this type of situation. 

(5) Using a variation on the sampling design as a model 
for the way a virus or other infectious agent “sam-
ples” people in a population. A type of weighted link 
design could be developed as a model for the spread 
of an infectious disease, finding the different impor-
tance of different links. For influenza, the relative 
importance of air transported droplets (sneezing, 
coughing) versus indirect contact through solid 
objects (door knobs, money). For HIV, the relative 
importance of different types of sexual contacts and 
unsafe injections, whether for illegal drugs or un-
sanitary medical injections especially in third world 
countries. The disease transmission in a simulation 
has a slightly different protocol than the implemented 
designs, in that instead of thinking of one new link 
selected at each selection time step, there could be 
anywhere from zero to a high number of transmis-
sions in a time step.  

2.1.4 Properties of weighted link designs and 
associated population graphs  

Suppose the relationships in the population are assigned 
weights, with the weight ijw  denoting the strength of the 
relationships from node i  to node .j  And suppose we use a 
link tracing design of the walk type in which the transition 
probability is  

= ij
ij

i

w
P

w 

 

where =1= .N
ji ijw w   This is the conditional probability of 

selecting node j  as the next sample unit, given the most 
recently selected unit is node .i  The walk design is a 
Markov chain on a graph, in which the graph has weighted 
links. 

We will next consider the question in the other direction 
of when a Markov chain can be represented by a design of 
this sort on a graph with weighted links. Given a Markov 
chain specified by a matrix of transition probabilities ,ijP  
we can always represent it as a walk design of this type on a 
graph with weighted links so long as the links satisfy the 
first of the following properties: 

(1) = ,ij ij iw P w   where the row weight totals are arbi-
trarily chosen. 
Next consider imposing some property on the weight 
row totals to make them unique. For example: 

(2a) If the iw   weight row totals are chosen to be all equal 
to a constant such as one, then the link weights 
represent the conditional transition probabilities given 
the process is at the node at which they originate. 

(2b) If the iw   weight row totals are proportional to the 
stationary probabilities i  of the Markov chain for 
each node ,i  or equal to them, then the weights rep-
resent “flows” of the Markov chain, that is, the un-
conditional probabilities of transitions along the 
links:  

= .ij ij iw P   

In the practical situations for which we are trying to find 
appropriate models and designs, the weights may be at least 
partially given by the natural circumstances of the situation. 
For example the weight ijw  may represent the presence or 
absence of a link from person i  to person ,j  or the number 
of transactions of a certain type in a given time period from 
i  to .j  In that case, condition (2a) above would not in 
general be satisfied and condition (2b) would be satisfied 
only if all the weights were symmetric, that is, if =ij jiw w  
for all i  and .j  

In particular, if some or all of the weights are asym-
metric, with ,ij jiw w  then (2a) would not usually be 
satisfied and it would not be possible to arbitrarily choose 
weights to impose the condition because typically the sta-
tionary probabilities would not be known and could not be 
calculated from the sample data. However, although the row 
totals iw   could not be arbitrarily imposed, they can be 
known for units in the sample since they are simply the total 
weight out from each unit.  
2.2 Adaptive web sampling  

Targeted random walk designs provide considerable 
flexibility and control not offered by regular random walks. 
The use of weighted links with these designs extends that 
flexibility farther. This flexibility is still constrained, 
however, by the restriction that the selection of the next link 
to follow can depend only on the most recently selected 
node in the sample. The incentive for developing the next 
set of designs was to remove this restriction and greatly 
expand the scope for flexibility and control in the available 
strategies. 

In an adaptive web sampling design (Thompson 2006b) 
an initial sample of one or more unit/node is selected by 
simple random sampling or other conventional design. From 
then on, at each step in the sampling there is an active set 
consisting of the sample selected so far or some subset of it. 
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In the simplest case, one link is selected from the links out 
from this set. Sampling continues in this fashion until the 
desired sample size or some other stopping criteria has been 
satisfied. Some small probability is allowed, however, that 
the next node is selected at random, or by some other 
conventional design, from the entire population. The designs 
can be done with or without replacement. 

More generally a set of links can be selected at each step. 
Also the links at each step can be selected by a design more 
complicated than simple random sampling. The selection 
probabilities can be dependent on node or link characteris-
tics and can be varying over time. 

The basic idea of an adaptive web sampling design is 
shown in the next set of figures. In Figure 8, an initial 
sample of two nodes has been selected by random sampling 
without replacement. At the next step a link may be chosen 
out at random from either of the initial nodes to add a new 
node to the sample, as shown in Figure 9. The next node is 
selected by following one of the links out from the current 
sample. With a random walk a link would need to be 
followed from the last node selected, but with adaptive web 
sampling any eligible link out from the current sample 
(active set) may be followed. Note the next selection, shown 
in Figure 10, is not via a link from the most recently selected 
node, but from a previous one. As sampling progresses it is 
free to branch out flexibly in different directions as well as 
select new nodes at random from the population (Figure 11). 
The design can be stopped at a specified sample size or 
some other criteria. In the design shown in the figures, links 
out from the current sample were not selected completely at 
random but with higher probability given to following links 
from high-risk individuals, represented by dark or red 
nodes. Further, the design shown allowed a 0.1 probability 
of selecting the new node at random at any step instead of 
following a link. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 8 The first two nodes selected at random 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9 The next node is selected by following one of the links 

out from the current sample 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10 Note the next selection is not via a link from the last-

selected node, but from a previous one 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11 As sampling progresses it is free to branch out flexibly 

in different directions as well as select new nodes at 
random from the population  

2.2.1 Inference methods  
Design-unbiased and design-consistent estimation meth-

ods for use with adaptive web sampling designs are 
described in Thompson (2006b). Bayes model-based esti-
mation methods for use with adaptive web sampling are 
described in Kwanasai (2005). 

weighted links 

weighted links 

weighted links 

weighted links 
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The design-based estimators are constructed by starting 
with some relatively easy to compute estimator that depends 
on the order of selection of the sample. This initial estimator 
is then improved using the Rao-Blackwell method, that is by 
obtaining the expected value of the initial estimator condi-
tional on the minimal sufficient statistic.  
2.3 Estimator based on initial sample mean  

Suppose 0̂  is an unbiased estimator of the population 
mean that depends on the order in which the sample is 
selected. If the initial sample of nodes has been selected by 
simple random sampling, one example of an unbiased initial 
estimator that depends on order is the initial sample mean. 
The improved estimator has the form  

0 0
{ : ( ) = }

ˆ ˆ ˆ= E( | ) = ( ) ( | ).r r
r s

d p d  
s s

s s  

Here s  denotes the sample in order of selection, r  is the 
reduction function that reduces the ordered sample to ,s  the 
unordered sample of the minimal sufficient statistic. The 
reduced data rd  consists of the unordered sample together 
with the associated values of the variables of interest. The 
improved estimator ̂  is the expected value of the initial 
estimator over all !n  reorderings of the sample data. In 
calculating the expectation, each of the reorderings is 
weighted by the selection probability ( | ).rp s d  

Other initial estimators used with adaptive web sampling 
utilize the entire sample data but depend on order and are 
based on using the conditional probabilities of selecting 
each new unit in sequence given the previously selected 
units. Four types of design-based estimators for use with 
adaptive web sampling are given in Thompson (2006b). 

Computation of the improved estimator ̂  and its 
variance estimators under various adaptive web designs 
involves enumerating the reorderings of the sample 
selection sequence. For each reordering, the probability of 
that ordering under the design is computed, along with the 
values of the estimators and variance estimators. Direct 
calculation is fast and efficient up to sample sizes of ten or 
so, which involve no more than a few million permutations 
to be enumerated. For larger sample sizes, the numbers of 
permutations or combinations of potential selection se-
quences in the conditional sample space become prohibi-
tively large for the exact, enumerative calculation. For this 
reason, a Markov chain resampling approach was used in 
Thompson (2006b) for computing the improved estimators. 

The resampling procedure is as follows. The object is to 
obtain a Markov chain 0 1 2, , , ...x x x  having stationary 
distribution ( | ).rp x d  Here kx  denotes an entire reordering 
of the sample at step k  of the chain. Suppose that at step 

1k   the value is 1 = ,kx j  so that h  denotes the current 
permutation of the sample data in the chain. A tentative or 

candidate permutation kc  is produced by applying the 
original sampling design, with sample size ,n  to the data as 
if the sample comprised the whole population, that is, as if 

= .N n  This resampling distribution, denoted cp  differs 
from, but has some similarity to, the actual sampling design 

.p  The desired conditional distribution ( | )rp x d  is 
proportional to the unconditional distribution ( )p x  under 
the original design applied to the whole population. 

Let  

1

1

( ) ( )
= min , 1 .

( ) ( )
k c k

k c k

p c p x

p x p c




 
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 
 

With probability , kt  is accepted and = ,k kx c  while with 
probability 1 , kc   is rejected and 1= .k kx x   

This procedure produces a Markov chain 0 1 2, , , ...x x x  
having the desired stationary distribution ( | ).rp x d  The 
chain is started with the original sample s  in the order 
actually selected. Given any value of the minimal sufficient 
statistic ,rd  the chain is thus started in its stationary 
distribution and so remains in its stationary distribution step 
by step. 

Suppose that rn  resampled permutations are selected by 
this process and let 0ˆ h  denote the value of the initial esti-
mator for the thh  permutation. An enumerative estimator of 
the form 0ˆ ˆ= E( | )rd   is replaced by the resampling 
estimator  

1

0
=0

1
ˆ= .

nr

h
hrn



   

Bayes model-based inference with adaptive web sam-
pling designs also requires the use of Markov chain Monte 
Carlo (MCMC) methods except in certain fairly simple 
design situations (Chow and Thompson 2003) where explic-
it Bayes posterior distribution, estimators, and intervals can 
be obtained. More generally the MCMC sequence involves 
at each step updating of model parameter estimates and, in a 
data augmentation procedure, obtaining a complete realiza-
tion of the population network and its values from the 
predictive posterior distribution conditional on the observed 
data (Kwanisai 2005, 2006). The resulting Markov chain 
sequence of complete population realizations provides the 
flexibility to make inference about many types of population 
characteristics.  
2.4 Modification of adaptive web sampling 

procedures  
Adaptive web sampling designs are a generalization of 

random walk designs. The more general designs do not have 
the exact stationary distribution properties of walk designs, 
since more than one link may be followed from any node, 
links may be followed from sample nodes other than the 
most recently selected one, and the sampling may be done 
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without replacement. However, the stationary distribution 
properties of a random walk or other Markov chain design 
may serve as a guide to approximate properties one might 
expect from a similar adaptive web sampling design. 

During the sampling, at the time of the tht  unit selection 
in the thk  wave, let aktw   be the total number of links out, 
or the total of the weight values, from the active set ka  to 
units not in the current sample .ckts  That is, =aktw   

{ , } .iji a j sk ckt
w   When w  is an indicator variable, aktw   is 

the total of the net out-degrees of the individual units in the 
active set ,ka  where net out-degree is the out-degree of a 
unit minus the number of its links to other units already in 
the current sample. 

For each unit i  in the sample, the variable of interest iy  
and the out-degree (or out-weight) iw   are recorded. In 
addition, for each pair of units ( , )i j  for which both i  and 
j  are in the sample, the values of the link variables ijw  and 

jiw  are observed. 
Consider as a candidate for the tht  selection in the thk  

wave a unit i  not in the current sample, so .ckti s  Sup-
pose the current active set ka  contains one or more units 
having links or positive weights out to unit ,i  and let 

=a i ijj ak k
w w  denote their total. The probability that unit 
i  is the next unit selected is  

1
= (1 )

( )

a ik
kti

a skt ckt

w
q b b

w N n
 


 

where b  is between 0 and 1. If there are no links at all out 
from the current active set, then  

1
= .

( )kti
ckt

q
N n

 

Thus, with probability b  link-tracing is done, and one of 
the links out from the current active set is selected at 
random, or with probability proportional to its weight, and 
the node to which it leads is added to the sample, while with 
probability 1 b  the new sample unit is selected com-
pletely at random from the units not already selected. How-
ever, if there are no links or positive weights out from the 
active set to any unsampled units, then the next unit is 
selected from the collection of unsampled units. 

Basic adaptive web sampling can be generalized to use 
weighted links. If the relationship variable w  consists of 
weights, instead of having just 0 or 1 values, then the link-
based selection can depend on these weights. For example, 
link weights can be defined in relation to the y  value of an 
originating node or as a distance measure to the connected 
node, so that links are followed with higher probability from 
nodes with higher values or with lower probability to distant 
nodes. Then a link from the active set can be selected with 
probability proportional to link weight, or with some other 
selection probability ( | , , , )ckt k a ak kp i s a y w  depending on 

variables of interest only through the active set. For 
example, a link out could be selected at random from the 
links with ijw  greater than some constant, or iy  greater than 
some constant. The selection probability when links are not 
followed does not have to be uniform over the units not in 
the current sample, but can be a more general design 

( | )cktp i s  such as selecting with probability related to an 
auxiliary variable or from a spatially defined distribution. 

With weighted links w  represents a possibly continuous 
link weight variable and the probability that unit i  is the 
next unit selected is  

ckt k cktk k
= p( | , , , ) (1 ) p ( | ).kti a aq b i s a y w b i s   

If there are no links or positive weights from ka  to ,i  then  

ckt= p( | ).ktiq i s  

Once unit i  has been selected, it is possible to add an 
accept/reject step for deciding whether to include it in the 
active set, for example, accepting with higher probability if 
unit i  has a high value or high degree. 

In the design the constant b  itself can also be replaced 
by a probability ( , , , , )k a ak kb k t a y w  depending on values 
related to nodes and links in the active set or changing as 
sample selection progresses. For example, if the values of 
the units in ka  are particularly high, we could increase the 
probability of following links. As for dependence of b  on 
( , ),k t  the use of an initial conventional sample of size 

0 > 1n  may be viewed as serving to obtain some informa-
tion from basic coverage of the population before adaptive 
sampling is allowed to commence. 

 
3. Spatial adaptive web sampling  

Adaptive sampling designs such as adaptive cluster 
sampling (Thompson 1990) were developed in response to 
the need for more effective strategies for sampling spatially 
uneven populations, particularly those having a rare, clus-
tered geographic distribution. Most populations having a 
network structure also have an inherent geographic or 
spatial structure. For example, human populations have 
social network structure but are also distributed in space. Of 
particular interest from the sampling design point of view, 
spatial structures can be characterized with graph or network 
structures. For example, neighborhood relationships based 
on geographic proximity can be recast in the form of lattice-
type graphs. In this way, network designs such as those 
described in the previous section can be applied to solve 
spatial sampling problems. 

In this section the use of adaptive web sampling designs 
to sample a spatially uneven population will be described. 



Survey Methodology, December 2011 193 
 

 
Statistics Canada, Catalogue No. 12-001-X 

These designs could be viewed as a generalization of 
adaptive cluster sampling. In this view, adaptive cluster 
sampling would be a special case in which every link is 
followed until there are no more links out from the current 
sample. The adaptive web sampling class of designs offers 
more flexibility and control, however, and is potentially 
more efficient to use for many spatial populations. 

With adaptive cluster sampling the constraint to continue 
to sample until all neighbors of all units satisfying the 
condition were included meant that overall sample size was 
not controlled in advance and was rather stringent when 
some networks were unusually large. Adaptive web sam-
pling in the spatial context solves this problem since sample 
size can be fixed in advance. In terms of its network 
recasting, the simple unbiased estimators of adaptive cluster 
sampling use data only from the strongly connected compo-
nents that the initial sample intersects. Rao-Blackwell 
improvements based on those estimators can use in addition 
data from the weakly connected extensions of those compo-
nents. The familiar edge units of spatial adaptive cluster 
sampling are a special case of such weakly connected 
extensions of strongly connected components. 

Figure 12 depicts a study region with a spatial clustered 
population as may be encountered in ecological, epi-
demiological, and social demographic surveys. In one form 
of adaptive spatial designs the neighborhood of a unit is 
defined as the set of immediately adjacent units, and neigh-
boring units are added to the sample when the value of a 
sample unit is high or meets some other criterion. In Figure 
13 the spatial population has been recast as a directed graph. 
The square spatial units are redrawn as nodes in a graph, 
and whenever the number of objects in a unit exceeds zero, 
arrows representing graph links are drawn from that node to 
neighboring nodes. Nodes representing units with nonzero 
values are colored dark (red). Figure 14 shows a random 
sample of nodes to be used as the initial sample of an 
adaptive web design. The adaptive web sampling continues 
until the targeted final sample size of 20 units is obtained in 
Figure 15. The sample is recast in the spatial setting in 
Figure 16. Unlike adaptive cluster sampling, it was not 
necessary to continue sampling until every unit in a sampled 
connected component is included. Further, the small 
probability of a random jump keeps the design from being 
stuck in any connected component. 

A glimpse of the immense flexibility offered with the 
adaptive web sampling designs in the spatial setting is 
shown in Figure 17. In the top row a spatial population is 
recast as a graph, though the directions of the links are not 
shown. The bottom row shows samples from two variations 
of adaptive web sampling. On the left, sixteen initial units 
have been selected independently at random. From each, an 
adaptive web sampling procedure is carried out to a sample 

size of five units. With this design, the sample is spread 
throughout the study region while also reaching into compo-
nents. In the design on the right a single initial unit is 
selected at random and adaptive web sampling continues to 
a total of 80 units. The 0.1 probability of selecting the next 
unit at random at any step prevents the design from being 
stuck in any one component. With this design the main 
components or aggregations get very thorough, though not 
exhaustive, coverage. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12 A spatially clustered population 

 
 
 
 
 
 
 
 
 
 
 
 
  
Figure 13 A network representation of relevant neighborhood 

relationships in the spatial population 
 
 
 
 
 
 
 
 
 
 

 

 

 

Figure 14 An initial random sample of spatial units 

sample 

population graph 

spatial population 
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Figure 15 Adaptive web sample of 20 units starting from the 

initial sample of the previous figure 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 16 Spatial representation of the adaptive web sample 

3.1 Spatial designs with weighted links  
For selecting spatial samples, link weights can be defined 

as a function of the distance between sites. For example, for 
increased sample the function would give larger weight to 
sites at close distance. On the other hand, for space filling 
purposes sites at larger distance could have larger weight. A 
network sampling design in such a setting, with link weights 
defined solely on the basis of distance, would not in general 
be adaptive. That is because the spatial frame would enable 
a link-tracing design to select the entire sample of sites 
before going in the field to make any observations. 

More generally though link weights can be defined as a 
function of both weights and observed values. For a unit in 
the sample having a high observed value of the variable of 
interest, the function could give higher weight at distances 
close to that site and smaller weight to distance sites. For a 
unit having a low value of the variable of interest the weight 
function could have a more uniform shape. 

Random walk designs in particular are straightforward to 
carry out in spatial settings with links weights dependent 
only on distance. That is because at any point in the sam-
pling the selection of the next site depends only on the most 
recently selected site, so that only one weight function needs 
to be considered. With more general designs such as 
adaptive web sampling the use of link weight functions 
dependent on both distance and value opens up very wide 
flexibility in the possibilities available for adaptive strategies. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Figure 17 Adaptive web sampling design variations 
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4. Discussion  
Adaptive sampling designs expand considerably the 

possibilities for sampling strategies. They appear to be espe-
cially useful for populations which are otherwise difficult to 
sample. Network sampling designs are inherently adaptive 
in most cases and can provide more effective ways to sam-
ple populations with network or spatial structure. In this 
paper the emphasis has been on designs obtaining low mean 
square error or providing practical means of reaching a 
hidden population. In other cases the primary objective 
might be simply to obtain a higher yield sample, that is, a 
sample having a high total value of the variable of interest. 
For instance environmental hot spots is where remediation 
must be made, high risk components of a epidemic related 
network where treatment or intervention might have the 
greatest effect. The advantages of an adaptive approach are 
even more straightforward when the objective is high 
sample yield. 

Fully optimal sampling strategies are in most cases not 
practical to implement, because of computational complexi-
ty and model dependency. A more practical approach is to 
make improvements over conventional designs with simple 
adaptive procedures that capture much of the essence, and 
the choice of design often having much more effect that one 
inference method versus another. 

Simulation analyses with adaptive strategies of different 
types have tended to lend support to the idea that it is good 
to have a strong underlying conventional component. Many 
of the practical strategies have the form of an initial conven-
tional sample with adaptive sampling extending the sample 
from there through either network or spatial relationships 
and depending on observed values. Strategies with that type 
of balance between conventional and adaptive components 
have in simulations generally performed better than, say, 
selecting a single unit conventionally and adaptively adding 
the whole rest of the sample from there. In the simulations 
most efficient strategies tended to have an initial sampling 
making up about 60-80 percent of the total sample size. The 
modest amount of adaptive sampling after that then pro-
duced large gains in efficiency. This empirical experience 
goes along with the characteristic of optimal adaptive 
strategies, in which there seems to be a push and pull 
between spreading units far apart or filling in unobserved 
parts of the study region, corresponding to the conventional 
component of the simplified designs, and placing new units 
in the most promising areas, corresponding to the adaptive 
component in the simplified designs.  
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Alternative survey sample designs: Sampling with multiple overlapping frames 

Sharon L. Lohr 1 

Abstract 
Designs and estimators for the single frame surveys currently used by U.S. government agencies were developed in 
response to practical problems. Federal household surveys now face challenges of decreasing response rates and frame 
coverage, higher data collection costs, and increasing demand for small area statistics. Multiple frame surveys, in which 
independent samples are drawn from separate frames, can be used to help meet some of these challenges. Examples include 
combining a list frame with an area frame or using two frames to sample landline telephone households and cellular 
telephone households. We review point estimators and weight adjustments that can be used to analyze multiple frame 
surveys with standard survey software, and summarize construction of replicate weights for variance estimation. Because of 
their increased complexity, multiple frame surveys face some challenges not found in single frame surveys. We investigate 
misclassification bias in multiple frame surveys, and propose a method for correcting for this bias when misclassification 
probabilities are known. Finally, we discuss research that is needed on nonsampling errors with multiple frame surveys. 
 
