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Abstract 

This paper takes a full-information model-based approach to evaluate the link between 
investment-specific technology and the inverse of the relative price of investment. The 
two-sector model presented includes monopolistic competition where firms can vary the 
markup charged on their product depending on the number of firms competing. With 
these changes to the standard two-sector model, both total factor productivity as well as a 
series of non-technological shocks can impact the high-frequency volatility of the relative 
price of investment. Utilizing a Bayesian estimation approach to match the model to the 
data, we find that investment-specific technology can explain at most half of the growth 
rate of the relative price of investment. Last of all, we compare the benchmark model 
results with endogenous movement in the relative price of investment to a model where 
all movement in the relative price of investment is derived exogenously. This is done by 
allowing technologies across sectors to move together over time. Comparison of these 
two methods finds that the exogenous approach is incapable of capturing changes in the 
relative price of investment as found in the data. This paper adds to the growing list of 
research, like that of Fisher (2009) and Basu et al. (2013), that suggests that the quality-
adjusted relative price of investment may be a poor indicator of investment-specific 
technology. 

JEL classification: E32, L11, L16 
Bank classification: Business fluctuations and cycles 

Résumé 

L’auteur utilise une méthode d’analyse basée sur un modèle structurel et des données 
complètes pour évaluer le lien entre les chocs technologiques spécifiques à 
l’investissement et l’inverse du prix relatif de l’investissement. Il propose un modèle 
bisectoriel intégrant une structure de concurrence monopolistique où les entreprises 
peuvent faire varier le taux de marge appliqué à leur produit en fonction du nombre de 
firmes concurrentes. Compte tenu de cette adaptation du modèle bisectoriel standard, 
aussi bien la productivité totale des facteurs qu’une série de chocs non technologiques 
peuvent avoir une incidence sur la volatilité à haute fréquence du prix relatif de 
l’investissement. L’auteur emploie une méthode d’estimation bayésienne pour faire 
concorder le modèle et les données, et il constate que les chocs technologiques 
spécifiques à l’investissement peuvent expliquer tout au plus la moitié du taux de 
croissance du prix relatif de l’investissement. Enfin, il compare les résultats obtenus à 
l’aide du modèle de référence dans lequel les variations du prix relatif de l’investissement 
sont endogènes aux résultats d’un modèle où tout mouvement du prix relatif de 
l’investissement est déterminé de façon exogène. À cette fin, les technologies suivent une 
évolution parallèle au fil du temps tous secteurs confondus. La comparaison de ces deux 
méthodes permet de constater que l’approche exogène ne peut pas rendre compte des 
changements du prix relatif de l’investissement qui ressortent des données.  



 iv 

Cette étude enrichit le corpus de recherches qui, comme celles de Fisher (2009) et de 
Basu et coll. (2013), laissent entrevoir que le prix relatif de l’investissement corrigé des 
variations de qualité est peut-être un mauvais indicateur des chocs technologiques 
spécifiques à l’investissement. 

Classification JEL : E32, L11, L16 
Classification de la Banque : Cycles et fluctuations économiques 

 

 



Non-Technical Summary

Motivation and Question
What drives the business cycle? In the literature, two types of technology shocks have been
identified as potential sources of business cycle volatility. These include neutral technol-
ogy shocks (which improve productivity economy-wide) and investment-specific technology
shocks (such as innovations in communication technology). Traditionally, investment-specific
technology (IST) has been identified by the inverse of the relative price of investment (RPI).
This identification scheme assumes, however, that the RPI is not influenced by shifts in in-
vestment demand. This paper explores the validity of this assumption. That is, does the RPI
vary with investment demand? Given their relevance in explaining business cycle volatility,
this subject warrants investigation.

Methodology
This paper proposes a two-sector model adapted to allow for monopolistic competition in the
production of both consumption and investment sector intermediate goods. It is assumed
that the number of firms operating within each sector is finite, thus allowing firms to vary
their markup depending on the number of existing competitors. The model is then perturbed
by both stationary and non-stationary neutral and investment-specific technology shocks as
well as three non-technological shocks. This model is compared to an alternative model
where business cycle movement in the RPI is modeled exogenously by allowing both neutral
and investment-specific technology to follow a common stochastic trend. Bayesian estimation
is used for the model’s parameterization, followed by a decomposition to assess each shock’s
contribution to the volatility of the RPI. These two models are then assessed by the ability of
neutral technology as well as shifts in investment demand (relative to consumption demand)
to generate volatility in the growth rate of the RPI.

Key Contributions
This paper finds that over half of the volatility of the RPI can be attributed to shifts in
investment demand, with the remainder due to shifts in IST. This result is in sharp con-
trast to the longstanding assumption in the macroeconomic literature that movement in the
RPI is purely a technological phenomenon. This paper adds to the current business cycle
literature by demonstrating that IST shocks are not only incapable of generating realistic
business cycles (as is the current assumption in the literature), but are incapable of gener-
ating volatility in the RPI itself. These results suggest that calibrating IST shocks to the
inverse of the RPI overestimates the relative importance of IST. This paper also validates
the current assumption in the literature that changes in the marginal efficiency of investment
(such as changes in the firm’s ability to access credit) do not impact the RPI.

Future Research
This paper addresses the co-movement of total factor productivity and IST endogenously over
the short run. It is, however, incapable of reproducing the common trend component between
these two technologies observed in the data in the long run. Given the potential relevance
of both neutral and investment-specific technology in generating growth in the Canadian
economy, future research should be done to uncover the source of this relationship.



1 Introduction

Since Greenwood, Hercowitz, and Huffman (GHH) (1988) first identified investment-specific
technology (IST) as a potential source of business cycle volatility, this type of shock has
become a common feature in the business cycle literature. Likewise, identification of IST
has remained roughly in line with the method used by Greenwood, Hercowitz, and Krusell
(GHK) (1997), who built upon the work done by GHH (1988). Since their seminal work, the
business cycle literature has shifted over time in its assessment of the relative importance
of IST. At first, research such as that by Fisher (2006) as well as Justiniano, Primiceri,
and Tambalotti (2010) found IST to be an important source of both low-frequency and
high-frequency volatility. Each time, the relative importance of IST is assessed by either
analyzing the variance decomposition or by growth accounting (as done by Fisher (2006)).
Recent research, such as that of Justiniano et al. (2011) and Schmitt-Grohé and Uribe
(2011), has, however, found that IST, when correctly adapted to reflect movement in the
relative price of investment (RPI), lacks the ability to generate any business cycle volatility.

Beaudry and Lucke (2009) take an alternative approach. In their research, rather than
analyzing a dynamic stochastic general-equilibrium model’s variance decomposition, they
quantitatively assess the relative importance of IST against a menu of alternative shocks
using an approach based on a cointegrated structural vector autoregression (SVAR). They
conclude that expected changes in neutral technology, as well as preference and monetary
shocks, play a far more significant role in explaining high-frequency movements in the data
in their forecast-error variance decomposition than IST. All of the aforementioned research
relies heavily on the assumption that IST can be uniquely identified by the inverse of the
RPI. Using micro-level data, Basu et al. (2013) show that the RPI responds slowly to changes
in IST, often taking up to three quarters for the effect of an IST shock to impact the RPI.
This could be due to either sticky investment prices, or, alternatively, investment prices that
are driven by forces other than IST. Through an SVAR-based approach, Kim (2009) finds
that IST shocks could at most explain 27 percent of the RPI from 1955Q1 to 2000Q4. The
assumption that IST is an independent stochastic process implies that the RPI is orthogonal
to any other type of economic disturbance, such as neutral technology shocks, wage shocks or
preference shocks, which are commonly included in the literature. Therefore, the adequacy
of the RPI to correctly indicate movements in IST could, for example, be assessed by the
independence of the RPI from any one of these disturbances. If the inverse of the RPI, as
GHK (1997) suggested, is a good indication of IST, then these technology shocks should in
theory be unrelated to neutral technology as measured by total factor productivity (TFP).

As can be seen in Figure 1, upturns in log TFP (tfp) are typically followed by a decrease
in the log RPI (rpi). The tfp plotted in Figure 1 is calculated as in Beaudry and Lucke
(2009) (the log of non-farm output less the log of both non-farm hours and capital services,
each scaled by its share of output).1 As for the rpi, we use the quality-adjusted rpi time

1Data on the real non-farm gross value-added output are calculated by the Bureau of Economic Analysis
1947Q1 to 2013Q4. Non-farm hours worked are calculated by the Bureau of Labor Statistics (BLS) 1947Q1
to 2013Q4. Capital services time series are calculated from the (BLS) private sector non-farm business sector
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series as calculated by Fisher (2006). This data series adjusts the relative price of equipment
estimated by using the Gordon-Cummins-Violante equipment price deflator and divides it
by the quarterly price deflator for consumption goods found in the U.S. national income
and product accounts (NIPA) tables. With these two time series, Fisher (2006) obtains a
quarterly measure of the rpi adjusted for changes in quality. Information on the data used
is available in the appendix.

