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ABSTRACT 

 
 

Savoie, N., N. El-Jabi, F. Ashkar, and D. Caissie. 2004. Low flow characterization in New 
Brunswick using the Deficit Below Threshold approach.  Can. Tech. Rep. Fish. Aquat. Sci. 
2545: 48p. 

 
 

Low flows play an important role in water management as well as for aquatic ecosystems.  
Although low flow remains an important component of the natural flow regime, it is often 
responsible for limiting aquatic habitat.  Annual low flow analysis, a common method of low flow 
frequency analysis, considers only the most severe low flow event within a given time period. This 
method does not consider secondary low flow events within a year/season, therefore it is not 
suitable when characteristics of low flow such as duration, volume and intensity are important. In 
order to quantify low flows in terms of intensity, duration and volume deficit, the Deficit Below 
Threshold approach (i.e. DBT) is becoming increasingly important in both water and aquatic 
resources management, because this approach better quantifies low flow events. This approach 
considers all low flow below a certain threshold and considers many low flow events during  a 
specific year/season.   
 

Predictions of low flow events and frequencies are made using hydrologic data. To 
characterize low flow in terms of duration, volume and intensity, the Deficit Below Threshold 
(DBT) method was applied. 31 hydrometric stations in New Brunswick were selected for low flow 
analysis.  Low flow event duration, volume and intensity data was fitted to generalized Pareto, 
exponential and Weibull distributions. The duration, volume and intensity were then calculated for 
recurrence intervals of 2, 10, 20 and 50 years using the best fitted distribution. In general, for the 
univariate analysis, the best fitted distribution was the Weibull distribution. The data was also 
fitted to a bivariate model following the Weibull distribution where the intensity was conditioned by 
durations of 7 and 14 days.  Data for different recurrence intervals were also generated for the 
bivariate analysis.  A regional analysis was then performed using the univariate and bivariate 
results.  There are significant relationships between volume and drainage area as well as 
between low flow and drainage area. However, there does not seem to be a significant 
relationship between duration and drainage area. 
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RÉSUMÉ 
 
 

Savoie, N., N. El-Jabi, F. Ashkar and D. Caissie.  2004. Low flow characterization in New 
Brunswick using the Deficit Below Threshold approach.  Can. Tech. Rep. Fish. Aquat. Sci. 
2545: 48p. 

 
 
 

Les débits faibles jouent un rôle important au niveau de la gestion des ressources hydriques 
et des écosystèmes aquatiques.  Les débits faibles sont non-seulement identifiés comme facteur 
limitant de l’habitat du poisson,  mais, ceux-ci demeurent un élément important au niveau du régime 
fluvial des cours d’eau.  La caractérisation de l’intensité, du volume et de la durée des débits d’étiage 
devient de plus en plus importante en aménagement des ressources hydrauliques et aquatiques. La 
méthode la plus utilisée pour l’analyse des débits d’étiages considère seulement l’événement à faible 
débit le plus sévère à l’intérieur d’une période donnée. Alors, cette méthode élimine des événements 
secondaires et n’est pas appropriée lorsque les caractéristiques telles que la durée, le volume et 
l’intensité sont importantes. Pour caractériser les étiages en volume, durée et intensité, l’analyse des 
séries de dépassement incomplète peut être appliquée. Cette approche considère tous les débits en 
dessous d’un niveau de référence et considère plusieurs événements pendant une période donnée. 

 
Les données hydrologiques sont l’information de base utilisée par les hydrologistes pour 

prédire les événements de faible débit et leur fréquence. Pour caractériser le volume, la durée et 
l’intensité des débits d’étiages, une analyse de séries de dépassement incomplète a été appliquée.  
31 stations hydrométriques ont été sélectionnées pour l’analyse des débits d’étiage. Les données de 
durée, volume et intensité ont été ajustées aux distributions suivantes: généralisée de Pareto, 
exponentielle et Weibull. Par la suite, les durées, volumes et intensités pour des périodes de 
récurrence de 2, 10, 20 et 50 ans ont été calculés en utilisant la distribution qui s’ajustait le mieux 
aux données. En général, pour l’analyse univariée, la distribution qui s’ajustait le mieux aux données 
était la distribution de Weibull. Un modèle bivarié suivant la distribution de Weibull a également été 
utilisé pour l’ajustement des données d’intensité conditionnées par des durées de 7 et 14 jours. Des 
données pour plusieurs périodes de récurrence ont également été calculées pour l’analyse bivariée. 
Une analyse régionale a été effectuée avec les résultats des analyses univariée et bivariée. Il y a 
une relation entre le volume et l’aire du bassin versant ainsi qu’entre le débit et l’aire du bassin 
versant. Cependant, il ne semble pas avoir de relation entre la durée et l’aire du bassin versant. 



 

1.0 INTRODUCTION 
 

The conflict between the ever-increasing demand for water withdrawal from rivers and 
water availability during drought and low flow periods is a recurring problem in water resources 
management.  Low flow events are also known to limit available fish habitat and in some severe 
conditions can also prevent the connectivity between habitats (Lake 2003).  In the 1990s, many 
rivers in eastern Canada experienced low flow conditions coupled with record high water 
temperatures (Caissie 1999; Caissie 2000). Also, during recent years of drought conditions, an 
increase in water withdrawal demand (offstream use), especially for irrigation, has been observed 
in New Brunswick.  Increased water demand and low flow occurrence are factors that need to be 
considered when establishing instream flow requirements or minimum flows to protect aquatic 
habitat (Caissie and El-Jabi 1995). 
 

Hydrologic data constitutes the basis of information used by hydrologists to make 
predictions of low flow events and frequencies. The probabilistic approach is useful in the 
analysis of such events due to the random nature of the low flows and the flexibility of this 
approach in characterizing low flow events. A low flow frequency analysis can be carried out 
following one of two methods. The first method, which has been widely applied in low flow 
studies, consists of analyzing the annual extreme low flow events (i.e. the annual minimums). 
When applied to river flows, this method considers only the most severe low flow event within a 
given time period, often chosen annually or by season. Therefore, this method eliminates 
secondary low flow events within a year/season and it is not suitable when characteristics of low 
flow such as duration, volume and intensity are important. To remedy this situation and to better 
characterize low flow in terms of duration, volume and intensity, a second approach can be 
applied. This approach considers all low flow below a certain threshold, also called a partial 
duration series analysis or Deficit Below Threshold (DBT) method. The DBT approach has not 
only the advantage of better characterizing low flow events (e.g. duration, volume, etc.), it can 
also consider many low flow events during a specific year/season. 
 

Quantifying low flows in terms of intensity, duration and volume deficit (i.e. DBT) is 
becoming increasingly important in both water and aquatic resources management. In fact, not 
only intensity of low flow has been shown to be important to aquatic habitats, the duration of low 
flow events has been observed to be equally important (e.g. stress index to fish).  
 

The objective of this research was to evaluate and report low flow characteristics in New 
Brunswick (NB) using hydrometric data and the partial duration analysis or DBT method. 
 
 
2.0 DATA AND METHODOLOGY USED 
 
2.1 Station Data 
 

Hydrometric stations in New Brunswick were selected for the low flow analysis using 
Environment Canada’s hydrometric station database (HYDAT) based on years of record and data 
quality. The following criteria were used: (i) natural flow at the gauging station, (ii) a time series of 
at least 20 years, and (iii) station in operation in the year 2000. The 31 selected stations 
represent all areas of the province with the exception of north central New Brunswick (Figure 1). 
These stations have an average drainage area of 1576 ± 526 km2 (mean ± 1 SE).  Table 1 
provides a summary of the selected stations, station identification, latitude, longitude and the 
years used in the analysis.  Daily river flows for each station were used for the analysis.  
 
 
2.2 DBT Model 
 

Two methods can be used in the analysis of hydrologic data for frequency analysis 
(Ashkar et al. 1998).  The first and most widely applied method consists of analyzing the annual 
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extreme low flow events or the annual minimums. The use of this method, which only considers 
the most severe low flow event within a given time period, results in a loss of valuable information 
by eliminating the secondary low flow events within a time period. Also, this method is not 
suitable to consider characteristics of low flows such as low flow duration, and volume and 
intensity. The second method, Deficit Below Threshold (DBT) or partial duration series analysis, 
is the stochastic analysis of low flow series below a certain threshold, QR.  This method better 
characterizes low flow in terms of duration, volume and magnitude and can consider many low 
flow events during a specific time period.  The DBT approach was used in the present study. 
 

In this study, the threshold value or the river-flow reference value (QR) was chosen as the 
median monthly flow (Q50) for August (i.e. 50th percentile of August daily river flows classified in 
descending order). This threshold, also referred to as the Aquatic Base Flow, has been used as a 
minimum flow in instream flow evaluation. The threshold value for each station was determined 
using Atlantic Canada Flow Analysis Software Version 1.0, ACFA 1.0 (Université de Moncton, 
1994).  All low flow events below this threshold were identified for the period of analysis using in-
house software. This software identifies the low flow events below the threshold value with the 
following characteristics: year, season, month, start (days), peak (days), end (days), peak 
exceedance (m3/s), real volume (m3/s*days), triangular volume (m3/s*days), rise duration (days), 
fall duration (days).   
 

