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Hierarchical Bayes Modeling of Survey-Weighted Small 
Area Proportions 

Benmei Liu, Partha Lahiri and Graham Kalton 1 

Abstract 

The paper reports the results of a Monte Carlo simulation study that was conducted to compare the 
effectiveness of four different hierarchical Bayes small area models for producing state estimates of proportions 
based on data from stratified simple random samples from a fixed finite population. Two of the models adopted 
the commonly made assumptions that the survey weighted proportion for each sampled small area has a normal 
distribution and that the sampling variance of this proportion is known. One of these models used a linear 
linking model and the other used a logistic linking model. The other two models both employed logistic linking 
models and assumed that the sampling variance was unknown. One of these models assumed a normal 
distribution for the sampling model while the other assumed a beta distribution.  The study found that for all 
four models the credible interval design-based coverage of the finite population state proportions deviated 
markedly from the 95 percent nominal level used in constructing the intervals. 
 
Key Words: Weighted proportions; Hierarchical Bayes modeling; Beta distribution; credible interval. 
 

 

1  Introduction 
 

Small area estimation methods are often used to estimate the proportions of units with a given 
characteristic for small areas. For example, small area estimation methods are used: in the Census 
Bureau’s Small Area Income and Poverty Estimates (SAIPE) program to estimate poverty rates for states, 
counties, and school districts (Citro and Kalton 2000; Maples and Bell 2005); with data from the National 
Survey on Drug Use and Health (NSDUH) to estimate substance rates for states (Wright, Sathe and 
Spagnola 2007); and with data from the National Assessment of Adult Literacy (NAAL) to estimate 
proportions at the lowest level of literacy for states and counties (Mohadjer, Rao, Liu, Krenzke and Van 
De Kerckhove 2012). In each case, the survey’s sample sizes in the small areas are not large enough to 
support direct estimates of adequate precision. A wide variety of methods have been developed to address 
such small area estimation problems. See Rao (2003) and Jiang and Lahiri (2006a) for reviews, and 
Chattopadhyay, Lahiri, Larsen and Reimnitz (1999), Farrell, MacGibbon and Tomberlin (1997), Malec, 
Sedransk, Moriarity and LeClere (1997) and Malec, Davis and Cao (1999) for methods specifically for 
estimating small area proportions. The range of methods includes both empirical best prediction (EBP) 
and hierarchical Bayes (HB) approaches and models developed at both the area and unit levels. We focus 
on HB area level models in this paper. 

When an HB area level model is used to produce estimates of proportions of units with a given 
characteristic for small areas, it is commonly assumed that the survey-weighted proportion for each 
sampled small area has a normal sampling distribution and that the sampling variance of this proportion is 
known. However, these assumptions are problematic when the small area sample size is small or when the 
true proportion is near 0 or 1. Reliance on the central limit theorem for approximate normality of the 
sampling distribution of a proportion requires reasonably large samples, particularly when the population 
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proportion is very small or very large (e.g., under 0.1 or over 0.9).  Moreover, with very small or very 
large proportions, the sampling variance of a sample proportion is highly sensitive to the actual value of 
the proportion, thus making it difficult to establish a suitable value for the sampling variance. In an effort 
to overcome these problems, we propose two alternative models for small area proportions and compare 
them with two commonly used models. The models are described in Section 3. The four models are 
compared by means of a Monte Carlo simulation study in which stratified simple random samples are 
generated from a fixed finite population. The simulation study is described in Section 4 and the results are 
presented in Section 5. The paper finishes with some concluding remarks in Section 6. First, however, we 
introduce the notation for a stratified simple random sample design in Section 2. 

 
2  Notation 
 

Let ihN  denote the population size in stratum h  in area i  of a finite population 
( 1,..., ; 1,..., ).  ii m h H  Let ihky  be the binary response for the characteristic of interest for unit k  in 
stratum h  in area i  ( 1,..., )ihk N . The parameters to be estimated are the small area proportions 

/i ihk ihh k
P y N  . 

With the stratified simple random sample design under study, ihn  units are selected from the ihN  units 
in stratum ( ih ). The standard direct survey estimator for iP  is: 

 ,  1,..., ;        
 

 

i ih

i ih

H n
ih ihkh k

iw H n
ihh k

w y
p i m

w
  (2.1) 

 
where ihw  denotes the sampling weight given by .ih ih ihw N n  

The variance of iwp  can be expressed as 

 
(1 )( ) , 

 i i
st iw i

i

P PVAR p DEFF
n

  (2.2)                                                        

where iDEFF  is the design effect reflecting the effect of the complex sample design (Kish 1965). For a 
stratified simple random sample with negligible sampling fractions in all strata, the design effect is given 
approximately by: 

 
 

 

2 1
,     

1





 ih ih ih ihh
i

i i

W P P n
DEFF

P P n
  (2.3) 

 

where /ih ih iW N N , i ihh
N N , i ihh

n n  and ihP  is the population proportion in stratum h  in area .i  

The design effect iDEFF  is a function of the ihP , which are unknown. If (1 ) (1 )ih ih i iP P P P   , 

iDEFF  can be approximated by 2 /iw i ih ihh
deff n W n  . The value of iwdeff  can be readily computed since 

it does not depend on any unknown parameters. 
Small area estimation procedures can be used to address the problem that iwp  is very imprecise when 

the sample size in  is small. Section 3 describes the HB area level models investigated in this study.  
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3  Models Studied 
 

A general area-level small area model has two components. One—the sampling model—is a model for 
the sampling error of the direct survey estimates. The other—the linking model—relates the population 
value for an area to area-specific auxiliary variables 1( ,..., )i i ipx x x  . 

Section 3.1 describes two area models that are often used for estimating small area proportions and 
Section 3.2 outlines some problems associated with these models. Section 3.3 describes two alternative 
models that may serve to address these problems. 

 
3.1 Two Commonly Used Models 
 

We study two commonly used models for comparison with the new models described in Section 3.4. 
The first is the Fay-Herriot model (Fay and Herriot 1979), which assumes known sampling variances and 
normal distributions for both the sampling and the linking models. The second is the normal-logistic 
model, which differs from the Fay-Herriot model only by the replacement of a logit-normal distribution 
for the normal distribution in the linking model. 

 

Model 1: (Fay-Herriot normal-normal model) 
 

Sampling model: 

 | ~ ( ,   )     
ind

iw i i ip P N P ψ   (3.1) 

Linking model: 

 2 ' 2| , ~ ( , )   
ind

i v i vP β σ N x β σ   (3.2) 

Model 2: (normal-logistic model) 
 

Sampling model: 

 | ~ ( ,   )   
ind

iw i i ip P N P ψ    (3.3) 

Linking model:    

 2 ' 2( ) | , ~ ( , )  
ind

i v i vg P β σ N x β σ   (3.4) 
 
In both models the sampling variance iψ  is assumed to be known. Model 1 is referred as a matched 

model because the sampling and linking models can be combined to produce a relatively simple linear 
mixed model. However, a nonlinear linking model is often preferred for modeling proportions, leading to 
unmatched sampling and linking models, as in Model 2 (see, for example, You and Rao 2002). The link 
function ( )g   can be empirically determined by checking the model fit. The log and logit link functions 
have been used. The logit( )iP  linking model is chosen here in order to guarantee that the estimate of iP  
always falls within the allowable range of (0,1).  
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3.2 Issues with Models 1 and 2 
 

There are two main issues associated with Models 1 and 2. The first is that both models assume known 
sampling variances iψ , whereas in practice they have to be estimated. A simple approach is to use the 
direct variance estimate but that estimate is very imprecise when iP  is either very small or very large and 
when the sample size in  is small. An alternative, more complex, approach is to develop an approximate 
estimate of iP , say isynp , from a simple model such as a logistic model for iwp  in terms of the auxiliary 

variables, and then use that estimate in the following synthetic variance estimator: 
 

 
(1- )

var .     
isyn isyn

stsyn iw
i

p p
deff

n
  (3.5) 

 
When there are no auxiliary variables available, the overall sample proportion may be used for isynp  in 

the computation of the synthetic variance estimator. 
The second issue concerns the normality assumption in the sampling model, which is based on a large 

sample approximation. As noted in Section 1, when the sample size in  is small and iP  is near 0 or 1, as is 
often the case with small area estimation, that assumption is problematic. 

 
3.3 Two Alternative Models 
 

Under Models 1 and 2, the unknown sampling variances iψ  are estimated in some way, and then the 
resultant estimates are treated as if they were the known true values. A possible alternative approach is to 
treat the iψ  as unknown parameters in the HB model, as has been done in a number of studies. For 
example, Arora and Lahiri (1997) applied an HB model to model the design-based variances for the 
sample estimates. Singh, Folsom and Vaish (2005) proposed the use of a generalized design effect model 
to smooth the sampling covariance matrix in small area modeling with survey data. Recently, You (2008) 
proposed the use of equal design effects over time to model the sampling variances in estimating small 
area unemployment rates using a cross-sectional and time series log-linear model. The approach of 
treating the sampling variances iψ  as unknown is adopted in Model 3, as a variant of Model 2. One 
approach for addressing the non-normality of the sampling distributions of the survey-weighted small area 
proportions is to replace the normal distribution assumption by an alternative distribution. That approach 
is applied in Model 4 with the assumption of a beta sampling distribution, a distribution that has the 
desirable property of having a (0,1) range. In other regards Model 4 is the same as Model 3, including 
treating the ,  1,...,iψ i m  as unknown parameters. Model 4 was previously considered by Jiang and Lahiri 
(2006b) in an illustrative example to estimate finite population domain means using an EBP approach. 

 
Model 3: (normal-logistic model with unknown sampling variance) 

Sampling model: 

 | ~ ( ,   )   
ind

iw i i ip P N P ψ   (3.6) 
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Linking model:  

 2 ' 2( ) | , ~ ( , )  
ind

i v vlogit P β σ N x β σ   (3.7) 
 

Model 4: (beta-logistic model with unknown sampling variance) 

Sampling model:  

 | ~ ( , )    
ind

iw i i ip P beta a b   (3.8)     

Linking model: 

 2 ' 2( ) | , ~ ( , )
ind

i v i vlogit P β σ N x β σ   (3.9) 
 
For both Model 3 and Model 4, the approximate variance function [ (1- )/ ]i i i i iwψ P P n deff  is used. The 

parameters ia  and ib  in Model 4 are given by: 

-1i
i i

iw

na P
deff

 
  

 
, and (1- ) -1i

i i
iw

nb P
deff

 
  

 
. 

 

HB small area estimates can be computed from all four models using the Metropolis-Hastings 
algorithm within the Gibbs sampler. Details of the algorithm, which draws random samples based on the 
full conditional distributions of the unknown parameters starting with one or multiple sets of initial values, 
are given by Robert and Casella (1999) and Chen, Shao, and Ibraham (2000). You and Rao (2002) also 
describe in detail how the Metropolis-Hastings algorithm works within the Gibbs sampler for models 
similar to Models 1 and 2. The algorithm works for Models 3 and 4 in the same way as for Model 2. The 
full conditional distributions under each model are provided in Appendix A.  

 
4  Simulation Study 
 
4.1 The Study Population and the Sample Design 
 

This section describes the simulation study that was conducted to compare the efficiency of the small 
area estimates produced by the four HB models. The simulation study was based on the 2002 Natality 
public-use data file that covered all births occurring within the United States in that calendar year. The file 
contained data obtained from the certificates filed for births occurring in each state and territory (for 
details see U.S. National Center for Health Statistics 2009).  

The finite population studied was restricted to the 4,024,378 records of live births that occurred in 
2002 in the 50 states of U.S. and the District of Columbia (DC) and that had birth weights reported. The 
parameter of interest is the state level low birthweight rate iP , 1,...,51i  , where low birthweight is 
defined as less than 2,500 grams. The value of iP  varied from 5 percent to 11 percent across the states. 

Within each state, a stratified SRS design was used to draw samples from the birth records. Mother’s 
race (White, Black, and Other) was used as the stratification variable. The national sample size was set to 
be about 1,500 birth records for each race group. A uniform sampling fraction was used across the states 
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for each race group, subjecting to the condition that at least two birth records were sampled within each 
race group in each state. The resultant national sample size turned out to be 4,526n   birth records. The 
state sample sizes in  ranged from 7 (for small states such as Vermont) to 690 (for California), with a 
median sample size of 61. This sampling procedure was repeated 1,000R   times, creating 1,000 
independent sample data sets. The sampling weights remained the same over different simulation runs. 

 
4.2 Computation of the HB Estimates 
 

For simplicity, the following assumptions were made for the HB models: 

1. No auxiliary variables were used, so that 'ix β μ . 

2. For Models 1 and 2, the sampling variances were taken to be given by [ (1- )/ ] ,i w w i iwψ p p n deff

where /w ih ihk i ihp w y n w   is the national estimate of the proportion of low 
birthweight live births. (A check on the use of iwdeff  as an approximation for iDEFF  showed that 
the approximation was reasonable: the two quantities were close, with a product moment 
correlation of 0.96 and an average ratio of 1.08 between iwdeff  and iDEFF .) 

3. Flat prior for μ , i.e., ( )   1,f μ   and inverse gamma for 2
vσ , i.e., 2 ~ (0.001,  0.001)vσ IG . 

For each sample data set, the first step in the computations was to calculate the state direct sample 
estimates. The estimates for each sample data set were then used in turn as input to the WinBUGS 
software (Lunn, Thomas, Best and Spiegelhalter 2000), which was used to produce the HB estimates for 
all four models. 

In a sizable number of the states with small in , the direct estimates were zero in some of the sample 
data sets. Since WinBUGS can handle direct estimates of zero only for Model 1, the zero direct estimates 
were perturbed to very small positive numbers for the other models. 

For each WinBUGS run, three independent chains were used. For each chain, burn-ins of 10,000 
samples were produced, with 10,000 samples after burn-in. The samples after burn-in were thinned by a 
factor of two to reduce auto-correlation of the MCMC samples. The resultant 15,000 MCMC samples 
from the three chains after burn-in were then used to compute the posterior mean and percentiles for each 
HB model based on each sample data set. The potential scale reduction factor R̂  was used as the primary 
measure for convergence (see Gelman and Rubin 1992). The WinBUGS code is given in Appendix B. 

 
5. Simulation Results 
 

In Section 5.1 we report our main results for the credible intervals obtained for the state proportions of 
low birthweight live births from the application of each of the four models. Section 5.2 then examines the 
biases and root mean square errors of these estimates.  

 
5.1 Model estimates and credible intervals 
 

Let HB
iP  denote an HB estimator of iP , the percentage of low birthweight live births in state i , and let 

,
HB

i qP  denote the thq  percentile of the posterior distribution of iP . Based on the results from the 1,000 
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simulation data sets, Table 5.1 presents the following for each model: the noncoverage probability for the 
95 percent credible intervals of iP , i.e., the probability that the interval from ,.025

HB
iP  to ,.975

HB
iP  fails to cover 

iP  and the mean width of the credible intervals 975 025
HB HB

i,. i,.P - P . The corresponding Monte Carlo simulation 

standard errors are also reported in the table in parentheses.  
To examine the effect of state sample size on the simulation results, the 50 states and the District of 

Columbia are divided into three groups according to their sample sizes: the 15 states with small sample 
sizes ( 30);in   the 24 states with medium sample sizes (30 100);in   and the 12 states with large 
sample sizes ( 100).in   The results presented in Table 5.1 are overall averages across all states and 
averages for the three groups separately. 

It can be seen from the upper half of Table 5.1 that the Fay-Herriot model (M1) credible intervals are 
very conservative, giving nearly zero noncoverage. The lower half of the table shows that this result is 
obtained at the cost of the largest average credible interval width among the four models. The M1 credible 
interval widths are very stable. A small proportion of the M1 credible intervals had negative lower 
bounds. 

A possible explanation for the low level of noncoverage with M1 is that the sampling variances were 
overestimated, perhaps because iwdeff  was used in place of iDEFF . To examine this possibility, we used 

iDEFF  in computing the sampling variance and found virtually no difference in the noncoverage rate. We 
also ran the model with the true variance as defined in (2.2) and again found no appreciable difference in 
the noncoverage rates. The non-normality of the sampling distribution of iwp  could also be a source of 
this problem. 
 
Table 5.1  
Percentage of times that the 95 percent credible intervals fail to cover iP , mean 95 percent credible interval 
width, along with the Monte Carlo simulation standard errors based on 1,000 simulations (in percentages) 

State sample size in  M1* M2 M3 M4 

 Noncoverage percentage (Monte Carlo simulation standard error) 

Overall 0.40 
(0.028) 

8.24 
(0.109) 

6.52 
(0.101) 

4.36 
(0.088) 

30in   (15 states) 0.05  
(0.019) 

11.39 
(0.239) 

8.45 
(0.216) 

6.21 
(0.190) 

30 100in   (24 states) 0.46 
(0.043) 

9.44 
(0.167) 

7.61 
(0.156) 

4.52 
(0.132) 

100in   (12 states) 0.70 
(0.076) 

1.91 
(0.122) 

1.94 
(0.124) 

1.74 
(0.119) 

 Mean width of the 95% credible interval (Monte Carlo simulation standard error) 

Overall 9.05 
(0.004) 

5.52 
(0.009) 

6.20 
(0.009) 

8.45 
(0.014) 

30in   (15 states) 10.27 
(0.009) 

5.94 
(0.020) 

6.78 
(0.021) 

9.30 
(0.034) 

30 100in   (24 states) 9.16 
(0.005) 

5.60 
(0.013) 

6.28 
(0.013) 

8.71 
(0.021) 

100in   (12 states) 7.29 
(0.004) 

4.84 
(0.012) 

5.30 
(0.013) 

6.88 
(0.017) 

*Note: For Model 1, a small proportion of the credible intervals had negative lower bounds. 
 

At 8.2 percent, the overall noncoverage rate of the credible intervals for the normal-logistic model 
(M2) is appreciably above the nominal rate of 5 percent. This model has the smallest average interval 
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width. The noncoverage rate for the normal-logistic model with unknown variance (M3) is closer to the 
nominal rate, with an overall interval width that is somewhat larger than that for M2.  

The noncoverage rate for the beta-logistic model (M4) of 4.4 percent overall is closest to the nominal 
noncoverage rate. However, the average width of the credible intervals is larger than those for M2 and M3 
and the Monte Carlo standard error of the interval width is larger than that of the other three models. This 
instability may be due to the complexity of the full conditional distribution for the beta model. The large 
proportion of the 1,000 direct estimates that were 0 for some of the states with small sample sizes may 
also have caused significant problems in fitting the beta distribution. 

As is to be expected, for all four models the mean width of the credible intervals declines with 
increasing state sample size and the variation in the widths also declines with increased sample size. Even 
with these declines, however, the noncoverage rates also decline with increasing sample size for Models 2, 
3, and 4. The noncoverage rates are in fact very small for the states with large in , suggesting that the 
credible intervals are not adequately reflecting the effect of the greater precision of the direct estimates in 
the states with large sample sizes. 

 
5.2 Biases and RMSEs of the model-based estimates 
 

For further investigation of these results, we examined the bias and the root mean square errors 
(RMSEs) of the estimates HB

iP  for each model. The results are presented in Table 5.2 in the same format 
as Table 5.1. The biases for the estimates under M1, M2, and M3 exhibit a similar pattern: the biases are 
large and positive for the small states, and offset to some extent by relatively small negative biases for the 
medium and large states. The biases for the estimates for M4 have a very different pattern: they are almost 
zero for the small states and have large negative values for the medium and large states. This indicates that 
M4 would perform better than the other three models in terms of bias when the small area sample sizes are 
small.    
 
Table 5.2  
The biases and the root mean square errors of the estimates of iP  based on the four models (in percentages)  

State sample size in  
M1 M2 M3 M4 

Bias RMSE Bias RMSE Bias RMSE Bias RMSE 

Overall 0.165 1.518 0.071 1.346 -0.009 1.411 -0.214 1.712 
30in   (15 states) 0.621 1.651 0.572 1.630 0.466 1.652 0.009 1.922 

30 100in   (24 states) -0.006 1.547 -0.123 1.386 -0.201 1.452 -0.319 1.775 
100in   (12 states) -0.063 1.294 -0.167 0.911 -0.219 1.026 -0.283 1.323 

 
6. Discussion 
 

In this paper, we report the results of a simulation study from a real finite population to evaluate the 
credible intervals obtained from four different hierarchical models in terms of their interval lengths and 
their design-based coverage properties. To the best of our knowledge, such a design-based evaluation of 
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small area credible (or confidence) intervals has not previously been performed in the evaluation of small 
area estimates.   

In the simulation study, we have compared the design-based coverage properties of credible intervals 
resulting from different hierarchical Bayes models for estimating small area proportions from a stratified 
simple random sample design. Overall, none of the models emerges as a clear winner and so we are not in 
a position to recommend any of the models studied.  

The hierarchical Bayes version of the well-known Fay-Herriot model appears to produce overly 
conservative credible intervals. The non-normality of both the sampling and the linking models is a 
possible source of this problem. The credible intervals for the beta-logistic hierarchical model achieve 
almost the nominal coverage for the finite population proportions and the bias property for this model is 
the best among the four models being compared when the sample sizes are small. However, since one of 
the full conditionals for the beta-logistic model involves the survey-weighted proportions, there is a 
problem with the MCMC whenever the survey-weighted proportion is zero. The credible intervals for this 
model are also wider than those for the other two models with a logistic linking model. It may be possible 
to reduce the width of the credible interval for the beta-logistic model by modifying the model in some 
way, such as by employing a suitable two-part mixture random effect model that will avoid the problem of 
survey-weighted proportions of zero. Further investigation is needed. Also consideration could usefully be 
given to other possible models, possibly a discrete probability model for Level 1, to improve on interval 
estimation of small proportions for small areas. 

The simulation study found that the coverage of the Bayesian credible intervals for the finite 
population proportions was far from the nominal 95 percent level for all four models, and a similar finding 
was also obtained for the design-based coverage of the widely-used Fay-Herriot model. In the light of 
these findings we carried out a number of further analyses in a search for an explanation. These analyses 
included: adding predictor variables to the models; using a uniform prior distribution for 2

νσ  (based on 
arguments made by Gelman 2006); the use of empirical best prediction approach for the M1 model; 
increasing the sample size in states with few births to a minimum of 50; and applying the methods to 
estimate the proportion of births in each state below the national median birthweight. Although there are 
some differences in the coverage properties for the state finite population proportions, none of these 
analyses produced coverage rates close to the nominal rates.  The only case where the nominal rates 
coincided with the actual coverage rates was for a simulated dataset constructed under model M1 for the 
state proportions below the national median birthweight; the average coverage rates were 5.1 and 5.2 
percent for the EBP and HB approaches, respectively.   

This simulation study was restricted to a single stage sample design. In addition, for simplicity no 
auxiliary variables were included in the linking models in our main analyses, whereas in practice the 
inclusion of such variables is routine and almost essential. Further simulation studies are needed to cover 
different sample designs, different sample sizes, and to incorporate some auxiliary variables in the linking 
models. We hope that our study will encourage others to conduct similar design-based simulations to 
evaluate small area estimation methods. Based on our limited results, users of small area estimates need to 
be cautioned about the interpretation of the credible intervals associated with the estimates. 
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Appendix A 
 

A1. Full conditional distributions for the parameters of each model 
Let 1( ,..., )t

w mwp p p  and 2
i

i
i v

ψr
ψ σ




. 

The full conditional distributions for the Fay-Herriot model (M1) are given as follows:  
 

i) 2| , , ~ ((1 ) ,     (1 ))i v i iw i i iθ μ σ p N r p r μ ψ r   ; 

ii) 
2

2

1

1| , , ~ ,
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i v i
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σμ θ σ p N θ
m m
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 
 
 ; 

iii) 2 2

1
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2 2
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v i i
i

σ μ θ p ING a m b θ μ


 
   

 
 . 

                 
The full conditional distributions for the Normal-Logistic model (M2) are given as follows:  
 

i) 
2 2

2
2

( ) (logit( ) )1| , , exp
2 2(1 )

iw i i
i v

i vi i v i

p θ θ μθ μ σ p
ψ σθ θ σ ψ

  
   

  
; 

ii) 
2

2

1

1| , , ~ logit( ),  
m

v
i v i

i

σμ θ σ p N θ
m m

 
 
 
 ; 

iii) 2 2

1

1 1| , , ~ , (logit( ) )
2 2

m

v i i
i

σ μ θ p ING a m b θ μ


 
   

 
 . 

 

The full conditional distributions for the Normal-Logistic model with unknown variance (M3) are the 
same as those of M2 except that replacing iψ  by (1 ) /i i iw iθ θ deff n  for the distribution of iθ  given other 
parameters.  

Let 1.i
iw

iw

nδ
deff

   The full conditional distributions for the Beta-Logistic model (M4) are given as 

follows:  

i)
1 (1 ) 1 2

2
2

(1 ) (logit( ) )1| , , exp ;
(1 ) Γ( )Γ((1 ) ) 2

i iw i iwθ δ θ δ
iw iw i

i v
i i v i iw i iw v

p p θ μθ μ σ p
θ θ σ θ δ θ δ σ

     
  

   
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ii) 
2

2

1

1| , , ~ logit( ),  
m

v
i v i

i

σμ θ σ p N θ
m m

 
 
 
 ; 

iii) 2 2

1

1 1| , , ~ , (logit( ) )
2 2

m

v i i
i

σ μ θ p ING a m b θ μ


 
   

 
 . 

 
Appendix B 
 

WinBUGS code for Model 1: 
 

model { 

      for ( i in 1:N)  { 

         pobs[i] ~ dnorm(theta[i], D[i]) 

         D[i] <- 1/varhat[i] 

         theta[i]<-u+v[i] 

         v[i]~dnorm(0, tau) 

                          } 

        u~dflat() 

       tau~dgamma(0.001, 0.001) 

       sigma_v2<-1/tau 

          } 
 

WinBUGS code for Model 2: 
 

model { 

      for ( i in 1:N)  { 

         pobs[i] ~ dnorm(theta[i], D[i]) 

         D[i] <- 1/varhat[i] 

         logit(theta[i])<-u+v[i] 

         v[i]~dnorm(0, tau) 

                           } 

       u~dflat() 

       tau~dgamma(0.001, 0.001) 

       sigma_v2<-1/tau 

          } 
 

WinBUGS code for Model 3: 
 

model { 

      for ( i in 1:N)  { 

         pobs[i] ~ dnorm(theta[i], E[i]) 

         E[i] <- SAMPn[i]/(theta[i]*(1-theta[i])*DEFF_kish[i]) 

         logit(theta[i])<-u+v[i] 

         v[i]~dnorm(0, tau) 
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         D[i]<-1/E[i] 

                          } 

       u~dflat() 

       tau~dgamma(0.001, 0.001) 

       sigma_v2<-1/tau 

          } 
 

WinBUGS code for Model 4: 
 

model { 

      for ( i in 1:N)  { 

         pobs[i] ~ dbeta(a[i], b[i]) 

         a[i] <- theta[i]*(theta[i]*(1-theta[i])/D[i]-1) 

         b[i] <- (1-theta[i])*(theta[i]*(1-theta[i])/D[i]-1) 

         logit(theta[i])<-u+v[i] 

         v[i]~dnorm(0, tau) 

         D[i]<-theta[i]*(1-theta[i])*DEFF_kish[i]/SAMPn[i] 

                          } 

       u~dflat() 

       tau~dgamma(0.001, 0.001) 

       sigma_v2<-1/tau 

          }    
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Bayes linear estimation for finite population with emphasis 
on categorical data 

Kelly Cristina M. Gonçalves, Fernando A.S. Moura and Helio S. Migon1 

Abstract 

Bayes linear estimator for finite population is obtained from a two-stage regression model, specified only by 
the means and variances of some model parameters associated with each stage of the hierarchy. Many common 
design-based estimators found in the literature can be obtained as particular cases. A new ratio estimator is also 
proposed for the practical situation in which auxiliary information is available. The same Bayes linear approach 
is proposed for obtaining estimation of proportions for multiple categorical data associated with finite 
population units, which is the main contribution of this work. A numerical example is provided to illustrate it. 

 
Key Words: Exchangeability; Linear model; Bayesian linear prediction. 

 
 

1  Introduction 
 

Surveys have long been an important way of obtaining accurate information from a finite population. 
For instance, governments need to obtain descriptive statistics of the population for purposes of evaluating 
and implementing their policies. For those concerned with official statistics in the first third of the 
twentieth century, the major issue was to establish a standard of acceptable practice. Neyman (1934) 
created such a framework by introducing the role of randomization methods in the sampling process. He 
advocated the use of the randomization distribution induced by the sampling design to evaluate the 
frequentist properties of alternative procedures. He also introduced the idea of stratification with optimal 
sample size allocation and the use of unequal selection probabilities. His work was recognized as the 
cornerstone of design-based sample survey theory and inspired many other authors. For example, Horvitz 
and Thompson (1952) proposed a general theory of unequal probability sampling and the probability-
weighted estimation method, the so-called “Horvitz and Thompson’s estimator”. 

The design-based sample survey theory has been very appealing to official statistics agencies around 
the world. As pointed out by Skinner, Holt and Smith (1989), page 2, the main reason is that it is 
essentially distribution-free. Indeed, all advances in survey sampling theory from Neyman onwards have 
been strongly influenced by the descriptive use of survey sampling. The consequence of this has been a 
lack of theoretical developments related to the analytic use of surveys, in particular for prediction 
purposes. In some specific situations, the design-based approach has proved to be inefficient, providing 
inadequate predictors. For instance, estimation in small domains and the presence of the non-response 
cannot be dealt with by the design-based approach without some implicit assumptions, which is equivalent 
to assuming a model. Supporters of the design-based approach argue that model-based inference largely 
depends on the model assumptions, which might not be true. On the other hand, interval inference for 
target population parameters (usually totals or means) relies on the Central Limit Theorem, which cannot 
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be applied in many practical situations, where the sample size is not large enough and/or independence 
assumptions of the random variables involved are not realistic. 

Basu (1971) did not accept estimates of population quantities which depend on the sampling rule, like 
the inclusion probabilities. He argued that this estimation procedure does not satisfy the likelihood 
principle, at which he was adept. Basu (1971) created the circus elephant example to show that the 
Horvitz-Thompson estimator could lead to inappropriate estimates and proposed an alternative estimator. 
The question that arises is whether it is possible to conciliate both approaches. In the superpopulation 
model context, Zacks (2002) showed that some design-based estimators can be recovered by using a 
general regression model approach. Little (2003) claims that: “careful model specification sensitive to the 
survey design can address the concerns with model specifications, and Bayesian statistics provide a 
coherent and unified treatment of descriptive and analytic survey inference”. He gave some illustrative 
examples of how standard design-based inference can be derived from the Bayesian perspective, using 
some models with non-informative prior distributions. 

In the Bayesian context, another appealing proposal to conciliate the design-based and model-based 
approaches was proposed by Smouse (1984). The method incorporates prior information in finite 
population inference models by relying on Bayesian least squares techniques and requires only the 
specification of first and second moments of the distributions involved, describing prior knowledge about 
the structures present in the population. The approach is an alternative to the methods of randomization 
and appears midway between two extreme views: on the one hand the design-based procedures and on the 
other those based on superpopulation models. O’Hagan (1985), in an unpublished report, presented the 
Bayes linear estimators in some specific sample survey contexts and O’Hagan (1987) also derived Bayes 
linear estimators for some randomized response models. O’Hagan (1985) dealt with several population 
structures, such as stratification and clustering, by assuming suitable hypotheses about the first and second 
moments and showed how some common design-based estimators can be obtained as a particular case of 
his more general approach. He also pointed out that his estimates do not account for non-informative 
sampling. He quoted Scott (1977) and commented that informative sampling should be carried out by a 
full Bayesian analysis. An important reference about informative sampling dealing with hierarchical 
models can be found in Pfeffermann, Moura and Silva (2006). 

The paper is organized as follows. Section 2 generally describes the Bayes linear estimation approach 
applied to a general linear regression model for finite population prediction and shows how to obtain some 
design-based estimators as particular cases. In Section 3, a new ratio estimator is proposed for practical 
situation in which auxiliary information is available. Section 4 extends the Bayes linear estimation 
approach to multiple categorical data. Finally, Section 5 offers some conclusions and suggestions for 
further research.  

 
2  Bayes linear estimation for finite population 
 

The Bayes approach has been found to be successful in many applications, particularly when the data 
analysis has been improved by expert judgements. But while Bayesian models have many appealing 
features, their application often involves the full specification of a prior distribution for a large number of 
parameters. Goldstein and Wooff (2007), section 1.2, argue that as the complexity of the problem 
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increases, our actual ability to fully specify the prior and/or the sampling model in detail is impaired. They 
conclude that in such situations, there is a need to develop methods based on partial belief specification. 

Hartigan (1969) proposed an estimation method, termed Bayes linear estimation approach, that only 
requires the specification of first and second moments. The resulting estimators have the property of 
minimizing posterior squared error loss among all estimators that are linear in the data and can be thought 
of as approximations to posterior means. The Bayes linear estimation approach is fully employed in this 
article and is briefly described below. 

 
2.1  Bayes linear approach 
 

Let y s  be the vector with observations and θ  be the parameter to be estimated. For each value of θ  
and each possible estimate ,d  belonging to the parametric space ,Θ  we associate a quadratic loss 
function          ,θ d θ d θ d θ d θ dL tr         The main interest is to find the value of d  
that minimizes     , ,d θ d y sr E L  the conditional expected value of the quadratic loss function 
given the data. 

Suppose that the joint distribution of θ  and y s  is partially specified by only their first two moments:  

                                                            , ,
θ a R AQ
y f QA Qs

     
          

 (2.1) 

where a  and ,f  respectively, denote mean vectors and ,R AQ  and Q  the covariance matrix elements of 
θ  and .y s  

The Bayes linear estimator (BLE) of θ  is the value of d  that minimizes the expected value of this 
quadratic loss function within the class of all linear estimates of the form   ,d d y h Hys s    for 
some vector h  and matrix .H  Thus, the BLE of ,θ ˆ ,d  and its associated variance,  ˆ ˆ ,dV  are 

respectively given by:  

                                                  ˆ ˆ ˆand .d a A y f d R AQAs V       (2.2) 

It should be noted that the BLE depends on the specification of the first and second moments of the joint 
distribution partially specified in (2.1). The issue of eliciting these quantities is dealt with in sections 
(2.3.1) and (4.1) for some particular cases. 

 
2.2  Bayes linear approach to finite population 
 

Consider  1 , , NU u u  a finite population with N  units. Let  1 , ,y Ny y   be the vector with 
the values of interest of the units in .U  The response vector y  is partitioned into the known observed n­
sample vector ,y s  and the non-observed vector y s  of dimension .N n  The general problem is to 

predict a function of the vector ,y  such as the total 
1

,1 y 1 yN
i s s s si

T y


     where 1 s  and 1 s  are 
the vectors of 1’s of dimensions n  and ,N n  respectively. In the model-based approach, this is usually 
done by assuming a parametric model for the population values ’siy  and then obtaining the Empirical 
Best Linear Unbiased Predictor (EBLUP) for the unknown vector y s  under this model. Usually, the mean 
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square error of the EBLUP of T  is obtained by second order approximation, as well as an unbiased 
estimator of it. See Valliant, Dorfman and Royall (2000), chapter 2, for details. 

The Bayesian approach to finite population prediction often assumes a parametric model, but it aims to 
find the posterior distribution of T  given .y s  Point estimates can be obtained by setting a loss function, 
although in many practical problems, the posterior mean is often considered and its associated variance is 
given by the posterior variance, i.e.: 

                                    and .y 1 y 1 y y y 1 y y 1s s s s s s s s s s sE T E V T V      (2.3) 

It is possible to obtain an approximation to the quantities in (2.3) by using a Bayes linear estimation 
approach. Here, we will particularly obtain the estimators by assuming a general two-stage hierarchical 
model for finite population, specified only by its mean and variance-covariance matrix, presented in 
Bolfarine and Zacks (1992), page 76. Particular cases describing usual population structures found in 
practice are easily derived from (2.4). The general model can be written as:  

                                                             , and , ,y β Xβ V β a R  (2.4) 

where X  is a covariate matrix of dimension ,N p  with rows  1 , , ,X i i ipx x 1, , ;i N  

 1 , ,β p
    is a 1p   vector of unknown parameters; and ,y  given ,β  is a random vector with 

mean Xβ  and known covariance matrix V  of dimension .N N  Analogously a  and R  are the 
respective 1p   prior mean vector and p p  prior covariance matrix of .β  

Since the response vector y  is partitioned into ,y s  and ,y s  the matrix ,X  which is assumed to be 
known, is analogously partitioned into X s  and ,X s  and V  is partitioned into ,Vs ,Vs Vss  and .Vss  The 
first aim is to predict y s  given the observed sample y s  and then the total .T  We did this in the following 
steps: first, we used a joint prior distribution that is only partially specified in terms of moments, as 
follows:  

, .
y X β V V

β
y X β V V

s s s ss

s s ss s

     
      
     

 

Therefore, applying the general result in equation (2.2), the BLE of  ,y y βs sE  and the minimum 
expected square loss (associated variance) are given by:  

                        1 1ˆ ˆ, and , .y y β X β V V y X β y y β V V V Vs s s ss s s s s s s ss s ssE V       (2.5) 
 
Remark 1: It should be noted that if normality is assumed then  ,y y βs sE  and  ,y y βs sV  are 
respectively given by the right sides of (2.5). The BLE in (2.5) and its associated variance can be viewed 
respectively as approximations of  ,y y βs sE  and  ,y y βs sV  for non-normality cases. 

