A Coded Wire Tag Assessment of Salmon River (Langley) Coho Salmon: 1986 Tag Application and 1987 Spawner Enumeration

N.D. Schubert and L.W. Kalnin

Department of Fisheries and Oceans Fisheries Branch 80-6th Street
New Westminster, British Columbia V3L 5B3

March 1990

Canadian Manuscript Report of Fisheries and Aquatic Sciences No. 2053

Canadian Manuscript Report of Fisheries and Aquatic Sciences 2053

March 1990

A CODED WIRE TAG ASSESSMENT
 OF SALMON RIVER (LANGLEY) COHO SALMON:
 1986 TAG APPLICATION AND 1987 SPAWNER ENUMERATION

by
N.D. Schubert and L.W. Kalnin

Department of Fisheries and Oceans
Fisheries Branch
330 - 80 Sixth Street New Westminster, B.C. v3L 5B3 River (Langley) coho salmon: 1986 tag application and 1987 spawner enumeration. Can. MS Rep. Fish. Aquat. Sci. 2053: 43 p.

CONTENTS

LIST OF FIGURES v
LIST OF TABLES vi
LIST OF APPENDICES vii
ABSTRACT/RESUME viii
INTRODUCTION 1
STUDY AREA 1
METHODS 3
JUVENILE PROGRAM 3
Fish Capture 3
Coded Wire Tagging 3
Transport 3
Sampling 3
ADULT PROGRAM 3
Fish Capture 3
Disk Tag Application 4
Stream Surveys 4
Escapement Estimation 4
Total Escapement 4
Sex Identification Correction 5
Adipose Fin Clipped Escapement 5
Escapement by CWT Code 6
RESULTS 6
JUVENILE PROGRAM 6
Fish Capture 6
Coded Wire Tagging 6
Coho Smolt Age and Size 6
ADULT PROGRAM 10
Mark Recapture 10
Disk Tag Application 10
Census Sample 10
Sample Selectivity by Period 10
Sample Selectivity by Reach 10
Sample Selectivity by Length 10
Sample Selectivity by Sex 14
Spawning Success 14
Estimation of Spawner Population 14
Total Escapement 14
Adipose Fin Clipped Adults 14
Age/Length/Sex Composition 14

Page

DISCUSSION 14
Adult Capture Technique 14
Sampling Selectivity 16
SUMMARY 17
ACKNOWLEDGMENTS 18
LITERATURE CITED 18

LIST OF FIGURES

Figure Page

1. Study area location map 22. Daily catch of Coghlan Creek coho and trout smoltsin relation to water level and temperature, 19867
2. Daily catch of Salmon River coho and trout smolts
in relation to water level and temperature, 1986 8
3. Coho smolt coded wire tagging results, by locationand code, in the Salmon River system, 1986 9
4. Disk tag application, carcass examination and markrecovery by sex of Salmon River coho adults, 1987-88 9
5. Disk tag application and recovery of Salmon Rivercoho salmon, by release condition, 1987-8811
6. Incidence of disk tags or secondary marks in coho adults recovered on the spawning grounds, by period and sex, in the Salmon River, system, 1987-88 11
7. Proportion of the disk tag application sample recovered on the spawning grounds, by application period, in the Salmon River system, 1987-88 12
8. Incidence of disk tags and secondary marks, by reach, in the Salmon River system spawning ground recovery sample, 1987-88 12
9. Proportion of the disk tag application samplerecovered on the spawning grounds, by application reach,in the Salmon River system, 1987-8813
10. Disk tag application and recovery of Salmon Rivercoho adults, by nose-fork length, 1987-8813
11. Sex composition of disk tag application and spawningground recovery samples of Salmon River systemcoho adults, 1987-8815
12. Summary of smolt release, adult escapement and survival to adult escapement of 1984 brood Salmon River coho salmon 15
13. Summary of results of statistical tests for bias in the 1987-88 Salmon River escapement estimation study 16
Appendix Page
la. Daily fence trap catches in the Salmon River, 1986 22
1b. Daily fence trap catches in Coghlan Creek, 1986 24
2a. 1986 Salmon River coded wire tagging results, by code 26
2b. 1986 Coghlan Creek coded wire tagging results, by code 27
14. Incidence of anomalies encountered while coded wire tagging wild Salmon River coho salmon smolts, 1986 28
15. Weekly mean length and weight of coho smolts in the Salmon River system, 1986 28
16. Coho adult disk tag application results in the Salmon River system, 1987-88 29
17. Summary of disk tag recoveries in the Salmon Riversystem, 1987-8830
7a. Summary of live observations and dead counts of coho salmon in the Salmon River, 1987-88 38
7b. Summary of live observations and dead counts of coho salmon in Coghlan Creek, 1987-88 40
18. Spawning success of coho adult female spawning ground recoveries, 1987-88 42
19. Observed and estimated coho adult escapement, by CWT code,in the Salmon River system, 1987-8842
20. Incidence of CWT loss by carcass condition and eye status in coho adults recovered on the Salmon River system spawning grounds, 1987-88 42
21. Sex and age composition and mean length of Salmon River coho salmon, 1987-88 43

ABSTRACT

Schubert, N.D. and L.W. Kalnin. 1990. A coded wire tag assessment of Salmon River (Langley) coho salmon: 1986 tag application and 1987 spawner enumeration. Can. MS Rep. Fish. Aquat. Sci. 2053: 43 p.

In 1986, the Department of Fisheries and Oceans began implementation of a plan to improve the assessment data base for coho salmon (Oncorhynchus kisutch) through the long term evaluation of key stocks. The Salmon River (Langley) was selected for the evaluation, with known precision, of annual escapement, marine survival, harvest distribution and exploitation rate. An estimated 10,059 coho smolts were released with coded wire tags (CWT) in spring of 1986 at an average size of 98.8 mm and 9.3 g . The adult escapement was estimated in fall/winter 1987-88 using the Petersen mark-recapture method. Escapement was estimated at 11,974, of which 319 had CWTs and 87 (21.6\%) had lost the CWT. Survival to escapement was 4.0\%.

Key Words: Coho salmon, Salmon River (Langley), key stream, coded wire tag, escapement, survival.

resume

Schubert, N.D. and L.W. Kalnin. 1990. A coded wire tag assessment of Salmon River (Langley) coho salmon: 1986 tag application and 1987 spawner enumeration. Can. MS Rep. Fish. Aquat. Sci. 2053: 43 p.

En 1986, le Ministère des Pêches et Océans a entrepris la mise en oeuvre d'un plan d'amélioration de la base de données sur le saumon coho (Oncorhynchus kisutch) en faisant une évaluation à long terme des stocks clés. Il a choisi de faire cette évaluation dans la rivière salmon et d'établir des données précises sur l'échappée annuelle, la survie, la répartition des captures et le taux d'exploitation. Au printemps de 1986, environ 10059 jeunes saumons mesurant en moyenne $98,8 \mathrm{~mm}$, pesant en moyenne $9,3 \mathrm{~g}$ et pourvus d'une micromarque magnétisée codée ont été relâchés. L'échappée des adultes a été estimée à l'automne et au printemps de 1987-88 à l'aide de la technique Petersen de marquage-recapture. Sur le groupe constituant l'échappée estimée à 11947,319 avaient encore leur micromarque et 87 ($21,6 \%$) l'avaient perdue. La survie a l'échappée était de 4,0\%.

Mots clés: Saumon coho, rivière Salmon (Langley), cours d'eau important, micromarque magnétisee codee, échappee, survie.

INTRODUCTION

The management of coho salmon (Oncorhynchus kisutch) in British Columbia is largely passive, with harvest management plans established in the absence of harvest rate or escapement goals. The development of more sophisticated approaches is inhibited by the quality of stock assessment information. Coho salmon are recognized as among the most difficult salmon species to study, due both to the mixed stock nature of their marine distribution and to spawner characteristics which make escapement estimation difficult (Anon. 1969, 1984). As a result, improved stock assessment, an important prerequisite for active management, is required to define current stock status and to evaluate future management actions.

Improved assessment of British Columbia coho salmon will result from the intensive monitoring of a group of key stocks selected to represent all British Columbia coho stocks. The status and response to management actions of these stocks will be evaluated by measuring, with known precision, annual escapements, marine survivals, harvest distributions and exploitation rates.

The Salmon River was designated a key stream in 1986 for three reasons. First, recent escapements of Salmon River coho comprised 4% of the Fraser River total (Farwell et al. 1987). The status of this stock, therefore, is an important measure of the status of the Fraser River coho resource. Second, similar data collected from the $1976-78$ brood years (Schubert 1982a; Schubert and Fleming 1989) provide a time series of comparable data. Third, simplified logistics limited project costs.

This report documents, for the 1984 brood, the 1986 coho smolt trapping and coded wire tag (CWT) applica-
tion and 1987 coho adult escapement estimation studies. The report describes field methodologies, analytic techniques and study results, including smolt timing, age and size and adult age, length, sex, adipose fin clip (AFC) incidence and estimates of escapement and long term CWT loss. The study did not estimate the escapement of precocious males (jacks). The report concludes with a discussion of data limitations and recommendations for future studies.

STUDY AREA

The Salmon River flows in a northwesterly direction for 33 km , entering the Fraser River west of Fort Langley (Fig. 1). Coghlan Creek, the principal tributary, joins the mainstem 14 km upstream from the Fraser River. The system, with an average annual discharge of $1.41 \mathrm{~m}^{3} / \mathrm{s}$ (Environment Canada 1986), drains $85 \mathrm{~km}^{2}$ of lowland agricultural and residential land. In the upper reaches, the river is marshy with low summer flows. In the middle reaches, the river flows across low gradient terrain in a shaded, meandering channel. In the lower 10 km , the river is slow and deep as it flows in a series of tortuous meanders across meadowland. During the Fraser River spring freshet, the Salmon River passes through a pumphouse located at the river mouth. No provisions were made for fish passage. Pump mortalities of up to 31\% (Russell MS 1981) occur when coho smolts pass through the pumps.

The Salmon River supports several anadromous and freshwater species, with coho salmon dominant (Hartman 1969; DeLeeuw MS 1981; Schubert 1982a). Coho adults enter the river at ages 3_{2} and 4_{3} and spawn in the middle and upper reaches from November to January (Schubert 1982b; Schubert and Fleming 1989). Coho escapements averaged 3,000 and 2,400 in 1970-79

and 1980-86, respectively (Farwell et al. 1987).

METHODS

JUVENILE PROGRAM

Fish Capture

Traps similar to those described by Schubert (1982a) operated in Coghlan Creek from April 17 to June 17, 1986 and in the Salmon River from April 17 to June 10, 1986. The Coghlan Creek trap was located 100 m above the Salmon River. The Salmon River trap was located 75 m above the Coghlan Creek confluence.

Captured fish were enumerated at least once daily. Coho smolts were transferred to holding boxes or to the tagging site for tagging and sampling. Coho fry were not enumerated because the 6 mm fence mesh did not fully restrict their passage. The remaining catch was identified to species and released below the trap. Trout were recorded as smolt or presmolt, based on size and parr marks, but were not identified to species.

Coded Wire Tagging

The CWT equipment and maintenance procedures were described by Armstrong and Argue (1977). Coded wire tagging occurred from April 23 to June 6, 1986 at intervals of one to seven days. On each day, the smolts were sorted by size (nose-fork length greater or less than 100 mm) and separate nose molds and implant depths were used for each group. Implant depth was checked for each group by bisecting the skull of a coded wire tagged smolt along the median plane. If the CWT was not in the preferred position in the cartilaginous wedge of the skull, the implant depth was adjusted and the procedure repeated until CWT placement was cor-
rect. Each group was then separated into three replicates, with each receiving a unique CWT code. The smolts were anesthetized with Tricaine Methane Sulfonate (TMS), marked by adipose fin removal, coded wire tagged and passed through a quality control device to ensure the CWT was present. Any diseased or damaged smolts were released untagged. Coded wire tagged fish were then retained 24 hours for assessment of AFC quality, delayed mortality and CWT loss. Any coho without a CWT or with a poor AFC was retagged or reclipped. All smolts were then transported and released.

Transport

Coded wire tagged smolts were released at the Salmon River mouth to avoid pump related mortality. The smolts were transported in five gallon plastic buckets supplied with air from a twelve volt air pump. Transport required less than fifteen minutes.

Sampling

Fifty coho smolts per site were sampled twice weekly for scales, length and weight. The smolts were anesthetized with TMS, a scale smear was removed with a scalpel from each preferred region, nose-fork length was measured to the nearest millimeter and mean wet weight was determined in aggregate on an Ohaus triple beam balance.

ADULT PROGRAM

Fish Capture

Coho adults were captured twice per week in reaches $S 1, S 2, S 3, S 4$ and C1 (Fig.1) from October 28 to December 18, 1987. Coho were attracted from log jams and cut banks with an electroshocker using direct current.

Voltage (600 volts) and frequency (15 to 30 milliseconds) were adjusted daily to ensure the fish were undamaged, but stunned sufficiently to permit capture. Stunned coho were captured in a dip net, permitted to recover in a 601 container of water, disk tagged and released.

