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Preface 
The work described here had its origins in some early studies, using 
classical methods, in the taxonomy of beetles. 'While interesting to me, 
decisions were made about species' limits and generic content based on 
my subjective reactions to the available specimens. During those studies, 
discussions with many people reinforced my feelings of dissatisfaction 
with the subjectivity. This monograph is the result of my attempts to 
minimize its consequences. 

I wish to thank in particular, C.E. Dyte, my colleague from 1956 
to 1966 at the then Pest Infestation Laboratory, Slough, U.K. I also 
thanlc J.C. Gower, then at Rotharnsted Experimental Station, Harpenden, 
U.K., with whom I enjoyed at first regular but now infrequent meetings 
•since 1955. I have appreciated the conunents made by participants at the 
Numerical Taxonomy and Classification Society meetings; by my 

•colleagues in Agriculture Canada, the Canadian Museum of Nature, 
Carleton University, and in Rothamsted Experimental Station; and by 
reviewers of papers submitted to journals. 

I am most grateful to Mark Wolynetz, who read the first draft I 
was prepared to show, and who drew my attention to ambiguities in 
notation and other oversights. Perhaps the real responsibility for any 
errors should be given to my family, who claimed that they understood 
what I had to say, even when I was uncertain of its meaning. 

The spelling in this book follows Webster's Third New 
International Dictionary, the standard reference for scientific publication 
within the department, and is consistent with the Americanization of 
practically everything! 
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Abstract 
The problem addressed in this book, how to reveal the natural groups 
contained within a set of n biological or other objects (Chapter I),  is 
shown to be equivalent to optimal set covering, namely, 

choose x to minimize (ex  I  Ax 	1;x E  {0,1}m) 

where A is an xm incidence matrix of n objects in m subsets, and c is 
a measure of the "cost" of including each subset in the solution (Chapter 
II). It is emphasized that the solution is to be regarded as a hypothesis 
for further investigation. 

Most of the book is devoted to methods for generating the 
subsets, among which are the following: directly from qualitative 
attributes (Chapter IV), from vector dissimilarity (Chapter V), and from 
single and multiple ordered attributes (Chapter VI). From scalar pairwise 
dissimilarity coefficients (Chapter VII), the key principle for generating 
subsets is the recursive principle of conditional clustering: for St  a subset, 
S1+1  consists of all objects whose average distance to the members of S, 
does not exceed the maximum among them (Chapters VI and VIII). 

The costs, c, are obtained from the logical relationships among 
the rows  and  columns of A based on the following observations: the 
more subsets to which an object belongs, the less information given by 
that object about the elements of x; and the more objects a subset 
contains, the more likely is that subset to be part of the optimal solution 
(Chapter II). 

Some special applications are discussed (mainly Chapter IX); a 
series of case studies (Chapter X) illustrates most of the procedures and 
principles. 
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Résumé 
Le thème que l'on traite dans ce livre, la façon de révéler les groupes 
naturels contenus dans un ensemble de n objets biologiques ou autres 
(chapitre I), équivaut à un recouvrement d'ensemble optimal, à savoir 

choisir x de façon à minimiser (ex I AX 	1; x E {0,1}m) 

où A est une matrice d'incidence n  X  m de n objets dans m sous-
ensembles et c est une mesure du coût de l'inclusion de chaque sous-
ensemble dans la solution (chapitre II). On insiste sur le fait que la 
solution doit être considérée comme une hypothèse pour des études plus 
poussées. 

La plus grande partie du livre est consacrée aux méthodes 
d'obtention des sous-ensembles, notamment les suivantes : obtention 
directe à partir d'attributs qualitatifs (chapitre IV), à partir de la 
dissimilitude des vecteurs (chapitre V) et à partir d'attributs classés 
uniques et multiples (chapitre VI). Avec des coefficients de dissimilitude 
couplés scalaires (chapitre VII), le principe fondamental de l'obtention 
de sous-ensembles est le principe récursif de la mise en grappes 
conditionnelle : l'ensemble S, étant donné, S,,, comprend tous les objets 
dont la distance moyenne aux membres de S, ne dépasse pas le maximum 
entee eux (chapitres VI et VIII). 

Les coûts c sont tirés des relations logiques entre les lignes et les 
colonnes de A à partir des observations suivantes : plus le nombre de 
sous-ensembles auxquels appartient un objet est grand, et moins la 
quantité d'information que cet objet fournit à propos des éléments de x 
est grande; plus le nombre d'objets qu'un sous-ensemble contient est 
grand, plus la probabilité que ce sous-ensemble fasse partie de la solution 
optimale est élevé (chapitre II). 

On examine quelques applications spéciales (chapitre IX surtout). 
Une série d'études de cas (chapitre X) illustre la plupart des procédures 
et des principes. 



I Introduction 
Consider a set of individuals (such as animals or plants) about 
which there is no doubt where each begins and ends. It is not a 
colonial animal or plant, and no one, even the least informed in 
biology, doubts the integrity of the unit. Such an individual can be 
described by its size, shape, color, physiology, behavior, 
geographical distribution, and so on. Each individual may belong 
in one of several classes, but which individuals belong in the same 
class, as well as the number of classes or whether these classes 
have diagnostic attributes, are not lcnown. 

To try to solve the three problems implied by this 
ignorance, morphological and other attributes of the individuals are 
studied and described. Although these attributes are verbally well 
defined, in practice they are arbitrary subdivisions of the 
individuals. Where, for example, does an antennal segment of an 
adult beetle begin and end, so that its length can be measured? 
And why choose that subdivision rather ,  than another of the almost 
countless possibilities? The attributes (usually hundreds rather than 
thousands) are chosen often for no better reason than ease of 
access. Their states also have no clear limits, and so have their 
own subjective component. Even though the objects of study are 
well-defined individuals, their attributes are subjectively chosen 
and demarcated. In this example, it is apparent that I believe that 
only the individuals exist, and that attributes are man-made 
abstractions. 

In a second example, consider an area of land where plant 
species seem to be nonuniformly distributed. Here, the problem is 
to define homogeneous subareas, the process that geographers call 
regionalization. One method is to place quadrats, of defined size 
and shape, in some pattern over the region of interest and to 
census the plants according to their ,  species. From these data, 
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contiguous regions of plant associations may be defined. The 
objects of study here are the quadrats, but because they are defined 
arbitrarily, in the sense that the ecologist chooses their placing, 
size and shape, they are equivalent to attributes of the first 
example rather than to the individuals. This distinction between 
objective and subjective units, and also between subjective and 
objective attributes, is important because clustering without 
recognizing the status of the components only adds neglect to the 
ignorance that requires the clustering in the first place. 

In the taxonomic and ecologic,a1 examples, both parts of the 
two-way structure (objects-by-attributes) are important. In a third 
example, suppose a set of observations (discrete or continuous 
measurements of several variables) is made on a set of independent 
objects that are independent sample from some population. To 
reduce the number of variables for future observations, the 
variables can be grouped into subsets from each of which one or 
two can be chosen to represent the whole. Presumably, the 
variables in ea.ch subset should be highly mutually correlated and 
show some independence (complete if possible) from those of 
another subset. In this familiar problem in statistics, the set of 
objects are really no more than a means to an end. This model 
lends itself to well-understood statistical formulations such as 
principal components analysis; however, they are not the subject 
of this monograph. A multi-authored article edited by 
Gnanadesikan and Kettenring (1989) reviewed some of the large 
literature on clustering from a statistical aspect. 

A recent advertisement  fora book on cluster analysis reads: 

This book is intended for investigators ... who are 
involved in multivariate data analysis. The clustering 
procedures developed and analyzed in much detail 
demonstrate methods of exploratory data analysis. From 
the analyses, ... an investigator should be able to pick 
those clustering procedures best suited to his or her 
needs. 



I INTRODUCTION 	 3 

The last sentence expresses nicely what I consider to be the 
questionable component of clustering methodology as currently 
practised. Eclecticism has its place in science and has been 
important in the development of numerical taxonomy; but it should 
now be replaced by something more organized. Although the 
dangers of eclecticisM are obvious, they have not always been 
understood by the practitioners of clustering. One explanation is to 
be seen in human behavior: 

if an agent lcnows that one of its actions will lead to 
one of its goals, then the agent will select that 
action. 

It is not necessary that the agent can give reasons for what is done; 
I claim that many practitioners of cluster analysis choose the 
methods that (consciously or unconsciously) lead to results that 
they already know, or expect, or hope for, or can explain. As 
such, what they achieve is sorne aspect of themselves, which has 
little to do with the subject of the study. Often, they invoke the 
auxiliary principle 

for given knowledge, if action A and action B both 
lead to goal G, then both actions are selected. 

Indeed "it did not matter which method was used; they all resulted 
in the same classification" paraphrases remarks made by many 
authors. Sometimes, several goals are postulated coupled with the 
argument that to achieve their common ground is desirable; this 
common ground represents yet another implicit principle, namely: 

for given knowledge, if goal Gi  has the set of 
selected actions A i»  then the effective set of selected 
actions is their intersection nAe. 
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In essence, this intersection principle leads to a functional 
definition of lcnowledge as follows: 

whatever can be ascribed to an agent such that its 
behavior can be computed according to the principle 
of rationality. 

A structural definition of knowledge is somewhat different and is 
usually concerned with issues about certainty as in "knowledge is 
justified true belief." The latter expresses how the philosopher 
defines knowledge but is not the goal in the empirical world of 
clustering. 

To establish some organization and -unification in the 
clustering world requires that several points be raised, that some 
questions be asked (and answered, if possible), that some problems 
be stated (if they exist), and that some guiding principles be 
determined. I hope that this book will help to clarify some of the 
issues and describe some useful procedures. 

Domain of the study 

Two distinct problems have been labeled as "cluster analysis." 
The first can be stated as follows: suppose there exists a set of 
objects that belong to one or more groups, Z. On these objects, 
some measurements, Y, can be made. If Z is known, in principle 
at least one operator, F, acting from the topological space 
corresponding with Z into a topological space corresponding with 
Y, can be found such that 

Y = F(Z). 

If Z is not fully lcnown, but there is some set of restrictions on it, 
such as that the groups are disjoint, or that the number of groups 
has some specified value, or that the interrelationship of the 
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measurements has sbrne specified form, usually one or more 
solutions for F that give added detail about Z can be found. In 
cluster analysis, this class of problem leads to solution methods 
that include m any variants of "k-means." These methods are 
valuable for circurnstances in which our aim is to form the objects 
into groups. 

The second problem labeled as cluster analysis is the 
inverse of the first, namely, given Y, determine Z, which can be 
formalized as 

Z = F*(Y). 

-This inverse problem is said to be well posed if the operator r 
satisfies three conditions. 

(1) A solution z is unique, i.e., if Fe(y 1) = nY2), then 

Yi = Y2, Y, E Y. 

(2) A solution z exists for any y E Y. 

A solution is stable, i.e., if y is an approximation to y, and 
= r(y) is to z = F.(y), it follows that as –> y, then 

z. 

Although this book is largely concerned with the inverse problem, 
the problem of biological clustering fails to satisfy these three 
conditions unless some further conditions are imposed. But in so 
doing, a dilemma—the need to reveal the "true" classification 
without imposing a solution by inappropriate restraints—is created 
from which there seems to be no escape. Bock (1989) wrote that: 

In order to call a subset L.] a cluster, common sense 
will generally combine various plausible criteria e.g. that 
all objects [in a cluster] must either (a) share the same or 

(3) 
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closely related 'properties', or (b) show small minual 
[...] dissimilarities, [...] or (c) have 'contacts' or 
'relations' with all [or] many [or] at least one other 
object [in the same cluster], or (d) are clearly dis-
tinguishable from the [non-members of the cluster], etc. 

By implication, Bock listed a partial set of criteria by - which 
subsets can be evaluated and converted into "clusters." The wide 
choice implied by the list, makes it almost certain that any 
competent practitioner can combine some criteria and obtain 
subsets to satisfy the needs of a practical problem, such as 
matching the solution with some preconceived classification. Does 
this have relevance to the problem of revealing the true groups? I 
claim that any numerical procedure must be miserly with added 
conditions so that solutions are dominated by the data and flot  by 
restrictions imposed either on Z or Y, or both. 

It is important', therefore, to establish the domain of the 
present study. There are three premises. 

(1) The starting point is a set of real objects for which all 
permutations of any tags assigned to them (using any 
system of tagging or accession listing) are equivalent. The 
tags convey no information beyond that of an accession 
label, i.e., tags are exchangeable. 

(2) An object "acquires" an informative label by virtue of 
being assigned to a labeled subset. It is subsequently 
lcnown as a member of that subset and is referred to as an 
individual of the assigned name of the subset. The tags of 
individual members of such a subset are locally exchange-
able, in the sense of (1) above. By being assigned to a 
labeled subset, the object can be said to join the subset. 

(The operation of "join" is clarified in mathematical terms in 
Appendix 1.) 
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Subsets are either labeled or unlabeled. A labeled subset 
may contain just a single object. Empty labeled subsets are 
conceptually possible and may be useful for hypothetical 
objects. Unlabeled subsets are arbitrary assemblages of the 
objects and are of no particular interest. 

With respect to the tags in (1) above, it is readily adrnitted that 
biological objects have provenance and other concomitant data that 
may be extensive. It is important to use these data fully, 
recognizing that clustering should be adopted only after these data 
are found to be unsatisfactory or of dubious quality. 

The establishment of labeled subsets forms the primary 
focus of this study. This process, often called clustering and in 
biology usually called phenetics, is concerned with arranging the 
(biological) facts. 

Con.sistency 

This book considers a given set, N, of n objects, each individual 
of which is described by a set of m attributes, M. The arguments 
are presented as if the whole population consists just of N. If this 
is true, then either little more than a convenient and possibly 

concise description of the objects can be achieved, or some model 
of their relationships can be generated. However, in the taxonomic 
problem underlying this study, the N are a sample of the many 
individuals belonging to the (unknown) taxa. If the groups formed 
by the procedures described here do not apply to all rnembers of 
the taxa, it would be wasted effort. As a result, three consistency 
requirements are needed. Let k(N,M) be the number of labeled 
subsets identified using the empirical data. 

REQUIREMENT I.l.. For a fixed set of attributes, M, 
—> K < Co , 

(3) 
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i.e., the number of labeled subsets has a finite limit independent 
of n. Arguments to support this requirement come from 
considering the reduction's described in Chapter II. Without going 
into details, including more objects identical with those previously 
included should not change the solution. If the new objects 
introduce further unlcnown true groups, the value of K tends to 

• increase. 

REQUIREMENT I.2(a). For a fixed set of objects, N, 
--> K < 00 , 

i.e., the number of labeled subsets has a finite limit independent 
of M; 

REQUIREMENT 1.2(b). Further, the membership of the 
labeled subsets becomes stable. 

Arguments in support of I.2(a) and I.2(b) come from the fact that 
although the attributes may be chosen independently, each set 
belonged to a viable individual, and so are mutually 
interdependent. If the choice of objects to be studied and the 
selection of attributes to describe them are independent, these two 
requirements can be combinexl to give: 

REQUIREMENT 1.3. /imn..., imi k(N,M) --> K < 00 . 

It seems likely that the rate of approach to K is slower for 
increasing 1MI than for increasing  NJ.  Unless requirements  1.1 
and 1.2, or possibly 1.3 alone, are satisfied, solutions to the 
biological clustering problem can have no generality. In Chapter 
VIII, I attempt to show that these requirements can be satisfied. 

Several other assumptions, common to large areas of 
classification and clustering, are implicit in the previous remarks. 
They arise tacitly when an object is subdivided into different 
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components, some of which it has in common with other members 
of the group to which it truly belongs; others are unique to the 
individual, including the consequences of the interaction with the 
environment. These assumptions are as follows: 

Each object is characterized by underlying attributes. 

For example, an animal, plant, or some artifact produced by them 
reflects its genetic make-up. Only those attributes common to the 
true group can be called the group parameters. 

Attributes depend only on the group parameters, the special 
parameters of the individual, and on chance. 

An example of this subdivision is the gene pool common to a 
species, the particular combination of alleles possessed by one 
individual, and the response of these to the effects of the set of 
external conditions to which the organism was exposed. The 
special parameters and the chance phenomena are usually no more 
than of secondary interest and can be grouped together. 

Measures of dissimilarity depend only on the group 
parameters. 

They do not depend on the special parameters of the individual, 
i.e., dissimilarity between two groups should not depend on which 
sets of individuals are chosen to represent the groups. 

The values of the group parameters, i.e., thé "event" .  for 
which an object is seen, can be represented by continuous 
distribution functions. 

The group parameters need not be directly observable nor need 
they coincide with the attributes. 
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The objects are stochastically independent given the local 
group parameters. 

Colonial and clonai  organisms illustrate circumstances where the 
individuals are not independent in this sense. 

The estimated statistics, obtained by clustering or other 
methods, must contain all the relevant data about the group 
parameters in the study. 

The validity of these assumptions in any context should be 
examined with special care. An organism is an integrated entity, 
not a collection of attributes. If in its evolutionary history an 
attribute has changed, this change is unlikely to have occurred 
without incurring changes in other attributes. An organism is 
atomized into attributes almost always for our own convenience; 
rarely, if ever, is it a property of the organism. 

Grouping, phylogeny, classification, and identification' 

Only when unlabeled objects are formed into several distinct, 
labeled subsets can we consider either identification, i.e., how to 
assign further objects to these subsets, or to infer what may have 
been their phylogenetic relationships, i.e., to consider the labeled 
subsets in a cladistic framework. Cladistic practice is considered 
only peripherally in this monograph, although evolutionary theory 
is not ignored. Unfortunately, the different aims of the three 
distinct objectives—division into labeled subsets, identification, and 
phylogenetic reconstruction—have  often been confused, resulting 
in much polemic. Sometimes they have not been confused but 
linked. Gower (1974) argued that "the best classification ...[is] 

The re,ader uninterested in my opinions can omit this section. 
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the one that predicts the most characteristics correctly" basing this 
contention on reasoning quoted from J.S.L. Gilmour: 

[if] a system of classification is ... natural [,] the more 
propositions there are that can be made regarding its 
constituent classes. 

Gower recognized that the reverse, i.e., the more propositions that 
' can be made that are correct, the more natural is the system of 
classification, is not necessarily true. This link, however, can 
result in groups exhibiting attribute uniformity and so enables 
efficient identification. In consequence, such classifications have 
high empirical value, but because the relationship among members 
can be incidental, they are inconsistent with the objective of 
phylogenetic reconstruction. 

Another link advocated is between group formation and 
phylogenetic reconstruction, for which there are two premises. 

(1) For the true phylogeny, there is a root. 

(2) The true phylogenetic history is ultrametric with respect to 
time. 

- This second premise means that if the time since any two entities 
separated measures the amount of nonresemblance, the three times 
(i.e., among the entities and their most recent common ancestor) 
form an isosceles triangle. The problem is that, not knowing when 
separation occurred, a surrogate, e.g., morphological dissimilar- ity, 
is used in its place. The use of this surrogate is sometimes 
supported by a (disputed) claim that there is a 

uniform average rate [of evolutionary change which] is 
nothing more (or less) than the inevitable result of 



12 I INTRODUCTION 

averaging over billions of nucleotides and millions of 
years. (Sibley and Alquist 1984) 

This statement implies that differences in morphology (at least for 
nucleotides) are proportional to time. In data considered for 
clustering, which normally do not include the nucleotide patterns, 
usually nothing links the objects with evolutionary time. The 
material consists of objects collected within the recent past (most 
specimens in museums, for example, are not more than 300 ye,ars 
old); furthermore, their study is provoked by information 
consciously or otherwise observed on living material. 

The first major question that arises about a link between 
group formation and phylogenetic inference is to deterrnine if 
morphological difference is relevant. To explain in more detail: 
evolution tells us 

species that diverged recently are generally more 
alike'than those that diverged earlier. 

But the converse is lcnown to be false (consider plant hybridization 
followed by polyploidy). Not only can recent separation fail to 
imply high similarity, but also it can be false that species that are 
alike diverged recently. Unfortunately, the only data that can be 
used to measure the degrees of resemblance are a subset of all 
possible attributes either treated separately or integrated in some 
way, such as -into a dissimilarity coefficient or the amount of DNA 
hybridization. Thus the only thing that we can be certain to 
achieve, if anything is ever certain in this area, is that 

clustering based on morphological differences 
identifies groups of objects that resemble each other 
more than they resemble members of other groups 
with respect to the available attributes. 
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This conclusion identifies a dilemma. Taxonomists seek a 
classification that reflects the evolutionary history of objects 
understudy (or the entities they represent). Yet they have no 
guarantee of success, because many complex issues arise from 
evolutionary parallelism and convergence. The equating of an 
ultrametric structure based on morphology, physiology, and so on 
with an ultrametric temporal arrangement to represent the 
phylogeny cannot be defended, not the least arising from the fact' 
that evolution is a continuing process, so that not all distinctions 
are sharp. 

This dilemma cannot be resolved without maldng further 
assumptions. One such is to adopt Occam's maxim (the parsimony 
principle), to say that evolution proceeded by the shortest pathway 
(e.g., Moore 1976, Wagner 1981). This assertion not only seems 
arbitrary, because it rules out parallelism and convergence, but 
also there seems to be no palaeontological evidence for it 
(Hoffmann 1989). The ontogenic implication of the assumption is 
also hard to accept; how does an evolutionary lineage "know" 
where it is going? Crisci (1982) discussed other weaknesses in it 
as a principle of evolutionary inference. 

There are also some other dubious components within 
current methods of numerical cladistics. Current methods are based 
on an assumed (but unlcnown) hierarchy, within which reticulation, 
and the consequent polyphyly, cannot be accommodated naturally. 
It is well lcnown that hybridization followed by polyploidization is 
common in plants and often leads to reproductive isolation from 
the parent species. This isolation implies that organization in 
nature can be reticulated as well as hierarchical, i.e., taxa need not 
be monophyletic. Usually at the start of cladistic analysis, entities 
considered to be bastard species are excluded but subsequently 
incorporated when a cladogram is established (Bremer and 
Wanntorp 1979, Humphries 1983). The effects of this selection 



14 I INTRODUCTION 

can be to negate precisely those properties that make an acceptable 
cladogram (Mossbrugger 1989). 	 - 

Further a number of mathematical and numerical problems 
exist in current numerical cladistics. The most challenging is how 
to accommodate continuity within the same framework, which 
results from the passage of time, and branching, which is basic to 
phylogenetic models. Most authors adopt a somewhat cavalier 
attitude in their treatment of continuous attributes, either asserting 
that there are sufficient discrete attributes to omit those that are 
continuous, or proposing that continuous attributes be categorized. 
Discarding attributes, or their often ad hoc categorization seem 
dubious. 

After careful study, Soh' (1985) summarized the situation 
as follows: 

Numerically estimated cladograms are not good estimates 
of the true phylogeny of a group of organisms. The 
shortest trees are not necessarily closest to the true tree. 
Differences between true cladograms and phenograms or 
between phenograms and estimated cladograms can be 
explained as the results of homoplasy or divergence. 
Estimated cladograms are affected almost as much by 
homoplasy as are phenograms. As the number of 
characters decreases or the number.  of [objects] 
increases, phenograms become better e,stimates of the 
true cladogeny than estimated cladograms. [...] Even the 
inclusion of fossils in the data matrix does not 
substantially increase the quality of the estimate of the 
phylogeny. The topology of the true tree is a critical 
factor in determining the quality of its estimate. Such 
results are not causes for optimism for those who wish 
to estimate phylogenies. (p. 746) 
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I do not think the situation has changed since then. McNeill (1982) 
expressed a similar point of view based on different arguments: In 
1983 Gower wrote that 

... both cladistic and phenetic classification are 
worthwhile pursuits but ... it should be recognised that 
cladistic classification, which pertains solely to biological 
material, needs many more assumptions than do phenetic 
and predictive classification. Thus character-states have 
to be ordered from least to most primitive, outgroups 
may need specifying and decisions have to be taken 
about reversals and compatibility. Intermediate states of 
characters and/or unlcnown intermediate taxa are 
postulated. All this seems ... to make any proposed 
cladistic classification more speculative than predictive 
classification especially when it is recalled that the data 
to support it rarely, if ever, are complete or entirely 
reliable. 

This quotation from Gower does not offer any arguments against 
numerical cladistics but nicely summarizes the additional 
information required to bring about a solution. In a different 
context, Wilson (1985) wrote that 

[the] biogeographic theory [of P.J. Darlington] dwarfs 
the spiritless mechanics of the extreme cladistic school 
that was to follow, ... method substituted for theory, 
technique confused with science. 

Sneath (1983) gave a thoughtful and rancor-free discussion of the 
contrasts and similarities between phenetics and cladistics. 

Many authors have argued that clustering without the 
explicit objective of establishing the evolutionary history of a 
group is vacuous; in one sense, I agree. However, to adopt 
parsimony as a principle guiding numerical procedures in 
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phylogenetic reconstruction, and then to assert that the structures 
so formed give (almost) correct pictures of the phylogeny, seems 
presumptive or even self-deceptive. It certainly shows circular 
reasoning. One argument adduced to support the parsimony 
principle is that no other yet proposed appears reasonable and 
leads to an operational principle for extracting information from 
data. However, another long-established class that may satisfy 
these two needs is based on compromise between conflicting 
principles. This model is that the source of changes in an 
evolutionary lineage can be ascribed to two main causes. 

(1) Increase in variation caused by mutation, errors in DNA 
replication, chromosome rec,ombination and so on, i.e., 
genetic variation results in a process of entropy 
increase. 

(2) Decrease in variation as a consequence either of 
inbreeding, which can be regarded as being passive, or of 
selection in the sense that noneffective extremes do not 
survive, which is an active process naïvely equivalent to 
the "survival of the fittest," i.e., selection is an entropy-
reducing process. 

Thus in this model of evolutionary change, rather than parsimony, 
there is balance between 

an entropy-generating process, 

presumably genetic in origin, and 

an entropy-reducing process, 

presumably environmental in part. This division is an informal 
presentation of the fundamental dieorem of R.A. Fisher (1958), in 

16 



17 I INTRODUCTION 

which natural selection is considered to be the only force 
responsible for optimizing biological systems, and which leads to 
a monotonic increa.se of population mean fitness. It is well 
recognized, however, that where there is mutation and random 
drift, this theorem dOes not hold, and population fitness may 
decrease over time. This model requires further development 
before it can be used for modeling macroevolution, although 
inbreeding and random drift have been argued as providing a 
sufficient mechanism. However, its value as a model of 
microevolution have long been established. 

The reader will find that the procedures described in this 
book for group formation also consist of a compromise between 
two processes—maximum entropy and maximum information 
(minimum entropy)—analogous to the model described above. 
Maximum entropy (e.g., maximizing variance) serves to generate 
(probability) measures for subsets of the objects. Maximum 
information (e.g., minimizing variance) is used for choosing 
particular subsets. Nevertheless, these procedures should not be 
understood to have established anything beyond resemblance 
among the individuals of members of these subsets. I do not assert 
that the groupings obtained by the procedures advocated in this 
book need have any phylogenetic significance. The fact that one 
model is described as being analogous to another does not 
represent an assertion that one deductively explains the other. 
Analogy can only be supported by its effectiveness; it reduces a 
theory into as many others as there are analogies; it is heuristic. 

Complexity, simplicity, descriptions, and clustering 

Because even the simplest organisms are complex, it is a challenge 
to find a simple répresentation of them; consider for example the 
DNA sequence of a virus. It may be of some value to discuss 
complexity and simplicity from a formal simplified standpoint. 
Suppose x is a finite String of zeros and ones, and that Ix I denotes 



18 I INTRODUCTION 

its length (the number of zeros and ones). Intuitively, a string is 
simple if it  cari  be described in a few words (e.g., the string of a • 
thousand ones), complex if it cannot be described so simply, and 
random if it follows no rule and, to describe it, its elements must 
be listed. 

A device, T, which can interpret descriptions such as "the 
string of a thousand ones" is called a decoder. A program, p, can 
be considered to be "a description of x" if, when p is input to T, 
the output is x, i.e., 

T(p) = x, 

assuming (for simplicity) that no extra information besides p is 
needed to obtain x. If p E {0,11 . , the unconditional Kolmogorov 
descriptional complexity, K(x), of x relative to decoder T is 
defined by 

K(x) = min{ ip I : p E  {O,1}' & T(p) = x} , 

where T is assumed to be the universal Turing machine. If 
K(x) >_ lx , the binary string x is incompressible; such strings 
pass the usual tests for randomness. 

Suppose there exists a set of transformations, C(p), of p 
that produce a program p' such that T(p') = T(C(p)) = x, and for 
which K(p') < K(p); then it can be asserted that p' is less 
complex, i.e., simpler, than p. If p' is unique, the transforniation 
system is called Church-Rosser after the two logicians who 
formalized theorems on the subject. 

Suppose a biological object, i, can be represented by a 
binary string i of length I ; it can be assumed that even if i is 
incompressible, Iii  is a huge number for all practical purposes (it 
may even be infinite). The problem in biological objects is that 
each is represented by an empirical description, xi, a subset of i. 
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Thus I xi  I 5_  I ii , and because biological objects are empirically 
obserVecl, it must be true with probability unity that xi  is a 
proper subset of i and that strict equality can never apply. It 
follows that K(x i) < K(i), the inequality also being strict for the 
same reason. 

It also follows that even if a program pi' can be obtained 
that is simpler than pi, it refers to xi, and only indirectly to object 
i; and even  if p'  is unique with respect to xi, it need not be unique 
with respect to i. 

The conclusions of this line of reasoning are as followS: 

(1) 	The only possibility to describe an object simply is to find 
the pi (x) such that T(pi (xi)) = xi. 

(2) 	That even ify(x i) = p' (x;), or even ifp(x i) = p(xi), it does 
not follow that object i = j, where the last equality means 
identical in all respects. 

That a clustering consists of a series of transformations, C, 
either of 
(a) the complete set of descriptions, fri , i = 1...n}, 
or 
(b) the complete set of programs, {p(x i), i =  1.., 
or 
(c) the complete set of programs {p 1 (x), i = 1...k}, 

to obtain a new program, P, such that 

(i) T(P) < E T(p(x)), and 

(ii) T(P) correctly assigns any input to its correct output. 

Translating these three into practical issues, a choice has to be 
made on how to represent the set of objects, i.e., to determine the 

(3) 
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{x i}, what are the pi' for each object, which may be conditional on 
the set of objects under study, and what are the transformation 
rules to obtain P. 

Numerical clustering 

Because there is no reason to assume that organisms resembling 
each other closely are recently diverged, this study is confined to 
empirically measured resemblance. Further study of each group 
may eventually reveal unsuspected heterogeneity, some of which 
may have resulted from parallelism, convergence, or just from 
previously inadequate description. At some stage, a taxonomist 
may consider that there are sufficient data to propose a structure 
representing the phylogeny of the established groups. This step 
generally ends an investigation rather than providing the model for 
g-roup formation. Thus the surrogate for establishing evolutionary 
relationships is the forming of groups of objects that resemble each 
other. Each group should then be examined further for evidence 
against a hypothesis of homogeneity. 

Phenetics, as here studied, is equivalent to having a (finite) 
set of objects, each of which has the same (prior) probability of 
membership to any of a large family of unlabeled subsets. The 
process of establishing labeled subsets, as already described, 
ideally changes the probability of membership of each object to 
one of the subsets to.unity, and to the remaining subsets to zero. 
Thus the process of establishing labeled subsets changes our initial 
knowledge of the objects, which has no structure and therefore has 
maximum entropy, to a (relatively) complete structure, which 
therefore has maximum information (i.e., minimum entropy, 
maximum negentropy). There is no need for the solution to be a 
hierarchy, nor for the labeled subsets even to form a partition. 

The general objective, therefore, is to generate a subset 
system (a family of subsets) frorn the elements of a set. This 
process is called either clustering or cluster analysis analysis, to 
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meet the demands of language. The elements, the units of 
clustering, are called objects; usually, an object has attributes, 
but what constitutes an attribute and what constitutes an object 
depend strongly on the material under study. This monograph 
focuses largely on the problem described in the opening paragraph, 
which is the continuing problem of taxonorny and classification. 
The ecological problem is also considered. 

Although one reason for clustering is to group the objects 
to satisfy some need for homogeneity, it does not (or should not) 
pretend  to give a final answer to the question about the existence 
of "true" groups within the objects of interest. The most that 
clustering should be expected to do is to generate one or more 
hypotheses, each consisting of a subset system, which are 
groupings of potential interest. These groups can then be examined 
and provisionally accepted or rejected based either on the same 
data or, preferably, on more data which may themselves generate 
hypotheses of interest. These hypotheses should be compared with 
others, e.g., classifications based on traditional procedures, or on 
the definition of diagnostic attributes (in taxonomic studies) or on 
some lcnown diagnostic species (in ecology) or geographical 
contiguity (or both). The concordance (or otherwise) of the newly 

proposed hypotheses with the previously accepted classification can 
often be examined by formal statistical procedures. A new 
clustering becomes really useful iff (if, and only if) there is no 
consistency with previous classifications, because it challenges the 
clusterer to defend the new arrangement. Remember that even if 
numerical clustering appears to be objective, it is not, because the 
attributes in taxonomy are subjectively chosen and defined, as are 
the sizes, positions, and shapes of quadrats in ecology. Perhaps the 
only criteria available to assess a classification are based on two 
practical needs. First, the labeled subsets should be stable with 
respect to the attributes that are chosen, i.e., for different 
attributes, the same subsets (or at least, a consistent family) are 
obtained. Second, the essential differences among the labeled 
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subsets are not changed by including more objects. If in an 
empirical study the three consistency assumptions (re,quirements 
I.1-3) are not satisfied, the classification achieved should at best 
be considered as tentative, but preferably rejected. 

Mathematical and nonmathematical classification 

Classification, in a mathematical sense, is a set of transformations, 
a program of logical tautologies, which convert a set of clearly 
defined facts into their unique simplest form such that interrogation 
of the latter answers all questions about the former. Golomb 
(1961) considered 

that classification is the most fundamental objective in 
mathematics [and because it] is a familiar process to the 
layman ... the fundamental classificatory problem can be 
described in non-technical language. 

Golomb considered the following three problems: 

enumerating how many categories there are 

listing invariants, which asks for properties common to all 
members of the same • category (their completeness, 
independence, and legitimacy are crucial) so that 
equivalence classes can be defined 

finding representative assemblies of objects (having or 
knowing about one of each category is the collector's 
ambition); given a precisely defined equivalence class, the 
"canonical" representatives follow at once. 

From another point of view, in classification, given objects i and 
j, together with a statement about the relationship between them, 
iRj , which can be recognized unequivocally as being true or false, 
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find classes x and y such that a statement xR'y implies iRj and also 
that iRj implies xffy. 

Beyond the mathematical world, these three problems are 
neither distinct nor do they have precisely understood or definable 
rules'. For example, constraints need to be imposed on 
enumeration, partly because of the size of the task (this size has 
tended to dominate clustering but not classification) and partly 
because of the properties of the supposed invariants. The latter, 
however, cannot be defined until either the categories are known 
or the representative assemblies are recognized. In clustering, both 
R and R' are empirical and are neither true nor false; they are 
measurements whose accuracy is important but only incidently to 
the problem of clustering. In clustering, everything is fuzzy; the 
facts are not clearly defined, the transformations have an intuitive 
component, the simplest form is unknown or unrecognizable, and 
the number of distinct questions is infinite. Classification is not 
identical with clustering, although there are many points in 
common . 

Many authors on clustering have pointed out that the 
problem of disjoint group formation is equivalent to the 
mathematical concept of set partitioning. The biological problem 
became restated as the need to find the partition that maximizes the 
combined within-group homogeneity, or, equivalently, maximizes 
the between-group heterogeneity. Of several difficulties in 
translating these formulations into practical algorithms, the most 
important is that the number of partitions of more than a few 
objects is huge, malcing infeasible (even with today's computers) 
a consideration of them all. Several heuristic solutions to this 
problem have been advocated; for example, examining a large 
number of partitions either by choosing at random from the set of 
all, and retaining the best by whatever criterion is chosen, or by 
choosing some starting assignment (random or informed) followed 
by some relocation scheme to see if there is any improvement. A 
recent and interesting proposal for this class of procedure by Klein 
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and Dubes (1989), which is based on simulated annealing, shows 
some promise for a restricted set of circumstances (large data sets, 
tight Gaussian clusters). 

These heuristic attempts to find an optimal partition offer 
no guarantee that the solution obtained is within some reasonably 
small region of the global optimum. Furthermore, the optimality 
criteria themselves are not usually an integral property of the 
objects but tend to be based on statistical principles, such as an 
assumption of multivariate normality. Thus the solutions found are 
approximations to the problem of partitioning the objects into a 
number of subsets having common (or occasionally different) 
within-group covariance matrices, differing in means, and so on. 
Often there is a need to specify the number of subsets, as well as 
a significance test. If the objective is to form the objects into 
subsets satisfying these statistical constraints, then this class of 
methods offers acceptable solutions. If the objective is to recognize 
natural groups, the statistical models are far too restrictive. Why 
should the range and pattern of variation in a species be the same 
as those of other under consideration, or for that matter, even be 
multivariate normal? 

Even if there are good answers to these questions, there 
seems to be a flaw somewhere. Perhaps it lies in the framework, 
even though the definitions are often clear and verifiable. One 
source of confusion perhaps is in the ambiguous use of such 
common terms as cluster analysis. For some authors it is confined 
to obtaining partitions; for others it implies hierarchically 
structured partitions (i.e., dendrograms). Others miss the real 
distinction between the objective, if specified, and a numerical 
procedure that divides objects into subsets. An example of clearly 
stated conditions made to obtain a tractable formulation of the 
partitioning problem follows: 

A typical problem in cluster analysis is the following: let 
X be a fmite set of points in some Euclidean space, 
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X C IV, and let p:X  X X -Rbeafunction  defined on 
pairs of points, expressing their unsimilarity. [...] The 
problem is to find a partition X = US2 U...; of the 
base set into p groups (p is fixed) such that some 
objective function h(Sp...,Sp) is minimized. (Boros and 
Hammer 1989) 

Questions I ask here for the biological clustering problem include 

Why is there a constraint to a Euclidean space? 
Is there a reasonable dissimilarity function? 
Why does the solution have to be a partition? 
From where should the value of p be taken? 

Another set of clearly stated conditions appears to have 
been made to allow use of what has become known as the greedy 
algorithm. This sequential class of procedures gives solutions that 
are locally optimal but can be far from so globally. An example of 
this class is to find the Pair of objects that are most alike (or have 
something in common) and join them; then to replace them by 
some compound, regarded as a new object; finally to repeat this 
process until either some termination criterion is satisfied or all 
objects are in one group. The history of this joining process 
produces a dendrogram, which has the same form as a 
phylogenetic tree. Those dendrogram methods that use a final 
criterion either to produce a forest rather than one tree, or to cut 
such a tree after it is formed, or to prune and graft branches, also 
need to define an appropriate criterion. Unfortunately, many of the 
plausible criteria proposed for these purposes tend to'be global in 
nature. In so doing, they result irrgroups differing in position but 
otherwise having essentially the same within-group variation 
patterns in some mathematical space. For reasons similar to the 
random start procedure, although this class of methods may be 
adequate for forming groups, for recognizing them it is dubious. 
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Usually, whole-object measures of resemblance are used, 
but one class of techniques uses individual attributes with or 
without a specified ordering of their states, forming a dendrogram 
by some compromise or consensus among them. This class of 
methods is also dubious, because the attributes tend to be 
arbitrarily defined, yet cannot be independent because they belong 
(or belonged) to viable organisms; the attribute states are also 
arbitrarily defined (and sometimes sequenced) by the scientist. An 
arrangement of attributes, each treated independently, does not 
imply to me a valid arrangement of the individuals unless it 
coincides with an arrangement in which the individuals are either 
treated as wholes or can be shown to be equivalent. The distinction 
between the two approaches can be represented by the categorical 
model in Fig. 1.1. The abstract space for E(.) is of the attributes, 
and the objects are points in this space; the abstract space for T(.) 
is of the objects, and the attributes are points within it. 

Observations 	Transformations 

0-1 data 	  

Convertible to 0-1 --> (11) 

Subset 	Solution 
phase 	phase 

(WY) 
__+ 

Univariate ordered 	(111) 	(VI) 	(I1) 

Mixed data 

Resemblance data -30' (V1.1) 

Fig. I.1 Chapter sequence relevant for grouping given different initial 
circumstances. 
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The common ground to the numerical methods for 
partitioning and dendrogram formation is a local heuristic 
criterion, which is 

consider the current situation, and make the best 
local change consistent with some specified 
criterion. 

This general procedure can certainly be effective for clustering, 
and in fact, the coincidence of dendrogram structure with that of 
a phylogenetic tree has sometimes been claimed to solve the 
evolutionary reconstruction problem. Although many publishe,d 
studies have adopted this class of methods, it is also true that many 
sets ;if data processed by these methods have yielded groupings 
that those who know about the organisms find no reason to 
support. Consequently, the resulting classifications do not .get 
beyond the computer screen. Although eclecticism in science, 
especially in the context of incomplete lcnowledge of the external 
world, stimulates the search for unification, this selectivity of local 
criteria and definition of compound objects, as well as lack of 
published reports on failed clustering attempts, point to an 
unsatisfactory situation. 

Outline of the monograph 

Origins 

After attempts to remedy some of these problems, including how 
• to obtain groups from dendrograms, how to avoid the need for 
compound objects, and how to obtain each group independently of 
the others, it became clear that a new criterion is needed. Although 
this monograph presents arguments for this new criterion as if it 
emerged logically from first principles, I did not recognize it in 
that way. Before stating this criterion, it may be of interest to 
outline how it emerged. 
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The first idea appeared in some unpublished notes made in 
1972. It was that the nearest neighbors of an object are the subsets 
of objects with which it forms a maximal clique with  respect  to 
some threshold dissimilarity. There followed a need to find the 
best threshold (Lefkovitch 1975). In turn  I recognized this 
threshold as being deficient in that it was necessarily global. What 
at first appeared to be a difficulty, the fact that maximal cliques 
were not always disjoint, also helped me to recognize that the 
range of variation within one disjoint subset of the objects had 
little necessary relationship with that of another. I also realized 
that different subsets of the objects in a given dissimilarity space 
may be contained in minimal (convex or other) hulls, which not 
only differ in position but also differ in size, shape, and 
orientation. 

In some ways, the second and perhaps most important 
contribution came from the elementary mathematical principle of 
linear ordering: in grouping ordered events (e.g., observed at 
different times), candidate groups can be defined by pairs of 
events, to include those events occurring between. This simple 
principle of betweenness (W.D. Fisher 1958) was really where the 
ideas of this monograph began. Their extension led to the 
definition of neighborhoods in higher dimensional space and 
ultimately to the procedures redescribed in Chapter VIII. The 
resulting general principle, that of conditional clustering, forms 
the basis of this study. In its most general form it is that 

if some objects have been grouped together, 
determine the others also belonging in the same 
group. 

When this principle is applied to a set of data describing some 
objects, a series of subsets are independently formed. The logical 
relationships among these subsets generates a covering, from 
which classifications are obtained. 
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Having established the principle and expressed it 
mathematically, it then became important to strip away as much of 
the unessential detail as pC)ssible. In so doing, I began to identify 
which parts are logical consequences of the neighborhoods, and 
which parts are included, as it were, de novo. In this way, those 
parts essential to solutions of the clustering problem became 
recognized. This search for the essentials is in the spirit of the, 
following: 

Occams Devise ist naturlich keine willkiirliche, oder 
durch ihren praktischen Erfolg gerechtfertige, Regel: Sie 
besagt, dal3 unntitige Zeichenheiten nichts bedeuten. 
[Tr.: Occam's maxim of course is neither an arbitrary 
rule, nor is it justified only by its practical success; it 
signifies that Unnecessary symbols have no meaning.] 
(L. von Wittgenstein, Tractatus Logico-Philosophicus, 
§5.47321) 

Further simplifications beyond those considered in Chapter 
II may be possible, perhaps in developing measures of the 
properties of subsets and in the consequent clustering criterion, 
although it is, unclear from where these generalizations may come. 
One note of caution: no matter how plausible are the arguments in 
this monograph, it is important that we use the procedures, and not 
that the procedures use us. Thus we should not choose the data to 
satisfy the models but seek the model that is consistent with 
the data. 

The group formation model that is described in this book 
I call conditional clustering. Its sequence of operations is 

assembling or generating subsets 
reductions 
probability and information calculations 
least-cost set-covering 
muster formation. 



30 I INTRODUCTION 

Structure 

The sequence of chapters does not parallel the sequence of 
operations exactly; a notation, the reductions, probability, covering 
and muster phases are described in Chapter II, while the 
assembling of subsets, which is spread over chapters 
reflects the many ways objects may be described. Chapter III 
describes methods for converting attribute descriptions into 
numerical code appropriate for subset formation. Chapter W 
describes an application of the reduction rules of Chapter II to 
clustering without any formal measure of pairwise resemblance 
(i.e., the Le(.) transformations; Fig. 1.2). Chapter V describes a 
pairwise vector dissimilarity between objects and introduces a 
•further transformation rule, based explicitly on the conditional 
clustering principle. In this chapter, the possibilities for the T(.) 

•transformations (Fig. 1.2) are begun. Chapter VI considers a 
special case, namely, clustering univariate data, which has 
potential application in the grouping of means after analyses of 
variance and deviance. Chapter VII describes some dissimilarity 
measures and discusses what their properties may be, while 
Chapter VIII shows how these dissimilarities may be used. 

{individuals; attributes} 	{arrangement of attributes} 
E (1) 

IT(i)

E (2)  

T(2) 
(arrangement of individuals} -› {classification} 

Fig. 1.2 Categorical model for deriving classifications of objects, where 
F.:(.) represents the transformations of the attributes into a classification, and 
T(.) represents the transformation of the set of individuals into a classification. 
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Chapter IX describes a number of illustrative special applications. 
Chapter X collects together a number of numerical examples and 
case studies. It is important for the reader to refer to these 
examples when cited in earlier chapters, at least on a first reading. 
Appendixes 1-6 include material that provides background support. 
For a limited reading appropriate to special classes of data, see 
Fig. 1.1. 



II Set covering 
In this chapter, the clustering problem is expressed in a formal 
mathematical notation, and some standard symbols are introduced. 
Details of definitions, i.e., how some empirical concepts are 
distinguished and represented, are postponed to later chapters. 

Defmition of A 

Assume that a finite set, N, of cardinality n = I NI objects is 
under study, and that a system of m subsets is either given or 
obtained in some way as described in later chapters. This subset 
system can be represented by anxm incidence matrix, A, with 
elements aik  defined as 

{ 
aik = 	

1 if object i is an element of the le subset, 

0 otherwise. 

Without loss of generality, the ordering of rows of A representing 
the objects is in some fixed but arbitrary sequence. The eh  object 
is denoted by the m-element vector i, the lcua subset by the 
n-element vector k. A clustering of the n objects is the family of 
subsets of the objects indicated by a selection of some columns of 
A. The major constraint on the choice of columns is one so 
obvious that it is generally unstated but here forms the springboard 
for this study; it is that 

the choice of columns must be such that each object 
belonging to N must be assigned to at least one 
subset. 
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This requirement can be represented by any m-element (binary) 
column vector x  E  {0,1}m that satisfies the ordinary matrix 
algebra relationship 

Ax 	1, 

where 1 = ln  is a n-element column vector whose elements are all 
equal to unity. This requirement implies that Alm  ln . Any x 
satisfying this constraint is called a covering of the n objects. If 
the subset system represented by A is such that no x satisfies these 
constraints, the problem is infeasible, i.e., some objects under 
study do not belong to any subset represented in A (presumably, 
they are isolated objects). If the constraint is the strict equality, 
Ax = 1, those subsets indicated by xk  = 1 together form a 
partition of the n objects. It is quite possible that no x satisfieS 
this constraint, i.e., no partition is consistent with A, yet a 
covering can exist. (The covering constraint can also be expressed 
as the Boolean matrix equality AX =  1,  but because this 
expression does not distinguish a partition from a covering, it is 
less convenient for some of the subsequent development.) A 
covering is called irredundant if the replacing of any element 
equal to unity in x by zero results in infeasibility; otherwise it is 
called redundant. Partitions are always irredundant, but coverings 
need not be. The arguments against requiring strict equality are 
twofold. 

(1) 	All partitions are coverings, but not the reverse; 

thus if the objective of the study is to form a partition of the 
objects, and inspection of the optimal covering solution shows that 
it satisfies the strict equality, the obtained partition can be regarded 
as having a greater support than if the only admissible solutions 
are partitions. 
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(2) 	An empirically obtained A may be such that there is no 
partition. 

The first argument is perhaps the more important, because 
requiring a solution from a restricted class is consistent with the 
desire to form subsets rather than the need to reveal them for 
taxonotnic purposes or evolutionary considerations. For example, 
nondisjoint subsets may suggest either subspeciation or 
hybridization. By contrast, that two subsets may have some objects 
in common need not mean that two true groups overlap; the non-
null intersection may solely reflect of the inadequacy ,  of the 
empirical observations to represent the underlying structure. Thus 
any clustering procedure claiming "to partition [the] observations 
into mutually exclusive groups" (Binder 1981), i.e., whose 
mathematical apparatus is constructed in such a way that the 
consequence is necessarily a partition, is here rejected as being 
inappropriate for the taxonomic problem. 

As described in Chapter I, to determine the best partition 
of a set of objects appears to require the generation of all the 
partitions, followed by an investigation of some criterion for 
choosing among them. If XlogeX = n, the nUmber of partitions of 
n objects is given by the Bell number 

B„ = e-i E(lelk!) 	.Xn+ 1/2  

(Riordan 1958), which is very large even for small n. The number 
of coverings of a set is clearly much larger, because it includes the 

partitions, and is of order 22 (Clarke 1990). However, if A is 

defined to be the incidence array of the power set of N, i.e., of 
P(N), taken in some standard lexicographical order, then each 
partition and covering can be indicated by a unique vector 

X E {O,1} 2 . The complete power set is of no great interest; for 
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example, neither the subset k = 0 nor k = 1 conveys information 
about clustering, and there may be others of no interest.' Thus 
the problem is to find a set of rules restricting A to some very 
small subset of P(N), which include the subsets of the objects 
belonging to the clustering(s) of interest. 

The following chapters describe some of these rules, 
proceeding from the least restrictive to the most. The restrictions 
depend primarily on the data but may also be chosen by the 
taxonomist for intuitive or mathematical reasons. For the rest of 
this chapter, assume that an incidence matrix, A, for a subset 
system has been obtained by some method, and that it represents 
the only available data. The objective is to exploit as many as 
possible of the implications of this array to determine an x without 
the major computational effort required to examine all the 2m 
elements of x E {0,1}m satisfying Ax 1. 

Permutations 

Because there is no logical ordering of the rows of A, all their 
permutations are equivalent; this equivalence is equally true of the 
columns. Suppose there exists a permutation of the rows, R, and 
columns, C, of A such that RAC is block diagonal, where the 
diagonal blocks (either scalars, or square or rectangular 
submatrices) include some unities and all off-diagonal blocks are 
strictly zero, the clustering problem can then be simplified into 
subproblems each consisting of the subset of objects belonging to 
one such block. That such a set of blocks forms a partition of the 
objects may of itself provide a sufficient clustering for 
them. Although the search for optimum permutations can be 

An example: if a scalar measure of pairwise resemblance exists among the 

members of N, then that subset consisting of  jus:  the two objects least alike is 

not going to pa rticipate in any clustering of interest (se,e Chapter VIII). 
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computationally expensive, it is "noninvasive" in the sense that for 
all R and C, the matrix RAC is completely equivalent to the 
original A. This proposal resembles the search for cliques in 
undirected graphs, briefly reviewed by Arabie et al. (1978), but 
differs in that the rows and columns of A have different 
classification sets. 

A simple procedure for obtaining an approximate solution 
to the block-diagonal problem follows. Let a, denote the integer 
formed by regarding the entries in the Ph  row of A in order as its 
bits, and fii  the integer formed similarly by the entries in the e 
column. Then, 

step 1: forrn the ai  from the current A; sort the ai  in 
descending order, permuting the rows of A to correspond; 

step 2: form the 13 from the current A; sort the 	in 
descending order, permuting the columns of A to 
correspond; and 

step 3: repeat steps 1 and 2 until there are no more 
changes. 

This procedure can be illustrated with the following two examples: 

Example  II. 1. The matrix has a block-diagonal form. 

12345 	 . 12345 	 21534 

C 	11..1 	 c 
a 	11... 	 a 
e.1... 	 e 
d 	..11. 	 d 
b 	..1.. 	 b 

_ 
object sort 

(step 1) 

111.. 
11... 
1.... 
...11 
...1. 

subset sort 
(step 2) 

a 	11... 
b 	..1.. 
c 	11..1 
d 	—11. 
e 	.1... 

original 



a 

d 

a 

d 
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Here, there are two distinct blocks, and a minimal cover (in fact, 
a partition) is given by the original columns 2 and 3; there is no 
other irredundant cover. 

Example 11.2. The matrix has no block-diagonal form. 

12345 	 12345 	21534 	21534 

a 	11... 
b 	..1.1 
C 	11..1 
d 	..11. 
e 	.1..1 

Original 

11..1 
11... 
.1..1 
..11. 
..1.1 

object 
sort 
(step 1) 

111.. 	c 
11... 	a 
1.1.. 

b 
..11. 	d 

subset 
sort 
(step 2) 

111.. 
11... 
1.1.. 
..11. 

object 
sort 
(step 3) 

Here, there are no distinct blocks, and although columns 2 and 3 
form a covering (in fact, a partition), there are several other 
irredundant solutions. Further information may need to be 
extracted from the array to obtain a grouping. 

Because the objects corresponding to a block belong to the 
same component, an alternative procedure is to find the connected 
components of A, i.e., a subset of the columns of A in which no 
column is disjoint from the union of the remaining columns in the 
component. This procedure may be carried out as follows and is 
clearly related to that described for obtaining a block-diagonal 
structure: 

step 1: consider all columns are unmarked; 

step 2: choose an arbitrary unmarked column of A and 
mark it (initialize a new coMponent); 

step a: find all unmarked columns with which it 
overlaps and mark them; 
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step b: select one of the newly marked columns not 
previously selected, find all unmarked columns with 
which it overlaps, and mark them; 
step c: repeat steps a and b until no new unmarked 
columns are found (a component found); and 

step 3: go to step 2 if there are columns not part of a 
component. 

Another procedure for the same problem is as follows. For 
any Boolean vector, a, let the designation number, «, be the 
integer corresponding with the string of bits in «. Then, 

step I: sort the columns of A in decreasing designation 
numbers; 

step 2: sort the rows of A in decreasing designation 
numbers; and 

step 3: repeat steps 1 and 2 mn times or until A stabilizes. 

It is necessary to rearrange the labels to match the sorting. Other 
rearrangement schemes have been described by Fulkerson and 
Gross (1965), Hartigan -  (1975), Dewdney (1979), Marcotorchino 
(1987), and Streng (1991). 

If there is no block-diagonal structure, some insight may be 
gained in attempting to permute the array to achieve a seriation; 
Gourlay (1979) described such a procedure. 

Bases for A 

Since A is the incidence matrix of a system of subsets of n objects, 
and since a covering consists of the subsets selected so that every 
object is included in at least one of them, it is important to exclude 
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from candidate solutions those arising purely from mathematical 
concepts, however useful they may be for other purposes. An 
important concept among these is that of a minimum basis for A, 
which is 

a minimum subset of columns of A such that the 
element by element Boolean sum of subsets of the 
basis generates all columns of A. 

Two things are obvious: .  

if no row of A is null, the choice forms a covering 
a row basis can be defined in an analogous way. 

It is easy to show by example that a column basis need not be a 
minimal covering; in 

1 1 . 
. 1 1 

a minimal cover is given by the second column, but a minimal 
column basis requires columns 1 and 3. This example indicates 
that a column basis generally consists of those columns that each 
cover a few objects; if a basis is assumed to coincide with the 
unlcnown true groups, the solution will often consist of many small 
subsets. 

Structural implications of A for set covering 

This section develops the implications of A in two ways. The first 
considers the immediate implications of the arrangement of unities 
within A and exploits their arrangement to simplify the problem. 
The second develops a measure for each row and column of A 
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• based on the same starting point. Exploiting both developments 
jointly leads to the procedures advocated in this book. 

Reductions 

Elementary logical considerations can reduce the size • of the 
problem so that the solution to the reduced problem also solves the 
original. The objective is to eliminate from Ax 1 any redundant 
constraints. 

Suppose object i belongs to precisely one subset, k; it is a 
consequence of Ax 1 that the léh  subset must be in every 
solution to the clustering problem, i.e., xk , = 1. Further 
consequences are 

(1) The ith  row of A can be deleted. 

(2) The kill column of A can be deleted. 

All rows corresponding to unities in the ke column of A 
can be deleted, 

because the leh  subset of the objects may include more than object 
i, say {j E kl, for all of which Ax 	1 is now satisfied. 

These three considerations can be further generalized into a fourth 
consequence. Suppose object i belongs to s > 1 subsets. Then at 
least one of these subsets is required to satisfy Ax 1, leading to 
the rule 

(4) 	if object j belongs to at least the same subsets as object i, 
the f'  row of A can be deleted. 

(3) 

This action is easily justified; any choice of x that satisfies the 
constraints for object i will also satisfy them for object j. 
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These four operations can be repeated in any order until 
there are no more deletions and settings of elements of x to unity; 
at any stage, any empty column of A can be deleted. An A 
unchanged by the reduction process is called irreducible and 
reducible otherwise; it is fully reducible if it is emptied. Where 
A is fully reducible, Ax 1 is satisfied by the x formed during 
the reduction process, i.e., x has a unique solution. Fully reducible 
subset systems are rare, but it is not difficult to show that a.ny 
solution for x for the reduced A, together with the elements set to 
unity during the reductions, will give a solution to the original 
problem. These reductions have been discussed in a general way 
by Garfinkel and Nemhauser (1972), and in a quite different 
context by Goodman (1971) and Malvestuto (1989). The reduction 
algorithm described by Malvestuto gives the same result as here if 
applied to the complement of A. 

The above reduction niles can be summarized as: 

ALGORITHM 11.1. Covering reductions to form a reduced A: 

RULE 0: Delete alplicated subsets. 

RULE 1: Suppose i is such that it consists of zeros, except 
for a single element i k . 71zen in all solutions to the problem, 
xk  must be unity to satisft the constraints, i.e., set .xk  = I 
and delete object i and subset k from A. Furthermore, if 
subset k also contains object j, delete j from A, since all 
solutions containing i will also contain j. 

RULE 2: Consider i and j, and suppose that object i 
belongs to the same subsets as object j (object j may belong 
to other subsets); then delete row j from A, since all 
solutions containing i will also contain j. 
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RULE 3: Delete from A any subset that becomes emptied by 
rules 1 and 2. 

Rules 1-3 of Algorithm  11.1  are applied repeatedly in any order 
until no further changes are possible. Note that if A is given by the 
complete P(N), other than the deletion of the empty subset, no 
reductions are possible. If the completely reduced A is not empty, 
its structure is such that no row is a subset of any other, i.e., the 
reduced A forms a clutter of subsets. Its columns, however, do not 
necessarily form a clutter. For examples of the reduction process, 
see "Butterflies"' and "Beetles" in Chapter X. 

The reductions just described are based first on the 
inequality in the constraint set Ax 1, and second, that there 
should be no redundancy in x (to be considered below in more 
detail); they need to be modified if strict equality (Le., a partition) 
is required. An argument against requiring a strict partition is 
given above. 

The objects remaining after all reductions, together with 
those deleted by Rule 1 of Mgorithm 11.1, form a representation 
(transversal) of the subsets. There may be more than one 
transversal, but other than permutations of rows and columns, the 
structure of the final array is unique. 

A subset probability measure 

No properties of the individual subsets, such as some measure of 
the heterogeneity of the members, have been involved in the 
reduction rules. The reductions have depended only on the 
relationships implied by the requirement that Ax 1, and an as 

2  Names given in quotation marks refer to the case studies in Chapter X. 
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yet unconsidered notion of irredundancy. A requirement for a 
partition necessarily implies irreclundancy, which is not a property 
of a covering; irredundancy in coverings is considered later in this 
chapter. 

The constraint set, Ax 	1 is now exploited further in a 
way someWhat different from the reductions, based on the fact that 
the set of x from which a choice is to be made forms a Borel 
cr-field, and that a probability measure can be obtained for each 
subset. The set of measures are then used to find an optimal 
solution to the covering problem. The argument on which this 
measure is based proceeds as follows. 

In the circumstances leading to Rule 1 (Algorithm IL 1) of 
the reductions, the ith  object belongs to precisely one subset, and 
so gives complete information in the sense that this subset belongs 
in every covering solution. Similarly, if an object belongs to just 
two (distinct) subsets, at least one (if not both) must belong in 
every covering solution. This argument can be taken as forming 
the essential part of proving the following: 

PRoPosmoN  11. 1.  The more subsets to which an object 
belongs, the less information given by that object about 
which subsets must belong in every covering. 

The same argument can be taken to prove the dual: 

PROPOSITION 11.2. The more objects a given subset 
contains, the more likely is that sub.set to belong to an 
irredundant covering. 

At this stage, the ground is prepared for introducing two non-
negative measures, namely, p, an m-element non-negative vector 
reflecting the importance of the subsets with respect to a 
covering, and q, a n-element non-negative vector that measures the 
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information given by each object relevant to the subsets to which 
it belongs about the subsets' participation in a covering. The 
relationship between p and q is based on the duality with respect 
to A of p and q. 

If q is a vector measuring the relative importance of each 
object, Eqi  = 1, and p measures the relative importance of each 
subset, Epk  = 1, then from Proposition 11.1 

A = aq 

where A* = {1 - aik} and a is a scalar. Similarly, since p 
measures the relative importance of each subset with respect to a 
covering, then from Proposition 11.2 

ATq = Bp 

where B is a scalar. These two relationships form a proof of the 
following theorem., important because p and q play major roles in 
conditional clustering. 

THEOREM  II. 1.  (a) The vector p is the column eigenvector 
associated with the largest eigenvalue of A TA*; and 
(b) the vector q is the column eigenvector associated with 
the largest eigenvalue of A*A r. 

Remark. Two proofs of this theorem are given; the first 
does not provide any obvious interpretation of p and q; the 
second does. - 

Proof(First proof). Substituting a-lA*p for q in ATq = Bp 
proves (a), i.e., A TAsp = aBp = Xp, so that p is an 
eigenvector of A TA*; similarly, substituting 13 -1 Krq for p 
in A*p = aq proves part (b), i.e., 
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Q.E.D. 
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A*ATq = Baq = Xq. 

(Second proof, Lefkovitch 1985a). Define 

X = {x : Ax 	1, x E {0,1}m} 

as the set of all distinct c,overings (not only irredundant), 
permitted by the constraints. In X, the leh  column of A 
(i.e., the  kth  subset of objects) is indicated mk  times in X, 
where mk  = E„,x(xL); define M = Ekmk . The number of 
ways a given set of mk  values can be realized is the 
multinomial coefficient 

w = M!/11k(mk!). 

The greatest number of ways that the assignment can be 
achieved, and therefore is the least prejudiced, is if this 
function is rnaximized, subject to c,onstraints that depend on 
A. Defining uk  = mk/M, using the Stirling approximation 
to the factorials, justified by the facts that M 1X1 =- 

0(2'n), and the mk  tend to be large, after taldng logarithms, 
gives « 

logew 	-M E uklogeuk , 

which can be recognized as entropy. Since  Mis à constant, 
although unkno‘vn, it can be ignored. The more frequently 
the le column of A is indicated in X, the larger is 
mk  and hence uk . An mk  will be large iff the objects in the 
léh  subset belong to few others, and so for such objects, the 
value of vi  = Ekaikuk , i.e., the sum of the set of uk  to which 
object i belongs, will also be large. The problem, 
therefore, is to deterrnine the uk  and vi  in such a way that 
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Au = 

where vi  is large if the number of subsets to which object 
i belongs is small and is small if this number is large, 
without forming X. If 

Y = {y : (A*)Ty 	1, y E  {O,1}}  

is the set of all representations of the m subsets in the 
complementary problem, and 9i  the relative frequency of 
the number of times object i occurs in Y, then the 
logarithm of the corresponding multinomial coefficient is 
proportional to -Ei9iloge9i , and, omitting a few steps 
paralleling those above, 9 ne,eds to satisfy 

A*9 =-- ft. 

Since A and A* are complementary and so represent 
equivalent sets of propositions, it follows that fit and 9 are 
the same as u and v. Combining these relationships gives 

A*ATu = iLU 
A(A*)Tv = 

Because the derivation of u and y assumes the principle of 
indifference in its use of the maximum entropy principle 
and aims at a maximum opportunity for each subset to 
contribute to a covering, contrasting with the objective 
functions (described below) that seek to minimize the 
number of subsets in the optimal solution, the vectors p 
and q are obtained by reversing the roles of A and A* in 
the previous arguments, so that 

ATA*p  = Xp 

and 
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A*ATq Xq 

as before. 	 Q.E.D. 

Note that there is no need to maximize entropy explicitly, since the 
first proof shows that the solutions for p and q are unique, i.e., 
these vectors of probabilities have maximum  • entropy. In 
consequence, they satisfy the requirements for information 
operators discussed by Shore and Johnson (1980). 

The uniqueness of the solutions is also a consequence of the 
non-negativity of the elements of A, which contains  only  zeros and 
unities, so that ATA* has non-negative (integer) elements, with 
zeros on the diagonal and perhaps elsewhere. If A is reducible 
(i.e., there exists a permutation of the rows, R, and columns, C, 
of A such that RAC is block diagonal, where the diagonal blocks, 
which are either scalars, square, or rectangular, include some 
unities, and all off-diagonal blocks are strictly zero), the clustering 
problem is simplified into subproblems each consisting of the 
subset of objects belonging to one such block. Note that the set of 
blocks forms a partition of the objects, possibly providing a 
sufficient clustering for these data. This condition is relatively 

rare, however; without loss of generality, it will be assumed that 
A, and hence ATA*, is irreducible. At this stage, it follows from 
the Perron-Frobenius theorem (see Gantmacher 1959) that ATA* 
has one real positive eigenvalue not exceeded in modulus by any 
other, and that the corresponding row and columns eigenvectors 
are the only ones having strictly non-negative elements. Since each 
row and each column of A contains at least one unity, it is not 
difficult to show that the elements of p and q are strictly positive. 

There is a log-linear model that leads to the same solution 
procedure as that for p and q. Suppose n students are given m 
questions, whose answers can be either right or wrong, and it is 
desired to assign scores to the students weighted according to the 

and 
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difficulty of the questions. It is not known which questions are 
easy and which are hard, and so there is the need to assign scores 
to these as well. Clearly, a question answered correctly by all 
students can be regarded as easy, and a student who correctly 
answers all questions should rank high. If A is the n x m array of 
zeros and unities, where aik  = 1 denotes a correct answer by the 
ith  student to the le question, then Rasch (1960) proposed 
determining vi, the score for the e student, and uk , the difficulty 
of the e test, from a model which asserts that 

Pr(aik  = 1) = v1/(v, + uk), 

from which it is apparent that 

Pr(aik  = 0) = uk/(vi  + uk), 

so that the odds are 

Pr(aik  = 1)/Pr(aik  = 0) = v1/u. 

Talcing logarithms, and after normalisation of u and y, 

log [Pr(aik  = 1)/Pr(aik  = 0)] = a + log(v1) - log(uk), 

which is a log-linear model. Fienberg (1984) showed that the 
solution for u and y satisfies 

Au = av 

and 

(A*)Ty = 13u, 
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which together lead to 

(A*)TAu = Xu 

i.e., the row eigenvector corresponding with the Perron-Frobenius 
eigenvalue of ATA*; this solution contrasts with the column 
eigenvector of the same matrix, the solution obtained above. If the 
focus is on the students, the solution wanted is y in 

A(A*)Tv = Xv, 

which again is different. 
A comparison between the Rasch and the clustering models 

(Table II. 1) shows that the scores to be assigned to the tests in the 
Rasch model are given by the Perron-Frobenius row eigenvector 
of A*AT, and the object scores for clUstering given by the 
corresponding column eigenvector. Of more interest are the 
candidate scores, w-hich are given by the Perron-Frobenius row 
eigenvector of ATA*; the subset scores, of particular interest in the 
present study, are given by the corresponding column eigenvector. 
Thus the solution methods for the Rasch and the present models 
are dual to each other. Since the Rasch model is log-linear 
(Fienberg 1984), it follows that there is a log-linear model from 
which that of clustering can be derived. There may also be a 
connection with the model proposed by Sutcliffe (1986), who 
describes a procedure in which objects are to be ordered from the 
more to the less differentiated, and attributes from the more to the 
less differentiating. However, the fact that two or more models 
have a common solution procedure does not necessarily imply their 
equiValence. 

In ecology, empirical data sometimes consist either of the 
proportion either of some fixed number of samples, or of thetotal 
flora or fauna for each of n species at each of m sites. In 
taxonomy, if an object is a species, the empirical data for such an 
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Table 11.1  Comparison between the Rasch and the clustering models 

1. Students 
The more tests 
students get correct, 
the higher their score 

2. Tests 
The more students who 
are correct in a test, 
the easier is the test 

3. (a) Test scores v 
A(A*)Tv = Xv 

(b) Student scores u 
(A*)TAu = Xu 

1. Objects 
The more subsets to 
which an object belongs, 
the lower its score 

2. Subsets 
The more objects in a 
subset, the more likely 
is it to be in a covering 

3. (a) Subset scores p 
ATA*p = Xp 

(b) Object scores q 
A*ATq = Xq 

attribute may be an estimate of the proportion of individuals 
showing presence. One possibility for such data is to•chobk some 
threshold value, e.g., 0.5, and define the A matrix accordingly. 
This arbitrary choice can be avoided, at least for estimating the 
probabilities, by a simple extension of the binary data model as 
follows. Define the matrix B to consist of the probabilities of 
occurrence of each species in each site, and let these probabilities 
be estimated by the proportions; A can then be regarded  as  a 
special case of B in which the probabilities are either 0 or 1. The 
matrix, A*, is replaced by B* = 11 T  - B and the probabilities for 
the species and sites obtained from BTB*. The constraint on the 
solution, however, must be Bx b > 0; although it is not clear 
if b has a best set of values, it seems that each element should be 
specified to be greater than 0.5. An interpretation of the elements 
of BTB*, as well as of possibilities for the constraints, is made 
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later in this chapter. In Chapter X, "André's data" illustrates the 
direct study of an empirically observed A; "Plant frequencies" 
considers a B. 

To treat p and q as probability measures for the subsets and 
objects, respectively, it only remains to normalize each to sum to 
unity. An iterative procedure now follows, which obtains both p 
and q simultaneously, which requires only additions and 
subtractions other than the normalization, and which avoids the 
need to form ATA*, whose elements can exceed unity. Let eps be 
a small positive quantity: 

ALGORITHM 11.2. Given A, calculate p and q: 

step 0: initiate q°  = (1/4; t = 0 ; p°  = (1/m); 
step 1: calculate pi = A re; 
step 2: p' = 
step 3: if Ipt - 	< eps, terminate; 
step 4: calculate qz = AY; 
step 5: q' =  1q  / E qsj• and 
step 6: t t + 1 ; go to step 1. 

