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Abstract

The authors examine evidence of long- and short-run co-movement in Canadian sectoral o

data. Their framework builds on a vector-error-correction representation that allows them to

for and compute full-information maximum-likelihood estimates of models with codependen

cycle restrictions. They find that the seven sectors under consideration contain five commo

trends and five codependent cycles and use their estimates to obtain a multivariate Beverid

Nelson decomposition to isolate and compare the common components. A forecast error va

decomposition indicates that some sectors, such as manufacturing and construction, are su

persistent transitory shocks, whereas other sectors, such as financial services, are not. The

also find that imposing common feature restrictions leads to a non-trivial gain in the ability 

forecast both aggregate and sectoral output. Among the main conclusions is that manufact

construction, and the primary sector are the most important sources of business cycle fluctu

for the Canadian economy.

JEL classification: C15, C22, C32, E32
Bank classification: Business fluctuations and cycles; Econometric and statistical methods

Résumé

Les auteurs cherchent à établir le degré de covariation à court et à long terme dans les chi

sectoriels de la production au Canada. Leur cadre d’analyse s’appuie sur un modèle vecto

correction d’erreurs assorti de contraintes de codépendance des cycles, qu’ils estiment et 

au moyen de la méthode du maximum de vraisemblance à information complète. Ils consta

que les sept secteurs considérés présentent cinq tendances communes et autant de cycle

codépendants; à partir de leurs estimations, ils calculent une décomposition de Beveridge-N

multivariée en vue d’isoler les composantes communes et de les comparer. Une décomposi

la variance des erreurs de prévision révèle que certains secteurs, comme la fabrication et 

construction, sont soumis à des chocs transitoires dont l’effet est persistant, alors que d’au

comme les services financiers, ne le sont pas. Les auteurs observent par ailleurs que l’imp

de contraintes en matière de caractéristiques communes améliore de façon tangible la capa

prévoir la production au niveau tant global que sectoriel. L’une de leurs principales conclus

est que le secteur primaire, le secteur de la fabrication et celui de la construction contribuen

une large mesure aux fluctuations cycliques de l’économie canadienne.

Classification JEL : C15, C22, C32, E32
Classification de la Banque : Cycles et fluctuations économiques; Méthodes économétriqu
statistiques



1 Introduction

To conduct good fiscal and monetary policy, a clear understanding of the working of

the economy – and especially of the factors that drive the business cycle – is necessary.

In recent decades, economists have focused mainly on understanding movements in

aggregate output and on explaining the persistence of aggregate economic activity.

To do this, they have relied upon, among other things, dynamic general-equilibrium

(DGE) models, which focus on the self-interested responses of economic agents to

disturbances. Although these models have become a helpful tool, they are based

on the implicit assumption that aggregate shocks affect all sectors of the economy

equally. Empirical evidence, however, suggests that this is in fact too strong an

assumption. For instance, Long and Plosser (1987), using a simple factor analysis

on the innovations of a vector autoregression (VAR), show that approximately half

of the variance in U.S. industrial production is explained by a more diverse set of

independent disturbances, rather than by a common aggregate shock. In addition,

typical DGE models are generally less concerned with understanding the prevalent

synchronized nature of the business cycle across sectors, which is typically referred to

as co-movement.

The aforementioned abstractions of typical DGE models have been addressed in the

recent theoretical literature on the business cycle. Consequently, great progress has

been made in understanding sectoral fluctuations and their importance for aggregate

movements, from a theoretical standpoint. Seminal research by Long and Plosser

(1983) shows that, in a multisector real business cycle model, even when productivity

shocks are independent across sectors, agents’ choices cause co-movement of activ-

ity measures across different sectors. More recently, Horvath (1998 and 2000) has

developed a multisector DGE model in which aggregate fluctuations are driven by

independent sectoral shocks. Building on important linkages between sectors, this

model can capture the qualitative features of macroeconomic fluctuations without

relying on implausible aggregate shocks. Other authors have also focused on sector-

specific shocks that might explain the observed co-movement as well as the mechanism

behind the propagation of shocks throughout sectors. For example, reallocation of

labour and capital across sectors as a result of sectoral shocks may be an important
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mechanism in generating the persistence of aggregate fluctuations (Davis and Halti-

wanger 1999 and Campbell and Kuttner 1996). Similarly, shocks can be propagated

among sectors through the buildup and unwinding of inventory imbalances (Cooper

and Haltiwanger 1990).

Notwithstanding the advances in the theoretical literature on business cycles, few

empirical studies have looked at the dynamics and co-movement among sectoral data.

Exceptions are Engle and Issler (1995) and Harvey and Mills (2002), who study

sectoral output dynamics for the United States and the United Kingdom, respectively.

To our knowledge, no such study has hitherto been conducted for Canada.

Our empirical model is based on a VAR, which allows for dynamic feedback between

the individual sectors without imposing any a priori restrictions. Following the liter-

ature on cointegration, long-run co-movement is characterized by common stochastic

trends, leading to a vector-error-correction model (VECM) representation. Our study

of short-run co-movement builds on Vahid and Engle’s (1993, 1997) notion of com-

mon and codependent cycles. Common cycles are stationary components that are

synchronized in phase but that can differ in amplitude. The concept of codependence

is more general, in that it allows for non-synchronized co-movement. Codependent

variables are characterized by impulse functions that become collinear after a certain

number of periods. The length of this initial heterogeneous adjustment can be inter-

preted as a measure of structural frictions or of adjustment costs. We depart from the

existing literature in that we use (full-information) maximum-likelihood estimates of

restricted VECMs to test for the number of cofeature combinations. The estimated

models can then be used to obtain a trend-cycle decomposition (following the method

proposed by Proietti 1997) and to compute a variance decomposition to assess the

relative importance of transitory and permanent shocks for each sector.

In addition, we are interested in whether the disaggregated nature of our data set

can provide superior forecasts of aggregate output. For this purpose, we conduct an

out-of-sample forecasting exercise that also serves as a test for the hypothesis that

the imposition of short-run restrictions leads to overall efficiency gains.

This paper is organized as follows. Section 2 gives an overview of the empirical

framework and describes the concepts of common cycles and codependence. In section
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3 we discuss the multivariate Beveridge-Nelson decomposition with long- and short-

run restrictions and illustrate how it can be computed from reduced-form VECM

parameters. Section 4 presents the data used in our empirical analysis, as well as the

results of the cointegration and common cycle tests, the trend-cycle decomposition,

and the results of a variance decomposition of permanent and transitory shocks to the

data. Section 5 describes our out-of-sample forecasting exercise. Section 6 contains

a discussion and concludes.

2 Vector-Error-Correction Models with Common

Short-Run Features

We base our empirical model on the assumption that the data can be described by a

finite-order VAR of order p:

yt = Π1yt−1 + Π2yt−2 + ... + Πpyt−p + ut, (1)

where yt is a vector of N I(1) variables and ut is a vector of Gaussian white noise

disturbances. This can be written more compactly as

Π(L)yt = ut, (2)

where Π(L) ≡ IN −Π1L−Π2L
2− ...−ΠpL

p. Since yt ∈ I(1), the roots of |Π(z)| = 0

fall on or outside the unit circle; i.e., |z| ≥ 1. This prevents explosive processes, but

allows the VAR to have unit roots. The VAR in levels can be reparameterized to

yield the interim multiplier representation (see Banerjee et al. 1993)

∆yt = Πyt−1 + Γ1∆yt−1 + ... + Γp−1∆yt−p+1 + ut, (3)

where Γj = −
∑p

i=j+1 Πi and Π =
∑p

i=1 Πi − IN = −Π(1). Elements of yt are

cointegrated if there exists a linear combination that is stationary. Engle and Granger

(1987) show that if there are cointegrating relationships, the rank of Π equals r < N ,

such that Π can be factored as the product of two N × r matrices (Π = −βα′). Here,

α includes the r cointegrating vectors that span the cointegration space, while β is

called the matrix of adjustment coefficients that are the factor loadings in the VECM:

Γ(L)∆yt = −βzt + ut, (4)
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where zt ≡ α′yt is the error-correction term. The common-trends assumption imposes

cross-equation restrictions on the VAR, as shown by Engle and Granger (1987). Since

the VAR in levels in equation (2) parsimoniously encompasses the VECM in equation

(4), we can reduce the number of parameters of the dynamic representation by esti-

mating the VECM, which takes these restrictions into account. In this case, the VAR

has N2p parameters and the VECM has only N2(p−1)+2Nr− r2 parameters in the

conditional mean after accounting for free parameters in the cointegrating vector.

