# Enumeration of Adult Chum Salmon, Oncorhynchus keta, in the Fishing Branch River, Yukon Territory, 1995 

I. Boyce

Fisheries and Oceans Canada<br>Science Branch, Pacific Region<br>100-419 Range Road<br>Whitehorse, Yukon<br>Y1A 3V1

2001

## Canadian Manuscript Report of Fisheries and Aquatic Sciences 2563

## Canadian Manuscript Report of Fisheries and Aquatic Sciences

Manuscript reports contain scientific and technical information that contributes to existing knowledge but which deals with national or regional problems. Distribution is restricted to institutions or individuals located in particular regions of Canada. However, no restriction is placed on subject matter, and the series reflects the broad interests and policies of the Department of Fisheries and Oceans, namely, fisheries and aquatic sciences.

Manuscript reports may be cited as full publications. The correct citation appears above the abstract of each report. Each report is abstracted in Aquatic Sciences and Fisheries Abstracts and indexed in the Department's annual index to scientific and technical publications.

Numbers 1-900 in this series were issued as Manuscript Reports (Biological Series) of the Biological Board of Canada, and subsequent to 1937 when the name of the Board was changed by Act of Parliament, as Manuscript Reports (Biological Series) of the Fisheries Research Board of Canada. Numbers 1426-1550 were issued as Department of Fisheries and the Environment, Fisheries and Marine Service Manuscript Reports. The current series name was changed with report number 1551.

Manuscript reports are produced regionally but are numbered nationally. Requests for individual reports will be filled by the issuing establishment listed on the front cover and title page. Out-of-stock reports will be supplied for a fee by commercial agents.

## Rapport manuscrit canadien des sciences halieutiques et aquatiques

Les rapports manuscrits contiennent des renseignements scientifiques et techniques ques qui constituent une contribution aux connaissances actuelles, mais qui traitent de problèmes nationaux ou régionaux. La distribution en est limitée aux organismes et aux personnes de régions particulières du Canada. Il n'y a aucune restriction quant au sujet; de fait, la série reflète la vaste gamme des intérêts et des politiques du ministère des Pêches et des Océans, c'est-à-dire les sciences halieutiques et aquatiques.

Les rapports manuscrits peuvent être cités comme des publications complètes. Le titre exact paraît au-dessus du résumé de chaque rapport. Les rapports manuscrits sont résumés dans la revue Résumés des sciences aquatiques et halieutiques, et ils sont classés dans l'index annual des publications scientifiques et techniques du Ministère.

Les numéros 1 à 900 de cette série ont été publiés à titre de manuscrits (série biologique) de l'Office de biologie du Canada, et après le changement de la désignation de cet organisme par décret du Parlement, en 1937, ont été classés comme manuscrits (série biologique) de l'Office des recherches sur les pêcheries du Canada. Les numéros 901 à 1425 ont été publiés à titre de rapports manuscrits de l'Office des recherches sur les pêcheries du Canada. Les numéros 1426 à 1550 sont parus à titre de rapports manuscrits du Service des pêches et de la mer, ministère des Pêches et de l'Environnement. Le nom actuel de la série a été établi lors de la parution du numéro 1551.

Les rapports manuscrits sont produits a l'échelon régional, mais numérotés à l'échelon national. Les demandes de rapports seront satisfaites par l'etablissement auteur dont le nom figure sur la couverture et la page du titre. Les rapports épuisés seront fournis contre rétribution par des agents commerciaux.

## Canadian Manuscript Report of

Fisheries and Aquatic Sciences 2563

2001

# ENUMERATION OF ADULT CHUM SALMON, Oncorhynchus keta, IN THE FISHING BRANCH RIVER, YUKON TERRITORY, 1995 

by
I. Boyce

Fisheries and Oceans Canada

Science Branch, Pacific Region

100-419 Range Road
Whitehorse, Yukon
Y1A 3V1
© Her Majesty the Queen in right of Canada, 2001, as represented by the Minister of Fisheries and Oceans

Cat. No. Fs 97-4 /2563 ISSN 0706-6473

Correct citation for this publication:
Boyce, I. 2001. Enumeration of adult chum salmon, Oncorhynchus keta, in the Fishing Branch River, Yukon Territory, 1995. Can. Manuscr. Rep. Fish. Aquat. Sci. 2563: 33 p.

## TABLE OF CONTENTS

LIST OF TABLES ..... iv
LIST OF FIGURES ..... iv
ABSTRACT ..... v
1.0 INTRODUCTION ..... 1
1.1 Objectives ..... 1
1.2 Watershed Description ..... 1
1.3 Fisheries Resource Overview ..... 3
1.3.1 Species Present ..... 3
1.3.2 Non-Human Utilisation ..... 3
1.3.3 Human Utilisation ..... 4
2.0 METHODS ..... 4
2.1 Weir Location and Construction ..... 4
2.3 Enumeration ..... 5
2.3.1 Weir ..... 5
2.3.2 Aerial survey ..... 6
2.4 Biological Sampling ..... 6
2.5 Hydrological Data ..... 7
2.6 Age Analysis and Data Storage .....  7
3.0 RESULTS ..... 8
3.1 Enumeration .....  8
3.1.1 Weir Count ..... 8
3.1.2 Aerial Survey ..... 10
3.2 Biological Sampling ..... 10
3.2.1 Live Fish. ..... 10
3.2.2 Carcasses ..... 12
3.3 Hydrological Data ..... 12
4.0 DISCUSSION ..... 14
5.0 RECOMMENDATIONS ..... 17
6.0 ACKNOWLEDGEMENTS ..... 17
7.0 LITERATURE CITED ..... 17
8.0 APPENDICES ..... 19

## LIST OF TABLES

Table 1. Weekly counts by sex of chum salmon at the Fishing Branch River weir, 1995 ..... 10
Table 2. Sample effort in relation to run timing at the Fishing Branch River weir, 1995 ..... 11
Table 3. Length composition by sex and age of Fishing Branch River chum salmon, 1995 ..... 12
Table 4. Age composition of Fishing Branch chum salmon, 1995 ..... 12
LIST OF FIGURES
Figure 1. Map of the weir site on the Fishing Branch River ..... 2
Figure 2. Daily counts of chum salmon through the Fishing Branch River weir, 1995 ..... 8
Figure 3. Average diel run timing of chum salmon through the Fishing Branch River weir, 1995 ..... 9
Figure 4. Daily water temperatures recorded at Fishing Branch River weir, 1995 ..... 13
Figure 5. Daily water level readings taken at the Fishing Branch River weir, 1995 ..... 14
Figure 6. Daily counts of chum salmon through the Fishing Branch River weir, 1995 versus 1991-1994 average ..... 15
Figure 7. Cumulative counts of chum salmon through the Fishing Branch River weir, 1995 versus 1991 - 1994 average ..... 15


#### Abstract

Boyce, I. 2001. Enumeration of adult chum salmon, Oncorhynchus keta, in the Fishing Branch River, Yukon Territory, 1995. Can. Manuscr. Rep. Fish. Aquat. Sci. 2563: 33 p.

A total of 51,971 migrating adult chum salmon (Oncorhynchus keta) was enumerated at a weir on the Fishing Branch River from August 27 to October 17, 1995. The run was estimated to be $50.9 \%$ female ( $\mathrm{n}=51,971$ ), and $0.6 \%$ age $-3_{1}, 70.6 \%$ age $-4_{1}, 27.7 \%$ age $-5_{1}$, and $1.2 \%$ age- $6_{1}$ ( $\mathrm{n}=623$ ). Fork length (mm) averaged 672 for males and 626 for females ( $\mathrm{n}=795$ ). A sample of post-spawn fish that drifted downstream onto the weir was $36.3 \%$ age- $4_{1}, 57.0 \%$ age- $5_{1}, 6.7 \%$ age- $6_{1}(\mathrm{n}=135)$, and $49 \%$ female ( $\mathrm{n}=150$ ). Estimated expenditure of milt/eggs averaged $86.5 \%$ for males ( $\mathrm{n}=77$, st. dev. $=40.5 \%$ ) and $99.3 \%$ for females ( $\mathrm{n}=73$, st. dev. $=37.2 \%$ ). Seven chinook and 112 coho salmon were observed. Water temperature ranged from $6.5^{\circ} \mathrm{C}$ to $2.0^{\circ} \mathrm{C}$; level fluctuated by 0.9 m . A helicopter survey was conducted upstream of the weir on October 4 ; the count was $15.7 \%$ of the weir count to that date.


## RÉSUMÉ

Boyce, I. 2001. Enumeration of adult chum salmon, Oncorhynchus keta, in the Fishing Branch River, Yukon Territory, 1995. Can. Manuscr. Rep. Fish. Aquat. Sci. 2563: 33 p.