Key Words: Bias correction; Dual frame survey; Misclassification; Mode effects; Sampling for rare events; Sampling 

weights; Small area estimation. 
 
 

1. Uses of multiple frame surveys 
 
In classical design-based sampling theory, a probability 

sample is taken from the (single) sampling frame, and the 
inclusion probabilities in the sampling design can be used to 
make inferences about the population. Let iy  be a 
measurement on unit i  in the population of N  units, let   
denote the set of units in the sample, and let =i P  (unit i  
is included in the sample). Then the Horvitz-Thompson 
(1952) estimator of the population total =1= N

i iY y  is 
ˆ = ,i i iY w y   where = 1 /i iw   is the sampling weight. 

If the sampling frame includes everyone in the target popu-
lation, all sampled units respond, and there is no measure-
ment error, then the Horvitz-Thompson estimator is un-
biased for .Y  

The practical challenges of sampling in the 1940s and 
1950s drove the methodological developments of stratified 
multistage surveys and estimators such as the Horvitz-
Thompson estimator. In-person surveys relied on unequal 
probability sampling to balance interviewer workloads and 
reduce variances. Response rates were high in many gov-
ernment surveys so that the assumptions for the Horvitz-
Thompson estimator were reasonable. We now face new 
challenges in household surveys. Nonresponse rates are 
increasing, which means that survey estimates rely more on 
models. The ethnic and language diversity of a population 
can result in undercoverage and measurement error. In-
creasing technological diversity means that different resi-
dents may be best reached by different sampling modes; one 
must then be confident that different sampling modes 
measure the same quantities. Costs of collecting data have 
risen greatly, in part due to increasing nonresponse; at the 

same time, governmental and research demands for data 
have also risen greatly. 

Multiple frame surveys can achieve better population 
coverage at lower cost. They can be used as part of a struc-
ture of modular survey design that relies on different sam-
pling frames to help reduce costs and achieve better cov-
erage. They can also use administrative data efficiently. In 
this paper, we describe different types of multiple frame 
surveys and discuss some of the research that is completed 
and research that may be needed for their use. 

One of the earliest multiple frame surveys (aside from 
early capture-recapture methods) was performed by the 
Census Bureau in 1949 (Hansen, Hurwitz and Madow 
1953). In the Sample Survey of Retail Stores, a probability 
sample of primary sampling units (psus) was chosen. Within 
each psu, a list of large retail firms was constructed from 
records of the Old Age and Survivors Insurance Bureau. All 
firms on the list were sampled, and an area sample of firms 
in the psu that were not on the list was taken. In this case, a 
screening dual frame design was employed within each 
selected psu; units in the list frame were screened out of the 
area frame before sampling. Thus, the estimator of total 
sales summed the two estimators within each psu. No new 
statistical methods were required to estimate total sales in 
this survey, since essentially a stratified sample was taken in 
each psu: the firms on the list in the psu formed one stratum, 
and the firms in the area frame but not on the list in the psu 
formed the second stratum. The survey resulted in cost 
savings because it was relatively inexpensive to sample 
from the firms on the list, yet full coverage was obtained by 
also using the area frame. 
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Many agricultural surveys also have used a screening 
dual frame survey design (González-Villalobos and Wallace 
1996). In such a design, farms belonging to the list frame 
are removed from the area frame before sampling com-
mences. Considerable cost savings can be realized since 
often the list frame is much less expensive to sample and it 
contains the largest farms. 

In many cases, however, it may not be possible or prac-
tical to remove list-frame units from the area frame before 
sampling. Instead, in an overlapping dual frame survey, 
independent probability samples are taken from frame A 
(the area frame) and frame B (the list frame); this is depicted 
in Figure 1. Rare populations can often be sampled more 
efficiently using a multiple frame sample (Kalton and 
Anderson 1986). In an epidemiology study, for example, 
frame A might be that used for a general population health 
survey, while frame B might be a list frame of clinics spe-
cializing in a certain disease. The sample from frame B is 
expected to yield a high percentage of persons with the 
disease of interest, so that sampling will be efficient; the 
sample from frame A, though more expensive, leads to 
complete coverage of the population. 

In other situations, all frames are incomplete, as con-
sidered by Hartley (1962); for example, frame A in Figure 2 
might be a frame of landline telephones and frame B might 
consist of cellular telephone numbers. There are three do-
mains: domain a  consists of units in frame A but not in 
frame B, domain b  consists of units in frame B but not in 
frame A, and domain ab  consists of units in both frames. In 
the telephone context, domain a  contains individuals be-
longing to a landline-only household, domain b  consists of 
individuals who have only a cellular telephone, and domain 
ab  consists of individuals who have both cellular and land-
line telephones. It is unknown in advance whether a house-
hold member sampled using one frame also belongs to the 
other frame (Brick, Dipko, Presser, Tucker and Yuan 2006); 
typically, respondents are asked about their cellular and 
landline telephone usage to determine domain membership. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1 A dual frame design in which frame B is a subset of 

frame A 

More than two frames can be employed as well, as illus-
trated in Figure 3 for a three-frame survey in which all 
frames are incomplete. In this situation, there are seven 
domains. Iachan and Dennis (1993) gave an example of a 
three-frame survey used to sample the homeless population, 
where frame A is a list of soup kitchens, frame B is a list of 
shelters, and frame C consists of street locations. Figure 4 
displays a 3-frame survey in which frame A has complete 
coverage, while overlapping frames B and C are both 
incomplete but are less expensive to sample. This design has 
been used for the U.S. Scientists and Engineers Statistical 
Data System (SESTAT; National Science Foundation 2003) 
surveys. The same design might be used when A is the 
frame for a general population survey, B is a landline 
telephone survey, and C is a cell phone survey. 
 
 
 
 
 
 
 
 
 
 
Figure 2 Frames A and B overlap, creating the three domains 

, ,a b  and ab  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 Frames A, B, and C are all incomplete and overlap 

 
There is much potential for using multiple frame designs 

in household surveys, including:  
1. Use of multiple list frames from administrative 

records.  
2. Multiple mode sampling (for example, using inde-

pendent samples from a cellular telephone frame 
and a landline telephone frame).  
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3. Future use of the internet for data collection. Al-
though the internet presents many coverage and 
domain specification challenges, it is worthy of 
consideration because of the potential cost savings 
and ease of data collection and processing.  

4. Improved small area estimation. A national survey 
is supplemented with smaller, localized surveys to 
obtain higher precision in those areas.  

5. Improved estimation for rare populations. A general 
population survey may be supplemented by a survey 
from a frame with a high concentration of members 
of the rare population.  

6. Modular survey design. A multiple frame approach 
can give more flexibility for design of continuing 
surveys. As particular frames become less expen-
sive to sample, the relative allocation of sample size 
to the different frames can be modified. The modu-
lar approach also allows more flexibility in re-
sponding to changing needs for data.   

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4 Frame A contains the entire population; frames B and C 

overlap and are both contained in frame A  
The increased flexibility of multiple frame surveys 

comes at the cost of additional complexity, however. 
Information from the surveys must be combined to estimate 
population quantities, and there are many options for esti-
mators. Section 2 summarizes estimators that have been 
developed for population totals and describes how these 
modify the sampling weights; Sections 3 and 4 discuss 
weight calibration and describe how to use survey software 
packages with multiple frame survey data. Nonsampling 
errors need to be considered in each frame singly, and in 
terms of their effect on estimates calculated from the com-
bined information. Section 5 discusses effects of non-
response and mode effects in multiple frame surveys. 

In addition to the nonresponse, undercoverage, and mea-
surement error problems that plague single frame surveys, 
multiple frame surveys may have domain misclassification. 

The weight modifications for the estimators in Section 2 
depend on the domain membership of the observations. If 
some observations in domain a  are likely to be mistakenly 
recorded as belonging to domain ,ab  estimators may have 
substantial bias. We study effects of domain misclassify-
cation in Section 6, and propose a new method for adjusting 
for misclassification bias when misclassification probabili-
ties are known. Finally, Section 7 discusses design issues 
and Section 8 discusses the potential and challenges of mul-
tiple frame surveys. 

 
2. Estimators in overlapping  

      multiple frame surveys  
In this section we review estimators for the population 

total Y  from overlapping multiple frame surveys, along 
with the weight modifications induced by these estimators. 
For simplicity of notation, we concentrate on dual frame 
surveys in Section 2.1, and outline extensions to multiple 
frame surveys in Section 2.2. In a dual frame survey, we can 
write  

= ,a ab bY Y Y Y   

where aY  is the total of the population units in domain ,a  

abY  is the total of the population units in domain ,ab  and 

bY  is the total of the population units in domain .b  A 
special case is estimating the population size = aN N   

,ab bN N  as discussed in Haines and Pollock (1998). We 
discuss estimating population quantities other than totals 
and means, and using data from multiple frame surveys in 
other analyses, in Section 4. 

We first set out some desirable properties for estimators 
from multiple frame surveys. 

 
1. An estimator should be approximately unbiased for 

the corresponding finite population quantity.  
2. Estimators should be internally consistent: that is, if 

1̂Y  estimates the number of female engineers in the 
population, 2̂Y  estimates the number of male engi-
neers in the population, and 3̂Y  estimates the total 
number of engineers in the population, then we 
should have 1 2 3

ˆ ˆ ˆ= .Y Y Y  Internal consistency pre-
serves multivariate relationships in the data. In 
practical terms, internal consistency requires that 
one set of weights be used for all estimates.  

3. An estimator should be efficient, with low mean 
squared error.  

4. An estimator should be of a form that can be 
calculated with standard survey software such as 
SUDAAN or SAS PROC SURVEYMEANS. This 
allows analysts to work with the data without 
having to write and test new software. In practical 

 
 
 
 
a 
 
 

       ab          
 
 
      abc 

A B 

C 

 
 
      ac 
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terms, one data file is created from the multiple 
frame survey. The file includes one column of 
weights to be used for calculating point estimates, 
and it contains either variables describing the survey 
designs for formula-based variance estimation, or 
columns of replicate weights for replication-based 
variance estimation.  

5. An estimator should, if possible, be robust to non-
sampling errors that might occur with multiple 
frame surveys.   

2.1 Estimators and weight adjustments for dual 
frame surveys  

Consider the overlapping dual frame survey depicted in 
Figure 2, where domain ab  is nonempty. A probability 
sample ( )A  of size An  is drawn from the AN  units in 
frame A, and an independent probability sample ( )B  of 
size Bn  is drawn from the BN  units in frame B. Unit i  in 
sample ( )A  has probability of inclusion A

i  and weight 
,A

iw  and unit i  in sample ( )B  has probability of inclusion 
B
i  and weight .B

iw  The weights may be the inverses of the 
inclusion probabilities, or they may be poststratified to agree 
with population counts; it is assumed that estimators of 
population totals are approximately unbiased. 

Then ( )[ ]A
i A i i a abE w y Y Y    and ( )[ ]B

i B i iE w y   
.b abY Y  Consequently, an estimator that combines the 

observations from both surveys with the original weights, 

( ) ( ) ,A B
i A i Bi i i iw y w y     is biased for the population 

total .Y  If the domain means differ, the corresponding 
estimator of the population mean may also be biased. 

The various estimators for the population total Y  that 
have been proposed in the literature modify the weights so 
that the estimators are approximately unbiased. The modi-
fied weights, shown below for the different estimators, are 
of the form =A A A

i i iw m w  and = .B B B
i i iw m w  The population 

total is then estimated by  

                           
( ) ( )

ˆ = A B
i i i i

i A i B

Y w y w y
 

  
 

 (1) 

and the population mean Y  is estimated by ˆ ˆ ˆ= /Y Y N  
where  

( ) ( )

ˆ = .A B
i i

i A i B

N w w
 

  
 

 

The estimators will be approximately unbiased, then, if 
1A

im   for ,i a 1B
im   for ,i b  and 1A B

i im m   
for .i ab  All of the estimators reviewed in this section 
satisfy the criteria needed for approximate unbiasedness in 
the absence of nonsampling errors (see Lohr 2009).  
Fixed weight adjustments. The simplest weight modification 
to preserve approximate unbiasedness, described by Hartley 
(1962), takes  

         , ,

1 if 1 if
= =

if , 1 if ,
A B
i i

i a i b
m m

i ab i ab 
  

      
 (2) 

where [0, 1].   Using the modified weights =A
iw

 
,
A A
i im w  and ,=B B B

i i iw m w  in (1), the resulting estimator 
ˆ( )Y   can also be expressed using the estimated domain 

totals ( ),
ˆ = ,A A

i A i aa i iY w y   ( ),
ˆ = ,A A

i A i abab i iY w y  
ˆ =B
abY  

( ), ,B
i B i ab i iw y    and ( ),

ˆ = .B B
i B i bb i iY w y    The estimator   

                  
, ,

( ) ( )

ˆ( ) =

ˆ ˆ ˆ ˆ= (1 )

A A B B
i i i i i i

i A i B

A A B B
a ab ab b

Y m w y m w y

Y Y Y Y

 
 

 

     

 
 

 (3)

 

thus estimates the domain total abY  by a weighted average 
of the frame A estimator, ˆ ,A

abY  and the frame B estimator, 
ˆ .B
abY  

For a fixed value of ,  the estimator ˆ( )Y   gives internal 
consistency since the same set of adjusted weights is used 
for all variables. The estimator is simple to use and 
implement. The efficiency of the estimator depends on the 
value chosen for .  Brick et al. (2006) used = 1/2  in 
their study of a dual frame survey in which frame A was a 
landline telephone frame and frame B was a cellular 
telephone frame, and the value of = 1/ 2  is frequently 
recommended (see, for example, Mecatti 2007). When =  
0 or 1, the data in the overlap domain from one of the 
samples are discarded and the survey becomes a screening 
dual frame survey.  
Optimal estimators. Hartley (1962, 1974) proposed 
choosing   in (3) so that the variance of ˆ( )Y   would be 
minimized. The optimizing value of   is  

ˆ ˆ ˆ ˆ ˆ( ) Cov( , ) Cov( , )
= .

ˆ ˆ( ) ( )

B B B A A
ab b ab a ab

H A B
ab ab

V Y Y Y Y Y

V Y V Y

 



 

Since the variances and covariances are generally unknown, 
they must be estimated from the data, giving  

 ˆ ˆ ˆ ˆ ˆ ˆ( ) Cov ( , ) Cov ( , )ˆ = .
ˆ ˆ ˆ ˆ( ) ( )

B B B A A
ab b ab a ab

H A B
ab ab

V Y Y Y Y Y

V Y V Y

 



 

Skinner and Rao (1996) showed that Hartley’s estimator 
can be calculated using adjusted weights. The weight 
modifications for Hartley’s estimator ˆˆ( )HY   are given by 
(2), substituting ˆ

H  for .  Since ˆ
H  is consistent for ,H  

Hartley’s estimator is asymptotically optimal among all 
estimators of the form ˆ ˆ ˆ ˆ(1 ) .A B A B

a b ab abY Y Y Y       The 
modified weights ,

A
i Hw  and ,

B
i Hw  are functions of the 

variances and covariances of estimated domain totals, 
however. This has two consequences: (1) the modified 
weights are random variables, and their variability needs to 
be accounted for in standard errors of estimators, and (2) the 
optimal weight modifications will differ for different 
response variables, leading to internal inconsistency. 
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Fuller and Burmeister (1972) proposed modifying 
Hartley’s estimator by using additional information about 

,abN  giving  

FB 1 1 2
ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) = (1 ) ( ).A B A B A B

a b ab ab ab abY Y Y Y Y N N           

As with Hartley’s estimator, the optimal values 1opt  and 

2opt  are chosen to minimize the variance of FB
ˆ ( ),Y  and 

are thus functions of the covariances of the domain totals. 
Substituting consistent estimators 1opt̂  and 2opt̂  gives the 
weight adjustments for A

iw  and .B
iw  Lohr and Rao (2000) 

showed that the Fuller-Burmeister estimator FBŶ  has the 
smallest asymptotic variance among the estimators con-
sidered. As with the Hartley estimator, however, the modi-
fied weights are random variables that differ for different 
responses, and in complex sampling designs the Fuller-
Burmeister estimator is also internally inconsistent.  
Pseudo-maximum likelihood (PML) estimators. To achieve 
internal consistency Skinner and Rao (1996) proposed a 
pseudo-maximum likelihood (PML) estimator that uses the 
same weights for all variables. When abN  is unknown, it is 
estimated by PMLˆ ( ),abN   which is the smaller of the roots of 
the quadratic equation  

2
ˆ ˆ1

1 (1 )

ˆ ˆ(1 ) = 0.

A B
ab ab

B A B A

A B
ab ab

N N
x x

N N N N

N N

    
        

   

    

 

Skinner and Rao (1996) suggested using the value P  for 
  that minimizes the asymptotic variance of PMLˆ ( ):abN   

              
ˆ( )

= .
ˆ ˆ( ) ( )

B
a B ab

P B A
a B ab b A ab

N N V N

N N V N N N V N



 (4) 

Substituting an estimator ˆ
P  for ,P  the weight adjust-

ments are:  

PML

, PML

PML

, PML

ˆˆ ( )
if

ˆ
=

ˆˆ ( ) ˆ if ,
ˆ ˆˆ ˆ(1 )

ˆˆ ( )
if

ˆ
=

ˆˆ ( ) ˆ(1 ) if .
ˆ ˆˆ ˆ(1 )

A ab P
A
aA

i P

ab P
PA B

P ab P ab

B ab P
B
bB

i P

ab P
PA B

P ab P ab

N N
i a

N
m

N
i ab

N N

N N
i b

N
m

N
i ab

N N

  





     

  





      

 

If the value of P  cannot be estimated, for example if the 
two sampling frames coincide or the design in Figure 1 is 
used, then one can use an average design effect from each 
survey in the adjustment, as described in Lohr and Rao 
(2006). The PML estimator is internally consistent; while 

not guaranteed to give the smallest mean squared error, it 
has high efficiency in many survey situations.  
Single frame estimators. Bankier (1986) and Kalton and 
Anderson (1986) proposed estimators of the form in (1) that 
treat all the observations as though they had been sampled 
from one frame, with adjusted weights in the intersection 
domain relying on the inclusion probabilities for each frame. 
The weight adjustments for the Kalton and Anderson (1986) 
single frame estimator are:  

,

,

1 if
=

/ ( ) if ,

1 if
=

/ ( ) if .

A
i S B A B

i i i

B
i S A A B

i i i

i a
m

w w w i ab

i b
m

w w w i ab


  


  

 

If = 1 /A A
i iw   and = 1 / ,B B

i iw   the single frame 
estimator uses , ,= = 1 / ( )A B A B

i S i S i iw w      for units in 
.ab  The weight adjustment in domain ab  relies on both 

A
i  and .B

i  Thus if a disproportionate stratified random 
sample is taken from frame B, one must know the frame-B 
stratum membership for units sampled in ( ).A  The 
adjusted weights from the single frame estimator can be 
interpreted in terms of inclusion probabilities for sampled 
units. If the sampling fractions are small, ,

A
i Sw  is approxi-

mately 1 / P (unit i  is included in one of the samples). If 
each of ( )A  and ( )B  is self-weighting, then the single 
frame estimator reduces to (3). 

The single frame weight modifications are the same for 
all response variables, so estimators are internally con-
sistent. For complex surveys, however, single frame esti-
mators may not be as efficient as the optimal or PML esti-
mators. Their performance may be improved by raking 
toward the frame population totals (Skinner 1991).  
Pseudo-empirical likelihood (PEL) estimators. Rao and Wu 
(2010) proposed empirical likelihood estimators for dual 
frame surveys. Using ,P    the empirical log likelihood 
function is defined by  

( ),

( ),

( ),

( ),

( , , , ) =

log( )
ˆ

log( )
ˆ

log( )
ˆ

(1 )
log( ) ,

ˆ

A B
a ab ab b

AaA B
i ai

i A i a a

A AP ab
i abiA

i A i ab ab

Bb
i bi

i B i b b

B BP ab
i abiB

i B i ab ab

Nn n
w p

N N

N
w p

N

N
w p

N

N
w p

N

 

 

 

 










 
 











p p p p








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where P  is given in (4). An estimator ˆ
P  is substituted if 

P  is unknown. Then ( , , , )p p p pA B
a ab ab b  is maximized 

subject to  

( ), ( ),

( ), ( ),

= 1, = 1,

= 1, = 1,

A
ai abii A i a i A i ab

B
bi abii B i b i B i ab

p p

p p

   

   

 

 
 

 

 

and  

                      
( ), ( ),

= .A B
abi i abi i

i A i ab i B i ab

p y p y
   
 

 

 (5) 

When abN  is unknown, the PEL weight modifications are  

 

 

PML

,PEL
PML

PML

,PEL
PML

ˆˆ ( ) if

=
ˆ ˆˆ ( ) if ,

ˆˆ ( ) if

=
ˆ ˆˆ(1 ) ( ) if .