For the low flow analysis, events were characterized in terms of duration (T), volume (D) 
and magnitude or intensity (I).  Figure 2 shows the following characteristics of a low flow event ν: 
the reference value QR (m3/s), the duration Tν (days) i.e. number of consecutive days for which 
the flow is below the reference value, the volume Dν (m3/s*days) i.e. cumulative deficit of 
streamflow for the duration, the intensity Iν (m3/s) i.e. the maximum flow deficit, the time of the 
beginning of the event τb(ν) and the time of the end of the event τe(ν). It should also be noted that 
the maximum observed volume deficit is represented by max Drec. 
 

Some of the low flow events may be close to each other and therefore mutually 
dependent. To avoid the dependency between events from a practical point of view, three 
simplifying assumptions were made in the present study based on Zelenhasic and Salvai (1987):  
 
(i) very minor low-flow events with volumes Di (i=1,2…) satisfying the following 

inequality Di < 0.005 max Drec (i=1,2…) were neglected because these events are 
insignificant compared to severe low-flow events with respect to volume; 

 
(ii) for the remaining events, it was possible that the time period between 
two events ∆Tν,ν+1 is relatively short. In the case where ∆Tν,ν+1 ≤ 6 days, the events Eν and Eν+1 
can be assumed mutually dependent and the volume and duration become the following 
 
 Dν’= Dν + Dν+1, and (1) 

 
 Tν’= Tν + ∆Tν,ν+1 + Tν+1 ; (2) 
 
(iii) it was possible a low-flow event begins in one year and ends in the following year. 

The time of occurrence of the event is then calculated as τ = ½(τb + τe) and the event 
is placed in the year that τ belongs to. 

 
 
2.3 Univariate Analysis 
 

The total number of low-flow events k per time interval [0,t], and the largest volume 
deficit, sup Dν, the largest duration, sup Tν, and the largest intensity, sup Iν, during this time 
interval [0,t] are also important parameters. In this study, the time interval [0,t] was taken to be a 
one-year period. Zelenhasic and Salvai (1987) derived the distribution function of the number of 
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low-flow events during the interval [0,t] using the results obtained by Todorovic and Zelenhasic 
(1970).  For instance, if η(t) is the number of low flow events in the interval [0,t] and for a fixed t, 
η(t) is a non-increasing function of QR. The Et

ν event is defined as: 
 
 Et

ν = {η(t) = ν} (3) 
 

i.e., Et
ν is the event that ν low-flow events occur in [0,t] and ν is a particular numerical value for 

η(t). If Λ(t) is the expected value of η(t), then: 
 
 ( ) ( )∑ ν=Λ

∞

=ν
ν

1

t
EPt  (4) 

 
In most cases, Λ(t) is a non-linear function of time because of the seasonal variation in 

streamflow or low flow events.  Todorovic and Zelenhasic (1970) obtained the following solution 
for the distribution of the number of low-flow events in the interval [0,t]: 

 
 ( ) ( )[ ] ( )[ ] !k/texptEP kt

k Λ−Λ=  (5) 
 
under the assumption that low-flow events arrive according to a time dependent Poisson process. 
 

The time of occurrence of the kth event in a series of occurrences following a Poisson 
process obeys a gamma probability law (Parzen, 1966).  According to Todorovic and Zelenhasic 
(1970), the distribution function of the time of occurrence of the kth low-flow event may be written 
as: 
 
 Fk(t) = P{τ(k) ≤ t} (6) 

 
where τ(k) is the time of occurrence of the kth low-flow event measured relative to an arbitrary 
origin. From equations (3) and (6) we have:  
 
 ( ) ( )∑=

∞

=kj

t

jk EPtF  (7) 

 
which can also be written as 
 
 ( ) ( )∑−=

−

=

1k

0j

t

jk EP1tF  (8) 

 
Denote fk(t) as the density function corresponding to Fk(t). Considering (5) and after 

differentiation with respect to t, Todorovic and Yevjevich (1969) obtained: 
 

 ( ) ( )
( ) ( ) ( )

⎭⎬
⎫

⎩⎨
⎧ ∫ λ−

⎭⎬
⎫

⎩⎨
⎧∫ λ

Γ
λ

=
− t

0

1kt

0
k dssexpdss

k
ttf , t ≥ 0 (9) 

 
where λ(t) is the mean number of low-flow events in the time interval [0,t]. This function λ(t) is a 
deterministic periodic function of time with a one year period. From (4), it follows that: 
 

 ( ) ( ) dsss
t

0
∫ λ=Λ  (10) 

 
The largest deficit volume, sup Dν, the largest deficit duration, sup Tν, and the largest 

deficit intensity, sup Iν, in a time interval [0,t] (e.g. annually), are also variables of interest.  Denote 
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by χ(t) the largest value of the deficit variable of interest (volume, duration or intensity), and let Xν 
denote this variable.  χ(t) is defined as follows: 

 
 χ(t) = sup{Xν}, τ(ν)≤t (11) 

 
The corresponding distribution function is: 
 

 Ft(x) = P{χ(t) ≤ x}, t > 0, x ≥0 (12) 
 

Todorovic and Zelenhasic (1970) have given the expression for the function Ft(x) as the 
mathematical expectation of the following conditional probability: 
 
 P{sup Xν ≤ x/η(t); τ(ν) ≤ t} (13) 

 
which results in 

 ( ) ( ) ( ) ⎥⎦
⎤

⎢⎣
⎡ ≤∑+=

=ν
ν

∞

=
I I
k

1

t

k
1k

t

0t ExXPEPxF  (14) 

 
This distribution function represents the probability that all deficits Xν in an interval of time 

[0,t] will be less than or equal to x. If x=0, we have: 
 
 Ft(0) = P(E0

t) (15) 
 
which can be defined as the probability that there will be no deficits in the time interval [0,t]. For 
the particular case where the deficit volumes, durations or intensities Xν are independent, 
identically distributed random variables and where the vectors {X1, X2, …, Xk} and {τ(k), τ(k+1)} 
are mutually independent, equation (14) becomes (Zelenhasic and Salvai, 1987): 
 
 ( ) ( )[ ] ( ){ }∑+=

∞

=1k

t

k
kt

0t EPxHEP)x(F  (16) 

 
where H(x) is the distribution function of the deficit variable of interest (volume, duration or 
intensity) in the interval [0,t]. 
 

Once the low flow events were identified, the volume, duration and intensity data were 
fitted by a probability distribution function. Three different distribution functions were investigated: 
the exponential distribution, the generalized Pareto distribution and the Weibull distribution.  The 
exponential and generalized Pareto distributions were chosen because they have been widely 
used in the study of extreme hydrological phenomena such as floods (Todorovic, 1978; Cunnane, 
1979; North, 1980; Ashkar and Rousselle, 1981; Davidson and Smith, 1990; Madsen et al., 
1997). The Weibull distribution was chosen because it has been widely applied for studying 
minimal extremes or low flows. 
 

For the exponential distribution, the cumulative distribution function (cdf) of the variable X 
representing the volume, duration or intensity is given by: 
 

 ⎟
⎠

⎞
⎜
⎝

⎛
α

−=
xexp1)x(H  (17) 

 
where α is a scale parameter.  For the largest duration, volume or intensity in a time interval [0,t], 
which we shall denote by XG, the distribution function is given by: 
 

 ( ) ( ) ⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
α

−Λ−= G
G

x
exptexpxF  (18) 
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where Λ(t) is the average number of low-flow events in the interval [0,t] . 
 

For the generalized Pareto distribution, the cdf of X is given by: 
 

 ( )
k
1

xk11xH ⎟
⎠

⎞
⎜
⎝

⎛
α

−−= , k ≠ 0 (19) 

 
where α > 0 is a scale parameter and k is a shape parameter. The maximum volume, duration or 
intensity χ(t) in a time interval [0,t] in this case follows a generalized extreme value distribution, 
which has the following distribution function (Rosbjerg et al., 1992): 
 

 ( )
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
α

−Λ−=
k
1

G
G

kx
1)t(expxF  (20) 

 
For hydrologic applications, the values of the shape parameter k in equations (19) and 

(20) range between –0.5 and 0.5 (Hosking and Wallis, 1987). 
 

