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Foreword 
 
The purpose of these Proceedings is to document the activities and key discussions of the 
meeting. The Proceedings include research recommendations, uncertainties, and the rationale 
for decisions made by the meeting. Proceedings also document when data, analyses or 
interpretations were reviewed and rejected on scientific grounds, including the reason(s) for 
rejection. As such, interpretations and opinions presented in this report individually may be 
factually incorrect or misleading, but are included to record as faithfully as possible what was 
considered at the meeting. No statements are to be taken as reflecting the conclusions of the 
meeting unless they are clearly identified as such. Moreover, further review may result in a 
change of conclusions where additional information was identified as relevant to the topics 
being considered, but not available in the timeframe of the meeting. In the rare case when there 
are formal dissenting views, these are also archived as Annexes to the Proceedings. 
 
This workshop was not carried out as a formal Fisheries and Oceans Canada (DFO) Science 
Advisory process; however, it is being documented in the Canadian Science Advisory 
Secretariat’s (CSAS) Proceedings series as it presents some topics of interest related to the 
advisory process.   
 

Avant-propos 
 

Le présent compte rendu a pour but de documenter les principales activités et discussions qui 
ont eu lieu au cours de la réunion. Il contient des recommandations sur les recherches à 
effectuer, traite des incertitudes et expose les motifs ayant mené à la prise de décisions 
pendant la réunion. En outre, il fait état de données, d’analyses ou d’interprétations passées en 
revue et rejetées pour des raisons scientifiques, en donnant la raison du rejet. Bien que les 
interprétations et les opinions contenus dans le présent rapport puissent être inexacts ou 
propres à induire en erreur, ils sont quand même reproduits aussi fidèlement que possible afin 
de refléter les échanges tenus au cours de la réunion. Ainsi, aucune partie de ce rapport ne doit 
être considéré en tant que reflet des conclusions de la réunion, à moins d’indication précise en 
ce sens. De plus, un examen ultérieur de la question pourrait entraîner des changements aux 
conclusions, notamment si l’information supplémentaire pertinente, non disponible au moment 
de la réunion, est fournie par la suite. Finalement, dans les rares cas où des opinions 
divergentes sont exprimées officiellement, celles-ci sont également consignées dans les 
annexes du compte rendu. 
 
Le présent atelier n’a pas été tenu dans le cadre officiel du processus des avis scientifiques du 
ministère des Pêches et des Océans (MPO). Celui-ci est toutefois documenté dans la série des 
comptes rendus du Secrétariat canadien de consultation scientifique (SCCS), car il couvre 
certains sujets en lien avec le processus des avis. 
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SUMMARY 
 
The Center of Expertise in Marine Mammalogy organised a workshop to bring together DFO 
and outside experts and review approaches being used to model marine mammal population 
dynamics, the current state of development of Bayesian modelling, and to identify challenges 
and issues related to this approach in its use on Canadian marine mammals.   The CEMAM 
Workshop on Bayesian Modelling of Marine Mammal Population Dynamics was held on 27-29 
March 2007 at the Freshwater Institute.   This report summarizes the conclusions of the 
workshop and, in appendices, gives extended abstracts of the workshop presentations and a list 
of references on Bayesian modelling. 
 
 

SOMMAIRE 
 
Le Centre d’expertise sur les mammifères marins (CEMAM) a organisé un atelier regroupant 
des experts du MPO et de l’extérieur dans le but d’examiner les approches utilisées pour 
modéliser la dynamique des populations de mammifères marins et l’état d’avancement de la 
modélisation bayésienne ainsi que pour relever les difficultés et les problèmes reliés à 
l’application de cette approche aux mammifères marins au Canada. L’atelier du CEMAM sur la 
modélisation bayésienne de la dynamique des populations de mammifères marins a eu lieu du 
27 au 29 mars 2007 à l’Institut des eaux douces. Le présent rapport résume les conclusions 
formulées pendant l’atelier et contient, en annexe, les résumés complets des exposés donnés 
au cours de l’atelier ainsi qu’une liste de références sur la modélisation bayésienne. 
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INTRODUCTION 
 

INTRODUCTION 
 

Over the past decades, the field of ecology 
and resource management has seen 
increasing use of Bayesian modelling (Dixon 
and Ellison 1996; Ellison 2004; Clarke 2005).  
This trend is also noticeable in marine 
mammal science (Givens et al. 1995; Wade 
1999, 2002; Ver Hoef and Frost 2003; Hobbs 
et al. 2006).  In 2006, the DFO’s Center of 
Expertise on Marine Mammalogy (CEMAM) 
acknowledged this methodological trend and 
recognised the value of these methods in the 
work of DFO marine mammalogists, in 
particular with respect to population 
monitoring. 
 

Depuis quelques décennies, la modélisation 
bayésienne gagne en popularité dans les 
domaines de l’écologie et de la gestion des 
ressources (Dixon et Ellison, 1996; Ellison, 
2004; Clarke, 2005). On remarque également 
cette tendance du côté de la science des 
mammifères marins (Givens et al., 1995; 
Wade, 1999, 2002; Ver Hoef et Frost, 2003; 
Hobbs et al., 2006). En 2006, le Centre 
d’expertise sur les mammifères marins 
(CEMAM) du MPO reconnaissait cette 
tendance méthodologique ainsi que la valeur 
de ces méthodes dans les travaux des experts 
des mammifères marins du MPO, surtout en 
ce qui concerne la surveillance des 
populations. 
 

Bayesian modelling is an approach that 
incorporates the uncertainty associated with 
data and prior knowledge on model 
parameters used to estimate abundance and 
trend of marine mammals. Currently, a number 
of DFO projects are underway to develop 
population models for marine mammals using 
a Bayesian framework (e.g. harp seals, grey 
seals, beluga whales). However, these 
projects would benefit from discussions with 
other experts in the field before they are used 
to generate scientific advice.  Furthermore, 
DFO marine mammalogists not familiar with 
these methods would benefit from learning 
from other researchers experience using a 
Bayesian modelling framework for population 
modelling.   
 

La modélisation bayésienne est une approche 
qui incorpore l’incertitude associée aux 
données et les connaissances a priori 
concernant les paramètres des modèles 
utilisés pour estimer l’abondance des 
mammifères marins et les tendances 
connexes. Actuellement, le MPO mène un 
certain nombre de projets pour élaborer des 
modèles des populations de mammifères 
marins en ayant recours à un cadre bayésien 
(p. ex. phoques du Groenland, phoques gris, 
bélugas). Cependant, les responsables de ces 
projets pourraient tirer profit de discussions 
avec d’autres experts du domaine avant 
d’utiliser les résultats de ces modèles pour 
produire des avis scientifiques. En outre, les 
experts en mammifères marins du MPO, qui 
ne sont pas très familiers avec ces méthodes, 
pourraient tirer profit de l’expérience d’autres 
scientifiques qui utilisent un cadre de 
modélisation bayésien pour modéliser des 
populations. 
 

For these reasons, CEMAM organised a 
workshop to bring together DFO and outside 
experts to review approaches being used, the 
current state of development of Bayesian 
modelling, and to identify challenges and 
issues related to this approach in its use on 
Canadian marine mammals.    
 

Le CEMAM a donc organisé un atelier 
regroupant des experts du MPO et de 
l’extérieur dans le but d’examiner les 
approches utilisées pour modéliser la 
dynamique des populations de mammifères 
marins et l’état d’avancement de la 
modélisation bayésienne ainsi que pour 
relever les difficultés et les enjeux reliés à 
l’application de cette approche aux 
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mammifères marins au Canada.  
 

WORKSHOP OBJECTIVES AND SUMMARY 
 

OBJECTIFS ET RÉSUMÉ DE L’ATELIER 
 

The CEMAM Workshop on Bayesian 
Modelling of Marine Mammal Population 
Dynamics was held on 27-29 March 2007 at 
the Freshwater Institute.  Invited speakers 
were: Alf Harbitz (IMR, Norway), Rod Hobbs 
(NMML, USA), Michael Kingsley (GNI, 
Grønland), Geoff, Evans (DFO Newfoundland) 
and Georges Watters (SWFSC, USA).  In 
addition, ten DFO research scientists and 
biologists participated in the workshop and the 
meeting was open to observers from the 
University of Manitoba (Appendix I). 
 

L’atelier du CEMAM sur la modélisation 
bayésienne de la dynamique des populations 
de mammifères marins a eu lieu du 27 au 
29 mars 2007 à l’Institut des eaux douces. Les 
conférenciers invités étaient : Alf Harbitz (IMR, 
Norvège), Rod Hobbs (NMML, États-Unis), 
Michael Kingsley (GNI, Groenland), Geoff 
Evans (MPO, Terre-Neuve) et Georges 
Watters (SWFSC, États-Unis). Finalement, dix 
scientifiques et biologistes du MPO ont 
participé à l’atelier, et des observateurs de 
l’Université du Manitoba y ont été invités 
(annexe I).  
 

Objectives of the workshop were:    
 

- To review the state of science on 
Bayesian modelling of population 
dynamics with emphasis on marine 
mammal population dynamic models. 

- To identify statistical issues with model 
parameter estimation and produce 
guidelines for such modelling (choice 
and influence of priors, data load, 
convergence and autocorrelation 
issues, etc.). 

- To review presentations of a few 
working models that have been 
implemented in software and problems 
in reaching convergence. 

- To review software or programming 
issues and get insights from actual 
users/programmers on computing 
issues. 

 

Les objectifs de l’atelier sont les suivants. 
  

- Passer en revue l’état de la science 
relative à la modélisation bayésienne 
de la dynamique des populations, 
notamment en ce qui concerne les 
modèles de la dynamique des 
populations de mammifères marins. 

- Relever les problèmes statistiques 
associés à l’estimation des paramètres 
des modèles et élaborer des lignes 
directrices pour cette modélisation 
(choix et incidence des données a 
priori, volume de données, 
convergence et problèmes 
d’autocorrélation, etc.). 

- Passer en revue des exposés sur 
quelques modèles fonctionnels qui ont 
été mis en application dans le logiciel 
ainsi que les problèmes concernant 
l’atteinte de convergence. 

- Passer en revue les problèmes de 
logiciel ou de programmation et obtenir 
des précisions de la part 
d’utilisateurs/programmeurs sur les 
problèmes de calcul. 

 
The invited speakers were told to keep in mind 
that the audience is mixed in its knowledge of 
Bayesian methods, so to keep language 
simple or explain complex terms. The 
audience was encouraged to ask questions of 
clarification but to keep them short and defer 

On a invité les conférenciers à ne pas oublier 
que l’auditoire est composé d’un éventail de 
personnes aux connaissances variées des 
méthodes bayésiennes et qu’il convenait 
d’utiliser un langage simple et d’expliquer les 
termes complexes. On a également invité 
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debate for the discussion period. 
 

l’auditoire à poser de courtes questions pour 
obtenir des précisions et d’attendre à la 
période de discussion pour en débattre 
davantage. 
 

This report summarizes workshop conclusions 
on Bayesian modelling generated by the 
discussion amongst participants following 
presentations and in the final discussion 
period.  Appendices I and II give the list of 
participants and the workshop agenda.  
Extended abstracts of the presentations and 
discussion specific to the models are provided 
in Appendix III.  In addition, a list of references 
relevant to Bayesian statistics and modelling 
(in addition to the ones cited below) has been 
compiled in Appendix IV.  This annotated list 
includes introductory texts for those who are 
seeking primers on Bayesian modelling and 
some of the software in common use. 
 

Le présent rapport résume les conclusions 
formulées au cours de l’atelier sur la 
modélisation bayésienne, à la suite des 
discussions qui ont suivi les exposés et la 
période de discussion finale. Les annexes I et 
II présentent la liste des participants et l’ordre 
du jour de l’atelier. Des résumés complets des 
exposés et des discussions sur les modèles 
se trouvent à l’annexe III. En outre, l’annexe IV 
donne une liste de références sur la statistique 
et la modélisation bayésienne (en plus de 
celles énumérées ci-après). Cette liste 
annotée comprend les textes d’introduction, 
pour ceux qui souhaitent en savoir plus sur les 
fondements de la modélisation bayésienne 
ainsi que l’information sur le logiciel 
couramment utilisé. 
 

WORKSHOP CONCLUSIONS ON 
BAYESIAN POPULATION MODELLING 
 

CONCLUSIONS DE L’ATELIER SUR LA 
MODÉLISATION BAYÉSIENNE DES 
POPULATIONS 
 

Following presentations and discussion of 
each model, there was a general discussion 
on Bayesian population modelling to distil what 
we had learned and address workshop 
objectives. Participants chose to order the 
discussion in a logical sequence, from model 
choice to convergence and other issues: 
 

Après les exposés et les discussions sur 
chaque modèle, on a tenu une discussion 
générale sur la modélisation bayésienne des 
populations pour résumer ce que l’on avait 
appris et pour répondre aux objectifs de 
l’atelier. Les participants ont décidé de tenir la 
discussion dans un ordre logique : du choix du 
modèle, en passant par la convergence, 
jusqu’à d’autres enjeux. 

