An Ecological Study of Mackerel

Scomber scombrus (Linnaeus)

in the Coastal Waters of Canada
by K. T. Mac Kay

FISHERIES RESEARCH BOARD OF CANADA
TECHNICAL REPORT NO. 31

FISHERIES RESEARCH BOARD OF CANADA

Technical Reports

FRB Technical Reports are research documents that are of sufficient importance to be preserved, but which for some reason are not suitable for scientific publication. No restriction is placed on subject matter and the series should reflect the broad research interest of FRB .

These Reports can be cited in publications, but care should be taken to indicate their manuscript status to prevent erroneous implications being drawn from data and analysis that may be preliminary. Some of the material in these Reports will eventually appear in scientific publication.

Inquiries concerning any particular Report should be directed to the issuing FRB establishment which is indicated on the title page.

A: \lrcorner COLOGICAL STUDY OF' LACNBHLL, SCOIBEA SCOMBMUS (limmadus), In tie coastal watelis of camada

by
K. T. MacKay

This is the tenth PRB Technical Report from the Fisheries Research Board of Canada, Biological Station, St. Andrews, IN. B.

an icological Study of lackerel, Scomber Scombrus (Iinnaeus), in the Coastal Waters of Canada

by

K. T. MacKay

A thesis submitied in partial fulfillment of the requirements for the degree of
laster of Science
at
Dalhousie University
august, 1967

ABSTRACT

Commercial catches of mackerel from coastal waters of eastern Canada and New England were sampled in 1965 and 1966 for length, age, meristic counts, sex, maturity and otolith annuli widths. Various tissue were analysed by vertical starch-gel electrophoresis for different enzymes and a tagging program was preformed. A length of 20 cm is reached by the first autumn. First spawning occurs at 30 cm (age II). Females are larger than males. The dominant 1959 year-class shows growth which is slower than the other year-classes and this may be related to competition in the first year. It's growth rate is similar to that of mackerel in the English Channel but much slower than for the 1923 year-class in New England waters. An apparent "Lee's phenomenon" was present. A "Walford plot" did not adequately describe the growth of the 1959 year-class. The dramatic fluctuations in abundance are caused by unequal survival of different year-classes which is related to fluctuating environmental conditions and inversely correlated with the numbers of spawners. In late May the main body of the northern population migrates from the vicinity of Georges Bank toward the coast of Nova Scotia and then into the Gulf of St. Lawrence to spawn and feed. The largest fish arrive first. In autumn the fish withdraw towards Georges Bank. Yearlings migrate in a similar pattern but appear a month later. № differences were found between the northern and southern populations and it is suggested that some of the year-classes found in the two areas belong to the same population. Three major isozymes of LDH are present in mackerel, and extra isozymes were found in brain, eye and kidney.

PABLA UA UOLISNR

 1
 4
(i) Submarine topography 4
(ii) Circulation of the water masses and their characteristics 5
(a) Labrador-Newfoundland and Grand Banks area 5
(b) Gulf of St . Lawrence 6
(c) Scotian shelf and Gulf of llaine 10
(d) Bay of Pundy 11
 12
(i) Annual comercial catch, 1875 to 1966 12
(ii) Distribution of catch 13
(iii) bypes of gear used in the fishery 15
IV matumb or ide mushint 16
 17
(i) Hethods 17
(a) Body lonptis 17
(i) ..ec-determination 16
(c) Otoliun measurenents 20
(ii) eesults 21
(a) Boảy lenetiss 21
(b) ase deiermination 23
(c) Otolith measurement 25
II Jin miu matualtl suju 25
(i) Me chods 20
(ii) essults 26

VII [.AGLAG STUDY 28
(i) MeLinods 28
(ii) hesults 29
VIII hisnISIIC CHAntorkis 30
(i) liethods 30
(a) Vertebral numbers 30
(b) fin-ray and finlet counts 30
(ii) Results 31
(a) Vertebral numbers 31
(b) Fin-ray and finlet counts 31
 31
(1) Introduction 31
(ii) lethods 33
(iii) kosults 36
A JIJUUSSICN 38
(i) nue and Erowti 38
(ii) Sex, frowth and maturity 41
(iiii) Growth culves 42
(iv) Giowtr of the different year-classes 4!
(v) aecruitment 48
(vi) Jisiribution and migrotion of the mackerel in vunadian waters 52
(a) ligration of adults 52
(b) Nigration of inmature fish 5)
(c) Sactors which may influence the migrationof mackerel0)
(vii) fopulation study 01
(vii) Diocuemical study04

 65
 67
TA湤 75
iliUNS 90
AFP胃DIVLS 114

1. Catches of mackerel in the waters of the IUMM convention area, $190^{\circ} 4$ to 1960 , by Ganada, Kussia and United States. . . . 75
2. Iean fork length of mackerel samplel in Ilalifux Co., if. 3., June, 1965, and italpeque rbr., 1. B. I., July, 1950. 76
3. lean fork lengths of fish sampled in lay and June froin the soutliwest coust of Nova scotia, 1962 to 1956. 77
4. lican fork lengths of different year-classes of mackerel sampled from Canadian waters in 1903, 1955 and 1905. . . . 78
5. liean fork lengtins of different year-classes of mackerel sampled from Unitej states waters in 2960 79

- Hean widths of the succazsive otolith annuli samp led frou canadian waters in 1705,1205 and 1900. 80

7. Hean wicths of the successive otolith annuli sarpled fron united states waters in 190\%. 81 Dean widtas at the firss andulus of otoliths from Canadian an 1 inited 3 tutes waters.82

- Clussification systen used to deter ine bne stage or maturity of mackerel. 83

10. Stase of nuturity of mackerel in varions locations in 190 , and 17.0 84
11. Solk lenctas or male and iensle mackerel sampled in Cenadian W. ters in 1703,2955 and 1950. 85
12. Nesults of tafging etuk in Ijoj. 86
13. Wan counts of tio days of the second dorsul fin. 87
14. Ifon counts of ciese rays of tine anul fin. 88
1: - an combs or bite bown and anal finlecs. 89
LI. - U ' 'T?UんLS
15. Cho ..tlantic mackerel, Scomber scomiorus. 90
16. Circulation of the surf ce waters of the noreawest atlantic in spring and sumner. 91
17. Cnart of the northwest atlantic. 92
18. Theoretical section between liortin sustico and Cheticanp inthe Gulf of St. Lawrence, under different conditions. . . 93
19. Variation in the annual comercial catch of mackerel in
Canadian waters, 1076 to 1900. 94
Seasonal distribution of mackerel catch. 95
20. Otolith fron Age-II fish showing measumenent of otolith annulus 96
fen th-frequency graph of mackerel sampled from purse-seine and j in. mesh gill-net. 97
21. Length-frequency graphs of tackerel sampled in Janudian waters in 1900 to 1905. 98
22. Len th-frequency graph of nuckerel sampled in United states wators in $190^{\circ} 5$ and 1966°. 101
23. Otoliths from mackerel of different ages. 102
24. Fer cent composition of yesm-classes of mackerel satapledㄷan imadian and gited juctes waters in 1955 and 196j. . 104
1.. Illustretions of metiods and apparatus used in ta sing
mackerel in 1900. 105
1'4. 1ackerel LD activity in different organs. 106
25. Corparison of Lo activity of the northern and souticern Ropulations of mackerel. 107
1). G. ath curvos oi mackerel from vanadian weters. 108
26. Growth curves of the 1959 year-class of mackerel compared to the growth curves of mackerel from other areas.
27. Walford growth plot.
1). Growth of the 1959 and 1965 year-classes of mackerel during their second year.111
28. Diagramatic representation of the spring and fall migration. 112 21. Length-frequencies representing the northern, southern and mixed populations

III Noun $\mathfrak{r o r k}$ lenpti and mean total lenzths of samples used in calculatins the conversion factor116

IIIb foasurod total and for's lensths, and calculated cork lengths in th of the sualles and largest samples from which both cork and total lengths were available116

IV Por': length freauencies for 1962 to 1966 by aonth and T:NAF Statistical District11.7

I Hown Popk longth and number of mackerel (in parentieses) of Hifferent year-classes, by monthly intervals and area for 1965 and 1966

VI Date, location, number of fish tamsed and dabe and Iseation of x captures of 2'407 mackerel tagged on the alluntic coast of Nova cotia and in tho Gulc of St. Lavrence in 1966.

VIJa 'op't lenpti fin min mactopel of the 1959 year-class Ciom
 (Htistical aren 4!), the Inti const oi Gape 3reton (Nant itatistic 1 are $4 V$) wi southern atla ic coast วi iova jcotia ($4, ~$).
/1Jb averate size in ma of ancorel fron the 1923 year-class nampod in the autum of 1925 to 1930 , fron the waters woy wh :ioni (fter innlot an 1 Scimoder, I953).

V1je rok len the elculated froit total len th sensureaents of aconel fros t S . const of $\pi \rightarrow 1 \mathrm{~h}$ (iteven, 1250).

LISI OF APP LNDICLS (con td.)

VIII Frequency distribution of counts of rays of the second dorsal fin in various locations from Canadian and United States waters in 1965 and 1966. 125

VIII Frequency distributions of counts of rays of the anal fin in various locations frost Canadian and United states waters in 1965 and 1966. 126

VIII ire uency distribution of counts of inlets in various locations from Canaiion and United States waters in 1965 and 1966. 127
 Rul Mackirel

The Atlantic mackerel (Fig. 1), Scomber scomberus (Linnaeus 1758), is placed in the Order Perciformes (Berg 1947) or Percomorphi (Reagan 1929), Sub-order Scombroidei and the Family Scombridae, which is closely allied with the Family Thunnidae. Fraser-Brunner (1950) places only two species, Scomber scombrus and Scomber japonicus (Houttuyn), in the Genus Scomber whereas Matsui (1967) includes a third species, Scomber australasicus (Cuvier). Both authors consider the Atlantic chub mackerel, Scomber colias (Gmelin) to be synonymous with Scomber japonicus.

