


Atmospheric Concentrations of Agricultural Chemicals in the Lower Fraser Valley 1996



DOE FRAP 1997-31

# FRASER RIVER ACTION PLAN



Environment Environnement Canada Canada

#### NOTICE

This report has undergone limited technical review and the content does not necessarily reflect the views and policies of Environment Canada. Mention of trade names or commercial products does not constitute an endorsement for their usage.

Any comments should be directed to:

Air Quality Section Aquatic & Atmospheric Sciences Division Environmental Conservation Branch Environment Canada 700 - 1200 West 73rd Avenue Vancouver, B.C. CANADA V6P 6H9

# Atmospheric Concentrations of Agricultural Chemicals in the Lower Fraser Valley

Wayne Belzer Carol Evans Amy Poon

#### Aquatic & Atmospheric Sciences Division, Environment Canada Vancouver, B.C.

January 1998

### I. Abstract

Many different chemicals are used in agriculture to control pests and improve crop yields including herbicides, pesticides and soil fumigants. Typically, their use is at specific times of the year when needed to enhance crop production. Some of the agricultural chemicals developed decades ago have come into disfavour because of their toxicity. After decades of non-use some of these chemicals still exist in the atmosphere. These semi-volatile organics have the ability to be volatilized in warmer equatorial climates and be carried by winds to cooler climates where they condense and are deposited in a 'leap-frog' transport phenomenon. Their presence and concentration in the atmosphere in the agricultural area of the lower Fraser Valley in British Columbia has not been previously assessed. This lack of knowledge prompted an assessment of the atmospheric concentrations and their potential deposition to the environment. This report examines the data from a year-long sampling program with respect to temporal and spatial concentrations at two sites in the lower Fraser Valley of British Columbia. Twenty eight chemicals were found in the dry air and eight chemicals were found in the rainfall at one site; some of these are no longer in use in Canada, indicating long range transport.

## Résumé

De nombreux produits chimiques différents, dont des herbicides, des pesticides et des fumigants de sol, sont utilisés en agriculture pour lutter contre les nuisibles et améliorer le rendement des cultures. Ces produits sont normalement utilisés à des moments bien précis au cours de l'année pour améliorer la production agricole. Certains des produits chimiques agricoles mis au point il y a plusieurs décennies déjà ne sont plus utilisés maintenant en raison de leur toxicité. Bien qu'ils n'aient pas été utilisés depuis des décennies, certains de ces produits sont toujours présents dans l'atmosphère. Ces produits organiques semi-volatils peuvent se volatiliser dans les régions équatoriales plus chaudes, puis être transportés par les vents vers des régions plus froides où ils se condensent et se déposent suivant le phénomène de transport qualifié de «saute-mouton». On n'a pas encore évalué leur présence et leur concentration dans l'atmosphère de la région agricole de la vallée inférieure du fleuve Fraser, en Colombie-Britannique. C'est cette lacune en matière de données qui nous a incités à procéder à une évaluation des concentrations atmosphériques et du risque de dépôt de ces produits dans l'environnement. Dans ce rapport, on examine les données obtenues dans le cadre d'un programme d'échantillonnage d'une durée d'un an, qui portait sur les concentrations à différents moments et à différents endroits à deux sites dans la vallée inférieure du fleuve Fraser, en Colombie-Britannique. À un site, on a décelé 28 produits chimiques dans l'air sec et 8 produits chimiques dans l'eau de pluie; comme certains de ces produits ne sont plus utilisés au Canada, leur présence à cet endroit serait le résultat de leur transport à grande distance.



# II. Introduction

The United Nations Environmental Program (UNEP) Governing Council initiated an investigation into twelve specific persistent organic pollutants (POPs) in 1995. The twelve chemicals of concern included: DDT, aldrin, dieldrin, endrin, chlordane, heptachlor, hexachlorobenzene, mirex, toxaphene, polychlorinated biphenyls and dioxins and furans. POPs are halogenated and are characterized by their low water solubility and high lipid solubility resulting in bio-accumulation in fatty tissues. They are also semi-volatile and can be transported great distance in the atmosphere from their source before being deposited. Typically, the halogenated compounds have molecular weights between 200 and 500 atomic mass units (a.m.u.) and vapour pressures less than 1000 Pa. Concern about the toxic capability of these chemicals is based upon the fact that low level exposures have been associated with chronic non-lethal effects including immuno-toxicity, dermal effects, impairment of reproductive performance and actual carcinogenicity. The ability to bio-accumulate may result in achieving toxicologically relevant concentrations even though discrete exposure may be limited. Some of the chemicals in the UNEP program have been measured in the LFV area.

The lower Fraser Valley (LFV) area (Canadian and U.S.) occupies about 281,000 hectares; about two thirds of this is in agricultural use. This agricultural area is used for both crops and animal husbandry. In order to improve crop production it is standard practice to use chemicals to control pests such as insects and non-desirable weeds.

The use of these chemicals has been restricted by government legislation, and guided by specific handling procedures. Some chemicals have been in commercial use for years and have since been determined to be hazardous. They have become banned from use in this and other countries. However, some of these chemicals persist in the environment long after they have ceased to be manufactured or locally used. The reasons for their continued presence is that some chemicals are long-lived and do not readily break down in the environment. Some chemicals have unique physical features that allow them volatilize from the soil, be transported via the air and then re-deposited in other colder areas. Typically, when volatilized POPs are transported into cooler areas, the there is a transformation from the vapour to the suspended particulate phase due to the vapour-solid partitioning function of these chemicals; particles are more readily transportable in the atmosphere and tend to keep the POP concentration from being dispersed, as would happen in the gas phase (Ritter et al., 1995). This 'leap frog' effect has been observed with chemicals used in equatorial countries and subsequently found in Arctic areas. Because of the large number of chemicals in the atmosphere, sampling for a general selection of organo-chlorine (OCs), organo-phosphate (OPs), solvent soluble herbicides (SSHs) and soil sterilants was established which included fifty seven chemicals (Table 1). Thirty-five OCs, seven herbicides, sixteen OPs and two soil sterilants were included in the chemical assessment package.

Two sampling sites were selected in the Fraser Valley at Agriculture Canada research stations located at Agassiz and Abbotsford (Figure 1 Lower Fraser Valley sampling area).

# III. Sites

The Agriculture Canada sites at Agassiz and Abbotsford were selected because they were previously established secure facilities with power and nearby meteorological stations. The Agassiz site was at the eastern-most end of the Fraser Valley where two mountain ranges converge. This area has mostly crop production and little animal husbandry. The Abbotsford site was in the middle of the Fraser Valley in an area with intensive pig and chicken production as well as extensive berry crops. These two sites were expected to provide a picture of nearby source contributions to the atmosphere as well as the background concentrations over the course of the year-long sampling program.



## IV. Meteorology and Geography

The lower Fraser Valley has the Pacific Range mountains to the north, running west-to-east for about 100 km to Hope, where they meet the Cascade Mountains, running south-west to the coast (Figure 1 Lower Fraser Valley sampling area). This forms a river delta triangle area where half the population of British Columbia live and work. The mountains in this unique geographical area supports a reversing flow of air up and down the river valley, especially during diurnal flow patterns. Air quality can become poor in the Fraser Valley when periods of stagnation occur and air masses are stationary allowing collection and atmospheric reaction of pollutants.

Meteorological data for the Agassiz site were obtained from an Environment Canada climate station at the site. Data for the Abbotsford site were obtained from instrumentation installed at the site; this was augmented with data from a nearby meteorological station at the Abbotsford airport. Wind data were obtained with an R. M. Young anemometer (model 05103), temperature and relative humidity from a Campbell Scientific probe (model 207) and atmospheric pressure from a Setra (Model SBP270).

Meteorological equipment was sited and operated in accordance with accepted standards (Environment Canada, 1994; EPA, 1989). Data was collected from a datalogger system and stored in an Environment Canada computer archive.

## V. Sampling Equipment and Methods

Rainfall was collected in an MIC sampler similar to those used in the Integrated Atmospheric Deposition Network (IADN) for the Great Lakes (Environment Canada, 1994). The sampler was designed to collect organic material in rainfall. The sampler collected precipitation in a square Teflon funnel and was channeled through a Teflon tube containing XAD-2 resin to capture the organics. The sampler was activated by a moisture sensor so that the collector was only open to the atmosphere when precipitation occurred.

Dry air samples were collected in a high volume sampler containing a sampling head with filter, polyurethane foam and XAD-2 resin (PUF). The sampler was operated at a flow rate of about 5.0 liters per minute (I/min). Sampling procedures were similar to those described in EPA Method TO-4 (EPA, 1988).

The sampling program was intended to cover a full year and operated from February 1996 to March 1997. Sampling was stopped for a short period in May 1996 due to operational constraints. Samples were collected on a weekly basis, from Tuesday to Tuesday at approximately 9 am local time. At the end of the sampling period samples were immediately taken to the laboratory for analyses to minimize any sample degradation. The purpose of this sampling program was to determine generally what agricultural chemicals could be found in the atmosphere of the Lower Fraser Valley. Sampling on a weekly basis provided this function, but it limited the ability to determine source-receptor assessment. Sampling on a smaller time scale would have been more adaptable to the normal 2-3 day synoptic weather patterns used for back trajectory plots to determine sources.

## VI. Laboratory Analyses Methods

The contract laboratory, Analytical Services Laboratory (ASL), was responsible for sample media preparation and sample analyses. As well, they prepared lab and field blanks and spiked samples to assess field, laboratory and analytical procedures. Samples submitted for analyses included rainwater samples collected on XAD-2 resin columns and dry-air samples taken on high volume filters and polyurethane foam plugs with an XAD-2 resin backup (HV/PUF).

The preparation and extraction of the sampling media was carried out based on the procedures described in the U.S. EPA Compendium Method TO-4, Method for the Determination of



Organochlorine Pesticides and Polychlorinated Biphenyls in Ambient Air, April 1984, and Environment Canada's draft method for the Determination of Semi-Volatiles Collected by PUF and/or XAD-2, 1991.

The adapted methodology included the Soxhlet extraction of the HV/PUF and XAD resins with dichloromethane (DCM). This extract was then concentrated and extracted with 0.1M potassium carbonate to extract the acidic compounds (Acid-extractable herbicides). The alkaline portion contained the acidic compounds while the DCM solvent retained the neutral and hydrophobic compounds (organochloride pesticides (OCPs), organo-phosphate pesticides (OPPs), and soil sterilants (SS)).

The alkaline fraction was acidified to pH <3 and back extracted into DCM, evaporated to near dryness and esterified with diazomethane. The first DCM fraction was evaporated to near dryness and solvent exchanged to acetone. For clean-up the acetone fraction was passed through a carbon/ celite column and eluted with an acetonitrile/ toluene mixture. This was then solvent exchanged back into acetone for analyses.

The two fractions were then recombined and spiked with an internal standard ( $d_{10}$ -pyrene) and the final volume adjusted to 1 milliliter with acetone. Analyses were carried out on a capillary column gas chromatograph with an electron capture detector (GC/ECD) for the organo-chlorine pesticides and acid extractable herbicides. The organo-phosphorus and soil sterilant compounds were analyzed on a capillary column gas chromatograph with a nitrogen-phosphorus detector (GC/NPD).

## VII. Quality Assurance

#### A. Field Data

Meteorological data were subject to standard Environment Canada procedures for quality assurance (Environment Canada, 1994; EPA, 1989). The field data for temperature and pressure were used for air sample volume corrections. The rain gauge data were used for wet deposition calculations.

#### B. Lab Data

An extensive quality assurance program was routinely incorporated with the sample analyses. This included procedures to assess precision, accuracy and contamination control. Procedures included method blanks, sample replicates, certified and standard reference materials and analyte or matrix spikes. The lab routinely used triphenyl phosphate, tetrachloro m-xylene, PCB 209 and 2,4-Dichlorophenyl acetic acid as laboratory surrogates. These compounds were added to the samples prior to their extraction, and the percentage recovery was used to assess the performance of the laboratory extraction and analyses procedures.

A field surrogate of 2-fluor-9-fluorenone was added to the cleaned sample media prior to shipping to the field where sampling was performed. The percent recovery of this surrogate was used to assess the performance of the entire procedure from field sampling to analyses.

For the Agassiz site, all field and lab blanks for rainfall were reported with values less than the detection limit. Only azinphos had a positive value for the 'method blank', and that was at the detection limit. The internal standards, used to assess overall field and lab processed had poor recoveries for 2,4-D and tetrachloro-m-xylene had some weeks with poor recoveries, but overall average spike recoveries were between 71 and 108%.

For dry air at Agassiz, all the filed and lab blanks were reported with values less than the detection limit. Only azinphos-methyl had a positive value for the 'method blank', and that was at the



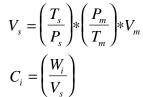
detection limit. The internal standards, used to assess overall field and lab processed had poor recoveries for 2,4-D and tetrachloro-m-xylene had some weeks with poor recoveries, but overall average spike recoveries were between 72 and 112%.

# VIII. Data Analyses and Discussion

### A. Field Data

The detailed meteorological data for temperature and atmospheric pressure were reduced to weekly averages, to be used in adjusting sampled air volumes to standard temperature and pressure. The weekly rainfall data was used to calculate wet deposition values.

The Agassiz site dry air sampling program operated from February 1996 through to March 1997, except for a short period in May-June 1996. Through this period forty-six weekly samples were taken and analyzed. Sampler operation was inhibited only by sample pump malfunction at approximately 4-6 week periods when the motors quit functioning. The motor for the Graesby Andersen HV/PUF normally operates for 24 hour periods, and was not intended to be used in the continuous fashion used in this sampling program.


The Abbotsford site operated through a similar sampling period and forty-seven samples were taken and analyzed. Sample operation was similarly limited by motor failure at this site.

Rainfall sample amounts at Agassiz were quite varied with the effects of temperature and seasonal storms. Freezing weather in the winter periods caused frozen samples, which may have resulted in lower concentrations (and deposition) of these chemicals.

Rainfall samples at Abbotsford also had seasonal freezing, but not as frequently as at the Agassiz site, even though they were only about 55 km apart.

### B. Calculations

The lab data was reported in terms of micrograms ( $\mu$ g) of chemical extracted from the sample submitted. For dry air samples, the data was then converted to concentrations in micrograms per cubic meter of air sampled ( $\mu$ g/m<sup>3</sup>). The volume of air sampled was derived from measurements taken on a dry gas meter (Rockwell), the weekly average for ambient temperature and pressure at the site, and then adjusted to standard temperature and pressure (20°C and 760 Torr).



# Equation 1: Standard volume calculation

# Equation 2: Dry air concentration calculation

where: "V" is volume, "P" is pressure, "T" is temperature, "W<sub>i</sub>" is weight of the individual chemical, "s" indicates standard, "m" indicates measured and "C<sub>i</sub>" indicates the concentration of the individual chemical.

For rainfall samples, the data was converted to concentrations in micrograms per liter ( $\mu$ g/l) by dividing by the rainfall volume during the sampling period. The rainfall volume was calculated from the product of the surface area of the sampler and the rain gauge measurements.

$$C_i = \left(\frac{W_i}{A * R_g}\right)$$

# Equation 3: Rain concentration calculation

where: " $R_g$ " indicates Rain gauge measured in mm rainfall, "A" is the surface area of the sampler and " $C_i$ " indicates the concentration of the individual chemical.

Deposition data for dry air was determined by the use of an average deposition velocity of 0.1 cm/sec (Slinn *et al.*, 1980) and the ambient air concentration for the sampling period.

$$D_r = \left(\frac{V_d * C_i}{t}\right)$$

where: "D<sub>r</sub>" indicates Deposition rate in  $\mu g/m^2/day$ , "V<sub>d</sub>", is the deposition velocity in cm/sec, "C<sub>i</sub>" indicates the concentration of the individual chemical in  $\mu g/l$  and "t" is the sampling period in days.

Deposition data for the rainfall was calculated from the measured weight of the chemical divided by the area of the sampler and the time sampled.

$$D_r = \left(\frac{W_i}{A * t}\right)$$

# Equation 5: Rainfall deposition calculation

where: "D<sub>r</sub>" indicates Deposition rate in  $\mu$ g/m<sup>2</sup>/day, "W<sub>i</sub>" is weight of the individual chemical, , "A" is the surface area of the sampler and "t" is the sampling period in days.

#### C. Dry Air

Data for Agassiz and Abbotsford samples are shown in Appendix 1: Dry air data for Agassiz. and Appendix 2: Dry air concentrations at Abbotsford. At Agassiz 16 OCs, 3 herbicides, 8 OPs and one soil sterilant were found in the dry air samples. At Abbotsford, 14 OCs, 3 herbicides, 8 OPs and one soil sterilant were found in the dry air samples. The statistical data for those chemicals found is shown in Table 2: Dry air concentration statistics for the Agassiz site and in Table 3: Dry air concentration statistics for the Abbotsford site.

#### 1. Agassiz

The samples at Agassiz showed concentration peaks (Figure 2: Dry air concentrations at Agassiz) from June through September, with the exception of an unusually high 2,4-D peak in February, which may have been due to local usage at or near the site. Captan appears to be the most widely used OC followed by dieldrin and hexachlorobenzene.

The predominant chemicals are 2,4-D, atrazine, dichlorvos, captan, dieldrin endosulfan, 2,4,5-TP and hexachlorobenzene at the Agassiz site.

Hexachlorohexane (HCH) or hexachlorobenzene (HCB), are two interchangeable terms used to describe a mixture of nine stereo-isomers of 1,2,3,4,5,6-hexachlorocyclohexane, is one of the most common organochlorine pesticides found in the environment (WHO, 1991). HCH formulations include pure Lindane ( $\gamma$ -HCH) and technical HCH, containing 55-80%  $\alpha$ -, 5-14%  $\gamma$ -, 2-16%  $\delta$ - and 3-5%  $\epsilon$ -HCH). HCB is a fungicide and a known impurity in several pesticide formulations. It is a banned substance in many countries. The International Agency for Research on Cancer (IARC) has classified HCB as a possible human carcinogen (Group 2B). Lindane, or  $\gamma$ -hexachlorocyclohexane, is ubiquitous and has been found in the Arctic. It is toxic to fish and aquatic organisms and also has a high chronic toxicity to mammals. IARC has classified  $\gamma$ -HCH as a possible human carcinogen (Group 2B) and is listed in the Canadian Environmental Protection Act, Part II (Toxic Substances Requiring Export Notification) (CEPA, 1992).

Hexachlorobenzene (HCB) and lindane were measurable (April through October) during the year long sampling program with a summer-time maximum at 1.96 ng/m<sup>3</sup> (average 0.47 ng/m<sup>3</sup>) and 0.49 ng/m<sup>3</sup> (average 0.34 ng/m<sup>3</sup>) for lindane. In a similar sampling program at Villeroy, Quebec (Poissant and Koprivnjak, 1996) reported ambient average concentrations of 0.032 ng/m<sup>3</sup> for  $\alpha$ -HCH and 0.038 ng/m<sup>3</sup> for  $\gamma$ -HCH, which were a factor lower in concentration than those in the



Fraser Valley. Because  $\gamma$ -HCH is the common form used in North America, and breakdown products include the  $\alpha$ -HCH form, then it appears that the HCH measured is from an aged air mass transported from elsewhere.

The herbicides 2,4-D, dicamba and Silvex were infrequently present and may indicate localized usage. Organo-phosphate pesticides parathion-methyl and dichlorvos were present in the winter through early summer periods. Diazinon, fonofos and malathion were present in the summer months. The soil sterilant atrazine was only present in summer months.

Dry deposition at Agassiz was calculated using an average deposition velocity of 0.1 cm/sec, for fine airborne particles (<0.1  $\mu$ m diameter) (Slinn & Slinn, 1980). Deposition rates are shown in Table 4 and Figure 8: Dry Deposition at Agassiz. The deposition rates vary between the detection limit and 1.4  $\mu$ g/m<sup>2</sup>/day. The highest values are for 2,4-D, atrazine, dichlorvos and captan. There does appear to be a summer peak in deposition for most chemicals, except for dichlorvos and 2,4-D.

#### 2. Abbotsford

The highest ambient concentrations measured at the Abbotsford site were diazinon, malathion, mevinphos, dichlorvos, captan, dinoseb, 2,4-D and endosulfan, respectively.

The Abbotsford site showed a concentration pattern (Figure 3: Dry air concentrations at Abbotsford) similar to that for Agassiz, for presence of chemicals with the exception of the 2,4-D peak in February. Total chemical concentrations peaked in the June-July period, with their presence diminishing greatly by September.

For the OC family of chemicals, captan and endosulfan I were the most common, and measured only in the summer months. For herbicides, dinoseb, 2,4-D and Silvex were the only chemicals measured in dry air, with 2,4-D in the winter months and Silvex and dinoseb in the summer (April through August) periods. OPs were present in the spring and summer months with diazinon and malathion as the most measured chemicals. Atrazine, a soil sterilant, was detected once in July.

Dry depositions were calculated with the average deposition velocity and are shown in Table 5: Annual Dry Deposition at Abbotsford and Figure 9: Dry Deposition at Abbotsford. Deposition rates vary from the detection limit to  $3.5 \ \mu g/m^2/day$  with the maximum value for diazinon. Most deposition values were about  $0.5 \ \mu g/m^2/day$ . Again, a summer maximum was observed.

#### D. Precipitation

Rainfall concentrations at Agassiz are shown in Appendix 3. Data for the Abbotsford site are shown in Appendix 4. The Agassiz site had only seven measurable chemicals. The decrease in the number of compounds measured was a function of the solubility of the compound in water (see Table 1). The Abbotsford site had a similarly reduced number of measurable compounds, only six chemicals.

#### 1. Agassiz

These chemicals appear to be present mostly in the late winter, spring and early summer months. The highest Agassiz rainfall concentrations were for captan, dichlorvos, 2,4-D, diazinon and malathion, in descending concentrations. There was no apparent repeating pattern. Captan appeared mainly in the summer (possibly from potato crop treatment) and the other chemicals had winter/ spring peaks (Figure 4: Concentrations in Rain at Agassiz).

Wet deposition was a function of rainfall amounts and had peak values for captan, dichlorvos, 2,4-D, diazinon and dieldrin. Dichlorvos appeared throughout the year with a peak in the summer. Smaller rainfall events in the summer periods had significant concentrations in the smaller rainfall



volumes (Figure 5: Rainfall Deposition at Agassiz) compared to heavier rainfall periods in the fall and winter.

#### 2. Abbotsford

The Abbotsford site had high concentrations of captan and 2,4-D in rain water. Captan was as high as  $6.2 \mu g/l$  in one rainfall sample taken in May (Figure 6: Concentrations in Rain at Abbotsford). High concentrations near  $1.2 \mu g/l$  occurred through the summer period, likely indicating nearby usage. High concentrations were also associated with low rainfall events. The 2,4-D was only observed once in February near the start of the sampling program and may have been due to weed control at the sampling site.

Deposition values were influenced by rainfall amounts. 2,4-D had the maximum deposition value at about 7  $\mu$ g/m<sup>2</sup>/day in February. Captan had the second highest value at about 5.2  $\mu$ g/m<sup>2</sup>/day in August (Figure 7: Rainfall Deposition at Abbotsford).

## IX. Summary Discussion

The United Nations Environmental Program (UNEP) Governing Council initiated an investigation into twelve specific persistent organic pollutants (POPs) in 1995. The twelve chemicals of concern included: DDT, aldrin, dieldrin, endrin, chlordane, heptachlor, hexachlorobenzene, mirex, toxaphene, polychlorinated biphenyls and dioxins and furans. Several of these compounds (aldrin, dieldrin, chlordane, heptachlor, hexachlorobenzene) were found in this sampling program.

#### A. Climate

Climate conditions at the two sites during the sampling period were somewhat different than the historical average. Mean temperatures were near average (30 year period 1961 - 1990) at both sites. However, one event in February 1996 occurred when temperatures reached 17.5°C. In May, September, November and December cooler temperatures than normal were recorded. The highest increased difference occurred in July when average temperatures were nearly two degrees warmer than normal and daily temperatures exceeded 30°C for a record six consecutive days (at Abbotsford).

During the sampling period the average total precipitation was much higher than normal (+9.1% at Agassiz and +19.0% at Abbotsford). However, this was the average of a mixture of monthly data that were below normal (February, March, June, July, August 1996 and February 1997) and also much higher than normal (April, May, September through January 1997). The cool November and December temperatures combined with increased precipitation produced record snowfalls at the eastern end of the LFV. Agassiz had a record one-day 48 cm snowfall on November 16. Abbotsford received 77.8 cm of snow in December, compared to an average of 23.9 cm. The period October 1996 to February 1997 were the wettest five months on record, even though February was drier than normal. In general, wetter than average climate conditions existed that could have influenced wet deposition.

This observed increase in rainfall would also tend to dilute any chemical concentrations (Capel, 1991) that were widespread (from transport); Capel reported that herbicide concentrations are higher during small rainfall events ( $\leq$  20 mm).

#### B. Chemicals

Total deposition is the sum of both the wet and dry deposition parts. This sampling program operated on the basis of week-long sample periods. During that week it was often possible to have periods of wet and dry deposition. At Agassiz, malathion, dichlorvos, diazinon, dieldrin and captan were found in both fractions. There was no observable wet to dry relationship, but on average about 85% was in the dry form. At Abbotsford, malathion, dichlorvos, diazinon, 2,4-D,

Atmospheric Concentrations of Agricul

cis-chlordane and captan were found in both fractions. Again, the wet to dry relationship was similar to Agassiz, except for captan which was present mostly in the rain.

Several of these chemicals are known or suspected carcinogens or cholinesterase inhibitors. Their presence in the atmosphere, even in small quantities may be cause for concern. None of the concentrations measured were over the maximum acceptable limits, threshold limit or permitted exposure levels (MAK/ TLV/ PEL) in the literature (Table 1).

Relatively little is known on a regional or temporal scale about the occurrence and deposition patterns for these agricultural chemicals, or how these deposition amounts relate to amounts applied directly to crop land or how much is in stream runoff. The data from these two sites indicates that there are agricultural chemicals in the air and rain. Two sites only provide a small picture of the impact on the Fraser Valley area.

Aldrin, chlordane, dieldrin, fonofos and 2,4,5-TP have been discontinued in the U.S. and aldrin, dieldrin and chlordane(1985) have been discontinued in Canada, and 2,4,5-TP has never been registered in Canada; however they exist in the atmosphere and other media, such as fish; concentrations of aldrin, chlordane dieldrin, and other OCs have been measured in Peamouth chub at nearby locations in the Fraser River (Raymond, 1997). These chemicals be in illegal usage locally or may be transported by winds from remote sources.

Atrazine is used as a herbicide in corn growing areas. Atrazine was measured at both sites in the summer time, but only once at Abbotsford, and never in the rainfall. Dry, or total, deposition at Agassiz was 3.35 µg/m<sup>2</sup>/year for atrazine. A study in the mid-western and northeastern United States (Goolsby, 1997) reported that the concentration of atrazine in rainfall was 0.2-0.4 µg/l, and had deposition rates at 240  $\mu$ g/m<sup>2</sup>/year in mid-west to 10  $\mu$ g/m<sup>2</sup>/year in the east. It was also noted by Goolsby that atrazine deposition to Great Lakes was 12-63  $\mu q/m^2/vear$ . The persistence of atrazine in the atmosphere has been attributed to its long half-life in soil (~15 days) and the consequentially longer period that it has to volatilize to the atmosphere, contributing to lower concentrations, but over a longer period of time. Deposition rates at Agassiz are well below those to the mid-west corn belt and that to the Great Lakes area. Most herbicides are relatively soluble in water and more than two dozen agricultural pesticides have been measured in precipitation and fog in the United States (Glotfelty et al., 1987, Richards et al. 1987, Capel, 1991, Nations et al., 1992, Majewski et al., 1995) Canada (Waite et al., 1995) and Europe (Buser, 1990, Trevisan et al., 1993). A recent U.S. Geological survey report (Goodbred, 1997) states that water-soluble pesticides such as atrazine have possible endocrine disrupter affects in fish - a surprising result as these pesticides do not bio-accumulate in fish, as organochlorine compounds do.

Chlordane in dry air was mainly observed at the Agassiz site with very little measured at the Abbotsford site. Concentrations ranged from about 0.08-0.50 ng/m<sup>3</sup> at Agassiz for cis-chlordane and about 0.08-0.72 ng/m<sup>3</sup> trans-chlordane. This would tend to indicate local usage of the chemical in the Agassiz area for broad-spectrum insecticide control. Usage (except for termite control) was supposed to have been discontinued in Canada in 1990 and all supplies disposed of by 1995. Chlordane in soil has a half-life of about 3.3 years, and previous usage in the Agassiz area combined with hotter summer temperatures may result in re-volatilization into the local atmosphere. Chlordane is a controlled substance listed in Part II of CEPA ("List of Prohibited Substances Requiring Export Notification from Canada"). Chlordane is considered to be a chemical subject to long range transport, and has been measured in the Great Lakes area at 0.67-76. pg/m<sup>3</sup> cis-chlordane and MDC-75 pg/m<sup>3</sup> trans-chlordane - about two orders of magnitude lower than that observed in LFV (Hoff et al., 1992). A useful transport diagnostic tool is the ratio of the chlordane cis- and trans-isomers (TC/CC=1.26) found in technical grade chlordane. The vapour pressure of the trans-isomer is greater than that for the cis-isomer and this would allow greater mobility of the trans form. Increased summer-time temperatures would increase the atmospheric concentration of the trans-isomer. This technique was used by Hoff et al. and showed a winter-time equivalence to this ratio; elsewhere, the ratio was less (near 1:1) than that



for the technical chlordane. In the LFV the reverse picture was observed with summer-time ratios near 1.26 and winter-time ratios near unity. The reason for this difference is not immediately obvious.

Dieldrin was measured in dry air at Agassiz (0.1-2.66 ng/m<sup>3</sup>) and Abbotsford (0.05-0.07 ng/m<sup>3</sup>) even though pesticide registration in Canada was discontinued in 1990. Re-volatilization or long range transport of chemicals is a likely source. Measurements in the Lake Erie area (Eisenreich *et al.*, 1981, Bidelman, 1988) report lower values (0.01 ng/m<sup>3</sup>). In rainfall, dieldrin values were 53 ng/l at Agassiz and 42 ng/l at Abbotsford, compared to 1.5 ng/l at Lake Erie (Eisenreich *et al.*, 1981; Murphy, 1984; Strachan, 1985; Strachan and Eisenreich, 1985). Measurements in southern Ontario, Canada (Hoff *et al.*, 1992) reported maximum concentrations of approximately 0.2 ng/m<sup>3</sup>; a value in the lower range of measurements in the LFV.

Endosulfan is a widely used miticide and insecticide. The technical grade is composed of 2 isomers ( $\alpha$ -endosulfan and  $\beta$ -endosulfan). It is acutely toxic to freshwater fish and invertebrates. The  $\alpha$ -endosulfan is the most common form (Agassiz) and occurred from April through November while the  $\beta$ -form was only measured in the warmer months of June through October; concentration patterns of the  $\alpha$  and  $\beta$  forms were consistent between sites implying transport from remote sources. Dry air concentrations of endosulfan I at 0.06-2.63 ng/m<sup>3</sup> and 0.05-2.31 ng/m<sup>3</sup> were measured at Agassiz and Abbotsford. Dry air concentrations of endosulfan II at 0.07-0.55 ng/m<sup>3</sup> and 0.04-0.65 ng/m<sup>3</sup> were measured at Agassiz and Abbotsford. Total endosulfan values of almost 4.0 ng/m<sup>3</sup> were reported by Hoff *et al.* for measurements of dry air in southern Ontario (comparable to totals of 3.0 and 3.2 ng/m<sup>3</sup> at the Abbotsford and Agassiz sites (respectively). In a 1975-1976 Canadian study (Brooksbank, 1983)  $\alpha$ -endosulfan and  $\beta$ -endosulfan were reported in rainfall samples at 1-30 ng/L and 1-30 ng/L with the highest values measured in the Vancouver area. However, in this sampling program endosulfan was not detected in rainfall samples.

The chlorinated cyclic compounds hexachlorobenzene compounds ( $C_6CI_6$  or <u>HCB</u>) and hexachlorocyclohexanes ( $C_6H_6CI_6$  or <u>HCH</u>) were both measured in this sampling program.

Hexachlorobenzene was commonly used as a seed dressing to prevent fungal diseases until 1972 when it was discontinued. HCB is widely distributed throughout Canada because it is mobile and resistant to degradation. HCB has a high chronic toxicity and is a known animal carcinogen (IARC). HCB has been declared "toxic" under CEPA controls. In measurements at Abbotsford and Agassiz, dry air data HCB (hexachlorobenzene) measurements averaged 0.190 ng/m<sup>3</sup> (range 0.058-1.024 ng/m<sup>3</sup>) and 0.474 ng/m<sup>3</sup> (range 0.068-1.959 ng/m<sup>3</sup>), respectively. Surveys in the Arctic (UNEC LRTAP, 1994) have reported levels averaging 0.15 ng/m<sup>3</sup>. Hoff *et al* report values ranging from 0.4-640 pg/m<sup>3</sup> in southern Ontario, which is similar to values in the LFV. HCB was measured at the LFV sites during all times of the year in similar concentration patterns and levels; this supports the observation that it is ubiquitous throughout the world. Current atmospheric sources are as a contaminant from other pesticides, or as a long range transported chemical.

Hexachlorocyclohexane (HCH, BHC or benzene hexachloride) exists in the  $\alpha$ ,  $\beta$ ,  $\gamma$  and  $\delta$  isomer forms for the technical product.  $\gamma$ -HCH is commonly referred to as <u>lindane</u>. BHC, like HCB, is also a commonly used seed dressing chemical in Canada. It has a high vapour pressure and volatilizes readily, and is ubiquitous. Lindane has an estimated atmospheric lifetime of about 17 days and can therefore be transported great distances before it is removed from the air. Lindane has a high acute toxicity for fish and a relatively high chronic toxicity for mammals. The  $\alpha$ -,  $\beta$ - and  $\delta$ -BHC isomers were not found in this sampling program. Only the  $\gamma$ -BHC form (lindane) was measured in dry air in this study at: Abbotsford, where measurements averaged 0.213 ng/m<sup>3</sup>  $\gamma$ -BHC (range 0.154-0.346 ng/m<sup>3</sup>); and Agassiz where measurements averaged 0.338 ng/m<sup>3</sup>  $\gamma$ -BHC (range 0.154-0.490 ng/m<sup>3</sup>). Measurements in southern Ontario by Hoff *et al* were at 4-820 pg/m<sup>3</sup>  $\gamma$ -HCH, covering the range measured in this work. The measurements patterns were different at the two sites with episodes in spring, summer, fall and winter; this may indicate local sources of



lindane. Because lindane is soluble in water or rain (7 mg/l) and deposition to the land and water is likely in the LFV, it's high toxicity to fish is a potential problem for areas like the Fraser Valley where fisheries are present. The technical grade is 5-80%  $\alpha$  and 8-15%  $\gamma$  (Metcalf, 1955). A ratio of the  $\alpha/\gamma$  forms for the technical grade HCH should be about 3.6-10. The  $\gamma$  form is the active ingredient and is the most depleted with time and aerial transport, as shown in the Arctic where the  $\alpha/\gamma$  ratio is about 12 (Hargrave *et al.*, 1989). The ratio in the LFV samples is approximately 1.0 for most of the samples, which may indicate nearby usage or transport into the area of the  $\gamma$  form, and thus reducing the ratio.

 $\alpha$ -BHC was only measured once in rainfall at the Agassiz site (0.038  $\mu$ g/l) and there was no corresponding dry air sample for the same time period.

### C. Sources

Possible sources of these agricultural chemicals are from local applications to farm land in the LFV. Another possibility is that long range transport occurred depositing these chemicals in the LFV area. It is difficult to match 7-day measurement events with typically 3-5 days synoptic events. However, if an assumption is made that a period with an extended dry period and a measurement event coincide, then it may be possible to use a back-trajectory program to evaluate possible sources. Environment Canada uses a trajectory program (TRAJPLOT) to project five day forecast and backcast trajectories. This was employed in a special event when a period of unusually warm air invaded the LFV in winter time (February 17, 1996) and there was a peak in 2,4-D at both sampling sites. 2,4-D is not commonly used during this period and therefore unusual. A back trajectory (Figure 10) shows a two level plot for 1000 millibars (mb) (ground level) and 850 mb (~1000 meters). The ground level plot appears to come from the direction of the Imperial Valley in southern California, which is where it would also be logical to expect a supply of warmer air. Agriculture Canada (Bowen, 1997) reports that it is common practice in California in February to treat seeds with 2,4-D before early planting. Although there is some room for discussion, the two events seem to indicate that long range transport of chemicals can occur.

# X. Conclusions

Agricultural chemicals are present in the atmosphere of the lower Fraser Valley in both dry air and in rainfall. There is a summer-time increase in concentrations at both of the sampling sites, but there are some differences in the types and amounts of chemicals at each site. These chemicals may be in local use, or may have been transported there from other locations, possibly at great distances via a 'leap frog' evaporation and condensation effect. Twenty eight chemicals were found in the dry air and eight chemicals were found in the rainfall at one site. Some of these chemicals may be present in concentrations of concern to aquatic and insect life: seven are suspected carcinogens; two are known carcinogens; seven are known cholinesterase inhibitors.

These chemicals are also important because there is international concern (UNEP) about several of the agricultural chemicals found in this sampling program. Five (aldrin, dieldrin, chlordane, heptachlor, hexachlorobenzene) of the twelve chemicals of concern were measured in this sampling program.

Long range transport of pollutants to the LFV appears to be possible.

## XI. Acknowledgments

GVRD staff for their co-operation in the site operation and the transport of sample media to and from the laboratory.

Applied Sciences Laboratory (ASL) for their participation in a new sampling technique and development of analyses techniques for ambient air samples.



## XII.

#### References

Bidelman, T.F., Atmospheric Processes, Environ. Sci. Technol., 22, pp. 361-367, 1988

Brooksbank, P., The Canadian Network for Sampling Organic Compounds in Precipitation, Technical Bulletin No. 129, Inland Waters Directorate, Water Quality Branch, Ottawa, Canada, **1983** 

Buser, H.R., *Environ. Sci. Technol.*, 24, pp. 1049-1058, 1990

Capel, P. D., Water Resour. Invest. (U.S. Geolog. Surv.), No. 91-4034, pp. 334-337, 1991

CEPA, Canada Gazette II, 126(25):4531, 2 December 1992

CEPA, List of Toxic Substances Requiring Export Notification, Canada Gazette II, 126(25):4531,2, December **1992** 

Eisenreich, S.J., Looney B.B., and Thornton, J.D., Airborne Organic Contaminants in the Great Lakes Ecosystem, *Environ. Sci. Technol.*, *15*, pp. 30-38, **1981** 

Environment Canada, Great Lakes Water Quality Agreement Annex 15, Integrated Atmospheric Deposition Network, Sampling Protocol Manual (SPM), Report: ARD 94-003, **1994** 

EPA, Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, US Environmental Protection Agency, through National Technical Information Service, US Department of Commerce, EPA/600/4-89/017, **1988** 

EPA, Quality Assurance Handbook for Air Pollution Measurement Systems: Volume IV. Meteorological Measurements, EPA/600/4-90/003, August **1989** 

Glotfelty, D.E., Seiber J.N., and Lilijahl, L. A., *Nature*, 325, pp.602-605, 1987

Goodbred, S. National fish survey links pesticides with sex hormone imbalance, *Environ. Sci. & Technol.*, Vol. *31*, No. 7, p 314A, **1997** 

Goolsby, D. A., Thursman, E. M., Pomes, M. L., Meyer M. T. and Battaglin, W. A., Herbicides and their metabolites in rainfall: Origin, transport and deposition patterns across the mid-western and northeastern United States, 1990-1991, *Environ. Sci. Technol.*, *31*, pp.1325-1333, **1997**.

