Alkyllead Contaminations in the St. Lawrence River and St. Clair River (1981 - 1987)

P.T.S. Wong, Y.K. Chau, J. Yaromich, P. Hodson, and M. Whittle

Department of Fisheries and Oceans Bayfield Institute (GLLFAS) Burlington, Ontario L7R 4A6

April 1988

Canadian Technical Report of **Fisheries and Aquatic Sciences** No. 1602

Fisheries and Oceans et Océans

Pêches

Canadä

Canadian Technical Report of

Fisheries and Aquatic Sciences

These reports contain scientific and technical information that represents an important contribution to existing knowledge but which for some reason may not be appropriate for primary scientific (i.e. *Journal*) publication. Technical Reports are directed primarily towards a worldwide audience and have an international distribution. No restriction is placed on subject matter and the series reflects the broad interests and policies of the Department of Fisheries and Oceans, namely, fisheries management, technology and development, ocean sciences, and aquatic environments relevant to Canada.

Technical Reports may be cited as full publications. The correct citation appears above the abstract of each report. Each report will be abstracted in *Aquatic Sciences and Fisheries Abstracts* and will be indexed annually in the Department's index to scientific and technical publications.

Numbers 1-456 in this series were issued as Technical Reports of the Fisheries Research Board of Canada. Numbers 457-714 were issued as Department of the Environment, Fisheries and Marine Service, Research and Development Directorate Technical Reports. Numbers 715-924 were issued as Department of Fisheries and the Environment, Fisheries and Marine Service Technical Reports. The current series name was changed with report number 925.

Details on the availability of Technical Reports in hard copy may be obtained from the issuing establishment indicated on the front cover.

Rapport technique canadien des

sciences halieutiques et aquatiques

Ces rapports contiennent des renseignements scientifiques et techniques qui constituent une contribution importante aux connaissances actuelles mais qui, pour une raison ou pour une autre, ne semblent pas appropriés pour la publication dans un journal scientifique. Il n'y a aucune restriction quant au sujet, de fait, la série reflète la vaste gamme des intérêts et des politiques du Ministère des Pêches et des Océans, notamment gestion des pêches, techniques et développement, sciences océaniques et environnements aquatiques, au Canada.

Les Rapports techniques peuvent être considérés comme des publications complètes. Le titre exact paraîtra au haut du résumé de chaque rapport, qui sera publié dans la revue Aquatic Sciences and Fisheries Abstracts et qui figurera dans l'index annuel des publications scientifiques et techniques du Ministère.

Les numéros 1-456 de cette série ont été publiés à titre de Rapports techniques de l'Office des recherches sur les pêcheries du Canada. Les numéros 457-714, à titre de Rapports techniques de la Direction générale de la recherche et du développement, Service des pêches et de la mer, ministère de l'Environnement. Les numéros 715-924 ont été publiés à titre de Rapports techniques du Service des pêches et de la mer, Ministère des Pêches et de l'Environnement. Le nom de la série a été modifié à partir du numéro 925.

La page couverture porte le nom de l'établissement auteur où l'on peut se procurer les rapports sous couverture cartonnée.

Canadian Technical Report of Fisheries and Aquatic Sciences 1602

April 1988

Alkyllead Contaminations in the St. Lawrence River and St. Clair River (1981 - 1987)

by

P.T.S. Wong* Y.K. Chau# J. Yaromich* P. Hodson* M. Whittle*

*Department of Fisheries and Oceans, Bayfield Institute, Great Lakes Laboratory for Fisheries and Aquatic Sciences, Canada Centre for Inland Waters, Burlington, Ont. L7R 4A6.

#Department of Environment, National Water Research Institute, Canada Centre for Inland Waters, Burlington, Ont. L7R 4A6.

Minister of Supply and Services Canada 1988 Cat.No.Fs 97-6/1602 ISSN 0706-6457

Correct citation for this publication:

Wong, P.T.S., Y.K. Chau, J. Yaromich, P. Hodson and M. Whittle. 1988. Alkyllead Contaminations in the St. Lawrence River and St. Clair River (1981-1987). Can. Tech. Rep. Fish. Aquat. Sci. 1602: x+134p.

ABSTRACT

Wong, P.T.S., Y.K. Chau, J. Yaromich, P. Hodson and M. Whittle. 1988. Alkyllead Contaminations in the St. Lawrence River and St. Clair River (1981-1987). Can. Tech. Rep. Fish Aquat. Sci. 1602: x+134p.

The environmental occurrence of alkyllead compounds is derived mainly from anthropogenic sources such as effluents from alkyllead production plants. There were 2 plants in Ontario in 1981: DuPont Canada Inc. in Maitland (St. Lawrence River) and Ethyl Canada Inc. in Corunna (St. Clair River). We surveyed the extent of alkyllead contamination in environmental samples (fish, clams, macrophytes, sediments and water) in areas upstream and downstream from these sources of alkylleads. For comparison, fish were taken from Lake St. Lawrence and Lake St. Francis, 76 and 112 Km respectively downstream of Maitland. Alkylleads were determined by a gas chromatograph-atomic absorption spectrometer method with detection limits for biota (8 uq/Kq), sediment (15 uq/Kq) and water (8 nq/L).

Analyses of fish samples from the Maitland area between 1981 and 1987 indicate that the levels of alkylleads were highest in 1981 with geometric means of 4207 ug/Kg for carp and 216 ug/Kg for white sucker. A carp from downstream of Maitland contained 138999 ug/Kg of alkylleads, the highest level ever detected or in the literature. There was a clear reported indication of elevated alkyllead levels in fish near the plant. Since 1981, the levels of alkylleads in fish have declined, and in 1987 the geometric means of alkylleads were below 150 ug/Kg. In general the most contaminated fish species were carp, yellow perch, white sucker and brown bullhead while the least contaminated were bass, pike, redhorse sucker and pumpkinseed. Compared to the whole fish, alkyllead levels were consistently lower in muscle and carcass but higher in fatty tissues and intestine. The spectrum of di-, tri- and tetraalkyllead species in fish corresponded most closely to the spectrum of alkylleads in water but not to that in sediments. The fish common forms in were triand most tetraethylleads. Alkylleads represented 0-100% of total lead, depending on the location and fish species sampled; most fish from the contaminated area contained 50-75% of total lead as alkylleads.

Alkylleads were determined in clams in 1982 and 1983 but only 1 sample in 1983 had 330 ug/Kg of

alkylleads from area downstream from the plant Macrophytes near the factory contained high levels of alkylleads with a geometric mean of 2092 ug/Kg in 1982 but the levels declined sharply to 194 ug/Kg in 1983 and to 53 ug/Kg in 1984. The predominant forms in macrophytes were tri- and tetraethylleads.

Alkylleads were found in sediments close to the plant. The levels have dropped from 703 ug/Kg in 1982 216 ug/Kg in 1983, 89 ug/Kg in 1984 and finally to to nondetectable 1986. In levels in addition to triethyllead, tetraethyllead and sediments also contained appreciable amounts of trimethyllead and dimethyllead compounds, suggesting lead methylation in sediments. Alkylleads in water samples were determined only in 1983. The levels in subsurface water were 0.33 ug/L and 0.09 ug/L immediately below and 2 Km downstream from the plant respectively. Alkyllead was nondetectable (less than 8 ng/L) in Lily Bay, upstream Alkyllead and total lead were higher in from DuPont. the surface microlayer than in subsurface water.

Fish samples from the St. Clair River area were analyzed for alkylleads in 1983, 84 and 87. The levels of alkylleads were elevated in fish near Ethyl Canada However, due to the faster water flow rate in Inc. this river, the levels of alkylleads in fish were generally lower than in the same species from the Maitland area. In 1983 alkylleads were determined in both muscle and carcass samples of several fish species. Carcass samples generally contained higher levels than did the muscle samples. Carp, sucker and northern pike had more alkylleads than did yellow perch, walleye, bowfin and garpike. The highest level 3607 ug/Kg in a sucker sample. The most frequently was found alkyllead compounds were tri- and tetraethyllead. ratios of alkyllead to total lead varied with fish The species but generally were between 0.3 to 0.6. Only 1 out of 6 water samples in 1983 contained detectable alkyllead levels. Higher levels were found in the surface microlayer than in subsurface samples (0.68 and 0.42 ug/L respectively).

The levels of alkylleads in fish decreased in 1984. Carp, sucker and northern pike again contained more alkylleads than yellow perch, walleye and brown trout. Two subsurface water samples from Ethyl Canada Inc. had 0.51 and 0.82 ug/L of alkylleads. The alkyllead levels in fish were further decreased in 1987. Only 2 of 7 carp samples contained detectable levels of 51 and 236 ug/Kg while 1 of 2 suckers had 41 ug/Kg. Two samples of walleye did not contain detectable alkylleads (less than 8 ug/Kg). Carp and yellow perch from Lake St. Lawrence and Lake St. Francis were analyzed in 1983. Only 1 of 4 yellow perch had 95 ug/Kg alkylleads while 12 carp samples had nondetectable alkyllead level.

In conclusion, fish, clam, macrophyte, sediment and water samples contained elevated alkyllead levels near the 2 sources with levels much higher in samples from Maitland area. Levels have decreased since 1981 reflecting the improved reduction of alkylleads in the effluents and the closure of DuPont Canada Inc. at Maitland in 1985.

RESUME

Wong, P.T.S., Y.K. Chau, J. Yaromich, P. Hodson and M. Whittle. 1988. Alkyllead Contaminations in the St. Lawrence River and St. Clair River (1981-1987). Can. Tech. Rep. Fish Aquat. Sci. 1602: x+134p

Les composés de type alkylplomb de l'environnement proviennent principalement de sources anthropiques, par exemple des effluents d'usine de production de plomb-tétraalkyle. Il y avait 2 de ces usines en Ontario en 1981, celle de DuPont Canada Inc. à Maitland (sur le fleuve St-Laurent) et celle d'Ethyl Canada Inc. à Corunna (rivière Ste-Claire). Nous avons étudié l'importance de la contamination par les alkylplomb d'échantillons prélevés dérivés dans l'environnement (poissons, bivalves, macrophytes, sédiments et eau) dans des zones en amont et en aval de ces sources de dérivés d'alkylplomb. Pour établir des comparaisons, on a prélevé des poissons des lacs et St-François, à 76 et St-Laurent 112 km respectivement en aval de Maitland. Les dérivés alkylplomb ont été dosés par chromatographie gazeuse-spectrométrie d'absorption avec des limites de détection de 8 ug/kg pour le biote, de 15 ug/kg pour les sédiments et de 8 ng/L pour l'eau.

Des analyses d'échantillons de poissons de la région de Maitland effectuées en 1981 et 1987 indiquent que les teneurs en dérivés alkylplomb atteignaient les valeurs les plus élevées en 1981 avec des moyennes géométriques de 4207 ug/kg pour la carpe et de 216 ug/kg pour le meunier noir. Une carpe pêchée en aval de Maitland contenait 138 999 ug/kg de dérivés alkylplomb, ce qui constitue la plus forte jamais décelée signalée teneur ou dans la documentation. Il y avait une nette indication de teneurs élevées en dérivés alkylplomb chez les poissons du voisinage de l'usine. Depuis 1981, les teneurs en dérivés alkylplomb des poissons ont diminué et en 1987, la moyenne géométrique des dérivés alkylplomb était inférieure à 150 ug/kg. En général, les espèces de poissons les plus contaminées étaient carpe, la perchaude, le meunier noir la et la barbotte, alors que les espèces les moins contaminées étaient l'achigan, le brochet, le suceur et le crapet-soleil, par rapport aux valeurs obtenues pour le poisson entier, les valeurs mesurées dans les muscles et la carcasse étaient régulièrement inférieures, mais celles des tissus adipeux et de l'intestin étaient plus élevées. Le spectre des espèces de di, tri et tétraalkylplomb des poissons correspondait de très près à celui de ces mêmes

dérivés dans l'eau, mais non à celui observé dans les sédiments. Les dérivés les plus communs observés dans les poissons étaient le tri et le tétraalkylplomb. Les dérivés alkylplomb représentaient 0-100 % du plomb total, selon l'emplacement et l'espèce des poissons échantillonnés. La plupart des poissons de la zone contaminée contenaient 50-75% du plomb total sous forme de dérivés alkylplomb.

On a également décelé la présence de dérivés alkylplomb dans des bivalves en 1982 et 1983 mais seulement un échantillon (en 1983) contenait 330 ug/kg de dérivés alkylplomb provenant d'une zone en aval de l'usine. Les macrophytes près de l'usine présentaient également de fortes teneurs en dérivés alkylplomb avec une moyenne géométrique de 2092 ug/kg en 1982, mais les teneurs ont accusé une forte diminution, descendant à 194 ug/kg en 1983 et à 53 ug/kg en 1984. Les espèces prédominantes chez les macrophytes étaient le tri- et le tétraéthylplomb.

On a constaté la présence de dérivés alkylplomb dans les sédiments près de l'usine. Les teneurs ont diminué de 703 ug/kg en 1982 à 216 ug/kg en 1983, à 89 ug/kg en 1984 et finalement, à des teneurs sous le seuil de détection en 1986. En plus du tétraéthylplomb et du triméthylplomb, les sédiments contenaient également des quantités appréciables de triméthylplomb et de diméthylplomb, ce qui laisse supposer des réactions de méthylation du plomb dans les sédiments. Les dérivés alkylplomb dans les eaux de surface n'ont été dosés qu'en 1983. Les teneurs dans la couche d'eau subsuperficielle n'étaient que 0.33 ug/L et de 0.09 ug/L immédiatement au pied de l'usine et à 2 km en aval de l'usine, respectivement. Les dérivés alkylplomb étaient sous le seuil de détection (moins de 8 ng/L) dans la baie Lily, en amont de l'usine DuPont. Les teneurs en alkylplomb et plomb total étaient plus élevées dans la en microcouche superficielle que dans l'eau subsuperficielle.

On a dosé les dérivés alkylplomb d'échantillons de poissons provenant de la rivière Ste-Claire en 1983, 84 et 87. Ces teneurs étaient élevées dans le poisson près d'Ethyl Canada Inc. Toutefois, à cause de l'écoulement plus rapide de cette rivière, les teneurs alkylplomb des poissons étaient généralement inférieures à celles observées chez les mêmes espèces dans la région de Maitland. En 1983, on a dosé les dérivés alkylplomb d'échantillons de muscle et de carcasse de plusieurs espèces de poissons. Les échantillons de carcasse comportaient généralement des teneurs supérieures par rapport aux échantillons de muscle. La carpe, le meunier et le grand brochet présentaient des teneurs plus élevées en dérivés alkylplomb que la perchaude, le doré, le poisson-castor et le lépisosté. La teneur la plus élevée, mesurée dans un échantillon de meunier, atteignait 3607 ug/kg. Les composés d'alkylplomb les plus fréquemment détectés étaient le tri- et le tétraéthylplomb. Les rapports des dérivés alkylplomb et du plomb total variaient selon les espèces de poissons, mais ils étaient généralement compris entre 0.3 et 0.6. Seulement un échantillon d'eau sur 6 prélevé en 1983 contenait des teneurs décelables de dérivés alkylplomb. On observait des teneurs plus élevées dans la microcouche de la surface que dans les échantillons subsuperficiels (0.68 et 0.42 ug/L, respectivement).

Les teneurs des dérivés alkylplomb du poisson ont présenté une diminution en 1984. La carpe, le meunier et le grand brochet contenaient à nouveau plus de dérivés alkylplomb que la perchaude, le doré et la truite brune. Deux échantillons d'eau subsuperficielle provenant d'Ethyl Canada Inc. présentaient des teneurs en alkylplomb de 0.51 et de 0.82 ug/L. Les teneurs en dérivés alkylplomb des poissons ont accusé une autre diminution en 1987. Seulement 2 des 7 échantillons de carpes contenaient des teneurs au-dessus du seuil de détection (51 et 236 ug/kg), alors qu'un des deux meuniers avaient des teneurs de 41 ug/kg. Deux échantillons de dorés ne contenaient pas de quantités décelables de dérivés alkylplomb (moins de 8 ug/kg).

Des carpes et des perchaudes des lacs St-Laurent et St-François ont été analysées en 1983. Seulement une des quatre perchaudes présentait des concentrations de 95 ug/kg, alors que 12 échantillons de carpes contenaient des teneurs non décelables de dérivés alkylplomb.

Pour conclure, on peut dire que les échantillons de poissons, de bivalves, de macrophytes, de sédiments et d'eau contenaient des teneurs en alkylplomb élevées près des deux sources, les valeurs observées étant supérieures à celles mesurées dans des échantillons de la région de Maitland. Les teneurs ont diminué depuis 1981, ce qui reflète des mesures améliorées de réduction des teneurs en dérivés d'alkylplomb dans les effluents et la fermeture de DuPont Canada Inc. à Maitland en 1985.

TABLE OF CONTENTS

PAGE

1.	Abstract		iii
2.	Introduct	ion	1
3.	Materials	and Methods	
	a) :	Sampling areas	4
	b) (Chemicals	5
	c) 1	Preparation of stock solutions	5
	d) :	Sample clean-up procedures	5
	e) (GC-AAS System	6
		Determination of alkyllead and Pb species in water	7
		Determination of alkyllead and Pb species in fish, clams and macrophytes	7
		Determination of alkyllead and Pb species in sediment	7
	i) 2	Accuracy, precision and interferences	8
4.	Results		
	a) /	Alkyllead and inorganic Pb species in fish 1981 (Table 1- 3) 1982 (Table 4- 7) 1983 (Table 8-36) 1984 (Table 37-47 1986 (Table 48-49) 1987 (Table 50-55)	20 23 27 56 67 69
		Alkyllead and inorganic Pb species in sediment clams, macrophytes and water 1982 (Table 56-58) 1983 (Table 59-67) 1984 (Table 68-69) 1986 (Table 70-72)	, 75 78 87 89

PAC	ΞE
-----	----

5.	Summary	,				92
			itland fish . Clair fish	(Table 7) (Table 8)		94 103
6.	Referen	ices				106
7.	Acknowl	edgement				107
8.	Appendi	xes				108
	a)	Maps of sampl	ing sites			109
	b)		kyllead sampling= es and agency col			115
	c)	Computer code fish samples	s and detailed al	kyllead o	data in	118
	d)		s and detailed al			132

INTRODUCTION

Lead exists in two valence states: Pb(II) in inorganic forms such as lead chloride, lead sulphate, and Pb(IV) mostly in organic forms such as triethyllead, tetraethyllead. Lead contamination of the environment is usually measured as inorganic Pb(II). The occurrence of organic Pb(IV) in the environment had rarely been reported probably because of the lack of suitable analytical techniques specific for these compounds at very low sensitivity levels (Chau et al. 1980). During the last decade, great advances have been made in the development of speciation techniques. As a result, organic lead can now be speciated to its molecular forms at environmental concentrations (Chau and Wong, 1984).

types of organolead compounds of There are two concern. One type environmental is tetraalkyllead (R4Pb) which are volatile and water-insoluble and their compounds presence in water is only transient. They will finally be partitioned into the lipids of living organisms, adsorbed onto particulates or volatilized to the atmosphere. They include tetraethyllead (Et4Pb) and tetramethyllead (Me4Pb) and their alkyls. The second type is ionic, water-soluble and mixed includes trialkyllead (R3Pb) and dialkyllead (R2Pb) compounds. Monoalkyllead (RPb) compounds are extremely unstable and their existence has not been established. The dominant use of organolead compounds has been in the form of R4Pb as antiknock additives to gasoline since 1923. Tetraethyllead has been the principal additive in Canadian gasoline since 1926. Consumption of Et4Pb used in gasoline in Canada has declined from 16000 tons 1975 to 9100 tons in 1982 as a result of a federal standard of in 0.77~g/L for Pb in leaded gasoline imposed in 1974 and an increasing number of cars designed for non-leaded gasolines (Royal Society of Canada, 1986). About 1% of R4Pb in gasoline is emitted into the atmosphere via the automobile exhaust and further emissions are caused by evaporative losses of fuel from fuel tanks, carburetors and spillage during the manufacture and transfer of antiknock compounds (Hewitt and Harrison, 1986). The significant anthropogenic inputs of R4Pb to the environment may be compounded by a natural methylation of lead compounds (Wong et 1975). In addition to their use as gasoline additives, al. alkyllead compounds also have minor industrial and commercial such as in the manufacturing of fungicides, applications lubricant oil additives, antifouling agents and pesticides, polyurethane foam catalysts (Shapiro and Frey, 1968).

Tetraalkyllead compounds decompose after entry into the environment to trialkyl-, dialkyl- and inorganic Pb species. The rates of photolysis for Me4Pb and Et4Pb range from 8% and 26% per h respectively in bright summer sunlight to 0.2% and 0.7% per h respectively in the dark (Harrison and Laxen, 1978). Tetraalkyllead compounds also decompose in aqueous systems, forming primarily trialkyllead species. Jarvie et al. (1981) reported that Et4Pb was very stable in water in the dark with only 2% decomposition after 77 days. When exposed to sunlight, almost 100% of Et4Pb was decomposed after 15 days. Trialkyllead compounds are very stable in water with virtually no decomposition for up to 6 months.

To date few measurements have been made of alkyllead levels in the environment. Rainwater samples at six locations in or near Antwerp, Belgium, were found to contain 28-330 ng/L R3Pb with an apparent correlation with local traffic density (De Jonghe et al., 1983). Et4Pb was detected in several samples of surface microlayer but not in the water of the St. Clair River (Chau et al., 1985). Due to their high vapor pressures and lipophilicity, R4Pb would tend to bind to the hydrophobic compounds in the surface microlayer and lipid fraction in fish. The presence of R4Pb compounds in fish was first reported by Sirota and Uthe (1977) who found high ratios of alkyllead to total Pb in several fishery products in Halifax, Nova Scotia. The source of alkyllead was not known; however, the possibility of environmental methylation of Pb compounds was suggested. Mor and Beccaria (1977) reported high concentrations of R4Pb in mussels collected near the "SS Cavtat" incident in the Adriatic Sea where shipload of R4Pb (about 200 tons) was sunk. Chau et al.(1980) a in an extensive survey of lakes and rivers in Ontario, found 17 out of 107 fish samples contained R4Pb. No detectable amount of was found in the water, macrophytes and sediments. R4Pb Unfortunately, analysis of other forms of organic Pb was not carried out in this survey.

Lead is readily accumulated from water by fish. Bioconcentration factors for inorganic lead are generally between 100 and 1000 but are 10 times higher for alkyllead compounds (Hodson, 1986). The reason is likely the higher lipid solubility of alkyllead compounds relative to inorganic lead. Therefore, fish should reflect the pattern of environmental contamination by lead.

In 1979, surveys were initiated in our laboratory to study the degree of Pb contamination in a number of fish species in the lower Great Lakes (Hodson et al., 1983). Several sites were monitored, ranging from Sarnia on the St. Clair River to Maitland on the St. Lawrence River. Blood Pb concentrations in fish increased from a geometric mean of 59 ug/L at Sarnia to a ug/L at Maitland. The erythrocyte enzyme hiqh of 456 🗲 aminolevulinic acid dehydratase (ALA-D) activities were only marginally inhibited in the high-lead containing fish. Published information indicated that ALA-D was only sensitive to inorganic Pb and insensitive to alkyllead compounds (Hodson et al., 1983). Hence an investigation was carried out to analyze both total Pb and alkylleads in fish, particularly in fish from areas where alkyllead compounds were produced. At that time, there were two alkyllead manufacturers in Ontario: DuPont Canada Inc. in Maitland, St. Lawrence River and Ethyl Canada Inc. in Corunna,

St. Clair River. DuPont Canada Inc. is located approximately 4 km east of Maitland. It produced Et4Pb, nylon intermediates, chlorinated fluorocarbons and spandex fibres. Ethyl Canada Inc. just upstream of Corunna, also produced Et4Pb. However, the St. Clair River has a higher water-flow rate than does the St. Lawrence River so that the Pb compound would be more rapidly dispersed.

In this report, we present data on the occurrence of various alkyllead compounds in samples (fish, clams, macrophytes, sediments and water) from St. Lawrence River and St. Clair River from 1981 to 1987.

MATERIALS AND METHODS

a) Sampling areas:

Fish, clams, macrophytes, sediments and water were collected periodically from 1981 to 1987 from two areas of prime concern: 1. Maitland, St. Lawrence River and 2. Sarnia, St. Clair River. Two other areas (Lake St. Lawrence and Lake St. Francis) were sampled in 1983 for comparison.

I. ST. LAWRENCE RIVER (Appendix = map #1) --

1.	Maitland-	80	km	east	of	Kingston
2.	Johnstown-	14	km	east	of	Maitland
3.	Blue Church Bay-	6	km	east	of	Maitland
4.	DuPont-	4	km	east	of	Maitland
5.	Wells Creek-	2	km	east	of	Maitland
6.	Lily Bay-	14	km	west	of	Maitland

II. ST. CLAIR RIVER (Appendix = map #2) ---

1.	Lake Huron-	3.5	km	north	of	Sarnia
2.	Corunna-	9.3	km	south	of	Sarnia
3.	South of Stag Is	10.6	km	south	of	Sarnia
4.	St. Clair-	15.8	km	south	of	Sarnia
5.	Marine City-	26	km	south	of	Sarnia
6.	Algonac-	36	km	south	of	Sarnia
7.	Walpole Is	37	km	south	of	Sarnia

III. LAKE ST. LAWRENCE- 76km east of Maitland

IV. LAKE ST. FRANCIS- 112km east of Maitland

Water samples were collected in 4 L acid-washed and solvent-rinsed amber glass sample bottles. Sediments were obtained by means of an Ekman grab sampler or plastic scoop and in acid-washed glass jars. Most fish species were placed collected with overnight sets of bottom gill nets. Some smaller obtained with species were nearshore seining methods. Macrophytes and clams were collected by divers and placed in Samples were collected by Great Lakes polyethylene bags. Laboratory for Fisheries and Aquatic Sciences (GLLFAS) or Fishing and Industrial Services (FIS). Sampling year, location, type of samples and agency collecting the samples were listed in the Appendix.

Water samples were stored untreated in amber glass bottles at 4 C until analyses. Fish samples were frozen, thawed, homogenized in a meat grinder and refrozen at -25 C. Sediments, clams and macrophytes were also stored frozen at -25 C.

b) Chemicals:

Trimethyllead acetate (Me3PbOAc), triethyllead acetate (Et3PbOAc), tetramethyllead (Me4Pb) and tetraethyllead (Et4Pb) were obtained from Alfa Chemicals (Danvers, MA). Dimethyllead dichloride (Me2Cl2) and diethyllead dichloride (Et2Cl2) were gifts from Associate Octel Co. (S. Wirral, Great Britain). Tetramethylammonium hydroxide (TMAH) was from Fisher Chemicals; sodium diethyldithiocarbamate (NaDDTC) from Baker Co.; n-butyl Grignard reagent in tetrahydrofuran from Alfa Co. All other reagents and solvents were commercially available in high purity grade.

The species determination of alkyllead in water, fish, macrophytes and sediment were carried out according to the methods of Chau et al (1983, 1984). The following sections are brief description of the procedures.

c) Preparation of stock solutions:

1. A 0.5M solution of sodium diethyldithiocarbamate (NaDDTC) was prepared by adding 11 g of NaDDTC into double distilled water and made to volume with double distilled water in an 100-mL volumetric flask. The mixture was stirred using a stirring rod until the NaDDTC was completely dissolved in water.

2. A 20% solution of tetramethylammonium hydroxide (TMAH) was prepared by dissolving 100 g of TMAH into double distilled water and made to volume with double distilled water in a 500-mL volumetric flask.

3. A 1000 ppm stock solution of trimethyllead acetate (Me3PbOAC) was prepared by weighing out 150.2 mg of Me3PbOAc on an analytical balance and dissolving the compound into double distilled water and made to volume with double distilled water in a 100-mL volumetric flask.

4. A 1000 ppm stock solution of triethyllead acetate (Et3PbOAC) was prepared by dissolving 170.7 mg of Et3PbOAC into double distilled water and made to volume with double distilled water in a 100-mL volumetric flask.

d) Sample clean-up procedure:

Fish and clam samples had to be "cleaned up" prior to analyses because of their high protein and lipid content which might clog the GC column as well as the transfer line from the GC to AAS. The clean-up, although slow and tedious, was critical.

1. Preparing column:

Glass wool was placed in the bottom of a 50-mL buret (1.5cm I.D.). A 1-cm layer of sodium sulphate was laid on top of the glass wool. A slurry mixture of pentane and kiesel-gel 60 was poured into the column. A vibrator was used against the sides of the buret to pack the gel tightly. Packing must be 48-cm deep. The packing was sealed with 1-cm layer of anhydrous sodium sulphate.

2. Sample loading:

Before sample was loaded, 2 mL of biological sample extracted with benzene was first butylated with 0.2 mL of Grignard reagent (butyl magnesium chloride) for 10 min. 3 mL of 1N sulphuric acid was then added to destroy the excess Grignard reagent. The level of pentane was drained to the top of the packing in the column. Exactly 1 mL of butylated sample was added to the top of the column with a 1-mL graduated pipette. The sample level was drained to the top of the sulphate layer and the interior walls of the column were rinsed with a few drops of pentane. The rinse pentane should then be drained to the top of the sulphate layer. The stopcock was closed. The reservoir (separatory funnel) was filled with 60 mL of pentane. A 3-4 mL of pentane was slowly drained into the column. A 100-mL round bottom flask was placed under the column and the flow of pentane through the column was adjusted to 1 drop every 2 seconds. The reservoir opening and the round bottom flask were covered with aluminum foil. When approximately 55-mL of pentane had been eluted through the column, the stopcock was closed.