The following description of the atlantic mackerel was compiled from Bigelow and Schroeder (1953) and Leim and Scott (1906). The body is elongate and fusiform, tapering to a narrow caudal peduncle bearing two short lateral keels but lacking the mid-lateral keel of the Thunnidae. The head is proportionately long (one quarter of standard length), the mouth is large extending to the level of the middle of the eye, each dentary, maxillary, vomer and palatine bone bearing a single row of small, slender teeth. The eye is partially covered by large, anterior and posterior masses forming the transparent adipose eyelids. The first of two dorsal fins originates at the level of the pectoral fin and is supported by 10 to 14 rather weak spines which can be adducted into the mid-dorsal groove; the second dorsal fin is approximately the same length as the first dorsal but only half as high and is supported by 12 (9 to 15) soft rays. The space between the two dorsal fins is twice the base length of
the fins. Pive (four to six) small finlets follow the second dorsal fin. The caudal fin is broad and deeply forked. The anal fin has one spiny ray and 12 (9 to 14) soft rays. It is followed by five (four to six) anal finlets similar in form to the dorsal finlets. The pectoral fins are located high on the side, a short distance behind the opercular opening; the pelvic fins are small and thoracic in position. The scales are small and the skin has a velvet texture. The lateral line is distinct and the air bladder is absent. The absence of the air bladder and the large space between the two dorsal fins distinguishes the atlantic mackerel from the other Scombrids.

The upper surface of the body is a steel-blue colour with 23 to 33 dark, wavy bars, stopping about the midline. The pectoral fins are black or dusky, the dorsal and caudal fins are grey or dusky. The jaws and opercula are silvery, the lower sides are silvery and sometimes black spots are present, and the belly is silvery white.
lost adult mackerel measure 33 to 40 cm (13 to ló in.) in fork length and weigh about 450 g (1 lb). Individuals as large as 56 cm (22 in.) and $1.8 \mathrm{~kg}(4 \mathrm{lb}$) are known. Bigelow and Schroeder (1953) indicate the largest recorded specimen weighed $3.4 \mathrm{~kg}(7.5 \mathrm{lb})$.

The Atlantic mackerel is found in the eastern coastal waters of the north atlantic from Spain to Norway, in the lediterranean and Black Sea and in the coastal waters of the northwest atlantic from Cape Hatteras to the Gulf of St. Lawrence (Leim and Scott, 1966). Occasionally they occur in large numbers
along the east coast of Newfoundland (Templeman and Fleming, 1953) and they have been reported sparingly from the Labrador coast (Leim and Scott, 190́o).

The atlantic mackerel in northern Juropean waters is considered to be a separate race from the atlantic mackerel in Nortin American waters (Garstang, 1898). The Atlantic mackerel in North American waters has been separated into northern and southern populations termed 'contingents' by Sette (1950).

Mackerel is a schooling pelagic fish living in the coastal waters of the continental shelves. In North American waters they appear to undergo extensive latitudinal migrations which can be corcelated with surface temperatures (Sette, 1950). They frequent the surface waters from spring to autumn but disappear from these waters in early winter and are assumed to overwinter at mid-depth near the edge of the continental shelf from Sable Island to Chesapeake Bay.

Hackerel spawn from late April through May south of Lond Island. They spawn in Nay in Cape Cod Bay and in June and July in the Gulf of St. Lawrence. Some spawning oceurs on the atlantic coast of Nova Scotia; Sparks (1929) found eggs but no larvae, however, Martell (personal comunication) reports both eggs and larvae were found in 3t. Nargaret's Bay in 1957. The act of spawning has not been observed but is assumed to be simply a shedding of ova and sperm into the water. Mature females produce up to half a million eggs (Sette, $\mathbf{l '}^{\prime}+3$). The ova after fertilization vary somewhat in size, averaging 1.0 to 1.2 mm in diameter, each having a single small oil globule averaging
0.3 mm in diameter. The eggs afe pelagic, floating in the surfece waters above the thermocline. The rate of development is dependent on temperature being two days at 21 C and nine days at 12 C (Worley, 1933). Nackerel eggs hatch at temperatures as low as 9 c. The newly hatched larvae measure about 3.0 mi. Early growth is rapid, the larvae and post-larvae reaching a length of 10 ma in 20 days and 50 mm in 40 days at which size they appear to aggregate and form schools (Sette, 1943).

Mackerel feed on zooplankton, chiefly copepods, larval crustaceans, larval molluscs, and fish eggs and larvae. They also eat small fish and large crustaceans and Nilsson (1914) reported feeding on benthic invertebrates. Feeding behaviour involves both filtering and active pursuit.

(i) Submarine topography

The coastal waters of the Cunadian Atlantic overlie a very broad continental shelf marked by the 100 fathom (183 m) contour whica extends from 130 km oftshore along northern Labrador to 330 km off southern Newfoundland where it has the greatest expanse of all continental shelves. The broad continental suelf west of the Grand Banks forms the Scotian Shelf and Georges Bank.

The continental shelf is cut by three distinct channels. These are from north to south, Hudson Strait, Laurentian Channel and Fundian Channel. These channels profoundly influence the oceanographic characteristics of the water overlying the shelf since they bring water of deeper oceanic origin close to the shore
of the continent (Hachey, Hermann and Bailey, 1954). The Laurentian Channel is a deep trench delineated by the 200 m isobath which extends from the edge of the continental shelf almost to the mouth of the Saguenay River, with an arm, the Lisquiman Channel, extending toward the Strait of Belle Isle along the northwest coast of Newfoundland. The Nagdalen Shallows occupies the southern part of the Gulf of St. Lawrence.
(ii) Circulation of the water masses and their characteristics The circulation of the water in the Northwest Atlantic of the Canadian coast is influenced by two major ocean currents, the Gulf Stream and the Labrador current (Fig. 2). The Labrador cuirent is characterized by water of lower salinity and lower temperiture than that of the Gulf Stream. The interaction of tinese two masses along with land drainage determines the circulation and physical characteristics of the water masses of the Canadian atlantic. four definite areas can be recognized. Phey are: (a) the Labrador-Newfoundland and Grand Banks area, (b) the Gulf of St. Lawrence, (c) the Scotian Shelf and Gulf of liaine, and (d) the Bay of rundy (ig . 3) .
(a) Labrador-lewfoundland and Grand Banks area - The Labrador current which originates from the meeting of the Bafrin Lsnd current and the West Greenland current flows southward along the Labrador coast. The inshore branch has a lower salinity and lower temperature than the offshore branch. The inshore portion fenctrates, at times, into the Gulf of st. Lawrence through the Strait of Belle Isle, and at times water from the Gulf of St. Lawrence moves outward through the Strait of Belle Isle joining
the southern flow of the Labrador current along the eastern coast of Newfoundland. The Labrador current meets the northern edge of the Grand Banks, the offshore portion skirts the eastern margin of the Grand Banks and either flows westward towards the region of the Scotian Shelf or turns east to join with the Gulf Stream forming the North Atlantic drift. The inshore portion penetrates into the deep channel separating Newfoundland and the Grand Banks. It reaches the vicinity of St. Pierre Bank and may continue after some modifications and mixing towards the Laurentian Channel. The characteristic properties of the surface of this flow are modified by mixing but at intermediate depths it may be recognized by its low temperature. The surface temperature of the waters off southeastern Newfoundland ranges from a winter average minimum of -0.9 C to a summer average maximum of 12 to 14 c.
(b) Gulf of St. Lawrence - The Gulf of St. Lawrence is an important area for the spawning and development of mackerel (Sette, 1943) and for this reason a detailed description of some of the oceanographic features of this region is given.

The pattern of circulation of the surface waters of the Gulf of St. Lawrence is cyclonic (Fig. 2). Fron the south, water enters from the east, past Cape kay and then flows along the west coast of Newfoundland. Fart of this flow is deflected at the head of the deep. Esquiman Channel, toward the north shore of the Gulf while the remainder continues northward to enter the circulation of the Strait of Belle Isle. The circulation of the Strait of Belle Isle consists of three variable components
(Hachey, 1901); a prosressive inward movement of Labrador coastal water on the north side of the Strait, a progressive outward movenent of Gulf of St. Lawrence water in the south side of the Strait, and a dominant flow which may be of Labrador coastal water inward or Gulf water outward.

Along the north shore of the Gulf there is a westward drift extending beyond the western end of anticosti Island. The lower salinity water in the nortiwest corner of the Gulf, the result of mixing of fresh water discharge from the St. Lawrence Basin, with high salinity water in the estuary, flows along the Gaspe peninsula as the Gaspe current. Between anticosti Island and Gaspe peninsula tais current exceeds depths of 165 m (90 fathoms) and while constant in direction, it is subject to wide variations in strengths. Over the lagdalen Shallows the waters of the Guspe current lose considerable velocity. The waters of the southern Gulf move eastwald toward Cabot Strait forming the Cape breton curzent, the main efflux from the Gulf of St. Lawrence.

Three layers of weter are present in the Gulf of st. Lawrence in the summer. (Lauzior, Lrites and Jachey, 1957; Lauzier and 19iley, 1957; and Jachey, 1951): the surface layer, the intermediate layer and the deep layer. During the winter, the surface layer and the internediate loyer merge.

The deep layer is found only in the Laurentian and wsyuinan viwancls below 100 m and originatus from the mixing of tha Labrador curvent and 'slope water'. It has temperatures as high as 5.0 C and salinities zreater than 34%. Phere is no appreciacle seasonal veriation in temporatare and salinity but
the volume of this layer increases from spring to autumn.
The intermediate layer is defined (Lauzier and Bailey, 1957) as the layer of cold water bounded by the horizontal isotherm of 0 C . The lower isotherm is usually below 100 m while the upper isotierm ranges from 70 m to the surface, depending on the season. There is considerable seasonal variation in the thickness of the intermediate layer with a decrease in thickness occurring between spring and autumn. The intermediate layer forms the bottom layer over the Nagdalen Shallows.