With the method of moments, the parameters α and k of cdf (19) are estimated by 
relating them to the mean x  and the variance s2 of X. These relations are given by: 
 

 ( )k1
x

+
α

=  (21) 

 

 
( ) ( )k21k1

s 2

2
2

++
α=  (22) 

 
So, the parameters are estimated by: 

 

 ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+=α 1

s
xx

2
1ˆ

2

2

 (23) 

 

 ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−= 1

s
x

2
1k̂

2

2

 (24) 

 
For the Weibull distribution, the cdf of X is given by: 

 

 ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛
−
−

−−=
n

bm
bxexp1xH  (25) 

 
For the largest volume, duration or intensity in the interval [0,t], the distribution function is 

as follows: 
 

 ( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛
−
−

−Λ−=
n

G bm
bxexp)t(expxF  (26) 
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By the method of moments, the parameter estimators for m and b are given by:  
 

 ( )nsAxm +=  (27) 
 
 ( )nsBmb −=  (28) 
 

The values for A(n), B(n) and can be found in Table 2 from El-Jabi and Rousselle (1990) 
after the coefficient of skewness is calculated as follows: 
 

 
( )

( )
2/3

n

1i

2
i

n

1i

3
i

s

xx
n
1

xx
n
1

C

⎥⎦
⎤

⎢⎣
⎡

∑ −

⎥⎦
⎤

⎢⎣
⎡

∑ −
=

=

=

 (29) 

 
 
2.4 Bivariate Analysis 
 

When the joint occurrence of two or more variables is involved, the frequency analysis of 
these variables should be based on their joint probability distribution (bivariate or multivariate). In 
the present study two general methods for developing bivariate distributions were considered.  
They will be referred to as methods A and B. Ashkar et al. (1998) have used these two methods. 
 
a) Method A 
 

Referring to the work of Cohen (1984) and the Finch-Groblicki method (1984), Singh and 
Singh (1991) developed a joint probability density function (pdf) for two variables (X1, X2) to study 
rainfall.  This function is as follows: 
 
 f(x1, x2)= f1(x1)f2(x2){1+cρ{F1(x1), F2(x2)}] (30) 

 
where F1(x1) and F2(x2) are the marginal cdf’s of X1 and X2, and f1(x1) and f2(x2) are the marginal 
densities.  We can define ρ(u, v; u = F1(x1), v = F2(x2)) to be a function on the unit square {(u,v):0 
≤ u,v ≤ 1} that is “0-marginal”: 
 

 ( ) 0dvv,u
1

0
=∫ ρ ; ( ) 0duv,u

1

0
=∫ ρ  (31) 

 
where ρ(u,v) ≥ -1.  The constant c in (30) is chosen so that f(x1, x2) is positive.  In the present 
study, f1(x1) and f2(x2) are densities of positive random variables representing the intensities and 
durations of low flow events. 
 

The joint density function f(x1, x2) can be given for different forms of r(u,v), which is a 
function of two variables u and v defined on the unit square and normalized to one (Singh and 
Singh, 1991): 
 

 ( ) 1dvduv,ur
1

0

1

0
=∫ ∫  (32) 

 
The function ρ{u, v; u =F1(x1), v = F2 (x2)} is obtained as follows: 

 

 ( ) ( ) dvv,urur
1

0
1 ∫= ; ( ) ( ) duv,urvr

1

0
2 ∫=  (33) 
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and 
 
 ( ) ( ) ( ) ( ) 1vrurv,urv,u 21 +−−=ρ  (34) 

 
The function r(u,v) can take many forms, but one that seems sufficiently flexible is 

(Ashkar and El-Jabi, 2002): 
 
 ( ) ( ) ( ) mn

vu1m1nv,ur ++=  (35) 
 

which gives 
 
 ( ) ( )[ ] ( )[ ]1v1m1u1nv,u

mn
−+−+=ρ  (36) 

 
Combining equations  (30) and (36) gives the following joint pdf of (X1, X2):  

 
 ( ) ( ) ( ) ( )[ ] ( )[ ]{ }1v1m1u1nc1xfxfx,xf

mn

22121 −+−++=  (37) 
 

which corresponds to the following cdf 
 

 ( ) ( ) ( ) ( )( ) ( )[ ] ( )( ) ( )[ ]22
1m

2211
1n

11221121 xFxFxFxFcxFxFx,xF −−+=
++  (38) 

 
The conditional pdf of X1 given X2 = x2 is given by: 

 
 ( ) ( ) ( ) ( ){ }[ ]221111211 xF,xFc1xfxxf ρ+=⏐  (39) 

 
and the conditional cdf is 
 
 ( ) ( ) ( ) ( )( )[ ] ( )( ) ( )[ ]11

1n
11

m
2211211 xFxF1xF1mcxFxxF +−++=⏐  (40) 

 
The constant c is chosen so that f(x1, x2) is positive; a condition that is equivalent to:  

 

 ( ) ( )n,mmax
1c

mn,1max
1

≤≤
−  (41) 

 
As mentioned above, three different distribution functions were used as marginals for the 

random variable X (volume, duration or intensity). These are the exponential distribution, the 
generalized Pareto distribution and the Weibull distribution.   
 

When the marginal distribution of X is exponential, we have: 
 

 ( ) ⎟
⎠

⎞
⎜
⎝

⎛
α

−
α

=
xexp1xf  (42) 

 
and 
 

 ( ) ⎟
⎠

⎞
⎜
⎝

⎛
α

−−=
xexp1xF  (43) 
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In the case of the generalized Pareto distribution, the pdf of X is easily obtained from the 
pdf of a standard exponential random variable, Y, using the following transformation (Hosking and 
Wallis, 1987): 

 

 ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛
α

−−α=
Yexp1X  (44) 

 
which gives the following pdf and cdf for X 
 

 ( )
1

k
1

xk11xf
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

⎟
⎠

⎞
⎜
⎝

⎛
α

−
α

= ; k≠0 (45) 

 

 ( ) ⎟
⎠

⎞
⎜
⎝

⎛
α

−
α

=
xexp1xf ; k=0 (46) 

 
and 
 

 ( )
k
1

xk11xF ⎟
⎠

⎞
⎜
⎝

⎛
α

−−= ; k≠0 (47) 

 

 ( ) ⎟
⎠

⎞
⎜
⎝

⎛
α

−−=
xexp1xF ; k=0 (48) 

 
(Note that when k=0, X becomes an exponential random variable). 
 

For the Weibull distribution, the pdf and cdf are respectively given by (Ashkar and 
Bayentin, 2001): 
 
 ( ) ( )[ ] ( ) 1ss xxexpxf −αα−α=  (49) 

 
 
 ( ) ( )[ ]sxexp1xF α−−=  (50) 

 
where α is a scale parameter and s is a shape parameter. 
 

The parameters α and s can be estimated using the method of maximum likelihood (ML). 

Specifically, the ML estimator, MLs~ , of s, can be obtained numerically by the following equation 
(Ashkar and Bayentin, 2001): 
 

 ( ) ( )
1

n

1i
i

1n

1i

s~
i

n

1i
i

s~
iML xln

n
1xxlnxs~ MLML

−

=

−

== ⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= ∑∑∑  (51) 

 
after which, the ML estimator of α can be calculated explicitly from the equation 
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⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=α

∑
=

n

1i

s~
i

ML
MLx

n~  (52) 

 
b) Method B 
 

A bivariate distribution with exponential marginals can easily be obtained from a bivariate 
distribution with gamma-distributed marginals, by equating the shape parameters of the gamma 
marginals to 1. A practical bivariate density with gamma marginals has been presented by Nagao 
and Kadoya (1971), from which a bivariate density with exponential marginals takes the following 
form: 
 

 ( ) ( ) ( ) ( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
λλ

ρ−
ρ

⎭
⎬
⎫

⎩
⎨
⎧

ρ−
λ

−
ρ−

λ
−

ρ−
λλ

= 21210
221121

21 xx
1

2I
1

x
1

xexp
1

x,xf  (53) 

 
where X1 and X2 are random variables with exponential marginals of parameter λ1 and λ2 
respectively, and I0 is the modified Bessel function with argument 0, which can be expressed as: 
 

 
( ) ( )2

j

0j
2

2121
21210

!j
1

1
xxxx

1
2I ∑

∞

= ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

ρ−

λρλ
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
λλ

ρ−
ρ

 (54) 

 
 

In this equation, ρ measures the correlation between the random variables X1 and X2. 
The equation representing the density of the variable X1 conditioned by X2 = x2 is: 
 

 ( ) ( ) ( ) ( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
λλ

ρ−
ρ

⎭
⎬
⎫

⎩
⎨
⎧

ρ−

ρλ
−

ρ−
λ

−
ρ−

λ
=| 21210

2111
21 xx

1
2

I
1

x
1

xexp
1

xxf 2  (55) 

 
 

When the variables X1 and X2 are standardized, i.e. divided by their means, the following 
conditional cdf is obtained: 

 ( ) ( ) ξ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
ξη

ρ−
ρ

∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ρ−

ξ
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
ρ−

ρη
ρ−

=ξ∫ η|ξ=η|ξ
ξξ

d
1
2

I
1

exp
1

exp
1

1dfF 0
00

 (56) 

 
where ξ and η correspond to the standardized values of X1 and  X2, respectively. The integral in 
(56) can be calculated by a numerical approach, such as by the trapezoidal method (Ashkar et 
al., 1998). 
 