With a correlation between detrended tfp and rpi of approximately -0.216, it would
appear that the rpi moves countercyclically to tfp. This fact has been addressed in countless
papers, such as that of Letendre and Luo (2007), who adapt the standard AR(1) set-up to
allow for spillovers between tfp and rpi in order to replicate the countercyclical nature of
the rpi. Thus, it appears that in the short run, the theory suggested by GHK (1997) that
relative prices can be used to determine changes in relative technologies across sectors is less
than robust.

Schmitt-Grohé and Uribe (2011) have furthered the disconnect between IST and the rpi
by also demonstrating that tfp and the rpi are cointegrated in the long run. With both tfp and
the rpi integrated of order 1 stationary in the United States, they apply a Johansen’s test for
cointegration in which they show that in addition to tfp and rpi being non-stationary, they
are also cointegrated.2 With both tfp and the rpi cointegrated, there exists a cointegration
coefficient β such that the difference in levels between each time series remains I(0) stationary
in the long run. To highlight this fact, Figure 2 plots tfp along with the inverse of the rpi
adjusted by the cointegration coefficient β = 0.623. Figure 2 demonstrates that these two
time series follow a common stochastic trend. Given the assumption made by GHK (1997)
that relative technologies across sectors are reflected in the relative price, it would be expected
that these two time series would not follow a common stochastic trend, as both cointegration
tests, as well as Figure 2, appear to suggest. As is shown in section 4, when the standard
business cycle model is adapted to replicate the co-movement of tfp and the rpi, 31 percent
of rpi growth from one period to the next can be explained by shifts in neutral technology.

Given the aforementioned relationships between tfp and the rpi, both in the long run and
over the business cycle, the assumption that the rpi is orthogonal to any form of economic
disturbance can be safely rejected. Further tests could be done to assess the orthogonality
of the rpi with any other form of economic disturbances, such as wage markup, preference
shocks or shifts in the marginal efficiency of investment.

Is the cyclical movement in the rpi a technological phenomenon, or is movement in the
rpi due to changes in the relative demand for investment goods over consumption goods?
In response to this question, this paper proposes a two-sector model adapted to incorporate
endogenous markup variation within each sector. Endogenous price markups are incorpo-

(NAICS 113-81) 2009 index 1987-2012.
2Schmitt-Grohé and Uribe (2011) apply both an Augmented Dickey Fuller Test (ADF) as well as a

Kwiatkowski, Phillips, Schmidt, and Shin (KPSS) test to determine the stationarity of both tfp and the rpi.
As can be seen in Tables 1 and 2 of Schmitt-Grohé and Uribe (2011), both of these tests conclude that these
two series are non-stationary.
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rated by assuming that each sector (consumption and investment) is populated by a finite
number of firms, each selling a differentiable good. Each of these firms is capable of not
only influencing its own price, but also the price charged across all firms. An alternative
model is presented in section 4, where movement in the rpi is generated entirely by techno-
logical spillovers. As section 4 demonstrates, when the assumption of orthogonality between
technologies is relaxed, approximately 31 percent of the rpi can be attributed to shifts in
tfp. In contrast, when the rpi moves in response to changes in demand, as is the case in the
benchmark model, the explanatory power of IST drops further to 45 percent. Stationary and
non-stationary tfp shocks explain approximately 29 percent of the volatility of the rpi. Non-
technological shocks contribute 26 percent. With the vast majority of business cycle research
assuming that the rpi is determined exogenously, the results of this paper are particularly
poignant.

These two approaches are compared to Kim’s (2009) research to assess whether one ap-
proach outperforms the other. As outlined in section 4, our results indicate that an endoge-
nous approach to modeling movement in the rpi outperforms the exogenous-based approach,
due to the impact non-technological shocks have on the relative demand for investment goods
over consumption goods. Through the endogenous-based approach, 45 percent of the volatil-
ity of the rpi is explained by unanticipated changes in IST. These results bring into question
the current convention in linking IST to the inverse of the rpi.

The remainder of the paper is organized as follows. Section 2 outlines the benchmark
model, consisting of the varying elements that allow the rpi to move endogenously over time.
Section 3 outlines the Bayesian estimation process, which is used to estimate the parameter
values. Section 4 outlines the results of the benchmark model with variations of this model, to
assess the relative importance of each aspect in generating these results. Section 5 concludes.

2 Benchmark Model

The benchmark model for this paper involves a two-sector real business cycle model with
monopolistic competition in both consumption- and investment-goods-producing sectors.
This model is set up in such a way that firms are able to vary the markup charged above
production costs depending on the number of competing firms within that industry. We
begin with an outline of the various stages of production in the consumption sector.

Production of each good can be divided into three stages of production. These stages
include a finite number of monopolistically competitive firms that produce their product
using both capital and labour inputs. These goods are then aggregated at an industry level
by firms that assemble them into a composite good to be sold at the sector level. Lastly,
there is a perfectly competitive firm that purchases these industry-level goods and assembles
them into a composite good ready to sell to consumers. For ease of illustration, we begin
our dissection of the various stages of consumption production at the sector level.
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2.1 Consumption Sector

2.1.1 Sector Level

At the aggregate level, the consumption good produced in this economy Ct is a composite
good consisting of a continuum of unit measure one industry-level goods produced using the
following constant-returns-to-scale production function:

Ct =

[ ∫ 1

0

Qc
t(j)

ωdj

] 1
ω

, (1)

where Qc
t(j) refers to the quantity of output produced in industry j, with the elasticity of

substitution between industry-level goods equal to 1
1−ω . The total profit earned by assembling

these industry-level goods at the sector-level Πc
t is equal to

Πc
t =

{
P c
t Ct −

∫ 1

0

P c
t (j)Qc

t(j)dj

}
, (2)

where PC
t is the price of the sector-level consumption good and P c

t (j) is the price paid for in-
dustry j’s composite good. Solving the production problem for the sector-level consumption-
goods producer implies a conditional input demand of

Qc
t(j) =

(
P c
t (j)

P c
t

) 1
ω−1

Ct (3)

of industry j’s good by the sector-level producer, where the price index P c
t is equal to

P c
t =

[ ∫ 1

0

PC
t (j)

ω
ω−1 dj

]ω−1
ω

. (4)

2.1.2 Industry Level

The industry-level consumption good is produced using a constant-returns-to-scale produc-
tion function which aggregates output produced by a finite number of firms within industry
j. Firm i within industry j produces a differentiable good xct(j, i). This good is used as an
input at the industry level through the following production function:
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Qc
t(j) =

[
N c
t (j)

]1− 1
τ

[ Nc
t∑

i=1

xct(j, i)
τ

] 1
τ

. (5)

N c
t (j) denotes the number of firms competing in industry j and 1/(1 − τ) is the elasticity

of substitution between industry-level goods. Given this production function, the profit
function for the firm producing the industry j good Πc

t(j) is determined as

Πc
t(j) =

P c
t (j)Qc

t(j)−
Nc
t (j)∑
i=1

xct(j, i)p
c
t(j, i)

 , (6)

where PC
t (j, i) denotes the price of firm i’s output in industry j. This profit function implies

a conditional demand

xct(j, i) =
(P c

t (j, i)

P c
t (j)

) 1
τ−1 Qc

t(j)

N c
t

(7)

by industry j for firm i’s product. Analogous to the sector level of production, the industry
j consumption-good price index is equal to

P c
t (j) = N c

t (j)
1
τ
−1

[Nc
t (j)∑
i=1

P c
t (j, i)

τ
τ−1

] τ−1
τ

. (8)

2.1.3 Firm Level

The last stage of production consists of a finite number of monopolistically competitive firms
within each industry. These firms produce a good using both capital and labour as inputs.
We assume that these firms can costlessly differentiate their product, and thus, given a finite
number of firms competing, have the ability to not only influence its own price P c

t (j, i), but
also the industry-level price P c

t (j). While firm i in industry j has the ability to influence
P c
t (j, i) as well as P c

t (j), it does not have the ability to influence the sector-level price P c
t . In

industry j, firm i’s good is produced using the following constant-returns-to-scale production
function:

xct(j, i) = Zt
(
kct (j, i)

)α(
Xz
t h

c
t(j, i)

)1−α − φc where φc > 0, 0 < α < 1, (9)

where kct (j, i) and hct(j, i) denote the capital and labour used by firm i in industry j, respec-
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tively, α is the capital share of output, and φc denotes the fixed cost of production. We assume
that there are two types of technology shocks affecting production of consumption goods.
These include a stationary technology shock, Zt, and a non-stationary labour-augmenting
technology, Xz

t , where the stochastic growth rate of XZ
t is given by

µzt ≡
Xz
t

Xz
t−1

. (10)

TFP in the consumption sector is

TFPt = Zt
(
Xz
t

)1−α
. (11)

Given the conditional input demand for industry-level consumption goods by the sector-
level firm (equation (3)) and industry j’s conditional input demand by industry j for firm i’s
consumption good (equation (7)), we can write the conditional demand for firm i’s good as

xct(j, i) =

[
P c
t (j, i)

P c
t (j)

] 1
τ−1
[
P c
t (j)

P c
t

] 1
ω−1 Ct

N c
t (j)

. (12)

Thus, firm i maximizes profits by choosing its capital and labour demand as well as a price
P c
t (j, i) that maximizes profit:

Πc
t(j, i) = {P c

t (j, i)xct(j, i)− wcthct(j, i)− rctkct (j, i)} , (13)

subject to its production function (9).

