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Surveillance 

Creutzfeldt-Jakob disease mortality in Canada, 1998 to 2013 

Coulthart MB1*, Jansen GH1,2, Connolly T1, D’Amour R1, Kruse J1, Lynch J1, Sabourin S1, Wang Z1†, 
Giulivi A2, Ricketts MN3, Cashman NR4

1Canadian Creutzfeldt-Jakob Disease Surveillance System, Centre for Foodborne, Environmental and Zoonotic Infectious 
Diseases, Public Health Agency of Canada, Ottawa, ON
2The Ottawa Hospital, University of Ottawa and Eastern Ontario Regional Laboratory Association, Ottawa, ON 

3University of Ottawa, Ottawa, ON
4Department of Medicine (Neurology), Brain Research Centre, University of British Columbia, Vancouver, BC 
†Deceased November 2014 

*Correspondence: michael.coulthart@phac-aspc.gc.ca

The authors dedicate this paper to the memory of their friend and colleague Zheng Wang (1962–2014). 

Abstract 

Background: Human prion diseases, known collectively as Creutzfeldt-Jakob disease (CJD), are fatal, 
infectious neurodegenerative disorders that occur in all human populations. 

Objective: To summarize national surveillance data for CJD in Canada between January 1, 1998, and 
December 31, 2013. 

Methods: Detailed investigations were conducted of individual suspected CJD cases, with collaboration 
between Canadian health professionals and investigators affiliated with a central CJD surveillance registry 
operated by the Public Health Agency of Canada. Data were collected on the clinical profile, family history, and 
results of paraclinical and laboratory investigations, including post-mortem neuropathological examination. 

Results: A total of 662 deaths from definite and probable CJD were identified in Canadian residents during the 
study period, comprising 613 cases of sporadic CJD (92.6%), 43 cases of genetic prion disease (6.5%), 4 cases 
of iatrogenic CJD (0.6%), and 2 cases of variant CJD disease (0.3%). The overall crude mortality rate for 
sporadic CJD was 1.18 per million per year [95% confidence interval (CI): 1.08,1.27]. Age-specific rates ranged 
from 0.05 [95% CI: 0.03,0.08] in persons under 50 years of age to 7.11 [95% CI: 6.20,8.11] in those aged 70 to 
79. A significant net upward trend in age-adjusted rates was observed over the study period. Standardized
mortality ratios, calculated for 10 individual Canadian provinces with reference to national average mortality
rates, did not differ significantly from 1.0.

Conclusion: Creutzfeldt-Jakob disease remains rare in Canada, although mortality rates vary by two orders of 
magnitude between older and younger age groups. The upward trend in age-standardized sporadic CJD 
mortality rate over the study period can be better accounted for by gradually improving case ascertainment than 
by a real increase in incidence.  

Introduction 

Prion diseases are rare, lethal, degenerative brain disorders that affect humans and several other mammals. 
Remarkably, these diseases are transmissible by an infection-like molecular process involving a pathologically 
altered, self-propagating form of a host glycoprotein, the prion protein (PrP). The infective agents of these 
diseases are therefore referred to as prions, or proteinaceous infectious particles (1). Despite recently 
recognized similarities between the molecular mechanisms of prion diseases linked with pathological behaviour 
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of PrP and other “prion-like” diseases involving misfolding of other proteins, to date there is no evidence as yet 
that prion-like diseases are transmissible between individuals under natural conditions (2,3). Thus, prion 
diseases pose a unique combination of challenges to public health, including long, silent incubation periods; lack 
of protective host immunity; resistance to decontamination; limited tools for diagnosis; and potential for both 
zoonotic and health care-based transmission (4).  
 
Prion diseases of humans—for brevity, referred to collectively here as Creutzfeldt-Jakob disease (CJD)—exhibit 
various clinicopathological presentations that reflect distinct endogenous and exogenous etiologic origins. 
Among “classic” forms of CJD the most common subtype, sporadic CJD (sCJD), is defined by characteristic 
prion neuropathology (particularly spongiform degeneration and deposition of pathologic PrP in brain tissue) in 
the absence of a discernible genetic or infectious cause. Sporadic CJD appears to occur endemically in all 
populations with an average mortality rate of one to two per million per year, and generally constitutes 85% to 
95% of all CJD cases identified through epidemiologic surveillance (5). Genetically caused forms (5% to 15% of 
classic CJD cases), which apparently also occur universally, are associated with any of over 50 different 
pathogenic mutations in the host gene that encodes PrP. Some of these genetic forms—in particular, 
Gerstmann-Sträussler-Scheinker disease and fatal familial insomnia—exhibit distinctive clinicopathologic 
characteristics and can usually be diagnosed as genetic in origin even when the specific underlying genetic 
mutation is unknown (6).  
 
Iatrogenic cases of classic CJD (iCJD) have occurred through accidental prion transmission in the health care 
setting, particularly with therapeutic use of cadaveric tissues or tissue extracts presumably contaminated by 
donations from individuals with unrecognized sCJD. Although iCJD is very rare, epidemics have been well-
documented, with 469 cases reported worldwide as of 2012 (7). In addition, carefully conducted epidemiological 
studies have yielded new evidence that a fraction of “sporadic” CJD cases may be attributable to remote 
iatrogenic exposure through surgery, particularly early in life (8,9). Most recently, a new human prion disease, 
variant CJD (vCJD), emerged in the mid-1990s in the United Kingdom via zoonotic transmission to humans of a 
prion disease of cattle, bovine spongiform encephalopathy (BSE) (10−12). As of April 2015, 229 cases of vCJD 
have been reported in residents of 12 countries, including two imported cases in Canada (13,14). This number 
includes five probable cases, all in the United Kingdom, of secondary (human-to-human) transmission of vCJD 
infection via the bloodborne route (15−17). 
 