Disk Tag Application

Coho adults were Petersen disk tagged in a wooden tray ($10 \mathrm{~cm} \times 10$ $\mathrm{cm} \times 100 \mathrm{~cm}$) constructed with a flexible plastic bottom and a meter stick recessed in one side. The tags consisted of two 2.2 cm diameter laminated cellulose acetate disks and one 0.7 cm diameter transparent plastic buffer disk threaded through centrally punched holes onto a 7.7 cm long nickel pin. The pin was inserted with pliers through the musculature and pterygiophore bones approximately 1.2 cm below the anterior portion of the dorsal fin insertion. The disk tags, arranged with one on each side of the fish and with a buffer disk on the pin head side, were secured by twisting the pin into a double knot. One disk per pair was numbered with a unique code. Initially, green and blue disk tags were used to reduce colour contrast, thereby minimizing recovery and predation biases; however, yellow disk tags and baffles were used in the latter part of the study.

Each disk tagged fish received a secondary mark to allow the assessment of disk tag loss. A 0.7 cm diameter hole was punched through the operculum using a single hole paper punch. Care was taken to avoid gill tissue damage.

Date and location (reach) of capture, disk tag number, nose-fork (NF) length (to the nearest 0.1 cm), sex and adipose fin status were recorded for each fish released with a disk tag. Release condition was recorded as 1 (swam away vigorously),

2 (swam away sluggishly) or 3 (required ventilation). Recovered disk tagged carcasses were enumerated and sampled (described below) to assess handling mortality.

Stream Surveys

Weekly stream surveys were conducted from November 4, 1987 to January 19, 1988. Complete surveys, conducted by a three or four person crew walking in an upstream direction, required up to two days.

Live adults were counted and carcasses were recorded by date, reach, sex (confirmed by abdominal incision) and mark type (disk tag, secondary mark or AFC). Each marked carcass and every tenth unmarked carcass was sampled. All carcasses were then cut in two with a machete and returned to the river. Sample data, recorded by date and reach, included postorbital-hypural plate (POH) length (to the nearest 0.1 cm), sex, female spawning success (0\%, 50\% or 100% spawned), adipose f in and carcass condition, and scale samples. For AFC coho, the head was removed posterior to the eye orbit for later CWT identification. Adipose fin condition was recorded as unclipped or as complete (flush with dorsal surface), partial (nub present) or questionable (appeared clipped but fungus or decomposition obscured area). The condition of AFC carcasses was recorded as fresh (gills red or mottled), moderately fresh (gills white, body firm), moderately rotten (body intact, flesh soft) or rotten (skin and bones), and the absence of one or both eyes was noted.

Escapement Estimation

Total Escapement: The 1987-88 escapement of Salmon River coho adults was calculated from the mark-recapture data using the Petersen form-
ula (Chapman modification) (Ricker 1975). Total escapement was the sum of escapement by sex:

1) Estimated Salmon River coho escapement $\left(N_{t}\right)$:

$$
\mathbf{N}_{\mathbf{t}}=\mathbf{N}_{\mathrm{m}}+\mathbf{N}_{\mathbf{f}}
$$

where:

$$
\begin{aligned}
N_{m} & =\begin{array}{l}
\text { estimated escapement of } \\
\text { adult males; }
\end{array} \\
& =\frac{\left(M_{m}+1\right)\left(C_{m}+1\right)}{\left(R_{m}+1\right)} \\
\mathbf{N}_{f} & =\begin{array}{l}
\text { estimated escapement of } \\
\text { females, analogous to } \\
\text { above. }
\end{array}
\end{aligned}
$$

2) Estimated 95\% confidence limits of N_{t} :

$$
N_{t} \pm 1.96 \sqrt{V_{t}}
$$

where:
$N_{t}=$ total escapement estimate;
$v_{t}=$ variance of the escapement estimate;
$=V_{\mathrm{m}}+\mathrm{V}_{\mathrm{f}}$
$V_{m}=$ variance of the adult male escapement estimate;

$$
\begin{aligned}
&= \frac{\left(N_{m}^{2}\right)\left(C_{m}-R_{m}\right)}{\left(C_{m}+1\right)\left(R_{m}+2\right)} \\
& N_{m}=\begin{array}{l}
\text { adult male escapement } \\
\text { estimate; }
\end{array} \\
& C_{m}=\begin{array}{l}
\text { number of adult male car- } \\
\text { casses examined for disk }
\end{array} \\
& R_{m}=\begin{array}{l}
\text { tags; } \begin{array}{l}
\text { number of disk tagged/sec- }
\end{array} \\
V_{f}=\begin{array}{l}
\text { variary marked adult males } \\
\text { ment estimate, analogous }
\end{array} \\
\text { to above. }
\end{array}
\end{aligned}
$$

Sex Identification Correction: The disk tag application data were corrected for sex identification error. Error occurred because the development of sexually dimorphic traits was often not advanced and internal examinations could not be made. Correction of recovery data was unnecessary because all carcasses were incised and examined internally. Sex identification error was corrected as described by Staley (MS 1989):
3) Estimated true number of males released with disk tags and secondary marks (M_{m}):

$$
M_{m}=\frac{M_{m}^{*}-\left(M_{t} R_{m, f}\right) / R_{f}}{1-\left(R_{m, f} / R_{f}\right)-\left(R_{f, m} / R_{m}\right)}
$$

where:

$$
\left.\begin{array}{rl}
M_{\mathrm{m}}^{*}= & \text { field estimate of number } \\
& \text { of males released with } \\
& \text { disk tags and secondary }
\end{array}\right\}
$$

4) Estimated true number of females released with disk tags and secondary marks $\left(M_{f}\right)$:

$$
M_{f}=M_{t}-M_{m}
$$

Adipose Fin Clipped Escapement:
The estimated AFC escapement was the product of the AFC incidence in the carcass recovery sample, the largest
of the two available samples, and the mark-recapture escapement estimate. Ninety-five percent confidence limits were calculated from the respective upper and lower confidence limits of the AFC incidence and the escapement estimate. For example, the upper 95\% confidence limit of the AFC escapement estimate was the product of the upper limit of the AFC incidence and the upper limit of the total markrecapture estimate. The mathematical relationships are reported below (Cochran 1977):
5) Estimated AFC escapement $\left(\mathrm{N}_{\mathrm{a}}\right)$:

$$
N_{a}=p\left(N_{t}\right)
$$

6) Estimated 95\% confidence limits for p :

$$
p \pm 1.96(5 e+f p c)
$$

where:

$$
\begin{aligned}
p & =\begin{array}{l}
\text { proportion of the sample } \\
\text { with an AFC; }
\end{array} \\
\text { se } & =\text { standard error; } \\
= & (1-f) p q /(n-1) \\
\text { fpc } & =\text { finite population cor- } \\
& \text { rection; } \\
n & =\frac{1}{2 n} \\
q & =1-p \\
f & =\frac{n}{N_{t}}
\end{aligned}
$$

Escapement by CWT Code: Escapement by CWT code and long term CWT loss were calculated by applying the CWT composition in the carcass recovery sample to the estimated return of AFC coho adults. Estimated CWT loss was an average for the three codes.

RESULTS

JUVENILE PROGRAM

Fish Capture

Coho smolt catch totaled 10,081 in 1986, 2,667 in the Salmon River and 7,414 in Coghlan Creek (Appendix 1). The smolt migration began before trap installation on April 17 and continued through early June. The 50\% migration occurred on May 10 and May 12 in the Salmon River and Coghlan Creek, respectively, while the peak catches occurred on May 12 and May 17 (Figures 2 and 3). Because the traps were inoperable for three days in May, the true size and timing of the 1986 amolt emigration were unknown.

Coded Wire Tagging

AFC and CWT releases totaled 10,063 coho smolts in 1986 (Table 1; Appendix 2). When adjusted for short term (24-hour) CWT loss and mortality, the number released with CWTs and identifiable AFCs was 10,059.

Short term CWT loss averaged 0.1\% (range of 0% to 2.2%). The incidence of poor AFCs and delayed mortality both averaged less than 0.1\%. The incidence of disease, damage or structural anomalies averaged 2.8\% (Appendix 3). The most prevalent condition was an infestation of flukes of the genus Neascus, commonly termed blackspot disease. This condition was most prevalent in the Salmon River where 5.5% of the coho smolts were affected. No smolts with naturally missing adipose fins were noted.

Coho Smolt Age and Size

Coho smolts emigrated from the Salmon River system primarily as yearling or age 2 smolts (99.6\%), with age

Figure 2 Dally catch of Coghlan Creek coho and trout smolts In relation to water level and temperature, 1986.

Figure 3 Dally catch of Salmon Rlver coho and trout smolts In relation to water level and temperature, 1986

Table l. Coho smolt coded wire tagging results, by location and code, in the Salmon River system, 1986.

Capture location	CWT Code	Number processed	Estimated posttagging mortality	$\begin{aligned} & \text { CWT } \\ & \text { lost } \end{aligned}$	$\begin{aligned} & \text { Poor } \\ & \text { AFC } \end{aligned}$	Number released with AFCs and CWTs
Salmon River	023838	893	0	0	0	893
	023839	883	0	0	0	883
	023840	887	0	0	0	887
	Total	2,663	0	0	0	2,663
Coghlan Creek	023838	2,692	1	1	0	2,690
	023839	2,606	0	1	0	2,605
	023840	2,102	0	1	0	2,101
	Total	7,400	1	3	0	7,396
Total	023838	3,585	1	1	0	3,583
	023839	3,489	0	1	0	3,488
	023840	2,989	0	1	0	2,988
	Total	10,063	1	3	0	10,059

Table 2. Disk tag application, carcass examination and mark recovery by sex of Salmon River coho adults, 1987-88.

