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ABSTRACT 
 
Patterson, D.A. and Hague, M.J.  2007.  Evaluation of long range summer forecasts of lower Fraser 

River discharge and temperature conditions.  Can. Tech. Rep. Fish. Aquat. Sci. 2754: vii + 
34 p. 

 
Extreme temperature and discharge conditions in the Fraser River adversely affect adult sockeye 
salmon migration success. Current fisheries management practices adjust harvest plans based on 
predicted summer temperature and discharge values. Therefore, the development of long range (~1 
to 4 months) forecasts of environmental conditions will aid in pre-season harvest planning. This 
report evaluated several models used to make long range forecasts of summer conditions. Fraser 
River sockeye salmon (Oncorhynchus nerka) run-timing groups were used as a case study to 
illustrate model performance. Most models were best-fit using simple, or multiple, linear regressions. 
We quantified the uncertainty in the temperature and discharge forecasts arising from uncertainty in 
the model structure, and, where applicable, uncertainty in the predictor variable. Predictor variables 
include winter precipitation anomalies, spring and summer air temperature anomalies, water volume 
forecasts, and historic trends in water and air temperatures. Temperature forecast models performed 
comparably, and consistently predicted summer river temperatures with a coefficient of variation of 
less than 8% and an approximate standard deviation of 1°C. The precision of discharge forecasts 
deteriorated throughout the summer, and there was a trade-off between the availability of the 
forecast method and the precision of the results. In general, increasing the number of days used to 
calculate the predicted means led to small improvements in model fit, however there was only 
modest improvement going from 19-day to 31-day means. Recommendations of the most 
appropriate models were made based on model fit, forecast uncertainty and the timing of data 
availability.  
 

RESUMÉ 
 

Patterson, D.A. and Hague, M.J.  2007.  Evaluation of long range summer forecasts of lower Fraser 
River discharge and temperature conditions.  Can. Tech. Rep. Fish. Aquat. Sci. 2754: vii + 
34 p. 

 
Les températures extrêmes et les conditions d’écoulement dans le Fraser sont réputées pour 
diminuer la réussite de la migration des saumons rouges adultes. Les stratégies actuelles de gestion 
des pêcheries ajustent les prévisions de pêche aux  valeurs prédites concernant les températures 
estivales et le flux dans le Fraser. Ainsi, le développement de prévisions à long terme (1 à 4 mois) 
des conditions environnementales va aider à mettre en place des programmes de pêche pour 
l’avant saison. Ce rapport a évalué plusieurs modèles utilisés pour faire des prévisions à long terme 
des conditions estivales. L’étude du cas des saumons rouges du Fraser (Oncorhynchus nerka), 
migrant à différentes époques selon le groupe, a servi à illustrer les performances des modèles. La 
plupart des modèles étaient le plus en adéquation avec des régressions linéaires simples ou 
multiples. Nous avons quantifié les incertitudes concernant les prévisions des températures et des 
écoulements résultant des incertitudes de la structure du modèle, et quand c’était possible, des 
incertitudes des variables indice. Les variables indice incluent les anomalies des précipitations 
hivernales, les anomalies de température de l’air du printemps et de l’été, les prédictions des 
volumes d’eau et les évolutions historiques de la température de l’air et du fleuve. Les modèles de 
prévision de la température estivale du fleuve ont donné des résultats très proches et tous avec un 
coefficient de variation de moins de 8% et un écart moyen d’environ 1 °C. La précision des 
prévisions de l’écoulement a diminué au cours de l’été, et il y eut un compromis entre la commodité 
de la méthode de prévision et la précision des résultats. En général, l’augmentation du nombre de 
jours sur lesquels la moyenne est calculée a mené à des améliorations légères de la 
correspondance du modèle aux résultats, cependant il n’y eut que de modestes améliorations en 
passant de moyennes de 19 à 31 jours. Les conseils prodigués pour choisir les modèles les plus 
appropriés se sont basés sur la correspondance du modèle, l’incertitude des prévisions et la période 
des données disponibles. 

 



INTRODUCTION 

Environmental conditions experienced by upstream migrating salmon have a direct influence on 
their survival (e.g. Quinn et al. 1997; Naughton et al. 2005).  In the Fraser River, high en route 
mortality is correlated to severe environmental conditions experienced by migrating adult 
sockeye salmon (Oncorhynchus nerka) (Macdonald 2000; Macdonald et al. 2000; Patterson et 
al. 2007a).  High temperatures influence sockeye salmon migratory success by impairing 
swimming ability (Salinger and Anderson 1996; Lee et al. 2003; Naughton et al. 2005) through 
increasing energy expenditures (Brett 1995), stress (Fagerlund et al. 1995) and susceptibility to 
disease (Macdonald et al. 2000; Wagner et al. 2005).  There is also a negative correlation 
between high discharge and up-river migration success (Rand and Hinch 1998; Macdonald et 
al. 2000).  High discharge values are associated with high river velocities and therefore slower 
migration rates (Quinn et al. 1997) and higher energy expenditures (Rand and Hinch 1998).  In 
the Fraser River, velocity barriers are also present near Hells Gate at discharge values in 
excess of 8000 m3 • s-1 (Macdonald 2000).  Given the relationships between salmon survival 
and environmental conditions, forecasts of Fraser River summer conditions are of particular 
interest to fisheries managers. 

Currently, the Fisheries and Oceans (DFO) Environmental Watch Program provides long range 
(i.e. 1 – 4 months in advance) forecasts of environmental conditions to fisheries managers for 
use in their pre-season planning process (D. Patterson, DFO, pers. comm. 2006). Specifically, 
managers use pre-season (D. Patterson, DFO, pers. comm. 2006), and in-season (Morrison 
2005), Fraser River temperature and discharge forecasts to generate estimates of the expected 
differences between lower river escapements estimated at Mission and spawning ground 
escapements (after accounting for in-river catch). The current approach uses a Difference 
Between Estimates (DBE), also known as Management Adjustment (MA), model that fits a non-
linear simple or multiple regression relationship between historic temperature and/or discharge 
data, and differences between potential and actual spawning ground escapement estimates. In 
general, Early Stuart, Early Summer and Summer run-timing groups use the same MA model 
framework (I. Guthrie, Pacific Salmon Commission, Vancouver, BC, pers. comm. 2006). Pre-
season forecasts of summer river conditions provide an early indication to managers of the 
expected discrepancy between potential (Mission) and observed spawning abundance; 
however, the reliability of the DBE or MA estimates are limited by the uncertainty inherent in 
making environmental predictions derived from long range forecasts (e.g. Moore 2006). 
Providing fisheries managers with quantified estimates of the reliability of environmental 
forecasts used in the management adjustment models will facilitate a more informed decision-
making process.   

The purpose of this technical report is to evaluate the use of different environmental variables to 
generate long range forecast models for predicting Fraser River summer water temperature and 
discharge. Diagnostic assessments are used to identify the appropriate model structure for each 
relationship. Next, uncertainty associated with both the environmental input variable and 
forecast model structure is quantified. Finally, model sensitivity is explored with respect to 
seasonality of forecast dates, and time frames used to calculate mean temperature and 
discharge values. Specifically, this report evaluates eight long range forecasting methods:1) 
historic river temperature trends, 2) winter precipitation index, 3) snowpack water volume 
forecasts, 4) an ensemble flow model, 5) temperature – discharge correlations, 6) forecasted 
summer air temperature anomalies, 7) measured spring air temperature anomalies, and 8) 
various multiple regression models which combine two of the above methods. The following 
sections describe model structure, linear regression diagnostics, and methods used to quantify 
model uncertainty. The report concludes with a retrospective analysis of 2005 forecasts and 
provides recommendations regarding forecasting methods and future research directions.  
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METHODS 
 
MODEL STRUCTURE 

All models and simulations were performed using the freeware statistical analysis package R 
(http://cran.r-project.org/). Model flexibility was emphasised, allowing investigators to vary 
several input sources (e.g. predictor and response variables, median run-timing date, number of 
days used to calculate mean temperature and discharge), and facilitating sensitivity analyses 
and data updates.  