Prompted by the need to better understand the epidemiology of CJD, and the responsibility to promptly and 
expertly address iatrogenic and zoonotic transmission risks, dedicated systems for prospective, population-
based epidemiologic surveillance of CJD began to be established in many countries in the early 1990s (18). In 
Canada the initial motivator was a question raised by the Krever Commission on the Blood System in Canada, 
concerning the possibility that CJD might be transmitted by the bloodborne route (19,20). In response, in April 
1998 the Government of Canada formally initiated prospective national epidemiologic surveillance of CJD 
through the Canadian Creutzfeldt-Jakob Disease Surveillance System (CJDSS), now operated by the Public 
Health Agency of Canada (21). Since 2000, all forms of CJD have been nationally notifiable in Canada, and are 
now reportable in all provinces and territories. The present article provides an overview of the findings of this 
national surveillance program over a 16-year period extending from January 1, 1998, to December 31, 2013. 
 
Methods 
 
Data collection 
The CJDSS employs an internationally established methodology for epidemiologic surveillance of CJD (18). 
Following this methodology, after notification by a health professional of a suspected case of CJD in a Canadian 
resident, CJDSS investigators collaborate to facilitate diagnostic investigations, assemble and organize case 
files, interpret and disseminate results, support disease reporting, and analyze and manage public health issues. 
The central case registry and an electronic database are used by the CJDSS to track events, rates and trends of 
CJD occurrence in Canada. Access to CJDSS investigators for collaborating health professionals, as well as the 
public, is facilitated by the use of a toll-free telephone line (1-888-489-2999) and a dedicated e-mail address 
(cjdss@phac-aspc.gc.ca).  
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Case definitions 
Diagnostic investigation of CJD and other subacute encephalopathies in the living patient is frequently 
challenging (22). Thus, high-quality epidemiologic surveillance entails collection of a variety of types of 
supporting information, as well as follow-up on individual cases in real time. A diagnosis of definite CJD requires 
neuropathologic examination; thus cranial autopsy is routinely considered. Cases lacking neuropathologic 
examination can be formally classified as probable CJD based on non-neuropathologic criteria, such as clinical 
profile, results of cerebrospinal fluid (CSF) protein immunoassays, findings of electroencephalography or 
magnetic resonance imaging, and genetic analysis. Where information is even more limited, it can be feasible to 
assign the lowest grade formal diagnostic classification of possible CJD. Surveillance case definitions employed 
by the CJDSS, which have been published by the Public Health Agency of Canada’s National Notifiable 
Diseases Surveillance System, are based on those used internationally (18,23). 
 
Mortality rate calculations 
Although prospective national surveillance of CJD in Canada was formally initiated as of April 1, 1998, some 
information was also available on CJD deaths occurring in January, February and March of 1998. Thus, data 
presented in this report include CJD deaths in Canada recorded by the CJDSS as having occurred between 
January 1, 1998, and December 31, 2013. With the national scope and population-based approach of the 
CJDSS, for the purpose of this report the entire population of Canada was used to estimate mortality rates, 
which are expressed here in units of cases per million population per year. Note also that although no cases of 
CJD were identified from the Canadian territories (Yukon, Northwest Territories and Nunavut) during the period 
of surveillance, because the CJDSS was prepared to accept notifications from these regions their populations 
were included in denominators of national rate estimates. Canadian population and demographic data were 
adapted from the Statistics Canada CANSIM online socioeconomic database (24). On the basis of these data, 
over the entire period of study a nominal total of 521,794,297 person-years were included within the scope of 
surveillance, where a person-year represents membership of an individual in an at-risk population over a period 
of one year (25).  
 
Exact 95% confidence intervals (CIs) for mortality rate estimates were based on a Poisson model of case 
counts. The hypothesis of a linear trend in age-adjusted mortality rates over the period of surveillance was 
tested using nonparametric linear regression, in which the slope of the regression was calculated as the median 
of slopes connecting all pairs of data points. In addition, a two-tailed test of rank correlation between year and 
mortality rate was performed using Kendall’s tau coefficient, which is based on the proportion of paired 
observations of two variables in which the respective ranks of the two observations match (26). Standardized 
mortality ratios (SMRs) for sCJD (defined as the ratio of observed total mortality rates in a study population to 
“expected” mortality rates in the study population derived using known age-specific rates for a reference 
population) were estimated for each province. National CJD mortality rates were used to calculate expected 
rates, again basing 95% CIs on a Poisson model.  
 
With the low numbers of identified cases of genetic prion disease, iCJD and vCJD (see below), only limited 
statistical analysis was performed for these disease subtypes, with results reported here consisting primarily of 
case numbers and estimated crude mortality rates for genetic prion disease.  
 
Ethics framework 
Formal enrollment of a patient with the CJDSS (case referral) is done with written informed consent for each 
main component of data collection (autopsy, genetics, medical record review and interview) under a protocol 
approved by the Health Canada–Public Health Agency of Canada Research Ethics Board (Certificate REB-
2009-0036). The personal information collected is registered with the Government of Canada as a personal 
information bank (27). 
 
Results 
 
Diagnostic yield and quality 
Between January 1, 1998, and December 31, 2013, the CJDSS opened 1,420 case-referral files on patients 
suspected of having CJD, or being at risk for CJD (i.e., family members of patients with genetic prion disease). A 
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total of 3,689 laboratory investigations were performed by Public Health Agency of Canada laboratories, 
comprising 2,193 CSF protein immunoassays, 635 genetic analyses, and 861 neuropathological examinations 
including 828 full cranial autopsies (Table 1). During the same period the deaths of 662 Canadian residents 
were attributed to definite or probable CJD, comprising 613 sCJD (92.6%), 43 genetic prion disease (6.5%), 4 
iCJD (0.6%), and 2 vCJD (0.3%). Among all 662 CJD diagnoses, 535 (80.8%) were definite and 127 (19.2%) 
were probable. In addition, 22 deaths were attributed to possible CJD, and 77 cases were unclassifiable. Of the 
613 sCJD diagnoses, 498 (81.2%) were definite, and 115 (18.8%) were probable. Among 575 non-CJD 
diagnoses, CJD was excluded by neuropathology in 308 (53.6%) and by other criteria in 267 (46.4%). 
 
