A PRELIMINARY STUDY OF
 THE NATIVE HARVEST OF WILDLIFE IN THE KEEWATIN REGION, NORTHWEST TERRITORIES

by
R. L. Gamble ${ }^{1}$

Western Region
Department of Fisheries and Oceans
Winnipeg, Manitoba R3T 2N6

This is the 171st Technical Report from the Western Region, Winnipeg

[^0]
PREFACE

This report is presented in fulfillment of Department of Supply and Services Contract DSS 01 SU A7-110-1-0001 let to the Keewatin Wildife Federation for a preliminary study of the native harvest of wildlife in the Keewatin Region of the Northwest Territories. The work was done on behalf of the Federal Government departments of Environment Canada (Canadian Wildlife Service), Fisheries and Oceans (Western Region), and Indian Affairs and Northern Development; the Government of the Northwest Territories Department of Renewable Resources; and the Keewatin Wildlife Federation.

The report is accepted upon recommendation by the steering committee for the study made up of representatives of the agencies noted above (Appendix 1) and chaired by Mr. F. McFarland of the Department of Indian Affairs and Northern Development. The harvest study material is published under the auspices of the DFO technical report series by agreement of the steering committee in order to ensure that the data achieve a wide circulation, be accessible to the interested public, and be published in a standardized format generally recognized as appropriate for the dissemination of such information.

A modified version of this report in Inuktituk will also be published by Nortext Information Design Ltd. of Ottawa as an insert to the periodical Caribou News (Suite 100, 196 Bronson Ave., Ottawa, Ontario K1R 6H4).

Correct citation for this publication is:
Gamble, R.L. 1984. A preliminary study of the native harvest of wildlife in the Keewatin Region, Northwest Territories. Can. Tech. Rep. Fish. Aquat. Sci. 1282: iv +48 p .

TABLE OF CONTENTS

ABSTRACT/RESUMEINTRODUCTIONMATERIALS AND METHODS

13 The reported harvest by Whale Cove hunters for the period October, 1981 to March, 198331

14 The reported and estimated harvest for Whale Cove hunters
15 Monthly theoretical kill factors for seven Keewatin communities for the period October, 1981 to September, 198333

16 Edible weight values in kilograms for harvested species as calculated from various sources34

17 Reported and estimated edible weight values for harvested species by year and month for the period October, 1981 to September, 198235

18 Reported and estimated edible weight values for harvested species by year and month for the period October, 1982 to September, 1983
19 Estimated edible weight values for the four major groups of animal classes harvested by Keewatin communities October, 1981 to September, 1983 40

20 Kilograms of edible meat available per person per day calculated from the estimated total community harvest . 44
21 Age distribution of the general population and of hunters for seven communities in the Keewatin Region of the Northwest Territories 45

22 Prices of commodities from three sources in the Northwest Territories . 46

LIST OF FIGURES

Figure
Page
1 Map of the Keewatin District showing
the seven communities surveyed during
the harvest study and the zonal grid
used to locate kills 2
2 Data sheet used in the Keewatin harvest study from October to December, 1981
3 Data sheet used in the Keewatin harvest study from January to December, 19826

4 Data sheet used in the Keewatin harvest study from January to September, 19837

5 Calendar used for data collection in the Keewatin harvest study from January to September, 19838

6 Example of the field diary in Inuktitut and English provided to hunters from January to September, 198310

7 The age structure of the population of the District of Keewatin by community and the age distribution of hunters within communities14

LIST OF APPENDICES
Appendix
Page
1 Members of the Steering Committee for the Keewatin Wildilfe Federation Harvest Study47
2 Calculation of estimated harvest 48

Abstract

Gamble, R.L. 1984. A preliminary study of the native harvest of wildlife in the Keewatin Region, Northwest Territories. Can. Tech. Rep. Fish. Aquat. Sci. 1282: iv +48 p .

Harvest data were collected from Inuit residents in the seven communities of the Keewatin Region from October 1981 to September 1983 as part of a preliminary study designed to lay down a framework for the ongoing collection of such information. Results were aggregated at a community level. The variability in results was due, in part, to the cross cultural nature of the study where it was attempted to elicit statistically valid harvest information by a survey technique common to the Euro-Canadian culture but basically foreign to the traditions of the Inuit. However, the direct involvement of Inuit in the study, particularly in data collection, increased cooperation by harvesters. Other causes for variability were those common to surveys including the effort by individual fieldworkers to collect information, lost data, and turnover of fieldworkers within certain communities. There is a relationship between the availability of particular species to harvest and those that are actually harvested by communities. However cultural preference can also be an important contributing factor which determines the components of the harvest.

Key words: resource management; catch statistics; domestic harvest; monitoring; food resources; country foods; terrestial mammals; marine mammals; birds; fish; computerized harvest study; Inuit organization.

RESUME

Gamble, R.L. 1984. A preliminary study of the native harvest of wildiffe in the Keewatin Region, Northwest Territories. Can. Tech. Rep. Fish. Aquat. Sci. 1282: iv +48 p .

Des donnēes relatives à la récolte furent recueillies auprès des résidents Inuit des sept collectivités de la région Keewatin, entre octobre 1981 et septembre 1983. Elles font partie d'une étude prēliminaire entreprise en vue d'ētablir le cadre nécessaire pour la collecte permanente de telles données. Les chiffres ont été établis par collectivités. Ils varient pour diverses raisons: en partie à cause des groupes culturels impliquēs dans l'étude. En effet, nous avons essayé d'obtenir des donnēes, statistiquement valables, sur la rēcolte à l'aide d'une technique d'enquête répandue chez les EuroCanadiens mais essentiellement ētrangère aux traditions Inuit. Toutefois, le fait de faire participer directement les Inuit à l'étude, notamment à la cueillette des données, a provoqué la coopēration des pêcheurs. Les autres causes de variation (de chiffres) sont les mêmes qu'on retrouve lors de n'importe qu'elle enquête, notamment l'effort plus ou moins grand que fournit chaque enquêteur, les données perdues, te rouiement des enquêteurs dans certaines collectivitēs. Il existe aussi un rapport entre la facilité d'accès qu'ont les pêcheurs à telle ou telle espèce et les espèces qui sont effectivement pêchēes. Toutefois, les prēfērences d'une culture pour telle espèce peut aussi être un facteur important pouvant expliquer les composantes de la récolte.

Mots-clēs: gestion des ressources; statistiques de la rēcolte; rēcolte (pêche familiale); surveillance; ressources alimentaires; aliments régionaux; mammifères (terrestres); mammifères marins; oiseaux; poissons; ētude de récolte en mémoire d'ordinateur; organisation des Inuit.

INTRODUCTION

In September, 1981, a study was initiated for the collection of harvest data from hunters residing in the Keewatin Region of the Northwest Territories. It should be noted that throughout this report hunter, harvester, trapper and fisherman are used as synonyms. Included in the term hunter are Inuit males and females over 16 who hunt (they may or may not have a general hunting licence), Inuit youths under 16 who hunt regularly, and some long term residents in the area of other ethnic origins who hunt. This latter group comprises less than 1% of the total hunters in the Region.

Negotiations concerning the conditions of the study began in May, 1981, and involved representatives of the Inuit Tapirisat of Canada (now Tungavik Federation of Nunavut), the Kivalirmi Inuit Land Claims Association, the Keewatin Wildlife Federation (KWF) (who became the Inuit sponsors of the study) and the various government agencies (Federal and Territorial) noted in the preface. However, the details of the contractual agreement were not finalized until February, 1982.

The main objectives of the study as specified in the contract were to:

1) determine by survey techniques the hunter kill by Inuit living in District of Keewatin communities and outpost camps;
2) develop an approach for the collection of timely, statistically reliable data on wildlife harvesting which could be undertaken by an agency such as the Keewatin Wildlife Federation (KWF) upon completion of the preliminary study;
3) determine the number of Inuit directly participating in subsistence harvesting in each community and to compare the proportion of harvest taken by hunters of different ages;
4) provide an estimate of the harvest sufficient to determine a measure of its value to each community as food or income, and
5) analyze and publish the data collected in a timely report and scientifically acceptable format.

The means of achieving these objectives were described in a proposal submitted to the Federal Department of Supply and Services (DSS) by Kivalirmi Inuit Land Claims dated May 28 , 1981, entitled, "Unsolicited Proposal for a Preliminary Wildlife Harvest Study in the Keewatin Region". A limited number of copies of this unpublished document are available from members of the Steering Committee (Appendix 1) should reference to it be required. This proposal was accepted with the following modifications:
a) The harvest data to be collected was changed to include information on the following species: ringed seal, bearded seal, harp seal, harbour seal, walrus, beluga whale, narwhat, bowhead
whale, lake trout, Arctic charr, polar bear, caribou, red fox, Arctic fox, muskox, grizzly bear, wolverine, wolf, otter, moose, lynx, Canada geese, snow geese, Brant geese, common eider and oldsquaw. Species, other than those listed above, were to be included in the category "other" for each of the four major headings: fish, fowl, terrestrial mammals and marine mammals.
b) Harvest data forms (calendars and note books) were modified to include provisions for the recording of the date when an animal was taken and the location where it was harvested.

The study area of approximately 386000 km^{2} (Fig. 1,A) included the entire Keewatin district of the Northwest Territories which contains seven permanent communities. Listed north to south they are Repulse Bay, Baker Lake, Coral Harbour, Chesterfield Inlet, Rankin Inlet, Whale Cove and Eskimo Point. Throughout the remainder of this report the convention has been adopted of listing the communities alphabetically. Current information about these communities including population can be obtained from the NWT Data Book (1982). Historically the Inuit were not concentrated in these locations but were scattered in small groups that migrated with the seasons to various locations throughout the boreal-tundra ecotone of the Keewatin region, and along the adjacent coastline of Hudson Bay.

MATERIALS AND METHODS

STUDY DESIGN

The details of the study were adapted from the James Bay, Northern Quebec Native Harvesting Study (Native Harvesting Research Committee 1975 and 1976) and the subsequent Baffin Regional Inuit Association (BRIA) Harvesting Study with several refinements as elaborated below to suit the Keewatin Region. The project attempted to include 100% of the region's hunters who are primarily Inuit (less than 1% are of other ethnic origin) and whose primary language, both oral and written, is Inuktitut.

Initially an objective of the study was to collect data on both a community and outpost camp level. In other studies the coverage of outpost camps has been a problem (R. Peet, DFO, Winnipeg, personal communication). However in the Keewatin a separate coverage of outpost camps was not necessary because hunters living on the land visit home communities frequently. For example Inuit living at Padlei (usually in the summer) return to Eskimo Point approximately once a month. Community fieldworkers were able to include these hunters in their regular interviews together with hunters operating exclusively from main centres. In addition field diaries (discussed below) were provided to record harvests while hunters were on the land.

In accordance with contractual requirements, a steering committee (Appendix 1), as

Fig. 1. Map of the Keewatin District showing the seven communities surveyed during the harvest study and the zonal grid used to locate kills.

Fig. 1. Cont'd.
outlined in the preface, was established to liaise with the project manager and biologist. In this manner both funding and sponsoring agencies were kept up to date on progress and had input into the development of the study.

HUMAN RESOURCES

In each of the seven communities in the region an Inuit was hired as a fieldworker to interview hunters and collect data. Duties included explaining the project to hunters; distributing the study materials (calendars and field notebooks) to hunters; keeping an up to date list of hunters; interviewing hunters beginning on the first day of each month to collect harvest statistics for the previous month and recording this information on the appropriate data sheets; making sure the data collected was as accurate as possible; and promptly forwarding a monthly report following an interview period to the Project Manager located at Eskimo Point.

The Project Manager, an Inuit employee under contract to the KWF, was responsible for managing the study. His/her primary functions were to coordinate data collection from the fieldworkers in each community and to summarize the data in a format suitable for analysis. Other responsibilities included the training of fieldworkers (workshops and personal contact); translation; designing and ordering forms and equipment in conjunction with recommendations made by the Project Biologist; attending community meetings to keep the public informed about the study; and liaising with the various government agencies funding the study through the steering committee.

The project also employed a biologist on a half time basis (the other half of his/her time was concerned with KWF business) who acted as the technical support for the study; assisted in development of an acceptable survey format; oversaw the interpretative phase of the project; and prepared the final report.

MATERIALS

Data sheets
Over the course of the study, October, 1981, to September, 1983, all materials underwent a progressive evolution to provide hunters with the best format for data collection.

Figure 2 shows the initial data sheet adopted from the BRIA Harvest Study. This format was used from October to December, 1981. Each sheet listed the species which might be harvested (as determined from historical information), and in the case of caribou, the hunter was also asked to separate the animals taken by sex and herd (i.e. Kaminuriak, Beverly, and other). Location of kill was listed by community and the date of kill was noted by month. This data sheet was produced during the summer of 1981 and supplied to fieldworkers during an orientation workshop held in September of that year.

Figure 3 shows the revised form used from January, 1982 to December, 1982. This sheet was divided into four sections by major groupings (i.e. marine mammals, terrestrial mammals, fow 1 and fish) but individual species were not listed. It was assumed that hunters could identify particular species within categories and would list them. As most species are seasonal in their movements, this format provided more space for reporting and allowed the hunter to provide both the sex and date of capture for all species taken and the location of the kill (e.g. nearest Take). Identifying the location of the kill greatly enhanced the species information. This was especially important in the case of caribou because it was then possible to identify the probable herd from which an animal was taken (i.e. Kaminuriak, Beverly, Southampton, Coates, Wager, North of Chesterfield and unknown herd).

