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Surveillance 

Evaluation	of	a	national	pharmacy‐based	syndromic	surveillance	system	
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Abstract 

Background: Traditional public health surveillance provides accurate information but is typically not timely. 
New early warning systems leveraging timely electronic data are emerging, but the public health value of 
such systems is still largely unknown.  

Objective: To assess the timeliness and accuracy of pharmacy sales data for both respiratory and 
gastrointestinal infections and to determine its utility in supporting the surveillance of gastrointestinal illness. 

Methods: To assess timeliness, a prospective and retrospective analysis of data feeds was used to compare 
the chronological characteristics of each data stream. To assess accuracy, Ontario antiviral prescriptions 
were compared to confirmed cases of influenza and cases of influenza-like-illness (ILI) from August 2009 to 
January 2015 and Nova Scotia sales of respiratory over-the-counter products (OTC) were compared to 
laboratory reports of respiratory pathogen detections from January 2014 to March 2015. Enteric outbreak 
data (2011-2014) from Nova Scotia were compared to sales of gastrointestinal products for the same time 
period. To assess utility, pharmacy sales of gastrointestinal products were monitored across Canada to 
detect unusual increases and reports were disseminated to the provinces and territories once a week 
between December 2014 and March 2015 and then a follow-up evaluation survey of stakeholders was 
conducted.  

Results: Ontario prescriptions of antivirals between 2009 and 2015 correlated closely with the onset dates 
and magnitude of confirmed influenza cases. Nova Scotia sales of respiratory OTC products correlated with 
increases in non-influenza respiratory pathogens in the community. There were no definitive correlations 
identified between the occurrence of enteric outbreaks and the sales of gastrointestinal OTCs in Nova 
Scotia. Evaluation of national monitoring showed no significant increases in sales of gastrointestinal products 
that could be linked to outbreaks that included more than one province or territory. 

Conclusion: Monitoring of pharmacy-based drug prescriptions and OTC sales can provide a timely and 
accurate complement to traditional respiratory public health surveillance activities but initial evaluation did not 
show that tracking gastrointestinal-related OTCs were of value in identifying an enteric disease outbreak in 
more than one province or territory during the study period. 

Introduction 

In Canada, traditional public health surveillance of infectious diseases relies heavily on the reporting of 
laboratory-confirmed cases. This mechanism provides robust information, but may be accompanied by an 
appreciable lag period between testing and reporting of illness to public health authorities. This results in a 
lost window of opportunity for implementing interventions. Furthermore, for infectious diseases typically 
associated with mild to moderate illness, treatment is often empiric (i.e., no testing is done) which limits the 
ability of laboratory-based surveillance to provide an accurate assessment of illness in the community.  

https://doi.org/10.14745/ccdr.v41i09a01
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Syndromic surveillance often involves Big Data; it is based on the use of non-specific health indicators or 
proxy measures (e.g., school absenteeism, drug sales, tele-health calls) to provide a provisional diagnosis 
(or "syndrome"). These data sources tend to be non-specific yet sensitive and rapid and can augment and 
complement the information provided by traditional diagnostic test-based surveillance systems (1).  
 
Over the past 10 years, pharmacy-based surveillance has emerged as a new public health capability in 
Canada and internationally (2, 3, 4, 5). The Public Health Agency of Canada (the Agency) first deployed a 
pharmacy-based syndromic surveillance in 2004 to evaluate the feasibility of monitoring gastrointestinal 
over-the-counter (OTC) products as a tool in the early detection of community food and waterborne illness 
and outbreaks. In 2009, pharmacy-based syndromic surveillance was again used by the Agency in response 
to the influenza H1N1 pandemic (pH1N1) outbreak. A retrospective analysis of the second wave of pH1N1 
demonstrated that pharmacy-based surveillance provided an effective mechanism to monitor and detect 
influenza-like activity and was faster than traditional surveillance systems (6).  
 
Following the H1N1 pandemic, the pharmacy-based surveillance system was extended to determine utility 
during implementation of the Agency’s Surveillance Strategic Plan. A number of medications were tracked, 
including analgesics, anti-allergy medications and prescriptions of antidepressants and cardiovascular 
medications.  
 
The objective of this study was to evaluate three aspects of this system: the accuracy, timeliness and utility 
of pharmacy-based surveillance to support seasonal influenza and respiratory illness surveillance and 
detection of multijurisdictional enteric disease outbreaks (i.e., involving more than one province or territory). 
 

Methods 
 
Data	sources		
Data was obtained for respiratory surveillance on antiviral prescriptions in Ontario (2009-2015) and 
respiratory OTCs in Nova Scotia (2014-2015). These were compared with confirmed cases of influenza and 
reports of influenza-like-illness in Ontario and laboratory detections of non-influenza respiratory pathogens in 
Nova Scotia.  
 