3. Volume reduction:

600 ul of iso-octane was added to each sample to prevent the volatilzation of the Pb compounds from the sample during volume reduction. The sample was concentrated in a rotary evaporator at 20 C. The volume was reduced to approximately 2 mL and then transferred to a 15-mL graduated centrifuge tube. The sample was vortexed on an unheated sample block to exactly 1 mL. The sample was placed into a small vial and sealed tightly. A syringe was used to remove the sample and to inject it into the GC-AAS.

e) The GC-AAS system:

The sample was injected directly into the chromatographic column by a syringe. The chromatographic columnn was of glass, 1.8 m long, 6 mm diameter, packed with 10% OV-1 on Chromosorb W, (80-100 mesh) with a carrier gas (N2) flow rate of 65 mL/min. The temperatures of the injection port and transfer line were at 150 and 160 C, respectively. The column was programmed from 80 C to 200 C at a rate of 5 C/min. The 217 nm line from a lead electrodeless discharge lamp at 10W was used with an electrically heated quartz furnace at 900 C, with H2 flowing at 85 mL/min and a deuterium lamp was used for background correction. Peak areas were integrated with an Hewett Packard integrator (HP3392A).

6

f) Determination of alkyllead and Pb species in water:

Water samples (1 L) were extracted with 50 mL of 0.5 M NaDDTC, 50 g of NaCl and 50 mL of benzene for 30 min. The benzene phase was carefully evaporated in a rotary evaporator to 1 mL in a 15-mL centrifuge tube to which 0.2 mL of n-butyl Grignard reagent was added. The mixture was gently mixed for one minute and washed with 2 mL of 1 N sulfuric acid. The organic phase was dried in anhydrous sodium sulfate. Appropriate amounts (10-20 ul) were injected into the GC-AAS system for analysis. Sum of total Pb was determined by adding the concentrations of individual alkylleads and inorganic Pb. Detection limit for water was 8 ng/L.

g) Determination of alkyllead and Pb species in fish, clams and macrophytes:

Several types of fish samples were used for analyses. These included whole fish, carcass (headless and gutted), muscle (skinless dorsal fillet), intestine, liver and fatty tissue samples.

Homogenized fish samples (2 g), whole clams (1-2 g) or shredded pieces of macrophytes (2 g) were first digested with 5 mL of TMAH (20%) in a hot water bath at 60 C for 1-2 h or until the tissue was dissolved. After cooling, the mixture was neutralized with 50% HCl to pH of 6-8 and again extracted with 5 mL benzene, 2 g of NaCl and 3 mL of 0.5 M NaDDTC solution. The mixture was centrifuged and 2 mL of the benzene phase was transferred to a vial and tightly sealed. The benzene sample was placed the into freezer. Fish and clam samples required "clean-up" as previously described. Macrophytes did not require "clean-up". Therefore, the 2 mL benzene sample was transferred to glass-stoppered vial for butylation with 0.2 mL n-butyl Grignard reagent. 3 mL of 1 N H2SO4 was added to destroy excess The benzene phase was dried in anhydrous Grignard reagent. Suitable aliquots (10-20 uL) were injected into sodium sulfate. the GC-AAS system for analysis. Sum of total Pb was determined by adding concentrations of individual alkylleads and inorganic Detection limit for fish, clams and macrophytes was 8 Pb. ng/g(wet weight).

h) Determination of alkyllead and Pb species in sediments:

Dried (1-2 g) or wet (5 g) sediment sample was extracted in a capped vial with 3 mL of benzene after adding 10 mL H2O, 6 g NaCl, 1 g KI, 2 g Na benzoate, 3 mL 0.5 M NaDDTC and 2 g coarse glass beads (20-40 mesh) for 2 hr on a mechanical shaker. After centrifugation, a measured aliquot (1 mL) of the benzene layer was withdrawn for butylation as described. Sum of total Pb was determined by adding concentrations of individual alkylleads and

7

inorganic Pb. Detection limit for sediment was 15 ng/g (wet weight) of sample.

i) Accuracy, precision and interferences:

The recoveries of dialkylleads and trialkylleads from biological (fish, clams and macrophytes), sediment and water samples were evaluated by spiking various levels (1 to 20 ug) of the Pb compounds to the samples and extracted the samples with the above procedures. The average recovery varied from 71% for Me2Pb to 101% for Et2Pb in the biological samples, 94% for Et3Pb to 111% for Me3Pb in sediments and 94% for Et3Pb to 106% for Me3Pb in water. Recoveries were evaluated by comparing values from alkyllead standards with and without spiked into samples. The results indicated that there were no serious sample matrix interferences.

The precision of the method was also evaluated by replicate analysis (n=6) of biological (fillet, clams and macrophytes) and sediment samples spiked with 5 ug of each of the alkylleads. For biological samples the reproducibility varied from 6.5% for Et3Pb to 20% for Et2Pb. Better reproducibility was obtained for Replicated analysis (n=6) showed an average sediment analysis. standard deviation of 4% for Me3Pb and Et3Pb to 15% for the The precision of the water analyses dialkyllead compounds. method was evaluated by determining 10 replicate samples from 100 mL of Lake Ontario water enriched with 10 ug of each of the alkyllead and Pb species. The relative standard deviation for 4 alkyllead and Pb compounds at this level varied from 5.4% the for Me3Pb to 9.5% for Pb.

Alkyllead compounds were identified using the retention times of a synthesized standard mixture containing the ten alkyllead and Pb(II) species. Of all the alkyllead compounds, Me3Pb and Et3Pb were the most stable and since equal quantities of all the alkyllead species gave equal peak areas, Me3Pb and Et3Pb were used as internal standards for other Pb compounds.

All results were reported as ppm (mg/Kg) or ppb (ug/Kg) on a wet weight basis.

RESULTS

a) Alkyllead and Inorganic Lead Species in Fish

Concentrations of individual alkyllead and inorganic Pb species in fish from St. Lawrence and St. Clair Rivers areas from 1981 to 1987 are listed in Appendix C). For presentation of the results and discussion purposes, the data were calculated to give geometric means with their ranges of maximum and minimum.

1981:

Only 3 fish species were collected from Blue Church Bay (downstream from DuPont). However, the fish were found to contain the highest levels of alkylleads and Pb(II) during the 7 years of our studies on alkylleads.

Alkylleads were present in 25 out of 28 samples analysed (Table 1). The highest concentration of alkylleads ever detected was in a carp sample (with intestine removed for separate analysis) with 138,999 ppb. The geometric mean of 12 carp samples was only 4,207 ppb, indicating the wide range of alkyllead levels in the samples. The intestine sample from the same fish also contained very high alkyllead levels with a geometric mean of 2,919 ppb.

White sucker and northern pike contained less alkyllead than did the carp. However, in these fish samples, alkyllead levels were higher in the intestines than in other parts of the fish (Table 1).

Analyses of alkyllead species in the whole fish and in the intestines indicated that the majority of alkyllead was in the form of Et4Pb and its degradation product Et3Pb (Tables 2 & 3). Alkyllead levels were correlated to total lead levels in carcass reflecting the high proportion of organolead compounds (unpublished data).

The early indications of lead contamination were confirmed by very strong correlations in carp of the sum of all alkyllead concentrations in carcass to blood lead levels (unpublished data).

1982:

Ten different fish species from the Maitland area were analysed for both alkylleads and total leads. Alkylleads were detected in 33 out of 45 whole fish samples (with intestines removed for separate analyses). The highest concentration of alkylleads was found in one sample of carp containing 61,713 ppb (Table 4). However, this level was considerably less than 138,999 ppb found in 1981 (Table 1). Again, the ranges of alkylleads were wide. Based on the values of geometric means, yellow perch contained the most alkylleads (1994 ppb) followed by carp (1976), smallmouth bass (1972), white sucker (1747), brown bullhead (1135), redhorse sucker (721), pumpkinseed (567), pike (287) and alewife (244). Rock bass did not contain detectable amounts of the lead compounds (< 8 ppb). Alkyllead compounds were present mainly in the forms of Et4Pb and Et3Pb with small amounts in Et2Pb and MeEt3Pb (Table 5).

Total Pb which include alkylleads and inorganic Pb was detected in 41 of 45 whole fish samples (Table 6). The pattern of total Pb mirrored the alkyllead levels with yellow perch containing the highest level.

Seven out of ten fish species were analysed for alkylleads in their intestines. Yellow perch, alewife and pumpkinseed with weights less than 120 g were too small to separate the intestines. Alkylleads were present in 24 of 29 intestine samples with white sucker containing the highest geometric mean of 6336 ppb (Table 4). Smallmouth bass, carp and redhorse sucker also contained appreciable amounts of alkylleads with Et4Pb and Et3Pb as the major forms (Table 7). Total Pb was found in 26 of 29 intestine samples (Table 6). Smallmouth bass contained 3944 ppb of total Pb followed by carp (3070), white sucker (2700), pike (2010) and brown bullhead (587).

1983:

Various fish species were collected from sites (Maps #1 and #2) along the St. Lawrence River (Maitland, Johnstown, Blue Church Bay, Lily Bay), Lake St. Lawrence, Lake St. Francis and the St. Clair River (Marine City, Algonac, Lake Huron, St. Clair and Walpole Island). As in the previous years, alkylleads were determined in the whole fish samples from certain locations. However, some fish samples were also separated into muscle and carcass portions for analyses.

(1) St. Lawrence River:

a) Maitland area -- Alkylleads and total Pb were determined in 9 different whole fish species from this area (Table 8). Alkylleads were detected in 24 of 26 samples with white sucker containing the highest level (mean of 3725 ppb), followed by yellow perch (1778 ppb), smallmouth bass (1223 ppb), carp (804 ppb), killifish (710 ppb), northern pike (436 ppb), pumpkinseed (413 ppb), red horse sucker (361 ppb) and rock bass (163 ppb). Et4Pb and Et3Pb were again the major forms of alkylleads (Table 9). Total Pb was present in all of 26 samples (Table 8). White sucker contained the highest geometric mean of total Pb (4920 ppb). The levels of total Pb concentrations followed a similar pattern as in the alkylleads. The ratios of alkylleads to total Pb ranged from a low of 0.25 in rock bass to a high of 0.92 in pumpkinseed.

b) Johnstown -- Thirty-one carcass and 30 muscle samples from 10 different fish species were analysed.

Alkylleads were detected in 29 of 31 carcass samples (Table 10). Yellow perch and carp contained the highest amount of alkylleads. In general, concentrations of alkylleads in the carcass were much lower than the levels in the whole fish samples (Tables 8 & 10). Alkylleads were present mainly in the forms of Et3Pb and Et4Pb (Table 11). Total Pb was present in all 31 carcass samples again with yellow perch (661 ppb) and carp (665 ppb) containing the highest geometric means (Table 12). However, one carcass sample of white sucker contained the highest level of total Pb (4005 ppb).

Alkylleads were present in 28 of 30 muscle samples (Table 13). Concentrations of the lead compounds were generally lower than in the carcass samples with geometric means less than 450 ppb. Yellow perch (450 ppb) and carp (405 ppb) again were the most alkyllead-contaminated species. Interestingly, with the exceptions of carp and northern bass, all other fish species contained alkylleads almost exclusively in the form of Et3Pb (Table 14). Total Pb again followed the same pattern as the alkylleads with carp (615 ppb) and yellow perch (556 ppb) as the most contaminated species (Table 15).

c) Blue Church Bay -- Twenty-eight carcass and 22 muscle samples from 7 fish species were analyzed for alkylleads and total Pb.

Alkylleads were present in 24 of 28 carcass samples with geometric means much higher than the carcass samples from Johnstown. (Table 10). Yellow perch contained 1716 ppb while redhorse sucker had 798 ppb. No sample of carp was available. Et4Pb and Et3Pb were the predominant forms of alkylleads (Table 16). Total Pb was detected in all 28 carcass samples (Table 12). Several samples of three fish species (yellow perch, redhorse sucker and northern pike) contained total Pb at levels above 3000 ppb.

Alkylleads were found in 21 of 22 muscle samples (Table 13). Fish from this area generally contained much higher lead compounds than those from Johnstown. Several fish samples had values over 1000 ppb. In contrast to the carcass samples, alkylleads in muscle were almost exclusively in the form of Et3Pb (Table 17). Total Pb was present in 21 of 22 muscle samples (Table 15) with concentrations generally higher than those from Johnstown. For example, one brown bullhead and 2 yellow perch samples contained 3799, 3505 and 2123 ppb of total Pb respectively. d) Lily Bay -- Sixteen carcass and 14 muscle samples from
 9 fish species were analysed for alkyllead and total Pb levels.

Alkylleads were detected only in 5 out of 16 carcass samples (Table 10). The concentrations of alkylleads in fish from this site were, in general, the lowest compared with other sites. Several species of fish did not contain detectable amounts of alkylleads (<8 ppb). Carp contained the highest amount of alkylleads (321 ppb). Of 3 carp samples analysed, one had 1061 ppb while the others had 97 and < 8 ppb respectively. Composition of alkylleads revealed that carp had been exposed to Et4Pb since 85% of alkylleads were in the form of Et4Pb in this species (Table 18). However, yellow perch and pumpkinseed contained 100% MeEt3Pb, a form not predominant in the previous samples. Total Pb was present in 11 of 16 carcass samples (Table 12). Yellow perch and carp contained the highest levels of total Pb. However, the levels were generally lowered than that from the other areas.

Alkylleads were present in 5 of 14 muscle samples. Again, the levels of alkylleads were very low (Table 13). Only one carp sample had a level higher than 100 ppb. With the exception of carp, yellow perch and small mouth bass had Et3Pb as the predominant form (Table 19). Total Pb was found in 10 of 14 muscle samples with carp containing the highest amount of 260 ppb (Table 15). Similar to the carcass, the muscle samples from this area had much lower total Pb levels.

(2) Lake St. Lawrence and Lake St. Francis:

Two species of whole fish from Lake St. Lawrence and 1 species of whole fish from Lake St. Francis were analyzed.

Alkylleads were detected in low levels (95 ppb) in only 1 of 4 yellow perch samples from Lake St. Lawrence (Table 20). All six carp samples contained less than detectable level. Alkylleads in the yellow perch were present mainly in the forms of Et3Pb and MeEt3Pb (Table 21). Total Pb was found in 4 of 10 samples with carp and yellow perch containing geometric means of 145 and 95 ppb of total Pb respectively (Table 20).

Six samples of carp from Lake St. Francis did not contain detectable level of alkylleads and only low concentrations of total Pb (130 ppb) were detected in 4 of 6 samples (Table 22).

(3) St. Clair River:

a) Marine City -- Two fish species (white sucker and redhorse sucker) were analyzed for alkylleads and total Pb in carcass and muscle samples.

All 3 carcass samples of white sucker contained alkylleads which ranged from 40 to 3188 ppb and total Pb which ranged from 151 to 3188 ppb (Table 23). Only 1 carcass sample of redhorse sucker was determined. Alkylleads were below the detectable level while the total Pb concentration was only 97 ppb. Muscle samples of white sucker (Table 24) had a higher mean level (753 ppb) of alkyllead compounds than the carcass samples (413 ppb). No muscle sample of redhorse sucker was available for comparison. The predominant forms of alkylleads in white sucker muscle and carcass samples were Et4Pb and Et3Pb (Table 25).

b) Algonac -- Alkylleads were analyzed in carcass samples of 6 fish species (Table 26). Only 1 of 4 carp samples and 1 of 5 white sucker samples contained measureable quantities of alkylleads. Yellow perch, northern pike, bowfin and garpike had no detectable alkylleads. Total Pb was present in more fish samples but with lower geometric means.

More samples of fish muscle contained alkylleads and total Pb but the overall concentrations were very low (Table 27). The highest level was in a carp sample with 1601 and 1843 ppb of alkylleads and total Pb respectively. Alkylleads were present mainly in the forms of Et4Pb and Et3Pb (Table 28). However, one carcass sample of white sucker contained exclusively MeEt3Pb, similar to that observed in yellow perch and pumpkinseed carcass samples from Lily Bay (Table 18).

c) Lake Huron -- Only two fish species (white sucker and carp) were analyzed for alkylleads and total Pb in carcass and muscle samples. The concentrations of these lead compounds in the samples were low. Carcass and muscle samples of carp contained 323 and 627 ppb of alkylleads and 670 and 687 ppb of total Pb respectively (Tables 29 and 30). Alkylleads were present mainly as Et4Pb and Et3Pb with the exception of 1 white sucker muscle sample where 100% of Et2Pb was found (Table 31).

d) St. Clair -- Alkylleads were not detected in carcass and muscle of 4 fish species (Tables 32 and 33). Total Pb was present but in very low levels.

e) Walpole Island -- Carp, yellow perch and catfish contained 34, 17 and 154 ppb of alkylleads in the carcass samples and 121, <8 and 114 ppb of alkylleads in the muscle samples respectively (Tables 34 and 35). Et4Pb and Et3Pb were the major species of alkylleads (Table 36). Total Pb was slightly higher than alkylleads in both carcass and muscle samples. However, the levels were still less than 350 ppb.

1984:

(1) St. Lawrence River:

a) Maitland -- 25 muscle samples from 4 fish species were analyzed for alkylleads and total Pb (Table 37). All samples had

alkylleads with carp containing the highest geometric mean of 3333 ppb, followed by brown bullhead (1505 ppb), white sucker (1115 ppb) and yellow perch (622 ppb). One carp muscle sample contained 23143 ppb of alkylleads. However, these levels were still generally lower than those in the previous years of 1981 and 1982 (Tables 1 and 4). Et4Pb and Et3Pb were the major species of alkylleads (Table 38). Total Pb followed the same pattern as the alkylleads (Table 37).

b) Johnstown -- Alkylleads were present in 37 of 67 whole fish samples from Johnstwown (Table 39). White sucker contained the highest geometric mean concentration of 495 ppb, followed by yellow perch (328 ppb), red horse sucker (321 ppb), carp (304 ppb), brown bullhead (171 ppb) and rock bass (165 ppb). Pumpkinseed and small mouth bass did not contain detectable level of alkylleads. Alkylleads were present mainly in the forms of Et4Pb and Et3Pb (Table 40).

Total Pb were detected in 46 of 67 whole fish samples (Table 41). A sample of white sucker had a level of 2553 ppb of total Pb, the highest of all the samples. Other fish species had similar proportions of total Pb and alkylleads.

c) Blue Church Bay -- Six species of whole fish were analyzed. Alkylleads were found in all the species (Table 39). With the exception of white sucker, fish from this area generally contained higher alkyllead levels than those from Johnstown. Only 1 sample of yellow perch was available for analysis but was found to contain 2524 ppb of the lead compounds. Fifteen samples of redhorse sucker had a mean value of 809 ppb and a range of 109 to 5039 ppb. Other fish species had much lower alkyllead levels. Again the predominant forms of alkylleads were Et4Pb and Et3Pb but with significant amount of Et2Pb (Table 42).

One sample of redhorse sucker had the highest total Pb level of 5874 ppb (Table 41). In general, the levels of total Pb mirrored the levels of alkylleads.

d) Lily Bay -- Fish from Lily Bay contained the lowest concentrations of alkylleads and total Pb (Tables 39 and 41). Only 2 fish species (red horse sucker and white sucker) and 9 of 41 whole fish samples from this area had detectable amount of alkylleads and with mean values less than 155 ppb. Et4Pb and Et3Pb were again the major forms of alkylleads (Table 43).

Total Pb was present in more samples (20 of 41). One sample of red horse sucker and 1 sample of white sucker contained high levels of 5461 and 2326 ppb of total Pb respectively (Table 41). However, the geometric means, due to a wide range of concentrations, were only 357 and 171 ppb respectively.

(2) St. Clair River:

a) Stag Island -- Alkylleads were detected in 11 of 16 whole fish samples collected from the south of Stag Island. Only

white sucker and walleye contained low levels of alkylleads, 138 and 32 ppb (geometric means) respectively, while yellow perch and brown trout were below detection limit of 8 ppb (Table 44). Et4Pb and Et3Pb were the major species of alkylleads in walleye while Et4Pb and Et2Pb predominated in white sucker (Table 45).

Total Pb were present in all 16 samples (Table 44). One sample of white sucker contained abnormally high level of 2525 ppb of total Pb while the other samples were below 500 ppb.

b) Corunna -- Only 2 carp and 4 northern pike were analyzed as whole fish samples. Alkylleads were detected in 1 carp and all 4 northern pike samples (Table 46). Concentrations were generally low with the highest at 1522 ppb. Carp contained 100% Et3Pb while northern pike had 72% Et4Pb and 21% Et3Pb (Table 47). Total Pb were also low with means less than 443 ppb.

1985:

There was no alkyllead determination on fish in this year. There were caged clam experiments in both St. Lawrence and St. Clair Rivers. Results will be published in separate papers.

1986:

Twenty-five whole fish samples of 4 species of fish (carp, yellow perch, white sucker and brown bullhead) from Blue Church Bay, St. Lawrence River were analyzed.

Alkylleads were found in 11 of 25 whole fish samples (Table 48). With the exception of 1 abnormally high level of 12234 ppb in the carp sample, the levels of alkylleads were generally lower than in the previous years. The geometric means were 988, 230 and 54 ppb for carp, white sucker and brown bullhead respectively. In contrast to the results from the previous years, 5 samples of yellow perch did not contain detectable quantity of alkylleads. The major forms of alkylleads as before were Et4Pb and Et3Pb (Table 49).

Total Pb were present in 24 of 25 samples (Table 48). Similar to the alkylleads, total Pb were generally low as compared to the previous years. However, 1 carp sample still contained 13616 ppb of total Pb. 1987:

(1) St. Lawrence River:

Sixteen whole fish samples of 4 species of fish (carp, brown bullhead, white sucker and yellow perch) from Blue Church Bay were analyzed.

Alkylleads were found in 6 of 16 whole fish samples (Table 50). The alkyllead levels continued to decrease from the previous years. The geometric means were 120, 149 and 50 ppb for carp, brown bullhead and white sucker respectively. The major forms of alkylleads were Et3Pb and Et4Pb (Table 51). Total Pb were present in all 16 samples (Table 50). Similar to the alkylleads total Pb were generally low as compared to previous years.

Four different tissues from 3 carps were dissected and analyzed for alkylleads and total leads (Table 52). Alkylleads were found in all 3 liver and intestine samples with geometric means of 161 and 116 ppb respectively. Alkylleads were present in 1 out of 3 fatty tissue samples (512 ppb) and in 1 out of 3 fillet samples (350 ppb). Alkylleads were present mainly in the forms of Et4Pb and Et3Pb (Table 53). Total leads were present in all samples analyzed (Table 52). The liver had the highest total lead level of 418 ppb followed by the intestines (317 ppb), fatty tissue (154 ppb) and fillet (134 ppb).

(2) St. Clair River:

Alkylleads were detected in 3 out of 11 whole fish samples collected from Stag Island (Table 54). Only carp and white sucker contained alkylleads, 110 and 41 ppb (geometric mean) respectively, while walleye was below detection limit of 8 ppb. Et3Pb and Et4Pb were the major alkyllead species (Table 55). Total lead were present in all 11 samples (Table 54). White sucker contained the highest amount (257 ppb) followed by carp (193 ppb) and walleye (137 ppb).

b. Alkyllead and Inorganic Lead Species in Sediments, Clams, Macrophytes and Water

1981:

There were no alkyllead and inorganic Pb determinations

on sediments, clams, macrophytes and water in this year.

1982:

(1) Sediments --

Four sediment samples were collected from Blue Church Bay (2 km downstream from DuPont) and from the vicinity of DuPont (Map #3). Alkylleads were not detected in Blue Church Bay sediments but were 703 ppb in DuPont sediments (Table 56). The levels of total Pb which included alkylleads and inorganic Pb were 4540 in Blue Church Bay and more than 5911 ppb (one sample had so much Pb that it was off-scale in the GC-AAS) in DuPont sediments respectively (Table 57).

Alkylleads were present mainly in the forms of Et4Pb, followed by Et3Pb and MeEt3Pb in DuPont sediments (Table 58).

(2) Clams --

Only one clam was collected near DuPont. Alkylleads were not detected (Table 56). Inorganic Pb level was only 280 ppb (Table 57).

(3) Macrophytes --

Macrophytes from Blue Church Bay did not contain detectable amounts of alkylleads (Table 56) but had 6796 ppb of total Pb (Table 57). Macrophytes from DuPont area contained 2092 ppb of alkylleads and 19169 ppb of total Pb (Tables 56 and 57). Alkylleads were mainly in the form of Et4Pb (Table 58).

1983:

(1) Sediments --

Sediments were collected from three sites near Blue Church Bay and one site at Lily Bay (Map #4). Site 1 is mid-way between DuPont and Blue Church Bay, Site 2 is off Blue Church Bay or 2 km downstream of DuPont and Site 3 is about 0.5 km downstream of Blue Church Bay. Lily Bay, 18 km upstream of DuPont, was used as a control site.

Alkylleads were detected in the sediments in all 4 sites. The sediments in 3 sites downstream from DuPont contained 216-264 ppb of alkylleads and the sediments from Lily Bay also had 219 ppb of the Pb compounds (Tables 59 and 60). In contrast to the previous results (Table 58), these sediments contained more Me3Pb and Me2Et2Pb than Et4Pb (Table 61). Total leads were 2-3 times higher in the sediments from Sites 1 and 3 than in the sediments from Site 2 and Lily Bay (Tables 62 and 63).

(2) Clams ---

Only one sample from Site 2 was available for analysis. The levels of alkylleads and total Pb were 335 and 1357 ppb respectively (Tables 59 and 62). Alkylleads were present mainly in the form of Et3Pb followed by Et4Pb (Table 64).

(3) Macrophytes --

Macrophytes were collected from Site 3 and from Lily Bay. Alkylleads were detected in 1 of 4 samples from Site 3 at a concentration of 194 ppb (Table 60) and were present only in the form of Me3Pb (Table 65). Total Pb were found in all 4 samples with a geometric mean of 2515 ppb (Table 63).

While alkylleads were not detectable in any of the 7 samples collected from Lily Bay (Table 60), total Pb were present in all 7 samples in a concentration of 315 ppb (Table 63).

(4) Water --

Alkylleads were determined in surface microlayer and subsurface water samples (1m depth). Table 66 shows alkylleads were below detection limit (<8 ppt) in sample from Lily bay (18 Km upstream from DuPont). The levels were much higher in samples just off from DuPont with geometric means of 0.33 ppb and 0.90 ppb in subsurface and surface microlayer respectively. The levels decreased to 0.09 ppb and 0.08 ppb in samples 2 Km downstream from DuPont (Blue Church Bay).

Compared with alkylleads, the levels of total leads were much higher in all the water samples with one sample from DuPont area as high as 9.39 ppb (Table 66).

Only 1 of 6 water samples collected near Ethyl Corp. in St. Clair River contained detectable levels of alkylleads (Table 67). Surface microlayer had 0.68 ppb while subsurface water sample had 0.42 ppb. All six samples contained high levels of total leads with geometric means of 1.44 ppb and 2.40 ppb for subsurface and surface microlayer samples respectively. 1984:

(1) Sediments--

Sediments were collected from Blue Church Bay (Map # 5). Alkylleads were detected in low levels (geometric mean of 89 ppb) in 13 of 15 samples analyzed (Table 68). Total Pb were found in all the samples and at much higher levels (geometric mean of 7340 ppb). Alkylleads were present mainly in the form of Et4Pb, followed by Et3Pb (Table 69).

(2) Macrophytes--

Macrophytes were collected from the same site as the sediments. Five of 13 macrophyte samples had detectable level of alkylleads with geometric mean of 53 ppb (Table 68). All samples contained total Pb (geometric mean of 1052 ppb). Et4Pb was the predominate form of alkylleads in macrophytes (Table 69).

1985:

There was no sample in 1985.

1986:

Sediment --

Sediment samples were collected from 4 different sites near Blue Church Bay (Map #6)

Alkylleads were detected in very low level (14 ppb) only in one sample in Site 4 near Blue Church Bay (Table 70) and were present completely as Et2Pb (Table 71). Other 7 sediment samples from various sites did not contain detectable amount of alkylleads. Total Pb were detected in all the sediments from each of the 4 sites with Site 2 (DuPont Plant) containing the highest concentration of Pb (510 ppb). Sediments from other sites contained between 156 to 225 ppb of total Pb (Table 72).

TABLE 1:

SPECIES	WHOLI	E FISH (- IN ppb'	TESTINE	S)	INTESTINES ppb'			
	N1/N2*	GEOMETRIC MEAN**	RA	NGE	N1/N2*	GEOMETRIC MEAN**	RA	NGE
CARP	12/12	4207	190-1	38999	11/12	2919	100-1	00644
WHITE SUCKER	8/10	218	24-	1221	9 /10	1009	236-	3447
NORTHE RN PIKE	5/6	173	30-	1384	5/6	2248	1360-	4454

TOTAL ALKYLLEADS IN FISH MAITLAND----1981

' ppb= ug alkyllead per Kg fish (wet weight)

.

- * Number of fish samples with detectable alkyllead levels over number of fish samples analysed.
- ** The geometric mean is calculated only from those samples containing detectable alkyllead.

