## CERT

## Comité d'évaluation des ressources transfrontalières

Document de réferénce 2012/01

Ne pas citer sans autorisation des auteurs

## TRAC

Transboundary Resources Assessment Committee

Reference Document 2012/01

Not to be cited without permission of the authors

## Assessment of Eastern Georges Bank Haddock for 2012

Lou Van Eeckhaute ${ }^{1}$, Elizabeth N. Brooks ${ }^{2}$ and Sandra Christine Hansen ${ }^{1}$

${ }^{1}$ Fisheries and Oceans Canada 531 Brandy Cove Road
St. Andrews, New Brunswick E5B 2L9
Canada
${ }^{2}$ NOAA/NMFS
Northeast Fisheries Science Center
166 Water Street
Woods Hole, MA 02543
USA

## Canadä

## TABLE OF CONTENTS

ABSTRACT ..... iii
RÉSUMÉ ..... iv
INTRODUCTION ..... 1
FISHERY ..... 1
Commercial Catches ..... 1
Canadian ..... 1
Canadian Landings ..... 2
Canadian Discards ..... 2
USA ..... 2
USA Landings ..... 3
USA Discards ..... 3
Size and Age Composition ..... 4
Ageing Precision and Accuracy ..... 4
Canadian ..... 4
USA ..... 4
Combined Canada/USA Catch at Age ..... 5
ABUNDANCE INDICES ..... 5
Research Surveys ..... 5
GROWTH ..... 7
HARVEST STRATEGY ..... 7
ESTIMATION OF STOCK PARAMETERS ..... 7
Calibration of Virtual Population Analysis (VPA) ..... 7
Retrospective Analysis ..... 8
STATE OF RESOURCE ..... 8
PRODUCTIVITY ..... 10
PARTIAL RECRUITMENT ON OLDER AGES ..... 11
OUTLOOK ..... 12
SPECIAL CONSIDERATIONS ..... 13
ACKNOWLEDGEMENTS ..... 14
LITERATURE CITED ..... 14
TABLES ..... 17
FIGURES ..... 49

APPENDIX A. Eastern Georges Bank Haddock Assessment Model Variation which Uses the Age 9 Indices from the DFO and NMFS Spring Survey for Calibration of the VPA. .... 86

APPENDIX B. Comparison of EGB Haddock TRAC Catch Advice, TMGC Quota Decision, Actual Catch, Resulting Fishing Mortality, and Biomass Changes


#### Abstract

The total catch of eastern Georges Bank (EGB) haddock in 2011 was $12,655 \mathrm{mt}$ of the $22,000 \mathrm{mt}$ combined Canada/United States of America (USA) quota. The 2011 Canadian catch decreased from 16,592 in 2010 to $11,247 \mathrm{mt}$, a $32 \%$ decrease, while the USA catch in 2011 was $1,409 \mathrm{mt}$, a $36 \%$ decrease compared to the 2010 catch of 2201 mt . Haddock discards from the Canadian scallop fishery and the USA groundfish fishery were estimated at 15 and 87 mt , respectively. Under restrictive management measures, combined Canada/USA catches declined from over $6,500 \mathrm{mt}$ in 1991 to a low of $2,150 \mathrm{mt}$ in 1995, averaged about $3,600 \mathrm{mt}$ during 1996-1999 and have generally increased since then. Catches reached a peak in 2009 and are declining as the outstanding 2003 year class moves through the fishery.

Adult population biomass (ages 3+) has increased from near an historical low of $10,400 \mathrm{mt}$ in 1993 to $86,400 \mathrm{mt}$ in 2003. It decreased to about $62,200 \mathrm{mt}$ at the beginning of 2005 but subsequently tripled to a record-high 172,700 mt in 2009, higher than the 1931-1955 maximum of about $90,000 \mathrm{mt}$. Adult biomass subsequently decreased to 70,700 in 2012. The exceptional 2003 and 2010 year classes, estimated at 328 million and 589 million age- 1 fish, respectively, are the largest observed in the assessment time series (1931-1955 and 1969-2011). The preliminary estimate for the 2011 year class is 105 million fish at age 1. Except for the strong 2000 and 2011 year classes and the exceptional 2003 and 2010 year classes, recruitment has fluctuated between 2.1 and 29.4 million since 1990. Fishing mortality fluctuated between 0.26 and 0.47 during the 1980s, and markedly increased in 1992 and 1993 to about 0.5 , the highest observed. Fishing mortality was below $F_{\text {ref }}=0.26$ during 1995 to 2003, above or near $F_{\text {ref }}$ in 2004 to 2006, but has subsequently been below $F_{\text {ref }}$ and was 0.14 in 2011.

Positive signs of productivity include expanded age structure, broad spatial distribution, large biomass and two exceptional year classes and two strong year classes since 2000. On the negative side, condition has decreased substantially and size at age has declined.

Assuming a 2012 catch equal to the $16,000 \mathrm{mt}$ total quota, a combined Canada/USA catch of $10,400 \mathrm{mt}$ in 2013 results in a neutral risk (50\%) that the 2013 fishing mortality (F) rate would exceed $F_{\text {ref }}=0.26$. A catch of $9,300 \mathrm{mt}$ in 2013 results in a low risk (25\%) that the 2013 fishing mortality rate will exceed $F_{\text {ref }}$. The 9+ group, of which the 2003 year class is the major component, is expected to constitute $34 \%$ of the 2013 catch biomass and the 2010 year class at age 3 is expected to contribute $44 \%$ of the catch biomass. Due to the entry of the 2010 year class into the 3+ group in 2013 and its subsequent increase in weight, the estimated probability that the adult biomass will decline from 2013 to 2014 is virtually 0\% at any of the catch scenarios considered. Adult biomass is projected to be 306,200 mt (a record-high) at the beginning of 2014.


## RÉSUMÉ

Les captures totales d'aiglefin de l'est du banc Georges s'élevaient à 12655 tm en 2011, sur un quota combiné de 22000 tm pour le Canada et les États-Unis. Les prises canadiennes sont passées de 16592 tm en 2010 à 11247 tm en 2011, soit une diminution de $32 \%$, tandis que les prises américaines en 2011 s'élevaient à 1409 tm , soit une diminution de $36 \%$ en comparaison aux prises de 2010 s'élevant à 2201 tm . Les rejets d'aiglefin provenant de la pêche du pétoncle au Canada et de la pêche du poisson de fond aux États-Unis s'élèvent à 15 tm et à 87 tm , respectivement. En raison des mesures de gestion rigoureuses qui ont été mises en place, les captures combinées du Canada et des États-Unis sont passées de plus de 6500 tm en 1991 à un creux d'environ 2150 tm en 1995. Elles ont atteint en moyenne 3600 tm entre 1996 et 1999, et elles ont généralement augmenté depuis. Les prises ont atteint un sommet en 2009 et, depuis, elles diminuent, tandis que l'exceptionnelle classe d'âge 2003 est exploitée par la pêche.

La biomasse de la population d'adultes (âges $3+$ ), qui frôlait un plancher historique en 1993 $(10400 \mathrm{tm})$, est passée à 86400 tm en 2003. Elle a diminué à environ 62200 tm au début de 2005, puis elle a pratiquement triplé pour atteindre un sommet record de 172700 tm en 2009, dépassant ainsi la valeur la plus élevée observée pour la période de 1931 à 1955 (environ 90000 tm ). Elle a ensuite diminué à 70700 tm en 2012. L'exceptionnelle classe d'âge de 2003 et 2010 - estimée à 328 et à 589 millions de poissons d'âge 1, respectivement - est la plus importante jamais observée dans les séries chronologiques des évaluations (1931-1955 et 1969-2011). L'estimation préliminaire pour la classe d'âge de 2011 s'élève à 105 millions d'individus d'âge 1. Si l'on exclut la forte classe d'âge de 2000 et 2011 et les exceptionnelles classes d'âge de 2003 et 2010, le recrutement a varié entre 2,1 et 29,4 millions d'individus depuis 1990. La mortalité par pêche a fluctué entre 0,26 et 0,47 durant les années 1980. Elle a connu une nette augmentation en 1992 et en 1993, pour atteindre environ 0,5, soit la plus haute valeur jamais observée. La mortalité par pêche a été inférieure à $F_{\text {réf }}=0,26$ de 1995 à 2003, s'est située au-dessus ou autour de $\mathrm{F}_{\text {réf. }}$ de 2004 à 2006, mais est restée inférieure à $\mathrm{F}_{\text {réf. }}$ depuis; elle était de 0,14 en 2011.

Parmi les signes encourageants de productivité figurent l'élargissement de la structure d'âges, la vaste répartition spatiale, la forte biomasse, deux classes d'âge exceptionnelles et deux fortes classes d'âge depuis 2000. Parmi les signes négatifs figurent une détérioration importante de la condition et une diminution de la taille selon l'âge.

Si l'on tient pour acquis que les captures de 2012 seront égales au quota total ( 16000 tm ), les captures combinées du Canada et des États-Unis de 10400 tm en 2013 se traduiraient par un risque neutre ( $50 \%$ ) que le taux de mortalité par pêche ( $F$ ) en 2013 dépasse $F_{\text {réf. }}=0,26$. Des captures de 9300 tm en 2013 aboutiraient à un faible risque ( $25 \%$ ) que le taux de mortalité par pêche dépasse $\mathrm{F}_{\text {réf. }}$ cette même année. Les poissons des âges $9+$, dont la classe d'âge de 2003 est la principale composante, devraient représenter $34 \%$ de la biomasse exploitable en 2013 et les poissons de la classe d'âge de 2010 (à l'âge 3) devraient représenter $44 \%$ de la biomasse des prises. Avec l'entrée de la classe d'âge de 2010 dans le groupe des poissons des âges $3+$ en 2013 et l'augmentation subséquente de son poids, la probabilité estimée d'un déclin de la biomasse des adultes de 2013 à 2014 est pratiquement de $0 \%$, tous scénarios de captures confondus. On prévoit que la biomasse des adultes sera de 306200 tm (un niveau record) au début de 2014.

## INTRODUCTION

For the purpose of developing a sharing proposal and consistent management by Canada and the United States of America (USA), an agreement was reached that the transboundary management unit for haddock would be limited to the eastern portion of Georges Bank (EGB; DFO statistical unit areas $j$ and $m$ in NAFO sub-division 5Ze; USA statistical areas 551, 552, 561 and 562 in NAFO sub-division 5Ze; Figure 1; DFO 2002). This assessment applies the approach used by Van Eeckhaute and Brooks (2011) to Canadian and USA fisheries information updated to 2011. Results from the Fisheries and Oceans Canada (DFO) survey, updated to 2012, the USA National Marine Fisheries Service (NMFS) spring survey, updated to 2012 and the NMFS autumn survey, updated to 2011, were incorporated. The NMFS surveys since 2009, which use a new vessel, the Henry B. Bigelow, and a new net and protocols, were made equivalent to surveys undertaken by the Albatross $I V$ with length based conversion factors.

## FISHERY

## Commercial Catches

Haddock on Georges Bank have supported a commercial fishery since the early 1920s (Clark et al.1982). Catches from EGB during the 1930s to 1950s ranged between 15,000 mt and $40,000 \mathrm{mt}$ (Figure 2), averaging about 25,000 mt (Schuck 1951, R. Brown pers. com.). Records of catches by unit area for 1956 to 1968 have not been located; however, based on records for NAFO Subdivision 5Ze, catches from EGB probably attained record high levels of about $60,000 \mathrm{mt}$ during the early 1960s. Catches in the late 1970s and early 1980s (Table 1) reached a maximum of $23,344 \mathrm{mt}$ and were associated with good recruitment. Substantial quantities of small fish were discarded in those years (Overholtz et al. 1983). Catches subsequently declined and fluctuated around $5,000 \mathrm{mt}$ during the mid to late 1980s. Under restrictive management measures (Table 2), combined Canada/USA catches declined from 6,504 mt in 1991 to a low of $2,150 \mathrm{mt}$ in 1995, varied between about $3,000 \mathrm{mt}$ and $4,000 \mathrm{mt}$ until 1999, and increased to $15,256 \mathrm{mt}$ in 2005 (Figure 3). Combined catches decreased to $12,508 \mathrm{mt}$ in 2007, increased to 19,856 mt in 2009, the highest catch since 1980, and then decreased the following two years and was $12,655 \mathrm{mt}$ in 2011. In 2011 the total catch represented $58 \%$ of the combined $22,000 \mathrm{mt}$ quota. Canada caught $90 \%$ of its $12,540 \mathrm{mt}$ quota while the USA caught $15 \%$ of its $9,460 \mathrm{mt}$ quota. The total catch is well below the quota due to bycatch restrictions on the USA fishery.

## Canadian

Some elements of the management measures used on EGB are described in Table 2. Quotas are the principal means used to regulate the Canadian groundfish fisheries on Georges Bank. Quota regulation requires effective monitoring of fishery catch. Weights of all Canadian landings since 1992 have been monitored at dockside. Canadian catches since 1995 have usually been below the quota due to closure of some fleet sectors when the cod quotas were reached. At-sea observers monitored $22 \%$ of otter trawl, $21 \%$ of longline and $4 \%$ of gillnet landings which amounted to an overall observed level of $21 \%$ of the haddock landed by weight in 2011.

Between 1994 and 2004, the Canadian fishery for groundfish on EGB was disallowed from January $1^{\text {st }}$ to May $30^{\text {th }}$. In 2005, increasing haddock abundance led to permission to conduct an exploratory Canadian groundfish fishery in January and February that has continued since that time. So as not to adversely affect the rebuilding of cod on EGB, the winter fishery was closed

February $6^{\text {th }}$ in 2011 when it was determined that cod were actively spawning, i.e. when $30 \%$ of cod were in the spawning or post-spawning stages.

## Canadian Landings

Canadian landings decreased to $11,232 \mathrm{mt}$ in 2011 from $16,578 \mathrm{mt}$ in 2010 which is the second highest on record since 1969. In recent years, the Canadian fishery has been conducted primarily by vessels using otter trawls and longlines with some handlines and gillnets. In 2011, almost all of the catch was taken by tonnage class 1, 2 and 3 (less than 150 tons) vessels, corresponding roughly to vessels less than 65 ft in overall length. Otter trawl gear accounted for $86 \%$ and longline gear accounted for $14 \%$ of the haddock landings, and there were minimal landings from gillnet and handline gear (Table 3). The highest catch occurred in August, followed by July, January and September, in that order (Table 4, Figure 4). The January/February winter fishery landed $2,420 \mathrm{mt}$ of haddock, accounting for $22 \%$ of the total Canadian landings, somewhat lower than the previous year. Quarter 3 had the highest percentage of total Canadian landings at 57\%.

Prior to 1985, Canadian landings include haddock landings reported by the scallop fishery. Landings of haddock by the scallop fleet were low (Table 3) with a maximum of 38 mt reported in 1987.

## Canadian Discards

Since 1996, the scallop fishery has been prohibited from landing haddock and this species is therefore discarded. Discards from this fleet ranged between 29 and 186 mt since 1969 (Table 1; Van Eeckhaute et al. 2005, 2006, 2010 and 2011, Gavaris et al. 2007, 2008 and 2009). In 2011 there were 22 observed scallop trips (Table 5). The monthly discard rates are calculated using a 3 -month moving window average. After 2010, the 3-month moving window used to calculate the discard rate includes December of the previous year for the January discard rate and January of the following year for the December rate (Van Eeckhaute et al. 2011). Discards in 2011 were estimated at 15 mt (Table 6).

Compliance with mandatory retention is thought to be high since at least 1992, so discards in the groundfish fishery are considered to be negligible.

## USA

Management measures for the USA fishery have been primarily effort based since 1994; however, in 2004, quota management was introduced to regulate the USA groundfish fishery for EGB haddock (Table 2). From 2008 to 2010, the USA portion of the EGB management area was closed to vessels fishing with trawl gear from May $1^{\text {st }}$ to July $31^{\text {st }}$. From 2011 onwards, the regulation only applies to the common pool which is a miniscule fraction of USA boats that fish on EGB (the common pool received $0.62 \%$ and $0.28 \%$ of the EGB quota in 2011 and 2012, respectively).

The minimum size for landed haddock had been reduced to 18 inches ( 45.7 cm ) in October 2007 but reverted back to 19 inches ( 48.2 cm ) in August, 2008. On May 1, 2009, the minimum size was again reduced to 18 inches through a NMFS interim action. This minimum size limit was retained in Amendment 16, which went into effect on May 1, 2010. On September 15, 2008, the Ruhle trawl (previously called the Eliminator Trawl) was authorized for use in the USA portion of EGB management area. The Ruhle trawl is intended to reduce by-catch of cod. Also, beginning on May 1, 2010, many participants in the multispecies groundfish fishery organized
into sectors, with each unique sector receiving a portion of the overall quota known as an Annual Catch Entitlement (ACE). Those vessels not joining a sector remained in the common pool, which received a portion of the overall quota. A discard provision went into effect on May 1, 2010, requiring that all legal sized fish be retained by vessels in a sector. On May 11, 2011, the Closed Area II Special Access Permit (SAP) was modified to allow targeting haddock from August $1^{\text {st }}$ to January $31^{\text {st }}$. Also, on September 14, 2011, the haddock catch cap regulation for the herring midwater trawl fishery increased to 1\% of the Georges Bank Annual Biological Catch (ABC).

## USA Landings

USA landings of EGB haddock in 2011 were derived from mandatory fishing vessel trip reports (VTRs) and dealer reports. Statistical methodology was applied to allocate unknown landings to statistical area from 1994 to 2011 (Wigley et al. 2008a and Palmer 2008). Some of the landings for trawl gear that were reported in 2008 to 2010, during the months when EGB was closed to trawl gear, come from the allocation algorithm which assigns a statistical area when area is missing or there are inconsistencies in reported areas on logbooks. Trawl landings that were allocated to EGB during May to July for 2008-2010 comprised 3\% to 5\% of total annual USA haddock landings.

USA calendar year landings (Table 1) of EGB haddock decreased in 2011 to $1,322 \mathrm{mt}$ from $2,167 \mathrm{mt}$ in 2010. The 2011 USA landings peaked in quarter 2 (50\%), primarily due to $26 \%$ of total landings being recorded in April. All remaining quarters and months had fairly similar landings (Table 7). As in other years, the otter trawl gear accounted for the majority of the USA landings ( $1,269 \mathrm{mt}$; Table 8). The contribution by other gear, 53 mt , was $4 \%$.

For USA fishing year May 1, 2011 to Apr. 30, 2012, the USA catch quota for sectors was $9,460 \mathrm{mt}$ of which only $10.7 \%$ was realized in landings ( $11.2 \%$ of quota, including discards). The catch quota for the common pool was 59 mt , none of which was caught. In recent years, landings have been constrained in part by the low cod quota, the closed area, as well as the delayed opening of the EGB area to trawlers until August 1, in effect from 2008 to 2010 for all USA trawl gear and, since 2011, for the common pool only. The use of the Ruhle and Separator trawls may have reduced interactions with the cod quota.

## USA Discards

Discards were estimated from the ratio of discarded haddock to kept of all species, a new methodology that was first applied for the 2009 Eastern Georges Bank haddock assessment. This ratio is calculated by year-quarter (or other suitable time step)-gear-mesh and prorated to the total landings of all species in the same time-gear category to obtain total discards ( mt ) (Wigley et al. 2008b). Where time steps within the year are sparse, imputation is carried out.

Total discards in 2011 were 87 mt , an increase from 2010, where discards were 34 mt (Tables 1 and 9). Discards were mostly from the second half of the year. USA discards from the large mesh otter trawl fishery increased from 23 mt in 2010 to 79.5 mt in 2011. Discards from this fleet accounted for $5.6 \%$ (by weight) of the USA haddock catch in 2011. Longline, small mesh otter trawl, gillnet and the scallop fisheries contributed small amounts of discards in 2011.

## Size and Age Composition

Ageing Precision and Accuracy

D. Knox provided ages for the 2011 Canadian fishery and 2012 DFO survey and S.J. Sutherland provided ages for the 2011 USA fishery and the NMFS 2011 autumn and 2012 spring surveys. Age testing was conducted between the DFO reader and the NMFS reader and intra-reader testing was conducted at both labs. The NMFS reader also completed a test against their haddock reference collection which resulted in 95\% agreement. Inter-lab agreement ranged from $88 \%$ to $90 \%$. Intra-reader agreement for the NMFS reader ranged between $91 \%$ and $99 \%$ and for the DFO reader between $90 \%$ and $98 \%$. Age determinations at both labs were considered to be reliable for characterizing catch at age (Table 10; http://www.nefsc.noaa.gov/fbp/QA-QC/hd-results.html (Accessed May 31, 2013)).

## Canadian

The size and age composition of haddock in the 2011 Canadian groundfish fishery was characterized using port and at-sea samples from all principal gears by calendar quarters (Table 11). Gillnet landings were low and no samples were available so they were combined at the quarter level. For trips that were sampled by both at-sea observers and port samples, the length frequencies from the two sources were combined before using to ensure that samples were weighted in a consistent manner. The size composition of haddock discards in the 2011 Canadian scallop fishery was characterized by quarter using length samples obtained from 21 observed scallop trips which comprised $10 \%$ of the total effort. The 2011 DFO survey ages, augmented with port and observer samples, were applied to the first quarter landings and discard length compositions. Fishery age samples for quarters 2, 3 and 4 were applied to the corresponding length compositions for both the groundfish fishery and discards.

The modal length of haddock landings in the Canadian fishery was 50.5 cm for otter trawlers and 50.5 to 52.5 cm for longliners (Figure 5). Haddock discarded by the scallop fleet had a peak at 28.5 cm and a peak at 48.5 cm .

The 2003 year-class dominated all quarters of the Canadian landings and accounted for $77 \%$ in numbers of the 2011 Canadian landings. The 2005 year class (age 6) was the next highest contributor (Table 12 and Figure 6). Age 1 (2010 year class) made the highest contribution, in numbers, to the 2011 Canadian discards followed by the 2003 year class.

USA
USA landings of EGB haddock are sorted into "large" and "scrod" market categories at sea and are sampled in port for lengths and ages. Landings of large haddock totaled about 172 mt and scrod haddock totaled 1147 mt in 2011 (Table 9). Length sampling for USA EGB landings in 2011 was limited so length and age samples were pooled to estimate catch at age by half-year rather than by quarter. There were a total of 2,412 lengths of EGB commercial landings and a total of 1,179 ages.

USA fishermen are required to discard haddock under the legal size limit (18 inches/45.7 cm). A new regulation for the 2010 fishing year required vessels participating in a sector to retain all legal sized haddock. USA discards at age of EGB haddock for calendar year 2011 were estimated by half-year from at-sea observer data. In fishing year 2011, the number of observed trips from the at-sea monitoring program was 187, up from the previous year when there were 129. Sampled lengths from EGB were not augmented with samples from the adjacent
areas of 522 and 525 as has been done in the past when sampling intensity (or stock level) was much lower. As most of the discarding was due to the otter trawl fleet, there were few length samples from remaining gears (hook, gillnet, and 'other'). Therefore, length samples were combined across gears. The resulting combined length frequencies by half-year were converted to discarded number at age by applying the age length keys from the NMFS spring bottom trawl survey ( 709 ages) to quarters 1 and 2 and from the autumn bottom trawl survey ( 915 ages) to quarters 3 and 4.

The length composition of USA landings peaked between 51 and 55 cm (Figure 7). The 2003 year-class dominated the landings but the discards were dominated by age 1 (2010 year class; Table 12 and Figure 8). There were unusually high numbers of discards from the 2010 year class in the second half of the year (Table 12). Fishermen explained that catches of small haddock were high because the trawl net openings became clogged with high catches of skates. In numbers, discards represented $24 \%$ of the US catch.

## Combined Canada/USA Catch at Age

The 2011 Canadian and USA landings and discards at age estimates (Table 12) were summed to obtain the combined annual catch at age and appended to the 1969 to 2010 catch at age data (Van Eeckhaute and Brooks 2011; Table 13; Figure 9). The average fishery weights at age are presented in Table 14 and Figure 10 and the average lengths at age in Table 15. The catch at age tracks year classes well. The contribution from older ages in recent years has increased when compared to the 1990s. The age composition of the catch projections made in 2010 and 2011 for 2011 agree well with the observed age composition (Figure 11). The observed contribution from the 9+ age group was lower than expected and the 2010 projection, which used a Partial Recruitment (PR) on the 9+ age group of 0.3 was closer than the 2011 projection, which used a PR of 1 on the $9+$ age group. The 2003 year-class (age 8) dominated the fishery in 2011, accounting for $81 \%$ by weight and $75 \%$ by number.

Age 2 had contributed a large proportion of the catch during 1969 to 1994 but its contribution decreased dramatically in subsequent years (Figure 12). The increase in the dominant age in the catch is attributable primarily to a change in mesh type by the Canadian fishery, from diamond to square, and an increase in mesh size (Table 2). The combined 2005 to 2011 catch was dominated by ages 5 and 6, a reflection of the domination of the 2000 and 2003 year classes especially the 2003 which continued to contribute substantially at ages 7 and 8 . The age composition during the 1969 to 1974 period was also atypical since it was dominated by the outstanding 1962 and 1963 year classes which continued to contribute substantially at ages 6 and older.

## ABUNDANCE INDICES

## Research Surveys

Surveys of Georges Bank have been conducted by DFO each year (February/March) since 1986 and by NMFS each autumn (October/November) since 1963 and each spring (April) since 1968. All surveys use a stratified random design (Figure 13 and 14). The CCGS Alfred Needler is the standard vessel used for the DFO Georges Bank survey, but, due to unavailability of the Needler, the CCGS Wilfred Templeman, a sister ship to the Needler, was used in 1993, 2004, 2007 and 2008. No conversion factors are available for the Templeman, however, this vessel is considered to have fishing power similar to that of the Needler. For the NMFS surveys, two vessels have been employed from 1963 to 2008 and there was a change in the trawl door type in 1985. Vessel and door type conversion factors (Table 16), derived experimentally from
comparative fishing, have been applied to the survey results to make the series consistent (Forrester et al. 1997). Additionally, two different trawl nets have been used on the NMFS spring survey, a modified Yankee 41 during 1973-81 and a Yankee 36 in other years, but no conversion factors are available for haddock.

Since spring 2009, the NMFS surveys have been conducted with the National Oceanic and Atmospheric Administration (NOAA) FSV Henry B. Bigelow, a new net (4 seam, 3 bridle) and revised protocols. Length based conversion factors have been calculated (Table 17 and Figure 15) and were applied by dividing Bigelow catches at length by the length specific conversion value to make the Bigelow surveys equivalent to the Albatross IV catches (Brooks et al. 2010).

The spatial distributions of catches by age group (1, 2, and 3+ for spring and 0, 1 and $2+$ for autumn) for the 2011 NMFS fall survey, the 2012 DFO survey, and the 2012 NMFS spring survey are shown in comparison to the average distribution over the previous 10-year period (Figure 16-18). During the fall, age 0 is spread throughout the 5 Zjm area, and age 1 haddock are also spread out over the bank but are more concentrated on the Canadian side than age 0 . Older haddock migrate to deeper water along the northern edge and peak and to a lesser extent along the southern edge so are mainly found on the Canadian side at this time of year. In Feb/March, the DFO survey finds ages 1 and 2 similarly distributed near the bank edges and mostly in the eastern part of the management unit. Ages 3 and older are concentrated on the bank near the northeast peak and edge and also in 5 Zm near the Canada/US boundary and spreading north-eastward from there just north of $41^{\circ} 30^{\prime}$. In March/April the NMFS survey finds age 1 concentrated along the southern flank, age 2 is spread throughout the $5 Z \mathrm{jm}$ area and similar to the adults, which are now more widely dispersed than they were earlier in the year as observed from the DFO survey.

The 2011 NMFS fall survey had several very large catches of age 0 haddock (2011 year class). The 2012 DFO survey also had several good catches of this year class, mostly on the southern part of the bank and the 2012 NMFS spring survey had two good catches of the same year class. Several very large catches of the 2010 year class (age 1) were caught by the fall survey, mostly along the Canada/US boundary. Many big catches of the 2010 year class (age 2) were taken on the southern part of the bank by the DFO survey in the same sets as were caught many age 1 haddock. Two very large sets of this year class were caught by the NMFS spring survey on the US side. Moderate catches of the older aged haddock, which would consist mostly of the 2003 year class, by the most recent survey of each series, were distributed in each surveys typical pattern (Figure 16-18).

Age-specific, swept area abundance indices show that the three surveys are consistent and track year-class strengths well (Table 18, 19 and 20; Figure 19). Some year effects are evident. For example, low spring catches occurred in 1997 in both the DFO and NMFS surveys. The most recent surveys are dominated by the 2010, especially, and the 2011 year classes. The abundance of the older ages in the 2000s has increased in comparison to the 1980s and 1990s. Survey adult biomass indices (ages 2-7 in autumn; 3-8 in spring) peaked during the early 1960s (Figure 20). After declining to a record low in the early 1970s, they peaked again in the late 1970s, though at a lower level, and again during the early 1980s at about half the level of the 1970s peak. Adult biomass generally increased during the late 1990s and was high throughout the 2000s. The NMFS fall survey adult biomass declined substantially in 2011 from the previous year, there was also a decrease in the NMFS spring survey and a significant decrease in the DFO survey in 2012. When the 2003 year class biomass is included in the older age group, the decreases in the survey adult biomass are still substantial and the DFO value is the third lowest in the series. The indices for the 2010 year class at age 2 are the highest for all three survey
series, far surpassing those of the 2003 year class for the DFO survey. The recruitment indicies for the 2011 year class are similar to the strong 2000 year class (Figure 21).

Georges Bank groundfish fishermen corroborated the findings of the surveys with regard to the high abundance of the 2010 year class. They reported they were catching a relatively large number of small haddock in their catches.

## GROWTH

Canadian and USA fishery weight at age trends show similar patterns (Figure 10). Low sampling for small year classes at older ages results in increased variability. Except for age 2, combined fishery weights at age in 2011 decreased (Table 14). A declining trend is visible starting around 2000. DFO survey weights and lengths at age in 2012 (Table 21 and 22; Figure 22) showed large decreases for ages 2, 3 and 4. After displaying a decreasing trend since about 2000, the increasing trend in DFO survey weights that started in 2005 with the 2004 year class for the younger ages, was arrested in recent surveys and a decreasing trend is again evident. Little improvement is evident for ages 5 to 8 , which display a downward trend apparent since the late 1990s. Average size at age for older haddock has declined substantially so that haddock age 4 and older are now at, or smaller, than the size that the next younger age group was in previous years before the declines occurred. The 2010 year class size at age 1 is the second lowest in the DFO time series.

Weights at age from the DFO survey are considered beginning of year population weights and are calculated using the method described in Gavaris and Van Eeckhaute (1998) in which weights observed from the survey are weighted by population numbers at length and age. Fishery weights are derived from the lengths using a length-weight relationship (Waiwood and Neilson 1985).

## HARVEST STRATEGY

The Transboundary Management Guidance Committee (TMGC) has adopted a strategy to maintain a low to neutral risk of exceeding the fishing mortality limit reference, $\mathrm{F}_{\text {ref }}=0.26$ (TMGC 2003). When stock conditions are poor, fishing mortality rates should be further reduced to promote rebuilding. The TMGC agreed to a common F strategy at its December 2002 TMGC meeting. The F references used by both countries for "healthy" or "rebuilt" stocks were virtually identical, i.e., 0.25 for Canada and 0.26 for the USA (TMGC Meeting Summary, October 2, 2003).

## ESTIMATION OF STOCK PARAMETERS

## Calibration of Virtual Population Analysis (VPA)

Calibrated Virtual Population Analysis (VPA) was used to estimate stock parameters. The adaptive framework, ADAPT, (Gavaris 1988) was used to calibrate the VPA with the research survey data. Details of the model formulations and model assumptions can be found in the 1998 benchmark asessment (Gavaris and Van Eeckhaute 1998). Minor changes that were made since 1998 are summarized in Table 23.

The VPA was based on an annual catch at age, $C_{a, t}$ for ages $a=0,1,2 \ldots 8,9+$, and time $t=1969,1970 \ldots 2011$ where $t$ represents the beginning of the time interval during which the catch was taken. Catch discards were included in the catch at age. The population was calculated to the beginning of 2012. The VPA was calibrated to bottom trawl survey abundance indices, $I_{s, a, t}$ for
$s=$ DFO, ages $a=1,2,3 . .8$, time $t=1986.17,1987.17 \ldots$ 2011.17, 2012.00
$s=$ NMFS spring (Yankee 36), ages $a=1,2,3 \ldots 8$, time $t=1969.28 \ldots 1972.28$ and 1982.28... 2011.28, 2012.00
$s=$ NMFS spring (Yankee 41), ages $a=1,2,3 \ldots 8$, time $t=1973.28,1974.28 \ldots 1981.28$
$s=$ NMFS autumn, ages $a=0,1,2 \ldots 5$, time $t=1969.79,1970.79 \ldots 2011.79$.
Since the population is calculated to beginning year 2012, the NMFS and DFO spring surveys in 2012 were designated as occurring at time 2012.00.

Statistical properties of estimators were determined using conditional non-parametric bootstrapping of model residuals (Efron and Tibshirani 1993, Gavaris and Van Eeckhaute 1998). Population abundance estimates at age 1 and 2 exhibit a large relative error of $58 \%$ and $37 \%$, respectively, and a large relative bias at age 1 of $15 \%$. The relative error for other ages is between $21 \%$ and $32 \%$ with a relative bias for ages 2 and older between $1 \%$ and $9 \%$ (Table 24). While trends in the three surveys are generally consistent, the survey indices exhibit high variability and the average magnitude of residuals is large relative to other assessments. Although several large residuals were apparent, these do not appear to have a substantial impact on estimates of current abundance (Figure 23 to 27). Some patterns in the residuals (by cohort and by year) suggest year class and/or year effects. Negative residuals are prevalent in 2012.