Hoff, R.M., Muir D.C.G., and Griff, N.P., Annual cycle of polychlorinated biphenyls and organohalogen pesticides in air in southern Ontario: 1- Air concentration data, *Environ. Sci. Technol.*, *26*, pp. 266-275, **1992** 

Majewski, M.S. and Capel, P.D., Pesticides in the Atmosphere - Distribution Trends and Governing Factors, Ann Arbour Press: Chelsea, MI, pp. 88-110, **1995** 

Murphy, T.J., Atmospheric inputs of chlorinated hydrocarbons to the Great Lakes. In *Toxic Contaminants in the Great Lakes*, J.O. Nriagu and M.S. Simmons, eds., pp. 53-79, New York, Wiley, **1984** 

Nations, B.K. and Hallberg, G.R., J. Environ. Qual., 21, pp.486-492, 1992



Poissant, L. and Koprivnjak, J-F., Fate and atmospheric concentrations of a- and ghexachlorocyclohexane in Quebec, Canada, *Environ. Sci. Technol.*, *30*, pp. 845-851, **1996** 

Raymond, B., Environment Canada, Fraser River Action Plan: Sediment & Resident Fish Contaminants Assessment - Organochlorine Pesticides, unpublished, **1997** 

Richards, P.R., Kramer, J.W., Baker D.B. and Kreiger, K.A., *Nature*, 327, pp. 129-131, 1987

Ritter, L., Solomon, K.R., Forget, J., Stemeroff M. and O'Leary, C., Persistent Organic Pollutants: An assessment report on aldrin, chlordane, DDT, dieldrin, dioxins and furans, endrin, heptachlor, hexachlorobenzene,mirex, polychlorinated biphenyls and toxaphene, submission to Intergovernmental Conference to Adopt a Global Programme of Action for the Protection of the Marine Environment from Lnad-Based Activities, Washington D.C., 23 October to 3 November **1995** 

Slinn, S. A., and Slinn, W. G. N., Atmospheric Input of Pollutants to Natural Waters, Editor: S. J. Eisenreich, Ann Arbour Science Publishers, Ann Arbour Michigan, **1980** 

Strachan, W.M.J., Organic substances in the rainfall of Lake Superior: 1983, *Environ. Sci. Technol.*, *4*, pp. 677-683, **1985** 

Trevisan, M., Montepiani, C., Ragozza, L., Bartoletti, C., Ioannilli E., and Del Re, A.A.M., *Environ. Pollu*t., *80*, pp. 31-39, **1993** 

Waite, D.T., Grover, R., Wescott, N.D., Irving, D.G., Kerr L.A. and Sommerstad, H., *Environ. Toxicol. Chem.* 14, pp. 1171-1175, **1995** 

WHO (World Health Organization), Lindane, Environmental Health Criteria Series, WHO, Geneva, **1991** 



# XIII.

## Tables

Table 1: Properties of Agricultural Chemicals.

| Chemical                           | Ref.              | Molecular<br>Wt | Vapour<br>Press(20C) | Melting<br>Point | Solubility<br>Water | LD50 oral<br>male rat<br>(mg/kg) | Carcinogen | Choline.<br>Inhibitor | MAK /TLV<br>/PEL<br>(mg/m3) | Note                                               |
|------------------------------------|-------------------|-----------------|----------------------|------------------|---------------------|----------------------------------|------------|-----------------------|-----------------------------|----------------------------------------------------|
| 2,4,5-T                            | 8999<br>TAA100    | 255.49          |                      | 151.0            | 235 ppm             | 300                              | suspected  | -                     | 10/ 10/ 10                  | Poison, mutation data reported;<br>EPA banned 1985 |
| 2,4-DB                             | 2828<br>DGA000    | 249.09          |                      | 117.0            | 46 ppm              | 700                              |            | -                     |                             | mod tox; exp. teratogen.                           |
| 2,4'-DDD                           | CDN000            | 320.04          |                      |                  |                     |                                  |            |                       |                             | chlodithane;ingestin systemic<br>effects           |
| 2,4'-DDE                           | 3424-82-6         | 318             |                      | 88.0             |                     |                                  |            |                       |                             |                                                    |
| 2,4'-DDT                           | BIO625            | 354.48          |                      |                  |                     |                                  |            |                       |                             | exp. teratogen                                     |
| 2,4-Dichlorophenoxy<br>Acetic acid | 2802<br>DAA800    | 221.04          |                      | 138.0            | 890 ppm             | 375                              | suspected  | -                     | 10/ 10/ 10                  | poison; exp. teteragen                             |
| 4,4'-DDD                           | BIM500            | 320.04          |                      |                  |                     |                                  | Known      |                       |                             | poison, mutagen                                    |
| 4,4'-DDE                           | BIM750<br>72-55-9 | 318.02          | 6.50E-06             | 88.4             | 0.12 ppm            | 880                              | suspected  |                       |                             | p,p'-DDE                                           |
| 4,4'-DDT                           | DAD200            | 354.48          |                      | 108.5            | 0.1 ppm             | 87                               | Known      |                       | 1/ 1/ 1                     | p,p'-DDT                                           |
| Aldrin                             | 219<br>AFK250     | 364.93          | 7.50E-05             | 104.0            | 0.1 ppm             | 39                               |            | -                     | 0.25/ 0.25/<br>0.25         | exp. teratogen; Discontinued in USA                |
| Atrazine                           | 886<br>ARQ725     | 215.68          |                      | 171.0            | 70 ppm              | 672                              |            | -                     | 2/ 5/ 5                     | mod. toxic; exp. teratogen                         |
| Azinophos methyl                   | 926<br>ASH500     | 317.34          | 2.20E-07             | 74.0             | 29 ppm              | 7                                |            | Known                 | 0.2/ 0.2/ 0.2               | poison; exp. teteragen                             |
| BHC, a-                            | BBQ000            | 290.82          |                      |                  | 0.1 ppm             | 177                              | Known      | -                     | 0.5//                       |                                                    |
| BHC, b-                            | BBR000            | 290.82          |                      |                  |                     | 6000                             |            | -                     | 0.5//                       |                                                    |
| BHC, d-                            | BFW500            | 290.82          |                      |                  |                     | 1000                             |            | -                     |                             |                                                    |
| BHC, g- (Lindane)                  | 5379<br>BBQ500    | 290.85          | 9.40E-06             | 112              | 7.3 ppm             | 76                               | Known      | -                     | 0.5/ 0.5/ 0.5               | teratogen, mutagen                                 |
| Captan                             | 1771<br>CBG000    | 300.57          |                      | 178.0            | 5.1ppm              | 9000                             |            | -                     | / 5/ 5                      |                                                    |
| Carbophenothion                    | 1827              | 342.85          |                      |                  | Insol.              | 30                               |            | Known                 |                             |                                                    |



| Chlordane (a), cis-   | 2079<br>CDR675 | 409.8  | 1.3 mPa<br>@25C    | 106.0   | 0.1 ppm       | 500  | suspected | -     | 0.5                 | EPA cancel use; toxic by ingestion                     |
|-----------------------|----------------|--------|--------------------|---------|---------------|------|-----------|-------|---------------------|--------------------------------------------------------|
| Chlordane, trans- (g) | CDR575         | 409.8  |                    | 104.0   | 0.1 ppm       |      |           |       | 0.5                 | toxic by ingestion                                     |
| Chlorpyrifos          | 2190<br>CMA100 | 350.57 | 0.0000187<br>(25)  | 41.0    | 0.4 ppm       | 82   |           | -     | / 0.2/ 0.2          | poison; exp. teteragen                                 |
| Dacthal               | TBV250         | 331.96 |                    |         | 0.5 ppm       |      |           |       |                     |                                                        |
| Diazinon              | 2978<br>DCM750 | 304.36 | 1.40E-04           | dec 120 | 60 ppm        | 66   |           | Known | 1.0/ 0.1/ 0.1       | poison, exp. teratogen                                 |
| Dicamba               | 3026<br>MEL500 | 221.04 | 0.00375 (100)      | 114.0   | vssol         | 1040 |           | -     |                     | mod. toxic, some mutation data                         |
| Dichlorprop           | 3068<br>DGB000 | 235.05 |                    | 117.0   | 350 ppm       | 800  | suspected | -     |                     | poison; exp. teratogen<br>pre+post emergence herbicide |
| Dichlorvos            | 3069<br>DGP900 | 220.98 | 1.20E-02           |         | 1g/100ml      | 25   |           | Known | 0.1/0.1/1.0         | poison, exp. teratogen                                 |
| Dicofol               | 3075<br>BIO750 | 370.47 |                    | 77.0    | 1.0 ppm       | 575  |           | -     |                     | Poison, some mutation data                             |
| Dieldrin              | 3093           | 380.93 | 3.10E-06           | 150.0   | 0.1 ppm       | 46   |           | -     | 0.25/ 0.25/<br>0.25 | Discontinued in USA; exp<br>teratogen                  |
| Dimethoate            | 3209<br>DSP400 | 229.28 |                    | 52.0    | 39,800<br>ppm | 60   |           | Known |                     | deadly human poison;<br>systemic/ contact              |
| Dinoseb               | 3282<br>BRE500 | 240.22 |                    | 38.0    | 2,200 ppm     | 25   |           | -     |                     | poison, mutagen data reported                          |
| Endosulfan I          | 3529<br>EAQ750 | 406.95 | 1.70E-07           | 106.0   | 0.32 ppm      | 43   |           | -     | / 0.1/ 0.1          | a-endosulfan; poison; exp.<br>teratogen                |
| Endosulfan II         |                | 406.95 |                    | 212.0   | 0.33 ppm      |      |           |       |                     | b-endosulfan                                           |
| Endosulfan Sulfate    |                | 422.9  |                    | 181.0   |               |      |           |       |                     |                                                        |
| Endrin                | 3533<br>EAT500 | 380.93 | 0.0000002<br>(25C) | dec 245 |               | 3    |           | -     | 0.1/ 0.1/ 0.1       | Discontinued in USA; poison;<br>exp. teratogen         |
| Endrin Aldehyde       |                |        |                    |         |               |      |           |       |                     |                                                        |
| Fenitrothion          | 3922<br>DSQ000 | 277.25 | 6.00E-06           |         | Insol.        | 250  |           | Known |                     | poison, mutation effects reported                      |
| Fensulfothion         | 3943<br>FAQ800 | 308.35 |                    |         |               | 2    |           |       | / 0.1/ 0.1          | poison; nematocide on golf courses                     |
| Fenthion              | 3945<br>FAQ900 | 278.34 | 3.00E-05           |         | 4.2 ppm       | 180  |           | Known | 0.2/ 0.2/ 0.2       | poison, mutation effects reported                      |
| Folpet                | 4142<br>TIT250 | 296.58 |                    | 177.0   |               | 7540 |           | -     |                     |                                                        |
| Fonofos               | 4147<br>FMU045 | 246.32 |                    |         | 16.9 ppm      | 3    |           | Known | / 0.1/ 0.1          | poison                                                 |



| Heptachlor         | 4576<br>HAR000 | 373.35 | 0.0003 (25C) | 95.0    | ssol           | 40    | suspected | -     | 0.5/ 0.5/ 0.5         | Reg'n cancelled in USA;<br>except termite control         |
|--------------------|----------------|--------|--------------|---------|----------------|-------|-----------|-------|-----------------------|-----------------------------------------------------------|
| Heptachlor Epoxide | EBW500         | 389.3  |              |         |                | 47    | suspected |       |                       | human mutat'n data reported                               |
| Hexachlorobenzene  | 4600<br>HCC500 | 284.8  | 1.09E-05     | 231.0   | Insol.         | 10000 | suspected | -     | /(0.025)<br>proposed/ | Poison                                                    |
| Malathion          | 5582<br>MAK700 | 330.36 | 0.00004 (30) |         | 130 ppm        | 290   |           | Known | 15/ 10/ 5             | poison, exp. teratogen                                    |
| Methoxychlor       | 5913<br>MEI450 | 345.65 |              | 78.0    | 0.1 ppm        | 5000  | suspected | -     | ?/15/10               |                                                           |
| Mevinphos          | 6089<br>MQR750 | 224.16 |              |         | 600,000<br>ppm | 3     |           | Known | 0.01/ 0.01/<br>0.01   | poison                                                    |
| Mirex              | 6126<br>MQW500 | 545.59 |              | dec 485 | Insol.         | 235   | Known     | -     |                       | poison; exp. teratogen<br>fire retardant in plastics, etc |
| Nonachlor, cis-    | 39766-80-5     | 444.23 |              |         |                | 500   |           |       |                       | in tech. chlordane                                        |
| Nonachlor, trans-  |                | 444.23 |              |         |                |       |           |       |                       |                                                           |
| Oxychlordane       |                |        |              |         |                |       |           |       |                       |                                                           |
| Parathion          | 6983<br>PAK000 | 291.27 | 3.78E-05     |         | 24 ppm         | 2     |           | Known | 0.1/ 0.1/ 0.1         | Deadly poison; exp. teratogen                             |
| Parathion Methyl   | MNH000         | 263.22 |              | 37.0    | 60. ppm        | 6     |           |       | 0.2/0.2/0.2           | poison; exp. teratogen                                    |
| Permethrin, c-     | 7132<br>AHJ750 | 391.29 | <1.0E-6      | 35.0    | <1ppm          | 410   |           | -     |                       | Ambush                                                    |
| Permethrin, t-     | 7132<br>AHJ750 | 391.29 | <1.0E-6      | 35.0    | <1ppm          | 410   |           | -     |                       | Ambush                                                    |
| Phosmet            | 7311<br>PHX250 | 317.32 | 0.001 (50)   | 71.9    | 20 ppm         | 92.5  |           | -     |                       | human poison; exp. teratogen                              |
| Silvex (2,4,5-TP)  | 8483<br>TIX500 | 269.53 |              | 181.6   | 2.5 ppm        | 650   | suspected | -     |                       | poison; exp. teratogen<br>permit cancelled in USA         |
| Simazine           | 8485<br>BJP000 | 201.67 |              | 226.0   | 6.2 ppm        | 971   |           | -     |                       | mod. toxic; exp. teratogen                                |
| Terbufos           | 9088<br>BSO000 | 288.41 |              |         | 5 ppm          | 1.6   |           | Known |                       | deadly poison                                             |





| Agassiz Site              | Concs (ng/m3)                      | Maximum | Minimum | Average |
|---------------------------|------------------------------------|---------|---------|---------|
| Organochlorine Pesticides | Captan                             | 4.242   | 0.148   | 1.448   |
| - <b>3</b>                | cis-Chlordane (a)                  | 0.492   | 0.063   | 0.226   |
|                           | trans-Chlordane (g)                | 0.730   | 0.054   | 0.260   |
|                           | Dacthal                            | 0.848   | 0.136   | 0.363   |
|                           | 4,4'-DDE                           | 0.139   | 0.139   | 0.139   |
|                           | Dicofol                            | 0.337   | 0.337   | 0.337   |
|                           | Dieldrin                           | 2.657   | 0.103   | 1.010   |
|                           | Endosulfan I                       | 2.629   | 0.061   | 0.708   |
|                           | Endosulfan II                      | 0.548   | 0.075   | 0.253   |
|                           | Heptachlor                         | 0.148   | 0.148   | 0.148   |
|                           | Heptachlor Epoxide                 | 0.662   | 0.080   | 0.288   |
|                           | Hexachlorobenzene                  | 1.959   | 0.068   | 0.474   |
|                           | Lindane (g-BHC)                    | 0.490   | 0.154   | 0.338   |
|                           | cis-Nanochlor                      | 0.184   | 0.184   | 0.184   |
|                           | trans-Nanochlor                    | 0.645   | 0.054   | 0.217   |
|                           | Oxychlordane                       | 0.763   | 0.123   | 0.278   |
| Herbicides                | 2,4-Dichlorophenoxy<br>Acetic acid | 15.729  | 1.962   | 6.646   |
|                           | Dicamba                            | 1.708   | 1.708   |         |
|                           | Silvex (2,4,5-TP)                  | 2.182   | 1.947   | 2.065   |
|                           | Chlorpyrifos                       | 1.264   | 0.170   | 0.612   |
|                           | Diazinon                           | 1.186   |         |         |
|                           | Dichlorvos                         | 10.689  | 0.556   | 2.990   |
|                           | Dimethoate                         | 0.340   | 0.340   |         |
|                           | Fonofos                            | 2.643   | 0.170   |         |
|                           | Malathion                          | 3.398   |         |         |
|                           | Parathion Methyl                   | 0.158   | 0.156   | 0.157   |
|                           | Turbufos                           | 0.741   | 0.305   |         |
| Sterilants                | Atrazine                           | 14.458  | 1.676   | 5.529   |

| Table 2. Dr  | air concentration statistics | for the Agencia site |
|--------------|------------------------------|----------------------|
| Table 2. Dry | air concentration statistics | for the Agassiz site |



#### Table 3: Dry air concentration statistics for the Abbotsford site

| Abbotsford                 | Concentrations (ng/m3) | Maximum | Minimum | Average |
|----------------------------|------------------------|---------|---------|---------|
| Dry Air                    |                        |         |         |         |
| Organochlorine Pesticides  | Aldrin                 | 0.246   | 0.246   | 0.246   |
|                            | Captan                 | 6.556   | 0.128   | 1.823   |
|                            | cis-Chlordane (a)      | 0.253   | 0.123   | 0.188   |
|                            | trans-Chlordane (g)    | 0.102   | 0.102   | 0.102   |
|                            | Dacthal                | 1.024   | 0.202   | 0.478   |
|                            | Dieldrin               | 0.072   | 0.049   | 0.062   |
|                            | Endosulfan I           | 2.309   | 0.050   | 0.620   |
|                            | Endosulfan II          | 0.652   | 0.035   | 0.184   |
|                            | Heptachlor             | 1.024   | 1.024   | 1.024   |
|                            | Heptachlor Epoxide     | 0.184   | 0.077   | 0.131   |
|                            | Hexachlorobenzene      | 1.024   | 0.058   | 0.190   |
|                            | Lindane (g-BHC)        | 0.346   | 0.154   | 0.213   |
|                            | trans-Nanochlor        | 0.077   | 0.077   | 0.077   |
|                            | Oxychlordane           | 0.430   | 0.111   | 0.244   |
| Herbicides                 | 2,4-Dichlorophenoxy    | 4.571   | 0.719   | 2.301   |
|                            | Acetic acid            |         |         |         |
|                            | Dinoseb                | 6.413   | 3.127   | 4.770   |
|                            | Silvex (2,4,5-TP)      | 1.242   | 1.242   | 1.242   |
| Organophosphate Pesticides | Chlorpyrifos           | 1.518   | 0.197   | 0.666   |
|                            | Diazinon               | 42.688  | 0.072   | 4.664   |
|                            | Dichlorvos             | 6.556   | 0.233   | 1.172   |
|                            | Fonofos                | 0.128   | 0.128   | 0.128   |
|                            | Malathion              | 11.385  | 0.196   | 3.688   |
|                            | Mevinphos              | 8.654   | 2.458   | 5.556   |
|                            | Parathion Methyl       | 0.607   | 0.229   | 0.418   |
|                            | Terbufos               | 3.783   | 0.232   | 1.246   |
| Sterilants                 | Atrazine               | 2.622   | 2.622   | 2.622   |



#### Table 4: Annual Dry Deposition at Agassiz

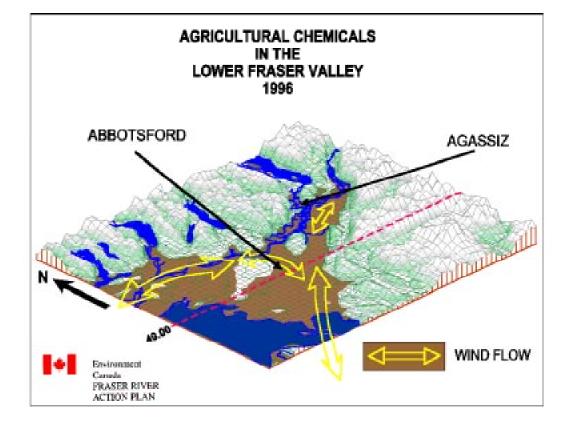
| Yearly Dep'n | Agassiz             |
|--------------|---------------------|
| ug/m2/yr     | 1996-1997           |
| 2.048        | Captan              |
| 0.480        | cis-Chlordane (a)   |
| 0.551        | trans-Chlordane (g) |
| 0.330        | Dacthal             |
| 0.014        | 4,4'-DDE            |
| 0.034        | Dicofol             |
| 3.471        | Dieldrin            |
| 1.788        | Endosulfan I        |
| 0.358        | Endosulfan II       |
| 0.015        | Heptachlor          |
| 0.611        | Heptachlor Epoxide  |
| 1.818        | Hexachlorobenzene   |
| 0.137        | Lindane (g-BHC)     |
| 0.019        | cis-Nanochlor       |
| 0.438        | trans-Nanochlor     |
| 0.394        | Oxychlordane        |
| 2.014        | 2,4-Dichlorophenoxy |
|              | Acetic acid         |
| 0.173        | Dicamba             |
| 0.417        | Silvex (2,4,5-TP)   |
| 0.495        | Chlorpyrifos        |
| 0.636        | Diazinon            |
| 6.042        | Dichlorvos          |
| 0.034        | Dimethoate          |
| 0.580        | Fonofos             |
| 1.388        | Malathion           |
| 0.032        | Parathion Methyl    |
| 0.259        | Turbufos            |
| 3.352        | Atrazine            |



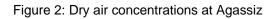

#### Table 5: Annual Dry Deposition at Abbotsford

| Yearly Dep'n | Abbotsford          |
|--------------|---------------------|
| ug/m2/yr     | 1996-1997           |
| 0.023        | Aldrin              |
| 3.597        | Captan              |
| 0.035        | cis-Chlordane (a)   |
| 0.010        | trans-Chlordane (g) |
| 0.135        | Dacthal             |
| 0.017        | Dieldrin            |
| 1.223        | Endosulfan I        |
| 0.207        | Endosulfan II       |
| 0.096        | Heptachlor          |
| 0.025        | Heptachlor Epoxide  |
| 0.517        | Hexachlorobenzene   |
| 0.080        | Lindane (g-BHC)     |
| 0.007        | trans-Nanochlor     |
| 0.069        | Oxychlordane        |
| 0.649        | 2,4-Dichlorophenoxy |
|              | Acetic acid         |
| 0.896        | Dinoseb             |
| 0.117        | Silvex (2,4,5-TP)   |
| 0.376        | Chlorpyrifos        |
| 10.957       | Diazinon            |
| 3.194        | Dichlorvos          |
| 0.012        | Fonofos             |
| 2.079        | Malathion           |
| 1.044        | Mevinphos           |
| 0.079        | Parathion Methyl    |
| 0.585        | Terbufos            |
| 0.246        | Atrazine            |

#### Table 6: Precipitation Data Summary and Regulations


|                       | Data Summary |         |         |         |         | _       |
|-----------------------|--------------|---------|---------|---------|---------|---------|
|                       | Rainfall     |         |         |         |         |         |
|                       | Abbotsford   |         |         | Agassiz |         |         |
| Concentrations (ug/L) | Maximum      | Minimum | Average | Maximum | Minimum | Average |
| a-BHC                 | ND           | ND      | ND      | 0.038   | 0.038   | 0.038   |
| Captan                | 6.254        | 0.006   | 0.830   | 0.114   | 0.032   | 0.062   |
| Dieldrin              | 0.042        | 0.042   | 0.042   | 0.055   | 0.052   | 0.053   |
| 2,4-Dichlorophenoxy   |              |         |         |         |         |         |
| Acetic acid           | 5.283        | 1.029   | 3.156   | 0.878   | 0.878   | 0.878   |
| Diazinon              | 0.189        | 0.014   | 0.066   | 0.076   | 0.008   | 0.042   |
| Dichlorvos            | 0.107        | 0.020   | 0.049   | 0.089   | 0.002   | 0.032   |
| Malathion             | 0.021        | 0.021   | 0.021   | 0.041   | 0.014   | 0.023   |

|                       | Regulations    |                  |             |            |          |          |           |
|-----------------------|----------------|------------------|-------------|------------|----------|----------|-----------|
|                       | Drinking Water |                  |             | Freshwater |          |          | Livestock |
|                       | U.S. EPA       | Other            | Canada      | Canada     | U.S. EPA | Note     | Canada    |
| Concentrations (ug/L) | ug/l           | ug/l             | ug/l        | ug/l       | ug/l     |          | ug/l      |
| a-BHC                 |                |                  |             |            |          |          |           |
| Captan                | 15             |                  |             |            | 0.44     | advisory | 10        |
| Dieldrin              | 0.000071       | 0.03 WHO         |             | 0.004      |          |          |           |
| 2,4-Dichlorophenoxy   |                |                  | 1000 MAK    |            |          |          |           |
| Acetic acid           |                |                  | 100 Interim | 4          |          |          | 100       |
| Diazinon              |                |                  | 14 MAK      | 0.1        | 0.08     |          | 14        |
| Dichlorvos            |                | 0.002 Netherland |             |            |          |          |           |
| Malathion             | 7              | 0.008 Australia  | 190         | 0.1        | 0.01     |          |           |



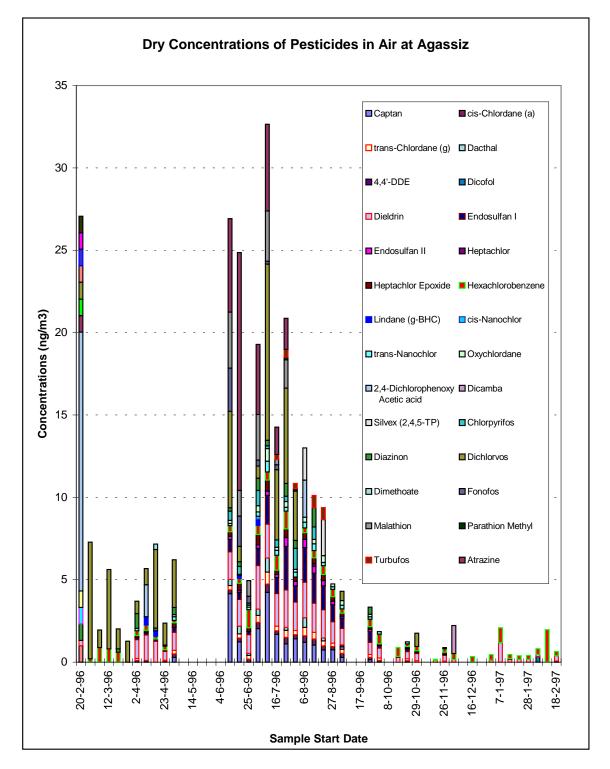
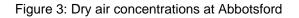
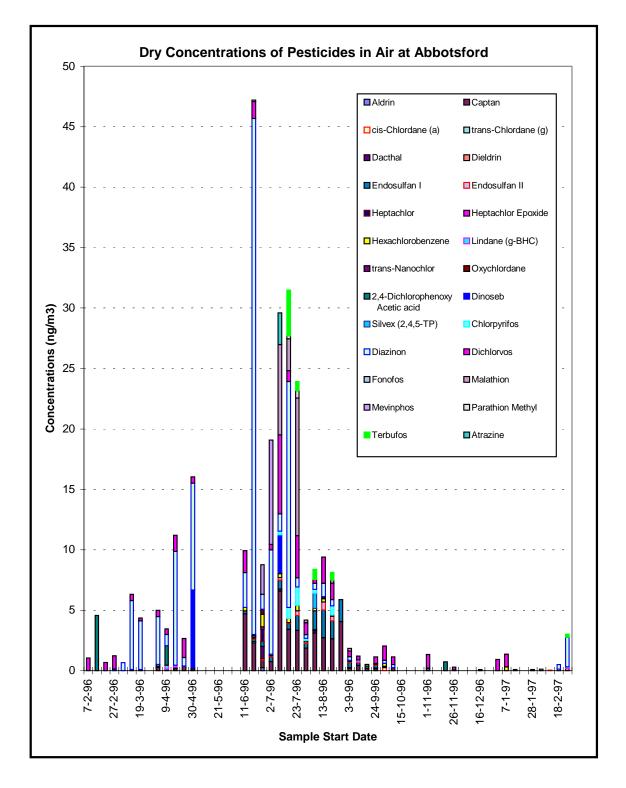
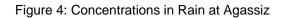


# XIV. Figures

Figure 1 Lower Fraser Valley sampling area















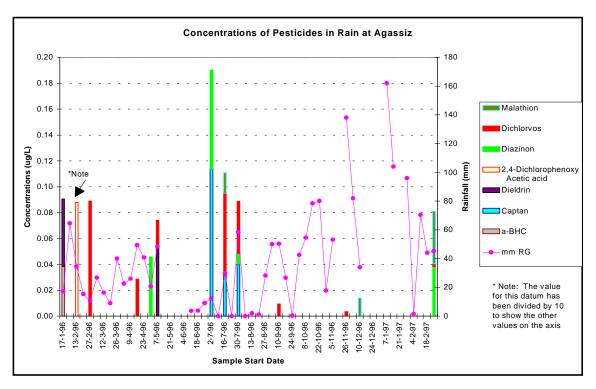
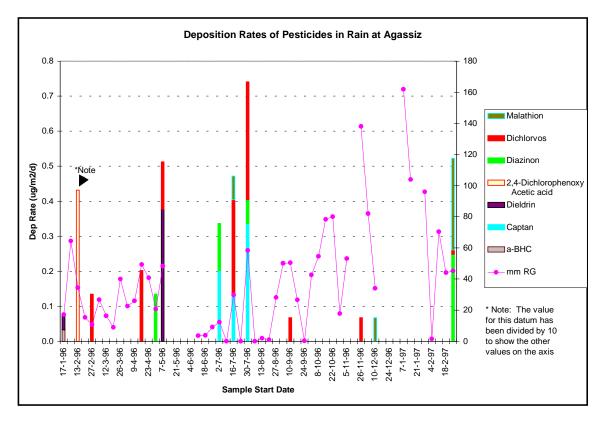
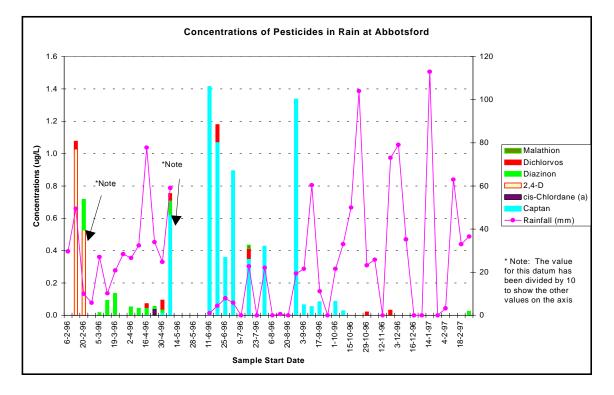
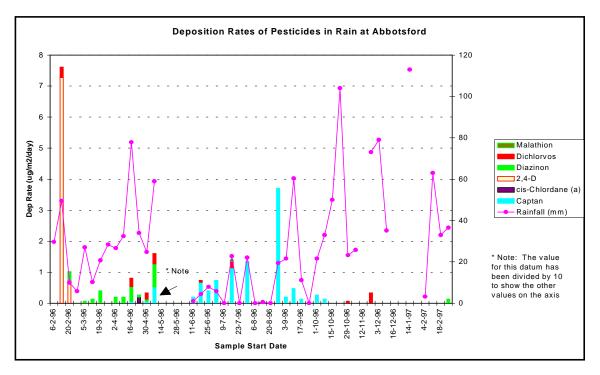





Figure 5: Rainfall Deposition at Agassiz



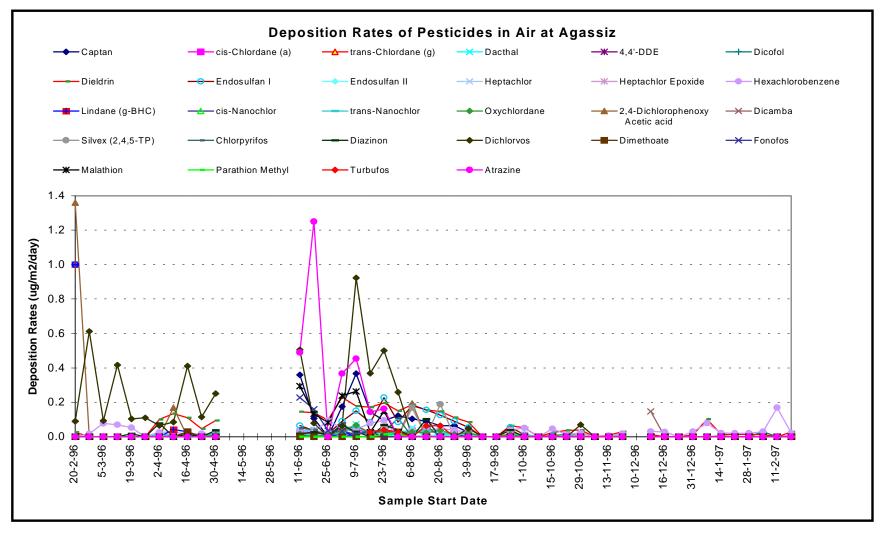
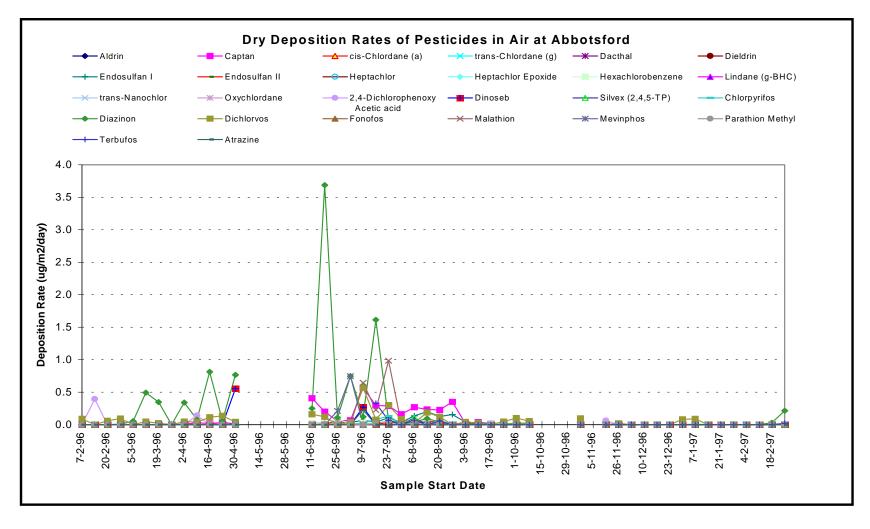


Figure 6: Concentrations in Rain at Abbotsford

Figure 7: Rainfall Deposition at Abbotsford






#### Figure 8: Dry Deposition at Agassiz





#### Figure 9: Dry Deposition at Abbotsford



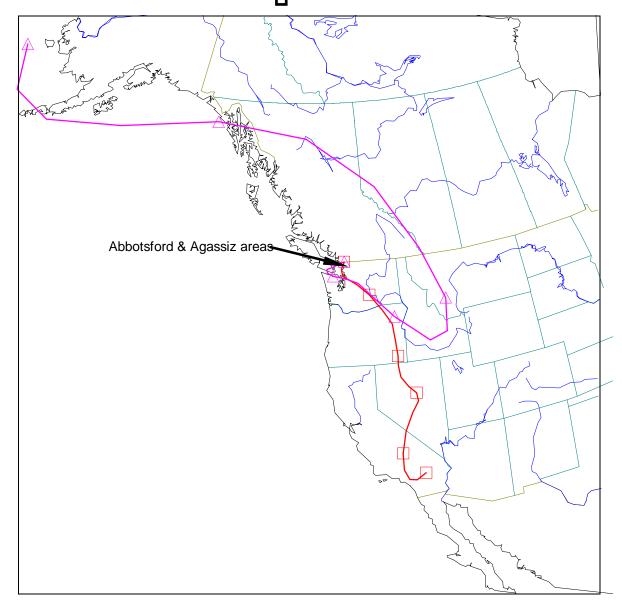



Figure 10: Back-trajectory plot at 1000 mb  $$\square$$  , and 850 mb  $\Delta$ 



# XV. Appendices

Appendix 1: Dry air data for Agassiz

#### Agassiz - Pesticides

| HV PUF Data |
|-------------|
|-------------|

| Head ID           |                 |                 |                 |         |         | EC005          |         | EC007           |         |                 |         | EC005       |                 |
|-------------------|-----------------|-----------------|-----------------|---------|---------|----------------|---------|-----------------|---------|-----------------|---------|-------------|-----------------|
| Date on           |                 |                 |                 |         |         |                |         |                 |         |                 |         | 7-5-96 8:25 |                 |
| <b>D</b> ( 11     | 9:45            | 9:15            | 9:30            |         |         | 9:00           |         |                 |         |                 |         |             | 8:38            |
| Date off          | 27-2-96<br>9:00 | 5-3-96<br>9:00  | 12-3-96<br>9:00 |         |         |                |         | 16-4-96<br>9:00 |         |                 |         |             | 21-5-96<br>8:22 |
| Counter on        | 9.00<br>5639.39 | 9.00<br>5806.72 | 9.00<br>5974.43 |         |         |                |         |                 |         | 6.03<br>7118.43 |         |             |                 |
| Counter off       | 5806.72         | 5974.43         |                 |         |         |                |         |                 |         | 7286.57         |         |             |                 |
| Mag. Press. on    |                 | 39              | 40              | 24      | 42      | 38             |         | 33              |         | 38              |         |             |                 |
| Mag. Press. off   |                 | 34              | 37              |         | 41      |                | 33      |                 |         | 43              |         | na          |                 |
| Meter (m3) on     |                 | 4553.61         | 5009.12         | 5536.13 | 5769.12 | 6233.18        | 6456.32 | 7096.03         | 7679.17 | 8239.03         | 9088.13 | 9736.04     |                 |
| Meter (m3) off    | 4553.61         | 5009.12         | 5536.13         | 5769.12 | 6233.18 | 6456.32        | 7096.03 | 7679.17         | 8239.03 | 9088.13         | 9736.04 | 10188.02    |                 |
| Counter Diff'n    | 167.33          | 167.71          | 167.6           | 167.21  | 167.69  | 168.13         | 137.67  | 167.96          | 167.74  | 168.14          | 168.12  | 167.67      |                 |
| Meter diff sample |                 |                 | 527.01          | 232.99  |         |                |         |                 |         |                 |         |             |                 |
| (m3)              |                 |                 |                 |         |         |                |         |                 |         |                 |         |             |                 |
| Comments          |                 |                 |                 |         |         | Pump           |         |                 |         |                 |         | Pump dead   | Splg stopp      |
|                   |                 |                 |                 |         |         | dead<br>Apr-02 |         |                 |         |                 |         | May-14      |                 |
| Avg P (mm HG)     | 1009.8          | 1019.7          | 1020.4          | 1025.2  | 1020.9  | 1011.8         | 1020.0  | 1013.8          | 1013.1  | 1022.8          | 1021.5  | 1020.4      | no sampl        |
| Avg T (C)         | 3.7             | 3.5             | 8.1             | 9.1     | 7.1     | 7.0            |         |                 | 10.4    |                 |         |             |                 |
| Avg T (K)         | 276.8           | 276.6           | 281.2           | 282.2   | 280.2   | 280.1          | 286.1   | 284.3           | 283.5   | 282.3           | 282.2   | 284.0       |                 |
| Corrected Volume  | 483.2           | 494.0           | 562.6           | 249.0   | 497.4   | 237.1          | 670.9   | 611.7           | 588.6   | 905.0           | 689.9   | 477.7       |                 |
| File:             | F7847           | F8028           | F8220           | F8459   | F8656   | F8847          | F8988   | F9223           | F9434   | F9583           | F9784   | G1029       |                 |
| File Status:      | final           | final           | final           | final   | final   | final          | final   | final           | final   | final           | final   | final       | n/a             |
| Start:            | 20-2-96         | 27-2-96         | 5-3-96          | 12-3-96 | 19-3-96 | 26-3-96        | 2-4-96  | 9-4-96          |         | 23-4-96         |         |             | 14-5-96         |
| Stop:             | 27-2-96         | 5-3-96          | 12-3-96         | 19-3-96 | 26-3-96 | 2-4-96         | 9-4-96  | 16-4-96         | 23-4-96 | 30-4-96         | 7-5-96  | 14-5-96     | 21-5-96         |
| Note:             | extr w H+       | extr w H+       | DC              | M       | DCM     | DCM            | DCM     | DCM             | DCM     | DCM             | DCM     | DCM         | DC              |
| Note.             | Acetone         | Acetone         | ext             |         | extr'n  | extr'n         | extr'n  | extr'n          | extr'n  | extr'n          | extr'n  | extr'n      | ext             |
| Concs (ng/m3)     | Agassiz         | Agassiz         | Agassiz         |         |         | Agassiz        |         |                 |         | Agassiz         |         | Agassiz     | Agassiz         |
|                   | HV/PUF          | HV/PUF          |                 |         |         | HV/PUF         | Z       | z<br>HV/PU      | Z       | HV/PUF          | z       | HV/PUF      | HV/PUF          |



Environment Canada FRAP Study Atmospheric Concentrations of Agricultural Chemicals in the Lower Fraser Valley