I3ecause the elements of A and A* are either 0 or 1, the matrix 
multiplications in steps 1 and 4 require additions only. If there is 
no interest in the relative importance of the objects, the 
normalization of q in step 5 can be omitted. The rate of 
convergence of this algorithm depends on the ratio I X2 1 /X I , where 
X I  is the Perron-Frobenius eigenvalue, and X2 the second 
eigenvalue in modulus; the smaller the ratio, the quicker the 
convergence. It also depends on eps; the smaller the value, the 
more steps are required. A rough guide for eps is based on the 
value ça,  which is the largest value such that a test of (1.0 +  ça)  as 
equal to 1.0 is reported as true in fixed word length (computer) 
arithmetic. Then eps is defined as cp1m. This choice is perhaps 
oversensitive, because it will bring about more iterations than are 
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really needed to obtain a clustering, but there may be 
circumstances where great numerical accuracy is needed. The 
norm used in step 3 may also be replaced, for example, by the 
sum of the squared differences (replacing eps by its square), or the 
maximum of the absolute values of the differences. 

Because the definition of p and q can be based on 
arguments depending on entropy, the elements of these two vectors 
(both standardized to sum to unity) can be interpreted as 
probability measures corresponding to each subset and object, as 
appropriate. In other words, this process has assigned a measure, 
which can be regarded as a probability, to each element of the 
Borel algebra of the subsets and of the objects. These probabilities 
are not limiting values of frequencies, even though they can be 
derived from counting arguments; they are unique, and, from the 
entropy argument, represent the least structure consistent with the 
requirement that the information in the rows of A is dual to that of 
the columns of A* (Lefkovitch 1985a). Examples of these two sets 
of probabilities are given in Chapter X "Plant frequencies," 
"Arctic grasses," "Letters, 'Fescue grasses," and "Blood and 
language." 

Since in p (and q) some elements may differ by an amount 
sufficiently small that it is reasonable to believe that in exact 
arithmetic, or with minimal changes in A, they would be identical, 
it is reasonable to assign a tolerance to p, and hence to any 
optimal solution based on it. Suppose b is a set of hypothetical 
probabilities for p (e.g., b = {1/m}); then the minimum 
discrimination statistic 

G2  = ilAL Alog e(pk/bk), 

where II A L is the number of unities in A, can be regarded as a 
X2  with m - n - 1 degrees of freedom (if n > m, replace the test 
by that for the corresponding set representation, i.e., reverse the 
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roles of rows and columns) for examining the consistency of p 
with b. The set of assignments to b such that Pr(G2) a defines 
an a-tolerance  classa From the concentration theorem for entropy 
(Jaynes, 1983), the range of values for the entropy of the members 
of this class is given by 

(H(P) - 	A III)  5_ H(b) 	H(p), 

where H(.) denotes entropy. If this outer interval is small, then 
there is every reason to believe that the p is well defined; it will 
be smaller, for example, the larger is A 

Missing values: reductions and probabilities 

In performing the reductions directly  on empirically obtained data, 
it is not unlikely that some entries in the {OM array, A, may not 
be lcnown, or may be variable. This situation • leaves some 
uncertainty into what should be done to arrive at a solution. 
Although admissible actions depend on the circumstances bringing 
about the uncertainty, four possibilities are now examined. 

(1) One reduction can be canied out without any loss of 
information. Suppose object i, other than having a missing 
value for subset k, would have been deleted by object j. If 
aik  = 0, object i can be deleted, it cannot be deleted with 
complete confidence if aik  is missing or is unity. The proof 
that this reduction does not lose information is trivial. 

(2) Replace the missing values by 0, and continue as usual; 
this action includes the previous proposal but also allows 
other reductions. 

(3) Replace the missing values by 1, and continue as usual; 
this action is perhaps the most dubious. 
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(4) « If most of the missing values are for a very few of the 
subsets, eliminate these subsets; less satisfactory is to 
eliminate objects for the same reason, unless many objects 
appear to represent a few groups, and the deletion of 
objects is unlikely to have excluded a group. 

There is every reason to do all three of proposals 2-4, and to 
compare the results. 

In computing the probabilities based on the original array, 
the most neutral approach is to replace the missing values by 0.5 
in the iterative procedure. 

Inedundancy 

Irrechindancy, briefly mentioned earlier in this chapter, is now 
explored further. If x = 1 and there is no null row in A, then 
Ax 1 is satisfied; in fact, there may be very many distinct x 
satisfying this constraint. At this stage the- principle of parsimony 
is introduced; here it is expressed by restricting x to be such that 
there is no redundancy in the choice of subsets, i.e., deleting any 
one of the indicated subsets violates the constraint. By contrast, the 
effect of the inclusion of others is to increase some of the elements 
of Ax. 

Amongst the set of irredundant solutions, some satisfy a 
stronger form of parsimony, namely, the choice of a minimal 
number of subsets. In the present context, this requirement gives 
rise to the minimal set-covering problem, which can be 
represented as the need to find x tô 

minimize {xTx  I  Ax 	1,  x E {0,1}1. 

Vercellis (1984) provided a method for obtaining a very rough 
estimate of the value of the optimal ex. If the elements of A are 
independent (clearly, they are not) and are unity with constant 
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probability, 	(there is no reason to make this assumption), then 
for large numbers of subsets and constraints, as well as a number 
of other conditions, the ratio between the optimal Xrx and 
z = logen/loge(1/(1 - ir)) tends to unity. 

Because it may be true that there are several solutions for 
x such that ex takes the same minimal value, it becomes of 
importance to find a rule for choosing from among these 
irredundant or minimal solutions. The proposal for determining 
such a rule is based on the use of the vector p to choose the best 
irredundant or minimal covering. Two possibilities are considered; 
the arguments for each are different, although related, and depend 
on the fact that p and q are probability measures. As noted above, 
-the elements of p and q have no interpretation as frequencies, nor 
are they degrees of subjective belief. Consider the fact that the 
unreduced A can be used to examine a whole series of propositions 
such as: 

. 	"objects i and j belong in subset k" 

•"subset k contains objects  j1 , j2,  etc., but does not contain 
objects j„ j2 , etc." 

"subset k belongs in every covering" 

and others of a similar nature. These propositions may be shown 
to be true or false by direct reference to A. Some propositions are 
relevant to an irredundant covering, such as: 

• "subset k is a member of every covering" 
• "subset k is a member of an irredundant covering" 

and so on. Some can be shown to be true or false (see the 
reduction rules of Algorithm II.1); for others, an inspection of A 
does not of itself give any absolute answer. However, the counting 
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arguments leading to the fact that of all non-negative probability 
vectors corresponding with {OM' and {0,1}" constrained as 
described above, the p and q have maximum entropy, implies that 
in p those elements having the largest values will tend to be 
present the most often in a covering (not necessarily minimal) of 
the objects; thus 

the value ofpk  is a measure of the degree of support 
given by A to the proposition that subset k belongs 
in the optimal covering. 

For example, all subsets of the n objects eliminated by the 
reductions, as well as those belonging to the power set of N but 
absent from A, have zero support, while the mandatory subsets 
have absoluie support (of unity). One criterion emerging from the 
parsimony principle is to choose those subsets such that the 
support for the joint proposition that they form the optimal 
covering is larger than (or, at least, not exceeded by) that of the 
support for any other such proposition. In formal terms, this 
reasoning leads to an objective function, which is to maximize the 
joint probability. With the convention that 00  = 1, the problem to 
be solved can be expressed as: 

determine x : x E {0,1 }m so that IIp:k is a maximum. 

Since the h are probability measures, the solution obtained is the 
joint probability of the  choice. Since all objects have to be 
considered, x is constrained so that Ax 1, as is always required. 
Before re-expressing this program in a form more suitable for 
computation, note that not only will redundant subsets be excluded, 
since the inclusion of such will necessarily reduce the value of the 
joint probability, but also, for the same reason, ex will be a 
minimum at the optimal solution. Thus it is apparent that the 
solution, x, is an irredundant minimal covering, and that there is 
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no need as such to determine all the minimal coverings and find 
which is best, since the solution to the problem is necessarily 
confined to such coverings. However, it is useful to remember that 
although p and q can be determined from the original A (but not 
necessarily, as discussed below), the search for a covering by any 
algorithm should be based on the reduced A (Algorithm  II. I),  
keeping the appropriate values of pk  derived from the original A, • 

since the amount of work required will be reduced considerably. 
If the elements of p are replaced by the negative of their 

logarithms, maximizing the joint probability of the choice is 
equivalent to 

minimizing - Exkloge  
subject to Ax 	1, 

xk E {OM 

or, more compactly, after defining ck  = -loge  pk , k = 1...m, (note 

that pk  > 0) by 

min {ex  I  Ax 	1, x E {0,1}1, 

where c is a vector of "costs" and ex is called the objective 
function. This formulation is an ordinary linear least-cost set-
covering problem, one of the more tractable integer programming 
problems. Three general algorithms for this problem are described 
in some detail later in this chapter. One is heuristic and fast and 
almost always has resulted in the optimal solution (where the latter 
is known). The second is exact but requires .considerable 
arithmetic,' perhaps unjustified considering the empirical nature of 
the data used in clustering. The third is stochastic and obtains ,the 
optimal solution with probability unity (depending on the number 
of iterations); it generalizes to more than one noncommensurate 
cost or if the objective functions are nonlinear. 
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The arguments leading to an objective function based on 
joint probability necessarily lead to solutions that are minimal and 
therefore can be considered to be too strong a requirement. The 
following discussion leads to a solution, which, although 
irredundant, is not necessarily minimal. This circumstance is not 
a disadvantage, because, as argued in Chapter I, the stronger are 
the scientist's imposed requirements, the more restricted is the 
choice of solutions, so converting the solution into one in which 
groups tend to be formed rather than revealed. It is preferable, it 
is now claimed, to use the weaker condition and inspect the 
solution to see if it is also minimal. 

It has already been remarked that underlying the definition 
of p is the maximum entropy principle; as is well lcnown (Jaynes 
1983), the maximum entropy probability vector is the assignment 
of probabilities to the elements showing the least departure from 
uniformity, i.e., the least structure, consistent with the constraints 
on the system. (An early statement of this property is by 
Woodward (1953,.p. 21-25), who also proved that "for a given 
mean squared value of x [assumed continuous and unbounded], the 
Gaussian distribution is the most random of ail.") Thus the 
assumptions of information theory are implicit in these 
probabilities, and so remaining within its theoretical framework for 
any further development does not introduce any different concepts, 
as does joint probability. 

It has already been shown that the entropy of p, defined by 
—Epicloge pk  (with the usual convention that if pk  = 0, then 
pkloge  pk  is set to zero) is a maximum subject to constraints 
depending on q (and vice versa). As a consequence, it has least 
structure with respect to the relationship between thé rows and 
columns of A. By contrast, one objective of clustering is to select 
subsets so that the choice has the most structure, i.e., to maximize 
the information (minimize the entropy; Watanabe 1981) of the 
choice; this objective can be expressed as choose x E {0,1}m to 
minimize - Exk  pklogepk  subject to Ax 1. 
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Defining ck  = -pkloge pk , this program can also be written as 

min {cTx J  Ax 	1, x E 10,111, 

which differs from the expression for the solution using maximum 
joint probability only in the definition of c. This formulation is still 
that of an ordinary, linear, least-cost set-covering problem, since 
the pk , and hence the -pkloge pk, are known. It is apparent that 
there will be no redundancy in the optimal solution, since the 
inclusion of additional subsets will increase the objective function; 
but also there is no guarantee that x Tx will be a minimum. 

The solution obtained by maximizing information can be 
interpreted as a balance between two different aspects of the 
entropy principle; maximum entropy is used to determine the 
probabilities, maximum information (equivalent to minimum 
entropy) for the choice of subsets. This balance contrasts with the 
maximum joint probability procedure, which uses maximum 
entropy to obtain the probabilities, followed by maximizing the 
joint probability, which, although related to maximum information, 
is nevertheless a different principle. If the axiom systems for 
maximum entropy of Shore and Johnson (1980), Jones and Byrne 
(1990), Paris and Vencovskà (1990), and Csiszcir (1991), and the 
resulting theorems are appropriate for the clustering problem, 
consistency is guaranteed for the maximum information solution, 
although not for the maximum joint probability solution, unless 
they happen to coincide. If maximizing entropy is equivalent to an 
incre,asing variance principle, and maximum information to one of 
variance reduction, the solution obtained can be regarded as being 
an expression of the balance between the entropy-generating and 
entropy-reducing processes, which is proposed in Chapter I as a 
replacement for the principle of parsimony in phylogenetic 
inference (evolutionary reconstruction). 

A further objective function of some interest can also be 
based on p. Defining again the column vector 
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c = {ck} = {-logep}, 

and D -,--- {diag pk}, the two objective functions, —Exklogepk  and 
—Ex k pkloge pk , can be written as xTlc and xTDc, respectively. If 
-logepk  is interpreted as the (information) measure of subset k, the 
value of the objective function for the solution, x, gives the 
combined measure of the solution, in which the prior probability 
is uniform for each subset in the joint probability solution, elc, 
and is equal to {p k } in the maximum information solution, xTDc. 
This objective function suggests the possibility of a more general 
matrix, P, to replace D, in which there are nonzero off-diagonal 
elements. A definition of P arises naturally from p and q: 

DEFINITION  II. 1.  For subsets r and s, let kr3  denote an 
n-element vector in which the unities point to the objects in 
their intersection; note that Irnsi = Ik„I 0, with strict 
equality to zero for disjoint subsets; then 

P = (pj = 

It follows that pr7. = (4, and if subsets r and s are disjoint, 
p„. = 0. Defining Q = {diag qi}, P can be equivalently defined as 
ATQA, i.e., the objective function is xTATQAc, in which x is 
unknown. Since Pc is an unchanging vebtor for any given 
problem, the objective function xTPc is still linear. With this 
modified objective function, choosing x to minimize xTPc tends to 
produce solutions that minimize the number of overlapping 
subsets. The real issue is whether this restriction is desirable; as 
discussed in Chapter I, if the objective is to reveal the "true" 
groups within the data, because P imposes more structure on the 
solutions than D, which in turn  imposes more than I, only I should 
be used. In contrast, if the objective is to form the objects into 
groups for which it is desirable that so far as possible they form 
a partition, there is good reason to adopt this extended P. If the 
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goal is to generate hypotheses for subsequent evaluation, the use 
of all three may have value. 

A further reduction 

Although other costs, c, are discussed below, it is convenient at 
this stage to introduce a further reduction rule, which makes use 
of them. This rule, which extends Algorithm II. 1 , may allow 
others of those rules to become available, with the result that the 
further simplification may complete the vector x without need of 
any of the more complicated algorithms. 

ALGORITHM  11.1  (continued). Cost-based reductions: 

RULE 4. lf k is a subset with cost ck, and there exist other 
subsets,  k1 , k2,... such that k is a subset of their union and 
also the sum of their costs does not exceed ck , then k can 
be deleted from A. 

Such a k is redundant because any covering requiring objects 
belonging to k can be covered by one or more of the other subsets 
at lower cost. From the definition of p, cost-based reductions are 
not particularly effective for the maximum joint probability 
objective fiinction but may be so for costs used in maximizing 
information, especially if the probabilities.differ greatly; they are 
often very helpful if the costs are independently provided. It is 
apparent that rules 1-3 (Algorithm  11. 1)  should be uséd to achieve 
the maximum reduction possible before applying Rule 4, because 
they produce a minimal set of constraints together with a partial, 
if not complete, solution that is independent of costs. 

Conversion of coverings to partitions and dendrograms 

One of many objectives of clustering is to obtain a classification 
that satisfies the requirements of the rules of biological 
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nomenclature. One requirement of these hierarchical systems is 
that a taxon cannot belong to more than one category at any given 
level of the system; a species, for example, can belong to just one 
subgenus, a subgenus to one genus, a genus to one tribe, a tribe 
to one subfamily, and so on. Because the overlapping groups that 
may be produced by the set covering appear inconsistent with this 
requirement, some additional action or further reasoning is needed 
to achieve at least a candidate classification. One possibility is to 
change the constraints on the system so that it becomes the strict 
equality 

min {eTx  I  Ax = 1, x E {0,1}1, 

but some consequent difficulties may arise. For example, no x may 
satisfy these equality constraints for empirically obtained A. More 
to the point, however, is that even though all partitions are 
coverings, not all coverings are partitions; as already noted, a 
partition is more solidly supported if an optimal covering is 
inspected and found to be a partition. Garfinkel and Nemhauser 
(1972) described the reductions and methods for solving linear 
least-cost set-partitioning problems. 

Interpreting overlapping subsets 

Numerical procedures, which may give rise to overlapping subsets, 
have been proposed several times as a solution to the clustering 
problem. For example, Needham (1961, 1965), Auguston and 
Minker (1970), Lefkovitch (1975), and, more recently, Opitz and 
Wiedemann (1989) all described methods based on maximal 
cliques (maximally connected subgraphs). As in the procedures of 
this book, nondisjoint subsets generate some interesting 
problems—to determine why the subsets overlap and also the status 
of the objects in an intersection. It is doubtful if notions of 
simplicity and parsimony alone are relevant to an answer. 
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In an optimal covering that is not a partition, suppose two 
subsets, I and J, in this solution have a nonempty intersection, 
/ n J. What is the status of / \ J, J and n J ? 

(1) The "statistical" explanation: there are "real" groups for 
which the range of variation is such that some of the 
members of a group are closer to the centroid of others 
than they are to their own. 

Example. In two multivariate normal populations having different 
centroids, it follows that I 1 J and J 1 I belong in distinct subsets, and 
that objects in the intersection I n J belong to "tails" of the parent 
distributions; additional data may be able determine which of I n J 
belong to I and which to J. 

(2) The "procedural" explanation: there is only one "real" 
group, which has been partly divided because of the 
interaction between the clustering method and the measure 
of dissimilarity. 

Example. A threshold-determined clique is necessarily contained within 
•  a hypersphere in the dissimilarity space; there is no logical reason to 

expect that a single true group can be contained within just one subset at 
the chosen threshold. Ms I U J represents one group, and the formation 
of I and J is an artifact of the calculations. It follows that the objects in 
I n J should be considered to be central (Jardine and Sibson 1971). 

(3) The "irrelevant" explanation: the groups are a consequence 
of external circumstances. 

Example. The species associations in ecological studies may be no more 
than a reflection of abiotic factors. Ruling out this class of explanation 
is very important. If there are provenance data, such as known 
geographical distribution, or known abiotic (or biotic) differences, the 
data under study should be subjected to some formal null hypothesis 
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evaluations. Only if the data are consistent with the null hypotheses does 
clustering become a useful technique. Further, once groups have been 
established by clustering, it may be of value to construct a contingency 
table classified by the cluster-generated groups and the provenance data. 

(4) The "evolutionary" explanation: I U J represents a taxon 
in the process of subdivision, that I n J represents the 

central (typical, ancestral?) form, while I \ J and J \ I are 

the diverging forms. 

The "hybridization" explanation: I n J represents a 
hybrid between I \ J and J \ I. 

Explanations (4) and (5) are probably indistinguishable using 
purely numerical techniques unless these relate to additional 
biological information. 

(6) 	The "continuum" explanation: I n J cannot be 
distinguished either from I \ J or from J \ I, which, 
however, can be distinguished from each other. 

This explanation differs only in degree from that of (3) but is 
incleded here because it is reminiscent of Menger's (1979) 
characterization of the physical continuum by a failure of 
transitivity: 

A = B, B = C, but A C, 

i.e., A and C cannot be distinguished from B but can be 
distinguished from each other. In these circumstances, the three 
relationships imply that A, B, and C are all different. 

If it can be determined that (3) does not apply, the 
remainder present a dilemma. Perhaps (2) should be assumed to 
hold from small sample considerations if either or both the number 

(5) 
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of objects and attributes are small; (2) then represents a cautious 
interpretation, which is that the solution is conditional on the 
attribute set, and for smàll such sets, the degree of approximation 
to the "true" state of nature is perhaps poor. The first consistency 
assumption (Chapter I) implies that if the true classification is 
represented by a binary vector, tY E {0,1}m, then 

lim x = 1,G as n -› OD . 

For small in, therefore, what can be concluded ?  
There is also a pragmatic consideration; in biology, it is 

generally believed that distinct taxa differ morphologically, 
physiologically, ecologically, and so on to a greater or lesser 
degree, and that failure to name each distinct entity can result in 
considerable confusion and the loss of painfully collected and 
expensive information. Thus information is lost in not giving a 
distinct label to objects for which evidence supports some 
distinction in the attributes under investigation. Furthermore, while 
it may ultimately prove to be true that objects assigned to 
differently labeled subsets are subsequently found to belong to the 
same taxon, no information is lost, because the literature on the 
components can be combined; the only penalty is the nuisance of 
having to include another name in the formal synonymy of the 
taxon. The rules of nomenclature are meant to serve 
communication in biology and are to be used intelligently for this 
purpose. 

Although the argument for "splitting" may be persuasive, 
there is also a contrary one, particularly for relatively small m. 
Because the choice of attributes to some extent is uninformed, in 
the (relatively) small subset of those possible which are chosen to 
represent the objects, there may be att ributes distinguishing subsets 
having little (if anything) to do with genuine taxa. Thus the 
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existence of overlapping subsets in an optimal solution suggests 
that evidence only supports one taxon, namely, l U J. Thus to 
form a partition from a covering is no more than the formation of 
the union of overlapping subsets, each called a muster (Chapter 
VIII discusses musters). In some ways, this "lumping" procedure 
has advantages over splitting for the following reasons: 

(1) If there is only one muster, to which all n objects belong, 
the existence of more than  one entity is at best only wealdy 
supported; if uncertainty remains, more data (attributes, 
objects) need to be collected to settle the issue. 

(2) If there is more than  one muster, each may be separated 
from the remaining and further studied alone, preferably 
with further attributes, to see if in the absence of other 
musters, greater resolution may be obtained. 

The second of these is a reflection of a very important principle; 
it is that the numerical properties within one distinct group, 
once it is recognized as being distinct, should not enter in 
determining the structure within any other, be,cause there is no 
reason to require the implied parallelism. There is every reason to 
observe that it may be true, and to report the fact, but to require 
it imposes a solution. Furthermore, a subset of the objects may 
generate probabilities, p and q, which differ appreciably from 
those of the corresponding subset when based on the complete set 
of objects. More interestingly, separating the objects into musters 
in this way allows a hierarchy to be established, because it yields 
an algorithm in which each not necessarily binary division depends 
only on the objects and attributes under consideration, and not on 
others. 

With this preamble, a procedure for sequential division of 
the objects can be constructed. 
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ALGORITHM  11.1 A sequential divisive hierarchical 
procedure based on optimal set covering: 

step 0: the original data forrn a single muster; 

step 1: for each remaining muster, form .  the A; 

step 2: for each A in turn, obtain an optimal set covering 
and form the musters; and 

step 3: repeat steps 1-3 until objects can no longer be 
distinguished. 

If the state exhibited by an attribute is uniform within a subset, the 
attribute conveys no information on the internal structure of the 
subset; in consequence, it is quite likely that the data will be 
exhausted before each object forms a subset by itself. 

Exarnples of muster formation given in Chapter X include 
"Letters" and "Fescue grasses." 

Suboptimal solutions 

In xo1,1 , defined as 

xop, = {x: min(cTx  I  Ax , x E {0,1}")},. 

some of the n original constraints in A are inactive, including 
those eliminated by the reductions; also parts of c are not involved 
in this solution. With  respect to A and c, there is no doubt that 
xop, is the most interesting solution, yet information remains in the 
inactive constraints and in those parts of c not involved in this 
solution. If this unused information implies a grouping of the 
objects not resembling that implied by x m,„ it may be concluded 
that those from x op, are suspect. Two methods of obtaining some 
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of this information are now considered; the first, involves no new 
computational procedures, the second is somewhat more 
complicated. 

(1) Define" X to be the subset of the columns of A 
corresponding with 'toe  and B to be A but with these 
columns deleted, deleting also the corresponding elements 
of. c. Iff the i th  row of B is zero, add further columns to B, 
which are zero except for the 1111  element, whkh is set to 
unity; include additional elements of c set to zero. The 
solution to 

min{ex I Bx 1, x  E  {Oa}m} 

is clearly suboptimal to x op, and, except for the mandatory 
columns, which are the added single unity element columns, is 
independent of the first. This sequence can be repeater] until 
B = I, i.e., until all columns of A have been used. It is 
remarkable how often the first few suboptimal solutions generate 
groupings very similar to those indicated by >cop,. 

(2) Suppose in place of obtaining a serie,s of suboptimal 
solutions, the "quality" of x, 	assessed by determining 
an upper bound. Clearly, maximizing c Tx is given by el, 

i.e., the trivial solution x„. = 1, in which there is no 
interest. However, suppose x is further constrained so 

xTx 5_ iropixopt  = b, 

which is the number of subsets in the optimal solution for cost c, 
then any solution to this more constrained problem, if any exist, 
is certainly of interest. For example, if the joint probability of the 
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chosen subsets forms the objective function, then, since x op, gives 
a minimum cover, the upper bound is a solution confined to 
minimum covers having maximum cost, i.e., minimum joint 
probability. For an objective function based on maximum 
information, since xm„ is not necessarily a minimum cover, it is 
conceivable that the upper bound could be associated with fewer 
than b subsets. The upper bound on cost is given by the value of 
cTx in the program 

max{eTx I Ax 	1, 1Tx 	b, x E {0,1}m}. 

The additional constraint changes the problem into a more general 
0-1 integer program, which may be solved either by using 
methods more general than those of optimal set covering, or by 
modifying the stochastic solution method (Appendix 2), restricting 
the candidate solutions to satisfy the additional constraint. Note 
that the reductions described above cannot be used. It is quite 
possible that the optimal solution to this program is xe„ because 
there may be only one covering of size b. 

Hypothesis testing 

A "contrived" classification is the tendency of a clustering 
procedure to generate a grouping where in fact none exists (Eilbert 
and Christensen (1982) discussed this circumstance). This danger 
is well recognized by those occupied in practical clustering, but the 
lack of formal diagnosis for this possibility has led to little beyond 
intuitive assessments. For example, it is "well lcnown" that the 
single-linkage (nearest-neighbor) clustering procedure tends to 
produce dendrograms that exhibit "chaining," so that if chaining 
is observed, it is either asserted as being an artifact of the 
procedure, or the results of the computation are not reported at all. 
To sorne extent, the conversion of coverings to partitions, 
described above, is a first step in detecting a possible contrived 
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solution; for example, if the union of the nondisjoint subsets in the 
optimal covering is such that all objects are in one muster, such a 
solution could be interpreted as being contrived. Similarly, the 
resemblances and differences shown to the optimal solution by the 
suboptimal solutions defined above may also be informative. One 
possibility is to examine the array A under the hypothesis that 
Pr(au  = 1) = Pr(au  = 0) = 'A, as proposed by Buser (1983); 
Buser also derived a test statistic, which reflects the possibility that 
more values of unity occur in  thej th  column than should occur by 
chance. Buser provided tables to aid examination of this 
hypothesis. 

The following discussion is included primarily to show 
other possibilities for examination of hypotheses that may also lead 
to the recognition of a contrived solution; a full theory is yet to be 
developed. 

In the process of going from the original A to the subsets 
in the optimal covering, information has been discarded. The first 
hypothesis of interest is to determine if the amount eliminated is 
large. One way to measure the amount is by comparing E niloge  pi  
with E xiniloge(pi  xi Ex. pi), which implies replacing  in  parameters 
by xTx. A second class of hypotheses considers different solutions 
to the problem, e.g., a comparison between the covering that 
maximizes the joint probability and that which maximizes the 
information; which is to be preferred? 

For the second class of hypotheses, the joint probability, 
given that the solution is a partition, is the familiar 

= n! 11,(pini/ni!), 

where n is the number of objects, ni  the number in each subset, 
and the {p,} the solution to ATA*p --= Xp, the p being standardized 
so that Epi  = 1. If the subsets form a covering that is not also a 
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partition, clearly E ni  > n and so L 1  is not applicable. Suppose 
(for the moment) that the intersection of three (and more) distinct 
subsets is empty, let nu  denote I/ n  fi,  where I and J denote the 
objects in two distinct subsets, and let pu  --- pi  pi . The problem, 
therefore, is to adjust L 1  for these intersections. In particular, the 
numerator should be reduced by the size of the weighted 
probability against intersection, i.e., by (1 - pu)ny, and the 
denominator reduced by nu!. This revision gives 

L2 = n! 11i(piziln1 !) Ilii(nu!1(1 - p urg). 

The generalization to the intersection of 3...nz subsets is 
immediate, and with an obvious extension of the definition of nu  
and pu , the joint probability is 

L m  = n! lli(prilni!)11ii(nu!1(1 - purv)... 

ilii,...,m (nu...rn! 1( 1  - 	 • 

For m of any reasonable size, this expression is rather formidable 
to compute, but the following Observations make it less difficult 
than it may seem at first. 

(1) Many multiple intersections are empty, and so 

(n (o !/(1  - P(1))")  = 1. 

(2) If for t subscripts all intersections are empty, then 
so will be those for t + 1, t + 2, ..., m. 

A good approximation to Lm  by using 1.2 (or perhaps 
L3) follows from: 

LEMMA IL 1. As t m, (n (1) !/(1 - p ()no) -> 1. 

(3) 
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Proof. Au --> m, then 
(a) no) -> 0, i.e., nw ! -> 1 
(b) pw -> 0, i.e., (1 - 	1. 
Combining (a) and (b) completes the proof. 	Q.E.D. 

Computationally, the Stirling approximation to the factorials 
simplifies the calculations of Li . The only serious computation, 
therefore, is generating the intersections of all subsets while 
ensuring that there are no repeats. 

If the joint probabilities, Li, are taken to define the 
likelihood of the covering, the logarithm of the relative likelihood 
of two solutions can be obtained as the difference in the natural 
logarithms of the joint probabilities and, in a hierarchical context, 
may be used to examine the various hypotheses. 

Choosing among alternative clusterings 

Given a set of objects described by some att ributes, an array A is 
generated; A can either be used directly (Chapter IV), or via 
dissimilarity vectors (Chapter V), or via one or more scalar 
dissimilarity coefficients (chapters VII and VIII), with one or 
perhaps multiple objective functions (Chapter IX), to obtain 
clusterings of the objects. If the clusterings so obtained do not 
coincide, and assuming that there are no external criteria available, 
it is of interest either to determine which is to be preferred based 
on the data themselves, or to determine a consensus from them. 
This section considers how a choice may be made; a later section 
considers how to obtain a consensus. 

The reader will have noted that while p and q have been 
obtained from any given A, only p is used to choose the optimal 
solution, .and that q is not used explicitly except as part of a 
heuristic solution procedure; in what follows, both play a role. 
Prior to defining a statistic that can be used for choosing among 
different solutions, each optimal for a different objective criterion 
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and/or family of subsets of N, it is necessary to describe the 
motivation for the choice. Two assertions are made; if they are 
unacceptable, the proposed method of choice should be omitted. 
They are as follows: 

(1) Partitions are shnpler solutions than coverings; the 
greater the degree of overlap, the more complicated is the 
solution. 

(2) A solution with few subsets is simpler than one with 
many; the simplest solution consists of one subset of ail 

 objects, and the more complicated consist of many 
(overlapping) subsets. 

Notice that a partition may include many subsets, in conflict with 
the second assumption. The principle on which the statistic is 
based is that of choosing the simplest grouping consistent with the 
data; simplicity here is understobd in terms of a compromise 
between the two assumptions just made. Even though these 
assumptions seem reasonable, and the decision criterion to be 
defined is based on an easy computation consistent with these, 
simplicity, plausibility, and consistency do not logically imply 
biological truth, nor does the last necessarily imply any of the 
others. Ultimately, more is required than a decision criterion. 

Let x be an optimal solution based on A; then suppose it is 
possible to determine Pr(x  IA), and to use this probability to 
compare different x or A, or both. By Bayes theorem, 

Pr(x I A) = Pr(x)Pr(A  I  x)/Pr(A). 

To exploit this relationship, it is necessary to define the terms 
on the right-hand side of this expression. Let z = Ax represent the 
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multiplicity of the objects in the solution x. The three terms are 
considered in turn : 

(1) Pr(x) = 

which is clearly smaller the more the subsets overlap. 

(2) Pr(A I x) = 	- p;  

this representation of the probability is preferred over likpkxk, 

because once a solution has been found, the (posterior) probability 
of the chosen subset is unity. This definition is such that the 
probability is larger the fewer the subsets of high individual 
probability that are excluded, i.e., it satisfies the requirement of 
being larger the fewer subsets in the solution. 

For fixed A, it is possible to compare two or more 
solutions without needing to consider Pr(A); for example, if x and 
y are two solutions, and w .= Ay, then x is preferred to y if 

114.1 ...nqizi 	- pk)(1-xè > 	Ilk.1...m(1 - pk)( 1-Yk) 

or, defining a = {loge(1  - p)},  B = {logeqj, in matrix notation 
if, 

BTAx + «T(1 - x) > BTAy + aT(1 - y). 

Interestingly, a cost vector, c, defined by 

_c  = aT 	(BT A  _ x  

(the first term is a constant and can be ignored) can be used in the 
objective function for linear least-cost set-covering. If so, it will 
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find solutions that tend to havé few overlapping subsets, i.e., it 
will be close to a partition. 

(3) The remaining problem is to define Pr(A) so that different 
families of subsets may be compared in terms of the solutions they 
give. The two sets of probabilities, p and q, are equivalent to A 
in the sense that together they summarize the essential marginal 
information in A relevant to set covering. Thus any definition must 
use both. The arguments used for defining Pr(A Ix') above show 
that p should be used in the form {1 - pk } , since before a solution 
is found x = 0, which implies 

( 1  - Pk)(1-xl) = ( 1  - Pk), 

it follows that 

Pr(A) = 	- pi).  

It further follows that 

Pr(x  I A) = 	ITL( 1  - Pk) (1',))] 1 lairlk( 1  - Pk) 

= ilig1czi-1) / 	pkyk, 

which is more easily interpreted in logarithmic form as 

loge(Pr(x I A)) = E (zi  - 1)logegi  - E xkloge(1 - pk). 

Similarly, loge(Pr(y  I  B)) can be calculated in exactly the same way, 
and so would appear at first to provide a decision criterion. This 
conclusion is not yet true, because it is easy to see that if the 
number of subsets in A is less than that in B, x tends to be 
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preferred to y almost independently of these vectors. The solution 
is to standardize by n and m, i.e., define the criterion to be 

E (zi  - Mom;  - 	E ;loge(' - pk). 

This decision criterion is analogous to Alcaike's information 
criterion, in which the principle is that a model is preferred if the 
price paid is minimal in terms of the number of parameters when 
balanced against the goodness of fit (Akaike 1973). 

Consensus among coverings 

The reader may be surprised that in this book I do not indicate a 
"best" method even within the framework of conditional 
clustering. I do not even claim that the conditional component of 
subset formation, which forms the basis of much of chapters V-X, 
is superior to the unconditional principle used in most other 
methods of clustering. I do not believe there to be a best method 
because "any gi ■ren set of data may admit of many different but 
meaningful classifications" (Anderberg 1973). The same author 
also commented that "cluster analysis is a device for suggesting 
hypotheses" and that "a set of clusters is not itself a finished result 
but only a possible outline." He also emphasized that "cluster 
analysis methods involve a mixture of imposing a structure on the 
data and revealing that structure which actually exists" [italics 
added], so that the use of different clustering procedures, each 
perhaps imposing themselves differently on the data, may in total 
reveal the "true" structure. It is for this reason that the elucidation 
of a consensus among classifications is so important; one can hope 
that the consensus will tend to minimize the influence of the 
various impositions. Certainly the results of a single clustering 
rarely satisfy the cautious practitioner. To quote another 
di sti nguished author: 
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We cannot expect to have as a result of a couple of 
hours computer time something which will straight-
forwardly replace the insight and effort of the scholar 
(which will have been needed anyway in the selection of 
properties, and will be needed in the interpretation of the 
results). What we can hope is that groups will be thrown 
up for consideration which have not previously been 
noticed, and which may be useful; that groups well 
accepted in the profession will perhaps not turn up - 
because they  are obsolete and not supported by the data. 
(Needham 1965) 

These opinions, as well as those held by the writer, make clear the 
need for a variety of clustering procedures; perhaps the best 
sources for many in English (and Fortran!) are to be found in the 
books by Anderberg (1973) and Hartigan (1975). 

It is not uncommon that different clusterings are obtained 
for the same set of objects either using different sets of attributes 
(an example having important classification consequences for the 
organisms—mosses—is given by Rohrer 1988), or from different 
clustering methods. Two problems need to be solved to obtain a 
consensus among two or more clusterings; first, how to represent 

the clusterings; and, second, dependent on this representation, how 
to define a consensus from them, which can be recognized as 
being that of the clusterings. 

For simplicity, consider the consensus between two 
clusterings. An obvious Way to represent a clustering is by the 
columns of A corresponding with the unities in the solution x, i.e., 
deleting the columns corresponding with xk  = 0; suppose such an 
array is called X. Similarly, for a solution y for the same n objects 
in the same order, but based on B (which could also be A), form 
Y in the same way. Several observations are immediate; first, 
perfect agreement exists between X and Y if a permutation of the 
columns of Y makes it identical with X; second, partial agreement 
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exists if some columns of Y are identical with some of X; third, 
imperfect agreement exists if the union of some (not all) columns 
of Y equals the union of some (not all) columns of X. Otherwise, 
there is disagreement. 

Without loss of generality, after deleting those columns of 
X and Y that are identical and do not intersect with other columns, 
put on one side the parts of the solutions that completely agree but 
intersect with other subsets. In the remaining part of each of the 
two arrays, the rows of X and Y corresponding with the objects in 
these subsets become empty; these are deleted. Here assume that 
n refers to the number of remaining objects, with inx  and my  the 
number of remaining columns; X and Y refer,  to these reduced 
arrays. 

A direct procedure for forming the consensus of two or 
more subsets is based on arguments similar to those for forming 
musters. Two possibilities are now considered: 

(1) Form the union of all intersecting subsets no matter from 
which solution they are derived. 

The justification for this action is that if one data set gives one 
assignment and another gives a different one but with some 
individuals common to both, and because there is only one(?) 
"true" evolutionary classification, the inconsistency is due to the 
particular subsets of attributes used in obtaining X and Y. The best 
decision, therefore, is to join such subsets. Such a subset 
subsequently can be studied alone. 

(2) For two intersecting subsets, form three groups, namely, 
those in common and those belonging to each alone. 

This action, however, tends to produce a multiplicity of single-
element subsets when there are many solutions and so is not 
recommended. 
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Two somewhat more elaborate procedures are now 
discussed. The first remains within the framework of the subsets, 
while the second embeds these into a Euclidean space, and then 
does things in that space before reversing the process. 

For the first of these proposals, X and Y refer to different 
subsets. Two cases are distinguished depending upon whether X 
and Y are obtained from a common A or from different ones. 

Common A Let Z be formed from X and Y by adjoining, i.e., 

Z = [X : Y]. 

It is apparent that each object is included at least twice in Z, and 
so there may be some redundancy. Assuming that now a z is 
sought so that 

Zz 	1, 

there is no difficulty in treating Z as if it were an A, obtaining a 
new set of probabilities and a covering solution based on it. This 
solution can be called a consensus. Because it is easy to adjoin as 
many solutions as are available, this procedure is easy to 
implement. 

Different A For most purposes, there is every reason to use the 
same procedures as those for a common A. However, Z can also 
be formed from the original subsets, say A and B, i.e., 

Z = [A : B], 

and the process completed by obtaining the probabilities based on 
Z (after removing duplicate subsets). Again, it is easy to adjoin as 
many families of subsets as are available. 
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The embedding procedure for obtaining a consensus is as 
follows: X (resp. Y) is embedded in a nix  (resp.  m)-dimensional 
Euclidean space, and then X (resp. Y) is re-expressed by referring 
the arrays to a common basis-, which is In . In fact, this re-
expression leads to the polar decomposition of X (resp. Y), which 
is obtained by an orthogonal rotation into two parts, namely, a 
symmetric and an orthogonal matrix. The symmetric part of each 
is standardized to unit Euclidean norm and then averaged (i.e., in 
Euclidean space, including those of any other solution). This 
average, which represents the consensus in Euclidean space, then 
needs to be converted back to a grouping. This inverse process is 
performed by converting the symmetric consensus into a 
dissimilarity array, and performing a conditional clustering 
(Chapter VIII). Algebraically, the steps are as follows: replace X 
by X/ II X  I,  using a Euclidean norm, and let a singular 
decomposition of X be 

X = USVT, 

where UTU = VTV =VVT  = I, S diagonal, non-negative. The 
polar form of X is given by 

W = USUT  = XVUT  = XR. 

Note that for fixed rows, W is unique for any matrix X, unlike the 
singular decomposition, which is unique only up to permutations 
of the columns of S (and hence the columns of U and rows of V). 
Let Wi  denote the eh  such matrix; then the consensus is given by 

C = 	E i.,.kW,. 

If a singular decomposition of C is PDPT , a set of principal 
coordinates is given by PD. The Euclidean distance between the 
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rows of PD give the dissimilarities to be used in a conditional 
clustering (Chapter VIII), so yielding the consensus. 

The weakness of using an embedding in a Euclidean space, 
followed by taking advantage of the continuity of that space, is 
apparent but has many precedents. For example, even if it is 
lcnown t.hat the solutions to a set of e,quations must be integers, an 
embedding into the real (or complex) space is often adopted, and 
the solutions considered acceptable if they happen to be integers; 
if not, they are converted to integers at the end. It is hoped that 
some better method may be identified involving fewer 
assumptions. An example of consensus formation is given in 
Chapter X, "Cabbages." 

Other mathematical programs for clustering 

M.M. Rao (1971) considered a more restricted class of mathemati-
cal programs for use in clustering than those described here, by 
adding the further constraint that the number of groups, G, is • 

specified. This program he described by 

min{f(c,x) I Bx = h, x3  E {0,1}1, 

where the first n rows of B are identical to the matrix A and the 
(n + l)St (last) row consists of unities. The first n elements of the 
vector b also consist of unities, but the (n + l)  element is set to 
G. The solutions are constrained to be partitions. A more flexible 
formulation is to remove the last row from Rao's matrix B and 

minimize f(c,x) 
subject to Ax = 1 

and ex = G for precisely G groups 
or ex G for at least G groups 

or ex < G for no more than G groups 
and x, E {0,1 }, 
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where t is a column vector of m unities corresponding to the last 
row of Rao's matrix B. For the strict equality, namely, tTx = G, 
Fréhel (1975) showed that for a linear cost function, there is a 
smallest scalar, v, which can be found by trial and error, and 
which will 

minimize (c + vt) Tx 

subject to the usual constraints. If v is very large, so that 
c + vt vt, the solution is a minimum partition or covering. If 
G is less than the number of columns in this solution, no feasible 
solution exists. By extension of Fréhel's technique, the inequality 
conditions can also be satisfied. White and Gillenson (1975) 
provided a graph-covering algorithm, which can be modified for 
the present purposes and which finds v automatically. 

Mulvey and Crowder (1979) described a special case of the 
uncapacitated facility location and m-median problems as 
mathematical programs and showed how it may be solved by use 
of Lagrange multipliers. 

Other objective functions 

This section draws attention to several other objective functions but 
does not describe them in detail. The costs that M.M. Rao (1971) 
proposed for each subset generated by various methods (Chapter 
VIII) all involve some measure of within-subset heterogeneity; in 
consequence, single-object subsets cannot be considered. Rao also 
showed that several such measiires cannot be expressed as a linear 
fiinction cTx, and that, for others that can be, sometimes only 
suboptimal solutions are found. The latter deficiency is serious, but 
only if the subsets in the solution are identified unreservedly with 
the underlying groups. For practical reasons, it is sensible to 
choose as a measure of separation one that not only is simple to 
compute but that allows a linear formulation. An extension of 
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W.D. Fisher's (1958) principles along the lines that Rao also 
considered was given by Gordon and Henderson (1977). 

This book is based essentially on the concept of the 
probability of a subset belonging to a covering, and so it is 
inappropriate to review concepts of heterogeneity or homogeneity. 
Nevertheless, I want to draw attention to the existence of the 
generalization of heterogeneity, called a scattering measure by 
Emptoz and Fages (1980), and which they claim encompasses 
many others, including that which Watanabe (1969) called 
cohesion. Although it has been argued that either information or 
joint probability should provide the objective function, some less 
obvious possibilities should be discussed. 

Kruskal's measure of homogeneity 

One interesting possibility for the a.ssessment of homogeneity was 
proposed by Kruskal (1972). His argument proceeds approximately 
as follows. Consider a set of points clustered tightly around a 
twisted curve; choose any point, and construct a sphere around it 
of radius r big enough to contain the scatter around the curve, but 
small enough so that the curve does not bend much, so that locally 
the curve is nearly equivalent to a straight line. In these 
circumstances, the number of points is proportional to r, and the 
internal dimension is unity. If the points are diffusely distributed 
in d-dimensional space, the number of points in a sphere of radius 
r is proportional to rd , and the internal dimensionality is d. If the 
points are clustered tightly around a few centres, the number is 
independent of r, and the internal dimensionality is zero. Kruslcal 
proposed the coefficient of variation of the interpoint distances as 
the basis for the estimate of internal dimensionality. If X is a set 
of coordinates for a set of points, and si  is the th  largest singular 
value, i = 1...r, of X, the shape of a set of points is defined as 
follows. Let 

cri  = (s1/Esi)2 , and gi  = ail(1 + 
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then the global dimension of the shape is 

(Eg )2iEgi2 .  

These interesting concepts appear not to have been applied in 
clustering, because their roles, other than describing the properties 
of a solution, are not clear. However, a low internal 
dimensionality clearly implies homogeneity and so is of general 
application (the distance need not be Euclidean), while the global 
dimension of shape certainly requires Euclidean conditions for the 
rotations in obtaining the singular decomposition, if a meaningful 
interpretation is to be made. Another measure of the shape of a 
finite set of points is proposed in Chapter IX. 

Separation 

Because within-subset homogeneity is obtained if all objects form 
subsets of unit cardinality, the concept of separation, the second of 
the two desirable attributes of a cluster (Cormack 1971) has been 
proposed. Separation is now interpreted to imply that the distance 
between a subset and its nonmembers should be as large as 
possible. A simple and natural measure of separation is the 
smallest distance between a member and nonmember; denote this 
distance for the s til subset by zs . This measure of separation ignores 
some relevant factors, such as the size, shape, and number of 
objects in the subset, as well as the position of the nearest 
neighbor in relation to the shape characteristics. To understand 
something about this, I performed an experiment (Lefkovitch 1978, 
appendix) to obtain an empirical function, to measure separation 
by using an "artificial intelligence" approach. I formed into a 
measure of separation a mathematical expression summarizing 
human responses to specified questions. Because shape perception, 
generalization, and inference depend on an individual's previous 
experience (Luria 1976), I interviewed separately 16 subjects, 
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including taxonomists (who are professionally sensitive to 
differences), statisticians (who tend not to reject "outliers" unless 
very different), and others uninvolved in these matters. I asked 
each to give their opinions of the membership of a specified point 
on a plane to a group of others arranged in a loose ellipse. These 
opinions were investigated in terms of the distance along the 
directional lines at which it appeared that the scorer was neutral 
about membership or nonmembership of an object to a planar set, 
where y is the break-even distance (i.e., the neutral point),  I s 
denotes the number of objects in the ellipse, E the eccentricity of 
the underlying ellipse, a and b its major and minor semi-axes, and 
0 the angle between the major axis and the line from the nearest 
neighbor of the candidate point to the centre of the ellipse. After 
a series of linear regression analyses, an empirical relationship was 
defined as 

constant = y [1 + (loge 's + sin E0)/e (a +e2] 
= y (1 + x) 

in which the constant appears to depend on the prior experience of 
the individual. The term loge  I sl /e°'  is an empirical measure of 
density that is zero only for null subsets; the term (sin €O)/e2 
is a shape-angle-size characteristic. This expression is such that 
the more objects present, or the greater the eccentricity, or the 
greater the angle with the major ais, or any combination of these, 
the more effectively is the candidate considered to be isolated from 
the group. (For further details of this experiment, see Lefkovitch 
[1978].) 

A quadratic measure of separation 

Another rneasure of separation can be based on am x m matrix 
T of distances among the m subsets; choosing subsets to maximize 
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some function of these (e.g., a norm) also focuses on separation. 
The problem, therefore, is that of quadratic set covering, namely, 

maximize {xTTx  I  Ax > 1, x E (0,11'n}, 

where T is a non-negative, positive semidefinite matrix. If t is 
defined as a column vector of m elements all equal to unity since 
the elements of T are all non-negative, it follows that maximizing 
tTTx is equivalent to maximizing x TTx; because tTT is a constant 
vector, this quadratic problem is equivalent to a linear one in 
which each subset is characterized by some aggregate of the 
measure of separation that it has with the remaining subsets. 
Computing T involves 0(n414) arithmetic operations, which may 
not be practical even for the modest n. 

If thè aggregated measure of separation over all subsets,. 
indicated by the elements of the vector x of this chapter, is 
incorporated into the function f(x,z), then choosing an x so that 
this function is maximized will result in an optimal solution. For 
example, maximizing z Tx for the nearest-neighbor measure of 
separation results in an optimal linear solution. 

Multiple objective functions 

While there is no obvious way to choose a "best" measure of 
separation, it may be possible that using more than one 
simultaneously may be preferable. Let there be g measures of 
separation, of which z, is the Ith  (t = 1...g); the combined 
set-covering problem becomes the search for efficient solutions, 
i.e., the Pareto problem (described later in this chapter), for which 
a simulated annealing algorithm is given. 

Bitran (1977) described a different approach, in which each 
set of the g - 1 separation vectors generates a further set of 
constraints for the remaining one. Hansen and Delattre (1978) 
described a partitioning algorithm that seeks to satisfy two criteria 
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simultaneously, na.mely, to maximize homogeneity and to 
maximize separation, which they referred to as a bottleneck type 
of problem. 

Because these measures of separation are monotonically 
increasing functions of the distance between the subsets, and 
because the solution maximizes some combination of these 
measures, the number of subsets to be considered can be reduced 
further by deleting any column of A if the separation of the subset, 
however defined, is less than some specified value, unless this 
action results in row i be,coming a zero vector. By this heuristic, 
large problems can be further reduced to manageable proportions 
with only minor impact on the probability that the optimal solution 
is contained within the reduced number of subsets. 

Algorithms for the solution of set-covering problems 

This section describes three algorithms for the solution of linear 
least-cost set-covering problems; such problems are Linear 
Objective COmbinatorial, called LOCO by Edmonds (1971). It is 
important to distinguish heuristic from approximate solutions. An 
approximate solution is defined as being one that guarantees 
obtaining a solution bounded by some lcnown ratio to the optimal 

solution. A heuristic solution procedure consists of rules that do 
not guarantee that the solution  is correct. For a heuristic solution, 
the expected time, effort, and computational complexity are 
appreciably less than those either of an approximation or of an 
exact solution, and in fact their use may be the only way to obtain 
any solution. The failures and errors using heuristics are not 
random but systematic, and, once it is understood how the 
heuristic works, classes of problems can be constructed that 
produce the wrong solution or fail to produce a solution at all. 

The first algorithm is a version of the greedy algorithm; it 
gives a solution never more than 2logen times the true optimum 
(Johnson 1974) and can simultaneously yield a lower bound 
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(Hey 1981). It consists of a set of plausible and computationally 
effective rules that obtain a solution satisfying the constraints, 
and for which numerical experience has shown that, with either 
{-loge  pk } or {-pkloge  pk} as costs, the optimal solution has always 
been achieved. Even if not, the value of the objective function at 
termination provides a good upper bound for other methods, and 
so this algorithm is always worth using. For example, any single 
subset whose cost exceeds the total cost of the approximate 
solution can be eliminated, perhaps permitting the reduction rules 
of Algorithm 11.1 to be used again. Alternatively, if the reduced 
array has only a few columns, little computational effort is needed 
to examine each irredundant covering. 

ALGORITHM 11.4. Approximate solution for the linear 
least.  -cost set-covering problem: 

input: A (pveferably fully reduced), c, and q; 

step 1: for each remaining subset, calculate 
hk 	ck/(Eqi  I i E k) 

where the summation is over all uncovered 
objects in the subset; 

step 2: find that subset for which hk  is a minimum, say 

step 3: set xk m = 1, delete from all subsets all objects 
newlym covered by kniin; 

step 4: if objects are still uncinered, go to step 1; and 

step 5: calculate crx, the value of the objective function. 

This algorithm is modified from that of Chvàtal (1979) by 
incorporating q, the relative importance of the objects; it chooses 
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the next subset to be included as that for which the most remaining 
objects are included for the least cost per additional object; each 
object is weighted by its relative importance. Chvàtal's original 
proposal weights the objects not by q but equally; others have 
proposed using the number of objects in the subset, or its 
logarithm. Other weighting schemes may be more appropriate, for 
example, {-qilogeq} , but the use of q seems to be the best of 
several tried. For independently provided costs (discussed in 
Chapter VIII), it seems that Chvàtal's original proposal may be 
best if the costs are linearly uncorrelated with {-log e  pi. Because 
of the numerical experience and the close relationship of p and q 
with A: 

CONJECTURE II. 1 (a) If  the costs are Flog, p , Algorithm 
11.4 always obtains a minimal covering; 
(b) if the costs are either  [-loge  pij or f-p kloge  
Algorithm 11.4 obtains a least-cost covering. 

A related heuristic solution procedure, described by Fishburn and 
Gehrlein (1988), is a modification apparently appropriate for large 
number of objects or subsets, or both, but has not been studied in 
the present context. It differs by including more than one subset at 
each step; with an informed choice of which of the remaining to 
include, it can be seen that the execution time of the procedure can 
be reduced even further than adoption of some heuristics. Vasko 
and Wilson (1986) discussed other hybrid heuristics for set-
covering problems. 

If the array A is totally unimodular (i.e., eyery square 
nonsingular submatrix of A has determinant equal to either +1 or 
-1), then the optimal solution to the linear relaxation of the 
program is also the solution to the set-covering problem (Padberg 
1975). However, it is sometimes difficult to show that any given 
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A is totally unimodular, but the possibility of taldng advantage of 
the linear relaxation remains. An exact solution for the linear least-
cost set-covering problem, described by Garfinkel and Nemhauser 
(1972), is based on the least-cost linear programming relaxation of 
the problem, namely, 

min{cTz I Az 	h, 0 	1, k = 1...ml, 

which is most conveniently solved in the dual form, to obtain a 
lower bound, from 

max{bTw  I  ATw 	c, 	0, i =  1...n} . 

For b = 1 and  Zk  flot confined to being either zero or unity, cTz at 
the optimum can be less than ex, the optimal set-covering 
solution, and so provides a lower bound. If this lower bound is •  
equal to the upper bound given by Mgorithm 11.4, the (or an) 
optimal solution has been obtained. If not, it becomes possible to 
determine some of the elements of the unialown binary x, and so 
to reduce the problem further. Thus by alternating the approximate 
solution procedure and the linear relaxation formulation, a solution 
can often be found quite quickly, since a reduced A may in fact 
prove to be totally unimodular. The solution procedure requires 
two components additionally to Algorithm 11.4, namely, how to 
solve the linear program, and how to obtain further elements of x 
from z. Because procedures are easily available for solving linear 
programs (for example, Fortran code is given•by Kuenzi et al. 
1971), I do not describe this aspect here. Consider the vector z; 
any element equal to zero implies that the corresponding element 
of x is zero, so that the corresponding column of A can be deleted. 
Any zk  equal to unity implies that xk  is unity; objects covered by 
these subsets are then deleted, so that these subsets become empty 
and hence deleted. Each noninteger element of the solution vector 
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z generates two new (smaller) sets of constraints, each of which 
generates a new linear program to be solved and followed in turn, 
until either the branch terminates, or it becomes apparent that any 
further solutions on that branch of the search tree are necessarily 
worse than the best current upper bound. After any further 
consequent reductions (usually none are possible), a new A 
remains, which together with the remaining elements of c are used 
in a further relaxation to a linear program. This process is repeated 
until all objects are covered, or equivalently, until A becomes null. 
To summarize: 

ALGoRrnim 11.5. Exact solution of the linear least-cost 
set-covering problem: 

sep 1: perform Algorithm 11.4 and record the (new) upper 
-bound; 

step 2: solve the corresponding linear relaxation  pro gram,  

step 3: if the objective function equals the upper bound, 
tenninate and report the solution of step 1 as optimal; 
otherwise delete subsets if the indicator variable is zero, set 
x, = 1 if z, = 1, delete the•  covered objects and null 
subsets from A; and 

step 4: generate the new sets of constraints, and for each, 
go to step 2. 

Algorithm 11.4 for an approximate solution gives an upper bound 
for the optimal solution, which is never more than 2logen times the 
true optimum (Johnson 1974) and can simultaneously yield a lower 
bound (Hey 1981). The upper bound can be used to eliminate 
single subsets of greater cost from further consideration. Garfinkel 
and Nemhauser (1972) also gave an additional cost-based reduction 
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that is sometimes very effective in reducing the size of the 
problem, because it may be combined with those described in the 
previous section. A review of further heuristics for this problem 
was given by Hey (1981) and by Moret and Shapiro (1985); a 
general strategy for the solution of set-covering problems was 
given by Hey (1981). Procedures for assessing how well an 
approximate solution may represent the data were described by 
Zemel (1981). 

The next algorithm is essentially very simple. It is a version 
of the simulated annealing algorithm (Aarts and van Laarhoven 
[1987] provided a usefiil description of the general procedure), but 
it may also be regarded as a stochastic programming solution. For 
single linear least-cost set-covering problems, it is less efficient 
than the heuristic method, but it appears to have no real 
competitors either for general nonlinear objective functions 
(although for special cases, e.g., fractional objective functions, 
there are effective algorithms) or for multiple objectives for which 
Pareto (efficient, undominated) solutions are required. 'Here it is 
described for a single objective function, fic,x), which is not 
necessarily linear, which is to be minimized (maximization 
problems are easily converted). The general strategy of this 
procedure is as follows: given the current candidate solution, x b , 
generate at random a new feasible candidate, x„ in the 
neighborhood of xb ; if the new candidate is better than the so-far 
globally best xg, retain it as the global best; else replace ; with x, 
with probability which depends on 

exp[f(e,xb) -fte,x,)] 

(note that the term in square parentheses is negative); after k no 
further improvements, generate a new feasible solution, x„ not 
constrained to be in the neighborhood of either xb  or xg , and repeat 
the procedure k times, where k is a preset number. 
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ALGORITHM 11.6. Determining a random  feasible  solution: 

step 0: initially consider all subsets; 

step 1: choose a subset with uniform probability from those 
remaining and include it in the cover if it is irredundant; if 
it is redundant, ignore it; and 

step 2: if all objects not covered, go to step 1. 

ALGORITHM 11.7. Determine a feasible solution in the 
neighborhood of the current best: 

step 0: let xb  be the current solution; define a vector 
w = 2 + x b; 

step I: choose subset k uniformly at random from the 
subsets remaining (initially all); 

step 2: choose a unifonn random number, u; if (u :5_ 1 /wk  
and 4, = 1) or (u > 1/w, and 4, = 0) and the le subset 
is irredundant, then set xk, = 1; 

step 3: if objects are still uncovered, go to step 1; and 

step 4: if f(c,x) < f(c,x,), w is replaced by w + x1 . 

This algorithm can be regarded as being an approximate method 
for determining p, since as the number of trials increases, the 
vector {wk/Ewk} approaches p. In fact, step 2 can be replaced by 
the following: 
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step 2': choose a uniform random number, u; tf  (u mp k  
and xkb  = I) or (u > mp k  and Xkb = 0) and the ki h  subset 
is irredundant, set xt  = 1. 

Clearly, this focuses on those subsets having high probability of 
being members, and which are not currently in the best solution. 

The remaining component, namely, to determine when to 
accept a poorer solution than the current best, is in fact a key 
element of this algorithm. A function having the following 
properties is desirable: 

as more and more random starts have been adopted, it 
should be more "difficult" to accept a poorer solution 

it should be proportional to how much poorer is the current 
solution. 

Let u  count the number of random starts; accept a worse solution 
if a random number, u, is such that 

u < exp[ (fie,x,) - fic,x,))/i,  1. 

Liepins et al. (1987) described a related solution procedure, based 
on the concepts of genetic algorithms, which "mutates" the current 
best solution rather than being completely random. Another genetic 
algorithm (Goldberg 1989) is a procedure used to solve 
optimization problems by generating candidate solutions and using 
concepts borrowed from genetics; it is based on (a tautology) 
"survival of the fittest" in simulated evolution. Candidate solutions 
are represented by "organisms" having a single "chromosome" 
whose loci correspond with the parameters; in combinatorial 
problems, a chromosome is often a bit string. The "fitness" of 
each organism is determined by its chromosome, from which the 
fitness value is calculated, s and from which the probability of 
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reproduction and survival into the next generation is obtained. 
Usually, the number of organisms per generation remains fixed. A 
set of "genetic" operators is applied to the chromosomes: 

mutation, defined as changing some of the parameter values 
(e.g., in binary problems, replacing a bit by its 
complement) 

recombination, defined as single and multiple crossing-over 
(exchanging a substring in one chromosome with the 
corresponding region of another) 

inversion (reversing a part of a chromosome). 

The effects of these operators is either 

(1) that offspring are generated whose fitness is not greater 
than that of their parents, in which case the offspring "die" 
and the parents survive into the next generation; or 

that offspring are produced having a fitness greater than 
that of its parent(s), in which case the parents "die," and 
the offspring replace them in the next generation and 
reproduce with. increasexi probability. 

Because the number of organisms is fixed, the effect is to replace 
inferior solutions with ever-increasing improvements. This 
algorithm can be seen to be a form of multiple hill-climbing (in the 
maximization context) and clearly lends itself to parallel 
processing. 

(2)  

In application to the set-covering maximization problem, 
the following observations can be made: 
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• there is no rea.son to distinguish an organism from its 
• chromosome 

each chromosome contains m loci, where m is the number 
of subsets in A, and consists of a bit string 

for n objects, it is unlikely that a solution containing more 
than  k < n/2 subsets is of any interest, and so it can be 
assumed that no more than  k organisms need be considered 

fitness is determined as 

ftc,1), Ax 1 

i ftc,x) otherwise 

where x is a candidate solution, and f(.,.) is the function to 
be maximized 

the probability of reproduction for an organism is defined 
either as 

h = (f(c,1) - f(c,x)) ec,1) 
or as 

h = exp(f(c,x) -ftc,1)). 

The proposed procedure is as follows: 

ALGORITHM 11.6. A genetic algorithm for solving set-
covering problems: 

initialization: assign k; generate at random k binary m- 
element vectors, x i, j = 1...k, which satisft Ax 	/, and 

• calculate their fitness and reproductionprobability; 
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repeat until tennination  condition  satisfied: 
choose one of (mutation, recombination, inversion) at 
random; 
(a) mutation: choose parent j at random, and with 
probability 1 - hi, randomly replace each bit in xf  by its 
complement, and determine thefitness of the new organism; 
if fitter, then replace xf  by the changed organism; 
(b)recombination: choose parents j and  j'  with probability 
hi  and hi„ respectively, -  within the chromosome of each, 
choose at random the same position and exchange the left 
segments; calculate the fitness of the Iwo  new 
arrangements, and replace the two parents by the fittest 
pair of the four (which may be the parents); and 
(c) inversion: choose parent j at random, and a position at 
random within the chromosome; with probability hi, reverse 
the left half, and determine the fitness, and then the right 
half- if either is fitter than the parent, it replaces the 
parent. 

Note that the fittest organisms tend to reproduce in each 
generation. The process may be terminated if one of two different 
conditions is satisfied: 

either that a prescribed number of generations passes in 
which the maximum fitness does not change 

. 	or that the majority of the organisms become alike. 

For single linear, objective functions, this algorithm is not • 

competitive with the heuristic and exact method; but for multiple 
linear,  objective fiinctions, preliminary trials suggest that it is no 
worse and perhaps better that the simulated annealing procedure, 
with which it has some similarity. For nonlinear objective 
functions and also for additional constraints, such as specifying the 
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number of unit elements in the optimal x, it seems to have some 
merit. 

With the exception of how to modify the annealing 
algorithm to solve multi-objective problems, I have now described 
the main general algorithms required. In other chapters I introduce 
further specialized algorithms as required. 

Claus (1973) proposed a more general method for solving 
set-covering problems; the program was written as: 

maximize {cli  IAx >_ b, X1  E {0,1}}, 

where A and b are arrays whose elements need not be restricted 
to zeros and unities. Claus proved two theorems for reducing the 
number of rows in A; these theorems are used to find the 
hypersphere consisting of the intersection of the n constraints; 
suboptimal solutions are obtained during the process until the best 
is found. The Claus algorithm, a predecessor of the ellipsoid 
algorithm for linear programming, is more general than that of 
Garfinkel and Nemhauser (1972), since both A and b are general 
arrays, but does not seem to be as efficient as that of Fiala (1973). 
Babaev (1978) described a modification of the Claus approach. 
Etcheberry (1977) described an enumeration solution procedure 
together with some computational experience. 
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In taxonomie  studies, the attributes chosen to represent the objects 
clearly should avoid those known to show considerable variation 
associated with environmental differences. This possible 
association is most obvious in plant species able to live in a wide 
variety of conditions and exhibit form that reflects this ability; 
it can also occur in animals. Those investigating genotype- 
environment interaction face this problem regularly. To avoid 
crea.ting classifications no better than that of the environments, one 
experimental procedure is by reciprocal transplantation (if possible 
raising the offspring of ail  individuals in all-natural environments), 
or, failing that possibility, raising all candidate individuals in a 
common environment (preferably several such), so that, after 
considering carry-over effects, differences within an environment 
can be assigned to genetic causes. Different environments may 
elicit different aspects of the genome as well as environmentally 
different responses. Because this opportunity tends to be available 
only rarely (although it is common in agronomy), investigators 
must use their judgement, perhaps guided by previous studies in 
the group, to select attributes least subject to environmental 
influences. Both for plants and animals, such attributes are usually 
associated with the primary reproductive organs—flowers, 
genitalia, birth mechanisms, and so on—because any major 
sensitivity of these organs to environmental influences is lilcely to 
reduce reproductive success. Perhaps vegetative reproduction and 
parthenogenesis further reflect this sensitivity, « and so should be 
considered as aspects of the genotype relevant to revealing the 
groups that exist. 

The subject matter of this chapter is relatively familiar, and 
is therefore kept brief. As already noted in Chapter I, the 
empirically defined and observed attributes need to be converted 
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into numerical forms appropriate for the current purpose. The 
Objective  now is to indicate how this conversion may be done so 
that the numerical values represent the objects adequately not for 
their description, but rather on how best they may be compared. 
The comparison of two objects almost always implies the existence 
of a third, in particular, 

for any three distinct objects, {i, j, k}, decide if 
objects i and j are more alike with respect to the 
attribute than each is to object k. 

Not all requirements for the numerical representation of attributes 
are described in this chapter, because some further conditions need 
to be satisfied for the scalar dissimilarity coefficients described in 
Chapter VII. Nevertheless, the theme behind the variations, each 
of which corresponds with the numerical representation of a 
particular class of attribute, is that an appropriate measure of 
resemblance between two objects can be computed as the inner 
product between two vectors. 

Careful consideration of what is being measured is always 
necessary. Some attributes are lengths, areas, volumes, weights, 
and so on, all of which are components of size, so that if these are 
to be combined in some way, care has to be given to the units of 
measurement. If shapes are to be described, a set of lengths and 
angles c,apturing differences is to be preferred rather than a single 
number to represent the whole, because their correlation is often 
as informative as the separate values. For variables such as angles, 
if averages are to be calculated, transformations to cosines are 
almost standard. Numerous arguments exist against the use of 
ratios, including the loss of information when two variables are 
replaced by one, the unpredictable nature of the variance of the 
ratio, and the spurious correlations with other ratios which can be 
generated. It is important, however, to avoid using what can be 
called "over-descriptions;" for example, a structure approximately 
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triangular can be represented either by two sides and the included 
angle, or by one side and the angles at its ends, or by three sides; 
introducing extra angles or sides does not define the shape more 
closely. Similar minimal sets can be found for approximate 
quadrilaterals, circles, ellipses, and other simple geometric shapes, 
and the principles involved extended to represent irregularly 
shaped structures. A decomposition of these irregular shapes into 
simple components sometimes gains sufficient resolution. 
Advantage can also be taken of the use of the coefficients of a 
Fourier decomposition of a closed shape, especially if there are no 
reliable "landmarks" on the objects. 

Not all measured attributes need be used for clustering. For 
example, if an attribute shows the same state for all objects, it 
conveys no information on the existence of subsets within them; it 
conveys information that it makes sense to consider the objects 
together. If the object by attribute array is reducible, nothing is 
lost by separating the objects into irreducible blocks and processing 
each alone. These decisions are both obvious and innocuous, which 
may ease the computational load considerably as well as increase 
resolution. A further simplification, which requires some thought 
and which cannot be applied routinely, is to retain only one of 
each attribute state that is duplicated over all objects by another. 

For example, if a state of one attribute is perfectly correlated with 
a state of another, should both be retained? The principal argument 
for retention is that a classification receives support by the 
concordance of many attribute states across the objects. Among 
several arguments for deletion are the following: 

many gene complexes have pleiotropic effects 

attributes may vary together because of environmental 
influences 
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the logical dependence among attributes is often poorly 
understood (a well-understood case is surface area and 
weight; many other such dependencies must be as yet 
unrecognized). 

A solution to this problem is open; perhaps the best strategy is to 
proceed both with and without such deletions, to try to understand 
any differences among the classifications that may emerge, and to 
use the classifications arising as competing hypotheses. 

As is apparent, each attribute needs to be considered 
carefully, because no automatic procedure is advocated. 
Furthermore, because an understanding of the attributes is based 
partly on the objects to be studied (as well as on the accumulated 
knowledge, experience, and intuition of the observer), the 
circumstance represents an example of a hermeneutical circle; the 
attributes are understandable by virtue of the classification of their 
owners, and the classification of the owners is understandable (or 
possible) only by the properties of the attributes. The key concept 
to which these remarks are leading is that of attribute homology; 
without lcnowing the phylogeny, it is impossible to be sure of the 
homology. For this reason, Sneath (1983) proposed a less 
evocative term, isology, which can be interpreted as capturing 
some elements of the concept of "sameness." 

The first step, therefore, is to describe the attribute 
classification system adopted here and the resulting numerical 
representation. The scheme used is based essentially on that of 
Gower (1971a) as simplified by me (Lefkovitch 1976, appendix). 
In the simplification, two types of attribute are recognized, 
namely, unordered and ordered, each of which is further 
subdivided by the number of possible states that an attribute can 
exhibit. 
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Unordered attributes 

An unordered attribute shows no natural ordering (statisticians call 
these nominal); an object can exhibit only one of several mutually 
exclusive states of such an attribute. Suppose the number of states 
of an unordered attribute is s > 0; then, for this attribute, a 
particular object is represented by an s-element binary vector, y, 
defined by 

for k = 	The major empirical problem is to distinguish 
between the situations s = 1 and s = 2. For the first, called a 
one-state attribute, the attribute is either present or absent (for 
example, a particular sex-linked structure); absence is not 
considered to be a state. To emphasize further and to anticipate 
later, no information is assumed to be given about the resemblance 
between two objects by this attribute if it is absent in both, i.e., 
just three of the four possibilities give information on the pairwise 
resemblance. An example is the absence of feathers both in 
mammals and annelids, which scientists would agree gives no 
information about their resemblance. In fact, there is an infinity of 
attributes which, if jointly absent, give no information on the 
resemblance of a pair of objects. By contrast, if joint absence is 
considered to give information on resemblance, the attribute is 
two-state; a clearer example of a two-state attribute is one in which 
there can be just two colors, one or other of which is necessarily 

= { 1, if the object shows state k, 
yk   

ntherueiçe 0 otherwise, 

Although values for vk  here are considered to be elements of {1,0), in 
Chapter VII, {1,-1} is also considered. 
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present in an object. If two objects show the same state for such 
an attribute, they are alike with respect to it; otherwise they are 
unalike. All four possibilities, therefore, give information on 
their pairwise resemblance. Gower (1971a) calls one-state 
attributes "dichotomies," two-state attributes "alternatives," and 
(s > 2)-state attributes "multistate unordered." 

