Summary of the 1993 Coho Salmon Smolt Trapping Operations on the Lachmach River, British Columbia

Biological Sciences Branch Department of Fisheries and Oceans
Pacific Biological Station
Nanaimo, British Columbia V9R 5K6

1994

Canadian Data Report of
 Fisheries and Aquatic Sciences 936

Canadian Data Report of Fisheries and Aquatic Sciences

Data reports provide a medium for tuling and archwing data compitations where lute or no analysis is ineluded such compilations commonly will have been prepared In support of other joumal publications of reports. The subject matter of data reports roffects the broad interests and policies of the Department of Fisheries and Oeeans. mamely. fisheries and aquatic sciences

Data reports are not intended for general distribution and the contents must not be reterred to in other publications whtheut prior written authorization from the sauing establishment. The corred entation appears above the abstract of each report Data repors are abstracted in . Aquath Sererocs and Fosheries 4hotractand indexed in the Departmentix annual index to scoentific and techrical publications

Number 125 in this seties were issued as Fisheries and Marine Service Data Records Numbers 26160 were issucd as Depatment of Fisheties and the Enviromment. Fisheries and Marine Servee Data Reperts The eurrent series name was introdued with the publication of epport number \mid of

Wata reports are produced regionalls but are numbered nationally. Requests for mdividual reports will be filled by the iswing establishment listed on the front cover and thele page. Out-at-stock reports will be supplicel lor a lee by commercial agents.

Rapport statistique canadien des sciences halieutiques et aquatiques

Les mapports stativtruce servent it classer of archaser les compilations de donnés pout lesquelles il a peo ou pomt danalyse. Ces compilations auront d'ordibate ete preparces a lappui diaures publications ou rapports. Les sujets des rapports stativiques reflétent la vaste gamme des interéts el des politiques du ministére de Pection et des Oecans, ceest-ádire les sciences halieutiques et aquatiques

I co rapports statistiques ne somt pas destines is une vaste distribution of leur contenu ne doit pas être meationne dams une publication sabs autorisation écrite prealable de létablissement autear le titre exact parait au-dessas du resume de chayue rapport. Iev rappons starisiques sont résumés dans la revue Révomét den siencer aquatiques et haliezatigteon of ils sont classes dams lindex annuel des publications scientifiques et techriques du Ministere.

Les numeros 1 a 25 de cette sétic ont éé puhlies à titre de referés statisuques. Servees ales pécher et de la mer I é numéros 26 à 160 ont été publiés à fitre de rapports staristiquee du Service des pēches et de la mer- ministêre des Pêches er de I'Entironnement. Le nom actuet de la senie a ete etabli lors de la parution du numero 161

Les rapports staristiques somt produits à l'échelon régional. mais numérotés at Ieckelon national. Lee demandes de tapports seront satisfates par letablissement abteut dont le nom ligure sur la eouserture et la page du titre les rapports épuisés seront fourns contre réributon par des agents commerciaux.

Canadian Data Report of
 Fisheries and Aquatic Sciences 936

1994

SUMMARY OF THE 1993 COHO SALMON SMOLT TRAPPING OPERATIONS ON THE LACHMACH RIVER, BRITISH COLUMBIA

by
S. J. Baillie

Biological Sciences Branch
Department of Fisheries and Oceans
Pacific Biological Station Nanaimo, British Columbia V9R 5K6

(c) Minister of Supply and Services Canada 1994

Correct citation for this publication:

Baillie, S. J. 1994. Summary of the 1993 coho salmon smolt trapping operations on the Lachmach River, British Columbia. Can. Data Rep. Fish. Aquat. Sci. 936: 43 p.TABLE OF CONTENTS
ABSTRACT iv
RESumé v
INTRODUCTION 1
METHODS 2
RESULTS
FENCE 3
ENVIRONMENTAL DATA 3
COHO SMOLTS 4
OTHER SPECIES 5
ACKNOWLEDGEMENTS 6
REFERENCES 6
TABLES

1. ENVIRONMENTAL DATA 9
2. ANNUAL ENUMERATION OF SPECIES 11
3. DAILY ENUMERATION OF COHO SMOLTS 12
4. SUMMARY OF CWT BY TAG CODE 14
5. WEEKLY LENGTH AND WEIGHTS OF COHO 14
6. SUMMARY OF COHO AGE/LENGTH DATA 15
7. SUMMARY OF COHO AGE COMPOSITION 15
8. SUMMARY OF COHO FIN CLIPS 16
9. SURVIVAL OF COHO FIN CLIPS, 1990 - 1993 17
10. COLD BRAND DATA 17
11. MINIMUM FENCE EFFICIENCY 23
12. FENCE EFFICIENCY, 1989 - 1993 24
13. COMPARISON OF COHO LENGTHS FROM RUN AND SAMPLE 24
14. COMPARISON OF COHO LENGTHS FROM BOTH TRAPS 24
15. COMPARISON OF COHO CATCHES FROM BOTH TRAPS 25
16. DAILY ENUMERATION OF OTHER SPECIES 26
17. UPSTREAM STEELHEAD MIGRATION 28
18. DOWNSTREAM STEELHEAD MIGRATION 29
19. WEEKLY SUMMARY OF LENGTHS OF OTHER SALMONIDS 30
20. WEEKLY SUMMARY OF WEIGHTS OF OTHER SALMONIDS 30
21. WEEKLY SUMMARY OF LENGTHS OF SCULPINS 31
22. WEEKLY SUMMARY OF WEIGHTS OF SCULPINS 31
FIGURES
23. LOCATION OF WORK CHANNEL AND LACHMACH RIVER 33
24. MAP OF LACHMACH RIVER AND ADJACENT AREAS 35
25. ENVIRONMENTAL DATA 37
26. DAILY COUNTS OF ALL SPECIES 39
27. LENGTH FREQUENCY OF COHO SMOLTS, BY AGE 41
28. LENGTH FREQUENCY OF OTHER SPECIES 43

ABSTRACT

S. J. Baillie. 1994. Summary of the 1993 coho salmon smolt trapping operations on the Lachmach River, British Columbia. Can. Data Rep. Fish. Aquat. Sci. 936: 43 p.

This report contains coho smolt (oncorhynchus kisutch) enumeration, coded wire tagging and sampling data from the Lachmach River, British Columbia for the period of April 14 to June 29, 1993. Enumeration and sampling data for outmigrant juvenile rainbow trout (0 . mykiss), Dolly Varden char (Salvelinus malma), cutthroat trout (0 . clarki), prickly sculpin (cottus asper) and coastrange sculpin (c. aleuticus) and adult steelhead trout (0 . mykiss) are also presented. Fish were trapped using either a smolt fence located near the mouth of the river or a rotary screw trap located in a pool approximately 50 m upstream of the smolt fence. The total smolt outmigration was 15,920 of which 14,393 were coded wire tagged. The age structure of the coho smolts was $43 \% 1.0,55 \% 2.0$ and 2% 3.0. The total outmigration of other species was 68 coho fry, 937 pink salmon fry (0 . gorbuscha), 1,323 rainbow trout, 930 Dolly Varden char, 362 sculpins, 7 cutthroat trout, 1 threespine stickleback (Gasterosteus aculeatus), 1 pacific lamprey (Lampetra tridentata) and 24 steelhead trout. Thirty adult steelhead trout were enumerated migrating upstream.

RESUME
S. J. Baillie. 1994. Summary of the 1993 coho salmon smolt trapping operations on the Lachmach River, British Columbia. Can. Data Rep. Fish. Aquat. Sci. 936: 43 p.