Solving the firm-level problem, we get

P c
t (j, i) = µct(N

c
t (j))MCc

t (j, i) =
(1− ω)N c

t (j)− (τ − ω)

τ(1− ω)N c
t (j)− (τ − ω)

MCc
t (j, i), (14)

where MCc
t (j, i) is the marginal cost of production by firm i in sector j and µct(N

c
t (j)) is the

markup charged by this firm. The firm’s optimal labour demand implies a wage rate in the
consumption sector,

wct =
P c
t (j, i)

µct(j, i)
αZc

t

(
kct (j, i)

hct(j, i)

)α
Xz
t

1−α, (15)
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and a rental rate

rct =
P c
t (j, i)

µct(j, i)
(1− α)Zc

t

(
kct (j, i)

hct(j, i)

)α−1

Xz
t

1−α. (16)

The markup charged over production costs by this firm is determined by both the number
of firms competing in their industry and the substitutability of its goods within and across
industries.

It is assumed that firm-level technology is identical both within and across industries
in the consumption sector. This assumption implies that for every firm i ∈ [0, N c

t (j)] and
for every industry j ∈ [0, 1], firms make identical decisions when choosing both labour
and capital services (hct(j, i) = hct , k

c
t (j, i) = kct ). This implies that the quantity of goods

produced by each firm will also be the same across all firms (xct(j, i) = xct) . Furthermore,
with this assumption we can generalize the price charged by firms along with the price index
at both an industrial level (equation (8)) and at a sector level (equation (4)), implying that
P c
t (j, i) = P c

t (j) = P c
t .

As mentioned earlier, the firm incurs a fixed cost of production φct , which we set according
to the following zero-profit condition:

φct = xct(µ
c
t − 1), (17)

along a balanced growth path (BGP). Given N c
t firms in each industry, we can calculate the

quantity of consumption goods produced Ct as

Ct = Qc
t = N c

t x
c
t =

Zt
µct

(kct )
α(Xz

t h
c
t)

1−α. (18)

With this equation along with the zero-profit condition outlined in equation (17), we can
calculate the total number of firms operating within each industry as

N c
t =

µct − 1

µctφ
c
Zc
t (k

c
t )
α(XZ

t h
c
t)

1−α
. (19)

2.2 Investment Sector

Thus far we have outlined the various stages of production in the consumption-goods sector.
The investment sector shares a similar structure to the consumption-goods sector, having
a finite number of monopolistically competitive firms selling their differentiable products to
a continuum of unit measure one industry-level firms, who in turn sell these goods to the
sector-level producer. Similar to the consumption sector, we begin our description of the
investment-goods sector at the sectoral level.
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2.2.1 Sector Level

Sector-level investment goods are produced by amalgamating a continuum of industry-level
investment goods according to the following constant-returns-to-scale production function:

It =

[ ∫ 1

0

QI
t (j)

ω
dj

] 1
ω

. (20)

As was the case in the consumption sector, the final good produced in the investment
sector It is a composite good consisting of a continuum of industry-level investment goods
QI
t (j) of unit measure one. The profit function for the investment-good producer at the

sector level is

ΠI
t =

{
P I
t It −

∫ 1

0

P I
t (j)QI

t (j)dj

}
, (21)

where P I
t (j) is the price of industry j’s investment good and QI

t (j) denotes the quantity
of investment goods produced in industry j. As was the case in the consumption sector,
industry-level investment goods are not perfect substitutes but rather have an elasticity of
substitution determined by 1/(1− ω).

2.2.2 Industry Level

At the industry level, the investment-goods sector is symmetric in construction to the
consumption-goods sector at the same level of production. The industry-level composite
good is produced using the following constant-returns-to-scale production function:

QI
t (j) =

(
N I
t (j)

)1− 1
τ

[NI
t (j)∑
i=1

xIt (j, i)
τ
] 1
τ

. (22)

The conditional input demand for the firm-level good xIt (j, i) by industry j is then calculated
as

xIt (j, i) =

(
P I
t (j, i)

P I
t (j)

) 1
τ−1 QI

t (j)

N I
t

, (23)

with the price index P I
t (j) in industry j equal to

9



P I
t (j) = N I

t (j)
1
τ
−1
[NI

t (j)∑
i=1

P I
t (j, i)

τ
τ−1

] τ−1
τ

. (24)

2.3 Firm Level

The firm-level investment good, xIt (j, i), is produced using the following production function:

xIt (j, i) = ZtAtk
I
t (j, i)

α(
XZ
t X

A
t h

I
t (j, i)

)1−α − φI , (25)

where kIt (j, i) and hIt (j, i) denote the capital and labour services used by firm i in industry j,
φI is the fixed cost of production, and α denotes the capital share of output. As was the case
in the consumption-goods sector, technology in the investment sector can be broken down
into two separate components. There is a stationary IST shock At as well as the stationary
tfp shock Zt. There is also a non-stationary labour-augmenting technology XA

t (j) specific to
the investment sector, along with the neutral technology XZ

t (j). The non-stationary IST is
assumed to follow a stochastic growth rate, defined as

µAt ≡
XA
t

XA
t−1

. (26)

IST is measured as

ISTt = At
(
XA
t

)(1−α)
. (27)

With each firm i selling a differentiable good in industry j, firms compete on price, thus
allowing investment firms to sell their product at a markup µIt above their respective marginal
cost MCI

t (j, i):

P I
t (j, i) = µIt (N

I
t (j))MCI

t (j, i) =
(1− ω)N I

t − (τ − ω)

τ(1− ω)N I
t − (τ − ω)

MCI
t (j, i). (28)

As was the case in the consumption sector, with symmetric technologies across industries,
we can drop all indexes. The fixed cost of production is set equal to

φIt = xIt (µ
I − 1). (29)

This is used to remove firm profits along a BGP. With this information, we can calculate
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the number of firms in the investment sector as

N I
t =

(µIt − 1)

µItφ
I
ZtAtk

I
t

α(
XZ
t X

A
t h

I
t

)1−α
. (30)

This implies a total output in the investment sector of

It =
ZtAt
µIt

kIt
α(
XZ
t X

A
t h

I
t

)1−α
. (31)

The real wage and rental rates in the investment sector are

wIt =
P I

µIt
αZtAtk

I
t

α
hIt
−α
XZ
t X

A
t

(1−α)
(32)

rIt =
P I

µIt
(α− 1)ZtAtk

I
t

α−1
(XZ

t X
A
t h

I
t )

(1−α). (33)

With both labour and capital perfectly mobile between sectors, we have

wIt = wCt and rIt = rCt . (34)

Dividing the wage rate in the investment sector by the wage rate in the consumption
sector, we can estimate the rpi as

P I
t

P c
t

=
µIt
µCt

1

At

(
kCt
hCt

)α(
kIt
hIt

)−α
XA
t

(α−1)
. (35)

2.4 Households

The economy consists of a large number of identical and infinitely lived households who,
by choosing consumption Ct and hours worked Ht, maximize their expected lifetime utility
subject to their budget constraint, with a lifetime utility of

E0

∞∑
t=0

βtU(Ct, Ht), (36)
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where 0 < β < 1 is the subjective discount factor. The households’ periodic utility function
is represented using Jaimovich and Rebelo preferences:

U(Ct, Ht) =
bt(Ct − χCt−1 − ΓHΘ

t Xt)
1−σ − 1

1− σ
(37)

Xt = (Ct − χCt−1)ηX1−η
t−1 , (38)

where Γ > 0, Θ > 1, σ > 0, χ > 0, and 0 < η < 1. Here Θ determines the level of
labour supply elasticity and σ determines the curvature of household utility, χ is the habit
persistence parameter, and η determines the effect wealth has on household labour supply
decisions. The elements included in the periodic utility function that are distinctive to the
style of preferences used by Jaimovich and Rebelo (2009) are the preference parameter η
and the latent variable Xt. These preferences have become popular due to their ability to
dial up or dial down the wealth effect on labour supply. When η is close to 1, we have
King, Plosser, and Rebelo (1988) preferences (strong wealth effect). When η is closer to
0, we have GHH (1988) preferences, with a limited wealth effect on labour supply. Last of
all, preference shocks bt, which alter the households’ intertemporal consumption and labour
supply decisions are included in the benchmark model.

Households can accumulate capital according to the following capital accumulation equa-
tion:

Kt+1 = (1− δ)Kt + vtIt, (39)

where Kt is the households’ capital stock and It is the real quantity of investment goods
purchased in period t. We also include a marginal efficiency of investment (MEI) vt. These
shocks have become popular in the literature since Justiniano et al. (2011) demonstrated that
they are an important determinant of volatility in investment growth over the business cycle.
The households’ labour and capital services are used by both capital- and consumption-
goods-producing firms. The household budget constraint is given by the following formula:

PC
t Ct + P I

t It =
wtHt

µw
+ rtK

H
t + ΠC

t + ΠI
t + Ψt. (40)

Given that wages earned in each sector are equal (labour supply is perfectly mobile), the
household earns a labour income of wtHt/µ

w for hours worked in each sector, where Ht

denotes the number of hours supplied by households in period t, wt denotes the wages paid,
and wt/µ

w denotes the wages earned by the household adjusted by a wage markup shock.
Here I assume that the portion of wages taken from the household through the wage markup
shock are rebated back to the household via a lump sum transfer Ψt. Households also
earn a rental income from capital services provided to both sectors rtKt. Since households

12



own both consumption- and investment-goods-producing firms, any profits ΠC
t and ΠI

t are
accrued to the household. Given the prices PC

t and P I
t for consumption and investment

goods, respectively, households purchase Ct consumption goods and It investment goods, all
measured in real terms.