1

TABLE 2

PERCENTAGE OF ALKYLLEAD SPECIES DISTRIBUTION IN WHOLE FISH (-INTESTINES) MAITLAND- 1981

SPECIES	N1/N2*	ALKYLLEAD SPECIES					
		Me2Et2	MeEt3	Et4	ET 3	ET2	
CARP	12/12	1	4	55	39	1	
WHITE SUCKER	8/10	0	2	47	51	0	
NORTHERN PIKE	5/ 6	0	21	0	40	39	

* Number of fish samples with detectable alkyllead levels over number of fish analysed.

.

L

.

TABLE 3

PERCENTAGE OF ALKYLLEAD SPECIES DISTRIBUTION IN INTESTINES MAITLAND- 1981

SPECIES	N1/N2*	ALKYLLEAD SPECIES						
	200 ctal	Me2Et2	MeEt3	Et4	Et 3	Et2		
CARP	11/12	1	2	32	54	11		
WHITE SUCKER	9/10	1	2	27	52	18		
NORTHERN PIKE	5/6	2	8	46	28	16		

* Number of fish samples with detectable alkyllead levels over number of fish analysed.

L

· · · · · ·

22

TOTAL ALKYLLEADS IN FISH MAITLAND---1982

SPECIES	WHOLE FISH (- INTESTINES) ppb'			INTESTINES ppb'			
		GEOMETRIC MEAN**	RANGE	N1/N2*	GEOMETRIC MEAN**		
CARP	5/6	1976	102-61713	6/6	1606	159-30608	
PIKE	4/5	287	55- 1324	5/5	981	411- 2063	
WHITE SUCKER	3/ 5	1747	717- 3187	3/ 5	6336	2767-12085	
REDHORSE SUCKER	5/5	721	189- 2042	5/5	1486	350- 4857	
ALEWIFE	2/5	244	209- 285	N.S.**	**		
SMALL MOUTH BASS	4/4	1972	890- 3115	3/3	3198	1955- 5079	
YELLOW PERCH	5/5	1994	912- 5415	N.S.			
ROCK BASS	0/2	N.D.***		0/ 2	N.D.		
PUMPKIN- SEED	3/ 5	567	89- 1882	N.S.			
BROWN BULLHEAD			553- 2329				

' ppb= ug alkyllead per Kg fish (wet weight).

- * Number of fish samples with detectable alkyllead levels over number of fish samples analysed.
- ** The geometric mean is calculated only from those samples containing detectable alkyllead.
- *** N.D.= nondetectable (<8 ppb).

**** N.S.= No sample.

TABLE 5:

SPECIES	N1/N2* ALKYL			LEAD SPECIES		
	- 185 85. 	Me2Et2	MeEt3	Et4	Et3	Et2
CARP	5/6	1	6	87	5	1
PIKE	4/5	0	7	90	3	0
WHITE SUCKER	3/ 5	0	1	47	40	12
RED- HORSE SUCKER	5/5	0	4	75	21	0
ALEWIFE	2/5	0	0	0	85	15
SMALL- MOUTH BASS	4/4	5	11	60	17	7
YELLOW PERCH	5/ 5	0	1	14	63	22
PUMPKIN- SEED	3/ 5	0	0	73	23	4
BROWN BULLHEAD	2/ 3	0	0	4	72	24

PERCENTAGE OF ALKYLLEAD SPECIES DISTRIBUTION IN WHOLE FISH (-INTESTINES) MAITLAND- 1982

* Number of fish samples with detectable alkyllead levels over number of fish analysed

TABLE 6:

SUM OF TOTAL LEAD IN FISH MAITLAND---1982

SPECIES	W	HO	nnh'	INTESTINES)		INTESTIN ppb'	
			GEOMETRIC MEAN**	RANGE	N1/N2*	GEOMETRIC MEAN**	RANGE
CARP	6/	6	2361	160-66434	6/6	3070	385-37909
PIKE	5/	5	1004	506- 2511	5/5	2010	1614- 2595
WHITE SUCKER	4/	5	1220	167- 5036	5/5	2700	236-15562
RED- HORSE SUCKER	5/	5	721	189- 2042	5/ 5	1486	350- 4857
ALEWIFE	3/	5	308	209- 491	N.S.*	***	
SMALL- MOUTH BASS	4/	4	2162	991- 3397	3/ 3	3944	3293- 5079
YELLOW PERCH	5/	5	3682	2718- 6759	N.S.		
ROCK BASS	2/	2	446	312- 638	0/ 2	N.D.***	
PUMPKIN- SEED	5/	5	812	210- 3321	N.S.		
BULLHEAD				553- 2329			328- 1052

' ppb= ug alkyllead per Kg fish (wet weight).

* Number of fish samples with detectable total lead levels over number of fish samples analysed.

.

- ** The geometric mean is calculated only from those samples containing detectable lead.
- *** N.D.= nondetectable (<8 ppb).

**** N.S.= No sample.

TABLE 7:

SPECIES	N1/N2*	ALKYLLEAD SPECIES						
·		Me2Et2	MeEt3	Et4	Et3	Et2		
CARP	6/6	1	6	76	9	8		
PIKE	5/5	1	10	82	2	5		
WHITE SUCKER	3/ 5	0	2	38	28	32		
RED– HORSE SUCKER	5/ 5	0	4	61	26	9		
SMALL- MOUTH BASS	3/3	6	10	64	14	6		
BROWN BULLHEAD	2/ 3	0	0	8	83	9		

PERCENTAGE OF ALKYLLEAD SPECIES DISTRIBUTION IN INTESTINES MAITLAND- 1982

 Number of fish samples with detectable alkyllead levels over number of fish analysed.

TABLE 8:

SPECIES	 /	ALKYLLEAD	ppb'	TO	FAL LEAD ppb	,/
	N1/N2*	GEOMETRI MEAN**	C RANGE	N1/N2*	GEOMETRIC MEAN**	RANGE
CARP	2/2	804	87- 7429	2/2	1812	278-11809
WHITE SUCKER	5/5	3725	1245-10553	5/5	4920	1668-12785
RED- HORSE SUCKER	1/ 1	361		1/ 1	548	
NORTHERN PIKE	3/3	436	154- 1113	3/3	822	472- 1315
YELLOW PERCH	5/5	1778	1101- 2318	5/5	2646	1937- 3430
ROCK BASS	3/3	163	124- 428	3/3	631	428- 1058
SMALL- MOUTH BASS	1/ 1	1223		1/ 1	1629	
PUMPKIN- SEED	3/ 5	413	220- 609	5/5	448	218- 977
KILLIFISH	1/ 1	710		1/ 1	1853	

TOTAL ALKYLLEADS AND SUM OF TOTAL LEAD IN WHOLE FISH MAITLAND- 1983

' ppb= ug alkyllead per Kg fish (wet weight).

 Number of fish samples with detectable alkyllead or total lead levels over number of fish analysed.

** The geometric mean is calculated only from those samples containing detectable alkyllead or total lead.

TABLE 9:

SPECIES	N1/N2*	ALKYLLEAD SPECIES						
		Me2Et2	MeEt3	Et4	Et3	Et2		
CARP	2/2	0	5	78	13	4		
WHITE SUCKER	5/ 5	0	3	53	35	9		
REDHORSE SUCKER	1/ 1	0	0	64	28	8		
NORTHERN PIKE	3/ 3	0	7	50	34	9		
YELLOW PERCH	5/ 5	0	2	18	64	16		
ROCK BASS	3/ 3	0	0	19	58	23		
SMALLMOUTH BASS	1/ 1	1	6	61	25	7		
PUMPKINSEED	3/5	0	0	49	40	11		
KILLIFISH	1/ 1	0	0	36	58	6		

PERCENTAGE OF ALKYLLEAD SPECIES DISTRIBUTION IN WHOLE FISH MAITLAND- 1983

* Number of fish samples with detectable alkyllead levels over number of fish analysed.

TABLE 10:

MAITLAND- 1983 SPECIESJOHNSTOWNBLUECHURCH BAYLILY BAY (CONTROL)ppb'ppb'ppb' N1/N2* GEO. RANGE N1/N2* GEO. RANGE N1/N2* GEO. RANGE MEAN** MEAN** MEAN** NORTHERN 10/12 94 34-524 13/15 279 84-704 0/2 N.D.*** PIKE YELLOW 1/1 379 3/3 1716 1714-2223 1/1 44 PERCH BROWN 1/1 135 1/1 977 0/3 N.D. BULLHEAD VHITE 8/8 183 46-798 1/3 519 N.S.**** SUCKER 4/4 798 237-2724 REDHORSE N.S. N.S. SUCKER CARP 2/2 354 279-448 N.S. 2/ 3 321 97-1061 BLACK 2/2 76 44-132 N.S. 0/1 N.D. CRAPPIE 1/1 80 N.S. SUNFISH N.S PUMPKIN- 1/ 1 112 1/1 368 1/2 247 SEED LARGE- 1/1 240 N.S. N.S. MOUTH BASS SMALL- 2/2 120 59-244 N.S. 1/2 215 MOUTH BASS ROCK N.S. N.S. 0/1 N.D. BASS 1/ 1 120 SPOTTAIL N.S. 0/1 N.D. SHINNER 1 ppb= ug alkyllead per Kg fish (wet weight). Number of fish samples with detectable total lead levels over number * of fish samples analysed. The geometric mean is calculated only from those samples containing ** detectable alkyllead. *** N.D.= nondetectable (<8 ppb).

**** N.S.= No sample.

29

TOTAL ALKYLLEADS IN FISH CARCASS

TABLE 11:

PERCENTAGE OF ALKYLLEAD SPECIES DISTRIBUTION IN FISH CARCASS MAITLAND (JOHNSTOWN)- 1983

SPECIES	N1/N2*		ALKYLLEA	D SPECIES		
		Me2Et2	MeEt3	Et4	Et3	Et2
NORTHERN PIKE	10/12	0	0	26	42	32
YELLOW PERCH	1/ 1	0	0	0	100	0
BROWN BULLHEAD	1/ 1	0	0	0	100	0
WHITE SUCKER	8/8	0	0	28	70	2
PUMPKINSEE	D 1/ 1	0	0	58	42	0
CARP	2/2	0	0	82	18	0
BLACK CRAPPIE	2/2	0	0	33	67	0
SUNFISH	1/ 1	0	0	52	48	0
LARGEMOUTH BASS	1/ 1	0	0	82	18	0
SMALLMOUTH BASS	2/2	0	0	80	20	0

* Number of fish samples with detectable alkyllead levels over number of fish analysed.

,

TABLE 12:

SPECIESJOHNSTOWNBLUE CHURCH BAYLILY BAY (CONTROL)ppb'ppb'ppb' N1/N2* GEO. RANGE N1/N2* GEO. RANGE N1/N2* GEO. RANGE MEAN** MEAN** MEAN** ***** NORTHERN 12/12 167 21- 607 15/15 578 57-3500 0/ 2 N.D.*** PIKE YELLOW 1/1 661 3/ 3 2213 1764-3045 1/ 1 750 PERCH BROWN 1/1 384 1/ 1 1504 3/3 58 18-204 BULLHEAD WHITE 8/8 417 52-4005 3/3 240 62-693 N.S.**** SUCKER 4/ 4 1028 237-3204 N.S. RED-N.S. HORSE SUCKER CARP 2/2 665 518-854 N.S. 2/ 3 403 139-1167 2/2 258 227-293 BLACK N.S. 0/1 N.D.*** CRAPPIE SUNFISH 1/1 106 N.S. N.S. PUMPKIN- 1/ 1 270 1/2 299 1/1 558 SEED LARGE- 1/1 320 N.S. N.S. MOUTH BASS SMALL- 2/2 176 96-324 N.S. 2/2 101 38-267 MOUTH BASS ROCK N.S. N.S. 1/1 390 BASS SPOTTAIL N.S. 1/ 1 475 1/1 370 SHINNER ppb= ug alkyllead per Kg fish (wet weight). * Number of fish samples with detectable total lead levels over number of fish samples analysed. ** The geometric mean is calculated only from those samples containing detectable lead. N.D.= nondetectable (<8 ppb). ***

**** N.S.= No sample.

31

SUM OF TOTAL LEAD IN FISH CARCASS MAITLAND- 1983

TOTAL ALKYLLEAD IN FISH MUSCLE MAITLAND- 1983

SPECIES	JOHNSTOWN ppb'			BLU	E CHURC	Н ВАҮ	LILY B	AY (CONTROL) ppb'
	N1/N2*	GEO. MEAN	RANGE	N1/N2*	GEO.	RANGE	N1/N2*	GEO. RANGE MEAN**
NORTHERN PIKE	9/11	79	29- 211	14/15	128	19- 536	0/ 2	N.D.***
YELLOW PERCH	1/ 1	450		2/2	2434	2036-2910	1/ 1	57
BROWN BULLHEAD	2/2	346	270- 440	1/ 1	3585		0/ 3	N.D.
WHITE SUCKER	8/8	303	144- 777	1/ 1	27		N.S.*	***
REDHORSE SUCKER	N.S.			3/3	482	172-1025	N.S.	
CARP	2/2	405	405- 406	N.S.			3/3	99 29- 421
BLACK CRAPPIE	2/2	226	140- 364	N.S			N.S.	
SUNFISH	1/ 1	48		N.S.			N.S.	
PUMPKIN- SEED	1/ 1	71		N.S.			0/ 2	N.D.
LARGEMOUTH BASS	1/1	50		N.S.			N.S.	
SMALLMOUTH BASS	1/1	30		N.S.			1/ 2	19
ROCK BASS	N.S.			N.S.			0/ 1	N.D.

' ppb= ug alkyllead per Kg fish (wet weight).

* Number of fish samples with detectable alkyllead levels over number of fish samples analysed.

- ** The geometric mean is calculated only from those samples containing detectable alkyllead.
- *** N.D.= nondetectable (<8 ppb).

**** N.S.= No sample.

TABLE 14:

SPECIES	N1/N2*		ALKYLLE.	AD SPECIES		
		Me2Et2	MeEt3	Et4	Et3	ET2
ORTHERN IKE	9/11	0	0	1	91	7
ELLOW ERCH	1/ 1	0	0	0	88	12
ROWN ULLHEAD	2/2	0	0	3	82	15
HITE JCKER	8/8	0	0	5	85	10
ARP	2/2	0	12	43	45	0
LACK RAPPIE	2/2	0	0	8	91	1
JNFISH	1/ 1	0	0	0	100	0
JMPKIN- EED	1/ 1	0	0	0	100	0
ARGEMOUTH ASS	1/ 1	0	0	36	64	0
ALLMOUTH	1/ 1	0	0	0	100	0

PERCENTAGE OF ALKYLLEAD SPECIES DISTRIBUTION IN FISH MUSCLE MAITLAND (JOHNSTOWN)- 1983

 Number of fish samples with detectable alkyllead levels over number of fish analysed.

SUM OF TOTAL LEAD IN FISH MUSCLE MAITLAND- 1983

SPECIE	5 J	OHNST ppb'	OWN	BLU	E CHUR ppb'	СН ВАҮ	LILY B.	AY (CONTROL) ppb'
	N1/N2*	GEO. MEAN	RANGE	N1/N2*	GEO.	RANGE	N1/N2* (GEO. RANGE MEAN**
NORTHERI PIKE	10/11	150	29-4466	14/15	221	49- 612	2/2	59 36- 98
YELLOW PERCH	1/ 1	556		2/2	2728	2123-3505	1/1	158
BROWN BULLHEAI		396	341- 460	1/ 1	3799		1/ 3	16
WHITE SUCKER	8/8	357	152-1140	1/ 1	180		N.S.**	**
REDHORSI SUCKER	E N.S			3/3	540	226-1080	N.S.	
CARP	2/2	615	602- 629	N.S.			3/32	260 131-525
BLACK CRAPPIE	2/2	269	184- 393	N.S.			N.S.	
SUNFISH	1/ 1	91		N.S.			N.S.	
PUMPKIN- SEED	- 1/ 1	233		N.S.			2/2	24 21- 27
LARGE- MOUTH BA	1/ 1 SS	180		N.S.			N.S.	
SMALL- MOUTH BA	1/ 1 SS	30		N.S.			1/ 2	71
ROCK BASS	N.S.			N.S			0/ 1 N.	D.***
 ' PF	b= ug all		ad per Kg :	fish (we	t weig	 ht).		
			samples wit analysed.	th detect	table	total lead le	evels over	number
	e geometi tectable			culated o	only f	rom those sam	nples cont	aining
*** N.	D.= nonde	etect	able (<8 j	opb).				

**** N.S.= No sample.

TABLE 16:

SPECIES	N1/N2*		ALKYLLEAD SPECIES						
		Me2Et2	MeEt3	Et4	Et3	Et2			
NORTHERN PIKE	13/15	0	2	49	45	4			
YELLOW PERCH	3/3	0	2	16	70	12			
BROWN BULLHEAD	1/ 1	0	0	21	63	16			
WHITE SUCKER	1/ 3	0	0	51	41	8			
REDHORSE SUCKER	4/4	0	6	72	21	1			
PUMPKIN- SEED	1/ 1	0	0	52	44	4			
SPOTTAIL SHINNER	1/ 1	0	0	15	85	0			

PERCENTAGE OF ALKYLLEAD SPECIES DISTRIBUTION IN FISH CARCASS MAITLAND (BLUE CHURCH BAY)- 1983

 Number of fish samples with detectable alkyllead levels over number of fish analysed.

TABLE 17:

PERCENTAGE OF ALKYLLEAD SPECIES DISTRIBUTION IN FISH MUSCLE MAITLAND (BLUE CHURCH BAY)- 1983

SPECIES	N1/N2*		ALKYLLI	EAD SPECIE:	S	
		Me2Et2	MeEt3	Et4	Et3	Et2
ORTHERN IKE	14/15	0	0	10	83	7
ELLOW ERCH	2/2	0	1	1	85	13
ROWN ULLHEAD	1/ 1	0	0	1	84	15
HITE UCKER	1/ 1	0	0	0	100	0
EDHORSE UCKER	3/3	0	4	42	48	6

* Number of fish samples with detectable alkyllead levels over number of fish analysed.

TABLE 18:

PERCENTAGE OF ALKYLLEAD SPECIES DISTRIBUTION IN FISH CARCASS MAITLAND (LILY BAY)- 1983

SPECIES	N1/N2*	ALKYLLEAD SPECIES						
970 929 921 920 930 456 456 450 970 970 980 980		Me2Et2	MeEt3	Et4	Et3	Et2		
ELLOW ERCH	1/ 1	0	100	0	0	0		
PUMPKIN- SEED	1/ 2	0	100	0	0	0		
ARP	2/ 3	0	0	85	13	2		
MALL- OUTH ASS	1/ 2	0	0	6	94	0		

* Number of fish samples with detectable alkyllead levels over number of fish analysed.

TABLE 19:

PERCENTAGE OF ALKYLLEAD SPECIES DISTRIBUTION IN FISH MUSCLE MAITLAND (LILY BAY)- 1983

SPECIES	N1/N2*	ALKYLLEAD SPECIES						
		Me2Et2	MeEt3	Et4	Et3	Et2		
YELLOW PERCH	1/ 1	0	0	0	63	37		
CARP	3/3	0	5	49	34	12		
SMALLMOUTH BASS	1/ 2	0	0	0	100	0		

 Number of fish samples with detectable alkyllead levels over number of fish analysed. TABLE 20:

TOTAL ALKYLLEADS AND SUM OF TOTAL LEAD IN WHOLE FISH LAKE ST. LAWRENCE- 1983

SPECIES		ALKYLLEAD pp	b'	TOTAL LEAD ppb'				
	N1/N2*	GEOMETRIC MEAN**	RANGE	N1/N2*	GEOMETRIC MEAN**	RANGE		
CARP	0/6	N.D.***		3/ 6	145	54- 651		
YELLOW PERCH	1/ 4	95		1/ 4	95			

- ' ppb= ug alkyllead per Kg fish (wet weight).
- * Number of fish samples with detectable alkyllead or total lead levels over number of fish analysed.
- ** The geometric mean is calculated only from those samples containing detectable alkyllead or total lead.

*** N.D.= nondetectable (<8 ppb).

TABLE 21:

PERCENTAGE OF ALKYLLEAD SPECIES DISTRIBUTION IN WHOLE FISH LAKE ST. LAWRENCE- 1983

	N1/N2*			D SPECIES		
		Me2Et2	MeEt3	Et4	Et3	Et2
LOW CH	1/ 4	0	34	0	66	0
	1/4	0	34	0	66	

* Number of fish samples with detectable alkyllead levels over number of fish analysed.

TABLE 22:

TOTAL ALKYLLEADS AND SUM OF TOTAL LEAD IN WHOLE FISH LAKE ST. FRANCIS- 1983

SPECIES		ALKYLLEAD pp	b'	T	OTAL LEAD ppb	,'
988 maj (114 42) miji 410 420 430 465 486	N1/N2*	GEOMETRIC MEAN**	RANGE	N1/N2*	GEOMETRIC MEAN**	RANGE
CARP	0/ 6	N.D.***		4/6	130	30- 368
 ppb=	ug alkyl	lead per Kg f	ish (wet we	ight).		
		h samples wit f fish analys		e alkyllead.	or total lea	d levels
	-	mean ís calc kyllead or to	•	from those	samples cont	aining
	•					

*** N.D.= nondetectable (<8 ppb).

TOTAL ALKYLLEADS AND SUM OF TOTAL LEAD IN FISH CARCASS ST. CLAIR RIVER (MARINE CITY)- 1983

SPECIES	l	ALKYLLEAD ppb	,	T	OTAL LEAD pp	b'
-	N1/N2*	GEOMETRIC MEAN**	RANGE	N1/N2*	GEOMETRIC MEAN**	RANGE
WHITE SUCKER	3/3	413	40-3188	3/3	1153	151-3188
REDHORSE SUCKER	0/ 1	N.D.***		1/ 1	97	
ppb=	ug alkyll	lead per Kg f	ish (wet weig			
		n samples wit E fish analys	h detectable : ed.	alkyllead or	total lead 1	levels

** The geometric mean is calculated only from those samples containing detectable alkyllead or total lead.

*** N.D.= nondetectable (<8 ppb).

TABLE 24:

TOTAL ALKYLLEADS AND SUM OF TOTAL LEAD IN FISH MUSCLE ST. CLAIR RIVER (MARINE CITY)- 1983

SPECIES	I	ALKYLLEAD ppb	1	T	OTAL LEAD ppb	, '
· ••• ••• ••• ••• ••• ••• ••• •••	N1/N2*	GEOMETRIC MEAN**	RANGE	N1/N2*	GEOMETRIC MEAN**	RANGE
WHITE SUCKER	3/3	753	1 93- 3607	3/3	987	151-3758
ppb=	ug alkyll	lead per Kg fi	lsh (wet weigh	t).		

- * Number of fish samples with detectable alkyllead or total lead levels over number of fish analysed.
- ** The geometric mean is calculated only from those samples containing detectable alkyllead or total lead.

L

PERCENTAGE OF ALKYLLEAD SPECIES DISTRIBUTION IN FISH MUSCLE AND CARCASS ST. CLAIR RIVER (MARINE CITY)- 1983

SPECIES				ALKYLLEAD	SPECIES			
	and the set of the set of the set	MUS	CLE	nen fill skul des seu aus des seu des seu	. aaa waa qaga qaa foor doo aha aha qaa qaa yaa sha	CARCA	SS	
	N1/N2*	ET4	ET3	ET2	N1/N2*	ET4	ET3	ET2
WHITE SUCKER	3/3	52	40	8	3/ 3	22	70	8

* Number of fish samples with detectable alkyllead levels over number of fish analysed.

TOTAL ALKYLLEADS AND SUM OF TOTAL LEAD IN FISH CARCASS ST. CLAIR RIVER (ALGONAC)- 1983

SPECIES	L	ALKYLLEAD ppb'			FOTAL LEAD ppt)'
	N1/N2*	GEOMETRIC MEAN**	RANGE	N1/N2*	GEOMETRIC MEAN**	RANGE
WHITE SUCKER	1/ 5	224		4/ 5	83	20- 23
CARP	1/ 4	2836		4/4	264	26-283
YELLOW PERCH	0/ 1	N.D.***		1/ 1	261	
NORTHERN PIKE	0/ 1	N.D.		0/ 1	N.D.	
BOWFIN	0/ 1	N.D.		1/ 1	45	
GARPIKE	0/ 1	N.D.		0/ 1	N.D.	

' ppb= ug alkyllead per Kg fish (wet weight).

** The geometric mean is calculated only from those samples containing detectable alkyllead or total lead.

*** N.D.= nondetectable (<8 ppb).

^{*} Number of fish samples with detectable alkyllead or total lead levels over number of fish analysed.

TOTAL ALKYLLEADS AND SUM OF TOTAL LEAD IN FISH MUSCLE ST. CLAIR RIVER (ALGONAC)- 1983

SPECIES	I	ALKYLLEAD ppb	,	T	OTAL LEAD ppb	1
-	N1/N2*	GEOMETRIC MEAN**	RANGE	N1/N2*	GEOMETRIC MEAN**	RANGE
WHITE SUCKER	2/ 5	33	31- 36	3/ 5	121	61- 31
CARP	2/4	208	27-1601	3/4	544	55–184
YELLOW PERCH	0/ 1	N.D.***		1/ 1	56	
NORTHERN PIKE	0/ 1	N.D.		1/ 1	108	
GARPIKE	1/ 1	79		1/ 1	88	

' ppb= ug alkyllead per Kg fish (wet weight).

- * Number of fish samples with detectable alkyllead or total lead levels over number of fish analysed.
- ** The geometric mean is calculated only from those samples containing detectable alkyllead or total lead.

*** N.D.= nondetectable (<8 ppb).

PERCENTAGE OF ALKYLLEAD SPECIES DISTRIBUTION IN FISH MUSCLE AND CARCASS ST. CLAIR RIVER (ALGONAC)- 1983

SPECIES				A	LKYLLEAD	SPECIES				
		CARC	ASS		,	MUSCLE				
N	N1/N2*	MeEt3	Et4	Et3	Et2	N1/N2*	MeEt3	Et4	Et3	
WHITE SUCKER	1/ 5	100	0	0	0	2/ 5	0	0	80	20
CARP	1/ 4	0	78	22	0	2/4	0	32	48	20
GARPIKE	0/ 1	N	.D.**	*		1/ 1	0	61	0	39

* Number of fish samples with detectable alkyllead levels over number of fish analysed.

*** N.D.= nondetectable (<8ppb).

TOTAL ALKYLLEADS AND SUM OF TOTAL LEAD IN FISH CARCASS ST. CLAIR RIVER (LAKE HURON)- 1983

		\ANGE	N1/N2*	GEOMETRIC MEAN**	RANGE
′3	210		3/3	42	15 - 245
' 1	323		1/ 1	670	
, ,	м ′3	MEAN** ' 3 210	MEAN** / 3 210	MEAN** / 3 210 3/ 3	MEAN** MEAN** / 3 210 3/3 42

- ' ppb= ug alkyllead per Kg fish (wet weight).
- * Number of fish samples with detectable alkyllead or total lead levels over number of fish analysed.
- ** The geometric mean is calculated only from those samples containing detectable alkyllead or total lead.

L

TABLE 30:

TOTAL ALKYLLEADS AND SUM OF TOTAL LEAD IN FISH MUSCLE ST. CLAIR RIVER (LAKE HURON)- 1983

SPECIES	ana میت دین دین دین دین دین میت میت م	ALKYLLEAD ppb	19 - 20 - 20 - 20 - 20 - 20 - 20 - 20 - 2	T	OTAL LEAD ppb	, T
	N1/N2*	GEOMETRIC MEAN**	RANGE	N1/N2*	GEOMETRIC MEAN**	RANGE
WHITE SUCKER	1/ 3	31		3/3	71	46-102
CARP	1/ 1	627		1/ 1	687	

' ppb= ug alkyllead per Kg fish (wet weight).

- * Number of fish samples with detectable alkyllead or total lead levels over number of fish analysed.
- ** The geometric mean is calculated only from those samples containing detectable alkyllead or total lead.

L

TABLE 31:

PERCENTAGE OF ALKYLLEAD SPECIES DISTRIBUTION IN FISH MUSCLE AND CARCASS ST. CLAIR RIVER (LAKE HURON)- 1983

SPECIES				ALI	KYLLEAD	SPECIES					
		CARCASS					MUSCLE				
	N1/N2*	MeEt3	Et4	Et 3	ET 2	N1/N2*	MeEt3	Et4	Et 3	Et2	
WHITE SUCKER	1/ 3	0	89	0	11	1/ 3	0	0	0	100	
CARP	1/ 1	18	52	23	7	1/ 1	0	43	54	3	

* Number of fish samples with detectable alkyllead levels over number of fish analysed.

TOTAL ALKYLLEADS AND SUM OF TOTAL LEAD IN FISH CARCASS ST. CLAIR RIVER (ST. CLAIR)- 1983

SPECIES	А	LKYLLEAD ppb	1	TOTAL LEAD ppb'			
	N1/N2*	GEOMETRIC MEAN**	RANGE	N1/N2*	GEOMETRIC MEAN**	RANGE	
WHITE SUCKER	0/ 1	N.D.***		1/ 1	212		
CARP	0/ 1	N.D.		0/ 1	N.D.		
YELLOW PERCH	0/ 1	N.D.		1/ 1	25		
ALEWIFE	0/ 1	N.D.		1/ 1	17		

- ' ppb= ug alkyllead per Kg fish (wet weight).
- * Number of fish samples with detectable alkyllead or total lead levels over number of fish analysed.
- ** The geometric mean is calculated only from those samples containing detectable alkyllead or total lead.
- *** N.D.= nondetectable (<8 ppb).

