Canadian Manuscript Report of

Fisheries and Aquatic Sciences 2486

1999

'THREE-DIMENSIONAL VISUALIZATION OF FISHERY ACOUSTIC DATA AND

BATHYMETRY USING IBM VISUALIZATION DATA EXPLORER

M. Hajirakarl, R. Kieserz, R.D. Stanleyz, AM. Comthwaitez, and P.Y. Huang3

IVGI, Vision Group International
5325 Cordova Bay Road, Suite 211

Victoria, British Columbia, V8Y 2L3

“Fisheries and Oceans, Canada
Pacific Biological Station

Nanaimo, British Columbia, VOR 5K6

3T.J. Watson Research Center
International Business Machines Corporatiori
30 Saw Mill River Road

Hawthorne, New York, 10536, USA



i

© Minister of Public Works & Government Services Canada 1999

Cat. No. Fs97-4/2486E ISSN 0706-6473

Correct citation for this publication:

Hajirakar, M., R. Kieser, R.D. Stanley, A.M. Cornthwaite, and P.Y. Huang. 1999. Three-
dimensional visualization of fishery acoustic data and.  bathymetry using IBM
Visualization Data Explorer. Can. Manuscr. Rep. Fish. Aquat..Sci. 2486: 54 p.

P

“



i

ABSTRACT

Hajirakar, M., R. Kieser, R.D. Stanley, A.M. Cornthwaite, and P.Y. Huang. 1999. Three-
dimensional visualization of fishery acoustic data and bathymetry using IBM
Visualization Data Explorer. Can. Manuscr. Rep. Fish. Aquat. Sci. 2486: 54 p.

Fisheries and Oceans Canada, in collaboration with the Groundfish Research and
Conservation Society, conducted an acoustic biomass survey of an aggregation of widow
rockfish (Sebastes entomelas) off the northwest coast of Vancouver Island, British Columbia, in
January 1998. One of the tools used to facilitate the data analysis was three-dimensional
visualization of the acoustic data, supported by custom applications developed by Vision Group
International (VGI). 3

VGI used IBM Visualization Data Explorer (DX) software to create the acoustic
data visualization. The main steps in producing the visualization involved creating a series of
programs to import, select, interpolate and display the acoustic and bathymetry data. Final
image manipulation was used to select optimal colours and perspective. Once the acoustic data
were examined and imported into DX, ten programs were developed to take the data through a
series of steps in order to arrive at the final visualization. The majority of the programs involved
organizing and reformatting the acoustic data to prepare them for display in the final image.
These programs defined the relationships between different elements of the acoustic data, and
applied processes of normalization and/or data screening where required. An important step was
the development of an appropriate colour scale to display the fish volume densities. A
methodology was also developed for visualizing the acoustic data in three dimensions using a
nearest neighbour interpolation technique. The final image was a three dimensional rendering of
the acoustic data, consisting of the two-dimensional non-interpolated acoustic data displayed as a
curtain, superimposed over the three dimensional interpolated bathymetric surface. The display
of the final image was designed to allow the user to control its contents. Through a control
panel, the user can specify what components of the image are to be displayed and the amount of
data to be displayed. The colour scheme to be applied to the image components is also easily
defined.

The three-dimensional visualization procedures developed by VGI rely on data
from a Simrad EK500 echosounder. Minor program modifications may be required to process
other digital acoustic data sets. Large sets of acoustic data from different time periods can be
quickly processed and visualized to gain an understanding of fish density, distribution,
movement, and behaviour. The ability to visualize acoustic data has far-reaching implications in
many scientific research studies and applications.



v

RESUME

Hajirakar, M., R. Kieser, R.D. Stanley, A.M. Cornthwaite, and P.Y. Huang. 1999. Three-
dimensional visualization of fishery acoustic data and bathymetry using IBM
Visualization Data Explorer. Can. Manuscr. Rep. Fish. Aquat. Sci. 2486: 54 p.

Péches et Océans Canada, en collaboration avec la Groundfish Research and
Conservation Society, a mené en janvier 1998 un relevé acoustique de la biomasse d’une
agrégation de veuve (Sebastes entomelas) pres de la cdte nord-ouest de 1’ile de Vancouver
(Colombie-Britannique). L’un des outils employés pour faciliter I’analyse des données est la
visualisation tridimensionnelle des données acoustiques, soutenue par des applications
spécialement concues par Vision Group International (VGI). .

_ VGI s’est servi du logiciel de visualisation IBM Data Explorer (DX) pour
produire la visualisation des données acoustiques. La production de la visualisation a été réalisée
principalement par la création d’une série de programmes pour importer, sélectionner, interpoler
et visualiser les données acoustiques et bathymétriques. On a pour finir traité I’image de facon a
obtenir des couleurs et une perspective optimales. Une fois les données examinées et importées
dans le DX, dix programmes ont été élaborés pour les soumettre a une série d’étapes en vue
d’arriver 2 la visualisation finale. La plupart des programmes utilis€s visaient a organiser et a
remettre en forme les données acoustiques pour les préparer en vue de la visualisation dans
I’image finale. Ces programmes définissent la relation entre les différents éléments des données
acoustiques, et appliquent des procédés de normalization et/ou du criblage des données le cas
échéant. L’établissement d’une gamme de couleurs permettant de bien visualiser les densités
volumiques de poisson a été une étape importante. Une méthodologie a aussi été mise au point
pour visualiser les données en trois dimensions & 1’aide d’une technique d’interpolation du plus
proche voisin. L’image finale était une représentation tridimensionnelle des données
acoustiques, constituée des données acoustiques bidimensionnelles non interpolées superposées
comme un rideau 2 la surface bathymétrique tridimensionnelle interpolée. Le mode de
visualisation de I’image finale permet a 1’'usager d’agir sur son contenu: grace a un panneau de
commande, il peut spécifier quelles composantes de I’image il veut visualiser, et la quantité de
données a présenter. La gamme de couleurs a appliquer aux composantes de 1’image est aussi
facile a définir.

Les procédures de visualisation en trois dimensions élaborées par VGI reposaient
sur des données produites par un échosondeur Simrad EK500. Des modifications mineures
pourraient devoir Etre apportées au programme pour permettre le traitement d’autres ensembles
de données acoustiques numériques. Il est possible de traiter et de visualiser rapidement de
grandes séries de données acoustiques recueillies a des périodes différentes pour déterminer la
densité, la répartition, le déplacement et le comportement des poissons. La possibilité de
visualiser les données acoustiques va avoir d’importantes retombées dans de nombreuses
recherches scientifiques et leurs applications.



A

TABLE OF CONTENTS

10 N RO LICTTIOIN cnsichusocons nanssmmsnicsiamonss 0msssion s annmmmmse i 00 8chnesioniboiads sl o A5 AR SREAANS 1
2.0 WIDOW ROCKFISH ACOUSTIC DATA ...ttt sve s enne e 1
30 IBM VISUALIZATION DATA EXPLORER ......cwuassssimonsmmmsmsisismmmsesssaimmissssarise 3
31 The XX O8I TBIEL oo o mmrs se5msmme e nmmumanmmnemmssneosmemmsmmaeeiaie e s SR R A S 3

3.2 THE DX PIOMIIBTE cuiioi ceonnommemmsmmncase s e st o e A S S RS SR 5

3.3 The visual program €dIOT .........cccuerereeruerrienieiiesie sttt sae s eeseeeaeesaeeneens 3

2 N 1o R S S R ——————— 7
4.0 MODELING ACOUSTIC DATA WITH DX........cotiiieieceesieeeeete et ene e s %
~ 4.1  Creation Of .gENEral fIles .......covirerreriiiiiriie e e 7

-~ 4.2 Overview of Visual Programs .........cccceeiiieiiiiiiieicieceiecieieie e e eee e eneeernenns 10
5.0 VISUAL PROGRAM DESCRIPTIONS.........cccccceerrersnrmsaressnsssssssesasasssnsesnsessarsssnessessasssses 12
5.1 TheValidShipTrack.net Programl.......ccccccceeciersieirsieeersrerassaeesnesssesssseesssnsenns 12

5.1.1 The RidADUpPlicCate.NELt MACIO ...cciivrcreiriirereirenereeeeareeesesresssenneeesesaseeeas 13

5.1.2 The MarkDupliCate .NET MACIO. et ieiceeieeeeeeeeeeeeereeeeeeeseeeeeeeseessaans 15

2.2 TheMalkeBottomDapshh, mel PO ok 16

5.3 The MakeNewBottomDepth.net PrOZram ......occociieceerierrieeneenreeseesreeseeesaeenns 17

54 The ShipTrack3D.Net PrOGIaAM ...cccceeecreeeeeeiereeieeeeeiaeeeeeessesseessseeseesssessssessnenns 18

5.8 The MakeCUrtain TEk PIOPTAI wirosmusmmassrmmsrssmmmsisss s st 18

5.6 The MakeNewCurtain.net PrOgram ......c.cciiriirerriereceerseeraeeseesseeseesaeessseenns 19

5.7 The MakeVolume .Net PrOGIAM.......ccceeuereerreertereeeesseesesseeseeeseesssensenseseessessassses 22

5.7.1 The LayerByLayerRegrid.net MACTO.....cccocceeerieeeeeeieeeeeeeeeeeeeeeeeeeeanns 22

5.8 TheMakeBathymetryNewGrid. et PrOJYAI . mmsmmiminsssmssamsssssmssmsmssiscs 25

5.9 The CULVOlUME . NELT PrOGIAIM ..ccicuieiurrerureerureeseeisreesseeaeessnessseessaesssesssesssessseseseesses 27

: 5.9.1 The BathymetryCutoff.Net MAaCrO ....ccccocrereeecreeeeecceeeecereeeeeeee e 28
540 The ISO.NCL PLOBTALI ...cccvousvorsasssmmcsmcasssmsossmasmusssassnssnsssssansassesstinnissmsesssbnississhesssansvsanssns 30
5101 THe IS0 PACE. .. exemrermssmmpmemssseanemsssrmsassmssybissrim s satsisammesimmesssss 31

5.10.2 The L atain TIals PAOE . usccmnusmmomnmmmmmisssamsmissmimsstsssssmssmmmmios 32

5.10.3 The SHiD TTACK DABE juussisrisssrmmsmcsss cinsersinsnsns sossssinsssssnasss554555snsnensvsssasssassnsss 33

5.10.4 The SubCUTLaIN PAZE.....ccereerreerruerarrierrreereeereeseeseesaseasstessseessassssasssesssessssesnes 34

5.10.5 The Large Data DA ......ccccereeereeiieeriieeereeeeieeesieressseeesseeesaessssessnsssessseessnnes 35

5.10.6 The IMAGING PALE. ...cceusseessssssarsssssnsassnsssanesssasssssssasssossnss uassssssssssusansassasssssess 36

O LIS TV ANKGTE, coumsspnssmesinsimsnsghoossscss s o swmmps s i i 558045560085 5 T S50 R A S5 i o A A5 55 37
7.0 PROCESSING OF ADDITIONAL DATA SETS......oocoteeteeieeiteeeceeeeree e eaeeteensesseeeeens 29
B0 RESULTS ....cuiuiuitniaiteeseeases i ssessesses s ssss ettt ssseens 42
00 ILITERATURE CITED . oo ke o e e e R L T N RS 43
10.0 APPENDIXTIGURES.. ..o smsmsmmsmsessromcmsmsssss st st 44

i

4



Vi



1.0 INTRODUCTION

This report describes the procedures developed for the visualization of acoustic
backscatter data that were collected during a rockfish biomass survey conducted by Fisheries and
Oceans Canada and the Canadian Groundfish Research and Conservation Society in January
1998. The objective of the survey was to acoustically estimate the biomass of a particular
aggregation of widow rockfish (Sebastes entomelas), using the CCGS W.E. RICKER as the
primary acoustic vessel, and assisted by the commercial fishing vessel FROSTI (Fig. 1). The
survey is described in detail in Stanley et al. (1999).

The purpose of the present report is to summarize the basic procedures we used
for employing IBM Visualization Data Explorer software to render three dimensional images of
acoustic micro-surveys. The intent is not to provide a comprehensive user’s guide. Rather, we
aim to simply familiarize users with the application of this visualization software to fisheries
acoustic data with the idea that it will aid interested users in making choices as to how to proceed
with- their particular application. Detailed descriptions of the modules used in this application
are provided in Section 5 and in the Appendix. The reader may prefer to omit these sections or
only read the overview that precedes the detailed description of each program in Section 5.