• Model choice  
• Software and programming issues  
• Choice of priors 
• Autocorrelation 
• Convergence  
• Sufficiency of data 
• Other issues 
 
 

• Choix du modèle 
• Problèmes concernant le logiciel et la 

programmation 
• Choix des données a priori 
• Autocorrélation 
• Convergence  
• Suffisance des données 
• Autres enjeux 
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MODEL CHOICE  
 

CHOIX DU MODÈLE  
 

An important consideration in Bayesian 
modelling is to have a model that both 
represents the population or process and can 
answer the question that is posed. Bayesian 
methods can give results despite the fact that 
the model fails to represent the process 
adequately [this is of course also true of non-
Bayesian models].  It is recommended that a 
modeller learn about the problem at hand by 
progressing from simple deterministic 
modelling to moderate process error modelling 
(likelihood methods) before moving on to a full 
Bayesian model.  This step-by-step approach 
gives one a better understanding of the added 
complexity of the model as it develops and 
improves interpretation of the results of the 
final Bayesian analysis.   Frequently, several 
models are plausible. In such cases, model 
choice can be aided by the DIC criterion or by 
Bayes factors. 
 
 

Dans la modélisation bayésienne, il importe 
que le modèle à la fois représente la 
population ou le processus et réponde à la 
question soulevée. Les méthodes 
bayésiennes peuvent donner des résultats, 
même si le modèle ne représente pas le 
processus adéquatement [cela est également 
vrai pour les modèles non bayésiens, bien 
entendu]. On recommande que le 
modélisateur prenne connaissance du 
problème à résoudre en passant d’une 
modélisation déterministe simple à une 
modélisation probabiliste modérée (avec 
erreur dans les variables), avant d’en arriver à 
un modèle bayésien complet. Cette démarche 
progressive facilite la compréhension de la 
complexité grandissante du modèle au fur et à 
mesure de son développement et améliore 
l’interprétation des résultats de l’analyse 
bayésienne finale. Souvent, plusieurs modèles 
sont plausibles. Dans de tels cas, le choix du 
modèle peut être facilité à l’aide du critère 
d’information de déviance (DIC, ou Deviance 
Information Criterion) ou de facteurs de Bayes.
 

BAYESIAN SOFTWARE AND 
PROGRAMMING ISSUES 
 

PROBLÈMES CONCERNANT LE LOGICIEL 
ET LA PROGRAMMATION 
 

The Bayesian modelling method most used by 
workshop presenters is the Markov Chain 
Monte Carlo (MCMC) Gibbs sampling method.  
For that approach to Bayesian modelling, 
WinBUGs or OpenBUGS are excellent 
programs for people that are new to Bayesian 
modelling.  They have a serious MCMC Gibbs 
sampler with many strong features for 
diagnostics and graphics.  They are relatively 
ease of use and are free.  The JAGS program 
is another useful free Gibbs sampler.  It can 
compile models that don’t compile in 
WinBUGS or OpenBUGS.  It is faster and has 
additional functions, such as data simulation 
for data sufficency checks.   JAGS is not as 
easy to use.  It has no Windows GUI and it 
does not allow cyclic walks as BUGS 
programs do.  ADModel Builder does 
likelihood and Bayesian (MCMC) modelling 
and is extremely fast but it is very difficult to 
specify a model [ADMB used to be expensive 

La méthode de modélisation bayésienne la 
plus utilisée par les présentateurs est la 
méthode d’échantillonnage de Gibbs, à savoir 
la méthode Monte Carlo par chaîne de 
Markov (MCMC). Avec cette démarche de 
modélisation bayésienne, WinBUGs ou 
OpenBUGS sont d’excellents programmes 
pour les néophytes de la modélisation 
bayésienne. Ils offrent un excellent 
échantillonneur de Gibbs MCMC doté de 
nombreuses caractéristiques fort utiles pour le 
diagnostic et les graphiques. Ils sont 
relativement faciles à utiliser et sont gratuits. 
Le programme JAGS est un autre 
échantillonneur de Gibbs utile et gratuit. Il peut 
compiler des modèles qui ne se compilent pas 
avec WinBUGS ou OpenBUGS. Il est plus 
rapide et offre des fonctions supplémentaires, 
telles que la simulation de données pour les 
vérifications de la suffisance des données. Le 
programme JAGS est cependant difficile à 
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to buy but it is now freeware supported by a 
non-profit user group].  The mathematical 
programming package MatLab also has 
functions for MCMC.  It requires the user to 
learn the language and is very expensive. 
 
 

utiliser. Il n’a pas d’interface graphique 
Windows et ne permet pas les trajets 
cycliques comme le permettent les 
programmes BUGS. ADModel Builder, qui 
établit la probabilité et effectue la modélisation 
bayésienne (MCMC), est extrêmement rapide, 
mais il est très difficile de préciser un modèle 
[ADMB était dispendieux à l’achat, mais il est 
maintenant gratuit grâce au soutien d’un 
groupe d’utilisateurs sans but lucratif]. Le 
progiciel mathématique MatLab présente 
également des fonctions MCMC. Cependant, 
l’utilisateur doit apprendre le langage de ce 
progiciel, qui est très dispendieux. 
 

The Sampling Importance Resampling (SIR) 
approach covered by R. Hobbs is more 
efficient than MCMC.  It keeps only important 
samples and it does not require starting 
values.  There are no canned programs for 
SIR, so it does require knowledge in some 
programming language, which will be a 
deterrent to people unfamiliar with 
programming. 
 

L’approche de l’échantillonnage avec 
rééchantillonnage par importance (Sampling 
Importance Resampling, ou SIR) examinée 
par R. Hobbs est plus efficace que la méthode 
MCMC. Seuls les échantillons importants sont 
conservés et il n’exige pas de valeurs de 
départ. Comme il n’existe aucun programme 
de série pour l’approche SIR, il faut avoir une 
certaine connaissance du langage de 
programmation, ce qui dissuadera ceux qui 
sont peu familiers avec la programmation. 
 

CHOICE OF PRIORS 
 

CHOIX DES DONNÉES A PRIORI 
 

It is preferable to use non-informative priors at 
first to learn from results.  One can then see if 
data within the model data set contain 
information that will allow the posteriors to 
update the priors of the model parameters.  
Caution should be used when considering 
priors that are too informative, as there may be 
no updating.  It is good practice to use priors 
that are informative only to the extent 
necessary to run the program efficiently.  
Scaling of informative priors is also important. 
For models to be used in managenent 
decision-making it is preferred that informed 
priors be supported by objective data as  
subjective priors will depend on agreement 
amongst experts.   Finally, it is important to 
find means of quantifying qualitative priors.   
 

Il vaut mieux utiliser des données a priori non 
informatives en premier lieu pour apprendre 
des résultats. On peut alors voir si les 
données de l’ensemble de données du modèle 
contiennent l’information qui permettra aux 
données a posteriori de mettre à jour les 
données a priori des paramètres du modèle. Il 
faut faire preuve de circonspection lorsqu’on 
utilise des données a priori trop informatives, 
car il pourrait ne pas y avoir de mise à jour. La 
bonne pratique consiste à utiliser des données 
a priori qui sont informatives uniquement dans 
la mesure nécessaire pour exécuter le 
programme efficacement. Il est également 
important de mettre les données a priori 
informatives à l’échelle. Pour les modèles 
destinés à la prise de décisions de gestion, on 
préfère que les données a priori soient 
étayées par des données objectives, puisque 
les données a priori subjectives dépendront 
d’un accord entre des spécialistes. 
Finalement, il est important de trouver des 
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moyens de quantifier les données a priori 
qualitatives.  
 

AUTOCORRELATION 
 

AUTOCORRÉLATION 
 

This is not a problem with the SIR algorithm 
because each trial is independent.  And the 
algorithm retains only the important samples.  
The Gibbs sampler on the other hand, is a 
searching routine and each step in the search 
is based on and consequently correlated to the 
previous.  In Gibbs sampling programs, 
autocorrelation is to be expected in any of 
these multi-parameter fitting routines.   It can 
be dealt with by thinning every n samples.  
The choice of a thinning n must be done by 
trial and error: setting n and checking for 
reduction in auto-correlation.  It is best to thin 
before sampling; otherwise some WinBUGS 
estimates for example may not be correct 

Ce problème ne se pose pas avec l’algorithme 
SIR puisque chaque essai est indépendant. 
L’algorithme ne conserve que les échantillons 
importants. L’échantillonneur de Gibbs est 
quant à lui une routine de recherche, et 
chaque étape de la recherche est fondée sur 
l’étape précédente et, par conséquent, 
corrélée avec celle-ci. Dans les programmes 
d’échantillonnage de Gibbs, on s’attend à ce 
qu’il y ait autocorrélation dans toutes ces 
routines d’ajustement de paramètres multiples. 
Cela peut être obtenu par amincissement à 
tous les échantillons n. Le choix d’intervalle 
d’amincissement n doit être fait par essais et 
erreurs : établissement de n et vérification de 
la réduction de l’autocorrélation. Il est 
préférable d’amincir avant d’échantillonner, 
sinon certaines estimations de WinBUGS, par 
exemple, peuvent être incorrectes.  
 

CONVERGENCE 
 

CONVERGENCE 
 

Lack of convergence can be a problem with 
data that has little information and weak (un-
informative) priors.   Convergence can also be 
assessed by looking at the sample trace of 
estimated parameters.  If a trace shows trends 
(i.e: searching) rather than a random sampling 
behaviour then there is a problem of 
convergence .  Convergence can be assessed 
by doing several runs and comparing them.  If 
the different runs converge to the same 
estimates, then there is good convergence.  If 
they do not, then there is a convergence 
problem.  There are tools in 
WinBUGS/OpenBUGS to compare runs.  
There are also diagnostic tools in R and S-plus 
to check for convergence (CODA, BOA) but 
they can be misleading.  These tools are 
somewhat adhoc empirical takes on 
diagnostics, which is strange for Bayesian 
analysis.   Another approach is to use Q-Q 
plots to compare posteriors and priors.    Re-
parametization of the model can help 
convergence speed.  While convergence is not 

Le manque de convergence peut survenir 
lorsque les données reposent sur peu 
d’information et que les données a priori (non 
informatives) sont peu solides. La 
convergence peut également être évaluée 
avec la trace des échantillons des paramètres 
estimés. Si une trace montre des tendances 
(i.e.: recherche) plutôt qu’un comportement 
d’échantillonnage aléatoire, il y a alors un 
problème de convergence. On peut évaluer la 
convergence en faisant plusieurs passages du 
modèle et en les comparant. Si les divers 
passages convergent vers les mêmes 
estimations, c’est que la convergence est 
bonne. Dans le cas contraire, il y a un 
problème de convergence. 
WinBUGS/OpenBUGS offrent des outils pour 
comparer des passages. Il y a également des 
outils de diagnostic en R et S-plus pour vérifier 
la convergence (CODA, BOA), mais ils 
peuvent être trompeurs. Ces outils donnent en 
quelque sorte des clichés empiriques 
ponctuels pour le diagnostic, qui est 
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a problem with the SIR algorithm, it is 
necessary to test the number of trials that are 
run for the SIR sampling to determine the 
precision of the posteriors.  Hobbs indicated 
that he typically used between 105 and 106 to 
insure 2 significant figure precision in the 
percentiles of the posteriors.  
 

surprenant en analyse bayésienne. Une autre 
approche consiste à utiliser des graphiques Q-
Q afin de comparer les données a posteriori et 
les données a priori. La reparamétrisation du 
modèle peut aider à améliorer la vitesse de 
convergence. Même si la convergence ne 
pose pas de problème avec l’algorithme SIR, il 
faut examiner le nombre d’essais qui sont 
effectués pour l’échantillonnage SIR afin de 
déterminer la précision des données a 
posteriori. Hobbs a indiqué qu’il utilisait 
d’ordinaire entre 105 et 106 pour obtenir une 
précision de deux chiffres significatifs dans les 
percentiles des données a posteriori.  
 

DATA SUFFICIENCY 
 

SUFFISANCE DES DONNÉES 
 

The concept that Bayesian modelling is for 
data poor situations is debatable.   There is 
little one can do even with a good dataset, if 
there is too much observation error and too 
much underlying process error.  However, the 
advantage of the Bayesian approach is that it 
will provide a measure of the sufficiency of the 
data by comparison of the posterior to the prior 
distributions of the parameters of interest.  
More specific to population models, catch data 
alone cannot be used to estimate population 
size.  The model must hinge on the likelihood 
of one or more population indices to allow 
convergence to an estimate.   
 

L’idée voulant que la modélisation bayésienne 
soit utilisée dans les situations où les données 
sont rares est discutable. On ne peut faire 
grand-chose, même avec un bon ensemble de 
données, lorsqu’il y a trop d’erreurs 
d’observation et trop d’erreurs de traitement 
sous-jacentes. Cependant, l’avantage de 
l’approche bayésienne est qu’elle donne une 
mesure de la suffisance des données en 
comparant les distributions postérieures et 
antérieures des paramètres d’intérêt. Dans le 
cas des modèles sur les populations, on ne 
peut utiliser des données sur les prises seules 
pour estimer la taille d’une population. Le 
modèle doit s’appuyer sur la probabilité d’un 
ou de plusieurs indices de la population pour 
permettre la convergence vers une estimation. 
 