Ordered attributes 

Ordered attributes, which include those that are either discrete 
(e.g., counts) or continuous (e.g., lengths, areas, and weights), are 
perhaps more difficult to deal with than the unordered. It is almost 
always true that although there is an ordering, the direction is not 
an intrinsic component of the attribute. Some numerical values are 
larger than others, and so a direction is implied by the size of the 
integers or real .  numbers empirically observed, but this se,quence 
may have nothing to do with any biological direction. For this 
reason, the degree of resemblance between a pair of objects given 
by ordered attributes usually depends on the absolute value of the 
difference in the numerical scores; in consequence it is necessary 
to ensure that a unit difference in the numerical representation of 
the attribute measures the same amount of dissimilarity throughout 
the whole range. It is easy to see that this condition is true for 
unordered attributes, when any difference in state can be asSigned 
a unit dissimilarity. The key problem, especially for scalar 
dissimilarity coefficients (Chapter VII), is to determine a uniform 
scale for ordered attributes; does a unit difference (e.g., from 1 to 
2, from 11 to 12, or from 101 to 102) reflect the same degree of 
biological difference? Probably not, but what should be the proper 
scale? In a sense, this question is impossible to answer, because 
the data under study represent a mixture of within- and 
between-group differences, which cannot be distinguished until a 
hypothesis on group membership has been suggested.  •This 
dilemma implies that several passes of the data may be needed 
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when ordered attributes are involved. Special problems also exist 
if zero is  one of the possible values; for a non-negative ordered 
att.ribute, does zero signify logical absence? If so, it may, be 
sensible to replace such an attribute by two, the one indicating 
presence or absence, the other, conditional on the first, being the 
positive value (or its transform). 

DisCrete ordered attributes 

Almost without exception, the values empirically recorded here 
consist of the non-negative integers. Dealing with an easy case 
first; if there can be only two values, Yi  and y2, this circumstance 
is equivalent to a two-state unordered attribute, and so can be 
represented by a two-element vector, because the direction does 
not really play a role. This conclusion immediately.  suggests a 
pragmatic recommendation for multistate continuous and ordered 
attributes -, if the values fall into two disjoint subsets (i.e., there is 
an intermediate range of values for which there are no 
observations), the attribute can be replaced by a two-state 
unordered attribute. For more than two distinct values, the more 
usual situation, it is necessary to record the values exactly. 

Discrete ordered attributes can be of two main types: 
ordinal discrete and interval discrete. 

Ordinal discrete attributes 

For an ordinal discrete attribute, it does not make sense to talk of 
the spacing or distance between the categoties. An ordering does 
not determine a unique metric and can be isometrically embedded 
into an infinitude of different geometries, each of which can 
represent the ordering. To obtain a set of numbers that can be used 
for the purposes of clustering, the naïve procedure is to construct 
an intuitive transformation of the scores, e.g., to percentages, and 
to use these as if they are interval values, i.e., as real numbers. 
This questionable procedure is often seen in the statistical analysis 
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of rating data in plant science (Little 1985), but, as McCullagh 
(1980) and Agresti (1984) pointed out, the analysis of rating data 
does not need to follow that procedure. Although much of the 
statistical development is irrelevant for the present purposes, 
underlying it is a useful scenario, which I now briefly review 
before proposing a numerical protocol. 

Assume that there exists a probability space, S, on which 
a metric, which is a member of the class of metrics associated with 
the scores under consideration, is defined. For any two elements, 
p and q E S, let Gpq(x) denote the probability that the distance 
between scores p and q is less than  x, i.e., 

05. Gpq(x) 5 1, Vx 	0; 

i.e., G is an integral transform of the scores. If x  < y  implies that 
Gpq(x) < Gpq(y), it follows that Gin  is a probability function (a 
distance distribution function; Menger 1942). Suppose q now 
corresponds with one of the two extremes of the ordering, which 
without loss of generality can be taken to be the lower, the 
proposed me,asure of distance between p and pi is 

= I  Gpq Gp ,q • 

To estimate the values of G corresponding with an empirical 
scores, form the empirical cumulative frequencies of them scaled 
so that the total frequency is unity, and determine the 
corresponding cumulative proportion. These numbers can now 
replace the scores, and the distances can be computed 
remembering that they are estimates of a probability, and so should 
be treated as such. A numerical example is shown in Table III. 1. 
Inspection of first differences in the scaled values suggests that 
there may be too many categories, that too fine a discrimination 
exists, and that only little is lost if categories 1-6 are combined. 
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Table 111.1 Example of 10 ordered score categories 

Score Observed frequency Cumulative frequency Scaled to unity 

0 	 10 	 10 	 0.127 
1 	 2 	 12 	 0.152 
2 	 3 	 15 	 0.190 
3 	 5 	 20 	 0.253 
4 	 2 	 22 	 0..279 
5 	 4 	 26 	 0.329 
6 	 3 	 29 	 0.367 
7 	 16 	 45 	 0.570 
8 	 17 	 62 	 0.785 
9 	 17 	 79 	 1.000 

Although the number of objects (79) in this example is somewhat 
larger than often seen in clustering, the procedure works quite well 
even with as few as 15 objects; the modest amount of computation 
is worth the insight that is given in understanding the differences 
among the scores. 

Interval discrete attributes 

For an interval discrete attribute, the values are treated as category 
averages, medians, or midpoints, so that differences between the 
scores are interpreted as a measure of separation between the 
categories. These are of two types, bounded and unbounded; for 
example, the transformation of ordinal attributes just described 
constructs a bounded interval variable, which because only a finite 
number of ordinal classes exist, the values should stilt be regarded 
as discrete. 

Bounded discrete ordered attributes For simplicity, and without 
loss of generality, it is assumed that the empirical data have been 
rescaled so that the lower bound is zero, and the upper is unity; 
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the bounds here are usually not determined by the observed range 
of the data but by theoretical considerations. This ldnd of attribute 
can be considered as being of binomial-type and has special 
properties that need to be considered if, in addition to systematic 
differences among the unknown groups, random variation is also 
a possibility. The problems needing attention can be illustrated by 
considering some extreme cases; if the mean of a single group is 
0.01, the possible within-group variation is positively skewed, if 
the mean is 0.99 it is negatively skewed; only if the mean is 0.5 
is it potentially symmetric. Thus the vvithin-group variation 
changes shape as well as having the potentiality to be of different 
size. Furthermore, even though a difference from 0.01 to 0.02 
may be considered to be equivalent to that between 0.98 and 0.99, 
that between 0.495 and 0.505 indicates much less of a biological 
difference, even though the numerical differences are 0.01 in all 
three. From this reasoning, it follows that stretching the scales as 
the values approach zero or unity, leaving the values in the vicinity 
of 0.5 essentially unchanged, is appropriate. One transformation 
satisfying these conditions is the logit; assume y is the proportion, 
i.e., 0 y 1; then the logit transform is 

z = 1oge(y/(1 - y)), 

so that y = 0.5 implies that z = O. Since y = 0 results in z equal 
to -00, and y = 1 to z equal to CO, precautions have to be taken 
in a computer program. These may include adding a small value 
to the numerator and denominator which map the infinite range of 
z to a smaller, e.g., 

z' = loge( (y + 0.00375)1(1.00375 - y) ) 

so that -5.59 	z' 	5.59, using natural logarithms. This range 
can be rescaled to lie between 0 and 1. A little investigation shows 
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that this added constant hardly makes a difference in the numerical 
values of the differences, except for the empirically determined 
bounds. Other possible transformations, and other constants, can 
achieve a stretching of the scales as y approaches zero or unity, 
but they hardly differ from the logit in the interval (0.05, 0.95). 

Consider again the y prior to transformation; clearly, y and 
1 - y are equivalent representations of the attribute, since the first 
shows the proportion of the scale of the attribute shown by the' 
object, and 1 - y shows the proportion of the scale not shown. It 
follows that two-state ordered attributes, which have been argued 
above as being equivalent to two-state unordered attributes, can be 
considered to be extreme cases of binomial-type attributes. For 
consistency, a binomial-type attribute should be represented by a 
two-element vector whose numerical values are the logit 
transforms of y and 1 - y, which differ only in sign. 

Unbounded discrete ordered attributes There are two cases to 
consider, attributes with a lower but no upper bound, and 
attributes that are discrete and unbounded in both directions. 

For the first case, it is almost always true that the attribute 
is a count, and that the lower bound is zero. Suppose it is assumed 
(a critical assumption) that the distribution of counts within each 
true group is Poisson. Since there is potentially an unknown 
mixture of populations present in N, each presumably with a 
distinct mean, it is almost certain that the sample variance for the 
N will exceed the sample mean, perhaps maldng a compound 
Poisson distribution more appropriate. One possibility is to assume 
that the means follow a gamma distribution, so that the compound 
can be represented by a negative binomial. Then a transformation 
of y, which generates an approximately normally distributed 
variable, is 

z = 
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which can further be transformed assuming a normal distribution 
to obtain an approximate uniform scale. Clearly, this chain of 
reasoning is a very tortuous, so that other transformations may 
investigated (for example, log(y + c), y1/2  , and so on) until one is 
found that appears to be satisfactory, even though this criterion is 
intuitive. Once some groups have been established, the 
transformation can be reconsidered and perhaps changed, but there 
is always the danger that the original choice will start things off in 
the wrong direction, as it were, so that the chances of revealing 
the true groups are reduced. 

For the second case, it is difficult to imagine a truly 
discrete attribute unbounded in both directions, but because there 
does not seem to be any obvious suggestions differing from those 
of continuous attributes, they are considered implicitly in the next 
section. 

Continuous ordered attributes 

For many empirical, continuous measurements, such as lengths, 
are,as, and weights, there is necessarily a lower limit of zero (or 
above), but there may be no theoretical upper limit, even though 
there is an ill-defined value for which higher observed values are 
extremely unlikely. Although this value together with the lower 
bound may be used in determining the range, it is likely that the 
within-group variation is positively skewed for all the (unknown) 
groups and, because the lower limit is zero, is also a 
monotonically increasing function of the means. If this dependence 
seems to hold (and it is now proposed that each measurement be 
examined from this point of view) then both for counts and 
measurements, it may be true that equal intervals on a geometric 
scale, e.g., counts 1, 2, 4, 8, 16, and so on represent equal steps 
on a scale of differences. This possibility suggests the 
transformation 
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z = loge(y + o), 

where o is an offset, sometimes zero, but usually unity or greater 
for counts, and at least eps, defined as the maximum (absolute) 
measurement error for continuous measurements. If the logarithmic 
transformation appears to be too severe, in the sense that many 
originally large values become too close, then 

z = (y + 0)1/2  

will compact them somewhat less; the Box-Cox family of 
transformations (described by Atldnson 1985) offer a wider range 
of possibilities than those described here. The choice of a 
transformation, however, is an empirical decision, because no 
mathematical theory seems to be helpful in the absence of the 
objects being assigned to distinct classes. 

An empirical transformation based on an integral transform 
of an empirical estimate of the probability density (Izenman [1991] 
gave a review) is also possible and has proved to be of use in a _ 
few data sets. Let xi  be the measurement of variable X for the ith 
object, and let  K(u) be any unimodal function for which 

fK(u)du = 1, and fle(u) < co. 

(The Epanechnikov [1969] function, which is essentially 

is said to be optimal with respect to the mean integrated squared 
error for any underlying distribution, although according to West 
[1991] 
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K(u) = 	, (- co < u < 

is the only function satisfying marginalization consistency.) Then 
the estimate of the empirical probability density estimate at any 
point x is 

p(x) = 	1 (14-11((x -  

where hi , the "window," is the distance between xi  and its nearest 
neighbor. The value of 

yi = ofxi p(x)dx 

can be used as a replacement for xi. This integral, which estimates 
the empirical cumulative distribution function for each x, can be 
obtained by numerical integration. A relationship exists between 
this transformation and that proposed above for ordinal attributes. 

For bounded continuous variables, e.g., that proportion of 
the area exhibiting a particular state, two comments can be made. 
If the variable is a computed ratio, first, it has replaced two 
numbers by one and so discarded information; second, it ha.s 
generated a variable whose variance properties are somewhat 
unpredictable as a result of measurement error. For most purposes, 
it is preferable to retain both observations in the ratio as distinct 
attributes; however, if there are good biological grounds for 
retaining ratios, their logit transformation appears to be an 
appropriate numerical representation for them, assuming that no 
ratio exceeds unity. 

Other considerations may aid in determining numerical 
values for ordered attributes, which become of particular use if the 
number of objects is large. If a graph of y plotted against its 
empirical cumulative frequency distribution falls into a line or a 
curve without any plateaux, it can be inferred that the attribute 
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shows no evidence of the existence of subsets, and so perhaps can 
be discarded. The existence of one or more plateaux gives good 
grounds for discretizing the measurement using the points of 
inflection. It can then be asked if the attribute under consideration, 
although recorded on a continuous scale, is in fact such that each 
part of the range represents the expression of some discrete 
biological phenomenon. 

Categorizing continuous .  att ributes 

In several different contexts, it seems that the processing of 
continuous variables presents difficulties, which are eased if the 
variable can be categorized. Archie (1985) proposed one such 
method in the context of cladistics; later, Goldman (1988) 
suggested several others. References cited in these publications 
refer to other methods. 

Because categorizing a continuous variable is equivalent to 
clustering on the real line, with the distinction depending on 
whether the focus is on the objects or the variable, this problem is • 

considered again in Chapter VI in the context of unidimensional 
clustering. 



IV Clustering without pairwise 
resemblances 

This chapter describes a method for the direct application of set-
covering methods to an object-attribute incidence array, which 
avoids the need to choose from the multiplicity of similarity 
coefficients (see Chapter VII for a selection of these), their 
transformations to distances (Gower and Legendre 1986), and the 
even larger number of heuristic clustering methods (Sneath and 
Solcal 1973, Hartigan 1975). Together, they offer a sometimes 
bewildering array of choices to the taxonomist wishing to use 
numerical procedures, which in turn leads to the eclecticism 
characteristic of publications in this field. 

Suppose a set of n objects is described by the states shown 
by m one-state (presence-absence) attribute data (Chapter III); 
these data can be assembled into an xm incidence table in which 

each object is represented by a distinct row, each attribute by a 
distinct column, presence by unity, and absence by zero. After 
clustering, the grouping of the objects can also be represented as 
a binary incidence table with n rows and as many columns as there 
are groups. The group incidence table, not surprisingly, can often 
be recognized as being a subset of the columns of the original 
attribute incidence table, but now the columns represent clusters 
and not attributes. This chapter describes some direct methods by 
which an attribute table may be converted into a group incidence 
table. For convenience, the arguments are presented in terms of 
the clustering of objects, but they can apply equally to obtaining 
associations among the attributes. 

Direct clustering of incidence arrays 

Let the A of Chapter II be defined by 
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A = {aik,  1=  1...n, k = 1... 

where n is the number of objects and m is the number of one-state 
attributes (Chapter III). A is therefore the incidence matrix 
corresponding to attribute presence (for examples, see Chapter X, 
"Butterflies," Table Ala; "Beetles," Table L1). One solution to 
the clustering problem consists of equating this A with that defined 
in Chapter  •II, and then determining the vector x, which, because 
each object must be located in at least one of the associations 
(Chapter II), must satisfy the constraint AA 1. The objective, 
therefore, is to decide if xk  should be set either to unity, which 
implies the choice of column k of A, corresponding with the kth 

attribute, as an object association, or to zero, implying that it is 
not chosen. 

Although this set of circumstances hardly requires more 
comment than that given in Chapter II, any clustering procedure 
depends on the choice of empirical data. Thus some preliminary 
thought and decisions are needed prior to any attempt at grouping. 
For example, an attribute uniformly present (or absent) in all 
objects gives no information on the object associations; it can 
therefore be eliminated. Some consideration should be given to 
attributes that are either present or absent infrequently (e.g., in one 
object); a strong case exists for eliminating such attributes, because 
they give only limited information about associations. Similarly, 
those objects showing presence just for one attribute can be put on 
one side. These decisions, however, should not be made for 
computational reasons but should be based on the experience and 
intuition of the ecologist or taxonomist. 

An open question is whether the probabilities should be 
obtained from the original A or from this array after duplicate 
attributes (i.e., identical columns in A) have been eliminated. Even 
after allowing for the different standardization, the numerical 
values can differ appreciably if the duplication is considerable for 
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some attributes. A decision to retain duplicate columns clearly 
depends on the original sampling procedure for their choice; if it 
was random, it seems preferable to use the original A. It is not 
difficult to obtain the probabilities and groupings from both arrays; 
clustering, after all, is a hypothesis-generating procedure and not 
an evaluation. 

Empirically observed incidence arrays are quite likely to 
include missing data, namely, elements which, for some 
inadvertent reason, no data are available. Some proposals on how 
to proceed are made in Çhapter 

In a sense, this chapter could be terminated here, were it 
not for some somewhat unexpected applications. Two of these are 
now considered. 

Phylogenetic hypothesis generation 

As discussed in Chapter I, the problem of obtaining a phylogenetic 
hypothesis is fraught with logical difficulties yet often takes as its 
starting point 0-1 data arrays resembling the matrix A of Chapter 
II. There is some interest, therefore, in describing how such arrays 
may be used, and to consider the assumptions opening this class of 
problem to numerical procedures. A series of defutitions allow 
this. 

DEFINITION  IV. 1.  A rooted tree, T = T(A), for A is such 
that each object is attached to exactly one leaf (terminal 
vertex other than the root) of T, that each of the states of 
the m attributes (columns of A) is associated with exactly 
one edge of T (more than one attribute can be associated 
with an edge), and that for any leaf of the tree, the states 
of the attributes associated with the edges along the unique 
path from the root to it exactly sped.), the attribute vector 
of the objects at the leaf 
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The key feature of T(A), if it exists, is that each attribute is 
associated with exactly one edge of the tree. The properties  of  this 
mathematical obje,ct are in themselves perhaps of some interest, 
but with three assumptions: 

that zero represents the ancestral state of each attribute 

the root of T represents an ancestral obje,ct, i.e., one for 
which all elements of the attribute vector are zero 

each attribute changes from the zero state to the unity state 
no more than once in any path between the root to a leaf, 
and  never from the unity state to the zero state, 

then T is called a phylogenetic tree. The problem of numerical 
cladistics can be expressed as: 

given A, determine if a T(A) exists, and if so, exhibit it. 

Esterbrook et al. (1975) proved a lemma establishing the existence 
. or otherwise of T(A) given an A, and Gusfield (1991) describe,d an 

algorithm, which is essentially no more than the second step of the 
procedure for permuting A to block-diagonal form (Chapter H), 
which will test if T(A) exists using arithmetic of 0(nm). Such a 
tree exists for Example  11.1  illustrating the block-diagonal form in 
Chapter II, but not for Example  11.2. An efficient algorithm for 
constructing a phylogenetic tre,e from A is also described by 
Gusfield (1991), assuming that one exists. If T(A) does not exist, 
or it is not laiown which of the states of each attribute is ancestral, 
it becomes necessary to consider each of the r possible choices 
for the root, leading to a major computing problem for more than 
a modest number of attributes. If despite considering each of 
(some selection of) the 2  choices no T(A) exists, then minimizing 
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reversals (i.e., contradictions to the definition of the tree) is often 
combined with the choice of root to yield a solution that is 
regarded as a best approximation to a phylogenetic tree, but which 
does not satisfy the definition of T(A); discussion of algorithms for 
these problems is beyond the present scope. Note that this 
computation is in addition to a search among the trees having 
n labeled vertices of unit degree, of which there are 
(2n - 5)!! = 1*3*5*...*(2n - 5) (Cavalli-Sforza and Edwards 
1967). 

Diagnostic sets of attributes 

A quite different context for the direct application of set covering 
is the determination of diagnostic attributes, both for descriptions 
and identification keys. Numerical methods for the generation of 
identification keys, e.g., for a set of species belonging to a genus, 
have tended to be based on the rule: 

choose the attribute dividing the species as nearly as 
possible into equally siz,ed subsets. 

This method gives an identification protocol for which the number 
of steps in obtaining an identification is approximately log 2n. 
Because it is rare for the set of species to fall even approximately 
into equal halves on an attribute, the half criterion is sometimes 
replaced by that of maximum entropy, i.e., choose that attribute 
for which the entropy of the division is a maximum, or by various 
extrinsic criteria, for example, based on the work required to 
assess the attribute (minimizing work is clearly desirable), or by 
its reliability (which should be a maximum). Although the general 
objective is the minimization of the average amount of work 
required to obtain a correct identification, these procedures are 
usually no more than locally optimal; there is no guarantee that 
global optimality is obtained (Moret 1982). Surveys of methods for 
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key generation (Payne and Preece 1980), decision trees (Moret 
1982) and criteria (Brown 1977, Payne 1981) make a detailed 
review of previous work unnecessary, although they do not appear 
to be widely lcnown (L,euschner and Sviridov 1986). 

The aim of this section is to describe a method to obtain an 
irredundant set of attributes, which can be used to distinguish the 
species (Chittineni 1980, Payne 1981, Pankhurst 1983, Roberts 
1984, Moret and Shapiro 1985). This discrete discrimination 
problem has been described in terms of a vector inequality 
(Lefkovitch 1987c). For species i, form the rectangular matrix, Di , 
which for n species has n - 1 rows, and m columns for m 
attributes, with 

( 1 if it is lcnown that species i can be distinguished 
from species j using attribute k 

as a typical element. It follows that 

LEMMA  IV. 1.  Species i is distinguishable from all other 
species under consideration u.sing the  •m attributes iff 
Dil > O. 

It is always valuable to verify that an individual identified as a 
particular species shows the appropriate pattern of differences from 
all others, but it is also desirable to reduce work and to increase 
the possibility of memorizing the diagnostic features by using the 
minimum number of attributes needed for complete accuracy. 

The first of three problems discussed here is the selection 
of a minimal diagnostic set (MDS) of attributes to be used to 

dik = 

0 otherwise (i.e., if they canno 
it is not lcnown that they can ix 
0 otherwise (i.e., if they cannot be distinguished or if 
it is not lcnown that they can be distinguished) 
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distinguish species i from the remaining n - 1 (Pankhurst 1983). 
The solution to this problem can be written as the need to 
determine a binary vector, x, to 

minimize {ex I Dix 1}, 

where xi, = 1 here indicates the le attribute; the minimization of 
ex ensures the irredundancy. 

The second problem, a generalization of MDS, is to choose 
a minimal identification set (MIS) of attributes to distinguish all 
species (Ledley 1973, Panldiurst 1983, Moret and Shapiro 1985). 
MIS relates to MDS as follows. Since thet row of Di  is identical 
with the ith  row of Di , the Di, i = 1...n, after removing duplicate 
rows, can be arranged in a rectangular array having n(n - 1)/2 
rows and m columns 

D = {diik  : j  = 2...n; i = 	- 1; i e j; k = 

LEMMA IV.2. The n species are distinguishable from each 
other using the m attributes 0' D1 > O. 

The proof of this is immediate from lemma  IV. 1.  It follows, 
therefore, that solutions to MIS are given by any binary x, -which 

minimizes {ex  I  Dx 1), 

where 1 is now a column vector of (n(n - 1)12) unities. 
Clearly, Di  and D, which represent the existence of 

pairwise differences among the species for the attributes under 
consideration, and the optimal choice for x, together concisely 
represent the procedures described by Kautz (1968), Pankhurst 
(1978), and Moret and Shapiro (1985). Pankhurst (1983) described 
verbally the essence of lemmas IV.1 and IV.2. The present 
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notation, however, makes it apparent that both MDS and MIS are 
examples of determining minimal set coverings (Moret and Shapiro 
1985), and also the obtaining of a family of distinct representatives 
from the representative graph (Chapter IX) obtained from A 
(Chapter II). 

As pointed out in Chapter II, the set-covering problem may 
have many solutions, but although having several solutions is an 
advantage for verification, it may not be for identification. To 
choose from among these minimal coverings, either further 
(intrinsic) information, extracted from the Di  or D, or extrinsically 
obtained information is needed to measure the cost (i.e., the work 
required) in assessing each attribute. This further information 
allows the finding of a globally minimal-cost set (or sets) of 
attributes for MDS and for MIS. 

The third problem arises if there is more than one measure 
of the cost of an attribute; it is to choose an optimal compromise 
set (OCS) for an identification scheme. If the costs can be 
combined into a single index, the problem is no different from that 
in the previous paragraph; but without a reasonable index, an 
optimal compromise solution is needed. Determining this solution 
is an example of multi-objective set covering; the solution 
proposed is such that any other choice degrades the solution for at 
least one measure of cost. 

Since MIS and MDS are essentially the same problem, no 
distinction is made between them unless necessary; A is used to 
refer both to Di  and D. Ignoring any inequality in the work 
required to observe the state of the attributes they represent, it is 
not uncommon for two or more columns of A to be identical, i.e., 
to be equally effective in distinguishing the taxa corresponding to 
the unities. In forming A from Di  and D, therefore, duplicate 
columns are represented by just one, with a record kept of the fact 
that such columns represent more than one attribute or attribute 
state. This information may be of value in determining an optimal 
solution to MIS and MDS. 
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It is apparent that the minimal set-covering problem can be 
written as follows: 

find any (or all) x which 
minimize {1Tx  I  Ax 	1}. 

Because A is often a large matrix, the constraint set is somewhat 
complicated. It is often possible, however, to simplify A without 
changing the solution (or solutions). These simplifications, the 
reduction rules in set covering described in Chapter II (see also 
Garfinkel and Nernhauser 1972), sometimes give a unique solution 
to the problem and may make redundant the remaining parts of the 
procedures described below. Thus if A is emptied by the 
reductions, the attributes indicated by those elements of x that are 
unity form a unique minimal covering, and so are a minimal set of 
attributes. 

Because a unique minimal covering is rare, and because of 
the preprocessing, each unit element of x may point to a column 
of A that represents more than one attribute, so that it is 
sometimes necessary to introduce further criteria to choose a 
solution. These are incorporated into the problem in the following 
manner. 

Let c be a m-element vector of given costs corresponding 
with each column of A (based on the difficulty in cibserving the 
attribute, the reliability of the observation, the number of attributes 
corresponding with a column), and f(c,x) the combined cost of the 
solution x; then a least-cost set-covering is given by those x that 

optimize Ac,x)  I  Ax 	11. 

In the minimal covering situation, fic,x) = xTx  = fix = 

where c consists of unities. 



species 

state 

1 	2 

a 	b 

C 	d 
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Even tho-ugh the costs in c can be obtained extrinsically, an 
intrinsic set can be based on the separation number (Ryplca et al. 
1967), which is the number of nonzero elements in each column 
of A. Because not all objects are e,qually informative about which 
attributes are useful for identification (consider, for example, those 
objects eliminated by the reductions), a better measure can be 
obtained from the interrelationships in A among the species and 
attributes, in particular, on the logical probability, pk , that column 
k is a member of the optimal covering. The background to these 
probabilities is given in Chapter II. 

The procedure to obtain p can be generalized to allow a 
measure of uncertainty in the distinguishability of each species by • 
each of the m attributes. This generalization makes use of the 
matrix B described in Chapter II, the elements of which are 
defined as 

the probability that object i can be distinguished 
accurately from object j using attribute k. 

The empirical problem of the estimation of bii.k  (the probability that 
individuals of species i can be distinguished accurately from those 
of species j using attribute k), from which the elements of A are 
obtained, can be considered as follows. For simplicity, assume 
attribute k has two states; a two-way table for species i and j can 
be constructed as 
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where {a,b,c,d} represent the frequency of the specified state in 
the specified species, and with the columns of the table sequenced 
so that b + c is a minimum. It is apparent that if al (a + b) and 
simultaneously dl (c + d) both tend to unity ,  as (a + b) and 
(c + d) both tend to infinity, then attribute k may be useful for 
distinguishing the pair of species. If so, it seems reasonable to 
estimate biLk  by 

a& ((a + b)(c + (1)). 

These values can be tested for exceeding a critical level, say 0.5, 
as follows. The rows of the table represent the frequency of the 
two states in a sample of size a + b for species i, and of size 
c + d for species j, and so can be considered as samples from two 
independent binomials. This interpretation allows a series of tests 
based on the cross-entropy with the critical value. These problems, 
and their extension to more states, attributes, and objects, have not 
been investigated empirically. 

Define an indicator variable, /e, which is unity for success 
and zero for failure. The sum of each row of B is mE(4), and 
interpreted as mE(bu), where E(bu) measures the probability of 
success that an attribute chosen uniformly at random from the m 
will distinguish species i and j. The corresponding diagonal 
element of BS*, where b*e  = 1 - bu.k, namely Ekke(1 - bm), 
is proportional to the variance of success, and is 

mE(bu)(1 - E(b g)) - var(bu), 

where var(b) is the "variance" among the be  (Johnson and Kotz 
1970, p. 80), and each off-diagonal element, Ekbe(1 - biy ,,k), is 
proportional to the covariance between success in distinguishing i 
and j, and failure to distinguish i' and j'. This interpretation of B 
and BTI3* allows an equivalent one to be made of A and ATA*. 
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The reasoning used to obtain p from A can be extended to 
B, so that the probabilities to be assigned to an attribute to obtain 
an optimal covering are given by the Perron-Frobenius column 
eigenvector of BS*. Although it is possible to find an optimal 
covering by finding those x that 

minimize {-Ekxkloge h  I  Bx > 

this problem is no longer one of traditional set-Covering because 
the elements of B are not {0,1} but in the interval [0,1]. However, 
solving this new problem does not seem worthwhile, because it 
depends on deciding how much greater than zero is the probability 
of identification acceptable. The solutions obtained by using the p 
obtained from B, vvith the constraints Ax 1, where am is unity 
if be,k  exceeds a specified threshold (0.5 would seem to be an 
appropriate choice), and is zero odienNise, appear to be a.dequate. 
Having obtained the reduced A and also  •the corresponding 
elements of p, the undetermined elements of x can be found as 
described in Chapter II. 

If, besides the (intrinsic) p, there are extrinsic criteria 
(e.g., it takes tk  units of time, or costs gk  units of money, or has 
relative difficulty for a novice of rk , or has an identical pattern of 
zeros and unities with sk  others), it is unlikely that a choice based 
on p alone would be optimal for all. If there is just one extrinsic 
criterion, or a meaningful index can be defined for the combined 
cost, c, further solutions are possible. The least interesting is to 
choose x to minimize ex, which generates solutions independently 
of p; somewhat more interesting is to choose x to minimize the 
expected cost: 

minimize {Ek  pkck xk  I  Ax 	1) 
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(Lefkovitch 1985a). Because both p and c are known, these 
problems remain as linear least-cost set-covering programs needing 
no new solution procedures. Clearly, different attributes may be 
chosen for different c. 

A nonlinear objective function arising in the present context 
is the information in the chosen subsets after normalizing their 
probabilities, namely, 

-EkRxk Pk  z) loge(pk/z)], 

where z = Ekxkpk . Other nonlinear objective functions, including 
several that are quadratic (Roberts 1984), are beyond the scope of 
this study. 

The combining of noncomparable mea.sures, such as time, 
money, difficulty, and probability, into an index is somewhat 
artificial; an alternative is to keep them distinct and find a solution 
to a multi-objective set-covering problem. Let  f(x) denote the 
value of the ath  objective function evaluated at x for the ath  
criterion; the objective functions are assumed to be optimal when 
minimized. An efficient (Pareto-optimal, nondominated, 
noninferior) solution, xopt, to a multi-objective least-cost  set-. 
covering problem is 

xopt = {x I Ax 	1, J(x) 	fa(x), a = 1...e, e 	11. 

In words, for any solution other than ;et, at least one of the 
objective functions is degraded. Clearly, for e = 1 and f a linear 
function, the problem is identical with that of ordinary least-cost 
set covering. It is unlikely that x is unique (i.e., there exists a 
so-called utopia solution) in the sense that it is also the optimal 
solution for each objective function alone. Thus the attributes 
chosen by /cm, form an OCS. 
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Algorithms for the exact solution of the multi-objective set-
covering problems (note that there is no laiown polynomial 
algorithm for it) were described by Bitran (1979) and by Kiziltan 
and Yucaoglu (1983), but, because the computational effort for 
finding an exact solution even for small problems does not seem 
to be justified in the present context, a heuristic solution, such as 
that described by Gabbani and Magazine (1986), is probably 
acceptable. A multistart stochastic programming solution to the' 
problem, algorithms 11.6 and 11.7, appears to show promise both 
for multi-objective and nonlinear set-covering problems. Chapter 
X, "Arctic grasses," illustrates the methods described for the 
choice of attributes for diagnosis. 

The formation of an identification key and a diagnostic 
system has a number of distinct steps, not the least of which is to 
define attributes and to demarcate their states. These are empirical 
matters, demanding considerable taxonomic knowledge and 
experience. Once the data have been assembled, however, much 
of the work that traditionally has occupied taxonomists, namely, 
preparing descriptions and constructing diagnostic keys, can now 
be automated, even to the extent of preparing multilingual versions 
(e.g., Watson et al. 1986). It is now easy to obtain special -purpose 

solutions if some attributes are seen only at special times in the life 
cycle, or if a spe,cimen is incomplete. 

This section has attempted to address two soft areas in the 
key construction procedures. First, the sequential choice of the 
best attribute for the next decision in the key, although locally 
optimal for minimizing the number of steps in obtaining an 
identification, is not necessarily globally (or locally) so either for 
minimizing the number of attributes in the key or for finding the 
set having the best compromise among a number of different 
criteria. By contrast, the optimal solution to the set-covering 
problem based on A and p provides a globally minimal set of 
attributes, which can then be used both as input to any key 
generating program and to provide a set for a minimal diagnosis. 
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As the "Arctic grasses" example in Chapter X illustrates, a key 
based on the minimal set may hardly differ in length from one 
based on a wider choice. 

The other area considered is the definition of a minimal set 
of attributes to distinguish a species from all others under 
consideration. This subset is never larger than that for all species 
and is often appreciably smaller. As shown in an example 
(Lefkovitch 1987c) of 25 attributes, 6 were sufficient to identify all 
10 species (there were nine possible combinations), but, for 
example, 2 were sufficient to distinguish one of the species from 
the remaining (there were 28 possible combinations for the pair). 

A computer program can easily form the D array(s) from 
the species by attribute data. Because do, E {0,1) can be stored 
explicitly in bit form, D requires only modest amounts of computer 
space even for large problems. 

Some other direct cheering methods _ 

Some other direct clustering methods described for binary data 
ought to be compared with that of the present chapter. As noted by 
Lefkovitch (1985a), there is a resemblance between the 
probabilities as obtained here and the values of the object 
ordination given by correspondence analysis. One representation 
of the latter procedure is essentially as follows: with A as in 
Chapter II (without missing values and ignoring various 
normalizations), the reciprocal averaging solution is to find  y and 
w so that 

Av = aw 

and 

ATw = fiy. 
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If the interest is in v, the solution is given by the 
Perron-Frobenius eigenvector of 

ATAv  = ev ,  

which clearly differs from 

ATA*p = (AT11T  - ATA)p = Xp 

of Chapter II. 
In the present model, the rows (= objects), columns 

( = attributes), and elements of A are not regarded as being 
random. Chapter II has already described the superficially similar 
set of circumstances arising from item analysis (Rasch 1960, 
Andersen 1980, Tjur 1982), which by contrast assumes that the ail, 
are independent Bernoulli random variables, with 

pit  = Pr (aik  = 1) = 	+ Bk), 

where the row paranieter ai  increases with the increasing "ability" 
of object i to show the suite of attributes under consideration. The 
column parameter Bk  decreases with the increasing "difficulty" of 
attribute k to be shown by the objeets under consideration. The 
objective of the analysis, which ià to estimate dei , differs from that 
of the present study, Which iS ttà identify recurrent sets of 
individuals. The Rach  model leads to determining the set 
representation probabilities of A, given that they balance the 
cOvering probabilitieS of Al", so al  iS eqUivalent to qi  of Chapter 
II. It should be emphasized, however ;  that in the set-covering 
model, there is no probabilistic interpretation of the elements of A, 
and that p and q have meaning only with  respect  to providing 
evidence relevant tù  propositions  about the grouping of objets. 
Were either the rows, Columns, Or elenientS of A tO be regarded 
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as random samples from populations of rows or columns, then the 
Rasch model would be of interest, and advantage could be taken 
of any relevant hypothesis tests. Note that the array B (see Chapter 
H) can be used for the Rasch model if, rather than the scores being 
either 0 or 1, some proportional measure of correctness is used. 

Another direct procedure for clustering binary data was 
described by Buser and Baroni-Urbani (1982). In their model, for 
a single 0-1 attribute in which 1 denotes presence, and S, the 
frequency of presences over all objects, then the sign test gives the 
probability density function of S as 

P(S) = (nS)P1SPOn-S  

where p i  is the probability of presence of the attribute, P o  the 
probability of absence, and pi  + Po  = 1. It is then assumed that 

Pi  = po  = 1/2 "as there are no concrete reasons for assuming other 
values"; however, there is no reason to accept p i  = Po  = 1/2 in 
any real taxonomic situation, since not only are the states unlikely 
to be equiprobable, but also the unequal sampling representation 
of the groups (see Chapter I) is likely to make this assumption 
dubious at best. Buser and Baroni-Urbani then defined two 
distances (the first for one-state attributes, the second for two-
state) between the data under study and the "most probable 
configuration" and considered the division of the data into k 
subsets, for which they obtain the entropy, defined by them as 

Eiloge  pi(S). 

Their clustering criterion is: "the lower the entropy, the better the 
order of the corresponding cluster, since the entropy is a measure 
of disorder." After considering more than one attribute, with the 
attending modifications of their theoretical dev.elopment, they then 
"require the best separation of the data set into two nodes," i.e., 
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introduce a sequential procedure based on the greedy algorithm. 
Because this criterion is local, and because the whole procedure, 
as currently developed, depends on the assumption that p = 1/2, I 
discuss their procedures no further. 

For data that are not necessarily binary, but for which the 
entries in the array are all comparable, i.e., measured in the same 
units, Hartigan (1972, 1975) and Eckes and Orlick (1991) 
described a direct clustering procedure based on computations 
familiar  in statistics. The procedure is based on the marginal 
means of the object by attribute array; the first step is to permute 
the rows and columns so that the marginal means are 
monotonically increasing. Within any previous division, the 
columns (rows) are sequentially separated into two subsets and 
then subjected to a one-wa.y analysis of variance; the decision rule 
is to divide the columns or rows under consideration into two 
subsets based on the maximum F-ratio. The assumption of 
homogeneous variance implicit in the analysis of variance, together 
with the requirement that the entries in the array must be 
comparable (Hartigan illustrated the method with percentage data), 
restrict the applications of this method. However, applications to 
the problem of genotype-by-environment interaction seem possible 
but do not appear to have been published. 



V Boolean dissimilarity 

The procedures described in Chapter IV are based solely on the 
logical relationships exhibited by the incidence array of the various 
objects. Although measures of pairwise relationship are not an 
integral component of that proposal, they are intuitively appealing 
and of potential value in representing the relationships among the 
objects. This chapter, an expanded version of the account given by 
Lefkovitch (1991a), investigates a nonscalar measure of pairwise 
relationship retaining the information given by their individual 
attributes and describes how to generate a family of subsets based 
on this measure. 

Vector dissimilarity 

For simplicity, consider a set of m one-state attributes as defined 
in Chapter III; extension to other types of attributes is considered 
in a later chapter. For the th  object, let i be the (I3oolean) vector 
in which the pth  element is unity if object i shows the state 
"presence" for attribute p and is zero othenvise; it is assumed that 
at least one element of i is unity. Denote by B the m  X n array for 
which the columns are formed by the n vectors, i, each 
corresponding with one of a set, N, of n objects. Let i and j be 
any two such vectors, and defme 

{ 1 if ip  0 jp  
gpCs.1) = 

0 if ip = ip, 

where  1,,  denotes the state of the pul attribute shown by object i. 
Thus there are m values, gp(i,j), p = 1...m, for the two objects. 
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DEFINITION V.1. Vector dissimilarity, g(ij), is defined by 
j (i,j),... ,g„,(ijll taken in the same sequence as the 

attributes in i and j. 

COROLLARY V.1. The object-attribute and object--vector 
dissimilarity spaces are the same, namely {0,1r, and the 
function g(.,.) maps the object attributes onto the vector 
dissimilarities. 

By inspecting the elements of g(i,j), those attributes in which 
objects i and j differ can be identified immediately. Ellis (1951) 
used the norm of g(i,j) as a measure of the distance between i and 
j; it is not difficult to show that most common scalar coefficients 
are functions of various norms of this vector. In what follows, it 
is assumed that 

the Boolean sum of vectors is given by the component 
sums 1 + 1 = 1 + 0 = 0 + 1 = 1 

the Boolean product of vectors is the vector of the Boolean 
product of corresponding elements 

the inequality / between Boolean vectors is defined by the 
component ordering, 0 5. 0 < 1 5 1 

0 denotes a vector of zeros, I a vector of unities, and 'the 
 complement of i. 

It is easy to verify that the function g(.,.) defines an abelian group 
in {0,1}", so that commutative as well as associative mathematical 
operations can be performed. 

It is necessary to develop a number of further properties of 
g(.,.) before describing its application to clustering. One 
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consequence of defining vector dissimilarity is given by the fact 
that g(.,.), although a vector retaining the identity of the attributes, 
satisfies the three follovving conditions: 

g(i,j) = 0 implies and is implied by i = j 
g(i,j) = g(j,i) 
g(i,j) 	g(i,k) + g(k,j). 

The proof of these, which is omitted, assumes the component 
Boolean vector sums and inequalities described above; it was given 
by Blumenthal (1952). These three conditions can be restated as 

THEOREM V.1. (Blumenthal 1952): g(.,.) is a metric in 
Men. 

The following are simple consequences of the definition of g(.,.) 
or of Theorem V.1. 

COROLLARY V.2. g(40) =  j,  Vi E {Um . 

This corollary shows that each description vector, i, can be 
regarded as a vector dissimilarity with O. 

COROLLARY V.3. g(i, ) = 1, vi 

Corollaries V.2 and V.3 show that g(.,.) defines a lattice for which 
0 and 1 are the universal lower and upper bounds. 

COROLLARY V.4. g( J) = g( j).  

Corollary V.4 implies that vector dissimilarity depends only on 
whether the objects show the same or different states, and not on 
which is coded unity or zero. 



0, q = 1...m, q 	p { 
e = P4 

1, otherwise, 
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In forming g(i, j) from the original data, the m-element 
Boolean vector descriptions of pairs of the n objects are replaced 
by a single m-element Boolean vector. In consequence, n(n - 1)/2 
such vectors exist; it is these on which clustering procedures can 
be based. Since g(i, j) = 0 implies that each of the m attributes of 
object i exhibits the same state as the corresponding attribute of 
object j, these objects are immediate candidates for grouping; in 
the context of other objects, either can represent the pair. It is 
unlikely that the objects will fall into a few groups within which 
vector dissimilarity is uniformly 0, so that further tools need to be 
developed. It is remarkable that they are a consequence of the next 
definition. 

DEFINITION V.2. The neighborhood of any vector i in the 
space [0,17. consists of i and those vectors differing from 
it in a single element. 

Denote the neighborhood of i, which consists of i and the adjacent 
vertices on the unit cube, by  V.  Define ep  by 

so that the m different vectors ep, which form the set E ={ep}, 
are a basis for {0,1}m; E can be represented by an identity matrix. 
It is easy to see that 

g(i,(j  E V)) E  {e,,}, i 0 j 

is one of this set. 

Since Vi  may not contain any points corresponding with real 
objects (other than i itself), and because clustering needs to deal 
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with all n objects, it is necessary to establish a relationship 
between any i and any j in {0,1}m. Such a relationship may be 
established by forming a chain 

= [i, cl, c2 , 

where each cs , s = 1...q-1, is in the neighborhood of the two 
points adjacent to it; the ; need not correspond with a real object. 

LEMMA  V.1.  g(c,., c„. 1) E E. 

Proof Immediate from the definition of a neighborhood. 
Q.E.D. 

There are many chains which may connect i and j, and although 
it is tempting to consider one chain to be shorter than another if 
there are fewer steps, using the number of steps introduces a 
metric (path length) equivalent to using a traditional (scalar) 
measure of dissimilarity. Lemma 1 has already established that 
g(.,.) E E for all adjacent vectors on a chain, and since E is a 
basis, this fact can be exploited to eliminate duplication. 

DEFINmoN V.3. A minimal chain is a chain for which all 
vectors g(i,c 1), g(ci , c2),...,g(ci, cs4. 1), g(c.24, j) are 
different. 

Thus the set of vector dissimilarities between the adjacent members 
of a chain form a basis for the subspace defined by the Boolean 
vector sum of i and j. 

Although more than one minimal chain may exist between 
any pair of objects, the ntimber of steps, q, is the same for all. 
Avoiding the use of q, the length of a chain can be defined as the 
Boolean sum 
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g[i...j] = g(i,c,) + g(c i , c2) + 	+ 

which is also an element of {0,1e. From the triangle inequality 
(Theorem V.1), it follows that 

g(i,j) 	g[i...j], 

with strict equality not infrequently observed in practice. 
• Following Blumenthal (1952), the vectors on a straight line 

defined by i and j are any (and all) pairs of vectors, u and t, such 
that 

u = it + ji, 

where t is the complement of t. If there are straight lines, there is 
also a concept of betweenness; it is this concept on which the 
clustering procedures described below are based. 

DEFINrnoN V.4. (Blumenthal 1952): if 

g(i,j) = g(i,k) + g(k,j), 

then k is between i and j. 

This concept has a natural relationship with that of betweenness for 
the real line. In fact, objects are between i and j if they lie on the 
sublattice having the universal bounds i + j and U. Furthermore, 
if k is between i and j, then k is part of a minimal chain 
connecting i and j. 

The practical determination of the betweenness relationship 
among i, j and k takes advantage of 

COROLLARY V.5. If k = k +  j,  then k is between i 
and j. 
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The proof that Corollary V.5 is equivalent to Definition V.4 can 
be verified by considering all eight possible cases. 

Note that if a row of B either consists entirely of unities or 
of zeros, or is identical with another row, the betweenne,ss 
relationships are unchanged; this situation implies that the 
corresponding attributes need not be considered. 

Vector dissimilarity and subset generation 

The procedures described in Chapter II require a family of subsets 
of the objects to be obtained from the empirically observed data. 
If a subset, S, of the n objects is defined by a n-element Boolean 
vector, a, with elements 

ai  = 
f 1, object i E S 

I. 0, otherwise, 

obtaining these subsets can be regarded as a function that maps 
vectors belonging to {0,1}m onto vectors belonging to {0,1 }n. The 
formulation of such a function arises from an appropriate answer 
t .  following 

Question. If an arbitrary subset, S, of the N objects is 
formed, which others of N\ S should also be included? 

An answer in the case of the real line is informative. Let 

Z < Z < < Z (I) — (2) — • 	— (n) 

be the order statistics corresponding with a measurement of some 
continuous variable for the n objects; if the objects corresponding 
with zo  and z(j+2)  are included in S, then all objects corresponding 
with any points between them, e.g., za .m, should also be included 



V BOOLEAN DISSIMILARITY 	 , 	139 

(W.D. Fisher 1958). This heuristic principle has the consequence 
that if the objects corresponding with zw  and zoo  are included in S, 
then so should all of N. Fisher's answer to the question for the real 
line, therefore, leads to a rule which can be summarized as 

IlEuiusTic V.1. Include in S those members of N I S 
between any  (pair  of) members of S. 

For m-dimensional continuous spaces, m > 1, arising from a 
scalar measure of the distance between objects, betweenriess is not 
defined, and so this principle has to be modified (Leflcovitch 1982; 
see Chapter VIII). For vector dissimilarity, however, no 
modification is needed for the concept of I3oolean betweenness 
given above, allowing Heuristic V.1 to be restated for practical 
implementation as: 

HEumnic V.1'. Include k in S if k is between  j and j, 
where i and j are a pair of (not necessarily distinct) 
members of S. 

Betweenness is easily determined using Corollary V.5. 
It is unnecessary to consider each of the nonempty subsets 

of N in turn to initiate an S for several reasons. If g(i,j) = i + j, 
equivalent to kj = 0, where i and j are part of the initial subset, 
then objects i and j have no attribute exhibiting the identical state 
(excluding absence and attributes not included in the study) so 
there is no interest in the subset of objects formed by them and 
those between (the Jaccard scalar similarity (see Chapter VII) 
between such objects is zero). Furthermore, the subset initialized 
by three (or more) containing such a pair is represented by the 
union of two or more of the subsets initiated by other pairs choSen 
from the three (or more); eliminating the threes, fours, and so on, 
however, requires that the optimal selection of subsets by the 
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programming methods described in Chapter II must not be 
constrained to be a partition but allowed to be a covering. Those 
pairs for which g(i,j) = i + j = 1 can also be excluded from the 
initial set, because every other object is between them. Similar 
remarks follow for all initial subsets of three, four, and so on. 
These rules collapse into eliminating i and j as an initial pair if 
either i+j=1, or ij = 0, or both. Thus only the () initial 
pairs of objects need be considered to initiate the family of subsets 
for subsequent study. This upper limit on the number of distinct 
subsets is rarely reached, not only because of the disqualifications 
described above, but also because different initial pairs may 
generate the same final subset. Thus a distinct subset can be 
denoted by 

a={k:k=k+ii;i+jOlanclij00}, 

which is one of the candidate subsets for choosing the optimal 
covering. If H distinct subsets are generated by betweenness, they 
are assembled into an xH matrix, A, for which the procedures 
described in Chapter II can be applied. 

Extending vector dissimilarity to s-state unordered attributes 
is straightforward, using standard procedures for converting these 
to s one-state characters; for ordered attributes (discussed in 
Chapter VI), betweenness is well understood. In this more general 
setting, the inclusion of object k in the subset defined by objects 
i and j depends not only on betWeenness for the s-state unordered 
attributes but also on whether the measurement for each ordered 
attribute of k is not outside the range determined by i and j. A case 
for extending the range, especially if the attribute is a random 
variable, is made in Chapter VI. 

The fact that a clustering procedure can be based on vector 
dissimilarity illustrates the potential of this measure of 
pairwise relationships, especially as betweenness has a very natural 
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interpretation as a heuristic clustering principle. A numerical 
example (see Chapter X, "André's data") shows, not surprisingly, 
that the solution obtained need not coincide exactly with those 
obtained using other methods (one without any dissmilarities, the 
other with the scalar Jaccard similarity), although considerable 
resemblance is seen. Because the objective of clustering is to 
generate hypotheses about group existence and membership,, 
differences such as these are more likely to be helpful in deciding 
about relationships than in adopting a single method asserted. to be 
the best. Because it is not known which grouping is correct, the 
combined results are suggestive about those objects that appear to 
belong together without doubt, and also about those whose 
positions are perhaps uncertain. 

Interior objects 

Consider objects i, j, and k, represented by i, j, and k, the 
attribute vectors. Let /e(k) take the value of unity if k is between 
i and j, and zero if not; k j; i j. Define also 

1(k) = Ei€N, jEN,jOile(k) ,  

which is the number of occasions that object k is between others. 
Let ./ = max(/(k), vk E N); then as defmed in Appendix 1, 

DEENrrioN V.5. K = : 1(k) = 1„,aj are a set offocal 
points. 

Thus K is the kernel of the set, N. The objects belonging to K can 
be regarded as being central in the set N and so may be useful in 
providing the candidates for the selection of a type specimen; those 
of N\K form the frontier of Nand represent the range of possible 
variation. 
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Boolean similarity 

Although g(i 3O) = 0 implies that the origin of the description 
vectors is 0, interpretable as a vector describing "absence," other 
origins can be used to represent pairwise relationships. If the 
origin is 1 (i.e., "presence"), i as originally defined is replaced by 
T, but g(.,.) is unchanged, as shown by Corollary V.4; using 1 as 
the origin is a mapping that preserves distance and is therefore a 
motion (Ellis 1951). With 1 as the origin, however, the concept of 
similarity may be more natural, and, although vector similarity can 
be represented by the complement of g(.,.), neighborhoods, 
minimal chains, bases, and clustering rules are sometimes more 
awlcward to define. 

Boolean (discrete) derivatives 

Scalar dissimilarities map the relationship between i and j onto a 
point of a space usually considered to be continuous (often treated 
as isomorphic to a Euclidean space); thus they allow derivatives to 
be defined. To develop the idea of a discrete derivative, let i be 
any vector belonging to {0,1}'" and i(p) be the same vector with 
the if' element replaced by its complement. 

DEFINITION V.6. The discrete derivative of g(i,j) with 
respect to j, denoted by ei,j) is an m x m matrbc with 
elements 

{1 if ga, o 	i(p)), p = 1 ...m  
= 

0 otherwise. 

Clearly, g'(ij) consists of the set of values g(i, j E V). 
The discrete derivative may be useful if compound objects 

are constructed, i.e., a group of objects not necessarily identical 
in the states of each attribute, but considered to be a single entity, 
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e.g., a species. If for two compound objects (including single 
objects) g'(i,j) is a zero matrix, good grounds edst for replacing 
i and j by a compound formed from them. However, the most 
promising application of g'(i,j) is in dealing with missing data. If 
thee value for object i is missing, ei,j) = = 0; the more 
zeros in g'(i,j), the less well founded is the measure of 
dissimilarity. 

Vector dissimilarity and phylogenetic reconstruction 

The clustering procedure based on vector dissimilarity described 
in this chapter is appropriate in any context requiring a 
classification based on a set of attributes. Vector dissimilarity is 
immediately applicable to phenetics in biology, especially if the 
objective is to assemble individuals into groups. It also has a role 
in cladistics, where the objective is to model the phylogeny of the 
assembled groups (such as species). 

One criticism of phenetics made by advocates of numerical 
cladistics is that the use of overall measures of (dis)similarity is 
not helpful for phylogenetic reconstruction, and that each attribute 
should be considered separately. Although vector dissimilarity does 
not include a sense of direction (Corollary V.4) in each attribute, 
it does retain the separateness of the attributes required by 
numerical cladistics but without the biologically false assumption 
of independence implicit in much cladistic practice. Furthermore, 
if the zero state is defined as being ancestral to that represented by 
unity, it becomes possible to interpret the vectors ij and i + j 
phylogenetically. For example, it is almost (but not absolutely) a 
truism that the states shown by an ancestral form include those that 
are uniform in the group of taxa supposedly descended from it; 
thus for objects i and j, since ij is between i and j, a hypothesis 
for the states of their ances-  tor is ij, and the diversity of attributes 
in the combined taxa is i + j. The attributes that have changed in 
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i correspond with the unities in g(ijj); the unities in g(i+j,ij) 
indicate those attributes changed in both. If ij is null, it must be 
concluded that the description of the objects is insufficient to 
determine the states shown by a common ancestor. There is a role 
for vector dissimilarity in cladistics as well as in phenetics. 



VI Clustering on the real line 

In Chapter BI, the need to consider carefully the units of 
measurement for ordered or continuous attributes was discussed in 
some detail. Grouping a set of objects into subsets by any single 
attribute yields solutions that may also be considered as defining 
an ordered categorization of the variable; as mentioned in Chapter 
III, the categorized attribute may then replace the original attribute 
with only modest loss of information. This replacement is of lesser 
importance for group formation than it is in at least two other 
contexts: 

in constructing formal identification keys, deciding where 
to divide an ordered variable for diagnosis 

for categorizing•ordered variables in current numerical 
cladistics (Almeida and Bisby 1984; Archie 1985; Goldman 
1988). 

Methods for the grouping of objects using continuous (and discrete 
ordered) measurements are the subject of this and the next tvvo 
chapters. This chapter considers unidimensional data, and the 
simultaneous consideration of more than one but without 
combining them into a single index as discussed in Chapter VII. 
The use of such indices for clustering is postponed until 
Chapter VIII. 

The starting point for unidimensional clustering is a vector, 
z, of n elements for which zi  is the measurement on object i. It is 
assumed (see Chapter III) that a unit difference in two 
measurements indicates the same degree of difference throughout 
the whole range of values, and that each z., is an observation from 
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a random variable, Z, for which the probability distribution or 
density is unlcnown. A second assumption of lesser importance is 
that the whole real line is potentially available for a value of z • , or 
perhaps that there is a sufficiently large interval, extending beyond 
the empirical observational bounds, for which any value for z •  is 
possible but unlikely. 

Betweenness 

As noted in Chapter V, W.D. Fisher (1958) claimed if the zw  are 
the (ascending) order statistics, to include zo  and z(1,2)  in a subset 
but to exclude z(j+1)  is unreasonable. This heuristic principle 
receives substantial support from lemmas 2.1 and 2.2 of Boros and 
Hammer (1989). For continuous variables, forming subsets by use 
of a criterion equivalent to that of betweenness suffers from an 
obvious weakness; it is that z( _i)  may be only trivially less than z® , 
or z(1,3)  trivially greater th an z«,2) , or both, so that a group formed 
only of zw , z(1+1) , and zu.,2)  has no more than a passing interest. 
The next section of this chapter describes how the boundaries may 
be extended in such a way as to avoid forming subsets unlikely to 
be of any lasting interest. 

Outliers 

The remarks about zo_n  and z(j+3)  have been leading towards the 
notion that making a decision about the membership of an object 
in a subset is analogous to considering the probability of its being 
an outlier. If the probability is sufficiently low, the object should 
be included in the subset. To consider this notion as a possible 
model for subset generation, two assumptions, virtually the same 
as those of Scott (1965), have to be made. These assumptions are 
that a subset is a candidate for inclusion in an optimal covering if: 

(1) 	For any subset of objects, there exists a probability density 
for an arbitrary point in the dissimilarity space which 
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depends only upon the distance between this point and the 
sub set.  

(2) 	Given a subset of objects, the remaining objects are 
mutually independent, at least locally. 

These remarks and assumptions lead naturally to considering the 
probability of membership as being one of extreme values. Using 
the exponential extreme-value distribution, for many (e ?) 
distributions belonging to the exponential family 

Pr(Z 	z) = exp(-exp[ -(z - p)I O ]) , 

where p and 0 > 0 are parameters to be determined. Their 
moment estimators, which are probably satisfactory in the context 
of clustering, depend on 6, the sample standard deyiation, which 
can be obtained from the average absolute difference among  ail  
pairs of elements of z. If this average is (5, which has an expected 
value of 20171/2  for normal distributions, 

ê = êr 	= â (3/2:1-) 1/2  

= 	= 

where bc is the centroid (mean) of the population, here assumed to 
be zero, and 7 is the Euler number 0.57722... . To a reasonable 
degree of approximation, suppose S is a nonernpty subset of the 
objects, then 

Pr(i E 5) = exp(-exp[- ([wi  + 0.4M/0.7 ,5)]), 

where wi  is the average (absolute) difference between object i and 
the members of S. If V(S) denotes the neighborhood (e.g., 
betweenness) of subset S, this reasoning leads to the following 
heuristic: 

and 
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HEUIUSTIC  VI. 1.  Given a subset S, at stage v of a 
generating process, Sv+1  consists of those objects 

=  fi: Pr(i E V(S„)) :5_ ad], 

where a, = a(S) is some function satisfting the two 
conditions 

Thus for a very large average distance among the members of Si,, 
all  n objects should belong, and for smaller averages, then 
essentially fewer (or even no) other objects should belong. These 
properties imply and are implied by the requirement that the 
number of objects in the subset should tend to increase in 
relationship to the increase in variability. j'From these 
considerations, a definition of a, can be obtained that is data 
dependent. Let be the characteristic largest value, defined here 
as the absolute maximum difference in the subset, i.e., the range 
of values of; for î  E  S1, .  Then 

lim(EV _ 8v) 	CC 

lim(E, _ 3„)  -› 0 

151,1 = n 

a, = 1 

S„1 • = 1 

a = 0 

are a re-expression of the same limits set for a, but with respect 
to b„. Using the probability corresponding with e, to define av+1  
gives 
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av+i = exP('-exPH[Zi + 0.46]/0.7M). 

For practical application, this expression decides on membership 
of object i in a subset by the following very simple rule, which is 
the key element not only for single univariate 'clustering, but also 
for sets of attributes considered simultaneously and for 
dissimilarity indices. 

HEURISTIC VI.2.  If  the average distance of object i to the 
members of  S  does not exceed the maximum among them, 
include object i in subset S, 1 . 

If dk (S,) denotes the average distance of object k to the mernbers 
of S„, this heuristic can be written alternatively as 

= {k : dk (S„) 	max(dg)  Ii, J  E 

Each of the (D pairs of objects defines a subset formed from them, 
from those between, and perhaps some just external to them. The 
process is repeated, with S v., replacing S, until Sv. i  =  S.  

Although this recursion rule is derived from reasoning 
based on extreme value theory, with several approximations and 
assertions, its simplicity spealcs in its favor. Furthermore, because 
the extreme value distribution is largely independent of the 
underlying probability distribution (or density) of the variable 
under discussion, the rule has elements of robustness. Perhaps the 
most telling argument in support is that it is extremely plausible 
and would not be considered unusual or unbelievable even if it 
were to be proposed as a clustering principle de novo. 

Any procedure satisfying Heuristic VI.1 is an example of 
conditional clustering and provides an answer to the question asked 
in Chapter V, and now repeated: 
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Question. If an arbitrary subset, S, of the N objects 
is formed, which others of N \ S should also be 
included? 

Outlier tests 

Standard statistical tests for outliers, described in detail by Barnett 
and Lewis (1984) for normal, gamma, exponential, Poisson, 
binomial, extreme value, and other distributions, can be imagined 
to provide an alternative to the procedure described above. 

HEURISTIC VI. 3. Examine each nonmember of S, in turn 
as if it were an outlier from the appropriate distribution, 
and include it in S. 1  f the probability of its being an 
outlier is sufficiently low. 

The problem with these standard statistical tests is that they are 
functions of the number of objects belonging to but this number 
is unlikely to represent anything other than the behavior of the 
collectors of the objects or the rarity of the unknown groups (see 
Chapter D. The primary (possibly, the only) objective of clustering 
is to determine the existence of a group, not the probability of an 
extreme member of it being found in a sample of size I Sv I + 1. 

Nevertheless, one standard test can be modified for this 
purpose. Let dm  be the smallest and 4,0  the largest distance 
between the candidate, k, and any current member of the subset. 
According to Like§ (1966), the exclusive excess range statistic 
(Dixon 1950, Barnett and Lewis 1984) for an upper outlier from 
an underlying exponential distribution is 

C = ded4,0 
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with test statistic 

F„(c) = 1 -- (n-1)(n-2) Ba2-c]/[1-c], n-2), 

where 	B(a,B) = r(a)r(B)/r(a +13). 

Tables for this test are presented in Barnett and Lewis (1984). As 
just noted, the fact that n, the number of objects under study, is in 
this expression is the main deficiency, given the usual collecting 
procedures for•  biological objects. To modify this test for 
determining subset membership, however, it seems reasonable to 
consider that the objects number just three, namely, the candidate 
and the closest and furthest subset members. After a little algebra, 
the test criterion becomes 

F3 (c) = c/(2 - c) 

from which it is easy to show that c = 2/3 implies F3 (c) = 0.5 for 
reference to the tables. If the average absolute distance to the 
members of the set is approximated by 0.54)  + 0.562) , the 
criterion of Heuristic V.2 is equivalent to a probability of 0.2. 
Although this value may appear to be somewhat low, there is a 
fundamental difference between statistical testing, which tends to 
need strong evidence to support a decision that something is 
different, and the requirements of taxonomy, which needs to keep 
things separated for relatively weak reasons until they are shown 
to be unsubstantiated. 

More than one ordered variable 

For more than one ordered variable, traditionally the procedure has 
been to combine them into a scalar pairwise measure of 
dissimilarity (see Chapter VII), and to use a clustering procedure 
that operates in a multidimensional space. However, such indices 
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are usually compounds of incomparables (shapes, colors, lengths, 
areas, and so on) and  can be considered as being too artificial. An 
early alternative to such indices was sequential (Williams and 
Lambert 1959, 1960); an ordering of the attributes was determined 
and the objects divided into subsets, each of which has the 
property of being relatively homogeneous for a state of the selected 
attribute. This monothetic, sequential, divisive procedure has the 
wealcness that all divisions beyond the first are conditional on those 
previously made, and so there is a nontrivial probability of failure 
to construct a meaningful hierarchy of more than one level, 
although the procedure is certain to produce groups that are 
essentially uniform in the states of the chosen attributes. If that is 
the objective, as in the maximal predictive classification procedure 
of Gower" (1974), there is much to recommend it. A possible 
sequence for introducing the ordered attributes can be determined 
by use of the following criterion. For a non-negative ordered 
attribute in which there is at least one nonzero value, the Gini 
(hierarchy)  index  is defined by 

g(z) = ( Ei.,...,z  E 	1z, - 1 )/(n(n - 1)i), 

can be shown to satisfy 0 É g(z) É 1 (Stuart and Ord 1987, 
§2.25). The greater this index, the more stnictured are the data. 
A set of attributes can now be ordered from the greatest to the 
least Gini index. For two (or more) attributes, zk , the value of 
g(7rz) can be compared with wg(4). 

Rather than a sequential introduction of the attributès, their 
simultaneous use is now considered. This and the previous 
chapters have led to a common notion; that a subset defined by 
objects i and j consists of them and any objects located between 
them (Chapter V) or, for ordered variables, between them and just 
outside their range (this chapter). An alternative procedure is now 
proposed, which also keeps each variable separate; it extends the 
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procedures of Chapter V to apply both to ordered and to any 
combina.tion of ordered and unordered variables. 

Let a- subset generated by i and j be denoted by V(i,  fi  z), 
where z is the set of attributes used; there may be just one attribute 
(as so far in this chapter) or several (see Chapter V). In Chapter 
V, it is apparent that V(i, j1z) is formed by the simultaneous 
consideration of the one-state attributes, and that it requires only 
one of the attributes of a candidate object to fail to satisfy the 
criterion of betweenness to disqualify the object from membership 
in V(i,  fi  z). Extending this idea to ordered variables is 
straightforward and leads to a generalization of Heuristic VI.2: 

HEURISTIC VI.4. Multicriteria subset generation. 

•  If 	(d# Iu) is the set of distances between objects i and 
j based upon the set of attributes (u); 
Nu) is the set of maximum distances for each 
attribute among the members of the subset at stage v 
in the procedure for the set of attributes (u); and 
(iikv Iu) is the set of average distances between object 
k and the members of the subset for the set of 
attributes (u); 

then include object k in the subset at stage I,  + 1 

((d» I u)/(8v I u))  É 1, 

i.e., if for all  variables, the average distance for each object has 
to the members of the subset does not exceed the maximum for 
that variable. This simultaneous consideration of many sets .of 
distances is an example of multicriteria decision maldng discussed 
by Zeleny (1982). If u consists of many perfectly correlated 
variables, the whole set is equivalent to just one of them, and so 
the effect of duplication of information is removed (this lack of 
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effect is not necessarily an advantage, but it does tend to eliminate 
inadvertent duplication). If there is no association among the 
variables, then the final family of subsets will consist just of the 
() pairs of objects, indicating that perhaps some other method may 
be preferable. An example where this combined algorithm may be 
applied is given in "GE interaction" (see Chapter X). 

It is not difficult to combine the Heuristic VI.4 for multiple 
continuous attributes with that of vector dissimilarity betweenness 
by extending the criterion to include k in Sv., 1  

iff {(i/e, I u)/(6, u)} 	1 

and 	 g(i,j) = g(i,k) + g(k,j). 

Note, however, that because the dissimilarity vector criterion for 
subset membership is not iterative, it suffices to consider it first, 
and then to retain or reject the subsets based on the criterion for 
ordered variables. 

Chapter IX continues the discussion of multiple decision 
criteria using concepts based on the relative neighborhood graph; 
the latter is described in some detail in Chapter VIII. The concept 
of betweenness for multivariate data, via a generalization of the 
relative neighborhood graph by Ichino and Sklansky (1985), is also 
discussed in Chapter IX, section 6. 

Grouping means 

To complete this chapter, I consider a recurring problem in 
statistics, namely, the grouping of means, which can be recognized 
as clustering on the real line. Some solutions for this problem have 
been based on assumed distributions, others on Bayesian con-
siderations, and yet others on the application of heuristic clustering 
procedures (e.g., O'Neill and Wetherill 1971, Binder 1978, 
Basford and McLachlan 1985, McLachlan and Basford 1988). 
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Calinski and Corsten (1985), dissatisfied with the fact that many 
solutions consist of overlapping subsets, proposed three principles 
for forming a partition, namely, that 

the number of groups is as small  as possible 
homogeneity within groups is a maximum 
there is good separation among the groups. 

These principles contain the elements of a mathematical program, 
in particular, of a least-cost set-partitioning problem. The 
components of this program are conceptually simple, namely, 
given a family of subsets of the objects, together with a measure 
of heterogeneity for each subset, choose from among these to 
minimize the pooled within-group heterogeneity of the choice, 
subject to the constraint that each object be included precisely 
once. How the number of groups is to be chosen, or how to pool 
heterogeneity, or how to decide what is an acceptable level of 
within-group pooled heterogeneity all need investigation. The 
remaining part of this section describes how Heuristic 'VI.2 can be 
used to provide a solution to the problem of grouping means. 

Adopting W.D. Fisher's principle, described prior to 
Heuristic V.1 as re-expressed by Heuristic VI.2, each of the Q) 
pairs of class means defines a subset. If the subset is acceptable 
(e.g., it contains fewer than n means; other conditions mn also be 
imposed), it is retained; the process is then repeated with another 
of the pairs. With the decision rule redescribed below, not all G) 
pairs need be used; Chapter VIII shows that in fact only those 
pairs adjacent on the relative neighborhood graph (Toussaint 1980) 
need be used; for unidimensional data this graph is identical not 
only with the minimum spanning tree but also with , the 
(unbranched) shortest path among the objects, so that there is a 
maximum of n - 1 subsets. If an object proves not to be a member 
of any of the accepted subsets, it forms a subset by itself. 
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Defining the distances used in Heuristic VI.2, therefore, is 
the key component, because it determines which objects are to be 
included in a subset and which are not. As shown above, 
betweenness, coupled with some blurring at the ends, leads to the 
following recursive form of Heuristic VI.2: 

HEURISTIC VI.2 (recursive form). If d g  is the distance 
between objects i and j, (5, the maximum distance among 
the members of the subset at stage v in the procedure, and 
ilk, the average distance between object k and the members 
of the subset, then include object k in the subset at stage 
✓+ 1 

iff 	/, 

i.e., if the average distance an object has to the members does not 
exceed the maximum among them. For unidimensional data, by  is 
the range of the variable in the subset. If zw  is the ith  ordered value 
of a continuous variate in a sample of size n, (i) = 1...n, the 
range is related to the estimate of the standard deviation, s, by 

= I Z (n)  - Z(I)1 É 2(n - 1) 1/25. 

Be,cause two estimated means will be distinct with probability 1 the 
range will be positive. Since for y = 1, the number of distinct 
me,ans is necessarily 2, the recursive Heuristic VI.2 can be 
specialized as 

HEURISTIC VI.2'. Include object k in the subset at stage 
• = 2 if at stage v = 1, Vs 2, 

i.e., if the ratio of a mean to its appropriate standard deviation (its 
standard error) does not exceed 2. This ratio can be regarded as an 
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internally studentized range, which, in normally distributed 
samples, has a distribution free of the unlcnown true mean and 
standard deviation (David 1981,  P.  89). 

As the subset size increases, the expected range also 
increases approximately in proportion to the square root of the 
number of objects and so includes more of the objects under 
consideration. It follows that at least three possibilities exist for the 
decision rule for y > 1. 

HEURISTIC VI.2'.1. 	Let the decision criterion be 
2(n, - 1" where n, is the cardinality of the current subset. 