The final version of the data sheet (Fig. 4) was used from January to September, 1983. Modifications were slight, simply adding "zones" so that in cases where the hunter could not provide a suitable topographical description the fieldworker could locate the site of the kill on a map and provide the appropriate zone designation. Zones were defined as units bounded by 1° longitude $\times 1 / 2^{\circ}$ latitude (Fig. $1, B$). Locations provided previously in 1981-82 were similarly assigned to a zone.

Calendars

Calendars were distributed as part of the harvest study in 1982 and 1983, but it was not possible to have them ready in time for the initial three months of the study in the latter part of 1981. Data sheets were provided as inserts in both annual calendars.

In 1982 the format for each month consisted of three separate pages in the following sequence: illustration, data sheet, and table of days. This caused a problem in that the data sheet overlapped and obscured the table of days. It was frequently torn out and subsequently lost or not completed. In 1983 this problem was remedied by combining the illustration and table of days on a single page with the data sheet following as a facing page such that when hung, both sheets were clearly presented (Fig. 5). In both years the moon phases were included because tides affect the movement of marine and anadromous species such as Arctic charr and hence their accessibility to hunters. To encourage participation in the study, photo= graphs depicting hunting scenes and the species harvested were solicited from residents and used as illustrations in the calendars.

Field diaries

Field diaries were given to participants in January of 1982 and 1983 so that records could be kept while out hunting. Initially, a commercially available pocket sized diary in English ($16 \mathrm{~cm} \times 9 \mathrm{~cm} \times 3 \mathrm{~cm}$), produced by Textron was provided for the period September, 1981, to December, 1982. This proved to be inadequate because it did not indicate the information required (i.e. species harvested, date of

COMMUNITY SQE ${ }^{\text {C }}$

DATE

$$
D^{4} 2^{=0}>_{c}^{5} n^{5}
$$

migrating char			
Lban HUNTER	1	L6ム＂П® HUNTER	$\Delta \Delta^{\prime}<\backslash$
$a^{-\Gamma^{c} a^{P^{e}}} \text { PLACE }$	＇c5－5＂ NUMBER	$\begin{aligned} & -\Gamma^{c} Q^{p^{c}} \\ & \text { PLACE } \end{aligned}$	＂bなの＇ NUMBER
＂ LAKE TROUT			
L6An HUNTER	1	Lb Δ П® HUNTER	$4 \Delta \ll l$
$\begin{aligned} & a \Gamma^{c} a p^{c} \\ & \text { PLACE } \end{aligned}$	＂bs＊＇ NUMBER	$\begin{aligned} & \sigma^{c} \Gamma^{c} P^{c} \\ & \text { PLACE } \end{aligned}$	$\begin{aligned} & \hline \text { 55- } \\ & \text { NUMBER } \end{aligned}$
－$\square^{\text {arp }}$		OTHER	

$\triangle L^{\text {c }}$－${ }^{\text {c }}$	L6A n HUNTER 1	$\begin{aligned} & 46 \Delta \cap \Delta \\ & 4 \Delta<' l \\ & \hline \end{aligned}$
RINGED SEAL		
bearded seal		
b Δ Pr $^{\circ}$ HARP SEAL		
－${ }^{\text {ºs }}$ BOWHEAD		
${ }^{5}$ brtac HARBOUR SEAL		
4Aべ WALRUS		
NARWHAL		
polar bear		
P「4：ìnd ${ }^{\text {st }}$ OTTER，MUSKRAT		
$>\Delta r^{c} \Delta r^{r}$ OTHER		

MONTH
HONTER
$c^{\text {copst }}$ \qquad
 \qquad

の＊「ヶ6	4アぐก HUNTER 1	$\begin{aligned} & 4 \pi<\pi n \Delta \\ & 4 \Delta<6 \quad 2 \end{aligned}$
$4^{5} p^{2} r^{94}$ ROCK PTARMIGAN		
b＇J．${ }^{\text {c．}}$ SNOW GOOSE		
$\mathrm{n}^{5} \mathrm{ra}^{46}$ canada goose		
BRANT		
$\begin{aligned} & \text { CNG' } \\ & \text { SANDHILL CRANE } \end{aligned}$		
COMMON EIDER COMM		
oldsquaw		
ペから元 GUILLEMOT		
OTHER BIRDS		

دarde	L6 4 ＇\cap hUNTER 1	$\left\lvert\, \begin{array}{ll} L 6 \Delta \cap D^{\prime} \\ 4 \Delta^{\prime}<' L & 2 \end{array}\right.$
כ＇つ ，bLのस× CARIBOU，KAMANIRIAK		
$\begin{aligned} & \hline J^{4} J \text {, } q r^{a 2} u \\ & \text { CARIBOU, BEV./other } \end{aligned}$		
－${ }^{\text {C＇L．}}$ MUSK－OX	－－	－－
\triangle brs ${ }^{5}$ ARCTIC HARE		
$\begin{aligned} & \text { ULP } \\ & \text { WOLF } \end{aligned}$	－	－
$\begin{aligned} & \text { nnLo } 4^{\text {in }} \\ & \text { WHITE FOX } \end{aligned}$		
「60 WOLVERINE		
$8^{4} c^{6}$ GRIZ2LY BEAR	－－	－－
$\begin{aligned} & \text { コ`วく6 } \\ & \text { MOOSE } \end{aligned}$		
LYNX		
$A r^{6} n^{c} \varangle r^{4} \hat{c}$ OTHER	－	

Fig．2．Data sheet used in the Keewatin harvest study from October to December， 1981.

NAME $\pi^{6 b}$ \qquad PLACE m \qquad DATE $\triangleright^{5} \mathrm{~S}^{\text {te }}$ \qquad 19

FELDWORKER EbDHCN

Fig. 3. Data sheet used in the Keewatin harvest study from January to December, 1982.
\qquad PLACE sar \qquad MONTH Ccpsb

date $\nabla^{<}$ \qquad Fieldworker ${ }^{6}$ b \qquad

Fig. 4. Data sheet used in the Keewatin harvest study from January to September, 1983.

SUñ.	MON.		$\begin{aligned} & \text { LP® } \\ & \text { TUE. } \end{aligned}$	WED.	THUR.	$\begin{gathered} c-L_{i c} \\ \text { FRI } \end{gathered}$	nañ-4p, SAT.
	1		2	3	4	5	6
7	8	-	9	10	11	12	13
14	15	3	16	17	18	19	20
21	22		230	24	25	26	27
28	29		30	31 c			27

NAME 40° \qquad PLACE grit \qquad MONTH Cspa \qquad 19

nryc tow
$\Delta \Delta^{b} \Delta^{c}$ lish

Fig. 5. Calendar used for data collection in the Keewatin harvest study from January to September, 1983.
kill etc.) to the hunter and because most hunters needed instructions in Inuktitut. A replacement was provided in January, 1983 (Fig. 6), and 1300 copies (1000 Inuktitut, 300 English versions) were produced and distributed. The 1983 diary was sectioned into semi-monthly units, listing all the major species normally harvested and included eggs as a category.

DATA ANALYSIS

The system used to analyze the harvest data and to arrive at estimates of the total hunter kill by community required several steps. Beginning on the first day of each month the fieldworkers began interviews so that they could divide the hunter population for each community into the survey categories defined below and list the number of animals killed per species for successful hunters that were interviewed. This monthly interval was defined as an interview period during which harvest statistics were collected from hunters for the previous month of hunting. The fieldworker submitted this information to the Project Office where the data were summarized each month against a master list of hunters for individual communities and then entered into the computer. The numbers in some categories were subsequently adjusted the following month (i.e. the second month past the actual hunting episode) if acceptable reports were submitted by fieldworkers on hunters who had been interviewed after a particular interview period had passed.

Definition

Category

1) The number of hunters who report A taking a harvest during an interview period (i.e. successful).
2) The number of hunters who report they were not successful in taking a harvest during an interview period (i.e. unsuccessfut).
3) The number of hunters who report C they did not hunt during an interview period (i.e. didn't hunt).
4) The number of hunters who were out D hunting during the interview period but who were not interviewed (i.e. hunted but not interviewed).
5) The number of hunters who were out E of the area of the harvest survey during the interview period for any reason (i.e. out of hunt area).
6) The number of hunters within the harvest study area during the interview period whose activities were unknown (i.e. activities unknown).

It should be noted that the number of hunters in categories D and E for any month is usually known with a high degree of accuracy because of the small size of the communities involved and common local knowledge concerning the whereabouts of individuals, especially when it pertains to trips outside the local area.

Subsequently the summarized monthly information from fieldworkers contained in categories A, B, C and E, concerring the number of hunters
involved in the harvest and those that obtained kills, was used to calculate ratios of hunter success and participation. Participation ratio refers to the percent of hunters in each community that were interviewed as part of the study in relation to the total number of hunters that could have hunted each month. The hunter success ratio was applied to hunters in categories D and F to obtain an estimate of probable hunter success within these groups. The results for all categories were summed to get an estimate of total hunter success and to calculate the theoretical kill factor. This is the value by which the reported $k i l l$ per species is multiplied to arrive at the estimated harvest.

For the purpose of this analysis four main assumptions were made:

1) The involvement of hunters in the harvest is the same for those whose activities are unknown as for those that are known.
2) The success ratio is the same for hunters who hunted in the unknown categories as for the known categories.
3) The probability of a kill of any individual animal is the same for all species when calculating the estimated harvest.
4) Reported kills are accurate.

Appendix 2 provides an example of the steps taken in arriving at an estimate of total monthly hunter kill and participation by community using data from Eskimo Point, September, 1982. Table 15 lists the theoretical kill factors that were calculated for each month of the study for each community.

DATA PROCESSING

It was anticipated from experience with other harvest studies that there would be a large volume of time sequential data collected. The project was designed to make use of computers to accommodate the timely analysis of this material, to eliminate transcription errors as far as possible, and to allow efficient manipulation of the data.

In the project proposal it was suggested that the study use computer services available at the Institute of Animal Resource Ecology, University of British Columbia. However, early in the study it became evident that it was more practical to purchase a micro-computer and analyze the data collected at the project headquarters in Eskimo Point with programs specifically developed for that purpose. This eliminated time delays and communication problems inherent in using a distant facility.

The computer hardware used included an Apple II plus micro-computer with two disc drives, an Apple III monitor, and an Epson MX100 printer. Software was based on a data base by Stoneware (DB Master 1982) with additional verification of data using Basic programs developed by Hayward Computer Services, 1983.

```
    P<<-5
*ar\n_c bחLr゙c
    1983
```



```
    6\\\50CD\sigma.96
```


Keewatin Wildlife Federation 1983
Wildlife Harvest Study

Field Diary

June 1-15 Species	No. Taken
ptarnigan	
Canada gaesa	
snow geese	
blue grese	
Brant geese	
Rass's geese	
sandhill crane	
oldsquaw	
common gider	
snowy owi	
athes fowi	
eggs, goose	
Eider	
other	
arctic cnar	
lake trout	
grayling	
whitefish	
northern pike	
other fish	
Comments:	

| Location | |
| :--- | :--- | :--- |
| | |
| | |
| | |
| | |
| | |

Fig. 6. Example of the field diary in Inuktitut and English provided to hunters from January to September, 1983.

The harvest system data was organized on the computer into eight interrelated subsystems: entry, participation, hunters, zones, animals, transfer, annual and monthly. These are described below. Each subsystem consisted of a DB Master data structure which was used to enter, modify and search the data, and to generate various reports.

Entry

The Entry subsystem allows input of the information gathered from hunter interviews into the harvest study system. Entering the data from each community was normally performed once a month. The first step was to write the hunter and animal codes on the monthly interviews. The entry diskette contains the information for one community gathered over one year and each entry file contains the following: a code for the community, the month, the hunter code, the animal code, the sex code, the zone code, the number of animals harvested, and the calendar year. After the kill numbers for the month are entered, the monthly reports of the entry subsystem may be generated to validate the hunter interviews that have just been entered. However, the edited report generated by the Transfer (edit) Program is a better report to use for editorial purposes because of the verification process noted below.

Participation

The Participation subsystem provides statistics concerning the monthly involvement of hunters in the various harvests and a calculation of the theoretical kill factor. Both community participation in the study and the theoretical kill factor are based upon the monthly summiaries submitted by the fieldworkers in each community. The participation data is identified by the community code together with the year and month in which the harvest occurred. This information is listed in the categories defined above under the section on data analysis. The theoretical kill factor is used to adjust the reported harvest to a computed value for those hunters who were not interviewed. Appendix 2 provides a numerical example to show how these estimates were calculated.

The theoretical kill factor was not used when those hunters that were successful were the only data supplied by a fieldworker for a given month. This would simply adjust the reported harvest by a multiple of total hunters while nothing would be known about the involvement of all the hunters in the harvest. Instead, in such an instance, it was assumed that the reported harvest was a better estimate of the actual harvest for a community in that particular month.

Hunters

The Hunters subsystem is a list of all of the hunters participating in the harvest study. The harvest study does not record the harvest by an individual hunter's name to protect anonymity; rather each hunter is assigned a code. The Hunters file includes a community code, a
four digit numeric code for each hunter, birth date, age class, current year, and current month.

For the purposes of this study the hunters are classed by their ages. Age class is automatically calculated from the birthdate and the current date. Age classes used for the purpose of this study were: $0-15,16-30,31-45,46-60$, 61-75, and 76-99. The design of the program dictated there had to be a category for hunters with unknown ages. The age group 76-99 was used for this purpose because only 8 hunters of known age fell within this group. Figure 7 shows a graphical presentation of the age structure of the population by community and the hunter subpopulation for the District of Keewatin.