With households as the only source of labour in this model, the market-clearing conditions
in the labour markets imply that labour supply Ht equals the sum of labour demand in both
sectors. With NC

t firms operating within the consumption sector and N I
t firms within the

investment sector, this equilibrium condition implies that

Ht = NC
t h

C
t +N IhIt . (41)

Normalizing the population of entrepreneurs to 1, the capital market clears when

Kt = NC
t k

C
t +N I

t k
I
t . (42)

Last of all, with all firms within each sector identical, the total amount of consumption and
investment goods produced is calculated as follows:

Ct = NC
t x

C
t , (43)

and

It = N I
t x

I
t . (44)

2.5 Exogenous Shocks

Altogether, we have seven types of shocks. There are technology shocks, which include both
stationary and non-stationary tfp as well as stationary and non-stationary IST shocks. The
non-technology shocks include wage markup, preference and MEI, each of which is assumed
to be stationary. For stationary shocks Zt and At, we assume the following AR(1) processes:

ln(Zt) = ρZ ln(Zt−1) + εZt (45)

ln(At) = ρAln(At−1) + εAt , (46)
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where 0 < ρZ < 1, 0 < ρA < 1 refers to the level of persistence for each shock, while eZt and
εAt are unanticipated shocks to ln(Zt), and ln(At), respectively. The steady-state values of
Zt and At are normalized to one. Innovations εZt and εAt , have an expected value of zero,
with variance σZt and σAt respectively. As for the non-stationary components for neutral
and investment-specific technology, we assume that each technology experiences stochastic
growth rates according to the following laws of motion:

ln(µZt /µ̄
Z) = ρµZ ln(µZt−1/µ̄

Z) + σµ
Z

εµ
Z

t (47)

ln(µAt /µ̄
Z) = ρµAln(µAt−1/µ̄

A) + σµ
A

εµ
A

t , (48)

where the growth rates in TFP and IST are calculated as in equations (10) and (26), re-
spectively. The persistence of each disturbance ρzµ and ρAµ is assumed to be between 0 and

1. The innovations in tfp growth εµ
z

t and IST growth εµ
A

t are unanticipated, with a standard

deviation σµ
Z

t and σµ
A

t , respectively. Lastly, µ̄Z and µ̄A denote the steady-state values of µZt
and µAt , which are discussed in the next section.

There are three stationary non-technological shocks – wage markup, preference and MEI
shocks – which move according to the following laws of motion, respectively:

ln(
µw

µ̄w
) = ρµw ln(

µwt−1

µ̄w
) + σµ

w

εµ
w

t (49)

ln(bt) = ρbln(bt−1) + σbε
b
t (50)

ln(vt) = ρvln(vt−1) + σvε
v
t . (51)

Each of the persistence parameters ρµw , ρb and ρv is between 0 and 1. Each innovation
listed above is assumed to be i.i.d. with mean 0 and variance of 1 and with a standard
deviation of σµw , σb and σv, respectively.

With both non-stationary neutral and investment-specific technology, each variable dis-
cussed thus far must be detrended wherever a trend is present. With the trend in neutral
technology denoted by XZ

t , the trend in output XY
t has the following form:

XY = XZ
t

(
XA
t

)α
, (52)

where consumption, nominal investment, output and the fixed cost of production in the
consumption sector all share this same trend. As for the trend of the capital stock Xk

t , the
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trend in the fixed cost of investment production and the trend of real investment XI
t , we

have

XI = XZ
t X

A
t . (53)

We normalize the price of consumption goods PC
t to 1. The trend in the rpi is equal to

XP I

t =
(
XA
t

)α−1)
. (54)

There is no growth in hours, price markups or the number of firms within an industry.
Letting µY ≡ XY

t /X
Y
t−1, and µK ≡ XK

t /X
K
t−1, the system of equations for the detrended

model includes

Ỹt = C̃t + P̃ I
t Ĩt (55)

C̃t =
Zt
µc

(
K̃c
t

µK

)α

HC
t

1−α
(56)

Ĩt =
ZtAt
µI

(
K̃I
t

N I
t µ

K

)α(
HI

N I
t

)1−α

(57)

K̃t+1 = (1− δ) K̃t

µK
+ vtĨt (58)

NC
t =

(
µCt − 1

µCt φ̃
C

)
Zt
(K̃C

t

µVt

)α
HC
t

1−α
(59)

N I
t =

µIt − 1

µIt φ̃
I
ZtAt

(K̃I
t

µKt

)α
HI
t

1−α
(60)

λ̃tP̃t
I

= Et

{
λ̃t+1βµ

Y
t+1

1−σ

µKt+1

(
r̃t+1 + ˜P I

t+1(1− δ)
)}

(61)

w̃t =
P̃ I
t

µIt
(1− α)ZtAt

(
K̃I
t

N I
t µ

K
t

)α(
HI
t

N I
t

)−α
(62)

w̃t =
1

µCt
(1− α)Zt

(
K̃C
t

µKt H
C
t

)α

(63)

r̃t =
P̃ I
t

µIt
αZtAt

(
K̃I

t

N I
t µ

K
t

)α−1(
HI
t

N I
t

)(1−α)

(64)
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r̃t =
1

µCt
αZt

(
K̃C
t

µKt H
C
t

)α−1

(65)

btΘΓHΘ−1
t X̃t

(
Ct − χ

˜Ct−1

µY
− ΓHΘ

t X̃t

)−σ
=
λ̃tw̃t
µw

(66)

λ̃t = bt(C̃t −
χ

µyt
˜Ct−1 − ΓHθ

t X̃t)
−σ − E0bt+1µ

y
t+1
−σβχ( ˜Ct+1 −

χ

µyt+1

C̃t − ΓHθ
t+1

˜Xt+1)−σ . . .

−λ̃2tηµ
y
t
η−1(C̃t −

χ

µyt
˜Ct−1)η−1 ˜Xt−1

1−η
. . .

+E0µ
y
t+1

1−σβ ˜λ2t+1ηµ
y
t+1

η−1 χ

µyt+1

( ˜Ct+1 −
χ

µyt+1

C̃t)
η−1X̃t

1−η
(67)

btΓH
θ
t (C̃t−

χ

µyt
˜Ct−1−ΓHθ

t X̃t)
−σ = λ̃2t−βE0µ

y
t+1

1−σ ˜λ2t+1(1−η)µyt+1
η−1( ˜Ct+1−

χ

µyt+1

C̃t)
ηX̃t

−η

(68)

X̃t = (C̃t −
χ

µyt
˜Ct−1)η( ˜Xt−1

1−η
)(µyt )

η−1 (69)

µIt =
(1− ωI)N I

t − (τ I − ωI)
τ I(1− ωI)N I

t − (τ I − ωI)
(70)

µCt =
(1− ωC)NC

t − (τC − ωC)

τ c(1− ωC)NC
t − (τC − ωC)

(71)

H = HC
t +HI

t (72)

ln(Zt) = ρZ ln(Zt−1) + σZεZt (73)

ln(At) = ρAln(At−1) + σAεAt (74)

ln(vt) = ρvln(vt−1) + σvε
v
t (75)

ln(bt) = ρbln(bt−1) + σbε
b
t (76)

ln(
µw

µ̄w
) = ρµw ln(

µwt−1

µ̄w
) + σµ

w

εµ
w

t (77)

ln(µZt /µ̄
Z) = ρµZ ln(µZt−1/µ̄

Z) + σµ
Z

εµ
Z

t (78)

ln(µAt /µ̄
A) = ρµAln(µAt−1/µ̄

A) + σµ
A

εµ
A

t , (79)

where λ and λ2 are Lagrangian multipliers.

3 Model Estimation

We use a Bayesian estimation process to determine the value of the majority of the parameters
included in the benchmark model, while calibrating some of the more well-known parameters
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directly. This method of parameterization has become one of the more common methods
for estimating parameters in the business cycle literature, due to its ability to take the
best aspects of two formerly used methods of parameterization: maximum likelihood and
direct calibration. The Bayesian estimation process involves three components: a list of
observables, the model and a set of priors. The priors are chosen based on either micro-
level data or economic theory, which assigns a higher weight to a given area of the parameter
subspace. It is with these priors that Bayesian estimation can be understood as bridging both
maximum likelihood and direct calibration. As the proportion of the parameter subspace
included within the prior distribution decreases, Bayesian estimation becomes akin to direct
calibration. Conversely, as the given area of the parameter subspace increases to infinity,
the Bayesian estimation will be where the log-likelihood function peaks, thus maximum
likelihood. For the more frequently estimated parameters, we choose priors that match those
used in the literature. To facilitate our Bayesian estimation, we will be using Dynare. For
readers who are interested in a more in-depth discussion of the mechanisms involved in the
Bayesian estimation process, we recommend An and Schorfheide (2007).