Fraser River sockeye salmon run-timing groups were used as case specific examples to 
illustrate the predictive capacity of forecast models over the course of the summer season. The 
run-timing dates used in the models represent the expected mid-point of temperature/discharge 
exposure for each salmon run group at a specific station in the lower Fraser River. Specific 
values for each run-timing group (Early Stuart, Early Summer, and Summer) reflect the 
expected median passage date for Hells Gate (Table 1). Hells Gate dates were computed by 
adding five days to the median date calculated from 1977-2005 Mission run-timing information 
(collected by the Pacific Salmon Commission; Woodey 1987). Temperature and discharge data 
were calculated as 19-day symmetric means (9-days before and 9-days after historic Hells Gate 
dates). A 19-day period was selected to represent the average lower-river environmental 
conditions experienced by the incoming run, and is the length of the period currently used for in-
season DBE forecasts. 

Table 1.  Median run timing dates for Hells Gate. 

Run Timing Group Date 
Early Stuart July 14 

Early Summer August 6 

Summer August 17 

Historic temperature and discharge values represent a 1950-2004 time series. Temperature 
data recorded at Hells Gate was collected over time by the International Pacific Salmon 
Fisheries Commission, the Pacific Salmon Commission, and most recently by the DFO 
Environmental Watch Program (Patterson et al. 2007b). Discharge data recorded at Hope was 
extracted from the online Environment Canada Water Survey of Canada database 
(http://www.wsc.ec.gc.ca/). 

DIAGNOSTIC TESTS 

The raw data structure was explored to determine whether the assumptions for linear 
regressions between environmental forecast predictors and mean temperature and discharge 
were met. If assumptions were not met then additional models were applied to determine 
whether the data was better fit using an alternative model structure. A summary of diagnostic 
tests and corrective procedures are presented in Table 2. 

If the data indicated non-linearities, the fit of the linear regression was compared to the fit of 
polynomial models, using Akaike’s Information Criterion (AIC) (Maindonald and Braun 2003), 
and log-linear models, through a chi-squared goodness of fit procedure (Zar 1996). If the non-
linear models did not provide a significantly better fit to the data, and the linear regression was 
still significant, then a linear regression was performed. In cases of autocorrelations, the 
program fit a moving average model to the data and then tested whether the moving average 

 

http://cran.r-project.org/
http://www.wsc.ec.gc.ca/


 3

model provided a statistically better fit than the linear regression (Venables and Ripley 2002; 
Maindonald and Braun 2003). If the fits were not significantly different, then the program 
defaulted to a simple linear regression. If the data showed evidence of heteroscedasticity a log 
transformation or a weighted least squares analysis (Zar 1996) was performed. 

Table 2.  Diagnostic tools for linear regression assumptions and potential correction techniques. 

Model Assumption 
 

Evidence 
 

Correction 
 

Linearity – the data is 
best fit assuming a linear 
relationship 
 
 

Plot residual vs. predicted values. A 
bowed pattern indicates non-
linearity. 
 
 

A linear model may not be 
appropriate for this data, and a 
non-linear model (e.g. polynomial 
regression) may be more 
appropriate. Alternatively, try 
transforming the data (e.g. log 
transform). 

Independence of 
Errors – values of ‘y’ are 
independent of each 
other 

Plot an autocorrelation function of 
the residuals. If autocorrelations fall 
outside the 95% confidence limits, 
there maybe autocorrelation (often 
occurs in time series data). Test 
using a Ljung-Box test. 

Apply a moving average regression 
model.    

Homoscedasticity – 
equal variances around 
each ‘y’ value 

Plot residuals vs. predicted values. 
If residuals show increasing spread 
over predicted values there is 
evidence of heteroscedasticity. 

Apply a weighted least squares 
regression or a log transformation. 

Normality – errors come 
from a normal 
distribution 

Create a normal probability plot of 
residuals; distribution should be the 
same as for a random normal 
distribution. 

Apply a general linear model; try 
transforming for non-linearity; 
remove unexplainable outliers.  

Errors in Variables - 
observations of x are 
obtained without error. 

Fails for several provided datasets 
where predictions are based on 
forecasted values. 

Apply a mean functional regression 
or bootstrap technique. 

 
 
FORECASTING METHODS 

The following section provides a description of each forecast method, the nature of the data 
used for each method and the procedures used to quantify the uncertainty in the temperature or 
discharge prediction. The statistical techniques utilised to estimate forecast uncertainty for each 
method are described. Forecasted or measured environmental variables for 2005 were used as 
examples in all cases. 
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Temperature forecast models 
 

Historic temperature trends 

Water temperatures in the lower Fraser have been increasing since the first continuous records 
were established in 1953 (Foreman et al. 2001; Patterson et al. 2007b). Therefore, a linear 
regression fit between years and historic 19-day mean river temperature was evaluated to 
determine if the historic temporal trend could be used to make predictions of water temperature 
in the following year for each run timing group. Uncertainty in the temperature forecast was 
quantified using simple linear regression prediction intervals and residual standard errors 
(standard deviation of the error distribution). 

Temperature-discharge correlation 

Past observations have often noted negative correlations between river temperature and 
discharge (Quinn et al. 1997; Macdonald et al. 2000; Naughton 2005; Moore 2006). Predicting 
temperature, and its associated error, directly from forecasted discharge may eliminate the need 
to forecast temperature from other data sources, such as the historic trend or spring and 
summer air anomalies. As the current discharge forecast will be uncertain, this estimation 
procedure violates the linear regression assumption of negligible error in the predictor variable. 
Therefore, the estimation of temperature uncertainty required quantification of both model and 
predictor variable uncertainty.  

Uncertainty in forecasted discharge was modelled as a normal distribution with error equivalent 
to the standard deviation derived from the applied discharge forecasting method (see Discharge 
forecast models). Temperature was then predicted from each of 500 bootstrapped discharges 
using a simple linear regression model fit between 19-day mean discharge and 19-day mean 
temperature. Model uncertainty was incorporated into the final prediction by performing a non-
parametric bootstrap of model residuals (Chernick 1999). A bootstrapped residual error term 
was added to each predicted temperature value. Eighty-percent confidence intervals were 
calculated using the 10th and 90th percentiles of the bootstrapped data. The generation of 
bootstrapped prediction intervals involves a more complex statistical analysis (Stine 1985), 
which was not completed here. Error structure was also presented as the standard deviation of 
the bootstrapped predictions. 

Summer air anomaly 

On June 1, Environment Canada (EC) posts predictions of summer air temperature, and reports 
this data in the form of an air temperature anomaly, varying from the mean, or “normal”, 
temperature averaged over 1951-1980 (http://weather.ec.gc.ca/saisons/index_e.html).  

Environment Canada generates twelve anomaly values using two different forecasting models. 
Each forecast is specified as “near normal”, “below normal”, or “above normal”, and the 12 
model results are divided into each category. The category thresholds are spaced equidistant 
apart, at intervals equal to 0.43 times the inter-annual seasonal temperature standard deviation. 
However, these forecasts are highly uncertain, and the probability that the true forecast falls 
within a given range is un-calibrated (not compared to true historic trends) due to a lack of 
available data (http://weather.ec.gc.ca/saisons/image_e.html?img=pc_dyn_jja1_temp). 