Zones

The Zone subsystem is the most tractable for the location of hunter kill. The area covered by the harvest study was divided into zones of equal size (Fig. I) and each kill was reported by zone. The zones were coded, south to north (a to z), and east to west $(0-21)$. Each kill was reported by zone and verified against a stored list of valid zones. A feature of this subsystem is that new zones can be added or unused ones removed as the study progresses.

Animals

The purpose of the animal subsystem is to provide a list against which each hunter's monthly interview can be compared. The subsystem contains a list of all animals that are reported in the harvest study and is divided into five classes: terrestrial mammals, marine mammals, fowl, fowl eggs and fish. ... The first character of the four number code distinguishes the class, the second the species, the third a particular group (e.g. herd for caribou, searun versus landlocked for Arctic charr), and the fourth, the sex.

The animal subsystem also contains an arbitrary maximum kill number for each species which is used as a check on the validity of the harvest reported by an individual hunter for a given species. Should the reported kill level exceed the maximum provided in this file, the reported value can be checked and adjustments made as required. This maximum is an indication of the expected harvest for each species and is based on historical information from hunters.

Transfer

The Transfer (edit) subsystem receives the hunter's monthly interviews previously processed by the Entry subsystem; verifies them against the lists contained in the hunter, animal, and zone subsystems; generates an edited report; and transfers the harvest data to the Annual and Monthly subsystems.

Annual and monthly

The Annual and Monthly subsystems each contain the results of the harvest interviews (edited) over the harvest year for a community.

These subsystems generate reports and statistics for the study. Both Annual and Monthly subsystems can generate three types of reports: reported harvest, estimated harvest, and a report listing the contents of the file. The Monthly subsystem generates statistics by species, for a given month, whereas the Annual subsystem summarizes the data over a twelve month period. Both provide a mean and standard deviation for the estimated harvest for each species. Tables 1 to 14 are the product of these systems.

EDIBLE WEIGHT

Edible weight in kilograms was calculated for each species by multiplying the reported and estimated harvest by the weight values provided in Table 16 which were compiled from the sources listed. Metric conversion was used for those sources that gave values in other measurements.

In the case of beluga and narwhal the mean length of the sample taken by Sergeant and Brody (1969) was assumed to represent the mean size of harvested animals in this study. This was converted to weight by sex from the formula given in that reference. Estimated sex ratios for the harvested whales were determined from hunter interviews. The quantity of edible blubber for both whale species was determined by multiplying the mean weight by 43.4% (Sergeant and Brodie 1969).

The mean weight for male and female bird species were combined to obtain an average. This value was multiplied by 60% (a standard used by poultry producers) to obtain an estimate of edible weight.

Edible weight values for fish were calculated using the conversion values provided by Keteher (1964). This reference did not provide a conversion value for Arctic grayling but it was suggested that the value given by KeTeher for whitefish could be used (A. Kristofferson, DFO, Winnipeg, personal communication).

Total edible weight values for country products harvested by a given community were calculated from the estimated harvest. These figures were then divided by the number of days the harvest represented and the Inuit population of the community gjven in Table 21 to obtain the edible weight day ${ }^{-1}$. person ${ }^{-1}$.

A weight estimate of edible country products was chosen rather than a cash value estimate, because by this method the data can be interpreted under prevailing or future market conditions simply by converting the weights by the current price. Similarly, a cash value was not provided for such products as furs, narwhal and walrus tusks, as these items are subject to a wide range of market conditions. For reference a table of prices for beef and fow 1 that were current at the time of the study are provided in Table 22. Some non-edible country products have a cultural significance such as caribou hides and bone, but there is no standard criterion upon which to determine their economic value.

RESULTS
Tables 1 through 14 summarize the results from analysis of the data collected between October, 1981, and September, 1983. 0dd numbeped tables (1 through 13) provide the reported monthly harvest by species expressed as numbers of animals, and gives the percent of hunters reporting each month, while even numbered tables (2 through 14) give the reported and estimated annual harvests. The mean monthly harvest per hunter and standard deviation about the mean are also included.

Tables 1 and 2 give infomation for the community of Baker Lake, and cover a ten month period for 1981-82 and an eleven month period for 1982-83. More hunters participated in the harvest survey for the latter than in the former interval. The separation of the caribou harvest into particular herds is a difficult problem in the Baker Lake area because the community has seasonal access to at least three herds, perhaps four. In conjunction with Inuit visual reports and GNWT data on herd movements, kills were assigned by the author as the best educated "guess" of which herd was occupying a particular area at a given time.

Tables 3 and 4 give harvest levels for the community of Chesterfield Inlet. Uniform data collection was not achieved until August, 1982. In Tables 3 and 4, caribou were treated as separate groups designated as occurring north or south of Chesterfield Inlet (i.e. the water body). Animals south of Chesterfield Inlet are known to come from the Kaminuriak herd but those animals north of the Inlet cannot be assigned to a particular group because definite population boundaries have not been defined.

Tables 5 and 6 combine the data that could be obtained from the community of Coral Harbour because consistent monthly data collection did not begin until June, 1982, due to difficulties in obtaining a regular fieldworker. Coral Harbour is distinctive from other communities in this region because its principle animal resources are marine.

Tables 7 and 8 give the information for the community of Eskimo Point and contain the most complete set of data collected for any community in this study. The 1982-83 estimated results are as little as 4% higher than the actual reported harvest for species such as caribou, indicating that an almost complete coverage of hunters was obtained.

Tables 9 and 10 give the data collected from November, 1981, through June, 1983, at the community of Rankin Inlet. For the 1981-82 interval the estimate covers 11 months, November through September, while the estimate for the 1982-83 period is for 12 months. The irregularity of reporting in 1982-83 caused a wider margin of error in estimated values for this period when compared to 1981-82.

Data collection has been constant over the last two years at the community of Repulse Bay but improvement is needed in the efforts of
fieldworkers to collect all available reports and to solicit as much data as possible on all species harvested. Tables 11 and 12 give the data collected for this community.

Tables 13 and 14 show the harvest reported by the community of Whale Cove from October, 1981, to March, 1983. Reporting was consistent for this period. However, the project was unsuccessful in finding a replacement fieldworker from April, 1983 until September, 1983, and data is missing for this interval.

Table 15 gives the monthly theoretical kill factors which were used in determining the estimated harvest for each community. Error is greater for those values significantly larger than 1. As values approach 1 the estimated harvest approaches the reported harvest. At l, one hundred percent of the hunters have been interviewed and the actual harvest has been obtained for a given month. Those values which were bracketed in the table were not used because only those hunters that were successful were reported, therefore the success ratio and the participation ratio could not be calculated.

Table 16 gives the estimated individual species values for edible weight (kg) used to calculate the total edible weights given in Tables 17, 18 and 19. These individual values were defined using the existing information sources noted.

Tables 17 and 18 give the reported and estimated edible weight (kg) values by species for each community for the periods October, 1981, to September, 1982, and October, 1982, to September, 1983, respectively. The total annual reported and estimated edible weight per species was simply divided by the number of months within a calendar year that the community participated in the survey to arrive at the monthly average.

Table 19 provides the total estimated edible weight (kg) by community and class (terrestrial mammals, marine mammals, fish and fowl) for October, 1981, to September, 1983. Estimated edible weights per species were calculated monthly to obtain the totals for each category given in this table. The percent of the total estimated edible harvest for each category is also provided. Table 20 gives the estimated edible weight ($k g$) of meat available per person per day for a given community. Edible meat is defined as including the flesh of all species of terrestrial mamals, marine mammals fowl and fish. Population figures used were from the same sources noted in Table 21. Three communities (Eskimo Point, Repulse Bay, and Whale Cove) appear to have reduced their gross harvest levels between survey periods whereas Baker Lake, Chesterfield Inlet, and Rankin Inlet have remained relatively constant in their community harvest for the two periods of survey. It is difficult to make any comparisons between periods for Coral Harbour because of the few months for which there are data and because those months are not the same for each period.

Table 21 shows the age distribution of the general population and hunters for the seven
communities of the Keewatin region. These values were used to produce Fig. 7.

Table 22 provides a list of prices (February, 1984) for meat and fish sold commercially in the NWT. These can be used to determine a current commercial value of country products to Inuit during the time of the study.

DISCUSSION

The results given in Table 1 through 14 demonstrate that data collection over the last two years was highly variable both within and between communities. This can be attributed to several factors:

1) collection effort;
lost data;
the high turnover of fieldworkers in some communities;
2) the social significance of particular species;
3) the recall of individual hunters;
4) availability of species to harvest;
5) translation difficulties within the social context;
6) financial and managerial difficulties, and
7) information flow.

These are discussed below.
Comparison of fixed quota levels placed on certain species (e.g. narwhal and polar bear) with the results in Tables 1 to 14, shows that some reported harvest levels from this study are not in agreement with those reported by government agencies. This problem is a difficult one and has not been resolved.

COLLECTION EFFORT

One of the major objectives of this study was to. try and involve all Inuit from the region as participants in the study in order to acquire an approximation of the kill that is as close to the actual harvest as possible, or to obtain at least a statistically secure estimate of the harvest. The entire system is dependent upon fieldworkers contacting as many traditional users of wildlife as possible, and the subsequent cooperation of hunters in providing the necessary information. Although the study was based on sound scientific principles, putting these into practise was difficult for several reasons.

Socially, this kind of data collection is foreign to the Inuit culture and there is a reluctance to divulge information of this sort especially to strangers. This problem is not unique to Inuit. Cooperation has increased in this situation largely because of the involvement of the Keewatin Wildlife Federation and because the majority of project personnel are Inuit.

Participation is a measure of the amount of effort (number of contacts) made by field-

Fig. 7. The age structure of the population of the District of Keewatin by community and the age distribution of hunters within communities.
workers at a community level and this effort directly affects the results that were obtained. The worker must make an effort to contact all hunters and/or collect all the relevant species specific data. Data may be incomplete for particular species if all hunters are not contacted or the fieldworker fails to record all the data. Low participation rates or high theoretical kill factors (Table 15) are a measure of collection effort and can be used by the project manager as an indication where specific attention is required especially when dealing with newly hired fieldworkers.

Al1 communities, except Eskimo Point, have recorded low participation values in the study for some periods. This situation can be attributed to a variety of causes including a fieldworker not fully comprehending the nature of the work; low performance standards being set by the fieldworker; proximity to the project office (i.e. help is closer and more easily obtained); or perhaps due to a possible error in the assumptions used to calculate participation rates and the theoretical kill factors.

In calculating the participation rate one must have information on the total number of hunters in order to arrive at an estimated value. Initially this number was defined as the number of general hunting licence (GHL) holders in each community but in some communities (Eskimo Point, Baker Lake, Rankin Inlet and Whale Cove) fieldworkers included non GHL holders in the survey while in others (Repulse Bay, Coral Harbour) the number of GHL holders listed was greater than the actual numbers of hunters (i.e. some GHL holders were not resident or did not hunt). Therefore, as pointed out in the introduction, the definition of hunter had to be expanded to include Inuit hunters without GHL's, youths who hunt regularly, and long-term residents of other ethnic origin. Where the number of hunters exceeded those listed as GHL holders, the total of the actual number of hunters interviewed and the number whose whereabouts were known was used on any given month. Chesterfield Inlet lists 59 GHL's. Fifteen of these are known to have moved and 2 are deceased, but on a given month 60 reports are usually received from individual hunters. In contrast, Repulse Bay has yet to exceed 70 hunters although the GHL's are listed as 90. Yet it appears the fieldworker in this community is making a concerted effort to collect all information.

This information suggests that in some communities the estimated harvest might be underestimated and in others, overestimated. The only way to maintain or to improve the current level of accuracy is through continual checking and updating of hunter lists within each community.

LOST DATA

Baker Lake, Chesterfield Inlet, Coral Harbour, Rankin Inlet, Repulse Bay, and Whale Cove are missing data for one or more months. The missing information for October, 1981, was the
result of insufficient lead time in initiating the study. The remaining gaps were either because infomation was not provided (Chesterfield Inlet, Coral Harbour, Repulse Bay and Whale Cove) or because reports were lost in the postal system (Baker Lake). Usually data was not provided because a conmunity fieldworker had resigned without the project headquarters office being informed, or due to difficulties in finding replacements to collect infomation once resignations were known. The solution to this problem is constant communication with fieldworkers in communities and to enlist the support of the KWF in finding replacements. To prevent further losses of data in the postal system fieldworkers were asked to send reports via the GNWT internal mail system or by registered (collect) mail.

FIELDWORKER TURNOVER AND INEXPERIENCE

The turnover rates for fieldworkers varied between communities but in several instances, as pointed out above, data was lost due to insufficient notice of termination of service. Over two years Eskimo Point has had three fieldworkers, Rankin Inlet four, Whale Cove one, Baker Lake two, Repulse Bay two, Chesterfield Inlet four and Coral Harbour more than six (the exact number is uncertain for this community).

Since the study was structured so that fieldworkers collected data the month following the actual harvest and because mail delivery normally took up to two weeks, information from the previous month was not expected at least until the end of the month following the hunting episode. Unannounced resignations by fieldworkers frequently resulted in the loss of data due to the protracted time period which occurred. Hunters, when finally interviewed, could not recall with any degree of accuracy what they had harvested during a given month once more than six weeks had passed.