2.1 Common cycles

Similar to the definition of cointegration, we may ask whether the stationary com-

ponents of the data share common elements. This question underlies the concepts of

codependence (Gourioux and Peaucelle 1992) and common features (Engle and Koz-

icki 1993). The idea behind codependence is that a linear combination of the data

exists that is of lower moving-average order than the individual series themselves. In

its strongest form, a linear combination of the data will annihilate any serial corre-

lation. This is Engle and Kozicki’s definition of a serial correlation common feature

(SCCF), which renders cyclical components that are completely synchronized. Vahid

and Engle (1993) show that, for I(1) series, the same linear combination that elimi-

nates serial correlation in the differences of the data will also eliminate common cycles

in the levels. We can therefore define an N × s matrix α̃ of rank s, such that α̃′∆yt

is unpredictable (white noise). The s linear combinations contained in α̃ are the

cofeature vectors and the space spanned by α̃ is called the cofeature space. Since any

cofeature combination of the data in levels is a random walk, the cofeature vectors

need to be linearly independent of the cointegrating vectors. Therefore, the number

of common trends and common cycles cannot exceed the dimension of the system

(r + s ≤ N).

Vahid and Engle (1993) show that the existence of common cycles places additional

cross-equation restrictions on the VECM, which yield efficiency gains if correctly

imposed. To include the common cyclical restrictions in our VECM framework, recall

that premultiplication by the cofeature matrix eliminates all serial correlation in ∆yt.

It is possible to rotate α̃ in such a way as to have an s dimensional identity submatrix,
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since the cofeature vectors are identified only up to an invertible transformation:

α̃ =

[
Is

α̃∗
(N−s)×s

]
.

We can then consider α̃′∆yt = α̃′ut as a system of s equations. Adding to this the

unconstrained VECM equations for the remaining N − s elements, we obtain the

pseudo-structural model or constrained VECM:

[
Is α̃∗′

0(N−s)×s IN−s

]
∆yt =

[
0s×(np+r)

Γ∗1 ... Γ∗p−1 β∗

]
∆yt−1

...

∆yt−p+1

α′yt−1

 , (5)

where Γ∗i and β∗ represent the partitions of Γi and β that correspond to the bottom

N − s reduced-form VECM equations. The error term in equation (5) is given by

vt =

[
Is α̃∗′

0(N−s)×s IN−s

]
ut. (6)

The constrained VECM has s(np + r) − s(N − s) fewer parameters than the un-

constrained VECM, and therefore potentially produces more efficient estimates. The

rows of zeros on the right-hand side of the VECM are exclusion restrictions that re-

sult from common cycles. The parameters of this reduced-rank VECM can be consis-

tently estimated by simultaneous equation estimation techniques, such as two-stage

least squares (2SLS) or full-information maximum-likelihood (FIML). The implied

reduced-form VECM and its innovations can be recovered by pre-multiplying the

pseudo-structural form by the inverse of[
Is α̃∗′

0(N−s)×s IN−s

]
.

To carry out the estimation of the model outlined above, several tests are required.

Before testing for cointegration, one has to determine whether all the variables are

I(1) by employing standard unit-root tests. It is also important to determine the

required number of lags, p, in the VECM that adequately capture the dynamics of
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the system, either by using an information criterion or a sequence of likelihood-ratio

tests. Conditional on these settings, the cointegrating rank, r, can be determined by

employing Johansen’s (1988, 1991) technique, which estimates the number of linearly

independent cointegrating vectors.

Having chosen r, the number of common cycles can be determined using Engle and

Vahid’s (1993) approach. This test involves searching for linear combinations of

the first differences of yt whose correlation with the elements of the relevant past

information set, determined as the dependent variables in the VECM representation

of the system, are zero. This can be done by computing the canonical correlations

between the first differences of the variables and the right-hand side of the VECM.

The canonical correlations that are insignificantly different from zero represent linear

combinations of ∆yt that are uncorrelated with the relevant history of the variables,

and thus give the number of independent cofeature vectors, s. The statistic to test

for the null hypothesis that the dimension of the cofeature space is at least s can be

found using standard distribution theory, as in Tiao and Tsay (1985), and is given

by:

C(s) = −(T − p− 1)
s∑

i=1

log(1− λ2
i ), (7)

where λ2
1, ..., λ

2
s are the s smallest squared canonical correlations between ∆yt and the

right-hand side of the VECM, Wt = (α′yt−1, ∆yt−1, ..., ∆yt−p+1). Under the null, this

statistic has a χ2 distribution with s(Np + r)− s(N − s) degrees of freedom.

2.2 Codependent cycles

The common cycle framework discussed in section 2.1 assumes that different economic

variables are affected by an exogenous shock in a synchronous fashion, such that their

impulse responses are collinear. This may be an unrealistic assumption, since it is

often believed that different variables adjust to a shock with different speeds. In the

case of our sectoral data set, for example, this heterogeneity in adjustment may be

explained by structural differences such as labour-market rigidities, adjustment costs,

degree of openness to trade with other economies, and dependence on raw materials.

In this section, we therefore follow Vahid and Engle (1997), who extend the common
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cycle framework to the more general case where impulse responses are allowed to be

linearly independent for the first q periods.

Consider a stationary N -dimensional time series, xt, with Wold representation:

xt = εt +
∞∑

j=1

Cjut−j. (8)

We say that xt has N − 1 codependent cycles of order q, if there exists a vector α̃q·

such that

α̃′
q·Cj

{
6= 0 if j = q

= 0 if j > q
. (9)

In other words, a linear combination of the data exists that has an MA(q) representa-

tion. More generally, let us assume that there are sj linearly independent vectors, α̃j·,

that are collected in the N × sj matrix α̃j, where j = 0, ..., q̄. Then α̃′
jxt is a VMA(j)

and xt has s = s0+...+sq̄ cofeature combinations and N−s codependent cycles. Since

all cofeature vectors form an s-dimensional basis in RN , the matrix α̃ ≡ [α̃0, ..., α̃q̄]

is defined only up to an invertible transformation and therefore contains s(N − s)

parameters after normalization.

Vahid and Engle (1997), building on earlier work by Tiao and Tsay (1989), call a

structure that satisfies equation (9) a scalar component model of order (0, q), denoted

as SCM(0, q).1 Note that the case of SCCF discussed in section 2.1 is the special case

when s = s0, such that xt contains s SCM(0, 0) and the cofeature combination of the

data becomes an innovation.