A
ai

A ab PA
A i
i A

abi
P ab PA

i

B
bi

B ab PB
B i
i B

abi
P ab PB

i

p
N N i a

w
m

p
N i ab

w

p
N N i b

w
m

p
N i ab

w


  



  



  


    


 

The constraint in (5) changes the weights in the overlap 
domain so that the estimator of abY  from ( )A  is forced to 
equal the estimator of abY  from ( ).B  This constraint, 
however, results in a different set of weights for each 
response variable. The PEL estimator thus is not internally 
consistent. Rao and Wu (2010) presented an alternative 
multiplicity version in which the weight adjustments do not 
depend on ;y  in the absence of auxiliary information, this 
estimator is the same as ˆ(1/2)Y  in (3).  
2.2 Weight adjustments with three or more frames  

In the general case, suppose there are Q  frames, denoted 

1, ..., .QA A  Let ( )qA  denote the probability sample from 
frame ,qA  for = 1, ..., .q Q  Unit i  in sample ( )qA  has 
probability of inclusion 

Aq
i  and weight .

Aq
iw  There are  

a total of D  distinct domains. 
A multiple frame estimator generalizing (1) is of the form  

=1 ( )

ˆ = ,
Q

A Aq q
ii i

q i Aq

Y m w y


 


 

where 
Aq
im  is the weight adjustment for observation           

i  in ( ).qA  A fixed weight estimator sets weight ad-
justments 

( , )A dqm  for each frame and domain, with the 
constraints that 

( , ) ( , )
0 (

A d A dq qm m  is assumed to equal 0 
if domain d  is not part of frame )qA  and 

( , )
=1 =

A dQ q
q m      

1 for = 1, ..., .d D  Then, =
Aq
im

( , )A dqm  when obser-
vation i  from ( )qA  is in domain .d  A simple choice, 
which generalizes the fixed weight dual frame estimator 
ˆ(1 / 2)Y  in (3), takes 

( , )
=

A dqm [1/number of frames that 
contain domain ];d  this is called the multiplicity esti-
mator by Mecatti (2007). Other choices include setting 

( , )
= 1

A dqm  in exactly one frame and 0 for the other 
frames, resulting in screening estimators. 

Many of the properties from the dual frame situation 
extend to the case of three or more frames; multiple frame 
versions of the estimators in Section 2.1 were studied by 
Hartley (1974), Lohr and Rao (2006), and Mecatti (2007). 
How do the multiple frame estimators satisfy the criteria set 
out at the beginning of this section? All of the estimators -
fixed weight, optimal, PML, PEL, and single frame - are 
approximately unbiased for population totals when suffi-
ciently large samples are taken in the frames. The fixed 
weight, PML, and single frame estimators are internally 
consistent; the optimal Hartley-type and Fuller-Burmeister-
type estimators in Lohr and Rao (2006) and a multiple-
frame extension of the PEL estimator of Rao and Wu (2010) 
are not internally consistent. While the optimal estimators 
are asymptotically efficient, they are often unstable in small 
or moderate samples with three or more frames because the 
optimal estimated weight modifications are functions of 
large estimated covariance matrices. The optimal and PEL 
estimators are ill suited for use with standard survey soft-
ware because they require a different set of weights for each 
response variable. 

We recommend that one of the internally consistent 
estimators - fixed weight, PML, or single frame - be used in 
practice. Lohr and Rao (2006) concluded that the PML 
estimator has small mean squared error in many survey 
circumstances, and thus is a good choice for a survey that is 
conducted only once. With repeated surveys, though, the 
simplicity and transparency of a fixed weight estimator may 
be preferred. Fixed weight adjustments may make year-to-
year comparisons easier in an annual survey where the 
domain proportions are relatively constant over time. Fixed 
weight estimators are also more amenable to weight 
adjustments for nonresponse and domain misclassification 
(see Sections 5.1 and 6.1). If fixed weight adjustments can 
be chosen that are close to the optimal weight adjustments 
for important responses, perhaps by using estimated design 
effects from previous surveys, the fixed weight estimator 
will have mean squared error close to that of the optimal and 
PML estimators.  

3. Postratification to population controls  
All of the estimators in Section 2 modify the original 

sampling weights. As a result, some properties of the 
original weights may be lost. For example, if a stratified 
random sample is taken in frame A, the modified weights 
will not necessarily have the property that the sum of the 
weights in a stratum equals the stratum population size. 

Bankier (1986), in the original development of single 
frame estimation methods, suggested raking the single 
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frame weights, ,
A
i Sw  and , ,B

i Sw  to stratum totals so that the 
adjusted weights ,adj

,
A
i Sw  and ,adj

,
B
i Sw  satisfy 

,adj ,adj
, ,( ) = ,A B

i S i S Ahi SAh
w w N


    

where AhS  represents the sampled units from either frame in 
stratum h  of frame A, and AhN  is the population size of 
that stratum. Bankier (1986) and Skinner (1991) used raking 
ratio estimation to calibrate single frame estimators to the 
frame population sizes AN  and .BN  Kott, Amrhein and 
Hicks (1998) proposed using the least squares calibration 
methods of Deville and Särndal (1992) for calibrating 
weights to population totals such as stratum sizes. 

For the PML estimator, Lohr and Rao (2000) recom-
mended combining the samples first and then using calibra-
tion methods to adjust to population as well as separate-
frame population totals. When nonresponse is present and a 
fixed weight estimator is used, Brick, Cervantes, Lee and 
Norman (2011) concluded that it is preferable to poststratify 
the individual samples first, and then combine the samples. 
In some situations, it is most efficient to poststratify both 
before and after combining samples; in other situations, 
poststratification can increase bias (see Section 6). Deci-
sions about poststratification need to be made based on the 
mean squared error, which includes effects of nonsampling 
errors, and not just on the sampling variance. 

 
4. Analyzing multiple frame surveys  

      with survey software  
4.1 Point estimation with survey software  

Only internally consistent weight adjustments are suit-
able for use with survey software when there are multiple 
responses of interest. Each of the internally consistent 
methods presented in Section 2.1 results in one vector of 
adjusted weights for each sample. These may then be 
concatenated to form one vector of weights: =w 1[ ,

A

iw  

1( ), ...,i A  ,
AQ
iw ( )].Qi A   Let y  be the corre-

sponding vector of observations, formed by concatenating 
the observations from samples 1( )A  through ( ).QA  
Then ˆ = .w yY   From a user’s perspective, once the 
modified weights are constructed, the procedure followed to 
find point estimates of population totals and means is the 
same as in a single frame survey. 

The modified weights from an internally consistent 
procedure can be used to estimate any population quantity. 
Let ( )F y  be the cumulative distribution function for the 
population, with  

=1

( ) = ( ) ,
N

i
i

F y I y y N  

where ( ) = 1iI y y  if iy y  and 0 otherwise. In a 
single frame survey, ( )F y  is estimated by the empirical 
cumulative distribution function  

ˆ ( ) = ( ) .i i ii i
F y w I y y w

 
  

 

The modified weights may be used to estimate ( )F y  in a 
multiple frame survey:  

=1 ( ) =1 ( )

ˆ ( ) = ( ) .
Q Q

A Aq q
ii i

q i A q i Aq q

F y w I y y w
 

    
 

 

The denominator is approximately unbiased for ,N  and the 
numerator is approximately unbiased for =1 ( ).N

i iI y y   
Any functional of the cumulative distribution function may 
then be estimated using ˆ ( ):F y  the mean, ( ),ydF y  the 
median m  satisfying ( ) 1 / 2,F m   or any other quantity. 

Since the estimators with modified weights are approxi-
mately unbiased for population means and totals, they are 
also approximately unbiased for smooth functions of popu-
lation means such as ratios and regression coefficients. Any 
population quantity that could be estimated using the 
weights from a single frame survey can be estimated analo-
gously using the adjusted weight vector for the multiple 
frame survey.  
4.2 Variance estimation with survey software 
 

Knowledge of the survey designs is needed to calculate 
standard errors. Variance estimation is straightforward for 
the estimator in (3), where the weight adjustments do not 
depend on the data. In that situation,  

( ) ( )

ˆ[ ( )] = ,
A B
i i i i

i A i B

w y w yV Y V V
 

          
  
 

 

where A
iw  and B

iw  are defined below (2). Create the data 
set by concatenating the observations from ( )A  and ( )B  
as in Section 4.1, using A

iw  and B
iw  as the weights. Define 

the stratification variable for the combined sample as the 
combination of categories given by the frame indicator 
variable, the frame-A stratification variable, and the frame-
B stratification variable. Define the first-stage clustering 
variable for the combined sample similarly as the combina-
tion of categories of the individual frame clustering vari-
ables. Then, standard survey software may be used to esti-
mate population means and totals using the modified 
weights, and to estimate variances using the stratification 
and clustering variables from the combined samples. 

Variance estimation is more complicated when the 
weight modifications A

im  or B
im  depend on quantities that 

are estimated from the sample, as in the PML estimator, or 
when the combined sample is poststratified or calibrated to 
population quantities. Linearization, jackknife, and boot-
strap methods may then be used to estimate variances. 
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In the following, we summarize methods that can be used 
for variance estimation if the psus from the frames are 
selected independently. If samples from the different frames 
share psus, other methods must be used. If, for example, 
psus are selected from the population, and a dual frame 
design is used within each selected psu, point estimators for 
psu totals can be calculated using one of the methods 
described in Section 2. Then standard replication methods 
can be used to calculate a with-replacement variance esti-
mator. 

Under regularity conditions, the linearization and jack-
knife methods are consistent for estimating the variance of a 
population characteristic   that can be written as =  

( , ),A Bg  where A  is a vector of population totals from 
frame A, B  is a vector of population totals from frame B, 
and g  is a twice continuously differentiable function 
(Skinner and Rao 1996; Lohr and Rao 2000). The vector A  
is estimated from ( )A  by ˆ ,A  with estimated covariance 
matrix ˆ ; A  similarly, B̂  estimates B  from ( ),B  with 

ˆˆ ˆ( ) = .B BV  The linearization estimator of the variance of 
ˆ ˆˆ = ( , )A Bg  is  

ˆ ˆˆ ˆ( ) = , L A A A B B BV g g g g    

where Ag  is the vector of partial derivatives of ( , )A Bg  
with respect to the components of A  and Bg  is the 
corresponding vector of partial derivatives for frame B. 
Demnati, Rao, Hidiroglou and Tambay (2007) derived 
linearization estimators of the variance for multiple frame 
surveys by taking derivatives of a function of the weights 
rather than of the means. Linearization methods require that 
the derivatives be calculated separately for each estimator 
that is considered, and these calculations can be cumber-
some. For that reason, it may be preferred to use replication 
methods if multiple frame surveys are adopted. 

Suppose a stratified multistage sample with H  strata is 
taken from frame A, where stratum h  has A

hn  primary 
sampling units. An independent stratified multistage sample 
with L  strata is taken from frame B, where stratum l  has 

B
ln  primary sampling units. The jackknife estimator of the 

variance can be calculated by creating a total of =1
AH

h hn   

=1
BL

l ln   replicate weight columns (Lohr and Rao 2000). 
The replicate weights for the column corresponding to the 
deletion of psu i  from stratum h  in A  are formed by:  

( )

if unit is in stratum but not in psu ,
1

=
0 if unit is in psu of stratum ,

if unit is in stratum .

A
Ah
kA

A h
k hi

A
k

n
w k h i

n
w

k i h

w k g h


 


 

 






 

The jackknife coefficient for this column is the multiplier 
( 1) / .A A

h hn n   The column of replicate weights corre-
sponding to the deletion of psu j  from stratum l  in B  is 

formed similarly, with jackknife coefficient ( 1) / .B B
l ln n   

With more than two frames, additional columns of replicate 
weights are added corresponding to the deleted psus from 
those samples. Weights for a bootstrap method of variance 
estimation (see Lohr 2007) can be defined similarly. 

Multiple frame replication variance methods can be used 
with standard survey packages that allow replicate weights. 
If desired, each column in the replicate weights can be post-
stratified to population and frame totals, so that the post-
stratification is accounted for in the variance estimation. 

One challenge with replication variance methods is that 
the number of columns of replicate weights needed may be 
very large if a simple random sample or stratified random 
sample is taken in one of the frames. For the bootstrap, we 
have found that for some surveys at least 500 bootstrap 
iterations are needed for variance estimates with dual frame 
surveys, which again may be excessive. It is possible that 
combined strata variance estimation, as discussed in Lu, 
Brick and Sitter (2006), may be used with multiple frame 
surveys to reduce the number of replicates needed. 

 
5. Nonsampling errors  

Multiple frame surveys often have better population 
coverage than a single frame surveys. When all frames are 
incomplete, as in Figure 3, any one of frames A, B, or C, if 
used as the sole sampling frame, would have severe 
undercoverage. The multiple frame survey design ensures 
that all units in the overlapping frames have a positive 
probability of inclusion.  

Like all surveys, multiple frame surveys are subject to 
nonsampling errors. They have nonresponse, which may 
differ in the different frames. While the union of the frames 
may have better coverage than a single frame, there may 
still be undercoverage of the target population. Estimators 
for multiple frame surveys are also sensitive to domain 
misclassification and biases that might result from different 
administration methods or modes in the component surveys. 
We discuss nonresponse and mode effects in this section, 
and study effects of domain misclassification in Section 6. 

 
5.1 Nonresponse  

In any survey, nonresponse can result in biased estimates 
of population totals and other quantities. Different non-
response rates in the samples from the two frames can affect 
the point estimates of the population total given in Section 
2; additionally, nonresponse can affect the weight adjust-
ments prescribed by some of the methods. 

Kennedy (2007) discussed a problem that has occurred 
when frame A consists of landline telephone numbers and 
frame B has cellular telephone numbers: the units in the 
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intersection domain ab  who were interviewed by cell 
phone differed from those in ab  who were interviewed on 
the landline phone. For example, it was estimated that 18% 
of the intersection units were aged 18-25 in the frame-B 
sample, while it was estimated that only 8% of the inter-
section units were aged 18-25 using the frame-A sample. 
The difference was ascribed to nonresponse: it was thought 
that persons who predominantly use cellular telephones (and 
thus are difficult to reach through a landline survey) tend to 
be younger. Kennedy (2007) suggested raking using esti-
mated relative telephone usage (i.e., whether most of calls 
are on landline or cellular telephone). 

Brick et al. (2011) proposed two methods for non-
response adjustment in dual frame cellular/landline tele-
phone surveys with fixed weight estimators. They consi-
dered a setup in which the overlap domain has two groups: 
households that receive all or nearly all of their calls on 
cellular telephones (cell-mainly), and the remaining house-
holds in the overlap domain (landline-mainly). The first 
method, which does not require external estimates of control 
totals, sets the value of   in the fixed weight adjustment 
estimator to reduce the nonresponse bias by using the 
response rates for the cell-mainly and landline-mainly 
households in each sample. The second method requires 
poststratification control totals for the cell-mainly and 
landline-mainly groups in the overlap domain, 1abN  and 

2 ,abN  and estimates the population total in domain ab  by  

2

=1

ˆ ˆ(1 ) ,
ˆ ˆ

gab gabA B
g gab g gabA B

g gab gab

N N
Y Y

N N

 
    
  

  

where ˆ A
gabY  represents the estimated total of group g  in 

domain ab  from ( ),A  the other totals are defined 
similarly, and 0 1g    for = 1, 2.g   
5.2  Mode effects  

In some cases, multiple frame may also mean multiple 
mode. De Leeuw (2008) compared the advantages and 
disadvantages of different sampling modes, and summarized 
empirical research on mode biases. Persons may give 
different responses when presented with questions in a 
visual form than when presented with questions in an 
auditory form, resulting in mode bias. Mode effects that 
occur in single frame surveys will also occur in multiple 
frame surveys. If different modes are used in different 
frames, it is challenging to separate mode effects from other 
nonsampling errors. 

Many of the multiple frame survey estimators combine 
estimates from the overlap domains, and these methods 
assume that the estimators of abY  from the component 
surveys both estimate the same quantity. If, however, the 
frame A survey is conducted in person while the frame B 

survey is conducted by telephone, it is possible that a census 
of the domain ab  from frame B would give a different 
domain total than a census from frame A. 

One possibility to investigate mode effects is to conduct 
the frame B survey using a split sample, e.g., partly in 
person and partly by telephone, but that would reduce the 
cost savings from the dual frames. Careful pretesting can 
mitigate the mode effects. Research is needed in this area; 
the same problem of mode effects, of course, occurs in 
single frame surveys such as the American Community 
Survey in which nonresponse follow-up is done by different 
mode than the original sample (see Citro and Kalton 2007). 
The methods presented in de Leeuw, Hox and Dillman 
(2008) for designing surveys for multiple modes also apply 
in the multiple frame setting. 

Vannieuwenhuyze, Loosveldt and Molenberghs (2011) 
presented a method for distinguishing mode effects from 
selection effects when a supplemental single-mode survey is 
available. They noted, however, that the method requires the 
strong assumption that the coverage and nonresponse errors 
are equivalent for both surveys. If this assumption is met for 
a dual frame survey so that the samples in the overlap 
domain from frames A and B represent the same population, 
and if domain classification is correct, the mode effect can 
be estimated from the overlap domain as ˆ ˆ= .A B

ab ab abD Y Y  
A difference that is significantly different from 0 indicates 
presence of a mode effect if there are no other nonsampling 
errors. If other nonsampling errors are present, a large value 
of abD  does not provide information about the cause of the 
difference; experimentation is needed to distinguish possible 
causes.  
6. Domain misclassification and bias adjustment  

The estimators discussed in Section 2 construct weights 
for the observations based on domain membership. Thus in 
the estimator ˆ( )Y   in (3), the weight multiplier of an 
observation from sampling frame A is 1 if the observation is 
in domain ,a  and is   if the observation is in domain ,ab  
in order to account for the multiplicity of sampling. 

In practice, domain membership may not be clear. For 
the situation in Figure 1, it may be unknown whether a 
respondent in an area frame also belongs to the list frame. If 
frame A is an area frame and frame B is an internet frame, 
for example, the only way to determine whether an 
individual sampled from frame A is also in frame B may be 
to ask the person about internet access, and the person might 
not give the correct response. 

If matching or record linkage is used to determine frame 
membership, imperfect matching can also misclassify obser-
vations. Lesser and Kalsbeek (1999) discussed nonsampling 
errors that occur in dual frame surveys that have been 
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conducted by the U.S. National Agricultural Statistics 
Service. Domain misclassification can occur if a farm 
sampled in the area frame is incorrectly classified with 
respect to its list frame membership. In landline/cellular dual 
frame telephone surveys, it is challenging to determine 
whether a person in one frame is also in the other frame 
(Kennedy 2007). A person reached in a landline telephone 
sample may also have a cell phone, but rarely take calls on 
the cell phone. While technically in the overlap domain, that 
person is virtually unreachable in the cell phone survey. 
Some landline/cellular surveys ask respondents about the 
relative amounts of cellular or landline telephone usage, but 
misclassification can occur. 

In practice, we expect domain misclassification to be 
related to responses of interest; we also expect that in many 
situations, misclassification is more likely to occur in certain 
directions. In longitudinal dual frame surveys, domain 
misclassification can have greater effects than in cross-
sectional surveys (Lu and Lohr 2010). In some situations, 
the domain indicator can be missing or unavailable. Clark, 
Winglee and Liu (2007) investigated logistic regression and 
record-linkage methods for predicting the domain of an 
observation with missing domain information.  
6.1 Misclassification bias adjustments   

If domain misclassification is severe, each method for 
modifying the survey weights to adjust for multiplicity can 
result in biased estimates of population quantities. In this 
section we derive a correction for the domain misclassifi-
cation bias of the fixed weight estimator of Section 2.2 
when misclassification probabilities are known. Let the D -
vector Aq

i  denote the true domain membership for 
observation i  of frame ,qA  containing a 1 in position d  if 
observation i  is in domain ,d  and 0 elsewhere. Let 

1= ( , ..., )Y DY Y   denote the vector of population totals for 
the D  domains. For an overlapping dual frame survey, 

= ( , , ) ;Y a ab bY Y Y   for a three-frame survey, = ( ,Y aY  
, , , , , ) .ab ac abc b bc cY Y Y Y Y Y   If there is no domain misclassi-

fication,  

( )
ˆ =

A A Aq q q
i i ii Aq

w y
Y


  

is the corresponding estimator of Y  from ( ).qA  For fixed 
weight adjustment vector 

( , 1) ( , )
= ( , ..., )m

A A A Dq q qm m   in 
frame ,qA  satisfying =1

Q
q

( , )
=1,m

A dq  then =1[ Q
qE  ( )m

Aq   
ˆ ] = .Y

Aq Y  
Now suppose there is misclassification. Let Aq

i  denote 
the observed classification for observation i  in .  We can 
write = ( ) ,

A A Aq q q
i i iM   where M

Aq
i  is a D D  matrix 

containing a 1 in position ( , )d e  if observation i  in true 
domain d  is (mis)classified to domain ,e  and 0 elsewhere. 

To allow for differential misclassification within do-
mains, we posit a structure in which the misclassification 
probabilities can differ for subpopulations in a frame. In a 
landline/cellular survey, for example, some age groups may 
be known to have higher misclassification probabilities than 
others. Chambers, Chipperfield, Davis and Kovačević 
(2008) used a similar grouping approach to correct for 
record linkage errors. Suppose the population can be divided 
into G  groups, = 1, ..., ,g G  in which the misclassification 
probabilities are known for each frame .qA  Let ( , )

Aq
g d e  

denote the probability that an observation in group g  with 
true domain d  is classified into domain e  in sample 

( ),qA  and let  Aq
g  be the D D  matrix with entries 

( , ).
Aq
g d e  For observation i  belonging to group g  and true 

domain ,d  assume that row d  of M
Aq
i  is generated as a 

multinomial random variable of size 1 with probabilities in 
row d  of the expected misclassification matrix ,Aq

g  and 
that all M

Aq
i  are independent of each other and of the 

sample inclusion variables. We thus have G  matrices of 
misclassification probabilities for frame ,qA 1 , ..., . A Aq q

G  
Denote the vector of population totals for group g  by 

=1( ) =
AqN

i ig Y  ( ) ,i ig y  where ( ) = 1i g  if observation 
i  is in group g  and 0 otherwise. 