## Retrospective Analysis

Retrospective analyses were used to detect any trends to consistently overestimate or underestimate biomass, fishing mortality and recruitment relative to the terminal year estimates (Figure 28 and 29). No persistent patterns in estimates of ages $3+$ biomass and fishing mortality (ages 5-8) were evident and relative differences were low. Although recruitment estimates may sometimes change substantially when more data becomes available, e.g., the 2008 year class, there has been a tendency to overestimate initial year class size, and subsequent estimates exhibited only minor deviation from terminal year estimates.

A historical retrospective analysis which incorporates all data and model formulation changes by plotting the results from previous assessments back to the last benchmark in 1998 instead of peeling back years from the current assessment is illustrated in Figure 30. It illustrates that the perception of the stock has remained fairly stable through the data and model changes.

## STATE OF RESOURCE

Evaluation of the state of the resource was based on results from the VPA for the years 1969 to 2012. For each cohort, the terminal population abundance estimates from ADAPT were adjusted for bias estimated from the bootstrap, and used to construct the history of stock status (Table 25, 26 and 27). This approach for bias adjustment was considered preferable to using
potentially biased point estimates of stock parameters (O'Boyle 1998). The weights at age from the DFO survey (Table 21) were used to calculate beginning of year population biomass (Table 27). A weight of 2.4 kg , which was midway between the age 6 and age 8 weight for the 1988 cohort, was used for age 7 in 1995 as no data were available for that age group. The 1986-95 average weight at each age was used for 1969-85.

The adult (ages $3+$ ) biomass trend reflects the survey adult biomass trends well (scaled with catchabilities; Figure 31). Adult biomass increased during the late 1970s and early 1980s to $38,000 \mathrm{mt}$ in 1981. The increase was due to recruitment of the strong 1975 and 1978 yearclasses whose abundances were estimated to be above 50 million age- 1 fish each (Figure 32). However, adult biomass declined rapidly in the early 1980s as these two cohorts were fished intensely at ages 2 and 3 and subsequent recruitment was poor. Improved recruitment in the 1990s and the strong 2000 year-class ( 87 million at age 1), lower exploitation, and reduced capture of small fish in the fisheries allowed the biomass to increase from near a historical low of $10,400 \mathrm{mt}$ in 1993 to $86,400 \mathrm{mt}$ in 2003 . Adult biomass decreased to $62,200 \mathrm{mt}$ in 2005 but subsequently increased to $172,700 \mathrm{mt}$ in 2009 , higher than the 1931-1955 maximum adult biomass of about $90,000 \mathrm{mt}$. The tripling of the biomass after 2005 was due to the exceptional 2003 year-class, estimated at 328 million age-1 fish. The biomass has been decreasing since the 2009 high and in 2012 the adult biomass decreased to $70,700 \mathrm{mt}$ ( $80 \%$ confidence interval: $60,000 \mathrm{mt}-83,700 \mathrm{mt}$, Figure 33). Except for the strong 2000 and 2011 year classes and the exceptional 2003 and 2010 year classes, recruitment has fluctuated between 2.1 and 29.4 million age 1 fish since 1990. The 2001, 2002, 2004, 2006, 2007, 2008 and 2009 year classes, at less than 8 million fish, are below the average of 17 million age 1 fish for 1990 to 2011 (excludes the exceptional 2003 and 2010 year-classes). The 2005 year-class estimate at 18.8 million age 1 fish is near this average. The estimate for the 2010 year class is outstanding at 589 million age-1 fish, similar to the estimate from the previous assessment, making it the largest in the assessment time series: 1931-1955 and 1969-2011. The preliminary estimate for the 2011 year class is 105 million fish, similar to the strong 2000 year class.

From 2003 onwards, the age at full recruitment into the fishery has been at age 5 (rather than age 4 as in previous years) due to a decline in size at age. Comparison of age 4 and 5 fishing mortality (Table 26) and average weights at age from the fishery and survey (Figure 34) indicate that full recruitment to the fishery since 2003 occurs around age 5. Fishery weights are approaching survey (population) weights at age 5, and, when beginning of year to mid-year growth is accounted for, indicate that age 5 fish are fully selected by the fishery. Fully recruited fishing mortality (population weighted average of fully recruited ages) is presented, therefore, for ages $4+$ for pre-2003 and ages 5+ for 2003 onwards. Fully recruited fishing mortality fluctuated between 0.25 and 0.5 during the 1980s and early 1990s (Figure 35). After reaching a high of 0.5 in 1992 and 1993, it decreased to well below $F_{\text {ref }}=0.26$ after 1994, stayed below $F_{\text {ref }}$ until 2003, fluctuated around $F_{\text {ref }}$ during 2004 to 2006, then declined and was 0.14 in 2011 ( $80 \%$ confidence interval: 0.11 - 0.15, Figure 33).

Consistent with the increase in age at full recruitment into the fishery, the partial recruitment at age for EGB haddock is normalized to ages 4-8 population weighted F for 1969 to 2002 and to ages $5-8$ population weighted F from 2003 onwards (Table 28; Figure 36). Average partial recruitment estimates are less variable when weighted by population numbers and is considered more appropriate than the unweighted average.

Gains in fishable biomass may be partitioned into those associated with somatic growth of haddock which have previously recruited to the fishery, and those associated with new recruitment to the fishery (Rivard 1980). We used age 2 as the age of first recruitment to the fishery. This choice facilitated comparisons with historic stock productivity but may be less
representative of the current fishery selectivity. Since 1993, surplus production (biomass gains from growth and from recruitment, decremented by losses due to natural deaths) often exceeded fishery harvest yields, resulting in net population biomass increases (Figure 37), but, fishery harvest yields have exceeded surplus production for the last 3 years resulting in decreases in biomass. In 2009 to 2011, surplus production decreased substantially as growth of the 2003 year class slowed and gains from recruitment remained low. Growth of fish is the dominant component of the biomass gain but recruitment accounts for significant portions when stronger year classes enter the population, e.g. the 2000 year class in 2002 and the 2003 year class in 2005 (Figure 38). The biomass contributed by the 2003 year class, both when it recruited at age 2 and through growth during that year was greater than that of any other previous cohort since 1969.

## PRODUCTIVITY

Recruitment, as well as age structure, spatial distribution and fish growth reflect changes in the productive potential. Data to approximate the age composition of the catch from unit areas 5 Zj and 5 Zm during 1931 to 1955 were used to reconstruct a population analysis of EGB that was suitable for comparison of productivity to recent years (Gavaris and Van Eeckhaute 1997, Figure 32).

The catch and survey age structure displays a broad representation of age groups, reflecting improving recruitment and lower exploitation since 1995 (Figure 9 and 19).

Recruitment, while highly variable, has generally been higher when adult biomass has been above 40,000 mt (Figure 39). Since 1969, only the 1975, 1978, 2000, 2003, 2010 and 2011 year classes have been above the 1931-1955 long term average abundance of 40.5 million age one fish. The recruits per adult biomass ratio has been highly variable since 1969. It was generally low during the 1980s but higher during the 1990s, comparable to that in the 1931-1955 period (Figure 40), when the 3+ biomass was above $40,000 \mathrm{mt}$. Since 2001, with the exception of 2003, 2010 and 2011, recruits per spawner have again been low. The very high 3+ biomass (greater than about $100,000 \mathrm{mt}$ ) observed since 2006 has produced one exceptional and one strong year class but has also produced four below average year classes (Figure 39).

The spatial distribution patterns observed during the most recent bottom trawl surveys were similar to the average patterns over the previous ten years for the spring surveys. Consistent with the pattern observed for previous exceptional year-classes, the 2003 year-class, the main component of the 3+ age group, was widely distributed throughout the survey area (Figure 1618).

Fish condition as measured by Fulton's K for ages 1 to 9 , combined, derived from the DFO survey exhibits a declining trend since about 2001 and declined to its lowest value in 2011 (Figure 41). Except in 2009, the condition factor of haddock has been below the series average since 2003, similar to the trends in condition observed in Eastern Georges Bank cod and Georges Bank yellowtail flounder during the spring.

Both fishery and survey average lengths and weights at age have declined (Figure 10, 22 and 34). The 2003 year class appears to have reached its maximum growth potential at a smaller size than previous year classes attained (Table 22 and Figure 42) and decreased in average survey size at age from age 8 to age 9 . Decreased growth rates at age, i.e., the 2007 year class at age 3 and 4, and the 2005 year class at age 5 and 6 were observed from DFO
survey data. The 2010 year class lengths at age 1 and 2 are less than the 2003 year class (Figure 42).

Changes in growth in response to changes in stock abundance and episodes of very strong recruitment have been previously observed for haddock. Clark et al. (1982), reporting on Georges Bank haddock, observed "a decline in mean weight for all age-groups following every period of very strong recruitment" and a rapid increase in growth following the late 1960's and early 1970's reduction in stock size. As postulated by Clark et al. (1982), increased or decreased availability of food is probably the greatest determining factor for growth increases and decreases, respectively.

In summary, positive signs of productivity include expanded age structure, broad spatial distribution and large biomass and this stock has produced two exceptional and two strong year classes in the last 12 years. On the negative side, condition in the spring has decreased, growth has declined and recruitment from the very large biomass has been extremely variable.

## PARTIAL RECRUITMENT ON OLDER AGES

In 2013, the 2003 year class will be age 10 and will still comprise a large part of the catch. Projection inputs for the 9+ age group are, therefore, influential in determining the catch for 2013. Although the determination of $F_{\text {ref }}$ was based on analyses that assumed full recruitment to the fishery for ages 4 and older, misspecification of Partial Recruitment (PR) on the 9+ age group for projection inputs would result in a higher catch projection for 2013 than would be indicated to stay below the $F_{\text {ref }}$ value. Therefore, additional analyses were carried out to determine the most appropriate 9+ age group PR inputs for the 2013 catch projections. Note that $F_{\text {ref }}$ for this stock is a negotiated value and cannot be changed in the Transboundray Resource Assessment Committee (TRAC) venue alone.

Inclusion of the 2000 year class at age 9 in the 9+ age group may confound fishing mortality estimation and subsequent estimation of partial recruitment to the fishery for age 9. To investigate the fishing mortality and partial recruitment on age 9, the 2010 TRAC recommended a sensitivity run which includes age 9 as a tuning index to calibrate the VPA. This model formulation was updated with the most recent data and is detailed in Appendix A. This model has a strong residual pattern for age 9, showing positive residuals in the early part of the time series and mostly negative residuals for the last 9 (DFO survey) to 13 (NMFS spring survey) years (Figure A3) and results in lower population estimates for recent years (Table A2) as well as increased Fs (Table A3). The estimate of partial recruitment for the 2000 year class at age 9 is low at 0.36 (Table A5) and is similar to the benchmark model result of 0.32 for the age $9+$ group in 2009 (Table 28), of which the 2000 year class would comprise the major portion.

Figure 43 illustrates the results of a calculation of total mortality $(Z)$ for ages 3 to 8 and the 9+ group from the DFO survey. Positive values indicate that there has been a decrease in abundance and negative values indicate an increase in abundance for age 'a' to 'a+1' while zero values indicate no change in abundance. The results for age 8 show that there has been a large increase in total mortality for about the last 9 years, however, fishing mortality for age 8 has decreased in the last few years. These results support the use of a low PR on the 9+ age group for projection for the 2013 fishing year.

Another indication that a low PR on the 9+ age group should be used for projections is the comparison of predicted versus observed landings for 2011 (Figure 11). A lower than expected
contribution from the 9+ age group was observed and more closely matches the 2010 projection when a PR for the $9+$ age group of 0.3 was used than the 2011 projection when a PR of 1.0 was used.

## OUTLOOK

This outlook is provided in terms of consequences with respect to the harvest reference point for alternative catch quotas in 2013. Uncertainty about standing stock generates uncertainty in forecast results which is expressed here as the risk of exceeding $\mathrm{F}_{\text {ref }}=0.26$. The risk calculations assist in evaluating the consequences of alternative catch quotas by providing a general measure of the uncertainties. However, they are dependent on the data and model assumptions and do not include uncertainty due to variations in weight at age, partial recruitment to the fishery, natural mortality, systematic errors in data reporting or the possibility that the model may not reflect stock dynamics closely enough.

The 2012 DFO survey weights at age were used for the projection inputs for the 2012 population weights at age. The 2003 year class survey weights at ages 3 and 4 were used for the 2010 year class population weights for the same ages. Other year classes for 2013 and 2014 were given the 2010 to 2012 average weights at age (weighted by population) from the DFO survey. The 9+ age group population weights were based on the 2003 year class which dominated that age group. No growth was assumed for this year class so the weights for 2013 and 2014 were the same as the 2012 weight.

Weights used for catch weights at age were the 2009 to 2011 Canada/USA landings average weights at age except for the 2010 year class where the 2003 year class fishery weights were used for the respective ages and the 9+ age group which was given the 2003 year class Canada/USA landings weight at age 8 as no growth was assumed (Table 29).

Except for the 2010 year class and age 9+ group, partial recruitment inputs were derived from the 2003 to 2011 population weighted values. This is a deviation from the protocol (i.e., using the average of the last 3 years) but it was observed that not including the 2003 year class values resulted in PRs that were significantly higher than what was observed for the 2003 year class (Table 28). Some of the PRs were suspected to have high error as they came from very small year classes. The 2010 year class was given the 2003 year class PR values at the same ages (2 and 3). The 9+ group was given a PR of 0.3 to be consistent with the assessment model results. The 9+ group was not considered to be less catchable by the fishery, but lower availability was observed which was thought to be aliasing unknown processes (Table 28 and Appendix A). Ages 5 to 8 were considered fully recruited to the fishery.

EGB haddock are considered 100\% mature at ages 3 and older.
A deterministic projection and risk assessment was conducted to beginning year 2014 (Table 30) incorporating the patterns in growth and partial recruitment detailed in Table 29. Stock size estimates at the beginning of 2012 were used to start the forecasts. Abundance of the 2012 and 2013 year classes were assumed to be 6.3 million at age 1 , the same value used in the previous assessment. Natural mortality was assumed to be 0.2 . Assuming a 2012 catch equal to the $16,000 \mathrm{mt}$ total quota, a combined Canada/USA catch of $10,400 \mathrm{mt}$ in 2013 results in a neutral risk (50\%) that the 2013 fishing mortality rate would exceed $F_{\text {ref }}=0.26$ (Figure 44). A catch of $9,300 \mathrm{mt}$ in 2013 results in a low risk (25\%) that the 2013 fishing mortality rate will exceed $F_{\text {ref. }}$. A catch of $11,900 \mathrm{mt}$ in 2013 results in a high risk ( $75 \%$ ) that the 2013 fishing mortality rate will exceed $\mathrm{F}_{\text {ref. }}$. Due to the entry of the 2010 year class into the 3+ group in 2013
and its subsequent increase in weight, the estimated probability that the adult biomass will not achieve a $0 \%, 10 \%$ or $20 \%$ increase from 2013 to 2014 is virtually $0 \%$ at any of the catch scenarios considered. The adult biomass is projected to be 306,200 mt (a record high) at the beginning of 2014. The 9+ group (34\%), of which the 2003 year class is the main component, and the 2010 year class (44\%) are expected to constitute the majority of the 2013 catch biomass.

## SPECIAL CONSIDERATIONS

Catch projections for 2012 and 2013 are highly influenced by the partial recruitment that is used for the 9+ age group. There is no direct evidence to indicate that age 9 and older haddock should be less available to the fishery than age 8 haddock, however, the domed partial recruitment at age 9 and older that the assessment model produces may be aliasing increased natural mortality, emigration outside of the management area or to areas inaccessible to the fishery, or some other unknown process. Several corroborating factors influenced the decision to use the lower PR produced by the model, e.g. the predicted versus observed 2011 catch at age supports the use of the lower PR as does the analysis of total mortality from the DFO survey (Figure 43). A PR of 1 was used for the 2012 catch in the previous assessment for the $9+$ group, to be consistent with the fishing mortality reference. If this reduced PR for ages 9+ occurs in 2012 and the quota is caught, then the fishing mortality rate would be expected to be above $F_{\text {ref }}=0.26$. Analysis of the 2012 fishery when the 2003 year class is age 9 will be helpful in determining whether reduced availability of older haddock is real and future catch allocations will need to account for this lack of availability, whatever the cause.

In 2013, the 2010 year class will be mostly below the current minimum size regulation used by the US, which could lead to significant discarding. This is not expected to be an issue in the Canadian fishery due to the different gear types and management measures.

Cod and haddock are often caught together in groundfish fisheries, although their catchabilities to the fisheries differ and they are not necessarily caught in proportion to their relative abundance. With current fishing practices and catch ratios, the achievement of rebuilding objectives for cod may constrain the harvesting of haddock. Modifications to fishing gear and practices, with enhanced monitoring, may mitigate these concerns.

The table in Appendix B summarizes the performance of the management system. It reports the TRAC advice, TMGC quota decision, actual catch, and realized stock conditions for this stock. Fishing mortality and trajectory of age 3+ biomass from the assessment following the catch year are compared to results from this assessment. These comparisons were kindly provided in 2011 by Tom Nies (staff member of the New England Fishery Management Council (NEFMC)) and updated for this assessment. The largest differences in expected and actual results occurred when projection inputs for partial recruitment and weights at age for large dominant year classes (i.e., 2000 and 2003) were higher than the realized values. When year class specific input values were used, expected and actual results were similar. These results indicate that stock biomass is being adequately estimated by the model for management purposes, but, misspecification of partial recruitment and weights at age, especially of very large and influential year classes, can result in higher than expected fishing mortality due to catch advice being set too high.

## ACKNOWLEDGEMENTS

G. Donaldson and D. Frotten of DFO and at sea observers from Javitech Ltd. provided samples from the Canadian fishery. D. Knox and S. Sutherland provided ageing information for the DFO and NMFS surveys and Canadian and USA fisheries. We thank members of the fishing industry who spent time to discuss their experiences in the fishery. We also thank NMFS reviewers for their suggestions to improve the document.

## LITERATURE CITED

Brooks, E.N., T.J. Miller, C.M. Legault, L. O'Brien, K.J. Clark, S. Gavaris, and L. Van Eeckhaute. 2010. Determining length-based calibration factors for cod, haddock, and yellowtail flounder. TRAC Ref. Doc. 2010/08: 25 p.

Clark, S.H., W.J. Overholtz, and R.C. Hennemuth. 1982. Review and assessment of the Georges Bank and Gulf of Maine haddock fishery. J. Northw. Atl. Fish. Sci. 3: 1-27.

DFO. 2002. Development of a sharing allocation proposal for transboundary resources of cod, haddock and yellowtail flounder on Georges Bank. DFO Mar. Prov., Reg. Fish. Manag. Rep. 2002/01:59 p.

Efron, B., and R.J. Tibshirani. 1993. An Introduction to the Bootstrap. Chapman \& Hall. New York. 436p.

Forrester, J.R.S., C.J. Byrne, M.J. Fogarty, M.P. Sissenwine, and E.W. Bowman. 1997. Background papers on USA vessel, trawl, and door conversion studies. SAWISARC 24 Working Paper Gen 6. Northeast Fish. Sci. Cent., Woods Hole, MA.

Gavaris, S. 1988. An adaptive framework for the estimation of population size. DFO CAFSAC Res. Doc. 88/29: 12 p.

Gavaris, S., and L. Van Eeckhaute. 1997. Assessment of haddock on eastern Georges Bank. DFO CSAS Res. Doc. 97/54: 72 p

Gavaris, S and L. Van Eeckhaute. 1990. Assessment of haddock on eastern Georges Bank. DFO CAFSAC Res. Doc. 90/86: 37 p.

Gavaris, S., and L. Van Eeckhaute. 1998. Assessment of haddock on eastern Georges Bank. DFO CSAS Res. Doc. 98/66: 75 p.

Gavaris, S., A. Glass, and I. Jonsen. 2008. Discards of Atlantic cod, haddock and yellowtail flounder from the 2007 Canadian scallop fishery on Georges Bank. TRAC Ref. Doc. 2008/04: 6p.

Gavaris, S., G. Robert, and L. Van Eeckhaute. 2007. Discards of Atlantic cod, haddock and yellowtail flounder from the 2005 and 2006 Canadian scallop fishery on Georges Bank. TRAC Ref. Doc. 2007/03: 10 p.

Gavaris, S., J. Sameoto, A. Glass, and I. Jonsen. 2009. Discards of Atlantic cod, haddock and yellowtail flounder from the 2008 Canadian scallop fishery on Georges Bank. TRAC Ref. Doc. 2009/05: 25p.

O'Boyle, R.N. (Chair). 1998. Proceedings of the Transboundary Resource Assessment Committee; 20-24 April 1998. DFO CSAS Proc. Ser. 98/10: 49p.

Overholtz, W.J., S.H. Clark, and D.Y. White. 1983. A review of the status of the Georges Bank and Gulf of Maine haddock stocks for 1983. Woods Hole Lab. Ref. Doc. 83-23, NOAA, NMFS, p.1-33.

Palmer, M. 2008. A Method to apportion landings with unknown area, month and unspecified market categories among landings with similar region and fleet characteristics. Groundfish Assessment Review Meeting (GARM III-Biological Reference Points Meeting). Working Paper 4.4. 9 p.

Rivard, D. 1980. Back-calculating production from cohort analysis, with discussion on surplus production for two redfish stocks. CAFSAC Res. Doc. 80/23: 26 p.

Schuck, H.A. 1951. Studies of Georges Bank haddock, Part I: Landings by pounds, numbers and sizes of fish. Fish. Bull. U.S., 52: 151-176.

TMGC. 2003. Transboundary Management Guidance Committee Guidance Document 2003/1: 7 p.

Van Eeckhaute, L., and E.N. Brooks. 2011. Assessment of eastern Georges Bank haddock for 2011. TRAC Ref. Doc 2011/03: 104 p.

Van Eeckhaute, L., and S. Gavaris. 2006. Estimation of cod, haddock and yellowtail flounder discards from the Canadian Georges Bank scallop fishery for 2005. TRAC Reference Document - 2006/04; 6p

Van Eeckhaute, L., L. Brooks, and M. Traver. 2009. Assessment of eastern Georges Bank haddock for 2009. TRAC Ref. Doc. 2009/02: 96 p.

Van Eeckhaute, L., S. Gavaris, and H. Stone. 2005. Estimation of cod, haddock and yellowtail flounder discards from the Canadian Georges Bank scallop fishery from 1960 to 2004. DFO TRAC Ref. Doc. 2005/02: 21 p.

Van Eeckhaute, L., J. Sameoto and A. Glass. 2010. Discards of Atlantic cod, haddock and yellowtail flounder from the 2009 Canadian scallop fishery on Georges Bank. TRAC Ref. Doc. 2010/10: 7p.

Van Eeckhaute, L., Y. Wang, J. Sameoto and A. Glass. 2011. Discards of Atlantic cod, haddock and yellowtail flounder from the 2010 Canadian scallop fishery on Georges Bank. TRAC Ref. Doc. 2011/05 (in prep.). 14p.

Waiwood, K.G., and J.D. Neilson. 1985. The 1985 assessment of 5Ze haddock. CAFSAC Res. Doc. 85/95:49 p.

Wigley S.E., P. Hersey, and J.E. Palmer. 2008a. A Description of the Allocation Procedure Applied to the 1994 to 2007 Commercial Landings Data. US Dept. Commer., Northeast Fish. Sci. Cent. Ref. Doc. 08-18; 61 p.

Wigley, S.E., M.C. Palmer, J. Blaylock, and P.J. Rago. 2008b. A Brief Description of the Discard Estimation for the National By-Catch Report. Northeast Fish. Sci. Cent. Ref. Doc. 08-02; 35 p.

Table 1. Nominal catches (mt) of haddock from eastern Georges Bank (EGB) during 1969-2011. For "Other" it was assumed that 40\% of the total $5 Z$ catch was in EGB. USA landings and 1989 to 2007 USA discards were revised (Van Eeckhaute et al. 2009). Canadian discards are from the scallop fishery and USA discards are from the groundfish fishery.

| Year | Landings |  |  | Discards |  | Totals |  |  | Quotas |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Canada | USA | Other | Canada | USA | Canada | USA | Catch | Canadian | USA ${ }^{2}$ |
| 1969 | 3941 | 6624 | 695 | 123 |  | 4064 | 6624 | 11382 |  |  |
| 1970 | 1970 | 3154 | 357 | 116 |  | 2086 | 3154 | 5597 |  |  |
| 1971 | 1610 | 3533 | 770 | 111 |  | 1721 | 3533 | 6024 |  |  |
| 1972 | 609 | 1551 | 502 | 133 |  | 742 | 1551 | 2795 |  |  |
| 1973 | 1565 | 1397 | 396 | 98 |  | 1663 | 1397 | 3455 |  |  |
| 1974 | 462 | 955 | 573 | 160 | 757 | 622 | 1712 | 2907 |  |  |
| 1975 | 1353 | 1705 | 29 | 186 |  | 1539 | 1705 | 3273 |  |  |
| 1976 | 1355 | 974 | 24 | 160 |  | 1515 | 974 | 2513 |  |  |
| 1977 | 2871 | 2428 |  | 151 | 2966 | 3022 | 5394 | 8416 |  |  |
| 1978 | 9968 | 4725 |  | 177 | 1556 | 10145 | 6281 | 16426 |  |  |
| 1979 | 5080 | 5213 |  | 186 |  | 5266 | 5213 | 10479 |  |  |
| 1980 | 10017 | 5615 |  | 151 | 7561 | 10168 | 13176 | 23344 |  |  |
| 1981 | 5658 | 9081 |  | 177 |  | 5835 | 9081 | 14916 |  |  |
| 1982 | 4872 | 6286 |  | 130 |  | 5002 | 6286 | 11287 |  |  |
| 1983 | 3208 | 4453 |  | 119 |  | 3327 | 4453 | 7780 |  |  |
| 1984 | 1463 | 5121 |  | 124 |  | 1587 | 5121 | 6708 |  |  |
| 1985 | 3484 | 1684 |  | 186 |  | 3670 | 1684 | 5354 |  |  |
| 1986 | 3415 | 2201 |  | 92 |  | 3507 | 2201 | 5708 |  |  |
| 1987 | 4703 | 1418 |  | 138 |  | 4841 | 1418 | 6259 |  |  |
| 1988 | $4046{ }^{1}$ | 1694 |  | 151 |  | 4197 | 1694 | 5891 |  |  |
| 1989 | 3060 | 785 |  | 138 | 137 | 3198 | 922 | 4121 |  |  |
| 1990 | 3340 | 1189 |  | 128 | 76 | 3468 | 1265 | 4732 |  |  |
| 1991 | 5456 | 931 |  | 117 | 0 | 5573 | 931 | 6504 |  |  |
| 1992 | 4058 | 1629 |  | 130 | 9 | 4188 | 1638 | 5826 | 5000 |  |
| 1993 | 3727 | 424 |  | 114 | 106 | 3841 | 530 | 4371 | 5000 |  |
| 1994 | 2411 | 24 |  | 114 | 1279 | 2525 | 1302 | 3827 | 3000 |  |
| 1995 | 2065 | 15 |  | 69 | 0 | 2134 | 16 | 2150 | 2500 |  |
| 1996 | 3663 | 26 |  | 52 | 5 | 3715 | 31 | 3746 | 4500 |  |
| 1997 | 2749 | 55 |  | 60 | 1 | 2809 | 56 | 2865 | 3200 |  |
| 1998 | 3371 | 271 |  | 102 | 0 | 3473 | 271 | 3744 | 3900 |  |
| 1999 | 3681 | 359 |  | 49 | 5 | 3729 | 364 | 4093 | 3900 |  |
| 2000 | 5402 | 340 |  | 29 | 3 | 5431 | 343 | 5774 | 5400 |  |
| 2001 | 6774 | 762 |  | 39 | 22 | 6813 | 784 | 7597 | 6989 |  |
| 2002 | 6488 | 1090 |  | 29 | 16 | 6517 | 1106 | 7623 | 6740 |  |
| 2003 | 6775 | 1677 |  | 98 | 96 | 6874 | 1772 | 8646 | 6933 |  |
| 2004 | 9745 | 1847 |  | 93 | 235 | 9838 | 2081 | 11919 | 9900 | 5100 |
| 2005 | 14484 | 649 |  | 48 | 76 | 14532 | 724 | 15256 | 15410 | 7590 |
| 2006 | 11984 | 313 |  | 62 | 275 | 12047 | 588 | 12634 | 14520 | 7480 |
| 2007 | 11890 | $256{ }^{3}$ |  | 56 | $306{ }^{3}$ | 11946 | 562 | 12508 | 12730 | 6270 |
| 2008 | 14781 | $1138{ }^{3}$ |  | 33 | $52^{3}$ | 14814 | 1190 | 16004 | 14950 | 8050 |
| 2009 | 17595 | $2152^{3}$ |  | 54 | $55^{3}$ | 17648 | 2208 | 19856 | 18900 | 11100 |
| 2010 | 16578 | 2167 |  | 14 | 34 | 16592 | 2201 | 18794 | 17612 | 11988 |
| 2011 | 11232 | 1322 |  | 15 | 87 | 11247 | 1409 | 12655 | 12540 | 9460 |

[^0]Table 2. Regulatory measures implemented for the $5 Z$ and eastern Georges Bank (EGB) fishery management units by the United States (USA) and Canada, respectively, from 1977, when jurisdiction was extended to 200 miles for coastal states, to the present.

| Year | USA | Canada |
| :---: | :---: | :---: |
| 1977-82 | Mesh size of $51 / 8^{\prime \prime}(140 \mathrm{~mm})$, seasonal spawning closures, quotas and trip limits. |  |
| 1982-85 | All catch controls eliminated, retained closed area and mesh size regulations, implemented minimum landings size ( 43 cm ). | First 5Ze assessment in 1983. |
| Oct. 1984 | Implementation of the 'Hague' line, the boundary between Canada and the USA. |  |
| 1985 | $5^{1 / 2 \prime \prime}$ mesh size, Areas 1 and 2 closed February-May. |  |
| 1989 |  | Combined cod-haddock-pollock quota for 4X5Zc |
| 1990 |  | EGB adopted as management unit. For mobile gear (MG) < 65 ft . - trip limits with a $30 \%$ by-catch of haddock to a maximum of 8 trips of $35,000 \mathrm{lbs}$ per trip between June 1 and Oct. 31 and 130 mm square mesh required. <br> Fixed gear required to use large hooks until June |
| 1991 | Established overfishing definitions for haddock. | MG < 65 ft similar to 1990 but mesh size increased to 145 mm diamond. |
| 1992 |  | Introduction of Individual Transferable Quotas (ITQ) and dockside monitoring. Total allowable catch $(T A C)=5000 \mathrm{mt}$. |
| 1993 | Area 2 closure in effect from Jan 1-June30. | Otter trawl (OT) fishery permitted to operate in Jan. and Feb. <br> Increase in use of square mesh. TAC $=5000$ mt. |
| 1994 | Jan.: Expanded Area 2 closure to include June and increased extent of area. <br> Area 1 closure not in effect. <br> 500 lb trip limit. <br> Catch data obtained from mandatory log books combined with dealer reports (replaces interview system). <br> May: 6" mesh restriction. <br> Dec.: Area 1,2 closed year-round. | Spawning closure extended to Jan. 1 to May 31. <br> Fixed gear vessels must choose between $5 Z$ or 4 X for the period of June to September. Small fish protocol. Increased at sea monitoring. OT > 65 could not begin fishing until July 1 . Predominantly square mesh by end of year. TAC $=3000 \mathrm{mt}$. |
| 1995 |  | All OT vessels using square mesh. Fixed gear vessels with a history since 1990 of 25 t or more for 3 years of cod, haddock, pollock, hake or cusk combined can participate in $5 Z$ fishery. <br> ITQ vessel require at least $2 t$ of cod and $8 t$ of haddock quota to fish Georges. TAC $=2500$ mt . <br> Restrictions on catching of cod and haddock under 43 cm (small fish protocol). |
| 1996 | July: Additional Days-at-Sea restrictions, trip limit raised to 1000 lbs . | Fixed gear history requirement dropped. TAC $=4500 \mathrm{mt}$. |
| 1997 | May: Additional scheduled Days-at-sea restrictions. <br> September: Trip limit raised to $1000 \mathrm{lbs} /$ day, | Vessels over 65 ft operated on enterprise allocations, otter trawlers under 65 ft on individual quotas, fixed gear vessels $45-65 \mathrm{ft}$ |


| Year | USA | Canada |
| :---: | :---: | :---: |
|  | maximum of 10,000 lbs/trip. | on self-administered individual quotas and fixed gear vessels under 45 ft on community quotas administered by local boards. TAC = $3,200 \mathrm{mt}$. |
| 1998 | Sept. 1: Trip limit raised to $3000 \mathrm{lbs} /$ day, maximum of $30,000 \mathrm{lbs} /$ trip. | Fixed gear vessels $45-65 \mathrm{ft}$ operated on individual quotas. TAC $=3,900 \mathrm{mt}$. |
| 1999 | May 1: Trip limit 2,000 lbs/day, max. 20,000 lbs/trip. <br> Square mesh size increased to 6.5" (diamond is $6^{\prime \prime}$ ). <br> June 15: Scallop exemption fishery in Closed Area II. <br> Nov. 5: Trip limit 5,000 Ibs/day, max. 50,000 lbs/trip. | TAC $=3,900 \mathrm{mt} . ;$ mandatory cod separator panel when no observer on board. |
| 2000 | October: Daily trip limit suspended to April 2001but retained max. trip limit of 50,000 lbs/trip. | TAC $=5,400 \mathrm{mt}$. |
| $\begin{aligned} & \hline 2001- \\ & 2002 \\ & \hline \end{aligned}$ | Day and trip limit adjustments. Daily trip limit suspended July 5, 2002. | TAC $=6,989$ and 6,740 mt for 2001 and 2002 respectively. |
| $\begin{aligned} & \hline 2002- \\ & 2003 \\ & \hline \end{aligned}$ | 30,000-50,000 lb/trip limit. Trip limit suspended in Oct. 2003. | TAC $=6,933 \mathrm{mt}$ for 2003. |
| Canada - USA Resource Sharing Agreement on Georges Bank |  |  |
| 2004 | May 1, day and trip limits removed. Quota management introduced. $\mathrm{TAC}^{1}=5,100 \mathrm{mt}$. Oct. 1: unit areas 561 and 562 closed to groundfish vessels. Nov. 19: Special Access Program (SAP) for haddock opened. Dec. 31: Haddock SAP closed. | TAC $=9,900 \mathrm{mt}$. |
| 2005 | $\mathrm{TAC}^{1}=7,590 \mathrm{mt}$. Jan. 14: separator trawl required. Fishery was closed in August when cod by-catch quota reached. | TAC $=15,410 \mathrm{mt}$; exploratory winter fishery Jan. to Feb. 18, 2005. |
| 2006 | $\mathrm{TAC}^{1}=7,480 \mathrm{mt}$; EGB area closed to USA fishery in first half of year when USA cod quota nearly reached. | TAC $=14,520 \mathrm{mt}$; exploratory winter fishery Jan. to Feb. 6, 2006. |
| 2007 | TAC $^{1}=6,270 \mathrm{mt}$. June 20: EGB area closed to USA fishery due to USA cod catch nearing quota. August 9: Minimum haddock size reduced to 18 inches; October 20: EGB area opened to USA fishery. | TAC $=12,730 \mathrm{mt}$; exploratory winter fishery Jan. to Feb. 15, 2007 |
| 2008 | $\mathrm{TAC}^{1}=8,050 \mathrm{mt}$. Minimum size reverts back to 19 in. in August. Prohibitions on yellowtail flounder fishing Jan 24 to April 30. Trawl fishery opening delayed until Aug. 1. Ruhle trawl (type of separator trawl) approved for use beginning Sept 15. Restrictions on cod catches. | TAC $=14,950 \mathrm{mt}$; winter fishery Jan. 1, to Feb. 8, 2008. |
| 2009 | $\mathrm{TAC}^{1}=11,100 \mathrm{mt} .$ <br> May 1: Interim action by NMFS set the minimum size at 18 inches. | TAC $=18,900 \mathrm{mt}$; winter fishery Jan. 1 to Feb. 7, 2009. Industry test fishery/survey in deep water in February to assess spawning condition of haddock in deep water. Test fishery terminated after 2 trips. |


| Year | USA | Canada |
| :--- | :--- | :--- |
| 2010 | TAC <br> May 1, 2010: Sector Management with <br> Annual Cath Entitlements (ACEs) and <br> accountability measures implemented <br> (Amendment 16). Minimum haddock size <br> limit set to 18 inches. All legal size fish must <br> be retained by sector vessels. | TAC $=17,612 \mathrm{mt}$; winter fishery Jan. 1 to <br> Feb. 7, 2010 |
| 2011 | TAC $^{1}=9,460 \mathrm{mt}$ | TAC $=12,540 \mathrm{mt}$; winter fishery Jan. 1 to <br> Feb. 6, 2011 |