Existing tests for codependence exploit the condition that the cofeature combination

α̃′
jxt is uncorrelated with lagged information beyond xt−j. Vahid and Engle use

this orthogonality condition to construct a generalized method of moments (GMM)

estimator that contains a generalization of Tiao and Tsay’s test (7) as a special, albeit

suboptimal, case. The null hypothesis of these tests is H0: q ≥ j. Therefore, a failure

to reject an SCM(0, q1) implies that any SCM(0, q2) (q2 > q1) will not be rejected

1Tiao and Tsay consider the more general class of scalar component models, SCM(p̄, q̄), that
have an ARMA(p̄, q̄), representation. For the purpose of this paper we restrict ourselves to the case
where p̄ = 0.
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either. As a result, Vahid and Engle suggest an incremental model selection scheme

that starts with a test for SCM(0, 0) and proceeds to SCM(0, 1) and so forth.

A potential problem of this approach is that it does not provide an upper bound, q̄, on

the order of codependence. This issue is addressed by Schleicher (2003), who shows

that, for finite-order VAR models and VECMs, the maximum order of codependence

is restricted by the dimension of the VAR system, as well as by the number of cointe-

grating relationships. These results are summarized in the following theorem,2 which

may be interpreted as an extension of Vahid and Engle’s (1993) Theorem 1, in which

they show that the sum of common trends and common cycles needs to be greater

than or equal to the dimension of the system.

Theorem 1 Let yt be an N-vector of I(1) variables that satisfy a finite-order VECM

with r linearly independent cointegrating vectors (r ≤ N), and let sj be the number of

linearly independent vectors α̃j·, such that α̃′
j·∆yt is an SCM(0, j) (0 ≤ j ≤ q̄). Then

it must be that
q̄∑

j=0

sj(j + 1) ≤ N − r. (10)

Two corollaries of this theorem are that (i) there can be at most (N − r)/(q + 1)

linearly independent cofeature vectors that yield SCM(0, q), and (ii) the maximum

possible order of an SCM cofeature is q̄ = N − r − 1. These results place strong

limitations on the relevance of codependent cycles in applied research. Consider, for

example, the trivariate system that consists of output, consumption, and investment,

which has been very popular in the related literature (see, for example, King et

al. 1991, Proietti 1997, and Issler and Vahid 2001). Since it is widely agreed that

this system contains one common stochastic trend, exemplified by the “great ratios”

between consumption and output and investment and output, we have the condition

that (q + 1)s ≤ N − r = 1. This excludes any form of codependence, except the

SCCF.

We specify our empirical model as a VECM with Gaussian errors, and are therefore in

a position to estimate the joint likelihood of the complete system subject to constraints

2See Schleicher (2003) for a detailed proof.
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imposed by the assumption of codependence. We believe that this full-information

approach has two advantages. First, Monte Carlo experiments by Schleicher (2003)

indicate that likelihood-ratio tests based on FIML estimation are considerably more

powerful than the GMM-based tests, and possess good size properties at samples

of 100 or more observations. Second, we need parameter estimates of the implied

reduced-form VECM to compute the permanent-transitory decomposition, discussed

in section 3. To compute the χ2 critical values of the LR tests, we need to know the

exact number of cross-equation restrictions. Schleicher (2003) shows that this number

is given by

sNp +

q̄∑
j=0

[sj(j + 1)r]− s(N − s), (11)

such that, contrary to the VAR scenario discussed by Vahid and Engle, the number

of cross-equation restrictions actually increases with the order of codependence. In

Appendix A, we explicitly derive these restrictions for a VECM with two lags and

SCMs up to order two.

3 Trend-Cycle Decomposition

In this section, we review the restrictions that common trends and common cycles

impose on the multivariate Beveridge-Nelson decomposition. We also demonstrate a

state-space approach that enables us to compute a trend-cycle decomposition from

the reduced-form parameters of the VECM discussed in section 2.

Because we are assuming that yt ∈ I(1), its first difference is I(0) and it has a Wold

representation

∆yt = C(L)ut, (12)

where C(L) ≡ I+C1L+C2L
2+.... Using the factorization C(L) = C(1)+(1−L)C∗(L),

the Wold representation can be rewritten as

∆yt = C(1)ut + ∆C∗(L)ut, (13)

where C∗
j = −

∑
i>j Cj for all i > 1 and C∗

0 = IN − C(1). Integrating both sides, we

9



obtain

yt = C(1)
∞∑

s=0

ut−s + C∗(L)ut = Tt + Ct. (14)

Equation (14) is the multivariate version of the Beveridge-Nelson (1981) trend-cycle

representation. The series yt is represented as the sum of a random-walk part, which

in this context is interpreted as the stochastic trend, and a stationary part or “cycle.”

Stock and Watson (1988) show that, if C(1) has full rank, then the trend is a linear

combination of N random walks, and that, as a result, the variables are not cointe-

grated, since there is no linear combination of the elements of yt that is stationary. If

the rank of C(1) is k < N , then the trend part can be reduced to linear combinations

of k random walks and C(1) can be expressed as the product of two rank k matrices,

as follows:

yt = γτt + Ct (15)

τt = τt−1 + δ′ut,

where γ and δ are both of rank k = N − r, τt = δ′
∑∞

s=0 ut−s, and Ct = C∗(L)ut.

Equation (15) expresses the trend as a linear combination of k common trends plus

some stationary “cyclical” components, Ct.

In a similar manner, we can generalize the Beveridge-Nelson decomposition (14) to

include common cyclical components. Analogous to the case of common trends,

common cycles arise whenever C∗(L) is of reduced rank. From the definition of

common cycles, we know that α̃′C∗(L) = 0. We therefore can decompose C∗(L) as

C∗(L) = γ̃C̃∗(L), where γ̃ is an N × (N − s) matrix that lies in the left null-space of

α̃, such that α̃′γ̃ = 0 and C̃∗(L) is an (N − s)×N matrix in the lag operator.3 Then

the second term in (14) can be expressed as

C∗(L)ut = γ̃C̃∗(L)ut = γ̃ct, (16)

where ct is an (N − s)× 1 vector of common cycles.4

3For a more detailed discussion of this result, see Vahid and Engle (1993).
4The extension to the case of codependent cycles is

C∗(L)ut = C∗
0ut + C∗

1ut−1 + ... + C∗
q ut−q + γ̃

∞∑
j=q+1

C̃∗
j ut−j ; (17)
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As a result, we can restrict the multivariate decomposition to include both common

trends and common cycles in the following way:

yt = γτt + γ̃ct. (18)

There is a crucial theoretical connection between the cointegrating space and the

cofeature space that is given by the fact that the cofeature vectors, α̃, must be linearly

independent from the cointegrating vectors. An intuitive explanation for this result

is that α̃′yt ∈ I(1), while α′yt ∈ I(0). As a result, if there are r linearly independent

cointegrating vectors, there can be at most N − r linearly independent cofeature

vectors. This implies that r + s ≤ N (which is a special case of Theorem 1 in

section 2.2). Vahid and Engle (1993) show that, if the cointegrating rank, r, and

the cofeature rank, s, add up to the number of variables in the VAR system, there

exists a unique and computationally simple trend-cycle decomposition of the data.

Since, by definition, every element of the cointegrating space eliminates the stochastic

trends and every element of the cofeature space eliminates the cycles, we can stack

the cointegrating and cofeature matrices to obtain the following system: α̃′

s×N

α′

r×N

 yt = A
N×N

yt =

[
α̃′Tt

α′Ct

]
. (19)

Because the cointegrating and cofeature vectors are linearly independent and r + s =

N , the matrix A will have an inverse that can be partitioned as A−1 =
[

α̃−

N×s
α−

N×r

]
.