OTHER ISSUES MENTIONED 
 

AUTRES ENJEUX MENTIONNÉS 
 

When doing risk analyses based on Bayesian 
model outputs, the risk model should assess 
the decision criterion from the posterior 
distributions of parameter estimates.  The use 
of a similarly-shaped function to the posterior 
distribution, derived from its mean and SD for 
example, will reduce the efficiency of the 
analyses and introduce more error.  The 
analyst should use the parameter posterior 
samples to model parameter uncertainty.  
With WinBUGs or other similar software, it is 
easy to use those samples to project forward. 
 

Lorsqu’on effectue des analyses du risque en 
s’appuyant sur les résultats des modèles 
bayésiens, le modèle du risque doit évaluer le 
critère de décision à partir des distributions a 
posteriori des estimations de paramètre. 
L’utilisation d’une fonction de forme similaire à 
la distribution a posteriori, dérivée de sa 
moyenne et de son écart-type, par exemple, 
réduira l’efficacité des analyses et amènera 
plus d’erreurs. L’analyste doit utiliser les 
échantillons a posteriori du paramètre pour 
modéliser l’incertitude entourant le paramètre. 
Avec WinBUGs ou d’autres logiciels du genre, 
il est facile d’utiliser de tels échantillons pour 
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établir des projections. 
 

GENERAL CONCLUSIONS 
 

CONCLUSIONS GÉNÉRALES 
 

Should we be Bayesian? 
 

Devons nous être bayésiens? 
 

Yes, Bayesian methods estimate probability 
correctly!  For example, the posterior 
distribution of population size gives the true 
probability of population estimate being equal 
to a particular value, given the prior and the 
data.  Also, one can’t model process error 
using likelihood methods because process 
error is nested in sampling error.  Bayesian 
modelling requires additional efforts but it has 
many rewards (estimates of many 
parameters). 
 

Oui, les méthodes bayésiennes donnent une 
estimation correcte de la probabilité!  Par 
exemple, la distribution a posteriori de la taille 
de la population donne la probabilité véritable 
que l’estimation de la population soit égale à 
une valeur particulière, compte tenu des 
données a priori et des données. En outre, on 
ne peut pas modéliser les erreurs de 
traitement en utilisant des méthodes de 
vraisemblance du fait que les erreurs de 
traitement sont comprises dans l’erreur 
d’échantillonnage. La modélisation bayésienne 
exige des efforts supplémentaires, mais elle 
offre de nombreux avantages (estimation de 
nombreux paramètres). 
 

If so, when and how should we use Bayesian 
modelling?   
 

Si oui, quand et comment devons-nous utiliser 
la modélisation bayésienne?  
 

Bayesian modelling should be used when the 
model is moderate to complex, and when 
there is a hierarchical error structure. 
WinBUGS or OpenBUGS are best for 
beginners as well as many serious 
applications.  But there are a number of 
software choice which allow for creativity (eg.: 
JAGS, MatLab, SIR programming) for those 
who seek to tackle complex problems. 
Bayesian methods should be used when there 
is a desire to link a decision based on 
probable risk directly linked to input data 
because it will allow simultaneous assessment 
of the value of the data in making the decision 
and the level of risk.   
 

La modélisation bayésienne doit être utilisée 
lorsque le modèle est de modéré à complexe 
et quand il y a une structure d’erreurs 
hiérarchique. WinBUGS ou OpenBUGS 
conviennent parfaitement pour les débutants 
ainsi que pour de nombreuses applications 
plus complexes. Cependant, un certain 
nombre de logiciels permettent à ceux qui 
cherchent à s’attaquer à des problèmes 
complexes (par exemple, JAGS, MatLab, 
programmation SIR) d’exprimer toute leur 
créativité.  Les méthodes bayésiennes doivent 
être utilisées lorsqu’on souhaite lier une 
décision fondée sur un risque probable 
directement lié aux données d’entrée, car elles 
permettent l’évaluation simultanée de la valeur 
des données dans la prise de décision et du 
niveau de risque.  
 

When should one not bother with Bayesian 
modelling?  
 
It is not necessary to go through all the trouble 
of developing and solving a Bayesian model 
when the question and the model are simple 
and the adequacy of the data is not in 

Dans quelles circonstances doit-on laisser la 
modélisation bayésienne de côté?  
 
Il n’est pas nécessaire d’effectuer tout le 
branle-bas relatif à l’élaboration et à 
l’exécution d’un modèle bayésien lorsque la 
question et le modèle sont simples et que 
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question.  The reward is not worth the 
substantial effort of Bayesian modeling.  Well-
established empirical methods can do for such 
situations.  It is worth checking, however, that 
the question and model really are simple.  
Often they are asserted to be simple for 
convenience.  In linear regression, for 
example, Bayesian methods can deal with 
observations of variable precision with no 
extra effort. 
 

l’adéquation des données ne soulève pas de 
problème. Les avantages tirés n’équivalent 
pas à la valeur de l’effort substantiel requis par 
la modélisation bayésienne. Des méthodes 
empiriques bien établies peuvent convenir en 
de telles situations. Il vaut cependant la peine 
de vérifier que la question et le modèle sont 
vraiment simples. Souvent, on affirme qu’ils 
sont simples pour des raisons de commodité. 
Dans la régression linéaire, par exemple, les 
méthodes bayésiennes peuvent traiter des 
observations de précision variable sans 
nécessiter d’effort supplémentaire. 
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APPENDIX II 

 
Workshop agenda 
 

- 27 March 2007: 
 

o Morning:    
• Chair remarks 
• Introduction to Bayesian Modelling: “A tutorial on Bayesian 

modelling of harp seals” speaker: Geoff Evans and Working model 
1: “Fractions pregnant and population history of Newfoundland 
harp seals” speaker: Geoff Evans (Appendix III-B-1). 

o Afternoon:   
• Discussion of Model 1 
•  “An introduction to Bayesian modelling” (Appendix III-A) and 

Working model 2: “Shrimp estimation models” (Appendix III-B-2) 
speaker: Michael Kingsley 

• Discussion of Model 2 
-  
- 28 March 2007:   

 
o Morning:    

• Working model 3: “Population dynamics of White and Barents Sea 
harp seals”  speaker: Alf Harbitz  

• 10:45  Discussion of Model 3 
 

o Afternoon:   
• Working model 4: “Population dynamics of (mostly) short-beaked 

common dolphins from (at least) three stocks in the eastern 
Pacific Ocean” speaker: George Watters (90 min). 

• Discussion of Model 4 
• Working model 5: “Bayesian population viability analysis (PVA) for 

the Cook Inlet, Alaska beluga population using a Sampling-
Inference-Resampling (SIR) algorithm. Rod Hobbs  

 
- 29 March 2007: 

 
o Morning:     

• General discussion on statistical and programming issues 
• Workshop conclusions, and reporting plans 

o Afternoon:    
• Administrative matters 
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Appendix III 
 
A) An introduction to Bayesian modelling 
(Michael Kingsley, Grønlands Naturinstitut) 
 
To simplify, there are two statistical views of the world termed ”Frequentist” and ”Bayesian”.  
The ’Likelihood’ school falls somewhere in the middle. 
 
What is statistics all about?  Statistical induction.  We know about Deduction, which is from a 
general rule, to make inferences about a particular case 
 

Eg: “Epimenides is a Cretan; all Cretans are liars; Epimenides is a liar.” 
 
Induction is the other way round: from many particular cases, we attempt to infer a general rule.  
This is the common experience of human existence (nobody gives us the general rules)  
So, we run into a common problem: how many cases do we need, and how reliable is the 
general rule that we induce? Statistics is inductive reasoning in a quantitative form; it is the 
basis for science - because science is an organised quest for general statements about how the 
world works. 
We need to weigh the claims of rival general statements. 
 
Classical’ or ’frequentist’ statistics grew out of the school of repeated experiments with cards 
and dice, among other things.  It pre-supposes that the world is —but our knowledge of it is 
uncertain.  In other words, general rules exist and are revealed to us (uncertainly) by 
experiments. They produce probabilistic statements about the statements we make.  For 
example, about the mean of a population: if we did this experiment many times; and analysed 
the data this way; and formulated our statement thus we could state that the mean lies between 
U and L” and we would be right 95% of the time’. 
 
Frequentist statistics leads to: confidence intervals:  We construct random intervals, based on 
our random experiments/observations. These random intervals may, or may not, contain the 
true value but the true value is there, regardless of our intervals.  We hope analysis allows us: 
 
- to make statements about our confidence intervals, confidence levels associated with definite 
statements, to quantitative tests of hypotheses:  
 

“If these means were equal, we would have observed so large a difference in only 1 of 100 
experiments carried out like this one.” 

 
We say these means are different, with confidence in what we say. 
-  to experimental design 
 
Frequentist thinking lends itself to experimental design because experimental design considers 
the hypothetical samples, experimental design has hypothesis testing and error rates in mind, 
 
- to statistical control theory and design of quality control schemes 
 
Example:  in 115 births, 60 boys, 55 girls. (unbiased) sex ratio estimate is 60/115 = 0.522 
because: if we have a lot of samples of births, and we repeatedly calculate the sex ratio this 
way; 
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the mean of our calculated values converges on the true value; confidence if the true sex ratio 
was bigger than 60.16%, we would have so few as, or fewer than, 60 boys in only 5% of many 
such samples; if the true sex ratio was less than 44.96%, we would have so many as, or more 
than, 60 boys in only 5% of many such samples; we have 90% confidence that the true value is 
within the interval 45.0 to 60.2%; but to make that statement, we had to consider the probability 
of many outcomes that we did not observe. (0 boys, 1, 2, 3, &c.) because we consider many 
samples, our calculations include the many possible birth orders; (binomial distribution) 
 
Hypothesis test 
 
If the true average sex ratio was 64%, and we took a sample of 115 births many times, we 
would observe 60 boys or fewer in only 0.6% of such samples; we reject the suggestion 
(‘hypothesis’) that the sex ratio is 64% (or more) ‘at the 1% level’; we are 99% sure that our 
decision is the right one. 
 
Likelihood inference 
 
Likelihoods are relative; only one sample–60 boys, 55 girls; how likely is it?  L = k . p^60 . (1-
p)^55; Maximum Likelihood: the sex ratio (p) is 52.2%; not because it has properties related to 
many such samples—but because it maximises the likelihood of this sample. 
 
Confidence? 
 
 Likelihood support intervals: find values that reduce the (log) likelihood by a given amount; 
(without explanation) a 1.353 l.s.i. corresponds to a 90% confidence interval; for this sample, 
such an interval is 44.52% to 59.76%; sex ratios outside this interval reduce—too much— the 
likelihood of this sample relative to its greatest possible value; likelihood calculations do not 
include the many possible birth orders for the sample; only one sample; therefore only on order; 
all orders have the same likelihood; so order is irrelevant; 
 
Bayesian statistics is different 
 
Classical: the world is, but we don’t know about it.  The true value is there; we construct a 
confidence interval for an estimate; in such a way that it has a specified chance of containing 
the true value; probability statements about the interval; 
 
Bayesian: the world isn’t—but it might be. The value has a probability distribution, just like 
anything else; probability statements about the true value; 
 
Bayesian statistics accepts probabilistic statements about the world.  It produces probability 
distributions for the values of parameters that define how the world is.  It doesn’t produce 
hypothesis tests in quite the same way. How does it do this? 
 
Bayes’ Theorem is a restatement of a simple truism in probability: 
 

p(W&O) = p(W) • p(O|W) 
 

p(O&W) = p(O) • p(W|O); 
 

p(O) • p(W|O) = p(W) • p(O|W) 
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Consequently, 
p(W|O) = p(W) • p(O|W) / p(O)    

 
which is Bayes theorem.  It  essentially states that the probability that the world is like so, given 
the observations we (have just) made p(W|O) is equal to the probability that the world was like 
that anyway p(W) multiplied by the probability of making those observations if the world was like 
that p(W|O) and divided by the probability of making those observations anyway p(O).  p(O) is 
the probability of making just those observations but that probability is equal to: 
 

∫ p(W) • p(O|W) • dW 
 
It is the sum, over all states of the world, of the probability of the observations given that state of 
the world, multiplied by the (prior) probability of that state of the world!   
 
So the bottom line of the Bayesian equation is the integral of the top line, the expression for 
p(W|O) is a valid probability distribution (integrates to unity). 
 
In practice, p(O) is treated as a normalising constant; given that  ∫ p(W|O) =1, 

p(W|O) = p(W) • p(O|W)  /  ∫ (p(W) • p(O|W)) dW 
or more simply: 

p(W|O) = k • p(W) • p(O|W) 
 
where: 
 

 p(W) is the prior (distribution for W).  This is a (quantitative) statement of what we knew 
about the world, before we made—independent of—the observations we just made; 

 
 p(O|W) is the likelihood of  the observations, conditional on W; and  

 
 p(W|O) is the posterior distribution for W, where the prior distribution has been updated 

by the information contained in the observations. 
 