TABLE 33:

TOTAL ALKYLLEADS AND SUM OF TOTAL LEAD IN FISH MUSCLE ST. CLAIR RIVER (ST. CLAIR)- 1983

SPECIES		ALKYLLEAD ppb	· · · · · · · · · · · · · · · · · · ·	TOTAL LEAD ppb'			
	N1/N2*	GEOMETRIC MEAN**	RANGE	N1/N2*	GEOMETRIC MEAN**	RANGE	
CARP	0/ 1	N.D.***		1/ 1	36		

' ppb= ug alkyllead per Kg fish (wet weight).

- * Number of fish samples with detectable alkyllead or total lead levels over number of fish analysed.
- ** The geometric mean is calculated only from those samples containing detectable alkyllead or total lead.

L

*** N.D.= nondetectable (<8 ppb).

TABLE 34:

TOTAL ALKYLLEADS AND SUM OF TOTAL LEAD IN FISH CARCASS ST. CLAIR RIVER (WALPOLE ISLAND)- 1983

SPECIES	L	ALKYLLEAD ppb	1	TOTAL LEAD ppb'			
	N1/N2*	GEOMETRIC MEAN**	RANGE	N1/N2*	GEOMETRIC MEAN**	RANGE	
CARP	1/ 1	34		1/ 1	162		
YELLOW PERCH	1/ 1	17		1/ 1	119		
CATFISH	1/ 1	154		1/ 1	332		

- ' ppb= ug alkyllead per Kg fish (wet weight).
- * Number of fish samples with detectable alkyllead or total lead levels over number of fish analysed.
- ** The geommetric mean is calculated only from those samples containing detectable alkyllead or total lead.

L

TABLE 35:

TOTAL ALKYLLEADS AND SUM OF TOTAL LEAD IN FISH MUSCLE ST. CLAIR RIVER (WALPOLE ISLAND)- 1983

SPECIES	1	ALKYLLEAD ppb	1	TOTAL LEAD ppb'			
	N1/N2*	GEOMETRIC MEAN**	RANGE	N1/N2*	GEOMETRIC MEAN**	RANGE	
CARP	1/ 1	121		1/ 1	292		
YELLOW PERCH	0/ 1	N.D.***		1/ 1	178		
CATFISH	1/ 1	114		1/ 1	153		

- ' ppb= ug alkyllead per Kg fish (wet weight).
- * Number of fish samples with detectable alkyllead or total lead levels over number of fish analysed.
- ** The geometric mean is calculated only from those samples containing detectable alkyllead or total lead.
- *** N.D.= nondetectable (<8 ppb).

PERCENT	AGE OF	F ALKYI	LEAD SPE	CIES DIST	RIBUTION	IN
	FI	ISH MUS	SCLE AND	CARCASS		
ST.	CLAIR	RIVER	(WALPOLE	ISLAND)-	1983	

SPECIES					AL	KYLLEAD S	PECIES				
			CARC	ASS			MUSCLE				
	N1/N	N2*	MeEt3	Et4	Et3	Et2	N1/N2*	MeEt3	Et4	Et 3	Et 2
CARP	1/	1	0	0	100	0	1/ 1	0	0	100	0
YELLOW PERCH	1/	1	0	25	75	0	0/ 1		N.D.*	**	
CATFISH	1/	1	0	78	22	0	1/ 1	0	23	62	13

* Number of fish samples with detectable alkyllead levels over number of fish analysed.

*** N.D.= nondetectable (<8 ppb).

TOTAL ALKYLLEADS AND SUM OF TOTAL LEAD IN FISH MUSCLE MAITLAND- 1984

SPECIES		A	LKYLLEAD p	pb'	Т	OTAL LEAD p	pb'
uu	N1/N	2*	GEOMETRIC MEAN**	RANGE	N1/N2*	GEOMETRIC MEAN**	RANGE
HITE UCKER	7/	7	1115	728- 1774	7/7	1429	1061- 1991
YELLOW PERCH	5/	5	622	374- 1499	5/5	1056	507- 1923
CARP	5/	5	3333	1138-23143	5/5	3412	1138-23576
ROWN BULLHEAD	8/ 8	8	1505	632- 2172	8/8	1730	632- 2533

- ' ppb= ug alkyllead per Kg fish (wet weight).
- * Number of fish samples with detectable alkyllead or total lead levels over number of fish analysed.
- ** The geometric mean is calculated only from those samples containing detectable alkyllead or total lead.

*

SPECIES	N1/N2*	ALKYLLEAD SPECIES						
10 M10 400 100 100 100 100 100 100 100		Me2Et2	MeEt3	Et4	Et 3	Et 2		
WHITE SUCKER	7/7	0	0	9	74	17		
YELLOW PERCH	5/5	0	0	4	81	15		
CARP	5/5	0	14	69	13	4		
BROWN BULLHEAD	8/8	0	0	1	71	28		

PERCENTAGE OF ALKYLLEAD SPECIES DISTRIBUTION IN FISH MUSCLE MAITLAND- 1984

Number of fish samples with detectable alkyllead levels over number of fish analysed.

i.

SUM OF ALKYLLEAD IN WHOLE FISH MAITLAND- 1984

.

SPECIES	J	OHNSTO ppb'	WN	BLUE	E CHURC ppb'	Н ВАҮ	LILY B	AY (CONTROL) ppb'
	N1/N2*	GEO.	RANGE	N1/N2*	GEO.	RANGE	N1/N2*	GEO. RANGE MEAN**
WHITE SUCKER	16/19	495	58-1300	9/9	411	80-2019	8/15	150 24-2326
REDHORSE SUCKER	7/10	321	106- 825	15/15	809	109-5039	1/ 8	155
YELLOW PERCH	1/ 1	328		1/ 1	2524		0/3	N.D.***
PUMPKIN- SEED	0/12	N.D.		7/11	150	53- 647	0/2	N.D.
BROWN BULLHEAD		171	103- 398	2/2	294	233- 371	0/6	N.D.
SMALL- MOUTH BASS	0/ 2	N.D.		N.S.**	***		0/7	N.D.
ROCK BASS	2/6	165	75- 363	3/4	332	64-1057	N.S.	
CARP	5/6	304	134- 794	N.S.			N.S.	
BOWFIN	0/ 3	N.D.		N.S.			N.S.	
			d per Kg fi				100 400 400 <u>400</u>	
			amples with analysed.	n detecta	ble al	kyllead lev	els over	number
	geomet: ectable			lated on	ly fro	m those sam	ples cont	taining

*** N.D.= nondetectable (<8 ppb).

**** N.S.= No sample.

SPECIES	N1/N2*	ALKYLLEAD SPECIES					
		Me2Et2	MeEt3	Et4	Et3	Et2	
WHITE SUCKER	16/19	10	0	31	47	12	
REDHORSE SUCKER	7/10	4	0	66	21	9	
YELLOW PERCH	1/ 1	0	0	66	34	0	
BROWN BULLHEAD	6/8	15	0	10	75	0	
ROCK BASS	2/ 6	17	0	83	0	0	
CARP	5/6	0	0	46	45	9	

PERCENTAGE OF ALKYLLEAD SPECIES DISTRIBUTION IN WHOLE FISH MAITLAND (JOHNSTOWN)- 1984

* Number of fish samples with detectable alkyllead levels over number of fish analysed.

SUM OF TOTAL LEAD IN WHOLE FISH MAITLAND- 1984

SPECIES	J(OHNSTO ppb'	WN	BLUE	CHURC ppb'	СН ВАҮ	LILY B	AY (CONTROL) ppb'
	N1/N2*	GEO.	RANGE	N1/N2*	GEO.	RANGE	N1/N2*	GEO. RANGE MEAN**
WHITE SUCKER	19/19	622	58-2553	9/9	582	80-2364	10/15	171 24-2326
REDHORSE SUCKER	9/10	338	127- 945	15/15	1195	330-5874	4/8	357 34-5461
YELLOW PERCH	1/ 1	1406		1/ 1	3570		1/ 3	192
PUMPKIN- SEED	2/12	174	104- 292	7/11	241	89- 758	1/ 2	108
BROWN BULLHEAD		161	60- 577	2/2	352	335- 371	3/ 6	225 160- 292
SMALL- MOUTH BASS	0/2	N.D.	***	N.S.**	**		1/ 7	976
ROCK BASS	2/6	427	363- 502	4/4	456	64-1147	N.S.	
CARP	5/6	374	134- 794	N.S.			N.S.	
BOWFIN	1/ 3	84		N.S.			N.S.	
' ppb:	ug alk	 xyllea	d per Kg fi	sh (wet	 weight			
			amples with analysed.	n detecta	ble to	tal lead l	evels ove	er number
	geometr ectable		an is calcu	lated on	ly fro	m those sam	ples con	taining

*** N.D.= nondetectable (<8 ppb).

**** N.S.= No sample.

SPECIES	N1/N2*		ALKYLLEAI	O SPECIES		
		Me2Et2	MeEt3	Et4	Et3	Et2
WHITE SUCKER	9/9	0	2	40	48	10
REDHORSE SUCKER	15/15	0	10	65	22	3
YELLOW PERCH	1/ 1	0	0	10	61	29
ROCK BASS	3/ 4	0	5	49	31	15
PUMPKIN- SEED	7/11	0	12	54	20	14
BROWN BULLHEAD	2/2	0	0	0	87	13

PERCENTAGE OF ALKYLLEAD SPECIES DISTRIBUTION IN WHOLE FISH MAITLAND (BLUE CHURCH BAY)- 1984

* Number of fish samples with detectable alkyllead levels over number of fish analysed.

PERCENTAGE OF ALKYLLEAD SPECIES DISTRIBUTION IN WHOLE FISH MAITLAND (LILY BAY)- 1984

SPECIES	N1/N2*		ALKYLLEAD	SPECIES		
		Me2Et2	MeEt3	Et4	Et3	Et2
WHITE SUCKER	8/15	0	0	42	38	20
REDHORSE SUCKER	1/ 8	0	0	69	31	0

* Number of fish samples with detectable alkyllead levels over number of fish analysed.

TABLE 44:

WHOLE FISH ST. CLAIR RIVER (SOUTH OF STAG ISLAND)- 1984 ALKYLLEAD ppb' TOTAL LEAD ppb' SPECIES N1/N2* GEOMETRIC RANGE N1/N2* GEOMETRIC RANGE MEAN** MEAN** 8/8 138 18-1042 8/8 851 273-2525 WHITE SUCKER YELLOW 0/ 1 N.D.*** 1/ 1 256 PERCH BROWN 0/1 N.D. 1/1 116 TROUT WALLEYE 3/6 32 11-174 6/6 73 38- 466 ***

' ppb= ug alkyllead per Kg fish (wet weight).

* Number of fish samples with detectable alkyllead or total lead levels over number of fish analysed.

** The geometric mean is calculated only from those samples containing detectable alkyllead or total lead.

l

*** N.D.= nondetectable (<8 ppb).

63

TOTAL ALKYLLEAD AND SUM OF TOTAL LEAD IN

TABLE 45:

PERCENTAGE OF ALKYLLEAD SPECIES DISTRIBUTION IN WHOLE FISH ST. CLAIR RIVER (SOUTH OF STAG ISLAND)- 1984

SPECIES	N1/N2*	ALKYLLEAD SPECIES					
		Me2Et2	MeEt3	Et4	Et3	Et2	
WHITE SUCKER	8/8	0	8	45	17	30	
WALLEYE	3/ 6	0	0	73	27	0	
		وره فنه غرب منه بنه الله عنه وي وي وي وي وي وي	بیوه چه خته سه بین وه چه می نه به به به وه وه				

* Number of fish samples with detectable alkyllead levels over number of fish analysed.

TABLE 46:

TOTAL ALKYLLEAD AND SUM OF TOTAL LEAD IN WHOLE FISH ST. CLAIR RIVER (ST. CLAIR RIVER AT CORUNNA)- 1984

SPECIES		ALKYLLEAD pp	b'	T	OTAL LEAD ppb'	
	N1/N2*	GEOMETRIC MEAN**	RANGE	N1/N2*	GEOMETRIC MEAN**	RANGE
CARP	1/ 2	283		2/2	162	70 - 377
NORTHE RN PIKE	4/4	158	25-1522	4/4	443	83-2885

- ' ppb= ug alkyllead per Kg fish (wet weight).
- * Number of fish samples with detectable alkyllead or total lead levels over number of fish analysed.
- ** The geometric mean is calculated only from those samples containing detectable alkyllead or total lead.

TABLE 47:

PERCENTAGE OF ALKYLLEAD SPECIES DISTRIBUTION IN WHOLE FISH ST. CLAIR RIVER (ST. CLAIR RIVER AT CORUNNA)- 1984

SPECIES	N1/N2*		ALKYLLEA	D SPECIES		
مند بين بدن الله هند الله الدر الإمر ال		Me2Et2	MeEt3	Et4	Et 3	Et2
CARP	1/ 2	0	0	0	100	0
NORTHE RN PIKE	4/4	0	0	72	21	7

* Number of fish samples with detectable alkyllead levels over number of fish analysed.

67

TABLE 48:

SPECIES		ALKYLLEAD p	pb'	I	OTAL LEAD ppb	
N1/3	N1/N2*	GEOMETRIC MEAN**	RANGE	N1/N2*	GEOMETRIC MEAN**	RANGE
CARP	5/10	9 88	201-12234	10/10	243	25-13616
YELLOW PERCH	0/5	N.D.***		5/5	72	45- 91
VHITE SUCKER	3/5	230	108- 491	4/5	423	76- 1025
BROWN BULLHEAD	3/ 5	54	1 9- 385	5/5	314	135- 975

1 ppb= ug alkyllead per Kg fish (wet weight).

* Number of fish samples with detectable alkyllead or total lead levels over number of fish analysed.

** The geometric mean is calculated only from those samples containing detectable alkyllead or total lead.

l

*** N.D.= nondetectable (<8 ppb).

TOTAL ALKYLLEADS AND SUM OF TOTAL LEAD IN

PERCENTAGE OF ALKYLLEAD SPECIES DISTRIBUTION IN WHOLE FISH MAITLAND (BLUE CHURCH BAY)- 1986

SPECIES	N1/N2*		ALKYLLE	AD SPECIES		
		Me2Et2	MeEt3	Et4	Et 3	Et2
CARP	5/10	0	18	68	13	1
WHITE SUCKER	3/ 5	0	0	25	61	14
BROWN BULLHEAD	3/5	0	0	16	72	12

* Number of fish samples with detectable alkyllead levels over number of fish analysed.

l

-

	MAITLAND			987		
	ALKYLLEAD pp	b'	TOTAL LEAD ppb'			
N1/N2*	GEOMETRIC MEAN**	RANGE	N1/N2*	GEOMETRIC MEAN**	RANGE	
4/6	120	24-4263	6/6	406	76-6599	
1/3	149		3/3	630	319-1075	
1/4	50		4/4	513	358- 812	
0/3	N.D.***		3/3	445	232-1449	
	N1/N2* 4/6 1/3 1/4	ALKYLLEAD pp N1/N2* GEOMETRIC MEAN** 4/6 120 1/3 149 1/4 50	MAITLAND (BLUE CHURC ALKYLLEAD ppb' N1/N2* GEOMETRIC RANGE MEAN** 4/6 120 24-4263 1/3 149 1/4 50	ALKYLLEAD ppb' Te N1/N2* GEOMETRIC RANGE N1/N2* 4/6 120 24-4263 6/6 1/3 149 3/3 1/4 50 4/4	MAITLAND (BLUE CHURCH BAY) 1987 ALKYLLEAD ppb' TOTAL LEAD p N1/N2* GEOMETRIC RANGE N1/N2* GEOMETRIC MEAN** 4/6 120 24-4263 6/6 406 1/3 149 3/3 630 1/4 50 4/4 513	

CONCENTRATIONS OF ALKYLLEADS AND TOTAL LEAD IN WHOLE FISH MAITLAND (BLUE CHURCH BAY)-- 1987

' ppb= ug alkyllead or total lead per Kg fish (wet weight).

* Number of fish samples with detectable alkyllead or total lead levels over number of fish analysed.

** The geometric mean is calculated only from those samples containing detectable alkyllead or total lead.

*** N.D.= nondetectable (<8ppb).

PERCENTAGE OF ALKYLLEAD SPECIES DISTRIBUTION IN WHOLE FISH MAITLAND (BLUE CHURCH BAY)- 1987

SPECIES	CIES N1/N2* -		ALKYLLEAD SPECIES					
1000 1000 1000 1000 1000 1000 1000 100		Me2Et2	MeEt3	Et4	Et3	Et2		
CARP	4/6	0	5	76	13	e		
BROWN BULLHEAD	1/3	0	0	0	66	34		
WHITE SUCKER	1/4	0	0	0	100	C		
YELLOW PERCH	0/3	0	0	0	0	C		

* Number of fish samples with detectable alkyllead levels over number of fish analysed.

70

CONCENTRATIONS OF ALKYLLEAD AND TOTAL LEAD IN CARP TISSUE MAITLAND (BLUE CHURCH BAY)-- 1987

TISSUE	ALKYLLEAD ppb'			TOTAL LEAD ppb'			
	N1/N2*	GEOMETRIC MEAN**	RANGE	N1/N2*	GEOMETRIC MEAN**	RANGE	
FATTY TISSUE	1/3	512		3/3	154	58- 635	
INTESTINES	3/3	116	63-300	3/3	317	186- 739	
FILLET	1/3	350		3/3	134	62- 503	
LIVER	3/3	161	44-867	3/3	418	187-1463	

' ppb= ug alkyllead or total lead per Kg (wet weight).

-

* Number of fish samples with detectable alkyllead or total lead levels over number of fish analysed.

** The geometric mean is calculated only from those samples containing detectable alkyllead or total lead.

TISSUE	N1/N2*		ALKYL	LEAD SPECIES		
		Me2Et2	MeEt3	Et4	Et3	Etź
FATTY FISSUE	1/3	0	0	92	4	4
INTESTINES	3/3	0	0	42	36	22
FILLET	1/3	0	0	54	37	ç
LIVER	3/3	0	0	53	28	19

PERCENTAGE OF ALKYLLEAD SPECIES DISTRIBUTION IN CARP TISSUE MAITLAND (BLUE CHURCH BAY)- 1987

* Number of tissue samples with detectable alkyllead levels over number of fish analysed.

-

CONCENTRATIONS OF ALKYLLEAD AND TOTAL LEAD IN WHOLE FISH ST. CLAIR RIVER (STAG ISLAND)- 1987

SPECIES	ALKYLLEAD ppb'			TOTAL LEAD ppb'			
	N1/N2*	GEOMETRIC MEAN**	RANGE	N1/N2*	GEOMETRIC MEAN**	RANGE	
CARP	2/7	110	51-236	7/7	193	73-499	
WHITE SUCKER	1/2	41		2/2	257	192-345	
WALLEYE	0/2	N.D.***		2/2	137	124-152	

' ppb= ug alkyllead or total lead per Kg fish (wet weight).

- * Number of fish samples with detectable alkyllead or total lead levels over number of fish analysed.
- ** The geometric mean is calculated only from those samples containing detectable alkyllead or total lead.

*** N.D.= nondetectable (<8ppb).

PERCENTAGE OF ALKYLLEAD SPECIES DISTRIBUTION IN WHOLE FISH ST. CLAIR RIVER (STAG ISLAND)- 1987

SPECIES	N1/N2*	ALKYLLEAD SPECIES					
		Me2Et2	MeEt3	Et4	Et3	Et2	
CARP	2/7	0	0	41	50	9	
WHITE SUCKER	1/2	0	0	0	100	0	
WALLEYE	0/2	0	0	0	0	0	

* Number of fish samples with detectable alkyllead levels over number of fish analysed.

Z

CONCENTRATIONS OF TOTAL ALKYLLEADS IN SEDIMENT, CLAMS AND MACROPHYTES MAITLAND- 1982

SAMPLE	BLUE CHURCH BAY ppb'			DUPONT CHEMICAL PLANT ppb'			
	N1/N2*	GEOMETRIC MEAN**	RANGE	N1/N2*	GEOMETRCIC MEAN**	RANGE	
SEDIMENT	0/2	N.D.***		2/2	703	329- 1503	
CLAMS	N.S.**	**		0/1	N.D.		
MACROPHYTES	0/1	N.D.		2/2	2092	200-21888	
					~~~~~~~~~~		

*NOTE* site locations are indicated on map # 3.

' ppb= ug alkyllead per Kg sample weight (wet weight).

- * Number of samples with detectable alkyllead levels over number of samples analysed.
- ** The geometric mean is calculated only from those samples containing detectable alkyllead.
- *** N.D.= nondetectable.

÷

**** N.S.= No sample.

#### CONCENTRATIONS OF TOTAL LEADS IN SEDIMENT, CLAMS AND MACROPHYTES MAITLAND- 1982

SAMPLE	LE BLUE CHURCH ppb'		BAY	DUPC	NT CHEMICAL ppb'	PLANT
	N1/N2*	GEOMETRIC MEAN**	RANGE	N1/N2*	GEOMETRIC MEAN**	RANGE
SEDIMENT	2/2	4540	3808-5414	2/2	>5911	5911- ?
CLAMS	N.S.***			1/1	280	
MACROPHYTES	1/1	6796		2/2	19169	<b>4527-8117</b> 0

*NOTE* site locations are indicated on map # 3.

' ppb= ug (alkyllead + inorganic lead) per Kg sample weight (wet weight).

- * Number of samples with detectable total lead levels over number of samples analysed.
- ** The geometric mean is calculated only from those samples containing detectable total lead.

*** N.S.= No sample.

? Level to high (off scale).

ĩ

## PERCENTAGE OF ALKYLLEAD SPECIES DISTRIBUTION IN SEDIMENT AND MACROPHYTES MAITLAND (DUPONT CHEMICAL PLANT)- 1982

SAMPLE	N1/N2*	ALKYLLEAD SPECIES						
		Me3Et	Me2Et2	MeEt3	Et4	Et3	Et2	
SEDIMENT	2/2	0	0	8	81	10	1	
MACROPHYTES	2/2	0	5	16	75	3	1	

*NOTE* site locations are indicated on map # 3.

* Number of samples with detectable alkyllead levels over number of samples analysed.

SAMPLE	BLUE CHURCH BAY								
		SITE #1 ppb'			SITE #2 ppb'				
	N1/N2*	MEAN**	RANGE		GEOMETRIC MEAN**	RANGE			
EDIMENT	4/4	220	152-376	4/4	216	76-70			
LAMS	N.S.***	r		1/1	335				
ACRO- HYTES	N.S.			N.S.					
	site loca	tions are ir	dicated on ma	 ap # 4.					

analysed.
** The geometric mean is calculated only from those samples containing
detectable alkyllead.

*** N.S.= No sample.

 $\overline{e}$ 

CONCENTRATIONS OF TOTAL ALKYLLEADS

		ATIONS OF T ENT, CLAMS MAITLAND-	AND MACR				
BLU	E CHIRCH	BAY		LTLY	BAY	(CONTROL)	

BLU	E CHURCH BAY	7	LILY	BAY (CONTRO	L)
	SITE #3 ppb'			ppb′	αφη τώμα όμος τους τους τους τους τους τους τους το
N1/N2*	GEOMETRIC MEAN**	RANGE	N1/N2*	GEOMETRIC MEAN**	RANGE
4/4	264	49-665	4/4	219	131-428
N.S.****			N.S.****		
1/4	194		0/7	N.D.***	
	V1/N2* ( 4/4 N.S.****	SITE #3 ppb' N1/N2* GEOMETRIC MEAN** 4/4 264 N.S.****	ppb' N1/N2* GEOMETRIC RANGE MEAN** 4/4 264 49-665 N.S.****	SITE #3       ppb'         V1/N2*       GEOMETRIC       RANGE       N1/N2*         4/4       264       49-665       4/4         N.S.****       N.S.****       N.S.****	SITE #3       ppb'         ppb'       ppb'         V1/N2*       GEOMETRIC       RANGE       N1/N2*       GEOMETRIC         MEAN**       MEAN**       MEAN**       MEAN**         4/4       264       49-665       4/4       219         N.S.****       N.S.****

*NOTE* site locations are indicated on map # 4.

' ppb= ug alkyllead per Kg sample weight (wet weight).

- * Number of samples with detectable alkyllead levels over number of samples analysed.
- ** The geometric mean is calculated only from those samples containing detectable alkyllead.

*** N.D.= nondetectable.

**** N.S.= No sample.

PERCENTAGE	OF	ALKYLLEAD	SPECIES	DISTRIBUTION	IN
		SEDIN	IENT		
		MAITLANI	)- 1983		

LOCATION	N1/N2*		ALKYLLEAI	O SPECIES	
		Me2Et2	Me3	MeEt3	Et4
BLUE CHURCH BAY -SITE #1	4/4	27	30	16	27
LUE CHURCH BAY -SITE #2	4/4	42	34	24	0
LUE CHURCH BAY -SITE #3	4/4	44	35	9	12
JILY BAY -CONTROL	4/4	45	37	18	0

*NOTE* site locations are indicated on map # 4.

Z

* Number of samples with detectable alkyllead levels over number of samples analysed.

.

SAMPLE	BLUE CHURCH BAY								
	800 NOT 000 900 000 NOT 000 000 000	SITE #1 ppb'	• • • • • • • • • • • • • • • • • • •	nta mai mai anga nga 223 123 123 223 224 224 225 226 226 226 226 22	SITE #2 ppb'	ar an an an an an an an			
	N1/N2*	GEOMETRIC MEAN**	RANGE	N1/N2*	GEOMETRIC MEAN**	RANGE			
SEDIMENT	4/4	629	421-923	4/4	237	76-706			
CLAMS	N.S.***			1/1	1357				
ACRO- PHYTES	N.S.			N.S.					

#### CONCENTRATION OF TOTAL LEADS IN SEDIMENT, CLAMS AND MACROPHYTES MAITLAND- 1983

*NOTE* site locations are indicated on map # 4.

- ' ppb= ug (alkyllead + inorganic lead) per Kg sample weight (wet weight).
- * Number of samples with detectable total lead levels over number of samples analysed.
- ** The geometric mean is calculated only from those samples containing detectable total lead.

*** N.S.= No sample.

TABLE 63:

SAMPLE	В	LUE CHURCH			LILY BAY				
		SITE #3 ppb'			CONTROL ppb'				
	N1/N2*	GEOMETRIC MEAN**	RANGE	N1/N2*	GEOMETRIC MEAN**	RANGE			
EDIMENT	4/4	811	448-1332	4/4	237	161-428			
LAMS	N.S.***			N.S.					
ACRO- HYTES	4/4	2515	1932-3393	7/7	315	181-855			

Number of samples with detectable total lead levels over number of * samples analysed.

The geometric mean is calculataed only from those samples containing detectable total lead. **

*** N.S.= No sample.

ĩ

CONCENTRATION OF TOTAL LEADS

TABLE 64:

## PERCENTAGE OF ALKYLLEAD SPECIES DISTRIBUTION IN CLAMS MAITLAND- 1983

LOCATION		N1/N2*	ALKYLLEAD SPECIES				
			Me2Et2	Me3	MeEt3	Et4	Et3
BLUE CHURC -SI	H BAY TE # 2	1/1	0	0	0	16	84
*NOTE*	site loc	cations ar	e indicate	d on map	# 4.		

* Number of samples with detectable alkyllead levels over number of samples analysed.

 $\frac{1}{c}$ 

TABLE 65:

## PERCENTAGE OF ALKYLLEAD SPECIES DISTRIBUTION IN MACROPHYTES MAITLAND- 1983

LOCATION		N1/N2*		ALKY	LLEAD SPECI	CIES		
حمله بولين منيه، ومنه منوف بوليه بوليه بوليه بوليه		میں ہوتیں میں میں جوہ میں جوہ کی ایک ایک ایک	Me2Et2	Me3	MeEt3	Et4	Et3	
BLUE CHUR -S		1/4	0	100	0	0	0	
*NOTE*	site lo	cations ar	e indicated	on map #	4.			

* Number of samples with detectable alkyllead levels over number of samples analysed.

۴

# TABLE 66:

#### CONCENTRATIONS OF ALKYLLEAD AND TOTAL LEAD IN WATER IN ST. LAWRENCE RIVER--- 1983

LOCATION	SAMPLE	A	LKYLLEAD pp	b'	TOTAL LEAD ppb'		
		N1/N2*	GEOM. RANGE**	RANGE	N1/N2*	GEOM. RANGE**	RANGE
LILY BAY	SUBSURFACE	0/1	N.D.***		1/1	1.74	
DUPONT	SUBSURFACE	3/3	0.33	0.20-0.47	3/3	2.33	1.76-2.95
	SURFACE MICROLAYER	3/3	0.90	0.43-1.91	3/3	6.77	3.79-9.39
BLLUE	SUBSURFACE	3/3	0.09	0.08-0.12	3/3	1.82	1.38-3.14
CHURCH BAY	SURFACE MICROLAYER	1/1	0.08		1/1	3.55	

' ppb= ug alkyllead per L of water.

ā

* Number of water samples with detectable alkyllead or total lead levels over number of water samples analysed.