The trend-cycle decomposition can then be recovered as simple linear combinations

of the data yt:

yt = A−1Ayt = α̃−α̃′yt + α−α′yt = Tt + Ct. (20)

This decomposition applies only in the very special case when r + s = N . It is also

possible to include both common trends and common cycle restrictions and decompose

the data in the general case when r + s ≤ N . To do this, we follow the methodology

outlined in Proietti (1997) and Hecq, Palm, and Urbain (2000). This entails writing

that is, the C∗
j have full rank for j ≤ q and reduced rank for j > q.
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the reduced-form VECM in (4) in state-space form, as follows:

∆yt = Zft (21)

ft = m + Tft−1 + Z ′ut, (22)

where ft is the (N(p− 1) + r)-dimensional state vector

ft =


∆yt

∆yt−1

...

∆yt−p+1

α′yt−1

 ,

T is the (N(p− 1) + r)× (N(p− 1) + r) transition matrix

T =



Γ1 + βα′ Γ2 . . . Γp−1 β

IN 0N×N . . . 0N×N 0N×r

0N×N
. . . . . .

...
...

...
. . . . . .

...
...

α′ 0r×N . . . . . . Ir


,

Z = [IN , 0N×N , ..., 0N×r] is an N × (N(p − 1) + r) matrix, and m′ =

[µ′, 01×N , ..., 01×N , 01×r] is a vector of dimension N(p− 1) + r.

The trend of the Beveridge-Nelson decomposition (y = τt + ct) can be defined as the

forecast of the time series, adjusted for the mean growth rate, as the forecast horizon

approaches infinity:

τt = yt + lim
k→∞

k∑
i=1

[
∆ỹt+i|t − E(∆yt)

]
, (23)

where ∆ỹt+i|t is the i-th step best linear predictor of ∆yt based on information at

time t. The cyclical component, ct, is then given by

ct = − lim
k→∞

k∑
i=1

[
∆ỹt+i|t − E(∆yt)

]
. (24)
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If we assume that the constant, µ, in the VECM is zero, the best linear predictor of

∆yt+i is given by

∆ỹt+i|t = ZT ift|t, (25)

where ft|t is the contemporaneous Kalman-filter estimate of the state vector. Given

the stability condition that all eigenvalues of T lie inside the unit disk, the sum of the

geometric series
∑k

i=1 T i converges to (I − T )−1T as k → ∞. Since all components

of ft are observed at time t, ft|t = ft and the cyclical component of the time series

can be computed as

ct = −Z(I − T )−1Tft. (26)

In the general case, when the constant, µ, does not equal zero, we can express the

mean growth rate as m∗ =
∑∞

i=0 T im = (I − T )−1m and transfer the drift term from

the transition equation into the observation equation:

∆yt = Zf ∗t + Zm∗ (27)

f ∗t = Tf ∗t−1 + Z ′ut, (28)

where f ∗t ≡ ft −m∗. The cyclical component of the Beveridge-Nelson decomposition

is then given by

ct = −Z(I − T )−1Tf ∗t . (29)

This method can be applied to the estimated parameters of unrestricted VECM, as

well as to the implied reduced form of the restricted VECM.

4 Empirical Evidence

The data set used in this study consists of quarterly (log) Canadian sectoral GDP

from 1961Q1 to 2001Q2,5 so that there are 162 observations. We use per-capita se-

ries, since most multi-sector real business cycle models are based on a representative

agent. Ideally, we would like to examine the data at a fairly low aggregation level,

but our analysis is restricted to examining seven sectors, which in their aggregate

5The data are obtained from CANSIM and expressed in constant 1992 dollars.
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comprise total private sector GDP. This is adequate, given that even VARs of mod-

erate dimensions can be subject to considerable estimator bias (see Abadir, Hadri,

and Tzavalis 1999). Private sector GDP6 is thus divided into the following seven sec-

tors: agriculture, fishing, logging, and mining (PRIMARY); construction (CONST);

manufacturing (MANUF); retail and wholesale trade (TRADE); finance, insurance,

and real estate (FIRE); transportation (TRANS); and other services (SER).7 Figure

1 shows the per-capita logarithms of the seven sectoral output series.

In the procedures for common trend–common cycle analysis, all inferences in both the

cointegration and the common cycles stages are conditional on the data being I(1)

and on the number of lags chosen. Augmented Dickey-Fuller and Phillips-Perron

tests show that the series are I(1) processes, and, as a result, the VECM framework

described in section 2 is an appropriate modelling environment. We employ a series

of tests (LR tests and information criteria) to determine the lag-length of our vector-

autoregressive system, and conclude that a VAR(3) model provides the best fit for

the data.

In our next step, we use the cointegration test of Johansen (1988) to determine

the number of common trends among the sectoral output series. A constant term

is included in the VECM and critical values are extracted from Osterwald-Lenum

(1992). The results of this test (Table 1) reject the hypotheses of less than two

cointegrating relationships at the 1 per cent level and less than three cointegrating

relationships at the 5 per cent level. After experimenting with different lag-lengths

of the VAR polynomial, however, and considering several subsamples, we conclude

that our system is better characterized by five common trends (r = 2) than by four

(r = 3), as this result is more robust to changes in specification. In the remainder

of our analysis, we therefore keep the number of cointegrating equations fixed at

two. The fact that the number of common secular components is relatively high

compared with the dimension of the system is an intuitive result, because if common

stochastic trends arise from technology shocks, very heterogeneous sectors should not

6The public sector is excluded.
7Communication and other utility industries, business services industries, education, health and

social service industries, accommodation, food and beverage, and other service industries formed
the SER group.
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share the same trends. This point was first raised by Durlauf (1989), who notes that a

technological improvement in agriculture should not imply technical change for FIRE.

We then search for possible short-run features shared by the various sectors; that is,

we look for SCCFs and codependence in the form of SCMs. As Vahid and Engle (1997)

show, the presence of codependence of order q in the differenced data (the VECM)

corresponds to codependent cycles of order q − 1 in levels. We first use Tiao and

Tsay’s (1985 and 1989) canonical correlation-based test and Vahid and Engle’s GMM

test,8 to assess the hypothesis that there are at least sq cofeature combinations that

satisfy an SCM(0,q). As the results in Table 2 indicate, at the 5 per cent level Tiao

and Tsay’s test does not reject the hypotheses that s0 ≥ 1, s1 ≥ 4, and s2 ≥ 4. That

is, we would have four cofeature combinations, one of which constitutes an SCCF, and

three an SCM(0,1). The restrictions implied by Theorem 1, however, stipulate that

we can have at most five SCCFs, two SCM(0,1), and one SCM(0,2). This follows,

because the cofeature vectors must be independent of the two cointegrating vectors,

and higher-order SCMs place additional restrictions on the long-run impact matrix

of the VECM. The GMM test (Table 3) is more conservative, in that it allows for

only one cofeature combination, in the form of an SCM(0, 1).9

Because we specified our model in a VAR framework with Gaussian errors, we are in

a position to directly estimate the full system under the restrictions imposed by the

SCMs. This estimation is done by maximizing the concentrated likelihood function

of the implied reduced form. As stated earlier, there are two important reasons why

we prefer this approach over the standard limited information-based analysis. First,

a primary motive of this paper is to obtain a trend-cycle decomposition. For this,

we need reduced-form parameters of the VECM. Second, Monte Carlo experiments

indicate that likelihood-ratio tests based on FIML estimation of the restricted VECMs

have considerably higher power than the GMM and Tiao-Tsay tests. We therefore

compute all possible combinations of SCMs up to order 2 that are permitted under

8We use an iterative updating GMM estimator instead of the two-step method proposed by Vahid
and Engle (1997).