The surface layer reaches maximum thickness during winter when it merges with the interinediate layer. The spring and summer warming of the surface produces a sharp vertical temperature gradient declining one degree per metre. The thermocline is associated with a corresponding salinity gradient of 0.2% per metre. Because of the presence of this marked thermocline in summer, the surface layer is very stable with respect to the underlying layers and therefore offers considerable resistance to axternal forces which would tend to produce mixing. Lauzier (1)57a) showed that when either north or south winds exceeding ${ }^{2}+\mathrm{km}$ (15 miles) per hour lasts at least two days, a tilting of tie thermocline results. Phis tilting is due to internal adjustment o: water layers. This internal adjustnent causes sxtreme variations in temperatuie and selinity, mainly at depth but also near the surface (Fig. 4). Blackford (1965) suggested that cyclonic gyres established by wind action also had significant upwelling effects on the thermocline beneatia them.

The surfece layer shows seasonal variation in depth, temperature and salinity, but during sumnar is homogenous as to
temperature and salinity from the surface to the thermocline. The thickness of the surface layer decreases from 100 m in winter when there is no intermediate temperature layer present, to 10 m in July and thickens to 15 m in august over the Magdalen Shallows. The vertical mixing associated with autumnal cooling proceeds at varying degrees in different areas causing regional variation in thickness, but eventually, when mixing and cooling are complete, the surface layer has merged again with the intermediate layer.

The surface layer varies seasonally in temperatures from -1.7 to 20 C (Appendix I), with the northern shore area having a reduced range. From January to Narch, the surface is normaily covered by ice. Vernal warming is related to the ice distribution in late winter and results in temperatures from 2 to 12 C in June. The highest temperatures (in excess of 20 C) may occur in the Magdalen Saallows in July and august. Cooling comences in September, the main part of the Gulf having surface temperatures from 10 to 16 C . Between September and October, the temperature declines by approximately 4 C and then in November further cooling reduces the temperature to an average value of 4 d, varying from 2 C along tha Gaspe coast to 9 C along the Cape Breton shore.

Salinity of the surface water decreases from a high value of 32% in spring to less than 30% and often as low as 26% in sumner with lower values being recorded in bays and estuaries. Because of vertical mixing during autumnal cooling and lack of precipitation or runoff, the salinity of the surface layer
increasus to a range of 27% to 31%. The minimum salinity over the Nagdalen Shallows is reached from June to august which Lauzier (1957 b) shows is related to the maximum discharge of the St. Lawrence liver with a three-month las.
(c) Scotian Shelf and Gulf of Naine - The Gulf Soream recognized by its high temperatures and high salinities, meanders as close as 425 km (230 nautical miles) and as far away as 780 km (42) nautical miles) from the coast of Nova Scotia. These meanderings have an indirect effect on the waters of the Scotian Shelf, due to the adjustments of the water masses that are associated with the changing position of the Gulf Stream.

At the confluence of the Labrador current and the Gulf Stream, the large scale mixing produces the 'slope water'. This influences the circulation of the Scotian Shelf coth by gradual mixing and direct incursion onto the Shelf (Hachey, 1901).

The outward flow of water from the Gulf of St. Lawrence, the crpe Breton Curient, spreads westward (rig. 2) along the Shelf. Phe original characters of the water of the Gulf are lost by mixing with the more saline slope waters.

The circulation of the surface water of the Gulf of i. ine shows an anticlockwise thovement ($s i g$. 2) winich bakes the mixed water from the Bay of sundy along the coast of jaine and mikes it with the discharges of several rivers. Some of this water Ilows past Cape Cod while the renainder follows the inshore edre of Georges Bank toward Mova Scocia. Sonc or it returns to the Bay of rundy while the remainder disciarges around the northern edge oi Georges Bank (laciey et al, 195*).

[^0]laine are strongly stratified in temperature and salinity and form a three-layer system. This three-layer system is somewhat similar to that in the Gulf of St. Lawrence (Hachey, 1901). The surface layer which may have a thickness of 75 m (4) fathoms) in summer, has a wide seasonal range of temperatures from 5 C to 20 C , and a salinity of less than 32%. Inshore waters consist entirely of this layer. The intermediate layer which ranges between 30 m (17 fathoms) and 145 m (80 fathoms) in thickness, is characterized by temperatures less than 5 C to a low of 0 C , and salinities between 32.0% and 33.5%. This layer is formed by the transport of water from the labrador current and is continuous, at least during part of the year, with the similar layer in the Gulf of St. Lawrence.

Phe bottom layer which lies between the 50 fathom $(90 \mathrm{~m})$ and 100 fathom (183 m) contours has bemperatures above $5 \mathrm{c}, \mathrm{f}$ equently as high as 8 C and at times due to incursion of slope water over the bottom of the shelf, it has lemperatures as hich as 12 C .
(d) Bay of Fundy - The circulation in the Bay of Fundy is generally cyclonic (fig. 2). an inward movement of water along the coast of Nova Scotia from the Cape Sable area and from further offshove in the Gulf of liaine, constantly loscs water to the New Brunswick side as it moves toward the head of the Bay. Pio movement along the coast of New Brunswick is westward and flows outward east of Grand lanan into the Gulf of laine. The dominant feature of oceanographic conditions in the Bay of Pundy is the effect of strong tides which causes a complete mixing
and produces a homogenous mass of water as to temperature and salinity. Seasonal changes in temperature and salinity in the Bay of Fundy are much less than in other parts of the Canadian Atlantic region.

III HISHONY OF THE ASHASY

(i) Annual commercial catch, 1876 to 1966

The commercial catch of mackerel in the Atlantic waters of North America has fluctuated widely. Fluctuations in the Canadian catch are shown in Pigure 5.

The period from 1880 to 1884 was one of extraordinary abundance as indicated by both the Canadian and United States catches (Sette and Needler, 193'), with the highest recorded total catch of 233 million pounds occurring in 1884. The Canadian eateh of 55 million then declined drastically to 8 million pounds in 1897. Subsequently there was a period of fluctuating relatively low catch culminating in the lowest recorded catch of 7 million pounds in 1910. This coincided with a drastic low point in the United Btates catch of only 3 million pounds. The Canadian catch then began a gradual inerease fluctuating between 14 and 29 million pounds up to 1939 when it increased abruptly to 52 million pounds. Tlue United States catch showed an eightfold increase between 1910 and 1926 which, as sette (1950) showed, was the result of the suceessful survival of the 1923 year-class. From $19+0$ to 1959 , tae Canadian catch declined erratically to a low of 9 milion pounds. The decrease from 28 million pounds in 1955 to a low point in 1959 may be partially accounted for by the fungus disease

Ichthyophonus (Ichthyosporidium) ho feri which between 1954 and 1957 decimated half the herring population in the Gulf of st. Liwrence (Sinderman, 1906). lackerel stocks were also infected by the fungus and similar mass mortalities may have occurled. The catci since 1959 has gradually increased to 25 million pounds in 1906 which as shown in this study is the result of a successful IЭら) year-class.

In addition to Canadian and United States catches, wussia has taken large quantities of mackerel in the International Comission for the Northwest atlantic Fisheries (ICNap) Convention area (Pable I). all the fussian catches in 1966 were made by otter trawls towed by lareer trawlers (over 1800 metric tons). Thu months of January to hay yielded 7_{p} of their catcines, with the larrest catch occurring in February. lost of these catches were mabe on the south and nortbwest slopes of Georges Bank (Day, personal comunication).
(ii) Distribution of catch

Wackerel ara caught in Canadian atlantic waters from tize Ray of Fundy to the Atlantic coast of Nova Scotia, throughout the Gulf of St. Lawrence, and periodically on the east coast of Newfoundland.

From 1957 to 1966 , 4% of the commercial catch was taken from the waters of the Gulf of St. Lawrence and 550 from the waters of the Atlantic coast of Ilova Scotia and the Bay of Pundy. The catches in Newfoundland waters have varied from zero in 1259 to a high of 2.2 million pounds in 1961. The 1961 catch was 18 , of the Canadian total, with the largest cateaes
being made on the east coast, particularly in Notre Dame Bay. This recent appearance of mackerel in the eastern coastal waters of Newfoundland has been related to a general warming of the surface waters (Templeman and Fleming, 1953).

The seasonal distribution of catch by area for the years 1924-1929 and 1957-1900 is shown in Figures 6a and 6b. A comparison of figures 6 a and 6 b shows little change in the seasonal distribution of commercial catches in the past 40 years.

Mackerel are captured first in late lay along the Atlantic coast of Nova Scotia with maximum eatches occurring in June and smaller catches occurring from July through until December. Nackerel are caught in the Gulf of St. Lawrence from June to November with maximum catches occurring in June along the southern shore and Gaspe coast and in July along the North Shore. In August and September, large catches are made around the Magdalen Islands and Frince sdward Island while the maximum catch off the Cope Breton shore occurs in uctober. Along the east coast of Newfoundland, mackerel are caught from august to November with tise maximur eatch usually occurring in october. In the Bay of Fundy and around southwestern Nova Scotia, mackerel are taken from kay to November with the lergest catcies occurring in July and august.

The seasonal distribution of eatch is dependent on many factors, sucb as the type of gear, weather conditions, the pattern of otter fisheries, and availability and behaviour of the fish. However, the seasonal distribution of the catch is suggestive of a pattern or migration and this, in conjunction with other evidence,
enables the compiling of a scheme for migration.
(iii) Types of Gear used in the Fishery

Historically the oldest method of catching mackerel is by hook and line using minced fish as bait to attract the schools. In the middle of the 19 th century, this was the main method of fishing for mackerel. This method is still used commercially around the Magdalen Islands and is the basis for one aspect of the tourist industry in Frince Edward Island. Elsewhere in tie Gulf of St. Lawrence, hook and line is used to eatch small quantities of mackerel for domestic consumption or bait.