Previous attempts to utilise the summer air temperature anomaly forecast include selecting a 
reasonable percentile from the historic anomalies given the probabilistic forecasts, or creating a 
categorical river temperature prediction matrix given the relationship between river temperature 

 

http://weather.ec.gc.ca/saisons/index_e.html
http://weather.ec.gc.ca/saisons/image_e.html?img=pc_dyn_jja1_temp
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and predicted flow and air temperature (“low”, ”normal”, “high”) (J. Morrison, VYNX design, 
Sidney, unpub. data). This report evaluates two new approaches for quantifying air temperature 
forecast uncertainty using bootstrap methods. The first method attempts to mimic the actual 
forecasting process as outlined on the EC website. The second method predicts forecast error 
using the historic summer air anomaly trend. 

To mimic the forecasting process described by Environment Canada, 500 counts of “near 
normal”, “below normal”, and “above normal” forecasts were generated using a multinomial 
distribution and 2005 forecast probabilities. The probability that the true anomaly will fall 
correctly into each category was determined from un-calibrated EC forecast probability maps, 
and then roughly adjusted using forecast reliability plots provided on the EC website. For 
example, if the probability that the true anomaly is “above normal” is 20-30% but the reliability 
data indicates that the observed frequencies of “above normal” anomalies are underestimated 
when the forecasted probability is <30%, then the new forecast was roughly calibrated as the 
upper bound of the prediction interval (30%). As the reliability maps use data averaged over all 
of Canada, the calibration for a specific region is approximate. 

The count data generated from the multinomial simulations was converted into temperature 
anomalies by non-parametrically bootstrapping the historic anomaly values occurring within the 
range specified by each category. Predicted water temperatures were produced for each 
bootstrapped air anomaly by fitting a simple linear regression to historic summer anomaly and 
river temperature data. Model uncertainty was incorporated into each prediction by adding a 
bootstrapped model residual term to the predicted water temperature value and calculating the 
standard deviation of the bootstrapped values, as previously described. 

The second method used a linear relationship fit between years and historic summer air 
anomalies (http://www.msc-smc.ec.gc.ca/ccrm/bulletin/archive_e.cfm). The mean and residual 
standard error for the current year’s anomaly was predicted from the historic trend, as opposed 
to using the Environment Canada forecast. A parametric bootstrap assuming a normal 
distribution (~N (mean anomaly, residual standard error)) was used to generate 500 anomaly 
values. As above, predicted water temperatures were then predicted for each bootstrapped air 
anomaly.  

Spring air anomaly 

Spring air anomalies are available in early June from Environment Canada (http://www.msc-
smc.ec.gc.ca/ccrm/bulletin/national_e.cfm). Because the spring anomalies are directly 
measured, the analysis is much simpler than for the summer air forecasts. Prediction intervals 
were directly computed from the linear regression between spring air anomalies and water 
temperature. 

Multiple regression 

Because river temperature is correlated to several external factors, such as discharge, air 
temperature and climate trends, we hypothesised that a multiple regression model may explain 
a greater percentage of the observed variance in historic river temperature than one of the 
previously described single variable regressions. Several combinations of predictor variables 
were explored for the temperature multiple regression analysis, including the historic 
temperature trend and snowpack water volume, historic trend and ensemble flow data, and 
summer air anomaly and snowpack water volume. Performance measures were altered slightly 
for the multiple regression models, and adjusted r2 values were used to evaluate model fit while 

 

http://www.msc-smc.ec.gc.ca/ccrm/bulletin/archive_e.cfm
http://www.msc-smc.ec.gc.ca/ccrm/bulletin/national_e.cfm
http://www.msc-smc.ec.gc.ca/ccrm/bulletin/national_e.cfm
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adjusting for additional predictor variables (Zar 1996). A step-wise AIC procedure was used to 
evaluate the multiple regression models (Maindonald and Braun 2003). 

Discharge forecasts 
 

Winter precipitation index 

The winter precipitation index represents the combined precipitation fallen over December, 
January and February (http://www.msc-smc.ec.gc.ca/ccrm/bulletin/national_e.cfm). The index is 
presented as a percent anomaly from the mean “normal” precipitation averaged over 1951-1980 
(Meteorological Service of Canada, MSC) for the BC South Mountain region. The percent 
anomaly was regressed against the 19-day historic discharges during the summer period. 
Because observed decreases in historic winter precipitation were unparalleled by similar 
decreases in mean summer discharge, observed autocorrelations were calculated for the de-
trended time series (Venables and Ripley 2002; Maindonald and Braun 2003). Forecast 
uncertainty was quantified using simple linear regression prediction intervals and residual 
standard errors.  

Snowpack water volume forecast 

The River Forecast Centre (RFC) (BC provincial government) uses hydrological models and 
statistical regression to provide annual basin-specific forecasts of water volume due to snowfall 
(http://www.env.gov.bc.ca/rfc/river_forecast/interpret.htm). Forecasts represent the expected 
volume of snowmelt water to pass by the Fraser River at Hope from the date of the forecast to 
September 30th, assuming average weather conditions during this time. Forecasts are typically 
available for April 1st and May 1st. The historic total volume of water to pass Hope was 
calculated using daily discharge values for these two specified time periods. The summer 
volume forecast was then regressed against the mean 19-day discharge or temperature for 
each of the run timing groups.  

The use of snowpack water volume forecasts of river discharge violates two linear model 
assumptions. The first issue arises because the calculation of the historic water volume is 
partially dependent on values of water discharge. Therefore, a cyclical relationship exists 
between the two variables, violating the linear model assumption of independence. As such, the 
model likely underestimates the true uncertainty in predicted discharge. The second violation 
arises because the current year’s predictor variable (volume) has non-negligible error. Volume 
forecast uncertainty was modelled using a parametric bootstrap, assuming a normal error 
distribution. The standard deviation of the normal distribution was calculated as the standard 
error for the 2005 forecast, estimated from the 80% snowpack water volume confidence 
intervals (http://www.env.gov.bc.ca/rfc/river_forecast/forecast_apr06.htm). Discharge or 
temperature forecasts and associated error structures were then calculated using the 
bootstrapping methods previously described (e.g. see Temperature-discharge correlations) 

As described above, the RFC typically provides the latest snowpack water volume forecast on 
May 1st. However, June 1st forecasts can be generated by subtracting the total May Hope water 
volume (volume = 0.0864*discharge) from the May 1st forecast. The May 80% confidence 
intervals are then adjusted proportionally. This method assumes that precipitation that falls in 
May, both snowfall accumulation at high elevation and rainfall, is normal. In other words, the 
majority of May discharge results directly from snowmelt runoff and not from large deviations in 
May precipitation. Once the updated forecast was calculated, discharge and temperature values 
were predicted as described above. 

 

http://www.msc-smc.ec.gc.ca/ccrm/bulletin/national_e.cfm
http://www.env.gov.bc.ca/rfc/river_forecast/interpret.htm
http://www.env.gov.bc.ca/rfc/river_forecast/forecast_apr06.htm
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Ensemble flow technique 

The RFC also produces simulations of future daily river discharge forecasts using a combination 
of current snowpack conditions, the previous 50 years of historic weather data and forecasted 
meteorological conditions for the current year (A. Chapman, RFC, Victoria, BC, pers. comm. 
2005). In previous years, the first forecast was produced in April, and then the ensemble 
procedure was repeated with updated information roughly every two weeks until June. At this 
time, the RFC is undergoing revisions to their current ensemble model; therefore, future 
ensemble predictions may produce different results to the models analysed in this report. 
Uncertainty was incorporated into daily estimates by calculating the mean and standard 
deviation of the discharge for a given day over all 50 years of simulated data. The 19-day mean 
discharge for the current year was calculated by averaging mean daily discharge values over all 
years. The standard deviation of the current discharge was estimated from the standard 
deviation over all annual 19-day means. 