|                         |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                    |       | 1                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                        | F                                                                                                                                                                                                             | F                                                                                                                                                                    | F                                                                                                                           | I                                                                                  | F                                         | I |
|-------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------|---|
| Organochlori            | Captan              | <dl< th=""><th>&lt;[</th><th>)L</th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>0.290</th><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                                                                               | <[                                                                                                                                                                                                                                                   | )L    | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>0.290</th><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                                                    | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>0.290</th><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                                     | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>0.290</th><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                      | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>0.290</th><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                       | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>0.290</th><th></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                        | <dl< th=""><th><dl< th=""><th><dl< th=""><th>0.290</th><th></th></dl<></th></dl<></th></dl<>                                                                         | <dl< th=""><th><dl< th=""><th>0.290</th><th></th></dl<></th></dl<>                                                          | <dl< th=""><th>0.290</th><th></th></dl<>                                           | 0.290                                     |   |
| ne                      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                      |       |                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                               |                                                                                                                                                                      |                                                                                                                             |                                                                                    |                                           |   |
| Pesticides              | cis-Chlordane (a)   | <dl< td=""><td>&lt;0</td><td>)L</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>0.104</td><td>0.098</td><td><dl< td=""><td>0.066</td><td>0.203</td><td></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                                                                                                                                                                                                                   | <0                                                                                                                                                                                                                                                   | )L    | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>0.104</td><td>0.098</td><td><dl< td=""><td>0.066</td><td>0.203</td><td></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                                                                                                                                                                                        | <dl< td=""><td><dl< td=""><td><dl< td=""><td>0.104</td><td>0.098</td><td><dl< td=""><td>0.066</td><td>0.203</td><td></td></dl<></td></dl<></td></dl<></td></dl<>                                                                                                                                                                         | <dl< td=""><td><dl< td=""><td>0.104</td><td>0.098</td><td><dl< td=""><td>0.066</td><td>0.203</td><td></td></dl<></td></dl<></td></dl<>                                                                                                                                                          | <dl< td=""><td>0.104</td><td>0.098</td><td><dl< td=""><td>0.066</td><td>0.203</td><td></td></dl<></td></dl<>                                                                                                                                           | 0.104                                                                                                                                                                                                         | 0.098                                                                                                                                                                | <dl< td=""><td>0.066</td><td>0.203</td><td></td></dl<>                                                                      | 0.066                                                                              | 0.203                                     |   |
|                         | trans-Chlordane (g) | <dl< td=""><td>&lt;0</td><td>L</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>0.104</td><td><dl< td=""><td><dl< td=""><td>0.055</td><td>0.232</td><td></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                                                                                                                                                                                                        | <0                                                                                                                                                                                                                                                   | L     | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>0.104</td><td><dl< td=""><td><dl< td=""><td>0.055</td><td>0.232</td><td></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                                                                                                                                                                            | <dl< td=""><td><dl< td=""><td><dl< td=""><td>0.104</td><td><dl< td=""><td><dl< td=""><td>0.055</td><td>0.232</td><td></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                                                                                                                                                             | <dl< td=""><td><dl< td=""><td>0.104</td><td><dl< td=""><td><dl< td=""><td>0.055</td><td>0.232</td><td></td></dl<></td></dl<></td></dl<></td></dl<>                                                                                                                                              | <dl< td=""><td>0.104</td><td><dl< td=""><td><dl< td=""><td>0.055</td><td>0.232</td><td></td></dl<></td></dl<></td></dl<>                                                                                                                               | 0.104                                                                                                                                                                                                         | <dl< td=""><td><dl< td=""><td>0.055</td><td>0.232</td><td></td></dl<></td></dl<>                                                                                     | <dl< td=""><td>0.055</td><td>0.232</td><td></td></dl<>                                                                      | 0.055                                                                              | 0.232                                     |   |
|                         | Dacthal             | <dl< td=""><td>&lt;0</td><td>-</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                                                                                                                                                                    | <0                                                                                                                                                                                                                                                   | -     | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                                                                                                                                        | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                                                                                                                         | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                                                                                                          | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                                                                                           | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                                                                            | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td></td></dl<></td></dl<></td></dl<></td></dl<>                                                             | <dl< td=""><td><dl< td=""><td><dl< td=""><td></td></dl<></td></dl<></td></dl<>                                              | <dl< td=""><td><dl< td=""><td></td></dl<></td></dl<>                               | <dl< td=""><td></td></dl<>                |   |
|                         | 4,4'-DDE            | <dl< th=""><th>&lt;0</th><th></th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                                                                     | <0                                                                                                                                                                                                                                                   |       | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                                        | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                         | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                          | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                           | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                            | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<>                                                             | <dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<>                                              | <dl< th=""><th><dl< th=""><th></th></dl<></th></dl<>                               | <dl< th=""><th></th></dl<>                |   |
|                         | Dicofol             | <dl< td=""><td>&lt;0</td><td>-</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                                                                                                                                                                    | <0                                                                                                                                                                                                                                                   | -     | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                                                                                                                                        | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                                                                                                                         | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                                                                                                          | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                                                                                           | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                                                                            | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td></td></dl<></td></dl<></td></dl<></td></dl<>                                                             | <dl< td=""><td><dl< td=""><td><dl< td=""><td></td></dl<></td></dl<></td></dl<>                                              | <dl< td=""><td><dl< td=""><td></td></dl<></td></dl<>                               | <dl< td=""><td></td></dl<>                |   |
|                         | Dieldrin            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.310 <e< td=""><td></td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>1.163</td><td></td><td></td><td></td><td></td><td></td></dl<></td></dl<></td></dl<></td></dl<></td></e<>                                                    |       | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>1.163</td><td></td><td></td><td></td><td></td><td></td></dl<></td></dl<></td></dl<></td></dl<>                                                                                                                                                                                                                        | <dl< td=""><td><dl< td=""><td><dl< td=""><td>1.163</td><td></td><td></td><td></td><td></td><td></td></dl<></td></dl<></td></dl<>                                                                                                                                                                                                         | <dl< td=""><td><dl< td=""><td>1.163</td><td></td><td></td><td></td><td></td><td></td></dl<></td></dl<>                                                                                                                                                                                          | <dl< td=""><td>1.163</td><td></td><td></td><td></td><td></td><td></td></dl<>                                                                                                                                                                           | 1.163                                                                                                                                                                                                         |                                                                                                                                                                      |                                                                                                                             |                                                                                    |                                           |   |
|                         | Endosulfan I        | <dl< th=""><th>&lt;0</th><th></th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>0.104</th><th></th><th></th><th></th><th></th><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                                                                                                                                                     | <0                                                                                                                                                                                                                                                   |       | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>0.104</th><th></th><th></th><th></th><th></th><th></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                                                                                                                        | <dl< th=""><th><dl< th=""><th><dl< th=""><th>0.104</th><th></th><th></th><th></th><th></th><th></th></dl<></th></dl<></th></dl<>                                                                                                                                                                                                         | <dl< th=""><th><dl< th=""><th>0.104</th><th></th><th></th><th></th><th></th><th></th></dl<></th></dl<>                                                                                                                                                                                          | <dl< th=""><th>0.104</th><th></th><th></th><th></th><th></th><th></th></dl<>                                                                                                                                                                           | 0.104                                                                                                                                                                                                         |                                                                                                                                                                      |                                                                                                                             |                                                                                    |                                           |   |
|                         | Endosulfan II       | <dl< td=""><td>&lt;0</td><td></td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                                                                                                                                                                     | <0                                                                                                                                                                                                                                                   |       | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                                                                                                                                        | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                                                                                                                         | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                                                                                                          | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                                                                                           | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                                                                            | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td></td></dl<></td></dl<></td></dl<></td></dl<>                                                             | <dl< td=""><td><dl< td=""><td><dl< td=""><td></td></dl<></td></dl<></td></dl<>                                              | <dl< td=""><td><dl< td=""><td></td></dl<></td></dl<>                               | <dl< td=""><td></td></dl<>                |   |
|                         | Heptachlor          | <dl< td=""><td>&lt;0</td><td></td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                                                                                                                                                                     | <0                                                                                                                                                                                                                                                   |       | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                                                                                                                                        | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                                                                                                                         | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                                                                                                          | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                                                                                           | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                                                                            | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td></td></dl<></td></dl<></td></dl<></td></dl<>                                                             | <dl< td=""><td><dl< td=""><td><dl< td=""><td></td></dl<></td></dl<></td></dl<>                                              | <dl< td=""><td><dl< td=""><td></td></dl<></td></dl<>                               | <dl< td=""><td></td></dl<>                |   |
|                         | Heptachlor Epoxide  | <dl< td=""><td>&lt;0</td><td></td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>0.134</td><td></td><td></td><td><dl< td=""><td>0.290</td><td></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                                                                                                                                                                                                                               | <0                                                                                                                                                                                                                                                   |       | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>0.134</td><td></td><td></td><td><dl< td=""><td>0.290</td><td></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                                                                                                                                                                                                  | <dl< td=""><td><dl< td=""><td><dl< td=""><td>0.134</td><td></td><td></td><td><dl< td=""><td>0.290</td><td></td></dl<></td></dl<></td></dl<></td></dl<>                                                                                                                                                                                   | <dl< td=""><td><dl< td=""><td>0.134</td><td></td><td></td><td><dl< td=""><td>0.290</td><td></td></dl<></td></dl<></td></dl<>                                                                                                                                                                    | <dl< td=""><td>0.134</td><td></td><td></td><td><dl< td=""><td>0.290</td><td></td></dl<></td></dl<>                                                                                                                                                     | 0.134                                                                                                                                                                                                         |                                                                                                                                                                      |                                                                                                                             | <dl< td=""><td>0.290</td><td></td></dl<>                                           | 0.290                                     |   |
|                         | Hexachlorobenzene   | <dl< td=""><td>_</td><td>0.202</td><td></td><td></td><td></td><td></td><td>0.298</td><td></td><td></td><td>-</td><td></td><td></td></dl<>                                                                                                                                                                                                                                                                                                                       | _                                                                                                                                                                                                                                                    | 0.202 |                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                        | 0.298                                                                                                                                                                                                         |                                                                                                                                                                      |                                                                                                                             | -                                                                                  |                                           |   |
|                         | Lindane (g-BHC)     | <dl< th=""><th>&lt;0</th><th></th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>0.490</th><th></th><th></th><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                                                                                                                   | <0                                                                                                                                                                                                                                                   |       | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>0.490</th><th></th><th></th><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                                                                                      | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>0.490</th><th></th><th></th><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                                                                       | <dl< th=""><th><dl< th=""><th><dl< th=""><th>0.490</th><th></th><th></th><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                                                        | <dl< th=""><th><dl< th=""><th>0.490</th><th></th><th></th><th><dl< th=""><th></th></dl<></th></dl<></th></dl<>                                                                                                                                         | <dl< th=""><th>0.490</th><th></th><th></th><th><dl< th=""><th></th></dl<></th></dl<>                                                                                                                          | 0.490                                                                                                                                                                |                                                                                                                             |                                                                                    | <dl< th=""><th></th></dl<>                |   |
|                         | cis-Nanochlor       | <dl< td=""><td>&lt;0</td><td></td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                                                                                                                                                                     | <0                                                                                                                                                                                                                                                   |       | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                                                                                                                                        | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                                                                                                                         | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                                                                                                          | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                                                                                           | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                                                                            | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td></td></dl<></td></dl<></td></dl<></td></dl<>                                                             | <dl< td=""><td><dl< td=""><td><dl< td=""><td></td></dl<></td></dl<></td></dl<>                                              | <dl< td=""><td><dl< td=""><td></td></dl<></td></dl<>                               | <dl< td=""><td></td></dl<>                |   |
|                         | trans-Nanochlor     | <dl< td=""><td>&lt;0</td><td></td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>0.149</td><td></td><td><dl< td=""><td>0.066</td><td></td><td></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                                                                                                                                                                                                                               | <0                                                                                                                                                                                                                                                   |       | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>0.149</td><td></td><td><dl< td=""><td>0.066</td><td></td><td></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                                                                                                                                                                                                  | <dl< td=""><td><dl< td=""><td><dl< td=""><td>0.149</td><td></td><td><dl< td=""><td>0.066</td><td></td><td></td></dl<></td></dl<></td></dl<></td></dl<>                                                                                                                                                                                   | <dl< td=""><td><dl< td=""><td>0.149</td><td></td><td><dl< td=""><td>0.066</td><td></td><td></td></dl<></td></dl<></td></dl<>                                                                                                                                                                    | <dl< td=""><td>0.149</td><td></td><td><dl< td=""><td>0.066</td><td></td><td></td></dl<></td></dl<>                                                                                                                                                     | 0.149                                                                                                                                                                                                         |                                                                                                                                                                      | <dl< td=""><td>0.066</td><td></td><td></td></dl<>                                                                           | 0.066                                                                              |                                           |   |
|                         | Oxychlordane        | <dl< td=""><td>&lt;0</td><td>-</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>0.130</td><td></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                                                                                                                                                                                | <0                                                                                                                                                                                                                                                   | -     | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>0.130</td><td></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                                                                                                                                                    | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>0.130</td><td></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                                                                                                                                     | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>0.130</td><td></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                                                                                                                      | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>0.130</td><td></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                                                                                                       | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>0.130</td><td></td></dl<></td></dl<></td></dl<></td></dl<>                                                                                        | <dl< td=""><td><dl< td=""><td><dl< td=""><td>0.130</td><td></td></dl<></td></dl<></td></dl<>                                                                         | <dl< td=""><td><dl< td=""><td>0.130</td><td></td></dl<></td></dl<>                                                          | <dl< td=""><td>0.130</td><td></td></dl<>                                           | 0.130                                     |   |
| Herbicides              | 2,4-Dichlorophenoxy | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.729 <d< td=""><td></td><td></td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>1.962</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></d<> |       |                                                                                                                                                                                                                                                                                                                                                                                   | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>1.962</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                                                                                                                                     | <dl< td=""><td><dl< td=""><td><dl< td=""><td>1.962</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                                                                                                                      | <dl< td=""><td><dl< td=""><td>1.962</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                                                                                                       | <dl< td=""><td>1.962</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td></td></dl<></td></dl<></td></dl<></td></dl<>                                                                                        | 1.962                                                                                                                                                                | <dl< td=""><td><dl< td=""><td><dl< td=""><td></td></dl<></td></dl<></td></dl<>                                              | <dl< td=""><td><dl< td=""><td></td></dl<></td></dl<>                               | <dl< td=""><td></td></dl<>                |   |
|                         | Acetic acid         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                      |       |                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                        | <b>D</b> 1                                                                                                                                                                                                    |                                                                                                                                                                      |                                                                                                                             |                                                                                    |                                           |   |
|                         | Dicamba             | <dl< td=""><td>&lt;0</td><td></td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                                                                                                                                                                     | <0                                                                                                                                                                                                                                                   |       | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                                                                                                                                        | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                                                                                                                         | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                                                                                                          | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                                                                                           | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                                                                            | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td></td></dl<></td></dl<></td></dl<></td></dl<>                                                             | <dl< td=""><td><dl< td=""><td><dl< td=""><td></td></dl<></td></dl<></td></dl<>                                              | <dl< td=""><td><dl< td=""><td></td></dl<></td></dl<>                               | <dl< td=""><td></td></dl<>                |   |
|                         | Silvex (2,4,5-TP)   | <dl< th=""><th>&lt;0</th><th></th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                                                                     | <0                                                                                                                                                                                                                                                   |       | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                                        | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                         | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                          | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                           | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                            | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<>                                                             | <dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<>                                              | <dl< th=""><th><dl< th=""><th></th></dl<></th></dl<>                               | <dl< th=""><th></th></dl<>                |   |
|                         | Chlorpyrifos        | <dl< th=""><th>&lt;0</th><th></th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                                                                     | <0                                                                                                                                                                                                                                                   |       | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                                        | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                         | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                          | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                           | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                            | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<>                                                             | <dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<>                                              | <dl< th=""><th><dl< th=""><th></th></dl<></th></dl<>                               | <dl< th=""><th></th></dl<>                |   |
| <b>0</b>                | Diazinon            | <dl< th=""><th><d< th=""><th>-</th><th><dl< th=""><th><dl< th=""><th>0.201</th><th></th><th>0.894<br/>0.745</th><th></th><th>0.170</th><th></th><th>0.435</th><th></th></dl<></th></dl<></th></d<></th></dl<>                                                                                                                                                                                                                                                   | <d< th=""><th>-</th><th><dl< th=""><th><dl< th=""><th>0.201</th><th></th><th>0.894<br/>0.745</th><th></th><th>0.170</th><th></th><th>0.435</th><th></th></dl<></th></dl<></th></d<>                                                                  | -     | <dl< th=""><th><dl< th=""><th>0.201</th><th></th><th>0.894<br/>0.745</th><th></th><th>0.170</th><th></th><th>0.435</th><th></th></dl<></th></dl<>                                                                                                                                                                                                                                 | <dl< th=""><th>0.201</th><th></th><th>0.894<br/>0.745</th><th></th><th>0.170</th><th></th><th>0.435</th><th></th></dl<>                                                                                                                                                                                                                  | 0.201                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                        | 0.894<br>0.745                                                                                                                                                                                                |                                                                                                                                                                      | 0.170                                                                                                                       |                                                                                    | 0.435                                     |   |
| Organo-                 | Dichlorvos          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.035                                                                                                                                                                                                                                                | 7.085 | 5 1.06                                                                                                                                                                                                                                                                                                                                                                            | 7 4.819                                                                                                                                                                                                                                                                                                                                  | 1.206                                                                                                                                                                                                                                                                                           | 1.265                                                                                                                                                                                                                                                  | 0.745                                                                                                                                                                                                         | 0.981                                                                                                                                                                | 4.757                                                                                                                       | 1.326                                                                              | 2.899                                     |   |
| phosphate<br>Pesticides |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                      |       |                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                               |                                                                                                                                                                      |                                                                                                                             |                                                                                    |                                           |   |
| Pesticides              | Dimethoate          | <dl< th=""><th>&lt;0</th><th>NI .</th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>0.340</th><th></th><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                                                                                              | <0                                                                                                                                                                                                                                                   | NI .  | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>0.340</th><th></th><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                                                                     | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>0.340</th><th></th><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                                                      | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>0.340</th><th></th><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                                       | <dl< th=""><th><dl< th=""><th><dl< th=""><th>0.340</th><th></th><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                        | <dl< th=""><th><dl< th=""><th>0.340</th><th></th><th><dl< th=""><th></th></dl<></th></dl<></th></dl<>                                                                                                         | <dl< th=""><th>0.340</th><th></th><th><dl< th=""><th></th></dl<></th></dl<>                                                                                          | 0.340                                                                                                                       |                                                                                    | <dl< th=""><th></th></dl<>                |   |
|                         | Fonofos             | <dl<br><dl< th=""><th><l<br>&lt;[</l<br></th><th></th><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th>0.340<br/><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th></th></dl<></dl<br></th></dl<></dl<br></th></dl<></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br>       | <l<br>&lt;[</l<br>                                                                                                                                                                                                                                   |       | <dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th>0.340<br/><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th></th></dl<></dl<br></th></dl<></dl<br></th></dl<></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br>      | <dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th>0.340<br/><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th></th></dl<></dl<br></th></dl<></dl<br></th></dl<></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br>      | <dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th>0.340<br/><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th></th></dl<></dl<br></th></dl<></dl<br></th></dl<></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br>      | <dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th>0.340<br/><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th></th></dl<></dl<br></th></dl<></dl<br></th></dl<></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br>      | <dl<br><dl< th=""><th><dl<br><dl< th=""><th>0.340<br/><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th></th></dl<></dl<br></th></dl<></dl<br></th></dl<></th></dl<></dl<br></th></dl<></dl<br>      | <dl<br><dl< th=""><th>0.340<br/><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th></th></dl<></dl<br></th></dl<></dl<br></th></dl<></th></dl<></dl<br>      | 0.340<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th></th></dl<></dl<br></th></dl<></dl<br></th></dl<>       | <dl<br><dl< th=""><th><dl<br><dl< th=""><th></th></dl<></dl<br></th></dl<></dl<br> | <dl<br><dl< th=""><th></th></dl<></dl<br> |   |
|                         | Malathion           | <dl<br><dl< td=""><td><l<br>&lt;[</l<br></td><td></td><td><dl<br><dl< td=""><td><dl<br><dl< td=""><td><dl<br><dl< td=""><td><dl<br><dl< td=""><td><dl<br><dl< td=""><td><dl<br><dl< td=""><td><dl<br><dl< td=""><td><dl<br><dl< td=""><td><dl<br><dl< td=""><td></td></dl<></dl<br></td></dl<></dl<br></td></dl<></dl<br></td></dl<></dl<br></td></dl<></dl<br></td></dl<></dl<br></td></dl<></dl<br></td></dl<></dl<br></td></dl<></dl<br></td></dl<></dl<br>  | <l<br>&lt;[</l<br>                                                                                                                                                                                                                                   |       | <dl<br><dl< td=""><td><dl<br><dl< td=""><td><dl<br><dl< td=""><td><dl<br><dl< td=""><td><dl<br><dl< td=""><td><dl<br><dl< td=""><td><dl<br><dl< td=""><td><dl<br><dl< td=""><td><dl<br><dl< td=""><td></td></dl<></dl<br></td></dl<></dl<br></td></dl<></dl<br></td></dl<></dl<br></td></dl<></dl<br></td></dl<></dl<br></td></dl<></dl<br></td></dl<></dl<br></td></dl<></dl<br> | <dl<br><dl< td=""><td><dl<br><dl< td=""><td><dl<br><dl< td=""><td><dl<br><dl< td=""><td><dl<br><dl< td=""><td><dl<br><dl< td=""><td><dl<br><dl< td=""><td><dl<br><dl< td=""><td></td></dl<></dl<br></td></dl<></dl<br></td></dl<></dl<br></td></dl<></dl<br></td></dl<></dl<br></td></dl<></dl<br></td></dl<></dl<br></td></dl<></dl<br> | <dl<br><dl< td=""><td><dl<br><dl< td=""><td><dl<br><dl< td=""><td><dl<br><dl< td=""><td><dl<br><dl< td=""><td><dl<br><dl< td=""><td><dl<br><dl< td=""><td></td></dl<></dl<br></td></dl<></dl<br></td></dl<></dl<br></td></dl<></dl<br></td></dl<></dl<br></td></dl<></dl<br></td></dl<></dl<br> | <dl<br><dl< td=""><td><dl<br><dl< td=""><td><dl<br><dl< td=""><td><dl<br><dl< td=""><td><dl<br><dl< td=""><td><dl<br><dl< td=""><td></td></dl<></dl<br></td></dl<></dl<br></td></dl<></dl<br></td></dl<></dl<br></td></dl<></dl<br></td></dl<></dl<br> | <dl<br><dl< td=""><td><dl<br><dl< td=""><td><dl<br><dl< td=""><td><dl<br><dl< td=""><td><dl<br><dl< td=""><td></td></dl<></dl<br></td></dl<></dl<br></td></dl<></dl<br></td></dl<></dl<br></td></dl<></dl<br> | <dl<br><dl< td=""><td><dl<br><dl< td=""><td><dl<br><dl< td=""><td><dl<br><dl< td=""><td></td></dl<></dl<br></td></dl<></dl<br></td></dl<></dl<br></td></dl<></dl<br> | <dl<br><dl< td=""><td><dl<br><dl< td=""><td><dl<br><dl< td=""><td></td></dl<></dl<br></td></dl<></dl<br></td></dl<></dl<br> | <dl<br><dl< td=""><td><dl<br><dl< td=""><td></td></dl<></dl<br></td></dl<></dl<br> | <dl<br><dl< td=""><td></td></dl<></dl<br> |   |
|                         | Parathion Methyl    | <dl<br><dl< td=""><td><l<br>&lt;[</l<br></td><td>-</td><td><dl<br><dl< td=""><td><dl<br><dl< td=""><td><dl<br><dl< td=""><td><dl<br><dl< td=""><td><dl<br><dl< td=""><td><dl<br><dl< td=""><td><dl<br><dl< td=""><td><dl<br><dl< td=""><td><dl<br><dl< td=""><td></td></dl<></dl<br></td></dl<></dl<br></td></dl<></dl<br></td></dl<></dl<br></td></dl<></dl<br></td></dl<></dl<br></td></dl<></dl<br></td></dl<></dl<br></td></dl<></dl<br></td></dl<></dl<br> | <l<br>&lt;[</l<br>                                                                                                                                                                                                                                   | -     | <dl<br><dl< td=""><td><dl<br><dl< td=""><td><dl<br><dl< td=""><td><dl<br><dl< td=""><td><dl<br><dl< td=""><td><dl<br><dl< td=""><td><dl<br><dl< td=""><td><dl<br><dl< td=""><td><dl<br><dl< td=""><td></td></dl<></dl<br></td></dl<></dl<br></td></dl<></dl<br></td></dl<></dl<br></td></dl<></dl<br></td></dl<></dl<br></td></dl<></dl<br></td></dl<></dl<br></td></dl<></dl<br> | <dl<br><dl< td=""><td><dl<br><dl< td=""><td><dl<br><dl< td=""><td><dl<br><dl< td=""><td><dl<br><dl< td=""><td><dl<br><dl< td=""><td><dl<br><dl< td=""><td><dl<br><dl< td=""><td></td></dl<></dl<br></td></dl<></dl<br></td></dl<></dl<br></td></dl<></dl<br></td></dl<></dl<br></td></dl<></dl<br></td></dl<></dl<br></td></dl<></dl<br> | <dl<br><dl< td=""><td><dl<br><dl< td=""><td><dl<br><dl< td=""><td><dl<br><dl< td=""><td><dl<br><dl< td=""><td><dl<br><dl< td=""><td><dl<br><dl< td=""><td></td></dl<></dl<br></td></dl<></dl<br></td></dl<></dl<br></td></dl<></dl<br></td></dl<></dl<br></td></dl<></dl<br></td></dl<></dl<br> | <dl<br><dl< td=""><td><dl<br><dl< td=""><td><dl<br><dl< td=""><td><dl<br><dl< td=""><td><dl<br><dl< td=""><td><dl<br><dl< td=""><td></td></dl<></dl<br></td></dl<></dl<br></td></dl<></dl<br></td></dl<></dl<br></td></dl<></dl<br></td></dl<></dl<br> | <dl<br><dl< td=""><td><dl<br><dl< td=""><td><dl<br><dl< td=""><td><dl<br><dl< td=""><td><dl<br><dl< td=""><td></td></dl<></dl<br></td></dl<></dl<br></td></dl<></dl<br></td></dl<></dl<br></td></dl<></dl<br> | <dl<br><dl< td=""><td><dl<br><dl< td=""><td><dl<br><dl< td=""><td><dl<br><dl< td=""><td></td></dl<></dl<br></td></dl<></dl<br></td></dl<></dl<br></td></dl<></dl<br> | <dl<br><dl< td=""><td><dl<br><dl< td=""><td><dl<br><dl< td=""><td></td></dl<></dl<br></td></dl<></dl<br></td></dl<></dl<br> | <dl<br><dl< td=""><td><dl<br><dl< td=""><td></td></dl<></dl<br></td></dl<></dl<br> | <dl<br><dl< td=""><td></td></dl<></dl<br> |   |
|                         | Turbufos            | < DL                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <l< th=""><th>/L</th><th>&lt; DL</th><th><dl< th=""><th><dl< th=""><th>&lt; DL</th><th>&lt; DL</th><th>&lt; DL</th><th>&lt; DL</th><th>&lt; DL</th><th><ul< th=""><th></th></ul<></th></dl<></th></dl<></th></l<>                                    | /L    | < DL                                                                                                                                                                                                                                                                                                                                                                              | <dl< th=""><th><dl< th=""><th>&lt; DL</th><th>&lt; DL</th><th>&lt; DL</th><th>&lt; DL</th><th>&lt; DL</th><th><ul< th=""><th></th></ul<></th></dl<></th></dl<>                                                                                                                                                                           | <dl< th=""><th>&lt; DL</th><th>&lt; DL</th><th>&lt; DL</th><th>&lt; DL</th><th>&lt; DL</th><th><ul< th=""><th></th></ul<></th></dl<>                                                                                                                                                            | < DL                                                                                                                                                                                                                                                   | < DL                                                                                                                                                                                                          | < DL                                                                                                                                                                 | < DL                                                                                                                        | < DL                                                                               | <ul< th=""><th></th></ul<>                |   |
| Sterilants              | Atrazine            | <dl< td=""><td>&lt;0</td><td>N</td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                                                                                                                                                                    | <0                                                                                                                                                                                                                                                   | N     | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                                                                                                                                        | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                                                                                                                         | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                                                                                                          | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                                                                                           | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                                                                            | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td></td></dl<></td></dl<></td></dl<></td></dl<>                                                             | <dl< td=""><td><dl< td=""><td><dl< td=""><td></td></dl<></td></dl<></td></dl<>                                              | <dl< td=""><td><dl< td=""><td></td></dl<></td></dl<>                               | <dl< td=""><td></td></dl<>                |   |
|                         |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <l< td=""><td>/L</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td></l<>                                                                                                                                | /L    |                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                               |                                                                                                                                                                      |                                                                                                                             |                                                                                    |                                           | 1 |

Agassiz - Pesticides HV PUF Data

| Head ID     |         |         |         | EC004   | EC003   | EC008   | EC004   | EC002   | EC003   | EC007   | EC008   | EC009       | EC002   |
|-------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|-------------|---------|
| Date on     | 21-5-96 | 28-5-96 | 4-6-96  | 11-6-96 | 18-6-96 | 25-6-96 | 2-7-96  | 9-7-96  | 16-7-96 | 23-7-96 | 31-7-96 | 6-8-96 8:45 | 13-8-96 |
|             | 8:51    | 9:04    | 9:17    | 8:20    | 8:05    | 8:10    | 8:17    | 8:25    | 8:13    | 9:00    | 11:15   |             | 11:50   |
| Date off    | 28-5-96 | 4-6-96  | 11-6-96 | 18-6-96 | 25-6-96 | 2-7-96  | 9-7-96  | 16-7-96 | 23-7-96 | 30-7-96 | 6-8-96  | 13-8-96     | 20-8-96 |
|             | 8:24    | 8:26    | 8:28    | 7:57    | 8:03    | 8:08    | 8:15    | 8:08    | 8:45    | 0:00    | 8:30    | 11:40       | 8:00    |
| Counter on  |         |         |         | 7622.36 | 7789.91 | 7957.88 | 8125.62 | 8296.60 | 8461.38 | 8629.90 | 8799.87 | 8941.12     | 9112.08 |
| Counter off |         |         |         | 7789.91 | 7957.88 | 8125.62 | 8296.60 | 8461.38 | 8629.90 | 8799.87 | 8941.12 | 9112.08     | 9276.28 |



|                  | Mag. Press. on<br>Mag. Press. off<br>Meter (m3) on<br>Meter (m3) off<br>Counter Diff'n<br>Meter diff s<br>Comments                                                                                                   | sample (m3)                      | Splg<br>stopped                 | Splg stopp                      | 21<br>28<br>188.13<br>696.01<br>167.55<br><b>507.88</b><br>ed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 34<br>29<br>696.01<br>1324.04<br>167.97<br><b>628.03</b>                                             | 30<br>1324.04                                                                                                       | 30<br>2035.62<br>2563.11<br>170.98<br><b>527.49</b><br>one<br>ampling      | 23<br>2563.11<br>3144.03<br>164.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3777.03<br>4412.07<br>169.97            | 39<br>4412.07<br>5023.17<br>141.25<br><b>611.1</b><br>Ind                                                                                                                                                                                                                                                                     | 29<br>5023.17<br>5676.10                                                                                                                                                                       | 170.96                                                                      |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
|                  | Avg P (mm HG)                                                                                                                                                                                                        | no<br>sampling                   | no<br>sampling                  | no<br>sampling                  | 1020.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1016.0                                                                                               | t<br>1017.3                                                                                                         |                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1020.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1015.9                                  | 1016.0                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                | 1019.7                                                                      |
|                  | Avg T (C)<br>Avg T (K)                                                                                                                                                                                               |                                  |                                 |                                 | <b>14.7</b><br>287.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>15.6</b><br>288.7                                                                                 | <b>17.3</b><br>290.4                                                                                                | <b>18.3</b><br>291.4                                                       | <b>21.8</b><br>294.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>16.4</b> 289.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>23.9</b><br>297.0                    | <b>15.4</b><br>288.5                                                                                                                                                                                                                                                                                                          | <b>20.0</b><br>293.1                                                                                                                                                                           | <b>17.2</b><br>290.3                                                        |
|                  | Corrected Volume                                                                                                                                                                                                     | 1                                |                                 |                                 | 529.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 650.2                                                                                                | 733.3                                                                                                               | 542.0                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 656.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 639.0                                   | 633.1                                                                                                                                                                                                                                                                                                                         | 667.7                                                                                                                                                                                          | 674.7                                                                       |
|                  | File:<br>File Status:<br>Start:                                                                                                                                                                                      | <b>n/a</b><br>21-5-96<br>28-5-96 | <b>n/a</b><br>28-5-96<br>4-6-96 | <b>n/a</b><br>4-6-96<br>11-6-96 | <b>G2166</b><br><b>final</b><br>11-6-96<br>18-6-96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>G2414</b><br><b>Final</b><br>18-6-96<br>25-6-96                                                   | <b>G2617</b><br>Final<br>25-6-96<br>2-7-96                                                                          | G2850r<br>Final<br>2-7-96<br>9-7-96                                        | <b>G3095</b><br><b>Final</b><br>9-7-96<br>16-7-96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | G3320<br>Final<br>16-7-96<br>23-7-96                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>G3576</b><br><b>Final</b><br>23-7-96 | <b>G3783</b><br><b>Final</b><br>30-7-96<br>6-8-96                                                                                                                                                                                                                                                                             | G4044<br>Final<br>6-8-96<br>13-8-96                                                                                                                                                            | <b>G4300</b><br><b>Final</b><br>13-8-96<br>20-8-96                          |
|                  | Stop:<br>Note:                                                                                                                                                                                                       | DCM<br>extr'n                    | DCM<br>extr'n                   | DC<br>ext                       | M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 23-0-90                                                                                              | 2-7-90                                                                                                              | 9-7-90                                                                     | 10-7-90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 23-7-90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 30-7-90                                 | 0-0-90                                                                                                                                                                                                                                                                                                                        | 13-0-90                                                                                                                                                                                        | 20-0-90                                                                     |
|                  | Concs (ng/m3)                                                                                                                                                                                                        | Agassiz<br>HV/PUF                | Agassiz<br>HV/PUF               | Agassiz<br>HV/PUF               | z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Aggassi<br>z<br>HV/PUF                                                                               | Aggassiz<br>HV/PUF                                                                                                  | iz                                                                         | iz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | iz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Aggass<br>iz<br>HV/PUF                  | iz                                                                                                                                                                                                                                                                                                                            | Aggassiz<br>HV/PUF                                                                                                                                                                             | Agassiz<br>HV/PUF                                                           |
| Organochlori     | Captan                                                                                                                                                                                                               |                                  |                                 |                                 | 4.153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.230                                                                                                | <dl< th=""><th>2.029</th><th>4.242</th><th>1.676</th><th>1.095</th><th>1.422</th><th>1.198</th><th>1.038</th></dl<> | 2.029                                                                      | 4.242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.676                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.095                                   | 1.422                                                                                                                                                                                                                                                                                                                         | 1.198                                                                                                                                                                                          | 1.038                                                                       |
| ne<br>Pesticides | cis-Chlordane (a)<br>trans-Chlordane (g)<br>Dacthal<br>4,4'-DDE<br>Dicofol<br>Dieldrin<br>Endosulfan I<br>Endosulfan II<br>Heptachlor<br>Heptachlor Epoxide<br>Hexachlorobenzene<br>Lindane (g-BHC)<br>cis-Nanochlor |                                  |                                 |                                 | 0.227<br>0.264<br>0.378<br><dl<br>1.680<br/>0.755<br/>0.170<br/><dl<br>0.283<br/>0.378<br/><dl<br><dl< th=""><th><dl<br><dl<br>1.615<br/>0.415<br/>0.123<br/><dl<br>0.446<br/>0.308<br/>0.154</dl<br></dl<br></dl<br></th><th>0.205<br/><dl<br><dl<br>0.218<br/>1.091</dl<br></dl<br></th><th>0.369<br/><dl<br>2.657<br/>1.033<br/>0.221<br/><dl<br>0.627</dl<br></dl<br></th><th>0.848<br/><dl<br>2.070<br/>1.731<br/>0.271<br/><dl<br>0.662<br/>0.509<br/><dl< th=""><th><dl<br><dl<br>1.996<br/>0.960<br/>0.183<br/><dl<br>0.259<br/>0.914<br/><dl< th=""><th>2.629<br/>0.548<br/><dl<br>0.516</dl<br></th><th><dl<br><dl<br>1.738<br/>0.979<br/>0.269<br/><dl<br>0.269<br/><dl<br><dl< th=""><th>0.599<br/><dl<br>2.157<br/>2.097<br/>0.509<br/><dl<br>0.389<br/>0.300<br/><dl< th=""><th><dl<br><dl<br>1.793<br/>1.808<br/>0.415<br/>0.148<br/>0.371</dl<br></dl<br></th></dl<></dl<br></dl<br></th></dl<></dl<br></dl<br></dl<br></dl<br></th></dl<></dl<br></dl<br></dl<br></th></dl<></dl<br></dl<br></th></dl<></dl<br></dl<br></dl<br> | <dl<br><dl<br>1.615<br/>0.415<br/>0.123<br/><dl<br>0.446<br/>0.308<br/>0.154</dl<br></dl<br></dl<br> | 0.205<br><dl<br><dl<br>0.218<br/>1.091</dl<br></dl<br>                                                              | 0.369<br><dl<br>2.657<br/>1.033<br/>0.221<br/><dl<br>0.627</dl<br></dl<br> | 0.848<br><dl<br>2.070<br/>1.731<br/>0.271<br/><dl<br>0.662<br/>0.509<br/><dl< th=""><th><dl<br><dl<br>1.996<br/>0.960<br/>0.183<br/><dl<br>0.259<br/>0.914<br/><dl< th=""><th>2.629<br/>0.548<br/><dl<br>0.516</dl<br></th><th><dl<br><dl<br>1.738<br/>0.979<br/>0.269<br/><dl<br>0.269<br/><dl<br><dl< th=""><th>0.599<br/><dl<br>2.157<br/>2.097<br/>0.509<br/><dl<br>0.389<br/>0.300<br/><dl< th=""><th><dl<br><dl<br>1.793<br/>1.808<br/>0.415<br/>0.148<br/>0.371</dl<br></dl<br></th></dl<></dl<br></dl<br></th></dl<></dl<br></dl<br></dl<br></dl<br></th></dl<></dl<br></dl<br></dl<br></th></dl<></dl<br></dl<br> | <dl<br><dl<br>1.996<br/>0.960<br/>0.183<br/><dl<br>0.259<br/>0.914<br/><dl< th=""><th>2.629<br/>0.548<br/><dl<br>0.516</dl<br></th><th><dl<br><dl<br>1.738<br/>0.979<br/>0.269<br/><dl<br>0.269<br/><dl<br><dl< th=""><th>0.599<br/><dl<br>2.157<br/>2.097<br/>0.509<br/><dl<br>0.389<br/>0.300<br/><dl< th=""><th><dl<br><dl<br>1.793<br/>1.808<br/>0.415<br/>0.148<br/>0.371</dl<br></dl<br></th></dl<></dl<br></dl<br></th></dl<></dl<br></dl<br></dl<br></dl<br></th></dl<></dl<br></dl<br></dl<br> | 2.629<br>0.548<br><dl<br>0.516</dl<br>  | <dl<br><dl<br>1.738<br/>0.979<br/>0.269<br/><dl<br>0.269<br/><dl<br><dl< th=""><th>0.599<br/><dl<br>2.157<br/>2.097<br/>0.509<br/><dl<br>0.389<br/>0.300<br/><dl< th=""><th><dl<br><dl<br>1.793<br/>1.808<br/>0.415<br/>0.148<br/>0.371</dl<br></dl<br></th></dl<></dl<br></dl<br></th></dl<></dl<br></dl<br></dl<br></dl<br> | 0.599<br><dl<br>2.157<br/>2.097<br/>0.509<br/><dl<br>0.389<br/>0.300<br/><dl< th=""><th><dl<br><dl<br>1.793<br/>1.808<br/>0.415<br/>0.148<br/>0.371</dl<br></dl<br></th></dl<></dl<br></dl<br> | <dl<br><dl<br>1.793<br/>1.808<br/>0.415<br/>0.148<br/>0.371</dl<br></dl<br> |



Environment Canada FRAP Study Atmospheric Concentrations of Agricultural Chemicals in the Lower Fraser Valley

| Herbicides                         | trans-Nanochlor<br>Oxychlordane<br>2,4-Dichlorophenoxy |  | 0.132<br>0.189<br><dl< th=""><th><dl< th=""><th>0.123</th><th>0.387</th><th>0.763</th><th></th><th></th><th></th><th></th><th>0.344<br/>0.315<br/>2.246</th><th>0.267</th></dl<></th></dl<>                                                                                                                                                      | <dl< th=""><th>0.123</th><th>0.387</th><th>0.763</th><th></th><th></th><th></th><th></th><th>0.344<br/>0.315<br/>2.246</th><th>0.267</th></dl<>                                                                                                                                                         | 0.123                                                                                                                                                                         | 0.387                                                                                                                                                                                                           | 0.763                                                                                                                                                                                                                                        |                                                                                                                                                                                                     |                                                                                                                                                            |                                                                                                                       |                                                                                    | 0.344<br>0.315<br>2.246 | 0.267                            |
|------------------------------------|--------------------------------------------------------|--|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------|----------------------------------|
|                                    | Acetic acid<br>Dicamba<br>Silvex (2,4,5-TP)            |  | <dl<br><dl< th=""><th><dl<br><dl< th=""><th></th><th></th><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl< th=""><th>1.947</th><th><dl<br><dl< th=""></dl<></dl<br></th></dl<></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br> | <dl<br><dl< th=""><th></th><th></th><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl< th=""><th>1.947</th><th><dl<br><dl< th=""></dl<></dl<br></th></dl<></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br> |                                                                                                                                                                               |                                                                                                                                                                                                                 | <dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl< th=""><th>1.947</th><th><dl<br><dl< th=""></dl<></dl<br></th></dl<></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br> | <dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl< th=""><th>1.947</th><th><dl<br><dl< th=""></dl<></dl<br></th></dl<></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br> | <dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl< th=""><th>1.947</th><th><dl<br><dl< th=""></dl<></dl<br></th></dl<></th></dl<></dl<br></th></dl<></dl<br> | <dl<br><dl< th=""><th><dl< th=""><th>1.947</th><th><dl<br><dl< th=""></dl<></dl<br></th></dl<></th></dl<></dl<br>     | <dl< th=""><th>1.947</th><th><dl<br><dl< th=""></dl<></dl<br></th></dl<>           | 1.947                   | <dl<br><dl< th=""></dl<></dl<br> |
| Organo-<br>phosphate<br>Pesticides | Chlorpyrifos                                           |  | 0.566                                                                                                                                                                                                                                                                                                                                            | 0.461                                                                                                                                                                                                                                                                                                   | <dl< th=""><th>0.922</th><th>0.170</th><th>0.457</th><th>0.313</th><th>1.264</th><th><dl< th=""><th></th><th>0.741</th></dl<></th></dl<>                                      | 0.922                                                                                                                                                                                                           | 0.170                                                                                                                                                                                                                                        | 0.457                                                                                                                                                                                               | 0.313                                                                                                                                                      | 1.264                                                                                                                 | <dl< th=""><th></th><th>0.741</th></dl<>                                           |                         | 0.741                            |
|                                    | Diazinon                                               |  | 0.189                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                               |                                                                                                                                                                                                                 |                                                                                                                                                                                                                                              |                                                                                                                                                                                                     | 0.782                                                                                                                                                      |                                                                                                                       |                                                                                    |                         | 1.186                            |
|                                    | Dichlorvos<br>Dimethoate                               |  | 5.852<br><dl< th=""><th></th><th></th><th>0.738<br/><dl< th=""><th></th><th></th><th>5.790<br/><dl< th=""><th>3.001<br/><dl< th=""><th><dl<br><dl< th=""><th></th><th><dl<br><dl< th=""></dl<></dl<br></th></dl<></dl<br></th></dl<></th></dl<></th></dl<></th></dl<>                                                                            |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                               | 0.738<br><dl< th=""><th></th><th></th><th>5.790<br/><dl< th=""><th>3.001<br/><dl< th=""><th><dl<br><dl< th=""><th></th><th><dl<br><dl< th=""></dl<></dl<br></th></dl<></dl<br></th></dl<></th></dl<></th></dl<> |                                                                                                                                                                                                                                              |                                                                                                                                                                                                     | 5.790<br><dl< th=""><th>3.001<br/><dl< th=""><th><dl<br><dl< th=""><th></th><th><dl<br><dl< th=""></dl<></dl<br></th></dl<></dl<br></th></dl<></th></dl<>  | 3.001<br><dl< th=""><th><dl<br><dl< th=""><th></th><th><dl<br><dl< th=""></dl<></dl<br></th></dl<></dl<br></th></dl<> | <dl<br><dl< th=""><th></th><th><dl<br><dl< th=""></dl<></dl<br></th></dl<></dl<br> |                         | <dl<br><dl< th=""></dl<></dl<br> |
|                                    | Fonofos<br>Malathion                                   |  | 2.643<br>3.398                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                               |                                                                                                                                                                                                                 |                                                                                                                                                                                                                                              |                                                                                                                                                                                                     |                                                                                                                                                            | <dl< th=""><th><dl<br><dl< th=""><th></th><th><dl<br><dl< th=""></dl<></dl<br></th></dl<></dl<br></th></dl<>          | <dl<br><dl< th=""><th></th><th><dl<br><dl< th=""></dl<></dl<br></th></dl<></dl<br> |                         | <dl<br><dl< th=""></dl<></dl<br> |
|                                    | Parathion Methyl                                       |  | <dl< th=""><th></th><th></th><th></th><th><dl< th=""><th><dl< th=""><th>0.156</th><th>0.158</th><th><dl< th=""><th></th><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                                                        |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                               |                                                                                                                                                                                                                 | <dl< th=""><th><dl< th=""><th>0.156</th><th>0.158</th><th><dl< th=""><th></th><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<>                                                                                                         | <dl< th=""><th>0.156</th><th>0.158</th><th><dl< th=""><th></th><th><dl< th=""></dl<></th></dl<></th></dl<>                                                                                          | 0.156                                                                                                                                                      | 0.158                                                                                                                 | <dl< th=""><th></th><th><dl< th=""></dl<></th></dl<>                               |                         | <dl< th=""></dl<>                |
| Sterilants                         | Turbufos<br>Atrazine                                   |  | 5.663                                                                                                                                                                                                                                                                                                                                            | 14.458                                                                                                                                                                                                                                                                                                  | <dl< th=""><th>4.243</th><th>5.260</th><th>0.305<br/>1.676</th><th></th><th></th><th><dl<br><dl< th=""><th></th><th>0.741<br/><dl< th=""></dl<></th></dl<></dl<br></th></dl<> | 4.243                                                                                                                                                                                                           | 5.260                                                                                                                                                                                                                                        | 0.305<br>1.676                                                                                                                                                                                      |                                                                                                                                                            |                                                                                                                       | <dl<br><dl< th=""><th></th><th>0.741<br/><dl< th=""></dl<></th></dl<></dl<br>      |                         | 0.741<br><dl< th=""></dl<>       |



| Agassiz | <ul> <li>Pesticides</li> </ul> |
|---------|--------------------------------|
| HV PUF  | Data                           |

| HV PUF Data    |                 |         |         |                |                                                                                                                                                                                          |                                                                                                                                                                                                      |          |         |                                                                                                                                                     |                                                                                                                           |                                                                                                 |                                                                       |                                             |                   |
|----------------|-----------------|---------|---------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------|-------------------|
|                | Head ID         | EC008   |         | EC001          | EC003                                                                                                                                                                                    |                                                                                                                                                                                                      | EC009    | EC003   | EC006                                                                                                                                               |                                                                                                                           |                                                                                                 |                                                                       |                                             |                   |
|                | Date on         | 20-8-96 | 27-8-96 | 3-9-96         | 10-9-96                                                                                                                                                                                  | 17-9-96                                                                                                                                                                                              | 24-9-96  | 1-10-96 | 8-10-96                                                                                                                                             | 15-10-                                                                                                                    | 22-10-96                                                                                        | 29-10-                                                                | 5-11-96                                     | 13-11-96          |
|                |                 | 8:08    |         |                |                                                                                                                                                                                          |                                                                                                                                                                                                      |          |         |                                                                                                                                                     |                                                                                                                           |                                                                                                 |                                                                       |                                             |                   |
|                | Date off        | 27-8-96 |         |                |                                                                                                                                                                                          |                                                                                                                                                                                                      | 1-10-96  |         |                                                                                                                                                     |                                                                                                                           | 29-10-96                                                                                        |                                                                       |                                             | 25-11-96          |
|                |                 | 8:05    |         |                |                                                                                                                                                                                          | 0:00                                                                                                                                                                                                 | 9:40     |         | 96 8:43                                                                                                                                             | 96 8:40                                                                                                                   |                                                                                                 |                                                                       | -                                           | •••=              |
|                | Counter on      | 9276.28 | 9444.1  | 9612.12        | 9779.92                                                                                                                                                                                  | 9832.04                                                                                                                                                                                              | 9832.04  | 9998.98 | 10165.4                                                                                                                                             | 10333.8                                                                                                                   | 10499.9                                                                                         | 10667.8                                                               | na                                          | 10836.35          |
|                | Counter off     | 9444.1  | 9612.12 | 9779.92        | 9832.04                                                                                                                                                                                  | 9832.04                                                                                                                                                                                              | 0000 00  | 10165 4 | 9<br>10333.8                                                                                                                                        | 3                                                                                                                         | 10667.0                                                                                         | 1<br>10836.3                                                          | 20                                          | 11123.8           |
|                | Counter on      | 9444.1  | 9012.12 | 9779.92        | 9032.04                                                                                                                                                                                  | 9032.04                                                                                                                                                                                              | 9990.90  | 10105.4 | 10333.0                                                                                                                                             | 10499.9                                                                                                                   | 10007.0                                                                                         | 10030.3                                                               | lid                                         | 11123.0           |
|                | Mag. Press. on  | 32      | 33      | 36             | 37                                                                                                                                                                                       | 0                                                                                                                                                                                                    | 38       | 34      | 37                                                                                                                                                  | 40                                                                                                                        | 39                                                                                              | 45                                                                    | na                                          | 41                |
|                | Mag. Press. off | 29      |         |                | na                                                                                                                                                                                       | 0                                                                                                                                                                                                    | 30       |         | 35                                                                                                                                                  | 33                                                                                                                        |                                                                                                 | na                                                                    | na                                          | 39                |
|                | Meter (m3) on   | -       | -       |                |                                                                                                                                                                                          | •                                                                                                                                                                                                    | 8428     | -       | 9721                                                                                                                                                | 490.02                                                                                                                    |                                                                                                 | 1822.13                                                               |                                             | 2517.02           |
|                | Meter (m3) off  |         |         |                |                                                                                                                                                                                          |                                                                                                                                                                                                      | 9071.02  |         | 10490.0                                                                                                                                             | 1195.03                                                                                                                   |                                                                                                 | 2517.02                                                               |                                             | 3822.12           |
|                |                 |         |         |                |                                                                                                                                                                                          |                                                                                                                                                                                                      |          | -       | 2                                                                                                                                                   |                                                                                                                           |                                                                                                 |                                                                       |                                             |                   |
|                |                 |         |         | l !            |                                                                                                                                                                                          |                                                                                                                                                                                                      |          |         |                                                                                                                                                     |                                                                                                                           |                                                                                                 |                                                                       |                                             |                   |
|                | Counter Diff'n  | 167.82  |         |                | -                                                                                                                                                                                        | 0                                                                                                                                                                                                    |          |         | 168.34                                                                                                                                              | 166.09                                                                                                                    |                                                                                                 |                                                                       |                                             | 287.45            |
|                | Meter diff      | 536.98  | 651.01  | 688.91         | 156.97                                                                                                                                                                                   | 0                                                                                                                                                                                                    | 643.02   | 649.98  | 769.02                                                                                                                                              | 705.01                                                                                                                    | 627.1                                                                                           | 694.89                                                                | na                                          | 1305.1            |
|                | sample (m3)     |         |         | 1 <sup>1</sup> |                                                                                                                                                                                          |                                                                                                                                                                                                      |          |         |                                                                                                                                                     |                                                                                                                           |                                                                                                 |                                                                       |                                             |                   |
|                |                 |         |         | l !            | -                                                                                                                                                                                        | -                                                                                                                                                                                                    |          |         |                                                                                                                                                     |                                                                                                                           |                                                                                                 |                                                                       |                                             |                   |
|                | Comments        |         |         |                |                                                                                                                                                                                          |                                                                                                                                                                                                      | New pump |         |                                                                                                                                                     |                                                                                                                           |                                                                                                 |                                                                       | Pump dead                                   | 2 wk spl          |
|                |                 |         |         | 1 <sup>1</sup> | dead                                                                                                                                                                                     | dead                                                                                                                                                                                                 |          |         |                                                                                                                                                     |                                                                                                                           |                                                                                                 | dead                                                                  |                                             |                   |
|                |                 |         |         | l !            |                                                                                                                                                                                          |                                                                                                                                                                                                      |          |         |                                                                                                                                                     |                                                                                                                           |                                                                                                 |                                                                       |                                             |                   |
|                | Avg P (mm HG)   | 1016.8  | 1016.9  | 1016.2         | 1009.8                                                                                                                                                                                   | 1022.0                                                                                                                                                                                               | 1020.1   | 1019.2  | 1014.8                                                                                                                                              | 1017.3                                                                                                                    | 1016.9                                                                                          | 1021.8                                                                | 1020.7                                      | 1014.5            |
|                | Avg T (C)       | 19.0    |         |                |                                                                                                                                                                                          |                                                                                                                                                                                                      |          |         |                                                                                                                                                     |                                                                                                                           |                                                                                                 |                                                                       |                                             | -6.7              |
|                | Avg T (K)       | 292.1   | 290.5   |                | 288.6                                                                                                                                                                                    |                                                                                                                                                                                                      | 286.3    |         | 285.7                                                                                                                                               | 279.4                                                                                                                     | 280.8                                                                                           | -                                                                     |                                             | 266.4             |
|                | Corrected       | 549.9   |         |                | 161.6                                                                                                                                                                                    |                                                                                                                                                                                                      | 674.0    |         | 803.6                                                                                                                                               |                                                                                                                           | 668.1                                                                                           |                                                                       | -                                           | 1462.1            |
|                | Volume          | 0.10.0  | 010.1   | 1.0.1          | 10110                                                                                                                                                                                    | 0.0                                                                                                                                                                                                  | 07 110   | 000.0   | 000.0                                                                                                                                               | 100.1                                                                                                                     | 000.1                                                                                           | 1 10.1                                                                | nu -                                        | 1102.1            |
|                | File:           | G4510   | G4679   | G4924          |                                                                                                                                                                                          |                                                                                                                                                                                                      | G5586    | G5863   | G6072                                                                                                                                               | G6330                                                                                                                     | G6541                                                                                           | G6765                                                                 | G6980                                       | G7367             |
|                | File Status:    | Final   | Final   | final          |                                                                                                                                                                                          |                                                                                                                                                                                                      | final    | final   | final                                                                                                                                               | final                                                                                                                     | final                                                                                           | final                                                                 | final                                       | final             |
|                | Start:          | 20-8-96 | 27-8-96 | 3-9-96         | 10-9-96                                                                                                                                                                                  | 17-9-96                                                                                                                                                                                              | 24-9-96  | 1-10-96 | 8-10-96                                                                                                                                             | 15-10-                                                                                                                    | 22-10-96                                                                                        | 29-10-                                                                | 5-11-96                                     | 13-11-96          |
|                |                 |         |         | 1 <sup>1</sup> |                                                                                                                                                                                          |                                                                                                                                                                                                      |          |         |                                                                                                                                                     | 96                                                                                                                        |                                                                                                 | 96                                                                    |                                             |                   |
|                | Stop:           | 27-8-96 | 3-9-96  | 10-9-96        | 17-9-96                                                                                                                                                                                  | 24-9-96                                                                                                                                                                                              | 1-10-96  | 8-10-96 | 15-10-                                                                                                                                              | -                                                                                                                         | 29-10-96                                                                                        | 5-11-96                                                               | 12-11-96                                    | 26-11-96          |
|                | _               |         |         |                |                                                                                                                                                                                          |                                                                                                                                                                                                      |          |         | 96                                                                                                                                                  | 96                                                                                                                        |                                                                                                 |                                                                       |                                             |                   |
|                |                 |         |         |                |                                                                                                                                                                                          |                                                                                                                                                                                                      |          |         |                                                                                                                                                     |                                                                                                                           |                                                                                                 |                                                                       |                                             |                   |
|                | Note:           |         |         |                |                                                                                                                                                                                          |                                                                                                                                                                                                      |          |         |                                                                                                                                                     |                                                                                                                           |                                                                                                 |                                                                       |                                             |                   |
|                | Concs (ng/m3)   |         | Agassiz |                |                                                                                                                                                                                          |                                                                                                                                                                                                      |          |         |                                                                                                                                                     |                                                                                                                           |                                                                                                 | Agassiz                                                               |                                             | Agassiz           |
|                |                 | HV/PUF  | HV/PUF  |                |                                                                                                                                                                                          |                                                                                                                                                                                                      |          |         |                                                                                                                                                     |                                                                                                                           |                                                                                                 | HV/PUF                                                                |                                             | HV/PUF            |
| Organochlorine | Captan          | 0.727   | 0.746   |                |                                                                                                                                                                                          | <dl< th=""><th>0.148</th><th></th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | 0.148    |         | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""></dl<></th></dl<> | <dl< th=""></dl<> |
| Pesticides     | cis-Chlordane   | 0.255   | 0.209   | 0.250          | <di< th=""><th><dl< th=""><th>0.134</th><th>0.103</th><th>-DI</th><th><dl< th=""><th>0.090</th><th></th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></di<> | <dl< th=""><th>0.134</th><th>0.103</th><th>-DI</th><th><dl< th=""><th>0.090</th><th></th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<>                                       | 0.134    | 0.103   | -DI                                                                                                                                                 | <dl< th=""><th>0.090</th><th></th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<>                              | 0.090                                                                                           |                                                                       | <dl< th=""><th><dl< th=""></dl<></th></dl<> | <dl< th=""></dl<> |
| Pesticides     | cis-Chiordane   | 0.200   | 0.203   | 0.230          | NDL                                                                                                                                                                                      | <b>NDL</b>                                                                                                                                                                                           | 0.154    | 0.105   | <b>NDL</b>                                                                                                                                          |                                                                                                                           | 0.000                                                                                           |                                                                       | <dl< th=""><th><dl< th=""></dl<></th></dl<> | <dl< th=""></dl<> |