Thus s (the standard deviation) remains constant throughout and is 
the value appropriate to the generating pair, i.e., ô, remains 
constant at S I . The argument against this assumption is that it 
depends on normality, which, in a clustering context, can  hardly 
be justified, and so this possibility can be rejected. 

HEURISTIC VI.2 1 .2. Ignore the fact that the cardinality 
increases, and let the empirical range be determined for the 
current subset; leave the•  decision criterion at 2. 

The argument against this possibility is that it is largely intuitive. 
The principal support comes from the assertion that there lack 
grounds for believing that the objects under study are a fair sample 
of those in the population (Chapter I) also the fact that the rule has 
worked well in numerous real data sets. 

HEURISTIC  VI. 21.3.  Let the decision rule depend both on 
the cardinality and the estimated s, i.e., regard the 
criterion as a test of signcance analogous to a t-test by 
incorporating n„ and the value of Student's t tabulated for 
n, degrees of freedom in the rule. 
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The principal argument against this possibility is that since 

s 	8/[2(n, - 1)1, 

the decision rule is 

dels, = 2(n, - 1)½d„,/$5, 5 2. 

If a, = 1 and db, = 0.5, object k is almost certainly contained 
within the bounds determining the range. It is easy to see that at 
stage v + 1, object k would be included if n É 5, but not if n is 
greater. This consequence is unacceptalble, and so Heuristic 
VI.2 1 .3 is rejected. 

The arguments against heuristics VI.2 1 .1 and 2 seem 
weaker. It is interesting that, in simulated combined samples from 
normally distributed populations having different means but the 
same variance, the first two rules gave very much the same groups 
as each other; however, they gave different groupings for skewed 
distributions, with the second rule almost always giving groups 
corresponding with the known generating parameters. The rule 
based on Heuristic VI.2 1 .2, therefore, appears to be the best of the 
three. Two further points to note in connection with this heuristic 
are as follows: 

the value of s, changes as the subset changes 

when the subset is finally accepted, the value of sy  is 
neither assumed nor required to be the same as that of any 
other accepted subset. 

It follows that the accepted subsets are allowed to differ not only 
in their me,an values (i.e., if zo  is some origin for the 
unidimensional data, the means are then defined by the average 
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distance of the members of each subset from this origin) but also 
in their permitted internal variation. A further question is to decide 
if the within-class variance (or range) should play a role in subset 
generation, because here the objects under consideration are 
sample means. One role for these estimated variances is in relation 
to the units in which the grouping is to take place. It is often true 
that a relationship between the mean and variance is ignored, even , 

 though this contradicts the assumption of constant second-order 
conditions in an ANOVA. For clustering, such a relationship 
implies a changing metric, and so computing  ô and à needs some 
prior preparation; in particular, it is desirable to transform the data 
so that the within-class variances are effectively constant and 
independent of the means, either by theoretical considerations or 
by an appropriate choice from the Box-Cox family (Atldnson 
1985). Let a,' be the estimate of this constant variance, and let de  
denote the pairwise distance between classes, measured by the 
absolute value of the difference in the class means, in the same 
units, i.e., du  is replaced by dulcre . Clearly, such a replacement 
does not alter the value of the decision criterion, dkj(5„; it follows 
that, other than in determining the metric, o.2 plays no role. 

If there is heterogeneity in the variances apparently 
unrelated to  the  means, or if the intrinsic variability is genetically 
controlled separately from the mean (such as may be true of 
different varieties or species), a transformation may be neither 
identifiable nor desirable. A proposal for these circumstances is 
now described. For each of the () pairs of means, compute 

= 	s.e.(i,j), 

where s.e.(i, j) is the estimated standard error of the difference 
between if  and 2i, and form the array 

D = 
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D will be unidimensional if all s.e.(i, j) are equal but otherwise 
will almost certainly be multidimensional, for which the simple 
concept of betweenness has to be replaced. This increase in 
dimensionality leads naturally to the subjects discussed in Chapter 
VIII, where it is considered in detail. 

An alternative, which may also lead to an increase in 
dimensionality, is to measure the dissimilarity, do  between two 
means using the estimated first two moments, a and s? by 

= - 	+ (si  - sy. 

This Fréchet (neighborhood) distance (see Appendix 3) is zero iff 
both the means and variances are equal; it can be extended to 
include the differences in the cube roots of the third moments, and 
so on, should it appear that useful information is conveyed 
thereby. If the distributions of the variable for the two objects are 
known, then the squared Hellinger distance 

few - 1),(4) dz, 

where the integral, which is over the admissible domain of z, can 
. be replaced by a summation for discrete ordered variables. 

At this point, a number of subsets of the n objects have 
been found. Some subsets may contain few objects while others 
may contain larger numbers. There is no assumption of a common 
within-subset variance. Each accepted subset has been found 
independently of any other but is related to others by the extent 
that they are nondisjoint. The accepted family of subsets can be 
represented by the matrix A as defuied in Chapter  H. It is 
unlikely that the subsets either form a partition or even an 
irredundant covering. The problem of how to choose from among 
the generated subsets to obtain a partition of interest from an 
irredundant covering is discussed at length in Chapter II. To 
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summarize, a probability measure based on the relationships 
among the objects and subsets is given by the Perron-Frobenius 
column eigenvector, p, of ATA*. The solution to a least-cost set-
covering is found based on these probabilities. A covering solution 
is chosen because 

the covering may in fact also be a partition 

no partition may exist, and so requiring one will make the 
problem appear to have no solution 	. 

the overlapping of two or more groups in the optimal 
covering indicates a sufficiently close relationship that they 
ought to be combined. 

The third of these is the key, because acting on it converts the 
optimal covering into a partition. In particular, if the partition 
consists of just one group, there is a strong indication that there 
may be no distinct subgroups of any interest. Furthermore, this 
process of forming musters (Lefkovitch 1982) remedies some, if 
not all, the inadequacies of the subset generation phase, because in 
it, a subset that would have been initiated by members of now 
distinct components would probably have generated a subset of all 
n objects and have been rejected. 

In addition to this solution, another programming procedure 
is now described, based on Calinski and Corsten's (1985) second 
principle, so that some of its properties in the present context 
can be recognized. Let the heterogeneity of the le subset be 
measured by its variance, aî (or perhaps by SI , which is related 
to the variance), and define A = {ail} to be the incidence matrix 
as before. Then consider the linear least-cost set-partitioning 
problem, which is to find a binary vector, x, that 

minimizes {Ek  x, I Ax = 1, xk  E {0,1}) 
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(M.M. Rao 1971). This program may not have a solution because 
the subsets in A may exhibit a pattern of relationships not allowing 
a partition. This possibility can be avoided by replacing the 
equality by Ax 1, i.e., to obtain a covering solution. Of more 
importance, however, is that the original data will have been used 
not only to generate the A, but also to obtain the aî for the 
objective function, Ek 4 oî. The consequence of this double usage 
is that subsets of low cardinality are chosen, since the variances 
corresponding with them tend to be small (e.g., a group consisting 
of one object has al = 0 and necessarily is included in the optimal 
solution). 

Yet another solution procedure, based on Calinski and 
Corsten's (1985) third principle, proves to have a similar 
consequence in a programming formulation; suppose each subset 
is characterized by the distance to the nearest member of the other 
subsets (Lefkovitch 1978). Then a solution that minimizes the 
number of groups and maximizes the sum of the distances among 
them seems of interest. Le-aving aside the problem of how to 
measure the distance between nondisjoint subsets, it is clear that 
single-object subsets tend to be chosen, and that furthermore, the 
original data again will have been used twice. 

The case study "ANOVA means" (Chapter X) considers a 
number of data sets used by Calinsld and Corsten (1985). 
Conditional clustering as applied to the grouping of means gave 
much the same results as some other methods in four out of five 
examples. In these circumstances, what advantages are there in 
using it? It appears that they are largely theoretical, because the 
amount of computation involved is not prohibitive in any of them. 
A summary of the major differences between the procedure 
described here and that described by Calinski and Corsten (1985) 
are given in Table VI. 1. That  differences exist is apparent, and so 
the reasons for a choice must be based on theoretical 
considerations; in particular, I claim that 



Conditional clustering Calinski and Corsten 

Trivial solutions avoided 
unless necessary 

Trivial solutions avoided 
automatically only by 
specifying a cutoff 
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it is preferable to choose that class of procedures 
which appears to assume less and which exploit the 
consequences of these minimal assumptions as fully 
as possible. 

Table W.1 Comparison between the proposed procedure and those given 
by Calinski and Corsten (1985) 

Subsets 

Generated independently 

Local significance test, 
with (implied) fixed a 

Together form a covering 

Largely distribution free 

Independent of  within- 
sample .  variance variance 

Uses arithmetic of 0(n2)  

Generated simultaneously 

Global significance test 
required, with user a 

Always form a partition 

Assumed asymptotic normality 

Significance test depends on 
within-sample variance 

Uses arithmetic of 0(n3) 

Optimal 

Uses only the relationships among 
among generated subsets 
(i.e., data used once) 

solution 

Given at subset phase, uses 
global significance test 
(i.e., data used twice) 

Approximate procedure uses 	Uses arithmetic independent 
arithmetic of 0(n) of n 
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Conditional clustering uses the data to obtain subsets based 
Heuristic VI.2; using the maximum entropy principle, it obtains set 
of probabilities and a solution from the subsets without further 
recourse to the data. The other methods considered here use the 
means to generate the subsets but require them again, together with 
a significance test (and its assumed distributions) at a chosen level, 
to obtain the solution. Conditional clustering may produce a 
solution that is not a partition, but which can be formed into one, 
whereas the other methods are constrained to form a partition and 
thus impose one even if it is inappropriate. A covering solution 
obtained by the programming phase of conditional clustering, if 
not a partition, indicates that some groups are not well separated; 
but if they are not well separated, they represent a group 
somewhat more elongate (for the unidimensional problem) than the 
decision rule allows. Thus forming musters remedies some of any 
deficiencies in the subset-generating phase. A further property of 
the conditional clustering method is that it can easily be extended 
to the case of nonhomogeneous variances, and even further by 
using Fréchet (neighborhood) distances (Lefkovitch 1985b) to 
incorporate differences in distribution beyond the first two 
moments. However, it is in the subset-generating phases that the 
two classes of procedures are essentially different. In the Calinsld 
and Corsten method using complete linkage, subsets are generated 
using a greedy algorithm; this algorithm has considerable 
computational power, being based on local optimality, but has the 
wealcness that once a de,cision is made, it can never be undone 
within the framework of the algorithm, (which may explain the 
difference in the location of Q in data set 5 of "ANOVA means" 
in Chapter .  X). By contrast, in the subset-generating phase of 
conditional clustering, each subset is generated independently 
of any other, and so decisions made about the membership of an 
object to a subset, which are conditional on the current members, 
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may differ from that to another subset, even if the two subsets 
ultimately are found to overlap. 

Stanfel (1982) described another procedure for partitioning 
unidimensional data, which can be written as an integer-
programming problem with linear constraints and a nonlinear 
objective function. The objective function, the difference between 
the average within-group and average between-group distances, is 
of some interest; but because it apparently does not seem to have 
a natural extension for overlapping subsets, and also because the 
program itself appears unsuitable for finding coverings that need 
not be partitions, Stanfel's proposal is not considered further in the 
present study. 



VII Scalar dissimilarity coefficients 

Although scalar dissimilarity between a pair of objects is a 
reasonably well-discussed parameter, it is usually based on 
attributes (see Chapter III), i.e., concepts more primitive than a 
direct measure. Curiously, in spite of many publications discussing 
dissimilarity (or similarity) in numerical taxonomy, 1  its definition 
seems to have no more content than it is "the number obtained as 
the result of some specified sequence of calculation." Because this 
situation is somewhat unsatisfactory, a definition based on these 
primitive concepts is given after some preliminary remarks. 

An object, i, is represented by the state it exhibits of each 
of a number of attributes. As in Chapter III, an attribute is a 
subdivision of an object exhibiting one of a number of states; 
sometimes the number of states is finite, and sometimes the 
possibilities map to some continuous subset of the real line. In any 
particular context, the delimitations of an attribute, and the range 
of conditions subsumed by a single state are defined empirically. 
Each state is demarcated according to the degree of resolution of 
the measuring instruments (such as eyes, rulers). There may be 
some pooling of the states, if the resolution is thought to be too 
fine, or if a computer program imposes restrictions. The number 
of attributes theoretically defmable is infmite, but in practice, a 
small (finite) sample is chosen because that set happens either to 

' However, in a mathematical context, similarity has received some discussion; 
I recommend H5hle (1988) as an important recent contribution. Unfortunately 
for the present context, one of his axioms is a generalized transitivity, which I 
am loath to accept. 



VII SCALAR DISSIMILARITY COEFFICIENTS 	 167 

be accessible, or is of interest to the taxonomist (and therefore 
represents a bias). Arguably, there is much subjectivity in the 
choice of attributes and definition of states. 

Similarity as a probability 

It is convenient to begin this discussion with the estimation of 
similarity coefficients, for which it is necessary to make explicit 
what is being estimated. Consider the following geometric model. 
Imagine two congruent, nonisosceles triangles each of which is 
completely colored by some unlcnown, nonoverlapping regions of 
blue and red; there is also a template identical in outline to the 
triangles, but with holes of varying shapes, sizes, and position. 
The template is placed on each triangle in tu rn , and the revealed 
pattern of colors is recorded. Some holes may correspond entirely 
with red in both triangles, some entirely with blue, some with red 
in the one and blue in the other; others may be partly red and 
partly blue. The objective is to determine the probability that in a 
randomly chosen perforation, the two color patterns on the 
triangles are the same. If the perforations in the template are 
chosen at random, it seems reasonable to estimate this probability 
by the ratio of the area exposed by the perforations in the template 
in which both triangles show the same color to the total area of the 
perforations. 

Note the following correspondence between this triangle 
model and the definition of attributes: 

(1) The number of points on any triangle (and the number of 
points in each exposed region) is nondenumerably infinite, 
as is the number of attributes of an object. 

(2) The number of perforations in any template is finite, as is 
the number of empirically chosen attributes, even though 
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the number of possible choices and delimitations of 
perforations in the templates is denumerably.infinite. 

If the two triangles correspond with two objects in which 
homologies can be identified with (reasonable) certainty (e.g., the 
vertices of the triangles, and the positions of the perforations), a 
single attribute corresponds with a single perforation, and the 
colors with its possible states. If the perforations of the template 
are chosen randomly, this situation corresponds with a random 
choice of attributes; if in some biased way, e.g., along the edges, 
corresponding with choosing attributes on objects lcnown to be 
diagnostic or are known not to be diagnostic, the estimated 
probability will be biased. 

Leaving the triangular model, which implies the existence 
of some unambiguously identifiable landmarks, suppose there are 
m' attributes, where m' is denumerable; then the similarity of two 
objects as used in this book is as follows: 

DEFINITION VII. 1. The similarity, su, between objects i 
and j is the probability that an attribute chosen at random 
in object i shows the same state as the correspon.ding 
attribute in object j. 

This definition assumes not only that attributes can be 
unambiguously identified in the two objects, but also that each and 
their corresponding states are homologous. If all m' attributes can 
be examined, measuring se  presents no difficulty; but because only 
a very small number, m, are ever examined, chosen for reasons of 
accessibility, then some estimation procedure is needed. 
Presumably, consistency should obtain, i.e., that for each set of 
attributes unbiasedly chosen, the estimated similarity would be 
about the same. 
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Let the set of attributes be denoted by Z, where zik  is the 
state of the le attribute of object i; I Zi may be finite for practical 
purposes, but in fact is infinite. Suppose each member of N is 
described by the states shown by each of I ZI 1 attributes, and 
let a characteristic function be defined as 

. 1, Zik = Zjk 

S iik = 	 , k = 1...IZI. 
0, z ik 	zik  

Then 

DEFINITION VII.2. The similarity between objects i and j, 
denoted by s u, is given by 

su  =  Es),  
where E denotes the expectation operator over Z. 

The whole class of similarity coefficients can be regarded as being 
based on differently interpreted characteristic functions. 

Similarity is the joint probability that an attribute chosen at 
random in two objects shows the same state. Let Pr(i, j) be such 
a probability; it is estimated by su. Assuming (local) independence 
of the two objects, it is now postulated that 

Pr(i, 	= Pr(i)Pr(j), 

where Pr(i) represents some property of object i now to be 
• interpreted. Suppose another object, i',  belonging to the same 
• "very local subgroup" (e.g., a sibling of object i) had been chosen 

in place of i; Pr(i) is the similarity between object i and j',  i.e., 
Pr(i) = Pr(i,i') 	1. 
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The values of su  can be substituted for Pr(i, 	but si  is 
unlcnown; what we have is sir  which is unity for all objects. 
Replacing Pr(i, j) by sg  gives 

Se  = Si  

or in logarithmic form, 

loge  si  + loge  si  = loge  su . 

The problem, therefore, is to estimate si , for which the only data 
are the {s u , i = 1...n, j = 1...n, j e i}. For n = 2, there can be 
an infinite number of solutions for the two unlcnowns, although 
this set may be limited somewhat by requiting that 1 {s i , 
For n = 3, there are three equations in three unlcnowns, but the 
constraints may - not allow an exact solution; n > 3 leads to the 
(overdetermined) set of n(n - 1)/2 equations in n unknowns 

[11 . . . etc . 	 loges, logs 12 
1.1 . . etc  .. 

etc 
	 etc 11 	

loges2 	= 	1oges 13  

logesr, 
. . . . . . 

loge  s,, 

e 

which can be solved by minimizing some norm, subject to the 
constraints that 1 si  se , vj=1...n (i.e., the array is 
diagonally dominant). There may be no solution unless some rank 
for the final similarity array is specified; because there is a 
resemblance to determining the communalities in factor analysis, 
methods for obtaining estimates of communalities in that procedure 
may be used to determine a solution. Regarding si  as a binomial 
parameter, the variance within the "very local subgroup" 
containing object i can be approximated by rnsi(1 - si). 
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Because similarity is here regarded as a probability, it can 
be generalized to define the similarity between sets of objects. Let 
/ be a subset containing 1/I 1 objects, and J of l 1 
objects; there is no assumption that / and J are disjoint, and in fact 
they can be identical. Then the definition of the similarity between 
l and  J is 

su  = E(su , i 	./, j 

the expectation being over Z. This generalized definition collapses 
to the simple one if / and J consist of one object; it also defines a 
measure of the similarity of an object to a group of which it can 
be a member, and for nondisjoint groups in general. 

This definition can be expressed as follows: 

DEFINITION VII.3. The similarity between  Iwo nonempty 
subsets is the probability that the state of an attribute 
chosen at random in an individual chosen at random from 
the one subset is identical with that of the same attribute in 
an individual chosen at random from the other subset, i.e., 

Pr(zuc  = zik  I  k E Z; i e /, j  E J). 

It follows that even if / = J, this probability need not be unity 
unless the members of / are identical with respect to Z, e.g., if I 
consists of one obje,ct. 

The probability of identity of the states of attributes of 
subset J conditional on the states shown by subset /, dropping 
reference to Z for convenience, is now ,  defined by 

Pr(zik  = zik) / Pr(zik), 



where 
6 = 1 - s(S) 
s(S) = E(su). 
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while conditional on the states shown by both i and j, it is 

= Pr(zik  = zik) I (Pr(zi) Pr(ze. 

Since similarity is considered to be a probability, then so 
is dissimilarity, which is the probability that the objects do not 
show the same state for an attribute chosen at random, i.e., 

= 1 - su. 

The mean dissimilarity between an object and the members of a 
set, S, now satisfies the relationships 

= 1 - E(su) 
= 1 - si(S) 

where si(S) is the similarity of object i to S. The mean dissimilarity 
among members of a set becomes 

If similarity is no more than the value resulting from some 
calculation, and if all attributes are discrete (nominal or ordinal), 
the similarity space (and hence the dissimilarity space) cannot be 
continuous, as is implicit in many of the algebraic operations seen 
in cluster analysis. Considered as a probability, however, 
continuity is assured, even though for a given set of objects and 
attributes, there can be only a finite set of possible values. 

Even though similarity is often the framework used to 
describe clustering algorithms, it is in terms of distance that they 
are understood; Appendix 3 describes some necessary properties 
of a distance space. Two objects for which su  = 1 have a distance 
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du  of zero; and two for which sg  =  0 are separated by the 
maximum distance possible. Thus similarity, which is a value in 
the (open) interval (0,1), corresponds to a distance in the open 
interval (00,0), and there is a one-to-one mapping between these 
measures. Thus to obtain the distance between sets of objects in 
the context of clustering, a transformation, du  = fis), is needed 
to satisfy the functional relationships: 

0 5  d  5. CO for 0 	su 	1, 
00 = ft0), 
0 =fil), 

su  > sir  .14 d. <  d1 . . d 

Because dissimilarity is a probability, these conditions show that 
dissimilarity, as defined above, is not the same as a distance. 
Assuming independence among the objects, it follows that f should 
satisfy 

fisusi ,r) = f(s) + 

which is one form of Cauchy's equation (Saaty 1981). (Note that 
this functional relationship also underlies the entropy of mutually 
exclusive events.) With these conditions, a solution is 

J(s) = -aloge(su), 

where a is an arbitrary positive constant (conveniently taken to be 
unity). This distance can be recognized as the Hartley information 
relevant to the states of the attributes. It is easy to show that 
di  = -log(s) is only a semimetric, since the triangle inequality 
need not be satisfied. In fact, what is defmed is a preordering, 5_, 
on pairs of objets for which di, = 0, Vi, and for which du  = 
Vi, j. In the next chapter, this definition of distance allows an 
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interpretation of subset generation to be that objects are included 
in a subset until too much chaos is created, i.e., until the 
probability of identity of attribute states in two objects chosen at 
random becomes too small in relation to some initial condition. 

The metric and other properties of dissimilarity coefficients 
were discussed by Gower and Legendre (1986); Baulieu (1989) 
proposed an axiomatic system for presence-absence dissimilarity 
coefficients and examined 21 of them to see if they satisfy the 
axioms. However, neither publication appears to be clear about 
what a dissimilarity is supposed to be measuring, although they 
both offer interesting comments on the properties of some well-
known coefficients. Bacelar-Nicolau (1987), by means of an 
integral transform of similarity 

Prob(se 	s*), 

showed that many of the binary coefficients described below are 
distributionally equivalent, and that for arrangements of the 
empirical data, such as in Table VII.1 under an assumption of 
fixed margins and independence, a standard normal distribution 
obtains for the transformed estimate. Even if there is disagreement 
with interpreting similarity as a probability, the probability, which 
is  th ç integral transform above, is also a measure of similarity. 

Table VII.1 Two-way frequency table for m binary (i.e., one- or two-
state) attributes for two objects 

Object i 
state 

1 	0 	sum 

1 	a 	b 	a+ b 
Object j 	state 

0 	c 	d 	c + d 

sum 	a+c b + d 	m 
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Attribute-based dissimilarity 

With this understanding of distance, dissimilarity, and their 
functionally related similarity (it is assumed that a one-to-one 
relationship exists between them), a more-detailed study can be 
undertaken. The rest of this chapter discusses three main subjects. 
The first is the estimation of similarity from attributes and 
examines a number of well-known coefficients in the light of its , 
definition. Different types of attributes require different treatment, 
so there is a need to consider not only how the attributes were 
chosen but also how to combine them. The second is directly 
measured pairwise relationships, and how they can be converted 
into dissimilarities and distances; because several types of painvise 
relationships need to be considered, each requires its appropriate 
treatment. The third subject is the role of scalar distances in the 
context of clustering and describes a nonmetric transformation, 
which is likely to emphasize the separation of distinct subsets, but 
which does not change their internal structure. 

In trying to define a similarity as a probability, several 
technical problems arise because of the subjective nature of the 
attributes and their states. As a result of this subjectivity, the 
attribute population, called Z, is ill-defined, even more so than 

their states. Moreover, it is often true in practice that what is 
noticed about the objects are local differences, which then are 
combined to define an attribute. Leaving aside these technical 
problems, the Went of the definition is clear and allows the 
examination of similarity coefficients as estimates of this 
probability. If similarity is not a probability but a separate concept, 
the following evaluation of the various coefficients will need a 
different emphasis. 

Similarities for binary data 

A variety of empirical similarity coefficients have been proposed 
for what are loosely called binary data; a survey of the literature 
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using these in real applications rarely discusses the appropriateness 
of the one chosen, or if more than one is used, why, except to 
make comments along the lines "the results obtained are consistent 
with the classification obtained by ...." It has already been noted 
(Chapter III) that there is often a lack of appreciation that 
attributes called "binary" may be one of two distinct categories, 
namely, dichotomies and alternatives (Gower 1971a), (one-state 
and two-state attributes, respectively, in the terminology of 
Chapter III), and that a set of binary attributes may contain both. 
The distinction between the two kinds of binary attributes is clear 
in definition but is not always so in practice -, a one-state attribute 
can be present or absent but, in particular, is characterized by the 
fact that information is given on the similarity of a pair of objects 
iff it is present in at least one of the pair, and that no information 
is given by it on the similarity if it is absent simultaneously from 
them. By contrast, a two-state attribute is characterized by the fact 
that two objects are equally similar if they agree in the state shown 
by the attribute; if they disagree, they are dissimilar. With this 
distinction in mind, a number of well-lcnown empirical similarity 
coefficients (for some others, see Wolda 1981) proposed for binary 
data can be classified as being appropriate for one-state, two-state, 
or are ambiguous. 

Let there be m "binary" attributes, each of which may be 
scored 1, which are taken to indicate presence of a particular state 
of the attribute, or 0, which indicates either absence of the 
attribute, or presence of the alternative state. Assuming no 
unassessable (missing) values, a contingency table can be 
constructed for two objects, i and j (Table VII. 1). In that table, 
each letter represents the frequency of (binary) attributes in the 
available data exhibiting the marginally indicated states 
simultaneously in objects i and j. The symbol, S  is used to denote 
the estimate of similarity between objects i and j; if more than one 
proposed estimate of similarity is discussed, the notation Su(.) is 
used, where (.) gives the originator's namè. 
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Comments on ten similarity coefficients for binary data 

For one-state attributes 
(1) 	Jaccard (1908): 

.fg  = al(a + b + c). 

Since neither d nor m is involved in this coefficient, it follows that 
it is appropriate for one-state attributes. If the attributes are chosen 
at random, it seems reasonable to assume that this coefficient is an 
unbiased estimator of the probability that object* i and j show the 
state for a randomly chosen one-state attribute. 

•(2) 	Kulczynski (1927), first coefficient: 

= a( (a + b) -1  + (a + c) -1  )12 

This coefficient is appropriate for one-state attributes, since neither 
d nor m is involved; its numerical value is in the interval [0,1]; it 
is not clear if it should be considered as a probability. If the 
attributes are chosen at random, it is biased upwards. 

(3) Cz,elcanowsld (1932): 

= 2a1(2a + b + c) 

For one-state attributes, since neither d nor m is involved, and if 
the attributes are chosen at random, it is clearly biased upwards. 

(4) Ochai (1957): 

= al ((a + b)(a + c))1/2 
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For one-state attributes, by including a twice in the denominator, 
while b and c are included once, the estimate is biased upwards. 

(5) Sokal and Sneath (1963): 

Su  = al(a + 2(b + c)) 

For one-state attributes, since the number of mismatches is 
included twice in the denominator, this estimator of the probability 
is biased downward. 

For two-state attribute.s 
(6) Jaccard (1912), Dice (1945), Sorensen (1948): 

S#  = 2(a + d)I(2a + 2d + b + c) 

This coefficient is a generalization of that of Czekanowsld (see 
coefficient 3); if the attributes are chosen at random, this estimate 
is biased upwards. 

(7) Kulczynsld (1927), second coefficient: 

= (a + d - b - c)I(a + d) 
= (m - 2(b + c))I(m (b + c)) 
= 1 - (b + c)/(a + d). 

Although mismatches are ignored in the denominator, the 
numerator is also reduced by double the amount, and so for 
randomly chosen attributes, this estimate is biased. Because it can 
be negative infinite, it cannot be a probability, but since its 
maximum value is unity, it can be transformed to lie in the interval 
[0,1] as 

r = eXP(. 	1). 
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(8) Russell and Rao (1940): 

S . =  

This estimate involves m; but by not using din the numerator, the 
properties of this estimate are somewhat ambiguous. If m is 
relevant, it seems curious that d is not use,d in the numerator; 
assuming random sampling, it is a downwards-biased estimate. 

(9) Zubin (1938), Dumas (1955), Solcal and Michener (1958): 

= (a + d)Im 

Assuming a random choice of attributes, this coefficient is 
unbiased. Sometimes called the simple matching coefficient, it can 
be recognized as the probability that objects i.and j both show the 
same state for a randomly chosen two-state attribute. 

(10) Rogers and Tanimoto (1960): 

S = (a + d)1(a d + 2(b + c)) 

This coefficient parallels that described by Solcal and Sneath (see 
coefficient 5) and is a downwards-biased estimate of the 
probability, because the number of mismatches is included twice 
in the denominator. 

After examining these ten coefficients, it seems that only 
coefficient 1, for one-state attributes, and coefficient 9 (possibly 
also 7), for two-state attributes, provide unbiased estimates of 
similarity, as here interpreted as a probability, given that the 
attributes are uniformly and randomly chosen. If they are not 
chosen in this way, then others may provide appropriate estimates. 
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For example, if the attributes are chosen randomly from a subset 
known to be diagnostic, then it may be desirable to give a reduced 
weight to the agreements and to emphasize the disagreements (such 
as in coefficients 5 and 10), so to reduce the bias. By contrast, if 
the choice of attributes has avoided those 'mown to be diagnostic, 
then emphasizing agreements in comparison with the mismatches 
(such as in coefficients 3 and 6) also tends to reduce the bias. 
However, each coefficient may be appropriate given the particular 
choice procedure for the attributes. Thus in estimating the 
similarity among a set of objects, the first problem is to determine 
how the attributes were chosen, and then (if all are binary) to 
group them into one-state and two-state, and to subdivide them 
further into subsets "known to be diagnostic," "known not to be 
diagnostic," and "random" (or noncharacterizable). This 
classification allows a two-way table to be formed (Table VII.2), 
which gives a coefficient in each category using the list above. 
Because an overall measure of similarity is the objective, the six 
possible values may need to be combined in some way. Let S i(p,q) 
represent the (p,q)ea cell of Table VII.2, with missing combinations 

Table VII.2 Appropriateness of various estimates of similarities for 
binary attributes; E u  denotes any similarity coefficient for an • i-state 
attribute belonging to the 111  diagnostic/nondiagnostic/random category 

One-state 	Two-staté 
coefficient 	coefficient 

Known to be diagnostic 

Known to be nondiagnostic 

Random (not characterized) 

' 5 en 

3(2?) e21 

1 e31 

10 el2 

6(7?) en 

9  32 

•  The numerical values refer to the list of 10 binary coefficients in the text. 
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set to zero; because similarities are assumed to be probabilities, it 
seems that the best combined estimate is 

= exp (e-1 ;= 1 „.3 Eq = 1 , 2  epgiogeg,(p, q))  J  . 'gu(p,q) > 0, 

Where = EpEgepe 

The definition of any one of the similarity coefficients in 
Table VII.2 assigns equal weight to each considered attribute; 
those attributes not considered are given zero weight. However, 
the attributes used may also be given unequal nonzero weights to 
reflect their known prior importance. For example, in Zubin's 
coefficient (9), if wk  is the weight assigned to the eh attribute, and 
if aiik = 1 (if objects i and j both show the same state for attribute 
k), and is zero otherwise, then 

= EkbewkiEwk 

is a weighted estimate of the similarity. Analogous definitions for 
the other coefficients are easily formed. However, other than by 
Subjective decisions, it is not always clear from where these 
weights are to be obtained. Because the empirical nature of 
attributes does not ensure their mutual independence, the weights 
may be chosen to minimize the effects of duplication of 
information. 

Since the Jaccard (1) and Zubin (9) coefficients are those 
most likely to be used, it is useful to show that they differ only in 
what constitutes the same state. Suppose the marginal classification 
sets of Table VII.1 are replaced by "same state" and "different 
state," as in Table VII.3, and {a,13,-y,5} are the number of 
different cases observed. Clearly, .5 0 is impossible, and, by 
symmetry, the assignment to B and -y is arbitrary, and so both can 
be assigned to B; thus the table collapses to two entries, namely, 
a' = a and B = 8' + -y'. It follows that the Jaccard and Zubin 
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Table V11.3 Alternative tabulation for binary attributes' 

Object i 

saine state 

same 
Object j 

different 

different state 

B' 

* For explanation of how this arrangement is derived from Table VII. 1,  
see text. 

similarity are both al(a + B), with the distinction between them 
as to what constitutes "same state"; for the Jaccard coefficient, 
joint absence is ignored. In terms of Table VII. 1, for the Jaccard 
coefficient, 

a=aanda+B=a+b+c, 

while for the Zubin coefficient, 

a =a+dandB=a+b+c+d=m. 

An application of the Jaccard coefficient in a context outside of 
clustering is given in Chapter X, case study P. 

Similarities for multistate unordered attributes 

Suppose an attribute has s> 2 states; the traditional procedure is 
to continue as for two-state attributes, i.e., to construct Table 
V11.1, and then to compute the similarity as before (Gower 1971, 
Leficovitch 1976). However, there may be a defect in this Practice. 
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Consider one such attribute in object i; there is only one way 
object j can be alike object i with respect to this attribute, but 
s - 1 ways it can differ. Assuming a uniform random distribution, 
it can be argued that since the probability that j is alike object i by 
chance is 1/s, and of being different is (s - 1)/s, then it is 
reasonable to weight these possibilities so that the "score" assigned 
to resemblance equals the combined scores of all possibilities of 
being different. In terms of a and 13 of Table VII.3, the 
computation can be expressed in the pseudocode given in Table 
VII.4. For example, let s 3 for all attributes, where one of the 
states of each is absence, but the attribute, when present, can be 
in one of two conditions. Then the Jaccard coefficient becomes 
2a/(2a + b + c), which is the same formula as that for the 

Table VII.4 A general algorithm for computing similarities 

input: 	s is the number of states for the kth  attribute; 
x is the entry for object i, attribute k; 

output: similarity coefficients. 
for i: = 2...n 

for j:= 1...i-1 
g(ij):=0; 

for k:= 1...m 
if (xik  not comparable with xik) go to next k; 
if (ak  is unordered) then if (x ik  = xik) a: = a+0.5 

else 13: = 13+1/2(a -1) 
' 	go to next k; 

else y: = abs(4-xik); 
y: = sin- i(sqrt(y)); 
a:= a+y; 13:= 13+1-y; 

end k; 
if((a +13) > 0) then g(ij):= a/(a+13) 

end j; 
end i; 

end 
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Czelcanowslci coefficient (3), which, for one-state attributes, is 
appropriate for attributes chosen with the belief that they are 
nondiagnostic (Table VII.2). The -iubin coefficient (9) generalized 
to three7state attributes is clearly the same as the Jaccard-Dice-
Sorensen coefficient (6). 

Similarity based on randomness 

If it can be assumed that the attributes have been chosen without 
any deliberate bias, then another way to estimate similarity for 
unordered attributes becomes of interest. 

Case 1: one-state attributes For object i, those attributes present 
represent a description of it; the zero elements represent absent 
attributes. The number of the latter is finite for thé  attributes under 
consideration but is clearly infinite for all possible attributes. Thus 
the information available on presence can be regarded as 
conditional on the subset of attributes, of which there are m in 
Table VII. 1. Suppose that presence (=1) and absence (=0) are 
regarded as Bernoulli random variables, and that a + b and a + c 
in Table VII. 1, the number of attributes equal to unity in objects 
i and j, respectively, are fixed quantities. Given the assumptions, 
the probability of obtaining the observed number of attributes 
sirnultaneously equal to unity in both objects, given the total m, 
can be regarded as an estimate of similarity and obtained using 
combinatorial arguments as 

Pr(a) = rob) (7  . )/(7") 

= 	(m-ab  )/(:1 7: 1) 

= (m a)!(a + b)!(a .+ c)!I(nz!a!b!c!).. 
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This quantity can be calculated (for large x) using the (modified) 
Stirling approximation (McCullagh and Nelder 1989), 

x! 	(2/r(x + 1/6)) ½fe', 

which is an accurate approximation and is defined even for x 

Example 1: One-state attributes (1 = presence, . = absence). 
Object i: {11111 	}; Object j: {1111.11...}; 
a = 4, b = 1, c = 2, d = 3, m = 10 
Pr = 5/14 = 0.3571; Jaccard similarity = 4/7 = 0.5714 

Case 2: s-state attributes Using the reasoning for case 1, if each 
of the s-state attributes is replaced by s one-state attributes, the 
probability can be calculated as above. Because the value of m 
changes from the number of attributes to the sum of the number of 
states, the calculated value must be multiplied by the number of 
attributes and divided by the number of states (this factor is unity 
for one-state attributes). 

•Example 2: Sarne data as example 1, transformed for two-state attributes. 
Object i: {1.1.1.1.1..1.1.1.1.1 } ; Object j: {1.1.1.1..1..1..1.1.1 } ; 
a = 7, b = 3, c = 3, d = 7, m = 20 
Pr = 10*143/(20*323) = 0.2214; Zubin similarity = 7/10 = 0.7 

• Having computed the probability of a random association 
under a Bernoulli assumption, it becornes possible to estimate the 
variance, and also to compare it with hypothesized values. 

A correlation between individuals for qualitative attributes 

Consider two objects described by m unordered attributes each 
having at least one state. Let A be the number of attributes in 
which both objects agree in their state, and D the number of 
attributes in which they disagree, i.e., A + D = m. 
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DEFINITION VII.4. The binaly Correlation between 
individuals i and j is 

re  = (A - D)/(A + D). 

The justification for regarding this expression as a correlation 
follows from the fact that -1 :5 ru  1; the bounds are achieved 

. as follows: 

(1) 	If D 0, then A = m, so that r = 1, implying complete 
positive association between the states of the attributes 
shown by the two objects. 

(2) 	If A = 0, then D = m, so that r = -1, implying complete 
negative association between the states of the attributes of 
the two objects. 

If A  =D,  then r = 0, and there is no association between 
the states of the attributes shown by the two objects. 

A vector form of the definition is easily obtained. Assume the m 
attributes are two-state, and no values are missing; let state 1 of 
each attribute be scored as 1, and state 2 as -1. Denote by 
x = {xi} the column vector of these scores for one object, and 
y = tyj for another. Then since the quadratic norms of each 
vector are m IA , it follows that 

(3) 

re  = xTy/(11 11 11 y 11) = nr i  xLyi  -= m-1 (A - D). 

Since re  is the inner product of two vectors of unit norm, it can be 
regarded as giving the cosine of the angle between them, i.e., 

r = cos 
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Thus distance can be considered to .be  given by eiy, which is in the 
interval (0,7). Missing values in either x or y or both are replaced 
by zero, and the computing procedure represented by 
re  = ey/(  11x11  II y II ) is used. 

Comparison with some qualitative similarity coefficients 
described above is of interest. Using the notation in Table VII. 1, 
if the attributes are all one-state (Chapter III), d is by definition 
zero, and so A = a, D = b + c resulting in 

-•-• (a - b - c)l( a + b + c). 

The difference from the Jaccard coefficient (1) of similarity, 
al(a+b+c), is 

-  r1,  = (b + c)/(a + b + c). 

If the attributes are all two-state, A = a + d, and D = b + c, 
so that 

re  = (a + d b - c)I(a + b + c + d). 

The Zubin coefficient (10) is (a + d)/(a + b + c + d), so that 
their difference is 

se  - re  = (b + c)/(a + b + c + d). 

Perhaps the similarity coefficient having the closest resemblance 
to ru  is the second coefficient of Kulczynski (7), which is defined 
as (a + d - b - c)I(a + d); thus their ratio is 

rel se  = (a .+ d)Im, 

i.e., Zubin's coefficient (9). Note that the definition using A and 
D is equally applicable to attributes having more than two states. 
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Similarities for ordered attributes 

An important class of ordered attributes consists of a string of 
symbols, e.g., DNA sequences. The basic measure of distance 
between two strings in the Levenshtein, it consists of the minimum 
number of substitutions, deletions, and insertions that converts one 
string into the other. A dynamic programming algorithm for this 
is given by Kohonen (1989). 

In the following discussion of a purely attribute-based 
estimate of similarity and dissimilarity for a set of objects based on 
a set of continuous variables, it is assumed that each numerical 
variable has been transformed so that a unit difference represents 
the same amount of biological difference throughout the whole 
range. The unit may differ from one variable to another (indeed, 
they may be quite different ldnds of attribute, e.g., lengths 
measured in millimetres, weights measured in kilograms), yet to 
obtain a meaningful estimate of similarity, they need to be 
combined in some way so that none dominates the remaining 
purely by reason of the units of measurement. Thus it is nec,essary 
to find a scaling for each variable so that this domination does not 
occur, i.e., an estimate of the similarity has to be invariant under 
admissible transformations of the variables. One way to achieve 
this scaling is to arrange that each variable has a mean of zero and 
a variance of unity; another is to re-scale each of the variables so 
that the minimum observed value is mapped to zero, and the 
maximum to unity; Milligan and Cooper (1988) show by 
simulation that the latter rescaling tends to reveal the true clusters. 
This "uniforming transformation" (the terms "standardized" and 
"normalized" have special interpretations and are here avoided) is 
generally applicable to all variables, including multistate ordered, 
even though extreme aberrant values tend to "squeeze" up the 
remaining. 
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In more concrete terms, the preliminary step ensures that 
a unit difference in the score has the same meaning with respect 
to similarity throughout the whole range, i.e., the difference 
between two measurements, I y, - )7; 1, denotes equal amounts of 
dissimilarity throughout the range of the attribute (see Chapter III). 
If this equality is not true, then it is necessary to rescale the 
difference to be 

[Yi - 

where cu  is a scale (units) factor which can depend on i and j. To 
ensure that the estimate of the maximum dissimilarity cannot 
exce;ed unity, so that the estimate of the minimum similarity is 
zero, each of the G different values is divided by the largest 
among them and then subtracted from unity. For constant ce , this 
maximum is the observed range of y. The set of values for all n 
objects for y can now be assembled into an x n an-ay, which has 
unities on the diagonal, from which principal coordinates can be 
computed, if desired. For a single attribute, there is just one 
principal coordinate of positive length if cif  is constant, but the 
rank may be greater if cg  depends on i and j. For rank unity, it is 
easy to see that the array consists of the values defined by Gower 
(1971a) for similarity, namely, 

e(y) = 1 -- lyi  - y I  /range(y), 

which is easily shown tô be very much the same as 

where 

MO) = sin O.  sin Of  + cos O.  cos Of  
= cos(Oi  - Of), 

O.  = 1/27(yi  - min(y))/range(y) 
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(LefIcOvitch 1976). For i = j, the estimate, S'e(0), c,ollapses into the 
familiar sid + coe = 1, which for 1yi  - 1 = 1 takes the value 
of cos(r/2), i.e., zero. A geometric model comparing these two is 
e,asily constructed; the Gower value is the complement with unity 
of the linear distance between the ends of two unit vectors 
radiating from a common origin, while the trigonometric value is 
the cosine of the arc distance. In terms of distances, these two 
hardly differ for estimates of similarity approaching zero or unity. 
They differ most in the vicinity of the midpoint, with a maximum 
deviation of 

12(1 - sin(r/4)) - V(0.5)1 	0.121. 

Thus objects showing a Gower similarity of 0.5 for a variable 
show one of about 0.621 for the trigonometric definition. The 
prima facie reason to prefer the trigonometric definition over that 
of Gower is the computational convenience of allowing the use of 
linear algebraic procedures, that it can be easily generalized for 

combining all classes of attributes, and thereby for incorporating 
unequal weights. To represent. ŝv(0) in vector notation, define the 
two-element row vector, 

= [sin(0i) cos(0)], 

from which it follows that 

se(0) = 

If all m ordered variables are each replaced by the two 
elements z, the n X m matrix Y is replaced by the n x 2m matrix 
Z, from which similarity, computed as the average 

4(0) = nflEk.se, 
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is given by the n x n array 

S = nr iZZT . 

If W is a diagonal matrix of weights, e.g., W = diag{ZZ T}, the 
definition can be further generalized to 

S = Z W T  ; 

W may be permitted to be a more general matrix. 
If an object under study is made up of several not 

necessarily identical units, the corresponding subvector in Z can 
easily be modified to accommodate the possibility that more than 
one (mutually exclusive) state is represented by the different units. 
Consider a two-state unordered attribute, for which there is a 
proportion a for the first state, and 1 - a for the second. In terms 
of the inner product, a two-element vector is sought such that the 
inner product with itself is unity but with another such vector is 
zero iff they are orthogonal (orthogonality can occur iff ai  = 1 
and ai  = 0). A two-element subvector, with elements a' and 
(1 - «) A, satisfies these conditions and can also be extended to 

(s > 2)-state attributes. It is interesting to note that if a and 1 are 
two such réw vectors, then 

(E(a i  _ B1/2)2yh 

is the discrete Hellinger distance between two multinomial vectors, 
which in turn is a special case of the continuous Hellinger distance 

(  S (I)? (x) - e (x))2  clx). 

'Thus if an object under study is made up of several not necessarily 
identical units, an appropriate subvector can be incorporated in Z. 
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Note that the value of m remains unchanged in computing S, it is 
the number of distinct attributes, not the nurnber of columns in Z. 

From this definition of similarity, the distance between 
objects i and j, as described earlier in this chapter, is defined by 

= -loge  Su  

which is not the same as dissimilarity, which is (1 - s 2e) 1/2 . 
Having defined similarity for ordered attributes, it needs to 

be combined with that for unordered attributes. This combination 
can be made by incrementing a by either Se(y) or 4(0) and 
incrementing B by either 1 -  4(y) or 1 -  4(0) in Table VII.4 to 
achieve a combined measure of similarity. ' 

Combined similarities for unordered and ordered attributes 

It is ea.sy to extend the vectors ; for ordered attributes to include 
the s-state unordered attributes. Each of the latter can be 
represented by an s-element row subvector whose inner product 
with itself must be unity, and with the corresponding subvector 
from another object is either zero or unity. A trigonometric 
interpretation for these inner products is immediate. With this 
representation for the attributes so far considered, each unordered 
s-state attribute contributes s elements, either zero or unity, to a 
row vector ; for object i, while an ordered attribute is represented 
by two elements (a sine and a cosine). Let the total number of 
elements for an object be K. Thus a numerical representation for 
a set of m attributes for n objects is n  X K matrix, Z, K 1, 
which is such that m -1 ZZT  has unities on the diagonal, and that any 
element is the average of the similarities computed from the 
separate attributes. 
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Correlation and attribute weights 

A matrix, W, has been incorporated above in a definition of 
similarity, and, other than proposing that it may be a particular 
diagonal array and also suggesting that nothing prohibits it from 
being more general, no discussion has been offered for the latter. 
Attributes assembled for cluster analysis are usually correlated, 
and therefore include an element of redundancy. The computation 
of (linear) correlation among continuous variates, of ordinal 
association among ordered variates, and also of association among 
categorical variates are standard problems of statistics; they require 
no further discussion here; W may be formed from these values. 

There are circumstances, however, when paired 
observations are unavailable but for which it is desired to estimate 
some measure of association. Let A and B be two distinct such 
attributes; there are n0  observations available for A, with calculated 
mean of 4, and correspondingly for B. Three possibilities for this 
estimate, considered here for ordinal (continuous or discrete) 
attributes, have been extracted from the statistical literature; none 
appears to be well lcnown. 

The coefficient of weak monotonicity is defuied as 

- 4/[(Ei€AEJE ) ia xfr Dinanb]. 

(2) The correlation ratio defined as 

Ia — Xb  I"[a + s2b — (4 — 42r. 

(3) A coefficient of ordinal association, defined as 

(EJEAEiessign(xia - 	nanb• 

(1) 
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These three may also be used for paired observations and are in 
increasing order of generality. The correlation ra tio may be 
computed if only the means and variances are known. 

These coefficients may be assembled into an array 
analogous with a 'correlation matrix, which need not be positive 
semidefinite (p.s.d.). It may be converted to be p.s.d. by the 
nonmetric transformation described later in this chapter. Its 
eigenvalues can then be examined, as in principal components 
analysis, to determine the number of "independent" factors 
implied. 

Direct measures of pairwise relationship 

Numerous possibilities exist for assembling data measuring some 
aspects of the pairwise resemblance among objects. Each of these 
requires its own attention, and although it is not possible to discuss 
many in detail, some general classes of data are usefully 
distinguished. 

Probability estimates 

In several branches of genetics, probability estimates are often 
computed, for example, the coefficient of common parentage, 
which is the probability that a gene chosen at random is identical 
by descent with the corresponding gene in another individual, 
conditional on some ancestral origin. Such values are based purely 
on the breeding and crossing history of the ancestry of the two 
individuals. Its definition as a probability leads at once to 
considering it as a similarity and to transforming it to a distance as 
described above. 

Another probability is based not on ancestry, but on the 
observed or estimated gene frequencies in a set of experimental 
populations. These give rise to a set of multinomial frequencies, 
from which genetic similarity is computed, whose logarithm, 
lcnown as Nei's genetic distance, satisfies all the requirements of 
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a distance considered here. (Note that a Hellinger-based distance 
using the square root of the probability is also possible.) 

One component of multiple discriminant analysis is the 
computation of generalized squared distances among the (centroids 
of) populations. The generalized distances, when negated and 
exponentiated, estimate the probability of identity of the 
populations; it is apparent that they are also appropriate in the 
terms of this study. The advantages of generalized distances for 
dendrogram formation have been explored by Dagnelie and 
Merckz (1991); other discussions of distance measures for 
populations of objects have been made above and are considered 
again below. 

Confusion arrays 

In some psychological experimentation, subjects are asked to 
compare two stimuli and to record whether they are distinguishable 
or not. These data, after appropriate replication, can be regarded 
as a similarity if expressed as the proportion said to be 
indistinguishable. Note that although not all supposedly 
indistinguishable stimuli need be recorded as being identical, the 
degree to which the diagonal of the similarity matrix departs from 
unity gives some measure of variability. Perhaps that variability 
should be used to define the amount of difference to be regarded 
as trivial. However, sometimes ambiguities can exist in 
interpreting this class of data. Consider the well-known Rothkopf 
(1957) Morse-code data, which in Kruskal (1971) consist of the 
proportion of times that each of the 2 x (6) ordered pairs of 
symbols sent to unpracticed listeners was recorded as being 
identical. The rows represent the fi rst symbol of the pair, the 
columns the second. These values, usually termed similarities, are 
not symmetric, and although the array of them is diagonally 
dominant, it does not have unities on the diagonal. Clearly, 
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asymmetry is present not only in the values but also in what the 
rows and columns represent. The average proportion is usually 
used as the estimate of the similarity; but also investigated is the 
skew symmetric array, which, when added to the average, 
reconstructs the original table. In fact, the resemblances among the 
symbols may even have been captured perhaps from just a few of 
the pairs of symbols, e.g., the first k c,olumns or the first k rows 
of the array (without the listeners' knowledge); this interpretation 
makes it clear that these data should be regarded as a set of 36 
objects on which 36 variables have been measured, these variables 
being proportions that estimate 

Pr(i not confused with j), 

where i is the first and j the second symbol, and flot  as 
similarities. With this interpretation, the square array can be 
regarded as being analogous to the frequency data, but with the 
added complication that it is necessary to decide if it is the 
columns or rows for which the probabilities p of Chapter II are to 
be obtained. This decision can be made in the following way. 
Since the row symbols are the first in the pair, it becomes a 
reference for the second, in the sense that the listener has to 
answer the question: 

Is the second heard symbol of the pair the same as 
the first or is it different? 

If it is this question that consciously or unconsciously is in the 
minds of the subjects, it is the probabilities associated with the 
columns that are of primary interest for grouping the symbols 
based on the confusion. 

In the experiment described by Nosofsky (1989), subjects 
were first exposed to a series of 16 shapes in which two factors 
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(size, and angle of presentation with respect to the horizontal, each 
at four levels) were different; they were then presented with a 
shape randomly selected from the set and were asked to identify 
which level of each of the two factors the shape exhibited. The 
data so collected gave rise to an asymmetric array (the number of 
correct responses for each shape) resembling that of the Morse-
code data, from which Nosofsky obtained similarities between the 
shapes, ultimately converted to distances. Following the reasoning 
described above, the subjects can be considered as being asked to 
consider if the shape is the same as their memo?),  of the training 
experience, and so it seems reasonable to treat Nosofsky's Table 
1 as a set of vectors describing the shapes, which have a two-
factor structure. 

Other  direct  measures 

These measures are legion: immunological incompatibilities, diall el 
crosses, DNA hybridization, correlations, and so on, each of 
which has different properties. An interesting discussion of 
similarity and intensity in a psychological context is given by 
Sjôberg (1975). An important class arises from measuring within-
location diversity in ecological applications (Magurran 1988), 
which sometimes permits the measurement of the degree of 
similarity in diversity among locations. Spearman rank correlations 
are also asserted as being particularly appropriate for measuring 
the pairwise relationships among ecological variables ( Miter and 
Meyer 1986). The key responsibility for the scientist is to decide 
what needs to be done so that the data provide a fair measure of 
distance. It is especially important for the distance to be unbiased 
and consistent for the smaller values, because it is these that are 
critical for clustering. This fact will become apparent later in this 
chapter, where a nonmetric transformation of distances having 
some merit for clustering is described. 
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Permuting similarity matrices 

In Chapter II, noninvasive procedures were described that attempt 
to convert a 0-1 array into block-diagonal form by means of 
permutation matrices. The more this conversion can be achieved 
for similarity (resp. dissimilarity) arrays, the less will the apparent 
clustering depend on heuristic principles. An invasive possibility 
is to choose a threshold value for the similarities (dissimilarities) 
and form an array in which unity replaces higher similarities 
(lower dissimilarities) and is zero elsewhere, to allow the methods 
described in Chapter II to be applied; note that if Z is such a 
transformed array, the permuted matrix has to be PZPT, where P 
is a permutation matrix. However, if P is sought so that 

E g  2g(i .1)2  

is minimized, then the permuted similarity array tends to have its 
highest values near the diagonal (Gourlay 1979). Other schemes 
are possible. 

As originally defined (Toussaint 1988), the sphere of 
influence graph is appropriate for two-dimensional "skeletons" of 
planar objects. Its definition, modified slightly in notation, follows: 

DEFINrrioN VII.5. Let N = (xi  ), i = 1...n, be -a finite 
set of points in a plane. For each point xi  E N, let r(i) be 
the smallest distance to any other point in the set. Let C(i) 
be the circle of radius r(i) centred at xi. The sphere of 
influence graph is a graph on N with an edge between 
points xi  and xj  iff C(i) and co intersect in at least two 
places. 

Toussaint illustrated this graph with 54 figures, each consisting of 
a set of points and the corresponding sphere (better, circle?) of 
influence graph. These illustrations show that the graph need not 
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be connected, that one connected component can be completely 
enclosed within another, and that the graph can be complete. Let 
E = {e u} denote the adjacency matrix of the graph; since two 
circles intersect if = C(i) + - du  is greater than zero, 
the elements of E can be defined by 

{

eu  = 
1, _elf) > 0 

0, fill ) 	 0, 

from which it is apparent that the set of points need not be planar. 
Thus E defines a set of edges among a set of n vertices in any 
dissimilarity space. 

Using E and any method to determine a spanning forest, 
the vertices forming disconnected subgraphs can be identified. At 
least to a first approximation, these subgraphs can be processed 
separately. Note, however, that the smallest isolated subgraph 
contains at least two vertices. Further, permuting D, based on a 
block-diagonal permutation of E, sometimes reveals the structure 
effectively and is an alte rnative procedure to those based on global 
thresholds. 

Euclidean and non-Euclidean dissimilarities 

For most, if not all procedures based on linear algebraic methods 
applied in biology, sociology, and so on, there is an assumed 
underlying Euclidean metric. However, pairwise distances 
calculated from attribute data (as in taxonomic studies), or from 
presence and absence data (as in ecological surveys), or from 
subjective assessments (as in psychometric measurernents) rarely 
satisfy the Euclidean conditions; although they may do so 
approximately, they usually fail to satisfy the triangle inequality 
and so are no more than a semimetric. If they are Euclidean, 
standard linear algebraic procedures may be used directly without 
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discarding information from the array. Another advantage for 
having data satisfying the Euclidean conditions is that if n points 
are multivariate normally distributed in n-dimensional space, the 
squared distances are jointly exponentially distributed subject only 
to the constraint that a valid n-point configuration is prescribed 
(Clifford and Green 1985). Coupled with a Euclidean 
representation of the data, this result may lead to a comparison of 
the empirical squared distances with an exponential distribution, 
and hence to a test for the existence of too many small values, 
i.e., clusters. 

Recognizing non-Euclidean data 

There are easier ways for determining if the data are consistent 
with a Euclidean metric than counting the number of failures to 
satisfy the triangle inequality out of the () possibilities. The degree 
of departure from Euclidean conditions can be measured in several 
ways, of which only one based on the eigenvalues is considered. 
Since the diagonal of dissimilarity arrays is uniformly zero, some 

eigenvalues are necessarily positive and others negative (some may 
also be zero; all will be uniformly zero if all elements are zero). 
Thus, if the dissimilarities are consistent with a Euclidean metric 
and the dissimilarities are all greater than zero, there is just one 
negative eigenvalue. Inconsistency with the Euclidean metric is 
indicated by the number of negative eigenvalues together with their 
absolute size compared with those that are positive. Assuming 
again that all dissimilarities are greater than zero, the inconsistency 
with the Euclidean conditions can be estimated independently of 
the sizes of the eigenvalues by the matrix sign function, which 
identifies the positive, negative, and null subspaces of a matrix; 
this function is obtained from the Newton iteration 

X,., 1  = 1/2(X, + XJ ,  X0  = D, 
sgn(D) = 
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using a Moore-Penrose inverse. The matrix sign function, sgn(.), 
consists of the (diagonal) elements of the limit, each of which is 
an element of {-1,0,1}. One less than the number of elements 
equal to -1 is the dimensionality of the negative space. The inertia 
of a (square) matrix is a three-element vector consisting of the 
number of positive, negative, and zero eigenvalues. If 
III - D2 II < 1 for any matrix norm, the iteration 

X1 1  = 1/2 X1(31 - X2r), X0  = D 

also converges to sgn(D) and avoids the need for matrix inversion 
(Kenney and Laub 1991). Because dissimilarities are relative 
quantities, Ro  can be resealed to satisfy the norm requirement. 

Determining rank 

Besides numerical matrix rank, which requires determining how 
small an eigenvalue must be for it to be regarded as zero, there are 
several other methods for determining a value for the rank of a 
matrix. The intrinsic dimensionality (Pettis et al. 1979) is based on 
the assumption that the objects are independently distributed in d-
dimensional space; if so, an equation can be derived to estimate d 
based on the number of neighbors within prescribed distances of 
each (occupied) point. The applicability of the assumption of 
independence to the clustering problem in biology, however, is 
questionable, because it cannot be assumed that there is only one 
population, so that there is support for little more than (very) local 
independence. 

The effective dimension of a matrix is more interesting, in 
that fewer assumptions are made. This parameter also presents a 
measure suitable as an index for the effects of any transformations. 
Let si  be the strictly positive singular values of any rectangular 
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matrix, arranged so that s1 	s2  >_. 	›_ sn ; then the effective 
dimension is defined as 

P(a) = sr Esia, a 0 

(Oldford 1987). For a = 0, the effective dimension is equivalent 
to ordinary rank; in the present context, three further values are 
considered to be informative, namely a = 0.5 (since distances can 
be regarded as quadratic forms), a = 1 (Thisted 1982), and 
a = 2 to illustrate the effect of different a. 

Dimensionality reduction 

A dissimilarity matrix of order n may be of rank n — 1; it is often 
believed that some of these dimensions represent "noise," and that 
only some subspace, of relatively low dimensionality, contains the 
information of interest. In identifying this subspace, usually called 
dimensionality or rank reduction, two of many possibilities are 
considered here. The first of these attempts to recognize which 
directions in the principal coordinate space (Gower 1966) can be 
regarded as random, discarding them as "noise"; the second 
attempts to obtain a representation of low dimensionality, perhaps 
using a nonmetric transformation of the data. The second, 
therefore, imposes a solution on the data and so reflects the 
scientist's opinions about the data in question. The first, by 
contrast, seeks both to reveal what can be reasonably considered 
as being nonrandom, and to distinguish it from what can be 
regarded as being of no interest. Only the first case is described 
here; some nonmetric transformations and their possible 
consequences are discussed subsequently. 

Rank reduction using principal components 

Denote the principal coordinates (Gower . 1966) obtained from the 
possibly transformed distances by US, where UTU = I, UT?  is 
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idempotent and S is diagonal, consisting of the square roots of 
the eigenvalues. Since the centroid of the principal coordinates is 
the null vector, it follows that S is the sum of squares, i.e., the 
eigenvalues of the principal components corresponding with the 
nonzero coordinates. With this assumption, a standard test used in 
principal components analysis may be adopted (Anderson 1958). 
This test is sequential: given that k components have been 
accepted, k = 0,1,...,rank-1, the null hypothesis is that no 
direction in the remaining space has variance significantly greater 
than any other. If the null hypothesis is not disproved, the 
conclusion is that the remaining data are approximately spherical, 
therefore representing random variation, and so can be discarded. 
While the rejection level for the hypothesis can be adjusted to 
achieve the desired rank, accepting too few directions can result in 
loss of useful information, while accepting too many may confuse 
any subsequent computations with artifactual patterns. 

The dimensionality of the negative space is sometimes 
greater than zero, i.e., the dissimilarities are non-Euclidean. In 
consequence, there have been many proposals for converting them 
into a form that satisfies the Euclidean conditions. The easiest 
procedure is simply to replace the negative eigenvalues by zero, 
i.e., to join the negative with the null space; if the dimensionality 
of the negative space is large, the effect of this reduction in rank 
is quite unpredictable. 

Rank reduction by smoothing 

Another possibility, little used, is to smooth the dissimilarities. It 
is apparent that each empirically obtained dissimilarity, is a random 
quantity and so may be considered to consist of true and random 
parts. In the absence of information about the distribution of 
the random components, or knowledge of the true value, to 
identify these components seems to be an impossible task. 
However, using empirical probability density estimation can result 
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in some smoothing of the empirical values; the assumption is that 
the parts smoothed away represent a segment of the random 
component. 

Let V(i) be the set of objects for which the dissimilarities 
between them and object i have been obtained empirica lly. 
Consider the dissimilarity di, the average dissimilarity object k has 
to i and j is (dik  + de)/2; the smoothed estimate of du(0) = du  is 
now proposed to be 

du(t+1) = (2du(t) + 1/2Ek  (dik  + 4k))1117( )U 17(..1 ) , 

where k o  i, j. For a complete set of dissimilarities, the 
denominator is n. If the process is repeated, eventually the 
dissimilarities will become equal. There seems little reason to 
consider t > 1, unless there are special circumstances. 

The following numerical example illustrates the impact of 
this transformation. Consider the three objects i, j, and k for which 
five two-state attributes have been observed, some of which are 
randomly missing: 

	

• i 	j 	k 

	

1 	* 	1 

	

* 	21  

	

* 	1 	1 
221 

	

 
2 	2 	2 

Then de  = 0, dik  = 3, and dik  = 1/2. Because of the missing 
values, the comparison between i and j is based on two attributes, 
that between i and k on three, and between j and k on four. The 
first-order smoothed values are du  = 5/36, dik  = 11/36, and 
djk -= 7/18. 

If dissimilarities can be smoothed, then so can the empirical 
values of the attributes. For a set of continuous attributes, 
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Winsberg and Ramsey (1983) proposed a monotone transformation 
of the values for each variable based on integrating what are called 
basis splines; they provided a computer program to achieve this 
smoothing. 

Other methods of rank reduction 

The problem discussed here is to determine how many of a set of 
directions are to be accepted, not to determine (further) 
transformations of the dissimilarities to achieve lower 
dimensionality. Three possibilities are now summarized. 

Method 1 Choose a cutoff value, C*, somewhere between 70 and 
90%, and determine the rank to be the smallest number of 
eigenvalues accounting for at least C* of the observed variation. 

Method 2(a) Let X1 	X2 	... and plot the eigenvalue, Xi, 
against i; by inspection, determine the rank as the largest value of 
i for which the slope on the left remains steep (Cane11 1966). 
(b) This method is identical with 2(a) but uses the logarithms of 
the eigenvalues (Craddock and Floud 1969). 
Methods 2(a) and 2(b) tend to discard those eigenvalues that on the 
right, fall into a straight line. 

Method 3 Let X1 	X2 >. 	; if the value of Xi  - X14. 1  is 
sufficiently small, small changes in the empirical data are likely to 
bring about changes in the directions of the subspace spanned by 
the corresponding eigenvectors. The proposal is that rank is 
determined so that there are large differences among the adjacent 
Xi  and Xi,„ i.e., only eigenvalues  X11  should be retained 
(assuming a large value for X i.. 1  - Xi). Determining what is 
sufficiently large for Method 3 is still an empirical problem, but 
clearly, some statistic based on 

2(x1xi+1) 1/2/(x1 + x1.1), 
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i.e., the ratio of the geometric to the arithmetic means, is perhaps 
suitable. If this ratio approaches unity, the differences are small, 
and the accepted rank is at most i (or i - 1). 

Nonmetric conversion of non-Euclidean to Euclidean arrays 

Some of the problems of obtaining acceptable Euclidean 
representations of non-Euclidean data have been discussed by 
Williams et al. (1971) and Gower (1984). In an interesting 
proposal to solve the problem, Thu (1978) identified a set of 
parameters, y, such that (17 satisfies the triangle inequality for all 
triples, where d here is an element of the dissimilarity array. 
Because this transformation tends to enlarge the smallest 
dissimilarities and reduce the larger, it brings together gioups well 
separated with respect to the untransformed dissimilarities. It was 
also conjectured that the largest 'y yields the space of smallest 
dimensionality. Many other published proposals also include the 
same objective, which is to obtain a low-dimensional solution, 
often of no more than a specified rank. The combination of these 

two steps has spawned several variations on this theme since 
Kruslcal's (1964) early statement of it (see Schiffman et al. 1981, 
Davison 1983). In this section, .these steps have been separated, 
and the main focus is converting empirical distances to be 
Euclidean. 

The motivation for the nonmetric transformation 
redescribed from Lefkovitch (1984) arises from a consideration of 
distances based on attribute data. However, if a directly obtained 
distance is considered to be an integrated comparison of a set of 
unlcnown multistate attributes, the same arguments apply. The 
conversion of similarities into distances, which depends on the 
coefficient, is discussed above. The following remarks, adapted 
from Lefkovitch (1984), form the basis of the model. 

Consider objects i and j described by m unordered, equally 
weighted and independent attributes, each having s mutually 
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exclusive states. Then for fixed i, it can be shown that the number 
of ways object j can differ from object i in k = 1...m attributes, 
for each of which dissimilarity, de , using almost any attribute-
based definition, will take the same value, 

w, = Gxs — i)k. 

Since 

k < (s - 1)(m + 1)/s implies wk/wk_, > 1, 

and since dissimilarity increases monotonically with k, the states 
shown by the attributes of object j can be predicted by those of 
(fixed) object i with fewer errors if de  is small than if it is large. 
(These formulae are easily extended to unequal numbers of states 
and to ordered and continuous attributes.) Furthermore, the pattern 
shown by wk  remains essentially the same if the attributes are 
correlated. The conclusion is that whole arrays of dissimilarities 
may be less valuable in determining relationships than is an 
informed selection of their smaller elements. This conclusion was 
also reached by Chen and Andrews (1974), Williamson (1978), 
Clyrno (1980), Minchin (1987), and Bradfield and Kenkel (1987) 
by simulation and other noncombinatorial considerations. 

One example of the problems created by igrioring this 
inequality of information can be seen in the Euclidean case in the 
context of principal coordinates (Gower 1966). Since the first 
(most important?) principal coordinate computed from the 
D = {d u} maximizes the squared distance among the objects, the 
major contribution must come from the largest distances; but it is 
precisely these that inform least on close relationships. In 
clustering, especially the sequential, agglomerative, hierarchical 
and nonhierarchical procedures, it is the smallest dissimilarities 
that are used to form groups; they determine the internal properties 
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of each subset, while the largest are hardly ever used for these 
purposes. 

It is not difficult to make plausible selections of the smallest 
dissimilarities; for example, those remaining after discarding the 
maximum dissimilarities (Williamson 1978, Clymo 1980, Minchin 
1987), the local condition of the k nearest neighbors of each 
object, with fixed k (this restraint is related to the proposal made 
by Bradfield and Kenkel 1987), or the neighbors of each object 
within a specified (i.e., global) dissimilarity (Faith et al. 1987), 
each provide subsets of interest. Because a particular value of k, 
or a critical (global) dissimilarity, has to be chosen and thus is 
externally imposed, these procedures cannot be completely 
satisfactory. To avoid these problems, a selection of the smallest 
dissimilarities can be based on a definition of neighbors that is 
local in its operation and does not depend on externally specified 
parameters. Toussaint (1980) gave such a definition; two objects 
are relative neighbors if they are at least as close to each other as 
they are to any other. More formally, the relative neighborhood 
graph (RNG) defines objects i and j as relative neighbors if 

{ 1,  d 	min{max(dik , dik)} y k 	ij ; i 	j; 

0, otherwise. 

E, considered as a matrix, gives the adjacencies of the RNG. 
Toussaint (1980) showed that the RNG is a supergraph of the 
minimum spanning tree (MST), which is the shortest connected 
graph having no cycles; it follows that the RNG is connected. In 
common with the MST, the RNG has neither metric nor 
dimensionality implications and can exist in any lcind of space 
equipped with a concept of relative closeness. Toussaint (1980) 
gave an algorithm to obtain this graph for objects located in spaces 
of any dimensionality; Urquhart (1982) and Supowit (1983) gave 
detailed studies of its properties. 

= 
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At this stage, the nonlinear transformation follows almost 
naturally.. The proposal, similar to that of Bradfield and Kenkel 
(1987) is applied to the RNG rather than the k nearest neighbors 
as follows: 

DEFINITION VII.6. The RNG-path distance transformation 
of D replaces the empirical distance between  Iwo  objects by 
the length of the shortest path in the D array corresponding 
to edges in E, i.e., in the RNG. 

Let Z = {z }  be these shortest-path distances computed from D 
and E; it follows from the construction of the arrays E and Z that 
the dissimilarities among the objects that are most alike, including 
those objects adjacent on the MST, are identical in Z and D. 

THEOREM VII. 1. The metric of Z is Euclidean. 

Pro of.  a. Since the RNG is a subgraph of the Gabriel 
graph, which is Euclidean,the assertion is true  for rn  

objects adjacent On the RNG. 

b. For objects i and j not adjacent on the RNG but 
separated by object k, since zu  is the shortest path 
distance and so is equal to z ik  + zik , then 

,2 .  > ,2 	,2 
zj 	' 	jk• 

c. For objects i and j separated by more than one 
object, the proof follows by mathematical induction 
from b. 	 Q.E.D. 

It can be seen that this transformation, which converts an arbitrary 
seinimetric into a Euélidean distance, changes only the larger 
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distances, corresponding to the poorest empirical mutual 
information. It can be used for any semimetric, including, for 
example, the Euclidean case. 	 - 

To describe the consequences of the RNG transformation, 
the following observations are of interest. Let dik  and dik  be given; 
then the range of values for which the metric is Euclidean for dg  
is that 

- 	 (dik  + dik) 

be true for all i, j, and k. In the RNG, if eu  = 0 and eik  = eik  = 1, 
then  •ze  = dek  + die  It follows that if the original metric is 
Euclidean, so that du  dik  + dik , then zg  >. du. Thus the largest 
distances are increased, and the smallest are unchanged, so that 
compared with the original values, the variance of the interpoint 
distances is increased. As a result, dimensionality tends to be 
reduced (Kendall and Moran 1963), and the squared lengths of 
the largest principal coordinates increase disproportionately to 
the smallest. 