The major difference between Bayesian and Frequentist statistics is that Bayesian thinking is 
symmetrical: the World (W) and the Observations (O) get similar treatment in Bayes’ theorem. 
 
In practice, the world under study (W) consists of some set of variables (parameters);  p(W)  
(the prior) may (usually does) consist of separate univariate distributions of the individual 
variables, or multivariate distributions of sets of variables, or a mixture.  p(W|O) (the posterior) 
comprises one monstrous multivariate distribution of all the parameters we are considering, but 
we typically mostly look at the univariate marginal distributions of individual variables (caution–
correlations!). 
 
When we make observations in daily life, we use them to change our thinking about a lot of 
things; Bayesian analysis can use observations to update priors simultaneously on many 
variables, even on more variables than we have measurements. So the updating is not 
independent, results may be correlated.  Caution is appropriate in using/interpreting Bayesian 
results. 
 
In Bayesian analysis, priors are both a strength and a weakness.  They are a strength because 
they represent our previous knowledge.  They enable us to use this set of observations to 
update it.  They are a weakness, because they must be included.  They deceive us into 
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importing knowledge we haven’t got.  Discussion about priors is a major feature of the 
development of Bayesian methods, both in general and in particular. 
 
Why does Bayesian statistics work?  Bayesian statistics work because that’s the way our minds 
work.  We live with a probabilistic world-view (prior).  We can accept probabilistic statements 
about the state of the world, more easily than confidence statements about the statements we 
make. Our minds work in a Bayesian way!   It is a symmetrical formulation. Our prior knowledge 
and recent observations get equal treatment.  There is the possibility of simultaneously 
considering many different data sources.  There is no need to consider the hypothetical many 
repetitions of sampling or experimentation.  Results are conditioned on one sample! 
 
So why hasn’t it been used so much before?  The philosophical rigour of frequentist statistics is 
partly to blame but also the denominator of Bayes theorem ( ∫(p(W)  • p(O|W))dW) is terribly 
heavy on computing.  But, also, it is difficult to formulate a (quantitative) prior distribution that 
accurately reflects what we (qualitatively) think we know.  The prior is perhaps qualitative. There 
is a need to generate priors that are appropriately informative or uninformative depending on the 
case at hand.  Bayes’ idea of a continual updating probability versus one-shot analyses was not 
well received.   
 
What did Reverend Bayes really mean?  Perhaps he meant that we have an unstated, 
permanent, personal, qualitative prior, that is continually updated with new observations; where 
observations come a few at a time.  What we do now with Bayesian statistics is assemble all the 
observations, construct synthetic priors, run all the observations at once; and then do it all again 
next time!!  This last approach leaves almost no capability for putting this year’s posterior in as 
next year’s prior. 
 
 
Discussion of presentation 
 
This presentation gave an overview of Bayesian thinking and Bayesian modelling.  Discussion 
was deferred to the working models in the subsequent presentations and in the conclusions of 
the workshop. 
 
 
B) Bayesian modelling examples 
 
This section summarizes the presentations of five invited speakers on their Bayesian population 
models. Four were marine mammal population models and the fifth (Kingsley) is a shrimp model 
which could be implemented on a marine mammal population with similar data. An attempt at 
doing so on Cumberland Sound belugas was presented but it was not deemed successful for 
reasons discussed below. The models are given here in the sequence that they were presented 
at the workshop.   
 
 
 
B-2: Working model 1:  A tutorial introduction to Bayesian modelling of harp seals. 
Geoffrey Evans,   DFO St John's. 
 
What beliefs are warranted by the evidence? 
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This is a sensible question, related to needs of management; the mathematics called probability 
theory helps one address it. I'm not interested in whether this is what probability "really" means 
(I'm not sure such a question makes sense.)  
 
In fact the question as posed can't be answered.  So the trick is to pick a nearby, proxy 
question:   
What adjustments to previous beliefs are warranted by the evidence?   
This question can be answered, and in many instances we can persuade ourselves that the 
answer we get it close enough to the answer to the original question. 
 
Exponential growth of pups 
 
I start with a toy model that nobody believes, to illustrate the way of thinking.  We suppose that 
any year's population of pups is a constant multiple of the previous year's: the log of pup 
numbers is a straight line function of time.  We start with a belief that the multiple could equally 
be anywhere between its minimum possible value of 0 and its maximum possible value of 1.5 
(all pups survive and all females reproduce every year), and that the log of  
numbers in the year we choose as starting year could equally be anywhere between 3 and 20 
(numbers between 20 and 22,000.)  We seek an adjusted belief for what these two parameters 
could be, based on a few pup surveys. 
 
It's easy to work out the relative probability of two pairs of parameter values,  just be dividing 
one instance of Bayes rule by another.  All the work in Bayesian analysis comes when we seek 
absolute probability densities, which means working out the integral normalizing constant in the 
denominator.  The method most often used is MCMC, which can conveniently be regarded as 
magic for now, which lets us draw random samples from the adjusted (posterior) probability 
distribution for parameter values.  There is specialized software for doing this 
without having to understand too much; I use JAGS. 
 
First, let's address the issue of whether answering the question "What adjustments to beliefs 
are warranted?" is close to answering the question "What beliefs are warranted?"  Figure 1 
shows the posterior distribution for the parameters.  This distribution occupies only a tiny 
fraction of the prior space (which is indicated by the range of the plot axes).  The posterior 
range of the multiplier has to be magnified to be visible at all.  So it's easy to believe that any 
"uninformative" or "vague" prior would lead to about the same posterior. 
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Notice also that the estimates of the two parameters are strongly correlated, which makes 
sense but also makes trouble for the Gibbs sampler.  One possible strategy is to do PCA on a 
preliminary MCMC run and choose as auxiliary random variables distances along the principal 
axes.  This improves the chance of taking uncorrelated random samples from the posterior, and 
in practice greatly improves the chance of convergence. 
 
As well as posterior distributions for the parameters, we also have them for any function of the 
parameters we care to compute.  In particular we can examine our beliefs about the population 
histories.  In Figure 2 the red circles show the pup surveys and the red vertical lines show their 
standard errors. The black lines do not represent possible trajectories (the red and green lines 
do that) but envelopes of trajectories.  The following is the most important thing I am going to 
say.  Concentrate not on the lines but on the spaces between them.  There are 7 lines, making 
6 intervals of equal probability 0.16.  This is supposed to be the probability that the true value 
lies within the interval.  (The thing that confidence intervals don't mean but people always want 
to interpret them as if they did.)  If you are asked to decide which interval the true value lies in, 
you can do no better than rolling a die, with a 5-to-1 chance that you will be wrong.  Prudent 
management will take that fact into account.  Moreover there is one chance in 25 that the true 
value lies outside any of the intervals. 
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The small blue bars at each end are how the ends of the black lines change when the 2004 pup 
survey is taken into account.  It reduces our uncertainty about 2004 pup numbers, and also 
about 1952 pup numbers. 
 
Vague priors tend to be vague about things they notice, and dogmatic about things they don't.  
For example the model so far is dogmatic that the multiplier is constant over time. There are 
hints in the pup surveys that this may not be true, that the rate of increase has itself been 
increasing. Straight mathematics would strongly prefer the increasing-multiplier model.  But we 
don't: it offends our prior beliefs about the population in the 1950s.  1956 had a pup catch of 360 
thousand, the following year half of that.  This casts doubt on the pup numbers back then, and 
also on the constant multiplier idea.  Suggests there is scope for a better model but this is not it. 
 
Preliminary work to get roughly independent auxiliary variables turns out to be 
crucial for getting the 3-parameter model to converge. 
 
So far what we have done looks very little different from classical statistics, except that we end 
up making statements about the probability that a certain fact about the real world is true.  It's 
almost "How to be Bayesian if you must."  Though one benefit for all the extra work: we never 
assumed that all the measurement errors were equal, and in fact supplied a data set including 
the standard deviations for each survey. So we went beyond the simplest linear regression 
theory at no extra cost beyond the cost of being Bayesian. 
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Fractions of females pregnant 

 
 
Now we get into some of the reasons why we might want to be Bayesian.  One thing that might 
change with time is the fraction of females pregnant; and this is what we have the most data on.  
There is evidence of year-to-year changes and also of systematic changes; there are years of 
little or no data.  We seek a description that will allow us to use a year's observations when they 
are abundant, and otherwise use observations of the same seals, in the same bit of ocean, in 
nearby years.  Figure 3 shows fractions pregnant for females from age 4 (magenta; at time of 
giving birth; 3 at time of observation) to 8+ (red).  The area of a circle is proportional to the 
number of females examined.  This leads to a hierarchical model, when the true fraction 
pregnant in a year is a random variable drawn from some hyperdistribution, and then the 
observed number pregnant in a sample is a binomial random variable with the given true 
probability.  We look in detail at age 8+ females.  
 
We can reject immediately the hypothesis that the true fraction pregnant is the same in every 
year.  The red symbols in Figure 4 are for a model with a vague prior distribution of mean 0.5 for 
each year separately.  The black symbols are for a hierarchical model; the dashed vertical lines 
show the interquartile range of the posterior distribution. 
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Assuming that no year has information about any other year has, naturally, the best fit to data 
(lowest deviance), but has the largest number of parameters to be estimated and contains no 
information about unobserved years.  How do we decide whether to prefer a model that fits 
better but has more parameters?  Deviance Information Criterion (DIC), based on the estimated 
number of model parameters which is the difference between the average deviance and the 
deviance of the average prediction.  (Deviance is a funny term: perfect fit has nonzero 
deviance.)  I can't motivate it.  It has been shown to work well in some situations and not in 
others.  It tends to be used because we need to believe in something. A pure hierarchical model 
has a better DIC, but for unobserved years it pays no attention to evidence of a trend over time. 
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We have no parametric model for what a trend might be, and so in Figure 5 we use a moving 
average model for the hyperparameters alpha and beta of the Beta hyperdistribution.  A pure 
MA model (black lines; the dashed lines are the interquartile range; similar to what Brian Healey 
used but with a different smoothing procedure) has worse DIC than pure hierarchical.  A 
hierarchical MA model (red symbols), where the MA procedure is used to get the 
hyperparameters, has by a small margin the best DIC.  This is not in itself a reason to select it, 
but it also accords better with our belief that there is a trend and (especially for making 
projections of future pregnancies) we will get more accurate answers by taking it into account.  
It has the appealing property of relaxing to the overall average of all the data many years away 
from all observed years. 
 
Full ballistic population model 
 
The term ballistic is used to indicate that each cohort is launched with its own pup numbers and 
then proceeds deterministically with the given natural mortality rate and catch removals.  What 
new issues arise in the full model? 
 
1)  There are several ages each with its own fraction pregnant.  But all ages give birth to 
identical pups and therefore, because we don't actually determine the age of a seal giving birth, 
there is no way to recover this information later.  There could be 5000 more pups born to age 6 
mothers and 5000 less to age 7, and we would never know.  Thus the pregnancy fractions of 
separate ages are irredeemably confounded and we might as well estimate only the age 8+ 
fraction and adjust the others to have the same number of standard deviations from their 
expected values.  Pragmatically, this also hugely reduces the number of parameters to be 
estimated and makes the program run much faster. 
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2)  Pups have a higher natural mortality rate than adults.  As a first step we assume pup natural 
survival is the square of adult survival over a year.  In principle the power could be estimated, in 
practice it is confounded and in any case makes no different predictions about things we care 
about like seal numbers now. 
 
3)  Initial conditions now are a vector of 8 nonpup numbers, not a single starting number (pups 
are computed from pregnancy fractions.)  In the absence of nonpup surveys at any time (age 
distribution of catch is the closest we have) it makes sense to require that the starting age 
distribution is close to a stable age structure, including pups, and close to equilibrium.  But we 
can't require that it be exactly that because we know the pup catch varies hugely between years 
and this makes the subsequent age structure far from stable.  So, technically, we have another 
prior distribution for parameter values that make the starting population not too far from stable.  
It is a very indirect, implicit prior, which needs some tricks to define it satisfactorily and then 
specify it in JAGS.  Figures 6 and 7 show the envelopes for pups and nonpups. 
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4) There are new questions we can ask, like the probability that the seal population has been 
declining between 1999 and 2004.  The ratio of the two numbers is just another function of 
parameters whose marginal distribution we can sample. 
 
5) One can also ask about the posterior distribution for fraction pregnant and whether it differs 
from the prior.  It turns out it can in years when there are pup surveys (marked in green in 
Figure 8), and also at the beginning where stability was not defined very nicely.  Some badly 
behaved exploratory runs converged to totally unbelievable population histories, and then 
compensated by choosing wild outliers for the fraction pregnant in survey years. 
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Deviance calculations estimate that there are 2.6 model parameters, barely more than the 2 of 
the model with exponential growth of pups.  This means that, despite the posterior adjustments 
of pregnancy fractions in the years of pup surveys, there are few effective parameters 
associated with the freedom to choose pregnancy. 