Environment Canada FRAP Study Atmospheric Concentrations of Agricultural Chemicals in the Lower Fraser Valley

|            | (a)<br>trans-Chlordane | 0.309                                                                                                                                                                                                                                                                                                                                     | 0.194                                                                                                                                                                                                                                                                                                           | 0.250                                                                                                                                                                                                                                                                                 | <dl< th=""><th><dl< th=""><th>0.193</th><th>0.147</th><th><dl< th=""><th><dl< th=""><th>0.105</th><th>0.080</th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                 | <dl< th=""><th>0.193</th><th>0.147</th><th><dl< th=""><th><dl< th=""><th>0.105</th><th>0.080</th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                 | 0.193                                                                                                                                                                                                   | 0.147                                                                                                                                                                         | <dl< th=""><th><dl< th=""><th>0.105</th><th>0.080</th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<>                         | <dl< th=""><th>0.105</th><th>0.080</th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<>                         | 0.105                                                                                           | 0.080                                                                 | <dl< th=""><th><dl< th=""></dl<></th></dl<> | <dl< th=""></dl<> |
|------------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------|-------------------|
|            | (g)<br>Dacthal         | 0.182                                                                                                                                                                                                                                                                                                                                     | <dl< th=""><th>0.139</th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>             | 0.139                                                                                                                                                                                                                                                                                 | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""></dl<></th></dl<> | <dl< th=""></dl<> |
|            | 4,4'-DDE               | <dl< th=""><th><dl< th=""><th>0.139</th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>             | <dl< th=""><th>0.139</th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>             | 0.139                                                                                                                                                                                                                                                                                 | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""></dl<></th></dl<> | <dl< th=""></dl<> |
|            | Dicofol                | <dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""></dl<></th></dl<> | <dl< th=""></dl<> |
|            | Dieldrin               | 1.709                                                                                                                                                                                                                                                                                                                                     | 1.298                                                                                                                                                                                                                                                                                                           | 0.987                                                                                                                                                                                                                                                                                 | <dl< th=""><th><dl< th=""><th>0.727</th><th>0.602</th><th><dl< th=""><th>0.278</th><th>0.434</th><th>0.443</th><th><dl< th=""><th>0.103</th></dl<></th></dl<></th></dl<></th></dl<>                                                                         | <dl< th=""><th>0.727</th><th>0.602</th><th><dl< th=""><th>0.278</th><th>0.434</th><th>0.443</th><th><dl< th=""><th>0.103</th></dl<></th></dl<></th></dl<>                                                                         | 0.727                                                                                                                                                                                                   | 0.602                                                                                                                                                                         | <dl< th=""><th>0.278</th><th>0.434</th><th>0.443</th><th><dl< th=""><th>0.103</th></dl<></th></dl<>                                                 | 0.278                                                                                                                     | 0.434                                                                                           | 0.443                                                                 | <dl< th=""><th>0.103</th></dl<>             | 0.103             |
|            | Endosulfan I           | 1.455                                                                                                                                                                                                                                                                                                                                     | 1.044                                                                                                                                                                                                                                                                                                           | 0.626                                                                                                                                                                                                                                                                                 | <dl< th=""><th><dl< th=""><th>0.653</th><th>0.147</th><th><dl< th=""><th>0.079</th><th>0.150</th><th>0.080</th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                             | <dl< th=""><th>0.653</th><th>0.147</th><th><dl< th=""><th>0.079</th><th>0.150</th><th>0.080</th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<>                                                             | 0.653                                                                                                                                                                                                   | 0.147                                                                                                                                                                         | <dl< th=""><th>0.079</th><th>0.150</th><th>0.080</th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<>                                     | 0.079                                                                                                                     | 0.150                                                                                           | 0.080                                                                 | <dl< th=""><th><dl< th=""></dl<></th></dl<> | <dl< th=""></dl<> |
|            | Endosulfan II          | 0.309                                                                                                                                                                                                                                                                                                                                     | 0.209                                                                                                                                                                                                                                                                                                           | 0.111                                                                                                                                                                                                                                                                                 | <dl< th=""><th><dl< th=""><th>0.134</th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>0.075</th><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                         | <dl< th=""><th>0.134</th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>0.075</th><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                         | 0.134                                                                                                                                                                                                   | <dl< th=""><th><dl< th=""><th><dl< th=""><th>0.075</th><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>             | <dl< th=""><th><dl< th=""><th>0.075</th><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<>             | <dl< th=""><th>0.075</th><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<>             | 0.075                                                                                           | <dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""></dl<></th></dl<> | <dl< th=""></dl<> |
|            | Heptachlor             | <dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""></dl<></th></dl<> | <dl< th=""></dl<> |
|            | Heptachlor             | 0.364                                                                                                                                                                                                                                                                                                                                     | 0.269                                                                                                                                                                                                                                                                                                           | 0.181                                                                                                                                                                                                                                                                                 | <dl< th=""><th><dl< th=""><th>0.163</th><th>0.117</th><th><dl< th=""><th><dl< th=""><th>0.105</th><th>0.080</th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                 | <dl< th=""><th>0.163</th><th>0.117</th><th><dl< th=""><th><dl< th=""><th>0.105</th><th>0.080</th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                 | 0.163                                                                                                                                                                                                   | 0.117                                                                                                                                                                         | <dl< th=""><th><dl< th=""><th>0.105</th><th>0.080</th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<>                         | <dl< th=""><th>0.105</th><th>0.080</th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<>                         | 0.105                                                                                           | 0.080                                                                 | <dl< th=""><th><dl< th=""></dl<></th></dl<> | <dl< th=""></dl<> |
|            | Epoxide                |                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                   |                                                                                                                                                                                                         |                                                                                                                                                                               |                                                                                                                                                     |                                                                                                                           |                                                                                                 |                                                                       |                                             |                   |
|            | Hexachlorobenz         | 0.546                                                                                                                                                                                                                                                                                                                                     | 0.448                                                                                                                                                                                                                                                                                                           | 0.278                                                                                                                                                                                                                                                                                 | <dl< th=""><th><dl< th=""><th>0.445</th><th>0.587</th><th><dl< th=""><th>0.530</th><th>0.150</th><th>0.268</th><th><dl< th=""><th>0.068</th></dl<></th></dl<></th></dl<></th></dl<>                                                                         | <dl< th=""><th>0.445</th><th>0.587</th><th><dl< th=""><th>0.530</th><th>0.150</th><th>0.268</th><th><dl< th=""><th>0.068</th></dl<></th></dl<></th></dl<>                                                                         | 0.445                                                                                                                                                                                                   | 0.587                                                                                                                                                                         | <dl< th=""><th>0.530</th><th>0.150</th><th>0.268</th><th><dl< th=""><th>0.068</th></dl<></th></dl<>                                                 | 0.530                                                                                                                     | 0.150                                                                                           | 0.268                                                                 | <dl< th=""><th>0.068</th></dl<>             | 0.068             |
|            | ene                    |                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                   |                                                                                                                                                                                                         |                                                                                                                                                                               |                                                                                                                                                     |                                                                                                                           |                                                                                                 |                                                                       |                                             |                   |
|            | Lindane (g-            | <dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""></dl<></th></dl<> | <dl< th=""></dl<> |
|            | BHC)                   |                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                   |                                                                                                                                                                                                         |                                                                                                                                                                               |                                                                                                                                                     |                                                                                                                           |                                                                                                 |                                                                       |                                             |                   |
|            | cis-Nanochlor          | <dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""></dl<></th></dl<> | <dl< th=""></dl<> |
|            | trans-Nanochlor        | 0.200                                                                                                                                                                                                                                                                                                                                     | 0.164                                                                                                                                                                                                                                                                                                           | 0.209                                                                                                                                                                                                                                                                                 | <dl< th=""><th><dl< th=""><th>0.148</th><th>0.147</th><th><dl< th=""><th><dl< th=""><th>0.120</th><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                     | <dl< th=""><th>0.148</th><th>0.147</th><th><dl< th=""><th><dl< th=""><th>0.120</th><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                     | 0.148                                                                                                                                                                                                   | 0.147                                                                                                                                                                         | <dl< th=""><th><dl< th=""><th>0.120</th><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<>             | <dl< th=""><th>0.120</th><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<>             | 0.120                                                                                           | <dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""></dl<></th></dl<> | <dl< th=""></dl<> |
|            | Oxychlordane           | 0.418                                                                                                                                                                                                                                                                                                                                     | 0.164                                                                                                                                                                                                                                                                                                           | 0.292                                                                                                                                                                                                                                                                                 | <dl< th=""><th><dl< th=""><th>0.148</th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>             | <dl< th=""><th>0.148</th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>             | 0.148                                                                                                                                                                                                   | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""></dl<></th></dl<> | <dl< th=""></dl<> |
| Herbicides | 2,4-                   | <dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""></dl<></th></dl<> | <dl< th=""></dl<> |
|            | Dichlorophenox         |                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                   |                                                                                                                                                                                                         |                                                                                                                                                                               |                                                                                                                                                     |                                                                                                                           |                                                                                                 |                                                                       |                                             |                   |
|            | y                      |                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                   |                                                                                                                                                                                                         |                                                                                                                                                                               |                                                                                                                                                     |                                                                                                                           |                                                                                                 |                                                                       |                                             |                   |
|            | Acetic acid            |                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                   |                                                                                                                                                                                                         |                                                                                                                                                                               |                                                                                                                                                     |                                                                                                                           |                                                                                                 |                                                                       |                                             |                   |
|            | Dicamba                | <dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""></dl<></th></dl<> | <dl< th=""></dl<> |
|            | Silvex (2,4,5-TP)      | 2.182                                                                                                                                                                                                                                                                                                                                     | <dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""></dl<></th></dl<> | <dl< th=""></dl<> |
| Organo-    | Chlorpyrifos           | <dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""></dl<></th></dl<> | <dl< th=""></dl<> |
| phosphate  |                        |                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                   |                                                                                                                                                                                                         |                                                                                                                                                                               |                                                                                                                                                     |                                                                                                                           |                                                                                                 |                                                                       |                                             |                   |
| Pesticides |                        |                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                   |                                                                                                                                                                                                         |                                                                                                                                                                               |                                                                                                                                                     |                                                                                                                           |                                                                                                 |                                                                       |                                             |                   |
|            | Diazinon               | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>0.445</th><th><dl< th=""><th><dl< th=""><th></th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                              | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>0.445</th><th><dl< th=""><th><dl< th=""><th></th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                              | <dl< th=""><th><dl< th=""><th><dl< th=""><th>0.445</th><th><dl< th=""><th><dl< th=""><th></th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                              | <dl< th=""><th><dl< th=""><th>0.445</th><th><dl< th=""><th><dl< th=""><th></th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                              | <dl< th=""><th>0.445</th><th><dl< th=""><th><dl< th=""><th></th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                              | 0.445                                                                                                                                                                                                   | <dl< th=""><th><dl< th=""><th></th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                  | <dl< th=""><th></th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                  |                                                                                                                           | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""></dl<></th></dl<> | <dl< th=""></dl<> |
|            | Dichlorvos             | <dl< th=""><th><dl< th=""><th>0.556</th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>0.805</th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                         | <dl< th=""><th>0.556</th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>0.805</th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                         | 0.556                                                                                                                                                                                                                                                                                 | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>0.805</th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>             | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>0.805</th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>             | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>0.805</th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>             | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>0.805</th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>             | <dl< th=""><th><dl< th=""><th><dl< th=""><th>0.805</th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<>             | <dl< th=""><th><dl< th=""><th>0.805</th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<>             | <dl< th=""><th>0.805</th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<>             | 0.805                                                                 | <dl< th=""><th><dl< th=""></dl<></th></dl<> | <dl< th=""></dl<> |
|            | Dimethoate             | <dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""></dl<></th></dl<> | <dl< th=""></dl<> |
|            | Fonofos                | <dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""></dl<></th></dl<> | <dl< th=""></dl<> |
|            | Malathion              | <dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""></dl<></th></dl<> | <dl< th=""></dl<> |
|            | Parathion              | <dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""></dl<></th></dl<> | <dl< th=""></dl<> |
|            | Methyl                 |                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                   |                                                                                                                                                                                                         |                                                                                                                                                                               |                                                                                                                                                     |                                                                                                                           |                                                                                                 |                                                                       |                                             |                   |
|            | Turbufos               | 0.727                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                 | <dl< th=""><th><dl< th=""><th></th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                  | <dl< th=""><th></th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                  |                                                                                                                                                                                                                                   | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""></dl<></th></dl<> | <dl< th=""></dl<> |
| Sterilants | Atrazine               | <dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""></dl<></th></dl<> | <dl< th=""></dl<> |



#### Agassiz - Pesticides HV PUF Data

| HV FUF Data                  |                 |                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                  |          |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                               |                                                                                                                                                                                                                     |                                                                                                                                                                                           |                                                                                                                                                                            |                                                                                                                                       |                                                                                                             |                                                                                   |                                                                        |                               |                   |
|------------------------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------|-------------------|
|                              | Head ID         |                                                                                                                                                                                                                                                                                                                     | SD-008                                                                                                                                                                                                                                                                                           |          |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                               |                                                                                                                                                                                                                     |                                                                                                                                                                                           |                                                                                                                                                                            |                                                                                                                                       |                                                                                                             |                                                                                   |                                                                        |                               |                   |
|                              | Date on         | 25-11-96                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                  |          | 16-12-96                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                               |                                                                                                                                                                                                                     |                                                                                                                                                                                           |                                                                                                                                                                            |                                                                                                                                       | 28-1-97                                                                                                     | 4-2-97                                                                            |                                                                        |                               | 25-2-97           |
|                              |                 | 9:12                                                                                                                                                                                                                                                                                                                | 9:40                                                                                                                                                                                                                                                                                             |          |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                               |                                                                                                                                                                                                                     |                                                                                                                                                                                           |                                                                                                                                                                            |                                                                                                                                       |                                                                                                             |                                                                                   | -                                                                      |                               | 11:00             |
|                              | Date off        | 3-12-96<br>9:25                                                                                                                                                                                                                                                                                                     | 10-12-96<br>9:15                                                                                                                                                                                                                                                                                 |          | 23-12-96<br>12:30                                                                                                                                                                                                                              |                                                                                                                                                                                                                                               |                                                                                                                                                                                                                     |                                                                                                                                                                                           | 21-1-97<br>11:10                                                                                                                                                           | 28-1-97<br>11:15                                                                                                                      | 4-2-97<br>11:20                                                                                             | 11-2-97<br>12:25                                                                  |                                                                        | 25-2-97<br>10:50              | 4-3-97<br>10:45   |
|                              | Counter on      |                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                  |          | 11627.55                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                               |                                                                                                                                                                                                                     |                                                                                                                                                                                           |                                                                                                                                                                            | 12492.3                                                                                                                               |                                                                                                             | 12828.2                                                                           |                                                                        | 13163.57                      | 13331.27          |
|                              | Counter on      | 11125.0                                                                                                                                                                                                                                                                                                             | 11010.00                                                                                                                                                                                                                                                                                         | 11403.07 | 11027.00                                                                                                                                                                                                                                       | 11730.13                                                                                                                                                                                                                                      | 11000.11                                                                                                                                                                                                            | 12100.0                                                                                                                                                                                   | 9                                                                                                                                                                          | 2 2                                                                                                                                   | 12000.1                                                                                                     | 12020.2                                                                           | 12007.10                                                               | 10100.07                      | 10001.27          |
|                              | Counter off     | 11315.98                                                                                                                                                                                                                                                                                                            | 11483.57                                                                                                                                                                                                                                                                                         | 11627.55 | 11798.15                                                                                                                                                                                                                                       | 11990.11                                                                                                                                                                                                                                      | 12156.90                                                                                                                                                                                                            | 12324.3                                                                                                                                                                                   | 12492.3                                                                                                                                                                    | 12660.1                                                                                                                               | 12828.2                                                                                                     | 12997.1                                                                           | 13163.57                                                               | 13331.27                      | 13498.93          |
|                              |                 |                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                  |          |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                               |                                                                                                                                                                                                                     | 9                                                                                                                                                                                         | 2                                                                                                                                                                          | 8                                                                                                                                     | 8                                                                                                           | 5                                                                                 |                                                                        |                               |                   |
|                              | Mag. Press. on  |                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                  |          | -                                                                                                                                                                                                                                              | 39                                                                                                                                                                                                                                            |                                                                                                                                                                                                                     | -                                                                                                                                                                                         | 44                                                                                                                                                                         | 45                                                                                                                                    |                                                                                                             |                                                                                   | -                                                                      | -                             | 40                |
|                              | Mag. Press. off |                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                  |          |                                                                                                                                                                                                                                                | 38                                                                                                                                                                                                                                            |                                                                                                                                                                                                                     |                                                                                                                                                                                           | 40                                                                                                                                                                         | -                                                                                                                                     | 46                                                                                                          |                                                                                   | na                                                                     | 35                            | 39                |
|                              | Meter (m3) on   |                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                  |          | 6097                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                               |                                                                                                                                                                                                                     |                                                                                                                                                                                           |                                                                                                                                                                            | 9263                                                                                                                                  |                                                                                                             | 841                                                                               |                                                                        | 1752                          | 2488              |
|                              | Meter (m3) off  | 4673.15                                                                                                                                                                                                                                                                                                             | 5437                                                                                                                                                                                                                                                                                             | 6097     | 6650                                                                                                                                                                                                                                           | 7265                                                                                                                                                                                                                                          | 7810                                                                                                                                                                                                                | 8511                                                                                                                                                                                      | 9263                                                                                                                                                                       | 10064                                                                                                                                 | 841                                                                                                         | 1657                                                                              | 1752                                                                   | 2488                          | 3239              |
|                              | Counter Diff'n  | 192.18                                                                                                                                                                                                                                                                                                              | 167.59                                                                                                                                                                                                                                                                                           | 143.98   | 170.6                                                                                                                                                                                                                                          | 191.96                                                                                                                                                                                                                                        | 166.79                                                                                                                                                                                                              | 167.49                                                                                                                                                                                    | 167.93                                                                                                                                                                     | 167.86                                                                                                                                | 168.1                                                                                                       | 168.87                                                                            | 166.42                                                                 | 167.7                         | 167.66            |
|                              | Meter diff      |                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                  |          |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                               |                                                                                                                                                                                                                     |                                                                                                                                                                                           | 752                                                                                                                                                                        |                                                                                                                                       |                                                                                                             | 816                                                                               |                                                                        |                               | 751               |
|                              | sample (m3)     |                                                                                                                                                                                                                                                                                                                     | 705.05                                                                                                                                                                                                                                                                                           | 000      | 555                                                                                                                                                                                                                                            | 015                                                                                                                                                                                                                                           | 545                                                                                                                                                                                                                 | 701                                                                                                                                                                                       | 152                                                                                                                                                                        | 001                                                                                                                                   |                                                                                                             | 010                                                                               | 35                                                                     | 750                           | 751               |
|                              | Sumple (mo)     |                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                  |          |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                               |                                                                                                                                                                                                                     |                                                                                                                                                                                           |                                                                                                                                                                            |                                                                                                                                       |                                                                                                             |                                                                                   |                                                                        |                               |                   |
|                              | Comments        |                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                  |          | New                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                               |                                                                                                                                                                                                                     | New mot                                                                                                                                                                                   | or                                                                                                                                                                         |                                                                                                                                       |                                                                                                             |                                                                                   | Motor dead                                                             |                               |                   |
|                              |                 |                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                  |          | motor                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                               |                                                                                                                                                                                                                     |                                                                                                                                                                                           | _                                                                                                                                                                          |                                                                                                                                       |                                                                                                             |                                                                                   |                                                                        |                               |                   |
|                              |                 |                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                  |          | installed                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                               |                                                                                                                                                                                                                     | installed                                                                                                                                                                                 |                                                                                                                                                                            |                                                                                                                                       |                                                                                                             |                                                                                   | on arrival                                                             |                               |                   |
|                              |                 |                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                  |          |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                               |                                                                                                                                                                                                                     |                                                                                                                                                                                           |                                                                                                                                                                            |                                                                                                                                       |                                                                                                             |                                                                                   |                                                                        |                               |                   |
|                              | Avg P (mm HG)   | 1018.0                                                                                                                                                                                                                                                                                                              | 1004.8                                                                                                                                                                                                                                                                                           |          | 1018.8                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                               |                                                                                                                                                                                                                     |                                                                                                                                                                                           |                                                                                                                                                                            |                                                                                                                                       | 1021.1                                                                                                      | 1025.5                                                                            |                                                                        | 1027.7                        |                   |
|                              | Avg T (C)       | 3.2                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                  |          | -0.6                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                               |                                                                                                                                                                                                                     |                                                                                                                                                                                           |                                                                                                                                                                            |                                                                                                                                       |                                                                                                             | 3.8                                                                               |                                                                        |                               |                   |
|                              | Avg T (K)       | 276.3                                                                                                                                                                                                                                                                                                               | 275.4                                                                                                                                                                                                                                                                                            |          | 272.5                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                   | 275.9                                                                                                                                                                                     | 276.4                                                                                                                                                                      | 271.4                                                                                                                                 | 277.3                                                                                                       | 276.9                                                                             |                                                                        | 279.2                         |                   |
|                              | Corrected       | 922.4                                                                                                                                                                                                                                                                                                               | 819.8                                                                                                                                                                                                                                                                                            |          | 608.2                                                                                                                                                                                                                                          | 690.5                                                                                                                                                                                                                                         | 589.1                                                                                                                                                                                                               | 765.1                                                                                                                                                                                     | 814.1                                                                                                                                                                      | 882.4                                                                                                                                 | 841.7                                                                                                       | 889.0                                                                             | 102.1                                                                  | 797.0                         |                   |
|                              | Volume          |                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                  |          |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                               |                                                                                                                                                                                                                     |                                                                                                                                                                                           |                                                                                                                                                                            |                                                                                                                                       |                                                                                                             |                                                                                   |                                                                        |                               |                   |
|                              | File:           | G7556                                                                                                                                                                                                                                                                                                               | G7786                                                                                                                                                                                                                                                                                            |          | G8168                                                                                                                                                                                                                                          | G8237                                                                                                                                                                                                                                         | G8330                                                                                                                                                                                                               | G8497                                                                                                                                                                                     | G8666                                                                                                                                                                      | G8836                                                                                                                                 | G9020                                                                                                       | G9181                                                                             | G9377                                                                  | G9595                         |                   |
|                              | File Status:    | final<br>26-11-96                                                                                                                                                                                                                                                                                                   | final<br>3-12-96                                                                                                                                                                                                                                                                                 | 10 10 00 | final<br>16-12-96                                                                                                                                                                                                                              | final                                                                                                                                                                                                                                         | final<br>31-12-96                                                                                                                                                                                                   | final<br>7-1-97                                                                                                                                                                           | final<br>14-1-97                                                                                                                                                           | final<br>21-1-97                                                                                                                      | final<br>28-1-97                                                                                            | <b>final</b><br>4-2-97                                                            | final<br>11-2-97                                                       | final<br>18-2-97              | 25-2-97           |
|                              | Start:<br>Stop: |                                                                                                                                                                                                                                                                                                                     | 3-12-96<br>10-12-96                                                                                                                                                                                                                                                                              | 10-12-96 |                                                                                                                                                                                                                                                | 30-12-96                                                                                                                                                                                                                                      | 7-1-97                                                                                                                                                                                                              | 7-1-97<br>14-1-97                                                                                                                                                                         | 21-1-97                                                                                                                                                                    | 21-1-97<br>28-1-97                                                                                                                    | 20-1-97<br>4-2-97                                                                                           | 4-2-97                                                                            | 11-2-97<br>18-2-97                                                     | 25-2-97                       | 20-2-97           |
|                              | Stop.           | 3-12-90                                                                                                                                                                                                                                                                                                             | 10-12-90                                                                                                                                                                                                                                                                                         |          | 23-12-90                                                                                                                                                                                                                                       | 30-12-90                                                                                                                                                                                                                                      | 7-1-97                                                                                                                                                                                                              | 14-1-97                                                                                                                                                                                   | 21-1-97                                                                                                                                                                    | 20-1-97                                                                                                                               | 4-2-97                                                                                                      | 11-2-97                                                                           | possible                                                               | 25-2-91                       |                   |
|                              | Note:           |                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                  | Calc A   | gassiz                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                               |                                                                                                                                                                                                                     |                                                                                                                                                                                           |                                                                                                                                                                            |                                                                                                                                       |                                                                                                             |                                                                                   | switch w Abb                                                           | otsford                       |                   |
|                              |                 |                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                  |          | 5                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                               |                                                                                                                                                                                                                     |                                                                                                                                                                                           |                                                                                                                                                                            |                                                                                                                                       |                                                                                                             |                                                                                   |                                                                        |                               |                   |
|                              | Concs (ng/m3)   | Agassiz                                                                                                                                                                                                                                                                                                             | Agassiz                                                                                                                                                                                                                                                                                          | HV/PUF   | Agassiz                                                                                                                                                                                                                                        | Agassiz                                                                                                                                                                                                                                       | Agassiz                                                                                                                                                                                                             | Agassiz                                                                                                                                                                                   | Agassiz                                                                                                                                                                    | Agassiz                                                                                                                               | Agassiz                                                                                                     | Agassiz                                                                           | Agassiz                                                                | Agassiz                       | Field             |
|                              |                 |                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                  |          |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                               |                                                                                                                                                                                                                     |                                                                                                                                                                                           |                                                                                                                                                                            |                                                                                                                                       |                                                                                                             |                                                                                   |                                                                        |                               | Spike             |
|                              |                 | HV/PUF                                                                                                                                                                                                                                                                                                              | HV/PUF                                                                                                                                                                                                                                                                                           |          | HV/PUF                                                                                                                                                                                                                                         | HV/PUF                                                                                                                                                                                                                                        | HV/PUF                                                                                                                                                                                                              | HV/PUF                                                                                                                                                                                    | HV/PUF                                                                                                                                                                     | HV/PUF                                                                                                                                | HV/PUF                                                                                                      | HV/PUF                                                                            | HV/PUF                                                                 | HV/PUF                        | Calc. Spl-<br>blk |
| Organachlaring               | Conton          | <dl< th=""><th><dl< th=""><th></th><th></th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>DIK</th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th></th><th></th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>DIK</th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>        |          |                                                                                                                                                                                                                                                | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>DIK</th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>DIK</th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>DIK</th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>DIK</th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>            | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>DIK</th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>DIK</th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th>DIK</th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th>DIK</th></dl<></th></dl<>                | <dl< th=""><th>DIK</th></dl<> | DIK               |
| Organochlorine<br>Pesticides |                 |                                                                                                                                                                                                                                                                                                                     | <dl<br><dl< th=""><th></th><th><dl<br><dl< th=""><th></th><th></th><th></th><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th></th><th></th><th><dl<br><dl< th=""><th><dl<br>0.063</dl<br></th><th></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br> |          | <dl<br><dl< th=""><th></th><th></th><th></th><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th></th><th></th><th><dl<br><dl< th=""><th><dl<br>0.063</dl<br></th><th></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br> |                                                                                                                                                                                                                                               |                                                                                                                                                                                                                     |                                                                                                                                                                                           | <dl<br><dl< th=""><th><dl<br><dl< th=""><th></th><th></th><th><dl<br><dl< th=""><th><dl<br>0.063</dl<br></th><th></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br> | <dl<br><dl< th=""><th></th><th></th><th><dl<br><dl< th=""><th><dl<br>0.063</dl<br></th><th></th></dl<></dl<br></th></dl<></dl<br>     |                                                                                                             |                                                                                   | <dl<br><dl< th=""><th><dl<br>0.063</dl<br></th><th></th></dl<></dl<br> | <dl<br>0.063</dl<br>          |                   |
| resticiues                   | CIS-CITIOTUATIe | < DL                                                                                                                                                                                                                                                                                                                | < DL                                                                                                                                                                                                                                                                                             |          | < DL                                                                                                                                                                                                                                           | < DL                                                                                                                                                                                                                                          | < DL                                                                                                                                                                                                                | < DL                                                                                                                                                                                      | < DL                                                                                                                                                                       | < DL                                                                                                                                  | SUL                                                                                                         | < DL                                                                              | < DL                                                                   | 0.003                         |                   |



Environment Canada FRAP Study Atmospheric Concentrations of Agricultural Chemicals in the Lower Fraser Valley

|                                       |                  |                                                                                                                                                                                                                                                                                                                                                                                                     | · •                                                                                                                                                                                                                                                                                                                                                        | I                                                                                                                                                                                                                                                                                                                 | I                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                 |                                                                                                                                                                               |                                                                                                                                                     | I                                                                                                                                                                    |                                                                                                 |                                                                                                                    |                                                                           |                                  |
|---------------------------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------|
| (a)                                   |                  | 0.054                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                 |                                                                                                                                                                               |                                                                                                                                                     |                                                                                                                                                                      |                                                                                                 |                                                                                                                    |                                                                           |                                  |
|                                       | ans-Chlordane    | 0.054                                                                                                                                                                                                                                                                                                                                                                                               | <dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                      | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                       | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                        | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                         | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                            | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<>                                              | <dl< th=""><th><dl< th=""></dl<></th></dl<>                               | <dl< th=""></dl<>                |
| (g)                                   | )                |                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                 |                                                                                                                                                                               |                                                                                                                                                     |                                                                                                                                                                      |                                                                                                 |                                                                                                                    |                                                                           |                                  |
|                                       |                  | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th><th></th><th></th><th><dl< th=""><th></th><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                                                         | <dl< th=""><th><dl< th=""><th><dl< th=""><th></th><th></th><th></th><th><dl< th=""><th></th><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                                          | <dl< th=""><th><dl< th=""><th></th><th></th><th></th><th><dl< th=""><th></th><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                           | <dl< th=""><th></th><th></th><th></th><th><dl< th=""><th></th><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                            |                                                                                                                                                                                                                                 |                                                                                                                                                                               |                                                                                                                                                     | <dl< th=""><th></th><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<>                                                             |                                                                                                 | <dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<>                                              | <dl< th=""><th><dl< th=""></dl<></th></dl<>                               | <dl< th=""></dl<>                |
| · · · · · · · · · · · · · · · · · · · |                  | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th><th></th><th><dl< th=""><th></th><th></th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                                                         | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th><th></th><th><dl< th=""><th></th><th></th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                                          | <dl< th=""><th><dl< th=""><th><dl< th=""><th></th><th></th><th><dl< th=""><th></th><th></th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                           | <dl< th=""><th><dl< th=""><th></th><th></th><th><dl< th=""><th></th><th></th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                            | <dl< th=""><th></th><th></th><th><dl< th=""><th></th><th></th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<>                                                                                             |                                                                                                                                                                               |                                                                                                                                                     | <dl< th=""><th></th><th></th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<>                                                                              |                                                                                                 |                                                                                                                    | <dl< th=""><th><dl< th=""></dl<></th></dl<>                               | <dl< th=""></dl<>                |
| Dic                                   | cofol            | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th><th></th><th><dl< th=""><th><dl< th=""><th></th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                                        | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th><th></th><th><dl< th=""><th><dl< th=""><th></th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                         | <dl< th=""><th><dl< th=""><th><dl< th=""><th></th><th></th><th><dl< th=""><th><dl< th=""><th></th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                          | <dl< th=""><th><dl< th=""><th></th><th></th><th><dl< th=""><th><dl< th=""><th></th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                           | <dl< th=""><th></th><th></th><th><dl< th=""><th><dl< th=""><th></th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                            |                                                                                                                                                                               |                                                                                                                                                     | <dl< th=""><th><dl< th=""><th></th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<>                                                             | <dl< th=""><th></th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<>                  |                                                                                                                    | <dl< th=""><th><dl< th=""></dl<></th></dl<>                               | <dl< th=""></dl<>                |
| Die                                   | eldrin           | 0.347                                                                                                                                                                                                                                                                                                                                                                                               | 0.146                                                                                                                                                                                                                                                                                                                                                      | <dl< th=""><th><dl< th=""><th>0.119</th><th>1.176</th><th>0.160</th><th>0.159</th><th>0.166</th><th>0.135</th><th><dl< th=""><th>0.326</th></dl<></th></dl<></th></dl<>                                                                                                                                           | <dl< th=""><th>0.119</th><th>1.176</th><th>0.160</th><th>0.159</th><th>0.166</th><th>0.135</th><th><dl< th=""><th>0.326</th></dl<></th></dl<>                                                                                                                            | 0.119                                                                                                                                                                                                                           | 1.176                                                                                                                                                                         | 0.160                                                                                                                                               | 0.159                                                                                                                                                                | 0.166                                                                                           | 0.135                                                                                                              | <dl< th=""><th>0.326</th></dl<>                                           | 0.326                            |
| En                                    | ndosulfan I      | 0.065                                                                                                                                                                                                                                                                                                                                                                                               | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>0.061</th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                  | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>0.061</th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                   | <dl< th=""><th><dl< th=""><th><dl< th=""><th>0.061</th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                    | <dl< th=""><th><dl< th=""><th>0.061</th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                     | <dl< th=""><th>0.061</th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>             | 0.061                                                                                                                                               | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                            | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<>                                              | <dl< th=""><th><dl< th=""></dl<></th></dl<>                               | <dl< th=""></dl<>                |
| En                                    | ndosulfan II     | <dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                     | <dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                      | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                       | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                        | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                         | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                            | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<>                                              | <dl< th=""><th><dl< th=""></dl<></th></dl<>                               | <dl< th=""></dl<>                |
| He                                    | eptachlor        | <dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                     | <dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                      | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                       | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                        | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                         | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                            | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<>                                              | <dl< th=""><th><dl< th=""></dl<></th></dl<>                               | <dl< th=""></dl<>                |
| He                                    | eptachlor        | 0.141                                                                                                                                                                                                                                                                                                                                                                                               | <dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                      | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                       | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                        | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                         | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                            | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<>                                              | <dl< th=""><th><dl< th=""></dl<></th></dl<>                               | <dl< th=""></dl<>                |
| Ep                                    | oxide            |                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                 |                                                                                                                                                                               |                                                                                                                                                     |                                                                                                                                                                      |                                                                                                 |                                                                                                                    |                                                                           |                                  |
|                                       | exachlorobenz    | 0.217                                                                                                                                                                                                                                                                                                                                                                                               | 0.366                                                                                                                                                                                                                                                                                                                                                      | 0.329                                                                                                                                                                                                                                                                                                             | <dl< th=""><th>0.339</th><th>0.915</th><th>0.246</th><th>0.227</th><th>0.238</th><th>0.337</th><th>1.959</th><th>0.251</th></dl<>                                                                                                                                        | 0.339                                                                                                                                                                                                                           | 0.915                                                                                                                                                                         | 0.246                                                                                                                                               | 0.227                                                                                                                                                                | 0.238                                                                                           | 0.337                                                                                                              | 1.959                                                                     | 0.251                            |
| en                                    | e                | -                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                 |                                                                                                                                                                               |                                                                                                                                                     | -                                                                                                                                                                    |                                                                                                 |                                                                                                                    |                                                                           |                                  |
|                                       | -                | <dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                     | <dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                      | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                       | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                        | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                         | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                            | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<>                                              | <dl< th=""><th><dl< th=""></dl<></th></dl<>                               | <dl< th=""></dl<>                |
| BH                                    | (3               |                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                 |                                                                                                                                                                               |                                                                                                                                                     |                                                                                                                                                                      |                                                                                                 |                                                                                                                    |                                                                           |                                  |
|                                       | s-Nanochlor      | <dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                     | <dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                      | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                       | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                        | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                         | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                            | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<>                                              | <dl< th=""><th><dl< th=""></dl<></th></dl<>                               | <dl< th=""></dl<>                |
|                                       | ans-Nanochlor    | 0.054                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                            | <dl< th=""><th><dl< th=""><th></th><th></th><th></th><th><dl< th=""><th></th><th></th><th></th><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                                                             | <dl< th=""><th></th><th></th><th></th><th><dl< th=""><th></th><th></th><th></th><th><dl< th=""></dl<></th></dl<></th></dl<>                                                                                                                                              |                                                                                                                                                                                                                                 |                                                                                                                                                                               |                                                                                                                                                     | <dl< th=""><th></th><th></th><th></th><th><dl< th=""></dl<></th></dl<>                                                                                               |                                                                                                 |                                                                                                                    |                                                                           | <dl< th=""></dl<>                |
|                                       |                  | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th><th></th><th><dl< th=""><th></th><th></th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                                                         | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th><th></th><th><dl< th=""><th></th><th></th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                                          | <dl< th=""><th><dl< th=""><th><dl< th=""><th></th><th></th><th><dl< th=""><th></th><th></th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                           | <dl< th=""><th><dl< th=""><th></th><th></th><th><dl< th=""><th></th><th></th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                            | <dl< th=""><th></th><th></th><th><dl< th=""><th></th><th></th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<>                                                                                             |                                                                                                                                                                               |                                                                                                                                                     | <dl< th=""><th></th><th></th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<>                                                                              |                                                                                                 |                                                                                                                    | <dl< th=""><th><dl< th=""></dl<></th></dl<>                               | <dl< th=""></dl<>                |
| Herbicides 2,4                        |                  | <dl<br><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th><th></th><th><dl< th=""><th></th><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></dl<br>                                                                                                                         | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th><th></th><th><dl< th=""><th></th><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                         | <dl< th=""><th><dl< th=""><th><dl< th=""><th></th><th></th><th><dl< th=""><th></th><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                          | <dl< th=""><th><dl< th=""><th></th><th></th><th><dl< th=""><th></th><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                           | <dl< th=""><th></th><th></th><th><dl< th=""><th></th><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                            |                                                                                                                                                                               |                                                                                                                                                     | <dl< th=""><th></th><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<>                                                             |                                                                                                 | <dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<>                                              | <dl< th=""><th><dl< th=""></dl<></th></dl<>                               | <dl< th=""></dl<>                |
| ,                                     | <br>chlorophenox | <b>NDL</b>                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                            | <b>NDL</b>                                                                                                                                                                                                                                                                                                        | <b>VDL</b>                                                                                                                                                                                                                                                               | <b>VDL</b>                                                                                                                                                                                                                      | <b>VDL</b>                                                                                                                                                                    | <b>VDL</b>                                                                                                                                          | <b>VDL</b>                                                                                                                                                           | <b>VDL</b>                                                                                      | <b>VDL</b>                                                                                                         | <b>NDL</b>                                                                |                                  |
| DIC                                   | ciliorophenox    |                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                 |                                                                                                                                                                               |                                                                                                                                                     |                                                                                                                                                                      |                                                                                                 |                                                                                                                    |                                                                           |                                  |
| y a                                   | cetic acid       |                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                 |                                                                                                                                                                               |                                                                                                                                                     |                                                                                                                                                                      |                                                                                                 |                                                                                                                    |                                                                           |                                  |
|                                       |                  | <dl< th=""><th>1.708</th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                 | 1.708                                                                                                                                                                                                                                                                                                                                                      | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                       | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                        | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                         | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                            | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<>                                              | <dl< th=""><th><dl< th=""></dl<></th></dl<>                               | <dl< th=""></dl<>                |
|                                       |                  |                                                                                                                                                                                                                                                                                                                                                                                                     | <dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th></th><th></th><th><dl<br><dl< th=""><th></th><th></th><th><dl<br><dl< th=""><th><dl<br><dl< th=""></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<>                                                | <dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th></th><th></th><th><dl<br><dl< th=""><th></th><th></th><th><dl<br><dl< th=""><th><dl<br><dl< th=""></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br>                                 | <dl<br><dl< th=""><th><dl<br><dl< th=""><th></th><th></th><th><dl<br><dl< th=""><th></th><th></th><th><dl<br><dl< th=""><th><dl<br><dl< th=""></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br>                                 | <dl<br><dl< th=""><th></th><th></th><th><dl<br><dl< th=""><th></th><th></th><th><dl<br><dl< th=""><th><dl<br><dl< th=""></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br>                                 |                                                                                                                                                                               |                                                                                                                                                     | <dl<br><dl< th=""><th></th><th></th><th><dl<br><dl< th=""><th><dl<br><dl< th=""></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br>                                 |                                                                                                 |                                                                                                                    | <dl<br><dl< th=""><th><dl<br><dl< th=""></dl<></dl<br></th></dl<></dl<br> | <dl<br><dl< th=""></dl<></dl<br> |
|                                       | lvex (2,4,5-TP)  | <dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th></th><th></th><th><dl<br><dl< th=""><th></th><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br> | <dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th></th><th></th><th><dl<br><dl< th=""><th></th><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br> | <dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th></th><th></th><th><dl<br><dl< th=""><th></th><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br> | <dl<br><dl< th=""><th><dl<br><dl< th=""><th></th><th></th><th><dl<br><dl< th=""><th></th><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br> | <dl<br><dl< th=""><th></th><th></th><th><dl<br><dl< th=""><th></th><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br> |                                                                                                                                                                               |                                                                                                                                                     | <dl<br><dl< th=""><th></th><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br> |                                                                                                 | <dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br> | <dl<br><dl< th=""><th><dl<br><dl< th=""></dl<></dl<br></th></dl<></dl<br> | <dl<br><dl< th=""></dl<></dl<br> |
| •                                     | nlorpyrifos      | <dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                     | <dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                      | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                       | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                        | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                         | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                            | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<>                                              | <dl< th=""><th><dl< th=""></dl<></th></dl<>                               | <dl< th=""></dl<>                |
| phosphate                             |                  |                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                 |                                                                                                                                                                               |                                                                                                                                                     |                                                                                                                                                                      |                                                                                                 |                                                                                                                    |                                                                           |                                  |
| Pesticides                            |                  |                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                 |                                                                                                                                                                               |                                                                                                                                                     |                                                                                                                                                                      |                                                                                                 |                                                                                                                    |                                                                           |                                  |
|                                       |                  |                                                                                                                                                                                                                                                                                                                                                                                                     | <dl< th=""><th></th><th><dl< th=""><th></th><th></th><th></th><th><dl< th=""><th></th><th></th><th></th><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                   | <dl< th=""><th></th><th></th><th></th><th><dl< th=""><th></th><th></th><th></th><th><dl< th=""></dl<></th></dl<></th></dl<>                                                                                                                                              |                                                                                                                                                                                                                                 |                                                                                                                                                                               |                                                                                                                                                     | <dl< th=""><th></th><th></th><th></th><th><dl< th=""></dl<></th></dl<>                                                                                               |                                                                                                 |                                                                                                                    |                                                                           | <dl< th=""></dl<>                |
|                                       |                  |                                                                                                                                                                                                                                                                                                                                                                                                     | <dl< th=""><th><dl< th=""><th><dl< th=""><th></th><th></th><th></th><th><dl< th=""><th></th><th></th><th></th><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                                                                            | <dl< th=""><th><dl< th=""><th></th><th></th><th></th><th><dl< th=""><th></th><th></th><th></th><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                                                             | <dl< th=""><th></th><th></th><th></th><th><dl< th=""><th></th><th></th><th></th><th><dl< th=""></dl<></th></dl<></th></dl<>                                                                                                                                              |                                                                                                                                                                                                                                 |                                                                                                                                                                               |                                                                                                                                                     | <dl< th=""><th></th><th></th><th></th><th><dl< th=""></dl<></th></dl<>                                                                                               |                                                                                                 |                                                                                                                    |                                                                           | <dl< th=""></dl<>                |
|                                       |                  |                                                                                                                                                                                                                                                                                                                                                                                                     | <dl< th=""><th><dl< th=""><th><dl< th=""><th></th><th></th><th></th><th><dl< th=""><th></th><th></th><th></th><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                                                                            | <dl< th=""><th><dl< th=""><th></th><th></th><th></th><th><dl< th=""><th></th><th></th><th></th><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                                                             | <dl< th=""><th></th><th></th><th></th><th><dl< th=""><th></th><th></th><th></th><th><dl< th=""></dl<></th></dl<></th></dl<>                                                                                                                                              |                                                                                                                                                                                                                                 |                                                                                                                                                                               |                                                                                                                                                     | <dl< th=""><th></th><th></th><th></th><th><dl< th=""></dl<></th></dl<>                                                                                               |                                                                                                 |                                                                                                                    |                                                                           | <dl< th=""></dl<>                |
|                                       |                  |                                                                                                                                                                                                                                                                                                                                                                                                     | <dl< th=""><th><dl< th=""><th><dl< th=""><th></th><th></th><th></th><th><dl< th=""><th></th><th></th><th></th><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                                                                            | <dl< th=""><th><dl< th=""><th></th><th></th><th></th><th><dl< th=""><th></th><th></th><th></th><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                                                             | <dl< th=""><th></th><th></th><th></th><th><dl< th=""><th></th><th></th><th></th><th><dl< th=""></dl<></th></dl<></th></dl<>                                                                                                                                              |                                                                                                                                                                                                                                 |                                                                                                                                                                               |                                                                                                                                                     | <dl< th=""><th></th><th></th><th></th><th><dl< th=""></dl<></th></dl<>                                                                                               |                                                                                                 |                                                                                                                    |                                                                           | <dl< th=""></dl<>                |
|                                       |                  |                                                                                                                                                                                                                                                                                                                                                                                                     | <dl< th=""><th><dl< th=""><th><dl< th=""><th></th><th></th><th></th><th><dl< th=""><th></th><th></th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                                                           | <dl< th=""><th><dl< th=""><th></th><th></th><th></th><th><dl< th=""><th></th><th></th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                                            | <dl< th=""><th></th><th></th><th></th><th><dl< th=""><th></th><th></th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                             |                                                                                                                                                                                                                                 |                                                                                                                                                                               |                                                                                                                                                     | <dl< th=""><th></th><th></th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<>                                                                              |                                                                                                 |                                                                                                                    | <dl< th=""><th><dl< th=""></dl<></th></dl<>                               | <dl< th=""></dl<>                |
|                                       |                  | <dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                     | <dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                      | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                       | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                        | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                         | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                            | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<>                                              | <dl< th=""><th><dl< th=""></dl<></th></dl<>                               | <dl< th=""></dl<>                |
|                                       | ethyl            |                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                 |                                                                                                                                                                               |                                                                                                                                                     |                                                                                                                                                                      |                                                                                                 |                                                                                                                    |                                                                           |                                  |
| Tu                                    |                  | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                                                                                           | <dl< th=""><th><dl< th=""><th><dl< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                                                                            | <dl< th=""><th><dl< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                                                             | <dl< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<>                                                                                                                                              |                                                                                                                                                                                                                                 |                                                                                                                                                                               |                                                                                                                                                     |                                                                                                                                                                      |                                                                                                 |                                                                                                                    | <dl< th=""><th><dl< th=""></dl<></th></dl<>                               | <dl< th=""></dl<>                |
| Sterilants Atr                        | razine           | <dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                     | <dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                      | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                       | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                        | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                         | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                            | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<>                                              | <dl< th=""><th><dl< th=""></dl<></th></dl<>                               | <dl< th=""></dl<>                |