Entre le 27 août et le 17 octobre 1995, on a dénombré un total de 51971 saumons kétas adultes migrateurs (Oncorhynchus keta) à une bordigue installée dans la rivière Fishing Branch. Selon des estimations, $50,9 \%$ de la remonte se composait de femelles ( $n=51971$ ), dont $0,6 \%$ d'âge $3_{1}, 70,6 \%$ d'âge $4_{1}, 27,7 \%$ d'âge $5_{1}$ et $1,2 \%$ d'âge $6_{1}(n=623)$. À la fourche, les mâles et les femelles mesuraient en moyenne 672 mm et 626 mm de long, respectivement ( $\mathrm{n}=795$ ). Un échantillon de charognards, qui, après avoir dérivé vers l'aval, sont restés pris dans la bordigue, se composait de $36,3 \%$ d'individus d'âge $4_{1}$, de $57,0 \%$ d'âge $5_{1}$, de $6,7 \%$ d'âge $6_{1}(n=135)$ et de $49 \%$ de femelles ( $n=150$ ). Selon les estimations, $86,5 \%$ des mâles ( $n=77$, ET $=40,5 \%$ ) et $99,3 \%$ des femelles ( $\mathrm{n}=73, \mathrm{ET}=37,2 \%$ ) avaient frayé en moyenne. Sept quinnats et 112 cohos ont aussi été observés. La température de l'eau allait de $6,5^{\circ} \mathrm{C}$ à $2,0^{\circ} \mathrm{C}$, tandis que le niveau de l'eau a varié de $0,9 \mathrm{~m}$. Le nombre de saumons obtenu par relevé par hélicoptère effectué le 4 octobre en amont de la bordigue se chiffrait à $15,7 \%$ du nombre obtenu à la bordigue jusqu'à cette date.

### 1.0 INTRODUCTION

Chum salmon (Oncorhynchus keta) native to the south fork of the Fishing Branch River have been enumerated annually since 1971. From 1972 to 1975, 1985 to 1989, and 1991 to 1995 a weir was used; in other years, escapement was estimated using aerial counts (JTC 1995b). Field operations and administration for the enumeration program have been conducted by Fisheries and Oceans Canada (DFO) in co-operation with the Vuntut Gwitchin First Nation (VGFN).

### 1.1 OBJECTIVES

The specific objectives of the 1995 Fishing Branch chum enumeration program were as follows:

1. to enumerate, by species and sex, all adult salmon passing the weir site;
2. to assess age and size composition by sex, and spawning success, of Fishing Branch River chum salmon;
3. to document hydrological conditions (temperature and level); and
4. to compare an aerial count of chum salmon with a known value (the weir count).

### 1.2 WATERSHED DESCRIPTION

Located in the northern Yukon Territory, the south fork of the Fishing Branch River is a headwater tributary of the Porcupine River, itself a major tributary to the Yukon River. The Fishing Branch River flows northeast out of the Ogilvie Mountains, draining an area of approximately 1700 square kilometres (NTS 116 J.K E 1/2, Department of Mines and Technical Surveys 1959). The south fork joins the north fork near Bear Cave Mountain and flows into the Miner River, a tributary of the upper Porcupine River (Figure 1). The spawning area on the Fishing Branch River is approximately $2,600 \mathrm{~km}$ from the Bering Sea (Bergstrom 1991).


Figure 1. Map of the weir site on the Fishing Branch River.

The terrain in the Fishing Branch River watershed includes rolling hills with elevations generally below 450 m with some mountains up to 1000 m . Muskeg often extends to the riverbank. Trees include black and white spruce, willow and birch. There are ponds and thermokarst basins in the region, but no lakes (Oswald and Senyk 1977).

The closest climatological station to the Fishing Branch River is in Old Crow, approximately 120 km to the north of the weir site. Temperatures recorded at the station during the period $1968-1990$ averaged $-9.3^{\circ} \mathrm{C}$ and ranged from $-59^{\circ} \mathrm{C}$ to $32^{\circ} \mathrm{C}$. The mean annual precipitation during this period was 239.5 mm . (Environment Canada files).

The main channel of the Fishing Branch River is clear, swift, and meandering with riffles, large exposed gravel bars and pools up to 2.5 m deep. The streambed is made up of large cobble $(50-250 \mathrm{~mm})$ and medium cobble ( $2-50 \mathrm{~mm}$ ) (Bryan 1973). Side channels are slow and have fine granular sediment over medium cobble (Bruce 1975).

Stream discharge fluctuates greatly due to regional precipitation and the spring snowmelt. Flood-like conditions in the summer and fall after rainfall are not uncommon. Available flow measurements at the weir site range from 11.3 cubic metres per second in March 1972 (Steigenberger 1972) to 56.6 cubic metres per second in September 1972 (Elson 1975). A 15 km stretch of groundwater discharge in the headwaters of the south fork of the Fishing Branch River
maintains open water in winter many kilometres downstream. The weir site is in the open water area.

### 1.3 FISHERIES RESOURCE OVERVIEW

### 1.3.1 Species Present

The south fork of the Fishing Branch River is a major spawning ground for fall chum salmon ${ }^{1}$. Estimates of escapement have ranged from 15,150 to 353,282 chum salmon (JTC 1995b and Elson 1976). Spawning occurs from September to November. The groundwater flow provides a habitat suitable for spawning adults, incubating eggs and rearing juveniles when temperatures in the region are well below freezing (Steigenberger 1972).

Coho salmon ( $O$. kisutch) spawn in the same area in October and November. Bryan (1973) reported that 150 coho juveniles were seined in a 300 square metre shallow riffle area of the Fishing Branch River in March 1972 and 12 were caught in a seine in May 1972. Low numbers of adult coho salmon have been enumerated at the weir. However, total escapements are unknown since the weir is removed before the coho migration is believed to be complete, because of weather conditions.

In July and August, chinook salmon ( $O$. tshawytscha) also spawn in the groundwater area (Steigenberger et. al 1973). Low numbers of adult chinook have been observed at the weir and it has been suggested that the majority of the escapement each year occurs prior to weir installation. However, this was not supported by observations made in 1998 (Doehle 1999, Boyce and Wilson 2000).

Non-salmon species present in the area include: slimy sculpin (Cottus cognatus), round whitefish (Prosopium cylindraceum), Arctic grayling (Thymallus arcticus), and burbot (Lota). Northern pike (Esox lucius), humpback whitefish (Coregonus clupeaformis) and broad whitefish (Coregonus nasus) have also been noted at the weir site, and in the lower limits of the Fishing Branch River (Steigenberger et. al 1973).

### 1.3.2 Non-Human Utilisation

Grizzly bears, wolves and eagles, among other mammals and birds are known to be supported in part by the salmon stocks of the Fishing Branch River.

[^0]In a 6.5 km reach located in the vicinity of the weir site, the grayling population has been estimated to be 9,000 fish (Bruce 1973). In that study, stomach content analyses showed that the grayling diet included chum eggs and alevins. Other fish species native to the Fishing Branch River are believed to prey upon chum salmon eggs, alevins, and fry.

### 1.3.3 Human Utilisation

Fishing Branch River salmon are harvested in Canada by the VGFN on the Porcupine River near Old Crow, and in Alaskan subsistence and commercial fisheries along the length of the Yukon River in the United States. They may also be intercepted in the United States groundfish trawl fisheries in the Bering Sea-Aleutian Islands area and the Gulf of Alaska, in purse seine and salmon gillnet fisheries in the "False Pass" area near the south Alaska Peninsula, and in coastal gillnet fisheries in Norton Sound. Until 1992, Fishing Branch River salmon may have been harvested in other off-shore fisheries, namely:

1. the Japanese high-seas mothership and land-based salmon gillnet fisheries;
2. the high-seas squid gillnet fisheries in the North Pacific Ocean of Japan; the Republic of Korea, and the Republic of China (Taiwan);
3. the foreign groundfish fisheries of the Bering Sea and Gulf of Alaska;
4. the joint-venture groundfish fisheries of the Bering Sea and Gulf of Alaska; and
5. the groundfish trawl fishery by many nations in the "Doughnut Hole" international waters area of the Bering Sea.

These fisheries harvested large numbers of salmon some of which were likely of Yukon River origin, and therefore potentially of Fishing Branch River origin. However, several of the offshore fisheries have been phased out by international agreements (JTC 1993c).

### 2.0 METHODS

### 2.1 WEIR LOCATION AND CONSTRUCTION

The weir was installed on the south fork of the Fishing Branch River approximately 31 km west of the Miner River confluence (Figure 1). The location has not varied since a weir was first installed on the Fishing Branch River in 1972. Approximate co-ordinates are $66^{\circ} 32$ north and $139^{\circ} 15^{\prime}$ west (NTS map reference $116 \mathrm{JK} 1: 50,000$ ).

Materials and methods used to construct the weir were similar to those used since 1985. Photographs of the structure are presented in Appendix 11. Components included approximately 15 iron tripods, plywood/angle-iron stringers, electrical conduit, $\mathrm{Vexar}^{\mathrm{TM}}{ }^{\text {2 }}$ (plastic screening) and sandbags. A sampling chamber, constructed from rebar, angle-iron stringers, and conduit was placed where flow was the greatest (close to the middle of the river). This formed the apex of the weir. Tripods were placed out at a slight angle downstream from the sampling chamber to each bank of the river. The distance between tripods was 3 m ( 10 ft .). Tripods were interconnected by pairs of horizontal stringers that were bolted approximately one quarter and three quarters of the way up from the bottom of the upstream leg of each tripod. Conduit inserted at $5 \mathrm{~cm}\left(2^{\prime \prime}\right)$ centres through the stringers provided the actual barrier to fish migration. Conduit was also inserted into the sampling chamber frame at the upstream end and sides. There was no gate at the downstream end of the chamber. Fish passage through the weir was made possible by removal of two or three pieces of conduit from the upstream end of the chamber. (This opening is hereafter referred to as the "gate".) A platform, supported by the weir itself and rebar driven into the river bottom, was placed by the side of the sampling chamber to permit enumeration and sampling.