Now, if we come back to model (2.4), we need to adapt the structure (2.1) and use the results in (2.2) 
to obtain the BLE of β  and its associate variance,  ˆˆ ,βV  respectively given by:  

          
1 1ˆ ˆˆand .β a RX X RX V y X a β C R RX X RX V X Rs s s s s s s s s s sV             (2.6) 
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It is easy to show that the first equation in (2.6) can be rewritten as  1 1ˆ ,β C X V y R as s s
    where 

1 1 1 .C R X V Xs s s
     It should be noted that if we place a vague prior distribution on ,β  taking 

1 0,R    we obtain the minimum least square estimator of :β  
11 1ˆ .β X V X X V yLS s s s s s s
    

Now, applying well known properties of conditional expectations and variances, we obtain:  

              , and , , .y y y y β y y y y y β y y y β ys s s s s s s s s s s s sE E E V E V V E    (2.7) 

Replacing  ,y y βs sE  and  ,y y βs sV  in (2.7) with their respective BLE’s in (2.5) and in turn, 

replacing  β y sE  and  β y sV  with β̂  and  ˆˆ βV  in (2.6), we obtain the BLE of  y ys sE  and its 

associated variance as:  

                         
   

     

1

1 1 1

ˆ ˆˆ and
ˆ .

y y X β V V y X β

y y V V V V X V V X C X V V X
s s s ss s s s

s s s ss s ss s ss s s s ss s s

E

V



  

  

     
 (2.8) 

 

Remark 2: Analogously to the Remark 1, when normality is assumed we have that the right sides of (2.8) 
are respectively the values of  y ys sE  and   .y ys sV  

The general expression of BLE for the total T  and its associated variance are respectively obtained by 
replacing  y ys sE  and  y ys sV  in equations in (2.3) with their respective counterparts  ˆ y ys sE  
and  ˆ :y ys sV  

                                               ˆ ˆ ˆ ˆ ˆand .1 y 1 y y 1 y y 1s s s s s s s s sT E V T V      (2.9) 

It should be noted that in many applications of (2.9), the matrix V  is assumed diagonal, which implies 
V 0ss   and then we have:  

                                            ˆˆ ˆ ˆand .1 y 1 X β 1 V X CX 1s s s s s s s s sT V T        (2.10) 

For the sake of illustration, we consider some examples discussed by O’Hagan (1985) and propose a new 
ratio estimator, which is one of the contributions of our work. All of them can be treated as special cases 
of the model (2.4). 

 
2.3  Revisiting some common survey designs 
 

2.3.1  Simple random sampling without replacement: Second order exchangeability 
 

O’Hagan (1985) considered the simple case where the population has no relevant structure, which can 
be done by setting up:  

                                   , and Cov , , , 1, , , .i i i jE y m V y v y y c i j N i j       (2.11) 

 

Remark 3: The correlation introduced in model (2.11) can be justified to mimic simple random sampling 
without replacement. 
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Applying the general result established in (2.10) to (2.11) with β  of dimension 1, ,X 1N ,a m  
R c  and 2 ,V I   where 2 ,v c    we obtain the BLE of T  and its respective associated 
variance:  

                          
122 2 2ˆ ˆ ˆand ,ˆsrs s srsT ny N n V T N n N n c nc 

             (2.12) 

where 

 

1

2
2

1 2

is the sample mean,
1 is the expected value of the non-observed values of andˆ

, where .

1 y
y

s s s

s

y n
y m

n
v c

c n





 



     


    

 

 

It should be noted that ̂  is a weighted average of the prior mean m  and the sample mean ,sy  where 
  is the ratio between two population quantities. The mean m  can be viewed as the investigator’s prior of 
the true population mean .y  The uncertainty about iy  is split into two components: the uncertainty about 
the overall level of the ’siy  (between variation) and the one with respect to how much each iy  may vary 
from that overall level (within variation). A useful measure of variability of units within the population is 
given by  

 
22

1

1
.

1 

 



N

i
i

S y y
N

 

It is not difficult to show that  2 2 .E S v c     Therefore, 2  can be interpreted as a prior estimate 

of variability within the population. We also obtain   1 2 .V y c N     In many applications, N  is 
large and thus the constant c  can be viewed as the between variation. 

Letting v    and keeping 2  fixed, that is, assuming prior ignorance, the estimates in (2.12) yield:  

 
2

2ˆ ˆ ˆand 1 .srs s srs

n
T N y V T N

N n
 

   
 

 

These expressions are very similar to the well-known total estimate and its variance in the design-based 
context for the simple random sampling case. O’Hagan (1985) discussed some possibilities to avoid the 
difficult task of assigning a value for 2 .  The most natural way to do this is to find the BLE of it, but 
linear in the squares and cross product variance terms. However, it requires to specify fourth order 
moments of the ’s.iy  Goldstein (1979) proposed a BLE for the variance, which uses only linear functions 
of data. Nevertheless, it results in a complicated expression to its associated variance of his modified BLE. 
O’Hagan (1985) argued that if prior information about variance components is weak, any posterior 
estimate is close to the standard non-Bayesian estimates using only the data, wherever such estimate is 
available. Therefore, he suggested, as an approximate Bayesian procedure, substituting these standard 
variance estimates into the BLE and its associated variance wherever appropriate. For this case, we can 
replace 2  with    

1 22
1

1 ,n
i si

s n y y


    which is design-based unbiased for 2 .S  
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2.3.2  Stratified simple random sampling without replacement 
 

Denote by hiy  the thi  unit, 1, ..., hi N  belonging to stratum ,h 1, .., .h H  It is assumed that the 
stratum sizes, ,hN  are known for all strata. The second-order exchangeability within each stratum is 
stated in O’Hagan (1985) as:  

       , , Cov , , and Cov , , .hi h hi h hi hj h hi lj hlE y m V y v y y c i j y y d h l       
 

Remark 4: It is reasonable to assume that the information gained about one stratum could change the 
beliefs about other strata in some special applications. However, if we want to mimic the stratified simple 
random sampling, we should assume that observations in different strata are uncorrelated, letting 0.hld   

The general model (2.4) can be applied to this case by setting  1diag , ,X X X H  and 
 1diag , ,V V VH , with X 1h Nh

  and 2 ,V Ih h Nh
   where 2 ,h h hv c    1, , ,h H  

 1 , ,a Hm m  R  is an H H  matrix with ,hl hR c  if h l  and hl hlR d  otherwise. The BLE 
of T  and its associated variance are obtained from (2.10) and can be found in O’Hagan (1985). Models 
for cluster sampling can be found in Bolfarine and Zacks (1992), page 11. The BLE for cluster models can 
be seen in O’Hagan (1985). 

 
3  Auxiliary information: Ratio estimator 
 

In many practical situations, it is possible to have information about an auxiliary variate ix  (correlated 
with iy ) for all the population units, or at least for each unit in the sample, plus the population mean, .X  
In practice, ix  is often the value of iy  at some previous time when a complete census was taken. This 
approach is used in situations where the expected value and the variance of iy  is proportional to ,ix  so in 
the BLE setup, we replace some hypotheses about the ’sy  with ones about the first two moments of the 
rate .i iy x  To the best of our knowledge, the new ratio estimator proposed below is a novel contribution 
in sampling survey theory. 

The new ratio estimator is obtained as a particular case of model (2.4) and with the hypothesis of 
exchangeability, used in Bayes linear approach, applied to the rate i iy x  for all 1, , ,i N  as 
described below:  

                          , and Cov , , , 1, , , .ji i i

i i i j

yy y y
E m V v c i j N i j

x x x x
    

         
     

 (3.1) 

Applying the general result established in (2.10) to (3.1) with  1 , ,X Nx x   the vector 1N   of 
auxiliary variables, ,a m R c  and  2

1diag , , ,V Nx x   where 2 ,v c    we obtain the 
BLE of T and its associated variance as follows:  

 

       

 
 

122 2 1 2

2

1 2

ˆ andˆ
ˆ ˆ , where

1 and ,ˆ

ra s s

ra s s s

s s

s s

T ny N n x

V T N n x N n x c nx

y nx
m

x c nx

 



 

   

      


       

 
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where    s sx NX nx N n    is mean of ’sx  for the non-sample units. Letting v    and 
,n    but keeping 2  fixed, we recover the ratio type estimator, found in the design-based approach: 

 ˆ / .ra s sT NX y x  

 
4  Bayes linear method for categorical data 
 

Often one may be interested in cases where the observed characteristic is whether or not the population 
unit possesses some attribute of interest. We can define a dichotomized variable 1,iy   if the thi  unit has 
that attribute, and refer to this as a success, and 0iy   otherwise. For the binary case when the sample 
size is not large enough to rely on the Central Limit Theorem, the design-based approach could use the 
randomization introduced by the sampling design to justify the distribution of the binary random 
quantities. For instance, Cochran (1977), sections 3.4 and 3.5, shows how to apply hypergeometric and 
binomial distributions to obtain confidence intervals for population proportions when, respectively, simple 
random sampling with and without replacement designs are employed. On the other hand, model-
dependent approaches have also been advanced and applied for predicting totals or means in the categories 
of interest. Malec, Sedransk, Moriarity and LeClere (1997) considered a logistic hierarchical model with 
two levels, where the clusters are the second one. They also compared the full hierarchical Bayes 
estimates with empirical Bayes estimates and standard methods. Moura and Migon (2002) presented a 
logistic hierarchical model approach for small area prediction of proportions, taking into account both 
possible spatial and unstructured heterogeneity effects. Nandram and Choi (2008) proposed a time-
dependent multinomial-Dirichlet model to predict the results of an election under ignorable and non-
ignorable non-response. They also used a Bayesian approach to allocate the undecided voters to the 
candidates. 

Here again, we do not need to make any use of full model assumptions or a randomization approach, 
but we do need to make some assumptions about the first and the second moments of the random 
quantities involved. The BLE for binary data was briefly introduced by O’Hagan (1985), but here we 
develop it more generally for the case where we are interested in analyzing more than one attribute in a 
population. The purpose is to describe the estimation of the proportion of successes with categorical data. 
Let ijy  be the variable that indicates that unit ,i 1, ,i N  is in category ,j 1, ,j k  given by  

th th1, if unit has attribute;
0, otherwise.ij

i j
y 

 


 

The main aim is to estimate a vector  1 , ,p kp p   where 1
1

,N
j i ji

p N y


  1, , ,j k  is 

the proportion of units in category ,j  given ,y s  a vector of dimension ,nk  defined as 
 11 21 1 1 2, , , , , , , ,y s n k k nky y y y y y   As we are dealing with situations in which for each unit it 

is only possible to associate a unique attribute, we have 
1

1.k
jj

p


  Thus, we only need to estimate 

1k   parameters, since it follows that 
1

1
1ˆ ˆk

k jj
p p


    and the variance estimate is also analogously 

obtained by      
1 1

1 1
ˆˆ ˆ Cov , .ˆ ˆ ˆ ˆk k

k j j lj l j
V p V p p p 

  
    
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In the absence of any other structural information, we suppose that the units in any given category are 
second-order exchangeable, but we do not assume any exchangeability between units of different 
categories. Our prior beliefs are expressed for 1, , ,i N 1, , 1,j k   as follows:  

       

         

   2

1 , 1 and

cov , 1 1 1 1 1

, and 1 ,

j ij ij j ij j j

ij ij ij iji j i j i j

j jj j j j j j j jj

m E y P y v V y m m

y y P y y P y P y P y

m m m c i i v c m m
  

     

      

         

 

where  1 1 ,jj iji jm P y y    for all .i i  

For ,j j  we analogously obtain the covariance between these categories as  

 
  , if ,

cov ,
, if .

j j j j
ij i j

j j

m m m i i
y y

m m i i
 

 



 
 

 
 

Often, we do not have all the data ,y s  but only a sufficient statistics, such as the sample proportion for 
each category, .y s  Let y s  be the 1k  ­vector whose thj  position is given by the sample mean for 
category .j  Using the general model in (2.4), we obtain:  

            | and Var | | .y y β a y y β y β V Rs s s s s sE E E E V V E       

Applying the general model in (2.4), where: the responde variable is given by ;y s  the vector β  has 
dimension 1;k   X Is s  and  diag , ,V V Vs s  we obtain from (2.10):  

                                      
 

 
   

2

2

ˆ
ˆˆ ˆand ,

y β V C
p ps sn N n N n

V
N N

   
   (4.1) 

where 1 1C R Vs
    and  1 1ˆ ,β C V y R as s

    as stated in (2.6). 

Let .Q V Rs   The BLE of p  and its associate variance given in (4.1) can be written in terms of 
the prior quantities ,jm jjm   and 1, , 1j k   by noting that  1 1, ,a km m    2

jj j jQ c n    

and   .j jjj j j j j jQ m m m m m n       Therefore, the matrix   , , 1, .., 1R jjr j j k
    with 

jj jr c  and  jjj j j jr m m m     and  1 , , 1, .., 1Vs jjn v j j k
    with 2

jj jv    and 

.jjj j jv m m    Analogously, we get   .V Vs sn N n   

 
4.1  Prior elicitation 
 

Elicitation is the process of formulating a person’s knowledge and beliefs about one or more uncertain 
quantities into a probability distribution for those quantities. According to Garthwaite, Kadane and 
O’Hagan (2005), it is convenient to think of the elicitation task as involving a facilitator, who helps the 
expert formulate the expert’s knowledge in probabilistic form. In the context of eliciting a prior 
distribution for a Bayesian analysis, it is the expert’s prior knowledge that is being elicited, but in general 
the objective is to express the expert’s current knowledge in probabilistic form. If the expert is a 
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statistician, or is very familiar with statistical concepts, then there may be no formal need for a facilitator, 
but this is rare in practice. O’Hagan (1998) illustrated with a practical example how to elicitate first and 
second moments. In particular, he adopted the Bayes linear approach because it makes easy the 
application of the elicitation procedure by engineers. 

In this section, some restrictions about the prior quantities and an alternative to facilitate the process of 
elicitation are presented to obtain the BLE for categorical data. Because jm  and jjm   are probabilities, 

and R  and Vs  are the covariance matrices in model (2.4), the following restrictions must be satisfied:   
 

1. 0 1jm   and 0 1,jjm   , 1, , 1;j j k    

2. R  and Vs  are positive-definite symmetric matrices.  
 

In order to verify if condition (2.2) is satisfied, the following steps may be carried out:   
 

i. verify if R  and Vs  are symmetric by checking if ;j jj j j jm m m m    

ii. verify if R  and Vs  are positive-definite matrices by finding the eigenvalues of R  and .Vs  If 
the eigenvalues are positive, then the matrices are positive-definite.  

 

It should be noted that the eigenvalues are the roots of the characteristic polynomial and if this 
polynomial is of degree , 4,n n   it is possible to analytically get its roots by using Bhaskara, Cardan or 
Ferrari; see Jacobson (2009), chapter 4, for formulas. However, if 5,n   we usually need to apply an 
iterative method to get them. Nevertheless, for matrices higher than 2 2,  it is not trivial to analytically 
obtain these restrictions based on eigenvalues. The next proposition presents the conditions that jm  and 

,jjm  1, , 1,j k   must satisfy in order to obtain a suitable prior for a multinomial model with three 

categories using the Bayesian linear estimation approach. 
 

Proposition 1 Suppose that we elicit ,jm  such that 0 1,jm  1, 2.j   Then, given 11 , 12  and 22 ,  

we obtain 11 ,m 12 ,m 21m  and 22m  by (4.2). The prior quantities jm  and ,jjm   for , 1, 2j j   must satisfy 

the following constraints for the matrices R  and Vs  to be positive-definite:  

11 1 22 2 11 22 11 22 12 21

11 22 11 2 1 22 12 21 2 12

and , 1 and
2 .

m m m m m m m m m m
m m m m m m m m m m

   

   

 
 

The verification of the Proposition 1 requires some algebra. We check that the matrices R  and Vs  are 
positive-definite using (i) and (ii) above. We use the fact that the eigenvalues of a matrix with dimension 
2 2  are positive if and only if its determinant is positive and then we obtain ,jjm  , 1, 2j j   which 

satisfies this restriction for both matrices. For cases with more than three categories we must numerically 
verify if the matrices R  and Vs  are positive-definite when replacing the numerical values of jm  and 

,jjm   1, , 1j k   into them. 

On the other hand, if an expert has some difficulty in specifying some of these conditional probabilities 
,jjm   it may be simpler to assign a prior to the coefficient of correlation. Define jj  as the prior of the 

coefficient of correlation between two different units within categories j  and ,j  that is:  
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 
 

   

, ,
1

corr ,
, ,

1 1

jj j

j

ijjj i j
j j j j

j j j j

m m
j j

m
y y

m m m
j j

m m m m

  

 

 


 

   
 

  

 

for , 1, , ,i i n  ,i i , 1, , 1.j j k    

Therefore, given ,jj , 1, , 1,j j k    we get  

                                     
 

   

1 ,

1 1
, .

j jj j

jj j j jj j j j j

j

m m j j
m m m m m m m

j j
m

    



   


    




 (4.2) 

It should be noted that if there is some past data obtained from a previous survey, it is possible for an 
expert to use this information. For instance, jm  can be obtained by estimating the proportion of units in 

category ,j 1, , 1j k   from the previous survey. Analogously, jj  can be obtained using previous 

survey data. As stated in restriction (2.1), jm  cannot assume the values 0 and 1, otherwise the correlations 

would not be defined. 

 
4.2  Prior sensitivity analysis 
 

It is worth checking how the estimator and its associated variance depend on the priors assigned. We 
deal with the simple case of only two categories. It should be noted that in the case with more than 2 
categories the number of prior quantities to be elicited increases fast, but the conclusions obtained under 
this illustration can be extended. On the other hand, if there is no prior information available we can use 
non-informative priors and, as described in Section 2.2, the estimators from the design-based approach are 
recovered. 

The BLE for proportion for binary data can be obtained as a particular case of the estimator in (4.1),  

 1
1

ˆ
,ˆ

ny N n
p

N
  

  

where  
 1 1

2
1

2 1
1 1

1 is the expected value of the non-observed values in category 1,ˆ

,

y m
n

n c



 

     


 

 

 

and 2 11 .ˆ ˆp p   Note that 2
1  and 1c  depend on  11 1 11 11 ,m m m     see page 13. We analyze 

how the estimates are affected by 11.  
 

1. If 11 0,   then 0   and 1.ˆ m   Thus, the estimator for the non-observed values 
largely depend on the value of the prior.  

2. If 11 1,   then 1   and 1.ˆ y   Thus, the estimator for the non-observed values does 
not depend on the value of the prior.  
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Moreover, it is trivial to see that if 1,n N  1 1.p̂ y  To illustrate these results, we created some 
artificial dataset by fixing the true proportion at  0.2380, 0.7620p    and the sample mean at 

 0.2614, 0.7386y s    These values were taken from Moura and Migon (2002). Then, we assessed how 
the values of 1 ,m ,N f n N  and 11  affect the estimator 1.p̂  Figure 4.1 presents the two-dimensional 
plots of the absolute error of 1p̂  versus 11  for some particular cases. The grey line represents the 
absolute error between the sample proportion 1y  and the true 1.p  

It should be noted that, as f  or N  increases, the absolute error decreases for any prior values. 
Moreover, when 11 0   the absolute error increases when 1m  considerably differs from the true 
proportion 1 ,p  but it decreases as the sample size increases. Finally, as 11 1   we observe that the 
absolute error of 1p̂  tends to the absolute error of the sample proportion 1y . Thus, if we have good prior 
information, in terms of 1 ,m  the estimator proposed performs well for all the values of 11.  But, if there 
is no prior information available, non-informative priors characterized by 11 1   can be used and we 
obtain results similar to a design-based approach. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.1 Absolute error for fixed  1 0.1, 0.4, 0.7, 0.9 ,m   1,500;15,288N   and  1%, 10%f   and 

varying  11 0.01, 0.25, 0.5, 0.75, 0.9 .   The grey line represents the absolute error of the sample 
proportion 1y  
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                  (a) N = 1,500 and f = 1%                                                                             (b) N = 1,500 and f = 10% 
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5  Conclusions 
 

To elicit a full joint prior distribution in many dimensions would be an enormous task. The Bayes 
linear method only requires the elicitation of prior means, variances and covariances for the parameters. It 
is particularly useful when a statistical expert is not available to conduct a full elicitation. An example of a 
successful elicitation using this estimator can be found in O’Hagan (1998). 

We derived the well-known design-based estimators using the structure of the BLE applied to a general 
regression model approach. We extended the estimator to categorical data and concluded that even if this 
estimator has many quantities to elicit, it is possible to reparameterize them or work with non-informative 
priors. The numerical example illustrates the behavior of the estimates as a function of the sample size and 
the specifications of the prior parameters. However, we are aware that eliciting priors for a large number 
of parameters is not an easy task if information from previous surveys is not available. Nevertheless, the 
examples discussed in the article show that even when prior information is not available, it is also possible 
to obtain the counterpart design-based estimators by setting sufficiently large variance to the priors. 
Furthermore, survey practitioners who need to obtain estimates for a large number of variables, would also 
realize that they would not be able to produce estimates with satisfactory accuracy for all variables, 
independently of which approach was employed. Finally, it is showed how BLE and design-based 
approaches can be conciliated. 
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A nonparametric method to generate synthetic populations 
to adjust for complex sampling design features 

Qi Dong, Michael R. Elliott and Trivellore E. Raghunathan1 

Abstract 

Outside of the survey sampling literature, samples are often assumed to be generated by a simple random 
sampling process that produces independent and identically distributed (IID) samples. Many statistical methods 
are developed largely in this IID world. Application of these methods to data from complex sample surveys 
without making allowance for the survey design features can lead to erroneous inferences. Hence, much time 
and effort have been devoted to develop the statistical methods to analyze complex survey data and account for 
the sample design. This issue is particularly important when generating synthetic populations using finite 
population Bayesian inference, as is often done in missing data or disclosure risk settings, or when combining 
data from multiple surveys. By extending previous work in finite population Bayesian bootstrap literature, we 
propose a method to generate synthetic populations from a posterior predictive distribution in a fashion inverts 
the complex sampling design features and generates simple random samples from a superpopulation point of 
view, making adjustment on the complex data so that they can be analyzed as simple random samples. We 
consider a simulation study with a stratified, clustered unequal-probability of selection sample design, and use 
the proposed nonparametric method to generate synthetic populations for the 2006 National Health Interview 
Survey (NHIS), and the Medical Expenditure Panel Survey (MEPS), which are stratified, clustered unequal-
probability of selection sample designs. 

 
Key Words: Synthetic populations; Posterior predictive distribution; Bayesian bootstrap; Inverse sampling. 

 
 
1 Introduction 
 

Statistical methods outside the survey methodology setting have usually been developed without 
careful consideration for sample design, often implicitly assuming simple random samples, or, 
occasionally, one-stage cluster samples. Major efforts of modern survey statistics focus on extending 
methods to analyze complex survey data (Skinner, Holt and Smith 1989), accommodating issues such as 
stratification, unequal probability of selection, nonresponse bias or calibration. Hinkins, Oh and Scheuren 
(1997) proposed an inverse sampling design algorithm that connects the survey statistics and the classical 
statistics from another perspective. Their basic idea is to choose a subsample that has a simple random 
sample structure unconditionally. The subsample is often much smaller than the original sample, so they 
propose to repeat the process independently many times and average the results to increase the precision. 
They also described exact or approximate inverse sampling schemes for stratified simple random 
sampling, one-stage cluster sampling, and two-stage cluster sampling. However, this new idea is not used 
widely in practice, perhaps because it is extremely computionally intensive and the precision losses are 
often substantial. Similarly, generating synthetic populations from a posterior predictive distribution of a 
population conditional on complex sample data in a fashion that accounts for the complex sample design 
is not straightforward (Little 1991). However, in recent years demand for synthetic populations has 
increased, in order to deal with weight trimming or windorization problems (Lazzeroni and Little 1998; 
Elliott and Little 2000; Elliott 2007; Chen, Elliott and Little 2010), disclosure risk settings (Little 1993; 
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Raghunathan, Reiter and Rubin 2003; Reiter 2004, 2005), or combining data from multiple surveys 
(Raghunathan, Xie, Schenker, Parsons, Davis, Dodd and Feuer 2007; Dong 2012). Often the synthetic 
populations are generated under a distributional assumption (normal, binomial, Poisson), with the 
posterior distribution of the model parameters approximated by the asymptotic normal distribution. The 
mean and covariance matrix of the normal distribution are estimated after complex sampling design 
features are taken into account (Raghunathan et al. 2007).  

A major weakness of model-based methods is that if the model is seriously misspecified, it may yield 
invalid inferences (Little 2004). In multivariate settings, we need to consider the relationships among the 
variables of interest and determine an appropriate model that fits the data, which may be hard if the data 
contains different types of variables. In this paper we propose a nonparametric method as a counterpart of 
the model-based method to generate synthetic populations. This work extends the finite population 
Bayesian bootstrap and related Pólya posterior models of Lo (1988), Ghosh and Meeden (1983), and 
Cohen (1997) to account for complex sample designs. Since it achieves the same goal of the inverse 
sampling technique, it can be treated as the Bayesian finite population version of inverse sampling. To 
make inference using this weighted finite population Bayesian bootstrap, we can either make use of the 
draws directly, or, for computational efficiency, use results previously derived in the disclosure risk and 
multiple imputation literature, since these non-parametrically-generated populations can be viewed as 
multiple imputations of the unobserved elements of the population. 

This paper is organized as follows. Section 2 briefly discusses synthetic populations in the context of 
Bayesian finite population inference. Section 3 reviews and summarizes the Bayesian bootstrap method 
and its finite population extension, and shows that, for an unequal probability of selection sample, the 
distribution of synthetic populations generated under a variant of a Pólya urn scheme matches the 
posterior predictive distribution of a finite population Bayesian bootstrap. Section 4 presents the proposed 
method under stratified clustering sampling with unequal selection probabilities. Section 5 shows that 
inference from these non-parametrically-generated synthetic populations can be obtained using results 
from the disclosure risk and multiple imputation literature, where each synthetic population has zero 
“within-imputation” variance. Section 6 provides a simulation study to evaluate the performance of the 
nonparametric method in a repeated sampling context. Section 7 applies the method to generate synthetic 
populations than can be used to estimate health insurance coverage rates using the 2006 NHIS and MEPS 
data, and compares the result with a parametric (log-linear) modeling approach. Concluding remarks are 
provided in Section 8. 

 
2  Generating synthetic populations from survey data 
 

The basic concept of Bayesian finite population inference involves imputing the non-sampled values of 
the population from the posterior predictive distribution based on the observed data. Assume the 
population values are  1 , , NY Y Y  and the observed data,  obs 1 , , nY y y  is obtained in a survey 
with sampling indicators  1 , , .NI I I  The Bayesian population inference allows for the use of 
parametric model  Pr  Y   for population data based on the posterior predictive distribution for the 
unobserved elements of the population  nob obsPr :Y Y  

     nob obs nob obs obs,Pr Pr PrY Y Y Y Y d     
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(Ericson 1969; Little 1993; Rubin 1987; Scott 1977; Skinner et al. 1989). Here we use the model 
 Pr Y   to approximate the entire population distribution  Pr Y  and average over the posterior 

distribution based on the sampled data  obsPr θ .Y  In the case that there are design variables known for 
the entire population available, the above model can be naturally extended by conditioning on these 
variables. 

Implicit in the derivation of above is that the sampling indicator I  need not be modeled. This requires 
ignorable sampling (Rubin 1987) (the distribution of I  does not depend on unobserved data), as well as a 
model for the data  Pr Y   that is attentive to design features and robust enough to sufficiently capture 
all relevant aspects of the distribution of Y  of interest. Our goal here is to develop a method to generate 
draws from  nob obsPr Y Y  that account for all the design features in obsY  so that draws from the posterior 
distribution of nob obsY Y  can be treated as a simple random sample in analysis. 

 
3  Weighted finite population Bayesian bootstrap 
 
3.1  Finite Population Bayesian Bootstrap (FPBB) 
 

Assume that the (scalar) population elements , 1, ,iY i N  are exchangeable and can take on 
K N  possible values  1 , , ;Kb b  thus  1~ MULTI 1; , , .i KY     Further assuming a conjugate 
Dirichlet prior for  1~ DIR , , K    yields (Ghosh and Meeden 1983) 
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 (3.1) 

where 0 1
,K

ii
   1

,K
ii

N N


  and 1 , , Kn n  refers to the number of distinct values we observe 

from our sample  1 , , ,ny y y
1

.K
ii

n n


  If 0i   then  nobp Y y  reduces to  
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To ease implementation, Lo (1988) proposed making draws from the FPBB posterior predictive 
distribution using a “Pólya urn scheme” procedure. Suppose an urn contains n  balls, each of which have 
a distinct real number label , 1, , .ib i K  A Pólya sample of size m  is selected by first selecting a ball 
at random from the urn and returning the selected ball into the urn, then putting one same ball into the urn 
and repeating this process until m  balls have been selected. It can be shown that the probability of getting 

im  balls of type ib  is given by 

                                         
   

   
1

1 1 , ,
k

i i ii
K K

n m n
p b m b m

n m n

  

  
  

  (3.2) 

where in  is the number of balls of type ib  originally in the urn. The distribution of the counts of type ib  
is invariant under any permutation of the draws. Note that this corresponds directly to the posterior 
probability of a total of  1 , , Km m  elements of type  1 , , Kb b  in a population, given that  1 , , Kn n  

elements were observed in a (simple random) sample of size 
1

.K
ii

n n


  Hence a FPBB replicate 

sample can be drawn from this Pólya posterior using the following steps: 
 

Step 1. Draw a Pólya sample of size ,m N n   denoted by  * *
1 , , N ny y   from the urn 

 1 , , ;ny y  by (3.2), with k k km N n   draws of value obs
kb  for 1, , ,k K  this corresponds to a 

draw of  nobP Y y  from (3.1). 
 

Step 2. Form the FPBB population * *
1 1, , ,  , .,n N ny y y y   

 
3.2  FPBB with unequal probabilities of selection 
 

Cohen (1997) extended the FPBB procedure to adjust for the unequal probabilities of selection. 
Assume  1 , , ny y  is a sample from a finite population  1 , , NY Y  with design weights  1 , , ,nw w  
where  

 

1
1i

i

w
P I




 

and I  is the sampling indicator. The procedure has two steps: 
 

Step 1. Draw a sample of size ,N n  denoted by  * *
1 , , ,N ny y   by drawing *

ky  from  1 , , ny y  in 

such a way that iy  is selected with probability  

 

   
, 11 *

,
1 *

i i kw l N n n
N n k N n n

  

   
 

where iw  is the weight of unit i  and , 1i kl   is the number of bootstrap selections of iy  among 
* *
1 1., , ky y   (The function wtpolyap in the R package polypost can be used to obtain draws from a 

weighted Pólya urn.) 
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Step 2. Form the FPBB population * *
1 1, , ,  , .,n N ny y y y   

 

Although Cohen (1997) did not provide theoretical proof for this procedure, it can be obtained as a 
straightforward extension of the standard FPBB and Pólya urn equivalency described in Section 3.1. First, 
we determine the posterior distribution of the FPBB sample with unequal probabilities of selection 
implied by the weighted FPBB procedure. The multinomial likelihood based on our weighted sample is 
given by  

 
*

obs
1

,i

K
w
i

i
p y



    

where  

   *

1

1
n

i j i j
j

n
w I y b w

N n 

 
   

 
  

is the sum of the design weights minus one across all sampled elements with value , 1, , ,ib i K  
normalized to sum to .n  (Note that this removes subjects sampled with weights equal to one – “certainty 
sample” elements – from the likelihood, as they have no chance to be part of the unobserved portion of the 
population, and thus contribute no information about these unobserved elements.) Assuming an improper 
Dirichlet prior   1

1
,k

ii
p 


    the weighted finite population Bayesian bootstrap posterior is given by 

                                   

   

     

   

 
 

 

 

*

*

nob nob * *
nob 1 1 1

1 1

nob 10 0
1 1

10 0

1 1 1
11 1 10 0

1 1 1
11 10 0

*

*
1

, , , , ,

i i

i

K K K

K

K

K K Kr w
i i i Ki i i

K Kw
i i Ki i

K
i i

i i

P Y y w P b r b r w w

p Y p y p d d

p y p d d

d d

d d

w r N
nw



  



 



  

    


   

    


   

  




 

 

   

  



 (3.3) 

since 
1

n
ij

r N n


   and *
1

.n
ij

w n


  

Next, we show the distribution of samples obtained from the unequal probability of selection Pólya 
Urn scheme of Cohen (1997) is equal to the posterior distribution of the FPBB sample with unequal 
probabilities of selection. Given the observed data, the probability that we draw N n  balls and that the 
first 1  r  balls have value 1b  through the last kr  balls have value kb  is: 
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 

 
 

 

 

* * * * *
1 1 1 1

1 1 1
1 1 1

*

*
1

1 1 1
, ,

1 1 1

 



    
        

     

  


 

 



K K K
K K k k

i ii i

K
i i

i i

w w w r w w r
P b r b r

n n n r n r n r

w r N
w n

 

where the first equality follows from the fact the distribution of the counts of type ib  is invariant under 
any permutation of the draws, as in the unweighted setting, and the second equality from the identity 
     1x x x     for 0.x   Thus, noting that  

 

     

*
, 1 , 11 *

,
1 * 1

i i k i i kw l N n n w l
N n k N n n n k

    


     
 

a draw from the unequal probability of selection Pólya Urn scheme yields a draw from  nob ,P Y y w  
in (3.3). 

 
4  Nonparametric method to generate synthetic populations 
 

In this section, we extend the finite population Bayesian bootstrap methods to a stratified, clustered, 
unequal probability sample design setting to develop a nonparametric method to generate synthetic 
populations that adjusts for the complex sampling design features. The idea is to treat the unobserved part 
of the population as missing data and impute it by making draws from the actual data. We do the 
imputation in such a fashion that the resulting draws from the posterior distribution of the population will 
capture the complex design features and can be used in a standard fashion to compute posterior 
distributions of the population quantities of interest.  

 
4.1  Use the Bayesian bootstrap to adjust for stratification and clustering 
 

For a stratified clustering sampling, we first need to resample clusters within the strata. Denote c  as 
the total number of clusters in the actual data, 

1
,H

hh
c c


   and C  as the number of clusters in the 

population, 
1

.H
hh

C C


   One approach is to first apply FPBB Pólya urn scheme to impute the 

unobserved clusters within each stratum, * *
1 , ,,

h hC cc c   which together with the observed clusters provide 

the clusters in stratum h  in the population. However, we typically do not know the number of clusters in 
a stratum from available public use data. Thus we suggest as an alternative to FPBB sample drawing a 
standard Bayesian bootstrap sample of the clusters within each stratum. Considering the equivalence 
between the classical bootstrap and Bayesian bootstrap, we follow Rao and Wu (1988), who suggested 
drawing a simple random sample with replacement (SRSWR) of hm  from the hc  clusters and within each 
stratum h  calculating replicate weights for computation for each bootstrap sample as 

    ** ,  1, ,  ,  1, ,  ,  1, ,  ,l l
hik h hiw w h H i c k N      
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where 

* *1  
1 1

h h h
hik hik hi

h h h

m m c
w w m

c c m
  

    
   

  

and *
him  denotes the number of times that cluster , 1, ,  hi i c  is selected. To ensure all the replicate 

weights are non-negative,  1 ;h hm c   here and below we take  1 .h hm c   

Note that, when clustering is not present, we simply draw a standard Bayesian bootstrap sample from 
the sampled data within each stratum (when stratification is present) or from the entire sample (if 
stratification not present, so that 1H  ) and calculate the replicate weights as * * .hik hik hiw w m  

This procedure is repeated L  times to produce L  Bayesian bootstrap (BB) samples denoted by 
1 , , .LS S  This step generates L  Bayesian bootstrap samples which essentially are L  draws from the 

posterior predictive distribution of the unobserved clusters given the actual data. However, the units for 
the L  Bayesian bootstrap samples still have weights and cannot be analyzed as simple random samples.  

 
4.2  Use weighted FPBB Pólya urn scheme to adjust for weighting 
 

Once we have L  BB samples with replicate weights, the second step imputes the unobserved units 
using the weighted FPBB Pólya urn scheme. In practice, the probability of selecting the thk  unit, * ,ky  
depends on the selection of the first 1k   units, * *

1 1., , ky y   In other words, to determine the probability 
of selecting a new unit, we have to count the number of times that each unit in the sample has been 
selected among the previous selections. In settings where the population size is extremely large, we need 
only generate synthetic populations of size * ,T n  where T  is sufficiently large to overwhelm the sample 
size (e.g., 20-100). To further computational efficiency, we could also draw a moderate sized population 

1F   times and then pool these F  populations to produce one synthetic population, .lS  The size of lS  
then is * * .F T n  

Note that our method only requires knowledge of the final weights in multistage cluster samples, since 
all stages of unequal probabilities of sampling will be corrected by use of the weighted FPBB Pólya urn 
scheme. This is a particularly useful feature of the proposed method, as in many public use datasets the 
components of the probabilities of selection (e.g., cluster-level selection probabilities, non-response 
weights) are not available.  

 
5  Inference from multiple nonparametric synthetic populations 
 

Assume we generate L  synthetic populations, , 1, ,lS l L  using the nonparametric method 
described in Section 4, and that our inferential target is   ,Q Q Y  a function of the population data 
(e.g., population mean, correlation, population maximum likelihood estimator of a regression parameter, 
etc.). We can compute lQ  as the estimate of Q  obtained from pooling the F  synthetic populations that 
impute the unobserved units of ;lS  since these are direct draws from the posterior predictive distribution 
of the population, we can compute posterior means, quantiles, and credible intervals from the 
corresponding empirical estimates from the draws, if L  is sufficiently large.  
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However, in many settings, the computational effort required to impute the population may be very 
large, even if the full population is not required to be synthesized. Hence an alternative approach for 
inference is to approximate the posterior predictive distribution of a scalar population statistic Q  via a t­
distribution: 

  1
1 1, , ~ , 1L L L LQ S S t Q L V

   

where  

1 11

L FL
lfl l fl

L L
Q

QQ
L F

  
   and  

2

1

.
1 L

L l L
l

V Q Q
L 

   

The result follows immediately from Section 4.1 of Raghunathan et al. 2003, and is based on the standard 
Rubin (1987) multiple imputation combining rules, treating the unobserved units of lS  as missing data 
and the sampled units as observed data. The average “within” imputation variance is zero, since the entire 
population is being synthesized; hence the posterior variance of Q  is entirely a function of the between-
imputation variance, and the degrees of freedom is simply given by the number of FPBB samples. (When 
the population is extremely large, we need only synthesize a draw sufficiently large for average “within” 
imputation variance to be trivial relative to the between imputation variance .LV ) The result assumes that 

 lfE Q Q  - a result guaranteed by our weighted FPBB estimator - as well as a a sufficiently large 

sample size for Bayesian asymptotics to apply.  