Another contributing factor is that new untrained fieldworkers typically have low production levels for the first few months, primarily caused by inexperience.

Fieldworker meetings were scheduled once a year to help diminish such problems but due to the high turnover between these sessions, this system was not totally effective. As pointed out in the previous section the most effective remedy seems to be continual checking with fieldworkers in communities and scheduling periodic visits but this latter action adds significantly to the cost of the study.

SOCIAL SIGNIFICANCE OF SPECIES

Within communities wildife can be divided into two groups: high profile and low profile species. A high profile species is one which has a high economic and cultural importance (e.g. caribou, polar bear, Arctic charr, etc.) and is usually identifiable at a local level but not on a regional basis because availability to harvest influences importance (i.e. high profile
species differ between communities). Low prom file species usually have low economic or cultural importance (e.g. Arctic cod, ptarmigan, Arctic hare, etc.).

The significance of high and low profile species becomes clear when reviewing the data. Within communities high profile species are typically recorded accurately, whereas, low profile species are reported infrequently or not at all.

Seasonal abundance and the availability of viable alternatives also dictates whether a species is of particular importance at a given time of year and is therefore reported in the harvest. For instance snow geese usually arrive early in the spring and are the most abundance goose species. This means that they are the species most commonly harvested and reported (e.g. 1982). By the time other species such as Canada geese arrive, most harvesting needs have been met. However in 1983 snow geese were not available due to a late spring. Canada geese were available and abundant (although not nearly so numerous as snow geese normally are) and this was the species commonly harvested for that spring.

Some fish species provide another example. When anadromous Arctic charr are available in sufficient quantities to meet community needs, lake trout are not reported or harvested in large quantities. However, when charr are not abundant as occurred in 1983, lake trout and other species such as whitefish and northern pike, become more important to fishermen and frequently appear in the reported harvest.

There is also a problem with teminology. Baker Lake Inuit will call lake trout 'Iqaluq' while Rankin Inlet Inuit use 'Iqaluq' to mean Arctic charr. If other fish species are harvested a more distinctive term is used. This is also true for other species. For example to an -Inuit fox always means Arctic fox and seal means ringed seal. However geese can mean either snow or Canada geese while eggs always refer to goose eggs.

The estimated harvest provides an accurate indication of a community's need for, and use of, high profile species but may underestimate the harvest of low profile animals and hence give a false impression of their importance. In this study when a species is reported at all it demonstrates that a particular resource is used by the community. Even low profile species reported in small numbers should not be overlooked in considering opportunities for increased or alternative harvests.

RECALL BY INDIVIDUAL HUNTERS

The study provided both calendars and field diaries to hunters but verbal reports by fieldworkers suggest that many hunters recall harvest data from memory rather than using these forms. Most hunters can recall this data accurately when contacted near the beginning of the month following a hunting episode but on occa-
sion some individuals did not differentiate between similar species, nor were they able to recall particular species, sex or the number harvested exactly.

In addition when large numbers of a species are harvested within a short period of time there is a tendency to underestimate the actual number of animals taken. This results in the harvest of species such as Arctic fox and Arctic charr being underestimated, especially in a year of high abundance. Also some low profile species are frequently included in the harvest of a more commonly recognized relative (e.g. white fronted geese are generally included with snow geese).

In the rare instances when data was so anomalous that it could not be substantiated, then that information was considered to be unrealiable and not used for the purpose of the study. An example was the receipt of summary harvests for a community well after (i.e. several months) an interview period, with no individual data sheets. It was not possible to verify the summaries by going back to individual hunters because of the recall problem and the summaries were not included for that community.

AVAILABILITY OF SPECIES

The assumption that any edible species that is locally available, accessible, and culturally acceptable will be harvested is generally correct for Keewatin communities.

Availability, defined here as a species being present and accessible to hunters, directly effects the composition of the harvest. For example, flooding and ice breakup during late spring prevents access to some species of terrestrial and marine mammals which are nomally of prime interest to hunters. During the same period waterfowl are available and accessible to almost any inhabitant of coastal communities. Hence, waterfowl, for a short period, become a primary species for harvest. Similarly, during freeze up in the fall, whitefish in inland lakes become accessable to Inuit using nets and are also used more heavily in those years when Arctic charr abundance is down (e.g. Eskimo Point, 1981 and 1983).

Besides seasonal fluctuations, geographic location also has an effect in the species composition of the harvest. Coral Harbour has a restricted access to caribou and therefore tends to rely more heavily on marine mammal resources. In contrast, Baker Lake hunters harvest two primary species, caribou (from three herds) and lake trout. The remaining Keewatin communities harvest a broad range of species as shown in Tables 1 to 14.

TRANSLATION

Inuit have a number of recognizable dialects of which several are evident in the Keewatin. Neither the harvest study staff nor the Keewatin Wildiffe Federation are linguists and
dialectic anomalies have caused some difficulties in translation. The two major problems were related to the correct translation of hunter and place names.

Inuit names translated from syllabics, frequently interchange letters, for instance, Q's and K's and 0's, A's and U's. A name such as 'Owlajoot', may be spelled 'Auladjut' or 'Ulajut'. In some communities two persons with the same Christian name (e.g. Fred) may also have the same last name when the syllabic spelling is used, but a distinctive surname in English (ie. one uses 'Auladjut' and the other 'Owlajoot'). A distinct inflection in pronouncing the name in Inuktitut may distinguish an individual. However, unless one is fully familiar with the community these distinctions are difficult to recognize. Using community lists and discussion with our workers have removed some of these difficulties.

Translation of place names is also a problem in identifying where particular species were harvested. Inuit have distinctive names for rock formations, valleys and lakes. Since no known English names exist for these localities, translation is sometimes impossible. To alleviate this situation a zone system (Fig. 1,B) was devised, although not in time for inclusion in this report. In future this will allow greater precision in designating the location for kills. A map printed in syllabics would have to be produced to provide finer distinctions.

FINANCIAL AND MANAGERIAL CONSIDERATIONS

Abstract

Though overall funding was adequate, delays in scheduling interim payments frequently impeded operations. A problem might be recognized early, but low cash balance prevented immediate action being taken, leading to extra costs and lost data. This was particularly the case in the early part of the harvest study (1981-82) until the steering committee provided a $\$ 10000.00$ advance. Delays in the decision making process also impeded the study but this was primarily due to this project being experimental and in its preliminary stages.

INFORMATION FLOW

Analysis of data is dependent on the smooth flow of reports from the fieldworker to the project manager and subsequently to the biologist for analysis. Failure to collect complete data occurred at all levels and disrupted the process.

At a community level, it was assumed that the fieldworker would act as liaison between the Project administrative office and the people. This did occur in all communities except Coral Harbour where there is still a definite need for community consultation to encourage involvement in the study. Because of the low involvement Tevel at Coral Harbour there are currently gaps in the data describing that community's harvest. It should be noted that fieldworkers were also assisted in local liaison by the Keewatin

Wildife Federation and this proved to be very useful.

The fieldworker must be recognized as the most critical link in data collection. They must be thorough in collecting all the available data. Even when involvement in the study approaches 100% it is necessary that all species are recorded accurately.

At the Project office, the data should be translated immediately so that problems can be dealt with as quickly as possible and the most effective follow-up taken. Delays in loading data into the computer resulted in the loss of valuable information due to the inability to backcheck accurately because of the time that had elapsed.

CONCLUSIONS AND RECOMMENDATIONS

The Keewatin Wildlife Federation Harvest Study has been successful in its attempt to elicit statistically valid harvest information from hunters using a survey technique common in a Euro-Canadian setting but intrinsically foreign to the Inuit. The preliminary work has laid the foundation for an imaginative process which has involved native people in the gathering of harvest statistics. This information will be important for jointly establishing a wildlife management rationale for the harvest of species which are of national interest and very particular cultural importance to Inuit. Continued cooperation amongst harvesters and wildlife managers will ensure the long term well being of wildlife in this region.

The results obtained when examined superficially, indicate that this study was not an unqualified success because of data gaps and variability in participation in the project by hunters. However, when viewed as a preliminary study, the project was worthwhile. Most objectives were met with some degree of success. Tables 1 to 14 provide estimates of kill by Inuit living in the Keewatin region based on data provided by 1331 individual hunters (TabTe 21) over the course of the study. This is an accomplishment that was not possible previously. The approach is reuseable but requires refinements of the basic techniques that were used. It is recommended that the following should be implemented for continuation of the study:

1) a secure base of funding be established;
2) fieldworker training should occur at the community level;
3) calendars should continue to be provided;
4) an evaluation be carried out to determine the effectiveness of calendars versus field diaries as a means of recording data;
5) office personnel should be subjected to an annual evaluation and provided with recommendations for improvement, and
6) there should be further development of the computer programmes used and data
retrieval. For instance a plotting capacity would be an asset because then maps of hunter kills could be generated.

ACKNOWLEDGMENTS

I wish to thank the Keewatin Wildlife Federation, the Kivilimi Inuit Land Claims and the Tungavik Federation of Nunavut who were instrumental in initiating this study in conjunction with the governments of Canada and the Northwest Territories.

Thanks are due to members of the steering committee who provided valuable criticism of my manuscript, in particular Roger Peet and his staff who assisted in the preparation of the final draft.

I particularly thank the staff of the keewatin Wildife Federation "Harvest Biology Study": Luke Suluk (Project Manager), Elizabeth Suluk, Oscar Jajalla, Susan Aglukark, Veronica Curley and Jodi Bileski. Their continued efforts in conjuntion with the study's community fieldworkers made this report possible.

> I also wish to thank all participants (i.e. hunters) in the study who provided data on their harvests and thank them for their cooperation and understanding in the face of repeated questions.
> I also acknowledge the logistic support given to the study by the Tungavik Federation and the Regional Government of the Northwest Territories.

REFERENCES

BELLROSE, F.C. 1976. Ducks, geese, and swans of North America. Stackpole Books. 540 p.

BERGER, T. 1977. Northern frontier - northern homeland. The report of the Mackenzie Valley Pipeline Inquiry, 2: 268 p.

BOND, W.A. 1975. Data on the biology of lake whitefish and lake trout from Kaminuriak Lake, District of Keewatin, N.W.T. Can. Fish. Mar. Serv. Data Rep. Serv. CEN/D-75-4: 28 p.

CARDER, G.W. 1983. Data from the commercial fishery for Arctic charr, Salvelinus alpinus (Linnaeus), in the Cambridge Bay and Rankin Inlet areas, Northwest Territories, 1981-82. Can. Data Rep. Fish Aquat. Sci. 391: $v+24$ p.

DOME PETROLEUM LTD., ESSO RESOURCES CANADA, LTD., AND GULF CANADA RESOURCES INC. 1982. Beaufort Sea-Mackenzie Delta Environmental Impact Statement. Socioeconomic effects 5(5): 42 p.

EARHART, C.M., and N.K. JOHNSON. 1970. Size dimorphism and food habits of North American ow1. Condor 72: 251-264.

FALK, M.R., and D.V. GILLMAN. 1975. Data on the lake and round whitefish, lake cisco, northern pike, Arctic grayling and longnose sucker from the east arm of Great STave Lake, N.W.T., 1971-74. Can. Fish. Mar. Serv. Data Rep. Ser. CEN/D-75-2: 95 p.

KELEHER, J.J. 1964. Round weight conversion factors for Great Slave Lake fish. Fish. Res. Board Can. Manuscr. Rep. Ser. (Biol.) 773: 19 p.

MacDONALD, G., and R. FUDGE. 1979. Arctic Land Use Research Program 1978: A survey of the fisheries resources of the Kazan Upland (Southeastern District of Mackenzie, Southern District of Keewatin, N.W.T.). Can. Dep. Ind. N. Aff. Envi ron. Stud. 11: 161 p.

NATIVE HARVESTING RESEARCH COMMITTEE (NHRC) 1975. Research to establish present levels of harvesting by native peoples of northern Quebec. Phase 1 (1973-1975). Part II. Montreal. 230 p.

NATIVE hARVESTING RESEARCH COMMITTEE (NHRC) 1976. Research to establish present levels of native harvesting. Harvests by the Inuit of northern Quebec. Phase II (1976). Montreal. 108 p .

NWT DATA BOOK. 1982. A complete information guide to the Northwest Territories and its communities. M. Devine (ed.) Outcrop Ltd., Yellowknife. 220 p.

RIEWE, R. 1977. Utilization of wildlife in the Jones Sound region by the Griese Fiord Inuit, p. 623-644. In L.C. Bliss (ed.) True Love Lowlands, Devon Island, Canada: A high Arctic ecosystem. University of Alberta Press, Edmonton.

SERGEANT, D.E., and P.S. BRODIE. 1969. Body size in white whales, Delphinapterus leucas. J. Fish. Res. Board Can. 26: 2561-2580.

STEVENS, W.J.D. 1965. Bionomics of the sandhill crane. Ph.D. Thesis. University of Saskatchewan, Saskatoon. 120 p.

THOMAS, V.G. 1982. Energetic reserves of Hudson Bay willow ptarmigan during the winter and spring. Can. J. Zool. 60: 1618-1623.

Table 1. The reported harvest by Baker Lake hunters, expressed as number of animals, for the period November, 1981 to July, 1982 , September, 1982 , and November, 1982 to September, 1983.