2.0 WIDOW ROCKFISH ACOUSTIC DATA

Acoustic data were collected aboard the CCGS W.E. RICKER using a SIMRAD
EK500 38/120 kHz split beam echosounder (SIMRAD 1993a), and a SIMRAD BI500 data
logging and analysis system (SIMRAD 1993b). The W.E. RICKER sounded along a
predetermined series of parallel, regularly spaced transects, positioned so that they spanned the
aggregation, creating cross-sections perpendicular to the aggregation’s principal axis (Fig. 1).

Fisn Frovced b, Lecal Purcnase
Authan B. Lauth NMFS 0£.16.93

Fig. 1. The CCGS W.E. RICKER, widow rockfish (Sebastes entomelas), and the
transect pattern used during the 1998 widow rockfish hydroacoustic survey.

K]
@



Each complete pass over the set of transects was called a micro-survey. Data were collected at a
rate of approximately 1 ping (echo return) per second. For visualization purposes, the data
stored on the BISO0 were rewritten such that each ping record included log number, date, time,
position, bottom depth, and 500 acoustic backscatter values, summarized in 0.5 m intervals over
a depth range of 75 to 325 m below the surface.

A sample data set was provided in the form of several ASCII files. For the
purpose of developing visualization programs, the sample data set covered only a portion of the
total survey area to reduce file size. The sample data were chosen to include typical fish
aggregations in the area and covered several transects. The order of the records in the data files
was assumed to represent the sequential passage of the vessel along the transects. One file
contained acoustic density data, another contained position information, and a third file
contained bathymetric data for the area. '

] The sample acoustic density file contained 2,047 records, corresponding to 2,047
pings -(Fig. 2). Each record (ping) contained 500 acoustic backscatter values, resulting in
1,023,500 data values in the entire file. An end of line character marked the end of each record.

The sample position data file also contained 2,047 records, which contained
location data for each of the 2,047 pings (Fig. 3). Each record in the position data file
corresponded to a record in the same position in the acoustic density file. There were 18
columns in the position data file, of which three were important in the visualization process.
These were latitude, longitude, and bottom depth. Latitude and longitude described the
geographic location of each ping, and bottom depth was the point at which the bottom was
reached by each ping. Three additional columns, which were not processed by the DX programs,
describe the depth structure of the data for each ping. Pelagic upper was the depth below the
surface at which the acoustic readings started, pelagic lower was the depth below the surface at
which the acoustic readings stopped, and pelagic count was the number of acoustic readings
taken per ping. For this study, pelagic upper was 75 m, pelagic lower was 325 m, and pelagic
count was 500, so that each ping was read at an interval of 0.5 m.

) The bathymetric data file contains latitude, longitude, depth, and log values (Fig.
4). The log value is a unique identifier for each record that is assigned by the SIMARAD EK500

'bilvgi.1ld .. Pelalig Sv

Sv(500)
.688E-07 .514E-07 .709E-07 .728E-07 .551E-07 .124E-06 .151E-06
.759E-08 .161E-07 .288E-07 .645E-07 .295E-07 .531E-07 .905E-08
.594E-07 .235E-07 .267E-07 .112E-07 .114E-07 .658E-08 .652E-08
.928E-08 .166E-07 .182E-07 .485E-07 .282E-07 .103E-07 .572E-07
.329E-07 .504E-07 .466E-07 .455E-08 .689E-08 .184E-07 .321E-07
.157E-07 .589E-08 .400E-08 .530E-08 .203E-08 .197E-07 .183E-07
.200E-07 .238BE-07 .104E-07 .195E-08 .715E-08 .536E-07 .408E-07
.269E-07 .333E-07 .110E-07 .254E-07 -343E-07 .545E-07

Fig. 2. Subset of the acoustic data file bilvgi .1d. Each row has 500 entries.

!bilvgi.1lp .. Ping file

Ping Date& Time& Distance! Latitude! Longitude! BottomDepth! EchogramType& PelagicUpper!
1 19980203 90848 365.3000 50.803200 -129.371155 149.00 0 75.00
2 19980203 90849 365.3000 50.803200 -129.371155 149.80 f 0 75.00
3 19980203 90849 365.3050 50.803249 -129.371002 150.70 : 0 75.00
4 19980203 90850 365.3050 50.803249 -129.371002 151.00 0 75.00

Fig. 3. Subset of the positional data file bilvgi . 1p, showing first nine columns in the file.



(SIMRAD 1993a). It is not used during the visualization process. There is a total of 2225
records in this data file.

3.0 IBM VISUALIZATION DATA EXPLORER

Long Lat Depth Log
-129.34927 50.77847 174.00 0517.100
-129.34991 50.77778 176.40 0587 150
=129 .35127 5077747 178.00 0517.205
-129.35263 50774711 188.50 0517.260
-129.35385 50.77665 196.90 0517315
-129.35385 50.77665 196.90 0517315
-129.35500 50.77608 205.10 0517 .370

Fig. 4. Subset of the bathymetry file, rangel.dal.

IBM Visualization Data Explorer (DX) is a software package for data
visualization and analysis. It employs a data-flow driven client-server execution model. The DX
server is controlled through a data flow executive, which determines what tasks need to be
executed based upon user requests and schedules their execution. The executive can be operated
directly via a scripting language, but is more commonly controlled via a graphical user interface
(GUI) which can generate code in the scripting language based on the inputs it receives. The DX
Prompter is a GUI that allows the user to describe the data files to be used. The Visual Program
Editor (VPE) is a GUI in which the user manipulates modules (subroutines or functions) to
define the operations that are performed on a data set in order to create the geometric objects
which make up an image. The image is usually created with an image module which permits
direct ‘point-and-click’ control over the underlying render, camera, and display modules which
produce the image. The user can use a mouse to change the viewing angle of the camera, and
alter such parameters as light source, shading, colour, zoom, and rotation.

3.1 The DX data model

DX is based on an integrated, discipline-independent data model that describes
and provides uniform access services for any data brought into, generated by, or exported from
the software. Thus, DX is easily adaptable to new applications and data. The strength of the DX
data model lies in the fact that it not only holds the actual data values of a data set, but also stores
the relationships between them. A detailed description of the DX data model can be found in the
IBM Visualization Data Explorer’s User’s Guide (International Business Machines Corporation
1997).

The data model carries information in the form of objects. An object is a data
structure stored in memory that holds the information pertaining to a data set. A field object,
which consists of components that describe the various aspects of a data set, is the most
fundamental type of object in the data model. The basic components of a field object are as
follows:

data (stores the user’s data values)
e positions (stores information on a set of n-dimensional positions)
e connections (provides a means for interpolating data values bétween the positions)



To illustrate, consider the acoustic density data set. This data set contains 2,047
records, and each record contains 500 acoustic density values, in the form of a 2,047 x 500 grid,
with 1,023,500 data values in total. Once this data set is imported into DX, it is stored as an
array object in the DX data model. The positions and connections are assumed to be regular and
are described as product arrays. At this time, the data is associated with a 2-dimensional
rectangular grid. The data, positions and connections define a field object.

Fig. 5 outlines the basic components of the field object describing this data set.
The data component (component number 0) stores the actual acoustic density values. The first
25 and last 25 data values are listed, along with the total number of items and their data type.
The positions component (component number 1) describes the grid format (2,047 x 500) of the
data. It stores the two dimensions of the data set (x, y) in-product term O and product term 1.
Product term O declares the x component as having 2,047 items, with each item separated by 1
unit (start value [0,0]; delta [1,0]; for 2,047 repetitions). Product term 1 declares the y
component as having 500 items, with each item separated by 1 unit (start value [0,0], delta [0,1],
for 500 repetitions). The connections component connects the 2,047 x 500 grid with ‘quad’
connections (i.e. connects the items across and down the grid). The connections information can
be used to interpolate data values between positions when points are defined on a regular grid.

Another important, but optional, component of a field object is called invalid
positions. It is very useful because it allows missing or invalid data to be marked in a data set.
The items in this component are either ‘1’s or ‘0’s; a value of ‘1’ indicates a position is invalid,
while a value of ‘0’ indicates a position is valid. In the acoustic data file, for example, there is a
total of 1,023,500 data values. If the first acoustic data reading for each of the 2,047 records was
missing, then these could be flagged in the invalid positions component. This component would
also contain 1,023,500 items, with a value of ‘1’ for the 1st, 501st, 1,001st, etc. items and ‘0’s for
the remainder. Sections 6.1 and 6.6 discuss this component in more detail.

Message Window -1
File  Edit Execute Comumands Options Help
\Begin Exectition &

Field. 4 components,

Component numser 0, name ‘data’

‘| Generic Array. 1823500 fems, fioat, real, soalar

= first 25 and last 25 data values only

£.87859988e~008 5.1400001e-008 7.0800001e-008 7.279998%e~-008 55084388 -008

’ 1.24e-007 1.5085308e-007 7.5888957e-008  1.6ie-008 Z.6800001e-N0K

5.45e-~008 2.3500001e~008 53093989 -003 9.04893808e-008 5.89400001e~-008

g 2.35e~008 2.67e-008 1.12e-008  1.14e-008 6580008 e-0068
6.52000016~008 .2780998e-008  1.66e~088  1.8Z2e-008 484534882008

1.i1e~008 1.82-088  5.15e-009 7.6889807¢ -008 2.7389988e -009
7.0e0conie~008  2.88e-008  1.08e-008  1.8Ze~008  1.42e-008

1.86e2-008 t4e-088 277e¢-008  571e-068  53e-008
6.2100001e~008 2.009999%¢-009  1.72e~N09 3.8200001e-008 4.479803%¢-009

1.86e~-088  3.15e~009 7.579988%e-010 3.8889987e~010  2.1Ze-008

L Atiribute. Name ‘dep’

Siring. "positions”

Component number 1, name ‘Bositions”;

Product Array. 2 terms.

Product term 0: Begular Array. 2047 items, float, real, 2-vector

start value [0, 01 detta { 1, G ], for 2047 repatitions

Product term 1: Begular Array. SCO items, float, real, 2-vector 12

start value [0, 0 ] delta { 0, 1 ], for 500 repetitions i

Atiribute. Name ‘dep’ i

String. "positians” - i

. Component number 2, name ‘connections’ i
Mesh Amray, 2 terms. |

Mesh offiset G, 8

Mesh term G Path: Array. connects 2037 items

Meshterm 11 Path Array. connects 530 items : |

|| Attribute, Name alement type’ : |

String. “quads®

s Adtribute, Name ‘dep’

String. "connections”

Atmibute, Name ref’ ¥

String. "postions” 3

o Fig. 5. The field object describing the acoustic density file.



Components can contain attributes. The most common attributes are dep and
ref. The dep attribute specifies the component on which a given component depends, while
the ref attribute specifies the component to which a given attribute refers. In Fig. 5, the data
component is dependent on the positions, and therefore has a dep attribute of positions. On the
other hand, the connections component refers to the positions, and it has a ref attribute of
positions. The element type is quad and it has a dep attribute of connections.

3.2 The DX prompter

The DX prompter is the graphical user interface for the DX General Array
Importer, where the structure and contents of a data set are described. The description and a
pointer to the actual data file is stored in a .general file. Fig. 6 shows the parameters used to
describe the acoustic density data file described in Sections 2.0 and 3.1. In this figure, the user
has described the acoustic density file BI1VGI.1D as a 2,047 x 500 grid. The data type is
float (floating decimal) and all values are scalar. The data are described in more detail in
section 4. Note that the creation of a . general file does not perform actual data import; this
file will simply be referenced when the data are imported by the user through the VPE.

7Data Pmmplev: l:lﬁshlBAenenal » ]
File  Edit Options He
Data file |16ShBIVGLID .| | Field st 4] Hove
i ¥ fedd
[T Header #oflines | [B
i : 7 i
Grid size |hoq7 % (;oo % i X |;
Field name fieldo
Data format ASCH (Text) | Most Signiticant Bule First
Type Roat
Data order Row |}l Cotumn
Structure scalar — | siting s ]
Yecior 3 ’
iterleming DK NNy iy - [ :
Add Inset | Modify | Delete
Grid
positions

origin, delta [0, 1

origin. detta [, 1

avigin, delts l 754

origin, delia l 310k

FE 6. The DX Prompter interface, populated with a description of the acoustic density file.

