

Prairie Region

Effective Growing Degree Days

Effective Growing Degree Days (EGDD):

- Heat units used by spring seeded small grains (e.g. wheat, barley) and canola crops, accounting for day length adjustments.
- Accumulated from 10 days after average daily temp is above 5°C (seeding date), until fall frost (minimum daily temperature is 0°C), or October 31

Table 1: Climate Suitability Ratings for Spring Seeded Small Grains

Effective Growing Degree Days	Suitability Rating and Description	
1,600	No limitations - Class 1	
1,200	Moderate limitations - Class 3	
1,050	Severe limitations - Class 4	
900	Very severe limitations - Class 5	
500	Not suitable - Class 7	

Note: Class 1 to Class 3 are considered suitable for continual crop growth.

For more information on suitability ratings for spring seeded small grains:

http://sis2.agr.gc.ca/cansis/publications/manuals/1995-6/intro.html

Learn more about effective growing degree days. http://sis.agr.gc.ca/cansis/nsdb/ecostrat/1999report/egdd.html

Table 2: Summary of EGDD comparing 1971-2000 to projected climate change in 2010-2039

Effective Growing Degree Days	1971 - 2000 Baseline	2010 - 2039 CGCM 3.1
	Percent of total area	
> 1,800	0.0	2.5
1,600 - 1,800	0.6	13.6
1,400 - 1,600	13.7	19.8
1,200 - 1,400	26.7	32.6
1,050 - 1,200	27.5	13.7
900 - 1,050	14.4	6.9
750 - 900	7.5	5.6
600 - 750	6.0	4.1
< 600	3.6	1.1

• The CGCM 3.1 model predicts an increase of 1 to 2 degrees Celsius by 2010 - 2039 in the average monthly growing season temperature across the prairies.

Climate Data and Future Scenario:

- 30 year average monthly climate data (Tmax, Tmin, ppt) was used to
 - Effective Growing Degree Days,
- Moisture Deficits (P-PE) and
- Length of Growing Season (seeding date until fall frost). Baseline data (1971-2000) provided by Natural Resources Canada (Great Lakes Forestry Centre).
- Climate Change Scenario (2010-2039)
 - o Global Climate Change Model (GCM) used: Canada's Coupled Global Climate Model (CGCM3.1) developed by the Canadian Centre for Climate Modelling and Analysis.
 - Climate data was spatially interpolated using ANUSPLIN software (2.5° grid interpolated to ~10km grid).

- Represents only a single climate change model result, using the A2 climate change scenario from the Intergovernmental Panel on Climate Change (IPCC).
- Seasonal and inter-seasonal variability in the 30 year average monthly climate data was not considered (e.g. extreme events such as drought and excess spring moisture).

