Age Composition of Chinook Salmon in the Commercial Gillnet, and Test Fisheries of the Lower Fraser, 1958-1988

S.J. Westrheim

Fisheries and Oceans Canada
Science Branch, Pacific Region
Pacific Biological Station
Nanaimo, British Columbia
V9R 5K6

1998

Canadian Manuscript Report of
 Fisheries and Aquatic Sciences 2435

Canadian Manuscript Report of Fisheries and Aquatic Sciences

Manuscript reports contain scientific and technical information that contributes to existing knowledge but which deals with national or regional problems. Distribution is restricted to institutions or individuals located in particular regions of Canada. However, no restriction is placed on subject matter, and the series reflects the broad interests and policies of the Department of Fisheries and Oceans, namely, fisheries and aquatic sciences.

Manuscript reports may be cited as full publications. The correct citation appears above the abstract of each report. Each report is abstracted in Aquatic Sciences and Fisheries Abstracts and indexed in the Department's annual index to scientific and technical publications.

Numbers 1-900 in this series were issued as Manuscript Reports (Biological Series) of the Biological Board of Canada, and subsequent to 1937 when the name of the Board was changed by Act of Parliament, as Manuscript Reports (Biological Series) of the Fisheries Research Board of Canada. Numbers 1426-1550 were issued as Department of Fisheries and the Environment, Fisheries and Marine Service Manuscript Reports. The current series name was changed with report number 1551.

Manuscript reports are produced regionally but are numbered nationally. Requests for individual reports will be filled by the issuing establishment listed on the front cover and title page. Out-of-stock reports will be supplied for a fee by commercial agents.

Rapport manuscrit canadien des sciences halieutiques et aquatiques

Les rapports manuscrits contiennent des renseignements scientifiques et techniques ques qui constituent une contribution aux connaissances actuelles, mais qui traitent de problèmes nationaux ou régionaux. La distribution en est limitée aux organismes et aux personnes de régions particulières du Canada. Il n'y a aucune restriction quant au sujet; de fait, la série reflète la vaste gamme des intérêts et des politiques du ministère des Pêches et des Océans, c'est-à-dire les sciences halieutiques et aquatiques.

Les rapports manuscrits peuvent être cités comme des publications complètes. Le titre exact paraît au-dessus du résumé de chaque rapport. Les rapports manuscrits sont résumés dans la revue Résumés des sciences aquatiques et halieutiques, et ils sont classés dans l'index annual des publications scientifiques et techniques du Ministère.

Les numéros 1 à 900 de cette série ont été publiés à titre de manuscrits (série biologique) de l'Office de biologie du Canada, et après le changement de la désignation de cet organisme par décret du Parlement, en 1937, ont été classés comme manuscrits (série biologique) de l'Office des recherches sur les pêcheries du Canada. Les numéros 901 à 1425 ont été publiés à titre de rapports manuscrits de l'Office des recherches sur les pêcheries du Canada. Les numéros 1426 à 1550 sont parus à titre de rapports manuscrits du Service des pêches et de la mer, ministère des Pêches et de l'Environnement. Le nom actuel de la série a été établi lors de la parution du numéro 1551.

Les rapports manuscrits sont produits a l'échelon régional, mais numérotés à l'échelon national. Les demandes de rapports seront satisfaites par l'établissement auteur dont le nom figure sur la couverture et la page du titre. Les rapports épuisés seront fournis contre rétribution par des agents commerciaux.

Canadian Manuscript Report of

Fisheries and Aquatic Sciences 2435

1998

AGE COMPOSITION OF CHINOOK SALMON IN THE COMMERCIAL GILLNET, AND TEST FISHERIES OF THE LOWER FRASER, 1958-88

by
S. J. Westrheim

Fisheries and Oceans Canada

Science Branch, Pacific Region

Pacific Biological Station
Nanaimo, British Columbia

V9R 5K6
(c) Minister of Supply and Services Canada 1998

Cat. No. Fs 97-4/2435E ISSN 0706-6473

Correct citation for this publication:
Westrheim, S.J. 1998. Age composition of chinook salmon in the commercial gillnet, and test, fisheries of the lower Fraser River, 1958-88. Can. Manuscr. Rep. Fish. Aquat. Sci. 2435: 95 p.

ABSTRACT

Westrheim, S.J. 1998. Age composition of chinook salmon in the commercial gillnet, and test, fisheries of the lower Fraser River, 1958-88. Can. Manuscr. Rep. Fish. Aquat. Sci. 2435: 95 p.

With rare exceptions, past reports dealing with age composition of chinook salmon (Oncorhynchus tshawytscha), landed in British Columbia, consist of annual summaries, regardless of gear or location. These are of limited analytical value, particularly for gillnet-caught fish in river fisheries. For the Fraser River, an important source of chinook salmon in British Columbia, a search was undertaken for more detailed data. Weekly and/or monthly records (published and archival) were found of samples from the commercial and test fisheries in the lower Fraser River, during 1958-66, 1969, and 1981-88. All detailed records known to exist were not found. Since 1980, no directed commercial fishery has been permitted for chinook in the Fraser River, due to declining abundance.

During 1952-94, mean annual landing of gillnet-caught chinook in the lower Fraser River declined from 174,500 fish during 1952-54 to 13,100 fish during 1990-94. Principal time period was June-September (77-88\%) through 1979, but July-September (85-89\%) thereafter.

Age was determined from scales. Stream-type scales (one or more freshwater annuli) were more difficult to read than ocean-type scales (no freshwater annuli). Scale-type identification was complicated by inconsistent formation of freshwater annuli on scales of fish reared in the upper Fraser River.

Sampling the landings was complicated by an industry-imposed, variable, grading system (based on weight and/or length, and flesh color). Incidence of flesh color (red/white) and scale type (stream/ocean) exhibited seasonal trends. Incidence of red flesh, and stream-type scales, declined from spring to autumn, while incidence of white flesh and ocean-type scales increased during the same period. Flesh color and scale type appear to be genetically determined.

In the commercial catch, ocean-age-groups (OAGs) $2\left(3_{1}+4_{2}\right)$ and $3\left(4_{1}+5_{2}\right)$ generally predominated during May-September 1958-66 and 1969. OAG 1 was virtually absent in May and June, perhaps due to mesh selectivity. No reduction was apparent in the proportion of older chinook in the catch in any month, through 1969. Dominant age groups often differed by flesh color. Within age groups, white-flesh fish were generally larger than red-flesh fish, and within samples, sometimes older (higher proportion of OAG 3). Sex ratio (\% females) generally exhibited a similar pattern among age groups, regardless of month or flesh color, during MaySeptember 1964-66 and 1969. For red-flesh/white-flesh chinook, mean sex ratios for OAGs 1-4 were: $2 \% / 1 \%, 35 \% / 23 \%, 66 \% / 66 \%$, and $69 \% / 76 \%$, respectively,. Sex ratios declined from May to September for OAG-2 fish, regardless of flesh color. For the spring-run, red-flesh chinook in the Fraser and Columbia rivers, numbers of ova per fish (males + females), in age-group 5_{2} were
twice that for age-group 4_{2}. This may be a factor to be considered when evaluating escapement requirements.

A modest 1983 mesh experiment indicated that mesh sizes as small as $5.5 "(140 \mathrm{~mm})$ were biased against OAG-1 fish

Test fisheries were conducted during 1964-66 and 1980-date, the former to monitor the escapement past the lower-river gillnet fishery, and the latter to assess inseason chinook abundance and run timing. The 1964-66 study used a gillnet with several mesh sizes (6.5-9.5"), but was biased against OAG-1 fish. No comparable data were found for the spawning grounds. The 1980-96 study used a gillnet with one mesh size (8"), which was biased against OAGs 1 and 2, and the larger members of OAG 3. A multiple-mesh-size net was added in 1997. Neither test fishery appeared to achieve its purpose, but both provided valuable insights into the complexities of chinook salmon entering the Fraser River. For white-flesh chinook, the 1984-88 test fishery provided fair predictions of the age composition of white-flesh chinook spawning in the Harrison River, based on test-fishery catches during September-October.

RÉSUMÉ

Westrheim, S.J. 1998. Age composition of chinook salmon in the commercial gillnet, and test, fisheries of the lower Fraser River, 1958-88. Can. Manuscr. Rep. Fish. Aquat. Sci. 2435: 95 p.

Sauf quelques rares exceptions, les rapports produits jusqu'ici sur la composition par âge des débarquements de saumon quinnat (Oncorhynchus tshawytscha) en Colombie-Britannique sont des sommaires annuels ne donnant aucune précision sur les engins utilisés ou sur les lieux de pêche. Ce genre de données ne permet guère d'analyse, surtout dans le cas des prises de la pêche au filet maillant en eau douce. Le fleuve Fraser étant une source importante de saumon quinnat en Colombie-Britannique, nous avons voulu rassembler des données plus détaillées sur cette pêche. Nous avons trouvé des données hebdomadaires et mensuelles (sources publiées ou archives) concernant des échantillons de poissons prélevés dans les débarquements de pêches commerciales et expérimentales effectuées dans le bas Fraser de 1958 à 1966, en 1969 et de 1981 à 1988. Nous n'avons pas retrouvé toutes les données détaillées dont l'existence était connue. Depuis 1980, en raison de la diminution de la ressource, aucune pêche commerciale directe du saumon quinnat n'a été autorisée dans le fleuve Fraser.

De 1952 à 1994, les débarquements annuels moyens de saumons quinnats capturés au filet maillant dans le bas Fraser ont baissé, passant de 174500 poissons, pour la période de 1952 à 1954 , à 13100 , pour la période 1990 à 1994. Jusqu'en 1979, la principale période de pêche s'étendait de juin à septembre ($77-88 \%$), mais après 1979 , elle n'allait que de juillet à septembre (85-89\%).

L'âge des spécimens était déterminé d'après leurs écailles. Les écailles caractéristiques des poissons de type dulcicole (présentant un ou plusieurs anneaux de croissance en eau douce) étaient plus difficiles à analyser que celles des poissons de type océanique (aucun anneau de croissance en eau douce). La détermination du type d'écailles était d'autant plus complexe que chez les saumons quinnats élevés dans le haut Fraser la formation des anneaux en eau douce n'est pas homogène.

L'échantillonnage des débarquements a été compliqué par un système de classement variable, imposé par l'industrie (basé sur le poids et/ou la longueur, et sur la couleur de la chair). L'incidence de la couleur de la chair (rouge/blanche) et du type d'écaillure (type dulcicole/type océanique) présentaient des tendances saisonnières. L'incidence de la chair rouge et de l'écaillure de type dulcicole baissaient du printemps à l'automne, tandis que l'incidence de la chair blanche et de l'écaillure de type océanique augmentaient pendant la même période. La couleur de la chair et le type d'écaillure semblent déterminés par des facteurs génétiques.

Dans les prises commerciales, les groupes 2 (2 ans en mer; $31+42$) et 3 (3 ans en mer; $41+52$) étaient généralement prédominants de mai à septembre, de 1958 à 1966, ainsi
qu'en 1969. Le groupe 1 n'était pratiquement pas représenté en mai et en juin, peut-être à cause de la sélectivité du maillage. Jusqu'en 1969, la proportion de spécimens plus âgés observée mensuellement dans les prises n'a jamais présenté de signe de baisse. Souvent, les groupes prédominants se distinguaient par la coloration de la chair. En général, dans un même groupe, les sujets à chair blanche étaient plus gros que les sujets à chair rouge et, dans un même échantillon, ils étaient parfois aussi plus âgés (proportion plus importante du groupe 3). De 1964 à 1966 et en 1969, pour la période allant de mai à septembre, la proportion des sexes (pourcentage de femelles) était généralement semblable d'un groupe à l'autre, quels que soient le mois considéré et la coloration de la chair. Pour le saumon quinnat à chair rouge ou à chair blanche, les valeurs moyennes de la proportion des sexes pour les groupes 1 à 4 étaient respectivement de $2 \% / 1 \%$, $35 \% / 23 \%, 66 \% / 66 \%$ et $69 \% / 76 \%$. Chez les sujets du groupe 2 , le quotient diminuait de mai à septembre, quelle que soit la couleur de leur chair. Par ailleurs, on a déterminé, pour le saumon quinnat à chair rouge en montaison printanière dans le Fraser et le Columbia, que le nombres d'oeufs par poisson (mâles + femelles) dans le groupe 52 était le double de celui mesuré dans le groupe 42 . Il y aurait peut-être lieu de prendre ce facteur en considération dans l'évaluation de l'échappée nécessaire.

En 1983, une pêche expérimentale d'échelle modeste a permis de constater que l'emploi d'un maillage de 5,5 pouces (140 mm) ou moins faisait apparaître un biais défavorisant les poissons du groupe 1 .

De 1964 à 1966, on a fait des pêches expérimentales pour surveiller l'échappée en amont de la pêche au filet maillant du bas du fleuve; de 1980 jusqu'à aujourd'hui, les opérations expérimentales ont servi à évaluer l'abondance du saumon quinnat pendant la saison de pêche et la période de la montaison. Dans la première étude, on a utilisé des filets maillants de divers maillages ($6,5-9,5$ pouces), mais un biais défavorisait les poissons du groupe 1 . Nous n'avons pas trouvé de données comparables sur les frayères. Pour la seconde étude, on a utilisé jusqu'en 1996 un filet à maillage unique (8 pouces), le biais défavorisant alors les poissons des groupes 1 et 2 et les gros spécimens du groupe 3 . En 1997, on a ajouté un filet à mailles de grandeurs multiples. Ni l'une ni l'autre de ces pêches expérimentales n'a semblé donner les résultats escomptés, mais elles ont tout de même apporté des renseignements utiles sur la complexité des facteurs qui influent sur le saumon quinnat remontant le fleuve Fraser. Dans le cas du saumon à chair blanche, les pêches expérimentales effectuées de 1984 à 1988 ont permis de prévoir assez précisément la composition par âge de la population de saumon quinnat à chair blanche frayant dans la rivière Harrison, d'après les résultats des pêches expérimentales faites en septembre et octobre.

INTRODUCTION

In 1995, the author undertook an investigation of Columbia River spring-run chinook salmon (Oncorhynchus tshawytscha), with respect to stock-recruitment and maternal influence on age at maturity. After information on age composition of catch and escapement was assembled, a search began for age composition data for spring-run chinook elsewhere. The Fraser River, entering the sea in southern British Columbia, was the nearest major source of this type of chinook salmon. In the lower Fraser River (Area 29; Fig. 1), during 1951-79, the gillnet fishery accounted for 97% of the chinook catch, and $42-64 \%$ of all gillnet-caught chinook landed in British Columbia (Healey 1982, Tables 4-6). For the same period, the second-ranking source of gillnet-caught chinook was Area 4 (essentially the Skeena River), 6-11\%. The third-ranking source was Area 3 (essentially the Nass River), $4-9 \%$. The latter two rivers enter the sea in northern British Columbia

Chinook salmon exhibit two basic life-history types (Healey 1991). Type-one juveniles spend at least one year in freshwater before migrating to the sea. Adults return to freshwater one or more years later, mostly in the spring or summer. The scales on type-one exhibit at least one freshwater annulus, and are labeled stream-type (Gilbert 1913). Type-two juveniles spend less than one year in freshwater, and adults return to freshwater one or more years later, mostly in summer or autumn. The scales on type-two adults exhibit no freshwater annulus, and are labeled ocean-type (sea-type in Gilbert 1913). In the Columbia and Fraser rivers, adult chinook with stream-type scales predominate during spring and early summer, while those with ocean-type scales predominate during late summer and autumn (Healey 1991).

In virtually all published reports, age compositions of chinook salmon landed in British Columbia, regardless of gear type, were arrayed by year, rather than by month, season, or stock. However, some reports contained appendices with more detailed data. Flesh color (red/white), also exhibiting seasonal variation, was commonly summarized on a monthly basis (e.g., Ball and Godfrey 1967, 1968a, 1968b, 1970; Godfrey 1975; Fraser et al. 1982). Incidence of white-flesh chinook is negligible south of British Columbia (Godfrey 1975).

The purpose of this report is to assemble the available age composition data for gillnetcaught chinook salmon from the lower Fraser River, by week and/or month, and to discuss the results. Available data consisted of samples from the commercial gillnet landings, two test fisheries, and a mesh experiment.

MATERIALS AND METHODS

COMMERCIAL FISHERY

Regulations
A summary of pertinent regulations, during 1958-81, were extracted from Fraser et al. (1982), and included here in Table 1. Relevance of these will be discussed later.

Landings
Salmonid records are stored in the mainframe computer (VAX) at the Pacific Biological Station (PBS) (Holmes and Whitfield 1991). For the gillnet fishery, species included are chinook, chum (\underline{O}. keta), coho ($\underline{\mathrm{O}} . \underline{\text { kisutch }}$), pink ($\underline{\mathrm{O}}$. gorbushca), sockeye ($\underline{\mathrm{O}}$. nerka), and steelhead ($\underline{\mathrm{O}}$. mykiss). For chinook only, flesh color (red/white) and grade (round weight/fork length) are included, based on fish-plant records. Ball and Godfrey (1967, 1968a,b, 1970) noted that size ranges of grades varied within the industry. During 1964-69, the grades were approximately: large ($\geq 12 \mathrm{lb}$); medium ($8-12 \mathrm{lb}$); small ($26^{\prime \prime}$ FL to 8 lb); and tiny ($<26^{\prime \prime} \mathrm{FL}$). A minimum size of 26 " was imposed in 1966, but is now applicable only to the troll fishery. Godfrey (1975) reported that "in general", grades were: large reds ($\geq 12.5 \mathrm{lb}$); medium reds ($8-12.5 \mathrm{lb}$); small reds ($5-8 \mathrm{lb}$); large whites ($\geq 12 \mathrm{lb}$); medium whites ($8-12 \mathrm{lb}$); small whites ($<8 \mathrm{lb}$; jacks ($3-5 \mathrm{lb}$); tiny ($<3 \mathrm{lb}$); cannery (damaged fish used for canning); and No. 2 (damaged fish that provided chunks usable as a fresh product). Jacks, tiny, cannery, and No. 2, can be either flesh color. Holmes and Whitfield (1991) reported that grades in the present PBS database were: large red ($>12 \mathrm{lb}$), medium red (8 12 lb); small red ($1-7 \mathrm{lb}$); \#2 red ($<7 \mathrm{lb}$); whites (all weights); and jacks ($<5 \mathrm{lb}$; all colors)

In the current database (Holmes and Whitfield 1991), chinook landings are available in numbers and weight by month for 1952-date; and by week for May-November 1963-68, and March-November 1969-date. These authors reported that sales-slips (filled out by the initial buyer at time of landing) provided weight and numbers (in most cases). Where numbers were missing from a sales slip, mean weights (for conversion of weight to numbers) were calculated from those sales slips containing both weight and numbers, for the same area-week-gear cell. Recently, it was found that this procedure did not begin until 1967. Prior to 1967, a common mean weight was applied to all landings, regardless of area, week, or gear (Susan Bates, PBS, pers. comm.). The pre-1967 data are being revised using preliminary weekly statistics, by area and gear (published monthly).

Weekly and/or monthly landings, in numbers, were extracted from the PBS database as per procedures in Holmes and Whitfield (1991).

Age Composition

Data consisted of samples collected from landings of the commercial gillnet fishery (Table 2). All sources including those for the test fisheries) reported ages by scale type (stream or ocean), in the nomenclature of Gilbert and Rich (1927b) ${ }^{1}$. Thus, stream-type ages were X_{2} or X_{3}, and ocean-type ages were X_{1}.

Archival data were found on field sheets (1958-59; 1962-63) or in computer printouts (1960-61). Field sheets, with some exceptions, contained the following data for each fish sampled: sample date, length (fork, total, and/or orbit-hypural), weight (lb), flesh color, and age (if determined). The 1958 data produced this detail for samples during June 18-July 23, but only age-frequencies by scale type, for other periods of the year. The 1962-63 data reported an additional category, grade (1-5). The 1960-61 printout data, and the 1964-66 and 1969 data of Ball and Godfrey (1967, 1968a,b, 1970), consisted of length-frequencies by month, flesh color, sex, and age. Ball and Godfrey also provided mean lengths by month, week, flesh color, sex, and age.

Age was determined from scales for all data in this report. For the commercial fishery, data for 1958-61, 1964-66, and 1969, were simply compiled from available records. No weighting by grade was possible for 1958-61. For 1962-63, age-frequencies were weighted by grade where possible. All grades were not present in all landings sampled, nor were all grades sampled from each landing processed. For 1964-66 and 1969, sampling was reported to be roughly in proportion to the various grades in the landings (Ball and Godfrey 1967, 1968a,b, 1970). The authors' weighting procedure, tied to annual landing, was not used, due to computational difficulties.

