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Abstract 

Most central banks effect changes to their target or policy rate in discrete increments 
(e.g., multiples of 0.25%) following public announcements on scheduled dates. Still, for 
most applications, researchers rely on the assumption that the policy rate changes linearly 
with economic conditions and they do not distinguish between dates with and without 
scheduled announcements. This assumption is not innocuous when estimating the policy 
rule based on daily frequency. For the 1994-2011 period, and using an otherwise standard 
term structure model, I find that accounting for discrete changes leads to economically 
different estimates. Only the model based on discrete changes depicts a picture that is 
consistent with existing evidence on the monetary policy rule and risk premium. I study 
the information content of key policy announcements in the period from the end of 2008, 
where the policy rate reached a lower bound in the US, until the end of 2011. 

JEL classification: E43, E44, E47, G12, G13 
Bank classification: Asset pricing; Financial markets; Interest rates 

Résumé 

Le taux cible ou directeur de la majorité des banques centrales fait l’objet de 
modifications discrètes plutôt que continues (par multiples de 25 points de base par 
exemple), annoncées publiquement à des dates préétablies. La plupart du temps, 
toutefois, les chercheurs partent de l’hypothèse que le taux directeur varie linéairement 
avec les conditions économiques, sans établir de distinction entre les dates d’annonce 
prévues au calendrier et les autres jours. Cette hypothèse n’est pas sans conséquence 
lorsque la règle de politique monétaire est estimée à partir de données quotidiennes. Pour 
la période 1994-2011, et dans le cadre d’un modèle de structure par terme par ailleurs 
standard, l’auteur montre que la prise en compte du caractère discret des changements du 
taux directeur aboutit à des estimations différentes du point de vue économique. Le 
modèle intégrant des changements discrets est le seul dont les résultats cadrent avec ceux 
existant quant à la règle de politique monétaire et à la prime de risque. L’auteur étudie 
aussi le contenu informatif des principales annonces effectuées par la Réserve fédérale 
entre la fin de 2008, où le taux directeur est tombé à un plancher aux États-Unis, et la fin 
de 2011. 

Classification JEL : E43, E44, E47, G12, G13 
Classification de la Banque : Évaluation des actifs; Marchés financiers; Taux d’intérêt 

 

 



I Introduction

Many central banks change their target (or policy) rates via discrete increments, typically multi-

ples of 0.25%. Moreover, these changes almost always occur following scheduled meetings and the

schedule of meetings is known well in advance to market participants. The intent behind this op-

erational procedure is, or is understood to be, to increase the transparency surrounding the central

bank’s actions and to reduce unnecessary variations in interest rates. Presumably, transparency

increases the predictability of future policy rates, tightens the relationship of short-term yields to

policy decisions and enhances the effectiveness of the monetary policy transmission mechanism.

Indeed, a large literature has shown that short-term interest rates and, in the case of the US, Fed

funds futures rates, provide the best forecasts of future target rates and can be used to estimate

monetary policy shocks.

An accurate description of expectations as measured from short-term interest rates is crucial for

policy makers and market participants. In the following, I compare dynamic term structure models

for short-term interest rates that take into account the known schedule of policy meetings. In a

first set of results, I compare the implications from a model based on a discrete support, consistent

with the fact that target changes take discrete increments, to the implications from the standard

Gaussian approximation.1 The sample is daily and runs until the end of 2011. A second set of

results analyzes the information content of futures rates around key policy announcements and,

more generally, throughout the period where the target reached its lower bound in the US.2

Specifically, I ask the following questions. First, does the Gaussian approximation to discrete

changes affect policy rule estimates? The answer is yes. Maximum Likelihood estimates based on

the discrete distribution are substantially different from Quasi Maximum Likelihood estimates based

on the Gaussian distribution. Target rate innovations are far from normal, and in particular, exhibit

significant conditional skewness. Second, does the Gaussian approximation affect the estimation

of the term structure model? Again, the answer yes. Unsurprisingly, using futures data alters

the estimates of the policy rule substantially for each model. More importantly, the estimates

from the discrete-support model are consistent with others found in the literature (e.g., Clarida,

Gaĺı, and Gertler 2000). The discrete-support model implies substantially more mean-reversion

in the target rate than estimates from the Gaussian model. The role of the lagged target rate

for future target rates is less important and, consequently, the role of the other variables is more

important in the discrete-support model. Moreover, consistent with theory and existing evidence,

the discrete-support model produces estimates of the price of macro risk that remain positive and

1Neglecting the schedule of meetings leads to grossly misspecified models. I do not discuss this case.
2The lower bound is typically considered to be zero but the effective lower bound has been 0.25% so far in the US.
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evolve smoothly over time. In contrast, using a Gaussian approximation yields unreasonable risk

premium variations.

In a third exercise, I measure and summarize the effect of monetary policy announcements (e.g.,

press releases following FOMC meetings) on interest rates between the end of 2008, where the target

rate reached its lower bound, until the end of 2011. The model is estimated using daily data. I

find that every announcement led to a decline in the macro factor. In the model, this translates

in a lower risk premium and in lower expected future rates. However, the proximity to the lower

bound causes variations in the futures rates to be subdued. This introduces an asymmetry in

the information content of the macro factor. It still captures improvements in perceived economic

conditions but does not capture further deteriorations. This chapter ends with a discussion of

ongoing developments in the literature to address the challenge of the lower bound for existing

models of short-term interest rates.

Each model takes into account the known meeting schedule. Each uses the current target rate

and a latent macro indicator to drive policy decisions. In each case, the policy rule is linear and

variance parameters are constant, with different parameters for days with or without a scheduled

policy meeting. In fact the different specifications are identical except for one aspect: the distri-

bution of target rate innovations. The benchmark uses the Gaussian distribution to model target

changes. In the alternative models, target rate changes have a discrete distribution, as in the data.

In particular, the discrete distribution has fat tails and time-varying skewness. In a first set of

comparisons, I impose that the price of risk associated with unexpected target changes is zero.

Otherwise, a non-Gaussian model has more flexibility to fit futures data relative to a Gaussian

model. I also estimate a variant of the model where the (constant) price of target rate risk is un-

restricted. This parameter is significant statistically and economically. Economically, the constant

price of target risk induces substantial risk premium variations as well as time-varying volatility in

yields.

The existing asset pricing literature focuses on long-term yields or has mostly ignored the facts

that target changes take discrete increments and typically occur on known dates.3 A substantial

econometric literature has studied Federal Funds futures and document their ability to predict

future target changes.4 However, the evidence suggests that the risk premium in Fed funds futures

rates exhibits significant variations.5 This calls for a dynamic term structure model that combines

3Notable exceptions include Rudebusch (1995), Balduzzi et al. (1997), Hamilton and Jordà (2002), Piazzesi (2005a)
and, recently, Fontaine (2011), Feunou and Fontaine (2012) and Renne (2012).

4See Krueger and Kuttner (1996), Cochrane and Piazzesi (2002), Gurkaynak et al. (2007), Ferrero and Nobili
(2008), and Hamilton (2009). See also Bhundia and Chadha (1998) for the UK, and Diez de los Rios and Reid (2008)
for Canada.

5See Sack (2004), Piazzesi and Swanson (2006), and Hamilton and Okimoto (2010)
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the information in the cross-section of interest rates and sweeps away the effect of risk premium

variations on measures of expectations.

Although it is not the objective of this paper, a target rate specification that accounts for the

schedule of policy meeting and for the lumpy changes is applicable in the context of a structural

VAR. In particular, one can use the occurrence of policy meetings to obtain a high-frequency iden-

tification scheme of monetary policy shocks (Cochrane and Piazzesi, 2002). In addition, one can

also use the difference in variance between days with and without meetings to identify the struc-

tural shocks (Sentana and Fiorentini 2001, Rigobon 2003). The common identification assumption

that monetary policy shocks do not affect macro-economic variables contemporaneously can be

implemented easily. I discuss these issues briefly.

Section II introduces the model of the target rate. Section III introduces the corresponding

models of the term structure. Section IV discusses the data and the estimation method. Section V

presents the estimation results. Section VI studies the futures market from the end of 2008 until

the end of 2011. Section VII concludes.