With the observed domain classifications ,Aq
i  the 

design-weighted estimator of the vector of domain totals in 
group g  is  

( )

( )

ˆ (mis, ) = ( )

= ( ) ( ) ,

A A Aq q q
i i i i

i Aq

A A Aq q q
i i i i i

i Aq

g g w y

g w y







 





Y

M








 

so that ˆ[ (mis, )] = ( ) ( ).Y YAA qq
gE g g  

Now consider a new vector of weight adjustments 
( , 1) ( , )

= ( ,..., )m
A A A Dq q q
g g gm m     for group g  in frame .qA  

Then  

=1 =1 =1 =1

ˆ( ) (mis, ) = ( ) ( ).m Y m Y
G Q G Q

A A AAq q qq
g g g

g q g q

E g g
 

  
 
      

Since =1 =1( ) ( ) = ,m Y
AQ qG

g q g Y    the bias will be elimi-
nated under this model when  

                               = ( ) ,m mA A Aq q q
g g

  (6) 

where ( ) Aq
g

  is the Moore-Penrose inverse of ,Aq
g  

obtained by taking the inverse of the nonzero rows and 
columns of .Aq

g  
Replacing weight adjustments m

Aq  by m
Aq
g  eliminates 

the bias under the multinomial misclassification model but 
inflates the variance. For frame ,qA  



Survey Methodology, December 2011 207 
 

 
Statistics Canada, Catalogue No. 12-001-X 



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

1
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1

=1 ( )

1
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The second term is the variance of the contribution from 
frame qA  when the units are classified correctly. The first 
term is zero only when Aq

g  is diagonal for all ,g  i.e., there 
is no misclassification. 

The weight adjustments in (6) may be extended to the 
case in which the original fixed weights m

Aq  vary for the 
groups, as long as =1

Q
q

( , )
= 1

A dq
gm  for each domain. Note 

that the bias correction method in this section is proposed 
only for the fixed weight estimators, and not for the PML, 
PEL, or optimal estimators where the multiplicity weights 
depend on the data. The bias correction depends on the 
correct specification of the misclassification probabilities. If 
the misclassification probabilities are estimated from 
another survey, the operational methods of the surveys must 
be similar.  
6.2 Simulation study  

Lohr and Rao (2006) found in simulation studies that the 
PML estimator has smaller mean squared error than the 
other estimators when random misclassification is present, 
but this is due largely to the smaller variance of that 
estimator. To study sensitivity of estimators to other forms 
of domain misclassification, we performed a simulation 
study for two- and three-frame surveys. The population for 
domain d  was generated using the model =ij dy    

i ij    for = 1, ..., di N  and = 1, ..., 5,j  with i   
(0, 1)N  and (0, 1)ij N   generated independently, and 

then probability samples were drawn from this population. 
For the two-frame study, the domain means are =a  

1, = 0, = 2ab b    and factors in the simulation are: 
 

1. Sample size: 100 or 200 from each frame.   
2. Cluster sample or simple random sample drawn 

from frame A. A cluster sample was drawn by 

selecting a simple random sample of / 5An  of the 
groups used in generating the population.   

3. Misclassification probabilities for frame A (all 
probabilities not listed are 0): 
a. = 1,A

aa  , = 1A
ab ab  (no misclassification);  

b. =A
aa 0.9, , =A

a ab 0.1, , = 1;A
ab ab  

c. =A
aa 0.9, , =A

a ab 0.1, , =A
ab ab 0.9, , =A

ab a 0.1; 
d. = 1,A

aa  , =A
ab ab 0.9, , =A

ab a 0.1.   
4. Misclassification probabilities for frame B:   

a. = 1,B
bb , = 1B

ab ab  (no misclassification);  
b. =B

bb 0.8, , =B
b ab 0.2, , = 1;B

ab ab  
c. =B

bb 0.8, , =B
b ab 0.2, , =B

ab ab 0.9, , =B
ab b 0.1; 

d. = 1,B
bb  , =B

ab ab 0.8, , =B
ab b 0.2.  

5. Population sizes: = = =a b abN N N 25,000; =aN  
=bN 10,000, =abN 55,000; =aN 25,000, =abN

40,000, =bN 10,000. 
 
Ten thousand replicates were run for each combination 

of the factors, giving the Monte Carlo estimate of bias a 
standard error of approximately 100. We studied all 
estimators in Section 2, including ˆ(1/ 2),Y ˆ(2 /3),Y  and 
ˆ(1)Y  from (3). We also examined poststratified estimators 

that could be employed when the domain population counts 
,aN ,abN  and bN  are known: estimators with subscript 

“post1” apply poststratification to the two samples first and 
then combine the samples, and estimators with subscript 
“post2” combine the samples first and then poststratify to 
the domain population counts. The bias corrected estimators 
ˆ(1/ 2)bcY  and ˆ(2 / 3)bcY  modify the initial fixed weights 

corresponding to = 1/ 2  and = 2 / 3  using (6). With 
misclassification pattern (b) in frame A, for example, the 
bias-corrected weight adjustments for ˆ(1/ 2)bcY  are  

= 19 /18A
im  for i  classified in a  and = 1/ 2A

im  for i  
classified in ;ab  for pattern (c), the bias-corrected weight 
adjustments are 17/16 and 7/16, respectively. The single 
frame estimator is omitted from these tables since it is the 
same as either ˆ(1/ 2)Y  or ˆ(2 / 3);Y  the single frame 
estimator raked to the population totals AN  and BN  is 
denoted by SF, rake

ˆ .Y  Tables 1 and 2 display results for 
= 100, = 100,A Bn n = = =a ab bN N N 25,000, and a simple 

random sample from frame A; Tables 3 and 4 give results 
for = 200, = 100,A Bn n = = =a ab bN N N 25,000, and 
a cluster sample from frame A. The general patterns of 
results are similar for the other simulations and are not 
shown here. 

First, consider the fixed weight estimators. The bias-
corrected estimators reduce the bias as expected; in all cases 
studied with misclassification, the empirical bias from the 
bias-corrected estimators was less than 200 in absolute 
value, which is within the margin of error. Although the 
standard deviation for the bias-corrected estimators is higher 
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than for the uncorrected estimators, in most cases the mean 
squared errors are comparable. 

The screening estimator ˆ(1),Y  which discards units from 
frame B in domain ,ab  exhibits no misclassification bias 
when frame B is correctly classified. It also exhibits no bias 
in Tables 1 and 3 with frame-B misclassification pattern (d) 
because the observations misclassified from domain ab  to 
domain b  have mean 0; for different sets of domain means, 
pattern (d) does create bias. For the other cases, the 
screening estimator has the highest bias. For every misclas-
sification pattern, the screening estimator has high mean 
squared error because data are thrown away. If the domain 
means are similar, then the misclassification might not result 
in appreciable bias but discarding observations from domain 
ab  in ( )B  would greatly increase the mean squared error. 

Poststratifying to the domain totals when there is mis-
classification often increases the bias instead of decreasing 
it. Consider line 4 of Table 1, where 20% of the ( )B  
observations in ab  are mistakenly classified into domain 

.b  The weights of the observations that are really in domain 
,b  with mean 2, are reduced from 500 to approximately 

417, which causes the poststratified versions of ˆ(1/ 2)Y  to 
be biased. The effect of poststratification on the mean 
squared error is mixed, and depends on whether the variance 

reduction achieved by poststratifying exceeds the additional 
bias that can be introduced. Raking to the frame totals AN  
and ,BN  in SF, rake

ˆ ,Y  has similar effect on misclassification 
bias as poststratification. 

For the simple random samples in Tables 1 and 2, the 
PML and PEL estimators often exhibit much more bias than 
the uncorrected fixed weight estimators. The relative 
contributions from the two frames for these methods depend 
on the estimated variances of ˆ A

abN  and ˆ ,B
abN  the domain 

weights depend on PMLˆ ,abN  and these two factors interact in 
complex ways depending on the misclassification structure. 
For misclassification pattern (d) in either frame, PMLˆ

abN  is 
too small because observations in domain ab  are mis-
classified; consequently, the weights for the observations in 
the nonoverlapping domains are too large. A poststratified 
version of the PML estimator shared the bias problems of 
the fixed weight poststratified estimators. The PEL esti-
mator, by forcing the estimators of abY  to be equal, can 
worsen the bias. For example, in the simulation in line 3 of 
Table 1, with correct classification for frame A and pattern 
(c) for frame B, the PEL bias is 50% larger than the PML 
bias. In this case, the PEL estimator pulls the unbiased 
estimator ˆ A

abY  from ( )A  toward the biased estimator from 
frame B. The optimal estimators also exhibit high bias. 

 
 
 
 
Table 1 
Estimated bias for dual frame misclassification, with = = 100A Bn n  and a simple random sample taken from each frame. MPA and 
MPB refer to the misclassification patterns for frames A and B 
 

MPA MPB ˆ(1/ 2)Y  post1
ˆ (1 / 2)Y  post2

ˆ (1 / 2)Y  ˆ (1/ 2)bcY ˆ (2 / 3)Y ˆ (2 / 3)bcY ˆ (1)Y  ˆ
HY  FBŶ  PMLŶ  PELŶ  SF, rakeŶ  

a a  -194   -87   -87   -194   -215   -215   -258  -68  10   -121   -119  -163  

a b  -5,015   4,145   4,529   5   -6,678   17   -10,002  -5,417  1,248   2,486   1,542  2,361  

a c  -5,142   -1,118   -898   -128   -6,823   -138   -10,185  -5,413  -2,583   -1,650   -2,482  -1,690  

a d  -57   -8,430   -8,431   -47   -69   -55   -92  30  -6,576   -6,723   -6,725  -6,795  

b a  1,163   -1,238   -1,290   -82   748   -82   -82  1,355  -2,376   -2,631   -2,551  -2,704  

b b  -3,724   3,040   3,264   43   -5,784   65   -9,905  -3,967  -920   -30   -850  -100  

b c  -3,882   -2,192   -2,187   -124   -5,977   -136   -10,167  -3,954  -4,319   -3,821   -4,477  -3,853  

b d  1,322   -9,445   -9,621   92   917   104   108  1,600  -8,219   -8,720   -8,531  -8,879  

c a  1,366   1,315   1,312   123   969   140   174  1,530  1,529   1,325   1,355  1,276  

c b  -3,729   5,456   5,948   51   -5,801   64   -9,945  -4,216  2,096   3,500   2,391  3,355  

c c  -3,797   235   512   -15   -5,868   2   -10,011  -4,089  -1,377   -417   -1,318  -466  

c d  1,285   -7,072   -7,212   56   873   60   48  1,535  -4,665   -5,131   -4,976  -5,222  

d a  -120   2,134   2,134   -111   -132   -126   -155  32  3,710   3,535   3,538  3,470  

d b  -4,979   6,497   7,086   34   -6,620   65   -9,901  -5,599  4,339   5,928   4,788  5,697  

d c  -5,152   1,174   1,644   -137   -6,835   -152   -10,200  -5,622  310   1,626   578  1,540  

d d  90   -5,999   -5,998   107   98   119   114  193  -2,964   -3,116   -3,120  -3,155  
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Table 2 
Estimated MSE  for dual frame misclassification, with = = 100A Bn n  and a simple random sample taken from each frame. 
MPA and MPB refer to the misclassification patterns for frames A and B   
   

MPA MPB ˆ(1/ 2)Y  post1
ˆ (1 / 2)Y  post2

ˆ (1 / 2)Y  ˆ (1/ 2)bcY ˆ (2 / 3)Y ˆ (2 / 3)bcY ˆ (1)Y  ˆ
HY  FBŶ  PMLŶ  PELŶ  SF, rakeŶ  

a a  9,646   7,917   7,910   9,646   9,729  9,729 10,304  9,677  8,151   8,081   8,115  8,075  

a b  10,602   9,351   9,531   9,926   11,531  10,197 14,181  11,157  8,212   8,377   8,198  8,311  

a c  10,779   8,622   8,603   10,071   11,715  10,402 14,376  11,243  8,817   8,514   8,720  8,508  

a d  9,789   11,719   11,704   9,674   9,884  9,795 10,432  9,819  10,979   10,978   11,003  11,007  

b a  9,623   8,182   8,185   9,718   9,686  9,766 10,307  9,780  8,446   8,447   8,444  8,459  

b b  9,955   9,054   9,137   9,995   10,949  10,212 14,069  10,489  8,074   7,913   7,995  7,898  

b c  10,146   9,014   9,014   10,160   11,197  10,489 14,404  10,616  9,443   9,108   9,448  9,114  

b d  9,868   12,600   12,716   9,826   9,952  9,927 10,567  10,023  12,063   12,284   12,188  12,371  

c a  9,843   8,185   8,180   9,887   9,853  9,877 10,341  9,991  8,516   8,417   8,442  8,402  

c b  10,049   10,113   10,396   10,039   11,029  10,229 14,127  10,662  8,520   8,863   8,529  8,778  

c c  10,247   8,701   8,718   10,254   11,233  10,534 14,306  10,799  8,762   8,527   8,669  8,516  

c d  10,021   10,861   10,936   9,966   10,068  10,016 10,579  10,177  10,113   10,211   10,168  10,240  

d a  9,795   8,127   8,121   9,734   9,845  9,788 10,343  9,829  9,158   9,024   9,042  8,991  

d b  10,718   10,601   10,970   10,001   11,602  10,258 14,149  11,358  9,461   10,157   9,595  9,986  

d c  10,847   8,558   8,650   10,099   11,769  10,426 14,387  11,424  8,674   8,707   8,608  8,664  

d d  9,945   10,070   10,057   9,778   10,019  9,885 10,510  9,986  9,458   9,412   9,449  9,417   

 
 
When a cluster sample is taken from frame A, as in 

Tables 3 and 4, the bias patterns are similar. When there is 
no misclassification, the MSEs of the optimal and PML 
estimators are smaller than that of ˆ(2 / 3)Y  because they 
account for the survey design. With misclassification, 
though, the MSE advantage is reduced because of the 
increased bias. 

To study misclassification with a three-frame survey, we 
selected simple random samples from each frame, and had 
correct classifications for frames B and C. Table 5 shows 
results for a simulation with three frames and a simple 
random sample of size 200 from each frame. The population 
was generated with =dN 10,000 in each domain and 
domain means = 1, = 2, = 3, = 4, =a ab ac abc b      
5, = 6, = 7.bc c   In this simulation, frames B and C are 
correctly classified, and the misclassification patterns for 
frame A are given in the table. We also studied other 
domain means, population domain sizes, and sample sizes 
using a factorial design; results for the other settings showed 
a similar pattern and are not shown here. The multiplicity 
estimator ave

ˆ ,Y  with = 1im  for { , , },i a b c = 1 / 2im  
for { , , },i ab ac bc  and = 1 / 3im  for ,i abc  is 
optimal when there is no misclassification, and it equals the 
unraked single frame estimator. The other fixed weight 
estimators studied are 2/3

ˆ ,Y  with ( , ) ( , ) ( , )= = =A a B b C cm m m  
1, ( , ) ( , ) ( , )= = = 2 / 3,A ab A ac A abcm m m  ( , ) ( , )= =B ab C acm m
1 /3,  and ( , ) ( , )= = 1 / 6,B abc C abcm m  and the screening 
estimator scr

ˆ ,Y  with ( , ) ( , ) ( , ) ( , )= = = =A a B b C c A abm m m m
( , ) ( , ) ( , )= = = 1.A ac A abc B bcm m m   

As with the two-frame study, the bias-corrected esti-
mators are approximately unbiased. The screening estimator 
is also approximately unbiased since only ( )A  is misclas-
sified. The other estimators all exhibit substantial bias with 
at least some of the misclassification patterns. For the 
simulation settings in Table 5, the poststratified, single 
frame raking, Hartley, and PML estimators exhibit large 
bias but nevertheless have smaller mean squared error than 
the fixed weight and bias-corrected estimators; this MSE 
ordering does not hold in some of the other simulation 
settings. 

Mecatti (2007) and Rao and Wu (2010) argued that the 
fixed weight multiplicity estimator aveŶ  is unbiased if the 
only misclassification is among domains that belong to the 
same number of frames. Misclassifying observations from 
domain ab  to domain ac  (pattern c) results in no bias 
because the weight adjustment in both domains is 1 / 2. In 
practice, though, one would expect pattern (c), with two 
errors in domain membership (not reporting membership in 
frame B and erroneously reporting membership in frame C), 
to be less likely to occur in practice than misclassifying an 
observation in ab  as either a  or ;abc aveŶ  can be very 
sensitive to the latter forms of misclassification. Although a 
fixed weight estimator is insensitive to misclassification 
among domains in which the weight adjustments are equal, 
in these simulations every fixed weight estimator exhibits 
significant bias for at least some misclassification patterns. 

Tables 1 to 5 show that each estimator from Section 2 
can exhibit severe bias from domain misclassification. We 
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recommend that the possible extent of domain misclas-
sification be studied during the survey pretesting phase, so 
that this information can be used in the survey design. If 
misclassification probabilities are known accurately, then it 
may be possible to choose a fixed weight estimator that is 
insensitive to the presumed form of misclassification. When 
a misclassification-robust estimator cannot be found or 
when it is inefficient, the fixed weight estimators can be 
adjusted to reduce the bias. It should be noted that the bias-
corrected weights proposed in Section 6.1 are sensitive to 

the input misclassification probabilities. They also do not 
account for other nonsampling errors such as nonresponse; 
applying the misclassification weight adjustments in Section 
6.1 followed by the nonresponse weight adjustments 
described in Brick et al. (2011) may result in final weights 
that correct neither for misclassification nor for non-
response. If domain misclassification and nonresponse are 
both present, weight adjustments are needed that deal with 
both problems simultaneously. 

 
Table 3 
Estimated bias for dual frame misclassification, with = 200, = 100,A Bn n  a cluster sample taken from frame A and a simple 
random sample taken from frame B. MPA and MPB refer to the misclassification patterns for frames A and B 
 

MPA MPB ˆ(1/ 2)Y  post1
ˆ (1 / 2)Y  post2

ˆ (1 / 2)Y  ˆ (1/ 2)bcY ˆ (2 / 3)Y ˆ (2 / 3)bcY ˆ (1)Y  ˆ
HY  FBŶ  PMLŶ  PELŶ  SF, rakeŶ  

a a  -148   -142   -139   -148   -155  -155   -170  -312  63   -119   -172  -184  

a b  -5,090   4,199   4,599   -72   -6,774  -84   -10,144  -4,976  1,210   3,615   2,181  1,025  

a c  -5,069   -1,088   -851   -72   -6,759  -96   -10,139  -4,800  -1,994   177   -1,136  -3,216  

a d  -39   -8,379   -8,383   -35   -63  -58   -111  -237  -5,757   -5,909   -5,961  -6,996  

b a  1,168   -1,221   -1,258   -79   768  -63   -32  1,395  -1,690   -1,663   -2,514  -3,170  

b b  -3,716   2,979   3,236   60   -5,784  79   -9,918  -2,815  -86   1,776   -346  -2,087  

b c  -3,704   -2,108   -2,074   73   -5,771  92   -9,905  -2,561  -2,970   -1,410   -3,267  -5,814  

b d  1,317   -9455   -9,610   95   926  123   144  1,609  -7,285   -7,317   -7,938  -9,498  

c a  1,179   1,281   1,304   -66   772  -58   -41  1,486  1,831   1,652   943  840  

c b  -3,879   5,545   6,087   -118   -5,971  -126   -10,156  -2,972  3,532   4,597   2,405  1,683  

c c  -3,811   318   636   -44   -5,893  -42   -10,058  -2,671  110   1,128   -784  -2,328  

c d  1,423   -6,858   -6,973   191   1,022  206   220  1,824  -4,328   -4,014   -4,516  -5,624  

d a  -33   2,282   2,290   -28   -35  -32   -40  -148  3,627   3,138   3,103  3,728  

d b  -4,974   6,514   7,123   46   -6,660  30   -10,033  -4,863  4,768   6,274   4,742  4,549  

d c  -4,951   1,412   1,883   80   -6,621  84   -9,961  -4,682  1,357   2,863   1,451  388  

d d  42   -5,987   -5,991   53   40  52   37  -126  -2,899   -2,780   -2,791  -3,317  

 
 

Table 4 
Estimated MSE  for dual frame misclassification, with = 200, = 100,A Bn n  a cluster sample taken from frame A and a simple 
random sample taken from frame B. MPA and MPB refer to the misclassification patterns for frames A and B  
   