Validation of age determinations was undertaken in the 1960s (Godfrey et al. 1968; specific time not reported). The Canada-U.S. coastwide test of scale readers was based on known-age scales from gillnet- and troll-caught chinook. The fish had been fin-marked before release from U.S. hatcheries. Overall (combined ages) accuracy was 75%. Overall consistency was 76% (disregarding accuracy), based on repeat readings of the same scales. Among age groups, both accuracy and consistency were higher for ocean-type scales than for stream-type scales, except for the accuracy values of age-group 5_{2} (Table 3).

An additional problem with chinook scales, is that of life-history interpretation. Tutty and Yole (1978) demonstrated that significant numbers of juvenile chinook overwintering in the McGregor River, and other upper Fraser River tributaries, failed to form a freshwater annulus, presumably due to the low water temperatures during winter. Thus, as adults, their scales would have been incorrectly interpreted as ocean-type. Timing of the McGregor River stock, and others in the upper Fraser River, through the lower Fraser River gillnet fishery is not known precisely, but Fraser et al. (1982) included them with the "early" run, whose general timing is March-July, principally June.

[^0]Ocean ages (numbers of ocean annuli) were used in the figures, to simplify the inter-month comparisons of age-frequencies. Ocean-age-frequencies were compiled by month for 1958-66, 1969, and 1981-88; by month and flesh color for 1964-66 and 1969; and by month, flesh color, and sex ratio ($\%$ females), for 1964-66 and 1969. Appendix tables contain the corresponding data by scale type.

MESH EXPERIMENTS

A modest experiment was conducted in 1983, during August-October (Wilson and Pearce 1984). Primary purpose was to investigate the effectiveness of a 1981 mesh regulation intended to reduce the by-catch of "large" chinook during the sockeye and pink salmon fisheries. The regulation reduced the maximum mesh size from $14.9 \mathrm{~cm}\left(5.9^{\prime \prime}\right)$ to $14.0 \mathrm{~cm}\left(5.5^{\prime \prime}\right)$.

Fishing took place on the Graveyard Drift, near Albion (Fig. 2)(Wilson and Pearce 1984). The test gillnet was 120.7 m long, and consisted of three panels of equal length. Panel mesh sizes were $124 \mathrm{~mm}\left(4-7 / 8^{\prime \prime}\right), 149 \mathrm{~mm}\left(5-1 / 2^{\prime \prime}\right)$, and $149 \mathrm{~mm}\left(5-7 / 8^{\prime \prime}\right)$. The net was hung on a ratio of $3: 1$. Panels were interchangeable, and their order in each drift was determined by a randomized block design. The three-panel net was set twice a day on 12 days between August 16 and October 1.

Length-frequencies, but not age-frequencies, were reported by mesh size. Some of the results are included here, because they provided insight into the relative vulnerability of the smaller (jack) chinook to the mesh sizes used in the test fisheries.

TEST FISHERIES

Two test fisheries were undertaken during the study period--1964-66 and 1980-date (Table 2; J.R. Irvine, PBS, pers. comm.). Records for 1964-66 consisted of field sheets found in the PBS Archives (Table 2). Time periods were July-September 1964, and April-September 1965 and 1966. The limited data for 1964 were not used in this analysis. Detailed records for 1981-87 were reported in Schubert et al. (1988). The authors reported that the 1980 records were lost. No records were found for subsequent years, except for white-flesh chinook during SeptemberOctober 1988 (Starr and Schubert 1990).

1965-66

The program was conducted on the Fraser, Skeena, and Nass rivers "... to obtain information on the magnitude and composition of the salmon spawning escapements." (Godfrey 1968, p. 1). The Fraser River test fishing took place on the Silverdome Drift, near Mission, at approximately river-kilometer (rkm) 56 (A.R. Baker, pers. comm.) ${ }^{2}$ (Fig. 2).

[^1]Multi-panelled nets were used, with mesh sizes, in 1965, of 6.5" (165 mm), 7.0" (178 mm), $7.5^{\prime \prime}(191 \mathrm{~mm}), 8.5^{\prime \prime}(216 \mathrm{~mm})$, and $9.5^{\prime \prime}$ (241 mm). The $7.0^{\prime \prime}$ mesh was eliminated in 1966. No description of fishing or sampling procedures was found. In 1965, the records indicated that the array of panels was altered periodically, with respect to the shore or vessel.

The archival data consisted of field sheets on which were recorded date and time (beginning and ending) of each set, and for each fish, sex (jack, female, male), round and/or dressed weight (lb), length (total, fork, and/or orbit-hypural; cm), flesh color, age (if determined), and mesh size. The 1965 data also recorded the mesh size nearest shore (or vessel) for each set, and river gauge reading. Age-frequencies were compiled by month, scale type, sex, and flesh color.

The program was established on the Fraser River "... to assess inseason chinook abundance and run timing" (Schubert et al. 1988, p. 1). It was implemented in 1980 when the directed harvest of chinook salmon was eliminated in the Fraser River, for both commercial and recreational fisheries, due to declining returns to the river. Location of the test fishery was the Graveyard Drift, near Albion, at approximately rkm 50 (Fig. 2).

Schubert et al. (1988) described the test net, fishing procedures, and sampling procedures. The test gillnet was 274 m long, and was hung on a 3:1 ratio. Mesh size was $203 \mathrm{~mm}\left(8^{\prime \prime}\right)^{3}$ throughout. Standard depth of net was 50 meshes, but a net 60 meshes deep was used when river depth at Albion exceed 3.1 m . The 1981-86 test fisheries were conducted three days per week, but not during open periods for the commercial salmonid fishery. In 1987, test fishing occurred seven days per week, except during commercial fisheries. During 1981-86, up to 20 chinook per day were sampled, and in 1987, all chinook were processed. A minor change in the test gillnet was made in 1996, and a second net was added in 1997 which contained mesh sizes of 5 " (127 $\mathrm{mm}), 6^{\prime \prime}(152 \mathrm{~mm}), 7^{\prime \prime}(178 \mathrm{~mm}), 8^{\prime \prime}(203 \mathrm{~mm})$, and $9 \prime$ (229 mm)(J.R. Irvine, PBS, pers. comm.).

The appendices of Schubert et al. (1988) listed, by sampling date: total numbers sampled; numbers by age, numbers not aged; sample mean length (cm); and sample mean weight (kg). For each year, five separate arrays of data were included: all chinook, males, females, red flesh (sexes combined), and white flesh (sexes combined)

For 1984-88, age composition data were found for white-flesh chinook caught the test fishery during September-October, and by seine in the Harrison River, near the spawning grounds (Starr and Schubert 1990). The seine fishery was part of a mark-recapture program to estimate the numbers of spawners (excluding jacks). Hereafter, the seine-caught fish will be referred to as the spawning-ground sample.

[^2]
PROPORTION-DIFFERENCE TESTS

Differences in proportions of a selected age group in two categories were compared with a statistical test from Dixon and Massey (1969, p. 249), hereafter referred to as the Dixon-Massey test. The test produced 95% confidence intervals for the difference between the two proportions. If the confidence interval includes zero, then the difference between the two proportions is not significantly different from zero. One limitation is that the product of sample size and corresponding proportion (or its complement) must exceed five in each test.

The Dixon-Massey test was applied to three arrays of data: (1) red flesh vs white flesh, by month, principal ocean-age-group, and year, in samples from the commercial gillnet fishery, JuneSeotember 1960-66 and 1969; (2) commercial fishery vs test fishery, by month and principal ocean-age-group, April-September 1965-66 ; and (3) September-October test fishery vs Harrison River spawning ground, by principal age-group (white-flesh only), 1984-88.

RESULTS AND DISCUSSION

COMMERCIAL FISHERY

Landings

During 1952-54, mean annual landing of gillnet-caught chinook was 174,500 fish (Fig. 3). In subsequent five-year periods, mean annual landings declined from 147,700 during 1955-59 to 13,100 during 1990-94. Principal time period was June-September (77-88\%) through 1979, but July-September ($86-89 \%$) thereafter. One reason for the decline, and shift of important time period, was the elimination of the directed fishery for chinook after 1979 (Fraser et al. 1982).

Numerically, chinook salmon are relatively unimportant in the Fraser River gillnet fishery for salmonids. For example, during May-September 1964-66 and 1969, total numbers of chinook landed annually ranged from 76,900 to 137,000 , compared to $462,000-936,100$ sockeye, 192159,900 pink, and 11,300-85,700 coho (Fig. 4). Chum landings (not included in Fig. 4) never exceeded 5,500 fish during this period. Principal landing periods were July-August for sockeye, and September for pink and coho.

Sampling
Table 4 summarizes the numbers of chinook salmon sampled and landed, by month, during 1958-66 and 1969. When sampling took place, proportions sampled ranged from 0.1% to 6.7%. The most consistent effort was expended during 1964-66 and 1969, particularly 1964.

Flesh Color

During 1959-66 and 1969, red-flesh chinook predominated during May-August, while white-flesh chinook predominated in September (Fig. 5). Monthly mean incidence of red flesh fish declined from 95.9% in May to 68.3% in August, then decreased sharply to 26.6% in September. During 1964-66 and 1969, when weekly data were plentiful, incidence values varied modestly among years, by week and month (Table 5). Estimated time of 50% incidence was late August in 1965, early September in 1964, 1966, and probably 1969. The 1964-73 mean was approximately mid-August (Godfrey 1975, Fig. 1), and for 1974-78, early September (Fraser et al. 1982, Fig. 18).

Sampling for flesh color, by month, appeared to be generally representative of the landings during 1964-66 and 1969 (Table 5). Chi-square tests of red-flesh incidence between biological samples and landing statistics yielded only two significant values in 19 tests--September 1964 and 1966.

Godfrey (1975) discussed the phenomenon of white-flesh chinook, and noted little evidence for occcurrence south of British Columbia. He also reported that white-flesh chinook were more prevalent in the Fraser River (36.4\%) than in the Skeena (13.1\%) or Nass (22.0\%) rivers, based on fish caught in the 1964-66 test fisheries (Godfrey 1975, Table 3). He suspected genetic separation in the Fraser River, on the basis of: (1) spatial and temporal separation of some spawning stocks; (2) average size of adults (white-fleshed larger) ${ }^{4}$; (3) chronological regularity of appearance in the fishery; and (4) occurrence of fresh-caught individuals with both flesh colors in separate body parts. He concluded that "...it seems appropriate to accept that red- and whitefleshed chinook salmon do exist as separate races. However, it should be appreciated that the catch data on flesh color do not necessarily describe the true dimensions of the populations of each. As well as possible crosses and mutations, the effects of which would not be recognized in the catch statistics, the recording of chinook catches according to flesh-color categories is subject to appreciable error in a variety of ways..." (Godfrey 1975, p. 3). One example of reporting "error" concerned the higher price paid to the fisherman for red-flesh chinook. White-flesh chinook might be purchased as red-flesh to retain "good relations" with the fisherman, or when demand was especially strong.

Confirmation of Godfrey's (1975) observation of differential size, by flesh color, was found in samples collected from the commercial gillnet fishery during July and August-September, 1964-66 and 1969 (Ball and Godfrey 1967, 1968a,b, 1970). Mean lengths of white-flesh chinook, by month, sex, and ocean age were larger in 35 (79.5%), smaller in 7 (15.9%), and "tied" in 2 (4.5%), of 44 comparisons (Fig. 6). A simple Chi-square test (assuming expected values of 22 each for "larger" and "not larger" yielded a significant difference ($\mathrm{X}^{2}=16.590 ; \mathrm{Df}=1 ; \mathrm{P}<0.01$). Actual differences in length were as much as 3 cm , where appreciable numbers were sampled (Appendix table 4).

Some confirmation of Godfrey's (1975) speculation on genetics was provided by Withler (1986). She conducted a study of the progeny of red- and white-flesh adult chinook, collected in

[^3]September 1982 from the Quesnel River (a Fraser River tributary), downstream from Quesnel Lake. All adults collected had stream-type scales (Withler, pers. comm.). Parents were taken to the Quesnel Hatchery to be classified by flesh color. Gametes were collected from each of four red-flesh females, white-flesh females, red-flesh males, and white-flesh males. Fertilization occurred 24 h later at the Rosewall Creek Hatchery, Vancouver Island. Four sets of 2×2 factorial crosses were made. The resulting 16 families were incubated separately. Subsequently 200 members of each family were cold-branded and placed in a single seapen at the Pacific Biological Station. Sampling of progeny for flesh color occurred in June-July and November 1983. Flesh color was determined qualitatively by eye, and quantitatively by carotenoid extraction (November sample). The author concluded "...that the production of red- and whitefleshed chinook salmon in the Quesnel River population is under genetic control. Flesh color type may be a threshold trait with very high heritability or a Mendelian trait under the control of at least two loci. There was no evidence of sex-linkage or sex-limitation in the control and expression of flesh color." (Withler 1986, p. 592)

Scale Type

Chinook with stream-type scales predominated during May-July 1958-66 and 1969, while those with ocean-type scales predominated in August and September (Fig. 7). The wide, amongyear variation in incidence values during May-July may be due in part to the variable abundance of upriver fish which failed to develop a freshwater annulus. For combined years, monthly mean incidence of chinook with stream-type scales declined from 83.4% in May to 4.0% in September. During 1964-66 and 1969, when weekly data were plentiful, incidence values were similar for redflesh and white-flesh chinook in the same weekly or monthly time cells (Table 5). However, estimated time of 50% incidence varied among years--early August in 1964; mid-August in 1965; mid-June in 1966; and early July in 1969.

The seasonal trend in scale-type dominance for chinook salmon was first reported for fish sampled in the Columbia River during 1919 (Rich 1926, Fig. 8 here). Subsequent reports for the Columbia River dealt with samples in 1960-69 (Young and Robinson 1974, Fig. 2), and 1992-94 (Fryer and Schwartzberg 1993, 1994, Fig. 3; Fryer et al. 1995, Fig. 3). The 1919 result was based on fish sampled from the commercial fishery, primarily in the lower river (Zone 1). The 1960-69 results were based on fish sampled from the commercial gillnet fishery in Zones 1-5 (mouth to below Bonneville Dam). The 1992-94 results were based on fish sampled from one of the four fish ladders at Bonneville Dam, located at river-mile 146)(ODFW/WDFW 1995, Fig. 2). The respective estimated times at 50% incidence were: mid-June in 1919; early July in 1960-69; and mid-July in 1992-94.

Healey (1991) was the first to report this phenomenon for the Fraser River, and to compare it with that for the Columbia River, based on data from Ball and Godfrey (1968a,b, 1969 (sic), and 1970), and Rich (1942) ${ }^{5}$. In his Figure 6, 50% incidence occurred in early June on the Fraser River, and in mid-June on the Columbia River. He further noted that due to the differential timing of stream- and ocean-type adults and the "osmotically rigorous freshwater environment", that "...there must be more than casual genetic separation between stream- and ocean-type

[^4]chinook" (Healey 1991, p. 320). No other report was found which dealt with this matter for Fraser River chinook. For the Columbia River, Kristiansson and McIntyre (1976) and Winans (1989) reported genetic differences. The former authors found significant differences between spring-run and fall-run chinook salmon in the lower- and middle-watershed, based on starch-gel electrophoresis analysis of samples collected from seven hatcheries. The latter author reported genetic differences among spring-run, summer-run, and fall-ruin chinook, based on electrophoretic analysis of 33 protein loci, for juveniles collected throughout the Columbia Basin.

Age Composition

By month. Ocean-age-groups (OAGs) $0-5$ were present in commercial gillnet landings of chinook during May-September 1958-63 (Fig. 9), and 1964-66 and 1969 (Fig. 10). OAGs 2 and 3 predominated in most month-year cells. Alternation in their relative importance, in consecutive years, reflected the passage of strong year classes through the fishery. For example, the 1959 year-class (at ages 4_{2} and 5_{2}) passed through during May-June 1963-64, and the 1955 year-class (at ages 3_{1} and 4_{1}) passed through during August-September 1958-59. Interestingly, OAG 1 was virtually absent in May and June, but occasionally prominent in July, August, and September. Perhaps the smaller mesh sizes used for sockeye and pink salmon during July-September, caught more small chinook (see 1983 MESH EXPERIMENT). A second possibility is that there are few early-run chinook which mature at age 2_{1} or 3_{2}. There was no apparent reduction in the proportion of older chinook in any month.

By month and flesh color. For 1959-63, comparisons were limited to 16 month-year cells--June-September 1960-63 (Fig. 11). White-flesh chinook were scarce in May, and sampling was weak in all months of 1959 (Table 4). The June-July pattern of ocean-age-frequencies differed from that of August-September. The June-July cells were dominated by OAG-2 chinook, regardless of flesh color (11 of 16 month-year-color cells)--6 of 8 for red flesh; 5 of 8 for white flesh. The August-September cells were dominated by OAG 3, regardless of color (12 of 16)--6 of 8 red flesh and white flesh.

For 1964-66 and 1969, comparisons were limited to 15 month-year cells (June-September 1964-66 and June-August 1969) (Fig. 12). White-flesh chinook were scarce in May, and no white-flesh fish were sampled in September 1969 (Appendix table 7). In contrast to 1960-63, OAG 2 was not dominant during June-July (8 of 16 cells). However, it was dominant among redflesh fish--6 of 8 month-year cells. For white-flesh fish, OAG 3 was dominant in 7 of 8 cells. During August-September, OAG-3 domination was less than during 1960-63--9 of 15 month-year-color cells. For red-flesh fish, OAG 3 dominated in 4 of 7 cells. For white-flesh fish, OAG 3 dominated in 5 of the 7 cells.

Thus, for the 31 month-year cells compared (1960-66 and 1969), dominant age groups differed by flesh color in 17 cells. In 12 of these cells, white-flesh fish were older than red-flesh fish, and in 2, red-flesh were older.

Dixon-Massey tests of proportion differences between flesh color were completed for 62 month-year-age cells (Table 6). Of these, 35 (56.5\%) produced significant differences-- 17 for

OAG 2, and 18 for OAG 3. However, during 1960-63, only 34.4\% (11 of 32) of the cells produced significant differences, compared to 80.0% (24 of 30) for 1964-66 and 1969. No explanation was found for this phenomenon. Evidently, age compositions were more heterogeneous with respect to flesh color, during the period of "improved" sampling. A comparison of flesh color proportions between age groups, within year-month cells suggests that white-flesh chinook are generally older than red-flesh chinook in these cells. There were sixteen such comparisons, and proportion of red flesh was significantly greater at age-group 2 in 12 cells; at age-group 3 in 3 cells; and in both age groups in 1 . White flesh was of course the near opposite--3 at age-group 2; 12 at age-group 3; and none at both age groups.

By month, flesh color, and sex ratio. For May-September 1964-66 and 1969, mean sex ratios (\% females) generally exhibited a similar pattern among age groups, regardless of month or flesh color (Fig. 11). For red-flesh/white-flesh chinook, mean proportions of females for OAGs $1-4$ were: $2 \% / 1 \% ; 35 \% / 23 \% ; 66 \% ; 66 \%$; and $69 \% / 76 \%$, respectively.

Within age groups, little variation among months was evident, except for OAG 2 (both flesh colors)(Fig. 13). For red-flesh, OAG-2 chinook, proportion of females declined from 53\% in May to 20% in September. Corresponding values for white-flesh, OAG-2 chinook were 25\% in May, 36% in June, and 12% in September. No explanation is evident for this phenomenon. Age-group 3_{1} exhibited anomalous values among months, particularly for red-flesh fish during May-June (Appendix table 9). Perhaps some of these fish reared in the upper Fraser River, and did not form a freshwater annulus.

The differential sex ratio between age groups may be important when evaluating escapement requirements. That is, numbers of ova in the escapement may be important as well as the numbers of fish. An example is shown in Table 7, for chinook (red flesh; stream-type scales) sampled from the commercial gillnet fisheries in the Fraser (June 1964) and Columbia (May 196069) rivers. Proportions of females within age groups were virtually identical in the two fisheries-at age $4_{2}, 44 \%$ in both fisheries; and at age $5_{2}, 72 \%$ in the Fraser River, and 74% in the Columbia River. Likewise, for both rivers, fecundities were similar within age groups, but substantially different among age groups. For age-group 4_{2}, estimated numbers of ova per fish (males + females) were 1996 in the Fraser River, and 3044 in the Columbia. For age-group 5_{2}, comparable values were 4497 (Fraser) and 5923 (Columbia). The larger values per age group in the Columbia River were attributed to larger females. Mean lengths of age- 4_{2} females were 72 cm for Fraser River chinook, and 76 cm for Columbia River chinook. Comparable values for age- 5_{2} females were 86 and 88 cm , respectively.