Data was obtained for gastrointestinal surveillance on OTC sales of products indicated for acute 
gastrointestinal illness across Canada and data from Nova Scotia was compared with local outbreak data 
reported to provincial health authorities. 
 
Data	collection	and	reporting	
Pharmacy data acquisition was established through a contract with an industry partner, Rx Canada. Daily 
prescription sales data were sourced from 13 national pharmacy chains and four independents, representing 
over 3,000 stores nationwide. Over-the-counter (OTC) data were provided daily by six chain retailers 
representing 1,863 stores across Canada (excluding Nunavut). Both OTC and prescription datasets provided 
coverage for over 85% of the health regions across Canada. 
 
Pharmacy products were categorized into syndromes by grouping products into respiratory or 
gastrointestinal categories. OTC sales data were standardized by store prior to aggregating by health unit, 
province/territory and nationally to minimize the effect of varying transmission frequency and timeliness 
between stores and retail chains. The proportion of daily sales of select products indicated for acute enteric 
illness was calculated and presented over sales of all other OTC products. The standardized seven-day 
moving average of gastrointestinal sub-categories divided by other OTCs was graphed on a log scale. A 
simple alert algorithm based on 1, 2 and 3 standard deviations above the seven-day moving average was 
used to detect aberrant increases in pharmacy sales. 
 
Timeliness	
Prospective and retrospective analysis of the various data feeds leveraged in this study (OTC, prescriptions, 
ILI, laboratory reporting) were compared to assess the timeliness of public health surveillance.  
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Accuracy	
Accuracy of pharmacosurveillance for influenza and influenza-like illness was assessed by a retrospective 
analysis comparing pharmaceutical and surveillance data. Surveillance data was extracted from the 
FluWatch Surveillance System. Five years of prescription antiviral sales in Ontario were compared to 
reported cases of influenza-like-illness (ILI) between August 2009 and January 2015 and to confirmed cases 
of influenza between 2011 and 2015. Together with descriptive analysis, Spearman correlation coefficients 
(rho) were determined for three time frames (January to December, November to March and April to 
October).  
 
To assess tracking accuracy for other respiratory infections, weekly provincial laboratory detections of 
respiratory viral pathogens from Nova Scotia reported between January 2014 and March 2015 were 
evaluated relative to sales of respiratory over-the-counter products for the same period. Respiratory OTC 
data were aggregated by week and one-to-five week lag variables were created. Correlations using 
Pearson’s coefficients were calculated between respiratory OTC sales, non-influenza Respiratory Viral 
Detections (RVD) and tests for respiratory syncytial virus (RSV). 
 
To assess the accuracy of enteric pharmacosurveillance, sales of gastrointestinal OTCs were compared with 
enteric outbreak data from Nova Scotia between 2011 and 2014 using descriptive analysis.  
 

Utility	
Pharmacy surveillance reports based on the pharmacy sales of gastrointestinal products across Canada 
were generated and disseminated weekly to provincial and territorial stakeholders and included province and 
health region-level information and trends. The usefulness of the reported information to stakeholders was 
evaluated using a survey developed using FluidSurvey.  
 
SAS 9.3 and Stata 13 were used for running analytical procedures.  
 

Results 
 

Timeliness	
Pharmacy sales data (i.e., prescription medication, OTC products) were available in near real-time; 
approximately 48 hours after a completed transaction. Pharmacy sales data were available to the Agency 
approximately five to eight days earlier than ILI physician reports, 10-12 days prior to laboratory 
confirmations of influenza, and up to 17 days earlier than reports of respiratory viral detections. Figure 1 
depicts the timelines of pharmacy, clinical and laboratory data relative to the estimated onset of illness and 
the availability of the information for the purpose of respiratory surveillance. 
 

Figure 1: Timeliness of Severe Respiratory Disease Surveillance 

 
ILI: Influenza-like-illness   PHAC: Public Health Agency of Canada   OTC: Over-the-counter 
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Accuracy	
Respiratory surveillance: Weekly dispensed prescriptions of the antiviral medications oseltamivir and 
zanamivir, as a proportion of all dispensed prescriptions, were compared with the rate of ILI (cases of 
ILI/total patient visits) and the number of confirmed laboratory reports of influenza in Ontario (Figure 1). 
Sales of antivirals between 2009 and 2015 correlated closely with the onset dates of confirmed influenza 
cases. Spearman’s rhos were 0.90, 0.93 and 0.83 (all at p < 0.001) for January to December, November to 
March and April to October respectively. In addition, the magnitude of antiviral sales paralleled the burden of 
confirmed cases. The correlation coefficient between confirmed cases and ILI was not as strong comparably. 
For January and December the rho was 0.80, in November and March the rho was 0.70 and from April to 
October the rho was 0.60. Reports of ILI followed the same trends of confirmed cases and antivirals,  
(Figure 2) however, ILI varied considerably in late spring and summer.  
 