 
6  Simulation studies 
 

In this section, we conduct two simulation studies to evaluate the repeated sampling properties of the 
population estimators constructed using the nonparametric method that generates synthetic populations 
while adjusting for the complex sampling design features. The first of these considers a one-stage, unequal 
probability of selection design where we vary the number of weighted FPBB draws for each synthetic 
population and the number of synthetic populations to assess the impact on inference. The second 
compares inferential properties from observed data and from the posterior distribution obtained from 
synthetic population in a stratified, multistage, unequal probability of selection sample, this time fixing the 
posterior sample size while considering both population means and population regression parameters as 
targets of inferences.  
 
6.1 Single stage, unequal probability of selection sample design 
 

We generated outcome data Y  in a population of N  subjects from a moderately skewed gamma 
distribution, conditional on uniformly distributed covariate :X  

 

 

~ UNI 0.05; 0.65 , 1, ,

~ GAMMA 10 * ,1

i

i i i i

X i N

Y X x x




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We assume X  is fully observed for the population, and that the probability of selection   is proportional 
to ,X  so that i i ii

nx x   in a without-replacement sample design as long as .n N  The 

estimand of interest is the population mean 1
1

N
ii

Y N y


  3.564. Note that  corr ,i iY X 0.6794, 

so that unweighted sample means will be positively biased, and use of design weights 1i iw    are 
required to obtained unbiased estimates of .Y  We generated a population of size N  1,000 from which 
we sampled 100;n   bias, empirical and estimated variance, 95% interval length, and nominal 95% 
coverage are then estimated from 200 independent samples from the population. We varied the total 
number of simulated populations L  as 5, 20, 100, and 1,000, and the number of FPBB draws F  of size 
N n  (so that 9K  ) as 1, 20, and 100, in full factorial design. Variance, interval length, and interval 
coverage are obtained via the normal approximation; for L 100 and 1,000, we also obtained variance, 
interval length, and interval coverage using the direct draws from the posterior predictive distribution, 
since a sufficient number of draws from the posterior were available to make such estimates. 

Table 6.1 shows the results of the simulation study. In all cases the point estimate LQ  of the 
population mean was approximately unbiased, reflecting the ability of the weighted FPBB to “undo” the 
sampling weights in the generation of the synthetic population. Under the normal approximation, larger 
numbers of the synthetic population were associated with smaller variances and narrower interval lengths, 
as expected with larger numbers of degrees of freedom, although the difference between 20 and 100 was 
minimal, just as the 20t  distribution begins to approximate a standard normal. Finally, using only a single 
FPBB draw of size N n  appeared to overestimate the variance and lead to overcoverage, especially for 
small values of L . Values of L  and F  of 20 or greater appeared to yield reasonable results. Use of the 
direct draws for L 100 and 1,000 yielded to variance and credible interval estimates that were very 
similar to that of the normal approximation, with slightly narrower interval lengths and somewhat less 
conservative coverage. 

 
Table 6.1 
Bias, empirical variance, mean of estimated variance, interval length and coverage of 95% nominal 
confidence interval of a population mean as a function of the number of synthetic populations  L  and the 
number of weighted finite Bayesian bootstraps that make up the synthetic population   .F  Interval length 
and coverage obtained via ­t approximation and empirically via direct simulation. One stage unequal 
probability of selection sample design. Results from 200 simulations. 
 

L 5 20 100 1,000 
F    1    20   100    1    20   100    1    20   100    1    20   100 
Bias -0.020 0.009 -0.026 0.021 -0.030 0.010 -0.031 0.024 -0.028 -0.045 -0.070 0.079 
Emp. Variance 0.126 0.099 0.106 0.088 0.092 0.120 0.093 0.079 0.085 0.084 0.093 0.078 
Est. Variance: t  0.172 0.119 0.105 0.156 0.098 0.099 0.109 0.097 0.095 0.147 0.104 0.094 
Interval Length: t  2.20 1.78 1.71 1.63 1.30 1.32 1.52 1.21 1.20 1.50 1.26 1.20 
95% Coverage: t  97 95 96 99 94 92 98 96 95 98 96 98 
Est. Variance: Empirical 0.138 0.095 0.084 0.148 0.093 0.094 0.108 0.096 0.094 0.084 0.093 0.078 
Interval Length: Empirical N/A N/A N/A N/A N/A N/A 1.50 1.19 1.18 1.49 1.25 1.19 
95% Coverage: Empirical N/A N/A N/A N/A N/A N/A 96 93 94 98 96 97 
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6.2  Stratified, multistage, unequal probability of selection sample design 
 

We generated a population with strata and clusters within each stratum from the following bivariate 
normal distribution: 

1

2

500 4.5* 100 50
 ~  ,  ,

500 4.5* 50 100
ijk ij

ijk ij

X i u
N

X i u
      

            
  

where 
            1 : 150i   denotes the stratum effect, 
             ~ 0,10iju N  denotes the random cluster effect, 

             ~ uniform 2, 52ia  is the number of clusters within stratum ,i  

             ~ uniform 10, 20ijb  is the number of units within cluster j  of stratum .i  
 

The population for the simulation study has 61,324 subjects. We draw a stratified clustering sampling 
with unequal probabilities of selection. Specifically, we select two clusters from each stratum with 
probabilities proportional to cluster size (PPS) given by 

1
.ia

i ijj
b b


   Within each selected cluster, we 

select approximately 1 5  of the population. Thus, the probability that unit ij  is selected is given by  

1

52
i

iji
ij a

ijijj

bb
bb



    


 

for all j  elements in cluster i  with corresponding weight  

1

2 5

ia
ij ijj

ij
i ij

b b
w

b b



  


. 

Since the number of clusters and units are random, the complex sample size is slightly different across 
replications, averaging approximately 770.  

Because of the large sample and population size, we focus on inference using t  approximations. We 
generate L 100 synthetic populations using F  weighted FPBB samples of size 100 .K n  The 
estimands of interest are the population marginal mean for 1x  

1
1 1

1





 
N

i
i

X N X  

and similarly for 2 ,x  and the population regression coefficients of 1x  on 2x  given by  

   

 

1 1 2 21
0 1 1 2 1 2

2 21

, .
N

i ii
N

ii

X X X X
B X B X B

X X




 
  






 

We drew 200 independent samples from the population and used the sample data directly to compute 
weighted sample means and linear regression coefficients along with associated variance estimates and 
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95% nominal confidence intervals using Taylor Series approximations, and compared these with the 
equivalent estimates obtained using the nonparametric synthetic data. Results are given in Table 6.2. 
(Since the marginal means have the same superpopulation value, we combine the results in Table 6.2.) 
Figure 6.1 displays the scatter plot of the pairs of estimated mean, intercept and slope from the actual 
samples and the corresponding synthetic populations along with a 45-degee line. The sampling 
distributions of the actual sample and synthetic population estimates closely correspond. The point 
estimates and standard errors for both the means and regression parameters closely correspond. The 95% 
confidence interval coverage rates for all three statistics also closely correspond, and are close to nominal 
values.  

 
Table 6.2 
Descriptive and analytic statistics estimated from the actual data and the synthetic populations in a simulation 
evaluation of the nonparametric method. Two-stage, unequal probability of selection stratified sample design. 
Results from 200 simulations. 
 

Type Actual Data Synthetic Populations 
Estimate SE SD Coverage (%) Estimate SE SD Coverage (%) 

Mean X  836.701 0.461 0.491 93 836.793 0.476 0.493 94 
Intercept 0B  1.013 1.768 1.848 94 1.014 1.775 1.846 92 
Slope 1B  0.999 0.002 0.002 92 0.999 0.002 0.002 92 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.1 Scatter plot of the descriptive and analytic statistics from the actual and synthetic populations 
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7  Application 
 

In this section, we use data from the 2006 National Health Interview Survey (NHIS) and the 2006 
Medical Expenditure Panel Survey (MEPS) to evaluate the performance of the nonparametric method in a 
stratified clustering sampling design. The National Health Interview Survey (NHIS) is a nationwide, face-
to-face health survey based on a stratified multistage design, with oversamples of black, Hispanic, and 
elderly populations. For confidentiality purposes, the true stratification and primary sampling unit (PSU) 
variables are not publicly-released; instead pseudo-strata and PSUs (two per stratum) are released. The 
MEPS is a subsample of the previous year’s NHIS sample, and retains the same stratified multistage 
design. 

Both NHIS and MEPS ask respondents whether they are covered by any health insurance and, if so, 
what type health insurance they are using (private versus government-sponsored such as Medicare or 
Medicaid). We estimate overall health insurance coverage rates as well as coverage rates in 
subpopulations defined by demographic variables such as gender, race, income level, or combinations 
thereof: specifically, we estimate health insurance coverage for males, non-Hispanic whites, and non-
Hispanic whites with household income between $25,000 and $35,000 per year. We delete the cases with 
item-missing values and focus on our simulation on the complete cases. This results in 20,147 and 20,893 
cases in the NHIS and MEPS data respectively. 

 
7.1  Estimation of health insurance coverage from the NHIS and MEPS 
 

In this simulation study, we will use the nonparametric method to adjust for the stratified clustering 
sampling used by the 2006 NHIS and MEPS and generate synthetic populations that can be analyzed as 
simple random samples. We also consider a model-based approach for generating synthetic populations 
using a log-linear model for the health insurance status by six independent demographic variables: gender, 
race, census region, education level, age (categorical), and income level (categorical). Then we evaluate 
the method by comparing the estimates of the health insurance coverage rate for the whole population and 
selected subdomains obtained from both the non-parametric and log-linear model synthetic populations to 
those obtained from the actual data. 
 

7.1.1  Generating nonparametric synthetic populations 
 

Using the nonparametric method developed in Section 3, we generate 200 synthetic populations for 
each survey. Specifically, we generate B  200 BB samples and for each BB sample, we generate F  10 
FPBB of size  5 5 .n K   Thus, each synthetic population is 50 times as big as the actual sample 
(1,007,350 for NHIS, 1,044,650 for MEPS). Each synthetic population is analyzed as a simple random 
sample and the estimates are combined as described in Section 5. 
 

7.1.2  Generating synthetic populations via log-linear models 
 

In the common situation that the survey data of interest are in the form of a multidimensional 
contingency table, a log-linear model might be considered as a parametric approach to generate draws 
from a posterior predictive distribution. For simplicity of exposition, assume Y  is the variable of our 
interest with m  levels, and Z  is a design variable with n  levels (e.g., gender, race, etc.) whose marginal 
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distribution is known for the population. Assume , 1, , , 1, , ,ij i m j n    represents the cell 

proportion of the thij  cell, 
1 1

1 .m n
iji j 

    A fully saturated log-linear model is given by (Agresti 

2002): 

  0log ,  1, , , 1, , ,Z Y ZY
ij i j ij i m j n             

where  log ij  is the log of the probability that one observation falls in cell ij  of the contingency table, 
Z
i  is the main effect for , Y

jZ   is the main effect for Y  and ZY
ij  is the interaction effect for Z  and .Y  

This model includes all possible one-way and two-way effects and thus is saturated as it has the same 
number of effects as cells in the contingency table. To avoid over-fitting the data in the example, we can 
consider non-saturated models that exclude some or all of the interaction terms, choosing the model based 
on likelihood ratio tests or AIC or BIC criteria.  

The synthetic populations can be generated from the posterior predictive distribution from the model. 
However, when the data is collected under a complex sampling design, we are not aware of standard 
statistical software that can produce both the point estimate and covariance estimate of the regression 
coefficients. Instead, we have to use a jackknife replication method to adjust for stratification, clustering 
and weighting. Specifically, the parametric synthetic populations can be generated from the following 
steps:  
 

1. Estimate coefficients and covariance matrix: 
 

Under the selected model (assume the two-dimensional saturated model here just for illustration), 

estimate the coefficients  0 , , , ,  1, , 1, 1, , 1Z Y ZY
i j ij i m j n           and the covariance 

matrix of the estimates  0
ˆ ˆ ˆ ˆ, , ˆ,Z Y

i j
ZY
ij       after taking into account the complex design features 

using jackknife repeated replication (JRR): 
• For each replication, withdraw one cluster, and inflate the weights for the respondents in the 

other clusters within the same stratum by  1h hc c   (replication weights), where hc  

denotes the number of clusters within stratum .h  Assume we have 
1

H
hh

c C


  clusters in 

total, then we have C  replications. For each replication, we fit the log-linear model and 
obtain the maximum likelihood estimates (MLE) of the coefficients,    

 0 , , , ,  1, , 1, 1, , 1.Z Y ZY
i j ij i m j n         

• For each replication, use the replication weights to fit the log-linear model. Specifically, use 
the replication weights to calculate the size of each cell of the contingency table, which is 
used to fit the log-linear model. We denote the MLE for the thr  replication by a column 

vector, , 1,ˆ , r hr c   for stratum .h  Notice that  0 , , , ,  1, , 1,Z Y ZY
i j ij i m         

1, , 1j n   is a mn  by 1 column vector. We denote  0 , , ,Z Y ZY
i j ij

        

 0 1, , , .mn
    Similarly, , 1, , , 1, , ˆ

r hr c h H   are also mn  by 1 column vectors 

denoted by       0 1, , ,ˆ ˆ ˆ .r r r
mn     
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The MLE of the coefficients  0 , , , ,  1, , 1, 1, , 1Z Y ZY
i j ij i m j n           can be 

obtained by MLE 1 1
ˆ ˆ .hH c

h rr
C

 
     For the mn  by mn  covariance matrix, the jackknife replication 

estimate of the thpq  , 1, ,p q mn  element is the covariance between the thp  and th  q  coefficients, 
which is given by: 

     
1 1

ˆ ˆ ˆ ˆ1
 ,

hH c
h

h

r r
p p q

r
q

h

c
c 

  


     

where  

1 1

ˆ ˆ
hH c

h
p

r

r
p C

 

    and  

1 1

.ˆ ˆ
hH

r
q

h r
q

c

C
 

    This gives us the correct variance estimate of MLE
ˆ .  

 

2. Approximate the posterior distribution of the coefficients: 
 

Let T  denote the Cholesky decomposition such that  MLEcov .ˆtTT   Generate a vector z  of 

random normal deviates and define * MLE
ˆ .Tz     

 

3. Impute the unobserved values of the population: 
 

Suppose L  draws, 1 , , ,  L   are made from the approximate posterior distribution of .  For each 

        01, , , , , , ,  1, , 1, 1, , 1,l X l Y l XY l
l i j ijl L i m j n            

we can generate one synthetic table using the assumed model: 

          
0log , 1, , 1, 1, , 1.l l X l Y l XY l

ij i j ij i m j n               

Once the cell proportions are determined, we can generate the synthetic table of any size.  
 

The results below are based on a seven-dimension contingency table (see Table 7.1 for the specific 
covariate categories). BIC measures indicated that a model with all 2-way but no 3-way interactions 
provided the most parsimonious fit. 

 
Table 7.1 
Variables and response categories for the 2006 NHIS and MEPS used in log-linear model. 
 

Variables of Interest Response Categories 
Age 1: [18; 24]; 2: [25; 34]; 3: [35; 44]; 4: [45; 54]; 5: [55; 64]; 6: >= 65 
Census Region  1: Northeast; 2: Midwest; 3: South; 4: West 
Education 1: Less than high school; 2: High school; 3: Some college; 4: College 
Gender 1: Male; 2: Female 
Health Insurance Coverage 1: Any Private Insurance; 2: Public Insurance; 3: Uninsured 
Income 1: (0; 10,000); 2: [10,000; 15,000); 3: [15,000; 20,000); 4: [20,000; 25,000); 5: [25,000; 35,000);  

6: [35,000; 75,000); 7: >= 75,000 
Race 1: Hispanic; 2: Non-Hispanic White; 3: Non-Hispanic Black; 4: Non-Hispanic All other race groups 
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7.2  Results 
 

The results are summarized in Table 7.2. For the total population and the larger subpopulations, we can 
see that the point estimates (posterior mean) of health insurance rates are the same for both the 
nonparametric and log-linear approach, and are almost identical to those obtained from the actual data 
after complex sampling design features are accounted for. Both methods yield synthetic populations with 
slightly higher (posterior) variances than the actual data, reflecting the information loss in the synthesis. In 
the NHIS, the loss for the non-parametric estimator averaged a little over 20% and was slightly greater 
than for the log-linear model, which averaged around 10%. Both had losses of about 10% over the actual 
data in MEPS. However, for the smaller subpopulation (non-Hispanic whites earning $25,000-$35,000 per 
year), the log-linear model produced biased results, due to the fact that the log-linear model did not 
include all possible interactions. The nonparametric method yields estimates almost identical to those 
obtained from the actual data after complex sampling design features are accounted for. The log-linear 
model also substantially underestimated the variance of insurance coverage by 30-40% in these cells, 
versus an overestimation in the nonparametric approach of 10-40%. 

 
Table 7.2 
Estimates from actual data and from the synthetic populations (Nonparametric and log-linear model) for the 
2006 NHIS and MEPS. 
 

 Actual Data (Complex Design) Synthetic Populations 

Domain 
 Nonparametric Log-linear Model 
Types  NHIS MEPS NHIS MEPS NHIS MEPS 

Whole Population Proportion 
Private 0.746 0.735 0.746 0.736 0.746 0.734 
Public 0.075 0.133 0.075 0.132 0.076 0.133 
Uninsured 0.179 0.132 0.179 0.132 0.178 0.132 

Variance 
Private 2.46E-05 2.78E-05 3.15E-05 3.31E-05 2.66E-05 2.86E-05 
Public 6.29E-06 1.44E-05 8.06E-06 1.59E-05 7.99E-06 1.77E-05 
Uninsured 1.84E-05 1.41E-05 2.29E-05 1.71E-05 1.81E-05 1.56E-05 

Male Proportion 
Private 0.740 0.735 0.740 0.736 0.740 0.735 
Public 0.060 0.101 0.060 0.100 0.060 0.102 
Uninsured  0.200 0.164 0.200 0.164 0.200 0.164 

Variance 
Private 3.32E-05 3.87E-05 3.93E-05 4.31E-05 3.70E-05 3.52E-05 
Public 6.82E-06 1.53E-05 8.81E-06 1.63E-05 7.91E-06 1.91E-05 
Uninsured 2.94E-05 2.64E-05 3.29E-05 2.79E-05 3.19E-05 2.56E-05 

Non-Hispanic White Proportion 
Private 0.805 0.788 0.804 0.788 0.804 0.788 
Public 0.062 0.116 0.062 0.116 0.062 0.117 
Uninsured 0.134 0.096 0.134 0.096 0.134 0.096 

Variance 
Private 2.99E-05 3.35E-05 3.79E-05 4.12E-05 3.07E-05 3.98E-05 
Public 8.20E-06 1.81E-05 1.04E-05 2.00E-05 1.10E-05 2.45E-05 
Uninsured 2.02E-05 1.51E-05 2.35E-05 1.80E-05 1.82E-05 1.82E-05 

Non-Hispanic White & 
Income [25,000; 35,000) 

Proportion 
Private 0.827 0.813 0.827 0.814 0.840 0.838 
Public 0.039 0.079 0.039 0.079 0.037 0.067 
Uninsured 0.134 0.108 0.134 0.107 0.122 0.096 

Variance 
Private 1.00E-04 1.39E-04 1.48E-04 1.63E-04 6.80E-05 8.59E-05 
Public 2.82E-05 6.31E-05 3.86E-05 7.28E-05 1.79E-05 4.25E-05 
Uninsured 7.24E-05 8.92E-05 9.55E-05 1.11E-04 4.38E-05 5.79E-05 
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8  Discussion 
 

In this paper, we propose and evaluate a nonparametric method to generate synthetic populations. This 
method adjusts for the complex sampling design features without assuming any models to the observed 
data so it is robust to model-misspecification. Also, unlike model-based methods that needs to develop 
separate imputation models for different variables of interest, the nonparametric method only uses the 
design variables to generate synthetic populations and thus is not variable-specific.  

We considered the repeated sampling properties of our non-parametric synthetic estimators in a 
univariate gamma and bivariate normal setting, estimating means, slopes, and intercepts. Point estimates 
were unbiased, intervals had approximately nominal coverage, and losses of efficiency relative to the 
actual data were trivial. We also considered a “real world” setting, generating a predictive distribution for 
the 2006 NHIS and MEPS and estimating rates and associated variance estimates of health insurance 
coverage using both the nonparametric method and a fully parametric log-linear modeling approach. 
When the model fits the data well, the model-based method is more efficient than the nonparametric 
method. However, when the assumed model does not fit the data well, as was the case in certain small 
domains, the model-based method may produce invalid inference. In such situations, the nonparametric 
method is robust to model misspecfication. 

In addition to robustness to model misspecification, another advantage is that the nonparametric 
method only uses the design variables such as stratum, cluster and weight to impute the unobserved part of 
the population. Unlike model-based methods, it does not need to model the complicated relationships 
among the variables of interest, which becomes impossible if there are item missing values in the actual 
data. The synthetic populations generated by the nonparametric method still preserve the item missing 
values in the actual data. This potentially fills in a gap in the multiple imputation area in that existing 
imputation methods typically ignore the complex sampling design features in the data and impute the 
missing values as if they are simple random samples. A related advantage is that, while design variables 
are used in the nonparametric generation of the synthetic populations, the synthetic populations 
themselves do not need to contain them, since they can be analyzed as simple random samples. Hence, 
disclosure risk associated with release of design variables can be eliminated (De Waal and Willenborg 
1997; Mitra and Reiter 2006; Reiter and Mitra 2009). 

A fourth practical advantage of the nonparametric method is that it is easier to implement in existing 
statistical software packages because it focuses on the design variables; thus specific strategies for various 
types of variables and data structures do not need to be developed.  

Because use of the weighted FPBB does not require information about the number of clusters in the 
population or conditional probabilities of selection at each stage of selection in a multistage sample 
setting, we use an approximate Bayesian bootstrap method to adjust for stratification and clustering. We 
view this as advantageous in many ways, since public use datasets typically do not break out weights for 
each stage of the sample. However, it does have the disadvantage that, to ensure positive replicate 
weights, the Bayesian bootstrap method produces fewer clusters within strata than in the actual data. In the 
setting where the probabilities of selection are known for all stages of the sample, it seems likely that the 
weighted FPBB can be implemented at each stage, with the population of unobserved clusters and the 
population of elements within each cluster imputed in a two-stage fashion, paralleling Meeden (1999) just 
as the one-stage FPBB parallels Ghosh and Meeden (1983). This remains an area for future research.  
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Using successive difference replication for estimating 
variances 

Stephen Ash1 

Abstract 

Fay and Train (1995) present a method called successive difference replication that can be used to estimate the 
variance of an estimated total from a systematic random sample from an ordered list. The estimator uses the 
general form of a replication variance estimator, where the replicate factors are constructed such that the 
estimator mimics the successive difference estimator. This estimator is a modification of the estimator given by 
Wolter (1985). The paper furthers the methodology by explaining the impact of the row assignments on the 
variance estimator, showing how a reduced set of replicates leads to a reasonable estimator, and establishing 
conditions for successive difference replication to be equivalent to the successive difference estimator. 

 
Key Words: Successive differences; Successive difference replication; Systematic random sampling. 

 
 

 
1  Introduction 
 

Fay and Train (1995) present a method called successive difference replication (SDR) that can be used 
to estimate the variance of an estimated total from a systematic random sample from an ordered list. The 
estimator uses the general form of a replication variance estimator where the replicate factors are 
constructed such that it mimics the successive difference (SD) estimator.  

The paper establishes and uses new concepts to gain more understanding into the methodology 
originally proposed by Fay and Train (1995), hereafter referred to as F&T. The new concepts help to 
explain the impact of the row assignments on the variance estimator, show how a reduced set of replicates 
leads to a reasonable estimator, and establish conditions for successive difference replication to be 
equivalent to the successive difference estimator. It is our hope that this additional understanding of SDR 
will make it less mysterious and thereby more accessible to anyone estimating variances for a systematic 
random sample. 

The paper begins by reviewing the SD estimator and how it is suited for variance estimation of 
systematic random samples. The main section of the paper presents two theorems that provide conditions 
for the SDR estimator to be equivalent to the SD estimator. The paper concludes with empirical examples 
that examine alternative row assignments and the suitability of using a reduced set of replicates. 

For the remainder of the paper, sys  will be used as shorthand for systematic random sampling from an 
ordered list. We abbreviate sys  this way because systematic sampling from an unordered or randomly 
ordered list can be shown to be equivalent to simple random sampling (Madow and Madow 1944). For our 
discussion, we focus solely on equal probability selection and methods for selecting a sample in only one 
dimension. Excellent summaries of sys  and estimating variances from sys  can be found in Iachan (1982), 
Wolter (1985, chapter 7), Murthy and Rao (1988), and Bellhouse (1988).  
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1.1  Review of successive differences 
 

Wolter (1984; estimator 2) provides a form of the successive difference estimator of the variance of an 
estimated mean  y  for a sys  sample design as  

   
 

 
2

SD1 1
2

1ˆ 1 ,ˆ
2 1

n

k k
k

v y f y y
n n 



  


  

where ky  is the variable of interest, k  indexes the units of the ordered sample, and /f n N  is the 
sampling fraction. The statistic of interest is Y  or the total of ky  over the universe of interest and Ŷ  is an 
estimator of .Y  Let N  and n  be the size of the universe and sample, respectively. The mean of ky  and 
its estimator are defined as y Y N  and ˆ ,y  respectively. We also define the estimator of the total Y  as 

1
ˆ ,n

kk
Y y


   where the weighted variable of interest with equal weights is   ;k ky N n y  with 

unequal sample weights ,kw  it is defined as .k k ky w y  The estimator  SD1 ˆv̂ y  has been described by 

Yates (1953; pages 229-231) and recommended by Wolter (1984). Murthy and Rao (1988, equation 32) 
provide a sketch of why the estimator works. The short version is that since sys  only selects one unit 
within each implicit stratum, SD’s solution is to collapse adjacent implicit strata. With two units, we can 
estimate the variance of an implicit stratum. Implicit strata are collapsed and averaged over all possible 
pairs and then multiplied by ,n  the number of implicit strata, to give the variance of all the implicit strata.  

One SD variance estimator of a total from a sys  sample is given by F&T as  

   
 

 
2

SD1 1
2

ˆ 1 .ˆ
2 1

n

k k
k

n
v Y f y y

n 



  


  

Wolter (1985, equation 7.7.4) defined the same estimator where  
1

k kw np 
  and kp  is the with 

replacement probability of selection for unit .k  F&T defined a second SD estimator 

       
2 2

SD2 1 1
2

1ˆ 1 ,ˆ
2

n

k k n
k

v Y f y y y y



 
     

 
  

which is “circular” in that it includes an extra squared difference that links the first and last unit from the 
sorted list. 

We express the SD2 estimator more generally as a quadratic form as ,y C y  where  1 2 ny y y y  
is defined as the 1n   weighted observation vector and C  is a square matrix with 2 for each value of the 
diagonal, -1 for every value of the superdiagonal and subdiagonal, and -1 for the bottom left and top right 
value. Here the superdiagonals are defined as the diagonals adjacent to the main diagonal. The exception 
is a 2 2  matrix.  

 
2  Successive difference replication 
 

2.1  Definition of successive difference replication 
 

F&T present a method called successive difference replication (SDR) that estimates the variance from 
a sample selected with sys  by mimicking  SD2

ˆ ,v̂ Y  i.e., SDR is equivalent or nearly equivalent to 



Survey Methodology, June 2014 49 

 

 
Statistics Canada, Catalogue No. 12-001-X 

 SD2
ˆv̂ Y . We show how SDR can be used to produce replicate factors and weights for a general replicate 

variance estimator that is equivalent to the SD2 estimator. Before we define the SDR estimator in the first 
theorem, we first establish some terms and provide a lemma that is used by the theorem. 

A row assignment scheme, or more simply RA, is an assignment of two rows of a matrix to each unit 
in the sample. We usually denote the pair of rows as  ,i ia b  for unit .i  A connected loop is an RA that 
does not repeat any of the rows, i.e., i ja a  and i jb b  for all i  and j  in the connected loop, and is 

circular, i.e., 1i ib a   for all i n  and 1.nb a  For example, one possible connected loop for three 
observations is (1,2), (2,3), (3,1). 

A shift matrix S  can be used to move either the rows or columns of a matrix. We will explain how to 
move rows, which is similar to columns. A shift matrix is a square matrix that has all 0s, except a single 1 
in each column. If we wanted to move row p  to row ,q  we would put a 1 in the thq  row of the thp  
column and 0s elsewhere. We emphasize that order is important in applying a shift matrix to another 
matrix. The application of S  to another square matrix A  as AS  shifts the columns of A  and SA  shifts 
the rows of .A  
 
Lemma: Let 1 2, , , cS S S  be shift matrices, then  1 1 2 2block , , , .C C   S S S S S S I  
 

Proof. We first define a general block diagonal matrix A  that is formed by the square matrices 
1 2, , , CA A A  as 

 

1

2
1 2

...

...
block , , , .

...

C

C

 
 
  
 
 
 

A 0 0
0 A

A A A A

0 0 A

 

It can be shown that if both A  and B  are block diagonal matrices and the square matrices 
1 2, , , CA A A  have the same dimensions as 1 2, , , ,CB B B  respectively, then 

 1 1 2 2block , , , .C CAB A B A B A B  For a given shift matrix, we also know that , S S I  since a one 
row down shift of a shift matrix is .I  With the two previous items, the lemma follows. 

We also define a one row shift matrix as a shift matrix that either shifts all the rows of another matrix 
down one row and the last row moved to the first or shifts all the rows of another matrix up one row and 
the last row moved to the last. If DS  is a one row shift matrix that moves rows down then it has 1s along 
the upper superdiagonal and a 1 in the bottom left entry of the matrix, for example 1.S  Similarly, if US  is 
a one row shift matrix that moves rows up, then it has 1s along the lower superdiagonal and a 1 in the top 
entry of the matrix, for example the subsequently defined 2 .S  Note the property that D US S  and 

;U DS S  therefore .U U D D   S S S S  We now present the main theorem of the paper that 
establishes the conditions under which SDR is equivalent to SD2. 
 
Theorem 1: Let n  be the sample size of a given sys  sample and  1 2 ny y y y  be defined as the 

1n   weighted observation vector, where the order of the observations reflects the sort order of .sys  
 

(a)  Choose a Hadamard matrix of order k   ,k HH I  where .n k  
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(b)  Choose a RA that assigns two rows  ,i ia b  to each unit i  in the sample. Let the RA define 
C  connected loops of cm  units in each connected loop .c  

(c)  Choose the m n  rows of H  corresponding to the RA to make the m k  matrix .M  The 
order of the rows of M  should correspond to the first row of the RA. For example, the first 
row of M  should be row 1ia   of ,H  the second row should be row 2ia   of ,H  etc. Next 
define the m m  shift matrix as  1 2block , , , CS S S S  where the c cm m  one row 
shift matrices cS  are defined to identify the position of the second row ib  of the RA in .M  In 
general, each shift matrix cS  will be a shift-up, shift-down, or a 2 2  shift matrix (see the 
subsequently defined 4S ). 

 

Define the estimator for each replicate total r  as ,1
ˆ ,n

r i r ii
Y f y


   where the matrix of replicate 

factors is  3 2 3 22 2m k m
   F 1 1 I S M  and individual values within the matrix are defined for each 

unit i  (rows of F ) of replicate r  (columns of F ) as 3 2 3 2
, , ,1 2 2 .

i ii r a r b rf h h     mI  is a m m  

identity matrix and m1  is a 1m   vector of 1s. Then the SDR variance estimator 

     
2

SDR 1
ˆ ˆ ˆ1 4ˆ m

rr
v Y f k Y Y


    is equivalent to the sum of C  different SD2 estimators.  

 
Proof. The SDR estimator can be written in matrix notation as 

         

       

3 2 3 2 3 2 3 2

23 2

4
1 2 2 2 2

4
1 2

m k m m k m k m m k

m m

f
k

f
k

   



             

    

y 1 1 I S M y 1 1 y 1 1 I S M y 1 1

y I S MM I S y

 

Because    rows of rows ofM H , it can be shown that .k MM I  With this result, the variance 
becomes  

             

   

1 1
1 1

2 2

1
1 2

2

m m m m m

m

f k f
k

f

        

    

y I S I I S y y I S I S y

y I S S y

 

The last line follows from the lemma and has a constant value for any choice of .H  By noting the block 
diagonal structure of ,S  we can write the estimator as 

   
1

1
1 2 ,

2

C

c m c c c
c

f


    y I S S y  

where cy  corresponds to the vector of the weighted observations in connected loop ,c  which is a result of 
partitioning the weighted observation vector as  1 2 .c c c C  

 y y y y  The choice of the RA does not 
change the result since we know that 2 m c c I S S  is constant for either an up or down one row shift 
matrix .cS  
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Note 1: Theorem 1 defines the SDR estimator in terms of replicate factors, but we can alternatively 
express the estimator in terms of replicate weights as  

     
4

1 .m k m kf
k

    y W 1 1 W 1 1 y  

Here, W  is the m k  matrix of replicate weights defined as * ,W w F  where  1 2, , , nw w ww  
is the vector of design weights for the n  units of the sample and the operator *  multiplies element-wise 
the vector w  by each of the columns of ,F  i.e., if ,i rW  and iw  are entries of W  and ,w  respectively, 
then the entries of W  are defined as , , .i r i i rW w f   
 

Note 2: Huang and Bell (2009) similarly defined SDR as a quadratic form and used it to establish some 
general properties of the estimator when ky  is  2i.i.d. , .   Our interest lies with the interpretation of 

how and how well SDR works. Defining the quadratic form with shift matrices and connected loops leads 
to insights into the row assignments and the efficiency of the estimator.  
 

For a large sample size, it is not usually practical to use ,H  where .n k  The second theorem shows 
one way that we can use H  with k n  to produce a larger Hadamard matrix H  with k n  that will 
result in the SDR estimator being equivalent to the SD2 estimator. The second theorem also builds upon 
and clarifies the instructions F&T give for the case of .n k  In F&T’s instructions, they use the term 
cycle to denote every dm k  units of the sample. Theorem 2 does not make conditions on the RA, but 
otherwise it does follow the setup of F&T. 
 
Theorem 2: Let n  be the sample size of a given sys  sample.  
 

(a)  Choose a Hadamard matrix AH  of order ,Ak  where .An k  

(b)  Choose a RA that assigns rows to AH  to the sample. Retaining their original order, split the 
n  sample units into D  cycles. Each cycle d  has d Am k  units. Within each cycle, the RA 
defines one or more connected loops. 

(c)  Choose a seminormal Hadamard matrix BH  of order Bk  and use it to define a larger 
Hadamard matrix H  of order k  generated from the original .AH  This can be done by 
applying a Welsch construction to ,AH  i.e., .B A H H H  

(d)  Choose the 
1

D
dd

m m


   rows of H  that correspond to the RA to make the m k  matrix 

.M  The order of the rows of M  should correspond to the first row of the RA. Next define the 
m m  shift matrix as  1 2block , , , DS S S S  where the d dm m  shift matrices dS  
identify the position of the second row ib  of the RA in .M  

 

With this prescription, the SDR estimator is defined as  

     
2

SDR
1

4ˆ ˆ ˆ1ˆ
k

r
r

v Y f Y Y
k 

    

and is equivalent to the sum of at least D  SD2 estimators.  
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Proof. The result follows by applying Theorem 1. The specific value of D  follows from the fact that each 
of the D  cycles can have one or more connected loops, so there will be a total of at least D  connected 
loops. 
 