9Monte Carlo experiments by Schleicher (2003) indicate that the iterative and two-step GMM
estimators tend to significantly over-reject even at sample sizes of 200 observations, when the true
data-generating process contains an SCM(0, 1) and a cointegrating relationship.
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Theorem 1 and not encompassed by rejected models. Since most of these models

are non-nested alternatives, we compare the individual models with the unrestricted

VECM and then aim to select the most parsimonious variation that is not rejected

by the likelihood-ratio statistic.10 Table 4 shows the results. In each case, the p-value

is calculated from a χ2-distribution, with the number of degrees of freedom equal to

the number of cross-equation restrictions given by Proposition 1. We first note that

all three possible cases of one cofeature (s0 = 1, s1 = 1, and s2 = 1)11 are clearly

supported by the data. When we move to the next level, however, and consider

different combinations with two cofeatures, we find that the model with two SCCFs

is rejected at the 1 per cent level, which agrees with the results of the LIML tests. The

two models with the most compelling test statistics are the combination of one SCCF

and one SCM(0,2) (p ∼ 0.19), and the combination of two SCM(0,1) (p ∼ 0.09).

Both models impose 26 non-linear cross-equation restrictions, such that the number

of effective parameters in the conditional mean is reduced from pN2 + rN = 112 to

88 (a 23 per cent decrease). We choose the first model, (s0, s1, s2) = (1, 0, 1), as the

reference model for further analysis. In levels, this model yields cycles with impulse-

response functions that have rank 6 and rank 5 after two periods. Table 5 reports

the cointegration vectors α and the cofeature vectors α̃.

We then decompose the series into trend and cycle components, to separate transitory

phenomena from the long-run behaviour of sectoral output.12 Given that the number

of common trends and cycles does not exactly add up to the number of variables in

the system, the computationally simple decomposition proposed by Vahid and En-

gel (1993) cannot be performed. Consequently, as outlined in section 3, we write

the estimated VECM in state-space form and follow Proietti (1997) in obtaining the

multivariate Beveridge-Nelson decomposition of the system. The resulting transitory

and permanent components are plotted in Figures 2 and 3. To better understand

these figures, one can compare stochastic trend and cyclical components with actual

anecdotal recessions.13 We also report standard deviations and contemporaneous cor-

10We also compare this approach with LR tests between nested submodels and find that these
two approaches are consistent with each other.

11We also consider SCM(0, 3) and SCM(0, 4); however, these are rejected.
12The measure of the stochastic trend in this paper should not be interpreted as potential output.
13In the United States, the NBER officially dates the turning points of the economy, whereas in
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relations of the cyclical components in Table 6. An immediately noticeable feature

of our decomposition is that the cycles of the three sectors that comprise the pri-

mary industries, construction, and manufacturing are significantly more volatile than

those of the remaining sectors. The standard deviation of the most volatile cycle

(construction) is more than four times as large as the one of the least volatile cycle

(transportation). A similar statement can be made about the trend components.

The primary sector, construction, and manufacturing undergo large and persistent

long-run fluctuations, while the other sectors grow at a more steady rate.14

From our plots we further observe that the transitory components of the primary

industries, manufacturing, and trade have very similar shapes that are procyclical,

in that they exhibit downward movement during each recession. The cycles of these

three sectors are also highly correlated among themselves. On the other hand, FIRE

and transportation have cycles that are significantly positively correlated only among

themselves, and negatively correlated with most other sectors. We therefore charac-

terize these sectors as being acyclical. Construction is positively correlated with the

primary industries, other services, and trade, but not with manufacturing. Overall,

these results match the notion that Canadian cyclical fluctuations are driven mainly

by construction, manufacturing, and the primary industries.

It is interesting to compare the behaviour of different sectors during the prolonged

downturn at the beginning of the 1990s. During this episode, all series except the

primary industries, FIRE, and other services undergo a severe downturn. When we

look at the decompositions for construction and manufacturing, we observe that the

trend components of both series are declining. However, their transitory components

move in different directions. While the cycle of manufacturing decreases slightly,

the cycle of construction increases sharply. In terms of our permanent-transitory

decomposition, we may interpret these observations as an asynchronous adjustment

to a permanent shock, which drives the trend temporarily below actual output. In the

construction sector, actual output adjusts slowly to the new secular level; therefore,

Canada there are no official recession dates. Cross (2001), however, sets reference cycle dates for
Canada, which are shaded in our graphs.

14To better assess the importance of transitory and permanent shocks, we conduct a forecast error
variance decomposition in the next section.
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its transitory component remains positive during this period. On the other hand, in

the manufacturing sector, output reverts quickly to the new trend level.

4.1 Variance decomposition

Our first impressions of our trend-cycle decomposition indicate that individual sectors

behave rather differently during periods that are generally classified as economic

downturns. In this section, we extrapolate from this idea by computing a forecast

error variance decomposition to assess the relative importance and persistence of

permanent and transitory shocks. In particular, we are interested in whether cycle

innovations explain a significant proportion of the total forecast error over business-

cycle horizons. Consider, therefore, the innovation ut, which can be expressed as the

sum of its trend and cycle components:

ut = utrend,t + ucycle,t. (30)

However, since the trend and cycle innovation will be correlated in most cases, it is

first necessary to orthogonalize utrend,t and ucycle,t. Following Issler and Vahid (2001),

we assume that both innovations have the structure[
utrend,t

ucycle,t

]
∼ N

(
0,

[
σ11 σ12

σ12 σ22

] )
. (31)

It is then possible to decompose the variance of εt into that of two orthogonal com-

ponents, µtrend,t and µcyclet , in the following way:

V AR(ut) = V AR(µtrend,t) + V AR(µcycle,t) (32)

=

{(
1 +

σ12

σ11

)2

σ11

}
+

{
σ22 +

σ2
12

σ11

}
.

This orthogonalization procedure is comparable to a Cholesky factorization and, as

a result, is sensitive to the ordering of the variables. Although there is no consensus

on what innovation should be placed first in the orthogonalization procedure, we

put trend innovations first, because in real business cycle models trend shocks cause

both trend and cyclical activity. We find that our results are hardly affected by the
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ordering, however, as the covariances between the trend and cycle innovations were

effectively zero for each sector. Consequently, in Table 7 we show only the results for

trend innovations preceding cyclical innovations in the orthogonalization.

We obtain one-step-ahead innovations for the trends by taking first differences of

the estimated trends. For longer horizons, we accumulate one-step-ahead trend in-

novations. First-quarter cycle innovations are the residuals from a regression of the

estimated cycles on the right-hand side of the VECM (information set). For cyclical

h-step-ahead innovations, we shift the information set backwards.

The results show that transitory movements are most important for manufacturing,

construction, and the primary industries. It is in these sectors that the benefits

of smoothing cyclical fluctuations are greater, because transitory shocks are very

significant and persistent. For manufacturing, transitory shocks account for 71 per

cent of the variance at the shortest horizon and 14 per cent after two years. For the

primary industries and construction, the proportion of transitory shocks is 55 per

cent at the shortest horizon and 14 per cent and 34 per cent, respectively, after two

years. We conclude that, while transitory shocks have the strongest initial impact on

manufacturing, their effect is most persistent for construction.

Permanent shocks explain the bulk of the variance for FIRE, trade, transportation,

and other services. In these sectors, transitory shocks account for less than a quarter

of output variation at the one-quarter horizon and their effect vanishes rapidly. After

one year, the proportion of transitory variance is around 10 per cent for FIRE and

other services, and only 3 per cent for trade and transportation.