Both fixed and difting gill-nets were used to eatch mackerel in the 19 th century. Fixed gill-nets of 2. (5.2 .5 to 82.5 mm) stretched mesh are used along the coast of Nova Scotia, in Northumerland Strait and along the coast of Newioundland. Drifting gill-nets are used off Alberton and in mogont Bay, P. Ψ. J., and in the Bay of Chaleur.

The capture of mackerel by purse seine was introduced in 18% and became the main method of capture by fisimermen of the United States. Canadian fishernen did not use purse seines until late in the 19th century. Furse seines are now used along the northern shore of Frince Ddward Island and in the autumn alons the cape Breton shore of the Gulf of St. Lawrence. In 1955 and l 760 , purse seines accounted for about one-third of the total catch.

Prap nets have been used on the atlantic coast of liova Scotia for at least ${ }^{4}$ years. Trap nets are now in use at Lape Juble Islund, lahone Boy, Jt. llarearet's Bay, Iittle Tlarbour,

Fetit de Grat, St. ann's Bay and Ingonish. Weirs or pole traps which are used in the Bay of Fundy sardine fishery occasionally capture mackerel. Trap nets and weirs in 1965 and 1966 accounted for about one-third of the total catch.

IV NaTUK OF THE PROBLEM

Sette (1950) suggested that the North American mackerel was segregated into a northern and a southern population. To test this hypothesis, mackerel from the eastern coastal waters of Canada, and from the coastal waters of New ingland were sampled in 1905 and 1966 for lenth, age, sex and meristic counts. Fish from the two areas were then compared with respect to size and age composition, growth rate and meristic characteristics. In an attempt to find genetic differences between fish from the two areas, vertical starch-gel electrophoresis was used to compare enzyme pattern of tissues from fish representing the two populations.

Information concerning the migrations of mackerel was obtained by tagging and subsequent recapture, analysis of length frequencies and catch statistics, and interviews with persons associated with the mackerel fishery.

During the study of age composition, it became apparent that the year-class of 1959 was dominant. Length frequencies of samples from 1962 to 1954 (unpublished records, Pisineries Kesearch Board, St. andrews, 4. B.), and for 1960 and 1951 from Bergeron (1961 and 1962) were employed for the calculation of the growth rate of this year-class and for comparison of it with growth rates of other year-classes in the fishery. In addition,
axial width of each annular zone of the otolith was measured to enable a comparison of otolith growth with total growth. Some factors that may be responsible for the good survival of the 1959 year-class and the poor survival of subsequent year-classes are proposed.

V AGE AND GROWIH STUDIES

(i) Methods
(a) Body lengths - A random sample of 100 fish for length measurement was obtained from commercial catches landed at fishing ports between Yarmouth and Ingonish on the Atlantic Coast of Nova Scotia; from the Magdalen Islands, Prince Edward Island and Caraquet, N.B., in the Gulf of St. Lawrence; and in New England from Plum Island to Provincetown, Mass. In addition, samples of frozen mackerel were obtained from Rumson, N.J., and from the Gulf of Maine. As mackerel are usually packed indiscriminately into boxes of approximately 100 fish, a sample was taken from a single box. On occasions when the fish were not packed, a selection of fish of any particular size was avoided. Often when sampling gill-net catches, less than 100 fish were available while some other measurements contained more than 100 fish .

Lengths were determined using a standard measuring board of heavy plexiglass with a moveable arm. The measurement to the nearest millimeter was taken from the tip of the snout to the tip of the rays at the middle of the tail. This measurement corresponds to 'fork length', 'median length' and 'midcaudal length' of other authors (Ricker and Merriman, 1945).

Measurements of body lengths from 1962 to 1964 (unpublished records, Fisheries Research Board of Canada, St. Andrews,
N. B.) were in total lengths; that is, the length from the tip of the snout to the tip of the longest rays of the caudal fins when compressed. Fork lengths and total lengths were determined from 1017 fish in 1965 and 1966 and a conversion factor was calculated from these data. The relationship between fork length and total length was assumed to be linear; therefore, to obtain a conversion factor, the sum of fork lengths was divided by the sum of the total lengths. The conversion factor was then applied to the measurements of 1902 to 1964 and to the measurements of Bergeron (1961, 1962).
(b) Age-determination - Dermal scales of teleost fishes are often used for age determination (hounsfell and Everhart, 1953) and heve been used for Atlantic mackerel, Nilsson (1914) and Steven (1950). These scales, although easy to obtain, are deciduous and cause uncertainty as to the source of any scale when these fish are collected in groups. Otoliths are more difficult to oblain but have been found to be more rellable for use in agedetermination of mackerel (Steven, 1950) and have been used throughout this study.

Three pairs of otoliths, the lapilii, the sagittae and the asterisci are found within the inner ear. These bones are enclosed in membranous sacs known respectively as utriculus, sacculus and lagena. The utricuitus is found immediately lateral to the neurocranium and controls the postural responses. The sacculus and logena, located in pits in the floor of the neurocranium are closely associated with hearine (iowenstein, 1757). The sagilta, the largest of the otoliths has broader zoncs of opaque material with higiter content of osenic material than
the alternating zones of translucent material (Fitch, 1951). They have been found suitable for age-determination in the Pacific mackerel in the coastal waters of California (Fitch, 1951). The alternating zones have been also assumed to be annular zones in the Atlantic mackerel and have been used for age-determinations by Nilsson (1914), Steven (1950), and Sette (1950). Steven reports that more reliable readings were obtained from the blunt posterior end while the rostrum, the pointed anterior end, contained secondary markings. However, during the present survey the markings on the rostrum appeared to be the clearest and have been used as the prime source for age-determinations.

One sample of a 100 fish was obtained on the average of once a week from those sampled for body lengths. The otoliths were collected by making a transverse incision, posterior to the otolith through the head at the level of the first colour bar. Both sagittae were extracted from the sacculus using forceps. The sagittae were placed on the back of the hand and the casing was removed with forceps. Then, the pair of otoliths was placed in a numbered slot in a tray holding 100 otoliths and stored dry. Subsequently, the otoliths were removed from the holding tray and permanently mounted in depressions in black plexiglass using ethylene di-chloride (Watson, 1965). Pairs of otoliths from 50 fish were mounted on each plexiglass block with details of the collection inscribed on the block with white ink.

Counts of the annular opaque zones were made by
stereoscopic observation of the otoliths immersed in 95% ethanol. Nuclei were omitted from the counts. Ages and year-classes (i. e., year of birth) were recorded without reference to the
body length to avoid bias. Where there was doubt as to the accuracy of the age-determination due to indistinct or fused winter zones, the ages were not recorded. All otoliths were aged a second time without reference to the first readings. In addition to otoliths from the 1965 and 1956 study, a few otoliths were available from 1963 and these were mounted and examined in a similar manner.
(c) Otolith measurements - Wiaths of otoliths were measured with a stereoscopic microscope equipped with a drawing tube to superimpose the image of an otolith onto the image of coordinate paper with 1 mm graduations placed on a bench. The otolith was placed so that its longitudinal axis corresponded to that of the coordinate paper and measurements were made along the anterior-posterior axis of the otolith. The total length of the otolith was measured from the lower blunt edge to the tip of the rostrum, and each adjacent annulus was measured from the posterior distal part of the opaque zones to the anterior distal part of the same zone (Fig. 7). When one or more of the annuli were not clearly defined, they were not measured but the otolith was used in an assignment of age.

All otoliths from the 1963 samples were measured but the collection of otoliths from 1965 and 1966 were too numerous to permit measurements of all, so a sample was selected at random by drawing numbered cards.

Measurements of five otoliths, which were made with a graduated ocular lens were compared with those made using the drawing tube and coordinate paper. The measurements after correction for magnification were identical. Use of the drawing tube and coordinate paper was a more rapid and convenient technique.

Since the right otolith is larger than the left from the same individual in the Pacific mackerel (Kondo and Kuroda, 1966), both right and left otoliths from 33 fish were measured and the results indicated there was no difference between the left and right otolith in the Atlantic mackerel.
(ii) Results
(a) Body lengths - The mean lengths of 800 fish sampled from commercial catches during a four-day period June í to 9 , 1965, in Halifax Co. and of 395 fish landed at lialpeque Harbour, P. E. I., are given in Table 2. Only the samples with the smallest and largest means from Halifax Co. are significantly different $(P<0.05)$ while the mean lengths of the samples from Nalpeque Harbour do not differ significantly ($P>0.05$). This indicates a high degree of homogeneity among the samples taken within a shoi't period of time and at adjacent locations. This inade it po:sible to assemble the length-irequencies into monthly groupings for different areas.

Solection of a relatively narrow size range of fish is a well known attribute of Gill-nets (Leim, Pibbo and Day, 1957). Figure 8 shows that a gill-nct of 3 in. stretched mesh captured larger mackerel than purse-seine gear on the same day near Halpeque Harbour (significant at $\mathrm{F}<0.05$). Such selectivity was not shown by $27 / 8$ in. stretched mesh gill-nets in Halifax Co., June, 1965 (Table 2). The selective nature of gill-nets is not an important factor in the sampling procedure since only 10% of the samples in 1965 and 1956 was obtained from gill-nets. Trap nets, purse-seines and hook and line were all assumed to
be non-selective within the size range of fish measured during this survey.

The conversion factor from total length to fork length Wes calculated to be $\mathrm{PL}=.910 \mathrm{LL}$ (Appendix IIIa). To check the validity of the conversion factor, it was applied to the means of the samples with the largest and smallest lengths from which both total and Pork lengths were available (ippendix IIIb). Ine difference between the measured and calculated fork lensth was only 1 m for the smallest and 0.3 m for the largest measurements. The conversion factor was then applied to the measurements of Bergetion (1961, 1962) and to the data for 1962 to 1964.