	$\begin{gathered} \text { Disk } \\ \text { tags } \\ \text { applied } \end{gathered}$	Carcasses examined ${ }^{b}$	Marked carcasses recovered b				
			```Disk tag and secondary mark```	```Secondary mark only```	Disk tag only	Total	Percent recovered
Male	834	1,445	178	0	0	178	21.3\%
Female	488	1,857	170	4	0	174	35.7\%
Adipose present	1,277	3,190	328	4	0	332	26.0\%
Adipose absent	45	112	20	0	0	20	44.4\%
Total	1,322	3,302	348	4	0	352	26.6\%

3 smolts forming the remainder of the run. Smolt size averaged 102.1 mm and 10.3 g in the Salmon River and 97.6 mm and 9.0 g in Coghlan Creek (Appendix 4). Weighted mean smolt size was 98.8 mm and 9.3 g . Size increased to a peak in early to mid May and decreased through the remainder of the run.

## ADULT PROGRAM

## Mark Recapture

Disk Tag Application: One thousand, three hundred and twenty-two coho adults were released with disk tags and secondary marks from October 28 to December 18, 1987 (Table 2; Appendix 5). Of that total, 45 were missing the adipose fin. Condition at release was good, except for 70 (5.3\%) which required ventilation (Table 3). No difference ( $p>0.05$; chi-square) was noted in the proportion of this group recovered on the spawning grounds.

An estimated 11.8\% of the males and $14.1 \%$ of the females were misidentified at the time of tagging (Appendix 6). When adjusted for sex identification error, an estimated 834 (63.1\%) males and 488 (36.9\%) females were released with disk tags and secondary marks.

Census Sample: Spawning ground recoveries totaled 3,302 coho adults and 81 coho jacks from November 4, 1987 to January 19, 1988 (Table 2; Appendix 7). Of the adults, 1,445 (43.8\%) were male and 1,857 (56.2\%) were female, 352 (10.7\%) had disk tags and/or secondary marks and 112 (3.4\%) had an AFC. Nine (11.18) of the jacks had an AFC. Four of the coho adults were recovered with a secondary mark only. None were recovered with a disk tag only. No difference was noted in disk tag loss among females (2.3\%) and males (0.0\%) ( $p>0.05$; chi-square).

Sample Selectivity by Period: Temporal bias in the application sample was examined by comparing between periods the mark incidence in the census sample (Table 4). No significant difference ( $p>0.05$; chi-square) was noted between periods or sexes.

Temporal bias in the census sample was examined by stratifying the application sample by period and comparing proportions recovered (Table 5). No significant difference (p > 0.05 ) was noted between periods.

Sample Selectivity by Reach: Spatial bias in the application sample was examined by comparing between reaches the mark incidence in the census sample (Table 6). Mark incidence ranged from $0.0 \%$ to $29.0 \%$, with significantly higher ( $\mathrm{p}<0.05$ ) incidences in reaches $s 1$ (29.0\%) and $s 2$ (21.6\%) .

Spatial bias in the census sample was examined by stratifying the application sample by reach and comparing proportions recovered (Table 7). No difference ( $p>0.05$ ) was noted.

Sample Selectivity by Length: Size related bias in the application sample was assessed by comparing the continuous length frequency distributions of marked and unmarked spawning ground recoveries. No significant difference was noted in males ( $D_{\max }=$ $0.06 ; \quad D_{0.05}=0.13$ ) (KolmogorovSmirnov two sample test; Sokal and Rohlf 1981) or females ( $D_{\max }=0.10$; $\mathrm{D}_{0.05}=0.13$ ). The application sample, therefore, was unbiased with respect to size.

Recovery bias was assessed by partitioning the application sample into recovered and nonrecovered components and comparing the continuous NF length frequency distributions of each. The distributions were significantly different for both males

Table 3. Disk tag application and recovery of Salmon River coho salmon, by release condition, 1987-88.

Release   condition	Disk tags   applied	Disk tags   recovered	Percent   recovered
Fish swam away   without assistance	1,251	324	$25.9 \%$
Fish required   ventilation	70	23	$32.9 \%$
Total	1,322	352	$26.6 \%$

[^0]Table 4. Incidence of disk tags or secondary marks in coho adults recovered on the spawning grounds, by period and sex, in the Salmon River system, 1987-88.

	Recovered with disk tag or secondary mark			Total			```Percent with disk tag or secondary mark```		
period	Male	Female	Total	Male	Female	Total	Male	Female	Total
04-Nov to $28-\mathrm{Nov}$	92	81	173	604	600	1,204	15.2\%	13.5\%	14.48
29-Nov to 25-Dec	58	63	121	599	872	1,471	9.7\%	7.2\%	8.2\%
26-Dec to 20-Jan	28	30	58	242	385	627	11.6\%	$7.8 \%$	9.38
Total	178	174	352	1,445	1,857	3,302	12.3\%	9.48	$10.7 \%$

Table 5. Proportion of the disk tag application sample recovered on the spawning grounds, by application period, in the Salmon River system, 1987-88.

Application   period	Disk tags   applied	Disk tags   recovered	Percent   recovered
$27-$ Oct to 06-Nov	327	98	$30.0 \%$
07-Nov to 20-Nov	550	154	$28.0 \%$
21 -Nov to 04-Dec	340	79	$23.2 \%$
05-Dec to 18-Dec	105	17	$26.2 \%$
Total	1,322	$26.3 \%$	
Stratified data do not include four with secondary mark only.			

Table 6. Incidence of disk tags and secondary marks, by reach, in the Salmon River system spawning ground recovery sample, 1987-88.

Location	Reach	Carcasses examined		Carcasses recovered with disk tags or secondary marks	
		Number	Percent of total	Number	Mark   Incidence
Salmon River	S1	880	26.7\%	255	29.0\%
	S2	139	4.2\%	30	21.6\%
	S3	698	21.1\%	26	3.7\%
	S4	131	4.0\%	1	0.8\%
	S5	31	0.9\%	1	3.2\%
Coghlan Creek	C1	972	29.4\%	29	3.0\%
	C2	156	4.7\%	5	3.2\%
	C3	146	4.4\%	5	3.4\%
	C4	87	2.6\%	0	0.0\%
	C5	62	1.9\%	0	0.0\%
Total	-	3,302	-	352	-

Table 7. Proportion of the disk tag application sample recovered on the spawning grounds, by application reach, in the Salmon River system, 1987-88.

		Disk tags   applied	Disk tags   recovered	
	Reach	Number	Percent   of total	Number

a Does not include four recovered with secondary mark only.
b Downstream from S1 (Fig. 1). Location abandoned after initial application attempts.

Table 8. Disk tag application and recovery of Salmon River coho adults, by nose-fork length, 1987-88.

Nose-fork length (cm)	Disk tags applied ${ }^{\text {a }}$	Carcasses recovered with disk tags	Percent recovered
31-40	47	2	4.3\%
41-50	328	59	18.0\%
51-60	789	223	28.3\%
61-70	151	61	40.4\%
71-80	5	2	40.0\%
Total	1,320	347	26.3\%
${ }^{\text {a }}$ Two coho   b Four rec release.	t measured t the disk	very was not	d at

$\left(D_{\text {max }}=0.22 ; D_{0.05}=0.12\right)$ and females $\left(D_{\max }=0.18 ; D_{0.05}=0.13\right)$. The application sample, therefore, was biased with respect to size. The bias was more obvious when recovery proportions were calculated from disk tag application and recovery data stratified by length (Table 8). The proportion recovered increased with NF length.

Sample Selectivity by Sex: Sex related bias in the application sample was assessed by comparing the sex ratio of the marked and unmarked spawning ground recoveries (Table 9). The application sample was biased ( $\mathrm{p}<0.05$; chi square) toward males.

Recovery bias was assessed by partitioning the application sample into recovered and nonrecovered components and comparing the sex ratio in each (Table 9). The recovery sample was biased ( $p<0.05$ ) toward females.

Spawning Success: Spawning success, estimated from internal examination of female spawning ground recoveries, was estimated at $91.9 \%$ (Appendix 8). Spawning success of marked females (86.7\%) was significantly lower ( $\mathrm{p}<0.05$; difference in proportions test) than in unmarked females (98.5\%).

## Estimation of Spawner Population

Total Escapement: The 1987-88 escapement of Salmon River coho adults calculated from mark-recapture data (Table 2), was 11,947. Upper and lower $95 \%$ confidence limits were 13,124 and 10,770 , respectively. The escapement of female and male coho adults was 5,197 and 6,750 , respectively.

Adipose Fin Clipped Adults: Based on the coho adult AFC incidence
in the census sample (3.4\%; Table 2), the 1987-88 escapement of AFC adults was 405, with upper and lower confidence limits of 480 and 336 , respectively. Of that total, an estimated 319 returned with CWTs (Table 10) and 87 (21.6\%) had lost the CWT (Appendix 9). CWT loss was not influenced by carcass decomposition or predators (Appendix 10).

## Age/Length/Sex Composition

The age and length composition of 585 coho salmon recovered on the spawning grounds is summarized by sex in Appendix 11. All sampled females were age $3_{2}$. Ninety-six percent of the males were age $3_{2}$, with the remainder (3.6\%) age 2 .

POH length of adult males and females averaged 42.0 cm and 45.5 cm , respectively. POH length of coho jacks averaged 26.1 cm . NF length of adult males and females, measured during disk tag application, averaged 51.8 cm and 55.7 cm , respectively.

Females comprised $36.9 \%$ of the application sample, $56.2 \%$ of the census sample (Table 2) and $43.5 \%$ of the Petersen population estimate.