It is important to note that, because we are using real variables, these results may

understate the role of some sources of transitory shocks, such as monetary policy. For

example, in a similar exercise in a VAR with output, consumption, and investment,

King et al. (1991) find that, when monetary variables are included in the VAR,

transitory shocks become more important.
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5 Out-of-Sample Forecasts

In this section, we compare the out-of-sample forecasting performance of our restricted

VECM with those of competing models. There are two main motives for this exercise.

First, the out-of-sample forecasts act as a model-specification test and thus provide an

idea of whether the data support the more parsimonious representation implied by the

codependent cycle restrictions. Second, we are interested in whether the disaggregated

nature of our data set, together with the long-run and short-run restrictions, enhance

our capability to forecast aggregate output. This second question is of particular

relevance for institutions like central banks, whose contemporaneous policy decisions

affect the real economy with a lag of several quarters.

We divide our sample of 162 observations into an estimation window (1961Q1-1987Q4,

two-thirds of the sample) and a forecasting window (1988Q1-2001Q2, one-third of the

sample). We then use information available at 1987Q4 to select the specifications of

our VECM following the procedures outlined in section 4. Based on a VAR with 3

lags, the Johansen test yields a VECM with five common trends (r = 2). We then

perform likelihood-ratio tests among different SCMs and find that a variation with

five codependent cycles of order one – (s0, s1, s2) = (0, 2, 0) – is the most parsimonious

presentation that is clearly supported by the data.15 This model is similar in structure

to the (s0, s1, s2) = (1, 0, 1) model we use for our entire sample, and also imposes 26

cross-equation restrictions on the VECM.

Besides the restricted VECM, we compute forecasts using the unrestricted VECM and

the unconditional mean (time trend) and use an ARIMA(1,1,0) model to compute

forecasts for aggregate private GDP.16 To obtain aggregate GDP forecasts from the

VECMs, we take the logarithm of the sum of the exponentials of the individual sector

forecasts.

15Our test results are available upon request.
16Stock and Watson (1998) compare several linear and non-linear forecasting models (autoregres-

sive, artificial neural network, smooth-transition autoregression, and exponential smoothing mod-
els) and find that the autoregressive model has the best forecasting performance within a set of 200
macroeconomic time series. We find that the specification with only one autoregressive lag minimizes
the mean-squared forecast error over most horizons.
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Tables 8 and 9 show root-mean-squared errors (RMSEs) for horizons from 1 to 10

quarters. For the forecasts of the individual sectors, we also provide the determinant

of the RMSE matrices as a measure of overall forecasting performance. Figure 4 shows

the results for this metric and the RMSE of the GDP forecast. For the aggregate GDP

forecasts, we find that the restricted VECM is the best performer over all horizons

beyond h = 3, followed by the unrestricted VECM and the ARIMA model. The

efficiency gains are most pronounced over horizons between 6 and 9 quarters. The

unrestricted VECM performs marginally better for the first three quarters. At the

one-year horizon, the RMSE of the restricted VECM is 1 per cent smaller than that

of the unrestricted VECM, 15 per cent smaller than that of the ARIMA model, and

22 per cent smaller than that of the unconditional mean. This result indicates that

the VECMs are indeed able to extract predictable dynamics from the sectoral data

set lost in the aggregate series.

We use White’s (2000) reality check test, based on 106 bootstrap resamples of our

forecast errors, to assess the validity of our results (see Table 10). We find that,

over all horizons, the restricted VECM outperforms the ARIMA model in more than

90 per cent of all cases. The unconditional mean forecasts further allow us to make

statements about the content horizon17 of our competing models. Both VECMs

outperform the unconditional mean in 95 per cent of all cases over all horizons. The

ARIMA model has a 95 per cent content horizon of 8 quarters.

For the individual sectors, the forecasts are considerably less precise. With some

exceptions (construction and other services), the unconditional mean outperforms

each of the two VECMs. This fact is evident when we look at the determinant of the

RMSE matrix of the unconditional mean forecast, which is about the same as that

of the unrestricted VECM and consistently lower than that of the restricted VECM.

Our overall impression from this exercise is that, while the VECMs are not very

accurate in predicting individual sectors, they provide a useful tool for forecasting

the aggregate series.18

17Following Galbraith (2003), we define the δ-level content horizon as the maximal forecast horizon
at which a model outperforms the unconditional mean forecast with probability δ.

18Despite the fact that the restricted VECM is not the best model for forecasting all of the
individual series, it is still the best for forecasting the aggregate series, because for construction and
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6 Conclusions

This paper confirms the prediction of several real business cycle models that sec-

toral outputs share both common trends and common cycles. For our Canadian data

set, these common components are characterized by two cointegrating relationships

and two codependent cycle cofeatures, one of which represents synchronous and the

other asynchronous short-run co-movement. In contrast to existing studies, we em-

ploy a full-information maximum-likelihood approach to test for and estimate these

cofeatures.

Using a multivariate version of the Beveridge-Nelson decomposition, we find that

the temporary components of manufacturing, trade, and the primary sector are very

similar and procyclical. Other sectors, such as construction and FIRE, have a dis-

tinctive idiosyncratic cycle. We also encounter a wide variation in cyclical volatility,

with construction being the most volatile and transportation being the least volatile

sector. In addition, our findings indicate that the permanent components (stochastic

trends) of the data are less homogeneous than their temporary counterparts.

A variance decomposition reveals that the primary sector, construction, and manu-

facturing are driven mainly by persistent temporary shocks, while for the remaining

sectors permanent shocks are relatively more important even in the short run. We

conclude that manufacturing, the primary industries, and construction are important

sources of fluctuations for the Canadian economy, based on the fact that they follow

the aggregate cycle of the economy and are subject to persistent transitory shocks.

Although the initial effect of transitory shocks is strongest for the manufacturing

sector, their effect is most persistent for construction.

Modern macroeconomic theory places very strong emphasis on the distinction between

permanent and transitory phenomena, as well as the importance of adjusting policy

decisions accordingly. In this respect, we argue that the empirical model discussed

in this paper provides a very useful tool for policy-makers. Compared with other

trend-cycle decompositions like those based on the HP filter or bandpass filters, the

trend-cycle decomposition described in section 3 has the additional advantage of

other services, which are two large sectors in the economy, it produces the most accurate forecasts.
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being the optimal signal-extracting device at the end of the sample,19 which makes it

particularly valuable for current analysis.

An out-of-sample forecasting exercise establishes that the imposition of common cycle

constraints results in a small but non-negligible gain in efficiency. Moreover, we

find that forecasts of aggregate private GDP based on the individual sectors are

superior to those based on a univariate ARIMA model. This finding suggests that

the disaggregate nature of our data set enables the VECMs to extract predictable

dynamics that are lost by examining solely aggregate series.

One question of considerable interest is whether the common short-run features are

stable over time, or whether there are structural breaks. For a subsample of our

data (the first two-thirds of all observations), we find that the number of cofeatures

remains unchanged, although their composition changes slightly. We believe that a

more systematic and exhaustive approach to this question would be a very interesting

avenue of future research, as it could provide a useful framework to test for and

estimate changes in structural rigidities.

19Koopman and Harvey (1999) discuss this point.
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Table 1: Cointegration Test (Johansen 1988)

Eigenvalue stat. Trace stat. 5 per cent 1 per cent Null

−T ln (1− λj) −T
∑

j≤i ln(1− λi) critical value critical value hypothesis

0.30 181.53 ∗∗ 124.24 133.57 r = 0

0.27 123.82 ∗∗ 94.15 103.18 r ≤ 1

0.20 74.49 ∗ 73.24 76.07 r ≤ 2

0.12 39.78 47.21 54.46 r ≤ 3

0.08 19.30 29.68 35.65 r ≤ 4

0.04 6.48 15.41 20.04 r ≤ 5

0.00 0.22 3.76 6.65 r ≤ 6

∗(∗∗) denotes rejection of the null hypothesis at the 5 per cent (1 per cent) level.