From numerical experiments, it seems that the direction of 
the principal coordinates is hardly changed. The effect of this 
transformation, for example in a clustering context, is further to 
separate distinct groups, while leaving closely relatecl objects 
virtually unchanged in their mutual proximity. Thus many 
sequential agglomerative procedures, which are based largely on 
the smallest dissimilarities, are little affected by this 
transformation.  

The non-Euclidean case is a much larger set than the 
Euclidean, but it is still possible to make some general remarks. 
It is convenient to consider the two reasons for the failure of the 
Euclidean metric. Assume ee  = 0 and eik  = eft  = 1 as before: 

(1) 	Suppose du  > dik  + dik ; it follows that zg  < dg. 
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(2) 	Suppose de  < Ida  - djk I; this case cannot satisfy the 
assumptions about ev, ea, and eik  but, with a suitable 
relabeling of the vertices, becomes identical with (1). 

It follows, therefore, that in the non-Euclidean case, at least some 
of the largest distances are reduced, and, as in the Euclidean case, 
the smallest are unchanged. With rank being the number of 
nonzero eigenvalues in D, it can be shown that the rank in general 
is not changed, that all the eigenvalues are likely to change, —not 
only the negative ones. (Note that D is symmetric, so that there 
are no complex eigenvalues.) There is also empirical evidence that 
the directions of the eigenvectors are changed in some way 
dependent on the number and relative sizes of the negative 
eigenvalues, but no predictable pattern has yet emerged. 

An additional step may be incorporated in this 
transformation. Because the edge distances in the RNG are the 
smallest, they are about equal, so that the transformed edges in the 
graph complementary to the RNG are approximately integer 
multiples of the average of those in the RNG. This fact suggests 
a further transformation of the distances: 

DEFINITION VII.7. The RNG-edge distance between two 
objects is the number of edges in the shortest path between 
them in E. 

Since the metric properties of the path distances carry across to the 
edge distances, and since all triangles whose sides are the edge 
distances are isosceles, it follows that they are ultrametric. 
Furthermore, because these distances are integers, the minimum 
dimensionality of the Euclidean space that can reproduce them 
exactly tends to be less than that of the path distances. If the RNG 
is also a MST, it follows that both the path and edge distances are 
ultrametric. 
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In the context of clustering, the following proposition 
illustrates some of the effects of the RNG-path distance 
transformation. 

PROPOSITION. The MST derived from the R1VG-path 
distance transformation is identical with that of the original 
distances. 

Proof. The distances in the RNG are unchanged by 
the RNG-path distance transformation; those in the 
complementary graph consist of at least the sum of tWo 
edges in the RNG. Since the MST is a subgraph of the 
RNG, the assertion follows. Q.E.D. 

Beyond the present context, because the single-linlcage dendrogram 
is equivalent to the MST (Gower and Ross 1969), there are no 
effects of this transformation for this clustering method. Other 
dendrogram-generating procedures, which recompute distances 
after grouping, are likely to give somewhat different dendrograms 
aftèr the RNG-path distance transformation. After the RNG-edge 
distance transformation, however, even the single-linkage 
algorithm may produce different results, because at least n - 1 
edges have identical lengths, so that the MST is not unique. 
Chapter X, "Caste slculls," "Fescue grasses," and "Blood and 
language" give examples of the RNG-path transformation and its 
subsequent effect on the groupings. 

An alternative transformation 

The arguments above for retaining the smallest distances are based 
on the conclusion that these give the most useful mutual 
information. However, if closely related objects differ only 
randomly, while distantly related ones differ systematically, it is 
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the larger values that should be retained, and the smaller replaced. 
In these circumstances, the edges corresponding with the relative 
external graph (REG), defined as 

{

1, d k min (dik, dik), v k ij; i 0 j 

0, otherwise, 

plays the same role as the RNG. The transformed matrix, Z, is 
formed from D, by the values corresponding to the unities in E, 
and, for example, for two nonadjacent objects, i and j, separated 
by just object k, by zg  = Iz - ze  I . Several conjectures based on 
this transformation seem to follow, supported by numerical 
examples. 

CONJECTURE VII. 1. In the REG-path distances transfor- 
mation, the smallest distances tend to be increased. 

In consequence, the variance of the interpoint distances is reduced, 
which results in the eigenvalues tending to become more uniform, 
i.e., a tendency to sphericity. If this conjecture is true, it follows 
that, in the less than  full rank situation (i.e., if the rank is less than 
n - 1), the r. ank of the transformed array may be increased. There 
are no obvious consequences referring to the directions of the 
principal coordinates themselves, except those following from the 
near-sphericity, i.e., their computed directions may differ 
considerably from those of the untransformed data. Furthermore, 
since the REG transformation increases the smallest distances, it 
reduces the (relative) separation among distinct groups. 

For several data sets, including some for which the rank, 
p(0), does not change (this circumstance is rare for RNG-edge 
distances), the following is believed to be true. Let D be a matrix 

eg  
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of distances obtained from dissimilarities, M the REG-path 
distances, Z the RNG-path distances, and G the RNG-edge 
distances; then 

CONJECTURE VII.2. For a > 0, 

p(a;M) p(a;D) p(a;Z) p(a;G). 

Support for this conjecture is from numerical observation; thus the 
transformation that appears to reduce dimensionality the most is 
likely to be based on the RNG-edge distances. 

The case for retaining of the smallest dissimilarities and 
replacing the largest by the path distances on the RNG seems 
stronger than that based on retaining the largest and replacing the 
smallest by the path distances on the REG. It is supported by the 
numerical examples. For most of the numerical examples (e.g., 
Chapter X, "Caste slculls"), the REG-path distances made the data 
more nearly spherical and also produced a disposition of the 
objects largely disagre,eing with the complete set of principal 
coordinates and with prior knowledge; those depending on the 
RNG were more elliptical and agreed very well. However, both 
possibilities are available; the RNG-based transformation may be 
more appropriate in taxonomy, the REG-based method may be 
preferable in psychometry. 

Although the RNG-path distance transformation is not 
directly comparable with others in common use, it is useful to 
contrast it with three others. The first model, essentially that of 
Gabriel (1978), can be described as follows: let D be a distance 
matrix; it is desired to obtain a matrix Y so that 

D + Y is Euclidean 

H Y 0 is a minimum 
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the rank of D + Y should not exceed some particular 
value. 

The motivation behind the third condition is clear, and, because 
larger values need to be changed the most to satisfy conditions 1 
and 2, the numerical results of the Gabriel procedure and those 
described for the RNG-path distance transformation tend to agree 
quite closely. The advantage of the RNG-path distance procedure 
over that of Gabriel is therefore largely computational; obtaining 
Y requires an iterative minimization phase, while RNG-path 
distance computation is direct and of 0(n3). The rank-reduction 
component of the Gabriel procedure, however, is not an integral 
part of RNG-path distances, and so, if the desire is to obtain a 
low-dimensional representation that happens to be Euclidean, 
rather than the reverse, there may be an advantage is using it. The 
integers closest to p(0.5) or p(1) provide an empirical estimate of 
an "adequate" dimensionality. 

In the second model, essentially that of Kruskal (1964), the 
distances are arranged in ascending order and then monotonically 
smoothed to achieve a low Euclidean rank. Missing values, as in 
the RNG-path distance transformation but unlike the Gabriel 
procedure, present no problems. Because all distances present are 

treated e,qually, the small ones are as likely to be changed as the 
larger, and so, it is now claimed, the details of the close 
relationships tend to be changed; however, Chen and Andrews 
(1974) considered cost functions, which penalize changes in the 
small values more than the larger. Because the Kruskal procedure 
is also iterative, the RNG-path distance transformation offers a 
computational advantage. 

A third model also changes all values in the dissimilarity 

array. As noted above, the transformation proposed by Thu (1978) 
to obtain data satisfying the triangle inequality changes the smaller 
dissimilarities more than the larger; it tends to bring together 
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groups that are well separated in the original dissimilarity measure. 
However, it is easy to change Thu's proposal so that the reverse 
happens; rather than transforming the dissimilarities, first convert 
them to similarities, i.e., s = f(d), and find the minimum y such 
that the inverse transformation, d = f 4 (s) -Y, satisfies the triangle 
inequality for all. triples. The larger similarities, corresponding 
with the smaller dissimilarities, are changed the least by this 
procedure, so leaving proximal objects relatively unchanged in 
position. The Fortran program given by Thu can be easily 
modified to include whatever similarity transformation is 
appropriate. 

The dual to the object space of principal coordinates 
analysis is the space of the variables in principal components 
analysis. For simplicity, suppose all m variables are standardized 
so that the estimated covariance matrix, R, has unities on the 
diagonal. Assuming a linear relationship, more information about 
variable j is given by variable i if I ru t --> 1, than if re  -> 0; there 
are many more ways in which variable j can differ from variable 
I  if re  = 0 than if I re I  = 1. Since the first principal component is 
the direction in the space maximizing the variance, and since 
variance is here equivalent to (squared) distance, the major 
contribution to the first principal component is based on those 
covariances that approach zero in absolute value. There seèms to 
be a case for a nonmetric transformation of covariance matrices, 
analogous to that for principal coordinates. The proposed 
procedure is as follows: 

(1) Obtain the principal components of R as the complete 
solutions to AV = AV. 

(2) Obtain the array A 1/2V and obtain the Euclidean distances 
between the rows (corresponding with the variables). 
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Transform these distances using the same procedure as that 
proposed for dissimilarities. 

(4) 	Obtain the eigenvalues and eigenvectors of the array of 
transformed distances. 

This final set are the adjusted principal components. 

Are the dissimilarities consistent with a clustering? 

The belief that the small dissimilarities are consistent with objects 
belonging together, and that large dissimilarities indicate objects 
that do not, is perhaps more than  intuitive. Exploiting this belief 
to produce a test for the existence of clusters has been the subject 
of several studies, including Fillenbaum and Rapoport (1971), 
Hubert (1974), Ling and Killough (1976), Hawkins et al. (1982), 
and McArdle (1991). Such a test is now considered. Let t be a 
threshold value, and define a graph, G(t), having n vertices and an 
edge between vertices i and j iff de  t. Let kg  be the number of 
edges in G(t), and 4 be the smallest threshold value, such that 
G(t) is connected and contains kc  edges. Then Irc. n - 1 may 
sometimes be seen, but the upper limit of (ni1) + 1 is unlikely. 
Referring the value of Ice. to the tables provided by Ling and 
Killough (1976), and perhaps maldng use of the macro given by 
McArdle (1991), provides some guidance on the existence of 
clusters. 

An alternative procedure for testing for the existence of 
clusters is via the RNG. Leflcovitch (1984, 1985c) proposed 
examining the number of edges in the RNG in excéss of n 1, 
i.e., the number in the MST. Because the MST is a subgraph of 
the RNG, if there are many more edges in the RNG than n 1, 
small differences in the dissimilarities may well give a different 

(3) 
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MST. The number of edges in the RNG more than n - 1, if 
considered as a random quantity bounded by zero and 
(n - 1)(n - 2)12, can be used for testing. Let the data consist of 
two lists: the edges in the MST, and the edges in the RNG. Form 
the following: 

MST 
In 	Not in 

In 	 a 
RNG 

Not in 	c 	d 

in which it is apparent that 

a =n-1,c= 0, anda+b+c+d=n(n- 1)/2. 

If b is zero, I claim that any clustering is likely to be stable; to the 
extent that b exceeds zero, the less stable is any clustering, which 
leads to the hypothesis of b = 0 versus the alternative that b > 0. 
Since the expected number of edges in common to two random 
spanning trees is 2 for large n, and assuming the binomial 
distribution, B( n(n - 1)/2, 2/n ), leads to comparing 

= b2n1((n - 1)(n - 2)) 

with the chi-squared distribution with 1 degree of freedom in a 
one-tailed test. If the evidence against the null hypothesis is high, 
there will be many spanning trees in the RNG of about the same 
(dissimilarity) length, so that small changes in the empirical 
dissimilarities may give rise to a MST having a different topology 
from that under study and so may lead to a different clustering. It 
follows that a clustering based on the current data should be 
regarded as unstable. 
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A related test (Lefkovitch 1985c), based on a displaced 
binomial distribution and its approximation for small b by a 
displaced Poisson distribution, is perhaps not needed. Other tests 
based on extracting more of the structure in the MST were given 
by Lefkovitch (1985c). 

Missing distances 

In many sets of directly obtained distances, some pairwise values 
are missing either randomly or systematically. Both cases can be 
considered together, and, other than the degree of approximation 
resulting from incomplete data, the -results obtained by replacing 
missing values by a large value in the distance array should be 
acceptable. However, it is useful to distinguish these two cases to 
substantiate this remark. 

Case I: randomly missing data The randomness here is meant to 
indicate that there was no deliberate decision to obtain the 
distances between objects belonging to distinct subsets and not to 
obtain distances among the objects within each subset. 

Assuming that the number of missing values is not too 
large, so that the RNG exists as a connected structure, it is 
conjectured that there is a high probability that the RNG obtained 
frorn the incomplete data will be virtually identical with that given 
by the complete data. The following model provides heuristic 
support for this assertion. An urn contains n(n - 1)/2 balls, of 
which m are black (corresponding with edges in the RNG) and the 
remainder are white. Since, in a sample of size k, the number of 
black balls follows the hypergeometric distribution, with the 
expected value being 2km1(n(n - 1)), then for at least m/2 balls to 
be black in the sample, E(k) n(n - 1)14 need to be sampled. 
Thus if the number of missing values is appreciably less than half 
the number of edges in the complete graph, the RNG is likely to 
be a good approximation to the true one. In fact, the situation is 
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probably even more satisfactory, because the missing values are 
often not random, in the sense implied by the sampling procedure 
implicit in the urn  model, but tend to be those impossible to collect 
because of some biological incompatibility (i.e., implying a high 
distance) or because "everyone knows" that the objects are no 
more than distantly related. Note also that, since the number of 
edges in a RNG tends to be less than about 3n (Lefkovitch 1984), 
only if the number of missing values exceeds n/6 and these 
coincide largely with the distances that would have been 
represented on the RNG is there any serious risk of distortion. 

Case 2: systematically missing data An example of this class is 
given by those problems normally studied by the methods called 
"unfolding." Suppose the objects are divided into two disjoint 
subsets, / and J, and the only distances available are {de, i E /, 
j E J1. If these distances are already Euclidean, they can be 
unfolded by the singular decomposition of the block of complete 
data (see below), and a complete coordinate system obtained. If the 
data are not Euclidean distances, the missing data can be replaced 
by a sufficiently large value, and the RNG obtained as before. The 
path distances only in the nonmissing block now replace the 
original values and the modified data can then be unfolded as 
before. 

Suppose a set of objects is divided into two disjoint subsets 
/ and J, n1  = III, n2 = n2 n 1 , and only the pairwise 
similarities (distances should be transformed appropriately) 
between objects belonging to the different subsets obtained. It is 
desired to obtain a set of coordinates for the combined set of 
objects in whatever dimensional Euclidean space will reproduce the 
known similarities. 
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Consider the following model; suppose X consists of a set 
of coordinates for the n = n 1  + n2  objects whose origin is their 
centroid; then 

XTX = 

[

,XTX1  I XIX2  

XIXTX - I XT  X1 X . 2 2 

Assume that XII I  are the only data available. Let the singular 
value decomposition be 

svd(XIX 1) = US2VT , 

where UTU = vTv  = vvT = I, and S2  is diagonal and non-
negative. It follows that the principal coordinates of X 1  are VS, 
those of X2 are US, and that XTX can be completed as 

XTX = vevT  I vs2uT 

us2vT 	us2uT1 

The principal coordinates for the n objects are obtained from the 
completed niatrix in the usual way. 

Several other methods for multidimensional unfolding have 
been published; perhaps the most easy to implement is given by 
Gre,enacre and Browne (1986). 



vm Subset generation using scalar 
dissimilarities 

Three main circumstances lead to the procedures discussed in this 
chapter. First, at the end of Chapter VI, it was shown that if, for 
univariate data, the metric is not constant throughout the range but 
depends on the pairs, the complete array of standardized 
differences may be multidimensional. Second, attributes are 
subjective divisions (Chapter I) of an object, which are used to 
estimate a measure of dissimilarity, the array of which will almost 
certainly be multidimensional (Chapter VII). Third, many sets of 
data consist of relationships (similarities, dissimilarities, and so on) 
measured directly on the pairs of objects, which again may lead to 
an array of dissimilarities that is multidimensional. For 
multidimensional arrays, there is no natural ordering (although 
Barankin and Takahasi 1978a, 1978b, and Goodman and Pollack 
1983 discussed possibilities for these circumstances), so that a 
simple definition of betweenness, as used in Chapters V and VI, 
is not immediate. In this chapter, an alternative concept is 
developed and used to generate subsets; the procedures discussed 
in Chapter II can then become applicable. 

The assumptions 

For clustering in a multidimensional context, two assumptions are 
common to almost all clustering methods and can hardly be 
avoided; they are 

ASSUMPTION Vill. 1. The objects can be represented as 
points in space. 

ASSUMPTION WW2. The resemblance between all pairs 
of points can be measured. 



VIII SUBSET GENERATION USING SCALAR DISSIMILARITIES 	223 

These relationships are here referred to as distances, so that 
similarity, dissimilarity, and related concepts have been 
transformed to that class of measures. Even though a dissimilarity 
may be a distance (Chapter VII), it is not necessary to assume that 
the space is Euclidean, linear, or even continuous. For the 
purposes of subset generation, two regularity conditions generalize 
the principles discussed in Chapter VI when considering the real 
line; they are 

ASSUMPTION  Vffl.3. (first regularity condition). As the 
maximum distance among members of a subset approaches 
infinity, so the cardinality of the subset approaches n. 

ASSUMPTION V111.4. (second regularity condition). As the 
maximum distance among members of a subset approaches 
zero, so the cardinality of the subset approaches unity. 

Assumptions VIII.3 and 4 enable the subset-generating process 
described below to avoid much redundant arithmetic. Their role 
emerges in what follows, which provides the details of a subset-
generating procedure fundamental to the present circumstances. 

A general subset-generating procedure 

In Chapters V and VI, some essential components of a subset-
generating procedure were described but were specialized to 
particular classes of data. Those procedures can be considered as 
particular cases of a more general class, outlined in Table VIII.!. 
In the pseudocode of Table VIII. 1, notice that because the 
acceptability of a group is defined by a pair of objects, this 
algorithm can be implemented using parallel processing, with 
processors discarded either when subsets be,come duplicated, or if 
there is no change in the k-loop leading to storage of the group. It 
will be seen below that the number of processors is unlikely to 
exceed 3n. 
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Table VII1.1 An outline of the subset-generating procedure 

for i:= 2...n 
forj: = 1...i-1 

group: = «object 1) U (objecti)); 
if acceptable(group) = .true. then 

• 	label: for k:= 1...n 
if newmember(group, (object k)) = .true. 

then group:= {grouP U (object k)}; 
end k; 

if the group has been changed on the last pass 
through the for k-loop, go to label; 

else store(group); 
end j; 

end I.  

The key elements to be completed in the algorithm are to 
define acceptability, and how new members of a group can be 
recognized. In addition, the concept of join, i.e., the process by 
which some subsets are joined to others, is interpreted as a 
mathematical operation in Appendix 1. 

It is assumed that the n(n - 1)/2 pairwise relationships 
among n objects are empirically observed or can be computed 
from one or more of their attributes. Without loss of generality, 
it is also assumed that the distances are scaled so that the 
maximum value is unity. 

Preprocessing 

Let N be a finite set of n objects, too large for any reasonable 
clustering procedure. As usual, {du} is some measure of distance 
between all pairs of the objects, which can either be stored 
in computer memory (or be easily computed) or is available in 
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bacldng store. The objective is to find a quick way to divide the 
objects into sufficiently small-sized components such that each is 
amenable to some efficient clustering procedure. The model now 
described represents the objects by a graph on n vertices, with a 
path between vertices i and j iff the objects they represent belong 
to the same component. 

A procedure for this division (already described in Chapter 
VII) is Toussaint's (1988) sphere of influence graph (SOIG). In 
summary, let ri  be the distance between object i and its nearest 
neighbor: 

DEFINITION  VIII. 1.  The generalized sphere of influence 
graph is a graph, G, on n vertices with edges  g  defined by 

1
1, + rj  > du  

ge 0, otherwise. 

This graph can be formed for any measure of distance (it need not 
be a metric) between objects i and j in any dimensional space. 
Note that 

the graph need not be connected 

• one connected component can be completely enclosed 
within another 

• the graph can be complete 

• the subset of the {diil corresponding with  g  = 1 is locally 
a metric. 

If G is not connected, subpopulations are equated with the 
connected components; their existence and membership may 



226 	VIII  SUBSET GENERATION USING SCALAR DLSSIMILARMES 

be determined quite easily by use of algorithms for spanning trees 
operating on G. The components first can be processed alone and 
then reassembled; in this way, a large problem can be broken into 
smaller subsets. 

Generalizing betweenness to neighborhoods 

The genesis of the ideas developed further here can be seen in 
Chapters V and VI. W.D. Fisher (1958) argued that if the objects 
are colinear, a subset containing two objects but excluding those 
between them is not to be considered as a candidate for a cluster. 
Fisher's heuristic can be regarded as defining the neighborhood of 
a pair of points. The challenge is to extend the concept of 
betweenness for unidimensional data to neighborhoods for 
multidimensional circumstances. It is useful first to review some 
preliminary attempts at this extension before giving what is 
currently considered to be best. 

Some early neighborhood definitions' 

Neighborhoods are here into two categories, asymmetric and 
symmetric, depending on the status of the individuals contained 
within them. 

Asymmetric neighborhoods 

If the distances among objects are such that the points 
corresponding to them are coplanar, Dagnelie (1966) proposed that 
a decision to include three of them in a subset but to exclude any 
(occupied) point contained within the triangle formed by the three 
is unreasonable. This model can easily be extended to more 
dimensions by replacing the triangles by simplexes, as follows. Let 

I The reader uninterested in the discarded defmitions may continue with "C-
neighborhoods" (p. 231). 
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X be anxm set of principal coordinates for n objects in m 
dimensions; choose any subset of m + 1 distinct rows, X„, +1 , 
assumed to define a nondegenerate simplex, and any other distinct 
row, x. Define 

Y = [X„, +1 :1]1" and y = [x:1] T ; 

then 

LEMMA  VIII. 1. X is contained within the simplex defined 
by X. +, e the elements of a satishing 

Ya = y 

are strictly positive. 

The proof is omitted. This generalization of Dagnelie's proposal 
is here called a D-neighborhood. 

Vinod (1969) extended Fisher's notion in the spirit of 
Dagnelie's into what he called a generalized string, and which 
here is called a V-neighborhood: 

any object k for which dik  5 du  belongs to the V-
neighborhood of the ordered pair (i, j). 

In two-dimensional Euclidean space, the V-neighborhood is a 
circular region of radius de, centred on i and including all points 
corresponding to objects k located within the circle. There is 
nothing in Vinod's proposal restricting the dimensionality. If all 
pairs of objects are considered, there are n2  subsets (including the 
cases i = j). Although the generating pair differs, several of these 
subsets may be identical in the sense that the union of the objects 
included equals their intersection, so that the number of distinct 
subsets is often less than n'. 
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Another definition of a neighborhood is that of a-talons, 
which are: 

for a specified a, the subset generated by object i 
and all objects k for which da 	a. 

This definition appears to achieve a modest number of subsets (no 
more than n) at the price of having to select a value for a. 

However, the possibilities so far considered have a defect; 
it is that there are two classes of objects, namely, the generators, 
and those subsequently admitted. One reasonable additional 
requirement is that of symmeny: 

all objects belonging to a subset should be equivalent. 

V-neighborhoods and a-talons are asymmetric in that the subset 
centred on object i may differ from that centred on j. The 
asymmetry arises from the fact that object i bears a different 
relationship to the remaining objects in the subset than the latter do 
among themselves; in an a-talon, one object is no further than a 
from all others, which may be separated by as much as 2a 
distance units from each other. 

Nevertheless, consideration of these proposals leads to a 
general neighborhood principle: 

if certain specified objects, the generating objects, 
belong to a subset, any other object satisfying some 
proximity criterion to them also belongs to the 
subset. 

Symmetric neighbourhoods 

•  A symmetric neighborhood rule is that of a-cliques, or 
a-maximally complete subgraphs. In these subsets, no individual 
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is further than a from each other; the number of these subsets is 
unpredictable.. Both for a-talons and a-cliques, the choice of a is 
critical; there may be a "best" value, but finding it can involve 
much computation (Lefkovitch 1975). However, if for some value 
of a these subsets are disjoint (i.e., no member is closer than a to 
any object in another clique), the partition formed is of direct 
interest. These disjoint subsets, here called a-partitions, are not 
common in real examples, except when a is chosen so that many 
of the objects form subsets of one member. 

A defect in this symmetric rule, which it shares with the 
asymmetric, is that they all imply hyperspheroidal neighborhoods 
in the space of the distances; if these neighborhoods are 
conjectured to coincide with the underlying (unlcnown) true groups, 
the implication is that they also are hyperspheroidal, albeit 
differing in position and size. There is no justification for believing 
that a true group can be contained within a ball. 

An improvement on this situation is an elliptical 
neighborhood in which neither size, shape, nor orientation are 
constant. Such neighbdrhoods can be derived by combining V-
neighborhoods with D-neighborhoods as follows: 

for objects i, j, and k, any object 1 satisfying 

dil  + 	dik 	dik 

belongs to the Dagnelie-Vinod (DV) neighborhood 
defined by the ordered trio (j,  j ,k) 

In two-dimensional Euclidean space, these neighborhoods are 
ellipses in which objects i and j are situated at the foci, and k on 
the boundary; the eccentricity is 

duMik  + 
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Denoting the subset generated by {i, j,k} as S(i, j,k), then: 

(1) 	S(i, j,k) = S(j, i,k). 

(2) 	S(i,i,k) is equivalent to a V-neighborhood. 

S(i,i,i) consists of the object i and all those of identical 
position. 

(4) 	S(i, j,i) and S(i, j, j) consist of objects i and j and those on 
the straight line between them. Since the probability of 
there being any objects satisfying (4) is virtually zero, 
S(i, j,i) can be replaced by S(i,i, j), and S(i, j, j) by 

j, 1), i.e. , V-neighborhoods. 

The maximum number of distinct subsets for this combined 
procedure is 

(n2  A- 2)(n - 1)/2. 

A problem with using  Dy-neighborhoods is that generating the 
subsets requires arithmetic of 0(n4). However, if the maximum 
distance between two objects is unity, and global and near-global 
subsets are unlikely to be of interest, there is no need to consider 
subsets if de  + dik  k 1 . 0 or if du  0.5; these lower limits may 
be further reduced on heuristic grounds. Setting the interfocal 
distance to max(du, de, de) and placing the remaining object on the 
boundary reduces the arithmetic by a factor of 3; subsets having 
an eccentricity near unity also can be excluded, because they are 
approximately equivalent to a straight line. 

Unfortunately, in widening the class of subset-containing 
shapes, asymmetry is still present; further, the reductions still 
leave the arithmetic to be 0(n4). To reduce the arithmetic to 0(n3) 

(3) 

(5) 
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or less, subsets should be initiated by pairs of objects. 
F-neighborhoods (flexible strings; Lefkovitch 1978) are an 
attempt at this. Suppose from assumptions VIII.3 and 4 the shape 
of the ellipses is altered by arranging that the eccentricity is 
smaller the greater the distance between the pair of generating 
objects. To be present in the neighborhood, an object needs to be 
close to the straight line between them if the generating pair are 
close, but can be relatively more remote if the generating pair are 
further separated. Defining a parameter -y 1, 

any object k for which 

dik  + dik 	7(edu - 1) 

belongs to the F7-string definexl by the pair {i, j}. 

It follows that the eccentricity is dij/{y(e d4,  - 1)}. Because the 
maximum distance is unity and hence the sum of any two distances 
cannot exceed 2, the effect of y is to eliminate from consideration 
those subsets for which the generating distance is greater than 
loge(1 + 21-y). There is an obvious criticism of a criterion that 
compares the sum of two distances with an exponential of a third; 
such a comparison is akin to comparing a length with an area, 
which is perhaps meaningless. However, this  proposai  results in 
reducing the amount of arithmetic while having an enlarged family 
of shapes, even though it is not symmetric in that the objects in the 
final set fall into two classes—the initiators, and those included 
subsequently. The following neighborhood rule weakens this 
distinction, effectively removing it from having any serious effect. 

C-neighborhoods 

Even though the neighborhoods described above begin to satisfy 
some of the requirements, they still imply a restricted family of 
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shapes in the distance space, namely, ellipsoids (including 
spheroids), even though they can be of different shapes, sizes, and 
positions. The neighborhoods describe,d here permit a larger family 
of shapes, and the asymmetry is essentially removed. 

The reasoning presented in Chapter VI for clustering 
unidimensional data defined a sequential procedure, which is 

subset Si+ , consists of all objects whose average 
distance to the members of Si  does not exceed the 
maximum among objects in S„ 

i.e., 

Si+ ,  = {k : ave(dik I i E 	max(du I f, j E Ss». 

Nothing in this representation requires unidimeilsionality; the 
argument depends only upon distance. The definition of the C-
neighborhood is the region satisfying _ 

vw : ave(d,,, I i E S,) 	ma.x(dj i , j E 

where w is a point in the distance space. Thus for an initial pair of 
objects, i.e., at stage t = 0, the criterion assigns all ot•jects- in the 
region defined by the rule as members of the subset. At stage 
t =- 1, and in two dimensions, this region is an ellipse; in more 
than two dimensions, it is an ellipsoid, hyperellipsoid, and so on. 
Notice the deceptively simple but quite fundamental aspect of this 
definition: if the neighborhood at stage t + 1 contains objects 
other than those at stage t, the process is repeated by determining 
the average distance of each nonmember to all members, which is 
then compared with the maximum among the members. Notice 
also that because 

max(di, I i , j E Si) 	ave(de  I f , J E 
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the generating procedure can be written as 

Sz ., 1  = S, U {k:ave(dik  I k e S„ i E S,) 5 max(dI  i , j E 

Appendix 5 shows that for any initiating So, there is a stage•  such 
that S, 4. 1  = S,; this fact allows the following: 

DEFINITION VIII. 1. A C-neighborhood subset satisfies 
Si+ , = S,. 

Thus a C-neighborhood subset is conditional on the initial 
members; this dependence is the source of what I call conditional 
clustering. Some properties of C-neighborhoods as a subset-
generating procedure are as follows: 

(1) Since all members of S, are used in obtaining S,,,, the 
process is symmetric. 

(2) Many subsets initiated by more than two proximal objects 
are also considered during the sequences, which implies 
that subset generation is 0(n3) and can be restricted to the 
(72) pairs as starting points. 

The range of shapes of the neighborhoods in the distance 
space consists of multifocal "ellipses," their higher-
dimensional counterparts, and includes standard bifocal 
ellipses. 

A possible defect, which does not appear to be major, is that an 
average distance is being compared with a maximum. An 
alternative possibility, which does not use averages, is of the 
Dixon-type used in testing for statistical outliers; it is 

(3) 
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include object k in the subset S„, 1  if the minimum 
distance it has to a member of S, does not exceed 
the maximum among S„ 

A neighborhood based on this principle of inclusion seems 
plausible, but empirically it has been found to generate few and 
apparently heterogeneous subsets, consistent with the conservative 
rejection rules characteristic of statistical decisions. Another 
related possibility is to determine 

include object k in subset S„, i  if 
min{dkk, I k' E SJ 	Max{die  I j  E S,I, 

but this decision criterion also has been found to generate very few 
and heterogeneous subsets. 

A modification that changes the average distance criterion 
by a parameter 0 < -y < 1 is conceivable, but if -y depends on an 
externally chosen value, it is not recommended. Attempts to define 
-y, = -y(S,) as some function of S„ such as 

= -y(min{de}, max{del), vi, j E S„ 

failed to be satisfactory; either many small subsets (two or three 
objects only) or few large subsets were produced. Furthermore, 
min{du :  j , j E SJ depends on the sample size, which in turn 
depends partly on the collectors' behavior. The consequences of 
biased collecting have already been discussed and need to be 
avoided (Chapter I). 

Experiments based on these neighborhood definitions, 
coupled with the supposed desirable properties for a subset, have 
led me to conclude that C-neighborhoods represent the widest 
range of possibilities coupled with a simple definition and modest 
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amounts of computation. Some aspects of the geometry  of 
multifocal ellipsoids are discussed in Appendix 4; the convergence 
of the subset-generating procedure based on C-neighborhoods is 
investigated in Appendix 5. 

Reducing the amount of arithmetic 

It is not wrong to use each of the () pairs of objects to initiate a 
subset to obtain C-neighborhoods. Some pairs will generate the 
improper subset (i.e., containing all n objects), which is hardly of 
interest. The same proper subset may be generated by different 
initial pairs. The purpose of this section is to show how to avoid 
this duplication without eliminating the subsets likely to participate 
in the optimal covering and so reduce the quantity of arithmetic. 
The general strategy is to eliminate from {S0} superfluous initial 
pairs. 

Determining So  using a four-point condition 

Fitch (1981) defined a neighbors relation for the pair of objects 
{i, j} relative to the pair of objects {p,q}, vvhich can be written as 
follows: 

• assuming i 	j, p 	q, {i, j) 	{p,q} and D is a metric, 
then i and j are neighbors iff 

+ dpq  < min(d4, + dig, diq  + dip). 

This definition can be used to select the Sc, in the following way. 
If {p,q} ranges over all pairs chosen from N sàtisfying the 
definition, the total number of instances where {i, j) are neighbors 
provides a score for {i, j}. Pairs with many neighbors can be 
regarded as being more central than those having a lower score 
and so are likely to be good candidates for subset generation. The 
pairs can be used in descending order of the scores, continuing 
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until the generated subsets consist of N. Because the distances are 
assumed to be a metric, and also because determining the scores 
requires arithmetic of 0(n4), more than using all () initial pairs, 
this proposal is rejected for the present purposes. 

Determining the So  by graph theory 

Suppose three objects in the distance space form the vertices of a 
nondegenerate equilateral triangle. Then for each of the three 
pairs, the first iteration in the C-neighborhood procedure includes 
the third vertex, because the average distance the third has to the 
initial pair is equal to the distance between them. Thus the three 
initial pairs generate the same subset, and so only one of the pairs 
is required. For nonequilateral triangles, using the pair adjacent to 
the shortest side generates a subset just of the pair (in the absence 
of other objects in the vicinity), while the subset initialized by the 
longest side generates a subset of all three. However, the 
intermediate length side almost certainly also generates the subset 
of three unless the 'remote" vertex is far removed from the nearer 
of the pair, when the subset formed just by those three is of little 
interest. It is concluded that the pairs separated by the larger 
distances are likely to generate subsets that either are also 
generated by a less separated pair, or are unlikely to be a part of 
the optimal covering. 

Thus the problem can be reformulated as determining a 
graph on n vertices, such that the adjacent pairs of objects generate 
the subsets of interest. The possibilities for this graph considered 
here are based on different definitions of neighbors. 

The nearest neighbor graph (NNG) This graph is defined by 
joining e,ach object to its nearest neighbor in the distance space. 
With no requirement for the triangle inequality to be satisfied in 
recognizing nearest neighbors, this graph requires no particular 
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metric. This graph need not be connected, is cycle free, and 
consists largely of isolated pairs of vertices, and so the number of 
edges may be as few as n/2; any large structures in the data tend 
not to be generated. This graph can be formed with 0(n log en) 
arithmetic. 

The minimum spanning tree (MST) This well-lcnown graph is, 
connected, has n - 1 edges (therefore is cycle-free), and is of 
minimum length in the distance space. It is unique if all distances 
differ, and it includes the NNG as a subgraph. Using just the 
adjacent objects as the initial pairs, some groups of well-separated 
objects may be formed. As for the NNG, there is no requirement 
for the distances to satisfy the triangle inequality. This graph can 
be constructed with 0(n log en) arithmetic for spaces of any 
dimensionality. 

(1) The square of the MST The square of any simple graph 
consists of the graph together with further edges joining 
vertices separated by two edges of the original graph. The 
square of a spanning tree is a trigraph (Bondy 1989). 

(2) The principal weighted spanning tree decomposition In a 
MST, n - 1 elements of the distance matrix, D, are 
selected so that (n - 1)(n - 2)/2 remain unused. Suppose 
small changes in the empirical data result in some of the 
elements of the new D to change in such a way that edges 
between different pairs may form part of the MST. These 
new pairs are almost certain to be those for which the 
distances are small in the original D; hence they are near 
neighbors but are excluded from the MST because of the 
latter's acyclic connected structure. These pairs of objects 
are almost certainly adjacent in the shortest spanning tree 
formed from the original D excluding edges in the MST. 
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That such a second tree exists is assured for n > 3, unless 
the MST is also a star graph. Together with those pairs 
adjacent on the MST, these provide an another initial set to 
form A. Thus the procedure is to determine a spanning tree 
from D that satisfies two conditions: 

it has minimal length 
pairs adjacent in any previous tree cannot be 
used. 

• The identification of such spanning trees can be repeated 
until the graph becomes disconnected; there are at most k 
such trees, where k is the largest integer not exceeding n/2. 

• For n even, all edges may have been used; for n odd, the 
remaining edges do not form a connected graph. 

Let Ei  be the adjacency matrix corresponding with the edges of the 
th  weighted spanning tree, i = 1...k; let Ek + i be the adjacency 
matrix of the remaining edges, with the possibility that Ek+i  may 
be null. By definition, these adjacency matrices are additively 
orthogonal; further: 

THEOREM  VIII.  1. EiEj  = 0, i 	j, i.e., the adjacency 
matrices are pairwise orthogonal. 

Proof The assertion follows from the symmetry of the 
adjacency matrices, from the positions of the zeros, and 
from the definition of the decomposition. 	Q . E. D. 

Because the sum of the distances corresponding to the edges 
of these spanning trees are of minimal length conditional on those 
previously extracted, and the set of adjacency matrices are 
additively and multiplicatively orthogonal, the set of spanning trees 
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is here called a principal weighted spanning tree decomposition 
(PWSTD) of the distance matrix. A numerical example is given in 
Table VIII.2, in which, if the initial pairs for subset generation are 
based on E1  and E2,  only the two pairs in E3 are excluded. 
Although for larger n, three (or more) spanning trees may be used, 
it seems that for data in which there are distinct groups, two trees 
may be adequate. 

Table VIII.2 An example of the principal weighted spanning tree 
decomposition 

E2 = • • 	• 
. 1 . . 
. 1 . . 

Computing the PWSTD using any algorithm for the MST 
presents no difficulty; after identifying the edges in El , set the 
corresponding elements in D to a value greater than the sum of the 
elements of D, and use the MST algorithm; this sequence can be 
repeated for as many trees as are thought to be needed. 

The relative neighborhood graph (1Z1VG) The adjacency matrix of 
this graph is defined by 

E = {ee} = 
1, de  É min{max(dik, dik)}, Vk 	j; i 0 j) 

0, otherwise. 
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If eg  = 1, then objects i and j are relative neighbors (Toussaint 
1980). This graph is connected; the MST is a subgraph (Toussaint 
1980) and may contain cycles. In special cases, the RNG may be 
identical with the MST. In consequence, the number of edges may 
be as few as n - 1, or, if all triangles are equilateral, as many as 
(122); empirical investigation (Lefkovitch 1984) indicates that no 
more than about 3n edges are found in random distances, and 
fewer in structured data. In planar graphs, Urquhart (1983) has 
shown that an upper bound for the number of edges is 3n - 10 for 
n > 7. This graph can be formed in 0(n3) arithmetic for spaces 
of any dimensionality; the distances need not be metric. 

(1) 	The square of the RNG The number of edges in the square 
of this graph is unpredictable. For example, the square of 
a triangle is identical with the triangle, and so it is 
conceptually possible that no new edges are inserted. 

The Gabriel graph (GG) Originally defined for the plane (Gabriel 
and Sokal 1969, Matula and Sokal 1980), two vertices are adjacent 
in this graph iff the unique hypersphere of radius d ii/2 passing 
through them (called the hypersphere of influence) is empty of 
occupied points. This graph, which can be formed in 0(n3) 
arithmetic for spaces of any dimensionality, assumes that the 
distances are Euclidean. 

Voronoi neighbors graph (VNG) Voronoi neighbors are defined by 

{

1, dfr, = di), = ming,w I i, j,k E N} 
V = {ye} = 

- 0, otherwise 0, otherwise 

where w is any point in the space, and i, j, and k correspond 
with real objects. Toussaint (1980) has shown that the VNG is a 
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supergraph of the RNG and noted that its dual is the Delaunay 
triangulation. The conditions on the points {w} require a metric. 
This graph is easy to form in the plane but requires arithmetic that 
increases exponentially with the dimensionality of the space. 

Sphere of influence graph (501G) From Definition  VII. 1,  objects 
i and j are SOIG neighbors iff  r + ri  > d ,  where ri  is the 
distance to the nearest neighbor of object i. It follows that the 
NNG is a subgraph of the SOIG. Because the number of edges in • 

such a graph may exceed the number of Voronoi neighbors, this 
method for selecting So  is ignored. However, if this graph has been 
formed to determine connected components, there may be merit in 
excluding edges from the RNG that connect components in the 
SOIG. 

The traveling salesman graph (TSG) One further possibility is to 
select those initial pairs of objects that are adjacent on the graph 
computed from a shortest length "traveling salesman's tour" of the 
distance array. Frieze (1987) described an 0(n3logen) randomized 
algorithm for this problem, which obtains the optimal solution in 
(integer) edge-weighted graphs with limiting probability of unity 
for n -› 00. Lau (1986) provided a Fortran program to find a 
solution guaranteed to be no worse than 1.5 times the length of the 
optimum. Neither procedure has been studied for the present 
purpose, because they involve more computational steps than using 
all distinct pairs of objects for subset initiation. 

Because the NNG is likely to provide few initial pairs, it is 
not considered further. From among the remaining graphs, the 
adjacent vertices on the MST offer a useful set of starting pairs, 
but the simultaneous requirement of connectivity and lack of cycles 
may link pairs of vertices that are not close neighbors in the 
distance space; on regular grids, moreover, there are no useful 
treelike descriptions that are simultaneously useful for the present 
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purposes. Because the RNG does not disqualify cycles, this defect 
of the MST is compensated by additional edges, at least 
potentially. This compensation also exists in the square of the 
MST, by using two (or more) trees from the PWSTD, and the 
VNG. The VNG requires the definition of new points, which in 
turn  depend on the metric of the space; this requirement contrasts 
with the NNG, the MST, the RNG, and their squares and with the 
combined spanning trees, which depend only on an ordering of 
the numerical values of the distances separating the real objects. 
The SOIG need not be connected but is too "richly" connected for 
the present purposes. For sitnilar reasons, the geographic neighbor 
graph (Yao 1982) and the GG, both of which are also supergraphs 
of the MST, are rejected for the present purposes. Because the 
RNG does not require that the distances satisfy the triangle 
inequality, it is the richest of the neighborhood graphs, neither 
requiring nor implying a metric in the distance space nor having 
special requirements beyond being connected, and is the preferred 
of those considered. Other th an  the RNG or the graph formed 
from combining two or more spanning trees, there may be a 
simply-formed graph not requiring a metric, which is not 
necessarily connected and is also not as rich as the SOIG, but such 
a graph is not lcnown to the author. Nevertheless, Kirkpatrick and 
Radke (1985) discussed a mathematical framework for the 
definition .  of neighbors in two-dimensional space, which may 
provide a starting point for defining such a graph. 

It may be argued that confining the initial pairs of objects 
to those adjacent on the RNG may result in the division of large 
groups (large in the sense of distance, not cardinality); this 
possibility is readily admitted. The worst of any resulting problems 
(practical experience suggests all) can be remedied by • forming 
musters (Chapter II and Appendix 6). Musters are defined as the 
union of intersecting subsets, formed because the membership of 
an object in two or more subsets implies either inadequate data, or 
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that the boundary of a true group in the subset space does not 
coincide with a member of the family of multifocal ellipses. 
Expressed in another way: why should a true group represented by 
some dissimilarity measure necessarily be containable within a 
single member of the family? Muster formation is an integral part 
of the procedure, whether or not the RNG supplies the only initial 
pairs. 

In summary, recognizing which initial pairs of objects 
satisfy "acceptable(group)" (Table VIII. 1) is given by those pairs 
adjacent in the RNG. Thus in Table VIII. 1, the outer two loops 
can be replaced by this condition. A further heuristic can be 
added, eliminate any RNG pair if they are not adjacent on the 
SOIG, because the subset generated is likely to be contained within 
a large proportion of the distance space. This additional heuristic 
may be replaced by retaining the group if 

max(de  I j E St) < 1/2max(de  I j E tV), 

or, somewhat more questionably, if 

IS,l/n < 0.5, 

assuming the maximum distance is 1.0. 

The optimal solution 

The subsets generated by the recursive C-neighborhoods described 
above are assembled into the matrix A (Chapter II), and the 
optimal solution is found. by the procedures" described there. 
Having found a minimum-cost  solution,  it still remains to decide 
what it means. To identify each subset in the solution with an 
underlying group is to assume that the space in which the subsets 
were generated has a uniform metric throughout. This assumption 
in turn implies that the measure of distance is appropriate, and that 
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the cost vector is well chosen. However, the subsets in a 
minimum-cost solution obtained by the methods described here 
cannot be assumed to coincide with one of the underlying groups, 
even though the C-neighborhoods encompass a wide variety of 
sizes, shapes, and orientations in the distance space. The doubt can 
be seen from the following reasoning. If even one of the 
underlying groups, as represented by the points in the sample, is 
elongate or branched (using these words to describe the subjective 
boundaries) in the distance space with respect to the C-
neighborhoods, more than one subset in the optimal covering may 
correspond with that group. For example, a minimum-cost solution 
may consist of several ellipses approximating the boundary of a 
circle, surrounding another ellipse contained within, so that many 
overlapping or contiguous regions may correspond to one 
underlying group. Further treatment of the optimal solutions is 
discussed under the name of musters in Appendix 6. 

In examples of real data, several of the subsets in the 
solution consisted of single objects. If each singleton is thought to 
correspond with a distinct underlying group, it can be removed and 
the remaining subsets processed further. Subsequently, it is 
advantageous to remove all but one member of each 
multiple-object subset and repeat the whole process with them 
together with the removed singletons, thus obtaining a grouping at 
a higher level of taxonomic relationships. Each multiple object 
disjoint group or nondisjoint set of groups can also be processed 
separately and its internal structure investigated at a lower level of 
classification. 

In Chapter X, the fifth data set of "ANOVA means" 
illustrates the application of C-neighborhoods to the grouping of 
means based on t-values, which, because the variances are 
apparently not homogeneous, is a multidimensional problem. Also 
in Chapter X, "Letters" gives a brief example from psychometry. 
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Consistency 

As indicated in Chapter I, if clustering is to be anything other than 
referring to a given set of objects as described by a given set of 
attributes, some conditions for consistency need to be satisfied. An 
attempt is made here to expand on consistency. The arguments can 
be followed most easily if all attributes are considered as being 
one-state, but they carry through, albeit with complications, for 
multistate attributes (including nominal, ordinal, or continuous) as 
well as for dissimilarities. Two assumptions are made: 

(1) The objects studied are a random sample of the members 
of a finite but unlcnown number of "true" groups. 

(2) The true groups differ amongst each other with respect to 
the attributes from which the family of subsets has been 
generated. 

Let S(A) be the fully reduced A, i.e., after the completing all 
possible reductions described in Chapter II; let r(NIM) be the 
number of rows in S(A), where N is the set of objects under study, 
and M is the set of attributes used to describe them. 

PROPOSITION V111.1. For a sufficiently large randomly 
chosen set of attributes, M, 

lim uyi _ce r(NIM) R < co , 

i.e. , the number of rows in S(A) has a finite limiting value 
independent of INI. 

Proof Suppose that not each "true" group is represented 
in N; for any set N, no more than I NI groups can be 
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represented. Assume that g groups are represented, i.e., 
g 5. I NI; if further objects are included one at a time, 
then either g is unchanged at each inclusion, i, in which 
case r(NUilM) = r(NIM), or it is increased by unity. If 
it is increased by including object i, then 
r(NU iIM) = r(NIM) + 1. Eventually, all groups will be 
represented, i.e., each of the "true" groups has at least one 
representative included in N; the inclusion of an additional 
set of objects  N',  identical with some of those either 
currently in or covered by those currently in, or which 
cover some currently in A, will not change the number of 
rows, i.e., r(NUN'IM) = r(NIM). Q.E.D. 

Suppose a family of m subsets is generated from M attributes, and 
let c(MIN) be the number of columns in 5(A). 

PRoposmoN VIII.2. For a fixed set of objects, N, 

-› C < co, 

i.e., the number of labeled subsets has a finite limiting 
value independent of M: 

Proof The proof is similar to that of Proposition VIII. 1.  
Suppose that not each of the "true" groups represented in 
N can be distinguished by the M attributes. For any set of 
M, no more groups than the number of distinct 
combinations of their states can be distinguished. Assume 
that this number is g; if further attributes are included 
one at a time, then either g is unchanged by including a 
single attribute, j, in which case c(MUjIN) = c(MI1V), or 
it is increased by no more than the additional number of 
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combinations. Let this additional number be J; then 
c(MUji /V) = c(MIN) + J. As further attributes are 
included, eventually all groups included in N become 
distinguishable. At this stage, the M are a set of attributes 
that correctly distinguish objects belonging to the "true" 
groups included in N and that give rise to a family of 
subsets, A, of N, which reduce to  c(MIN) in S(A). 
Including M' additional attributes whose states coincide 
with some of those currently in M, or which form a 
partition of some of those currently in M, or for which the 
states of those currently in M form a partition of some of 
those in M',  does not change the number of columns, i.e., 
c(ML) M' IN') = c(MI1V). Q.E.D. 

Remark  VIII. 1. For this proof, when applied to 
dissimilarity coefficients estimated from attribute data, the 
estimates are also assumed to be consistent, i.e., as more 
attributes are included, the value of the dissimilarity 
converges to a (nontrivial) limit. 

COROLLARY  VIII. 1.  The membership of the labeled 
subsets becomes stable, i.e., 

a matrix of R rows and C columns. 

Remark VIII.2. No matter which objective function is 
used, should one be needed to obtain an optimal covering, 
the fact that the S(A) is a consistent estimator of A means 
the grouping obtained is also consistent. 
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Remark VIII.3. It seems likely that the rate of  approach to 
A is slower for increasing 1M I than for increasing I NI 
because of the lack of independence among attributes of 
individuals. 

These propositions sugge,st that the probabilities should be 
determined from S(A) rather than A. By doing so, the problem of 
the lack of consistency of the probabilities, which has been pointed 
out for the Rasch model by Baker (1992), is not an issue. 
However, the theory described by Neyman and Scott (1948) can 
be used to obtain consistency. 



IX Special applications and additional 
topics 

1 A multiple-entry identification protocol 

An optimal covering for a set of n objects can be represented by 
the n X q array Q (where q = ex) consisting of the columns of 
A for which xk  = 1. Suppose the empirical data from which A was 
derived were p one-state attributes (extension to other types of 
attribute are considered below) for the n objects, denoted by the 
n X p array P; sometimes, A is identical with P (Chapter III). 
Thus the empirical data for ith  object is represented by the ith  row 
of P, here denoted by pi, and its membership of the various 
subsets in the optimal covering by qi, the ith  row of Q; just one 
element of qi  may be unity. Qk denotes the le column of Q. 

This section defines a procedure to obtain a correct 
prediction of the (possibly unknown) qi  from a pi , i.e., the 
membership of object i in the optimal covering. The predictor 
vector for the ith  object therefore is pi , and the dependent vector 
is  q. Aq xp matrix of templates, V, with elements equal to 
zero or unity, is formed by this procedure. 

One-state attributes 

Two steps are required: first, to establish predictor templates based 
on lcnown data from the set of objects, and second to determine an 
assignment rule. It is convenient to define two algebraic 
operations, ED and G, at this stage: 

(1) 	(a) (1 ED 1) = (0 e 	= 1; 
(b) (1 e 	= (0 	1) = O. 
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(2) 	The e-inner product between two column {0,1 }" vectors is 
aT  b = E (a, ED bi). 

The product between two matrices is defined as an extension of 
these operations. 

Establishing initial templates 

As will become apparent, at least three templates are desirable. 
Although a random choice may be used, q of these may be 
obtained from P and Q. Let E be an xp array of unities. An 
initial estimate of V has elements equal to unity iff the 
corresponding elements of QTP exceed the corresponding elements 
of QTE/2 and is zero otherwise. The justification for this estimate 
is that there is a high probability that the templates will differ for 
each group. In the unlikely event that any rows are duplicated, all 
but one can be removed and replaced by vectors chosen at random 
from {0,1}P. A value for the initial number is indicated below. 

Refining the templates; establishing the identification rule 

The next steps both modify the initial templates and define the 
decision rule. 

step 1: define 
(a)n q-element vectors w k  = 0; 
(b) an n-element vector, z = O. 

step 2: for i = 1...n, 
(a)calculate V 6 9 p 7; (i.e., the number of elements in 
which p, agrees with each template. . 

(b) if this number is not less than pa, flag these 
templates; if the maximum is no greater than pa, flag 
the corresponding template(s); let F, denote the set of 
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indices corresponding with the flagged templates for 
object i. 

(c)for vk E 

+ /, qi;  = / 
wkJ = 

wi;7 - 1, qe  = 0; 

(d)define the q-element predicted vector, y, as 

E kEFiWki > 0  - 
0,  E kEFiWki 5- a.  

(e) if y = qi, then zk  = zk  + 1, vk E Fi  (i.e., qi  is 
correctly predicted by y); 

C) next i. 

step 3: 
(a)delete all templates for which z k  = 0 (they are not 
involved in any correct prediction); 

(b) replace a remaining template for which the score 
is lowest by a new one formed as follows; the zth 

 

element takes the same value as in the templates with 
the two highest scores where the elements are identical 
and otherwise are randomly chosen. If this new 
template is identical with any of the remaining, choose 
a different  random assignment; if this is not possible, 
use the first and third best, etc.; if all fail, choose at 
random. 

step 4: repeat steps 1-4 either until convergence or until 
the proportion of incorrect predictions falls below some 
prespecified level. 

= 
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The final set of templates, coupled with the prediction rule, 
provides the identification protocol. 

Multistate and ordered attributes 

As described in Chapter III, an attribute having s > 1 mutually 
exclusive states is represented by s one-state variables (absence is 
not considered to be a state). It follows that the only change 
needed in the procedure described for one-state attributes is in step 
2(b), where, rather than determining if the number of elements in 
which pi  agrees with a template exceeds pa, the value be replaced 
by half the number of attributes. 

Ordered, including . continuous attributes 

Within any of the subsets of objects defined by Q, ordered 
attributes are likely to exhibit a range of values, so requiring two 
modifications to the basic procedure. 

First, in step 2(a), if the attribute is not outside the range 
of values given bj,  the template, it will be said to agree. This 
agreement can be represented by an extension of the definition of 
G. Let « denote either a single value associated with an object or 
a range of values associated with a group of objects, and 13 the 
range of values defined by the template; then 

l if « .c 13 

1 0 ifaz/3 OifaZl3 

allows the operator G to be used without further definition. 
Second, in step 3(b), even though the new range may be 

chosen at random from one of the pair of templates from which the 
replacement is to be formed, other possibilities include the union 

aGi3 ={ 



V  

[981 
6 

L 56 -851 
32  5 -5 

[ a 1 1 1 0 0 0 
b 0 0 1 1 1 0 
C  1 0 0 0 0 1 
d 1 0 1 0 1 0 
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of the ranges, the intersection of the ranges, and others perhaps 
based on more formal statistical methods. 

It is apparent that the identification of object j need not 
depend on a single template, but on several, and that there need 
not be an exact match with any one. Since there are 2"  - 1 
nonempty subsets of the templates, up to this number of different 
predictions are conceptually possible. Thus if the m initial 
templates are distinct, this number should be more than sufficient' 
to provide an identification protoc,ol. This procedure tends to be 
most effective if the numbers both of objects and attributes are 
large, the number of subsets is relatively small, and the variability 
among the members of the subsets is relatively low. 

The whole of the second phase, especially step 3b, may be 
regarded as analogous to the biological theory of natural selection, 
because it eliminates the weak predictors, generates new ones from 
the most successful, and fills gaps by immigration. 

Example 1X.1 .1 In this numerical example, it is assumed that 
templates have been obtained. 

I. To establish the survival of the templates, suppose for the th  object: 

Let the next p = [1 0 0 0  11],  q = [1 0]. 

The number of agreements of p with { a,b,c,d} is {2,2,5,4 } . 

Thus the F, templates are {c,c/}. 
The sum of W corresponding with F, is {8, 73 } . 
This implies y = [1 01 . 
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Since y = q, update W and z: 

	

[69 5 	9  

	

-81 	[81 

	

6-6 	7 

Continue with the next lcnown object. 

II. Suppose object i had been the last in the current pass: 

Delete row c from V since the value of z, is the minimum. 
Form c' from V(a) and V(b), in which the elements are chosen 
equiprobably, e.g., [1 0  11  0 0]. 

Restart the process with: 

a [1 1 1 0 0 01
0 	

[01 
b 0 0 1 1 1 0 	00 	0 
c' 1 0 1 1 0 0 	00 	0 
cl 	1 0 1 0 1 0 	00 	0 

Example 1X.1.2. This larger numerical example shows two 
iterations. 

Iteration 1: 

111111 	 
.111111 	 
..11111 	 
..111111 	 
..1111111 	 
	1111.. 
	111111. 
....11111111 
	111111 
...1...11... 

A 

D 

Fi 

1.. 
1.1 
1.. 
1.. 
1.1 
11. 
.11 
.1. 
.1. 
11. 



o 

o 
1 

Z = W = 
000 
000 
000 
000 

F= 

w= [

6 -4 0 
0  4-2 

 4 0 -2 
2 0 -2 

100 
100 
100 
100 
100 
110 
110 
110 
010 
100 

1 
1,3 
1,3 
1,3 
1,2,3 
2,3 
2,3 
2,3 
2 
1,2,3 

V = Z = 
001111110000 
001111110100 
001111111100 
111100001110 

3 
2 Delete V2 

3 and replace: 
2 
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SiTP = 

[

125655543200 3.51 
000110455432 QTE/2 = [2.5 
002223322210 1.5 

v =  

Iteration 2:  

001111110000 
000000111110 
001111111100 
111100001110 

velpT  

	

8 	1 	6 	7 

	

10 	2 	8 	5 

	

11 	4 	9 	4 

	

12 	5 	10 	3 

	

10 	7 	12 	5 

	

6 	11 	8 	5 

	

6 	11 	8 	2 

	

6 	9 	8 	3 

	

4 	11 	6 	3 

	

7 	8 	7 	7 
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There were five accurate predic tions. Because complete accuracy 
was not attained, further iterations are needed. Of the three groups 
in the example, the first two (-= columns of Q) are homogeneous, 
but the third is not, which makes successful identification unlikely. 

2 Converting set systems to graphs 

This book uses integer programming, in particular, finite set 
covering of N, to achieve a solution of the clustering problem for 
a given or generated family of subsets represented by A. However, 
A can also be considered in terms of graph theory, leading to 
possible alternative solution procedures. Several different graphs 
are now defined c,orresponding with A., each illustrating different 
aspects of the relationships among the objects and the various 
subsets. 

Some preliminary definitions are in order. Let Ai  denote the 
fh  column of A, and ai  the membership of the /I' subset. Let T be 
a subset of N such that Tnai  0 0, vj, IT' a minimum. 

DEFINITION IX.2.1. 
for A. 

DEFINITION IX.2.2. 
defined as 

ITI is the transversal number of N 

A family of distinct representatives is 

i E ai, i e a1 ., j 	j', vj,j'). 

The first graph to be defined is based on the elements of N. 

DEFINITION  IX 2.3.  A simple graph, A, corresponding with 
A has n vertices corresponding with the objects, with an 
edge between two vertices ill the corresponding objects occur 
together in at least one subset. 



IX SPECIAL APPLICATIONS AND ADDMONAL TOFICS 	257 

Since each ai  forms a clique, if ak  g ai, only the clique 
corresponding with ai  is identifiable. Because each connected 
component of this graph is equivalent to a muster (Chapter II and 
Appendix 6), graph-theoretic algorithms for determining the 
connected components are useful for identifying musters. An 
efficient procedure to determine the connected components and 
their membership is by algorithms for obtaining a minimal 
spanning forest; each disjoint subtree corresponds with a 
component. 

The next graph to be defined focuses on the subsets of the 
objects: 

DEFINITION IX.2.4. The representative graph, R, of A is a 
simple graph of order m in which each vertex corresponds 
with a subset, ai, and a single edge exists between two 
vertices, j and k, a;  n ak  0. 

The representative graph, here the intersection graph of the set 
system, is perhaps more useful for clustering than the simple graph 
A, because it allows many important properties of the set system 
to be determined. For example, to determine if there is just one 
muster in A is equivalent to determining if R contains a spanning 
tree. If R is not connected, identifying the connected vertices in 
each spanning subtree in it by algorithms for (minimum) spanning 
trees, is computationally very efficient. Note that the representative 
gra.ph R is the dual to the simple graph A, but that dual to the dual 
is not an identity operation. 

Let G = G(V,E) be any simple (i.e., loopless, without 
parallel edges) graph with vertex set V, and edge set E consisting 
of I  E l  unordered pairs of distinct vertices. Then 
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• DEFINITION IX.2.5. The graph dual to G is a graph in 
which each vertex corresponds with an edge of G, i.e. , there 
are IEl vertices, and an edge between two vertices iff 
distinct edges in G have an element of V in common. 

Occasionally, recognizing the number of objects involved in 
defining a graph is of value: 

DEFINITION IX.2.6. The intersection multigraph of a set 
system has m vertices, with la  in ak I edges between vertices 
j and lc,-  a weight, lai l can be assigned to vertex j. 

DEFINMON IX.2.7. If lai l is uniform (i.e., if the diagonal 
elements of the adjacency matrix of the multigraph are all 
equal), the set system can be regarded as a uniform 
hypergraph. 

An even more uniform set system can be recognized if the 
off-diagonal elements of the adjacency matrix of the multigraph 
are all equal. 

Example  IX. 2.1  In illustrating these graphs it is convenient to represent 
a graph by its adjacency matrix; this syrmnetric square array has as many 
rows as there are vertices, with edges between vertices indicated by 
unity, and no edge by zero. 

(1) The simple graph, the representative graph, and its dual are derived 
from a subset system A. 

Subsets 
1234  

a 1 . . 1 
b 1 1 . . 
C  . . 1 1 
d 	. . . 1 

Subset system A 



1.  
a 

d 

II 
III 	. 1 . 

1 
2 
3 
4 .1 1.  

1 . . 
1 . 1 1 . 1 . 
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Adjacency matrices 
(lower triangle) 

subsets 	edges 
of A 	 of R 

Simple 	Representative 	Graph dual 
graph A 	graph R 	 to R 

The graphs: 	b—a—d 	2-1-4-3 

1c/  

(2) 	The adjacency matrix of the multigraph corresponding with the 
representative graph, i.e., with the unit elements replaced by the number 
of edges, is as follows: 

subsets 

1 	2 
2 	11 
3 	. . 1 
4 	1.13 

Many properties of simple graphs of interest in the study of 
set systems are discussed by Buckley and Harary (1990). 
However, the properties of simple random graphs may prove to be 
of most use in the clustering context. Unlike the random graphs 
usually studied, both the edges and vertices of the representative 
graph are random. This property can be seen as follows. A basis 
set N of n elements gives rise to the power set P(N); choose 
subsets at random from  P(IV) \ {}, where {} denotes the empty set, 
subject to the constraint that the union of the subsets is N. The 
number of different ways m subsets can form a disordered (i.e., no 
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specified sequence) covering of an unlabeled n-element set is quite 
large (Clarke 1990) but is ignored here. Let the number of subsets 
in the choice be m. Thus the number of subsets, their composition, 
and hence the edge set are all random. Assume not only that the 
vertices of the graph are mutually independent, but also tliat other 
than the end vertices of an edge, edges are independent of vertices. 
One way to assign values for the probabilities of occurrence of the 
vertices and edges in the covering is as follows: 

DEFINITION IX.2.8. The probability of vertex j is 

Pi  = lai l/Ej lai l. 

Note that Epi  = 1, and that pi  = 0 iff 'ai l = 0. If the entropy 
based on {pj}, p j, is equal to log, m, the covering 
consists of subsets of the same size. 

DEFINITION IX.2.9. The conditional probability of edge 
Ii,  j) joining vertices i and j is 

I ai ti a) = I a1 fla., I/Ia,U a I. 

Definition IX.2.9 can be recognized as the Jaccard coefficient of 
similarity (Chapter III) between the vertices. From these two 
definitions, the probability of edge {i, j}, which may also be 
regarded as being conditional on the underlying set, N, can be 
obtained as 

h = Pg. Pegl 

If the entropy based on {p u} is zero, the cover is also a partition, 
and thus the nearer this entropy is to zero, the solution can be 
regarded as being "simpler." 
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A possible application of this model is in determining 
whether to regard as random the representative graph 
corresponding with the set of objects under study, because to do 
so may suggest that clustering is perhaps premature for these 
objects. Another possibility for examining consistency with 
randomness, based on results of Juldsz (1981), is as follows. For 
fzxed m, let X be the adjacency matrix of a simple graph, and let 

Pr(x = 1) = p, 0 < p < 1;i j. 

Then for the first two eigenvalues of X, 

(1) lim(Xl/n) = p with probability 1. 

(2) limn, Pr(X2  > n1/2+ e) = 0, for each E > 0, i.e., 
X2 = 

Thus p can be estimated from the first eigenvalue of X, and if the 
second is appreciably larger than n 1/2 , the graph is unlikely to be 
random with common value of p. For any graph with n vertices 
and m edges, the adjacency matrix has n eigenvalues, and 

(a) E = 0; 

(b) E X2  = 2m; and 

(c) X I 	(2m(1 - 

For fixed t, let  G(t) be a graph on n vertices constructed 
from a complete•graph by deleting edges randomly and 
independently with probability 

p = 1 - e'. 
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If  P(t) denotes the probability that  G(t) is connected (i.e., there 
is just one muster), and if for some x 

t = (logen + x + o(1))/n 
then 

P(t) = exp(-e) 

(Stepanov 1970a). Stepanov (1970b) also obtained an expression 
for the probability that  G(t) has exactly k components (i.e., there 
are exactly k musters). At first examination, using these results to 
decide if the optimal solutions to the clustering problem differ 
appreciably from randomness seems promising but has yet to be 
exploited. 

Further properties of random graphs, which may add 
insight into the clustering problem, were described by Bollobas 
(1985) and Palmer (1985). 

3 The kernel of a subset 

The rules of biological nomenclature require that an individual be 
designated as the "type" (in zoology, it is the "name bearer"); no 
matter the details of the written description, identification is 
ultimately by reference to this individual. Suppose a group of 
individuals are newly recognized as being distinct from preViously 
named groups and a type is required, some mechanism to select 
one or more candidates is desirable. This section proposes that the 
kernel (Appendix 1) be obtained in a way that is consistent with 
the concepts of being central. For vector dissimilarity, this 
selection has been discussed in Chapter V, where those, objects 
having the maximum frequency of betweenness are defined as 
forrning this subset. Here, the procedure is extended first to 
graph-theoretic concepts, and second to measures of dissimilarity 
that can be embedded into a continuous space. 
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Graph-theoretic kernels 

Based on graph theory, a number of possibilities exist for defining 
the vertices that form the kernel. 

DEFINITION IX.3.1a. The eccentricity of vertex v is the 
distance to a vertex furthest from v. 

DEFINITION IX.3.1b. The radius of a graph is the 
minimum eccentricity, and the diameter is its maximum. 

DEFINITION IX.3.2. The central-kernel consists of all 
vertices for which the eccentricity is equal to the radius. 

DEFINITION IX.3.3a. The status of vertex v is the sum of 
the distances it has to  ail  other vertices. 

DEFINITION IX.3.3b. The median-kernel consists of all 
vertices for which the status is a minimum. 

Because the central- and median-kernels often coincide in part, it 
seems reasonable to choose a type (= typical specimen) from their 

intersection, assuming it is not empty. For further discussion of 
graph-theoretic centres, see Buckley and Harary (1990). An 
algorithm for measuring the centrality properties of trees is 
described by Rosenthal and Pino (1989). 

Continuous spaces 

For dissimilarity spaces, it is convenient to set the scene by 
reference to a single continuous variable. If F(x) is the cumulative 
distribution function (CDF) of a univariate random variable X (F 
is assumed to be continuous), then- any point x maximizing 

m(x) = F(x)[l - F(x)] 
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is a population median. In a very natural sense, the medians can 
be regarded as forming the kernel of x and are central in that 
sense. Suppose there is a random set of n observations, x, from X, 
and it is desired to estimate the median in the following way: 

for V j ,  j,k, i j e k, determine if xk  is between 
X1  and xi; those k for which the frequency of 
betweenness is a maximum are estimates of the 
median (Liu 1990). 

This concept forms the motivation for recognizing one or more 
objects, here represented by their principal coordinates, which can 
be regarded as forming the kernel. 

Liu (1990) first considered the bivariate case and proposed 
determining .the frequency that object i' is contained within the 
triangles defined by {i, j,k}, v{i, j,k} N, {i, j,k}, which 
he called the "simplicial depth" of i' in the set N. He then defined 
all i' for which the frequency is a maximum as the "bivariate 
simplicial medians." He then extended this notion to p  dimensions 
(Chapter vra shows how) by considering the frequency that each 
object is contained within the complete set of simplices on p + 1 
vertices and so defines the "multivariate simplicial medians." 

The computational determination of the multiv.ariate 
medians depends strongly on the dimensionality, d. Since the 
number of simplices is V I), if n is large and d is approximately 
n/2, determining the frequencies represents a major computational 
effort. Advantage may be taken to reduce the rank of a 
dissimilarity matrix (Chapter VII), but if that still fails to result in 
a manageable number of simplices, an approximation is to make 
a sufficiently large random choice of d + 1 objects, and to 
determine if each of the remaliiing n - d - 1 objects is within the 
simplex. There seems little reason to use multivariate medians 
rather than either the median- or central-kernel. 
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4 Species associations 

If the number of individuals of a species in each of n randomly 
•chosen quadrats of unit area is xf, i = 1...n, the mean density is 
estimated as 

Exiln 

with variance 

(Exi2  - (Ex)2/n)/(n  - 1). 

Several different and identifiable sources of variation make up the 
variance. 

(1) • A species has properties that may be reflected in many 
ways, e.g., how proximal two or more individuals may be. 

This source of variation is not necessarily constant, and may 
depend on random events (who lands where), reproductive 
patterns, and so on, which will affect the means and variances or 
other statistics estimated from a set of units. This source of 
variation, which for convenience can be called ecological 
variance, is unit-size free in the sense that it depends (largely) on 
the species being sampled. 

(2) The choice of quadrat size. 