## DISCUSSION

## ADULT CAPTURE TECHNIQUE

In the development of field procedures for the adult component of the Salmon River study, a number of capture techniques were considered. Our main requirement was to representatively distribute tags through the population, both spatially and temporally, while satisfying the basic requirements underlying the markrecapture technique (Ricker 1975). A previous study (Grant MS 1987) had applied disk tags at a temporary enumeration fence constructed at the

Table 9. Sex composition of disk tag application and spawning ground recovery samples of Salmon River system coho adults, 1987-88.

	Application sample ${ }^{\text {a }}$			Spawning ground recovery sample		
	Recovered	Not Recovered	Total	Disk tag or secondary mark	Unmarked	Total
Male	50.6\%	67.6\%	$63.1 \%$	50.6\%	42.9\%	43.8\%
Female	49.4\%	32.4\%	36.9\%	49.4\%	57.18	56.2\%
Sample size	352	970	1,322	352	2,950	3,302

Table 10. Summary of smolt release, adult escapement and survival to adult escapement of 1984 brood Salmon River coho salmon.

$\begin{aligned} & \text { CWT } \\ & \text { Code } \end{aligned}$	Number released ${ }^{\text {a }}$	Spawning ground recoveries		Estimated adipose clipped escapement	Percent survival to escapement
		Number	8		
023838	2,811	24	23.5\%	97	3.5\%
023839	2,736	28	27.5\%	113	4.18
023840	2,344	27	26.5\%	109	4.7\%
CWT lost	-	1	1.0\%	-	-
Total	7,891	80	78.4\%	319	4.0\%
No CWT	-	22	$21.6 \%$	87	-

[^1]Table 11. Summary of results of statistical tests for bias in the 1987 Salmon River escapement estimation study.

Test	Application sample	Recovery Sample
Time Period	No Bias	No Bias
Location	Bias toward reaches s1 and s2	No Bias
Fish size	No Bias	Bias toward larger fish
Fish sex	Bias toward males	Bias toward females

river mouth. This technique was rejected because a significant but unknown proportion of those tags were applied to coho adults originating from other streams. A number were subsequently recovered in Indian food fishery nets on the Fraser River and in other Fraser River tributaries. The use of an enumeration fence further upstream was rejected due to cost and to high flows associated with the heavy rainfalls common to this area during the study period. Angling and the use of nets were rejected because of the extensive overhanging vegetation and instream debris. Electroshocking was selected as the most favorable technique.

To be a useful capture technique for mark-recapture experiments, capture and marking should not affect the subsequent vulnerability of the fish to recovery. Electrical current is known to cause stress in fish (Wydoski and Wedemeyer 1976) and, indeed, stress was noted in the present study. The spawning success of marked Salmon River females was almost 12 percentage points lower than in unmarked females; however, although capture stress was apparently associated with reduced spawning success, it was uncertain whether catchability was also affected. The mean time
between capture and recovery (19 days; Appendix 6) was slightly higher than that reported in a similar study using an enumeration fence (Schubert and Fleming 1989) and was above the upper limit of the range in stream residency time reported in the literature (e.g. Crone and Bond 1976; Flint and Zillges 1980). This observation: a) was opposite to that expected if capture had resulted in high stress and associated mortality; b) indicated that post tagging survival was similar to that observed under less stressful capture techniques; and c) suggested that, if present, estimation bias resulting from capture stress was likely minor. However, in view of the potential impact of capture stress on study results, this factor should be evaluated in future studies.

## SAMPLING SELECTIVITY

An evaluation of the 1987 Salmon River coho adult escapement estimation study identified biases in both the disk tag application and recovery samples (Table 11). The application sample was unbiased with respect to application period and fish size, and biased with respect to application location and fish sex. The recovery sample was unbiased with respect to
application period and location but biased with respect to fish size and sex.

The most serious study bias was the nonrandom distribution of disk tags among the spawner population. This bias resulted from the assumption that spawners destined for upstream areas would be equally vulnerable to capture efforts in the lower part of the river (Reach S1). The recovery sample, however, showed very little dispersion of disk tagged adults beyond reaches $S 1$ and $S 2$ (Table 6). The distribution of disk tagged fish, therefore, clearly was not random. While ideally both the application and recovery efforts should be randomly distributed over the population, Robson (1969) showed that valid estimates could be produced if only one of the samples was random. In the Salmon River study, estimation error may have been avoided because bias was not noted in the recovery sample. To investigate this assumption, we stratified the data by reach and estimated the escapement using Schaefer's modification of the Petersen method for use with stratified populations (Ricker 1975). The resulting estimate was within $4 \%$ of the Petersen estimate and well within it's 95\% confidence range. We concluded, therefore, that the assumption was valid. Regardless, future studies should attempt to distribute application effort in proportion to the expected spawner distribution.

A positive size bias was noted in the recovery sample. Similar biases associated with spawning ground surveys have been reported elsewhere (Schubert et al. 1985) and would not normally be a concern because the application sample was unbiased with respect to size. Because adult coho were captured with an electroshocker, however, application sample bias may have been masked by a similar bias in the recovery sample. Other studies have demonstrated that larger fish are
more sensitive to electric current (Sullivan 1956; Novotny and Priegel 1974). While it was not possible to determine if such a bias was present in the Salmon River study, two factors suggest that any impact on the escapement estimate was likely to have been minor. First, if present, a large size bias in the application sample would have prevented the detection of a similar bias in the recovery sample. Because a recovery bias was noted, application bias was probably small. Second, results from other studies show that, even when size bias was large, the impact on escapement estimates was generally minor (Ricker 1975).

Sex biases were noted in both the application and recovery samples, the former toward males and the latter toward females (Table 11). Because the biases were in opposite directions, they were corrected by calculating escapement by sex.

In summary, it was unlikely that sample selectivity resulted in a biased escapement estimate in the 1987 Salmon River study. Junge (1963) demonstrated that selectivity can exist in both application and recovery samples without introducing population estimation biases if the sources of selectivity are independent, and if the source of selectivity in the recovery sample is independent of mark status. Both conditions were met in the Salmon River study.

## SUMMARY

1. The Salmon River (Langley) coho stock is one of a group of British Columbia stocks being closely monitored to evaluate responses to management actions by measuring, with known precision, annual escapement, marine survival, harvest distribution and exploitation rate.
2. Coded wire tags (CWT) were applied to emigrant smolts from April 23 to June 17, 1986. The smolts were captured at fence traps in the Salmon River and in Coghlan Creek, the principal tributary. Tagged smolts were transported and released below the pumphouse at the river mouth.
3. A total of 10,059 coho smolts were released with CWTs and adipose fin clips. Size averaged 98.8 mm nose-fork length and 9.3 g .
4. Adult spawners were enumerated by a mark-recapture study between October 28, 1987 and January 19, 1988. Coho adults were captured using an electroshocker and marked with Petersen disk tags and an operculum punch. The escapement was censused by the recovery of carcasses following spawning.
5. The 1987 adult coho escapement was estimated from a disk tag application sample of 1,322 , a census sample of 3,302 and a recovery 352 carcasses with disk tags or secondary marks. The estimated escapement was 11,947 , of which 5,197 were female, 6,750 were male and 405 had adipose fin clips.
6. The estimated return to the spawning grounds of codes 023838,02 3839 and 023840 were 97,113 and 109, respectively. Survival from smolt release to spawning ground recovery was $4.0 \%$. CWT loss averaged 21.6\%.
7. The age composition of the adult coho escapement, measured from the census sample, was entirely age $3_{2}$. Adult POH length averaged 42.0 cm for males and 45.5 cm for females.
8. Biases were identified in both the application and recovery samples. These sampling biases did not bias the final population estimate.

## ACKNOWLEDGMENTS

Field activities were conducted by G. Antone, G.T. Antone, C. Barnard, K. Gabriel, M. Gabriel, M. Gabriel Jr., C. Leo, R. Miller and F. Thomas under the supervision of $W$. Grant and M. Milko. A preliminary draft of the juvenile section of this report was prepared by W. Grant. A preliminary draft of the adult section was prepared by C. Rice. Figures were drafted by S. Gramchuk. The manuscript was reviewed by R. Harrison and prepared for publication by L. Currie.