Vexar ${ }^{T M}$ mesh was laid out along the lower portions of the conduit to further stabilise and seal the weir. Approximately 120 burlap bags filled with gravel were used to hold the Vexar ${ }^{\top \mathrm{M}}$ in place and help anchor the structure.

Lighting consisted of approximately fourteen floodlights (100 and 150 watt) strung across the weir and within the camp, to facilitate night counting and to provide safe conditions for personnel. A gasoline-fuelled generator was used as the power source.

Weir construction was completed on August 27 at 1800 hrs.

### 2.3 ENUMERATION

### 2.3.1 Weir

Enumeration commenced three hours after weir installation was complete.
Migrants were counted according to gender as they passed through the sampling chamber gate. Gender identification was facilitated by marked dimorphism and clear water.

During enumeration periods, the gate was open for more than $50 \%$ of each hour. Generally enumeration was conducted 24 hours per day. Short-term gate closures occurred when there were lighting system problems on September 17 and 18, and when staff were sampling carcasses (a total of six hours between September 26 and October 14). A long-term gate closure

[^1]occurred because of flooding from 2200 hrs on August 31 to 1600 hrs on September 9 (Appendix 1). During this period, enumeration was halted because fish countability was compromised by a decrease in water clarity, and because of personnel safety considerations. Some leakage of fish could have occurred at this time since the potential existed for chum salmon to pass over the weir or through spaces created by shifting tripods.

Enumeration ceased upon removal of the weir; this commenced at 1400 hrs on October 17.

### 2.3.2 Aerial survey

An aerial survey was conducted on October 4 from 1200 to 1300 hrs. Two observers enumerated from a Bell 206B Jet Ranger helicopter. Polarised sunglasses were worn and counts recorded using hand-held counters. One observer counted live fish, and the other counted dead fish. Reaches both upstream and roughly one river-kilometre downstream of the weir were surveyed from an altitude of approximately 30 m and an airspeed of about 30 kph . The survey took somewhat longer than usual since the high water conditions meant that some sloughs that typically lacked water in the fall contained spawning fish. The high water also reduced fish countability.

### 2.4 BIOLOGICAL SAMPLING

The chum salmon escapement was sampled in order to obtain age and length data by sex for the run. Fish were retrieved from the sampling chamber with a dip-net and placed in an aluminium tub containing river water. Using forceps, three scales were removed from the preferred area (located above the lateral line on an imaginary line extending from the posterior end of the dorsal fin to the anterior end of the anal fin). Fork length was measured to the nearest 5 mm using a flexible plastic tape measure. Sex was recorded. After sampling, fish were placed in an in-river recovery pen from which they could exit freely.

The target number of live fish samples was 750 . This target was based on the number of data points required to characterise a population of approximately 100,000 fish having three age classes, with $95 \%$ confidence and $+/-5 \%$ precision (DFO files; from Cochran 1977). It was assumed that approximately $30 \%$ of the scales would be uninterpretable due to resorption. Attempts were made to sample in proportion to run timing; however this was somewhat difficult given interannual variation in timing, and the challenge of predicting the total escapement.

Data and samples were also collected from carcasses of chum salmon that had drifted onto the weir from an upstream location, either deceased or in a moribund state. Sex, post-orbital hypural ( POH ) length, and fork length were recorded. Ten scales were removed from each fish. The number of scales removed from carcasses was greater than the number removed from live
samples since handling time was not a concern, and it was expected that scale resorption would be a greater problem. Pectoral fins, otoliths and vertebrae were also collected. The gonads in each carcass were examined visually in order to assess spawning success. The amount of reproductive material observed was expressed as a percentage of what was estimated to have been present prior to spawning. Pre-spawn fish were not examined for comparison purposes.

The primary reason for sampling carcasses was to augment data collected on live fish. Bony structures assisted in the interpretation of scale patterns by providing insight on resorption rates. On sexually mature fish that have migrated large distances without feeding, bony structures provide more reliable age data than scales, since they do not appear to be subject to the same degree of resorption. The two length measurements were taken in order to allow inference of POH length on live fish. POH length is more difficult to measure than fork length on living fish; however it is often a more useful estimator of size since it is not influenced by the changes in morphology that chum salmon exhibit as they approach sexual maturity (primarily kype development). The target of 150 carcass samples was judged to be sufficient for bony structure/ scale comparisons and length regression analyses.

### 2.5 HYDROLOGICAL DATA

Water temperature and level was recorded every four hours, with some interruptions. Temperature ( ${ }^{\circ} \mathrm{C}$ ) was taken from the platform adjacent to the sampling chamber using a handheld alcohol thermometer. The temperature within the top six inches of the water column was measured.

A staff gauge was positioned close to the south bank of the river approximately five metres downstream from the weir. Placement may have varied slightly from other years of the study. The purpose of the gauge, which was not zeroed or placed in the deepest section of the river, was to track water level fluctuation throughout the 1995 enumeration period.

### 2.6 AGE ANALYSIS AND DATA STORAGE

Scales, pectoral fins, otoliths, and vertebrae were sent to the Fish Ageing Lab at the DFO Pacific Biological Station in Nanaimo, B.C. for age analysis.

Raw data were transcribed into Microsoft ${ }^{\circledR}$ Excel and stored at the DFO office in Whitehorse, Y.T.

### 3.1 ENUMERATION

### 3.1.1 Weir Count

A total of 51,971 adult chum salmon was observed passing the weir site in 1995 (Appendix 2). Fish passage was observed immediately after installation of the weir. However, the fact that only 86 fish were observed in first 48 hours of enumeration suggests that few fish were missed. It is also likely that few fish were missed at the end of the run, since only 136 were counted in the final 48 hours of weir operation. It is not known how many fish passed through or over the weir during the high water period (August 31 to September 9).

Two major daily count peaks were observed over the course of the project (Figure 2). These were separated by several days. The highest daily count, 2,653 chum salmon, was recorded on September 13. The mid-point of the observed run fell on September 23.


Figure 2. Daily counts of chum salmon through the Fishing Branch River weir, 1995.
Hourly counts are presented in Appendix 3.0 and Appendix 3.1. Note that the count recorded for a given hour represents the number of migrants through the weir between the beginning and end of that hour. Figure 3 depicts diel run timing averaged over the course of the observed run. (The numbers of fish that passed through the weir at a specific time each day were summed and divided by the number of days.) Certain days were censored, specifically those on
which fish passage was completely halted for more than one hour ${ }^{3}$ or there was a count of fewer than 500 fish. (Variability in diel run timing appeared to increase substantially on days with very low counts.) The average hourly counts suggest that evening ( 1700 hrs through 2000 hrs ) and late morning ( 0900 hrs through 1000 hrs ) were the favoured times for fish passage. However, variability was high (Appendix 3.2).


Figure 3. Average diel run timing of chum salmon through the Fishing Branch River weir, 1995.

The number of fish identified at the weir as female chum salmon was 26,437 . This comprised $50.9 \%$ of the total count. As illustrated in Table 1, the contribution of females to the count was greatest at the end of the run and least during the middle of the run. The weekly female contribution ranged from $46.2 \%$ ( $\mathrm{n}=11,322$ ) in statistical week (SW) 38 (ending September 23), to a maximum of $61.3 \%$ ( $\mathrm{n}=271$ ) in SW 42 (ending October 21).

[^2]Table 1. Weekly counts by sex of chum salmon at the Fishing Branch River weir, 1995.

| Stat <br> Week | Week <br> Ending | Male | Female | Total | $\%$ <br> Female |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 35 | $2-$ Sep | 356 | 434 | 790 | $54.9 \%$ |
| 36 | $9-$ Sep | 454 | 524 | 978 | $53.6 \%$ |
| 37 | $16-$ Sep | 6,597 | 7,084 | 13,681 | $51.8 \%$ |
| 38 | $23-$ Sep | 6,094 | 5,228 | 11,322 | $46.2 \%$ |
| 39 | $30-$ Sep | 6,704 | 6,242 | 12,946 | $48.2 \%$ |
| 40 | $7-$ Oct | 3,793 | 4,578 | 8,371 | $54.7 \%$ |
| 4.1 | $14-$ Oct | 1,431 | 2,181 | 3,612 | $60.4 \%$ |
| 42 | $21-$ Oct | 105 | 166 | 271 | $61.3 \%$ |
| TOTAL |  | $\mathbf{2 5 , 5 3 4}$ | $\mathbf{2 6 , 4 3 7}$ | $\mathbf{5 1 , 9 7 1}$ | $\mathbf{5 0 . 9 \%}$ |

Seven chinook and 112 coho salmon were observed migrating through the weir in 1995. The chinook were observed between August 29 and September 28, inclusive. Coho were observed each day from October 2 to October 16, inclusive (Appendix 4). Whitefish and arctic grayling were also observed at the weir site.

### 3.1.2 Aerial Survey

At the time of the helicopter survey the weir count was $86 \%$ complete. High water and overcast conditions were encountered, and had a negative impact on visibility. The countability was rated as "fair" out of the possible ratings "nil, poor, fair, good" and "excellent". A count of 7,020 chum salmon was obtained; this was $15.7 \%$ of the cumulative weir count at the time of survey completion. Approximately $2,245(32 \%)$ of the fish seen upstream of the weir were carcasses. Downstream of the weir, 10 live and 110 dead chum salmon were observed. No chinook or coho salmon were documented.

### 3.2 BIOLOGICAL SAMPLING

### 3.2.1 Live Fish

The initiation of sampling of live fish for age, length and sex data was delayed until SW 37 (ending September 16) because of high water. Between September 14 and October 17, a total of 795 chum salmon were sampled. Sampling effort in relation to run timing is presented in Table 2.