Summary

Incidence of both flesh color and scale type exhibit consistent seasonal trends (with some variability in time of 50% incidence), and both may be genetically based. Monthly age compositions vary among years, and by flesh color. It seems likely that these reflect variations in year-class abundance among and within stocks. Sex ratios (\% females) for red-flesh, spring-run chinook in both the Fraser and Columbia rivers were substantially larger for age-group 5_{2} than for age-group 4_{2}. Since fecundity is an exponential relationship, the number of ova in the escapement
is a function of the age composition, and hence may well be factor in the effectiveness of the escapement.

The limited data examined clearly indicate that annual compilations of age compositions are inadequate for analytical purposes. Hopefully, the current results will encourage further effort to locate and compile the missing detailed records for the lower-river fisheries, and to search for other relevant data not yet reported. A second need is another age-validation study for comparison with that in the 1960s. As Beamish and McFarlane (1983) noted, too little effort is expended in this matter, in all fisheries investigations..

Fraser et al. (1982, Fig. 4) proposed three major groups of stocks (early, middle, and late), based on timing of the adult fish passing through the lower Fraser River. Time of passage was March-July (principally June) for the early group; mid-July to mid-September (principally midJuly through August) for the middle group; and September-October (principally mid-September to mid-October) for the late group. Distance to spawning grounds was generally longest for the early group, and shortest for the late group. However, only the Harrison River was listed for the late group, and other late stocks may spawn farther upriver, as in the Columbia River (ODFW/WDFW 1995). Since at least the early and late groups comprised numerous spawning stocks (see their Figure 5), age compositions, per se, in the commercial and test fisheries were unlikely to provide much insight into individual stocks.

1983 MESH EXPERIMENT

During the 12 days of fishing, 24 sets were completed (Wilson and Pearce 1984). Total catch, by species was 129 chinook, 72 chum, 107 coho, 1,834 pink, 966 sockeye, and 9 steelhead. The authors reported that "Significantly ($\mathrm{p} \leq 0.05$) more large chinook ($>2.3 \mathrm{~kg}$) were captured in the 14.9 cm mesh than in either of the smaller meshes" (Wilson and Pearce 1984, p. viii). Extracted from their Table 1, and shown below, are the numbers of chinook salmon caught, by mesh size and category:

Mesh size (cm)	Large $^{\mathrm{a}}$		Jack $^{\mathrm{b}}$	Total
male	female			

a. Weight $>2.3 \mathrm{~kg}$. Excluding jacks.
b. Weight $\leq 2.3 \mathrm{~kg}$. (mostly ages $2_{1} \& 3_{2}$).

The data, albeit scanty, suggest that mesh sizes of 14.0 cm (5.5") and larger are not effective for catching jacks.

TEST FISHERIES

1965-66
A total of 1287 chinook were sampled for length and scales, of which 891 (69.2\%) yielded scale readings, i.e., were "successful" (Table 8). Success increased temporally, from 41.7% in April to 83.8% in September. Similar patterns were evident in both years- 53.8% to 80.1% in 1965 , and 38.3% to 86.8% in 1966. The temporal increase in successful scale readings was attributed in part to the difference in readability of stream-type and ocean-type scales, as reported by Godfrey et al (1968).

Age composition. The four mesh sizes, used in 1965 and 1966, produced substantially different ocean-age frequencies in both years (Fig. 14). Percentages of OAGs 1 and 2 varied inversely with mesh size, while those for OAGs 3 and 4 varied directly.. For 1965 (months combined), percentages of OAGs 1 and 2 declined from 9.2% and 59.6% at 6.5 " to 1.2% and 11.8% at 9.5 ". comparable values for 1966 were 10.6% and 57.6% at $6.5^{\prime \prime}$, and 3.8% and 12.3% at 9.5 ".

Size composition. Not surprisingly, the four mesh sizes produced substantially different size compositions in both years (Fig. 15). For 1965, the principal modal frequencies at 6.5" (22.4%) occurred in the $55-59 \mathrm{~cm}$ interval, but at 9.5 " (30.7%), in the $75-79 \mathrm{~cm}$ interval. Comparable values for 1966 were 27.3% at $50-54 \mathrm{~cm}$ for 6.5 " mesh, and 39.7% at $70-74 \mathrm{~cm}$ for $9.5 "$ mesh.

Test fishery vs commercial fishery. Ocean-age-frequencies in the test fishery catch (combined mesh sizes) were generally similar to those in the commercial fishery, in 1965 (Fig. 16) and 1966 (Fig. 17). For April-September 1965, age-group dominance, by month, was the same for both fisheries, except for July, where OAG 2 was dominant in the commercial fishery, and OAG 3 in the test fishery. For 1966, April and July produced anomalous relationships. In both cases, OAG-2 fish predominated in the commercial fishery, and OAG-3 fish in the test fishery. The April anomaly could be ascribed to small samples in the test fishery (39 and 18 fish). The coincidental anomalies in July, for both years, may be due to the commercial fishery's reaction to the arrival of the sockeye salmon (Appendix table 2). Since the sockeye are smaller than chinook, smaller-mesh nets are used, which would tend to catch smaller (younger) chinook. However, no anomaly appeared in August, also an important sockeye month.

Dixon-Massy tests of proportion differences, by ocean-age-group, between the two fisheries were completed for 22 month-year-age cells (Table 6). Significant differences were found in six cells--two for April (OAG 2 and 3 in 1966) and all four for July. The April 1965 data were not testable. Thus, for May, June, August, and September, the age composition in the test fishery accurately reflected that in the commercial fishery. Interestingly, in the comparisons of
age-group proportions within month-year cells, commercial fishery was significantly greater at age-group 2 in all three cases (April 1966; July 1965-66), while the test fishery predominated at age-group 3. Perhaps the test fishery catch was more representative of the fish moving upriver.

1981-87

A total of 7840 chinook salmon were sampled for length and scales, of which scale readings were reported for 7042 (89.8%) (Table 9). Scale reading success increased temporally, as with the 1965-66 test-fishery data. For the combined 1981-87 data, percentages rose from 83.4% in April to 95.9% in September (94.5% in October). No explanation was found for the increased success at reading scales over that in 1964-66 and 1969. Two plausible explanations are increased reading skills and the method of selecting scales from the fish. In the latter case, Schubert et al. (1988) reported that scales were collected from the "preferred" locations. Ball and Godfrey (1967, 1968a,b, 1970) did not report how scales were removed from the fish, nor did the archival records.

Age composition. The single mesh size (8 ") produced near-uniform ocean-age-frequencies among months and years (Fig. 18). OAG 3 accounted for 64.7-89.9\% among months (years combined) during April-October 1981-87. These results compared favorably with those with the 8.5" mesh in 1965-66, where OAG-3 fish accounted for 66.7% in 1965, and 67.3% in 1966 (Appendix tables 10 and 11). Evidently, the 8 " mesh does not catch a representative sample of chinook runs (or catches), nor does it necessarily catch a representative sample of OAG-3 fish, based on length-frequencies by mesh size, from the 1965-66 test fishery (Fig. 15). The 9.5" mesh caught larger fish than the $8.5^{\prime \prime}$ mesh. For OAG-3 fish, overall mean orbit-hypural length was 70.9 cm for fish caught in the $8.5^{\prime \prime}$ mesh, and 73.9 cm for those caught in the $9.5^{\prime \prime}$ mesh (Fig. 19A). Monthly records exhibited the same phenomenon, except for July (Fig. 19B). Differences among the other four months ranged from 2.1 cm to 7.0 cm .

Test fishery vs spawning ground, 1984-88. Principal age-groups of white-flesh chinook, in both locations, were $3_{1}, 4_{1}$, and 5_{1} (Appendix table 17). Together, they comprised 90.4-98.3\% in the test-fishery catch, and $98.8-99.6 \%$ on the spawning ground.

Test-fishery and spawning-ground age compositions were generally similar in each year (Fig. 20). However, percentages of age-group 3_{1} were consistently higher in the test fishery than on the spawning ground, and the reverse was the case for age-group 4_{1}. For age-group 5_{1}, percentages were higher in the test fishery during 1984 and 1986.

Dixon-Massey tests of proportion differences, by age group, between the test fishery and spawning ground were completed for 14 month-year-age cells (Table 6). Four cells yielded significant differences--two each for age-groups $3_{1}(1985,1987)$ and $4_{1}(1986,1988)$. None were found in the four tests of age-group 5_{1}, but proportions were small (<0.10 in 8 of the 10 cells; Appendix table 18). Only in 1984 were there no significant differences for the principal age groups. The significant differences at age 3_{1} in 1985 and 1987 match up with the significant differences at age 4_{1} in 1986 and 1988, and reflect the above-average 1982 and 1984 year classes. Evidently, strong year classes disrupt the predictability of the test fishery for the Harrison River
chinook. The test fishery may be useful as a predictor of above-average year-classes when they return to spawn at age 4_{1}. The test fishery yielded significantly greater proportions of age-group $3_{1}(1985,1987)$, while the spawning ground sample yielded significantly greater proportions of age-group 4_{1} (1986 and 1988).

Summary

Apparently, neither test fishery achieved its purpose, but both yielded useful ancillary results. No report was found which dealt with the ability of the 1965-66 fishery to measure magnitude and composition of spawning escapements, nor were archival data found on age composition of spawning escapements. However, the test fishery data clearly demonstrated the difficulty in sampling the escapement past the lower-river fishery. Despite the multiple mesh sizes, the test net was biased against OAG-1 chinook. Ancillary biological data were published on fecundity, pyloric caeca counts, length-weight relationship, flesh-color ratios, and conversion formulae for dressed weight to round weight, and fork length to orbit-hypural length (Godfrey 1968).

The ability of the 1981-96 test fishery to assess inseason abundance and run timing seems unlikely with the single-mesh net, which was biased against OAG-1 and OAG-2 fish, as well as the larger members of OAG-3. However, fair results were obtained in reflecting the age composition of the white-flesh chinook (excluding jacks) destined for the Harrison River. The multi-mesh-size net introduced in 1997 offers hope for improvement, at least in assessing escapement past the lower-river fishery.

Probably neither the 1965-66 (minimum mesh size $\left.=6.5^{\prime \prime}\right)$ nor the 1981-87 $($ mesh size $=$ $8^{\prime \prime}$) test fisheries adequately sampled jacks, when they were present in the river. An index of jack abundance might well be useful in predicting year-class abundance.

ACKNOWLEDGMENTS

The author is grateful for the assistance rendered by the following, without which this manuscript would not have been completed. Reviewers of earlier versions of the manuscript contributed substantially to its improvement, These were: R.E. Bailey and Dr. J.R. Irvine, of the Pacific Biological Station, Nanaimo; K.R. Wilson, Dept. of Fisheries and Oceans, New Westminster, and J.B. Dempson, St. John's Biological Station, Newfoundland.
R.E. Bailey and G. Serbic assisted in compiling chinook salmon catch statistics from the PBS database. Susan Bates (PBS) provided the details on the revision of the pre-1967 catch statistics.
A.R. Baker provided information on the 1964-66 test fishery, and other matters associated with the gillnet fishery on the lower Fraser River.

Gordon Miller and Pamela Olson, at the PBS Library, provided considerable assistance in locating publications and archival records.

LITERATURE CITED

Argue, A.W., R. Hilborn, R.M. Peterman, M.J. Staley, and C.J. Walters. 1983. Strait of Georgia chinook and coho fishery. Can. Bull. Fish. Aquat. Sci. 211: 89 p.

Ball, E.A.R., and H. Godfrey. 1967 . Lengths and ages of chinook salmon taken in the British Columbia troll fishery and the Fraser River gillnet fishery in 1964. Manuscr. Rep. Fish. Res. Board Can. 947: 173 p.

1968a. Lengths and ages of chinook salmon taken in the British Columbia troll fishery and the Fraser River gillnet fishery in 1965. Manuscr. Rep. Fish. Res. Board Can. 952: 140 p .

1968b. Lengths and ages of chinook salmon taken in the British Columbia troll fishery and the Fraser River gillnet fishery in 1966. Manuscr. Rep. Fish. Res. Board Can. 954: 142 p .
1970. Lengths and ages of chinook salmon taken in the British Columbia troll fishery in 1969. Manuscr. Rep. Fish. Res. Board Can. 1121: 68 p.

Beamish, R.J., and G.A. McFarlane. 1983. The forgotten requirement for age validation in fisheries biology. Trans. Amer. Fish. Soc. 112: 735-743.

Beamish, R.J., B.E. Riddell, C.E.M. Neville, B.L. Thomson, and Z. Zhang. 1995. Declines in chinook salmon catches in the Strait of Georgia in relation to shifts in the marine environment. Fish. Oceanogr. 4: 243-256.

Dixon, W.J., and F.J. Massey Jr. 1969. Introduction to Statistivcal Analysis. (Third Edition). McGraw-Hill Book Co., New York, Toronto, London, et al. 638 p.

Fraser, F.J., P.J. Starr, and A.Y. Fedorenko. 1982. A review of the chinook and coho salmon of the Fraser River. Can. Tech. Rep. Fish. Aquat. Sci. 1125: 130 p.

Fryer, J.K., and M. Schwartzberg. 1993. Age and length composition of Columbia Basin spring and summer chinook salmon at Bonneville Dam in 1992. Tech Rep. Columbia River InterTribal Fish Comm. (Portland, Oregon). 93-3: 29 p.
1994. Age and length composition of Columbia Basin spring and summer chinook salmon at Bonneville Dam in 1993. Tech Rep. Columbia River Inter-Tribal Fish Comm. (Portland, Oregon). 94-1: 29 p .

Fryer, J.K., D.R. Pederson, and M. Schwartzberg. 1995. Age and length composition of Columbia Basin spring and summer chinook salmon at Bonneville Dam in 1994. Tech. Rep. Columbia River Inter-Tribal Fish. Comm. (Portland, Oregon). 95-1: 30 p.

Galbreath, J.L., and R.L. Ridenhour. 1964. Fecundity of Columbia River chinook salmon. Res. Briefs, Fish. Comm. Oregon. 10(1): 16-27.

Gilbert, C.H. 1913. Age at maturity of Pacific coast salmon of the genus Oncorhynchus. Bull. U.S. Bull. Fish. 32: 1-22.

Gilbert, C.H., and W.H. Rich. 1927a. Second experiment in tagging salmon in the Alaska Peninsula fisheries reservation, summer of 1923. Bull. U.S. Bur. Fish. 42: 27-75.

1927b. Investigations concerning the red-salmon runs to the Karluk River, Alaska. Bull. U.S. Bur. Fish. 43(2): 1-69.

Godfrey, H. 1968. Ages and physical characteristics of maturing chinook salmon of the Nass, Skeena and Fraser Rivers in 1964, 1965 and 1966. Manuscr. Rep. Fish. Res. Board Can. 967: 30 p .
1975. Review of the occurrence of red- and white-fleshed chinook salmon in British Columbia with particular reference to Fraser River fish present off the west coast of Vancouver Island. Manuscr. Rep. Fish. Res. Board Can. 1359: 49 p.

Godfrey, H., D.D. Worlund, and H.T. Bilton. 1968. Tests on the accuracy of ageing chinook salmon (Oncorhynchus tshawytscha) from their scales. J. Fish. Res. Board Can. 25: 1971-1982.

Healey, M.C. 1982. Catch, escapement and stock-recruitment for British Columbia chinook salmon since 1951. Can. Tech. Rep. Fish. Aquat. Sci. 1107: 77 p.
1991. Life history of chinook salmon. pp. 311-393. In: C. Groot and L. Margolis [eds.]. Pacific Salmon Life Histories. UBC Press, Univ. British Columbia, Vancouver.

Holmes, M.A., and D.W.A. Whitfield. 1991. User's manual for the commercial salmon catch spreadsheet program. Can. Tech. Rep. Fish. Aquat. Sci. 1807: 44 p.

Koo, T.S.Y. 1962. Age designation in salmon. pp. 41-48. In: T.S.Y. Koo [ed.]. Studies of Alaska Red Salmon. Univ. Wash. Publ. Fish. (N.S.) 1. Univ. Washington Press, Seattle.

Kristiansson, A.C., and J.D. McIntyre. 1976. Genetic variation in chinook salmon (Oncorhynchus tshawytscha) from the Columbia River and three Oregon coastal rivers. Trans. Amer. Fish. Soc. 105: 620-623.

Milne, D.J. 1964. Sizes and ages of chinook (Oncorhynchus tshawytscha) and coho (O. kisutch) salmon in the British Columbia troll fisheries (1952-1959) and the Fraser River gill-net fishery (1956-1959). Manuscr. Rep. Fish. Res. Board Can. 776: 42 p.

ODFW/WDFW. 1995. Status report. Columbia River fish runs and fisheries, 1938-94. Oregon Dept. Fish. Wildl./Washington Dept. Fish. Wildl. Proc. Rep. 291 p.

Rich, W.H. 1926. Growth and degree of maturity of chinook salmon in the ocean. Bull. U.S. Bur. Fish. 41: 15-90.
1942. The salmon runs in the Columbia River in 1938. Fishery Bull. (U.S.) 50: 101-147.

Schubert, N.D., P.G. Paterson, and C.M. McNair. 1988. The Fraser River chinook salmon test fishery: data summary, 1980-87. Can. Data Rep. Fish. Aquat. Sci. 709: 193 p.

Starr, P.J., and N.D. Schubert. 1990. Assessment of Harrison River chinook salmon. Can. Manuscr. Rep. Fish.Aquat. Sci. 2085: 47 p.

Tutty, B.D. and F.Y.E. Yole. 1978. Overwintering chinook salmon in the upper Fraser River system. Manuscr. Rep. Fish. Mar. Serv. (Can.) 1460: 24 p.

Wilson, K.H., and B.C. Pearce. 1984. The relative selection of three mesh sizes of Fraser River sockeye gillnets for chinook salmon. Can. Tech. Rep. Fish. Aquat. Sci. 1250: 71 p.

Winans, G.A. 1989. Genetic variability in chinook salmon stocks from the Columbia River basin. N. Amer. J. Fish. Manage. 9: 47-52.

Withler, R.E. 1986. Genetic variation in carotenoid pigment deposition in the red-fleshed and white-fleshed chinook salmon (Oncorhynchus tshawytscha) of Quesnel River, British Columbia. Can. J. Cytol. 28: 587-594.

Young, F.R., and W.W. Robinson. 1974. Age, size, and sex of Columbia River chinook, 196069. Data Rep. Ser. Fish. Comm. Oregon. 4: 31 p.

Table 1. Open periods, and days open per week before, during, and after IPFSC control, by year, for the commercial gillnet fishery in the lower Fraser River 1958-81. (Source: Fraser et al. 1982, Appendix 3)

Year	Open periods ${ }^{\text {a }}$	Days open:				IPFSC control ${ }^{\text {b }}$
		per week ${ }^{\text {c }}$ before during after			Total	
1958	Feb-Nov	4	3	0-4	124	Jun 23-Oct 7
1959	Feb-Dec	4	3	0-4	138	Jun 21-Oct 11
1960	Feb-Nov	4	1-3	0-2	120	Jun 27-Sep 26
1961	Feb-Dec	4	2	0-2	113	Jun 25-Oct 8
1962	Feb-Nov	4	1-3	0-2	107	Jun 24-Oct 8
1963	Feb-Nov	2-4	1-4	0-2	108	Jun30-Oct12
1964	Feb-Nov	2	1-3	0-2	96	Jun 28-Sep 26
1965	Mar-Oct	2	1-3	0-1	53	Jun 27-Oct 4
1966	Mar-Oct	2	1-3	0-1	51	Jun 26-Oct 2
1967	Mar-Nov	4	1-4	0-1	88	Jun 25-Oct 14
1968	Mar-Nov	2	1-3	0-1	61	Jun 30-Sep 21
1969	Mar-Nov	2	1-2	0-1	48	Jun 26-Oct 11
1970	Mar-Nov	2	1-2	0-1	51	Jun 28-Oct 11
1971	Mar-Oct	2	1-5	0-1	63	Jun 27-Oct 13
1972	Mar-Dec	2	1-2	1	51	Jun 25-Sep 24
1973	Mar-Nov	2	1-4	1-2	58	Jun 24-Oct 14
1974	Mar-Nov	2	1-3	0-1	47	Jun 23-Oct 6
1975	Mar-Oct	1	1-3	0-1	44	Jun 26-Oct 9
1976	Apr-Nov	1	1-3	0-1	29	Jun 27-Oct 7
1977	Apr-Oct	1	1-2	0-1	29	Jun 27-Oct 9
1978	Apr-Oct	1	0-2	0-1	23	Jun 25-Oct 12
1979	Apr-Oct	1	0-2	0-1	18	Jun 24-Oct 6
1980	Apr-Oct	1	0-2	0-1	24	Jun 22-Oct 11
$1981{ }^{\text {d }}$	Jul-Sep	0	0-2	0	15	Jun 21-Oct 11

a. Specific dates omitted here.
b. Internationald Pacific Salmon Commission: Areas 29B-D (See Fig. 1)
c. Rounded up to whole days per week.
d. Total closure, May 28-July 14.