Using the method of moments, the parameters in (55) are estimated as follows (Nagao 
and Kadoya, 1971): 

 

 
1

1 x
1ˆ =λ ; 

2
2 x

1ˆ =λ  (57) 

 

 1
xx
xxˆ

21

21 −=ρ  (58) 
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To obtain a bivariate distribution with generalized Pareto marginals for (X1, X2), the 
following procedure can be applied.  
 

Consider a pair of random variables (Y1, Y2) with the joint pdf (Ashkar and Bayentin, 
2001): 
 

 ( )
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

ρ−
ρ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ρ−

+
ρ−

=
1

yy2
I

1
yyexp

1
1y,yg 21

0
21

21  (59) 

 
i.e., Y1 and Y2 are random variables with standard exponential marginals. Note that (59) can be 
simply obtained from (53) by letting λ1 = λ2 = 1. Now by considering the following variable 
transformations: 
 

 ( )[ ] ( )11
1

111
1 Yu

k
Ykexp1X =

−−α
=  (60) 

 

 ( )[ ] ( )22
2

222
2 Yu

k
Ykexp1X =

−−α
=  (61) 

 
whose inverses are given by: 
 

 ( )11
1

11

1
1 Xwxk1ln

k
1Y =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
α

−−=  (62) 

 
 

 ( )22
2

22

2
2 Xwxk1ln

k
1Y =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
α

−−=  (63) 

 
the joint pdf of X1 and X2 is obtained as: 
 
 ( ) ( ) ( )[ ] Jxw,xwgx,xf

221121
=  (64) 

 
where ⎢J ⎢, the Jacobian of the transformation, is given by  
 
 ( ) ( )

2211
x'wx'wJ •= ; ( ) 11111 xkx'w −α=  and ( ) 22222 xkx'w −α=  (65) 

 
The conditional pdf’s and cdf’s are developed as follows: 
 

 ( ) ( )
( )22

21
21 xf

x,xfxxf =⏐  (66) 

 

where ( )
1

k
1

2

22

2
22

2xk11xf
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
α

−
α

= , and 

 

 ( ) ( ) 121

x

1211 dxxxfxxF
1

⏐=⏐ ∫
∞−

 (67) 
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which is equivalent to 
 

 ( ) ( )
( )

( )[ ] 12221

xw

1121

y

121 dyxwyygdyyygxxF
111

=⏐=⏐=⏐ ∫∫
∞−∞−

 (68) 

where 
 

 ( ) ( )
( ) ( )21

y

22

21
211 y,yge

yg
y,ygyyg 2==⏐  (69) 

 
Finally, the joint cdf is given by: 

 

 ( ) ( ) 21

x x

2121 dxdxx,xfx,xF
1 1

∫ ∫
∞− ∞−

=  (70) 

 
which is equivalent to 

 

( ) ( ) ( )[ ]
( )( )

21

xw xw

221121 dydyyu,yugx,xF
22 11

∫ ∫
∞− ∞−

=  (71) 

 
 

To obtain a bivariate distribution with Weibull marginals for (X1, X2), the following 
procedure can be applied.  
 

A pair of random variables (Y1, Y2) is considered with the joint pdf (59), and the following 
variable transformations: 

 
( ) ( )11

1

1s
1

1
1 Yu

Y
X =

α
=  (72) 

 

 ( ) ( )22
2

s
1

2
2 YuYX 2 =

α
=  (73) 

 
Solving for the Yi’s gives: 

 
 ( ) ( )11

s
111 XwXY 1 =α=  (74) 

 
 ( ) ( )22

s
222 XwXY 2 =α=  (75) 

 
 

The joint and conditional distributions can then be developed as was done for the 
generalized Pareto distribution. 
 
 
3.0 RESULTS AND DISCUSSION 
 
3.1 DBT Model 
 

Low flow events were identified for the 31 selected stations following the DBT method (as 
described in the Data and Methodology used section).  The years of data used for each station is 
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indicated in Table 1. Using ACFA, the threshold value was identified as the median monthly flow 
for August (50th percentile of August daily river flows classified in descending order) also referred 
to as the Aquatic Base Flow. The low flow events were then identified using EXCRUE (D. 
Caissie, unpublished software). The simplifying assumptions to avoid the dependency between 
events described in the Data and Methodology used section were then applied. The number of 
low flow events below the threshold value that were identified for each station ranged from 42 to 
178. Table 3 gives a summary of the threshold values (QR) and the number of low flow events 
identified for each station. 

 
 

3.2 Univariate Analysis 
 

Once the low flow events were identified in terms of volume, duration and intensity, the 
univariate analysis was carried out. For each station, the average number of events per year (in 
time period [0,t]) was identified. The theoretical and observed distributions of the low flow events 
were then compared. The theoretical distribution for the number of low-flow events in the interval 
[0,t] follows equation (5). A chi-squared test was then used to determine the difference between 
the theoretical distribution and the observed distribution. Station 01BU002 (Petitcodiac River) will 
be used as an example throughout this section to show the procedure / calculations applied to all 
stations. The average number of events per year for this station was 2.26 and the distribution 
results are presented in Figure 3. At the 5% level, no significant difference was observed between 
the theoretical and observed or calculated distributions. A significant difference between the 
theoretical and observed distributions was found for 6 of the 31 stations (01AD002, 01AD003, 
01BC001, 01BE001, 01BJ007, 01BL003). 
 

The volume, duration and intensity as well as the maximum volume, maximum duration 
and maximum intensity were modeled with the exponential, generalized Pareto and Weibull 
distribution. For the observed distribution, the data was divided into 12 to 16 classes. To evaluate 
the goodness of fit, Kolmogorov-Smirnov tests accompanied by graphical representations were 
used. For station 01BU002, the best fit was from the generalized Pareto for the volume and 
duration and from the Weibull distribution for the intensity. Figures 4, 5 and 6 show the graphical 
representation for the volume, duration and intensity for station 01BU002. 

 
Table 4 gives a summary of the best fitted distributions H(x) for the volume, duration and 

intensity for the 31 stations. For volume, no distribution fitted the data for station 01BU003. For 
duration, no distribution fitted the data for station 01AD002. For intensity, no distribution fitted the 
data for stations 01AJ003 and 01BO001. For these stations, according to the Kolmogorov-
Smirnov test, the maximum difference between the theoretical and observed distributions was 
larger than the critical difference.  Therefore, the data were not distributed following the 
exponential, generalized Pareto or Weibull functions. It is possible that the data would fit other 
distributions.  
 

The annual maximum volume, maximum duration and maximum intensity were modeled 
as well. For station 01BU002, the best-fitted distribution for the maximum volume, maximum 
duration and maximum intensity was the Weibull distribution. Figures 7, 8 and 9 show the 
graphical representation of the best-fitted theoretical and observed distributions for station 
01BU002. 
 

Table 5 gives a summary of the best fitted distributions F(x) for the largest volume, 
largest duration and largest intensity on an annual basis. For volume, no fit was found for one 
station (i.e., 01AQ001). For intensity, no fit was found for stations 01AD003, 01AQ001 and 
01BV006. For these stations, according to the Kolmogorov-Smirnov test, the maximum difference 
between the theoretical and observed distributions was larger than the critical difference.  
Therefore, the data were not distributed following the exponential, generalized Pareto or Weibull 
functions. It is possible that the data would fit other distributions.  
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The volume, duration and intensity for recurrence intervals of T years were calculated 

using the following equation: 
 

 ( )xF1
1T

−
=  (76) 

 
The distribution function F(x) to calculate low flow characteristics used was based on the 

best fitted distribution (exponential, generalized Pareto or Weibull), as presented in Table 5. As 
such, the Weibull distribution seemed to provide an overall best fit according to Kolmogorov-
Smirnov tests and graphical representations. Table 6, 7 and 8 respectively give the volume, 
duration and low flow calculated for recurrence intervals of 2, 10, 20 and 50 years. It should be 
noted that data in Table 8 include the reference value QR (m3/s) as well as the low flow (m3/s), 
which was calculated from the intensity (m3/s) value for each station. 
 
 
3.3 Bivariate Analysis 
 

The bivariate analysis was used to describe the distribution for variable X1 conditioned by 
a variable X2. In this study, intensity conditioned by 7-day and 14-day durations were calculated 
using a bivariate distribution with Weibull marginals. Two methods can be used for the bivariate 
analysis. When Method A was applied, results were not good because of the high correlation 
between the variables as was observed by Ashkar et al. (1998). However, it is possible that other 
forms of r(u,v) than the one presented here would be adequate. In this study, estimates of the 
correlation ρ, varied between 0.62 and 0.87. For station 01BJ007, the relationship between 

intensity and duration is shown in Figure 10.  The estimated correlation in this case is 2R   = 
0.87. 

 
For Method B, the first step was to estimate the parameters (α1, s1, α2 and s2) using ML. 