The list of observables included in our Bayesian estimation process includes log differences
in output, investment, consumption, hours worked and the rpi, all measured in percentage
terms. Letting Υt denote the vector of observables, we have

Υt =


∆ln(Yt)
∆ln(Ct)
∆ln(It)
∆ln(Ht)

∆ln(RPIt)

× 100 +


εME
Y,t

εME
C,t

εME
I,t

εME
H,t

εME
RPI,t

 , (80)

where measurement errors are included for all observables, following Ireland (2004).

Thus far, for notational simplicity we have assumed that the elasticities of substitution
between firm-level and industry-level goods were identical across sectors. However, this as-
sumption could be potentially restrictive, hence from this point on we assume that each
sector differs in its elasticity of substitution, between both industry- and firm-level goods.
Thus, τc and τi govern the elasticity of substitution between firm-level goods in the con-
sumption and investment sectors, respectively. Likewise, ωc and ωi govern the elasticity of
substitution between industry-level consumption goods and industry-level investment goods.
As with Floetotto et al. (2009), we assume that the elasticity of substitution in both sectors
must be greater at the firm level than at the industry level ( 1

1−ωC <
1

1−τC and 1
1−ωI <

1
1−τI ).

As pointed out by Floetotto et al. (2009), there is no clear estimate for these elasticities
in the literature. The value assigned to these elasticities depends heavily on the markup
charged above marginal costs within each industry, along with the number of firms which
either enter or exit each industry. Combining equations (43) and (44), respectively, the zero-
profit conditions for each sector described in equations (17) and (29) and equations (14) and
(28), we can calculate the percentage change in markup charged in both sectors, denoted by
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µ̂Ct and µ̂It respectively, as follows:

µ̂Ct =
(1− τC µ̄Ct )

τC µ̄Ct
Ĉt (81)

µ̂It =
(1− τ I µ̄It )
τ I µ̄It

Ît. (82)

Log linearizing equations (14) and (28), we can calculate the percentage change in markup
charged by firms as a function of the number of firms competing within each industry:

µ̂Ct =
τC(µ̄C − 1)(µ̄CτC − 1)

µ̄CτC(τC − 1)
N̂C
t (83)

µ̂It =
τ I(µ̄I − 1)(µ̄Iτ−1)

µ̄IτC(τ I − 1)
N̂ I
t . (84)

Combining equations (81) with (83) and (82) with (84), we can then estimate the values
τ c and τ i with data on the number of firms within each sector N I

t and NC
t as well as data on

both consumption and investment. To calculate the number of firms operating within each
sector, we (1) estimate the number of firms operating within each of the non-agriculture
Standard Industrial Classification (SIC) supersectors, (2) scale each sector by its average
contribution to total payroll, and then (3) subdivide each sector by its contributions to
either consumption or investment production by using data from the input-output use tables
available from the Bureau of Economic Analysis (BEA).3 A detailed list of the data used and
the steps involved in estimating the number of firms competing within each sector appears in
the appendix. With data on the number of firms competing within each sector N̂ I and N̂C

from 1997 to 2012 in the United States accompanied with data on aggregate consumption
and investment, we can estimate the value of τC and τ I .

Jaimovich and Floetotto (2008) estimate the firm-level markup µ in their one-sector
model as low as 1.05 using value-added data, and as high as 1.4 using data they collected on
gross output. Given this range, we set the markups in steady state µ̄C and µ̄I equal to 1.3,

as done by Floetotto et al. (2009). With these values for µ̄C and µ̄I , we regress N̂C
t with

Ĉt and N̂ I
t with Ît, as suggested above, and use the coefficient estimates to calculate the

values for τ c and τ i as listed in Table 1. Given this information, a normal prior distribution
is chosen for τC and τ I with mean and standard deviations around their estimated values
reported in Table 1. Governed by the assumption that the elasticity of substitution between
firm-level goods is greater than the elasticity of substitution across industries, ωI and ωC are

3The method we use to estimate the number of firms operating within each sector is the same approach
used by Floetotto et al. (2009).
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set equal to 0.6. The values of these parameters do not impact our results.

For the preference parameters, we assume a gamma distribution with a mean of 3 and
variance of 0.75 for θ, which determines the elasticity of labour supply. The habit persistence
parameter χ is assigned a beta distribution with a mean of 0.5 and variance of 0.1. As for
η, which determines the wealth effect on labour supply, we assign a uniform distribution
between 0 and 1. Lastly, since steady-state hours are left to be calculated in our Bayesian
estimation, they are assigned a normal distribution around a mean of 0.3 with a standard
deviation of 0.03.

For observable i ∈ {Y, I, C,H,RPI}, the measurement error εME
it has a mean of zero

and standard deviation σME
i governed by a uniform prior distribution bound between 0 and

one-quarter of the standard deviation of the observable. The remaining parameters to be
estimated include the persistence and variance for the seven shocks discussed in the previous
section. The priors chosen for these parameters, along with all other priors used in the
Bayesian estimation, are available in Table 2.

As outlined in section 2, the growth rate of the rpi is equal to

µRPIt =
(
µAt
)−(1−α)

, (85)

while the growth rate of output is equal to

µY = µZt
(
µAt
)α
. (86)

The parameters that have yet to be discussed are those directly calibrated. The steady-
state growth rate of the rpi is calculated using the time series for the quarterly rpi adjusted
for changes in quality from 1949Q1 to 2006Q3 mentioned in the introduction of this paper.
Using this time series, the estimated growth rate of the rpi equals 0.9957. As for the gross
growth rate of output, we calculate the steady-state quarterly growth rate of output µY

using seasonally adjusted non-farm output from 1949Q1 to 2006Q3 available through the
Bureau of Labor Statistics. With this data, we estimate an average quarterly growth rate of
output equal to 1.0049. With these two growth rates at hand, we choose a growth rate for
non-stationary neutral and investment-specific technology that matches the growth rates of
both output and the rpi. The preference parameter σ governing the households’ risk aversion
is set equal to 2. The households’ quarterly discount parameter β is set equal to 0.985. The
Cobb-Douglas parameter α is set equal to 0.33. The quarterly depreciation rate δ is set equal
to 0.025. All calibrated parameters are shown in Table 3.

Given the benchmark modelM outlined in section 2, the set of observables Υt and a vector
of parameters, ΘM we can begin our Bayesian estimation process. Using these components,
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along with the likelihood function L(ΘM ,Υt,M) calculated as

L(ΘM |ΥT ,M) = p(υ0|ΘM ,M)
T∏
t=1

p(υt|ΥT−1,ΘM ,M), (87)

and with a Kalman filter to calculate the unknown likelihood function along with a Metropolis-
Hastings algorithm, which generates a random sample of these estimates through a Monte
Carlo Markov chain, we calculate the posterior density P (ΘM |Υt,M). The results of our
Bayesian estimation are available in Table 4.

4 Model Results

As the benchmark model of this paper establishes, the cyclical nature of the rpi can be
reproduced by allowing it to respond to changes in the relative demand of investment goods
to consumption goods, in addition to changes in technology. This method is referred to
as the endogenous approach, since the rpi is treated as an endogenous variable. A second
approach could alternatively have movements in the rpi modeled exogenously by assuming
that technologies across sectors move together over time, rather than endogenously. This
method is referred to as the exogenous approach, since the rpi is determined completely
by changes in either neutral or investment-specific technology. Both approaches are valid
choices and are evaluated in this paper to assess whether one approach outperforms the
other. Contrasting these two methods will determine whether future research should model
the countercyclical pattern observed in the rpi endogenously or exogenously. The following
subsection presents a model where cyclical movements in the rpi are entirely exogenous.

4.1 Two-Sector Model with Cointegrated TFP and IST

As outlined in section 2, the benchmark model assumes that the rpi moves in response to
changes in tfp and the non-technological disturbances (wage markup, preference and MEI)
through the inclusion of endogenous price markups. Rather than have the rpi move en-
dogenously, one might be interested in modeling the relationship between tfp and the rpi
exogenously. As demonstrated by Schmitt-Grohé and Uribe (2011), tfp and rpi in the post-
war United States are best characterized by a cointegrating relationship during that era.
With both tfp and rpi cointegrated, any deviation from the equilibrium long-run relation-
ship between tfp and the rpi by either of the technologies will generate a counteracting
response in the other technology so as to maintain the long-run relationship between these
two time series. Furthermore, Schmitt-Grohé and Uribe (2011) and Wagner (2013) have
shown that cointegration impacts the relative importance of technology shocks when ana-
lyzing the variance decomposition. Given our attempt to replicate the true data-generating
process governing the co-movement of tfp and the rpi, along with the research listed above, it
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seems natural to allow tfp and the rpi to follow a common stochastic trend in our assessment.
To clarify, this model does not allow for any movements of firms in and out of each sector,
thus cutting off any endogenous movement in the price markups in each sector. These sectors
can be cointegrated by updating equations (47) and (48) to the following:

[
ln(µZt /µ̄

Z)
ln(µAt /µ̄

A)

]
=

[
ρ11 ρ12

ρ21 ρ22

] [
ln(µZt−1/µ̄

Z)
ln(µAt−1/µ̄

A)

]
+

[
κ1

κ2

]
xcot−1 +

[
εµ

Z

t

εµ
A

t

]
, (88)

where, as before, µZt and µAt are the growth rates of the non-stationary neutral technology
in the consumption and investment sectors, respectively, and xcot is the cointegrating term,
which equals

xcot = νln(XZ
t )− ln(XA

t ), (89)

where ν is calibrated such that xcot equals zero in the steady state. As before, ρµZ and ρµA
determine the level of persistence, while κ1 and κ2 determine the impact that changes in
the common trend have on µZ and µA, respectively; these are the cointegration coefficients.