Table 1: Laboratory investigations, case referrals and deaths from CJD in Canada, 1998 to 2013 

Year1 Tests2 Referrals3,4 Autopsies5 Deaths6 Definite7 Probable8 

1998 50 44 24 24 20 4 

1999 84 63 34 32 28 4 

2000 126 82 42 35 32 3 

2001 161 101 49 30 23 7 

2002 158 103 54 36 32 4 

2003 137 75 44 29 27 2 

2004 268 90 63 44 33 11 

2005 257 97 58 44 37 7 

2006 234 80 57 44 37 7 

2007 259 101 49 39 33 6 

2008 305 100 57 49 34 15 

2009 346 104 74 53 46 7 

2010 281 76 46 38 31 7 

2011 342 102 54 51 40 11 

2012 351 103 69 63 46 17 

2013 330 99 54 51 36 15 

Total 3,689 1,420 828 662 535 127 
1January 1 to December 31 of each listed year.  
2All CJD-related laboratory tests, including CSF protein marker analyses, genetic analysis and neuropathologic examination. 
3Referral is defined as enrolment of a patient with the CJDSS. 
4Note that outcomes of some referrals had not been determined by the end of 2013. 
5Autopsy is defined as full cranial autopsy. 
6Deaths attributable to definite and probable CJD. 
7Diagnosis confirmed by neuropathology.  
8Diagnosis supported by non-neuropathological criteria. 
 
 
Age and sex distributions for sCJD 
Figure 1 illustrates the distribution of ages at death for the 613 sCJD cases. The distribution departed 
significantly from normality, owing to leftward skewness (D’Agostino-Pearson coefficient –0.297, P = 0.012). Age 
at death ranged from 33 to 92 years, with a median of 69 [95% CI: 68,70] and inter-quartile range 62,75. Males 
numbered 291 (47.5%) [95% CI: 43.5,51.4] and females 322 (52.4%) [95% CI: 48.6,56.5], indicating a sex ratio 
indistinguishable from 1. Age distributions were also very similar between sexes, with males having a median of 
68 years [95% CI: 67,70; inter-quartile range: 60,74.75], and females a median of 69 years [95% CI: 67,70; 
inter-quartile range: 61,75].  
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Figure 1: Distribution of age at death for 613 cases of sporadic CJD in Canada, 1998 to 20131−3 

 
1Deaths of males and females are plotted together. 
2Ages are grouped into five-year strata. 
3Normal curve is plotted (dotted line) with mean (67.8) and standard deviation (9.4) of sample.  

sCJD mortality 
Table 2 provides age-specific case counts and mortality rates for sCJD for five age strata: ≤49 years; 50–59 
years; 60–69 years; 70–79 years; and ≥80 years. Crude rates varied widely with age, ranging from 0.05 for ages 
≤49 years to 7.11 for ages 70–79 years; only 17 of the 613 sCJD cases (2.8%) were identified in persons ≤49 
years of age. Total crude mortality for all age strata over the entire period of surveillance was 1.18, with annual 
rates ranging from 0.73 in 1998 to 1.78 in 2012. Age-standardized rates were also calculated, using the 2006 
Canadian census population as a reference (Table 2). These rates ranged from 0.84 for 1998 to 1.65 for 2012, 
with a total rate over the surveillance period of 1.20. When analyzed by nonparametric linear regression, the 
age-standardized rates were significantly associated with year, according to the linear function: Rate = 0.029 
(Year) – 57.30 [95% CI: 0.002,0.052 for the slope estimate] (Figure 2). Kendall’s rank-correlation coefficient tau 
(0.45) was significant at P = 0.017 (two-sided test). 
 
Table 2: Age-specific and total annual mortality from sporadic CJD in Canada, 1998 to 2013 

Year1 
Age2 Mortality3 

≤49 50–59 60–69 70–79 ≥80 All ages Crude4 Age-adjusted5 

1998 0 3 5 12 2 22 0.73 [0.46,1.10] 0.84 [0.52,1.27] 

1999 2 4 9 10 2 27 0.89 [0.58,1.29] 0.96 [0.63,1.39] 

2000 1 4 5 14 8 32 1.04 [0.71,1.47] 1.23 [0.84,1.75] 

2001 0 4 12 8 3 27 0.87 [0.57,1.26] 0.98 [0.64,1.42] 

2002 2 5 6 14 4 31 0.99 [0.67,1.40] 1.07 [0.73,1.52] 

2003 2 1 13 11 0 27 0.85 [0.56,1.24] 0.91 [0.60,1.32] 

2004 0 10 14 13 5 42 1.31 [0.95,1.77] 1.40 [1.01,1.90] 

2005 1 8 12 21 0 42 1.30 [0.94,1.76] 1.36 [0.98,1.83] 

2006 0 5 13 17 4 39 1.19 [0.85,1.63] 1.24 [0.88,1.69] 

2007 2 7 14 8 4 35 1.06 [0.74,1.48] 1.07 [0.75,1.49] 

2008 0 9 13 18 8 48 1.44 [1.06,1.91] 1.44 [1.06,1.91] 
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2009 1 7 19 16 5 48 1.42 [1.05,1.89] 1.39 [1.02,1.84] 

2010 2 6 19 4 4 35 1.03 [0.71,1.43] 0.96 [0.67,1.33] 

2011 1 8 20 12 5 46 1.33 [0.98,1.78] 1.24 [0.91,1.66] 

2012 1 13 22 20 6 62 1.78 [1.36,2.28] 1.65 [1.26,2.11] 

2013 2 4 19 22 3 50 1.42 [1.05,1.87] 1.30 [0.96,1.71] 

All years 17 98 215 220 63 613 1.18 [1.08,1.27] 1.20 [1.11,1.30] 

Mortality3 0.05 
[0.03,0.08] 

1.41 
[1.14,1.72] 

4.59 
[4.00,5.25] 

7.11 
[6.20,8.11] 

3.44 
[2.64,4.40] 

1.18 
[1.08,1.27] – – 

1Time intervals are from January 1 to December 31 for each calendar year. 
2Age is expressed as number of complete years of life at time of death. 
3Mortality rates are expressed in deaths per million population per year, with Poisson-based 95% confidence interval (in parentheses). 
4Based on Statistics Canada estimates of total Q4 Canadian population per year. 
5Based on 2006 Canadian census. 

