
A Comparison of Stratified Systematic and Stratified Random Methods of Estimating Catch Rates, by Depth Interval, for Biomass Estimation of Pacific Ocean Perch (*Sebastes alutus*) in Goose Island Gully, Queen Charlotte Sound, British Columbia

S.J. Westrheim and K.L. Yamanaka

Fisheries and Oceans Canada Science Branch, Pacific Region Pacific Biological Station Nanaimo, British Columbia V9T 6N7

2007

Canadian Technical Report of Fisheries and Aquatic Sciences 2707

Canadian Technical Report of Fisheries and Aquatic Sciences

Technical reports contain scientific and technical information that contributes to existing knowledge but which is not normally appropriate for primary literature. Technical reports are directed primarily toward a worldwide audience and have an international distribution. No restriction is placed on subject matter and the series reflects the broad interests and policies of the Department of Fisheries and Oceans, namely, fisheries and aquatic sciences.

Technical reports may be cited as full publications. The correct citation appears above the abstract of each report. Each report is abstracted in *Aquatic Sciences and Fisheries Abstracts* and indexed in the Department's annual index to scientific and technical publications.

Numbers 1-456 in this series were issued as Technical Reports of the Fisheries Research Board of Canada. Numbers 457-714 were issued as Department of the Environment, Fisheries and Marine Service, Research and Development Directorate Technical Reports. Numbers 715-924 were issued as Department of Fisheries and the Environment, Fisheries and Marine Service Technical Reports. The current series name was changed with report number 925.

Technical reports are produced regionally but are numbered nationally. Requests for individual reports will be filled by the establishment listed on the front cover and title page. Outof-stock reports will be supplied for a fee by commercial agents.

Rapport technique canadien des sciences halieutiques et aquatiques

Les rapports techniques contiennent des renseignements scientifiques et techniques qui constituent une contribution aux connaissances actuelles, mais qui ne sont pas normalement appropriés pour la publication dans un journal scientifique. Les rapports techniques sont destinés essentiellement à un public international et ils sont distribués à cet échelon. Il n'y a aucune restriction quant au sujet; de fait, la série reflète la vaste gamme des intérêts et des politiques du ministère des Pêches et des Océans, c'est-à-dire les sciences halieutiques et aquatiques.

Les rapports techniques peuvent être cités comme des publications complètes. Le titre exact paraît au-dessus du résumé de chaque rapport. Les rapports techniques sont résumés dans la revue *Résumés des sceiences aquatiques et halieutiques*, et ils sont classés dans l'index annual des publication scientifiques et techniques du Ministère.

Les numéros 1à 456 de cette série ont été publiés à titre de rapports techniques de l'Office des recherches sur les pêcheries du Canada. Les numéros 457 à 714 sont parus à titre de rapports techniques de la Direction générale de la recherche et du développement, Service des pêches et de la mer, ministère de l'Environnement. Les numéros 715 à 924 ont été publiés à titre de rapports techniques du Service des pêches et de la mer, ministère de Service des pêches et de la mer, ministère de l'Environnement. Les numéros 715 à 924 ont été publiés à titre de rapports techniques du Service des pêches et de la mer, ministère des Pêches et de la mer,

Les rapports techniques sont produits à l'échelon régional, mais numérotés à l'échelon national. Les demandes de rapports seront satisfaites par l'établissement auteur dont le nom figure sur la couverture et la page du titre. Les rapports épuisés seront fournis contre rétribution par des agents commerciaux.

Canadian Technical Report of

Fisheries and Aquatic Sciences 2707

2007

A COMPARISON OF STRATIFIED SYSTEMATIC AND STRATIFIED RANDOM METHODS OF ESTIMATING CATCH RATES, BY DEPTH INTERVAL, FOR BIOMASS ESTIMATION OF PACIFIC OCEAN PERCH (*Sebastes alutus*)) IN GOOSE ISLAND GULLY, QUEEN CHARLOTTE SOUND, BRITISH COLUMBIA

by

S. J. Westrheim and K. L. Yamanaka

Fisheries and Oceans Canada Science Branch, Pacific Region Pacific Biological Station Nanaimo, British Columbia V9T 6N7

© Her Majesty the Queen in Right of Canada 2007 Cat. No. Fs 97-6/2707E ISSN 0706-6457

Correct citation for this publication:

Westrheim, J. S., and Yamanaka K. L. 2007. A comparison of stratified systematic and stratified random methods of estimating catch rates, by depth interval, for biomass estimation of Pacific ocean perch (*Sebastes alutus*) in Goose Island Gully, Queen Charlotte Sound, British Columbia. Can. Tech. Rep. Fish. Aquatic. Sci. 2707: vii + 34 p.

TABLE OF CONTENTS	. iii
LIST OF TABLES	iv
LIST OF FIGURES	v
LIST OF APPENDICES	v
ABSTRACT	
INTRODUCTION	1
METHODS AND MATERIALS	1
MATERIALS	1
METHODS	2
Surveys	2
Catch Processing	2
Assignment to LORAN Lines	2
Definition of the Study Area	
Sector Assignment	3
Order of Trawling	3
Analysis	3
RESULTS	4
GENERAL	4
SAMPLING INTENSITY	4
CATCH RATES, EFFORT, AND MEAN CATCHES: GBR vs. ALL	4
Catch Rates	4
Effort	5
Mean Catches	5
CATCH RATES AND MEAN CATCHES: OCEAN SELECTOR vs. FROSTI	6
Catch Rates	6
Mean Catches	6
SECTORS: NORTH vs. SOUTH	6
Catch Rates	7
Mean Catches	
CATCH RATES AND MEAN CATCHES: TRAWLING-ORDER 1 vs. TRAWLING-	
ORDER 2	8
Catch Rates	8
Mean Catches	
SUMMARY AND DISCUSSION	9
ACKNOWLEDGMENTS	.11
LITERATURE CITED	.11

LIST OF TABLES

Table 1. List of, and reasons for, rejected trawl hauls, undertaken by the F/Vs OCEANSELECTOR and FROSTI in Goose Island Gully and vicinity, September 1995. (Source: Appendix tables 2 and 3)
 Table 2. Numbers of usable hauls per 100 sq nm, by 20-fm depth interval, of the R/V G.B. REED and F/V OCEAN SELECTOR (OS) in the Goose Island Gully Study Area, September 1976 and 1995. (Source: Appendix tables 1 and 2)
Table 3. Pacific ocean perch (POP) catch rates (kg/h), by 20-fm depth interval and vessel, from usable trawl hauls on GBR LORAN lines, and ALL usable trawl hauls in the Goose Island Gully Study Area, September 1976 and 1995. (Source: Appendix tables 1-3)
Table 4. "t" tests of differences between mean catches (kg), by 20-fm depth interval, GBR LORAN lines, ALL hauls and vessel, of Pacific ocean perch from usable hauls in the Goose Island Gully Study Area, September 1995. (Source: Appendix tables 2 and 3)15
Table 5. "t" tests of differences between mean catches (kg), by 20-fm depth interval, GBR LORAN lines, ALL hauls of Pacific ocean perch by the F/Vs OCEAN SELECTOR and FROSTI in the Goose Island Gully Study Area, September 1995. (Source: Table 4)
Table 6. Pacific ocean perch (POP) catch rates (kg/h), by vessel and sector (N,S), at 110, 130, and 150 fms, in usable hauls on GBR LORAN lines, and all usable hauls, in the Goose Island Gully Study Area, September 1995. (Source: Appendix tables 1-3)
 Table 7. "t" tests of differences between mean catches (kg), by vessel, sector (N,S), and 20-fm depth interval, of Pacific ocean perch in usable hauls at 110, 130, and 150 fms, on GBR LORAN lines, and ALL hauls in the Goose Island Gully Study Area, September 1995. (Source: Appendix tables 2 and 3)
Table 8. Records of F/Vs OCEAN SELECTOR and FROSTI usable trawl hauls, by 20-fm depth interval, trawling order (1,2), ans LORAN lines (GBR, ALL), at 110, 130, and 150 fms, in the Goose Island Gully Study Area, September 1995. (Source: Appendix tables 2 and 3)22
Table 9. "t" tests of differences between mean catches (kg) of the F/Vs OCEAN SELECTOR and FROSTI, by trawling order (1, 2) and LORAN lines (GBR,ALL), of Pacific ocean perch in usable hauls at 110, 130, and 150 fms, in the Goose Island Gully Study Area, September 1995. (Source: Appendix tables 2 and 3)

LIST OF FIGURES

Figure 1. International groundfish statistical areas off British Columbia.	25
Figure 2. Locations of the R/V G. B. REED trawl hauls in the Study Area. September 8 - 27, 1976.	26
Figure 3. Locations of F/V OCEAN SELECTOR trawl hauls in the Study Area and vicinity, September 11 – 22, 1995	27
Figure 4. Locations of F/V FROSTI trawl hauls in the Study Area and vicinity, September 11 - 22, 1995.	

LIST OF APPENDICES

Appendix Table 1. Records of G.B. REED trawl hauls in Goose Island Gully, September 8-27, 1976. (Source: Westrheim et al.1976)	9
Appendix Table 2. Records of F/V OCEAN SELECTOR trawl hauls in Goose Island Gully and vicinity, September 11-22, 1995. (Source: Yamanaka et al. 1996)	
Appendix Table 3. Records of F/V FROSTI trawl hauls, in Goose Island Gully and vicinity, September 11-22, 1995. (Source: Yamanaka et al. 1996)	3

ABSTRACT

Westrheim, J. S., and Yamanaka K. L. 2007. A comparison of stratified systematic and stratified random methods of estimating catch rates, by depth interval, for biomass estimation of Pacific ocean perch (*Sebastes alutus*) in Goose Island Gully, Queen Charlotte Sound, British Columbia. Can. Tech. Rep. Fish. Aquatic. Sci. 2707: vii + 34p.

On-bottom trawl surveys have been conducted since 1967 for stock assessment of Pacific ocean perch (Sebastes alutus) in Goose Island Gully (Queen Charlotte Sound, British Columbia). Prior to 1995, all surveys involved a single vessel, and employed the stratified systematic method, along six pre-determined LORAN lines. In 1995, the stratified random method was introduced, using two vessels, and involving a more extensive coverage of the Gully. The purpose of this report was to compare sampling intensity (hauls/100 sq nm), catch rates (kg/h), and mean catches (kg) for the two methods, within the Study Area, defined by the trawl locations in the 1976 survey. Additional comparisons dealt with north-south orientation of hauls (1976 & 1995) and order of trawling (1995). In 1976, sampling intensity (stratified systematic) was 3.6 hauls/100 sq nm. In 1995, sampling intensity was 2.6 hauls/100 sq nm by each vessel along the six GBR LORAN lines, and 4.4 hauls/100 sq nm for all trawl hauls (ALL) in the Study Area. For each vessel, catch-rate differences were minor at 110 (4 - 19%), 130 (6 - 8%), and 150 (0%) fms, but substantial at 90 fms (63 - 86%). However, at 90 fms, catch rates were mostly small. Neither method adequately covered the 90-fm interval, based on single-vessel catches. Although catch rates differed substantially between the paired vessels (37 - 87%), mean catches rarely differed significantly. Orientation of hauls favoured the north side of the Gully for the stratified systematic method, and the south side for the stratified random method. The report concluded that the two survey methods were equivalent, in this case, and that the 1995 survey could have achieved the same results with a single vessel, and fewer hauls. On-bottom trawl surveys, of any kind, for Pacific ocean perch may no longer be relevant, because off-bottom concentrations of Pacific ocean perch have recently been demonstrated in Goose Island Gully, and elsewhere off British Columbia.