Length frequencies in monthly intervals for the different areas in Canadian waters for the years 1900 to 1900 are shown in Figure 9 and the detailed length frequencies are found in Appendix IV.

The largest group (group ..) is present only in lay and Whe, 1902, 1kay, 1903, and 1ay, 1954. This group makes up a decuensing per cent of length Irequencies from 1902 to 1734 and disappears in 1705.

The persistent group (group 3) is present in all samples between 1900 and 1956, except Ocbober, 1952, and sugust, 1955 and 1900, for Yamouth Co., and is dominant in most of the lengthPrequencies.
A. different group of sirall fish appesis evely year
alone the cosst of southwest Nova Scotia but these do not appear to be distinct in following years. A group of very shall fish (95 to 125 mm) was present in cotober, 1962 , but this group was not found in succeeding yeors.

The mean lengths for May are significantly larger ($P<0.01$) than those for June in 1962 to 1966 for southwest Nova Scotia (Table 3). It is apparent from the length frequencies (Fig. 9) that this difference is due to the presence of larger fish of group B and a higher percentage of fish from group A. The length frequencies of fish found in southwest Nova Scotia in June are very similar to those found in the Gulf of St. Lawrence in July and the difference between the means is not significant (P) 0.05).

The length frequencies for the coastal waters of New England for 1965 and 1966 are shown in Figure 10. The group which was found in September, 1965, (group E) is not apparent in the 1966 length frequencies. The group (group F) which was found at Provincetown in July was present again in September and the increase in size is assumed to represent growth. A group of small fish (group G) were sampled from New Jersey in September, 1966. A comparison of the length frequencies for 1966 from Canadian waters with those from New England waters, shows the absence of group B from southern waters. Group F which was dominant around Provincetown in 1966 was also present in July and August along southwest Nova Scotia.
(b) Age-determination - Steven (1950) showed that agedetermination from otoliths agreed with those of scales taken from mackerel captured off southwest England. He stated that the central opaque zone was deposited first and then followed by a narrow translucent zone formed during the first winter. This pattern of deposition was continued in subsequent years with the opaque zone being formed during the summer and the trans-
lucent zone during the winter.
Examination of otoliths taken in early July and again in September, 1966, showed an increase in the average width of the opaque zone during that period (Fig. llb, c). Examination of length frequencies (Fig. 9) showed that one group (group B) had been dominant since 1960. This group of fish had identical measurements for the first four annuli on the otolith in 1955 and 1906 . Further examination showed that in 1906 this group of fish (group B) had one more translucent zone than in 1965. This suggests that the translucent zone was formed during the winter and the opaque zone during the summer.

The otoliths from fish 135 to 175 mm in length, sampled in September, showed only an opaque nucleus and were assumed to be age 0 (Fig . 1la). The otoliths from the next size-group of fish 185 to 295 mm showed an opaque nucleus surrounded by a translucent zone and the beginning of an outer opaque zone (Flg. 1lb, c). These fish were assumed to be age I. In subsequent years, an opaque zone was assumed to be formed during the summer, being noticeable fixst in late July and a translucent zone during the winter.

The increase in size with increasing age and the consistent agreement of ages of fish belonging to the dominant group sampled in 1963,1965 and 1966 supports the validity of the use of otoliths in age-determination.

Sstimates of age were made from 2550 otoliths and only 12\% (309) of these were unreadable. There was close agreement between first and second age-determinations from the otoliths, 100, for otoliths which were assigned to age-class I, II and III,
while for groups assigned higher ages there was approximately 90, agreement.

The distribution of year-classes sampled in 1955 and 1966 is given in Figure 12. In 1965, the 1959 year-class was dominant in samples taken in waters of the Atlantic coast of Nova Scotia in May and June and in the Gulf of St. Lawrence in July and August. In 1965, the 1959 year-class was dominant in samples from both areas. The samples from southwest Nova Scotia for July and August, 1965 , showed that the 1964 year-class was dominant.

In samples from Nassachusetts in 1966 , trap-nets at Frovincetown yielded only fish of the 1965 year-class. Samples from the purse-seine fishery near Provincetown and the sample taken by hook and line near Plum Island were dominated by the 1904 year-class. The sample from iumson, N. J., taken in September, 1960, contained only fish-of-the-year.

The mean length of fish of the various year-classes sampled in 1963, 1965 and 1906 from Canadian waters and in 1965 and 19006 from New Lingland waters are given in Tables 4 and 5 . A detailed presentation of this data by area and month may be found in Appendix V. Examination of this data shows no apparent increase in length during summer in the samples from Canadian waters. This has allowed the combination of this monthly data and this is presented in Table 4.
(c) Ctolith measurement - The mean widths of the successive annular zones on the otoliths from fish samples in Canadian waters in 1903, 1955 and 1966, and from New Lngland waters in 1906 are given in Tables ó and 7. The measurements
of corresponding annular zones for fish which belonged to the 1959 year-class sampled in 1963 , 1965 and 1966 are almost identical. The few otoliths measured from the 1960 year-class had similar successive annular zone widths to those of the 1959 year-class. The measurements of successive annular zones of the other yearclasses were all larger than for the 1959 and 1960 year-classes. The 1965 year-class samiled in 0ctober from Canadian waters had the largest first annular zone.

The width of the first otolith annuli from Canadian and United States samples are compared in Table 8. The 1965 year-class from Canadion waters had significantly larger ($\mathrm{F}<0.05$) annuli than those from that year-class from Nassachusetts. While the $196 j$ and 1964 year-classes did not differ significantly $(P>0.05)$. The other year-classes could not be compared because there were not sufficient numbers of fish from the southern samples.

VI Sux and Marunify study
(i) Methods

The sex of 1748 fish sampled in 1965 and 1906 was determined by examination of the gonads during autopsy. The ovaries are yellow and the testes are grey to white. The gonads of immature fish could not be identified for sex. The stage of maturity was determined visually and classified into four stages (Table 9).
(ii) Kesults

The male to female sex ratio in 1965 was 52:48 (11.31
fish) and in 1966, 49:51 (617 fish).
The data on stage of maturity (Table 10) show that in 1965 and 1966, fish sampled from the coastal waters of Nova Scotia from Nay to June 25 were almost all maturing, while none were ripe and running. The samples from the Gulf of St. Lawrence in 1905 showed that from July 12 to $20,72 \%$ of the fish were spent, $24 ;$ were ripe and running, while only 2,0 were maturing. This indicates that spawning occurs in the Gulf of St. Lawrence in June and July.

In 1965, only one of the 510 fish of Age-I was mature while none of the Age-I fish were mature in 1966. Eight per cent of the Age-II fish were imnature in 1965 while 18% were immature in 1966. None of the Age-III fish in 1965 were immature and only 3,0 of this age in 1966 were imature. Thus, first spawning in 1965 and 1966 occurred at Age-II with a few individuals not spawning until Age-III. The smallest mature fish (Age-II) were 275 and 289 mm long in 1965 and 1966, respectively. Both of these fish were males, whereas the smallest mature females were above 300 mm in both years.

Nean lengths were calculated separately for males and females (Tsble li) and the difference between the means for the 19,5 and 1906 samples were significant ($1<0.05$), with the females being larger than the males. The females in the 1963 samples were also larger but the difference was not significant ($F>0.05$). Se difference between males and females in 1965 and 1966 , although significant, was small when compared to the annual growth increment for these years. Because of this small difference and the absence
of information on the sex of the samples for 1960 to 1962 and 1964, the length frequencies for the two sexes were combined in deriving the growth curves.

VII Tagging study

(i) Methods

A total of 2407 live mackerel obtained from the comercial fishery were tagged in 1966. The live fish were transferred directly from the capture gear into holding nets suspended in the water which allowed fish to be kept in good condition for at least an hour. Each fish was dipped from the retaining net and held gently at the head and tail in an upright position on the gunwale. The fish were marked with red Watson-Larsen tags, prepared in lots of 100 , with each tag in a lot bearing the same code. If any lot was not completely used during a single day of tagging, the remainder of that lot was destroyed.

Two methods of application of the tag were employed (Fig. 13). In the first, a modified sewing needle with its contained tag was thrust through the skin between the first and second dorsal fins. After removal of the needle, the barbed tip was inserted into the opposite end of the hollow plastic shaft to form a ring. This operation was difficult to perform under field conditions but was used to mark 410 fish. In the second method of application, a hypodermic needle (No. 12) was used to insert the barbed end of the tag into the dorsal muscles just posterior to the first dorsal fin so that the barb of the tag hooked on the posterior fin rays of the first dorsal, then the needle was withdrawn.

Each fish was released immediately after the tag was applied. A reward of $\$ 1.00$ was offered for the return of each tag and for information about the place and date of capture.
(ii) Results

The results of this tagging program during the summer of 1900 are given in Table 12, a more detailed tabulation of the results is found in appendix VI.

The single recapture from the tagging at St. Johns Is., N. S., on June 9 was made in the vicinity of tagging, 13 days later. Three of the recaptures from the tagging at Clarkes Harbour on June 13 were made in the vicinity of the tagging from one to 27 days later. The other three recaptures were made along the coast of Cape Breton. One of these, taken 12 days later at Ingonish, was 660 km northeast of the release site while the other two were recaptured 29 days later and 500 km from the release site at Fetit de Grat and West Arichat within a few km of each other. Five of the recaptures from the tagging at Clarkes Harbour on June 20 were within 24 km of the release point. The other recovery was questionable since the tag was found on board a swordfish longliner among bait which was believed to have come from St. Margaret's Bay.

All recaptures from the tagging at French Village, St. Margaret's Bay, on July 23 were made within the Bay. Fourteen recoveries were made within two days of tagging and these fish were released again. The remaining ll recaptures were inade from 4 to 78 days later.