 

Figure 2: Age-standardized mortality from sporadic CJD in Canada, 1998 to 20131−3 

 

1Mortality rates are expressed per million population per year.  
2Direct standardization used 2006 Canadian census population as reference population. 
3Slope of nonparametric linear regression (dotted line) = median of slopes between all data pairs. 

To examine the possibility that CJD mortality rates varied geographically during the study period, SMRs and 
95% CIs were estimated for each province, using the estimated national age-specific mortality rates as a 
reference to calculate expected rates. The results are shown in Figure 3. It can be seen that both the SMR 
estimates and the widths of their respective 95% CIs varied considerably, with the latter expected given differing 
case numbers among provinces with different population sizes [range: <5 cases (PEI) to 209 cases (Ontario)]. 
Despite this variation, the 95% CIs of SMRs for all provinces included the value 1.0, indicating a lack of 
statistical support for geographic variation in mortality rates. 
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Figure 3: Standardized mortality ratios for sporadic CJD in Canadian provinces, 1998 to 20131−4 

 

1Abbreviations of province names: BC—British Columbia; AB—Alberta; SK—Saskatchewan; MB—Manitoba; ON—Ontario; QC—Québec;  
NB—New Brunswick; NS—Nova Scotia; PE—Prince Edward Island; NL—Newfoundland and Labrador 
2Open symbols indicate point estimates of standardized mortality ratios (SMRs). 
3Vertical bars indicate 95% confidence intervals for SMRs, based on Poisson model. 
4SMRs were calculated using national average sCJD mortality rate as the reference rate. 

Genetic prion disease, iCJD and vCJD 
Basic features of the 43 identified cases of genetic prion disease are summarized in Table 3. Cases of all three 
known classic clinicopathologic presentations of genetic prion disease (CJD, Gerstmann-Sträussler-Scheinker 
disease, fatal familial insomnia) were identified. Autopsy rates were high in this group as well, with 33 of the 43 
diagnoses (77%) supported by neuropathology in addition to an identified mutation in the host gene that 
encodes PrP. Interestingly, 9 of the 20 cases of Gerstmann-Sträussler-Scheinker disease (45%) were only 
discovered at autopsy and lacked an identified mutation because genetic analysis had not been requested. 
Clearly the total mortality rate from genetic prion diseases over the study period was much lower than that for 
sCJD, at 0.08 per million per year [95% CI: 0.06,0.11]. Lastly, four cases of iCJD (all with receipt of a dura mater 
graft as a risk factor) and two cases of vCJD (one definite and one probable) were identified. 

Table 3: Characteristics of 43 cases of genetic prion disease identified in Canada, 1998 to 2013 

Subtype1 Mutation identified2 Mutation not identified3 Definite (%)4 Probable (%)5 Total 
CJD 21 0 16 (76) 5 (24) 21 
GSS 11 9 16 (80) 4 (20) 20 
FFI 2 0 1 (50) 1 (50) 2 
All 34 9 33 (79) 10 (21) 43 

1CJD—Creutzfeldt-Jakob disease; GSS—Gerstmann-Sträussler-Scheinker disease; FFI—fatal familial insomnia. 
2Causative DNA change identified.  
3Causative DNA change not identified (no genetic analysis performed). 
4Diagnosis confirmed by neuropathology. 
5Diagnosis supported by non-neuropathological criteria. 

 
Discussion 
 
Based on national prospective epidemiologic surveillance, a total of 662 deaths were attributed to all forms of 
CJD in Canada between 1998 and 2013. For the most common etiologic subtype, sCJD (92.6% of all cases), we 
estimated an overall average crude mortality rate of 1.18 definite and probable deaths per million per year. We 
also confirmed the strong relationship between crude sCJD mortality rates and age, with a very low age-specific 
rate of 0.05 in those under 50 years, and a maximum of 7.11 in the age stratum 70 to 79 years. Another known 
epidemiologic pattern confirmed by our data was the lack of detectable sex bias in mortality rates. Evidence was 
found for a modest net upward trend in age-standardized sCJD mortality rate over the 16-year period. However, 
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consistent with strong national coverage, no statistical support was found for geographic deviation in rate with 
respect to that expected from the national rate for any of the 10 Canadian provinces in which cases were 
observed. 
 
The epidemiology of CJD has been studied systematically for nearly four decades (5−7,12,28−30). Early 
estimates of mortality based primarily on retrospective approaches to case identification typically fell well below 
one per million per year (29). A more structured, prospective approach to case finding undertaken in France 
between 1978 and 1982 provided the first well-controlled demonstration of a within-country gradient of observed 
rates (0.56 for France, 0.86 for metropolitan Paris, and 1.19 for the city of Paris), representing a positive 
correlation of rates with degree of urbanization and suggesting a significant ascertainment effect (30). The 
combination of retrospective and prospective studies in France and later in the United Kingdom demonstrated a 
rise in apparent mortality with time as well, which was also attributed to improved case ascertainment (30,31). 
 