On donne les résultats des opérations de dénombrement, de marquage au fil métallique codé et l'échantillonnage des smolts de saumon coho (Oncorhynchus kisutch) de la rivière Lachmach, en Colombie-Britannique, effectuées du 14 avril au 29 juin 1993. On présente également les resultats du dénombrement et de l'échantillonnage des juvéniles en dévalaison des espèces suivantes : truite arc-en-ciel (ㅇ. mykiss), Dolly Varden (Salvelinus malma), truites fardée (ㅇ. clarki), chabot piquant (Cottus asper) et chabot cotier (c. aleuticus); on a egalement dénombré les truites arc-en-ciel anadromes adultes ($\underline{0}$. mykiss). Pour capturer les poissons, on a utilisé une barriére à smolt, plès de l'embouchure de la rivière, ou un piège à vis dans un bassin, à quelque 50 m en amont de la barrière. Entout, on a compté 15920 smolts en dévalaison; 14393 ont été marqués au fil code. On a établi la pyramide des age des smolts de saumon coho : 43% d'âge $1.0,55 \%$ d'âge 2.0 et 2% d'áge 3.0 . On a également déterminé le nombre total d'individus de chaque espèce en dévalaison: 68 alevins de saumon coho, 937 alevins de saumon rose (ㅇ. gorbuscha), 1323 juvéniles de truite arc-en-ciel, 930 Dolly Varden, 362 chabots, 7 truites fardées, 1 épinoche à trois épines (Gasterosteus aculeatus), 1 lamproie du Pacifique (Lampetra tridentata) et 24 truites arc-en-ciel anadromes adultes. On a également 30 truites arc-en-ciel anadromes en montaison.
*

INTRODUCTION

The Lachmach River is a small coastal stream approximately 8 km long, located 23 km east of Prince Rupert, British Columbia (Figures 1 and 2). It drains a steep mountainous catchment area of $41.3 \mathrm{~km}^{2}$ of which the western slope was clearcut logged during the 1970's and early 1980's. There is limited estuarine development where the river reaches the sea at the head of Work Channel. The river is characterized by sections of low to moderate gradients, a series of small passable falls in the 2 km to 3 km section and a series of riverine ponds in the upper 5 km of river. It supports populations of coho salmon (oncorhynchus kisutch), pink salmon ($\underline{0}$. gorbuscha), chum salmon ($\underline{0}$. keta), steelhead trout and resident rainbow trout (0. mykiss), sea-run and resident cutthroat trout (0. clarki) and Dolly Varden char (Salvelinus malma). In recent years a small number of adult chinook salmon (\underline{O}. tshawytscha) have been observed in the river. Other fish species present include threespine stickleback (Gasterosteus aculeatus), prickly sculpin (Cottus asper) and coastrange sculpin (C. aleuticus). Scientific and common names of fishes follow Gillespie (1993).

The Lachmach River Project is one of the coho salmon research programs initiated in response to the Canada-United States Pacific Salmon Treaty. The program goals are to examine productivity and life history of coho salmon stocks in British Columbia. In 1986 Lachmach River was chosen as a representative north coast watershed suitable for investigations of coho salmon (Simpson 1991). As part of the program, coded wire nose tagging of smolts and summer juvenile population studies began in 1987 and adult coho escapement, spawning distribution and age structure data has been collected since 1988. Algal and benthic community studies were initiated in 1993.

Since 1988 the coho smolt run has been divided into two size groups ($<85 \mathrm{~mm}$ and $>85 \mathrm{~mm}$) and marked with unique coded wire tag codes. The marine survival rate and commericial fishery exploitation rate of Lachmach coho in previous years were generally lower for the smaller size group than the larger group (B. O. Finnegan, unpublished data). To investigate further, each size group was further divided into two groups to get finer resolution (50-74 $\mathrm{mm}, 75-85 \mathrm{~mm}, 86-114 \mathrm{~mm}, 115+\mathrm{mm}$).

This report summarizes the data collected from the coho smolt fence trapping and tagging operations on the Lachmach River for the spring of 1993. This is the twelfth data report in the Lachmach series. For further information see: Finnegan et al. (1990), Finnegan (1991), Lane and Finnegan (1991), Davies (1991a,b), Finnegan and Davies (1991), Davies et al. (1992), Lane and Baillie (1994), and Lane et al. (1994). Reports on the fall sampling operations for 1991 and 1992 are in preparation.

METHODS

A welded aluminum smolt fence (Finnegan, 1991) was installed and was in operation from April 22 to June 11. Cleaning was done as required and periodic snorkel inspections were conducted to check for fence integrity and to inspect the trap entrances for debris accumulation.

A 5 foot rotary screw trap (E.G. Solutions, 1005 SE Park, Corvallis, OR 97333) was set up in a pool approximately 50 m upstream of the smolt fence and was operational from April 19 to June 11. It was fished daily from April 19 to April 23, from May 1 to May 4, every second day from May 6 to May 20, and daily from May 21 to June 11.

The fence and rotary traps, when fishing, were checked daily at 0800. All coho were counted and a maximum of 100 were randomly selected and measurements of length ($\pm 1 \mathrm{~mm}$) and weight ($\pm 0.1 \mathrm{~g}$) were recorded. Sub-samples of coho smolts were obtained by rapidly moving a small dipnet through the barrel of fish and scooping fish into a pail until 100 fish was removed (Davies et al., 1992).

All other coho were sorted into 4 size categories (50-74 mm, $75-85 \mathrm{~mm}, 86-114 \mathrm{~mm}$, and $115+\mathrm{mm}$) and a coded wire tag and adipose clip was applied to each fish. These size categories roughly represent small age 1.0 smolts, large age 1.0 smolts, small age 2.0 smolts, and large age 2.0 and age 3.0 smolts, respectively. All coho were also checked for ventral (pelvic) fin and maxillary clips and cold brands prior to coded wire tagging. Tagging was performed with a Mk. II Tagging Unit (Northwest Marine Technologies, Shaw Island, WA 98286) following procedures as described in Argue et al. (1979), except 2phenoxyethanol was substituted for tricane methanesulfonate (MS222). Short term tag retention was determined by holding up to 100 fish from each size group for 24 hours. Mortalities and the incidence of tag loss were recorded. All fish with lost tags were retagged before release. Fish that were caught prior to the coded wire tagging machine was set up, or less than 50 mm in length, or appeared to be moribund were released untagged.

Age composition of coho smolts was determined by taking scale samples from groups of 25 fish in each of 5 mm size ranges. The age composition from each range was then applied to the number of coho measured in that size range in the random sampling from the fence traps. By this method the age composition of the entire run was determined.

Daily catches of all other downstream migrating species of fish in both traps were identified, counted, and lengths ($\pm 1 \mathrm{~mm}$)
and weights ($\pm 0.1 \mathrm{~g}$) were recorded. Upstream migrating adult steelhead trout were caught in a wooden trap attached to the smolt fence and tagged with a numbered anchor tag (Floy FD-68B 2.54 cm , Seattle, WA). An opercular punch was applied to check for subsequent tag loss during the downstream kelt (spawned steelhead trout) migration. Steelhead trout were measured for lengths ($\pm 1 \mathrm{~mm}$) and a scale sample was obtained. Untagged kelts were examined for opercular punch marks, retagged and released downstream of the smolt fence.