The data was then transformed from a Weibull distribution to a standard exponential distribution 
via equations (74) and (75), by replacing (α1, s1, α2 and s2) by their ML estimates. The 
transformed data was then used in the analysis from this point. The data was divided into three 
classes using equal probabilities to guarantee a large number of observations within each class 
to construct the empirical cdf’s (Ashkar et al., 1998). The classes were divided such that: 
 

Class 1: 0 ≤ F2(x2) ≤ 1/3 
Class 2: 1/3 ≤ F2(x2) ≤ 2/3 
Class 3: 2/3 ≤ F2(x2) ≤ 1 

 
where F2(x2) is the marginal cdf of the random variable X2.  In the space of the variable X2, these 
three classes correspond to classes of the form ai < X2 < bi, where ai and bi are the bounds of 
class i.  The mean of each class is used as the value of x2 to be placed in the cdf’s F(x1⏐x2). The 
mean for each class is as follows: 
 

Class 1: -ln(5/6)  
Class 2: -ln(3/6) 
Class 3: -ln(1/6) 

 
To estimate ρ, a 3x3 contingency table was constructed from the observed couples (x1, 

x2) (“observed contingency table”) and compared to a series of 3x3 contingency tables calculated 
from the hypothesized model [i.e., based on Equations (71) and (59)], for different correlation 
coefficients (ρ) (“theoretical contingency tables”). The chosen ρ value was the one that minimized 
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the chi-squared distance between the cell counts from the observed and the theoretical 
contingency tables (Ashkar and El-Jabi, 2002). 
 

The empirical cdf’s conditioned by duration corresponding to the different classes were 
calculated using a plotting position formula: 
 

 ( )
N

35.0qqp −
=  (77) 

 
where q is the rank for values of the class (arranged in ascending order), N is the sample size, 
and p(q) is the empirical probability.  
 

The intensity conditioned by durations of 7 and 14 days were calculated for recurrence 
periods of 2, 10, 20 and 50 years. For these calculations, data were chosen so that the median 
was respectively 7 and 14 days.  For some stations, it was impossible to calculate the intensity 
conditioned by a 7-day duration because of insufficient data. Kolmogorov-Smirnov tests 
accompanied by graphical representations were used to determine the goodness of fit.  Figures 
11 and 12 show the plotted theoretical and empirical distribution for intensity conditioned by 7-day 
and 14-day durations for station 01AJ003. The results for each station are presented as low flow 
(m3/s) calculated from intensity values conditioned by 7- and 14-day durations (Tables 9 and 10). 
 
 
3.4 Regionalization 
 

In New Brunswick, low flow characteristics are not available for all drainage basins due to 
the absence of gauging stations or to the poor quality of collected streamflow data. Therefore, 
regional relationships can be developed for drainage basins within homogeneous low flow zones 
having similar physiographic and climatic characteristics (Environment Canada and New 
Brunswick Department of the Environment, 1990). Many physiographic and climatic 
characteristics such as the area of lakes and swamps, the average water content of snow cover, 
the basin perimeter, the drainage area, the latitude, the longitude, the mean annual precipitation, 
and the mean annual runoff. However, these characteristics are not readily available or easily 
calculated at drainage basins of interest in New Brunswick. In a recent low flow frequency study 
using the annual minimum series approach and the same stations as the present study, drainage 
area and mean annual precipitation were used for the regionalization of low flow characteristics. 
Results showed that the inclusion of precipitation in the regionalization models only slightly 
improves the coefficients of determination (Hébert et al., 2003). Hence, in this study, only 
drainage area was used in the regionalization. 

 
After the univariate and bivariate analyses were complete, the regionalization of low flow 

characteristics was carried out. The intensity data were transformed into low flow data (i.e. 
intensity subtracted from reference value) before the regionalization was undertaken. For the 
univariate results, the values for volume, duration and low flow were related to the drainage area. 
Stations 01AK006 and 01AL004 were not used in this analysis because their drainage areas 
were small (<100km2).  Two types of linear regressions were done. The first was performed with 
the untransformed data (Y= mDA + b), whereas the second was done using a logarithmic 
transformation (logY= βlogDA + α). Y corresponds to volume, duration or intensity and DA 
corresponds to drainage area.  Figures 13, 14, 15, 16, 17 and 18 show the regressions for 
volume, duration and intensity.  The estimates of m, b, β and α for the regressions as well as the 
R2 and the p value are given in Tables 11 and 12. 
 

From Figures 13 to 18 and Tables 11 and 12, it was observed that the regression 
analysis gave slightly better results without the logarithmic transformation for volume and low 
flow.  The R2 values were slightly higher for untransformed data (normal scale rather than 
logarithmic).  However, for volume, when the data is not in a logarithmic scale, the regression 
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equations will give negative values for smaller basins (<500km2).  For this reason, it may be 
better to use the regression with logarithmic scale. For duration, there does not seem to be a 
significant relationship between duration and drainage area, i.e. size of basin. The p values show 
that the slope (m, in the case of untransformed data, and β, in the case of logarithmically 
transformed data) is not significantly different than 0. Although the low flow duration data did not 
show a level of association with basin size, duration data clearly showed that low flows of higher 
return events were of longer durations.  For instance, the 2-year average low flow represented 
approximately 50-60 days in duration, while the 50-year average low flow was in the range of 
160-170 days (Figure 15).  More data for basins with drainage areas ranging from 4000 to 
15000km2 would be necessary to truly determine whether or not a relationship existed between 
duration and drainage area. 
 

For the bivariate analysis, the intensity conditioned by duration data was transformed into 
low flow conditioned by duration data and then related to the drainage area. The regressions 
were developed in the same manner as for the univariate analysis. Figures 19, 20, 21 and 22 
show the regressions for the low flow conditioned by 7- and 14-day durations. The estimates of 
m, b, β and α for the regressions as well as the R2 and the p value are given in Tables 13 and 14. 

 
The regression results for the bivariate analysis are also better without using the 

logarithmic scale R2 criterion . However, the R2  values are lower (62-74%) for the 7-day durations 
than the 14-day durations (83-94%). The 14-day duration probably gives better results than the 7-
day duration because there is more volume, duration and intensity data points for the 14-day 
regression. 

 
A test similar to that presented in Caissie et al. (2002) was performed to determine if 

there was a significant difference between the recurrence intervals for the regionalization results 
presented in each graph. In some cases, there was no significant difference between recurrence 
intervals. However, the regression lines were still presented for illustration purposes. 
 

It should also be pointed out that the choice of the reference value QR and the simplifying 
assumptions may influence the results of the analysis. If these were modified, the results may 
differ. This would be interesting to study but may be difficult to generalize for a large number of 
stations as was studied here. 
 
 
4.0 CONCLUSION 
 

A low flow analysis was performed using the Deficit Below Threshold (DBT) model, which 
considers all flows below a reference value QR.  This method better describes low flow events in 
terms of volume, duration and intensity, than a classic approach for low flow analysis.  The DBT 
approach was applied on 31 hydrometric stations in New Brunswick.  The reference value in this 
study was chosen as the median monthly flow for August. 
 

Once the low flow events were identified, univariate and bivariate analyses were carried 
out. For the univariate analysis, data were fitted to the exponential, generalized Pareto and 
Weibull distributions.  The volume, duration and intensity were then calculated for recurrence 
intervals of 2, 10, 20 and 50 years using the best-fitted distribution. In general, the best fitted 
distribution according to the Kolmogorov-Smirnov test and visual graphical evaluations was the 
Weibull distribution. 
 

For the bivariate analysis, the intensity conditioned by durations of 7 and 14 days was 
modeled using the Nagao and Kadoya model with the Weibull distribution. The intensity 
conditioned by duration was calculated for recurrence intervals of 2, 10, 20 and 50 years as was 
done for the univariate analysis. 
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A regionalization was thereafter performed for the province of New Brunswick. For the 
univariate analysis, the regression for low flow and volume with basin drainage area gave good 
results especially with untransformed data. However, for volume, it may be necessary to use the 
regression with the logarithmic scale to avoid negative values for smaller basins. For duration, a 
very weak relationship was observed between duration and drainage area, which suggests that 
the duration is somewhat independent of basin size. However, a clear relationship was 
nevertheless observed between duration and the severity of low flow events.  For the bivariate 
analysis, the regression for low flow conditioned by duration and drainage area gave better 
results for 14-day durations than the 7-day durations probably because of the lack of volume, 
duration and intensity data for the 7-day durations. 

 
The Deficit Below Threshold Approach can provide a better analysis for engineering 

design projects because it characterizes low flows in terms of volume, duration and intensity 
which provides more information than typical low flow analyses. This method can also provide a 
better description of low flows for fish habitat studies and assessments. 
 
 
5.0 ACKNOWLEDGEMENTS 
 
We would like to thank the Government of Canada’s Climate Change Action Fund for providing 
funding for this project (Project A367). This is a joint project with Université de Moncton, Fisheries 
and Oceans Canada and New Brunswick Department of the Environment and Local 
Governments. 
 