 
 
Discussion  
 
Alf: how did you decide on the smoothing window? 
Geoff: after a bit of play, it was fixed at 10 years.   
Alf:  how can you do a GOF test to the model 
George: assess the predictive capacity at the higher level of hierarchy.  DIC at the lower level of 

hierarchy.  It is like cross-validation. Eg: new recruits per streams > low level;  regional 
recruits is high level 

Pierre: how does one project forward? 
Geoff: With a pure hierarchical model, as soon as run out of data, you are back to projecting the 

average.With a running average, projections would be tied to the recent history. Now the full 
seal production model: age-structured model is simplified by assumed that pregnancies at all 
ages are perfectly correlated. May not be true but will not know anyway. Survival rates:  
strong belief that pups have low survival more than older ones but cannot get at it. Used 
informative priors in pregnancy rates. Also used informative priors to start off with a stable 
age distribution.  Strong influence of data on posterior.  Nonpup numbers smoothed because 
…. (missed the point made CHECK).  Funny that precision greater than latest data close to 
latest survey 

George: This problem arises in all sorts of age-structured models  
Alf:  it has to do with basic model.  In some cases, will give exponential growth.  
Kent: are filling pregnancy rates from priors when no data, which are narrower.   
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Steve: Taylor’s law higher variance with higher mean 
Geoff: Comment on Bayesian modelling:  advantage: having gone to all this trouble to build this 

posterior, we also have random sample of all sorts of other parameters!!! Work real hard at 
first but have a lot of bonuses. Fig 8 of 8:  black is prior median, red is posterior median; big 
differences where there is a pup count. We could argue that pregnant does not result in pup 

Rob:  why are results inconsistent in differences between red and black; why is different. 
Mike H:  Is this backward extrapolation? 
Geoff: No, it is not a Peter Shelton model.  Where go next:  should use the age distribution of 

the catch. Let’s you get at things like stable age distribution.  We could get more out of it than 
are now. 

Pierre: What software was used? 
Geoff: I first used WinBUGS, then switched to JAGS (which runs in Linux) and stayed with it 

because it runs models where WinBUGS froze.  Also, the author of JAGS is very good to 
respond to questions and make changes to his software.  The syntax is a bit different from 
WinBUGS.   

George:  I really like the fact that JAGS has a way to simulate data and fit model to data; that is 
the best way to determine how much data is needed, i.e., to answer the question of data 
sufficiency. JAGS does not allow you to do cyclic walks, you can in WinBUGS. All are useful 
in their own way (JAGS, WinBUGS, OpenBUGS) because they offer different options. 

Rod:  if you put same model in all three, do you get same answer? 
George: that is why JAGS was invented, to look at this question. 
Geoff: I had correlation issues.  JAGS is faster.  Also JAGS code has been fixed. 
Alf: for convergence, best to let it converge a long time vs using many chains 
Geoff:  it is easy to see if there is a lack of convergence.  JAGS produces only one chain, you 

can do two runs separately and compare them.  I ran models several times and checked if 
the trace showed no trend and answers were qualitatively indistinguishable over a few runs.  
Demonstration that there is convergence is difficult; non-convergence is easy 

George:  diagnostic statistics exist but looking at traces is better. The characteristics of the 
wiggle trace that shows convergence is that it looks random, not trendy. MCMC is not 
supposed to be a random walk.  You can also look at the posterior distribution as the MCMC 
goes on. You can see it smooth out. But it is feasible to have a multi-modal distribution.  Can 
you get convergence if there is a multi-modal distribution 

Geoff: You would have trouble since the MCMC will update one mode at a time. 
George: CODA and BOA have frequentist takes on Bayesian analysis. 
Alf: when I run non-Bayesian model by likelihood and mean square, they often don’t converge 

and when I simulate I found I can get crazy values of these parameters.  If I get crazy results, 
then the model must be wrong. Problem arises when poor data and many parameters to 
estimate 

George: All models are bad.  All make assumptions that are untenable to varying degrees 
because they simplify biological processes.  That influences the capacity to fit the data.  
There is no single approach to get you around this (in either Bayesian or empirical methods). 

Geoff: This is the question of which has priority the parameter or the data. 
George:  you can have 20 years of data but did no perturbation of the population.  In that case, 

you are forced to use an informative prior. 
Geoff: if you insist on getting a definitive answer. 
Alf: one problem is that all these parameters are changing over time. We should spend time on 

making better models.  I am afraid of jumping to Bayesian when have problems. 
George: That is a totally fair comment. The Bayesian approach has a suite of problems like 

others.  And some are similar. 
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B-2 Working model 2:  A Working Model: The Stock-Production Model in use for 
Assessments of the West Greenland Stock of Northern Shrimp. Carsten Hvingel and 
Michael Kingsley (presenter), Grønland Natur Institut. 
 
A model of the dynamics of the West Greenland stock of the Northern Shrimp Pandalus borealis 
has been built and taken into use for the assessment of the stock and the formulation of 
management advice. 
 
The model is not age-structured, and production is related to stock size by a Schaefer 
(quadratic) form1.  Each year, catch and predation by cod are removed from the stock and 
production is added; a lognormal process error is also included in proceeding from the stock in 
one year to the stock in the next.  The model uses 5 input data series: catches (1955–date), 
standardised CPUE (1976–date), a survey index of biomass (1988–date), cod (predator) 
biomass (1955–date), and predation-rate estimates (1989–1992). 
 
Predation is related to the biomasses of predator and prey by a Holling type III function, 
depending on 2 parameters, with a lognormal error term.  The 4-year series of predation-rate 
estimates contributes to the estimation of the parameters of the predation relationship, but the 
model is not dependent on these estimates.  Both CPUE and survey are considered indices of 
stock size, each with its own scaling factor (catchability) and lognormal error.  Reported catches 
are considered absolute in size and error-free, partly because the objective is to provide advice 
on the management of reported catches, and are the only data series that controls the scale of 
stock size. 
 
Because of the difficulty of getting absolute estimates of biomass, the working variable for stock 
size in the model is its ratio to the Maximum Sustainable Yield Level ( Bmsy).  Parameters 
affecting the process are therefore: error variances associated with the stock-dynamic process, 
CPUE, survey, predation in general, and predation from the 4-year series; catchabilities for the 
CPUE and the survey; 2 parameters defining the predation relationship; production rate at 
MSYL; and the MSY itself. 
 
The model is built as a Bayesian model formulated for the WinBUGS platform.  Non-informative 
priors are used, except for the maximum predation rate at high prey stock size (given an 
informative Normal prior with truncated tails based on experimental feeding studies) and 
carrying capacity (given a slightly informative log-Normal prior with infinite tails in order to 
smooth convergence), for both of which there is little information in the data.  It runs smoothly 
and gives repeatable results, with significant updating of the priors.  The modelled stock 
trajectory tracks both the biomass indices, and error variances are acceptably small. 
 
 

                                            
1 The model was originally formulated as a Pella-Tomlinson model, allowing a skewed relationship between 
production and stock size.  The resulting stock-production curve was very close to Schaefer, and the simpler 
Schaefer model ran so much faster that the model was simplified to that form. 
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Table:  Updating of priors in the W. Greenland assessment model for Pandalus borealis 
 
 
 

 

Mean SD Median Mean SD Median Skewness
MSY 215 249.9 99.66 157.1 52.24 145.2 0.68
K 1300 1691 790.9 2181 3310 1515 0.60
Survey.catch 8.654 18.88 0.3153 0.41 0.1894 0.3978 0.19
CPU.catch 72.48 175.8 0.9993 1.061 0.4105 0.9781 0.61
P.50 4.346 11.85 0.3965 5.651 4.047 4.813 0.62
Omax 3 0.3166 3 2.999 0.3122 2.999 0.00
cv.CPUE 2378 283100 0.1518 0.03846 0.01484 0.03582 0.53
cv.Survey 96370 4.56E+07 0.3731 0.1591 0.0288 0.1558 0.34
cv.Process 14370 3.83E+06 0.2631 0.1014 0.02621 0.1021 -0.08
cv.Predation 567400 2.03E+08 0.4787 0.494 0.2943 0.4623 0.32
cv.Grunwald 203200 6.40E+07 3.354 0.8792 0.55 0.7623 0.64
P[1] 0.9703 0.1964 0.951 0.9172 0.1933 0.8931 0.37
Bmsy 650 845.7 395.5 1091 1655 757.4 0.60
Zmsy 0.8965 2.094 0.2521 0.1888 0.06094 0.19 -0.06
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Figure.  Data series input to the W. Greenland shrimp model: catches, survey and CPUE 
indices of bomass, and biomass of predator with a short series of estimated predation values. 
 
 
 
The smooth working of the model is probably due to wide ranges in all the data series, good 
agreement between the two biomass index series, and a stock history that is consistent with all 
the data series: ‘the story hangs together’. 
 
In formulating management advice, the model time series are extended into the future so that all 
the information on the joint distribution of the determining parameters is used in predicting the 
consequences of management actions.  While other parameter estimates—such as error 
variances—are used in evaluating model fit, the principal stock-dynamic parameters that enter 
into formulating advice are the MSY and the most recent estimates of the relative biomass level.  
However, advice is most strongly affected by the predicted probabilities that given catch levels 
will take stock levels below, or total mortality above, precautionary limits.  The model branches 
in the future so that it can simultaneously forecast outcomes for several catch levels, and 
several possible trajectories for the predator stock size, several years into the future. 
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Discussion 
 
Alf:  If you ask one expert to give a prior probability distribution, he will, and then you ask 

another expert and she will give another distribution.  Probability is defined subjectively even 
if they both meant the same thing.   

Michael K:  One could ask people to give min, max and median and then one would fit a beta 
distribution. If you did that to many people, you could get at the prior distribution of the 
parameter. 

Alf: if you get enough response, that becomes data that can be analysed; Bayes can disappear. 
Michael K:  That is a useful dataset for local knowledge of population qualitative statements. 
Alf:  It is wise to make subjective statements before you get out and get data. So it is a priori. 
Michael K:  This shrimp model actually works. Initially we used a Pella-Tomlinsen which was 

slow to run. We now use a Shaefer or logistic model.  Relative estimate of biomass (P = 
B/Bmsy) are also easier than estimating biomass directly. Catches were assumed error-free. 
CPUE and survey biomass were unscaled indices. Used WinBUGS.  Zmsy was stock 
productivity at MSY.  Omax was the max predation rate. We had convergence to the same 
results from different starting values. Priors are updated significantly by likelihood. Why did it 
work so well?  The range of data on cod stock change is very large.  The catch change 6 KT 
to 130 KT. Survey and CPUE also varied widely (by factor of 2). The story hangs together: 
there few shrimp when cod is high and shrimp increased when cod collapsed. The inter-
quartile range of the posterior fit the survey data and CPUE quite well. 

Pierre: The number of parameters estimated was greater than the question originally posed. 
Michael K:  Don’t extract distribution parameters and then model them.  Instead, simply extend 

the modelled period beyond the data. You get “free” estimates that way.  This is not simply 
for efficiency.  It is because you cannot easily extract the complexity of the posterior 
distributions and the joint multivariate distribution between variables.  You push it for all its 
worth and get as much as you want.  If you use distribution parameters and then 
approximate the distribution by a model, then you add uncertainty. Use a step function to 
calculate the risk probability. 

Jack – How does one model for climate change? 
Michael K– There is a big shopping list of things to model there. Global warming may increase 

cod.  
George – estimating q for surveys is good – marine mammal surveys try hard to get it at one; 

have you tried estimating q.  I treat my catches as priors. Marine mammal people don’t have 
the catch data; inspection of fish catch is thorough. 

Tim: shrimp loss rate is not recorded 
George:  what distribution was used for K? 
Michael: I used a lognormal; a uniform would cause WinBUGS to stop. 
. 
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B-3: Working model 3: Population dynamics of White and Barents Sea harp seals. 

Alf Harbitz, Institute of Marine Research (IMR), Tromsø 
 

Some basics on frequentist-likelihood modelling 
 
Let D be data (observations), � a parameter (vector) and f(D|�) the likelihood. In frequentist 
analysis the parameters are considered as constants, and it is only the data D that are treated 
as stochastic variables. 
The maximum likelihood estimator, �ML, for �, is defined as the value for � that maximizes the 
likelihood, i.e., the value for � that maximizes the probability of having observed the 
observations D.  This is an appealing criterion, and it can be shown that �ML has nice 
asymptotic properties such as unbiasedness. In data poor situations, however, �ML may be 
rather biased.  
To find the �ML in practice, it is often more convenient to maximize the log-likelihood, 
L = log(f(D|�)). In complex models it is not a trivial task to find �ML, and it is wise to see how 
robust the maximizing algorithm is to the choice of initial parameter values. 
Once the �ML is found, the properties of the estimator can be estimated by letting the �ML play 
the role as the true �-value, and simulate data samples, Dsim, from the model f(Dsim|� = �ML) 
with the same sample size as D. In each run �Mlsim is calculated based on Dsim, and statistics 
like bias, standard deviation, correlation among estimators, confidence intervals and confidence 
regions can be found. In addition one can calculate the same statistics on functions of the 
parameters, e.g. a 95% confidence interval for the predicted abundance the next year in a 
population dynamics model. In addition, model validation can be performed by comparing the 
properties of the residuals based on D with the properties of the residuals from the simulations.  
The success of a frequentist-likelihood approach depends strongly on an appropriate model and 
a sufficiently large sample of appropriate data. If this is not the case, �ML will often reveal this by 
providing “crazy” values, e.g. a negative instantaneous mortality rate. 
 