Table 2. Sample effort in relation to run timing at the Fishing Branch River weir, 1995.

| Stat <br> Week | Week <br> Ending | Count | $\%$ <br> Count | Sample | $\%$ <br> Sample |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 35 | $2-$ Sep | 790 | $1.5 \%$ | 0 | $0.0 \%$ |
| 36 | $9-$ Sep | 978 | $1.9 \%$ | 0 | $0.0 \%$ |
| 37 | $16-$ Sep | 13,681 | $26.3 \%$ | 150 | $18.9 \%$ |
| 38 | $23-$ Sep | 11,322 | $21.8 \%$ | 250 | $31.4 \%$ |
| 39 | $30-$ Sep | 12,946 | $24.9 \%$ | 190 | $23.9 \%$ |
| 40 | $7-$ Oct | 8,371 | $16.1 \%$ | 126 | $15.8 \%$ |
| 41 | $14-$ Oct | 3,612 | $7.0 \%$ | 70 | $8.8 \%$ |
| 42 | $21-$ Oct | 271 | $0.5 \%$ | 9 | $1.1 \%$ |
| TOTAL |  | $\mathbf{5 1 , 9 7 1}$ | $\mathbf{1 0 0 . 0 \%}$ | $\mathbf{7 9 5}$ | $\mathbf{1 0 0 . 0 \%}$ |

Fork length measurements taken from live female and male chum salmon are presented in Table 3. Also presented are POH lengths, inferred from fork lengths using the formula developed by regression analysis of lengths obtained from carcasses. The fork lengths taken from females averaged 626 mm , (std. dev. $=29 \mathrm{~mm} ; \mathrm{n}=369$ ). The fork lengths obtained from males averaged 672 mm (std. dev. $=34 \mathrm{~mm} ; \mathrm{n}=426$ ). The POH lengths calculated for females averaged 501 mm (std. dev. $=16 \mathrm{~mm}$ ). For males, POH length averaged 523 mm (std. dev. $=$ 24 mm ). Length-frequency histograms are presented in Appendix 5.

Table 3. Léngth composition by sex and age of Fishing Branch River chum salmon, 1995.

| Age | $\mathbf{3}_{1}$ |  | $\mathbf{4}_{1}$ |  | $\mathbf{5}_{1}$ |  | $\mathbf{6}_{\mathbf{1}}$ |  | All Samples* |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sex | Female | Male |
| N | 1 | 3 | 204 | 234 | 80 | 93 | 2 | 6 | 369 | 426 |
| Fork Length |  |  |  |  |  |  |  |  |  |  |
| Ave | 585 | 633 | 621 | 670 | 635 | 686 | 668 | 693 | 626 | 672 |
| Min | 585 | 620 | 525 | 570 | 555 | 610 | 645 | 655 | 525 | 570 |
| Max | 585 | 655 | 695 | 770 | 690 | 765 | 690 | 725 | 715 | 770 |
| Var |  | 358 | 759 | 1,064 | 695 | 1,278 | 1,013 | 738 | 813 | 1,154 |
| Std |  | 19 | 28 | 33 | 26 | 36 | 32 | 27 | 29 | 34 |
| Post-Orbital Hypural (POH) Length (based on linear |  |  |  |  |  |  |  |  |  |  |
| regression) |  |  |  |  |  |  |  |  |  |  |
| Ave | 478 | 496 | 498 | 521 | 506 | 533 | 524 | 537 | 501 | 523 |
| Min | 478 | 486 | 445 | 451 | 462 | 479 | 511 | 511 | 445 | 451 |
| Max | 478 | 511 | 539 | 592 | 536 | 588 | 536 | 560 | 550 | 592 |
| Var |  | 177 | 232 | 527 | 212 | 633 | 309 | 365 | 248 | 571 |
| Std |  | 13 | 15 | 23 | 15 | 25 | 18 | 19 | 16 | 24 |

[^3]Of the 795 chum salmon scale samples taken from live fish and sent to the morphology lab for analysis, $623(78.4 \%)$ yielded age data. Of the remaining samples, 109 ( $13.7 \%$ of total) were resorbed, $34(4.3 \%)$ were regenerated and $29(3.6 \%)$ had been rendered unreadable at the time of sampling by excess water. Age results for each week were expanded by the weir count, with each sex treated separately (Table 4). Males and females showed almost identical age compositions. The estimated age composition for the run was as follows: $0.6 \%$ age- $3_{1}, 70.6 \%$ age $-4_{1}, 27.7 \%$ age $-5_{1}$, and $1.2 \%$ age- $6_{1}$. Data by statistical week are presented in Appendix 6.

Table 4. Age composition of Fishing Branch chum salmon, 1995.

|  |  | Age Class |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathbf{N}$ | $\mathbf{3}_{\mathbf{1}}$ | $\mathbf{4}_{\boldsymbol{1}}$ | $\mathbf{5}_{\boldsymbol{1}}$ | $\mathbf{6}_{\boldsymbol{1}}$ | Total |
| Male | 336 | $0.8 \%$ | $70.8 \%$ | $26.9 \%$ | $1.5 \%$ | $100 \%$ |
| Female | 287 | $0.3 \%$ | $70.6 \%$ | $28.5 \%$ | $0.6 \%$ | $100 \%$ |
| Combined | 623 | $0.6 \%$ | $70.6 \%$ | $27.7 \%$ | $1.2 \%$ | $100 \%$ |

### 3.2.2 Carcasses

Age and size data collected from the carcasses of fish that drifted downstream on to the weir is presented in Appendix 7. Estimates of the expenditure of eggs or milt in individual carcass samples were quite variable, averaging $99.3 \%$ (std. dev. $=37.2 \% ; n=73$ ) for females and $86.5 \%$ (std. dev. $=40.5 \% ; \mathrm{n}=77$ ) for males. All carcasses sampled showed evidence of at least some release of eggs or milt.

Linear regression was used to determine the relationship between fork length and POH length. Females and males were treated separately. The relationship for both females and males was significant at p critical $=0.05$. The equation developed for females was: $a=0.55 b+155$, where $a=$ fork length and $b=$ POH length ( $\mathrm{df}=71$; r -square $=0.47$ ). Likewise, the equation developed for males was $a=0.69 b+58(\mathrm{df}=75$; r -square $=0.76$ ).

### 3.3 HYDROLOGICAL DATA

Water temperature readings are presented in Appendix 8. The range observed over the course of the season was $4.5^{\circ} \mathrm{C}$. The maximum temperature recorded was $6.5^{\circ} \mathrm{C}$ (August 29, 30, September 9,13 and 23), while the minimum was $2.0^{\circ} \mathrm{C}$ (October $11,12,14$ and 16). Readings taken at 2000 hrs each day are presented in Figure 4.


Figure 4. Daily water temperatures recorded at Fishing Branch River weir, 1995.

The highest water level reading, 1.2 m , was taken on September 1 at 2000 hrs (Appendix 9). (Note that levels do not reflect the absolute depth of the river as the gauge was not zeroed or placed in the deepest section of the river.) Precipitation preceded the high water event. Levels declined rapidly for four days after the peak and more slowly for the remainder of the season. The water fluctuated by 0.9 m over the measurement period. Figure 5 illustrates the water level readings taken at 2000 hrs each day.


Figure 5. Daily water level readings taken at the Fishing Branch River weir, 1995.

### 4.0 DISCUSSION

The weir count of 51,971 chum salmon should be regarded as a minimum estimate of escapement, since some fish may have passed over or through the weir undetected during the flood event. The count was $35 \%$ higher than the 1991-1994 average of 38,551 chum salmon (JTC 1995b and Appendix 10). It was close to the lower end of the interim escapement objective range of 50,000 to 120,000 chum salmon to the Fishing Branch River. This objective was established through the Canada/U.S Yukon Salmon Negotiations.

Run timing appeared normal, although the observed peak occurred somewhat early relative to the $1991-1994^{4}$ average (September 13 versus September 17). The mid-point of the observed run, September 22, occurred one day later than average. It is possible that the high water delayed fish passage through the weir and resulted in the high counts immediately after weir operations resumed (Figures 5 and 6). Note that counts for August 31 and September 9 are for only two and eight hours respectively (Appendix 3).

[^4]

Figure 6. Daily counts of chum salmon through the Fishing Branch River weir, 1995 versus 1991 - 1994 average.


Figure 7. Cumulative counts of chum salmon through the Fishing Branch River weir, 1995 versus 1991-1994 average.

The contribution of females to the escapement (51\%) was slightly below the recent cycle average (approximately $56 \%$ ). The slight predominance of females observed at the weir most years may be a factor of gear selectivity in downstream fisheries. Males may be more susceptible to entanglement in gillnets because of their more pronounced snouts and teeth, particularly as
they approach maturity (Milligan et al, 1986). Since fish were not handled to determine gender, there was potential for error from observer bias, and poor visibility of individual fish due to high densities, low water clarity and light conditions. Comparisons were made with the sex composition in the sample for age and length data, in which fish were closely inspected. The pooled sample ( $\mathrm{n}=795$ ) was $45 \%$ female, within $6 \%$ of the estimated run sex composition. Possible sources of error for the sample are those resulting from sample rate, timing (for example, the first two weeks of the run were not sampled) and method (for example, gender bias in sample selection).