** The geometric mean is calculated only from those samples containing detectable alkyllead or total lead.

*** N.D.= nondetectable.

#### CONCENTRATIONS OF ALKYLLEAD AND TOTAL LEAD IN WATER ST. CLAIR RIVER--- 1983

WATER SAMPLE		ALKYLLEAD ppb		TOTAL LEAD ppb'			
	N1/N2*	GEOMETRIC MEAN**	RANGE	N1/N2*	GEOMETRIC MEAN**	RANGE	
SUBSURFACE (1m down)	1/6	0.42		6/6	1.44	1.02-2.67	
SURFACE MICROLAYER	1/6	0.68		6/6	2.40	0.84-9.22	
·	ug alkvl	lead per L of	water.				

Number of water samples with detectable alkyllead or total lead levels over number of water samples analysed. *

ĩ,

The geometric mean is calculated only from those samples containing detectable alkyllead or total lead. **

		CONCENTRA	TIONS OF TO IN SEDIMENT BLUE CHU		OPHYTES	TAL LEADS			
SAMP	SAMPLE ALKYLLEADS ppb				то	TAL LEADS p	pb		
		N1/N2*	GEOMETRIC MEAN**	RANGE	N1/N2	GEOMETRIC MEAN	RANGE		
SEDIMEN	Г	13/15	89	10-245	15/15	7340	1869-15700		
MACROPH	YTES	5/13	53	6-429	13/13	1052	71- 4778		
' pj	<b>-</b> pb= u <b>g</b>	alkyllead	per Kg samp	ole weight	(wet weigh	t).			
	umber o nalysed		with detect	table alky	llead level	s over numb	er of samples		

The geometric mean is calculated only from those samples containing detectable alkyllead. **

ţ

87

TABLE 69:

## PERCENTAGE OF ALKYLLEAD SPECIES DISTRIBUTION IN SEDIMENT AND MACROPHYTES BLUE CHURCH BAY- 1984

SAMPLE	N1/N2*	ALKYLLEAD SPECIES				
		Me3	Et4	Et3	Et2	
SEDIMENT	13/15	0	55	43	2	
MACROPHYTES	5/13	17	39	6	38	

* Number of samples with detectable alkyllead levels over number of samples analysed.

÷

TABLE 70:

#### CONCENTRATIONS OF TOTAL ALKYKLLEADS IN SEDIMENT MAITLAND (BLUE CHURCH BAY)- 1986

SITE #2 SITE #3 ppb' ppb' SITE #4 ppb' SITE #1 ppb′ _____ N1/N2* GEO, RANGE N1/N2* GEO. RANGE N1/N2* GEO. RANGE N1/N2* GEO. RANGE MEAN** MEAN** MEAN** MEAN** 0/2 N.D.*** 0/2 N.D. 0/3 N.D. 1/2 14 *NOTE* site locations are indicated on map # 6. SITE #1= WELLS CREEK SITE #2= DUPONT PLANT SITE #3= BLUE CHURCH BAY SITE #4= BLUE CHURCH BAY (EAST END ACROSS FROM CHURCH) 1 ppb= ug alkyllead per Kg sample weight (wet weight). Number of samples with detectable alkyllead levels over number of samples * analysed.

** The geometric mean is calculated only from those samples containing detectable alkyllead.

*** N.D.= nondetectable.

TABLE 71:

## PERCENTAGE OF ALKYLLEAD SPECIES DISTRIBUTION IN SEDIMENT MAITLAND- 1986

LOCATION	N1/N2	ALKYLLEAD SPECIES				
		Et4	Et3	Et2		
BLUE CHURCH BAY- east end across from church	1/2	0	0	100		
*NOTE* site	e location	s are indica	ated on map # 6.			

* Number of samples with detectable alkyllead levels over number of samples analysed.

-

5

TABLE 72:

CONCENTRATIONS OF TOTAL LEADS IN SEDIMENT MAITLAND (BLUE CHURCH BAY)- 1986

 
 SITE #1
 SITE #2
 SITE #3
 SITE #4

 ppb'
 ppb'
 ppb'
 ppb'
 ______ N1/N2* GEO. RANGE N1/N2* GEO. RANGE N1/N2* GEO. RANGE N1/N2* GEO. RANGE MEAN** MEAN** MEAN** MEAN** 2/2 156 136-180 2/2 510 425-612 3/3 195 177-221 2/2 225 214-305 *NOTE* site locations are indicated on map # 6. SITE #1= WELLS CREEK SITE #2= DUPONT PLANT SITE #3= BLUE CHURCH BAY SITE #4= BLUE CHURCH BAY (EAST END ACROSS FROM CHURCH) 1 ppb= ug (alkyllead + inorganic lead) per Kg sample weight (wet weight). * Number of samples with detectable total lead levels over number of samples analysed. **

** The geometric mean is calculated only from those samples containing detectable total lead.

#### SUMMARY

Alkylleads were analyzed in fish samples from Maitland area from 1981 to 1987 and were summarized in Tables 73-81.

1. The levels of alkylleads fell from 1981 to 1987. For example, the levels in carp declined from 4207 ppb in 1981 to 1976 ppb in 1982 and finally to 120 ppb in 1987.

2. The most contaminated fish species were carp, yellow perch, white sucker and brown bullhead while bass, pike, redhorse sucker and pumkinseed were the least contaminated.

3. Alkylleads represented 0-100% of total lead, depending on the location and species sampled. However most fish in the contaminated area contained 50-75% of total lead as alkylleads.

4. The most common alkyllead species in fish were tetra- and triethyllead forms.

5. There was a clear upstream and downstream distribution of alkyllead residues when mean levels were compared. Higher levels were found in fish near or downstream from the alkyllead manufacturer than in fish from upstream.

6. Alkyllead levels were consistently lower in muscle and carcass samples but were higher in fatty tissues and intestines when compared to the whole fish.

7. Alkyllead compounds could be measured in clams, macrophytes, sediment and water only from area downstream from the alkyllead manufacturer.

8. Macrophytes also showed gradual decline in alkylleads from 2092 ppb in 1982 to 53 ppb in 1984. Similarly the levels in sediments decreased from 703 ppb in 1982 to below detection ( <15 ppt) in 1986.

9. Surface microlayer and subsurface water samples were analyzed only in 1983. Alkylleads were detected in subsurface water at 0.33 ppb and 0.09 ppb in samples collected near the alkyllead manufacturer and 2 Km downstsream respectively. Surface microlayer samples were about 3X higher in alkylleads than the subsurface water samples near the manufacturer.

10. Fish from St. Clair River area in 1983, 84 and 87 were determined (Tables 82-84). The levels of alkylleads were much lower than the same fish species from Maitland area.

11. Carp, sucker and northern pike had higher levels of alkylleads than yellow perch, walleye, bowfin and garpike. In general, carcass samples contained higher alkyllead levels than muscle samples.

12. Only 1 of 6 subsuface water samples from St. Clair River in 1983 contained detectable alkyllead level (0.42 ppb). Surface microlayer had a slightly higher level (0.68 ppb).

13. Fish from Lake St. Lawrence and Lake St. Francis contained very little alkylleads. Only 1 of 4 yellow perch had 95 ppb alkylleads while 12 carp samples had nondectable level.

CONCENTRATIONS OF ALKYLLEADS AND TOTAL LEAD IN CARP FROM MAITLAND AREA (1981-1987)

YEAR		ALKYLLEAD	ppb′	TOTAL LEAD ppb'			
		MEAN **	C RANGE		MEAN**		
1981	12/12	4207	190-138999	N.S.**	**		
1982	5/6	1976	102- 61713	6/6	2361	160-6643	
1983	2/2	804	87- 7429	2/2	1812	278-11809	
1984	5/6	304	134- 794	5/6	374	134- 794	
1986	- 5/10	988	201- 12234	10/10	243	25-1361	
1987	4/6	120	24- 4263	6/6	406	76- 659	
			H - INTESTINES) (WHOLE FISH)				
ppb= u	g alkyllead a	nd/or tota	al lead per Kg	fish (wet	weight).		

* Number of fish samples with detectable alkyllead or total lead levels over number of fish analysed.

** The geometric mean is calculated from those samples containing detectable alkyllead or total lead.

*** N.S.= No sample.

YEAR		ALKYLLEAD		TOTAL LEAD p		
		GEOMETRIC MEAN**	RANGE	N1/N2*	GEOMETRIC MEAN**	
1981	N•S•***			N.S.		
1982	5/5	1994	912-5415	5/5	3682	2718-675
1983	5/5	1778	1101-2318	5/5	2646	1937-343
1984	2/ 5	910	328-2524	3/ 5	988	192-357
1986	0/ 5	N.D.***	*	5/5	72	45- 9
1987	0/3	N.D.		3/ 3.	445	232-144

#### CONCENTRATIONS OF ALKYLLEADS AND TOTAL LEAD IN YELLOW PERCH FROM MAITLAND AREA (1981-1987)

*NOTE*---1981 AND 1982---(WHOLE FISH - INTESTINES) 1983, 1984, 1986 AND 1987---(WHOLE FISH)

' ppb= ug alkyllead and/or total lead per Kg fish (wet weight).

* Number of fish samples with detectable alkyllead or total lead levels over number of fish analysed.

** The geometric mean is calculated only from those samples containing detectable alkyllead or total lead.

*** N.D.= nondetectable ( <8 ppb).

**** N.S.= No sample.

YEAR		ALKYLLEAD p	ob'	TOTAL LEAD ppb'			
	N1/N2*	MEAN **	RANGE		MEAN**	RANGE	
1981	8/10	216	24- 1221	N.S.***			
1982	3/ 5	1747	717- 3187	4/5	1220	167- 503	
1983	5/5	3725	1245-10553	5/5	4920	1668-1278	
1984	33/43	352	24- 2326	38/43	436	24- 255	
986	3/ 5	230	108- 491	4/5	423	76- 102	
987	1/ 4	50		4/4	513	358- 81	

CONCENTRATIONS OF ALKYLLEAD AND TOTAL LEAD IN WHITE SUCKERS FROM MAITLAND AREA (1981-1987)

*NOTE*---1981 AND 1982---(WHOLE FISH - INTESTINES) 1983, 1984, 1986 AND 1987---(WHOLE FISH)

' ppb= ug alkyllead and/or total lead per Kg fish (wet weight).

* Number of fish samples with detectable alkyllead or total lead levels over number of fish analysed.

** The geometric mean is calculated only from those samples containing detectable alkyllead or total lead.

**** N.S.= No sample.

ALKYLLEAD ppb' YEAR TOTAL LEAD ppb' N1/N2* GEOMETRIC RANGE N1/N2* GEOMETRIC RANGE MEAN** MEAN** 1981 N.S.**** N.S. 2/3 1135 553-2329 2/3 1135 553-2329 1982 1983 N.S. N.S. 8/16 196 103-398 12/16 199 60-577 1984 3/5 54 19-385 5/5 314 135-975 1986 3/ 3 630 319-1075 1987 1/3 149 *NOTE*--1981 AND 1982---(WHOLE FISH - INTESTINES) 1983, 1984, 1986 AND 1987---(WHOLE FISH) 1 ppb= ug alkyllead and/or total lead per Kg fish (wet weight). × Number of fish samples with detectable alkyllead or total lead levels over number of fish analysed.

The geometric mean is calculated only from those samples containing

CONCENTRATIONS OF ALKYLLEAD AND TOTAL LEAD IN BROWN BULLHEAD FROM MAITLAND AREA (1981-1987)

**** N.S.= No sample

detectable alkyllead or total lead.

**

98

### TABLE 77

YEAR		ALKYLLEAD ppb'			TOTAL LEAD ppb'		
	N1/N2*	MEAN**	RANGE		GEOMETRIC MEAN**	RANGE	
1981	N.S.**	**		N.S.			
1982	4/4	1972	890-3115	4/4	2162	991-3397	
1983	1/ 1	1223		1/ 1	1629		
1984	0/9	N.D.***		1/9	976		
1986	N.S.			N•S•			
1987	N.S.			N.S.			
19	81 AND 1982 83, 1984 AND 1 ug alkyllead	987(WHOLE and/or total	E FISH) l lead per Kg	fish (wet		levels	
N1	Number of fish samples with detectable alkyllead or total lead levels over number of fish analysed.						
over		The geometric mean is calculated only from those samples containing detectable alkyllead or total lead.					
over * The	geometric mean		•	those sam	ples contair	ning	

CONCENTRATIONS OF ALKYLLEADS AND TOTAL LEAD IN SMALL MOUTH BASS FROM MAITLAND AREA (1981-1987)

### TABLE 78

YEAR		ALKYLLEAD pp	• <b>b</b> '		TOTAL LEAD	
		GEOMETRIC	RANGE		ACC ANT ++	RANGE
1981				N•S•		
1982	0/ 2	N.D.***		2/2	446	312- 638
1983	3/ 3	163	82- 428	3/3	631	428-1058
1984	_ 5/10	251	64-1057	6/10	446	64-1147
1986	N.S.			N.S.		
1987	N.S.			N.S.		
*NOTE	*1981 AND 1982( 1983, 1984, 1986		NTESTINES)			
1	ppb= ug alkyllead a	nd/or total	lead per Kg	fish (wet	weight).	
*	Number of fish samp over number of fish		ectable alk	yllead or	total lead	levels
**	The geometric mean detectable alkylles			those sam	ples contaí	ning
***	N.D.= nondetectabl	.e ( <8 ppb).				
****	N.S.= No sample.					

CONCENTRATIONS OF ALKYLLEADS AND TOTAL LEAD IN ROCK BASS FROM MAITLAND AREA (1981-1987) CONCENTRATIONS OF ALKYLLEADS AND TOTAL LEAD IN NORTHERN PIKE FROM MAITLAND AREA (1981-1987)

YEAR	ALKYLLEAD ppb'					
		GEOMETRIC MEAN**	RANGE	N1/N2*	GEOMETRIC MEAN**	RANGE
1981	5/ 6	173	30- 1384	N.S.**;	**	
1982	4/ 5	287	55- 1324	5/5	1004	506-251
1983	3/3	436	154- 1113	3/3	822	472-131
1984	N.S.			N.S.		
1986	N.S			N.S.		
1987	N.S.			N.S.		

1983, 1984, 1986 AND 1987---(WHOLE FISH)

ppb= ug alkyllead and/or total lead per Kg fish (wet weight).

* Number of fish samples with detectable alkyllead or total lead levels over number of fish analysed.

** The geometric mean is calculated only from those samples containing detectable alkyllead or total lead.

**** N.S.= No sample.

۲

YEAR		ALKYLLEAD p	pb'		TOTAL LEAD ppb'		
	N1/N2*	GEOMETRIC MEAN**	RANGE	N1/N2*	GEOMETRIC MEAN**	RANGE	
1981	N.S.**	**		N.S.			
1982	5/5	721	189-2042	5/5	721	189-2042	
1983	1/ 1	361		1/ 1	548		
1984	23/33	587	106-5039	28/33	670	34-5874	
1986	N.S.			N.S.			
1987	N.S.			N.S.			
	31 AND 1982 33, 1984, 1986						
nnh=	ug alkyllead	and/or tota	1 load por I	Va fich (w	(ot moight)		

CONCENTRATIONS OF ALKYLLEADS AND TOTAL LEAD IN RED HORSE SUCKER FROM MAITLAND AREA (1981-1987)

* Number of fish samples with detectable alkyllead or total lead levels over number of fish analysed.

** The geometric mean is calculated only from those samples containing detectable alkyllead or total lead.

**** N.S.= No sample.

### TABLE 81

YEAR		ALKYLLEAD p			TOTAL LEAD	
	N1/N2*	MEAN**			GEOMETRIC MEAN**	
1981	N.S.***			N.S.		
1982	3/ 5	567	89-1882	5/5	812	210-332
1983	3/ 5	413	220- 609	5/5	448	218- 97
1984	7/25	150	53- 647	10/25	209	89- 75
1986	N.S			N.S.		
1987	N.S.			N.S.		

*NOTE*---1981 AND 1982---(WHOLE FISH-INTESTINES) 1983, 1984 1986 AND 1987---(WHOLE FISH)

- ' ppb=ug alkyllead and/or total lead per Kg fish (wet weight).
- * Number of fish samples with detectable alkyllead or total lead levels over number of fish analysed.
- ** The geometric mean is calculated only from those samples containing detectable alkylead or total lead.

.

*** N.S.= No sample.

CONCENTRATIONS OF ALKYLLEADS AND TOTAL LEAD IN PUMPKINSEED FROM MAITLAND AREA (1981-1987) TABLE 82:

YEAR	ALKYLLEAD ppb'			TOTAL LEAD ppb'		
	N1/N2*	GEOMETRIC MEAN**	RANGE	N1/N2*	GEOMETRIC MEAN**	RANGE
983-MUSCLE	4/7	239	27-1601	6/7	324	36-1843
983-CARCASS	3/7	315	34-2836	6/7	285	26-2836
1984-WHOLE FISH	1/2	283		2/2	162	70- 377
987-WHOLE FISH	2/7	110	51- 236	7/7	193	73- 499

CONCENTRATIONS OF ALKYLLEADS AND TOTAL LEAD IN CARP FROM ST. CLAIR RIVER AREA (1983-1987)

** The geometric mean is calculated from those samples containing detectable alkyllead or total leads.

over number of fish analysed.

YEAR	ALKYLLEAD ppb'			TOTAL LEAD ppb'		
	N1/N2*		RANGE		GEOMETRIC MEAN**	RANGE
1983-MUSCLE	6/11	157	31-3607	9/11	203	46-375
1983-CARCASS	5/12	319	40-3188	11/12	154	15-318
984-WHOLE FISH	8/8	138	18-1042	8/8	851	273-252
.987-WHOLE FISH	1/ 2	41		2/2	263	200- 34

CONCENTRATIONS OF ALKYLLEADS AND TOTAL LEAD IN WHITE SUCKERS FROM ST. CLAIR RIVER AREA (1983-1987)

' ppb= ug alkyllead and/or total lead per Kg fish (wet weight).

* Number of fish samples with detectable alkyllead or total lead levels over number of fish analysed.

** The geometric mean is calculated from those samples containing detectable alkyllead or total leads.

-

CONCENTRATIONS OF ALKYLLEADS AND TOTAL LEAD IN WALLEYE FROM ST. CLAIR RIVER AREA (1983-1987)

YEAR		ALKYLLEAD p	ob'	I	TOTAL LEAD ppb'		
	N1/N2*	GEOMETRIC MEAN**		N1/N2*	MEAN**	RANGE	
1983-MUSCLE	N.S.***	*		N.S.			
1983-CARCASS	S N.S.			N.S.			
1984-WHOLE FISH	3/6	33	11-174	6/6	73	38-466	
FISH	0/2	N.D.***		2/2	137		
		ad and/or tot					
		samples with fish analysed		alkyllead or	total lead 3	levels	
		ean is calcul llead or tota		hose samples	containing		
*** N.D.=	nondetect	able ( <8ppb)	).				
**** N.S.=	No sample	•					

-7

#### REFERENCES

Chau, Y.K., and P.T.S. Wong. 1984. Organic lead in the aquatic environment. In Biological Effects of Organolead Compounds. P. Grandjean (Ed.), Chapter 4, p 21-31. CRC Press.

Chau, Y.K., P.T.S. Wong, O. Kramar, G.A. Bengert, R.B. Cruz, J.O. Kinrade, J. Lye and J.C. Van Loon. 1980. Occurrence of tetraalkyllead compounds in the aquatic environment. Bull. Environ. Contam. Toxicol. 24: 265-269.

Chau, Y.K., P.T.S. Wong, G.A. Bengert, J.L. Dunn and B. Glen. 1985. Occurrence of alkyllead compounds in the Detroit and St. Clair Rivers. J. Great Lakes Res. 11: 313-319.

De Jonghe, W.R.A., W.E. Van Mol and F.C. Adams. 1983. Determination of trialkyllead compounds in water by extraction and graphite furnace atomic absorption spectrometry. Anal. Chem. 55: 1050-1054.

Harrison, R.M., and D.P.H. Laxen. 1978. Sink processes for tetraalkyllead compounds in the atmosphere. Environ. Sci. Technol. 12: 1384-1391.

Hewitt, C.N., and R.M. Harrison. 1986. Organolead compounds in the enviornment. In Organometallic Compounds in the Environment. P.J. Craig (Ed), Chapter 4, p 160-197. Longman, England.

Hodson, P.V. 1986. The effects on aquatic biota of exposure to lead. Pathways, Cycling and Transformation of Lead in the Environment. P.M. Stoke (Ed.), p 203-224, Royal Society of Canada.

Hodson, P.V., B.R. Blunt and D.M. Whittle. 1983. Suitability of a biochemical method for assessing the exposure of feral fish to lead. In Aquatic Toxicology and Hazard Assessment. Sixth Symposium ASTM STP 902, W.E. Bishop, R.D. Cardwell and B.B. Heidolph (Eds), p 389-405. American Society for Testing and Materials, Philadelphia.

Jarvie, A.W.P., R.N. Markall and H.R. Potter. 1981. Decomposition of organolead compounds in aqueous systems. Environ. Res. 25: 241-249.

Mor, E.D., and A.M. Beccaria. 1977. A dehydration method to avoid loss of trace elements in biological samples. In Proc. Int. Experts Discussion on Lead- Occurrence, Fate and Pollution in the Marine Environment. Rovinj, Yugoslavia.

Royal Society of Canada. 1986. Lead in the Canadian Environment: Science and Regulation. The Commission on Lead in the Environment. 374 pages. Ottawa.

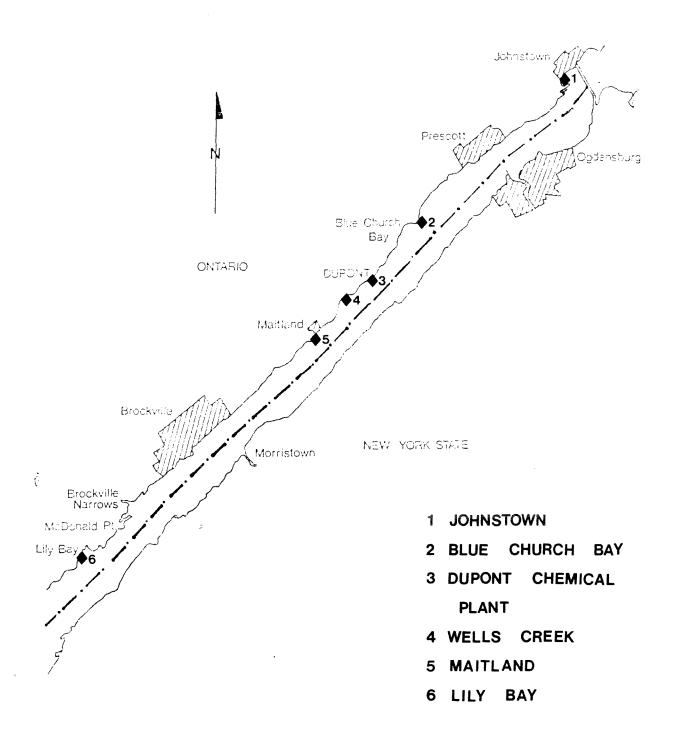
Shapiro, H., and F.W. Frey. 1968. The Organic Compounds of Lead, p 407-426, Wiley, N.Y.

Sirota, G.R., and J.F. Uthe. 1977. Detection of tetraalkyllead compounds in biological materials. Anal. Chem. 49: 823-825.

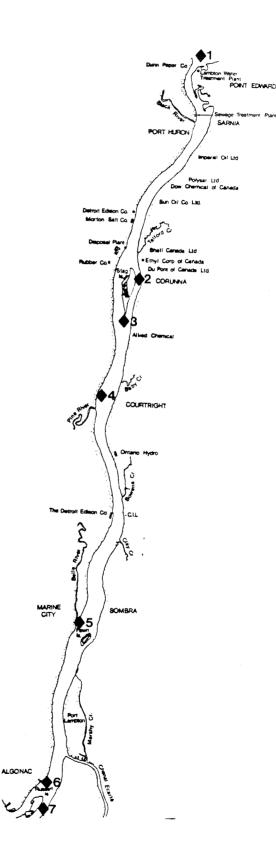
Wong, P.T.S., Y.K. Chau and P.L. Luxon. 1975. Methylation of lead in the environment. Nature 253: 263-264.

### ACKNOWLEDGEMENT

We thank G.A. Bengert (Dept. Environment, National Water Research Institute) for analyses of water samples and advice and assistance in laboratory techniques; W. H. Hyatt, M. J. Kier, O. Kramar, B. Blunt, K. Ralph (Dept. Fisheries and Oceans, Burlington) and G. Shum (Dept. Fisheries and Oceans, Inspection Services Branch, Toronto) for collecting and preparing the fish samples.

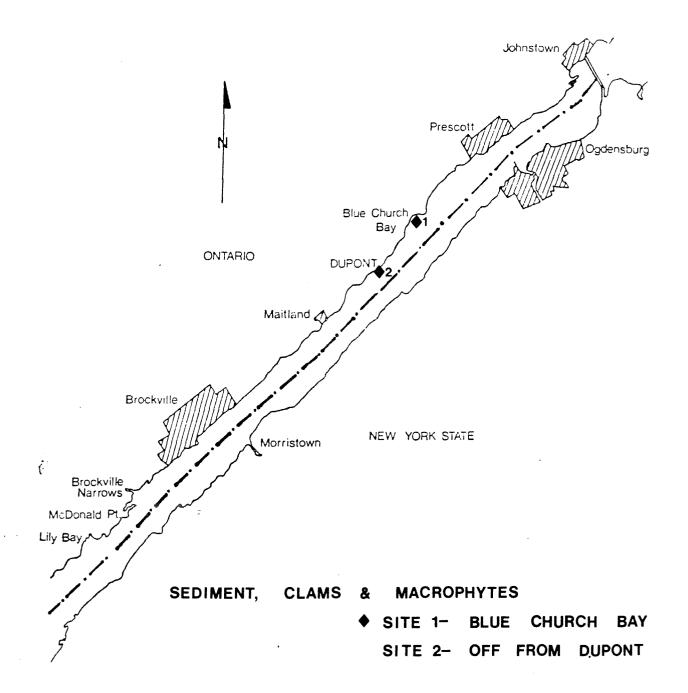

#### APPENDIX=

a) Maps of sampling sites-


, and the second second

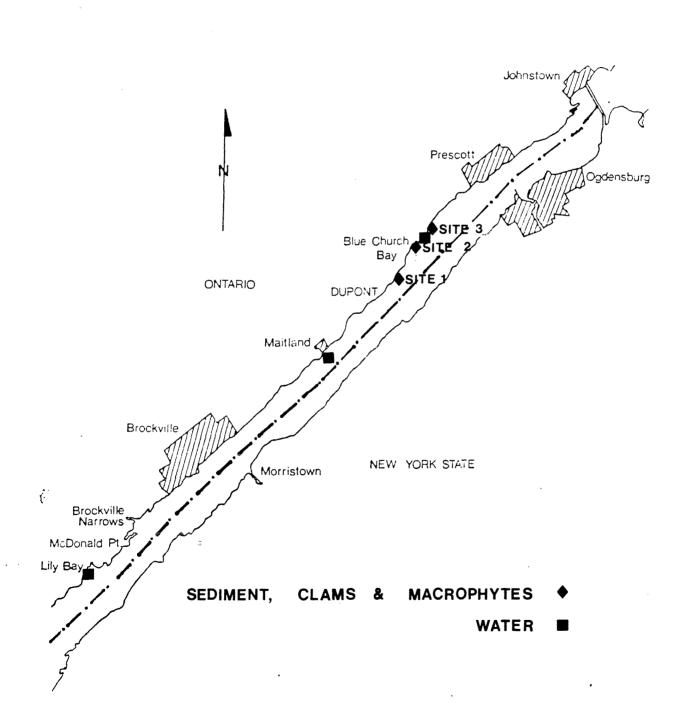
- 1) St. Lawrence River sampling sites (fish)
- 2) St. Clair River sampling sites (fish)
- 3) 1982--St. Lawrence River sampling sites (sediments, clams and macrophytes)
- 4) 1983--St. Lawrence River sampling sites (sediments, clams, macrophytes and water)
- 5) 1984--St. Lawrence River sampling sites (sediments and macrophytes)
- 6) 1986--St. Lawrence River sampling sites (sediments)
- b) Summary of alkyllead sampling= year, location, type of samples and agency collecting the samples
- c) Computer codes and detailed alkyllead data in fish samples
- d) Computer codes and detailed alkyllead data in clams, macrophytes, sediment and water samples

MAP 1- ST. LAWRENCE RIVER: SAMPLING SITES (FISH)




MAP 2- ST. CLAIR RIVER: SAMPLING SITES (FISH)

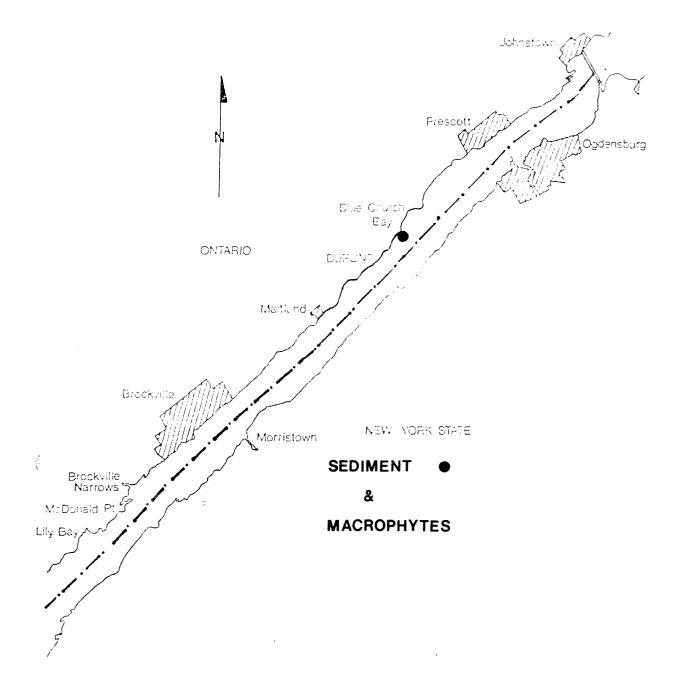



- **1 LAKE HURON**
- 2 CORUNNA
- 3 SOUTH OF STAG IS.
- 4 ST. CLAIR
- 5 MARINE CITY
- 6 ALGONAC
- 7 WALPOLE IS.