Table 2. Inventory of age-composition data, by time, numbers sampled, type of fishery, and source, for chinook salmon in the lower Fraser River, 195287.

Time		N	Type ${ }^{\text {a }}$	Source ${ }^{\text {b }}$
1952	"May-Sep"	35	CF	Fraser et al. (1982) ${ }^{\text {c }}$
1953	"May-Sep"	103	CF	(from Milne 1964) ${ }^{\text {c }}$
1954	"May-Sep"	40	CF	
1955	"May-Sep"	71	CF	
1956	"May-Sep"	372	CF	
1957	"May-Sep"	316	CF	
1952-56 ${ }^{\text {d }}$	$N \mathrm{~N}^{\text {e }}$	$N{ }^{\text {e }}$	CF	Argue et al. (1983) ${ }^{\text {c }}$
1957-59 ${ }^{\text {d }}$	$N \mathrm{~N}^{\text {e }}$	326	CF	
$1966-68^{\text {d }}$	$N R^{\text {e }}$	3818	CF	
1958	"May-Sep"	368	CF	Fraser et al. (1982) ${ }^{\text {c }}$
	Jun-Oct	370	CF	(from Milne 1964) ${ }^{\text {c }}$ PBSA AC/39/19
1959	"May-Sep"	293	CF	Fraser et al. (1982) ${ }^{\text {c }}$
				(from Milne 1964) ${ }^{\text {c }}$
	May-Sep	251	CF	PBSA AC/38/58
1960	May-Oct	2221	CF	PBSA BP/7/12
1961	Jun-Oct	2562	CF	PBSA BP/7/15
1962	May-Oct	2341	CF	PBSA AC/18/43
1963	May-Oct	1786	CF	PBSA AC/23/36
1964	"May-Sep" (Mar-Oct)	$\begin{gathered} 4676 \\ (4726) \end{gathered}$	$\begin{aligned} & \text { CF } \\ & \text { (CF) } \end{aligned}$	Fraser et al. (1982) ${ }^{\text {c }}$ (from Ball \& Godfrey 1967)
	$N R^{\text {e }}$	198	TF	Godfrey (1968) ${ }^{\text {c }}$
	Jul-Sep	<265	TF	PBSA BP/3/25 ${ }^{\text {f }}$
1965	"May-Sep" (Apr-Sep)	$\begin{gathered} 4099 \\ (4102) \end{gathered}$	$\begin{gathered} \mathrm{CF} \\ \text { (CF) } \end{gathered}$	Fraser et al. (1982) ${ }^{\text {c }}$ (from Ball \& Godfrey 1968a)
	$\begin{gathered} \mathrm{NR}^{\mathrm{e}} \\ \text { Apr-Sep } \end{gathered}$	$\begin{aligned} & 403 \\ & 402 \end{aligned}$	TF	Godfrey (1968) ${ }^{\text {c }}$ PBSA BP/4/3,4

Table 2 (cont.)
Time $\quad N \quad$ Type $^{\text {a }}$ Source ${ }^{\text {b }}$

1966	$\begin{aligned} & \text { "May-Sep" } \\ & \text { (Apr-Sep) } \end{aligned}$	$\begin{gathered} 2675 \\ (2692) \end{gathered}$	$\begin{aligned} & \mathrm{CF} \\ & \text { (CF) } \end{aligned}$	Fraser et al. (1982) ${ }^{\text {c }}$ (from Ball \& Godfrey 1968b)
	$\begin{gathered} N R^{\bullet} \\ \text { Apr-Sep } \end{gathered}$	$\begin{aligned} & 493 \\ & 378 \end{aligned}$	$\begin{aligned} & \text { TF } \\ & \text { TF } \end{aligned}$	Godfrey (1968) ${ }^{\text {c }}$ PBSA BP/4/8
1969	"May-Sep" (Apr-Sep)	$\begin{aligned} & 2258 \\ & \text { (2259 } \end{aligned}$	$\begin{aligned} & \mathrm{CF} \\ & (\mathrm{CF}) \end{aligned}$	Fraser et al. (1982) ${ }^{\text {c }}$ (from Ball \& Godfrey 1970)
1975	$N R^{\text {e }}$	455	CF	Fraser et al. (1982) ${ }^{\text {c }}$
1976	$N R^{\text {e }}$	429	CF	
1977	$N R^{\text {e }}$	1451	CF	
1978	$N R^{\text {e }}$	1068	CF	
1980-84 ${ }^{\text {d }}$	"early"9	$N R^{\text {e }}$	TF	Beamish et al. (1995) (from N.D. Schubert, pers. comm.)
1981	Mar-Oct	803	TF	Schubert et al. (1988) ${ }^{\text {h }}$
1982	Apr-Oct	1047	TF	
1983	Apr-Oct	842	TF	
1984	Apr-Oct	1007	TF	
1985	Apr-Oct	1046	TF	
1986	Apr-Oct	917	TF	
1987	Apr-Oct	2271	TF	
1988	Sep-Oct ${ }^{\text {i }}$	242	TF	Starr \& Schubert (1990) (also Beamish et al. 1995)

a. Type: CF = commercial gillnet fishery; $T F=$ test fishery (gillnet).
b. Source: PBSA = Pacific Biological Station Archive.
c. Annual age-frequencies only. Time approximated, if reported.
d. Mean.
e. $N R=$ not reported.
f. Age readings not located. L-F by sex \& color.
g. "spring-summer".
h. Authors reported that the 1980 data were lost.
i. White flesh only.

Table 3. Percent accuracy (Acc) and consistency (Con), by age, of scale readings for known-age chinook salmon sampled from the gillnet and troll fisheries off Canada and the United States. (Source: Godfrey et al. 1968, text table, p. 1975)

True age	N^{a}	Acc	Con $^{\mathrm{b}}$	True age	N^{a}	Acc	Con $^{\mathrm{b}}$
3_{2}	16	50.0	55.6	2_{1}	248	62.2	72.8
4_{2}	80	58.6	61.0	3_{1}	920	81.1	87.1
5_{2}	32	82.1	61.1	4_{1}	304	69.2	63.8

a. $N=$ numbers of scales read.
b. Disregarding accuracy.

Table 4. Numbers sampled (n) and landed (N), by year and month, of chinook salmon from the commercial gillnet fishery in the lower Fraser River, March-October 1958-66 and 1969.

Year	Sample type	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct
1958	n	0	0	0	79	74	116	65	36
	N	362	3951	9030	27516	40853	39768	33487	13099
	\%n	0.0	0.0	0.0	0.3	0.2	0.3	0.2	0.3
1959	n	0	0	11	47	56	73	64	0
	N	1567	5269	11249	25678	27917	41796	63770	1211
	\%n	0.0	0.0	0.1	0.2	0.2	0.2	0.1	0.0
1960	n	0	0	77	272	647	471	510	244
	N	222	1909	4092	12622	28745	30223	32863	9977
	\%n	0.0	0.0	1.9	2.2	2.3	1.6	1.6	2.4
1961	n	0	0	0	577	734	489	685	77
	N	115	1894	5394	17944	22118	23636	19353	1492
	\%n	0.0	0.0	0.0	3.2	3.3	2.1	3.5	5.2
1962	n	0	0	50	371	658	492	442	170
	N	200	3206	7807	20450	27901	14740	29503	2798
	\%n	0.0	0.0	0.6	1.8	2.4	3.3	1.5	6.1
1963	n	0	0	135	410	169	450	386	85
	N	550	5581	13312	27607	8560	33416	16979	5964
	\%n	0	0	1.0	1.5	2.0	1.3	2.3	1.4
1964	n	18	407	492	551	1053	1187	903	115
	N	2267	7191	7891	22402	41899	51036	23667	4524
	\%n	0.8	5.7	6.2	2.5	2.5	2.3	3.8	2.5
1965	n	0	109	242	649	1142	1022	938	0
	N	304	1630	4793	15556	29587	21965	15082	1953
	\%n	0	6.7	5.0	4.2	3.9	4.7	6.2	0
1966	n	12	39	95	419	870	696	561	0
	N	180	1258	3575	12493	32083	30236	13059	2862
	\%n	6.7	3.1	2.7	3.4	2.7	2.3	4.3	0
1969	n	0	20	185	521	601	875	57	0
	N	207	3359	5952	19129	19704	23987	10210	3487
	\%n	0	0.6	3.1	2.7	3.1	3.6	0.6	0

Table 5. Incidence (\%), by month, week, and year, of red flesh, and stream-type scales by flesh color ${ }^{2}$, among chinook salmon sampled from the commercial gillnet fishery in the lower Fraser River, and industry-reported incidence (\%), by month, of red flesh in chinook landings, May-September 1964-66 and 1969.

Week	Nos. sampled				\% red flesh				\% stream-type scales								
	1964	1965	19661969		1964	1965	1966	1969	1964		1965		1966		1969		
					R				W	R	W	R	W	R	W		
May																	
1	180	18	35	0		97.2	100	94.3	---	66.9	80.0	94.4	0	100	100	---	---
2	104	86	0	57	92.3	100	---	100	82.3	100	97.7	0	---	--	45.6	0	
3	106	63	17	53	98.1	100	100	100	65.4	50.0	95.2	0	94.1	0.0	67.9	0	
4	107	75	43	75	80.4	81.3	100	100	70.7	65.0	93.4	92.9	97.7	0.0	61.3	0	
T	497	242	95	185	93	94	98	100	71	74	96	93	98	100	58	0	
T^{*}					96	97	98	97									
June																	
1	85	86	61	129	95.3	100	83.6	88.4	56.8	75.0	95.3	0.0	56.9	90.0	58.8	73.3	
2	162	151	112	158	87.7	93.4	92.0	84.8	59.2	45.0	79.4	70.0	92.2	100	68.7	70.8	
3	106	200	103	158	89.6	90.5	97.1	90.5	69.5	81.8	92.8	94.7	48.0	33.3	59.4	73.3	
4	198	212	143	76	50.5	77.4	86.0	100	55.0	56.1	81.7	79.2	30.9	25.0	39.5	0	
T	551	649	419	521	76	88	90	90	60	57	87	82	56	57	59	72	
$T^{\text {º }}$					91	91	94	94									
July																	
1	177	323	180	52	74.6	84.5	84.4	94.2	86.4	77.8	86.1	82.0	15.1	10.7	57.1	66.7	
2	150	275	133	116	56.0	82.9	83.5	63.8	78.6	80.3	86.4	89.4	43.2	36.4	39.2	69.0	
3	174	120	195	135	51.1	68.3	89.7	88.1	85.4	81.2	93.9	100	33.7	30.0	36.1	37.5	
4	274	341	97	225	66.4	77.1	94.8	64.0	90.1	82.6	90.1	98.7	39.1	80.0	41.0	53.1	
5	278	83	265	73	64.7	79.5	70.9	68.5	71.7	78.6	83.3	94.1	34.6	40.3	32.0	34.8	
T	1053	1142	870	601	63	80	83	73	82	80	88	93	32	34	40	53	
$T^{\text {凧 }}$					71	72	78	76									

Table 5 (cont.)

Week	Nos. sampled				\% red flesh				\% stream-type scales								
	1964	1965	19661969		1964	1965	1966	1969	1964		1965		1966		1969		
					R				W	R	W	R	W	R	W		
August																	
1	263	138	189	153		64.6	63.0	67.2	74.5	64.7	75.3	50.6	66.7	37.0	50.0	20.2	35.9
2	271	370	245	71	62.0	74.6	75.9	90.1	22.0	26.2	35.9	64.9	18.8	44.1	3.1	0.0	
3	337	393	0	250	68.8	81.9	---	73.6	9.9	15.2	13.7	14.1	---	---	4.9	7.6	
4	316	121	262	401	61.1	47.9	67.2	59.9	8.8	11.4	0.0	7.9	5.7	5.8	2.1	5.0	
T	1187	1022	696	875	64	73	70	69	25	30	25	39	19	30	7	10	
可兩					70	73	74	76									

a. $R=$ red flesh; $W=$ white flesh.
b. $T^{\prime}=\%$ red flesh reported in landings.
c. White-flesh fish probably not sampled.
d. Chi-square value significant: $P>0.01<0.02$.
e. Chi-square value significant: $P<0.01$.

Table 6. Results of three Dixon-Massey tests of differences in proportions, for selected age groups, between categories of chinook salmon sampled in the Harrison and/or Fraser rivers. ($\mathrm{x}=\mathrm{no}$ significant difference)

Test 1: Red flesh vs white flesh, by ocean-age-group. ${ }^{\text {a }}$

Year	Jun		Jul			Aug		
Sep								
Age-group:	2	3	2	3	2	3	2	3
1960	x							
1961	x	x	R	x	x	R	x	x
1962	W	R	x	R	R	R	R	W
1963	x	x	x	x	W	R	x	x
1964	R	W	R	W	R	W	W	R
1965	R	W	R	W	x	x	R	W
1966	R	W	R	W	x	x	R	W
1969	R	W	x	x	R	W	N^{b}	N^{b}

Test 2: Commercial fishery vs test fishery, by ocean-age-group. ${ }^{\text {c }}$

Month	1965		1966	
Age-group:	2	3	2	3
April	NT^{d}	NT^{d}	C	T
May	x	x	x	x
June	x	X	x	x
July	C	T	C	T
August	x	x	x	x
September	x	x	x	x

Test 3: Test fishery vs spawning ground, by age-group
(white flesh only). ${ }^{\text {e }}$

Age-group:	3_{1}	4_{1}	5_{1}
1984	x	x	x
1985	T	x	$N T^{d}$
1986	x	S	x
1987	T	x	x
1988	x	S	x

Table 6 (cont.)
a. Fraser River commercial gillnet fishery. Source:

Appendix tables 8 A and $8 \mathrm{~B} . \mathrm{R}=\mathrm{P}_{\mathrm{R}}>\mathrm{P}_{\mathrm{W}} ; \mathrm{W}=\mathrm{P}_{\mathrm{W}}>\mathrm{P}_{\mathrm{R}}$;
and $P=$ proportion of category i.
b. $N S=$ no sample.
c. Fraser River. Source: Appendix table 14. $\mathrm{C}=$ $P_{C}>P_{T} ; T=P_{T}>P_{C}$; and $P=$ proportion of category i.
d. NT $=$ no test: $\left(\mathrm{P}_{\mathrm{i}}\right)\left(\mathrm{N}_{\mathrm{i}}\right)<5$.
e. September-October test fishery (Fraser River) vs spawning ground (Harrison River). Source: Appendix table 18). $\mathrm{S}=\mathrm{P}_{\mathrm{S}}>\mathrm{P}_{\mathrm{T}} ; \mathrm{T}=\mathrm{P}_{\mathrm{T}}>\mathrm{P}_{\mathrm{S}} ;$ and $\mathrm{P}=$ proportion of category \mathbf{i}.

Table 7. Length-frequencies, by sex, and estimated fecundities, of age- 4_{2} and age- 5_{2}, red-flesh chinook salmon sampled from the commercial gillnet fisheries in the Fraser (June 1964) and Columbia (May 1960-69) rivers. (Sources listed below.)

$\mathrm{OHL}^{\text {a }}$	$\mathrm{FL}^{\text {b }}$	42		52		$F L^{c}$		42		52	
		F	M		M			F	M	F	M
---	---					17	43	---	1	---	---
---	---					19	48	---	10	---	---
---	---					21	53	6	53	1	6
47	57	---	6	---	---	23	58	21	279	3	19
52	63		17	1	2	25	64	143	1096	6	62
57	69	32	46	0	0	27	69	843	2470	38	103
62	75	30	16	1	0	29	74	2429	2596	152	196
67	81	3	1	17	3	31	79	2498	1306	466	325
72	87	---	0		10	33	84	573	427	1191	366
77	93	---	1		10	36	89	61	67	2204	474
82	99		--	1	2	37	94	16	8	1452	365
---	---					39	99	5	3	288	141
---	---					41	104	1	---	16	19
---	---					43	109	---	---	---	2

Total	6887	6927	6596	8316	5817	2078
Mean L	7269	8688	76	72	88	85
\%F	44	72	44	74		
Cum. Fec. $^{\text {d }}$	309.4	431.7	45396	46759		
Fec/F	4550	6257	6882	8038		
Fec/F+M	1996	4497	3044	5923		

a. Original measurement: $\mathrm{OHL}=$ orbit-hypural length (nearest cm). Frequencies grouped in $5-\mathrm{cm}$ intervals ($47=45-49$, etc.).
Source; Ball \& Godfrey (1967).
b. $F L=$ fork length. $F L_{m m}=16.76+(1.187)\left(\mathrm{OHL}_{\mathrm{mm}}\right)$. Source: Ball \& Godfrey (1967).
c. Original measurement: FL (nearest lower inch). Frequencies in 2 -in intervals ($21=20-21$, etc.). Source: Young \& Robinson (1964, Table 8).
d. $\mathrm{Fec}=$ fecundity in thousands of ova. Fraser River: $\log \mathrm{Fec}=$ 1.7392($\log \mathrm{OHL}_{m m}$) - 1.1673. (combined 1964-66 data, $\mathrm{N}=202$) Source; Godfrey (1968, Table XXVI). Columbia River: Fec = 235(FLin) - 2733. (stratified sample, May-August 1959, $N=62$).
Source: Galbreath \& Ridenhour 1964).

Table 8. Numbers of chinook saimon, by year, month, and mesh size, caught in the Fraser River test fishery, for which fork lengths (L) and scale readings (S) were collected, AprilSeptember 1965-66.

Month	Mesh Size (in)												
	L	S	L	S	L	S	L	S	L	S	L	S	\%S
1965													
Apr	4	3	5	3	0	---	2	0	2	1	13	7	53.8
May	36	25	11	8	20	10	16	12	9	6	92	61	66.3
Jun	40	28	0	---	35	24	29	18	20	12	124	82	66.1
Jul	20	10	0	---	32	17	14	7	20	15	86	49	57.0
Aug	26	18	3	3	28	25	31	22	12	10	100	78	78.0
Sep	30	25	0	---	32	22	43	37	51	41	156	125	80.1
Total	156	109	19	14	147	98	135	96	114	85	571	402	70.4
1966													
Apr	12	2	---	---	13	9	16	4	6	3	47	18	38.3
May	15	8	---	---	30	20	24	15	10	6	79	49	62.0
Jun	24	15	---	---	45	25	24	15	16	7	109	62	56.9
Jul	25	15	---	---	42	27	47	30	42	26	156	98	62.8
Aug	26	20	---	---	40	29	46	32	24	17	136	98	72.1
Sep	30	25	---	---	33	29	73	63	53	47	189	164	86.8
Total	132	85	0	---	203	139	230	159	151	106	716	489	68.3
1965-66													
Apr	16	5	5	3	13	9	18	4	8	4	60	25	41.7
May	51	33	11	8	50	30	40	27	19	12	171	110	64.3
Jun	64	43	0	---	80	49	53	33	36	19	233	144	61.8
Jul	45	25	0	---	74	44	61	37	62	41	242	147	60.7
Aug	52	38	3	3	68	54	77	54	36	27	236	176	74.6
Sep	60	50	0	---	65	51	116	100	104	88	345	289	83.8
Total	288	194	19	14	350	237	365	255	265	191	1287	891	69.2

Table 9. Numbers, by month and year, of chinook salmon collected (T), and numbers for which scales were read (S), in the 1981-87 Fraser River test fishery. (Source: Schubert et al. 1988)

Month	1981		1982		1983		1984		
	T	S	T	S	T	S	T	S	
Apr	31	24	26	17	53	38	32	31	
May	98	83	150	108	95	80	87	76	
Jun	204	181	201	161	227	213	230	220	
Jul	142	121	268	239	162	154	239	228	
Aug	159	138	128	110	100	95	136	121	
Sep	131	122	257	235	187	185	191	188	
Oct	36	27	17	16	28	27	92	90	
Total	801	696	1047	886	852	792	1007	954	
	1985		1986		1987		1981-87		
	T	S	T	S	T	S	T	S	\%S
Apr	28	24	47	42	114	100	331	276	83.4
May	73	59	105	95	367	317	975	818	83.9
Jun	229	198	189	174	870	769	2150	1916	89.1
Jul	197	179	241	210	581	520	1830	1651	90.2
Aug	144	132	151	134	171	155	989	885	89.5
Sep	215	213	89	84	113	108	1183	1135	95.9
Oct	59	55	95	92	55	54	382	361	94.5
Total	945	860	917	831	2271	2023	7840	7042	89.8

This page purposely left blank

Figure 1. Statistical areas for salmon catches along the coast of British Columbia (Figure 9 in Fraser et al. 1982)

Figure. 2. Test-fishing sites on the lower Fraser River. (From Figure 10 in Fraser et al. 1982)

Figure 3. Percent, by month and five-year period, of mean annual numbers of chinook salmon landed by the commercial gillnet fishery in the lower Fraser River, March-December 1952-94. (Source: Appendix table 1)

Figure 4. Landings (nos.), by month, of chinook, sockeye, pink, and coho salmon from the commercial gillnet fishery in the lower Fraser River, MaySeptember 1964-66 and 1969. (Source: Appendix table 2)

Figure 5. Mean incidence (\%) of red-flesh chinook salmon in the landings from the commercial gillnet fishery in the lower Fraser River, May-September 1959-66 and 1969: A. by month and year; B. by month (years combined). (Source: Appendix table 3.