Note: Critical values are taken from Osterwald-Lenum (1992).

Table 2: Canonical Correlation Test for SCM

SCM(0,0): SCM(0,1): SCM(0,2): Null

C(s, j) p-value C(s, j) p-value C(s, j) p-value hypothesis

10.74 0.38 6.14 0.80 7.19 0.71 s ≥ 1

42.53 0.01 ∗ 19.86 0.59 20.98 0.52 s ≥ 2

80.04 0.00 ∗∗ 40.42 0.28 38.90 0.34 s ≥ 3

124.75 0.00 ∗∗ 68.04 0.07 67.01 0.08 s ≥ 4

175.23 0.00 ∗∗ 120.42 0.00 ∗∗ 103.95 0.01 ∗ s ≥ 5

275.07 0.00 ∗∗ 164.40 0.00 ∗∗ 135.85 0.00 ∗∗ s ≥ 6

396.66 0.00 ∗∗ 220.35 0.00 ∗∗ 169.05 0.00 ∗∗ s = 7

∗(∗∗) denotes rejection of the null hypothesis at the 5 per cent (1 per cent) level.
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Table 3: GMM Test for SCM

SCM(0,0): SCM(0,1): SCM(0,2): Null

J-stat. p-value J-stat. p-value J-stat. p-value hypothesis

19.63 0.03 ∗ 6.43 0.78 8.01 0.63 s ≥ 1

58.13 0.00 ∗∗ 44.34 0.00 ∗∗ 36.39 0.03 ∗ s ≥ 2

102.36 0.00 ∗∗ 86.12 0.00 ∗∗ 56.67 0.02 ∗ s ≥ 3

145.14 0.00 ∗∗ 107.22 0.00 ∗∗ 91.49 0.00 ∗∗ s ≥ 4

198.41 0.00 ∗∗ 136.22 0.00 ∗∗ 116.83 0.00 ∗∗ s ≥ 5

259.50 0.00 ∗∗ 176.44 0.00 ∗∗ 142.00 0.00 ∗∗ s ≥ 6

313.97 0.00 ∗∗ 207.82 0.00 ∗∗ 169.16 0.00 ∗∗ s = 7

∗(∗∗) denotes rejection of the null hypothesis at the 5 per cent (1 per cent) level.

Table 4: Likelihood-Ratio Tests

No. of cofeatures

s0 s1 s2 Log-lik. LR DoF p-value

s = 0 : 0 0 0 3344.26 reference - -

s = 1 : 1 0 0 3338.88 10.76 10 0.3765

0 1 0 3338.82 10.88 12 0.5392

0 0 1 3337.60 13.32 14 0.5015

s = 2 : 2 0 0 3322.70 43.12 22 0.0046 ∗∗

1 1 0 3326.80 34.92 24 0.0696

1 0 1 3328.15 32.22 26 0.1859

0 2 0 3326.09 36.34 26 0.0856

0 1 1 3317.01 54.50 28 0.0020 ∗∗

s = 3 : 1 2 0 3308.11 72.30 40 0.0013 ∗∗

∗(∗∗) denotes rejection of the null hypothesis at the 5 per cent (1 per cent) level.

Note: We exclude models like (s0, s1, s2) = (0, 0, 2) that violate Theorem 1, and

models that nest rejected models (e.g., (4,0,0) nests (3,0,0) and (2,0,0)).
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Table 5: Cointegration and Cofeature Vectors

PRIM CONS FIRE MANU SERV TRAD TRAN

α1′ EC1 1.000 0.000 0.405 3.718 1.105 -1.629 -2.582

(0.88 ) (1.78 ) (2.66 ) (-1.70 ) (-2.33 )

α2′ EC2 0.000 1.000 0.552 -6.239 -1.362 1.901 3.425

(0.80 ) (-1.98 ) (-2.18 ) (1.32 ) (2.05 )

α̃1′ SCCF 1.000 0.000 1.133 0.562 0.144 -3.075 0.142

(1.22 ) (1.06 ) (0.14 ) (-2.20 ) (0.27 )

α̃2′ SCM(0, 2) 0.000 1.000 3.906 1.097 -7.888 0.029 -0.578

(1.81 ) (1.14 ) (-2.16 ) (0.02 ) (-0.79 )

Note: Pseudo t-values are printed in italics.

Table 6: Standard Deviations and Correlations of Cycles (Restricted VECM)

St.D. PRIM CONS FIRE MANU SERV TRAD TRAN

PRIM 0.023 1.00 0.56 -0.57 0.78 0.55 0.96 -0.42

CONS 0.046 0.56 1.00 0.30 0.06 0.90 0.55 -0.12

FIRE 0.011 -0.57 0.30 1.00 -0.82 0.13 -0.52 0.51

MANU 0.040 0.78 0.06 -0.82 1.00 0.07 0.85 -0.22

SERV 0.012 0.55 0.90 0.13 0.07 1.00 0.49 -0.21

TRAD 0.012 0.96 0.55 -0.52 0.85 0.49 1.00 -0.21

TRAN 0.010 -0.42 -0.12 0.51 -0.22 -0.21 -0.21 1.00
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Table 7: FEVD: Permanent Component of Restricted VECM

Forecast horizon PRIM CONS FIRE MANU SERV TRAD TRAN

(quarters)

h = 1 45 45 81 29 72 82 89

h = 4 75 52 90 74 91 97 97

h = 8 86 66 96 86 97 99 99

h = 12 90 76 98 91 99 99 99

h = 16 92 81 99 94 99 100 99

h = 20 94 84 99 95 99 100 100

h →∞ 100 100 100 100 100 100 100

Table 8: Out-of-Sample Forecasts: Root-Mean-Squared Errors (RMSE)

h=1 h=2 h=3 h=4 h=6 h=8 h=10

GDP: VECMR 0.48 0.95 1.41 1.89 2.96 4.08 5.14 (10−2)

VECMUR 0.46 0.91 1.39 1.91 3.02 4.14 5.17 (10−2)

ARIMA 0.53 1.09 1.67 2.22 3.29 4.34 5.33 (10−2)

UCM 0.70 1.32 1.89 2.43 3.47 4.46 5.40 (10−2)

|RMSE|: VECMR 0.00 0.06 0.22 0.65 1.89 3.52 4.08 (10−11)

VECMUR 0.00 0.05 0.16 0.46 1.28 2.42 2.40 (10−11)

UCM 0.00 0.04 0.14 0.54 1.21 2.61 3.44 (10−11)

Note: UCM = unconditional mean forecast.
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Table 9: Out-of-Sample Forecasts: Root-Mean-Squared Errors (RMSE)

h=1 h=2 h=3 h=4 h=6 h=8 h=10

PRIM: VECMR 1.90 2.28 2.96 3.34 3.88 4.12 3.86 (10−2)

VECMUR 1.91 2.38 3.10 3.50 4.13 4.49 4.38 (10−2)

UCM 1.58 2.05 2.33 2.59 2.80 3.20 3.29 (10−2)

CONS: VECMR 1.73 2.77 3.26 3.77 4.73 6.21 7.90 (10−2)

VECMUR 1.70 2.69 3.20 3.74 4.84 6.45 8.20 (10−2)

UCM 1.94 3.33 4.55 5.72 7.70 9.63 11.52 (10−2)

FIRE: VECMR 0.85 1.31 1.51 1.72 1.98 2.12 2.24 (10−2)

VECMUR 0.82 1.24 1.25 1.27 1.34 1.35 1.37 (10−2)