After the fence was repaired on May 3 minimum fence efficiency tests were conducted on two occasions. On May 13100 individuals (length range: 86-114 mm), marked with an upper caudal fin clip, were released approximately 50 m upstream of the smolt fence. On May 20100 individuals (length range: 50 @ 75$85 \mathrm{~mm}, 45$ @ 86-114 mm, and 5 @ 115+ mm), marked with a lower caudal fin clip, were released in the same area.

RESULTS

FENCE

The fence was operated from April 22 to June 11. On April 30 an 8 metre section of the fence collapsed due to high water levels. Consequently the fence traps were not checked on April 30 and the fence was not 'fish-tight' from April 30 until repairs were finished on May 3. Some fence panels were removed on May 8 due to high water levels. They were replaced on May 9. During these periods of lost fence integrity the passage of fish was unimpeded. Seven adult steelhead were observed migrating upstream. It is unknown how many other fish were able to pass undetected.

ENVIRONMENTAL DATA

Environmental data collected at the Lachmach River is shown in Table 1 and Figure 3. Total precipitation for the observation period of April 16 to June 28 was 340 mm . Peak periods of rainfall occurred on April 29-30 (38 mm), May 8-9 (41 mm) and June 22-23 (62 mm) (Table 1). Mean maximum air temperature was $21^{\circ} \mathrm{C}$ with a range of $8^{\circ} \mathrm{C}$ to $34^{\circ} \mathrm{C}$. Mean minimum air temperature was $7^{\circ} \mathrm{C}$ with a range of $0^{\circ} \mathrm{C}$ to $13^{\circ} \mathrm{C}$. Water temperature rose
steadily through the study period, starting at $4^{\circ} \mathrm{C}$ and increasing to $14^{\circ} \mathrm{C}$.

COHO SMOLTS

Total smolt enumeration from both fence and rotary traps was 15,920 (Figure 4). Comparisons with smolt migration of previous years (Lane and Baillie, 1994) are presented in Table 2. A complete enumeration was not possible due to the undetected passage of fish during the high water events. Of the number trapped 14,393 were tagged with coded wire tags. The tagged fish were divided into 4 size categories and tagged with unique codes. Table 3 shows the number of smolts that were tagged in each size group, and Table 4 shows the total that were tagged with each code, with the tag retention and estimated number of tags at large included.

Biological information from coho smolts is summarized in Table 5 and Figure 5. Generally, the mean length and weight increased in the first two weeks of the run, and decreased over the next four weeks. The mean length was 92 mm ($n=2865$, $S D=12.3)$, and the mean weight was $7.2 \mathrm{~g}(\mathrm{n}=2862, \mathrm{SD}=2.78)$.

Table 6 shows the breakdown of ages of the samples that were used for age determination and includes the biological data obtained from these samples. Ages were obtained from 539 scale samples. There was considerable overlap in length range for each age group. To determine the age composition of the entire run, the aged fish were broken down into 5 mm length groups, and the proportion of age $1.0,2.0$, and 3.0 fish for each group was applied to the breakdown of the length frequency sample taken at the fence (Table 7). The age composition was estimated to be 43% age 1.0 , 55% age 2.0 and 2% age 3.0 .

A summary of the number of smolts captured with fin clip marks and the history of mark applications is presented in Table 8. Recaptures of marks in previous years is also presented (Lane and Baillie, 1994). Table 9 summarizes the effective survival rates for the ventral and maxillary clips over the years 1990-1993, calculated by dividing the marks seen at the fence by the number of marks applied to coho during the summer productivity studies from 1989 to 1991. It should be noted that since each mark was applied to age $0.0,1.0$ and 2.0 fry, there will be different survival rates within each mark group to smolting.

In the summer of 1992 cold brands (Everest and Edmundson, 1967) were applied to coho fry in various sites along the

Lachmach River. These brands were looked for on coho smolts at the fence and noted. Unfortunately the data collected was insufficient to draw conclusions and is presented in Table 10 for reference purposes only.

Table 11 shows the recaptures of coho smolts which were caudal clipped and released above the fence to obtain fence trapping efficiency. Trapping efficiency was 72% and 76% for the two releases, respectively. These are the minimum estimates because they do not account for mortality after release or fish that do not migrate back downstream after release. The mean of 9 complete tests done from 1989 - 1993 is 82% (S.D. 7.45). The range of values are 72\% to 93\% (Table 12).

Because the entire run was sorted into four size categories, it was possible to compare the length distribution of the fence sample to the distribution of the entire run. Table 13 shows the proportion of the entire run of coho smolts in each of the four size groups, and the proportion of coho smolts that were sampled randomly from the entire run. A χ^{2} goodness-of-fit test was used to see if the sample was representative of the entire run. The null hypothesis, H_{0}, that the sample was representative of the entire run was accepted based on a calculated χ^{2} of 6.57. This was below the $\chi^{2}{ }_{0.05}$ value of 7.815 (Walpole, 1974).

To show that the rotary trap accurately sampled the entire run, the mean lengths of fish caught in the rotary trap and the fence were compared. The rotary trap was not used continuously, and lengths were not measured on all trapped fish. In order to accurately compare, only data from days in which both apparatus were used and measurements of coho smolts were taken can be used. There were only four days which met this criteria. Table 14 shows the results and as can be seen the means and standard deviations are virtually identical. This would indicate that the rotary trap is accurately sampling the smolt run.

To examine the proportion of the run that was being caught by the rotary trap, the number of fish caught by the rotary trap was compared to the total catch of the day (rotary + fence). Only days in which both apparatus were in operation were used. Table 15 summarizes the data. 39% of the coho smolt run was caught in the rotary trap.

OTHER SPECIES

Daily enumeration of rainbow trout, steelhead trout, cutthroat trout, Dolly Varden char, prickly sculpin, and coastrange sculpin are presented in Table 16 and Figure 4.

Biological information and tag numbers for steelhead trout is presented in Table 17 (upstream) and Table 18 (downstream). Biological information for other salmonids is presented in Table 19 (length) and Table 20 (weight), and for sculpins in Table 21 (length) and Table 22 (weight). Figure 6 depicts the length frequency of coastrange and prickly sculpin, Dolly Varden char and rainbow trout.

There were 30 upstream and 24 downstream steelhead trout migrants enumerated during the study period. Seven of the upstream migrants passed by the fence during the period in which several panels had been removed from the fence due to high water. These numbers represent only a sample of the entire steelhead trout run, which starts before the fence is installed and can carry on after the fence is removed. Three of the downstream migrants had been originally tagged as upstream migrants. Residence time for these three fish were 20, 17, and 6 days.

In addition, there was one threespine stickleback (Gasterosteus aculeatus) ($65 \mathrm{~mm}, 2.9 \mathrm{~g}$) caught on May 24, and one pacific lamprey (Lampetra tridentata) (470 mm) caught on June 11. There were also 68 coho fry caught between May 14 and June 5, and 937 pink salmon fry caught between April 20 and April 24.

ACKNOWLEDGEMENTS

Tagging and data collection was performed by Dr. J. Taylor, Matt Jessop, Mike Milnes, and Andrew Lotto of J. A. Taylor and Associates, and Dave Walker and Dean Gaidica of the Department of Fisheries and Oceans.

REFERENCES

Argue, A. W., L. M. Patterson, and R. W. Armstrong. 1979. Trapping and coded wire tagging of wild coho, chinook and steelhead juveniles from the Cowichan-Koksilah River system, 1976. Fish. Mar. Serv. Tech. Rep. 850: vi + 117 p.