II Modeling Short-Term Interest Rates

A Policy Rules in Practice

The policy rule followed by the monetary authority to set its target interest rate, rt, can be

generically defined by,

rt+1 = rt + δr(rt − r̄) + δ′z(zt+1 − z̄) + ϵrt+1, (1)

for a given set of state variables, zt, where r̄ is interpreted as the natural interest rate, and where

ϵrt+1 = rt+1 − Et[rt+1]. The expectation is taken using the information set of market participants

or that of the econometrician so that ϵrt+1 is the unanticipated target change. Equation 1 is often

interpreted as the representation of an abstract policy rule. For instance, the celebrated Taylor

rule (Taylor, 1993) relates the target Federal Funds rate in the US to deviations of inflation and

real GDP from some targets. This is not to say that actual policy decisions follow Equation 1.

In Taylor’s own words, we should “preserve the concept of a policy rule even in an environment

where it is practically impossible to follow mechanically the algebraic formulas economists write

down to describe their preferred policy rules.” Indeed, the typical central bank does not change

its target policy rate mechanically with every change in the state of the economy. Most central

banks have instead elected to change their targets only infrequently and then, to use a coarse grid

when choosing a new target (i.e. with intervals of 25 bps). Figure 1 contrasts the evolution of
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the target overnight Federal Funds rate and the 6-month Federal Funds futures rate. Changes to

the target rate are lumped together and the evolution of the target rate follows a step function.

These properties of target changes have significant implications for the distribution of ϵrt+1, which

we discuss in the next Section.6

A central assumption of a typical interest rate model is that the short rate, and yields, evolves

smoothly over a continuous support. Therefore, most policy rules studied in the literature do

not describe the evolution of the actual policy instrument - the step function in Figure 1 - but

instead use a smoother interest rate with a longer maturity. Yields on instruments with very short

maturities are often neglected altogether.7

The target rate may be a pure jump process but, nonetheless, the evolution of the futures rate

appears smooth to our eyes.8 But the data say otherwise: changes in yields are are much larger -

not as smooth - on days with a policy meeting (see the Appendix). The Gaussian approximation

may be sufficiently accurate for many research questions related to the evolution of long-term

yields. But it is costly in other applications. The approximation affects estimation of the monetary

policy rule and of monetary shocks from short term money market instruments (Rudebusch 1995,

Cochrane and Piazzesi 2002, Hamilton and Jordà 2002). In turn, different policy rule estimates

lead to different measures of the risk premium.9 More generally, the standard linear Gaussian

approximation creates a tension between capturing the evolution of long-term yields and estimating

the policy rule at relatively high frequency (i.e., daily). Indeed, models estimated on yields with

long maturities perform poorly for yields with short maturities and imply non-realistic dynamics

for the policy rate (see Piazzesi (2005a)).

B Target rate models

This Section introduces a representation of the policy rule based on the distribution of policy

shocks and the timing of policy decisions to address the empirical features of target rate changes. I

consider a discrete-time model where the sampling frequency (e.g., daily or weekly), is faster than

6The European Central Bank, the Bank of Canada, the Bank of England, the Bank of Japan, the Federal Reserve,
the Reserve Bank of Australia, the Reserve Bank of New Zealand, among others, all use an overnight rate as policy
instrument. In each case, changes are multiples of 25 bps (including 0), and are announced publicly on scheduled
announcement dates or follow scheduled policy meetings.

7Liquidity effects are also often cited when excluding short-term Treasury bills from estimation (see e.g., Duffee
(1996)).

8See Appendix A. Futures and interest rates correspond to risk-neutral expectations over all possible realizations of
futures target rates. The probability associated with any of these possible realization and, a fortiori, the corresponding
expectation can evolve smoothly as new information arrives.

9See Equation 24 in the Appendix.
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the frequency of scheduled meetings. The target for the overnight rate is given by

rt+1 − rt| rt, zt+1, It+1 ∼ D
(
µ(rt, zt+1, It+1), σ2(rt, zt+1, It+1)

)
(2)

for some parametric distribution family, D, conditional on the state variable zt+1. The indicator

function It+1 is equal to 1 if a policy meeting is scheduled to occur at date t+1 and zero otherwise.

Therefore, the conditional mean and conditional variance µ(·) and σ(·) can depend on calendar

time via the schedule of policy meetings. The policy rate is driven by its own shocks, ϵrt+1 and

by the state variables, zt+1. In the following, I contrast models based where the support of the

distribution, D,is continuous, nt ∈ R, or discrete, nt ∈ (. . . ,−2,−1, 0, 1, 2, . . .).

Model I : Normal-Markov

The standard linear-Gaussian policy rule approximation is nested in Equation 2 but where the mean

function, µ(·), does not depend on calendar time and where the variance is constant. I consider

the more general alternative where the schedule of policy meetings affects the distribution of policy

shocks. Specifically, the specification of the conditional mean µ(·) different for days that followed

by a scheduled meeting (i.e., It+1 = 1) than for days that are not followed by a scheduled meeting

(i.e., , It+1 = 0). Hence, we have two cases :

rt+1 − rt| rt, zt+1, (It+1 = 0) ∼ N
(
0, σ2

0

)
rt+1 − rt| rt, zt+1, (It+1 = 1) ∼ N

(
δr(rt − r̄) + δ′z(zt+1 − z̄), σ2

1

)
. (3)

Following Piazzesi (2005a) and Fontaine (2011), the expected target change is state-dependent on

days with a scheduled policy meeting but zero otherwise. The variance differs between days with

or without a scheduled meeting but it is constant otherwise.

Model II : Skellam-Homoscedastic

Next, I follow Fontaine (2011) who uses the Skellam distribution (Skellam, 1946) to confine tar-

get rate changes to a discrete support. Heuristically, this distribution corresponds to the dif-

ference between two Poisson random variables. If nu
t+1 and nd

t+1 have independent conditional

Poisson distributions with parameters λu(rt, zt+1, It+1) and λd(rt, zt+1, It+1), respectively, then

nt+1 = nu
t+1 − nd

t+1 has a Skellam distribution, SK. Then, discrete target changes can be written

as,

rt+1 − rt = ∆nt+1 = ∆(nu
t+1 − nd

t+1),

where ∆ = 0.25% is known. I assume that the intensity parameters on days without a scheduled
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meeting are given by,

λu(rt, zt+1, 0) = λ0 λd(rt, zt+1, 0) = λ0, (4)

to allow for target rate change following unscheduled FOMC meetings, and by

λu(rt, zt+1, 1) = λ1 + λr(rt − r̄) + λz(zt+1 − z̄)

λd(rt, zt+1, 1) = λ1 + λr(rt − r̄) + λz(zt+1 − z̄), (5)

when there is a meeting. Then, target changes are characterized by

rt+1 − rt| rt, zt+1, (It+1 = 0) ∼ SK
(
0, σ2

0

)
,

rt+1 − rt| rt, zt+1, (It+1 = 1) ∼ SK
(
δr(rt − r̄) + δz(zt+1 − z̄), σ2

1

)
, (6)

with

σ2
0 = 2λ0∆

2 σ2
1 = 2λ1∆

2

δr = 2λr∆ δz = 2λz∆ (7)

Model I and Model II have linear mean function, constant variance, the same number of parame-

ters and can be compared directly. The only difference between Equations 3 and 6 is the distribution

of policy innovations. The Skellam distribution imposes that the probability of observing a target

change which is not a multiple of 0.25% is zero. Moreover, this distribution inherits features of the

Poisson distribution. Importantly, it allows for time-varying asymmetry (i.e., skewness) in policy

innovations, given by

Skew[rt+1 − rt| rt, zt+1, (It+1 = 1)] =
1

σ1
(δr(rt − r̄) + δz(zt+1 − z̄)) . (8)

In other words, the asymmetry in the distribution of policy innovations is proportional to the mean.