The fact that the carcasses sampled contained few eggs or little milt suggests that most of the population spawned successfully.

The aerial survey accounted for less than one-fifth of the fish that were present. Over the years, the relationship between aerial survey counts and weir counts has been quite variable. This indicates that aerial enumeration is a poor substitute for a weir count. Prior to 1990, for years when there was no weir installed, aerial survey results were expanded by a factor of 2.71 to estimate escapement. In 1990, an expansion factor of 3.57 was used (JTC 1993c). Variability in aerial survey results can be due to differences in observer efficiency, water depth, clarity, and spawner density, run timing, and environmental factors. The density of spawners, their colouration, and the low light levels often experienced in September/October in the area make aerial surveys of the Fishing Branch River particularly challenging.

It was expected pre-season that an above-average number of Fishing Branch River-origin chum salmon would enter the mouth of the Yukon River in 1995. The expectation was based on an assumed productivity of 2.5 returns per spawner ( $\mathrm{r} / \mathrm{s}$ ), escapement estimates in the principle brood years (1990 and 1991), and an expected return age composition of $73 \%$ age-four and $24 \%$ age-five. The 1995 forecast was for a return (i.e. run size) of 93,000 fish. In comparison, the run size was estimated to have averaged approximately 56,000 chum salmon from 1991-1994 ${ }^{5}$ (JTC 1995a). Coincidentally the pre-season forecast was the same as the one developed for the 1994 return.

The harvest of 5,489 chum salmon by the VGFN in the vicinity of Old Crow was considerably greater than the recent cycle average of approximately 2,000 fish. The U.S. harvest of Fishing Branch River-origin chum salmon, estimated using the footnoted assumptions, was 28,019 fish (DFO files). The number of Fishing Branch River-origin chum (U.S. harvest plus Canadian harvest plus escapement) that entered the mouth of the Yukon River in 1995 is

[^5]therefore estimated to have been at least 85,478 fish. This was slightly below the pre-season projection. The harvest rate is estimated at $39 \%$.

### 5.0 RECOMMENDATIONS

The weir should continue to be operated annually as it serves as the only index of chum salmon escapement in the Canadian portion of the Porcupine sub-basin of the Yukon River in Canada. The Fishing Branch River chum salmon stock is of substantial socio-economic value to the Vuntut Gwitchin First Nation. The international importance of the Fishing Branch River chum stock has also been recognised, and stock rebuilding options have been discussed (JTC 1993b).

### 6.0 ACKNOWLEDGEMENTS

Thanks to weir staff Harvey Kassi, Derek Able-Chitze and Isaac Thomas for their hard work and commitment to the project. For assistance in project administration, thanks to Carl Charlie of the VGFN. Thanks also to Mary Ellen Jarvis for data processing, Sue Moodie for assistance with report compilation, and to Sandy Johnston and Pat Milligan of DFO for providing editorial comments. For age-structure processing and interpretation, thanks to the staff at the DFO Fish Ageing lab in Nanaimo.

### 7.0 LITERATURE CITED

Bergstrom, D.J., S.E. Merkouris, K. Shultz, R. Holder, G. Sandone, D. Schneiderhan, L.H. Barton, and D. Mesiar. 1991. Annual Management Report Yukon Area, 1989. Alaska Department of Fish and Game - Division of Commercial Fisheries.

Boyce, I. and B. Wilson. 2000. Enumeration of adult chum salmon, Oncorhynchus keta, in the Fishing Branch River, Yukon Territory, 1998. Can. Manuscr. Rep. Fish. Aquat. Sci. 2499: 25 p .

Bruce, P.G. 1975. A preliminary study of fish species other than salmon found in the Fishing Branch River, Yukon Territory in September, 1973. In Steigenberger, L.W., M.S. Elson, R.T. Delury (eds.) 1975.

Bryan, J.E. 1973. The influence of pipeline development on aspects of research conducted in 1971 and 1972. Fisheries and Oceans.

Cochran, W. 1977. Sampling Techniques, 3rd ed. Wiley p 76.
Doehle, P. 1999. Chinook Salmon Assessment in the Fishing Branch River, Yukon Territory, 1998. Canada/United States Yukon River Panel Restoration and Enhancement Fund, Project RE-25-98.

Elson, M.S. 1975. Enumeration of spawning chum salmon (Oncorhynchus keta) in the Fishing Branch River in 1971, 1972, 1973, and 1974. In Steigenberger L.W., M.S. Elson, R.T. Delury (eds.) 1975.

Groot C. and L. Margolis (eds.). 1991. Pacific Salmon Life Histories. UBC (University of British Columbia) Press Vancouver.

JTC (Joint United States/Canada Yukon River Technical Committee). 1993a. Yukon River salmon season review for 1992 and Technical Committee Report. February 1993. Whitehorse, Yukon Territory.

JTC (Joint United States/Canada Yukon River Technical Committee). 1993b. Yukon River Joint Technical Committee Report. February 1993. Anchorage, Alaska.

JTC (Joint United States/Canada Yukon River Technical Committee). 1993c. Yukon River salmon season review for 1993 and Technical Committee Report. November 1993. Whitehorse, Yukon Territory.

JTC (Joint United States/Canada Yukon River Technical Committee). 1995a. Yukon River Technical Committee Report. March 1995.

JTC (Joint United States/Canada Yukon River Technical Committee). 1995b. Yukon River salmon season review for 1995 and Technical Committee Report. November 1995.

Milligan, P.A., W.O. Rublee, D.D. Cornett, and R.A.C. Johnston. 1986. The distribution and abundance of chum salmon (Oncorhynchus keta) in the upper Yukon River basin as determined by a radio - tagging and spaghetti tagging program: 1982-1983. Fisheries and Oceans.

Oswald, E.T. and J.R. Senyk. 1977. Ecoregions of the Yukon Territory. Fisheries and Environment Canada. pp 115.

Steigenberger, L.W. 1972. Preliminary information on the winter classification of the rivers in the Northern Yukon, their physical and chemical characteristics and the fish statistics of the various water bodies examined during the first Yukon pipeline winter survey, March, 1972. In Steigenberger L.W., M.S. Elson, R.T. Delury (eds.) 1975.

Steigenberger, L.W., G.J. Birch, P.G. Bruce, R.A. Robertson. 1973. Northern Yukon freshwater fisheries studies, 1973. Northern Operations Branch, Fisheries and Marine Service, D.O.E.

### 8.0 APPENDICES

Appendix 1. Fishing Branch River weir operations, 1995.

| Date | Gate Closure | Total Hours | Reason |
| :---: | :---: | :---: | :---: |
| 28-Aug | - | - | - |
| 29-Aug | - | - | - |
| 30-Aug | 2200-2359 | 2 | high water |
| Aug 31 - Sept 8 | 000-2359 | 24 | high water |
| 9-Sep | 000-1559 | 16 | high water |
| 10-Sep | - | - | - |
| 11-Sep | - | - | - |
| 12-Sep | - | - | - |
| 13-Sep | - | - | - |
| 14-Sep | - | - | - |
| 15-Sep | - | - | - |
| 16-Sep | - | - | - - |
| 17-Sep | 2100-2359 | 3 | lighting system malfunction |
| 18-Sep | 000-859 | 9 | lighting system malfunction |
| 19-Sep | - | - | - |
| 20-Sep | - | - | - |
| 21-Sep | - | - | - |
| 22-Sep | - | - | - |
| 23-Sep | - | - | - |
| 24-Sep | - | - | - |
| 25-Sep | - | - | - - |
| 26-Sep | 1600-1759 | 2 | other duties - carcass sampling |
| 27-Sep | - | - |  |
| 28-Sep | - | - |  |
| 29-Sep | 1600-1659 | 1 | other duties - carcass sampling |
| 30-Sep | - | - |  |
| 1-Oct | 1600-1659 | 1 | other duties - carcass sampling |
| 2-Oct | 1600-1659 | 1 | other duties - carcass sampling |
| 3-Oct | - | - |  |
| 4-Oct | 1500-1559 | 1 | other duties - carcass sampling |
| 5-Oct | - | - |  |
| 6-Oct | - | - |  |
| 7-Oct | - | - |  |
| 8-Oct | - | - |  |
| 9-Oct | - | - |  |
| 10-Oct | - | - |  |
| 11-Oct | - | - |  |
| 12-Oct | - | - |  |
| 13-Oct | - | - |  |
| 14-Oct | 1600-1659 | 1 | other duties - carcass sampling |
| 15-Oct | - | - |  |
| 16-Oct | - | - |  |
| 17-Oct | 000-1259 | 13 | weir pulled at 1400 hrs |

Note: The weir was open for more than $50 \%$ of every hour unless otherwise noted.