## Appendix 2: Dry air concentrations at Abbotsford

| Abbotsford | HV PUF Data |
|------------|-------------|
| Pesticides |             |

|                | Head ID                  |                                                                                                                                                                                                                                   | EC003                                                                                                                                                                                                   | EC009                                                                                                                                                                         | EC002                                                                                                                                               | EC003                                                                                                                     | EC009                                                                                           | EC002                                                                 | EC003                                       | EC009             |
|----------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------|-------------------|
|                | Date on                  | 7-2-96                                                                                                                                                                                                                            | 15-2-96                                                                                                                                                                                                 |                                                                                                                                                                               |                                                                                                                                                     |                                                                                                                           |                                                                                                 |                                                                       |                                             |                   |
|                | Date on                  | 9:25                                                                                                                                                                                                                              |                                                                                                                                                                                                         |                                                                                                                                                                               |                                                                                                                                                     |                                                                                                                           |                                                                                                 |                                                                       |                                             |                   |
|                | Date off                 | 15-2-96                                                                                                                                                                                                                           | 20-2-96                                                                                                                                                                                                 |                                                                                                                                                                               |                                                                                                                                                     |                                                                                                                           |                                                                                                 |                                                                       |                                             |                   |
|                | Date off                 | 11:00                                                                                                                                                                                                                             | 20-2-90                                                                                                                                                                                                 |                                                                                                                                                                               |                                                                                                                                                     |                                                                                                                           |                                                                                                 |                                                                       |                                             |                   |
|                | Counter on               | 645.85                                                                                                                                                                                                                            | -                                                                                                                                                                                                       | -                                                                                                                                                                             | -                                                                                                                                                   |                                                                                                                           |                                                                                                 |                                                                       |                                             |                   |
|                | Counter off              | 761.38                                                                                                                                                                                                                            |                                                                                                                                                                                                         | 1049.38                                                                                                                                                                       |                                                                                                                                                     | 1384.48                                                                                                                   |                                                                                                 |                                                                       |                                             |                   |
|                |                          | 62                                                                                                                                                                                                                                | 66                                                                                                                                                                                                      |                                                                                                                                                                               |                                                                                                                                                     | 1304.40                                                                                                                   | 1551.8<br>60                                                                                    |                                                                       |                                             |                   |
|                | Mag. Press. on           | -                                                                                                                                                                                                                                 | 62                                                                                                                                                                                                      |                                                                                                                                                                               |                                                                                                                                                     | -                                                                                                                         |                                                                                                 |                                                                       |                                             | 47<br>57          |
|                | Mag. Press. off          | na                                                                                                                                                                                                                                | -                                                                                                                                                                                                       | -                                                                                                                                                                             |                                                                                                                                                     | -                                                                                                                         |                                                                                                 | -                                                                     | na                                          | -                 |
|                | Meter (m3) on            | 8615.91                                                                                                                                                                                                                           | 9063.65                                                                                                                                                                                                 | 10104.5                                                                                                                                                                       | 11482.6                                                                                                                                             | 12756.14                                                                                                                  | 13909.12                                                                                        | 14970.73                                                              | 16078.72                                    | 16462.85          |
|                |                          |                                                                                                                                                                                                                                   |                                                                                                                                                                                                         |                                                                                                                                                                               | 1                                                                                                                                                   | 40000 40                                                                                                                  | 4 40 70 70                                                                                      | 10070 70                                                              | 10100.00                                    | 47407.00          |
|                | Meter (m3) off           | 9063.65                                                                                                                                                                                                                           | 10104.5                                                                                                                                                                                                 | 11482.6                                                                                                                                                                       | 12756.1                                                                                                                                             | 13909.12                                                                                                                  | 14970.73                                                                                        | 16078.72                                                              | 16462.62                                    | 17187.03          |
|                |                          |                                                                                                                                                                                                                                   |                                                                                                                                                                                                         |                                                                                                                                                                               | 4                                                                                                                                                   |                                                                                                                           |                                                                                                 |                                                                       |                                             |                   |
|                |                          | 445 50                                                                                                                                                                                                                            | 400.00                                                                                                                                                                                                  | 407.00                                                                                                                                                                        | 407.00                                                                                                                                              | 407.40                                                                                                                    | 407.00                                                                                          | 400.57                                                                | 407.04                                      | 1 1 1 10          |
|                | Counter Diff'n           | 115.53                                                                                                                                                                                                                            |                                                                                                                                                                                                         | 167.98                                                                                                                                                                        |                                                                                                                                                     |                                                                                                                           |                                                                                                 | 168.57                                                                |                                             | -                 |
|                | Meter diff               | 447.74                                                                                                                                                                                                                            | 1040.85                                                                                                                                                                                                 | 1378.1                                                                                                                                                                        | 1273.53                                                                                                                                             | 1152.98                                                                                                                   | 1061.61                                                                                         | 1107.99                                                               | 383.9                                       | 724.18            |
|                | sample (m <sup>3</sup> ) |                                                                                                                                                                                                                                   |                                                                                                                                                                                                         |                                                                                                                                                                               |                                                                                                                                                     |                                                                                                                           |                                                                                                 |                                                                       |                                             |                   |
|                |                          |                                                                                                                                                                                                                                   |                                                                                                                                                                                                         |                                                                                                                                                                               |                                                                                                                                                     |                                                                                                                           |                                                                                                 |                                                                       |                                             |                   |
|                | Comments                 | Motor                                                                                                                                                                                                                             |                                                                                                                                                                                                         |                                                                                                                                                                               |                                                                                                                                                     |                                                                                                                           |                                                                                                 |                                                                       | Motor died                                  |                   |
|                |                          | died                                                                                                                                                                                                                              |                                                                                                                                                                                                         |                                                                                                                                                                               |                                                                                                                                                     |                                                                                                                           |                                                                                                 |                                                                       |                                             |                   |
|                | Avg P (mm HG)            | 1017.3                                                                                                                                                                                                                            |                                                                                                                                                                                                         |                                                                                                                                                                               |                                                                                                                                                     |                                                                                                                           |                                                                                                 |                                                                       |                                             |                   |
|                | Avg T (C)                | 6.26                                                                                                                                                                                                                              | 9.29                                                                                                                                                                                                    | 3.11                                                                                                                                                                          | 2.86                                                                                                                                                | 7.86                                                                                                                      | 8.03                                                                                            | 6.28                                                                  | 6.57                                        | 12.6              |
|                | Avg T (K)                | 279.36                                                                                                                                                                                                                            | 282.39                                                                                                                                                                                                  | 276.21                                                                                                                                                                        | 275.96                                                                                                                                              | 280.96                                                                                                                    | 281.13                                                                                          | 279.38                                                                | 279.67                                      | 285.7             |
|                | Corrected                | 479.6                                                                                                                                                                                                                             | 1093.9                                                                                                                                                                                                  | 1480.7                                                                                                                                                                        | 1381.5                                                                                                                                              | 1226.5                                                                                                                    | 1138.2                                                                                          | 1190.0                                                                | 408.1                                       | 760.0             |
|                | Volume (m3)              |                                                                                                                                                                                                                                   |                                                                                                                                                                                                         |                                                                                                                                                                               |                                                                                                                                                     |                                                                                                                           |                                                                                                 |                                                                       |                                             |                   |
|                | File:                    | F7434                                                                                                                                                                                                                             | F7643                                                                                                                                                                                                   | F7847                                                                                                                                                                         | F8028                                                                                                                                               | F8220                                                                                                                     | F8459                                                                                           | F8656                                                                 | F8847                                       | F8988             |
|                | File Status:             |                                                                                                                                                                                                                                   |                                                                                                                                                                                                         | final                                                                                                                                                                         | final                                                                                                                                               | final                                                                                                                     | final                                                                                           | final                                                                 | final                                       | final             |
|                | Start:                   | 7-2-96                                                                                                                                                                                                                            |                                                                                                                                                                                                         | 20-2-96                                                                                                                                                                       | 27-2-96                                                                                                                                             | 5-3-96                                                                                                                    | 12-3-96                                                                                         | 19-3-96                                                               | 26-3-96                                     | 2-4-96            |
|                | Stop:                    | 15-2-96                                                                                                                                                                                                                           | 20-2-96                                                                                                                                                                                                 | 27-2-96                                                                                                                                                                       | 5-3-96                                                                                                                                              | 12-3-96                                                                                                                   | 19-3-96                                                                                         | 26-3-96                                                               | 2-4-96                                      | 9-4-96            |
|                | 0.00                     |                                                                                                                                                                                                                                   |                                                                                                                                                                                                         |                                                                                                                                                                               |                                                                                                                                                     |                                                                                                                           |                                                                                                 |                                                                       |                                             |                   |
|                | Concentrations           | Abbotsfo                                                                                                                                                                                                                          | Abbotsfo                                                                                                                                                                                                | Abbotsfo                                                                                                                                                                      | Abbotef                                                                                                                                             | Abbotsfo                                                                                                                  | Abbotsfor                                                                                       | Abbotsfor                                                             | Abbotsfor                                   | Abbotsfor         |
|                | (ng/m3)                  | rd                                                                                                                                                                                                                                | rd                                                                                                                                                                                                      | rd                                                                                                                                                                            | ord                                                                                                                                                 | rd                                                                                                                        | d                                                                                               | d                                                                     | d                                           | d                 |
|                | (19/113)                 |                                                                                                                                                                                                                                   |                                                                                                                                                                                                         | HV/PUF                                                                                                                                                                        |                                                                                                                                                     |                                                                                                                           | a<br>HV/PUF                                                                                     | u<br>HV/PUF                                                           | u<br>HV/PUF                                 | a<br>HV/PUF       |
| O              | A Laboration             |                                                                                                                                                                                                                                   |                                                                                                                                                                                                         |                                                                                                                                                                               |                                                                                                                                                     |                                                                                                                           |                                                                                                 |                                                                       |                                             |                   |
| Organochlorine | Aldrin                   | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""></dl<></th></dl<> | <dl< th=""></dl<> |
| Pesticides     |                          |                                                                                                                                                                                                                                   |                                                                                                                                                                                                         |                                                                                                                                                                               |                                                                                                                                                     |                                                                                                                           |                                                                                                 |                                                                       |                                             |                   |
|                | Captan                   | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>0.263</th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>             | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>0.263</th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>             | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>0.263</th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>             | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>0.263</th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>             | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>0.263</th></dl<></th></dl<></th></dl<></th></dl<>             | <dl< th=""><th><dl< th=""><th><dl< th=""><th>0.263</th></dl<></th></dl<></th></dl<>             | <dl< th=""><th><dl< th=""><th>0.263</th></dl<></th></dl<>             | <dl< th=""><th>0.263</th></dl<>             | 0.263             |
|                | cis-Chlordane            | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""></dl<></th></dl<> | <dl< th=""></dl<> |
|                | (a)                      |                                                                                                                                                                                                                                   |                                                                                                                                                                                                         |                                                                                                                                                                               |                                                                                                                                                     |                                                                                                                           |                                                                                                 |                                                                       |                                             |                   |

|                  | trans-Chlordane           | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>I</th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                                       | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>I</th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                        | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>I</th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                         | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>I</th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                          | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>I</th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                           | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>I</th></dl<></th></dl<></th></dl<></th></dl<>                                                            | <dl< th=""><th><dl< th=""><th><dl< th=""><th>I</th></dl<></th></dl<></th></dl<>                                             | <dl< th=""><th><dl< th=""><th>I</th></dl<></th></dl<>                              | <dl< th=""><th>I</th></dl<>               | I   |
|------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------|-----|
|                  | (g)<br>Dacthal            | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                                        | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                         | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                          | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                           | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                            | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<>                                                             | <dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<>                                              | <dl< th=""><th><dl< th=""><th></th></dl<></th></dl<>                               | <dl< th=""><th></th></dl<>                |     |
|                  | Dacthai<br>Dieldrin       | <dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th></th><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th></th><th><dl<br><dl< th=""><th></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br>                                                                 | <dl<br><dl< th=""><th><dl<br><dl< th=""><th></th><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th></th><th><dl<br><dl< th=""><th></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br>                                                                 | <dl<br><dl< th=""><th></th><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th></th><th><dl<br><dl< th=""><th></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br>                                                                 |                                                                                                                                                                                                                                                        | <dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th></th><th><dl<br><dl< th=""><th></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br>                                 | <dl<br><dl< th=""><th><dl<br><dl< th=""><th></th><th><dl<br><dl< th=""><th></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br>                                 | <dl<br><dl< th=""><th></th><th><dl<br><dl< th=""><th></th></dl<></dl<br></th></dl<></dl<br>                                 |                                                                                    | <dl<br><dl< th=""><th></th></dl<></dl<br> |     |
|                  |                           | <dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th></th><th>32</th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br>                               | <dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th></th><th>32</th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br>                               | <dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th></th><th>32</th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br>                               | <dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th></th><th>32</th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br>                               | <dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th></th><th>32</th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br>                               | <dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th></th><th>32</th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br>                               | <dl<br><dl< th=""><th><dl<br><dl< th=""><th></th><th>32</th></dl<></dl<br></th></dl<></dl<br>                               | <dl<br><dl< th=""><th></th><th>32</th></dl<></dl<br>                               |                                           | 32  |
|                  |                           | <dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl< th=""><th>32</th></dl<></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br>              | <dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl< th=""><th>32</th></dl<></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br>              | <dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl< th=""><th>32</th></dl<></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br>              | <dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl< th=""><th>32</th></dl<></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br>              | <dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl< th=""><th>32</th></dl<></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br>              | <dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl< th=""><th>32</th></dl<></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br>              | <dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl< th=""><th>32</th></dl<></th></dl<></dl<br></th></dl<></dl<br>              | <dl<br><dl< th=""><th><dl< th=""><th>32</th></dl<></th></dl<></dl<br>              | <dl< th=""><th>32</th></dl<>              | 32  |
|                  |                           | <dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br> | <dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br> | <dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br> | <dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br> | <dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br> | <dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br> | <dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br> | <dl<br><dl< th=""><th><dl<br><dl< th=""><th></th></dl<></dl<br></th></dl<></dl<br> | <dl<br><dl< th=""><th></th></dl<></dl<br> |     |
|                  |                           | <dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br> | <dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br> | <dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br> | <dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br> | <dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br> | <dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br> | <dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br> | <dl<br><dl< th=""><th><dl<br><dl< th=""><th></th></dl<></dl<br></th></dl<></dl<br> | <dl<br><dl< th=""><th></th></dl<></dl<br> |     |
|                  | Heptachlor<br>Epoxide     | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                                        | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                         | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                          | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                           | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                            | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<>                                                             | <dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<>                                              | <dl< th=""><th><dl< th=""><th></th></dl<></th></dl<>                               | <dl< th=""><th></th></dl<>                |     |
|                  | Epoxide<br>Hexachlorobenz | <dl< th=""><th><dl< th=""><th><dl< th=""><th>0.072</th><th><di< th=""><th>0.088</th><th>0.084</th><th><di< th=""><th>0.1</th><th>32</th></di<></th></di<></th></dl<></th></dl<></th></dl<>                                                                                                                                                                                        | <dl< th=""><th><dl< th=""><th>0.072</th><th><di< th=""><th>0.088</th><th>0.084</th><th><di< th=""><th>0.1</th><th>32</th></di<></th></di<></th></dl<></th></dl<>                                                                                                                                                                         | <dl< th=""><th>0.072</th><th><di< th=""><th>0.088</th><th>0.084</th><th><di< th=""><th>0.1</th><th>32</th></di<></th></di<></th></dl<>                                                                                                                                                          | 0.072                                                                                                                                                                                                                                                  | <di< th=""><th>0.088</th><th>0.084</th><th><di< th=""><th>0.1</th><th>32</th></di<></th></di<>                                                                                                                | 0.088                                                                                                                                                                | 0.084                                                                                                                       | <di< th=""><th>0.1</th><th>32</th></di<>                                           | 0.1                                       | 32  |
|                  | ene                       |                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                 | 0.0.1                                                                                                                                                                                                                                                  |                                                                                                                                                                                                               | 0.000                                                                                                                                                                | 0.00                                                                                                                        |                                                                                    |                                           | 0_  |
|                  | Lindane (g-BHC)           | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                                        | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                         | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                          | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                           | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                            | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<>                                                             | <dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<>                                              | <dl< th=""><th><dl< th=""><th></th></dl<></th></dl<>                               | <dl< th=""><th></th></dl<>                |     |
|                  | trans-Nanochlor           | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                                        | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                         | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                          | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                           | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                            | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<>                                                             | <dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<>                                              | <dl< th=""><th><dl< th=""><th></th></dl<></th></dl<>                               | <dl< th=""><th></th></dl<>                |     |
|                  | Oxychlordane              | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                                        | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                         | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                          | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                           | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                            | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<>                                                             | <dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<>                                              | <dl< th=""><th><dl< th=""><th></th></dl<></th></dl<>                               | <dl< th=""><th></th></dl<>                |     |
| Herbicides       | 2,4-                      | <dl< th=""><th>4.571</th><th><dl< th=""><th><dl< th=""><th>missing</th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                                                              | 4.571                                                                                                                                                                                                                                                                                                                                    | <dl< th=""><th><dl< th=""><th>missing</th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                    | <dl< th=""><th>missing</th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                     | missing                                                                                                                                                                                                       | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<>                                                             | <dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<>                                              | <dl< th=""><th><dl< th=""><th></th></dl<></th></dl<>                               | <dl< th=""><th></th></dl<>                |     |
|                  | Dichlorophenox            |                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                               |                                                                                                                                                                      |                                                                                                                             |                                                                                    |                                           |     |
|                  | У                         |                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                               |                                                                                                                                                                      |                                                                                                                             |                                                                                    |                                           |     |
|                  | Acetic acid               |                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                               |                                                                                                                                                                      |                                                                                                                             |                                                                                    |                                           |     |
|                  |                           | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                                        | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                         | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                          | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                           | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                            | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<>                                                             | <dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<>                                              | <dl< th=""><th><dl< th=""><th></th></dl<></th></dl<>                               | <dl< th=""><th></th></dl<>                |     |
|                  |                           | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                                        | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                         | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                          | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                           | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                            | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<>                                                             | <dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<>                                              | <dl< th=""><th><dl< th=""><th></th></dl<></th></dl<>                               | <dl< th=""><th></th></dl<>                |     |
| Organophospha    | Chlorpyrifos              | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                                        | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                         | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                          | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                           | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                            | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<>                                                             | <dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<>                                              | <dl< th=""><th><dl< th=""><th></th></dl<></th></dl<>                               | <dl< th=""><th></th></dl<>                |     |
| te<br>Pesticides |                           |                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                               |                                                                                                                                                                      |                                                                                                                             |                                                                                    |                                           |     |
| resticides       | Diazinon                  | <dl< th=""><th><dl< th=""><th><dl< th=""><th>0.072</th><th>0.652</th><th>5.711</th><th>4.034</th><th></th><th>20</th><th>947</th></dl<></th></dl<></th></dl<>                                                                                                                                                                                                                     | <dl< th=""><th><dl< th=""><th>0.072</th><th>0.652</th><th>5.711</th><th>4.034</th><th></th><th>20</th><th>947</th></dl<></th></dl<>                                                                                                                                                                                                      | <dl< th=""><th>0.072</th><th>0.652</th><th>5.711</th><th>4.034</th><th></th><th>20</th><th>947</th></dl<>                                                                                                                                                                                       | 0.072                                                                                                                                                                                                                                                  | 0.652                                                                                                                                                                                                         | 5.711                                                                                                                                                                | 4.034                                                                                                                       |                                                                                    | 20                                        | 947 |
|                  | Dichlorvos                | <dl<br>1.042</dl<br>                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                          | <dl<br>0.675</dl<br>                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                               | 0.527                                                                                                                                                                |                                                                                                                             |                                                                                    |                                           | 526 |
|                  |                           | <dl< th=""><th><dl<br><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl<br><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>20</th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></dl<br></th></dl<></th></dl<></th></dl<></dl<br></th></dl<>                                                                                                        | <dl<br><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl<br><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>20</th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></dl<br></th></dl<></th></dl<></th></dl<></dl<br>                                                                                         | <dl< th=""><th><dl< th=""><th><dl<br><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>20</th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></dl<br></th></dl<></th></dl<>                                                                                         | <dl< th=""><th><dl<br><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>20</th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></dl<br></th></dl<>                                                                          | <dl<br><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>20</th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></dl<br>                                                           | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>20</th></dl<></th></dl<></th></dl<></th></dl<>                                                           | <dl< th=""><th><dl< th=""><th><dl< th=""><th>20</th></dl<></th></dl<></th></dl<>                                            | <dl< th=""><th><dl< th=""><th>20</th></dl<></th></dl<>                             | <dl< th=""><th>20</th></dl<>              | 20  |
|                  | Malathion                 | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                                        | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                         | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                          | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                           | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                            | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<>                                                             | <dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<>                                              | <dl< th=""><th><dl< th=""><th></th></dl<></th></dl<>                               | <dl< th=""><th></th></dl<>                |     |
|                  |                           | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                                        | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                         | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                          | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                           | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                            | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<>                                                             | <dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<>                                              | <dl< th=""><th><dl< th=""><th></th></dl<></th></dl<>                               | <dl< th=""><th></th></dl<>                |     |
|                  | Parathion Methyl          |                                                                                                                                                                                                                                                                                                                                                                                   | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                         | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                          | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                           | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                            | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<>                                                             | <dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<>                                              | <dl< th=""><th><dl< th=""><th></th></dl<></th></dl<>                               | <dl< th=""><th></th></dl<>                |     |
|                  | Terbufos                  | ,DL                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                 | , D L                                                                                                                                                                                                                                                  |                                                                                                                                                                                                               |                                                                                                                                                                      | ,DL                                                                                                                         |                                                                                    |                                           |     |
| Sterilants       |                           | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                                        | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                         | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                          | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                           | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                            | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<>                                                             | <dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<>                                              | <dl< th=""><th><dl< th=""><th></th></dl<></th></dl<>                               | <dl< th=""><th></th></dl<>                |     |

| Head I | D        | EC001   | EC005   | EC008   | EC001   | EC005   |         |         |         |         |
|--------|----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| Date o | n        | 9-4-96  | 16-4-96 | 23-4-96 | 30-4-96 | 7-5-96  | 14-5-96 | 21-5-96 | 28-5-96 | 4-6-96  |
|        |          | 10:47   | 11:15   | 10:45   | 10:40   | 10:10   | 10:10   | 10:10   | 10:10   | 10:10   |
| Date o | ff       | 16-4-96 | 23-4-96 | 30-4-96 | 7-5-96  | 14-5-96 | 21-5-96 | 28-5-96 | 4-6-96  | 11-6-96 |
|        |          | 11:10   | 10:40   | 10:35   | 10:04   | 10:10   | 10:10   | 10:10   | 10:10   | 10:10   |
| Count  | er on    | 2029.17 | 2197.64 | 2365.06 | 2533.88 | 2701.25 |         |         |         |         |
| Count  | er off   | 2197.64 | 2365.06 | 2533.88 | 2701.25 | 2868.65 |         |         |         |         |
| Mag. F | ress. on | 58      | 59      | 62      | 65      | 66      |         |         |         |         |



|                              | Mag. Press. off<br>Meter (m3) on                                                                                                                                  | 53<br>17187.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 61<br>19156.12                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                              | na<br>20840.33 |                          |                     |                     |                          |
|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------|---------------------|---------------------|--------------------------|
|                              | Meter (m3) off                                                                                                                                                    | 18013.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 19156.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20108.04                                                                                                                                                                                                                                                                                                                                                                                                        | 20840.3<br>3                                                                                                                                                                                                                 | 20869.61       |                          |                     |                     |                          |
|                              | Counter Diff'n<br>Meter diff<br>sample (m <sup>3</sup> )                                                                                                          | 168.47<br>826                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 167.42<br>1143.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 168.82<br>951.92                                                                                                                                                                                                                                                                                                                                                                                                | 167.37<br>732.29                                                                                                                                                                                                             | 167.4<br>29.28 |                          |                     |                     |                          |
|                              | Comments                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                              | Motor<br>died  | Sampling<br>stopped      | Sampling<br>stopped | Sampling<br>stopped | Sampling<br>stopped      |
|                              | Avg P (mm HG)                                                                                                                                                     | 1013.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1012.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1022                                                                                                                                                                                                                                                                                                                                                                                                            | 1020.8                                                                                                                                                                                                                       | 1019.6         |                          | m                   | m                   | m                        |
|                              | Avg T (C)                                                                                                                                                         | 10.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9.16                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                              | 10.65          |                          | m                   | m                   | m                        |
|                              | Avg T (K)                                                                                                                                                         | 283.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 282.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 282.26                                                                                                                                                                                                                                                                                                                                                                                                          | 282.06                                                                                                                                                                                                                       |                |                          | m                   | m                   | m                        |
|                              | Corrected<br>Volume (m3)                                                                                                                                          | 867.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1203.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1013.9                                                                                                                                                                                                                                                                                                                                                                                                          | 779.6                                                                                                                                                                                                                        | 31.0           | m                        | m                   | m                   | m                        |
|                              | . ,                                                                                                                                                               | F9223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | F9434                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | F9583                                                                                                                                                                                                                                                                                                                                                                                                           | F9784                                                                                                                                                                                                                        |                |                          |                     |                     |                          |
|                              | File Status:                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | final                                                                                                                                                                                                                                                                                                                                                                                                           | final                                                                                                                                                                                                                        | n/a            | n/a                      | n/a                 | n/a                 | n/a                      |
|                              | Start:                                                                                                                                                            | 9-4-96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16-4-96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 23-4-96                                                                                                                                                                                                                                                                                                                                                                                                         | 30-4-96                                                                                                                                                                                                                      | 7-5-96         | 14-5-96                  | 21-5-96             | 28-5-96             | 4-6-96                   |
|                              | Stop:                                                                                                                                                             | 16-4-96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 23-4-96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 30-4-96                                                                                                                                                                                                                                                                                                                                                                                                         | 7-5-96                                                                                                                                                                                                                       | 14-5-96        | 21-5-96                  | 28-5-96             | 4-6-96              | 11-6-96                  |
|                              |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                              |                |                          |                     |                     |                          |
|                              |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                              |                |                          |                     |                     |                          |
|                              | Concentrations<br>(ng/m3)                                                                                                                                         | rd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Abbotsfo<br>rd<br>HV/PUF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | rd                                                                                                                                                                                                                                                                                                                                                                                                              | ord                                                                                                                                                                                                                          | rd             | Abbotsfor<br>d<br>HV/PUF | d                   | d                   | Abbotsfor<br>d<br>HV/PUF |
| Organochlorine<br>Pesticides |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | rd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                 | ord                                                                                                                                                                                                                          |                | d                        |                     |                     | d                        |
| Organochlorine<br>Pesticides | (ng/m3)<br>Aldrin<br>Captan<br>cis-Chlordane                                                                                                                      | rd<br>HV/PUF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | rd<br>HV/PUF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | rd<br>HV/PUF                                                                                                                                                                                                                                                                                                                                                                                                    | ord<br>HV/PUF                                                                                                                                                                                                                | rd             | d                        | d                   | d                   | d                        |
|                              | (ng/m3)<br>Aldrin<br>Captan<br>cis-Chlordane<br>(a)<br>trans-Chlordane<br>(g)                                                                                     | rd<br>HV/PUF<br><dl<br><dl<br><dl<br><dl< th=""><th>rd<br/>HV/PUF<br/><dl<br><dl<br><dl<br><dl< th=""><th>rd<br/>HV/PUF<br/><dl<br>0.395<br/><dl<br><dl< th=""><th>ord<br/>HV/PUF<br/><dl<br>0.128<br/><dl<br><dl< th=""><th>rd</th><th>d</th><th>d</th><th>d</th><th>d</th></dl<></dl<br></dl<br></th></dl<></dl<br></dl<br></th></dl<></dl<br></dl<br></dl<br></th></dl<></dl<br></dl<br></dl<br>                                                                                                                                                                                                                                                                                                                                                                                   | rd<br>HV/PUF<br><dl<br><dl<br><dl<br><dl< th=""><th>rd<br/>HV/PUF<br/><dl<br>0.395<br/><dl<br><dl< th=""><th>ord<br/>HV/PUF<br/><dl<br>0.128<br/><dl<br><dl< th=""><th>rd</th><th>d</th><th>d</th><th>d</th><th>d</th></dl<></dl<br></dl<br></th></dl<></dl<br></dl<br></th></dl<></dl<br></dl<br></dl<br>                                                                                                                                                                                                                                                                                         | rd<br>HV/PUF<br><dl<br>0.395<br/><dl<br><dl< th=""><th>ord<br/>HV/PUF<br/><dl<br>0.128<br/><dl<br><dl< th=""><th>rd</th><th>d</th><th>d</th><th>d</th><th>d</th></dl<></dl<br></dl<br></th></dl<></dl<br></dl<br>                                                                                                                                                                                               | ord<br>HV/PUF<br><dl<br>0.128<br/><dl<br><dl< th=""><th>rd</th><th>d</th><th>d</th><th>d</th><th>d</th></dl<></dl<br></dl<br>                                                                                                | rd             | d                        | d                   | d                   | d                        |
|                              | (ng/m3)<br>Aldrin<br>Captan<br>cis-Chlordane<br>(a)<br>trans-Chlordane<br>(g)<br>Dacthal<br>Dieldrin                                                              | rd<br>HV/PUF<br><dl<br><dl<br><dl<br><dl<br><dl<br><dl<br><dl< th=""><th>rd<br/>HV/PUF<br/><dl<br><dl<br><dl<br><dl<br><dl<br><dl<br><dl< th=""><th>rd<br/>HV/PUF<br/><dl<br>0.395<br/><dl<br><dl<br><dl<br><dl<br><dl< th=""><th>ord<br/>HV/PUF<br/><dl<br>0.128<br/><dl<br><dl<br><dl<br><dl<br><dl< th=""><th>rd</th><th>d</th><th>d</th><th>d</th><th>d</th></dl<></dl<br></dl<br></dl<br></dl<br></dl<br></th></dl<></dl<br></dl<br></dl<br></dl<br></dl<br></th></dl<></dl<br></dl<br></dl<br></dl<br></dl<br></dl<br></th></dl<></dl<br></dl<br></dl<br></dl<br></dl<br></dl<br>                                                                                                                                                                                               | rd<br>HV/PUF<br><dl<br><dl<br><dl<br><dl<br><dl<br><dl<br><dl< th=""><th>rd<br/>HV/PUF<br/><dl<br>0.395<br/><dl<br><dl<br><dl<br><dl<br><dl< th=""><th>ord<br/>HV/PUF<br/><dl<br>0.128<br/><dl<br><dl<br><dl<br><dl<br><dl< th=""><th>rd</th><th>d</th><th>d</th><th>d</th><th>d</th></dl<></dl<br></dl<br></dl<br></dl<br></dl<br></th></dl<></dl<br></dl<br></dl<br></dl<br></dl<br></th></dl<></dl<br></dl<br></dl<br></dl<br></dl<br></dl<br>                                                                                                                                                  | rd<br>HV/PUF<br><dl<br>0.395<br/><dl<br><dl<br><dl<br><dl<br><dl< th=""><th>ord<br/>HV/PUF<br/><dl<br>0.128<br/><dl<br><dl<br><dl<br><dl<br><dl< th=""><th>rd</th><th>d</th><th>d</th><th>d</th><th>d</th></dl<></dl<br></dl<br></dl<br></dl<br></dl<br></th></dl<></dl<br></dl<br></dl<br></dl<br></dl<br>                                                                                                     | ord<br>HV/PUF<br><dl<br>0.128<br/><dl<br><dl<br><dl<br><dl<br><dl< th=""><th>rd</th><th>d</th><th>d</th><th>d</th><th>d</th></dl<></dl<br></dl<br></dl<br></dl<br></dl<br>                                                   | rd             | d                        | d                   | d                   | d                        |
|                              | (ng/m3)<br>Aldrin<br>Captan<br>cis-Chlordane<br>(a)<br>trans-Chlordane<br>(g)<br>Dacthal<br>Dieldrin<br>Endosulfan I<br>Endosulfan I                              | rd<br>HV/PUF<br><dl<br><dl<br><dl<br><dl<br><dl<br><dl<br><dl<br><dl<br><dl<br><dl< th=""><th>rd<br/>HV/PUF<br/><dl<br><dl<br><dl<br><dl<br><dl<br><dl<br><dl<br>0.050<br/><dl< th=""><th>rd<br/>HV/PUF<br/><dl<br><dl<br><dl<br><dl<br><dl<br><dl<br><dl<br><dl<br><dl<br><dl< th=""><th>ord<br/>HV/PUF<br/><dl<br><dl<br><dl<br><dl<br><dl<br><dl<br><dl<br>0.128<br/><dl< th=""><th>rd</th><th>d</th><th>d</th><th>d</th><th>d</th></dl<></dl<br></dl<br></dl<br></dl<br></dl<br></dl<br></dl<br></th></dl<></dl<br></dl<br></dl<br></dl<br></dl<br></dl<br></dl<br></dl<br></dl<br></th></dl<></dl<br></dl<br></dl<br></dl<br></dl<br></dl<br></dl<br></th></dl<></dl<br></dl<br></dl<br></dl<br></dl<br></dl<br></dl<br></dl<br></dl<br>                                         | rd<br>HV/PUF<br><dl<br><dl<br><dl<br><dl<br><dl<br><dl<br><dl<br>0.050<br/><dl< th=""><th>rd<br/>HV/PUF<br/><dl<br><dl<br><dl<br><dl<br><dl<br><dl<br><dl<br><dl<br><dl<br><dl< th=""><th>ord<br/>HV/PUF<br/><dl<br><dl<br><dl<br><dl<br><dl<br><dl<br><dl<br>0.128<br/><dl< th=""><th>rd</th><th>d</th><th>d</th><th>d</th><th>d</th></dl<></dl<br></dl<br></dl<br></dl<br></dl<br></dl<br></dl<br></th></dl<></dl<br></dl<br></dl<br></dl<br></dl<br></dl<br></dl<br></dl<br></dl<br></th></dl<></dl<br></dl<br></dl<br></dl<br></dl<br></dl<br></dl<br>                                         | rd<br>HV/PUF<br><dl<br><dl<br><dl<br><dl<br><dl<br><dl<br><dl<br><dl<br><dl<br><dl< th=""><th>ord<br/>HV/PUF<br/><dl<br><dl<br><dl<br><dl<br><dl<br><dl<br><dl<br>0.128<br/><dl< th=""><th>rd</th><th>d</th><th>d</th><th>d</th><th>d</th></dl<></dl<br></dl<br></dl<br></dl<br></dl<br></dl<br></dl<br></th></dl<></dl<br></dl<br></dl<br></dl<br></dl<br></dl<br></dl<br></dl<br></dl<br>                     | ord<br>HV/PUF<br><dl<br><dl<br><dl<br><dl<br><dl<br><dl<br><dl<br>0.128<br/><dl< th=""><th>rd</th><th>d</th><th>d</th><th>d</th><th>d</th></dl<></dl<br></dl<br></dl<br></dl<br></dl<br></dl<br></dl<br>                     | rd             | d                        | d                   | d                   | d                        |
|                              | (ng/m3)<br>Aldrin<br>Captan<br>cis-Chlordane<br>(a)<br>trans-Chlordane<br>(g)<br>Dacthal<br>Dieldrin<br>Endosulfan I<br>Endosulfan II<br>Heptachlor<br>Heptachlor | rd<br>HV/PUF<br><dl<br><dl<br><dl<br><dl<br><dl<br><dl<br><dl<br><dl<br><dl< th=""><th>rd<br/>HV/PUF<br/><dl<br><dl<br><dl<br><dl<br><dl<br><dl<br><dl<br>0.050</dl<br></dl<br></dl<br></dl<br></dl<br></dl<br></dl<br></th><th>rd<br/>HV/PUF<br/><dl<br>0.395<br/><dl<br><dl<br><dl<br><dl<br><dl<br><dl<br><dl<br><dl< th=""><th>ord<br/>HV/PUF<br/><dl<br>0.128<br/><dl<br><dl<br><dl<br><dl<br><dl<br>0.128</dl<br></dl<br></dl<br></dl<br></dl<br></dl<br></th><th>rd</th><th>d</th><th>d</th><th>d</th><th>d</th></dl<></dl<br></dl<br></dl<br></dl<br></dl<br></dl<br></dl<br></dl<br></th></dl<></dl<br></dl<br></dl<br></dl<br></dl<br></dl<br></dl<br></dl<br>                                                                                                              | rd<br>HV/PUF<br><dl<br><dl<br><dl<br><dl<br><dl<br><dl<br><dl<br>0.050</dl<br></dl<br></dl<br></dl<br></dl<br></dl<br></dl<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | rd<br>HV/PUF<br><dl<br>0.395<br/><dl<br><dl<br><dl<br><dl<br><dl<br><dl<br><dl<br><dl< th=""><th>ord<br/>HV/PUF<br/><dl<br>0.128<br/><dl<br><dl<br><dl<br><dl<br><dl<br>0.128</dl<br></dl<br></dl<br></dl<br></dl<br></dl<br></th><th>rd</th><th>d</th><th>d</th><th>d</th><th>d</th></dl<></dl<br></dl<br></dl<br></dl<br></dl<br></dl<br></dl<br></dl<br>                                                     | ord<br>HV/PUF<br><dl<br>0.128<br/><dl<br><dl<br><dl<br><dl<br><dl<br>0.128</dl<br></dl<br></dl<br></dl<br></dl<br></dl<br>                                                                                                   | rd             | d                        | d                   | d                   | d                        |
|                              | (ng/m3)<br>Aldrin<br>Captan<br>cis-Chlordane<br>(a)<br>trans-Chlordane<br>(g)<br>Dacthal<br>Dieldrin<br>Endosulfan I<br>Endosulfan II<br>Heptachlor               | rd<br>HV/PUF<br><dl<br><dl<br><dl<br><dl<br><dl<br><dl<br><dl<br><dl<br><dl<br><dl< th=""><th>rd<br/>HV/PUF<br/><dl<br><dl<br><dl<br><dl<br><dl<br><dl<br><dl<br><dl<br><dl<br><dl< th=""><th>rd<br/>HV/PUF<br/><dl<br><dl<br><dl<br><dl<br><dl<br><dl<br><dl<br><dl<br><dl<br><dl< th=""><th>ord<br/>HV/PUF<br/><dl<br><dl<br><dl<br><dl<br><dl<br><dl<br><dl<br><dl<br><dl<br><dl< th=""><th>rd</th><th>d</th><th>d</th><th>d</th><th>d</th></dl<></dl<br></dl<br></dl<br></dl<br></dl<br></dl<br></dl<br></dl<br></dl<br></th></dl<></dl<br></dl<br></dl<br></dl<br></dl<br></dl<br></dl<br></dl<br></dl<br></th></dl<></dl<br></dl<br></dl<br></dl<br></dl<br></dl<br></dl<br></dl<br></dl<br></th></dl<></dl<br></dl<br></dl<br></dl<br></dl<br></dl<br></dl<br></dl<br></dl<br> | rd<br>HV/PUF<br><dl<br><dl<br><dl<br><dl<br><dl<br><dl<br><dl<br><dl<br><dl<br><dl< th=""><th>rd<br/>HV/PUF<br/><dl<br><dl<br><dl<br><dl<br><dl<br><dl<br><dl<br><dl<br><dl<br><dl< th=""><th>ord<br/>HV/PUF<br/><dl<br><dl<br><dl<br><dl<br><dl<br><dl<br><dl<br><dl<br><dl<br><dl< th=""><th>rd</th><th>d</th><th>d</th><th>d</th><th>d</th></dl<></dl<br></dl<br></dl<br></dl<br></dl<br></dl<br></dl<br></dl<br></dl<br></th></dl<></dl<br></dl<br></dl<br></dl<br></dl<br></dl<br></dl<br></dl<br></dl<br></th></dl<></dl<br></dl<br></dl<br></dl<br></dl<br></dl<br></dl<br></dl<br></dl<br> | rd<br>HV/PUF<br><dl<br><dl<br><dl<br><dl<br><dl<br><dl<br><dl<br><dl<br><dl<br><dl< th=""><th>ord<br/>HV/PUF<br/><dl<br><dl<br><dl<br><dl<br><dl<br><dl<br><dl<br><dl<br><dl<br><dl< th=""><th>rd</th><th>d</th><th>d</th><th>d</th><th>d</th></dl<></dl<br></dl<br></dl<br></dl<br></dl<br></dl<br></dl<br></dl<br></dl<br></th></dl<></dl<br></dl<br></dl<br></dl<br></dl<br></dl<br></dl<br></dl<br></dl<br> | ord<br>HV/PUF<br><dl<br><dl<br><dl<br><dl<br><dl<br><dl<br><dl<br><dl<br><dl<br><dl< th=""><th>rd</th><th>d</th><th>d</th><th>d</th><th>d</th></dl<></dl<br></dl<br></dl<br></dl<br></dl<br></dl<br></dl<br></dl<br></dl<br> | rd             | d                        | d                   | d                   | d                        |



| Herbicides    | 2,4-              | 1.614                                                                                                                      | <dl< th=""><th><dl< th=""><th><dl< th=""><th></th><th></th><th></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th></th><th></th><th></th></dl<></th></dl<> | <dl< th=""><th></th><th></th><th></th></dl<> |  |  |  |
|---------------|-------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------|--|--|--|
|               | Dichlorophenox    |                                                                                                                            |                                                                                                  |                                                                        |                                              |  |  |  |
|               | у                 |                                                                                                                            |                                                                                                  |                                                                        |                                              |  |  |  |
|               | Acetic acid       |                                                                                                                            |                                                                                                  |                                                                        |                                              |  |  |  |
|               | Dinoseb           | <dl< th=""><th><dl< th=""><th><dl< th=""><th>6.413</th><th></th><th></th><th></th></dl<></th></dl<></th></dl<>             | <dl< th=""><th><dl< th=""><th>6.413</th><th></th><th></th><th></th></dl<></th></dl<>             | <dl< th=""><th>6.413</th><th></th><th></th><th></th></dl<>             | 6.413                                        |  |  |  |
|               | Silvex (2,4,5-TP) | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th><th></th><th></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th></th><th></th><th></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th></th><th></th><th></th></dl<></th></dl<> | <dl< th=""><th></th><th></th><th></th></dl<> |  |  |  |
| Organophospha | Chlorpyrifos      | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th><th></th><th></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th></th><th></th><th></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th></th><th></th><th></th></dl<></th></dl<> | <dl< th=""><th></th><th></th><th></th></dl<> |  |  |  |
| te            |                   |                                                                                                                            |                                                                                                  |                                                                        |                                              |  |  |  |
| Pesticides    |                   |                                                                                                                            |                                                                                                  |                                                                        |                                              |  |  |  |
|               | Diazinon          | 0.922                                                                                                                      | 9.393                                                                                            | 0.690                                                                  | 8.850                                        |  |  |  |
|               | Dichlorvos        | 0.461                                                                                                                      |                                                                                                  | 1.578                                                                  | 0.513                                        |  |  |  |
|               | Fonofos           | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th><th></th><th></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th></th><th></th><th></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th></th><th></th><th></th></dl<></th></dl<> | <dl< th=""><th></th><th></th><th></th></dl<> |  |  |  |
|               | Malathion         | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th><th></th><th></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th></th><th></th><th></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th></th><th></th><th></th></dl<></th></dl<> | <dl< th=""><th></th><th></th><th></th></dl<> |  |  |  |
|               | Mevinphos         | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th><th></th><th></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th></th><th></th><th></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th></th><th></th><th></th></dl<></th></dl<> | <dl< th=""><th></th><th></th><th></th></dl<> |  |  |  |
|               | Parathion Methyl  | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th><th></th><th></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th></th><th></th><th></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th></th><th></th><th></th></dl<></th></dl<> | <dl< th=""><th></th><th></th><th></th></dl<> |  |  |  |
|               | Terbufos          |                                                                                                                            |                                                                                                  |                                                                        |                                              |  |  |  |
| Sterilants    | Atrazine          | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th><th></th><th></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th></th><th></th><th></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th></th><th></th><th></th></dl<></th></dl<> | <dl< th=""><th></th><th></th><th></th></dl<> |  |  |  |