Example 1: Let 14n   and choose the nonnormal Hadamard 4A bH H  of order 4.Ak   The number 
of cycles will be 4D   and the RA within each cycle is given in the second column of Table 2.1 for 
each unit. We define H  of k  16 using a Welsh construction of the original normal Hadamard matrix as  

4 4 4 4

4 4 4 4
16 4 4

4 4 4 4

4 4 4 4

b b b b

b b b b
a b

b b b b

b b b b

 
  
   

  
   

H H H H
H H H H

H H H
H H H H
H H H H

 

where 

4

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

a

 
  
 

  
   

H  and 4

1 1 1 1
1 1 1 1

.
1 1 1 1
1 1 1 1

b

 
   
 

   
  

H  

Using 16 ,H  we can calculate the replicate factors for 16 replicates as Table 2.1. In matrix notation, M  
includes all the rows of 16H H  except rows 13 and 16. The rows of M  are ordered by ,ia  the first row 
assigned in the RA. The shift matrix is defined as  1 2 3 4block , , , ,S S S S S  where the shift matrices 
corresponding to each cycle are  

1 2 3 4

0 1 0 0 0 1 0 0 0 0 0 1
0 0 1 0 1 0 0 0 1 0 0 0 0 1

, , .
0 0 0 1 0 0 0 1 0 1 0 0 1 0
1 0 0 0 0 0 1 0 0 0 1 0

     
     

                  
     
     

S S S S  

 
Table 2.1 
Matrix of replicate factors  ,i r

f  for example 1 
 

Unit # RA 
4H H

A b
  

RA  
16H H  

 
Cycle 

Replicate 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 (1,2) (1,2)  1.7 1.0 1.7 1.0 1.7 1.0 1.7 1.0 1.7 1.0 1.7 1.0 1.7 1.0 1.7 1.0 
2 (2,3) (2,3) 1 0.3 1.0 1.0 1.7 0.3 1.0 1.0 1.7 0.3 1.0 1.0 1.7 0.3 1.0 1.0 1.7 
3 (3,4) (3,4)  1.0 0.3 1.0 0.3 1.0 0.3 1.0 0.3 1.0 0.3 1.0 0.3 1.0 0.3 1.0 0.3 
4 (4,1) (4,1)  1.0 1.7 0.3 1.0 1.0 1.7 0.3 1.0 1.0 1.7 0.3 1.0 1.0 1.7 0.3 1.0 
5 (1,3) (5,7)  1.0 1.0 1.7 1.7 1.0 1.0 0.3 0.3 1.0 1.0 1.7 1.7 1.0 1.0 0.3 0.3 
6 (3,1) (7,5) 2 1.0 1.0 0.3 0.3 1.0 1.0 1.7 1.7 1.0 1.0 0.3 0.3 1.0 1.0 1.7 1.7 
7 (2,4) (6,8)  0.3 0.3 1.0 1.0 1.7 1.7 1.0 1.0 0.3 0.3 1.0 1.0 1.7 1.7 1.0 1.0 
8 (4,2) (8,6)  1.7 1.7 1.0 1.0 0.3 0.3 1.0 1.0 1.7 1.7 1.0 1.0 0.3 0.3 1.0 1.0 
9 (1,4) (9,12)  1.0 0.3 1.7 1.0 1.0 0.3 1.7 1.0 1.0 1.7 0.3 1.0 1.0 1.7 0.3 1.0 

10 (4,3) (12,11) 3 1.0 1.7 1.0 1.7 1.0 1.7 1.0 1.7 1.0 0.3 1.0 0.3 1.0 0.3 1.0 0.3 
11 (3,2) (11,10)  1.7 1.0 1.0 0.3 1.7 1.0 1.0 0.3 0.3 1.0 1.0 1.7 0.3 1.0 1.0 1.7 
12 (2,1) (10,9)  0.3 1.0 0.3 1.0 0.3 1.0 0.3 1.0 1.7 1.0 1.7 1.0 1.7 1.0 1.7 1.0 
13 (2,3) (14,15) 4 0.3 1.0 1.0 1.7 1.7 1.0 1.0 0.3 1.7 1.0 1.0 0.3 0.3 1.0 1.0 1.7 
14 (3,2) (15,14)  1.7 1.0 1.0 0.3 0.3 1.0 1.0 1.7 0.3 1.0 1.0 1.7 1.7 1.0 1.0 0.3 
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Given the replicate factors in Table 2.1, the SDR estimator is equivalent to the sum of five different 
SD2 estimators, one for each connected loop of the RA, i.e.,  

                  

     

     

 
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12
2 2 2 2
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2
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2

4 1ˆ ˆ1 1 2 .
2
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i i
i

k

r i i
r i

y y y y y y

f Y Y f y y y y y y
k

y y







 

 
     

 
 

          
 
   



   (2.1) 

There are a few items to note with Example 1. First, the number of replicates needed is greater than the 
sample size. This happens when dm  is not constant across all cycles. The fourth cycle had only two 
sample units, but we had to use four replicates from each 4bH  because at least one of the cycles used four 
rows.  

To make the example more interesting, we chose a nonnormal Hadamard matrix 4bH  for .AH  This 
nonnormal Hadamard was generated by starting with the normal Hadamard 4aH  and reversing the 
procedure for finding a normal Hadamard as described by Hedayat and Wallis (1978). Here we simply 
changed the sign of all units in the second row and then changed all the signs for the second column. 

If we would have used the normal Hadamard matrix 4aH  for both AH  and ,BH  the replicate factors 
for replicates 1, 5, 9, and 13 would have all been 1.0. We call a replicate a dead replicate when every unit 
gets a value of 1.0 and thereby the replicate estimate is equal to the original estimate. In SDR, there is 
nothing wrong with dead replicates, it is just the way the replicate factors are distributed by the Hadamard 
matrix. With a dead replicate, many of the values of 1.0 are in the dead replicate, and the other replicates 
are more mixed with values of 1.7 and 0.3. However, all the replicates, even the dead replicates, are 
needed in estimation.  

The real value of Theorem 2 is in understanding F&T’s original prescription for SDR when .n k  In 
F&T, the RA is applied repeatedly to the 1m k   rows of AH  (skipping the first row of AH ), where 

AH  is chosen as a normal Hadamard matrix. Replicates are then formed using the Ak  columns of .AH  If 
we apply the larger framework of Theorem 2, we would say that they implicitly used a normal ,BH  which 
results in B A H H H  and only includes the first Ak  replicates in the variance estimator. Since a 
subset of the replicates needed for SDR to be equivalent to SD2 is used, we say that the resultant estimator 
is an approximation of the SD2 estimator. 
 

Example 1 (continued): If we only used the first four replicates of Table 2.1, the SDR estimator would be 
equivalent to (2.1) plus the remainder term R  that is defined as 

           

           

           

           

           

   
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y y y y y y y y y y y y
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y y y y y y y y y y y y

R
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y y y y y y y y y y y y
y y y y
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Note that R  includes the same number of positive and negative terms, which do not cancel exactly, but 
has the result that R  is usually close to zero. Similarly, using replicates 1 to ,Aq k  where 

1, 2, , ,Bq k  will result in a R  that has an equal number of positive and negative terms. Only with all 
the replicates of H  will the remainder term R  equal 0. 
 

Example 2: The Current Population Survey (CPS) has a monthly sample size of n  72,000 households 
per month (U.S. Census Bureau 2006). CPS has a two-stage sample design, where a first-stage sample of 
Primary Sample Units (PSUs), which are generally counties or groups of counties, are selected and then in 
the second-stage households are selected within the sample PSUs. Some PSUs, generally the metropolitan 
areas, are selected with certainty, i.e., their first-stage probability of selection is 1.0. With the certainty 
PSUs, the sys  sample can be treated as the first-stage sample design in variance estimation, i.e., SDR is 
applied to produce replicates. In the noncertainty PSUs, Balanced Repeated Replication (BRR) [McCarthy 
1966] is applied to produce replicates. Roughly 75% of the sample or 54,000 units are in SR PSUs, where 
SDR is applied. 
 

The CPS application of SDR uses a Hadamard matrix with k  160 and excludes two rows, i.e., m 

158. Replicate weights are produced for 160 replicates. Although it may seem like a logical conclusion of 
the paper, we do not suggest that CPS should use a Hadamard matrix of order k  54,000 or produce 
54,000 sets of replicate weights. That would result in an unreasonable number of replicates. Instead, we 
suggest that the subset of 160 replicates used by CPS is large and therefore provides a reasonable 
approximation to SD2. Later in the empirical examples, we examine the impact of using a reduced set of 
replicates. 

 
2.2  Row assignment when n k  
 

Until this point we have assumed a given RA and have not discussed how to generate the RA for a 
given sample, where .n k  In this section, we review two RAs and discuss some considerations about 
RAs in general. The first RA is similar to the RA described by Sukasih and Jang (2003) and is intended 
for use with k n  and Theorem 2. 
 

RA1: The RA assigns a pair of rows ia  and ib  to every dm  units of the sample, which we call cycle ,d  
where .dm k  After 1dm   cycles, the RA is repeated until all units of the sample have been assigned a 
pair of rows. 
 

Step 1: Sort the sample in the order in which it was sorted prior to sample selection. 
 

Step 2: Initialize the cycle number as 1d   and the number of connected loops as 1.c   
 

Step 3: Start the RA at the beginning of a cycle or a connected loop as 1 .a c  
 

Step 4: Repeat the following RA:  mod ,i ib a d k   and i ia b  until all dm  rows of the cycle have 
been used or the RA becomes a connected loop. Here, the modulo function or  mod ,a b  is defined as the 
remainder of the division of a  by .b  If all dm  rows of the cycle have been used, start a new cycle: let 
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1d d   and go back to step 3. Otherwise, (end of a connected loop, but not the end of a cycle) start a 
new connected loop: let 1c c   and go back to step 3. 
 

Step 5: At the end of 1dd m   cycles, start over with the first cycle – go back to step 2. 
 

RA1 has the following characteristics:  
 

- Each of the cycles 1, 2, , 1dd m   of the RA, assigns dm  pairs of rows. This generates a 
total of  1d dm m   pairs of rows.  

- The RA repeats itself after 1dm   cycles. F&T suggest that after 10 cycles, the RA be 
restarted. We suggest that all 1dm   cycles be used before restarting the RA.  

- The values of ia  and ib  are always c  units apart. 

- Halfway through the sequence, the pattern repeats itself in reverse order. If m  is even, the 
cycles before and after the   th1 2dm   cycle repeat themselves in reverse order. 

 

RA1 differs from the RA of Sukasih and Jang (2003) in that we do not suggest that row 1 be skipped, nor 
that the RA be repeated after 10 cycles, or require that 1k   be prime. First, a row of all 1s may seem 
odd, but it is not a problem. Similar to a column of all 1s in M  which made a dead replicate, a row of all 
1s will only effect the distribution of the replicate factors. The replicate factors for a unit i  that are 
assigned row 1 (either 1ia   or 1ib  ) will have more replicate factors of 1.0 than otherwise. This is 
not wrong; it is just how the replicate factors are distributed by .AH  The second difference is that we 
suggest repeating the assignment after m  cycles, which is when the pattern repeat, instead of a fixed 
number of 10 cycles. Lastly, we do not require that 1k   be prime but note that if 1dm k   and 1k   
is prime, then every cycle is guaranteed to have only one connected loop.  

We also provide a second simpler-to-implement RA called RA2 that will be compared with RA1 in the 
empirical examples. 
 

RA2: No mixing of row assignments. Repeat the same simple RA for every dm  units, i.e., 
     1, 2 , 2, 3 , , ,1 .dm  

 
3  Empirical examples 
 

The questions of interest for the empirical examples are: 
 

Q1. How well does SDR perform with a subset of all the replicates needed for SDR to be 
equivalent to SD? 

Q2. Which row assignment is better, RA1 or RA2? 
Q3.  Should we use more or fewer connected loops? 

 

To address these questions, we applied the SDR variance estimator to several populations. With each 
population, we selected a sys  sample of size n  64. Table 3.1 outlines the three SDR estimators we 
applied. 
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Table 3.1 
SDR estimators for the empirical examples 
 

Estimator 
A

k  H
A

 
B

k  H
B

 
1  4 4aH  16 4 4a aH H  
2 16 4 4a aH H   4 4aH  
3 64 4 4 4a a a H H H   1 1 

 
With this construction, the SDR estimators had 1, 4,Bk   or 16 cycles, but all used the same 

4 4 4 ,a a a  H H H H  which is the normal Hadamard matrix of order k  64. For the three estimators 
of Table 3.1, we also varied the row assignment (RA1 and RA2) and the number of replicates used by 
each estimator is either 16, 32, 48, or 64. With both RA1 and RA2, there is only one connected loop 
within each cycle, so estimators 1, 2, and 3 had 16, 4,Bk   and 1  connected loops, respectively. In the 
Appendix Section, the results for the SDR estimators are summarized in Table A1 and Table A2 includes 
the SD1, SD2, and the srswor  variance estimators applied for comparison purposes.  
 

Data sets used. The “A” populations are borrowed from the empirical example in Wolter (1984). For 
populations A1-A7, we generated 400 finite populations of size N  64,000. From each population, there 
were b  100 possible samples of size n  64. The samples are indexed as 1, 2, , 100i b   and the 
units within each sample are indexed as 1, 2, , 64.j n   Table 3.2 summaries how the variable of 
interest ij  is generated for each of the “A” populations. 

 
Table 3.2 
Description of Wolter’s artificial populations 
 

Population Description n  b  ij
  ij

e  
A1 Random 20 50 0  iid 0,100ije N  

A2 Linear Trend 20 50  1i j k    iid 0,100ije N  

A3 Stratification 
Effects 

20 50 j  iid 0,100ije N  

A4 Stratification 
Effects 

20 50 10j    

 
,ε if ε 10

10 , otherwise
ij ij

ij

j
e

j
  

 
 

 

 iid 0,100 , 0.8ij N    

A5 Autocorrelated 20 50 0 1,ij i j ije e      

  2
1 ~ 0,100 1ie N    

 iid 0,100 , 0.8ij N    

A6 Autocorrelated 20 50 0 same as A5 with 0.4   

A7 Periodic 20 50    20sin 2 50 1i j k     iid 0,100ije N  
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Evaluation measures. We evaluated the different variance estimators with the three measures used by 
Wolter: expected relative bias (ERB), relative mean squared error (RMSE), and coverage ratios. The first 
measure, ERB, was used to examine the accuracy of the estimators and is defined for a specific estimator 
  as       ERB .ˆ ˆm p mv E E v v E v    In our notation, pE  and mE  refer to the design and model 

expectations, respectively. To examine the variance of the estimators, we also measured the RMSE, which 
is defined as       

2RMSE .ˆ ˆm p mv E E v v E v    Coverage ratios were calculated as the percent of 

times the true population total fell within the confidence interval using the estimate, i.e., 
 ˆ ˆ,ˆ ˆY z v Y z v     . Here z  is the value from a normal distribution and was chosen to make 

95% confidence intervals. 
 

Results. With respect to Q1, columns 4-7 of Table A1 show that increasing the number of replicates had 
minimum impact on the bias. Only with the linear trend population (A2) did the SDR estimator with four 
connected loops show a consistent trend in reduced bias as the number of replicates increased. The other 
population and estimator combinations showed no significant decreasing or increasing trend as the number 
of replicates increased. This finding is a positive result because it indicates that reducing the set of 
replicates does not increase the bias. As expected, the RMSEs in columns 8-11 in Table A1 did increase as 
the number of replicates decreased, but surprisingly the increase was relatively minor. Similarly, the 
confidence intervals in columns 12-15 improved with increased replicates, except with populations A2 
and A7. 

When comparing RA1 and RA2 of Q2, the SDR estimator with four connected loops usually had 
smaller biases (columns 4-7 in Table A1) and variances (columns 8-11 in Table A1) with RA1 as 
compared to RA2. With 16 connected loops, both the biases and variances were similar for both RA1 and 
RA2. This evidence suggests that both the bias and variance are improved, but the impact reduces as the 
size of the connected loops decreases. 

Addressing Q3, the biases diminished in columns 4-7 with an increasing number of connected loops. 
The exception was the periodic population (A7). When the RMSEs of SD1 and SD2 were not similar as in 
linear trend population (A2), increasing the number of connected loops also reduced the RMSEs. This 
result is not surprising. The estimator with one large connected loop is equivalent to SD2, so it can have 
the largest biases and RMSEs due to the term  

2
1 64 .ˆ ˆy y  In the other direction, more connected loops 

effectively reduces the impact of the term  
2

1 64 ,ˆ ˆy y  so the estimator acts more like SD1, which 
generally has less bias and variance than SD2.  

 
4  Concluding remarks 
 

The paper provided the conditions for SDR to be equivalent to SD2 and showed how they are 
equivalent when the sample size is both smaller and larger than the chosen Hadamard matrix. When a 
smaller Hadamard matrix AH  is used and replicates are only derived from ,AH  the paper showed how 
the reduced set of replicates provides a reasonable approximation of the SD2 estimator. The empirical 
examples indicated that using a reduced set of replicates is reasonable since decreasing the number of 
replicates does not increase the bias of the estimates. Additionally, we saw that using many connected 
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loops reduces the impact of the squared difference between the first and last unit in the sample. Since SD1 
usually has larger biases and RMSEs than SD2, SDR estimators that use more rather than fewer connected 
loops will have smaller biases and RMSEs than SDR estimators.  
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Appendix 
 
Table A1 
SDR simulation results 
 

Population A
k  RA 

Expected Relative Bias by # 
Replicates 

 Relative Mean Squared 
Errors 

 Coverage Ratios 

16 32 48 64  16 32 48 64  16 32 48 64 
A1 4 1 0.010 0.009 0.009 0.009  0.176 0.091 0.066 0.054  93 94 94 94 

  2 0.010 0.010 0.010 0.009  0.176 0.095 0.064 0.048  92 94 94 95 
 16 1 0.009 0.008 0.010 0.009  0.141 0.080 0.059 0.048  93 94 94 95 
  2 0.009 0.010 0.010 0.009  0.194 0.096 0.065 0.049  92 94 94 95 
 64 1 or 2 0.009 0.009 0.010 0.009  0.194 0.096 0.064 0.049  92 94 94 94 

A2 4 1 -0.696 -0.840 -0.888 -0.907  0.485 0.706 0.789 0.823  62 45 38 35 
  2 -0.538 -0.768 -0.845 -0.883  0.290 0.590 0.714 0.780  77 54 45 39 
 16 1 0.113 -0.270 -0.500 -0.615  0.013 0.073 0.250 0.378  100 97 80 100 
  2 1.302 0.152 -0.231 -0.423  1.695 0.023 0.054 0.179  100 100 99 100 
 64 1 or 2 1.302 1.379 1.404 1.417  1.695 1.901 1.972 2.008  100 100 100 100 

A3 4 1 0.049 0.031 0.025 0.021  0.195 0.095 0.068 0.054  93 94 94 95 
  2 0.070 0.040 0.030 0.025  0.222 0.103 0.067 0.050  93 94 94 95 
 16 1 0.155 0.105 0.075 0.060  0.207 0.106 0.070 0.055  95 95 95 95 
  2 0.314 0.163 0.112 0.086  0.374 0.144 0.085 0.061  96 95 95 95 
 64 1 or 2 0.314 0.324 0.327 0.327  0.374 0.245 0.199 0.176  96 97 97 97 

A4 4 1 0.040 0.023 0.017 0.014  0.192 0.104 0.077 0.063  93 94 94 94 
  2 0.060 0.030 0.021 0.017  0.217 0.110 0.075 0.058  93 94 94 95 
 16 1 0.144 0.095 0.066 0.052  0.208 0.109 0.077 0.063  95 95 95 95 
  2 0.291 0.146 0.098 0.075  0.357 0.144 0.090 0.067  96 95 95 95 
 64 1 or 2 0.291 0.299 0.303 0.305  0.357 0.232 0.191 0.170  96 97 97 97 

A5 4 1 0.063 0.063 0.063 0.065  0.192 0.106 0.076 0.063  94 94 95 95 
  2 0.068 0.066 0.066 0.065  0.217 0.111 0.075 0.057  93 94 95 95 
 16 1 0.063 0.063 0.063 0.065  0.161 0.093 0.068 0.057  94 95 95 95 
  2 0.065 0.067 0.066 0.066  0.214 0.111 0.075 0.056  93 94 95 95 
 64 1 or 2 0.065 0.066 0.066 0.065  0.214 0.110 0.074 0.056  93 94 95 95 

A6 4 1 0.093 0.092 0.093 0.094  0.211 0.117 0.088 0.072  94 95 95 95 
  2 0.092 0.096 0.095 0.094  0.229 0.120 0.086 0.067  94 95 95 95 
 16 1 0.099 0.095 0.094 0.094  0.185 0.107 0.080 0.067  94 95 95 95 
  2 0.093 0.094 0.094 0.093  0.226 0.117 0.085 0.067  94 95 95 95 
 64 1 or 2 0.093 0.096 0.095 0.095  0.226 0.118 0.084 0.066  94 95 95 95 

A7 4 1 0.105 0.069 0.112 0.253  0.219 0.106 0.091 0.143  94 95 95 97 
  2 0.004 0.004 0.073 0.310  0.187 0.098 0.079 0.175  92 94 95 97 
 16 1 0.177 0.168 0.462 0.847  0.229 0.137 0.351 0.828  95 96 98 99 
  2 0.002 0.003 0.027 1.248  0.187 0.097 0.065 1.689  92 94 95 100 
 64 1 or 2 0.002 0.003 0.030 0.115  0.187 0.097 0.065 0.062  92 94 95 96 
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Table A2 
Comparison methods simulation results 
 

 
Population 

Expected Relative Bias by # 
Replicates 

 Relative Mean Squared  
Errors 

 Coverage Ratios 

SD1 SD2 SRSWOR  SD1 SD2 SRSWOR  SD1 SD2 SRSWOR 
A1 0.009 0.009 -0.001  0.049 0.049 0.032  94 94 97 
A2 -0.960 1.417 25.317  0.921 2.008 640.916  23 100 100 
A3 0.015 0.327 3.462  0.049 0.176 12.203  94 97 100 
A4 0.006 0.305 3.284  0.057 0.170 11.109  94 97 100 
A5 0.064 0.065 0.055  0.056 0.056 0.039  95 95 97 
A6 0.093 0.095 0.084  0.065 0.066 0.046  95 95 98 
A7 0.112 0.115 20.641  0.063 0.062 427.141  96 96 100 
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Variance Estimation Using Linearization for Poverty and 
Social Exclusion Indicators 

Eric Graf and Yves Tillé1 

Abstract 

We have used the generalized linearization technique based on the concept of influence function, as Osier has 
done (Osier 2009), to estimate the variance of complex statistics such as Laeken indicators. Simulations 
conducted using the R language show that the use of Gaussian kernel estimation to estimate an income density 
function results in a strongly biased variance estimate. We are proposing two other density estimation methods 
that significantly reduce the observed bias. One of the methods has already been outlined by Deville (2000). 
The results published in this article will help to significantly improve the quality of information on the 
precision of certain Laeken indicators that are disseminated and compared internationally. 

 
Keywords: influence function; EU-SILC survey; non-linear statistics; poverty and inequality indicators. 

 
 

1 Introduction 
 

Deville (2000) proposed that the precision of non-linear statistics in sampling designs be estimated 
using the generalized linearization method, which relies on the concept of influence function proposed by 
Hampel (1974) in the field of robust statistics. Osier (2009) applied these theories to estimate the variance 
of complex statistics such as the Laeken indicators (Eurostat 2005) in the European Statistics on Income 
and Living Conditions (EU-SILC) survey. Goga, Deville and Ruiz-Gazen (2009) extend the theory of 
Deville (2000) to two-sample surveys. Verma and Betti (2011) provide a comprehensive list of traditional 
poverty indicators and associated linearized variables, and they also compare the performance of the 
linearization technique with that of the jackknife repeated replication method. In this article, we will limit 
ourselves to poverty indicators published in the EU-SILC survey and focus on the way to estimate the 
income density function at various points in the distribution. 

In Section 2, we review the required theoretical foundations, the expressions for the poverty and 
inequality indicators being studied, and the linearized variables of those indicators. Some linearized 
variables are dependent on the density function of the variable of interest, which is usually estimated using 
the Gaussian kernel estimation method. Two alternative methods are presented in Section 3. The R-
language simulations are described and discussed in Section 4. We show that Gaussian kernel estimation 
can generate strong bias in the estimated variance of indicators when an estimate of the income density 
function is being used. We also show that the other two density estimation methods proposed in Section 3 
reduce the observed bias, and this is discussed in the findings in the last part of this article. 

 

2 Review of given poverty indicators and their linearized variables 
 

Let U  be a finite population consisting of N  identifiable units 1, ..., , ..., .k Nu u u  To simplify the 

notation, let unit ku  be denoted simply by the index .k  In practice the population U  is a sampling frame 

with acceptable coverage of a given population for which we wish to make inferences. To each unit k  is 
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associated the value ky  for a given characteristic (in this case, income). Without loss of generality, to 

simplify the notation, assume that the values of ky  are distinct and sorted by order of magnitude, so that 

[ ]= .k ky y  Data from sample surveys often contain duplicates, that is, a number of units with the same 

value y , as a result of rounding or range questions. In these cases and for this study, we can simply 

increase the values by a small (negligible), randomly selected, uniformly distributed amount so that the 
data may be sorted unambiguously. 

Let S  be a random sample of size n obtained using a sample design ( ) = P( = ),p s S s  for all 

.s U⊂  In addition, let = P( ) > 0k k sπ ∈  be the inclusion probability of unit k  of .U  As well, let 

= 1k kd π  be the sampling weight, and let = ( )k kw w s  be the estimation weight, which may be equal to 

kd  or may be more refined. For example, kw  may have been obtained after calibration (Deville and 

Särndal 1992) and therefore also reflect a non-response adjustment. 
The estimators of poverty and inequality indicators are non-linear statistics that can’t be expressed as 

regular functions of totals (that is, continuously differentiable up to the second order). In fact, they are 
rank statistics for the Gini coefficient and quantile statistics for the others. As Osier (2009) points out, 
their variance therefore can’t be estimated using a Taylor linearization; the generalized linearization 
method is required instead (Deville 2000, Demnati and Rao 2004, and Osier 2009). An alternative for 
estimating variance would be to use bootstrap-type re-sampling techniques but, for the EU-SILC survey 
data, preference was given to the linearization technique, at least for a certain number of participating 
countries. Indeed, re-sampling methods often require more human and machine resources. As well, since 
Eurostat collaborates with some 30 countries that have different sampling designs and that may perform 
non-response adjustments and calibration to external sources, it seemed more appropriate to select an 
analytical solution for estimating variance. In addition, some countries might be using the existing SAS 
software POULPE (Ardilly and Osier 2007) to generate the required estimates. That was the case for 
initial tests using Swiss EU-SILC data. Here we use a procedure that, as Antal, Langel and Tillé (2011) 
point out, reconciles the approach introduced by Deville (2000) with that of Demnati and Rao (2004). 
Both approaches use the concept of influence function initially developed in the field of robust statistics 
(Hampel 1974). Antal et al. (2011) also state that the same linearized variables can be found by applying 
the method proposed by Graf (2011 and 2013) that constructs a linearized variable on the basis of a Taylor 
expansion with respect to sample inclusion indicators. Note also the work by Kovačević and Binder (1997) 
in which a linearization approach using estimating equations is developed. 

Deville (2000) states that the influence of a unit k  on a population parameter of interest θ  is 
determined by an infinitesimal variation in the importance assigned to the unit. The parameter is expressed 
as a functional = ( ),T Mθ  where M  is a measure allocating a mass of 1, ( ) = = 1,kM k M  only at 

points on the continuum corresponding to units .k U∈  The specialization of the general measure M  into 
a discrete measure turns the functional ,T  predefined on a continuum, into a discrete functional, in the 
same way as the total Y  is defined as the sum of all ky  over the given finite population. The influence 

function of ,T  or the linearized variable, is defined as 

( )[ ] ( ) ( )
0

= = ,  for all ,lim
k

kk
t

T M t T M
I T M z k U

t→

+ δ −
∈

 

where kδ  is the Dirac measure for unit ( )( )= 1 if and 0 otherwise .kk i i kδ =  In practice, we have 

known data only from a sample S  and Deville (2000) defines a linearized variable ˆkz , or empirical 
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influence function, by (1) determining the limit above using differential calculus and (2) replacing the 
unknowns in the evaluation with the corresponding estimated quantities using the sample. Deville justifies 
this procedure by showing that 

( ) ( ) ( )ˆ .k k k
k S k U

T M T M w z z
∈ ∈

− ≈ −∑ ∑
 

The key result is that, under asymptotic conditions described by Deville (2000), which are in theory 
satisfied when the sample is “sufficiently large”, the variance of the estimated total of the variable ˆkz  is an 

approximation of the variance of the (complex) statistic ˆ :θ  

( )ˆvar var .ˆ k k
k s

z w
∈

≈ θ 
 
∑

 

The starting point of Deville’s approach is therefore the population parameter and not the estimator that is 
proposed to be used for the evaluation using the sample. When the estimator used follows naturally from 
the population parameter expression (for example, the total Y  approached by the Horvitz-Thompson 
estimator), the procedure is unambiguous. However, imprecision arises if we estimate the same total Y  
using the ratio estimator with an auxiliary variable .x  In that case, Deville’s approach, which does not 
specify the form of the total estimator to use, will yield a constant influence function equal to 1, instead of 
bringing the unknown ratio of interest into play. 

An alternative that avoids these problems is the approach by Demnati-Rao, when used in Deville’s 
framework, as done in Antal et al. (2011). They present the Demnati-Rao approach as resulting from 
Deville’s framework when the measure M  used is not the discrete measure defined for U  described 
above, but rather the following measure defined for ,S  the sample: 

( )ˆ = ,kM k w k S∈  

where kw  is a weight. By defining the measure for ,S  the starting point becomes the estimator and not the 

parameter; it is the parameter that is initially expressed as a functional, and not the population parameter 
to be estimated. That is, the functional corresponds to the estimator for which we are seeking a variance 
estimate using generalized linearization. We then obtain the linearized variable based on that functional as 
follows: 

( )[ ] ( ) ( )
0

ˆ ˆ
ˆ = = ,  for all .ˆ lim

k
k k

t

T M t T M
I T M z k S

t→

+ δ −
∈

 

Antal et al. (2011) note that, to the extent that the functional in this limit is expressed as an explicit 
function of the variables that are the weights assigned by the measure M̂  to the observations, this 
linearized variable is in fact a function of the partial derivatives with respect to the weights: 

( )[ ]
( )ˆ

ˆ = .k

k

T M
I T M

w

∂
∂  
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Antal et al. (2011) point out that the linearized variables that we will discuss below can be obtained using 
either approach. In fact, computing the limit using the Demnati-Rao approach does not necessarily result 
in the variance estimate suggested by Deville (2000). The practical approach used in this article might 
therefore be called the Deville-Demnati-Rao approach, in recognition of the theoretical framework 
provided by Deville (2000) and the practical algorithm for Deville’s framework provided by Demnati and 
Rao (2004). 

Using this method, the variance of θ̂  can be estimated for any sampling design, and a confidence 
interval can therefore be obtained by substituting the linearized variable in the variance formula for a total 
for the selected sampling design. If the sampling design is simple random sampling without replacement, 

the estimator of the variance of an inequality indicator θ̂  is defined as                                               

 � [ ] ( )
( ) 2

lin
1ˆvar = ,  ˆ

1 ∈

−
θ −

− ∑ k
k S

N N n
z z

n n
  (2.1) 

where 

1= .ˆk
k S

z n z−

∈
∑

 

Below, we review the empirical definitions of the inequality indicators considered with respect to 
population income measurement, as well as the expressions for the linearized variables of the indicators as 
we have implemented them. 

 
2.1 Gini coefficient 
 

The Gini coefficient, ,G  ranges from 0 (complete equality, that is, all individuals earn the same 

amount) to 1 (complete inequality, that is, one individual has all the income and the other individuals have 
no income). The coefficient G  is expressed on the basis of the cumulative income of a given proportion 
of the poorest individuals. If Y  is a random variable representing income, ( )f y  its density function and 

( )F y  its distribution function, then the Lorenz curve (Lorenz 1905) can be written as 

( )
( )

( ) ( )
( )

1( )

10

0

0

1
= = .

E

F
yf y dy

L F u du
yf y dy

− α
α −

∞α ∫
∫

∫ Y

 

The Gini coefficient represents twice the area between the Lorenz curve and the line of complete equality 
(the diagonal line ( ) =egf x x ), as shown in Figure 2.1. Therefore, the Gini coefficient can be defined as 

( )[ ]
1

0
= 2 .G L dα − α α∫  
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Figure 2.1 Gini coefficient, G , and Lorenz curve, ( ) .L α = 2 ,G A = 1 2A B+  

 
If a population U  is finite, then the values of ky  will not be random and the Gini coefficient can be 

calculated as 
2 1

= ,kk U

kk U

ky N
G

N y N
∈

∈

+
−∑

∑  

where the values of ky  are sorted by rank. For a sample, the Gini coefficient can be estimated as 

22 1ˆ ˆ= 1
ˆ ˆ ˆ ˆ

= ,
ˆ ˆ2

k k k k k
k S k S

k kk S S

G w N y w y
NY NY

w w y y

NY

∈ ∈

∈ ∈

 − + 
 

−

∑ ∑

∑ ∑ ℓ ℓℓ

 

where [ ]
ˆ =

kk y yS
N w ≤∈∑ 1

ℓ
ℓℓ

 is the sum of the weights ,kw ˆ = k kk S
Y w y

∈∑  is the estimated total income 

of the population, and ̂ = kk S
N w

∈∑  is the estimated size of the population. The expression can be 

simplified as follows if all the weights are equal to :N n  

2 1ˆ = .kk S

kk S

ky n
G

n y n
∈

∈

+
−∑

∑  
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Note that the definition may vary by a factor of ( )1n n −  depending on the author (Osier 2009 and 

Eurostat 2004b); however, this subtlety becomes negligible if the sample is large enough. 
Langel and Tillé (2012) combine the various approaches to obtain the same estimated linearized 

variable of the Gini coefficient for the sample: 

( )GINI 1 ˆ ˆˆ ˆ ˆ ˆ ˆ= 2 ( ) ,ˆ
ˆ ˆk k k k k kz N y Y Y Ny G Y y N

NY
 − + − − + 

 

where 
=1

ˆ ˆ= ,
k

k kY w y N∑ ℓ ℓℓ
 and the values of y

ℓ
 are sorted and distinct. 

 
2.2 Quintile Share Ratio (QSR or 80 20S S ) 
 

A good overview of this indicator is provided by Langel and Tillé (2012). Let 80q  and 20q  be the 80th 

and 20th percentiles of the distribution function ( )F .y  The QSR is the ratio of the total income of the 

20% of the population with the highest income to the total income of the 20% of the population with the 
lowest income. In the continuous case, the QSR can be defined as 

( )
( )

( )

( )
80

20

E > 1 0.8
QSR = = ,

E < 0.2

q L

q L

−Y Y

Y Y  

where Y  is a random variable representing income. For finite populations, the QSR can be expressed and 

estimated for a sample on the basis of partial sums, 

� 0.8

0.2

ˆ ˆ
QSR = ,

ˆ
−Y Y

Y
 

where, given the results obtained by Langel and Tillé (2011), we will use the following definition of the 
partial sum, which differs slightly from the official definition of Eurostat (2004a):                                                            

 1
ˆ ˆ

ˆ = ,   −
α

∈

α − 
 
 

∑ k
k k

k S k

N N
Y w y H

w
  (2.2) 

with 

( )
0 if < 0

= if 0 < 1

1 if 1.

x

H x x x

x


 ≤
 ≥  

To obtain the linearized variable of the QSR, we must first calculate the linearized variable of the partial 
sum (2.2), which is 

( ) ( )
[ ]<= 1 ,k y Qk k

I Y y H N k Qα αα
α − + + α −  1

 

where = ,iQ yα  with 1
ˆ ˆ ˆ< ,i iN N N− α ≤  corresponds to the first definition of the quantile of a finite 

population in the article by Hyndman and Fan (1996). Osier (2009) obtains a linearized variable that is 
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dependent on the density of the variable .Y� However, Langel and Tillé (2011) have shown that the 

problem of estimating this density for the QSR can be avoided through a simplification, so that it is not 
necessary to make a kernel approximation of income density as proposed by Osier (2009). 

The influence function of the QSR is dependent on the influence functions of the partial sums: 

( ) ( ) ( ) ( )0.8 0.8 0.2QSR
2

0.2 0.2

QSR = = .k
k k

y I Y Y Y I Y
I z

Y Y

− −
−

 

By making the necessary substitutions, we can see that the estimated linearized variable for a sample is 

 

( )

1
ˆ0.8 < 0.8

QSR

0.2

1
ˆ0.8 0.2 < 0.2

2
0.2

ˆ ˆ0.8 ˆ 0.8

=                     ˆ
ˆ

ˆ ˆ0.2 ˆˆ ˆ 0.2

.
ˆ

−
  

−
  

  −  
− + −        

  −  
− + −        −

k
k k y Qk

k
k

k
k y Qk

k

N N
y y H Q

w
z

Y

N N
Y Y y H Q

w

Y

1

1

  (2.3)

  

 
2.3 Linearized variable of a quantile 
 

Before we discuss poverty indicators, we should give a few details on the linearized variable of an α -
order quantile, which can be expressed as 

( ) [ ]ˆ

1 1
= ,ˆ

ˆˆ k

Q

k y Q
z

Nf Q α

α
≤

α

− − α  1
 

where the weighted quantile can be defined in a manner similar to the partial sum (2.2), and ( )f ⋅  is an 

income density function that will be discussed in details in Section 3. Note that Eurostat (2004a) 
recommends the second definition by Hyndman and Fan (1996). We could dispute the Eurostat definition 
and use another quantile definition, for example ( ) ( )[ ]

1 1= 1k k kQ y y y N kα − −+ − α − − , where 

< 1,N k Nα ≤ α +  which is the fourth definition according to Hyndman and Fan (1996). We then 

estimate the quantile for a sample as follows: 

( ) 1
1 1

ˆ ˆ
ˆ = .k

k k k
k

N N
Q y y y

w
−

α − −

α − 
+ −  

   

The linearized variable of a quantile is dependent on the value of the income density function in that 
quantile. However, the actual income density is unknown and therefore must also be estimated using the 
sample. Deville (2000) and Osier (2009) suggest the use of Gaussian kernel estimation. We will discuss 
the problem of estimating f  in more details in Section 3. 

In addition to the problem of estimating the income density function, Croux (1998) shows that the 
empirical influence function of the median income is not a consistent estimator of the corresponding 
theoretical influence function. For a positive variable (such as income), the empirical influence function of 
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the median income (the case discussed in Croux’s article) converges toward an exponential distribution, 
the expectation of which is the influence function. It is not robust to large proportions of extreme values. It 
can be said to lack robustness in that the value of the estimator for a sample can differ greatly from the 
actual value for the population as a result of outliers (that is, values that are relatively very large) in the 
sample (see Hampel (1974) for a basic idea of robustness for infinite populations, and Beaumont, Haziza 
and Ruiz-Gazen (2013) for recent thoughts on this topic for finite population sampling). 

 
2.4 Median income and at-risk-of-poverty threshold 
 

Let 0.5
ˆˆ =m Q  be the estimated median income of the sample. The At Risk of Poverty Threshold 

(ARPT) is defined as 60% of the median income: 

( )

�

1

0.5

ARPT = 0.6 0.5

ˆARPT = 0.6 = 0.6 ˆ .