Figure 6. Mean orbit-hypural length (cm), by flesh color, sex, year, and ocean age, of chinook salmon in the landings from the commercial gillnet fishery in the lower Fraser River, July and August-September 1964-66 and 1969. (Source: Appendix table 4)

Ocean Age (y)

Figure 7. Mean incidence (\%) of chinook salmon with stream-type scales in the landings from the commercial gillnet fishery in the lower Fraser River, May-September 1959-66 and 1969: A. by month and year, B. by month (years combined). (Source: Appendix table 4)

Figure 8. Incidence (\%), by month, of chinook salmon with stream-type scales in the landings from the commercial fishery in the Columbia River (primarily the lower portion), May-September 1919. (Figure 12 in Rich 1926)

Figure 9. Ocean-age-frequencies (\%), by month and year, of chinook salmon in the landings from the commercial gillnet fishery of the lower Fraser River, May-September 1958-63. (Source: Appendix table 5)

Ocean Age (y)

Fig. 9 (cont)

Figure 10. Ocean-age-frequencies (\%), by month and year, of chinook salmon in the landings from the commercial gillnet fishery of the lower Fraser River, May-September 1964-66 and 1969. (Source: Appendix table 5)

Ocean Age (y)

Fig. 10 (cont.)

Figure 11. Ocean-age-frequencies (\%), by month, year, and flesh color, of chinook salmon in the landngs from the commercial gillnet fishery of the lower Fraser River, JuneSeptember 1960-63. (Source: Appendix table 6)

Ocean Age (y)

Fig. 11 (cont.)

Ocean Age (y)

Figure 12. Ocean-age-frequencies (\%), by month, year, and flesh color, of chinook salmon in the landings from the commercial gillnet fishery in the lower Fraser River, June-September 1964-66 and 1969. (Source Appendix table 7)

Ocean Age (y)

Fig. 12 (cont.)

Ocean Age (y)

Figure 13. Sex ratio (\% females), by month, flesh color, and ocean age, of chinook salmon in the landings from the commercial gillnet fishery in the lower Fraser River, May-September 1964-66 and 1969. (Source; Appendix table 9)

Ocean Age (y)

Figure 14. Ocean-age-frequencies (\%), by mesh size and year (months combined) of chinook salmon in the catch of the test fishery in the lower Fraser River, April-September 1965-66. (Sources: Appendix tables 10 and 11)

Figure 15. Length-frequencies (\%), by mesh size and year (months combined), of chinook salmon in the catch of the test fishery on the lower Fraser River, AprilSeptember 1965-66. (Sources: Appendix tables 12 and 13)

Orbit-hypural Length (cm)

Figure 16. Ocean-age-frequencies (\%), by month, of chinook salmon in the landings from the commercial gillnet fishery (C), and in the catch of the test fishery ($)$, in the lower Fraser River, April-September 1965. (Sources: Appendix tables 5 and 10)

Ocean Age (y)

Figure 17. Ocean-age-frequencies (\%), by month, of chinook salmon in the landings from the commercial gillnet fishery (C), and in the catch of the test fishery (T), in the lower Fraser River, April-September 1966. (Sources: Appendix tables 5 and 11)

Ocean Age (y)

Figure 18. Mean ocean-age-frequencies (\%), by month (years combined), of chinook salmon in the catch of the test fishery on the lower Fraser River, April-October 1981-87. (Source: Appendix table 15)

Gcean Age (y)

Figure 19. Ocean-age-3 chinook salmon caught in the $8.5^{\prime \prime}$ and $9.5^{\prime \prime}$ meshes of the test-fishery net in the lower Fraser River, 1965-66: A. length-frequencies (\%). by mesh size, May-September; B. mean orbit-hypural lengths (cm), by month and mesh size (boxes contain numbers sampled: $8.5^{\prime \prime \prime} / 9.5^{\prime \prime}$). (Source: Appendix table 16)

Figure 20. Age-frequencies (\%), by year, of white-flesh chinook salmon, with ocean-type scales, in the test-fishery catch (1) on the lower Fraser River durng Septembr-October, and on spawning grunds (S) in the Harrison River, 1984-88. (Source: Appendix table 17)

Ocean Age (y)
appeadix table 1. Mean annuai numbers, by month and s-year period, of chinook salmon landed from the conmercial gillaet fishery in the lower Fraser River, March-Decenber 1952-94.
Period Nar Apr Nay Jun Jul ang Sep Oct Nor Dec Total

1952-54

Meaq	1118	6220	10670	22900	29987	31135	48627	21383	336	122	174498
\mathbf{y}	.6	3.6	6.1	13.1	17.2	19.0	21.9	12.3	.2	.1	100

1955-59

Yeas	601	3695	7554	20598	26805	31432	49928	4940	136	37	147726
$\%$.4	2.5	5.1	13.9	18.1	22.6	31.8	3.3	.1	.0	100

1960-64

He8I	671	3956	7699	20207	25863	30610	24498	4951	83	61	118599
Σ	.6	3.3	6.5	17.0	21.8	25.8	20.7	4.2	.1	.1	100

1965-69

Hean	138	1473	5092	16688	31994	23309	15100	3310	30	1238	98372
\vdots	.1	1.5	5.2	17.0	32.5	23.7	15.3	3.4	.0	1.3	100

1970-74

Mean	203	2132	4338	10883	23009	26936	25609	14799	147	4	108060
\mathbf{n}	.2	2.0	4.0	10.1	21.3	24.9	23.7	13.7	.1	.0	100

1975-79

Kean	25	1069	3335	8809	17986	14707	18086	5837	5	2	69861
$£$.0	1.5	4.8	12.6	25.7	21.1	25.9	8.4	.0	.0	100

1980-84

Mean	0	179	553	241	3192	7562	13835	2989	6	1	27958
	0	.6	2.0	.9	11.4	27.0	49.5	8.5	.0	.0	100

1985-89

Mean	0	66	133	488	3378	14648	3474	2873	20	1	25083
	0	.3	.5	1.9	13.5	58.4	13.9	11.5	.1	.0	100

1990-94

Kean	0	39	85	585	3047	6762	1834	670	54	1	13077
$\$$	0	.3	.6	4.5	23.3	51.7	14.0	5.1	.4	.0	100

Appendix table 2. Annual numbers of salmon landed, by month. week, and species, from the commercial gillnet fishery in the lower Fraser River, May-September 1964-66, and 1969. (Chinook categories: red flesh; white flesh; jack.)

Year MM WW Chinook Sockeye Pink Coho Chum

May-
1964 Sep GT $\begin{array}{llllllllll}77268 & 36763 & 22987 & 137018 & 462004 & 288 & 85690 & 5588\end{array}$

1965	May	1	416	10	5		--	--	--	--
		2	1386	31	6		--	--	--	--
		3	1075	26	3		--	--	--	--
		4	1745	78	12		--	--	--	--
		T	4622	145	26	4793	0	0	0	0

Appemdix table 2 (cont.)
Year MM WW \quad Red White Jack ${ }^{\text {Chinook }}$

1965 Jun	1	1638	73	3		--	--	--	
	2	3180	220	20		1	--	--	
	3	4379	460	18		2	--	--	
	4	4852	680	33		414	--	--	
	T	14049	1433	74	15556	417	0	0	0
Jul	1	4713	1172	744		20596	0	15	4
	2	3017	1060	949		42159	5	143	2
	3	2288	976	746		24365	22	320	2
	4	3820	1908	2454		107618	207	477	3
	5	2368	1162	2210		336244	559	447	4
	T	11493	5106	6359	22958	510386	793	1387	11
Aug	1	2735	1028	1753		237196	418	433	92
	2	3930	1516	2963		61105	1488	644	5
	3	3352	1015	1141		17513	1593	845	6
	4	1474	728	330		3900	750	2034	11
	T	11491	4287	6187	21965	319714	4249	3956	114
Sep	1	2166	1959	483		4693	5093	8272	24
	2	1010	5369	65		436	5985	2656	56
	3	8	90	2		12	977	108	4
	4	368	3391	171		4466	57737	3873	443
	T	3552	10809	721	15082	9607	69792	14909	527

 May-
 1965 Sep GT $45207 \quad 21780 \quad 13367 \quad 80354840124 \quad 74834 \quad 20252 \quad 652$

May	1	882	14	9		--	--	--	--
	2	356	19	1		--	--	--	--
	3	759	7	2		--	--	--	--
	4	1471	40	15		1	--	--	--
	T	3468	80	27	3575	1	0	0	0
Jun	1	1641	66	4		--	--	--	--
	2	2656	168	12		13	--	--	--
	3	2960	165	4		--	--	--	--
	4	4435	377	5		24	--	--	--
	T	11692	776	25	12493	37	0	0	0

Appemdix table 2 (cont.)
Year MM WW Red White Jacka

1966 Jul	1	5804	775	130		2336	--	9	--
	2	4470	964	638		18949	--	77	--
	3	4913	1596	720		12173	1	71	2
	4	3442	1428	827		13312	--	69	--
	5	3516	1464	1396		56381	6	228	7
	T	16341	5452	3581	25374	100815	7	445	9
Aug	1	7238	2856	2181		239126	36	327	--
	2	7949	2521	1980		222900	32	188	4
	3	891	227	9		2097	--	5	--
	4	2773	947	664		29533	101	382	6
	T	18851	6551	4834	30236	493656	169	902	10
Sep	1	1998	1445	355		6765	6	2136	5
	2	1274	3423	542		6733	7	6708	19
	3	376	3528	46		4250	3	1307	59
	4	2	64	6		2056	0	198	17
	T	3650	8460	949	13059	19804	16	10349	100

May-
1966 Sep GT $54002 \quad 21319 \quad 9416 \quad 84737 \quad 614313 \quad 19211696 \quad 119$

1969	May	1	1257	33	11		-	--	--	--
		2	1266	35	13		1	--	--	--
		3	1577	43	2		--	--	--	--
		4	1650	64	1		0	0	0	5
		T	5750	175	27	5952	1	0	0	5
	Jun	1	3978	127	2		--	--	--	-
		2	4204	218	10		--	--	--	--
		3	4909	324	24		15	--	--	--
		4	4836	451.	46		945	--	6	--
		T	17927	1120	82	19129	960	0	6	0
	Jul	1	1811	308	8		3377	--	6	--
		2	1964	568	12		4580	--	1	--
		3	2114	669	403		20850	10	16	--
		4	3082	1104	1277		122088	126	112	4
		5	3202	1254	1928		574601	519	1287	3
		T	10362	3595	3620	17577	722119	655	1416	7

Year	MM	WW	Chinook				Sockeye	Pink	Coho	Chum
			Red	White	Jacka					
1969	Aug	1	2523	870	1012		136762	221	246	5
		2	3221	989	686		47797	266	144	2
		3	3704	944	1381		13316	122	155	11
		4	4825	1613	2219		6552	251	1801	26
		T	14273	4416	5298	23987	204427	860	2346	44
	Sep	1	2019	2893	61		1377	895	1522	39
		2	180	1434	839		6653	100000	3620	732
		3	2	12	5		27	1853	114	1
		4	265	2399	101		556	55630	2229	1874
		T	2466	6738	1006	10210	8613	158378	7485	2646
May-										
1969	Sep	GT	50778	16044	10033	76855	936120	159893	11253	2702

a. Red + white.

Appendix table 3. Incidence (\%), by month and year, of red flesh, and stream-type scales (Str) by flesh colora, among chinook salmon sampled from the commercial gillnet fishery in the lower Fraser River, March-October 1959-66 and 1969.

Month	$\mathrm{n}^{\text {b }}$	\%Red	\%Str		$\mathrm{n}^{\text {b }}$	\%Red ${ }^{\text {c }}$	\%Str	
			R	W			R	W
	1959				1960			
March	0	--	--	--	0	--	--	--
April	0	--	--	--	0	--	--	--
May	11	100	90.9	--	41	97.6	100	38.0
June	47	85.1	97.5	100	260	73.5	76.8	78.5
July	55	98.2	92.6	100	646	74.3	79.5	67.5
August	73	57.5	28.6	38.7	501	70.9	19.2	18.0
September	70	18.6	7.7	8.8	480	21.3	0.8	8.8
October	0			--	243	4.1	0.4	10.0
Total	256				2171			

1961
1962

						0	--	--
March	0	--	--	-	--			
April	0	--	--	-	0	--	--	--
May	0	--	--	--	50	97.6	69.6	25.5
June	577	90.8	54.6	41.5	371	91.4	69.6	56.3
July	734	71.3	41.5	41.1	655	80.5	68.9	61.8
August	489	65.4	5.6	4.1	492	75.0	18.8	14.0
September	685	4.1	10.7	1.5	442	36.2	0	2.4
October	77	0	0	0	170	0	0	0
Total	2562				2180			

1963

March	0	-	-	--
April	0	-	-	-
May	135	85.6	88.6	91.7
June	410	79.8	87.5	95.5
July	169	76.2	78.9	76.7
August	450	70.5	12.6	28.1
September	386	19.2	7.7	0.9
October	85	20.0	0	0

Total
1635

1964

18	77.8	92.9	100
407	94.3	74.2	91.3
492	92.9	70.5	74.3
551	75.9	60.0	57.1
1053	63.3	82.3	80.3
1187	64.3	24.5	30.0
903	36.9	9.3	2.5
115	9.6	0^{b}	1.0

4726

Appendix table 3 (cont.)

Month	$\mathrm{n}^{\text {b }}$	\%Red	\%Str		n ${ }^{6}$	\%Red ${ }^{\text {c }}$	\%Str	
			R	W			R	W
	1965				1966			
March	0	--	--	--	12	100	100	$0^{\text {d }}$
April	109	91.7	90.0	100	15	100	100	$0{ }^{\text {d }}$
May	242	94.2	95.6	92.9	95	97.9	97.8	100
June	649	88.1	86.9	81.8	419	90.0	55.7	57.1
July	1142	79.9	87.8	93.0	870	82.5	32.2	34.2
August	1022	72.7	25.2	39.4	696	70.3	18.8	30.0
September	938	27.7	6.9	1.5	561	49.2	5.8	3.2
October	0	--	--	--	0	--	--	--

Total
4102
2668

1969

March	0	--	--	--
April	20	100^{d}	50.0	--
May	185	100^{d}	58.4	--
June	521	89.6	58.7	72.2
July	601	72.5	40.4	53.3
August	875	68.8	6.5	9.9
September	57	100^{d}	3.5	--
October	0	--	--	-

Total
2259
a. $R=$ red; $W=$ white.
b. $\mathrm{n}=$ numbers sampled.
c. Flesh-color codes were confounded. Current values subtracted from 100 .
d. White-flesh fish not sampled?

Appeadir table 4. Nean orbit-hypural length (cul, by age. sea,
jear, and flest colort, of chinook salaon sampled from the
conmercial fishery in the lower Fraser River, July and AugustSepterber 1964-66 and 1969.

Appeadir table 4 (cont.)

$\begin{aligned} & \text { Aged } \\ & (y) \end{aligned}$		August-Septenber ${ }^{\text {d }}$															
		Nale								Female							
		1964		1965		1966		1969		1964		1965		1966		1969	
		R	*	R	\%	R	*	R	\%	R	,	R	\%	R	V	R	\%
21	\bar{L}	38.1	37.9	38.1	46.3	41.0	45.6	38.8	43.8	--	61.1	--	71.5	-	--	--	--
	$\mathrm{n}^{\text {c }}$	75	60	25	11	35	20	24	6	0	1	0	1	0	0	0	0
31	L	51.2	53.2	54.0	61.6	55.0	58.9		53.8	60.2	64.2	61.2	67.5	59.4	67.7	60.6	60.9
	$\mathrm{n}^{\text {c }}$	230	49	176	135	189	91	322		20	1	48	41	32	15	82	10
11	L	68.0	71.5	68.8	14.4	70.5	14.0	11:0	12.2	69.6	68.0	69.3	74.4	70.2	14.0	11.1	71.3
	$\mathrm{a}^{\text {c }}$	89	57	155	196	106	89	36	21	150	110	302	382	253	185	117	48
51	L	78.3	83.0	76.9	82.1	78.9	81.4		16.8	14.0	78.4	75.5	11.8	76.2	17.8	16.4	75.4
	$\mathrm{a}^{\text {c }}$	J		22	15	9	5	6	3	9	10	70	56	33	16	31	21
12	\bar{L}	44.5	42.4	42.6	48.6	46.2	42.5			--	--	72.8	--	--	-	--	--
	$\mathrm{n}^{\text {c }}$	58	28	31	4	6	7	14	3	0	0	1	0	0	0	0	0
42	L	58.9								65.2			66.5	65.3	66.8		
	$\mathrm{n}^{\text {c }}$	33	23	60	33	30	16	9	6	19	28	43	20	29	19	12	7
52	-	78.2												74.0			
	$n^{\text {c }}$	15	17	19	18	9	10	2	7	12	31	48	12	34	18	4	4
62	L	--	--	80.8	81.6	--	85.1	--	--	--	--	81.9	73.4	--	--	--	--
	n^{c}	0	0	1	2	0		0		0	0	2		0	0	0	0
	dt	503	237	489	114	384	219	413	183	210	187	514	543	981	259	246	90

a. Flest color: $R=$ red; $=$ white.
b. Gilbert-Rich method: $21=21$, etc.
c. $\mathbb{a}=$ nubers sampled.
d. August only, for 1964.