Some basics on Bayesian modelling 
Let as before D denote data, �a parameter and f(D|�) the likelihood. In Bayesian analysis, 
however, the parameter � is allowed to be stochastic. All inference about � is based on the 
posterior distribution of the parameter conditional on data, f(�|D): 
 

(1)  
( | ) ( ) ( | ) ( )( | )

( )( | ) ( )
f D f Df D

f Df D d
θ

θ ⋅π θ θ ⋅π θ
θ = =

θ ⋅π θ θ∫
 

 
where �(�) is the prior describing (subjective) a priori information of � in terms of a probability 
distribution. Note that the denominator in eq.(1), f(D), does not depend on �and thus acts as a 
proportionality constant in the posterior. The calculation of f(D) easily becomes prohibitive in 
complex models with many parameters.  
 
The Bayesian approach has an intuitive appeal because it allows taking into account prior 
(expert) knowledge of a parameter, and it weights data versus subjective knowledge according 
to what source is most informative. Note however, that in contrast to the frequentistic approach, 
the probability concept no longer is defined precisely. Two experts with the same opinion may 
quantify their knowledge in terms of priors differently. In addition, a possible bias of a Bayesian 
estimator cannot be estimated. 
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To define a Bayesian point estimator, �B, the cost function C(�) of the error � = �B�must be 
defined �B is then the value of � that minimizes the Bayes risk E(C) with regard to the posterior. 
For a square cost function, �B is the mean of the posterior, while �B is equal to the median for 
C(�) = | �|. For a uniform cost function �B is the mode in the posterior.  In this case �B is found 
by maximizing the numerator in eq.(1), which technically is identical to finding a ML estimator. 
 

 
 
The last decades the application of Bayesian modelling has been increasingly popular due to 
the introduction of Markov Chain Monte Carlo (MCMC) simulations, which circumvents the 
problem of calculating the difficult denominator, f(D). MCMC gives a recipe of how one can 
simulate samples that converge in distribution to the posterior distribution f(�|D) without the 
need to calculate f(D). In these simulations the posterior distribution of any function of the 
parameters (e.g. a future abundance prediction) is obtained as well. And one may construct 
credibility regions from the estimated posterior, which is the Bayesian analogue to confidence 
intervals. 
 
One fundamental tool in MCMC to produce Markov chains of samples from f(�|D) is the 
Metropolis-Hastings algorithm: 
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where � is the probability of accepting �i+1 as a new value of � in the chain, and �i+1 is 
generated by the sampler, q(�.  that the common factor f(D) for f(�i+1|D) in the numerator and 
f(�i|D) in the denumerator disappear, so the ratio in the algorithm is easily calculated.  
Remarkably, the chain will then converge in distribution to f(�|D) for any choice of the sampler 
q(�. A great challenge, however, is to find a sampler with optimal convergence properties in 
terms of efficiency. When the distribution of any parameter conditional on all the others is 
known, the Gibbs sampler can be applied. In this case � = 1, so the sampling score can be said 
to be 100%. In WinBugs the sampler is found automatically, and Gibbs sampler is applied when 
possible. 
 
Besides finding an appropriate sampler, a major challenge in MCMC is to decide when the 
chain has converged. A complicating factor is that in general the samples in the chain are auto-
correlated, even in the case when the sampler provide independent samples of the parameters. 
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One convergence diagnostics tool is to run several chains with different starting values to span 
the parameter domain. If the between-chain variance become sufficiently small compared to the 
within-chain variance, this is a good indication of convergence. 
 
On the priors 
 
Another fundamental challenge in Bayesian analysis is to assess the sensitivity of the results, 
e.g. the prediction of next year abundance in a population dynamics model, with regard to the 
choice of priors. This is particularly related to so-called non-informative priors for which there 
are no subjective knowledge. Intuitively one would think that it is just to choose a flat prior for �. 
But since one does not have any information of �, one has no information of e.g. log(�) either, 
so the prior for log(�) should be flat as well. This, however, is not consistent, a flat prior on � is 
not consistent with a flat prior on log(�). 
There are some general guidance rules, though, for how to choose a non-informative prior. For 
example, it is recommended to apply a flat prior for pure location parameters, like � in the 
normal distribution N(�,�), and to apply a prior proportional to 1/� for a pure scale parameter, 
�. These recommendations are deduced from sound invariance principles. A problem is that the 
integral of these priors are infinite, so these priors become so-called improper. Another 
challenge in complex models is that it is not always trivial to identify if a parameter is a location 
or a scale parameter. 
A very particular prior is the Jeffrey’s prior, which is insensitive to parameter transformations in 
the sense that it has a unique expression in terms of the Fisher information matrix.  
Assume a population dynamics model contains 10 non-informative priors where one is uncertain 
what the appropriate priors should be. Say that one is interested to examine how sensitive the 
prediction of next year’s abundance is with regard to the choice of non-informative priors, and 
two different candidates for each parameter is chosen. This gives 210 ≈ 1000 different 
combinations. If the model takes one hour to run, the sensitivity test takes about 40 days. Thus 
efficiency is an important task, where the application of e.g. automatic differentiation can be a 
very useful investment.  
 

The harp seal population dynamics model 
 
We apply a simplified two-age model to illustrate the challenges involved in a frequentist-
likelihood approach as well as a Bayesian approach. 
 

Data 
 
Catch data from 1875, only Russian and Norwegian catches 
Pup abundance estimates with cv’s 1998, 2000, 2000, 2002, 2003 
Pup abundance indices 1968, 1970, 1973, 1976, 1980, 1985, 1988, 1991 
Reproductive data: 1288 females 1962-1993 
Age distribution of whelping females: 373 (1980), 401 (1988) 
 
Variables: 
N1,…,Nn  = abundance of 1+ animals from years 1 to n 
N01,…,N0n  = abundance of pups from years 1 to n 
 
Parameters: 
 
K   = ”carrying capacity”, N1+ abundance in year 1 
M0   = mortality rate for pups 
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M0   = exp(M0) = survival rate for pups 
M   = mortality rate for 1+ animals  
m   = exp(M) = survival rate for 1+ animals 
F   = birth rate 
f   = female reproduction rate 
p1,…,pA  = pregnancy rate at age 1 to A 
A   = number of ages 
 
Model: 

Note that, except for the equilibrium assumption at year 1, the model above is exact if we allow 
all parameters to vary in time. If we knew the values of all parameters for all years, the model 
would exactly fit the true abundance in time. At the same time, the number of parameters in this 
case would be much larger than the number of abundance variables, the latter being twice the 
number of time steps (years) because it is a two-age model. Thus an infinite set of parameter 
values would exactly fit the true abundances.  
 
In practice we are left with a limited sample size of pup abundance estimates (5) within a narrow 
time window (1998-2003), 8 relative pup abundance estimates in the period 1969-1991, and a 
long time series of catches (from 1875). For the parameters there are very sparse prior 
knowledge other than the fact that no parameter can be negative, and that f and the p’s cannot 
exceed one. 
There are several ways to approach this typical data poor situation. My own philosophy is to 
start with as simplified models (few parameters) as possible to see how far these can be 
stretched, before more complex models are applied. Even simple models are hard to fully 
understand, a fact that in my opinion is far too often ignored.  
 
In the model development I find a tight cooperation between the statistician and the biologist to 
be of uttermost importance. The Canadian sea mammal scientist Gary Stenson expressed the 
importance of such a cooperation very good during a visit to Tromsø recently, something like: 
“The real potential of scientific progress evolves when the statistician becomes curious about 
biology and the biologist becomes curious about statistics in their cooperation”  
For the harp seal population it is a common opinion that parameters like instantaneous mortality 
rates may depend on abundance densities as well as on environmental factors. As a simple 
example I modelled the influence of density on M0 as follows: 
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In this model the natural pup mortality increases rather dramatically as the 1+ abundance 
approaches the carrying capacity, K. An interesting feature of this model is that it provided much 
better fit to the absolute pup estimates and the pup index data than other (Bayesian) multi-age 
models with more parameters where the density regulation was put on other parameters, as 
shown in the figure below. This does not mean that one model is better than the other, but it 
illustrates the flexibility inherent in even simple models.   
 

 
Bayesian model with more parameters than in right figure 

 
 
 
 

 
 

Model with 4 parameters, multiply vertical scale with 100000. 
 
Without the density regulation I have big problems in estimating �ML, e.g. when I try to estimate 
the 3 parameters K, M0, and f, and in some runs that work I may get non-biological results. 
When the same exercise is done applying MCMC with “biological” priors, apparently appropriate 
posteriors are produced. In my opinion this illustrates that one should really be cautious in 
applying Bayesian modelling in this situation: The MCMC technology works as a black box 
producing apparently reasonable results due to the priors, which easily hide the fact that the 
data model (the likelihood) in the first place is odd. Another experience with the frequentist-
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likelihood approach is that several of the parameters covariate very strongly, which is an 
important information that will be obscured by applying independent priors. 
 
Is the Bayesian approach worthwhile? 
 
Pros: Bayes in general is particularly useful when there exist prior knowledge of parameters that 
can not be estimated from data. MCMC offers large flexibility and enables complicated models 
with many parameters.  MCMC is an applicable tool that can be used by non-statisticians 
 
Contras: 
 
In data poor situations with problems of getting appropriate results by non-Bayesian approaches 
due to e.g. inappropriate models, apparently reasonable results can be obtained by Bayesian 
analysis, obscuring/camouflaging model failure. In data poor situations an important task is to 
apply a range of different models, reflecting different biological aspects that the biologist finds 
appropriate. A tool like MCMC is technically complicated in terms of e.g. interpretation, and 
might easily turn the focus too much away from the biology. 
 
Recommendations: 
 
Much effort should be put in developing appropriate data models in close cooperation between 
the statistician and the biologist, beginning with simple few-parameter models and a frequentist-
likelihood approach to learn properly the properties of the model.  Sensitivity analysis of priors 
should be emphasized in Bayesian analysis. Subjective knowledge should be quantified, 
experimentally when possible. 
 
 
Discussion 
 
• Is Bayesian probability a “vague” term for non-statisticians?  Should we be doing Bayesian 

analyses because it is the “right” way, or because it is the easiest way?  Different 
approaches to a problem will yield a better understanding of the underlying data and 
parameter relationships and values. 

• The point is to get the biologists curious about statistics and the statisticians curious about 
biology (Stenson quote from Tromsø). 

• Alf recommends a variety of approaches be applied to a problem such as traditional 
statistics, Bayesian models, sensitivity analyses etc. 

• Discussion of AD model builder - fast in operation.  ADMIT module in MATLAB may be 
another package of use. 

• WinBUGS has an extensive help and example system in the main menu. 
• Should we discuss finding a standard approach to Bayesian analyses (approaches and 

software choices)?  E.g., JAGS may compile faster, and allow more complex models, than 
WinBUGS. 

• OpenBUGS seems to give better feedback on model errors than WinBUGS, although either 
programme would be a good choice for beginning modellers. 

• Great care must be taken in parameterization as the different programmes require 
parameters input in different ways. 

• Data poor systems (e.g., bowhead pre-whaling population size) may constrain the 
functionality of the Bayesian approach (although this may be true of all statistical 
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approaches).  The context of the problem will have a big impact on the efficacy of the 
various statistical approaches. 

• SIRS versus MCMC approaches were discussed – some of the decision will be predicated 
upon the programming skills of the user.  SIRS may be an easier programme to work with, if 
you are already a competent programmer; may be easier to understand the SIRS system for 
a simple model with relatively few parameters.  Hobbs will prepare a description of SIRS to 
present. 
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B-4 Working model 4:   Population dynamics of (mostly) short-beaked common dolphins 
from (at least) three stocks in the eastern Pacific Ocean.   
George M. Watters, NMFS SWFC. 
 
Using a model that is currently under construction, I provide working examples of various issues 
that arise in using the Bayesian approach to model the population dynamics of marine 
mammals, and although the title of my presentation gives emphasis to short-beaked common 
dolphins, my presentation is intended to be less about dolphins and more about modeling 
issues.  I attempt to provide examples that illustrate the modeling process, and, since the work 
is still in progress, it is important that results illustrated in my presentation are not interpreted as 
final results.  I am happy to discuss Bayesian modeling, either in general or for specific 
applications, with anyone.  I have made my code available to participants of the Workshop, but, 
since this is an active area of my own research, I ask that users be discreet with its use and 
distribution. 
 
I describe the dynamics of short-beaked common dolphins (Delphinus delphis) with an 
“extended” Pella-Tomlinson model that is cast in a state-space framework.  These extensions 
include: 
 
1. simultaneous fits to estimates of abundance developed from line-transect surveys in two 
regions and for three stocks (the northern, central, and southern stocks), 
2. “movement” parameters which determine the probabilities that animals from the northern 
and southern stocks are observed in surveys that do not cover the entire range of these stocks 
(but one survey does cover the range of the central stock), and 
3. time-varying carrying capacities for each stock. 
 