| Head ID                  | EC006      | EC005    |           |         |          |          |          | EC002    | EC008    |
|--------------------------|------------|----------|-----------|---------|----------|----------|----------|----------|----------|
| Date on                  | 11-6-96    | 18-6-96  | 25-6-96   | 3-7-96  | 9-7-96   | 16-7-96  | 23-7-96  | 30-7-96  | 6-8-96   |
|                          | 10:15      | 10:00    | 10:04     | 8:00    | 10:30    | 10:00    | 11:30    | 8:15     | 10:20    |
| Date off                 | 18-6-96    | 25-6-96  | 2-7-96    | 9-7-96  | 16-7-96  | 23-7-96  | 30-7-96  | 6-8-96   | 13-8-96  |
|                          | 9:55       | 9:53     | 8:00      | 10:25   | 9:55     | 11:12    | 8:00     | 10:20    | 8:00     |
| Counter on               | 3541.23    | 3708.07  | 3875.95   | 4064.02 | 4210.64  | 4377.90  | 4547.07  | 4672.35  | 4842.29  |
| Counter off              | 3708.07    | 3875.95  | 4043.22   | 4210.64 | 4377.90  | 4547.07  | 4672.35  | 4842.29  | 5007.84  |
| Mag. Press. on           | 52         | 62       | 58        | 81      | 71       | 55       | 56       | 60       | 60       |
| Mag. Press. off          | 58         | 58       | na        | 70      | 66       | 53       | 57       | 56       | 58       |
| Meter (m3) on            | 20869.61   | 21598.94 | 22352.32  | 22824.8 | 23720.61 | 24693.41 | 25533.1  | 26185.33 | 27166.78 |
|                          |            |          |           | 4       |          |          |          |          |          |
| Meter (m3) off           | 21598.94   | 22352.32 | 22824.83  | 23720.6 | 24693.41 | 25533.1  | 26185.33 | 27166.78 | 28111.34 |
|                          |            |          |           | 1       |          |          |          |          |          |
| Counter Diff'n           | 166.84     | 167.88   | 167.27    | 146.62  | 167.26   | 169.17   | 125.28   | 169.94   | 165.55   |
| Meter diff               | 729.33     | 753.38   | 472.51    | 895.77  | 972.8    | 839.69   | 652.23   | 981.45   | 944.56   |
| sample (m <sup>3</sup> ) |            |          |           |         |          |          |          |          |          |
| Comments                 | spraying   |          | sample pu | mn      |          |          |          |          |          |
| Gomments                 | along fenc | e        | was dead  | •       |          |          |          |          |          |
| Avg P (mm HG)            | 1019.9     |          |           |         | 1016.7   | 1019.9   | 1015.7   | 1015.9   | 1018.3   |
| Avg T (C)                | 13.41      |          |           |         |          |          |          | 15.95    |          |



|                              | Avg T (K)<br>Corrected<br>Volume (m3)                                  | 286.51<br>763.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 287.65<br>782.4                                                                                                                                                                                                                                                                                                                                                                                                        | 289.6<br>488.2                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                       | 293.45<br>991.5                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                              |                                                                                                                                                                                  |                                                                                               | 292.87<br>966.1                                                   |
|------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
|                              | File:<br>File Status:<br>Start:<br>Stop:                               | G2166<br>final<br>11-6-96<br>18-6-96                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18-6-96                                                                                                                                                                                                                                                                                                                                                                                                                | G2617<br>final<br>25-6-96<br>2-7-96                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                       | <b>G3095</b><br>Final<br>9-7-96<br>16-7-96                                                                                                                                                                                                                                        | <b>G3320</b><br>final<br>16-7-96<br>23-7-96                                                                                                                                                                  | G3576<br>final<br>23-7-96<br>30-7-96                                                                                                                                             | 30-7-96                                                                                       | G4044<br>Final<br>6-8-96<br>13-8-96                               |
|                              | Concentrations<br>(ng/m3)                                              | Abbotsfo<br>rd<br>HV/PUF                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Abbotsfo<br>rd<br>HV/PUF                                                                                                                                                                                                                                                                                                                                                                                               | Abbotsfo<br>rd<br>HV/PUF                                                                                                                                                                                                                                                                                                                                             | Abbotsf<br>ord<br>HV/PUF                                                                                                                                                                                                                                                                                                              | Abbotsfo<br>rd<br>HV/PUF                                                                                                                                                                                                                                                          | Abbotsfor<br>d<br>HV/PUF                                                                                                                                                                                     | Abbotsfor<br>d<br>HV/PUF                                                                                                                                                         | Abbotsfor<br>d<br>HV/PUF                                                                      | Abbotsfor<br>d<br>HV/PUF                                          |
| Organochlorine<br>Pesticides | Aldrin<br>Captan<br>cis-Chlordane                                      | <dl<br>4.714<br/><dl< th=""><th><dl<br>2.301<br/><dl< th=""><th>0.246<br/>0.614<br/>0.123</th><th>0.757</th><th><dl<br>6.556<br/><dl< th=""><th><dl<br>3.439<br/><dl< th=""><th><dl<br>3.339<br/><dl< th=""><th><dl<br>1.872<br/><dl< th=""><th><dl<br>3.105<br/><dl< th=""></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br>                                                                                      | <dl<br>2.301<br/><dl< th=""><th>0.246<br/>0.614<br/>0.123</th><th>0.757</th><th><dl<br>6.556<br/><dl< th=""><th><dl<br>3.439<br/><dl< th=""><th><dl<br>3.339<br/><dl< th=""><th><dl<br>1.872<br/><dl< th=""><th><dl<br>3.105<br/><dl< th=""></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br>                                                              | 0.246<br>0.614<br>0.123                                                                                                                                                                                                                                                                                                                                              | 0.757                                                                                                                                                                                                                                                                                                                                 | <dl<br>6.556<br/><dl< th=""><th><dl<br>3.439<br/><dl< th=""><th><dl<br>3.339<br/><dl< th=""><th><dl<br>1.872<br/><dl< th=""><th><dl<br>3.105<br/><dl< th=""></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br>                            | <dl<br>3.439<br/><dl< th=""><th><dl<br>3.339<br/><dl< th=""><th><dl<br>1.872<br/><dl< th=""><th><dl<br>3.105<br/><dl< th=""></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br>          | <dl<br>3.339<br/><dl< th=""><th><dl<br>1.872<br/><dl< th=""><th><dl<br>3.105<br/><dl< th=""></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br>                                 | <dl<br>1.872<br/><dl< th=""><th><dl<br>3.105<br/><dl< th=""></dl<></dl<br></th></dl<></dl<br> | <dl<br>3.105<br/><dl< th=""></dl<></dl<br>                        |
|                              | (a)<br>trans-Chlordane<br>(g)<br>Dacthal<br>Dieldrin                   | <dl<br><dl<br><dl< th=""><th>0.102<br/><dl<br><dl< th=""><th><dl<br>1.024<br/><dl< th=""><th><dl<br><dl<br><dl< th=""><th><dl<br>0.202<br/><dl< th=""><th><dl<br><dl<br><dl< th=""><th><dl<br><dl<br><dl< th=""><th><dl<br><dl<br><dl< th=""><th><dl<br>0.207<br/>0.072</dl<br></th></dl<></dl<br></dl<br></th></dl<></dl<br></dl<br></th></dl<></dl<br></dl<br></th></dl<></dl<br></th></dl<></dl<br></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></dl<br>                   | 0.102<br><dl<br><dl< th=""><th><dl<br>1.024<br/><dl< th=""><th><dl<br><dl<br><dl< th=""><th><dl<br>0.202<br/><dl< th=""><th><dl<br><dl<br><dl< th=""><th><dl<br><dl<br><dl< th=""><th><dl<br><dl<br><dl< th=""><th><dl<br>0.207<br/>0.072</dl<br></th></dl<></dl<br></dl<br></th></dl<></dl<br></dl<br></th></dl<></dl<br></dl<br></th></dl<></dl<br></th></dl<></dl<br></dl<br></th></dl<></dl<br></th></dl<></dl<br> | <dl<br>1.024<br/><dl< th=""><th><dl<br><dl<br><dl< th=""><th><dl<br>0.202<br/><dl< th=""><th><dl<br><dl<br><dl< th=""><th><dl<br><dl<br><dl< th=""><th><dl<br><dl<br><dl< th=""><th><dl<br>0.207<br/>0.072</dl<br></th></dl<></dl<br></dl<br></th></dl<></dl<br></dl<br></th></dl<></dl<br></dl<br></th></dl<></dl<br></th></dl<></dl<br></dl<br></th></dl<></dl<br> | <dl<br><dl<br><dl< th=""><th><dl<br>0.202<br/><dl< th=""><th><dl<br><dl<br><dl< th=""><th><dl<br><dl<br><dl< th=""><th><dl<br><dl<br><dl< th=""><th><dl<br>0.207<br/>0.072</dl<br></th></dl<></dl<br></dl<br></th></dl<></dl<br></dl<br></th></dl<></dl<br></dl<br></th></dl<></dl<br></th></dl<></dl<br></dl<br>                     | <dl<br>0.202<br/><dl< th=""><th><dl<br><dl<br><dl< th=""><th><dl<br><dl<br><dl< th=""><th><dl<br><dl<br><dl< th=""><th><dl<br>0.207<br/>0.072</dl<br></th></dl<></dl<br></dl<br></th></dl<></dl<br></dl<br></th></dl<></dl<br></dl<br></th></dl<></dl<br>                         | <dl<br><dl<br><dl< th=""><th><dl<br><dl<br><dl< th=""><th><dl<br><dl<br><dl< th=""><th><dl<br>0.207<br/>0.072</dl<br></th></dl<></dl<br></dl<br></th></dl<></dl<br></dl<br></th></dl<></dl<br></dl<br>       | <dl<br><dl<br><dl< th=""><th><dl<br><dl<br><dl< th=""><th><dl<br>0.207<br/>0.072</dl<br></th></dl<></dl<br></dl<br></th></dl<></dl<br></dl<br>                                   | <dl<br><dl<br><dl< th=""><th><dl<br>0.207<br/>0.072</dl<br></th></dl<></dl<br></dl<br>        | <dl<br>0.207<br/>0.072</dl<br>                                    |
|                              | Endosulfan I<br>Endosulfan II<br>Heptachlor<br>Heptachlor              | 0.249<br><dl<br><dl<br><dl< th=""><th></th><th>0.410</th><th>0.411<br/>0.076<br/><dl< th=""><th>0.746</th><th></th><th>1.230</th><th>0.384</th><th>1.573</th></dl<></th></dl<></dl<br></dl<br>                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.410                                                                                                                                                                                                                                                                                                                                                                | 0.411<br>0.076<br><dl< th=""><th>0.746</th><th></th><th>1.230</th><th>0.384</th><th>1.573</th></dl<>                                                                                                                                                                                                                                  | 0.746                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                              | 1.230                                                                                                                                                                            | 0.384                                                                                         | 1.573                                                             |
|                              | Epoxide<br>Hexachlorobenz<br>ene<br>Lindane (g-BHC)<br>trans-Nanochlor | 0.262<br><dl<br><dl< th=""><th>0.128<br/><dl<br>0.077</dl<br></th><th>1.024<br/><dl<br><dl< th=""><th>0.108<br/><dl<br><dl< th=""><th>0.303<br/><dl<br><dl< th=""><th>0.344<br/><dl<br><dl< th=""><th>0.455<br/><dl<br><dl< th=""><th>0.099<br/><dl<br><dl< th=""><th>0.207<br/><dl<br><dl< th=""></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br>                                             | 0.128<br><dl<br>0.077</dl<br>                                                                                                                                                                                                                                                                                                                                                                                          | 1.024<br><dl<br><dl< th=""><th>0.108<br/><dl<br><dl< th=""><th>0.303<br/><dl<br><dl< th=""><th>0.344<br/><dl<br><dl< th=""><th>0.455<br/><dl<br><dl< th=""><th>0.099<br/><dl<br><dl< th=""><th>0.207<br/><dl<br><dl< th=""></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br>          | 0.108<br><dl<br><dl< th=""><th>0.303<br/><dl<br><dl< th=""><th>0.344<br/><dl<br><dl< th=""><th>0.455<br/><dl<br><dl< th=""><th>0.099<br/><dl<br><dl< th=""><th>0.207<br/><dl<br><dl< th=""></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br>                              | 0.303<br><dl<br><dl< th=""><th>0.344<br/><dl<br><dl< th=""><th>0.455<br/><dl<br><dl< th=""><th>0.099<br/><dl<br><dl< th=""><th>0.207<br/><dl<br><dl< th=""></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br>                             | 0.344<br><dl<br><dl< th=""><th>0.455<br/><dl<br><dl< th=""><th>0.099<br/><dl<br><dl< th=""><th>0.207<br/><dl<br><dl< th=""></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br>           | 0.455<br><dl<br><dl< th=""><th>0.099<br/><dl<br><dl< th=""><th>0.207<br/><dl<br><dl< th=""></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br>                                  | 0.099<br><dl<br><dl< th=""><th>0.207<br/><dl<br><dl< th=""></dl<></dl<br></th></dl<></dl<br>  | 0.207<br><dl<br><dl< th=""></dl<></dl<br>                         |
| Herbicides                   | Oxychlordane<br>2,4-<br>Dichlorophenox<br>y                            | <dl<br><dl< th=""><th><dl<br><dl< th=""><th>0.430<br/><dl< th=""><th><dl<br><dl< th=""><th>0.111<br/><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></th></dl<></dl<br></th></dl<></th></dl<></dl<br></th></dl<></dl<br>                                                                                                                                    | <dl<br><dl< th=""><th>0.430<br/><dl< th=""><th><dl<br><dl< th=""><th>0.111<br/><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></th></dl<></dl<br></th></dl<></th></dl<></dl<br>                                                                                                  | 0.430<br><dl< th=""><th><dl<br><dl< th=""><th>0.111<br/><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></th></dl<></dl<br></th></dl<>                                                                                          | <dl<br><dl< th=""><th>0.111<br/><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></th></dl<></dl<br>                                                                                              | 0.111<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<>                                                                                    | <dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br>                                                  | <dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br>                                                               | <dl<br><dl< th=""><th><dl<br><dl< th=""></dl<></dl<br></th></dl<></dl<br>                     | <dl<br><dl< th=""></dl<></dl<br>                                  |
| Organophospha<br>te          | Acetic acid<br>Dinoseb<br>Silvex (2,4,5-TP)<br>Chlorpyrifos            | <dl<br><dl<br><dl< th=""><th><dl<br><dl<br><dl< th=""><th><dl<br><dl<br><dl< th=""><th><dl<br><dl<br><dl< th=""><th>3.127<br/><dl<br>0.303</dl<br></th><th><dl< th=""><th><dl<br><dl<br>1.518</dl<br></dl<br></th><th><dl<br><dl<br>0.197</dl<br></dl<br></th><th><dl<br>1.242<br/>0.311</dl<br></th></dl<></th></dl<></dl<br></dl<br></th></dl<></dl<br></dl<br></th></dl<></dl<br></dl<br></th></dl<></dl<br></dl<br>                                                                           | <dl<br><dl<br><dl< th=""><th><dl<br><dl<br><dl< th=""><th><dl<br><dl<br><dl< th=""><th>3.127<br/><dl<br>0.303</dl<br></th><th><dl< th=""><th><dl<br><dl<br>1.518</dl<br></dl<br></th><th><dl<br><dl<br>0.197</dl<br></dl<br></th><th><dl<br>1.242<br/>0.311</dl<br></th></dl<></th></dl<></dl<br></dl<br></th></dl<></dl<br></dl<br></th></dl<></dl<br></dl<br>                                                        | <dl<br><dl<br><dl< th=""><th><dl<br><dl<br><dl< th=""><th>3.127<br/><dl<br>0.303</dl<br></th><th><dl< th=""><th><dl<br><dl<br>1.518</dl<br></dl<br></th><th><dl<br><dl<br>0.197</dl<br></dl<br></th><th><dl<br>1.242<br/>0.311</dl<br></th></dl<></th></dl<></dl<br></dl<br></th></dl<></dl<br></dl<br>                                                              | <dl<br><dl<br><dl< th=""><th>3.127<br/><dl<br>0.303</dl<br></th><th><dl< th=""><th><dl<br><dl<br>1.518</dl<br></dl<br></th><th><dl<br><dl<br>0.197</dl<br></dl<br></th><th><dl<br>1.242<br/>0.311</dl<br></th></dl<></th></dl<></dl<br></dl<br>                                                                                       | 3.127<br><dl<br>0.303</dl<br>                                                                                                                                                                                                                                                     | <dl< th=""><th><dl<br><dl<br>1.518</dl<br></dl<br></th><th><dl<br><dl<br>0.197</dl<br></dl<br></th><th><dl<br>1.242<br/>0.311</dl<br></th></dl<>                                                             | <dl<br><dl<br>1.518</dl<br></dl<br>                                                                                                                                              | <dl<br><dl<br>0.197</dl<br></dl<br>                                                           | <dl<br>1.242<br/>0.311</dl<br>                                    |
| Pesticides                   | Diazinon<br>Dichlorvos<br>Fonofos<br>Malathion<br>Mevinphos            | 2.881<br>1.833<br><dl<br><dl<br><dl< th=""><th>42.688<br/>1.406<br/>0.128<br/><dl<br><dl< th=""><th></th><th>0.433<br/><dl<br><dl< th=""><th>1.412<br/>6.556<br/><dl<br>7.464<br/><dl< th=""><th><dl< th=""><th>0.759<br/>3.491<br/><dl<br>11.385<br/><dl< th=""><th>0.985<br/><dl<br>0.197</dl<br></th><th>0.518<br/>0.311<br/><dl<br><dl<br><dl< th=""></dl<></dl<br></dl<br></th></dl<></dl<br></th></dl<></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></dl<br> | 42.688<br>1.406<br>0.128<br><dl<br><dl< th=""><th></th><th>0.433<br/><dl<br><dl< th=""><th>1.412<br/>6.556<br/><dl<br>7.464<br/><dl< th=""><th><dl< th=""><th>0.759<br/>3.491<br/><dl<br>11.385<br/><dl< th=""><th>0.985<br/><dl<br>0.197</dl<br></th><th>0.518<br/>0.311<br/><dl<br><dl<br><dl< th=""></dl<></dl<br></dl<br></th></dl<></dl<br></th></dl<></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br>   |                                                                                                                                                                                                                                                                                                                                                                      | 0.433<br><dl<br><dl< th=""><th>1.412<br/>6.556<br/><dl<br>7.464<br/><dl< th=""><th><dl< th=""><th>0.759<br/>3.491<br/><dl<br>11.385<br/><dl< th=""><th>0.985<br/><dl<br>0.197</dl<br></th><th>0.518<br/>0.311<br/><dl<br><dl<br><dl< th=""></dl<></dl<br></dl<br></th></dl<></dl<br></th></dl<></th></dl<></dl<br></th></dl<></dl<br> | 1.412<br>6.556<br><dl<br>7.464<br/><dl< th=""><th><dl< th=""><th>0.759<br/>3.491<br/><dl<br>11.385<br/><dl< th=""><th>0.985<br/><dl<br>0.197</dl<br></th><th>0.518<br/>0.311<br/><dl<br><dl<br><dl< th=""></dl<></dl<br></dl<br></th></dl<></dl<br></th></dl<></th></dl<></dl<br> | <dl< th=""><th>0.759<br/>3.491<br/><dl<br>11.385<br/><dl< th=""><th>0.985<br/><dl<br>0.197</dl<br></th><th>0.518<br/>0.311<br/><dl<br><dl<br><dl< th=""></dl<></dl<br></dl<br></th></dl<></dl<br></th></dl<> | 0.759<br>3.491<br><dl<br>11.385<br/><dl< th=""><th>0.985<br/><dl<br>0.197</dl<br></th><th>0.518<br/>0.311<br/><dl<br><dl<br><dl< th=""></dl<></dl<br></dl<br></th></dl<></dl<br> | 0.985<br><dl<br>0.197</dl<br>                                                                 | 0.518<br>0.311<br><dl<br><dl<br><dl< th=""></dl<></dl<br></dl<br> |



Environment Canada FRAP Study Atmospheric Concentrations of Agricultural Chemicals in the Lower Fraser Valley

|            | Parathion Methyl<br>Terbufos | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>0.229<br/>3.783</th><th></th><th><dl<br><dl< th=""><th><dl<br>0.828</dl<br></th><th>5</th></dl<></dl<br></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>0.229<br/>3.783</th><th></th><th><dl<br><dl< th=""><th><dl<br>0.828</dl<br></th><th>5</th></dl<></dl<br></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th>0.229<br/>3.783</th><th></th><th><dl<br><dl< th=""><th><dl<br>0.828</dl<br></th><th>5</th></dl<></dl<br></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th>0.229<br/>3.783</th><th></th><th><dl<br><dl< th=""><th><dl<br>0.828</dl<br></th><th>5</th></dl<></dl<br></th></dl<></th></dl<> | <dl< th=""><th>0.229<br/>3.783</th><th></th><th><dl<br><dl< th=""><th><dl<br>0.828</dl<br></th><th>5</th></dl<></dl<br></th></dl<> | 0.229<br>3.783                                                                                           |                                                                                | <dl<br><dl< th=""><th><dl<br>0.828</dl<br></th><th>5</th></dl<></dl<br> | <dl<br>0.828</dl<br>       | 5 |
|------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------|---|
| Sterilants | Atrazine                     | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>2.622</th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>             | <dl< th=""><th><dl< th=""><th><dl< th=""><th>2.622</th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>             | <dl< th=""><th><dl< th=""><th>2.622</th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>             | <dl< th=""><th>2.622</th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>             | 2.622                                                                                                                              | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th></th></dl<></th></dl<>                    | <dl< th=""><th></th></dl<> |   |

|                | Head ID                  | EC007                                                                                                                                                                                                                             |                                                                                                                                                                                                         | EC009                                                                                                                                                                         | EC009                                                                                                                                               |                                                                                                                           |                                                                                                 | EC001                                                                 | EC005                                       |                                     |
|----------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------|-------------------------------------|
|                | Date on                  | 13-8-96                                                                                                                                                                                                                           | 21-8-96                                                                                                                                                                                                 | 27-8-96                                                                                                                                                                       |                                                                                                                                                     |                                                                                                                           |                                                                                                 |                                                                       |                                             |                                     |
|                |                          | 8:15                                                                                                                                                                                                                              |                                                                                                                                                                                                         |                                                                                                                                                                               |                                                                                                                                                     |                                                                                                                           |                                                                                                 |                                                                       |                                             |                                     |
|                | Date off                 | 20-8-96                                                                                                                                                                                                                           |                                                                                                                                                                                                         |                                                                                                                                                                               |                                                                                                                                                     |                                                                                                                           |                                                                                                 |                                                                       |                                             |                                     |
|                |                          | 0:00                                                                                                                                                                                                                              |                                                                                                                                                                                                         |                                                                                                                                                                               |                                                                                                                                                     |                                                                                                                           |                                                                                                 |                                                                       |                                             |                                     |
|                | Counter on               | 5007.84                                                                                                                                                                                                                           |                                                                                                                                                                                                         |                                                                                                                                                                               |                                                                                                                                                     |                                                                                                                           |                                                                                                 |                                                                       |                                             |                                     |
|                | Counter off              | 5176.97                                                                                                                                                                                                                           | 5344.17                                                                                                                                                                                                 | 5511.89                                                                                                                                                                       |                                                                                                                                                     |                                                                                                                           |                                                                                                 |                                                                       |                                             |                                     |
|                | Mag. Press. on           | 64                                                                                                                                                                                                                                |                                                                                                                                                                                                         |                                                                                                                                                                               | -                                                                                                                                                   |                                                                                                                           | na                                                                                              | 58                                                                    |                                             | -                                   |
|                | Mag. Press. off          | na                                                                                                                                                                                                                                |                                                                                                                                                                                                         | na                                                                                                                                                                            | 66                                                                                                                                                  |                                                                                                                           |                                                                                                 |                                                                       |                                             | na                                  |
|                | Meter (m3) on            | 28111.34                                                                                                                                                                                                                          | 28468.12                                                                                                                                                                                                | 29249.32                                                                                                                                                                      | 29297.2                                                                                                                                             | 30278.22                                                                                                                  | 31855.24                                                                                        | 33407.18                                                              | 34614.42                                    | 35747.41                            |
|                | Meter (m3) off           | 28468.12                                                                                                                                                                                                                          | 29249.32                                                                                                                                                                                                | 29297.22                                                                                                                                                                      | 2<br>30278.2<br>2                                                                                                                                   | 31855.24                                                                                                                  | 33407.18                                                                                        | 34614.42                                                              | 35747.41                                    | 36507.22                            |
|                | Counter Diff'n           | 169.13                                                                                                                                                                                                                            | 142.08                                                                                                                                                                                                  | 167.72                                                                                                                                                                        | 93.11                                                                                                                                               | 166.48                                                                                                                    | 167.25                                                                                          | 168.64                                                                | 166.12                                      | 168.02                              |
|                | Meter diff               | 356.78                                                                                                                                                                                                                            | 781.2                                                                                                                                                                                                   | -                                                                                                                                                                             |                                                                                                                                                     | 1577.02                                                                                                                   |                                                                                                 |                                                                       |                                             |                                     |
|                | sample (m <sup>3</sup> ) | 550.70                                                                                                                                                                                                                            | 701.2                                                                                                                                                                                                   | 47.5                                                                                                                                                                          | 301                                                                                                                                                 | 1577.02                                                                                                                   | 1001.04                                                                                         | 1207.24                                                               | 1152.55                                     | 755.01                              |
|                | Comments                 | pump foun<br>dead on ar                                                                                                                                                                                                           |                                                                                                                                                                                                         | pump foun<br>dead on ai                                                                                                                                                       |                                                                                                                                                     |                                                                                                                           |                                                                                                 |                                                                       |                                             | pump<br>found<br>dead on<br>arrival |
|                | Avg P (mm HG)            | 1019.1                                                                                                                                                                                                                            | 1016                                                                                                                                                                                                    | 1016.1                                                                                                                                                                        | 1015.2                                                                                                                                              | 1009                                                                                                                      | 1021.3                                                                                          | 1019.6                                                                | 1018.3                                      | 1014.1                              |
|                | Avg T (C)                | 17.43                                                                                                                                                                                                                             |                                                                                                                                                                                                         | 17.79                                                                                                                                                                         |                                                                                                                                                     |                                                                                                                           |                                                                                                 |                                                                       |                                             | 13.17                               |
|                | Avg T (K)                | 290.53                                                                                                                                                                                                                            |                                                                                                                                                                                                         | 290.89                                                                                                                                                                        |                                                                                                                                                     | 288.21                                                                                                                    |                                                                                                 |                                                                       |                                             |                                     |
|                | Corrected                | 368.2                                                                                                                                                                                                                             | 796.9                                                                                                                                                                                                   |                                                                                                                                                                               | 1018.3                                                                                                                                              |                                                                                                                           |                                                                                                 |                                                                       |                                             |                                     |
|                | Volume (m3)              |                                                                                                                                                                                                                                   |                                                                                                                                                                                                         |                                                                                                                                                                               |                                                                                                                                                     |                                                                                                                           |                                                                                                 |                                                                       |                                             |                                     |
|                |                          | G4300                                                                                                                                                                                                                             | G4510                                                                                                                                                                                                   | G4679                                                                                                                                                                         | G4924                                                                                                                                               | G5137                                                                                                                     | G5338                                                                                           | G5586                                                                 | G5863                                       | G6072                               |
|                | File Status:             |                                                                                                                                                                                                                                   |                                                                                                                                                                                                         | Final                                                                                                                                                                         |                                                                                                                                                     |                                                                                                                           |                                                                                                 |                                                                       | final                                       | final                               |
|                | Start:                   | 13-8-96                                                                                                                                                                                                                           |                                                                                                                                                                                                         |                                                                                                                                                                               |                                                                                                                                                     |                                                                                                                           |                                                                                                 |                                                                       |                                             |                                     |
|                | Stop:                    | 20-8-96                                                                                                                                                                                                                           |                                                                                                                                                                                                         |                                                                                                                                                                               |                                                                                                                                                     |                                                                                                                           |                                                                                                 |                                                                       |                                             |                                     |
|                | 3.661                    |                                                                                                                                                                                                                                   |                                                                                                                                                                                                         |                                                                                                                                                                               |                                                                                                                                                     |                                                                                                                           |                                                                                                 |                                                                       | ••                                          |                                     |
|                | Concentrations           | Abbotsfo                                                                                                                                                                                                                          | Abbotsfo                                                                                                                                                                                                | Abbotsto                                                                                                                                                                      | Abbotef                                                                                                                                             | Abbotsfo                                                                                                                  | Abbotsfor                                                                                       | Abbotsfor                                                             | Abbotsfor                                   | Abbotsfor                           |
|                | (ng/m3)                  | rd                                                                                                                                                                                                                                |                                                                                                                                                                                                         | rd                                                                                                                                                                            |                                                                                                                                                     | rd                                                                                                                        | d                                                                                               | d                                                                     | d                                           | d                                   |
|                | (19/113)                 | HV/PUF                                                                                                                                                                                                                            |                                                                                                                                                                                                         | HV/PUF                                                                                                                                                                        |                                                                                                                                                     | HV/PUF                                                                                                                    | u<br>HV/PUF                                                                                     | u<br>HV/PUF                                                           | u<br>HV/PUF                                 | u<br>HV/PUF                         |
| Organochlorine | Aldrin                   | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""></dl<></th></dl<> | <dl< th=""></dl<>                   |
| Giganocinorine |                          |                                                                                                                                                                                                                                   |                                                                                                                                                                                                         |                                                                                                                                                                               |                                                                                                                                                     |                                                                                                                           |                                                                                                 |                                                                       |                                             |                                     |



| Pesticides    |                   |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                  |                                                                                                                                                                                        |                                                                                                                                                              |                                                                                                                                    |                                                                                                          |                                                                                |                                                      |                              |       |
|---------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------|------------------------------|-------|
|               | Captan            | 2.716                                                                                                                                                                                                                                      | 2.635                                                                                                                                                                                                            | 4.063                                                                                                                                                                                  | 0.196                                                                                                                                                        | 0.431                                                                                                                              | 0.183                                                                                                    | 0.158                                                                          | <dl< th=""><th></th><th>0.253</th></dl<>             |                              | 0.253 |
|               | cis-Chlordane     | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>0.253</th><th>3 <dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>           | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>0.253</th><th>3 <dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>           | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>0.253</th><th>3 <dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>           | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>0.253</th><th>3 <dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>           | <dl< th=""><th><dl< th=""><th><dl< th=""><th>0.253</th><th>3 <dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<>           | <dl< th=""><th><dl< th=""><th>0.253</th><th>3 <dl< th=""><th></th></dl<></th></dl<></th></dl<>           | <dl< th=""><th>0.253</th><th>3 <dl< th=""><th></th></dl<></th></dl<>           | 0.253                                                | 3 <dl< th=""><th></th></dl<> |       |
|               | (a)               |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                  |                                                                                                                                                                                        |                                                                                                                                                              |                                                                                                                                    |                                                                                                          |                                                                                |                                                      |                              |       |
|               | trans-Chlordane   | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th></th></dl<></th></dl<> | <dl< th=""><th></th></dl<>   |       |
|               | (g)               |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                  |                                                                                                                                                                                        |                                                                                                                                                              |                                                                                                                                    |                                                                                                          |                                                                                |                                                      |                              |       |
|               | Dacthal           | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th></th></dl<></th></dl<> | <dl< th=""><th></th></dl<>   |       |
|               | Dieldrin          | <dl< th=""><th><dl< th=""><th><dl< th=""><th>0.049</th><th><dl< th=""><th><dl< th=""><th>0.063</th><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                         | <dl< th=""><th><dl< th=""><th>0.049</th><th><dl< th=""><th><dl< th=""><th>0.063</th><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                         | <dl< th=""><th>0.049</th><th><dl< th=""><th><dl< th=""><th>0.063</th><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                         | 0.049                                                                                                                                                        | <dl< th=""><th><dl< th=""><th>0.063</th><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<>             | <dl< th=""><th>0.063</th><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<>             | 0.063                                                                          | <dl< th=""><th><dl< th=""><th></th></dl<></th></dl<> | <dl< th=""><th></th></dl<>   |       |
|               | Endosulfan I      | 2.309                                                                                                                                                                                                                                      | 1.468                                                                                                                                                                                                            | 1.828                                                                                                                                                                                  | 0.442                                                                                                                                                        | 0.228                                                                                                                              | 0.213                                                                                                    | 0.229                                                                          | 0.10                                                 | I <dl< th=""><th></th></dl<> |       |
|               | Endosulfan II     | 0.652                                                                                                                                                                                                                                      | 0.389                                                                                                                                                                                                            | <dl< th=""><th>0.069</th><th>0.043</th><th><dl< th=""><th>0.063</th><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<>                                     | 0.069                                                                                                                                                        | 0.043                                                                                                                              | <dl< th=""><th>0.063</th><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<>             | 0.063                                                                          | <dl< th=""><th><dl< th=""><th></th></dl<></th></dl<> | <dl< th=""><th></th></dl<>   |       |
|               | Heptachlor        | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th></th></dl<></th></dl<> | <dl< th=""><th></th></dl<>   |       |
|               | Heptachlor        | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th></th></dl<></th></dl<> | <dl< th=""><th></th></dl<>   |       |
|               | Epoxide           |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                  |                                                                                                                                                                                        |                                                                                                                                                              |                                                                                                                                    |                                                                                                          |                                                                                |                                                      |                              |       |
|               | Hexachlorobenz    | 0.272                                                                                                                                                                                                                                      | 0.125                                                                                                                                                                                                            | <dl< th=""><th>0.098</th><th><dl< th=""><th>0.122</th><th>0.079</th><th>0.253</th><th>3 <dl< th=""><th></th></dl<></th></dl<></th></dl<>                                               | 0.098                                                                                                                                                        | <dl< th=""><th>0.122</th><th>0.079</th><th>0.253</th><th>3 <dl< th=""><th></th></dl<></th></dl<>                                   | 0.122                                                                                                    | 0.079                                                                          | 0.253                                                | 3 <dl< th=""><th></th></dl<> |       |
|               | ene               |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                  |                                                                                                                                                                                        |                                                                                                                                                              |                                                                                                                                    |                                                                                                          |                                                                                |                                                      |                              |       |
|               | Lindane (g-BHC)   | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>0.185</th><th></th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                              | <dl< th=""><th><dl< th=""><th><dl< th=""><th>0.185</th><th></th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                              | <dl< th=""><th><dl< th=""><th>0.185</th><th></th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                              | <dl< th=""><th>0.185</th><th></th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<>                              | 0.185                                                                                                                              |                                                                                                          | <dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th></th></dl<></th></dl<> | <dl< th=""><th></th></dl<>   |       |
|               | trans-Nanochlor   |                                                                                                                                                                                                                                            | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th></th></dl<></th></dl<> | <dl< th=""><th></th></dl<>   |       |
|               | Oxychlordane      | 0.190                                                                                                                                                                                                                                      |                                                                                                                                                                                                                  | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th></th></dl<></th></dl<> | <dl< th=""><th></th></dl<>   |       |
| Herbicides    | 2,4-              | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th></th></dl<></th></dl<> | <dl< th=""><th></th></dl<>   |       |
|               | Dichlorophenox    |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                  |                                                                                                                                                                                        |                                                                                                                                                              |                                                                                                                                    |                                                                                                          |                                                                                |                                                      |                              |       |
|               | У                 |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                  |                                                                                                                                                                                        |                                                                                                                                                              |                                                                                                                                    |                                                                                                          |                                                                                |                                                      |                              |       |
|               | Acetic acid       |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                  |                                                                                                                                                                                        |                                                                                                                                                              |                                                                                                                                    |                                                                                                          |                                                                                |                                                      |                              |       |
|               | Dinoseb           | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th></th></dl<></th></dl<> | <dl< th=""><th></th></dl<>   |       |
|               | Silvex (2,4,5-TP) | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th></th></dl<></th></dl<> | <dl< th=""><th></th></dl<>   |       |
| Organophospha | Chlorpyrifos      | <dl< th=""><th>0.753</th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>             | 0.753                                                                                                                                                                                                            | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th></th></dl<></th></dl<> | <dl< th=""><th></th></dl<>   |       |
| te            |                   |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                  |                                                                                                                                                                                        |                                                                                                                                                              |                                                                                                                                    |                                                                                                          |                                                                                |                                                      |                              |       |
| Pesticides    |                   |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                  |                                                                                                                                                                                        |                                                                                                                                                              |                                                                                                                                    |                                                                                                          |                                                                                |                                                      |                              |       |
|               | Diazinon          | 1.086                                                                                                                                                                                                                                      |                                                                                                                                                                                                                  |                                                                                                                                                                                        | 0.295                                                                                                                                                        |                                                                                                                                    | <dl< th=""><th><dl< th=""><th>0.253</th><th></th><th>0.253</th></dl<></th></dl<>                         | <dl< th=""><th>0.253</th><th></th><th>0.253</th></dl<>                         | 0.253                                                |                              | 0.253 |
|               | Dichlorvos        | 2.173                                                                                                                                                                                                                                      | 1.380                                                                                                                                                                                                            |                                                                                                                                                                                        | 0.491                                                                                                                                                        | 0.308                                                                                                                              |                                                                                                          | 0.552                                                                          | -                                                    |                              | 0.631 |
|               | Fonofos           | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th></th></dl<></th></dl<> | <dl< th=""><th></th></dl<>   |       |
|               | Malathion         | <dl< th=""><th>0.251</th><th></th><th>0.196</th><th></th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                           | 0.251                                                                                                                                                                                                            |                                                                                                                                                                                        | 0.196                                                                                                                                                        |                                                                                                                                    | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th></th></dl<></th></dl<> | <dl< th=""><th></th></dl<>   |       |
|               | Mevinphos         | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th></th></dl<></th></dl<> | <dl< th=""><th></th></dl<>   |       |
|               | Parathion Methyl  |                                                                                                                                                                                                                                            | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th></th></dl<></th></dl<> | <dl< th=""><th></th></dl<>   |       |
|               | Terbufos          | <dl< th=""><th>0.627</th><th></th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                              | 0.627                                                                                                                                                                                                            |                                                                                                                                                                                        | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th></th></dl<></th></dl<> | <dl< th=""><th></th></dl<>   |       |
| Sterilants    | Atrazine          | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th></th></dl<></th></dl<> | <dl< th=""><th></th></dl<>   |       |

| Head ID  |          |          |          |         |          |          |          |          |          |
|----------|----------|----------|----------|---------|----------|----------|----------|----------|----------|
| Date on  | 18-10-96 | 22-10-96 | 29-10-96 | 1-11-96 | 5-11-96  | 13-11-96 | 25-11-96 | 5-12-96  | 10-12-96 |
|          | 12:20    | 10:40    | 9:55     | 14:00   | 11:25    | 10:55    | 13:10    | 8:45     | 11:30    |
| Date off | 22-10-96 | 29-10-96 | 1-11-96  | 5-11-96 | 12-11-96 | 25-11-96 | 3-12-96  | 10-12-96 | 16-12-96 |



|                              | Counter on<br>Counter off<br>Mag. Press. on<br>Mag. Press. off<br>Meter (m3) on<br>Meter (m3) off | 9:55<br>6443<br>6536.66<br>71<br>64<br>36507.22<br>36408.01 | 9:55<br>6536.66                   | 14:00                    | 9:55<br>6537.09<br>6538.15<br>56<br>na<br>36405.7<br>36897.4<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10:40<br>6538.15<br>6538.15<br>64<br>na<br>36897.44<br>37576.6 | 6538.15<br>6827.09<br>62<br>60<br>37576.64                                                                                                                                                                                                                                                                                                                                                                                      | 6827.09<br>7017.39<br>69<br>na                                                                                                                                                                                                                                                                                      | 7017.39<br>7139.85<br>60<br>66<br>42720.6                                                                                                                                                                | 7139.85<br>7283.58<br>66<br>74                                                                |
|------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
|                              | Counter Diff'n<br>Meter diff<br>sample (m³)                                                       | 0<br>0                                                      | 0<br>0                            |                          | 1.06<br>491.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0<br>679.16                                                    | 288.94<br>3554.88                                                                                                                                                                                                                                                                                                                                                                                                               | 190.3<br>1589.08                                                                                                                                                                                                                                                                                                    | 122.46<br>706.7                                                                                                                                                                                          | 143.73<br>803.2                                                                               |
|                              | Comments                                                                                          | do not<br>analyze                                           | dry gas<br>meter<br>dead          | dry gas<br>meter<br>dead | dry gas<br>meter<br>dead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | pump foun<br>dead on ar                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                               | pump<br>found<br>dead on<br>arrival                                                                                                                                                                                                                                                                                 | New motor<br>Lost 2 d spl                                                                                                                                                                                |                                                                                               |
|                              | Avg P (mm HG)<br>Avg T (C)                                                                        | 1016.3<br>6.38                                              | 1015.1<br>7.66                    | 1022.8<br>6.74           | 1019<br>6.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1019.9<br>9.31                                                 | 1012.8<br>-0.97                                                                                                                                                                                                                                                                                                                                                                                                                 | 1017<br>3.94                                                                                                                                                                                                                                                                                                        | 1003.7<br>3.56                                                                                                                                                                                           | 1019.4<br>3.57                                                                                |
|                              | Avg T (K)<br>Corrected<br>Volume (m3)                                                             | 279.48<br>0.0                                               | 280.76<br>0.0                     | 279.84<br>0.0            | 279.59<br>527.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 282.41<br>721.5                                                | 272.13                                                                                                                                                                                                                                                                                                                                                                                                                          | 277.04<br>1716.1                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                          |                                                                                               |
|                              |                                                                                                   |                                                             |                                   |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                          |                                                                                               |
|                              | File Status:<br>Start:                                                                            | <b>G6330</b><br>15-10-96                                    |                                   | 29-10-96                 | final<br>1-11-96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                     | 3-12-96                                                                                                                                                                                                  | G7954<br>final<br>10-12-96                                                                    |
|                              | File Status:                                                                                      |                                                             |                                   | 29-10-96<br>1-11-96      | final<br>1-11-96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                | final<br>12-11-96                                                                                                                                                                                                                                                                                                                                                                                                               | final                                                                                                                                                                                                                                                                                                               | final                                                                                                                                                                                                    | final                                                                                         |
|                              | File Status:<br>Start:                                                                            | 15-10-96<br>22-10-96<br>Abbotsfo<br>rd                      | 22-10-96                          | 1-11-96                  | final<br>1-11-96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5-11-96<br>12-11-96                                            | final<br>12-11-96<br>26-11-96                                                                                                                                                                                                                                                                                                                                                                                                   | final<br>26-11-96<br>3-12-96                                                                                                                                                                                                                                                                                        | final<br>3-12-96                                                                                                                                                                                         | final<br>10-12-96<br>16-12-96                                                                 |
| Organochlorine               | File Status:<br>Start:<br>Stop:<br>Concentrations                                                 | 15-10-96<br>22-10-96<br>Abbotsfo<br>rd                      | 22-10-96<br>29-10-96<br>Abbotsfor | 1-11-96                  | final<br>1-11-96<br>5-11-96<br>Abbotsfo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5-11-96<br>12-11-96                                            | final<br>12-11-96<br>26-11-96<br>Abbotsfor<br>d                                                                                                                                                                                                                                                                                                                                                                                 | final<br>26-11-96<br>3-12-96<br>Abbotsfor<br>d                                                                                                                                                                                                                                                                      | final<br>3-12-96<br>10-12-96<br>Abbotsfor<br>d                                                                                                                                                           | final<br>10-12-96<br>16-12-96<br>Abbotsfor<br>d                                               |
|                              | File Status:<br>Start:<br>Stop:<br>Concentrations<br>(ng/m3)<br>Aldrin<br>Captan<br>cis-Chlordane | 15-10-96<br>22-10-96<br>Abbotsfo<br>rd                      | 22-10-96<br>29-10-96<br>Abbotsfor | 1-11-96                  | final<br>1-11-96<br>5-11-96<br>Abbotsfo<br>HV/PUF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5-11-96<br>12-11-96                                            | final<br>12-11-96<br>26-11-96<br>Abbotsfor<br>d<br>HV/PUF                                                                                                                                                                                                                                                                                                                                                                       | final<br>26-11-96<br>3-12-96<br>Abbotsfor<br>d<br>HV/PUF                                                                                                                                                                                                                                                            | final<br>3-12-96<br>10-12-96<br>Abbotsfor<br>d<br>HV/PUF                                                                                                                                                 | final<br>10-12-96<br>16-12-96<br>Abbotsfor<br>d<br>HV/PUF                                     |
| Organochlorine<br>Pesticides | File Status:<br>Start:<br>Stop:<br>Concentrations<br>(ng/m3)<br>Aldrin<br>Captan                  | 15-10-96<br>22-10-96<br>Abbotsfo<br>rd<br>HV/PUF            | 22-10-96<br>29-10-96<br>Abbotsfor | 1-11-96                  | final<br>1-11-96<br>5-11-96<br>Abbotsfo<br>HV/PUF<br><dl<br><dl< th=""><th>5-11-96<br/>12-11-96</th><th>final<br/>12-11-96<br/>26-11-96<br/>Abbotsfor<br/>d<br/>HV/PUF<br/><dl<br><dl< th=""><th>final<br/>26-11-96<br/>3-12-96<br/>Abbotsfor<br/>d<br/>HV/PUF<br/><dl<br><dl< th=""><th>final<br/>3-12-96<br/>10-12-96<br/>Abbotsfor<br/>d<br/>HV/PUF<br/><dl<br><dl< th=""><th>final<br/>10-12-96<br/>16-12-96<br/>Abbotsfor<br/>d<br/>HV/PUF<br/><dl<br><dl< th=""></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br> | 5-11-96<br>12-11-96                                            | final<br>12-11-96<br>26-11-96<br>Abbotsfor<br>d<br>HV/PUF<br><dl<br><dl< th=""><th>final<br/>26-11-96<br/>3-12-96<br/>Abbotsfor<br/>d<br/>HV/PUF<br/><dl<br><dl< th=""><th>final<br/>3-12-96<br/>10-12-96<br/>Abbotsfor<br/>d<br/>HV/PUF<br/><dl<br><dl< th=""><th>final<br/>10-12-96<br/>16-12-96<br/>Abbotsfor<br/>d<br/>HV/PUF<br/><dl<br><dl< th=""></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br> | final<br>26-11-96<br>3-12-96<br>Abbotsfor<br>d<br>HV/PUF<br><dl<br><dl< th=""><th>final<br/>3-12-96<br/>10-12-96<br/>Abbotsfor<br/>d<br/>HV/PUF<br/><dl<br><dl< th=""><th>final<br/>10-12-96<br/>16-12-96<br/>Abbotsfor<br/>d<br/>HV/PUF<br/><dl<br><dl< th=""></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br> | final<br>3-12-96<br>10-12-96<br>Abbotsfor<br>d<br>HV/PUF<br><dl<br><dl< th=""><th>final<br/>10-12-96<br/>16-12-96<br/>Abbotsfor<br/>d<br/>HV/PUF<br/><dl<br><dl< th=""></dl<></dl<br></th></dl<></dl<br> | final<br>10-12-96<br>16-12-96<br>Abbotsfor<br>d<br>HV/PUF<br><dl<br><dl< th=""></dl<></dl<br> |