The shape of the distribution of target rates also changes when its mean changes. For instance,

following an increase in the expected target changes, the probability of specific target hikes (e.g.,

0.25%, 0.50%) increases more than the probability of the corresponding target cuts with the same

magnitude (e.g., -0.25%, -0.50%). The Skellam distribution also has fat tails. Its excess kurtosis is

inversely proportional to the variance,

Kurt[rt+1 − rt] = 3 +
∆2

σ2
. (9)
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III Term Structure Models

This Section specifies the dynamics of zt and of the pricing kernel to complete the term structure

models. These additional assumptions are identical across short rate specifications and remain

unchanged throughout the empirical investigation below. Note that all the models considered

below belong to the family of 2-factor dynamic affine term structure models (Piazzesi, 2005b).

A State Variables

In the spirit of standard macro-finance models, I assume the state-vector, zt+1, has a stationary

auto-regressive representation,

zt+1 − z̄ = ϕ(zt − z̄) + ϵt+1, (10)

where ϵt+1 ∼ N(0, σ2
z). As in Piazzesi (2005a) and Fontaine (2011), this latent process is intended

to capture variations in the economy relevant to the FOMC. Next, I introduce the spread between

the target overnight rate and the effective market rate, st = r̃t−rt. The effective spread is included

for completeness since observed yields and Federal Funds futures depend on the realization of the

market overnight rate (see below). In practice, however, st plays no significant role in expectations

(Balduzzi et al., 1997) since it exhibits little persistence. In addition, it does not affect the evolution

of rt or other macro variables.10 The target spread st follows a leptokurtic process,

st+1 − s̄ = ϕs(st − s̄) + ϵst+1 + Js
t+1, (11)

where ϵst is i.i.d with distribution N(0, σs) and Js
t+1 is i.i.d. compound Poisson with number of

jumps ns
t+1 ∼ P (λJ

s ) and jump size νst+1 ∼ N(νs, ω
2
s), conditional on the number of jumps. The

asymmetry and fat tails of the target spread are well documented and large shocks typically occur

around the maintenance period for required reserve (e.g., Hamilton 1996, Piazzesi 2005a).

To summarize, the state vector Xt = [rt zt st] combines the target rate, a latent macro factor

and the effective spread. Equations 10 11 can be combined with any of the short-rate specifications

above into an auto-regressive representation for Xt (i.e., the mean functions are all linear.),

Xt+1 − X̄ = ϕ(It+1)(Xt − X̄) + ηt+1, (12)

where the innovations ηt+1 are independent through time, with Et[ηt+1] = 0. The parameters

corresponding to the short-rate rule - the first line of the matrix Φ(·) - change with It+1. Equation 12

10The evidence of a liquidity effect between reserves and macro variables is weak and subject to controversial identi-
fication assumptions (Hamilton, 1997). Thornton (2006) discusses the relation between reserve (supply) management
operations by the Fed, reserve (demand) forecast errors by the Fed, and the effective overnight Federal Funds rate.
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corresponds to the state equation in the state-space system below.

The auto-regressive representation implies that the policy response function is applicable in

the context of a structural VAR. In particular, one can use the occurrence of policy meetings to

obtain a high-frequency identification scheme of monetary policy shocks (Cochrane and Piazzesi,

2002). In addition, one can also use the difference in variance between days with and without

meetings to identify the structural shocks (Sentana and Fiorentini 2001, Rigobon 2003). A common

assumption to identify the structural shock is that monetary policy shocks do not affect macro-

economic variables contemporaneously. This can be easily implemented here. Moreover, innovations

in any of the state variables affect rt+1 on FMOC days only via the policy rule parameters.11

B Pricing kernel

I consider a standard exponential-affine kernel, Mt+1,

Mt+1 =
exp(λsϵ

s
t+1 + λt,zϵ

z
t+1)

Et

[
exp

(
λsϵst+1 + λt,zϵzt+1

)] . (13)

where λs is the price of risk associated with innovation in the effective spread st and λt,z is the

price of risk associated with innovation in the macro factor zt. Following Duffee (2002), the price

of macro risk is linear ,

λt,z = λ0 + λz,rrt + λz,zzt. (14)

This specification embodies several restrictions on the prices of risk. First, and most importantly,

the price of risk associated with innovations to zt+1 varies with the latent economic indicator, zt,

and with the current target rate, rt. This introduces business cycle variations in the risk premium

implicit in futures rates that has been documented by Piazzesi and Swanson (2006). There is no

other source of risk premium variations. Second, the price of target rate risk to zero. This implies

that the policy rule is the same under the risk-neutral and the historical probability measures.12

It also maintains the comparability between different models. Otherwise, the effect of risk on the

autoregressive matrix would not be the same whether the short rate is Gaussian or Skellam (see

Section C). I relax this assumption in Section C. Finally, the price of risk associated with ϵst+1 is

constant and induces a constant risk premium. The effective spread is highly volatile and shows no

11Another way to see the implicit structural restriction is by approximating ηt+1 with Σ(It+1)ut+1 where ut+1 are
uncorrelated white noises and the matrix Σ(It+1) is of the form,

Σ(It+1) =

[
σ2
r(It+1) σr,Y (It+1)

0 Σz

]
.

and σr,Y (It+1) depends on primitive parameters of λu
t and λd

t+1.
12Fontaine (2011) discuss the parameter shifts between the historical and the risk-neutral measures.
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persistence and it makes little sense to allow the risk premium to vary accordingly. Overall, these

restrictions on the price of risk parameters simplify the interpretation of risk premium variations.

Moreover, affine models with unrestricted prices of risk tend to over-fit the data and often produce

astronomically high Sharpe ratios (Duffee, 2009).

IV Estimation

A Data

I use a daily sample from February 4th 1994 until the end of 2011. This period covers 144

scheduled meetings. The FOMC effected changes to its target rate following 53 of these scheduled

meetings and, also, following 7 unscheduled meetings. The data include the target and effective

overnight funds rates, available from the Federal Board of Governors, and Fed Funds futures data,

available from the CME. I use contracts with horizons from 1 to 6 months. Contracts with longer

horizons are illiquid for most of the sample - days with no transactions on the exchange are a

common occurrence.13 Table I(a) presents summary statistics of the futures rates. The average

term structure of futures rates is upward sloping. Table I(a) presents summary statistics of target

rate changes following schedule FOMC meetings as well as for the effective spread st on all days.

Target changes averaged zero with standard deviation close to 25 bps in this sample. There is

also some evidence of negative skewness and of kurtosis in the distribution of target rate change –

consistent with a specification based on the Skellam distribution. The effective spread exhibits a

distribution skewed to the right and with substantial fat tails. The estimate of its kurtosis is 32.6!.

B Measurement Equations

The measurement equation includes the target rate, which is observed without error. The

corresponding conditional log-likelihood is based on one of the Gaussian density or the Skellam

probability mass function,

rt|rt−1, zt ∼ N
(
µIt(rt−1, zt), σ

2
It

)
(15)

or

rt|rt−1, zt ∼ SK
(
µIt(rt−1, zt), σ

2
It

)
. (16)

13The Fed changed its operational policy starting with the February 1994 meeting and has since an-
nounced any target changes following its policy meeting. The history of target rate changes is available at
http://www.newyorkfed.org/markets/statistics/dlyrates/fedrate.html
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Table I: Summary Statistics

Panel (a) provides the averages and standard deviations of futures rates for horizons from 1 to 6 months.
Panel (b) provides summary statistics for target rate changes following scheduled FOMC meeting and for the
spread st between the effective overnight rate and the target rate (for all days). Statistics include the average,
µ, standard deviation, σ, skewness, kurtosis and auto-correlation of order 1, ρ(1). Annualized basis points.
Daily data from Jan. 3rd, 1994 to Dec. 30th, 2011.