There were only six recaptures from the tagging in the

Gulf of St. Lawrence near Malpeque Harbour, P. E. I., all within the vicinity of tagging.

VIII MERISTIC CHARACTERS

(1) Methods
(a) Vertebral numbers - Vertebral columns of 200 fish from the Atlantic coast of Nova Scotia were prepared by boiling the fish and removing the myomers. All units were counted except for the basi-occipital and the urostyle.

Radiographs of 54 fish captured at Provincetown, Mass., September 14, 1966, were obtained using the method of Bartlett and Haedrich (1966). The fish were covered by a mixture of one-half water and one-half ethyl alcohol, and the radiographs were taken at $50 \mathrm{ma}, 30 \mathrm{kv}$, and 30 secs . Radiographs also were taken of 48 fish from Halifax, October 20 , 1966, using exposures of $1 / 10 \mathrm{sec}$ at 70 kv . The vertebrae were counted from the radiographs.
(b) Fin-ray and finlet counts - The rays of the second dorsal and of the anal fin were counted in situ. The first short spiny ray of the anal fin was not counted. The number of dorsal and anal finlets was determined by inspection. In some cases, the anterior finlet appeared to be joined to the second dorsal fin or anal fin and was counted as a part of the associated fin.

The samples used for the counts were obtained from the Atlantic coast of Nova Scotia, the Gulf of St. Lawrence, and Provincetown, Mass., in 1965 and 1966.
(ii) Nesults
(a) Vertebral numbers - Vertebral counts were obtained from 242 fish in Canadian waters and of these, 241 had 30 vertebrae while only one had 31 vertebrae. The radiographs of 54 fish from Frovincetown, Mass. indicated that 52 had 30 vertebrae, one had 29 and one had 28 vertebrae. The difference in the mean number of vertebrae from mackerel of the northern and southern areas is not significant.
(b) Fin-ray and finlet counts - The mean counts of the fin rays and finlets are given in Tables 13,14 and 15 and the frequency distributions are found in sppendix VII, a, b and c.

Both the samples from Provincetown, Mass., and the sample from Halifax, N. S., in l956́, belonged to the 1965 yearclass. The difference between the mean counts of second dorsal rays from the two areas shows that the Provincetown sample had a significantly higher count than the Halifax sample ($\mathrm{F}<0.05$) . The Provincetown sample also had significantly higher counts than any of the other samples ($\mathrm{P}<0.05$). The samples from the atlantic coast of Nova Scotia in May and June had smaller mean counts for the second dorsal fin rays than the samples from the Gulf of St. Lawrence. ($\mathrm{P}<0.05$)

The mean counts of the rays of the anal fin and the counts of the dorsal and anal finlets did not differ significantly in any of the samples.

IX BIOCHLMICAL SPudIzS

(i) Introduction

Lactate dehydrogenase (LDif), which catalizes the inter-
conversion of pyruvate and lactate with the aid of the cofactor nicotinamide adenine dinucleotide (NaD), exists as a tetramer of two monomeric units A and 3 , controlled by separate gene loci (Markert, 1965). The combination of these monomers results in five multiple forms (IDH-1 to LDH-5) or isozymes, in mammals. The isozymes have species specific patterns and different concentrations of these isozymes are found in different tissues. LDH-1 consists of four B-monomers, LDE-5 consists of four Amonomers, whereas LDH-2, LDH-3 and LDH-4 consist of combinations of the A and B monomers (e. $E \cdot ;$ LDH-2 is AB3, LDH-3 is $A_{2} B_{2}$ and IDH-4 is $A_{3} B$). LDII-1 predominates in tissues richly supplied with oxygen while LDH-5 predominates in tissues subjected to periodic hypoxic conditions.

The five isozymes of LDH frequently show sub-banding. Narkert (1965) has suggested three explanations: the existence of additional monomers under the control of further gene loci; the existence of permutations of the monomers within the five major bands (e. g.; a tetramer with a sequence a ABB might differ in mobility from a tetramer with the same subunit composition but with a different sequence $A B B_{A}$); the existance of mutant alleles at any of the existing loci.

The LDH pattern of fish differs considerably from the mammalian pattern. Narkert and Faulhaber (190́5) stuãied 30 species of teleosts and found isozymes IDH-1, 2, 3, or 5 among the various species. The majority of the species, including the Atlantic mackerel possessed only two bands. An additional minor isozyme of LDF with a strong negative charge was found in eye
tissue of most of the species.
Malate dehydrogenase (MDII) catalyzes the interconversion of pyruvate and malate with the aid of the cofactor NaDP. Henderson (1966) found two isozymes of MDH in mice, one in the mitochondrial fraction of the heart muscle and the other in homogenate of liver. These isozymes are composed of subunits under genetic control.

Aspartate aminotransferase (AAT) occurs both as a bound and a soluble enzyme and has been shown by various workers (reviewed by Odense et al 1906 a) to possess different electrophoretic mobility, molecular weigit, solubility and pil optima. The mitochondrial and soluble forms of the enzyme in herring are under separate genetic control, and the soluble anT is a dimer (Odense et al 1956 a). The sub-banding in the soluble form was caused by a mutant allele.

The determination of the allele frequencies of mutant forms of the isozymes of cod (Gaqus morhua) and herring (Clupea harengus) lactate dehydrogenase (LDH) and of herring aspartate aminotransferase (AAP), has been used to characterize populations of these species (Odense, Allen and Leung, 1966, b, c). In the hope that similar polymorphism would be found among mackerel enzymes, numerous enzyme systems (malate dehydrogenase (IDH), LDH, AAT and esterase) were examined by gel electrophoresis of tissue extracts followed by specific staining for enzyme activities.
(ii) Methods

Nackerel were collected in 1906 along the atlantic coast of Nova Scotia and in the Gulf of St. Lawrence from May to October; and irom Provincetown, hass., and sumson, N. J., in July
and September. The appropriate organs were removed from fresh fish and either extracts were made immediately or frozen for later extraction; or the whole fish was frozen, the appropriate organs removed and extracts were made. The Iish were also measured and the ages and sexes were determined.

Extracts of skeletal white muscle, skeletal red muscle, heart muscle, brain, eye, kidney, liver, spleen, intestine, gills, testes and ovaries were prepared by blending one part of the tissue with two parts of a 0.25 N sucrose and 0.001 M , BDPA (ethylenediaminetetraacetic acid) solution for one minute at 0 C in a Servall Omnimixer. After the preliminary work, a combined extract of heart and white skeletal muscle was used. The extracts were contrifuged at $12,000 \mathrm{~g}$ for 30 minutes and the supernatants were used directly for electrophoresis.

Electrophoresis of the extracts was performed by the vertical starch-gel procedure of Smithies (1955) using a tris-EDIA-borate buffer (Odense et $\underline{2 l}$, 1960 a), consisting of 15.1 g . tris (hydroxy-methyl) aminomethane (fris), 1.5 g EDPA and 1.15 g boric acid made up to one liter with distilled water, adjusted to pH 8.6. The running time was 6 hours at a constant voltage of 400 and a current of $40-50 \mathrm{in}$. on 18 hours at 300 v at a current of 25-30 mi. Following electrophoresis, the starch blocks were sliced in half, stained and photographed using a Folaroid lip-3 camera.

The LDil bands were stained by incubation of a halfblock in a staining mixture which was essentially that described by Dewey and Conklin (1900) and modified by Odense et al (1906 a) and which consisted of tris-llCl buffer, 0.2 H , pli $8.0,12.5 \mathrm{ml}$;
sodium-L-lactate, 2.0 M , pH $7.0,1.5 \mathrm{ml}$; p-nitro-blue tetrazolium salt (NBT'), $0.5 \mathrm{mg} / \mathrm{ml}, 37.5 \mathrm{ml}$; phenazine methosulfate (PMS), $0.2 \%, 0.6 \mathrm{ml}$; nicotinamide-adenine-dinucleotide (NaD), 350 ml . The gels were developed from one to three hours depending on the LDH activity and washed in distilled water.

The procedure for the development of the MDH gels was similar to that used for LDF, with malic acid, $0.25 \mathrm{M}, 1.5 \mathrm{ml}$ being substituted for sodium-L-lactate.

The NAD-analog was used in place of NaD in the staining mixture for LDH and MDH in a few cases.

The AAT activity was detected by incubation of one-half the gel in a staining mixture described by Odense et al (1906 a). The staining mixture consisted of 25 ml of the buffered solution (containing $146.1 \mathrm{mg} \alpha$ ketoglutaric, 532.4 mg L-aspartic acid, 5.68 g sodium orthophosphate di-hydrogen $\left(\mathrm{NaH}_{2} \mathrm{PO}_{4}\right), 2.0 \mathrm{~g}$ polyvinylpyrrolidone (PVP), $0.2 \mathrm{~g} \mathrm{HD}_{\mathrm{A}}^{\mathrm{A}}$, dissolved in water to make 200 ml of solution adjusted to pH 7.4 ; and 25 ml of a diazonium salt solution (consisting of 5 mg , 6-benzamide-4-methoxy-m-toluidine diazonium chloride per millimeter). The gels were incubated for 30 minutes to one hour and then washed in distilled water. When extracts from frozen tissues were used, pyridoxyl-5-phosphate was aided to the extract prior to electrophoresis, to restore activity.

Listerase activity was determined by incubation of the starch gel in a staining mixture adapted from Lawrence, Melnick and Weiner (19б0) containing tris-malate buifer, $0.1 \mathrm{~N}, \mathrm{pH} 5.2$, 50 ml ; 8-iydroxy-quinolene glucuronide, 15 mg ; and 20 m , b blue
kik salt. The starch-gels were developed from one to two hours and washed in distilled water.

The effect of temperature on the enzymes was tested by subjecting sone of the extracts to temperatures of $20 \mathrm{C}, 35 \mathrm{C}$ and 50 C for 10 minutes prior to electrophoresis.