Generally, the larger the quadrat size, the smaller is ihe (relative) 
variance. Because we are dealing with counts, even if the 
ecological variance were to generate occupied points having a 
Poisson distribution, a sample of small plots (small in relation to 
•the consequences of the ecological behavior pattern) genera lly has 
a variance in excess of the mean, while large plots tend to have a 
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variance appreciably less. For convenience, this source of variation 
can be called the quadrat variance. The effect of this source of 
variation is often masked, or lost, when the results of the survey 
are standardized into the number of individuals per unit area. Thus 
if the area of a quadrat is v, the estimated mean per unit area is 

E xilvn 

and the variance is 

E xi2/v2  -( E xi)21v2n)I(n - 1), 

which differ only by a scale factor from the original definitions iff 
the variance is independent of the area of the quadrat. Notice that 
the species "knows" nothing of the size of a sample unit, only the 
size of its local universe, and behaves accordingly. 

(3) 	Sampling variation. 

Suppose a second, third, ... independent set of sample units is 
taken; each set allows a mean to be estimated, and although the 
expectation of the mean and variance may be the same from set to 
set, there is no reason to expect the calculated means and variances 
to be identical. The variance shown among the sets measures the 
sampling variability and leads to an estimate of the sampling 
variance. 

If the clustering problems are in circumstances in which 
one species is being studied, the complexity of the problem is 
increased if there is more than one source of variation. The 
difficulty can be seen by considering the following practice. 

A common procedure used in plant ecology consists 
of choosing a quadrat size (and shape—usually 
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square) and placing it either systematically on a grid 
or randomly in the area under study. A census is 
then made of all individuals of the species of 
intere,st, and the results assembled in a two-way 
table of species-by-quadrats; often a further 
dimension gives the locations of the quadrats with 
respect to each other. 

The problems arising from these procedures are reasonably well 
lcnown; for example, if a species is clumped, its apparent 
probability distribution is a function of the area of the quadrat (the 
quadrat variance) and the behavior of the species (the ecological 
variance), but, because the areas are chosen by the ecologist, this 
combination creates a difficulty that needs to be resolved before 
the main objective of the study, namely, determining species 
associations, can be investigated. To make this clearer, suppose 
there are two species and n quadrats, and that ne  is the number of 
quadrats in which species i and j both occur; then the contingency 
table (Table IX.4.1) appears to capture the essentials of what is 
required to determine if species are associated. In particular, a test 
for marginal independence, such as the likelihood ratio, or 
Pearson's )( 2 , might be taken to indicate that there is a species 
association if significantly large. But this logic is dangerous 
because these tests fail to distinguish lack of independence from 
departure from a Poisson distribution for the species. A departure 
from a Poisson distribution may be a function of the size of the 
quadrat, the behavior of each species in the presence of the other, 
as well as of any species present but not included in the study. 
There is no escape from this confounding unless the correct 
ecological distributions are known and can be incorporated in ,an 
appropriately chosen test statistic. In summary, the results of the 
study of spatial data of this kind are not independent of the scale 
and aggregation effects implicit in the choice of quadrat size and 
shape. 
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Table IX.4.1 Contingency table for pairwise species 
association in ecological studies 

nit 	ni2 	n,. 
n2l 	n22 	n2.  

n ..  

These problems have been avoided by replacing the quadrat 
sampling procedure by mapping each plant's position, and then 
determining the distributional properties of the species from the 
physical distances to the nearest neighbors of the same and other 
species. Ripley (1981), Panayirci and Dubes (1987), and others 
have discussed these procedures, but they are outside the scope of 
the present study. I now intend to  show how information on more 
than that of the nearest neighbor distances may be used to 
determine (perhaps disjoint) regions in which a species tends to 
occur, followed by an extension to two or more species. 

The proposed strategy follows from the procedures 
described in Chapter VIII but requires some measure of 
biogeographical distance. Individual plants are not points (consider 
a tree) and two species may differ considerably in size (consider 
a tree and a moss); furthermore, what is the distance between a 
tree and a moss growing under its canopy? More generally, the 
objects of study may be a species, encompassing the whole of its 
geographical range; for convenience, the term entity is used here 
to stand for the objects under study. 

Because entities may live in regions of different sizes and 
shapes, a general measure of biogeographical distance has to 
include as special cases those for which there are generally 
accepted definitions. Let / and J be regions occupied by species i 
and j (these regions are not assumed to be convex, can consist of 
several disconnected regions, and may also be points); locate that 
point in I which is closest to the closest point in J, and denote it 
by the ordered pair (I,)); then loca.  te the point in J furthest from 
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(I, J) and measure the (great circle) geographical distance between 
this point and (I,J), calling it d(I,J). If there is more than  one 
nearest point in I to J, such as in overlapping regions, then d(I,J) 
is defined as the minimum among all possible. The 
biogeographical distance between I and J is now defined as 

Bu  = max{d(I,J), d(J,I)} 

which is a Hausdorff measure and therefore is a (not necessarily 
Euclidean) metric. 

The biogeographical distance, 13u, can be interpreted as a 
measure of the potential "contact" between the members of one 
entity with those of another, where contact could result in gene 
flow given the appropriate degree of consanguinity. Five special 
cases illustrate the generality of the definition. 

(1) If each of two entities occur in one point locality each, I3u  
is proportional to the length of the shortest path between 
the two points. 

If the regions occupied by two entities are disjoint but are 
of the same size, shape, and orientation, Bll  is proportional 
to the distance between their centres (medians, or any two 
corresponding points). 

Cases 1 and 2 must be rare for extant species. For nondisjoint 
regions, a biogeographical distance ought to depend partly on the 
sizes of the regions the taxa occupy. 

If the region occupied by one entity is completely contained 
within that of the other, then By  depends partly on the 
(square root of the) difference in their areas. 

(4) 	If the region occupied by one entity is not completely 
contained within that of the other and is of a different 

(2) 

(3)  
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shape, then Bu  is proportional to a function of their closest 
proximity and (the square root of) the difference in their 
aseas. 

Case 4 includes both disjoint and nondisjoint regions, as well as 
different shapes. 

If the region occupied by one or both entities consists of 
several apparently unconnected regions, then  B11  is 
interpretable largely in terms of potential contact among all 
members of both entities. 

However, most unconnected distributions tend to reflect the 
absence of adequate collection, or inhospitable intermediate regions 
without necessarily implying absolute biological barriers, and so 
case 5 is probably of little importance. 

Given this, or any other measure of biogeographical 
distance, the subset-generating procedure of Chapter VIII can be 
used to obtain subsets for each species alone; it can also be used 
to generate subsets ignoring the species distinction. This set of 
subsets may offer a solution to the problem. Consider the 
following: 

if there is no association between the species, then 
in any subset, the number of individuals of species 
i expressed as a ratio to the total numbers in the 
subset should be the same as in any other; 
furthermore, if the subsets are disjoint, this ratio is 
given by the proportion of species i in the total 
sample. 

(5) 

If pik  is the observed proportion of species i in the le subset, 
nk  is the number of objects in the le subset, and 7ri the expected 
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proportion (estimated by the ratio of the numbers of individuals of 
the species to all individuals of all species), then the statistic 

= 2Enk  p4og ( pikhri  ), 

which has an asymptotic )C distribution with k - 1 df, is 
appropriate for the binomial case (i.e., if there are only two 
species under consideration), is easily generalizable to the 
multinomial case, and is a test of the null hypothesis of no 
association. 

Another problem in ecology is to determine in a set of 
localities grouped tôgether by one (or more) species, if another one 
(or more) tend to occur with it. Without loss of generality, 
consider two species, I and J, and suppose {/p} represents the I,' 
subset of I in the optimal covering, i.e., it includes all individuals 
of the species whose average distance to the members is less than 
the maximum among them. There is also a (possibly empty) subset 
of the individuals of J included in the neighborhood determined by 
I. This set of possibilities can be described by the subset 

{JI11,} = jlave(dv) 	max(dik); i,k e 	j e J ) . 

Quite separately, the optimal covering of J includes subsets that 
can be denoted by {Jq}. A comparison between the {JIIp l, 
p = 1...P, and the {Jq}, q = 1...Q, where P is the number of 
subsets in the optimal covering of I, etc., provides a table for 
investigating the conditional association of J with I. 

For P = 3 and Q = 4, the subsets can be assembled in a 
two-way table (Table IX.4.2) where the entries are the number of 
individuals cross-classified. A similar table can be constructed 
reversing the roles (Table IX.4.3). There is no reason to expect 
that the second table should be the transpose of the first. 



{I 
{I 
{I 

.711 

.721 
J3 } 

.711 

.72} 

.73} 
J41 
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Table IX.4.2 Cross-classification for community association 

{ J1 } 	{32 }  (.73 ) 	(.74) 

Table IX.4.3 As Table 1X.4.2, but reversing the roles of the 
classification set 

(12 )  (13) 

Consider the following four possibilities for such tables. 

(1) All entries are zero. This result can oc,cur, for example, if 
the species occupy  disjoint  regions, i.e., the species do not 
coexist in the sarne regions. 

(2) Only one nonzero value occurs in each column, which 
suggests that an association exists among the subsets of the 
two species. This result is particularly useful if it is noted 
that I and J need not represent just one species each but a 
community. If the numbers in the table approach the 
numbers of individuals under study (there c,ould be just 
unity in a column, yet the number of individuals which 
could have been assigned may be quite large), there is very 
strong evidence of association. 
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(3) Suppose nonzero entries occur everywhere in the table; 
such a table suggests not only that the species can coexist, 
but also if the values are large, that there may be no 
special association. 

(4) Suppose one table is nonzero (as in (2) and (3)) but the 
dual table is zero (as in (1)). This result shows that one 
species can live in regions from which the other is absent. 

Although there are further possibilities, two general principles 
emerge; suppose that there are ni  individuals of species I, ni  of 
species J; note that 

E I {4} I 	ni  and E  j  {Jq} 	ni. 

(1) A comparison between E I {/1.4} I and ni  indicates 
something of how species I tends to occur with species J; 
similarly comparing E  I  {JIlp} I and ni  indicates how.  J tends 
to occur with species I. 

(2) A test of marginal independence of each table, if not 
significant, indicates that the species can coexist, but that 
there is no evidence of any particular association. If 
significant, there is evidence of an association, i.e., patches 
in which both species tend to occur together. 

Chesser and Van Den Bussche (1988) described a related 
procedure; another, which is a differently motivated solution to the 
multispecies ecological problem, can be derived from the 
simplification of Boolean-valued data located on a plane (Wang et 
al. 1977). 
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5 Bootstrapping and clustering 

Other than the discussion of suboptimal solutions, very little in the 
previous chapters enables some measure of confidence to be placed 
on any solution. One reason is that not only are the distributions 
and densities of the attributes unlmown, but also that the set of 
objects is potentially a mixture of samples from several populations 
in unknown proportions. 

However, almost any numerical estimate from data for 
which no distributional properties are known can have the 
distribution estimated by means of pseudosamples. These samples 
are of the same size as the original data selected randomly with 
replacement from the data (Efron 1979, Hinkley 1988). Sampling 
with replacement results in some units being represented more than 
once, and others not at all. Using the pseudosample, the 
computation is repeated, and another estimate is obtained. The 
pseudosampling is repeated many times, and the distribution of 
the "pseudoestimates" is used as an estimate of the distribution 
of the statistic for the source data. The discussion considers how 
bootstrapping, the name used to describe this process, may be of 
value in clustering. 

In the present context, a decision has to be made; should 
the pseudosample be of the objects, the attributes, or both? In 
traditional taxonomy, I propose that it be the attributes, because 
these are subjectively defined; furthermore, the reductions of 
Chapter II removes duplicate individuals and unless all individuals 
belonging to a true group are not chosen, there should be no major 
impact on the resulting covering. In numerical ecology, the 
situation is reversed; because the sites are chosen subjectively, 
they may be pseudosampled rather than  the species present. 

Another decision to be made is whether to keep multiple 
copies of the same attribute in the sample; as I argued (1991b), 
these provide no more information than a single representation, 
because the multiplicity is an artifact of the resampling procedure; 
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furthermore, a more efficient estimate of the distribution (in terms 
of variance) is obtained from the distinct units in the pseudosample 
than from estimates based on the complete pseudosample. 

It is also necessary to determine some criteria to compare 
solutions; Moreau and Jain (1987) suggested that a solution is 
stable if the cluster membership remains the same with moderate 
variations in the data, and that any other cluster solution is not 
stable. Moreau and Jain developed their ideas in terms of partitions 
of Euclidean data, which is inappropriate for the present 
circumstances. 

6 Subset generation with more than one criterion 

I have alluded to using multiple criteria for subset formation in 
previous chapters; indeed, the use of betweenness in Chapter V is 
based on sets of one-state attributes, while the simultaneous use of 
several univariate criteria is discussed in Chapter VI. These earlier 
proposals have partly anticipated the more general discussion•
presented here. The arguments developed here assume that one or 
more dissimilarity arrays are to be used, possibly with other 
criteria, to generate the subsets to be included in A. If all 
dissimilarity arrays are unidimensional, the procedures will 
collapse to those discussed in earlier chapters. 

The discussion is divided into two parts: initially using one 
dissimilarity array combined with externally imposed criteria, 
followed by the consideration of two (or more) arrays. 

One dissimilarity array 

The procedures in Chapter VIII can be used to generate A, but 
examining the optimal solution may show that the subsets overlap 
to a large extent, and that many of the subsets contain virtually all 
the objects. In these circumstances, there may be no real groups 
supported by the data, giving good grounds for terminating the 
study until more data have been collected. Nevertheless, there may 
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be reason for continuing further, such as by introducing some 
heuristic conditions on the subsets. Two such heuristics follow. 

The first heuristic is based on edge weights; it is 

HEURISTIC D(.6.1. Reject from inclusion in A those 
subsets occupying a large proportion of the dissimilarity 
space. 

This heuristic is somewhat appealing, because it is largely 
independent of n. It can be considered to be a relaxation .  of 
Assumption VI11.3 that 

if a subset contains the pair of objects least alike, it 
should contain  ail  objects and so is of no interest, 

to become that 

if the neighborhood of a subset occupies too much 
of the total dissimilarity space, it probably is 
heterogene,ous and so is of little interest. 

Confming the initial pairs to be those adjacent on the relative 
neighborhood graph (Chapter VIII) implicitly makes this 
assumption, because pairs capable of generating subsets occupying 
large regions of the space are almost certainly not adjacent. This 
heuristic can be implemented in two ways: either 

exclude from the initial pairs those in the relative 
neighborhood graph corresponding with the longest 
edges in the dissimilarity array, 

Or 
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exclude the subset if the longest edge in it exceeds 
a predetermined threshold, 

or both. The use of a threshold introduces subjectivity into the 
procedure. 

One consequence of this and similar heuristics is that one 
or more objects may not be included in any of the generated 
family of subsets (which can occur without these heuristics). The 
conclusion is that such objects are isolated with respect to those 
remaining, and that each should be considered as forming a 
one-element group. Such objects can be put on one side, and 
calculation can continue with the multi-object subsets. 

The second heuristic, also subjective, is based on the 
cardinality of the generated subsets and is 

HEURISTIC IX.6.2. Exclude subsets containing more than 
a specified number of objects. 

If the objects have been independently collectecl globally, there 
may be some merit in this proposal; but, for example, if two very 
distinct groups are represented, the one by two individuals and the 
other by (say) 100, a cutoff of less than 100 may not find the 
larger as a single group. Eliminating the pair may expose some 
distinctions among the 100 in a further clustering. Even though 
this heuristic is somewhat questionable, it often produces the same 
musters, if not the same subsets, as those using the first heuristic. 

A different procedure using two criteria based on a single 
dissimilarity array was proposed by O'Callaghan (1976). Let d  be 
the distance between objects i and j, die)  the distance between i and 
its le nearest neighbor, and eiik the angle at j between the lines 
joining i to j, and j to k. Then object j is in the neighborhood of 
object i if two conditions are satisfied, namely, 
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dg < 
egk < 

where  k, .c,  and .rt) are specified constants. The fact that constants 
need to be specified is a weakness of the original proposal. 
However, the first condition can be replaced by the comparison 
between average distances and maxima, as in Chapter VIII, and it 
is not difficult to define 4) to be some function of the subset to 
which i belongs. 

A third heuristic is based on the principal weighted 
spanning tree decomposition (Chapter VIII). Using the example in 
Table VIII.2, the MST, E1 , is equivalent to the single-linkage 
clustering procedure (Gower and Ross 1969), but E2, even though 
orthogonal to the first, is also based on small distances, some of 
which may be less than those in El . Together, both trees may give 
a better picture of the groupings than  the MST alone. One way to 
combine them is to construct a two-way table from the 
dendrograms formed from the two trees "cut" at some level 
(Fig. DC.6.1). 

and 

Spanning tree 1 

	

{1,2,3,4} 	{4} 	{4,5} 

	

{1,2,3} 	{3,4} 	{3,5} 

	

{1,2,3} 	{2,4} 	{2,5} 

	

(1,2,4,5} 	{1,4,5} 	{1,5} 

	

132 	4 	5 

t-r1  

Spanning tree 2 

2 
1 

5 

best cuts 

Fig. IX.6.1 The spanning trees corresponding to Table VIII.2. 
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The subsets formed by the intersection of the cuts can be arranged 
as the matrix A, which for the above example is given in Table 
IX.6.1. None of the reductions described in Chapter II are 
possible; there are numerous coverings, including a partition (the 
second and eighth columns). Computing the probabilities and 
determining the optimal covering as described in Chapter II is left 
to the reader. 

Table IX.6.1 The matrix A corresponding with the cuts in Fig. IX.6.1 

Objects 	 Subsets 

1 	 1 1 1 . . . 1 . . . 1 
2 	 1 1 1 . . 1 . . . 1 . 
3 	 1 1 . . 1 . . . 1 . . 
4 	 1 . 1 1 1 1 1 1 . . . 
5 	 . . 1 . . . 1 1 1 1 1 

More than one dissimilarity array 

The context here is that there are two or more sets of pairwise 
relationships; one is used as the primary generator of subsets, the 
other to take some further action. For example, suppose the first 
array consists of morphological dissimilarities and a second array 
consists of the geographical adjacencies of the objects (e.g., either 
the Voronoi graph of the collection sites, or the Gabriel graph, or 
the relative neighborhood graph, or the minimum spanning tree); 
each of the subsets generated by morphology can be examined to 
determine if it forms a connected subgraph geographically. If it 
does, the subset is retained unchanged, but if it does not, there are 
two possible actions, either to modify the membership so as to 
satisfy the added constraints, or to reject the subset entirely. If the 

objects to be clustered have lcnown geographical positions, it seems 
reasonable to require that geographically noncontiguous units • 
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should not be clustered, i.e., a cluster should be compact or 
connected, etc.; this requirement leads to the following: 

Let D denote the array of dissimilarities, E the 
(geographical) adjacency matrix (eu  = 1 iff objects 
i and j are adjacent, zero otherwise). Let the 
generating pair of objects for subset k be i and j, 
and let the cardinality of the set be I k I . Determine 
if the subgraph of E corresponding to the subset 
generated from D is connected, and if not, reject it 
entirely if i and j belong in different components, 
otherwise retain just the component containing i 
and j. 

Unless the 'length of the path between two vertices is of 
importance, this approach is extremely efficient in computational 
time. The extended numerical example using the aphid genus 
Pemphigus given by Lefkovitch (1980) illustrates this. 

A second possibility is to require each subset generated 
from D to be a clique (maximally connected subgraph) in E; given 
that the generating pair are adjacent in E, other vertices 
representing objects can be deleted until each retained member is 
adjacent to all the others. The cardinality of the largest subset 
estimates the clique number of the graph, and the use of the set 
covering and partition algorithms with subsets restricted to be 
cliques yields a minimum number of cliques that form a covering 
or a partition. 

Multiple unidimensional data 

Circumstances in which the dissimilarity data are unidimensional 
have already been discussed in Chapter VI; if some ordering of the 
objects is known with respect to another attribute (e.g., time or 
depth), several proposals for clustering have been published 
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(Lefkovitch 1978, gave a brief review; Gordon 1973, Hawkins and 
Merriam 1973, and Legendre 1987, made some interesting 
proposals). Here, the concepts of the relative neighborhood graph 
generalized by Ichino and Sklansky (1985) are used to generalize 
the procedures in Chapter VIII for univariate data. 

Let xi  and xf  be m-element vectors corresponding with the 
measurements made on m attributes. 

DEFINITION IX.6.1. The rectangle of influence of x i  and 
xi  is defined by the region of space x for which 

min(x ilc ,xik) 	xk 	max(x ik ,xik), k = 1...m. 

DEFINITION IX.6.2. The rectangular influence graph, 
RIG, has n vertices corresponding with the objects, with an 
edge between vertices i and j there is no object within 
the rectangle of influence of x i  and xi. 

As Ichino and SIdansky (1985) pointed out, no special distance 
measure is required by Definition  1X6. 1.  They also showed if all 
attributes are quantitative, that the RIG is a supergraph of the 
Gabriel graph, but that there is no ordering in graph-theoretic 
terms with the Delaunay triangulation; it is not invariant under the 
rotation of the coordinate space but is invariant under any 
(nonlinear) scale changes of the attributes. 

It is not difficult to see that the RIG can be extended to 
include nominal variables, e.g., the Boolean variables considered 
in Chapter V, and also that the blurring of the boundaries  of  the 
rectangle of influence, as described in Chapter VI, leads to a 
subset-generating procedure that can be summarized as follows: 

step 1: construct the RIG; 
step 2: for each edge in turn in the RIG, initiate a subset; 
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step 3: join all objects with the subset which 
are not outside the "blurred" rectangle of 
influence; 
step 4: determine the enlarged rectangle of influence; 
step 5: repeat steps 3 and 4 until no further 
objects are included; 
step 6: store the subset, and go to step 2. 

This procedure has not been investigated in the present study, 
primarily because of the subjective nature of the demarcation of 
the variables used to describe organisms for taxonomic purposes. 

7 Applying multicriteria clustering to G by E interaction 

Because conditional clustering is a general procedure, there is 
some value in showing how it may be applied in a specific set of 
circumstances. 

Two aspects of the data structure in the context of genotype 
(G) by environment (E) experimentation (also known as the variety 
by location interaction problem) are of special importance, namely, 
the "level" aspect, represented by the marginal means, and the 
"shape" aspect, represented by the differential responses of 
individuals to one factor at different levels of the other (Lin 1982). 
He and others (see references cited by Lin) argued that the 
genotypes (or environments) should be grouped so that an analysis 
of variance (ANOVA) does not suggest a significant GE interaction 
within groups. Rarely, however, are the reasons for the presence 
of such an interaction considered; they can include different ranges 
of values that different genotypes may show among the 
environments, and, separately, the pattern of highs and lows, 
which may be shown even if the ranges are the same. This 
distinction can be illustrated by Table IX.7.1, in which the 
(hypothetical) mean yields of a replicated trial are given for four 
varieties grown in five environments. Considering all five, if only 
varieties I and IV had been grown, an ANOVA would not suggest 
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Table IX.7.1 Hypothetical mean yields of four varieties grown in five 
environments. 

Varieties Environments 	 Mean 	Among- 
environments 

a 	b 	c 	d 	e 	 variance 

I 	 1 	3 	5 	7 	9 	5 	 10 
Il 	 3 	4 	5 	6 	7 	5 	 21/2 
III 	 9 	5 	1 	7 	3 	5 	 10 
IV 	 11 	13 	15 	17 	19 	15 	 10 

Mean 	 6 	6% 	61/2 	9% 	9% 	7% 

Among- 	68/3 251/12 107/3 323/12 139/3 	- 
varieties 
variance 

a significant interaction (for any residual error), but it would do so 
for each of the other pairs (for sufficiently small residual error). 
For {I, II} the interaction can be explained by the different 
among-environments variances, for {I, III} by the different 
ordering of the environments with respect to the mean yields, 
while for {II, MI it is by both reasons. This example is meant to 
draw attention to the fact that the among-environments variance for 
each genotype conveys information relevant to their grouping that 
is separate from the pattern of highs and lows. This distinction is 
used to show that clustering is possible when there are several 
independent measures of relationship without the need to combine 
them. Other pertinent literature on the problems of GE grouping 
is cited by Lin (1982). 

Let xik  be the observed mean response of the th  genotype in 
the le I environment: becâuse all attributes are identically defined 
and measured in the same units (e.g., kg ha-1), a Euclidean 
distance is a reasonable measure of dissimilarity. The squared 
distance between two genotypes i and j is given by 
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Ek(x ik - xik) 2 , 

where the summation is over the environments. Using this 
distance, any clustering method, in which the distances have no 
(theoretical) upper bound, can be performed,  • including that 
described in Chapter VIII. Because the dissimilarities are 
Euclidean distances, the resemblance among genotypes can be 
decomposed into three independent components, which allows 
groupings of the genotypes to be based not only on the complete 
value, but also on each component separately. 

Let mi  and .q denote the mean response and 
among-environments variance for the Ph  genotype (the mi  and .q 
need not be related). If the {m } are neither significantly different, 
nor fall into a number of subsets within which they are not 
significantly different, it seems reasonable to group the genotypes 
belonging to each of these subsets on the .sî; for example, the yield 
of the varieties belonging to a subset having the smallest 
among-environment variance tends to be independent of the 
differences in the environments. Assume for the moment that the 
genotypes have been grouped into subsets for which the means and 
among-environments variances are homogeneous; if any such 
group c,ontains more than one genotype and exhibits a significant 
GE interaction, the explanation can only be in the patterns of ups 
and downs, i.e., "shape." Unlike the mi  and sî, shape is 
multivariate and has no natural or partial ordering. Nevertheless, 
if the pattern is the same for some subset of the genotypes of 
interest, it is reasonable to assume that the genotypes in this subset 
are equivalent. Thus the problem becomes that of finding subsets 
of the genotypes for which the patterns within a subset are much 
more alike than they are to the patterns shown by the members of 
other subsets. The first problem, therefore, is to describe the 
difference in the patterns in some way that is independent of the 
mi  and e 
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Assume that the mi  in the subset of the genotypes under 
study are not significantly different, and also that they have a 
c,ommon e In these circumstances, without loss of generality, the 
xik  can be translated so that the genotype mean becomes zero and 
the among-environments variance normalized to unity; this affine 
and scale change is achieved if xi.k  is replaced by vac  defined as 

v,, = (xik  - mi) I 114 -  m111,  

where II xik  - mi  II is the Euclidean norm. If vi  denotes the vector 
{vik}, the Euclidean distance, 4 between vi  and vi , is given by 

d2e  = (vi  - vf(vi  - vi) 
= 2(1 - vTivi) 
= 2(1 - coseu), 

where ele  is the angle between the vectors vi  and v.  Thus  4  the 
linear distance between the ends of unit vectors (or the functionally 
related e,), is independent not only of the means but also of the 
among-environments variance. Even if the assumptions that 
genotypes have equal variances or means (or both) is false, this 

distance (or angle) focuses just on the patterns and excludes 
components arising from the means and variances. If the squared 
distance among genotypes had been computed without 
normalization to unit variance, the value obtained is 

.5î + s, -  2s, s  cosee , 

which is twice the value obtained by Lin (1982) to measure 
differences in pattern. This value has the form of the variance of 
a difference, with expectation twice the error variance when the 
null  model for GE interaction is true. 
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• 	For an ANOVA to give an appropriate estimate of error 
mean square, it is assumed that the variance of all genotypes 
within all environments is constant and so is independent of the 
means, xik . If this assumption is false, the consequence may be an 
apparently significant interaction (Snee 1982) without there being 
any biological basis. If the means and error variances are related, 
a grouping based on the among-environments variance after one 
using the means may not result in any further subdivisions. If they 
are unrelated, the genotype means and among-environments 
variance can be combined into a Fréchet neighborhood distance 
(Dowson and Landau 1982; see also Appendix 3), be  defined as 

= (mi  - mi)2  + (si  - s )2 ; 

this distance will be zero iff the genotypes have identical means 
and among-environments variances. Using the Fréchet distances in 
a clustering context then forms groups having similar means and 
among-environments variances. 

At this stage, therefore, the data have been replaced either 
by three sets of values (namely, the means, variances, and pattern 
distances), or by two sets (namely, the Fréchet and pattern 
distances). In essence, therefore, the complete grouping procedure 
has .three steps: 

(1) Forming of subsets of genotypes in • each of which the 
means are not significantly different. 

(2) Dividing each of these subsets satisfying the first criterion, 
if possible, into further subsets in each of which the 
among-environments variances are homogeneous. 

(3) 
Dividing each subset (homogeneous for the first two 
criteria) into subsets in each of which the pattern of highs 
and lows are the same. 
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Because at least one set of distances is not unidimensional, a 
clustering procedure, such as that described in Chapter VIII, is 
needed if groups are to be formed empirically. Each measure of 
distance may be processed by any clustering method to form 
groups alike simultaneously for all distances. One possibility for 
achieving this objective is to find some compromise measure of 
distance (Lefkovitch 1978) by recombining the components, which,, 
however, introduces its own problems. Here I consider a variant 
of the methods described in Chapter VII and section 6 of this 
chapter. In general terms, the procedure is that of conditional 
clustering given in Chapter VIII, where it is shown that the only 
initial pairs of objects needing to be considered are those adjacent 
on the relative neighborhood graph (Toussaint 1980) for each 
measure of distance under consideration. Thus given an acceptable 
initial pair, So  = {i, j), 

include object k in Sz+1  if it is sufficiently alike the 
members of St  on all criteria, 

which is a Pareto-type decision process (Zeleny 1982). 
There are no difficulties in modifying these procedures not 

only to form groups of environments, but also to achieve groups 
homogeneous simultaneously for both genotypes and environments. 
For the moment, consider environments for which it is not possible 
to specify the mutual proximities; using the environments as the 
objects of the basic algorithm, the mean yield at the environment, 
the among-genotypes variances, and the pattern of genotypes at an 
environment are easily computed. If the mutual proximity of the 
environments is known and can be represented by a Gabriel or 
other graph, only those pairs corresponding with environments 
adjacent on the proximity graph need be used for subset 
initiation, whereas candidates for admission must also correspond 



288 	IX SPECIAL APPLICATIONS AND ADDMONAL TOPICS 

with vertices that form a connected subgraph with the current 
members (see this chapter, section 6). 

Use of the term "environments" may have provoked the 
assumption that it refers to differing geographical locations. In 
fact, this assumption is false, because .q may equally have been 
defined as the among-years variance for the idi  genotype. Some 
complications but no new principles arise, however, if 
"environments" encompasses both spatial and temporal differences. 
For example, there will be an among-locations variance and 
pattern, an among-years variance and pattern, and also among 
locations*years terms. If yl represents the among-years variance 
for the it h  genotype, then 

(3j = 	— 	 (Yi yj)2  

is also a Fréchet distance; the definition can be extended by 
including further terms in comparable units. Furthermore, the 
definition of the pattern vectors can also be extended to include 
further elements to represent the additional data. A numerical 
example is given in Chapter X, "GE interaction." 

8 Local and global optimization 

Published strategies for optimizing general functions that use 
clustering algorithms have been reviewed both theoretically and 
numerically by Tôni and iilinskas (1989). They arrived at a 
general algorithm consisting of six steps, as follows: 

step I: sample points in the region of interest; 
step 2: concentrate the sample to obtain groups around 
local minima; 
step 3: recognize these groups by a clustering method; 
step 4: i f a stopping condition is met, go to step 6; 
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step 5: transform, resample for the next iteration, go to 
step 2; 
step 6: pezform final computations and stop. 

This section shows how to use conditional clustering in step 3 not 
only to find local optima, but also the global solution with a high 
probability. This demonstration is illustrated by considering each 
step in turn, using as an example the search for least-cost covering 
solutions, although the saine  procedure can be used for continuous 
problems. 

Assume that m, the number of subsets in the fully reduced 
A, is such that 2- is very large, so that it is not feasible to 
examine each to see if it points to an irredundant covering, and 
compute the value of the objective function; if that were possible, 
a global solution would be guaranteed. Step 1 consists of finding 
a set of n 1  irredundant solutions, each of which will be an x 
satisfying Ax 1, and evaluating the corresponding cost function 
(or functions; the multi-objective problem may also be included). 
Step 2 consists of eliminating (1 - cr)n i  of the sample consisting cif 
the coverings having the highest function values. From the 
remaining ani , step 3 forms subsets satisfying two criteria 
simultaneously, namely, 

they are sufficiently alike with respect to x 

they are sufficiently alike with respect to the value(s) of the 
objective function(s). 

Each subset so obtained can be considered to be in the vicinity of 
a local optimum. After step 4, for each set of x satisfying the two 
criteria, form their union, and from each of them, generate a 
further sample of irreclundant coverings. After eliminating any 
duplicate x, increase the sample to size n 1  by including further 
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samples from A, and go to step 2. The stopping condition of step 
4 is the recognition that after several cycles, the same set of local 
optima are obtained. 

This solution procedure may also be combined with 
simulated annealing by including the possibility of jumping to a 
new (randomly chosen) region in the space for further search for 
an optimum. 

9 The shape of a set of points 

In one sense, the title of this section is an oxymoron; how can a 
finite set of points have a shape? Various attempts to answer this 
question have usually been by some approximation to the hull of 
the points, the hull being determined on the assumption of some 
metric. The hull being determined, it is embedded into a 
continuous space and either some continuous regular shape (e.g., 
an ellipsoid), and so on, is used to apprœdmate it, or the 
asphericity is estimated (the ratio of the radius of the largest sphere 
that can be contained within the hull to the smallest that can 
contain it). The parameters of the continuous shape (curvature, 
diameter, volume, and so on) or the asphericity are subsequently 
used to describe the set of points. 

Determining the hull of a set of points in multidimensional 
space presents considerable computational difficulty. Even though 
there are efficient algorithms for obtaining the convex hull of a set 
of planar points, in higher dimensions the work is still excessive. 
Coupled with the subsequent need to fit one or more regular 
shapes to the hull makes this class of solution unappealing. 
Consequently, I propose a different solution; there will be almost 
no approximations, • and the amount of computation, although still 
major for large n, is reduced. 

In section 3 of this chapter, the diameter of a graph is 
defined as the maximum eccentricity among the vertices, where the 
eccentricity of a vertex is the maximum distance from it to any 
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other (definitions IX.3.1a and lb). The concept of diameter is now 
generalized. The diameter, which is based on pairs of vertices, can 
be extended to the "k-ameter", for k = 3,4...n in the following 
way. 

DEFINITION IX.9.1. For k = 2,3...n, the k-ameter of the 
graph is the maximum value of 

141(k) = max(EdatBei 

where the summation is over all pairs of distances among 
k vertices from the (i) choices. 

It is easy to see that 

diameter = W(2) 	W(3) 	W(n) 
= ave(d(i, j)) 	radius 
= W(n+ 1) 

and in consequence, the set of n values can be standardized so that 

w(k) = (W(k) - radius)/(diameter - radius), k = 2,3...n + 1, 

for which the maximum value is unity and the minimum is zero. 
Different arrangements of points exhibit different patterns 

in the sequence. At the present time, the patterns are unknown for 
any but a few standard arrangements; the main application is in 
forming these sequences for the different subsets in an optimal 
solution, and in exhibiting them for comparative purposes. 

The major task in computing W(k) is the need to determine 
its value for large k. For selecting all CD subsets of objects, the 
procedure described by Gentleman (1975) seems hard to improve. 
Having selected a subset, the mean distance among the individuals 
and also among the members of the complementary subset can be 
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computed, which reduces the work by half. For large n, two 
modifications may be adopted: first, for k>  ca. 15, compute the 
value for steps of k greate than 1 (e.g., 5); second, for very large 
n and k, choose a reasonable number of subsets of size k at 
random from the n (an efficient procedure for this selection was 
described by Ernvall and Nevalainen 1982), and set W(k) to the 
maximum average distance among them. The second modification 
will almost certainly produce an underestimate, but if this is 
alternated with the exact value for other k, adjustments can be 
made. 

This proposal is based on the work of Grove  and 
Markvorsen (1992) on metric invariants for Riemannian manifolds. 



X Case studies 

Each case study in this chapter is treated separately, identified by 
name and a letter. The tables corresponding with each are 
numbered independently and include the indicating letter. The 
sequence of the studies is in about the same order as the concepts 
developed in the previous chapters, but not rigidly so because each 
study is meant to be more or less complete. 

It will be apparent that the conclusions from most of the 
studies may not be free of controversy; when the subject matter is 
examined with external knowledge and experience, it is to be 
expected that disagreements will arise, but the function of 
clustering at the level of this book is to suggest hypotheses for 
further evaluation, not to proffer solutions. 

A Butterflies and monocotyledon plants 

The data used here (from Clifford 1975) are chosen to illustrate the 
covering reductions. They consist of the incidence of butterfly 
genera some of whose species are parasitic on species belonging to 
genera of monocotyledons. Clifford arranged the array in known 
taxonomic (familial) groupings but also speculated that simple 
rearrangements of the array (Table X.A1), i.e., permuting columns 
and rows, may suggest other insights. The application of the 
block—diagonal approximation algorithms (Chapter II) is clearly 
indicated but is left to the reader; an example of this sorting 
procedure is given in Case Study L. The objective here, perhaps of 
no more than passing interest, is to group the plants based on the 
butterflies parasitic on them, and to see how far one may proceed 
without anything more than the search for a minimum cover. 

Table X.A la indicates that some butterfly species are 
confined to a single genus of plants on which no other butterflies 
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Table X.A1 Known records of 34 butterfly (columns) and monocotyledon 
host plants (rows) in eastem Australia (after Clifford 1975) 

(a) 	Incidence array: 

Butterfly species 

000000000 1111111111222222222233333 

Plant 	1234567890123456789012345678901234 

	

1 	 1.1.1 . . . . 11 	 1  111 	 

	

2 	 1 	 1 	  

	

3 	 1 	 11 	1 	 

	

4 	 1 	  

	

5 	 .111 	  

	

6 	 1 	  

	

7 	 1 	 1 	 

	

8 	 1 	 1  

	

9  	11.1.. .11 .1 	1  

	

10 	 1 	1 	 1  

	

11 	 1 	 1  

	

12 	 1  

	

13 	1  

	

14 	1 	 1  

	

15 	 1 	 1 	1  

	

16 	 1  

	

17 	 1 	111 	  

	

18 	 1 	  

	

19 	 1 	  

	

20 	 11 	  

	

21 	 1 	  

	

22 	 1 	11 	1 	  

	

23 	 1 	  

	

24 	 1 	 

	

25 	 1 	 

	

26 	 1 	  

	

27 	 1 	 

	

28 	 1 	  

	

29 	 1 	  

	

30 	 1 	 

	

31 	 1 	  

	

32 	 111 

	

33 	 1 	1  

	

34 	 1  

Note: 1 = presence; . = absence. 
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(b) Isolated plant—butterfly associations: columns 2,8,12,15,21,22,29 

(c) Mandatory columns in optimal solution: 
columns 1,9,18,19,20,27,28,33 

(d) Fully reduced array: (original columns 4,5,7,13,23,24,30) 

Butterfly 
0001223 
4573340 

	

5 	 . 11 . . . . 

	

8 	 . 1 . .1 . . 

	

10 	 . . 11.1 . 

	

•11 	 . . 1.1 . . 

	

15 	 1 . . . 1.1 

Plant 

are 1cnown (Table X.A1b). All that can be said of these associations 
is that the data give no evidence on the relationships among the 
plants (or, for that matter, the plants give no evidence on the 
relationships among the butterflies). 

In the process of the reductions, a number of rows were 
seen to have a single unity (indicated in Table X.A1c); note that 
this set of columns is not necessarily unique. In the fully reduced 
array (Table X.Ald), there is just one minimal cover (the fourth 
and sixth columns), corresponding with original columns 13 and 
24. The reader may be interested in determining a minimum cover 
of the butterflies, i.e., using the transpose of the data array. 
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B Plant frequencies 

The objective here is to group sites based on percent presence data 
for 18 species of plants in 25 sites (Table X.B1). Estimates of the 
site probabilities, both from the matrix B, i.e., the proportions, and 
from A formed from B as a presence-absence array, are given in 
Table X.B2. Both arrays suggest the same eight species 
associations (Table X.B3), of which the first six are mandatory. 
The associations overlap considerably. The analyses based on 
presence-absence were repeated but using a threshold to eliminate 
infrequent species. All values in Table X.B1 exceeding 25% were 
scored as unity; all others were replaced by zero. From the result, 
only tiree associations are obtained (Table X.B4). 

Because the role of clustering is to provide candidate 
groupings for further evaluation, this diversity of result shows the 
need for further ecological investigations to determine which if any 
association is more than random. 

(Table X.B1 is on page 297.) 
(Table X.B2 is on page 298.) 

Table X.B3 Full data: species associations 

Association 	Species No. 

1 	 7, 8, 12, 13, 15, 17 
2 	 7, 8, 13, 17, 18 
3 	 1, 2, 7, 8, 9, 10, 17 
4 	 4, 7, 13, 17 
5 	 1, 2, 6, 7, 8, 9, 13, 14, 15, 17 
6 	 2, 7, 8, 9, 13, 16 
7 	 1, 2, 3, 7, 8, 9, 13, 15, 17 
8 	 3, 5, 7, 8, 11, 13, 15, 17 



Table X.B1 Plant frequencies (after Dale 1971): percent presence of 18 species in 25 sites 

Species 	 Site Nos. 

Name No. 	1 	2 17 22 24 3 18 4 20 9 13 23 11 12 14 10 7 8 15 16 5 21 	6 25 19 

Agrostis canina 	1 	 13 	 7 36 
A. tenuis 	 2 	 11 	8 	23 	 9 20 	38 	 28 

Went 
 hum 
	

3 	 2 	 8 

Blechnum spicaru 	4 	 1 
Calluna vulgaris 	5 	 2 	3 
Carex binervis 	6 	 64 
Deschampsia flexuosa 7 94 71 95 95 81 99 100 99 100 48 86 66 86 94 98 70 17 74 94 98 84 93 12 24 22 
Festuca ovina 	8 95 92 59 66 53 47 18 23 54 30 26 51 	 12 57 	26 30 67 24 	100 
Galium sazatile 	9 	 13 13 11 24 	 1 	17 4 34 	 6 	6 
Nokia lanatus 	10 	 2 
Juncus squarrosus 	11 	 2 	 3 	 1 	1 4 
Luzula carnpestris 	12 	 1 
Nardus stricta 	13 	5 	1 	8 	31 33 	 27 36 13 3 16 	59 80 81 59 53 46 4 	2 
Poteruilla erecta 	14 	 2 
Pteridium aquilinum 	15 	2 	17 17 	7 	1 	 2 2 13 	1 	14 17 
Rurnex acetosa 	16 	 28 
Vaccinium myrtillus 	17 100 100 100 100 99 100 100 100 99 79 99 98 97 100 98 100 1 45 10 39 31 	27 79 
V. vitis-idaea 	18 	 9 
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Table X.B2 Plant frequencies: site probabilities based on percentages 
and incidences 

Site No. Percentage (B) 	Incidence (A) 

	

1 	 0.045305 	 0.013280 

	

2 	 0.042030 	 0.024640 

	

17 	 0.035498 	 0.006719 

	

22 	 0.039485 	 0.013280 

	

24 	 0.039247 	 0.018079 

	

3 	 0.049168 	 0.049451 

	

18 	 0.039671 	 0.038380 

	

4 	 0.035869 	 0.049596 

	

20 	 0.044891 	 0.064188 

	

9 	 0.034586 	 0.073783 

	

13 	 0.043759 	 0.024836 

	

23 	 0.041188 	 0.013280 

	

11 	 0.034090 	 0.041345 

	

12 	 0.022838 	 0.020476 

	

14 	 0.026803 	 0.034131 

	

10 	 0.026498 	 0.025276 

	

7 	 0.055979 	 0.113792 

	

8 	 0.092059 	 0.089616 

	

15 	 0.034728 	 0.032090 

	

16 	 0.038020 	 0.033240 

	

5 	 0.050708 	 0.080235 

	

21 	 0.039598 	 0.030881 

	

6 	 0.019060 	 0.036196 

	

25 	 0.018900 	 0.013719 

	

19 	 0.050020 	 0.059492 
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Table X.B4 Threshold data (25%): species associations 

Association 	 Species No. 

1 	 2, 8, 16 
2 	 6,13 
3 	 1, 7, 8, 9, 13, 17 

C Ardic grasses 

This case study attempts to find a minimal diagnostic set of 
attributes for 42 species of grasses thought to occur in the 
Canadian high Arctic, chosen from 429 attributes (McLachlan  et al. 
1989). Of the 429, 117 attributes could not be used to distinguish 
any of the species, usually because their states are at present 
unknown for many taxa or are inapplicable. Thus the problem 
consists of finding an optimal set covering of 861 objects (i.e., 
pairs of species) based on a family of 312 subsets. 

Six attributes were found to be sufficient to identify all but 
one taxon (see below). Because two of the six attributes are 
measurements difficult to use in the field, this class was eliminated. 
Further, if an attribute for a taxon is known to show more than one 
state, it usually cannot be used unequivocally for identification and 
is here ignored for that taxon. The final number of subsets Was 
301. The reductions reduced the number of constraints from 861 to 
803, and the number of subsets from 301 to 137, 44 of which had 
a probability exceeding 0.01. The 803 by 137 array A contained 
17 001 unities. 
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Using costs defined as ck  = —logkpk, the covering solution 
using the modified Chvàtal procedure (Chapter II) cônsisted of ten 
attributes (Table X.C1); a better solu tion was not found by the 
simulated annealing algorithm (Appendix 2). The cost of the 
obtained solution,  cTx  was 38.470, which compares vvith a lower 
bound of 10.771 obtained from the linear relaxation. Were the 
elements of A to be independent (clearly, they are not) and unity 
with constant probability, 7c, (there are no reasons for this 
assumption), Vercellis (1984) showed that for large numbers of 
subsets and constraints, as well as a number of other conditions, 
the ratio between the number of subsets in the optimal solution and 
z = 1ogen/loge(1/(1 — 7c)) tends to unity. Thus for n = 861 and 
assuming rc = 0.5, implies z = 9.75, which compares very well with 
the solution obtained. In the completely reduced array, assuming ir 
to be 17 001/(803*137), the expected number of subsets in a 
minimal covering is 40, four times more than observed. 

Table X.C2 lists the 42 species and the states shown by 
each selected attribute; note that Poa alpigena var. colpodea is 
apparently indistinguishable from the main form. Using the 
identification key-generating program of Dallwitz (1974) confined 
to the 10 attributes, the key necessarily used all 10 and had an 
average length of 4.6 steps (maximum 6) to achieve an 
identification. By contrast, a key based on 60 of the 429 attributes 
empirically thought to be most useful for these grasses (McLachlan 
et al. 1989) used 39 attributes and was only marginally shorter 
(average length 4.5 steps, maximum 6); it also failed to distinguish 
the same pair of subspecies. 
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133: primary branch surface 

225: first glume, shape 

341: lemma of fertile foret  

374: palea of fertile foret  

Table X.C1 Arctic grasses: attributes, and their states, chosen from 429 
to distinguish 42 species of grasses known to occur in the Canadian high 
Arctic 

Attributes 	 States 

5: plants 

58: ligule 

61: ligule, shape at.apex 

242: first glume apical shape 

272: second glume 

420: vernation 

1 	rhizomatous 
2 	lacking rhizomes 

1 	glabrous 
2 	erose ciliate 

1 	acuminate 
2 	acute 
3 	obtuse 
4 	truncate 

1 	smooth 
2 	scabrous 

1 	linear 
2 	oblong 
3 	deltoid 
4 	lanceolate 
5 	ovate 
6 	obovate 
7 	oblance-olate 
8 	transversely oblong 

1 	caudate 
2 	acuminate 
3 	acute 
4 	obtuse 
5 	truncate 
6 	emarginate 

1 	with lateral keels 
2 	with a central keel 
3 	not keeled 

1 	keeled 
2 	rounded on the back 

1 	with glabrous keel nerves 
2 	with scabrous nerves 
3 	with hairy nerves 

1 	leaf blades rolled in bud 
2 	leaf blades folded in bud 
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5 	58 61 	133 225 242 272 341 374 420 Species 

Table X.C2 Arctic grasses: species and attribute states 

Attributes * * 

Alopecurus alpinur 	1 	1 	4 	2 	• 	3 	2 	1 	• 	1 

Arctagrostis 
arundinacea 

1 	1 	3 	2 	4 	3 	3 	1 	2 	1 

A. lateolia 	 1 	1 	3 	2 	4 	3 	2 	1 	2 	1 

Arctophila fulva 	1 	1 	4 	1 	4 	3 	3 	2 	1 	* 

Calarnagrostis 	1 	2 	3 	2 	4 	2 	2 	2 	1 	1 
canadenris var. 
langsdorffii 

C. purpurascens 1 	2 	* 	2 	4 	2 	2 	1 	2 	1 

C. stricta ssp. 	1 	2 	2 	2 	4 	3 	2 	2 	* 	1 
inexpansa 

Descharnpsia 	 2 	1 	2 	1 	4 	3 	2 	1 	2 	I 
cae.spitosa 

D. caespitosa ssp. 	2 	1 	• 	1 	4 	2 	2 	I 	2 	1 
breveblia 

D. caespitosa ssp. 	2 	I 	* 	1 	4 	3 	2 	2 	2 	1 
glauca 

Dupontia fisheri 	1 	1 	4 	1 	4 	• 	2 	1 	1 	2 

Elymus alaskanus 	2 	2 	4 	* 	4 	2 	3 	2 	2 	I 

Feauca balfinensis 	2 	1 	• 	2 	4 	2 	3 	2 	2 	2 

F. brachyphylla 	2 	2 	4 	2 	4 	2 	3 	2 	2 	2 

F. brevissima 	 2 	1 	4 	2 	4 	2 	3 	1 	2 	2 

F. hyperborea 	2 	2 	4 	1 	4 	2 	3 	2 	2 	2 

F. lenensis 	 2 	2 	4 	2 	1 	2 	2 	2 	2 	2 

F. richardsonii 	I 	2 	4 	2 	4 	2 	3 	2 	3 	2 

Hierochle alpina 	1 	2 	4 	1 	5 	3 	2 	1 	3 	1 

(continued) 
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Table X.C2 (concluded) 

Attributes * * 

Species 5 	58 61 	133 225 242 272 341 374 420 

• H. odorata 	 1 	2 	3 	1 	5 	3 	2 	1 	3 	1 

H. pauciflora 	1 	• 	3 	1 	4 	3 	3 	2 	3 	1 

L,eymus mollis 	1 	2 	4 	* 	1 	2 	3 	2 	3 	1 

Phippsia algida 	2 	1 	2 	1 	5 	4 	3 	2 	1 	2 

Pleuropogon sabiirei 	1 	• 	3 	* 	5 	4 	3 	2 	2 	2 

Poo abbrevicaa 	2 	1 	2 	1 	4 	2 	3 	1 	3 	2 

P. alpigena 	 1 	• 	3 	1 	5 	3 	2 	1 	2 	2 

P. alpigena var. 	1 	1 	3 	1 	5 	3 	2 	1 	2 	2 
colpodea? 

P. alpina 	 2 	• 	* 	* 	5 	3 	2 	I 	3 	2 

P. arctica 	 1 	1 	• 	• 	4 	3 	• 	1 	3 	2 

P. glauca 	 2 	1 	4 	2 	4 	3 	2 	1 	3 	2 

P. x hartzii 	 2 	1 	1 	2 	4 	3 	2 	2 	3 	2 

Puccinellia 	 2 	1 	3 	1 	4 	3 	3 	2 	2 	1 
andersonii 

P. angustata 	 2 	1 	2 	2 	7 	3 	3 	2 	2 	1 

P. bruggemannii 	2 	1 	3 	1 	5 	4 	3 	2 	3 	1 

P. langeana 	 2 	1 	• 	1 	4 	2 	2 	1 	1 	1 

P. phryganoides 	2 	1 	2 	1 	2 	4 	3 	2 	1 	1 

P. poacea 	 2 	2 	• 	1 	• 	3 	3 	2 	1 	1 

P. vaginata 	 2 	1 	2 	• 	4 	3 	3 	2 	2 	1 

P. vahliana 	 2 	1 	• 	1 	4 	• 	2 	2 	3 	2 

XPucciphippsia 	2 	1 	• 	1 	5 	4 	3 	2 	3 	2 
vacillans 

Trisetum sibericurn 	1 	1 	2 	• 	4 	2 	2 	1 	2 	1 

T. spicatum 	 2 	2 	2 	• 	4 	2 	2 	1 	2 	1 

** See Table X.C1. 
* Indicates unlcnown, inapplicable, or variable. 
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D André's data 

A constructed example of an incidence matrix of a site by species 
array (André 1984) is given here in transposed form in Table 
X.D1; this table also includes the site probabilities, as defined in 
Chapter 11. The two objectives of this case study are, first, to 
illustrate the grouping of the sites by direct study of this array, and, 
second, to generate a family of subsets by use of vector 
dissimilarity (Chapter V). 

Table X.D1 André's data: original incidence matrix transposed (A 1) 

Species 
Site  

Sites 	abcdefghij 	probabilities 

	

1 	 1 	0.0119 

	

2 	 1 	0.0119 

	

3 	 1 	 0.0119 

	

4 	 11 	0.0198 

	

5 	 11111 	0.0382 

	

6 	 11111....1 	0.0502 

	

7 	 11111 	0.0382 

	

8 	 11111....1 	0.0502 

	

9 	 11111 	0.0382 

	

10 	 11111....1 	0.0582 

	

11 	 11111..1 	0.0458 

	

12 	 11111 	0.0502 

	

13 	 .1111.11 	0.0428 

	

14 	 .11111111 	0.0635 

	

15 	 .11111111 	0.0635 

	

16 	 .11111111 	0.0635 

	

17 	 ...1111111 	0.0592 

	

18 	 ....11111. 	0.0402 

	

19 	 ....111111 	0.0521 

	

20 	 ....111111 	0.0521 

	

21 	 ....111111 	0.0521 

	

22 	111. 	0.0258 

	

23 	111. 	0.0258 

	

24 	11. 	0.0258 

	

25 	11. 	0.0170 



Sites 

Species 

acfj Probabilities 
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For the first objective, the reduced matrix is given in Table 
X.D2; the optimal covering was obtained by the reductions without 
need of costs (Table X.D3). The unique solution is given by 
original sites (1-12 ) , and (11,13-25), with indicator species a and 
h, respectively. Only site 11 is in cornmon. 

Table X.D2 André's data: fully reduced incidence 
matrix transposed (A T) 

	

4 	 1 . . . 	0.0198 

	

6 	 11.1 	0.0502 

	

11 	 11.. 	0.0458 

	

12 	 .1.. 	0.0428 

	

14 	 .11. 	0.0635 

	

17 	 ..11 	0.0592 

	

18 	 .  .1. 	0.0402 

Table X.D3a André's data: best covering solution 

Association 

Species 	1 	 2 
(site 6) 	(site 14) 

a 	 1 
b 	 1 	 i 
C 	 1 	 1 
d 	 1 	 1 
e 	 1 	 1 
f. 	 1 

. 
g 	

1 
1 . 

i1 
j 	 i. 	 . 
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Table X.D3b André's data: characteristic and common species 

Characteristic 
Association 

Species 	1 	2 	 Common 

a 	 1 	 . 

b1. . 
. 

c  . 	 1 . 

d 	 . 	. 	 1 
e1. . 

 f 	 . ,• 	 1 	 . 
g 	 1 	 . 
h. 	1 	 . 
i 	 . 	1 	 . 
j 	 1 	 . 

For the second objective, applying vector dissimilarity to a 
clustering problem, Table X.D4 gives the data for the 10 species 
after removing duplicates sites having the sarne species (which play 
no role in this procedure). Table X.D5 gives the 21 distinct subsets, 
generated as defined in Chapter V, confuted to those initial pairs 
for which g(i,j) # i + j. Table X.D6 gives both the subset 
probabilities, computed as described in Chapter II, and the measure 
of information. Table D7 gives the stepwise row reductions, the 
remaining subsets, and the optimal covering using both joint 
probability and information. The solution was identical for both 
objective functions and consisted of the two subsets a,b,c,d,e,f,j} 
and ff,g,h,i,j1 in which two objects are in common. No partition of 
the objects was found in these 21 subsets. 

The covering solution for the vector dissimilarity can be 
compared with that obtained directly from the complete incidence 
matrix (Table X.D3), which consists of the two subsets (a,b,c,d,ej 
and { b,c,d,e,f,g,h,i). Clearly, common ground but also differences 
exist in the two solutions; because the role of clustering is to 
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generate hypotheses, the differences are perhaps more informative 
than are the resemblances. 

Table X.D4 André's data: initial incidence matrix 

(10 species, 12 attributes) 

Species 	Sites 

A 	 11111 	 
.1.11111 	 
. .11111 	 

D . .111111 . . . 	 
. .11111111 . 	 
	1111 . . 

G 111111. 
H . . . .11111111 
	111111 

Table X.D5 André's data: 21 subsets generated 

Species 	Subsets 

A 	 1.1  1 	1  
1111.11.1 	  
1111111111 	11 

D . .11111111 . . . . 	11 . . . . 
	 11111 	  
	111111111 . . .1111 

G 1111.1 . . .  .11. 
H 1 	1  

....... 	. .111 	11 
	11111 . . . .1111111 
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Table X.D6 André's data: subset probabilities and information 

Subset 	Probability 	Information 

	

1 	0.036346 	 0.120474 

	

2 	0.023830 	 0.089047 

	

3 	0.048862 	 0.147502 

	

4 	0.036346 	 0.120474 

	

5 	0.026852 	 0.097136 

	

6 	0.086229 	 0.211326 

	

7 	0.073713 	 0.192212 

	

8 	0.064219 	 0.176311 

	

9 	0.087676 	 0.213412 

	

10 	0.078182 	 0.199264 

	

11 	0.026239 	 0.095522 

	

12 	0.053679 	 0.156996 

	

13 	0.024633 	 0.091233 

	

14 	0.038596 	 0.125614 

	

15 	0.027096 	 0.097772 

	

16 	0.050926 	 0.151625 

	

17 	0.041432 	 0.131907 

	

18 	0.026856 	 0.097145 

	

19 	0.040818 	 0.130563 

	

20 	0.068258 	 0.183237 

	

21 	0.039213 	 0.127001 

Table X.D7 André's data: example of covering solution procedures 

(a) Row reductions 

H covered by I 
H covered by G 
E covered by F 
B covered by C 
E covered by D 
E covered by J 

(continued) 
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Table X.D7 (concluded) 

(b) Remaining subsets and objects transposed and resequenced 

Objects  
ABEI 	 Original subset numbers* 
11.. 	 {3,1} 
.1.. 	 {16,2,4 } 
111. 	 {6} 
.11. 	 {9,7} 
..1. 	 {10,8} 
...1 	 {20,12,13,14,21} 
11.. 	 {15} 

(c) Optimal covering 

A 	 1 	. 
B 1 	• 
C 	 1 	. 
D 1 	. 
E 1 	. 
F 	 1 	1 
G . 	1 
H . 	1 
I . 	1 
J 1 	1 

(i) Maximum joint probability: objective function = 0.005885 

(ii) Maximum information: 	objective function = 0.394563 

* The first in each set has maximum probability. 
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E ANOVA means 

This series of numerical examples is intended to discuss the 
applicatién of unidimensional clustering (Chapter VI) to the 
problem of grouping means in an analysis of variance (ANOVA) 
context • 

Tables X.E1 and X.E2 refer to the same five data sets 
described by Calinski and Corsten (1985) (this publication is here 
referred to as CC) and also give the results of their two proposed 
procedures. The first two examples were also considered by 
McLachlan and Basford (1988). 

The first of the CC procedures (method a) is based on 
the complete-linkage (furthest-neighbor) hierarchical-clustering 
metiiod; the.grouping process is terminated when the smallest range 
exceeds the upper a-point of the studentized range distribution for 
the contained means based on the degrees of freedom (DF). The 
second procedure (method b) is based upon Gabriel's (1964) 
method for testing homogeneity within a subset. It consists of 
obtaining the total sum of squares among the objects in the subsets 
around the latters' means, and terrninating the grouping when this 
value, appropriately scaled by the error variance and the DF, 
exceeds the upper a-point of the F distribution. Further details are 
given by Gabriel (1964) and CC. 

Some rninor but relatively trivial differences occur in the 
groupings obtained for these four data sets. The fourth, however, 
is interesting in that the ratio of the smallest to the largest of the 
five variety mean weights exceeds 14, malting it unlikely that the 
within-variety variance is homogeneous in the untransformed 
yields. Assuming that the logarithms of the reported means are 
reasonably homogeneous, it becomes clear that the grounds for 
separating beyond (A ,( B—E j are weak. 

According to CC, heterogeneity of variance is also exhibited 
by data set 5, but, in my opinion, this heterogeneity is not 
sufficient to understand the major disagreement in connection with 
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Table X.E1 ANOVA means, labels, generated subsets, probabilities, and 
the empirical x for the data used by Calinski and Corsten (1985) and 
compared with their solutions 

Generated Probability x, Covering 
• 	subsets 

Data set 1: (Keuls 1952; 52=124.29, DF=24: g,/head cabbages) 

97.7 A 	H, I 	 1 16 	0 	Musters*: D-I, A-C, J-L, M 
100.7 B 
111.3 C 	E-I 	1/3 	 1 	McLachlan and Basford's solutions 
120.7 D 	 (a) A-C, D-i, K-M 
124.3 E 	F, G 	1/6 	0 	(b) A-C, D-I, J-L, M 
128.7 F 
129.0 G 	F-I 	1 13 	0 
131.0 H 
132.0! 	J-L 	1.0 	 1 
141.7 J 	D-E 	1.0 	 1 	Calinslci and Corsten's solutions 
150.7 K 	A-C 	1.0 	 1 	(a) A-C, D-L, M 
152.7 L 	 (b) A-C, D-I, J-L, M 
176.0 M 	M 	1.0 	 1. 

Data set 2: (Duncan 1955; 52=79.64, DF=30: bushels/acre barley) 
A 	1.0 	 1 	Musters: generated subsets are a 

49.6 A 	B-D 	1.0 	 1 	partition 
58.1 B 	E-G 	1.0 	 1 
61.0 C 	 Cabled and Corsten's solution 
61.5 D 	 (a) and (b) A-D, E-G 
67.6E 
71.2 F 	 McLactdan and Basford's solutions 
713 G 	 (a) A-D, E-G 

(b) A, B-D, E-G 

Data set 3: (Snedecor 1946; 2=90.63, DF=30: bushels/acre potatoes) 

	

341.9 A 	A-D 

	

360.4 B 	E-G 
360.6 C 
363.1 D 
379.9 E 
386.3 F 
387.1 G 

	

1.0 	 1 	Musters: generated subsets are a 

	

1.0 	 1 	partition 

Calinski and Corsten's solution 
(a) and (b) A-D, E-G 

Data set 4: (Calinski and Corsten 1985; 2=48.86, DF=12: kg/are tomatoes) 
123 A 	A 	1.0 	 1 	Musters A, B, C, D, E 
98.2 B 	B-C 	1.0 	 I 	Calinski and Corsten's solutions 
124.8 C 	C-D 	1.0 	 1 	(a) A, B-D, E 
140.4 D 	E 	1.0 	 1 	(b) A, B, C-D, E 
176.3 E 

* Union of overlapping subsets: see text. 
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Table X.E2 Data set 5: (Larmour 1941; s2=342.62, DF=64:m1/10af bread) 

mL label sd* Subset 	Probability  x 	Solutions 
members 

(a) Based on original data 

654 	A 	24.5 	0, P 	0.054 	0 	Musters: 
729 	B 	15.6 	C, D 	0.050 	0 	(A ) , (B,C), (D—I), 
755 	C 	443 	D—I 	0.176 	1 	(J—M), (N—P), MI 
801 	D 	47.2 	E, F 	0.042 	0 
828 	E 	29.9 	E—I 	0.126 	0 
829 	F 	82.4 	G, H 	0.042 	0 
846 	G 	27.0 	H, I 	0.042 	0 	Calinski and 
853 	H 	58.4 	J, K 	0.054 	0 	Corsten's solution 
861 	I 	50.7 	J—L 	0.105 	1 	(a) and (b) (A), (B,C) 
903 	J 	63.9 	L, M 	0.102 	1 	(D—I), (J—N), (0—Q) 
908 	K 	67.0 	M, N 	0.102 	o 
922 	L 	98.6 	N—P 	0.105 	1 
933 	M 	27.1 	Q 	1.0 	 1 
951 	N 	593 	B, C 	1.0 	 1 
977 	0 	81.3 	A 	1.0 	 1 
987 	P 	79.6 

1030 	Q 	40.3 

(b) Based on t-value distances 

Minimum spanning 
nee as linked list 

A 	- 	 0, P 	0.057 	0 	Musters: ( A), (B—I),  
B C 	 C, D, F 	0.061 	1 	(J—M ) . (N-11. (Q )  
C 	F 	 D, F 	0.061 	o 
D F 	 E, F 	0.054 	o 
E F 	 E—I 	0.162 	1 
F 	A 	 G, H 	0.054 	0 
G H 	 H, I 	0.054 	0 
H F 	 J, K 	0.057 	0 
I 	H 	 J, K, L 	0.111 	1 
J 	K 	 L, M 	0.108 	1 
K L 	 M, N 	0.108 	0 
L I 	 N, 0, P 	0.111 	1 
M 	L 	 Q 	1.0 	1 
N M 	 B, C 	1.0 	 1 
O N 	 A 	1.0 	 1 
P 0 
Q P 

* sd = standard deviation. 
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objects M, N, 0, P, and Q. It is a little surprising that CC's 
procedures place Q in a group with 0 and P, especially as the 
difference between P and Q is the third highest among the ordered 
values. However, it is also puzzling that N is grouped with 0 and 
P by the conditional clustering procedures described in Chapter VI 
and not with M, because the difference between M and N is less 
than half of that between N and O. Perhaps {J—P} ought to have 
been formed; it would have been if a weak muster (Appendix 6) 
based on neighborhood intersection (Lefkovitch 1982) had been 
used rather than the computationally simpler one based solely on 
nonempty set intersection. The solutions are roughly compared by 
the ANOVAs in Table X.E3; because one of the different groups 
contains just one object, it is not surprising that the residual mean 
squares are appreciably smaller for the conditional clustering 
solution. Nevertheless, the error mean square, calculated from CC's 
paper to be 343.6 with 64 DF, does not suggest that the within-
group variance is appreciably large for any of the analyses. It does 
suggest heterogeneity in the 17 means (F = 9711.7/343.6 with 16 
and 64 DF). 

In the paper giving the original for data set 5 (Lannour 
1941), the volumes of loaves for these 17 varieties of wheat were 
reported for five different levels of an additive (originally, there 
were 18 varieties, but there was a missing cell, presumably 
accounting for the subsequent use of 17). Thus the within—variety 
variance is really an estimate of that due to the additives and may 
have a genetic foundation; furthermore, these variances show a 
wide range (Table X.E2a). In addition, the "error" variance is really 
an estimate of the pooled interaction between the varieties and 
additives and random variation. As a result, these data are used to 
illustrate the t-value distance method described in Chapter VI. The 
dimensionality of the t-distance array (99% of the total distance) 
was found to be 4 (the first two principal coordinates accounted for 
89%), and so the multidimensional procedures of Chapter Vifi  are 
needed; the relative neighborhood graph (Chapter VIII) was also 



Source of variation DF 	 Mean square 
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the minimum spanning tree and is given as a linked list (Table 
X.E2b). From the adjacent objects on this tree, 15 distinct subsets 
were obtained; Table X.E2b gives the musters formed by these 
from the optimal covering. Other than not separating 03,C) from 
( D—I), these groupings are consistent with those of data set 5 in 
Table X.E2a, perhaps suggesting that the departures from 
homogeneity are not too serious. 

Table X.E3 ANOVA means: analyses of variance for the groupings of 
data set 5 

(a) All 17 means 
Varieties (V) 	 16 	 48 540 
(a) Musters (M) 	 5 	 151 381 

V within M 	 11 	 1 794 
(b) CC's groups 	 4 	 186 916 

V within C 	 12 	 2 415 

Additives (A) 	 4 	 29 059 

Residual 	 64 	 1 718 
(a) A.M 	 20 	 1 426 

Residual 	 44 	 1 850 
(b) A.0 	 16 	 1 568 

Residual 	 48 	 1 767 

(b) Confined to the last 8 means, i.e., where the solutions differ 

Varieties (V) 
(a) Musters (M) 

V within M 
(b) CC's groups 

V within C  

7 	 9 664 
2 	 30 706 
5 	 1 248 
1 	 52 173 
6 	 2 579 

Additives (A) 	 4 	 25 996 

Residual 	 28 	 1 588 
(a) A.M 	 8 	 755 

Residual 	 20 	 1 921 
(b) A.0 	 4 	 655 

Residual 	 24 	 1 744 
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F Caste skulls 

This case study illustrates the nonmetric transformation of 
dissimilarities described in Chapter VII, and the conditional 
clustering methods of Chapter VIII. The data are the generalized 
squared morphological distances given by C.R. Rao (1971) for 
skulls of members of 12 Indian castes. Table X.Fla gives the 
empirical values below the diagonal, and the path distances derived 
from the relative neighborhood graph (RNG) above. The RNG has 
12 edges; there is one cycle of six edges, and three vertices of 
degree 1. Table X.F1b, which gives the eigenvalues for both sets 
of distances expressed as a proportion of the largest, shows that the 
numerical rank of the transformed values is 7, one less than that of 
the original distances, and that the concentration of the distances in 
the first two dimensions is 57% in the original data and 73% after 
transformation. There is even further concentration if the edge 
distances are used to replace the empirical values. In contrast, there 
is diffusion brought about by the relative external graph 
(REG)-path transformation, as evidenced by the increased 
sphericity. Table X.F2a gives the first two principal coordinates, 
each nonned to unity, for the original data and their three 
nonmetric transformations. Although the dominant principal 
coordinates of the RNG-path and edge distances can be said to 
coincide with the original (Table X.F2b), even though the angle 
between them is approximately 23°, the agreement  is poorer for the 
subdominants, for which the angle is about 400 . The REG-path 
distances show considerably less resemblance to the original. 
Lefkovitch (1989) gave plots of the first two principal coordinates 
for the original and the RNG-transformed values, together with 
the edges in the RNG; the biggest changes brought about are in the 
apparent positions of D and Bh. Table X.F3 gives estimates of the 
effective dimensionalities for the original and transformed data. 