RÉSUMÉ

Westrheim, J. S., et Yamanaka K. L. 2007. Comparaison des méthodes d'échantillonnage stratifié systématique et aléatoire utilisées pour l'estimation des taux de capture, par intervalle de profondeur, dans le but d'évaluer la biomasse de sébaste à longue mâchoire (*Sebastes alutus*) dans le goulet de l'île Goose, détroit de la Reine-Charlotte (Colombie-Britannique). Can. Tech. Rep. Fish. Aquatic. Sci. 2707: vii + 34 p.

Depuis 1967, on effectue des relevés au chalut de fond afin d'évaluer les stocks de sébaste à longue mâchoire (Sebastus alutus) dans le goulet de l'île Goose in Goose Island Gully (détroit de la reine-Charlotte, Colombie-Britannique). Avant 1995, tous les relevés étaient faits à l'aide d'un seul navire, suivant une méthode d'échantillonnage stratifié systématique, le long de six lignes LORAN prédéfinies. La méthode d'échantillonnage stratifié aléatoire, faisant appel à deux navires et permettant une meilleure couverture du goulet, a été introduite en 1995. Le présent rapport visait à comparer l'intensité de l'échantillonnage (prises/nm²), le taux de capture (kg/h) ainsi que la prise moyenne (kg) obtenus respectivement avec ces deux méthodes dans la zone d'étude, définie d'après la position des chaluts lors de l'enquête de 1976. D'autres comparaisons ont été établies, notamment en ce qui concerne l'orientation nord-sud des prises (1976 et 1995), et la séquence de chalutage (1995). En 1976, l'intensité de l'échantillonnage (stratifié systématique) a atteint 3,6 prises/100 nm². En 1995, elle était de 2,6 prises/nm² pour chacun des navires le long de 6 lignes LORAN RAS, et de 4,4 prises/100 nm² pour toutes les prises des chaluts (TOUS) dans la zone d'étude. On a enregistré des différences mineures dans les taux de capture par bateau à 110 (4 - 19%), 130 (6 - 8%) et 150 (0%) fms, mais des différences substantielles à 90 fms (63 - 86 %). Cependant, à 90 fms, les taux de capture étaient faibles dans la plupart des cas. Ni l'une ni l'autre des méthodes ne convenait pour l'échantillonnage dans l'intervalle 90 fm, d'après les taux de capture enregistrés par vaisseau. Les taux de capture différaient de manière substantielle selon le navire dans le cas du chalutage jumelé (37 - 87 %), mais les prises moyennes ne variaient pas significativement. L'orientation des prises privilégiait le côté nord du goulet dans le cas de la méthode d'échantillonnage stratifié systématique, et le côté sud dans le cas de la méthode d'échantillonnage stratifié aléatoire. Les conclusions du rapport sont les suivantes : les deux méthodes de relevés s'équivalent, dans le cas concerné; en outre, un seul navire et un moins grand nombre de prises auraient suffi pour obtenir les mêmes résultats, dans le cas du relevé de 1995. Il se pourrait que les relevés au chalut de fond, de quelque type que ce soit, ne soient plus pertinents pour évaluer les stocks de sébaste à longue mâchoire compte tenu que les concentrations de fond cette espèce dans le goulet de l'île Goose et ailleurs au large de la Colombie-Britannique ont été récemment établies.

INTRODUCTION

Biomass surveys, using on-bottom trawl gear, for Pacific ocean perch (*Sebastes alutus*) in Goose Island Gully began in 1967 (Westrheim *et al.* 1968), and 11 have been completed through 1995 (Yamanaka *et al.* 1996). The stratified systematic method was utilized for all cruises until 1995, when a stratified random method was introduced. The question arises as to the advantage, if any, of either method for estimating catch rates by depth interval.

The purpose of this report was to compare sampling intensity (hauls/100 sq nm), catch rates (kg/h), and mean catches (kg) for the two methods, within the Study Area, defined by the trawl locations in the 1976 survey. Additional comparisons dealt with north-south orientation of hauls (1976 & 1995) and order of trawling (1995).

METHODS AND MATERIALS

MATERIALS

Goose Island Gully is located in southern Queen Charlotte Sound (Areas 5A and 5B; Figure 1.), between Goose Island Bank and the north coast of Vancouver Island. Its area was originally reported to be 1,147 sq nm, at 80 - 159 fms, based on trawl explorations in 1971 (Westrheim 1972). Subsequent trawl and echo-sounder explorations in 1973 delineated an adjacent ground (Southwest Slope, Goose Island Bank), which reduced the area of Goose Island Gully to 993 sq nm, at 80 - 159 fms (Westrheim 1974). The estimated areas by 20-fm depth interval were reported, as a text table, in Gunderson *et al.* (1977, p. 7). Goose Island Bank Slope was differentiated from Goose Island Gully by the type of bottom (generally "untrawlable"), and principal rockfish species (S. *proriger and S. reedi*).

Two cruise reports provided the data for analysis. Details of each trawl haul included: number, date, area, start time, duration, start and end (latitude and longitude), direction, distance traveled (1976 only), depth (fms; start-end), total catch (lbs in 1976; kg in 1995), catch of each species, and remarks (usable, unusable).

The first cruise report, dealt with the R/V G.B. REED on-bottom trawl survey in the Goose Island Gully Study Area during September 1976 (Westrheim *et al.* 1976).

The second cruise report dealt with the on-bottom trawl survey of Goose Island Gully and vicinity, in September 1995, by two chartered, commercial trawlers, the F/Vs OCEAN SELECTOR and FROSTI (Yamanaka *et al.* 1996).

METHODS

Surveys

<u>1976</u>. The survey employed a stratified systematic design. That is, along six predetermined tracklines (LORAN lines 4080, 4090, 4100, 4120, 4140, and 4160), trawl hauls were undertaken, from north to south, at the mid-points of four 20-fm depth intervals (90, 110, 130, and 150) (Figure 2.). Haul duration was 30 min.

<u>1995</u>. The survey employed a depth stratified random design. The area was divided into a grid of two-kilometer-square units, and each unit was assigned to one of the four depth strata used in previous surveys (80 - 99, 100 - 119, 120 - 139, and 140 - 159 fms). Trawl hauls were allocated in proportion to average stratum catch rate variance (determined from previous surveys) and weighted by the number of stratum grid units. Trawl locations were randomly selected for the first vessel, and virtually all were replicated by the second vessel. The choice of "lead" vessel was alternated. Haul duration was 20 min. Figure 3 shows the haul locations for the OCEAN SELECTOR and Figure 4 shows the haul locations for the FROSTI.

Catch Processing

G.B. REED catches of Pacific ocean perch were estimated using the 6-tub method of Westrheim (1967). The entire catch was sorted by species into numbered tubs. For Pacific ocean perch, the weights were recorded for the first two, middle two, and last two full tubs in each haul, plus the last, partially full tub. Total weight was determined by extrapolation. Biological data were collected from specimens in the six full tubs. For other species, the first six full tubs, and the last partially filled tub, were weighed, and the total weight determined by extrapolation.

Aboard the F/V OCEAN SELECTOR and F/V FROSTI, all catches less than 500 kg were processed completely. For larger catches, total weight was estimated as the catch was dropped on deck, then a sub-sample was collected from the conveyor belt; 3 baskets each from the beginning, middle, and end of the catch. The contents of the nine baskets provided the basis for estimating species composition, by weight, and other biological information.

Assignment to LORAN Lines

G.B. REED trawl hauls were assigned to LORAN lines by inspection, based on their array in Figure 2 of Westrheim *et al.* (1976).

For the F/V OCEAN SELECTOR and F/V FROSTI, conversion of haul locations to LORAN lines was more complex. Haul locations for each vessel were plotted on a chart containing latitude and longitude markings on the border. Then appropriate LORAN lines were superimposed, and conversions were undertaken by inspection.

Definition of the Study Area

The Study Area is that portion of Goose Island Gully which was selected for the series of biomass surveys, exemplified by the 1976 G.B. REED survey (Westrheim *et al.* 1976). Bathymetrically it is limited to the depth range of 80 - 159 fms (146 - 291 m). Within the Study Area, two sets of data were created. One involved those usable hauls completed on the six G.B. REED LORAN (GBR LORAN) lines. The other involved all usable hauls (ALL) in the Study Area.

Sector Assignment

The North and South sectors were delineated by the boundary created by connecting the mid-points of each relevant "north-south" LORAN line. Results are included in Appendix tables 1 - 3. A few hauls were located close to this line. The assignment of sector was determined by the position of the first of the paired hauls.

Order of Trawling

Order of trawling, for all hauls, was reported in Table 10 of Yamanaka *et al.* (1996), and is included in Appendix tables 2 and 3.

Analysis

Six steps are involved in the analysis.

Step one converts trawl-haul locations to relevant depth cells, with sub-sectors North and South. All the 1976 trawl hauls were used in this analysis, but the 1995 trawl hauls were limited to those: (1) deemed usable by the authors; (2) paired; and (3) lying within the Study Area.

Step two creates two sets of 1995 data for each vessel. One involves all usable hauls completed along the six GBR LORAN lines, and the other, ALL usable hauls within the Study Area.

Step three compares the sampling intensity of the two methods, as hauls per 100 square nautical miles (sq nm).

Step four compares the catch rates and mean catches, by 20-fm depth interval, of Pacific ocean perch from the two sets of data in Step Two. Conventional statistics are not applicable to rates, such as kg/h (Snedecor 1947, p. 100). Ratio estimators have been developed, but have proved "annoyingly intractable, because both y and x vary from sample to sample" (Cochran 1977, p. 153). However, in the present case, effort (the x variable) is virtually constant, and thus conventional statistics should be applicable to catch (the y variable). Thus, the "t" test of differences between means (variances unknown) was utilized (Dixon and Massey 1969, p. 116).

Step five compares the north-south distribution of hauls, with respect to catch rates and mean catches on GBR LORAN lines and ALL hauls.

Step six compares the order of trawling, with respect to catch rates and mean catches, of the two chartered, commercial vessels in the 1995 survey.

RESULTS

GENERAL

In 1976, the R/V G.B. REED completed 36 trawl hauls, all of which were deemed usable by the authors (Appendix table 1). Numbers within 20-fm depth intervals were 7, 15, 8, and 6, respectively, for 90, 110, 130, and 150 fms (Table 2).

In 1995, total number of hauls was 115 in Goose Island Gully and vicinity; 57 for the F/V OCEAN SELECTOR, and 58 for the F/V FROSTI (Appendix tables 2 and 3). Rejected hauls totaled 10 for OCEAN SELECTOR and 11 for FROSTI (Table 1). Causes of rejection were: deemed unusable by authors (3 and 1); no twin haul (1 and 4); outside depths of Study Area (5 and 4); outside Study Area (1 each); and outside Goose Island Gully (0 and 1). Thus, there were 47 pairs of usable hauls within the Goose Island Gully Study Area; 7 at 90 fms, 24 at 110 fms, and 8 each at 130 and 150 fms (Table 2).