Appendix 2. Daily counts of chum salmon through the Fishing Branch River weir, 1995.

| Date | Daily Male | Daily Female | Waily | Cumulative Total | Run Timing |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 27-Aug | 3 | 9 | 12 | 12 | 0.0\% |
| 28-Aug | 55 | 39 | 94 | 106 | 0.2\% |
| 29-Aug | 117 | 151 | 268 | 374 | 0.7\% |
| 30-Aug | 175 | 232 | 407 | 781 | 1.5\% |
| 31-Aug | 6 | 3 | 9 | 790 | 1.5\% |
| 1-Sep |  |  |  | 790 | 1.5\% |
| 2-Sep |  |  |  | 790 | 1.5\% |
| 3-Sep | NO ENUM | ERATION | DUE TO | 790 | 1.5\% |
| 4-Sep |  |  |  | 790 | 1.5\% |
| 5-Sep |  | GH WATEP |  | 790 | 1.5\% |
| 6-Sep |  |  |  | 790 | 1.5\% |
| 7-Sep |  |  |  | 790 | 1.5\% |
| 8-Sep |  |  |  | 790 | 1.5\% |
| 9-Sep | 454 | 524 | 978 | 1,768 | 3.4\% |
| 10-Sep | 872 | 1,047 | 1,919 | 3,687 | 7.1\% |
| 11-Sep | 1,086 | 1,242 | 2,328 | 6,015 | 11.6\% |
| 12-Sep | 1,038 | 1,138 | 2,176 | 8,191 | 15.8\% |
| 13-Sep | 1,211 | 1,442 | 2,653 | 10,844 | 20.9\% |
| 14-Sep | 1,000 | 974 | 1,974 | 12,818 | 24.7\% |
| 15-Sep | 808 | 747 | 1,555 | 14,373 | 27.7\% |
| 16-Sep | 582 | 494 | 1,076 | 15,449 | 29.7\% |
| 17-Sep | 427 | 403 | 830 | 16,279 | 31.3\% |
| 18-Sep | 465 | 385 | 850 | 17,129 | 33.0\% |
| 19-Sep | 846 | 736 | 1,582 | 18,711 | 36.0\% |
| 20-Sep | 1,011 | 839 | 1,850 | 20,561 | 39.6\% |
| 21-Sep | 1,181 | 915 | 2,096 | 22,657 | 43.6\% |
| 22-Sep | 1,007 | 950 | 1,957 | 24,614 | 47.4\% |
| 23-Sep | 1,157 | 1,000 | 2,157 | 26,771 | 51.5\% |
| 24-Sep | 1,141 | 1,049 | 2,190 | 28,961 | 55.7\% |
| 25-Sep | 1,005 | 963 | 1,968 | 30,929 | 59.5\% |
| 26-Sep | 976 | 976 | 1,952 | 32,881 | 63.3\% |
| 27-Sép | 1,134 | 969 | 2,103 | 34,984 | 67.3\% |
| 28-Sep | 974 | 893 | 1,867 | 36,851 | 70.9\% |
| 29-Sep | 817 | 746 | 1,563 | 38,414 | 73.9\% |
| 30-Sep | 657 | 646 | 1,303 | 39,717 | 76.4\% |
| 1-Oct | 710 | 852 | 1,562 | 41,279 | 79.4\% |
| 2-Oct | 634 | 783 | 1,417 | 42,696 | 82.2\% |
| 3-Oct | 633 | 742 | 1,375 | 44,071 | 84.8\% |
| 4-Oct | 529 | 637 | 1,166 | 45,237 | 87.0\% |
| 5-Oct | 457 | 557 | 1,014 | 46,251 | 89.0\% |
| 6-Oct | 442 | 528 | 970 | 47,221 | 90.9\% |
| 7-Oct | 388 | 479 | 867 | 48,088 | 92.5\% |
| 8-Oct | 373 | 460 | 833 | 48,921 | 94.1\% |
| 9-Oct | 313 | 480 | 793 | 49,714 | 95.7\% |
| 10-Oct | 200 | 302 | 502 | 50,216 | 96.6\% |
| 11-Oct | 197 | 312 | 509 | 50,725 | 97.6\% |
| 12-Oct | 141 | 276 | 417 | 51,142 | 98.4\% |
| 13-Oct | 120 | 216 | 336 | 51,478 | 99.1\% |
| 14-Oct | 87 | 135 | 222 | 51,700 | 99.5\% |
| 15-Oct | 51 | 84 | 135 | 51,835 | 99.7\% |
| 16-Oct | 52 | 81 | 133 | 51,968 | 100.0\% |
| 17-Oct | 2 | 1 | 3 | 51,971 | 100.0\% |
| TOTALS | 25,534 | 26,437 | 51,971. | Fremer | ¢ H |



[^6]
Appendix 3.2. Diel run timing of male and female chum salmon through the Fishing Branch River weir, 1995


[^7]| Date | Daily Chinook | Cumulative Chinook | Daily Coho | Cumulative Coho |
| :---: | :---: | :---: | :---: | :---: |
| 27-Aug | 0 | 0 | 0 | 0 |
| 28-Aug | 0 | 0 | 0 | 0 |
| 29-Aug | 2 | 2 | 0 | 0 |
| 30-Aug | 0 | 2 | 0 | 0 |
| 31-Aug |  |  |  |  |
| 1-Sep |  |  |  |  |
| 2-Sep |  |  |  |  |
| 3-Sep | NO ENUMERATION |  | due to |  |
| 4-Sep |  |  |  |  |
| 5-Sep |  | HIGH WATER |  |  |
| 6-Sep |  |  |  |  |
| 7-Sep |  |  |  |  |
| 8-Sep |  |  |  |  |
| 9-Sep | 0 | 2 | 0 | 0 |
| 10-Sep | 1 | 3 | 0 | 0 |
| 11-Sep | 1 | 4 | 0 | 0 |
| 12-Sep | 1 | 5 | 0 | 0 |
| 13-Sep | 1 | 6 | 0 | 0 |
| 14-Sep | 0 | 6 | 0 | 0 |
| 15-Sep | 0 | 6 | 0 | 0 |
| 16-Sep | 0 | 6 | 0 | 0 |
| 17-Sep | 0 | 6 | 0 | 0 |
| 18-Sep | 0 | 6 | 0 | 0 |
| 19-Sep | 0 | 6 | 0 | 0 |
| 20-Sep | 0 | 6 | 0 | 0 |
| 21-Sep | 0 | 6 | 0 | 0 |
| 22-Sep | 0 | 6 | 0 | 0 |
| 23-Sep | 0 | 6 | 0 | 0 |
| 24-Sep | 0 | 6 | 0 | 0 |
| 25-Sep | 0 | 6 | 0 | 0 |
| 26-Sep | 0 | 6 | 0 | 0 |
| 27-Sep | 0 | 6 | 0 | 0 |
| 28-Sep | 1 | 7 | 0 | 0 |
| 29-Sep | 0 | 7 | 0 | 0 |
| 30-Sep | 0 | 7 | 0 | 0 |
| 1-Oct | 0 | 7 | 0 | 0 |
| 2-Oct | 0 | 7 | 1 | 1 |
| 3-Oct | 0 | 7 | 2 | 3 |
| 4-Oct | 0 | 7 | 3 | 6 |
| 5-Oct | 0 | 7 | 1 | 7 |
| 6 -Oct | 0 | 7 | 5 | 12 |
| 7-Oct | 0 | 7 | 2 | 14 |
| 8 -Oct | 0 | 7 | 14 | 28 |
| $9-\mathrm{Oct}$ | 0 | 7 | 8 | 36 |
| 10-Oct | 0 | 7 | 5 | 41 |
| 11-Oct | 0 | 7 | 12 | 53 |
| 12-Oct | 0 | 7 | 15 | 68 |
| 13-Oct | 0 | 7 | 11 | 79 |
| 14-Oct | 0 | 7 | 9 | 88 |
| 15-Oct | 0 | 7 | 12 | 100 |
| 16-Oct | 0 | 7 | 12 | 112 |
| 17-Oct | 0 | 7 | 0 | 112 |
| TOTALS | 7 | - $\square^{2}$ | 112 | \% ${ }^{1}$ |

Appendix 5. Length-frequency histograms of Fishing Branch River chum salmon, 1995.

| Male and Female |  | All Ages |
| :---: | ---: | ---: |
| Bin | Frequency | Cumulative $\%$ |
| 450 | 1 | $0.1 \%$ |
| 460 | 2 | $0.4 \%$ |
| 470 | 12 | $1.9 \%$ |
| 480 | 32 | $5.9 \%$ |
| 490 | 78 | $15.7 \%$ |
| 500 | 104 | $28.8 \%$ |
| 510 | 176 | $50.9 \%$ |
| 520 | 128 | $67.0 \%$ |
| 530 | 86 | $77.9 \%$ |
| 540 | 81 | $88.1 \%$ |
| 550 | 46 | $93.8 \%$ |
| 560 | 14 | $95.6 \%$ |
| 570 | 21 | $98.2 \%$ |
| 580 | 7 | $99.1 \%$ |
| 590 | 6 | $99.9 \%$ |
| 600 | 1 | $100.0 \%$ |
| More | 0 | $100.0 \%$ |



| Males |  | Age 4 |
| ---: | ---: | ---: |
| Bin | Frequency | Cumulative $\%$ |
| 450 | 0 | $0.0 \%$ |
| 460 | 1 | $0.4 \%$ |
| 470 | 2 | $1.3 \%$ |
| 480 | 7 | $4.3 \%$ |
| 490 | 10 | $8.5 \%$ |
| 500 | 15 | $15.0 \%$ |
| 510 | 32 | $28.6 \%$ |
| 520 | 43 | $47.0 \%$ |
| 530 | 39 | $63.7 \%$ |
| 540 | 41 | $81.2 \%$ |
| 550 | 27 | $92.7 \%$ |
| 560 | 4 | $94.4 \%$ |
| 570 | 8 | $97.9 \%$ |
| 580 | 2 | $98.7 \%$ |
| 590 | 2 | $99.6 \%$ |
| 600 | 1 | $100.0 \%$ |
| More | 0 | $100.0 \%$ |



| Males |  | Age 5 |
| ---: | ---: | ---: |
| Bin | Frequency | Cumulative $\%$ |
| 450 | 0 | $0.0 \%$ |
| 460 | 0 | $0.0 \%$ |
| 470 | 0 | $0.0 \%$ |
| 480 | 1 | $1.1 \%$ |
| 490 | 2 | $3.2 \%$ |
| 500 | 7 | $10.8 \%$ |
| 510 | 8 | $19.4 \%$ |
| 520 | 14 | $34.4 \%$ |
| 530 | 11 | $46.2 \%$ |
| 540 | 18 | $65.6 \%$ |
| 550 | 10 | $76.3 \%$ |
| 560 | 5 | $81.7 \%$ |
| 570 | 9 | $91.4 \%$ |
| 580 | 5 | $96.8 \%$ |
| 590 | 3 | $100.0 \%$ |
| 600 | 0 | $100.0 \%$ |
| More | 0 | $100.0 \%$ |



Note: Bin values represent upper end of ranges. For example, bin 450 contains fish ranging from 441 to 450 mm in length.