## LITERATURE CITED

Anon. 1969. Reports by the United States and Canada on the status, ocean migrations and exploitation of northeast Pacific stocks of chinook and coho salmon, to 1964. Volume II. Report by the Canadian Section. Informal Committee on Chinook and Coho. 111p.

Anon. 1984. Preliminary report of the Canada/U.S. technical committee on coho salmon. Prepared for the advisors to the U.S./Canada negotations on the limitations of salmon interceptions. 99p.

Armstrong, R.W. and A.W. Argue. 1977. Trapping and coded-wire tagging of wild coho and chinook juveniles from the Cowichan River System, 1975. Fish. Mar. Serv. Tech. Rep. Ser. PAC/T-77-14: 58p.

Cochran, W.G. 1977. Sampling techniques, third edition. John Wiley and Sons, New York. 428p.

Crone, R.A. and C.E. Bond. 1976. Life history of coho salmon, oncorhynchus kisutch, in Sashin Creek, Southeastern Alaska. Fish. Bull. 74(4): 897-923.

De Leeuw, A.D. MS 1981. Effects of a winter flood event on juvenile salmonid populations and associated rearing habitat in Salmon River (Langley). B.C. Fish Wild. 57p.

Dixon, W.J. and F.J. Massey, Jr. 1969. Introduction to statistical analysis, third edition. McGrawHill Book Company, Toronto. 638p.

Environment Canada. 1986. Historic stream flow summary, British Columbia, to 1976. Inland Waters Directorate, Water Resources Branch, Ottawa.

Farwell, M.K., N.D. Schubert, K.H. Wilson and C.R. Harrison. 1987. Salmon escapements to streams entering statistical areas 28 and 29, 1951 to 1985. Can. Data Rep. Fish. Aquat. Sci. 601: 166p.

Flint, T. and G. zillges. 1980. Little Bear Creek coho salmon stream life study, Wash. Dept. Fish. Prog. Rep. 124: 40p.

Grant, W. MS 1987. Estimation of coho salmon escapement to the Salmon River (Langley), 1986. Prepared for Dept. Fish. Oceans, New Westminster. 76p.

Hartman, F.G. 1968. Growth rate and distribution of some fishes in the Chilliwack, South Allouette and Salmon rivers. B.C. Fish Wild. Management Pub. No. 11: 33p.

Junge, C.O. 1963. A quantitative evaluation of the bias in population estimates based on selective samples. Int. Comm. North Atl. Fish. Spec. Pub. No. 4: 26-28.

Novotny, D. W. and G. R. Priegel. 1974. Electrofishing boats; improved designs and operational guidelines to increase the effectiveness of boom shockers. Wisconsin Dept. Nat. Res., Tech. Bull. No. 73,: 48 p.

Ricker, W.E. 1975. Computation and interpretation of biological statistics of fish populations. Bull. Fish. Res. Board Can. 191: 382p.

Robson, D.S. 1969. Mark-recapture methods of population estimation. In New Developments in Survey Sampling. N.C. Johnson and H. Smith, Jr. (eds.). Wiley-Interscience, Wiley and Sons. New York.

Russell, L.R. MS 1981. Pump mortality studies in the Salmon River (Fort Langley) and McLennan Creek (Matsqui), 1980. Unpublished memorandum, 8p.

Schubert, N.D. 1982a. Trapping and coded wire tagging of wild coho salmon smolts from the Salmon River (Langley), 1978 to 1980. Can. MS Rep. Fish. Aquat. Sci. 1672: 68p.

Schubert, N.D. 1982b. A bio-physical survey of thirty lower Fraser Valley streams. Can. MS Rep. Fish. Aquat. Sci. 1644: 130p.

Schubert, N.D. and J.O. Fleming. 1989. An evaluation of the escapement and survival of selected lower Fraser River area wild coho salmon stocks. Can. MS Rep. Fish. Aquat. Sci. 2006: 121p.

Schubert, N.D., G.E. Rosberg, R.J. Cook and G.M.W. Cronkite. 1985. A coded wire tag assessment of Birkenhead River coho salmon: 1982 tag application and 1984 spawner enumeration. Can. MS Rep. Fish. Aquat. Sci. 1816: 55p.

Sokal, R.R. and F.J. Rohlf. 1981. Biometry, the principles and practices of statistics in biological research, 2nd edition. W.H. Freeman and Co., New York. 859p.

Staley, M.J. MS 1989. Abundance, age, size, sex and coded wire tag recoveries for chinook salmon escapements of the Harrison River, 1984-
1987. Prepared for Dept. Fish. Oceans, unpublished. 22p.

Sullivan, C. 1956. The importance of size grouping in population estimates employing electric shockers. Prog. Fish Cult. 18: 188-190.

Wydoski, R.S. and G.A. Wedemeyer. 1976. Problems in the physiological monitoring of wild fish populations. Proc. Annu. Conf. West. Assoc. Game Fish Comm. 56: 200214.

Appendix 1a. Daily fence trap catches in the Salmon River, 1986.

Date	Water Temp.   (C) $a$	Hater level (m) $a$	Coho smolt	Trout		Lamprey		Sculpin	Stickleback	Crayfish	Sucker
				Smolt	Presmolt	Pacific	Other				
17-Apr	6.5	0.50	6	3	0	1	2	0	0	0	0
18-Apr	7.0	0.60	3	0	0	0	0	0	0	0	1
19-Apr	7.0	0.57	14	0	0	1	0	0	3	0	0
20-Apr	9.0	0.54	33	0	0	0	0	0	0	0	0
21-Apr	8.5	0.59	61	48	0	0	1	0	0	0	2
22-Apr	10.0	0.56	49	49	0	1	3	0	0	1	0
23-Apr	8.0	0.49	30	1	0	0	0	0	0	0	0
24-Apr	9.0	0.53	27	0	0	0	2	0	0	0	0
25-Apr	9.5	0.58	16	40	0	0	0	0	0	0	0
26-Apr	9.5	0.74	13	6	0	0	0	0	0	0	0
27-Apr	9.0	0.64	2	0	0	1	2	0	0	0	0
28-Apr	8.0	0.60	44	12	0	0	0	0	0	0	0
29-Apr	6.5	0.61	17	23	0	0	3	0	1	0	1
30-Apr	6.0	0.53	28	1	0	0	0	0	0	0	0
01-May	9.0	0.48	11	0	0	0	15	0	0	0	0
02-May	9.0	0.49	13	1	0	0	8	0	0	0	0
03-May	10.0	0.58	260	20	0	0	0	0	0	0	0
04-May	9.0	0.51	2	0	0	0	1	0	0	0	0
05-May	9.0	0.47	0	0	0	0	0	0	0	0	0
06-May	8.0	0.47	78	15	0	0	0	0	0	0	0
07-May	10.0	0.45	148	3	0	0	0	0	1	0	0
08-May	10.0	0.43	218	6	0	0	1	0	2	0	0
09-May	9.5	0.42	105	4	0	0	3	0	0	0	0
10-May	8.5	0.42	197	6	0	0	2	0	0	0	1
11-May	9.0	0.42	162	0	0	0	0	0	0	1	0
12-May	9.0	0.42	695	8	0	0	0	0	0	0	0
13-May	8.0	0.63	130	8	0	0	1	0	0	0	0
14-May	7.0	0.52	136	6	0	0	0	0	0	0	0
15-May	7.0	0.45	57	0	0	0	0	0	2	3	0
16-May	7.5	0.45	2	0	0	0	0	0	0	0	0
17-May	7.5	0.43	25	0	0	0	3	0	0	0	0
18-May	9.0	0.70	20	0	0	0	3	0	3	0	0
19-May b	10.0	0.90	0	0	0	0	0	0	0	0	0
20-May b	10.0	0.95	0	0	0	0	0	0	0	0	0
21-May b	10.0	0.80	0	0	0	0	0	0	0	0	0
22-May	10.0	0.50	0	0	0	0	0	0	1	0	0
23-May	10.0	0.47	0	0	0	0	0	0	0	0	0
24-May	11.0	0.46	0	0	0	0	0	0	0	0	0
25-May	12.0	0.52	0	3	0	0	0	0	0	0	0
26-May	13.0	0.51	0	0	0	0	0	0	1	0	0
27-May	14.0	0.55	0	1	0	0	0	0	0	8	0
28-May	14.0	0.48	4	0	0	2	0	0	0	1	0
29-May	14.0	0.45	1	0	0	0	0	0	0	0	0
30-May	14.0	0.43	0	1	0	0	0	0	0	0	0
31-May	15.0	0.43	56	1	0	0	0	0	0	0	0
01-Jun	15.0	0.41	4	0	0	0	1	0	0	0	0
02-Jun	14.0	0.41	0	0	0	0	0	0	0	0	0
03-Jun	14.0	0.40	0	0	0	0	0	0	0	0	0
04-Jun	14.5	0.40	0	1	0	0	0	0	0	0	0
05-Jun	13.5	0.40	0	0	0	0	0	0	2	0	0

Appendix 1a. Daily fence trap catches in the Salmon River, 1986.

Date	Water Termp.   (C) $a$	Water level (m) a	Coho smol t	Trout		Lamprey		Sculpin	Stickleback	Crayfish	Sucker
				Smolt	Presmol t	Pacific	Other				
06-Jun	13.0	0.39	0	0	0	0	2	0	0	0	0
07-Jun	12.0	0.39	0	0	0	0	0	0	0	0	0
08-Jun	12.0	0.39	0	0	0	0	0	0	0	0	0
09-Jun	13.0	0.39	0	0	0	0	0	0	0	0	0
10-Jun	13.0	0.40	0	0	0	0	0	0	0	0	0
Total	-	-	2,667	267	0	6	53	0	16	14	5

a. Recorded at 9:30 AM.
b. Fence out due to high water.

Appendix 1b. Daily fence trap catches in Coghlan Creek, 1986.

Date	Hater temp. (C)	Later level   a (m) a	$\begin{aligned} & \text { Coho } \\ & \text { smolt } \end{aligned}$	Trout		Lamprey		Sculpin	Stickleback	Crayfish	Sucker
				Smolt	Presmolt	Pacific	Other				
17-Apr	6.5	0.34	0	0	0	0	0	0	0	0	0
18-Apr	7.0	0.43	1	0	0	0	0	0	0	0	0
19-Apr	6.5	0.30	0	0	0	0	0	0	0	0	1
20-Apr	8.0	0.40	1	4	0	0	0	0	0	0	0
21-Apr	8.5	0.43	2	2	0	0	0	0	0	0	0
22-Apr	9.5	0.36	45	17	0	0	1	0	0	0	0
23-Apr	7.0	0.29	1	1	0	0	0	0	0	0	0
24-Apr b	7.5	0.46	0	0	0	0	0	0	0	0	0
25-Apr	8.0	0.40	45	1	0	0	0	0	4	0	0
26-Apr	8.0	0.64	8	1	0	0	0	0	0	0	0
27-Apr	8.0	0.59	35	7	0	1	0	0	0	0	0
28-Apr	7.0	0.61	72	38	0	0	2	0	0	0	0
29-Apr	6.0	0.58	28	8	0	0	0	0	0	0	0
30-Apr	6.0	0.46	77	5	0	0	0	0	1	0	0
01-May	8.0	0.30	68	17	0	0	3	0	0	0	2
02-May	8.0	0.34	90	24	0	0	0	0	0	0	0
03-May	10.0	0.30	151	34	0	0	0	0	0	0	0
04-May	9.0	0.30	144	47	0	0	0	0	0	2	0
05-May	10.0	0.29	138	1	0	0	0	0	0	0	1
06-May	8.5	0.29	206	3	1	0	1	0	0	0	0
07-May	10.0	0.26	455	23	0	0	0	0	3	1	4
08-May	9.5	0.26	804	61	2	0	0	0	0	0	0
09-May	10.0	0.26	472	58	6	0	0	0	0	4	0
10-May	8.0	0.27	273	6	0	0	0	0	1	0	0
11-May	8.5	0.27	354	0	0	0	0	0	0	0	0
12-May	9.0	0.27	507	8	0	0	3	0	0	0	0
13-May	8.0	0.43	198	6	0	0	0	0	0	0	0
14-May	6.0	0.36	160	3	0	0	6	0	0	0	0
15-May	6.0	0.27	110	37	4	1	0	0	0	1	0
16-May	7.0	0.26	221	45	1	0	0	0	0	0	0
17-May	7.5	0.27	1,640	67	1	0	1	0	0	3	0
18-May	9.5	0.30	453	64	0	0	7	0	0	3	0
19-May b	10.0	0.52	0	0	0	0	0	0	0	0	0
20-May b	10.0	0.73	0	0	0	0	0	0	0	0	0
21-May	10.0	0.49	12	0	0	0	1	0	8	0	0
22-May	10.0	0.34	3	0	0	0	0	0	1	0	0
23-May	10.0	0.27	0	1	0	0	0	0	0	0	0
24-May	10.0	0.24	0	0	0	0	2	0	4	0	0
25-May	12.0	0.37	18	0	0	0	0	0	0	0	0
26-May	13.0	0.34	190	29	0	0	0	0	0	0	0
27-May	13.0	0.30	114	10	0	0	0	0	0	0	0
28-May	13.0	0.27	53	1	0	0	0	0	0	0	0
29-May	14.0	0.24	57	3	0	0	0	0	0	0	0
30-May	14.0	0.24	56	0	0	0	0	0	0	0	0
31-May	14.5	0.24	93	6	0	0	0	0	0	0	0
01-Jun	14.0	0.24	0	0	0	0	0	0	0	0	0
02-Jun	13.0	0.24	2	0	0	0	0	1	0	0	0
03-Jun	14.0	0.24	5	0	0	0	0	2	0	0	0
04-Jun	14.0	0.24	6	0	0	0	0	0	0	0	0
05-Jun	14.0	0.23	21	3	0	0	0	0	0	0	0

Appendix 1b. Daily fence trap catches in Coghlan Creek, 1986.

Date	Water temp.   (C)	Water Level (m) a	$\begin{array}{r} \text { Coho } \\ \text { smolt } \end{array}$	Trout		Lamprey		Sculpin	Stickleback	Crayfish	Sucker
				Smolt	Presmolt	Pacific	Other				
06-Jun	13.0	0.23	20	1	0	0	0	0	0	0	0
07-Jun	12.0	0.23	4	3	0	0	0	0	0	0	0
08-Jun	11.0	0.23	0	1	0	0	1	0	0	0	0
09-Jun	13.0	0.23	1	1	0	0	0	0	0	0	0
10-Jun	13.0	0.23	0	0	0	0	0	0	0	0	0