(a) Futures rates

Horizon 1 2 3 4 5 6
µ 3.40 3.41 3.44 3.46 3.50 3.53
σ 2.17 2.18 2.19 2.20 2.20 2.21

(b) Overnight rate and effective spread

µ σ skew kurt ρ(1)
rt − rt−1 0 22.5 -0.5 5.2 0.55
st 1.7 18.0 0.8 32.6 0.51

Next, the measurement vector includes futures rates, stacked in vector Ft.
14 I assume that futures

rates are measured with errors, F (t, n) = F (Xt, n)+νt, where F (Xt, n) is the model-implied futures

rate and νt is a vector of i.i.d zero-mean uncorrelated Gaussian measurement errors with variance

given by

ξ(Tn)
2 = (ξ0 + ξ1Tn)

2, (17)

where Tn > 0 is the number of days until the end of the reference contract. Hence the log-likelihood

of the futures rates is based on the Gaussian density,

Ft|Xt ∼ N
(
F (Xt), ξ

2
)
.

The model-implied formula for futures rate can be derived from its payoff. With no loss of

generality, I standardize the notional of the contract to 1. A futures contract settles at the end of

a reference calendar month, n. The Federal Funds futures contract is essentially a swap between

a variable rate and a fixed rate. The variable leg is the average overnight Fed Funds rate in the

reference calendar month, r̄n. With no cash exchange at inception, the fixed rate of the contract,

14The quoted price of this contract, P (t, n), is given by P (t, n) = 100−F (t, n)×3600. Due to weekends or holidays,
the settlement date may not coincide with the last day of the month. For simplicity, this possibility is not visible in
Equation 18 but I use CME’s “Following Business Days” in the following.
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F (t, n), must equal to expectation of average overnight rate under the risk-neutral measure,

F (t, n) = Et [Mt,t+Tn r̄n] = Et

[
Mt,t+TnD

−1
n

Tn∑
i=Tn−Dn

rt+i

]

= D−1
n

Tn∑
i=Tn−Dn

Et [Mt,t+T rt+i]

= D−1
n

Tn∑
i=Tn−Dn

f(t, i, Tn), (18)

where Tn is the number of days between t and the end of the reference month and Dn is the number

of days in that month. In turn, the rate on a singleton futures contract, f(t, h, T ), for the reference

day t+ h and settling at date t+ T , with 0 ≤ h ≤ T , is given by

f(t, h, T ) = exp
(
d0(t+ h, T − h) + c0 (u

∗, t, h)) + c (u∗, t, h)′Xt

)
×

[
c
′
0 (u

∗, t, h)Cr +X ′
tc

′
(u∗, t, h)Cr

]
, (19)

where u∗ = d(t + h, T − h) and Cr = [1 0 0]′. Note that the coefficient recursions have two

dimensions. They depend on the maturity, h, and also on calendar time, t, via the schedule of

policy meetings. See Fontaine (2011) for the derivation of futures rates and the computation of the

corresponding coefficient recursions.

C Filter and Likelihood

Equation 12 provides the transition equation of the state-space system. However, zt is not

observed and must be filtered from the data. I use the Unscented Kalman Filter [UKF] since

the measurement equation of futures rates is not linear in Xt (see Equation 19). The UKF is an

approximate filter that matches the first two moments of the state distribution. A QML estimator is

feasible but the variance in the log-likelihood of the Ft and rt must be adjusted for the uncertainty

associated with the filter for zt.
15 Conditional on values of the latent state variables, the joint

15This adjustment is standard in linear models and exact when the density is Gaussian (see e.g. Hamilton, 1994).
However, the measurement equation is not linear (but Gaussian) in the case of futures and it is not Gaussian (but
linear) in the case of the target rate. See Fontaine (2011) for details.
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(quasi) log-likelihood is given by

L(Θ;Y ) =

T∑
t=1

log
(
ft

(
Ỹt|Ỹt−1, It; θ

))
=

T∑
t=1

log
(
f(Yt|Ỹt−1, rt, st, It)f(rt|Ỹt−1, It)f(st|st−1)

)
where all model parameters are grouped in the vector Θ, and Ỹt summarizes the history of observable

variables for t = 1, . . . , t. The conditional likelihood of Yt depends on t through the deterministic

FOMC schedule. I use the following assumptions to identify the location, the scale and the sign of

the latent factor, zt : z̄ = 0, σz = 1/360 bps and δz ≥ 0. These are standard in the term structure.

In practice, these assumptions imply that the latent indicator is centered around zero, that it has

the same unit than a daily interest rate, and that an increase in zt is associated with an increase

of the expected target rate and should corresponds to improving economic conditions. Finally, we

have that |ϕz| < 1 and −2 < |δr| < 0 so that zt and the target rate are stationary.

V Results

A Effective Spread

The restrictions above imply the separation of the marginal likelihood of st and, therefore,

its dynamics can be estimated separately. Table II presents maximum likelihood estimates of

Equation 11. Panel (a) presents the estimates based on data until Dec. 15th 2008 when the FOMC

set the interest rates on required reserve balances and on excess balances at 25 basis points. I

present results based on the earlier sample separately to document the change in the behavior of

the effective spread since the Fed scaled up its liquidity intervention and started paying interest

on reserves in the fall of 2008 to implement its policy rate target. Bech and Klee (2009) discusses

the changes to the Federal Reserve’s operation framework. Figure 2 makes evident the change in

behavior in 2008. Persistent downward pressures on the effective spread started early in the fall of

2008. The Fed started paying interest on reserves in early October 2008. The results are similar

for different starting dates. Panel (b) presents the estimates based on all the data until Dec. 30th

2011.

All parameters are precisely estimated. The effective spread exhibits little persistence and its

unconditional mean is close to zero in the first sample. This reflects the Fed’s ability to counter-act

predictable deviation of the market rate from its target. The innovations to the effective spread
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have an asymmetric distribution with fat tails. The estimate of the jump intensity parameter, λJ
s ,

is 0.25. Innovations to the effective spread mix two Gaussian distributions on average 1 day out of

four. When no jump occurs, the distribution is Gaussian with zero mean and with a volatility of

5bps. Otherwise, the distribution is mixed with another Gaussian distribution with a mean of 2 bps

and a much wider volatility of 30 bps. When we include data after 2008, the innovation distribution

remains broadly unchanged. However, the effective spread becomes more persistent and its mean

becomes more negative. In other words, deviations of the market rate are more negative and more

persistent in the later part of the sample. This reflects the Fed’s emphasis on the provision of

liquidity and, later, the effect of quantitative easing. The Fed now rely on interest paid on reserves

to maintain the market rate close to its target (Bech and Klee, 2009).

Table II: Effective Spread Parameters

Maximum likelihood estimates of dynamics of the effective spread, st = r̃t − rt

st+1 = µs + ϕsst + ϵst+1 + Js
t+1,

where st is in annualized percentage, ϵst is i.i.d with distribution N(0, σs) and Js
t+1 is i.i.d. compound Poisson

with number of jumps ns
t+1 ∼ P (λJ

s ) and jump size νst+1 ∼ N(νs, ω
2
s), conditional on the number of jumps.

Panel (a) displays the estimates in a daily sample from Feb. 3rd, 1994 to Dec. 15th, 2008. Panel (b) displays

the estimates in a daily sample from Feb. 3rd, 1994 to Dec. 30th, 2011.

(a) 1994-2008 Sample

µs ϕs σs νs ωs λJ
s

-0.003 0.23 0.051 0.019 0.305 0.248
(0.00008) (0.002) (0.0005) (0.0027) (0.0012) (0.0028)

(b) 1994-2011 Sample

µs ϕs σs νs ωs λJ
s

-0.0138 0.56 0.052 0.031 0.280 0.222
(0.0004) (0.011) (0.002) (0.002) (0.07) (0.011)

B Policy Rules

This Section estimate the policy rule equation based on target rate date only – excluding

futures rates data. I compare policy rule estimates based on different distributional assumptions

for the policy shocks (i.e., Equation 3 and Equation 6). Importantly, the Gaussian policy rule

and the discrete policy rule have the same linear conditional mean specification, the same number

of parameters and a constant variance. The Gaussian policy rule approximates the distribution

of target rate changes with a continuous support over the real line. In contrast, the discrete
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distribution imposes that the target rate can only take discrete values (i.e., multiples of 0.25%).

The results show that changing the distribution affects the estimates of policy rule coefficients

significantly.