|               | Lindane (g-BHC)   | 1  | < | <dl< th=""><th><dl< th=""><th><dl< th=""><th></th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th></th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th></th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<>   |       | <dl< th=""><th><dl< th=""></dl<></th></dl<> | <dl< th=""></dl<> |
|---------------|-------------------|----|---|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------|---------------------------------------------|-------------------|
|               | trans-Nanochlor   |    | < | <dl< th=""><th><dl< th=""><th><dl< th=""><th></th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th></th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th></th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<>   |       | <dl< th=""><th><dl< th=""></dl<></th></dl<> | <dl< th=""></dl<> |
|               | Oxychlordane      |    | < | <dl< th=""><th><dl< th=""><th><dl< th=""><th></th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th></th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th></th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<>   |       | <dl< th=""><th><dl< th=""></dl<></th></dl<> | <dl< th=""></dl<> |
| Herbicides    | 2,4-Dichloropheno | xy | < | <dl< th=""><th>0.71</th><th>9 <dl< th=""><th></th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<>            | 0.71                                                                                                     | 9 <dl< th=""><th></th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<> |       | <dl< th=""><th><dl< th=""></dl<></th></dl<> | <dl< th=""></dl<> |
|               | Acetic acid       |    |   |                                                                                                                                    |                                                                                                          |                                                                                  |       |                                             |                   |
|               | Dinoseb           |    | < | <dl< th=""><th><dl< th=""><th><dl< th=""><th></th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th></th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th></th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<>   |       | <dl< th=""><th><dl< th=""></dl<></th></dl<> | <dl< th=""></dl<> |
|               | Silvex (2,4,5-TP) |    | < | <dl< th=""><th><dl< th=""><th><dl< th=""><th></th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th></th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th></th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<>   |       | <dl< th=""><th><dl< th=""></dl<></th></dl<> | <dl< th=""></dl<> |
| Organophospha | Chlorpyrifos      |    | < | <dl< th=""><th><dl< th=""><th><dl< th=""><th></th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th></th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th></th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<>   |       | <dl< th=""><th><dl< th=""></dl<></th></dl<> | <dl< th=""></dl<> |
| te            |                   |    |   |                                                                                                                                    |                                                                                                          |                                                                                  |       |                                             |                   |
| Pesticides    |                   |    |   |                                                                                                                                    |                                                                                                          |                                                                                  |       |                                             |                   |
|               | Diazinon          |    | < | <dl< th=""><th><dl< th=""><th><dl< th=""><th></th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th></th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th></th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<>   |       | <dl< th=""><th><dl< th=""></dl<></th></dl<> | <dl< th=""></dl<> |
|               | Dichlorvos        |    |   | 1.138                                                                                                                              | <dl< th=""><th></th><th>0.233</th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<>             |                                                                                  | 0.233 | <dl< th=""><th><dl< th=""></dl<></th></dl<> | <dl< th=""></dl<> |
|               | Fonofos           |    | < | <dl< th=""><th><dl< th=""><th><dl< th=""><th></th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th></th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th></th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<>   |       | <dl< th=""><th><dl< th=""></dl<></th></dl<> | <dl< th=""></dl<> |
|               | Malathion         |    | < | <dl< th=""><th><dl< th=""><th><dl< th=""><th></th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th></th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th></th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<>   |       | <dl< th=""><th><dl< th=""></dl<></th></dl<> | <dl< th=""></dl<> |
|               | Mevinphos         |    | < | <dl< th=""><th><dl< th=""><th><dl< th=""><th></th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th></th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th></th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<>   |       | <dl< th=""><th><dl< th=""></dl<></th></dl<> | <dl< th=""></dl<> |
|               | Parathion Methyl  |    | < | <dl< th=""><th><dl< th=""><th><dl< th=""><th></th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th></th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th></th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<>   |       | <dl< th=""><th><dl< th=""></dl<></th></dl<> | <dl< th=""></dl<> |
|               | Terbufos          |    | < | <dl< th=""><th><dl< th=""><th><dl< th=""><th></th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th></th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th></th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<>   |       | <dl< th=""><th><dl< th=""></dl<></th></dl<> | <dl< th=""></dl<> |
| Sterilants    | Atrazine          |    | < | <dl< th=""><th><dl< th=""><th><dl< th=""><th></th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th></th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th></th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<>   |       | <dl< th=""><th><dl< th=""></dl<></th></dl<> | <dl< th=""></dl<> |

| Abbotsford | HV PUF Data |
|------------|-------------|
| Pesticides |             |

| Head ID                  |          |          |          |         |         |         |         |         |           |
|--------------------------|----------|----------|----------|---------|---------|---------|---------|---------|-----------|
| Date on                  | 16-12-96 | 23-12-96 | 31-12-96 | 7-1-97  | 14-1-97 | 21-1-97 | 28-1-97 | 4-2-97  | 11-2-97   |
|                          | 11:15    | 9:45     | 10:30    | 9:20    | 8:55    | 9:15    | 9:05    | 8:45    | 10:20     |
| Date off                 | 23-12-96 | 31-12-96 | 7-1-97   | 14-1-97 | 21-1-97 | 28-1-97 | 4-2-97  | 11-2-97 | 18-2-97   |
|                          | 9:30     | 9:30     | 9:15     | 8:55    | 9:15    | 9:00    | 8:45    | 9:00    | 8:45      |
| Counter on               | 7283.58  | 7449.62  | 7641.06  | 7807.84 | 7975.4  | 8142.33 | 8310.03 | 8477.75 | 8646.19   |
| Counter off              | 7449.62  | 7641.06  | 7807.84  | 7975.4  | 8142.33 | 8310.03 | 8477.75 | 8646.19 | 8812.98   |
| Mag. Press. on           | 63       | 70       | 52       | 63      | 60      | 60      | 61      | 60      | 66        |
| Mag. Press. off          | 65       | na       | 68       | 60      | 58      | 61      | 60      | na      | 69        |
| Meter (m3) on            | 44230.5  | 45158.6  | 45500.3  | 46893.2 | 48030.9 | 49157.8 | 50252.7 | 51249.7 | 52136.6   |
| Meter (m3) off           | 45158.6  | 45500.3  | 46893.2  | 48030.9 | 49157.8 | 50252.7 | 51249.7 | 52136.6 | 53463.7   |
|                          |          |          |          |         |         |         |         |         |           |
| Counter Diff'n           | 166.04   | 191.44   | 166.78   | 167.56  | 166.93  | 167.7   | 167.72  | 168.44  | 166.79    |
| Meter diff               | 928.1    | 341.7    | 1392.9   | 1137.7  | 1126.9  | 1094.9  | 997     | 886.9   | 1327.1    |
| sample (m <sup>3</sup> ) |          |          |          |         |         |         |         |         |           |
| • • •                    |          |          |          |         |         |         |         |         |           |
| Comments                 |          | pump     | Motor    |         |         |         |         | Motor   | New motor |
|                          |          | found    | replaced |         |         |         |         | dead    |           |
|                          |          | dead on  | -        |         |         |         |         |         |           |
|                          |          | arrival  |          |         |         |         |         |         |           |
| Avg P (mm HG)            | 1017     | 1009.2   | 1012     | 1023.3  | 1016    | 1014.7  | 1020.1  | 1025.2  | 1018.3    |
| ,                        |          |          |          |         | -       | -       |         | -       |           |



|                                | Avg T (C)                | -0.94                                                                                                                                                                                                                                                                                                                                                                    | -8.06                                                                                                                                                                                                                                                                                                                           | 4.59                                                                                                                                                                                                                                                                                   | 2.68                                                                                                                                                                                                                                          | 3.32                                                                                                                                                                                                 | -1.18                                                                                                                                                       | 5                                                                                                                  | 2.36                                                                      | 6.73                             |
|--------------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------|
|                                | Avg T (K)                | 272.16                                                                                                                                                                                                                                                                                                                                                                   | 265.04                                                                                                                                                                                                                                                                                                                          | 277.69                                                                                                                                                                                                                                                                                 | 275.78                                                                                                                                                                                                                                        | 276.42                                                                                                                                                                                               | 271.92                                                                                                                                                      | 278.1                                                                                                              | 275.46                                                                    | 279.83                           |
|                                | Corrected                | 1020.2                                                                                                                                                                                                                                                                                                                                                                   | 382.8                                                                                                                                                                                                                                                                                                                           | 1493.3                                                                                                                                                                                                                                                                                 | 1241.9                                                                                                                                                                                                                                        | 1218.5                                                                                                                                                                                               | 1201.9                                                                                                                                                      | 1075.8                                                                                                             | 971.0                                                                     | 1420.7                           |
| N                              | Volume (m3)              |                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                               |                                                                                                                                                                                                      |                                                                                                                                                             |                                                                                                                    |                                                                           |                                  |
|                                |                          | G8168                                                                                                                                                                                                                                                                                                                                                                    | G8237                                                                                                                                                                                                                                                                                                                           | G8330                                                                                                                                                                                                                                                                                  | G8497                                                                                                                                                                                                                                         | G8666                                                                                                                                                                                                | G8836                                                                                                                                                       | G9020                                                                                                              | G9181                                                                     | G9377                            |
|                                | File Status:             | final                                                                                                                                                                                                                                                                                                                                                                    | final                                                                                                                                                                                                                                                                                                                           | final                                                                                                                                                                                                                                                                                  | final                                                                                                                                                                                                                                         | final                                                                                                                                                                                                | final                                                                                                                                                       | final                                                                                                              | final                                                                     | final                            |
|                                | Start:                   | 16-12-96                                                                                                                                                                                                                                                                                                                                                                 | 23-12-96                                                                                                                                                                                                                                                                                                                        | 31-12-96                                                                                                                                                                                                                                                                               | 7-1-97                                                                                                                                                                                                                                        | 14-1-97                                                                                                                                                                                              | 21-1-97                                                                                                                                                     | 28-1-97                                                                                                            | 4-2-97                                                                    | 11-2-97                          |
|                                | Stop:                    | 23-12-96                                                                                                                                                                                                                                                                                                                                                                 | 30-12-96                                                                                                                                                                                                                                                                                                                        | 7-1-97                                                                                                                                                                                                                                                                                 | 14-1-97                                                                                                                                                                                                                                       | 21-1-97                                                                                                                                                                                              | 28-1-97                                                                                                                                                     | 4-2-97                                                                                                             | 11-2-97                                                                   | 18-2-97                          |
|                                |                          |                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                               |                                                                                                                                                                                                      |                                                                                                                                                             |                                                                                                                    |                                                                           |                                  |
|                                | Concentrations           | Abbotsfo                                                                                                                                                                                                                                                                                                                                                                 | Abbotsfo                                                                                                                                                                                                                                                                                                                        | Abbotsfo                                                                                                                                                                                                                                                                               | Abbotsf                                                                                                                                                                                                                                       | Abbotsfo                                                                                                                                                                                             | Abbotsfor                                                                                                                                                   | Abbotsfor                                                                                                          | Abbotsfor                                                                 | Abbotsfor                        |
|                                | (ng/m3)                  | rd                                                                                                                                                                                                                                                                                                                                                                       | rd                                                                                                                                                                                                                                                                                                                              | rd                                                                                                                                                                                                                                                                                     | ord                                                                                                                                                                                                                                           | rd                                                                                                                                                                                                   | d                                                                                                                                                           | d                                                                                                                  | d                                                                         | d                                |
|                                |                          | HV/PUF                                                                                                                                                                                                                                                                                                                                                                   | HV/PUF                                                                                                                                                                                                                                                                                                                          | HV/PUF                                                                                                                                                                                                                                                                                 | HV/PUF                                                                                                                                                                                                                                        | HV/PUF                                                                                                                                                                                               | HV/PUF                                                                                                                                                      | HV/PUF                                                                                                             | HV/PUF                                                                    | HV/PUF                           |
| Organochlorine /<br>Pesticides | Aldrin                   | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                                        | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                         | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                          | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                           | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                            | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<>                                                             | <dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<>                                              | <dl< th=""><th><dl< th=""></dl<></th></dl<>                               | <dl< th=""></dl<>                |
|                                | Captan                   | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                                        | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                         | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                          | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                           | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                            | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<>                                                             | <dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<>                                              | <dl< th=""><th><dl< th=""></dl<></th></dl<>                               | <dl< th=""></dl<>                |
|                                | cis-Chlordane            | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                                        | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                         | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                          | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                           | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                            | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<>                                                             | <dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<>                                              | <dl< th=""><th><dl< th=""></dl<></th></dl<>                               | <dl< th=""></dl<>                |
|                                | (a)                      |                                                                                                                                                                                                                                                                                                                                                                          | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                         | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                          | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                           | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                            | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<>                                                             | <dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<>                                              | <dl< th=""><th><dl< th=""></dl<></th></dl<>                               | <dl< th=""></dl<>                |
|                                | trans-Chlordane          | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                                        | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                         | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                          | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                           | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                            | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<>                                                             | <dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<>                                              | <dl< th=""><th><dl< th=""></dl<></th></dl<>                               | <dl< th=""></dl<>                |
|                                | (g)<br>Dacthal           | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                                        | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                         | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                          | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                           | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                            | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<>                                                             | <dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<>                                              | <dl< th=""><th><dl< th=""></dl<></th></dl<>                               | <dl< th=""></dl<>                |
|                                |                          | <dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br> | <dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br> | <dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br> | <dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br> | <dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br> | <dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br> | <dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br> | <dl<br><dl< th=""><th><dl<br><dl< th=""></dl<></dl<br></th></dl<></dl<br> | <dl<br><dl< th=""></dl<></dl<br> |
|                                | Dieldrin<br>Endeculter I |                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                 | <dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br> | <dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br> | <dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br> | <dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br> | <dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br> | <dl<br><dl< th=""><th><dl<br><dl< th=""></dl<></dl<br></th></dl<></dl<br> | <dl<br><dl< th=""></dl<></dl<br> |
|                                | Endosulfan I             | <dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br>0.035</dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br>             | <dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br>0.035</dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br>             | <dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br>0.035</dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br>             | <dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br>0.035</dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br>             | <dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br>0.035</dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br>             | <dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br>0.035</dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br>             | <dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br>0.035</dl<br></th></dl<></dl<br></th></dl<></dl<br>             | <dl<br><dl< th=""><th><dl<br>0.035</dl<br></th></dl<></dl<br>             | <dl<br>0.035</dl<br>             |
|                                | Endosulfan II            |                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                               |                                                                                                                                                                                                      |                                                                                                                                                             | <dl<br><dl< th=""><th><dl<br><dl< th=""><th></th></dl<></dl<br></th></dl<></dl<br>                                 | <dl<br><dl< th=""><th></th></dl<></dl<br>                                 |                                  |
|                                | Heptachlor               | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th><th><dl<br><dl< th=""><th><dl< th=""></dl<></th></dl<></dl<br></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                                          | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th><th><dl<br><dl< th=""><th><dl< th=""></dl<></th></dl<></dl<br></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                           | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th><th><dl<br><dl< th=""><th><dl< th=""></dl<></th></dl<></dl<br></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                            | <dl< th=""><th><dl< th=""><th><dl< th=""><th></th><th><dl<br><dl< th=""><th><dl< th=""></dl<></th></dl<></dl<br></th></dl<></th></dl<></th></dl<>                                                                                             | <dl< th=""><th><dl< th=""><th></th><th><dl<br><dl< th=""><th><dl< th=""></dl<></th></dl<></dl<br></th></dl<></th></dl<>                                                                              | <dl< th=""><th></th><th><dl<br><dl< th=""><th><dl< th=""></dl<></th></dl<></dl<br></th></dl<>                                                               |                                                                                                                    | <dl<br><dl< th=""><th><dl< th=""></dl<></th></dl<></dl<br>                | <dl< th=""></dl<>                |
|                                | Heptachlor               | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                                        | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                         | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                          | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                           | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                            | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<>                                                             | <dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<>                                              | <dl< th=""><th><dl< th=""></dl<></th></dl<>                               | <dl< th=""></dl<>                |
|                                | Epoxide                  | 0.000                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                        | 0.000                                                                                                                                                                                                                                         | 0.000                                                                                                                                                                                                |                                                                                                                                                             | 0.000                                                                                                              | 0.400                                                                     |                                  |
|                                | Hexachlorobenz<br>ene    | 0.098                                                                                                                                                                                                                                                                                                                                                                    | <dl< th=""><th><dl< th=""><th>0.322</th><th>0.082</th><th><dl< th=""><th>0.093</th><th>0.103</th><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                                                                         | <dl< th=""><th>0.322</th><th>0.082</th><th><dl< th=""><th>0.093</th><th>0.103</th><th><dl< th=""></dl<></th></dl<></th></dl<>                                                                                                                                                          | 0.322                                                                                                                                                                                                                                         | 0.082                                                                                                                                                                                                | <dl< th=""><th>0.093</th><th>0.103</th><th><dl< th=""></dl<></th></dl<>                                                                                     | 0.093                                                                                                              | 0.103                                                                     | <dl< th=""></dl<>                |
|                                | Lindane (g-BHC)          | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                                        | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                         | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                          | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                           | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                            | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<>                                                             | <dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<>                                              | <dl< th=""><th><dl< th=""></dl<></th></dl<>                               | <dl< th=""></dl<>                |
|                                |                          | <dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br> | <dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br> | <dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br> | <dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br> | <dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br> | <dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br> | <dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br> | <dl<br><dl< th=""><th><dl<br><dl< th=""></dl<></dl<br></th></dl<></dl<br> | <dl<br><dl< th=""></dl<></dl<br> |
|                                | Oxychlordane             | <dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl< th=""></dl<></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br>                | <dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl< th=""></dl<></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br>                | <dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl< th=""></dl<></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br>                | <dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl< th=""></dl<></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br>                | <dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl< th=""></dl<></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br>                | <dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl< th=""></dl<></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br>                | <dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl< th=""></dl<></th></dl<></dl<br></th></dl<></dl<br>                | <dl<br><dl< th=""><th><dl< th=""></dl<></th></dl<></dl<br>                | <dl< th=""></dl<>                |
|                                | 2,4-                     | <dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl< th=""></dl<></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br>                | <dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl< th=""></dl<></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br>                | <dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl< th=""></dl<></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br>                | <dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl< th=""></dl<></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br>                | <dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl< th=""></dl<></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br>                | <dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl< th=""></dl<></th></dl<></dl<br></th></dl<></dl<br></th></dl<></dl<br>                | <dl<br><dl< th=""><th><dl<br><dl< th=""><th><dl< th=""></dl<></th></dl<></dl<br></th></dl<></dl<br>                | <dl<br><dl< th=""><th><dl< th=""></dl<></th></dl<></dl<br>                | <dl< th=""></dl<>                |
|                                | Dichlorophenox           |                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                        | <b>∖</b> DL                                                                                                                                                                                                                                   |                                                                                                                                                                                                      |                                                                                                                                                             |                                                                                                                    |                                                                           |                                  |
|                                | V                        |                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                               |                                                                                                                                                                                                      |                                                                                                                                                             |                                                                                                                    |                                                                           |                                  |
| ľ                              | Acetic acid              |                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                               |                                                                                                                                                                                                      |                                                                                                                                                             |                                                                                                                    |                                                                           |                                  |
|                                | Dinoseb                  | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                                        | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                         | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                          | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                           | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                            | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<>                                                             | <dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<>                                              | <dl< th=""><th><dl< th=""></dl<></th></dl<>                               | <dl< th=""></dl<>                |
|                                | Silvex (2,4,5-TP)        | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                                        | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                         | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                          | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                           | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                            | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<>                                                             | <dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<>                                              | <dl< th=""><th><dl< th=""></dl<></th></dl<>                               | <dl< th=""></dl<>                |
| Organophospha                  |                          | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                                        | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                         | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                          | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                           | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                            | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<>                                                             | <dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<>                                              | <dl< th=""><th><dl< th=""></dl<></th></dl<>                               | <dl< th=""></dl<>                |
| te                             |                          |                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                               |                                                                                                                                                                                                      |                                                                                                                                                             |                                                                                                                    |                                                                           |                                  |
| Pesticides                     |                          |                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                               |                                                                                                                                                                                                      |                                                                                                                                                             |                                                                                                                    |                                                                           |                                  |
|                                | Diazinon                 | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                                        | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                         | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                          | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                           | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                            | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<>                                                             | <dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<>                                              | <dl< th=""><th><dl< th=""></dl<></th></dl<>                               | <dl< th=""></dl<>                |
|                                | Dichlorvos               | <dl< th=""><th><dl< th=""><th>0.938</th><th></th><th></th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                                                                                      | <dl< th=""><th>0.938</th><th></th><th></th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                                                                       | 0.938                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                               |                                                                                                                                                                                                      | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<>                                                             | <dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<>                                              | <dl< th=""><th><dl< th=""></dl<></th></dl<>                               | <dl< th=""></dl<>                |
| F                              | Fonofos                  | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                                        | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                         | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                          | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                           | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                            | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<>                                                             | <dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<>                                              | <dl< th=""><th><dl< th=""></dl<></th></dl<>                               | <dl< th=""></dl<>                |
|                                | Malathion                | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                                        | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                                         | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                          | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                                           | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                                            | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<>                                                             | <dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<>                                              | <dl< th=""><th><dl< th=""></dl<></th></dl<>                               | <dl< th=""></dl<>                |



Environment Canada FRAP Study Atmospheric Concentrations of Agricultural Chemicals in the Lower Fraser Valley

|            | Mevinphos        | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""></dl<></th></dl<> | <dl< th=""></dl<> |
|------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------|-------------------|
|            | Parathion Methyl | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""></dl<></th></dl<> | <dl< th=""></dl<> |
|            | Terbufos         | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""></dl<></th></dl<> | <dl< th=""></dl<> |
| Sterilants | Atrazine         | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""></dl<></th></dl<> | <dl< th=""></dl<> |

|                |                          | 1                                                    |                            |   |
|----------------|--------------------------|------------------------------------------------------|----------------------------|---|
|                | Head ID                  |                                                      |                            |   |
|                | Date on                  | 18-2-97                                              | 25-2-97                    |   |
|                |                          | 8:45                                                 | 8:55                       |   |
|                | Date off                 | 25-2-97                                              | 4-3-97                     |   |
|                |                          | 8:55                                                 | 8:45                       |   |
|                | Counter on               | 8812.98                                              | 8981.05                    |   |
|                | Counter off              | 8981.05                                              | 9148.9                     |   |
|                | Mag. Press. on           | 69                                                   | 62                         |   |
|                | Mag. Press. off          | 60                                                   | 61                         |   |
|                | Meter (m3) on            | 53463.7                                              | 54761.4                    |   |
|                | • • •                    | 54761.4                                              | 55970.1                    |   |
|                | Meter (m3) off           | 54701.4                                              | 55970.1                    |   |
|                | Counter Diff'n           | 168.07                                               | 167.85                     |   |
|                | Meter diff               | 108.07                                               | 107.05                     |   |
|                |                          | 1297.7                                               | 1208.7                     |   |
|                | sample (m <sup>3</sup> ) |                                                      |                            |   |
|                |                          |                                                      |                            |   |
|                | Comments                 | 400= 0                                               | 1011.0                     |   |
|                | Avg P (mm HG)            | 1027.9                                               | 1011.8                     |   |
|                | Avg T (C)                | 5.59                                                 | 4.64                       |   |
|                | Avg T (K)                | 278.69                                               | 277.74                     |   |
|                | Corrected                | 1408.0                                               | 1295.3                     |   |
|                | Volume (m3)              |                                                      |                            |   |
|                | File:                    | G9595                                                | G9754                      |   |
|                | File Status:             | final                                                | final                      |   |
|                | Start:                   | 18-2-97                                              | 25-2-97                    |   |
|                | Stop:                    | 25-2-97                                              | 4-3-97                     |   |
|                |                          |                                                      |                            |   |
|                | Concentrations           | Abbotsfo                                             | Abbotsfor                  | ď |
|                | (ng/m3)                  | rd                                                   |                            |   |
|                | ( 5)                     | HV/PUF                                               | HV/PUF                     |   |
| Organochlorine | Aldrin                   | <dl< th=""><th><dl< th=""><th></th></dl<></th></dl<> | <dl< th=""><th></th></dl<> |   |
| Pesticides     |                          |                                                      |                            |   |
|                | Captan                   | <dl< th=""><th><dl< th=""><th></th></dl<></th></dl<> | <dl< th=""><th></th></dl<> |   |
|                | cis-Chlordane            | <dl< th=""><th><dl< th=""><th></th></dl<></th></dl<> | <dl< th=""><th></th></dl<> |   |
|                | (a)                      |                                                      |                            |   |
| 8              | (~)                      | 8                                                    |                            |   |

|                     |                   | <dl< th=""><th><dl< th=""></dl<></th></dl<> | <dl< th=""></dl<> |
|---------------------|-------------------|---------------------------------------------|-------------------|
|                     | (g)<br>Dacthal    | <dl< th=""><th><dl< th=""></dl<></th></dl<> | <dl< th=""></dl<> |
|                     | Dieldrin          | <dl< th=""><th><dl< th=""></dl<></th></dl<> | <dl< th=""></dl<> |
|                     | Endosulfan I      | <dl< th=""><th><dl< th=""></dl<></th></dl<> | <dl< th=""></dl<> |
|                     | Endosulfan II     | <dl< th=""><th><dl< th=""></dl<></th></dl<> | <dl< th=""></dl<> |
|                     | Heptachlor        | <dl< th=""><th><dl< th=""></dl<></th></dl<> | <dl< th=""></dl<> |
|                     | Heptachlor        | <dl< th=""><th><dl< th=""></dl<></th></dl<> | <dl< th=""></dl<> |
|                     | Epoxide           |                                             |                   |
|                     | Hexachlorobenz    | 0.142                                       | 0.154             |
|                     | ene               |                                             |                   |
|                     | Lindane (g-BHC)   | <dl< th=""><th>0.154</th></dl<>             | 0.154             |
|                     | trans-Nanochlor   | <dl< th=""><th><dl< th=""></dl<></th></dl<> | <dl< th=""></dl<> |
|                     | Oxychlordane      | <dl< th=""><th><dl< th=""></dl<></th></dl<> | <dl< th=""></dl<> |
| Herbicides          | 2,4-              | <dl< th=""><th><dl< th=""></dl<></th></dl<> | <dl< th=""></dl<> |
|                     | Dichlorophenox    |                                             |                   |
|                     | У                 |                                             |                   |
|                     | Acetic acid       |                                             |                   |
|                     | Dinoseb           | <dl< th=""><th><dl< th=""></dl<></th></dl<> | <dl< th=""></dl<> |
|                     | Silvex (2,4,5-TP) | <dl< th=""><th><dl< th=""></dl<></th></dl<> | <dl< th=""></dl<> |
| Organophospha<br>te | Chlorpyrifos      | <dl< th=""><th><dl< th=""></dl<></th></dl<> | <dl< th=""></dl<> |
| Pesticides          |                   |                                             |                   |
|                     | Diazinon          | 0.355                                       | 2.470             |
|                     | Dichlorvos        | <dl< th=""><th><dl< th=""></dl<></th></dl<> | <dl< th=""></dl<> |
|                     | Fonofos           | <dl< th=""><th><dl< th=""></dl<></th></dl<> | <dl< th=""></dl<> |
|                     | Malathion         | <dl< th=""><th><dl< th=""></dl<></th></dl<> | <dl< th=""></dl<> |
|                     | Mevinphos         | <dl< th=""><th><dl< th=""></dl<></th></dl<> | <dl< th=""></dl<> |
|                     | Parathion Methyl  |                                             | <dl< th=""></dl<> |
|                     | Terbufos          | <dl< th=""><th>0.232</th></dl<>             | 0.232             |
| Sterilants          | Atrazine          | <dl< th=""><th><dl< th=""></dl<></th></dl<> | <dl< th=""></dl<> |

Appendix 3: Rainfall Concentrations at Agassiz

# Agassiz Pesticides-Rain

Rainfall (area= 0.212 m2)

| Date on  | 17-1-90 12:00 | 6-2-96 14:10 | 13-2-96 9:00 | 20-2-96 9:25 | 27-2-96 9:30 | 5-3-96 9:15  | 12-3-96 9:50 |
|----------|---------------|--------------|--------------|--------------|--------------|--------------|--------------|
| Date off | 6-2-96 12:20  | 13-2-96 8:50 | 20-2-96 9:20 | 27-2-96 9:25 | 5-3-96 9:10  | 12-3-96 9:40 | 19-3-96 9:20 |
| mm RG    | 17.2          | 64.4         | 34.4         | 15.4         | 10.6         | 26.8         | 16.4         |
| Comments | Wind knocked  |              |              |              |              |              |              |



|                       | over sampler                                                                                                                                                                  |                                                                                                                                                     |                                                                                                                           |                                                                                                 |                                                                       |                                             |                   |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------|-------------------|
| Vol (L)=              | 3.6464                                                                                                                                                                        | 13.6528                                                                                                                                             | 7.2928                                                                                                                    | 3.2648                                                                                          | 2.2472                                                                | 5.6816                                      | 3.4768            |
| File:                 | F7323                                                                                                                                                                         | F7434                                                                                                                                               | F7643                                                                                                                     | F7847                                                                                           | F8028                                                                 | F8220                                       | F8459             |
| File Status:          | final                                                                                                                                                                         | final                                                                                                                                               | final                                                                                                                     | final                                                                                           | final                                                                 | final                                       | final             |
| Start:                | 17-1-96                                                                                                                                                                       | 6-2-96                                                                                                                                              | 13-2-96                                                                                                                   | 20-2-96                                                                                         | 27-2-96                                                               | 5-3-96                                      | 12-3-96           |
| Stop:                 | 6-2-96                                                                                                                                                                        | 13-2-96                                                                                                                                             | 20-2-96                                                                                                                   | 27-2-96                                                                                         | 5-3-96                                                                | 12-3-96                                     | 19-3-96           |
| Days Sampled          | 20                                                                                                                                                                            | 7                                                                                                                                                   | 7                                                                                                                         | 7                                                                                               | 7                                                                     | 7                                           | 7                 |
| Note:                 |                                                                                                                                                                               |                                                                                                                                                     | extr w H+<br>Acetone                                                                                                      | extr w H+<br>Acetone                                                                            | extr w H+<br>Acetone                                                  | DCM<br>extr'n                               | DCM<br>extr'n     |
|                       | Agassiz                                                                                                                                                                       | Agassiz                                                                                                                                             | Agassiz                                                                                                                   | Agassiz                                                                                         | Agassiz                                                               | Agassiz                                     | Agassiz           |
| Concentrations (ug/L) | Rain                                                                                                                                                                          | Rain                                                                                                                                                | Rain                                                                                                                      | Rain                                                                                            | Rain                                                                  | Rain                                        | Rain              |
| Comment               |                                                                                                                                                                               |                                                                                                                                                     |                                                                                                                           |                                                                                                 |                                                                       |                                             |                   |
| a-BHC                 | 0.038                                                                                                                                                                         | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""></dl<></td></dl<> | <dl< td=""></dl<> |
| Captan                | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""></dl<></td></dl<> | <dl< td=""></dl<> |
| Dieldrin              | 0.052                                                                                                                                                                         | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""></dl<></td></dl<> | <dl< td=""></dl<> |
| 2,4-Dichlorophenoxy   | <dl< td=""><td><dl< td=""><td>0.878</td><td><dl< td=""><td><dl< td=""><td>missing</td><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<>                       | <dl< td=""><td>0.878</td><td><dl< td=""><td><dl< td=""><td>missing</td><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<>                       | 0.878                                                                                                                     | <dl< td=""><td><dl< td=""><td>missing</td><td><dl< td=""></dl<></td></dl<></td></dl<>           | <dl< td=""><td>missing</td><td><dl< td=""></dl<></td></dl<>           | missing                                     | <dl< td=""></dl<> |
| Acetic acid           |                                                                                                                                                                               |                                                                                                                                                     |                                                                                                                           |                                                                                                 |                                                                       | _                                           |                   |
| Diazinon              | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""></dl<></td></dl<> | <dl< td=""></dl<> |
| Dichlorvos            | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>0.089</td><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>             | <dl< td=""><td><dl< td=""><td><dl< td=""><td>0.089</td><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<>             | <dl< td=""><td><dl< td=""><td>0.089</td><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<>             | <dl< td=""><td>0.089</td><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<>             | 0.089                                                                 | <dl< td=""><td><dl< td=""></dl<></td></dl<> | <dl< td=""></dl<> |
| Malathion             | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""></dl<></td></dl<> | <dl< td=""></dl<> |

| Date on<br>Date off<br>mm RG<br>Comments | 19-3-96 9:25<br>26-3-96 9:15<br>9.0 | 26-3-96 9:20<br>2-4-96 9:30<br>40.0<br>moisture<br>sensor broken | 2-4-96 9:30<br>9-4-96 9:10<br>22.6 | 9-4-96 9:15<br>16-4-96 9:10<br>26.0 | 16-4-96 9:15<br>23-4-96 9:00<br>49.4 | 23-4-96 9:05<br>30-4-96 8:15<br>40.8 | 30-4-96 8:45<br>7-5-96 8:42<br>20.6 |
|------------------------------------------|-------------------------------------|------------------------------------------------------------------|------------------------------------|-------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------|
| Vol (L)=                                 | 1.908                               | 8.48                                                             | 4.7912                             | 5.512                               | 10.4728                              | 8.6496                               | 4.3672                              |
| File:<br>File Status:<br>Start:          | <b>F8656</b><br>final<br>19-3-96    | <b>F8847</b><br>final<br>26-3-96                                 | <b>F8988</b><br>final<br>2-4-96    | <b>F9223</b><br>final<br>9-4-96     | <b>F9434</b><br>final<br>16-4-96     | <b>F9583</b><br>final<br>23-4-96     | <b>F9784</b><br>final<br>30-4-96    |



Environment Canada FRAP Study Atmospheric Concentrations of Agricultural Chemicals in the Lower Fraser Valley

| Stop:                              | 26-3-96                                                                                                                                                                       | 2-4-96                                                                                                                                              | 9-4-96                                                                                                                    | 16-4-96                                                                                         | 23-4-96                                                               | 30-4-96                                     | 7-5-96            |
|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------|-------------------|
| Days Sampled                       | 7                                                                                                                                                                             | 7                                                                                                                                                   | 7                                                                                                                         | 7                                                                                               | 7                                                                     | 7                                           | 7                 |
| Note:                              | DCM<br>extr'n                                                                                                                                                                 | DCM<br>extr'n                                                                                                                                       | DCM<br>extr'n                                                                                                             | DCM<br>extr'n                                                                                   | DCM<br>extr'n                                                         | DCM<br>extr'n                               | DCM<br>extr'n     |
|                                    | Agassiz                                                                                                                                                                       | Agassiz                                                                                                                                             | Agassiz                                                                                                                   | Agassiz                                                                                         | Agassiz                                                               | Agassiz                                     | Agassiz           |
| Concentrations (ug/L)              | Rain                                                                                                                                                                          | Rain                                                                                                                                                | Rain                                                                                                                      | Rain                                                                                            | Rain                                                                  |                                             | Rain              |
| Comment                            |                                                                                                                                                                               |                                                                                                                                                     |                                                                                                                           |                                                                                                 |                                                                       |                                             |                   |
| a-BHC                              | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""></dl<></th></dl<> | <dl< th=""></dl<> |
| Captan                             | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""></dl<></th></dl<> | <dl< th=""></dl<> |
| Dieldrin                           | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""></dl<></th></dl<> | <dl< th=""></dl<> |
| 2,4-Dichlorophenoxy<br>Acetic acid | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""></dl<></th></dl<> | <dl< th=""></dl<> |
| Diazinon                           | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>0.046</th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>             | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>0.046</th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>             | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>0.046</th></dl<></th></dl<></th></dl<></th></dl<>             | <dl< th=""><th><dl< th=""><th><dl< th=""><th>0.046</th></dl<></th></dl<></th></dl<>             | <dl< th=""><th><dl< th=""><th>0.046</th></dl<></th></dl<>             | <dl< th=""><th>0.046</th></dl<>             | 0.046             |
| Dichlorvos                         | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>0.029</th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>             | <dl< th=""><th><dl< th=""><th><dl< th=""><th>0.029</th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<>             | <dl< th=""><th><dl< th=""><th>0.029</th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<>             | <dl< th=""><th>0.029</th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<>             | 0.029                                                                 | <dl< th=""><th><dl< th=""></dl<></th></dl<> | <dl< th=""></dl<> |
| Malathion                          | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""></dl<></th></dl<> | <dl< th=""></dl<> |

| Date on               | 7-5-96 8:45  | 14-5-96 0:00 | 21-5-96 0:00        | 28-5-96 0:00 | 4-6-96 0:00  | 11-6-96 8:35 | 18-6-96 8:12 |
|-----------------------|--------------|--------------|---------------------|--------------|--------------|--------------|--------------|
| Date off              | 14-5-96 8:15 | 21-5-96 0:00 | 28-5-96 0:00        | 4-6-96 0:00  | 11-6-96 0:00 | 18-6-96 8:10 | 25-6-96 8:15 |
| mm RG                 | 48.4         |              |                     |              |              | 3.6          | 3.8          |
| Comments              |              |              | Sampling<br>stopped |              |              |              |              |
| Vol (L)=              | 10.2608      |              |                     |              |              | 0.7632       | 0.8056       |
| File:                 | G1029        |              |                     |              |              | G2166        | G2414        |
| File Status:          | final        |              |                     |              |              | final        | final        |
| Start:                | 7-5-96       | 14-5-96      | 21-5-96             | 28-5-96      | 4-6-96       | 11-6-96      | 18-6-96      |
| Stop:                 | 14-5-96      | 21-5-96      | 28-5-96             | 4-6-96       | 11-6-96      | 18-6-96      | 25-6-96      |
| Days Sampled          | 7            | 7            | 7                   |              |              | 7            | 7            |
| Note:                 | DCM          |              |                     |              |              | DCM          | DCM          |
|                       | extr'n       |              |                     |              |              | extr'n       | extr'n       |
|                       | Agassiz      |              |                     |              |              | Agassiz      | Agassiz      |
| Concentrations (ug/L) | Rain         |              |                     |              |              | Rain         | Rain         |



| Comment                            |                                                                                         |  |  |                                             |                   |
|------------------------------------|-----------------------------------------------------------------------------------------|--|--|---------------------------------------------|-------------------|
| a-BHC                              | <dl< th=""><th></th><th></th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<> |  |  | <dl< th=""><th><dl< th=""></dl<></th></dl<> | <dl< th=""></dl<> |
| Captan                             | <dl< th=""><th></th><th></th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<> |  |  | <dl< th=""><th><dl< th=""></dl<></th></dl<> | <dl< th=""></dl<> |
| Dieldrin                           | 0.055                                                                                   |  |  | <dl< th=""><th><dl< th=""></dl<></th></dl<> | <dl< th=""></dl<> |
| 2,4-Dichlorophenoxy<br>Acetic acid | <dl< th=""><th></th><th></th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<> |  |  | <dl< th=""><th><dl< th=""></dl<></th></dl<> | <dl< th=""></dl<> |
| Diazinon                           | <dl< th=""><th></th><th></th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<> |  |  | <dl< th=""><th><dl< th=""></dl<></th></dl<> | <dl< th=""></dl<> |
| Dichlorvos                         | 0.019                                                                                   |  |  | <dl< th=""><th><dl< th=""></dl<></th></dl<> | <dl< th=""></dl<> |
| Malathion                          | <dl< th=""><th></th><th></th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<> |  |  | <dl< th=""><th><dl< th=""></dl<></th></dl<> | <dl< th=""></dl<> |

| Date on                            | 25-6-96 8:17                                                                                                                                                                  | 2-7-96 9:00                                                                                                                                         | 9-7-96 8:50                                                                                                               | 16-7-96 8:00                                                                                    | 23-7-96 8:30                                                          | 30-7-96 11:00                               | 6-8-96 8:30       |
|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------|-------------------|
| Date off                           | 2-7-96 8:48                                                                                                                                                                   | 9-7-96 8:07                                                                                                                                         | 16-7-96 7:57                                                                                                              | 23-7-96 8:00                                                                                    | 30-7-96 11:00                                                         | 6-8-96 8:30                                 | 13-8-96 11:40     |
| mm RG                              | 9.1                                                                                                                                                                           | 12.4                                                                                                                                                | <0.2                                                                                                                      | 29.8                                                                                            | <0.2                                                                  | 58.4                                        | <0.2              |
| Comments                           |                                                                                                                                                                               | sample loss;                                                                                                                                        | Trace rain                                                                                                                |                                                                                                 |                                                                       |                                             |                   |
|                                    |                                                                                                                                                                               | tube not draining                                                                                                                                   |                                                                                                                           |                                                                                                 |                                                                       |                                             |                   |
| Vol (L)=                           | 1.9292                                                                                                                                                                        | 2.6288                                                                                                                                              | NA                                                                                                                        | 6.3176                                                                                          | NA                                                                    | 12.3808                                     | NA                |
| File:                              | G2617                                                                                                                                                                         | G2850r                                                                                                                                              | G3095                                                                                                                     | G3320                                                                                           | G3576                                                                 | G3783                                       | N/A               |
| File Status:                       | final                                                                                                                                                                         | final                                                                                                                                               | final                                                                                                                     | final                                                                                           | final                                                                 | final                                       |                   |
| Start:                             | 25-6-96                                                                                                                                                                       | 2-7-96                                                                                                                                              | 9-7-96                                                                                                                    | 16-7-96                                                                                         | 23-7-96                                                               | 30-7-96                                     | 6-8-96            |
| Stop:                              | 2-7-96                                                                                                                                                                        | 9-7-96                                                                                                                                              | 16-7-96                                                                                                                   | 23-7-96                                                                                         | 30-7-96                                                               | 6-8-96                                      | 13-8-96           |
| Days Sampled                       | 7                                                                                                                                                                             | 7                                                                                                                                                   | 7                                                                                                                         | 7                                                                                               | 7                                                                     | 7                                           | 7                 |
| Note:                              | DCM                                                                                                                                                                           | DCM                                                                                                                                                 | DCM                                                                                                                       | DCM                                                                                             | DCM                                                                   | DCM                                         |                   |
|                                    | extr'n                                                                                                                                                                        | extr'n                                                                                                                                              | extr'n                                                                                                                    | extr'n                                                                                          | extr'n                                                                | extr'n                                      |                   |
|                                    | Agassiz                                                                                                                                                                       | Agassiz                                                                                                                                             | Agassiz                                                                                                                   | Agassiz                                                                                         | Agassiz                                                               | Agassiz                                     | Agassiz           |
| Concentrations (ug/L)              | Rain                                                                                                                                                                          | Rain                                                                                                                                                | Rain                                                                                                                      | Rain                                                                                            | Rain                                                                  | Rain                                        | Rain              |
| Comment                            |                                                                                                                                                                               |                                                                                                                                                     |                                                                                                                           |                                                                                                 |                                                                       |                                             |                   |
| a-BHC                              | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""></dl<></th></dl<> | <dl< th=""></dl<> |
| Captan                             | <dl< th=""><th>0.114</th><th><dl< th=""><th>0.032</th><th><dl< th=""><th>0.040</th><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<>                                     | 0.114                                                                                                                                               | <dl< th=""><th>0.032</th><th><dl< th=""><th>0.040</th><th><dl< th=""></dl<></th></dl<></th></dl<>                         | 0.032                                                                                           | <dl< th=""><th>0.040</th><th><dl< th=""></dl<></th></dl<>             | 0.040                                       | <dl< th=""></dl<> |
| Dieldrin                           | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""></dl<></th></dl<> | <dl< th=""></dl<> |
| 2,4-Dichlorophenoxy<br>Acetic acid | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""></dl<></th></dl<> | <dl< th=""></dl<> |