MPA MPB ˆ (1 / 2)Y  post1
ˆ (1 / 2)Y  post2

ˆ (1 / 2)Y  ˆ (1/ 2)bcY ˆ (2 / 3)Y  ˆ (2 / 3)bcY ˆ (1)Y  ˆ
HY  FBŶ  PMLŶ  PELŶ  SF, rakeŶ

a a 10,916  8,912   8,899  10,916 11,092 11,092 11,879 10,975  9,250   9,155   10,109  9,418  

a b 11,786  10,186   10,324  11,157 12,743 11,503 15,463 12,253  8,906   9,391   10,123  9,231  

a c 11,983  9,575   9,537  11,409 12,922 11,814 15,600 12,395  9,575   9,279   10,391  10,039  

a d 11,042  12,357   12,375  10,941 11,250 11,173 12,056 11,051  11,591   11,605   12,229  12,053  

b a 10,698  9,133   9,154  10,872 10,921 11,049 11,875 10,823  9,255   9,151   10,195  9,766  

b b 10,957  9,803   9,867  11,071 12,033 11,413 15,262 11,215  8,681   8,748   9,610  9,182  

b c 11,115  9,860   9,846  11,272 12,172 11,675 15,361 11,306  9,721   9,252   10,558  10,970  

b d 10,988  13,269   13,408  11,046 11,222 11,262 12,143 11,084  12,484   12,347   13,279  13,598  

c a 10,995  9,090   9,073  11,106 11,187 11,254 12,028 11,125  9,309   9,190   9,798  9,389  

c b 11,104  10,779   11,015  11,090 12,162 11,380 15,348 11,430  9,450   9,724   9,754  9,144  

c c 11,155  9,425   9,400  11,189 12,234 11,600 15,424 11,389  9,219   9,064   9,868  9,658  

c d 10,922  11,328   11,421  10,896 11,121 11,091 11,929 11,017  10,759   10,456   11,151  11,182  

d a 11,011  9,080   9,045  10,920 11,181 11,103 11,913 11,041  9,873   9,579   10,375  10,135  

d b 11,838  11,357   11,669  11,164 12,723 11,453 15,299 12,337  10,258   10,848   11,009  10,403  

d c 11,804  9,334   9,371  11,159 12,707 11,548 15,298 12,224  9,349   9,507   10,102  9,442  

d d 11,179  10,839   10,854  10,989 11,355 11,199 12,059 11,195  10,440   10,302   10,916  10,519  
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Table 5 
Estimated bias and MSE  for misclassification in a 3-frame survey, with = = = 200A B Cn n n  and a simple random sample 
taken from each frame. MPA refers to the misclassification patterns for frame A. Pattern (a) has no misclassification; (b) =A

aa 0.8, 

, = 0.1,A
a ab , =a abc 0.1, , =A

ab ab 1, , =A
ac ac 1, , =A

abc abc 1; (c) =A
aa 1, , =A

ab ab 0.9, , =A
ab ac 0.1, , =A

ac ac 1, , =A
abc abc 1; (d) =A

aa
1, , =A

ab ab 0.9, , =A
ab abc 0.1, , =A

ac ac 1, , =A
abc abc 1; (e) =A

aa 1, , =A
ab ab 0.8, , =A

ab a 0.1, , =ab abc 0.1, , =A
ac ac 1, , =A

abc abc 1 
  

 MPA aveŶ  ave, post1Ŷ  ave, post2Ŷ  ave,
ˆ

bcY  2/3Ŷ  2/3,
ˆ

bcY  scrŶ  ˆ
HY  PMLŶ  SF, rakeŶ  

  a  -8   31   28   -8   5   5   20   9   -26   -208  
 b  -938   -1,409   -1,478   57   -586   77   107   -2,039   -5,676   -5,624  
bias  c  -26   -485   -508   -26   6   6   6   -324   -825   -957  
 d  -231   -514   -557   104   108   108   85   -326   -1,321   -1,438  
 e  704   287   247   34   697   27   -4   1,488   1,420   1,193  
  a  9,003   4,419   4,410   9,003   10,013   10,013   13,108   7,990   7,281   7,293  
 b  8,961   4,711   4,730   8,955   9,952   9,953   13,092   8,085   9,107   9,074  

MSE   c  9,119   4,432   4,422   9,119   10,140   10,140   13,238   8,112   7,396   7,422  
 d  8,894   4,405   4,405   8,893   9,874   9,874   12,919   7,957   7,414   7,433  
 e  9,088   4,438   4,424   9,059   10,071   10,046   13,180   8,254   7,621   7,581  

 
 

7. Design issues  
As discussed in Section 1, multiple frame designs can 

give better coverage and precision than a single frame 
survey with equivalent cost. The design problem is more 
complex than with a single frame survey, though, since a 
design that is optimal for frame A and frame B separately 
may not be optimal for the combined sample. Similarly, a 
design that is optimal when estimator ˆ(1/ 2)Y  is used may 
not be optimal for PML

ˆ .Y  
Hartley (1962, 1974) derived optimal designs for the 

estimator ˆˆ( )HY   when a simple random sample is taken in 
each frame. The optimal sample sizes An  and Bn  depend on 
the relative costs of sampling from the two frames, and on 
the means and variances of the response variable within the 
domains. Cochran (1977, pages 144-145) described the dual 
frame survey in Figure 1 in his chapter on stratified 
sampling. In this situation, aN  and abN  may be known, 
especially if frame B is a list frame. Domains a  and ab  are 
treated as strata; there is one sample from stratum a  and 
two independent samples from stratum .ab  The design 
problem may be approached as a stratified sample design. 

In general, the optimal design is a function of sampling 
variances and nonsampling errors in each frame, as well as 
of the estimator chosen. Biemer (1984) and Lepkowski and 
Groves (1986) discussed designs for the situation in Figure 
1 when a stratified multistage sample is taken from each 
frame, using the Hartley estimator ˆˆ( ).HY   Lepkowski and 
Groves (1986) considered interviewer variability and mode 
bias as well as sampling error when assessing the precision 
of various designs; frames with less mode bias are allotted 
higher sample sizes. Brick (2010) derived optimal alloca-
tions in the presence of nonresponse, and found that con-
sidering the nonresponse when allocating resources to the 
two frames can greatly increase efficiency in both screening 
and overlap dual frame surveys. 

One of the advantages of a multiple frame design is its 
flexibility; it is well suited for a modular approach to survey 
design. In some situations, it may be practical to take an 
initial sample from the general population (frame A in 
Figure 4). The design of the samples from frames B and C, 
corresponding to subpopulations of interest, can then be 
determined using information in the frame-A sample. For 
example, if the frame-A sample yields too few engineers, 
the sample size from an engineering society membership list 
frame can be correspondingly increased. 

Rao (2003) suggested using multiple frame surveys to 
improve the accuracy of small area estimates in subgroups 
of interest. In this application, supplemental surveys can be 
taken in frames with high concentrations of subgroups of 
interest. As research needs change, resources can be re-
allocated among the supplemental surveys without changing 
the main survey design. A crime victimization survey that 
uses a national area frame may be supplemented by local 
victimization surveys; as victimization patterns change, the 
local surveys can have different sample sizes or be moved to 
other geographic regions. 

Most survey designs attempt to achieve efficiency for the 
important responses, but in some situations a design that is 
efficient for one response is inefficient for others. For a 
survey in which each of four responses of interest was 
highly correlated with one of the possible stratification 
variables (but not necessarily correlated with the other strati-
fication variables), Skinner, Holmes and Holt (1994) used a 
multiple frame survey with four independent stratified 
samples drawn from a common sampling frame. Each sam-
ple was stratified using the stratification variable that was 
correlated with one of the responses of interest, and so was 
highly efficient for that response. In estimation, information 
from all four samples was combined. 

Multiple frame surveys can also be used in conjunction 
with sequential or adaptive sampling methods to improve 



212 Lohr: Alternative survey sample designs: Sampling with multiple overlapping frames 
 

 
Statistics Canada, Catalogue No. 12-001-X 

yield of a rare or hard-to-reach population such as recent 
immigrants. For example, a stratified multistage sampling 
design might be employed for frame A, while an adaptive 
cluster sampling design (Thompson 2002) might be used for 
frame B. Domain estimates can be calculated separately for 
the two designs, and then combined using methods in 
Section 2. In this situation, frames A and B may completely 
overlap, so that domain misclassification will not be an 
issue. 

 
8. Conclusions  

In this paper, we have summarized some of the issues 
involved in using multiple frame methods for U.S. house-
hold surveys. Multiple frame designs have great potential 
for improving efficiency of data collection in household 
surveys. They can improve coverage by combining in-
complete frames, improve the accuracy of estimates for 
subgroups or rare populations, and increase the flexibility 
and responsiveness of federal data collection. Multiple 
frame surveys can facilitate sampling hard-to-reach popula-
tions such as recent immigrants or households with infants; 
a general population survey can be combined with an 
adaptive sample design or a list frame of births. 

In many cases, multiple frame surveys can provide more 
accurate estimates of population quantities without in-
creasing data collection costs, but the design and estimator 
must be chosen carefully to realize these savings. A multiple 
frame survey, like other surveys, may have nonresponse, 
mode effects, and measurement errors. In addition, unless 
all of the frames consist of the entire population, multiple 
frame survey estimators can be sensitive to domain 
misclassification. One correction for misclassification was 
given in Section 6, but more research is needed on these 
challenges. Effects of domain misclassification, non-
response, and mode bias may be confounded. A designed 
experiment may help disentangle these effects. We are 
currently studying the relation among these three types of 
nonsampling errors. Each form of nonsampling error affects 
the accuracy of multiple frame estimators, and anticipated 
nonsampling errors need to be incorporated in an optimal 
design.  
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Ten years of balanced sampling with the cube method: An appraisal 
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Abstract 
This paper presents a review and assessment of the use of balanced sampling by means of the cube method. After defining 
the notion of balanced sample and balanced sampling, a short history of the concept of balancing is presented. The theory of 
the cube method is briefly presented. Emphasis is placed on the practical problems posed by balanced sampling: the interest 
of the method with respect to other sampling methods and calibration, the field of application, the accuracy of balancing, the 
choice of auxiliary variables and ways to implement the method. 
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1. Introduction 
 
While the idea of balanced sampling has been around 

since the early days of survey statistic development, ap-
plying the concept has been difficult because almost all the 
proposed methods have either been enumerative or rejective 
and required considerable computation time. The algorithm 
of the cube method was proposed in 1998 by Deville and 
Tillé, and a first implementation was written by three 
students of the École Nationale de la Statistique et de l’Ana-
lyse de l’Information of Rennes in France (see Bousabaa, 
Lieber and Sirolli 1999). Finally, the method was published 
in Tillé (2001) and Deville and Tillé (2004). Since this time, 
several implementations have been proposed and several 
survey managers have used the cube method to select 
samples, the most important applications being the New 
French Census and the French Master Sample. 

Our aim is to assess 10 years of development and use of 
balanced sampling in order to better ascertain when and 
how the cube method can be used to select samples of 
householders or establishments. After discussing the con-
cept of balanced sample and balanced sampling in Section 
2, we give a list of particular cases in Section 3. In Section 
4, we briefly trace the history of this concept for both the 
model-based and design-based frameworks. Next, in 
Section 5, we provide a brief overview of the cube method, 
which is a class of algorithms that allows us to select 
randomly balanced samples with given inclusion proba-
bilities (see Deville and Tillé 2004; Tillé 2001, 2006b). We 
try to present the main principles of this algorithm without 
giving a detailed description of the technicalities of the 
method. Section 6 is devoted to the principles of variance 
estimation in balanced sampling. Finally, in Sections 7, we 
discuss the interest of balanced sampling in practice and 
compare balanced sampling with other sampling methods 
and calibration. We also give a list of recent applications. 
This Section also deals with the accuracy of balancing, the 

choice of auxiliary variables and ways to implement bal-
anced sampling. The paper ends with an exhaustive bibli-
ographical list of references on balanced sampling and their 
applications. 

 
2. Balanced sampling  

2.1 Definition of a balanced sample  
Consider a sample s  of size n  that is a subset of a finite 

population U  of size .N  A sample is said to be balanced if, 
for a vector of auxiliary variable 1= ( , , , , ) ,k k kj kpx x x x     

                                    
1 1

= ,k k
k S k Un N 
 x x  (1) 

which means that the sample means of the x-variables match 
their population means. 

Brewer (1999) drew a distinction between a balanced 
selection of samples and a random selection of samples. 
However, a balanced sample may be selected randomly. If a 
random sample S  is selected randomly, then each unit of 
the population has an inclusion probability k  of being 
selected. In this case, a random sample must satisfy the 
following balancing equations:  

                                        = .k
k

k S k Uk  x
x  (2) 

In other words, in a balanced sample, the total of the x-
variables are estimated without error. Several authors like 
Cumberland and Royall (1981) and Kott (1986) would call 
a sample that satisfies Equation (2) a ‘π-balanced sample’, 
as opposed to a ‘mean-balanced sample’ defined by 
Equation (1). Nevertheless, in this paper, we will consider 
that (1) is only a particular case of (2) that occurs when 

= /k n N  or when the sample is not selected randomly. 
We refer to both cases as a balanced sample. 
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2.2 Balanced sampling design  
Let ( )p s  denote the sampling design, i.e., the probability 

that sample s  is selected, such that ( ) = Pr( = ),p s S s  
where S  is the random sample and ( )n S  the size of the 
sample .S  According to the definition of Deville and Tillé 
(2004), a sampling design ( )p   is said to be balanced on 
auxiliary variables 1, , px x  if the Horvitz-Thompson esti-
mator satisfies Equation (2). In a balanced sampling design, 
the inclusion probabilities are decided prior to sampling. A 
balanced sampling can be viewed as a kind of calibration 
that is directly integrated into the sampling design. The 
main problem is that the balancing equations (2) can rarely 
be exactly satisfied. We refer to this difficulty as the 
‘rounding problem’.   
Example 1. If = 4, = 2, = 1/ 2,kN n   for all k U  and 

1 2 3 4= 0, = 1, = 2, = 4,x x x x  then the balancing equations 
given in (2) becomes  

1 1
= ,k k

k s k U

x x
n N 
   

which is equivalent to  

                                    = .k k
k s k U

n
x x

N 
   (3) 

Since  
2

= (0 1 2 4) = 3.5,
4k

k U

n
x

N 

    

and the left side of (3) is always an integer, then an exactly 
balanced sample does not exist.  

Indeed, sample selection is an integer problem. The cube 
method therefore aims to select a sample that exactly sat-
isfies the inclusion probabilities k  while remaining as bal-
anced as possible. 

 
3. Special cases of balanced sampling  

3.1 Unequal probability sampling and stratification  
Some well-known sampling designs are particular cases 

of balanced sampling:  
1. Sampling with a fixed sample size is a particular case 

of balanced sampling. In this case, the only balancing 
variable is .k  The balancing equations given in (2) 
become  

                      = 1 = ,k
k

k S k S k Uk  




    

 which means that the sample size must be fixed.  
2. Stratification is a particular case of balanced sam-

pling. Suppose that the population is partitioned in 
H  strata , = 1, , ,hU h H  of sizes , = 1, ,hN h   

,H  and that a sample is selected in each stratum by 

means of simple random sampling without replace-
ment with fixed sample size , = 1, , .hn h H  In this 
case, the balancing variables are the indicator vari-
ables of the strata  

                           
1 if

=
0 otherwise.

h

kh

k U 


 

 Under a stratified design, the Horvitz-Thompson 
estimators of the sizes of the strata exactly equal the 
sizes of the strata, which is a property of balancing on 
the indicator variables of the strata. Indeed, since the 
inclusion probabilities in stratum h  are =k  

/ ,h hn N ,hk U  the balancing equations become  

         = = , = 1, , ,h kh
kh h

k S k Uh

N
N h H

n 


    

 and are exactly satisfied.  

 

These two designs are well known and are commonly 
applied in official statistics in order to reduce variance. The 
more general concept of balancing allows more freedom to 
choose the most appropriate balancing variables that will 
improve the accuracy of the estimators.  
3.2 Overlapping strata  

Constructing a stratified sampling design is often a diffi-
cult exercise. Statisticians often try to stratify using several 
qualitative variables. However, in most cases, crossing all of 
the strata of all the variables will cause the cells to become 
too small for a sample to be selected in each cell. In the 
context of calibration, statisticians generally calibrate on 
marginal totals and not on all the cells contained in a 
contingency table. Since a balanced sampling can be viewed 
as a kind of calibration that is directly integrated in the 
sampling design, one would also like to balance using only 
marginal totals. Nevertheless, the usual theory of strati-
fication does not allow overlapping strata since the strati-
fication must be a partition of the population. Now, the cube 
method enables us to directly balance on totals of over-
lapping strata by simply using the indicators of the strata as 
balancing variables.  
3.3 Balancing on a constant  

Another interesting special case of balanced sampling 
occurs when a constant is used as a balancing variable. If 

= 1kx  for all ,k U  the balancing equations become  

1
= 1 = .

k S k Uk

N
    

Actually,  
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1

k S k   

is the Horvitz-Thompson estimator of .N  This means that, 
if a constant is used as a balancing variable, the estimated 
population size matches the known size ,N  which is far 
from being a given when the statistical units are selected 
with unequal inclusion probabilities.  

4. History of the concept of balancing  
      and existing methods  

The idea of balanced sampling is very old and is linked 
to the vague concept of representativeness that was already 
used by Kiaer (1896, 1899, 1903, 1905). The first paper 
dedicated to the selection of a balanced sample is due to 
Gini (1928) and Gini and Galvani (1929) who selected a 
sample of 29 from the 214 Italian districts in order to match 
several population totals. Both Neyman (1952) and Yates 
(1960) condemned the paper of Gini and Galvani essentially 
because this sample was not randomly selected (see Langel 
and Tillé 2010). The first methods for selecting a random 
balanced sample were proposed by Yates (1946) and Thionet 
(1953), but these methods were rejective in the sense that 
they involved selecting samples or changing units randomly 
in the sample until a balanced enough sample was obtained. 

In the model-based framework, Royall (1976a, b) advo-
cated the use of balanced sampling in order to reach the 
optimal strategy and to protect against mis-specification of 
the model. (see also Royall and Pfeffermann 1982; Kott 
1986; Cumberland and Royall 1988; Royall 1988; Tirari 
2006; Nedyalkova and Tillé 2009). While several methods 
for selecting a balanced sample are presented in the book of 
Valliant, Dorfman and Royall (2000), these methods do not 
necessarily specify the inclusion probabilities of the sample. 
In the model-based framework, it is important to have a 
balanced sample. However, this sample does not always 
need to be randomly selected. 

Hájek (1981) also advocated the use of balanced sam-
pling. For Hájek, a balanced sampling is a particular case of 
representative strategy, a strategy being a couple made of a 
sampling design and an estimator. A representative strategy 
is a strategy that estimates the totals of auxiliary variables 
without error. In this sense, a balanced sampling design with 
the Horvitz-Thompson estimator is a representative strategy. 
Hájek (1981) proposes a rejective procedure that consists of 
selecting a sequence of samples until a balanced one is 
obtained. Rejective procedures have two drawbacks: if 
several balancing variables are used, the procedure can be 
very slow; secondly, the inclusion probabilities of rejective 
designs are not the same as the original design. The inclu-
sion probabilities of statistical units that are close to the 
population means are increased to the detriment of the units 

that are far from the center (see for instance the simulations 
of Legg and Yu 2010). 

Another method of selection consists of enumerating all 
the possible samples, and then constructing a sampling 
design only to select the samples that are adequately bal-
anced. Such a design can be constructed by using linear 
programming. This technique was applied by Ardilly (1991) 
to select the primary units of the French master sample. 
Nevertheless, this method can only be applied on small pop-
ulation sizes because of the combinatory explosion of the 
number of samples when the size of the population is large. 

Deville, Grosbras and Roth (1988) and Deville (1992) 
proposed multivariate methods for balanced sampling with 
equal inclusion probabilities. Hedayat and Majumdar (1995) 
have proposed the adaptation of an experimental design 
technique that would enable a balanced sampling design to 
be constructed. Again, this technique is restricted to equal 
inclusion probabilities. Finally, the cube method was pro-
posed by Deville and Tillé (2004). This method is general in 
the sense that the inclusion probabilities are exactly satis-
fied, that these probabilities may be equal or unequal and 
that the sample is as balanced as possible. 

Fuller (2009) studied a rejective procedure by fixing a tol-
erance interval outside of which the sample is rejected and 
proposed an estimator of variance. Even if the inclusion 
probabilities are changed with a rejective procedure, 
Fuller (2009) shows that efficient estimates are obtained 
by using the inclusion probabilities of the original design. 
Using a set of simulations, Legg and Yu (2010) com-
pared this rejective procedure to the cube method and 
showed that both methods perform equally. Finally, 
Dudoignon and Vanheuverzwyn (2006) proposed a fast 
method of balanced sampling for marginal totals, whereas 
Périé (2008) proposed a method based on permanent 
random numbers that provides a balanced sample. With 
the Périé (2008) method, the inclusion probabilities are 
only approximately satisfied.  