[^1]Table 3. Canadian landings (mt) of haddock from eastern Georges Bank during 1969-2011 by gear category and tonnage class for principal gears.

| Year | Otter Trawl |  |  |  |  |  |  | Longline |  |  |  | Scallop Fishery | Other | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Side | $1^{1}$ | Stern |  |  |  | Total ${ }^{2}$ |  |  |  |  |  |  |  |
|  |  |  | 2 | 3 | 4 | 5 |  | $1^{1}$ | 2 | 3 | Total |  |  |  |
| 1969 | 777 |  | 0 | 1 | 225 | 2902 | 3127 |  | 2 | 21 | 23 | 15 | 0 | 3941 |
| 1970 | 575 |  | 2 | 0 | 133 | 1179 | 1314 |  | 6 | 72 | 78 | 2 | 1 | 1970 |
| 1971 | 501 |  | 0 | 0 | 16 | 939 | 955 |  | 18 | 129 | 151 | 3 | 0 | 1610 |
| 1972 | 148 |  | 0 | 0 | 2 | 260 | 263 |  | 23 | 169 | 195 | 1 | 2 | 609 |
| 1973 | 633 |  | 0 | 0 | 60 | 766 | 826 |  | 23 | 80 | 105 | 0 | 1 | 1565 |
| 1974 | 27 |  | 0 | 6 | 8 | 332 | 346 |  | 29 | 59 | 88 | 1 | 0 | 462 |
| 1975 | 222 |  | 0 | 1 | 60 | 963 | 1024 |  | 25 | 81 | 107 | 0 | 0 | 1353 |
| 1976 | 217 |  | 0 | 2 | 59 | 905 | 967 |  | 48 | 108 | 156 | 0 | 15 | 1355 |
| 1977 | 370 |  | 92 | 243 | 18 | 2025 | 2378 |  | 43 | 51 | 94 | 1 | 28 | 2871 |
| 1978 | 2456 |  | 237 | 812 | 351 | 5639 | 7039 |  | 121 | 47 | 169 | 17 | 287 | 9968 |
| 1979 | 1622 |  | 136 | 858 | 627 | 1564 | 3185 |  | 190 | 80 | 271 | 2 | 0 | 5080 |
| 1980 | 1444 |  | 354 | 359 | 950 | 6254 | 7917 |  | 129 | 51 | 587 | 4 | 65 | 10017 |
| 1981 | 478 |  | 448 | 629 | 737 | 2344 | 4159 |  | 331 | 99 | 1019 | 1 | 1 | 5658 |
| 1982 | 115 |  | 189 | 318 | 187 | 3341 | 4045 |  | 497 | 187 | 712 | 0 | 0 | 4872 |
| 1983 | 106 |  | 615 | 431 | 107 | 1130 | 2283 |  | 593 | 195 | 815 | 1 | 3 | 3208 |
| 1984 | 5 |  | 180 | 269 | 21 | 149 | 620 |  | 614 | 192 | 835 | 2 | 1 | 1463 |
| 1985 | 72 |  | 840 | 1401 | 155 | 348 | 2745 |  | 562 | 33 | 626 | 2 | 39 | 3484 |
| 1986 | 51 |  | 829 | 1378 | 95 | 432 | 2734 |  | 475 | 98 | 594 | 4 | 32 | 3415 |
| 1987 | 48 |  | 782 | 1448 | 49 | 1241 | 3521 |  | 854 | 113 | 1046 | 38 | 50 | 4703 |
| $1988{ }^{3}$ | 72 |  | 1091 | 1456 | 186 | 398 | 3183 |  | 428 | 200 | 695 | 16 | 80 | 4046 |
| 1989 | 0 |  | 489 | 573 | 376 | 536 | 1976 |  | 713 | 175 | 977 | 12 | 95 | 3060 |
| 1990 | 0 |  | 928 | 890 | 116 | 471 | 2411 |  | 623 | 173 | 853 | 7 | 69 | 3340 |
| 1991 | 0 |  | 1610 | 1647 | 81 | 689 | 4028 |  | 900 | 271 | 1309 | 8 | 111 | 5456 |
| 1992 | 0 |  | 797 | 1084 | 56 | 645 | 2583 |  | 984 | 245 | 1384 | 4 | 87 | 4058 |
| 1993 | 0 |  | 535 | 1179 | 67 | 699 | 2489 |  | 794 | 156 | 1143 | 2 | 93 | 3727 |
| 1994 | 0 |  | 495 | 911 | 79 | 112 | 1597 |  | 498 | 47 | 714 | 9 | 91 | 2411 |
| 1995 | 0 |  | 523 | 896 | 14 | 214 | 1647 |  | 256 | 75 | 390 | 7 | 21 | 2065 |
| 1996 | 1 |  | 836 | 1405 | 166 | 270 | 2689 |  | 561 | 107 | 947 | 0 | 26 | 3663 |
| 1997 | 0 |  | 680 | 1123 | 91 | 96 | 1991 |  | 501 | 116 | 722 | 0 | 36 | 2749 |
| 1998 | 0 |  | 863 | 1340 | 98 | 71 | 2422 |  | 570 | 252 | 921 | 0 | 28 | 3371 |
| 1999 | 0 |  | 954 | 1471 | 174 | 145 | 2761 |  | 486 | 241 | 887 | 0 | 32 | 3680 |
| 2000 | 0 |  | 1313 | 2269 | 230 | 246 | 4146 |  | 619 | 258 | 1186 | 0 | 70 | 5402 |
| 2001 | 0 |  | 1564 | 2555 | 0 | 757 | 5112 |  | 754 | 302 | 1633 | 0 | 29 | 6774 |
| 2002 | 0 |  | 1217 | 2720 | 0 | 657 | 4954 |  | 794 | 151 | 1521 | 0 | 12 | 6488 |
| 2003 | 0 |  | 1186 | 3246 | 0 | 0 | 4985 |  | 806 | 249 | 1776 | 0 | 14 | 6775 |
| 2004 | 0 |  | 2152 | 4651 | 0 | 67 | 7744 |  | 716 | 223 | 2000 | 0 | 1 | 9745 |
| 2005 | 0 | 1467 | 2929 | 7393 | 326 | 0 | 12115 | 1645 | 646 | 78 | 2368 | 0 | 1 | 14484 |
| 2006 | 0 | 1605 | 1805 | 6076 | 601 | 0 | 10088 | 1321 | 491 | 84 | 1896 | 0 | 1 | 11984 |
| 2007 | 0 | 1782 | 1982 | 6112 | 159 | 0 | 10034 | 1463 | 363 | 28 | 1854 | 0 | 1 | 11890 |
| 2008 | 0 | 2308 | 2413 | 7894 | 0 | 0 | 12615 | 1632 | 532 | 0 | 2164 | 0 | 2 | 14781 |
| 2009 | 0 | 2384 | 3112 | 9884 | 27 | 0 | 15407 | 1600 | 585 | 0 | 2185 | 0 | 3 | 17595 |
| 2010 | 0 | 1872 | 2645 | 8921 | 661 | 0 | 14100 | 1932 | 544 | 0 | 2476 | 0 | 2 | 16578 |
| 2011 | 0 | 1513 | 1606 | 6432 | 113 | 0 | 9664 | 1153 | 413 | 0 | 1566 | 0 | 1 | 11232 |

[^2]Table 4. Monthly landings (mt) of haddock by Canada from eastern Georges Bank during 1969-2011.

| Year | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | Tota |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1969 | 105 | 74 | 6 | 291 | 588 | 691 | 559 | 580 | 551 | 360 | 102 | 34 | 3941 |
| 1970 | 2 | 105 | 0 | 1 | 574 | 345 | 103 | 456 | 242 | 103 | 26 | 12 | 1970 |
| 1971 | 0 | 9 | 1 | 0 | 400 | 132 | 283 | 278 | 97 | 246 | 141 | 21 | 1610 |
| 1972 | 0 | 119 | 2 | 0 | 2 | 111 | 84 | 116 | 98 | 68 | 7 | 2 | 609 |
| 1973 | 4 | 10 | 0 | 0 | 0 | 184 | 198 | 572 | 339 | 232 | 22 | 4 | 1565 |
| 1974 | 19 | 0 | 1 | 0 | 0 | 58 | 63 | 53 | 96 | 61 | 92 | 19 | 462 |
| 1975 | 4 | 14 | 0 | 0 | 0 | 166 | 256 | 482 | 100 | 166 | 118 | 45 | 1353 |
| 1976 | 0 | 7 | 62 | 68 | 60 | 587 | 152 | 190 | 186 | 26 | 9 | 7 | 1355 |
| 1977 | 102 | 177 | 7 | 0 | 23 | 519 | 1059 | 835 | 13 | 59 | 56 | 22 | 2871 |
| 1978 | 104 | 932 | 44 | 22 | 21 | 319 | 405 | 85 | 642 | 5433 | 1962 | 0 | 9968 |
| 1979 | 123 | 898 | 400 | 175 | 69 | 1393 | 885 | 396 | 406 | 261 | 53 | 22 | 5080 |
| 1980 | 38 | 134 | 14 | 29 | 223 | 2956 | 2300 | 965 | 1411 | 1668 | 104 | 176 | 10017 |
| 1981 | 38 | 481 | 568 | 4 | 254 | 1357 | 1241 | 726 | 292 | 82 | 378 | 239 | 5658 |
| 1982 | 129 | 309 | 1 | 11 | 46 | 1060 | 769 | 682 | 585 | 837 | 398 | 44 | 4872 |
| 1983 | 32 | 67 | 29 | 47 | 60 | 1288 | 387 | 483 | 526 | 195 | 88 | 6 | 3208 |
| 1984 | 3 | 5 | 81 | 88 | 73 | 433 | 219 | 254 | 211 | 71 | 25 | 0 | 1463 |
| 1985 | 1 | 11 | 33 | 99 | 26 | 354 | 392 | 1103 | 718 | 594 | 61 | 93 | 3484 |
| 1986 | 11 | 28 | 79 | 99 | 40 | 1339 | 1059 | 369 | 233 | 139 | 12 | 8 | 3415 |
| 1987 | 24 | 26 | 138 | 70 | 12 | 1762 | 1383 | 665 | 405 | 107 | 97 | 14 | 4703 |
| $1988{ }^{1}$ | 39 | 123 | 67 | 79 | 15 | 1816 | 1360 | 315 | 130 | 65 | 13 | 24 | 4046 |
| 1989 | 33 | 94 | 48 | 7 | 20 | 1398 | 356 | 566 | 141 | 272 | 108 | 18 | 3060 |
| 1990 | 35 | 14 | 50 | 0 | 7 | 1178 | 668 | 678 | 469 | 199 | 18 | 22 | 3340 |
| 1991 | 144 | 166 | 49 | 26 | 21 | 1938 | 1004 | 705 | 566 | 576 | 123 | 137 | 5456 |
| 1992 | 118 | 205 | 97 | 152 | 36 | 1381 | 619 | 414 | 398 | 401 | 209 | 28 | 4058 |
| 1993 | 468 | 690 | 96 | 78 | 25 | 723 | 505 | 329 | 202 | 198 | 230 | 183 | 3727 |
| 1994 | 3 | 3 | 1 | 2 | 0 | 398 | 693 | 373 | 375 | 220 | 211 | 133 | 2411 |
| 1995 | 5 | 1 | 1 | 1 | 0 | 762 | 327 | 290 | 281 | 109 | 197 | 93 | 2065 |
| 1996 | 0 | 0 | 0 | 0 | 0 | 1067 | 672 | 706 | 359 | 278 | 191 | 391 | 3663 |
| 1997 | 0 | 0 | 0 | 0 | 0 | 328 | 751 | 772 | 426 | 190 | 116 | 166 | 2749 |
| 1998 | 0 | 0 | 0 | 0 | 0 | 687 | 420 | 580 | 707 | 542 | 164 | 271 | 3371 |
| 1999 | 37 | 0 | 0 | 0 | 0 | 898 | 975 | 562 | 573 | 295 | 269 | 70 | 3681 |
| 2000 | 1 | 0 | 0 | 0 | 0 | 1368 | 1175 | 1026 | 848 | 658 | 175 | 150 | 5402 |
| 2001 | 0 | 0 | 0 | 0 | 0 | 971 | 1335 | 930 | 1267 | 1075 | 647 | 548 | 6774 |
| 2002 | 0 | 0 | 0 | 0 | 0 | 572 | 1703 | 983 | 1364 | 820 | 593 | 452 | 6488 |
| 2003 | 0 | 0 | 0 | 0 | 0 | 840 | 1767 | 1290 | 930 | 952 | 676 | 320 | 6775 |
| 2004 | 0 | 0 | 0 | 0 | 0 | 1547 | 2268 | 2109 | 1753 | 1275 | 556 | 236 | 9745 |
| 2005 | 1025 | 1182 | 0 | 0 | 13 | 1423 | 3004 | 3820 | 2199 | 1198 | 357 | 266 | 14484 |
| 2006 | 1176 | 381 | 0 | 0 | 0 | 1093 | 2433 | 2668 | 2211 | 1149 | 558 | 316 | 11984 |
| 2007 | 1100 | 454 | 0 | 0 | 0 | 1432 | 3034 | 2510 | 1916 | 991 | 231 | 222 | 11890 |
| 2008 | 1867 | 1604 | 0 | 0 |  | 1640 | 2539 | 2446 | 2382 | 1314 | 645 | 343 | 14781 |
| 2009 | 2977 | 947 | 0 | 0 | 0 | 2217 | 1996 | 2889 | 2479 | 2191 | 1239 | 659 | 17595 |
| 2010 | 2391 | 574 | 0 | 0 | 0 | 1861 | 2893 | 3809 | 2257 | 1572 | 692 | 530 | 16578 |
| 2011 | 1954 | 466 | 0 | 0 | 0 | 941 | 2074 | 2554 | 1751 | 931 | 299 | 262 | 11232 |

[^3]Table 5. Prorated discards (kg) and fishing effort (hr) for eastern Georges Bank haddock from the observed trips of the Canadian scallop fishery in Deccember 2010 to January 2012. Note that there were no observed trips in Jan 2012. Effort hours are standardized to freezer trawler hour equivalents.

| Trip ID | Board Date | Land Date | Proration |  |  | Discards (kg) |  | Effort (hrs) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Dredges |  |  |  |  |  |
|  |  |  | Obs. | Total | Prop. | Observed | Prorated |  |
| T2010-23 | 2010-12-02 | 2010-12-12 | 220 | 372 | 0.59 | 2 | 3 | 65 |
| T2010-24 | 2010-12-07 | 2010-12-23 | 544 | 1046 | 0.52 | 42 | 81 | 232 |
| T2011-01 | 2011-01-18 | 2011-02-06 | 507 | 1061 | 0.48 | 80 | 167 | 212 |
| T2011-02 | 2011-01-20 | 2011-02-06 | 651 | 1342 | 0.49 | 154 | 317 | 275 |
| T2011-03 | 2011-02-06 | 2011-02-21 | 480 | 954 | 0.50 | 54 | 107 | 199 |
| T2011-04 | 2011-03-30 | 2011-04-20 | 648 | 1222 | 0.53 | 10 | 19 | 179 |
| T2011-05 | 2011-04-07 | 2011-04-17 | 140 | 280 | 0.50 | 75 | 150 | 42 |
| T2011-06 | 2011-04-17 | 2011-05-02 | 312 | 664 | 0.47 | 57 | 121 | 130 |
| T2011-07 | 2011-05-06 | 2011-05-16 | 246 | 322 | 0.76 | 0 | 0 | 46 |
| T2011-08 | 2011-05-17 | 2011-06-01 | 330 | 716 | 0.46 | 18 | 39 | 152 |
| T2011-09 | 2011-06-12 | 2011-06-23 | 209 | 417 | 0.50 | 7 | 14 | 65 |
| T2011-10 | 2011-06-17 | 2011-07-02 | 442 | 918 | 0.48 | 47 | 98 | 171 |
| T2011-11 | 2011-07-14 | 2011-07-29 | 523 | 1099 | 0.48 | 24 | 50 | 221 |
| T2011-12 | 2011-07-25 | 2011-08-04 | 271 | 425 | 0.64 | 9 | 14 | 88 |
| T2011-13 | 2011-08-12 | 2011-08-23 | 352 | 694 | 0.51 | 18 | 35 | 137 |
| T2011-14 | 2011-08-19 | 2011-09-03 | 592 | 1226 | 0.48 | 66 | 137 | 196 |
| T2011-15 | 2011-09-16 | 2011-09-24 | 193 | 367 | 0.53 | 48 | 91 | 103 |
| T2011-16 | 2011-09-23 | 2011-10-08 | 528 | 1180 | 0.45 | 22 | 49 | 204 |
| T2011-17 | 2011-10-18 | 2011-10-24 | 197 | 389 | 0.51 | 39 | 77 | 76 |
| T2011-18 | 2011-10-21 | 2011-11-05 | 700 | 1350 | 0.52 | 141 | 272 | 189 |
| T2011-19 | 2011-11-20 | 2011-12-05 | 708 | 1320 | 0.54 | 91 | 170 | 201 |
| T2011-20 | 2011-11-22 | 2011-12-07 | 583 | 1128 | 0.52 | 36 | 70 | 233 |
| T2011-21 | 2011-12-05 | 2011-12-20 | 588 | 1188 | 0.49 | 106 | 214 | 217 |
| T2011-22 | 2011-12-07 | 2011-12-22 | 641 | 1277 | 0.50 | 148 | 295 | 235 |

Table 6. Haddock discards from the Canadian scallop fishery on Georges Bank for 2011 calculated using a 3-month moving window to estimate discard rates. The discard rates for Jan and Dec are calculated by including observed trips from Dec 2010 and Jan 2012, respectively. Note that there were no observed trips in Jan 2012. Effort hours are standardized to freezer trawler hour equivalents.

| Year | Month | Monthly Prorated Discards | Monthly Effort (hrs) | Discard Rate (kg/hr) | Effort (hrs) | $\begin{aligned} & \text { Discards } \\ & (\mathrm{mt}) \end{aligned}$ | Cumulative Annual Discards (mt) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2010 | Dec | 84 | 297 |  |  |  |  |
| 2011 | Jan | 485 | 487 | 0.688 | 572 | 0 | 0 |
|  | Feb | 107 | 199 | 0.790 | 1781 | 1 | 2 |
|  | Mar ${ }^{1}$ | 107 | 199 | 0.674 | 827 | 1 | 2 |
|  | Apr | 290 | 351 | 0.584 | 1204 | 1 | 3 |
|  | May | 39 | 198 | 0.562 | 2671 | 2 | 5 |
|  | Jun | 112 | 236 | 0.290 | 3351 | 1 | 6 |
|  | Jul | 65 | 309 | 0.397 | 3615 | 1 | 7 |
|  | Aug | 172 | 333 | 0.398 | 4027 | 2 | 9 |
|  | Sep | 140 | 307 | 0.732 | 3022 | 2 | 11 |
|  | Oct | 349 | 265 | 0.725 | 2034 | 1 | 12 |
|  | Nov | 239 | 434 | 0.953 | 2010 | 2 | 14 |
|  | Dec | 509 | 452 | 0.845 | 669 | 1 | 15 |
| 2012 | Jan ${ }^{2}$ |  |  |  |  |  |  |

Table 7. Monthly landings (mt) of haddock by the United States from eastern Georges Bank during 19692011. An allocation algorithm was applied to landings from 1994 to 2010 to determine area fished (Wigley et al. 2008a).

| Year | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1969 | 525 | 559 | 976 | 1826 | 670 | 810 | 204 | 219 | 249 | 226 | 203 | 157 | 6624 |
| 1970 | 169 | 219 | 242 | 375 | 608 | 374 | 324 | 333 | 179 | 219 | 61 | 50 | 3154 |
| 1971 | 155 | 361 | 436 | 483 | 668 | 503 | 338 | 152 | 147 | 165 | 58 | 68 | 3533 |
| 1972 | 150 | 196 | 91 | 90 | 239 | 261 | 97 | 164 | 84 | 63 | 52 | 64 | 1551 |
| 1973 | 90 | 111 | 77 | 85 | 139 | 365 | 217 | 196 | 37 | 3 | 22 | 55 | 1397 |
| 1974 | 135 | 70 | 47 | 70 | 122 | 160 | 165 | 43 | 27 | 6 | 19 | 91 | 955 |
| 1975 | 152 | 123 | 32 | 116 | 388 | 489 | 138 | 95 | 57 | 24 | 52 | 39 | 1705 |
| 1976 | 116 | 147 | 84 | 106 | 323 | 162 | 7 | 6 | 5 | 2 | 3 | 13 | 974 |
| 1977 | 75 | 211 | 121 | 154 | 374 | 372 | 434 | 191 | 73 | 52 | 146 | 226 | 2428 |
| 1978 | 336 | 437 | 263 | 584 | 752 | 750 | 467 | 221 | 245 | 426 | 194 | 49 | 4725 |
| 1979 | 274 | 329 | 352 | 548 | 766 | 816 | 588 | 659 | 224 | 202 | 282 | 172 | 5213 |
| 1980 | 632 | 1063 | 742 | 784 | 711 | 461 | 324 | 254 | 221 | 91 | 110 | 222 | 5615 |
| 1981 | 551 | 1852 | 634 | 628 | 882 | 1327 | 1233 | 873 | 321 | 284 | 242 | 255 | 9081 |
| 1982 | 425 | 755 | 502 | 348 | 719 | 1805 | 757 | 145 | 201 | 216 | 276 | 138 | 6286 |
| 1983 | 492 | 931 | 272 | 181 | 310 | 1145 | 231 | 178 | 187 | 110 | 227 | 190 | 4453 |
| 1984 | 540 | 961 | 366 | 281 | 627 | 1047 | 370 | 303 | 250 | 196 | 92 | 89 | 5121 |
| 1985 | 165 | 190 | 254 | 300 | 352 | 206 | 60 | 47 | 1 | 24 | 41 | 43 | 1683 |
| 1986 | 184 | 396 | 334 | 479 | 496 | 221 | 31 | 6 | 12 | 6 | 6 | 29 | 2201 |
| 1987 | 225 | 52 | 43 | 307 | 233 | 342 | 67 | 30 | 24 | 4 | 23 | 68 | 1418 |
| 1988 | 196 | 152 | 207 | 245 | 366 | 316 | 30 | 19 | 6 | 1 | 45 | 110 | 1694 |
| 1989 | 114 | 56 | 47 | 164 | 161 | 145 | 15 | 8 | 1 | 5 | 25 | 46 | 785 |
| 1990 | 148 | 21 | 155 | 274 | 214 | 306 | 23 | 3 | 5 | 5 | 16 | 19 | 1189 |
| 1991 | 105 | 28 | 76 | 133 | 89 | 434 | 1 | 20 | 6 | 0 | 19 | 19 | 931 |
| 1992 | 253 | 81 | 51 | 149 | 353 | 669 | 20 | 20 | 17 | 3 | 2 | 12 | 1629 |
| 1993 | 15 | 12 | 16 | 55 | 88 | 209 | 6 | 3 | 3 | 7 | 2 | 8 | 424 |
| 1994 | 0 | 1 | 1 | 3 | 1 | 1 | 12 | 1 | 0 | 1 | 1 | 2 | 24 |
| 1995 | 1 | 1 | 3 | 4 | 2 | 3 | 1 | 0 | 0 | 0 | 1 | 0 | 15 |
| 1996 | 2 | 1 | 2 | 3 | 7 | 3 | 3 | 2 | 1 | 1 | 1 | 1 | 26 |
| 1997 | 5 | 4 | 3 | 4 | 11 | 6 | 2 | 1 | 9 | 4 | 2 | 6 | 55 |
| 1998 | 5 | 19 | 23 | 29 | 31 | 50 | 21 | 17 | 39 | 22 | 1 | 15 | 271 |
| 1999 | 35 | 15 | 30 | 52 | 71 | 62 | 23 | 18 | 28 | 0 | 0 | 22 | 359 |
| 2000 | 6 | 13 | 89 | 48 | 42 | 22 | 21 | 15 | 24 | 2 | 17 | 42 | 340 |
| 2001 | 42 | 9 | 228 | 146 | 81 | 97 | 51 | 12 | 8 | 38 | 21 | 31 | 762 |
| 2002 | 92 | 105 | 91 | 150 | 272 | 175 | 66 | 46 | 17 | 42 | 11 | 24 | 1090 |
| 2003 | 94 | 24 | 86 | 506 | 310 | 319 | 57 | 17 | 4 | 51 | 40 | 169 | 1677 |
| 2004 | 97 | 21 | 174 | 725 | 101 | 349 | 256 | 26 | 57 | 5 | 5 | 31 | 1847 |
| $2005{ }^{1}$ | 2 | 0 | 45 | 34 | 210 | 158 | 103 | 93 | 0 | 0 | 1 | 2 | 649 |
| $2006{ }^{1}$ | 1 | 0 | 0 | 23 | 192 | 87 | 0 | 7 | 0 | 0 | 1 | 3 | 313 |
| $2007{ }^{1}$ | 1 | 0 | 5 | 71 | 43 | 60 | 3 | 0 | 0 | 25 | 47 | 0 | 256 |
| $2008{ }^{1}$ | 0 | 0 | 6 | 26 | 31 | 80 | 47 | 92 | 65 | 153 | 98 | 539 | 1138 |
| 2009 | 13 | 4 | 41 | 677 | 30 | 109 | 38 | 458 | 140 | 31 | 195 | 418 | 2152 |
| 2010 | 130 | 13 | 281 | 503 | 100 | 76 | 16 | 367 | 193 | 118 | 224 | 147 | 2167 |
| 2011 | 75 | 70 | 110 | 341 | 165 | 150 | 76 | 123 | 40 | 34 | 43 | 93 | 1322 |

${ }^{1}$ Restrictions placed on USA fishery in eastern Georges Bank due to bycatch limitations.

Table 8. United States landings (mt) of haddock from eastern Georges Bank during 1969-2011 by gear category and tonnage class. An allocation algorithm was applied to landings from 1994 to 2010 to determine area fished (Wigley et al. 2008a).

| Year | $\begin{gathered} \text { Otter Trawl } \\ 3 \end{gathered}$ | 4 | Other | Total |
| :---: | :---: | :---: | :---: | :---: |
| 1969 | 3013 | 3610 | 0 | 6624 |
| 1970 | 1602 | 1551 | 0 | 3154 |
| 1971 | 1760 | 1768 | 0 | 3533 |
| 1972 | 861 | 690 | 0 | 1551 |
| 1973 | 638 | 759 | 0 | 1397 |
| 1974 | 443 | 512 | 0 | 955 |
| 1975 | 1025 | 679 | 0 | 1705 |
| 1976 | 671 | 303 | 0 | 974 |
| 1977 | 1724 | 703 | 0 | 2428 |
| 1978 | 3140 | 1582 | 3 | 4725 |
| 1979 | 3285 | 1927 | 1 | 5213 |
| 1980 | 2654 | 2955 | 4 | 5615 |
| 1981 | 3601 | 5433 | 15 | 9081 |
| 1982 | 2589 | 3660 | 37 | 6286 |
| 1983 | 1162 | 3276 | 15 | 4453 |
| 1984 | 1855 | 3261 | 5 | 5121 |
| 1985 | 857 | 823 | 4 | 1683 |
| 1986 | 993 | 1207 | 1 | 2201 |
| 1987 | 766 | 651 | 1 | 1418 |
| 1988 | 920 | 768 | 6 | 1694 |
| 1989 | 359 | 419 | 6 | 785 |
| 1990 | 488 | 697 | 4 | 1189 |
| 1991 | 404 | 527 | 0 | 931 |
| 1992 | 650 | 979 | 0 | 1629 |
| 1993 | 153 | 272 | 0 | 424 |
| 1994 | 13 | 11 | 0 | 24 |
| 1995 | 4 | 11 | 0 | 15 |
| 1996 | 12 | 14 | 0 | 26 |
| 1997 | 39 | 15 | 1 | 55 |
| 1998 | 123 | 147 | 1 | 271 |
| 1999 | 126 | 229 | 4 | 359 |
| 2000 | 107 | 233 | 0 | 340 |
| 2001 | 248 | 513 | 1 | 762 |
| 2002 | 462 | 626 | 2 | 1090 |
| 2003 | 798 | 879 | 0 | 1677 |
| 2004 | 676 | 1169 | 2 | 1847 |
| 2005 | 255 | 359 | 35 | 649 |
| 2006 | 159 | 110 | 44 | 313 |
| 2007 | 139 | 101 | 16 | 256 |
| 2008 | 284 | 745 | 108 | 1138 |
| 2009 | 632 | 1395 | 125 | 2152 |
| 2010 | 472 | 1532 | 162 | 2167 |
| 2011 | 314 | 954 | 53 | 1322 |

Table 9. United States landings and discards of haddock in 2011 by quarter and market category from eastern Georges Bank and National Marine Fisheries Service sampling intensity for lengths and ages. Note that summaries by market category are not possible for discards as the fish are discarded at sea and are not given a market category.

|  | Large | Scrod | Unclassified | Total |  |
| :--- | :---: | :---: | :---: | ---: | :---: |
| Market Category | Landings (mt) |  |  |  |  |
|  |  |  |  |  |  |
| Quarter 1 | 54 | 201 | 0 | 255 |  |
| Quarter 2 | 47 | 608 | 1 | 657 |  |
| Quarter 3 | 36 | 202 | 1 | 239 |  |
| Quarter 4 | 36 | 135 | 0 | 171 |  |
| Total | 172 | 1147 | 3 | 1322 |  |

Number measured

| Quarter 1 | 635 | 324 | 0 | 959 |
| :--- | ---: | ---: | ---: | ---: |
| Quarter 2 | 506 | 468 | 0 | 974 |
| Quarter 3 | 0 | 51 | 0 | 51 |
| Quarter 4 | 274 | 154 | 0 | 428 |
| Total | 1415 | 997 | 0 | 2412 |

Number aged

| Quarter 1 | 300 | 153 | 0 | 453 |
| :--- | ---: | ---: | ---: | ---: |
| Quarter 2 | 276 | 200 | 0 | 476 |
| Quarter 3 | 0 | 25 | 0 | 25 |
| Quarter 4 | 150 | 75 | 0 | 225 |
| Total | 726 | 453 | 0 | 1179 |

## Discards (mt)

| Quarter 1 | N/A | N/A | N/A |  |
| :--- | :--- | :--- | :--- | ---: |
| Quarter 2 | N/A | N/A | N/A | 16 |
| Quarter 3 | N/A | N/A | N/A |  |
| Quarter 4 | N/A | N/A | N/A | 71 |
| Total | N/A | N/A | N/A | 87 |

Table 10. Inter- and intra-reader testing for Georges Bank haddock ageing. (SJS=S. Sutherland (National Marine Fisheries Service, (NMFS)) and DK=D. Knox (Canadian Department of Fisheries and Oceans, DFO), CV=coefficient of variation).

| Sample Source | Test Type | Date <br> Completed | Age <br> Reader | Sample <br> Size | CV <br> (\%) | Agreement <br> (\%) | Bowker's <br> test |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