With respect to the GBR LORAN lines, there were 24 pairs of usable trawl hauls—2 at 90 fms, 10 at 110 fms, 7 at 130 fms, and 5 at 150 fms (Table 2).

SAMPLING INTENSITY

G.B. REED overall intensity was 3.6 hauls per 100 sq nm, and 2.0 - 4.8 among depths (Table 2). OCEAN SELECTOR overall intensity on GBR LORAN lines was 2.4 hauls per 100 sq nm (0.6 - 4.2 among depths), and for the entire Study Area, 4.7 hauls per 100 sq nm (2.0 - 7.6 among depths). Compared to the G.B. REED, intensity was relatively similar among vessel-depth cells, with two exceptions. Intensity for the OCEAN SELECTOR was weak on the GBR LORAN lines at 90 fms (0.6 vs. 2.0 hauls/100 sq nm), and excessive for the entire Study Area at 110 fms (7.6 vs. 4.8 hauls/100 sq nm).

CATCH RATES, EFFORT, AND MEAN CATCHES: GBR vs. ALL

Catch Rates

Overall, catch rates on the GBR LORAN lines were larger than ALL hauls for the OCEAN SELECTOR (OS-1 vs. OS-2; +7%), and smaller for both FROSTI (F-1 vs. F-2; -32%),

and the combined vessels (OSF-1 vs. OSF-2; -15%) (Table 3). Among depth intervals, OCEAN SELECTOR catch rates on the GBR LORAN lines (OS-1) were smaller at 90 (-45%) and 150 fms (-20%), but larger at 110 (+1%) and 130 fms (+8%). FROSTI catch rates (F-1) followed the same pattern; -81%, -18%, +21%, and +6%. The relatively high values at 90 fms are probably due to the few hauls (2) on the GBR LORAN lines for each vessel. Eliminating the 90-fm data, reduced the overall difference in catch rates to +4% for OS-1 vs. OS-2, +9% for F-1 vs. F-2, and +6% for OSF-1 vs. OSF-2.

Effort

Overall, mean effort of the OCEAN SELECTOR was 0.333 h for both GBR and ALL hauls (Table 4). Among depth intervals, differences between means ranged from -0.008 to +0.003 h. Comparable values for the FROSTI were 0 to +0.011 h. These differences were deemed insignificant.

Mean Catches

Differences between mean catches on the GBR LORAN lines and ALL hauls, among depths and total, were all non-significant for both vessels. "t" values ranged from -0.476 to +0.232 (P >0.50) for the OCEAN SELECTOR, and -0.426 to +0.552 (P > 0.50) for the FROSTI (Table 4). Although all values had a probability of >0.50, coefficients of variation were relatively high overall, and within depth intervals. OCEAN SELECTOR overall values were 106 and 125%, respectively, for GBR and ALL, and among depths, 58 - 137% and 77 - 150%. FROSTI overall values were 100 and 108%, respectively, for GBR LORAN lines and ALL hauls, and among depths, 44 - 143% and 47 - 240%.

Combining the records of the two vessels, yielded similar results. "t" values ranged from -0.681 to +0.439, and all probabilities were >0.50. Coefficients of variation ranged from 69 to 142% on the GBR LORAN lines, and 73 - 209% for ALL hauls.

Pursuant to the 90-fm depth, 14 usable hauls were completed in 1995, and Pacific ocean perch mean catch was 315 kg (S.D. = 659) (Table 4). Only one pair had substantial catches— 1,159 kg (OS-27) and 2,332 kg (F-24) (Appendix tables 2 and 3). The remaining 12 catches ranged from 0 to 370 kg. Interestingly, one pair of hauls, on "untrawlable" bottom (LORAN 4100-S) (Figs. 4 and 5), yielded substantial catches of *S. reedi*. On September 16, FROSTI haul 30 yielded 1,451 kg of *S. reedi vs.* 0 kg for Pacific ocean perch; and on September 17, its twin haul, OCEAN SELECTR No. 32, yielded 3,821 kg of *S. reedi* and 68 kg of Pacific ocean perch. In 1976, the G.B REED did not trawl at this station, presumably because the echo sounder indicated the bottom was untrawlable for the G.B. REED net (see Fig. 2).

A somewhat different result occurred on "untrawlable" bottom at 110 fms on LORAN line 4150N (Figs. 3 and 4). On September 20, FROSTI haul No. 47 yielded 641 kg of Pacific ocean perch and 2,179 kg of *S. reedi* (Appendix table 3). On September 21, its twin haul, OCEAN SELECTOR haul No. 51, yielded 5,331 kg of Pacific ocean perch and 5,005 kg of *S. reedi* (Appendix table 2),

CATCH RATES AND MEAN CATCHES: OCEAN SELECTOR vs. FROSTI

Catch Rates

Overall, OCEAN SELECTOR catch rates were larger than FROSTI catch rates on both GBR LORAN lines (+115%) and ALL hauls (+35%) (Table 3). Among depth intervals, on the GBR LORAN lines, OCEAN SELECTOR catch rates were larger at 90 (+81%), 110 (+58%), and 130 (+70%) fms, but smaller at 150 (-24%) fms. For ALL hauls, OCEAN SELECTOR catch rates were larger at 110 (+88%) and 130 (+67%) fms, but smaller at 90 (-37%) and 150 (-22%) fms. Excluding the 90-fm depth, OCEAN SELECTOR catches were larger in both comparisons; +38% (GBR) and +44% (ALL).

Mean Catches

Combining depths, differences between vessels on both GBR LORAN lines and ALL hauls ranged from 282 to 348 kg, and none were significant. At 90 - 150 fms, "t" values were +1.046 (P >0.30) (GBR) and +1.288 (P >0.20) (ALL), and at 110 - 150 fms, +1.037 (P >0.30) and +1.363 (P >0.10) (Table 5). Coefficients of variation were large; 100 - 125% at 90 - 150 fms, and 93 - 116% at 110 - 150 fms. Among depths, for both GBR and ALL hauls, mean-catch differences ranged from -176 to +676 kg, and none were significant. Values of "t" ranged from - 0.266 to +1.694, and probabilities ranged from >0.10 to >0.50. Coefficients of variation were generally large; 44 - 143% on GBR LORAN lines and 47 - 240% for ALL hauls. Only one value was less than 50%, in each category.

SECTORS: NORTH vs. SOUTH

Use of catch rates and mean catches at 90 fms were precluded by limited data. In the South Sector, the G.B. REED completed only two hauls, whose respective catches of Pacific ocean perch were 0 and 2 kg (Appendix table 1). In the North Sector, there were no usable hauls completed on the GBR LORAN lines by the OCEAN SELECTOR and FROSTI (Appendix tables 2 and 3).

Trawl hauls, at 110 - 150 fms, were not equally divided between the North and South sectors for any of the three vessels (Table 6). Overall, G.B. REED hauls favoured the North Sector 16 to 13, while paired hauls of the F/V OCEAN SELECTOR and F/V FROSTI collectively favoured the South Sector 27 to 17 (GBR) and 50 to 30 (ALL). Differences were not statistically significant, based on a two-way contingency test (Dixon and Massey 1969, p. 242). Chi-square values were +1.320 (P >0.20) for G.B. REED hauls versus OSF-1 (GBR), and +2.049 (P >0.10) for G.B. REED versus OSF-2 (ALL). The South Sector was favoured by the OCEAN SELECTOR and FROSTI, because their trawls were randomly allocated within each depth strata in proportion to the size of the strata relative to the whole study area. On the south side, because the slope of the Gully is more gradual, the area within the depth strata is greater and, hence, more hauls were allocated in the South Sector in 1995.

Catch Rates

Overall, catch rates were larger in the North Sector for the G.B. REED (+41%), but smaller for the OCEAN SELECTOR + FROSTI on both the GBR LORAN lines (OSF-1; -59%) and ALL hauls (OSF-2; -3%) (Table 6).

<u>G.B. REED</u>. Among depths, North Sector catch rates on the GBR LORAN lines were larger at 110 fms (+80%) and 130 fms (+60%), but smaller at 150 fms (-14%) (Table 6).

<u>OCEAN SELECTOR</u>. Among depths, North Sector catch rates on the GBR LORAN lines (OS-1) were smaller at 110 fms (-72%) and 150 fms (-30%), but larger at 130 fms (+13%) (Table 6). For ALL hauls (OS-2), corresponding values were smaller at 110 (-9%) and 130 (-3%) fms, but larger at 150 fms (+130%).

<u>FROSTI</u>. Among depths, North Sector catch rates on the GBR LORAN lines (F-1) were smaller at all three depths (-60, -1, and -63%) (Table 6). For ALL hauls (F-2), corresponding values were smaller at 110 fms (-45%) and 150 fms (-11%), but larger at 130 fms (+9%).

Mean Catches

Overall, North-South differences in mean catches were not significant on the GBR LORAN lines for the G.B. REED, or for the OCEAN SELECTOR (-12 kg), FROSTI (-352 kg), and OCEAN SELECTOR + FROSTI (-437 kg) ("t" = -0.006, -0.284, -1.023; P > 0.50, > 0.50. > 0.30) (Table 7). Similarly, for ALL hauls, comparable differences of +365, -158, and -22 kg, were not significant ("t" = +0.163, -0.133, and -0.017; P > 0.50). However, coefficients of variation were large for the OCEAN SELECTOR (100 - 124%), FROSTI (87 - 109%), and OCEAN SELECTOR + FROSTI (76 - 138%).

<u>OCEAN SELECTOR</u>. Among depths, on GBR LORAN lines, differences were -834, -143, and -131 kg (Table 7). They were not significant at 110 and 130 fms ("t" = -1.063 and -0.185; P >0.30 and 0.50), and indeterminate at 150 fms (only one haul). For ALL hauls, mean catches were smaller in the North Sector at 110 fms (-4 kg) and 130 fms (-11 kg), but larger at 150 fms (+1,003 kg). None of the three differences were significant ("t" = -0.007. -0.017, +1.661; P = >0.50, >0.50, >0.10). Coefficients of variation ranged from 28 to 184%, and only two were less than 50%; 28% on GBR LORAN lines at 130 fms, south; and 41% for ALL hauls at 130 fms, south.

<u>FROSTI</u>. Among depths, mean catches on GBR LORAN lines were smaller in the North Sector at 110 fms (-427 kg) and 150 fms (-674 kg), but larger at 130 fms (+6 kg) (Table 7). As with the OCEAN SELECTOR, differences were not significant at 110 fms ("t" = -0.871; P >0.50), and 130 fms ("t" = 0.022; P >0.50), but indeterminate at 150 fms. Comparable values for ALL hauls were smaller at 110 fms (-233 kg), but larger at 130 fms (+77 kg) and 150 fms (+155 kg). None of the three differences were significant ("t" = -1.114, +0.307, +0.241; P = >0.20, >0.50, >0.50). Coefficients of variation ranged from 26 to 133%, and only two were less than 50% -26% on GBR LORAN line at 130 fms, south; and 35% for ALL hauls at 130 fms, south.

CATCH RATES AND MEAN CATCHES: TRAWLING-ORDER 1 vs. TRAWLING-ORDER 2

Inter-depth comparisons were limited to 110, 130, and 150 fms, because only two usable hauls were completed by each vessel at 90 fms on the GBR LORAN lines.