5. The cube method  
5.1 Main ideas  

The cube method (see Deville and Tillé 2004; Tillé 2001, 
2006a, b; Ardilly 2006) is a class of sampling algorithms 
that selects a balanced sample and exactly satisfies a set of 
given inclusion probabilities. The cube method is an 
extension of the splitting method that was developed by 
Deville and Tillé (1998). It is based on a random trans-
formation of the vector of inclusion probabilities until a 
sample is obtained such that: 

(i) the inclusion probabilities are exactly satisfied,  
(ii) the balancing equations are satisfied to the furthest 

extent possible.  
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The name of the method comes from the geometric repre-
sentation of a sampling design. Indeed, a sample may be 
represented by a vector of samples indicators:  

= ( [1 ] ... [ ] ... [ ]) ,I s I k s I N s   s  

where [ ]I k s  takes value 1 if k s  and 0  if not. A 
sample may thus be viewed as a vertex of an N-cube as 
showed in Figure 1.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 Possible samples in a population of size = 3N   
Let us also define  

E( ) = ( ) = ,
s S

p

s s s   

where = [ ]k  is the vector of inclusion probabilities. The 
balancing equations  

= ,k
k

k S k Uk  x
x  

may also be written  

                                = ,k k k k
k U k U

s
 

 x x   (4) 

where {0, 1}ks   and = / , .k k k k U x x  Expression (4) is 
a system of equations with unknowns values ks  that define 
an affine subspace in N  of dimension N p  denoted by 

,Q  where  

= | = .N
k k k

k U k U

Q u
 

 
 

 
 u x x  

The problem of selecting a balanced sample may thus be 
reformulated. A balanced sampling design consists of 
choosing a vertex of the N-cube (a sample) that remains on 
the linear sub-space .Q  Figures 2 and 3 respectively show 
two examples: the first one is a constraint of fixed sample 
size and the second one is a constraint that generates a 
rounding problem. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2 Possible samples in a population of size = 3N  with a 

constraint of fixed sample size = 2n   
The Cube method (Deville and Tillé 2004) is divided 

into two phases: the flight phase and the landing phase. The 
flight phase is a random walk that begins at the vector of 
inclusion probabilities and remains in the intersection of the 
cube and the constraint subspace. This random walk stops at 
a vertex of the intersection of the cube and the constraint 
subspace. At the end of the flight phase, if a sample is not 
obtained, the landing phase entails in selecting a sample that 
is as close as possible to the constraint subspace. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3 Possible samples in a population of size = 3N  with a 

constraint and a rounding problem  
Example 2. If the constraint is the fixed sample size, the 
flight phase randomly transforms a vector of inclusion 
probabilities into a vector of 0 and 1. At each step of the 
algorithm, the vector of inclusion probabilities is trans-
formed randomly, but the sum of inclusion probabilities 
must remain equal to .n  For instance, with = (0.5, 0.5,  
0.5, 0.5)  and = 2,n  we are able to obtain the following 
sequence of vectors:  
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0.5 0.6666 1 1
0.5 0.6666 0.5 0= = .
0.5 0.6666 0.5 1
0.5 0 0 0

       
       

         
       
       

s  

The algorithm ends when all the components of the vector 
are equal to 0 or 1.   
Example 3. If the constraint is the fixed sample size, a 
rounding problem appears if the sum of inclusion proba-
bilities is not an integer. If there is a rounding problem, then 
some components cannot be set to zero. For instance, with 

= (0.5, 0.5, 0.5, 0.5, 0.5)  and  

= 2.5,k
k U

  

we may observe the following sequence of vectors:  

*

0.5 0.625 0.5 1 1

0.5 0 0 0 0
= = .0.5 0.625 0.5 0.25 0.5

0.5 0.625 1 1 1

0.5 0.625 0.5 0.25 0

         
         
         

            
         
                  
         

   

In this case, the flight phase cannot end with a vector of 0 
or 1 of which the sum is equal to 2.5. In this case, the 
flight phase ends with a vector containing one non-integer 
component.   
5.2 The flight phase  

The first step of the flight phase is presented in Figure 4 
for a very specific case: the population size = 3.N  The 
only balancing constraint is the fixed sample size = 2.n  At 
the first step, a vector (0)u  must be chosen. This vector 
may be chosen freely but must be such that (0) u  
remains in the subspace of constraints. Actually, the cube 
method is a family of methods that depends on the way the 
vector (0)u  is chosen. This vector may be chosen randomly 
or not. 

If, from ,  we follow the direction given by vector 
(0),u  then we will necessarily cross a face of the cube. Let 

us consider this point denoted on Figure 4 by (0)   
*
1(0) (0). u  Now, if, from ,  we follow the opposite 

direction, i.e., the direction given by vector (0),u  we will 
also cross a face of the cube. Let us consider this point 
denoted on Figure 4 by *

2(0) (0) (0).  u  At the first step, 
vector (0) =   is modified randomly. Vector (1)  will 
be set to *

1(0) (0) (0)  u  or to *
2(0) (0) (0).  u  The 

choice is done randomly in such a way that E[ (1)] =  
(0).  At the end of the first step of the flight phase, we 

have thus jumped on a face of the cube, which means that at 
least one component of (1)  is equal to 0 or 1, i.e., the 
problem is reduced from a problem of sampling from a 
population of size = 3N  to a population of size = 2.N  
In N  steps at least, the flight phase is thus completed. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4 Flight phase in a population of size = 3N  with a 

sample size constraint = 2n   
More generally, the flight phase is a random walk in the 

intersection of the balancing subspace and the cube. This 
random walk stops at a vertex of the intersection of the cube 
and the subspace. The flight phase is defined by the fol-
lowing class of algorithms. First initialize with (0) = .   
Next, at time = 0, ...., ,t T    

1. Generate any vector ( ) = [ ( )] 0kt u t u  such that  
 (i) ( )tu  is in the kernel of matrix 1 1= ( / , ,A x   

/ , , / ),k k N N x x  i.e., ( ) 0,t Au  
 (ii) ( ) = 0ku t  if ( )k t  is integer.   
2. Compute *

1 ( )t  and *
2 ( ),t  the largest values such 

that  

 10 ( ) ( ) ( ) 1,t t t   u  

 20 ( ) ( ) ( ) 1.t t t   u  

3. Compute  

           
*
1 1
*
2 2

( ) ( ) ( ) with probability ( )
( 1)=

( ) ( ) ( ) with probability ( ),

t t t q t
t

t t t q t

 
 



u

u





 

 where * * *
1 2 1 2( ) = ( ) /{ ( ) ( )}q t t t t     and 2 ( ) =q t  

11 ( ).q t   
The flight phase stops when it is no longer possible to find a 
vector ( ) 0.t u   
5.3 Landing phase  

If, at the end of the flight phase, the balancing equations 
are not exactly satisfied, there is a need for a landing phase. 
Let * *= [ ]k  be the vector obtained at the last step of the 
flight phase. It is possible to prove (see Deville and Tillé 
2004) that  

*card( ) ,U p  

where  
* *= { | 0 < < 1}kU k U   

and p  is the number of balancing variables. The aim of 
the landing phase is to find a sample s  such that 
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*E( | ) =s  *,  which is almost balanced. There are two 
ways of selecting such a sample:  

1. The flight phase by linear programming consists of 
considering all the possible samples of *.U  A cost is 
assigned to each sample. This cost, is, for instance, 
the distance between the sample and the subspace of 
constraints. Next, one looks for a sampling design on 

*U  that minimizes the expected cost and that 
satisfies the inclusion probabilities *.  This problem 
can be solved because the number of samples to 
consider is reasonable due to the small size of *.U   

2. The flight phase by suppression of variables may be 
used when the number of balancing variables is too 
large for the linear program to be solved by a simplex 
algorithm ( > 20)p . With this method, an auxiliary 
variable is dropped at the end of the flight phase. 
Next, we can return to the flight phase until it is no 
longer possible to ‘move’ within the constraint sub-
space. The constraints are then relaxed successively 
according to an order of preference.   

6. Variance and variance estimation  
6.1 A residual technique  

The variance of the Horvitz-Thompson estimator can be 
estimated by using a residual technique developed in 
Deville and Tillé (2005). The residual technique is compa-
rable to the technique used to estimate the variance of the 
calibration estimator and has been validated by a set of sim-
ulations. The estimated variance of the Horvitz-Thompson 
estimator is thus very similar to the estimated variance of a 
generalized regression (GREG) estimator. Nevertheless, the 
variance of the GREG estimator is generally underestimated 
because it does not take into account the randomness of the 
weights. Indeed, if the usual variance of the GREG esti-
mator is computed for the special case of poststratification, 
we obtain the variance of a stratified design with propor-
tional allocation. The variance of the poststratified estimator 
is nevertheless larger than the variance in a stratified design 
with proportional allocation.  
6.2 Approximation of variance  

If the balanced sampling design has a large entropy, 
Hájek (1981) and Deville and Tillé (2005, method 4) have 
proposed the following approximation of the design 
variance given by:  

             
2

2

( )
var ( ) var ( ) = ,k k

p app k
k U k

y
Y Y d 






 x b
 (5) 

where the subscript p  denotes the sampling design,  
1

2 2
= ,k k k k

k k
k U k Uk k

y
d d



 

 
 

  
 x x x

b  

and the kd  are the solution of the nonlinear system  
1

2
(1 ) = , .k k k k

k k k
Uk k

d d
d d k U





  
     

  
x xx x 


 

 (6) 

The entropy of the sampling design depends on the way 
vectors ( )tu  are chosen during the flight phase. In order to 
increase the entropy, vector ( )tu  can be chosen randomly 
or the population can be randomly sorted before selecting 
the sample. 

Expression (5), which only uses the first-order inclusion 
probabilities, was validated by Deville and Tillé (2005) 
under a variety of balanced samples regardless of how the y-
values were generated. An approximation very close to 
Expression (5) was obtained by Fuller (2009) and Legg and 
Yu (2010) for a balanced sampling design obtained by a 
rejective procedure in the case of an initial design that uses 
Poisson sampling. These approximations do not take the 
rounding problem into account.  
6.3 Estimation of variance  

Deville and Tillé (2005) proposed a family of variance 
estimators for balanced sampling, of the form  

                           2

2

( )
var( ) = ,k k

k
k S k

y
Y c




 x b

 (7) 
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
1
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=

S S

y
c c



 

 
 

  
 x x x

b    
 

  

 

and the kc  are the solutions of the nonlinear system  

                

1

2
1 = ,k k k k

k k
Sk k

c c
c c





  
      

x xx x 


 

 (8) 

which can be solved by a fixed point algorithm. 
In Deville and Tillé (2005), simpler variants of kc  were 

also proposed. For instance, one can use the alternative 
values,  

(1 ),k k

n
c

n p
  


  

that are very close to .kc  The estimator  var( )Y   is 
approximately design-unbiased because it is an estimator by 
substitution of the approximation given in expression (5), 
(for more information regarding estimators obtained by 
substitution, see Deville 1999), which is a reasonable 
approximation of the variance under the sampling design. 

It is not easy to use bootstrap method to estimate the 
variance in the context of balanced sampling. Balanced 
samples with replacement should be selected from the 
original sample. A generalization of the cube method for 
balanced sampling with replacement has not yet been 
described. A solution, proposed by Chauvet (2007), consists 
of reconstructing an artificial population from the sample. 
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Next, bootstrap samples are selected by using balanced 
sampling. Another solution was proposed by Fuller (2010) 
for balanced rejective sampling. Breidt and Chauvet (2010a) 
have proposed an alternative method where a martingale 
difference representation of the cube method is used in order 
to approximate second-order inclusion probabilities, which 
enables us to construct a nearly unbiased variance estimator.  

7. Balanced sampling in practice  
7.1 Interest of balanced sampling  

In the model-assisted and the model-based frameworks, a 
balancing sampling design with the Horvitz-Thompson 
estimator is often the optimal strategy (see Nedyalkova and 
Tillé 2009). Indeed, when the sample is balanced, the vari-
ances of the Horvitz-Thompson estimators of the auxiliary 
variables are equal to zero. Under a linear model, the vari-
ance of the Horvitz-Thompson estimator of the interest 
variable will only depend on the residuals of the model. 

The advantages of balanced sampling are as follows:  
(i) Balanced sampling increases the accuracy of the 

Horvitz-Thompson estimator. This point has been 
developed in Section 6. Indeed, the variance of the 
Horvitz-Thompson estimator only depends on the 
residuals of the regression of the interest variable by 
the balancing variables.  

(ii) Balanced sampling protects against large sampling 
errors. Indeed, the most unfavourable samples have 
a null probability of being selected.  

(iii) If the variable of interest is well explained by the 
auxiliary information, in model-based inference, 
balanced sampling protects against a mis-speci-
fication of the model. This point is largely de-
veloped by Royall (1976b, a) and Valliant et al. 
(2000). A recent discussion of this important ques-
tion is given in Nedyalkova and Tillé (2009, 2010).  

(iv) Balanced sampling can ensure that the sample sizes 
in planned domains are not too small or - much 
worse - equal to zero. Indeed, if an indicator vari-
able of the domain is added in the list of auxiliary 
variables, the size of the domain is then fixed in the 
sample.  

(v) Balanced sampling allows us to avoid random 
weights. With balanced sampling, the Horvitz-
Thompson weights can be used. If the sampling 
design does not contain any balancing constraints 
(for instance with Poisson sampling) the weighting 
system obtained by a calibration procedure be-
comes very random, which increases the variance 
of the estimators. If the sample is balanced, the 
weights will be less random even if a calibration 
procedure is used after balancing.  

The availability of easy to use packages contributed to 
the large use of the cube method in several important 
statistical processes. The first main application of the cube 
method is selection of the rotation groups for the French 
census. (See Desplanques 2000; Dumais, Bertrand and 
Kauffmann 2000; Durr and Dumais 2001, 2002; Dumais 
and Isnard 2000; Bertrand, Christian, Chauvet and 
Grosbras 2004; da Silva, da Silva Borges, Aires Leme 
and Moura Reis Miceli 2006). For the municipalities with 
fewer than 10,000 inhabitants, five non-overlapping rotation 
groups of municipalities are selected using a balanced 
sampling design with equal inclusion probabilities (1/5). 
Each year, a fifth of the municipalities are surveyed. So after 
5 years, all the small municipalities are selected. For the 
municipalities with more than 10,000 inhabitants, in each 
municipality, five non-overlapping balanced samples of 
addresses are selected with inclusion probabilities 8%. So, 
after 5 years, 40% of the addresses are visited. The bal-
ancing variables are socio-demographic variables taken 
from the last census. 

In the French master sample, the primary units are 
geographical areas that are selected using a balanced sam-
pling design (see Wilms 2000; Christine and Wilms 2003; 
Christine 2006). The master sample is a self-weighted 
multi-stage sampling. So the primary units are selected with 
unequal probabilities that are proportional to their sizes. The 
balancing variables are socio-demographic variables taken 
from the last census. Bardaji (2001) and Even (2002) have 
also used balanced sampling to select a sample of benefi-
ciaries of subsidized jobs. Seven populations are surveyed, a 
balanced sample of beneficiaries is selected in each of the 
populations by using between two and five balancing 
variables according to the populations. 

In the company Électricité de France (EDF), new 
electricity meters allow electricity consumption for each 
household to be measured on a continuous basis. The 
amount of information collected is so large that it is 
impossible to archive all the data. Dessertaine (2006, 2007) 
used balanced sampling to select the time series of 
consumption that must be archived in order to ensure that 
they represent the consumption of the entire French popu-
lation as accurately as possible. Biggeri and Falorsi (2006) 
used balanced sampling to improve the quality of the 
consumer price index in Italy. Gismondi (2007) tested 
balanced sampling to estimate the number of tourist nights 
spent in Italy. D’Alò, Di Consiglio, Falorsi and Solari 
(2006) and Falorsi and Righi (2008) also proposed using a 
balanced sampling design to estimate totals in small 
domains. Simulations were run by Marí, Barbará, Mitas and 
Passamonti (2007b, a) in Argentina and Chipperfield (2009) 
in Australia to assess the interest of balanced sampling for 
the master sample. 
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At Statistics Canada, Fecteau and Jocelyn (2006) and 
Jocelyn (2006) tested balanced sampling to select a sample 
of businesses. Canadian unincorporated businesses com-
plete their income tax returns either on paper or elec-
tronically. More than half of the returns are submitted elec-
tronically. Balanced sampling was used to select a sample 
from businesses that responded electronically so that, for 
some key variables that are known for the whole population, 
the sample means matched the known population means. 

Balanced sampling can also be used to impute a missing 
value in case of item nonresponse. Indeed, using a model to 
predict an imputation allocates central values, which will 
lead to a biased inference on quantiles. In contrast, a random 
imputation generally increases the variances of the esti-
mators. In order to solve this dilemma, Deville (1998, 2005, 
2006) and Chauvet, Deville and Haziza (2010c, b) have 
proposed using imputation by prediction and to add a 
residual that is chosen amongst the residuals of the re-
spondent according to a balanced sampling design. This is 
done to avoid adding a term of variance to the total of the 
imputed variable.  
7.2 Balanced sampling versus other sampling 

techniques  
Unequal probability sampling is a particular case of the 

cube method. Indeed, when the only auxiliary variable is the 
inclusion probability, the sample has a fixed sample size. 
The cube method is a generalization of the splitting method 
(see Deville and Tillé 1998), which includes several sam-
pling algorithms with unequal probabilities (Brewer’s 
method, pivotal method, corrected Sunter method, see 
Brewer 1975; Sunter 1977; Deville and Tillé 1998; Tillé 
2006b). Stratification is also a particular case of balanced 
sampling. With the cube method, one can balance on 
overlapping strata and use qualitative and quantitative 
variables together. Systematic sampling can even be seen as 
a balanced sampling design on the order statistic related to 
the variable on which the population is ordered. 

Almost all the other sampling techniques are particular 
cases of balanced sampling (except multistage sampling). In 
fact, balanced sampling is simply more general, in the sense 
that all the other methods of sampling can be implemented 
with the cube method. The cube method allows us to use any 
variable for balancing with a reasonable computation time. 
With the more general concept of balancing, strata can 
overlap, quantitative and qualitative variables can be used 
together, and the inclusion probabilities can be chosen freely. 

It is well known that the ratio estimator and the post-
stratified estimator are particular cases of the regression 
estimator. The regression estimator is also a particular case 
of the calibration estimator (which includes a non-linear 
adjustment). In the same way, balanced sampling is a more 

general method of sampling that includes almost all the 
other methods. The algorithm of the cube method may seem 
complicated but, once implemented, it enables us to run a 
function with two arguments: the vector of inclusion proba-
bilities and the matrix of balancing variables.  
7.3 Choice of the balancing strategy  

The main recommendation is to choose balancing vari-
ables that are closely correlated to the interest variables. As 
with any regression problem, the balancing variables must 
be chosen parsimoniously: one must not choose too many 
balancing variables because, accuracy no longer improves 
with a large number of variables and the instability of the 
variance estimator increases with each additional variable. 
Practically, the aim is not to estimate one variable but a set 
of interest variables. Thus, the set of auxiliary variables 
must be correlated to all the interest variables. Moreover, 
the auxiliary variables should not be too correlated amongst 
themselves. 

Lesage (2008) has proposed a method to balance a 
sample on complex statistics rather than simply using popu-
lation totals. The main idea consists in balancing on the 
linearized value (or influence function) of the parameter of 
interest. Breidt and Chauvet (2010b) have proposed using 
penalized balanced sampling in order to possibly relax some 
balancing constraints, which can be useful for instance in 
small domain estimation. 

In many cases, the balancing variables contain measure-
ment errors. For example, in most registers, one can suspect 
errors in the data. Missing values can obviously occur and 
auxiliary variables are often corrected by a method of 
imputation. As for calibration, the fact of having errors in 
the auxiliary variables is not very important as long as the 
calibration is done on the total of the auxiliary variables of 
the register. Indeed, with balanced sampling, the Horvitz-
Thompson estimator is used and is unbiased even if the 
auxiliary variables are false. The gain in efficiency only 
depends on the correlation between the balancing variables 
and the interest variables. This correlation is rarely affected 
by errors in the balancing variables. 

Several variables can be used to improve small domain 
estimates. To ensure that a domain D  is not empty, one can 
simply add the auxiliary variable:  

 if=
0 otherwise,

k
k

k Dx    

which implies that the number of sampled units that belong 
to D  is equal to  

= = ,D k k
k U k D

n x
 

   

if Dn  is integer, or one of the closest two integers to Dn  if 

Dn  is not an integer. 
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In some cases, it is interesting to balance on auxiliary 
variables in subgroups, domains or strata. An interesting 
procedure described in Chauvet (2009) consists of sepa-
rately running the flight phase in each stratum. A rounding 
problem will then occur in each stratum. These rounding 
problems can then be merged and a flight phase can be run 
again on the whole population. Finally, the landing phase is 
applied only to the whole population. This procedure 
enables us to roughly satisfy the balancing equations in each 
strata without cumulating the rounding problems. 

The inclusion probabilities must be computed prior to 
sampling. When a linear model is assumed, these proba-
bilities should in principle be proportional to the errors of 
the model in order to minimize variance (see Tillé and Favre 
2005; Chauvet, Bonnery and Deville 2010a; Nedyalkova 
and Tillé 2009, 2010). This choice generalizes Neyman’s 
allocation for stratified sampling (Neyman 1934). However, 
the inclusion probabilities often need to be chosen on others 
constraints. For instance, in order to construct the rotation 
groups of the French census, the inclusion probabilities must 
all be equal to a fifth.  
7.4 Balancing versus calibration  

Stratification is a particular case of balancing, while post-
stratification is a particular case of calibration. In stratifi-
cation and balancing, the weights do not become random. It 
is thus generally a better strategy. Nevertheless, more auxil-
iary information is needed for balancing. Indeed, for bal-
anced sampling, the auxiliary variables must be known for 
all the units of the population, whereas, for calibration, only 
the population totals are needed. Balancing is a very 
interesting method for small population sizes. It is thus a 
very good method for selecting primary units in a multi-
stage sampling design. 

Both techniques can be used together. They are not 
contradictory. The best strategy consists of using balanced 
sampling and calibration together. Indeed calibration can 
resolve the small rounding problem that may remain after 
balancing. At the estimation stage, more auxiliary variables 
are often available because, in order to balance a sample, the 
auxiliary information must be known at the individual level 
while, in order to calibrate the sample, only the population 
totals are necessary. 