DFO/NMFS Exchange:

| 2011 US Commercial (Q1) | Exchange | Winter 2012 | SJS vs DK | 49 | 1.68 | 89.8 | $\mathrm{n} / \mathrm{s}$ |
| :--- | :--- | :--- | :--- | :---: | :--- | :--- | :--- |
| 2011 Can. Commercial $(\mathrm{Q} 2,3,4) \&$ | Exchange |  | SJS vs DK | 101 | 1.84 | 88.1 | $\mathrm{n} / \mathrm{s}$ |

NMFS testing:

| 2011 NMFS Autumn Survey | Precision | April 2012 | SJS | 100 | 1.24 | 95.0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2011 US Commercial (Q3-4) | Precision | April 2012 | SJS | 105 | 1.04 | 92.4 |
| 2011 US Commercial (Q2) | Precision | March 2012 | SJS | 93 | 0.62 | 91.4 |
| 2011 Commercial Samples (Q1) | Precision | Dec 2011 | SJS | 101 | 0.72 | 92.1 |
| 2011 NMFS Spring Survey | Precision | August 2011 | SJS | 105 | 0.27 | 99.0 |
| Haddock Reference Collection | Accuracy | August 2011 | SJS | 57 | 1.35 | 94.7 |

DFO testing:

| 2012 DFO survey | Precision | May 2012 | DK | 138 | 0.49 | 96.4 |
| :--- | :--- | :--- | :--- | :---: | :--- | :--- |
| 2011 Canadian Commercial (Q4) | Precision | Feb 2012 | DK | 93 | 1.36 | 92.5 |
| 2011 Canadian Commercial (Q3) | Precision | 2011 | DK | 119 | 0.79 | 95.0 |
| 2011 Canadian Commercial (Q2) | Precision | 2011 | DK | 108 | 1.30 | 89.8 |
| 2011 Canadian Commercial (Q1) | Precision | 2011 | DK | 116 | 0.31 | 98.3 |
| DFO combined results: |  |  |  |  |  |  |
| 2011 Canadian Commercial (Q1-3) | Precision | 2011 | DK | 343 | 0.79 | 94.5 |

Table 11. Haddock age and length samples for landings from the Canadian groundfish fishery and for discards from the scallop dredge fishery in 2011 from eastern Georges Bank. (OTB=Otter Trawl Bottom, LL=Long Line, GN=Gill Net, DR=Scallop Dredge)

| Qtr. | Gear | Month | Landings (kg) | Length Frequency Samples |  |  |  | Ages ${ }^{4}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | At Sea |  | Port |  |  |
|  |  |  |  | Trips | Measured | Samples | Measured |  |
| 1 | OTB | Jan | 1,953,860 | 17 | 15,224 | 6 | 1,475 | DFO Survey $=584$ |
|  |  | Feb | 465,505 | 3 | 2,035 | 3 | 705 | Port $=144$ <br> At Sea $=5$ |
|  | DR ${ }^{1}$ |  | 2,359 | 3 | 212 |  |  | Total $=733^{5}$ |
| 2 | OTB | June | 916,302 | 12 | 13,939 | 12 | 2,548 | $\begin{aligned} & \text { Port }=226 \\ & \text { At Sea }=90 \\ & \text { Total }=319^{6} \end{aligned}$ |
|  | LL | June | 24,906 | 1 | 1,701 | 2 | 483 |  |
|  | GN ${ }^{2}$ | June | 34 |  |  |  |  |  |
|  | DR ${ }^{1}$ |  | 3,175 | 6 | 132 |  |  |  |
| 3 | OTB | July | 1,794,857 | 20 | 23,536 | 7 | 1,666 |  |
|  |  | Aug | 1,884,131 | 15 | 19,346 | 3 | 715 |  |
|  |  | Sept | 1,390,623 | 14 | 16,185 | 9 | 1,959 |  |
|  | LL | July | 278,573 | 7 | 12,558 | 3 | 747 |  |
|  |  | Aug | 669,056 | 12 | 18,094 | 7 | 1,687 | Port $=369$ |
|  |  | Sept | 360,311 | 7 | 10,572 | 1 | 270 | At Sea $=21$ |
|  | GN ${ }^{2}$ | July | 574 |  |  |  |  | Total $=390^{7}$ |
|  |  | Aug | 338 |  |  |  |  |  |
|  |  | Sept | 202 |  |  |  |  |  |
|  | $\mathrm{HL}^{3}$ | Aug | 3 |  |  |  |  |  |
|  | $\mathrm{DR}^{1}$ |  | 5,249 | 5 | 185 |  |  |  |
| 4 | OTB | Oct | 735,975 | 8 | 9,245 | 5 | 1,172 |  |
|  |  | Nov | 260,685 | 10 | 11,417 | 2 | 452 |  |
|  |  | Dec | 262,293 | 4 | 3,881 | 3 | 725 | Port $=271$ <br> At Sea $=5$ <br> Total $=276^{8}$ |
|  | LL | Oct | 195,063 | 5 | 6,009 | 4 | 940 |  |
|  |  | Nov | 38,525 | 2 | 1,473 | 1 | 230 |  |
|  | GN ${ }^{2}$ | Oct | 105 |  |  |  |  |  |
|  | DR ${ }^{1}$ |  | 3,955 | 7 | 273 |  |  |  |
| Totals |  |  | 11,246,658 | 158 | 166,017 | 68 | 15,774 | 1,571 |

${ }^{1}$ Scallop fishery samples were combined by quarter.
${ }^{2}$ Gillnet landings included at the quarter level.
${ }^{3}$ Handline landings added to August LL landings.
${ }^{4}$ When otoliths were not available for a length grouping, ages were estimated.
${ }^{5}$ Ages for 1 length grouping were estimated and are not included in total.
${ }^{6}$ Ages for 5 length groupings were estimated and are not included in total.
${ }^{7}$ Ages for 16 length groupings were estimated and are not included in total.
${ }^{8}$ Ages for 6 length groupings were estimated and are not included in total.

Table 12. Components of the 2011 catch at age in numbers of haddock from eastern Georges Bank by quarter or half year.

| Age Group |  |  |  |  |  |  |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | $9+$ | Total |  |
| Canadian Landings |  |  |  |  |  |  |  |  |  |  |  |  |
| 2011 Q1 | 0 | 0 | 436 | 11499 | 82696 | 58105 | 72858 | 23369 | 1244276 | 18927 | 1512165 |  |
| 2011 Q2 | 0 | 14 | 2195 | 17784 | 76546 | 40896 | 82616 | 3162 | 401746 | 16360 | 641319 |  |
| 2011 Q3 | 0 | 378 | 37778 | 60338 | 218535 | 51338 | 347944 | 42351 | 3248346 | 16036 | 4023045 |  |
| 2011 Q4 | 0 | 4348 | 40481 | 74348 | 104610 | 51064 | 68623 | 22533 | 652337 | 2144 | 1020487 |  |
| Year total | 0 | 4741 | 80889 | 163968 | 482387 | 201403 | 572041 | 91416 | 5546704 | 53467 | 7197016 |  |
| United States Landings |  |  |  |  |  |  |  |  |  |  |  |  |
| 2011 H1 | 0 | 0 | 0 | 1779 | 14782 | 17286 | 60507 | 12036 | 484616 | 17560 | 608567 |  |
| 2011 H2 | 0 | 0 | 1669 | 7152 | 11552 | 7154 | 40625 | 3117 | 185958 | 3944 | 261170 |  |
| Year total | 0 | 0 | 1669 | 8931 | 26334 | 24440 | 101132 | 15153 | 670574 | 21504 | 869737 |  |
| Canadian Discards |  |  |  |  |  |  |  |  |  |  |  |  |
| 2011 Q1 | 0 | 19 | 62 | 74 | 180 | 86 | 130 | 33 | 1122 | 16 | 1722 |  |
| 2011 Q2 | 0 | 44 | 349 | 591 | 451 | 184 | 272 | 2 | 988 | 26 | 2908 |  |
| 2011 Q3 | 355 | 4846 | 818 | 279 | 212 | 64 | 265 | 17 | 1747 | 6 | 8609 |  |
| 2011 Q4 | 42 | 2424 | 381 | 260 | 300 | 108 | 173 | 47 | 1246 | 17 | 4997 |  |
| Year total | 397 | 7333 | 1610 | 1204 | 1144 | 441 | 840 | 99 | 5103 | 65 | 18236 |  |
| United States Discards |  |  |  |  |  |  |  |  |  |  |  |  |
| 2011 H1 | 0 | 3547 | 2294 | 1717 | 696 | 630 | 1005 | 330 | 8292 | 291 | 18802 |  |
| 2011 H2 | 442 | 227121 | 20288 | 5080 | 3950 | 900 | 495 | 538 | 2158 | 18 | 260989 |  |
| Year total | 442 | 230668 | 22582 | 6796 | 4646 | 1530 | 1501 | 867 | 10450 | 308 | 279790 |  |

Total Catch
$2011 \quad 839242742106750180900514511227814 \quad 6755131075356232831 \quad 753448364780$

[^4]Table 13. Total annual commercial catch at age numbers (000's) of haddock from eastern Georges Bank during 1969-2011. Estimates of discards are included.

| Year | Age Group |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9+ | 0+ |
| 1969 | 6 | 0 | 18 | 1451 | 262 | 334 | 2909 | 831 | 91 | 283 | 6184 |
| 1970 | 0 | 66 | 84 | 7 | 351 | 151 | 130 | 1153 | 372 | 193 | 2508 |
| 1971 | 43 | 0 | 1201 | 251 | 31 | 252 | 159 | 161 | 774 | 412 | 3284 |
| 1972 | 118 | 346 | 1 | 390 | 72 | 21 | 94 | 39 | 16 | 451 | 1547 |
| 1973 | 7 | 1119 | 1758 | 6 | 364 | 38 | 10 | 39 | 8 | 169 | 3517 |
| 1974 | 9 | 37 | 2257 | 276 | 0 | 32 | 3 | 0 | 29 | 63 | 2706 |
| 1975 | 553 | 18 | 279 | 1504 | 216 | 5 | 36 | 2 | 2 | 31 | 2645 |
| 1976 | 1 | 402 | 157 | 173 | 834 | 135 | 0 | 19 | 0 | 18 | 1739 |
| 1977 | 0 | 1 | 8028 | 66 | 182 | 307 | 164 | 0 | 15 | 15 | 8778 |
| 1978 | 110 | 6 | 291 | 9956 | 164 | 173 | 306 | 80 | 10 | 9 | 11105 |
| 1979 | 12 | 212 | 17 | 208 | 4307 | 364 | 201 | 217 | 43 | 14 | 5597 |
| 1980 | 31 | 32 | 17701 | 343 | 302 | 2425 | 193 | 130 | 52 | 12 | 21220 |
| 1981 | 6 | 55 | 693 | 6773 | 400 | 497 | 1243 | 119 | 33 | 7 | 9826 |
| 1982 | 1 | 2 | 731 | 1057 | 2848 | 205 | 379 | 730 | 62 | 65 | 6080 |
| 1983 | 75 | 11 | 149 | 663 | 554 | 1653 | 208 | 104 | 409 | 35 | 3860 |
| 1984 | 1 | 72 | 100 | 259 | 350 | 270 | 1131 | 186 | 166 | 318 | 2854 |
| 1985 | 353 | 9 | 2147 | 386 | 182 | 199 | 128 | 381 | 53 | 117 | 3954 |
| 1986 | 0 | 89 | 39 | 2586 | 175 | 143 | 124 | 119 | 174 | 42 | 3492 |
| 1987 | 19 | 0 | 2081 | 131 | 1536 | 100 | 58 | 83 | 70 | 111 | 4190 |
| 1988 | 1 | 53 | 53 | 2199 | 124 | 894 | 111 | 39 | 46 | 100 | 3619 |
| 1989 | 8 | 2 | 1274 | 86 | 776 | 143 | 347 | 34 | 23 | 47 | 2740 |
| 1990 | 18 | 31 | 8 | 1346 | 133 | 770 | 73 | 168 | 43 | 43 | 2633 |
| 1991 | 35 | 22 | 466 | 91 | 2076 | 89 | 391 | 72 | 146 | 61 | 3450 |
| 1992 | 151 | 49 | 249 | 324 | 129 | 1466 | 90 | 320 | 26 | 91 | 2895 |
| 1993 | 4 | 80 | 283 | 357 | 291 | 91 | 667 | 41 | 157 | 76 | 2049 |
| 1994 | 13 | 36 | 423 | 870 | 186 | 73 | 101 | 190 | 89 | 48 | 2028 |
| 1995 | 4 | 8 | 79 | 534 | 414 | 53 | 25 | 3 | 52 | 16 | 1188 |
| 1996 | 6 | 4 | 32 | 489 | 864 | 419 | 60 | 18 | 3 | 72 | 1967 |
| 1997 | 1 | 29 | 94 | 73 | 535 | 484 | 195 | 13 | 8 | 34 | 1466 |
| 1998 | 19 | 18 | 195 | 292 | 260 | 541 | 448 | 114 | 12 | 35 | 1932 |
| 1999 | 2 | 27 | 44 | 752 | 319 | 249 | 347 | 256 | 99 | 25 | 2119 |
| 2000 | 1 | 6 | 320 | 449 | 1268 | 264 | 213 | 217 | 186 | 67 | 2991 |
| 2001 | 0 | 22 | 65 | 1733 | 533 | 847 | 263 | 204 | 232 | 204 | 4105 |
| 2002 | 0 | 1 | 333 | 218 | 1891 | 379 | 671 | 115 | 110 | 289 | 4008 |
| 2003 | 486 | 7 | 10 | 1831 | 288 | 1487 | 426 | 479 | 110 | 234 | 5358 |
| 2004 | 4 | 332 | 26 | 75 | 3646 | 605 | 1498 | 519 | 421 | 263 | 7388 |
| 2005 | 0 | 14 | 241 | 29 | 224 | 6890 | 526 | 823 | 128 | 157 | 9033 |
| 2006 | 1 | 20 | 16 | 2519 | 44 | 289 | 4544 | 234 | 551 | 154 | 8372 |
| 2007 | 0 | 2 | 39 | 181 | 7344 | 148 | 168 | 1431 | 136 | 187 | 9635 |
| 2008 | 0 | 4 | 30 | 273 | 268 | 9721 | 102 | 85 | 708 | 95 | 11288 |
| 2009 | 3 | 17 | 125 | 192 | 741 | 261 | 11223 | 73 | 58 | 379 | 13075 |
| 2010 | 15 | 31 | 56 | 391 | 314 | 844 | 382 | 9849 | 50 | 210 | 12141 |
| 2011 | 1 | 243 | 107 | 181 | 515 | 228 | 676 | 108 | 6233 | 75 | 8365 |

Table 14. Average weight at age (kg) of haddock from the combined Canadian and USA commercial groundfish fishery landings on eastern Georges Bank during 1969-2011. From 1969 to 1973 only USA fishery sampling for lengths and ages was available. Between 1974 and 1984 a mix of USA and Canadian samples were used. No USA fishery weights were available for 1997, 1998. For age 1 missing weights (bold) an average of 0.600 kg was used. Missing weights for older haddock were extrapolated within year class.

|  | Age Group |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9+ |
| 1969 | 0.600 | 0.763 | 1.282 | 1.531 | 1.649 | 1.836 | 2.298 | 2.879 | 3.354 |
| 1970 | 0.721 | 1.067 | 0.812 | 1.653 | 1.886 | 2.124 | 2.199 | 2.841 | 3.150 |
| 1971 | 0.600 | 0.928 | 1.059 | 1.272 | 2.011 | 2.255 | 2.262 | 2.613 | 3.047 |
| 1972 | 0.759 | 0.983 | 1.562 | 1.750 | 2.147 | 2.505 | 2.411 | 2.514 | 2.989 |
| 1973 | 0.683 | 1.002 | 1.367 | 1.804 | 2.202 | 1.631 | 2.885 | 3.295 | 3.192 |
| 1974 | 0.600 | 1.052 | 1.491 | 1.683 | 2.017 | 3.760 | 2.583 | 3.145 | 3.735 |
| 1975 | 0.600 | 0.877 | 1.557 | 2.085 | 1.999 | 2.429 | 4.107 | 3.534 | 3.429 |
| 1976 | 0.610 | 0.984 | 1.292 | 1.853 | 2.417 | 2.247 | 2.774 | 4.484 | 3.807 |
| 1977 | 0.600 | 0.970 | 1.442 | 1.810 | 2.336 | 2.807 | 2.494 | 3.094 | 4.150 |
| 1978 | 0.619 | 1.158 | 1.432 | 2.067 | 2.602 | 2.926 | 2.971 | 2.741 | 4.334 |
| 1979 | 0.600 | 0.966 | 1.288 | 1.823 | 2.214 | 2.791 | 3.214 | 3.206 | 4.041 |
| 1980 | 0.405 | 0.889 | 1.035 | 1.703 | 2.094 | 2.606 | 3.535 | 3.584 | 3.109 |
| 1981 | 0.600 | 0.888 | 1.270 | 1.650 | 2.310 | 2.627 | 3.545 | 4.086 | 4.455 |
| 1982 | 0.600 | 0.964 | 1.370 | 1.787 | 2.332 | 2.550 | 2.957 | 3.528 | 3.426 |
| 1983 | 0.600 | 1.028 | 1.327 | 1.755 | 2.132 | 2.475 | 2.895 | 3.125 | 4.010 |
| 1984 | 0.600 | 0.872 | 1.338 | 1.798 | 2.151 | 2.577 | 2.842 | 3.119 | 3.411 |
| 1985 | 0.600 | 0.950 | 1.230 | 1.915 | 2.227 | 2.702 | 2.872 | 3.180 | 3.696 |
| 1986 | 0.452 | 0.981 | 1.352 | 1.866 | 2.367 | 2.712 | 2.969 | 3.570 | 3.908 |
| 1987 | 0.600 | 0.833 | 1.431 | 1.984 | 2.148 | 2.594 | 2.953 | 3.646 | 3.880 |
| 1988 | 0.421 | 0.974 | 1.305 | 1.708 | 2.042 | 2.350 | 3.011 | 3.305 | 3.693 |
| 1989 | 0.600 | 0.868 | 1.450 | 1.777 | 2.183 | 2.522 | 3.012 | 3.411 | 3.751 |
| 1990 | 0.639 | 0.999 | 1.419 | 1.787 | 2.141 | 2.509 | 2.807 | 3.002 | 3.668 |
| 1991 | 0.581 | 1.197 | 1.241 | 1.802 | 2.086 | 2.597 | 2.913 | 3.010 | 3.362 |
| 1992 | 0.538 | 1.163 | 1.622 | 1.654 | 2.171 | 2.491 | 2.988 | 3.388 | 3.524 |
| 1993 | 0.659 | 1.160 | 1.724 | 2.181 | 2.047 | 2.623 | 2.386 | 3.112 | 3.486 |
| 1994 | 0.405 | 1.141 | 1.669 | 2.244 | 2.662 | 2.454 | 2.837 | 3.253 | 3.449 |
| 1995 | 0.797 | 1.055 | 1.511 | 2.032 | 2.549 | 2.762 | 2.978 | 3.012 | 3.535 |
| 1996 | 0.576 | 1.026 | 1.441 | 1.796 | 2.296 | 2.490 | 3.331 | 2.220 | 3.620 |
| 1997 | 0.685 | 1.216 | 1.336 | 1.747 | 2.121 | 2.476 | 3.034 | 3.367 | 3.927 |
| 1998 | 0.568 | 1.131 | 1.573 | 1.697 | 1.983 | 2.312 | 2.864 | 3.395 | 3.657 |
| 1999 | 0.678 | 1.094 | 1.568 | 1.907 | 1.893 | 2.216 | 2.577 | 2.816 | 3.743 |
| 2000 | 0.664 | 1.104 | 1.470 | 1.917 | 2.242 | 2.132 | 2.518 | 2.829 | 3.170 |
| 2001 | 0.394 | 1.102 | 1.461 | 1.742 | 2.100 | 2.364 | 2.187 | 2.554 | 3.114 |
| 2002 | 0.405 | 1.010 | 1.400 | 1.739 | 1.905 | 2.352 | 2.742 | 2.550 | 2.895 |
| 2003 | 0.475 | 0.758 | 1.377 | 1.577 | 1.845 | 1.913 | 2.389 | 2.859 | 2.909 |
| 2004 | 0.482 | 0.589 | 1.100 | 1.502 | 1.610 | 1.872 | 1.993 | 2.307 | 2.558 |
| 2005 | 0.056 | 0.697 | 0.988 | 1.429 | 1.678 | 1.842 | 2.005 | 2.055 | 2.419 |
| 2006 | 0.335 | 0.514 | 0.977 | 0.977 | 1.598 | 1.776 | 1.861 | 2.021 | 2.216 |
| 2007 | 0.464 | 0.584 | 0.990 | 1.187 | 1.385 | 1.658 | 1.833 | 1.671 | 2.122 |
| 2008 | 0.458 | 0.791 | 1.003 | 1.230 | 1.390 | 1.610 | 1.572 | 1.912 | 2.434 |
| 2009 | 0.551 | 0.864 | 0.987 | 1.255 | 1.422 | 1.531 | 1.740 | 2.245 | 2.248 |
| 2010 | 0.436 | 0.739 | 1.063 | 1.231 | 1.338 | 1.503 | 1.594 | 1.728 | 2.220 |
| 2011 | 0.346 | 1.027 | 1.024 | 1.217 | 1.319 | 1.360 | 1.556 | 1.630 | 2.125 |
| Low | $0.335^{2}$ | 0.514 | 0.812 | 0.977 | 1.319 | 1.360 | 1.556 | 1.630 | 2.122 |
| High | 0.797 | 1.216 | 1.724 | 2.244 | 2.662 | 3.760 | 4.107 | 4.086 | 4.455 |
| Median | $0.551{ }^{2}$ | 0.978 | 1.352 | 1.753 | 2.100 | 2.465 | 2.837 | 3.011 | 3.429 |
| Average | $0.545^{2}$ | 0.952 | 1.317 | 1.701 | 2.029 | 2.324 | 2.644 | 2.889 | 3.325 |
| 2009-11 Avg | 0.444 | 0.877 | 1.025 | 1.235 | 1.359 | 1.465 | 1.630 | 1.868 | 2.198 |

${ }^{1}$ One haddock measured. ${ }^{2}$ Excludes 2005 value.

Table 15. Average lengths at age (cm) of haddock from the combined Canadian and USA commercial groundfish fishery landings on eastern Georges Bank during 1969-2011.

| Year | Age Group |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9+ |
| 1969 |  | 42.5 | 50.2 | 53.4 | 54.9 | 56.6 | 61.2 | 66.7 | 70.6 |
| 1970 | 40.1 | 47.0 | 43.4 | 54.9 | 57.4 | 60.0 | 60.4 | 66.4 | 68.6 |
| 1971 |  | 44.7 | 46.6 | 50.0 | 58.4 | 61.3 | 61.9 | 64.2 | 68.1 |
| 1972 | 40.6 |  | 53.3 | 55.4 | 59.4 | 63.3 | 63.5 | 62.0 | 67.3 |
| 1973 | 39.2 | 45.2 | 52.5 | 55.4 | 60.3 | 54.7 | 65.8 | 69.2 | 69.0 |
| 1974 |  | 45.6 | 52.1 |  | 59.6 | 72.5 |  | 69.2 | 73.3 |
| 1975 |  | 42.5 | 52.8 | 59.7 | 59.8 | 63.7 | 75.8 | 72.7 | 71.7 |
| 1976 | 37.4 | 44.6 | 49.5 | 57.1 | 62.3 |  | 65.8 |  | 72.6 |
| 1977 |  | 44.1 | 51.2 | 55.9 | 61.1 | 65.4 |  | 68.8 | 76.7 |
| 1978 | 37.6 | 46.4 | 50.5 | 57.3 | 63.5 | 65.8 | 65.9 | 66.1 | 76.1 |
| 1979 |  | 44.3 | 49.0 | 55.3 | 59.3 | 64.7 | 68.4 | 67.8 | 74.0 |
| 1980 | 32.5 | 42.5 | 44.9 | 54.3 | 58.6 | 63.1 | 71.6 | 71.0 | 67.0 |
| 1981 |  | 42.9 | 48.8 | 53.2 | 60.4 | 63.4 | 70.7 | 75.5 | 76.3 |
| 1982 |  | 44.4 | 50.1 | 55.1 | 60.6 | 63.1 | 66.3 | 71.5 | 70.9 |
| 1983 |  | 45.0 | 49.2 | 54.4 | 58.8 | 62.0 | 65.4 | 67.6 | 73.4 |
| 1984 |  | 44.1 | 50.5 | 55.8 | 59.8 | 63.6 | 66.5 | 68.2 | 70.3 |
| 1985 |  | 43.3 | 47.5 | 55.8 | 59.2 | 63.6 | 65.9 | 67.9 | 70.8 |
| 1986 | 33.7 | 43.8 | 49.6 | 55.1 | 60.1 | 63.7 | 66.3 | 70.8 | 72.0 |
| 1987 |  | 41.4 | 50.3 | 56.5 | 58.0 | 62.2 | 66.3 | 71.3 | 71.9 |
| 1988 | 32.8 | 43.7 | 48.6 | 53.7 | 58.0 | 60.6 | 67.1 | 68.5 | 69.3 |
| 1989 |  | 41.9 | 50.0 | 54.1 | 59.2 | 61.9 | 66.6 | 70.3 | 70.0 |
| 1990 | 37.9 | 44.2 | 50.0 | 55.4 | 58.2 | 63.4 | 63.7 | 64.9 | 69.4 |
| 1991 | 36.2 | 47.0 | 48.3 | 54.2 | 58.3 | 62.2 | 66.7 | 64.9 | 66.6 |
| 1992 | 35.7 | 46.4 | 52.7 | 53.9 | 58.2 | 63.2 | 65.5 | 71.6 | 67.8 |
| 1993 | 38.3 | 46.4 | 53.3 | 58.0 | 57.0 | 61.7 | 62.4 | 65.2 | 67.9 |
| 1994 | 32.5 | 46.1 | 52.6 | 58.1 | 61.6 | 59.7 | 62.9 | 65.6 | 67.4 |
| 1995 | 40.2 | 45.0 | 50.9 | 56.3 | 60.8 | 62.5 | 64.1 | 64.2 | 67.9 |
| 1996 | 36.4 | 44.6 | 50.0 | 53.9 | 58.6 | 60.1 | 66.7 | 58.1 | 68.4 |
| 1997 | 38.7 | 47.2 | 48.8 | 53.4 | 57.0 | 60.2 | 64.4 | 66.9 | 70.5 |
| 1998 | 36.5 | 46.1 | 51.6 | 52.8 | 55.7 | 58.7 | 63.3 | 67.2 | 68.8 |
| 1999 | 38.7 | 45.6 | 51.5 | 55.1 | 54.9 | 57.9 | 61.0 | 63.0 | 69.3 |
| 2000 | 38.5 | 45.7 | 50.4 | 55.2 | 58.3 | 57.1 | 60.4 | 62.9 | 65.3 |
| 2001 | 32.1 | 45.5 | 50.4 | 53.5 | 56.9 | 59.2 | 57.6 | 60.3 | 64.5 |
| 2002 | 32.5 | 44.3 | 49.6 | 53.5 | 55.2 | 59.2 | 62.6 | 60.7 | 63.5 |
| 2003 | 34.2 | 40.2 | 49.3 | 51.8 | 54.7 | 55.3 | 59.7 | 63.8 | 64.0 |
| 2004 | 34.5 | 36.9 | 45.6 | 50.8 | 52.3 | 54.7 | 55.9 | 58.3 | 60.1 |
| 2005 | $16.5{ }^{1}$ | 38.8 | 44.1 | 49.9 | 52.8 | 54.5 | 56.1 | 56.5 | 59.2 |
| 2006 | 30.4 | 35.2 | 43.7 | 43.9 | 51.9 | 53.8 | 54.7 | 56.1 | 57.8 |
| 2007 | 34.0 | 36.7 | 43.9 | 46.8 | 49.3 | 52.5 | 54.3 | 52.3 | 57.1 |
| 2008 | 33.3 | 40.7 | 44.3 | 47.6 | 49.6 | 52.0 | 51.3 | 55.0 | 59.6 |
| 2009 | 36.0 | 42.0 | 44.4 | 47.9 | 49.7 | 51.4 | 52.9 | 57.7 | 57.8 |
| 2010 | 33.1 | 39.9 | 45.1 | 47.6 | 49.1 | 50.9 | 52.1 | 53.3 | 58.4 |
| 2011 | 30.7 | 44.0 | 44.7 | 47.4 | 48.9 | 49.5 | 51.8 | 52.5 | 57.8 |
| Low | $30.4{ }^{2}$ | 35.2 | 43.4 | 43.9 | 48.9 | 49.5 | 51.3 | 52.3 | 57.1 |
| High | $40.6{ }^{2}$ | 47.2 | 53.3 | 59.7 | 63.5 | 72.5 | 75.8 | 75.5 | 76.7 |
| Median | $36.0^{2}$ | 44.2 | 49.6 | 54.3 | 58.3 | 60.9 | 63.7 | 65.8 | 68.6 |
| Average | $35.7^{2}$ | 43.5 | 49.0 | 53.6 | 57.2 | 59.9 | 62.7 | 64.7 | 67.6 |
| Avg. 2009-11 | 33.3 | 41.9 | 44.7 | 47.6 | 49.2 | 50.6 | 52.3 | 54.5 | 58.4 |

${ }^{1}$ One haddock measured. ${ }^{2}$ Excludes 16.5 cm value in 2005.