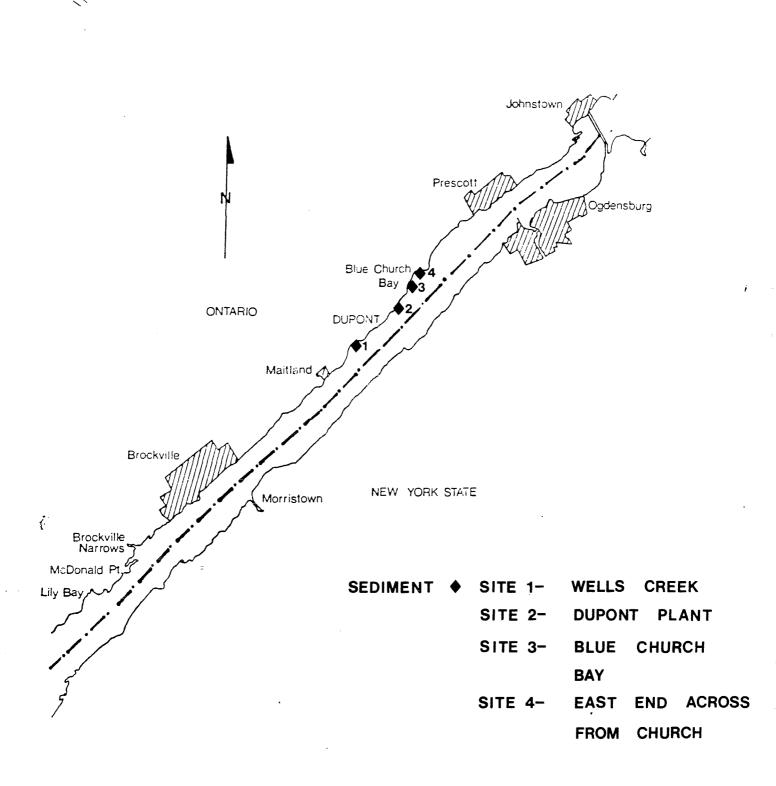
MAP 3- 1982 ST. LAWRENCE RIVER: SAMPLING SITES



κ.


MAP 4- 1983 ST. LAWRENCE RIVER: SAMPLING SITES




×

. .

### MAP 5- 1984 ST. LAWRENCE RIVER: SAMPLING SITE



## MAP 6- 1986 ST. LAWRENCE RIVER: SAMPLING SITES



ł,

### APPENDIX b=

## PART I: SUMMARY OF ALKYLLEAD SAMPLING= YEAR, LOCATION, TYPE OF SAMPLES AND AGENCY COLLECTING THE SAMPLES

YEAR	1981	1982
LOCATION	ST. LAWRENCE RIVER	ST. LAWRENCE RIVER
· · · · · · · · · · · · · · · · · · ·	1. MAITLAND	2. BLUE CHURCH BAY 3. OFF FROM DUPONT
SAMPLES AND SAMPLE-		
FISH- whole		
gutted	1.(28)GLLFAS*	2.(45)GLLFAS
intestines	1.(28)GLLFAS	2.(29)GLLFAS
muscle		
carcass		
WATER-		
SEDIMENT-		2.(2)GLLFAS 3.(2)GLLFAS
CLAMS-		3.(1)GLLFAS
MACROPHYTES-	-	2.(1)GLLFAS 3.(2)GLLFAS
		Continued
(25)= iden GLLFAS/FIS= iden LABG	ntifies location eg. MAITLANI ntifies number of samples col ntifies who collected the sam DRATORY FOR FISHERIES AND AQU USTRIAL SERVICES	llected eg. 25 nples eg. GREAT LAKES

PART II: SUMMARY OF ALKYLLEAD SAMPLING= YEAR, LOCATION, TYPE OF SAMPLES AND AGENCY COLLECTING THE SAMPLES

YEAR	1983		1984	
LOCATION	ST. LAWRENCE R.	ST. CLAIR R.	ST. LAWRENCE R.	
	<ol> <li>MAITLAND</li> <li>BLUE CHURCH BAY</li> <li>JOHNSTOWN</li> <li>LILY BAY</li> <li>DUPONT PLNT PROCESS EFFL. TO RIVER</li> <li>L.ST.LAWRENCE</li> <li>L.ST.FRANCES</li> </ol>	<ol> <li>MARINE CITY</li> <li>ALGOMAC</li> <li>LAKE HURON</li> <li>ST. CLAIR</li> <li>WALPOLE ISLAND</li> </ol>	<ol> <li>MAITLAND</li> <li>BLUE CHURCH BAY</li> <li>JOHNSTOWN</li> <li>LILY BAY</li> </ol>	
SAMPLES AND	SAMPLE-COLLECTING	AGENCIES		
FISH- whole	1.(26)GLLFAS* 6.(10)GLLFAS 7.( 6)FIS		2.(42)GLLFAS 3.(67)GLLFAS 4.(41)GLLFAS	5.(16)FIS 6.( 6)FIS
gutted				
intestines				
muscle		8.( 3)FIS 9.(12)FIS 10.( 4)FIS 11.( 1)FIS 12.( 3)FIS	1.(25)FIS	
carcass		8.( 4)FIS 9.(13)FIS 10.( 4)FIS 11.( 4)FIS 12.( 3)FIS		
WATER-	1.( 6)GLLFAS 2.( 4)GELFAS 4.( 1)GLLFAS	11.(12)GLLFAS		
SEDIMENT-	2.(12)GLLFAS 4.( 4)GLLFAS		2.(15)GLLFAS	
CLAMS-	2.( 1)GLLFAS			
MACROPHYTES-	2.( 4)GLLFAS 4.( 7)GLLFAS		2.(13)GLLFAS	
			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Continued

116

Continued

APPENDIX b=

PART III: SUMMARY OF ALKYLLEAD SAMPLING= YEAR, LOCATION, TYPE OF SAMPLES AND AGENCY COLLECTING THE SAMPLES

YEAR	1986	1987
LOCATION		ST.LAWRENCE R. ST CLAIR R.
	 MAITLAND BLUE CHURCH BAY OFF FROM DUPONT BLUE CHURCH BAY- EAST END ACROSS FROM CH WELLS CREEK 	1. BLUE CHURCH 2. STAG IS. BAY
SAMPLES AND SAMPI	LE-COLLECTING AGENCIES	
FISH- whole	1.(25)GLLFAS*	1.(16)GLLFAS 2.(11)GLLFAS
gutted		
intestines		1.(3)GLLFAS
muscle		
carcass		
liver		1.(3)GLLFAS
fatty tissu	le	1.(3)GLLFAS
fillet		1.(3)GLLFAS
WATER-		
SEDIMENT-	2.(3)GLLFAS 3.(2)GLLFAS 4.(2)GLLFAS 5.(2)GLLFAS	
CLAMS-	-	
MACROPHYTES-		

APPENDIX c=

THE FOLLOWING IS A DEFINITION OF THE CODES USED IN THE FISH ALKYLLEAD DATA:

I. SITE= The site where the sample was colleced. SITE- 1.0 = St. Clair river system 2.0 = Maitland river system 1.1 = Corunna2.1 = Johnstown2.2 = Blue Church Bay 1.2 = St. Clair1.3 = Marine City2.3 = Lily Bay2.4 = Maitland1.4 = Algonac1.5 = Lake St. Clair1.6 = Lake Huron3.0 = Lake St. Lawrence 1.7 = Walpole Is. 1.8 =Sout of Stag Is. 4.0 = Lake St. Francis1.9 = Stag IslandII. SP. = The species of the fish SPECIES-41 = Garpike234 = Catfish51 = Bowfin261 = Killifish61 = Alewife311 = Rock Bass78 = Brown Trout 313 = Pumpkinseed 316 = Small Mouth Bass 317 = Large Mouth Bass 319 = Black Crappie 131 = Northern Pike 163 = White Sucker 177 = Red Horse Sucker 320 = Sunfish186 = Carp331 = Yellow Perch 201 = Spottail Shinner 334 = Walleye 233 = Brown Bullhead III. L.(CM) = Total length in centimeters IV. WT(G) = Total weight in grams= The sex of the fish V. SEX SEX-1 = Male3 = Immature4 = Unknown2 = FemaleVI. TIS = Tissue type being examined TIS-1 = Whole fish5 = Whole fish-Intestines 2 = Intestines6 = Liver3 = Muscle7 = fatty tissue 8 = fillet4 = Carcass

VII.	-99 = If this appears in any catagory it means that no data was available
VIII.	S.ALK = Total sum of alkylleads
IX.	S.TBP = Total sum of all leads S.ALK + PB
Χ.	PERC. = Percentage of Total lead that is alkylleadS.ALK/S.TPB X 100
NOTE:	ALL LEAD VALUES IN FISH ARE EXPRESSED IN ngPb/g WET WEIGHT OF FISH

File: LEAD Report: VIEW REPORT

1

			L.(CM)	WT(G)	SEX	TIS	ME2ET2	MEET3	ET4	ET3	ET2	S.ALK.	PB	S.TPB.	PERC
1981	2.4	186	57.7	4930	1	5	151	1759	11294	5262	44	18510	-99	-99	-99
1981			63.9	6930	1	5	257	5528	64560	68135	519	138999	-99	-99	-99
1981			67.8	9100	2	5	0	621	18	55	0	694	-99	-99	-99
1981			64.0	7340	2	5	0	508	8360	23306	346	32520	-99	-99	-99
1981	2.4	186	61.7	6300	2	5	0	38	264	8 20	0	1122	-99	-99	-99
1981	2.4	186	60.8	5690	2	5	0	110	2506	1207	0	3823	-99	-99	-99
1981			68.2	8120	2	5	0	0	129	164	0	293	-99	-99	-99
1981			63.8	5910	1	5	0	22	94	103	0	219	-99	-99	-99
1981			57.7	6850	1	5	43	760	9614	3251	21	13689	-99	-99	-99
1981			68.1	8480	2	5	0	0 4218	76 68661	114 16398	0	190 89614	-99 -99	-99 -99	-99 -99
1981			60.4	5820 5340	1 2	5 5	213 46	4218	4955	2759	124 0	8232	-99 -99	-99	-99 -99
1981 1981			51.7 37.2	8 00	2	5	40	0	49JJ 0	27.59	0	24	-99	-99	-99
1981			35.3	900	2	5	0	7	147	281	ŏ	435	-99	-99	-99
1981			36.2	980	2	5	õ	, 27	584	610	õ	1221	-99	-99	-99
1981			39.0	820	2	5	Õ	0	19	77	0	96	-99	-99	-99
1981			-99	-99	4	5	0	0	0	0	0	0	-99	-99	-99
1981		163	37.9	1040	1	5	0	0	40	84	0	124	-99	-99	-99
1981	2.4	163	43.3	1160	4	5	0	0	169	97	0	266	-99	-99	-99
1981	2.4	163	39.0	960	1	5	0	0	442	240	0	682	-99	-99	-99
1981			37.1	870	1	5	0	0	31	138	0	169	-99	-99	-99
1981			37.1	880	2	5	0	0	0	0	0	0	-99	-99	-99
1981			50.7	1040	2	5	0	0	0	78	0	78	-99	-99	-99
1981			53.2	1430	1	5	0	0	51	119	0	170	-99	-99	-99
1981			52.2	1310	2	5	0	0	117	168	0	285	-99	-99 -99	-99 -99
1981			58.0	1840	2	5	0	0	206 0	413 0	765 0	1384 0	-99 -99	-99 -99	-99 -99
1981			47.0	960 910	2 1	5 5	0 0	0 0	30	0	0	30	-99 -99	-99 -99	-99 -99
1981 1981			47.2 57.7	4930	1	2	0	0	0	22934	8925	31859	-99 -99	-99	-99
1981			63.9	6930	1	2	0	77	69	84197		100644	-99	-99	-99
1981			67.8	91 00	2	2	õ	0	0	0	0	0	-99	-99	-99
1981			64.0	7340	2	2	273	1581	29173	4505	30	35562	-99	-99	-99
1981			61.7	6300	2	2	11	62	438	877	0	1388	-99	-99	-99
1981			60.8	5690	2	2	0	0	76	24	0	100	-99	-99	-99
1981			68.2	8120	2	2	0	0	189	178	0	367	-99	-99	-99
1981	2.4	186	63.8	5910	1	2	14	62	210	115	0	401	-99	-99	-99
1981	2.4	186	57.7		1	2	0	0	0	3862	6341		-99	-99	-99
1981			68.1	8480	2	2	0	0	43	59	0	102	-99	-99	-99
1981			60.4	5820	1	2	228	3542	59147	35806	333	99056	-99	-99	-99
1981			51.7	5340	2	2	0	0	477	70	0	547	-99	-99	-99
1981			37.2	800	2	2	0	0	66	170	0	236	-99	-99 -99	-99 -99
1981			35.3	900	2	2	31	121	1342	1534	0 432	3028 3447	-99 -99	-99 -99	-99 -99
1981			36.2	980	2	2	30	112 0	1201 78	1672 478	432 0	556	-99 -99	-99 -99	-99 -99
1981 1981		163	39 -99	820 -99	2 4	2 2	0 0	0	78 78	132	0	210	-99 -99	-99	-99
1981			-99 37.9	-99 1040	4	2	0	22	421	1028	45	1516	-99	-99	-99
1981			43.3	1160	2	2	0	10	462	380	0	852	-99	-99	-99
1981			39.0	960	1	2	0	0	0	1089	1563	2652	-99	-99	-99
1981			37.1	870	1	2	0	0	Ő	672	429	1101	-99	-99	-99
1981			37.1	880	2	2	õ	Õ	Õ	0	0	0	-99	-99	-99
1981			50.7	1040	2	2	17	84	859	490	16	1466	-99	-99	-99
1981			53.2	1430	1	2	76	303	1174	902	1999	4454	-99	-99	-99
1981			52.2	1310	2	2	61	274	1276	845	0	2456	-99	-99	-99
1981			58.0	1840	2	2	49	205	1673	707	0	2634	-99	-99	-99
1981	2.4	131	47.0	960	2	2	0	0	0	0	0	0	-99	-99	-99

Page

									•							
	File: Repor	t: VI								 (770	a			Page
	YEAR	SITE	SP.	L.(CM)	WT(G)	SEX	TIS	ME2ET2	MEET3	ET4	ET3	ET2	S.ALK.	PB	S.TPB.	PERC
,	1981	2.4	131	47.2	 919	4	2	20	118	667	555	0	1360	 _99	 _99	 -99
	1982	2.2	186	79.4	6840	1	2	0	0	0	159	0	159	1536	1695	9
	1982	2.2	186	76.1	6220	1	2	0	0	261	124	0	385	0	385	100
÷	1982	2.2	186	78.1	6280	1	2	96	1142	7475	1215	1310	11238	4133	15371	73
	1982	2.2	186	74.4	598 0	1	2	0	0	170	99	72	341	375	716	48
	1982	2.2	186	70	4400	1	2	0	0	780	906	707	2393	1282	3075	65
	1982		186	77	7000	2	2	91	1474	25535	1764	1744	30608	7301	37909	81
	1982	2.2	131	59	1080	1	2	0	0	449	0	0	449	1165	1614	28
	1982			65.7	1340	2	2	0	169	1018	0	0	1187	1040	2227	53
	1982			57.2	1120	1	2	0	179	1813	0	71	2063	532	2595	79
	1982		131		1000	1	2	44	205	1765	0	0	2014	0	2014	100
	1982		131		4300	2	2	0	83	0	99	229	411	1338	1749	23
	1982		163		440	1	2	0	0	0	0	0	0	522	522	0
	1982		163		2040	2	2	0	0	0	0	0	0	236	236	0
	1982			41.1	700	1	2	0	64	1318	695	690	2767	3905	6672	41
	1982			44.7	740	2	2	0	0	4384	3433	4268	12085	3477	15562	78
	1982			42.4	700	2	2	0	293	2948	2171	2196	7608	3610	11218	68
	1982		177		2220	2	2	0	104	1739	566	249	2658	0	2658	100
	1982		177	58.7	2100	1	2	0	86	1228	469	0	1783	0	1783	100
	1982			64.6	3300	1	2	0	0	188	162	0	350	0	350	100
	1982		177		2520	1	2	0	268	2627	1309	653	4857	0	4857	100
	1982		177		2580	1	2	0	0	665	233	0	898	0	898	100
	1982			33.1	440	2	2	154	286	2193	468	192	3293	0	3293	100
	1982			34.4	580	2	2	106	215	1493	141	0	1955	1712	3667	55
	1982			31.1	449	2	2	372	555	2890	805	457	5079	0	5079	100
	1982		311		248	4	2	0	0	0	0	0	0	0	0	0
	1982		311		247	2	2	0	0	0	0	0	0	0	0	0
	1982	2.2	233	32	400	4	2	0	0	105	223	0	328	0	328	100

	1982 2.2	163 55	2040	2	2	0	0	0	0	0	0	236	236	0
	1982 2.2	163 41.1	700	1	2	0	64	1318	695	69 0	2767	3905	6672	41
-	1982 2.2	163 44.7	740	2	2	0	0	4384	3433	4268	12085	3477	15562	78
	1982 2.2	163 42.4	700	2	2	0	293	2948	2171	2196	7608	3610	11218	68
	1982 2.2	177 59.4	2220	2	2	0	104	1739	566	249	2658	0	2658	100
	1982 2.2	177 58.7	2100	1	2	0	86	1228	469	0	1783	0	1783	100
	1982 2.2	177 64.6	3300	1	2	Õ	0	188	162	0	350	Ō	350	100
	1982 2.2	177 64	2520	ĩ	2	õ	268	2627	1309	653	4857	Õ	4857	100
	1982 2.2	177 60	2580	î	2	ŏ	0	665	233	0	898	Õ	898	100
	1982 2.2	316 33.1	440	2	2	154	286	2193	468	192	3293	õ	3293	100
	1982 2.2	316 34.4	580	2	2	106	215	1493	141	0	1955	1712	3667	55
	1982 2.2	316 31.1	449	2	2	372	555	2890	805	457	5079	0	5079	100
	1982 2.2		248	4	2	0	0	0	0	0	0	0	0	0
		311 21.9			2			0	0	0	0	0	0	õ
	1982 2.2	311 23.3	247	2		0	0	105	223	0	328	0	328	100
	1982 2.2	233 32	400	4	2	0	0						1052	100
	1982 2.2	233 29	300	2	2	0	0	0	928	124	1052	0		0
	1982 2.2	233 31.2	446	2	2	0	0	0	0	0	0	0	0	
	1982 2.2	186 79.4	6840	1	1	0	0	0	126	265	391	156	547	71
	1982 2.2	186 76.1	6220	1	1	0	0	102	0	0	102	1574	1676	6
	1982 2.2	186 78.1	6280	1	1	0	875	6630	672	94	8271	1211	9482	87
	1982 2.2	186 74.4	598 0	1	1	0	0	0	0	0	0	160	160	0
1	L982 2.2	186 70.0	4400	1	1	0	109	967	403	0	1479	396	1875	79
	1982 2.2	186 77.0	7000	2	1	203	3548	54812	2622	528	61713	4721	66434	93
-	1982 2.2	131 59.0	1080	1	1	0	0	0	0	0	0	770	770	0
:	1982 2.2	131 65.7	1340	2	1	0	0	298	0	0	298	1146	1444	21
	1982 2.2	131 57.2	1120	1	1	0	0	55	0	0	55	669	724	8
-	1982 2.2	131 54.0	1000	1	1	0	0	313	0	0	313	193	506	62
	1982 2.2	131 87.0	4300	2	1	0	146	1125	53	0	1324	1187	2511	53
	1982 2.2	163 40.0	440	1	1	0	0	0	0	0	0	0	0	0
	1982 2.2	163 55.0	2040	2	1	0	0	0	0	0	0	167	167	0
	1982 2.2	163 41.1	700	1	1	0	79	405	233	0	717	142	859	83
	1982 2.2	163 44.7	740	2	1	0	0	1437	1189	561	3187	1849	5036	63
	1982 2.2	163 42.4	700	2	1	Õ	0	1098	1076	160	2334	736	3070	76
	1982 2.2	177 59.4	2220	2	1	Õ	68	654	322	0	1044	0	1044	100
	1982 2.2	177 58.7	2100	1	1	õ	0	788	227	Õ	1015	Õ	1015	100
	1982 2.2	177 64.6	3300	1	1	ŏ	ŏ	189	0	ŏ	189	ŏ	189	100
	L982 2.2	177 64.0	2520	1	1	0	133	1590	319	ŏ	2042	Õ	2042	100
	1982 2.2	177 60.0	2520	1	1	0	0	341	137	0	478	0	478	100
					1	-			0	0	478	0	0	0
	1982 2.2	61 17.5	28	2		0	0	0	0	0	0	0 491	491	0
	L982 2.2	61 18.2	30	2	1	0	0	0		-			209	100
	1982 2.2	61 18.0	30	2	1	0	0	0	209	0	209	0		0
-	1982 2.2	61 16.2	30	2	1	0	0	0	0	0	0	0	0	U

		Page
PB	S.TPB.	PERC

Report: VIEW REPORT YEAR SITE SP. L.(CM)	WT(G) S	SEX TIS	ME2ET2	MEET3	ET4	ET3	ET2	S.ALK.	PB	S.TPB.	PERC
1982 2.2 316 32.2 1982 2.2 316 33.1 1982 2.2 316 31.1 1982 2.2 316 31.1 1982 2.2 311 16.0 1982 2.2 331 17.5 1982 2.2 331 17.5 1982 2.2 331 14.5 1982 2.2 331 14.5 1982 2.2 311 23.3 1982 2.2 311 23.3 1982 2.2 313 16.4 1982 2.2 313 16.8 1982 2.2 313 16.8 1982 2.2 313 17.5 1982 2.2 313 17.3 1982 2.2 313 17.3 1982 2.2 313 17.3 1982 2.2 313 17.3 1982 2.2 313 12.0 1983 2.2 163 48.4 1983 2.2 163 45.6 1983 2.2 163 47.2 1983 2.2 131 60.2 1983 2.2 131 67.5 1983 2.2 331 20.4 1983 2.2 331 20.4 1983 2.2 311 18.7 1983 2.2 311 18.7 1983 2.2 311 <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>$\begin{array}{c} 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 1 \\ 1 \\ 2 \\ 2$</td> <td>0 71 57 69 251 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>$\begin{array}{c}\\ 0\\ 252\\ 187\\ 97\\ 446\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$</td> <td>$\begin{array}{c} 0\\ 1834\\ 1204\\ 724\\ 1529\\ 115\\ 0\\ 460\\ 1023\\ 108\\ 0\\ 0\\ 0\\ 1447\\ 698\\ 89\\ 0\\ 105\\ 0\\ 0\\ 1447\\ 698\\ 89\\ 0\\ 105\\ 0\\ 0\\ 5776\\ 65\\ 1431\\ 5086\\ 2013\\ 3452\\ 752\\ 231\\ 215\\ 629\\ 33\\ 104\\ 829\\ 108\\ 61\\ 571\\ 0\\ 100\\ 21\\ 735\\ 258\\ 0\\ 0\\ 156\\ 251\\ 252\\ \end{array}$</td> <td>$\begin{array}{c}$</td> <td>$\begin{array}{c} 73\\ 275\\ 92\\ 0\\ 235\\ 371\\ 415\\ 444\\ 1206\\ 201\\ 0\\ 0\\ 0\\ 0\\ 0\\ 111\\ 0\\ 0\\ 0\\ 0\\ 111\\ 0\\ 0\\ 0\\ 0\\ 707\\ 0\\ 285\\ 0\\ 147\\ 1060\\ 600\\ 405\\ 68\\ 30\\ 55\\ 87\\ 12\\ 265\\ 367\\ 430\\ 249\\ 118\\ 16\\ 107\\ 21\\ 90\\ 50\\ 0\\ 0\\ 22\\ 72\\ 44 \end{array}$</td> <td>$\begin{array}{c} 285\\ 3092\\ 1763\\ 890\\ 3115\\ 1503\\ 2023\\ 2101\\ 5415\\ 912\\ 0\\ 0\\ 0\\ 0\\ 1882\\ 1088\\ 89\\ 0\\ 0\\ 553\\ 2329\\ 0\\ 7429\\ 87\\ 2067\\ 10553\\ 5101\\ 5179\\ 1245\\ 361\\ 484\\ 1113\\ 154\\ 1859\\ 2318\\ 2158\\ 1736\\ 1101\\ 82\\ 428\\ 124\\ 1223\\ 527\\ 0\\ 0\\ 220\\ 609\\ 710\\ \end{array}$</td> <td>$\begin{array}{c} 0\\ 305\\ 254\\ 101\\ 100\\ 845\\ 2100\\ 1704\\ 1344\\ 1806\\ 638\\ 312\\ 210\\ 1439\\ 782\\ 363\\ 598\\ 0\\ 0\\ 0\\ 4380\\ 191\\ 1143\\ 2232\\ 1056\\ 1658\\ 423\\ 187\\ 411\\ 202\\ 318\\ 1402\\ 1112\\ 759\\ 316\\ 836\\ 473\\ 630\\ 304\\ 406\\ 122\\ 284\\ 218\\ 240\\ 368\\ 1143\\ \end{array}$</td> <td>285 3397 2017 991 3215 2348 4123 3805 6759 2718 638 312 210 3321 1870 452 598 553 2329 0 11809 278 3210 12785 6157 6837 1668 548 895 1315 472 3261 3430 2917 2052 1937 555 1058 428 1629 649 284 218 460 977 1853</td> <td>$\begin{array}{c}\\ 100\\ 91\\ 87\\ 90\\ 97\\ 64\\ 49\\ 55\\ 80\\ 34\\ 0\\ 0\\ 57\\ 58\\ 0\\ 0\\ 0\\ 57\\ 58\\ 0\\ 0\\ 0\\ 57\\ 58\\ 0\\ 0\\ 0\\ 0\\ 31\\ 64\\ 83\\ 75\\ 66\\ 45\\ 33\\ 76\\ 85\\ 75\\ 66\\ 45\\ 57\\ 51\\ 0\\ 0\\ 48\\ 23\\ 82\\ 38\\ 75\\ 66\\ 45\\ 57\\ 51\\ 0\\ 0\\ 48\\ 23\\ 82\\ 38\\ 75\\ 66\\ 45\\ 57\\ 51\\ 0\\ 0\\ 48\\ 23\\ 82\\ 57\\ 51\\ 0\\ 0\\ 48\\ 23\\ 82\\ 38\\ 75\\ 66\\ 45\\ 57\\ 51\\ 0\\ 0\\ 48\\ 23\\ 82\\ 57\\ 51\\ 0\\ 0\\ 48\\ 23\\ 82\\ 38\\ 75\\ 66\\ 45\\ 57\\ 51\\ 0\\ 0\\ 48\\ 23\\ 82\\ 38\\ 75\\ 66\\ 45\\ 57\\ 51\\ 0\\ 0\\ 48\\ 23\\ 82\\ 38\\ 75\\ 66\\ 45\\ 57\\ 51\\ 0\\ 0\\ 48\\ 23\\ 82\\ 57\\ 51\\ 0\\ 0\\ 48\\ 23\\ 82\\ 57\\ 51\\ 0\\ 0\\ 48\\ 23\\ 82\\ 57\\ 51\\ 0\\ 0\\ 48\\ 23\\ 82\\ 57\\ 51\\ 0\\ 0\\ 48\\ 23\\ 82\\ 57\\ 51\\ 0\\ 0\\ 48\\ 23\\ 82\\ 57\\ 51\\ 0\\ 0\\ 48\\ 23\\ 82\\ 57\\ 51\\ 0\\ 0\\ 48\\ 23\\ 82\\ 57\\ 51\\ 0\\ 0\\ 48\\ 23\\ 82\\ 57\\ 51\\ 0\\ 0\\ 48\\ 23\\ 82\\ 57\\ 51\\ 0\\ 0\\ 48\\ 23\\ 82\\ 57\\ 51\\ 0\\ 0\\ 48\\ 23\\ 82\\ 57\\ 51\\ 0\\ 0\\ 0\\ 48\\ 23\\ 82\\ 57\\ 51\\ 0\\ 0\\ 48\\ 23\\ 82\\ 51\\ 0\\ 0\\ 10\\ 0\\ 0\\ 10\\ 0\\ 10\\ 0\\ 10\\ 0\\ 0\\ 10\\ 0\\ 10\\ 0\\ 10\\ 0\\ 10\\ 0\\ 0\\ 10\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0$</td>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 1 \\ 1 \\ 2 \\ 2$	0 71 57 69 251 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c}\\ 0\\ 252\\ 187\\ 97\\ 446\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	$\begin{array}{c} 0\\ 1834\\ 1204\\ 724\\ 1529\\ 115\\ 0\\ 460\\ 1023\\ 108\\ 0\\ 0\\ 0\\ 1447\\ 698\\ 89\\ 0\\ 105\\ 0\\ 0\\ 1447\\ 698\\ 89\\ 0\\ 105\\ 0\\ 0\\ 5776\\ 65\\ 1431\\ 5086\\ 2013\\ 3452\\ 752\\ 231\\ 215\\ 629\\ 33\\ 104\\ 829\\ 108\\ 61\\ 571\\ 0\\ 100\\ 21\\ 735\\ 258\\ 0\\ 0\\ 156\\ 251\\ 252\\ \end{array}$	$\begin{array}{c}$	$\begin{array}{c} 73\\ 275\\ 92\\ 0\\ 235\\ 371\\ 415\\ 444\\ 1206\\ 201\\ 0\\ 0\\ 0\\ 0\\ 0\\ 111\\ 0\\ 0\\ 0\\ 0\\ 111\\ 0\\ 0\\ 0\\ 0\\ 707\\ 0\\ 285\\ 0\\ 147\\ 1060\\ 600\\ 405\\ 68\\ 30\\ 55\\ 87\\ 12\\ 265\\ 367\\ 430\\ 249\\ 118\\ 16\\ 107\\ 21\\ 90\\ 50\\ 0\\ 0\\ 22\\ 72\\ 44 \end{array}$	$\begin{array}{c} 285\\ 3092\\ 1763\\ 890\\ 3115\\ 1503\\ 2023\\ 2101\\ 5415\\ 912\\ 0\\ 0\\ 0\\ 0\\ 1882\\ 1088\\ 89\\ 0\\ 0\\ 553\\ 2329\\ 0\\ 7429\\ 87\\ 2067\\ 10553\\ 5101\\ 5179\\ 1245\\ 361\\ 484\\ 1113\\ 154\\ 1859\\ 2318\\ 2158\\ 1736\\ 1101\\ 82\\ 428\\ 124\\ 1223\\ 527\\ 0\\ 0\\ 220\\ 609\\ 710\\ \end{array}$	$\begin{array}{c} 0\\ 305\\ 254\\ 101\\ 100\\ 845\\ 2100\\ 1704\\ 1344\\ 1806\\ 638\\ 312\\ 210\\ 1439\\ 782\\ 363\\ 598\\ 0\\ 0\\ 0\\ 4380\\ 191\\ 1143\\ 2232\\ 1056\\ 1658\\ 423\\ 187\\ 411\\ 202\\ 318\\ 1402\\ 1112\\ 759\\ 316\\ 836\\ 473\\ 630\\ 304\\ 406\\ 122\\ 284\\ 218\\ 240\\ 368\\ 1143\\ \end{array}$	285 3397 2017 991 3215 2348 4123 3805 6759 2718 638 312 210 3321 1870 452 598 553 2329 0 11809 278 3210 12785 6157 6837 1668 548 895 1315 472 3261 3430 2917 2052 1937 555 1058 428 1629 649 284 218 460 977 1853	$\begin{array}{c}\\ 100\\ 91\\ 87\\ 90\\ 97\\ 64\\ 49\\ 55\\ 80\\ 34\\ 0\\ 0\\ 57\\ 58\\ 0\\ 0\\ 0\\ 57\\ 58\\ 0\\ 0\\ 0\\ 57\\ 58\\ 0\\ 0\\ 0\\ 0\\ 31\\ 64\\ 83\\ 75\\ 66\\ 45\\ 33\\ 76\\ 85\\ 75\\ 66\\ 45\\ 57\\ 51\\ 0\\ 0\\ 48\\ 23\\ 82\\ 38\\ 75\\ 66\\ 45\\ 57\\ 51\\ 0\\ 0\\ 48\\ 23\\ 82\\ 38\\ 75\\ 66\\ 45\\ 57\\ 51\\ 0\\ 0\\ 48\\ 23\\ 82\\ 57\\ 51\\ 0\\ 0\\ 48\\ 23\\ 82\\ 38\\ 75\\ 66\\ 45\\ 57\\ 51\\ 0\\ 0\\ 48\\ 23\\ 82\\ 57\\ 51\\ 0\\ 0\\ 48\\ 23\\ 82\\ 38\\ 75\\ 66\\ 45\\ 57\\ 51\\ 0\\ 0\\ 48\\ 23\\ 82\\ 38\\ 75\\ 66\\ 45\\ 57\\ 51\\ 0\\ 0\\ 48\\ 23\\ 82\\ 38\\ 75\\ 66\\ 45\\ 57\\ 51\\ 0\\ 0\\ 48\\ 23\\ 82\\ 57\\ 51\\ 0\\ 0\\ 48\\ 23\\ 82\\ 57\\ 51\\ 0\\ 0\\ 48\\ 23\\ 82\\ 57\\ 51\\ 0\\ 0\\ 48\\ 23\\ 82\\ 57\\ 51\\ 0\\ 0\\ 48\\ 23\\ 82\\ 57\\ 51\\ 0\\ 0\\ 48\\ 23\\ 82\\ 57\\ 51\\ 0\\ 0\\ 48\\ 23\\ 82\\ 57\\ 51\\ 0\\ 0\\ 48\\ 23\\ 82\\ 57\\ 51\\ 0\\ 0\\ 48\\ 23\\ 82\\ 57\\ 51\\ 0\\ 0\\ 48\\ 23\\ 82\\ 57\\ 51\\ 0\\ 0\\ 48\\ 23\\ 82\\ 57\\ 51\\ 0\\ 0\\ 48\\ 23\\ 82\\ 57\\ 51\\ 0\\ 0\\ 0\\ 48\\ 23\\ 82\\ 57\\ 51\\ 0\\ 0\\ 48\\ 23\\ 82\\ 51\\ 0\\ 0\\ 10\\ 0\\ 0\\ 10\\ 0\\ 10\\ 0\\ 10\\ 0\\ 0\\ 10\\ 0\\ 10\\ 0\\ 10\\ 0\\ 10\\ 0\\ 0\\ 10\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0$
19832.231320.519832.22618.219833.0186-9919833.0186-9919833.0186-9919833.0186-9919833.0186-99	195 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	0	251	286	72	609	368	977	62
1983 4.0 186 -99 1983 4.0 186 -99	5850 4 7650 4 8100 4	4 1 4 1	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	129 368 0	129 368 0	0 0 0