11-Jun	12.0	0.23	0	0	0	0	0	0	0	1	0
12-Jun	13.0	0.23	0	1	0	0	0	0	2	0	0
13-Jun	12.5	0.23	0	0	0	0	0	0	0	0	0
14-Jun	13.0	0.23	0	0	0	1	1	0	0	0	0
15-Jun	13.0	0.23	0	0	0	0	0	0	0	2	0
16-Jun	-	-	0	0	0	0	0	0	0	0	0
17-Jun	-	-	0	0	0	0	0	0	0	0	0
Total	-	-	7,414	648	15	3	29	3	24	17	8

a. Recorded at 10:00 AM.
b. Fence out due to high water.

Appendix 2a. 1986 Salmon River coded wire tagging results, by code.

a. QCD sample included all marked fish; therefore, release figures were not corrected for CWT loss.

Appendix 2b. 1986 Coghlan Creek coded wire tagging results, by code.

CWT Code	Tagging date	Pretagging mortality	Total number marked	$\begin{array}{r} 24 \\ \text { hour CUT } \\ \text { rejection } \\ (x) \text { a } \end{array}$	Post tagging mortality   Immediate 24-hour	a	AFC but no CWT a	Total released with adipose clips and CWT
023838	23-Apr	4	46	0.00	0	0	0	46
	30-Apr	0	78	0.00	0	0	0	78
	05-May	0	164	0.61	0	1	0	163
	08-May	9	477	0.00	0	0	0	477
	09-May	1	202	0.00	0	0	0	202
	15-May	0	598	0.00	0	0	0	598
	19-May	3	914	b	0	0	1	913
	29-May	1	163	0.00	0	0	0	163
	06-Jun	0	50	0.00	0	0	0	50
	Total	18	2,692	0.04	0	1	1	2,690
023839	23-Apr	1	80	0.00	0	0	0	80
	05-May	0	201	0.00	0	0	0	201
	08-May	1	572	0.52	0	0	0	572
	09-May	1	131	0.00	0	0	0	131
	15-May	1	748	0.13	0	0	0	748
	19-May	0	622	b	0	0	1	621
	29-May	0	157	0.00	0	0	0	157
	06-Jun	1	95	0.00	0	0	0	95
	Total	5	2,606	0.15	0	0	1	2,605
023840	23-Apr	0	95	0.00	0	0	0	95
	05-May	0	203	0.00	0	0	0	203
	08-May	0	418	0.72	0	0	0	418
	09-May	3	137	0.00	0	0	0	137
	15-May	1	271	0.00	0	0	0	271
	19-May	0	788	b	0	0	1	787
	29-May	0	123	0.00	0	0	0	123
	06-Jun	0	67	0.00	0	0	0	67
	Total	4	2,102	0.14	0	0	1	2,101
Total	-	27	7,400	0.11	0	1	3	7,396

a. QCD sample included all marked fish; therefore, release figures were not corrected for CWT loss.
b. Released immediately due to high water; release figures adjusted by average CWT loss and delayed mortality.
c. All released smolts had acceptible AFCs.

Appendix 3. Incidence of anomalies encountered while coded wire tagging wild Salmon River coho salmon smolts, 1986.

Location	CHT Code	Number inspected	Fog eye	Neascus	Exopthalmia	Scale loss	$\begin{array}{r} \text { Fin } \\ \text { erosion } \end{array}$	General damage
Salmon River	023838	893	7	44	2	9	2	0
	023839	883	7	46	3	0	1	0
	023840	887	4	57	0	12	5	0
	Total	2,663	18	147	5	21	8	0
	* Total	-	0.68	5.52	0.19	0.79	0.30	0.00
Coghlan Creek	023838	2,692	5	5	3	21	4	0
	023839	2,606	20	0	1	3	2	0
	023840	2,102	3	4	0	7	2	1
	Total	7,400	28	9	4	31	8	1
	* Total	-	0.38	0.12	0.05	0.42	0.11	0.01

Appendix 4. Weekly mean length and weight of coho smolts in the Salmon River system, 1986.

Location	Date	$\begin{array}{r} \text { Sample } \\ \text { size } \end{array}$		s	$\begin{array}{r} \text { Sample } \\ \text { size } \end{array}$	Mean weight   (g)
Salmon River	24-Apr	25	82.5	11.28	29	5.9
	01-May	50	93.4	15.14	29	7.6
	06-May	50	90.8	13.36	46	6.9
	16-May	50	107.5	13.82	44	11.8
	31-May	50	96.4	9.38	50	9.3
	Mean a	225	102.1	-	198	10.3
Coghlan Creek	24-Apr	25	100.7	10.89	25	10.3
	01-May	50	101.0	13.42	27	9.4
	06-May	50	106.4	10.54	50	11.3
	16-May	50	99.0	9.84	50	9.2
	31-May	50	93.1	8.45	50	8.1
	Mean a	225	97.6	-	202	9.0

a. Weighted by sample period catch.

Appendix 5. Coho adult disk tag application results in the Salmon River System, 1987-88. a

Stream	Date	Adipose Present				Adipose Absent			Total		
		Reach b	Male	Female	Total	Male	Female	Total	Male	Female	Total
Salmon River	28-Oct	B1	1	1	2	0	0	0	1	1	2
	30-Oct	B1	10	2	12	0	0	0	10	2	12
	02-Nov	B1	15	1	16	0	0	0	15	1	16
		S1	51	22	73	0	0	0	51	22	73
	O4-Nov	81	2	0	2	0	0	0	2	0	2
		S1	27	11	38	1	1	2	28	12	40
		S2	1	4	5	0	2	2	1	6	7
		S3	17	12	29	1	1	2	18	13	31
	06-Nov	S1	40	18	58	1	1	2	41	19	60
		S2	20	9	29	4	1	5	24	10	34
		S3	32	15	47	2	1	3	34	16	50
	09-Nov	S 1	49	13	62	5	4	9	54	17	71
	11-Nov	S1	121	80	201	1	2	3	122	82	204
	16-Nov	S1	79	58	137	4	5	9	83	63	146
	18-Nov	S1	72	51	123	3	3	6	75	54	129
	23-Nov	S1	79	61	140	1	1	2	80	62	142
	25-Nov	S1	24	15	39	0	0	0	24	15	39
	30-Nov	S1	15	5	20	0	0	0	15	5	20
		S2	1	0	1	0	0	0	1	0	1
		S3	20	18	38	0	0	0	20	18	38
	04-Dec	S1	26	28	54	0	0	0	26	28	54
	11-Dec	S1	28	30	58	0	0	0	28	30	58
		S2	0	1	1	0	0	0	0	1	1
	16-Dec	S1	2	2	4	0	0	0	2	2	4
	18-Dec	S1	13	18	31	0	0	0	13	18	31
	Total	B1	28	4	32	0	0	0	28	4	32
		S1	626	412	1,038	16	17	33	642	429	1,071
		S2	22	14	36	4	3	7	26	17	43
		S3	69	45	114	3	2	5	72	47	119
		Total	745	475	1,220	23	22	45	768	497	1,265
Coghlan Creek	25-Nov	C1	7	0	7	0	0	0	7	0	7
	30-Nov	C1	25	14	39	0	0	0	25	14	39
	11-Dec	C1	2	6	8	0	0	0	2	6	8
	18-Dec	C1	1	2	3	0	0	0	1	2	3
	Total	c1	35	22	57	0	0	0	35	22	57
Total	-	-	780	497	1,277	23	22	45	803	519	1,322

a. Not corrected for sex identification errors.
b. Salmon River: s1-below Coghlan Cr .
s2 - Coghlan Cr. to 64 Ave.
s3-64 Ave. to 56 Ave.
S4-56 Ave. to 248 st.
s5-248 St. to 256 st.
S6 - Above 256 st.

Coghlan Creek: C1 - Salmon R. to Hwy. 1.
C2 - Hwy. 1 to 248 St.
c3-248 St. to 64 Ave.
C4 - 64 Ave. to 256 st .
C5 - Above 256 st.

Appendix 6. Summary of disk tag recoveries in the Salmon River system, 1987-88.

Date	Application sample				Recovery sample				
	Reach b	$\begin{gathered} \text { NF } \\ \text { length } \\ (\mathrm{cm}) \end{gathered}$	Sex	Adipose fin	Date	Reach b	POH length (cm)	Sex	$\begin{gathered} \text { Time } \\ \text { out } \\ \text { (days) } \end{gathered}$
28-Oct	B1	52.0	M	P	O4-Nov	S1	41.2	F a	7
02-Nov	S1	58.0	F	P	13-Nov	S1	46.3	F	11
02-Nov	S1	53.0	M	P	11-Nov	S1	42.5	M	9
02-Nov	S1	50.5	M	P	11-Dec	S1	n/a	M	39
02-Nov	S1	56.5	M	P	14-Dec	51	43.2	M	42
02-Nov	s1	62.0	M	P	20-Nov	s1	50.0	M	18
02-Nov	S1	52.5	M	P	14-Dec	S1	n/a	M	42
O2-Nov	S1	62.0	F	A	11-Nov	S1	46.8	Ma	9
02-Nov	S1	66.0	M	P	20-Nov	S1	47.1	M	18
02-Nov	S1	49.0	M	P	27-Nov	s2	36.2	M	25
02-Nov	S1	56.5	F	P	09-Dec	51	43.2	F	37
02-Nov	S1	48.5	M	P	04-Nov	S1	38.2	M	2
02-Nov	S1	56.0	M	P	13-Nov	S1	40.6	M	11
02-Nov	S1	53.0	M	A	09-Nov	S1	41.9	M	7
02-Nov	S1	57.5	M	P	11-Nov	S1	44.2	M	9
02-Nov	S1	50.0	M	P	13-Nov	S1	37.2	M	11
02-Nov	S1	57.5	M	P	20-Nov	S1	46.2	M	18
04-Nov	S1	56.0	F	P	27-Nov	c2	45.1	F	23
04-Nov	S1	50.0	F	P	11-Dec	S1	40.8	F	37
04-Nov	S1	59.0	F	P	11-Dec	S1	49.6	F	37
04-Nov	S1	61.0	M	P	11-Dec	S1	45.1	M	37
04-Nov	S1	45.5	M	P	13-Nov	S1	32.7	M	9
04-Nov	\$1	63.4	M	P	11-Dec	S1	47.6	M	37
04-Nov	S1	57.0	F	A	13 -Nov	S1	45.2	F	9
04-Nov	S1	59.0	F	P	27-Nov	51	48.9	M a	23
04-Nov	s2	59.5	F	P	06-Nov	s2	46.5	F	2
04-Nov	S2	63.0	F	A	06-Nov	s2	47.8	F	2
04-Nov	S2	57.5	F	P	27-Nov	S2	47.2	F	23
04-Nov	S3	55.0	M	P	13-Nov	S3	43.0	M	9
04-Nov	S3	59.0	F	P	27-Nov	S2	47.3	F	23
04-Nov	S3	63.0	M	A	13-Nov	s2	48.5	M	9
04-Nov	S3	54.5	M	P	11-Dec	S1	43.3	M	37
04-Nov	S3	48.5	M	P	20-Nov	s2	39.5	M	16
04-Nov	S3	54.0	F	P	20-Nov	S2	42.5	Ma	16
04-Nov	S3	59.5	M	P	11-Dec	S1	44.6	M	37
04-Nov	S3	54.0	F	P	13 -Nov	S2	41.5	F	9
04-Nov	S3	60.0	F	P	20-Nov	S2	47.0	F	16
04-Nov	S3	52.0	M	P	04-Dec	S1	43.1	M	30
04-Nov	53	49.0	F	P	13-Nov	S1	39.3	F	9
06-Nov	S1	56.0	M	P	23-Nov	S1	42.1	M	17
06-Nov	S1	53.0	M	P	18-Nov	S1	42.4	F a	12
06-Nov	S1	51.0	M	P	27-Nov	S1	39.6	M	21
06-Nov	S1	63.0	F	P	14-Dec	S1	n/a	F	38
06-Nov	S1	59.5	M	P	20-Nov	S1	49.6	M	14
06-Nov	S1	60.0	M	P	23-Nov	S1	43.1	M	17
06-Nov	S1	51.5	M	P	09-Dec	S1	43.8	M	33
06-Nov	S1	46.0	F	P	21-Dec	c1	35.7	M a	45
O6-Nov	s1	49.0	M	P	20-Nov	S1	41.7	M	14

Appendix 6. Sumary of disk tag recoveries in the Salmon River system, 1987-88.

	Application sample				Recovery sample				
Date	Reach b	$\begin{gathered} \text { NF } \\ \text { (ength } \\ \text { (cm) } \end{gathered}$	Sex	Adipose fin	Date	Reach b	POH length (cm)	Sex	$\begin{gathered} \text { Time } \\ \text { out } \\ \text { (days) } \end{gathered}$
06-Nov	S1	64.0	M	P	27-Nov	S1	48.2	M	21
06-Nov	s1	41.5	M	P	14-Dec	S1	34.0	M	38
06-Nov	S1	60.0	F	P	28-Dec	s3	48.8	F	52
06-Nov	S1	50.5	M	P	27-Nov	c1	40.0	M	21
06-Nov	S1	62.5	F	P	14-Dec	S1	49.6	F	38
06-Nov	S1	55.5	M	P	20-Nov	S1	45.6	M	14
06-Nov	S1	59.0	F	P	16-Nov	S1	47.8	F	10
06-Nov	S1	52.5	F	P	08-Dec	C1	42.4	F	32
06 -Nov	S1	54.5	M	P	13-Nov	S1	40.6	M	7
06-Nov	s1	47.6	F	P	09-Nov	S1	40.6	F	3
06-Nov	S1	51.5	M	P	11-Dec	s3	40.8	M	35
06-Nov	S1	44.0	M	P	13 -Nov	S1	34.8	M	7
06-Nov	s1	56.0	M	P	13-Nov	S1	43.2	M	7
06-Nov	51	46.0	F	P	13 -Nov	S1	35.9	Ma	7
06-Nov	S1	59.5	F	P	18 -Nov	S1	44.4	Ma	12
06-Nov	s2	61.0	M	P	11-Dec	S2	45.5	M	35
06 -Nov	S2	42.0	M	P	27-Nov	S2	34.7	M	21
06 -Nov	s2	55.5	M	A	13 -Nov	S1	42.6	M	7
06-Nov	s2	58.0	F	P	13 -Nov	s2	46.0	F	7
06-Nov	s2	56.5	F	A	20-Nov	s2	47.5	F	14
06-Nov	S2	52.5	F	P	20-Nov	S2	43.0	Ma	14
06-Nov	s2	54.0	M	P	20-Nov	S2	41.5	M	14
06-Nov	s2	54.0	M	P	27-Nov	S1	43.0	M	21
06-Nov	S2	42.5	M	P	23-Nov	S1	35.8	M	17
06-Nov	s2	62.5	M	P	27-Nov	S2	48.0	M	21
06-Nov	s2	61.5	F	P	20-Nov	s2	50.5	F	14
06-Nov	S2	64.0	F	P	27-Nov	s2	50.3	F	21
06-Nov	S2	61.0	M	P	14-Dec	s3	48.0	M	38
06 -Nov	S2	60.0	M	A	20-Nov	S2	49.0	M	14
06-Nov	s2	56.5	F	P	11-Dec	S1	46.1	F	35
06-Nov	s3	59.0	F	P	20-Nov	S3	48.0	M a	14
06-Nov	S3	68.0	F	P	25-Nov	S3	54.1	F	19
O6-Nov	s3	56.5	F	P	13-Nov	s3	45.5	F	7
06-Nov	s3	61.0	M	P	20-Nov	s3	50.0	M	14
06-Nov	S3	65.0	M	P	20-Nov	S3	53.0	M	14
06-Nov	S3	58.0	M	P	09-Dec	S3	46.0	M	33
06-Nov	S3	49.0	M	P	20-Nov	s2	38.5	M	14
06-Nov	53	55.0	F	P	20-Nov	53	44.5	F	14
06-Nov	53	60.0	F	P	11-Dec	S1	47.8	F	35
06-Nov	s3	52.0	M	P	30-Nov	S3	41.2	M	24
06-Nov	s3	50.5	F	P	20-Nov	53	43.0	F	14
06-Nov	s3	65.0	M	A	27-Nov	s2	51.1	M	21
06-Nov	S3	43.5	M	P	20-Nov	s3	35.5	M	14