SENSITIVITY ANALYSES 

Long range environmental forecast model performance depends on a number of factors in 
addition to those incorporated into the current uncertainty analysis. Therefore, the historic trend 
– snowpack water volume multiple regression and the ensemble flow models were used as 
case studies to evaluate the robustness of temperature and discharge predictions, respectively, 
to changes in the number of days used to calculate the environmental averages and the 
assumed Hells Gate 50% date for each run. 

In the uncertainty analyses, we assumed 19 days adequately captures the period of 
environmental exposure at Hells Gate for the incoming run. However, there is substantial 
among-group and inter-annual variability in the number of consecutive days a run enters the 
river (M. Hague, DFO, unpub. data). The magnitude and precision of temperature and discharge 
forecasts were compared using 3, 11, 19, and 31-day symmetric means to determine whether 
changes in the assumed exposure length causes significant changes in environmental forecast 
accuracy. 

Pre-season run-timing estimates for Fraser sockeye salmon are derived from models evaluating 
Alaskan sea surface temperature and ocean currents, and the historic relationship between the 
timing of different run groups (Blackbourn 1987; Thomson et al. 1994; M. Folkes, DFO, 
Nanaimo, BC, pers. comm. 2006; I. Guthrie, PSC, Vancouver, BC, pers. comm. 2006). 
However, timing can be difficult to predict, even in-season, until after the peak of the run 
physically passes the Mission hydroacoustic facility (I. Guthrie, PSC, pers. comm. 2006). The 
large uncertainty in long range 50% date forecasts illustrates the importance of evaluating the 
sensitivity of environmental forecasts to changes in timing. We examined the sensitivity of 
regression statistics and prediction values to changing 50% date, and assessed the range of 
dates over which long range environmental forecast methods provide reliable predictions. The 
years – snowpack multiple regression and ensemble flow models were repeated over 50% 
dates changing in daily increments from July 10th – September 6th and we recorded model 
statistics (e.g. r2 or adjusted r2; and p-values) and prediction information (e.g. coefficient of 
variation, standard deviation, mean prediction, % bias compared to 2005 observed data). 

MODEL COMPARISON 
 
Ultimately, researchers will be interested in knowing which long range environmental forecast 
models are best suited to their needs. We summarised the performance of the various 
temperature and discharge models based on three performance measures: 1) model fit (using 
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adjusted r2), 2) the precision of the forecasted value (using coefficient of variation; CV), and 3) 
availability (when does the information required to use the forecast method become available?). 
Performance measures for each model were ranked and averaged over all run-timing groups, 
and recommendations for the best temperature and discharge models were provided. 
 
 

RESULTS AND DISCUSSION 
 
DIAGNOSTIC RESULTS 

Preliminary examination of each forecasting method, with the exception of the ensemble flow 
technique, assumed simple linear regression models, based on a visual examination of data 
trends. Therefore, the first stage in the current assessment of pre-season environmental 
forecasts was to determine if data relationships indeed met the assumptions of simple linear 
regressions (see Table 2).  

A summary of diagnostic results for each run-timing group, and each forecasting method, is 
provided in Table 3. With the exception of the relationship between historic temperature and 
discharge data, which consistently showed an improved fit using logged variables, the 
remaining long range forecasts were modelled using simple linear regressions. Although, on 
occasion, goodness-of-fit tests (either chi-square, or AIC) recommended alternative model fits, 
visual examination of linear, polynomial, and log-linear trends showed negligible differences, 
and a linear regression was still applied.  

 

 



Table 3. Summary of linear regression diagnostic results for all forecasting methods and run-timing groups. 

Forecast 
Method 

Historic temperature trend Winter precipitation index Snowpack water volume - 
discharge 

Snowpack water volume - 
temperature 

Group ESt ES S ESt ES S ESt ES S ESt ES S 

Test             

Linearity Pass 
(poly) 

Pass Pass 
(poly) 

Pass Pass Pass Pass Pass Pass Pass 
(log) 

Pass Pass 

Error 
Independence 

Pass Auto 
(insig) 

Auto 
(insig) 

Pass Pass Auto 
(insig) 

Pass Pass Pass Auto 
(insig) 

Auto 
(sig) 

Auto 
(sig) 

Equal 
Variance 

Pass Pass Pass Pass Pass WLS Pass Pass WLS Pass Pass Pass 

Normality Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass Pass 

Errors in 
Variables 

Pass Pass Pass Pass Pass Pass Boot Boot Boot Boot Boot Boot 

Forecast 
Method 

Summer air anomaly Spring air anomaly Temperature - discharge  

Group ESt ES S ESt ES S ESt ES S    

Test             

Linearity Pass 
(poly) 

Pass Pass Pass 
(poly) 

Pass 
(poly) 

Pass 
(poly) 

Log Log Log    

Error 
Independence 

Auto 
(insig) 

Pass Pass Pass Pass Auto 
(insig) 

Auto 
(insig) 

Pass Auto 
(insig) 

   

Equal 
Variance 

Pass Pass Pass Pass Pass Pass Pass Pass Pass    

Normality Pass Pass Pass Pass Pass Pass Pass Pass Pass    

Errors in 
Variables 

Boot Boot Boot Pass Pass Pass Boot Boot Boot    

ESt = Early Stuart; ES = Early Summer; S = Summer 
Pass = met assumption for simple linear regression  
(poly) = a polynomial model was selected through a step-wise AIC but was not employed 
Log = a log-linear model provided a better fit than a linear model (chi-squared goodness of fit) 
Auto (sig/insig) = a significant autocorrelation was observed; a follow-up Ljung-Box test showed whether a moving average model was 
a more significant fit to the data than a simple linear regression 
WLS = variances showed significant heteroscedasticity; may want to consider a weighted least squares (or log-linear) modelling approach 
Boot = there was significant error in the predictor variable, and a bootstrap approach was applied to incorporate this additional uncertainty 
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TEMPERATURE FORECAST MODELS 

Historic temperature trends 

There was a significant increase in water temperature over time for all three run-timing groups 
(r2 = 9-17%; Figure 1). For the range of dates tested, the historic trend explained more of the 
variability in historic 19-day mean temperature later in the summer season. 
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Figure 1.  Historic 19-day mean temperature trends with fitted regression line and 80% 
prediction intervals for the forecasted year (2005). Prediction intervals extend, on average, by 
±1.5oC. 

Temperature-discharge correlations 

There was a significant negative relationship between temperature and discharge for all run-
timing groups (r2 = 19-59%; Figure 2). However, results of a chi-squared goodness of fit test 
indicated that a log-linear model might provide a slightly improved fit. A few outliers may have 
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influenced the model selection; therefore, we recommend further research into the true nature of 
the relationship between river temperature and discharge. 
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Figure 2.  Historic 19-day mean discharge vs. 19-day mean temperature (open points) with best 
fit regression line. Bootstrapped 80% confidence limits for the mean predicted discharge and 
temperature are shown in red. The 80% prediction intervals generated by the linear regression 
are overlaid in blue. Forecasts correspond to discharges predicted from the June 2005 
ensemble flow model. 