File: LEAD Page Report: VIEW REPORT YEAR SITE SP. L. (CM) WT(G) SEX TIS ME2ET2 MEET3 ET4 ET3 ET2 S.ALK. PB S.TPB. PERC _____ ____ -----1983 4.0 186 -99 6900 4 186 -99 1983 4.0 1983 4.0 186 -99 1983 3.0 331 -99 331 -99 1983 3.0 1983 3.0 331 -99 1983 3.0 331 -99 163 40 1983 1.3 1983 1.3 163 40 00 163 42 1983 1.3 1983 1.3 163 42 1983 1.3 163 47 1983 1.3 163 47 1983 1.4 163 41 1983 1.4 163 41 1983 1.4 163 47 1983 1.4 163 47 1983 1.4 163 50.5 163 50.5 1983 1.4 1983 1.6 163 47 163 47 1983 1.6 1983 1.6 163 38 1983 1.6 163 38 1983 1.6 163 40 1983 1.6 163 40 1983 1.4 186 54 1983 1.4 186 54 1983 1.4 186 46 1983 1.4 186 46 186 53 1983 1.4 0.01 1983 1.4 186 53 1983 1.4 186 67 1083 1.4 106 67 Δ 1. Δ 1. Δ Δ

1983 1.4	186 67	3900	4	4	0	0	2222	614	0	2836	0	2836	100
1983 1.2	186 58	2700	4	3	0	0	0	0	0	0	36	36	0
1983 1.2	186 58	2700	4	4	0	0	0	0	0	0	0	0	0
1983 1.7	186 56	3500	4	3	0	0	0	121	0	121	171	292	41
1983 1.7	186 56	3500	4	4	0	0	0	34	0	34	128	162	21
1983 1.6	186 59	3050	4	4	0	57	168	74	22	323	346	670	48
1983 1.6	186 59	3050	4	3	0	0	271	337	19	627	60	687	91
1983 1.4	331 16	65	4	3	0	0	0	0	0	0	56	56	0
1983 1.4	331 16	65	4	4	0	0	0	0	0	0	261	261	0
1983 1.2	331 19	136	4	4	0	0	0	0	0	0	25	25	0
1983 1.7	331 20	135	4	3	0	0	0	0	0	0	178	178	0
1983 1.7	331 20	135	4	4	0	0	4	12	0	17	101	118	14
1983 1.4	131 75	2600	4	3	0	0	0	0	0	0	108	108	0
1983 1.4	131 75	2600	4	4	0.	0	0	0	0	0	0	0	0
1983 1.3	311 13	67	4	4	0	0	0	0	0	0	97	97	0
1983 1.4	051 55	1600	4	4	0	0	0	0	0	0	45	45	0
1983 1.4	041 78	675	4	3	0	0	48	0	31	79	8	88	90
1983 1.4	041 78	675	4	4	0	0	0	0	0	0	0	0	0
1983 1.2	061 7.6	37	4	4	0	0	0	0	0	0	17	17	0
1983 1.7	234 68	4000	4	3	0	0	26	71	15	114	39	153	74
1983 1.7	234 68	4000	4	4	0	0	119	34	0	154	177	331	46
1983 1.4	163 46	975	4	3	0	0	0	31	0	31	281	312	10
1983 1.4	163 46	975	4	4	0	224	0	0	0	224	9	233	96

File: LEAD

Report	: VI	EW 1	REPORT												
YEAR S	ITE	SP.	L.(CM)	WT(G)	SEX	TIS	ME2ET2	MEET3	ET4	ET3	ET2	S.ALK.	PB	S.TPB.	PERC
							~ ~ ~ ~ ~ ~ ~	~~~~~	~~~~~		10	~~~~~	/ 5		
1983 1		163		817	4	3	0	0	0	22	13	36	45	61	44
1983 1		163		817	4	4	0	0	0	0	0	0	0	0	0
1983 1		163		850	4	4	0	0	0	0	0	0	212	212	0
1983 2			-99	-99	4	3	0	0	0	0	0	0	0	0	0
1983 2			-99	-99	4	3	0	0	0	19	0	19	65	84	23
1983 2			-99	-99	4	3	0	0	22	464	50	536	76	612	88
1983 2			-99	-99	4	3	0	0	0	117	35	153	43	196	78
1983 2		131	-99	-99	4 -	3	0	0	18	113	17	149	108	257	58
1983 2	. 2	131	-99	-99	4	3	0	0	21	424	22	467	46	513	91
1983 2	.2	131	-99	-99	4	3	0	0	12	153	0	165	213	378	44
1983 2	. 2	131	-99	-99	4	3	0	0	41	71	30	143	132	275	52
1983 2	.2	131	-99	-99	4	3	0	0	0	22	0	22	27	49	45
1983 2	.2	131	-99	-99	4	3	0	0	0	67	0	67	40	107	63
1983 2	. 2	131	-99	-99	4	3	0	0	17	131	0	148	183	331	45
1983 2			-99	-99	4	3	0	0	0	193	9	203	113	316	64
1983 2			-99	-99	4	3	0	0	46	75	0	121	38	159	76
1983 2			-99	-99	4	3	0	0	28	81	8	117	54	171	68
1983 2			-99	-99	4	3	0	0	38	161	0	200	122	322	62
1983 2			-99	-99	4	3	0	0	31	2741	137	2910	595	3505	83
1983 2			-99	-99	4	3	0	53	21	1459	501	2036	86	2123	96
1983 2			-99	-99	4	3	õ	0	50	3018	517	3585	214	3799	94
1983 2			-99	-99	4	3	Õ	õ	0	27	0	27	153	180	15
1983 2			-99	-99	4	3	õ	35	379	196	25	635	9	644	99
1983 2			-99	-99	4	3	ŏ	28	313	607	76	1025	55	1080	95
1983 2			-99	-99	4	3	õ	0	78	83	10	172	54	226	76
1983 2			-99 -99	-99	4	3	0 0	õ	0	32	55	87	97	184	47
1983 2			-99 -99	-99	4	3	0	õ	0	153	0	153	58	211	73
				-99 -99	4	3	0	0	0	29	0	29	0	29	100
1983 2			-99	-99 -99	4	3	0	0	0	38	0	38	4428	4466	1
1983 2			-99							65	0	65	29	95	69
1983 2			-99	-99	4	3	0	0	0			84	4	88	95
1983 2			-99	-99	4	3	0	0	0	84	0				0
1983 2			-99	-99	4	3	0	0	0	0	0	0	41	41	
1983 2			-99	-99	4	3	0	0	0	32	0	32	71	104	31
1983 2			-99	-99	4	3	0	0	0	73	0	73	21	94	78
1983 2			-99	-99	4	3	0	0	0	0	0	0	0	0	0
1983 2			-99	-99	4	3	0	0	11	200	0	211	127	338	62
1983 2			-99	-99	4	3	0	101	168	136	0	405	224	629	64
1983 2			-99	-99	4	3	0	0	180	226	0	406	196	602	67
1983 2			-99	-99	4	3	0	0	0	48	0	48	42	91	54
1983 2			-99	-99	4	3	0	0	40	100	0	140	44	184	76
1983 2			-99	-99	4	3	0	0	0	358	5	364	28	393	93
1983 2			-99	-99	<u>4</u>	3	0	0	0	144	0	144	77	221	65
1983 2			-99	-99	4	3	0	0	0	71	81	152	0	152	100
1983 2			-99	-99	4	3	0	0	53	424	17	494	30	524	94
1983 2			-99	-99	4	3	0	0	0	450	78	529	81	610	87
1983 2	.1	163	-99	-99	4	3	0	0	27	676	73	777	362	1140	68
1983 2	.1	163	-99	-99	4	3	0	0	0	194	12	207	12	220	94
1983 2			-99	-99	4	3	0	0	39	309	21	370	93	463	80
1983 2			-99	-99	4	3	0	0	22	182	4	209	4	214	98
1983 2			-99	-99	4	3	0	0	0	71	0	71	152	223	32
1983 2			-99	-99	4	3	Õ	0	0	397	52	450	106	556	81
1983 2			-99	-99	4	3	0	0	12	21	0	33	128	161	20
1983 2			-99	-99	4	3	õ	Õ	0	30	Õ	30	0	30	100
1983 2			-99	-99	4	3	Õ	ŏ	2	231	37	270	71	341	79
1983 2			-99	-99	4	3	0	õ	17	353	70	440	20	460	96
2 200 2	•	درے	- / 7	- , ,	-	5	v	v	± /		, ,	V	20		- •

File: LEAD												Page
Report: VIEW REPORT YEAR SITE SP. L.(CM)	WT(G)	SEX	TIS	ME2ET2	MEET3	ET4	ET3	ET2	S.ALK.	PB	S.TPB.	PERC
1983 2.3 186 -99	 -99	4	3	0	25 25	182	148	 65	421	103	525	80
1983 2.3 186 -99	-99	4	3	0	0	0	29	0	29	225	255	12
1983 2.3 186 -99	-99	4	3	0	0	78	0	0	78	53	131	59
1983 2.3 313 -99	-99	4	3	0	0	0	0	0	0	21	21	0
1983 2.3 313 -99	-99	4	3	0	0	0	0	0	0	27	27	0
1983 2.3 316 -99	-99	4	3	0	0	0	0	0	0	0	0	0
1983 2.3 316 -99	-99	4	3	0	0	0	19	0	19	51	71	27
1983 2.3 331 -99	-99	4	3	0	0	0	36	21	57	101	158	36
1983 2.3 311 -99	-99	4	3	0	0	0	0	0	0	0	0	0
1983 2.3 131 -99	-99	4	3	0	0	0	0	0	0	98	98 96	0
1983 2.3 131 -99	-99	4	3	0	0	0	0	0	0	36	36	0
1983 2.3 233 -99	-99	4	3 3	0	0	0	0	0 0	0 0	0 0	0 0	0 0
1983 2.3 233 -99 1983 2.3 233 -99	-99 -99	4 4	3	0 0	0 0	0 0	0 0	0	0	16	16	0
1983 2.2 131 -99	-99 -99	4	4	0	0	0	0	0	0	57	57	0
1983 2.2 131 -99	-99	4	4	0	õ	61	31	õ	93	784	877	11
1983 2.2 131 -99	-99	4	4	0	18	177	403	106	704	215	920	77
1983 2.2 131 -99	-99	4	4	Õ	15	41	27	0	84	86	170	49
1983 2.2 131 -99	-99	4	4	0	0	138	134	16	288	271	560	51
1983 2.2 131 -99	-99	4	4	0	30	358	270	25	683	558	1241	55
1983 2.2 131 -99	-99	4	4	0	0	165	92	23	280	172	452	62
1983 2.2 131 -99	-99	4	4	0	0	200	146	0	346	721	1067	32
1983 2.2 131 -99	-99	4	4	0	0	0	0	0	0	109	109	0
1983 2.2 131 -99	-99	4	4	0	5	188	135	0	329	808	1137	29
1983 2.2 131 -99	-99	4	4	0 0	0 22	72 283	111 244	0 13	183 562	339 2938	523 3500	35 16
1983 2.2 131 -99 1983 2.2 131 -99	-99 -99	4 4	4 4	0	0	28 <i>3</i> 45	244 58	0	103	377	481	22
1983 2.2 131 -99	-99 -99	4	4	0	16	321	185	0	522	634	1156	45
1983 2.2 131 -99	-99	4	4	õ	0	120	189	18	327	491	819	40
1983 2.2 331 -99	-99	4	4	Õ	61	472	983	198	1714	305	2019	85
1983 2.2 331 -99	-99	4	4	0	23	162	1042	100	1327	437	1764	75
1983 2.2 331 -99	-99	4	4	0	0	197	1683	343	2223	822	3045	73
1983 2.2 233 -99	-99	4	4	0	0	202	620	155	977	527	1504	65
1983 2.2 163 -99	-99	4	4	0	0	0	0	0	0	62	62	0
1983 2.2 163 -99	-99	4	4	0	0	0	0	0	0	321	321	0
1983 2.2 163 -99	-99	4	4	0	0	264	211	43	519	174	693	75
1983 2.2 177 -99	-99	4	4	0	39	588	115	0 0	743 237	565 0	1309 237	57 100
1983 2.2 177 -99 1983 2.2 177 -99	-99 -99	4 4	4 4	0 0	0 156	135 2004	102 529	35	2724	480	3204	85
1983 2.2 177 -99	-99 -99	4	4	0	69	2004 567	212	0	849	277	1126	75
1983 2.2 313 -99	-99	4	4	0	0	189	162	16	368	190	558	66
1983 2.2 201 -99	-99	ź.	4	Õ	Õ	18	102	0	120	355	475	25
1983 2.1 131 -99	-99	4	4	0	0	166	0	236	402	28	430	93
1983 2.1 131 -99	-99	4	4	0	0	126	144	254	524	83	607	86
1983 2.1 131 -99	-99	4	4	0	0	0	34	0	34	144	179	19
1983 2.1 131 -99	-99	4	4	0	0	0	86	0	86	184	270	32
1983 2.1 131 -99	-99	4	4	0	0	84	64	0	148	44	192	77
1983 2.1 131 -99	-99	4	4	0	0	5	36	0	41	25	66	62
1983 2.1 131 -99	-99	4	4	0	0	0	0	0	0	78	78	0
1983 2.1 131 -99	-99	4	4	0	0	0	37	0	37	96 00	133	28 34
1983 2.1 131 -99	-99	4	4	0	0	0	52	0	52 0	99 21	151 21	34 0
1983 2.1 131 -99 1983 2.1 131 -99	-99 -99	4	4 4	0 0	0 0	0 14	0 150	0 0	0 164	205	369	44
1983 2.1 131 -99 1983 2.1 131 -99	-99 -99	4 4	4 4	0	0	0	46	0	164 46	191	237	44 19
1983 2.1 131 -99	-99 -99	4	4	0	0	279	40	0	279	239	518	54
1703 2+1 100 -97		7	7	5	J	2,2	U	v				

125

	EAD												Page
	IEW REPORT											~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
YEAR SITE	SP. L.(CM)	WT(G)	SEX	TIS	ME2ET2	MEET3	ET4	ET3	ET2	S.ALK.	PB	S.TPB.	PERC
1983 2.1	186 -99	-99	4	4	0	0	314	134	0	448	406	854	52
1983 2.1	320 -99	-99	4	4	0	0	41	38	0	80	25	106	76
1983 2.1	319 -99	-99	4	4	0	0	58	74	0	132	95	227	58
1983 2.1	319 -99	-99	4	4	0	0	0	44	0	44	248	293	15
1983 2.1	163 -99	-99	4	4	0	0	0	46	0	46	558	604	8
1983 2.1	163 -99	-99	4	4	0	0	0	52	0	52	0	52	100
1983 2.1	163 -99	-99	4	4	0	0	206	390	46	642	271	913	70
1983 2.1	163 -99	-99	4	4	0	0	129	327	0	456	3549	4005	11
1983 2.1	163 -99	-99	4	4	0	0	225	573	0	798	274	1073	74
1983 2.1	163 -99	-99	4	4	0	0	0	75	0	75	0	75	100
1983 2.1	163 -99	-99	4	4	0	0	49	146	0	195	279	474	41
1983 2.1	163 -99	-99	4	4	0	0	71	84	0	156	53	209	75
1983 2.1	313 -99	-99	4	4	0	0	65	47	0	112	157	270	42
1983 2.1	331 -99	-99	4	4	0	0	0	379	0	379	282	661	57
1983 2.1	316 -99	-99	4	4	0	0	200	43	0	244	79	324	75
1983 2.1	316 -99	-99	4	4	0	0	43	16	0	59	36	96	62
1983 2.1	233 -99	-99	4	4	0	0	0	135	0	135	249	384	35
1983 2.3	186 -99	-99	4	4	0	0	887	147	26	1061	105	1167	91
1983 2.3	186 -99	-99	4	4	0	0	0	0	0	0	0	0	0
1983 2.3	186 -99	-99	4	4	0	0	97	0	0	97	41	139	70
1983 2.3	319 -99	-99	4	4	0	0	0	0	0	0	0	0	0
1983 2.3	313 -99	-99	4	4	0	0	0	0	0	0	0	0	0
1983 2.3	313 -99	-99	4	4	0	247	0	0	0	247	52	299	82
1983 2.3	331 -99	-99	4	4	0	44	0	0	0	44	31	75	58
1983 2.3	316 -99	-99	4	4	0	0	0	0	0	0	38	38	0
1983 2.3	316 -99	-99	4	4	0	0	13	202	0	215	52	267	80
1983 2.3	311 -99	-99	4	4	0	0	0	0	0	0	39	39	0
1983 2.3	131 -99	-99	4	4	0	0	0	0	0	0	0	0	0
1983 2.3	131 -99	-99	4	4	0	0	0	0	0	0	0	0	0
1983 2.3	233 -99	-99	4	4	0	0	0	0	0	0	204	204	0
1983 2.3	233 -99	-99	4	4	0	0	0	0	0	0	18	18	0
1983 2.3	233 -99	-99	4	4	0	0	0	0	0	0	54	54	0
1983 2.3	201 -99	-99	4	4	0	0	0	0	0	0	37	37	0
1984 1.8	163 42.5	942	2	1	0	72	182	0	348	602	1004	1666	36
1984 1.8	163 45	945	1	1	0	0	215	41	252	508	2017	2525	20
1984 1.8	163 41	762	3	1	0	0	0	0	134	134	1747	1881	7
1984 1.8	163 45	995	2	1	0	115	648	279	0	1042	995	2037	51
1984 1.8	163 42.5	891	2	1	0	0	0	18	0	18	255	273	6
1984 1.8	163 40	831	1	1	0	0	16	20	4	40	316	356	11
1984 1.8	163 47	1275	2	1	0	0	20	26	0	46	405	451	10
1984 1.8	163 46	1447	2	1	0	22	28	42	0	92	297	389	24
1984 1.1	186 56	2488	1	1	0	0	0	283	0	283	94	377	75
1984 1.1	186 67.5	5062	2	1	0	0	0	0	0	0	70	70	0
1984 1.8	331 31.5	389	1	1	0	0	0	0	0	0	256	256	0
1984 1 .8	78 40.5	951	1	1	0	0	0	0	0	0	116	116	0
1984 1.8	334 41	583	1	1	0	0	0	0	0	0	67	67	0
1984 1.8	334 47	877	1	1	0	0	120	54	0	174	292	466	37
1984 1.8	334 43	786	1	1	0	0	0	0	0	0	38	38	0
1984 1.8	334 42	714	1	1	õ	Õ	Õ	0	0	0	40	40	0
1984 1.8	334 41.5	619	ī	1	õ	õ	11	Õ	Õ	11	44	55	20
1984 1.8	334 42	701	1	1	0	0	18	Ő	Õ	18	38	56	32
1984 1.1	131 57	1015	1	1	0	õ	25	0 0	Õ	25	58	83	30
1984 1.1	131 72.5	2550	1	1	0	0	1134	312	76	1522	1363	2885	53
1984 1.1	131 82.2	4153	2	1	0	0	31	0	25	56	117	173	32
1984 1.1	131 73	2913	2	1	0	0	184	83	24	291	637	928	31
1)U4 I+I		لللارية	2	-	J.	•	2 V 7						-

LEAD

File:

Page

File: LEAD Report: VIEW REPORT CRY MTC MRORMO MROMO PM/

				REPORT												
	YEAR	SITE	SP.	L.(CM)	WT(G)	SEX	TIS	ME2ET2	MEET3	ET4	ET3	ET2	S.ALK.	PB	S.TPB.	PERC
	1984		163		689	2	1	0	0	405	131	35	571	51	622	91
	1984		163		1894	2	1	0	0	42	38	0	80	0	80	100
	1984	2.2	163	50	1595	2	1	0	0	149	173	0	322	576	898	36
	1984	2.2	163	49	1326	2	1	0	0	312	1340	366	2019	344	2364	85
	1984		163		1603	2	1	0	0	0	156	0	156	0	156	100
	1984		163		1453	2	1	Õ	Õ	0	126	113	239	345	584	41
	1984		163		1695	2	1	0	114	960	190	99	1363	694	2057	66
														0	669	100
	1984		163		1575	2	1	0	0	425	244	0	669	-		
	1984		163		1365	2	1	0	0	0	335	0	335	243	579	58
	1984		177		2755	1	1	0	102	378	211	0	691	1270	1961	35
	1984	2.2	177	57	2683	1	1	0	0	34	75	0	109	490	599	18
	1984	2.2	177	45.5	1337	1	1	0	178	1129	232	0	1539	0	1539	100
	1984	2.2	177	60	2555	1	1	0	147	873	285	81	1386	665	2051	68
	1984		177		1363	2	1	0	174	1622	149	20	1965	78	2043	96
	1984			57.5	-99	2	1	53	593	3213	931	249	5039	835	5874	86
	1984		177		2156	2	1	0	56	642	141	27	867	132	999	87
			177		2577	2	1	0	77	582	245	51	956	594	1550	62
	1984														1271	56
	1984		177		2392	2	1	0	0	471	241	0	712	559		
	1984		177		-99	2	1	0	75	336	172	0	584	80	665	88
	1984		177		2889	1	1	0	0	528	276	41	845	129	975	87
	1984		177		2850	2	1	0	99	505	261	0	866	81	948	91
	1984	2.2	177	57	2174	2	1	0	0	0.	346	0	346	305	651	53
	1984	2.2	177	60	2989	2	1	0	0	161	99	0	261	68	330	79
	1984		177	59	2742	2	1	0	181	735	195	46	1159	9 0	1249	93
	1984		331		389	3	1	0	0	260	1546	717	2524	1046	3570	71
	1984			23.5	305	1	1	Õ	86	272	459	240	1057	90	1147	92
j.	1984		311		195	1	1	ŏ	0	0	64	0	64	0	64	100
	1984		311		-99	1	1	0	0	542	0	Õ	542	Õ	542	100
							1	0	0	0	0	0	0	1088	1088	0
	1984			22.5	223	1			-		-	-				0
	1984		313		121	3	1	0	0	0	0	0	0	0	0	-
	1984			18.5	140	2	1	0	0	106	0	0	106	0	106	100
	1984			17.5	120	2	1	0	0	0	0	0	0	0	0	0
	1984			17.5	150	2	1	0	0	28	24	0	53	151	205	26
	1984	2.2	313	18.5	162	1	1	0	191	140	99	217	647	111	758	85
	1984	2.2	313	19	158	2	1	0	0	0	0	0	0	0	0	0
	1984		313		141	2	1	0	0	0	89	0	89	0	89	100
	1984		313		130	1	1	0	0	0	0	0	0	0	0	0
	1984		313		215	1	1	ŏ	Õ	128	0	0	128	166	294	44
	1984		313		216	1	1	õ	Õ	418	Š4	õ	473	89	563	84
	1984			19.5	183				0	30	59	0	89	107	197	46
						2	1	0				80	371	0	371	100
	1984			27.5	262	2	1	0	0	0	290					
	1984		233		396	2	1	0	0	0	233	0	233	102	335	69
	1984		163		681	1	1	98	0	0	128	0	226	0	226	100
	1984	2.1	163	42.8	1098	2	1	287	0	0	132	0	420	58	478	88
	1984	2.1	163	41	919	2	1	0	0	477	82	273	832	254	1086	77
	1984	2.1	163	43.5	1050	2	1	0	0	303	165	201	670	549	1220	55
	1984		163		1264	2	1	0	0	0	0	0	0	1080	1080	0
	1984		163		1549	2	1	Õ	Õ	0	0	0	0	2553	2553	0
	1984		163		782	2	1	175	0	Õ	191	208	Š75	377	953	6 0
								275		175	247	250	948	92	1041	91
	1984		163		967	2	1		0							83
	1984		163		682	2	1	0	0	474	474	0	948	190	1138	
	1984		163		1469	2	1	0	0	0	334	0	334	0	334	100
	1984			59.5	2658	2	1	0	0	432	867	0	1300	0	1300	100
	1984		163	45	1363	2	1	0	0	162	386	146	694	37	731	95
	1984	2.1	163	34	614	2	1	0	0	269	81	0	351	0	351	100