The starch-gels, following electrophoresis were tested for two additional enzymes, isocitric dehydrogenase and carbonic anhydrase.

The staining mixture for isocitric denydrogenase consisted of the following components (Henderson, 1965): $45 \mathrm{ml}, 0.2 \mathrm{H}$ tris/ $\mathrm{HCl}, \mathrm{pH} 8.0 ; 5 \mathrm{ml}, 1 \mathrm{mg} / \mathrm{ml}$ nitro-B-tetrazolium; $5 \mathrm{ml}, 1.6 \mathrm{mg} / \mathrm{ml}$, phenazine methosulfate; $3 \mathrm{ml}, 0.1 \mathrm{~N}$, sodium isocitrate; 1 ml , $10 \mathrm{mg} / \mathrm{ml}, \mathrm{NADP}$; and $0.2 \mathrm{ml}, 0.25 \mathrm{~N}, 1 \mathrm{ncl}$.

The staining mixture for carbonic anhydrase consisted of a solution B (1 g sodium bicarbonate; $50 \mathrm{ml}, 0.1 \mathrm{M}$ sodium sulphate) which was added to solution a (1.0ml, 0.1 II cooalt sulphate; and $5 \mathrm{ml}, 0.05 \mathrm{k}$ sulphuric acid) and incuaated for two hours, washed in distilled water for two minutes and then in a dilute solution of amonium sulphite for one minute (after fearse, 1951, p 214-915).
(iii) results
lackerel were found to have three main bancis of LDH
activity (Fig. 14) which correspond with IDH-1, 3 and 5 in the manulian system. LOH-1 predominates in the heart, LDH-S predominates in white skeletsl muscle and LOH-3 appears as a much weaker band in both muscles and is often absent in extracts from frozen tissues. Skeletal red tuscle, spleen, gill, ovary, kidney, brain and eye all showed the three main bands of LDri-1, 3 and 5 .

When the NaD-analog was used, the LDII-5 appeared as a stronger band than LDH-1 while LDUI-3 was not present.

The kidney showed an extra isozyme band which was strongly cathodic. This was also present in smaller concentrations in the liver and intestine where it was the only band present (Fig. 14). Temperatures of 50 C for 10 minutes did not destroy activity of this band, but activity was less after freezing. However, some activity was still present after a year storage at -15 c but this was destroyed by subsequent exposure to 35 C for 10 minutes after thawing. The LDH band from kidney reacted weakly with the NAi-analog.

The brain and eye also showed extra isozymes (fig. 14). A strongly negative isozyme, LDH-e, which migrated rapidly towards the anode, and was prominent in the eye but also present in the urain. A band, LDII-b, wich migrated slower than LDH-e but faster than LDH-1. It was prominent in the brain but also present in the eye and present in the heart as a faint band. The brain showed two additional bands; LDH-bl, located between LDHI-b and LDH-1, and LDH-be, located half way between LDI-I and LDH-e. A faint band of LUIT-b工 was also present in the eye and in addition two other faint Lands (IDH-e \underline{e}_{1} and LDH-e \underline{e}_{2}) were present in the eye very close to the main eye band, LDH-e.

Two main bands of liNH activity could De detected in extracts of heart and white skeletal muscle. \& third stiongly negative band was present in extracts from liver. A cathodic NDII band was found in extracts from kidney wirich corresponded witir the LDII-k band.

The LDH activity of combined heart and muscle extracts of 127 mackerel from the northern area and 95 mackerel from the southern area, ranging in length from 135 to 395 mm , in age from 4 months to 7 years, and representing all stages of maturity and both sexes, was identical with no polymorphism demonstrated (Fig. 15). The LDH patterns from 10 kidneys from each area were identical, although the kidneys exhibited an additional band of LDH activity.

The patterns of MDH activity of combined heart and muscle extracts of 27 mackerel from the northern area and 50 from the southern area were all similar.

The bands of AaT activity were diffuse and difficult to identify but two bands representing the bound and soluble isozymes were present. Two bands of esterase activity were detected in extracts from heart and white skeletal muscles.

The bands of esterase and AAT activity were dilfuse and not clearly defined but there was no apparent differences in the patterns of the combined heart and muscle extracts of these two enzymes from the two aceas.

No activity was found for isocitric dehydrogenase or for carbonic dehydrogenase.

X DISCUSSION

(i) age and growth

The first attempt to determine the age and growth of the Atlantic mackerel on the North American coast was made by Captain atwood in 1856 (Bigelow and Schroeder, 1953). Fry measuring 50 mm were found in lassachusetts Bay in July about
a month after the completion of spawning. In august they measured 90 to 115 mn , and in October 165 to 175 mm . all were considered to be fish hatched in that year. Higelow and Schroeder (op. cit.) state that fish of the year average 200 to 230 mm in fork length in the autumn. The size of these fish varies from year to year. Fish sampled in November, 1927, measured 220 mm while in Noventer, 1928 , the length was 250 mm . Both sizes were assumed to be representative of fish in their first year. In the spring and early summer of the second year, the average length is 230 to 255 mm and by late autumn they have grown to about 305 to 330 mm and in some years to 355 mm . Age-I fish from different areas appear to grow at different rates. Nackerel taken in the Gulf of Maine are larger than those at Noods Hole, Mass., while they in turn are larger than those near Long Island, H. I., (Sette, 1950).

The nature of age and srowth of the atlantic mackerel in European waters has been more controversial than for those in North American waters. Steven (1950) reviewed the two schools of thought. One of these, supported by Ehronbauin (1923) and more recently by Le Gall (1939, 1950), places the length of the mackerel at the end of its first year of growth at 100 mm . The other, supported by Nilsson (1914) and Bteven (1950), place the length at the end of the first season of growth at 200 mm . Evidence supporting the more rapid growth in the first year was supplied by Dannevig (from Steven, 1950), who showed growth to 150 mm by mid-September including a 25 mm increase in 25 days from early August to September 1.

Bvidence from this study on the growth of mackerel during their first year is sparse. Attempts to capture fish-of-the-year in August, 1965, and 1966 using I-meter plankton nets and Issacs-Kidd trawls were unsuccessful. Fish of 130 to 190 mm are found occasionally along Cape Breton in the autumn (VcGallum, 1925) but none were found during this survey. Fish obtained from Rumson, N. J., in September, 1960, averaged 143 mm in length; one fish of 180 mm was captured at Woods Hole, Hass., in September, 190́6, and evidence from sportsfishermen indicated this size was comon at that time. Six fish ranging in length from 159 to 200 mm were obtained from catches made by albatross IV in October and November, 1966. All these fish were assumed to be fish-of-theyear (Age-0), as examination of the otoliths showed only an opaque nucleus. If mackerel reach only a length of 100 mm in the first year, occasional catches of small fish should occur the following spring and summer but this does not occur. The smallast fish taken in the spring and summer measured 165 mm but most of them are over 200 mm . Therefore, it is assumed that mackerel on the North american coast usually reach a length of around 200 mm by the first auturn. The very small fish (95 to 125 mm) measured in October, 1962, are an exception. These fish were not found in the length frequencies for the following years. In addition, the 1962 year-class was found subsequently to be a poor year-class. The slow growth of these fish may have resulted from the below average surface temperatures in the Gulf of st. Lawrence during 1902.
(ii) Sex, trowth and maturity

Females were significantly loreer than tine males in the 19,b and $1 / 13$ samples. Gatstang (1i) ii) found that fomale mackesel were 4 mm larger then the males in wators off ingland. He explained the differences as a result of the cessation of srowth in males. Misson (1914) and Bigelow and jcmoeder (1953) claimed that the Lwo sexcs did not differ in lenstia.

Whe sex ratio was l. $)$ m mie lo l.j) fentules which
a/reas witli Steven (1950). Rilsson (1)1+) Iound a 1.28 to 1.00 vatito in Cavour or males, while Jasstang (18)8) found a 1.)J to 1.1. 1wtio in favour oi fenales.

Jexus 1 matuify occuss in the thind year (aEu-IT), at

 with a transition from fast to slow growtil.

The sex ratio is apploximabely equal so the difference in size betwoon the sexes cannot be attributed to a niciaer mortility of the larger malas. The piesence of few smaller mature malos at age-II way indicate that the diflerence in len th between the sexes is present prior to maturity, wut the sea of i moubace fish is difficult to determine, so no information on tire sex-length 1 clationsiaip for these fish is available. The diffoience in length betwoon the sgies is not liree and does not
 of males Gian lemales spawn at are-II. as the onset on sexual mabliriby decieses tire growth rate, a higher por cent of imature fonelas therI could explain the lerger avoraje sizc of the
females in subsequent years.
(iii) Growth curves

The 1959 year-class was found to be dominant in June along the Atlantic coast of Nova Scotia and in the Gulf of St. Lawrence from July to September in 1965 and 1966 . This yearclass can also be followed in lengti frequencies of samples taken from 1900 to 1964 . The measurements for 1960 and 1961 (Bergeron, 1961, 1962) were taken in the Gulf of St. Lawrence while the measurements for 1962 to 1964 were taken in southwest Nova Scotia. The same length groups found off southwest Nova Scotia in June are found later in the Gulf of St. Lawrence and hence these length measurements can be used to derive a growth curve for the 1959 year-class. The mean lengths of the 1959 year-class for 1950 to 1904 were calculated from the length frequencies. The length frequencies for 1962 were clearly bimodal and the minimum frequency (345 mm) between the two modes was taken as the upper size limit of the 1959 year-class. The data from which the growth curve wes derived are given in Appendix VII a and the resulting growth curve which is compared to those derived from otolith readings in 1955 and 1966 is shown in Figure 16. The 1959 year-class is swaller at each age than any of the subsequent year-classes. Figure 17 compares the growth rate of the 1959 yearclass with that of the 1923 year-class from New ingland waters (Sette, 1950), and with the grovth curve obtained for mackerel from the southwest coast of Ingland (Steven, 1950)(1). The (1) The measurements of Steven (1950) were converted from total length to fork length by FL=.91, II. Steven (op cit) does not state what measurement was used but it is assumed that he used the standard measure prescribed by the International Commission for the Exploration of the Sea (ICES) which was total length (Anon. 1939).