Order-1 hauls were reasonably distributed between the two vessels and proportions did not differ significantly from 50%. On GBR LORAN lines, the OCEAN SELECTOR was first on 12 of the 22 paired hauls, and FROSTI on 10 (Table 8). Assuming 50%, Chi-square was +0.182, and P >0.50). For All haulss, OCEAN SELECTOR was first on 17 of the 40 paired hauls, and FROSTI, 23. Chi-square was +0.900, and P >0.30.

Catch Rates

Overall, results of Order-1 versus Order-2 catch-rate comparisons were variable. On GBR LORAN lines, Order-1 catch rates were smaller for OCEAN SELECTOR (-34%), but larger for FROSTI (+107%), and OCEAN SELECTOR + FROSTI (+14%) (Table 8). For ALL hauls, Order-1 catch rates were smaller for OCEAN SELECTOR (-46%) and OCEAN SELECTOR + FROSTI (-10%), but larger for FROSTI (+125%).

OCEAN SELECTOR. Among depths, Order-1 catch rates on GBR LORAN lines, and ALL hauls were smaller at 110 fms (-87%, -84%) and 150 fms (-7%, -29%), but larger at 130 (+88%, +113%) (Table 8).

<u>FROSTI</u>. Among depths, Order-1 catch rates on GBR LORAN lines were larger at all depths (+501, +23, +93%) (Table 8). For ALL hauls, Order-1 catch rates were smaller at 110 fms (-84%) and 150 fms (-29%), but larger at 130 fms (+113%).

OCEAN SELECTOR + FROSTI. Among depths on GBR LORAN lines and ALL hauls, Order-1 catch rates were smaller at 110 fms (-34 and -47%), and larger at 130 (+71 and +66%) and 150 (+40 and 30%) fms (Table 8).

Mean Catches

For combined vessels and depths, Order-1 mean-catches did not differ significantly from Order-2 mean catches. Differences were +123 kg (GBR) and -98 kg (ALL) ("t" = +0.073 and -0.054; P >0.50) (Table 9). Coefficients of variation were large, 95 - 125%. For combined depths, OCEAN SELECTOR differences were -409 kg (GBR) and -560 kg (ALL), and not significant ("t" = -0.208 and -0.257; P >0.50). FROSTI differences were +596 kg and +466 kg, and also were not significant ("t" = +0.545 and +0.440; P >0.50). Coefficients of variation were relatively large for both vessels, 87 - 134% for OCEAN SELECTOR and 76 - 85% for FROSTI.

<u>OCEAN SELECTOR</u>. Among depths, differences between Order-1 and Order-2 mean catches on GBR LORAN lines were -1,626, +1,357, and +61 kg, respectively, at 110, 130, and 150 fms. The difference was significant at 110 fms ("t" = 2.664; P <0.05>0.02), but not at 130 fms ("t" = 1.791; P >0.10) or 150 fms ("t" = 0.132; P >0.50)). Coefficients of variation were relatively small (44, 72, 24%) for Order-1 catches, but not so for Order-2 catches (82, 53, 83%).

For ALL hauls, corresponding differences in mean catches were -1,207, +944, and -209 kg. Differences were significant at 110 fms ("t" = -2.596; P <0.02), but not at 130 ("t" = +1.448; P >0.10) or 150 fms ("t" = -0.289; P >0.50). Coefficients of variation were usually small for Order-1 catches (44, 72, 24%), but not so for Order-2 catches (108, 37, 97%).

<u>FROSTI</u>. Among depths, on GBR LORAN lines, differences between Order-1 and Order-2 mean catches were +885, +111, and +563 kg, respectively, at 110, 130, and 150 fms (Table 9). None were significant ("t" = +2.191, +0.801, and +0.806; P >0.05, >0.40, and >0.40). Coefficients of variation were generally large for Order-1 catches (97,36, 81%), and small for Order-2 catches (48, 55, 48%). For ALL hauls, differences were +448, +6, and +705 kg. They were significant at 110 fms ("t" = 2.439; P <0.05>0.02), but not at 130 fms ("t" = +0.038; P >0.40) or 150 fms ("t" = +1.235; P >0.20). Coefficients of variation, for ALL hauls, were generally small for both Order-1 (95, 46, 59%) and Order-2 (51, 55, 48%) catches.

SUMMARY AND DISCUSSION

On-bottom trawl surveys, for stock assessment, have been conducted since 1967 for Pacific ocean perch (*Sebastes alutus*) in Goose Island Gully (Queen Charlotte Sound, British Columbia). Prior to 1995, all surveys involved a single vessel, and employed the stratified systematic method. Trawling stations were established along six pre-determined LORAN lines, at the mid-points of four 20-fm depth intervals. In 1995, the stratified random method was introduced, using two vessels, and was not limited to the six LORAN lines, or depth intervals, of previous surveys. Usable hauls, for this study, were defined as: (1) deemed usable by the authors; (2) paired; and (3) lying within the Study Area. The Study Area was defined geographically in a 1974 report, and bathymetrically, in all previous reports, as 80 - 159 fms. Two sets of data were created: (1) those hauls completed on the six LORAN lines (GBR) used in the stratified systematic method; and (2) all hauls (ALL) completed in the Study Area. The primary purposes of this report were to compare sampling intensity, catches, and mean catches, of the two methods, for Pacific ocean perch. Additional studies involved comparable comparisons with respect to: (1) North versus South sectors of the Study Area (1976 & 1995); and (2) order of trawling (1995).

Sampling intensity (hauls/100 sq nm) was relatively similar among vessel-depth cells, with two exceptions. With respect to the 1976 stratified systematic method, intensity was weak on the GBR LORAN lines at 90 fms, and excessive for ALL hauls at 110 fms.

Within the Study Area, the catch rates of the F/V OCEAN SELECTOR and F/V FROSTI did not differ substantially among survey methods, except for the anomalous results at 90 fms (few hauls). Mean catches did not differ significantly at 110, 130, or 150 fms. Presumably, if catch rates, and mean catches, do not differ, then neither will biomass estimates. Hence, the stratified random method is equivalent to that of the stratified systematic method, in this case.

The numbers of hauls completed for ALL hauls was excessive, since the catch rates did not differ substantially from those based only on the GBR LORAN lines. Furthermore, a single vessel in 1995 could have achieved the same results as catch rates were not significantly different between the two vessels. The 90-fm depth interval was not well covered by the GBR LORAN line design, in part because of bottom deemed untrawlable for the G.B. REED trawl.

Trawl hauls were not equally divided between the North and South Sectors of the Study Area for any of the three vessels. G.B. REED hauls favoured the North Sector, while paired hauls of the F/V OCEAN SELECTOR and F/V FROSTI favoured the South Sector. The differences were not statistically significant, nor were mean catches.

Order of trawling was reasonably alternated between the paired vessels. Effects on catch rates were variable, but differences between mean catches were not significant, when vessels and depth, or depths, were combined. However, within depths, at 110 fms, OCEAN SELECTOR Order-1 mean catches were significantly smaller than Order-2 mean catch rates, and those of FROSTI were significantly larger.

Although statistical tests indicated, in most cases, non-significant differences between mean catches, it is troubling to note that the corresponding coefficients of variation were usually large.

The relative merits of the stratified systematic and stratified random methods, using onbottom trawls, for stock assessment of Pacific ocean perch may be academic. A recent report provided evidence of substantial off-bottom concentrations of Pacific ocean perch in Goose Island Gully, and elsewhere off British Columbia (Westrheim and Stanley 2006). These fish, of course, are not available to on-bottom trawls, and their relationship, if any, with their on-bottom counterparts has not been determined.

ACKNOWLEDGMENTS

G.E. Gillespie, Dr. D.R. Gunderson, and C.M. Hand reviewed the original manuscript, and contributed substantial improvements. W.C. Hajas provided valuable statistical advice. Lisa Lacko reproduced the trawl haul locations for the three vessels.

LITERATURE CITED

Cochran, W.G. 1977. Sampling Techniques. John Wiley & Sons. (Third Edition) 428 p.

- Dixon, W.J., and Massey, Jr., F.J., 1969. Introduction to Statistical Analysis. McGraw-Hill Book Co, New York, San Francisco, *et al.* (Third Edition), 638 p.
- Gunderson, D.R., Westrheim, S.J., Demory, R.L., and Fraidenburg, M.E. 1977. The status of Pacific ocean perch (*Sebastes alutus*) stocks off British Columbia, Washington, and Oregon, in 1974. Tech. Rep. Fish. Res. Board Can. 46: 45 p.
- Westrheim, S.J. 1967. Sampling research trawl catches at sea. J. Fish. Res. Board Can. 24(6): 1187-1202.
- Westrheim, S.J. 1972. Explorations of rockfish grounds off British Columbia in 1971. Manuscr. Rep. Fish. Res. Board Can. 1200: 29 p.
- Westrheim, S.J. 1974. Echo-sounder and trawl survey of Queen Charlotte Sound and southern Hecate Strait, 1972-73. Manuscr. Rep. Fish. Res. Board Can. 1307: 43 p.
- Westrheim, S.J., Harling, W.R., and Davenport, D. 1968. G.B. REED Groundfish Cruise No. 67-2, September 6 to October 4, 1967. Tech. Rep. Fish. Res. Board Can. 46: 45 p.
- Westrheim, S.J., Leaman, B.M., Harling, W.R., Davenport, D., Smith, M.S., and Wowchuk, R.M. 1976. G.B. REED Groundfish Cruise No. 76-3, September 8-27, 1976. Data Rec., Fish. Mar. Serv. (Can.). 21: 47 p.
- Westrheim, S.J., and Stanley, R.D. 2006. Bathymetric distributions of Pacific ocean perch (*Sebastes alutus*) off British Columbia. II. Size composition, by sex, and sex ratios, for specimens caught by off-bottom and on-bottom trawl in Hecate Strait, Queen Charlotte Sound, and off west Vancouver Island, 1969-89. Can. Manuscr. Rep. Fish. Aquat. Sci. 2763: v + 104 p.
- Yamanaka, K.L., Richards, L.J., and Workman, G.D. 1996. Bottom trawl survey for rockfish in Queen Charlotte Sound, September 11 to 22, 1995. Can. Manuscr. Rep. Fish. Aquat. Sci. 2362: 116 p.

Table 1. List of, and reasons for, rejected trawl hauls, undertaken by the F/Vs OCEAN SELECTOR and FROSTI in Goose Island Gully and vicinity, September 1995. (Source: Appendix tables 2 and 3)

Reason	Haul Number						
	OCEAN SELECTOR	FROSTI					
Deemed unusable by authors. No twin haul	14, 33, 42 41	29 8, 40, 43, 58					
Outside study area, 70 fms Outside study area, 170 fms Outside study area	6, 57 28, 30, 37 ^a 34	13 25, 27, 34ª 38					
Outside Goose Island Gully	(42)	39, (40)					
Total rejected	10	11					

^a Reported depths at start and end of haul 37 were 159 and 160 fms, respectively. Corresponding depths for the "twin" haul (F 34) were 160 and 160 fms. Both hauls were assigned to the 170-fm depth interval.