−F

Q m
 

This is an absolute measure that is scale-dependent. The linearized variable of the ARPT is proportional to 
that of the median income: 

( ) ( )
( ) [ ][ ]ARPT

ˆ

0.6 1
= ARPT = 0.6 MED = 0.5 .ˆ ˆˆ k

k kk y mz I I
f m N ≤− −1

 

 
2.5 At Risk of Poverty Rate 
 

The At Risk of Poverty Rate (ARPR), where ARPR [0,1],∈  is the share of the population with an 

income below the ARPT: ( )ARPR = ARPT .F  The ARPR is scale-independent, like the Gini 
coefficient, QSR and relative median poverty gap (see Section 2.7). The official Eurostat definition 
(Eurostat 2004a) of the estimated ARPR for a sample is 

�
�< ARPT

ARPR = .
ˆ

∑ kyk
w

N
 

The linearized variable of the ARPR is defined by Osier (2009) as 

�

�( )
�( )

( ) [ ]( )

�

�( ) �( )

ARPR
ˆ[ ARPT]

ARPT

ARPT

1 ARPT 0.6
= ARPR 0.5ˆ ˆ ˆˆ

1
= ARPR ARPT .ˆ

ˆ

≤≤

 ≤ 

− − −

− +

k y my kk

kyk

f
z

f mN N

f z
N

1 1

1

 

Here, the income density function must be estimated at two points, namely the median income and the 
ARPT. 

 
  



Survey Methodology, June 2014 69 

 

 
Statistics Canada, Catalogue no. 12-001-X 

2.6 Median income of individuals below the ARPT 
 

The median income of individuals below the ARPT is ( )( )1= 1 2 ARPT .pm F F−  It is estimated in 

the same way as any other quantile, the exact definition of which may vary. The linearized variable of pm  

(Osier 2009) is dependent on that of the ARPR: 

( ) ( )( )
ARPR

ˆ

1 1ˆ
= .ˆˆ ˆ2ˆ

m kp
k y m pk p

p

z
z F m

f m N ≤  
− −1

 

The estimated income density therefore appears three times, namely in the median income and ARPT for 
ARPRˆkz , and in the median income of individuals below the ARPT, .pm  

 
2.7 Relative Median Poverty Gap 
 

The relative median poverty gap (RMPG) is the relative difference between the ARPT and the median 
income of individuals below the ARPT.  RMPG = 0 if the income of all “poor” individuals is equal to the 
ARPT, and RMPG = 1 if the income of all these individuals is zero. The RMPG is a measure of the 
extent to which the “poor” individuals are poor: 

ARPT
RMPG = .

ARPT
pm−

 

The estimated RMPG for a sample has already been described. The influence of each observation on the 
RMPG is defined by Osier (2009): 

�

�

ARPT
RMPG

2

ˆ ARPTˆ ˆ
= .ˆ

ARPT

−
mp

p k k
k

m z z
z  

The estimated income distribution density appears four times: once in the calculation of ARPTˆkz  and three 

times in the calculation of .ˆ
mp
kz  

 
3 Estimating the income density function 
 

In a design-based approach with a finite population, inference is made in relation to the sampling 
design P( )S  used to select a sample S  from a finite population U  of size N . In this approach, only the 

sample inclusion indicators are random; all other quantities are fixed. The population income distribution 
function is then a step function: ( ) = ≤∈∑ ky y xk U

F x N1  , and its derivative, the density function, does 

not exist due to discontinuities. If a model-based approach with a super-population model to justify the 
income density function term is not desired, then the distribution function must be artificially smoothed to 
make it differentiable. Therefore, our use of “density function” is not quite correct. For purposes of 
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smoothing, Deville (2000) and Osier (2009) suggest using Gaussian kernel estimation to estimate the 
income density function:                                                  

 

( )

( )

( )

2 2

1

2

2

1
= , =

2
1ˆ =                                       
ˆ

1 1
= exp

ˆ2 2

−

∈

∈

−
π

− 
 
 

 −
− π  

∑

∑

ku

k
k

k S

k
k

k S

x y
K u e u

h h
x y

f x w K
hN

x y
w

h hN

  (3.1) 

where h  is the bandwidth that Osier estimates using 0.2ˆ ˆ= ˆh N−σ  and σ̂  is the estimated standard 
deviation of the empirical income distribution: 

22 2
2= = .ˆ

ˆ ˆ ˆ
k k k k k kk S k S k S

w

w y w y w y
y

N N N
∈ ∈ ∈ 

σ − − 
 

∑ ∑ ∑
 

Note that this estimate of σ  is not robust, since it is very sensitive to the extreme values of .y  Income 

data often have a distribution tail extending to the right with values that may be extremely high; these are 
“representative outliers” as defined by Chambers (1986) and Hulliger (1999). As the simulations in 
Section 4 will show, this can generate a strong bias in the variance estimates. Verma and Betti (2011) also 
use kernel estimation, recalling that Silverman (1986) states that the choice of kernel is not critical to 
ensure that ( )f̂ y  converges toward ( ) ,f y  but the choice of bandwidth is. They use a value 

recommended by Silverman for distributions with a positive skewness coefficient, 
0.2

75 25
ˆ ˆ ˆ= 0.79( ) .h Q Q N−−  In their findings, they point out that the linearization method may be 

problematic because of irregularities in the empirical density function. They also state that these problems 
are all the more cause for concern because survey data often contain groups of observations with the same 
value (due to rounding or range questions), which can make estimating the density more complicated. The 
rest of this article describes the solutions we are proposing to reduce bias in variance estimates. 

 
3.1 Using the logarithm 
 

One solution that produces very good results, as shown below, is simply to use the logarithm to 
estimate the density of .x  If ( )= log ,v x a+  where x is the income and a  is a positive real number 

equals to, say, ( )( ) 1mink ky +  where there may be negative or zero incomes (ignoring that a  would be 

estimated), then 

( ) ( ) ( )( ) ( ) ( )= P = P log = P = ,v v
v yF v v a v e a F e a≤ + ≤ ≤ − −V Y Y

 

where V  and Y  would be random variables. Therefore, 

( )
( ) ( )

( )= = = .
v

yv v v
v y

dF e adF v
f v f e a e

dv dv

−
−
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That is, ( ) ( ) ( )= ,v yf v f x x a+  which gives us the following estimator for the density of :x                                                       

 ( )
( ) ( )( )

2

ˆˆ logˆ = = .   
+

+ +
yv f x af v

f x
x a x a

  (3.2) 

The estimated density at x for Y  can therefore be determined by estimating the density of the 

logarithm of the variable divided by the value of the variable at a given point. This property is valid for 
finite populations. Using the logarithm has the advantage of reducing the leveraging effect of large income 
values in the kernel density approximation calculation. Simulations show that this simple method 
significantly reduces bias. 

 
3.2 Nearest neighbour with minimum bandwidth 
 

Deville (2000) outlines another density estimation method that is a “nearest neighbour” method (see 
Silverman 1986) using the kernel 

( )

1
if <

= ,

0 otherwise,
D

a u b
b aK u

 ≤ −


  

where = ku y  and the choice of a  and ,b  with [ , ],x a b∈  is to be determined and could depend on .x  

The distance ( )b a−  represents the bandwidth .h  The density estimate would therefore be                                                   
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[ [
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[ [

,

1ˆ , , =
ˆ

1 1
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ˆ

ˆ ˆ
= , ,

∈

∈
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k S
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f x a b K y
N

w
b aN

F b F a
x a b

b a

1   (3.3)

  

where ( )ˆ ˆ= .≤∈∑y k y xk S k
F x w N1   

Note that the density estimate (3.3) is not a continuous function and would not be suitable for 
estimating density values at the end tails of the distribution. Since our work relies little on distribution 
tails, we shall consider this approach as an option. 

Our second proposal for estimating the density of x is based on the idea above. It is a nearest 
neighbour method, but also imposes a minimum bandwidth. Specifically, our method requires the use of at 
least p  observations nearest to point x with minimum bandwidth ( ) opt  h p h≥  where 

75 25
opt 5

ˆ ˆ0.9 min( ˆ , )
=

ˆ1.34

Q Q
h

N

σ −

 

is the rule of thumb (Silverman 1986) for determining the bandwidth. This is also the default bandwidth 
value in the R function density. This solution is more robust than (3.1) and avoids the problems that 
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arise when a number of values ky  are very close to each other, which is often the case because the 

individuals interviewed tend to round their income. 
As the values ,ky = 1, ..., ,k n  are assumed to be ordered by rank, the width ( )h p  of the window 

around x is initially determined by the p  nearest observations, where   .p n≪  In the simulations 
discussed in the next section, after various trials, p  was initially set at 30. The density of x is imputed to 

be the estimated density at the nearest observed point jy  that is less than or equal to ,x  that is, 

( )= max ,kj k y x≤ = 1, ..., .k n  The bandwidth at x in fact depends on the jp  nearest observations 

around ,jy  with   ,jp p≥  which will be denoted ( )jh p  in the rest of this article. The density is therefore 

estimated only at observed points, with no smoothing or interpolation between the values ( )ˆ .jf y  The 

algorithm for estimating ( )ˆ
jf y  is as follows (see also Figure 3.1): 

 
 

 
 
 
 
 
 
 
 
 

 
 
 
Figure 3.1 Window width ( )jh p  

 
1. The initial width of the window around point ,jy  where = ,jp p  is defined as 

( ) 1 1= ;
2 2

u u
j

y y y y
h p + −+ +

− ℓ ℓ 2 1 if is even

2 if is odd

2 .

j j

j j

j

j p p
u

j p p

j p

+ −
=  +    

= −   ℓ

 

2. If the width of the resulting window ( )jh p  is less than opth , increment the two bounds: 

upper bound: 1,u u→ +  as long as < ,u n  

lower bound: 1,l l→ −  as long as > 1,l  

which implies that 2,j jp p→ +  unless =u n or = 1,l  in which case there is no longer the 

same number of points on each side of .jy  

3. Repeat step 2 until ( ) opt.jh p h≥  

              
 
                  obs.jp   
 
 
 
 
                                                                      ( )ˆ

jf y   
                                              jy   
    0                                                                                                                                                      y 
                        1 1l l u uy y x y y− +   
 
                                         ( ) optjh p h≥   
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4. The estimated density at x can then be written as 

( ) ( )
( )

( )

std

 

without weighting,

ˆ ˆ= =

with weighting,










∑
j j

j

j

j

j
p closest to y

j

p

nh p
f x f y

w

nh p

 

with standardized weights std = ,k kw w w = 1, ..., .k n  
 

The number of observations jp  used in the calculation may vary, and it depends on the local curvature of 

the empirical distribution function. The condition ( )j opth p h≥  guarantees a minimum window width in 

places where numerous observations would be concentrated over a small interval. The procedure is made 
even more solid by combining this approach with the preceding approach, that is, by estimating the 
density of the logarithm of the variable divided by its (non-logarithmic) value:                                                                 

 ( ) ( )( )
3

ˆ logˆ = .     
+

+
f x a

f x
x a

  (3.4)

  

 

3.3 Robustness of the linearized variable 
 

As stated above, for the median or for other quantiles, Croux (1998) points out that the empirical 
influence function or the linearized variable estimated using the sample is not as robust as it appears to be, 
even if the density function is known. We confirmed this for the EU-SILC data used in the model 
simulations with a Generalized Beta distribution of the second kind (GB2) by means of the R function 
profml.gb2 (Graf and Nedyalkova 2011). For small samples ( )100 ,n ≤  the potential bias of the 

linearized variable resulting from too many outliers may also bias the variance estimate calculated using 
the linearized variable. For larger samples ( )1, 000 ,n ≥  a maximum relative bias in the variance 

estimated using the empirical versus theoretical linearized variable may reach 5%. However, it is below 
the percentage in absolute terms three times out of four. 

 
4 Results 
 

Simulations were conducted on three sets of real data to compare and assess the different density 
function estimation methods, ( )

1̂f x , see (3.1), ( )
2f̂ x , see (3.2) and ( )

3f̂ x , see (3.4). These methods are 

required to estimate the variance of certain poverty and inequality indicators. 
 

1. The first dataset contains equivalent household incomes from the EU-SILC survey conducted 
by the Swiss Federal Statistical Office in 2009. It includes 17,534 individuals with a non-zero 
income. 

2. The second dataset also comes from the 2009 EU-SILC survey, but is limited to salaried 
individuals. It contains salaries from the register of the Central Compensation Office that has 
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been linked with the survey respondents. We therefore have no non-response issues, and there 
are 7,922 individuals with a non-zero income. 

3. The third test file, named Ilocos, comes with the R package ineq (Zeileis 2012). It contains 
632 observations, which are household incomes in Ilocos, one of the 16 regions of the 
Philippines. The data come from two surveys by the National Statistics Office of the 
Philippines, in 1997 and in 1998. 

 

The three datasets have a positive skewness coefficient, which is typical of income distributions. Each 
data set is considered to be one population, and we initially selected 10,000 simple random samples 
without replacement of various sizes. The values of the various indicators were calculated for each 
sample, giving us a Monte Carlo estimate of their variance, ( )

sim
ˆvar ,θ  for a poverty or inequality 

indicator .θ  The variance estimator using linearization is denoted � ( )lin ˆvar θ  and is calculated using the 
linearization variable ˆ

ẑθ  estimated for each sample: 

� ( ) ( ) ( )ˆ
lin ˆvar = var ,ˆ θ−

θ S

N N n
z

n
 

where n is the size of the sample used for the simulations and 

( ) ( )ˆ ˆ ˆ

,

1
var =ˆ ˆ

1S S k S
k S

z z z
n

θ θ θ

∈

−
− ∑

 

where 
ˆ ˆ1

,= ,ˆS S kS
z n zθ − θ∑  see (2.1). 

The quality of the variance estimator using linearization is assessed by comparing the expected 

Monte Carlo value of the variance estimated using linearization, denoted � ( )[ ]linsim
ˆvar ,θE  with the “true” 

Monte Carlo variance ( )
sim

ˆvar θ  in terms of relative bias:                                                

 � ( )[ ]
� ( )[ ] ( )

( )
linsim sim

lin

sim

ˆ ˆvar varˆRB var = .        
ˆvar

θ − θ
θ

θ
E

  (4.1) 

For the second data set (EU-SILC 2009, income of salaried individuals) we also, in a second step, 
selected 10,000 random samples without replacement under a stratified sampling design, and then 
calibrated the sampling weights to agree with the eight known sociodemographic marginal totals for the 
population of 7,922 individuals. The five strata used correspond to the age groups of the salaried 
individuals (see Table 4.1). 

The eight calibration cells were obtained by crossing the three following dichotomous variables 
(auxiliary calibration variables): 
 

1. MARIÉ, which indicates whether or not the individual is married; 

2. CHEF, which indicates whether or not the individual’s job is a management position; and 

3. HOMME, which indicates the individual’s sex. 
 

The totals for the population of 7,922 individuals for these calibration cells are shown in Table 4.2. 
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Table 4.1 
Strata used in simulations with 2009 EU-SILC data and three sample sizes (income of salaried individuals, 

= 7, 922N ) 
 

Stratum h  Description hN  % hn  

1 individuals under 25 1,187  15.0  75  112  150 
2 26- to 35-year-olds  1,359  17.2  86  129  171 
3 36- to 45-year-olds 2,137  27.0  135  202  270 
4 46- to 55-year-olds 1,864  23.5  117  177  235 
5 individuals over 55 1,375  17.4  87  130  174 
 TOTAL  7,922  100.0 500  750  1,000 

 
Table 4.2 
Calibration margins in simulations with 2009 EU-SILC data (income of salaried individuals, = 7, 922N ) 
 

Margin MA RIÉ CHEF HOMME Population total  % 
1 0 0 0 1,487  18.8 
2 0 0 1 1,208  15.2 
3 0 1 0 323  4.1 
4 0 1 1 457  5.8 
5 1 0 0 1,759  22.2 
6 1 0 1 1,278  16.1 
7 1 1 0 328  4.1 
8 1 1 1 1,082  13.7 
   TOTAL 7,922  100.0 

 
For each stratified sample, a calibration (linear method) was performed to make the sums of the 

weights agree with the eight margins shown above. Point estimates of the indicators and their linearized 
variable were computed for each sample using the calibrated weights. 

Variance was estimated using the method developed by Deville (2000), which consists of linearizing 

also with respect to the calibration by calculating the residuals 
ˆ

eθ  of the regression (weighted by the 

sampling weights) of the linearized variables of the indicators for the auxiliary calibration variables. The 
variance of the total of the residuals thus calculated, under a stratified random sampling plan without 
replacement is therefore an estimator of the variance of the estimated indicator; it is the quantity of 
interest:                                                         

 � ( ) ( ) 2
lin ˆ

=1

ˆvar =      θθ −∑
H

h
h h

ehh h

N
N n s

n
  (4.2)

  
where 

( )2ˆ ˆ2
ˆ

1
=

1 k
eh k Sh h

s e e
n

θ θ
θ

∈

−
− ∑

 

The quality of the variance estimator using linearization is assessed analogously to the procedure for 
simple random sampling, see (4.1). 

Tables 4.3, 4.4 and 4.5 show the relative bias of the variance for the three data sets used and described 
above, using simple random sampling. Table 4.6 shows the relative bias of the variance using stratified 
random sampling with calibrated weights. The upper portions of the tables give the values for the Gini 
coefficient and QSR, which do not require estimating the income density function. The estimation of their 
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variance works well. Note that there is a problem involving the underestimation of the variance of the Gini 
coefficient in the case of stratification with calibration (Table 4.6). 

For the first data set, Table 4.3 does not reveal any major differences except that the estimation of 
income density using 3ˆ ( )f x  gives results that are more conservative. In fact, the relative bias remains of 

the same order of magnitude, but positive, while it is negative for the other two methods of estimating 
density. For the second data set, Table 4.4 shows that it is essential to use the logarithm or the nearest 
neighbour method with minimum bandwidth. The latter, all relative bias falls under 10% when the sample 
sizes are sufficiently large (see last column in the table). Simulations on the same data with a stratified 
sampling plan and calibration strengthen and confirm these results (see Table 4.6). For the third data set, 
Table 4.5 shows the same trends, although the results are less stable as a result of the small sample and 
population sizes. This is not surprising, since the minimum number of neighbours to consider is fixed at 
30. In this case, for the Ilocos data set, simulations with a smaller value of p  fixed at 10 makes no 
difference ultimately, because the condition ( ) optjh p h≥  automatically increases it above 30. 

Furthermore, generally speaking, we can see that the greater the use of Gaussian kernel density 
estimation - ( )

1̂f x - the greater the error. In fact, the relative bias of the variance for the median income of 

individuals below the ARPT and for the RMPG are almost systematically greater in absolute value that 
those for the other indicators. For the RMPG, the error may be offset (as in Table 4.3) if there are enough 
observations, since the density estimation appears in both the numerator and the denominator. 

 
Table 4.3 
Relative bias (4.1) of the variance obtained with 10,000 simple random samples without replacement from the 
2009 EU-SILC data (equivalent household income, = 17, 534N ) 
 

 Sample size (sampling rate) 
Indicator  ( )= 500 2.9 %n  ( )= 750 4.3 %n  ( )= 1, 000 5.7 %n  

GINI -0.02 -0.02 -0.02 
QSR 0.01 0.00 0.00 
 

1̂f   2f̂   3f̂   1̂f   2f̂   3f̂   1̂f   2f̂   3f̂   

ARPT -0.08  -0.06  0.04  -0.09  -0.07  0.03  -0.09  -0.07  0.04  
ARPR -0.05  -0.01  -0.00  -0.09  -0.06  -0.05  -0.08  -0.05  -0.03  
RMPG -0.09  -0.07  0.15  -0.10 -0.07  0.12 -0.09  -0.06  0.14  
MEDP -0.16  -0.12 0.09  -0.19 -0.13 0.05  -0.18  -0.11 0.07  
MED -0.08  -0.06  0.05  -0.08  -0.06  0.04  -0.08  -0.06  0.04  

 
 
 
 

Table 4.4 
Relative bias (4.1) of the variance obtained with 10,000 simple random samples without replacement from the 
2009 EU-SILC data (income of salaried individuals, = 7, 922N ) 
 

 Sample size (sampling rate) 
Indicator  ( )= 500 6.3 %n  ( )= 750 9.5 %n  ( )= 1, 000 12.6 %n  

GINI  -0.03 -0.03 -0.02 
QSR  -0.00 0.00 0.00 
 

1̂f   2f̂   3f̂   1̂f   2f̂   3f̂   1̂f   2f̂   3f̂   

ARPT  0.07  0.05  0.13 0.06  0.04  0.10 0.06  0.03  0.08  
ARPR  -0.05  -0.04  -0.02  -0.05  -0.04  -0.01  -0.06  -0.05  -0.02  
RMPG  0.61  0.12  0.15 0.60 0.11 0.08  0.59  0.09  0.05  
MEDP  0.73  0.17  0.18 0.72 0.16 0.10 0.72  0.15  0.07  
MED  0.07  0.04  0.13 0.06  0.04  0.10 0.05  0.03  0.07  
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Table 4.5 
Relative bias (4.1) of the variance obtained with 10,000 simple random samples without replacement from 
Ilocos data (household income, = 632N ) 
 

 Sample size (sampling rate) 
Indicator ( )= 50 7.9 %n  ( )= 63 10.0 %n  

GINI  -0.16 -0.13 
QSR  0.00 0.00 
 

1̂f   2f̂   3f̂   1̂f   2f̂   3f̂   

ARPT  -0.05  -0.06  -0.01  -0.03  -0.03  -0.01  
ARPR  -0.31 -0.01  -0.12  -0.33  -0.03  -0.18  
RMPG  1.55 0.83  0.26  1.54  0.16  0.39  
MEDP  1.02 0.28  -0.26  1.05  0.07  -0.11  
MED  0.04  0.03  0.08  0.07  0.07  0.09  

 
Table 4.6 
Relative bias (4.1) of the variance obtained with 10,000 stratified random samples without replacement, with 
weights calibrated to eight sociodemographic margins, from the 2009 EU-SILC data (income of salaried 
individuals, = 7, 922N ) 
 

 Sample size (sampling rate) 
Indicator  ( )= 500 6.3 %n  ( )= 750 9.5 %n  ( )= 1, 000 12.6 %n  

GINI  -0.21 -0.20 -0.20 
QSR  -0.06 -0.06 -0.07 
  

1̂f   2f̂   3f̂   1̂f   2f̂   3f̂   1̂f   2f̂   3f̂   

ARPT  -0.07  -0.09  -0.01  -0.08  -0.10 -0.04  -0.09  -0.11 -0.06  
ARPR  -0.10  -0.10 -0.08  -0.07  -0.06  -0.05  -0.06  -0.06  -0.05  
RMPG  0.63  0.13 0.13 0.61 0.11 0.08  0.59  0.10 0.04  
MEDP  0.71  0.16 0.15 0.68 0.13 0.09  0.66  0.12 0.04 
MED  -0.07  -0.09  -0.01  -0.08  -0.10 -0.04  -0.08  -0.11 -0.06 

 

In short, we see that the variance can be overestimated � ( )[ ]( )lin ˆRB var > 0θ  or underestimated 

� ( )[ ]( )lin ˆRB var < 0θ  depending on the indicator and the data set. The use of the logarithm ( )( )2f̂ x  

provides significant improvement. The nearest neighbour method ( )( )3f̂ x  eliminates all problems if there 

is enough data (as in Tables 4.3, 4.4 and 4.6). Slight problems arise with this method when the samples are 
small (as in Table 4.5). Illogical variations and bias that persist in the tables may also be the result of a 
lack of robustness in the linearized variables for certain samples, as stated in Section 3.3. 

 
5 Conclusions 
 

In a number of countries, national sample surveys publish extrapolated values for the Laeken indicators 
(Eurostat 2005), since they are key indicators that make it possible to direct decision makers with regard 
to political and social matters. It is therefore critical that we be able to quantify the precision of these 
measures, which raises the issue of the appropriateness of the precision estimates available. This article 
shows that a substantial improvement may be made in the precision estimates for poverty and inequality 
indicators by using a (local) estimate of the income density or given monetary variable. 

The simulations conducted show that the Gaussian kernel density estimation method currently 
implemented in most cases is not recommended without at least using the logarithm as proposed in 
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Section 3.1; otherwise, there may be significant bias in the estimated variance. The nearest neighbour 
method (Section 3.2), which also imposes a minimum bandwidth, may yield even better results, especially 
if there are agglomerations of observations with certain values in the given data. However, this method 
requires setting a minimum number p  of neighbours on the basis of the data used. If few observations are 

available, the use of the logarithm is preferable instead. In all cases, we hope that this work will help raise 
awareness of the importance of being meticulous during the implementation of calculations for the 
linearized variable of any indicator involving quantiles. 
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Theoretical and empirical properties of model assisted 
decision-based regression estimators 

Jun Shao, Eric Slud, Yang Cheng, Sheng Wang, and Carma Hogue1 

Abstract 

In 2009, two major surveys in the Governments Division of the U.S. Census Bureau were redesigned to reduce 
sample size, save resources, and improve the precision of the estimates (Cheng, Corcoran, Barth and Hogue 
2009). The new design divides each of the traditional state by government-type strata with sufficiently many 
units into two sub-strata according to each governmental unit’s total payroll, in order to sample less from the 
sub-stratum with small size units. The model-assisted approach is adopted in estimating population totals. 
Regression estimators using auxiliary variables are obtained either within each created sub-stratum or within 
the original stratum by collapsing two sub-strata. A decision-based method was proposed in Cheng, Slud and 
Hogue (2010), applying a hypothesis test to decide which regression estimator is used within each original 
stratum. Consistency and asymptotic normality of these model-assisted estimators are established here, under a 
design-based or model-assisted asymptotic framework. Our asymptotic results also suggest two types of 
consistent variance estimators, one obtained by substituting unknown quantities in the asymptotic variances and 
the other by applying the bootstrap. The performance of all the estimators of totals and of their variance 
estimators are examined in some empirical studies. The U.S. Annual Survey of Public Employment and Payroll 
(ASPEP) is used to motivate and illustrate our study. 

 
Key Words: Asymptotic normality; Bootstrap; Decision-based estimator; Probability proportional to size; Stratification; 

Variance estimation. 

 
 

1  Introduction 
 

The U.S. Annual Survey of Public Employment and Payroll (ASPEP) provides current estimates for 
full- and part-time state and local government employment and payroll classified by government functions 
(such as: elementary and secondary education, higher education, police protection, fire protection, 
financial administration, judicial and legal, etc.). This survey covers state and local government units 
(89,526 according to the 2007 Census of Governments), which include counties, cities, townships, units 
called “special districts”, and school districts. ASPEP is the only source of public employment data by 
government function and job category, providing data on numbers of full- and part-time employees and 
payroll, as well as on hours worked by part-time employees. Data collection usually begins in March and 
continues for about seven months, with the pay period containing March 12 as reference period. 

Let U  denote the finite population of N  units stratified into H  strata, 1, , ,HU U…  where hU  

contains hN  units and 1 = .HN N N+ +⋯  The traditional sampling design for the ASPEP is a stratified 

probability proportional to size (PPS) design, where the strata are constructed using state and the 
government types, which are county, subcounty (city or town), special district, or school district. The size 
of each unit is the total payroll, and sampling across strata is independent. In 2009, a modified sampling 
design was developed, which cuts some strata hU  into two sub-strata, 1hU  and 2hU  with 1hN  and 2hN  

units, respectively, where 1hU  contains smaller-size units (Cheng et al. 2009). The idea was to save 
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resources and reduce respondent burden by selecting a sample from 1hU  with smaller sample size under 

the modified than under the traditional design. Let hjS  be a PPS sample of size hjn  from ,hjU = 1, 2,j  

1 2 = .h h hn n n+  Note that 1hn  may still be larger than 2hn  because 1hN  is usually much larger than 2.hN  

For unit ,i U∈  let iy  be a key survey variable (e.g., the full-time employment, full-time payroll, part-

time employment, part-time payroll, part-time hours), ix  be an auxiliary variable, say the same variable as 

iy  from the most recent census, and let iz  be the covariate used as the size variable in PPS sampling. The 

covariate values ix  and iz  are observed for all ,i U∈  whereas iy  is observed only for each sampled 

unit .i  

The Horvitz-Thompson estimator of the unknown total = ii U
Y y

∈∑  is 

                                                                 HT
ˆ = ,i i

h j i Shj

Y y
∈

π∑∑∑  (1.1) 

where iπ  is the first-order inclusion probability of unit i  in ,hjS  a known function of ’s.iz  To utilize the 

auxiliary variable ix  and increase the accuracy of estimation of ,Y  the model-assisted approach (Särndal, 

Swensson and Wretman 1992) is adopted. Applying regression within each hjS  leads to the regression 

estimator of Y  as  

                                               reg,2

ˆ ˆ
ˆˆ = ,

ˆ ˆ
hj hj hj hj

hj hj
h j hj hj

N Y N X
Y X

N N

  
+ β −  

  
∑∑  (1.2) 

where = ,hj ii U hj
X x

∈∑ ˆ = ,hj i ii Shj
Y y

∈
π∑ ˆ = ,hj i ii Shj

X x
∈

π∑ ˆ = 1 ,hj ii Shj
N

∈
π∑  and  

( )
( )2

ˆ ˆ
ˆ = .

ˆ ˆ

i hj hj i ii Shj
hj

i hj hj ii Shj

x X N y

x X N

∈

∈

− π
β

− π

∑

∑
 

Al ternatively,  combining the two sub-strata  1hS   and  2hS  results in the following regression estimator. 

(A referee correctly points out that reg,1Ŷ  in (1.3) is not the pooled estimator one would use if regression 

lines in stratum h  were combined but the two sub-strata were not; however, it is the natural estimator 
when not only regression lines but also sub-strata are combined.) 

                                                    reg,1

ˆ ˆ
ˆˆ = ,

ˆ ˆ
h h h h

h h
h h h

N Y N X
Y X

N N

  
+ β −  

  
∑  (1.3) 

where ˆ ˆ= ,h hjj
Y Y∑ ˆ ˆ= ,h hjj

X X∑ ˆ ˆ= ,h hjj
N N∑  and  

( )
( )2

ˆ ˆ
ˆ = .

ˆ ˆ

i h h i ij i Shj
h

i h h ij i Shj

x X N y

x X N

∈

∈

− π
β

− π

∑ ∑

∑ ∑
 

Since both reg,1Ŷ  and reg,2Ŷ  are model-assisted estimators, they are consistent with respect to repeated 

sampling, whether or not the regression model holds. If the least-squares regression lines in two sub-strata 
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’shjU  are the same, reg,1Ŷ  may be more efficient than reg,2
ˆ .Y  On the other hand, if the regression lines are 

different, reg,2Ŷ  may be more efficient than reg,1
ˆ .Y  

A decision-based method was proposed in Cheng et al. (2010), which applies hypothesis testing to 
decide whether we combine 1hS  and 2.hS  Within stratum ,h  the slopes of the regression lines in 1hU  and 

2hU  are tested for equality. Let  

( )

( ) ( )

22

2
, 22

2 22
,2

1 2 4
=1

ˆˆˆ ˆ ˆ ˆ
ˆ = , ˆ = ,

ˆ ˆ ˆ

ˆ ˆ ˆˆ ˆˆ = , = 4 .
ˆ ˆ

i hj hj ihj hj hj hj hj
hj xe hj i

i S ihj hj hjhj

i hj hj xe hj
xhj h h h h h

i S j hj xhji hjhj

y xY X n X
x

N N N

x X N
t n n

nN

∈

∈

− α − β− β  
α σ −  π 

− σ
σ − β − β

σπ

∑

∑ ∑

 

If  1 2, 4>h nh
t t −τ − , where 1 2,t −τ ν  is the 1 2− τ  quantile of the t-distribution with ν  degrees of freedom, 

then we reject the hypothesis of common slope and use ˆ
hjβ  (and set = 1hζ ). Here τ  is a nominal 

significance level set by default to 0.05, although we will consider other choices of τ  in the simulations 
section. The test-statistic definition involving 4hn −  degrees of freedom is a slightly artificial choice 

designed to make the moderate-sample rejection probabilities closer to nominal, but the large-sample 
asymptotic distribution theory justifying this test is given in part (c) of Theorem 1. If 1 2, 4,h nh

t t −τ −≤  

then we accept the hypothesis of common slope, combine sub-strata 1hS  and 2 ,hS  and use ̂ hβ  

( )setting = 0 .hζ  Tests are performed independently across strata = 1, , .h H…  The decision-based 

estimator of Y  is then  

           ( )dec

ˆ ˆ ˆ ˆ
ˆ ˆˆ = 1 .

ˆ ˆ ˆ ˆ
hj hj hj hj h h h h

h hj hj h h h
h j hhj hj h h

N Y N X N Y N X
Y X X

N N N N

     
ζ + β − + − ζ + β −      

    
∑∑ ∑  (1.4) 

Since two regression lines with a common slope can have different intercepts, one might test a further 
hypothesis regarding intercepts to decide whether to combine the two sub-strata. However, population 
points ( ),i ix y  falling on two parallel but not identical substratum regression lines would be 

discontinuous around the cut-off point between the two sub-strata 1hU  and 2 ,hU  which seems to occur 

only rarely in practical situations. In ASPEP, for example, Cheng et al. (2010) investigated the slopes and 
intercepts for sub-strata in 2002 and 2007 Census data sets, noting that the hypothesis of a common 
intercept could never be rejected when the hypothesis of a common slope could not be rejected. Thus, the 
decision-based estimator in (1.4) depends only on hypothesis testing for equality of sub-stratum regression 
slopes. 

The two-stage estimators studied here are particular instances of procedures previously termed 
estimators following preliminary testing. There is a large literature on such procedures in surveys, 
including a bibliography by Bancroft and Han (1977), a book by Saleh (2006), and a treatment by Fuller 
(2009, Section 6.7). An idea from Saleh (2006) is to estimate coefficients by a convex combination of the 
estimated coefficients from the separate strata with proportions depending on a test statistic. Such 
smoothed estimators might be more efficient than our decision-based procedures. If the stratum-specific 
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intercepts and slopes were regarded as random, then a model-based empirical-Bayes approach to survey 
estimation might also be tried. 

The decision-based estimators (1.4) are novel because they are model-assisted design-consistent in the 
survey-sampling context, making explicit use of the known substratum population sizes. In a somewhat 
similar spirit, Rao and Ramachandran (1974) previously made an exact comparison of the separate and 
combined ratio estimators under a ratio model similar to the regression model of this paper. 

The purpose of this paper is to show some asymptotic and empirical properties of the estimators of Y  
described above and their variance estimators. Consistency and asymptotic normality of reg,1

ˆ ,Y reg,2
ˆ ,Y  and 

decŶ  are established in Section 2, in terms of either design-based or model-assisted asymptotic theory. 

Although the first-order asymptotics favor reg,2
ˆ ,Y reg,1Ŷ  may be better when some substratum sample sizes 

2hn  are moderate, a second-order asymptotic effect. The virtue of the decision-based estimator decŶ  is in 

adapting to be close to the better of reg,1Ŷ  and reg,2
ˆ .Y  As the discussion in paragraph (III) of Section 4.4 

indicates, simulations show that the benefit of this adaptivity is to reduce MSE up to a few percent under 
reasonable parameter settings, and by larger amounts in stranger settings. 

Variance estimation for the decision-based estimator is treated in Section 3. While the asymptotic 
theory in Section 2 suggests that consistent variance estimators are obtained by substituting for unknown 
quantities in the asymptotic variance formulas, we also study bootstrap variance estimators suggested in 
Cheng et al. (2010), which are generally found to have better finite sample performance than the 
substitution estimators. Empirical results are presented in Section 4, with Section 4.4 providing 
interpretations and concluding remarks. All technical proofs are given in the Appendix. 

 
2  Consistency and asymptotic normality 
 

To consider asymptotics, we view the population U  as one of a sequence of populations 
( ){ }, = 1, 2, ,mU m …  where the number of units in ( )mU  increases to infinity as .m → ∞  This paper treats 

only the case of strata in which a large sample hn  is drawn; that is, we assume that for each stratum ,h  the 

sample size hn  depends on m  and increases to infinity as ,m → ∞  but we omit the index m  for 

simplicity. All limiting processes are considered as .m → ∞  Following authors such as Isaki and Fuller 
(1982) and Deville and Särndal (1992), we term this a superpopulation asymptotic framework. Under the 
design-based framework considered in Section 2.1, the attribute vectors in the underlying populations 
need not be viewed as random vectors. However, under the model-assisted framework considered in 
Section 2.2, regression models are assumed for attribute vectors. 

Since each estimator is a sum of independent estimators constructed within each stratum, for simplicity 
we present asymptotic results for the case of = 1.H  The results and conclusions immediately apply to 
the case of a fixed H  and can also be extended to the situation where H  increases to infinity. (It is 
typical for large-scale surveys to have many strata, although the number of ASPEP government-by-type 
strata that were split into substrata was somewhat less than 100.) Since we only consider = 1,H  we omit 

the index h  for stratum in this section, e.g., = ,hj jn n = ,hn n = ,hj jN N  and = .hN N  Also, for 
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 = 1, 2,j  the estimators ̂ jβ  and β̂  are defined by the displayed formulas following equations (1.2) and 

(1.3), with subscript h  suppressed, together with  

( )

( ) ( ) ( )

22 1 1

222 2 2
,

ˆˆ ˆ ˆ ˆ ˆˆˆ = , = ˆ , ˆ = ˆ

ˆ ˆˆˆ = ˆ .

xj j j j j j j xj xj j i i xj
i S j

xe j j i xj i j j i i j
i S j

X N Y N N x

n x y x N

− −

∈

∈

µ α − β µ σ π − µ

σ − µ − α − β π

∑

∑
 

Furthermore, for simplicity we consider asymptotics only under with-replacement sampling. The results 
can be applied to the case of without replacement sampling if the sampling fraction n N  is negligible. 

 
2.1  Design-based asymptotic framework 
 

First, we establish the asymptotic normality of reg,1Ŷ  and reg,2Ŷ  under repeated sampling, that is, when 

iy  and ix  are fixed for ,i U∈  and jS  is a random PPS sample. 