More recent estimates of CJD mortality rates have tended toward the range of one to two per million per year 
(5). This has occurred in parallel with methodological enhancements such as establishment of national 
registries, application of a prospective approach, formulation of standard case definitions, recognition of disease 
subtypes, development and validation of diagnostic tools, and increased awareness among collaborating health 
professionals, all strengthening the plausibility of improved ascertainment, particularly in older patients and/or 
patients with less typical presentations (5,32). In Switzerland, a temporary increase in CJD mortality in the years 
2001 to 2004 was ultimately attributed to heightened awareness of the disease as a result of the vCJD epidemic 
in the United Kingdom; the authors went so far as to suggest that the “true” mortality rate for sCJD may exceed 
two per million per year (33). In a recent study incorporating data from 10 countries, significant statistical 
correlations were demonstrated between observed sCJD mortality rate and several indices of surveillance 
intensity, including rates of case notification to the central registry as well as rates of autopsy and other 
laboratory investigations (34). In light of these considerations, we believe that the observed upward trend in age-
standardized sCJD mortality rates in Canada between 1998 and 2013 can be best accounted for by gradually 
improving case ascertainment, rather than extrinsic causes leading to a real rate elevation. Thus, although 
under-ascertainment could legitimately be considered a potential limitation of the present study, such a positive 
trend suggests that further improvements could be realized. Given the strong correlation of mortality rates with 
age, it is also worth keeping in mind the possibility that population aging will contribute to real increases in sCJD 
rates in the future. 
 
The surveillance findings presented here confirm and extend those of earlier published studies that included 
either retrospective or prospective data on CJD mortality in Canada, and are consistent with those of other CJD 
surveillance systems internationally (5,34−36). In addition to providing high-quality estimates of overall, age-
specific and sex-specific mortality rates for classic forms of CJD, the Canadian CJD Surveillance System has 
demonstrated an ability to detect, investigate and deal with rare events, such as four identified cases of iCJD 
and two of vCJD. Our results indicate, therefore, that a collaborative environment has been established for 
robust, national prospective epidemiologic surveillance of CJD in Canada.  
 
It is important for health professionals to remain alert to the possibility of CJD in patients. Likewise, it is important 
for public health professionals to use the surveillance data and the resulting epidemiologic insights to assess 
and mitigate any public health risks associated with the ongoing, possibly under-ascertained and potentially 
increasing occurrence of classic forms of CJD. Finally, there are persisting uncertainties regarding the 
epidemiology of vCJD and possible new zoonotic prion diseases, which warrant continued vigilance for novel 
CJD events or trends (37,38). 
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Abstract

Currently, definitive diagnoses of Creutzfeldt-Jakob disease (CJD) require an examination of the brains of 
deceased patients. In cooperation with an international consortium, Canada’s National Microbiology Laboratory 
is performing a validation of a new test that can diagnose CJD in living patients. This test, the real-time quaking-
induced conversion (RT-QuIC) assay, directly detects the disease associated form of the prion protein in 
cerebrospinal fluid. If validated, RT-QuIC will represent a major advance in the diagnoses of patients suspected 
to have CJD. 

Introduction

Creutzfeldt-Jakob disease (CJD) is a rare, untreatable, uniformly fatal brain disorder. The disease most 
commonly affects older adults at a rate of one case of CJD diagnosed per million people each year (1). The first 
signs often include anxiety, confusion and memory loss resembling those of other neurological disorders such 
as Alzheimer’s disease and Huntington’s disease. There are several subtypes of CJD and the signs of disease 
progression are highly variable. However, it is common to observe difficulties with balance, hand coordination, 
walking, vision and swallowing, as well as involuntary jerky movements (2). Ultimately, people lose their ability to 
move and speak; death is often caused by pneumonia or other secondary infections.  

These fatal neurological diseases are caused by novel transmissible agents called prions that are not 
conventional viruses or bacteria but rather are composed of an abnormal form of a host protein. This key 
biological fact precludes the use of technologies currently applied to the direct detection of other infectious 
agents. Presently, definitive diagnoses of CJD require an examination of the brains of deceased patients 
revealing prion protein deposits and associated nerve cell loss resulting in the brain having a sponge-like 
appearance.  

The objective of this article is to summarize three different types of CJD, to describe a new method recently 
developed to diagnose CJD, and to consider the potential implications for patients and clinical/laboratory 
practice.  

Classification of CJD 

Creutzfeldt-Jakob disease can be classified into three broad categories: sporadic CJD, genetic CJD and 
acquired CJD. Sporadic CJD (sCJD) represents up to 85% of observed cases, develops for no apparent reason 
and usually affects people in their 60s. Depression is a common early symptom and most people with sCJD die 
within six months of diagnosis.  

https://doi.org/10.14745/ccdr.v41i08a02
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Genetic CJD (gCJD) can present like sporadic CJD or may present as a slowly progressing dementia that 
develops over years. Some of the more common CJD mutations have been tracked through large 
multigenerational families and display autosomal dominant inheritance. Nonetheless, in 50% of genetic CJD 
diagnoses there is no familial history of CJD or other neurological disorders suggesting low penetrance (3). 
 
Acquired CJD, accounting for less than 1% of cases, results from exposure to the infectious agent. Iatrogenic 
CJD describes cases of acquired CJD related to medical procedures. New variant CJD (vCJD) is acquired 
through dietary exposure to beef infected with bovine spongiform encephalopathy (BSE), the scientific term for 
mad cow disease. Due to the effective implementation of public health measures (4), the risk of acquiring variant 
CJD in Canada is nearly nonexistent. Indeed, there has never been a case of domestically acquired variant CJD 
reported in Canada (1). 
 
Current practice 
 
Pre-mortem diagnoses of any form of CJD rely on clinical presentation, characteristic electroencephalogram 
(EEG) and magnetic resonance imaging (MRI) patterns. The appearance of surrogate biomarkers, typically a 
change in the amount of specific proteins in cerebrospinal fluid (CSF), provides additional supporting diagnostic 
data.  
 