Table 2. Numbers of usable hauls per 100 sq nm, by 20-fm depth interval, of the R/V G.B. REED and F/V OCEAN SELECTOR (OS) in the Goose Island Gully Study Area, September 1976 and 1995. (Source: Appendix tables 1 and 2)

De	pth ^a	Are	a ^b	(G.B. REE	D		OS-1 ^c			OS-2 ^d	
(m)	(fms)	(sq nm)	(%)	(nos)	(%)	(nos/ 100 sq nm)	(nos)	(%)	(nos/ 100 sq nm)	(nos)	(%)	(nos/ 100 sq nm)
165	90	353	35.5	7	19.4	2.0	2	8.3	0.6	7	14.9	2.0
201	110	314	31.6	15	41.7	4.8	10	41.7	3.2	24	51.1	7.6
238	130	165	16.6	8	22.2	4.8	7	29.2	4.2	8	17.0	4.8
275	150	161	16.2	6	16.7	3.7	5	20.8	3.1	8	17.0	5.0
	Total	993	100.0	36	100.0	3.6	24	100.0	2.4	47	100.0	4.7

^a Mid-points of 20-fm depth intervals (90 = 80-99, *etc.*). Equivalent values in meters
 ^b Text table in Gunderson *et al.* (1974, p. 7)
 ^c OS-1 = OCEAN SELECTOR, G.B. REED LORAN lines
 ^d OS-2 = OCEAN SELECTOR, All usable hauls in the Study Area

D	epth ^a	Vessel ^b	No. hauls	Duration	PC)P	POP kg/	
(m)	(fms)			(hrs)	(kg)	(kg/h)	1 vs 2 (%)	OS <i>v</i> s F (%)
165	90	GBR	7	3.50	625	179	(70)	(70)
100		OS-1	2	0.66	299	453	-45	+81
		OS-2	7	2.28	1866	818		-37
		F-1	2	0.58	145	250	-81	
		F-2	7	1.95	2538	1302		
201	110	GBR	15	7.50	8920	1189		
		OS-1	10	3.22	8910	2767	+1	+58
		OS-2	24	7.54	20593	2731		+88
		F-1	10	3.00	5249	1750	+21	
		F-2	24	7.14	10363	1451		
238	130	GBR	8	4.00	4461	1115		
		OS-1	7	2.40	9840	4100	+8	+70
		OS-2	8	2.72	10285	3781		+67
		F-1	7	2.12	5112	2411	+6	
		F-2	8	2.42	5486	2267		
275	150	GBR	6	2.75	4319	1570		
		OS-1	5	1.72	3781	2211	-20	-24
		OS-2	8	2.76	7594	2751		-22
		F-1	5	1.61	4659	2894	-18	
		F-2	8	2.55	8980	3522		
	Total	GBR	36	17.75				
		OS-1	24	8.00	22830	2854	+7	+115
		OS-2	47	15.30	40338	2636		+35
		F-1	24	11.45	15165	1324	-32	
		F-2	47	14.06	27367	1946		
		OSF-1	48	19.45	37995	1953	-15	
		OSF-2	94	29.36	67705	2306		
	110-150	GBR	29	14.25	00504	0070		
		OS-1	22	7.34	22531	3070	+4	+38
		OS-2	40	13.02	38472	2955	- •	+44
		F-1	22	6.73	15020	2232	+9	
		F-2	40	12.11	24829	2050	. 6	
		OSF-1	47 77	14.07	37551	2669	+6	
		OSF-2	77	25.13	63301	2519		

Table 3. Pacific ocean perch (POP) mean catch rates (kg/h), by 20-fm depth interval and vessel, from usable trawl hauls on GBR LORAN lines, and ALL usable trawl hauls in the Goose Island Gully Study Area, September 1976 and 1995. (Source: Appendix tables 1-3)

^a Mid-point of 20-fm depth interval (90 = 80-99, *etc.*). Equivalent values in meters
 ^b <u>Vessel</u>: F = F/V FROSTI (1995); GBR = R/V G.B. REED (1976); OS = F/V OCEAN SELECTOR (1995);
 1 = hauls on GBR LORAN lines; 2 = ALL usable hauls in Study Area

Table 4. "t" tests of differences between mean catches (kg), by 20-fm depth interval, GBR LORAN lines, ALL hauls and vessel, of Pacific ocean perch from usable hauls in the Goose Island Gully Study Area, September 1995. (Source: Appendix tables 2 and 3)

Parameter	90	90		110		130		50	То	tal
	GBR	ALL								
Hauls (pairs)	2	7	10	24	7	8	5	8	24	47
				<u>F/V</u>	OCEAN	SELECTO	<u>DR</u>			
Effort (h)										
Total Mean	0.66 0.330	2.28 0.330	3.22 0.322	7.89 0.330	2.40 0.343	2.72 0.340	1.72 0.344	2.76 0.345	8.00 0.333	15.65 0.333
M_{GBR} - M_{ALL}	0		-0.0	800	0.0	003	-0.0	001	C)
Catch (kg)										
Total	299	1866	8910	20889	9840	10285	3781	7594	22830	40634
Mean	150	267	891	870	1406	1286	756	949	951	865
S.D.	118	401	1225	1268	1006	992	439	827	1007	1081
C.V.	79	150	137	146	72	77	58	87	106	125
M _{GBR} - M _{ALL}	-11	7	2	21	1:	20	-19	93	8	7
"t"	-0.3	90	0.0)44	0.2	232	0.2	32	-0.4	176
Df	7		3	32	1	3	1	1	6	9
Р	>0.5	50	>0	.50	>0	.50	>0.	50	>0.	50

Parameter	90	0	1 [,]	10	130		150			otal	
	GBR	ALL	GBR	ALL	GBR	ALL	GBR	ALL	GBR	ALL	
					<u>F/V F</u> F	ROSTI					
Effort (h)											
Total	0.58	1.95	3.00	7.14	2.12	2.42	1.61	2.55	7.31	14.06	
Mean	0.290	0.279	0.300	0.298	0.303	0.303	0.322	0.319	0.305	0.299	
M_{GBR} - M_{ALL}	0.0	11	0.002		0	0		0.003		0.006	
Catch (kg)											
Total	145	2538	5249	10363	5112	5486	4659	8980	15165	27367	
Mean	73	363	525	432	730	686	932	1123	632	582	
S.D.	103	870	749	498	319	321	745	733	631	626	
C.V.	141	240	143	115	44	47	80	65	100	108	
M _{GBR} - M _{ALL}	-29	90	9	3	44	4	-19	91	5	0	
"t"	0.4	49	-0.4	426	-0.2	-0.265		0.552		318	
Df	7	•	32		13		11		69		
Р	>0.50		>0	>0.50		>0.50		>0.50		.50	

Table 4 cont'd. "t" tests of differences between mean catches (kg), by 20-fm depth interval, GBR LORAN lines, ALL hauls and vessel, of Pacific ocean perch from usable hauls in the Goose Island Gully Study Area, September 1995. (Source: Appendix tables 2 and 3)

Table 4 cont'd. "t" tests of differences between mean catches (kg), by 20-fm depth interval, GBR LORAN lines, ALL hauls and vessel, of Pacific ocean perch from usable hauls in the Goose Island Gully Study Area, September 1995. (Source: Appendix tables 2 and 3)

Parameter	90		110		13	30	150		Total	
	GBR	ALL	GBR	ALL	GBR	ALL	GBR	ALL	GBR	ALL
				F/Vs O	CEAN SEI	LECTOR +	FROST	<u>l</u>		
Hauls (nos)	4	14	20	48	14	16	10	16	48	94
Catch (kg)										
Total	444	4404	14159	31252	14952	15771	8440	16574	37995	68001
Mean	111	315	708	651	1068	986	844	1036	792	723
S.D.	100	659	1006	979	798	777	584	760	847	890
C.V.	90	209	142	150	75	79	69	73	107	123
M _{GBR} - M _{ALL}	-20)4	5	7	8	2	-1	92	6	8
"t"	-0.6	04	0.2	217	0.2	285	-0.	-0.681		139
Df	16	6	6	66		28		24		40
Р	>0.	50	>0	.50	>0	.50	>0).50	>0	.50

Parameter			90			110				130			
	GB	R	AL	L	GE	3R	A	L	GE	3R	Al	L	
Vessel ^a	OS-1	F-1	OS-2	F-2	OS-1	F-1	OS-2	F-2	OS-1	F-1	OS-2	F-2	
Hauls	2	2	7	7	10	10	24	24	7	7	8	8	
Total (kg)	299	145	1866	2538	8910	5249	20889	10363	9840	5112	10285	5486	
Mean (kg)	150	73	267	363	891	525	870	432	1406	730	1286	686	
S.D.	118	103	401	870	1225	749	1268	498	1006	319	992	321	
C.V.(%)	79	141	150	240	137	143	146	115	72	44	77	47	
M _{GBR} - M _{All} "t"		77 -96 0.691 -0.266		36 0.8		43		676 1.694		600 1.627			
Df	2		-0.2			0.806 1.576 18 46			12		4		
P	>0.		>0.			>0.40 >0.10			>0.10		>0.10		
		150 GBR ALL				90-150 fms GBR ALL			GE		50 fms Al		
	OS-1	F-1	OS-2	F-2	OS-1	F-1	OS-2	F-2	OS-1	F-1	OS-2	F-2	
Hauls	5	5	8	8	24	24	47	47	22	22	40	40	
Total (kg)	3781	4659	7594	8980	22830	15165	40634	27367	22531	15020	38768	24829	
Mean (kg)	756	932	949	1123	951	632	865	582	1024	683	969	621	
S.D.	439	745	827	733	1007	631	1081	626	1021	634	1129	580	
C.V.(%)	58	80	87	65	106	100	125	108	100	93	116	93	
M _{GBR} - M _{All}	-17	-176 -174 319 282		32	34	1	34	18					
"t"	-0.4	55	-0.3	859	1.0	47	1.2	288	1.0	37	1.3	63	
D 4	8	1	14	1	1	46 92		っ	42		78		
Df	0		1.	+	4	0	9	2	4	2	1	0	

Table 5. "t" tests of differences between mean catches (kg), by 20-fm depth interval, GBR LORAN lines, ALL hauls of Pacific ocean perch by the F/Vs OCEAN SELECTOR and FROSTI in the Goose Island Gully Study Area, September 1995. (Source: Table 4)

a Vessel: F = F/V FROSTI; OS = F/V OCEAN SELECTOR; 1 = GBR LORAN lines; 2 = All usable hauls in the Study Area

Depth (fms)	Vessel ^a	Sector	Hauls	Dur. (hr)			N vs S (kg/h)
							(%)
110	GBR	Ν	8	4.00	5990	1498	+80
		S	7	3.50	2913	832	
	OS-1	N	4	1.40	1563	1116	-72
		S	6	1.82	7347	4037	
	F-1	N	4	1.18	1076	912	-60
		S	6	1.82	4173	2293	-00
	00.0	NI	40	0.40	0070	0500	•
	OS-2	N S	10 14	3.46 4.43	8676 12213	2508 2757	-9
	F-2	N S	9 15	2.68 4.46	2575 7788	961 1746	-45
		3	15	4.40	1100	1740	
130	GBR	Ν	5	2.50	3240	1296	+60
		S	3	1.50	1213	809	
	OS-1	Ν	4	1.37	3312	2418	+13
		S	3	1.36	2912	2141	
	F-1	N	3	0.92	2202	2393	-1
		S	4	1.20	2910	2425	
	OS-2	N	4	1.37	3312	2418	-3
	00-2	S	4	1.35	3357	2410	-0
	- 0		0	0.00	0000	0000	
	F-2	N S	3 5	0.92 1.50	2202 3284	2393 2189	+9