Appendix table 5. Age-frequencies (\%), by month and year, of chinook salmon sampled from the commercial gillnet fishery in the lower Fraser River, May-September 1958-66 and 1969.
$\begin{array}{llllllllllll}\text { Age }^{2} & 1958 & 1959 & 1960 & 1961 & 1962 & 1963 & 1964 & 1965 & 1966 & 1969\end{array}$ (y)

May:

11	--	--	--	--	--	--	--	--	--	--
21	--	--	--	--	--	--	--	--	--	22.7
31	--	--	3.9	--	4.9	8.7	4.3	2.8	2.1	17.8
41	--	-	--	--	24.5	2.6	24.2	1.7	--	1.1
51	--	9.1	--	--	2.1	--	0.8	--	--	--
61	--	--	--	--	--	--	--	--	--	--
ST	0	9.1	3.9	0	31.5	11.3	29.3	4.5	2.1	41.6
22	--	--	--	--	--	--	--	--	--	--
32	--	--	1.3	--	--	0.1	0.2	0.8	1.1	--
42	--	45.5	75.3	--	36.1	75.4	30.7	57.1	54.7	33.0
52	--	45.5	19.5	--	32.4	13.1	39.6	36.8	41.1	25.4
62	--	--	--	--	--	--	0.2	0.4	1.1	--
72	--	--	--	--	--	--	--	--	--	--
53	--	--	--	--	--	--	--	0.4	--	--
63	--	--	--	--	--	--	--	--	--	--
ST	0	91.0	96.1	0	68.5	88.7	70.7	95.5	97.9	58.4
T	0	100.1	100	0	100	100	100	100	100	100
n	0	11	77	0	50	135	492	242	95	185

June:

11	--	--	--	--	--	--	--	--	--	--
21	--	--	0.4	1.7	0.5	--	--	6.6	--	0.2
31	2.5	--	9.2	18.0	4.0	4.2	10.2	6.5	16.0	25.5
41	15.2	2.1	12.1	25.1	24.3	7.6	28.9	0.6	27.0	13.1
51	--	--	1.1	1.7	2.3	--	1.6	--	1.2	1.2
61	--	--	--	--	1.0	--	--	--	--	--
ST	17.7	2.1	22.8	46.6	32.1	11.8	40.7	13.7	44.2	39.9
22	--	--	--	--	--	--	--	--	--	--
32	11.4	8.5	0.7	6.1	1.9	0.3	--	1.4	--	0.4
42	30.4	46.8	50.8	27.7	22.5	58.8	33.0	46.6	35.3	38.8
52	38.0	42.6	25.7	19.6	41.2	28.5	26.3	35.9	20.5	20.7
62	2.5	--	--	--	2.2	0.7	--	2.0	--	0.2
72	--	--	--	--	--	--	--	--	--	--
53	--	--	--	--	--	--	--	0.2	--	0.2
63	--	--	--	--	--	--	--	0.2	--	--

Appendix table 5 (cont.)
$\begin{array}{lllllllllll}\text { Age }^{a} & 1958 & 1959 & 1960 & 1961 & 1962 & 1963 & 1964 & 1965 & 1966 & 1969\end{array}$ (y)

June:
$\begin{array}{lllllllllll}\text { ST } & 82.3 & 97.9 & 77.2 & 53.4 & 67.8 & 88.2 & 59.3 & 86.3 & 55.8 & 60.1\end{array}$

T	100	100	100	100	99.9	100	100	100	100	100
$\mathbf{n}^{\mathbf{b}}$	79	47	272	577	371	410	551	649	419	185

July:

11	--	--	--	0.1	--	--	--	--	--	--
21	--	--	0.5	14.6	4.6	--	0.2	0.4	0.8	1.5
31	5.4	--	9.6	17.8	14.7	5.3	3.9	5.0	33.9	27.3
41	17.6	3.6	17.4	23.8	21.0	16.3	13.6	4.3	31.7	22.5
51	--	3.6	1.9	2.6	4.1	--	0.7	1.4	1.0	4.8
61	--	--	--	--	--	--	--	--	--	--

$\begin{array}{lllllllllll}\text { ST } & 23.0 & 7.2 & 29.4 & 58.9 & 44.4 & 21.6 & 18.4 & 11.1 & 67.5 & 56.1\end{array}$

22	--	--	--	--	0.2	--	--	--	--	--
32	5.4	--	4.5	13.9	13.4	0.7	10.5	15.5	1.8	3.7
42	40.5	21.4	38.5	15.3	28.4	49.2	41.7	42.2	20.9	22.0
52	29.7	66.1	27.5	11.7	13.2	28.5	28.8	29.7	9.7	17.5
62	1.4	3.6	0.2	0.3	0.5	--	0.6	1.5	0.1	0.7
72	--	1.8	--	--	--	--	--	--	--	--
53	--	--	--	--	--	--	--	--	--	0.2
63	--	--	--	--	--	--	--	--	--	--

$\begin{array}{lllllllllll}\mathrm{ST} & 77.0 & 92.9 & 70.6 & 41.1 & 55.6 & 78.4 & 81.6 & 88.9 & 32.5 & 43.9\end{array}$ $\begin{array}{lllllllllll}T & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100\end{array}$ $\begin{array}{llllllllllll}n^{6} & 74 & 56 & 647 & 734 & 658 & 169 & 1053 & 1142 & 870 & 601\end{array}$

August:

11	--	--	--	--	--	--	--	--	--	--
21	1.7	--	5.3	22.3	14.4	13.3	11.5	1.6	2.0	3.4
31	22.4	13.7	15.9	13.5	21.7	39.5	25.8	16.2	23.4	61.4
41	25.9	42.4	56.7	48.7	34.9	27.0	34.2	42.8	46.4	21.4
51	6.9	11.0	6.2	10.4	11.4	3.0	2.1	10.3	6.0	6.3
61	--	--	--	--	--	--	--	--	--	--
ST	56.9	67.1	84.1	94.9	82.4	82.8	73.5	70.9	77.9	92.5

Appendix table 5 (cont.)
$\begin{array}{lllllllllll}\text { Age }^{2} & 1958 & 1959 & 1960 & 1961 & 1962 & 1963 & 1964 & 1965 & 1966 & 1969\end{array}$ (y)

August:

22	--	--	0.2	--	--	--	--	--	--	--
32	6.0	--	0.8	1.9	5.0	4.1	7.2	3.5	1.6	1.9
42	22.4	11.0	10.0	1.6	8.2	10.7	12.9	13.7	11.4	3.7
52	13.8	20.5	4.5	1.6	4.3	2.5	6.3	11.4	9.1	1.9
62	0.9	1.4	0.4	--	0.1	--	--	0.5	0.1	--
72	--	--	--	--		--	--	--	--	--
53	--	--	--	--	--	--	--	--	-_	--
63	--	--	--	--	--	--	--	--	--	--

$\begin{array}{lllllllllll}\mathrm{ST} & 43.1 & 32.9 & 15.9 & 5.1 & 17.6 & 17.3 & 26.5 & 29.1 & 22.1 & 7.5\end{array}$

T	100	100	100	100	100	100.1	100	100	100	100
n^{b}	116	73	471	489	492	450	1187	1022	696	875

September:

11	--	--	--	--	--	--	--	--	--	--
21	1.5	--	2.4	1.0	16.2	9.8	12.8	2.2	7.3	--
31	43.1	12.5	5.5	19.6	41.6	42.1	41.5	24.9	29.2	24.6
41	43.1	67.2	76.5	60.3	37.4	44.8	37.9	63.7	55.3	61.4
51	6.2	10.9	12.4	17.1	3.3	2.2	2.8	6.2	3.7	10.5
61	--	--	--	0.1	--	--	--	-	--	--

$\begin{array}{lllllllllll}\mathrm{ST} & 93.8 & 90.6 & 96.7 & 98.1 & 98.5 & 98.9 & 95.0 & 97.0 & 95.5 & 96.5\end{array}$

22	--	--	--	--	--	--	--	--	--	--
32	--	--	--	0.1	0.5	--	1.2	--	0.4	--
42	4.7	1.6	2.2	0.6	0.5	--	1.6	1.8	2.7	3.5
52	1.5	7.8	0.8	0.6	0.5	1.1	2.2	1.1	1.4	--
62	--	--	0.4	0.6	0.1	--	-	0.1	--	--
72	--	--	--	--	--	--	--	--	--	--
53	--	--	--	--	--	--	--	--	--	--
63	--	--	--	--	--	--	--	--	--	--

ST	6.2	9.4	3.3	1.9	1.6	1.1	5.0	3.0	4.5	3.5
T	100	100	100	100	100.1	100	100	100	100	100
n^{b}	65	64	510	685	442	386	903	938	561	57

a. Gilbert-Rich method: $21=21$, etc.
b. $\mathrm{n}=$ numbers sampled.

Appendix table 6. Age-frequencies (\%), by month, year, and flesh color ${ }^{\text {a }}$ of chinook salmon sampled from the commercial gillnet fishery in the lower Fraser River, May-September 1959-63.

Ageb $^{\text {(} \mathrm{y})}$	R^{1959}	W	R^{1960}	W	R^{1961}	W	R^{1962}
W	R^{1963}	W					

May:

11	--	--	--	--	--	--	--	--	--	--
21	--	--	--	--	--	--	--	--	--	--
31	--	--	--	5.0	--	--	4.3	25.3	9.0	--
41	--	--	--	--	--	--	23.9	49.4	2.4	8.3
51	9.1	--	--	--	--	--	2.2	--	--	--
61	--	--	--	--	--	--	--	--	--	--
ST	9.1	--	--	5.0	--	--	30.4	74.7	11.4	8.3
22	--	--	--	--	--	--	--	--	--	--
32	--	--	--	2.5	--	--	--	--	--	--
42	45.5	--	100	60.0	--	--	37.0	--	75.6	75.0
52	45.5	--	--	32.5	--	--	32.6	25.3	13.0	16.7
62	--	--	--	--	--	--	--	--	--	--
72	--	--	--	--	--	--	--	--	--	--
ST	91.0	--	100	95.0	--	--	69.6	25.3	88.6	91.7
T 100.1	--	100	100	--	--	100	100	100	100	
nc	11	0	1	40	0	0	46	4	116	19

June:

11	--	--	--	--	--	--	--	--	--	--
21	--	--	--	0.5	1.3	5.7	--	5.6	--	--
31	--	--	14.5	6.3	17.4	24.5	2.5	19.7	4.2	4.5
41	2.5	--	7.2	13.7	24.8	28.3	25.2	15.5	8.3	--
51	--	--	1.4	1.0	1.9	--	2.3	2.8	--	--
61	--	--	--	--	--	--	1.1	--	--	--
ST	2.5		23.2	21.5	45.4	58.5	31.1	43.7	12.5	4.5
22	--	--	--	--	--	--	--	--	--	--
32	7.5	14.3	--	0.5	6.3	3.8		22.5	0.3	--
42	50.0	28.6	42.0	54.4	29.4	11.3	22.1	26.8	57.8	68.2
52	40.0	57.1	34.8	22.0	18.9	26.4	44.5	5.6	28.6	27.3
62	--	--	--	1.6	--	--	2.3	1.4	0.8	--
72	--	--	--	--	--	--	--	--	--	--
ST	97.5	100	76.8	78.5	54.6	41.5	68.9	56.3	87.5	95.5
T	100	100	100	100	100	100	100	100	100	100
nc	40	7	69	191	524	53	339	32	327	83

Appendix table 6 (cont.)
$\begin{array}{llllllll}\left.\text { Ageb }^{\text {(}} \mathrm{y}\right) & \mathrm{R}\end{array}$
July:

11	--	--	--	--	0.2	--	--	--	--	--
21	--	--	--	0.6	14.9	13.7	5.0	3.1	--	--
31	--	--	4.8	11.3	18.3	16.6	16.4	9.4	6.4	1.7
41	3.7	--	13.9	18.7	23.2	25.2	20.0	23.9	14.7	21.6
51	3.7	--	1.8	1.9	2.3	3.3	3.8	5.0	--	--
61	--	--	--	--	--	--	--	--	--	--
ST	7.4		20.5	32.5	58.9	58.8	45.3	41.5	21.1	23.3
22	--	--	--	--	--	--	--	0.6	--	--
32	--	--	3.0	4.8	13.4	15.2	14.0	11.3	0.9	--
42	22.2	--	39.2	38.3	17.2	10.3	28.3	28.9	50.5	45.0
52	64.8	100	37.3	24.2	10.3	15.2	12.0	17.0	27.5	31.7
62	3.7	--	--	0.2	0.2	0.5	0.4	0.6	--	--
72	1.9	--	--	--	--	--	--	--	--	--

$\begin{array}{lllllllllll}\text { ST } & 92.6 & 100 & 79.5 & 67.5 & 41.1 & 41.2 & 54.7 & 58.5 & 78.9 & 76.7\end{array}$

T	100	100	100	100	100	100	100	100	100	100
n^{c}	54	1	166	480	523	211	499	159	129	40

August:

11	--	--	--	--	--	--	--	--	--	--
21	--	--	3.4	6.2	20.6	25.4	2.2	51.0	0.7	2.2
31	21.4	3.2	17.8	15.5	12.5	15.4	23.0	17.4	44.9	45.0
41	42.9	42.0	50.7	55.5	53.5	39.7	42.2	13.4	38.4	20.2
51	7.1	16.1	8.9	4.8	7.8	15.4	13.8	4.1	3.4	4.5
61	--	--	--	--	--	--	--	--	--	--
ST	71.4	61.3	80.8	82.0	94.4	95.9	81.2	86.0	87.4	71.9
22	--	--	--	0.3	--	--	--	--	--	--
32	--	--	1.4	0.6	2.8		3.4	9.9	1.4	2.2
42	11.9	9.7	9.6	13.7	0.6	3.5	9.9	3.1	8.8	21.4
52	14.3	29.0	7.5	3.1	2.2	0.6	5.5	0.7	2.4	4.5
62	2.4	--	0.7	0.3	--	--	--	0.3	--	--
72	--	--	--	--	--	--	--	--	--	--
ST	28.6	38.7	19.2	18.0	5.6	4.1	18.8	14.0	12.6	28.1
T	100	100	100	100	100	100	100	100	100	100
nc	42	31	146	355	320	169	369	123	317	133

Appendix table 6 (cont.)

Ageb							
(y)	R^{1959}	W	R^{1960}	W	R^{1961}	W	R^{1962}
W	R^{1963}						
W							

September:

11	--	--	--	--	--	--	--	--	--	--
21	--	--	2.1	2.0	--	1.1	--	25.4	1.5	3.4
31	7.7	12.3	4.2	5.9	10.7	19.9	77.7	21.2	30.8	40.1
41	46.1	75.4	78.9	74.5	71.5	59.8	17.8	48.4	56.9	53.0
51	38.5	3.5	14.0	8.8	7.1	17.5	4.5	2.6	3.1	2.6
61	--	--	--	--	--	--	--	--	--	--
ST	92.3	91.2	99.2	91.2	89.3	98.5	100	97.6	92.3	99.1
22	--	--	--	--	--	--	--	--	--	--
32	--	--	--	--	--	0.2	--	0.7	--	--
42	--	1.8	0.8	3.9	7.1	0.3	--	0.7	4.6	--
52	7.7	7.0	--	2.9	3.6	0.5	--	0.7	3.1	0.9
62	--	--	--	2.0	--	0.6	--	0.3	--	--
72	--	--	--	--	--	--	--	--	--	--
ST	7.7	8.8	0.8	8.8	10.7	1.5	0	2.4	7.7	0.9
T	100	100	100	100	100	100	100	100	100	100
nc	13	57	378	102	28	657	160	282	74	312

a. Color: R = red; $W=$ white.
b. Gilbert-Rich method: $21=21$, etc.
c. $n=$ numbers sampled.

Appendix table 7. Age-frequencies (\%), by month, year, and flesh colora, for chinook salmon sampled from the commercial gillnet fishery in the lower Fraser River, May-September 1964-66 and 1969.

Age $^{\text {b }}$						
(y)	R^{1964}	W	R^{1965}	W	R^{1966}	W

May:

21	--	--	--	--	--	--	--	--	--	--
31	4.6	--	3.1	--	--	--	22.7	--	7.6	--
41	24.2	22.8	1.3	7.1	2.2	--	17.8	--	11.3	9.9
51	0.7	2.9	--	--	--	--	1.1	--	0.5	1.0
ST	29.5	25.7	4.4	7.1	2.2	0	41.6	--	19.4	10.9
32	0.2	--	0.9	--	1.1	--	--	--	0.6	--
42	31.3	22.9	57.5	50.0	54.7	50.0	33.0	--	44.1	41.0
52	38.8	51.4	36.4	42.9	40.9	50.0	25.4	--	35.4	48.1
62	0.2	--	0.4	--	1.1	--	--	--	0.4	--
53	--	--	0.4	--	--	--	--	--	0.1	--
63	--	--	--	--	--	--	--	--	--	--
ST	70.5	74.3	95.6	92.9	97.8	100	58.4	--	80.6	89.1
T	100	100	100	100	100	100	100	--	100	100
nc	457	35	228	14	93	2	185	0	963	51

June:

21	--	--	--	--	--	--	0.2	--	0.1	--
31	10.0	10.5	6.8	5.2	17.2	4.8	26.7	14.8	15.2	8.8
41	28.6	30.1	5.6	13.0	26.6	31.0	13.3	11.1	18.5	21.4
51	1.4	2.3	0.7	--	0.5	7.1	1.1	1.9	0.9	2.8
ST	40	42.9	13.1	18.2	44.3	42.9	41.3	27.8	34.7	33.0
32	--	--	1.2	2.6	--	--	0.4	--	0.4	0.7
42	37.0	20.3	48.8	31.2	37.7	14.3	40.7	22.2	41.1	22.0
52	--	--	34.4	46.7	18.0	42.8	17.6	48.0	17.5	34.5
62	--	--	2.1	1.3	--	--	--	--	0.5	0.3
53	23.0	36.8	0.2	--	--	--	--	--	5.8	9.2
63	--	--	0.2	--	--	--	--	--	0.1	--

$\begin{array}{lllllllllll}\mathrm{ST} & 60.0 & 57.1 & 86.9 & 81.8 & 55.7 & 57.1 & 58.7 & 72.2 & 65.3 & 67.1\end{array}$ $\begin{array}{lllllllllll}T & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100.1\end{array}$ $\begin{array}{lllllllllll}n^{c} & 418 & 133 & 572 & 77 & 377 & 42 & 467 & 54 & 1834 & 306\end{array}$

Appendix table 7 (cont.)

Age ${ }^{\text {b }}$	1964		1965		1966		1969		Mean	
(y)	R	W	R	W	R	W	R	W	R	W

July:

21	0.3	--	0.4	--	0.8	0.7	1.6	1.2	0.8	0.5
31	4.2	3.4	6.2	0.9	37.7	15.8	30.3	19.4	19.6	9.9
41	12.5	15.8	4.3	4.4	28.6	46.7	22.7	21.9	17.0	22.1
51	0.7	0.5	1.3	1.7	0.7	2.6	5.0	4.2	1.9	2.3
ST	17.7	19.7	12.2	7.0	67.8	65.8	59.6	46.7	39.3	34.8
32	13.3	5.7	17.9	6.1	1.8	2.0	4.6	1.2	9.4	3.8
42	47.8	31.3	44.8	31.7	22.8	12.5	20.0	27.3	33.8	25.7
52	20.8	42.5	24.2	51.3	7.5	19.7	15.1	23.6	16.9	34.2
62	0.4	0.8	0.9	3.9	0.1	--	0.5	1.2	0.5	1.5
53	--	--	--	--	--	--	0.2	--	0.1	--
63	--	--	--	--	--	--	--	--	--	--

$\begin{array}{lllllllllll}\text { ST } & 82.3 & 80.3 & 87.8 & 93.0 & 32.2 & 34.2 & 40.4 & 53.3 & 60.7 & 65.2\end{array}$

T	100	100	100	100	100	100	100	100	100	100
$\mathrm{n}^{\mathbf{c}}$	667	386	912	230	718	152	436	165	2733	933

August:

21	9.8	14.4	2.2	--	1.6	2.9	4.0	2.2	4.4	4.9
31	32.8	13.2	17.4	13.3	26.8	15.5	64.8	53.8	35.5	24.0
41	31.3	39.3	46.2	33.7	46.3	46.8	19.6	25.3	35.8	36.2
51	1.6	3.1	9.0	13.6	6.5	4.8	5.1	8.8	5.6	7.6
ST	75.5	70.0	74.8	60.6	81.2	70.0	93.5	90.1	81.3	72.7
32	7.6	6.6	4.3	1.4	1.0	2.9	2.3	1.1	3.8	3.0
42	13.4	12.1	12.1	17.6	9.8	15.0	3.2	4.8	9.6	12.3
52	3.5	11.3	8.5	19.3	8.0	11.6	1.0	4.0	5.3	11.6
62	--	--	0.3	1.1	--	0.5	--	--	0.1	0.4
53	--	--	--	--	--	--	--	--	--	--
63	--	--	--	--	--	--	--	--	--	--
ST	24.5	30.0	25.2	39.4	18.8	30	6.5	9.9	18.8	27.3
T	100	100	100	100	100	100	100	100	100	100
nc	763	424	743	279	489	207	603	273	2598	1183

Appendix table 7 (cont.)

Age ${ }^{\text {b }}$										
(y)	R	W	R	W	R	W	R	W	R	W

September:

21	8.4	15.4	3.5	1.8	9.8	4.9	--	--	5.4	7.4
31	27.9	49.5	36.5	20.5	32.6	26.0	24.6	--	30.4	32.0
41	51.4	30.0	43.5	71.3	48.2	62.0	61.4	--	51.1	54.4
51	3.0	2.6	9.6	4.9	3.6	3.9	10.5	--	6.7	3.8
ST	90.7	97.5	93.1	98.5	94.2	96.8	96.5	--	93.6	97.6
32	2.4	0.5	--	--	0.4	0.4	--	--	0.7	0.3
42	3.0	0.9	5.0	0.6	4.0	1.4	3.5	--	3.9	1.0
52	3.9	1.1	1.5	0.9	1.4	1.4	--	--	1.7	1.1
62	--	--	0.4	--	--	--	--	--	0.1	--
53	--	--	--	--	--	--	--	--	--	--
63	--	--	--	--	--	--	--	--	--	--
ST	9.3	2.5	6.9	1.5	5.8	3.2	3.5	--	6.4	2.4
T	100	100	100	100	100	100	100	--	100	100
nc	333	570	260	678	276	285	57	0	926	1533

a. Flesh color: $R=$ red; $W=$ white.
b. Gilbert-Rich method: $21=21$, etc.
c. $n=$ numbers sampled.