UCM 0.59 0.81 0.92 1.10 1.20 1.32 1.28 (10−2)

MANU: VECMR 1.66 3.08 4.26 5.51 7.81 9.53 10.76 (10−2)

VECMUR 1.61 2.97 4.20 5.55 7.97 9.73 10.88 (10−2)

UCM 1.65 2.88 3.90 4.87 6.66 8.35 9.81 (10−2)

SERV: VECMR 0.72 1.35 1.93 2.54 3.88 5.32 6.79 (10−2)

VECMUR 0.73 1.37 2.01 2.71 4.10 5.54 6.99 (10−2)

UCM 0.85 1.63 2.39 3.15 4.68 6.24 7.82 (10−2)

TRAD: VECMR 1.54 2.51 3.52 4.51 6.29 7.94 9.42 (10−2)

VECMUR 1.49 2.36 3.39 4.41 6.20 7.84 9.28 (10−2)

UCM 1.54 2.46 3.42 4.37 6.06 7.63 9.05 (10−2)

TRAN: VECMR 1.92 3.25 4.43 5.36 6.56 7.33 8.34 (10−2)

VECMUR 1.92 3.19 4.30 5.21 6.37 7.14 8.09 (10−2)

UCM 1.47 2.39 3.30 4.04 5.19 6.22 7.42 (10−2)

Note: UCM = unconditional mean forecast.
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Table 10: Bootstrap Tests for Out-of-Sample Forecasts

RMSE of GDP forecast |RMSE|
VECMUR ARIMA UCM VECMUR UCM

h = 1 VECMR 0.204 0.973 1.000 0.136 0.064

VECMUR 0.961 1.000 0.161

ARIMA 1.000

h = 2 VECMR 0.318 0.997 1.000 0.100 0.030

VECMUR 0.996 1.000 0.129

ARIMA 1.000

h = 3 VECMR 0.597 1.000 1.000 0.004 0.055

VECMUR 1.000 1.000 0.342

ARIMA 1.000

h = 4 VECMR 0.840 1.000 1.000 0.001 0.224

VECMUR 0.999 1.000 0.741

ARIMA 1.000

h = 6 VECMR 0.970 0.999 1.000 0.000 0.012

VECMUR 0.991 0.998 0.357

ARIMA 0.996

h = 8 VECMR 0.988 0.996 0.999 0.000 0.090

VECMUR 0.968 0.986 0.616

ARIMA 0.960

h = 10 VECMR 0.952 0.991 0.996 0.000 0.228

VECMUR 0.963 0.974 0.945

ARIMA 0.825

Note: Entry (x, y) denotes the probability that model x outperforms model y.
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Figure 1: Per-Capita Sectoral Outputs (logs)
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Figure 2: Temporary Components of the Restricted VECM

Q1−70 Q1−80 Q1−90 Q1−00
−0.2

−0.1

0

0.1

0.2
Primary

Q1−70 Q1−80 Q1−90 Q1−00
−0.2

−0.1

0

0.1

0.2
Construction

Q1−70 Q1−80 Q1−90 Q1−00
−0.2

−0.1

0

0.1

0.2
FIRE

Q1−70 Q1−80 Q1−90 Q1−00
−0.2

−0.1

0

0.1

0.2
Manufacturing

Q1−70 Q1−80 Q1−90 Q1−00
−0.2

−0.1

0

0.1

0.2
Other Services

Q1−70 Q1−80 Q1−90 Q1−00
−0.2

−0.1

0

0.1

0.2
Trade

Q1−70 Q1−80 Q1−90 Q1−00
−0.2

−0.1

0

0.1

0.2
Transportation

34



Figure 3: Permanent Components of the Restricted VECM
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Figure 4: Root-Mean-Squared Errors (RMSE) of Out-of-Sample Forecasts (UCM is

the forecast based on the unconditional mean)
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Appendix A: Restrictions Implied by SCM(0, q)

This appendix illustrates the restrictions codependent cycles impose on VECMs. For

simplicity, we limit ourselves to the case with two lags from our empirical analysis;

the generalization to p lags is discussed in Schleicher (2003). The basic model is given

by20:

∆yt = Πyt−1 + Γ1∆yt−1 + Γ2∆yt−2 + ut, (A-1)

where Π can be factored as −βα′. The sq-dimensional scalar component model

SCM(0, q) satisfies

α̃′
q∆yt = α̃′

qΠyt−1 + α̃′
qΓ1∆yt−1 + α̃′

qΓ2∆yt−2 + ut

= α̃′
qut +

q∑
j=1

α̃′
qΘjut−j, (A-2)

α̃′
qΘq 6= 0. (A-3)

For the SCM(0, 0), which is identical to the SCCF, these restrictions are given by

α̃′
0β = 0 (s0r equations)

α̃′
0Γ1 = 0 (s0N equations)

α̃′
0Γ2 = 0 (s0N equations).

Because we introduce s0(N−s0) additional parameters in the cofeature vectors (after

normalization), we have a net loss of s0(pN + r)− s0(N − s0) degrees of freedom.

To obtain the restrictions for SCM(0, 1), we substitute the right-hand side of ∆yt−1

into (A-1) to obtain

∆yt = Πyt−1 + Γ1Πyt−2 + (Γ2
1 + Γ2)∆yt−2 + Γ1Γ2∆yt−3 + ut + Γ1ut−1. (A-4)

The linear combination α̃1∆yt will be a VMA(2) (condition (A-2)) if (and only if)

α̃′
1β = 0 (s1r equations)

20The constant is not affected by codependence restrictions; therefore, it is omitted for ease of
exposition.
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α̃′
1Γ1β = 0 (s1r equations)

α̃′
1(Γ

2
1 + Γ2) = 0 (s1N equations)

α̃′
1Γ1Γ2 = 0 (s1N equations).

If α̃′
1Γ1 = 0, this collapses to the SCM(0, 0) scenario. If, on the other hand, α̃′

1,jΓ1 6= 0

(condition (A-3)), we have s1(pN + 2r) additional restrictions, while gaining s1(N −
s1)− 2s0s1 additional parameters in the cofeature vectors.

Similary, we can obtain restrictions for SCM(0, 2) by substituting the right-hand side

of ∆yt−2 into (A-4) to obtain

∆yt = Πyt−1 + Γ1yt−2 + (Γ2
1 + Γ2)Πyt−3 + (Γ3

1 + Γ2Γ1 + Γ1Γ2)∆yt−3

+(Γ2
1Γ2 + Γ2

2)∆yt−4 + ut + Γ1ut−1 + (Γ2
1 + Γ2)ut−2. (A-5)

The linear combination α̃2∆yt will be a VMA(3) (condition (A-2)) if (and only if)

α̃′
2β = 0 (s2r equations)

α̃′
2Γ1β = 0 (s2r equations)

α̃′
2(Γ

2
1 + Γ2)β = 0 (s2r equations)

α̃′
2(Γ

3
1 + Γ2Γ1 + Γ1Γ2) = 0 (s2N equations)

α̃′
2(Γ

2
1Γ2 + Γ2

2) = 0 (s2N equations).

If α̃′
2Γ1 = 0 or α̃′

2(Γ
2
1 + Γ1) = 0, this set of restrictions corresponds to the SCM(0, 0)

and SCM(0, 1) case, respectively. If, on the other hand, α̃′
2,jΓ1 6= 0 and α̃′

2,j(Γ
2
1 +

Γ2) 6= 0 (condition (A-3)), we have s2(pN + 3r) additional restrictions, while gaining

s2(N − s2)− 2s2(s0 + s1) additional parameters in the cofeature vectors.
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