Table 6. Pacific ocean perch (POP) mean catch rates (kg/h), by vessel and sector; North (N) and South (S), at 110, 130, and 150 fms, in usable hauls on GBR LORAN lines, and ALL usable hauls, in the Goose Island Gully Study Area, September 1995. (Source: Appendix tables 1-3)

Table 7. "t" tests of differences between mean catches (kg), by vessel, sector; North (N) and South (S), and 20-fm depth interval, of Pacific ocean perch in usable hauls at 110, 130, and 150 fms, on GBR LORAN lines, and for ALL hauls in the Goose Island Gully Study Area, September 1995. (Source: Appendix tables 2 and 3)

Parameter		110	130)	150			
	GBR	ALL	GBR	ALL	GBR	ALL		
	N S	N S	N S	N S	N S	N S		
			F/V OCEAN SEL	ECTOR				
Hauls	4 6	10 14	4 3	4 4	1 4	2 6		
Total	1563 7347	8676 12213	3312 2912	3312 3357	658 3123	3403 4191		
Mean	391 1225	868 872	828 971	828 839	650 781	1702 699		
S.D.	331 1517	1597 1040	1283 270	1283 343	0 503	1476 470		
C.V.	85 124	184 119	155 28	155 41	0 64	87 67		
M _N - M _S	-834	-4	-143	-11	-131	1003		
"t"	-1.063 -0.007		-0.185	-0.017	Nil	1.661		
Df	8	22	5	6	3	6		
Ρ	>0.30	>0.50	>0.50	>0.50	Nil	>0.10		
			<u>F/V FROSTI</u>					
Hauls	4 6	9 15	3 4	3 5	1 4	2 6		
Total	1076 4173	2575 7788	2202 2910	2202 3284	393 4266	2477 6503		
Mean	269 696	286 519	734 728	734 657	393 1067	1239 1084		
S.D.	340 924	259 590	501 190	501 228	0 787	1196 678		
C.V.	126 133	91 114	68 26	68 35	0 74	97 63		
M _N - M _S	-427	-233	6	77	-674	155		
"t"	-0.871	-1.114	0.022	0.307	Nil	0.241		
Df	8	22	5	6	3	6		
P	>0.50	>0.20	>0.50	>0.50	Nil	>0.50		

20

Table 7 cont'd. "t" tests of differences between mean catches (kg), by vessel, sector; North (N) and South (S), and 20-fm depth interval, of Pacific ocean perch in usable hauls at 110, 130, and 150 fms, on GBR LORAN lines and for ALL hauls in the Goose Island Gully Study Area, September 1995. (Source: Appendix tables 2 and 3)

Parameter	meter 110-150											
	G	BR	AL	L	G	BR	A	LL	G	BR	ALL	
	N	S	N	S	Ν	S	Ν	S	N	S	N	S
		OCEAN S		<u>FROSTI</u>				OCEAN SELECTOR + FROSTI				
Hauls	9	13	16	24	8	14	14	26	16	28	29	51
Total	9149	13382	19007	19761	3671	11349	7254	17575	9204	28347	22645	40952
Mean	1017	1029	1188	823	459	811	518	676	575	1012	781	803
S.D.	1061	1037	1479	824	418	713	564	591	436	997	1077	809
C.V.	104	101	124	100	91	88	109	87	76	99	138	101
M _N - M _S	-	12	36	5	-3	352	-1	58	-4	37	-2	2
"t"	-0.	006	0.1	63	-0.	.284	-0.	133	-1.	023	-0.0)17
Df	20		38		2	20	38		42		78	
Р	>0	>0.50		50	>0.50		>0.50		>0.30		>0.50	

Table 8. Records of F/Vs OCEAN SELECTOR and FROSTI usable trawl hauls, by 20fm depth interval, trawling order (1,2), and GBR LORAN lines and ALL hauls, at 110, 130, and 150 fms, in the Goose Island Gully Study Area, September 1995. (Source: Appendix tables 2 and 3)

Depth ^a	Order ^b	No. Hau		Effor	t (h)	Cate	h (kg)		CPUI	E (kg/h)	
(fms)	Order	GBR		GBR	ALL	GBR	ALL	GBR	ALL		2 (%)
(1115)		GDI	ALL	GDI	ALL	GDI	ALL	GDI	ALL	GBR	ALL
										GBK	ALL
110	1	6	11	1.91	3.56	1443	2383	755	669	-87	-84
	2	4	13	1.31	4.33	7467	18506	5700	4274		
130	1	4	4	1.37	1.37	7031	7031	5132	5132	+88	+113
	2	3	4	1.03	1.35	2809	3254	2727	2410		
150	1	2	2	0.75	0.75	1585	1585	2113	2113	-7	-29
	2	3	6	0.97	2.01	2196	6009	2264	2990		
Total	1	12	17	4.03	5.68	10059	10999	2496	1936	-34	-46
	2	10	23	3.31	7.69	12472	27769	3768	3611		
	1>2									1/3	1/3
110	1	4	13	1.22	3.86	4224	8287	3462	669	+501	-84
	2	6	11	1.78	3.28	1025	2076	576	4274		
130	1	3	4	0.88	1.18	2381	2755	2706	5132	+23	+113
	2	4	4	1.24	1.24	2731	2731	2202	2410		
150	1	3	6	0.97	1.91	3472	7793	3579	2113	+93	-29
	2	2	2	0.64	0.64	1187	1187	1855	2990		
Total	1 2	10 12	23 17	3.65 3.66	8.6 5.46	10222 4943	21334 6033	2801 1351	2481 1105	+107	+125
	1>2	12		0.00	0.10	1010	0000			3/3	1/3

Table 9. "t" tests of differences between mean catches (kg) of the F/Vs OCEAN SELECTOR and FROSTI, by trawling order (1, 2) and GBR LORAN lines and ALL hauls, of Pacific ocean perch in usable hauls at 110, 130, and 150 fms, in the Goose Island Gully Study Area, September 1995. (Source: Appendix tables 2 and 3)

Parameter	110					13	0		150			
	GI	3R	А		GB	R	AL	L	GB	R	AL	L
	1	2	1	2	1	2	1	2	1	2	1	2
					E	V OCEAN	N SELECT	<u>DR</u>				
Hauls	6	4	11	13	4	3	4	4	2	3	2	6
Total	1443	7467	2383	18506	7031	2809	7031	3254	1585	2196	1585	6009
Mean	241	1867	217	1424	1758	401	1758	814	793	732	793	1002
S.D.	105	1538	94	1534	1269	213	1269	301	190	604	190	968
C.V.	44	82	43	108	72	53	72	37	24	83	24	97
M ₁ - M ₂	-16	626	-12	207	135	57	94	4	61	l	-20	9
"t"	-2.0	664	-2.	596	1.79	91	1.44	48	0.13	32	-0.2	89
Df	ŧ	3	2	2	5		6		3		6	
Р	<0.05	>0.02	<0	.02	>0.	10	>0.1	10	>0.	50	>0.	50
						<u>F/V F</u>	ROSTI					
Hauls	4	6	13	11	3	4	4	4	3	2	6	2
Total	4224	1025	8287	2076	2381	2731	2755	2731	3472	1187	7793	1187
Mean	1056	171	637	189	794	683	689	683	1157	594	1299	594
S.D.	1022	82	607	96	287	376	315	376	937	284	766	284
C.V.	97	48	95	51	36	55	46	55	81	48	59	48
M ₁ - M ₂	88	35	44	48	11	1	6		56	3	70	5
"t"		91		139	0.8		0.0		0.8		1.23	
Df		3		2	5		6		3		6	
Р	>0	.05	<0.05	i>0.02	>0.4	40	>0.4	40	>0.4	40	>0.2	20

Table 9 cont'd. "t" tests of differences between mean catches (kg) of the F/Vs OCEAN SELEFCTOR and FROSTI, by trawling order
(1,2), GBR LORAN lines and ALL hauls, for Pacific ocean perch in usable hauls at 110, 130, and 150 fms, in the Goose Island Gully
Study Area, September 1995. (Source: Appendix tables 2 and 3)

Parameter						110-150						
	GI	3R	AI	LL	GB	GBR		.L	GBR		ALL	
	1	2	1	2	1	2	1	2	1	2	1	2
		OCEAN S	ELECTOR		FROSTI				OCEAN SELECTOR + FROSTI			
Hauls	12	10	17	23	10	12	23	17	22	22	40	40
Total	10059	12472	10999	27769	10077	4943	18835	5994	20136	17415	29834	33763
Mean	838	1247	647	1207	1008	412	819	353	915	792	746	844
S.D.	975	1082	865	1255	765	337	658	300	870	862	747	1053
C.V.	116	87	134	104	76	82	80	85	95	109	100	125
M ₁ - M ₂	-4	09	-5	60	59	6	46	6	12	23	-9	98
"t"	-0.2	208	-0.2	257	0.5	45	0.4	40	0.0	73	-0.0	054
Df	2	0	3	8	20)	38	3	4	2	7	8
Р	>0	>0.50		.50	>0.50		>0.50		>0.50		>0	.50

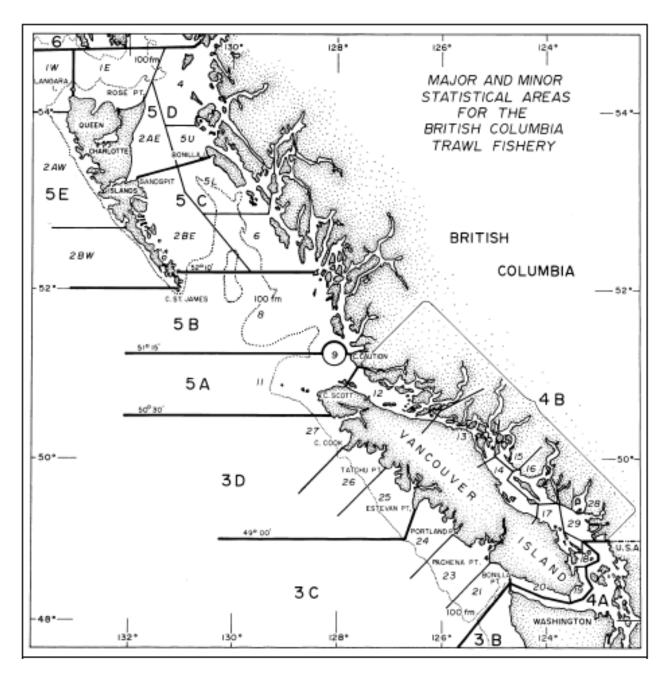


Figure 1. International groundfish statistical areas off British Columbia.