Figure 2: Ontario influenza cases, antiviral prescriptions and ILI1 

 
 

1ILI: Influenza-like- illness 

 
Results of the Nova Scotia analysis demonstrated sales of respiratory OTC products associated with 
increases in non-influenza respiratory pathogens in the community (respiratory syncytial virus, rhinovirus, 
coronavirus, parainfluenza, adenovirus, human metapneumovirus). OTC sales correlated with the number of 
RSV tests four weeks later (r=0.76, p < 0.001). Sales of OTC products correlated with the number of other 
respiratory viral detections two weeks later (0.74, p < 0.001) (Figure 2).  
 
Gastrointestinal surveillance: There were 262 outbreaks reported in Nova Scotia between 2012 and 2014. Of 
these, 66% of outbreaks were due to norovirus; 82% of outbreaks were primarily person-to-person 
transmission and the majority (81%) of outbreaks occurred in residential institutions. There were no definitive 
correlations detected between the occurrence of outbreaks and sales of gastrointestinal OTCs.  
 
Utility	
During the pilot phase, no significant increases in sales of gastrointestinal products were detected that could 
be definitively linked to any multijurisdictional enteric outbreak. Although only 40% of stakeholders 
responded to the evaluation survey, most (87%) indicated that the pharmacy information was important to 
their jurisdiction. Five jurisdictions stated that they had used the information. Of these 20% used it to initiate 

0

100

200

300

400

500

600

700

800

900

1000

0

1

2

3

4

5

6

7

8

9

10

Aug‐2009 Aug‐2010 Aug‐2011 Aug‐2012 Aug‐2013 Aug‐2014

In
fl
u
e
n
za
 c
as
e
s

A
n
ti
vi
ra
ls
 &
 IL
I

Date (data aggregated by week)

ILI per 100 patient load
Influenza cases
Antivirals per 1000 prescriptions



 

207 | CCDR – September 3, 2015 • Volume 41-9 

 

 

an investigation, 75% to detect a health event, 20% communicated the information to clinicians and all used 
it for situational awareness.  
 

Discussion 
 
National and provincial pharmacosurveillance appeared to be more useful for early detection of respiratory 
illness than for provincial detection of enteric disease. Antiviral prescriptions were a clear marker of influenza 
activity for respiratory illness surveillance. The value of respiratory-related OTCs was less clear, but they 
may be useful in the surveillance of other respiratory viruses. Although the sales of gastrointestinal products 
have been shown to be a good marker for seasonal community norovirus infections (6), the value of 
pharmacosurveillance for outbreak-related enteric activity was less certain.  
 
Strengths of this study include the national representativeness of the data and the precise documentation of 
pharmacosurveillance data timeliness. One potential weakness is that it included only prescribed 
medications and OTCs from retail pharmacies not linked to health care institutions. For example, although 
Nova Scotia enteric outbreak data were robust, the majority of norovirus outbreaks captured during the study 
period occurred in long-term care facilities. Medications provided to long-term care facilities may have 
originated from pharmacies not contributing sales data to the pharmacy pilot project or perhaps bulk 
purchases by long-term care facilities were simply not captured in the data provided.  
 
Automated data transfer from point of sale supports real or near real-time acquisition of community-specific 
health data. Pharmacy prescription and OTC sales data provide greater timeliness and higher geographic 
resolution and national coverage than other health data currently used. Pharmacy sales data has been 
shown to support seasonal influenza and aid in decision-making for resource allocation. Prescription and 
OTC data also provide an earlier window of opportunity for intervention compared to using traditional data 
sources only. Furthermore, pharmacy data could be used to support surveillance and action for multiple 
public health purposes (e.g., mental health, physician prescription patterns and chronic illness) and by 
multiple agencies and different jurisdictions. As with other surveillance systems, investments in the 
necessary technological and analytical resources are required to conduct ongoing pharmacy-based 
syndromic surveillance. 
 

Conclusion 
 
Timely and accurate pharmacosurveillance has the potential to enhance public health capacity to detect and 
quantify activity at the local, multijurisdictional and national level. Further research is needed to determine 
under which conditions it is most useful and to compare it against other real-time surveillance strategies. 
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Abstract 

Background: Globalization and the potential for rapid spread of emerging infectious diseases have 
heightened the need for ongoing surveillance and early detection. The Global Public Health Intelligence 
Network (GPHIN) was established to increase situational awareness and capacity for the early detection of 
emerging public health events. 

Objective: To describe how the GPHIN has used Big Data as an effective early detection technique for 
infectious disease outbreaks worldwide and to identify potential future directions for the GPHIN.  