 

Theorem 1 Suppose that 1S  and 2S  are independent PPS samples with replacement from 1U  and 2 ,U  

respectively, where unit ji U∈  has probability = > 0ij i ii U j
p z z

∈∑  of being selected, and sampling 

weight ( )1 = 1i j ijn p−π  for = 1, 2,j  and that the following four conditions hold, as the population 

sequence index m  goes to .∞  
 

(C1) There exist constants jϕ  and jω  such that j jn n → ϕ  and .j jN N → ω  

(C2) For  = 1, 2,j  there exist constants ,yj xjµ µ  and jβ  such that 

                                = = , = =j j j i j yj j j j i j xj
i U i Uj j

Y Y N y N X X N x N
∈ ∈

→ µ → µ∑ ∑  

exist, as do the limits ( ) 21 2 > 0,j i xj xji U j
N x−

∈
− µ → σ∑  and in addition, 

                               ( ) ( )( ) 0 as , .j j i i j j j i j j
i U j

n N x y Y N x X N n N
∈

− − β − → → ∞∑  

(C3) The limits 2= T
N ij ij ij j ji Uj j

D p b b N D
∈

→∑  exist, where for ,ji U∈  

                                                   = 1 , , ,
T

ij ij j i ij j i ij jb p N x p X y p Y− − −    

Tv  denotes the vector transpose, and jD  is positive definite. The limit 2
, =xe jσ  

( ) ( )2 22lim j i xj i j j i iji U j
N x y x p−

∈
− µ − α − β∑  also exists, for = .j yj j xjα µ − β µ  

(C4) The elements of 4= T
j ij ij ij ji U j

p c c N
∈

Λ ∑  form a bounded sequence, where for ,ji U∈  

( ) ( ) ( )2 2 2
= 1 , , .

T

ij ij j i ij j i ij jc p N x p X y p Y − − −   
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Then, as  ,m→ ∞  the following conclusions hold. 
 

(a) For = 1, 2,j ˆ ˆ, , , ,ˆ ˆxj xj yj yj j j j jP P P P
µ → µ µ → µ β → β α → α  and 2 2 ,ˆ xj xjP

σ → σ  where 

P
→  denotes convergence in probability. 

(b) The combined-stratum estimator ˆ  β  has the exact expression 

                                             
( ) ( ) ( )

( ) ( )

2 2
2 1 2 1 1 2 1 2=1

22 2
2 1 1 2 1 2=1

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ
ˆ =

ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ

j xj jj

xj jj

N X X Y Y N N N N

N X X N N N N

β σ + − − +
β

σ + − +

∑
∑

 (2.1) 

and the in-probability limit 

                                                
( ) ( )

( )

2 2
2 1 2 1 1 2=1

2 22
2 1 1 2=1

= .
j xj j x x y yj

xj j x xj

β σ ω + µ − µ µ − µ ω ω
β

σ ω + µ − µ ω ω

∑
∑

 

(c) ( ) ( )2 4
, ,

ˆ 0, ,j j j d xe j x jn Nβ − β → σ σ  where d→  denotes convergence in distribution, and 
2 2

, , .ˆ xe j xe jP
σ → σ  

(d) For = 1, 2,k  

                                                                  ( ) ( )2
reg,

ˆ 0,k d kn Y Y N N− → σ  (2.2) 

where 
22

=1
= T

k kj j kjj
a D aσ ∑  and 

                      ( ) ( )1 2= , ,1 , = , ,1 ,
T T

j j j y x j j j yj j xj ja aω ϕ − µ − βµ −β ω ϕ − µ − β µ −β        

1 1 2 2= ,x x xµ ω µ + ω µ 1 1 2 2= ,y y yµ ω µ + ω µ  and jD  is given in condition (C3).  

 

The conditions (C1)-(C4) of Theorem 1 provide a general formulation of the superpopulation 
framework for large-sample design-based statistical inference, within which the survey regression 
coefficients estimate well-defined frame-population descriptive parameters. The results in parts (a)-(b) 

show that the in-probability limits ,j jβ α  of ˆ ˆ,j jβ α  have the standard interpretation as superpopulation 

least-squares slopes and intercepts. (These slope and intercept parameters also keep their usual model-
based interpretations under the model (2.7) introduced in Section 2.2.) The asymptotic distribution theory 
for ˆ  jβ  in conclusion (c) allows us to deduce the large-sample behavior of dec

ˆ  Y  from that provided in 

(d) for reg,
ˆ .kY  

Under the further conditions  

                                                                    1 2 1 2= , = ,β β α α  (2.3) 

it is clear from Theorem 1(b) that  = ,jβ β  and 2 2
1 2=σ σ  in (2.2), so that reg,1Ŷ  and reg,2Ŷ  and decŶ  are all 

asymptotically the same up to remainders of smaller order than ,N n  as we now show. Also, if 
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1 2,β ≠ β  then reg,2 dec
ˆ ˆY Y−  continues to be ( ) ,Po N n  and the test of equality of slopes rejects, i.e., 

( )dec reg,2
ˆ ˆ= 1,P Y Y →  and therefore decŶ  has the same asymptotic distribution as reg,2

ˆ ,Y  which is more 

efficient than reg,1Ŷ  according to the result in Section 2.2.  

 

Theorem 2 Assume the same hypotheses (C1)-(C4) as in Theorem 1. 
 

(a) When (2.3) holds, then as  m → ∞  

                                             ( ) ( )
22

,2 2
2 1 2 4

=1

ˆ ˆ 0, , = ,xe j
d d d

j j xj

n N
σ

β − β → σ σ
ϕ σ∑  (2.4) 

and the estimators reg,1 reg,2
ˆ ˆ , ,Y Y  and decŶ  are all asymptotically normally distributed and 

equivalent in the sense that  

                                               ( ) ( )2 2

reg,1 reg,2 reg,2 dec2
ˆ ˆ ˆ ˆ 0.

P

n
Y Y Y Y

N
 − + − →
 

 (2.5) 

(b) When 1 2,β ≠ β ( )dec reg,2
ˆ ˆ= 1P Y Y →  and ( ) ( )2

dec 2
ˆ 0, .

d
n Y Y N N− → σ  

 

A more refined study of the asymptotic behavior of the estimators dec
ˆ  Y  can be undertaken in the spirit 

of Saleh (2006), as with contiguous or Pitman alternatives for non-survey statistical models, by assuming 
that ( )1 2  n rβ − β →  for a constant .r  Under this assumption, it can be shown that 

( )reg,1 reg,2
ˆ ˆ = PY Y o N n−  and, therefore, the three centered and scaled estimators ( )dec

ˆ ,n Y Y−  

( )reg,2
ˆ ,n Y Y−  and ( )reg,1

ˆn Y Y−  all have the same asymptotic normal distribution with mean 0. 

Furthermore,  

                                     ( ) ( ) ( )dec reg,2 /2 /2
ˆ ˆ= ,d dP Y Y z r z rτ τ→ Φ − + σ + Φ − − σ  (2.6) 

where 2
dσ  is given in (2.4), and 2z τ  and Φ  are respectively the standard normal percentage point and 

distribution function. Thus, ( )dec reg,2
ˆ ˆ=P Y Y  has a limit different from 1. In particular, the limit in (2.6) 

equals τ  when 1 2=β β  (i.e., when = 0r ). 

 
2.2  Model-assisted asymptotic setting 
 

We elaborate in this section the behavior of estimators reg, dec
ˆ ˆ,kY Y  under the assumed probabilistic 

model that the triples ( , , )i i ix y z  in the finite population, ,ji U∈  are independent and identically 

distributed (iid), where the size-variables  > 0iz  are used in defining PPS with-replacement draw 

probabilities  = ,ij i ii U j
p z z ′′∈∑  and where ix  and iy  follow the model  

                                                           = , ,i j j i i jy x i Uα + β + ε ∈  (2.7) 

with jα  and jβ  as unknown intercept and slope parameters for the regression within stratum .jU  The 

errors , ,i ji Uε ∈  are assumed to be iid with mean 0 and finite variance 2
εσ  and to be independent of 
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( , ),i ix z  and the variables ix  for  ji U∈  are assumed to have finite variance. Also, to enable PPS 

sampling, we assume that max < 1 
ji U j ijn p∈  with probability approaching 1 for large ,m  i.e., for large 

 , .j jn N  

In this section, asymptotic properties of estimators reg, dec
ˆ ˆ ,kY Y  are considered with respect to the 

regression model and repeated sampling. By Theorem 1, the model-assisted estimators reg,1Ŷ  and reg,2Ŷ  are 

still consistent and asymptotically normal for triples ( , , ) i i ix y z  iid within strata, since the conditions 

(C1)-(C4) are satisfied under moment assumptions on  ,1  i iz z  even if model (2.7) is incorrect. However, 

the estimators reg,
ˆ

kY  are efficient when model (2.7) is correct. 

 

Theorem 3 Assume model (2.7) along with (C1), with ( ) ( )4 4< , < ,i iE x E∞ ε ∞ ( ) < ,iE z ∞  and 

( )( )4 31 < .i iE x z+ ∞  Then all conclusions in Theorem 1 and Theorem 2 still hold. In particular, when 

1 2,β ≠ β 2
1 ,σ  the asymptotic variance of ( )reg,1

ˆ ,n Y Y N−  is larger than 2
2 ,σ  the asymptotic variance 

of ( )reg,2
ˆ .n Y Y N−  Furthermore,  

                                           ( ) ( )( )2 2
dec 1 2

ˆ 0, 1 ,dn Y Y N N− → − π σ + πσ  (2.8) 

where π  is the limit of ( )dec reg,2
ˆ ˆ= .P Y Y  

 
Note that π  in (2.8) is equal to 1 when 1 2β ≠ β  and equal to τ  when 1 2= .β β  

According to Theorem 3, under model (2.7), all three estimators defined in (1.2)-(1.4) have the same 
asymptotic efficiency when 1 2=α α  and 1 2=β β  (condition (2.3)). Furthermore, reg,1Ŷ  is asymptotically 

worse than reg,2Ŷ  when 1 2.β ≠ β  Thus, why would we not always use reg,2
ˆ ?Y  

The assertions in Theorem 3 are first-order asymptotic results. A more refined, second-order 
asymptotic result under the conditions in Theorem 3 and condition (2.3) when the sizes iz  are all equal is 

that, up to a term of order 2 2
1 2 ,n n− −+  

                               
( )22 2

reg,1 reg,2 1 2 1 2
ˆ ˆ

mse mse 1 ,
n

Y Y n n X X

N n N n nD
ε ε       σ σ −

− ≤ − −      
       

 (2.9) 

where mse is the mean squared error conditional on ’s,ix 1= ,j j ii U j
X N x−

∈∑  and  

( ) ( )22
2 1 2 1 2

=1

= .n i j
j i U j

n n X X
D x X

n∈

−
− +∑∑  

Result (2.9) indicates that, when weights are equal and 1 2=β β  and 1 2= ,α α  the finite sample 

performance of reg,1Ŷ  may be better than that of reg,2Ŷ  for moderate 1n  and 2n . See the simulation results 

in Section 4. The proof of (2.9) is a special case of a more general result in Slud (2012) and, thus, is 
omitted. 



Survey Methodology, June 2014 89 

 

 
Statistics Canada, Catalogue No. 12-001-X 

In applications, we do not know whether 1 2= .β β  Hence, the decision-based estimator decŶ  is an 

adaptive procedure to select a good estimator. In view of (2.8), the performance of decŶ  is close to 

(slightly worse than) that of reg,2Ŷ  when 1 2,β ≠ β  and is close to (slightly worse than) that of reg,1Ŷ  when 

1 2=α α  and 1 2= .β β  This is also supported by the simulation results in Section 4. 

 
3  Variance estimation 
 

It is common practice to report a variance estimate or standard error for each survey estimate. Variance 
estimation is also crucial for statistical inference when setting a confidence interval for an unknown 
parameter of interest. 

The asymptotic results in Section 2 suggest a variance estimator for reg,
ˆ

kY  by substituting into (2.2) 

estimators for unknown quantities in 2 .kσ  Since the total variance is a sum of H  within-stratum 

variances, without loss of generality we consider one stratum ( )= 1 .H  For  = 1, 2,j  let  

( )
ˆ ˆ

ˆˆ ˆ ˆ ˆ= , = 1 , , , ,
ˆ1

T
Tij ij

n ij ij j i ij j i ij j jj
i S j jj

b b
D b p N x p X y p Y i S

n N∈
 − − −  ∈ −∑  

( ) ( )
1 2 1 2

1 21 2 1 2

ˆ ˆ
ˆ ˆ ˆ ˆˆ = , ,1 , ˆ = , ,1 ,

ˆ ˆ
T Tj j

j j j j j j
j j

N n N n
a y x a y x

Nn Nn
   − − β −β − − β −β     

( ) ( )
2 2

1 2 1 2
=1 =1

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ= , = , = , = .j j j j j j j j
j j

y Y N x X N y Y N N x X N N+ +∑ ∑  

Then, under the conditions in Theorem 1,  

2
2 2

=1

ˆˆ = ˆ ˆ , = 1, 2.T
k kj n kj kj P

j

a D a kσ → σ∑  

That is, 2ˆ kσ  is consistent for 2 .kσ  The results in Theorems 2 and 3 also show that 2
2σ̂  is a consistent 

variance estimator for the decision-based estimator dec
ˆ ,Y  because we have either 2 2

1 2=σ σ  or 

( )dec reg,2
ˆ ˆ= 1.P Y Y →  

These substitution variance estimators, however, may not perform well when one of 1n  and 2n  is 

moderate (see Section 4). An alternative method is the bootstrap as suggested by Cheng et al. (2010). Let 

θ̂  be the estimator under consideration. Its bootstrap variance estimator can be obtained as follows.  
 

1. Draw a bootstrap sample *jS  as a simple random sample of size jn  with replacement from ,jS  

where *
1S  and *

2S  are independently obtained. If there are jk  self-representing units in ,jS  as 

discussed in Section 4.1 below, then with-replacement samples of sizes j jn k−  are drawn, 

= 1, 2.j  
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2. The survey weights and observed data from the original data set are used to form a bootstrap 

data set * *
1 2 .S S∪  From this dataset, calculate the bootstrap analog *θ̂  of ˆ.θ  

3. Independently repeat the previous steps B  times to obtain *1 *ˆ ˆ, , .Bθ θ…  The sample variance of 
*1 *ˆ ˆ, , Bθ θ…  is the bootstrap variance estimator for ˆ.θ  

 

Under the conditions in Theorems 1-2, the bootstrap variance estimators for reg,1
ˆ ,Y reg,2Ŷ  and decŶ  are 

consistent estimators. The proof for the bootstrap is similar to the proofs of the theorems and is omitted. 

 
4  Simulation results for = 1H  
 

Large sample theory as presented above is not adequate to tell whether the asymptotic results 
adequately describe the behavior of the estimators reg,1

ˆ ,Y reg,2Ŷ  and decŶ  and their variance estimators in 

moderate samples, or whether reg,1Ŷ  and decŶ  ever provide useful Mean-Squared-Error improvements in 

moderate sized samples. We present some simulation results to study these questions, as well as the small-
sample issues arising in applying these methods in the context of the ASPEP survey. 

In the simulations, values in the frame population   U  are either generated under some model or are 
taken from the 2002 and 2007 Government censuses with 2007 ASPEP sample weights. The first set of 
simulations (reported in Tables 4.1-4.6) summarizes average behavior over many model-generated frame 
populations. In the second set of artificial-data simulations, summarized in Table 4.8, the frame population 
remains fixed throughout the simulation. All frame populations consist of a single stratum ( )= 1H  

broken into two substrata ( )= 1, 2j  according as a size variable falls below or above a specific quantile, 

usually the 0.8 quantile. Sampling from the frame populations is done PPS with-replacement in all 
simulations in this section. 

 
4.1  Small sample considerations 
 

Before proceeding to describe the simulations, we discuss some special features of PPS with-
replacement (PPSWR) sampling which, when done in settings with small samples and unbalanced size 
variables, requires special computational handling. Numerically erratic results can arise when the small 
drawn samples are used stratumwise and then bootstrapped to estimate variances. 

The weights ( )1 = 1  i j ijn p−π  in PPSWR are all greater than 1 only when the single-draw 

probabilities  =ij i ii U j
p z z ′′∈∑  are all below 1 .jn  To avoid anomalous small-sample results, and to 

maintain the relevance of PPSWR designs in imitating PPS without-replacement designs, any units 

ji U∈  with 1j ijn p ≥  are made self-representing (SR), i.e., are sampled with certainty but only once, 

and if there are jk  such units, then the probabilities { }: , < 1ij j j ijp i U n p∈  are renormalized to draw a 

size   j jn k−  PPSWR sample. If any of the remaining renormalized probabilities are 1 ( ) ,j jn k≥ −  

then their units also become self-representing and a new renormalization is done. This is repeated as often 
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as necessary. Thus, small samples with very unequal size-variable distributions may not be compatible 
with PPSWR sampling, a condition arising in some of the real-data ASPEP cases considered below. 

Although a different choice could have been made, we conform with ASPEP practice in including all 

SR units in the fitting of the survey-weighted regression estimators 2
ˆ  β  and ˆ .β  However, with this 

choice, PPSWR sampling followed by bootstrap resampling of small samples can lead to extremely erratic 
behavior, which must be recognized in summarizing the behavior of bootstrap variance estimators. The 
problem is that when a small number m  of non-self-representing items are sampled PPSWR, in addition 
to a set of SR items, and then bootstrapped, the probability can be surprisingly large that there is only one 
unique non-SR item in the bootstrap sample, leading to very high bootstrap variability. This phenomenon 
was observed in the simulations reported below, with large-size substratum containing 20 or fewer 
elements and very skewed size-variables, either in the cases with lognormal or ASPEP ix  variables. 

 
4.2  Artificial model-generated data 
 

All of the artificial frame populations were generated with =N 2,000 iid triples ( , , )i i ix y z  satisfying 

(2.7), for 1U  consisting of the 1 =N 1,600 for which ix  fell below their empirical 80’th percentile 

( ) ( )( )1,600 1,601= 2 ,c x x+  and 2U  consisting of the other 400 indices. In most cases, iz  were generated 

as ( )30 ,100iN x+  variates conditioned to be positive (which required occasional re-simulation in the 

lognormal- ix  models below) and were conditionally independent of iy  given .ix  (However, in some 

cases, unweighted samples were drawn by taking iz  identically equal.) PPS with-replacement stratified 

samples of sizes ( ) ( ) ( )1 2, = 100, 50 , 100, 20 ,n n  or ( )50, 20  were drawn in successive simulation runs, 

with size-variables ,iz  from the same frame. 

The models generating ( , ) i ix y  are indexed as follows. In those with prefix ,M1  the predictors ix  

are Gamma(4, 0.1) distributed, with 0.8 quantile 55.2, while in the models ,M2  the ix  variables are 

Lognormal(1,6.25), with 0.8 quantile 22.3. The M1  populations, and the M2  models with suffix ,E  have 

conditional variance 100 for iy  given ,ix  while the M2  models without suffix E  have conditional 

variance 20 .ix  Conditional means ( )i iE y x  are all linear, equal to 20 1.5  ix+  in models indexed H0  

and to ( ) [ ]=220 0.5  i i jx x c I+ + −  within the substratum jU  in models .H1  The intercepts of the 

regression models are so chosen that whether or not the slopes are the same, the lines intersect at =x c  
(see the discussion in Section 1). Table 4.1 exhibits the average and standard deviation for the totals Y  

generated from the frame-population attributes{ }2,000

=1  i iy  under the various models. The variates ix  as well 

as the totals Y  are much longer-tailed under the Lognormal models.  

 
Table 4.1 
Means and standard deviations for totals Y  under simulation models. 
 

  Gamma Lognormal  
Model M1.H0  M1.H1  M2.H0  M2.H0E  M2.H1  M2.H1E  
E(Y)   160,000   123,177   225,603   225,603   173,485   173,485  
SD(Y)   1,414.2   653.5   94,380   94,368   62,362   62,344  
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Simulated population models 
 

.M1 H0 :  ( )Gamma 4, 0.1ix ∼  (shape parameter 4, scale 10),  

( )20 1.5 ,100i iy N x+∼  (variance 100), all  .i U∈  

.M1 H1 :  ( )Gamma 4, 0.1 ,ix ∼ ( )( )20 0.5 ,100 ,i i i x ci
y N x x c I

 ≥ 
+ + −∼  all  .i  

.M2 H0 :  ( ) ( ) ( )log 1, 6.25 , 20 1.5 , 20 , all .i i i ix N y N x x i+∼ ∼  

.M2 H0E :  ( ) ( ) ( )log 1, 6.25 , 20 1.5 ,100 , all .i i ix N y N x i+∼ ∼  

.M2 H1 :  ( ) ( ) ( )( )log 1, 6.25 , 20 0.5 , 20 , all .i i i i ix ci
x N y N x x c I x i

 ≥ 
+ + −∼ ∼  

.M2 H1E :  ( ) ( ) ( )( )log 1, 6.25 , 20 0.5 ,100 , all .i i i i x ci
x N y N x x c I i

 ≥ 
+ + −∼ ∼  

 
The simulation and bootstrap results in Tables 4.2-4.5 were generated by the following design and 

reporting scheme. For each population type, 60 distinct frame populations were generated, and 50 
independent sampling experiments were conducted with each of those. In those cases where results of 
weighted and unweighted sampling were compared, these samples were drawn independently from the 
same set of 60 frame populations. Thus there were 3,000 independent replications for Monte Carlo 
averaging of statistical results, done for each of three different stratified sample sizes, and 400 bootstrap 
iterations were performed for each such generated sample. 

 
Table 4.2 
Empirical and estimated SD’s and CI coverage, from model M1  simulations. 
 

    M1.H0  M1.H1  

Sizes Stat reg ,1Ŷ  reg ,2Ŷ  
decŶ  reg ,1Ŷ  reg ,2Ŷ  

decŶ  

 100,50   SDMC    1,785.5   1,794.3   1,788.0   1,817.6   1,773.5   1,774.4  

  �SDS   1,757.1   1,751.5   1,755.6   1,794.6   1,735.2   1,735.8  

  �SDB   1,752.4   1,762.0   1,758.4   1,788.1   1,742.9   1,747.0  

  CPS   94.47   94.37   94.50   93.93   93.73   93.77  

  CPB   94.60   94.53   94.67   93.93   94.03   94.07  

 100,20   SDMC    1,930.0   1,944.8   1,934.0   2,008.4   1,944.4   1,960.4  

  �SDS    1,888.3   1,876.6   1,884.1   1,944.4   1,861.0   1,866.5  

  �SDB    1,878.8   1,901.4   1,895.8   1,936.1   1,885.6   1,897.9  

  CPS   94.20   93.83   94.13   93.53   93.20   93.07  

  CPB   93.80   94.00   93.97   93.60   93.83   93.97  

 50,20   SDMC    2,583.5   2,610.7   2,593.5   2,591.3   2,522.8   2,535.4  

  �SDS    2,509.2   2,490.8   2,505.1   2,562.2   2,465.0   2,474.5  

  �SDB    2,498.5   2,538.0   2,522.9   2,550.3   2,508.5   2,525.6  

  CPS   93.70   93.13   93.57   93.97   93.63   93.43  

  CPB   93.63   93.73   93.87   93.83   93.77   94.10  
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Table 4.3 
Empirical and estimated SD’s and CI coverage, from model M2  simulations. 
 

    M2.H0  M2.H1  

Sizes Stat reg ,1Ŷ  reg ,2Ŷ  decŶ  reg ,1Ŷ  reg ,2Ŷ  decŶ  

 100,50   SDMC    3,400.1   3,475.4   3,406.8   3,481.9   3,483.8   3,482.2  

  �SDS   3,420.6   3,400.0   3,417.0   3,537.8   3,405.0   3,463.7  

  �SDB   3,590.0   3,715.2   3,623.4   3,852.0   3,921.9   3,898.4  

  CPS   95.10   93.43   94.83   95.03   93.40   94.13  

  CPB   95.67   95.77   95.77   95.63   95.77   95.70  

 100,20   SDMC    5,655.2   6,184.0   5,698.6   5,853.0   6,181.1   5,955.6  

  �SDS    5,644.9   5,575.7   5,640.9   5,798.3   5,587.3   5,697.3  

  �SDB    5,565.1   6,687.3   5,857.8   5,907.8   6,838.0   6,466.6  

  CPS   93.83   88.47   93.40   92.77   88.30   90.70  

  CPB   92.33   93.67   93.37   92.63   94.33   94.17  

 50,20   SDMC    5,773.2   6,319.2   5,833.9   5,934.2   6,230.6   6,009.8  

  �SDS    5,800.2   5,677.2   5,785.8   6,012.6   5,755.4   5,919.2  

  �SDB    5,728.5   6,825.2   6,086.0   6,102.2   6,978.1   6,522.1  

  CPS   94.60   88.67   93.97   94.07   89.37   92.27  

  CPB   93.40   94.23   94.27   93.47   95.03   94.80  

 
Table 4.4 
SD’s for HTŶ  vs. dec

ˆ ,Y  and coverage for Bootstrap Percentile Confidence Intervals for dec
ˆ ,Y  for = 0.05τ  vs. 

0.20, for models M1  and M2, H0  and H1 . 
 

    dec
ˆ , = 0.05Y τ  HTŶ   dec

ˆ , = 0.20Y τ  

Model Samples SDMC  CPBP  HTSD  SDMC  CPBP  

.M1 H0   100,50   1,788.0   94.23   2,774.0   1,745.5   94.60  

  100,20   1,934.0   93.50   3,032.6   1,915.9   94.10  

  50,20   2,593.5   93.17   3,000.7   2,500.1   94.43  

.M1 H1   100,50   1,774.4   93.70   2,387.3   1,737.3   94.43  

  100,20   1,960.4   93.27   2,678.9   1,948.0   93.23  

  50,20   2,535.4   93.90   3,035.0   2,509.8   94.23  

.M2 H0   100,50   3,406.8   95.20   4,160.0   3,398.8   94.83  

  100,20   5,698.6   91.13   6,720.2   5,705.7   92.57  

  50,20   5,833.9   92.60   7,080.0   5,979.8   92.17  

.M2 H1   100,50   3,482.2   95.13   4,393.6   3,423.9   94.03  

  100,20   5,955.6   92.07   7,413.1   5,917.3   92.40  

  50,20   6,009.8   92.33   7,840.4   6,105.6   92.17  
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Table 4.5 
Comparisons of SD estimates and CI coverage for H0  and H1  for three lognormal settings, weighted (W) 
and unweighted (U) within M2,  and weighted (E) within M2.E.  CI % coverages are given for both the 
Bootstrap SD and Percentile Intervals. 
 

Model Size Stat SD �SDS  �SDB  CPS  CPB  CPBP  

H0.W   100,50   reg,1Ŷ    3,400.1   3,420.6   3,590.0   95.10   95.67   94.93 

    reg,2Ŷ    3,475.4   3,400.0   3,715.2   93.43   95.17   95.33 

    decŶ    3,406.8   3,417.0   3,623.4   94.83   95.77   95.20 

H0.U     reg,1Ŷ    5,481.6   3,674.8   5,571.9   81.43   93.50   92.07 

    reg,2Ŷ    5,782.8   3,646.6   6,076.3   80.13   93.67   91.90 

    decŶ    5,525.5   3,669.0   5,726.8   81.07   93.83   92.20 

H0.E     reg,1Ŷ    1,888.8   1,930.1   1,904.7   94.73   94.53   94.23 

    reg,2Ŷ    1,888.6   1,911.1   1,893.2   94.43   94.30   94.20 

    decŶ    1,892.9   1,926.5   1,905.0   94.67   94.57   94.20 

H0.W   50,20   reg,1Ŷ    5,773.2   5,800.2   5,728.5   94.60   93.40   92.00 

    reg,2Ŷ    6,319.2   5,677.2   6,825.2   88.67   94.23   92.60 

    decŶ    5,833.9   5,785.8   6,086.0   93.97   94.27   92.60 

H0.U     reg,1Ŷ   10,000.3   5,136.5   9,905.6   71.10   90.73   89.80 

    reg,2Ŷ   11,192.8   5,085.0  12,806.8   68.70   92.90   89.37 

    decŶ   10,134.1   5,120.7  11,245.9   70.73   92.37   90.27 

H0.E     reg,1Ŷ    2,811.4   2,831.6   2,769.5   94.13   94.00   93.93 

    reg,2Ŷ    2,811.9   2,753.8   2,741.1   93.47   93.77   93.30 

    decŶ    2,817.4   2,821.8   2,777.0   93.83   93.90   93.77 

H1.W   100,50   reg,1Ŷ    3,481.9   3,537.8   3,852.0   95.03   95.63   95.27 

    reg,2Ŷ    3,483.8   3,405.0   3,921.9   93.40   95.77   95.10 

    decŶ    3,482.2   3,463.7   3,898.4   94.13   95.70   95.13 

H1.U     reg,1Ŷ    5,631.4   3,774.8   5,614.6   80.90   92.33   91.07 

    reg,2Ŷ    5,838.3   3,699.6   6,010.5   79.13   92.73   91.37 

    decŶ    5,727.0   3,732.8   5,870.5   80.40   92.93   91.63 

H1.E     reg,1Ŷ    2,005.5   2,094.2   2,019.1   95.60   94.97   94.60 

    reg,2Ŷ    1,909.9   1,908.2   1,892.5   94.83   94.77   94.17 

    decŶ    1,931.9   1,941.7   1,934.6   94.97   95.20   94.83 

H1.W   50,20   reg,1Ŷ    5,934.2   6,012.6   6,102.2   94.07   93.47   91.97 

    reg,2Ŷ    6,230.6   5,755.4   6,978.1   89.37   95.03   92.23 

    decŶ    6,009.8   5,919.2   6,522.1   92.27   94.80   92.33 

H1.U     reg,1Ŷ    9,315.8   5,350.9  10,040.0   74.17   93.10   90.57 

    reg,2Ŷ   10,583.8   5,229.6  12,476.8   71.23   94.57   90.87 

    decŶ    9,989.6   5,295.4  11,479.5   72.53   94.33   91.47 

H1.E     reg,1Ŷ    3,096.1   3,137.7   2,795.6   94.63   93.43   93.37 

    reg,2Ŷ    2,880.6   2,766.8   2,745.7   93.10   93.40   93.47 

    decŶ    2,977.3   2,929.2   2,882.0   93.77   93.77   93.77 
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We calculated the following quantities for each combination of model, weighting, and sample size: the 
percentage biases of reg,1

ˆ ,Y reg,2
ˆ ,Y decŶ  (with =τ 0.05 in all tables except Table 4.4, and =τ 0.05 or 0.20 

in Table 4.4) as estimators of ;Y  the Monte Carlo standard deviations (SD), SD ,MC  of these three 

estimators; the estimated SD’s of the estimators, respectively using the substitution �( )SDS  and bootstrap 
�( )SDB  SD estimators described in Section 3; the coverage probability, C ,uP  of the nominal 95% 

confidence intervals for :Y �ˆ 1.960 SD ,uY ± ⋅  where Ŷ  is one of the three estimators of ,Y  and =u S  or 

;B  and the bootstrap percentile confidence intervals (and their coverage percentages C BPP ) obtained from 

the empirical 0.025 and 0.975 quantiles of the (400) bootstrapped values of each of the three estimators Ŷ  
of .Y  In addition, we calculated empirical biases of the Horvitz-Thompson estimates HTŶ  in (1.1) and 

their empirical standard deviations HTSD . (Of these calculated quantities, only the biases are not shown, 

since all of the biases were well below 0.5% except in the model . . ,M2 H1 U  and even there the largest 

magnitude of bias was about 1%.) Two further statistics, computed and displayed in Table 4.6 for each of 
the estimators ̂Y  of ,Y  are the standard errors across randomly generated frame populations of the Monte 

Carlo and Bootstrap within-population estimated SD’s of estimators ˆ.Y  

 
Table 4.6 
Cross-population Standard errors of Empirical and Bootstrap SD’s estimated for the estimators reg ,1 reg,2

ˆ ˆ, ,Y Y  
and dec

ˆ ,Y  for selected models and weighting. 
 

     reg ,1Ŷ    reg ,2Ŷ    decŶ   

Model Sizes SD �SDB  SD �SDB  SD �SDB  
.M1 H0   100,50   198   35   196   35   197   35  

  50,20   210   52   208   51   210   51  
.M1 H1   100,50   204   39   183   40   184   41  

  50,20   319   57   298   62   302   62  
.M2 H0   100,50   404   345   450   383   405   351  

  50,20   825   518   1,075   916   889   631  
. .M2 H0 E  100,50   187   49   185   45   184   47  

  50,20   294   85   293   71   298   82  
.M2 H1   100,50   409   409   410   421   408   414  

  50,20   767   624   946   929   841   730  
. .M2 H1 E  100,50   208   59   196   46   204   50  

  50,20   258   141   261   82   239   102  
. .M2 H1 U  100,50   1,676   1,351   1,773  1,539   1,726   1,467  

  50,20   2,397   2,543   3,425  3,454   3,102   3,159  

 
4.3  Real government-census data 
 

Our simulations based on repeated sampling from real-data frames rely on a national state-wise dataset 
assembled by Yang Cheng. For the ASPEP survey of governments for sample year 2007, which was also a 
census year, the ASPEP frame is the same as the 2007 Census of Governments file. Our dataset consists of 
the 2002 and 2007 ASPEP variable values (full- and part-time employees, payroll and hours) derived from 
the censuses in those years, plus the 2007 sample weights and in-sample indicators for ASPEP. Weights 
equal to 1 imply that governmental units were self-representing (SR), in the sense that they were chosen 
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for inclusion with certainty in ASPEP. The size-variable iz  for PPS sampling within ASPEP is the sum of 

full- and part-time payroll from the most recent census, so we restrict attention to the 53,402 governmental 
units in the file for which this variable was positive. Table 4.7 gives the subcounty and special-district 
governmental types (the only ones that are subdivided into Small and Large unit substrata) in nine selected 
states, giving also the SR counts and numbers sampled in 2007. As mentioned in subsection 4.1, the final 
SR count for PPS with-replacement sampling can exceed the number of units initially chosen for certain 
inclusion, and the larger numbers, corresponding to the sample size actually drawn in 2007, are shown in 
the SR columns of Table 4.7. Inspection of this Table shows that several of the state by type combinations 
either have no population in a substratum or have too few non-SR units to be useful in simulating repeated 
samples. We take 15 as a rule-of-thumb minimum for the number of non-SR units, and suggest that 
substratum pairs with fewer non-SR units in the large-unit stratum should be collapsed without recourse to 
the decision-based strategy studied in this paper. 

 
Table 4.7 
Census population, ASPEP sample sizes and SR counts of Subcounty and Special-District governmental units 
by substratum in 2007, for 9 selected states. 
 

   Subcounty   Special District  
   Small   Large   Small   Large  
   Pop   Samp   Pop   Samp   SR   Pop   Samp   Pop   Samp   SR  

AL   378   15   55   45   26   0   0   400   102   64  
CA   0   0   475   104   86   1,595   39   107   107   107  
CO   0   0   265   34   18   627   16   65   55   33  
FL   317   16   81   54   36   0   0   330   48   24  
GA   461   17   49   36   20   0   0   293   70   32  
MO   980   25   101   101   101  799   27   106   66   42  
NY   1,473  25   69   69   69   606   16   33   23   4  
PA   2,409  55   123   81   31   921   21   37   37   37  
WI   1,702  36   129   71   44   281   16   61   40   20  

 
For nine government-by-type combinations with 15 or more non-SR units and at least 17 non-sampled 

non-SR large-substratum units (except for AL, CO, and GA for which there were respectively 9, 10, and 
11 non-sampled non-SR units), Table 4.8 displays results for the decision-based estimators and variance 
estimates in substratum pairs. In each of the state-type combinations, 3,000 stratified PPSWR samples of 
the indicated sizes were drawn from the ASPEP and government census frame described above, with ix  

and iy  respectively the full-time payroll amount for the governmental unit as recorded in the 2002 and 

2007 governmental censuses, and iz  the total (full-time plus part-time) payroll in 2002. Within each 

simulated sample, the estimators reg,1 reg,2 dec
ˆ ˆ ˆ, ,Y Y Y  were calculated, and the empirical variances estimated. 

The variance of decŶ  was also estimated by the substitution formula and bootstrap methods as in the 

artificial-data simulations. (But note that, as described above, the bootstrap samples were drawn only from 
the non-SR units in each substratum sample.) The results are shown in Table 4.8. The relative efficiencies 
between the combined and separate stratified regression estimators can be gleaned from the corresponding 
ratio of SD’s given in column 5 of the table. The remaining SD’s shown are the empirical, substitution, 
and bootstrap SD estimators of dec

ˆ .Y  
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Table 4.8 
Summary of repeated-sampling simulations from ASPEP 2007 frame. Total full-time pay ( )Y  given in 
multiple of $100 million, and estimated SD’s of decŶ  given in columns 6-8 in units of $1 million. 1 2SD SD  in 
column 5 is ratio of empirical SD of reg ,1Ŷ  over that of reg ,2Ŷ . 
 

State Stratum Y Size 1 2SD SD  �SD  �SDS  �SDB  
AL   SubCty   1.2   25,46   2.14   4.90   3.67   5.71  
CA   SpcDst   4.3   30,90   0.98   29.4   21.2   26.8  
CO   SpcDst   0.6   25,55   1.14   3.77   2.58   3.00  
FL   SubCty   4.3   25,54   1.16   11.9   9.4   12.2  
GA   SubCty   1.5   25,38   1.15   4.38   3.26   4.88  
MO   SpcDst   0.6   40,70   2.13   2.99   2.20   2.99  
NY   SubCty   23.6  35,52   1.53   13.6   12.0   14.1  
PA   SubCty   3.0   40,70   1.12   7.28   5.79   7.60  
WI   SubCty   1.4   40,70   2.06   5.00   4.45   5.17  

 
4.4  Discussion of simulation results 
 

The following is a summary and interpretation of the results in the Tables, as well as of other results 
not shown. 
 