Appendix 5 (Cont'd). Length-frequency histograms of Fishing Branch River chum salmon, 1995.

| Females |  | Age 4 |
| :---: | ---: | ---: |
| Bin |  | Frequency |
| Cumulative $\%$ |  |  |
| 450 | 1 | $0.5 \%$ |
| 460 | 1 | $1.0 \%$ |
| 470 | 4 | $2.9 \%$ |
| 480 | 19 | $12.2 \%$ |
| 490 | 39 | $31.2 \%$ |
| 500 | 36 | $48.8 \%$ |
| 510 | 62 | $79.0 \%$ |
| 520 | 31 | $94.1 \%$ |
| 530 | 10 | $99.0 \%$ |
| 540 | 2 | $100.0 \%$ |
| 550 | 0 | $100.0 \%$ |
| 560 | 0 | $100.0 \%$ |
| 570 | 0 | $100.0 \%$ |
| 580 | 0 | $100.0 \%$ |
| 590 | 0 | $100.0 \%$ |
| 600 | 0 | $100.0 \%$ |
|  | 0 | $100.0 \%$ |




[^8]Appendix 6. Age composition of Fishing Branch River chum salmon by statistical week, 1995.

|  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Wreti= | Week Ending |  | $31$ | Agee 41 | oss 51 | $61$ | Weoky Sample | Weekly Count |
| 35-37 | 16-Sep | $\begin{array}{r} \mathrm{N} \\ \text { Expanded \# } \end{array}$ | $\begin{gathered} 0 \\ 0 \\ 0 \% \end{gathered}$ | $\begin{gathered} 53 \\ 4.847 \\ 65 \% \end{gathered}$ | $\begin{gathered} 27 \\ 2.469 \\ 33 \% \end{gathered}$ | $\begin{gathered} \hline 1 \\ 91 \\ 1 \% \\ \hline \end{gathered}$ | 81 | 7,407 |
| 38 | 23-Sep | Expanded \# | $\begin{gathered} 2 \\ 111 \\ 2 \% \end{gathered}$ | $\begin{gathered} 65 \\ 3.601 \\ 59 \% \end{gathered}$ | $\begin{gathered} 39 \\ 2.161 \\ 35 \% \end{gathered}$ | $\begin{gathered} 4 \\ 222 \\ 4 \% \end{gathered}$ | 110 | 6,094 |
| 39 | 30-Sep | Expanded $\#$ | $\begin{gathered} 1 \\ 85 \\ 1 \% \end{gathered}$ | $\begin{gathered} 59 \\ 5.007 \\ 75 \% \end{gathered}$ | $\begin{gathered} 19 \\ 1.612 \\ 24 \% \end{gathered}$ | $\begin{gathered} 0 \\ 0 \\ 0 \% \end{gathered}$ | 79 | 6,704 |
| 40 | 7-Oct | $\begin{array}{r} \mathrm{N} \\ \text { Expanded } \# \end{array}$ | $\begin{gathered} \hline 0 \\ 0 \\ 0 \% \end{gathered}$ | $\begin{gathered} 43 \\ 3,398 \\ 90 \% \\ \hline \end{gathered}$ | $\begin{gathered} 4 \\ 316 \\ 8 \% \\ \hline \end{gathered}$ | $\begin{gathered} 1 \\ 79 \\ 2 \% \end{gathered}$ | 48 | 3,793 |
| 41 | 14-Oct | $\begin{array}{r} \mathrm{N} \\ \text { Expanded \# } \end{array}$ | $\begin{gathered} 0 \\ 0 \\ 0 \% \end{gathered}$ | $\begin{gathered} 12 \\ 1.145 \\ 80 \% \end{gathered}$ | $\begin{gathered} 3 \\ 286 \\ 20 \% \end{gathered}$ | $\begin{gathered} 0 \\ 0 \\ 0 \% \\ 0 \% \end{gathered}$ | 15 | 1,431 |
| 42 | 21-Oct | Expanded \# | $\begin{gathered} \hline 0 \\ 0 \\ 0 \% \\ \hline \end{gathered}$ | $\begin{gathered} 2 \\ 70 \\ 67 \% \\ \hline \end{gathered}$ | $\begin{gathered} 1 \\ 35 \\ 33 \% \\ \hline \end{gathered}$ | $\begin{gathered} 0 \\ 0 \\ 0 \% \end{gathered}$ | 3 | 105 |
| Total |  | Expanded \# | $\begin{gathered} 196 \\ 1 \% \\ \hline \end{gathered}$ | $\begin{gathered} 18,067 \\ 71 \% \\ \hline \end{gathered}$ | $\begin{gathered} \hline 6,879 \\ 27 \% \\ \hline \end{gathered}$ | $\begin{aligned} & 392 \\ & 2 \% \\ & \hline \end{aligned}$ | $\begin{gathered} 25,534 \\ 100 \% \\ \hline \end{gathered}$ |  |
|  |  |  |  |  |  |  |  |  |
| 35-37 | 16-Sep | $\begin{array}{r} \mathrm{N} \\ \text { Expanded } \# \end{array}$ | $\begin{gathered} 0 \\ 0 \\ 0 \% \\ \hline \end{gathered}$ | 30 5,483 $68 \%$ | $\begin{gathered} 14 \\ 2,559 \\ 32 \% \\ \hline \end{gathered}$ | $\begin{gathered} 0 \\ 0 \\ 0 \% \end{gathered}$ | 44 | 8,042 |
| 38 | 23-Sep | $\begin{array}{r} \mathrm{N} \\ \text { Expanded } \end{array}$ | $\begin{gathered} \hline 0 \\ 0 \\ 0 \% \\ \hline \end{gathered}$ | $\begin{gathered} \hline 44 \\ 3,109 \\ 5 \% \% \\ \hline \end{gathered}$ | $\begin{gathered} \hline 29 \\ 2,049 \\ 39 \% \\ \hline \end{gathered}$ | $\begin{gathered} \hline 1 \\ 71 \\ 1 \% \\ \hline \end{gathered}$ | 74 | 5,228 |
| 39 | 30-Sep | $\begin{array}{r} \mathrm{N} \\ \text { Expanded } \# \end{array}$ | $\begin{gathered} 0 \\ 0 \\ 0 \% \end{gathered}$ | 54 4.815 $77 \%$ | 15 1,338 $21 \%$ | $\begin{gathered} 1 \\ 89 \\ 1 \% \\ \hline \end{gathered}$ | 70 | 6,242 |
| 40 | 7-Oct | $\begin{array}{r} \mathrm{N} \\ \text { Expanded \# } \end{array}$ | $\begin{gathered} 1 \\ 82 \\ 2 \% \\ \hline \end{gathered}$ | 41 3,352 $73 \%$ | $\begin{gathered} 14 \\ 1.145 \\ 25 \% \\ \hline \end{gathered}$ | $\begin{gathered} 0 \\ 0 \\ 0 \% \\ \hline \end{gathered}$ | 56 | 4,578 |
| 41 | 14-Oct | $\begin{array}{r} \mathrm{N} \\ \text { Expanded } \# \end{array}$ | $\begin{gathered} 0 \\ 0 \\ 0 \% \end{gathered}$ | $\begin{gathered} \hline 33 \\ 1.799 \\ 83 \% \\ \hline \end{gathered}$ | $\begin{gathered} \hline 7 \\ 382 \\ 18 \% \\ \hline \end{gathered}$ | $\begin{gathered} \hline 0 \\ 0 \\ 0 \% \\ \hline \end{gathered}$ | 40 | 2,181 |
| 42 | 21-Oct | $\text { Expanded } \#$ | $\begin{gathered} \hline 0 \\ 0 \\ 0 \% \\ \hline \end{gathered}$ | 2 111 $67 \%$ | 1 55 $33 \%$ | $\begin{gathered} \hline 0 \\ 0 \\ 0 \% \end{gathered}$ | 3 | 166 |
| Iotal |  | Expanded \# | $\begin{aligned} & 82 \\ & 0 \% \end{aligned}$ | $\begin{gathered} 18,669 \\ 71 \% \end{gathered}$ | $\begin{array}{r} 7,527 \\ .28 \% \\ \hline \end{array}$ | $\begin{aligned} & 160 \\ & 1 \% \\ & \hline \end{aligned}$ | $\begin{array}{r} 26,437 \\ 100 \% \\ \hline \end{array}$ |  |
| Sexes Combined |  |  |  |  |  |  |  |  |
| 35-37 | 16-Sep | $\begin{array}{r} \mathrm{N} \\ \text { Expanded \# } \end{array}$ | $\begin{gathered} 0 \\ 0 \\ 0 \% \\ \hline \end{gathered}$ | $\begin{gathered} 83 \\ 10.258 \\ 60 \% \\ \hline \end{gathered}$ | $\begin{gathered} 41 \\ 5.067 \\ 33 \% \\ \hline \end{gathered}$ | $\begin{gathered} \hline 1 \\ 124 \\ 1 \% \\ \hline \end{gathered}$ | 125 | 15,449 |
| 38 | 23-Sep | $\begin{array}{r} \mathrm{N} \\ \text { Expanded \# } \end{array}$ | $\begin{gathered} \hline 2 \\ 123 \\ 1 \% \\ \hline \end{gathered}$ | 109 0.707 $59 \%$ | 68 4.184 $37 \%$ | $\begin{gathered} \hline 5 \\ 308 \\ 3 \% \end{gathered}$ | 184 | 11,322 |
| 39 | 30-Sep | $\begin{array}{r} \mathrm{N} \\ \text { Expanded \# } \end{array}$ | $\begin{gathered} \hline 1 \\ 87 \\ 1 \% \end{gathered}$ | 113 9.818 $76 \%$ | $\begin{gathered} 34 \\ 2.954 \\ 23 \% \\ \hline \end{gathered}$ | $\begin{gathered} \hline 1 \\ 87 \\ 1 \% \end{gathered}$ | 149 | 12,946 |
| 40 | 7-Oct | Expanded \# | $\begin{gathered} 1 \\ 80 \\ 1 \% \end{gathered}$ | $\begin{gathered} 84 \\ 6.761 \\ 81 \% \\ \hline \end{gathered}$ | 18 1.449 $17 \%$ | $\begin{gathered} 1 \\ 80 \\ 1 \% \end{gathered}$ | 104 | 8,371 |
| 41 | 14-Oct | $\begin{array}{rr} - & \mathrm{N} \\ \text { Expanded } \# \end{array}$ | $\begin{gathered} \hline 0 \\ 0 \\ 0 \% \\ \hline \end{gathered}$ | $\begin{gathered} 45 \\ 2.955 \\ 82 \% \\ \hline \end{gathered}$ | $\begin{gathered} 10 \\ 657 \\ 18 \% \\ \hline \end{gathered}$ | $\begin{gathered} \hline 0 \\ 0 \\ 0 \% \end{gathered}$ | 55 | 3,612 |
| 42 | 21-Oct | Expanded | $\begin{gathered} \hline 0 \\ 0 \\ 0 \% \\ \hline \end{gathered}$ | $\begin{gathered} \hline 4 \\ 181 \\ 67 \% \\ \hline \end{gathered}$ | $\begin{gathered} \hline 2 \\ 90 \\ 33 \% \\ \hline \end{gathered}$ | $\begin{gathered} \hline 0 \\ 0 \\ 0 \% \\ \hline \end{gathered}$ | 6 | 271 |
| Total |  | Expanded \# | $\begin{aligned} & 290 \\ & 1 \% \\ & \hline \end{aligned}$ | $\begin{gathered} 36,680 \\ 71 \% \\ \hline \end{gathered}$ | $\begin{gathered} 14,401 \\ 28 \% \\ \hline \end{gathered}$ | $\begin{gathered} 599 \\ 1 \% \\ \hline \end{gathered}$ | $\begin{gathered} 51,971 \\ 100 \% \\ \hline \end{gathered}$ |  |