Table 16. Conversion factors used to adjust for changes in door type and survey vessel in the National Marine Fisheries Service surveys during 1968-2012.

| Year | Door | Spring | Conversion | Fall |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Vessel |  | Vessel | Conversion |
| 1968 | BMV | Albatross IV | 1.49 | Albatross IV | 1.49 |
| 1969 | BMV | Albatross IV | 1.49 | Albatross IV | 1.49 |
| 1970 | BMV | Albatross IV | 1.49 | Albatross IV | 1.49 |
| 1971 | BMV | Albatross IV | 1.49 | Albatross IV | 1.49 |
| 1972 | BMV | Albatross IV | 1.49 | Albatross IV | 1.49 |
| 1973 | BMV | Albatross IV | 1.49 | Albatross IV | 1.49 |
| 1974 | BMV | Albatross IV | 1.49 | Albatross IV | 1.49 |
| 1975 | BMV | Albatross IV | 1.49 | Albatross IV | 1.49 |
| 1976 | BMV | Albatross IV | 1.49 | Albatross IV | 1.49 |
| 1977 | BMV | Albatross IV | 1.49 | Delaware II | 1.2218 |
| 1978 | BMV | Albatross IV | 1.49 | Delaware II | 1.2218 |
| 1979 | BMV | Albatross IV | 1.49 | Delaware II | 1.2218 |
| 1980 | BMV | Albatross IV | 1.49 | Delaware II | 1.2218 |
| 1981 | BMV | Delaware II | 1.2218 | Delaware II | 1.2218 |
| 1982 | BMV | Delaware II | 1.2218 | Albatross IV | 1.49 |
| 1983 | BMV | Albatross IV | 1.49 | Albatross IV | 1.49 |
| 1984 | BMV | Albatross IV | 1.49 | Albatross IV | 1.49 |
| 1985 | Polyvalent | Albatross IV | 1 | Albatross IV | 1 |
| 1986 | Polyvalent | Albatross IV | 1 | Albatross IV | 1 |
| 1987 | Polyvalent | Albatross IV | 1 | Albatross IV | 1 |
| 1988 | Polyvalent | Albatross IV | 1 | Albatross IV | 1 |
| 1989 | Polyvalent | Delaware II | 0.82 | Delaware II | 0.82 |
| 1990 | Polyvalent | Delaware II | 0.82 | Delaware II | 0.82 |
| 1991 | Polyvalent | Delaware II | 0.82 | Delaware II | 0.82 |
| 1992 | Polyvalent | Albatross IV | 1 | Albatross IV | 1 |
| 1993 | Polyvalent | Albatross IV | 1 | Delaware II | 0.82 |
| 1994 | Polyvalent | Delaware II | 0.82 | Albatross IV | 1 |
| 1995 | Polyvalent | Albatross IV | 1 | Albatross IV | 1 |
| 1996 | Polyvalent | Albatross IV | 1 | Albatross IV | 1 |
| 1997 | Polyvalent | Albatross IV | 1 | Albatross IV | 1 |
| 1998 | Polyvalent | Albatross IV | 1 | Albatross IV | 1 |
| 1999 | Polyvalent | Albatross IV | 1 | Albatross IV | 1 |
| 2000 | Polyvalent | Albatross IV | 1 | Albatross IV | 1 |
| 2001 | Polyvalent | Albatross IV | 1 | Albatross IV | 1 |
| 2002 | Polyvalent | Albatross IV | 1 | Albatross IV | 1 |
| 2003 | Polyvalent | Delaware II | 0.82 | Delaware II | 0.82 |
| 2004 | Polyvalent | Albatross IV | 1 | Albatross IV | 1 |
| 2005 | Polyvalent | Albatross IV | 1 | Albatross IV | 1 |
| 2006 | Polyvalent | Albatross IV | 1 | Albatross IV | 1 |
| 2007 | Polyvalent | Albatross IV | 1 | Albatross IV | 1 |
| 2008 | Polyvalent | Albatross IV | 1 | Albatross IV | 1 |
| 2009-2012 | 3 bridle, 4 seam | Henry B Bigelow | See Table 17 | Henry B Bigelow | See Table 17 |

Table 17. Conversion factors for Georges Bank haddock used to adjust for changes in net, doors, survey vessel and protocols for the National Marine Fisheries Service surveys during 2009 to 2012 when the Henry B. Bigelow was the research vessel used. Bigelow catches are divided by the conversion factor to equate to Albatross IV catches.

| Length (cm) | Conversion factor |
| :---: | :---: |
| $1-18$ | 2.626169 |
| 19 | 2.580551 |
| 20 | 2.534933 |
| 21 | 2.489315 |
| 22 | 2.443697 |
| 23 | 2.398079 |
| 24 | 2.352462 |
| 25 | 2.306844 |
| 26 | 2.261226 |
| 27 | 2.215608 |
| 28 | 2.169990 |
| 29 | 2.124372 |
| 30 | 2.078754 |
| 31 | 2.033136 |
| 32 | 1.987518 |
| 33 | 1.941900 |
| 34 | 1.896283 |
| 35 | 1.850665 |
| 36 | 1.805047 |
| 37 | 1.759429 |
| 38 | 1.713811 |
| 39 | 1.668193 |
| 40 | 1.622575 |
| 41 | 1.576957 |
| 42 | 1.531339 |
| 43 | 1.485721 |
| 44 | 1.440104 |
| 45 | 1.394486 |
| 46 | 1.348868 |
| 47 | 1.303250 |
| 48 | 1.257632 |
| 49 | 1.212014 |
| 50 | 1.166396 |
| 51 and greater | 1.163990 |
|  |  |

Table 18. Total swept area estimates of abundance at age (numbers in 000's) of eastern Georges Bank haddock from the Canadian Department of Fisheries and Oceans (DFO) surveys during 1986-2012.

| Age Group |  |  |  |  |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  |  |  |  |  |  |  |  |  |  |  |
|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | $9+$ | Total |
| 1986 | 5057 | 306 | 8176 | 997 | 189 | 348 | 305 | 425 | 401 | 16205 |
| 1987 | 46 | 4286 | 929 | 3450 | 653 | 81 | 387 | 135 | 1132 | 11099 |
| 1988 | 971 | 49 | 12714 | 257 | 4345 | 274 | 244 | 130 | 686 | 19670 |
| 1989 | 48 | 6664 | 991 | 2910 | 245 | 526 | 40 | 34 | 265 | 11724 |
| 1990 | 726 | 108 | 12300 | 168 | 4466 | 299 | 1370 | 144 | 389 | 19968 |
| 1991 | 383 | 2163 | 134 | 10819 | 114 | 1909 | 117 | 505 | 225 | 16368 |
| 1992 | 1914 | 3879 | 1423 | 221 | 4810 | 18 | 1277 | 52 | 656 | 14249 |
| 1993 | 3448 | 1759 | 545 | 431 | 34 | 1186 | 19 | 281 | 147 | 7849 |
| 1994 | 4197 | 15163 | 5332 | 549 | 314 | 20 | 915 | 18 | 356 | 26864 |
| 1995 | 1231 | 3224 | 6236 | 3034 | 720 | 398 | 0 | 729 | 849 | 16422 |
| 1996 | 1455 | 2290 | 4784 | 5305 | 3113 | 303 | 274 | 38 | 684 | 18247 |
| 1997 | 1033 | 1550 | 1222 | 2742 | 2559 | 1397 | 150 | 65 | 372 | 11090 |
| 1998 | 2379 | 10626 | 5348 | 3190 | 5312 | 5028 | 2248 | 348 | 601 | 35080 |
| 1999 | 24593 | 4787 | 10067 | 3104 | 1963 | 1880 | 1764 | 448 | 174 | 48780 |
| 2000 | 3177 | 15865 | 7679 | 12108 | 2900 | 2074 | 2726 | 1591 | 813 | 48932 |
| 2001 | 23026 | 3519 | 14633 | 4255 | 5608 | 1808 | 1426 | 1963 | 2299 | 58536 |
| 2002 | 732 | 28174 | 5977 | 12660 | 2981 | 2646 | 648 | 529 | 2423 | 56769 |
| 2003 | 1682 | 1503 | 82161 | 5533 | 15105 | 3675 | 2355 | 1106 | 1986 | 115107 |
| 2004 | 91843 | 539 | 2682 | 54882 | 5001 | 9695 | 1654 | 954 | 634 | 167883 |
| 2005 | 1669 | 20958 | 531 | 1557 | 25559 | 3403 | 4815 | 1087 | 548 | 60125 |
| 2006 | 9130 | 5817 | 178604 | 2521 | 2251 | 15695 | 764 | 1633 | 261 | 216675 |
| 2007 | 3051 | 9541 | 3289 | 67311 | 984 | 154 | 3584 | 251 | 652 | 88816 |
| 2008 | 3832 | 1219 | 4647 | 5025 | 103874 | 1006 | 191 | 8553 | 724 | 129071 |
| 2009 | 2001 | 3977 | 2668 | 5989 | 652 | 43838 | 637 | 125 | 1568 | 61456 |
| 2010 | 868 | 606 | 3005 | 2335 | 4855 | 1433 | 42302 | 314 | 1071 | 56788 |
| 2011 | 209508 | 1892 | 1649 | 3079 | 1329 | 2974 | 741 | 29157 | 535 | 250864 |
| 2012 | 20047 | 353084 | 4108 | 746 | 1061 | 410 | 684 | 401 | 4454 | 384995 |

Table 19. Total swept area estimated abundance at age (numbers in 000's) of eastern Georges Bank haddock from the National Marine Fisheries Service spring surveys during 1968-2012. From 1973-81, a 41 Yankee trawl was used while a 36 Yankee trawl was used in other years up to and including 2008. Since 2009 a new net, vessel and protocols were used and conversion factors to equate to Albatross IV catches were applied.

| Year | Age Group |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9+ | Total |
| 1968 | 0 | 3254 | 68 | 679 | 4853 | 2045 | 240 | 123 | 234 | 11496 |
| 1969 | 17 | 35 | 614 | 235 | 523 | 3232 | 1220 | 358 | 489 | 6724 |
| 1970 | 478 | 190 | 0 | 560 | 998 | 441 | 3165 | 2491 | 769 | 9092 |
| 1971 | 0 | 655 | 261 | 0 | 144 | 102 | 58 | 1159 | 271 | 2650 |
| 1972 | 2594 | 0 | 771 | 132 | 25 | 47 | 211 | 27 | 1214 | 5020 |
| 1973 | 2455 | 5639 | 0 | 1032 | 154 | 0 | 276 | 0 | 1208 | 10763 |
| 1974 | 1323 | 20596 | 4084 | 0 | 354 | 0 | 43 | 72 | 322 | 26795 |
| 1975 | 528 | 567 | 6016 | 1063 | 0 | 218 | 127 | 45 | 208 | 8773 |
| 1976 | 8228 | 402 | 424 | 1127 | 532 | 0 | 0 | 0 | 22 | 10735 |
| 1977 | 126 | 26003 | 262 | 912 | 732 | 568 | 0 | 22 | 102 | 28727 |
| 1978 | 0 | 743 | 20859 | 641 | 880 | 1163 | 89 | 23 | 116 | 24516 |
| 1979 | 10496 | 441 | 1313 | 9764 | 475 | 72 | 445 | 42 | 9 | 23056 |
| 1980 | 4355 | 66450 | 1108 | 1086 | 5761 | 613 | 371 | 693 | 360 | 80797 |
| 1981 | 3281 | 2823 | 27085 | 2906 | 751 | 2455 | 347 | 56 | 21 | 39725 |
| 1982 | 584 | 3703 | 1658 | 7802 | 767 | 455 | 697 | 0 | 0 | 15666 |
| 1983 | 238 | 770 | 686 | 359 | 2591 | 30 | 0 | 798 | 58 | 5529 |
| 1984 | 1366 | 1414 | 1046 | 910 | 847 | 1189 | 133 | 73 | 490 | 7469 |
| 1985 | 40 | 8911 | 1396 | 674 | 1496 | 588 | 1995 | 127 | 483 | 15709 |
| 1986 | 3334 | 280 | 3597 | 246 | 210 | 333 | 235 | 560 | 159 | 8953 |
| 1987 | 122 | 5480 | 144 | 1394 | 157 | 231 | 116 | 370 | 0 | 8013 |
| 1988 | 305 | 61 | 1868 | 235 | 611 | 203 | 218 | 178 | 0 | 3678 |
| 1989 | 84 | 6665 | 619 | 1343 | 267 | 791 | 58 | 92 | 47 | 9966 |
| 1990 | 1654 | 70 | 10338 | 598 | 1042 | 110 | 182 | 0 | 0 | 13995 |
| 1991 | 740 | 2071 | 432 | 3381 | 192 | 203 | 66 | 87 | 25 | 7198 |
| 1992 | 529 | 287 | 205 | 158 | 602 | 32 | 46 | 46 | 0 | 1905 |
| 1993 | 1870 | 1116 | 197 | 232 | 195 | 717 | 77 | 35 | 43 | 4480 |
| 1994 | 1025 | 4272 | 1487 | 269 | 184 | 118 | 278 | 28 | 84 | 7745 |
| 1995 | 921 | 2312 | 4184 | 1727 | 265 | 152 | 51 | 272 | 214 | 10099 |
| 1996 | 912 | 1365 | 3789 | 3190 | 1905 | 237 | 36 | 0 | 496 | 11931 |
| 1997 | 1635 | 1226 | 380 | 595 | 470 | 343 | 24 | 44 | 20 | 4736 |
| 1998 | 549 | 6046 | 2005 | 1281 | 1184 | 303 | 58 | 15 | 122 | 11562 |
| 1999 | 6286 | 1914 | 3655 | 661 | 1128 | 1062 | 468 | 476 | 46 | 15696 |
| 2000 | 2675 | 2131 | 3399 | 1624 | 636 | 564 | 438 | 305 | 165 | 11938 |
| 2001 | 10503 | 1186 | 3304 | 1232 | 374 | 294 | 113 | 20 | 20 | 17047 |
| 2002 | 231 | 40432 | 10938 | 4044 | 1492 | 473 | 287 | 229 | 236 | 58362 |
| 2003 | 125 | 1105 | 16915 | 2245 | 3773 | 476 | 200 | 82 | 286 | 25206 |
| 2004 | 195013 | 4724 | 2644 | 45872 | 3544 | 5261 | 960 | 1245 | 842 | 260104 |
| 2005 | 540 | 32911 | 257 | 614 | 5818 | 671 | 1196 | 240 | 67 | 42313 |
| 2006 | 2961 | 1247 | 48882 | 213 | 949 | 6650 | 325 | 574 | 187 | 61988 |
| 2007 | 1468 | 11383 | 2055 | 95882 | 180 | 441 | 2168 | 222 | 312 | 114110 |
| 2008 | 3402 | 1671 | 4332 | 240 | 38569 | 836 | 371 | 1739 | 480 | 51639 |
| 2009 | 2896 | 2758 | 1589 | 5126 | 801 | 23985 | 563 | 483 | 1259 | 39462 |
| 2010 | 481 | 644 | 3326 | 1461 | 3785 | 517 | 20735 | 0 | 600 | 31548 |
| 2011 | 16812 | 1319 | 834 | 707 | 551 | 1052 | 303 | 6751 | 155 | 28484 |
| 2012 | 15004 | 101276 | 394 | 0 | 518 | 629 | 1020 | 0 | 2556 | 121420 |

Table 20. Total swept area estimated abundance at age (numbers in 000's) of eastern Georges Bank haddock from National Marine Fisheries Service fall surveys during 1963-2011. Since 2009 a new net, vessel and protocols were used and conversion factors to equate to Albatross IV catches were applied.

| Year | Age Group |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8+ | Total |
| 1963 | 105993 | 40995 | 10314 | 3378 | 5040 | 4136 | 1477 | 451 | 276 | 172061 |
| 1964 | 1178 | 123976 | 46705 | 4358 | 807 | 1865 | 477 | 211 | 167 | 179742 |
| 1965 | 259 | 1503 | 51338 | 8538 | 479 | 302 | 142 | 148 | 208 | 62918 |
| 1966 | 9325 | 751 | 1742 | 20323 | 3631 | 671 | 138 | 133 | 84 | 36798 |
| 1967 | 0 | 3998 | 73 | 327 | 1844 | 675 | 141 | 88 | 88 | 7233 |
| 1968 | 55 | 113 | 800 | 28 | 37 | 2223 | 547 | 177 | 313 | 4293 |
| 1969 | 356 | 0 | 0 | 509 | 62 | 30 | 739 | 453 | 108 | 2257 |
| 1970 | 0 | 6400 | 336 | 16 | 415 | 337 | 500 | 902 | 578 | 9483 |
| 1971 | 2626 | 0 | 788 | 97 | 0 | 265 | 27 | 73 | 594 | 4471 |
| 1972 | 4747 | 2396 | 0 | 232 | 0 | 0 | 53 | 0 | 275 | 7702 |
| 1973 | 1223 | 16797 | 1598 | 0 | 168 | 0 | 0 | 8 | 16 | 19809 |
| 1974 | 151 | 234 | 961 | 169 | 0 | 6 | 0 | 0 | 70 | 1589 |
| 1975 | 30365 | 664 | 192 | 1042 | 239 | 0 | 0 | 0 | 28 | 32530 |
| 1976 | 738 | 121717 | 431 | 25 | 484 | 71 | 0 | 17 | 37 | 123521 |
| 1977 | 47 | 238 | 26323 | 445 | 125 | 211 | 84 | 4 | 4 | 27480 |
| 1978 | 14642 | 547 | 530 | 7706 | 56 | 42 | 94 | 0 | 0 | 23617 |
| 1979 | 1598 | 21605 | 14 | 335 | 1489 | 45 | 12 | 0 | 0 | 25098 |
| 1980 | 3556 | 2788 | 5829 | 0 | 101 | 1081 | 108 | 25 | 4 | 13492 |
| 1981 | 596 | 4617 | 2585 | 2748 | 89 | 136 | 318 | 0 | 15 | 11103 |
| 1982 | 62 | 0 | 673 | 465 | 2508 | 153 | 97 | 528 | 42 | 4527 |
| 1983 | 3609 | 444 | 236 | 501 | 289 | 402 | 17 | 12 | 86 | 5598 |
| 1984 | 45 | 3775 | 856 | 233 | 194 | 45 | 262 | 0 | 41 | 5451 |
| 1985 | 12148 | 381 | 1646 | 199 | 70 | 68 | 46 | 30 | 21 | 14611 |
| 1986 | 30 | 7471 | 109 | 961 | 52 | 50 | 72 | 24 | 23 | 8793 |
| 1987 | 508 | 0 | 843 | 28 | 152 | 38 | 22 | 0 | 0 | 1592 |
| 1988 | 122 | 3983 | 184 | 2348 | 155 | 400 | 142 | 140 | 38 | 7513 |
| 1989 | 167 | 83 | 2645 | 112 | 509 | 68 | 73 | 0 | 0 | 3656 |
| 1990 | 1217 | 1041 | 36 | 1456 | 65 | 196 | 24 | 5 | 0 | 4040 |
| 1991 | 705 | 331 | 267 | 52 | 289 | 25 | 10 | 0 | 0 | 1679 |
| 1992 | 3484 | 1052 | 172 | 110 | 0 | 95 | 0 | 18 | 18 | 4948 |
| 1993 | 687 | 6656 | 3601 | 585 | 0 | 87 | 96 | 30 | 0 | 11742 |
| 1994 | 625 | 782 | 927 | 419 | 96 | 32 | 0 | 24 | 0 | 2905 |
| 1995 | 892 | 1436 | 5993 | 3683 | 550 | 30 | 0 | 0 | 53 | 12637 |
| 1996 | 1742 | 453 | 570 | 2302 | 963 | 167 | 0 | 0 | 0 | 6196 |
| 1997 | 217 | 5738 | 3368 | 592 | 690 | 385 | 0 | 0 | 13 | 11004 |
| 1998 | 2566 | 2966 | 4214 | 1085 | 705 | 526 | 722 | 0 | 0 | 12784 |
| 1999 | 3268 | 1236 | 5364 | 5060 | 837 | 2825 | 148 | 1150 | 991 | 20879 |
| 2000 | 1368 | 5284 | 6226 | 3712 | 622 | 229 | 0 | 146 | 97 | 17684 |
| 2001 | 659 | 16626 | 1382 | 6939 | 3000 | 1586 | 306 | 127 | 58 | 30684 |
| 2002 | 172 | 1864 | 44602 | 6040 | 5120 | 1660 | 863 | 457 | 354 | 61131 |
| 2003 | 196182 | 60 | 285 | 3415 | 655 | 739 | 20 | 99 | 158 | 201613 |
| 2004 | 2864 | 116289 | 322 | 775 | 17200 | 1034 | 2410 | 416 | 528 | 141837 |
| 2005 | 4981 | 3114 | 95159 | 340 | 532 | 3631 | 347 | 242 | 155 | 108502 |
| 2006 | 930 | 8752 | 1040 | 65817 | 1083 | 82 | 796 | 0 | 16 | 78517 |
| 2007 | 1264 | 1922 | 11764 | 965 | 52456 | 955 | 562 | 244 | 0 | 70132 |
| 2008 | 1902 | 1865 | 1162 | 2564 | 477 | 21289 | 0 | 74 | 484 | 29818 |
| 2009 | 2010 | 862 | 1352 | 1082 | 2504 | 388 | 20906 | 88 | 237 | 29430 |
| 2010 | 344780 | 2309 | 1170 | 2138 | 786 | 2332 | 1179 | 19819 | 344 | 374857 |
| 2011 | 28394 | 164625 | 515 | 293 | 337 | 367 | 704 | 232 | 3850 | 199316 |

Table 21. Average weight at age (kg) of eastern Georges Bank haddock from the Canadian Department of Fisheries and Oceans surveys during 1986-2012. These weights are used to represent beginning of year population weights. $9+$ weights are population weighted averages.

| Year | Age Group |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9+ |
| 1986 | 0.135 | 0.451 | 0.974 | 1.445 | 3.044 | 2.848 | 3.598 | 3.376 | 3.918 |
| 1987 | 0.150 | 0.500 | 0.716 | 1.672 | 2.012 | 2.550 | 3.148 | 3.151 | 3.629 |
| 1988 | 0.097 | 0.465 | 0.931 | 1.795 | 1.816 | 1.918 | 2.724 | 3.264 | 3.871 |
| 1989 | 0.062 | 0.474 | 0.650 | 1.392 | 1.995 | 2.527 | 2.158 | 2.859 | 3.141 |
| 1990 | 0.149 | 0.525 | 0.924 | 1.181 | 1.862 | 2.073 | 2.507 | 2.815 | 3.472 |
| 1991 | 0.120 | 0.685 | 0.800 | 1.512 | 1.695 | 2.434 | 2.105 | 3.122 | 3.432 |
| 1992 | 0.122 | 0.602 | 1.118 | 1.061 | 2.078 | 2.165 | 2.709 | 2.284 | 3.440 |
| 1993 | 0.122 | 0.481 | 1.227 | 1.803 | 1.274 | 2.332 | 2.343 | 2.739 | 3.280 |
| 1994 | 0.107 | 0.469 | 1.047 | 1.621 | 1.927 | 2.154 | 3.154 | 2.688 | 3.084 |
| 1995 | 0.086 | 0.493 | 0.963 | 1.556 | 2.222 | 2.445 | $2.4{ }^{1}$ | 2.991 | 3.184 |
| 1996 | 0.139 | 0.495 | 0.919 | 1.320 | 1.932 | 2.555 | 2.902 | 2.611 | 3.588 |
| 1997 | 0.132 | 0.506 | 0.782 | 1.205 | 1.664 | 2.176 | 2.454 | 2.577 | 3.158 |
| 1998 | 0.107 | 0.535 | 1.035 | 1.161 | 1.570 | 1.954 | 2.609 | 3.559 | 3.462 |
| 1999 | 0.130 | 0.474 | 0.911 | 1.290 | 1.259 | 1.869 | 2.131 | 2.722 | 2.992 |
| 2000 | 0.116 | 0.543 | 0.949 | 1.478 | 1.871 | 1.789 | 2.298 | 2.508 | 2.901 |
| 2001 | 0.093 | 0.524 | 1.005 | 1.371 | 1.798 | 2.165 | 2.250 | 2.593 | 2.928 |
| 2002 | 0.096 | 0.332 | 0.778 | 1.138 | 1.494 | 1.965 | 2.177 | 2.206 | 2.708 |
| 2003 | 0.080 | 0.369 | 0.846 | 1.063 | 1.477 | 1.645 | 2.208 | 2.229 | 2.487 |
| 2004 | 0.064 | 0.310 | 0.781 | 1.151 | 1.306 | 1.558 | 1.622 | 1.956 | 2.216 |
| 2005 | 0.028 | 0.218 | 0.493 | 0.696 | 1.226 | 1.321 | 1.531 | 1.600 | 2.444 |
| 2006 | 0.059 | 0.171 | 0.389 | 0.657 | 0.870 | 1.366 | 1.591 | 1.742 | 2.355 |
| 2007 | 0.077 | 0.246 | 0.405 | 0.709 | 0.992 | 1.745 | 1.559 | 1.671 | 1.862 |
| 2008 | 0.107 | 0.329 | 0.573 | 0.795 | 0.927 | 1.254 | 1.729 | 1.476 | 1.897 |
| 2009 | 0.114 | 0.387 | 0.775 | 0.999 | 0.987 | 1.258 | 1.482 | 2.680 | 2.228 |
| 2010 | 0.072 | 0.385 | 0.749 | 0.960 | 1.120 | 1.207 | 1.333 | 1.772 | 2.066 |
| 2011 | 0.038 | 0.322 | 0.612 | 0.900 | 0.953 | 1.018 | 1.120 | 1.371 | 1.721 |
| 2012 | 0.070 | 0.186 | 0.457 | 0.506 | 0.997 | 1.104 | 1.084 | 1.190 | 1.346 |
| Low | 0.028 | 0.171 | 0.389 | 0.506 | 0.870 | 1.018 | 1.084 | 1.190 | 1.721 |
| High | 0.150 | 0.685 | 1.277 | 1.803 | 3.044 | 2.848 | 3.598 | 3.559 | 3.918 |
| Median | 0.107 | 0.469 | 0.800 | 1.181 | 1.570 | 1.954 | 2.192 | 2.593 | 2.992 |
| Average | 0.099 | 0.425 | 0.808 | 1.201 | 1.569 | 1.904 | 2.174 | 2.435 | 2.864 |
| Avg. 1991-2000 | 0.118 | 0.528 | 0.975 | 1.401 | 1.749 | 2.187 | 2.523 | 2.780 | 3.252 |
| Avg. 2010-2012 | 0.060 | 0.298 | 0.606 | 0.788 | 1.024 | 1.110 | 1.179 | 1.444 | 1.711 |

${ }^{1}$ The weight midway between the age 6 and 8 weight for that cohort was used as data were not available for this age group.

Table 22. Average lengths at age (cm) of eastern Georges Bank haddock from the Canadian Department of Fisheries and Oceans surveys during 1986-2012.

| Year | 1 |  | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1986 | 22.9 | 36.2 | 45.4 | 51.0 | 63.7 | 61.9 | 67.8 | 66.0 | 70.7 |
| 1987 | 24.2 | 36.3 | 39.7 | 53.4 | 57.1 | 61.1 | 65.1 | 65.8 | 69.6 |
| 1988 | 22.3 | 36.4 | 45.1 | 55.7 | 55.9 | 58.0 | 62.4 | 65.8 | 71.5 |
| 1989 | 19.5 | 35.9 | 39.1 | 50.4 | 56.8 | 61.3 | 58.0 | 64.6 | 66.3 |
| 1990 | 24.7 | 35.8 | 44.4 | 48.0 | 55.9 | 58.7 | 61.6 | 63.1 | 67.5 |
| 1991 | 23.1 | 40.7 | 42.7 | 51.7 | 52.9 | 60.2 | 58.3 | 65.1 | 67.8 |
| 1992 | 23.2 | 39.2 | 47.7 | 46.8 | 57.7 | 62.5 | 63.9 | 60.3 | 68.1 |
| 1993 | 23.6 | 36.6 | 49.7 | 55.5 | 50.0 | 60.4 | 59.3 | 63.7 | 67.3 |
| 1994 | 22.3 | 35.8 | 45.8 | 53.8 | 57.6 | 58.5 | 65.9 | 66.5 | 65.4 |
| 1995 | 20.2 | 36.3 | 45.1 | 52.7 | 59.0 | 62.5 |  | 65.0 | 66.0 |
| 1996 | 24.2 | 36.2 | 44.4 | 50.1 | 56.9 | 62.7 | 66.2 | 61.8 | 68.4 |
| 1997 | 23.6 | 37.1 | 42.1 | 48.9 | 54.2 | 59.5 | 62.4 | 63.5 | 66.8 |
| 1998 | 21.8 | 37.6 | 46.4 | 47.3 | 52.9 | 57.2 | 62.5 | 69.3 | 68.7 |
| 1999 | 23.7 | 35.9 | 44.8 | 49.8 | 48.9 | 56.1 | 58.9 | 63.6 | 66.6 |
| 2000 | 22.7 | 37.6 | 44.3 | 52.1 | 56.4 | 54.7 | 59.6 | 61.7 | 64.7 |
| 2001 | 21.7 | 37.5 | 46.1 | 51.1 | 56.2 | 60.0 | 59.0 | 62.5 | 65.5 |
| 2002 | 21.5 | 31.8 | 42.1 | 47.5 | 52.0 | 58.1 | 60.3 | 59.2 | 64.4 |
| 2003 | 20.2 | 34.0 | 43.3 | 46.8 | 52.0 | 53.8 | 61.2 | 61.3 | 63.3 |
| 2004 | 19.1 | 31.8 | 42.0 | 47.9 | 50.6 | 53.3 | 55.3 | 59.1 | 60.2 |
| 2005 | 15.1 | 29.1 | 37.2 | 41.1 | 49.7 | 51.6 | 53.8 | 54.3 | 62.7 |
| 2006 | 18.7 | 27.0 | 34.0 | 40.2 | 42.6 | 51.8 | 52.8 | 55.7 | 62.2 |
| 2007 | 20.6 | 29.6 | 34.2 | 41.0 | 46.7 | 55.0 | 53.5 | 54.1 | 55.4 |
| 2008 | 23.1 | 33.1 | 39.4 | 43.0 | 45.7 | 50.5 | 56.3 | 52.9 | 57.9 |
| 2009 | 23.2 | 34.7 | 42.6 | 45.8 | 44.9 | 49.3 | 51.9 | 61.7 | 59.4 |
| 2010 | 20.3 | 34.8 | 43.0 | 46.3 | 48.3 | 50.5 | 51.4 | 55.7 | 59.8 |
| 2011 | 16.6 | 32.5 | 40.1 | 45.8 | 47.5 | 47.6 | 49.3 | 52.3 | 56.9 |
| 2012 | 19.9 | 26.7 | 36.2 | 37.1 | 47.0 | 48.7 | 48.6 | 50.1 | 52.0 |
|  |  |  |  |  |  |  |  |  |  |
| L0w | 215.1 | 26.7 | 34.0 | 37.1 | 42.6 | 47.6 | 48.6 | 50.1 | 52.0 |
| High | 24.7 | 40.7 | 49.7 | 55.7 | 63.7 | 62.7 | 67.8 | 69.3 | 71.5 |
| Median | 22.3 | 35.9 | 43.0 | 48.0 | 52.9 | 58.0 | 59.1 | 61.8 | 65.5 |
| Average | 21.6 | 34.7 | 42.5 | 48.2 | 52.6 | 56.5 | 58.7 | 60.9 | 64.3 |
|  |  |  |  |  |  |  |  |  |  |

Table 23. Data and model changes to the eastern Georges Bank haddock assessment framework from 1998 to 2010.

| Assessment Year | Change |
| :---: | :---: |
| 1998 | Framework: <br> Random error in catch at age negligible. <br> Errors in abundance indices assumed independent and identically distributed after taking the natural logarithms. <br> Annual natural mortality rate $(M)=0.2$. <br> Fishing mortality ( F ) on age $8=$ weighted $F$ on ages 4 to 7 . <br> $9+$ age group calculated but not calibrated to indices. <br> In Q1 of first year, 9+ based on assumption that F9+ = popn weighted F4-8. In Q1 of subsequent years, $9+$ abundance calculated as sum of age 8 and $9+$ at end of last quarter of previous year. <br> Quarterly catch at age: 0,1,2...8,9+; 1969.0, 1969.25, 1969. 75, 1970.0...1996.75. <br> DFO survey: ages $1,2,3 . . .8 ; 1986.16,1987.16 \ldots 1998.0$. <br> NMFS spring (Yankee 36): age 1,2,3...8; 1969.29, 1970.29...1997.29. <br> NMFS spring (Yankee 41): age 1,2,3...8; 1973.29, 1974.29...1981.29. <br> NMFS fall: 0,1,2...5, 1969.69, 1970.69...1997.69. <br> Zero survey observations treated as missing data. |
| 1999 | Minor differences in the handling of zero terminal catches for a year class were implemented as a refinement to the software to afford more flexibility. |
| 2003 | NMFS spring (Yankee 36): age 1,2,3...8; 1969.29, 1970.29...2003.25. (In previous years, the last survey available was the same year as the last catch at age year.) Catch of 0 was assumed for the $1^{\text {st }}$ quarter of 2003 and the population calculated to beginning of 2003.25. |
| 2005 | Discards ages 1 and older from Canadian scallop fishery included in catch at age but age 0 set to zero. <br> Population calculated to beginning year 2005. <br> NMFS and DFO spring surveys in 2005 set to time=2005.00. |
| 2007 | Discards at age 0 included in catch at age. |
| 2008 | 1) an annual catch at age instead of a quarterly catch at age. <br> 2) revised survey timing: DFO spring from 0.16 to 0.17 , NMFS spring from 0.29 to 0.28 and the NMFS fall survey from 0.69 to 0.79 . <br> 3) a change from ages 4 to 7 to 5 to 7 (weighted by population numbers) used to estimate oldest age F from 2003 to present. |
| 2009 | USA 2007 catch corrected from previous year (calculation error). The landings at age for 2006 to 2007 were recalculated. USA landings for 1994 to 2007 revised using new methodology. (Effect was negligible.) USA landings at age from 1991 to 2005 were revised to reflect the recalculated landings using a scalar adjustment. <br> USA discards recalculated using ratio of discarded haddock to kept of all species for 1989 to 2007. <br> Discards at age were not revised for 1989 to 2000 as amounts were low, except for 1994 (old=258 vs new=1,021 mt). No adjustment to the 1994 discards at age was made due to the uncertainty of this estimate. <br> Discard at age estimates for 2001 to 2007 were revised by a scalar. <br> 2009 NMFS spring survey not used (no conversion factors). |
| 2010 | $9+$ group in catch at age expanded to 9 to 16+; ages 15 and 16 dropped; 9+ group reconstructed from ages 9 to 14 . <br> Revisions made to USA landings, Canadian scallop discards and USA groundfish fishery discards at age. Largest change for 1994 discards from 258 mt to 1279 mt . |

Table 24. Statistical properties of estimates of population abundance (numbers in 000's) at beginning of year 2012 and survey calibration constants (unitless, survey:population) for eastern Georges Bank haddock obtained from a bootstrap with 1000 replications.

| Age | Estimate | Standard Error | Relative Error | Bias | Relative Bias |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Population Abundance (000's) |  |  |  |  |  |
| 1 | 123124 | 71929 | 0.584 | 18196 | 0.148 |
| 2 | 528136 | 194847 | 0.369 | 46223 | 0.088 |
| 3 | 3232 | 963 | 0.298 | 73 | 0.023 |
| 4 | 2195 | 644 | 0.293 | 71 | 0.032 |
| 5 | 2801 | 776 | 0.277 | 115 | 0.041 |
| 6 | 1617 | 405 | 0.250 | 40 | 0.025 |
| 7 | 3860 | 802 | 0.208 | 20 | 0.005 |
| 8 | 740 | 236 | 0.319 | 28 | 0.038 |
| Survey Calibration Constants |  |  |  |  |  |
| Canadian Department of Fisheries and Oceans Survey |  |  |  |  |  |
| 1 | 0.238 | 0.043 | 0.180 | 0.004 | 1.608 |
| 2 | 0.418 | 0.073 | 0.175 | 0.004 | 0.008 |
| 3 | 0.802 | 0.135 | 0.168 | 0.011 | 0.014 |
| 4 | 0.808 | 0.137 | 0.170 | 0.014 | 0.017 |
| 5 | 0.842 | 0.146 | 0.173 | 0.014 | 0.016 |
| 6 | 0.711 | 0.120 | 0.169 | 0.011 | 0.016 |
| 7 | 0.783 | 0.138 | 0.176 | 0.002 | 0.003 |
| 8 | 0.758 | 0.128 | 0.169 | 0.013 | 0.017 |

National Marine Fisheries Service (NMFS) Spring Survey - Yankee 36 -1969-72/1982-2011

| 1 | 0.131 | 0.019 | 0.145 | 0.000 | 0.002 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 0.323 | 0.051 | 0.157 | 0.005 | 0.015 |
| 3 | 0.409 | 0.064 | 0.155 | 0.005 | 0.013 |
| 4 | 0.392 | 0.062 | 0.159 | 0.006 | 0.015 |
| 5 | 0.434 | 0.062 | 0.142 | 0.005 | 0.012 |
| 6 | 0.382 | 0.057 | 0.148 | 0.005 | 0.013 |
| 7 | 0.374 | 0.058 | 0.155 | 0.003 | 0.008 |
| 8 | 0.398 | 0.068 | 0.171 | 0.006 | 0.016 |
| NMFS Spring | Survey | Yankee 41 | $-1973-81$ |  |  |
| 1 | 0.228 | 0.075 | 0.329 | 0.010 | 0.046 |
| 2 | 0.534 | 0.162 | 0.304 | 0.020 | 0.038 |
| 3 | 0.652 | 0.208 | 0.319 | 0.025 | 0.039 |
| 4 | 0.806 | 0.266 | 0.331 | 0.039 | 0.049 |
| 5 | 0.895 | 0.271 | 0.303 | 0.026 | 0.029 |
| 6 | 0.811 | 0.295 | 0.364 | 0.021 | 0.026 |
| 7 | 1.488 | 0.530 | 0.356 | 0.079 | 0.053 |
| 8 | 0.724 | 0.251 | 0.347 | 0.040 | 0.056 |
| NMFS Fall Survey |  |  |  |  |  |
| 0 | 0.141 | 0.020 | 0.139 | 0.002 | 0.015 |
| 1 | 0.306 | 0.044 | 0.145 | 0.002 | 0.007 |
| 2 | 0.244 | 0.034 | 0.138 | 0.004 | 0.017 |
| 3 | 0.238 | 0.032 | 0.135 | 0.000 | 0.000 |
| 4 | 0.197 | 0.028 | 0.141 | 0.001 | 0.005 |
| 5 | 0.166 | 0.024 | 0.141 | 0.002 | 0.011 |