06 -Nov	S3	50.0	F	P	13 -Nov	S3	41.0	F	7
06-Nov	s3	53.0	M	P	20-Nov	S2	41.0	M	14
06-Nov	s3	70.5	F	P	13-Nov	s3	54.0	F	7
06-Nov	S3	58.5	F	A	27-Nov	S2	47.0	F	21
06-Nov	s3	55.0	M	P	27-Nov	S1	42.2	M	21

Appendix 6. Summary of disk tag recoveries in the Salmon River system, 1987-88.

Date	Application sample				Recovery sample				
	Reach b	$\begin{gathered} \text { NF } \\ \text { length } \\ \text { (cm) } \end{gathered}$	Sex	Adipose fin	Date	Reach b	РОН length (cm)	Sex	$\begin{gathered} \text { Time } \\ \text { out } \\ \text { (days) } \end{gathered}$
06-Nov	53	54.0	M	P	27-Nov	s2	43.6	M	21
06-Nov	S3	57.5	M	P	20-Nov	s2	49.5	M	14
09-Nov	S1	61.0	F	P	08-Jan	S1	46.4	Ma	60
09-Nov	S1	49.5	M	P	16-Nov	S1	38.6	F a	7
09-Nov	S1	56.5	M	P	11-Dec	S1	n/a	M	32
09-Nov	S1	53.5	F	A	13-Nov	S1	43.8	F	4
09-Nov	S1	54.0	M	P	13-Nov	S1	42.1	M	4
09-Nov	S1	60.0	F	P	20-Nov	S1	49.2	F	11
09-Nov	S1	56.0	F	A	27-Nov	S1	48.0	F	18
09-Nov	S1	51.0	M	P	08-Dec	c1	39.5	M	29
09-Nov	S1	54.0	M	P	14-Dec	S1	44.3	M	35
09-Hov	S1	46.0	M	P	14-Dec	S1	36.1	M	35
09-Nov	S1	49.0	M	P	27-Nov	c1	39.0	M	18
09-Hov	S1	53.0	F	P	20-Nov	S1	42.7	F	11
09-Nov	S1	58.5	F	P	11-Nov	s1	46.0	F	2
09-Hov	S1	57.0	F	P	28-Dec	S1	n/a	F	49
09-Nov	S1	53.5	F	P	13-Nov	S1	42.6	F	4
09-Nov	S1	48.0	M	A	08-Dec	c1	38.1	M	29
09-Nov	S1	51.5	M	P	21-Dec	S1	41.5	F a	42
09-Nov	S1	73.0	M	P	27-Nov	S1	59.2	M	18
09-Nov	S1	58.5	F	P	11-Nov	S1	46.4	Ma	2
09-Nov	S1	51.5	M	P	14-Dec	S1	43.1	M	35
09-Nov	S1	53.0	M	P	13-Nov	S1	41.1	M	4
09-Nov	S1	55.0	F	P	18-Nov	S1	45.7	F	9
11-Nov	S1	64.0	F	P	14-Dec	S1	50.6	F	33
11-Nov	S1	63.0	M	P	18-Nov	S1	48.4	M	7
11-Nov	S1	57.5	F	P	20-Nov	S3	48.0	F	9
11-Mov	S1	57.0	F	P	25-Nov	S1	45.7	F	14
11-Nov	S1	32.5	M	P	27-Nov	s2	24.8	M	16
11-Nov	S1	53.5	F	P	13-Jan	S1	36.8	M a	63
11-Nov	S1	60.0	F	P	20-Nov	S1	51.3	F	9
11-Nov	S1	56.0	M	P	23-Nov	S1	44.0	M	12
11-Nov	S1	53.5	M	P	27-Nov	c1	43.0	M	16
11-Nov	S1	59.5	M	P	28-Dec	S1	40.9	M	47
11-Nov	S1	50.0	M	P	27-Nov	S1	n/a	M	16
11-Nov	S1	51.5	F	P	20-Nov	S1	42.0	Ma	9
11-Nov	S1	45.0	M	P	20-Nov	c1	31.1	M	9
11-Nov	s1	59.0	M	P	20-Nov	S1	48.0	F a	9
11-Nov	S1	63.0	F	P	27-Nov	S1	48.6	F	16
11-Kov	S1	53.5	F	P	27-Nov	S1	45.6	F	16
11-Nov	S1	46.5	M	P	23-Dec	S5	35.8	M	42
11-Nov	S1	58.0	F	P	27-Nov	S1	50.0	F	16
11-Nov	S1	61.5	F	P	08-Jan	S1	46.2	F	58
11-Nov	S1	53.0	F	P	18-Nov	S1	45.6	F	7
11-Nov	S1	50.0	M	P	16-Dec	c1	38.7	M	35
11-Nov	S1	51.5	F	P	20-Nov	S1	44.5	F	9
11-Nov	S1	51.0	M	P	18-Nov	S1	39.3	M	7
11-Nov	S1	57.5	M	P	28-Dec	s3	44.6	M	47

Appendix 6. Summary of disk tag recoveries in the Salmon River system, 1987-88.

Date	Application sample				Recovery sample				
	Reach b	$\begin{gathered} \text { NF } \\ \text { length } \\ (\mathrm{cm}) \end{gathered}$	Sex	Adipose fin	Date	Reach b	POH length (cm)	Sex	$\begin{gathered} \text { Time } \\ \text { out } \\ \text { (days) } \end{gathered}$
11-Nov	S1	64.5	F	P	16-Nov	S1	52.3	F	5
11-Nov	S1	57.5	F	P	09-Dec	s1	46.2	F	28
11-Nov	S1	48.0	M	P	25-Nov	S1	37.8	M	14
11-Nov	S1	47.0	M	P	25-Nov	s1	35.3	M	14
11-Nov	S1	56.0	F	P	20-Nov	c1	43.4	F	9
11-Nov	S1	50.0	M	P	11-Dec	s1	39.2	M	30
11-Nov	S1	65.0	F	P	25-Nov	S1	50.1	F	14
11-Nov	S1	58.5	M	P	20-Nov	S1	48.5	M	9
11-Nov	S1	59.0	M	P	27-Nov	c1	45.0	M	16
11-Nov	S1	56.0	F	P	27-Nov	s1	44.5	F	16
11-Nov	s1	65.0	M	P	20-Nov	S1	53.5	M	9
11-Nov	s1	57.5	M	P	21-Dec	S1	46.5	M	40
11-Nov	S1	48.0	M	P	13-Nov	S1	38.3	M	2
11-Nov	S1	52.5	F	P	04-Jan	S1	n/a	F	54
11-Nov	51	46.0	M	P	18-Nov	51	36.7	M	7
11-Nov	S1	45.5	F	P	13-Nov	S1	45.9	F	2
11-Nov	S1	46.0	M	P	18-Dec	C1	37.1	F a	37
11-Nov	s1	56.5	F	P	23-Nov	s1	44.2	F	12
11-Nov	S1	48.0	M	P	23-Nov	S1	37.7	M	12
11-Nov	S1	49.0	F	P	27-Nov	S1	40.1	F	16
11-Nov	S1	62.5	F	P	27-Nov	S1	52.3	M a	16
11-Nov	S1	62.0	F	P	28-Dec	s1	47.6	F	47
11-Nov	S1	54.0	F	P	14-Dec	S1	45.2	F	33
11-Nov	S1	63.5	M	A	25-Nov	S1	49.0	M	14
11-Nov	s1	53.0	M	P	23-Nov	S1	42.8	F a	12
11-Nov	S1	49.0	F	P	04-Dec	S1	43.1	F	23
11-Nov	S1	50.5	M	P	16-Nov	S1	39.5	M	5
11-Nov	S1	60.0	M	P	27-Nov	S1	46.2	M	16
11-Nov	S1	56.5	M	P	18-Nov	S1	43.6	M	7
11-Nov	S1	45.0	M	P	30-Nov	S1	35.7	M	19
11-Nov	51	57.0	F	P	21-Nov	S1	45.8	F	10
11-Nov	S1	51:0	M	P	16-Nov	51	39.5	M	5
11-Mov	S1	56.0	F	P	18-Nov	S1	43.8	F	7
11-Nov	S1	50.0	M	P	14-Dec	S1	37.5	F a	33
11-Nov	S1	55.0	F	P	16-Nov	S1	44.5	F	5
11-Nov	S1	63.5	F	P	25-Nov	s3	50.1	F	14
11-Nov	S1	65.5	F	P	04-Dec	S1	53.5	F	23
11-Nov	S1	51.5	M	P	20-Nov	S1	40.3	M	9
11-Nov	S1	57.0	M	P	27-Nov	S1	44.7	M	16
11-Nov	S1	68.0	M	P	27-Nov	S1	50.5	F a	16
16-Nov	S1	55.0	M	P	28-Dec	S1	40.6	M	42
16 -Nov	S1	44.0	M	P	20-Nov	S1	35.7	M	4
16-Nov	S1	50.0	F	P	02-Dec	C2	41.2	F	16
16-Nov	S1	59.5	F	A	23-Nov	S1	47.1	Ma	7
16-Nov	S1	50.5	M	A	20-Nov	S1	42.5	M	4
16-Nov	S1	62.5	M	P	23-Nov	51	51.3	F a	7
16-Nov	S1	53.0	M	P	27-Nov	S1	41.4	F a	11
16 -Nov	S1	57.0	F	P	30-Nov	S1	48.6	F	14

Appendix 6. Summary of disk tag recoveries in the Salmon River system, 1987-88.

	Application sample				Recovery sample				
Date	Reach b		Sex	Adipose fin	Date	Reach b	POH length (cm)	Sex	$\begin{gathered} \text { Time } \\ \text { out } \\ \text { (days) } \end{gathered}$
16-Nov	S1	59.0	M	P	18-Nov	s1	43.3	M	2
16-Nov	S1	59.5	F	P	25-Nov	S1	46.0	F	9
16-Nov	51	56.5	F	A	30-Nov	S1	46.8	F	14
16-Nov	S1	61.5	F	P	25-Nov	51	48.8	F	9
16-Nov	S1	54.5	F	P	08-Jan	S1	41.7	F	53
16-Nov	S1	42.5	M	P	14-Dec	S1	37.3	M	28
16-Nov	S1	58.5	M	P	23-Nov	S1	45.0	F ${ }^{\text {a }}$	7
16-Nov	S1	63.0	F	A	23-Nov	S1	50.3	F	7
16-Nov	S1	58.0	M	P	23-Nov	S1	45.1	F a	7
16-Nov	51	51.5	F	P	27-Nov	s1	41.7	F	11
16-Hov	S1	51.0	F	P	08-Dec	c1	42.0	F	22
16-Nov	s1	57.0	F	P	11-Dec	S1	44.4	F	25
16-Nov	S1	57.0	F	P	27-Nov	S1	49.2	F	11
16-Nov	S1	51.5	M	P	20-Nov	S1	43.6	F a	4
16-Nov	S1	52.0	F	P	20-Nov	s1	42.6	F	4
16-Nov	51	66.0	F	P	14-Dec	51	50.0	F	28
16-Nov	S1	57.0	F	P	27-Nov	S1	48.2	F	11
16-Nov	S1	54.5	F	P	27-Nov	s1	45.4	F	11
16-Nov	S1	54.0	M	P	08-Dec	C3	42.3	M	22
16-Nov	51	68.0	F	P	14-Dec	S1	54.1	F	28
16-Nov	S1	61.0	F	P	04-Dec	S1	50.0	F	18
16-Nov	S1	59.0	M	P	09-Dec	S1	45.3	M	23
16-Nov	S1	52.0	F	P	30-Dec	C3	43.2	F	44
16-Nov	S1	52.5	F	P	$23-\mathrm{Nov}$	S1	42.6	F	7
16-Nov	S1	54.0	M	P	$25-\mathrm{Nov}$	S1	42.8	M	9
16-Nov	S1	66.0	M	P	08-Jan	s1	50.7	M	53
16-Nov	51	61.0	M	P	25-Nov	S1	46.1	M	9
18-Nov	S1	61.5	M	P	27-Nov	S1	50.5	F a	9
18-Nov	S1	51.5	F	P	21-Dec	C2	39.1	F	33
18-Nov	s1	52.5	F	P	02-Dec	S3	45.0	F	14
18-Nov	S1	54.0	M	P	23-Nov	S1	42.7	M	5
18-Nov	S1	61.0	F	P	27-Nov	S1	51.8	F	9
18-Nov	S1	54.0	F	P	08-Dec	c1	44.5	F	20
18-Nov	51	57.5	F	P	14-Dec	S1	47.3	F	26
18-Nov	S1	47.0	F	P	20-Nov	S1	40.5	Ma	2
18-Nov	S1	55.0	F	P	20-Nov	51	45.7	F	2
18-Nov	S1	60.0	F	P	04-Dec	c1	47.2	F	16
18-Nov	S1	57.0	M	P	08-Jan	c3	43.9	M	51
18-Nov	S1	58.5	F	P	14-Dec	S1	47.2	F	26
18-Nov	S1	55.0	F	P	28-Dec	S1	42.4	M a	40
18-Nov	S1	54.5	M	P	11-Dec	S1	43.1	M	23
18-Nov	S1	47.5	M	P	28-Dec	c1	38.7	M	40
18-Nov	S1	65.0	M	P	23-Nov	S1	47.9	M	5
18-Nov	S1	59.0	M	P	27-Nov	S1	49.0	M	9
18-Nov	s1	54.0	F	P	04-Dec	S1	43.8	F	16
18-Nov	S1	58.0	M	P	30-Nov	S1	44.2	M	12
18-Nov	S1	51.5	F	P	27-Nov	S1	41.5	F	9
18-Nov	s1	51.5	F	P	23-Hov	S1	42.2	F	5

Appendix 6. Summary of disk tag recoveries in the Salmon River system, 1987-88.

	Application sample				Recovery sample				
Date	Reach b	NF   length   (cm)	Sex	Adipose fin	Date	Reach b	POH   length   (cm)	Sex	$\begin{gathered} \text { Time } \\ \text { out } \\ \text { (days) } \end{gathered}$
18-Nov	S1	58.0	F	P	14-Dec	S1	46.2	F	26
18-Nov	S1	53.0	F	P	14-Dec	S1	44.2	F	26
18-Nov	S1	51.5	H	P	25-Nov	S1	38.3	M	7
18-Nov	S1	64.0	M	P	27-Nov	S1	51.5	M	9
18-Nov	S1	53.5	M	P	08-Dec	C1	41.6	M	20
18-Nov	S1	56.0	M	A	27-Nov	S1	44.0	F a	9
18-Nov	S1	60.5	F	P	23-Nov	S1	47.2	F	5
18-Nov	S1	57.0	M	A	14-Dec	C3	47.2	F ${ }^{\text {a }}$	26
18-Nov	S1	57.0	M	P	20-Nov	S1	45.4	M	2
18-Nov	S1	60.0	M	P	13-Jan	S1	41.9	M	56
18-Nov	S1	64.0	F	P	04-Jan	S1	n/a	F	47
18-Nov	S1	59.0	F	P	18-Jan	C2	46.2	M ${ }^{\text {a }}$	61
23-Nov	S1	49.0	F	P	28-Dec	S3	40.3	F	35
23-Nov	S1	50.0	M	P	30-Nov	S1	39.4	M	7
23-Nov	S1	55.0	F	P	21-Dec	S1	n/a	F	28
23-Nov	S1	60.5	M	P	27-Nov	S1	n/a	M	4
23-Nov	S1	54.0	F	P	27-Nov	S1	47.2	F	4
23-Nov	S1	57.0	F	P	21-Dec	S2	46.1	F	28
23-Nov	S1	66.5	F	P	11-Dec	S1	51.8	F	18
23-Nov	S1	48.0	F	P	18-Dec	S1	37.2	F	25
23-Nov	S1	60.0	F	P	28-Dec	S1	44.8	F	35
23-Nov	S1	59.5	M	P	25-Nov	S1	48.7	F ${ }^{\text {a }}$	2
23-Nov	S1	59.0	M	P	06-Jan	S4	47.1	M	44
23-Nov	S1	53.0	M	P	27-Nov	S1	45.3	F	4
23-Nov	S1	51.5	F	P	08-Jan	S1	n/a	F	46
23-Nov	S1	58.5	F	P	14-Dec	S1	47.8	F	21
23-Nov	S1	57.5	F	P	28-Dec	C1	n/a	F	35
23-Nov	S1	61.0	M	P	04-Dec	S1	49.3	M	11
23-Nov	S1	53.0	F	P	08-Jan	S1	43.2	F	46
23-Nov	S1	53.5	M	P	18-Dec	S1	41.1	F ${ }^{\text {a }}$	25
23-Nov	S1	57.5	F	P	21-Dec	C1	46.2	F	28
23-Nov	S1	63.0	M	P	11-Dec	S1	48.5	M	18
23-Nov	S1	57.0	M	P	11-Dec	S1	46.7	M	18
23-Nov	S1	63.0	M	P	13-Jan	S1	48.3	M	51
23-Nov	S1	59.5	F	P	27-Nov	S1	49.2	F	4
23-Nov	S1	52.5	F	P	30-Nov	S1	43.5	F	7
23 -Nov	S1	58.0	M	P	28-Dec	S3	45.8	M	35
23 -Nov	S1	59.0	M	P	16-Dec	S1	46.0	M	23
23-Nov	S1	63.5	F	P	30-Nov	S1	50.7	F	7
23-Nov	51	68.0	M	P	27-Nov	S1	53.2	M	4
23-Nov	S1	52.5	M	P	04-Jan	C1	40.8	M	42
23-Nov	S1	52.0	M	P	09-Dec	S1	41.1	M	16
23-Nov	S1	45.0	F	P	11-Dec	S1	35.8	F	18
23-Nov	S1	57.0	F	P	04-Dec	S1	48.0	F	11
23-Nov	S1	61.0	F	P	23-Dec	C3	50.8	F	30
25-Nov	C1	n/a	M	P	18-Jan	C1	36.0	M	54
25-Nov	S1	57.5	F	P	04-Dec	S1	47.6	F	9
25-Nov	S1	60.5	M	P	14-Dec	S1	45.3	M	19

Appendix 6. Summary of disk tag recoveries in the Salmon River system, 1987-88.

	Application sample				Recovery sample				