Summer air anomaly 
 

Bootstrap method I: Environment Canada approach 

Summer air temperatures were a significant predictor of water temperature throughout the 
season (r2 = 45-51%; Figure 3).  
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Figure 3.  Summer air anomaly vs. 19-day mean temperature trends with fitted regression line. 
Bootstrapped 80% confidence limits for the mean predicted air anomaly and temperature are 
shown in red. The 80% prediction intervals generated by the linear regression are overlaid in 
blue. Forecasts correspond to the 60% “above normal”, 30% “near normal” and 10% “below 
normal” air temperature anomalies predicted by Environment Canada in 2005. 

Bootstrap method II: historic trend approach 

There was a significant positive linear relationship between years and historic summer air 
anomaly (r2 = 10%; Figure 4). Therefore, the historic regression was used to predict uncertainty 
in the summer anomaly forecast. Uncertainty in river temperature predicted from the historically 
forecasted summer air anomaly was similar to the uncertainty predicted using the Environment 
Canada method.   

 



 13

1950 1960 1970 1980 1990 2000

-1
0

1
2

Years

S
um

m
er

 A
ir 

Te
m

pe
ra

tu
re

 A
no

m
al

y 
(o

C
)

y = 0.017x - 33.536
r^2 = 0.097
p = 0.021

 
Figure 4.  Historic trend in summer air temperature anomaly shown with fitted regression line 
and 80% prediction intervals for 2005 corresponding to a mean anomaly of 0.69oC.  

Spring air anomaly 

The positive relationship between summer river temperatures and spring air anomalies was 
significant, but weaker (r2 = 25-34%) than the relationship using summer anomalies (Figure 5). 
Because the spring anomaly is a measured value, prediction intervals were derived directly from 
the linear regression. 
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Figure 5.  Spring air temperature anomalies vs. 19-day mean temperature trends with fitted 
regression line and 80% prediction intervals for the forecasted year (2005). Forecasts 
correspond to the 2005 2.4oC spring anomaly. 

Multiple regression analysis 

Multiple regression linear models explained more variance in historic temperature than the 
single variable models using each component variable. The fit of all multiple regression models 
was measured using adjusted r2. The summer air anomaly – snowpack water volume model 
explained the greatest level of variance in observed temperature trends (adjusted r2 = 45-65%). 
The years – ensemble flow model (adjusted r2 = 28-43%) and the years – snowpack water 
volume model (adjusted r2 = 21- 47%), performed comparably well. 
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DISCHARGE FORECAST MODELS 

Winter precipitation index 

A significant positive linear fit was observed between winter precipitation anomalies and mean 
discharge for all run-timing groups (r2 = 9-19%; Figure 6). However, the relationship between 
winter precipitation and temperature (not shown) was only significant for the Early Stuart run (r2 
= 20%), and became insignificant in early August. Due to its limited predictive capacity, the 
winter precipitation – temperature relationship was not considered further.  
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Figure 6.  Winter precipitation index vs. 19-day mean discharge trends with fitted regression line 
and 80% prediction intervals for the forecasted year (2005). A precipitation anomaly of -25.9% 
was recorded for 2005, indicating a drier than average season. 
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Snowpack water volume forecast – discharge  

There was a significant positive relationship between May volume and discharge (r2 = 63-78%; 
Figure 7) and June volume and discharge (r2 = 66-89%; Figure 8) for all run-timing groups. The 
significance of these results should be interpreted with caution because the calculation of 
historic volume estimates is dependent on total summer discharge (including the 19-day 
prediction interval). However, because we are interested in the relationship for its prediction 
capacity, and not for hypothesis testing, this partial inter-dependence should not influence our 
forecast conclusions. 
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Figure 7.  May snowpack water volume vs. 19-day mean discharge trends with fitted regression 
line. Bootstrapped 80% confidence limits for the 2005 volume forecast and predicted mean 
discharge are shown in red. The 80% prediction intervals generated by the linear regression are 
overlaid in blue. Forecasts correspond to the May 1 mean snowpack water volume prediction of 
56 400 million m3 (93% of the historic norm) by the BC River Forecast Centre. 
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Figure 8.  June snowpack water volume vs. 19-day mean discharge trends with fitted regression 
line. Bootstrapped 80% confidence limits for the 2005 volume forecast and predicted mean 
discharge are shown in red. The 80% prediction intervals generated by the linear regression are 
overlaid in blue. Forecasts correspond to the June 1 mean snowpack water volume prediction of 
41762 million m3, which was derived from the May 1 forecast of 56400 million m3 provided by 
the BC River Forecast Centre and the total Hope discharge observed during May 2005. 
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Snowpack water volume forecast – temperature  

Although we were primarily interested in the relationship between snowpack water volume and 
discharge, snowpack water volume also demonstrated proficiency for forecasting river 
temperatures. There was a significant negative relationship between May snowpack water 
volume and river temperature (r2 = 13-46%; Figure 9) and June volume and temperature (r2 = 
17-52%; Figure 10) for the three run-timing groups.  
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Figure 9.  Snowpack water volume vs. 19-day mean temperature trends with fitted regression 
line. Bootstrapped 80% confidence limits for the 2005 volume forecast and predicted mean 
discharge are shown in red. The 80% prediction intervals generated by the linear regression are 
overlaid in blue. Forecasts correspond to the May 1 mean snowpack water volume prediction of 
56 400 million m3 (93% of the historic norm) by the BC River Forecast Centre.  
 

 



 19

35000 45000 55000 65000

16
17

18
19

20

Summer Volume Forecast

M
ea

n 
Te

m
pe

ra
tu

re
 (o

C
)

Summer

y = -5.1e-05x - 19.918

r^2 = 0.17

p = 0.0021

35000 45000 55000 65000

13
14

15
16

17
18

19

Summer Volume Forecast

M
ea

n 
Te

m
pe

ra
tu

re
 (o

C
)

Early Stuart
y = -1e-04x - 20.71

r^2 = 0.52
p = 1.3e-09

35000 45000 55000 65000

15
16

17
18

19
20

Summer Volume Forecast

M
ea

n 
Te

m
pe

ra
tu

re
 (o

C
)

Early Summer

y = -7.2e-05x - 21.103

r^2 = 0.31

p = 1e-05

 
Figure 10.  June snowpack water volume vs. 19-day mean temperature trends with fitted 
regression line. Bootstrapped 80% confidence limits for the 2005 volume forecast and predicted 
mean temperature are shown in red. The 80% prediction intervals generated by the linear 
regression are overlaid in blue. Forecasts correspond to the June 1 mean snowpack water 
volume prediction of 41762 million m3, which was derived from the May 1 forecast of 56400 
million m3 provided by the BC River Forecast Centre and the total Hope discharge observed 
during May 2005. 

Ensemble flow technique 

The discharge estimates from ensemble flow models produced by the RFC in May and June 
2005 are presented in Figures 11 and 12 (open points). Uncertainty in forecasted discharge 
showed a tendency to increase with longer-range predictions. Limited information was available 
on the exact structure of the RFC ensemble flow model, or the potential for error in the modelled 
values.   
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Figure 11.  Forecasted daily river discharge using the May 2005 ensemble flow model (open 
circles) plotted with +/- 2 standard deviations (red error bars), and the historic mean discharge 
(black line).  
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Figure 12.  Forecasted daily river discharge using the June 2005 ensemble flow model (open 
circles) plotted with +/- 2 standard deviations (red error bars), and the historic mean discharge 
(black line). 
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SENSITIVITY ANALYSIS 

Seasonality 
 

Multiple regression analysis 

There were considerable seasonal trends in the adjusted r2 value, the p-value (significance of 
the regression slope), the coefficient of variation and standard deviation in predicted 
temperature, the percent bias compared to the measured 2005 temperature, and the predicted 
mean. Figure 13 clearly illustrates the effect of 50% date estimates on statistical output using 
the years - snowpack water volume multiple regression model.  