Davies, D. L. W. 1991a. Summary of 1989 coho salmon trapping operations on the Lachmach River, British Columbia. Can. Data Rep. Fish. Aquat. Sci. 831: 37 p.

Davies, D. L. W. 1991b. Summary of the 1990 coho salmon smolt trapping operations on the Lachmach River, British Columbia. Can. Data Rep. Fish. Aquat. Sci. 832: 53 p.

Davies, D. L. W., B. O. Finnegan, and L. B. Holtby. 1992. Summary of the 1991 coho salmon smolt trapping operations on the Lachmach River, British Columbia. Can. Data Rep. Fish. Aquat. Sci. 871: 61 p.

Everest, F. H. and E. H. Edmundson. 1967. Cold branding for field use in marking juvenile salmonids. Prog. Fish-Cult. 29: 175-176.

Finnegan, B. O. 1991. Summary of 1988 coho salmon smolt trapping operations on the Lachmach River and Antigonish Creek, British Columbia. Can. Data Rep. Fish. Aquat. Sci. 844: 29 p .

Finnegan, B. O., and D. L. W. Davies. 1991. Summary of Fall 1989 adult and juvenile coho salmon sampling operations on the Lachmach River, British Columbia. Can. Data Rep. Fish. Aquat. Sci. 830: 55 p .

Finnegan, B. O., R. L. Dunbrack, and K. Simpson. 1990. Summary of 1987 coho salmon smolt trapping operations on the Lachmach River, British Columbia. Can. Data Rep. Fish. Aquat. Sci. 812: 27 p.

Gillespie, G. E. 1993. An updated list of the fishes of British Columbia, and those of interest in adjacent waters, with numeric code designations. Can. Tech. Rep. Fish. Aquat. Sci. 1918: 116 p.

Lane, J. and S. J. Baillie. 1994. Summary of the 1992 salmon smolt trapping operations on the Lachmach River, British Columbia. Can. Data Rep. Fish. Aquat. Sci. 926: 35 p.

Lane, J. and B. O, Finnegan. 1991. Summary of fall 1988 adult and juvenile coho salmon sampling operations on the Lachmach River. British Columbia. Can. Data Rep. Fish. Aquat. Sci. 824: 61 p.

Lane, J., J. A. Taylor, and B. O. Finnegan. 1994. Summary of adult coho escapement to the Lachmach River, British Columbia, 1990. Can. Data Rep. Fish. Aquat. Sci. 932: 69 p.

Simpson, K. S. 1991. Prepatory stream reconnaissance, smolt trapping and habitat utilization surveys for a coho salmon research program in northern British Columbia. Can. Manuscr. Rep. Fish. Aquat. Sci. 2116: 28 p.

Taylor, J. A. 1993. Summary of coho smolt coded wire nose tagging and sampling on the Lachmach River, British Columbia, April to May 1993. Unpublished report prepared for Fisheries and Oceans Canada by J. A. Taylor and Associates. 9 p.

Walpole, R. E. 1974. Introduction to Statistics. Macmillan Publishing Co., Inc. New York. 340 p.

Table 1. Environmental parameters measured at Lachmach River, spring 1993.

Date	Precipitation (mm)	Air Temperature (${ }^{\circ} \mathrm{C}$)		Water Temperature$\left({ }^{\circ} \mathrm{C}\right)$
		Maximum	Minimum	
Apr 16	0	15	5	5
Apr 17	2	14	1	5
Apr 18	0	21	0	5
Apr 19	2	13	7	5
Apr 20	0	18	1	4
Apr 21	4	17	4	5
Apr 22	8	22	6	6
Apr 23	2	19	4	5
Apr 24	0	20	8	6
Apr 25	2	16	6	6
Apr 26	2	19	6	6
Apr 27	8	18	6	6
Apr 28	4	16	7	7
Apr 29	16	9	6	6
Apr 30	22	12	5	5
May 01	8	15	5	5
May 02	8	12	5	5
May 03	2	15	3	6
May 04	0	19	2	6
May 05	14	12	5	7
May 06	4	10	3	7
May 07	2	17	4	7
May 08	13	12	6	7
May 09	28	8	4	6
May 10	6	18	6	7
May 11	4	14	5	7
May 12	0	22	2	7
May 13	0	27	5	7
May 14	0	34	7	9
May 15	0	24	9	8
May 16	3	22	9	9

Table 1. (cont'd.)

Date	Precipitation (mm)	Air 		Temperature $\left({ }^{\circ} \mathrm{C}\right)$
Maximum	Minimum	Water Temperature		
May 17	10	14	8	$\left({ }^{\circ} \mathrm{C}\right)$

Table 1. (cont'd.)

Date	Precipitation (mm)	AirTemperature $\left({ }^{\circ} \mathrm{C}\right)$		Water Temperature
		Maximum	Minimum	$\left({ }^{\circ} \mathrm{C}\right)$

Table 2. Captures of coho smolts and other fish species from the Lachmach River fence from 1987 to 1993.

Year	Coho Smolts			Other Species		
	TotalCoded Wire Tagged and Released		Rainbow Trout	Dolly Varden Char	Cut. trout	
	1,909	1,790		5	13	97
$1988^{\text {b }}$	9,983	9,192		103	351	175
1989	21,410	19,482		1,176	1,592	767
1990	25,860	24,639		1,189	1,964	1,387
1991	14,572	13,469		855	1,506	738
1992	21,282	20,362		1,472	1,299	798
1993	15,920	14,287		1,302	924	358

- - A wood fence used in 1987 was frequently inoperable and provided a poor enumeration of downstream migrant fish.
b - The aluminum fence allowed undetected passage of fish resulting in a lower than expected enumeration.

Table 3. Summary of daily enumeration of coho at Lachmach River, spring 1993.

Date	Coded Wire Tagged Coho Length Category (mm)				Untagged Coho	Morts	Totals
	50-74	75-85	86-114	115+			
Apr 20	-	-	-	-	17	0	17
Apr 21	-	-	-	-	22	1	23
Apr 22	-	-	-	-	110	2	112
Apr 23	-	-	-	-	236	1	237
Apr 24	-	-	-	-	288	7	295
Apr 25	18	45	72	3	0	9	147
Apr 26	8	16	38	0	0	4	66
Apr 27	17	32	56	0	2	3	110
Apr 28	9	39	109	2	0	7	166
Apr 29	18	106	371	18	2	16	531
Apr 30	-	-	-	-	-	-	-
May 1	6	36	83	6	0	0	131
May 2	0	8	12	1	2	2	25
May 3	1	4	15	5	0	0	25
May 4	3	4	32	4	5	1	49
May 5	4	36	208	10	1	1	260
May 6	13	58	382	23	0	3	479
May 7	18	83	635	48	0	5	789
May 8	3	43	320	25	0	7	398
May 9	15	84	787	75	0	383	1,344
May 10	12	93	507	21	2	3	638
May 11	21	77	339	19	0	6	462
May 12	32	151	924	50	6	10	1,173
May 13	38	195	759	19	2	17	1,030
May 14	59	347	1,604	60	3	209	2,282
May 15	41	171	871	41	6	41	1,171
May 16	48	164	481	23	6	0	722
May 17	34	181	661	30	10	2	918

Table 3. (cont'd.)