Environment Canada FRAP Study Atmospheric Concentrations of Agricultural Chemicals in the Lower Fraser Valley

| Diazinon                           | <dl< th=""><th>0.076</th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>0.008</th><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                         | 0.076                                                                                                                                               | <dl< th=""><th><dl< th=""><th><dl< th=""><th>0.008</th><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<>             | <dl< th=""><th><dl< th=""><th>0.008</th><th><dl< th=""></dl<></th></dl<></th></dl<>             | <dl< th=""><th>0.008</th><th><dl< th=""></dl<></th></dl<>             | 0.008                                       | <dl< th=""></dl<> |
|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------|-------------------|
| Dichlorvos                         | <dl< th=""><th><dl< th=""><th><dl< th=""><th>0.063</th><th><dl< th=""><th>0.040</th><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                         | <dl< th=""><th><dl< th=""><th>0.063</th><th><dl< th=""><th>0.040</th><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<>                         | <dl< th=""><th>0.063</th><th><dl< th=""><th>0.040</th><th><dl< th=""></dl<></th></dl<></th></dl<>                         | 0.063                                                                                           | <dl< th=""><th>0.040</th><th><dl< th=""></dl<></th></dl<>             | 0.040                                       | <dl< th=""></dl<> |
| Malathion                          | <dl< th=""><th><dl< th=""><th><dl< th=""><th>0.016</th><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>             | <dl< th=""><th><dl< th=""><th>0.016</th><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<>             | <dl< th=""><th>0.016</th><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<>             | 0.016                                                                                           | <dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""></dl<></th></dl<> | <dl< th=""></dl<> |
|                                    |                                                                                                                                                                               |                                                                                                                                                     |                                                                                                                           |                                                                                                 |                                                                       |                                             |                   |
| Date on                            | 13-8-96 11:40                                                                                                                                                                 | 20-8-96 8:23                                                                                                                                        | 27-8-96 8:20                                                                                                              | 3-9-96 8:15                                                                                     | 10-9-96 8:25                                                          | 17-9-96 8:25                                | 24-9-96 8:30      |
| Date off                           | 20-8-96 7:47                                                                                                                                                                  | 27-8-96 7:55                                                                                                                                        | 3-9-96 8:15                                                                                                               | 10-9-96 7:50                                                                                    | 17-9-96 7:50                                                          | 24-9-96 8:30                                | 1-10-96 8:15      |
| mm RG                              | 2.0                                                                                                                                                                           | 1.0                                                                                                                                                 | 28.2                                                                                                                      | 50.0                                                                                            | 50.4                                                                  | 26.6                                        | 0.2               |
| Comments                           |                                                                                                                                                                               |                                                                                                                                                     |                                                                                                                           |                                                                                                 |                                                                       |                                             |                   |
| Vol (L)=                           | 0.424                                                                                                                                                                         | 0.212                                                                                                                                               | 5.9784                                                                                                                    | 10.6                                                                                            | 10.6848                                                               | 5.6392                                      | 0.0424            |
| File:                              | G4300                                                                                                                                                                         | G4510                                                                                                                                               | G4679                                                                                                                     | G4924                                                                                           | G5137                                                                 | G5338                                       | G5586             |
| File Status:                       | final                                                                                                                                                                         | final                                                                                                                                               | final                                                                                                                     | final                                                                                           | final                                                                 | final                                       |                   |
| Start:                             | 13-8-96                                                                                                                                                                       | 20-8-96                                                                                                                                             | 27-8-96                                                                                                                   | 3-9-96                                                                                          | 10-9-96                                                               | 17-9-96                                     | 24-9-96           |
| Stop:                              | 20-8-96                                                                                                                                                                       | 27-8-96                                                                                                                                             | 3-9-96                                                                                                                    | 10-9-96                                                                                         | 17-9-96                                                               | 24-9-96                                     | 1-10-96           |
| Days Sampled                       | 7                                                                                                                                                                             | 7                                                                                                                                                   | 7                                                                                                                         | 7                                                                                               | 7                                                                     | 7                                           | 7                 |
| Note:                              |                                                                                                                                                                               |                                                                                                                                                     |                                                                                                                           |                                                                                                 |                                                                       |                                             |                   |
|                                    | Agassiz                                                                                                                                                                       | Agassiz                                                                                                                                             | Agassiz                                                                                                                   | Agassiz                                                                                         | Agassiz                                                               | Agassiz                                     | Agassiz           |
| Concentrations (ug/L)<br>Comment   | Rain                                                                                                                                                                          | Rain                                                                                                                                                | Rain                                                                                                                      | Rain                                                                                            | Rain                                                                  | Rain                                        | Rain              |
| a-BHC                              | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""></dl<></td></dl<> | <dl< td=""></dl<> |
| Captan                             | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""></dl<></td></dl<> | <dl< td=""></dl<> |
| Dieldrin                           | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""></dl<></td></dl<> | <dl< td=""></dl<> |
| 2,4-Dichlorophenoxy<br>Acetic acid | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""></dl<></td></dl<> | <dl< td=""></dl<> |
| Diazinon                           | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""></dl<></td></dl<> | <dl< td=""></dl<> |
| Dichlorvos                         | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>0.009</td><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<>             | <dl< td=""><td><dl< td=""><td><dl< td=""><td>0.009</td><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<>             | <dl< td=""><td><dl< td=""><td>0.009</td><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<>             | <dl< td=""><td>0.009</td><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<>             | 0.009                                                                 | <dl< td=""><td><dl< td=""></dl<></td></dl<> | <dl< td=""></dl<> |
| Malathion                          | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""></dl<></td></dl<> | <dl< td=""></dl<> |

| Date on  | 1-10-96 8:15 | 8-10-96 8:35  | 15-10-96 9:10 | 22-10-96 8:40 | 29-10-96 8:30 | 5-11-96 9:30 | 12-11-96 9:10 |
|----------|--------------|---------------|---------------|---------------|---------------|--------------|---------------|
| Date off |              | 15-10-96 8:00 |               |               |               |              |               |



| mm RG<br>Comments                                                 | 42.6                                                                                                                                                         | 54.6                                                                                                                               | 78.4                                                                                                     | 80.0                                                                           | 17.8                                                     | 53.2                                                     | na                                           |
|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------|
| Vol (L)=                                                          | 9.0312                                                                                                                                                       | 11.5752                                                                                                                            | 16.6208                                                                                                  | 16.96                                                                          | 3.7736                                                   | 11.2784                                                  | NA                                           |
| File:<br>File Status:<br>Start:<br>Stop:<br>Days Sampled<br>Note: | G5863<br>final<br>1-10-96<br>8-10-96<br>7                                                                                                                    | <b>G6072</b><br>final<br>8-10-96<br>15-10-96<br><b>7</b>                                                                           | <b>G6330</b><br>final<br>15-10-96<br>22-10-96<br><b>7</b>                                                | <b>G6541</b><br>final<br>22-10-96<br>29-10-96<br><b>7</b>                      | <b>G6765</b><br>final<br>29-10-96<br>5-11-96<br><b>7</b> | <b>G6980</b><br>final<br>5-11-96<br>12-11-96<br><b>7</b> | G7367<br>final<br>12-11-96<br>26-11-96<br>14 |
| Concentrations (ug/L)                                             | Agassiz                                                                                                                                                      | Agassiz                                                                                                                            | Agassiz                                                                                                  | Agassiz                                                                        | Agassiz                                                  | Agassiz                                                  | Agassiz                                      |
| Comment                                                           | Rain                                                                                                                                                         | Rain                                                                                                                               | Rain                                                                                                     | Rain                                                                           | Rain                                                     | Rain                                                     | Rain                                         |
| a-BHC                                                             | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th></th></dl<></th></dl<>     | <dl< th=""><th></th></dl<>                               |                                              |
| Captan                                                            | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td><dl< td=""><td></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td></td></dl<></td></dl<>     | <dl< td=""><td></td></dl<>                               |                                              |
| Dieldrin                                                          | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td><dl< td=""><td></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td></td></dl<></td></dl<>     | <dl< td=""><td></td></dl<>                               |                                              |
| 2,4-Dichlorophenoxy                                               | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td><dl< td=""><td></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td></td></dl<></td></dl<>     | <dl< td=""><td></td></dl<>                               |                                              |
| Acetic acid                                                       | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td><dl< td=""><td></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td></td></dl<></td></dl<>     | <dl< td=""><td></td></dl<>                               |                                              |
| Diazinon                                                          | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td><dl< td=""><td></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td></td></dl<></td></dl<>     | <dl< td=""><td></td></dl<>                               |                                              |
| Dichlorvos                                                        | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td><dl< td=""><td></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td></td></dl<></td></dl<>     | <dl< td=""><td></td></dl<>                               |                                              |
| Malathion                                                         | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td><dl< td=""><td></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td></td></dl<></td></dl<>     | <dl< td=""><td></td></dl<>                               |                                              |

| Date on<br>Date off   | 25-11-96 9:30<br>3-12-96 9:15 | 3-12-96 10:00<br>10-12-96 9:15 |                | 16-12-96 9:20<br>23-12-96 12:30 |       | 31-12-96 12:30<br>7-1-97 8:45 | 7-1-97 8:45<br>14-1-97 11:15 |
|-----------------------|-------------------------------|--------------------------------|----------------|---------------------------------|-------|-------------------------------|------------------------------|
| mm RG                 | 138.0                         | 82.0                           | 34.0           | na                              | na    | na                            | 162.0                        |
| Comments              |                               |                                |                |                                 |       |                               |                              |
| Vol (L)=              | 29.256                        | 17.384                         | 7.208          | NA                              | NA    | NA                            | 34.344                       |
| File:<br>File Status: | G7558<br>final                | G7786<br>final                 | G7954<br>final | G8168<br>final                  | G8330 |                               | G8497<br>final               |

| 1   | 1     |
|-----|-------|
| 144 | 646 J |
|     | 100   |
|     | 1.15  |

| Start:<br>Stop:<br>Days Sampled<br>Note: | 26-11-96<br>3-12-96<br><b>7</b>                                                                                            | 3-12-96<br>10-12-96<br><b>7</b>                                                                  | 10-12-96<br>17-12-96<br><b>7</b><br>Calculated                         | 17-12-96<br>24-12-96<br><b>7</b><br>Spl frozen ? | 24-12-96<br>31-12-96<br><b>7</b><br>Spl frozen ? | 31-12-96<br>7-1-97<br><b>7</b><br>Spl frozen ? | 7-1-97<br>14-1-97<br><b>7</b><br>4 week spl ?? |
|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------|------------------------------------------------|------------------------------------------------|
| Concentrations (ug/L)<br>Comment         | Agassiz<br>Rain                                                                                                            | Agassiz<br>Rain                                                                                  | Agassiz<br>Rain                                                        |                                                  |                                                  |                                                | Agassiz<br>Rain                                |
| a-BHC                                    | <dl< th=""><th><dl< th=""><th><dl< th=""><th></th><th></th><th></th><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th></th><th></th><th></th><th><dl< th=""></dl<></th></dl<></th></dl<> | <dl< th=""><th></th><th></th><th></th><th><dl< th=""></dl<></th></dl<> |                                                  |                                                  |                                                | <dl< th=""></dl<>                              |
| Captan                                   | <dl< th=""><th><dl< th=""><th><dl< th=""><th></th><th></th><th></th><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th></th><th></th><th></th><th><dl< th=""></dl<></th></dl<></th></dl<> | <dl< th=""><th></th><th></th><th></th><th><dl< th=""></dl<></th></dl<> |                                                  |                                                  |                                                | <dl< th=""></dl<>                              |
| Dieldrin                                 | <dl< th=""><th><dl< th=""><th><dl< th=""><th></th><th></th><th></th><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th></th><th></th><th></th><th><dl< th=""></dl<></th></dl<></th></dl<> | <dl< th=""><th></th><th></th><th></th><th><dl< th=""></dl<></th></dl<> |                                                  |                                                  |                                                | <dl< th=""></dl<>                              |
| 2,4-Dichlorophenoxy<br>Acetic acid       | <dl< th=""><th><dl< th=""><th><dl< th=""><th></th><th></th><th></th><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th></th><th></th><th></th><th><dl< th=""></dl<></th></dl<></th></dl<> | <dl< th=""><th></th><th></th><th></th><th><dl< th=""></dl<></th></dl<> |                                                  |                                                  |                                                | <dl< th=""></dl<>                              |
| Diazinon                                 | <dl< th=""><th><dl< th=""><th><dl< th=""><th></th><th></th><th></th><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th></th><th></th><th></th><th><dl< th=""></dl<></th></dl<></th></dl<> | <dl< th=""><th></th><th></th><th></th><th><dl< th=""></dl<></th></dl<> |                                                  |                                                  |                                                | <dl< th=""></dl<>                              |
| Dichlorvos                               | 0.003                                                                                                                      | <dl< th=""><th><dl< th=""><th></th><th></th><th></th><th><dl< th=""></dl<></th></dl<></th></dl<> | <dl< th=""><th></th><th></th><th></th><th><dl< th=""></dl<></th></dl<> |                                                  |                                                  |                                                | <dl< th=""></dl<>                              |
| Malathion                                | <dl< th=""><th><dl< th=""><th>0.014</th><th></th><th></th><th></th><th><dl< th=""></dl<></th></dl<></th></dl<>             | <dl< th=""><th>0.014</th><th></th><th></th><th></th><th><dl< th=""></dl<></th></dl<>             | 0.014                                                                  |                                                  |                                                  |                                                | <dl< th=""></dl<>                              |

| Date on               | 14-1-97 11:15 | 21-1-97 11:00 | 28-1-97 11:15 | 4-2-97 11:15  | 11-2-97 12:30 | 18-2-97 10:45 | 25-2-97 10:45 |
|-----------------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| Date off              | 21-1-97 11:00 | 28-1-97 11:15 | 4-2-97 11:15  | 11-2-97 12:30 | 18-2-97 10:45 | 25-2-97 10:45 | 4-3-97 10:45  |
| mm RG                 | 104.0         | na            | 96.0          | 1.6           | 70.4          | 44.0          | 45.2          |
| Comments              |               |               |               |               |               |               |               |
| Vol (L)=              | 22.048        | NA            | 20.352        | 0.3392        | 14.9248       | 9.328         | 9.5824        |
| File:                 | G8666         | G9020         |               | G9181         | G9377         | G9595         | G9754         |
| File Status:          | final         | final         |               | final         | final         | final         | final         |
| Start:                | 14-1-97       | 21-1-97       | 28-1-97       | 4-2-97        | 11-2-97       | 18-2-97       | 25-2-97       |
| Stop:                 | 21-1-97       | 28-1-97       | 4-2-97        | 11-2-97       | 18-2-97       | 25-2-97       | 4-3-97        |
| Days Sampled          | 7             | 7             | 7             | 7             | 7             | 7             | 7             |
| Note:                 |               |               |               |               |               |               |               |
|                       | Agassiz       | Agassiz       |               | Agassiz       | Agassiz       | Agassiz       | Agassiz       |
| Concentrations (ug/L) | Rain          | Rain          |               | Rain          | Rain          | Rain          | Rain          |
| Comment               |               |               |               |               |               |               | - spike       |

| Environment Canada<br>FRAP Study<br>Atmospheric Concentrations of Agricultural Chemicals in the Lower Fraser Valley |                                                                                                                                                              |                                                                                                                                    |  |                                                                                                 |                                                                       |                                             |                   |  |
|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------|-------------------|--|
| a-BHC                                                                                                               | <dl< th=""><th><dl< th=""><th></th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th></th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<> |  | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""></dl<></th></dl<> | <dl< th=""></dl<> |  |
| Captan                                                                                                              | <dl< td=""><td><dl< td=""><td></td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td></td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<> |  | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""></dl<></td></dl<> | <dl< td=""></dl<> |  |
| Dieldrin                                                                                                            | <dl< td=""><td><dl< td=""><td></td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td></td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<> |  | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td><dl< td=""></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""></dl<></td></dl<> | <dl< td=""></dl<> |  |
| 2,4-Dichlorophenoxy<br>Acetic acid                                                                                  | <dl< th=""><th><dl< th=""><th></th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th></th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<> |  | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""></dl<></th></dl<> | <dl< th=""></dl<> |  |
| Diazinon                                                                                                            | <dl< th=""><th><dl< th=""><th></th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>0.038</th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>             | <dl< th=""><th></th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>0.038</th></dl<></th></dl<></th></dl<></th></dl<>             |  | <dl< th=""><th><dl< th=""><th><dl< th=""><th>0.038</th></dl<></th></dl<></th></dl<>             | <dl< th=""><th><dl< th=""><th>0.038</th></dl<></th></dl<>             | <dl< th=""><th>0.038</th></dl<>             | 0.038             |  |
| Dichlorvos                                                                                                          | <dl< th=""><th><dl< th=""><th></th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>0.002</th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>             | <dl< th=""><th></th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>0.002</th></dl<></th></dl<></th></dl<></th></dl<>             |  | <dl< th=""><th><dl< th=""><th><dl< th=""><th>0.002</th></dl<></th></dl<></th></dl<>             | <dl< th=""><th><dl< th=""><th>0.002</th></dl<></th></dl<>             | <dl< th=""><th>0.002</th></dl<>             | 0.002             |  |
| Malathion                                                                                                           | <dl< th=""><th><dl< th=""><th></th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>0.041</th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>             | <dl< th=""><th></th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>0.041</th></dl<></th></dl<></th></dl<></th></dl<>             |  | <dl< th=""><th><dl< th=""><th><dl< th=""><th>0.041</th></dl<></th></dl<></th></dl<>             | <dl< th=""><th><dl< th=""><th>0.041</th></dl<></th></dl<>             | <dl< th=""><th>0.041</th></dl<>             | 0.041             |  |

# Agassiz Pesticides-Rain

| Concentrations (ug/L) | Maximum | Minimum | Average |
|-----------------------|---------|---------|---------|
| a-BHC                 | 0.038   | 0.038   | 0.038   |
| Captan                | 0.114   | 0.032   | 0.062   |
| Dieldrin              | 0.055   | 0.052   | 0.053   |
| 2,4-Dichlorophenoxy   | 0.878   | 0.878   | 0.878   |
| Acetic acid           |         |         |         |
| Diazinon              | 0.076   | 0.008   | 0.042   |
| Dichlorvos            | 0.089   | 0.002   | 0.032   |
| Malathion             | 0.041   | 0.014   | 0.023   |



Appendix 4: Rainfall Concentrations at Abbotsford

### Abbotsford Rain Pesticides

| Rainfall (mm)     | 29.6                                                                                                                                                                                                                                                                                                            | >49.5                                                                                                                                                                                                                                                                                 | 10                                                                                                                                                                                                                                                          | 5.8                                                                                                                                                                                                                               | 27                                                                                                                                                                                                      | 10.2                                                                                                                                                                          | 20.8                                                                                                                                                | 28.4                                                                                                                      | 26.6                                                                                            | 32.4                                                                  | 77.8                                        | 34                |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------|-------------------|
| Volume (L)        | 6.2752                                                                                                                                                                                                                                                                                                          | 10.494                                                                                                                                                                                                                                                                                | 2.12                                                                                                                                                                                                                                                        | 1.2296                                                                                                                                                                                                                            | 5.724                                                                                                                                                                                                   | 2.1624                                                                                                                                                                        | 4.4096                                                                                                                                              | 6.0208                                                                                                                    | 5.6392                                                                                          | 6.8688                                                                | 16.4936                                     | 7.208             |
| File:             | F7434                                                                                                                                                                                                                                                                                                           | F7643                                                                                                                                                                                                                                                                                 | F7847                                                                                                                                                                                                                                                       | F8028                                                                                                                                                                                                                             | F8220                                                                                                                                                                                                   | F8459                                                                                                                                                                         | F8656                                                                                                                                               | F8847                                                                                                                     | F8988                                                                                           | F9223                                                                 | F9434                                       | F9583             |
| File Status:      | final                                                                                                                                                                                                                                                                                                           | final                                                                                                                                                                                                                                                                                 | final                                                                                                                                                                                                                                                       | final                                                                                                                                                                                                                             | final                                                                                                                                                                                                   | final                                                                                                                                                                         | final                                                                                                                                               | final                                                                                                                     | final                                                                                           | final                                                                 | final                                       | final             |
| Start:            | 6-2-96                                                                                                                                                                                                                                                                                                          | 13-2-96                                                                                                                                                                                                                                                                               | 20-2-96                                                                                                                                                                                                                                                     | 27-2-96                                                                                                                                                                                                                           | 5-3-96                                                                                                                                                                                                  | 12-3-96                                                                                                                                                                       | 19-3-96                                                                                                                                             | 26-3-96                                                                                                                   | 2-4-96                                                                                          | 9-4-96                                                                | 16-4-96                                     | 23-4-96           |
| Stop:             | 13-2-96                                                                                                                                                                                                                                                                                                         | 20-2-96                                                                                                                                                                                                                                                                               | 27-2-96                                                                                                                                                                                                                                                     | 5-3-96                                                                                                                                                                                                                            | 12-3-96                                                                                                                                                                                                 | 19-3-96                                                                                                                                                                       | 26-3-96                                                                                                                                             | 2-4-96                                                                                                                    | 9-4-96                                                                                          | 16-4-96                                                               | 23-4-96                                     | 30-4-96           |
| Days Sampled      | 7                                                                                                                                                                                                                                                                                                               | 7                                                                                                                                                                                                                                                                                     | 7                                                                                                                                                                                                                                                           | 7                                                                                                                                                                                                                                 | 7                                                                                                                                                                                                       | 7                                                                                                                                                                             | 7                                                                                                                                                   | 7                                                                                                                         | 7                                                                                               | 7                                                                     | 7                                           | 7                 |
| Conc (ug/l)       |                                                                                                                                                                                                                                                                                                                 | extr w H+                                                                                                                                                                                                                                                                             | extr w H+                                                                                                                                                                                                                                                   | extr w H+                                                                                                                                                                                                                         | DCM                                                                                                                                                                                                     | DCM                                                                                                                                                                           | DCM                                                                                                                                                 | DCM                                                                                                                       | DCM                                                                                             | DCM                                                                   | DCM                                         | DCM               |
|                   |                                                                                                                                                                                                                                                                                                                 | Acetone                                                                                                                                                                                                                                                                               | Acetone                                                                                                                                                                                                                                                     | Acetone                                                                                                                                                                                                                           | extr'n                                                                                                                                                                                                  | extr'n                                                                                                                                                                        | extr'n                                                                                                                                              | extr'n                                                                                                                    | extr'n                                                                                          | extr'n                                                                | extr'n                                      | extr'n            |
| Captan            | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>0.006</th><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>             | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>0.006</th><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>             | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>0.006</th><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>             | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>0.006</th><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>             | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>0.006</th><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>             | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>0.006</th><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>             | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>0.006</th><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<>             | <dl< th=""><th><dl< th=""><th><dl< th=""><th>0.006</th><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<>             | <dl< th=""><th><dl< th=""><th>0.006</th><th><dl< th=""></dl<></th></dl<></th></dl<>             | <dl< th=""><th>0.006</th><th><dl< th=""></dl<></th></dl<>             | 0.006                                       | <dl< th=""></dl<> |
| cis-Chlordane (a) | <dl< th=""><th><dl< th=""><th>0.042</th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>             | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>0.042</th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>             | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>0.042</th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>             | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>0.042</th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>             | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>0.042</th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>             | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>0.042</th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>             | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>0.042</th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>             | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>0.042</th></dl<></th></dl<></th></dl<></th></dl<>             | <dl< th=""><th><dl< th=""><th><dl< th=""><th>0.042</th></dl<></th></dl<></th></dl<>             | <dl< th=""><th><dl< th=""><th>0.042</th></dl<></th></dl<>             | <dl< th=""><th>0.042</th></dl<>             | 0.042             |
| 2,4-D             | <dl< th=""><th>1.029</th><th>0.528</th><th><dl< th=""><th>missing</th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                   | 1.029                                                                                                                                                                                                                                                                                 | 0.528                                                                                                                                                                                                                                                       | <dl< th=""><th>missing</th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>           | missing                                                                                                                                                                                                 | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""></dl<></th></dl<> | <dl< th=""></dl<> |
| Diazinon          | <dl< th=""><th><dl< th=""><th>0.189</th><th><dl< th=""><th>0.017</th><th>0.092</th><th>0.136</th><th><dl< th=""><th>0.053</th><th>0.044</th><th>0.042</th><th>0.014</th></dl<></th></dl<></th></dl<></th></dl<>                                                                                                 | <dl< th=""><th>0.189</th><th><dl< th=""><th>0.017</th><th>0.092</th><th>0.136</th><th><dl< th=""><th>0.053</th><th>0.044</th><th>0.042</th><th>0.014</th></dl<></th></dl<></th></dl<>                                                                                                 | 0.189                                                                                                                                                                                                                                                       | <dl< th=""><th>0.017</th><th>0.092</th><th>0.136</th><th><dl< th=""><th>0.053</th><th>0.044</th><th>0.042</th><th>0.014</th></dl<></th></dl<>                                                                                     | 0.017                                                                                                                                                                                                   | 0.092                                                                                                                                                                         | 0.136                                                                                                                                               | <dl< th=""><th>0.053</th><th>0.044</th><th>0.042</th><th>0.014</th></dl<>                                                 | 0.053                                                                                           | 0.044                                                                 | 0.042                                       | 0.014             |
| Dichlorvos        | <dl< th=""><th>0.048</th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>0.024</th><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                         | 0.048                                                                                                                                                                                                                                                                                 | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>0.024</th><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>             | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>0.024</th><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>             | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>0.024</th><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>             | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>0.024</th><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>             | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>0.024</th><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<>             | <dl< th=""><th><dl< th=""><th><dl< th=""><th>0.024</th><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<>             | <dl< th=""><th><dl< th=""><th>0.024</th><th><dl< th=""></dl<></th></dl<></th></dl<>             | <dl< th=""><th>0.024</th><th><dl< th=""></dl<></th></dl<>             | 0.024                                       | <dl< th=""></dl<> |
| Malathion         | <dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""></dl<></th></dl<> | <dl< th=""></dl<> |

| Rainfall (mm)     | 24.8                                                                                                                                                                                                                              | 59                                                                                                                                                                                                      |         |         |         |         | 1                                                                                                                                         | 4.4                                                                                                             | 7.9                                                                                   | 5.8                                                         | 0       | 22.8              |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|---------|---------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------|---------|-------------------|
| Volume (L)        | 5.2576                                                                                                                                                                                                                            | 12.508                                                                                                                                                                                                  |         |         |         |         | 0.212                                                                                                                                     | 0.9328                                                                                                          | 1.6748                                                                                | 1.2296                                                      | 0       | 4.8336            |
| File:             | F9434                                                                                                                                                                                                                             | G1029                                                                                                                                                                                                   |         |         |         |         | G2166                                                                                                                                     | G2414                                                                                                           | G2617                                                                                 | G2850r                                                      | G3095   | G3320             |
| File Status:      | final                                                                                                                                                                                                                             | final                                                                                                                                                                                                   |         |         |         |         | final                                                                                                                                     | final                                                                                                           | final                                                                                 | final                                                       | final   | final             |
| Start:            | 30-4-96                                                                                                                                                                                                                           | 7-5-96                                                                                                                                                                                                  | 14-5-96 | 21-5-96 | 28-5-96 | 4-6-96  | 11-6-96                                                                                                                                   | 18-6-96                                                                                                         | 25-6-96                                                                               | 2-7-96                                                      | 9-7-96  | 16-7-96           |
| Stop:             | 7-5-96                                                                                                                                                                                                                            | 14-5-96                                                                                                                                                                                                 | 21-5-96 | 28-5-96 | 4-6-96  | 11-6-96 | 18-6-96                                                                                                                                   | 25-6-96                                                                                                         | 2-7-96                                                                                | 9-7-96                                                      | 16-7-96 | 23-7-96           |
| Days Sampled      | 7                                                                                                                                                                                                                                 | 7                                                                                                                                                                                                       | 7       | 7       | 7       | 7       | 7                                                                                                                                         | 7                                                                                                               | 7                                                                                     | 7                                                           | 7       | 7                 |
| Conc (ug/l)       | DCM                                                                                                                                                                                                                               | DCM                                                                                                                                                                                                     |         |         |         |         | ?                                                                                                                                         |                                                                                                                 |                                                                                       |                                                             | No rain |                   |
|                   | extr'n                                                                                                                                                                                                                            | extr'n                                                                                                                                                                                                  |         |         |         |         |                                                                                                                                           |                                                                                                                 |                                                                                       |                                                             |         |                   |
| Captan            | 0.019                                                                                                                                                                                                                             | 0.625                                                                                                                                                                                                   |         |         |         |         | 1.415                                                                                                                                     | 1.072                                                                                                           | 0.358                                                                                 | 0.895                                                       | no rain | 0.352             |
| cis-Chlordane (a) | <dl< td=""><td><dl< td=""><td></td><td></td><td></td><td></td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>no rain</td><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td></td><td></td><td></td><td></td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>no rain</td><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> |         |         |         |         | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>no rain</td><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td><dl< td=""><td>no rain</td><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td>no rain</td><td><dl< td=""></dl<></td></dl<></td></dl<> | <dl< td=""><td>no rain</td><td><dl< td=""></dl<></td></dl<> | no rain | <dl< td=""></dl<> |
| 2,4-D             | <dl< td=""><td><dl< td=""><td></td><td></td><td></td><td></td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>no rain</td><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td></td><td></td><td></td><td></td><td><dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>no rain</td><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<></td></dl<> |         |         |         |         | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>no rain</td><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td><dl< td=""><td>no rain</td><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td>no rain</td><td><dl< td=""></dl<></td></dl<></td></dl<> | <dl< td=""><td>no rain</td><td><dl< td=""></dl<></td></dl<> | no rain | <dl< td=""></dl<> |
| Diazinon          | 0.019                                                                                                                                                                                                                             | 0.088                                                                                                                                                                                                   |         |         |         |         | <dl< td=""><td><dl< td=""><td><dl< td=""><td><dl< td=""><td>no rain</td><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td><dl< td=""><td>no rain</td><td><dl< td=""></dl<></td></dl<></td></dl<></td></dl<> | <dl< td=""><td><dl< td=""><td>no rain</td><td><dl< td=""></dl<></td></dl<></td></dl<> | <dl< td=""><td>no rain</td><td><dl< td=""></dl<></td></dl<> | no rain | <dl< td=""></dl<> |



Environment Canada FRAP Study Atmospheric Concentrations of Agricultural Chemicals in the Lower Fraser Valley

| Dichlorvos        | 0.057                                                                                                                                                                                                                                       | 0.040                                                                                                                                                                                                                                                   |                                                                                                                                                                                         |                                                                                                                                                                                                               |          |                                                                                                                                                                     | <dl< th=""><th>0.107</th><th><dl< th=""><th><dl< th=""><th>no rain</th><th>0.062</th></dl<></th></dl<></th></dl<>                         | 0.107                                                                                                           | <dl< th=""><th><dl< th=""><th>no rain</th><th>0.062</th></dl<></th></dl<>             | <dl< th=""><th>no rain</th><th>0.062</th></dl<> | no rain                                     | 0.062             |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------|-------------------|
| Malathion         | <dl< th=""><th><dl< th=""><th></th><th></th><th></th><th></th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>no rain</th><th>0.021</th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                       | <dl< th=""><th></th><th></th><th></th><th></th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>no rain</th><th>0.021</th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                             |                                                                                                                                                                                         |                                                                                                                                                                                                               |          |                                                                                                                                                                     | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>no rain</th><th>0.021</th></dl<></th></dl<></th></dl<></th></dl<>             | <dl< th=""><th><dl< th=""><th><dl< th=""><th>no rain</th><th>0.021</th></dl<></th></dl<></th></dl<>             | <dl< th=""><th><dl< th=""><th>no rain</th><th>0.021</th></dl<></th></dl<>             | <dl< th=""><th>no rain</th><th>0.021</th></dl<> | no rain                                     | 0.021             |
|                   |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                         |                                                                                                                                                                                         | -<br>-                                                                                                                                                                                                        |          |                                                                                                                                                                     |                                                                                                                                           |                                                                                                                 |                                                                                       |                                                 |                                             |                   |
| Rainfall (mm)     | 0                                                                                                                                                                                                                                           | 22.1                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                       | 0.6                                                                                                                                                                                                           | 0        | 19.4                                                                                                                                                                | 21.6                                                                                                                                      | 60.4                                                                                                            | 11.2                                                                                  | 0                                               | 21.6                                        | 33                |
| Volume (L)        | 0                                                                                                                                                                                                                                           | 4.6852                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                       | 0.1272                                                                                                                                                                                                        | 0        | 4.1128                                                                                                                                                              | 4.5792                                                                                                                                    | 12.8048                                                                                                         | 2.3744                                                                                | 0                                               | 4.5792                                      | 6.996             |
| File:             | G3576                                                                                                                                                                                                                                       | G3783                                                                                                                                                                                                                                                   | N/A                                                                                                                                                                                     | G4300                                                                                                                                                                                                         | G4510    | G4679                                                                                                                                                               | G4924                                                                                                                                     | G5137                                                                                                           | G5338                                                                                 | G5586                                           | G5863                                       | G6072             |
| File Status:      | final                                                                                                                                                                                                                                       | final                                                                                                                                                                                                                                                   |                                                                                                                                                                                         | final                                                                                                                                                                                                         | final    | final                                                                                                                                                               | final                                                                                                                                     | final                                                                                                           | final                                                                                 |                                                 | final                                       | final             |
| Start:            | 23-7-96                                                                                                                                                                                                                                     | 30-7-96                                                                                                                                                                                                                                                 | 6-8-96                                                                                                                                                                                  | 13-8-96                                                                                                                                                                                                       | 20-8-96  | 27-8-96                                                                                                                                                             | 3-9-96                                                                                                                                    | 10-9-96                                                                                                         | 17-9-96                                                                               | 24-9-96                                         | 1-10-96                                     | 8-10-96           |
| Stop:             | 30-7-96                                                                                                                                                                                                                                     | 6-8-96                                                                                                                                                                                                                                                  | 13-8-96                                                                                                                                                                                 | 20-8-96                                                                                                                                                                                                       | 27-8-96  | 3-9-96                                                                                                                                                              | 10-9-96                                                                                                                                   | 17-9-96                                                                                                         | 24-9-96                                                                               | 1-10-96                                         | 8-10-96                                     | 15-10-96          |
| Days Sampled      | 7                                                                                                                                                                                                                                           | 7                                                                                                                                                                                                                                                       | 7                                                                                                                                                                                       | 7                                                                                                                                                                                                             | 7        | 7                                                                                                                                                                   | 7                                                                                                                                         | 7                                                                                                               | 7                                                                                     | 7                                               | 7                                           | 7                 |
| Conc (ug/l)       |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                         |                                                                                                                                                                                         |                                                                                                                                                                                                               |          |                                                                                                                                                                     |                                                                                                                                           |                                                                                                                 |                                                                                       |                                                 |                                             |                   |
| Captan            | no rain                                                                                                                                                                                                                                     | 0.427                                                                                                                                                                                                                                                   | no rain                                                                                                                                                                                 | <dl< th=""><th>no rain</th><th>1.337</th><th></th><th></th><th></th><th>no rain</th><th>0.087</th><th>0.029</th></dl<>                                                                                        | no rain  | 1.337                                                                                                                                                               |                                                                                                                                           |                                                                                                                 |                                                                                       | no rain                                         | 0.087                                       | 0.029             |
| cis-Chlordane (a) | no rain                                                                                                                                                                                                                                     | <dl< th=""><th>no rain</th><th><dl< th=""><th>no rain</th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th><th>no rain</th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                  | no rain                                                                                                                                                                                 | <dl< th=""><th>no rain</th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th><th>no rain</th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                  | no rain  | <dl< th=""><th><dl< th=""><th><dl< th=""><th></th><th>no rain</th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                  | <dl< th=""><th><dl< th=""><th></th><th>no rain</th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<>                  | <dl< th=""><th></th><th>no rain</th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<>                  |                                                                                       | no rain                                         | <dl< th=""><th><dl< th=""></dl<></th></dl<> | <dl< th=""></dl<> |
| 2,4-D             | no rain                                                                                                                                                                                                                                     | <dl< th=""><th>no rain</th><th><dl< th=""><th>no rain</th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>no rain</th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | no rain                                                                                                                                                                                 | <dl< th=""><th>no rain</th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>no rain</th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | no rain  | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>no rain</th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th>no rain</th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th>no rain</th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th>no rain</th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<> | no rain                                         | <dl< th=""><th><dl< th=""></dl<></th></dl<> | <dl< th=""></dl<> |
| Diazinon          | no rain                                                                                                                                                                                                                                     | <dl< th=""><th>no rain</th><th><dl< th=""><th>no rain</th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th><th>no rain</th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                  | no rain                                                                                                                                                                                 | <dl< th=""><th>no rain</th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th><th>no rain</th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                  | no rain  | <dl< th=""><th><dl< th=""><th><dl< th=""><th></th><th>no rain</th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                  | <dl< th=""><th><dl< th=""><th></th><th>no rain</th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<>                  | <dl< th=""><th></th><th>no rain</th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<>                  |                                                                                       | no rain                                         | <dl< th=""><th><dl< th=""></dl<></th></dl<> | <dl< th=""></dl<> |
| Dichlorvos        | no rain                                                                                                                                                                                                                                     | <dl< th=""><th>no rain</th><th><dl< th=""><th>no rain</th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>no rain</th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | no rain                                                                                                                                                                                 | <dl< th=""><th>no rain</th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>no rain</th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | no rain  | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>no rain</th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th>no rain</th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th>no rain</th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th>no rain</th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<> | no rain                                         | <dl< th=""><th><dl< th=""></dl<></th></dl<> | <dl< th=""></dl<> |
| Malathion         | no rain                                                                                                                                                                                                                                     | <dl< th=""><th>no rain</th><th><dl< th=""><th>no rain</th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>no rain</th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | no rain                                                                                                                                                                                 | <dl< th=""><th>no rain</th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>no rain</th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | no rain  | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th>no rain</th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th>no rain</th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th>no rain</th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th>no rain</th><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<> | no rain                                         | <dl< th=""><th><dl< th=""></dl<></th></dl<> | <dl< th=""></dl<> |
|                   |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                         |                                                                                                                                                                                         |                                                                                                                                                                                                               |          |                                                                                                                                                                     |                                                                                                                                           |                                                                                                                 |                                                                                       |                                                 |                                             |                   |
| Rainfall (mm)     | 50                                                                                                                                                                                                                                          | 104                                                                                                                                                                                                                                                     | 23.2                                                                                                                                                                                    | 25.8                                                                                                                                                                                                          | na       | 73                                                                                                                                                                  | 79                                                                                                                                        | 35.2                                                                                                            | na                                                                                    | na                                              | 113                                         | na                |
| Volume (L)        | 10.6                                                                                                                                                                                                                                        | 22.048                                                                                                                                                                                                                                                  | 4.9184                                                                                                                                                                                  | 5.4696                                                                                                                                                                                                        | na       | 15.476                                                                                                                                                              | 16.748                                                                                                                                    | 7.4624                                                                                                          | na                                                                                    | na                                              | 23.956                                      | na                |
| File:             | G6330                                                                                                                                                                                                                                       | G6541                                                                                                                                                                                                                                                   | G6765                                                                                                                                                                                   | G6980                                                                                                                                                                                                         | G7367    | G7558                                                                                                                                                               | G7786                                                                                                                                     | G7954                                                                                                           | G8330                                                                                 | G8497                                           | G8666                                       | G9020             |
| File Status:      | final                                                                                                                                                                                                                                       | final                                                                                                                                                                                                                                                   | final                                                                                                                                                                                   | final                                                                                                                                                                                                         | final    | final                                                                                                                                                               | final                                                                                                                                     | final                                                                                                           | final                                                                                 | final                                           | final                                       | final             |
| Start:            | 15-10-96                                                                                                                                                                                                                                    | 22-10-96                                                                                                                                                                                                                                                | 29-10-96                                                                                                                                                                                | 5-11-96                                                                                                                                                                                                       | 12-11-96 | 26-11-96                                                                                                                                                            |                                                                                                                                           | 10-12-96                                                                                                        | 16-12-96                                                                              | 7-1-97                                          | 14-1-97                                     | 21-1-97           |
| Stop:             | 22-10-96                                                                                                                                                                                                                                    | 29-10-96                                                                                                                                                                                                                                                | 5-11-96                                                                                                                                                                                 | 12-11-96                                                                                                                                                                                                      | 26-11-96 | 3-12-96                                                                                                                                                             | 10-12-96                                                                                                                                  | 17-12-96                                                                                                        | 7-1-97                                                                                | 14-1-97                                         | 21-1-97                                     | 28-1-97           |
| Days Sampled      | 7                                                                                                                                                                                                                                           | 7                                                                                                                                                                                                                                                       | 7                                                                                                                                                                                       | 7                                                                                                                                                                                                             | 14       | 7                                                                                                                                                                   | 7                                                                                                                                         | 7                                                                                                               | 22                                                                                    | 7                                               | 7                                           | 7                 |
| Conc (ug/l)       |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                         |                                                                                                                                                                                         |                                                                                                                                                                                                               |          |                                                                                                                                                                     |                                                                                                                                           |                                                                                                                 |                                                                                       |                                                 |                                             |                   |
| Captan            | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th><th></th><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th></th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th><th></th><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                       | <dl< th=""><th><dl< th=""><th></th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th><th></th><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th></th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th><th></th><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                 |          | <dl< th=""><th><dl< th=""><th><dl< th=""><th></th><th></th><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<>                                          | <dl< th=""><th><dl< th=""><th></th><th></th><th><dl< th=""><th></th></dl<></th></dl<></th></dl<>                                          | <dl< th=""><th></th><th></th><th><dl< th=""><th></th></dl<></th></dl<>                                          |                                                                                       |                                                 | <dl< th=""><th></th></dl<>                  |                   |
| cis-Chlordane (a) | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th><th></th><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th></th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th><th></th><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                       | <dl< th=""><th><dl< th=""><th></th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th><th></th><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th></th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th><th></th><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                 |          | <dl< th=""><th><dl< th=""><th><dl< th=""><th></th><th></th><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<>                                          | <dl< th=""><th><dl< th=""><th></th><th></th><th><dl< th=""><th></th></dl<></th></dl<></th></dl<>                                          | <dl< th=""><th></th><th></th><th><dl< th=""><th></th></dl<></th></dl<>                                          |                                                                                       |                                                 | <dl< th=""><th></th></dl<>                  |                   |
| 2,4-D             | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th><th></th><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th></th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th><th></th><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                       | <dl< th=""><th><dl< th=""><th></th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th><th></th><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th></th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th><th></th><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                 |          | <dl< th=""><th><dl< th=""><th><dl< th=""><th></th><th></th><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<>                                          | <dl< th=""><th><dl< th=""><th></th><th></th><th><dl< th=""><th></th></dl<></th></dl<></th></dl<>                                          | <dl< th=""><th></th><th></th><th><dl< th=""><th></th></dl<></th></dl<>                                          |                                                                                       |                                                 | <dl< th=""><th></th></dl<>                  |                   |
| Diazinon          | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th><th></th><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th></th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th><th></th><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                       | <dl< th=""><th><dl< th=""><th></th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th><th></th><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th></th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th><th></th><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                 |          | <dl< th=""><th><dl< th=""><th><dl< th=""><th></th><th></th><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<>                                          | <dl< th=""><th><dl< th=""><th></th><th></th><th><dl< th=""><th></th></dl<></th></dl<></th></dl<>                                          | <dl< th=""><th></th><th></th><th><dl< th=""><th></th></dl<></th></dl<>                                          |                                                                                       |                                                 | <dl< th=""><th></th></dl<>                  |                   |
| Dichlorvos        | <dl< th=""><th><dl< th=""><th>0.020</th><th><dl< th=""><th></th><th>0.032</th><th><dl< th=""><th><dl< th=""><th></th><th></th><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                         | <dl< th=""><th>0.020</th><th><dl< th=""><th></th><th>0.032</th><th><dl< th=""><th><dl< th=""><th></th><th></th><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                               | 0.020                                                                                                                                                                                   | <dl< th=""><th></th><th>0.032</th><th><dl< th=""><th><dl< th=""><th></th><th></th><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<>                                                             |          | 0.032                                                                                                                                                               | <dl< th=""><th><dl< th=""><th></th><th></th><th><dl< th=""><th></th></dl<></th></dl<></th></dl<>                                          | <dl< th=""><th></th><th></th><th><dl< th=""><th></th></dl<></th></dl<>                                          |                                                                                       |                                                 | <dl< th=""><th></th></dl<>                  |                   |
| Malathion         | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th><th></th><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""><th></th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th><th></th><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                       | <dl< th=""><th><dl< th=""><th></th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th><th></th><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th></th><th><dl< th=""><th><dl< th=""><th><dl< th=""><th></th><th></th><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<></th></dl<>                                                 |          | <dl< th=""><th><dl< th=""><th><dl< th=""><th></th><th></th><th><dl< th=""><th></th></dl<></th></dl<></th></dl<></th></dl<>                                          | <dl< th=""><th><dl< th=""><th></th><th></th><th><dl< th=""><th></th></dl<></th></dl<></th></dl<>                                          | <dl< th=""><th></th><th></th><th><dl< th=""><th></th></dl<></th></dl<>                                          |                                                                                       |                                                 | <dl< th=""><th></th></dl<>                  |                   |



| Rainfall (mm)     | 3.2                                                                                             | 63                                                                    | 33                                          | 36.6              |
|-------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------|-------------------|
| Volume (L)        | 0.6784                                                                                          | 13.356                                                                | 6.996                                       | 7.7592            |
| File:             | G9181                                                                                           | G9377                                                                 | G9595                                       | G9754             |
| File Status:      | final                                                                                           | final                                                                 | final                                       | final             |
| Start:            | 4-2-97                                                                                          | 11-2-97                                                               | 18-2-97                                     | 25-2-97           |
| Stop:             | 11-2-97                                                                                         | 18-2-97                                                               | 25-2-97                                     | 4-3-97            |
| Days Sampled      | 7                                                                                               | 7                                                                     | 7                                           | 7                 |
| Conc (ug/l)       |                                                                                                 |                                                                       |                                             |                   |
| Captan            | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""></dl<></th></dl<> | <dl< th=""></dl<> |
| cis-Chlordane (a) | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""></dl<></th></dl<> | <dl< th=""></dl<> |
| 2,4-D             | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""></dl<></th></dl<> | <dl< th=""></dl<> |
| Diazinon          | <dl< th=""><th><dl< th=""><th><dl< th=""><th>0.026</th></dl<></th></dl<></th></dl<>             | <dl< th=""><th><dl< th=""><th>0.026</th></dl<></th></dl<>             | <dl< th=""><th>0.026</th></dl<>             | 0.026             |
| Dichlorvos        | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""></dl<></th></dl<> | <dl< th=""></dl<> |
| Malathion         | <dl< th=""><th><dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""><th><dl< th=""></dl<></th></dl<></th></dl<> | <dl< th=""><th><dl< th=""></dl<></th></dl<> | <dl< th=""></dl<> |

| Conc (ug/l)       | Max.  | Min.  | Average |
|-------------------|-------|-------|---------|
| Captan            | 1.415 | 0.006 | 0.455   |
| cis-Chlordane (a) | 0.042 | 0.042 | 0.042   |
| 2,4-D             | 1.029 | 0.528 | 0.779   |
| Diazinon          | 0.189 | 0.014 | 0.066   |
| Dichlorvos        | 0.107 | 0.020 | 0.049   |
| Malathion         | 0.021 | 0.021 | 0.021   |