Table III presents results for each models. Using a discrete distribution yields a higher likelihood

value than using a continuous distribution (1533.3 vs 1504.5). Clearly, these models are not nested

and a standard likelihood ratio test is not applicable. Nonetheless, ranking the log-likelihoods

remains a consistent basis for model selection (Sin and White, 1996) and, therefore, I conclude that

the data favour the Skellam distribution.16

Table III: Policy Rule Parameters

Maximum likelihood (or Quasi maximum likelihood) estimates of the policy rule,

rt+1 − rt| rt, zt+1, It+1 = 1 ∼ D
(
δr(rt − r̄) + δz(zt+1 − z̄), σ2

1

)
,

using target rate observations only, excluding futures rates data, on days with FOMCmeetings (i.e., It+1 = 1)
where rt is the target rate, zt is a latent economic indicator, and D(·, ·) is the distribution of the policy rate
target innovations, etat. Panel (a) displays results based on a Gaussian (continuous) distribution for the
policy innovation and Panel (b) displays results based on a Skellam (discrete) distribution. The estimate of
σ1 for each model is reported in annualized basis point units. The persistence of zt is fixed at ϕz = 0.995 in
each case. Daily data from Feb. 3rd, 1994 to Dec. 30th, 2011. Standard errors in parenthesis.

(a) Gaussian Innovations

δr δz σ1 QML
-0.014 0.031 0.161 1504.5
(0.006) (0.003) (0.013)

(b) Discrete Innovations

δr δz σ1 ML
-2×10−12 0.006 0.208 1533.3
(1×10−4) (0.0018) (0.015)

Each model attributes a different role to zt. The estimates of the coefficient δz is 0.03 in the

Gaussian model and 0.006 in the Skellam model. Both estimates are significant (they are non-

negative by construction). Moreover, in the case of the Gaussian model, the target rate plays a

significant role in its own mean-reversion, δ̂r = −0.014, but it is insignificant in the discrete model.

In fact, the point estimate is trivially small (i.e., −2e−12). Therefore, a specification where the lag

16A poorly specified model with discrete support could be rejected in favour of a model with a continuous support.
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target rate plays no role,

rt+1 − rt| rt, zt+1, It+1 = 1 ∼ SK
(
δz(zt+1 − z̄), σ2

1

)
cannot be rejected on the basis of target rate data only when we use the Skellam distribution but

not otherwise. In other words, variations in zt are sufficient. But why are the estimates different?

The answer must follow from the only difference between the two models.17 In the discrete-support

model, the asymmetry in the distribution of target changes is proportional to its mean in the

discrete model. In the discrete model, the coefficient δz drives variation in the expected target

changes. Since this coefficient is positive, improving economic conditions implies that the likelihood

of a target hike increases by more than the decrease in the likelihood of a target cut with the same

magnitude. In contrast, the likelihood changes are symmetric in the Gaussian case. Then, one way

to shift the distribution function is to also include the target rate as a conditioning variable. In this

case, similar economic conditions, as measured by zt, will be associated with different distribution

of future target changes depending on the current value of the target rate.

Finally, target innovations have a relatively large standard deviation in both models. This is not

surprising since these simple policy rules do not use any conditioning variable beyond the current

target rate and the filtered value of the latent factor, zt. In turn, the latent factor is filtered only

based on past target rate changes. The objective of this section is not too provide a good fit of

target rate changes but to highlight the consequences different distributional assumptions on the

coefficient estimates. The following Section uses term structure data as conditioning data.

C Term Structure Models

This Section presents estimation results for the full dynamic term structure model in Section III

using futures rates and the target rate data, jointly. Parameters of the effective spread dynamics

are fixed at their values estimated in the entire sample (see Section A above). I first compare term

structure models based on the Gaussian or the Skellam distribution but where target rate risk is

not priced (Model I vs. Model II). These models have identical parametric specification and the

same number of parameters. The only difference is the distribution of the policy shocks. Clearly,

the results below differ from those in Table III since a much richer information set is used here.

The term structure of futures rates brings forward-looking information about the path of future

target rates and helps estimate the policy rule reliably.

17More formally, these estimates were obtained from minimizing different objective functions (i.e., different es-
timator). There is no reason why these should be equal in a finite sample. In addition, the convergence of the
QML estimator based on the Gaussian distribution to the parameters of interest only holds asymptotically and if the
distribution is symmetric.
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Pricing errors

Table IV compares the Root Mean Squared pricing Error (RMSE), as well as the estimates of

standard deviations, ξ(n). All are reported in annualized basis points. Panel (a) and Panel (b)

displays results for the Gaussian model and the discrete model, respectively. Each model provides

a good fit of futures rates.18 Moreover, these models cannot be distinguished on the basis of the

RMSEs. But this should not come as a surprise. Futures rates only depends on the the variance

and conditional mean of future target rates. The first two moments have identical parametric

specification in each model. The asymmetry in the Skellam distribution does not affect the model-

implied futures rates since target rate risk is not priced.

Table IV: Pricing Errors

Root Mean Squared pricing Errors (RMSE) and standard deviations of measurement errors ξ(Tn)for futures

rates with one to six months to maturity in annualized basis points. Panel IV(a) presents results for the

Gaussian model. Panel IV(b) presents results for the Discrete model. Daily data from Feb. 3rd, 1994 to

Dec. 30th, 2011.

(a) Pricing Errors - Gaussian Model

Maturity
1 2 3 4 5 6

RMSE 4.38 6.67 4.99 3.53 2.29 4.04
ξ(n) 5.33 4.99 4.65 4.31 3.97 3.63

(b) Pricing Errors - Discrete Model

Maturity
1 2 3 4 5 6

RMSE 4.43 6.65 4.92 3.58 2.26 4.12
ξ(n) 5.28 5.06 4.84 4.62 4.40 4.18

Parameter estimates

Table V and Table VI display parameter estimates for the Gaussian and discrete models, respec-

tively. Unsurprisingly, both sets of results imply that the daily evolution of the target rate is very

persistent. In fact, it is statistically indistinguishable from a unit root. But the models differ

substantially in how they build the persistence into the target rate equation.

18Piazzesi (2005a) obtains average absolute pricing errors above 7 bps for LIBOR rates with comparable maturities,
Feldhtter and Lando (2008) obtains an RMSE of 22 bps for 3-mth LIBOR rates. These author fit a broader set of
maturities and of instruments.
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Estimates of policy rule parameters from the Gaussian model are δ̂r ∼ 0 and ϕ̂z = 0.9948.

In contrast, the estimates from the discrete model are δ̂r = 0.30 and ϕ̂z = 0.9999. Consider

first the persistence of the macro factor. The two point estimates have very different forecasting

implications. At a 6-month horizon we have 0.9948180 = 0.40 and 0.9999180 = 0.98 (the frequency is

daily). Hence, in the Gaussian model, 60% of zt innovations dissipate within six months relative to

only 2% in the model based on the Skellam distribution. Therefore, the effect of current innovations

in zt on future target rate changes is much smaller in the Gaussian model since estimates of the zt

coefficients δz are similar (0.016 vs 0.023).

Next, consider the estimate of δr. This measures the degree of mean-reversion in the target

rate.19 The target is nearly a unit root in the Gaussian model. There is no significant mean-

reversion when zt = z̄. In contrast, the discrete-support model imparts substantial mean-reversion

to the target rate. If the macro factor is held at its mean (zt = z̄) then the target rate is expected

to retrace 30% of the path toward its unconditional mean at each scheduled meeting. Clarida et al.

(2000) find estimates of the autocorrelation coefficient on the lag short rate between 0.73 and 0.88

in the post-Volcker era. For comparison, the corresponding coefficient estimate obtained here is

ρ̂ = 1 − 0.30 = 0.70. These estimates are not directly comparable since they were obtained from

a different sample period and using different instruments. Moreover, the estimates from Clarida

et al. (2000) correspond to quarterly dynamics while the estimates obtained here correspond to

the frequency of scheduled meetings. Nonetheless, this rough comparison suggests that the level

of mean-reversion estimated from the Gaussian model is inconsistent with the data (biased) while

the estimate from the model based on the Skellam distribution offers a consistent picture.