Generally, it is recommended to re-calibrate on the 
balancing variables at the estimation stage even if more 
calibration variables are available. If only new variables are 
used in calibration, the effect of balancing can be lost. There 
is, however, one case where calibration can be used without 
re-calibrating on the balancing variables: when, condi-
tionally on the calibration variables, we can reasonably as-
sume that the balancing variables are no longer correlated to 
the variables of interest. This can occur when the balancing 

and the calibration variables are the same variables 
measured at different moments, and the calibration variables 
are more recent. 

When the determination coefficient between the interest 
variable and the auxiliary variables is equal to or close to 
one, then calibration is more efficient because of the 
rounding problem of balanced sampling. Anyway the most 
efficient strategy always consists of using balanced sam-
pling and calibration together (see the simulation in Deville 
and Tillé 2004).  
7.5 Accuracy of the balancing equations  

It is possible to prove, under realistic assumptions (see 
Deville and Tillé 2004), that with the cube method  
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where p  is the number of variables, and ( ) /O x x  is a quan-
tity that remains bounded when x  tends to infinity. With 
simple random sampling  
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where ( ) /pO x x  is a quantity that remains bounded in 
probability when x  tends to infinity. 

The gains in accuracy are therefore considerable. The 
small rounding problem can be fixed by a small calibration. 
The rounding problem comes from the fact that selecting a 
sample is an integer problem. It also occurs in stratification, 
which is a particular case of balancing. In stratification with 
proportional allocation, the sums of the inclusion proba-
bilities in the strata are generally not integers. So, the sample 
sizes in the strata are obtained by rounding the sum of 
inclusion probabilities in the strata. The cube method does 
this rounding automatically and randomly in such a way as 
to ensure that the inclusion probabilities are exactly satisfied. 

 
7.6 Balanced sampling in repeated surveys  

An important difficulty occurs in repeated sampling. The 
problem comes from the fact that, when a balanced sample is 
selected with unequal inclusion probabilities, the comple-
mentary sample is not necessarily balanced. Indeed, the 
equality  

=k
k

k S k Uk  x
x  

does not imply that  

\

= .
1

k
k

k U S k Uk   x
x  

This problem occurred in the French master sample. In this 
sampling design, the primary units, which are geographical 
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areas, are selected with unequal probabilities that are 
proportional to the size. After selecting the sample, some 
regions asked for complementary samples of areas that were 
not already selected. This question is intricate, because the 
complementary sample of a balanced sample is no longer 
balanced, and the aim is thus to select a balanced sample 
from a part of the population that is no longer balanced. 
Tillé and Favre (2004) gave a few methods to co-ordinate 
balanced samples, which were selected with unequal inclu-
sion probabilities. More generally, the coordination (in the 
sense of managing overlap) of balanced samples can be 
difficult when the sampling design is balanced. 

While challenging, it is possible to organize rotations if 
all the samples are selected together and the samples are 
selected with equal inclusion probabilities. Indeed, in this 
case the complementary = \S U S  of the samples S  is 
also a balanced sample. A second balanced sample can be 
directly selected from S  and so on. This method was used 
to create five rotation groups in the French master sample. 
The five groups are five balanced samples of municipalities. 

If the samples are selected with unequal inclusion 
probabilities, some solutions are described in Tillé and Favre 
(2004). An interesting particular case can easily be solved: 
when two non-overlapping samples must be selected with 
the same unequal inclusion probabilities < 0.5k  from the 
same population. First, a sample AS  balanced on kx  must 
be selected with inclusion probabilities = 2kA k   such that  

= .
2

k
k

k S k UkA  x
x  

Next, a sample 1S  can be selected from .AS  This sample 
must be selected with inclusion probability = 0.5kB  and 
must be balanced on /2 ,k kx  which gives the following 
balancing equations:  

2

/(2 )
= = .

1/2 2
k k k

k
k S k S k UkA  


  x x

x  

The sample 2 1= \AS S S  is also balanced. 
If the population changes over times (deaths and births), 

the organization of a rotation becomes much more difficult. 
This difficulty already occurs with stratified samples. Never-
theless, for stratification, several reasonable solutions exist 
(see, amongst others, De Ree 1999; Hesse 1998; Rivière 
1999; Nedyalkova, Péa and Tillé 2006).  
7.7 Main implementations of balanced sampling  

An SAS/IML® implementation was first programmed by 
three students of the École nationale de la statistique et de 
l’analyse de l’information (Ensai) (Bousabaa et al. 1999). 
An official version of the Institut National de la Statistique 
et des Études Économiques done by Tardieu (2001) and 
Rousseau and Tardieu (2004) is now available on the Insee 
Web site. Another SAS/IML® version done by Chauvet and 

Tillé (2005b, a, 2006) is also available on the University of 
Neuchâtel Web site. In R language, the sampling package 
(Tillé and Matei 2007) allows us to use the cube method. 
These software programs are free, available over the 
Internet and are easy to use. 

The available programs written using R language or 
SAS/IML® have no limit as far as population size is con-
cerned. An application with 40 balanced variables is possible. 
In order to select the sample, the computation times increase 
with 2 ,N p  where N  is the population size and p  the 
number of balancing variables. It is thus possible to select a 
sample in a population of several million statistical units.  

Acknowledgements  
This paper has been written in response to an invitation to 

speak at the Demographic Statistical Methods Division 
Seminar of the U.S. Census Bureau in June 2008. The author 
would like to thank the U.S. Census Bureau and particularly 
Patrick Flanagan without whom this paper would never have 
been written. The author is also grateful to an associate editor 
and two anonymous reviewers for valuable comments and 
corrections that helped to improve this paper.  

References  
Ardilly, P. (1991). Échantillonnage représentatif optimum à proba-

bilités inégales. Annales d’Économie et de Statistique, 23, 91-113. 
 
Ardilly, P. (2006). Les Techniques de Sondage. Technip, Paris. 
 
Bardaji, J. (2001). Un an après la sortie d’un contrat emploi consolidé : 

près de six chances sur dix d’avoir un emploi. Premières 
Informations Synthèses, Direction de l’Animation de la Recherche 
des Etudes et des Statistiques (DARES) du Ministère du Travail des 
relations sociales et de la solidarité, 43, 3, 1-8. 

 
Bertrand, P., Christian, B., Chauvet, G. and Grosbras, J.-M. (2004). 

Plans de sondage pour le recensement rénové de la population. In 
Séries Insee Méthodes : Actes des Journées de Méthodologie 
Statistique, Paris. Insee. 

 
Biggeri, L., and Falorsi, P.D. (2006). A probability sample strategy for 

improving the quality of the consumer price index survey using the 
information of the business register. In Proceedings of the 
Conference of European Statisticians Group of Experts on Consumer 
Price Indices, Eighth Meeting, Geneva, 10-12 May 2006. 

 
Bousabaa, A., Lieber, J. and Sirolli, R. (1999). La macro cube. 

Technical report, Ensai, Rennes. 
 
Breidt, F.J., and Chauvet, G. (2010a). Improved variance estimation 

for balanced samples drawn via the cube method. Journal of 
Statistical Planning and Inference, 141, 479-487. 

 
Breidt, F.J., and Chauvet, G. (2010b). Penalized balanced sampling. 

Working paper, Ensai. 
 
Brewer, K.R.W. (1975). A simple procedure for pswor.  Australian 

Journal of Statistics, 17, 166-172. 
 
Brewer, K.R.W. (1999). Design-based or prediction-based inference? 

Stratified random vs stratified balanced sampling. International 
Statistical Review, 67, 35-47. 

 
Chauvet, G. (2007). Méthodes de Bootstrap en Population Finie. PhD 

thesis, Université Rennes 2. 
 
Chauvet, G. (2009). Stratified balanced sampling. Survey 

Methodology, 35, 115-119. 



Survey Methodology, December 2011 225 
 

 
Statistics Canada, Catalogue No. 12-001-X 

Chauvet, G., Bonnery, D. and Deville, J.-C. (2010a). Optimal inclusion 
probabilities for balanced sampling. Journal of Statistical Planning 
and Inference, 141, 2, 984-994. 

 
Chauvet, G., Deville, J. and Haziza, D. (2010b). Adapting the cube 

algorithm for balanced random imputation in surveys. Technical 
report, Ensai, Rennes. 

 
Chauvet, G., Deville, J. and Haziza, D. (2011). On balanced random 

imputation in surveys. Biometrika. 
 
Chauvet, G., and Tillé, Y. (2005a). Fast SAS Macros for balancing 

Samples: user’s guide. Software Manual, University of Neuchâtel, 
http://www2.unine.ch/statistics/page10890.html. 

 
Chauvet, G., and Tillé, Y. (2005b). New SAS macros for balanced 

sampling. In Journées de Méthodologie Statistique, Insee, Paris. 
 
Chauvet, G., and Tillé, Y. (2006). A fast algorithm of balanced 

sampling. Journal of Computational Statistics, 21, 9-31. 
 
Chipperfield, J. (2009). An evaluation of cube sampling for ABS 

household surveys. Technical report, Australian Bureau of Statistics. 
 
Christine, M. (2006). Use of balanced sampling in the framework of 

the master sample for french household surveys. In Joint Statistical 
Meeting of the American Statistical Association, Seattle August 
2006. 

 
Christine, M., and Wilms, L. (2003). Theoretical and practical 

problems related to the development of “EMEX”: How to improve 
the precision of the regional supplements of National Surveys with 
an Additional Sample? In Proceedings: Symposium 2003, 
Challenges in Survey Taking for the Next Decade, Statistics 
Canada, Ottawa. 

 
Cumberland, W.G., and Royall, R.M. (1981). Prediction models in 

unequal probability sampling. Journal of the Royal Statistical 
Society, B, 43, 353-367. 

 
Cumberland, W.G., and Royall, R.M. (1988). Does simple random 

sampling provide adequate balance? Journal of the Royal 
Statistical Society, B, 50, 118-124. 

 
da Silva, A.D., da Silva Borges, A., Aires Leme, R. and Moura Reis 

Miceli, A.P. (2006). Modalidades alternativas de censo 
demográfico: o cenário internacional a partir das experiências dos 
estados unidos, frança, holanda, israel e alemanha. Technical 
report, Instituto Brasileiro de Geografia e Estatística. 

 
D’Alò, M., Di Consiglio, L., Falorsi, S. and Solari, F. (2006). Small 

area estimation of the italian poverty rate. Statistics in Transition, 7, 
771-784. 

 
De Ree, S.J.M. (1999). Co-ordination of business samples using 

measured response burden. In Contributed paper, 52th Session of 
the ISI Helsinki. 

 
Desplanques, G. (2000). La rénovation du recensement de la 

population. In Actes de la séance du 5 octobre 2000 du séminaire 
méthodologique SFDS-Insee sur la rénovation du recensement, 
2-5. 

 
Dessertaine, A. (2006). Sondages et séries temporelles : une 

application pour la prévision de la consommation électrique. In 
Actes des journées Françaises de Statistique 2006, Clamart, 
France. 

 
Dessertaine, A. (2007). Sampling and data-stream: Some ideas to built 

balanced sampling using auxiliary Hilbertian informations. In 
Proceedings of 56th the International Statistical Institute 
Conference: IPM56 - New methods of sampling, Lisboa, Portugal. 

 
Deville, J.-C. (1992). Constrained samples, conditional inference, 

weighting: Three aspects of the utilisation of auxiliary information. 
In Proceedings of the Workshop on the Uses of Auxiliary 
Information in Surveys, Örebro (Sweden). 

 
Deville, J.-C. (1998). La correction de la non-réponse par calage ou par 

échantillonnage équilibré. In Recueil de la Section des méthodes 
d’enquêtes des communications présentées au 26ème congrès de la 
Société Statistique du Canada, 103-110, Sherbrooke. 

 

Deville, J.-C. (1999). Variance estimation for complex statistics and 
estimators: Linearization and residual techniques. Survey 
Methodology, 25, 193-203. 

 
Deville, J.-C. (2005). Imputation stochastique et échantillonnage 

équilibré. Technical report, École Nationale de la Statistique et de 
l’Analyse de l’Information. 

 
Deville, J.-C. (2006). Stochastic imputation using balanced sampling. 

In Joint Statistical Meeting of the American Statistical Association, 
Seattle August 2006. 

 
Deville, J.-C., Grosbras, J.-M. and Roth, N. (1988). Efficient sampling 

algorithms and balanced sample. In COMPSTAT, Proceedings in 
Computational Statistics, Heidelberg. Physica Verlag, 255-266. 

 
Deville, J.-C., and Tillé, Y. (1998). Unequal probability sampling 

without replacement through a splitting method. Biometrika, 85, 
89-101. 

 
Deville, J.-C., and Tillé, Y. (2004). Efficient balanced sampling: The 

cube method. Biometrika, 91, 893-912. 
 
Deville, J.-C., and Tillé, Y. (2005). Variance approximation under 

balanced sampling. Journal of Statistical Planning and Inference, 
128, 569-591. 

 
Dudoignon, L., and Vanheuverzwyn, A. (2006). Tirage d’un 

échantillon à probabilités inégales : application au panel Médiamat. 
In Actes de des Journées de Méthodologie Statistique, 1-10. 

 
Dumais, J., Bertrand, P. and Kauffmann, B. (2000). Sondage, 

estimation et précision dans la rénovation du recensement de la 
population. In Actes de la séance du 5 octobre 2000 du séminaire 
méthodologique SFDS-Insee sur la rénovation du recensement, 
6-26. 

 
Dumais, J., and Isnard, M. (2000). Le sondage de logements dans les 

grandes communes dans le cadre du recensement rénové de la 
population. In Séries Insee Méthodes : Actes des Journées de 
Méthodologie Statistique, Paris. Insee, 100, 37-76. 

 
Durr, J.-M., and Dumais, J. (2001). Redesign of the french census of 

population. In Proceedings: Symposium 2001, Achieving Data 
Quality in a Statistical Agency: A Methodological Perspective, 
Statistics Canada, Ottawa. 

 
Durr, J.-M., and Dumais, J. (2002). Redesign of the french census of 

population. Survey Methodology, 28, 43-49. 
 
Even, K. (2002). Improved tool for evaluating employment and 

vocational training policy: Panel of beneficiaries. Premières 
Informations Synthèses, Direction de l’Animation de la Recherche 
des Études et des Statistiques (DARES) du Ministère du Travail des 
relations sociales et de la solidarité, 33, 1, 1-7. 

 
Falorsi, P.D., and Righi, P. (2008). A balanced sampling approach for 

multi-way stratification designs for small area estimation. Survey 
Methodology, 34, 223-234. 

 
Fecteau, S., and Jocelyn, W. (2006). Une application de l’échantil-

lonnage équilibré : le plan de sondage des entreprises non 
incoprporées. In Méthodes d’enquêtes et sondages : pratiques 
européenne et nord-américaine, (Eds., P. Lavallée and 
L.-P. Rivest), Paris. Dunod, 405-410. 

 
Fuller, W.A. (2009). Some design properties of a rejective sampling 

procedure. Biometrika, 96, 933-944. 
 
Fuller, W.A. (2010). Replication variance estimation for rejective 

sampling. In Seminar of Statistics Canada, June 2010, Ottawa. 
 
Gini, C. (1928). Une application de la méthode représentative aux 

matériaux du dernier recensement de la population italienne (ler 
décembre 1921). Bulletin of the International Statistical Institute, 
23, 2, 198-215. 

 
Gini, C., and Galvani, L. (1929). Di una applicazione del metodo 

rappresentative all’ultimo censimento Italiano della popolazione 
(1   decembri, 1921). Annali di Statistica, Series 6, 4, 1-107. 

 
Gismondi, R. (2007). Quick estimation of tourist nights spent in italy. 

Statistical Methods and Applications, 16, 141-168. 
 



226 Tillé: Ten years of balanced sampling with the cube method: An appraisal 
 

 
Statistics Canada, Catalogue No. 12-001-X 

Hájek, J. (1981). Sampling from a Finite Population. New York: 
Marcel Dekker. 

 
Hedayat, A.S., and Majumdar, D. (1995). Generating desirable 

sampling plans by the technique of trade-off in experimental 
design. Journal of Statistical Planning and Inference, 44, 237-247. 

 
Hesse, C. (1998). Sampling co-ordination: A review by country. 

Technical Report E9908, Direction des Statistique d’Entreprises, 
Insee, Paris. 

 
Jocelyn, W. (2006). Sampling and estimation strategies for the 

canadian unincorporated business population. In Joint Statistical 
Meeting of the American Statistical Association, Seattle August 
2006. 

 
Kiaer, A. (1896). Observations et expériences concernant des 

dénombrements représentatifs. Bulletin de l’Institut International 
de Statistique, 9, 2, 176-183. 

 
Kiaer, A. (1899). Sur les méthodes représentatives ou typologiques 

appliquées à la statistique. Bulletin de l’Institut International de 
Statistique, 11, 1, 180-185. 

 
Kiaer, A. (1903). Sur les méthodes représentatives ou typologiques 

appliquées à la statistique. Bulletin de l’Institut International de 
Statistique, 13, 1, 66-78. 

 
Kiaer, A. (1905). Discours sans intitulé sur la méthode représentative. 

Bulletin de l’Institut International de Statistique, 14, 1, 119-134. 
 
Kott, P.S. (1986). When a mean-of-ratios is the best linear unbiased 

estimator under a model. The American Statistician, 40, 202-204. 
 
Langel, M., and Tillé, Y. (2010). Corrado Gini, a pioneer in balanced 

sampling and inequality theory. Technical report, University of 
Neuchatel. 

 
Legg, J.C., and Yu, C.L. (2010). A comparison of sample set 

restriction procedures. Survey Methodology, 36, 69-79. 
 
Lesage, E. (2008). Contraintes d’équilibrage non linéraires. In 

Méthodes d’enquêtes : applications aux enquêtes longitudinales, à 
la santé et aux enquêtes électorales, (Eds., P. Guilbert, D. Haziza, 
A. Ruiz-Gazen and Y. Tillé), Paris. Dunod, 285-289. 

 
Marí, G., Barbará, G., Mitas, G. and Passamonti, S. (2007a). 

Construcción de un estimador de variancia para muestras 
balanceadas estratificadas. In XXXV Coloquio Argentino de 
Estadística. Mar del Plata, Argentina. 22, 23 y 24 de Octubre de 
2007. 

 
Marí, G., Barbará, G., Mitas, G. and Passamonti, S. (2007b). Muestras 

equilibradas en poblaciones finitas: un estudio comparativo en 
muestras de explotaciones agropecuarias. In Undécimas Jornadas 
“Investigaciones en la Facultad ” de Ciencias Económicas y 
Estadística, noviembre de 2007, Universidad Nacional de Rosario, 
Argentina. 

 
Nedyalkova, D., Péa, J. and Tillé, Y. (2006). A review of some current 

methods of coordination of stratified samples. introduction and 
comparison of new methods based on microstrata. Technical 
report, Université de Neuchâtel. 

 
Nedyalkova, D., and Tillé, Y. (2009). Optimal sampling and 

estimation strategies under linear model. Biometrika, 95, 521-537. 
 
Nedyalkova, D., and Tillé, Y. (2010). Bias robustness and efficiency in 

model-based inference. Technical report, University of Neuchâtel. 
 
Neyman, J. (1934). On the two different aspects of representative 

method: The method of stratified sampling and the method of 
purposive selection. Journal of the Royal Statistical Society, 97, 
558-606. 

 
Neyman, J. (1952). Lectures and Conferences on Mathematical 

Statistics and Probability. Graduate School; U.S. Department of 
Agriculture, Washington. 

 
 
 
 

Périé, P. (2008). Échantillonnage à entropie maximale sous 
contraintes : un algorithme rapide basé sur l’optimisation linéaire 
en nombres binaires. In Méthodes d’enquêtes : applications aux 
enquêtes longitudinales, à la santé et aux enquêtes électorales, 
(Eds., P. Guilbert, D. Haziza, A. Ruiz-Gazen and Y. Tillé), Paris. 
Dunod, 294-299. 

 
Rivière, P. (1999). Coordination of samples: The microstrata 

methodology. In 13th International Roundtable on Business Survey 
Frames, Paris. Insee. 

 
Rousseau, S., and Tardieu, F. (2004). La macro SAS CUBE 

d’échantillonnage équilibré, Documentation de l’utilisateur. 
Technical report, Insee, Paris. 

 
Royall, R.M. (1976a). Likelihood functions in finite population 

sampling theory. Biometrika, 63, 605-614. 
 
Royall, R.M. (1976b). The linear least squares prediction approach to 

two-stage sampling. Journal of the American Statistical 
Association, 71, 657-664. 

 
Royall, R.M. (1988). The prediction approach to sampling theory. In 

Handbook of Statistics Volume 6: Sampling, (Eds., P.R. Krishnaiah 
and C.R. Rao), Amsterdam. Elsevier/North-Holland, 399-413. 

 
Royall, R.M., and Pfeffermann, D. (1982). Balanced samples and 

robust bayesian inference in finite population sampling. 
Biometrika, 69, 401-409. 

 
Sunter, A. (1977). List sequential sampling with equal or unequal 

probabilities without replacement. Applied Statistics, 26, 261-268. 
 
Tardieu, F. (2001). Échantillonnage équilibré: de la théorie à la 

pratique. Technical report, Insee, Paris. 
 
Thionet, P. (1953). La théorie des sondages. Insee, Imprimerie 

nationale, Paris. 
 
Tillé, Y. (2001). Théorie des sondages : échantillonnage et estimation 

en populations finies. Dunod, Paris. 
 