Appendix table 8A. Dixon-Massey tests of differences in proportions, for ocean-age-groups 2 and 3, between red-flesh and white-flesh chinook salmon sampled from the commercial gillnet fishery in the lower Fraser River, June-July 1960-66 and 1969. (Asterisks mark rejection of the hypothesis that $\mathrm{P}_{\mathrm{R}}-\mathrm{P}_{\mathrm{W}}=0$.)

Year	Red				$\mathrm{Pr}-\mathrm{P}_{\mathrm{w}}$	$\begin{array}{r} 95 \\ \text { confi } \\ 1 \mathrm{im} \end{array}$
	$\mathrm{P}^{\text {b }}$	N^{c}		$\mathrm{N}^{\text {c }}$		lower
		-a				

June

1960	.565	69	.607	191	-.042	-.178	.094	
1961	.468	524	.358	53	.110	-.026	.246	
1962	.246	339	.465	32	-.219	-.398	-.040	$*$
1963	.620	327	.727	83	-.107	-.216	.002	
1964	.471	418	.308	133	.163	.071	.255	$*$
1965	.558	572	.364	77	.194	.079	.309	$*$
1966	.549	377	.190	42	.359	.230	.488	$*$
1969	.675	467	.370	54	.305	.169	.441	$*$

July

1960	.440	166	.496	480	-.056	-.144	.032	
1961	.355	523	.269	211	.086	.013	.159	$*$
1962	.447	499	.383	159	.064	-.023	.151	
1963	.569	129	.467	40	.102	-.075	.279	
1964	.519	667	.347	386	.172	.111	.233	$*$
1965	.520	912	.326	230	.194	.125	.263	$*$
1966	.604	718	.283	152	.321	.241	.401	$*$
1969	.505	436	.467	165	.038	-.051	.127	

$$
\text { Ocean-age } 3
$$

June

1960	.420	69	.357	191	.063	-.072	.198	
1961	.437	524	.547	53	-.110	-.251	.031	
1962	.697	339	.211	32	.486	.336	.636	$*$
1963	.369	327	.273	83	.096	-.013	.205	
1964	.514	418	.669	133	-.155	-.248	-.062	$*$
1965	.402	572	.597	77	-.195	-.312	-.078	$*$
1966	.446	377	.738	42	-.292	-.434	-.150	$*$
1969	.308	467	.593	54	-.285	-.423	-.147	$*$

Appendix table 8 A (cont.)

Year	Red		White		$\mathrm{Pr}_{\mathrm{r}}-\mathrm{Pr}$	$\begin{gathered} 95 \% \\ \text { confidence } \\ \text { limits } \end{gathered}$		
	P	$\mathrm{N}^{\text {b }}$	P	$\mathrm{N}^{\text {b }}$		lower	upper	
	Ocean-age 3							
July								
1960	. 512	166	. 429	480	. 083	-. 005	. 171	
1961	. 335	523	. 404	211	-. 069	-. 147	. 009	
1962	. 320	499	. 220	159	. 100	. 024	. 176	*
1963	. 422	129	. 533	40	-. 111	-. 288	. 066	
1964	. 333	667	. 583	386	-. 250	-. 311	-. 189	*
1965	. 285	912	. 557	230	-. 272	-. 343	-. 201	*
1966	. 361	718	. 664	152	-. 303	-. 386	-. 220	*
1969	. 378	436	. 455	165	-. 077	-. 166	. 012	
a. Confidence limits of $\mathrm{P}_{\mathrm{R}}-\mathrm{P}_{\mathrm{F}}$. (Dixon \& Massey 1969, p. 249) b. $p=$ proportion of item i. c. $N=$ numbers sampled.								

Appendix table 8B. Dixon-Massey tests of differences in proportions, for ocean-age-groups 2 and 3 , between red-flesh and white-flesh chinook salmon sampled from the commercial gillnet fishery in the lower Fraser River, August-September 1960-66 and 1969. (Asterisks mark rejection of the hypothesis that $\mathrm{P}_{\mathrm{R}}-\mathrm{P}_{\mathrm{w}}=0$.)

Ocean-age 2
August

1960	.274	146	.292	355	-.018	-.104	.068	.012
1961	.131	320	.189	169	-.058	-.128	.010	$*$
1962	.329	369	.205	123	.124	.038	.210	$*$
1963	.537	317	.664	133	-.127	-.224	-.030	$*$
1964	.461	763	.252	424	.209	.155	.263	$*$
1965	.295	743	.308	279	-.013	-.076	.050	
1966	.366	489	.304	207	.062	-.014	.138	
1969	.679	602	.586	273	.093	.024	.162	$*$

September

1960	.050	378	.098	102	-.048	-.110	.014	
1961	.178	28	.202	657	-.024	-.169	.121	
1962	.777	160	.219	282	.558	.477	.639	$*$
1963	.354	74	.401	312	-.047	-.169	.075	
1964	.309	333	.504	570	-.195	-.259	-.131	$*$
1965	.415	260	.211	678	.204	.137	.271	$*$
1966	.366	276	.274	285	.092	.015	.169	$*$
1969	.281	57	---	0				

Ocean-age 3
August

1960	.582	146	.586	355	-.004	-.099	.091	
1961	.557	320	.403	169	.154	.062	.246	$*$
1962	.477	369	.141	123	.336	.256	.416	$*$
1963	.408	317	.247	133	.161	.070	.252	$*$
1964	.349	763	.507	424	-.158	-.216	-.100	$*$
1965	.548	743	.530	279	.018	-.051	.087	
1966	.542	489	.585	207	-.043	-.123	.037	
1969	.206	602	.293	273	-.087	-.150	-.024	$*$

Appendix table 8 B (cont.)

Year					$\mathrm{Pr}_{\mathrm{r}}-\mathrm{P}_{\mathrm{w}}$	$\begin{gathered} 95 \% \\ \text { nfidence } \\ \text { limitsa } \end{gathered}$
	P	$\mathrm{N}^{\text {b }}$	P	$\mathrm{N}^{\text {b }}$		lower

September

1960	. 789	378	. 774	102	. 015	-. 076	. 106	
1961	. 751	28	. 603	657	. 148	-. 016	. 312	
1962	. 178	160	. 491	282	-. 313	-. 396	-. 230	*
1963	. 600	74	. 539	312	. 061	-. 064	. 186	
1964	. 553	333	. 311	570	. 242	. 176	. 308	*
1965	. 450	260	. 723	678	-. 273	-. 342	-. 204	*
1966	. 496	276	. 635	285	-. 139	-. 220	-. 058	*
1969	. 614	57		0				

Appendix table 9. Sex ratios (\% females), by age, month, year, and flesh color${ }^{\text {a }}$, of chinook salmon sampled from the commercial gillnet fishery in the lower Fraser River, May-September 1964-66 and 1969. (Excluded are age-color cells with $n<10$.)

Age ${ }^{\text {b }}$	1964		1965		1966		1969		Total	
(y)	R	W	R	W	R	W	R	W	R	

May

21	--	--	--	--	--	--	--	--	--	--
31	52	--	--	--	--	--	67	--	57	--
41	71	--	--	--	--	--	61	--	69	--
51	--	--	--	--	--	--	--	--	--	--
32	--	--	--	--	--	--	--	--	--	--
42	51	--	51	--	49	--	59	--	52	25
52	70	89	71	--	71	--	64	--	69	76
62	--	--	--	--	--	--	--	--	--	--

June

21	--	--	--	--	--	--	--	--	--	--
31	43	43	21	--	39	40	38	--	36	36
41	66	60	59	80	67	62	58	--	64	65
51	--	--	--	--	--	--	--	--	76	--
32	--	--	--	--	--	--	--	--	--	--
42	44	44	42	17	45	--	52	50	45	36
52	72	59	67	69	62	89	65	69	67	68
62	--	--	42	--	--	--	--	--	42	--

July

21	--	--	--	--	--	--	--	--	16	0
31	29	39	21	--	33	13	39	50	33	35
41	69	64	67	50	62	58	59	75	63	63
51	--	--	58	--	--	--	46	--	52	59
32	1	0	4	7	0	--	0	--	3	2
42	36	26	39	38	46	26	47	49	40	33
52	61	65	64	68	61	67	64	69	63	67
62	--	--	--	--	--	--	--	--	36	71

August

21	0	2	0	--	--	--	0	--	0	0
31	8	13	26	16	14	25	19	7	16	49
41	63	66	69	69	73	73	75	70	69	64
51	75	76	75	66	81	70	94	88	80	--

August (cont.)

32	0	0	3	--	--	--	0	--	1	0
42	19	55	42	39	50	55	53	54	35	49
52	44	65	70	70	79	58	--	36	67	64
62	--	--	--	--	--	--	--	--	50	25

September

21	0	0	--	8	0	0	--	--	0	1
31	14	6	15	25	16	10	50	--	16	12
41	61	57	57	66	67	64	80	--	63	63
51	80	73	80	94	70	82	--	--	73	86
32	-	--	-	--	--	--	--	--	--	--
42	50	--	39	--	46	--	--	--	47	23
52	77	--	--	--	--	--	--	--	81	88
62	--	--	--	--	--	--	--	--	--	--

a. Flesh color: $R=$ red; $W=$ white.
b. Gilbert-Rich method: $21=21$, etc.

Appendix table 10. Age-frequencies (nos.), by mesh size (in) and month, for chinook salmon sampled from the test fishery in the lower Fraser River, April-September 1965.

6.5"

21	--	--	1	1	2	1	5	4.6
31	--	4	8	3	7	11	33	30.3
41	--	2	4	1	6	12	25	22.9
51	--	1	-	--	--	1	2	1.8
61	--	--	1	--	--	-	1	.9
32	--	2	--	3	--	--	5	4.6
42	3	13	12	1	-3	--	32	29.4
52	--	3	2	1	--	--	6	5.5
62	--	--	--	--	--	--	0	--
T	3	25	28	10	18	25	109	100

7.5"

21	--	--	--	1	2	--	3	3.1
31	--	2	4	5	1	10	22	22.4
41	--	4	3	4	14	9	34	34.7
51	--	--	2	--	4	3	9	9.2
61	--	--	--	--	--	--	0	--
32	--	--	2	3	--	--	5	5.1
42	--	4	9	1	--	--	14	14.3
52	--	--	4	3	4	--	11	11.2
62	--	--	--	--	--	--	0	--
T	0	10	24	17	25	22	98	100

8.5"

21	--	--	--	--	--	--	0	--
31	--	1	1	1	1	5	9	9.4
41	--	3	5	4	16	24	52	54.2
51	--	--	1		3	7	11	11.5
61	--	--	--	--	--	--	0	--
32	--	1	--	--	--	--	1	1.0
42	--	2	6	2	2	--	12	12.5
52	--	5	5	--	--	1	11	11.5
62	--	--	--	--	--	--	0	--
T	0	12	18	7	22	37	96	100

Appendix table 10 (cont.)

Age ${ }^{\text {a }}$	Apr	May	Jun	Jul	Aug	Sep		Total
(y)								\%

9.5"

21	--	--	--	--	--	--	0	--
31	--	--	2	1	1	3	7	8.2
41	--	3	2	9	6	24	44	51.8
51	--	--	1	1	3	14	19	22.4
61	--	--	--	--	--	--	0	--
32	--	1	--	--	--	--	1	1.2
42	--	--	2	1	--	--	3	3.5
52	1	2	4	3	--	--	10	11.8
62	--	--	1	--	--	--	1	1.2
T	1	6	12	15	10	41	85	100
GT	4	53	82	49	75	125	388	

$$
\text { 6.5" } 7.5^{\prime \prime} \quad 8.5^{\prime \prime} \quad 9.5^{\prime \prime} \quad \text { Total }
$$

n $\%$

21	5	3	0	0	8	2.1
31	33	22	9	7	71	18.3
41	25	34	52	44	155	39.9
51	2	9	11	19	41	10.6
61	1	0	0	0	1	. 3
32	5	5	1	1	12	3.1
42	32	14	12	3	61	15.7
52	6	11	11	10	38	9.8
62	0	0	0	1	1	. 3
T	109	98	96	85	388	100

Appendix table 11. Age-frequencies (nos.), by mesh size (in) and month, for chinook salmon sampled from the test fishery in the lower Fraser River, April-September 1966.

Age ${ }^{\text {a }}$	Apr	May	Jun	Jul	Aug	Sep		Total
(y)							n	

6.5"

21	--	--	--	--	1	5	6	7.1
31	--	--	2	1	6	13	22	25.9
41	--	--	2	4	6	7	19	22.4
51	--	--	--	--	1	--	1	1.2
61	--	--	-	-	-	--	0	--
32	--	--	--	1	2	--	3	3.5
42	2	5	7	9	3	--	26	30.6
53	--	--	--	--	1	--	1	1.2
52	--	3	3	--	--	--	6	7.1
62	--	--	1	--	--	--	1	1.2
T	2	8	15	15	20	25	85	100

7.5"

21	--	--	--	--	--	3	3	2.2
31	--	--	2	5	13	13	33	23.7
41	--	--	5	10	8	12	35	25.2
51	--	--	--	--	1	1	2	1.4
61	--	--	--	--	1	--	1	.7
32	--	--	--	2	--	--	2	1.4
42	3	16	16	9	5	--	49	35.3
53	--	--	--	-	1	--	1	.7
52	6	4	2	1	--	--	13	9.4
62	--	--	--	-	--	--	0	--
T	9	20	25	27	29	29	139	100

8.5"

21	--	--	--	--	--	4	4	2.5
31	--	--	1	5	4	9	19	11.9
41	--	3	7	10	22	45	87	54.7
51	--	--	--	--	1	5	6	3.8
61	--	--	--	--	--	--	0	--
32	--	--	1	2	--	--	3	1.9
42	--	6	2	10	2	--	20	12.6
53	--	--	--	-	--	--	0	--
52	4	6	4	3	3	--	20	12.6
62	--	--	--	--	--	--	0	--
T	4	15	15	30	32	63	159	100

$\begin{aligned} & \text { Age }^{a} \\ & (\mathrm{y}) \end{aligned}$	Apr	May	Jun	Jul	Aug	Sep	Total	
							n	\%
9.5"								
21	--	--	--	--	--	2	2	1.9
31	--	--	--	--	1	9	10	9.4
41	--	2	3	17	11	33	66	62.3
51	--	1	--	1	1	3	6	5.7
61	--	--	--	--	--	--	0	--
32	--	--	1	--	1	--	2	1.9
42	--	--	--	--	3	--	3	2.8
53	--	--	--	--	--	--	0	--
52	3	3	3	7	--	--	16	15.1
62	--	--	-	1	--	--	1	. 9
T	3	6	7	26	17	47	106	100
GT	18	49	62	98	98	164	489	
	6.5 "	7.5"	8.5"	9.5"	Total			
					N	\%		
21	6	3	4	2	15	3.1		
31	22	33	19	10	84	17.2		
41	19	35	87	66	207	42.3		
51	1	2	6	6	15	3.1		
61	0	1	0	0	1	. 2		
32	3	2	3	2	10	2.0		
42	26	49	20	3	98	20.0		
53	1	1	0	0	2	. 4		
52	6	13	20	16	55	11.2		
62	1	0	0	1	2	. 4		
T	85	139	159	106	489	100		

a. Gilbert-Rich method: $21=21$, etc.

Appendix table 12. Length-frequencies (nos.), by mesh size (in) and month, of chinook salmon sampled from the test fishery in the lower Fraser River, April-September 1965.
OHL ${ }^{\text {a }}$ Apr- Apr-
(cm) May Jun Jul Aug Sep T May Jun Jul Aug Sep T
Mesh size: 6.5" 7.0"

$25-29$	--	--	1	--	--	1	--	--	--	--	--	--
$30-34$	2	--	1	1	--	4	--	--	--	--	--	--
$35-39$	1	1	1	1	--	4	--	--	--	--	--	--
$40-44$	0	0	2	0	--	2	--	--	--	--	--	--
$45-49$	2	2	4	3	4	15	1	--	--	--	--	1
$50-54$	10	14	1	2	4	31	4	--	--	--	--	4
$55-59$	14	9	2	6	4	35	4	--	--	2	--	6
$60-64$	6	5	4	6	3	24	2	--	--	1	--	3
$65-69$	2	2	0	4	4	12	3	--	--	--	--	3
$70-74$	1	4	2	1	5	13	2	--	--	--	--	2
$75-79$	2	2	2	0	3	9	--	--	--	--	--	--
$80-84$	--	1	--	2	2	5	--	--	--	--	--	--
$85-89$	--	--	--	--	1	1	--	--	--	--	--	--

				156								
Total	40	40	20	26	30	156	16	0	0	3	0	19

Mesh size: 7.5" 8.5"

$25-29$	--	--	--	--	--	--	--	--	--	--	--	--
$30-34$	--	-	--	1	1	2	--	--	1	--	--	1
$35-39$	1	3	3	0	0	7	--	--	0	--	1	1
$40-44$	1	0	1	1	0	3	--	--	0	--	0	0
$45-49$	1	2	2	0	1	6	--	2	0	--	1	3
$50-54$	1	2	3	1	1	8	--	4	0	2	0	6
$55-59$	5	14	10	3	8	40	3	8	2	3	2	18
$60-64$	6	4	7	0	3	20	5	9	4	2	3	23
$65-69$	1	1	1	12	3	18	6	2	1	7	5	21
$70-74$	2	4	4	6	5	21	4	2	3	11	9	26
$75-79$	2	3	0	3	5	13	--	2	3	5	13	23
$80-84$	--	1	1	1	5	8	--	--	--	1	8	9
$85-89$	--	1	--	--	--	1	--	--	--	--	1	1

$\begin{array}{lllllllllllll} & & & & & 147 \\ \text { Total } & 20 & 35 & 32 & 28 & 32 & 147 & 18 & 29 & 14 & 31 & 43 & 132\end{array}$

Appendix table 12 (cont.)

OHL
(cm) Apr-
May Jun Jul Aug Sep \quad T April-September (nos.)

Mesh			5"				6.5	7.0	7.5	8.5	9.5	T
25-29	--	--	--	--	--	--	1	--	--	--	--	
30-34	--	--	--	--	--	--	4	--	2	1	--	7
35-39	--	--	--	--	--	--	4	--	7	1	--	12
40-44	--	--	--	--	--	--	2	-	3	0	--	5
45-49	--	--	--	1	--	1	15	1	6	3	1	26
50-54	--	--	--	0	--	0	31	4	8	6	0	49
55-59	--	1	1	0	--	2	35	6	40	18	2	101
60-64	--	3	2	1	--	6	24	3	20	23	6	76
65-69	--	3	4	2	8	17	12	3	18	21	17	71
70-74	7	4	8	2	8	29	13	2	21	26	29	91
75-79	4	5	3	5	18	35	9	--	13	23	35	80
80-84	--	2	2	1	15	20	5	--	8	9	20	42
85-89	--	2	--	--	2	4	1	-	1	1	4	7

Total	11	20	20	12	51	114	156	19	147	132	114	568

April-September (\%)

$25-29$.6	--	--	--	--	.2
$30-34$	2.6	--	1.4	.8	--	1.2
$35-39$	2.6	--	4.8	.8	--	2.1
$40-44$	1.3	--	2.0	0	--	.9
$45-49$	9.6	5.3	4.1	2.3	.9	4.6
$50-54$	19.9	21.1	5.4	4.5	0	8.6
$55-59$	22.4	31.6	27.2	13.6	1.8	17.8
$60-64$	15.4	15.8	13.6	17.4	5.3	13.4
$65-69$	7.7	15.8	12.2	15.9	14.9	12.5
$70-74$	8.3	10.5	14.3	19.7	25.4	16.0
$75-79$	5.8	--	8.8	17.4	30.7	14.1
$80-84$	3.2	--	5.4	6.8	17.5	7.4
$85-89$.6	--	.7	.8	3.5	1.2
Total	100	100	100	100	100	100

a. Orbit-hypural length (nearest lower centimeter).