Findings: Every day the GPHIN analyzes over more than 20,000 online news reports (over 30,000 sources) 
in nine languages worldwide. A web-based program aggregates data based on an algorithm that provides 
potential signals of emerging public health events which are then reviewed by a multilingual, multidisciplinary 
team. An alert is sent out if a potential risk is identified. This process proved useful during the Severe Acute 
Respiratory Syndrome (SARS) outbreak and was adopted shortly after by a number of countries to meet new 
International Health Regulations that require each country to have the capacity for early detection and 
reporting. The GPHIN identified the early SARS outbreak in China, was credited with the first alert on  
MERS-CoV and has played a significant role in the monitoring of the Ebola outbreak in West Africa. Future 
developments are being considered to advance the GPHIN’s capacity in light of other Big Data sources such 
as social media and its analytical capacity in terms of algorithm development.  

Conclusion: The GPHIN’s early adoption of Big Data has increased global capacity to detect international 
infectious disease outbreaks and other public health events. Integration of additional Big Data sources and 
advances in analytical capacity could further strengthen the GPHIN’s capability for timely detection and early 
warning.  

Introduction 

As globalization increases, so does the rapid spread of communicable diseases and emerging public health 
events. As a result, ongoing surveillance and early detection are even more important to prevent or mitigate 
the international spread of infectious diseases and to provide countries adequate time to prepare and 
respond. Big Data refers to the extremely large datasets provided by sources such as social media or 
newspapers which require powerful computational methods to reveal trends, patterns or the predictive 
likelihood of an event (1,2). Big Data has been used to optimize sales and business processes, inform trades 
among sports teams and to improve city planning. It is quickly becoming integral to a variety of aspects of 
health ranging from health care administration to Google Flu and pharmacosurveillance (3). 

Canada was an early adopter of Big Data for the initial identification of emerging infections beginning in 1997 
through the development of the Global Public Health Intelligence Network (GPHIN), a cooperative effort 
between (at the time) Health Canada and the World Health Organization (WHO) (4,5). The GPHIN continues 
to be maintained by the Public Health Agency of Canada (the Agency) and links a global network of public 
health professionals and organizations (e.g., Ministries of Health) for situational awareness and early 

https://doi.org/10.14745/ccdr.v41i09a02
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detection of emerging public health events. The GPHIN relies on an automated web-based system that 
scans newspapers and other communications worldwide for potential indicators of outbreaks (or “signals”) 
that are analyzed and rapidly assessed by a multilingual, multidisciplinary team at the Agency. When a risk is 
identified, analysts disseminate relevant information and alerts to senior officials and stakeholders for 
decision-making. While initially devised to identify communicable disease outbreaks, the system has also 
been used to monitor potential chemical and radio nuclear hazards (4,6). 
 
The objective of this article is to identify how the GPHIN functions within the context of Big Data, to provide 
recent examples of the GPHIN in action and to explore potential future directions. 
 

The GPHIN and Big Data 
 
Big Data has been defined by three V’s: volume, velocity and variety (7,8). Volume describes the quantity of 
data that is collected, velocity is the speed at which the data is collected and disseminated and variety refers 
to the multiplicity of sources that are used to compile the data (7).  
 
The GPHIN’s volume and variety are exemplified through the use of search functions and news aggregators 
(companies that provide access to thousands of news sources whose content is automatically indexed) that 
gather large quantities of data sets from multiple different sources. A web-based application in the GPHIN 
system continuously scans and mines acquired news sources worldwide in nine languages (Arabic, English, 
Farsi, French, Portuguese, Russian, simplified Chinese, Spanish and traditional Chinese) (4). The quantity of 
data generated is dependent on the criteria, variables and algorithms outlined for the aggregators (6). These 
algorithms identify potential signals of emerging public health events and filter out irrelevant data considered 
as “noise” (Figure 1) (7). Every day, on average, the GPHIN processes 3,000 news reports (9). Volume 
increases when news sources expand coverage on emerging public health events such as the recent Ebola 
outbreak in West Africa. 
 
Figure 1: The flow of information for the GPHIN process 

 
 
The GPHIN has an abundant variety of data sources. The GPHIN’s news aggregators rely on a large variety 
of national and local newspapers and select newsletters from around the world (4,6). Local newspapers and 
newsletters are scanned because emerging events can be a localized phenomenon and are often reported 
in community newspapers and newsletters. Various sections of news publications (sports, travel and finance) 
are also monitored as they may signal an emerging public health event. Scanning across various languages 
is done in order capture public health events that are not reported in English news (10). 
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After further application of algorithms within the GPHIN system, approximately 60% (1,800 news reports) of 
the data are deemed as relevant public health events for assessment. GPHIN analysts sift through these 
news reports to identify and provide alerts about events with potential implications for decision-making by 
stakeholders. Access to the GPHIN system is provided to entities that have the responsibility to monitor, 
respond to and or mitigate emerging public health threats. The GPHIN includes ministries of health, other 
governmental departments and agencies, international and non-governmental organizations and private 
companies.  
 