${ }^{1}$ Categories are as follows: M means male, F means female, C means calf, and U means unknown.
2 It should be noted that the fieldworker reports for the months of August and 0ctober 1982 were inadvertently lost.
${ }^{3}$ In 1981 a test commercial fishery took place in the Baker Lake area. Fishermen reported the fish caught during this activity as part of the total subsistence harvest for 1981. This one-time event has caused an over-estimate of the catch for that year. The normal long term harvest is probably more represented by the number of fish landed in 1982.
 deviation about the mean are given.

1 See Table 1 .
2 It should be noted that the fieldworker reports for the months of August and 0ctober 1982 were inadvertently lost.

 more represented by the number of fish landed in 1982.

Table 3. The reported harvest by Chesterfield Inlet hunters, expressed as number of animals, for the period January, February, and August, 1982 through September, 1983.

		1982							1983								
Species	Category ${ }^{1}$	Jan.	Feb. ${ }^{2}$	Aug.	Sept.	0ct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.

Caribou

${ }^{1}$ See Table 1.
${ }^{2}$ It should be noted that consistent data collection by month did not begin until August, 1982, due to difficulties in obtaining a regular fieldworker.

Table 4. The reported and estimated harvest by Chesterfield Inlet hunters expressed as numbers of animals. The mean monthly harvest per hunter and standard deviation about the mean are given.

Species	Category ${ }^{1}$	Reported Harvest Jan., Feb., Aug. \& Sept. 1982			Estimated Harvest Jan., Feb., Aug., \& Sept. 1982			Reported Harvest$\text { 0ct. } 1982 \text { - Sept. } 1983$			Estinated Harvest 0ct. 1982 - Sept. 1983		
		Total	Mean	S.D.									
Caribou													
Kaminuriak	M	12	2	1	16	2	1	24	3	1	28	3	1
	F	- 6	1	0	12	2	1	25	3	1	35	3	2
	U							4	4	4	7	7	0
	Subtotal	18	1	1	28	2	1	53	3	1	70	3	2
North of Chesterfield	M	71	3	2	83	3	2	252	4	4	335	3	3
	F	27	2	1	39	2	1	142	4	4	203	3	3
	C							1	1	0	1	1	0
	U							2	1	0	3	2	0
	Subtotal	98	2	2	122	3	2	397	4	4	543	3	3
	Total	116	2	2	151	3	2	450	3	3	613	3	3
Polar bear		2	1	0	3	1	0	7	1	0	10	1	0
Arctic fox		14	2	1	25	4	2	443	16	16	576	14	14
Wolf								8	2	1	11	2	1
Ringed seal		37	2	1	46	2	1	114	3	2	137	3	2
Bearded seal		2	2	0	2	2	0						
Seal (spp)		39	2	1	48	2	1	114	3	2	137	3	2
Wal rus								8	2	1	11	2	1
Beluga		8	2	2	8	2	1	7	7	0	7	7	0
Snow geese		19	10	4	20	10	3	15	15	0	19	19	0
Eider								26	9	8	31	10	11
Charr		52	26	14	76	38	21	146	18	17	152	15	16
Lake trout		202	40	19.	220	37	19	263	13	18	333	14	19

[^1]Table 5. The reported harvest by Coral Harbour hunters, expressed as number of animals, for the period February, 1982 and June, 1982 through April, 1983.

		1982								1983			
Species	Category ${ }^{1}$	Feb. ${ }^{2}$	June	July	Aug.	Sept.	0ct.	Nov.	Dec.	Jan.	Feb.	March	April

Caribou

[^2]Table 6. The reported and estimated harvest for Coral Harbour hunters expressed as numbers of animals. The mean monthly harvest per hunter and standard deviation about the mean are given.

Species	Category ${ }^{1}$	Reported Harvest Oct. 1981 - Sept. 1982^{2}			Estimated Harvest Oct. 1981 - Sept. 1982		
		Total	Mean	S.D.	Total	Mean	S.D.
Caribou							
Coates	M	11	2	1	23	5	2
	F	12	2	,	26	5	1
	Subtotal	23	2	1	49	5	1
Southampton		28	2	1	35	2	2
	F	4	1	0	4	1	0
	U	1	1	0	1	1	0
	Subtotal	33	2	1	40	2	2
	Total	56	2	1	89	3	2
Polar bear		14	1	0	15	1	0
Arctic fox		632	14	18	871	19	33
Arctic hare		21	2	2	26	3	2
Ringed seal		484	5	8	821	8	13
Bearded seal		22	2	1	35	3	2
Harp seal		54	3	3	105	6	6
Unknown seal		16	3	2	16	3	2
Seal (spp)		576	4	7	977	7	12
Walrus		41	2	1	73	3	2
Beluga		61	2	3	124	5	7
Canada geese		345	18	27	656	34	47
Snow geese		2478	41	34	4387	72	61
Ross's geese		148	5	4	267	9	6
Geese (spp)		2971	27	32	5310	48	57
Eider		192	8	10	326	13	18
Guillemot		2			3	3	0
01d squaw		1			1	1	0
Ptarmigan		803	16	21	1051	21	30
Snowy owl		1			1	1	0
Swan		1			2	2	0
Other fowl		3			5	5	0
Brant eggs		1			3	3	0
Charr		2169	37	58	4180	71	118
Lake trout		154	77	68	419	210	201
Cod		10			18	6	2

${ }^{1}$ See Table 1.
${ }^{2}$ Rather than separate the data into five months for 1981-1982 and seven months for 1982-83 the data was combined into one twelve month period for this community.

Table 7. The reported harvest by Eskimo Point hunters, expressed as number of animals, for the period 0ctober, 1981 to September, 1983.

Species Category ${ }^{1}$	1981						1982							Nov.	1983									
	Oct. Nov. Dec.			Jan.	Feb.	Mar.	Apr.	May	June	July	Aug. Sept. 0ct.						Eb.	Mar.		May J	une July Aug. Sept.			
Kaminuriak caribou M	113	76	49	81	102	60	42	24		8214	245	296	168	29	19	21	9	46	33	37	23	92	132	208
F	135	220	38	46	52	90	92	23		- 28	98	199	75	54	57	98	85	235	152	97	2	20	70	148
C		39	7							2	22	80	16	22	3	15	4	4	1	2	1	1	11	19
U	14	4	1	20	14	21	14	10		9	65	67	21	8	23	42	24	25	39	5	1	22	18	9
Total	262	339	95	147	168	171	148	57		8253	430	642	280	113	102	176	122	310	225	141	27	135	231	384
Wager Bay caribou U																								1
Polar bear		6					2							12				1	1					
Arctic fox		86	55	32	45	32	86						23	1403	460	196	56	80	26	6				
Red fox			8			1	1							26	3	5		3	6					
Wolf			5			1	11							1					11	8				
Moose							1																	
Arctic hare			4	4		3	6						1		1	11	1	2	2	3				
Rabbit			1											1			1							
Marten															1									
Muskrat																				1.				
Ring seal	62	1	2	1	3	2	5	4	31	16	121	62	68	4	6	3	4		2	2	76	29	26	12
Bearded seal	12					1		1			5		3							3	5	10	1	
Harbour seal	1											1										1	2	
Harp seal											2	2	1								3	1		1
Beluga										7	60	2										7	47	2
Canada geese								40	3		3	2								83	418			7
Snow geese								542	32			8									83			3
Eider	1																				3			
Mallard									2															
01d squaw																					7			
Ptarmigan	43	8	2	11	14	10	24	21		10	10	28		1	13	4	6		2	38	15	6	11	15
Snowy owl			1																					
Goose eggs						.															030			
Duck eggs																					13			
Other water fowl eggs																						1		
Unknown fowl eggs																					6			
Charr	27	15	21	3	5			1	61	871	847	148	35	54	12	3				59	337	530	674	246
Lake trout	505	427	78	73	9	52	91	193	32	7	53	66	27	5		45	10	213	109	270	67		23	124
Whitefish		17	217	10																				
Northern pike		1		7																			50	33
Grayling		51	32				27				92	4							1	9			1	1
Longnose sucker																								2
Cod									47	43											44			
Sucker										2											1			
Marine fish																						13		
Percent of hunters reporting	57.5	62.8	61.1	79.6	78.3	66.4	50.0	81.4	79.2	80.5	80.1	88.2	97.3	94.7	95.6	97.8	97.0	100	97.5	96.7	5.5	96.2	98.4	97.7

[^3]Table 8. The reported and estimated harvest for Eskino Point hunters expressed as numbers of animals. The mean monthly harvest per hunter and standard deviation about the mean are given.

Species	Category ${ }^{1}$	Reported Harvest Oct. 1981 - Sept. 1982			Estimated Harvest 0ct. 1981 - Sept. 1982			Reported Harvest 0ct. 1982 - Sept. 1983			Estimated Harvest Oct. 1982 - Sept. 1983		
		Total	Mean	S.D.									
Kaminuriak Caribou	M	1310	4	4	1747	4	4	817	2	2	851	2	2
	F	1021	4	4	1501	4	4	1093	3	2	1139	3	2
	c	150	2	2	194	3	2	100	1	1	105	,	
	U	240	6	5	317	7	6	237	3	3	248	3	2
	Subtotal	2721	4	4	3760	4	4	2247	3	2	2342	3	2
Wager Bay caribou	U							1			1		
Moose	F	1			1								
Polar bear		8			14			14			15		
Arctic fox		336	6	11	546	8	16	2250	12	21	2365	13	22
Red fox		10			17			43	2	1	146	2	1
Wolf		17	2	1	32	3	1	20	3	2	21	3	2
Arctic hare		17	2	1	28	2	2	21	2	1	22	2	1
Rabbit		1			2			2			2		
Marten								1			1		
Muskrat								1			1		
Ringed seal		310	3	3	411	4	4	232	3	3	244	3	4
Bearded seal		19	1	1	29	2	1	22	1	1	23	1	1
Harbour seal		2			3			3			3		
Harp seal		4			5			6			6		
Unknown seal								1			1		
Seal (spp)		335			448			264	2		278	2	
Beluga		69	2	1	85	3	1	56	2	2	58	2	2
Canada Geese		48	2	1	59	2	1	508	6	6	545	7	6
Snow geese		582	8	6	715	10	7	86	22	19	93	23	20
Geese (spp)		630	6	6	773	8	7	594	7	8	638	8	8
Eider		1			2			3			3		
Mallard		2			2								
01d squaw								7			8		
Ducks		3			4			10			11		
Ptarmigan		181	6	6	268	9	8	111	4	3	117	4	3
Snowy owl		1			2								
Goose eggs								1030	64	56	1112	69	61
Duck eggs								13			14		
Unknown water fowl	eggs							1			1		
Fowl eggs								6			6		
Charr		1999	18	21	2480	16	21	1950	15	22	2048	15	21
Lake trout		1586	14	46	2473	19	75	893	9	11	926	9	11
Whitefish		244	61	80	395	99	132						
Northern pike		8			10			83	21	18	86	21	18
Grayling		206	21	20	305	30	27	12			12		
Longnose sucker								2			2		
Cod		90	46	44	108	54	1	44	15	18	47		
Sculpins		2			2			1			1		
Marine fish								13			14		

[^4]Table 9. The reported harvest by Rankin Inlet hunters, expressed as number of animals, for the period November, 1981 to September, 1983.

	1981		1982														1983								
Species Category ${ }^{1}$	Nov. Dec.		Jan.	Feb.	Mar.	Apr. May		June	July		Aug		Sept. Oct. Nov. Dec.				Jan.	Feb.	Mar.	Apr.		June July Aug. Sept.			
Kaminuriak																									
caribou M	39		27	76			40	3		47		163	310	56	24	29	42	37	40	46	93	15	4	70	80
F		128	110	19	57	19	3			2		19	90	15	24	39	55	54	76	40	27	2		15	12
C												2	51	4	1	10			1						
U				14	2									22	7	1			2				3	1	15
Total	161	182	137	109	135	74	43	3		49		184	451	97	56	79	97	91	119	86	120	17	7.	86	107
Polar bear	3				1	1									3			1	1		4				
Arctic fox		4	1	4	11	7							1		364	127	22	20	48	2					
Wolf			4		1	3											2	2	6	13	2				
Arctic hare			1										7				4		2						
Wolverine																					3				
Ringed seal				6	12	11	7	46		102		77	33	44	22	8	9	15	8	10	6	74	27	38	31
Bearded seal						1		1		1		5	1	4	1					4		1	1		2
Harbour seal																									1
Walrus								1								2		12			5				
Beluga										4		17	11								16				
Canada geese							24	512										2	14						
Snow geese							3	1					40						80						
Unknown geese													1												
Eider				4	2								22					2							
Ptarmigan						5	7						11	8	2		2			68				5	
Sandhill crane							3																		
Charr		413		235		45	26	417	4	722		386	112	488	472	359	204					420	2701	1176	40
Lake trout		19		10	55	20									29			19			98				
Grayling													10												
Other freshwater fish						10	37													100					
Other marine fish																				50					
Percent of hunters reporting	92.7	57.5	92.7	66.8	71.0	33.7	51.6	45.6		63.7		22.8	96.9	61.7	64.8	100	84.5		84.5	95.9		19.2	34.2	55.4	61.1

${ }^{1}$ See Table 1.
 standard deviation about the mean are given.