Date	Reach b	NF length (cm)	Sex	Adipose fin	Date	Reach b	POH length (cm)	Sex	$\begin{gathered} \text { Time } \\ \text { out } \\ \text { (days) } \end{gathered}$
25-Nov	S1	66.5	F	P	21-Dec	s1	49.5	F	26
25-Nov	S1	65.0	F	P	30-Nov	S1	54.1	F	5
25-Nov	s1	58.0	F	P	28-Dec	c2	44.4	Ma	33
30-Nov	c1	48.0	M	P	08-Dec	c1	38.5	M	8
30-Nov	c1	55.0	M	P	04-Jan	C1	46.6	M	35
30-Nov	c1	52.0	F	P	14-Dec	s1	43.5	$\boldsymbol{M}$ a	14
30-Nov	c1	45.5	M	P	04-Dec	S1	46.3	M	4
30-Nov	c1	61.0	F	P	11-Dec	S1	48.3	F	11
30-Nov	c1	55.0	M	P	16-Dec	c1	43.0	M	16
30-Mov	c1	48.5	M	P	21-Dec	S1	38.5	M	21
30-Nov	c1	54.0	M	P	28-Dec	c1	42.4	M	28
30-Nov	c1	45.5	M	P	28-Dec	c1	36.1	M	28
30-Nov	c1	56.5	M	P	11-Dec	S1	43.3	M	11
30-Nov	c1	58.0	F	P	04-Dec	s1	48.2	F	4
30-Nov	c1	54.0	F	P	21-Dec	S1	44.0	F	21
30-Nov	c1	47.5	M	P	08-Jan	S1	38.5	F a	39
30-Mov	c1	36.5	M	P	16-Dec	c1	29.5	M	16
30-Nov	c1	50.5	M	P	28-Dec	S1	37.8	M	28
30-Nov	S1	55.0	M	P	08-Jan	S1	43.1	Fa	39
30-Nov	s1	54.5	M	P	18-Dec	S1	42.2	M	18
30-Nov	S1	52.0	F	P	09-Dec	S1	42.7	F	9
30-Nov	S1	49.0	M	P	16-Dec	c1	39.8	F ${ }^{\text {a }}$	16
30-Nov	S1	54.5	M	P	28-Dec	c1	43.8	M	28
30-Nov	S1	61.0	M	P	14-Dec	S1	48.1	M	14
30-Mov	52	56.5	M	P	28-Dec	S1	43.8	M	28
30-Nov	S3	57.0	F	P	11-Dec	S1	45.5	F	11
30-Nov	s3	58.5	M	P	14-Dec	S1	45.7	M	14
30-Nov	53	58.5	M	P	11-Dec	s3	45.4	M	11
30-Nov	S3	60.0	F	P	28-Dec	s3	46.8	F	28
30-Nov	53	41.5	M	P	21-Dec	s2	32.4	M	21
30-Nov	53	53.0	F	P	11-Dec	51	43.3	F	11
30-Nov	s3	59.5	F	P	11-Dec	s1	45.8	F	11
30-Nov	S3	52.5	M	P	21-Dec	S1	41.5	M	21
30-Nov	S3	52.0	F	P	04-Jan	S3	41.4	F	35
30-Nov	s3	59.5	F	P	11-Dec	S1	47.3	F	11
30-Hov	s3	54.5	M	P	11-Dec	S1	42.1	M	11
04-Dec	51	57.0	M	P	18-Dec	S1	45.0	M	14
04-Dec	S1	59.0	F	P	04-Jan	S1	49.1	F	31
04-Dec	S1	53.0	M	P	13-Jan	s1	38.6	M	40
04-Dec	S1	59.0	F	P	11-Dec	S1	47.7	F	7
04-Dec	S1	59.5	F	P	18-Dec	S1	45.5	F	14
04-Dec	s1	52.0	F	P	13-Jan	S1	46.8	F	40
04-Dec	S1	41.5	M	P	08-Jan	S1	34.2	M	35
11-Dec	c1	55.5	F	P	14-Dec	S1	46.0	Ma	3
11-Dec	c1	54.5	F	P	08-Jan	S1	44.7	F	28
11-Dec	S1	47.5	M	P	08-Jan	51	38.7	M	28
11-Dec	s1	57.5		P	08-Jan	S1	46.8	F	28
11-Dec	s1	70.0	M	P	14-Dec	s1	55.4	M	3

Appendix 6. Summary of disk tag recoveries in the Salmon River system, 1987-88.

Application sample					Recovery sample				
Date	Reach b	$\begin{gathered} \text { NF } \\ \text { length } \\ (\mathrm{cm}) \end{gathered}$	Sex	Adipose fin	Date	Reach b	POH length (cm)	Sex	$\begin{gathered} \text { Time } \\ \text { out } \\ \text { (days) } \end{gathered}$
11-Dec	S1	54.5	F	P	28-Dec	S1	43.1	F	17
11-Dec	S1	56.0	F	P	08-Jan	S1	46.0	F	28
11-Dec	S1	51.5	F	P	14-Dec	s1	40.0	M a	3
11-Dec	S1	51.0	F	P	14-Dec	S1	40.6	F	3
11-Dec	S1	48.5	M	P	04-Jan	S1	38.1	M	24
18-Dec	S1	57.0	F	P	08-Jan	s1	43.2	F	21
18-Dec	S1	50.0	F	P	28-Dec	s1	40.0	F	10
18-Dec	S1	57.0	F	P	28-Dec	S1	45.1	F	10
18-Dec	51	59.0	M	P	21-Dec	S1	46.7	F a	3
18-Dec	51	54.0	M	P	28-Dec	S1	42.8	M	10
18-Dec	s1	53.5	F	P	08-Jan	S1	42.2	F	21
18-Dec	S1	49.0	F	P	08-Jan	S1	39.6	F	21
Females initially identified as male:					24 (14.1\%)			Mean:	19
Males initially identified as female:					21 (11.8\%)			Maximum:	63
								Minimum:	2
POH and FL Regressions:									
-Adult Males:		$=0.73$	+ 3						
		$=1.18$	OH +						
-Adult Females:		$=0.72$	+ 4						
		$=1.16$	OH +3						

B. Incorrect sex identification during disk tag application.
b. Salmon River: $\mathbf{S 1}$ - below Coghlan Cr . Coghlan Creek:

C1 - Salmon R. to Hwy. 1.
S2 - Coghlan Cr. to 64 Ave.
s3 - 64 Ave. to 56 Ave.
C2 - Hwy. 1 to 248 St.
C3 - 248 St. to 64 Ave.
S4-56 Ave. to 248 st .
C4 - 64 Ave. to 256 st.
s5 - 248 St. to 256 st.
c5 - Above 256 St.
S6 - Above 256 St.

Appendix 7a. Sumary of live observations and dead counts of coho salmon in the Salmon River, 1987-88.

Date	Reach	Live count	Dead recoveries											
			Adipose present			Adipose absent			Adul ts					
							Disk tag and	Secondary						
			Mate	Female	Jack				Male	Female	Jack	Total	mark	only
04-Nov	S1	13	2	1	0	0	0	0	3	2	0			
06-Nov	S1	15	5	1	0	0	0	0	6	0	0			
	S2	3	0	1	0	0	1	0	2	2	0			
09-Nov	s1	57	8	6	0	1	0	0	15	2	0			
11-Nov	s1	71	7	9	0	1	0	0	17	5	0			
13-Nov	S1	-	29	28	0	2	2	0	61	17	0			
	52	-	6	9	0	1	0	0	16	3	0			
	S3	30	18	31	0	1	0	0	50	4	0			
16-Nov	S1	51	3	4	0	0	0	0	7	6	0			
18-Nov	S1	18	9	13	0	0	0	0	22	10	0			
20-Nov	S1		45	28	0	1	0	0	74	22	1			
	S2	17	22	11	0	1	1	0	35	12	0			
	S3	65	63	33	0	6	1	0	103	7	0			
23-Nov	S1	45	15	14	0	1	2	0	32	17	0			
25-Nov	S1	-	7	7	0	1	0	0	15	11	0			
	s3	56	48	104	3	5	4	1	161	2	0			
	54		11	5	0	0	0	0	16	0	0			
	S5	13	0	0	0	0	0	0	0	0	0			
27-Nov	S1	27	60	85	0	2	8	1	155	33	0			
	s2	3	23	25	0	3	3	0	54	10	0			
30-Nov	S1	71	5	10	0	0	2	0	17	8	0			
	S3	36	18	14	0	0	0	0	32	1	0			
02-Dec	s2	1	2	2	0	0	0	0	4	0	0			
	s3	15	16	12	0	1	0	0	29	1	0			
	54	2	3	5	0	0	1	0	9	0	0			
	S5	3	3	0	1	0	0	0	3	0	0			
04-Dec	S1		24	22	0	0	0	0	46	10	1			
09-Dec	S1	-	6	5	2	0	0	0	11	6	0			
	s3	0	8	14	0	0	1	0	23	1	0			
	54	1	1	1	0	0	0	0	2	0	0			
11-Dec	S1	29	51	77	4	0	0	0	128	25	0			
	S2	1	4	8	0	0	0	0	12	1	0			
	s3	21	42	65	2	0	0	0	107	2	0			
14-Dec	S1		35	59	2	0	0	0	94	27	0			
	s2	0	2	4	0	0	0	0	6	0	0			
	s3	7	12	16	0	0	0	0	28	1	0			
	54	5	4	8	0	0	0	0	12	0	0			
	S5	-	1	5	0	0	1	0	7	0	0			
16-Dec	S1	0	2	2	0	0	0	0	4	1	0			
18-Dec	s1	0	4	6	0	0	0	0	10	5	0			
21-Dec	s1	3	10	15	0	0	0	0	25	8	0			
	s2	6	1	2	0	0	0	0	3	2	0			
	53	-	11	29	0	0	0	0	40	0	0			
23-Dec	54	0	13	26	2	0	0	0	39	0	0			
	S5	1	1	3	0	0	0	0	4	1	0			

Appendix 7a. Summary of live observations and dead counts of coho salmon in the Salmon River, $1987-88$.


Appendix 7b. Sumary of live observations and dead counts of coho salmon in Coghlan Creek, 1987-88.

Dead recoveries

Date	Reach	Live count	Adipose present			Adipose absent			Adults					
							Disk tag and	Secondery						
			Male	Female	Jack				Male	Femate	Jack	Total	mark	only
13-Nov	c1	23	17	22	0	0	1	0	40	0	0			
18-Nov	c1	17	0	0	0	0	1	0	1	0	0			
$20-\mathrm{Nov}$	c1	27	51	42	4	6	2	0	101	2	0			
	c2	38	1	1	0	0	1	0	3	0	0			
	c3	11	0	0	0	0	0	0	0	0	0			
	C4	4	0	0	0	0	0	0	0	0	0			
25-Nov	c1	-	1	0	0	0	0	0	1	0	0			
27-Nov	c1	-	100	81	1	10	6	0	197	4	0			
	C2	34	10	5	0	1	1	0	17	1	0			
30-Nov	c1	26	11	8	0	0	2	0	21	0	0			
02-Dec	c1	-	0	0	0	1	0	0	1	0	0			
	c2	48	13	9	0	0	1	0	23	1	0			
	C3	-	5	3	0	0	0	0	8	0	0			
	C4	-	2	1	0	0	0	0	3	0	0			
	C5	13	3	6	0	0	0	0	9	0	0			
04-Dec	c1	-	19	30	2	0	1	0	50	1	0			
08-Dec	c1	11	88	124	0	3	1	1	216	7	0			
	c2	-	6	13	0	0	1	1	20	0	0			
	C3	23	12	29	4	0	5	2	46	1	0			
	C4	31	14	5	0	2	2	3	23	0	0			
	C5	2	3	5	0	0	0	0	8	0	0			
14-Dec	C3	-	9	12	0	0	1	0	22	1	0			
	C4	-	16	15	0	0	0	0	31	0	0			
	C5	5	5	1	0	0	1	0	7	0	0			
16-Dec	c1	19	51	59	0	3	1	0	114	4	0			
	c2	17	7	16	0	1	0	0	24	0	0			
18-Dec	c1	3	0	2	0	0	0	0	2	1	0			
21-Dec	c1	-	18	43	1	0	0	0	61	2	0			
	c2	3	4	14	1	0	0	0	18	1	0			
23-Dec	c3	9	11	26	1	0	0	0	37	1	0			
	C4	-	6	8	2	0	0	0	14	0	0			
	C5	1	6	11	1	0	1	0	18	0	0			
28-Dec	c1	3	30	64	4	1	0	0	95	5	0			
	C2	3	9	16	2	0	0	0	25	1	0			
30-Dec	C3	6	2	13	0	0	1	0	16	1	0			
	C4	-	2	0	1	0	0	0	2	0	0			
	C5	-	3	9	1	0	0	0	12	0	0			
04-Jan	c1	3	19	9	2	0	0	0	28	2	0			
	C2	0	3	1	0	0	0	0	4	0	0			
08-Jan	C3	0	5	4	2	0	0	0	9	1	0			
	C4	1	6	6	1	0	0	0	12	0	0			
	C5	2	3	3	1	0	0	0	6	0	0			
13-Jan	c1	0	4	8	0	0	0	0	12	0	0			
	c2	0	4	4	0	0	0	0	8	0	0			
18-Jan	c1	0	15	17	4	0	0	0	32	1	0			


		Dead recoveries									
										Adults	
				pose pre			pose abs			Disk tag and	Secondary
Date	Reach	count	Male	Female	Jack	Male	Female	Jack	Total	mark	only
	c2	0	3	11	0	0	0	0	14	1	0
19-Jan	C3	0	3	5	0	0	0	0	8	0	0
	C4	0	0	2	1	0	0	0	2	0	0
	C5	0	0	2	0	0	0	0	2	0	0
Total	c1	-	424	509	18	24	15	1	972	29	0
	C2	-	60	90	3	2	4	1	156	5	0
	C3	-	47	92	7	0	7	2	146	5	0
	C4	-	46	37	5	2	2	3	87	0	0
	C5	-	23	37	3	0	2	0	62	0	0
	Total	372	600	765	36	28	30	7	1,423	39	0

Appendix 8. Spawning success of coho adult female spawning ground recoveries, 1987-88.

	Percent spawned			Total	
	0\%	50\%	100\%	Number	\% spauned
Disk tag or secondary mark present	20	4	142	166	86.7\%
	12.0\%	2.4\%	85.5\%	-	-
Unmarked	1	2	128	131	98.5\%
	0.8\%	1.5\%	97.7\%	-	-
Total	21	6	270	297	-
	7.1\%	2.0\%	90.9\%	-	-

Appendix 9. Observed and estimated coho adult escapement, by CWT code, in the Salmon River system, 1987-88.

	CHT code					
	Total	023840	023839	023838	No CWT	CWT lost
Estimated AFC escapement	405	-	-	-	-	-
No. AFCs recovered	112	-	-	-	-	-
Observed CHT codes	102 a	27	28	24	22	1
Estimated escapement	405	109	113	97	87	-

a. Excludes 8 lost before processing and 2 recovered without heads.

Appendix 10. Incidence of CWT loss by carcass condition and eye status in coho adults recovered on the Salmon River system spawning grounds, 1987-88.

	CWT		
	Sample	CHT	loss
Group	size	absent	(\%)
Condition 1	21	4	19.0\%
Condition 2	54	12	22.2\%
Condition 3	27	4	14.8\%
Condition 4	2	0	0.0\%
Eyes present	85	15	17.6\%
Eyes absent	19	5	26.3\%

Appendix 11. Sex and age composition and mean length of Salmon River coho salmon, 1987-88.

Sample	Age	Sex	$n$	Rel. $x$	Mean length (cm)	$s$
Application sample a	Total	M	799	60.5	51.8 b	7.3
		F	521	39.5	55.7 b	4.5
Census sample	3/2	M	159	46.8	43.0 c	4.9
		F	175	51.5	45.5 c	3.9
	$2 / 2$	M	6	1.8	26.1 c	1.5
	Total	M	287	49.1	42.0 b	5.7
		F	298	50.9	45.5 b	3.9

a. Not adjusted for sex identification errors.
b. Nose-fork length.
c. Postorbital-hypural length.


[^0]:    ${ }^{\text {a }}$ Release condition unavailable for one male.
    b Release condition unavailable for four females recovered without disk tags and for 1 male at release.

[^1]:    a Adjusted for long term CWT loss.