Table X.F1 Caste skulls: matrix of generalized distances, eigenvalues, principal coordinates, and inner products 

(a) Distances: below diagonal are original, above diagonal are RNG path-transformed 

13 1 	- 	520 	1403 	1951 	2297 	2953 	3902 	4534 	3620 	3978 	3674 	2525 
B2 	520 	- 	883 	1431 	1777 	2433 	3382 	4014 	3100 	3458 	3154 	2005 
AI  1080 	883 	- 	548 	894 	1548 	2499 	3131 	2217 	2575 	2271 	1122 
A, 1217 	1015 	548 	- 	346 	1002 	2583 	1951 	1669 	2741 	2819 	1670 
A3 1459 	1212 	700 	346 	- 	656 	2237 	1605 	1323 	2395 	3165 	2016 
A, 1817 	1649 	1233 	762 	656 	- 	1581 	949 	1979 	3051 	3821 	2672 
Ch 1746 	1694 	1838 	1456 	1649 	1497 	- 	632 	3560 	4632 	5402 	4253 
M 1691 	1619 	1565 	1158 	1204 	949 	632 	- 	2928 	4000 	4770 	3621 
Bh 2110 	1954 	1591 	1493 	1323 	1497 	2241 	1778 	- 	1072 	3674 	2525 
D 	1691 	1676 	1706 	1552 	1520 	1631 	1960 	1572 	1072 	- 	2602 	1453 
C I  1865 	1900 	1637 	1726 	1830 	2049 	2291 	2112 	2254 	2126 	- 	1149 
C2 1493 	1277 	1122 	1237 	1292 	1694 	2163 	1934 	1862 	1453 	1149 

(b) Eigenvalues as proportion of the largest 

Eigenvalue 	Original 	RNG-path 	RNG-edge 	REG-path 
distances 	distances 	distances 	distances 

1 	 1 	 1 	 1 	 1 
2 	 0.7985 	0.5552 	0.4746 	 0.9729 
3 	 0.6014 	0.2487 	0.1424 	 0.8553 
4 	 0.4740 	0.1275 	0.1266 	 0.8222 
5 	 0.1621 	0.1026 	 - 	 0.8017 
6 	 0.0607 	0.0517 	 - 	 0.6637 
7 	 0.0337 	0.0344 	 - 	 0.6468 
8 	 0.0227 	 - - 	 0.5064 
9 	 - 	 - 	 - 	 0.4547 

•■■ 



Table X.F2a Caste slculls: first pairs of dominant principal c.00rdinates 

Original 	RNG-path 	RNG-edge 	REG-path 
distances 	distances 	distances 	 distances 

Caste 	1 	2 	1 	2 	1 	2 	1 

, 

	

B 1 	1747 	-3414 	1457 	-5736 	3888 	-4701 	-593 	-145 

	

B2 	 1430 	-2891 	1170 	-4382 	2890 	-2838 	5678 	1847 

	

A 1 	1420 	-878 	' 681 	-2004 	1864 	-1118 	r1368 	-972 

	

A 	-556 	-878 

	

2 	 -372 	-924 	435 	-272 	189 	340 

	

A3 	 -841 	48,6 	-930 	-84 	-102 	434 	230 	516 

	

A4 	-2901 	643 	-2317 	119 	-2456 	-192 	1635 	-3593 

	

Ch 	-4387 	-3911 	-5362 	-1193 	-5415 	-1867 	2709 	-2980 

	

M 	-4237 	-1480 	-4628 	2539 	-3921 	, -959 	1663 	-3671 

	

Bh 	-1336 	6436 	-35 	3374 	-674 	3262 	-3620 	. -835 

	

D 	-603 	4277 	2671 	4672 	-356 	5951 	5774 	-1559 

	

C1 	5190 	-392 	4866 	1291 	3629 	3454 	1153 	5472 

	

C2 	 4144 	701 	2946 	488 	2709 	2430 	1970 	5342 



Table X.F2b Caste skulls: inner products among principal coordinates 

RNG-path 	 RNG-edge 	 REG-path 
distances 	 distances 	 distances 

1 	 2 	 1 	 2 	 1 	 2 

1 	0.919863 -0.230199 	0.920853 	0.186857 	-0.032001 	0.920278 
Original 
distances 

2 	0.286067 	0.772989 -0.036788 	0.810709 	-0.231826 -0.001760 

Table X.F3 Caste skulls: effective dimensionalities 

Original 	RNG-path 	RNG-edge 	REG-path 
a 	distances 	distances 	distances 	distances 

0 	8 	 7 	 4 	 9 

0.5 	4.341 	3.334 	2.422 	7.718 

1 	3.153 	2.120 	1.744 	6.724 

2 	2.256 	1.401 	1.262 	5.319 
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Using the original data, the procedures in Chapter VIII 
generated seven subsets, which formed five musters, namely, 
{CA), (Bh,D), (Ch,M), {A I ,A2,A3,A4 ), and (13 1 ,B2 ). The unique 
minimal covering divided the A.  into two, namely, {A I ,A2,A3 ) and 
{A2,A3,A4 ). For the RNG-path transformed data, there were two 
musters in the 12 subsets which were generated, namely, {13h,D) 
with the remainder forming the other. The optimal covering ' 
obtained from the 12 subsets was also a partition, namely, {CA), 
{Bh,D), {Ch,M), A 1 ,A2 ), ( A3,A4 ), and { B I ,B2 ). Not surprisingly, 
the coverings obtained from the two sets of distances are consistent 
with each other, the only difference being the partition of the Ai 

 into two groups. 
The optimal covering obtained from a conditional clustering 

using the REG-path distance transformation, 15 subsets were 
generated; the optimal  covering consisted of eight subsets, namely, 
(B,Ch), {B2,A2,C2 ), {B2,A3,C2 ), {Bh,C2 }, (C1 ), {B 1 ,A1 ,D}, 
{B2,M), and {B2,A4 }, which combine to the three musters, ( CI ), 
(13 1 ,A1 ,Ch,D), and the remainder. This arrangement is consistent 
neither with a clustering based on the original data nor with an 
explanation based on historical information, i.e., the REG-path 
distance transformation here has resulted in unacceptable groupings, 
perhaps arising from the tendency to increased sphericity it brings. 

It is perhaps remarkable that the principal coordinates based 
on 12 of the 66 distances agreed closely with those of the complete 
set. For larger numbers of objects (up to 187 have been 
investigated), the economy was even greater, because the number 
of edges in the RNG rarely exceeds 3n for random data (Lefkovitch 
1984, Appendix) and tends to be less if there are distinct subsets. 
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G Letters 

This case study is an application of the methods of Chapter VIII to 
psychometry. Published data on the similarities in shape of lower-
case letters as perceived in Sweden (Kuennepas and Janson 1969) 
were used; after excluding w and three vowels represented by 
letters with diacritical marks, only 25 objects were studied. 

Table X.G1 gives the generated distinct subsets in compact 
form, because the incidence matrix is sparse. This table also 
gives the estimated subset-covering and object-representation 
probabilities and the reduction patterns (e.g., "d covered by b"). 
Table X.G2 gives the best covering and the best approximation to 
a partition that were found, together with the values of the joint 
probabilities and entropy. General descriptions of the six musters 
formed from the optimal covering are given in Table X.G3; it is 
easy to see that the letters included in each muster tend to be alike 
rotationally (including reflections). 



Reduction sequence 

d covered by b 
e c 
f . 	 1 
f . 	 t 

Î 	
ci 

k 	 g . m 	 n 
✓ f 
✓ t. 
s 	 z 
lc 	 v 

Y 

Table X.G1 Letters: generated subsets and representation and covering probabilities of letter-similarity data 

Abbreviated incidence 
matrix 

Letter 	Subsets 
Representation 
probability 

Covering 
Subset 	probability 

a 	18 	 ,- 	1.0 
b 	1, 3, 8 	 0.0 
c 	2, 6, 7 	 0.0 
d 	1, 3, 8 	 0.129 
e 2, 7 	 0.163 
f 16 	 0.0 

3, 9 	 0.149 
4, 11, 17 g  0.0 

i 	16 	 0.0 

1 	
16 
17 	

0.0 
1.0 

1 	16 	 0.0 
m 	4, 5, 11 	 0.152 
n 4, 5, 11, 12 	0.0 
o 3, 6, 7 	 0.127 
P 3, 8, 10 	 0.129 
4 	3, 8, 9, 10 	0.0 
✓ 16 	 1.0 
s 	15 	 1.0 
t 16 	 0.0 
u 11, 12, 13 	0.152 
y 	13, 14 	 0.0 
x 	14 	 1.0 
y 	14 	 0.0 
z 	15 	 0.0 

	

1 	0.048 

	

2 	0.061 

	

3 	0.198 

	

4 	0.057 

	

5 	0.057 

	

6 	0.047 

	

7 	0.108 

	

8 	0.096 

	

9 	0.055 

	

10 	0.048 

	

11 	0.113 

	

12 	0.057 

	

13 	0.057 

	

14 	1.0 

	

15 	1.0 

	

16 	1.0 

	

17 	1.0 

	

18 	1.0 



Table X.G2 Letters: best covering, best approximation to a partition, joint probabilities, and entropy 

Solution and content 
—log(joint 

Subsets 	Musters 	probability) 	Entropy 

Generated subsets* 	 18 	5 	 34.691 	 3.530 
Covering (3,7,11,14-181 	 8 	6 	 6.025 	 0.807 
Near-partition (2,3,5,12,14-18) 	9 	8 	 10.167 	 0.816 

* See Table X.G1. 

Table X.G3 Letters: subsets, musters, and comments on optimal covering of Swedish letter  data  

Musters» 	 Comments 

bdgpqo  ce 	 Circular, with or without a vertical stroke 

unmh k 	 Parallel vertical linearity, with or without a vertical stroke 

vxy 	 Angled letters, open above 

sz 	 Zigzag letters 

fijlrt 	 Vertical linearity 

a 	 Roundness with a hook 

• See Kuennepas and Janson (1969) for the letter shapes actually used. 
▪ Subsets underlined. 
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H Angles and distances 

This case study gives some numerical examples to illustrate the 
procedures described in Appendix 4 for measuring the distances 
and angles among subsets. The notation of Appendix 4 is assumed. 

Example 1 

[ 0 -1 
(i) 	Let 	

a /  - 

I. 0 	ij  I) / 
÷ 0] 

[-i o] 

hence (5 = 21/2  (Expression A4.13). 

uLLTil = ommTH = 4.25 
111.111TH = 3.125, 
cos eud  = 25/34 (Expression A4.9) 

= 0.7447 rads. 

(iii) At the centroid of the X, the cosine of the angle is —1, i.e., the two 
points are collinear with the centroid. 

(iv) The cosine of the angles at both xi  between a and b is 3/5. 

(V) 	rb = rb = (5/8)1/2  (Expression A4.14); 
ià.d, IX = (5/8)1/2  cos(25134) --- 0.5887 (Expression A4.24). 

(vi) The Euclidean distance between a and b, in units of 3, is 
1/21/2  = 0.7071. 
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Example 2 

a l  - [ 1 2 ] (i) 	Let x - [ 2 5 I 
-5 -7 	bi  - (-3 5 1 

hence 8 = 9.699. 

	

2 0 	 6 -3 I 
L - 13  I M -  5 0 

	

-6 -7 	 -2 -12 

IILLTO = 17 119; 
ummis = 16 279; 
ULM'S  =26  410, 
cos %AM = 0.9086, 
eud  = 0.4308. 

(iii) At the centroid of the X, the cosine of the angle is 
71(5 x 34)1/2  = 03368, corresponding to 1.0041 rads. 

(iv) The cosines of the angles at the three members of X are 
[0.8944 0.3162 0.9119]. 

(v) r,„ = 0.5492;  Tb  = 0.8205; Aab  IX = 0.3980. 

(vi) The linear (Euclidean) distance between the ends of r„ and Tb  is 
0.3956. 

(vii) Consider the relationship between two members of X with respect 
to X. Let a' and b' be the first two rows of X; 
cos Oat  = 0.9832 
eud  = 0.1837 

= 0.5225 
rb  = 03861 

= 0.1199. 

5 -7 -5 -7 
2 5 
3  21  
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The Euclidean distance between a and b, in 8 units, is 0.3260, and 
between the ends of ra  and Tb  is 0.2242. Thus a and b become closer by 
virtue of being members of X. 

Example 3 

3 2 
1 

2 5 	
2 	_ [-3 -6 I 

A - _6  _7 	B 
2 5 

-5 -7 

L 

 T [

10 -79 81  
-2 1 -11 9 12 0 

= 288 625 

-1 5 0 -2 -2 -7 -9 1 
8 11 0 11 -1 -12 -1 1 

IIMMY = 37 081, 
(WT I = 277 679, 
cos eAB = 0.9213, 
ra = 0.7634, 
Tb  = 0.7982 , 
AAR  IX  = 0.3137. 

[

6 
8 - 

(There is no case study I.) 
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J GE interaction 

This case study is chosen to illustrate the use of multicriteria 
clustering as described in Chapter IX. The data used by Lin (1982), 
origliially published by Yates and Cochran (1938), are 
reconsidered; these data are given in Table X.J1 together 3,vith the 
means and among-environments variances. The pattern vectors 
(Chapter IX) are given in Table X.J2, the squared distances and 
angles in Table X.J3, Lin's estimates of the squared distances 
(which equate the means but which are not based on equal 
among-environments variances) in Table X.J4, and the squared 
Fréchet distances in Table X.J5. The differences are striking; the 
largest distance in Table X.J4 is between Trebi and Peatland, but 
the distance between this pair is ranked only fifth (out of 10) in 
Table X.J5. Considering just the cultivar means and variances, 
those for Trebi and Peatland suggest that these cultivars differ 
somewhat from each other and from the other three, without any 
need to consider the pattern of responses across environments; this 
grouping is essentially that obtained by Lin. 

Table X.J1 GE interaction: cultivar means (based on three replications 
and two years data) 

Environments 

Cultivar 	1 	2 	3 	4 	5 	6 Mean Variance 

Manchuria 161.7 247.0 185.4 218.7 165.3 154.6 188.8 1349.82 
Svanaota 	187.7 257.5 182.4 183.3 138.9 143.8 182.3 1810.20 
Velvet 	200.1 262.9 194.9 220.2 165.8 146.3 198.4 1685.55 
Trabi 	196.9 339.2 271.2 266.3 151.2 193.6 236.4 4664.80 
Peatland 182.5 253.8 219.2 200.5 184.4 190.1 205.1 	751.18 

Mean 	185.8 272.1 210.6 217.8 161.1 165.7 212.1 
Variance 230.8 1441.3 1335.8 962.1 293.4 588.2 	1689.98* 

* Variance of the 30 (cultivar x environments) values. 
Source: Yates and Cochran (1938). 
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Table X.72 GE interaction: environment pattern vectors for each cultivar 

Environments  

Cultivar 	1 	• 2 	3 	4 	5 	6 

Manchuria 
Svansota 
Velvet 
Trebi 
Peatland 

-0.3299 	0.7084 	-0.0414 
0.0568 	0.7904 	0.0011 
0.0185 	0.7025 	-0.0425 
-0.2586 	0.6731 	0.2279 
-0.3688 	0.7946 	0.2301 

0.3640 
0.0105 
0.2374 
0.1958 

-0.0751 

-0.2861 
-0.4562 
-0.3550 
-0.5579 
-0.3378 

-0.4163 
-0.4046 
-0.5674 
-0.2802 
-0.2448 

Table X.73 GE interaction: matrix of squared distances among the 
cultivars based on the pattern vectors (below diagonal) and angles in 
radians among them (above diagonal) 

Manchuria - 	0.5663 	0.4048 	0.4506 	0.5618 
Svansota 	0.3122 	- 	0.3164 	0.4785 	0.5361 
Velvet 	0.1632 	0.0993 	- 	0.5317 	0.6719 
Trebi 	0.1996 	0.2247 	0.2761 	- 	0.3897 
Peatland 	0.3074 	0.2806 	0.4348 	0.1500 	- 

Table X..14 GE interaction: matrix of squared distances equating means 
but without equating among-environments variances 

Manchuria 	- 
Svansota 	260.7 	- 

velvet 	133.8 	88.5 	- 
Trebi 	748.3 	658.3 	755.0 
Peatland 	198.3 	278.1 	336.5 

Source: Lin (1982). 

Table X.75 GE interaction: matrix of squared Fréchet distances based on 
cultivar means and among-environments variances 

Manchuria 
Svansota 	75.17 	- 
Velvet 	100.00 	261.50 	- 
Trebi 	3268.26 	3598.89 	2196.82 
Peatland 	353.66 	748.37 	229.96 	2664.11 
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The Fréchet squared distances in Table X.J5 show that Trebi is 
unlike the other four, and that Peatland is also somewhat different 
from the . others, although less so. Table X.J3 suggests that a 
grouping on pattern alone would give a different arrangement of 
the varieties. This difference is confirmed by the results of a 
separate conditional clustering of each set of distances (the square 
roots of the values in Tables XJ345). Table X.J6, where the 
results are summarized, shows that the groupings obtained without 
using Si2  associates two cultivars having the highest and lowest 
among-environments variance (Table X.J2). The grouping obtained, 
corresponding with Tables X.J4 and J5, can be inferred almost by 
inspection of the among-environments variances in Table X.J2. A 
simultaneous conditional clustering using the Fréchet distances of 
Table X.J5 and the pattern distances of Table X.J3 yielded four 
distinct subsets (Table X.J6d) in which each of Trebi and Peatland 
are single-object subsets, and two overlapping subsets, namely, 
[Manchuria, Velvet} and f Svansota, Velvet), form the three-object 
muster (Manchuria, Velvet, Svansota). This solution, hinted at by 
combining the separate analyses of the data of Tables X.J3 and J5, 
seems to be the most suitable for these data. 

Table X.J7, an analysis of variance for the three-group 
arrangement, shows that the variety groupings absorb more than 
90% of the sums of squares estimated for differences among the 
cultivars. The sum of squares associated with the entry W.G.L. in 
Table X.J7 was further analyzed by a singular decomposition" of the 
5 x 6 array of residuals (Snee 1982); the rank of this array, which 
is confmed to group 1 containing three cultivars, cannot exceed 2. 
The actual sum of squares for W.G.L. is 1606.85; the squared 
singular values are 1321.12 and 285.73; the singular vector 
associated with the larger of these is the contrast [0.754 —0.648 
—0.106] corresponding to Manchuria, Svansota, and Velvet These 
values suggest that Velvet is intermediate between the other two 
(note that conditional clustering placed Velvet in the intersection 
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Table X.J6 GE interaction: summary of results obtained from conditional 
clustering of the data in Tables J3—J5 

Generated subsets 	 Probability -  of being 
of cultivars 	 in an optimal covering 

(a) From Table J5 (Fréchet distances) 

(Manchuria,Svansota,Velvet,Trebi) 	 1.0 
(Peatland) 	 1.0 

(b) From Table J4 (Lin's distances) 

(a) (Manchuria,Peatland) 
(b) (Manchuria,Svansota,Velvet,Peatiand) 
(c) (Svansota,Velvet) 
(d) (Trebi) 

Optimal solution —  consists of 
subsets b and d 

(c) From Table J3 (Pattern distances) 

•(a) (Manchuria,Velvet) 
(b) (Manchuria,Trebi) 
(c) (Trebi,Peatland) 
(d) (Svansota,Velvet) 

Optimal solutions— 

Both optimal solutions generate the 
same musters, 
namely, (Manchuria, Svansota, Velvet) 
and (Trebi, Peatland} 

(d) From Tables J3 and J5 simultaneously 

Manchuria,Velvet) 1 	 1.0 
Svansota,Velvet) 	 1.0 
Trebi) 	 1.0 
Peatland) 	 1.0 

All four subsets required; three 
musters, namely, (Manchuria, Svansota, 
Velvet), (Trebil, and (Peatland) 

• Maximum entropy estimates (see Chapter II). 
• Solutions that maximize the joint probability of the chosen subsets. 

(i) (a,c,d) 
• (ii) (b,c,d) 
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of the multi-object subsets); Manchuria also is perhaps somewhat 
different from the other pair. The Bartlett test for the equality of 
these two squared singular values (here regarded as estimates of 
variance) gives a value of 4.16, which as a chi-square with 5 DF 
is not significant. By contrast, a sitnilar decomposition of the 
residuals without any grouping of the varieties (Table X.J7) gives 
a value of 56.57, which as a chi-square with 9 DF indicates 
heterogeneity in the interaction structure. 

Table X.J7 GE interaction: an alysis of variance for the data of Table 
X.J1 with and without cultivar groupings suggested by the simultaneous 
clustering based on the Fréchet and pattern distances, together with a 
decomposition of the residuals 

Cultivars (C) 	 4 	 17.15 
Groupings (G) 	 2 	 15.88 
Within group 1 	 2 	 1.27 

Environments (L) 	 5 	 68.53 
Residual C.L 	 20 	 14.31 

(a) Without grouping 
• Singular vectors* 

1st 	 4 	 9.37 
2nd 	 5 	 2.96 
3rd 	 5 	 1.86 
4th 	 5 	 0.12 

(h) With grouping 
G.L. 	 10 	 11.72 
W.G.L 	 10 	 2.59 

Singular vectors 
1st 	 5 	 2.13 
2nd 	 5 	 0.46 

Total 	 29 	 100
• 	 (actual value 61 927.8) 

* See text. 
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K Fescue grasses 

This case study is a numerical clustering of the 44 taxa (species or 
subspecies) of Festuca known to occur in North America; the 
objective is to generate some hypotheses about possible species 
groups within the genus. The data were assembled by Dr. S.G. 
Aiken, Canadian Museum of Nature, prepared in DELTA format 
(Dallwitz and Paine 1986); the states of 91 attributes for the 44 
taxa are available in Aiken and Darbyshire (1990) and Aiken and 
Dallwitz (1991). The present study is based on 46 of the attributes 
in the file; those excluded deal with geographical and 
nomenclatorial considerations. 

Table X.K la lists the full names of the species and the 
labels used subsequently; Table X.K lb is a possible infrageneric 
classification of the genus Festuca in North America based on 
Alexeev (1980, 1985). Included are two species not mentioned by 
Alexeev, namely, F. dasyclada and F. ligulata; these have been 
assigned by Dr. Aiken on the basis of her observations and on 
comments in the taxonomic literature. 

Using the facilities provided by DELTA, the data were 
converted to dissimilarities. The effective rank (Chapter VII) of the 
array of disshnilarities generated by DELTA both before and after 

the nonmetric transformation described in Chapter VII are given in 
Table X.K2. 

There were 15 more edges in the relative neighborhood 
graph (RNG) than in the minimum spanning tree (MST); from 
these two graphs, a 2 x 2 contingency table was formed. 
Lefkovitch (1985c) described a test based on this table for 
examining the hypothesis of stability of the clustering (Table 
X.K3); the value of X2  obtained for these data is 5.482; as a chi-
squared with 1 DF, this has a probability of 0.019. The conclusion 
is that any structure that may be suggested by a clustering 
procedure may not be stable. 
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Table X.K la Fescue grasses: labels and names of taxa 

Labels 	 Name of taxon 

alta 	 F. altaica 
ariz 	 F. arizonica 
anm 	 F. arundinacea 
bail 	 F. baffinensis 
brae 	 F. brachyphylla 
brbr 	 F. brachyphylla ssp. brevicubnis 
brco 	 F. brachyphylla ssp. coloradensis 
brev 	 F. brevissima 
cali 	 F. californica 
call 	 F. colligera 
camp 	 F. campestris 
dasy 	 F. dasyclada 
cime 	 F. elmeri 
fili 	 F. fileormis 
giga 	 F. gigantea 
hall 	 F. hallii 
hype 	 F. hyperborea 
idah 	 F. idahoensis 
idro 	 F. idahoensis var. romeri 
king 	 F. kingü 
lene 	 F. lenensis 
ligu 	 F. ligulata 
minu 	 F. minutiflora 
ocoi 	 F. occidentalis 
Para 	 F. paradoxa 
prat 	 F. pratensis 
rich 	 F. richardsonii 
rubr 	 F. rubra 
rude 	 F. rubra ssp. densiu.scula 
rudi 	 F. rubra ssp. diffusa 
saxi 	 F. saximontana 
sapu 	 F. saximontana var. purpusiana 
soro 	 F. sororia 
sula 	 F. subulata 
suli 	 F. subulelora 
subv 	 F. subverticillata 

• thur 	 F. thurben 
trac 	 F. trachyphylla 
vale 	 F. valesiaca 
vers 	 F. versuta 
vird 	 F. viridula 
viii 	 F. vivipara ssp. hirsuta 
vivi 	 F. viviparoidea 
vikr 	 F. viviparoidea ssp. krajinae 
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Table X.Klb Fescue grasses: infrageneric classification in the genus 
Festuca based predominantly on Alexeev (1980, 1985) or Aiken assigned 

[1. Subgenus 1 Drymanthele Krecz. & Bobr.: F. versuta. 
(Not mentioned by Alexeev 1985)] 

2. Subgenus Subulatae (Tzvelev) E. Alexeev: 
Section Subulatae: F. sororia (Alexeev 1980), F. subulata 
Section Ebnera: F. elmeri (Alexeev 1980) 

3. Subgenus Subuliflorae E. Alexeev: F. subulelora 

4. Subgenus Schedonorus (Beauv.) Peterm.: 
Section Schedonorus: F. arundinacea, F. pratensis 
Section Plantynia (Dumort.) Tzvelev: F. gigantea 

5. Subgenus Obtusae E. Alexeev: F. paradoxa, F. subverticillata 

6. Subgenus Leucopoa (Griseb.) Hack.: F. kingii 
Section Breviaristatae: F. altaica, F. campestris, F. hallii 

[F. californica, and F. thurberi 
(Alexeev 1980), F. ligulata Aiken 
assigned] 

7. Subgenus Festuca: 
Section Festuca: F. a-  rizonica, F. baffinensis*, F. brachyphylla*, 

F. brevissima*, F. calligera, F. dasyclada, 
F. filiformis, F. hyperborea*, F. idahoensis, 
F. lenensis, F. minunflora*, F. occidentalis, 
F. richardsonii*, F. rubra, F. saximontana, 
F. trachyphylla, F. valesiaca, F. viridula, 
F. vivipara ssp. hirsuta*, F. viviparoidea 

* Arctic or high alpine species. 
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Table X.K2 Fescue grasses: estimates of rank of dissimilarity arrays 

Original 	 Transformed 
data 	 data 

0 	 42 	 24 
0.5 	12.66 	 6.64 
1.0 	 5.15 	 2.82 
2.0 	 2.01 	 1.39 

Table X.K3 Fescue grasses: test of clustering stability by comparing the 
relative neighborhood graph with the minimum spanning tree 

MST 

in 	not in 	total 

in 	43 	 15 	 58 
RNG 

not in 	0 	 888 	 888 

total 	43 	 903 	 946 

Chi-squared = (152  X 43)/(432  - 3 x 43 + 2) = 5.618 

Table X.K4 gives the first five principal coordinates computed 
from the empirical distances; they account for 51.1% of the total 
distance. The first two coordinates are plotted in Fig. X.K1. Table 
X.K5 gives the adjacent objects on the MST, the lengths .of the 
edges, and the upper tolerance of its edges, defined as the length 
each edge would have to exceed for the spanning tree to have a 
different topology. 
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Table X.K4 Fescue grasses: first five principal coordinates-- 
empirical data 

1 	 2 	 3 	 4 	 5 

Labels 	2.343377* 	1.472337 	1.019022 	0.737053 	0.593209 

alta 	0.0800 	-0.3103 	0.0212 	-0.2126 	0.0076 
ariz 	0.0627 	-0.1864 	-0.0234 	-0.1527 	0.1670 
arun 	0.1904 	0.0804 	-0.3062 	0.0642 	-0.2194 
baff 	-0.1202 	-0.0264 	0.3404 	0.1053 	-0.0225 
brac 	-0.2030 	0.3319 	0.1101 	-0.0709 	-0.0597 
brbr 	-0.3443 	0.1190 	0.0956 	-0.1434 	-0.1809 
brco 	-0.3104 	0.2054 	0.1450 	-0.1376 	-0.1166 
brev 	-0.2603 	0.2377 	0.1574 	-0.1209 	-0.1052 
call 	0.0485 	-0.3449 	-0.0673 	-0.0173 	-0.1257 
call 	-0.0198 	-0.0231 	0.1523 	0.1445 	0.0542 
camp 	-0.0455 	-0.3917 	0.0163 	-0.1366 	-0.0231 
dasy 	0.1874 	-0.0032 	0.1608 	0.1152 	0.2236 
elme 	0.3665 	0.0121 	0.0286 	0.0022 	0.0239 
fili 	-0.3417 	-0.0495 	-0.0412 	0.1432 	0.0613 
giga 	0.1802 	0.0880 	-0.3170 	0.1207 	-0.2927 
hall 	-0.0548 	-0.3334 	0.0227 	-0.1603 	-0.0784 
hype 	-0.1642 	0.2996 	0.1460 	-0.1511 	-0.0620 
idah 	-0.2120 	-0.1564 	-0.2377 	0.0607 	0.0737 
idro 	-0.1578 	-0.0800 	-0.2413 	0.0748 	-0.0073 
king 	0.0712 	-0.2881 	0.0194 	-0.2014 	-0.0389 
lene 	-0.3406 	-0.0811 	-0.0678 	0.0540 	0.0840 
ligu 	0.1957 	-0.0903 	0.1759 	0.1203 	0.2288 
minu 	-0.1536 	0.0284 	0.3211 	-0.0672 	-0.1482 
occi 	0.0624 	-0.0066 	0.1740 	0.1804 	0.0117 
para 	0.3240 	0.1048 	0.1199 	0.0559 	-0.0511 
prat 	0.1972 	0.1701 	-0.2873 	0.0883 	-0.1287 
rich 	0.0199 	0.2405 	-0.1259 	-0.1595 	0.2117 
rubr 	0.0735 	0.2629 	-0.1365 	-0.1654 	0.1846 
rude 	0.0952 	0.2426 	-0.1441 	-0.2428 	0.1459 
rudi 	0.1212 	0.2628 	-0.1489 	-0.1459 	0.1769 
saxi 	-0.3231 	0.0061 	-0.0492 	0.1376 	-0.0119 
sapu 	-0.3317 	0.0039 	-0.0469 	0.1314 	-0.0088 
soro 	0.3778 	0.0518 	0.0427 	0.0586 	-0.0227 
sula 	0.3266 	-0.0421 	0.0603 	0.0679 	-0.0048 
suli 	0.3558 	-0.0125 	0.0147 	-0.0109 	-0.0493 
subv 	0.2833 	0.0696 	0.1597 	0.1025 	-0.1161 
thur 	0.1003 	-0.2930 	-0.0196 	-0.2292 	-0.0121 
trac 	-0.2833 	-0.0879 	-0.1765 	0.1126 	0.0906 
vale 	-0.3325 	-0.0513 	-0.0903 	0.1378 	0.0711 
vers 	0.3409 	0.0166 	0.0724 	0.1452 	-0.0113 
vird 	0.1452 	-0.0382 	0.0325 	0.1276 	0.0744 
vihi 	-0.2974 	-0.0806 	-0.1022 	0.0472 	0.0178 
vivi 	-0.2723 	-0.1084 	0.1068 	0.1387 	0.0815 
vikr 	-0.0589 	0.2774 	-0.0263 	0.1065 	0.0673 

* Eigenvalue. 
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Fig. X.K1 Fescue grasses: empirical distances; oaordinate 1 is horizontal, and 
2 is vertical; horizontal and vertical limits are both  (-039168,0.39168). 

The 58 pairs of species in the RNG were used to generate 
subsets. The relationships in the reduction process are given in 
Table X.K6. Table X.K7 gives the remaining generated subsets and 
indicates those objects that form the rows of the reduced array. 
Table X.K8 lists the membership of the musters formed from Table 
X.K7, while Table X.K9 gives the subset and object probabilities 
(note that a probability of unity indicates a mandatory object or 
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Table X.K5 Fescue grasses: minimum spanning tree as linked list, and 
printed to show relationships 

Object 	Object Distance 	Upper tolerance 

alta 	camp 0.54610 	 0.58405 
camp 	cali 0.59254 	 0.68079 
camp 	hall 0.56824 	 0.58405 
camp 	vivi 0.64333 	 0.66321 
vivi 	baff 0.53464 	 0.65450 
baff 	call 0.58469 	 0.65450 
call 	occi 0.46475 	 0.65450 
call 	vird 0.51276 	 0.66241 

	

vird 	vers 0.59598 	 0.66241 

	

vers 	dasy 0.61073 	 0.64757 

	

dasy 	ligu 0.52932 	 0.75561 

	

vers 	para 0.57091 	.0.64757 

	

para 	soro 0.54144 	 0.62707 

	

soro 	elme 0.54989 	 0.58937 
elme 	suli 0.48389 	 0.58937 

	

soro 	sula 0.56379 	 0.64757 

	

para 	subv 0.54167 	 0.62707 
vivi 	lene 0.46937 	 0.65450 
lene 	vale 0.41553 	 0.65450 
vale 	fili 0.38463 	 0.74641 
vale 	saxi 0.35907 	 0.65450 
saxi 	sapu 0.25839 	 0.65450 

	

sapu 	brbr 0.53813 	 0.65450 

	

brbr 	brco 0.42259 	 0.65450 

	

brco 	brev 0.44625 	 0.66772 
brev 	brac 0.43719 	 0.66772 
brac 	hype 0.46824 	 0.71263 
brac 	vikr 0.54249 	 0.69223 
vikr 	rubr 0.59623 	 0.69223 
rubr 	prat 0.66153 	 0.71997 
prat 	arun 0.54392 	 0.85506 
prat 	giga_0._60973 	 0.66046 

0.54311 
rubr 	rudi 0.50903 	 0.54311 
rudi 	rich 0.50146 	 0.69223 

brco 	minu 0.52157 	 0.66772 
vale 	trac 0.41669 	 0.60154 
trac 	idah 0.46202 	 0.60154 
idah 	idro 0.40395 	 0.60154 

vale 	vihi 0.48566 	 0.55718 
alta 	king 0.55281 	 0.73870 
alta 	thur 0.53907 	 0.70910 
thur 	ariz 0.60408 	 0.70910 

Notes: There are 18 vertices of degree unity. 

Length of minimum spanning tree = 22.10061 
Sum of tolerances 	 = 28.23793 

Let x = (upper tolerance/distance) 
Mean (logit(x)) 	 = 132436 
Variance (logit(x)) 	 = 0.76417 

In complete graph: smallest dissimilarity = 0.25839 
average dissimilarity = 0.74073 
largest dissimilarity = 0.91696. 
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subset; a probability of zero indicates an object eliminated by the 
reductions of Table X.K6). Table X.K10 gives the subsets in 
the maximum joint probability covering, and Table X.K11 gives-
the musters formed from the covering; the latter musters are nested 
within those of Table X.K8. Tables X.K12 and K13 give the 
covering and musters obtained from the maximum information 
solution for the same subsets and probabilities as in Tables X.K7 
and K9. 

The process was then repeated after the RNG (nonmetric) 
transformation (Chapter VII) of the dissimilarities, but beca.use 
most of the generated subsets contained just two objects, the results 
are omitted from this summary The rejection of the transformed 
data for these purposes emphasizes again that clustering is a 
hypothesis-generating procedure; note below, however, the result 
obtained using a dendrogram procedure with the transformed data. 

Table X.K6 Fescue grasses: conditional clustering (55 initiating pairs 
were used) 

Reduction relationships 

{alta king } * fariz ariz) 	{arun giga} 	(baff minu) 
(brac hyPe) 	{brbr brbr} 	fbrco brbr) 	{brev brev} 
( can_ call) 	{call occi) 	(camp call) 	{dasy dasy} 
(elme elme) 	(f iii lexie). 	{giga giga) 	{hall call) 
(hype hype) 	(idah vihi) 	(idro idahl 	(king king) 
flene 	 fligu dasy) 	{minu minu} 	focci'occil 
(para subv) 	{prat arunl 	(rich rich} 	{rubr rude) 
( rude rude) 	{rudi rich) 	{saxi vihi) 	{sapu saxi} 
(soro sula) 	(sula sula) 	(suli elme) 	{subv subv} 
{thur ariz) 	(trac vihi) 	(vale fili) 	(vers vers) 
(vird vird) 	(vihi vihi) 	(vivi vihi) 	(vikr vikr) 

* The second name in each pair is the retained object in the reduced array. 
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Table X.K7 Fescue grasses: empirical data (39 subsets generated and 26 
remain after reductions) 

Subset number 

00000000011111111112222222 
Label 	12345678901234567890123456 

alta 	 1  
> ariz 	 1 

arun 	 1  
baff 	1  
brac 	...11 ........... .....1.... 

> -brbr 	 1  
brco 	1  

> brev 	1 1  
> cali 	 1  

call 	1.1....11 	  
camp 	 1 	 

> dasy 	11 	  
> elme 	 111 	  

fili 	 1 	 
> giga 	 1 	 

hall 	 1 	 
> hype 	 1 	 

idàh 	 1 	 
idro 	 1-  

> king 	 1 	 
lene 	 1 	 
ligu 	11 	  

> minu 	 1 	 
> occi 	1.1 	1 	  

para 	 11 	  
prat 	 1 	 

> rich 	 11 	 
rubr 	1 	 1 	 

> rude 	1 	 1 	 
rudi 	 11 	 
saxi 	 1 	 
sapu 	 1 	 
soro 	 111 	  

> sula 	 111 	  
suli 	 111 	  

> subv 	 11 	  
thur 	 1 	1 
trac 	 1 	 
vale 	 1-  

> vers _1..1 	  . 
> vird 	1 	1 1 	  
> vihi 	 1 	 

vivi 	1 	 1 	 
> vikr 	1 	1 	  

> Indicates presence in the reduced array. 



Table X.K8 Fescue grasses: musters (the union of intersecting subsets) 

Muster Size 	Content 

1 	30 	baff brac brbr brco brev call dasy elme fili hype idah idro lene ligu minu 
occi para saxi sapu soro sula sull subv trac vale vers vird vihi vivi vikr 

2 	4 	rich rubr rude rudi 
3 	4 	alta ariz king thur 
4 	3 	arun giga prat 
5 	3 	cali camp hall 

Table X.K9 Fescue grasses 

(a) Estimated subset covering probabilities 

entropy = 4.006292 bits (i.e., using log 2 ) 

Subset Probability 

1 	0.111451 
6 	0.068441 

11 	0.073090 
16 	0.037475 
21 	1.000000 
26 	1.000000 

	

2 	0.040046 	3 	0.037068 

	

7 	0.041717 	8 	0.037068 

	

12 	0.034473 	13 	0.068947 

	

17 	0.040046 	18 	0.080093 

	

22 	1.000000 	23 	1.000000 

	

4 	0.041717 

	

9 	0.035702 

	

14 	0.139160 

	

19 	1.000000 

	

24 	1.000000 

	

5 	0.038681 

	

10 	0.040351 

	

15 	0.034473 

	

20 	1.000000 

	

25 	1.000000 

(b) Estimated object representation probabilities 
entropy = 3.455464 bits 

Species Probability 

alta 	0.000000 	ariz 	1.000000 	arun 	0.000000 	baff 	0.000000 	brac 	0.000000 
brbr 	1.000000 	brco 	0.000000 	brev 	0.101065 	cali 	1.000000 	call 	0.000000 
camp 	0.000000 	dasy 	0.097757 	elme 	0.083517 	fili 	0.000000 	giga 	1.000000 
hall 	0.000000 	hype 	1.000000 	idah 	0.000000 	idro 	0.000000 	king 	1.000000 
lene 	0.000000 	llgu 	0.000000 	minu 	1.000000 	occi 	0.089802 	para 	0.000000 
prat 	0.000000 	rich 	0.097018 	rubr 	0.000000 	rude 	0.097018 	rudi 	0.000000 
saxi 	0.000000 	sapu 	0.000000 	soro 	0.000000 	sula 	0.083517 	suli 	0.000000 
subv 	0.090788 	thur 	0.000000 	trac 	0.000000 	vale 	0.000000 	vers 	0.079315 
vird 	0.086493 	vihi 	1.000000 	vivi 	0.000000 	vikr 	0.093711 
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Table X.K10 Fescue grasses: maximum joint probability solution 

Solution subset numbers* 

0000000001111 
Label 	 1234567890123 

alta ..... 
ariz   .1 
arun . ......  1... 
baff 
brac 	 ...... 
brbr 	 ..... ....I. 
brco 	 . . ..... 	.1. 
brev 	 .1 ..... 
cali 	 1 
call 	 1 ..... ....... 
camp 	 1 
dasy 	 1 	  
elme 	 .1 
fili  	11 	 
giga 1 
hall 	

...... ... 
.1 

hype   .1 
idah 	 . .... 1....... 
idro 	 1  
king   1 	 
lene 	1 	 
ligu 	 1. 
minu 	 ......1 ..... 	 
occi 	 1 	  
para 	 ... . 	 
prat 	 1 	 
rich 	 1. 	 
rubr 	 ....I. . ..... 	 
rude 	 ... .1. ..... 
rudi 	 ....1 	 
SaX1 	 . . . . . 1 ... . . . 	 
sapu 	 ..... 
soro 	 1 	 
sula 	 ...1 ...... 
suli 	 ...1 ...... 
subv 	 ...1 	 
thur 
trac 
vale 
vers . ...... 
vird 	 1.. ..... 
vihi 
vivi 
vikr ..... 

Notes: —log joint probability (all subsets) 	= 53.856590 
—log joint probability (inedundant ceering) = 12.483777 

* This irredundant cover contains 13 subsets; it is  hot a partition. 
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Table X.K11 Fescue grasses 

(a) Probabilities of subsets in the cover (Table X.K10) 
Entropy = 1.507503 bits 

	

1 0.111451 	2 0.041717 	3 0.073090 	4 0.139160 	5 0.080093 

	

6 1.000000 	7 1.000000 	8 1.000000 	9 1.000000 10 1.000000 
11 1.000000 12 1.000000 13 1.000000 

(b) Musters formed from dwiirredundantcovefing 
Muster 	Size 	Content 

1 	4 	call occi vird vikr 
2 	3 	brac brev hype 
3 	9 	dasy elme ligu para soro sula suli subv vers 
4 	4 	rich rubr rude rudi 
5 	10 	fili idah idro lene saxi sapu trac vale vihi vivi 
6 	2 	baff minu 
7 	4 	alta ariz king thur 
8 	3 	arun giga prat 
9 	3 	caii camp hall 

10 	2 	brbr brco 

Table X.K12 Fescue grasses: maximum information (= minimum entropy) 
solution 

Solution subset numbers* 

000000000111111 
Label 	123456789012345 

alta 	 1  
ariz 	 1 
arun 	 1  
baff 	 1 	
brac 	 .11 ....... 1 	 
brbr 	 1  
brco 	 1  
brev 	 .1 	  
cali 	 1 	 
call 	 1  1 	  
camp 	 1 	 
dasy 	 1 	  
elme 	 1 	 
fili 	 1 	 
giga 
hail 	

1 	 
1 	 

hype 	 1 	 
idah 	 1 	 
idro 	 1 	 
king 	 1 	 
lene 	 1 	 
ligu 	 1 	  
minu 	 1 	 
occi 	 1 	  
para 	 1 	 
prat 	 1 	 
rich 	 1 	 
rubr 	 1 	 
rude 	 1 	 
rudi 	 1 	 
saxi 	 1 	 
sapu 	 .......1 	 
SOLO 	 1 	 
sula 	 1 	 
suli 	 1 	 
subv 	 1 	 
thur 	 1 	1 
trac 	 1 	 
vale 	 1 	 
vers 	 1 	 
vird 	 1 	  
vihi 	 1 	 
vivi 	 1 	1 	 
vikr 	 1 	  

• Note: This  irrechindant cover contains 15 illness; it is not a partition. 
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Table X.K13 Fescue grasses 

(a) Probabilities of subsets in the cover (Table X.K12) 

Entropy = 1.595083 bits 

	

1 	0.037068 	2 	0.041717 	3 	0.038681 

	

4 	0.035702 	5 	0.040351 	6 	0.139160 

	

7 	0.080093 	8 	1.000000 	9 	1.000000 

	

10 	1.000000 11 	1.000000 12 	1.000000 

	

13 	1.000000 14 	1.000000 15 	1.000000 

(b) Musters formed from the irredundant covering 

Muster Size Content 

1 	15 	baff call fili idah idro lene minu occi 
saxi sapu trac vale vird vihi vivi 

2 	4 	brac brev hype vikr 
3 	2 	dasy ligu 
4 	7 	elme para soro sula suli subv vers 
5 	4 	rich rubr rude rudi 
6 	4 	alta ariz king thur 
7 	3 	arun giga prat 
8 	3 	cali camp hall 
9 	2 	• brbr brco 

Table X.K14 is a summary of the musters formed from the 
subsets using the untransformed data, and after obtaining the 
optimal covering for both the maximum joint probability and 
information solutions, together with the subgeneric and sectional 
groupings of Table X.K1b. Using the labels of the groups in Table 
X.K14, groups la, lb, id,  le, lf, 2, 4, and 5 can be regarded as 
consistent with the classification in Table X.K1b, even though there 
is more resolution; for example, perhaps group lf "ought" to be 
together with group lb to bring toge .ther the two subspecies and the 
main form. The two groups inconsistent with the Table X.Klb 
classification are lc and 3. In considering group lc, Aiken had 



lb 

lc 

ld 

le 
F. baffinensis 
F. mdnutiflora 

161 	7 	1 
161 	7 	1 
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Table X.K14 Fescue grasses: musters formed from the generated subsets 
(M), from the optimal covering based on joint probability (P) and from 
the optimal covering based on maximum information, compared with the 
subgeneric (Sg) and sectional classification within each subgenus (Se) 
proposed by Aiken (pers. comm. 1992). 

Group Species 	 M P I 	Sg Se 

la 
F. calligera 	 1 1 1 	7 	1 
F. occidentalis 	 1 1 1 	7 	1 
F. viridula, 	 1 1 1 	7 	1 
F. viviparoidea 

ssp. krajinae 	 1 1 2 	7 	1 

F. brachyphylla 	 1 2 2 	7 1 
F. brevissima 	 1 2 2 	7 	1 
F. hyperborea 	 1 2 2 	7 1 

F. versuta 	 1 3 4 	1 	1 
F. sororia 	 134 	2 	1 
F. subulata 	 1 3 4 	2 	1 
F. elmeri 	 1 3 4 	2 2 
F. subuliflora 	 1 3 4 	3 	1 
F. peradoxa 	 1 3 .4 	5 	1 
F. subverticillata 	 1 3 4 	5 	1 
F. ligulata 	 1 3 3 	6 	2 
F. dasyclada 	 1 3 3 	7 -  1 

F. filiformis 	 1 5 1 	7 	1 
F. idahoensis 	 1 5 1 	7 	1 
F. idahoensis 

var. romeri 	 1 5 1 	7 	1 
F. lenensis 	 1 5 1 	7 	1 
F. saximontana 	 1 5 1 	7 	1 
F. seximontana 

var. purpusiana 	 1 5 1 	7 	1 
F. trachyphylla 	 1 5 1 	7 1 
F. valesiaca 	 1 5 1 	7 	1 
F. vivipara ssp. hirsuta 	1 5 1 	7 	1 
F. viviparoidea 	 1 5 1 	7 	1 

(continued) 



4 

3 
F. kingii 
F. thurberi 
F. altaica 
F. arizonica 

F. arundinacea 
F. pratensis 
F. gigantea 

5 
F. californica 
F. campestris 
F. hallii 

376 	6 	1 
37  6 	6 	2 
3 7 6 	6 	2 
376 	7 	1 

487 	4 	1 
487 	4 	1 
487 	4 	2 

598 	6 	2 
598 	6 	2 
598 	6 	2 
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Table X.K14 (concluded) 

Group Species 	 M P I 	Sg Se 

1f 
F. brachyphylla 

ssp. breviculmis 	1 10 9 	7 	1 
F. brachyphylla 

ssp. coloradensis 	1 10 9 	7 	1 

2 
F. richardsonii 	 2 4 5 	7 	1 
F. rubra 	 245 	7 	1 
F. rubra ssp. densiuscul.a 	2 4 5 	7 	1 
F. rubra ssp. diffusa 	 2 4 5 	7 	1 

assigned F. da.syclada to subgenus Festuca because previous 
analyses suggested that affiliation, and because it also has the 
subgenus Festuca seed protein band (this set of attributes was not 
included in the present study). However, the species has been put 
into a monophyletic genus, Argillochloa, by Weber (1984). All 
group lc, other than  F.  dasyclada, have flat leaves, most (including 
this species) have hairy ovaries, rhizomes, and long anthers, as well 
as other character states in common; if this group is genuinely 
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more heterogeneous than the others, the explanation may be that it 
is the result of the particular subset of attributes used in calculating 
the dissimilarities. The presence of F. arizonica in group 3 (the 
other three of this group are consistent with Table X.K1b) raises 
another interesting point, because this species may be a hybrid 
between F. calligera (group la) and F. idahoensis (group 1d), so 
that they forrn a natural group together with F. occidentalis. Again, 
the set of attributes used may be the reason for this separation. 

The conditional clustering of the data has generated some 
interesting questions about the relationships in the genus and, if the 
Table X.K lb classification is the truth, has demonstrated the 
importance of the choice of attributes for a taxonomic study. 
Conversely, if the groupings in Table X.K14 are a better 
approximation to the truth, this conclusion raises the need to 
reconsider the relationships within this genus, at least for the North 
American flora. 

In this book, I have not used any other clustering methods 
to the data in any of the case studies. For interest, two familiar 
methods are now used for the Festuca data. Neither the single-
linkage nor unweighted average linkage clustering methods 
suggested much structure in the untransforrned data, although there 
was more apparent resolution into hierarchical levels for the 
average-linkage procedure applied to the transformed data than any 
other of the "classical," agglomerative, sequential clustering (i.e.,. 
dendrogram-forming) methods. Fig. X.IC2 gives the single linkage 
dendrogram (which is by necessity identical in both the empirical 
and transformed .  data). Fig. X.K3 gives the average linkage 
dendrogram for the transformed data. Comparison of them with the 
conditional subsets solution requires that the dendrogram be cut at 
an appropriate level; this choice is left to the reader. 
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alta 
camp 
king 
thur 
hall 
ariz 
cali 
baff 
fili 
saxi 
sapu 
vale 
trac 
lene 
idah 
idro 
vivi 
vihi 
brac 
brev 
brbr 
brco 
hype 
minu 
vikr 
call 
occi 
vird 
rich 
rudi 
rubr 
rude 
dasy 
ligu 
elme 
suli 
SOTO 
para 
subv 
vers 
sula 
arun 
prat 
giga 

Fig. X.K2 Fescue grasses: single linlcage dendrograin. 
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alta 
thur 
king 
cali 
camp 
hall 
ariz 
idah 
idro 
trac 
baff 
minu 
call 
occi 
dasy 
ligu 
fili 
vale 
saxi 
sapu 
vihi 
lene 
vivi 
arun 
prat 
giga 
elme 
suli 
vers 
vird 
para 
SOTO 
subv 
sula 
rich 
rudi 
rubr 
rudè 
vikr 
brac 
brev 
hype 
brbr 
brco 

Fig. X.K3 Fescue grasses: transfonned data, average linicage dendrogram. 
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L Cabbages 

These data consist of observations made available to me by 
Dr. S.I. Warwick, Agriculture Canada, and are included in 
Warwick and Black (1991). The data consist of 223 restriction-site 
polymorphisms of the chloroplast DNA measured on 15 taxa 
belonging to Brassica, Sinapis, and Raphanus (Table X.L1). The 
objec tive of this case study is to illustrate the effects on the 
groupings based on dissimilarities determined from the Jaccard 
similarity (see Chapter W), initially using all 223 attributes, and 
then just the 37 distinct patterns. A secondary objective is to 
illustrate the use of some consensus procedures. 

The frequency and incidence of the 37 distinct patterns are 
given in Table X.L2a and b. Table X.L2b, which has been sorted 
first by rows and then on the columns, presents a clear picture of 
potential relationships. After the reductions on the pattern array, 
nine species remain (Table X.L2c and d). 

The two sets of Jaccard similarities were computed and 
converted to dissimilarities by the negative of their natural 
logarithms, with similarities of zero assigned a (large) value (of 
9.9999); the two sets of values are given in Tables X.L2e and L2f. 
Conditional clustering (Chapter VIII) was performed on both sets, 
both before and after the nonmetric transformation described in 
Chapter VII. The results, which are sununarized in Table X.L3, 
show that one covering solution is also a partition, and also that 
partitions exist among the generated subsets for the remaining 
three. 

The consensus method based on adjoining the incidence 
arrays of the optimal coverings (Chapter II) was then used to 
obtain final groupings. Two virtually identical solutions were 
obtained after reductions performed on this array (Table X.L4), 
which not only are consistent with each other but also suggest that 
two of the three subsets in the solutions may be more alike than is 
either to the third. A comparison among the covering and 



7 

8 
10 
10 

9 
9 
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consensus solutions, the musters and the sectional taxonomy in 
Table X.L1 is not without interest and is left to the reader. Other 
analyses of these data are given by Warwick and Black (1991). 

Table X.L1 Cabbages: abbreviations, names, sectional taxonomy and 
chromosome number (n, not 2n) of taxa studied 

Code 	Genus, section, and species 

Sinapis section Eriosinàpis (perennials) 
PUB1 	S. pmbescens ssp. pmbescens 	 9 
PU32 	S. pmbescens ssp. virgata 	 9 
ARIS 	S. aristidis 	 9 
INBV 	S. indurata and S. boivinii 	 18 

Sinapis section Sinapis (annuals) 
ALBA 	S. alba ssp. alpa and ssp. mairei 	 6 
FLEX 	S. flexuousa 	 6 

Sinapis section Ceratosinapis (annuals) 
ARVN 	S. arvensis ssp. arvensis 

and ssp. ni/otica 

Sinapis section Chondrosinapis 
AUCH 	S. aucheri 

Brassica 
NIGR 	B. nigra 
PAPA 	B. campestris 
ORIN 	B. campestris, oriental type 
OLER 	B. oleracea 
ALBO 	B. alboglabra 

Raphanus 
RRAP 	R. raphanistrum 
RSAT 	R. sativus 
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Table X.L2 Cabbages: restriction site polymorphisms of chloroplast 
DNA for some Brassica, Sinapis, and Raphanus species 

(a) Frequencies of the 37 distinct patterns in (b) 

9,1,3,11,1,13,1,1,1,1,1,11,1,1,1,7,38,1, 
1,4,5,1,10,2,1,21,7,1,9,1,1,19,3,1,31,1,1 

(b) Species abbreviations and partly sorted incidence matrix 

Distinct patterns 

0000000001111111111222222222233333333 
1234567890123456789012345678901234567 

ARVN 111111 	  
ALBA 1 	111111 	  
FLEX 1 	111111 	  
NIGR 1111  1 	1111 	  
AUCH 	....1 ....... 11..1111111 	  
RAPA 
ORIN 	.1..1..11...1...1111...1111 	  
ALBO 	.1..1 ....... 1...1111...111.111 	 
OLER 	.1..1 ....... 1...1111...111.11 	 
RRAP 	.1..1 ....... 1...1...1..1 ...... 111 	 
RSAT 	 ...... 11.1 	 
PUB1 	..1.1.1...1...1...1..1..1..1 ...... 1 	 
INBV 	..1.1.1...1...1...1..1..1..1 ...... 11 	 
PUB2 	..1.1.1...1...1...1..1..1..1 .... . . 111 
ARIS 	..1.1.1...1...1...1..1..1..1..1...11. 

(c) Reductions 
1. Delete ALBA: identical with FLEX. 
2. Delete ORIN: covered by RAPA. 
3. Delete ALBO: covered by OLER. 
4. Delete PUB2, INVB, ARIS: covered by PUB1. 
5. Delete 13, 34, 37: empty. 

(d) Rtmainingspecies: {ARVN, FLEX, NIGR, AUCH, RAPA, 

OLER, RRAP, RSAT, PUB1}. 
Remaining patterns: (1-12, 14-33, 35, 361. 



Table X.L2(e) Matrix of distances based on all the data (maximum value 9.9999 e- similarity = 0) 

1 
2 2.4849 
3 2.4849 0.0000 
4 1.0116 1.9459 1.9459 
5 2.7081 9.9999 9.9999 2.1401 
6 2.0794 2.8904 2.8904 2.2513 0.9808 
7 2.1401 2.1972 2.1972 2.3026 1.0415 0.0800 
8 2.1401 9.9999 9.9999 2.3026 1.0415 0.4055 0.4700 
9 2.0794 9.9999 9.9999 2.2513 0.9808 0.3365 0.4055 0.0800 
10 1.8718 9.9999 9.9999 2.0794 1.3218 1.1632 1.2238 1.2238 1.1632 
11 2.0149 2.8332 2.8332 2.1972 1.1632 1.0415 1.0986 1.0986 1.0415 0.4055 
12 1.9459 2.0149 2.0149 1.6740 1.7346 1.8458 1.8971 1.5581 1.5041 2.8904 2.9957 
13 2.0149 2.0794 2.0794 1.7346 1.7918 1.8971 1.9459 1.6094 1.5581 2.9444 3.0445 0.0953 
14 2.0794 2.1401 2.1401 1.7918 1.8458 1.9459 1.9924 1.6582 1.6094 2.9957 3.0910 0.1823 0.0870 
15 2.0794 2.1401 2.1401 1.7918 1.8458 1.9459 1.9924 1.6582 1.6094 2.2513 2.3514 0.1823 0.0870 0.1671 

Table X.L2(1) Matrix of distances based on the distinct patterns 

1 
2 1.7918 
3 1.7918 0.0000 
4 0.7138 1.6094 1.6094 
5 4.6052 9.9999 9.9999 3.8712 
6 4.0518 4.6347 4.6347 4.0254 0.7357 
7 4.0604 3.9416 3.9416 4.0342 0.7461 0.0126 
8 4.0775 9.9999 9.9999 4.0518 0.7665 0.2371 0.2482 
9 4.0690 9.9999 9.9999 4.0431 0.7563 0.2260 0.2371 0.0123 

10 3.9797 9.9999 9.9999 3.9512 0.6820 0.9116 0.9209 0.9393 0.9301 
11 3.9797 4.5539 4.5539 3.9512 0.6487 0.8792 0.8886 0.9072 0.8979 0.0846 
12 2.9444 3.4812 3.4812 2.6672 3.5264 3.6721 3.6805 3.4012 3.3928 4.7185 4.7185 
13 2.9575 3.4965 3.4965 2.6810 3.5361 3.6805 3.6889 3.4095 3.4012 4.7274 4.7274 0.0235 
14 2.9704 3.5115 3.5115 2.6946 3.5458 3.6889 3.6972 3.4177 3.4095 4.7362 4.7362 0.0465 0.0230 
15 2.9704 3.5115 3.5115 2.6946 3.5458 3.6889 3.6972 3.4177 3.4095 4.0342 4.0342 0.0465 0.0230 0.0455 



Transformation Without With Without With 

5 
19 

9 

2 
16 
11 

6 
16 
11 

4 
19 
10 

Covering 
solution 	as the musters 

Partition 	as above 

-loge (joint 
probability) 

All sybsets 
Covering 
Partition 

3.466 
0.693 
0.693 

Table X.L3 Cabbages: various covering solutions for the chloroplast DNA data 

All data Distinct patterns 

Rank 
Edges in RNG 
Subsets generated 
and remaining 

Musters 	 1. 

2. 
3. 
4. 
5. 
6. 
7. 

RAPA,ORIN, 
ALBO rARIS) « 

 I

PUB2,ARISI 
POB1,INVB) 
AUCHIALBO, 

I RRAP,RSAT ALBA,FLEXI 
ARVN,NIGR 

1. (ARVN,NIGR 
PUB1,/NVB 
PUB2,ARIS) 

2. (RAPA,ORIN 
OLER} 

3. IRRAP,RSAT) 
4. AUCH) 
5. ALBA,FLEX) 

2-5 above 
1. (ARVN,NIGR) 
6. (NIGR,PUB1, 

INBV PUB2, 
ARISi 

1-5 .  above 
7. (PUB1,INVB) 
8. (PUB2,ARIS) 

11.090 
2.773 
5.545 

I. (ARVNI ALBA, 
FLEX,NIGR, 
PUB1,INVB, 
PUB2 tARIS) 

2. (AUCHtRAPA, 
ORIN,ALBO, 
OLER,RRAP, 

_RSAT1 

1 above 
3. (AUCH,RRAP, 

RSAT) 
4. (AUCH,RAPA, 

ORIN,ALBO, 
OLER) 

1,4 above 
5. (RRAP,RSAT) 

27.901 
5.456 
6.087 

1. (ARVN,NIGR, 
PUB1,INVB, 
PUB2 tARIS) 

2. (AUCH,RAPA, 
-ORIN,ALBO, 
OLER,RRAP, 
RSAT) • 

3. (ALBA,FLEX) 

1 and 3 aboyé 
(AUCH,RRAP, 
RSAT) 

5. (AUCH,RAPA, 
ORIN,ALBO, 
OLER) 

1,3,4 above 
6. (RAPA,ORIN, 

ALBO,OLER) 

24.108 
5.394 
5.821 



Table X.L4 Cabbages: subsets forming the optimal coverings 

All data  Transformed data 	 Consensus solutions 

Species 	Without 	With 	 Without 	With 	 1 	2 

ARVN 	1 	1 	 1 . . 	 1 . . . 	 1 . . 	1 . . 
ALBA 	 1 	 1 . . 	 . . .1 	 1 . . 	1 . . 
FLEX 	 1 	 1 . . 	 . . .1 	 1 . . 	1 . . 
NIGR 	1 	1 . . . .1 	 1 . . 	 1 . . . 	 1 . . 	1 . . 
AUCH 	 .11 	 .11. 	 . .1 	. .1 
FtAPA 	 1 	 . .1 	 .  .1. 	 . .1 	.1.  
ORIN 	 1 	 . .1 	 . .1. 	 . .1 	.1.  
ALBO 	 1 	 . .1 	 . .1. 	 . .1 	.1.  
OLER 	 1 	 . .1 	 . .1. 	 . .1 	.1.  
RRAP 	 .1. 	 .1 . . 	 .1. 	. .1 
RSAT 	 .1. 	 .1 . . 	 .1. 	. .1 
PUB1 	 1 	 1 . . 	 1 . . . 	 1 . . 	1 . . 
INBV 	 1 	 1 . . 	 1 . . . 	 1 . . 	1 . . 
PUB2 	 .1 	1 	 1 . . 	 1 . . . 	 1 . . 	1 . . 
ARIS 	‘ 	.1  	1  • 	 1 . . 	 1 . . . 	 1 . . 	1 . . 
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M Beetles 

This case study shows that it is possible to obtain a unique minimal 
covering without recourse to the probabilities. The data consist of 
a set of 17 attributes coded by Sharkey (1989) for 24 species of the 
beetle genus Hoplicnema from published data (Table X.M1). At the 
end of the reduction process, which required about 5 minutes to do 
by hand and which is given in Table X.M2, the array is reduced to 
two rows and three columns (Table X.M3a). Clearly, the most 
parsimonious choice from this array is given by column 15. The 
unique minimal covering (Table X.M3b), which consists of the 
subsets indicated by the elements of x equal to unity, is not a 
partition. It should be understood that these attributes are not 
necessarily of special importance, but only that the species covered 
by them show some logical patterns in their attributes. The last step 
in the reduction process (Table X.M2) states that attributes 4 and 
16 are identical; this remark refers .to the array after the previouS 
reductions, because this statetnent is not true of the original data. 
If a least cost (rather than a minimal) covering is to be chosen, the 
costs of including these attributes need to be obtained, so that the 
attribute of the two with the lower cost is selected. However, since 
attribute 15 appears to make either of attributes 4 and 16 
redundant, perhaps the issue is moot. 



1 and 2 uniform 
3,5, and 6 identical 
A covers B 
C covers D 
E covers (F-Q1 
R covers S and T 
U covers V, W, and X 
7,8,10,13,14,17 emptied 
A, C, and E in one subset each 

4 and 16 identical 

Delete 1 and 2 
Delete 5 and 6 
Delete B 
Delete D 
Delete IF-Q1 
Delete S and T 
Delete V, W, and X 
All deleted 
Set xi = xu  = xi = 1; 
delete 3,9,11,A,C,E 
Delete 16 

Condition Action 

A 

D 

G 
H 

J 

0 
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Table X.M1 Beetles: data matrix for Hoplicnema (24 species, 17 
attributes), after Sharkey (1989) 

Attribute numbers 

00000000011111111 
Code Species 	 12345678901234567 

amplissima 	 111.11 	  
debrae 	 111.11 	  
fundita 	 11 	1 	 
lata 	 11 	11 	 
brasilensis 	 11 	1 	 
panamensis 	 11 	1 	 
insularis 	 11 ...... 1...1.1 	 
puertoricensis 	11 ...... 1...1.1 	 
maya 	 11 	1 	1  
matthewsi 	 11 	1.1...1.. 
woldai 	 11 	1 	11 
darlingtoni 	 11 	11....11. 
sallaei 	 11 	1111.1111 
spinivmnter 	 11 	1111.1111 
aguilonaria 	 11....1 	1111..11. 
cubensis 	 11....1 	11.1..11. 
thomasi 	 11....1 	11.1..11. 
jamaicensis 	 11 ....... _1..1.. 
affluens 	 11 	 1  11 
impunctata 	 11....1....1..11. 
media 	 11.1 	 11 
schwarzi 	 11.1 	 11 
hesperia 	 11.1...1 	11. 
minima 	 11.1...1 	11. 

Table X.M2 Beetles: reduction sequence 
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Table X.M3 Beetles: 

(a) Reduced array 

Attribute 
numbers 

011 
Code Species 	 425 

jamaicensis 
media 

(b) Minimal  covering 
x3  = fA, 131 	 : k9  = (E-Q) 
xn  = {C, D, j, M, N, 0}: xn  = {G-X} 

.11 
1.1 

N Blood and language 

This case study looks at the average genetic distances among 
speakers of different language groups. The distances were 
calculated from frequency data for blood antigens, enzymes, and 

proteliis of 26 genetic systems, from among 3369 localities across 
Europe which had been assigned to one of 12 language-family 
affiliations by Harding and Sokal (1988). They considered the 
estimates of the first nine (Table X.N1a) of the twelve language-
groups to be more reliable than those of the remaining three, which 
they described as furnishing "unreliable estimates of distances" 
because they are based on 2, 3, and 7 systems, respectively. These 
three (Baltic, Albanian, and Semitic) are omitted from Table X.N1; 
in the original data for Baltic and Albanian, the corresponding rows 
were complete, but there were tnissing data for the Baltic—Semitic, 
the Albanian—Semitic, and within-Semitic distances. The first series 
of analyses is confined to the nine; the second gives an example of 
the unfolding procedure (Chapter VII) for replacing missing values. 
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Table X.N1 Blood 

(a) matrix of dissimilarities (based on blood groups) among speakers of 
different language  familles  transformed from those given by Harding and 
Sokal (1988) 

Language 
family 

Germanic .000 
Romance 	.142 	.000 
Slavic 	.099 	.179 0.000 
Finnic 	.389 	.375 0.419 0.000 
Ugric 	.178 	.272 0.027 0.410 0.000 
Greek 	.414 	.246 0.329 0.487 0.371 0.000 
Celtic 	.037 	.094 0.089 0.445 0.275 0.454 0.000 
Basque 	.42B 	.457 0.510 0.906 0.785 0.782 0.340 0.000 
Turkic 	.260 	.075 0.157 0.348 0.121 0.037 0.330 0.778 0.000 

(b) squared lengths of the principal coordinates 

Coordinate 	Original data 	After RNG transformation 

1 	 0.5972 	 0.4482 
2 	 0.1573 	 0.2219 
3 	 0.1364 	 0.0300 
4 	 0.0321 	 0.0151 
5 	 0.0286 
6 	 0.0209 

The original data include a within-family distance, which 
can be regarded as a measure of internal heterogeneity, and were 
transformed as follows. Let gu  be the tabulated values reported by 
Harding and Sokal; it is postulated that variances and covariances 
are proportional to exp(-g,).  Since the values of exp(-gli) are not 
unities, to convert the array to similarities, i.e., sip  the whole array 
was transformed in the same way as a covariance matrix is 
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converted to correlations. Dissimilarities were obtained from these 
values as —log(sii); the complete transformation can be summarized 
as 

di;  = gi;  - 1/2(gii  + ed. 

For the first nine language groups, these values are given in Table 
X.N1a. The squared lengths of the principal coordinates (Table 
X.N1b) show that the transformation has essentially made the data 
two-dimensional. 

Subsets were generated (Chapter VIII) using the values 
given in Table X.N1a; after the reductions, there were nine subsets, 
of which two (Finnic and Basque) consisted of the speakers of one 
language family each; the remaining seven (Table X.N2) form a 
single muster. The subset probabilities are given in Table X.N3; the 
representation probabilities (i.e., q of Chapter II) are given in Table •  
X.N2. The interpretation of the latter values is that they estimate 
the importance of that object as an indicator of which subsets 
participate in an optimal covering. The optimal covering, using 
joint probability, consisted of 

1. {Germanic, Romance, Slavic, Celtic 
2. (Slavic, Ugric ) 
3. (Greek, Turkic) 
4. (Basque )  

5. (Finnic) 

in which it can be seen that the first two form a muster, having 
Slavic speakers in common. 
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Table X.N2 Blood: generated subsets using the data from Table X.N1 a 

Original data 	 Transformed data 

Language Object 	Subset 	Object 	Subset 
family 	probabilities 	nurnbers 	probabilities 	numbers 

123456789 	 123456789 

Germanic 	0.280 	 1.1.1 	 0.175 	 1.1.11... 
Romance 	0.337 	 .11 	0.250 	 .11..1... 
Slavic 	0.000 	 .1111 	0.250 	 ...111... 
Finnic 	1.000 	1 	1.000 	1 
Ugric 	0.384 	 0.000 	 -111... 
Greek 	1.000 	 ...... 1.. 	0.325 	11.. 
Celtic 	0.000 	 1.1.1.... 	0.000 	 1.1.11... 
Basque 	1.000 	 ...... 1.. 	1.000 	 1  
Turkic 	0.000 	 .1...1.1. 	0.000 	 .1 	11.. 

Table X.N3 Blood: subset probabilities using the data from Table X.N2 

Original data 	 Transformed data 

Subset Probability 	Subset Probability 

1 	0.123 	 1 	0.062 
2 	0.148 	 2 	0.088 
3 	0.270 	 3 	0.149 
4 	0.168 	 4 	0.088 
5 	0.123 	 5 	0.149 
6 	0.168 	 6 	0.351 
7 	1.000 	 7 	0.114 
8 	1.000 	 8 	1.000 
9 	1.000 	 9 	1.000 

The relative neighborhood graph (Table X.N4) included one 
more edge than in the minimum spanning tree. After the nonmetric 
transformed dissimilarities based on this graph, the number of 
subsets remaining after reductions was also nine; they are given in 
Table X.N2, together 1,vith the representation probabilities of the 
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Table X.N4 Blood: relative neighbor graph for the data in Table X.N1 

Ugric-Slavic 
Celtic-Romance 
Basque-Celtic 

Turkic-Finnic 
Turkic-Ugric* 
Celtic-Germanic 

Celtic-Slavic 
Turkic-Romance 
Turkic-Greek 

* Not on minimum spanning tree. 

language groups. Table X.N3 gives the 
optimal covering consisted of 

1. (Germanic, Romance, Slavic, 
Turkic ) 

2. ( B asque 
3. (Finnic ) . 

subset probabilities. The 

Ugric, Greek, Celtic, 

This grouping corresponds with the musters formed from 
the subsets generated from the untransformed data, consistent with 
an hypothesis that the speakers of Basque and Finnic differ 
sufficiently from others in Europe that they should be excluded 
from any further attempts at resolving the relationships based on 
these data. A conditional clustering of the remaining seven 
produced the same musters (as did the untransformed data), 
namely, a group formed of the Greek and Turkic speakers, and a 
second of the speakers of all the remaining languages. 
Remembering that the children and grandchildren of migrants often 
have no lcnowledge of their ancestral language, these results speak 
to the relative isolation of the Basque and Finnic speakers, the links 
between the Greek and Turldc speakers, and the general mixing 
among the remainder of speakers of European languages. 

To include the data for speakers of Baltic, Albanian, and 
Semitic, the 12 x 9 array given by Harding and Sokal (1988) was 
unfolded as described in Chapter VII for missing data. A singular 
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• decomposition of the (-exp(g ii)) yielded nine singular values; the 
12 x 9 matrix of singular vectors was formed into a symmetric 
array of order 12 as described in Chapter VII. This array was then 
converted into a correlation matrix, from which an array of 
distances was computed as already described; the distances (Table 
X.N5) were scaled to be no greater than 1.0. Using these distances, 
12 subsets were generated; the musters formed from the generated 
subsets consisted of Baltic, Basque, and Finnic each alone, with the 
remaining nine forming a single group. The following subsets were 
obtained as the optimal covering: 

1. ( Germanic, Romance, Slavic, Ugric, Greek, Celtic, 
Turkic, Semitic) 

2. ( Greek, Albanian) 
3. ( Baltic) 
4. (  Basque ) 
5. ( Finnic ). 