Looking back at Section B, we see that estimates of δr and δz in Table III differ substantially

from those obtained here. Again, estimates from the full no-arbitrage model use forward-looking

information from futures rates. Using futures data changes the description of the policy rule drawn

by each model. Moreover, the more realistic model, based on a discrete distribution, appears

consistent with existing results and with economic intuition. Estimates from the discrete-support

allow for a rapid reversion of the policy rate when economic conditions returns to a normal state.

On the other hand, estimates from the Gaussian model implies fast mean-reversion of economic

conditions and a very persistent process for the target rate.

19The stationarity of rt demands that δr < 0 and that |ϕz| < 1 (if δz ̸= 0). The stationarity of zt only demands
the second condition.
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Table V: Gaussian Term Structure Model

Parameter estimates for the Gaussian term structure model. Panel (a) reports estimates of the policy rule,

rt+1 − rt| rt, zt+1, (It+1 = 1) ∼ D
(
δr(rt − r̄) + δz(zt+1 − z̄), σ2

1

)
,

(i.e., It+1 = 1) where rt is the target rate, zt is a latent economic indicator, and D(·, ·) is the distribution of

the policy rate target innovations. It also reports the estimate of ϕz. Panel (b) displays the estimates of the

price of risk coefficients (see Equations 13 and 14). Estimation uses daily data including the target rate, the

effective spread and futures rates, from Feb. 4rd, 1994 to Dec. 30th, 2011.

(a) Policy Rule

σ0 σ1 δr δz ϕz

3.09 5e−5 1.84e−4 0.023 0.995
(0.04) (0.04) (0.36) (0.0004) (0.0001)

(b) Prices of Risk

λs λ0,z λz,r λz,z

8.20e4 1.81e3 −1.01e7 −1.82e6

(0.31e4) (0.15e3) (0.04e7) (0.08e6)

Table VI: Discrete Term Structure Model

Parameter estimates for the Skellam term structure model. Panel (a) reports estimates of the policy rule,

rt+1 − rt| rt, zt+1, (It+1 = 1) ∼ D
(
δr(rt − r̄) + δz(zt+1 − z̄), σ2

1

)
,

where rt is the target rate, zt is a latent economic indicator, and D(·, ·) is the distribution of the policy rate

target innovations. It also reports the estimate of ϕz. Panel (b) displays the estimates of the price of risk

coefficients (see Equations 13 and 14). Estimation uses daily data including the target rate, the effective

spread and futures rates, from Feb. 4rd, 1994 to Dec. 30th, 2011. Standard errors in parenthesis.

(a) Policy Rule

σ0 σ1 δr δz ϕz

1.39 96.33 -0.30 0.016 0.999
(0.10) (3.70) (0.006) (0.0002) (0.0001)

(b) Prices of Risk

λs λ0,z λz,r λz,r

−1.54e3 2.61e3 −4.11e7 1.73e6

(0.79e3) (0.05e3) (0.51e7) (0.24e6)
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Is target rate risk priced?

This Section relaxes the restriction that target rate innovations are not priced. Instead of Equa-

tion 13, the pricing kernel is now given by:

Mt+1 =
exp(λrηt+1 + λsϵ

s
t+1 + λt,zϵ

z
t+1)

Et

[
exp

(
λrηt+1 + λsϵst+1 + λt,zϵzt+1

)] , (20)

where λr is the constant price of target risk. Table VII reports pricing error RMSE and parameter

estimates. Adding a single parameter increases the log-likelihood by 494. In other words, the

statistical evidence is overwhelmingly in favour of allowing target rate innovations to be priced.

This addition also leads to small decreases of the pricing error RMSEs and of the standard deviation

estimates.

More importantly, changes in the parameter estimates are economically significant. Introducing

a constant price of target rate risk introduces risk premium variations that are associated with

target rate innovations. In contrast, a constant price of risk only contributes a constant to the risk

premium in the Gaussian case. The difference arises because a constant price of target risk affects

all the parameters of the policy rule (not only the constant as in the Gaussian case). Fontaine

(2011) shows that the intensity parameters of the Skellam distribution (see Equation 5) are shifted

as follows,

λQ
u,r = λre

λr∆ λQ
d,r = λre

−λr∆

λQ
u,z = λze

λr∆ λQ
d,z = λze

−λr∆∆. (21)

where, as before, ∆ = 0.25%. In particular, the loadings of λu(rt, zt+1, It+1) and λd(rt, zt+1, It+1)

on rt and zt+1 are the same under the historical probability but they are not the same under Q. The

corresponding policy rule parameters for the distribution of the target rate are given by (compare

with Equation 7)

δQr = (λQ
u,r + λQ

d,r)∆ = λr(e
λr∆ + e−λr∆)∆

δQz = (λQ
u,z + λQ

d,z)∆ = λz(e
λr∆ + e−λr∆)∆. (22)

The parameters δr and δz determine the policy rate dynamics under the historical measure and are

used to compute the likelihood of observed policy rate changes. In contrast, the parameters δQr and

δQz , determine expected target changes under Q and are used to compute futures rates (and other

asset prices). If λr = 0, then these parameters are the same. Therefore, the price of target rate
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Table VII: Discrete Support Model - Priced Target Risk

Parameters estimates for the Skellam term structure model with priced target rate risk. Panel (a) reports
pricing RMSE for each maturity and the corresponding estimated standard deviation parameters. Panel (a)
reports estimates of the policy rule, σ0 and

rt+1 − rt| rt, zt+1, (It+1 = 1) ∼ D
(
δr(rt − r̄) + δz(zt+1 − z̄), σ2

1

)
,

(i.e., It+1 = 1) where rt is the target rate, zt is a latent economic indicator, and D(·, ·) is the distribution of

the policy rate target innovations. It also reports the estimate of ϕz. Panel (b) displays the estimates of the

price of risk coefficients (see Equations 13 and 14) including the estimate of the (constant) price of target

rate risk. Estimation uses daily data including the target rate, the effective spread and futures rates, from

Feb. 4rd, 1994 to Dec. 30th, 2011. Standard errors in parenthesis.

(a) Pricing Errors

Maturity
1 2 3 4 5 6

RMSE 4.36 6.57 4.87 3.49 2.25 4.01
ξ(n) 5.22 4.89 4.56 4.24 3.91 3.59

(b) Policy Rule

σ0 σ1 δr δz ϕz

0.68 20.98 -0.07 0.0032 0.999
(0.03) (1.05) (0.004) (0.0002) (0.0002)

(c) Prices of Risk

λr λs λ0,z λz,r λz,z

3.27e5 −1.62e3 6.76e3 −7.06e7 3.04e6

(0.09e5) (0.08e3) (0.39e3) (0.21e7) (0.24e6)
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risk introduces a time-varying risk premium in the dynamics of the target rate,

EQ
t [rt+1− rt]−Et[rt+1− rt] = (δQr − δr)(rt− r̄)+ (δQz − δz)Et[zt+1]+ δQz (E

Q
t [zt+1]−Et[zt+1]), (23)

where the last term is due to variation in the price of macro risk (see below). The estimate of the

price of target risk is positive and significant. Unexpected increases in the target rate are considered

risky - they are associated with bad states of the economy from the point view of participants in

the futures markets. The implied parameter shift is substantial - eλ̂r∆ + e−λ̂r∆ = 9.79. Under

the historical measure, the policy rule coefficient estimates are δ̂r = −0.07 and δ̂z = 0.0032. Both

are significantly lower than the previous estimates. However, under the risk-neutral measure, the

corresponding parameters are δ̂Qr = −0.33 and δ̂Qz = 0.015. These are almost identical to the

estimates of δr and δz above (where δQ = δ). Hence, allowing for the price of target risk makes

the expected target rate less sensitive to economic conditions and with less mean-reversion under P
than under Q. This implies that the risk premium for target rate risk, EQ

t [rt+1− rt]−Et[rt+1− rt],

is higher when economic conditions improve and when the target rate is high.

The market price of macro risk

Figure 4 displays estimates of λz,t, the parameter controlling the time-varying price of risk associated

with innovations in the macro factor. The correlations between the two series is significant : 0.84.