 
6.0 REFERENCES 
 
Ashkar, F. and J. Rousselle.  1981. Design discharge as a random variable: A risk study. Water 

Resources Research, 17(3): 577-591. 
Ashkar, F., N. El-Jabi and M. Issa.  1998. A bivariate analysis of the volume and duration of low-

flow events. Stochastic Hydrology and Hydraulics, 12: 97-116. 
Ashkar, F. and L. Bayentin.  2001. Quelques fonctions de probabilité bivariées: intérêts et 

applications en hydrologie. Rapport de recherche, Juillet 2001, Département de 
mathématiques et statistiques, Université de Moncton, Moncton, NB, Canada. 

Ashkar, F. and N. El-Jabi.  2002. Risk assessment using a generalized Pareto-based bivariate 
model. In: C.A. Brebbia (ed.) Risk Analysis II, Proceedings of the Third International 
Conference on Computer Simulation in Risk Analysis and Hazard Mitigation, June 19-21, 
Sintra, Portugal, pp.181-190. 

Caissie, D. and N. El-Jabi.  1995. Comparison and regionalization of hydrologically based 
instream flow techniques in Atlantic Canada. Canadian Journal of Civil Engineering, 22: 
235-246. 

Caissie, D.  1999. Hydrological conditions for Atlantic salmon rivers in the Maritime Provinces in 
1997. Canadian Stock Assessment Secretariat, Research Document, 99/188. 

Caissie, D.  2000. Hydrological conditions for Atlantic salmon rivers in 1999. Canadian Stock 
Assessment Secretariat, Research Document, 2000/011. 

Caissie, D., S. Jolicoeur, M. Bouchard and E. Poncet.  2002. Comparison of streamflow between 
pre and post timber harvesting in Catamaran Brook (Canada). Journal of Hydrology, 
258:232-248. 

Cohen, L.  1984. Probability distribution with given multivariate marginals. Journal of 
Mathematical Physics, 25(8): 2402-2403. 

Cunnane, C.  1979. A note on the Poisson assumption in partial duration series model. Water 
Resources Research, 15: 489-494. 

Davison, A.C. and R.L. Smith.  1990. Models for exceedances over high thresholds. Journal of 
the Royal Statistical Society, Great Britain, 52(3): 393-442. 



 

 

17 

 

El-Jabi, N. and J. Rousselle.  1990. Hydrologie fondamentale, Deuxième édition revue et 
corrigée. Département de génie civil, École Polytechnique de Montréal. Éditions de 
l’École Polytechnique de Montréal. 

Environment Canada and New Brunswick Department of the Environment.  1990.  Low flow 
estimation guidelines for New Brunswick.  43 p. 

Finch, P.D. and R. Groblicki.  1984. Bivariate probability densities with given marginal. 
Foundation of Physics, 14(6): 549-552. 

Hébert, C., N. El-Jabi and D. Caissie.  2003. Low flow estimation for New Brunswick rivers. Can. 
Tech. Rep. Fish. Aquat. Sci. 2493:24p. 

Hosking, J. and J.R. Wallis.  1987. Parameter and Quantile Estimation of the Generalized Pareto 
Distribution. Technometrics, 29(3): 339-349. 

Lake, P.S. 2003. Ecological effects of perturbation by drought in flowing waters. Freshwater 
Biology 48: 1161-1172. 

Madsen, H., P.F. Rasmussen and D. Rosbjerg.  1997. Comparison of annual maximum series 
and partial duration series methods for modeling extreme hydrologic events. Water 
Resources Research, 33(4): 747-757. 

Nagao, M. and M. Kadoya.  1971. Two-variate exponential distribution and its numerical table for 
engineering application. Bull. Dis. Prev. Res. Institut, Kyoto University, Vol. 20, Part 3, 
No. 178, March, pp.183-215. 

North, M.  1980. Time-dependent stochastic model of floods. ASCE Journal of the Hydrological 
Division, U.S.A, 106(5):649-665. 

Parzen, E.  1966. Modern probability theory and its applications. John Wiley, New York. 
Rosbjerg, D., H. Madsen and P.F. Rasmussen.  1992. Prediction in partial duration series with 

generalized Pareto-distribution exceedances. Water Resources Research, 28: 3001-
3010. 

Singh, H. and V.P. Singh.  1991. Derivation of bivariate probability density functions with 
exponential marginals. Stochastic Hydrology and Hydraulics. 5: 55-68. 

Todorovic,P. and V. Yevjevich.  1969. Stochastic process of precipitation. Hydrological Paper 35, 
Colorado State University, Fort Collins. 

Todorovic, P. and E. Zelenhasic.  1970. A stochastic model for flood analysis. Water Resources 
Research, 6(6): 1641-1648. 

Todorovic, P.   1978. Stochastic models of floods. Water Resources Research. 14: 345-356. 
Université de Moncton.  1994, Atlantic Canada Flow Analysis Version 1.0, software prepared by 

École de génie, Université de Moncton for Fisheries and Oceans Canada, Gulf Region. 
Zelenhasic, E. and A. Salvai.  1987. A method of streamflow drought analysis. Water Resources 

Research, 23(1): 156-168. 



 

 

18 

 

Table 1. Selected hydrometric stations. 

 
River ID Latitude, Longitude Drainage Area (km2) Analysis  

Period 
1. Saint John R. at Fort Kent 01AD002 47 15 N, 68 35 W 14700 1927-1999 
2. St. Francis R. at outlet of Glacier Lake 01AD003 47 12 N, 68 57 W 1350 1952-1999 
3. Fish R. near Fort Kent 01AE001 47 14 N, 68 35 W 2260 1981-1999 
4. Grande R. at Violette Bridge 01AF007 47 15 N, 67 55 W 339 1977-1999 
5. Meduxnekeag R. near Belleville 01AJ003 46 13 N, 67 44 W 1210 1968-1999 
6. Big Presque Isle Stream at Tracey Mills 01AJ004 46 26 N, 67 45 W 484 1968-1999 
7. Becaguimec Stream at Coldstream 01AJ010 46 20 N, 67 28 W 350 1974-1999 
8. Shogomoc Stream near TCH 01AK001 45 57 N, 67 19 W 234 1919-1940, 1944-1999 
9. Middle Branch Nashwaaksis Stream near Sandwith’s Farm 01AK006 46 05 N, 66 44 W 5.7 1967-1999 
10. Nackawic Stream 01AK007 46 03 N, 67 14 W 240 1968-1999 
11. Nashwaak R. at Durham Bridge 01AL002 46 08 N, 66 37 W 1450 1962-1999 
12. Narrows Mountain Bk. near Narrows Mountain 01AL004 46 17 N, 67 01 W 3.89 1972-1999 
13. North Branch Oromocto R. at Tracy 01AM001 45 40 N, 66 41 W 557 1963-1999 
14. Salmon R. at Castaway 01AN002 46 17 N, 65 43 W 1050 1974-1999 
15. Canaan R. at East Canaan 01AP002 46 04 N, 65 22 W 668 1926-1999, 1963-1999 
16. Kennebecasis R. at Apohaqui 01AP004 45 42 N, 65 36 W 1100 1962-1999 
17. Lepreau R. at Lepreau 01AQ001 45 10 N, 66 28 W 239 1919-1999 
18. Restigouche R. below Kedgwick R. 01BC001 47 40 N, 67 29 W 3160 1963-1999 
19. Upsalquitch R. at Upsalquitch 01BE001 47 50 N, 66 53 W 2270 1919-1932, 1944-1999 
20. Jacquet R. near Durham Centre 01BJ003 47 54 N, 66 02 W 510 1965-1999 
21. Restigouche R., Rafting Ground Bk. 01BJ007 47 54 N, 66 57 W 7740 1969-1999 
22. Middle R. near Bathurst 01BJ010 47 37 N, 65 43 W 217 1982-1999 
23. R. Caraquet at Burnsville 01BL002 47 42 N, 65 09 W 173 1970-1999 
24. Big Tracadie R. at Murchy Bridge Crossing 01BL003 47 26 N, 65 06 W 383 1971-1999 
25. SW Miramichi R. at Blackville 01BO001 46 44 N, 65 50 W 5050 1919-1932, 1962-1999 
26. Little SW Miramichi R. at Lyttleton 01BP001 46 56 N, 65 54 W 1340 1952-1999 
27. NW Miramichi R. at Trout Bk. 01BQ001 47 06 N, 65 50 W 948 1962-1999 
28. Coal Branch R. at Beersville 01BS001 46 27 N, 65 04 W 166 1965-1999 
29. Petitcodiac R. near Petitcodiac 01BU002 45 57 N, 65 10 W 391 1962-1999 
30. Turtle Creek at Turtle Creek 01BU003 45 57 N, 64 52 W 129 1963-1999 
31. Point Wolfe R. at Fundy National Park 01BV006 45 34 N, 65 01 W 130 1965-1999 
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Table 2.  Functions to calculate the type III Weibull distribution. (El-Jabi and Rousselle, 
1990). 
 