Currently, the Prion Laboratory Section at the National Microbiology Laboratory measures the level of three 
proteins (14-3-3, tau and S100) in CSF, to support clinicians dealing with suspected cases of CJD. Increased 
levels of these three surrogate markers are consistent with a diagnosis of CJD, but they have variable sensitivity 
and specificity and consequently cannot be used to definitively diagnose CJD (5). 
 
The molecular basis of the new test 
 
At the molecular level CJD disease progression is characterized by the conversion of the normally expressed 
cellular prion protein, PrPc, into the misfolded disease associated isoform, PrPd (Figure 1). The infectious form 
of the prion protein, PrPd, acts as a “seed” and interacts with normal cellular form of the prion protein, PrPc, and 
promotes its conversion to the infectious form. As the disease progresses the amount of PrPd available to 
convert PrPc increases, accelerating the conversion of PrPc to PrPd. Eventually this leads to the generation of 
the large amounts of PrPd observed in the brains of CJD patients post-mortem.  
 
In contrast to what is observed in the brain, only low amounts of PrPd are present in other tissues making 
detection in an easily accessible sample problematic. A solution to this challenge has been the development of a 
technique, known as real-time quaking-induced conversion (RT-QuIC). RT-QuIC exploits the ability of PrPd to 
promote the conformational conversion of PrPc (6-8). In RT-QuIC a recombinant prion protein (rPrP) made in the 
laboratory is used as the substrate and patient CSF samples, potentially containing PrPd, are tested to see if 
they will “seed” the conversion process (Figure 1). Cycles of shaking and incubation will cause infected CSF, 
containing PrPd, to generate greatly increased amounts of rPrPd facilitating subsequent detection by traditional 
methods. 
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Figure 1: Infectious prion protein promotes the conformational conversion of cellular prion protein 

Legend: In RT-QuIC the PrPd present in infected samples interacts with laboratory produced rPrP causing a conformational conversion that can be 
monitored in real time. 

Summary of test results 

RT-QuIC has been demonstrated to be a highly sensitive and specific method to detect the presence of the 
disease-associated isoform of the prion protein, PrPd, in the CSF of patients with sporadic CJD (9-13). Direct 
detection of the disease-causing agent is a major advance in the development of a diagnostic test for sporadic 
CJD as it can be used for definitive diagnoses while the patient is still alive. However, ongoing validation studies 
have demonstrated that the outcomes of RT-QuIC reactions depend on the exact conditions employed 
(biochemical, chemical and physical), as well as the nature of the sample and recombinant substrate (14). The 
protocol under evaluation by the National Microbiology Laboratory has been tested extensively for the detection 
of sporadic CJD (10,11,15,16 ). Using this protocol the Prion Laboratory Section achieved 100% sensitivity and 
100% specificity in the evaluation of an external sporadic CJD infected CSF proficiency panel. This is 
comparable to the 91% sensitivity and 98% specificity reported by other laboratories (8,9). Being part of an 
international consortium using the same standardized protocol should permit analyses of sufficient numbers of 
the rarer vCJD and gCJD samples to determine the efficacy of our version of RT-QuIC in these cases.  

Discussion 

The establishment of a specific and sensitive test will aid health care workers as well as patients and their 
families in dealing with suspected cases of CJD. A more specific and sensitive diagnostic test for CJD will also 
help address wider public health considerations concerning the transmission of CJD from patient to patient 
through the use of contaminated surgical instruments and tissues, including blood. Once validation is completed 
RT-QuIC will be a service offered by the Prion Laboratory Section of the National Microbiology Laboratory, 
making a more sensitive and specific ante-mortem test for CJD available to Canadian health care professionals. 
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Abstract 

There is now good consensus that propagated protein misfolding is the underlying mechanism for the infectious 
prion diseases (Creutzfeldt-Jakob disease in humans, scrapie in sheep and goats, bovine spongiform 
encephalopathy in cattle, and chronic wasting disease in deer and elk). Over the past decade it has become 
increasingly clear that other diseases, including Alzheimer’s disease, Parkinson’s disease and amyotrophic 
lateral sclerosis may progress via the same mechanism, involving a disease-specific polypeptide rather than the 
prion protein. Recent literature in these non-prion neurodegenerative diseases also points to the existence of 
multiple “strains” that express themselves differently in different contexts, resulting in different disease 
phenotypes. The probable cause of these neurodegenerative diseases is now referred to collectively as 
“propagated protein misfolding.” Propagated protein misfolding raises many opportunities for new therapeutics 
and diagnostics. However, it also raises the theoretical risk of iatrogenic transmission, although experimental 
support for this notion is limited at present. 

Introduction 

The hypothesis that a misfolded protein could confer its misfold on a neighbouring normal protein and cause 
disease was widely regarded as heretical when first proposed in 1982 by Stanley Prusiner (1), but this idea is 
now well-accepted, and was sanctioned by a Nobel Prize in 1997. There is now good consensus that 
propagated protein misfolding of host prion protein (encoded in humans by the gene PRNP) is the underlying 
mechanism for the infectious prion diseases (Creutzfeldt-Jakob disease (CJD) in humans, scrapie in sheep and 
goats, bovine spongiform encephalopathy (BSE) in cattle, and chronic wasting disease in deer and elk). What 
has become apparent more recently is the notion that misfolded proteins may be part of the underlying 
pathology in more common neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease and 
amyotrophic lateral sclerosis, and possibly some non-neurological conditions such as type II diabetes mellitus 
and peripheral amyloidosis (2). 

The objective of this article is to provide some highlights of how non-prion protein misfolding is mediated through 
polypeptides in neurodegenerative diseases, to explore some of the opportunities this creates for both diagnosis 
and therapy, and to identify the theoretical risk this poses for iatrogenic transmission. See text box for common 
protein misfolding terminology. 
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Protein misfolding terminology 

Epitope—for proteins, a region or sequence of amino acids which can be recognized by a specific antibody. 