However, there are important differences between the two models. The price of risk varies smoothly,

and mostly at the monthly frequency. Moreover, while the price of risk almost settled around a

constant values in the discrete model since the target rate reached its lower bound. In contrast,

estimates from the Gaussian model still vary significantly. Also, the price of macro risk is typically

positive in the Discrete model. Then, estimates of the price of macro risk from the discrete model

are consistent with an established view that the risk premium implicit in futures consistent exhibit

little variations at the daily frequency.

The results are also consistent with the fact that innovations in the macro factors should be

associated with lower marginal rate of substitution and improved economic conditions for investors.

In contrast, the estimates of price of risk from the Gaussian model exhibits significant daily varia-

tions and sometimes swing deeply in the negative territory. Moreover, the distortions is significant

for policy purposes. Estimates of the price of risk in the Gaussian model reach large negative values

when the target rate declines faster than expected, or when the target rate is close to its lower

bound. Therefore, large negative risk premium imply estimates target rates expectations that are

biased upward in periods where the Fed’s intent is to loosen monetary conditions. Overall, the
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evidence suggests that the mis-specification of the target rate distribution induces economically

significant bias in the estimates of the prices of macro risk.

VI Unconventional Policy and the Challenges Ahead

This Section shows that the filtered values of the latent macro factor can be interpreted as changes

in economic conditions implicit in Fed Funds futures rates. I then use the macro factor to evaluate

the effect of different policy announcements. I conclude with a discussion of recent modeling efforts

to address the challenges raised by unconventional policy at the zero lower bound.

A Link with Economic Conditions

The Philadelphia Fed publishes the Aruoba-Diebold-Scotti [ADS] index of U.S. real activity.

The index summarizes the information content from releases of real economic variables. It does not

contain information from asset prices or other nominal variables. The index is daily and is “designed

to track real business conditions at high frequency.20 The underlying economic variables blend high-

and low-frequency information and stock and flow data (weekly initial jobless claims; monthly

payroll employment, industrial production, personal income less transfer payments, manufacturing

and trade sales; and quarterly real GDP)”.

Figure 3 draw the correlations between current ADS index and the lagged macro factor, with

daily lags from zero up to six months. It also draws the converse – the correlations between current

macro factor and the lagged index. The highest lag corresponds to the longest futures maturity

used to filter the macro factor. The results show that the predictive content of the macro factor for

future values ADS index is substantial. The correlations increase smoothly from 0.4 at low horizons

to nearly 0.6 at horizons around six months. In contrast, the predictive content of the ADS index

decays smoothly to just above 0.1.

Figure 5 compares the filtered values of the latent factor, zt with the ADS index. The rela-

tionship between zt and the index is visually apparent. These two proxies for economic conditions

are closely related. Of course, they do not overlap since futures rates combine information from a

broader information set perceived by market participants to be relevant for FOMC decisions. High

realization of the macro factor are associated with high values of the ADS index in the future.

Figure 5 also reveals that the relationship between economic activity, as measure by the ADS in-

dex, and the macro factor, measured from futures rates changes toward the end of 2008. Figure 6

provides a close-up of this period. In fact, the macro factor appears to be bounded from below.

20A similar high-frequency index of inflation is not available.
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This is a reflection of the Fed’s decision, in December 2008, to lower its target to 0.25%, which is

effectively the lower bound. The ADS index continued to deteriorate in the recession of 2009 but

rates could not be lowered further. The Fed’s unobserved desired effect on the economy corresponds

to a negative policy rate but this cannot be implemented in practice.

On the other hand, the futures curve still measures improvements of economic conditions. On

June 9th 2009, the US Labor Department reported a lower number of job losses than what was

expected. This corresponds to the largest spike in the macro factor in Figure 7. Nonetheless,

persistently low inflation eventually led the Fed to implement quantitative easing policy and, in

addition, to implement a commitment to keep the target rate unchanged until the end of 2013.

There is no lower bound in a linear model. Therefore, implementation of a linear filter through

a time series of a futures rates that remains relatively unchanged leads to relatively unchanged

estimates of the macro factor.

B Policy Announcement at the Lower Bound

We can use the macro factor to measure the of impact of policy announcements on the expecta-

tions of participants in the futures market. Table VIII lists major monetary policy announcements

by the Federal Reserve since November 2008. It builds from and extends the list in Wright (2012)

until the end of 2011. It includes the date of every FOMC meetings, key speeches by Fed Chairman

Bernanke, and one coordinated announcement by different central banks. We can measure the

effect of an announcement on the state of economy, as perceived from market participants, from

changes in futures rates. The maintained assumption is that these policy announcements are the

main drivers of futures rate changes (on the announcement day).

Figure 7 draws the evolution of the macro factor since 2008 until the end of 2011 with vertical

lines that indicate the announcement dates listed in Table VIII. Almost every policy announcement

corresponds to a decline in the macro factor. This is consistent with the Federal Reserve signalling

that the target rate would remain constant for a longer horizon. This arose either because the Fed’s

statement related directly to the horizon, or indirectly, as a consequence of other policy decisions

(e.g., quantitative easing). These declines in the macro factor are large for this period. The mean

response is close in magnitude to the standard deviation of all shocks in this period. However,

the shocks show little persistence and the cumulative change of the macro factor is small. This

reflects the tension between the effect of the Fed’s statement on long horizon futures and the lack

of variations implicit in the one-month contract.

The asymmetry in the response of futures rates implies that the usefulness of a linear model

is also asymmetric. Notwithstanding episodic improvements in economic conditions, the filtered
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Table VIII: Policy Announcements 2008-2011

Dates of major policy announcements by the Federal Reserve between November 2008 and December 2011.

Dates until August 2009 are from Wright (2012).

Date Nature of the Announcement
11/25/2008 Fed Announces Purchases of MBS and Agency Bonds
12/1/2008 Bernanke states Treasuries may be purchased
12/16/2008 Scheduled FOMC Meeting
1/28/2009 Scheduled FOMC Meeting
3/18/2009 Scheduled FOMC Meeting
4/29/2009 Scheduled FOMC Meeting
6/24/2009 Scheduled FOMC Meeting
8/12/2009 Scheduled FOMC Meeting
9/23/2009 Scheduled FOMC Meeting
11/4/2009 Scheduled FOMC Meeting
12/16/2009 Scheduled FOMC Meeting
1/27/2010 Scheduled FOMC Meeting
3/16/2010 Scheduled FOMC Meeting
4/28/2010 Scheduled FOMC Meeting
6/23/2010 Scheduled FOMC Meeting
8/10/2010 Scheduled FOMC Meeting
8/27/2010 Bernanke Speech at Jackson Hole
9/21/2010 Scheduled FOMC Meeting
10/15/2010 Bernanke Speech at Boston Fed
11/3/2010 Scheduled FOMC Meeting
12/14/2010 Scheduled FOMC Meeting
1/26/2011 Scheduled FOMC Meeting
3/15/2011 Scheduled FOMC Meeting
4/27/2011 Scheduled FOMC Meeting
6/2/2011 Scheduled FOMC Meeting
8/9/2011 Scheduled FOMC Meeting
8/26/2011 Bernanke Speech at Jackson Hole
9/21/2011 Scheduled FOMC Meeting
11/2/2011 Scheduled FOMC Meeting
11/30/2011 Coordinated central bank announcements
12/13/2011 Scheduled FOMC Meeting
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macro factor indicated throughout 2010 and 2011 that these did not lead market participants to

revise their expectations of policy rates upward. On the other hand, the futures rates were relatively

insensitive to further deterioration of the underlying economic conditions. It is true that policy

announcements by the FOMC still affected the futures market and led to declines in the macro

factor. Nonetheless, this measured effect was low by historical standard given that the target rate

is bounded below.