3.3 The visual program editor

The operations performed on a data set are defined by a user through the grouping
and linking of modules in the visual program editor (VPE). Modules are subroutines (functions)
that perform specific operations on objects. As an object flows from one module to another,
some modules will add components, some will remove components, and some will change
components. A module only operates on the component or components it was designed to
handle, and does not affect any other parts of the object. Modules.are selected, placed, and

3

.



connected to each other in the VPE (Fig. 7). All modules contain input and output tabs. Each
input tab is an argument, or parameter, for the module. For example, the Import module in
Fig. 7 exposes three of its many input tabs and one output tab. The first input tab is depressed,
indicating that an argument has been specified for the parameter it references. The user has set
this argument by double-clicking on the module to bring up the module’s configuration dialogue
box (Fig. 8). Under the ‘Inputs:’ heading, there are many rows. Each row refers to an input tab.

Visual Program Editor:l:IfishIMakeVolume.net

Jo  File Edit  Execute Windows Connection Options Help

Categories: Untitied

i
Annotation |
DXLink
iBebugging {
Fish i
Flow Control i

j::tpon and Bxport |
|

i
it =
1

i
|
|
i
|
!

Interactor
terface Control
Macros
Realization
Rendering

Special | Eoa e
: 1 averBul averReg l <4— Macro

{ ALL }Tools: (_’

AmbientLight 3

Append — e — Input Tab
Arrange
ArrangeMember
Attribute
AutoAxes
AutoCamera
AutoColor
AutoGlyph
AutoGrayScale
AutoGrid
QutoScaie

and <% sgn
BandColors Module Listing
BathymetryCutoff
Catnera
CappedisosurfaceMac| |
Caption |
Categorize
CategoryStatistics
ChangeGroupMembe;
ChangeGroupType |/ -

1
|
4
i
{
|

i
|

R

' Fig. 7. A visual program.

Blotation: (lmport

mputs:

tame Hide Type Souce Valie

E . name .1 string [Mocation.general” .|
I variable -l string, string list fformat dependent) .|

- format - string extension or content) .|

Outpuls;

Nawis Type Destination Cache

data object Stab, Slab Al Results - |

., _OK | Apply | Expand | Collapse| Description... - Restore | Cancel |

Fig. 8. Arguments for each module are entered in a dialogue box



The argument which has been set is referred to by the first ihput tab, and contains the name of
the . general file which references and describes the data file being imported.

Interactively setting the input parameters in the configuration dialogue box is one
of two ways to specify the arguments for a module. The other method is to simply connect the
output of one module to the input tab of another module. For example, the output of the stack
module in Fig. 7 is the argument for the first input tab of the export module.

A set of connected modules can be saved as a visual program and has a . net file
extension. A program can contain one or more macros, which are simply programs that are
called from the main visual programs. Macros also have a .net extension.

3.4 The Image

DX users can use visual programs to extract, manipulate, and organize the data in
a way that is meaningful to the user, and create a ‘renderable’ geometric object. An image is the
result of rendering this object using the DX Render module. The Render module uses
viewing angles provided by the Camera module to create a two-dimensional image that
represents the three-dimensional renderable object. The two-dimensional image can be
displayed on a monitor using the Display module, or printed on a printer, or saved to disk.
However, because the user cannot interact directly with an image created in this manner, the
Image module is often used to render images in DX. This module permits the user direct
‘point-and-click’ control over the underlying Render, Camera, and Display modules which
produce the image. The user can customize the final display of an image using a number of
mouse-driven interactive tools provided in DX such as pan/zoomand rotate (Fig.9).

Fig.9. Two views of the same image.
4.0 MODELING ACOUSTIC DATA WITH DX
4.1 Creation of .general files

A positional file, an acoustic density file, and a bathymetry file were provided for
visualization purposes (see Section 2 for detailed information on the file structure of each). Each

i

= ¥



data file was described in the DX prompter dialogue box. The result of the process were three
.general files, each containing a pointer to a particular file and a description of its content.
These .general files can be used by Import modules to import the data into DX.

The parameters for the positional file, as described in the DX prompter, are shown
in Fig. 10. This data file contains 2,047 records, with 18 columns per record. The full path name
of the data file (£: \£ish\BI1VGI.1P) has been set, along with the dimensions of the grid
(2,047 x 18) and the number of lines in the header. The data order has been set to row,
indicating that each record is contained on a separate row. Default values were used for all other
parameters. This description was saved as Location.general.

The parameters for the acoustic density file, a5 described in the DX prompter, are
shown in Fig. 11. The description of this file is identical to that of the positional file, with the
exception that the y dimension of the grid has been set to 500, rather than 18, columns. This
description was saved as B.general.

The file Range.general holds the description and pointer to the bathymetry
file (Fig. 12). The name of the data file, including the path, and the number of lines in the header
have been set, as for the positional and acoustics data files (Figs. 10 & 11). Unlike the positional
and acoustic data, however, the bathymetry data has not been described as a grid. Rather, the
first three columns of each record (latitude, longitude, and depth) are described as a three-
dimensional vector (3-vector) named locations. The locations field is understood to contain
values for positions in three-dimensional space (the x, y, z coordinates) for each record. The log
field is not used during the visualization process.

file  Edit Options H

Data file FMshiBITVGLIP et | Eietdlist A N

i I v {
J7 Header #of lines  — ,;3 i i
ondsee | fpom xlis |« [l :

, | Field name fieldo
Data format ASCH (Text) — |  Maost Significent Byte Fust o i
‘ | Type i Beatin oy
Data order Row [}l Cotumn %J . R
o | Structure sealar — | string size ||
Verior A ~,I ;
stevieaving D8 BRI 2
Add | Insert Modify | Delete |

Grid
positions

origin, delta 0.1

origin, defta 0.1

origin, delte

origin, dsia

Fig. 10. The positional file described in the DX prompter.



File Edit Options He
Data file |f:/6iShBRVGLID .| | Fieldlst AJI Mave
Y, ol BeC
7 Header #oflines — ja
Grid size o4z x 500 x|l % i
: Field name fietdo
Data format ASCH (Text) -+ | Most Significat Buis Flest |
Type float )
Data order Row W Cojumn %
Structure scalar string sice ";
Yector : ¢ |
tnserfeauling 28 Y eate ) :
_____ Add | insert | Modify | Delete |
Grid
positions

origin, delta |:0. 1

origindelta o.1

srigin, delta

R35

ovigin, delta

Fig. 11. The acoustics file described in the DX prompter.

Data Prompter: f:/fish/range.general g ; ] .. O]
ile Edit Options Hel
|
; : Field list | Move
Data file Ifl’.lﬁsh!rangzl.dai J #id W ‘i} field
= Header #oflines '5 e e e '
Grid size !~ x 1 % |j % ]} g
2 Field name l@ocaﬂons
Data format- ASCH (Text) —  Most Significant Byie Flrsl — |
r
Type float —
Data order Row I_- Column _%_'
: Structure 3-vector — siring size [—‘
e S 2y Vo i |
terieaving : |
Add | insert | Modify | Delete |
Grid
positions
orighy, defia ’
crigin, deita I {
origh, delia !\‘-
origin, delta
, Fig. 12. The bathymetry file described in the DX prompter.



10

4.2 Overview of Visual Programs

Ten visual programs and four macros were created to produce the widow rockfish
visualization. Each program takes the data through one of a series of steps in the visualization
process (Table 1, Fig. 13). Note that DX software was written using the C programming
language, and numbering therefore follows C conventions, with numeric sequences starting at 0,
rather than 1.

Table 1: Programs created for widow rockfish visualisation.

Visual Program Name

Purpose

ValidShipTrack.net

To flag and remove duplicate latitude/longitude
pairs in the positional file and replace them with
interpolated values.

MakeBottomDepth.net

To extract the bottom depth values from the
positional file.

MakeNewBottomDepth.net

To replace bottom depth values of ‘0’ with

interpolated values.

ShipTrack3D.net

To create a 3-dimensional positional structure that
will allow a depth to be associated with each
latitude/longitude location.

MakeCurtain.net

To associate each acoustic density value to its
proper latitude/longitude/depth location.

MakeNewCurtain.net

r

To remove unwanted ‘secondary’ bottom echo from
the image.

MakeVolume.net

To create a 3-dimensional interpolation of fish
aggregation.

MakeBathymetryNewGrid.n
et

To create a bathymetric surface using both the
bottom depth values from the positional file and the
bathymetric data in rangel.dal.

CutVolume.net

To remove unwanted ‘second’ bottom echo from the
interpolated 3-D image. '

Iso.net

To organise and display the elements of the final
image.




11

location.general location.general
ValidshipTrack ~ ShipTrack.dx “ ShipTrack3D ‘ ShipTrack3D.dx

RidDuplicate

ShipCurtain.dx HEEEp> s
‘.B. general ‘
NewCurtain.dx ‘III — MakeNewCurtain _ Curtain.dx
LayerByLayerRegrid “ MakeVolume NewBottomDepth.dx
l MakeNewBottomDepth _ BottomDepth.dx
Volumel.dx I
1 location.general pummmip- MakeBottomDepth

BathymetryCutoff “ CutVolume - Bathymetry.dx
= l Range.general

MakeBathymetryNewGrid
4 Volume2.dx % 2 f h NewBottomDepth.dx
ShipTrack.dx

Bathymetry.dx - Iso “ NewCurtain.dx

l Legend

Visual program

Final Image © Macro
Name .dx

Program name

Fig. 13. Overview of the visualisation process.




12

5.0 VISUAL PROGRAM DESCRIPTIONS
5.1 The validShipTrack.net program

Duplicate latitude and longitude values occur occasionally in the positional data
file when the GPS receiver is not updated between pings. This results in a vector of 500
backscatter values with no accompanying unique location. Duplicate latitude and longitude
values can be removed from the positional data file using a program called
ValidShipTrack.net. This program flags and removes duplicate latitude and longitude
values and replaces them with interpolated values (Figs. 14 & 15).

Qship'l‘rack .dx

MarkDuplicate.net
RidDuplicate.net

Fig. 14. Overview of the ValidShipTrack.net program.

location.general mmm) ValidShipTrack

The ValidShipTrack.net program has two sections (Appendix Fig. 1).
Section A normalizes the latitude and longitude data and replaces the duplicate values with
interpolated values using two macros called RidDuplicate.net (Appendix Fig. 17) and
MarkDuplicate.net (Appendix Fig. 18). Duplicate latitude and longitude values are
flagged as invalid and replaced by new values interpolated from the adjacent unique values.
Section B combines the latitude/longitude pairs into a single field which is then exported.

Section. A.

An Import module imports location.general and creates a field object.
The latitude and longitude columns are extracted from the data file using two Slab modules
with the third input tab of each set to position=4 and position=5, respectively, corresponding to
the fifth (latitude) and sixth (longitude) columns of the data file. Each S1ab module outputs a
field object (field) containing either latitude or longitude that is then sent to the
RidDuplicate.net macro. This macro runs twice, producing a normalized data set, with

!BI1VGI.1P .. Ping file

Ping Date& Time& Distance! Latitude! Longitude! BottomDepth ' EchogramType&
1 19980203 90848 365.3000 50.803200 =129 ,371155 " 149.00 . 0
2 19980203 90849 365.3000 50.803200 =129,.371155 149.80 0
3 19980203 90849 365.3050 50.803249 -129.371002 150.70 0
4 }9980203 90850 365.3050 50.803249 -129.371002 . 151..00 0

Fig. 15. Example of repeat locations in the positional file.



13

the duplicate values removed and replaced by interpolated values, for each field (Appendix Fig.
2).

Section B.

Two Extract modules extract the data components of the normalized latitude
and longitude fields and send them to a Compute module which creates an array of two-
dimensional (x, y) vectors. This array is sent to a Construct module which creates a positions
component and one-dimensional line connections for the field. This field is output with an
Export module and called ShipTrack.dx.

5.1.1 The RidDuplicate.net macro

The RidDuplicate.net macro has three parts and runs once each for the
latitude and longitude fields at the end of Section A of the ValidShipTrack.net program
(Appendix Figs. 1 & 2). The process of removing duplicate values is called normalization. This
macro normalizes each field by removing the duplicate values and then replaces them with
linearly interpolated values.