Species	Category ${ }^{1}$	Reported Harvest Nov. 1981 - Sept. 1982			Estimated Harvest Nov. 1981 - Sept. 1982			Reported Harvest 0ct. 1982 - Sept. 1983			Estimated Harvest Oct. 1982 - Sept. 1983		
		Total	Mean	S.D.									
Kaminuriak Caribou	M	890	3	2	1238	4	3	536	3	2	898	5	4
	F	569	3	2	- 759	4	3	359	2	1	481	3	2
	c	53	3	1	55	3	1	16	2	1	19	2	1
	U	16	4	5	24	6	7	51	6	5	85	7	9
	Total	1528	3	2	2076	4	3	962	3	2	1483	4	4
Polar bear		6	1	0	9	2	1	9	1	0	19	2	1
Arctic fox		28	3	2	51	5	5	583	9	13	793	12	18
Wolf		8	2	1	14	4	2	25	4	2	31	4	2
Arctic hare		8	3	2	9	3	2	6	1	0	7	1	0
Wolverine								3	3	0	9	9	0
Ringed seal		294	3	3	452	4	5	292	3	3	449	5	5
Bearded seal		9	1	0	13	2	1	13	1	0	19	2	1
Seal (spp)		303	3	1	465	4	5	306	3	3	469	5	5
Walrus		1			2			19	2	1	48	4	3
Beluga		32	3	3	35	3	3	16	3	1	29	6	2
Canada geese		536	21	17	1177	46	37	16	4	2	20	5	2
Snow geese		44	4	3	52	5	3	91	9	8	98	10	7
Unknown geese		1			1								
Geese (spp)		581	16	16	1250	34	36	107	8	7	118	8	7
Eider		28	4	3	31	4	3	2	2	0	6	6	0
Ptarmigan		23	5	1	48	10	8	85	8	10	228	21	29
Sandhill crane		3			9	5	2						
Charr		7356	58	85	11068	87	124	3429	39	62	5508	62	115
Lake trout		104	8	10	185	14	19	146	10	12	354	24	35
Grayling		10			10								
Other freshwater fish		47	9	11	147	29	34	100	9	6	104	9	6
Marine fish								50	50	0	52	52	0

[^5]Table 11. The reported harvest by Repulse Bay hunters, expressed as number of animals, for the period October, 1981 to November, 1982 and January to September, 1983.
Species Category ${ }^{1} \frac{1981}{\text { Oct. Nov. Dec. }}$ Jan. Feb. Mar. Apr. May June July Aug.Sept. Oct. Nov. ${ }^{2}$ Jan. Feb. Mar. Apr. May June July Aug. Sept.

Caribou

[^6]Table 12. The reported and estimated harvest for Repulse Bay hunters expressed as numbers of animals. The mean monthly harvest per hunter and standard deviation about the mean are given.

		Reported Harvest 0ct. 1981 - Sept. 1982			Estimated Harvest 0ct. 1981 - Sept. 1982			Reported Harvest 0ct. 1982 - Sept. 1983			Estimated Harvest Oct. 1982 - Sept. 1983		
Species	Category ${ }^{1}$	Total	Mean	S.D.									

Caribou

${ }^{1}$ See Table 1.

Table 13. The reported harvest by Whale Cove hunters, expressed as number of animals, for the period 0ctober, 1981 to March, 1983.

Species	Category ${ }^{1}$	1981			1982													1983		
		0 ct .	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June	July		Aug.	Sept.	0ct.	Nov.	Dec.	Jan.	'Feb.	March ${ }^{2}$
Caribou																				
Kaminuriak	M	12	14	10	24	31	41	40	34		19		70	92	17	23	18	29	9	6
	F	30	61	75	32	65	55	44	14		4		19	31		29	29	11	25	26
	C							1					9	33		2				
	U						4						18				3	3		8
	Subtotal	42	75	85	56	96	100	85	48		23		116	156	17	54	50	43	34	40
Wager	F	4																		
Polar bear			3	2				1							1	2	1			
Black bear														1						
Arctic fox						1		3								94	43	20	6	12
Red fox																		1		
Wolf							2	2												
Arctic hare		9	1		3												1		2	
Ringed seal			3			4	16	6	15	20	3		22	7	8	2	6	6	9	3
Bearded seal						1		3			2				2					
Harbour seal							2													1
Harp seal														1						
Seal (spp)			3			5	18	9	15	20	5		22	8	10	2	6	6	9	
Walrus		1				1		1		2										
Beluga													1	2						
Narwhal													1							
Canada geese									37	29										
Snow geese									57	40										
Ross's geese										2										
Geese (spp)									94	71										
Eider		1							4											
Ptarmigan		9							3					2	13				7	
Charr		42	9	137	92	31	74	44	45	332	630		736	40	36	69	7	1	20	
Lake trout		4	28	129	49	9	13	54	27	15	23		86	3	15	26	31	7	45	7
Northern pike								1												
Grayling				2																
Whitefish															18	15	23			
0ther freshwater fish							3	6												
Marine fish									3											
Percent of hunters reporting		20.0	86.0	82.0	82.0	74.0	94.0	76.0	52.0	100	100		72.0	92.0	28.0	32.0	54.0	62.0	80.0	40.0

[^7]Table 14. The reported and estimated harvest for Whale Cove hunters expressed as numbers of animals. The nean monthly harvest per hunter and standard deviation about the mean are given.

		Reported Harvest 0ct. 1981 - Sept. 1982			Estimated Harvest 0ct. 1981 - Sept. 1982			Reported Harvest Oct. 1982 - Mar. 1983			Estimated Harvest 0ct. 1982 - Mar. 1983		
Species	Category ${ }^{1}$	Total	Mean	S.D.									

Caribou

[^8]Table 15. Monthly theoretical kill factors for seven Keewatin communities.

	1981		1982												1983									Mean	S.D.
	Oct. Nov.		Jan.	Feb.	May			June	July	Aug.	Sept.	Nov. Dec.				Feb.	Mar		May	June July Aug. Sept.					
Baker Lake		${ }^{1}(3.67)(5.36)$	2.19	1.77	2.02	2.44	1.75	2.52	2.38		1.11		1.06	1.06	1.00	1.19	1.08	1.00	1.01	1.03			1.06	1.75	1.07
Chesterfield Inlet			1.47	2.08						(4.17)	$) 1.13$	1.28	1.16	1.11	1.61	1.78	(3.57)	1.72	1.14	1.00		1.00	1.00	1.65	0.90
Coral Harbour				2.01				1.78	1.69	2.76	1.36 ((5.53)	(3.62)	(3.75)	3.17	3.08	2.83	5.53						3.09	1.31
Eskimo Point	1.74	1.591 .64	1.25	1.28	1.51	2.00	1.23	1.18	1.24	1.23	1.14	1.03	1.06	1.02	1.07	1.11	1.00	1.05	1.04	1.08			1.05	1.23	0.26
Rankin Inlet		1.081 .74	1.05	1.50	1.41	2.97	3.16	2.19	1.56	(4.39)	$) 1.03$	1.62	1.54	1.00	1.18	1.06	1.17	1.04	2.95 (5	5.22)	2.92		1.63	1.97	1.11
Repulse Bay	1.64	1.70(3.75)	2.57	1.66 (3	(3.75))1.70	3.21	2.65	3.10	3.00	2.25	1.95	1.70		1.43	1.36	1.40(3)	$3.91)$	1.52	1.67		1.73	1.87	2.14	0.76
Whale Cove	(5.00)) 1.161 .21	1.21	1.35	1.06	1.31	1.92	1.00	1.00	1.39	1.09	(3.57)	(3.13)	1.85	1.61	1.25	2.50							1.79	0.53

${ }^{1}$ Bracketed figures were not used because they were based on insufficient data.

Table 16. Edible weight values in kilograms for harvested species as calculated from various sources.

Species	Estimated Individual Weight (kg)	Reference ${ }^{1}$
Caribou	48.0	Berger 1977
Moose	199.0	Berger 1977
Muskox	110.0	Riewe 1977
Polar bear	158.8	Native Harvesting Research Committee 1975, 1976
Black bear	45.4	Dome et al. 1982
Grizzly bear	45.4	" "
Arctic hare	2.3	Native Harvesting Research Committee 1975, 1976
Ringed seal	14.3	"
Bearded seal	98.4	" "
Harbour seal	27.7	" "
Harp seal	43.1	"
Walrus	185.1	" "
Beluga ${ }^{2}$	(M) 555.0 (F) 407.9	Sergeant and Brodie 1969
Narwha ${ }^{3}$	(M) 595.2 (F) 397.0	Hay (personal communication); ${ }^{3}$ Sergeant and Brodie 1969
Canada geese (Hutchinsii)	2.4	Bellrose 1976
Snow geese (Lesser)	1.6	" "
Ross's geese	1.0	" "
Eider (Hudson Bay)	1.5	" "
01d squaw	0.5	" "
Mallard	0.7	" "
Ptarmigan	0.4	Thomas 1982
Sandhill crane	4.1	Stevens 1965
Snowy owl	1.8	Earhart and Johnson 1970
Swan	6.8	Bellrose 1976
Arctic charr	2.5	Carder 1983
Lake trout	2.4	Bond 1975; Keleher 1964
Whitefish	2.8	
Northern pike	2.1	MacDonald and Fudge 1979; Keleher 1964
Arctic grayling	0.9	Falk and Gillman 1975; Keleher 1964

[^9]Table 17. Reported and estimated edible weight values (kg) for harvested species by year and month for the period October, 1981 to September, 1982. Some communities are missing monthly data in this period and the monthly values are the average for the months with data.

Community ${ }^{1}$ and Species	1981-82 Reported Harvest (kg)		1981-82 Estimated Harvest (kg)	
	Total ${ }^{2}$	Per Month	Total	Per Month
Baker Lake				
Caribou	113434	11343	178987	17899
Muskox	660	66	1320	132
Ringed seal	0	0	0	0
Ptarmigan	2	0	2	0
Arctic charr	10	1	10	1
Lake trout Whitefish	27292	2729	28331	2833
Total	141388	14139	208649	20865
Chesterfield Inlet				
Caribou	5568	1392	7243	1810
Polar bear	318	79	476	119
Ringed seal	529	132	661	165
Bearded seal	197	49	226	57
Walrus	0	0	0	0
Beluga	4145	(1036)	4301	(1 075)
Snow geese	30	8	32	8
Arctic charr	131	33	555	139
Lake trout	490	122	535	134
Total	11408	2852	14030	3507
Eskimo Point				
Caribou	130608	10884	180461	15038
Moose	199	17	239	20
Polar bear	1270	106	2160	180
Arctic hare	39	3	65	5
Ringed seal	4433	369	5877	490
Bearded seal	1870	156	2893	241
Harbour seal	55	5	78	6
Harp seal	172	14	198	16
Beluga	33219	2768	40777	3398
Canada geese	115	10	141	12
Snow geese	931	78	1143	95
Eider	1	0	3	0
Mallard	1	0	2	0
01d squaw	0	0	0	0
Ptarmi gan	72	6	107	9
Snowy owl	2	0	3	0
Arctic charr	5029	419	6240	520
Lake trout	3848	321	6000	500
Whitefish	686	57	1111	93
Northern pike	17	1	22	2
Grayling	195	16	290	24
Total	182764	15230	247809	20651
Rankin Inlet				
Caribou	73344	6668	99638	9058
Polar bear	953	87	1493	136
Arctic hare	18	2	21	2
Ringed seal	4204	382	6465	588
Bearded seal	886	80	1259	114
Harbour seal	0	0	0	0
Walrus	185	17	407	37
Beluga	16460	1496	17849	1623
Canada geese	1286	117	2825	257
Snow geese	70	6	83	7
Eider	42	4	47	4

Table 17. (Cont'd)

Community ${ }^{1}$ and Species	1981-82 Reported Harvest (kg)		1981-82 Estimated Harvest (kg)	
	Total	Per Month	Total	Per Month
Ptarmigan	9	1	19	2
Sandhill crane	12	1	39	3
Arctic charr	18508	1682	27848	2532
Lake trout	252	23	449	41
Grayling	9	1	10	1
Total	116240	10567	158452	14.405
Repulse Bay				
Caribou	32112	2676	65242	5437
Polar bear	1.588	132	2588	216
Grizzly bear	91	8	241	20
Black bear	0	0	0	0
Arctic hare	28	8	47	4
Ringed seal	5648	471	11609	967
Bearded seal	1082	90	2057	171
Harp seal	43	4	129	11
Walrus	2221	185	3850	321
Beluga	7612	634	18365	1530
Narwhal	1785	149	5416	- 451
Canada geese	0	0	0	0
Snow geese	14	1	44	4
Ross's geese	3	0	9	1
Eider	6	0	18	1
Guillemot	1	0	2	0
Ptarmigan	37	3	97	8
Arctic charr	2471	206	4.437	370
Lake trout	1681	140	3384	282
Grayling	6	0	13	1
Total	56430	4709	117548	9795
Whale Cove				
Caribou	42528	3544	52675	4390
Polar bear	953	79	1159	97
Black bear	45	4	50	4
Arctic hare	30	2	32	3
Ringed seal	1373	114	1.770	147
Bearded seal	590	49	1718	60
Harbour sea 1	55	5	58	5
Harp seal	43	4	47	4
Walrus	925	77	1388	116
Beluga	1444	120	1733	144
Narwhal	595	50	833	69
Canada geese	158	13	240	20
Snow geese	155	13	239	20
Ross's geese	2	0	2	0
Eider	7	1	13	1
Ptarmigan	6	0	7	1
Arctic charr	15.629	1302	20587	1716
Lake trout	1067	89	1.361	113
Northern pike	2	0	4	0
Grayling	2	0	2	0
Whitefish	25	2	31	3
Total	65638	5470	82952	6913

1 Coral Harbour is not included in this table. Rather than separate the data into 5 months for 1981-82 and 7 months for 1982-83 the data was combined into one twelve month period and presented in Table 18.
2 Please note that rounding has caused small discrepancies in column totals.