I explicitly consider how environmental conditions affect movement by the northern and 
southern stocks and the carrying capacities of all three stocks.  I also use auxiliary information 
collected from dip nets to index carrying capacity for the central stock and fit to a time series of 
such indices.  I include both observation and process error in the model (this is essentially the 
state-space framework).  Observation error is associated with the line-transect estimates of 
abundance, the environmental indices used to model time-varying carrying capacities, and the 
dip net data.  Process error is included both in the sub-model that describes time-varying 
carrying capacity and in the overall dynamics equation described by the Pella-Tomlinson model.  
Posterior distributions for the parameters and other, derived variables of interest are estimated 
using the MCMC methods implemented in OpenBUGS, and the graphics provided in my 
presentation typify the graphics that can be produced from the OpenBUGS GUI (graphical user 
interface). 
 
The remainder of this abstract is organized in subsections that address each of the issues 
which the Workshop Convenors identified as topics of specific interest. 
 
Choice of prior distributions 
 
My example model has numerous parameters, and I use a variety of approaches to specify their 
prior distributions. 
 
1. I develop some priors on the basis of information in the literature.  For example, results 
from Reilly and Barlow (1986) suggest that it is unlikely, but nevertheless possible, that the 
maximum rate of population increase at low abundance (r) is about 8% per year.  Thus, I use a 
“folded normal” prior (by taking the absolute value of a normally distributed random variable) for 



 

39 

r and specify a variance for this distribution that allows one to infer that a value of 8% per year is 
not very likely. 
 
2. I develop some priors by using approximations that provide a desired prior on a derived 
or implied parameter.  For example, it might be desirable to place a uniform prior distribution on 
the maximum net productivity level (MNPL, expressed as the ratio of abundance to carrying 
capacity).  However, in the familiar Pella-Tomlinson framework, there is not an analytical 
solution for z (the productivity shape parameter) in terms of MNPL; thus I cannot sample directly 
from a prior for MNPL and use algebra to convert these sample values into values of z.  There 
is, however, an analytical solution for MNPL in terms of z, so I specify a prior distribution for z 
that provides an approximately uniform prior on MNPL over the range [0.5, 0.8].  Such an 
approximation is provided in my code. 
 
3. I develop some priors by specifying means, variances, and ranges that provide 
biologically sensible results or do not cause numerical problems.  For example, in a case where 
I compute the natural logarithm of the difference of two parameters with independent marginal 
prior distributions, I ensure that each marginal prior is specified in a way that does not allow the 
difference to be negative or extremely close to zero, either of which would cause numerical 
errors in calculating the logarithm.  This type of problem can also be addressed by specifying 
appropriate joint priors, but I find that it can be difficult to communicate about joint prior 
distributions to some audiences (and even to myself!). 
 
4. I develop some priors by adopting a suite of “common sense” rules.  For example, I 
illustrate an S-shaped model that relates the “true” carrying capacities (K) estimated in the 
Pella-Tomlinson framework to “observations” of carrying capacity recorded in the dip net data.  
This S-shaped model has a parameter that defines an intercept, and I specify that the prior 
distribution for this parameter should include the possibility of an intercept near zero because it 
seems reasonable that dip net catches might be negligible when the true K is small (of course 
this does not have to be the case if there is reason to suspect a positive bias in observations of 
K). 
 
5. I develop some priors on the basis of my own “prior belief.”  For example, I use 
penalized splines to smooth some environmental data within the assessment model (illustrating 
how uncertainty associated with constructing environmental indices can be carried all the way 
through an assessment without having to do the smoothing “outside” the model), and I specify a 
prior belief about the degree of smoothness for these splines.  I implement this belief by 
specifying a prior distribution which puts substantial weight on the hypothesis that one source of 
variance in the smooth (the variance of the random errors) is about twice as big as another 
source of variance (the variance of the smoothing parameters themselves).  In another 
example, I control the degree to which carrying capacities can vary over time by using a box 
constraint to specify the prior belief that K cannot change (either positively or negatively) by 
more than 10% per year. 
 
Convergence of MCMC chains and autocorrelation of posterior samples 
 
In my opinion, convergence to a stationary distribution and autocorrelation in the posterior 
samples can often be assessed visually.  I usually assess convergence to a stationary 
distribution by plotting “parameter traces.”  I consider whether traces of single chains have 
properties like those which represent parameters that are sampled from prior distributions but 
are not modified by likelihoods.  The key here is to recognize that the job is to assess 
convergence to a distribution rather than to a point.  Therefore, do not expect parameter traces 
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to converge to straight lines.  I also start multiple chains from different locations in the 
parameter space and consider whether these chains converge to similar distributions.  I learned 
to make visual assessments of parameter convergence both by “training” my eyes in exercises 
where I viewed parameter traces in tandem with the results of more formalized convergence 
diagnostics (e.g., the diagnostics available in the R packages BOA and CODA) and by simply 
plotting traces of samples drawn from known distributions.  Despite my reliance on visual 
diagnostics, formal tests may be a necessary standard in actual stock-assessment situations.  It 
is important to recognize that an apparent lack of convergence (indicated either visually or by 
more formal tests) may actually be a result.  For example, if the posterior distribution of a 
parameter is bimodal, the trace of that parameter may bounce back and forth between two 
separate regions of the parameter space.  More generally, an apparent lack of convergence 
may usefully indicate that the estimation problem has multiple solutions.  I evaluate 
autocorrelation in posterior samples using barcharts that plot the value of the autocorrelation 
coefficient (the heights of the bars) versus a lag that describes the distance between two 
samples from the same MCMC chain.  Generally, I hope to see that the heights of the bars 
decrease rapidly with increasing lags and that this decrease bottoms out with bar heights that 
are close to zero (indicating little autocorrelation) at relatively small lags. 
 
In my experience, difficulties with convergence and autocorrelation are frequent (with this 
frequency increasing as models become more complex) but can often be overcome with a few 
practical solutions.  How a model is parameterized plays a major role in determining both the 
rate at which posteriors converge to stationary distributions and the degree to which posterior 
samples are autocorrelated.  When I am confronted with slow convergence and autocorrelation, 
I usually consider how I might reparameterize my model.  Centering and standardizing 
covariates (e.g., as one might do in the context of a simple linear regression) is often helpful.  
Convergence can also be slowed by prior distributions that are overly uninformative, and, 
therefore, when I am confronted with slow convergence I often re-evaluate my relevant prior 
distributions.  If computing time is not important, a brute-force solution to autocorrelation is 
simply to produce huge posterior samples (e.g., millions or tens of millions) but then discard 
most of these results and keep, say, every 100th value.  This process is called “thinning.”  Quick 
checks of autocorrelation plots like those described above can be used to guide the selection of 
a useful thinning interval – i.e., try to pick a thinning interval which corresponds to a lag that has 
low autocorrelation for multiple parameters.  There are formal diagnostics that can also be used 
to help identify a useful thinning interval.  The drawback of thinning is, again, that many more 
samples are collected than are actually used in making posterior inference (thus it can be 
inefficient from a computing standpoint). 
 
Sufficiency of data 
 
In my opinion, the easiest method to assess whether data are sufficient for parameter 
estimation is to conduct a Bayesian analysis and compare the posterior distributions to their 
respective prior distributions, but the “best” method is probably to simulate data with specific 
properties (e.g., sample sizes, CVs, relationships to covariates, etc.) and determine whether 
these types of data are in fact sufficient.  The easy approach is easy because when posteriors 
are different than their priors the data have obviously been sufficiently informative.  Comparing 
posteriors and priors should not, however, be limited to comparisons of means; it is important to 
compare the distributions themselves (e.g., by comparing a range of quantiles, or making qq-
plots).  The more difficult, but preferable, approach may require a substantive investment in 
programming and subsequent analysis, but the payoff is gaining an understanding of data 
sufficiency more generally, with insight as to what type and quantity of data are “needed,” rather 
than knowing whether the data at hand are good enough. 
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Although the simulation approach mentioned above can help indicate the type and quantity of 
data that may be sufficient in the future, it does not alleviate the problem of having to deal with 
data that are not sufficient for parameter estimation in the present.  There are various options 
for dealing with this situation (i.e., needing to develop a model, estimate parameters, and 
provide advice despite insufficient data), and I attempt to illustrate them in my presentation.  
One option is to be forthright about the lack of sufficient data and live with the uncertainty it 
brings.  For example, the data illustrated in my presentation are not sufficient to estimate the 
MNPL (my posterior and prior for this derived parameter are the same), but I am comfortable 
with this result precisely because I am uncertain about MNPL and its value plays a critical role 
both in determining how a population responds to fishing and, at least in the context of the U.S. 
Marine Mammal Protection Act, in assessing the status of marine mammal populations.  
Another option is to bring an alternative source of data to bear on the same problem.  For 
example, in an attempt to estimate how the carrying capacity of the central stock has changed I 
use both a series of sea-surface height data (which are the only type of data available for the 
northern and southern stocks) and observations of potential dolphin prey organisms collected 
during research cruises (which were not available for the other two stocks).  Finally, it can be 
useful to conduct a sort of Bayesian sensitivity analysis where, in the absence of sufficiently 
informative data, informative priors and fixed parameter values are used to build contrasting 
scenarios.  For example, in my model for D. delphis, I show how estimates of stock status 
(based on the ratio of abundance at any point in time to the abundance when a stock is at 
MNPL) are sensitive to different priors for parameters in the sub-model relating the “true” 
carrying capacity for the central stock to observations collected during research cruises as well 
as to different assumptions about the relative amounts of process and observation error in my 
model. 
 
Software and programming issues 
 
My presentation here is a simple set of bullet points – it is a bit difficult to combine these points 
into a coherent paragraph structure.  Many of these points are specific to WinBUGS, 
OpenBUGS (which I use most frequently), and JAGS. 
 
• I have found that programming skills in WinBUGS are transferable to OpenBUGS and 
JAGS (and vice versa).  The syntax and programming flow in all three packages is similar but 
sufficiently different that code developed for one package will usually require some editing 
before it can be run in another package. 
• It is important to understand how each modeling package parameterizes its distributions 
(e.g., by specifying estimates of variance or estimates of precision). 
• MCMC chains can be thinned at two times during a modeling session within WinBUGS 
and OpenBUGS, during sampling or after sampling.  Users should be aware that if thinning is 
conducted after sampling some of the default graphics will not be developed from the thinned 
chain.  To ensure that graphics are developed from thinned chains it seems best to thin during 
the sampling process, this can also reduce memory requirements and the sizes of output files. 
• I often aim to include various bits of “data processing” within my models (e.g., in my 
presentation I illustrate smoothing a series of environmental data within the larger model of 
dolphin population dynamics).  The advantage of such a thing is that uncertainty associated with 
the data processing (e.g., how much to smooth the environmental series) can be integrated into 
the assessment and carried through into the results that are relevant to providing management 
advice.  The disadvantages of this approach include added model complexity and increased 
computing time. 
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• Following from the point above, I also aim to predict as many “values of interest” (e.g., 
metrics like the ratio of abundance at any point in time to the abundance when a stock is at 
MNPL and estimates of sustainable mortality like potential biological removals, PBR) within my 
models as possible.  The advantages here are that, again, uncertainty is integrated into these 
values of interest and their posterior distributions are computed as a matter of course, but this 
comes at the price of increased computing time. 
 
Discussion 
 
 Geoff:  left out the key PRO thing is that calculates the things that conf limits say they do but 

they don’t 
 Alf: yes; but for me it does not solve anything because the Bayesian probability is vague 

since includes prior.  
 Alf:  the best thing is to do both empirical and Bayesian. 
 There are insights to be gained from a progressing form deterministic, sensitivity analysis, to 

empirical,  to Bayesian (also sensitivity) and insights are gained from all methods 
 Geoff:  ADmodel Builder does all those things at a price 
 Matlab also had Admit module [ask Alf] 
 Alf: Gaussian Markov Random Fields GMRF is another branch of stats that is very efficient.  