Table 25. Beginning of year population abundance (numbers in 000's) for eastern Georges Bank haddock during 1969-2012 from a virtual population analysis using the bootstrap bias adjusted population abundance at the beginning of 2012. Highlighted cells follow two recent large year classes, the 2000 and 2003.

| Year | Age Group |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | + | 1+ | 2+ | 3+ |
| 19 | 80 | 193 | 639 | 872 | 11 | 7650 | 2497 | 250 | 776 | 17592 | 16789 | 16596 |
| 1970 | 593 | 658 | 141 | 1681 | 79 | 447 | 3659 | 299 | 06 | 12463 | 8870 | 8212 |
| 1971 | 235 | 2881 | 63 | 109 | 061 | 56 | 249 | 1961 | 971 | 8187 | 952 | 71 |
| 1972 | 5303 | 192 | 1285 | 155 | 62 | 42 | 69 | 61 | 1340 | 9109 | 806 | 614 |
| 1973 | 11637 | 29 | 157 | 702 | 63 | 32 | 441 | 21 | 728 | 17811 | 174 | 144 |
| 1974 | 3082 | 8519 | 1728 | 23 | 51 | 18 | 17 | 327 | 54 | 14518 | 11436 | 917 |
| 75 | 3448 | 2490 | 4948 | 1166 | 100 | 176 | 12 | 14 | 557 | 12910 | 9462 | 973 |
| 1976 | 54076 | 2807 | 1787 | 2701 | 761 | 78 | 112 | 8 | 437 | 62767 | 8691 | 884 |
| 1977 | 6039 | 43911 | 2157 | 1307 | 1463 | 501 | 64 | 74 | 348 | 55864 | 49825 | 5914 |
| 1978 | 4058 | 4943 | 28726 | 1706 | 906 | 922 | 263 | 52 | 319 | 41896 | 37838 | 32895 |
| 1979 | 52347 | 3317 | 3784 | 14596 | 1249 | 587 | 480 | 144 | 287 | 76791 | 24444 | 21127 |
| 1980 | 6239 | 42667 | 2700 | 2911 | 84 | 696 | 300 | 199 | 301 | 64097 | 57858 | 15191 |
| 81 | 617 | 5079 | 19101 | 901 | 111 | 443 | 396 | 30 | 352 | 38130 | 33513 | 28435 |
| 1982 | 09 | 31 | 353 | 9571 | 197 | 282 | 2522 | 217 | 358 | 24507 | 22410 | 18680 |
| 1983 | 255 | 1715 | 2397 | 1944 | 5280 | 796 | 70 | 1409 | 35 | 7163 | 46 | 12891 |
| 1984 | 1610 | 208 | 1269 | 1367 | 109 | 2840 | 465 | 48 | 1047 | 26760 | 10653 | 8569 |
| 5 | 1641 | 13123 | 1616 | 806 | 805 | 653 | 1313 | 214 | 822 | 20991 | 19350 | 28 |
| 1986 | 13924 | 1336 | 811 | 976 | 497 | 480 | 420 | 732 | 695 | 27870 | 13947 | 12611 |
| 1987 | 2206 | 11319 | 1058 | 4893 | 641 | 278 | 282 | 237 | 974 | 21889 | 19683 | 8364 |
| 1988 | 16086 | 1806 | 7395 | 748 | 2628 | 435 | 176 | 156 | 829 | 30258 | 14173 | 12367 |
| 1989 | 1024 | 13123 | 1431 | 4081 | 501 | 1350 | 256 | 109 | 675 | 22549 | 21526 | 8403 |
| 1990 | 2392 | 836 | 9596 | 1093 | 2642 | 281 | 794 | 179 | 579 | 18393 | 16001 | 15165 |
| 1991 | 2081 | 1930 | 678 | 6644 | 776 | 1472 | 165 | 499 | 543 | 14788 | 12707 | 10776 |
| 1992 | 8279 | 684 | 62 | 472 | 3577 | 555 | 854 | 71 | 667 | 17321 | 9042 | 58 |
| 1993 | 1246 | 67 | 1155 | 661 | 271 | 1617 | 373 | 413 | 99 | 4189 | 722 | 88 |
| 1994 | 1183 | 1013 | 5257 | 25 | 281 | 140 | 728 | 269 | 537 | 29808 | 7971 | 6 |
| 1995 | 5978 | 9658 | 7916 | 3521 | 345 | 164 | 26 | 425 | 536 | 85 | 22593 | 12934 |
| 1996 | 5899 | 4887 | 7836 | 6000 | 2510 | 235 | 111 | 19 | 726 | 28224 | 22324 | 17437 |
| 1997 | 17739 | 4826 | 3973 | 5975 | 4134 | 1678 | 138 | 75 | 542 | 39080 | 21341 | 16514 |
| 1998 | 8576 | 14498 | 3867 | 3186 | 4409 | 2948 | 1198 | 102 | 467 | 39250 | 30675 | 16177 |
| 1999 | 29353 | 7005 | 11694 | 2903 | 2374 | 3122 | 2011 | 878 | 424 | 59764 | 30410 | 23406 |
| 2000 | 9982 | 24008 | 5695 | 8896 | 2089 | 1720 | 2244 | 1416 | 954 | 57004 | 47022 | 23013 |
| 2001 | 87064 | 8167 | 19367 | 4258 | 6141 | 1472 | 1216 | 1642 | 1712 | 131040 | 43976 | 35808 |
| 2002 | 4297 | 71262 | 6628 | 14293 | 3006 | 4265 | 969 | 812 | 2352 | 107884 | 103587 | 32325 |
| 2003 | 2668 | 3517 | 58044 | 5230 | 9999 | 2119 | 2887 | 690 | 2231 | 87384 | 84716 | 81199 |
| 2004 | 327981 | 2178 | 2870 | 45869 | 4022 | 6847 | 1351 | 1933 | 2081 | 395133 | 67152 | 64974 |
| 2005 | 5927 | 268228 | 1760 | 2282 | 34266 | 2748 | 4259 | 642 | 2670 | 322783 | 316856 | 48628 |
| 2006 | 18839 | 4840 | 219389 | 1415 | 1666 | 21856 | 1776 | 2747 | 245 | 274983 | 256144 | 251304 |
| 07 | 5832 | 15406 | 3949 | 177345 | 1118 | 1104 | 13807 | 1244 | 3624 | 223428 | 217597 | 202191 |
| 2008 | 7826 | 4773 | 12578 | 3069 | 138580 | 783 | 753 | 10017 | 3695 | 182075 | 174249 | 169476 |
| 2009 | 4262 | 6404 | 3881 | 10053 | 2271 | 104697 | 549 | 540 | 10502 | 143158 | 138895 | 132492 |
| 2010 | 4891 | 3475 | 5130 | 3005 | 7566 | 1625 | 75685 | 384 | 8651 | 110412 | 105521 | 102046 |
| 2011 | 588877 | 3976 | 2794 | 3848 | 2177 | 5434 | 988 | 53091 | 7162 | 668348 | 79471 | 75494 |
| 2012 | 104928 | 481913 | 3159 | 2125 | 2687 | 1577 | 3841 | 712 | 43646 | 644586 | 539658 | 57745 |

Table 26. Fishing mortality rates for eastern Georges Bank haddock during 1969-2011 from a virtual population analysis using the bootstrap bias adjusted population abundance at the beginning of 2012. The aggregated rates are weighted by population numbers. The rates for ages 4 to 8 and 5 to 8 are also shown as exploitation rate (\%). Highlighted cells follow two recent large year classes, the 2000 and 2003.

| Year | Age Group |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9+ | 4-8 | 4-8(\%) |  | ) |
| 1969 | 0.000 | 0.111 | 0.572 | 0.399 | 0.512 | 0.538 | 0.453 | 0.508 | 0.508 | 0.508 | 36.4 | 0.516 | 36.9 |
| 1970 | 0.021 | 0.152 | 0.057 | 0.261 | 0.425 | 0.383 | 0.42 | 0.377 | 0.538 | 0.377 | 28.7 | 0.410 | 7 |
| 19 | 0.000 | 0.608 | 0.892 | 0.369 | 0.302 | 1.114 | 1.202 | 0.564 | 0.623 | 0.564 | 9 5 | 70 | 8 |
| 1972 | 0.075 | 0.005 | 0.404 | 0.705 | 0.468 | 0.175 | 0.973 | 0.342 | 0.460 | 0.342 | 26.4 | 0.275 | 21.9 |
| 1973 | 0.112 | 0.647 | 0.045 | 0.830 | 1.056 | 0.410 | 0.101 | 0.571 | 0.294 | 0.571 | 39.8 | 0.245 | 19.7 |
| 1974 | 0.013 | 0.343 | 0.193 | 0.000 | 0.154 | 0.181 | 0.015 | 0.103 | 0.164 | 0.103 | 8.9 | 0.124 | 10.6 |
| 1975 | 0.006 | 0.132 | 0.405 | 0.227 | 0.051 | 0.255 | 0.218 | 0.218 | 0.063 | 0.218 | 17.8 | 0.184 | 5.3 |
| 1976 | 0.008 | 0.064 | 0.113 | 0.413 | 0. | 0.000 | 0. | 0. | 0.046 | 0.357 | . 3 | 7 | 6.2 |
| 1977 | 0.000 | 0.224 | 0.035 | 0.166 | 0.262 | 0.444 | 0.000 | 0.247 | 0.048 | 0.24 | 19.9 | 0.297 | 3.4 |
| 1978 | 0.002 | 0.067 | 0.477 | 0.112 | 0.235 | 0.452 | 0.405 | 0.244 | 0.033 | 0.244 | 19.7 | 0.349 | 26.9 |
| 1979 | 0.004 | 0.006 | 0.062 | 0.391 | 0.385 | 0.470 | 0.679 | 0.401 | 0.056 | 0.401 | 30.2 | 0.464 | 33.9 |
| 1980 | 0.006 | 0.604 | 0.151 | 0.121 | 0.399 | 0.363 | 0.639 | 0.335 | 0.046 | 0.335 | 26.0 | 0.402 | 30.2 |
| 1981 | 0.013 | 0.163 | 0.491 | 0.263 | 0.299 | 0.366 | 0.401 | 0.330 | 0.024 | 0.330 | 25.6 | 0.348 | 26.8 |
| 1982 | 0.001 | 0.242 | 0.397 | 0.395 | 0.208 | 0.392 | 0.382 | 0.377 | 0.224 | 0.377 | 28.6 | 0.344 | 6.6 |
| 1983 | 0.005 | 0.101 | 0.361 | 0.375 | 0.420 | 0.338 | 0.176 | 0.383 | 0.114 | 0.383 | 29.0 | 0.385 | 29.1 |
| 1984 | 0.005 | 0.054 | 0.254 | 0.330 | 0.316 | 0.572 | 0.577 | 0.466 | 0.405 | 0.466 | 34.0 | 0.505 | 36.2 |
| 1985 | 0.006 | 0.198 | 0.304 | 0.284 | 0.316 | 0.242 | 0.383 | 0.320 | 0.170 | 0.320 | 25.0 | 0.330 | 25.6 |
| 1986 | 0.007 | 0.033 | 0.388 | 0.220 | 0.379 | 0.333 | 0.371 | 0.303 | 0.068 | 0.303 | 23.8 | 0.341 | 26.3 |
| 1987 | 0.000 | 0.226 | 0.147 | 0.421 | 0.188 | 0.259 | 0.391 | 0.388 | 0.134 | 0.388 | 29.3 | 0.274 | 21.8 |
| 1988 | 0.004 | 0.033 | 0.394 | 0.201 | 0.466 | 0.330 | 0.277 | 0.393 | 0.143 | 0.393 | 29.6 | 0.435 | 32.2 |
| 1989 | 0.002 | 0.113 | 0.069 | 0.235 | 0.377 | 0.331 | 0.157 | 0.264 | 0.079 | 0.264 | 21.1 | 0.318 | 24.8 |
| 1990 | 0.014 | 0.010 | 0.168 | 0.143 | 0.385 | 0.334 | 0.265 | 0.307 | 0.085 | 0.307 | 24.1 | 0.353 | 27.1 |
| 1991 | 0.012 | 0.308 | 0.161 | 0.419 | 0.136 | 0.345 | 0.643 | 0.387 | 0.132 | 0.387 | 29.3 | 0.313 | 24.5 |
| 1992 | 0.007 | 0.178 | 0.365 | 0.355 | 0.594 | 0.196 | 0.527 | 0.522 | 0.164 | 0.522 | 37.2 | 0.538 | 38.0 |
| 1993 | 0.007 | 0.047 | 0.413 | 0.656 | 0.459 | 0.599 | 0.129 | 0.539 | 0.184 | 0.539 | 38.1 | 0.510 | 36.5 |
| 1994 | 0.003 | 0.047 | 0.201 | 0.394 | 0.337 | 1.488 | 0.338 | 0.448 | 0.104 | 0.448 | 33.0 | 0.472 | 34.4 |
| 1995 | 0.001 | 0.009 | 0.077 | 0.139 | 0.186 | 0.186 | 0.116 | 0.144 | 0.034 | 0.144 | 12.2 | 0.165 | 13.9 |
| 1996 | 0.001 | 0.007 | 0.071 | 0.172 | 0.203 | 0.331 | 0.194 | 0.185 | 0.116 | 0.185 | 15.4 | 0.213 | 17.4 |
| 1997 | 0.002 | 0.022 | 0.021 | 0.104 | 0.138 | 0.137 | 0.107 | 0.120 | 0.072 | 0.120 | 10.3 | 0.137 | 11.6 |
| 1998 | 0.002 | 0.015 | 0.087 | 0.094 | 0.145 | 0.183 | 0.111 | 0.137 | 0.085 | 0.137 | 11.6 | 0.153 | 12.9 |
| 1999 | 0.001 | 0.007 | 0.073 | 0.129 | 0.123 | 0.130 | 0.151 | 0.132 | 0.068 | 0.132 | 11.2 | 0.133 | 11.3 |
| 2000 | 0.001 | 0.015 | 0.091 | 0.171 | 0.150 | 0.146 | 0.112 | 0.156 | 0.081 | 0.156 | 13.1 | 0.139 | 11.8 |
| 2001 | 0.000 | 0.009 | 0.104 | 0.148 | 0.165 | 0.218 | 0.204 | 0.169 | 0.141 | 0.169 | 14.1 | 0.177 | 14.8 |
| 2002 | 0.000 | 0.005 | 0.037 | 0.157 | 0.150 | 0.190 | 0.139 | 0.162 | 0.145 | 0.162 | 13.6 | 0.169 | 14.1 |
| 2003 | 0.003 | 0.003 | 0.035 | 0.062 | 0.178 | 0.250 | 0.201 | 0.193 | 0.123 | 0.160 | 13.5 | 0.193 | 15.9 |
| 2004 | 0.001 | 0.013 | 0.029 | 0.091 | 0.181 | 0.274 | 0.543 | 0.273 | 0.150 | 0.134 | 11.4 | 0.273 | 21.8 |
| 2005 | 0.002 | 0.001 | 0.018 | 0.114 | 0.249 | 0.236 | 0.238 | 0.247 | 0.067 | 0.240 | 19.4 | 0.247 | 19.9 |
| 2006 | 0.001 | 0.003 | 0.013 | 0.035 | 0.211 | 0.258 | 0.156 | 0.248 | 0.072 | 0.238 | 19.2 | 0.248 | 20.0 |
| 2007 | 0.000 | 0.003 | 0.051 | 0.046 | 0.156 | 0.182 | 0.120 | 0.127 | 0.058 | 0.053 | 4.7 | 0.127 | 10.8 |
| 2008 | 0.001 | 0.007 | 0.024 | 0.098 | 0.080 | 0.154 | 0.132 | 0.080 | 0.029 | 0.081 | 7.0 | 0.080 | 7.0 |
| 2009 | 0.004 | 0.021 | 0.054 | 0.082 | 0.130 | 0.123 | 0.156 | 0.124 | 0.040 | 0.120 | 10.3 | 0.124 | 10.6 |
| 2010 | 0.007 | 0.017 | 0.083 | 0.117 | 0.127 | 0.281 | 0.153 | 0.153 | 0.027 | 0.151 | 12.8 | 0.153 | 12.9 |
| 2011 | 0.000 | 0.028 | 0.068 | 0.149 | 0.116 | 0.141 | 0.117 | 0.136 | 0.012 | 0.136 | 11.6 | 0.135 | 11.5 |

Table 27. Beginning of year biomass (mt) for eastern Georges Bank haddock during 1969-2012. Weights at age from the DFO survey were applied to the virtual population analysis bootstrap bias adjusted population numbers at age at the beginning of 2012 to determine biomass. Highlighted cells follow two recent large year classes, the 2000 and 2003.

| Year | Age Group |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9+ | 1+ | 2+ | 3+ |
| 1969 | 92 | 99 | 3403 | 1311 | 1816 | 17938 | 6702 | 733 | 2674 | 34768 | 34676 | 34577 |
| 1970 | 413 | 339 | 132 | 2528 | 954 | 1048 | 9823 | 3805 | 1743 | 20784 | 20371 | 20033 |
| 1971 | 27 | 1483 | 433 | 164 | 2113 | 600 | 670 | 5745 | 3346 | 14580 | 14553 | 13071 |
| 1972 | 610 | 99 | 1201 | 234 | 123 | 1506 | 185 | 180 | 4616 | 8752 | 8143 | 8044 |
| 1973 | 1338 | 2073 | 146 | 1056 | 125 | 74 | 1185 | 62 | 2509 | 8569 | 7231 | 5158 |
| 1974 | 354 | 4383 | 1615 | 184 | 499 | 42 | 46 | 956 | 1565 | 9646 | 9292 | 4909 |
| 1975 | 396 | 1281 | 4626 | 1754 | 200 | 412 | 33 | 41 | 1918 | 10661 | 10264 | 8983 |
| 1976 | 6216 | 1444 | 1671 | 4062 | 1516 | 183 | 299 | 24 | 1507 | 16922 | 10706 | 9261 |
| 1977 | 694 | 22593 | 2017 | 1965 | 2915 | 1175 | 171 | 217 | 1201 | 32949 | 32255 | 9661 |
| 1978 | 466 | 2543 | 26857 | 2566 | 1805 | 2162 | 706 | 153 | 1100 | 38360 | 37893 | 35350 |
| 1979 | 6018 | 1707 | 3538 | 21951 | 2489 | 1375 | 1289 | 421 | 987 | 39775 | 33757 | 32050 |
| 1980 | 717 | 21953 | 2524 | 4377 | 16108 | 1631 | 805 | 584 | 1036 | 49737 | 49019 | 27066 |
| 1981 | 531 | 2613 | 17859 | 2859 | 4206 | 10418 | 1063 | 380 | 1212 | 41141 | 40611 | 37998 |
| 1982 | 241 | 1920 | 3304 | 14393 | 2385 | 3005 | 6770 | 636 | 1232 | 33886 | 33645 | 31725 |
| 1983 | 294 | 882 | 2241 | 2924 | 10521 | 1866 | 1903 | 4128 | 1226 | 25985 | 25691 | 24808 |
| 1984 | 1852 | 1072 | 1187 | 2056 | 2180 | 6658 | 1248 | 1425 | 3607 | 21286 | 19434 | 18362 |
| 1985 | 189 | 6752 | 1511 | 1213 | 1604 | 1531 | 3524 | 626 | 2831 | 19779 | 19591 | 12839 |
| 1986 | 1875 | 603 | 8585 | 1410 | 1512 | 1368 | 1510 | 2472 | 2722 | 22057 | 20182 | 19579 |
| 1987 | 331 | 5655 | 758 | 8183 | 1290 | 710 | 887 | 747 | 3534 | 22095 | 21764 | 16109 |
| 1988 | 1564 | 839 | 6881 | 1342 | 4774 | 834 | 480 | 510 | 3208 | 20432 | 18868 | 18029 |
| 1989 | 63 | 6222 | 930 | 5682 | 1000 | 3412 | 552 | 312 | 2120 | 20293 | 20230 | 14008 |
| 1990 | 356 | 439 | 8868 | 1292 | 4921 | 583 | 1991 | 504 | 2010 | 20964 | 20608 | 20169 |
| 1991 | 249 | 1322 | 542 | 10042 | 1314 | 3584 | 347 | 1557 | 1865 | 20822 | 20573 | 19251 |
| 1992 | 1012 | 1015 | 1298 | 501 | 7434 | 1200 | 2313 | 162 | 2296 | 17233 | 16220 | 15205 |
| 1993 | 1521 | 3240 | 1417 | 1191 | 346 | 3772 | 875 | 1130 | 1635 | 15126 | 13605 | 10365 |
| 1994 | 1263 | 4755 | 5503 | 1014 | 541 | 302 | 2295 | 722 | 1655 | 18049 | 16787 | 12032 |
| 1995 | 515 | 4766 | 7624 | 5480 | 767 | 401 | 62 | 1271 | 1708 | 22595 | 22079 | 17314 |
| 1996 | 817 | 2419 | 7201 | 7920 | 4848 | 600 | 324 | 49 | 2603 | 26783 | 25966 | 23547 |
| 1997 | 2345 | 2444 | 3105 | 7201 | 6879 | 3652 | 339 | 194 | 1710 | 27870 | 25525 | 23081 |
| 1998 | 920 | 7761 | 4003 | 3701 | 6920 | 5762 | 3126 | 362 | 1618 | 34173 | 33253 | 25491 |
| 1999 | 3806 | 3318 | 10651 | 3743 | 2989 | 5835 | 4284 | 2389 | 1268 | 38284 | 34478 | 31160 |
| 2000 | 1155 | 13045 | 5403 | 13152 | 3907 | 3077 | 5157 | 3550 | 2768 | 51215 | 50060 | 37015 |
| 2001 | 8128 | 4276 | 19470 | 5837 | 11040 | 3188 | 2737 | 4258 | 5012 | 63946 | 55818 | 51541 |
| 2002 | 411 | 23629 | 5156 | 16262 | 4491 | 8379 | 2110 | 1791 | 6370 | 68598 | 68187 | 44558 |
| 2003 | 215 | 1299 | 49109 | 5558 | 14769 | 3486 | 6376 | 1539 | 5548 | 87898 | 87684 | 86385 |
| 2004 | 20957 | 675 | 2243 | 52805 | 5253 | 10669 | 2193 | 3780 | 4611 | 103187 | 82230 | 81555 |
| 2005 | 165 | 58407 | 867 | 1589 | 42013 | 3630 | 6520 | 1028 | 6528 | 120748 | 120583 | 62176 |
| 2006 | 1105 | 828 | 85312 | 930 | 1450 | 29856 | 2826 | 4785 | 5782 | 132873 | 131769 | 130940 |
| 2007 | 446 | 3782 | 1599 | 125745 | 1109 | 1927 | 21531 | 2078 | 6746 | 164964 | 164517 | 160735 |
| 2008 | 838 | 1570 | 7210 | 2439 | 128505 | 982 | 1302 | 14780 | 7009 | 164636 | 163798 | 162228 |
| 2009 | 486 | 2478 | 3008 | 10041 | 2241 | 131721 | 813 | 1447 | 23397 | 175632 | 175146 | 172668 |
| 2010 | 355 | 1337 | 3842 | 2884 | 8476 | 1962 | 100864 | 680 | 17877 | 138277 | 137923 | 136585 |
| 2011 | 22636 | 1280 | 1711 | 3461 | 2075 | 5533 | 1106 | 72778 | 12326 | 122906 | 100270 | 98990 |
| 2012 | 7379 | 89557 | 1445 | 1075 | 2679 | 1742 | 4164 | 847 | 58728 | 167615 | 160236 | 70679 |

Table 28. Partial recruitment of haddock normalized to ages 4 to 8 for 1969 to 2002 and to ages 5 to 8 for 2003 to 2011 from the eastern Georges Bank Canadian commercial fishery. ${ }^{1}$ Average F's used to normalize the partial recruitment were weighted by population numbers.

| Year | Age Group |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9+ |
| 1969 | 0.00 | 0.22 | 1.13 | 0.79 | 1.01 | 1.06 | 0.89 | 1.00 | 1.00 |
| 1970 | 0.05 | 0.40 | 0.15 | 0.69 | 1.13 | 1.02 | 1.12 | 1.00 | 1.43 |
| 1971 |  | 1.08 | 1.58 | 0.65 | 0.53 | 1.97 | 2.13 | 1.00 | 1.10 |
| 1972 | 0.22 | 0.01 | 1.18 | 2.06 | 1.37 | 0.51 | 2.84 | 1.00 | 1.34 |
| 1973 | 0.20 | 1.13 | 0.08 | 1.45 | 1.85 | 0.72 | 0.18 | 1.00 | 0.51 |
| 1974 | 0.11 | 2.78 | 1.56 |  | 1.24 | 1.46 | 0.12 | 0.83 | 1.33 |
| 1975 | 0.03 | 0.60 | 1.85 | 1.04 | 0.24 | 1.17 | 1.00 | 1.00 | 0.29 |
| 1976 | 0.02 | 0.17 | 0.31 | 1.13 | 0.59 |  | 0.57 |  | 0.13 |
| 1977 | 0.00 | 0.91 | 0.14 | 0.67 | 1.06 | 1.80 | 0.00 | 1.00 | 0.19 |
| 1978 | 0.01 | 0.28 | 1.95 | 0.46 | 0.96 | 1.85 | 1.66 | 1.00 | 0.14 |
| 1979 | 0.01 | 0.01 | 0.16 | 0.97 | 0.96 | 1.17 | 1.69 | 1.00 | 0.14 |
| 1980 | 0.02 | 1.80 | 0.45 | 0.36 | 1.19 | 1.08 | 1.91 | 1.00 | 0.14 |
| 1981 | 0.04 | 0.49 | 1.49 | 0.80 | 0.91 | 1.11 | 1.22 | 1.00 | 0.07 |
| 1982 | 0.00 | 0.64 | 1.05 | 1.05 | 0.55 | 1.04 | 1.01 | 1.00 | 0.60 |
| 1983 | 0.01 | 0.26 | 0.94 | 0.98 | 1.10 | 0.88 | 0.46 | 1.00 | 0.30 |
| 1984 | 0.01 | 0.12 | 0.54 | 0.71 | 0.68 | 1.23 | 1.24 | 1.00 | 0.87 |
| 1985 | 0.02 | 0.62 | 0.95 | 0.89 | 0.99 | 0.76 | 1.20 | 1.00 | 0.53 |
| 1986 | 0.02 | 0.11 | 1.28 | 0.73 | 1.25 | 1.10 | 1.23 | 1.00 | 0.23 |
| 1987 | 0.00 | 0.58 | 0.38 | 1.09 | 0.48 | 0.67 | 1.01 | 1.00 | 0.35 |
| 1988 | 0.01 | 0.08 | 1.00 | 0.51 | 1.19 | 0.84 | 0.70 | 1.00 | 0.36 |
| 1989 | 0.01 | 0.43 | 0.26 | 0.89 | 1.43 | 1.25 | 0.60 | 1.00 | 0.30 |
| 1990 | 0.05 | 0.03 | 0.55 | 0.47 | 1.25 | 1.09 | 0.86 | 1.00 | 0.28 |
| 1991 | 0.03 | 0.80 | 0.42 | 1.08 | 0.35 | 0.89 | 1.66 | 1.00 | 0.34 |
| 1992 | 0.01 | 0.34 | 0.70 | 0.68 | 1.14 | 0.37 | 1.01 | 1.00 | 0.31 |
| 1993 | 0.01 | 0.09 | 0.77 | 1.22 | 0.85 | 1.11 | 0.24 | 1.00 | 0.34 |
| 1994 | 0.01 | 0.10 | 0.45 | 0.88 | 0.75 | 3.32 | 0.75 | 1.00 | 0.23 |
| 1995 | 0.01 | 0.06 | 0.53 | 0.96 | 1.29 | 1.29 | 0.80 | 1.00 | 0.24 |
| 1996 | 0.00 | 0.04 | 0.38 | 0.93 | 1.09 | 1.78 | 1.05 | 1.00 | 0.63 |
| 1997 | 0.01 | 0.18 | 0.17 | 0.86 | 1.15 | 1.14 | 0.89 | 1.00 | 0.59 |
| 1998 | 0.02 | 0.11 | 0.63 | 0.69 | 1.06 | 1.33 | 0.81 | 1.00 | 0.62 |
| 1999 | 0.01 | 0.05 | 0.56 | 0.98 | 0.93 | 0.99 | 1.14 | 1.00 | 0.52 |
| 2000 | 0.00 | 0.09 | 0.58 | 1.09 | 0.96 | 0.94 | 0.72 | 1.00 | 0.52 |
| 2001 | 0.00 | 0.05 | 0.61 | 0.88 | 0.97 | 1.29 | 1.21 | 1.00 | 0.83 |
| 2002 | 0.00 | 0.03 | 0.23 | 0.97 | 0.93 | 1.17 | 0.86 | 1.00 | 0.90 |
| 2003 | 0.01 | 0.02 | 0.18 | 0.32 | 0.93 | 1.29 | 1.04 | 1.00 | 0.64 |
| 2004 | 0.004 | 0.05 | 0.11 | 0.33 | 0.66 | 1.00 | 1.99 | 1.00 | 0.55 |
| 2005 | 0.01 | 0.004 | 0.07 | 0.46 | 1.01 | 0.95 | 0.96 | 1.00 | 0.27 |
| 2006 | 0.005 | 0.01 | 0.05 | 0.14 | 0.85 | 1.04 | 0.63 | 1.00 | 0.29 |
| 2007 | 0.003 | 0.02 | 0.40 | 0.37 | 1.23 | 1.43 | 0.95 | 1.00 | 0.46 |
| 2008 | 0.01 | 0.08 | 0.29 | 1.22 | 0.99 | 1.92 | 1.64 | 1.00 | 0.36 |
| 2009 | 0.03 | 0.17 | 0.44 | 0.67 | 1.05 | 1.00 | 1.26 | 1.00 | 0.32 |
| 2010 | 0.04 | 0.11 | 0.55 | 0.77 | 0.83 | 1.84 | 1.00 | 1.00 | 0.18 |
| 2011 | 0.003 | 0.20 | 0.50 | 1.10 | 0.85 | 1.04 | 0.86 | 1.00 | 0.09 |
| Avg 1998-02 ${ }^{1}$ | 0.01 | 0.07 | 0.52 | 0.92 | 0.97 | 1.14 | 0.95 | 1.00 | 0.68 |
| Avg 2007-11 ${ }^{1}$ | 0.004 | 0.09 | 0.39 | 0.41 | 0.98 | 1.02 | 1.00 | 1.00 | 0.25 |
| Avg 2009-11 ${ }^{1}$ | 0.003 | 0.16 | 0.50 | 0.78 | 0.88 | 1.01 | 1.00 | 1.00 | 0.21 |
| Avg 2003-11 ${ }^{1}$ | 0.004 | 0.01 | 0.11 | 0.40 | 0.98 | 1.03 | 1.00 | 1.00 | 0.29 |

[^5]Table 29. Input for projections and risk analyses of eastern Georges Bank haddock for the 2013 fishery. A catch of $16,000 \mathrm{mt}$ in 2012 and natural mortality $=0.2$ were assumed for the forecasts. Shaded values indicate the 2003 (yellow) and the 2010 (blue) year classes.

| Year | Age Group |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9+ |
| Population Numbers (000s) |  |  |  |  |  |  |  |  |  |
| 2012 | 104928 | 481913 | 3159 | 2125 | 2687 | 1577 | 3841 | 712 | 43646 |
| Partial Recruitment to the Fishery ${ }^{1}$ |  |  |  |  |  |  |  |  |  |
| 2012 | 0.004 | $0.004{ }^{2}$ | 0.11 | 0.4 | 1 | 1 | 1 | 1 | 0.3 |
| 2013 | 0.004 | 0.014 | $0.05^{2}$ | 0.4 | 1 | 1 | 1 | 1 | 0.3 |
| Weight at beginning of year for population (kg) |  |  |  |  |  |  |  |  |  |
| 2012 | $0.070^{3}$ | $0.186^{3}$ | $0.457^{3}$ | $0.506^{3}$ | $0.997{ }^{3}$ | $1.104^{3}$ | $1.084^{3}$ | $1.190^{3}$ | $1.346^{3}$ |
| 2013 | $0.06{ }^{5}$ | $0.3^{5}$ | $0.39^{4}$ | $0.79{ }^{5}$ | $1.02{ }^{5}$ | $1.11{ }^{5}$ | $1.18{ }^{5}$ | $1.44{ }^{5}$ | $1.35{ }^{6}$ |
| 2014 | $0.06{ }^{5}$ | $0.3^{5}$ | $0.61{ }^{5}$ | $0.71{ }^{4}$ | $1.02{ }^{5}$ | $1.11{ }^{5}$ | $1.18{ }^{5}$ | $1.44{ }^{5}$ | $1.35{ }^{6}$ |
| Weight at age for catch (kg) ${ }^{7}$ |  |  |  |  |  |  |  |  |  |
| 2012 | 0.44 | $0.7{ }^{8}$ | 1.03 | 1.24 | 1.36 | 1.47 | 1.63 | 1.87 | $1.63{ }^{9}$ |
| 2013 | 0.44 | 0.88 | $0.98{ }^{8}$ | 1.24 | 1.36 | 1.47 | 1.63 | 1.87 | $1.63{ }^{9}$ |
| Maturity |  |  |  |  |  |  |  |  |  |
| 2012 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 2013 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |

${ }^{1}$ Based on 2003 to 2011 weighted average except where indicated and ages 5 to 8 assumed fully recruited.
${ }^{2}$ Based on observed values from 2003 year class.
${ }^{3} 2012$ Canadian Department of Fisheries and Oceans (DFO) survey average weights at age.
${ }^{4} 2003$ year class weights used for 2010 year class.
${ }^{5}$ 2010-2012 average weights (weighted by population) from the DFO survey.
${ }^{6}$ Ages $9+$ population weighted average from 2012 DFO survey (dominated by 2003 year class).
${ }^{7}$ 2009-2011 Canadian/USA landings average weights at age except where indicated.
${ }^{8} 2003$ year class Canadian/USA landings weights used for 2010 year class.
${ }^{9} 2003$ year class Canadian/USA landings weight at age 8. Assumes no growth.