Exosomes—small (~100nM) membrane-bound vesicles which are secreted by living cells, containing protein 
and nucleic acids. 

Prion—infectious aggregate of prion protein, responsible for transmission of CJD1, scrapie, BSE2 and chronic 
wasting disease. 

Propagated protein misfolding—prion-like transmission of protein misfolding between cells in an organ such 
as the brain, mediated by protein aggregates and/or exosomes. Although prion-like, no evidence to date shows 
natural transmission of disease among or between species. 

PPM3 seeding—application of prion aggregation theory to propagated protein misfolding aggregates, requiring a 
specific event in which misfolded monomers aggregate into a productive template (slow kinetics) for recruitment 
of additional monomers (rapid kinetics).  

PPM3 strains—application of prion strain behaviour to non-prion propagated protein misfolding, correlating with 
differences in propagated structure of aggregates of implicated proteins.  

Post-translational covalent modification—any change in a protein mediated by a chemical bond, such as 
oxidation and glycosylation.  

1CJD = Creutzfeldt-Jakob disease                            2BSE = bovine spongiform encephalopathy                         3PPM = propagated protein misfolding 
 
Misfolding prions and other polypeptides 
We now know that propagated protein misfolding can occur either through infectious prions, composed of 
aggregated misfolded host prion protein, or through the propagated aggregation of other proteins implicated in 
neurodegenerative diseases (no natural infectious lifecycle). There is recent experimental proof, for example, 
that the following propagated misfolded proteins are now associated with the following neurodegenerative 
disorders: Amyloid-beta (Abeta) oligomers/fibrils in Alzheimer’s disease (3); alpha-synuclein in Parkinson’s 
disease and Lewy body dementia (4) and multiple systems atrophy (5); superoxide dismutase 1 (SOD1) (6) and 
transactive response DNA binding protein 43 (TDP43) (7) in amyotrophic lateral sclerosis, and tau in the 
tauopathies, as well as Alzheimer’s disease (8). Both prion infection and non-prion neurodegenerative diseases 
progress through propagated protein misfolding.  

Different propagated protein misfolding strains may drive different disease progression  
Infectious prions (CJD, scrapie, BSE and chronic wasting disease) do not exist in one monolithic form, but rather 
can exhibit “strain behaviour.” In sheep scrapie, for example, when the first infectious prions were transmitted to 
mouse models, approximately 20 strains were cloned—defined on the basis of incubation time, brain regions 
predominantly affected, and biochemical features such as glycosylation preferences. Very recently, it has been 
shown that non-infectious prion-like propagated protein misfolding agents causing neurodegenerative diseases 
also exhibit strain behaviour. In studies of Alzheimer’s disease, strain properties of aggregated Abeta in human 
brain have been found to correlate with rate of progression of disease (9,10). In Parkinson’s disease and in 
multiple systems atrophy, different strains of aggregated alpha synuclein have been identified in vitro and in vivo 
(11). In amyotrophic lateral sclerosis, the propagated misfolding of SOD1 has been shown to display at least two 
distinct forms in a mouse model of the disease (12). And tauopathy has been found to propagate in multiple 
strains (13) that correspond to the clinical features and rate of progression in human disease.  

New therapeutics and diagnostics for protein misfolding diseases  
A new drug development mindset is required for protein misfolding diseases. For over a century, 
pharmacological science has been highly successful in applying small molecules to fixed structures: this has 
been an effective strategy for selective targeting of channels, pores and enzyme surface pockets and pits that 
can induce change in protein activity. However, the small molecule approach does not generally apply in protein 
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misfolding where the targets are often large and unstable. Moreover, propagated protein misfolding diseases 
involve protein−protein interactions which have proven to be very difficult to target with drugs.  
The identification of strains provides opportunity for “precision medicine” treatment of neurodegenerative 
diseases. But there is a downside: data have accumulated indicating that treatment of one strain of infectious 
prions can “select” for another strain that can be more pathogenic. With this precedent from infectious prions, we 
should be aware that blocking propagated protein misfolding in other neurodegenerative diseases could also 
select for emergent strains that will require their own specific treatment.  
 
Our own work has envisioned that effective treatment and diagnosis of protein misfolding diseases will require a 
new paradigm based on the rational identification of selective epitopes (or antibody targets) in the misfolded 
proteins that are key to the disease process. Selective antibody targeting of misfolded proteins is effective by 
several mechanisms, including the neutralization of aggregate cytotoxicity and inhibition of prion-like propagated 
protein misfolding (14).  
 
In some conditions, such as infectious prion disease and Alzheimer’s disease, the specific targeting of misfolded 
propagating proteins is like finding “a needle in a haystack” where the misfolded species may be present in a 
thousand-fold to a million-fold lower concentration than the natively folded species—a situation we have dubbed 
“target distraction.” But the advantage of specific immunotherapy for misfolded proteins is that it would spare 
normally folded protein isoforms from autoimmune recognition.  

Misfolding-specific epitopes can be produced by gain or loss of structure 
Misfolding epitopes for immunotherapy or disease biomarkers can appear by two mechanisms in protein 
misfolding diseases: a gain or loss of structure not present in normal protein isoforms. Gain of structure can 
occur through generation of neoepitopes associated with post-translational covalent modification (mediated by 
the formation of a chemical bond). Non-covalent forces can also engender neoepitopes. For example, we have 
identified new gain-of-structure epitopes generated by non-covalent forces underlying specific aggregate 
morphologies, such as Abeta oligomers in Alzheimer’s disease (15).  
 
Loss of structure can occur when a structured domain of a protein “loosens” revealing a linear sequence that 
can be recognized by an antibody generated against the free peptide sequence. We have developed rational 
methods for predicting disease-specific epitopes caused by loss of structure, for which the outputs are 
sequences of linear peptides that go from structured to unstructured in the misfolding protein, against which 
antibodies can be generated and screened against the target peptide in the context of the protein misfolded in 
disease. For example, we identified misfolding-specific epitopes in SOD1 by both hypothesis generation and 
computational approaches, to block the toxicity and prion-like propagation of SOD1 misfolding in amyotrophic 
lateral sclerosis (16,17). 