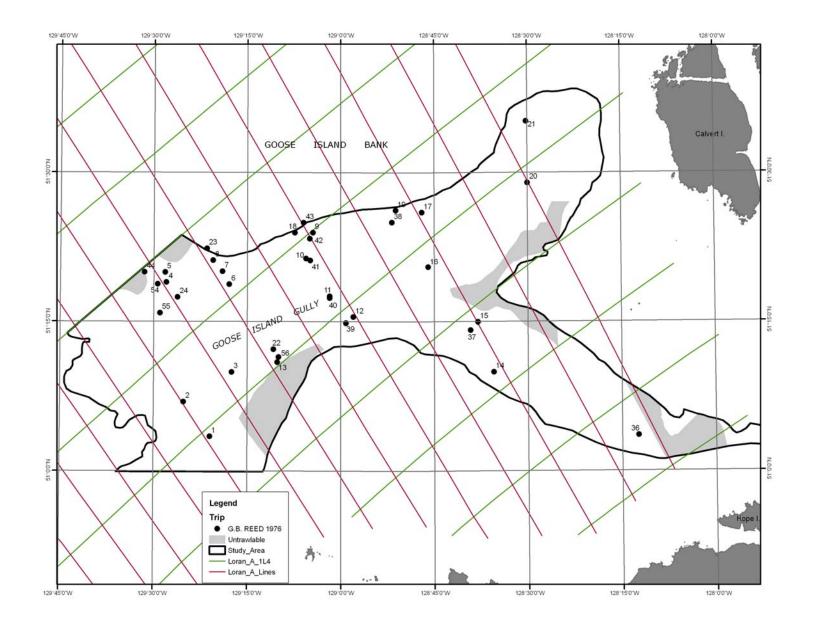


Figure 2. Locations of the R/V G. B. REED trawl hauls in the Study Area. September 8 - 27, 1976.

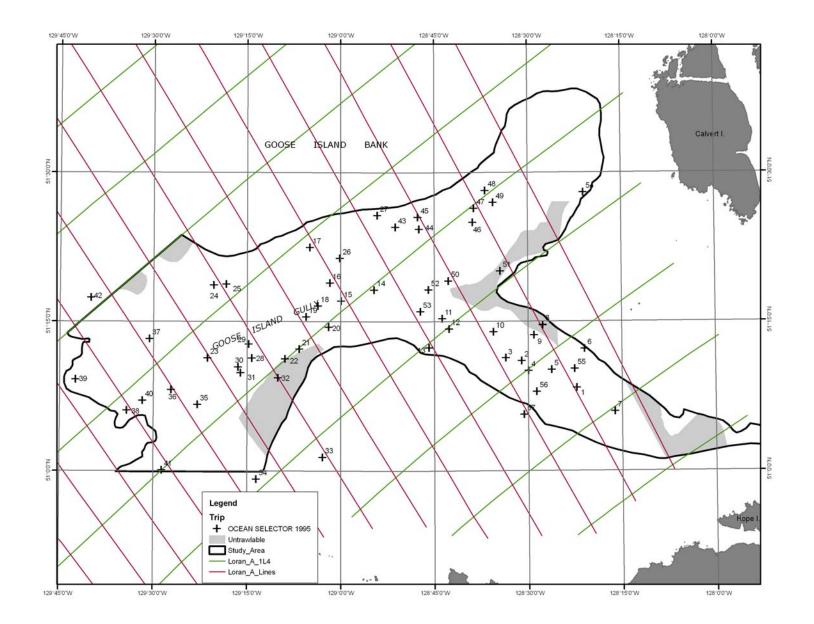


Figure 3. Locations of F/V OCEAN SELECTOR trawl hauls in the Study Area and vicinity, September 11 - 22, 1995.

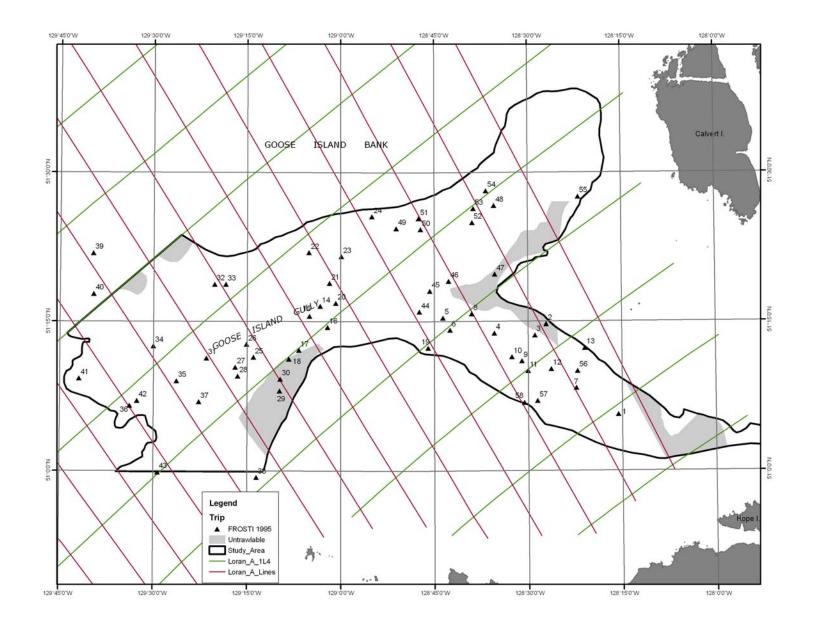


Figure 4. Locations of F/V FROSTI trawl hauls in the Study Area and vicinity, September 11 – 22, 1995.

Haul	Dur.	Sta	art	LORAN	Depth int	erval ^b	Catch	Catch (lbs)		
	(min)	N. lat.	W. long.	(2H4)	(fms)	(m)	Total	POP ^c		
1	30	51 03.5	129 21.0	4080-S	110	201	2317	508		
2	30	51 07.0	129 25.2	4080-S	150	275	3969	2796		
3	15	51 10.0	129 17.5	4090-S	150	275	1176	641		
4	30	51 19.0	129 28.0	4090-N	130	238	5188	2141		
5	30	51 20.0	129 28.2	4090-N	110	201	3063 ^d	0		
6	30	51 18.8	129 17.9	4100-N	150	275	2141	757		
7	30	51 20.1	129 19.0	4100-N	130	238	1489	905		
8	30	51 21.2	129 20.5	4100-N	110	201	6434	5796		
9	30	51 24.0	129 04.5	4120-N	110	201	3602	1315		
10	30	51 21.4	129 05.6	4120-N	130	238	3395	691		
11	30	51 17.6	129 01.8	4120-S	130	238	1335	520		
12	30	51 15.5	128 58.0	4120-S	110	201	2826	1747		
13	30	51 11.0	129 10.2	4100-S	110	201	3109	475		
14	30	51 10.0	128 35.5	4140-S	90	165	3780 ^e	0		
15	30	51 15.0	128 38.0	4140-S	110	201	3386	1691		
16	30	51 20.5	128 46.0	4140-S	130	238	2249	1190		
17	30	51 26.0	128 47.0	4140-N	110	201	12465	715		
18	30	51 24.0	129 07.4	4120-N	90	165	2719	321		
19	30	51 26.2	128 51.2	4140-N	90	165	6371	217		
20	30	51 29.0	128 30.0	4160-N	110	201	596	162		
21	30	51 35.2	128 30.2	4160-N	90	165	2451	552		
22	30	51 12.3	129 10.8	4100-S	150	275	3068	1238		
23	30	51 22.4	129 21.5	4100-N	90	165	1280 ^f	0		
24	30	51 17.5	129 26.2	4090-N	150	275	3643	2127		
36	30	51 03.6	128 12.4	4160-S	90	165	3124 ^g	2		
37	30	51 14.2	128 39.2	4140-S	110	201	2546	215		
38	30	51 25.0	128 51.8	4140-N	110	201	2379	273		
39	30	51 14.9	128 59.2	4120-S	110	201	2442	1092		
40	30	51 17.4	129 01.8	4120-S	130	238	2180	964		
41	30	51 21.2	129 04.9	4120-N	130	238	3441	1501		
42	30	51 23.4	129 05.0	4120-N	110	201	7577	3318		
43	30	51 25.0	129 06.0	4120-N	90	165	1798	283		
44	30	51 20.0	129 31.5	4090-N	110	201	2283	1624		
54	30	51 18.8	129 29.4	4090-N	130	238	4168	1902		
55	30	51 15.9	129 29.0	4090-N	150	275	4742	1942		
56	30	51 11.5	129 10.0	4100-S	110	201	9001 ^h	693		

Appendix Table 1. Records of G.B. REED trawl hauls in Goose Island Gully, September 8-27, 1976. (Source: Westrheim et al.1976)

Appendix table 1 cont'd. Records of G.B. REED trawl haulsa in Goose Island Gully, September 8-27, 1976. (Source: Westrheim et al.1976)

^a Authors deemed all hauls usable Hauls not listed here were completed in nearby Mitchell's Gully.

- ^b Mid-points of 20-fm depth intervals (90 = 80-99, etc.). Equivalent values in meters.
- ^c POP = Pacific ocean perch
- ^d Most important: *S. aleutianus*, 1804 lbs
- ^e Most important: pollock (Pacific pollock), 2423 lbs
- ^f Most important: turbot (arrowtooth flounder), 598 lbs
- ^g Most important: turbot (arowtooth flounder), 2044 lbs
- ^h Most important: *S. brevispinis*, 4014 lbs

J / I / (/						
Haul	Date	Ord ^a	Dur.	S	tart	LORAN	Dep interv	th ′al ^b	Catch	ı (kg)
			(hr)	N. lat.	W. long.	(2H4)	(fms)	(m)	Total	POP ^c
			(,	(51°)	g.	()	(()		
1	11	1	0.32	8.4	128 22,2	4150-S	110	201	279	100
2	12	1	0.28	11.1	128 31.0	4140-S	110	201	544	366
3	12	1	0.30	11.4	128 33.5	4140-S	110	201	544	304
4	12	1	0.28	10.1	128 29.9	4140-S	110	201	464	88
5	12	1	0.30	10.2	128 26.2	4150-S	110	201	454	253
6	12	0	0.32	12.3	128 20.9	4150-S	70	128	398 ^d	6
7	12	2	0.32	6.0	128 16.1	4150-S	90	165	856	370
8	13	2	0.32	14.7	128 27.6	4150-S	90	165	278 ^e	0
9	13	2	0.32	13.7	128 29.0	4150-S	110	201	659	230
10	13	2	0.28	14.0	128 35.5	4140-S	110	201	2586	1465
11	13	2	0.33	15.3	128 43.7	4130-S	110	201	1309	835
12	13	2	0.35	14.3	128 42.6	4130-S	110	201	2268	736
13	13	1	0.30	12.4	128 45.8	4130-S	90	165	234 ^f	21
14 ^d	13	0	0.27	18.2	128 54.6	4150-S	130	238	0	
15	14	1	0.35	17.1	128 59.9	4120-S	130	238	1414	1271
16	14	1	0.33	18.9	129 01.7	4120-N	130	238	3849	3616
17	14	1	0.37	22.5	129 04.9	4120-N	130	238	1575	1388
18	15	2	0.33	16.6	129 03.6	4120-S	130	238	1031	892
19	15	2	0.32	15.5	129 05.5	4110-S	130	238	557	445
20	15	2	0.33	14.5	129 01.9	4120-S	110	201	1557	982
21	15	2	0.33	12.3	129 06.6	4110-S	110	201	1800	1371
22	15	2	0.35	11.3	129 08.9	4100-S	110	201	5252	4142
23	16	1	0.35	11.4	129 21.3	4090-S	150	275	1065	927
24	16	1	0.32	18.7	129 20.3	4100-N	130	238	1207	756
25	16	1	0.40	18.8	129 18.3	4100-N	150	275	971	658
26	16	2	0.35	21.4	129 00.1	4120-N	130	238	1378	1168
27	16	2	0.33	25.7	128 54.1	4130-N	90	165	1551	1169
28	17	0	0.37	11.4	129 14.2	4100-S	170	311	488	314
29	17	2	0.32	12.8	129 14.7	4100-S	150	275	683	424
30	17	0	0.32	10.5	129 16.4	4080-S	170	311	1032	645
31	17	2	0.32	9.9	129 16.0	4090-S	150	275	1645	1428
32	17	2	0.33	9.4	129 10.0	4100-S	90	165	4954 ⁹	68
33 ^g	17	0	0.33	1.4	129 12.9	4100-S	90	165	0	
34	17	1	0.33	50 59.2	129 13.5	4090-S	90	165	180 ^h	2
35	19	2	0.35	6.7	129 22.9	4080-S	130	238	1186	749
36	19	2	0.33	8.2	129 27.1	4080-S	150	275	451	344
37	19	0	0.35	13.3	129 30.6	4080-N	170 ¹	311	401	237
38	19	2	0.35	6.1	129 34.2	4070-S	150	275	1702	898
39	19	2	0.32	9.2	129 42.4	4070-N	150	275	4293	2745
40	19	2	0.37	7.1	129 31.7	4070-S	150	275	366	170
41	19	0	0.35	0.1	129 28.6	4070-S	130	238	648	379
42 ^g	20	0	0.08	17.4	129 40.0	GIBS ⁹	130	238	0	