(I) Many of the artificial-data simulations serve to confirm the large-sample theoretical results of the 
Theorems. It has already been mentioned that in Tables 4.2 and 4.3 the biases for all three Y -estimators 

( )reg,1 reg,2 dec
ˆ ˆ ˆ, ,Y Y Y  are generally small. Within Table 4.2, referring to models with predictors and weights 

related to the Gamma distribution in models ,M1  the substitution and bootstrap variance estimators for 

each Y -estimator are quite accurate and close to one another, and the confidence intervals all have close 
to nominal coverage. Under both .M1 H0  and . ,M1 H1  there is a tendency with smaller 2n  sample size 

for the �SDS  and �SDB  estimators to be slight underestimates of the actual or empirical SD’s, but �SDB  

seems to track SD more closely than �SDS  for reg,2Ŷ  and dec
ˆ .Y  

(II) The lognormal ix  values in models M2  are much more dispersed and skewed than the values in 

,M1  but the simulation results still support the asymptotic theory when 2 = 50,n  although not when 

2 = 20.n  The substitution-estimator based confidence intervals for Y  in terms of reg,2Ŷ  have coverage 

probability far too small when the substitution variance estimator is used. In Table 4.3, for each type of 
Y -estimator there is a pronounced tendency for the substitution variance estimator to underestimate the 
true (empirical) variance, and for the bootstrap estimator to overestimate. 

Table 4.5 clarifies that the extreme behavior of variance estimators under models M2  occurs partly 
because the predictors and iy  are dispersed and skewed, and partly because the size-variable used in PPS 

weighting shares these properties. The cases with suffix W  in this Table are the same as in Table 4.3. The 
cases with suffix E  have ( ),i ix z  the same as in Table 4.3, but the conditional variances of iy  given ix  

have the constant value of 100; and with this change, the erratic behavior of SD estimators disappears. 
However, when the conditional iy  variances are as in the basic model M2  but the PPSWR sampling is 

done unweighted, i.e., with all iz  replaced by 1, the empirical and bootstrap SD estimators track each 

other and are very large, while the substitution variance estimator is too low by dramatic factors of 1 2 to 
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3 4. This weird phenomenon applies equally to all three Y  estimators. (However, an unweighted-

sampling variant in model M1  does not materially change the results from those shown in Table 4.2.) 

(III) One objective of the simulations was to learn whether there can ever be any Mean-squared Error 
(MSE) benefit in using reg,1Ŷ  rather than reg,2

ˆ ,Y  without which there would be little motivation for decŶ . 

Indeed, the large-sample Theorems say that the main large-sample variance term is always optimal for 

reg,2Ŷ  (whether because it is the same as for reg,1Ŷ  under the null hypothesis or because it is strictly better 

under model (2.7) with distinct slopes). However, we indicated following Theorem 3, in the bound (2.9), 
that reg,1Ŷ  can have smaller second-order MSE than reg,2

ˆ ,Y  and the H0  columns of Tables 4.2 and 4.3 do 

show a small but consistent SD advantage for reg,1Ŷ  versus reg,2
ˆ ,Y  an advantage which is more pronounced 

in .M2  This advantage disappears under the fixed alternative .M1 H1  but interestingly, not under 

. .M2 H1  The slight but real conditional MSE advantage for reg,1Ŷ  when the substratum slopes are very 

close to equality is discussed further by Slud (2012). 

The estimators reg,1 reg,2 dec
ˆ ˆ ˆ, ,Y Y Y  considered here are of regression type, and it may be of interest to 

compare their MSE behavior in the simulated populations with that of the simpler Horvitz-Thompson 
estimator HTŶ  in (1.1). All of these estimators are nearly unbiased, so that MSE’s are essentially the same 

as variances, and a comparison of the third and fifth columns of Table 4.4 shows that the HTŶ  variances 

are considerably larger than those of dec
ˆ .Y  The difference is least pronounced with the larger sample sizes, 

but even there is 30-55%. The advantage of decŶ  is still very pronounced in model ,M2  where model 

variances and distributional skewness are larger, but less so than in model .M1  

(IV) The definition of decŶ  contains the arbitrary nominal significance level ,τ  which in all tables 

other than Table 4.4 was taken to be 0.05. As the large-sample theory suggests, the properties of the 
decision-based estimator fall between those of reg,1Ŷ  and reg,2

ˆ ,Y  and larger values of τ  make decŶ  more 

often equal to reg,1
ˆ .Y  As can be seen from comparison of columns 6 and 7 of Table 4.4, the choice =τ

0.20 seems in the simulated models to lead to very slightly smaller SD of decŶ  under model ,M1  but in 

model M2  the SD is if anything larger at the smaller sample sizes. The conclusion is weak because the 
differences are quite small compared to the differences between SD’s from one frame population to 
another. Our preference is to let smaller τ  dictate the frequent pooling of substrata except when there are 
pronounced differences in estimated slope between the substrata. This finding that larger significance 
levels τ  do not improve performance of decŶ  differs from the finding of Saleh (2006) that larger 

significance levels are highly beneficial in other preliminary-testing contexts. 

(V) Table 4.6 gives information about the variability across frame populations of SD estimators for the 
Y  estimators. The bootstrap variance estimators appear less susceptible to variation across frame 
populations, because the bootstrap averaging stabilizes them. The key finding in this table seems to be that 
the variability across frame populations is moderate except in the unweighted M2  setting, where it is 
remarkably large. This seems to account for the extreme inflation of variances under .M2 U  seen in 
Table 4.5. 

(VI) In many bootstrap applications with approximately normally distributed statistics, failure of 
coverage of normal-theory-based confidence intervals due to nonnormality of the bootstrapped statistic 
can be mitigated by using the bootstrap percentile (BP) intervals (Shao and Tu 1995, Section 4.1). In the 
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present simulations, Table 4.4 (columns 4 and 6) gives the coverage percentages of BP intervals for decŶ  

in settings where Tables 4.2 and 4.3 give the coverages of normal-theory CI’s based on the bootstrap-
estimated SD. For whatever reason, the tables show that the normal-theory coverage CPB  tends 

systematically to be slightly below nominal and yet slightly larger than the BP interval coverage CP .BP  

Thus, our simulations indicate the preference in this setting for the simpler interval �
dec

ˆ 1.96 SD .BY ± ⋅  

(VII) It remains to draw lessons from the simulations with real government-census data in Section 4.3. 
The first necessary comment is that the spread and skewness of the full-time payroll predictors ix  and the 

total-payroll size-variable iz  are very large, much more like the lognormal models M2  than the gamma 

models .M1  Table 4.8 indicates (in column 5) a consistent MSE advantage for reg,2Ŷ  over reg,1Ŷ  except in 

the CA Special-district case, although the difference is small in the CO Special-district and the FL, GA 
and PA Subcounty cases. It is notable in almost all of these examples that the bootstrap SD estimator for 

decŶ  is more accurate than the substitution-formula estimator, despite the rather small numbers of sampled 

and unsampled non-SR units and (in several cases, as shown in Table 4.7) relatively large numbers of SR 
units. The substitution SD estimates are consistently too small while the bootstrap estimates are usually 

slightly high (i.e., generally � � � SD < SD < SDS B ). The relative error of �SDB  versus �SD  is no more than 
about 5% in these examples, except in the cases (AL, CO, GA) where there are particularly few non-
sampled non-SR units in the large-unit substratum. 

The large-unit substrata in ASPEP usually have small total frame population and often have relatively 
large numbers of SR units. While we have seen in these simulations that this does not quite invalidate 
inferences drawn with reg,1 reg,2

ˆ ˆ,Y Y  or dec
ˆ ,Y  these statistics have distributions rather different from those of 

large-sample theory, and perhaps future substratum splits should allow slightly larger large-unit substrata 
for well-behaved statistical inferences. 

More broadly, the simulation results indicate that the decision-based estimator with interval estimator 
defined from bootstrap variances is well-behaved and can be recommended except in extremely dispersed 
and skewed populations or in populations with large-unit sample sizes less than 20-25. 
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Appendix 
 
Proof of Theorem 1. Under PPS sampling, =i j ijn pπ  for unit ,ji U∈  and on each with-replacement 

draw, the sampled index  , = 1, ,  t j ji U t n∈ …  has ( ) = =  t ijP i i p  for each  .ji U∈  By calculating 
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the means and variances (under repeated sampling) of ˆ ,jN ˆ ,jX ˆ ,jY 1
j i i ii S j

N x y−
∈

π∑  and 

1 2 ,j i ii S j
N x−

∈
π∑  we find the variances to be of order 1jn−  by means of the limits in (C2)-(C3) and the 

bounds in (C4). The assertions in part (a) follow directly. 

For assertion (b), we have by definition of ˆ  β  that  

( ) ( )( )
( ) ( )( )

( )( ) ( ) ( )( )
( )( ) ( )

2

, , 1 2 1 2=1

22

, , 1 2 1 2=1

21 2
1 2 1 2 1 2 1 2=1

2
21 2

1 2 1 2 1 2
=1

ˆ ˆ ˆ ˆˆ ˆ
ˆ =

ˆ ˆ ˆ ˆˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ
= ,

ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ

i x j x j i ij i S j

i x j x j ij i S j

j xj j x x y yj

xj j x x
j

x X X N N y

x X X N N

N N N N N N

N N N N N N

∈

∈

−

−

− µ + µ − + + π
β

− µ + µ − + + π

β σ + + µ − µ µ − µ

 σ + + µ − µ 
 

∑ ∑

∑ ∑

∑

∑

 

from which the equality (2.1) in (b) follows immediately by substituting the limits in part (a) along with 
the limits .j jN N → ω  

Let NΣ  be the block diagonal matrix with two diagonal blocks 
1ND  and 

2
,ND  and for  = 1, 2,j  let  

                    

( )

1 2

,
3 4

1 1 1
= , = ,

1 1
= , = .

i
j j j j

i S i Sj j ij j j ijj j

i x ji
j j j i j j i

i S i Sj j ij j j ijj j

x
N X

N n p N n p

xy
Y y x

N n p N n p

∈ ∈

∈ ∈

   
Ω − Ω −   

   

− µ 
Ω − Ω − α − β 

 

∑ ∑

∑ ∑
 (A.1) 

Since 1S  and 2S  are independent, { }4
1 =1 k kΩ  is independent of { }4

2 =1 .k kΩ  Note that, here and throughout 

this proof, sums over ji S∈  used to define ̂ ,jX ˆ ,jY ,kjΩ  and variance estimators should be understood as 

sums with multiplicity in view of the with-replacement PPS sampling framework. Condition (C4) makes 
Liapounov’s Central Limit Theorem applicable to show that  

                      [ ] ( ) ( )1 2 2
11 21 31 12 22 32 6 4 ,, , , , , 0, , 0, ,T

N j xe jd d
N I N−Σ Ω Ω Ω Ω Ω Ω → Ω → σ  (A.2) 

where 6I  is the 6 6×  identity matrix, and 2
,xe jσ  is given in the statement of (d). The limits defining the 

asymptotic variances in (A.2) exist according to (C3). 

 
Proof of (c). It is straightforward to check from the definition that  

22

ˆ ˆ1
= .

ˆ ( )ˆ ˆ ˆˆˆ

j j i j j ii xj

i S xj i xj xj ij xjj j j

y xx

xN ∈

 β − β − α − β− µ 
     σ − − µ µ πσα − α   

∑  

Since it was established in (a) that 2 2ˆ xj xjP
σ → σ  and ˆ 1,j j P

N N →  it follows that the limiting 

distribution of ( )ˆ  j j jn β − β  is the same as that of  
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( ) ( ) ( )12 ,j j xj i xj i j j i i
i S j

n N x y x
−

∈

σ − µ − α − β π∑  

which is clearly the same as that of 2 4  xj j
−σ Ω  in (A.1). The first assertion of (c) follows immediately from 

(A.2). The consistency of 2 ,ˆ xe jσ  follows by noting by (a) that  

                                         
( ) ( )

2
22 2

, 0.ˆ i xj
xe j j i j j i P

i S i ijj

x
N y x

p
−

∈

− µ
σ − − α − β →

π∑  (A.3) 

The second term on the left-hand side of (A.3) has PPS with-replacement sampling variance calculated to 
be bounded by 1 jn  according to (C4), and by (C3) has expectation converging to 2

,  .xe jσ  

 
Proof of (d). From (1.2) and (a), ( )reg,2

ˆ 0,
P

Y Y N− →  which can also be seen from the representation  
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where the second equality follows from the notational definitions of kjΩ  along with = ,i j ijn pπ  

ˆ ˆ= , = ,j i i j i ii S i Sj j
Y y X x

∈ ∈
π π∑ ∑  and the third from  
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2
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n NN
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By (A.2), 1 = (1)pOΩ  and ( )2 = 1 .pOΩ  By condition (C2), ( )2= 1 .T T
nj j pd a o+  Therefore, by (A.2), 

condition (C3) and the delta method,  

( ) ( ) ( )2
reg,2 21 1 22 2 2

ˆ = 1 0, ,T T
p dn Y Y N a a o N− Ω + Ω + → σ  

where the asymptotic variance 
22

2 2 2=1
= T

j j jj
a D aσ ∑  is consistently estimated by  
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1 ˆ ˆˆ ˆ ˆ ,i j i j j j j
j i S ij

n
y x Y X N

N ∈

− β − − β
π∑∑  

which agrees with formula (9) of Cheng et al. (2010). The proof that ( ) ( )2
reg,1 1

ˆ 0,dn Y Y N N− → σ  is 

similar. 
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Proof of Theorem 2. By Theorem 1 conclusion (c), 

                                       ( ) ( )
2

2 2 4
2 1 2 1 ,

=1

ˆ ˆ 0, .d xe j j xj
j

n N
 β − β − β + β → σ ϕ σ 
 
∑  (A.4) 

The conclusion (2.4) in (a) of this Theorem follows immediately. 

In the proof of Theorem 1, we showed that 

                                              ( ) ( )reg,2 21 1 22 2
ˆ = 1 ,T T

pn Y Y N a a o− Ω + Ω +  (A.5) 

where the constant vectors kja  (and  ,x yµ µ ) were defined in Theorem 1 (d). Similarly,  

                                               ( ) ( )reg,1 11 1 12 2
ˆ = 1 .T T

pn Y Y N a a o− Ω + Ω +  (A.6) 

When (2.3) holds, =jβ β  (by Theorem 1 (b)) and ( )2

2 2=1
 = = ,y x j yj j xj y xj
µ − βµ ω µ − β µ µ − βµ∑  

so that 1 2=j ja a  for = 1, 2.j  It follows immediately from (A.5)-(A.6) that 

( )reg,1 reg,2
ˆ ˆ 0,

P
n Y Y N− →  and therefore that the estimators reg,

ˆ
kY  have the same asymptotic 

distribution, which was shown to be normal in Theorem 1 (d). Finally, the definition of decŶ  implies that 

( )dec reg,1 reg,2
ˆ ˆ ˆ= or = 1P Y Y Y  and (A.5)-(A.6) imply  

                                             ( ) ( )dec 21 1 22 2
ˆ = 1 ,T T

pn Y Y N a a o− Ω + Ω +  (A.7) 

which completes the proof of (2.5) in (a). 

 

Proof of (b). If 1 2,β ≠ β  then (A.4) implies that ( )dec reg,2
ˆ ˆ = 1,P Y Y →  i.e., that the t-test for equality of 

ˆ
jβ  rejects with certainty in the limit. Then (A.7) continues to hold, and the asymptotic distribution of decŶ  

is still as same as that of reg,2
ˆ .Y  

 
Proof of Theorem 3. In this Theorem, the hypotheses (C2)-(C4) are replaced by the assumptions that the 
iid triples ( ), ,i i iy x z  satisfy moment conditions and the model (2.7). The assertions in (C2)-(C4) are then 

results holding with probability tending to 1 with large ,n N  which are established with the aid of the 

(strong) law of large numbers. 

Beyond the conclusions of Theorems 1-2, it remains to show that reg,2Ŷ  has a smaller asymptotic 

variance than reg,1
ˆ .Y  Let ( )1 2= ,ϑ ϑ ϑ  and  

( ) [ ] [ ]1 2 1 2= , ,1 , ,1  .T
j jF Dϑ −ϑ −ϑ −ϑ −ϑ  

According to the definition of 2
1σ  and 2

2σ  in (2.2), it suffices to show that ( )jF ϑ  has its minimum value 

at ( )= , .j jϑ α β  We now prove this for = 1.j  The proof for = 2j  is similar. Let iim ′  be the ( ),i i′  

element of 1.D  Since 1D  is symmetric and positive definite under condition (C3), 12 21=m m  and there 
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exists a unique ( )1 2= ,∗ ∗ ∗θ θ θ  such that ( ) ( )1 1= minF F∗
ϑθ ϑ  and ( ) =1 0.TF ∗ϑ θ∂ ϑ ∂ϑ =  This implies 

that ∗θ  is the solution to the following two equations:  

                                               11 1 12 2 13 12 1 22 2 23= , =m m m m m mϑ + ϑ ϑ + ϑ  (A.8) 

Therefore, it suffices to show that ( )1 1= , .∗θ α β  Since 1D  is positive definite, the equation system (A.8) 

has a unique solution. By the definition of 1,D  
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∑

∑

 

where the last equality follows from the assumption that iε  is independent of ix  and iz  and has mean 0 

and a finite variance, and each of the sequences ,iz 1 ,iz  and i ix z  is iid with finite expectation. 

Therefore, 11 1 12 1 13= .m m mα + β  Similarly one proves that 12 1 22 2 23= .m m mα + β  Therefore, ( )1 1,α β  

is the unique solution to equation system (A.8), i.e., ( )1F ϑ  achieves its minimum value at ( )1 1= , .ϑ α β  

Hence, 2 2
2 1< .σ σ  This finishes the proof of Theorem 3. 
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The influence of sampling method and interviewers on 
sample realization in the European Social Survey 

Natalja Menold1 

Abstract 

This article addresses the impact of different sampling procedures on realised sample quality in the case of 
probability samples. This impact was expected to result from varying degrees of freedom on the part of 
interviewers to interview easily available or cooperative individuals (thus producing substitutions). The 
analysis was conducted in a cross-cultural context using data from the first four rounds of the European Social 
Survey (ESS). Substitutions are measured as deviations from a 50/50 gender ratio in subsamples with 
heterosexual couples. Significant deviations were found in numerous countries of the ESS. They were also 
found to be lowest in cases of samples with official registers of residents as sample frame (individual person 
register samples) if one partner was more difficult to contact than the other. This scope of substitutions did not 
differ across the ESS rounds and it was weakly correlated with payment and control procedures. It can be 
concluded from the results that individual person register samples are associated with higher sample quality. 

 
Key Words: Sampling methods; Substitutions by interviewers; Non-observation errors. 

 
 

1  Introduction 
 

Biases in survey statistics are described by the total survey error models (Groves, Fowler, Couper, 
Lepkowski, Singer and Tourangeau 2004; Smith 2007). Total survey error results from two types of 
errors, which are referred to as observation errors and non-observation errors. This article focuses on 
cross-cultural comparability influenced by factors related to non-observation errors, that is to say the 
failure of survey statistics to adequately represent the target population. These types of errors – also called 
representation errors – result from differences between the obtained net sample (number of survey 
participants, Haeder and Lynn 2007) and the target population.  

Previous research in cross-cultural contexts has revealed highly pronounced differences in response 
rates between countries (Billiet, Phillipsen, Fitzgerald and Stoop 2007; Couper and de Leeuw 2003; 
de Heer 1999; de Heer and Israis 1992; de Leeuw and de Heer 2002; Hox and de Leeuw 2002; Johnson, 
O’Rourke, Burris and Owens 2002; Stoop 2005; Symons, Matsuo, Beullens and Billiet 2008), differences 
in field procedures (Billiet et al. 2007; Kohler 2007; Kreuter and Kohler 2009; Smith 2007; Stoop 2005; 
Symons et al. 2008) and differences in sampling methods (Lynn, Haeder, Gabler and Laaksonen 2007). 
The latter refer to procedures for constructing sampling frames and selecting sample elements. All 
differences listed may impede cross-cultural comparability. In particular, cross-cultural comparability 
might be limited due to varying sampling methods to obtain a probability sample since standardising 
sampling methods is restricted by local availability of sampling frames, by their quality and usability, and 
by the survey budget (Lynn et al. 2007).  

Lynn et al. (2007) addressed design effects and the sample sizes necessary to achieve comparability of 
net samples in the ESS. In doing so, they focused on sample selection prior to the field work stage. 
However, comparability of samples could also be influenced by interviewers during their work in the 



106 Menold: The influence of sampling method and interviewers on sample realization in the European Social Survey 

 

 
Statistics Canada, Catalogue No. 12-001-X 

field. Interviewers’ degree of freedom in substituting sampled individuals with persons who are not 
sampled (individuals who are easy to contact and are cooperative) differs based on sampling methods 
(Hoffmeyer-Zlotnik 2006; Kohler 2007; Sodeur 2007). “Field substitution occurs when a non-responding 
unit is replaced by a substitute (reserve) unit during the field work stage of the survey process” (Vehovar 
1999, page 335). The substitutions addressed by Vehovar are legitimate substitutions that are allowed by 
protocol. In contrast, this article addresses illegitimate substitutions (referred to below simply as 
“substitutions”) which occur without permission. According to the AAPOR (2003), deliberate 
substitutions made by interviewers represent a kind of falsification. 

The aim of this article is to show whether the effect of interviewers, which is assumed to be associated 
with substitutions, varies across different sampling methods that are used to obtain probability samples in 
a cross-cultural context. In addition, it will be shown whether payment, control procedures, the data 
collector (institution that carries out data collection in the field) or time factors are associated with this 
interviewer effect. The results may help surveyors when deciding upon sampling methods – a highly 
relevant cost factor in surveys – and when deciding upon methods to foster interviewer motivation to not 
substitute. The results are also important for research on interviewer behaviour since they hint at errors 
associated with interviewer influence on cross-cultural comparability.  

The next section (Section 2) provides the theoretical and empirical background of the study presented 
in this article. The hypotheses are described in Section 3. Section 4 provides information on the procedure 
and the method used for analysing the influence of the interviewer. The results are presented in Section 5. 
Finally, Section 6 discusses the results and provides conclusions. 

 
2  Theoretical and empirical background 
 

Substitutions may arise during tasks that interviewers conduct prior to the interview. Interviewers (1) 
build a sampling frame, for example by generating lists of addresses in surveys; then they (2) elicit 
cooperation with selected units (addresses, dwellings, households) and they also select individuals for the 
interview from these units. Finally interviewers (3) elicit cooperation from sampled individuals (Groves 
et al. 2004). In the case of different sampling methods interviewers perform different tasks as described 
below (figure 2.1). 

The first sampling method refers to individual person register samples (denoted below as PRS). 
Official population registers of individuals are used as sampling frames for PRS. The selection of 
individuals is conducted prior to the field work stage, thus reducing interviewers’ tasks to simply 
obtaining cooperation from sampled individuals (figure 2.1). In the case of PRS interviewers may 
influence non-response (e.g., Couper and Groves 1992; de Leeuw and Hox 1996; Durrant, Groves, 
Staetsky and Steele 2010), but in a theoretical sense they have no influence on the sampling frame or on 
the selection of sample elements. This level of interviewer impact on non-representation in the case of 
PRS is shown by the arrow in figure 2.1.  

However, as shown for example by Groves et al. (2004) selected elements (individuals in the case of 
PRS) may differ in terms of the probability of being contacted by an interviewer (contactability) and the 
probability of obtaining survey participation when a contact is given (cooperation). For example, it has 
been found that people living in urban areas or individuals who are young, single, without children, better 
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educated and socially active are more difficult to contact (Stoop 2004). In contrast, older respondents, 
women, less-educated people and socially isolated individuals refuse cooperation more often than others 
(Dohrenwend and Dohrenwend 1968; Stoop 2004; Williams, Irvine, McGinnis, McMurdo and Crombie 
2007). If difficulties arise when trying to contact and obtain cooperation from target persons then 
substitutions may occur. For example, Koch (1995) reported the number of substitutions in a survey in 
which PRS was used.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.1 Interviewers’ tasks in different sampling methods related to coverage, sampling and non-response 

errors. The path related with representation is adapted from Groves et al. 2004, page 48 
 
 

The next sampling methods discussed are address/household register samples (ARS). In the case of 
ARS lists of households or addresses are employed as sampling frames. Households or addresses are 
selected by survey offices prior to the field work stage. In this case interviewers perform tasks two and 
three (see above): they contact selected units and select individuals for the interview if more than one 
eligible individual is living at one unit. Interviewers may deliberately deviate from the random selection 
rules and in this way they can have a negative impact on the selected sample (figure 2.1). Since 
interviewers have more freedom in selecting sampled individuals with ARS than with PRS, it is assumed 
that interviewer impact associated with substitutions is higher for ARS than for PRS (figure 2.2). 
Moreover, in the case of ARS the result of sample selection is not known beforehand and is therefore 
harder to control than in the case of PRS.  

Non-register samples (NRS), in which neither lists of individuals nor lists of addresses/households are 
available as sampling frames, are described as the third sampling method. These include Random Route 
Samples (e.g., Arber 2002; ESS Sampling Plans), and Address Listing and Sampling (ALS). In the case of 
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NRS interviewers themselves generate a sampling frame by listing or collecting addresses within a 
randomly selected geographical area. Interviewers have to strictly follow instructions concerning the 
procedures for collection of addresses. Interviewers perform this task in addition to selecting individuals at 
one address, as described for ARS, and to contacting and obtaining cooperation, as just described for both 
PRS and ARS (figure 2.1). With NRS interviewers can influence not only sample selection but also the 
sampling frame. An interviewer can deviate from instructions and chose only addresses where he or she 
expects to contact the target person and obtain cooperation. Substitutions are particularly likely to occur 
when using a procedure (Random Route) in which the interviewer conducts the interview at an address 
which they choose in an area following prescriptions regarding collecting of addresses and the direction of 
the route through the area. Another type of NRS is more restricted since the interviewer lists the addresses 
in a geographical area, but the actual selection is conducted by a coordination team (Address Listing and 
Sampling, ALS). The selected addresses are subsequently assigned to a different interviewer who then 
conducts the interviews. The degree of interviewer freedom in the case of ALS appears to be similar to 
that of ARS. However, the instructions for listing or collecting addresses can be ambiguous in the case of 
both types of NRS (Schnell, Hill and Esser 2011). Therefore, interviewers have more freedom to 
substitute with NRS than with ARS (figure 2.2). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.2 Degree of interviewers’ freedom to substitute in various sampling methods 
 
 

Deviations in obtained net samples, which are associated with deviations from the rules of random 
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statistics representing this parameter are observed in a subsample that is defined in a corresponding 
manner. The more the observed statistic deviates from the population parameter, the stronger the error 
from non-observation is. This article considers the gender ratio of heterosexual couples, which is known to 
be a 50/50 population parameter. Within the limits of random fluctuation any sample from the population 
of heterosexual couples should produce a proportion of males of around 50%. Significant deviations from 
this level of 50% indicate deviations from sample selection standards, such as through substitutions (see 
section 4.2 for details).  
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Using this method Sodeur (2007) and Hoffmeyer-Zlotnik (2006) found that deviations from the true 
parameter of a 50/50 gender ratio vary between different rounds of the German General Social Survey 
(ALLBUS), which also involved different sampling methods. The authors found that males who are 
difficult to contact are interviewed less often than females (since the males are the breadwinners in 
households with children). Aside from contactability, differences in cooperation between the partners can 
play a role (Hoffmeyer-Zlotnik 2006). If partners are retired they have comparable levels of contactability 
but they may differ in terms of cooperation. The retired man, now at home, feels responsible for providing 
information to an interviewer about the household (as its “head”). The woman can refuse to participate 
since the man likes to cooperate. An interviewer who contacts such households may interview men instead 
of women in order to avoid refusals (Hoffmeyer-Zlotnik 2006). 

Kohler (2007) found larger deviations from the parameter of a 50/50 gender ratio in NRS samples as 
compared to other sampling methods in six cross-cultural surveys (Eurobarometer 62.1, European Quality 
of Life Survey EQLS’03, ESS 2002, ESS 2004, European Value Study 1999, International Social Survey 
Program, ISSP 2002). Unfortunately, the sampling method effect obtained by Kohler (2007) was survey-
specific. The most poorly designed samples – area samples with a NRS – were used predominantly in one 
survey (EQLS). The differences that Kohler found between a random route and other sampling methods 
could thus be due to differences between EQLS and other surveys. Other researchers (Hoffmeyer-Zlotnik 
2006; Souder 1997) addressed the effect of sampling methods on interviewer impact associated with 
substitutions while considering only a single German national survey; the results of this research are not 
applicable to cross-cultural contexts. Therefore, it is important to address the question regarding the 
relationship between sampling methods and interviewer impact associated with substitutions in cross-
cultural surveys. Additionally, it is important to consider other explanatory factors which can affect 
substitutions. Substitutions made by interviewers can be affected not only by sampling methods but also 
by field procedures related to interviewer motivation to produce accurate survey data. Therefore, 
substitutions may vary based on the data collector (Hoffmeyer-Zlotnik 2006; Sodeur 1997; 2007) or 
controls used in a survey (Kohler 2007). Controls imply that a sample element is re-contacted to confirm 
the outcome produced by an interviewer. In addition to controls, methods of providing payment to 
interviewers can impact their performance. If interviewers are paid per completed interview they bear the 
risk of high costs due to long distances between selected addresses, numerous contact attempts or long 
interview times (Sodeur 2007). Consequently, a change of data collector, controls and payment should be 
considered when analysing the interviewer impact associated with substitutions. Apart from these factors 
it is interesting to see how such interviewer impact varies across time. For example, considering time in a 
cross-cultural context helps to indicate whether this interviewer impact is country-specific. A country-
specific interviewer impact should be stable in a country across different survey rounds, even if the 
sampling method is changed. 

 
3  Research hypotheses 
 

If interviewer impact in terms of substitutions is operationalized using Sodeur’s method, it is expected 
that it can be observed in survey statistics as deviations from the 50/50 gender ratio in subsamples with 
respondents as representatives of heterosexual couples. This interviewer impact is expected to differ in 
terms of varying contactability or cooperation on the part of the partners. Partners differ in terms of 
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contactability in households comprised of couples with young children in which men are the breadwinners 
(Hoffmeyer-Zlotnik 2006; Sodeur 2007; Stoop 2004). If interviewers apply substitutions the proportion of 
men should be significantly lower than the true value (50%) in such households, since men are more 
difficult to contact than women. This pattern changes when taking retired partners into consideration. 
Here, as previously discussed by Hoffmeyer-Zlotnik (2006), partners have comparable levels of 
contactability but they may differ in terms of their cooperation. For subsamples of retired couples, the 
proportion of males is expected to be significantly higher than 50% in the case of interviewer impact due 
to substitutions. The hypothesis describing this impact in different types of households is: 
 

Hypothesis 1 (H1): Deviations from the true gender ratio (50/50) vary depending on the type of 
household. In households comprised of couples with (young) children the proportion of males is lower 
than 50%, while in households comprised of retired partners this proportion is higher than 50%.  
 

As was shown in section 2, different sampling methods can be associated with varying degrees of 
freedom on the part of interviewers to substitute (figure 2.2). Therefore, the following differences between 
the sampling methods are expected: 
 

Hypothesis 2 (H2): Deviations from the true gender ratio (50/50) vary depending on the sampling method 
used in a survey. They are lowest with PRS and highest with NRS samples.  
 

If deviations from the population parameter are caused by interviewers deviating from prescribed 
standards, then they should vary with the sampling method used or with the type of household, which in 
turn is associated with varying levels of contactability or cooperation on the part of the partners. The 
deviations should be stable across time when keeping sampling methods constant. However the deviations 
can correlate with interviewer payment and control procedures, or with the data collectors, who are 
expected to differ in terms of practices related to interviewers’ work motivation. 
 

Hypothesis 3 (H3): Except for changes in sampling method in a country, deviations from the 50/50 
gender ratio are independent of the influence of other changes over time. Thus, they do not vary across 
different survey rounds. However, interviewer payment, control procedures and change of data collector 
are expected to correlate with deviations from the 50/50 gender ratio. 

 
4  Methods 
 
4.1  Data 
 

To isolate any effects due to the sampling method from other survey-specific effects, one can use data 
from a multi-country survey in which the various countries applied different sampling methods. Many 
rounds of a survey should be available in order to be able to consider the time effect. Therefore, data from 
rounds one to four of the ESS were used (European Social Survey Round 1-4 Data 2011). The ESS was 
conducted with between 20 and more than 30 countries, which differ in terms of their sampling methods. 
In addition, the ESS sets high standards for survey organisations, such as strict random sampling and 
extended contact procedures, or regarding field control procedures (Koch, Blom, Stoop and 
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Kappelhof 2009; Philippens and Billiet 2004). The effectiveness of the standards used in the ESS has been 
demonstrated by Kohler (2007), who showed that round 1 of the ESS had the fewest deviations from the 
50/50 gender ratio compared to other surveys. In addition, the ESS has consistently improved data 
collection methods (Koch et al. 2009). Furthermore, the ESS provides detailed documentation of sampling 
procedures as well as data collection (cf. ESS Documentation Reports), which allows for 
operationalization of variables of interest. 

 
4.2  Method for evaluating interviewer impact 
 

The method developed by Sodeur (1997) was used for the analysis. This method helps to evaluate the 
net sample quality in probability samples. The quality of the random sample selection has often been 
examined by means of other statistics available in a country (external criteria). However, these external 
statistics are often unknown, leading Sodeur to suggest the use of internal criteria - that is to say use of 
information from the net sample only. Sodeur (1997) describes the method as consisting of the following 
steps: (1) separating a subsample from the entire sample to focus on respondents as representatives of 
heterosexual couples: the partners should live together within one household and both partners should 
belong to the target population of the survey; (2) defining units which should be dropped from the 
subsample: singles, partners not living together within a household and households with other relatives 
who belong to the target population. Then, step three entails (3) defining a survey statistic – e.g., the 
percentage of males – as the dependent variable which should be compared with the population parameter.  

An analysis to determine the causes of deviations from the population parameter – for example, 
interviewer behaviour – requires additional specifications in steps 1 and 2 to ensure that interviewer 
behaviour (conceptually) varies with the contactability or cooperation of target persons. Such 
specifications have been made in this article in terms of definitions of different type of households (see 
hypothesis H1), whose selection is described in section 4.3. 

The true 50/50 gender ratio in heterosexual couples is not related to any other gender ratios, such as 
that of the total population of residents in a country. Therefore, as Kohler (2007) argues, this gender ratio 
cannot be affected by any sort of measurement errors and it is unaffected by the household size since the 
analysis is restricted to two persons in the household and both persons belong to the target population. 

Sodeur’s method has advantages over other methods since no additional external information or data 
are required. However, Sodeur’s method requires that the characteristics defined for selecting subsamples 
are known not only regarding the respondents but also regarding their partners (e.g., gender of the 
partner). In addition, there should not be systematic gender differences in terms of refusal behaviour 
(differential refusal), which may occur even if interviewers work honestly. In practice, females have been 
found to be more reluctant than males (Pickery and Loosveldt 2002; Schnauber and Daschmann 2008; 
Stoop 2004; Williams et al. 2007). That also seems to be the case in the ESS, in which females were found 
to refuse more often than males. The author’s own analysis of ESS1-ESS4 data from contact forms shows 
that 30.3% males and 37.9% females refused cooperation in the ESS1 (in some countries no data 
regarding the gender variable was provided; therefore the missing data was 32.4%). In the ESS2 there 
were 30.8% males and 37.9% females who refused cooperation (31.3% data missing); in the ESS3 33.8% 
males and 39.0% females (27.2% of data missing) refused cooperation and in the ESS4 there were 38.4% 
males and 45.8% females who refused (with a reduced 15.8% of data missing). Therefore, males being 
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present in a subsample of ESS data less than 50% of the time can be plausibly explained by substitutions, 
while a frequency of males higher than 50% can be alternatively explained by differential refusal. 
However, if the percentage of males varied with a sampling method – as expected in hypothesis H2 – it 
would be hard to explain such a result only by differential refusal, which seems to be a quite stable 
feature. 

 
4.3  Procedure 
 

The following section provides a description of the procedures used for testing hypotheses H1 to H3. 
First, separation of subsamples from the entire ESS sample is described. Deviations d  from the true 50/50 
gender ratio in a subsample represent the dependent variable for all subsequent analyses. The values of d  
are compared between different households to test hypothesis H1. Second, operationalization of the 
“sampling method” variable (to test H2) is described. Third, hypothesis H3 is related to the variables time, 
change of data collector, payment and interviewer controls, whose operationalization is described in the 
last section. H2 and H3 were tested with the help of a Multivariate Analysis of Covariance (MANCOVA) 
with subsequent individual Analyses of Covariance (ANCOVA) in which the sampling method was used 
as the independent variable and the ESS round, change of data collector, payment bonus and interviewer 
controls were used as covariates. 

 
Separation of subsamples  
 

The ESS target population “contains in each country persons 15 years or older who are resident within 
private households, regardless of nationality and citizenship, language or legal status” (e.g., ESS-1 2002 
Documentation Report, page 2). Respondents ( n  88,375) who live together with a partner of the 
opposite sex who is 15 years or older were selected from the total ESS1-ESS4 sample ( n  184,988). This 
reduced the data base of the analysis to about half of the entire sample. However, such a selection is 
required to ensure the expected percentage of males of 50%.  

Three household types were distinguished among the selected subsample: couples with children aged 
between 0-6 ( 7; n 18,791), couples with children between 7-14 ( n  53,651), and couples in which 
both partners are of retirement age (retirees, n  15,933). To determine retirement age the current state 
pension age in each country was used (see appendix). The first two groups with children were formed 
since it was assumed that differences in contactability between partners are particularly high in these 
households. For the third group it was assumed that gender differences in contactability are fairly modest, 
while men and women might differ in terms of cooperation. 