Tillé, Y. (2006a). Balanced sampling by means of the cube method. In 

Joint Statistical Meeting of the American Statistical Association, 
Seattle August 2006. 

 
Tillé, Y. (2006b). Sampling Algorithms. New York: Springer. 
 
Tillé, Y., and Favre, A.-C. (2004). Co-ordination, combination and 

extension of optimal balanced samples. Biometrika, 91, 913-927. 
 
Tillé, Y., and Favre, A.-C. (2005). Optimal allocation in balanced 

sampling. Statistics and Probability Letters, 74, 31-37. 
 
Tillé, Y., and Matei, A. (2007). The R Package Sampling. The 

Comprehensive R Archive Network, http://cran. r-project. org/, 
Manual of the Contributed Packages. 

 
Tirari, M. (2006). Le plan de sondage équilibré et l’estimation du total 

d’une population finie. In Méthodes d’enquêtes et sondages : 
pratiques européenne et nord-américaine, (Eds., P. Lavallée and 
L.-P. Rivest), Paris, Dunod, 411-416. 

 
Valliant, R., Dorfman, A.H. and Royall, R.M. (2000). Finite 

Population Sampling and Inference: A Prediction Approach. New 
York: John Wiley & Sons, Inc. 

 
Wilms, L. (2000). Présentation de l’échantillon-maître en 1999 et 

application au tirage des unités primaires par la macro cube. In 
Séries Insee Méthodes : Actes des Journées de Méthodologie 
Statistique, Paris. Insee. 

 
Yates, F. (1946). A review of recent statistical developments in 

sampling and sampling surveys. Journal of the Royal Statistical 
Society, A109, 12-43. 

 
Yates, F. (1960). Sampling Methods for Censuses and Surveys. 

Charles Griffin, London, England, third edition. 



Survey Methodology, December 2011  227 
Vol. 37, No. 2, pp. 227-231 
Statistics Canada, Catalogue No. 12-001-X 

 
1. Jean Opsomer, Department of Statistics, Colorado State University, Fort Collins, CO 80523-1877. E-mail: jopsomer@stat.colostate.edu. 

 

Innovations in survey sampling design:  
Discussion of three contributions presented at the U.S. Census Bureau 
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1. Introduction 
 
The U.S. Census Bureau is one of the largest survey data 

collection organizations in the world, in addition to its role 
in the collection of the U.S. Decennial Census data. The two 
major statistical tools used by the Census Bureau in de-
signing its surveys are stratification and multi-stage sam-
pling. These tools have been successfully implemented 
starting in the 1940s and have continually been adapted and 
refined since then. 

While this general sampling approach has been very 
successful, there are increasing concerns about rising survey 
costs, decreasing response rates and new frame coverage 
issues (especially related to telephones). At the same time, 
advances in data collection methods, new data sources and 
computational tool offer opportunities for considering 
survey design approaches that would have been unfeasible 
before. In conjunction with the 2010 Redesign Program 
currently on-going at the Census Bureau, input was there-
fore sought from leading academic researchers in innovative 
sampling methods, as a way to initiate the exploration of 
possible new approaches to design surveys conducted by the 
Census Bureau. As a result, Profs. Steve Thompson (Simon 
Fraser University), Sharon Lohr (Arizona State University) 
and Yves Tillé (Université de Neufchâtel) were invited to 
give overview lectures on some of the designs they de-
veloped. I was invited to contribute a discussion to each of 
these lectures. 

In the three sections that follow, I will summarize my 
comments to each of these lectures. My goals in those 
comments were to highlight the most important aspects of 
the sampling methods that were presented, to discuss some 
of the main opportunities for using these designs in the 
household sampling context, and to identify possible 
challenges in implementation. 

 
2. Adaptive network and spatial sampling  

Prof. Thompson’s lecture covered a broad class of de-
signs that includes adaptive cluster sampling, network 
sampling and adaptive web sampling. Unless I am referring 
to a specific design within this class, I will refer to these 
designs as “adaptive sampling” in what follows. A major 

advantage of adaptive sampling is that it incorporates some 
of the features of “convenience” sampling approaches such 
as snowball sampling, including decreased reliance on a 
sampling frame and the ability to target sampling to portions 
of the population of particular interest. But unlike conve-
nience sampling, adaptive sampling remains firmly design-
based, in the sense of allowing randomization-based finite 
population estimation and inference. 

In adaptive sampling procedures, an initial sample 0s  is 
drawn according to a probability sampling design 0 0( ).p s  
Based on the characteristics of the elements in 0s  (e.g., 
presence/absence of features of interest or an enumeration of 
“links” to other elements in the population), a follow-up 
sample 1s  is selected from the remaining population, using 
a conditional sampling design 1 1 0( | ).p s s  This process is 
repeated with successive incremental samples 2 3, , ...s s  
until a target criterion such as overall sample size or number 
of sampling “waves” is reached, and the final sample is the 
union of each of the successive samples. The specifics on 
how the waves are drawn varies by adaptive design. Section 
2.2 of Thompson’s article in this issue and Thompson 
(2006) provide additional details for adaptive web sampling, 
a very flexible type of adaptive sampling that includes many 
of the other designs as special cases. 

Because the designs for each of the sampling waves are 
probability designs, it is possible to obtain valid design-
based estimators. A simple estimator for the finite popu-
lation mean 1= UN iN y   is constructed as follows. 
Based on the initial design 0p  with associated inclusion 
probabilities 0 ,i  an unbiased estimator for the population 
mean is given by 1

0 00
ˆ = / .s i iN y    For each of the sub-

sequent waves = 1, ..., ,k K  an unbiased estimator of N  
is given by 

1
= / ,s sk i i kik k

z y y q


   where kiq  are condi-
tional inclusion probabilities for wave k  (see Thompson 
(2006) for details on construction of the ,kiq  and Section 2.4 
of Thompson’s article in this issue for specific examples). 
Letting 1

=1ˆ = ,K
kr kK z   an unbiased estimator for N  is 

obtained as 0ˆ ˆ ˆ= (1 ) ,rw w      which is a linear com-
bination of the initial estimator and the mean of the sub-
sequent estimators. 

The estimator ̂  is design unbiased but it depends on the 
order of the waves in which the sample was obtained. A 
more precise estimator can be obtained by averaging over 
all the different orders in which the same sample could have 
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been obtained. For small sample sizes, an explicit expres-
sion is available for this more efficient estimator, but in 
general it needs to be approximated by repeated sampling 
from an appropriately defined Markov chain, and taking the 
mean of the samples. The exact methods for setting up the 
chain and drawing the samples are described in Thompson 
(2006), which also discusses variance estimation for the 
resulting estimator. 

One of the primary advantages of adaptive sampling 
designs is that they allow the survey organization to focus 
the sample in portions of interest in the population. This is 
particularly useful in situations where some of the elements 
of interest are relatively rare and where they cannot be 
identified a priori in a sampling frame. Examples of such 
situations are surveys of hunting and fishing behavior, 
recent immigrants, home-schoolers, or owners of family-
owned businesses. In each of these cases, the elements are 
quite “diffuse” in the population and no comprehensive 
frame is generally available. However, it is likely that 
individuals who are part of this population will be able to 
provide information on other individuals, so that links can 
be identified and sampled across different adaptive sampling 
waves. Note that adaptive sampling can also be used when 
these types of rare elements are part of a subpopulation of 
interest within a survey of a larger and non-rare population. 
For instance, a survey of school children might want to 
include a stratum of home-schooled children. 

Finding relatively rare (sub)populations is a common 
challenge in surveys, and a number of methods are regularly 
deployed to deal with this issue. Perhaps the most common 
sampling design in the context of household surveys is 
stratified multi-stage sampling. To the extent that relevant 
PSU-level auxiliary information is available, the survey 
organization can oversample PSU expected to contain a 
larger fraction of the groups of interest. An example of such 
a situation is a survey of African-American males at risk of 
Parkinson’s disease, in which Census tracts with higher 
African-American population fraction could be oversam-
pled. Another sampling design that can be useful in this 
context is multi-phase sampling. In this case, the first phase 
of sampling is used either as a screening sample or as a way 
to collect relevant auxiliary information, while subsequent 
phases focus on obtaining the survey data of interest. The 
Agricultural Resource Management Survey (ARMS) con-
ducted by the USDA follows this design. A sample of all 
farms is selected in phase 1, in which farm characteristics 
for the survey year are collected. In later phases, targeted 
sampled based on the commodities of interest (e.g., dairy, 
wheat, etc) are selected. A third sampling approach that is 
sometimes useful for obtaining samples of rare (sub)popu-
lations is multi-frame sampling. The principle underlying 
multi-frame sampling is to combine several frames with 

different coverage characteristics, for instance a “good” 
frame containing a large proportion of elements of interest 
but potentially incomplete and a “bad” frame that is compre-
hensive but contains a low proportion of elements of inter-
est. For instance, a survey of companies in a particular 
industry might be able to use an industry group membership 
list as the “good” frame and a general company list as the 
“bad” frame. For a more in-depth look at multi-frame sam-
pling, see Section 3 below. 

Compared to these three designs, adaptive sampling is 
more flexible and allows finer control over the number and 
characteristics of elements that are included in the sample, 
which will often result in improved efficiency and/or lower 
cost. A drawback of adaptive sampling is that information 
needs to be collected on the linkages between elements, 
which can increase respondent burden and data collection 
cost, and potentially raises confidentiality issues. 

Because adaptive sampling frequently relies on “links” 
between elements in order to define the conditional selec-
tion probabilities in the sampling waves, it is also parti-
cularly well-suited for surveys that are interested in studying 
connections between elements in a population. Examples of 
such situations might be surveys involving transactions or 
relationships between businesses, surveys of barter/trading 
behavior of households, and surveys of family network 
relationships or characteristics. 

For a survey organization contemplating adoption of 
adaptive sampling, a number of issues related to estimation 
and data dissemination need to be considered. In many 
cases, the survey data are released in the form of a weighted 
dataset, and variance estimates are provided in the form of a 
simplified design description (e.g., strata and PSUs), repli-
cate weights or generalized variance functions. It is also 
very common for the weights to be calibrated and/or 
adjusted for non-response. Estimators for adaptive designs 
are indeed expressible as weighted sample sums, so that a 
weighted dataset could readily be created even for the 
Markov chain version of the estimators mentioned above. 
The choice of how to best provide variance estimates with 
the dataset is something that still needs to be investigated 
and might depend on the specifics of the survey. Similarly, 
how to incorporate calibration and nonresponse adjustments 
in adaptive sampling estimation is an area where additional 
research is needed. 

 
3. Sampling with multiple overlapping frames  
Prof. Lohr gave a comprehensive overview of general 

sampling designs and estimation methods when sampling 
uses multiple frames. Traditional approaches for conducting 
surveys are increasingly called into question today, because 
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of increasing costs, decreasing response levels for traditional 
modes, and increasing concerns for undercoverage of ex-
isting sampling frames (e.g., landline telephone numbers 
reached by RDD). By drawing samples from several frames 
instead of from a single frame, it is possible to reduce 
survey costs, improve the coverage of the overall sample, 
and potentially even increase response rates depending on 
the specific survey being conducted (for instance, because 
of improved respondent identifier information in one of the 
frames). 

Multiple frame sampling is a pure randomization-based 
approach to draw samples, and sampling within the indi-
vidual frames follows the same methodology as “classical” 
single-frame sampling. Fully design-based estimation meth-
ods for multiple-frame sampling are available, several of 
which can readily be deployed in the large-scale survey 
context in which a weighted dataset is the primary output 
(see below). The key feature of all estimation methods is the 
estimation of the frame overlap, which is typically unknown 
but needs to be accounted for. This is done by, for each 
frame, constructing design-based estimators for the sub-
population(s) of elements that also fall in the other frame(s). 
The estimators for the characteristics of the frame inter-
section(s) then need to be combined across frames. Existing 
methods differ in how they combine these estimators, with 
the simplest methods using sample-size weighted averages 
and more complex estimators weighting by estimates of the 
precision of the individual estimators. 

Sampling from multiple frames is particularly applicable 
in cases where no single frame is available that covers the 
whole population. Typical examples of such situations are 
RDD sampling, where an increasing fraction of the popu-
lation is not reachable through a landline telephone number, 
surveys of professionals or businesses with partial listings 
available from vendors or professional organizations. Other 
situations in which multiple frame sampling might be appli-
cable are surveys of rare subpopulations that exist within a 
larger population. An overall frame for the population 
exists, but screening respondents for whether they belong 
the the subpopulation is time-consuming and expensive. An 
alternate frame containing a much higher proportion of 
elements from the subpopulation of interest is sometimes 
available, but if the coverage of that frame is incomplete, the 
survey organization might not be willing to rely on it for 
fear of not obtaining a valid sample. Combining the 
alternate but incomplete subpopulation frame with the 
complete but inefficient population frame might be both 
cost-effective and statistically defensible. Examples of 
surveys of such subpopulations are surveys of hunting and 
fishing, where a license frame often exists but it might be 
incomplete or out of date. This multiple frame approach 
might also be useful for a survey of the general population, 

as a way to increase the sample size within certain sub-
populations of particular interest. For instance, in a general 
survey of farms, it might be of interest to produce estimates 
for organic farms, which only represent a small fraction of 
farms but with many of those listed in organic business 
directories. Section 1 of Lohr’s article in this issue gives 
several additional examples of the wide applicability of 
multiple frame surveys. 

As noted above, estimation methods involve the con-
struction of estimators for the frame intersection subpopu-
lation, which requires selection of a weighting method for 
the estimators obtained from the different frames. Weighting 
methods that rely on estimating the precision of these esti-
mators might be preferred from an efficiency perspective. 
However, they are somewhat problematic to implement in 
practice, because the resulting weights can vary for different 
variables in the survey. More practical approaches will 
forego some efficiency in order to be able to have single 
weights for all survey variables, a key feature emphasized 
repeatedly in Lohr’s article in this issue. The pseudo-
maximum likelihood (PML) method of Skinner and Rao 
(1996) produces a single set of weights and is recommended 
by Lohr as the method of choice for single surveys, while a 
simpler fixed-weight approach is preferable for longitudinal 
surveys. 

While the basic methodology for constructing design-
based estimators for multiple frame sampling is in place 
today, there is still a need for further research in approaches 
for applying calibration and nonresponse adjustment in this 
context. Because it is possible to apply those adjustments at 
the individual frame level, the population level, or both 
levels (depending on the available auxiliary information), an 
investigation of the properties of the estimators under these 
different scenarios would be very useful, and should be used 
to develop guidelines for survey practitioners. Section 3 of 
Lohr’s article in this issue discusses some initial results in 
this area. 

Variance estimation methods for multiple-frame esti-
mators have been developed and are reviewed in Section 4.2 
of Lohh’s article, and include both linearization and repli-
cation approaches. An important practical issue in the use of 
the linearization approach is that it requires access to the 
frame identification for all the elements in the sample, 
because it involves separate estimation of the variance in 
each frame. This might be undesirable for the survey organi-
zation producing the data, for reasons of data confiden-
tiality. In the case of replication methods such as jackknife 
and bootstrap, it is possible for the survey organization to 
create sets of replicate weights that do not require disclosure 
of the frame identity of individual sample elements to the 
data users. Lohr (2007) recommends the combined boot-
strap approach for inference for multiple frame sampling. 
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As an alternative, the grouped jackknife of Kott (2001) 
could also be considered. 

Implementing multiple frame sampling surveys can be 
more challenging than single-frame surveys. There needs to 
be awareness for the increased potential for nonsampling 
errors, as discussed in Section 5 of Lohr’s article, especially 
if the data collection modes or protocols vary across frames. 
For instance, sampled elements in one frame get an advance 
letter, while those in another frame receive a “cold call” 
because of lack of address information. It is also possible 
that the nonresponse characteristics differ across frame, so 
that separate adjustments are required. Finally, in many 
cases the elements present in the different frames might 
have different characteristics (e.g., organic farms belonging 
to a national organic business association vs. those that do 
not). In all those cases, attention to frame-specific effects 
and careful weight construction are required in order to 
obtain valid survey estimators. On the other hand, the 
presence of multiple frames provides opportunities for 
measuring nonsampling errors, because they entail multiple 
samples from the same population. For instance, it might be 
useful to perform “cold calls” for a portion of the selected 
elements in the frame with addresses to evaluate mode 
effects. 

 
4. Balanced sampling with the cube method  

The presentation by Prof. Tillé covered the fundamentals 
of balanced sampling and described the cube method, which 
he developed as a practical algorithm implementing the 
drawing of balanced samples. The goals of balanced sam-
pling designs are to maintain the representation of the 
population structure in the sample (hence the term “bal-
ance”), and to improve the efficiency of survey estimators. 
Today, most survey statisticians apply stratification as the 
primary tool to achieve these two goals. Stratification 
achieves balance by forcing the sample composition to 
match the stratum allocation, and improves the efficiency of 
estimators by removing the component of variance due to 
between-stratum differences. Systematic sampling is also 
used to achieve these goals, most commonly in natural re-
source surveys. In this case, the sample composition 
matches the population composition exactly along the 
sorting variable, and approximately for any variable corre-
lated with the sorting variable. Efficiency is gained because 
sample moments of the variables of interest (approximately) 
match population moments. While both approaches are 
widely used and work well, they are relatively inflexible. 
Stratification often involves dividing the population into 
“cells” defined by the intersection of stratification variables, 
which might lead to a proliferation of many small cells with 

corresponding small sample sizes. Systematic sampling is a 
highly constrained form of sampling with limited amount of 
flexibility in sample construction, and with the additional 
issue of the lack of a design-based variance estimator. 

Balanced sampling can be viewed as a generalization of 
stratification. Under this interpretation, stratified samples are 
drawn with given probabilities of inclusion for all the popu-
lation elements, but subject to constraints on the sample size 
in each stratum. In balanced sampling, the stratification 
constraints are replaced by constraints of the form 

/ = ,s Ui i i x x  where ix  is a vector of balancing 
variables. When the ix  are stratum indicators, balanced 
sampling is the same as stratification, but any categorical or 
continuous variables (or combination thereof) can be used, 
which provides a high degree of flexibility in sample 
construction. 

As noted above, the cube method is an algorithm that 
draws balanced samples given a set of inclusion probabili-
ties and constraints. If exactly balanced samples exist in the 
population, the algorithm will try to select one of them. If no 
sample can be found that has the postulated inclusion 
probabilities and satisfies the balancing constraints exactly, 
it will attempt to come as close as possible to satisfying the 
constraints. The cube method requires that the balancing 
variables ix  be known for all elements in the population. 
Depending on the survey context, this requirement might 
represent a key limitation on the applicability of balanced 
sampling. 

Despite the fact that balancing on population-level 
auxiliary variables is done at the design stage, it seems 
likely that in practice, calibration and other weight adjust-
ments such as for nonresponse will still often be required. In 
fact, Tillé recommends the combination of balancing and 
calibration as the most efficient strategy (see Section 7.4 of 
Tillé’s article in this issue). The theoretical properties of 
estimators that are both balanced and calibrated still needs to 
be fully worked out, however. 

While balanced sampling maintains the inclusion proba-
bilities of the elements in the population, it is clear that the 
presence of the balancing constraints affects their joint 
inclusion probabilities and hence the variance of the esti-
mators. This topic is addressed in Section 6 of Tillé’s article. 
Deville and Tillé (2005) showed that, under certain condi-
tions, the variance of balanced sampling estimators can be 
approximated by a linearization-type variance, which de-
pends on the residuals of a linear regression of the survey 
variables on the balancing variables. While this is an 
important and useful result, it does not lead to a variance 
estimation approach that is applicable to all survey ap-
plications. One issue is that variance estimation based on 
this method requires access to the balancing variables for all 
the survey respondents, and these might not be made 
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publicly available as part of the survey dataset. In this 
context, a replication-based method might be particularly 
attractive, because it would not require releasing these 
variables. However, no such method is currently available. 

Balanced sampling has close connections with rejective 
sampling, which aims to achieve the same goals. In rejective 
sampling, a sample is drawn with prespecified inclusion 
probabilities and the sample is accepted or rejected based on 
whether it is within a given tolerance level of a balancing 
constraint. If the sample is rejected, the procedure is 
repeated until a sample is found that falls within the 
tolerance level. While rejective sampling has a long history, 
Fuller (2009) described some asymptotic theory that showed 
that asymptotically, his version of rejective sampling was 
approximately equivalent to balanced sampling. 

 
5. Closing remarks  

The methods covered in the three lectures are remarkably 
complementary. Adaptive designs make it possible to obtain 
randomization-based, statistically valid samples for popu-
lations that have traditionally been difficult to sample 
efficiently. Very little frame information is required to draw 
such a sample, but a significant amount of effort has to be 
expended during the data collection in order to identify and 
follow the “links” among the elements, and draw the 
successive samples. In contrast, balanced sampling is useful 
when very detailed frame information is available, and in 
that situation, it allows for highly customized and efficient 
sample designs. Once a balanced sample is drawn, the data 
collection can proceed in the same manner as for traditional 

surveys. Multiple frame sampling covers an intermediate 
case, in the sense that no single good frame exists but 
several partial frames are used to “offset” each other’s 
weaknesses. Separate samples are drawn from each frame, 
and data collection proceeds as usual, except for that fact 
that it is necessary to determine which frame(s) each 
sampled respondent belong to. 

Combined with the existing approaches already in use, 
these three new sampling methods have the potential to 
greatly increase the flexibility with which samples can be 
customized for specific applications, to reduce survey costs 
and to increase the precision of survey estimators. 
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ANNOUNCEMENTS 
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published in a future issue of Survey Methodology. 
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