The amount of variation in mean temperature explained by years and snowpack water volume 
remained high (adjusted r2 > 0.45) from approximately July 10 – July 25 (Figure 13A). The 
adjusted r2 value then declined over time (tracked until September 6), with the exception of 
another plateau in mid-August. The plateaus may occur because the year – temperature 
relationship improves from early July until late August, while the volume – temperature 
relationship weakens, occasionally balancing each other out. The declining adjusted r2 trend 
observed in the temperature – volume relationship ultimately dominates the overall trend 
observed for the multiple regression because volume explains a greater percentage of the 
variability in historic temperature. Despite the decline in explained variability, the regression 
slope remained significant throughout the date range examined (Figure 13B). 

Standard deviation (SD) and coefficient of variation (CV) represent absolute and relative error 
measures, respectively (Figure 13C and D). The CV in mean temperature declined until early 
August, as river temperature (Figure 13F) continued to rise but SD remained roughly constant. 
Both the CV and predicted temperature plateaued during mid-August, roughly coinciding with 
the plateau in r2. During the same period, 2005 predictions were also relatively unbiased 
(percent bias ~ -1 to 1%; Figure 13E). The model plateau is of particular interest, as it suggests 
that the model is less sensitive to uncertainties in run-timing dates during mid-August than 
variability arising earlier or later in the season.  

The decline in model performance after August may signify the approximate time when the 
majority of the snowmelt has passed through Hells Gate, and river temperature becomes more 
dependent on other proximate factors. The rapid model deterioration illustrates the time span 
limitations of this pre-season forecasting approach. For example, the model is not significant for 
median dates historically associated with the Late run-timing group (historic median date = 
September 13). If the unusually late run-timings observed in 2005 become the norm (July 27th, 
September 3rd, and September 4th, for the Early Stuart, Early Summer and Summer groups, 
respectively), most of the pre-season forecast methods will no longer be suitable for predicting 
river conditions for Early Summer and Summer groups. In contrast, if Late run fish continue their 
current trend of  entering the Fraser River from mid-August to early September, (as opposed to 
their historic timing of late September to early October; Lapointe et al. 2003; Cooke et al. 2004), 
then it may become possible to generate pre-season forecasts for this run-timing group. 
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Figure 13.  Time series analysis of the years - snowpack water volume multiple regression 
temperature prediction model illustrating the seasonal variability in 19-day mean temperature 
predictions and associated statistics. Seasonal variation in percent bias refers to 2005 
predictions. 
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June ensemble flow 
 
Figure 14 illustrates a deteriorating trend in the performance of the ensemble flow model over 
time. Again, the decline in model power may reflect the decreasing influence of snowpack water 
volume (used to create the ensemble) on river discharge as the season progresses (r2 and p-
values were not generated because the ensemble model does not use linear regression). A 
comparison between Tables 6 and 8 illustrates the larger CVs associated with discharge 
forecasts as opposed to temperature forecasts. There are also no plateau regions, as observed 
with the multiple regression model. These results highlight the limitations in using long range 
ensemble flow discharge predictions later in the summer season.  
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Figure 14.  Time series analysis of the June 2005 ensemble flow model illustrating the variability 
in 19-day mean discharge predictions and associated statistics over time. Seasonal variation in 
percent bias refers to 2005 predictions. 
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Mean days 

The examples provided thus far analysed symmetric 19-day mean temperature and discharge 
averages centred on the Hells Gate 50% date. The 19-day period was selected for the sockeye 
salmon examples, based on the assumption that this range captures most of the conditions 
experienced by each run-timing group as they pass Hells Gate. For example, previous DBE 
models for Fraser River sockeye salmon management have used both 19-day and 31-day 
means (D. Patterson, DFO, pers. comm. 2006; I. Guthrie, PSC, pers. comm. 2006). The 
sensitivity of predictions to the number of days used to generate mean temperature and 
discharge is illustrated in Tables 4 and 5. 

Increasing the number of days used to calculate the mean does lead to small improvements in 
the CV of predicted temperature and the adjusted r2 calculated from the multiple regression 
model (Table 4). The improvements are most noticeable moving from a 3-day to 11-day mean. 
Similar trends were observed for the ensemble flow discharge predictions (Table 5). Increasing 
the number of days likely improves model performance by smoothing out sources of higher 
frequency variation in the data that do not contribute to the covariation between the 
environmental time series (Pyper and Peterman 1998). 

Table 4. Sensitivity of mean temperature prediction statistics (CV = coefficient of variation 
in predicted temperature; r2 = coefficient of determination for best fit linear regression) from the 
years – snowpack water volume multiple regression model to the number of days used to 
calculate the mean. The historic Early Stuart peak run-timing date (July 14) is used as an 
example. 

 3-day 11-day 19-day 31-day 

Predicted 
mean (oC) 

16.61 16.59 16.58 16.77 

CV (%) 
 

7.28 
 

6.57 
 

6.39 
 

6.26 
 

r2 0.39 0.47 0.49 0.52 

 

Table 5.  Sensitivity of mean discharge prediction statistics (CV = coefficient of variation in 
predicted temperature) from the June 2005 ensemble flow model to the number of days used to 
calculate the mean. The historic Early Stuart peak run-timing date (July 14) is used as an 
example. 

 3-day 11-day 19-day 31-day 

Predicted 
mean (cms) 

4719 4698 4685 4668 

CV (%) 15.15 13.58 12.27 11.31 
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MODEL COMPARISON 

Temperature forecasts 

A retrospective analysis of 2005 pre-season temperature forecasts is presented in Table 6. Both 
summer air anomaly forecasting methods performed similarly, so only the historic trend 
technique (bootstrap method II) is provided for illustrative purposes. Performance metrics 
include the mean predicted temperature, the r2 value corresponding to the best-fit linear 
regression, and the coefficient of variation (CV) of the predicted value. The percent bias 
presented is only associated with the 2005 prediction and may not be representative of bias 
trends in alternate years. 

Table 6.  Summary of pre-season temperature forecasting methods and the precision and bias 
of 2005 forecasts. Predicted means are presented in bold. r2 = coefficient of determination 
corresponding to best fit linear regression (adjusted r2 for the multiple regression models); CV = 
coefficient of variation (CV = (forecast standard deviation/forecast mean)*100); B = percent bias 
for 2005 (B = ((forecast mean – measured value)/measured value)*100).  