Part L.

An Input module sends the field to an Extract module, where the data
component is extracted and sent to both an Inquire module and to the second input tab of the
MarkDuplicate.net macro. The Inquire module determines the number of items in the
data component and, for the sample data set, returns the value ‘2,047’. A Compute module
executes the expression a-1, subtracting 1 from the result of Inquire, and sends the result to
the first input tab of the MarkDuplicate.net macro. The MarkDuplicate.net macro
checks for duplicates and returns a list of ‘1’s and ‘0’s indicating which records are duplicates
(‘1’s) and which are unique (‘0’s). The MarkDuplicate.net macro compares each latitude
or longitude value to the value immediately following; therefore, the first value will always be
marked as unique, while the last value of the data set can be a duplicate.

Part I1. ;

The output from MarkDuplicate.net is sent to the Options module, which
adds a dep attribute to force the data component of these values to be dependent on the positions
component. The output from Options is an array with a dep attribute on the positions
component, but it is not yet associated with any positions. A Compute module changes the
number format from integer to byte. The resulting field is sent to the Replace module, whose
function is to take a component from -a source field and place it in a destination field. In this
case, the source field is the data component of the list of ‘1’s and ‘0’s that has been processed by
the Options and Compute modules. The destination field is sent from the Input module,
and has a data component containing the latitude or longitude values, as well as positions and
connections components. The data component from the source field is placed in a new
component in the destination field called invalid positions, thereby marking the duplicate latitude
or longitude values as invalid. The output from Replace is sent to an Include module with



14

the ‘cull’ input tab set to ‘-1°, where the invalid records are removed from the data set. The field
is now normalized and, for the sample data set, contains 1,014 unique longitude values or 1,002
unique latitude values in the data component, and a corresponding number of unique values
representing the unique positions in the positions component. The values in the positions
component are extracted with an Extract module and sent to a Compute module where the x
component is extracted from the position vector, making it a scalar.

Part III.

The output from the Compute at the end of Part II, values representing the
unique positions in the positions component of the sample data set, is sent both to an Inquire
module and to the first input tab of a Select module. The Inquire module determines the
number of items in the data component of this data set. The output of Inquire is ‘1,002’ for
latitude and ‘1,014’ for longitude, and is a scalar value representing the number of unique values
in each sample data set, since the invalid (duplicate) items have been removed. Note that due to
the numbering conventions used in DX, these items are counted starting at ‘0’, so that position
‘1,001 in the sample latitude data set, and position ‘1,013’ in the sample longitude data set,
correspond to the last items in each.

The output of Inquire is sent to a Compute module which executes the
expression a-2. This is because we want to drop the last unique position in the list and replace
it with the last position value from the input data with location.general header file so that
our interpolated points cover the whole ship track. This results in a value of ‘1,000 for latitude
and ‘1,012’ for longitude, which is sent as the second input tab (‘end’) of an Enumerate
module. The first input tab (‘start’) of the Enumerate module contains the value ‘0’, the
second input tab (‘end’) contains the output from Compute, and the third input tab (‘delta’)
contains the value ‘1’. The Enumerate module creates a list of numbers beginning at ‘start’
and ending at the value sent from Compute, with increments of ‘delta’ between each item. This
list corresponds to the positions of the items in the data set of unique latitude or longitude values
with the last item removed.

The duplicate values were determined by the MarkDuplicate.net macro by
comparing each value to the value immediately following. Therefore, the first longitude or
latitude value in the data set will always be maintained, but the last value will be removed if it is
a duplicate of the second to last value. However, in order for the interpolation to proceed
properly, it is imperative that the very first and last positions of the data set are maintained. This
ensures that the duplicate values always have one value preceding and one value following from
which new values can be interpolated. In order to keep the last value and still maintain the actual
number of unique values, the last position will be removed from the normalized data set in order
to ‘make room’ for the very last position from the original data set.

The Select and List modules perform the task of discarding the last unique
position and replacing it with the position immediately before the last position.” For the sample
data set this is the 2,046™ position. The output of Enumerate is sent to the second input tab
(‘items to select’) of the Select module. The first input tab of Select (‘object to select
from’) is the one-dimensional vector of unique positions sent by the Cbmpute module at the end

F

i



15

of Part II. The Select module uses the list of position numbers from Enumerate to select
the corresponding values from the vector of unique positions. The last item, corresponding to
position 1,001 or 1,013, respectively, of each data set is not selected, because the last item in the
list from Enumerate is ‘1,000” or ‘1,012’, respectively. There are now 1,001 unique positions
corresponding to the sample latitude data set, and 1,012 unique positions corresponding to the
sample longitude data set. The Select module sends this set of positions to the first input tab
of to a List module. The second input tab contains the value ‘2,046’ received from the
Compute (a-I) module in Part I, and corresponds to the position of the last value in the original
latitude or longitude data set. List appends the value ‘2,046’ to the list of unique positions,
resulting in a list of 1,014 or 1,002 positions.

An Extract module receives the latitude orilongitude data set with the duplicate
values removed from the Include module in Part II, and sends the data component to the
fourth input tab (‘data’) of a Construct module. The first input tab (‘positions’) of this
Comnstruct module contains the output of List which is a list of valid position numbers. The
output of Construct is a field of irregular positions with regular connections, and the data
component contains the unique positions and their associated latitude or longitude values, with
the last unique value removed and replaced by the last value from the original data set. This
field is sent to the second input tab (‘map to be used’) of a Map module. An additional
Construct module receives the value ‘2,046’ from the Inquire module in Part I. The first
input tab (‘origin’) of this module is set to ‘0’, while the second (‘delta’) is set to ‘1’. The output
is a field with regular connections which has a positions component consisting of 2,047
positions, starting at ‘0’, and ending at ‘2,046’. This field is sent to the first input tab (‘field to
be mapped’) of the Map module.

The Map module steps through each position in the ‘field to be mapped’ and
looks up the corresponding position in the ‘map to be used’. This means that each position
number in the field containing 2,047 positions is looked up in the positions component of the
field containing the unique positions and data values. If a corresponding position exists, the data
value (longitude or latitude) for that position is associated with it. If a corresponding position
does not exist, a data value is interpolated for that position. The procedure is a linear
interpolation that utilizes the unique value immediately before and immediately after any series
of duplicate values to calculate appropriate new values that are equally spaced between the two
original unique values. For example, if there were only one duplicate value, the replacement
value would be the average of the two neighbouring unique values. The 2,047 positions are all
connected, so that when a corresponding position is not found in the ‘map to be used’ then the
nearest connected position that does contain corresponding positions and data in the ‘map to be
used’ will be used to interpolate a new data value. The result is a field that contains unique
longitude or latitude values for each of the 2,047 positions. This field is returned to the
ValidShipTrack.net program.

5.1.2 The MarkDuplicate.net macro

At the end of part I of the RidDuplicate.net macro, output is sent to
MarkDuplicate.net (Appendix Fig. 3), which checks the data for duplicates and returns a
vector of ‘1’s and ‘0’s indicating which records are duplicates (‘1’s) and which are unique (‘0’s).

K

=%



16

The first Input module contains the data component (latitude or longitude
values) output from the Extract module in part I of the RidDuplicate.net macro. This
is sent to two Select modules as the first input tab of each. The second input tab contains a
value specifying which item of the data component to select. These instructions are obtained via
the second Input module and the ForEachN/Compute modules.

The second Input module contains the value 2,046’ output from the Compute
(a-1) module in part I of the RidDuplicate.net macro, which is the position number of the
last (2,047") value in the original data set. This value is sent to the ForEachN module, which
initiates an iteration starting at ‘1’ and ending at ‘2,046’. Each count is sent both to a Compute
module and to the second Select module. The Compute module subtracts 1 from each count,
effectively initiating a new iteration which starts at ‘0’ and ends at ‘2,045’. Each count from this
iteration is sent to the first Select module. The iterations sent to each Select module are the
instructions which specify which record to select for comparison. Therefore, as the count sent to
thé first Select module (‘0’ to ‘2,045%) is always one count below that sent to the second
Select module (‘1’ to 2,046’), each latitude or longitude value selected from the data set will
always be compared to the value immediately following.

The output of both Select modules is sent to a Compute module, which runs a
check to see if the first value is equal to the second value. If this is true, then a value of ‘1’ is
returned, while if it is false, a value of ‘0’ is returned. This comparison takes place for each pair
of counts received by the Select modules. The List, GetLocal and SetLocal modules
then work together to create a list of these ‘1’s and ‘0’s (Table 2). Each time one iteration is
completed, GetLocal and SetLocal work in tandem to place and retrieve the list from the
cache, while Liist adds actual values to the list. The ‘initialize’ input argument in GetLocal
is set to ‘0’, thereby ensuring that only the last value of any set of duplicates is flagged with a
‘1’. Once all items in the data component have been processed, this list is sent back the
RidDuplicate.net macro.

5.2 The MakeBottomDepth.net program

»  The MakeBottomDepth.net program extracts the bottom depth values from
the positional file using three modules called Import, Slab, and Export (Fig. 16 &
Appendix Fig. 4).

The Import module imports location.general and sends it to a Slab
module, which extracts the bottom depth column (position=6), making a new field with a data
component consisting of only bottom depth. The connections are now connecting 2,047 x 1
positions. This field is output with the Export module and called Bot tomDepth . dx.

location.generalymml) MakeBottomDepth.net mumBottomDepth.dx

Fig. 16. Overview of the MakeBottomDepth.net program.



17

5.3 The MakeNewBottomDepth.net program

Occasionally the acoustic logging equipment fails to detect the bottom depth and
instead records a zero in the data file. The MakeNewBottomDepth.net program replaces
these values with interpolated values by a process similar to the normalization and interpolation
process in the ValidShipTrack.net program (Fig. 17).

BottomDepth.dx MakeNewBottomDepth.net mmm) NewBottomDepth. dx

Fig. 17. Overview of the MakeNewBottomDepth.net program

The MakeNewBottomDepth.net program consists of three sections
(Appendix Fig. 5). Section A creates a one-dimensional array containing all depth values,
Section B removes all the zeros, and Section C interpolates the missing values and exports the
new field.

Section A.

An Import module sends BottomDepth.dx to two modules, Extract and
Inqguire. The Extract module sends the data component to the fourth input tab (‘data’) of a
Construct module. The Inguire module determines the number of positions in each
dimension and returns a two- dimensional vector (a 2-vector) with a value of [2,047 1]. This 2-
vector is then sent to a Compute module, which extracts the first component (‘2,047°), and
sends this number to the third input tab (‘count’) of the Construct module. The Construct
module creates a field using the inputs in ‘data’ and ‘count’ as arguments. The resultant field
contains a positions component that describes a one-dimensional array of 2,047 items, a
connections component that connects the items, and a data component consisting of bottom
depth values.

Section B.

The output from Construct is sent to an Include module, which selects all
bottom depth values greater than 10.0, thereby excluding the zeros. Two Extract modules
extract the positions and data components from the selected set and sends them to an additional
Construct module, which creates a new field containing only the non-zero bottom depth data
and their associated positions.

Section C.

A Map module receives the output from Sections A and B. The field containing
all depth values output from Section A is fed into the first input tab (‘input’) of Map, while the
second input tab (‘map’) receives the field containing only the non-zero depth values from
Section B. Each item in the positions component of the input field (all depth values) is looked
up in the positions component of the map field (non-zero depth values). The corresponding



18

bottom depth values are looked up, and values are linearly interpolated from the neighbouring
values for those values that were originally zero, in the same way that positions were interpolated
in the RidDuplicate.net macro. The interpolated values are used to replace the zeros in
the data component of the input field. The result is a field with 2,047 positions and a non-zero
bottom depth value for each position, called NewBot tomDepth . dx.

5.4 The ShipTrack3D.net program

The field ShipTrack.dx, output from the ValidShipTrack.net
program, has a data component consisting of an array of two dimensional vectors (2-vectors)
containing latitude and longitude values corresponding to each ping. The ShipTrack3D.net
program creates a three-dimensional positional structure. that associates depth with each
latitude/longitude location by declaring the 2-vector field as a 3-vector field (Fig. 18 & Appendix
Fig. 6).