Appendir table 13. Length-frequencies (aos.), by mesh size (ia) and month, of chinook salmon sampled from test fishery in the the lower fraser River, April-Septerber 1966.
ohla apr May Jua Jul aug Sep T Apr kay Jun Jul Aug Sep T (cs)

Mesh size		6.5*			7.5*					
25-29	-- --	-- --	-- --	--	--	--	--	1	--	-- 1
30-34 --	-- --	-- --	-- 1	1	--	--	--	0	--	0
35-39 --	--	--	2	,	--	--	--	3	2	21
40-44 --	-- --	01	3	4	1	--	--	2	0	14
45-49 3	3 --	30	13	10	1	2	--	1	1	6
50-54 8	7	32	610	36	1	5	3	3	6	321
55-59 1	4	1	42	27	4	11	18	11	6	656
60-64	2	1	42	13	,	7	9	1	12	340
65-69 --	-- 1	23	35	14	4	5	5	5	5	428
70-74	1	45	6	17	--	--	4	1	6	26
75-79	-- --	1	-- 2	5	--	--	5	2	1	210
80-84 --	--	--	-- 1	2	--	--	1	--	1	2
85-89 --	-- --	-- --	-- .-	--	--	--	--			-- --

$132 \quad 203$
Total $12 \begin{array}{llllllllllllll}15 & 24 & 25 & 26 & 30 & 132 & 13 & 30 & 45 & 42 & 40 & 33 & 203\end{array}$

Hesh si			8.5*					9.				
25-29	--	--	-- --	-- --	--	--	--	--	--	--		--
30-34	--	--	--	--	1	--	--	1	--	--	--	
35-39	--	--	2	11	4	--	--	0	1	1	1	
-44	1	--	-- 0	01	2	--	--	0	1	0	1	2
45-49	1	2	--	1	5	--	--	0	0	0	0	
50-54	2	2	2	02	12	--	--	1	0	1	0	
55-59	0	5	3	22	18	--	--	0	1	1	0	
60-64	1	5	211	67	32	--	1	0	2	1	1	5
65-69	1	1	91	1914	63	2	0	0	1	3	11	19
80-14	1	3	614	1413	54	3	6	1	13	12	19	
75-79	--	--	--	119	27	1	2	6	15	1		
80-84	--	--	-- --	-- 11	11	--	1	0	5	1	9	
85-89	--	--	-- --	--	1	-	--	1	1	--	--	

230
151
$\begin{array}{llllllllllllll}\text { Total } & 16 & 24 & 24 & 47 & 46 & 73 & 230 & 6 & 10 & 16 & 42 & 24 & 53 \\ 151\end{array}$

Appendir table 13 (cont.)									
$\begin{aligned} & \text { ORL } \\ & \text { (Cl) } \end{aligned}$	April-september (nos.)				April-septenber (X)				
	6.51	7.58	8.59 .5	I	6.5	1.5	8.5	9.5	I
25-29	--	1	-- --		--	. 5	--	--	. 1
30-34		0	11		. 8	0	. 4	. 7	. 4
35-39		1	43	17	2.1	3.4	1.7	2.0	2.4
40-44		1	22	12	1.0	2.0	. 9	1.3	1.7
15-49		6	50	21	1.6	3.0	2.2	0	2.9
50-54		11	122	11	21.1	10.3	5.2	1.3	9.9
55-59		56	182	103	20.5	27.6	1.8	1.3	14.4
60-64		40	325	90	9.8	19.7	13.9	3.3	12.6
65-69		28	6319	124	10.6	13.8	27.4	12.6	17.3
10-74		26	5460	157	12.9	12.8	23.5	39.7	21.9
15-79	5	10	$27 \quad 39$	81	1.8	4.9	11.7	25.8	11.3
80-84	2	4	$11 \quad 16$	33	1.5	2.0	4.8	10.6	4.6
85-89		--	12	3	--	--	. 4	1.3	. 4
Total	1322	203	230151	716	100	100	100	100	100

Appendix table 14. Dixon-Massey tests of differences in proportions, for ocean-age-groups 2 and 3, between Fraser River chinook salmon sampled from the commercial gillnet fishery (CF) and the test fishery (TF), in the lower Fraser River, AprilSeptember 1965-66. (Asterisks mark rejection of the hypothesis that $\mathrm{Pc}_{\mathrm{f}}-\mathrm{P}_{\mathrm{t}} \mathrm{f}=0.1$

95\%
confidence
limits ${ }^{\text {a }}$ lower upper

Year			TF		Pcfe-Ptif	limits ${ }^{\text {a }}$
	$\mathrm{P}^{\text {b }}$	$\mathrm{N}^{\text {c }}$	$\mathrm{P}^{\text {b }}$	$\mathrm{N}^{\text {c }}$		lower
		n-a				

April

1965^{d}	.413	109	.429	7	---	---	---
1966	.692	39	.278	18	.414	.161	.667

May

1965	.599	242	.524	61	.075	-.065	.215
1966	.547	95	.551	49	-.004	-.176	.168

June

1965	.473	649	.538	82	-.065	-.180	.050
1966	.513	419	.484	62	.029	-.104	.162

July

1965	.473	1142	.306	49	.167	.035	.299	$*$
1966	.548	870	.398	98	.150	.048	.252	$*$

August

1965	.298	1022	.205	78	.093	-.001	.187
1966	.348	696	.398	98	-.050	-.153	.053

September

1965	.267	938	.232	125	.035	-.044	.114
1966	.319	561	.268	164	.051	-.027	.129
Ocean-age 3							
April							
1965°	.551	109	.572	7	---		
1966	.256	39	.722	18	-.466	-.714	$-.218 *$

Appendix table 14 (cont.)

Year	CF		TF		Pcf-Ptf	conf 1 i	dence ts^{a}
	Pb	N^{c}	$\mathrm{P}^{\text {b }}$	N^{c}		lower	upper
		n-					

May

1965	.389	242	.394	61	-.005	-.142	.132
1966	.432	95	.429	49	.003	-.168	.174

June

1965	.340	649	.354	82	-.014	-.124	.096
1966	.475	419	.468	62	.007	-.126	.140

July

1965	.340	1142	.510	49	-.170	-.313	-.027
1966	.414	870	.530	98	-.116	-.220	-.012

August

1965	.543	1022	.615	78	-.072	-.184	.040
1966	.555	696	.511	98	.044	-.062	.150

September

1965	.647	938	.560	125	.087	-.005	.179
1966	.567	561	.591	164	-.024	-.110	.062

a. Confidence limits of Pc-Pt. (Dixon \& Massey 1969, p. 249)
b. $P=$ proportion of item i.
c. $N=$ numbers sampled.
d. No test. (Pcr) $\left(\mathrm{NcF}_{\mathrm{c}}\right)<5$.

Appendix table 15. Age-frequencies (nos.), by month and year, of chinook salmon sampled from the catch of the test fishery in the lower Fraser River, April-October 1981-87.
Age
19811982
19831984
1985
1986
1987
Total (y)
n \%

April

21	0	0	0	0	0	0	0	0	--
31	0	0	0	0	0	0	0	0	-
41	4	0	1	2	0	1	8	16	5.8
51	0	0	0	0	0	0	2	2	. 7
61	0	0	0	0	0	0	0	0	--
32	0	0	0	0	0	0	0	0	--
42	0	2	1	3	1	3	2	12	4.3
52	20	15	35	25	22	31	84	232	84.1
62	0	0	1	1	1	7	4	14	5.1
53	0	0	0	0	0	0	0	0	--
63	0	0	0	0	0	0	0	0	-
Total	24	17	38	31	24	42	100	276	100

21	0	0	0	0	0	0	0	0	--
31	0	2	1	1	0	0	1	5	.6
41	3	3	2	2	1	0	8	19	2.3
51	0	0	0	0	0	0	2	2	.2
61	0	0	0	0	0	0	0	0	--
	0	0	0	0	0	0	0		
32	11	35	6	23	12	21	17	125	15.3
42	68	65	67	46	43	66	272	627	76.7
52	1	3	3	4	3	8	17	39	4.8
62	0	0	0	0	0	0	0	0	--
53	0	0	1	0	0	0	0	1	-1

Total	83	108	80	76	59	95	317	818	100

Jun

21	0	0	0	0	0	0	0	0	--
31	2	4	0	5	0	0	9	20	1.0
41	6	27	3	6	2	3	36	83	4.3
51	3	0	0	0	2	1	6	12	.6
61	0	0	0	0	0	0	0	0	--

Appendix table 15 (cont.)

Agea $^{(y)}$ (y)	1981	1982	1983	1984	1985	1986	1987	Total

Jun (cont.)

32	0	0	0	0	0	1	0	1	.1
42	52	46	35	58	64	46	69	370	19.3
52	113	80	173	136	124	110	594	1330	69.4
62	5	4	2	15	6	11	52	95	5.0
53	0	0	0	0	0	0	1	1	.1
63	0	0	0	0	0	2	2	4	.2
Total	181	161	213	220	198	174	769	1916	100
Jul									

	0	0	0	0	0	0	0	0	--
21	0	1	1	0	1	1	3	9	.5
31	2	18	6	11	9	36	37	133	8.1
41	0	3	0	8	2	3	31	47	2.8
51	0	0	0	0	0	0	0	0	--
61	0	1	0	0	0	0	0		-1
32	40	83	18	92	43	37	52	365	22.1
42	55	122	121	92	119	118	355	982	59.5
52	8	9	8	24	5	15	42	111	6.7
62	0	2	0	1	0	0	0	3	.2
53	0	0	0	0	0	0	0	0	--
63					0				

$\begin{array}{llllllllll}\text { Total } & 121 & 239 & 154 & 228 & 179 & 210 & 520 & 1651 & 100\end{array}$
Aug

21	0	0	0	1	0	0	0	1	.1
31	7	4	0	3	5	0	1	20	2.3
41	74	46	33	50	52	85	53	393	44.4
51	15	8	5	20	12	16	35	111	12.5
61	0	0	0	0	0	0	1	1	.1
32	0	0	0	1	2	0	0		3
42	23	21	5	20	25	5	4	103	11.3
52	18	28	46	21	35	26	50	224	25.3
62	1	2	6	5	1	2	10	27	3.1
53	0	1	0	0	0	0	0	1	.1
63	0	0	0	0	0	0	1	1	.1
Total	138	110	95	121	132	134	155	885	100

```
Appendix table 15 (cont.)
    \(\begin{array}{lllllllll}\text { Age }^{a} & 1981 & 1982 & 1983 & 1984 & 1985 & 1986 & 1987\end{array}\)
    (y)
Sep
\begin{tabular}{rrrrrrrrrr}
21 & 2 & 1 & 1 & 0 & 0 & 0 & 0 & 4 & .4 \\
31 & 40 & 55 & 26 & 68 & 74 & 2 & 24 & 289 & 25.5 \\
41 & 64 & 159 & 132 & 102 & 117 & 66 & 52 & 692 & 61.0 \\
51 & 5 & 11 & 15 & 13 & 5 & 7 & 22 & 78 & 6.9 \\
61 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -- \\
32 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & 0 \\
42 & 3 & 4 & 0 & 3 & 6 & 0 & 1 & -- \\
52 & 6 & 4 & 9 & 0 & 10 & 7 & 6 & 47 & 1.5 \\
62 & 2 & 0 & 2 & 2 & 1 & 2 & 3 & 12 & 1.7 \\
53 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1.1 \\
63 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & --
\end{tabular}
\begin{tabular}{llllllllll} 
Total & 122 & 235 & 185 & 188 & 213 & 84 & 108 & 1135 & 100
\end{tabular}
Oct
\begin{tabular}{rrrrrrrrrr}
21 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 2 & .5 \\
31 & 4 & 3 & 3 & 32 & 18 & 4 & 6 & 70 & 19.1 \\
41 & 27 & 12 & 22 & 46 & 34 & 77 & 41 & 259 & 70.8 \\
51 & 1 & 0 & 1 & 11 & 1 & 8 & 7 & 29 & 7.9 \\
61 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -- \\
32 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & 0 \\
42 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 &.- \\
52 & 0 & 0 & 0 & 0 & 1 & 3 & 0 & 4 & 1.1 \\
53 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -- \\
62 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & .3 \\
63 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & --
\end{tabular}
\begin{tabular}{lllllllllll} 
Total & 32 & 16 & 27 & 90 & 55 & 92 & 54 & 366 & 100
\end{tabular}
a. Gilbert-Rich method: \(21=2 i\), etc.
```

Appendix table 16. Length-frequencies (nos.) and mean lengths (cm), by month (years combined) and mesh size (in), of OAG-3 chinook salmon sampled from the catch of the test fishery in the lower Fraser River, 1965-66.

					May					June
(cm)	$6.5{ }^{\prime \prime}$	7.51	8.5 "	9.5"	T	6.5"	7.5"	8.5"	9.5"	T
52	0	0	0	0	0	3	0	0	0	3
57	2	1	1	0	4	0	2	1	0	3
62	1	0	6	1	8	0	2	2	0	4
67	1	4	7	0	12	2	1	7	4	14
72	2	1	3	6	12	5	3	5	3	16
77	2	2	0	3	7	1	5	1	3	10
82	0	0	0	0	0	0	1	0	1	2
T	8	8	17	10	43	11	14	16	11	52
\bar{L}	67.6	68.9	65.5	72.5	68.2	66.1	70.6	67.9	72.5	69.2
					Jul					Aug
	6.5 "	7.5"	8.5"	9.5"	T	6.5 "	7.5"	8.5"	9.5"	T
47	0	0	0	0	0	0	0	1	1	2
52	0	0	0	0	0	0	1	0	0	1
57	0	2	0	1	3	1	2	1	0	4
62	2	2	0	1	5	1	2	0	1	4
67	0	3	3	3	9	6	9	1	2	18
72	1	9	9	16	35	3	6	2	8	19
77	2	2	5	13	22	0	0	19	5	24
82	1	0	1	2	4	1	2	14	0	17
87	0	0	1	1	2	0	0	4	0	0
T	6	18	19	37	80	12	22	41	17	89
\bar{L}	72	68.9	73.8	73.6	72.5	68.3	67.7	68.7	70.8	72.3

47	0	0	1	0	1	0	0	0	2	1
52	1	1	0	0	2	0	3	0	1	2
57	2	1	0	0	3	4	3	3	4	3
62	0	1	4	0	5	8	4	5	6	5
67	6	2	12	7	27	12	14	9	36	27
72	1	9	17	17	44	12	16	35	31	44
77	5	3	27	19	54	7	10	22	9	54
82	3	4	9	14	30	0	2	4	3	30
87	1	0	0	0	1	0	0	2	0	1
T	19	21	70	57	167	43	52	80	92	167
$\overline{\mathrm{~L}}$	71.5	72	73.4	75.5	73.7	68.2	69.2	72.5	68.8	73.7

```
Appendix table 16 (cont.)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{OHL}^{\mathrm{a}} \\
& (\mathrm{~cm})
\end{aligned}
\]} & \multirow[b]{2}{*}{May} & \multirow[b]{2}{*}{Jun} & \multirow[b]{2}{*}{Jul} & \multirow[b]{2}{*}{Aug} & \multirow[b]{2}{*}{Sep} & \multicolumn{2}{|r|}{8.5"} \\
\hline & & & & & & T & \% \\
\hline 0 & 0 & 0 & 0 & 1 & 1 & 2 & 1.2 \\
\hline 52 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 57 & 1 & 1 & 0 & 1 & 0 & 3 & 1.8 \\
\hline 62 & 6 & 2 & 0 & 2 & 4 & 14 & 8.6 \\
\hline 67 & 7 & 7 & 3 & 19 & 12 & 48 & 29.4 \\
\hline 72 & 3 & 5 & 9 & 14 & 17 & 48 & 29.4 \\
\hline 77 & 0 & 1 & 5 & 4 & 27 & 37 & 22.7 \\
\hline 82 & 0 & 0 & 1 & 0 & 9 & 10 & 6.1 \\
\hline 87 & 0 & 0 & 1 & 0 & 0 & 1 & . 6 \\
\hline T & 17 & 16 & 19 & 41 & 70 & 163 & 100 \\
\hline \(\bar{L}\) & . 5 & . 9 & . 8 & . 7 & . 4 & 0.3 & \\
\hline
\end{tabular}
May Jun Jul Aug Sep \(\mathrm{T}^{9.5^{\prime \prime}} \%\)
\begin{tabular}{rrrrrrrr}
47 & 0 & 0 & 0 & 1 & 0 & 1 & .8 \\
52 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
57 & 0 & 0 & 1 & 0 & 0 & 1 & .8 \\
62 & 1 & 0 & 1 & 1 & 0 & 3 & 2.3 \\
67 & 0 & 4 & 3 & 2 & 7 & 16 & 12.1 \\
72 & 6 & 3 & 16 & 8 & 17 & 50 & 37.9 \\
77 & 3 & 3 & 13 & 5 & 19 & 43 & 32.6 \\
82 & 0 & 1 & 2 & 0 & 14 & 17 & 12.9 \\
87 & 0 & 0 & 1 & 0 & 0 & 1 & .8
\end{tabular}
\begin{tabular}{llllllll}
T & 10 & 11 & 37 & 17 & 57 & 132 & 100
\end{tabular}
    L
a. Orbit-hypural length (nearest lower cm): 47 = 45-49,
    etc.
```

Appendix table 17. Age-frequencies (\%), by year, of white-flesh chinook salmon sampled from the catch of the test fishery (TFa) in the lower Fraser River, during September-october, and on the Harrison River spawning grounds ($\mathrm{SG}^{\mathbf{b}}$), 1984-88.

Agec c	1984			1985	1986		1987		1988
(y)	TF	SG	TF	SG	TF	SG	TF	SG	TF

21	.4	1.0	0	0	0	.9	0	.2	1.7	.3
31	38.4	35.0	38.6	27.8	4.3	2.0	23.8	9.7	6.2	4.9
41	51.3	56.7	54.1	64.5	86.5	92.2	49.9	65.6	76.8	84.6
51	8.6	7.3	1.8	6.5	5.7	4.7	16.7	24.3	7.9	9.6
61	0	0	0	.6	0	.2	3.6	.2	0	.3

| ST | 98.7 | 100 | 94.5 | 99.4 | 96.5 | 100 | 94.0 | 100 | 92.6 | 99.7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

32	0	0	0	0	0	0	0	0	0	0	
42	.9	0	1.4	.6	0	0	1.2	0	1.7	.3	
52	0	0	3.6	0	3.5	0	3.6	0	4.9	0	
62	.4	0	.5	0	0	0	1.2	0	.8	0	
ST	1.3	0	5.5	.6	3.5	0	6.0	0	7.4	.3	
T	100	100	100	100	100	100	100	100	100	100	
n	232	383	220	169	141	537	84	567	242	366	

a. TF sources: 1984-87, Schubert et al. (1988, Appendices 15e-18e); 1988, Starr \& Schubert (1990, Appendix 4).
b. SG source: 1984-88, Starr \& Schubert (1990, Appendix 3).
c. Gilbert-Rich method: $21=21$, etc.
d. $n=$ numbers sampled.

Appendix table 18. Dixon-Massey tests of differences, for agegroups 31,41 , and 51 , of white-flesh chinook salmon, between proportions in the Fraser River test fishery (TF) during September-October, and on the Harrison River spawning grounds (SG), 1984-88. (Asterisks mark rejection of the hypothesis that $\mathrm{P}_{\mathrm{t} f}-\mathrm{Ps}_{\mathrm{g}}=0$.)

95\%

Year	$\mathrm{P}^{\text {b }}$	${ }^{\mathrm{N}}{ }^{\text {c }}$	SG		Ptfe-Psg	confidence limits ${ }^{\text {a }}$	
	Age-group 31					lower	uper
1984	. 383	232	. 350	383	. 033	-. 046	. 112
1985	. 386	220	. 279	169	. 107	. 014	. 200
1986	. 043	141	. 020	537	. 023	-. 013	. 059
1987	. 238	84	. 097	567	. 141	. 047	. 235
1988	. 062	242	. 049	366	. 013	-. 025	. 051

Age-group 41

1984	.532	232	.567	383	-.035	-.116	.046	
1985	.562	220	.649	169	-.087	-.184	.010	
1986	.813	141	.924	537	-.111	-.179	-.043	$*$
1987	.574	84	.657	567	-.083	-.196	.030	
1988	.769	242	.847	366	-.078	-.143	-.013	$*$

Age-group 51

1984	.086	232	.073	383	.013	-.032	.058
1985 d	.018	220	.065	169	---	---	--5
1986	.057	141	.047	537	.010	-.032	.052
1987	.167	84	.243	567	-.076	-.163	.011
1988	.079	242	.096	366	-.017	-.062	.028

a. Confidence limits of Ptf-Psg. (Dixon \& Massey 1969, p. 249)
b. $P=$ proportion of item i.
c. $N=$ numbers sampled.
d. No test. (Ptf) (NgG) <5.

[^0]: ${ }^{1}$ Incorrectly attributed to Rich (1927a) by Koo (1962).

[^1]: ${ }^{2}$ A veteran gillnetter on the Fraser River.

[^2]: ${ }^{3}$ A.R. Baker (pers. comm.), who is the only one to fish the test net to date. Schubert et al. (1988) reported "216 mm (8")".

[^3]: ${ }^{4} \mathrm{He}$ acknowledged that no comparisons were made with fish caught in the same month.

[^4]: ${ }^{5}$ He meant Rich (1926). Rich (1942) contains no such data.