The fact that men are breadwinners within the two subsamples containing households with children is 
supported by the author’s own analysis using data from the ESS. Upon looking at respondents’ activities 
within the last seven days in households with children younger than seven, it was shown that 58% of 
males and 42% of females were in paid work. In terms of respondents’ partners, 64% of males and 36% of 
females were in paid work. Similar results were found for respondents in households with children aged 7 
to 14 (for respondents 54% males and 46% females were in paid work and in terms of partners there were 
60.5% males and 39.5% females). For households with retired partners it was found that 80.6% of 
respondents were retired, 11.5% did housework and 1.3% was sick or disabled on a long term basis. With 
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respect to respondents’ partners, 84.4% were retired, 17% did housework and 2.1% were sick or disabled 
on a long-term basis. 

 
Categorisation of sampling methods 
 

Documentation Reports for each ESS round (European Social Survey (2011): ESS 1-4 Documentation 
Reports) were used to classify the sampling methods. Table 4.1 summarises the main characteristics of the 
sampling methods used in the ESS. Table 4.2 shows which sampling methods were used in each country 
in each of the rounds. For more details on selection procedures in the ESS see the Documentation Reports 
or Lynn et al. (2007). 

For ARS it is important to see how multi-dwelling units at one address are dealt with since in this case 
interviewers also manage the situation. The survey documentation described this for only a few countries 
(Ireland, Israel, the Netherlands, and the United Kingdom). In Ireland, for example, interviewers listed the 
households and selected one of them using the Kish Grid (Kish 1965).  

In Austria a NRS method was applied to only 50% of the sample, while the other 50% was selected 
based on an ARS. Since using NRS can lead to more substitutions compared to using only ARS it can be 
expected that the results in Austria are more similar to the results in countries with NRS than with ARS. 
Therefore, the author assigned Austria to NRS.  
 
Table 4.1 
Sampling methods in the countries of the EES (rounds 1-4) 
 

 individual person  
register sample 

address/household  
register sample 

non-register  
sample 

sampling frame  reliable lists of  
residents 

reliable lists of  
addresses/households 

regional areas (no lists of 
residents, addresses or 
households) 

stage 1: 
Selection of PSUs 

   

definition of a unit regional clusters, areas, 
municipalities 

electoral sections, postal  
code areas 

regional clusters, areas, 
municipalities 

process of selection systematic random  
sampling 

systematic random  
sampling 

systematic random  
sampling 

result community, municipality electoral section, postal code section geographical areas, municipalities 

stage 2: 
Selection of households 

not applicable   

definition of a unit  a household, an address a household/dwelling unit 

process of selection  simple or systematic  
random sampling 

random route/ALS 
simple random sampling 

result  addresses of households a household/address/dwelling unit 

stage 3: 
Selection of individuals 

   

definition of the unit target person target person target person 

process of selection simple or systematic  
random sampling 

random selection by interviewer  
by Kish Grid or last birth day 
method 

random selection by interviewer 
by Kish Grid or last birth day 
method 

result name and address of  
sampled individuals 

sampled individuals sampled individuals 
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Table 4.2 
Classification of ESS countries with respect to sampling methods 
 

ESS round individual person  
register sample (PRS) 

address/household  
register sample (ARS) 

non-register  
sample (NRS) 

ESS 1 BE, DE, HU, NO, PL,  
SI, DK, FI, SE 

Address: IE, IT, NL, GB, CH 
Household: CZ, LU, ES 

FR, GR, PT, AT 

ESS 2 BE, DE, HU, NO, PL,  
SI, DK, FI, SE, ES, EE, IS, SK 

Address: IE, NL, GB, CH 
Household: LU, TR 

FR, GR, PT, AT, CZ, UA 

ESS 3 BE, DE, NO, PL, SI,  
DK, FI, SE, ES, EE, SK 

Address: IE, NL, GB, CH, LV 
Household: CY, BG, HU 

FR, PT, AT, UA, RU, RO 

ESS 4 BE, DE, HU, NO,  
PL, SI, DK, FI, SE, ES, EE 

Address: IE, NL, GB, CH, IL, LV  
Household: CZ, CY, LT, GR, KRO, TR, BG 

FR, PT, SK, UA, RU, RO 

 

Note Romania is not included in the ESS integrated data file; no information on sampling method has been provided for Italy 
in Documentation Reports ESS2-ESS4. Countries are labelled according to ISO 3166-1, see the appendix. 

 
 

The kind of NRS method used in a country has rarely been described in the documentation. In the 
ESS1 it is evident that an ALS was used only in Greece. Usage of an ALS is described for the Czech 
Republic and Slovakia in later rounds. In the ESS4 Ukraine, Russia and Portugal report a procedure 
comparable to the ALS. However, in these countries interviewers (and not the offices) selected a fixed 
number of units from the lists generated by other interviewers.  

 
Explanatory variables 
 

Information related to the particular ESS round was used as a variable to control for the time effect. 
The Documentation Reports were used to obtain information related to other explanatory variables; 
change of data collector, payment and interviewer controls. Whether a country changed the data collector 
between rounds is shown in the appendix. Concerning payment, it was found that the ESS mainly 
employed a method involving payment per completed interview. An hourly rate of payment was used only 
in a few countries that also used PRS (in ESS1-2 in Norway and Sweden, as well as in ESS3-4 in Norway 
and Finland). Therefore, there was only a small variation in payment methods, and a corresponding data 
analysis was not possible. However, payment of bonuses varied across countries and rounds. Therefore, 
this information was used to generate a dichotomous control variable (bonus payment: yes/no).  

Two variables are used to describe control procedures: the number of eligible sample elements selected 
for controls divided by the number of eligible sample elements (ratio selected), and the number of 
confirmed outcomes divided by the number of sample elements selected for controls (ratio confirmed). 
The first variable describes the number of controls in a country, while the second describes the 
effectiveness of these controls. The “ratio selected” varies between 10% for PRS, 13% for NRS and 16% 
for ARS. The “ratio confirmed” is somewhat higher for NRS ( M  75.21, SD  24.81) than for the other 
two sampling methods (PRS: M  61.89, SD  31.95; ARS: M  66.49; SD  32.56).  

 



Survey Methodology, June 2014 115 

 

 
Statistics Canada, Catalogue No. 12-001-X 

5  Results 
 
5.1  Differences between household types 
 

Firstly, the results for testing hypothesis H1 are presented. This hypothesis expects deviations from the 
50/50 gender ratio to vary according to the type of household. Figure 5.1 shows the differences  d  
between the actual percentage of males and the expected true value of 50% in three subsamples. A 95% 
confidence interval (CI) was used to control for random fluctuation. As the expected proportion of men is 
p  0.5, the variance averages 0.25 ,n  whereby n  is the number of cases in the subsample in a country. 

The 95% CI was calculated as follows (cf. Kohler 2007, page 59):  

0.5 1.96 0.25 2CI    . 

Figure 5.1 shows that for both subsamples covering households with children, significant values of d  
are negative in the majority of cases, meaning that the proportion of males in these subsamples is less than 
50% (as expected by H1). Most of these d ­ values were approx. 10% or higher. Lower (approx. 5%) 
significant positive (unexpected) d ­ values are seen for three countries in which PRS was used (in the 
ESS1 in Belgium and Norway, in the ESS2 in Finland). However, these differences were not discernible 
in other rounds.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.1 Deviations from the true value of 50%  d  in the percentages of males in different types of 

households of ESS1-ESS4 
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Regarding the results for the subsamples covering households with partners of retirement age (retirees) 
it is possible to see significantly high d ­ values (approx. 10% or higher) with the expected direction 
(positive, or that is to say the percentages of males are higher than 50%) for some countries across all 
sampling methods (in the ESS1 in Norway, the Czech Republic and the Netherlands; in the ESS 2 in 
Norway, Poland and France; in the ESS3 in Cyprus and Russia and in the ESS4 in Germany, Hungary, 
Cyprus and the United Kingdom). Interestingly, the proportion of men is markedly lower than 50% in 
Slovakia in the ESS4 (as low as approx. 33%) and in Portugal in the ESS2 (as low as approx. 11%). This 
result can be explained by specific patterns of role division between the partners. Here the woman appears 
to represent the household, even if the man is at home.  

To summarise, significant deviations from true value in different types of households were mainly in 
line with the expectations of hypothesis H1. 

 
5.2  Differences between sampling methods 
 

The effect of sampling methods (as expected by H2) was tested by means of MANCOVA. The d ­
values for the three types of households (three isolated subsamples) were considered as values of three 
dependent variables, which were simultaneously analysed in the MANCOVA. Since the MANCOVA is 
based on an analysis of means the absolute values of d  were considered. Otherwise it would not have 
been possible to take into account differences with an unexpected direction, which would also be 
associated with the effect of sampling methods. Since most of the differences were negative in the 
subsamples with children, the absolute d ­ values represent a proportion of men that is lower than 50%. 
With respect to the subsamples with partners of retirement age, it should be taken into account that the 
proportion of men was not only higher than 50% but also lower than 50% in Portugal (ESS2) and in 
Slovakia (ESS4). In addition, significant and non-significant differences are considered in order to enable 
a comparison between countries with low and high d ­ values.  

The MANCOVA revealed a high significant multivariate effect of the factor “sampling method” 
(Wilks Lambda (WL)  6,174 6.87, 0.001,F p   effect size 2 0.21  ). In contrast, no significant 

results for explanatory variables were found ( 0.10,p   max 2 0.04  ). In order to consider d ­ values 
in different household types univariate analyses of covariance (ANCOVAs) were employed. Variance 
homogeneity – as a presupposition for an ANCOVA – is given according to the Levene test in the 
subsample with retirees, and also according to the maxF  test in the subsamples with children. Significant 
mean differences of d ­ values between sampling methods were found using the ANCOVAs in both 
subsamples with children (table 5.1). The variances explained in the ANCOVAs for these subsamples are 
quite high (see 2R  in table 5.1). On average the lowest d ­ value can be seen for the PRS, while the 
highest d ­ value is seen for the NRS (table 5.1 and figure 5.2). However, post-hoc single comparisons 
using subsamples with children show significant differences only between PRS and the other two 
sampling methods (table 5.2). Also, no remarkable differences in d ­ values were found between the 
countries with ALS and with Random Route samples. 

Overall, the results show that hypothesis H2 can be partially supported if households with children are 
considered. 
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Table 5.1 
Descriptive statistics   M SD  and results of the ANCOVAs for comparison of d  in the three types of 
household 
 

 types of household  
 children <7  children 7-14 retirees n  (countries) 
Sampling method (treatment)     
          PRS 3.28(2.07) 2.21(1.37) 3.34 (3.35) 43 
          ARS 6.61(4.98) 4.87 (2.74) 4.94(3.83) 31 
          NRS 7.85 (4.4) 5.92 (3.55) 5.78(6.87) 21 
           1 22, 88F df df   14.52*** 20.9*** 1.93  
Time: ESS round     
          1 4.49(2.67) 4.08(2.94) 4.75(3.22) 22 
          2 6.92(5.73) 4.33(3.3) 3.63(3.71) 24 
          3 4.78(3.04) 4.02(3.18) 3.74(3.44) 23 
          4 5.23(4.41) 3.24(2.22) 5.39(6.66) 26 
           1 21, 88F df df   0.00 1.18 0.02  
Payment bonus      
          no 5.83(4.37) 4.41(3.10) 4.10(3.73) 54 
          yes 4.78(3.99) 3.23(2.52) 4.81(5.49) 41 
           1 21, 88F df df   0.57 3.21+ 0.49  
Ratio controlled     
           1 21, 88F df df   0.11 0.51 1.09  
Ratio confirmed         
           1 21, 88F df df   3.11+ 0.11 0.00  
          2R  0.22 0.31 0.01  

 

Notes * * * 0.001, 0.10.p p   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.2 Box plots for absolute d­ values are shown for different sampling methods in the three types of 

households 
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Table 5.2 
Mean differences of   d SD  between sampling methods in subsamples with children 
 

 children <7  children 7-14 
differences between   
PRS and ARS -3.34 (0.89)** -2.66 (0.58)** 
PRS and NRS -4.58 (1.0)** -3.71 (0.65)** 
ARS and NRS -1.24 (1.07) -1.05 (0.7) 

 

Note * * 0.01.p   Single post hoc tests with Bonferroni correction. 
 
 
5.3  The effect of explanatory variables 
 

The effect of explanatory variables was analysed to test hypothesis H3, which expects deviations from 
the 50/50 gender ratio to be stable across time and to correlate with payment, interviewer controls and 
change of data collector.  

Some countries in the ESS changed their sampling method procedures and/or data collector between 
the rounds (see appendix). The results showed that neither multivariate effects   3,85WL F   

0.81, 0.10p   nor univariate effects are significant for the change of data collector. Thus, table 5.1 
presents the ANCOVA results without this variable. If the “change of data collector” is included in the 
analyses, then the effect of the variable “ratio confirmed” is no longer significant, but this does not impact 
the effects of any of the other variables. This result shows that a change of data collectors may correlate 
with control procedures. The differences in d ­ values across the ESS rounds are not significant either, 
neither within multivariate analysis   3,86WL 0.51, 0.10F p   nor within the univariate analyses (for 

the latter see table 5.1).  
Table 5.1 shows that in subsamples with children d ­ value means are lower if a payment bonus is used 

as compared to when it is not used. However, this difference is significant only on a 10% level 
 0.10p   and only in households with older children. Hence, this result shows that payment methods 
may play a role, thereby reducing deviation from the true value in the case of higher payments.  

Regarding control procedures, the number of controls (“ratio selected”) is not related to the value of d  
(table 5.1). The success rate in controls (“ratio confirmed”) is related to the value of d  in the subsample 
with children younger than seven years old. This relationship is negative  0.06; 0.04 ,B SE    
meaning that the lower the confirmed control rates are, the higher the values of d  are. However, this 
relationship is also significant only at a 10% level.  

Concerning hypothesis H3, it has been shown that the effect of sampling methods is independent of the 
time effect. The results support the expectation of H3 concerning interviewer payment and controls. 
However, the results for these variables show that these effects are only weak and they can only be found 
in some household types.  

 
6  Summary and conclusion 
 

The results of the present study show that significant deviances from the population parameter (50% 
males) were seen in many ESS countries and that these were associated with the contactability or 
cooperation of partners in heterosexual couples (support for hypothesis H1). The magnitude of these 
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deviances was found to differ between sampling methods when partners also differed in terms of their 
contactability (in subsamples with children). Thus, hypothesis H2 was partially supported. In subsamples 
with children, PRS was associated with the best data quality since the lowest deviances from the 
population parameter were found with this sampling method. However, the results for subsamples with 
retired partners show that highly pronounced deviances are also possible in the case of PRS. 

The results for subsamples with children are in line with the explanation that interviewer behaviour 
related to substitutions is involved, since as expected deviations from the population parameter varied with 
the degree of interviewer freedom in influencing sample realization. Comparable results were reported by 
Sodeur (1997) and Kohler (2007). It is less plausible to explain interviewing males less than 50% of the 
time by differential refusal since in such cases the proportion of males is expected to be higher than 50%. 
Next, differential refusal is not expected to vary between different sampling methods. For retirees, 
interviewing males more than 50% of the time was found in several countries, but only in single rounds. 
This low stability of deviations from a 50% gender ratio can also be associated with interviewer impact 
instead of differential refusal, since the latter would be quite stable in a country over the period of time 
considered in the analysis. However, since the present study did not apply an experimental design it is 
important to address differential refusal and substitutions through further research in order to allow for 
better differentiation as well as for causal references. 

Even though the deviations from a 50% population parameter varied in some countries across the 
rounds, overall their magnitude did not significantly change during the passage of time despite improved 
data collection procedures in the ESS (cf. Koch et al. 2009). Furthermore, deviations from the population 
parameter did not depend on the data collector nor were they country-specific.  

The results also imply that interviewer payment and control procedures may reduce substitutions. 
However, it should be noted that only limited consideration of payment and control procedures was 
possible due to either their low variation in the data or limited information available in the survey 
documentation.  

It should also be considered that the results presented here are based on specific subsamples and they 
cannot be used to generalise about the entire sample of the ESS. However, the “absence of a bias in the 
subsamples does not guarantee the absence of bias for the entire sample” (Kohler 2007, page 55). In 
addition, an analysis focused on special groups can often be of interest (e.g., what are the opinions of 
parents with children or of employed people). 

The results of the present study imply that PRS is associated with higher sample quality, meaning a 
lower non-representation bias in cross-cultural surveys than with other sampling methods. This is shown 
more clearly by the current study than by previous studies. Analyses using ALLBUS data by Sodeur 
(2007) and Hoffmeyer-Zlotnik (2006) only compared several rounds of one survey in a single country 
(Germany); in the analysis by Kohler (2007) a sampling method effect was confounded with the survey 
effect (see section 1). This has been avoided in the analysis presented here.  

In conclusion, significant deviations from the population parameter, which appear to be associated with 
substitutions by interviewers, were observed in many countries of the ESS. In order to decrease this 
interviewer impact it is preferable to use sampling methods, such as PRS, with which the interviewers’ 
degree of freedom in selecting respondents and in influencing sample quality is reduced. In addition, 
survey procedures that increase interviewers’ motivation to produce accurate survey data are highly 
relevant and should be addressed by further research as well as by survey practices.  
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Appendix 
 
Coding of ESS countries, change in sampling method and data collector, and state pension age for males and 
females in each country. 
 

Country 
coding:  
ISO 3166-1 

country change sampling  
method (between  
rounds) 

change data  
collector: 
between rounds 

state pension age 
males females 

BE Belgium  1-2; 2-3 65 65 
BG Bulgaria  3-4 63 60 
DE Germany   65 65 
DK Denmark   65 65 
EE Estonia  2-3; 3-4 63 60 
ES Spain ARS-NRS (1-2) 2-3 65 65 
FI Finland   65 65 
HU Hungary PRS – ARS (2-3) and back (3-4)  2-3 62 62 
NO Norway   67 67 
PL Poland   65 60 
SE Sweden   65 65 
SI Slovenia   63 60 
SK Slovakia PRS – NRS (3-4) 2-3; 3-4 62 59 
CH Switzerland   65 64 
CZ Czech Republic ARS-NRS (1-2) 1-2 65 62 
CY Cyprus  3-4 65 65 
GB United Kingdom  1-2; 3-4 65 60 
GR Greece NRS-ARS (2-4)  65 60 
IE Ireland  3-4 65 65 
IL Israel   67 64 
IT Italy   65 60 
LU Luxembourg   65 65 
NL Netherlands   65 65 
TR Turkey   47 44 
AT Austria   65 60 
FR France   60 60 
PT Portugal   65 65 
RU Russian Federation   60 55 
UA Ukraine   60 55 

Notes Sources for state pension age:  
1) http://www.oecd-ilibrary.org/finance-and-investment/pensions-at-a-glance-2011_pension_glance-2011-en 
2) http://ec.europa.eu/employment_social/missoc/db/public/compareTables.do 
3) Israel: http://www.btl.gov.il/ 
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Bayesian multiple imputation for large-scale categorical data 
with structural zeros 

Daniel Manrique-Vallier and Jerome P. Reiter1 

Abstract 

We propose an approach for multiple imputation of items missing at random in large-scale surveys with 
exclusively categorical variables that have structural zeros. Our approach is to use mixtures of multinomial 
distributions as imputation engines, accounting for structural zeros by conceiving of the observed data as a 
truncated sample from a hypothetical population without structural zeros. This approach has several appealing 
features: imputations are generated from coherent, Bayesian joint models that automatically capture complex 
dependencies and readily scale to large numbers of variables. We outline a Gibbs sampling algorithm for 
implementing the approach, and we illustrate its potential with a repeated sampling study using public use 
census microdata from the state of New York, U.S.A. 

 
Key Words: Latent class; Log-linear; Missing; Mixture; Multinomial; Nonresponse. 

 
 

1  Introduction 
 

Many agencies collect surveys comprising large numbers of exclusively categorical variables. 
Inevitably, these surveys suffer from item nonresponse that, when left unattended, can reduce precision or 
increase bias (Little and Rubin 2002). To handle item nonresponse, one approach is multiple imputation 
(Rubin 1987), in which the agency fills in the missing items by sampling repeatedly from predictive 
distributions. This creates > 1M  completed datasets that can be analyzed or disseminated to the public. 
When the imputation models meet certain conditions (Rubin 1987, Chapter 4), analysts of the M  
completed datasets can make valid inferences using complete-data statistical methods and software. For 
reviews of multiple imputation, see Rubin (1996), Barnard and Meng (1999), Reiter and Raghunathan 
(2007), and Harel and Zhou (2007). 

Multiple imputation typically is implemented via one of two strategies. The first is to posit a joint 
model for all variables and estimate the model using Bayesian techniques, usually involving data 
augmentation and Markov chain Monte Carlo (MCMC) sampling. Common joint models include the 
multivariate normal for continuous data and log-linear models for categorical data (Schafer 1997). The 
second strategy is to use approaches based on chained equations (Van Buuren and Oudshoorn 1999; 
Raghunathan, Lepkowski, van Hoewyk and Solenberger 2001; White, Royston and Wood 2011). The 
analyst estimates a series of univariate conditional models and imputes missing values sequentially with 
these models. Typical conditional models include normal regressions for continuous dependent variables 
and logistic or multinomial logistic regressions for categorical dependent variables. 

As noted by Vermunt, Ginkel, der Ark and Sijtsma (2008) and Si and Reiter (2013), chained equation 
strategies are not well-suited for large categorical datasets with complex dependencies. For any 
conditional (multinomial) logistic regression, the number of possible models is enormous once one 
considers potential interaction effects. Carefully specifying each conditional model is a very 
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time-consuming task with no guarantee of a theoretically coherent set of models; indeed, for this reason 
many practitioners of chained equations use default settings that include main effects only in the 
conditional models. By excluding interactions, analysts risk generating completed datasets that yield 
biased estimates. We note that similar model selection difficulties plague approaches based on log-linear 
models. 

To avoid these issues, Si and Reiter (2013) propose a fully Bayesian, joint modeling approach to 
multiple imputation for high-dimensional categorical data based on latent class models. The idea is to 
model the implied contingency table of the categorical variables as a mixture of independent multinomial 
distributions, estimating the mixture distributions nonparametrically with Dirichlet process prior 
distributions. Mixtures of multinomials can describe arbitrarily complex dependencies and are 
computationally expedient, so that they are effective general purpose multiple imputation engines. For 
example, Si and Reiter (2013) applied their models to impute missing values in 80 categorical variables in 
the Trends in International Mathematics and Science Study. 

The approach of Si and Reiter (2013) does not deal with an important and prevalent complication in 
survey data: certain combinations of variables may not be possible a priori. These are called structural 
zeros (Bishop, Fienberg and Holland 1975). For example, in the United States it is impossible for children 
under age 15 to be married. Structural zeros also can arise from skip patterns in surveys. The imputation 
algorithms of Si and Reiter (2013), if applied directly, allow non-zero probability for structural zeros, 
which in turn biases estimates of probabilities for feasible combinations. 

In this article, we present a fully Bayesian, joint modeling approach to multiple imputation of large 
categorical datasets with structural zeros. Our approach blends the latent class imputation model of Si and 
Reiter (2013) with the approach to handling structural zeros developed by Manrique-Vallier and Reiter 
(forthcoming 2014). Using simulations, we show that the approach generates multiply-imputed datasets 
that do not violate structural zero conditions and can have well-calibrated repeated sampling properties. 

 
2  Bayesian latent class imputation model with structural zeros 
 

Suppose that we have a sample of n  individuals measured on J  categorical variables. Each individual 
has an associated response vector  1 2= , , , ,i i i iJx x xx  whose components take values from a set of jL  

levels. For convenience, we label these levels using consecutive numbers,  1, , ,ij jx L  so that 

 =1
= 1, , .J

i jj
L x  Note that  includes all combinations of the J  variables, including 

structural zeros, and that each combination x  can be viewed as a cell in the contingency table formed by 
. Let  obs mis= , ,i i ix x x  where obs

ix  includes the variables with observed values and mis
ix  includes the 

variables with missing values. Finally, let  1= , , ,CS s s  where cs   and = 1, , < ,c C S  be 
the set of structural zero cells, i.e.,  Pr = 0.i Sx  
 

2.1  Latent class models 
 

As an initial step, we describe the Bayesian latent class model without any concerns for structural zeros 
and without any missing data, i.e., obs= .i ix x  This model is a finite mixture of product-multinomial 
distributions,                                              
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    LCM

=1 =1

, = , = ,     
JK

k jk j
k j

p f xx λ π x λ π   (2.1) 

where   = ,jk lλ  with all   > 0jk l  and  =1
= 1.L j

jkl
l  Here,  1= , , K π  with 

=1
= 1.K

kk
  This model corresponds to the generative process,                                 

   
indep

1:Discrete 1 , , for all and             jij i L jz jz ji i
x z L i j    (2.2)                                                  

  
iid

1: 1Discrete , , for all .        i K Kz iπ   (2.3) 

As notation, let  ,  be a sample of n  variates obtained from this process, with  1= , , nx x  and 
 1= , , .nz z  For K  large enough, (2.1) can represent arbitrary joint distributions for x  (Suppes and 

Zanotti 1981; Dunson and Xing 2009). And, using the conditional independence representation in (2.2) 
and (2.3), the model can be estimated and simulated from efficiently even for large .J  

For prior distributions on ,π  we follow Si and Reiter (2013) and Manrique-Vallier and Reiter 
(forthcoming 2014). We have                                                               

    
indep

Dirichlet   jk L j
1   (2.4)                                                                    

  
<

= 1    k k h
h k

V V   (2.5)                                                 

  
iid

Beta 1, for = 1, , 1; = 1      k KV k K V   (2.6)                                                                 

  Gamma 0.25, 0.25       (2.7) 

The prior distributions in (2.4) are equivalent to uniform distributions over the support of the J K  
multinomial conditional probabilities and hence represent vague prior knowledge. The prior distribution 
for π  in (2.5)-(2.7) is an example of a finite-dimensional stick-breaking prior distribution (Sethuraman 
1994; Ishwaran and James 2001). As discussed in Dunson and Xing (2009) and Si and Reiter (2013), it 
typically allocates  to fewer than K  classes, thereby reducing computation and avoiding over-fitting. 
For further discussion and justification of this model as an imputation engine, see Si and Reiter (2013). 

 
2.2  Truncated latent class models  
 

The latent class model in (2.1) does not naturally specify cells with structural zeros a priori, because it 
assumes a positive probability for each cell. Thus, to represent tables with structural zeros, we need to 
truncate the model so that                                             

    TLCM

=1 =1

, , 1 .              
JK

k jk j
k j

f S S xx λ π x   (2.8) 
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As Manrique-Vallier and Reiter (forthcoming 2014) show, obtaining samples from the posterior 
distribution of parameters  , ,λ π  conditional on a sample  1

1= , , ,nx x  can be greatly facilitated 
by adopting a sample augmentation strategy akin to those in Basu and Ebrahimi (2001) and O’Malley and 
Zaslavsky (2008). We consider 1  to be the portion of variates that did not fall into the set S  from a 
larger sample, ,  generated directly from (2.1). Let 0 ,n 0 ,  and 0  be the the (unknown) sample size, 
response vectors, and latent class labels for the portion of  that did fall into .S  Using a prior 
distribution from Meng and Zaslavsky (2002), Manrique-Vallier and Reiter (forthcoming 2014) show that 
if   1 ,p N N  where 0= ,N n n  the posterior distribution of  ,λ π  under the truncated model (2.8) 
can be obtained by integrating the posterior distribution under the augmented sample model over 
 0 0 1

0 , , , .n  

In doing so, Manrique-Vallier and Reiter (forthcoming 2014) develop a computationally efficient 
algorithm for dealing with large sets of structural zeros when they can be expressed as the union of sets 
defined by margin conditions. These are sets defined by fixing some levels of a subset of the categorical 
variables, for example, the set of all cells such that  3 6: = 1, = 3 .x xx  Manrique-Vallier and 
Reiter (forthcoming 2014) introduce a vector notation to denote margin conditions, which we use here as 
well. Let  1 2= , , , J  μ  where, for = 1, , ,j J  we let =j jx  whenever jx  is fixed at some 
level and = *j  otherwise, where *  is special notation for a placeholder. Using this notation and 

assuming = 8,J  the conditions that define the example set above ( 3 = 1x  and 6 = 3x ) correspond to 
the vector  *,*,1,*,*,3,*,* .  To avoid cluttering the notation, we use the vectors μ  to represent both the 
margin conditions and the cells defined by those margin conditions, determined from context. 

 
2.3  Estimation and multiple imputation 
 

We now discuss how the model in Section 2.2 can be estimated, and subsequently converted into a 
multiple imputation engine, when some items are missing at random. The basic strategy is to use a Gibbs 
sampler. Given a completed dataset  obs mis, ,x x  we take a draw of the parameters using the algorithm 

from Manrique-Vallier and Reiter (forthcoming 2014). Given a draw of the parameters, we take a draw of 
misx  as described below. 

Formally, the algorithm proceeds as follows. Suppose that the set of structural zeros can be defined as 
the union of C  disjoint margin conditions, =1= ,C

c cS  μ  and that we use the priors for , λ  and π  
defined in Section 2.1. Given  obs mis= ,i i ix x x  for = 1, , ,i n  the algorithm of Manrique-Vallier and 

Reiter (forthcoming 2014) samples parameters as follows. 
 

1. For = 1, , ,i n  sample  1
1: 1Discrete , , ,i K kz p p  with 1

=1
.J

k k jk ijj
p x       

2. For = 1, ,j J  and = 1, , ,k K  sample    1Dirichlet , , ,jk jkLjk j    with 

   1 1 0 00
=1 =1

= 1 1 = , = 1 = , = .n n
jkl ij i ij ii i

x l z k x l z k      
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3. For = 1, , 1k K   sample  = 1
Beta 1 , K

k k kh k
V a


     where 

   1 00
=1 =1

= 1 = 1 = .n n
k i ii i

z k z k    Let = 1KV  and make  
<

= 1k k hh k
V V   for 

all = 1, , .k K  

4. For = 1, , ,c C  compute   =1 *
= Pr | , = .K

c c k jk cjk cj 
       x μ λ π  

5. Sample    1 1, , , , , ,C Cn n NM n    where NM  is the negative multinomial 

distribution, and let 0 =1
= .C

cc
n n  

6. Let 1.   Repeat the following for each = 1, , .c C  

(a) Compute the normalized vector  1, , ,Kp p  where 
: *

.k k jk cjj cj
p

 
       

(b) Repeat the following three steps cn  times: 
i. Sample  0

1Discrete , , ,kz p p
 

ii. For = 1, ,j J  sample  

        
  1: 0 0

0
Discrete 1 , , if = *

if *

L j cjjz jzj

j

cjjc

L
x  





     

  


 

where 
cj  is a point mass distribution at ,cj  

iii. Let 1.     
7. Sample  Gamma 1 , log .Ka K b      

 
Having sampled parameters, we now need to take a draw of mis .x  For = 1, , ,i n  let 

 1= , ,i i iJm mm  be a vector such that = 1ijm  if component j  in ix  is missing and = 0ijm  

otherwise. Assuming that data are missing at random, we need to sample only the components of each ix  
for which = 1,ijm  conditional on the components for which = 0.ijm  Thus, we add an eighth step to the 

algorithm. 
 

8. For = 1, , ,i n  sample mis
ix  from its full conditional distribution,                                                          

    mis

: =1

1 .           i i jz iji
j mij

p S xx x   (2.9) 

In the absence of structural zeros, the ijx  to be imputed are conditionally independent given ,iz  

making the imputation task a routine multinomial sampling exercise (Si and Reiter 2013). However, the 
structural zeros in S  induce dependency between the components. Thus, we cannot simply sample the 
components independently of one another. A naive approach is to use an acceptance-rejection scheme, 
sampling repeatedly from the proposal distribution  mis*

: =1
= jz ijj m iij

p x   x  until obtaining a variate 

such that mis* .Sx  However, when the rejection region is large or has a high probability, this approach 
can be very inefficient. 
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Instead we suggest forming additional Gibbs sampling steps, computing the conditional distributions 
of all missing components so that they can be sampled individually. Let  Rep , ,i j lx  be the vector that 
results from replacing component j  in ix  by an arbitrary value  1, 2, , .jl L  The full conditional 

distribution of missing component j  of ix  (when = 1ijm ) is 

    1 Rep , , .ij i ij jz iji
p x j x S x     x   Thus, we replace step 8 in the algorithm with 

 

8’. For each     , , : = 1 ,iji j i j m  sample  1: 1Discrete , , ,ij L Lj j
x p p  where 

    1 Rep , , .l jz ii
p l j l S  x   

 

The definition of lp  implies trimming the support of the full conditional distribution of ijx  from 

 1, , jL  to only values that avoid ,i Sx  given current values of  : all .ijx j j
   

To obtain M  completed datasets for use in multiple imputation, analysts select M  of the sampled 
misx  after convergence of the Gibbs sampler. These datasets should be spaced sufficiently so as to be 

approximately independent (given obsx ). This involves thinning the MCMC samples so that the 
autocorrelations among parameters are close to zero. 

 
3  Simulation study 
 

To illustrate empirically the performance of this imputation engine, we conducted a repeated sampling 
experiment using an extract of the 5% public use microdata sample from the 2000 U.S. census data for the 
state of New York (Ruggles, Alexander, Genadek, Goeken, Schroeder and Sobek 2010). The data include 

=H 953,076 individuals and ten categorical variables: ownership of dwelling (3 levels), mortgage status 
(4 levels), age (9 levels), sex (2 levels), marital status (6 levels), single race identification (5 levels), 
educational attainment (11 levels), employment status (4 levels), work disability status (3 levels), and 
veteran status (3 levels). These variables define a contingency table with 2,566,080 cells, of which 
2,317,030 correspond to structural zeros. 

We treat the H  records as a population from which we take 500 independent samples of size =n
1,000. For each sample, we impose missing data by randomly blanking 30% of the recorded item-level 
values of each variable. We then estimate the truncated latent class model of Section 2.3, using 10,000 
MCMC iterates and discarding the first 5,000 as burn-in. From each remaining chain we create =M 50 
completed datasets via a systematic sample of every 100 iterations. In all 500 simulation runs we use a 
maximum number of latent classes =K 50. The effective number of components, i.e., those comprising at 
least one individual, are typically between 10 and 15 (depending on the particular sub-sample) and not 
larger than 26. 

As estimands, we use all three-way probabilities with values exceeding 0.1 in the population (the =H
953,076 individuals). This equates to 279 estimands. In each sample, we estimate 95% confidence 
intervals for each of the 279 probabilities using the multiple imputation combining rules of Rubin (1987). 
We also compute the corresponding intervals with the data before introducing missing values, which we 
call the complete data. 
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Figure 3.1 shows the percentages of the five hundred 95% confidence intervals that cover their 
population values. For the most part, the simulated coverage rates for multiple imputation are within 
Monte Carlo error of the nominal level. A few intervals based on multiple imputation have low coverage 
rates; in particular, three are below 85% while their counterparts with complete data are closer to the 
nominal level. However, as evident in Figure 3.2, the absolute magnitudes of the biases in the point 
estimates of these quantities tend to be modest. These encouraging results are in accord with the results in 
Si and Reiter (2013), whose simulations included up to 50 variables (without any structural zeros). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.1 Comparison of empirical coverage rates (over 500 trials) of confidence intervals for three-way 

marginal probability estimates computed from the complete samples vs. multiply imputed 
datasets. Discontinuous lines indicate nominal coverage level. Random Unif(-0.004, 0.004) noise 
added for clarity. 

 
For each estimand, we also compute the mean estimated fraction of missing information (FMI Rubin 

1987, page 77) over the 500 trials. These are displayed in Figure 3.3. Most mean FMIs are close to the 
missing item rate of 30% that we imposed on every variable in the simulation design. However, many of 
the mean FMIs are significantly smaller than 30%, including four exactly equal to zero. The estimands 
with mean FMIs significantly below 0.30 correspond to entries of 3-way marginal probability tables where 
structural zeros severely restrict the possible imputations. In effect, the structural zeros reduce the 
information loss due to missingness. For example, the four estimands with mean FMI = 0  correspond to 
combinations of variables where restrictions leave only one possible imputation pattern to choose from; 
thus, no information is lost even though data values are actually missing. By incorporating the structural 
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zeros, we automatically impute such cases appropriately and can take advantage of the information 
supplied by the structural zero restrictions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.2 Mean (over 500 trials) three-way marginal probability estimates computed from the multiple 

imputed datasets vs. computed from the complete samples. Points marked with crosses are 
estimates for which the empirical coverage of the multiple-imputation based 95% confidence 
intervals fell below 85%.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.3 Empirical coverage rates (over 500 trials) of confidence intervals for 279 three-way marginal 

probability estimates computed from the multiply imputed datasets vs. their corresponding mean 
(over the 500 trials) estimated fraction of missing information. 
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4  Concluding remarks 
 

Structural zero restrictions are an important feature of many surveys, e.g., impossible combinations 
and skip patterns. They also play a key role in imputation. Ignoring structural zeros when estimating 
models can result in severe biases when estimating quantities that depend on joint or conditional 
probabilities. This translates to generating imputed values that do not accurately reflect the dependency 
structure in the data, and subsequently can lead to biased multiple imputation inferences. Additionally, 
structural zeros often function as consistency rules. Not enforcing them in imputation could result in 
completed datasets with inconsistent responses—like widowed toddlers or non-homeowners paying 
property taxes—that many agencies would be reluctant to release and many public users would find 
difficult to analyze. The approach suggested here based on Bayesian truncated latent class models offers 
survey researchers a way to avoid such problems, leading to multiple imputations from theoretically 
coherent and computationally expedient models that can capture complex dependencies, and 
simultaneously reducing the labor and guesswork in model specification that often accompanies 
traditional approaches to multiple imputation for categorical data. Computer code in C++ and R 
implementing the algorithms in this article can be obtained directly from the authors. 
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