ShipTrack.dx is imported by an Import module and sent to an Extract
module, where the positions component is extracted from the field. A Compute module
declares the latitude/longitude pairs which are the data component of this field as 3-vectors using
the expression a.x, a.y, 0. An Export module exports this field as ShipTrack3D.dx., an
array with three columns, x, y, z, where x = the longitude values, y = the latitude values, and z =
the depth values (all zeros). This field shows the ship track on the surface of water (depth=0).

ShipTrack.dx mm ShipTrack3D.net mmm) ShipTrack3D.dx

Fig. 18. Overview of the ShipTrack3D.net program

5.5 The MakeCurtain.net program

The MakeCurtain.net program associates each acoustic density value to its
proper latitude/longitude/depth location. By displaying the connections between these data
points and shading the resultant image, the program creates a ‘curtain’ of depth values
corresponding to the path of the acoustic beam as the vessel moves along the transects (Fig. 19).
The header file ShipCurtain.dx describes the three-dimensional positional structure of the
widow rockfish acoustic data (Fig. 20). This file is created in a text editor, and defines five
object definitions, with each definition consisting of various clauses. A total of five objects are
defined, with the first four objects used to define the last object (Table 3).

The MakeCurtain.net program imports the files ShipCurtain.dx and
B.general using two Import modules (Appendix Fig. 7). The positions and connections
information for the acoustic density data is contained in ShipCurtain.dx, while

ShipCurtain.dx \
B.general /

MakeCurtain.net mmm) Curtain.dx

Fig. 19. Overview of the MakeCurtain.net program.



19

object 1 <class array type float rank 1 shape 3 items 2047 data file
ShipTrack3D
object 2 class regulararray count 500
origin 0.0 0.0 =75.0
delta 0.0 0.0 -0.5
object 3 productarray
term 1
term 2
object 4 class gridconnections counts 2047 500

object ‘field’ class field

component ‘positions’ 3

component ‘' connections’ 4

end -

Figure 20. The ShipCurtain.dx header file.

Table 3: Object descriptions in ShipCurtain.dx

Object Name Description

Object 1 Defines an array of 2047 items of type float, 3-D vector; with longitude, latitude and
depth(=0). The data used to populate this array are from the array file ShipTrack3D (the result
of ShipTrack3D.net)

Object 2 Defines a regular array with 500 items, with an origin of (0.0, 0.0, -75.0) and a delta of
(0.0, 0.0, -0.5); this array captures the structure of the depth component of the locational data.

Object 3 Defines a product array composed of 2 terms:

Term 1: refers to Object 1

Term 2: refers to Object 2
Therefore, this object contains both objects 1 and 2; each latitude/longitude pair with is
associated with 500 depth values

Object 4 Defines a set of 2047 x 500 connections on a regular grid

Field Defines a Field Object, consisting of positions from Object 3 and connections from Object 4

B.general describes and points to the actual acoustic density file. This information is merged
using a Replace module, which replaces the positions component from B.general with the
positions component from ShipCurtain.dx. The resultant field contains both the acoustic
densities (data component) and the locations (positions component), so that each acoustic density
value is associated with a latitude/longitude/depth location. An Export module exports this
field as Curtain.dx.

5.6 The MakeNewCurtain.net program

Acoustic data were collected for depths ranging from 75.0 m to 324.5 m below
the surface. Backscatter information for the entire range was recorded in the data file. For
locations where the bottom depth, defined as the substrate-to-water interface, was shallower than
324.5 m, the acoustic density file contained data from below the bottom. This is due both to
penetration of the substrate by the acoustic beam, and to multiple reflections from the surface
and the bottom that can lead to a second and higher bottom echo. Including the backscatter data
from below the bottom tends to obscure the final image, especially when it is rotated to different
angles. Therefore, for the purpose of creating the final image, we considered any acoustic
backscatter data originating below the bottom to be ‘nonsense’ values which should be removed



20

from the data set. These ‘nonsense’ values can be removed using the MakeNewCurtain.net
program, which ‘cuts off’ the 500 cell vector of acoustic density data where it reaches the actual
bottom depth (Fig 21).

The MakeNewCurtain.net program has three sections (Appendix Fig. 8).
Section A marks the acoustic density data from Curtain.dx as valid or invalid by comparing
each depth to the depths in the bottom depth file MakeNewBottom.net. Section B adds an
invalid positions component to the Curtain.dx field and exports it as NewCurtain.dx.
Section C collects information from Sections A and B to be presented in the image.

Curtain. dx\

MakeNewCurtain.net - NewCurtain.dsx
NewBottomDepth. dx”

Fig. 21. Overview of the MakeNewCurtain.net program.

Section A.

The files NewBottomDepth.dx and Curtain.dx are imported using two
Import modules. These files are the output of the MakeNewBottomDepth.net and
MakeCurtain.net programs. The bottom depth values from NewBottomDepth.dx are
made negative using a Compute module and then sent to the second input tab (‘Ocean Depth’)
of the ValidDepth module. An Extract module extracts the positions component from
Curtain.dx, and sends the depth values to the first input tab (‘Position Array’) of the
ValidDepth module. The ValidDepth module is a specially written runtime loadable
module for this project. It is easily created using the Module Builder tool that comes with the
standard DX tool kit. This module ‘cuts off’ the 500 cell vectors with the bottom depth values
and compares each bottom depth value from the array in the ‘Ocean Depth’ input to each of the
500 depth values in the corresponding item from the 2,047 x 500 ‘Position Array’ input. If the
acoustic sample is above bottom, a value of ‘1’ is put into an array. If the acoustic sample is
below bottom, a value of ‘0’ is put into the array. The output of the ValidDepth module is an
array of 2,047 x 500 items, where the items consist of depth indicators in the form of ‘0’s and
‘1’s. Note that although ‘0’s and ‘1’s represent ‘valid’ and ‘invalid’ items, respectively, these
values are actually reversed because the bottom depths are negative.

Section B.

The output from the ValidDepth module is sent to an Options module,
which adds a dep attribute to force the data component of these values to be dependent on their
positions component. This ensures that each position is associated with either a valid or invalid
indicator. A Compute module is used to reverse the ‘0’s and ‘1’s to account for the negative
depth values input into the ValidDepth module. A second Compute module changes the
number format from integer to byte because the invalid positions component uses byte format.
The byte data then is passed to the Options module to add a dep attribute to the positions
component. The resulting field is sent to the Replace module, whose function is to take a

3

.



21

component from a source field and place it in a destination field. In this case, the source field is
the data component of the list of ‘1’s and ‘0’s that has been processed by the Options and
Compute modules. The destination field is sent from the Input module, and has a data
component containing acoustic density data and a positions component containing
latitude/longitude/depth data. The data component from the source field is placed in a new
component in the destination field called invalid positions, thereby marking the acoustic
backscatter values associated with depths below the bottom as invalid. The export module
exports this field as NewCurtain.dx.

Section C.

The field NewCurtain.dx from Section B is sent to an Include module,
which selects the data which has been marked as valid, and passes it to a Compute module.
Compute applies a log scale to the data and sends it to the AutoColor module, which applies
a standard blue to red colour scheme to the data. The output of AutoColor is sent to the first
input tab of the Collect module, and represents the ‘curtain’ of data, corresponding to the path
of the acoustic beam above the ocean floor as the vessel moves along the transects.

The S1ab module receives the Curtain.dx field from the Import module in
Section A and extracts the first column, corresponding to the ‘top’ of the curtain and representing
the surface ship track. ShowConnections draws the connection elements for the extracted
data, and sends the output to the Color module which applies the colour red to-the drawing.
The output of Color is sent to the second input tab of the Collect module and represents the
‘ship track.” The Collect module combines the ‘curtain’ image with the ‘ship track’ image and
sends the output to the Shade module which applies a smooth shading to the image based on the
quad connections between the data points, assuming a lighting source at the camera position.
The Scale module reduces the height of the image before it is displayed so that the final image
fits in a rectangular display window with a reasonable aspect ratio (Fig. 22).

Fig. 22. Image of ‘curtain’ cut off by the bottom depth values.



22

5.7 The MakeVolume.net program

The MakeVolume.net program employs a distance weighted interpolation to
create a three-dimensional image of the fish aggregation (Fig. 23 & Appendix Fig. 9). The
interpolation method involves ‘stacking’ 500 horizontal 40 x 40 grids in the z dimension, from
the top to the bottom of the sample range (-75 m to -324.5 m), with 0.5 meters between each
grid. The interpolation uses a simple nearest neighbour logic. Each 40 x 40 grid has 41 x 41
vertices, and each vertex is assigned a value based on a weighted average of the 30 nearest points
within a radius equal to three times the spacing between the vertices. The weighting is inversely
related to the distance. The interpolation for each grid is in two dimensions, but by ‘stacking’
the 500 interpolated grids in the z dimension, a three-dimensional volume effect is created.

The MakeVolume.net program imports NewCurtain.dx with an Import

-~ module, which sends the field to the LayerByLayerRegrid.net macro (Appendix Figs. 9

& 10). This macro creates the grids and performs the interpolations. The resultant grids are

‘stacked’ in the z dimension using the stack module, and exported with an Export module as
Volumel.dx.

NewCurtain.dx ‘ MakeVolume.net

Fig. 23. Overview of the MakeVolume.net program.

-Volumel .dx

5.7.1 The LayerByLayerRegrid.net macro

The LayerByLayerRegrid.net macro creates a 40 x 40 rectangular grid
that covers the survey area for each 0.5m depth increment in the acoustic density file, and
performs an interpolation using a weighted average of 30 nearest neighbours to populate the cells
in each grid. The interpolated density layers will be referred to as isosurfaces. The macro has
three parts (Appendix Fig. 10).

Part I

An Input module accepts the field NewCurtain.dx sent from the Import
module of the MakeVolume.net program. The field is sent both to the first input tab of a
Slab module and to an Inquire module, which works with a Compute and a ForEachN
module to create a counter. The Inquire module counts the number of connections in eact
dimension and, for the sample data set, returns [2,047 500]. The Compute module subtracts
from the count in the y dimension to get ‘499’, and the ForEachN module is then initialized t
start counting at ‘0’, incrementing by 1, until a count of ‘499’ is reached. Each iteration is ser
to the third input tab of the S1ab module.

“ ) -



23

For the first iteration, ForEachN sends the value ‘0°, and the Slab module
extracts the first item of each record from NewCurtain.dx. The extracted data are a ‘slice’
corresponding to the ‘top’ of the curtain representing the acoustic beam., and consists of 2,047
latitude/longitude values with a constant depth of —75 m, and the associated acoustic density
values. The latitude/longitude values are computed as positions in space using three modules,
Mark, Compute, and UnMark. The ‘slice’ of data is sent to the Mark module and ‘marked,’
which means that the data component is replaced with the positions component, after the original
data component is stored in a temporary new component. The resultant ‘marked’ field is sent to
a Compute module. The temporary replacement is necessary because Compute modules can
only work on the data component of a field. The Compute module then calculates the data
items as positions in space, and the UnMark module ‘unmarks’ the field, which means that the
items are moved back into the positions component and the briginal data component is restored.
The resultant field is sent to a Remove module, where the connections component is removed.
The output of Remove is sent to an Tnclude module where all the valid data are selected. The
valid -data at each depth is then sent to the first input tab of the Regrid module. The 40 x 40
grid (41 x 41 vertices) is constructed by using 1/40 of longitude and latitude ranges. The two-
dimensional grid is the same for all depths. This process is completed for each iteration of the
counter, until the count reaches ‘499’ and S1ab has extracted the last item of each record.

Part II

The ShowBox module receives the field NewCurtain.dx from the input box
in Part . This module creates a set of lines that define a boundary around the positions
contained in the NewCurtain.dx field. The output of ShowBox is sent to an Extract
module which extracts each dimension of the positions component and sends it to a Compute
module. Each dimension is converted into one-dimensional vector. Each vector is sent to a
Statistics module.

The first Statistics module extracts the maximum value in the z dimension (-
75 m) of the boundary box and sends it to the first input tab (‘a’) of a Compute module. The
second input tab (‘b’) of the Compute module receives its value from the ForEachN module
in Part I, which is counting from ‘0’ to ‘499’. The Compute module executes the expression
a - b* 0.5 for each iteration until the count reaches ‘499°. The output of Compute contains the
values [-75.0, -75.5, -76.0, ...., -324.5] and is used to set the vertical position (depth) of each
two-dimensional interpolated grid.