Table 30. Bias adjusted deterministic projection results for eastern Georges Bank haddock for the 2013 fishery using 6.3 million age 1 recruits for the 2012 and 2013 year classes, the input values detailed in Table 29 and assuming that the 2012 quota of 16,000 mt is caught. Natural mortality was assumed to be 0.2. Shaded values indicate the 2010 year class (blue) and the $9+$ age group (yellow) which is dominated by the 2003 year class.

| Year | Age Group |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9+ | 1+ | 2+ | 3+ |
| Population Numbers (000s) |  |  |  |  |  |  |  |  |  |  |  |  |
| 2012 | 104928 | 481913 | 3159 | 2125 | 2687 | 1577 | 3841 | 712 | 43646 | 644588 | 539660 | 57747 |
| 2013 | 6300 | 85725 | 393719 | 2439 | 1406 | 1293 | 759 | 1848 | 30812 | 524301 | 518001 | 432276 |
| 2014 | 6300 | 5153 | 70004 | 318187 | 1800 | 888 | 816 | 479 | 24501 | 428128 | 421828 | 416675 |
| Population Biomass (mt) |  |  |  |  |  |  |  |  |  |  |  |  |
| 2012 | 7345 | 89636 | 1444 | 1075 | 2679 | 1741 | 4163 | 847 | 58747 | 167676 | 160331 | 70695 |
| 2013 | 378 | 25718 | 153550 | 1927 | 1435 | 1435 | 896 | 2662 | 41596 | 229597 | 229219 | 203501 |
| 2014 | 378 | 1546 | 42702 | 225912 | 1836 | 986 | 963 | 690 | 33076 | 308089 | 307711 | 306165 |
| Fishing mortality |  |  |  |  |  |  |  |  |  |  |  |  |
| 2012 | 0.002 | 0.002 | 0.058 | 0.213 | 0.531 | 0.531 | 0.531 | 0.531 | 0.159 |  |  |  |
| 2013 | 0.001 | 0.003 | 0.013 | 0.104 | 0.26 | 0.26 | 0.26 | 0.26 | 0.078 |  |  |  |
| Projected Catch Numbers (000s) |  |  |  |  |  |  |  |  |  |  |  |  |
| 2012 | 202 | 927 | 163 | 370 | 1012 | 594 | 1447 | 268 | 5843 | 10826 | 10624 | 9697 |
| 2013 | 6 | 202 | 4610 | 219 | 293 | 269 | 158 | 385 | 2098 | 8240 | 8234 | 8032 |
| Catch Biomass (mt) |  |  |  |  |  |  |  |  |  |  |  |  |
| 2012 | 89 | 649 | 168 | 459 | 1377 | 874 | 2359 | 501 | 9525 | 16000 | 15911 | 15262 |
| 2013 | 3 | 178 | 4518 | 271 | 399 | 396 | 258 | 720 | 3420 | 10162 | 10160 | 9982 |



Figure 1. Fisheries statistical unit areas in North Atlantic Fisheries Organization Subdivision 5Ze. Alpha-numeric codes, e.g. 5Zej, are the Canadian Department of Fisheries and Oceans designations and numeric codes, e.g. 561, are National Marine Fisheries Service designations. The eastern Georges Bank management unit is outlined by a heavy red line.


Figure 2. Historical catch of eastern Georges Bank haddock during 1931-1955 (Gavaris and Van Eeckhaute 1997) compared to recent catches during 1969-2011. Catch data for 1956 to 1968 were not available by unit area.


Figure 3. Nominal catches of eastern Georges Bank haddock during 1969-2011.


Figure 4. Haddock landings in eastern Georges Bank by month and gear for the Canadian commercial groundfish fishery in 2011 (wide bars) with sampling levels (narrow bars). No samples were available from the gillnet fishery but landings were very low.


Figure 5. Haddock numbers at length landed by components of the Canadian commercial groundfish fisheries and haddock discards at length from the Canadian scallop fishery on eastern Georges Bank in 2011. The scallop dredge length frequencies are expanded according to the axis on the right. OTB=otter trawl bottom, LL+HL=longline and handline, DR=scallop dredge. No samples were available from the gillnet fishery but landings were very low.


Figure 6. Numbers (top panel) and percent (bottom panel) of haddock landings at age by quarter by the Canadian groundfish fishery on eastern Georges Bank in 2011.


Figure 7. Length composition of haddock landed by the United States eastern Georges Bank groundfish fisheries in 2011.


Figure 8. Haddock landings and discards at age in numbers and percent by half year from the USA eastern Georges Bank groundfish fisheries in 2011.


Figure 9. Total commercial catch at age (numbers) of eastern Georges Bank haddock during 1969-2011. The 2000 and 2003 year classes are indicated in blue and purple, respectiviely. The bubble area is proportional to catch magnitude.



$\begin{array}{lllllllllllllll}1968 & 1971 & 1974 & 1977 & 1980 & 1983 & 1986 & 1989 & 1992 & 1995 & 1998 & 2001 & 2004 & 2007 & 2010\end{array}$
Figure 10. Average weights at age for eastern Georges Bank haddock from the Canadian, USA and combined commercial groundfish fishery during 1969-2011. From 1969 to 1973 only USA fishery sampling for lengths and ages was available. Between 1974 and 1984 a mix of USA and Canadian samples were used (Gavaris and Van Eeckhaute 1990).


Figure 11. Percent compostion in numbers and biomass of 2011 observed eastern Georges Bank haddock landings projected in 2010 and 2011 . The partial recruitment for the 9+ age group used in the 2010 projection was 0.3 while in the 2011 projection a value of 1.0 was used.


Figure 12. Age composition of the haddock catch for the eastern Georges Bank commercial fishery during 1969-1974, 1975-1984, 1985-1994, 1995-2004, and 2005-2011.


Figure 13. Stratification scheme used for National Marine Fisheries Service surveys. The eastern Georges Bank management area is indicated by shading.


Figure 14. Stratification scheme used for the Canadian Department of Fisheries and Oceans survey. The eastern Georges Bank management area is indicated by shading.


Figure 15. Conversion factors for NMFS surveys conducted by the Henry B. Bigelow since 2009. Factors are applied by dividing the Bigelow catch at length by the length specific conversion factor to make them equivalent to Albatross IV catches.


Figure 16. Distribution of eastern Georges Bank haddock abundance (number/tow) as observed from the National Marine Fisheries Service fall survey. The squares (left panels) are shaded relative to the average survey catch for 2001 to 2010. The expanding symbols (right panels) represent the 2011 survey catches. Length based conversion coefficients have been applied since the 2009 survey to make them comparable to surveys undertaken by the Albatross IV.


Figure 17. Distribution of eastern Georges Bank haddock abundance (number/tow) as observed from the Canadian Department of Fisheries and Oceans survey. The squares (left panels) are shaded relative to the average survey catch for 2002 to 2011. The expanding symbols (right panels) represent the 2012 survey catches.


Figure 18. Distribution of eastern Georges Bank haddock abundance (number/tow) as observed from the National Marine Fisheries Service spring survey. The squares (left panels) are shaded relative to the average survey catch for 2002 to 2011. The expanding symbols (right panels) represent the 2012 survey catches. Length based conversion coefficients have been applied since the 2009 survey to make them comparable to surveys undertaken by the Albatross IV.


Figure 19. Estimated abundance at age (numbers in 000 's) of eastern Georges Bank haddock for the Canadian Department of Fisheries and Oceans (DFO) for 1986 to 2012, the National Marine Fisheries Service (NMFS) spring survey for 1968 to 2012 and the NMFS fall survey for 1963 to 2011. Bubble area is proportional to magnitude (see Tables 14-16). Conversion factors to adjust for changes in door type and survey vessel were applied to the NMFS surveys. From 1973-81 (yellow circles), a 41 Yankee trawl was used for the NMFS spring survey while a 36 Yankee was used in the other years. Length based conversion coefficients have been applied to the NMFS surveys since the 2009 survey to make them comparable to surveys undertaken by the Albatross IV. Symbol size has not been adjusted between surveys for the catchability of the survey.


Figure 20. Biomass from National Marine Fisheries Service (NMFS) fall (ages 2-8), NMFS spring (ages 3-8) and Canadian Department of Fisheries and Oceans (DFO) (ages 3-8) research surveys for eastern Georges Bank haddock during 1963-2011, 1968-2012, 1986-2012, respectively (scaled by calibration constants). Conversion factors to adjust for changes in door type and survey vessel were applied to the NMFS surveys. From 1973-81 a 41 Yankee trawl was used for the NMFS spring survey while a 36 Yankee was used in the other years. Length based conversion coefficients have been applied to the NMFS surveys since the 2009 survey to make them comparable to surveys undertaken by the Albatross IV.


Figure 21. Year-class abundance for ages 0 and 1 from the National Marine Fisheries Service (NMFS) fall survey for 1963-2011 and ages 1 and 2 from the NMFS spring survey for 1968-2012 and the Canadian Department of Fisheries and Oceans (DFO) research survey for 1986-2012 (scaled by calibration constants) for eastern Georges Bank haddock. Conversion factors to adjust for changes in door type and survey vessel were applied to the NMFS surveys. From 1973-81 a 41 Yankee trawl was used for the NMFS spring survey while a 36 Yankee was used in the other years. Length based conversion coefficients have been applied to the NMFS surveys since the 2009 survey to make them comparable to surveys undertaken by the Albatross IV.


Figure 22. Average weights (upper panel) and lengths (lower panel) at age for eastern Georges Bank haddock derived from Canadian Department of Fisheries and Oceans surveys during 1986-2012.


Figure 23. Residuals of survey abundance indices, by year and age group, from the Canadian Department of Fisheries and Oceans (DFO) research survey 1986 to 2012 and the National Marine Fisheries Service (NMFS) spring and autumn surveys during 1969 to 2012 and 1969 to 2011, respectively, for eastern Georges Bank haddock. Solid symbols indicate positive values, open symbols indicate negative values. Bubble area is proportional to magnitude. From 1973-81 (light blue circles), a Yankee 41 trawl was used for the NMFS spring survey while a Yankee 36 trawl was used in the other years.


Figure 24. Age by age plots of the observed and predicted In abundance index versus In population numbers for eastern Georges Bank haddock from the Department of Fisheries and Oceans survey during 1986-2012.


Figure 25. Age by age plots of the observed and predicted In abundance index versus In population numbers for eastern Georges Bank haddock from the National Marine Fisheries Service spring survey with a Yankee 36 net during 1969-1972 and 1982-2012.


Figure 26. Age by age plots of the observed and predicted In abundance index versus In population numbers for eastern Georges Bank haddock from the National Marine Fisheries Service spring survey with a Yankee 41 net during 1973-1981.


Figure 27. Age by age plots of the observed and predicted In abundance index versus In population numbers for eastern Georges Bank haddock from the National Marine Fisheries Service fall survey 19692011.


Figure 28. Retrospective results from virtual population analysis of eastern Georges Bank haddock for biomass (ages $3-8$ ), fishing mortality (ages $5-8$ ) and recruits (age 1) as successive years of data are excluded in the assessment.


Figure 29. Relative retrospective results from virtual population analysis of eastern Georges Bank haddock for biomass (ages 3-8), fishing mortality (ages $5-8$ ) and recruits (age 1) as successive years of data are excluded in the assessment.


Figure 30. Historical retrospective analysis of the 1998 to 2012 eastern Georges Bank haddock assessments for 1969 to 2012 3+ biomass (top panel) and age 4-8 fishing mortality (middle panel) and 1985 to 2012 age 1 recruitment (lower panel). The insert in the lower panel expands the lower recruitment axis. The 1998 benchmark assessment is indicated in red and the 2012 assessment in blue.


Figure 31. The 1969 to 2012 eastern Georges Bank adult haddock (ages 3+) biomass trend from virtual population analysis compared with the survey adult biomass (scaled with catchabilities) trends.


Figure 32. Beginning of year adult (3+) biomass and number of age 1 recruits for eastern Georges Bank haddock during 1931-1955 and 1969-2012.


Figure 33. Cumulative probability distribution with 80\% confidence intervals for 2012 age 3+ biomass (000 mt ) and 2011 age 5+ fishing mortality for eastern Georges Bank haddock.


Figure 34. Average weights at age for eastern Georges Bank haddock from the Canada/USA commercial groundfish fishery during 1969-2011 and from the Canadian Department of Fisheries and Oceans survey during 1986-2012.


Figure 35. Fishing mortality rate (weighted by population) for eastern Georges Bank haddock ages 4+ and $5+$ during 1969-2011 and the fishing mortality threshold reference established at $\mathrm{F}_{\text {ref }}=0.26$.


Figure 36. Partial recruitment of eastern Georges Bank haddock for 3 year classes, 1998, 2000 and 2003 and the average and weighted (by population numbers) average for 2007 to 2011. The partial recruitment is normalized to ages 4-8 for years before 2003 and to ages 5-8 for years after 2002.


Figure 37. Surplus production of eastern Georges Bank haddock available to the commercial fishery compared to the harvested yield during 1969-2011.


Figure 38. Amount of productivity attributible to growth (ages 2 to $9+$ ) of eastern Georges Bank haddock and the amount contributed by recruitment (age 2) during 1969-2011.


Figure 39. Relationship between eastern Georges Bank adult (ages 3+) haddock biomass and recruits at age 1 during 1931-1955 and 1969-2011.


Figure 40. Ratio of recruits (numbers at age 1) to spawning biomass (kg) for eastern Georges Bank haddock during 1931-1955 and during 1969-2011.


Figure 41. Condition as Fulton's K from the Canadian Department of Fisheries and Oceans survey for eastern Georges Bank haddock for age group 1-9 during 1986-2012 compared to average for the time series.


Figure 42. Length at age of eastern Georges Bank haddock year classes from the DFO survey.


Figure 43. Eastern Georges Bank haddock total mortality (Z's) for ages 3 to 9+ for 1986 to 2011 from the Canadian Department of Fisheries and Oceans survey and the age 8 fishing mortality from VPA (bottom right).


Figure 44. Risk of 2013 fishing mortality exceeding $F_{\text {ref }}=0.26$ for eastern Georges Bank haddock for increasing catch quotas.

APPENDIX A. Eastern Georges Bank haddock assessment model variation which uses the age 9 indices from the DFO and NMFS spring surveys for calibration of the VPA.

Introduction:

The 2003 haddock year class will continue to contribute a significant part of the catch when it enters the 9+ group in 2013. At the 2010 TRAC, there was concern that inclusion of age 9 in a plus group may confound the estimation of $F$ and partial recruitment for age 9. Previous assessments have indicated a domed partial recruitment (for age 9+) which would have a significant effect on catch projections. At the 2010 TRAC it was recommended to include age 9 as a tuning index for the DFO and NMFS spring surveys as a sensitivity analysis. This would provide a more direct and reliable estimate of age 9 F and partial recruitment for the strong 2000 year class which reached age 9 in 2009. Results should be taken into account for the 2013 projections.

## Method:

The benchmark model uses ages 1-8 and a plus group (9+) in the catch at age and calibrates the VPA with ages 1-8 from the DFO and NMFS spring surveys and ages 0 to 5 from the NMFS fall survey. In this model variation, the $9+$ group in the catch at age was expanded to age 9 with an age 10+ group, thereby taking the strong 2000 year class at age 9 in 2009 out of the plus group and allowing the use of the age 9 DFO and NMFS spring survey indices to calibrate age 9 abundance. As in the benchmark model, the $F$ on age 8 was calculated from ages 4 to 7 for years before 2003 and from ages 5 to 7 for 2003 to 2011 for this model variant.

## Results:

The statistical properties of the estimates of population abundance are shown in Table A1. Beginning of year population abundance, fishing mortality rates and beginning of year biomass are presented in Tables A2 to A4, respectively. Table A5 reports partial recruitment normalized to ages 4 to 8 for 1992 to 2002 and for ages 5 to 8 for 2003 to 2011. Survey catchability, residual bubble plots, age 9 residual trends are presented in Figures A1 to A3, respectively. A comparison of fishing mortality, of population weighted partial recruitment and of biomass between the benchmark model and the variant model are presented in Figures A4 to A6, respectively.

Except for the NMFS Yankee 41 survey, the survey catchabilities for ages 1 to 8 (Table A1) are all slightly higher for the variant model when compared to the benchmark model and population abundance (Table A2) is accordingly reduced for the variant model. For the DFO survey age 9 catchability is lower than the catchabilities for ages 3 to 8 (Figure A1). Residuals for ages 1 to 8 for the variant (Figure A2) are similar to the benchmark residuals. This model has a strong residual pattern for age 9 showing positive residuals in the early part of the time series and nearly all negative residuals for the last 9 (DFO survey) to 13 (NMFS spring survey) years (Figures A2 and A3). In comparison to estimates of population abundance, F and biomass from the benchmark results, the variant estimates reduced population abundance (Table A2), increased Fs for recent years (Table A3, Figure A4) and reduced biomass for recent years (Table A4; Figure A5). The model variant 3+ biomass for 2006 to 2012 is $70 \%$ to $54 \%$ of the benchmark model biomass. Except for the 2009 to 2011 average, estimates of population weighted partial recruitment are similar to the benchmark results (Figure A6). This model results in a low partial recruitment for the strong 2000 year class at age 9 of 0.36 (Table A5). In
comparison, the benchmark model gives a similar partial recruitment of 0.32 for the age $9+$ group in 2009 which would be dominated by the strong 2000 year class.

## Discussion

The variant model results indicate that there is a misspecification of the model to the data as indicated by the age 9 residual pattern for the DFO and NMFS spring survey. This residual pattern indicates that this model is producing more age 9 fish in the population in recent years than the survey is indicating. This interpretation is corroborated by the slightly domed catchability pattern seen for the DFO survey. The domed fishery partial recruitment pattern could be interpreted as a symptom of a misspecification of the model. It is unlikely that the survey and fishery would have a lower selectivity for age 9 haddock versus fish aged 8 and younger as haddock are not strong swimmers and cannot outswim the trawl. The residual pattern and the domed fishery partial recruitment could be aliasing increased natural mortality for older fish, emigration of age 9 and older fish outside the survey area or some other unknown mechanism.

The implications for catch projections are significant since the 9+ age group will make up a substantial portion of the 2013 catch. Applying a reduced partial recruitment for the 9+ age group, as indicated by the benchmark model, for the catch projection is one way of addressing the model misspecification so as not to advise a catch level that would result in a fishing mortality above the reference level.

The exceptional 2003 year class may provide more conclusive evidence of the most appropriate value for the 9+ age group PR when its fate in the fishery and survey is documented as it reaches age 9 and older.

Table A1. Statistical properties of estimates of population abundance (numbers in 000's) at beginning of year 2012 and survey calibration constants (unitless, survey:population) for eastern Georges Bank haddock obtained from a bootstrap with 1000 replications for the model variation of the benchmark.

| Age | Estimate | Standard Error | Relative Error | Bias | $\begin{gathered} \text { Relative } \\ \text { Bias } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Population Abundance (000's) |  |  |  |  |  |
| 1 | 115640 | 63073 | 0.545 | 12984 | 0.112 |
| 2 | 496152 | 192837 | 0.389 | 38582 | 0.078 |
| 3 | 3033 | 931 | 0.307 | 102 | 0.034 |
| 4 | 2052 | 606 | 0.295 | 76 | 0.037 |
| 5 | 2588 | 769 | 0.297 | 89 | 0.034 |
| 6 | 1561 | 402 | 0.257 | 47 | 0.030 |
| 7 | 4003 | 1000 | 0.250 | 76 | 0.019 |
| 8 | 674 | 219 | 0.325 | 24 | 0.036 |
| 9 | 16020 | 4396 | 0.274 | 316 | 0.020 |
| Survey Calibration Constants |  |  |  |  |  |
| Canadian Department of Fisheries and Oceans Survey |  |  |  |  |  |
| 1 | 0.257 | 0.044 | 0.170 | 0.003 | 0.012 |
| 2 | 0.451 | 0.078 | 0.174 | 0.005 | 0.010 |
| 3 | 0.864 | 0.156 | 0.180 | 0.000 | 0.000 |
| 4 | 0.873 | 0.146 | 0.167 | -0.001 | -0.001 |
| 5 | 0.916 | 0.157 | 0.171 | 0.014 | 0.015 |
| 6 | 0.784 | 0.141 | 0.180 | 0.018 | 0.024 |
| 7 | 0.888 | 0.156 | 0.176 | 0.009 | 0.010 |
| 8 | 0.881 | 0.161 | 0.182 | 0.021 | 0.024 |
| 9 | 0.753 | 0.133 | 0.177 | 0.013 | 0.017 |

National Marine Fisheries Service (NMFS) Spring Survey - Yankee 36 -1969-72/1982-2011

| 1 | 0.139 | 0.021 | 0.155 | 0.001 | 0.010 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 0.343 | 0.053 | 0.155 | 0.004 | 0.011 |
| 3 | 0.435 | 0.069 | 0.159 | 0.005 | 0.012 |
| 4 | 0.417 | 0.066 | 0.159 | 0.010 | 0.024 |
| 5 | 0.464 | 0.068 | 0.147 | 0.008 | 0.016 |
| 6 | 0.413 | 0.059 | 0.143 | 0.004 | 0.010 |
| 7 | 0.413 | 0.063 | 0.151 | 0.004 | 0.010 |
| 8 | 0.448 | 0.073 | 0.163 | 0.007 | 0.015 |
| 9 | 0.442 | 0.086 | 0.193 | 0.004 | 0.009 |
| NMFS Spring | Survey | Yankee 41 $-1973-81$ |  |  |  |
| 1 | 0.228 | 0.076 | 0.335 | 0.012 | 0.053 |
| 2 | 0.534 | 0.169 | 0.316 | 0.021 | 0.039 |
| 3 | 0.652 | 0.210 | 0.322 | 0.032 | 0.049 |
| 4 | 0.806 | 0.257 | 0.320 | 0.028 | 0.034 |
| 5 | 0.895 | 0.289 | 0.323 | 0.045 | 0.051 |
| 6 | 0.811 | 0.308 | 0.380 | 0.048 | 0.059 |
| 7 | 1.488 | 0.522 | 0.351 | 0.081 | 0.054 |
| 8 | 0.724 | 0.239 | 0.331 | 0.045 | 0.062 |
| 9 | 0.680 | 0.373 | 0.549 | 0.056 | 0.083 |
| NMFS Fall Survey |  |  |  |  |  |
| 0 | 0.148 | 0.020 | 0.136 | 0.001 | 0.010 |
| 1 | 0.323 | 0.044 | 0.137 | 0.004 | 0.012 |
| 2 | 0.256 | 0.037 | 0.145 | 0.004 | 0.016 |
| 3 | 0.250 | 0.034 | 0.135 | 0.001 | 0.005 |
| 4 | 0.208 | 0.029 | 0.140 | 0.002 | 0.010 |
| 5 | 0.177 | 0.025 | 0.140 | 0.002 | 0.011 |

Table A2. Beginning of year population abundance (numbers in 000's) for eastern Georges Bank haddock during 1969-2012 from a virtual population analysis using the bootstrap bias adjusted population abundance at the beginning of 2012 for the model variation of the benchmark. Highlighted cells follow two recent large year classes, the 2000 and 2003.

| Year | Age Group |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10+ | 1+ | 2+ | 3+ |
| 1969 | 804 | 193 | 3639 | 872 | 911 | 7650 | 2497 | 250 | 473 | 304 | 17592 | 16789 | 16596 |
| 1970 | 3593 | 658 | 141 | 1681 | 479 | 447 | 3659 | 1299 | 123 | 383 | 12080 | 8488 | 7830 |
| 1971 | 235 | 2881 | 463 | 109 | 1061 | 256 | 249 | 1961 | 729 | 242 | 7945 | 7710 | 4829 |
| 1972 | 5303 | 192 | 1285 | 155 | 62 | 642 | 69 | 61 | 913 | 427 | 8682 | 3379 | 3187 |
| 1973 | 11637 | 4029 | 157 | 702 | 63 | 32 | 441 | 21 | 36 | 693 | 17118 | 5481 | 1451 |
| 1974 | 3081 | 8519 | 1728 | 123 | 251 | 18 | 17 | 327 | 10 | 445 | 14073 | 10991 | 2472 |
| 1975 | 3448 | 2489 | 4947 | 1166 | 100 | 176 | 12 | 14 | 241 | 316 | 12594 | 9146 | 6657 |
| 1976 | 54074 | 2807 | 1787 | 2701 | 761 | 78 | 112 | 8 | 9 | 428 | 62336 | 8262 | 5455 |
| 1977 | 6038 | 43909 | 2157 | 1307 | 1463 | 501 | 64 | 74 | 7 | 342 | 55519 | 49481 | 5572 |
| 1978 | 4057 | 4942 | 28724 | 1706 | 906 | 922 | 263 | 52 | 47 | 272 | 41620 | 37563 | 32621 |
| 1979 | 52343 | 3316 | 3783 | 14595 | 1249 | 587 | 480 | 144 | 34 | 253 | 76530 | 24188 | 20871 |
| 1980 | 6238 | 42663 | 2699 | 2910 | 8083 | 695 | 300 | 199 | 79 | 222 | 63867 | 57629 | 14967 |
| 1981 | 4615 | 5078 | 19098 | 1901 | 2110 | 4442 | 396 | 130 | 117 | 235 | 37887 | 33272 | 28194 |
| 1982 | 2095 | 3730 | 3533 | 9568 | 1197 | 1281 | 2521 | 217 | 76 | 281 | 24218 | 22123 | 18393 |
| 1983 | 2552 | 1714 | 2396 | 1943 | 5278 | 796 | 708 | 1409 | 122 | 234 | 16918 | 14366 | 12652 |
| 1984 | 16096 | 2080 | 1269 | 1367 | 1094 | 2838 | 465 | 486 | 786 | 260 | 26480 | 10384 | 8304 |
| 1985 | 1639 | 13113 | 1613 | 806 | 804 | 652 | 1311 | 214 | 250 | 573 | 20401 | 18762 | 5649 |
| 1986 | 13901 | 1334 | 8803 | 974 | 496 | 480 | 419 | 731 | 127 | 568 | 27265 | 13364 | 12030 |
| 1987 | 2182 | 11301 | 1056 | 4886 | 639 | 278 | 281 | 237 | 442 | 532 | 21303 | 19121 | 7820 |
| 1988 | 16026 | 1786 | 7379 | 747 | 2623 | 433 | 176 | 156 | 131 | 697 | 29457 | 13432 | 11645 |
| 1989 | 1020 | 13073 | 1415 | 4068 | 500 | 1346 | 255 | 109 | 86 | 588 | 21873 | 20852 | 7779 |
| 1990 | 2377 | 833 | 9555 | 1080 | 2632 | 281 | 791 | 178 | 68 | 510 | 17796 | 15419 | 14586 |
| 1991 | 2059 | 1918 | 675 | 6611 | 765 | 1464 | 164 | 496 | 107 | 436 | 14259 | 12201 | 10282 |
| 1992 | 8055 | 1666 | 1152 | 471 | 3550 | 546 | 847 | 70 | 275 | 394 | 16632 | 8577 | 6911 |
| 1993 | 12048 | 6551 | 1139 | 652 | 270 | 1595 | 366 | 407 | 34 | 468 | 23063 | 11015 | 4464 |
| 1994 | 11307 | 9792 | 5108 | 613 | 274 | 139 | 710 | 263 | 193 | 346 | 28398 | 17090 | 7299 |
| 1995 | 5646 | 9225 | 7635 | 3399 | 335 | 159 | 25 | 410 | 136 | 398 | 26970 | 21324 | 12099 |
| 1996 | 5568 | 4616 | 7481 | 5770 | 2410 | 226 | 107 | 18 | 289 | 422 | 26486 | 20917 | 16302 |
| 1997 | 16540 | 4555 | 3750 | 5684 | 3946 | 1596 | 131 | 72 | 12 | 519 | 36286 | 19746 | 15191 |
| 1998 | 8073 | 13516 | 3645 | 3004 | 4171 | 2794 | 1131 | 96 | 52 | 405 | 36481 | 28408 | 14893 |
| 1999 | 26621 | 6593 | 10890 | 2721 | 2225 | 2928 | 1884 | 823 | 68 | 342 | 54753 | 28132 | 21539 |
| 2000 | 8425 | 21771 | 5358 | 8238 | 1940 | 1598 | 2084 | 1312 | 585 | 313 | 51312 | 42887 | 21115 |
| 2001 | 72556 | 6892 | 17536 | 3982 | 5603 | 1351 | 1116 | 1511 | 907 | 675 | 111454 | 38898 | 32005 |
| 2002 | 3465 | 59383 | 5584 | 12794 | 2780 | 3824 | 870 | 730 | 1028 | 1112 | 90459 | 86994 | 27610 |
| 2003 | 2057 | 2836 | 48318 | 4375 | 8772 | 1934 | 2527 | 609 | 499 | 1492 | 71927 | 69870 | 67034 |
| 2004 | 218042 | 1678 | 2313 | 37907 | 3322 | 5843 | 1200 | 1638 | 399 | 1418 | 272343 | 54300 | 52623 |
| 2005 | 5673 | 178218 | 1351 | 1826 | 27748 | 2176 | 3439 | 519 | 962 | 1252 | 221911 | 216238 | 38020 |
| 2006 | 19128 | 4633 | 145695 | 1080 | 1293 | 16527 | 1308 | 2076 | 310 | 1671 | 192048 | 172920 | 168287 |
| 2007 | 5660 | 15643 | 3779 | 117009 | 844 | 799 | 9450 | 861 | 1205 | 1483 | 155250 | 149590 | 133947 |
| 2008 | 7408 | 4632 | 12773 | 2930 | 89185 | 558 | 503 | 6451 | 583 | 2034 | 125023 | 117615 | 112983 |
| 2009 | 3993 | 6061 | 3765 | 10212 | 2157 | 64262 | 365 | 335 | 4644 | 2056 | 95794 | 91801 | 85740 |
| 2010 | 4551 | 3254 | 4850 | 2910 | 7697 | 1532 | 42593 | 233 | 223 | 5149 | 67843 | 63293 | 60039 |
| 2011 | 559145 | 3697 | 2614 | 3618 | 2100 | 5541 | 911 | 26017 | 146 | 4209 | 603790 | 44645 | 40948 |
| 2012 | 102656 | 457570 | 2931 | 1977 | 2499 | 1514 | 3928 | 649 | 15698 | 3497 | 589422 | 486765 | 29195 |

Table A3. Fishing mortality rates for eastern Georges Bank haddock during 1969-2011 from a virtual population analysis using the bootstrap bias adjusted population abundance at the beginning of 2012 for the model variation of the benchmark. The aggregated rates are weighted by population numbers. The rates for ages 4-8 and 5-8 are also shown as exploitation rate (\%).