The capacity for velocity in the GPHIN is impressive. It operates on a near real-time, 24/7 basis (4).The 
GPHIN system retrieves relevant data from the news aggregators every 15 minutes and is able to complete 
the processing (including translation) of the data in less than one minute (9). 
 

The GPHIN in action 
 
Early	detection	
The GPHIN has proven to be an effective early detection resource for infectious disease outbreaks. Its utility 
was initially demonstrated during the Severe Acute Respiratory Syndrome (SARS) outbreak in 2003 when 
early alerts were provided in reports from Chinese newspapers. The first English report about an atypical 
outbreak in China was noted by a pharmaceutical company in the financial section of a newspaper that had 
reported increased sales of its antiviral drugs (11). This not only flagged the emergence of the outbreak but 
provided additional information about the local use of antiviral drugs to contain the spread of the virus. 
 
Following the SARS outbreak, the significance of using news media to complement more traditional national 
public health surveillance systems was recognized by the WHO and its member states (12,13). The SARS 
outbreak lead to revisions of the International Health Regulations (IHRs) (14) that required countries to report 
and control outbreaks of potential international concern in order to strengthen global public health security. 
The IHRs note that the WHO may include reports from sources other than official notifications or 
consultations in their assessment of a potential emerging public health event (14). After the SARS outbreak, 
the GPHIN outputs have been used by multiple countries to expand their surveillance capacity (4,15).  
 
Over the years, the GPHIN has continued to detect early signals of outbreaks of international concern such 
as the pandemic influenza H1N1 in 2009 (16). Initial Spanish language reports about the outbreak noted an 
unusual respiratory outbreak in the state of Veracruz, Mexico that had claimed two lives.  
 
In April 2012, the GPHIN identified eight cases of an unknown respiratory illness and one death in Jordan. 
GPHIN issued an alert notifying stakeholders, including the WHO, about these cases. Following further 
investigation and the results of a retrospective laboratory analysis, an outbreak of Middle East Respiratory 
Syndrome Coronavirus (now known as MERS-CoV) was confirmed. An International Health Regulations 
(IHR) Notification was posted in November 2012. The GPHIN was credited with being the first to issue an 
alert about this new emerging illness.  
 
Ongoing	monitoring	
The GPHIN has proven to be useful for both early detection and continuous monitoring. Ongoing monitoring 
of events is critical for situational awareness regarding the evolution of an outbreak and the response and 
mitigation strategies being implemented by the local, national and international communities. Examples of 
situational awareness of mitigation strategies include the GPHIN’s ability to scan for cancellation of flights or 
cruises, new travel advisories, health screening procedures at border crossings or trade bans. This process 
has been much more efficient than individually contacting commercial transportation companies, travel 
agencies and airports.  
 
For example, during pandemic Influenza H1N1, the GPHIN was used as an intelligence source by the World 
Trade Organization to monitor the extent and the effect of trade bans (17). Similarly, during the recent 
response to the Ebola outbreak in West Africa, the GPHIN provided situational awareness about the 
cancellation of flights, travel advisories and health screening procedures at border crossings. 
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Next steps 
 
Potential	new	data	sources	
Internet, email, smart phones and social media have developed rapidly since the GPHIN was first developed. 
As a result, potential new sources of Big Data have emerged that can be analyzed to detect signals of early 
infectious disease outbreaks. Social media tools (such as Twitter and Facebook) have witnessed exponential 
growth over the last 10 years and these platforms create huge amounts of user-generated content and data 
(18).  
 
These various social media represent potential new data sources for the GPHIN. In addition, other 
organizations have started to mine social media resources to improve disease surveillance (18). For 
example, Google Flu Trends monitors online search behaviour for early warning signs of influenza (19); 
researchers have used Facebook to help predict health outcomes at the local population health level (20); 
Twitter has been used as a large source of data to monitor health trends during an avian influenza outbreak 
(21); and mobile phones have been used to measure human mobility patterns in the context of malaria 
transmission in the developing world (22).  
 
Social media has improved emergency response by providing real-time data capture about the health of 
communities (23) and the public response to an event (24). For example, the use of smartphones and Twitter 
in Nigeria during the Ebola outbreak in West Africa helped to identify an outbreak in a new area three days 
before a WHO announcement (25).  
 
Other novel applications include crowdsourcing systems that capture voluntarily submitted symptoms from 
the general public through the Internet or mobile phone networks and rapidly aggregate and provide 
feedback about data in near real-time. This has been used by participatory infectious disease surveillance 
applications such as Flu Near You (26) and DoctorMe (27).  
 