The second and third Statistics modules extract the minimum and maximum
values in the x dimension and y dimension of the boundary box, respectively, and send them to
several Compute modules for processing.

The minimum values for both the x and y dimensions are received by a Compute
module, which pairs them up, and sends them to the first input tab of a Construct module.

The first input tabs (‘a’) of two Compute modules receive the minimum x and y
values, while the second input tabs (‘b’) receive the maximum x and y values. Both the x and the
y Compute modules execute the expression (b — a) / 40. This means that the total distance

é

o



24

along both the x and y dimensions of the boundary box is divided into 40 equal parts, so that
there will be 40 squares in the x-y grid, with a distance of (b — a) / 40 between each position.
The output of the x and y Compute modules are paired with an additional Compute module,
which sends the result both to the second input tab in the Construct module and to a further
Compute module.

The Construct module creates a field of regular connections and regular
positions using the information received from the x and y Compute modules. The first input tab
specifies the origin of the grid (minimum x and y values). The second input tab sets delta, the
distance between the positions. The third input tab is the number of positions in each dimension
(set to 41, 41). The resultant field, which describes the grid, is sent to the second input tab of the
Regrid module. )

The final Compute module executes the expression 3*mag(a) which calculates a
value_which is three times the magnitude of the distance between positions in the grid, and
specifies the maximum distance from any point that a nearest neighbour will be considered in the
interpolation. This value (0.0034003747 for the sample data set) is sent to the fourth input tab of
the Regrid module.

Part III

The Regrid module maps scattered points onto a grid, using a number of nearest
neighbours to assign each grid square a data value. Four input parameters have been set (Table
4). The output of Regrid is a grid with each vertex assigned an acoustic density value based on
a nearest neighbour interpolation. Each time ForEachN executes, a new interpolated grid is
created. Each grid is stored in memory until all 500 have been created. The CollectSeries
module defines a template by which each grid is placed in a series with an associated position.
The placement of each grid into the series occurs in the Append/SetLocal/GetLocal loop
and the position of each grid is set by the Compute module in Section B (each position
decreases by -0.5m, starting at —75m).

. The GetLocal module works with the SetLocal module to place objects in
and retrieve them from the cache. The first grid is stored in the cache by the SetLocal module
while the second grid is created. A new grid is created, and then the cached grid is retrieved by
the GetLocal module and appended onto the new grid with the Append module. Then the set of
two grids is stored in memory with SetLocal while a third grid is being created, and the two
grids are then retrieved by GetLocal and appended to the new third grid, and so on, until all

Table 4: Arguments for the Regrid module.

Input Number Description Value
1 A Field with positions to Regrid (scattered | A horizontal ‘slice’ of the
points) acoustic beam (Section A)
2 A grid to use as a template on which to map the | A 40 by 40 grid (Section B)
scattered points
3 The number of nearest neighbours 30
i 4 The maximum radius from a grid point that a | .0034003747 (Section B)

nearest neighbour can be found




25

500 grids are created and appended. Once the counter reaches ‘499’, the entire series (500 grids)
is sent back to the MakeVolume .net program, where the series is ‘stacked’ in the z dimension
and exported as volumel . dx.

5.8 The MakeBathymetryNewGrid.net program

The MakeBathymetryNewGrid.net program creates a bathymetric surface
called Bathymetry.dx that incorporates data from the NewBottomDepth.dx file, raw
bathymetry file, and ShipTrack.dx file (Fig. 24). Incorporating the bottom depth values
from NewBottomDepth.dx with those from the bathymetry file ensures that the relevant
acoustic data does not fall below the interpolated surface, as the bottom depth value for each
ping in NewBot tomDepth . dx is the actual depth at which the ping hits the bottom.

e 32 Range.general

~

ShipTrack.dx - MakeBatymetryNewGrid.net -Bathymetry.dx

NewBottomDepth.dx ,

Fig. 24. Overview of the MakeBathymetryNewGrid.net program.

The MakeBathymetryNewGrid.net program has three sections (Appendix
Fig. 11). In section A, the bathymetry file is processed and output as a field with a positional
component containing latitude and longitude values and a depth component, with all the records
corresponding to zero depths excluded. Section B creates a new field with a positions
component containing the latitude and longitude values from the bathymetry file and
ShipTrack.dx, and a data component containing the depth values from the bathymetry file
and NewBottomDepth.dx. Section C outputs these values as three-dimensional vectors in a
field called Bathymetry.dx, and creates an image of the bathymetric surface showing the
triangular connections between each vector.

Section A.

An Import module imports the bathymetry file. The Mark module ‘marks’ the
positions component (latitude, longitude, and depth values), and sends the resultant field to two
Compute modules. The first Compute module declares the latitude and longitude values as
two-dimensional vectors. The output is sent to the UnMark module which returns the latitude
and longitude values to the positions component. The second Compute module declares the
depth values as a scalar. A Replace module receives the output from the two Compute
modules and places the scalar depth values in the data component of the field containing the two-
dimensional longitude and latitude position vectors. The source field (first input tab) is the
output from the second Compute and has a data component containing depth values, while the
destination field (second input tab) is the output from UnMark, containing latitude and longitude
values. Replace takes the data component of the source field and places it in the destination

3

=3



26

field, naming the new component ‘depth’. The new field has depth values in the data
component, and latitude and longitude values in the positions component. An Include module
selects all depth values greater than or equal to 1.0, thereby excluding the incorrect zero depth
values found in the data set.

Section B

The output from the Include module in Section A is sent to a Compute
module where the depth values are made negative with the expression -a. The positions and data
components are then extracted from the field using two Extract modules and sent to two
List modules. Two Import modules import the fields ShipTrack.dx and
NewBottomDepth.dx, which were created from the positional data file using the
ValidShipTrack.net and MakeNewBottomDepth.net programs (Appendix Figs. 1 &
5). -An Extract module extracts the positions component (normalized latitude and longitude
values) from ShipTrack.dx and sends it to the first List module. A second Extract
module extracts the data component (normalized depth values) from NewBottomDepth.dx
and sends it to the second List module. Two lists are now created. One list (positions)
contains the latitude and longitude values from the bathymetry file followed by those from
ShipTrack.dx, while the other list (data) contains depth values from the bathymetry file
followed by those from NewBottomDepth.dx. The positions list and the data list are sent to
a Construct module, which combines them to form a new field, with a positions component
from the positions list, and a data component from the data list. A Connect module is then
used to create triangular connections between the positions.

Section C

The output from Connect is sent to a Mark module which ‘marks’ the positions
component and sends the field to the first input tab of a Compute module. The second input tab
receives the data component (depth values) from the output of Connect. These inputs are
associated and defined as three-dimensional vectors with the Compute expression a.x, a.y, b,
where a refers to the first input, and b refers to the second input. An UnMark module moves the
output of Compute back to the positions component where it now consists of latitude, longitude,
and depth (x, y, z) values. The field is exported with an Export module as bathymetry.dx.
The triangular connections are made visible with the ShowConnections module. The scale
of the image is adjusted to 1/1,000 in the z dimension using a Scale module with the expression
x,y,z=110.001. The bathymetry image is output using the Tmage module (Fig. 25).

"t Fig. 25: Bathymetry with connections made visible.



27

5.9 The cutVolume.net program

The CutVolume.net program removes any data originating below the bottom
from the three-dimensional image of the fish aggregation created by the MakeVolume.net
program, so that the fish aggregations are only visible above the bathymetric surface (Fig. 26 and
Appendix Fig. 12). Section A creates a new field called Volume?2 .dx which is the same as
Volumel.dx but which has had the data which originate below the bathymetric surface
removed for each position. Section B creates the new three-dimensional image of the fish
aggregation.

Bathymetry.dx \
Volumel.dx I

CutVolume.net |mmmlp Volume2.dx

T BathymetryCutoff.net

Fig. 26. Overview of the CutVolume.net program.

Section A

Two Import modules import the fields Bathymetry.dx and Volumel .dx
and send them to the BathymetryCutoff.net macro which returns a field consisting of 500
grids, with latitude, longitude, and depth (x, y, z) values in the positions component, acoustic
values in the data component, and an invalid positions component called bathy_index (Fig.
38). A Stack module stacks the grids in the z dimension (depth) and sends the resultant field to
an Include module. The Include module selects all the data that has valid positions and
sends the result to a Mark module, where the bathy_index component is marked. A second
Include module selects all the data items where bathy index has a value of 1,
corresponding to valid depths, so that the depths below the bathymetric surface are excluded.
The output js unmarked with an UnMark module. The output of UnMark is sent both to the
IsoSurface module for further processing, and to an Export module where it is exported as
Volume2.dx. The IsoSurface module uses its default setting, the data mean value, to
create an isosurface, or interpolated density layer, and sends the result to a Collect module.

Section B

The connections in the Bathymetry.dx file are made visible with the
ShowConnections module, and sent to the first input tab of a Collect module. The
bathymetry is coloured grey and shaded using Color and Shade modules, and sent to the
second input tab of the Collect module. The Collect module sends them as.one group to a
second Collect module, which also receives the output of the IsoSurface module in
Section A. The isosurface (interpolated density layer) and the bathymetry are then displayed
after being scaled in the z dimension using a Scale module (Fig. 27). -



28

Fig. 27. An isosurface displayed on top of the batﬂymetry.
5.9.1 The BathymetryCutoff.net macro

The BathymetryCutoff.net macro has three parts (Appendix Fig. 13). In Part I, a
field is created which contains positions extracted from Volumel .dx and depths interpolated
from Bathymetry.dx.

Part I

Two Input modules receive the Volumel .dx and Bathymetry.dx fields
from Section A of the CutVolume.net program. The Volumel.dx field is sent to a
S1ice module, while the Bathymetry .dx field is sent to a Mark module.

The S1ice module drops the z dimension (depth) from the positions component
of Volumel.dx and sends the resultant field to the first input tab(‘field to be mapped’) of a
Map module.

The Mark module marks the positions component of the Bathymetry.dx
field, and sends the resultant field to two Compute modules. The first Compute module
declares the latitude and longitude (x and y) values as two-dimensional vectors using the
expression a.x a.y. The output is sent to the UnMark module which returns the latitude and
longitude values to the positions component. The second Compute module declares the depth
values as scalar using the expression a.z. A Replace module receives the output from the two
Compute modules and places the scalar depth in the data component of the field containing the
two-dimensional position vectors. The first input tab (‘source’) contains the output from the
second Compute and has a data component containing depth values, while the second input tab

é

.



29

(‘destination’) contains the output from UnMark, containing latitude and longitude values as
positions. Replace takes the data component of the ‘source’ field and places it in the
‘destination’ field, naming the new component ‘data’. The new field has depth values in the data
component, and latitude and longitude values in the positions component. The output of
Replace is sent to the second input tab (‘map to be used’) of the Map module.

The Map module now interpolates depth values for each position in the ‘field to
be mapped’ using the positions and depths in the ‘map to be used.” The resultant field therefore
contains positions from the Volumel.dx file and depth values interpolated from the
Bathymetry .dx file.

Part I1

The Volumel .dx field from Section A of the CutVolume.net program is
sent_to both an Inquire module and to the first input tab of a Slab module. The Inquire
module works with a Compute module and a ForEachN module to set up a counter to control
500 iterations (‘0’ to ‘499’). Each count is sent to the third input tab of the S1ab module. The
Slab module extracts each grid layer from Volumel.dx and sends the resultant fields to a
Mark/Compute/UnMark/Replace group of modules which performs the same function as in
Part I. For each grid a new field is created, and the latitude and longitude values (x, y) values are
declared as two-dimensional vectors and placed in the positions component, while the depth (z)
values are declared as scalar and placed in the data component of the field. For each grid layer
that is processed, the depth (z) values will be a constant value, corresponding to the position of
each layer in the z dimension.

Part III

The first input tab (‘a’) of a Compute module receives each output from the
Replace module at the end of Part II, a field containing latitude/longitude positions and
interpolated depths for each iteration of the ForEachN module. The second input tab (‘b’) of
the Compute module receives the output of the Map module at the end of Part I, a field
containing the positions of the two-dimensional grid and interpolated depths. Each field contains
exactly the same positions and connections. The Compute module executes the expression
a>(b+1.0))?1:0. This expression takes a depth from ‘b’, adds a value of ‘1.0’, and asks whether
or not this sum is less than the corresponding depth value from ‘a’. If this is true, a value of ‘1’
is returned; otherwise ‘0’ is returned. This ensures that the height at which the volume is ‘cut
off” is always 1.0 unit higher then the interpolated bathymetry, so that the bathymetry is always
below the ‘cut off’ depth. The list of ‘1’s and ‘O’s are placed in a new component named
bathy_ index and the entire field is sent to the second input tab of an Append module.