| Year | Age Group |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | $9 \quad 10+$ |  | (\%) |  | (\%) |
| 1969 | 00 | 11 | 0.572 | 0.399 | 0.512 | 0.538 | 0.453 | 0.508 | 0.5080 .508 | 0.508 | 36.4 | 0.516 | 36.9 |
| 1970 | 0.021 | 0.152 | 0.057 | 0.261 | 0.425 | 0.383 | 0.424 | 0.377 | 1.0270 .419 | 0.377 | 28.7 | 0.410 | 30.7 |
|  | 0.000 | 0.608 | 0.892 | 0.369 | 0.302 | 1.11 | 1.2 | 0.5 | 0.5270 .979 | 0.56 | 39.5 | 570 | 39.8 |
|  | 0.075 | 0.005 | 0. | 0.705 | 0.468 | 0.1 | 0.973 | 0.342 | 0.4600 .458 | 42 | . 4 | 5 | 21.9 |
| 1973 | 0.112 | 0.647 | 0.045 | 0.830 | 1.056 | 0.410 | 0.101 | 0.571 | 0.3060 .293 | 0.571 | 39.8 | 0.245 | 19.7 |
| 1974 | 0.013 | 0.343 | 0.193 | 0.000 | 0.154 | 0.181 | 0.015 | 0.103 | 0.0730 .166 | 0.103 | 8.9 | 0.124 | 10.6 |
| 1975 | 0.006 | 0.132 | 0.405 | 0.227 | 0.051 | 0.255 | 0.218 | 0.218 | 0.0210 .096 | 0.218 | 17.8 | 0.184 | 15.3 |
| 76 | 0.008 | 0.064 | 0.113 | 0.413 | 0.217 | 0.000 | 0.208 | 0.000 | 0.8510 .034 | 0.357 | 27.3 | 0.197 | 6.2 |
| 77 | 0.000 | 0.224 | 0.035 | 0 | 0 | 0. | 0.000 | 47 | . 049 | 0.247 | 9 | 97 | 23.4 |
| 1978 | 0.002 | 0.067 | 0.477 | 0.112 | 0. | 0. | 0.405 | 0.244 | , | 0.244 | .7 | 49 | 26.9 |
| 1979 | 0.004 | 0.006 | 0.062 | 0.391 | 0.385 | 0. | 0.679 | 0.401 | 0.1990 .038 | 0.401 | 30.2 | 0.464 | - |
| 880 | 0.006 | 0.604 | 0.151 | 0.121 | 0.399 | 0.36 | 0.639 | 0.335 | 0.1790 .003 | 0.335 | 26.0 | 0.402 | 30.2 |
| 1981 | 0.013 | 0.163 | 0.491 | 0.263 | 0.299 | 0.366 | 0.401 | 0.330 | 0.0380 .016 | 0.330 | 25.6 | 0.348 | 26.8 |
| 82 | 0.001 | 0.242 | 0.398 | 0.395 | 0.208 | 0.393 | 0.382 | 0.377 | 0.8030 .110 | 0.377 | 28.7 | 0.345 | 26.6 |
| 83 | 0.005 | 0.101 | 0.361 | 0.375 | 0.420 | 0.338 | 0.176 | 0.383 | . 043 | 0.383 | 29.0 | . 385 | 29.1 |
| 保 | 0.005 | 0.054 | 0.254 | 0.330 | 0.317 | 0.572 | 0.577 | 0.467 | 0.5130 .131 | 0.467 | 34.1 | 0.505 | 36.2 |
| 1985 | 0.006 | 0.198 | 0.305 | 0.285 | 0.316 | 0.242 | 0.384 | 0.320 | 0.1620 .173 | 0.320 | 25.0 | 0.330 | 6 |
| 886 | 0.007 | 0.033 | 0.389 | 0.221 | 0.379 | 0.334 | 0.372 | 0.304 | 0.1990 .041 | 0.304 | 23.8 | 0.341 | 26.4 |
| 19 | 0.000 | 0.226 | 0.147 | 0.422 | 0.189 | 0.259 | 0.391 | 0.389 | 0.1990 .083 | 0.389 | 29.4 | 0.275 | 1.9 |
| 88 | 0.004 | 0.033 | 0.395 | 0.201 | 0.467 | 0.331 | 0.277 | 0.394 | 0.2470 .124 | 0.394 | 29.7 | 0.437 | 32.3 |
| 9 | 0.002 | 0.113 | 0.070 | 0.235 | 0.378 | 0.332 | 0.158 | 0.265 | 0.1530 .069 | 0.265 | 21.2 | 0.319 | 4.9 |
| 1990 | 0.014 | 0.010 | 0.168 | 0.145 | 0.387 | 0.335 | 0.266 | 0.309 | 0.2590 .060 | 0.309 | 24.2 | 0.355 | 27.2 |
| 1991 | 0.012 | 0.310 | 0.161 | 0.422 | 0.138 | 0.347 | 0.647 | 0.389 | 0.2080 .100 | 0.389 | 29.4 | 0.316 | 24.7 |
| 1992 | 0.007 | 0.180 | 0.368 | 0.356 | 0.600 | 0.199 | 0.533 | 0.528 | 0.2990 .069 | 0.528 | 37.5 | 0.544 | 38.4 |
| 1993 | 0.007 | 0.049 | 0.420 | 0.668 | 0.462 | 0.610 | 0.132 | 0.548 | 0.9440 .133 | 0.548 | 38.6 | 0.519 | 37.0 |
| 94 | 0.004 | 0.049 | 0.207 | 0.403 | 0.347 | 1.515 | 0.348 | 0.461 | 0.1820 .062 | 0.461 | 33.7 | 0.486 | 35.2 |
| 1995 | 0.002 | 0.009 | 0.080 | 0.144 | 0.192 | 0.192 | 0.120 | 0.150 | 0.0460 .030 | 0.150 | 12.6 | 0.171 | 14.3 |
| 1996 | 0.001 | 0.008 | 0.075 | 0.180 | 0.212 | 0.345 | 0.203 | 0.194 | 0.2330 .04 | 0.194 | 16.0 | 0.222 | 18 |
| 199 | 0.002 | 0.023 | 0.022 | 0.110 | 0.145 | 0.145 | 0.113 | 0.127 | 0.1020 .072 | 0.127 | 10.8 | 0.144 | 12.2 |
| 1998 | 0.002 | 0.016 | 0.092 | 0.100 | 0.154 | 0.194 | 0.118 | 0.146 | 0.1880 .074 | 0.146 | 12.3 | 0.162 | 13. |
| 1999 | 0.001 | 0.007 | 0.079 | 0.138 | 0.131 | 0.140 | 0.162 | 0.142 | 0.1710 .052 | 0.142 | 12.0 | 0.143 | 12.1 |
| 000 | 0.001 | 0.016 | . 097 | 0.185 | 0.162 | 0.158 | 0.121 | 0.169 | 0.1080 .045 | 0.169 | 14.2 | 0.150 | 12. |
| 2001 | 0.000 | 0.011 | 0.115 | 0.159 | 0.182 | 0.240 | 0.224 | 0.185 | 0.1540 .150 | 0.185 | 15.3 | 0.196 | 16.2 |
| 002 | 0.000 | 0.006 | 0.044 | 0.177 | 0.163 | 0.214 | 0.157 | 0.181 | 0.1900 .135 | 0.181 | 15.1 | 0.188 | 15.6 |
| 2003 | 0.004 | 0.004 | 0.043 | 0.075 | 0.206 | 0.277 | 0.233 | 0.222 | 0.2140 .115 | 0.186 | 15.5 | 0.222 | 18. |
| 2004 | 0.002 | 0.017 | 0.036 | 0.112 | 0.223 | 0.330 | 0.637 | 0.331 | 0.2990 .140 | 0.164 | 13.8 | 0.331 | 25.7 |
| 005 | 0.003 | 0.001 | 0.024 | 0.145 | 0.317 | 0.308 | 0.304 | 0.315 | 0.1440 .035 | 0.307 | 24.0 | 0.315 | 24.6 |
| 2006 | 0.001 | 0.004 | 0.019 | 0.046 | 0.280 | 0.357 | 0.217 | 0.342 | 0.3220 .051 | 0.328 | 25.5 | 0.342 | 26.4 |
| 2007 | 0.000 | 0.003 | 0.053 | 0.071 | 0.212 | 0.260 | 0.180 | 0.188 | 0.1270 .040 | 0.082 | 7.1 | 0.188 | 15.6 |
| 2008 | 0.001 | 0.007 | 0.023 | 0.103 | 0.126 | 0.223 | 0.204 | 0.127 | 0.0490 .038 | 0.126 | 10.8 | 0.127 | 10.8 |
| 2009 | 0.004 | 0.022 | 0.055 | 0.080 | 0.137 | 0.207 | 0.243 | 0.206 | 0.0730 .039 | 0.189 | 15.6 | 0.205 | 16.9 |
| 2010 | 0.007 | 0.018 | 0.088 | 0.121 | 0.123 | 0.301 | 0.284 | 0.263 | 0.1750 .038 | 0.253 | 20.4 | 0.261 | 20.9 |
| 2011 | 0.000 | 0.030 | 0.073 | 0.158 | 0.120 | 0.136 | 0.126 | 0.288 | 0.0660 .017 | 0.240 | 19.4 | 0.249 | 20.1 |

Table A4. Beginning of year biomass (mt) for eastern Georges Bank haddock during 1969-2012 from a virtual population analysis using the bootstrap bias adjusted population abundance at the beginning of 2012 for the model variation of the benchmark. Highlighted cells follow two recent large year classes, the 2000 and 2003.

| Year | Age Group |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10+ | 1+ | $2+$ | 3+ |
| 1969 | 92 | 99 | 3402 | 1311 | 1816 | 17938 | 6781 | 733 | 1411 | 1105 | 34688 | 34595 | 34496 |
| 1970 | 413 | 339 | 132 | 2528 | 954 | 1048 | 9939 | 3805 | 368 | 1391 | 20916 | 20503 | 20164 |
| 1971 | 27 | 1483 | 433 | 164 | 2113 | 600 | 678 | 5745 | 2178 | 880 | 14300 | 14273 | 12791 |
| 1972 | 610 | 99 | 1201 | 234 | 123 | 1506 | 187 | 180 | 2727 | 1553 | 8418 | 7809 | 7710 |
| 1973 | 1338 | 2073 | 146 | 1056 | 125 | 74 | 1199 | 62 | 107 | 2520 | 8700 | 7363 | 5289 |
| 1974 | 354 | 4383 | 1615 | 184 | 499 | 42 | 47 | 956 | 29 | 1617 | 9728 | 9374 | 4991 |
| 1975 | 396 | 1281 | 4626 | 1754 | 200 | 412 | 33 | 41 | 720 | 1149 | 10611 | 10215 | 8934 |
| 1976 | 6216 | 1444 | 1670 | 4062 | 1516 | 183 | 303 | 24 | 27 | 1558 | 17003 | 10787 | 9343 |
| 1977 | 694 | 22592 | 2016 | 1965 | 2915 | 1175 | 173 | 217 | 20 | 1244 | 33012 | 32318 | 9726 |
| 1978 | 466 | 2543 | 26856 | 2565 | 1805 | 2162 | 715 | 153 | 142 | 990 | 38397 | 37930 | 35387 |
| 1979 | 6017 | 1706 | 3537 | 21949 | 2489 | 1375 | 1305 | 421 | 100 | 921 | 39819 | 33802 | 32096 |
| 1980 | 717 | 21951 | 2524 | 4376 | 16106 | 1631 | 815 | 584 | 235 | 807 | 49746 | 49029 | 27078 |
| 1981 | 531 | 2613 | 17856 | 2859 | 4205 | 10416 | 1076 | 380 | 349 | 855 | 41138 | 40607 | 37995 |
| 1982 | 241 | 1919 | 3303 | 14389 | 2385 | 3004 | 6848 | 636 | 228 | 1023 | 33975 | 33734 | 31815 |
| 1983 | 293 | 882 | 2240 | 2923 | 10516 | 1865 | 1924 | 4126 | 364 | 852 | 25986 | 25693 | 24811 |
| 1984 | 1850 | 1070 | 1186 | 2055 | 2179 | 6654 | 1262 | 1424 | 2348 | 947 | 20976 | 19126 | 18056 |
| 1985 | 188 | 6747 | 1508 | 1211 | 1602 | 1530 | 3561 | 625 | 745 | 2082 | 19801 | 19612 | 12865 |
| 1986 | 1872 | 602 | 8577 | 1407 | 1510 | 1367 | 1509 | 2468 | 334 | 2459 | 22104 | 20232 | 19630 |
| 1987 | 328 | 5645 | 757 | 8172 | 1286 | 709 | 886 | 746 | 1568 | 1984 | 22080 | 21753 | 16107 |
| 1988 | 1558 | 830 | 6867 | 1340 | 4764 | 831 | 478 | 509 | 456 | 2805 | 20438 | 18880 | 18050 |
| 1989 | 63 | 6199 | 919 | 5665 | 998 | 3401 | 550 | 312 | 321 | 1773 | 20200 | 20137 | 13939 |
| 1990 | 354 | 437 | 8831 | 1276 | 4902 | 581 | 1982 | 501 | 219 | 1799 | 20884 | 20529 | 20092 |
| 1991 | 246 | 1314 | 540 | 9992 | 1296 | 3563 | 346 | 1548 | 314 | 1661 | 20821 | 20575 | 19261 |
| 1992 | 985 | 1003 | 1287 | 499 | 7378 | 1182 | 2295 | 161 | 923 | 1521 | 17236 | 16251 | 15247 |
| 1993 | 1470 | 3152 | 1398 | 1177 | 344 | 3721 | 858 | 1115 | 71 | 1599 | 14904 | 13434 | 10282 |
| 1994 | 1206 | 4594 | 5347 | 993 | 528 | 300 | 2238 | 706 | 584 | 1174 | 17671 | 16465 | 11871 |
| 1995 | 487 | 4552 | 7353 | 5289 | 745 | 388 | 60 | 1227 | 385 | 1296 | 21783 | 21296 | 16744 |
| 1996 | 771 | 2284 | 6875 | 7617 | 4655 | 579 | 311 | 47 | 993 | 1783 | 25915 | 25144 | 22859 |
| 1997 | 2186 | 2307 | 2931 | 6851 | 6566 | 3473 | 322 | 185 | 40 | 1637 | 26499 | 24313 | 22006 |
| 1998 | 866 | 7235 | 3773 | 3489 | 6547 | 5460 | 2951 | 342 | 164 | 1457 | 32285 | 31418 | 24183 |
| 1999 | 3452 | 3123 | 9919 | 3509 | 2801 | 5472 | 4015 | 2240 | 199 | 1051 | 35779 | 32327 | 29205 |
| 2000 | 975 | 11829 | 5083 | 12179 | 3629 | 2859 | 4791 | 3291 | 1626 | 1101 | 47364 | 46388 | 34559 |
| 2001 | 6774 | 3609 | 17629 | 5459 | 10071 | 2925 | 2512 | 3920 | 2489 | 2237 | 57623 | 50850 | 47241 |
| 2002 | 331 | 19690 | 4344 | 14556 | 4153 | 7513 | 1893 | 1611 | 2689 | 3086 | 59867 | 59536 | 39846 |
| 2003 | 165 | 1048 | 40881 | 4650 | 12957 | 3182 | 5579 | 1357 | 1113 | 3958 | 74889 | 74723 | 73676 |
| 2004 | 13932 | 520 | 1807 | 43639 | 4339 | 9105 | 1947 | 3203 | 1045 | 3005 | 82545 | 68612 | 68092 |
| 2005 | 158 | 38807 | 666 | 1271 | 34022 | 2874 | 5264 | 831 | 2206 | 3483 | 89583 | 89425 | 50617 |
| 2006 | 1122 | 793 | 56655 | 710 | 1125 | 22576 | 2081 | 3616 | 597 | 4504 | 93777 | 92656 | 91863 |
| 2007 | 433 | 3840 | 1530 | 82965 | 837 | 1394 | 14737 | 1438 | 2151 | 3032 | 112358 | 111924 | 108084 |
| 2008 | 793 | 1524 | 7322 | 2329 | 82700 | 700 | 870 | 9519 | 1437 | 3783 | 110977 | 110184 | 108660 |
| 2009 | 455 | 2345 | 2919 | 10200 | 2129 | 80849 | 541 | 898 | 10351 | 4571 | 115259 | 114803 | 112458 |
| 2010 | 330 | 1252 | 3632 | 2793 | 8622 | 1850 | 56763 | 414 | 524 | 10573 | 86754 | 86424 | 85172 |
| 2011 | 21493 | 1190 | 1600 | 3255 | 2002 | 5641 | 1021 | 35665 | 300 | 7192 | 79359 | 57865 | 56675 |
| 2012 | 7219 | 85034 | 1340 | 1000 | 2492 | 1672 | 4258 | 772 | 20919 | 5936 | 130643 | 123423 | 38390 |

Table A5. Partial recruitment of haddock from the eastern Georges Bank commercial fishery during 19692011 for the model variation of the benchmark. Partial recruitment was normalized to ages 4 to 8 for 1969 to 2002 and to ages 5 to 8 for 2003 to 2011 (indicated by shading). Highlighted cells follow two recent large year classes, the 2000 and 2003. Missing values are due to zero catch.

| Year | Age Group |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10+ |
| 1969 | 0.00 | 0.22 | 1.13 | 0.79 | 1.01 | 1.06 | 0.89 | 1.00 | 1.00 | 1.00 |
| 1970 | 0.05 | 0.40 | 0.15 | 0.69 | 1.13 | 1.02 | 1.12 | 1.00 | 2.72 | 1.11 |
| 1971 |  | 1.08 | 1.58 | 0.65 | 0.53 | 1.97 | 2.13 | 1.00 | 0.93 | 1.74 |
| 1972 | 0.22 | 0.01 | 1.18 | 2.06 | 1.37 | 0.51 | 2.84 | 1.00 | 1.34 | 1.34 |
| 1973 | 0.20 | 1.13 | 0.08 | 1.45 | 1.85 | 0.72 | 0.18 | 1.00 | 0.54 | 0.51 |
| 1974 | 0.11 | 2.78 | 1.56 |  | 1.24 | 1.46 | 0.12 | 0.83 | 0.59 | 1.34 |
| 1975 | 0.03 | 0.60 | 1.85 | 1.04 | 0.24 | 1.17 | 1.00 | 1.00 | 0.10 | 0.44 |
| 1976 | 0.02 | 0.17 | 0.31 | 1.13 | 0.59 |  | 0.57 |  | 2.33 | 0.09 |
| 1977 | 0.00 | 0.91 | 0.14 | 0.67 | 1.06 | 1.80 | 0.00 | 1.00 |  | 0.20 |
| 1978 | 0.01 | 0.28 | 1.95 | 0.46 | 0.96 | 1.85 | 1.66 | 1.00 | 0.16 | 0.13 |
| 1979 | 0.01 | 0.01 | 0.16 | 0.97 | 0.96 | 1.17 | 1.69 | 1.00 | 0.50 | 0.09 |
| 1980 | 0.02 | 1.80 | 0.45 | 0.36 | 1.19 | 1.08 | 1.91 | 1.00 | 0.53 | 0.01 |
| 1981 | 0.04 | 0.49 | 1.49 | 0.80 | 0.91 | 1.11 | 1.22 | 1.00 | 0.12 | 0.05 |
| 1982 | 0.00 | 0.64 | 1.05 | 1.05 | 0.55 | 1.04 | 1.01 | 1.00 | 2.13 | 0.29 |
| 1983 | 0.01 | 0.26 | 0.94 | 0.98 | 1.10 | 0.88 | 0.46 | 1.00 | 0.69 | 0.11 |
| 1984 | 0.01 | 0.12 | 0.54 | 0.71 | 0.68 | 1.23 | 1.24 | 1.00 | 1.10 | 0.28 |
| 1985 | 0.02 | 0.62 | 0.95 | 0.89 | 0.99 | 0.75 | 1.20 | 1.00 | 0.51 | 0.54 |
| 1986 | 0.02 | 0.11 | 1.28 | 0.73 | 1.25 | 1.10 | 1.22 | 1.00 | 0.66 | 0.14 |
| 1987 | 0.00 | 0.58 | 0.38 | 1.09 | 0.49 | 0.67 | 1.01 | 1.00 | 0.51 | 0.21 |
| 1988 | 0.01 | 0.08 | 1.00 | 0.51 | 1.19 | 0.84 | 0.70 | 1.00 | 0.63 | 0.32 |
| 1989 | 0.01 | 0.43 | 0.26 | 0.89 | 1.43 | 1.25 | 0.60 | 1.00 | 0.58 | 0.26 |
| 1990 | 0.05 | 0.03 | 0.54 | 0.47 | 1.25 | 1.08 | 0.86 | 1.00 | 0.84 | 0.20 |
| 1991 | 0.03 | 0.80 | 0.41 | 1.08 | 0.35 | 0.89 | 1.66 | 1.00 | 0.53 | 0.26 |
| 1992 | 0.01 | 0.34 | 0.70 | 0.67 | 1.14 | 0.38 | 1.01 | 1.00 | 0.57 | 0.13 |
| 1993 | 0.01 | 0.09 | 0.77 | 1.22 | 0.84 | 1.11 | 0.24 | 1.00 | 1.72 | 0.24 |
| 1994 | 0.01 | 0.11 | 0.45 | 0.88 | 0.75 | 3.29 | 0.75 | 1.00 | 0.40 | 0.14 |
| 1995 | 0.01 | 0.06 | 0.53 | 0.96 | 1.28 | 1.28 | 0.80 | 1.00 | 0.31 | 0.20 |
| 1996 | 0.00 | 0.04 | 0.39 | 0.93 | 1.09 | 1.78 | 1.05 | 1.00 | 1.20 | 0.21 |
| 1997 | 0.02 | 0.18 | 0.17 | 0.86 | 1.14 | 1.14 | 0.89 | 1.00 | 0.80 | 0.57 |
| 1998 | 0.02 | 0.11 | 0.63 | 0.69 | 1.06 | 1.33 | 0.81 | 1.00 | 1.29 | 0.51 |
| 1999 | 0.01 | 0.05 | 0.56 | 0.98 | 0.93 | 0.99 | 1.14 | 1.00 | 1.21 | 0.37 |
| 2000 | 0.00 | 0.10 | 0.57 | 1.09 | 0.96 | 0.93 | 0.72 | 1.00 | 0.64 | 0.26 |
| 2001 | 0.00 | 0.06 | 0.62 | 0.86 | 0.98 | 1.30 | 1.21 | 1.00 | 0.84 | 0.81 |
| 2002 | 0.00 | 0.03 | 0.24 | 0.98 | 0.90 | 1.18 | 0.86 | 1.00 | 1.05 | 0.75 |
| 2003 | 0.02 | 0.02 | 0.19 | 0.34 | 0.93 | 1.25 | 1.05 | 1.00 | 0.97 | 0.52 |
| 2004 | 0.01 | 0.05 | 0.11 | 0.34 | 0.67 | 1.00 | 1.93 | 1.00 | 0.90 | 0.42 |
| 2005 | 0.01 | 0.00 | 0.08 | 0.46 | 1.01 | 0.98 | 0.96 | 1.00 | 0.46 | 0.11 |
| 2006 | 0.00 | 0.01 | 0.06 | 0.14 | 0.82 | 1.04 | 0.64 | 1.00 | 0.94 | 0.15 |
| 2007 | 0.00 | 0.01 | 0.28 | 0.38 | 1.13 | 1.38 | 0.96 | 1.00 | 0.68 | 0.21 |
| 2008 | 0.00 | 0.05 | 0.18 | 0.81 | 0.99 | 1.76 | 1.60 | 1.00 | 0.39 | 0.30 |
| 2009 | 0.02 | 0.11 | 0.27 | 0.39 | 0.67 | 1.01 | 1.18 | 1.00 | 0.36 | 0.19 |
| 2010 | 0.03 | 0.07 | 0.34 | 0.46 | 0.47 | 1.16 | 1.09 | 1.01 | 0.67 | 0.15 |
| 2011 | 0.00 | 0.12 | 0.29 | 0.64 | 0.48 | 0.55 | 0.51 | 1.16 | 0.26 | 0.07 |
| Avg 1998-02 ${ }^{1}$ | 0.00 | 0.06 | 0.55 | 0.97 | 0.98 | 1.15 | 0.94 | 1.00 | 0.89 | 0.63 |
| Avg 2009-11 ${ }^{1}$ | 0.00 | 0.10 | 0.31 | 0.46 | 0.51 | 0.98 | 1.08 | 1.15 | 0.37 | 0.13 |
| Avg 2003-11 ${ }^{1}$ | 0.00 | 0.01 | 0.11 | 0.38 | 0.94 | 1.00 | 1.06 | 1.10 | 0.50 | 0.20 |

[^6]

Figure A1. Survey catchability for EGB haddock for the DFO, NMFS spring and fall surveys for the model variation of the benchmark.


Figure A2. Residuals of survey abundance indices by year and age group for the Canadian Department of Fisheries and Oceans (DFO) 1986 to 2012 and the National Marine Fisheries Service (NMFS) 1969 to 2012 spring and 1969 to 2011 fall surveys for eastern Georges Bank haddock for the model variation of the benchmark. Solid symbols indicate positive values, open symbols indicate negative values. Bubble area is proportional to magnitude. From 1973-81 (light blue circles), a 41 Yankee trawl was used for the NMFS spring survey while a 36 Yankee was used in the other years.

DFO Age 9


NMFS Spring Age 9


Figure A3. Residuals for age 9 for 1986 to 2012 for the DFO survey and for 1969 to 2012 for the NMFS spring survey for the model variation of the benchmark.


Figure A4. Fishing mortality rate (weighted by population) for eastern Georges Bank haddock ages 4+ (dotted line)/5+ (solid line) during 1969 to 2011 and the fishing mortality reference established at $F_{\text {ref }}=$ 0.26 for the benchmark (Benchmark) and the model variation of the benchmark (Variant).


Figure A5. Comparison of beginning of year eastern Georges Bank haddock adult (3+) biomass for the model variation of the benchmark (Variant) and for the model based on the benchmark assessment (Benchmark).


Figure A6. Population weighted average partial recruitment of eastern Georges Bank haddock for 3 time periods, 1998 to 2002, 2003 to 2011 and 2009 to 2011. The partial recruitment is normalized to ages $4-8$ for years before 2003 and to ages $5-8$ for years after 2002. The figure on the left is from the model variation of the benchmark and on the right from the benchmark assessment model.

Appendix B. Comparison of EGB haddock TRAC catch advice, TMGC quota decision, actual catch, resulting fishing mortality, and biomass changes. All catches are calendar year catches. In the "Results" column, values in italics are assessment results in the year immediately following the catch year; values in normal font are results from the 2012 assessment. This table was kindly provided by Tom Nies (New England Fisheries Management Council) in 2011 and updated to the 2012 assessment.

| TRAC | Catch Year | TRAC Analysis/Recommendation |  | TMGC Decision |  | Actual Catch/ Compared to Risk Analysis | Results | Comments ${ }^{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Amount | Rationale | Amount | Rationale |  |  |  |
| $1999{ }^{1}$ | 1999 | 6,300 mt | $\mathrm{F}_{0.1}$ | NA | NA | 4,000 mt | Below $\mathrm{F}_{0.1}$ |  |
| $2000{ }^{1}$ | 2000 | 8,800 mt | $\mathrm{F}_{0.1}$ | NA | NA | 5,600 mt | Below $\mathrm{F}_{0.1}$ |  |
| $2001{ }^{1}$ | 2001 | 9,700 mt | $\mathrm{F}_{0.1}$ | NA | NA | 7,300 mt | Below $F_{0.1}$ |  |
| $2002{ }^{1}$ | 2002 | 10,700 mt | $\mathrm{F}_{0.1}$ | NA | NA | 7,500 mt | Below Fref $=0.26$ |  |
| Transition to TMGC process in following year; note catch year differs from TRAC year in following lines F's below are based on Age 5+ |  |  |  |  |  |  |  |  |
| 2003 | 2004 | (1) $20,000 \mathrm{mt}$ <br> (2) $8,000 \mathrm{mt}$ | (1) Low risk of exceeding $\mathrm{F}_{\text {ref }}$ <br> (2) Neutral risk of biomass decline | 15,000 mt | Low risk of exceeding $\mathrm{F}_{\text {ref }}$ and reduction in biomass > 10\% | $11,800 \mathrm{mt}$ Low risk of exceeding $F_{\text {ref }}$ | $F=0.17$ <br> Age 3+ biomass decreased $27 \% 04-05$ $F=0.273$ <br> Age 3+ biomass decreased 24\% 04-05 | In projection, PR on age 4 (2000 year class) was set to 1. Realized was 0.3. Fully recruited ages now 5-8. |
| 2004 | 2005 | 26,000 mt | Neutral risk of exceeding $\mathrm{F}_{\text {ref }}$ <br> Adult biomass will increase substantially | 23,000 mt | Low risk of exceeding $\mathrm{F}_{\text {ref }}$ <br> Adult biomass will increase substantially | $15,100 \mathrm{mt}$ <br> Low risk of exceeding $F_{\text {ref }}$ | $F=0.29$ <br> Age 3+ biomass increased $142 \% 05-06$ $F=0.247$ <br> Age 3+ biomass increased 111\% 05-06 | Higher F due to lower realized PR and weights at age for 2003 year class and lower weights for 2000 year class. <br> Large biomass increase due to 2003 year class. |
| 2005 | 2006 | $\begin{gathered} 22,000 \\ \mathrm{mt} / 18,000 \mathrm{mt} \end{gathered}$ | Neutral/low risk of exceeding $\mathrm{F}_{\text {ref }}$ | 22,000 mt | Neutral risk of exceeding $\mathrm{F}_{\text {ref }}$ | $12,642 \mathrm{mt}$ <br> Low risk of exceeding $\mathrm{F}_{\text {ref }}$ | $F=0.36$ Age 3+ biomass increased $26 \% 06-07$ $F=0.248$ Age 3+ biomass increased $23 \% 06-07$ | Higher F due to lower realized PR and weights at age for 2003 year class and lower weights for 2000 year class. |


| TRAC | Catch Year | TRAC Analysis/Recommendation |  | TMGC Decision |  | Actual Catch/ Compared to Risk Analysis | Results | Comments ${ }^{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Amount | Rationale | Amount | Rationale |  |  |  |
| 2006 | 2007 | $\begin{gathered} 19,000 \\ \mathrm{mt} / 16,000 \mathrm{mt} \end{gathered}$ | Neutral/low risk of exceeding $\mathrm{F}_{\text {ref }}$ | 19,000 mt | Neutral risk of exceeding $\mathrm{F}_{\text {ref }}$ | $12,680 \mathrm{mt}$ <br> Low risk of exceeding $\mathrm{F}_{\text {ref }}$ | $F=0.14$ <br> Age 3+ biomass increased $4 \% 07-08$ $F=0.127$ <br> Age 3+ biomass increased 1\% 07-08 | 2003 year class specific values for projection inputs. |
| 2007 | 2008 | $\begin{aligned} & 26,700 \mathrm{mt} / \\ & 23,000 \mathrm{mt} \end{aligned}$ | Neutral/low risk of exceeding $\mathrm{F}_{\text {ref }}$ | 23,000 mt | Low risk of exceeding $\mathrm{F}_{\text {ref }}$ | $15,995 \mathrm{mt}$ Low risk of exceeding $F_{\text {ref }}$ | $F=0.09$ Age $3+$ biomass increased $7 \% 08-09$ $F=0.080$ Age $3+$ biomass increased $6 \% 08-09$ | 2003 year class specific values for projection inputs. |
| 2008 | 2009 | $\begin{aligned} & 33,000 \mathrm{mt} \\ & / 28,000 \mathrm{mt} \end{aligned}$ | Neutral/low risk of exceeding $\mathrm{F}_{\text {ref }}$ | 30,000 mt | Low to neutral risk of exceeding $\mathrm{F}_{\text {ref }}$ | $19,707 \mathrm{mt}$ <br> Low risk of exceeding $F_{\text {ref }}$ | $F=0.13$ <br> Age 3+ biomass decreased $21 \% 09-10$ $F=0.124$ <br> Age 3+ biomass decreased 21\% 09-10 | 2003 year class specific values for projection inputs. |
| 2009 | 2010 | $\begin{aligned} & 29,600 \mathrm{mt} / \\ & 25,900 \mathrm{mt} \end{aligned}$ | Neutral/low risk of exceeding $\mathrm{F}_{\text {ref }}$ | 29,600 mt | Low to neutral risk of exceeding $\mathrm{F}_{\text {ref }}$ | $18,794 \mathrm{mt}$ <br> Low risk of exceeding $\mathrm{F}_{\text {ref }}$ | $F=0.148$ Age 3+ biomass decreased $28 \%$ $10-11$ $F=0.153$ Age 3+ biomass decreased $28 \% 10-11$ | 2003 and 2005 year class specific values for projection inputs. |
| 2010 | 2011 | $\begin{aligned} & 22,000 \mathrm{mt} / \\ & 19,000 \mathrm{mt} \end{aligned}$ | Neutral/low risk of exceeding $\mathrm{F}_{\text {ref }}$ | 22,000 mt | Neutral risk of exceeding $\mathrm{F}_{\text {ref }}$ | $12,655 \mathrm{mt}$ <br> Low risk of exceeding $\mathrm{F}_{\text {ref }}$ | $F=0.135$ <br> Age 3+ biomass decreased 29\% 11-12 | 2003 and 2005 year class specific values for projection inputs. |
| 2011 | 2012 | $\begin{aligned} & 16,000 \mathrm{mt} \\ & 13,900 \mathrm{mt} \end{aligned}$ | Neutral/low risk of exceeding $\mathrm{F}_{\text {ref }}$ <br> Adult biomass will increase substantially from 2012 to 2013 (2010 year class ) | 16,000mt | Neutral risk of exceeding $\mathrm{F}_{\text {ref }}$ | N/A | N/A | 2003, 2005 and 2010 year class specific values for projection inputs. $\mathrm{PR}_{9+}$ for projection higher than model estimate. |
| 2012 | 2013 | $\begin{gathered} 10,400 \mathrm{mt} / \\ 9,300 \mathrm{mt} \end{gathered}$ | Neutral/low risk of exceeding $\mathrm{F}_{\text {ref }}$ <br> Adult biomass will increase substantially | N/A | N/A | N/A | N/A | 2003 year class values for 2010 year class inputs. Model estimate |

# Eastern Georges Bank Haddock for 2012 

| TRAC | Catch <br> Year | TRAC Analysis/Recommendation | TMGC Decision | Actual Catch/ <br> Compared to Risk |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | from 2012 to 2013 |  |  |  |
|  |  | Comesults |  |  |

${ }^{1}$ Prior to implementation of US/CA Understanding
${ }^{2}$ Comments by L. Van Eeckhaute


[^0]:    ${ }^{1} 1895 \mathrm{mt}$ excluded because of suspected area misreporting.
    ${ }^{2}$ The USA quota pertains to the USA fishing year of May 1 to Apr. 30 while the USA catches reported in this table pertain to the calendar year.
    ${ }^{3}$ USA landings and discards revised in 2011.

[^1]:    ${ }^{1}$ For fishing year from May 1 to April 30

[^2]:    ${ }^{1}$ Tonnage class 1 landings included in 'Total' if not specified. Historically, tonnage class 1 accounted for a low proportion of total otter trawl landings but the proportion has increased in recent years..
    ${ }^{2}$ Total includes catches for tonnage classes which are not listed, only tonnage classes with substantial catches listed
    ${ }^{3}$ Catches in 1988 of $26 t, 776 t$, 1091t and $2 t$ for side otter trawlers and stern otter trawlers tonnage classes 2 , 3 and 5 respectively were excluded because of suspected area misreporting.

[^3]:    ${ }^{1}$ Catches in 1988 of $3 t$ t, 1846t and 46t for Jan., Feb., and Mar., respectively for otter trawlers were excluded because of suspected area misreporting

[^4]:    ${ }^{1}$ United States landings at age were calculated by half year, however, landings occurred in other quarters.

[^5]:    ${ }^{1}$ Average partial recruitments are weighted by population numbers.

[^6]:    ${ }^{1}$ Weighted by population numbers