Method Availability Early Stuart Early Summer Summer 
Historic temperature 
trend 

 
Anytime 

 
 

16.38oC 
r2 = 9.4% 

CV = 7.45% 
B = 1.74% 

18.26 oC 
r2 = 11% 

CV = 6.00% 
B = 0.33% 

18.22  oC 
r2 = 17% 

CV = 5.71% 
B = -0.44% 

Snowpack water 
volume (May) 

 
May 

 
 

16.26 oC 
r2 = 46% 

CV = 6.89% 
B = 0.99% 

17.97 oC 
r2 = 26% 

CV = 5.73% 
B = -1.26% 

17.66 oC 
r2 = 13% 

CV = 6.17% 
B = -3.50% 

Snowpack water 
volume (June) 

June 16.44oC 
r2 = 52% 

CV = 6.67% 
B = 2.11% 

18.13oC 
r2 = 31% 

CV = 5.68% 
B = -0.38% 

17.80oC 
r2 = 17% 

CV = 5.90% 
B = 5.31% 

Years – snowpack 
water volume 
multiple regression 
analysis 

 
April 

 
 

16.58 oC 
r2 = 47% 

CV = 6.39% 
B = 2.98% 

18.41 oC 
r2 = 29% 

CV = 5.54% 
B = 1.15% 

18.31 oC 
r2 = 21% 

CV = 5.68% 
B = 0.05% 

Historic trend – 
ensemble multiple 
regression analysis 
(June data) 

 
June 

 
 

16.71 oC 
r2 = 28% 

CV = 7.36% 
B = 3.79% 

18.41 oC 
r2 = 38% 

CV = 6.19% 
B = 1.15% 

18.13 oC 
r2 = 43% 

CV = 6.01% 
B = -0.09% 

Summer air anomaly 
– snowpack water 
volume multiple 
regression analysis 
 

 
June 

 
 

16.43 oC 
r2 = 65% 

CV = 6.57% 
B = 2.05% 

18.18 oC 
r2 = 56% 

CV = 5.33% 
B = -0.11% 

17.94 oC 
r2 = 45% 

CV = 6.02% 
B = -1.97% 

Temperature-
discharge correlation 
(June ensemble) 

 
June 

 
 

16.50 oC 
r2 = 62% 

CV = 6.24% 
B = 2.48% 

17.85 oC 
r2 = 29% 

CV = 6.33% 
B = -1.92% 

17.51 oC 
r2 = 21% 

CV = 6.62% 
B = -4.32% 

Summer air anomaly 
(historic trend 
bootstrap) 

 
Anytime 

 

16.23 oC 
r2 = 45% 

CV = 7.27%  
B = 0.80% 

18.06 oC 
r2 = 51% 

CV = 6.20% 
B = -0.77% 

17.86 oC 
r2 = 45% 

CV = 5.71% 
B = -2.40% 

Spring air anomaly  
June 

 
 

16.96 oC 
r2 = 29% 

CV = 5.90% 
B = 5.34% 

18.78 oC 
r2 = 34% 

CV = 5.06% 
B = 3.19% 

18.43 oC 
r2 = 26% 

CV = 5.32% 
B = 0.71% 

2005 Measured  16.1 oC 18.2 oC 18.3 oC 
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The temperature forecasting methods performed comparably well. Percent bias for 2005 
forecasts was typically <5%, and CVs did not exceed 8%. In all cases, the measured 2005 river 
temperature fell within the 80% prediction (or bootstrapped confidence) intervals produced by all 
models. There was no general temporal trend in model performance over the time range 
evaluated; however, we noted that almost all relationships became insignificant by late 
August/early September. The fit of the historic trend model improved over the season until mid-
August, while discharge and snowpack water volume explained less temperature variability as 
the season progressed. Finally, spring and summer air anomaly data were most strongly related 
to river temperature during early August (Early Summer run-timing).  

The main trade-offs to consider when selecting the most appropriate temperature forecast 
method are the seasonal availability of the data, model performance, and predictor variable 
uncertainty. For example, although the historic temperature trend model explains a small portion 
of the variance in summer water temperatures, and so exhibits poor model fit, the historic trend 
model is available year round and there is no bias or uncertainty in the predictor variable. The 
models that utilised the close association between river temperature and discharge 
demonstrated reasonable model fit but were limited by the substantial uncertainty in the 
forecasted predictor variable. The same issue arises using any model relying on a forecasted 
predictor variable; the uncertainty in the predictor variable combines with the uncertainty in the 
model, and may result in an imprecise prediction even from models with reasonably high r2 
values.  

The addition of a second explanatory variable in the three multiple regression models typically 
improved both model fit and prediction precision compared to models using a single predictor. In 
most cases a step-wise AIC procedure selected the multiple regression over single variable 
models. The single exception was the summer air anomaly – snowpack water volume model for 
the Summer run, which was best-fit using only the summer air anomaly data. Although the AIC 
procedure selected the historic trend – ensemble flow multiple regression, the precision in the 
predicted river temperature actually decreased compared to the historic temperature trend 
analysis alone. As discussed above, the decrease in precision could be due to the additional 
uncertainty introduced by the ensemble forecast. The general trend towards improvement in 
temperature forecasts using multiple regression models is an area for future research, as this 
report evaluated only a few potential options. 

Table 7 provides a general summary of the performance of each temperature forecast model 
with respect to model availability, and average CV and r2 values over all run-timing groups. 
Percent bias was not used as a model selection tool because 2005 results are unlikely to be 
indicative of performance in other years. In general, the strength of the model relationship 
improved when the predictor variable(s) was a value measured closer to the summer months 
(e.g. historic discharge, summer air anomaly); however, the late nature of these data 
necessitates the use of a forecasted predictor variable, which decreases the precision of the 
temperature estimate.  Given the results of the 2005 retrospective analysis, the years – volume 
and summer air anomaly - volume multiple regression models both performed well. These two 
multiple regression models can be performed as early as April (if April snowpack water volume 
forecasts are available from the RFC and the historic trend method is used to predict the 
summer air anomaly). Ultimately, the individual requirements of a given research project or 
management objective will determine which forecast method is most appropriate.  
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Table 7.  Rank comparison of temperature forecasting methods. A lower rank indicates 
improved performance. In the case of a tie, equal ranks are applied to each model. Means 
represent averages over results for all three run-timing groups.  

Method 
 

Availability 
Rank 

Mean CV (%) 
Rank 

Mean r2 (%) 
Rank 

Historic temperature trend Anytime 
1 
 

6.38 
6 
 

13 
9 
 

Snowpack water volume (May)* May 
2 
 

6.26 
5 
 

28 
8 
 

Snowpack water volume (June)* June 
3 

6.08 
4 

33 
4 

Years – snowpack water volume 
multiple regression analysis* 

May 
2 
 

5.87 
2 
 

32 
6 
 

Years – ensemble multiple 
regression analysis (June data) 

June 
3 
 

6.52 
9 

36 
5 

Summer air anomaly – 
snowpack volume multiple 
regression analysis* 

May 
2 
 

5.97 
3 

55 
1 

Temperature-discharge 
correlation (June ensemble)* 

June 
3 
 

6.40 
8 
 

37 
3 
 

Summer air anomaly (historic 
trend bootstrap)* 

Anytime  
1 

6.39 
7 
 

47 
2 
 

Spring air anomaly June 
3 
 

5.43 
1 

30 
7 
 

*Indicates model includes uncertainty in predictor variable i.e. CV reflects error in both model structure and 
predictor variable. 
 
DISCHARGE FORECASTS 

A retrospective analysis of 2005 pre-season discharge forecasts is presented in Table 8. In 
2005, the performance of discharge models was poor compared to the temperature forecasts, 
with CVs often greater than 20% and a consistent trend towards increasing bias for late season 
predictions.  
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Table 8.  Summaries of pre-season discharge forecasting methods and their precision and bias 
in 2005. Predicted means are presented in bold. r2 = coefficient of determination corresponding 
to best fit linear regression; CV = coefficient of variation ( CV = (forecast standard 
deviation/forecast mean)*100); B = percent bias for 2005 (B = ((forecast mean – measured 
value)/measured value)*100). 