An Extract module extracts the data component of the scalar depth (z) values
from the second Compute module in Part II. A Select module selects the first z and sends it
to the third input tab of the Append module. For each grid layer that is processed, the depth (z)
values will become a single value, corresponding to the position of each layer in the z
dimension.Each time the ForEachN module in Part II executes, a new grid is created. Each
grid is stored in memory until all 500 have been created, in the same way as in Part III of the

H
i



30

LayerByLayerRegrid.net macro. The CollectSeries module defines a template by
which each grid is placed in a series with an associated position. The placement of each grid into
the series occurs in the Append/SetLocal/GetLocal loop, and the position of each grid is
defined by the z value in the third input tab of Append.

Once the ForEachN counter in Part II reaches ‘499’, the entire series (500 grids)
is sent back to the CutVolume .net program, where the series is ‘stacked’ in the z dimension
and exported as volume?2 . dx.

5.10 The Iso.net program

The Iso.net program organizes and displays the elements of the final image.
This program has six ‘pages’ which correspond to the objects which are displayed in the final
image. Pages are used in DX to compartmentalize sections of larger programs so that they are
easier to follow. Each page is linked to other pages through transmitters and receivers. A
transmitter assigns a certain name on one page and sends its object to a receiver with the same
name on another page. This allows input and output tabs to be connected without an actual wire
connection between modules.

In order to modify the final image, the user must change the parameters that are
inputs for the Iso.net program. Interactors, which are contained in Control Panels, are interactive
devices that can be used to manipulate the inputs to a visual program. Interactor stand-ins are
used in the VPE to indicate which input to a module a given interactor is to control. There are
six interactors that can be used to modify the final display of the widow rockfish visualization
(Fig. 28).

PContwolPanel Wl Interactor Description
Isosurface Isosurface value: Isosurface value | Used to specify the value(s) for any
off J {-80} isosurface(s) to be displayed
Isosurface Used to turn on/off the isosurface(s) set
ShipTrack under ‘Isosurface value’ parameter
on - ] ShipTrack Used to turn on/off a line that depicts the
ship track
LargerData B =
MinData : MinData Used to set a minimum value (log scale)
on = o« -250 p for data to be displayed on the ‘curtain’
Partial Curtain LargerData Used to turn on/off the data values above
off 5 i the ‘MinData’ setting
- 1 Partial Curtain Used to turn on/off a partial transparent
Close Halp . curtain

Fig. 28(. A control panel containing six interactors which can modify the display of an image.

3
Y §
!




31

5.10.1 The Iso page

The Iso page allows the user to create one or many isosurfaces which give the
interpolated acoustic densities for selected depths. These then are displayed in the final image
(Fig. 42). An Import module imports Volume?2 .dx and sends it to an Include module
where all the data are selected. The output of Include is sent to a Compute module which
computes a log scale for the data and sends the output to an Isosurface module and to a
ScalarList module. The iso-value to be used for computing the isosurface is set by the user
in the ScalarList control panel, where one or a range of values can be entered. The
1sosurface 1s coloured using the ColorMapUsed receiver, which received its input from the
corresponding transmitter on the Curtain Data page. After colouring, the isosurface is sent to a
Switch module which determines whether the isosurface information will be passed through
the IsoSurface_3D transmitter to the image page. The user can control the Switch module
by turning the isosurface on or off in the Selector module. If the isosurface is turned on, it is one
of the objects which is received and collected for the final image on the Imaging page.

\n"isual Program Editor: F:/fish/lso_net
J File Edit Execute Windows Connection Options Help

Categories: 1503D CurtsinData | ShipTrack | SubCurtain | largeData |...|

ALIGIE S SRk

A
nnotation
XLink

Debugging

ish

low Control
mport and Export
nteractor
nterface Control
Macros

( ALL ) Tools:

mbientLight -
ppend | _}
rrange
rrangeMember
ttribute
utoAxes
AutoCamera
AutoColor

/

Fig. 29. The Iso page of the Iso.net program.



32

5.10.2 The Curtain Data page

The Curtain Data page allows the user to choose the colour scheme for the final
image, and also converts the data from NewCurtain.dx to a logarithmic scale for use by the
ShipTrack page (Fig. 30). An Import module imports NewCurtain.dx and sends it to a
Compute module which applies a logarithmic scale. The output of Compute is sent to the
LogCurtainData transmitter and to a ColorMap module. The ColorMap module allows
the user to define the colour map (colour scheme) to be applied to the data. This map is sent to
the ColorMapUsed transmitter and to a ColorBar module, which sets parameters for the
placement the legend in the final image. The output of the ColorBar module is sent to the
ColorCaption transmitter, which is received and collected for the final image on the Imaging

page.

i

wi: File Edit Execute Windows Connection Options Help

Categories: 1503D lmrtainData ShipTrack | SubQurtain | LargeData | ...|

|

ALL ) Tools:

mbtenthght
ppend

rrange '
rrangekMember

B

tiribute
utoAxes
utoCamera
utoColor
utoGlyph
utoGrayScale
utoGrid
utoScale
Band
BandColors
BathymetryCutoff
Camera
Cappedlsosurfaceiac

£

Fig. 30. The CurtainData page of the Iso.net program.



33

5.10.3 The Ship Track page

The Ship Track page allows the user to display the surface track of the acoustic
vessel along the transects (Fig. 31). Data from NewCurtain.dx, which has been converted to
a logarithmic scale, is received from the Curtain Data page by the LogCurtainData receiver. The
data are sent to a Slab module, which extracts a ‘slice’ from the top of the ‘curtain’ of data.
The connections of the extracted slice of data are displayed using the ShowConnections
module and coloured white with the Color module. The output from the Color module is sent
to a Switch module which determines whether the ship track will be passed through the
ShipTrack transmitter to the Image page. The user can control the Switch module by
turning the ship track on or off in the Selector module. If the ship track is turned on, it is one
of the objects which is received and collected for the final imége on the Imaging page.

EVisual Program Editor: F-Zfish/lso.net

ok, File Edit Execute Windows Connection Options Help

Categories: is03D | mrminoata] ShipTrack  SubCurtain Q iargeData Imaging [

i *g
§ e = 1

Annotation
DXLink
Debugging

Fish

Flow Control
import and Export
interactor
interface Control
Macros
Realization
Rendering

By

{ ALL ) Tools:

AmbientLight
Append
Arrange 5
ArrangeMember
Attribute
AutoAxes
AutoCamera
AutoColor
AutoGlyph
AutoGrayScale
AutoGrid s
AutoScale — |
Band i
BandColors 2 {
BathymetryCutoff !
Camera s : :
Cappedisosurfacetdac
Caption
Categorize t
CategorySiatistics / ;
X o : P |

Fig. 31. The ShipTrack page of the Iso.net program.



34

5.10.4 The SubCurtain page

The SubCurtain page allows the user to create a ‘partial curtain’ of data,
incorporating the last 400 positions from the NewCurtain.dx file (Fig. 32). Data from
NewCurtain.dx, which has been converted to a logarithmic scale, is received from the
Curtain Data page by the LogCurtainData receiver. The data are sent to a S1ab module,
which extracts a ‘slab’ corresponding to the last 400 of the 500 positions on the ‘curtain.” This
partial curtain is sent to a Color module where it is coloured with the colour scheme from the
ColorMapUsed receiver. The output of Color is passed to a Switch module which
determines whether the partial curtain will be passed through the SubCurtain transmitter to
the Imaging page. The user can control the Switch module by turning the partial curtain on or
off in the Selector module. If the partial curtain is turned-on, it is one of the objects which is
received and collected for the final image on the Imaging page.

ﬂVisual Program Editor: f:/fish/lso.net

o File Edit Execute Windows Connection Options Help

Categories: Is63D | Qurtalnbata  ShipTrack { SubCurtain  largeData | fmaging |

-
Annotation
DXLink
Debugging

Fish

Flow Control
mport and Export
nieractor
nterface Control
hacros
Realization
Rendering

L

{ ALL } Tools:

AmbieniLight
Append ’
Arrange :
ArrangeiMember
Attribute

AutoAxes
AutoCamera
AutoColor
AutoGlyph
AutoGrayScale
AutoGrid

AutoScale

Band

BandColors
BathymetryCutoff
Camera
CappedlsosurfaceMaz
Caption

Categorize
CategoryStatistics 73

[

Fig. 32. The SubCurtain page of the Iso.net program.



35

5.10.5 The Large Data page

The Large Data page allows the user to set a minimum value for the data from
NewCurtain.dx to be included in the final image (Fig. 33). Data from NewCurtain.dx,
which has been converted to a logarithmic scale, is received from the Curtain Data page by the
LogCurtainData receiver. The data are sent to the first input tab of an Include module.
The second input tab of this module defines the minimum data to be used for display. This value
is set by the user with the MinData option in the ScalarList control panel. The output from
Include is sent to a Color module where it is coloured using the colour scheme in the
ColorMapUsed receiver. The output of Color is passed to a Switch module which
determines whether it will be passed through the LargeData transmitter to the Imaging page.
The user can control the Switch module by turning the large data on or off in the Selector
module. If the large data option is turned on, this object is received and collected for the final
image on the Imaging page.

ﬂ\iisul logr Editor: f:/fish/lso.net

1

o File Edit Execute Windows Connection Gptions ﬂelpl

e 1 ? = 5 ——
Categories: 15030 | CurtainData | ShipTrack | SubCurtain | targeData tmaging |

-
Annotation
DXLink
Debugging
Fish

Flow Controt
Import and Export
Interactor
Interface Control
Macros
Realization
Rendering

{ ALL YTools:

AmbientLight 1
Append -

Arrange
ArrangeMember
Attribute

AutoAxes
AutoCamera
AutoColor
AutoGlyph
AutoGrayScale
AutoGrid

AutoScale

Band

BandColors
BathymetryCutoff
Camera
CappedlsosurfaceMac
Caption

Categorize
CategoryStatistics

i/H 3 P

Fig. 33. The LargeData page of the Iso.net "prograrn.



36

5.10.6 The Imaging page

The Imaging page displays the final image (Fig. 34). A Collect module
gathers all of the objects sent by the five transmitters on previous pages in five corresponding
receivers. In addition, an Import module imports the bathymetry.dx file. The bathymetry
data are coloured grey and shaded using the Color and Shade modules, and sent to the
Collect module. The output of Collect is scaled in the z dimension using a Scale
module before being sent to Image and displayed.

sual Program Ed

e T s




37

6.0 THE IMAGE

The result of the visual programs is an image displaying the location and
distribution of widow rockfish along with the bathymetric surface of the survey area. Some
image parameters and a corresponding example figure are shown in Table 5 and Fig. 35.

There are a number of view options available in a DX Image window. The user
can pan and zoom around the object, rotate the image, set view angles and choose different
projections (e.g. orthographic) for image display. The image can also be saved in a number of
different formats.

The parameters in ScalarList can be continually adjusted to fine-tune the
visualization requirements of the user. The colours for the bathymetric surface and the colour
bar legend can also be adjusted to achieve the most effective display.

i An example of one of the final images produced for an entire micro-survey is
shown in Fig. 36. The ColorMap contained a maximum value of —7.0 and a minimum value of
—14.5. The MinData value in the control panel was set to —24, and only the LargeData parameter
was turned on. An additional page was added to Iso.net to display the track of the vessel as a
white line on the ocean bottom (Fig. 36). The bathymetry was also shaded with a different
colour. Various rotations were tested on the image so that the relationship of fish distribution
and surface features could be discerned.

Table 5. Settings in the control panel to create Fig. 36.

Interactor Setting Description

Isosurrface value Off Used to specify the value(s) for any isosurface(s)
to be displayed

Isosurface Nil Used to turn on/off the isosurface(s) set under
‘Isosurface value’ parameter

ShipTrack On Used to turn on/off a line that depicts the ship
track

MinData -24.0 Used to set a minimum value (log scale) for data

to be displayed on the ‘curtain’

LargerData On Used to turn on/off the data values above the
‘MinData’ setting

Partial Curtain Off Used to turn on/off a partial transparent curtain




38

Fig. 35: Areas of high acoustic density are made apparent on the ‘curtain’ of data.