Table 18. Reported and estimated edible weight values (kg) for harvested species by year and month for the period October, 1982 to September, 1983. Some communities are missing monthly data in this period and the montly values are the average for the months with data.

Community ${ }^{1}$ and Species	1982-83 Reported Harvest (kg)		1982-83 Estimated Harvest (kg)	
	Total ${ }^{2}$	Per Month	Total	Per Month
Baker Lake				
Caribou	226944	20631	237341	21576
Muskox	1210	110	1331	121
Ringed seal	14	1	14	1
Ptarmigan				
Arctic charr				
Lake trout	7681	698	7852	714
Whitefish	670	61	671	61
Total	236519	21502	247209	22473
Chesterfield Inlet				
Caribou	21600	1800	29424	2452
Polar bear	1111	93	1667	139
Ringed seal	1630	136	1966	164
Bearded seal				
Walrus	1481	123	2036	170
Beluga	3370	281	3370	281
Snow geese	24	2	31	3
Eider	39	3	47	4
Arctic charr	662	55	838	70
Lake trout	638	53	808	67
Total	30555	2546	40188	3349
Coral Harbour				
Caribou	2688	224	4277	356
Polar bear	2223	185	2350	196
Arctic hare	48	4	61	5
Ringed seal	6921	577	11746	979
Bearded seal	2165	180	3434	286
Harp seal	2327	194	4525	377
Walrus	7589	632	13586	1132
Beluga	30732	2561	62472	5206
Canada geese	828	69	1575	131
Snow geese	5947	496	10530	877
Ross's geese	148	12	267	22
Eider	288	24	489	41
Guillemot	0		0	
01d squaw	0		1	
Ptarmigan	321	27	420	35
Snowy owl	2	0	2	0
Swan	7	1	12	1
Arctic charr	5457	455	10518	876
Lake trout	374	31	1017	85
Total	68067	5672	127283	10607
Eskimo Point				
Caribou	107904	8992	112474	9373
Moose				
Polar bear	2223	185	2414	201
Arctic hare	48	4	50	4
Ringed seal	3318	276	3495	291
Bearded seal	2165	180	2303	192
Harbour seal	83	7	89	7
Harp seal	259	22	271	23
Beluga	24185	2015	27971	2331
Canada geese	1219	102	1308	109
Snow geese	138	11	148	12
Eider	4	0	5	0

Table 18. (Cont'd)

Community ${ }^{1}$ and Species	1982-83 Reported Harvest (kg)		1982-83 Estimated Harvest (kg)	
	Total	Per Month	Tota 1	Per Month
07d squaw	3	0	4	3
Ptarmigan	44	4	47	
Snowy owl				
Arctic charr	4906	409	5153	429
Lake trout	2166	180	2248	187
Whitefish				
Northern pike	177	15	183	15
Grayling	11	1	12	1
Total	148855	12405	158175	13181
Rankin Inlet				
Caribou	46176	3848	71189	5932
Polar bear	1429	119	2985	249
Arctic hare	14	1	17	1
Ringed seal	4176	348	6416	535
Bearded seal	1279	107	1870	156
Harbour seal	28	2	44	4
Walrus	3517	293	8718	726
Beluga	8095	675	14571	1214
Canada geese	38	3	48	4
Snow geese	146	12	157	13
Eider	3	0	9	1
Ptarmigan	34	3	91	8
Sandhill crane				
Arctic charr	8627	719	13857	1155
Lake trout	354	29	859	72
Total	73916	6160	120831	10069
Repulse Bay				
Caribou	26832	2439	40680	3698
Polar bear	1906	173	3033	276
Grizzly bear				
B7ack bear	45	4	64	6
Arctic hare	11	1	16	1
Ringed seal	3032	276	4932	448
Bearded seal	886	80	1525	139
Harp seal				
Walrus	1481	135	2406	219
Beluga	11419	(1 038)	19269	(1 752)
Narwhal	2381	(216)	3452	(314)
Canada geese	2	0	5	0
Snow geese				
Ross's geese	7	1	9	$\frac{1}{3}$
Eider	21	2	33	3
Guillemot ${ }^{\text {a }}$				
Ptarmigan	3	0	5	0
Arctic charr	1741	158	3082	280
Lake trout	148	13	167	15
Grayling				
Tota 1	49914	4538	78678	7153
Whate Cove				
Caribou	11424	1904	18038	3006
Polar bear	635	106	778	130
Black bear				
Arctic hare	7	1	15	2
Ringed seal	486	81	711	118
Bearded seal	197	33	197	33
Harbour seal	28	5	69	11
$\begin{array}{llll}\text { Harp seal } & 43 & \\ \text { Walrus } & & 108 & 18\end{array}$				
Beluga				
Narwhal				

Table 18. (Cont'd)

Community ${ }^{1}$ and Species	1982-83 Reported Harvest (kg)		1982-83 Estimated Harvest(kg)	
	Tota 1	Per Month	Total	Per Month
Canada geese				
Snow geese				
Ross's geese				
Eider				
Ptarmigan	8	1	9	1
Arctic charr	335	56	364	61
Lake trout	318	53	351	58
Northern pike				
Grayling Whitefish				
Total	13480	2247	20639	3440

1 The data for Coal Harbour covers the period February, 1982 to Aprit, 1983 and was combined to obtain one twelve month period.
2 Please note that rounding has caused small discrepancies in column totals.

Table 19. Estimated edible weight values for four major groups of animals harvested by Keewatin communities, October, 1981 to September, 1983.

Table 19. Cont'd.

Table 19. Cont'd.

Period	Repulse Bay										Whale Cove											
	Total Edible Weight (kg)	Weight (kg) per category (bracketed figures are \% of total)									Total Edible Weight (kg)	Weight (kg) per category (bracketed figures are \% of total)										
		Terrestrial	Marine			Fowl		Fish				Terrestrial			Marine			Fowl		Fish		
1981																						
0 ct .	20197	8204 (40.6)		874	(48.8)				119	(10.4)	2533		229	(88.0)			(7.3)		(.2)		115	(4.5)
Nov.	7599	7326 (96.3)		146	(1.9				128	(1.6)	4924		770	(96.9)			(1.0)				104	(2.0)
Dec.	3729	2223 (59.6)		549 ((14.7)				957	(25.6)	6092		301	(87.0)								(13.0)
1982																						
Jan.	4638	4459 (96.1)							179	(3.8)	3674		253	(88.5)							421	(11.5)
Feb.	5229	5229									6987		245	(89.4)			(6.8)					(1.9)
Mar.	2776	2688 (96.8)		29						(2.1)	5617		088	(90.6)			(5.3)				229	(4.1)
Apr.	5101	4651 (91.1)		413	(81)					(0.7)	6584		534	(84.1)			(11.2)				313	(4.8)
May	3492	2458 (70.3)		91	(2.6)		(2.1)		870	(24.9)	6234		416	(70.8)		115	(17.9)		(5.8)			(5.5)
June	11468	7364 (64.2)		465	(21.4)		(0.2)		609	(14.0)	1286						(22.2)	134	(10.4)			(67.4)
July	5380	2678 (49.7)		557	(47.5)		(0.5)		116	(2.1)	2974		104	(37.1)			(8.1)				630	(54.8)
Aug.	29095	14976 (51.4)		139	(45.1)	5			975	(3.3)	26294		742	(29.4)		807	(6.9)			16	745	(63.7)
Sept.	17499	5861 (33.4)		479	(65.5)		(0.2)		112	(0.6)	9577		243	(86.1)			(12.7)	1			117	(1.2)
Subtotal	116203	68117 (58.6)		742	(35.1)	182	(0.2)		162	(6.2)	82776		925	(65.2)		410	(7.7)		(.6)	21	809	(26.4)
0 ct .	3527	1886 (53.4)		282	(7.9)		(0.1)		355	(38.4)	1468			(66.4)			(21.2)		(0.4)		176	(12.0)
Nov.	8269	7162 (86.6)							058	(12.7)	1951		646	(84.3)			(1.5)					(14.2)
Dec.											5215		766	(91.4)			(3.1)					(5.5)
1983																						
Jan.	5357	5357									3479		311	(95.2)			(3.9)					(0.9)
Feb.	3221	3103 (96.3)			(3.6)						2424		059	(85.0)			(6.7)		(0.1)		198	(8.2)
Mar.	4590	4325 (94.4)		200	(4.3)					(1.2)	5138		811	(93.6)			(5.5)					(0.8)
Apr.	3342	3089 (92.4)			(4.2)				110	(3.3)												
May	2583	2391 (92.5)			(6.6)	1				(0.6)												
June	6489	3451 (53.1)		2853	(43.9)		(0.3)		162	(2.5)												
July	10695	3178 (29.7)		7307 10130	(68.3)				190	(1.7)												
Aug.	15390	4987 (32.4)		10130	(65.8)				272	(1.7)												
Sept.	14856	4862 (32.7)		9985	(67.2)	4			5													
Subtotal	78309	43791 (55.9)		31239	(39.9)	51			225	(4.1)	19675		568	(89.3)		084	(5.5)	9			013	(5.1)
Total	194512	111908 (57.5)		71981	(37.0)		(0.1)		387	(5.3)	102451		493	(69.8)		494	(7.3)	508	(.5)		822	(22.3)

Table 19. Cont'd.

Period	Coral Harbour										
	Total Edible Weight (kg)	Weight (kg) per category (bracketed figures are \% of total)									
		Terrestrial		Mari				Fowl		Fis	
1981											
Nov. Dec.											
$\underline{1982}$											
Jan.	2926										
Mar.	2926			087	(71.3)			(1.7)			(27.0)
Apr. May											
June	17795	540 (3.0)		503	(32.6)	7	692	(43.2)	3	759	(21.1)
July	16945	1382 (8.2)		373	(73.1)			(5.8)	,	205	(13.0)
Aug.	49420	1195 (2.4)		825	(88.7)		536	(1.1)	3	864	(7.8)
Sept.	21575	538 (2.5)		749	(96.2)		223	(1.0)			(0.3)
Subtotal	108661	3655 (3.4)	84	837	(78.1)	9	485	(8.7)		682	(9.8)
0 ct .	2219	510 (23.0)		1624	(73.2)			(2.5)			(1.4)
Nov.	1972	1165 (59.1)			(31.1)		60	(3.1)		132	(6.7)
Dec.	2850	1295 (45.4)		140	(49.5)		124	(4.3)			(0.6)
$\underline{1983}$											
Jan.											
Feb.	2356	48 (2.0)		885	(80.0)			(1.2)		395	(16.8)
Mar.	2402	20 (0.8)		1359	(56.6)		38	(1.6)		985	(41.0)
Apr.	1875			1875							
May											
June											
July											
Aug.											
Sept.											
Subtotal	15252	3038 (19.9)		312	(67.6)		338	(2.2)	1	564	(10.3)
Total	123913	6693 (5.4)		149	(76.8)		823	(7.9)		246	(9.9)

Table 20. The kilograms of edible meatl available per person per day calculated from the estimated total community harvest.

Communities	$\begin{gathered} 1981-82 \\ \text { Population }^{2} \end{gathered}$	Estimate $\mathrm{kg} /$ day/person	1982 - 83 Estimate $\mathrm{kg} /$ day/person
Baker Lake	992	0.69	0.75
Chesterfield In7et	204	0.55	0.71
Coral Harbour	376	1.93	0.19
Eskimo Point	1005	0.68	0.43
Rankin Inlet ${ }^{1}$	653	0.72	0.50
Repulse Bay	338	0.94	0.69
Whate Cove	201	1.13	0.54
1 Edible meat is defined here as including the flesh of all species of terrestrial mammals, marine mammals, fowl and fish. 2 Refer to Table 21.			

Table 21. Age distribution of the general population and of hunters for seven communities in the Keewatin region of the Northwest Territories.