Method Availability Early Stuart Early Summer Summer 

     
Winter precipitation 
index 

 
March 

 
 

5296cms 
r2 = 19% 

CV = 24.30% 
B = -1.65% 

3841cms 
r2 = 8.8% 

CV = 23.56% 
B = 13.47% 

3241cms 
r2 = 11% 

CV = 22.74% 
B = 19.51% 

Volume to discharge 
(May) 

 
May 

 
 

5021cms 
r2 = 78% 

CV = 25.63% 
B = -6.76% 

3562cms 
r2 = 69% 

CV = 22.15% 
B = 5.23% 

3021cms 
r2 = 63% 

CV = 22.38% 
B = 11.39% 

Volume to discharge 
(June) 

 
June 

4657cms 
r2 = 89% 

CV = 18.87% 
B = -13.52% 

3369cms 
r2 = 77% 

CV = 20.87% 
B = -0.47% 

2932cms 
r2 = 66% 

CV = 21.73% 
B = 8.11% 

Ensemble technique 
(May) 

 
May 

 

5079 cms 
CV = 14.39% 
B = -5.68% 

3877 cms 
CV = 16.48% 
B = 14.53% 

3542 cms 
CV = 18.38% 
B = 30.60% 

Ensemble technique 
(June) 

 
June 

 
 

4685cms 
CV = 12.27% 
B = -13.00% 

 

3618cms 
CV = 16.03% 

B = 6.88% 

3312cms 
CV = 18.54% 
B = 18.12% 

     

2005 Measured   5385 cms 3385 cms 2712 cms 

In general, there was an inverse trend between discharge model availability and performance, 
with models available later in the season showing improved precision and model fit (see Table 
9). As a result, the June ensemble flow model performed the best of the models evaluated. 
Ensemble flow models are updated throughout the spring with improved snowpack data, and 
2005 results indicate a trend towards improved performance with later model runs. The 
evaluation of discharge forecast methods also involves trade-offs between model performance 
and predictor variable forecast uncertainty. For example, variability in the snowpack water 
volume forecast resulted in similar CVs predicted by both the snowpack water volume and 
winter precipitation models, even though snowpack water volume explains a much larger 
percent of the variability in historic discharge.   
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Table 9.  Rank comparison of discharge forecasting methods. A lower rank indicates improved 
performance. In the case of a tie, equal ranks are applied to each model. Means represent 
averages over results for all three run-timing groups.  

Method 
 

Availability 
Rank 

Mean CV (%) 
Rank 

Mean r2 (%) 
Rank 

Winter precipitation index March 
1 
 

23.53 
4 

13 
4 

Volume to discharge (May)* May 
2 
 

23.68 
5 

70 
3 

Volume to discharge (June)* June 
2 

20.49 
3 

77 
2 

Ensemble technique (May) May 
2 

16.41 
2 

n/a** 
1 

Ensemble technique (June) 
 

June 
3 

15.61 
1 

n/a** 
1 

* Indicates model includes uncertainty in predictor variable i.e. CV reflects error in both model structure and 
predictor variable. 
**Discharge is derived directly from the ensemble forecast, i.e. there is no linear regression. 
 

 
CONCLUSIONS 

Our analyses quantified prediction uncertainty arising from model structure and environmental 
forecast variability for several long range Fraser River summer temperature and discharge 
prediction models. However, our results are dependent on several underlying assumptions. 
Failure to meet these assumptions could potentially lead to further biases in the long range 
forecasts and an underestimation of forecast error. Simulation analyses may be a useful tool to 
evaluate the potential effect of varying degrees of deviation from the following assumptions. 

First, analyses assumed no measurement error in the historic data. Given the length of the 
historic record for both lower Fraser temperature, there are several instances in which data 
gaps and data quality issues exist (Patterson et al. 2007b). Plots of historic trends indicate some 
temperature and discharge outliers, and further examination of the data is required to determine 
whether these outliers are simply extremes within the natural range, or whether they are due to 
measurement error. On the same note, future research should also consider sensitivity analyses 
looking at variability in regression statistics with respect to the number of years used to fit the 
model. Foreman et al. (2001) and Patterson et al. (2007b) found that the statistical significance 
of historic temperature trends in the Fraser varied depending on the time series analysed. For 
example, one may want to subset the years of data pertaining to the Pacific Decadal Oscillation. 

The second assumption was that current trends continue beyond the scope of known 
observations. This is of particular importance for the models that use the historic trend, in which 
case every year’s prediction is an extrapolation from the model. Given the observed increase in 
river temperature over time (Morrison et al. 2002), future trends may deviate from those 
demonstrated by historic data. Researchers should interpret extrapolated values with caution, 
as one cannot be certain that current trends will hold true at extreme ranges (Zar 1996).  

Our third assumption was that the forecasted environmental conditions were synonymous with 
the conditions experienced by the species of interest. However, this assumption is too simplistic 
for migrating sockeye salmon, as they are known to adjust swimming behaviour by seeking out 
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optimal temperature and flow conditions within the water column (Hinch and Rand 2000; Goniea 
et al. 2006; Salinger and Anderson 2006).  

We identified several variables that help explain the variability in historic Fraser River 
temperature and discharge trends. However, our analysis was not completely comprehensive, 
and several additional environmental variables are known to contribute to observed river 
conditions (e.g. summer precipitation, percent cloud cover; Foreman et al. 2001). Model 
recommendations will vary depending on the suite of predictor variables examined, the length of 
the forecast, the response variable (i.e. temperature or discharge) and the relative trade-off 
between model fit, forecast precision and model availability. Ultimately, researchers may want to 
evaluate models on a case-by-case basis and select the most appropriate set of predictor 
variables that match their forecasting needs. A more extensive retrospective analysis evaluating 
historic model performance would also assist with the selection of a robust long range 
forecasting model. Future research should include the exploration of additional models, 
particularly multiple regressions, and a more detailed evaluation of historic measurement error 
and uncertainty in run timing forecasts. Researchers need to acknowledge and communicate 
the limitations of long range environmental forecasts, and quantify these uncertainties where 
possible. 
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EXECUTIVE SUMMARY 

• Purpose: evaluate different long range forecast models for predicting Fraser River 
summer water temperature and discharge 

• Report objectives: 
o evaluate a series of long range forecasting models for summer temperature and 

discharge conditions in the lower Fraser River basin 
o determine whether these methods can be appropriately fit using simple linear 

regression techniques 
o quantify model and predictor variable uncertainty, and the impact of these 

uncertainties on the precision of forecasts 
• Adult run timing for Fraser sockeye salmon are used as a specific case study 
• Relationship between 19-day mean river temperature and discharge and several 

different predictor variables were explored: 
o historic trends  
o south BC mountains winter precipitation index 
o snowpack water volume equivalent 
o ensemble flow model 
o south BC mountains summer air temperature anomalies 
o south BC mountains spring air temperature anomalies 

 

http://www-sci.pac.dfo-mpo.gc.ca/fwh/index_e.htm
http://www-sci.pac.dfo-mpo.gc.ca/fwh/index_e.htm
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• Result summary: 
o most models could be fit using simple linear regressions 
o model parameters and performance varied over the course of the season 
o incorporation of both model and predictor variable uncertainty produced 

bootstrapped confidence intervals that were wider than the prediction intervals 
produced by the model 

o different temperature forecast models produced comparable results 
o multiple regression models (two variables) explained more of the historic 

variation in water temperature than single variable models 
o performance of historic trend – snowpack water volume multiple regression 

model for predicting temperature decreased over the course of the season; but 
mean and precision of forecasted values remained relatively constant during mid-
August 

o ensemble flow models produced the most precise discharge predictions 
o ensemble flow model performance declined consistently over the summer 
o regression r2 values increased as the number of days used to calculate mean 

temperature/discharge increased; changing from a 19-day to 31-day mean 
produced only minor improvements in model fit 

• Key conclusions: 
o there are trade-offs between the timing of data availability, fit of the historic data, 

and uncertainty in the predictor variable 
o ignoring the uncertainty in environmental data could lead to overconfidence in 

results derived from temperature or discharge forecasts 
• Future research: 

o explore other multiple regression options 
o quantify historic measurement error 
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