39

7.0 PROCESSING OF ADDITIONAL DATA SETS

Other acoustic data sets may be processed, provided they are organized in the
form of positional, acoustic, and bathymetric data files, in the same manner as the data for this
study. The steps required for the processing of additional data sets are outlined below.

1) Create .general files for the positional, acoustics and bathymetric data files.

e Importing the data into a spreadsheet is a fast method of extracting the number of
records in the data files, plus the number of lines in the header.

2) RunvalidShipTrack.net
e Double-click on the Import module and type in the full path for the location of the
.general file name for the positional data.
- o Double click on the Export module and type in the full path for the resultant * .dx
NN i -
e Choose Execute Once from the Execute Menu.

3) Run MakeBottomDepth.net
e Double-click on the Import module and type in the full path for the location of the
.general file name for the positional data.
e Double click on the Export module and type in the full path for the resultant * . dx
file.
e Choose Execute Once from the Execute Menu.

4) Run MakeNewBottomDepth.net
e Double-click on the Import module and type in the full path for the location of the
* . dx file created in step 3.
e Double click on the Export module and type in the full path for the resultant * .dx
file.
-®  Choose Execute Once from the Execute Menu.

5) Run ShipTrack3D.net
e Double-click on the Import module and type in the full path for the location of the
* . dx file created in step 1.
e Double click on the Export module and type in the full path for the resultant *.dx
file,
e Choose Execute Once from the Execute Menu.

6) Run MakeCurtain.net
e Double-click on the first Import module and type in the full path for the location of
the ShipCurtain.dx file. Note that this file must be edited for EACH data set by
changing the number of items to reflect the number of records in the data set (Fig. 37).
If a data set contains different values for pelagic upper, pelagic lower, and pelagic
count, these values must also be reflected in the ShipCurtain.dx file, by setting the
- origin (pelagic upper) and delta (depth interval for each consecutive reading).

3

=



40

Fig. 37. Edits made to a ShipCurtain.dx file that contained 3412 records. Pelagic upper = 75,
delta = 0.5 m, pelagic lower =325, and pelagic count = 500.

object 1 class array type float rank 1 shape 3 items(3412)data file ShipTrack3D
object 2 class regulararray count 325
origin 0.0 0.0 -75.0
delta 0.0 0.0 -0.5
object 3 productarray
term 1
term 2

object 4 class gridconnections countsSOO

object ‘'field’ class field
component ‘positions’ 3
component ' connections’ 4
end

- o Double-click on the second Import module and type in the full path for the location
. of the .general file name for the acoustics data.

e Double click on the Export module and type in the full path for the resultant * . dx
file:

e Choose Execute Once from the Execute Menu.

7) Run MakeNewCurtain.net
e Double-click on the first Import module and type in the full path for the location of
the * . dx file created in step 6.
e Double-click on the second Import module and type in the full path for the location
of the * . dx file created in step 4.

e Double click on the Export module and type in the full path for the resultant * .dx
file.

e Choose Execute Once from the Execute Menu.

8) Run MakeVolume.net
e Double-click on the Tmport module and type in the full path for the location of the
© * . dx file created in step 7.

e Double click on the Export module and type in the full path for the resultant * . dx
file.

e Choose Execute Once from the Execute Menu.

9) Run MakeBathymetryNewGrid.net

e Double-click on the left Import module and type in the full path for the location of
the . general file for the bathymetry data.

e Double-click on the middle Tmport module and type in the full path for the location
of the * . dx file created in step 1.

e Double-click on the right Import module and type in the full path for the location of
the * . dx file created in step 4.

e Double click on the Export module and type in the path for the resultant * . dx file.

e :Choose Execute Once from the Execute Menu.



41

10)Run CutVolume.net

Double-click on the first Import module and type in the full path for the location of
the * . dx file created in step 9.

Double-click on the right Import module and type in the full path for the location of
the * . dx file created in step 8.

Double click on the Export module and type in the full path for the resultant *.dx
file.

Choose Execute Once from the Execute Menu.

11)Run Iso.net

Click on the Curtain Data page. .

Double-click on the Import module and type in the full path for the location of the
* . dx file created in step 7

Double-click on ColorMap and type in the minimum and maximum values for the

" colour bar.

Click on the Iso page.

Double-click on the Import module and type in the full path for the location of the
* . dx file created in step 9.

Set the parameters in the ScalarList control panel.

Click on the Imaging page.

Double-click on the Import module and type in the full path for the location of the
* . dx file created in step 8.

Choose Execute Once from the Execute Menu.

Adjust ScalarList parameters, bathymetry and colour bar colours to meet final
image requirements.



42

8.0 RESULTS

Using the IBM Visualization Data Explorer, ten visual programs and four macros
were developed in order to display widow rockfish acoustic data in three dimensions. The data
provided from the widow rockfish survey were in the form of three ASCII files containing
acoustic, geographical position, and bathymetry data. The programs processed data from these
three files to create the different components of the final image. Processing involved selecting
and combining data from the three files and converting it to a form which could be displayed in
three dimensions. Position data were normalized by removing any duplicate locations which
arose due to recording errors. New values were interpolated from the neighbouring unique
locations to replace the duplicates. Acoustic data that originated below the bottom were
removed to improve the clarity of the final image. Interpreted three dimensional data sets and
images were created by stacking interpolated two dimensional layers from each 0.5 m depth
interval. Interpolated data values were based on a weighted nearest neighbour average that
considered all known values within a specified radius.

The main components of the final image are a three-dimensional interpolated
bathymetric surface, a surface line that gives the vessel track, and a two-dimensional ‘curtain’ of
non-interpolated acoustic data that shows a cross-section through the fish concentrations in the
water column. We also generated three-dimensional displays of interpolated acoustic density
data that would render the two dimensional curtain image as three dimensional aggregations of
fish. A control panel with several interactors allows adjustment of the final image. The user can
control the contents and colour scheme, and can directly interact with the objects in the DX
Image window using mouse-driven rotation and zoom tools.

Any acoustic data set containing backscatter cross-section, position, and depth in
ASCII files can be used to create three-dimensional images using these programs. The flexibility
of the DX visualization process means that three-dimensional visualization can be used in a wide
range of acoustic applications. Any feature of the ocean that can be detected using acoustic
methods could be displayed as a three-dimensional image using these programs. In particular,
acoustic data pertaining to fish or plankton distribution and abundance could be compared
visually over time and between different locations, providing an intuitive visual tool to
accompany rigorous estimation methods. Some examples of the application of three dimensional
acoustic visualization to planktonic research can be found in Greene et al. (1994) and Greene et
al. (1998).

For the widow rockfish survey, the three-dimensional images played a significant
role in the analysis of rockfish biomass, distribution, and diel behaviour. They also proved to be
an invaluable tool in facilitating the dialogue between industry representatives and biologists.



43

9.0 LITERATURE CITED

Greene C.H., P.H. Wiebe, and J.E. Zamon. 1994. Acoustic Visualization of Patch Dynamics in
Ocean Ecosystems. Oceanography 7(1): 4-12.

Greene C.H., P.H. Wiebe, C. Pelkie, .M. Popp, and M.C. Benfield. 1998. Three-Dimensional
Acoustic Visualization of Zooplankton Patchiness. Deep Sea Research II Special Issue
on Biological Oceanography.

International Business Machines Corporation. 1997. IBM Visualiazation Data Explorer Users’
Guide Version 3, Release 1, Modification 4.

SIMRAD. 1993a. SIMRAD EKS500 scientific echo sounder ;eference manuals V4.01.
SIMRAD Subsea A/S, Standpromenenaden 50, Box 111, N-3191 Horten, Norway.

SIMRAD. 1993b. SIMRAD BI500 post-processing system reference manuals V5.20. SIMRAD
Subsea A/S, Standpromenenaden 50, Box 111, N-3191 Horten, Norway.

Stanley, R.D., A.M. Cornthwaite, R. Kieser, K. Cooke, G.D. Workman, and B. Mose. 1999. An
acoustic biomass survey of the Triangle Island widow rockfish (Sebastes entomelas)
aggregation by Fisheries and Oceans, Canada and the Canadian Groundfish Research and
Conservation Society, January 16 - February 7, 1998. Can. Tech. Rep. Fish. Aquat. Sci.
2262: 51 p.



Section B

Appendix Fig. 1. The ValidShipTrack.net program.



45

"0I0RW 19U 23D TTANAPTY Y],

'z 817 x1puaddy

Il 1ed

Il Hied

&

oY
M
3




46

‘weigold 39u - yadeqwoijogaxen oYy, + 81 xipuaddy ‘oIovW 39U @3edTTdnayIer Y], ‘¢ ‘Si] xipuaddy

. ndino
2001198 |
Eal
yodx3g
ElD =
T o _ sIT
2 | el B
i [£007199 !
&S ey 1
X | B8 N
R 0:16(e==q)
° R
aindwoy
ge|s _|.~
B ﬁ,vl_ Bl
RN B
%%/o \\o%. e ] 108183
& B ETI - (s
B
(1-ehul
|| )
poduwy aindwion
=l el L e
y@&% rnw»%w NUYoBZ104
Q- OO/,, ] —.I'._
V@v&/v@ 00% | _.I_ \\/M@{& N
&
N
) L foe]

i induj induyj




47

Appendix Fig. 5. The MakeNewBottomDepth .net program.

& Section A
&
&
5 ®@°
Qo*"@ < [
&
r}.\\ooé\ Import
o =1
& |
L
L ]
Inquire B
& el Extract
= =5
/\\6\\ //\\t\‘\\
L__j l_l o‘(‘;b & l I _______________________
B %A R R ;
Compute Construct ;
: :r-—-l i \QQ é\‘-’el/
Ia‘O l _I_—'T__I ({\\(\ r_..] ’_-l r__] Qé@
| [EREE
' : 'lnclude
| \;
(\'”6\0/, e
Eared Extract
Extract] | ™
b
’J ] B
Section C F Construct
& [ c
\@39 Map
P B
& D
| B R Ere
Export




48

‘weidold 3su-utelandeyer oy, L ‘Si xipuaddy ‘weidord 3su - gesoeardTys ofw ‘9 81 x1puaddy

podx3]
[
S &
podx3 >
£ Lol o
XY TS
\\go% Awmr
;voo,, ['0hexe]
S L
andwog
BT | =
aoe|day
alied e ]
RN E
&P
G 1oeAXg
Q Q ;i ;
&O% &%0.& ONWJ L
’ o 2
5 S
‘ . upoduw| &
i EElL - b s
‘uodw > Wl o
Bl &
7> 4 ;
& ol ¥ U
P »° o - poduw
G & R :
a |
& f 3 g
¥ W
~ \\@
A-O,,
, »
,.;._ l%/u.@JV\




49

& ~ Section A

[

T -
Comp’ute PR f e
- i"!1 : ShowConnections

og(a) ; T

| =77 3
AutoColor o2
S B e & »
L BRI
- oy Color

Collect
Section C

Appendix Fig. 8. The MakeNewCurtain.net pr_bgram.



50

Appendix Fig. 9. The MakeVolume.net program



51




32

‘weiford Jou - pTanmeNAIjawAyegasen oy, "11 ‘Sr] xipueddy

9 UoJ}99s

g uonoss




‘weidoid 3au-sum ToA3In) oy, “z] ‘81 xipuaddy

53

toa_xmw.
[ o EE
abew| r _
L &
_ J " o
ﬁm.wwwm._ ey yeuun | |V UOHD9G!
- 00BNSO0S| e
[ & 3 mm =
e & L
wejiog |
o :
| i | - epnjouj

g uonoas

1A o
opeug 108100
=l TElEY)
=
L
10|09
L] Mu . L I ,
< m:o.ﬁwc:oo;ocm
+ ] |||'_
T B ]
uoduwj uoduwy
= =
4 &
L] _L e L_]L_J¥
_ & &
ﬂ & S




54

& BB
& Input &
=

(a>(b+1 .0))%{:

Part Il

Ouiput

08 [

Appendix Fig. 13. The BathymetryCutoff .ne_f macro.