Date	Coded Wire Tagged Coho Length Category (mm)				Untagged Coho	Morts	Totals
	50-74	75-85	86-114	115+			
May 18	35	162	354	24	5	5	585
May 19	31	97	316	20	9	0	473
May 20	35	67	127	5	1	3	238
May 21	24	43	62	1	6	0	136
May 22	25	80	190	18	7	4	324
May 23	5	33	83	4	1	1	127
May 24	6	36	65	5	1	1	114
May 25	4	13	34	5	1	1	58
May 26	13	8	22	5	6	2	56
May 27	5	6	5	0	0	1	17
May 28	9	13	18	0	1	1	42
May 29	9	20	25	1	6	1	62
May 30	3	10	11	0	0	0	24
May 31	4	3	9	0	0	1	17
June 1	1	6	6	2	0	1	16
June 2	3	6	12	0	0	0	21
June 3	1	1	2	0	1	0	5
June 4	0	0	0	0	0	0	0
June 5	0	1	1	0	0	0	2
June 6	0	0	0	0	0	0	0
June 7	0	3	0	0	0	0	3
June 8	0	0	0	0	0	0	0
June 9	0	0	0	0	0	0	0
Jurie 10	0	0	0	0	0	0	0
June 11	0	0	0	0	0	0	0
Totals	631	2,581	10,608	573	765	762	15,920

Table 4. Summary of coded wire tagged coho by code, tagged at the Lachmach River fence, spring 1993.
() denotes number used in estimating tag retention.

code	Date	Length Range (mm)	Total	Tag Retention	Tags at Large
08/01/29	Apr 25 June 11	50-74	631	$\begin{aligned} & 0.981 \\ & (417) \end{aligned}$	619
08/01/53	$\begin{gathered} \text { Apr } 25- \\ \text { May } 18 \end{gathered}$	75-85	2121	$\begin{aligned} & 0.970 \\ & (516) \end{aligned}$	2057
08/01/51	May 18 June 11	75-85	460	$\begin{aligned} & 1.000 \\ & (226) \end{aligned}$	460
08/01/25	$\begin{gathered} \text { Apr } 25- \\ \text { May } 22 \end{gathered}$	86-114	10,248	$\begin{gathered} .978 \\ (1368) \end{gathered}$	10,023
08/01/52	May 22 June 11	86-114	360	$\begin{aligned} & 1.000 \\ & (229) \end{aligned}$	360
08/01/27	Apr 25 June 11	115-170	573	$\begin{array}{r} .918 \\ (326) \\ \hline \end{array}$	526
TOTALS			14,393		14,045

Table 5. Weekly summaries of biological sampling of coho smolts at the Lachmach River fence, spring 1993.

Week	Fork Length (mm)			Weight (g)		
	N	Mean	SD	N	Mean	SD
Apr 22-28	603	87	10.8	602	6.1	2.29
Apr 29 - May 5	325	94	11.2	325	7.6	2.79
May 6-12	699	96	11.4	6.99	8.3	2.90
May 13-19	687	93	11.8	685	7.3	2.67
May 20-26	434	89	13.0	434	6.5	2.65
May 27 - June 2	111	87	14.4	111	6.4	2.71
June 3-9	6	84	13.3	6	5.7	2.33
June 10-11	0	-	-	0	-	-
Total	2865	92	12.3	2862	7.2	2.78

Table 6. Summary of lengths and weights by age for coho smolts scale sampled at the Lachmach River fence, spring 1993.

| Age | N | Fork Length (mm) | | | Weight (g) | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Range | Mean | SD | | Range | Mean | SD |
| 1.0 | 222 | $52-111$ | 77 | 13.1 | | $1.20-12.80$ | 4.6 | 2.20 |
| 2.0 | 303 | $69-161$ | 104 | 12.8 | | $2.80-75.00$ | 10.3 | 5.36 |
| 3.0 | 14 | $101-130$ | 114 | 8.66 | | $9.40-20.20$ | 13.1 | 3.25 |

Table 7. Age composition of coho smolt population of Lachmach River, spring 1993.

Range(mm)	Coho N	Age 1.0		Age 2.0		Age 3.0	
		β	$B(N)$	β	$\beta(N)$	β	$\underline{\beta}(\mathrm{N})$
55-59	10	1.00	10	0	0	0	0
60-64	28	1.00	28	0	0	0	0
65-69	70	0.95	67	0.05	3	0	0
70-74	114	0.85	97	0.15	17	0	0
75-79	233	0.84	196	0.16	37	0	0
80-84	375	0.79	296	0.21	79	0	0
85-89	426	0.69	294	0.31	132	0	0
90-94	418	0.27	113	0.73	305	0	0
95-99	393	0.18	71	0.82	322	0	0
100-104	348	0.17	59	0.81	282	0.02	7
105-109	243	0.02	5	0.86	209	0.12	29
110-114	133	0.02	3	0.95	126	0.03	4
115-119	44	0	0	0.92	40	0.08	4
120-124	16	0	0	0.87	14	0.13	2
125-129	9	0	0	0.89	8	0.11	1
130-134	4	0	0	0.86	3	0.14	1
135-159	0	0	0	0	0	0	0
160-164	1	0	0	1.00	1	0	0
Total	2,865		$\begin{aligned} & 1,239 \\ & (43 \%) \end{aligned}$		$\begin{aligned} & 1,578 \\ & (55 \%) \end{aligned}$		$\begin{gathered} 48 \\ (2 \%) \\ \hline \end{gathered}$