As before, εµ
Z

t and εµ
A

t are unanticipated shocks to µZt and µAt , respectively. In addition,
equations (45) and (46) are replaced by

[
ln(Zt)
ln(At)

]
=

[
ρZ ρZA
ρAZ ρA

] [
ln(Zt−1)
ln(At−1)

]
+

[
sZ sZ,A
sA,Z sA

] [
εZt
εAt

]
, (90)

where, as before, ρZ and ρA determine the level of persistence while ρZA and ρAZ determine
the degree of spillover between technologies. Lastly, sZ,A and sA,Z allow innovations to be
correlated across technologies.

This model develops from the one-sector dynamic stochastic general-equilibrium model
studied by Schmitt-Grohé and Uribe (2011). Estimating this model involves a different set
of parameters than that included in the benchmark model. For those parameters that are
shared between this model and the benchmark, we assume the same prior distribution. For
the cointegration coefficients κ1 and κ2, we assume a prior with a mean of zero, with lower
and upper bounds of -0.4 and 0.4 for both κ1 and κ2. The correlation between innovations
in neutral and investment-specific technology is given a normal prior distribution with a
mean of −0.13 and a variance of 0.1, allowing some flexibility in the estimate. The Bayesian
estimation results are reported in Table 5. We next describe our variance decomposition
analysis of the two approaches to modeling movement in the rpi.
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4.2 Variance Decomposition: Endogenous vs Exogenous

The variance decomposition of the endogenous-based approach (benchmark model) highlights
the appeal of this approach. As can be seen in Table 6, nearly 55 percent of the rpi is
determined by non-IST shocks. Approximately 29 percent of that value can be attributed
to changes in tfp, with the remaining explained by movements in wage markup shocks,
preference shocks and shocks to the MEI. These results suggest that movement in the rpi
is not merely a technological phenomenon, but rather is in part determined by changes in
aggregate consumption and investment. With 55 percent of the rpi determined by shocks
that are not investment-specific, these findings approach those reported by Kim (2009), who
finds in his SVAR approach that only 27 percent of the rpi can be explained by IST. Lastly,
with 29 percent of the rpi explained by changes in non-stationary tfp, this suggests that
changes in the rpi from one period to the next reflect low-frequency shifts in the neutral
technology.

The exogenous-based modeling approach when estimated captures the cyclical nature of
the rpi along with the long-run trend in the rpi exogenously. It therefore provides some
measure of the effectiveness of the endogenous approach to modeling movement in the rpi,
as is done in the benchmark. The results of the variance decomposition in a two-sector model
with co-movement are reported in Table 7. Of notable interest is the high weight assigned
to tfp in generating volatility in the rpi. What can we learn from this experiment? First of
all, the assumption that IST can be identified by the inverse of the rpi is unreliable at best.
With 31 percent of the rpi explained by neutral technology shocks, the classical assumption,
as assumed by GHK (1997) and later adopted by Fisher (2006), Beaudry and Lucke (2009),
and Justiniano et al. (2011), to name a few, that neutral technology shocks do not affect
relative prices is invalid.

4.3 The Relative Price of Investment

As was demonstrated in section 2, with perfectly mobile capital and labour, the rpi can be
calculated as the ratio of the two wage rates (or rental rates), as follows:

P I
t

P c
t

=
µIt
µCt

1

At

(
kCt
hCt

)α(
kIt
hIt

)−α
XA
t

(α−1)
. (91)

Given that capital labour ratios will be the same across sectors, the above formula can be
reduced to

P I
t

P c
t

=
µIt
µCt

1

At
XA
t

(α−1)
. (92)
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Linearizing equation (92) we get

P̂ I
t =

(
µ̂It − µ̂Ct

)
− Ât − (1− α)X̂A

t . (93)

Note that the rpi can be broken down into several separate components, including the dif-
ference in price markups between sectors, stationary IST and the trend in the IST. In total,
approximately 55 percent of the rpi variance is explained by changes in price markups. The
remaining 45 percent is generated by changes in either stationary or non-stationary IST.
This measures against the 100 percent used in most of the literature.

Of particular interest is the ability of endogenous price markups to translate the non-
technological shocks into movement in the rpi in the benchmark model. In this model,
preference shocks, wage markup shocks and MEI shocks combined explain 26 percent of the
rpi from one period to the next. This suggests that the overall impact of demand shocks
occurs through changes in the price markups over the business cycle.

To highlight the proportion of rpi variability explained by the inclusion of endogenous
price markups in our benchmark model, we simulate a third version of the benchmark model
with neither endogenous price markups nor exogenous shock processes designed to generate
co-movement between the tfp and the rpi. This model will be referred to here as the two-
sector model. Endogenous movements in price markups are removed from the benchmark
model by restricting movements of firms in and out of each sector, thus pinning down the
price markup charged in both sectors to 1/τC in the consumption sector and 1/τ I in the
investment sector.4 When the benchmark model is simulated with endogenous price markups
removed from the model, we find that the proportion of rpi volatility explained by non-IST
drops from 55 percent to 0 percent, with stationary and non-stationary IST shocks explaining
70 and 30 percent, respectively.

Figure 3 plots the impulse responses of output, investment, consumption, hours worked
and the rpi to both a one-standard-error innovation to εzt and a one-standard-error innovation

to εµ
Z

t . As Figure 3 shows, a positive shock to stationary tfp generates an expansion in
output, hours and investment along with a decline in the rpi. The immediate increase
in production along with the decline in the rpi generates a higher-than-normal response
in investment, leading to a reduction in household consumption as they accommodate the
increase in investment. A non-stationary tfp shock generates a similar response in output,
hours and investment, with a much more muted response in the rpi. The rpi declines by less
as households respond to a permanent increase in productivity by increasing consumption
immediately due to the permanent income hypothesis.

4To accomplish this, we remove both the number of firms in both sectors (NC
t and N I

t ) and the markups
µC and µI as endogenous variables while removing equations governing the number of firms (59) and (60)
and the markup equations (70) and (71) from the system of equations listed at the end of section 2. Thus,
each markup is set equal to its steady-state value and will not fluctuate over the business cycle.
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The decline in the rpi occurs for the following reasons. First, as seen in equations (30)
and (19), there is an increase in the number of firms operating within each industry as the
direct effect of increased productivity causes firms to enter the market. With the number of
firms entering into the investment sector N I

t outpacing the number of firms entering into the
consumption sector NC

t , the markup charged in the investment sector decreases by more than
in the consumption sector. Indirectly, with an increase in tfp, the demand for investment
increases, implying both an increase in the number of firms within the investment sector N I

t

and a decline in the price of investment goods P I
t due to the drop in the price markup µIt

that results from increased competition in this sector. Declining demand for consumption
goods leads to a decline in the number of firms competing within this sector, counteracting
the initial increase in the number of firms operating due to increased productivity. With
the decline in the price of investment goods, the net response to a stationary tfp shock is
a decline in the rpi. Thus far, we have discussed the implications of a temporary shock to
tfp. In response to a permanent increase in tfp, there is an increase in both consumption
(permanent income hypothesis) and investment, and consequentially shocks to the growth
rate contribute less to the overall variance decomposition of the growth rate of the rpi. Since
we include multiple stochastic trends, the deviation of the variable from its BGP includes
both the variation of the variable from its respective BGP and the variation of the stochastic
trend itself.

Figure 4 plots the impulse responses of output, investment, consumption, hours worked
and the rpi to both a one-standard-error innovation to εAt and a one-standard-error innovation

to εµ
A

t . As can be seen in Figure 4, a positive shock to stationary IST generates an expansion
in output, hours and investment along with a decline in the rpi. The decline in the rpi in
response to a shock to stationary IST occurs through the following channels. With an increase
in IST, the profitability of production in the investment sector causes firms to enter into the
investment sector and therefore drives down the markup charged on investment goods. This
is the direct effect on the number of firms operating in the investment sector. The second
effect comes from households switching from consumption goods to the now relatively cheap
investment good, driving up the number of firms entering into the market and driving down
the markup charged in this sector. With a decline in consumption, firms exit the consumption
sector and we observe an increase in the markup charged by the remaining firms. The
overall effect is for the rpi to decrease by more than if markups were constant. The same
logic holds true for a permanent shift in IST, with an increase rather than a decrease in
consumption as households’ lifetime permanent disposable income increases. The effect of
increased consumption with a permanent shift in IST is a gradual decline in the rpi rather
than an immediate decline, as is observed in response to a temporary IST shock.