Community ${ }^{\text {t }}$	$\begin{aligned} & \text { Popula- } \\ & \text { tion } \end{aligned}$	Number per age category for general Population (figures in brackets are \%)							iduniber of hunter per age category (figures in brackets are \% of population)							
		Sex	0-15	16-30	31-45	46-60	61-75	$76+$	Hunters ${ }^{1}$	0-15	16-30	31-45	46-60	61-75	$76+$	unknown
Baker Lake	992	$\begin{gathered} M \\ F \end{gathered}$	$\begin{aligned} & 196(19.8) \\ & 172(17.3) \end{aligned}$	$\begin{aligned} & 170(17.1) \\ & 150(15.1) \end{aligned}$	$\begin{aligned} & 85(8.6) \\ & 84(8.5) \end{aligned}$	$47(4.7)$ $48(4.8)$	$\begin{aligned} & 15(1.5) \\ & 19(1.9) \end{aligned}$	$\begin{aligned} & 3(0.3) \\ & 3(0.3) \end{aligned}$	$\begin{array}{r} 247(24.9) \\ 40(4.0) \end{array}$	2(0.2)	$\begin{aligned} & 92(9.3) \\ & 12(1.2) \end{aligned}$	$84(8.5)$ $9(0.9)$	$\begin{aligned} & 42(4.2) \\ & 13(1.3) \end{aligned}$	$17(1.7)$ $6(0.6)$	3(0.3)	$\begin{array}{r} 7(0.7) \\ 0 \end{array}$
Chesterfield Inlet	204	$\begin{aligned} & M \\ & F \end{aligned}$	$\begin{aligned} & 40(19.6) \\ & 37(18.1) \end{aligned}$	$\begin{aligned} & 37(18.1) \\ & 41(20.1) \end{aligned}$	$\begin{array}{r} 9(4.4) \\ 13(6.4) \end{array}$	$11(5.4)$ $9(4.4)$	$2(1.0)$ $1(0.5)$	$1(0.5)$ $3(1.5)$	$62(30.4)$ $19(9.3)$	0 0	$\begin{array}{r} 33(16.2) \\ 7(3.4) \end{array}$	$14(6.9)$ $6(2.9)$	$10(4.9)$ $4(2.0)$	$2(1.0)$ $2(1.0)$	0 0	$\begin{array}{r} 3(0.1) \\ 0 \end{array}$
Coral Harbour	r 376	$\begin{gathered} M \\ F \end{gathered}$	$\begin{aligned} & 75(19.9) \\ & 82(21.8) \end{aligned}$	$\begin{aligned} & 58(15.4) \\ & 57(15.2) \end{aligned}$	$\begin{aligned} & 30(8.0) \\ & 28(7.4) \end{aligned}$	$\begin{aligned} & 18(4.8) \\ & 12(3.2) \end{aligned}$	$\begin{array}{r} 10(2.7) \\ 3(0.8) \end{array}$	$\begin{aligned} & 2(0.5) \\ & 1(0.3) \end{aligned}$	$\begin{array}{r} 132(35.1) \\ 11(2.9) \end{array}$	0 0	$\begin{array}{r} 39(10.4) \\ 2(0.5) \end{array}$	$\begin{array}{r} 35(9.3) \\ 2(0.5) \end{array}$	$\begin{array}{r} 19(5.0) \\ 1(0.3) \end{array}$	$\begin{aligned} & 8(2.1) \\ & 1(0.3) \end{aligned}$	$\begin{array}{r} 1(0.3) \\ 0 \end{array}$	$\begin{array}{r} 30(8.0) \\ 5(1.3) \end{array}$
Eskimo Point	1005	$\begin{gathered} M \\ F \end{gathered}$	$\begin{aligned} & 229(22.8) \\ & 223(22.2) \end{aligned}$	$\begin{aligned} & 134(13.3) \\ & 153(15.2) \end{aligned}$	$\begin{aligned} & 69(6.9) \\ & 65(6.5) \end{aligned}$	$\begin{aligned} & 52(5.2) \\ & 46(4.6) \end{aligned}$	$\begin{aligned} & 11(1.1) \\ & 17(1.7) \end{aligned}$	$\begin{aligned} & 2(0.2) \\ & 4(0.4) \end{aligned}$	$\begin{array}{r} 260(25.9) \\ 18(1.8) \end{array}$	$\begin{array}{r} 4(0.4) \\ 0 \end{array}$	$\begin{array}{r} 116(11.5) \\ 8(0.8) \end{array}$	$\begin{array}{r} 81(8.1) \\ 6(0.6) \end{array}$	$\begin{array}{r} 48(4.8) \\ 4(0.4) \end{array}$	$\begin{array}{r} 10(1.0) \\ 0 \end{array}$	$\begin{array}{r} 1(0.1) \\ \quad 0 \end{array}$	0 0
Rankin Inlet	653^{2}	$\begin{gathered} M \\ F \end{gathered}$	$\begin{array}{r} 112(17.2) \\ 95(14.5) \end{array}$	$\begin{aligned} & 134(20.5) \\ & 109(16.7) \end{aligned}$	$\begin{aligned} & 56(8.6) \\ & 58(8.9) \end{aligned}$	$\begin{aligned} & 32(4.9) \\ & 27(4.1) \end{aligned}$	$\begin{aligned} & 14(2.1) \\ & 11(1.7) \end{aligned}$	$\begin{aligned} & 3(0.5) \\ & 2(0.3) \end{aligned}$	$\begin{array}{r} 278(42.6) \\ 39(6.0) \end{array}$	$\begin{aligned} & 1(0.1) \\ & 1(0.1) \end{aligned}$	$\begin{array}{r} 88(13.5) \\ 5(0.8) \end{array}$	$\begin{array}{r} 70(10.7) \\ 14(2.1) \end{array}$	$\begin{array}{r} 28(4.3) \\ 7(1.1) \end{array}$	$\begin{array}{r} 15(2.3) \\ 2(0.3) \end{array}$	$\begin{array}{r} 1(0.1) \\ 0 \end{array}$	$\begin{array}{r} 75(11.5) \\ 10(1.5) \end{array}$
Repulse Bay	338	$\begin{gathered} M \\ F \end{gathered}$	$\begin{aligned} & 83(24.6) \\ & 82(24.2) \end{aligned}$	$\begin{aligned} & 47(13.9) \\ & 51(15.1) \end{aligned}$	$\begin{aligned} & 17(5.0) \\ & 20(5.9) \end{aligned}$	$\begin{aligned} & 14(4.1) \\ & 13(3.8) \end{aligned}$	$\begin{aligned} & 3(0.9) \\ & 4(1.2) \end{aligned}$	$\begin{aligned} & 3(0.9) \\ & 1(0.3) \end{aligned}$	$\begin{array}{r} 112(33.1) \\ 18(5.3) \end{array}$	$\begin{array}{r} 1(0.3) \\ 0 \end{array}$	$\begin{array}{r} 33(9.8) \\ 9(2.7) \end{array}$	$\begin{array}{r} 28(8.3) \\ 6(1.8) \end{array}$	$\begin{array}{r} 15(4.4) \\ 1(0.3) \end{array}$	$\begin{array}{r} 4(1.2) \\ 0 \end{array}$	$\begin{array}{r} 1(0.3) \\ 0 \end{array}$	$\begin{array}{r} 30(8.9) \\ 2(0.6) \end{array}$
Whole Cove	201	$\begin{aligned} & M \\ & F \end{aligned}$	$\begin{aligned} & 42(20.9) \\ & 33(16.4) \end{aligned}$	$\begin{aligned} & 38(18.9) \\ & 32(15.9) \end{aligned}$	$\begin{aligned} & 12(6.0) \\ & 17(8.5) \end{aligned}$	$\begin{aligned} & 8(4.0) \\ & 4(2.0) \end{aligned}$	$\begin{aligned} & 7(3.5) \\ & 6(3.0) \end{aligned}$	$\begin{aligned} & 1(0.5) \\ & 1(0.5) \end{aligned}$	$\begin{array}{r} 84(41.8) \\ 11(5.5) \end{array}$	0 0	$\begin{array}{r} 21(10.5) \\ 3(1.5) \end{array}$	$\begin{array}{r} 17(8.5) \\ 3(1.5) \end{array}$	$\begin{array}{r} 11(5.5) \\ 2(1.0) \end{array}$	$\begin{aligned} & 6(3.0) \\ & 2(1.0) \end{aligned}$	$\begin{array}{r} 1(0.5) \\ 0 \end{array}$	$\begin{array}{r} 28(13.9) \\ 1(0.5) \end{array}$
Total	3769	M F	$\begin{aligned} & 777(20.6) \\ & 724(19.2) \end{aligned}$	$\begin{aligned} & 618(16.4) \\ & 593(15.7) \end{aligned}$	$\begin{aligned} & 278(7.3) \\ & 285(7.6) \end{aligned}$	$\begin{aligned} & 182(4.8) \\ & 159(4.2) \end{aligned}$	$62(1.6)$ $61(1.6)$	$15(0.4)$ $15(0.4)$	$1175(31.2)$ $156(4.1)$	$\begin{aligned} & 3(0.2) \\ & 1(0.3) \end{aligned}$	$\begin{array}{r} 422(11.2) \\ 46(1.2) \end{array}$	$329(8.7)$ $46(1.2)$	$173(4.6)$ $32(0.8)$	$\begin{aligned} & 62(1.6) \\ & 13(0.3) \end{aligned}$	$\begin{array}{r} 8(0.2) \\ 0 \end{array}$	$\begin{array}{r} 173(4.6) \\ 18(0.5) \end{array}$

${ }^{1}$ Population figures are from the 1983 community list as provided by the Department of local Government (GNWT) with the exception of Rankin Inlet where the figures are produced by the Hamlet Office. The number of hunters is from Harvest study figures and in some age classes there are discrepancies with the total population figures. The major difference occurs in the age 31-45 age category for males (+51 hunters). The exact reason for this is not known but the harvest study figures have been carefully checked and scrutenized over the period of the study.
2 The population of Rankin Inlet from the 1983 community list is 1126 . This community contains the largest number of non-Inuit and Inuit transient to the community (ie. 42.0%). For this reason the figure of 653 resident Inuit was used for the purpose of the Harvest study. In the other communities there are very few transient Inuit and non-Inuit make up less than 5% of the population.

Table 22. Prices of commodities from three sources in the Northwest Territories.

I tem ${ }^{1}$	Ranki Co-op Store	7et Hudson Bay	Frobisher Bay Country Food Stores
Round Steak	\$11.95/kg	\$13.44/kg	
Arctic charr	$4.50 / \mathrm{kg}$		$6.61 / \mathrm{kg}$
Whitefish	$10.20 / \mathrm{kg}$		
Muktak	$3.63 / \mathrm{kg}$		$7.17 / \mathrm{kg}$
Pork chops	$9.90 / \mathrm{kg}$	$7.86 / \mathrm{kg}$	
Chicken	$5.95 / \mathrm{kg}$	$5.59 / \mathrm{kg}$	
Veal	$16.31 / \mathrm{kg}$		
Ocean Perch		$8.99 / \mathrm{kg}$	
Caribou			$9.92 / \mathrm{kg}$
Sea 1			$5.51 / \mathrm{kg}$

Appendix 1. Members of the Steering Committee for the Keewatin Wildlife Federation Harvest Study.

Chairman

Mr. F. McFarland Northern Affairs Program, Department of Indian Affairs and Northern Development.

Members

Mr. R. Cole

Mr. R. Graf Department of Renewable Resources, Government of the Northwest Territories.

Mr. R. Peet Department of Fisheries and Oceans.
Mr. P. Kritterdiluk President, Keewatin Wildlife Federation (April/82 - March/83).

Mr. D. Milortuk President, Keewatin Wildlife Federation (current).
Mr. L. Gamble Project Biologist, Keewatin Harvest Study.
Mr. L. Suluk Project Manager, Keewatin Harvest Study.

Appendix 2. Calculation of Estimated Harvest.
This appendix lists the steps used to arrive at an estimate of total monthly hunter kill using the interview data from Eskimo Point, September, 1982. The letter designations for each category are defined in the text under the section on data analysis. The bracketed statement is a shortened designation for these definitions for the purposes of this appendix.
I. Interview Data, Eskimo Point, September, 1982.

Category		Number of hunters
A	(successful)	102
B	(unsuccessful)	23
C	(didn't hunt)	85
D	(hunted but not interviewed)	14
E	(out of hunt area)	6
F	(activities not known)	8

II. Calculations

1. the known number of hunters who hunted $=A+B=102+23=125$.
2. the success ratio of the hunters that hunted and were interviewed $=$ $\frac{A}{A+B}=\frac{102}{102+23}=0.816=G$.
3. the estimated success of those out hunting but not interviewed $=$ $G \times D=0.816 \times 14=11.4=H$
4. the total number of hunters whose activities are accounted for $=$ $A+B+C+D+E=102+23+85+14+6=230=I$
5. the total number of hunters that could have hunted $=$ $I+F=230+8=238=J$
6. the estimated success ratio of successful hunters interviewed in relation to the total hunters whose activities are accounted for $=$ $\frac{A}{\bar{I}}=\frac{102}{230}=0.444=\mathrm{K}$
7. the estimated success of hunters whose activities are unknown $=$ $K \times F=0.444 \times 8=3.6=L$
8. the estimated total success $=A+H+L=102+11.4+3.6=117=M$
9. the theoretical kill factor $=\frac{M}{A}=\frac{117}{102}=1.14=\mathrm{N}$ These factors are listed in Table 15 for each community by month.
10. the participation ratio $=\frac{A+B+C}{J} \times 100=\frac{102+23+85}{238} \times 100=$ 88.2\%

The participation ratios for each community are given in the odd Tables from 1 to 13.
11. the estimation of mean monthly kill by species $=N \times$ number harvested for each species from the fieldworker's reports for each hunter in Category A. The results of this calculation are summarized in even Tables 2 through 14.

[^0]: ${ }^{1}$ Keewatin Wildlife Federation, Rankin Inlet, N.W.T. XOC OGO

[^1]: 1 See Table 1.

[^2]: ${ }_{2}^{1}$ See Table 1.
 2 It should be noted that consistent data collection by month did not begin until June, 1982 due to difficulties in obtaining a regular fieldworker. Only recently (January, 1984) was it possible to replace the current worker after his resignation in May, 1983.

[^3]: ${ }^{1}$ See Table 1.

[^4]: ${ }^{1}$ See Table 1.

[^5]: ${ }^{1}$ See Table 1.

[^6]: ${ }^{1}$ See Table 1.
 ${ }^{2}$ It should be noted that the fieldworker reports for the month of December, 1982 were not received and communication delays resulted in the loss of this material.

[^7]: ${ }^{1}$ See Table 1.
 2 It should be noted that the fieldworker at Whale Cove resigned in April 1983 and he was not replaced until January 1984.

[^8]: ${ }^{1}$ See Table 1.

[^9]: ${ }^{1}$ These references are listed in detail in the reference section of the report.
 2 "M" means male, "F" means female.
 ${ }^{3}$ DFO, St. John's, Nfld.