Mark Type	Release Site	Release Dat Number	es and r	Recaptures
Left Maxillary	Fence	June-July 89	$\begin{gathered} 109 \\ (109) \end{gathered}$	$\begin{gathered} 12^{\mathbf{a}} \\ (19) \end{gathered}$
Right Ventral/ Left Maxillary	$500 \mathrm{~m}^{\text {b }}$	$\begin{aligned} & \text { June-Sept } 89 \\ & \text { Aug 90 } \\ & \text { June-Oct } 91 \end{aligned}$	$\begin{array}{r} 136 \\ 27 \\ 197 \\ (360) \end{array}$	$\begin{gathered} 0 \\ (73) \end{gathered}$
Left Ventral/ Right Maxillary	2000 m	$\begin{aligned} & \text { June-Aug } 89 \\ & \text { Aug } 90 \\ & \text { June-Oct } 91 \end{aligned}$	$\begin{array}{r} 224 \\ 63 \\ 263 \\ (550) \end{array}$	$\begin{gathered} 0 \\ (36) \end{gathered}$
Left Ventral/ Left Maxillary	2600 m	Sept 89 Aug 90 July-oct 91	$\begin{array}{r} 322 \\ 42 \\ 341 \\ (705) \end{array}$	$\begin{gathered} 1 \\ (32) \end{gathered}$
Left Ventral	$\begin{aligned} & 3820 \mathrm{~m} \\ & 3390 \mathrm{~m} \end{aligned}$	Sept 89 June-Oct 91 Aug 90 July-Oct 91	$\begin{array}{r} 696 \\ 199 \\ 400 \\ 310 \\ (1605) \end{array}$	$\begin{gathered} 2 \\ (198) \end{gathered}$
Right Ventral/ Right Maxillary	4500 m	Sept 89 Aug 90 June-Oct 91	$\begin{gathered} 356 \\ 200 \\ 264 \\ (820) \end{gathered}$	$\begin{gathered} 0 \\ (98) \end{gathered}$
Right Ventral	5000 m	Aug 89 Aug 90 June-Oct 91	$\begin{array}{r} 897 \\ 19 \\ 709 \\ (1625) \end{array}$	$\begin{gathered} 8 \\ (463) \end{gathered}$
Right Maxillary	7000 m	Sept 89 Aug 90 June-Oct 91	$\begin{gathered} 286 \\ 114 \\ 222 \\ (622) \end{gathered}$	$\begin{gathered} 17 \\ (74) \end{gathered}$
```Right Ventral/ Left Ventralc```				$\begin{gathered} 0 \\ (3) \\ \hline \end{gathered}$

-     - There have been no LM clips applied since 1989. These marks have been misidentified.
b - Numbers indicate distance in meters upstream from fence.
c - There were no RVLV marks officially applied. These fish were incorrectly marked.

Table 9. Survival of fin clips to the Lachmach River fence, 1990-1993

Site	Mark	Habitat   Type	\# survive/   \# marked	Survival   Rate
fence	LM	mainstem	$19 / 109$	0.17
500 m	RV LM	side channel	$73 / 360$	0.20
2000 m	LV RM	mainstem	$36 / 550$	0.07
2600 m	LV LM	mainstem	$32 / 705$	0.05
$3390 \mathrm{~m} / 3820 \mathrm{~m}$	LV	pond	$198 / 1605$	0.12
4500 m	RV RM	mainstem	$98 / 820$	0.12
5000 m	RV	pond	$463 / 1625$	0.28
7000 m	RM	tributary	$74 / 622$	0.12

Table 10. Cold brands on coho smolts at the Lachmach River fence, spring 1993.

Brand refers to the symbol used. There could be up to three. Orientation refers to the direction the bottom of the brand is facing. DOWN indicates a 'normal' symbol, FWD (forward) indicates the symbol is on its side with the bottom orientated anterior and the top is posterior, UP indicates an inverted symbol and BACK indicates a symbol on its side with the bottom posterior and the top anterior.
Side refers to the left or right side of the fish, when looking down onto the dorsal surface.
Place refers to either a spot posterior to the operculum (gill), or to a spot below the dorsal fin (dorsal).

Brand type				Date		Len	Wt	Age
Brand	Orientation	Side	Place			mm	g	
Q	down	?	dorsal	May	6	102	9.2	-
T	down	?	dorsal	May	6	109	11.8	2.0
T	down	?	dorsal	May	7	92	6.5	2.0
T	down	?	dorsal	May	7	96	7.9	2.0
T	down	?	dorsal	May	8	81	4.5	2.0
T	down	?	dorsal	May	9	113	12.4	-

Table 10. (cont'd.)

Brand type				Date			Age
Brand	Orientation	Side	Place		mm	$g$	
T	up	?	dorsal	May 6	93	7.5	2.0
TT	?	?	?	May 12	112	12.1	2.0
TT	?	?	?	May 12	105	10.0	3.0
TT	?	?	?	May 14	104	10.0	2.0
TT	?	?	?	May 14	105	9.4	-
TT	?	?	?	May 17	103	8.7	2.0
TT	?	?	?	May 18	105	9.6	2.0
TT	?	?	?	May 18	99	8.7	2.0
TT	?	?	dorsal	May 8	110	10.7	2.0
TT	?	?	dorsal	May 8	115	12.6	2.0
TT	?	?	dorsal	May 8	104	9.6	2.0
TT	?	?	dorsal	May 9	110	12.7	2.0
TT	?	?	dorsal	May 9	115	13.0	-
TT	?	?	dorsal	May 9	112	11.8	2.0
TT	?	?	dorsal	May 9	114	12.1	-
TT	?	?	dorsal	May 11	110	10.9	2.0
TT	?	?	dorsal	May 11	101	9.2	2.0
TT	?	?	dorsal	May 11	95	7.7	2.0
TT	?	?	dorsal	May 12	107	9.9	2.0
TT	?	?	dorsal	May 12	90	6.1	2.0
TT	?	?	dorsal	May 12	92	6.5	2.0
TT	?	?	dorsal	May 12	106	10.9	3.0
TT	?	?	dorsal	May 15	112	12.2	2.0
TT	back	left	?	May 19	91	7.8	2.0
TT	back	left	dorsal	May 14	102	9.3	2.0
TT	back	left	dorsal	May 14	103	9.4	2.0
TT	back	left	dorsal	May 15	99	8.3	2.0
TT	down	?	?	May 7	107	10.4	-
TT	down	?	?	May 12	110	11.0	2.0

Table 10. (cont'd.)

Brand type				Date	Len		Age
Brand	Orientation	side	Place		mm	g	
TT	down	?	dorsal	May 8	97	8.5	2.0
TT	down	?	dorsal	May 8	106	10.2	2.0
TT	down	?	dorsal	May 9	101	9.6	2.0
TT	down	?	dorsal	May 9	114	13.7	2.0
TT	down	?	dorsal	May 9	111	11.1	2.0
TT	down	?	dorsal	May 9	108	10.8	2.0
TT	down	?	dorsal	May 12	106	9.6	2.0
TT	down	left	?	May 19	103	9.1	2.0
TT	down	left	dorsal	May 10	106	10.5	2.0
TT	down	left	dorsal	May 13	109	10.9	2.0
TT	down	left	dorsal	May 14	103	9.9	1.0
TT	down	left	dorsal	May 14	111	12.2	2.0
TT	down	left	dorsal	May 14	103	9.3	2.0
TT	down	left	dorsal	May 14	111	12.8	1.0
TT	down	left	dorsal	May 14	106	10.3	3.0
TT	down	left	dorsal	May 15	98	7.6	-
TT	down	left	dorsal	May 15	108	10.7	2.0
TT	down	left	dorsal	May 15	106	10.4	2.0
TT	down back	left	dorsal	May 13	103	9.4	2.0
TT	fwd	left	?	May 16	110	11.5	2.0
TT	fwd	left	?	May 16	110	10.5	-
TT	fwd	left	?	May 16	112	12.9	2.0