C The Challenges Ahead

The lower bound on nominal interest rates is the current frontier for policy-makers and re-

searchers studying the term structure of interest rates. Several alternative solutions exist in the

literature. First, the seminal work of Cox et al. (1985) is based on “square-root” processes and

maintains the positivity of yields as well as computational tractability. But note that most exist-

ing empirical applications enforce the Feller conditions. This approach is often criticized on the

grounds that zero becomes a reflecting boundary - the short rate bounces off zero and never reaches

it. Following this observation, Black (1995) formulated the short rate as an option,

rt = max(0, r̃t),

where r̃t is the “shadow” policy rate. This allows for more flexibility in the specification of r̃t but

the analyst must resort to numerical solutions for yields and other asset prices. Finally, a quadratic

short rate is always positive,

rt = x′tΥxt

and analytical results are available when xt is Gaussian. This leads to quadratic-Gaussian term

structure models (Ahn et al. 2002 and Leippold and Wu (2003)) where the solution for yields is a

linear-quadratic function of xt.

Kim and Singleton (2011) provide an empirical study of nominal yields in Japan between 1995

and 2008. They show that the behaviour of yields is qualitatively different in this period. Empir-

ically, they compare multi-factor square-root, shadow-rate and quadratic-Gaussian term structure

models. They focus on long-maturity yields (the shortest maturity in their sample is 6 months)

and find that the shadow-rate and quadratic-Gaussian models capture important stylized features

of long-term interest rates in Japan. The same is not true for the square-root model.

These formulations are targeted at yields with relatively long maturity and toward relatively

low sampling frequencies. They ignore the fact that changes in the target rate are lumpy and occur

only rarely. As evidenced above, this omission affects estimation results if one focuses on yields with
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short maturities at a relatively high frequency. Hence, the pervasive, and sometimes persistent,

occurrences of very low policy rates nowadays calls for the development of term structure models

that meet the empirical features of the target rate while also enforcing the positivity of yields.

Some recent work seeks to reach this goal. Feunou and Fontaine (2012) introduce the family of

Discrete Choice Dynamics Term Structure models. They define the policy response function as an

ordered discrete choice problem (McFadden, 1984) and obtains asset pricing results to develop a

model of the term structure of yields. These models are flexible and allow for rich non-linearities in

the relationship between yields and the underlying economic variables, including the zero bound.

An ordered choice representation of the policy rule has been proposed before (Hamilton and Jordà,

2002) but implications for the term structure of yields have been ignored. Renne (2012) provides an

alternative specification based on regime-switching techniques. Although the number of regimes is

large, this family of models leads to a tractable affine representation of yields. Empirically, Renne

(2012) applies this model to the Euro area in a daily sample between 1999 and 2012. Finally, the

approach in Black (1995) is also applicable if the shadow-rate has a discrete support, as in this

paper. But the model then becomes intractable.

VII Conclusion

This chapter shows that different modeling assumptions yield different interpretations of the infor-

mation embedded in the term structure of yields. It provides a specification of the term structure

that is consistent with the operational policy of modern central banks. Policy rate changes occur

infrequently, typically on scheduled dates, and they are lumpy (i.e., multiples of 0.25%). The target

rate in the US has been fixed to its lower bound since the end of 2008. The positivity constraint has

been addressed in the literature in the context of long-term maturities but still poses a challenge

when combined with the requirement that the target rate has a discrete support. Moreover, the

lower bound does not imply that the central bank takes no further action to meet its mandates.

Liquidity facilities, credit easing, quantitative easing, and others, all represent monetary policy ac-

tions unrelated to the conventional target rate but that affect the term structure of interest rates.

Understanding the transmission of these unconventional actions to long-term yields is the next

challenge that the next generation of models must meet.
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Appendix

A Discrete Changes and the Distribution of Yields

Long-term yields evolve smoothly because the expectation operator is not restricted to the support of

any random variable.21 To see this, define the set of future dates where a meeting is scheduled, St, and write

the one-year yield, y
(i)
t , in terms of target rate expectations and a risk premium,

y
(1)
t = Et

[
1

365

365∑
i=1

rt+i−1

]
+ rp

(1)
t = rt + Et

[∑
i∈St

ci∆t+i

]
+ rp

(1)
t

where time is daily, ∆t+i = rt+i− rt+i−1, ci =
365−i
365 and rp

(1)
t is an adjustment for risk. Then, on days with

no policy rate changes (i.e., rt = rt+1), yield changes are given by,

y
(1)
t+1 − y

(1)
t =

∑
i∈S

(Et+1 − Et) [ci∆t+i] + rp
(1)
t+1 − rp

(1)
t , (24)

which shows that yields can change smoothly as economic information arrives since expectations and, a

fortiori, expectation changes are not restricted to the discrete support. Moreover, yields average the expected

changes over a sequence of future meetings. Finally, risk premium variations can also evolve continuously.

But discrete target changes affect the distribution of yields changes. Note that the first term in

Equation 24 is different on days where a policy meeting is held. On non-meeting days, this term is

the change in the expectations of future target rate. On meeting days, it is the policy rate innovation,

nt+1 = Et[rt+1 − rt]− (rt+1 − rt) (with a slight abuse of notation). Changes in expectations summarize the

effect of a variety of “news” related to future policy and may be relatively close to a Gaussian distribution.

In contrast, the innovations, nt+1, can take only a few values ex-post. In general, the expectation term,

Et[rt+1], does not lie close to a point on the support of rt+1 and the policy innovation nt+1 will “jump” to

one of these points. Large yield changes should be more common on days with policy meetings.

To confirm this effect, I consider Federal Funds futures contracts with maturities between 1 and 6

months. I count occurrences of rate changes in bins with different change sizes on days with a scheduled

policy meeting. The edges of the bins are -7.5, -2.5, 2.5 and 7.5 bps.22 I consider each maturity separately.

The sample runs from 1994 until 2011 and covers 144 schedule meetings. I repeat the analysis for other days

when no meeting occurs. Table IX reports for each bin the ratio of counts on meeting days to the average

of counts across the preceding 20 non-meeting days. For each maturity, and for each bin, a ratio lower than

one indicates that changes are less frequent on meeting days and on non-meeting days.23

As expected, small changes are less likely on meeting days. Overall, changes between -2.5 bps and 2.5

bps were between 15% and 25% less frequent on meeting days than on non-meeting days. In contrast, larger

rate changes are more frequent. Changes between 2.5 and 7.5 bps (in absolute value) are typically 50%

more frequent on meeting days. The difference is much greater for the 1-month contract: there are very

few changes of this magnitude on non-meeting days at this maturity. Finally, rate changes greater than 7.5

bps (in absolute value) are typically twice as likely on meeting days than on non-meeting days. Therefore,

21But it is restricted to its range
22For comparison, the standard deviation of rate changes for the 6-month contract is 4.6 bps.
23See Section A for a description of Federal Funds futures contracts. Note that the results are robust to changes in

the size of the bins and to changes in the number of days used to compute the average counts on non-meeting days.
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Table IX: Futures Rates Changes

Relative frequency of futures rate changes on days with and without policy meetings. Each line corresponds
to a different contract maturity. I report the ratio of the number of times a futures rate changes on days with
or without policy meeting, P (xi ≤ ft,n − ft−1,n ≤ xi+1| It = 1) and P (xi ≤ ft,n − ft−1,n ≤ xi+1| It = 0),
respectively, where ft is the rate on the n-month ahead contract, It is an indicator function equal to 1 when
a meeting occurs, and xi are the edges of the different bins used to compute the probabilities. P is the
empirical distribution. Daily data from Jan. 3rd, 1994 to Dec. 30th, 2011. Contract maturities between 1
and 6 months ahead.

Maturity
ft,n − ft−1,n 1 2 3 4 5 6
−∞ ≤ −0.075 1.36 4.38 2.92 2.89 2.63 2.31

−0.075 ≤ −0.025 5.74 1.41 1.66 1.43 1.41 1.28
−0.025 ≤ 0.025 0.84 0.80 0.83 0.81 0.76 0.80
0.025 ≤ 0.075 4.42 1.84 1.38 1.38 1.15 1.04
0.075 ≤ ∞ 1.54 5.00 2.43 2.05 2.75 2.05

discrete changes in the target rate imply that yield changes have a more dispersed distribution on following

policy announcements.
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