However, there are some inherent challenges in the use of social media data sources. One of the primary 
challenges of Big Data in general and social media content in particular, is the “signal-to-noise” ratio which 
can significantly increase the potential for false positives and false negatives. With the influx of discussions 
and tweets surrounding the Ebola outbreak in West Africa, for example, it was difficult to distinguish between 
actual signals of concern and the plethora of messages that would otherwise be expected during such an 
event. In addition, some social media, such as tweets that are limited to 140 characters, may not have 
enough contextual information to help discern a reliable signal (28).  
 
Another challenge when using social media is representativeness. Not everyone has access to a smart 
phone and therefore data from social media platforms can only reflect the portion of the population that uses 
them (28). Mobile technology is expanding significantly so this may help address concerns about 
representativeness (29).  
 
Finally, the use of social media poses ethical considerations associated with the rights of individuals, 
including privacy issues (2).  
 
Improving	data	analysis	
Not only might the GPHIN expand its data sources, it could also advance its data analysis capacities. 
Advanced computational and verification methods to improve the sensitivity and specificity of signals that are 
detected are being considered (30). Also up for consideration is whether better data processing could reduce 
reliance on a multilingual, multidisciplinary team. The GPHIN is continuously assessing and honing the 
aggregators and algorithms used which could potentially result in more advanced forms of artificial 
intelligence. Continuing to advance the GPHIN’s analytical capacity will enable the robust management, 
integration, analysis and interpretation of increasingly large and complex volumes of data (31).  
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Conclusion  
 
Canada’s Global Public Health Intelligence Network was an early adopter of Big Data and as an ongoing 
global resource, helps countries meet event-based surveillance capacity requirements for early detection and 
reporting of infectious disease outbreaks and other events of international concern. Ongoing advances in Big 
Data including the use of social media and smart phones, as well as advances in analytical capacity provide 
opportunities for the further enhancement of the GPHIN. Overall, Big Data approaches have become a vital 
component of local, national and international public health efforts to detect, report, and control emerging 
outbreaks. 
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Abstract 
Big Data has traditionally been associated with computer geeks and commercial enterprises, but it has 
become entrenched in many scientific disciplines including the prevention and control of infectious diseases. 
The use of Big Data has allowed disease trends to be identified and outbreak origins to be tracked and even 
predicted. Big Data is not getting smaller. The challenges we face are to hone our analytical capacity to 
address the huge “signal-to-noise” ratio with adequate computing power and multidisciplinary teams that can 
handle ever-increasing amounts of data. Big Data will also create the opportunity for future applications of 
bespoke (or personalized) treatment.  

Introduction 

Big Data seems like a recent development that for many is tied to phrases like “cloud computing”. The term 
originated before the turn of the millennium when in the 1990’s when John Mashey was Chief Scientist of 
Silicon Graphics (SGI). At the time, SGI was at the forefront of computer graphics and was struggling to deal 
with significantly expanding computational needs that outpaced available hardware. Mashey developed a 
presentation in the late ‘90s that laid out the looming collision between Big Data and computational 
performance (1).  

Commonly The term “Big Data” is now used to describe situations where data volumes are characterized by 
properties including, but not limited to: size, rate of change over time, and the heterogeneous nature of the 
data itself (2). Big Data generally refers to large volumes of data that can be structured (e.g. relational 
databases) or not (e.g. Twitter feeds) and are mined for information. While historically Big Data originated 
within the fields of Computer Science, Statistics and Economics(3), it has been increasingly adopted across 
all scientific disciplines.  

A problem is typically said to involve Big Data when the volume is so large that it hinders the ability to 
convert data to knowledge. In the case of infectious disease research, Big Data is having a huge impact. The 
ability to perform real-time disease tracking and outbreak prediction has utilized unstructured data to change 
how infectious diseases are managed. For example, through the use of diverse news sources GPHIN has 
been used for early signal of novel infections (such as SARS and MERS-CoV) that informed public health 
response to the outbreaks that followed (4).  

Structured data is particularly useful when collating information from multiple sources based on a predictable 
structure of the data. In the case of public health surveillance it is now possible to look for structured data 
that could serve as a surrogate source of information to laboratory confirmation or physician authored case 
reporting. Muchaal et al. demonstrated that pharmaceutical usage is one possible source of early surrogate 
information (5).  

How	big	is	Big	Data?	
It is hard to fathom how large Big Data actually is. In a recent paper Stephens and colleagues put Big Data 
from a couple of disciplines into a relative context (6). While the current champions of unwieldy data size are 
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astronomical studies, it was suggested by Stephens et al. that genomics would be on par with astronomical 
data sizes by the year 2025. The scale of genomics data in 2025 may be equivalent to 8 billion of the largest 
iPhones available today (128GB of space in 2015). Or an iPhone’s worth of data for every person on earth, 
each year.  
 