TT	fwd	left	dorsal	May 15	112	12.5	2.0
TT	fwd	left	dorsal	May 15	103	9.4	2.0
TT	up	?	?	Apr 29	121	16.7	2.0
TT	up	?	dorsal	May 8	111	11.1	2.0
TT	up	left	?	May 16	108	10.5	2.0
TT	up	left	?	May 16	115	12.2	2.0
TT	up	left	?	May 16	115	12.0	2.0

Table 10. (cont'd.)

Brand type				Date	Len mm	Wt$\qquad$ g	Age
Brand	Orientation	Side	Place				
TT	up	left	dorsal	May 13	116	12.6	2.0
TT	up	left	dorsal	May 14	107	11.2	2.0
TT	up	left	dorsal	May 15	109	14.1	2.0
TTT	down	?	?	May 12	108	11.2	2.0
TTT	up down up	?	?	May 9	110	9.3	2.0
TVT	? up ?	?	?	May 9	110	11.0	2.0
TVT	? up ?	?	?	May 9	113	12.6	2.0
TVT	? up ?	?	?	May 9	110	11.8	2.0
TVT b	back fwd back	left	dorsal	May 14	100	8.8	1.0
TVT	back fwd down	left	dorsal	May 14	99	9.1	2.0
TVT	back up back	left	dorsal	May 13	111	11.4	2.0
TVT	down	?	?	May 25	100	8.4	2.0
TVT dow	down fwd down	left	dorsal	May 13	107	10.4	2.0
TVT dond	down fwd down	left	dorsal	May 14	100	8.7	-
TVT	down up down	left	dorsal	May 13	104	9.3	2.0
TVT	down up down	left	dorsal	May 14	100	9.7	2.0
TVT	up down up	?	dorsal	May 22	114	13.0	2.0
TVT	up down up	left	dorsal	May 13	116	12.2	2.0
U	?	?	?	May 14	99	8.6	-
U	?	?	?	May 14	94	6.8	-
U	?	?	?	May 16	101	8.6	-
U	down	?	?	May 14	117	14.4	3.0
U	down	?	?	May 14	81	6.1	-
U	down	?	dorsal	May 5	99	8.3	2.0
U	down	?	dorsal	May 8	98	7.7	-
U	down	?	gill	May 6	98	8.7	2.0
U	down	?	gill	May 7	83	5.4	2.0
U	down	?	gill	May 8	101	10.3	2.0
U	down	left	?	May 19	91	6.2	-

Table 10. (cont'd.)

Brand	Brand type			Date	Len mm	$\begin{gathered} \text { Wt } \\ \mathrm{g} \end{gathered}$	Age
	Orientation	Side	Place				
U	down	left	dorsal	May 13	82	4.8	2.0
U	down	left	gill	Apr 22	78	5.0	-
U	down	left	gill	Apr 25	84	5.9	-
U	down	left	gill	Apr 25	85	5.4	-
U	down	left	gill	Apr 26	83	4.9	-
U	down	left	gill	Apr 28	90	6.7	-
U	down	left	gill	May 4	85	5.8	-
U	down	left	gill	May 13	82	5.9	2.0
U	down	left	gill	May 14	97	8.3	2.0
U	down	left	gill	May 15	92	6.5	2.0
U	down	left	gill	May 15	103	9.6	2.0
U	down	right	gill	Apr 25	107	10.5	-
U	up	?	?	May 14	101	9.1	2.0
U	up	?	dorsal	May 5	94	8.1	2.0
U	up	?	dorsal	May 6	113	13.0	2.0
U	up	?	dorsal	May 6	104	9.9	2.0
U	up	right	gill	May 13	83	4.5	1.0
U	up	right	gill	May 14	98	9.3	2.0
UVT	up up down	left	dorsal	May 15	108	10.4	2.0
v	?	?	dorsal	May 3	120	14.4	-
v	?	?	dorsal	May 3	120	14.4	2.0
v	?	?	dorsal	May 6	105	10.3	1.0
v	?	?	dorsal	May 7	104	9.1	2.0
V	back	left	dorsal	May 14	111	11.9	2.0
v	down	?	?	May 17	108	10.4	2.0
v	down	?	dorsal	May 5	114	10.9	2.0
V	down	?	dorsal	May 6	108	11.4	2.0
V	down	?	dorsal	May 6	96	8.0	1.0
v	down	?	dorsal	May 7	110	11.0	2.0

Table 10. (cont'd.)

Brand type				Date	Len	Wt	Age
Brand	Orientation	Side	Place		mm	$g$	
V	down	?	gill	May 7	97	7.1	2.0
v	down	?	gill	May 8	88	5.8	2.0
v	down	?	gill	May 9	107	10.3	3.0
V	down	left	?	May 16	118	14.6	2.0
v	down	left	dorsal	May 13	114	13.5	2.0
v	down	left	dorsal	May 14	113	12.1	2.0
V	down	left	dorsal	May 15	121	14.9	2.0
V	fwd	left	dorsal	May 15	99	8.2	2.0
V	up	?	?	May 14	115	13.2	2.0
v	up	?	dorsal	May 6	110	10.9	2.0
v	up	?	dorsal	May 9	108	10.8	2.0
V	up	?	dorsal	May 9	109	11.5	-
V	up	?	dorsal	May 22	111	11.2	2.0
v	up	left	dorsal	May 13	106	9.3	2.0
V	up	left	dorsal	May 13	111	10.6	2.0
v	up	left	dorsal	May 13	105	9.8	2.0
v	up	left	dorsal	May 14	105	10.7	2.0
v	up	left	dorsal	May 15	114	13.1	2.0
v	up	left	dorsal	May 15	108	10.3	2.0
V	up	left	dorsal	May 15	112	11.5	2.0
V	up	left	dorsal	May 15	113	12.6	2.0

Table 11. Minimum fence efficiency, Lachmach River fence, spring 1993.

Date	Release \#1		Release \#2					
	86-114 mm		$75-85 \mathrm{~mm}$		86-114 mm		$115+$	
	F	R	F	R	F	R	F	R
May 13	rele	da						
May 14	15	1						
May 15	10	-						
May 16	11	4						
May 17	14	-						
May 18	4	0						
May 19	4	-						
May 20	0	0			lea	dat		
May 21	3	0	15	0	19	0	1	0
May 22	4	0	10	0	6	0	0	0
May 23	0	1	1	1	3	2	0	0
May 24	0	0	3	1	2	1	0	1
May 25	0	0	0	0	3	1	0	1
May 26	0	0	0	0	0	0	0	0
May 27	0	1	0	0	1	0	0	0
May 28	0	0	0	0	1	0	0	0
May 29	0	0	0	0	3	0	0	0
Subtotal	65	7	29	2	38	4	1	2
Total	72		76					

Table 12. Summary of fence efficiency tests performed at the Lachmach River fence, 1989 - 1993

Year	n	\% recovered at fence
1989	100	74
	100	91
1990	100	83
	100	93
1991	100	79
1992	100	79
	100	87
1993	100	72
	100	76
Total	900	mean $=82 \%$
		S.D. $=7.45$

Table 13. Comparison of fence sample with entire run.

Length Range   $(\mathrm{mm})$	Entire Run   $(\%)$	Fence Sample   $(\%)$
$50-74$	4.4	7.7
$75-85$	17.9	24.7
$86-114$	73.7	65.0
$115-170$	4.0	2.6

Table 14. Comparison of mean length of coho smolts caught in rotary trap and fence traps on selected days at the Lachmach River, spring 1993.

Date	Rotary Trap			Fence Traps		
	N	Mean Length	S.D.	N	Mean Length	S.D.
Apr 22	75	84	11.7	37	83	8.95
Apr 23	100	87	10.6	100	85	11.4
May 4	17	98	11.5	32	97	12.6
May 29	25	88	14.4	37	85	14.1
Total	217	87	12.0	206	87	12.6

Table 15. Comparison of rotary and fence catches of coho smolts on selected days at Lachmach River, spring 1993.

Date	Number of Coho Captured		
	Fence	Rotary	Both
Apr 22	37	75	112
Apr 23	112	125	237
May 4	32	17	49
May 6	259	220	479
May 12	639	534	1173
May 14	1491	791	2282
May 16	392	330	722
May 18	405	180	585
May 20	116	122	238
May 22	286	38	324
May 23	80	47	127
May 24	81	33	114
May 25	33	26	59
May 26	22	34	56
May 28	20	20	40
May 29	37	25	62
May 30	18	6	24
May 31	8	9	17