Table X.N5 Blood: matrix of unfolded transformed genetic distances 

Language 
family 

Germanic 
Romance 0.088 
Slavic 	0.057 0.121 
Finnic 	0.239 0.233 0.274 
Ugric 	0.109 0.155 0.022 0.278 
Greek 	0.190 0.094 0.146 0.241 0.163 
Celtic 	0.022 0.068 0.067 0.270 0.145 0.201 
Basque 	0.262 0.267 0.315 0.558 0.500 0.357 0.190 
Turkic 	0.151 0.075 0.093 0.227 0.102 0.054 0.153 0.449 
Baltic 	0.327 0.309 0.246 0.334 0.184 0.157 0.406 0.543 0.149 
Albanian 0.465 0.326 0.415 0.491 0.401 0.101 0.488 0.999 0.192 0.223 
Semitic 0.175 0.112 0.170 0.392 0.228 0.064 0.204 0.274 0.116 0.332 0.292 
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Of these subsets, 1 and 2 form a muster. After the relative 
neighborhood graph nonmetric transformation (which produced the 
same musters as above), the first of these subsets was divided into 
three in the optimal covering: 

1. ( Germanic, Slavic, Ugric, Celtic) 
2. {Romance, Turkic) 
3. ( Greek, Semitic) 
4. ( Greek, Albanian) 
5. ( Baltic) 
6. ( Basque) 
7. ( Finnic). 

Here, the musters are subsets 3 and 4 combined and the others as 
given above. Further discussion of these data using other 
procedures is given by Harding and Sokal (1988). 

(There is no case study 0) 

P Pollution in a river ecosystem 

This example is meant to show how similarities, described in 
Chapter VII, may be used to generate hypotheses without formal 
clustering methods. Karayiannis and Venetsanopoulos (1990) 
reported the incidence of 25 chemicals on 15 consecutive days.in 
a river (Table X.P1); the possible sources are given in Table X.P2, 
and the chemicals identified in Table X.P3. The absence of a unit 
in the arrays implies that the chemical did not exceed a (detection) 
threshold. The objective is to determine the probable sources, 
confined to the six listed in Table X.P2, of the pollution seen on 
each of the 15 days. 
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Table X.P1 Pollution: excess chemicals present on 15 days in a river 
ecosystem 

ChemicaLs* 

0000000001111111111222222 
Etay 	 1234567890123456789012345 

	

1 	 1.111..11111111111.1...1. 

	

2 	 ..11.1.111.11.1111.1.1... 

	

3 	 1111.1111.111.11111111111 

	

4 	 111..1111.11..11111111111 

	

5 	 111.1111.111111111111.111 

	

6 	 1.1111.1..111111.1.1.1.1. 

	

7 	 11. .111111...111.1.11111 

	

8 	 ..11.1.1...11.1..1.1.1.1. 

	

9 	 11..1111111.11111.1.11111 

	

10 	 111111111.111111111111111 

	

11 	 ..1.. .111.1..1111.1. .1. 

	

12 	 11111111.11111111111111.1 

	

13 	 1..1..11...11111..1..1..1 

	

14 	 .1..1.11....111...1...111 

	

15 	 11.11 	1 	1 	111. 

* See Table X.P3 for identification. 

Table X.P2 Possible pollution sources 

Chemicals* 

00 000 0000 111111111122 22 22  
Source 	 1234567890123456789012345 

Sewage plant 	 1.111..1..1111.1.1.1...1. 
Plating plant 	111 	.111 	 
Milk products 	 ..11.1 	11.1..1.1.1... 
Papermill 	 11...1111.1...111.1.11111 
Slaughterhouse 	 ..1....1 	1 ....... 1...1. 
Textile mill 	 11...1.11.1111111111.1.1.1 

* See Table X.P3 for identification. 
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Table X.P3 Pollution: chemicals indicated in Tables X.P1 and X.P2 

Number 	 Pollutant 

	

1 	 alum 

	

2 	 ammonia 

	

3 	 B.O.D. 

	

4 	 carbohydrate 

	

5 	 carbonaceous compounds 

	

6 	 casein 

	

7 	 cellulose 

	

8 	 chlorine 

	

9 	 copper compounds 

	

10 	 cyanides 

	

11 	 detergents 

	

12 	 fats, grease, oil 

	

13 	 ' ferric chloride 

	

14 	 ferric sulfate 

	

15 	 lime 

	

16 	 mineral acids 

	

17 	 mineral alkalies 

	

18 	 nitrogenous compounds 

	

19 	 phosphates 

	

20 	 proteins 

	

21 	 starch 

	

22 	 sugars 

	

23 	 sulfites 

	

24 	 suspended organic acids 

	

25 	 suspended inorganic acids 

This inverse inference problem may be investigated in many 
ways; here, the emphasis is on the use of a similarity coefficient, 
without clustering. Although the data in Tables X.P1 and P2 form 
0-1 arrays, and each may be considered in that context (e.g., which 
days are alike, 1.vhich sources are alike, which chemicals tend to 
occur together), together they do not form an obvious example of 
the circtunstances discussed in Chapter II. 

For simplicity, I assume first, that no pollution is carried 
over from day to day within the river, and second, the various 
sources are assumed to be releasing effluent, at least potentially, on 
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each day without any single source necessarily exceeding the 
direshold of detection. A simple inspection of the data shows that 
the pollution on any single day does not match exactly that of any 
single source. In consequence, the possibility that there may be an 
exact coincidence with each day for the union of two or more 
sources, must be investigated. The computational procedure 
adopted here is to determine which pairs, trios, etc. of sources may 
be responsible for each day based on the Jaccard similarity 
(Chapter VII) between each day and each combination of sources, 
and to propose that the highest similarity involving the fewest 
sources be considered as a solution to the problem. 

Table X.P4 gives the similarities between each day and each 
source, and between each day and the 15 pairs of sources; the table 
has been abbreviated from the complete•  set of 62 (the null and 
improper subsets of sources were not considered) because the 
highest similarities imiolving the fewest sources were confined to 
the pairs. 

Table X.P5 gives the sources associated with the maximum 
similarity for each day for the single and the pairs of sources 
extracted from Table X.P4. Note that source 5 was never 
implicated alone, and that 4 and 6, in descending order, are the 
most frequently involved on either a single or paired source basis. 

Because similarity can be interpreted as a probability 
(Chapter VII), the geometric means of the similarities for the single 
sources over the 15 days may be regarded as giving a measure of 
the importance of the source for pollution; in descending order, the 
first two are sources 6 and 4, the same pair as by the other (ad 
hoc) procedure. The interpretation of the similarity coefficients as 
probabilities can be taken somewhat further. The similarity between 
the union of sources i and j either for each individual day or for 
the geometric mean may be represented as 

Prqup = Pr(i) Pr(j) — Pr(inD 
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so that Pr(inj) may be considered as measuring the probability of 
sources i and j polluting simultaneously. From the matrix of these 
values, .,with the diagonal set to Pr(i), the Perron—Frobenius 
eigenvector gives an ordering of the sources (Table X.P6a) in 
which sources 6 and 4 (followed closely by 1) appear to be most 
implicated. 

The probability that source i is polluting given that source 
j is polluting is given by 

Pr(i1J) = Pr(ii)/Pr(j) 

(Table X.P6b). This matrix, which by definition has unities on the 
diagonal, is not symmetric, but, because it is a matrix of positive 
elements, the singular vectors associated with the largest singular 
value can be recognized as being those associated with the 
Perron—Frobenius eigenvalue of the matrix. From the way this array 
is presented in the table, it is apparent that the left singular vector 
is likely to be informative about the sources of pollution; it places 
source 6 at the head, followed by sources 1 and 4. It is interesting 
(but not mathematically surprising because of the way this array is 
formed) that the right singular (Perron—Frobenius) vector ranks the 
sources in approximately the reverse order to that of the left. 

The intersection and conditional probabilities can be 
obtained for the individual days in the same way as illustrated for 
the geometric means. It seems reasonable to conclude that if the 
conditional probability of the second source of the pair (in 
comparison with the single source having the highest probability) 
is appreciably larger than 0.5, the second source should also be 
considered as a polluter. 

More formal statistical methods, based upon generalized 
linear models and assuming that the entries in the data tables are 
Bernoulli random variables, are beyond the present scope. 
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Table X.P4 Pollution: similarities between days and single sources, and 
between days and pairs of sources 

Single sources 

Days. 	1 	2 	3 	4 	5 	6 

1 	0.8745 0.5941 0.5659 0.4851 0.5423 0.6860 
2 	0.5930 0.6547 0.8018 0.4677 0.4781 0.5040 
3 	0.6504 0.4352 0.6396 0.8528 0.4767 0.7538 
4 	0.5582 0.4564 0.5217 0.8944 0.5000 0.7379 
5 	0.7096 0.4352 0.4975 0.7462 0.4767 0.9045 
6 	0.9014 0.3062 0.7500 0.5000 0.5590 0.5893 
7 	0.3363 0.5941 0.2425 0.9701 0.2169 0.7432 
8 	0.6690 0.2462 0.9045 0.3769 0.6742 0.3553 
9 	0.4961 0.5477 0.2981 0.8944 0.2000 0.8433 

10 	0.7360 0.4167 0.6124 0.8165 0.4564 0.8179 
11 	0.5854 0.7385 0.5025 0.4523 0.6742 0.4975 
12 	0.6940 0.4256 0.6255 0.7298 0.3730 0.8847 
13 	0.5604 0.3536 0.4811 0.5774 0.2582 0.6804 
14 	0.4181 0.2462 0.2010 0.6030 0.2697 0.7107 
15 	0.5547 0.1361 0.3333 0.5000 0.2981 0.4714 

Geometric mean 

0.6042 0.4047 0.4905 0.6305 0.4018 0.6579 

Pairs of sources 

Days 	1,2 	1,3 	1,4 	1,5 	1,6 	2,3 	2,4 

	

1 	1.0000 

	

2 	0.7778 

	

3 	0.7239 

	

4 	0.6508 

	

5 	0.7756 

	

6 	0.8489 

	

7 	0.5294 

	

8 	0.6581 

	

9 	0.6508 

	

10 	0.7921 

	

11 	0.8044 

	

12 	0.7586 

	

13 	0.5601 

	

14 	0.4388 

	

15 	0.4851 

Geometric mean 

.8489 0.7921 0.8745 0.8273 0.7778 0.5294 

.7350 0.7092 0.5930 0.6268 1.0000 0.5186 

.7462 0.9574 0.6504 0.8636 0.7407 0.8273 

.6708 0.9129 0.5582 0.8104 0.6574 0.8677 

.7462 0.9139 0.7096 0.9545 0.6268 0.7756 

.0000 0.8165 0.9014 0.7462 0.7350 0.4851 

.4851 0.7921 0.3363 0.7239 0.5186 1.0000 

.8292 0.6770 0.6690 0.5785 0.8058 0.3656 

.6149 0.8672 0.4961 0.8104 0.5379 0.9220 

.8165 1.0000 0.7360 0.9139 0.7092 0.7921 

.6030 0.6155 0.5854 0.6428 0.8058 0.5119 

.7819 0.9364 0.6940 0.9336 0.7245 0.7586 

.6495 0.7071 0.5604 0.6770 0.5401 0.5601 

.4523 0.6770 0.4181 0.7071 0.2417 0.5850 

.5833 0.6124 0.5547 0.5685 0.3563 0.4851 

0.6811 0.6897 0.7894 0.6042 0.7490 0.6193 0.6394 

(continued) 
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Table X.P4 (concluded) 

Pairs of sources (continued) 

I)ays 	2,5 	2,6 	3,4 	3,5 	3,6 	4,5 	4,6 	5,6 

	

1 	0.7670 0.7233 0.7239 0.6581 0.7586 0.6121 0.7239 0.7939 

	

2 	0.7606 0.5518 0.7407 0.8058 0.7245 -0.6131 0.6268 0.5832 

	

3 	0.6068 0.7826 1.0000 0.7071 0.8891 0.9293 0.8636 0.8374 

	

4 	0.6364 0.7695 0.9535 0.6068 0.8393 0.9747 0.8581 0.8295 

	

5 	0.6068 0.8804 0.8636 0.5785 0.9336 0.8315 0.9091 0.9770 

	

6 	0.5534 0.5735 0.7462 0.8292 0.7819 0.6309 0.6929 0.7092 

	

7 	0.5369 0.7790 0.8273 0.3656 0.7586 0.8903 0.8790 0.7410 

	

8 	0.5721 0.3459 0.7071 1.0000 0.6287 0.5534 0.5143 0.5264 

	

9 	0.4950 0.8721 0.8104 0.4045 0.8393 0.8208 0.9535 0.8295 

	

10 	0.5809 0.8429 0.9574 0.6770 0.9364 0.8898 0.9139 0.8909 

	

11 	0.9535 0.5534 0.6428 0.6364 0.5658 0.6225 0.5785 0.6580 

	

12 	0.5275 0.8611 0.8891 0.6287 1.0000 0.8132 0.8891 0.9100 

	

13 	0.3651 0.6623 0.6770 0.5222 0.7223 0.5960 0.6770 0.6299 

	

14 	0.2860 0.6917 0.5785 0.3636 0.6287 0.5534 0.7071 0.7237 

	

15 	0.3162 0.4588 0.5685 0.4020 0.5560 0.5353 0.5685 0.5092 

Geometric mean 
0.5449 0.6690 0.7679 0.5864 0.7592 0.7089 0.7433 0.7301 

Table X.P5 Pollution: possible single and paired sources of pollution 

(a) Day, sources and maximum similarity 
Single 	 Pairs 

Day Source 	Similarity 	Sources Similarity 

	

1 	1 	0.875 	 1,2 	1.0 

	

2 	3 	0.802 	 2,3 	1.0 

	

3 	4 	0.853 	 3,4 	1.0 

	

4 	4 	0.894 	 4,5 	0.975 

	

5 	6 	0.905 	 5,6 	0.977 

	

6 	1 	0.901 	 1,3 	1.0 

	

7 	4 	0.970 	 2,4 	1.0 

	

8 	3 	0.905 	 3,5 	1.0 

	

9 	4 	0.894 	 4,6 	0.954 

	

10 	6 	0.818 	 1,4 	1.0 

	

11 	2 	0.739 	 2,3 	0.806 

	

12 	6 	0.885 	 3,6 	1.0 

	

13 	6 	0.680 	 3,6 	0.722 

	

14 	6 	0.711 	 5,6 	0.724 

	

15 	1 	0.555 	 1,4 	0.612 

(b) Frequency of sources implicated 

Source 	Single 	Pairs 	Total 

1 	 3 	4 	7 
2 	 1 	4 	5 
3 	 2 	7 	9 
4 	 5 	6 	11 
5 	 0 	4 	4 
6 	 5 	5 	10 



370 	 X CASE STUDIES 

Table X.P6 Pollution: source probabilities derived from geometric means 
(Table X.P4) 

(a) Mini) 

1 0.6042 
2 0.3278 0.4047 
3 0.4050 0.2759 0.4905 
4 0.4453 0.3958 0.3531 0.6305 
5 0.4018 0.2616 0.3059 0.3234 0.4018 
6 0.5149 0.3936 0.3892 0.5451 0.3296 0.6579 

Perron-Frobenius eigenvector 

0.4517. 0.3411 0.3666 0.4536 0.3325 0.4784 

(b) Pr(i 

1 	2 	3 	4 	5 	6 
1 1.0000 0.8100 0.8257 0.7062 1.0000 0.7826 
2 0.5425 1.0000 0.5625 0.6278 0.6511 0.5983 
3 0.6703 0.6817 1.0000 0.5600 0.7713 0.5926 
4 0.7370 0.9780 0.7199 1.0000 0.8049 0.8285 
5 0.6650 0.6464 0.6236 0.5129 1.0000 0.5010 
6 0.8522 0.9725 0.7949 0.8646 0.8203 1.0000 

Left dominant singular vector 

0.4496 0.3520 0.3740 0.4437 0.3493 0.4639 

Right dominant singular vector 

0.3962 0.4468 0.3969 0.3803 0.4401 0.3843 



Appendixes 

Appendix 1 Postulates for the operation foin 

The subject consists of the elements and subsets of a basic set N; 
elements are denoted by a, b, c, ..., and subsets by A, B, C, ...; the 
empty set is repre,sented by 0; {a l , ..., an) denotes a finite set; U 
denotes union, n denotes intersection, A1 B is the set of elements in A 
but not in B. If A n B 0, then A "meets" or "intersects" B; 
otherwise they are disjoint. A g B means A is a subset of B. Suppose 
A = {a} and A g B; then {a} g B or, equivalently, a E B, so that it 
is convenient to write {a} as a. 

Let A and B be any subsets of N: 

DEFINrrioN A.1.1. The foin of set A to set B, denoted either by 
A.B or by AB, is defined as 

A.B = LLEA,bEB(ab). 

This operation is clearly distinct from union. The postulates for join are 

Ni (existence): ab e  0.  
N2 (commutation): ab = ba. 
N3 (association): (ab)c = ,a(bc). 
N4 (idempotency): aa = a .(or better, aa = {a}). 
N5 (identity): veu : au = ua = a. 
N6 (no inverse): vala' : aa' = a'a = u. 

The lack of an inverse shows that join is a commutative monoid, i.e., a 
commutative semi-group with an identity. 

A number of theorems are relevant (the proofs are omitted). 

THEOREM A.1.1 (monotonicity). A g B implies AC g BC and 
CA g CB for any set C. 
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COROLLARY A.1.1. A' g A, B' g. B imply A'B' g AB. 

THEOREM A.1.2 (existence for sets). A 0 and B 	imply 
AB e 0. 

THEOREM A.1.3 (commutation for sets). AB = BA. 

THEOREM A.1.4 (association for sets). (AB)C = A(BC). 

THEOREM A.1.5 (idempotency for sets). M 2 A. 

Remark A.1.1. Suppose A 2 B and A 2 C (abbreviated as 
A 2 B,C) and let A satisfy the condition A 2 x,y implies 
A 2 xy, then A is convex or closed under the operation join. 

THEOREM A.1.6. Each of (1) A 2 M, and (2) A =- A A ,  is 
equivalent to the convexity of A. 

THEOREM A.1.7. Let A be convex; then A 2 X,Y implies 
A P. XY. 

THEOREM A.1.8. If two sets are convex, so is their join. 

THEOREM A.1.9. The intersection of two convex sets is also 
convex. 

DEFINITION A.1.2. Let S be a set, and p an element of S. 
Suppose x c S implies px g. S. Then S is star-shaped relative 
top, and p is called a focus of S. The set of all foci of Sis 
called its kernel. 

Remark A.1.2. Each point of A n  Bisa  focus of A U B. 

DEFINMON A.1.3. Let A be a convex set. An element p is 
called interior if p g A satisfies for each x g A, there exists 
y g A such that p g xy. The interior of A, 1(A), is the set of all 
interior elements of A. The fronder of A is P(A) = A I 1(A). 
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Much of the above is implicit in the procedures used in this monograph 
for generating subsets. The reason for joining two or more subsets 
depends on various criteria, as discussed in several of the chapters. 



(1) 

(2) 

(3) 
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Appendix 2 A simulated annealing algoritiun for solving nonlinear 
and multi-objective set-covering problems 

The following proposal is a stochastic procedure, based on a version of 
the simulated annealing algorithm suggested as suitable for some 
combinatorial problems by Lundy (1985) and Aarts and van Laarhoven 
(1987). This algorithm has two main phases: a cooling (local) phase, 
which searches for a better solution in the neighborhood of the current 
solution, and a heating (global) phase, which chooses a new start position 
for a search.. It is assumed that a minimum repre,sents the optimum for 
each function. 

In more detail, letfa(1) be the value of the a u2  objective function 
for each value of the unlcnowns set to unity: 

Initial phase. Define ga  = fOE(1); select 8 as a positive parameter 
for controlling the rate of convergence. 

Cooling phase. Given a current feasible solution, find a random 
feasible neighbor, the candidate. If all function values of the 
candidate are lower than the best so far, replace best by 
candidate; if all function values of the candidate are lower than 
the current set, replace current by candidate. 

Heating phase. Otherwise, replace current by candidate with 
probability 

exp[ -max«  (fc,(current) -fa(candidate))/g. ]; 

in addition 

replace g. by gœ/(1 + fig.). 

(4) 	Repeat phases 2 and 3 until mama  is sufficiently small. 

If lêtr different minima have been found after K random (heating) 
replacements, the Bayesian estimate of the number of local minima is the 
integer I nearest VV(K - 1)/(K -  W - 2), so that the search may also be 
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terminated when / = W (Rinnooy Kan et al. 1985). The essential 
component of this algorithm, which for a single objective function 
converges to the global optimum with probability unity (Lundy 1985; 
Rinnooy Kan et al. 1985; Bohachevslcy et al. 1986), is the possibility of 
escape from a local optimum by the random acceptance of a solution 
poorer than that currently being considered. I conjecture that efficient 
(Pareto) solutions are obtained for multi-objective programs with 
probability unity, including the utopia point, if one exists, although I 
have not been able to prove it. Zeleny (1982) provided a detailed 
discussion of multicriteria decision making. 

This algorithm is appropriate for multiple linear and nonlinear 
functions, but it is not recommended for a single linear objective 
function, because it is slower than Chvàtal's (1979) heuristic (Chapter 
II), although faster than the exact procedure described by Garfinkel and 
Nemhauser (1972). For single nonlinear functions, e.g., fractional 
set-covering, it may be competitive with other methods. 
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Appendix 3 Topological spaces for clustering 

This appendix summarizes what I consider to be the mandatory 
requirements of a distance space in a clustering context. This appendix 
can be oniitted if the interest is in clustering rather than in its underlying 
theory. 

The following two conditions define a Fréchet neighborhood 
space: 

(1) There is an abstract set, S. 

(2) For each element of S, x, there is a nonempty class {Vx } of 
subsets of S. Each member of {Vx} is a neighborhood of x. 

L,00sely speaking, an element x of S is "near" a subset E of S if every 
neighborhood Vx  of x contains an element of E. If in addition 

(3a) 	each neighborhood Vx  of an element x of S contains x, 

(3b) if (Ix  and Vx  are neighborhopds of x, there exists Wi  such that 
I4ÇCU1 fl V1, 

(3c) if x,y E S, x e y, then 3Vx  such that y e Vx, and 

(3d) if x E Vy, then 3V1  E 

a topological space is defined. If (3c) is replaced by 

(3c') if x,y E S, x e y, then 3Vx  and 3V), such that V, n vy  = 0, 

a Hausdorff topological space is defined. Additional distance conditions 
specializing the topological space are at the discretion of the user, but 
each has to be justified. 
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Appendix 4 The geometry of multifocal ellipsoids 

This appendix discusses the geometry of the multifocal regions of 
Chapter VIII so as to clarify some of their properties. 

In clustering, a common starting point is provided by some data 
that allow objects to be treated as if located in Euclidean space. Usually, 
either no account is taken of possible changes in this space brought about 
by the recognition (or decision) that certain objects belong together, or 
if it is, the changed space is homeomorphic with the original one (i.e., 
if the original space is Euclidean, then the transformed space is also 
Euclidean) but perhaps with a changed metric. An example of this 
changed metric is use of generalized distances: if the simple Euclidean 
squared distance between the m-element vectors /Li  and gi  is 

d2i; = 	- 	- Pi) =  II  - 	 (A4.1) 

the generalized squared distance with respect to the m X m p.d. matrix, 
E, defining the space (the covariances among the coordinates), is 

D21 = 	- 	- 	 (A4.2) 

If E is p.s.d, a generalized inverse may be used in (A4.2) in place of E-1 ; 
this complication can be ignored here. Since generalized distances of this 
sort are also Euclidean, the locus of a point ye such that 

yeTE- iip = k,  k>  0 	 (A4.3) 

defines a hypersphere around the origin in the transformed space 
equivalent to a hyperellipse in the original space. !Yu  is independent of 
the choice of origin, since its location vanishes in - j, and is not a 
component of E, which is assumed to apply at all points in the space. 

In geometry, Expression A4.2 is an example of a Minkowski 
distance function, MDF, which in analysis defines a Banach space. ,Let 
k be the boundary of any convex body having a single centré of 
symmetry, i.e., it bisects all chords passing through it. The MDF 
between any point and this centre is defined as follows: 
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DEFINMON A4.1. On the line through the centre and the point, 
the MDF is the ratio of the length of the segment between the 
centre and the boundary of k. 

DEFINrrioN A4.2. The MDF between any two points is defined 
by translating the segment between them (without any rotations) 
so that one or other of the two ends coincides with the centre of 
symmetry, and then computing the ratio as above. (The 
importance of assuming symmetry is apparent for this definition 
in order for the value to be unique). 

It follows that the original boundary becomes the surface of a unit ball 
in the transformed space. The boundary of k is lcnown as the indicatrix 

or absolute of the space (Fig. A4.1). As is easily shown, distances in the 
transformed space are Euclidean. It is interesting to note that an ellipse, 
of eccentricity about 0.9 and with major axis along the line of sight 
(Hagino and Yoshioka 1976), appears to be the indicatrix of human 
perception of distance. 

Fig. A4.1 Example of the use of the Minkowski distance function. 

Although Euclidean spaces have "nice" computational properties, 
which make them attractive for many purposes, these properties do not 
seem to be those of the subjectively perceived world (Battro et al. 
1976; Watson 1977). In a gestalt-type experiment (Lefkovitch 1978), the 
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membership of a candidate object to a set of points on a plane could be 
explained, among other things, by the subjectively inferred shape 
properties of the set, suggesting that a mathematical model for assigning 
membership should recognize shape. Subsequent analysis of the same 
data has shown that the shape component is consistent with the use of a 
MDF. It is also apparent that sets remote from mutually proximal 
nonmembers should not greatly influence the relationship among the 
latter, so that transformations that change the metric of the space 
uniformly (including the making of no changes) are inappropriate for 
clustering, and expressions such as Expression A4.2 are likely to be 
misleading except in special circumstances. The implicit recognition of 
this risk has been made so often that it is part of the folklore of 
numerical clustering. 

The key component of the model developed in Chapter VIII is 
that nonmembers of a set are considered from the viewpoint of the 
members. From this, two requirements follow: 

(1) The origin should be the set and not be discretionary as in 
Euclidean space, i.e., there are some essential singularities. 

(2) The measurement of distance with respect to this set should 
depend on its internal structure. 

It is not a requirement that equal distances in the original space be equal 
in the transformed space. These assumptions and requirements together 
lead to a non-Euclidean geometry. 

In conunon with Watson's (1977) model to explain visual 
illusions, the notion of a "force field," in which the lines of force are 
parallel prior to any clustering, is a useful concept. Three simple 
assumptions are made: 

AssumirrioN A4.1. The ungrouped objects are located in 
Euclidean space (this assumption is without loss of generality). 

AssumvnoN A4.2.  The  dimensionality of the space is 
unchanged by recognizing or defining subsets of the objects (this 
assumption may not be needed but seems innocuous). 
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ASSUMFTION A4.3: Recognizing or defining subsets of the 
objects containing more than one member changes the force field 
within the space both by displacement and by curvature. 

Although in what follows it is the geometry of the space that is 
considered variable, there is a completely equivalent model in which the 
geometry remains constant but the lines of force are displaced, as in 
Assumption A4.3. 

It is convenient to consider the relationship among two 
nonmembers with respect to the set, although there is no distinction 
between members and nonmembers. This discussion considers the 
problem as having three components: 

the angle between two objects subtended at the set 
the radial distance between each object and the set 
the distance between any two objects with respect to the set. 

The angle subtended by  n0  and nb  points at nx  points 

Let ; denote the number of objects in subset u. Consider two points, 
whose coordinates with respect to any origin in Euclidean m-space are 
the m-element column vectors a and b, and a set of; à 1 other points, 
whose coordinates with respect to the same origin are given  by  the 

X  m matrix X. If the ; points of X coincide at x, then the angle, 
Ix,  between rays joining this position to a and b is given by 

cos G„b  x = (a - x)T(b - x)/( 0 a -  x  liii  b - x 	(A4.4) 

If the ; points do not coincide but are very closely grouped in 
comparison with the distances of a and b from them, it can be imagined 
that some position replaces the ; points, and there the angle is defined. 
However, this simplification can be misleading if they are not close; in 
Fig. A4.2, where n = 2, the most reasonable choice for a common 
position is the centroid of x, and x2, indicated by c, where the angle 
subtended by a and b is 180° for any value of 4.. This choice is 
unsatisfactory, because it seems that the various  4) should play a role. 
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L = 1  ® X1 ØA,  n.  (A4.7) 

Fig. A4.2 To illustrate the inappropriateness of the centroid 
as replacement for xl  and xa. 

The approach adopted here is to define the position of a with 
respect to X by treating the ; points in X as a set of origins, and then 
to define the angle between a and b as the coefficient of inclination 
between vector subspaces (Af-riat 1957). The location of a with respect 
to X is given by 

L = X - laT , 	 (A4.5) 

where 1 is a ni-element column vector of unities, and laT  is  a; x m 
array. In like manner, 

M = X - lbT. 	 (A4.6) 

Increasing generality, suppose that the single point of a is replaced by 
1 points, whose coordinates are the ; x m matrix A; then 

Expression A4.5 can be written as 

where 1k  represents a column vector of k unities, and 0 denotes the 
Kronecker (direct) product, so that L is a matrix of no ,,  rows and m 
columns. Similarly, if B is nb  x m, then Expression A4.6 can be 
rewritten as 

M = 1
nb

E ØX  -i ØB  
nb  

(A4.8) 
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Geometrical inversion (Coxeter 1969) allows L and M, which represent 
X with origins A and B, respectively, to be considered as having a 
common origin; the coefficient of inclination between the vector 
subspaces represented by them is 

cos e  = R H LMT  H II MV 0 )/(  II  LLT  II  H MMT  H 
)]
' (A4.9) 

Since the magnitude of angles is unchanged by geometric inversion, 

a,„ x =  e. 	 (A4.10) 

This measure of the angle between A and B sometimes coincides with 
measures based on nlE(cos eab I Xi) for na  = = 1, ni  > 1 if the xi  are 
syrrunetrically arranged around their centroid; it will be true, for 
example, in Fig. A4.2, where EIAB  I X is the common angle at the xi . 

The distance between A and B with respect to X 

Radial distance 

In considering the angle between A and B with respect to X, a single 
origin is not needed and all nx  members of X are treated equally. This 
approach is also followed by considering the distance between a point 
and a set of points as being based on the average of the distances it has 
from them, ignoring direction. This criterion is that of average linkage 
sometimes used in sequential clustering algorithms but differs in an 
important respect. 

The average distance between a and X can be written as 

tr liZ 11x, - a II = extr({diag(LL5)). 	(A4.11) 

This definition is preferred to n1 H L  D'  since there is evidence that it 
represents what people actually do, in contrast to such measures as the 
nearest neighbor distance and that just cited (Lefkovitch 1978). The 
family of curves (Expression A4.1), apparently first noted by Maxwell 
(1846), appears not to have found an application until now. 

However, Expression A4.11 does not completely satisfy the 
requirements noted at the beginning of this appendix, be,cause it does not 
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r = 1 (A4.15) 

recognize that X forms a subset; no property of the subset is used. An 
expression is now obtained that can be used as the indicatrix of a MDF. 
Consider the locus of a point, y, such that 

nlE II x;  - y II = constant; 	 (A4.12) 

this expression defines a convex body with respect to the X, which, 
except in special circumstances, need not be symmetric in the original. 
space (for  n  = m = 2, Expression A4.12 defines an ellipse) and may 
have singularities, just as is possible in the boundary of the indicatrix in 
a MDF (Fig. A4.1). For an appropriately chosen constant, Expression 
A4.12 defines a convex body that can also be used as an indicatrix. This 
constant can be some measure of the scatter among the members of X, 
such as the average distance, 6, among them, which is 

= 	 - xi ll jl[nx (nx  - 1)]. 

The radial distance of a from X is now defined as 

= 	 - all . 

(A4.13) 

(A4.14) 

In the original space, the boundary is given by those values of y for 
which 

and so defines a unit ball generated by the subset, i.e., the basis 
indicatrix, in the transformed space. Other measures of scatter may be 
used; II X II is inappropriate since its value depends on the choice of 
origin. The only difficulty with Expression A4.14 occurs if rix  = 1, 
which implies .5 = 0; but if rix  = 1, there is no grouping of individuals 
in X and so the space is unchanged; hence radial distance may be defined 
as 

I.

M(ri x  - 1) Ellxi  - all I Ei,,Ei  11 x ;  - xi ll , nx  > 1 

Ilx - all , nx  = 1. 
= (A.16) 
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This transformation is to a space homeomorphic with the original one 
and so is Euclidean if the original is also. Since the distances r0  and 
and the angle en,, IX  are lmown, the Euclidean distance between a and 
b is easily obtained. 

If the single point, a, is replaced by n. > 1 points, Expression 
A4.11 is replaced by 

(nan.rEpEr II - aII, 

the first option in Expression A4.16 becomes 

(A4.11a) 

ra  = 1/212.-1 (nx  - 1)EpEi llxi  - ap ll I E 	- x1 11 (A4.16a) 

while the condition for the second option becomes Tie  = 	= 1. 

Nonradial distance 

A Euclidean distance, however, does not reflect the requirement that the 
presence of a set introduces curvature, and so nonradial distances are not 
linear. Because symmetric convex bodies can be transformed into 
hyperspheres by the MDF and an analogue for this transformation has 
just been proposed for discrete sets of points, the problem is reduced to 
the considération of concentric hyperspheres. The model now postulated 
is that a spherical object induces spherical contours in the space, diat two 
points on the same contour are separated by rig (where r is the radius to 
that contour and 0 is the smallest angle they subtend at the centre), and 
that the centre is an essential singularity in the space. The problem is to 
defme the distance between two points on different contours. The method 
now used is conformal and is related to geometric inversion and to the 
Schwarz-Christoffel transformation; in two dimensions, the interior of 
the indicatrix becomes one side of a plane, the exterior the other side, 
and the boundary is the line of infinite length between them. 

Let the two points, a and b, be at distances r  rb  from the 
centre, and let the angle they there subtend be 0 (Fig. A4.3); then the 
conformal transformation 

f(r,e) = loge(r exp(ie) ) = loger + ie 	(A4.17) 



APPENDIXF-S 385 

Fig. A4.3 The location of points a and b in relation to the centre of 
concentric circles having radius of r, and 4. 

converts Fig. A4.3 to Fig. A4.4. The length of the diagonal from a to 
b, now defined as the distance between a and b with respect to the 
centre, can be found as follows. Any line parallel to loge  4, e.g., the 
broken horizontal line in Fig. A4.4, can be represented by 

= p log«  r + q, 	 (A4.18) 

where p is the slope of the line connecting a to b and q is the point on 
the line corresponding with p and loger. Thus 

dedr = 	= plr. 	 (A4.19) 

Let f denote the length of the diagonal from a to b in Fig. A4.4. To 
calculate f, three cases need to be considered. 

(1) 	If re, = rb = r, then 

= of { (dr/d0)2  + 721 1/2  de, 	(A4.20) 

but since dr/d0 = 0, it follows that 

= rO, 	 (A4.21) 
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log ra  

log rb  

0, 

Fig. A4.4 Conformal transformation of Fig. A4.3. 

which corresponds to the objects on the same contour. 

(2) 	If ra 	rb 	0, then 

= fra (1 + 0 12/2)1/2  dr 

= (1  + p2) dr = (rb  - ro) (1 + p2)1/2  

--= (rb  - ro) (1 + [0/loge(rjrb)]2)1/2 . (A4.22) 

As rb  becomes large relative to ro, (e. approaches zero, so that the 
distances among points one of which is much further from the centre 
than the other are virtually the same as their Euclidean distance; if a and 
b are proximal but remote from the centre, 0 -> 0, so their distance is 
again approximately Euclidean. 

(3) 	If  ra  = 0 and rb 	0, 

then, since a coincides with the origin, 0 is indeterminate; but 
since logd(rolrb) will be equal to -co, = 0 and hence 

= rb . 	 (A4.23) 
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72e 2z 

 r2b, 

0, 

ra  =  Tb  0 

Ta  = 0,  Tb 	0 

Ta  =  Tb  = O. 

A2ab  X = (A4.24) 

By combining Expressions A4.16 (or A4.16a) with A4.21-A4.23, the 
distance between a and b with respect to X, denoted by Ace, I X, is 

(Ta  - rb)2(1 + {eimlloge(ralrb)} 2), 	rb 	0 

Distance as defined in Expression A4.24 is a semi-metric, since 

àab  I X 	0 

with equality if a = b, and 

/lab  I X = àba  I X. 	 (A4.25) 

It is not a metric since the triangle inequality need not be satisfied in the 
vicinity of the centre; conceptually, this departure is not a problem in 
clustering, since it is usually radial distances (Expression A4.14) that are 
used, nor is it a problem computationally. Note that 

Aab lX 4 id■ab lY 	 (A4.26) 

unless X = Y, since these refer to different sets of essential singularities. 
According to Weiman and Chaikin (1979), human intuitive 

assessment of distance often appears to measure it along the path of a 
spiral. They cited evidence for this based on the exponential arrangement 
of receptor cells in the eye, in fields of ganglion cells, and on 
experimental observations. Expression A4.24 is consistent with a spiral 
distance. Assume that the curve f-rom a to b forms part of an equiangular 
spiral, with magnification 

= rblra , Tb 	 (A4.27) 

for an angle e; the spiral angle, 4e, which is defined by 
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cot  4,  = (logeg)/e, gives the squared length of the curve from a to b as 

(4— ra)2sec24) =  (Tb  — ra)2(1 + tan24)), 	(A4.28) 

which is easily shown to be identical with Expression A4.24. That A4.24 
is the length of a segment of a spiral also follows from the properties of 
the conformal transformation in Expression A4.17. 

Characterizing the whole space 

Suppose that N objects have been assigned to s subsets, with nj 	1 
(j = 1...$) objects in each, En; 	N. The force field of the original 
space prior to any assignments is changed by the presence of these 
subsets in ways that follow from the previous descriptions. This section 
sketches something of these changes. 

Assume s = m = 2; denote the points corresponding to one set 
by X1 , with coordinates for each point denoted by xli, and similarly for 
the second subset. Then the radial distance of any point y from X is 

ry  lxi  = (Mi)  	xu —  y Il  
and from X2  is 

r, x2 = (n'E,1..lIx-y O.  

(A4.29) 

(A4.30) 

If ry lXi  = ry l X2, y is equidistant from the two in their own semi-
metrics; thus the locus of all points, y, for which 

ry 	= ry  I X2, 	 (A4.31) 

defines the neutral line between the two subsets. Although in the 
transformed space, the neutral line can be considered as straight, it need 
not be in the original space. Clearly, other lines may be of interest, such 
as those determined by the locus of all points for which 

ry IX, /ry 1X2  = k, a constant. 	(A4.32) 
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Expression A4.32 in a Euclidean space is the circle of Apollonius 
(which, when k = 1, is the straight line of Expression A4.31) and so 
corresponds with a closed contour in the original space. 

The pairwise neutral lines between subsets may be used to 
investigate the accepted ensemble of subsets, because if the line for any 
pair intersects the indicatrices, they must be good candidates for fusion. 

If s = 3 and m =- 2, the three pairwise neutral lines may either 
intersect at what can be called the neutral point, or may not intersect at 
all. The neutral line between two subsets divides the plane into two open 
halves; if s > 2, open convex polygons, some bounded and others 
perhaps extending to infinity, are formed by their intersection. Thus the 
neutral lines, in the transformed space, divide the plane into polygons, 
forming a Dirichlet tessellation. Each polygon represents a region in 
which points are closer to one subset than they are to any other. This 
partition of the space permits the assignment of newly found objects to 
existing subsets. Green and Sibson (1978) described an efficient 
algorithm for finding the planar tessellation given the coordinates of 
points; for higher dimensional spaces, in which the space is divided into 
open polyhedra, an efficient algorithm has not yet been described. 

In terms of the original space, the sides of the polygons of the 
tessellation need no longer be straight, and so the partition of the plane 
is into regions which are not necessarily convex, and the Delaunay 
triangulation dual to the tessellation appears as triangles whose sides are 

not straight. 
The space of the set of subsets can be described in the same way 

as that for a single subset; the distance of y from all the subsets is 
defined as in Expression A4.30 as 

Ry  = f` 

= 	 - Y II (A4.33) 

The angle between two points with respect to the subsets is obtained as 
in Expression A4.16, taking care to distinguish between the angle 
subtended at a single set of all objects f-rom that subtended at a set of 
subsets, because the relationship among the latter must also play a role. 
Were each subset to have been replaced by a single point, the angle 
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_à2ab/2 ,  (A4.35) 

between any two points subtended there could be obtained as in 
Expression A4.16 without further ado, but in the absence of a clear 
choice for its location, it is necessary to define the location of each 
member of a set with reference to the subsets of which it is not a 
member,. and then express a and b with reference to this new set of 
origins using Expression A4.9. Combining the angle obtained, 0, with 
Expressions A4.33 and A4.24, the squared distance between a and b 
with reference to all the subsets is 

112abIXi = 	RD 2  (1 + {0/loge(RjRb)} 2  ), (j = 1 . . . s) . 

(A4.34) 

A measure of change 

The effect of forming subsets, in the present model, is to transform the 
pairwise distances, Expression A4.1, into those of Expression A4.34; 
since a semi-metric or metric space consists of an underlying set, here 
the N original points, and a measure of distance (Expression A4.34), an 
interesting question is to find whether the underlying set and the new 
distances can be represented in Euclidean space. Gower (1966) showed 
that, if each distance is transformed .as  

followed by a double centroid transformation of the matrix  of  these 
values, the resulting symmetric N x N matrix, T, has non-negative 
eigenvalues  if a coordinate system exists that reproduces the original 
distances when treated in Euclidean space. The number of negative 
eigenvalue,s, and their sizes in relationship to the positive ones, indicate 
the departure from a Euclidean representation (Chapter VII). Let an 
eigenvalue decomposition of T be 

T = UAUT; 	 (A4.36) 

some of the diagonal elements of A may be positive, some may be 
negative, and others may be zero. Because of the double centroid 
transformation, the sum of the columns of U will be zero. A set of 
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N - 1 principal coordinates for the N objects can be written as 

Z = (A4.37) 

where some columns contain only real elements (the real subspace), some 
others imaginary (the complex subspace), and others zero (the null 
subspace). If W is a set of principal coordinates corresponding to the 
original distances (Expression A4.1), the effect of forming the subsets 
can be measured by generalizing the distance measure of Gower (197 lb), 
which becomes 

co2  = tr(W - ZK)(W - ZK), 	(A4.38) 

where (.). denotes transposition talcing complex conjugates, and K is 
unitary, chosen to minimize co2. If V = WsZ, then K is obtained from 
a singular decomposition of this complex matrix as 

V = PSQ. 	 (A4.39) 

from which 

K = Qr. 	 (A4.40) 

Expanding Expression A4.38 gives 

(02  = tr WW* + tr ZZ - tr ZKW* - tr WW2', (A4.41) 

which is real and non-negative. Interpreting c02, it measures the change 
in position brought about by the assignment of the objects to subsets; if 
OW  JJ = JJ Z 0 = 1 by a prior normalization (using the Frobenius 
quadratic norm) then tr WK*Z e  is the coefficient of inclination between 
the vector subspaces. The consequences of ignoring the negative 
eigenvalues of T, e.g., by setting them to zero and thereby increasing the 
dimensionality of the null space, can be evaluated similarly. 

Although identifying a single point to represent a subset in the 
original space is not required in the above model, it is of interest to 
consider if one is implied. With respect to the definition of cos Owl X, 
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there appears to be no such point except in special circumstances. In 
Fig. A4.2, eab j X is the common angle 4), and hence the two positions 
for the centre coincide with each of the two objects. If the space is three-
dimensional, there is an infinity of positions for the centre of a circle. 

However, there is such a point if distance is defined as the 
average of the distances to the members of the set. Consider Expression 
A4.12, now repeated 

n 1E  I; —  y0 = constant, 	 (A4.12) 

and allow the constant to approach zero. The real position(s) of y for 
which this constant is a minimum can be regarded as the centre; this 
position, known variously as the mediancentre or the generalized Steiner 
point, GSP, is unique (unless n = 2, where all points on the line joining 
x, to x2  minimize Expression A4.12; conventionally, the midpoint is 
chosen). However the GSP does not replace the essential singularities of 
the set and is not located at the position at which the angles are 
measured. 

The adaptative distance just described clearly arises from the 
conditional clustering algorithm(s) described elsewhere in this book. The 

use of the proposed radial distance is also a natural candidate for use in 
sequential agglomerative hierarchical procedures, which is the family of 
directed tree-forming algorithms: 

step 1: find the closest pair of subsets, and join them. 

step 2: find the distance between the newly formed subset and the 
others. 

step 3: repeat steps 1 and 2 until some terminating condition is 
attained (e.g., a single tree is formed from the objects). 

In step 2, the use of the radial distance (Expression  A4. 16a)  seems 
indicated, but as soon as a subset contains more than one object, because 
of Expression A4.26 an asynunetric matrix of distances is obtained; 
because of this asynunetry, some single-valued function, e.g., 
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f(AB) = f(r„,IB, rA IA), f E {min,max,sum,etc.) 

needs to be chosen to represent the relationship. More appropriate is a 
single-valued measure of the distance between A and B conditional on the 
current assignment of the subsets, such as has been described above. 

The MDF has been defined here somewhat more restrictively 
than it need be. Let K be the boundary of a star body, i.e., a closed body 
for which there is at least one point, 4), such that the straight line to any 
other point in K is contained entirely within K. Then the MDF of any 
point x with respect to 4) is the ratio of the distance 

d(x,0)Id(x 04), 

where xo  is the point that the line (x,0) crosses K. If K is also convex, 
and has a centre of symmetry, co, i.e., any chord through co is bisected 
by co, co is called the centre. 

These remarks on distances have wider application than in 
clustering. When the relationship between two entities is to be measured, 
the requirements almost always state or imply the metric axioms, which 
define distance as a function, f, having two arguments: 

Axiom A4.1: f(ij) k 0; 

Axrom A4.2: faj) = 0 !:=> i  =J  

where i = j means that either i and j are the same object, or that they are 
identical with respect to the function. 

Axiom A4.3: f(ij) = f(j,i); 

Axiom A4.4: f(i,k) É f(lj) + f(/,k). 

These axioms accord with our elementary notions of Euclidean geometry. 
Thus if experimental observations are made for which Axiom A4.3 is 
false, e.g., two measurements are made, el:and dif, where the order of 
the subscripts is important (e.g., the antibody-antigen relationship, the 
offspring of males of one population and the females of another, in 
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contrast with the reciprocal cross), adjustments such as defining 

(14 = (d: + en, 
or choosing the smaller (or larger) to be "the" distance, are made to 
satisfy Axiom A4.3, with a sense of achievement. But what has been 
achieved is the discarding of information; in fact, their consequences may 
be more serious than is usually realized. In contrast, this appendix 
considers the distance between two objects as being a single-valued 
function of two ordered arguments, which can be expressed as 

the distance between i and j with reference to i, 

which is not necessarily equal to 

the distance between i and j with reference toj. 

Although Axiom A4.4 is supposedly independent of Axiom A4.3, the 
deletion of Axiom A4.3 from the set of axioms makes Axiom A4.4 
somewhat artificial. However, Axiom A4.3 in this appendix has been 
replaced by the requirement that if the distance between i and j is 
considered with reference to k, it should be the same as that between j 
and i from the same point of view. The axioms can now be rewritten 
with an indication of the reference object: 

Axiom A4.1': fk (1j) 	0, v k; 

Axiom A4.2': fk (i,j) =  OH j = j, V k; 

Axiom A4.3': fk aj) = 	k ij• 

and Axiom A4.4 in any form is not a requirement. This set of axioms 
defines a conditional semi-metric; they are the assumptions of the 
measure described in this appendix. 

For further discussion of metrics for convex bodies, see 
Shephard and Webster (1965). A set of toy examples of the calculations 
is given in Chapter X, "Angles and distances." 
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Appendix 5 Further comments on subset genèration 

Consider a set N of n = I NI objects containing an unlcnown number of 
as yet undescribed "true" populations of interest. Let P(N) denote the 
power set, m = I  P(N) I , ak  a 0,1 n-element column vector denoting the 
le subset, ak  E P(/V), where aik  = 1 if object i is a member of the kill 

subset and is zero otherwise. 
The process of recognizing which of the P(N) are the "true" 

populations is • sequential; at each stage, some subsets are selected, and 
others discarded. At stage t of the selection process, the choice is random 
and according to a probability 

p(t), where Ek.. 1. ,p1(t) = 1. 	 (A5.1) 

At the final stage, for there is one, although each of the remaining 
subsets need not correspond with one of the unlcnown populations, they 
may do so. Note that, based on the chosen set of descriptors, some 
members of one true population can be closer to the centroid of another 
than they are to that of their own population. Certainly, it is hoped that 
distinct populations are represented by disjoint sets of subsets. 

At stage t, let q(t) be the probability of success in identifying a 
"true" population, and 1 - q(t) the probability of failure. The distribution 
of q(t) is not lcnown to the decision maker, but the objective is to 
maximize the probability of success in identifying the true populations. 
Since there is no lcnowledge about q, consider a learning algorithm of 
the form 

p(t + 1) = T(p(t)), 	 (A5.2) 

where, omitting the empty subset,  p(0) = 11(m - 1), Ya k  E P(/V), and 
T is an operator to be discussed. If q(t + 1)1q(t) > 1, the decision is 
called a "reward," while if this ratio is less than unity, it is called a 
"penalty." A ratio of unity is neutral. Expression A5.2 is a nonlinear 
reward-penalty algorithm, in which much (all?) depends on the choice 
of T; here, it represents the subset-generating procedure described in 
Chapter VIII. For subset k at stage t, denoted by b(k,t), algorithms based 
on C-neighbors transform it into another by a process, which can be 
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represented as — 

b(k, t + 1) = irk(b(k,t)), 	 (A5.3) 

where b(k,O) = a k, and b(k, t + 1) is another member of P(N). Let 
p(k, t (,.„ 1)) denote the probability of subset b(k,t) at stage t + 1; under a 
number of mild regularity conditions, which will be exposed in the 
process of describing  4, , the following conclusions arise: 

(1) If b(k, t + 1) 	b(k, t), then p(k, 	= O. 	(A5.4) 

It follows that if the subset 0(b(k,t)) at stage t has zero probability, then 
so should b(k,t). 

(2) There is a stage, r', such that b(k, t' + 1) = b(k,t'). 
(A5.5) 

In other words, for any initial vector, b(k,0), the process represented by 
has an absorbing state, at , which is also a member of P(N). Since  4, 

is not (usually, or even ever) a linear operator and is not even 
continuous, the process corresponds with identifying the fixed points (the 
absorbing states) in a discrete topological space. Different initial vectors 
may give rise to the same absorbing state; just one absorbing state for all 
initial vectors indicates that there is just one "true" population in the N 
(the hope, of course, is that there is more than one, but not too many). 

Although this is not a computational protocol, at stage t, three 
operations are performed: 

each subset for which pk(t) > 0 is operated on by 

.• those subsets that are transformed by this operation are assigned 
a probability of zero 

the vector of probabilities p(t + 1) is estimated. 

The estimation procedure, described below, is based on the minimum 
cross-entropy principle. There is a stage, tc, for which 
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p(tc + 1) = p(tc), 	 (A5.6) 

which is advantageous if most pk(tc) = O. It is also necessary that the 
chosen subsets form a covering of the objects, i.e., 

N = {Ljak  Ipk(tc) 	0). 	 (A5.7) 

Using the definition of trk given below, which . implies that the clustering 
space is a generalized metric, with associated space given by the 
dissimilarities, it is easy to show that tc n. 

The distance between any subset ak  and any absorbing state a, 

can be measured as the minimum number of 4) steps needed to convert 
the first to the second, i.e., 

a(k,t) = min (co, si (Kit t) = ak, s a minimum). 	(A5.8) 

The operation of 4) on a particular subset is independent of its operation 
on any other, although the choice of subsets on which to operate is not. 
As noted above, the choice is based on the vector p, which, other than 
stating an initial condition and also that certain of the elements become 
zero, has not been defined. Consider the situation at state t > 0, and 
assemble the matrix A(t), which consists of those m' subsets for which 
Pt(t) > O. Dropping the suffix t to simplify the notation, 

A is a n X m' incidence matrix of a subset system as in 
Chapter  II 

a covering is indicated by any binary vector x satisfying Ax 	1 

those x for which Ax = 1 indicate partitions. 

If a particular object belongs to precisely one subset, this subset must be 
part of every covering, and the corresponding element in x can be set to 
unity. Referring to the reductions described in Chapter II and considering 
all members of P(/V), these remarks can be expressed as 
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Pi  = Pr(xk  = 1) = 
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0 if subset k has been eliminated 
by e or is emptied by the reductions 

1 if subset k is nart of every coverine. 1 if subset k is part of every covering. (A5.9) 

Although those subsets for which pi  = 1 may form a covering, this is 
unlikely. As described in Chapter II and in Lefkovitch (1982), each 
remaining subset has a probability pi  of participating in a covering, 
namely, 

0 	p' k  < 1. 	 (A5.10) 

The pi  are to be considered more as logical probabilities than as 
frequencies; these probabilities, including those whose prior value is 
unity, can be renormalized to standardize the total to unity. An optimal 
covering can now be regarded as the conjunction of individual 
hypotheses that a subset participates in an optimal solution, and so the 
desired solution is one for which the joint probability is a maximum. 
This representation allows q(t), the probability of success in identifying 
a "true" population, to be  Pi(t) = 1, defined as [1 - Ilk(1 - 
Determining the remaining elements of p(t) has been described in 
Chapter IL 

Although estimating the nonzero  p(t) for each t is possible, the 
choice of subsets is essentially based on  p(t) > 0, so that it need be 
performed only once, namely, at stage tc; as a result, only q(tc) is 
obtained (other than q(0)). The comparison between these two is of lesser 
interest than that between the q(tc) for different 0. The information gain 
and other statistics are subject to similar comment. 

If T, namely, the process by which p(t) becomes p(t + 1), is to 
represent a practical procedure, it must eliminate many of the subsets 
from consideration very rapidly. In fact, almost all can be eliminated a 
priori even though which these are is not lcnown until stage tc. This 
elimination depends on the regularity conditions for conditional clustering 
and is expressed in the following theorems, the first of which concerns 
fixed points in generalized metric spaces; the second, which depends on 
the first, is fundamental to the whole method. 
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A fixed-point theorem given by Collatz (1966,  P.  208-210), 
recast for the present purposes, can be expressed (with comments) as 
follows: 

THEOREM A5.1. If in an operator equation 4;b(u) = 

(I) the domain, B, of the operator (1) lies in a complete 
generalized metric space R, (here formed by the subset space 
P(N) with associated partially ordered space D, the dissimilarity 
space); and associated with is another operator G on D, which 
is positive and continuous but not necessarily linear, with an 
element z E R such that for any two elements v, w, E B 

d(T(v), T(w)) < G(d vw  + dvz) - G(d) 

(here G is the operation of defining set membership; z is the null 
element or a fizxed point, as long as there is at least one element 
for which this condition is true for v); and 

(2) the distances d, d', s, s' in D where 

and AD S S 

satish 

eD  5 G(d + s) - G(d) G(d' + s') - G(d) 

(i.e., for d = d' = OD it follows that OD 	G(s) 	G(s') for 
OD É S s'); and 

(3) there is another iteration S 

= Ss„ (t = 0,1...) 

given by the operator S and distances s, E D and these distances 
satish 
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so 	d(uo, z) 

so  + d(uo, 

(i.e., S compares the ratios of distances); and 

(4)there exists a fixed element x E D such that 

ST  = G,, + x for r E D; and 

(5) the sequence s, converges to a limit element s (here 
s = 1); and 

(6) the sphere K of all elements that swish? 

d(v, u) 	s- si  

belongs to the domain B, where s is a limit element; 

then at least one solution exists to the equation 

ck(u) = u, 

and the sequence u,., = cp(u) converges to the solution. All u, 
and u lie in the sphere K, and the error estimate 

d(u, u,) 	s - s, 

holds (t = 0, 1...). 

Proof. See Collatz (1966); note that Collatz uses "pseudometric 
space" for what is usually called a generalized metric space. 

The next theorem considers more than one fixed point and shows that the 
operator  4) fmds them all with probability approaching 1. 
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THEOREM A5.2. Assuming 4) satisfies the regularity conditions 
for conditional clustering, all absorbing states are obtained by 
the repeated action of 4) on each of the () two-object subsets, on 
each single-object subset and on N. 

Proof.  There are several parts: parts (a), (b), and (c) consider 
the simple cases; part (d), the important case, itself consists of 
two parts; and part (e) completes the proof. 
(a) The action of 4) on the null set yields the null set. 
(b) The action of 4) on a single-object subset either leaves it 

unchanged, or changes it to another. If the latter, then 
this subset is either N, considered in (c), or a proper 
subset of N, considered in (d). 

(c) The action of 0 on N leaves it unchanged. 
(d) Consider any subset of two (distinct) objects; 0 either 

leaves it unchanged, in which case it is an absorbing 
state, or changes it. If it is changed, then it is used at the 
next stage. Thus some subsets used at the first and 
subsequent stages of the modified process are present at 
stage 0 for the complete process. Thus the members of 
P(N) can be divided into two subsets, namely, those 
explicitly used at some stage, and those that are not. Of 
the latter, some are considered implicitly, and perhaps 
some are not. Each is considered in turn. 

(1) Implicitly considered subsets. If a subset is 
changed by 0, objects are either included or 
excluded, or both. 

(i) Consider the inclusion of  objects. If just one object 
is included, the changed subset is used explicitly at 
the next stage; if more than one object is included, 
first consider two such objects; the challenge is to 
determine if the new subset excluding one or other 
of the newly included obje,cts when transformed by 
4) yields the same subsets, and, in particular, the 
saine  absorbing state as the complete new subset. 
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This situation is guaranteed by the first regularity 
condition, which implies that each subset at stage 
t > 0 contains all objects within a convex region 
of the dissimilarity component of the domain of 0. 
By induction, it is also true for three newly 
included objects, and so on. 

(ii) Consider the exclusion of objects. If the cases that 
yield the null subset and subsets of cardinality 1 or 
2 are eliminated (note that a cycle through pairs is 
excluded by the convexity consequence of the 
regularity conditions), then arguments analogous to 
those for inclusions, but relying on both regularity 
conditions, are easily made. No additional 
conunents are required if there are both exclusions 
and inclusions. 

(2) Subsets neither explicidy nor implicitly considered 
are of interest  if  they are associated with an 
absorbing state different from the others. The 
assumption that such absorbing states exist re,sults 
in a contradiction. Suppose aj  is such a subset and 

N is the corresponding absorbing state (note 
that 'ai l > 2, which in this case is assumed not to 
be generated by the explicitly or implicitly used 
subsets and is therefore not found by 0. Thus the 
members of ai  belong to more than one absorbing 
state (other than a, or N); if they had belonged to 
the same a„ they would have generated it. 
Consider two members of ai  belonging to different 
absorbing states (other than a,. or N); this pair was 
explicitly used, and therefore generated an 
absorbing state. Since this absorbing state must be 
different from a„, which is obtained only by 
subsets neither explicitly nor implicitly used, it 
could be only 0 (the empty set) or N. In either 
case, it follows that ae  has been obtained, i.e., a 
contradiction to the assumption. Thus there can be 
no absorbing states different from those generated 
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by the pairs, by the null set, by the single objects, 
or by N. 

(e) 	Since all distinct pairs are used, the whole dissimilarity 
space is straddled in the vicinity of the objects, and thus 
the probability of identifying all absorbing states 
approaches unity. 	 Q.E.D. 

Excluding N and the single-object absorbing states, those remaining 
maynot form a covering of the objects. The absent objects must therefore 
be unlike any of the others to such an extent that their participation in a 
multi-object subset implies that the corresponding absorbing state is N. 
Thus, in the context of the objective of the clustering, each of these 
represents a different "true" population, and, other than noting this fact, 
they need no longer be considered. It is assumed, therefore, that each 
absorbing state contains at least two objects. 

The operator 4), which is fimdamental to the whole process, 
implies that the absorbing states are contained within convex regions of 
the dissimilarity space; even though these regions may differ in size, 
shape, orientation, and location, there is no reason to assume that a 
"true" population coincides with one and only one of the absorbing 
states. (In fact, for subsets containing many objects, the asphericity of 
their convex hull is almost unity in the dissimilarity space.) If a true 
population is sufficiently isolated from all others, then a one-to-one 
relationship may hold; but any lack of isolation needs further study or 
additional empirical data. Of more inunediate concern is the possibility 
that a single true population cannot be contained within one absorbing 
state without containing others. 

Conditional on the initial merilbership and subsequent history, the 
absorbing states 4) obtains are isolated from others insofar as possible. 
Excluding N from consideration, if two or more absorbing states are 
nondisjoint, then their union, called a muster (Appendix 6), is a first 
approximation to one true population (Lefkovitch 1982). Furthermore, 
if none of the participating absorbing states in a muster is equal to the 
muster, the containing regions in the dissimilarity space is not part of the 

4'  family but may be defined as the union of the separate containing 
regions. Thus the convexity assumption, which is so important for ck, is 
removed for subsequent processing. A weaker muster, based upon the 
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objects in the union of nondisjoint containing regions, is also possible. 
Because a single muster thus formed can include two or more 

true populations each of which is a proper subset of it, there is advantage 
in postponing muster formation until after a further selection ofabsorbing 
states is made using an optimal covering procedure (Chapter II). If the 
chosen subsets form a partition, each can be regarded as a second 
approximation to a true population; if they do not, the musters formed 
from them serve this role. Whatever the case, the clustering at this stage 
is completed, and the conjectured populations may be studied, compared, 
joined, further subdivided, and so on, preferably with independently 
obtained data. 

While there are many ways to perform these last processes, the 
same general algorithm can be used to form musters. Let Â denote the 
subsets selected by an optimal covering from which musters are to be 
selected. Each member of Â can be considered as an object, and so the 
musters are members of P(Â). Given a measure of dissimilarity between 
subsets (Chapter VII), the musters are precisely the absorbing states 
corresponding to the operation of 4) on each of the pairs of objects 
belonging to Â. If the sole absorbing state is their union, then it can be 
assumed that the musters are identical with the subsets forming Â, and 
the process stops; if not, the subsets in the optimal second phase 
covering can be used for a third phase, and repeated until the sole 
absorbing state is their union. 

Defining  4)  for conditional clustering, extreme value model 

Let 
D denote the n X n matrix of pairwise distances (dissimilarities); 

xi" denote a vector whose elements are 1/xi, or zero if  x = 0; 

* denote the matrix operation analogous to multiplication, in 
which  (min.  max) replaces (x,  +1, but the rules for combining 
matrices and vectors are otherwise unchanged; 

a denote a 0,1 vector describing a subset. 
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The definition of some familiar quantities in these terms is useful. 

The total distance between each of the n objects and the members 
of subset a is given by the corresponding element of v where 

v = Da. 

(2) The average distance between each of the n objects and the 
members of a is 

w = 	= Da/ra = Da/aTa. 

(3) The total distance among members of subset a is 

à = aTDa = aTv. 

(4) The average distance among members of subset a is 

= 	= aTDa/aT11Ta = aTDa/aT  aira  = irw/aTa.  

(5) The maximum distance among members of subset a is 

= aT*D*a . 

(6) The minimum distance between each of the n objects and the 
members of a is given by the corresponding element in 

b = D*a. 

The decision criterion of conditional clustering (Chapter VIII) is to 
compare w with g; if wi  É g, i.e., if the dissimilarity of object i to the 
members of the subset does not exceed the maximum among the 
members, it is to be included in the subset at the next stage. Suppose z 
is the vector defined as 

z  = jiw + = dra( _T*— a u*a)(Da)+, 

( 1 ) 
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then if zi 	1, a new vector is to be formed with an element in the th  
position equal to unity and is otherwise zero. This formulation can be 
expressed as 

1 - I*[(1*z)e - 1], 

and hence the operator ci) is given by 

cb(a) = (1 - I*((1*(ea(a T*D*a)(Da) 1 ))* - 1)). 

Three operators, namely, ordinary matrix multiplication (including 
addition and subtraction), *, and 0+ are involved in these definitions. 
Because the distributive law need not apply in operations involving * and 
either or both of the others, there seems to be no obvious way to 
simplify the definition of cP(a). 
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Appendix 6 Subset homogeneity and musters 

Denote a subset of the N objects by S, and the dissimilarities among the 
N by D. The average dissimilarity among the members of S is denoted 
by S(S), and the neighborhood of S is denoted by V(S). It is assumed that 

iE S**i E V(S). 

A subset generated by 43 (Appendix 5) is denoted by 

Tt(i,J) = Sgi,./;VM) 

and is called a 4>subset. 
The concept of subset homogeneity can now be considered in 

terms of 43-subsets, or, more concisely, in terms of their inverse images. 
Consider the subset 

Bk  = Tk \ {i 	E 	j; 0(i, j;V,D) 	Tk  )1 
(A6.1) 

defined by the point-to-set function that omits those members of Tk which 
do not generate it. Then 

DEFINMON A6.1. A subset Tk is called 0-restricted if Bk = Tk, 

and 0-diffuse if 13, C  T.  

There are many differences between these two kinds of subsets, of which 
one is now described in terms of the dissimilarities among their 
members. Let r(Tk) be the ratio of the smallest to the largest dissimilarity 
between distinct pairs; this order statistic tends to unity in homogeneous 
subsets, and to zero in the heterogeneous. 

THEOREM A6.1. If L and M are respectively 0-restricted and 
0-difl1 se subsets, where ILI = IMI ,  and b(L) = S(M), then 

r(L) > r(M). 
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Proof. Since M is diffuse and 6(L) = 6(M); because there is at 
least one pair of members of M that do not generate the subset, 
i.e., min(du  I i,j E M) < min d(u J  i,j E L), coupled with the 
assumption of equal 6, the proof is completed. Q.E.D. 

COROLLARY A6.1. max(dg  I  i,j E M) > max(d u I  i,j E L). 

Proof This assertion follows at once from equality of mean 
dissimilarities and the inequality of Theorem A6.1. 	Q.E.D. 

Thus with respect to r(T2) and related measures, 0-restricted subsets can 
be said to be more homogeneous than 0-diffuse. It is of interest that 
0-restricted subsets are reminiscent of maximal cliques, as the following 
easily proved consequences of Expression A6.1 illustrate. 

THEOREM A6.2. (a) If  the union of two or more 0-restricted 
subsets is a 0-subset, it is 0-diffuse. 
(b) If the union of two or more 0-diffuse subsets is a 0-subset, 
it may be 0-diffuse or 0-restricted. 
(c) If a proper subset of a e-restricted subset contains more 
than one object, it cannot be a 0-subset. 
(d) A 0-subset that is a subset of a 0-diffuse subset may be 
0-restricted or 0-diffuse. 

The proofs of these are not difficult and are omitted. 
The following lemmas are useful with respect to optimal 

coverings and prepare the ground for the definition of isolated 
0-restricted subsets. 

LEMMA A6.1. The intersection two 0-restricted subsets contains 
no more than one object. 

Proof Suppose L, and L2 are both 0-restricted, L 1  # L2, 
n 1.21 k 2; choose  S1  = 	E 	 j } . By definition, 

both L1  and L2  are obtained from Si , which implies L1  = 
which contradicts the supposition that they are distinct. 

Q.E.D. 
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LEMMA A6.2. Those 0-subsets that are proper subsets of 
0-restricted subsets are not generated by 0(.), as defined above. 

Proof.  This assertion is a simple consequence of 00 and 
Expression A6.1. 	 Q.E.D. 

DEFINMON A6.2. A 0-restricted subset disjoint from any other 
0-subset is called strongly 0-restricted. 

THEOREM A6.3. If each of the final ensemble of subsets is 
strongly 0-restricted, together they form an optimal partition 
with respect to 4). 

Proof. Since they are disjoint, they form a partition, and since 
they are 0-restricted, by Theorem A6.1 they are more 
homogeneous than if they were to have been 0-diffuse, and since 
no other subsets can be formed by the specified 0, the proof is 
complete. Q.E.D. 

THEOREM A6.4. If the final ensemble includes 0-restricted 
subsets whose union forms a covering, then only these need to be 
considered for an optimal covering, and the 0-diffuse subsets 
may be deleted. 

Proof.  Deleting the 0-diffuse subsets, which by Theorem A6.1 
are more heterogeneous than the 0-restricted, does not create 
infeasibility; combining this statement with Lemma A6.2 
completes the proof. Q.E.D. 

The main consequences of these theorems are of practical intere,st and 
can be expressed as 

COROLLARY A6.2. If the final ensemble includes strongly 
0-restricted subsets, they participate in the optimal  cove  ring.  

Determining if a subset is 0-restricted is best done after completing any 
logical reductions (Chapter II) on the ensemble. Lenuna A6.1 shows that 
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only those subsets whose intersection with any other is no greater than 
unity need be investigated. The determination may be made either by 
repeating some computation, or by recording the pairs of objects 
generating each subset. 

Although  r(T) is a useful description of the homogeneity of a 
subset, it rarely takes a value of unity even for 0-restricted subsets. 
There may be advantage, on occasions, in describing heterogeneity by 
the ratio 
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which will always be zero for 0-restricted subsets. 
In Chapters II and VIII, I have emphasized that each subset in an 

optimal solution need not bear a one-to-one relationship with an unknown 
true population, since the "shapes" that the latter have in the dissimilarity 
space are not necessarily part of the V-family and may not even be 
convex. Consequently, the convexity assumption needs to be weakened 
and the V-family enlarged to define a form of subset homogeneity that 
exhibits continuity rather than  the compactness of 0-restricted subsets. 

DEFINnioN A6.3. A subset R is called a 0-muster when it 
satisfies the three conditions: 
(1) 	R 0 	R is not empty], 

vTk  E k  Ç R or Tk  Ç  (NIR) [i.e., a 0-subset belongs 
either to R or to the complement of Rh 

(3) 	W R 3 Tk : (7' sr W) A (Tk  e NI IV) [i.e., R has no 
proper subset which sati.sfies (1) and (2)1 

This definition is equivalent with one proposed by Tutte (1979). 

THEOREM A6.5. The family of 0-musters forms a partition. 

Proof. Definition A6.3 implies that 0-musters are pairwise 
disjoint. 	 Q.E.D. 
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COROLLARY A6.3. If minIRI = n, the only set of 0-musters 
covering N consists of the partition formed by the improper 
subset. 

Proof The assumption implies that there is only one 0-muster. 
Q.E.D. 

DEFINMON A6.4. The neighborhood of a 0-muster is the union 
of the neighborhoods of its component 0-subsets. 

The neighborhood of a 0-muster need not be convex, nor its boundary 
in the dissimilarity space be smooth, nor for it to be without holes. 

The weakest form of homogeneity can now be defined: if R. is 
the uth  0-muster, and Z  = Z(R) is its neighborhood, then 

DEFINrrioN A6.5. The subset, H = I I ....,z„nz,0 1WR, is called a 
weak 0-muster. 

Thus if the neighborhoods àf two musters intersect, form the subset that 
is the union of the objects they contain. 

Linking with Theorem A6.3, the following definitions 
characterize special clusters and partitions: 

DEFINITION A6.6. A 0-muster that is also strongly 0-restrial 
is called a 0-restricted cluster. 

DEFuvrrioN A6.7. If all 0-musters are 0-restricted clusters, the 
partition is called 0-regular. 

DEFINrrioN A6.8. If the subsets forming a 0-regular partition 
are also weak 0-musters, the partition is called 0-isolated. 

The finding of a 0-isolated partition implies that large changes in the 
definition of V would be needed to achieve a different partition; it also 
implies the mutual isolation important in the context of numerical 
taxonomy (Cormack 1971). In consequence, there is a high probability 
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that the partition is optimal. 
If there is only one muster for a given set of objects, there may 

be some inadequacy in the definition of V or D; equally, the objects may 
truly belong to one group, suggesting that an ordination may be 
preferable to a clustering. 
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