Big Data and the origins of an outbreak 
 
The application of genomics to infectious diseases can help with identifying where infectious disease 
outbreaks actually came from. A good example of this was the detective work undertaken to respond to a 
measles outbreak during the 2010 Olympics (7). Using whole genome sequencing Gardy and colleagues 
were able to exactly identify many of the reported cases (30 of 82). One important finding was that there was 
more than one type of measles virus involved in the outbreak. While traditional genotyping for the measles 
virus has focused on the sequences of phosphoprotein and hemmagglutinin, two specific genes used to 
distinguish isolates, Gardy et al. showed that there were additional variations in other measles genes that 
could be used for a more precise definition of the viral lineages.  
 

What’s next? 
 
One of the newer applications of Big Data is in what Jennifer Gardy termed bespoke (or personalized) 
treatment (8). For example, whole genome approaches across thousands of isolates can identify genomic 
variation linked with antimicrobial phenotypes of Mycobacterium tuberculosis (9). In the future, this may be 
applied generally to identify the best treatments for bacteria with antimicrobial resistance.  
 
How	are	we	going	to	interpret	it	all?	
Despite all the potential for advances, there are some key challenges that Big Data faces in all disciplines. 
As data gets bigger and bigger it becomes harder to interpret: either the integration of data is so complex as 
to be hard to follow without serious computing resources or the sheer scale is beyond comprehension.  
 
With the use of unstructured text from news feeds mined for disease surveillance knowledge, Big Data is 
being used to find meaning in a deluge of noise. The scale of text mining scientific manuscripts published in 
journals, news reports describing emergent issues and 140 character tweets truly is daunting when one 
considers that Twitter collects ½ billion tweets per day (6). What makes matters even more challenging is 
that disease surveillance doesn’t simply mean aggregating news feeds. Rather, the key for a meaningful Big 
Data strategy to disease surveillance is the identification of the potential risk. Approaches such as GPHIN (4) 
are thus crucial for national and international preparedness for disease outbreaks. As Big Data continues to 
grow at exponential rates, trying to advance our capacity to analyze it becomes an ever-changing holy grail.  
 
All too often a Big Data-set is acquired as part of a multi-disciplinary study and handed-off to a single 
individual (e.g. graduate student , post-doc or fellow) in the hope that they can, alone, come to an 
understanding of what it all means. Having a single person responsible for increasingly complex relationships 
arising from overwhelming volumes of data is just not a feasible strategy. Thus the trend is to develop 
multidisciplinary approaches to interpretation of Big Data (4). 
 

Conclusion 
 
Unless we envision a computational Dark Ages it is hard to believe that Big Data will shrink. Therefore 
scientific disciplines have been developing the capacity to exploit ever-increasing volumes of data. Care 
needs to be taken not to be overwhelmed with Big Data. In fact it is the shift to multi-disciplinary analysis of 
Big Data that is enabling teams to track disease trends and even predict outbreaks before they occur. Big 
Data is positioned to move increasingly from public health into the clinical setting; bespoke (or personalized) 
treatment of infectious diseases may soon be on our doorstep.  
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ID News: Big Data and predicting, preventing and controlling outbreaks 
 
Christaki E. New technologies in predicting, preventing and controlling emerging infectious diseases. 
Virulence. 2015 Jun 11:1-8. (Summary) 
 
Surveillance of emerging infectious diseases is vital for the early identification of public health threats. 
Emergence of novel infections is linked to human factors such as population density, travel and trade and 
ecological factors like climate change and agricultural practices. A wealth of new technologies is becoming 
increasingly available for the rapid molecular identification of pathogens but also for the more accurate 
monitoring of infectious disease activity. Web-based surveillance tools and epidemic intelligence methods, 
used by all major public health institutions, are intended to facilitate risk assessment and timely outbreak 
detection. This review presents new methods for regional and global infectious disease surveillance and 
advances in epidemic modeling aimed to predict and prevent future infectious diseases threats. 
 