Cs 1/n A(n) B(n) 
-1.000 0.02 0.446 40.005 
-0.971 0.03 0.444 26.987 
-0.917 0.04 0.442 20.481 
-0.867 0.05 0.439 16.576 
-0.638 0.10 0.425 8.737 
-0.254 0.20 0.389 4.755 
0.069 0.30 0.346 3.370 
0.359 0.40 0.297 2.634 
0.631 0.50 0.246 2.159 
0.896 0.60 0.193 1.815 
1.160 0.70 0.142 1.549 
1.430 0.80 0.092 1.334 
1.708 0.90 0.044 1.154 
2.000 1.00 0.000 1.000 
2.309 1.10 -0.040 0.867 
2.640 1.20 -0.077 0.752 
2.996 1.30 -0.109 0.652 
3.382 1.40 -0.136 0.563 
3.802 1.50 -0.160 0.486 
4.262 1.60 -0.180 0.418 
4.767 1.70 -0.196 0.359 
5.323 1.80 -0.208 0.308 
5.938 1.90 -0.217 0.263 
6.619 2.00 -0.224 0.224 
7.374 2.10 -0.227 0.190 
8.214 2.20 -0.229 0.161 
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Table 3. Threshold values and number of low flow events for hydrometric stations. 

 
River ID Threshold Value 

(QR) (m3/s) 
Number of 

events 
1. Saint John R. at Fort Kent 01AD002 92.94 178 
2. St. Francis R. at outlet of Glacier Lake 01AD003 7.733 110 

3. Fish R. near Fort Kent 01AE001 13.24 42 
4. Grande R. at Violette Bridge 01AF007 2.153 90 
5. Meduxnekeag R. near Belleville 01AJ003 4.191 82 
6. Big Presque Isle Stream at Tracey Mills 01AJ004 2.167 89 

7. Becaguimec Stream at Coldstream 01AJ010 1.440 108
8. Shogomoc Stream near TCH 01AK001 0.588 115 
9. Middle Branch Nashwaaksis Stream near 
Sandwith’s Farm 

01AK006 0.011 80 

10. Nackawic Stream 01AK007 0.344 83 
11. Nashwaak R. at Durham Bridge 01AL002 8.581 100 
12. Narrows Mountain Bk. near Narrows 
Mountain 

01AL004 0.018 73 

13. North Branch Oromocto R. at Tracy 01AM001 1.312 55 
14. Salmon R. at Castaway 01AN002 4.210 67 
15. Canaan R. at East Canaan 01AP002 1.098 100 
16. Kennebecasis R. at Apohaqui 01AP004 4.720 80 
17. Lepreau R. at Lepreau 01AQ001 1.183 156 
18. Restigouche R. below Kedgwick R. 01BC001 25.01 95 
19. Upsalquitch R. at Upsalquitch 01BE001 13.88 162 
20. Jacquet R. near Durham Centre 01BJ003 2.483 86 
21. Restigouche R., Rafting Ground Bk. 01BJ007 61.66 78 
22. Middle R. near Bathurst 01BJ010 0.849 59 
23. R. Caraquet at Burnsville 01BL002 1.439 82 
24. Big Tracadie R. at Murchy Bridge 
Crossing 

01BL003 3.041 64 

25. SW Miramichi R. at Blackville 01BO001 38.45 173 

26. Little SW Miramichi R. at Lyttleton 01BP001 11.95 162 

27. NW Miramichi R. at Trout Bk. 01BQ001 6.396 128 
28. Coal Branch R. at Beersville 01BS001 0.472 76 
29. Petitcodiac R. near Petitcodiac 01BU002 0.899 86 
30. Turtle Creek at Turtle Creek 01BU003 0.516 64 
31. Point Wolfe R. at Fundy National Park 01BV006 1.169 103
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Table 4. Best fitted distribution for volume, duration and intensity. 

 
 Pareto Exponential Weibull none 

Volume 25 1 4 1 
Duration 21 4 5 1 
Intensity 0 0 29 2 

 
Table 5. Best fitted distribution for the largest volume, largest duration and largest intensity in a 
one year period. 

 
 Pareto Exponential Weibull none 

Largest volume 4 0 26 1 
Largest duration 2 1 28 0 
Largest intensity 0 0 28 3 

 
Table 6. Volume (m3/s*days) of low flow events at recurrence periods of 2, 10, 20 and 50 years. 

 
Recurrence Period (yrs.) ID 

2 10 20 50 
01AD002 2222 7510 10428 15234 
01AD003 146 498 650 857 
01AE001 186 527 672 872 
01AF007 102 214 259 318 
01AJ003 55.4 191 253 340 
01AJ004 27.0 86.1 119 173 
01AJ010 17.2 43.3 56.0 75.5 
01AK001 6.0 21.1 26.8 34.2 
01AK007 8.6 20.4 25.2 31.5 
01AL002 112 280 342 419 
01AM001 20.2 72.1 88.9 109 
01AN002 58.2 167 208 261 
01AP002 11.6 44.1 57.4 75.1 
01AP004 37.0 133 184 269 
01BC001 625 1724 2165 2747 
01BE001 327 1040 1349 1770 
01BJ003 19.8 57.9 72.1 90.4 
01BJ007 1734 4290 5234 6437 
01BJ010 22.9 57.0 70.2 87.4 
01BL002 28.6 84.2 108 139 
01BL003 53.8 160 203 260 
01BO001 587 1389 1691 2078 
01BP001 238 594 735 919 
01BQ001 119 309 386 488 
01BS001 4.1 17.1 24.0 34.5 
01BU002 9.7 34.4 44.7 58.5 
01BU003 4.1 13.7 16.9 21.0 
01BV006 20.4 55.5 69.1 86.8 
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Table 7. Duration (days) of low flow events at recurrence periods of 2, 10, 20 and 50 years. 

 
Recurrence Period (yrs.) ID 

2 10 20 50 
01AD002 60 136 166 203 
01AD003 57 142 176 220 
01AE001 53 93 105 119 
01AF007 83 152 178 211 
01AJ003 37 88 107 131 
01AJ004 42 99 120 147 
01AJ010 35 67 79 94 
01AK001 28 88 107 130 
01AK007 41 83 99 120 
01AL002 44 90 105 123 
01AM001 32 87 103 122 
01AN002 40 93 112 135 
01AP002 28 81 101 126 
01AP004 35 90 109 133 
01AQ001 30 79 95 115 
01BC001 68 150 181 219 
01BE001 73 177 215 265 
01BJ003 65 137 162 193 
01BJ007 75 144 166 193 
01BJ010 67 135 159 189 
01BL002 65 149 181 221 
01BL003 64 133 156 184 
01BO001 52 102 120 141 
01BP001 59 124 147 177 
01BQ001 56 114 135 161 
01BS001 33 90 113 143 
01BU002 32 87 108 134 
01BU003 35 94 114 138 
01BV006 41 93 111 134 
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Table 8. Low flow (m3/s) at recurrence periods of 2, 10, 20 and 50 years. 

 
Ref.Value Recurrence Period (yrs.) ID 
QR (m3/s) 2 10 20 50 

01AD002 92.9 34.8 18.2 13.9 9.23 
01AE001 13.2 6.71 3.73 2.93 2.03 
01AF007 2.15 0.17 0.00 0.00 0.00 
01AJ003 4.19 1.50 0.43 0.15 0.00 
01AJ004 2.17 0.93 0.30 0.12 0.00 
01AJ010 1.44 0.52 0.22 0.13 0.03 
01AK001 0.59 0.31 0.10 0.04 0.00 
01AK007 0.34 0.06 0.00 0.00 0.00 
01AL002 8.58 4.32 2.51 2.01 1.44 
01AL004 0.02 0.01 0.00 0.00 0.00 
01AM001 1.31 0.48 0.01 0.00 0.00 
01AN002 4.21 2.15 1.18 0.92 0.61 
01AP002 1.10 0.48 0.18 0.10 0.02 
01AP004 4.72 2.82 1.65 1.32 0.93 
01BC001 25.0 10.8 5.61 4.19 2.58 
01BE001 13.9 6.33 3.55 2.84 2.05 
01BJ003 2.48 1.75 1.37 1.26 1.14 
01BJ007 61.7 26.7 14.5 11.2 7.56 
01BJ010 0.85 0.32 0.12 0.06 0.00 
01BL002 1.44 0.74 0.47 0.39 0.31 
01BL003 3.04 1.64 1.05 0.90 0.72 
01BO001 38.5 18.9 9.15 6.30 3.02 
01BP001 12.0 5.50 3.13 2.45 1.68 
01BQ001 6.40 3.00 1.74 1.38 0.98 
01BS001 0.47 0.22 0.11 0.09 0.05 
01BU002 0.90 0.41 0.21 0.15 0.09 
01BU003 0.52 0.33 0.25 0.23 0.20 
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Table 9. Low flow (m3/s) conditioned by a 7-day duration for recurrence intervals of 2, 10, 20 and 50 
years. 