Appendix 7. Fishing Branch River weir carcass sample, 1995.
Table 1. Sex composition of the chum salmon carcass sample, Fishing Branch River weir, 1995.

| Stat <br> Week | Week <br> Ending | Males | Females | Total | $\%$ <br> Female |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 39 | $30-$ Sep | 22 | 18 | 40 | $45.0 \%$ |
| 40 | $7-$ Oct | 40 | 35 | 75 | $46.7 \%$ |
| 41 | $14-$ Oct | 15 | 20 | 35 | $57.1 \%$ |
| Total |  | 77 | 73 | 150 | $48.7 \%$ |

Table 2. Length composition by sex and age of the chum salmon carcass sample, Fishing Branch River weir, 1995.

| Age | 41 |  | 51 |  | 61 |  | All Samples |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sex | Female | Male | Female | Male | Female | Male | Female | Male |
| N | 25 | 24 | 33 | 44 | 5 | 4 | 73 | 77 |
| Post-Orbital Hypural (POH) Length |  |  |  |  |  |  |  |  |
| Ave | 479 | 508 | 493 | 511 | 493 | 503 | 486 | 508 |
| Min | 440 | 460 | 455 | 465 | 480 | 460 | 425 | 450 |
| Max | 545 | 550 | 595 | 600 | 510 | 520 | 595 | 600 |
| Var | 502 | 641 | 600 | 1177 | 245 | 825 | 653 | 976 |
| Std | 22 | 25 | 24 | 34 | 16 | 29 | 26 | 31 |
| Fork Length |  |  |  |  |  |  |  |  |
| Ave | 587 | 653 | 604 | 650 | 607 | 645 | 597 | 650 |
| Min | 520 | 590 | 565 | 585 | 600 | 585 | 520 | 565 |
| Max | 660 | 725 | 645 | 765 | 620 | 685 | 660 | 765 |
| Var | 844 | 1202 | 522 | 1819 | 95 | 1867 | 772 | 1595 |
| Std | 29 | 35 | 23 | 43 | 10 | 43 | 28 | 40 |

Table 3. Age composition of the chum salmon carcass sample, Fishing Branch River weir, 1995.

| Females |  |  |  |  |  | Males |  |  |  |  |  | Total |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 41 |  | 51 |  | 61 |  | 41 |  | 51 |  | 61 |  |  |  |
| $\begin{gathered} n \\ 25 \end{gathered}$ | $\begin{gathered} \% \\ 18.5 \% \\ \hline \end{gathered}$ | $\begin{gathered} \mathrm{n} \\ 33 \\ \hline \end{gathered}$ | $\begin{gathered} \% \\ 24.4 \% \\ \hline \end{gathered}$ | $n$ 5 | $\begin{gathered} \hline \% \\ 3.7 \% \end{gathered}$ | $n$ 24 | $\begin{gathered} \% \\ 17.8 \% \\ \hline \end{gathered}$ | $n$ 44 | $\begin{gathered} \% \\ 32.6 \% \\ \hline \end{gathered}$ | $n$ 4 | $\begin{gathered} \% \\ 3.0 \% \end{gathered}$ | $\begin{gathered} \mathrm{n} \\ 135 \\ \hline \end{gathered}$ | $\begin{gathered} \text { \% } \\ 100.0 \% \\ \hline \end{gathered}$ |



Total escapement estimated using weir to aerial survey expansion factor of 2.72 , unless otherwise indicated. Aerial survey count unless otherwise indicated.
Weir installed on September 22. Estimate consists of a weir count of 17,190 after September 22, and a tagging passage estimate of 17,935 prior to weir installation
Weir count.
Initial aerial
Initial aerial survey count was doubled before applying the weir/aerial expansion factor of 2.72 since only half
of the spawning area was surveyed.
Weir was not operated. Although only 7,541 chum salmon were counted on a single survey flown October 26,
a population estimate of approximately 27,000 fish was made through date of survey, based upon historic
average aerial-to-weir expansion of $28 \%$. Actual population of spawners was reported by DFO as between
$30,000-40,000$ fish considering aerial survey timing.
Incomplete count due to late installation and/or early removal of project or high water events.

## Appendix 11. Photographs



Photograph 1. Typical construction of the Fishing Branch River weir.


Photograph 2. The Fishing Branch River weir.


[^0]:    ${ }^{1}$ Chum salmon in the Yukon River system can be separated into two major groups: fall (or autumn), and summer. Fall chum can be distinguished from summer chum as adults by: (1) later entrance into freshwater, (2) less developed reproductive systems at the time of entry into freshwater, (3) a later spawning period, (4) larger size, and (5) greater fecundity (Groot and Margolis 1991).

[^1]:    ${ }^{2}$ Mention of trade names does not constitute endorsement by DFO.

[^2]:    ${ }^{3}$ i.e. when the gate was closed and no fish were manually transferred over the gate.

[^3]:    * includes unaged fish.

[^4]:    ${ }^{4}$ This period was chosen because it represents the most recent age-class cycle; the predominant age of spawning Fishing Branch River chum is four years.

[^5]:    ${ }^{5}$ The stock size is used here to mean the number of adult fish returning to the Yukon River from marine areas. Run size calculations are based on the following assumptions: (a) $30 \%$ of the U.S. catch is composed of Canadian-origin fish; (b) the U.S. harvests Canadian stocks in the same ratio as: upper Yukon River border escapement-to-Porcupine River border escapement; and (c) the Porcupine River border escapement consists of the Old Crow catch plus the Fishing Branch River escapement. A key assumption is that the Fishing Branch River upstream of the weir site is the only chum spawning area in the Canadian portion of the Porcupine River drainage.

[^6]:    a Lighting system malfunction; counting suspended

[^7]:    Days on which passage of fish was completely halted for more than one hour are not included.
    (a) only days on which more than 500 fish were counted are included.
    (b) only days on which fewer than 500 fish were counted are included.

[^8]:    Note: Bin values represent upper end of ranges. For example, bin 450 contains fish ranging from 441 to 450 mm in length.