Semenza JC. Prototype early warning systems for vector-borne diseases in Europe. Int J Environ Res 
Public Health. 2015 Jun 2;12(6):6333-51. doi:10.3390/ijerph120606333. (Summary) 
 
Globalization and environmental change, social and demographic determinants and health system capacity 
are significant drivers of infectious diseases which can also act as epidemic precursors. Thus, monitoring 
changes in these drivers can help anticipate, or even forecast, an upsurge of infectious diseases. The 
European Environment and Epidemiology (E3) Network has been built for this purpose and applied to three 
early warning case studies: 1) The environmental suitability of malaria transmission in Greece was mapped 
in order to target epidemiological and entomological surveillance and vector control activities. Malaria 
transmission in these areas was interrupted in 2013 through such integrated preparedness and response 
activities. 2) Since 2010, recurrent West Nile fever outbreaks have ensued in South/eastern Europe. 
Temperature deviations from a thirty year average proved to be associated with the 2010 outbreak. Drivers 
of subsequent outbreaks were computed through multivariate logistic regression models and included 
monthly temperature anomalies for July and a normalized water index. 3) Dengue is a tropical disease but 
sustained transmission has recently emerged in Madeira. Autochthonous transmission has also occurred 
repeatedly in France and in Croatia mainly due to travel importation. The risk of dengue importation into 
Europe in 2010 was computed with the volume of international travelers from dengue-affected areas 
worldwide.These prototype early warning systems indicate that monitoring drivers of infectious diseases can 
help predict vector-borne disease threats.  
 
Hay SI, George DB, Moyes CL, Brownstein JS. Big Data opportunities for global infectious disease 
surveillance. PLoS Med 2013;10(4):e1001413. doi:10.1371/journal.pmed.1001413. (Summary) 
 
Systems to provide static spatially continuous maps of infectious disease risk and continually updated 
reports of infectious disease occurrence exist but to date the two have never been combined. Novel online 
data sources, such as social media, combined with epidemiologically relevant environmental information are 
valuable new data sources that can assist the “real-time” updating of spatial maps. Advances in machine 
learning and the use of crowd sourcing open up the possibility of developing a continually updated atlas of 
infectious diseases. Freely-available dynamic infectious disease risk maps would be valuable to a wide 
range of health professionals from policy-makers prioritizing limited resources to individual clinicians. 
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ID News: Big Data and ethics  
 
Ploug T, Holm S. Meta consent: A flexible and autonomous way of obtaining informed consent for 
secondary research. BMJ. 2015 May 7;350:h2146. doi:10.1136/bmj.h2146. (Summary) 
 
A rapidly increasing capability for storing, linking and analyzing health data has led to new opportunities for 
research. However, it also raises new ethical and regulatory concerns. Central among these is the question 
of the conditions under which secondary research can use data that were collected as part of routine 
healthcare practice or for a specific research project. Does secondary use require renewed informed consent 
from the original participants? Consent to date has included: dynamic (when information about specific 
secondary use of health data or tissue is requested each time to each individual through a web-based 
platform), broad (when consent is given to future research of a particular type in addition to the current 
specific research project) or blanket (data could be used without further consent). We propose meta consent 
which means individuals can choose how they wish to provide consent for future secondary research of data 
collected in the past or of data that will be stored in the future, thus meta consent is both retrospective and 
prospective. Meta consent is a truly individual consent procedure that takes into account the differences in 
personal interests and levels of trust in researchers among the population. The risk of routinisation is 
reduced because individuals can limit the requests they receive to only those categories of research that 
really matter to them. Its implementation online makes meta consent easy to revoke or change. 
 
 
Mittelstadt BD, Floridi L. The ethics of Big Data: Current and foreseeable issues in biomedical 
contexts. Sci Eng Ethics. 2015 May 23. [Epub ahead of print]. (Summary) 
 
The capacity to collect and analyze data is growing exponentially. Referred to as 'Big Data', this scientific, 
social and technological trend has helped create destabilising amounts of information, which can challenge 
accepted social and ethical norms. As is often the case with the cutting edge of scientific and technological 
progress, understanding of the ethical implications of Big Data lags behind. By means of a meta-analysis of 
the literature, a thematic narrative is provided to guide ethicists, data scientists, regulators and other 
stakeholders through what is already known or hypothesised about the ethical risks of this emerging and 
innovative phenomenon. Five key areas of concern are identified: 1) informed consent, 2) privacy (including 
anonymisation and data protection), 3) ownership, 4) epistemology and objectivity and 5) 'Big Data Divides' 
created between those who have or lack the necessary resources to analyze increasingly large datasets. Six 
additional areas of concern are then suggested which, although related have not yet attracted extensive 
debate in the existing literature: 6) the dangers of ignoring group-level ethical harms; 7) the importance of 
epistemology in assessing the ethics of Big Data; 8) the changing nature of fiduciary relationships that 
become increasingly data saturated; 9) the need to distinguish between 'academic' and 'commercial' Big 
Data practices in terms of potential harm to data subjects; 10) future problems with ownership of intellectual 
property generated from analysis of aggregated datasets; and 11) the difficulty of providing meaningful 
access rights to individual data subjects that lack necessary resources. Considered together, these eleven 
themes provide a thorough critical framework to guide ethical assessment and governance of emerging Big 
Data practices. 