File: LEAD

YEAR SIT			WT(G)	SEX	TIS	ME2ET2	MEET3	ET4	ET3	ET2	S.ALK.	PB	S.TPB.	PERC
1984 2.1	163	51.5	1527	1	1	0	0	195	589	0	784	235	1020	77
1984 2.1			1594	1	1	0	0	186	150	0	336	0	336	100
1984 2.1			1565	2	1	73	0	223	303	0	599	132	731	82
1984 2.1			823	1	1	0	0	0	0	0	0	334	334	0
1984 2.1	163	47	1215	2	1	0	0	0	58	0	58	0	58	100
1984 2.1	163	43	1013	2	1	35	0	60	278	123	496	0	496	100
1984 2.1	177	56	1997	2	1	0	0	0	153	0	153	0	153	100
1984 2.1		49	1627	2	1	0	0	0	0	0	0	245	245	0
1984 2.1		57	2483	2	1	0	0	234	0	0	234	68	302	78
1984 2.1		50	1902	2	1	0	0	0	0	0	0	148	148	0
1984 2.1		62 50 5	3422	1	1	0	0	106	0	0	106	21 549	127 945	83 42
1984 2.1		58.5	2457	2	1	0	0	134	0	261 0	396 524	110	634	83
1984 2.1		58	3034	2	1	113 0	0 0	411 0	0 0	0	0	0	034	0
1984 2.1 1984 2.1		66 56.2	2967 2373	2 2	1 1	0	0	389	155	0	544	0	544	100
1984 2.1		51.5	2324	2	1	0	0	553	271	õ	825	õ	825	100
1984 2.1			280	2	1	ŏ	ŏ	217	110	ŏ	328	1078	1406	23
1984 2.1			262	2	1	õ	Õ	0	0	Ō	0	0	0	0
1984 2.1			204	2	1	75	0	0	0	0	75	426	502	15
1984 2.1		20	183	3	1	0	0	0	0	0	0	0	0	0
1984 2.1	311	21	204	2	1	0	0	363	0	0	363	0	363	100
1984 2.1		25	174	1	1	0	0	0	0	0	0	0	0	0
1984 2.1		20.5	199	2	1	0	0	0	0	0	0	0	0	0
1984 2.1		26	361	2	1	0	0	0	0	0	0	0	0	0
1984 2.1		31	441	2	1	0	0	0	0	0	0	0	0	0
1984 2.1		51	1958	2	1	0	0	0	0	186	186	335	521 0	36 0
1984 2.1		64	3653	1	1	0	0	0 467	0 327	0 0	0 794	0 0	794	100
1984 2.1		69.5	5036	1	1 1	0 0	0 0	467	183	0	183	0	183	100
1984 2.1 1984 2.1		58	8296 2942	2 2	1	0	0	0	134	0	134	õ	134	100
1984 2.1		69.5	4470	2	1	0	0	465	258	Õ	723	Õ	723	100
1984 2.1		16	136	3	1	õ	õ	0	0	õ	0	0	0	0
1984 2.1		16	120	3	1.	0	0	0	0	0	0	0	0	0
1984 2.1		17.5	121	3	1	0	0	0	0	0	0	0	0	0
1984 2.1			159	3	1	0	0	0	0	0	0	292	292	0
1984 2.1	313	19.5	120	2	1	0	0	0	0	0	0	104	104	0
1984 2.1		19	172	2	1	0	0	0	0	0	0	0	0	0
1984 2.1		18	150	2	1	0	0	0	0	0	0	0	0	0
1984 2.1		17	145	2	1	0	0	0	0	0	0	0	0 0	0 0
1984 2.1		17	119	2	1	0	0	0	0	0	0	0 0	0	0
1984 2.1		16.5	110	2	1	0	0	0 0	0 0	0 0	0 0	0	0	0
1984 2.1 1984 2.1		19 17	152 154	1 2	1 1	0 0	0 0	0	0	0	0	0	0	Õ
1984 2.1		35	544	3	1	0	0	0	0	0	0	60	6 0	Õ
1984 2.1		29.5	472	2	1	181	ŏ	Õ	216	ŏ	398	179	577	69
1984 2.1		30.5	442	1	1	0	õ	Õ	104	Õ	104	0	104	100
1984 2.1		34	616	2	1	0	0	117	174	0	291	79	370	79
1984 2.1		30	415	2	1	0	0	0	0	0	0	0	0	0
1984 2.1		31	466	2	1	0	0	0	103	0	103	0	103	100
1984 2.1	233	28	424	2	1	0	0	0	164	0	164	0	164	100
1984 2.1		32.5	423	2	1	0	0	0	123	0	123	0	123	100
1984 2.1		53.5	1600	1	1	0	0	0	0	0	0	84	84	0
1984 2.1		66	3692	2	1	0	0	0	0	0	0	0	0	0
1984 2.1		. 57	2266	1	1	0	0	0	0	0	0	0	0	0
1984 2.3	163	49	1289	2	1	0	0	0	0	0	0	0	0	0

File: LEAD Report: VIEW REPORT												Page
YEAR SITE SP. L.(CM)	WT(G)	SEX	TIS	ME2ET2	MEET3	ET4	ET3	ET2	S.ALK.	PB	S.TPB.	PERC
1984 2.3 163 45	1156	2	1	0	0	177	0	0	177	81	258	69
1984 2.3 163 51	1481	1	1	0	0	0	248	0	248	450	698	36
1984 2.3 163 48	1263	2	1	0	0	0	0	0	0	0	0	0
1984 2.3 163 48	1302	2	1	0	0	128	0	0	128	0	128	100
1984 2.3 16 3 50	1627	2	1	0	0	0	0	0	0	0	0	0
1984 2.3 163 41	986	1	1	0	0	930	811	585	2326	0	2326	100
1984 2.3 163 41.5	950	2	1	0	0	0	48	0	48	0	48	100
1984 2.3 163 48.5	1217	2	1	0	0	24	0	0	24	0	24	100
1984 2.3 163 49	1574	1	1	0	0	0 0	0 0	0	0 0	0 90	0 90	0 0
1984 2.3 163 45 1984 2.3 163 50	1276 1708	1 1	1 1	0 0	0 0	113	86	0 79	278	90	278	100
1984 2.3 163 50	1103	1	1	0	0	0	0	0	0	0	0	0
1984 2.3 163 44	1027	2	1	0	0 0	0	61	Õ	61	0	61	100
1984 2.3 163 43	889	1	î	Õ	õ	Õ	0	Õ	0	232	232	0
1984 2.3 177 23	163	2	1	0	0	0	0	0	0	5461	5461	0
1984 2.3 177 53	2181	2	1	0	0	0	0	0	0	345	345	0
1984 2.3 177 53.5	2300	2	1	0	0	0	0	0	0	0	0	0
1984 2.3 177 51	1625	1	1	0	0	106	48	0	155	98	253	61
1984 2.3 177 53	1826	2	1	0	0	0	0	0	0	0	0	0
1984 2.3 177 52	1481	2	1	0	0	0	0	0	0	0	0	0
1984 2.3 177 51	1389	2	1	0	0	0	0	0	0	34	34	0
1984 2.3 177 50.5	-99	2	1	0	0	0	0	0	0	0	0 192	0 0
1984 2.3 331 20.5	104	3	1	0	0	0 0	0 0	0 0	0 0	192 0	0	0
1984 2.3 331 18 1984 2.3 331 22.5	157 144	2 3	1 1	0 0	0 0	0	0	0	0	0	0	0 0
1984 2.3 316 23	174	2	1	0	0 0	0	0	0 0	0	0 0	Õ	õ
1984 2.3 316 28	282	1	1	0	õ	ŏ	Õ	õ	õ	Õ	ŏ	õ
1984 2.3 316 38	865	1	1	õ	Õ	Õ	Õ	0	0	0	0	0
1984 2.3 316 27	259	2	1	0	0	0	0	0	0	0	0	0
1984 2.3 316 25	209	3	1	0	0	0	0	0	0	976	976	0
1984 2.3 316 37.5	734	2	1	0	0	0	0	0	0	0	0	0
1984 2.3 316 32.5	514	2	1	0	0	0	0	0	0	0	0	0
1984 2.3 313 15	88	2	1	0	0	0	0	0	0	0	0	0
1984 2.3 313 14.6	78	2	1	0	0	0	0	0	0	108	108	0
1984 2.3 233 27.5	299	2	1	0	0	0	0	0	0	292 160	292 160	0 0
1984 2.3 233 24 1984 2.3 233 23	232 228	2 1	1 1	0 0	0 0	0 0	0 0	0 0	0 0	0	0	0
1984 2.3 233 25.5	213	3	1	0	0	0	0	0	0	0	0	Ő
1984 2.3 233 24	233	2	1	0	õ	õ	Õ	ŏ	õ	243	243	Õ
1984 2.3 233 26	256	2	1	ŏ	Õ	Õ	Õ	Õ	0	0	0	0
1984 2.4 163 54.2	1600	4	3	0	0	159	1335	280	1774	217	1991	89
1984 2.4 163 49.1	1200	4	3	0	0	0	1025	288	1313	211	1524	86
1984 2.4 163 47.3	1150	2	3	0	0	112	644	193	949	558	1507	63
1984 2.4 163 48.1	1100	2	3	0	0	116	662	132	910	265	1175	77
1984 2.4 163 48.8	1375	2	3	0	0	87	1123	245	1455	358	1813	80
1984 2.4 163 42.8	975	1	3	0	0	0	592	136	728	333	1061	69 05
1984 2.4 163 41.4	950	1	3	0	0	216	654	135	1005	175	1180	85 65
1984 2.4 331 27.4	150	2	3	0	0	106	374	80 194	560 1499	302 424	862 1923	65 78
1984 2.4 331 26.8	150	2	3 3	0	0 0	0 47	1314 286	184 41	1499 374	424 133	1923 507	78 74
1984 2.4 331 26.4 1984 2.4 331 24.3	150 200	2 2	3 3	0 0	0	47 0	286 461	41 135	596	462	1058	56
1984 2.4 331 24.3	175	2	3	0	0	0	401	94	498	981	1479	34
1984 2.4 186 84	11200	2	3	0	õ	2489	836	475	3801	0	3801	100
1984 2.4 186 67.4	7250	2	3	0 0	õ	2848	273	73	3194	9 0	3284	97
1984 2.4 186 72.9	5000	2	3	Õ	Õ	971	166	0	1138	0	1138	100
· · · · ·												

			REPORT L.(CM)	WT(G)	SEX	TIS	ME2ET2	MEET3	ET4	ET3	ET2	S.ALK.	PB	S.TPB.	PERC
1984	2.4	186	67.8	5100	1	3	39	44 02	15458	2587	657	23143	433	23576	98
1984	2.4	186	87.1	10600	2	3	0	144	819	242	81	1286	94	1380	93
1984	2.4	233	31.7	500	1	3	0	0	0	1504	668	2172	183	2355	92
1984			27.2	300	1	3	0	0	0	1365	519	1885	138	2023	93
1984			27.9	250	1	3	0	0	61	757	358	1176	375	1551	76
1984			30.3	375	2	3	0	0	0	1292	553	1845	360	2205	84
1984			27.6	300	2	3	0	0	0	1342	746	2088	445	2533	82
1984			28.2	375	1	3	0	0	0	1000	359	1359	251	1610	84
1984			27.2	300	2	3	0	0	32	1369	250	1651	262	1913	86
1984			26.8	300	2	3	0	0	87	400	144	632	0	632	100 55
1986			73.5	5949	1	1	0	0	114	93	0 0	207 0	171 72	378 72	0
1986		186	74	6090 5060	1 1	1 1	0 0	0 0	0 0	0 0	0	0	32	32	0
1986 1986			70.0	5103	1	1	0	0	0	0	0	0	42	42	0
1986			81.0	7708	2	1	0	0	0	0	0	0	25	25	õ
1986			73.0	6222	1	1	õ	ŏ	718	173	ŏ	891	161	1052	85
1986			68.8	4701	1	ī	õ	õ	1883	197	Õ	2080	137	2217	94
1986			78.0	7797	1	1	Õ	Õ	0	0	0	0	61	61	0
1986			69.0	5511	1	1	0	2757	7731	1552	194	12234	1382	13616	9 0
1986			77.5	6685	2	1	0	0	201	0	0	201	198	399	50
1986	2.4	331	-99	-99	4	1	0	0	0	0	0	0	79	79	0
1986	2.4	331	-99	-99	4	1	0	0	0	0	0	0	67	67	0
1986			-9 9	-99	4 .	1	0	0	0	0	0	0	88	88	0
1986			-99	-99	4	1	0	0	0	0	0	0	45	45	0
1986			-99	-99	4	1	0	0	0	0	0	0	91	91	0
1986			50.0	1550	3	1	0	0	47	61	0	108	428	536	20
1986			52.0	1542	2	1	0	0	125	84	21	230	538 76	768 76	30 0
1986			48.0	1285	3	1	0 0	0 0	0 34	0 361	0 96	0 491	78 534	1025	50
1986 1986			47.5 47.8	1104 1274	3 3	1 1	0	0	0	0	90	0	0	0	0
1986			33.0	671	3	1	0	0	0	22	0	22	408	430	5
1986		233		689	2	1	0	õ	0	0	õ	0	242	242	0
1986			29.0	336	2	1	õ	0 0	67	268	50	385	590	975	39
1986			28.5	346	2	1	õ	Õ	0	0	0	0	135	135	0
1986		233		287	2	1	Ō	0	0	19	0	19	204	223	6
1987			29.5	361	2	1	0	0	0	99	50	149	926	1075	14
1987			32.5	446	2	1	0	0	0	0	0	0	730	730	0
1987	2.2	233	27.5	301	2	1	0	0	0	0	0	0	319	319	0
1987			28.0	275	3	1	0	0	0	0	0	0	232	232	0
1987			25.0	244	3	1	0	0	0	0	0	0	262	262	0
1987			28.0	288	3	1	0	0	0	0	0	0	1449	1449	0
1987			51.0	1675	2	1	0	0	0	0	0	0	812	812	0
1987			51.5	1512	1	1	0	0	0	0	0	0 50	358 593	358 643	0 8
1987			50.0	1598	1	1	0	0 0	0	50 0	0 0	0	393	371	0
1987			52.5	1769 4781	2 1	1 1	0 0	0	0 0	24	0	24	1 074	1098	2
1987 1987			68.5 71.0	7938	2	1	0	263	3290	492	245	4290	2336	6626	65
1987			81.2	7625	2	1	0	0	0	0	0	4290 0	76	76	0
1987			68.6	5514	1	1	0	ŏ	0	0	õ	Õ	128	128	0
1987			84.0	8630	2	1	õ	õ	35	28	Õ	63	146	209	30
1987			76.5	7184	1	1	Õ	Õ	8	24	0	32	270	302	10
1987			67.2	4116	1	7	Õ	0	Õ	0	0	0	58	58	0
1987			67.2	4116	1	2	0	0	29	43	11	83	149	232	36
1987	2.2		67.2	4116	1	8	0	0	0	0	0	0	62	62	0
1987	2.2	186	67.2	4116	1	6	0	0	27	54	28	109	158	267	41

File: LEAD Report: VIEW REPORT **T**30

File		EAD	REPORT												Page
-			L.(CM)	WT(G)	SEX	TIS	ME2ET2	MEET3	ET4	ET3	ET2	S.ALK.	PB	S.TPB.	PERC
1987	2.2	186	75.0	6800	2	7	0	0	0	0	0	0	99	99	0
1987	2.2	186	75.0	6800	2	2	0	0	30	14	19	63	123	186	34
1987	2.2	186	75.0	6800	2	8	0	0	0	0	0	0	77	77	0
1987	2.2	186	75.0	6800	2	6	0	0	18	16	10	44	143	187	24
1987	2.2	186	70.5	4864	1	7	0	0	470	22	20	512	123	635	81
1987	2.2	186	70.5	4864	1	2	0	0	127	105	68	300	439	739	41
1987	2.2	186	70.5	4864	1	8	0	0	188	129	33	350	153	503	70
1987	2.2	186	70.5	4864	1	6	0	0	492	217	158	867	596	1463	59
1987	1.9	186	48.0	1478	1	1	0	0	0	0	0	0	159	159	0
1987	1.9	186	51.5	1801	1	1	0	0	0	0	0	0	73	73	0
1987	1.9	186	52.0	1826	1	1	0	0	0	51	0	51	159	210	24
1987	1.9	186	49.0	1961	1	1	0	0	0	0	0	0	398	398	0
1987	1.9	186	48.0	1919	2	1	0	0	118	91	27	236	263	499	47
1987	1.9	186	62.0	3160	2	1	0	0	0	0	0	0	127	127	0
1987	1.9	186	51.0	2025	2	1	0	0	0	0	0	0	162	162	0
1987	1.9	163	34.0	420	2	1	0	0	0	41	0	41	159	200	20
1987	1.9	163	31.5	367	2	1	0	0	0	0	0	0	345	345	0
1987	1.9	334	39.0	575	2	1	0	0	0	0	0	0	152	152	0
1987			38.0	560	1	1	0	0	0	0	0	0	124	124	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

APPENDIX d=

		A DEFINITION OF THE CODES USED IN R ALKYLLEAD DATA:	THE CLAM, MACROPHYTE,							
I.	SITE=	The site where the sample was c	collected.							
	SITE- 1.	0 = St. Clair river system	<pre>2.0 = Maitland river system 2.1 = Off from DuPont 2.2 = Blue Church Bay 2.3 = Lily Bay 2.4 = Wells Creek</pre>							
II.	SP. =	Type of specimen that was collec	ted							
	SPECIMEN	T- 1 = Clam 2 = Macrophytes 3 = Sediment	<pre>4 = Subsurface water 5 = Surface microlayer water</pre>							
III.	TIS =	Tissue type being examined. Thi clams in the file.	s value pertains only to							
	TISSUE-	1 = Whole Organism								
IV.	-99 =	If this appears in any catagory available.	it means that no data was							
۷.	S.ALK =	Total sum of alkylleads								
VI.	S.TPB =	Total sum of all leadsS.ALK	* PB							
NOTE:	ng/g. A	VALUES IN CLAMS, MACROPHYTES AND LL LEAD VALUES IN WATER ug/L.								

DETECTION LIMIT FOR CLAMS, MACROPHYTES, SEDIMENT AND WATER IS 8ng/g and 8ng/L.

File: Report			FC. LI EPORT	EAD											Ра	age
YEAR	SITE	SP.	FROM	N 	TIS	ME2ET2	ME3	MEET3	ET4	ME2	ET3	ET2	S.ALK.	PB	S.TPB	PER
1982	2.1	1	1	1	1	0	0	0	0	0	0	0	0	280	280	0
1982	2.1	2	1	1	-99	0	0	0	68	0	132	0	200	4327	4527	4
1982	2.1	2	1	1	-99	1051	0	3613	16515	0	558	113	21850	59282	81132	27
1982	2.2	2	1	1	-99	0	0	0	0	0	0	0	0	6796	6796	0
1982	2.2		1	1	-99	0	0	0	0	0	0	0	0	5414	5414	0
1982	2.2	3	1	1	-99	.0	0	0	0	0	0	0	0	3808	3808	0
1982	2.1	3	1	1	-99	0	0	0	329	0	0	0	329	5582	5911	6
1982	2.1	3	1	1	-99	0	0	142	1152	0	187	22	1503	-99	-99	-99
1983 1983	2.2	1 2	1 1	1 1	1 -99	0 0	0 0	0 0	53 0	0 0	282	0 0	335	1022	1357	25
1983	2.2	2	1	1	-99 -99	0	194	0	0	0	0 0	0	0 194	2747 2028	2747 2222	0 9
1983	2.2	2	1	1	-99	0	0	0	0	0	0	0	0	3393	3393	0
1983	2.2	2	1	1	-99	Õ	Õ	õ	Ő	õ	Ő	õ	0	1932	1932	Õ
1983	2.3	2	1	1	-99	Õ	Õ	Õ	õ	Õ	Õ	õ	0 0	855	855	õ
1983	2.3	2	1	1	-99	0	Õ	0	-	0	0	Õ	0	676	676	Õ
1983	2.3	2	1	1	-99	0	0	0	0	0	0	0	0	438	438	0
1983	2.3	2	1	1	-99	0	0	0	0	0	0	0	0	184	184	0
1983	2.3	2	1	1	-99	0	0	0	0	0	0	0	0	186	186	0
1983	2.3	2	1	1	-99	0	0	0	0	0	0	0	0	181	181	0
1983	2.3	2	1	1	-99	0	0	0	0	0	0	0	0	196	196	0
1983 1983	2.2 2.2	3 3	1	1 1	-99	0	0	0	184	0	0	0	184	739	923	20
1983	2.2	3	1	1	-99 -99	104 57	136 69	65 26	71 0	0 0	0 0	0 0	376 152	382 269	758 421	50 36
1983	2.2	3	1	1	-99 -99	87	73	20 61	0	0	0	0	221	312	533	42
1983	2.2	3	1	1	-99	263	275	168	0	0	0	õ	706	0	706	100
1983	2.2	3	1	1	-99	96	76	116	Õ	Õ	Õ	Õ	288	õ	288	100
1983	2.2	3	1	1	-99	77	64	0	0	Õ	0	Õ	141	64	205	69
1983	2.2	3	1	1	-99	76	0	0	0	0	0	0	76	0	76	100
1983	2.2	3	1	1	-99	29	20	0	0	0	0	0	49	399	448	11
1983	2.2	3	1	1	-99	254	192	47	0	0	0	0	493	438	931	53
1983	2.2	3	1	1	-99	140	132	33	0	0	0	0	305	474	779	39
1983	2.2	3	1	1	-99	237	185	52		0	0	0	665	667	1332	50
1983 1983	2.3	3 3	1 1	1 1	-99 -99	183 76	151 55	94 0	0	0 0 -	0 0	0	428	0	428	100
1983	2.3 2.3	3	1	1	-99 -99	76 94	96	46	0 0	0	0	0 0	131 236	30 27	161 263	81 90
1983	2.3	3	1	1	-99	80	58	36	0	0	0	0	174	0	174	100
1983	2.2	4	1	1	-99	0	0	0	Ő	Õ	0.12	Õ	0.12	3.02	3.14	4
1983	2.2	5	1	1	-99	0	Ō	0	0	0	0.08	Õ	0.08	3.47	3.55	2
1983	2.1	4A	1	1	-99 =	0	0	0	0	0	0.34	0.06		1.36	1.76	23
1983	2.1	5A	1	1	-99	0	0	0	0	0	0.74	0.15	0.89	7.83	8.72	10
1983	2.1	4B	1	1	-99	0	0	0	0	0	0.40	0.07		2.48	2.95	16
1983	2.1	5B	1	1	-99	0	0	0	0	0	0.37	0.06		3.36	3.79	11
1983	2.1	4C	1	1	-99	0	0	0	0	0	0.16	0.04		2.23	2.43	8
1983	2.1	5C	1	1	-99	0	0	0	0	0	1.76	0.15		7.48	9.39	20
1983	2.2	4	2	1	-99	0	0	0	0	0	0.06	0.02		1.31	1.39	6
1983 1983	2.2 2.3	4 4	2 1	1	-99 -99	0	0	0 0	0	0	0.07	0.01		1.30	1.38	6
1963	1.0	4 4	1	1 1	-99 -99	0 0	0 0	0	0 0	0 0	0 0	0 0	0 0	1.74 1.53	1.74 1.53	0 0
1983	1.0	5	1	1	-99	0	0	0	0	0 ·	0	0	0	0.84	0.84	0
1983	1.0	4	1	1	-99	0	0	0	0	0	0	0	0	1.43	1.43	0
		-	-					-	-	-	~	÷	-			-

A.

File:			C. LI	EAD											Р	age
Repor YEAR			FROM	N	TIS	ME2ET2	ME3	MEET3	ET4	ME2	ET3	ET2	S.ALK.	PB	S.TPB	PER
1983	1.0	5	1	1	-99	0	0	0	0	0	0	0	0	1.96	1.96	0
1983	1.0	4	1	1	-99	0	0	0	0	0	0	0	0	1.02	1.02	0
1983	1.0	5	1	1	-99	0	0	0	0	0	0	0	0	1.37	1.37	0
1983	1.0	4	1	1	-99	0	0	0	0	0	0	0	0	1.13	1.13	0
1983	1.0	5	1	1	-99	0	0	0	0	0	0	0	0	7.23	7.23	0
1983	1.0	4	1	1	-99	.0	0	0	0	0	0.34	0.08	0.42	2.25	2.67	16
1983	1.0	5	1	1	-99	0	0	0	0	0	0.54	0.14	0.68	8.54	9.22	7
1983	1.0	4	1	1	-99	0	Ó	0	0	0	0	0	0	1.32	1.32	0
1983	1.0	5	1	1	-99	0	Õ	0	0	0	0	0	0	1.28	1.28	0
1984	2.2	3	1	1	-99	Ō	Õ	0	154	0	79	0	233	5047	5280	4
1984	2.2	3	î	1	-99	Õ	Õ	0	72	Ō	80	0	152	5668	5820	3
1984	2.2	3	1	1	-99	Õ	Õ	0	37	0	83	Ó	120	5572	5692	2
1984	2.2	3	ī	1	-99	Õ	Ō	0	38	0	82	0	120	9314	9434	1
1984	2.2	3	1	1	-99	Õ	Õ	Õ	100	Ō	93	16	209	2699	2908	7
1984	2.2	3	1	1	-99	Õ	Õ	Õ	123	Õ	107	15	245	2972	3217	8
1984	2.2	3	1	1	-99	Õ	Õ	Õ	101	Õ	48	0	149	15551	15700	1
1984	2.2	3	1	1	-99	õ	õ	ŏ	86	õ	52	Õ	138	15233	15371	1
1984	2.2	3	1	1	-99	Õ	õ	õ	97	ŏ	51	ŏ	148	1721	1869	8
1984	2.2	3	1	1	-99	Ő	õ	ŏ	0	ŏ	0	õ	0	11259	11259	Ō
1984	2.2	3	1	1	-99	Õ	õ	õ	25	ŏ	18	õ	4 3	10687	10730	0.4
1984	2.2	3	1	1	-99	0 0	0	0	40	õ	12	ŏ	52	11895	11947	0.4
1984	2.2	3	1	1	-99	0	0	0	10	Õ	0	Ő	10	9402	9412	0.1
1984	2.2	3	1	1	-99 -99	0	0	0	10	0	0 0	õ	12	9828	9840	0,1
1984	2.2	3	1	1	-99 -99	0	0	0	0	0	0 0	ŏ	0	10387	10387	0
1984				1	-99	0	59	0	187	0	õ	183	429	984	1413	30
	2.2	2	1		-99		46	0	101	0	0	101	248	647	895	28
1984	2.2	2	1	1		0		0	0	0	0	0	0	4596	4596	0
1984	2.2	2	1	1	-99	0	0	0	0	0	0	0	0	4778	4778	ŏ
1984	2.2	2	1	1	-99	0	0	-		0	38	0	38	2840	2878	1
1984	2.2	2	1	1	-99	0	0	0 0	0 0	0	30 0	0	0	1926	1926	Ō
1984	2.2	2	1	1	-99	0	0				0	0	0	550	550	ŏ
1984	2.2	2	1	1	-99	0	0	0	0	0	-	0	0	3000	3000	0
1984	2.2	2	1	1	-99	0	0	0	0	0	0	0		1064	1064	0
1984	2.2	2	1	1	-99	0	0	0	0	0	0	-	0		1281	0
1984	2.2	2	1	1	-99	0	0	0	0	0	0	0 0	0	1281 187	1281	3
1984	2.2	2	1	1	-99	0	6	0	0	0	0		6		410	
1984	2.2	2	1	1	-99	0	18	0	0	0	0	0	18	392	410 71	4 0
1984	2.2	2	1	1	-99	0	0	0	0	0	0	0	0	71		
1986	2.2	3	1	1	-99	0	0	0	0	0	0	0	0	177	177	0
1986	2.2	3	1	1	-99	0	0	0	0	0	0	0	0	189	189	0
1986	2.2	3	1	1	-99	0	0	0	0	0	0	0	0	221	221	0
1986	2.2	3	1	1	-99	0	0	0	0	0	0	14	14	200	214	6
1986	2.2	3	1	1	-99	0	0	0	0	0	0	0	0	305	305	0
1986	2.1	3	1	1	-99	0	0	0	0	0	0	0	0	425	425	0
1986	2.1	3	1	1	-99	0	0	0	0	0	0	0	0	612	612	0
1986	2.4	3	1	1	-99	0	0	0	0	0	0	0	0	180	180	0
1986	2.4	3	1	1	-99	0	0	0	0	0	0	0	0	136	136	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

134

×,