Theoretical risk of iatrogenic transmission 
There is no doubt that true infectious prions can be detected in the blood and are competent to transmit disease 
(18); indeed, for variant CJD there have been five well-documented transmissions of disease through blood or 
blood products (19). However, the presence of protein misfolding seeds in non-prion propagated protein 
misfolding neurodegenerative diseases has been less clear. Only one journal report of blood Abeta oligomers in 
Alzheimer’s disease has been published (20).  
 
A few scientific reports (including scientific presentations at meetings and patent applications) suggest that 
transmission of Alzheimer’s disease pathology can occur through bloodborne transmission in experimental 
animals. Alpha synuclein oligomers have been detected in the plasma of patients with Parkinson’s disease, but 
are also observed in similar levels in normal controls, suggesting that the detected analyte is not pathogenic 
(21). No reports exist of SOD1 or TDP43 oligomers in the peripheral blood or serum, perhaps due to inadequate 
sensitivity and/or the transmission of bloodborne seeding activity through alternate pathways, such as exosomes 
(17). Interestingly, a single report shows that individuals injected with cadaveric growth hormone have a higher 
incidence of amyotrophic lateral sclerosis, but not Alzheimer’s disease or Parkinson’s disease (22). Thus, 
although a theoretical risk may pertain to iatrogenic transmission of neurodegenerative diseases, little 
experimental and epidemiological work supports this.  
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Conclusions 

A new era in diagnosis and treatment of propagated protein misfolding diseases is upon us, offering many 
opportunities to treat neurodegenerative diseases that were previously untreatable or poorly treatable. Specific 
immunotherapies to block propagation and toxicity of misfolded proteins hold potential for treatment. The 
spectre of iatrogenic transmission of amyotrophic lateral sclerosis, Alzheimer’s disease or Parkinson’s disease 
and other neurodegenerative syndromes is a theoretical risk, but there is little to no support for seeding species 
of non-prion propagated protein misfolding diseases being detectable in peripheral blood, or experimental 
paradigms demonstrating this unsettling prospect at the present time.  
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ID News: Protein misfolding 
 
Nakamura T, Prikhodko OA, Pirie E, Nagar S, Akhtar MW, Oh CK, et al. Aberrant protein S-nitrosylation 
contributes to the pathophysiology of neurodegenerative diseases. Neurobiol Dis. 2015 Mar 18. pii: S0969-
9961(15)00089-3. doi: 10.1016/j.nbd.2015.03.017. [Epub ahead of print] (Summary) 
http://www.ncbi.nlm.nih.gov/pubmed/25796565 

Nitric oxide (NO) is a gasotransmitter that impacts fundamental aspects of neuronal function… During normal 
brain function, protein S-nitrosylation serves as an important cellular mechanism that modulates a diverse array 
of physiological processes, including transcriptional activity, synaptic plasticity, and neuronal survival. In 
contrast, emerging evidence suggests that aging and disease-linked environmental risk factors exacerbate 
nitrosative stress via excessive production of NO. Consequently, aberrant S-nitrosylation occurs and represents 
a common pathological feature that contributes to the onset and progression of multiple neurodegenerative 
disorders, including Alzheimer's, Parkinson's, and Huntington's diseases. In the current review, we highlight 
recent key findings on aberrant protein S-nitrosylation showing that this reaction triggers protein misfolding, 
mitochondrial dysfunction, transcriptional dysregulation, synaptic damage, and neuronal injury... We speculate 
that intervention to prevent these aberrant S-nitrosylation events may produce novel therapeutic agents to 
combat neurodegenerative diseases. 
 
 
Goñi F, Mathiason CK, Yim L, Wong K, Hayes-Klug J, Nalls A, et al. Mucosal immunization with an 
attenuated Salmonella vaccine partially protects white-tailed deer from chronic wasting disease. 
Vaccine. 2015 Jan 29;33(5):726-33. doi: 10.1016/j.vaccine.2014.11.035. (Summary) 
http://www.ncbi.nlm.nih.gov/pubmed/25539804 
 
 
Prion disease is a unique category of illness, affecting both animals and humans, in which the underlying 
pathogenesis is related to a conformational change of a normal, self-protein called PrP(C) (C for cellular) to a 
pathological and infectious conformer known as PrP(Sc) (Sc for scrapie). Bovine spongiform encephalopathy 
(BSE), a prion disease believed to have arisen from feeding cattle with prion contaminated meat and bone meal 
products, crossed the species barrier to infect humans. Chronic wasting disease (CWD) infects large numbers of 
deer and elk, with the potential to infect humans. Currently no prionosis has an effective treatment. Previously, 
we have demonstrated we could prevent transmission of prions in a proportion of susceptible mice with a 
mucosal vaccine. In the current study, white-tailed deer were orally inoculated with attenuated Salmonella 
expressing PrP, while control deer were orally inoculated with vehicle attenuated Salmonella. Once a mucosal 
response was established, the vaccinated animals were boosted orally and locally by application of polymerized 
recombinant PrP onto the tonsils and rectal mucosa. The vaccinated and control animals were then challenged 
orally with CWD-infected brain homogenate. Three years post CWD oral challenge all control deer developed 
clinical CWD (median survival 602 days), while among the vaccinated there was a significant prolongation of the 
incubation period (median survival 909 days; p=0.012 by Weibull regression analysis) and one deer has 
remained CWD free both clinically and by RAMALT and tonsil biopsies. This negative vaccinate has the highest 
titers of IgA in saliva and systemic IgG against PrP. Western blots showed that immunoglobulins from this 
vaccinate react to PrP(CWD). We document the first partially successful vaccination for a prion disease in a 
species naturally at risk.  
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