 
Ref. Value Recurrence Period (yrs) Station 
QR (m3/s) 2 10 20 50 

01AF007 2.15 1.27 0.94 0.86 0.76 
01AJ003 4.19 2.76 2.00 1.79 1.55 
01AJ010 1.44 1.00 0.79 0.73 0.67 
01AK001 0.59 0.43 0.35 0.33 0.30 
01AK007 0.34 0.20 0.13 0.11 0.09 
01AL002 8.58 6.48 5.26 4.91 4.52 
01AN002 4.21 3.19 2.64 2.48 2.30 
01AP002 1.10 0.75 0.57 0.52 0.46 
01AP004 4.72 3.70 3.12 2.95 2.77 
01AQ001 1.18 0.83 0.65 0.61 0.55 
01BL002 1.44 1.11 0.94 0.89 0.84 
01BP001 12.0 9.10 7.52 7.12 6.37 
01BS001 0.47 0.32 0.24 0.22 0.20 
01BU002 0.90 0.61 0.48 0.45 0.41 
01BV006 1.17 0.83 0.67 0.62 0.57 
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Table 10. Low flow (m3/s) conditioned by a 14-day duration of for recurrence intervals of 2, 10, 20 
and 50 years. 

 
Ref. Value  Recurrence Period (yrs) 

Station 
QR (m3/s) 2 10 20 50 

01AD002 92.9 53.1 38.3 34.3 30.1 
01AD003 7.73 5.76 4.72 4.43 4.12 
01AE001 13.2 9.76 7.43 7.09 6.46 
01AF007 2.15 1.09 0.55 0.44 0.30 
01AJ003 4.19 2.43 1.67 1.46 1.23 
01AJ004 2.17 1.42 1.03 0.92 0.81 
01AJ010 1.44 0.86 0.65 0.59 0.53 
01AK001 0.59 0.38 0.30 0.28 0.26 
01AK007 0.34 0.17 0.10 0.08 0.05 
01AL002 8.58 6.00 4.75 4.41 4.03 
01AM001 1.31 0.68 0.48 0.43 0.37 
01AN002 4.21 2.91 2.35 2.20 2.02 
01AP002 1.10 0.66 0.48 0.43 0.37 
01AP004 4.72 3.41 2.82 2.66 2.47 
01AQ001 1.18 0.71 0.54 0.49 0.43 
01BC001 25.0 17.2 14.4 13.6 12.8 
01BE001 13.9 9.66 7.60 7.04 6.42 
01BJ003 2.48 1.69 1.37 1.29 1.20 
01BJ007 61.7 43.3 36.2 34.3 32.2 
01BJ010 0.85 0.53 0.36 0.31 0.26 
01BL002 1.44 1.05 0.88 0.83 0.78 
01BL003 3.04 2.30 1.94 1.84 1.73 
01BO001 38.5 28.1 22.7 21.2 19.4 
01BP001 11.9 8.42 6.86 6.42 5.96 
01BQ001 6.40 4.52 3.58 3.32 3.03 
01BS001 0.47 0.29 0.22 0.20 0.17 
01BU002 0.90 0.54 0.42 0.39 0.35 
01BU003 0.52 0.38 0.32 0.31 0.29 
01BV006 1.17 0.72 0.56 0.51 0.46 
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Table 11.  Linear regression analysis of volume, duration and low flow at recurrence intervals of 2, 
10, 20, and 50 years and basin drainage area upstream of the gauging station (Y= b + mDA). 
 
Period  b m R2 p 

Volume (m3/s*days) 

2 years -45.17 0.166 0.943 <0.001 
10 years -192.3 0.515 0.970 <0.001 
20 years  -292.3 0.694 0.968 <0.001 
50 years -473.7 0.978 0.957 <0.001 

Duration (days) 

2 years 46.32 0.0018 0.109 0.080 
10 years 105.1 0.0030 0.100 0.095 
20 years  126.0 0.0036 0.097 0.100 
50 years 152.3 0.0042 0.089 0.115 

Low flow (m3/s) 
2 years 0.192 0.0027 0.945 <0.001 
10 years  0.126 0.0014 0.941 <0.001 
20 years  0.098 0.0011 0.939 <0.001 
50 years 0.072 0.0007 0.929 <0.001 
 
 
 
 
 

Table 12.  Linear regression analysis of volume, duration and low flow (logarithmic scale) at 
recurrence intervals of 2, 10, 20, and 50 years and basin drainage area (logarithmic scale) 
upstream of the gauging station (log Y= α+ β logDA). 

 
Period  α β R2 p 

Volume (m3/s*days) 

2 years -1.865 1.255 0.818 <0.001 
10 years -1.348 1.239 0.853 <0.001 
20 years  -1.249 1.242 0.858 <0.001 
50 years -1.151 1.246 0.862 <0.001 

Duration (days) 

2 years 1.357 0.110 0.168 0.027 
10 years 1.823 0.072 0.123 0.063 
20 years  1.914 0.068 0.110 0.079 
50 years 2.008 0.063 0.093 0.107 

Low flow (m3/s) 
2 years -3.407 1.238 0.843 <0.001 
10 years  -3.566 1.191 0.680 <0.001 
20 years  -3.610 1.174 0.729 <0.001 
50 years -3.397 1.070 0.618 <0.001 
. 
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Table 13.  Linear regression analysis of low flow conditioned by 7- and 14-day durations at 
recurrence intervals of 2, 10, 20, and 50 years and basin drainage area upstream of the gauging 
station (Y= b + mDA). 

 
Period  b m R2 p 

 >Low Flow (m3/s)  conditioned by 7- day duration 
2 years  -0.584 0.0046 0.735 <0.001 
10 years  -0.498 0.0037 0.718 <0.001 
20 years  -0.474 0.0035 0.709 <0.001 
50 years  -0.446 0.0032 0.700 <0.001 

Low Flow (m3/s)  conditioned by 14- day duration  
2 years  0.138 0.0042 0.939 <0.001 
10 years  0.299 0.0032 0.898 <0.001 
20 years  0.351 0.0029 0.880 <0.001 
50 years  0.384 0.0026 0.858 <0.001 
 

 
 
 
 
 

Table 14.  Linear regression analysis of low flow conditioned by 7- and 14-day durations 
(logarithmic scale) at recurrence intervals of 2, 10, 20, and 50 years and basin drainage area 
(logarithmic scale) upstream of the gauging station (log Y= α+ β logDA). 

 
Period  α β R2 p 

Low Flow (m3/s)  conditioned by 7- day duration 
2 years  -2.714 1.062 0.673 <0.001 
10 years  -2.861 1.078 0.645 <0.001 
20 years  -2.913 1.084 0.633 <0.001 
50 years  -2.981 1.093 0.616 0.001 

Low Flow (m3/s)  conditioned by 14- day duration  
2 years  -3.013 1.174 0.879 <0.001 
10 years  -3.190 1.194 0.858 <0.001 
20 years  -3.256 1.204 0.847 <0.001 
50 years  -3.351 1.219 0.830 <0.001 
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Figure 1. Location of selected hydrometric stations in New Brunswick. 
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Figure 2. Hydrograph representing low flow event characteristics. 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 1 2 3 4 5 6

Number of low flow events (k)

Fr
eq

ue
nc

y

observed
theoretical

Chi-squared test (5/100)
χ²=1.952 
χ²5, 0.05=11.070

 
 

Figure 3. Theoretical and observed distribution of low flow events per year for station 01BU002. 
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Figure 4. Theoretical (generalized Pareto) and observed volume distribution for station 01BU002. 
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Figure 5. Theoretical (generalized Pareto) and observed duration distribution for station 01BU002. 
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Figure 6. Theoretical (Weibull) and observed intensity distribution for station 01BU002. 
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Figure 7. Theoretical (Weibull) and observed largest volume distribution for station 01BU002. 
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Figure 8. Theoretical (Weibull) and observed largest duration distribution for station 01BU002. 
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Figure 9. Theoretical (Weibull) and observed largest intensity distribution for station 01BU002. 
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Figure 10. Intensity (m3/s) vs. Duration (days) for station 01BJ007. 
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Figure 11. Theoretical (Weibull) and empirical distribution of the intensity (m3/s) conditioned by a 
duration of 7 days for station 01BJ003. 
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Figure 12. Theoretical (Weibull) and empirical distribution of the intensity (m3/s) conditioned by a 
duration of 14 days for station 01BJ003. 
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Figure 13.  Regionalization of low flow volumes in N.B (28 stations). 
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Figure 14.  Regionalization of low flow volumes (logarithmic scale) in N.B (28 stations). 
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Figure 15. Regionalization of low flow durations in N.B (29 stations). 
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Figure 16. Regionalization of low flow durations (logarithmic scale) in N.B (29 stations). 
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Figure 17. Regionalization of low flow in N.B (26 stations). 
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Figure 18. Regionalization of low flow (logarithmic scale) in N.B (26 stations). 
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Figure 19. Regionalization of low flow conditioned by a 7-day duration in N.B (15 stations). 
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Figure 20. Regionalization of low flow conditioned by a 7-day duration (logarithmic scale) in N.B 
(15 stations). 
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Figure 21. Regionalization of low flow conditioned by a 14-day duration in N.B (29 stations). 
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Figure 22. Regionalization of low flow conditioned by a 14-day duration (logarithmic scale) in N.B 
(29 stations). 
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