As can be seen in Figure 4, endogenous price markups magnify the response of the rel-
ative price of investment to an IST shock. In a two-sector model without endogenous price
markups, the response of the RPI matches the inverse of the IST shock exactly. With endoge-
nous price markups, the increased profitability of investment firms drives the number of firms
operating within the investment sector, driving down the relative price even further. The
exact magnification depends on the steady-state markup. Table 8 outlines the magnification
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effect endogenous price markups have on RPI over a range of markups. The magnification
effect increases with the steady-state markups, ranging from a 102 percent magnification for
a steady-state markup of 1.1 to a 153.3 percent magnification for a steady-state markup of
1.4. The magnification effect of endogenous price markups on IST is particularly interesting
given the trajectory that IST and their importance have had in the literature. At their in-
ception, GHH (1988), as well as others such as Fisher (2006) and Justiniano, Primiceri and
Tambalotti (2010), conclude that IST shocks are capable of reproducing real business cycles.
However, since their work, Justiniano, Primiceri and Tambalotti (2011) demonstrated that
when the persistence and volatility of IST shocks are set to match movements in the RPI in
their Bayesian estimation, this type of shock becomes incapable of generating business cycle
volatility: the reason is due to the overestimation of the volatility of the RPI by a factor of
three in previous research. Thus, movements in the IST are not relevant in generating move-
ment in output, consumption, investment and hours. This work goes a step further along
this line by arguing that matching the IST by the inverse of the relative price of investment
overstates the relative importance of the IST. As shown in Figure 4, and as can be observed
in Table 8, movement in the rpi requires far less volatility in IST.

Lastly, there are three non-technological disturbances included in the benchmark model.
These are preference shocks, wage markup shocks and MEI shocks. Figure 5 plots the
impulse responses of output, investment, consumption, hours worked and the rpi to the
standard error innovation to each of the three non-technological disturbances.

The increase in the rpi that occurs in response to shocks to either preferences or wage
markups occurs through the following channels. With a positive preference shock, households
increase their demand for consumption goods over investment goods, thus driving down the
markup charged on consumption goods and driving up the markup on investment goods and
hence an increase in the rpi. With wage markup shocks, both consumption and investment
fall in response to a drop in household income. However, due to consumption smoothing,
the response in consumption demand and consequently the markup charged are an order of
magnitude smaller than the responses in investment. Through the steps listed above, this
results in a rise in the rpi. In response to an MEI shock, the decline in the rpi is due to an
increase in investment demand and a decrease in demand for consumption goods. Investment
demand increases as households realize that a given amount of savings can be converted into
a greater amount of investment goods. This leads households to reduce consumption to free
up resources for further investment. Thus, MEI shocks have the exact opposite impact on
the rpi when compared to preference and wage markup shocks.

The impact that MEI shocks have on the rpi via shifts in the relative demand for in-
vestment goods over consumption goods is of particular interest. As mentioned in the in-
troduction, the traditional assumption in the business cycle literature has been to assume a
one-for-one transformation in the conversion of consumption goods into investment goods.
However, as Justiniano et al. (2011) argue, a more realistic version of this transformation
would involve two steps, the first being a transformation of consumption goods into invest-
ment goods, which is altered by shifts in IST. The second transformation involves taking
capital goods fresh off the production line and converting these goods into active capital.
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Shocks to this mechanism are referred to as changes in the MEI. Both of these steps are
included in the benchmark model. Justiniano et al. (2011) assume that the IST can be
identified by the inverse of the rpi, while changes in the MEI are driven by changes in the
firms’ ability to access credit. They make this assertion by linking movements in the MEI in
their model to the spread between high-yield and AAA corporate bonds (a measure of risk
premium). Incidentally, they assume that changes in the firms’ ability to access credit does
not impact the rpi. As can be seen in Figure 5, shocks to the MEI do in fact have a limited
impact on the rpi, validating their assumption.

5 Conclusion

Since the seminal work of GHH (1988), IST has become a common feature in most of the
business cycle literature. Likewise, the convenient assumption by GHK (1997) that IST can
be identified by the inverse of the rpi has also remained the same. Assuming that the rpi
is orthogonal to the business cycle eliminates any possibility that the rpi moves in response
to changes in the relative demand for investment goods over consumption goods. With
55 percent of the rpi determined by non-IST shocks via the endogenous price mechanisms
identified above, our results approach those reported by Kim (2009), who finds that IST
in the United States explains at most 27 percent of the volatility of the rpi in the SVAR
estimation, with non-technological disturbances having significant explanatory power. As
the benchmark model demonstrates, when the rpi moves in part due to changes in aggregate
demand via endogenous price markups, IST accounts for less than half of the volatility
in the rpi. Furthermore, non-technological shocks, such as preference, wage markup and
MEI shocks, have an important source of business cycle volatility through their effect on
aggregate demand. Lastly, the sizable fraction of the rpi explained by non-IST warrants
serious skepticism regarding the interpretation of business cycle research where the rpi is
modeled exogenously, since the rpi may not move in tandem with the business cycle. Given
these results, future business cycle research regarding the relative importance of IST requires
the incorporation of a mechanism to generate endogenous movements in the rpi to changes
in the relative demand for consumption goods to investment goods.
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Appendix

A.1 Data Used

1. Output Yt Non-Farm Gross Value-Added NIPA Table 1.3.5 Row 3 1947:Q1-2013:Q4
Chained 2009 Dollars Seasonally Adjusted at Annual Rates

2. Consumption Ct Real Personal Consumption Expenditure BEA 1947:Q1-2013:Q4 Chained
2009 Dollars PCECC96 Seasonally Adjusted at Annual Rates

3. Investment It Real Investment Expenditure BEA 1947:Q1-2013:Q4 Chained 2009 Dol-
lars GPDIC96 Seasonally Adjusted at Annual Rates

4. Private Non-Farm Hours Worked Major Sector Multisector Productivity Index Base
Year 2009 1947:Q1-2013:Q4 BLS PRS85006033 Seasonally Adjusted at Annual Rates

5. Private Non-Farm Business Sector Capital Services Index 100 2009 BLS MPU4910042
1987-2012 BLS PRS85006033 Annual data on capital services are converted into quar-
terly data assuming a constant growth rate between quarters.

6. Annual Payroll Information Small Business Administration Data for 20 industry groups.
Used to weigh the relevance of each sector.

7. Input-Output Use Table BEA Before Redefinitions 1997-2012. Used to determine the
proportion of goods from each industry going to investment projects and consumption-
goods production.

8. Number of firms within each SIC Supersector via the BLS data by adding Expansions
(firms that hired), Contractions (firms that laid off employees) plus Openings (new
start-ups) less Closures (firms that closed).

9. Real Consumption Expenditure Non-Durables and Services NIPA Table 1.1.6 Real
Gross Domestic Product Chained 2009 Dollars Seasonally Adjusted at Annual Rates

10. Real Investment Goods Expenditure on Equipment and Consumer Durables NIPA
Table 1.1.6 Real Gross Domestic Product Chained 2009 Dollars Seasonally Adjusted
at Annual Rates

11. Calculate the number of firms within each industry N I
t and NC

t by multiplying the
number of firms within each industry (8) by their contribution to total payroll (6), and
then subdividing each sector by its contributions to either consumption or investment
production.

12. Calculate the elasticities τ I and τC through the following manipulations:

(a) Calculate Ît, Ĉt, N̂C
t and N̂ I

t as their log deviation from the HP trend.

(b) Regress N̂C
t on Ĉt and N̂ I

t on Ît
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(c) Using the conditions

Ĉt =
(τC(µC − 1))

(1− τC)
N̂C
t (94)

Ît =
(τ I(µI − 1))

(1− τ I)
N̂ I
t , (95)

and set µI = µC = 1.3 and calculate values τC and τ I .

13. Calculate µ̂Ct and µ̂It by equations

µ̂Ct =
(1− τCµC)

(τCµC)
Ĉt (96)

µ̂It =
(1− τ IµI)

(τ IµI)
Ît. (97)

30



Table 1
Precursor OLS Estimates for τC τ I

Sector Consumption Investment

Theory N̂C
t =

(
1−τC

τC(µC−1)

)
Ĉt N̂ I

t =
(

1−τI
τI(µI−1)

)
Ît

Data N̂C
t =

−6.745e−19

(0.001)
+

1.123***
(0.11)

Ĉt N̂ I
t =

−3.66e−19

(0.001)
+

0.394***
(0.027)

Ît

R2 0.5648 0.7252

Note: Data on both the dependent and independent variables are outlined in the appendix. Each variable
accompanied by a hat is the log deviation from its Hodrick–Prescott filter trend, where λ = 1600 with no
drift. Data ranges from 1992Q3 to 2013Q4. Significance codes: ’***’ denotes 0.001, ’**’ 0.01, and ’*’ 0.05.