I have seen an example where they replace MCMC.  Uses full conditionals 
 Rod:  Discuss standardization Bayesian methods and software 
 George:  not in favour; stifles creativity  
 Alf:  WinBUGS demo 
 Alf:  recommend WinBUGs but if make loops in WinBUGs do not repeat variable in model 

code 
 George: any oddity in WinBUGs is when use lognormal  you have to get the log(x) and put it 

in dlnorm() 
 Michael:  be careful at all distributiondefinitions; they are different from other software. 
 George:  I use R to look at distribution and then BUGs is totally different 
 Pierre:  sample it to see if correctly specified 
 George: precision rather than SD 
 Alf:  Compiling is often problematic in WB 
 Geoff:  JAGS will compile models that WB does not 
 George:  cyclic graphs take long to compile 
 Open BUGs gives more information than WB but still unclear what say 
 OpenBUGs also has diamonds that can click on and sometimes track through and figure out 
 WB error messages – scour the WB listserv – few answers but often no answers 
 As a tool for getting into it, WB is great 
 Steve:  Data poor systems are problematic ; maybe we chose a bad case to start 
 Initial understanding is that data poor situations can be solved by MCMC but am thinking 

differently now. 
 George:  if have limited data, a lot of modelling approaches regardless, all have problems 
 Michael: if try to do likelihood methods, you run into very slow things;  don’t know how to 

build into the likelihood method the process error.  Easier in WB to build large models. 
 I checked a model in Excel and got same 
 The bonus is the extras parameters estimates 
 George: is context dependent 
 Huge models in ADModel builder take a lot more work than in WB.  It is context-dependent. 
 Consensus that WB is a good tool to beginners 
 George:  alternative for beginners is to do SIR if competent programmer. 
 You can invest effort in learning WB or in programming a SIR also in language competent in 
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 SIR is 10 lines in Fortran 
 MatLab 10-15 lines 
 Why are people not using SIR? 
 SIR is more straightforward to understand if small vector size 
 No search routine involved 
 If posterior has oddities, like more than one maximum, you will find it easier by SIR rather 

than MCMC 
 Can someone prepare  
 Geoff: model says that if SSH above normal, K goes up forever 
 George: true, not totally satisfied by the formulation 
 A prior belief is that K increases slowly Kt+1/K does not change more than 10% per year.  

This debatable. May be something for sensitivity analysis. 
 Rob: what if there is a sudden change in current, that would be dampened by your  
 GIVES example of alternative parametization for K that runs faster but worse mixing; 
 Smoothing depends on how much 1/sd2 is; how smooth or how rough do you want this to 

be 
 Prior weight is that there is more process error than observation error. 
 Can do all that in one model rather than seperatly 
 g(K) there is information about inflection point 
 Sensitivity analysis 
 [QUESTION]: how to decide what constraints to place on error terms in priors] 
 Sensitivity shows bias-variance trade-off is gnarly. 
 RESULTS 
 WinBUGS graphics are given; not so bad 
 N/MNPL  if below 1 depleted 
 N as fished / N if no-fishing  shows that fishing does little to changes. 
 Can plug in uncertainty from Bayesian model into PBR calculation 
 Red line assumes MNPL at 0.5K; Black dots is using the MNPL in model estimates.  Black 

dots are lower. 
 Did a second run with reparametized parameters to do PBR 

 
B-5: Model 5: Bayesian population viability analysis (PVA) for the Cook Inlet, Alaska 
beluga population using a Sampling-Inference-Resampling (SIR) algorithm. 
Rod Hobbs, NMML, NOAA/NMFS, USA  
 
A detailed population model was developed for the Cook Inlet beluga to assess the extinction 
risks faced by this small population.  The model included immature and mature phases of both 
sexes (i.e., age- and sex-structured) and focused on the behaviour of a declining population at 
sizes less than 500 belugas.  Small population effects were taken into account by examining 
survival and fecundity under a range of scenarios that considered demographic stochasticity, 
harvest, density dependence, Allee effects, constant mortality effects (e.g., predations), and 
unusual mortality events (e.g., catastrophes).  Details of the model are available in Hobbs et al. 
2006. 
 

The PVA analysis was conducted to produce 3 results of interest: 
1) A posterior distribution of the annual growth multiplier for the population. 
2) A posterior distribution of population projections to 300 years. 
3) A comparison among different types of mortality and fecundity effects in small 

populations. 
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A Sampling-Inference-Resampling (SIR)  algorithm was used to generate a set of 10,000 
values of the annual growth multiplier and associated parameters drawn from the posterior 
distribution.  The annual growth multiplier is a derived parameter resulting from the choice of 
model parameters such as survival and fecundity probabilities. Although different survival 
and fecundity values result in the same annual growth multiplier each parameter set will have 
a different likelihood. For this analysis 100,000 trial parameter sets are drawn (Sampling) the 
model is run and the likelihood is calculated for each trial set (Inference) and a subset is 
drawn with replacement from the trial set weighted by the likelihood (Resampling) to develop 
the posterior parameter set. The advantage of this method being that this posterior 
parameter set then contained all of the necessary information to generate the products of 
interest without further sampling.   

Data available to the analysis included 13 years of annual abundance estimates and harvest 
data for the Cook Inlet population.  Life history and population parameters estimated for this 
and other beluga populations are available from the literature. Life history parameters of 
particular interest for modeling purposes were: survival probability, birth interval, age at first 
birth, gestation period, and lactation period. 

 The model was set up with nearly independent uniform priors for the population 
abundance in 1994, 1994N , and the annual growth multiplier, 0φ .  Other parameters for density 
dependent survival, and fecundity were drawn from priors informed by values from the liturature. 
For computational convenience, if 1994N  had a likelihood greater than 10-6 × likelihood of 1994N  

= 1994N (the abundance point estimate for 1994), the parameters and age structure were 
retained as inputs to the Bayesian analysis (parameter values with lower likelihood would have 
no influence on the results).  Each population was then projected from 1994 to 2005 and 
likelihood was calculated as:  
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where, 

jL  is the relative likelihood of the jth population projection; 

( )10, =DFXT  is the density of Student’s-t distribution at X with 10 degrees of freedom; 

jtN , is the population size of the jth projection in year t; and 

)(, tt NCVN  are the estimated abundance (point estimate) and associated coefficient of 
variation in year t. 
 
 Projections to 2005 with likelihoods less than 10-10 × the maximum possible likelihood 
(i.e., the likelihood if the model Nt was equal to the abundance point estimate in all years) were 
discarded as having no contribution to the posterior distribution.  A Sampling-Importance-
Resampling (SIR) algorithm was followed in which the acceptable parameter sets were 
weighted by their relative likelihoods from projections to 2005, and a resample drawn with 
replacement to give a posterior distribution of outcomes.  Projections to 2305 (300 years into 
the future) for this posterior parameter set were done to estimate the probability of decline and 
extinction during that period.  Model comparisons between the various models were done using 
the Bayes factor, calculated as twice the natural logarithm of the ratio of the average likelihoods 
of the two resamples:   
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where BayesFactor(x,y) is the Bayes factor comparing model x and model y; 
ln[] is the natural logarithm of the value in [], Lj,x and Lj,y are the likelihoods of the jth projection of 
model x and model y, respectively; and SIRtot is the number of projections in the SIR 
subsample. 
 
Where the Bayes factor had absolute value greater than 2 the model with the higher average 
likelihood was considered to be the more likely of the two, otherwise the models were of 
equivalent likelihood.   
 
All models were compared to the Baseline model ( 0φ = U[0.94, 1.06]) using the Bayes factor.  
The three options for modifying the Baseline model, the constant mortality effect (C), the 
unusual mortality event (PMe) and the Allee effect (A) were each considered.  The time series of 
abundance and harvest data covered a sufficient range of population sizes (270-660 belugas) to 
compare between the Baseline and the Healthy Population models but not among the remaining 
options.  Six models with the modifiers for survival and fecundity were considered, three of the 
Baseline with the C parameter at 1, 2 or 5 mortalities per year, one of the Baseline with the 
Allee parameter at 0.50, one of the Baseline with an unusual mortality event (PMe = 0.05), and 
one of the Baseline with the C parameter at 1 and an unusual mortality event (PMe = 0.05 ).  Two 
additional models were included to test the sensitivity of the parameters: a Baseline and Healthy 
Population model that included an unusual mortality event and a C of five mortalities.  For each 
model, 100,000 trials were projected to 2005 and the likelihood was calculated.  Each 
population projection was fully defined by 13 parameters, however the parameter of interest was 

0φ , a derived parameter.  A sample of 10,000 of these trials, weighted by the likelihoods, was 
drawn with replacement for the SIR algorithm resample for further analysis.  For all populations 
the population size in 1994, 2005, 2105, 2205 and 2305 was retained and for declining 
populations the year that the population dropped below 200, 100, 10, and 2 animals was 
retained.  A population with 1 or 0 individuals was considered extinct. 
 
 
Reference 
 
Hobbs, R.C. K.E.W. Shelden, D.J. Vos, K.T. Goetz, and D.J. Rugh. 2006. Status review and 

extinction assessment of Cook Inlet belugas (Delphinapterus leucas).   AFSC Processed 
Rep. 2006-6, 74 p. Alaska Fish. Sci. Cent., NOAA Natl Mar. Fish. Serv., 7600 Sand Point 
Way NE, Seattle WA 98115.  

 
Discussion 
 
Time did not allow discussion of this model.  Discussion of its methods was deferred to the 
general discussion on the following day.  The results of that discussion are presented in the 
main body of the report. 
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Appendix IV 

 
 
Additional references on Bayesian methods and modelling 
 
Books: 
 
Albert, J.   2007.  Bayesian Computation with R.  Springer.  x + 267 p.   
 
Bolker, B.M.  2008. Ecological Models and Data in R.  Princeton University Press.  vii + 396 p. 

[Excellent text on ecological modelling methods, with many R code examples, including 
Bayesian modelling.] 

 
Clark, J.S. 2007.  Models for Ecological Data: An introduction.  Princeton University Press.  xiii + 

617 p. [Excellent text on ecological modelling methods, including Bayesian modelling.] 

Clark, J.S. 2007. Statistical Computation for Environmental Sciences in R: Lab Manual for 
Models for Ecological Data.  Princeton University Press.  [R code for modelling methods, 
including Bayesian modelling.] 

Gelman, A., Carlin, J.B.,  Stern, H.S., and D.B. Rubin.  2004.  Bayesian Data Analysis.  
Chapman and Hall /CRC Press.  668 p. [Advanced text on Bayesian analysis] 

 
Hacking, I. 2001.  Introduction to Probability and Inductive Logic.  Cambridge University Press. 

302 p.  [ A careful discussion of the issues by a philosopher, with a lot of instructive 
puzzles (Geoff Evans)] 

 
Hilborn, R. and M. Mangel.  1997. The Ecological Detective: confronting models with data.  

Princeton University Press,  xvii + 315 p.  [Excellent introductory  text on likelihood and 
Bayesian population modelling methods.] 

 
Jaynes, E.T. 2003. Probability theory: the logic of science.  Cambridge University Press, 

Cambridge, UK.  758 p. [ text on  probability theory; a wonderfully polemic and dogmatic 
view (G. Evans)] 

 
King, R., Morgan, B.J.T., Gimenez, O. and S.P. Brooks.  2010.  Bayesian Analysis for 

Population Ecology.  Chapman and Hall/CRC Press.  xiii + 442 p. [Excellent  text on 
Bayesian  ecological modelling methods, including population models, with appendices on 
R and WinBUGS Bayesian programming.] 

 
McCarthy, M.A.  2007.  Bayesian Methods for Ecology.  Cambridge University Press.  xiii + 296 

p.  [Excellent text on Bayesian modelling methods, with a primer on WinBUGS use.] 
 
Punt, A. and R. Hilborn.  2001.  BAYES-SA - Bayesian Stock Assessment Methods in Fisheries 

- User's Manual, http://www.fao.org/DOCREP/005/Y1958E/y1958e00.htm#Contents   
[Good primer on various Bayesian Fisheries population modelling methods; downloadable 
Excel spreadsheets are used to demonstrate the algorithms. Good reference list!] 
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Papers: 
 
(See also references listed above in Introduction) 
 
Innes, S. and R.E.A. Stewart. 2002. Population size and yield of Baffin Bay white whale 

(Delphinapterus leucas) stocks. NAMMCO Scientific Publications 4: 225-238.   
 
Wade, P.R., 2002. Bayesian population viability analysis. P. 213-238 In: Beissinger, S.R., 

McCullough, D.R. (Eds.), Population Viability Analysis. University of Chicago Press, 
Chicago. 577 p. 
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Appendix V 
 
 
Software links 
 
ADMB Foundation: http://admb-foundation.org/   
 
ADMB Project: http://admb-project.org/ 
 
Bayesian Computation with R: http://bayes.bgsu.edu/bcwr/ 
 
Bayesian Methods for Ecology:  http://arcue.botany.unimelb.edu.au/bayes.html 
 
BOA: http://www.public-health.uiowa.edu/boa 
 
CODA: http://www-fis.iarc.fr/coda/ 
 
JAGS:  http://www-ice.iarc.fr/~martyn/software/jags/ 
 
MatLab: http://www.mathworks.com/ 
 
OpenBUGS: http://mathstat.helsinki.fi/openbugs/ 
 
PBSadmb (ADMB from R):  http://code.google.com/p/pbs-software/ 
 
R:  http://cran.r-project.org/  and 
      http://cran.r-project.org/web/views/Bayesian.html 
 
Running WinBugs and OpenBugs from R: http://www.stat.columbia.edu/~gelman/bugsR/ 
 
SIR method:  No canned software is available but see Hobbs et al (2006), Hilborn and Mangel 

(1997) and Punt and Hilborn (2001) and Wade (1999) for examples, spreadsheets or 
pseudocode. 

 
WinBUGS: http://www.mrc-bsu.cam.ac.uk/bugs/ 
 
 
 