June 1	7	9	16
June 2	10	11	21
June 3	3	2	5
June 5	0	2	2
Total	$\begin{gathered} 4088 \\ 61 \% \end{gathered}$	$\begin{gathered} 2656 \\ 39 \% \end{gathered}$	6744

Table 16. Combined daily counts of other species of fish from the Lachmach River fence and rotary traps, spring 1993.

Date	Rainbow   Trout	Steelhead   Trout	Cutt.   Trout	Dolly   Varden   Char	Prickly   Sculpin	Coast.   Sculpin	
Apr 20	1	0	0	0	2	9	0
Apr 21	0	0	0	0	1	7	0
Apr 22	2	0	0	0	6	10	0
Apr 23	7	0	0	0	6	20	1
Apr 24	5	0	0	0	6	24	6
Apr 25	2	0	0	0	2	25	7
Apr 26	1	0	0	0	3	22	4
Apr 27	3	0	0	0	3	22	4
Apr 28	3	0	0	0	2	13	3
Apr 29	6	5	0	0	28	3	0
Apr 30	-	-	-	-	-	-	-
May 1	2	0	0	0	13	5	0
May 2	1	0	0	0	0	1	0
May 3	0	0	0	0	2	1	0
May 4	1	0	0	0	12	1	0
May 5	4	1	0	0	6	0	0
May 6	2	3	0	0	15	3	1
May 7	2	0	0	0	6	0	0
May 8	1	7	0	0	2	0	0
May 9	7	1	0	0	36	7	1
May 10	10	2	0	0	37	6	2
May 11	5	7	0	0	22	1	1
May 12	16	1	2	0	59	5	9
May 13	11	0	0	0	68	2	3
May 14	65	0	1	1	61	6	5
May 15	31	0	0	1	46	6	0
May 16	60	0	0	0	57	5	2
May 17	20	0	1	0	31	3	0


Date	Rainbow Trout	Steelhead Trout		Cutt.   Trout	Dolly Varden Char	Prickly   Sculpin	Coast.   Sculpin
		Up	Down				
May 18	51	0	0	0	75	4	1
May 19	40	0	5	0	50	0	0
May 20	109	0	0	0	44	2	3
May 21	28	0	0	0	5	3	0
May 22	122	0	1	0	43	10	5
May 23	58	0	1	0	31	10	3
May 24	91	1	2	0	20	6	4
May 25	66	1	4	0	55	1	1
May 26	90	0	1	0	24	10	5
May 27	11	0	0	0	3	8	4
May 28	103	1	6	0	12	3	0
May 29	78	0	0	1	24	12	2
May 30	42	0	0	0	1	0	1
May 31	30	0	0	2	2	0	0
June 1	43	0	0	0	5	0	1
June 2	31	0	0	1	1	1	2
June 3	12	0	0	0	1	0	0
June 4	0	0	0	0	0	0	0
June 5	5	0	0	1	1	0	1
June 6	13	0	0	0	0	0	0
June 7	9	0	0	0	0	0	0
June 8	0	0	0	0	0	0	0
June 9	6	0	0	0	1	0	0
June 10	0	0	0	0	0	0	0
June 11	17	0	0	0	0	2	1
ALL	1,323	30	24	7	930	279	83

2 - These 7 steelhead were observed passing the fence at high water.

Table 17. Upstream migrant steelhead trout data collected from Lachmach River fence, spring 1993.

Male			Female		
Date	Length	Tag Number	Date	Length	Tag Number
Apr 29	709	336	Apr 29	729	334
Apr 29	758	338	Apr 29	822	335
May 6	805	342	Apr 29	753	337
May 11	925	348	May 5	810	339
May 11	730	912	May 6	760	341
May 24	835	594	May 6	815	343
			May 9	865	
			May 10	700	
			May 10	737	345
			May 11	785	346
			May 11	620	347
			May 11	855	349
			May 11	750	350
			May 11	755	925
			May 12	750	
			May 25	780	582
			May 28	765	586
NNS		6			17
	Length	794		$n$ Length	768
		72.5			56.6

Table 18. Downstream migrant steelhead trout data collected from the Lachmach River fence, spring 1993.


Table 19. Weekly summary of lengths of other salmonids from Lachmach River fence, spring 1993.

Date	Rainbow Trout			Cutthroat Trout			Dolly Varden		Char
	N	Mean	S.D.	N	Mean	S.D.	N	Mean	S.D.
Apr 20-26	18	114	25.5	0			26	179	62.6
Apr 27 - May 3	15	114	32.6	0			46	185	54.0
May 4-10	22	126	36.4	0			56	132	35.8
May 11 - 17	150	125	36.6	2	123	23	246	124	14.5
May 18-24	328	127	32.1	0			144	126	17.7
May 25-31	244	125	31.9	3	100	21.9	59	127	24.3
June 1-7	133	106	28.8	2	128	3.50	8	141	40.6
June 8-11	23	90	9.28	0			1	140	-
Total	913	122	33.2	7	115	22.7	586	133	33.6

Table 20. Weekly summary of weights of other salmonids from Lachmach River fence, spring 1993.

Date	Rainbow Trout		Cutthroat Trout		Dolly Varden Char				
	N	Mean	S.D.	N	Mean	S.D.	N	Mean	S.D.
Apr 20-26	18	16.3	8.52	0			25	64.4	49.4
Apr 27-May 3	15	16.3	11.1	0			46	59.1	40.0
May 4-10	22	21.8	16.4	0			56	22.7	23.4
May 11-17	150	20.9	15.8	2	16.9	8.15	245	16.6	7.13
May 18-24	328	20.6	13.0	0			144	16.9	8.32
May 25-31	244	19.9	12.4	3	10.0	4.91	59	17.9	11.4
June 1-7	113	13.1	10.2	2	16.7	2.20	8	26.1	18.2
June 8-11	23	7.5	2.22	0			1	22.5	-
Total	913	19.1	13.2	7	13.9	6.48	584	22.9	23.5

Table 21. Weekly summary of lengths of sculpin species from Lachmach River fence, spring 1993.

Date	Prickly Sculpin		Coastrange Sculpin			
	N	Mean	S.D.	N	Mean	S.D.
Apr 20-26	117	109	18.7	18	83	16.8
Apr 27- May 3	44	114	17.3	7	84	19.8
May 4-10	9	114	20.4	1	78	-
May 11-17	17	107	20.3	15	92	37.3
May 18-24	29	105	19.7	14	75	16.7
May 25-31	27	100	23.6	13	75	26.4
June 1-7	1	123	-	4	98	17.6
June 8-11	2	110	14.5	1	91	-
Total	246	108	19.7	73	83	25.4

Table 22. Weekly summary of weights of sculpin species from Lachmach River fence, spring 1993.

Date	Prickly Sculpin			Coastrange Sculpin		
	N	Mean	S.D.	N	Mean	S.D.
Apr 20-26	111	19.40	12.2	16	6.6	4.01
Apr 27- May 3	41	20.20	11.6	6	8.3	5.49
May 4-10	9	19.50	12.2	1	5.3	-
May 11-17	17	17.15	10.3	12	10.7	9.89
May 18-24	29	13.90	7.01	13	4.7	3.26
May 25-31	27	13.70	11.0	13	6.2	7.22
June 1-7	1	19.70	-	3	6.9	2.33
June 8-11	2	23.55	4.55	1	9.8	-
Total	237	18.10	11.52	65	7.1	6.46



Figure 1. Locations of the Work Channel and Lachmach River areas.


Figure 2. Map of the Lachmach River area showing locations of study sites and adjacent systems:


Figure 3. Environmental data recorded at the Lachmach River fence from April 14 to June 28, 1993.


Figure 4. Daily captures of coho smolts, rainbow trout, Dolly Varden char and sculpin species trapped at the Lachmach River fence, spring


Figure 5. Length frequency distributions of coho smolts, combined and by age class, trapped at the Lachmach River fence, spring.


Figure 6. Length frequency distributions of coastrange sculpin, prickly sculpin, Dolly Varden char and rainbow trout trapped at the Lachmach River fence, spring 1993.