Table 2
Priors

Parameter Prior Distribution Lower Bound Upper Bound Mean Variance
τ I Normal 0.90 0.05
τC Normal 0.78 0.05
θ Gamma 3 0.75
χ Beta 0.5 0.1
η Uniform 0.01 0.99
hss Normal 0.3 0.03
ρZ Beta 0.9 0.05
ρA Beta 0.9 0.05
ρv Beta 0.9 0.05
ρb Beta 0.9 0.05
ρµw Beta 0.9 0.05
ρµZ Beta 0.40 0.20
ρµA Beta 0.20 0.10
σi Inv gamma 0.5 2
σk Uniform 0 1

4
σobs

Note: σi refers to the variance of an unanticipated shock to i = {Z,A, b, V, µW , µZ , µA}, and σk the variance
of the measurement error for the observable k = {Y, I, C,H,RPI}.
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Table 3
Calibrated Parameters

Parameter Value Description
σ 2 Risk aversion

µ̄Y 1.0049 Per capita output growth along a BGP

µ̄RPI 0.9957 Per capita rpi growth along a BGP

δ 0.025 Depreciation rate in steady state

µ̄w 1.10 Steady-state wage markup

β 0.985 Subjective discount factor

α 0.33 Capital share of output

µ̄I , µ̄C 1.3 Steady-state markup

Note: Parameter values governing the per capita output growth, IST growth, steady-state markup, and
households’ risk aversion are those used by Schmitt-Grohé and Uribe (2011).

Table 4
Bayesian Estimation

Prior Posterior
Parameter Distribution mean Standard Deviation mean 5% 95%
τ I Normal 0.9 0.05 0.9152 0.9151 0.9153
τ c Normal 0.78 0.05 0.7848 0.7847 0.7849
θ Normal 3 0.75 2.9494 2.9481 2.9507
χ Gamma 0.5 0.1 0.537 0.5368 0.5372
η Uniform 0.504 − 0.4216 0.4196 0.4236
hss Normal 0.3 0.03 0.2791 0.2791 0.2791
ρZ Beta 0.9 0.05 0.8658 0.8656 0.866
ρA Beta 0.9 0.05 0.9266 0.9265 0.9267
ρV Beta 0.9 0.05 0.9927 0.9927 0.9927
ρb Beta 0.9 0.05 0.9436 0.9435 0.9437
ρµW Beta 0.9 0.05 0.8857 0.8855 0.8859
ρ11 Beta 0.4 0.2 0.3582 0.3579 0.3585
ρ22 Beta 0.2 0.1 0.1632 0.1629 0.1635
σ0
z Inverse gamma 0.5 2 0.0608 0.0606 0.061
σ0
a Inverse gamma 0.5 2 0.0606 0.0604 0.0608
σ0
V Inverse gamma 0.5 2 0.0807 0.0758 0.0856
σ0
b Inverse gamma 0.5 2 0.0703 0.0623 0.0783
σ0
µw Inverse gamma 0.5 2 0.3654 0.36 0.3708
σ0
µZ Inverse gamma 0.5 2 0.0609 0.0597 0.0621

σ0
µA Inverse gamma 0.5 2 0.0633 0.0623 0.0643

Note: σi refers to the variance of an unanticipated shock to i = {Z,A, b, V, µW , µZ , µA}.
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Table 5
Bayesian Estimation

With Technological Spillovers and Cointegration
Prior Posterior

Parameter Distribution mean Standard Deviation mean 5% 95%
θ Normal 3 0.75 3.3039 3.2979 3.3099
χ Gamma 0.5 0.1 0.4934 0.4931 0.4937
η Uniform 0.504 0.2855 0.6042 0.6018 0.6066
hss Normal 0.3 0.03 0.3157 0.3155 0.3159
ρZ Beta 0.9 0.05 0.8984 0.8977 0.8991
ρA Beta 0.9 0.05 0.9116 0.9114 0.9118
ρZA Normal 0 0.3 −0.0383 −0.0416 −0.035
ρAZ Normal 0 0.3 −0.109 −0.1106 −0.1074
ρV Beta 0.9 0.05 0.8149 0.8143 0.8155
ρb Beta 0.9 0.05 0.9436 0.913 0.9136
ρµW Beta 0.9 0.05 0.9428 0.9422 0.9434
ρ11 Beta 0.4 0.2 0.4504 0.4489 0.4519
ρ22 Beta 0.3 0.1 0.2257 0.2252 0.2262
ρ12 Uniform 0 0.17 0.0341 0.0336 0.0346
ρ21 Uniform 0 0.17 −0.2571 −0.2576 −0.2566
κ1 Uniform 0 0.29 −0.281 −0.2828 −0.2792
κ2 Uniform 0 0.29 0.4221 0.4204 0.4238
corr(Z,A) Normal −0.13 0.1 −0.0052 −0.0053 −0.0051
σ0
z Inverse gamma 0.5 2 0.061 0.0594 0.0626
σ0
a Inverse gamma 0.5 2 0.0609 0.0593 0.0625
σ0
V Inverse gamma 0.5 2 0.0656 0.063 0.0682
σ0
b Inverse gamma 0.5 2 0.0703 0.0606 0.0652
σ0
µw Inverse gamma 0.5 2 0.3654 0.2372 0.2718
σ0
µZ Inverse gamma 0.5 2 0.0609 0.0633 0.0645

σ0
µA Inverse gamma 0.5 2 0.0628 0.0618 0.0638

Note: All forms of endogenous movement in the rpi have been removed. Prior distributions for parame-
ters shared with the benchmark model remain as described in section 3. σi refers to the variance of an
unanticipated shock to i = {Z,A, b, V, µW , µZ , µA}.
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Table 6
Variance Decomposition: Benchmark Model

gy gc gi gh grpi

Stationary

TFP (Zt)
37.24 5.47 45.52 3.72 27.22

Stationary

IST (At)
0.26 8.15 4.62 0.18 37.16

Non-

stationary

TFP (µZt )

14.58 42.83 5.47 0.51 1.37

Non-

stationary

IST (µAt )

0.11 1.21 0.61 0.04 8.25

Preference (bt) 0.08 4.92 0.65 0.05 0.41

Wage markup

(µWt )
47.46 32.84 42.59 95.43 25.25

MEI (Vt) 0.27 4.57 0.55 0.06 0.34

Note: The column headers are defined as follows: gy growth rate of output, gc growth rate of consumption,
gi growth rate of investment, gh growth rate of hours, grpi growth rate of the rpi.
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Table 7
Variance Decomposition: Model With Cointegration

gy gc gi gh grpi

Stationary

TFP (Zt)
42.99 21.87 42.78 2.39 1.26

Stationary

IST (At)
0.17 7.23 8.1 0.39 46.57

Non-

stationary

TFP (µZt )

17.5 14.45 13.64 0.07 29.37

Non-

stationary

IST (µAt )

1.73 2.56 1.47 0.03 22.79

Preference (bt) 0.05 4.79 1.05 0.09 0

Wage Markup

(µWt )
37.35 42.49 30.96 96.55 0

MEI (Vt) 0.22 6.6 2.01 0.48 0

Note: The column headers are defined as follows: gy growth rate of output, gc growth rate of consumption,
gi growth rate of investment, gh growth rate of hours, grpi growth rate of the rpi.
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Table 8
Magnification of IST Shocks

Steady-State Markups

1.1 1.2 1.3 1.4

Model Measure

Benchmark model σRPI/σA 102.11 118.86 136.22 153.3

σRPI/σX
A

67.16 71.49 75.33 78.6

Exogenous model σRPI/σA 100 100 100 100

σRPI/σX
A

66.57 66.57 66.57 66.57

Two-sector model σRPI/σA, σRPI/σX
A

100 100 100 100

Note: Each figure represents the percentage of the measured volatility of the RPI generated by a one-
standard-error innovation in either stationary or non-stationary IST. For the benchmark model, τ I and τC

are both set equal to 0.92. This is done to keep the number of firms operating within each sector strictly
positive across all steady-state values. For the exogenous model, firm entry is fixed, hence the same value
appears across all steady-state markups.
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Figure 1
Detrended Log TFP and the Inverse of Detrended Log RPI
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Note: Plots of log TFP (tfp) and the log RPI (rpi) for the United States from 1948Q1 to 2006Q3, where each
is detrended using a HP filter. The blue line indicates the log detrended tfp, while the red line indicates the
inverse of the detrended quality-adjusted rpi over the same period, where the inverse of the log detrended
RPI is plotted so as to illustrate the link between these two technologies.
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Figure 2
Demeaned Log TFP and the Inverse of Demeaned

Log RPI Adjusted
by the Cointegration Coefficient
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Note: Plots of tfp and the rpi for the United States from 1948Q1 to 2006Q3. The solid blue line indicates
the tfp while the dashed red indicates the inverse of the quality-adjusted rpi over the same period, where the
inverse of the rpi is plotted so as to illustrate the link between these two time series. Each time series has
been demeaned.
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Figure 3
Impulse Responses to Neutral Technology Shock
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Note: Impulse responses to a one-standard-error innovation to εZt (solid line) and a one-standard-error

innovation to εµ
Z

t (dashed line), measured as a percent deviation from the respective BGP.
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Figure 4
Impulse Responses to IST Shock
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Note: Impulse responses to a one-standard-error innovation to εZt (solid line) and a one-standard-error

innovation to εµ
Z

t (dashed line), measured as a percent deviation from the respective BGP.
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Figure 5
Impulse Responses to Non-Technology Shocks
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Note: Impulse responses to a one-standard-error innovation to εbt (solid line) a one-standard-error innovation

to εµ
W

t (dashed line), and a one-standard-error innovation to εVt (dotted), measured as a percent deviation
from its respective steady state.
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