Appendix Table 2. Records of F/V OCEAN SELECTOR trawl hauls in Goose Island Gully and vicinity, September 11-22, 1995. (Source: Yamanaka et al. 1996)

Haul	Date	Ord ^a	Dur.	Start		LORAN	Dep interv		Catch	Catch (kg)		
Tiaui	Dale	Olu	Dui.			•	Interv	ai	Catch			
			(hr)	N. lat.	W. long.	(2H4)	(fms)	(m)	Total	POP℃		
43	20	1	0.35	24.5	128 51.2	4140-N	110	201	516	296		
44	20	1	0.35	24.3	128 47.4	4140-N	110	201	446	245		
45	20	1	0.35	25.5	128 47.6	4140-N	110	201	454	144		
46	20	1	0.33	25.0	128 38.8	4150-N	110	201	495	255		
47	20	1	0.35	26.4	128 38.6	4150-N	110	201	476	227		
48	21	1	0.35	28.2	128 36.8	4150-N	110	201	345	105		
49	21	2	0.33	27.0	128 35.5	4150-N	110	201	531	229		
50	21	2	0.35	19.1	128 42.7	4140-N	110	201	1458	878		
51	21	2	0.35	20.1	128 34.4	4150-N	110	201	11340 ⁱ	5331		
52	21	2	0.35	18.2	128 45.9	4130-N	110	201	1324	966		
53	21	2	0.33	16.0	128 47.2	4130-S	110	201	1361	840		
54	22	2	0.35	28.0	128 21.0	4170-N	90	165	470 ^j	7		
55	22	2	0.33	10.3	128 22.5	4150-S	110	201	1233	501		
56	22	2	0.33	8.0	128 28.6	4140-S	90	165	555	231		
57	22	0	0.33	5.7	128 30.6	4140-S	70	128	131 ^k	10		

Appendix table 2 cont'd. Records of F/V OCEAN SELECTOR trawl hauls in Goose Island Gully, September 11-22, 1995. (Source: Yamanaka et al. 1996)

^aOrd = order of trawling: 1 = first; 2 = second; 0 = not usable (see Table 1)

^b Mid-points of 20-fm depth intervals (90 = 80-99, etc.). Equivalent values in meters.

^c POP = Pacific ocean perch

^d Most important: arrowtooth flounder, 94 kg

^e Most important: arrowtooth flounder, 107 kg

^f Most important: arrowtooth flounder, 150 kg

^g Unusable

^h Most important: *S. reedi*, 3821 kg

¹ Most important: S. flavidus, 37 kg

^j Reported starting and ending depths were 159 and 160 fms, respectively. Comparable depths reported for the "twin" haul (F-34) were 160 and 160 fms. Hence 170 fms was assigned to both hauls.

^k GIBS = Goose Island Bank Slope. Not in Goose Island Gully (see Fig. 2)

¹ Next most important: *S. reedi*, 5,007 kg

^m Most important: S. babcocki, 192 kg

ⁿ Most important: arrowtooth flounder, 72 kg

D . . . ().

Haul	Date	Ord. ^a	Dur.	St	art	LORAN	Depth in	Depth interval ^b		Catch (kg)	
			(hr)	N. lat. (51°)	W. long.	(2H4)	(fms)	(m)	Total	POP ^c	
1	11	1	0.25	5.7	128 15.6	4150-S	90	165	291 ^d	18	
2	12	1	0.25	14.8	128 27.1	4150-S	90	165	182 ^e	0	
3	12	1	0.32	13.7	128 28.9	4150-S	110	201	557	249	
4	12	1	0.32	13.9	128 35.4	4140-S	110	201	907	627	
5	12	1	0.30	15.4	128 43.6	4130-S	110	201	680	461	
6	12	1	0.30	14.2	128 42.5	4130-S	110	201	984	474	
7	12	2	0.30	8.4	128 22.3	4150-S	110	201	384	163	
8	13	0	0.25	15.8	128 39.0	4140-S	110	201	213 ^f	45	
9	13	2	0.28	11.1	128 31.0	4140-S	110	201	537	236	
10	13	2	0.30	11.5	128 32.6	4140-S	110	201	492	224	
11	13	2	0.30	10.1	128 30.0	4140-S	110	201	451	267	
12	13	2	0.30	10.3	128 26.3	4150-S	110	201	647	408	
13	13	0	0.30	12.4	128 20.9	4150-S	70	128	475 ⁹	29	
14	14	1	0.28	16.6	129 03.3	4120-S	130	238	568	468	
15	14	1	0.30	15.6	129 05.0	4110-S	130	238	488	374	
16	14	1	0.30	14.5	129 02.1	4120-S	110	201	907	264	
17	14	1	0.28	12.2	129 06.7	4110-S	110	201	1134	829	
18	14	1	0.32	11.3	129 08.3	4100-S	110	201	3629	2555	
19	14	2	0.30	12.4	128 46.0	4130-S	90	165	168 ^h	39	
20	15	2	0.30	16.9	129 00.8	4120-S	130	238	907	832	
21	15	2	0.32	18.9	129 01.8	4120-N	130	238	794	709	
22	15	2	0.30	22.0	129 05.1	4120-N	130	238	1134	1034	
23	15	1	0.30	21.6	128 59.9	4120-N	130	238	1134	1012	
24	15	1	0.30	25.6	128 55.0	4130-N	90	165	2495	2332	
25	16	0	0.30	11.5	129 14.0	4100-S	170	311	680	490	
26	16	1	0.33	12.8	129 15.1	4100-S	150	275	424	245	
27	16	0	0.32	10.5	129 16.9	4090-S	170	311	1814	1597	
28	16	1	0.32	9.6	129 16.5	4090-S	150	275	2268	2118	
29'	16	0	0.17	8.1	129 09.8	4100-S	90	165	0		
30	16	1	0.30	9.3	129 09.7	4100-S	90	165	2495 ^j	0	
31	17	2	0.32	11.4	129 21.5	4090-S	150	275	907	794	
32	17	2	0.32	18.8	129 20.2	4100-N	130	238	185	156	
33	17	2	0.32	18.8	129 18.4	4100-N	150	275	680	393	
34	17	0	0.32	12.6	129 30.0	4080-N	170 ^k	311	336	156	
35	17	1	0.32	9.1	129 26.3	4080-S	150	275	1225	1109	
36	18	1	0.32	6.6	129 33.8	4070-S	150	275	2268	1585	
37	18	1	0.30	7.0	129 22.7	4080-S	130	238	1361	901	
38	18	2	0.28	50 59.4	129 13.5	4090-S	90	165	116 ¹	10	
39	19	0	0.28	21.9	129 39.7	GIBS ^m	110	201	303 ⁿ	1	
40	19	0	0.30	17.8	129 39.6	GIBS ^m	130	238	816	432	
41	19	1	0.32	9.3	129 41.9	4060-N	150	275	4082	2084	
42	19	1	0.30	7.1	129 32.6	4070-S	150	275	771	652	

Appendix Table 3. Records of F/V FROSTI trawl hauls, in Goose Island Gully and vicinity, September 11-22, 1995. (Source: Yamanaka et al. 1996)

Haul	Date	Ord. ^a	Dur.	;	Start	LORAN	Depth in	Depth interval ^b		Catch (kg)		
			(hr)	N. lat. (51°)	W. long.	(2H4)	(fms)	(m)	Total	POP ^c		
				50								
43	19	0	0.30	59.9	129 29.3	4070-S	130	238	419	219		
44	20	1	0.28	16.0	128 47.4	4130-S	110	201	816	435		
45	20	1	0.28	18.1	128 45.7	4130-N	110	201	998	327		
46	20	1	0.28	19.1	128 42.7	4140-N	110	201	1361	778		
47	20	1	0.30	19.8	128 35.3	4150-N	110	201	3175°	641		
48	20	1	0.30	26.7	128 35.4	4150-N	110	201	680	378		
49	21	2	0.30	24.4	128 51.1	4140-N	110	201	247	127		
50	21	2	0.30	24.3	128 47.2	4140-N	110	201	177	103		
51	21	2	0.30	25.4	128 47.5	4140-N	110	201	250	68		
52	21	2	0.30	25.0	128 38.9	4150-N	110	201	333	217		
53	21	2	0.30	26.4	128 38.7	4150-N	110	201	328	153		
54	21	2	0.30	28.2	128 36.7	4150-N	110	201	277	110		
55	22	1	0.27	27.6	128 21.9	4170-N	90	165	265 ^p	4		
56	22	1	0.28	10.1	128 22.1	4150-S	110	201	464	269		
57	22	1	0.28	7.1	128 28.5	4140-S	90	165	264	145		
58	22	0	0.28	6.9	128 30.6	4140-S	90	165	97 ^q	13		

Appendix table 3 cont'd. Records of F/V FROSTI trawl hauls, in Goose Island Gully and vicinity, September 11-22, 1995. (Source: Yamanaka et al. 1996)

^a Ord = order of trawling: 1 = first; 2 = second; 0 = not usable (see Table 1)

^b Mid-points of 20-fm depth intervals (90 = 80-99, etc.). Equivalent values in meters.

^c POP = Pacific ocean perch

^d Most important: rex sole, 62 kg

^e Most important: S. diploproa, 36 kg

^f Most important: *S. proriger*, 54

^g Most important: arrowtooth flounder, 137 kg

^h Most important: arrowtooth flounder, 102 kg

ⁱ Unusable

^j Most important: S. reedi, 1451 kg

^k Reported starting and endings depths were both 160 fms. Comparable depths reported for the "twin" haul (OS-37) were 159 and 160 ms, respectively. Hence, 170 fms was assigned to both hauls.

¹GIBS = Goose Island Bank Slope. Not in Goose Island Gully. See Fig. 2

^m Most important: S. brevispinis, 30 kg

ⁿ Most important: *S. zacentrus*, 221

^o Most important: S. reedi, 2179 kg

^p Most important, arrowtooth flounder, 54 kg