1923 year-class from New ingland waters showed a much Puster growth rate than any of the other growth curves. The growth cuave ol the はり! yoan-class from vanadian waters was similur to that from n; lish waters in the first two years. It showel a Puster growth in the third year and a similar growth rate therearter, but was larger t each age.

Information about the growth of fish is often obtained from scalcs of otollths by using the measurements of the successive otolith annuli to bac.r-calculate the lenzths of the fish. a lincar folntionship between otolith annuli widtis and boly lengta was ascomad. The resulting back-calculated lenetis of the fish whe slinwn in Pigure 1'. Phu back-calculated lengtha it younger ages is smaller than for the actual measurcl lengths for those Sain ases for bue 1959 yeur-class. Cils "Lee's phenomonon" (wicke1, 1958 , p. 188) may be all artifical one, caused by the ass mption of an incorrect relationsaip between the otolith annuli and the body length.
a graphic presencation of the felation $L_{t+1}=L(I+N)+$ ble from $\sqrt{2}$ alford $\left(19^{\prime}+5\right)$; where L_{t+1} is the lengtit at any are $t+1, L$ is the asymptotic or maximum length of the ifisti and is is the slope of the line; is shown in rigure ld. Growth conpormed more or less to a straight line wilich was cslculated by the method of least squares. Mis line intercepts the 45° construction line at 301 mm which represents the maxinum lenzth fo: the lyyg yeazcluas irom Canadian waters. The preliminary infozetion from 1) $\%$ indicates that the mean lenst of this year-cless is 355 mm

(1965) have recently suggested that the concept of asymptotic glouth does not apply to many fish populations. The growth of the 1959 year-class of mackerel would suggest that the Walford plot does not adequately describe its growth.
(iv) (irowth of the different year-classes

The 1966 year-class which was represented by only a
few individuals, taken between September and october, ranged in size from 125 to 200 mm .

The 1965 year-class sampled in 1966 can be divided into three groups which are recognized by different lengths (Fig. 19). One group was sampled at Provincetown, Nass., another at Pubnico, If. S., and the third in St. Margaret's Bay, NI. S. The group ac Provincetown was sampled at the beginning of July and in mid-September. The measurements of the first annuli were identical for the two samplings indicating that they belonged to the same group of fish. Therefore, the 27 mu increase in fork lengtin between July and September is a result of growth. No otoliths were available for the group from Pubnico but the increase in length with time indicates that the same group stays around Pubnico during the sumner, and the increase represents growth. The July 6 sample is much smeller than the others while the August 4 sample is much larger and these may represent other groups which are migrating along the coast. In fact, the august 4 sample may have been the same group as the one in St. Kargaret's Bay. The 1905 , zear-class from St. Kargaret's Bay is larger than the other two groups. Tagging results from St. Nargaret's Bay show that this group remains in the Bay throughout the sumer.

The sample from Halifax in October may be from the same group found earlier in St. Margaret's Bay and if so, represents a 31 mm increase in length in three months. This sample also showed the largest first annulus of any year-class. The length of these Aco-I fish was equal to the lencth of the 1959 year-class at age-II, both measured in the auturn.

The 1904 year-class comprised 72 jo of the samples from southwest Nova Scotia and the By of Fundy during July and Ausust, 1965, and 13 ; of the samples from southwest Nova Scotia and the Gulf of St. Lawrence in 1960. Growth in the first year, as indicated by the first annulus of the otoliths, was rapid. The difference in length between this year-class in 1965 and 1900 was 53 mm . This year-class was also present in samples from lassachusetts. The mean fork length and the mean length at the first annulus were not significantly different ($P>0.05$) between this year-class in the two areas. The variability of this 190^{4} year-class, both from Canedian and United States waters, is larger than that of any of the other year-classes. This may indicate that the members of this year-class were spawned under more variable conditions than normal or that the spawning occurred over a lonser time than usual.

The 1953 year-class is present in the length samples irom southwest lNova Scolia in 1254. In 1965, it comprises 5, of the Nay and June samples from southwest Nova Scotia and 12,0 of the July and august samples from there and from the gulf of St. Lawrence. In 1956, it comprised 6, of all the samples. The differcnce in length between 1905 and 1955 was 30 man showing
rapid growth between Age-II and Age-III. This year-class was also present in samples from Massachusetts, but neither the mean fork length nor the mean width of the first annulus were significantly different ($F>0.05$) than those of fish from Canadian waters.

The 1906 year-class may be the first progeny of the 1959 year-class. It forms less than 5,0 of the fish sampled in 1955 and 1966. It is obvious in the length frequencies from the October 1962 sampling as very small fish (95 to 125 mm). This year-class has been a poor one, perhaps due to below average temperatures in the Gulf of St. Lawrence in the year it was spawned.

The 1961 year-class comprises less than 10,0 of the samples in 1905 and 1966 . This year-class first appears in the length frequencies in July, 1952, in southwest Nova Scotia. Graham (unpublished records) identifies these length frequencies, by age-determination from otoliths, as belonging to the 1961 yearclass. The growth of this year-class has been faster than for that of the 1959 year-class. The 1961 year-class equalled the 1959 year-class in size in 1955 and 1956.

The 1900 year-class comprises 7% and 16% of the samples in 1965 and 1966 , respectively. The length irequencies between 1905 and 1956 do not indicate the presence of this year-class but it may be masked oy the dominant 1759 year-class. The mean fork length of this year-class and the mean widths of the first fous otolith annuli are not significantly different ($\gg 0.05$) than those of the 1959 year-class. The 1960 year-class either had almost identical growth to that of the 1959 year-class, an unlikely situation in view of the variation in both fork lengths
and annuli widths shown by the other year-classes, or the 1900 year-class is an artifact, actually representing the 1959 yearclass. The 1959 year-class showed very poor growth in 1962, probably as a result of lower surface temperatures. Observations while reading otoliths, suggested that the 1902 sumner zone was difficult to determine and thus sone 1959 year-class fish would be read as 1960 year-class fisi. .. smaller growth increment Was not found when measuring the annulus but this nay be due to the units of measurement being too coarse. The 1960 year-class was probubly a poor year-class and is no longer present.

The 1959 year-class wifich has been dominant since 1960 comprised 70, of the lay and June samples in 195 , and 44_{n} of the samples in $190^{\circ} 0$. The mean fork lengths for each age and the mean widths of the successive annular rings on the otoliths are smaller than for any of the other year-classes, except for the 1960 year-class. The size of this year-class at rge-I was shaller than for the 1965 year-class but the growth rate was about equal (Fig. 19). The increase in sizo between Age-I and Age-II was large (35 mm) while the increase in size between age-II and a*o-III was small (5 mm). It has been shown earligr that first spawning normally occurs at ase-II and that this is accompanied by a transition from fast to slow growth. Thus, first spawning for this 1759 year-class may not have occurred until age-III, in 1952. The surface temperatures for the Gulf of St. Lawrence in 19,2 were below normal and this along with first spawning nay have accounted for the poor growth in that year.

Tie slow growth of the 1959 year-class cannot be corLelated with below average surface temperature or a poor crop
of zooplankton. In fact, studies in the Bay of Chaleur showed that the zooplankton were more abundant in 1959 than any of the other six years during which the abundance of plankton was measured (Lacroix, 1965). The dominance of this year-class indicates that a large number of fish was present in this year. There is a suggestion, therefore, that growth may be density dependent.
(v) Recruitment

The fluctuation in abundance of the comnercial catch of mackerel is very dramatic (Pig. 5). Various theories have been postulated to account for these fluctuations, including migration to Europe and overfishing, for which protective legislation was passed in Nassachusetts as early as 1670 (Goode, 1870). Sette showed that fluctuations in abundance were the result of differences in survival of the various year-classes. The results of the present survey support Sette's theory, as the increase in catch since 1959 can be attributed to the successful survival of the 1959 year-class. While this year-class was successful, subsequent year-classes were not. The reasons for this are not clear but a few suggestions can be made.

> The relative success of survival of a year-class may be dependent on the initial numbers of eggs spawned and the suosequent survival of the eggs and larvae, but for most marine spocies, including mackerel (Sette, $19+3$), it is the latter which is important. The comercial catco of mackerel in 1959 for Canadian waters was the smallest since 1910; also, fish which could have spawned in 1959 were scarce in the samples taken in subsequent years (Fig. 9). Thus, the success of the 1959 year-
class may have been a result of the survival of a large proportion of larvae from a relatively small number of eggs.
liost of the spawning of the northern population occurs over the Magdalen Shallows in the Gulf of St. Lawrence. This area becomes strongly stratified as to temperature and salinity, with surface temperatures as high as 20 u . Norley (1933) showed that development and survival of mackerel eggs occurred only between 11 c and 20 c with ló c being optinum under laboratory conditions. Sette $\left(19^{4}+3\right)$ found the efses to be most abundant in the sea below 11. C . Worley (op cit) collected the eges from water of lo d and it appears that the high mortalities below 11 C were a result of the decrease in temperature from 16 C to 11 c . Thus, a sudden decrease in temperature such as oecurs in the Magdalen Shallows, caused by oscillation of the thermocline induced by wind (Lauzier, 1957 a), would increase mortality of the eggs and perhaps also of the larvae. A sudden decrease in surface temperature did occur at Grande-iviere in 1962 when the temperature dropped from 11 C to 6 C between July 19 and 20. If this condition was general throughout the northwest area of the Gulf of 3t. Lawrence, it could have been one of the factors responsible for the low recruitment of the $1,>2$ year-class. In addition to these sudden decreases in temperature, Paylor, Bigelow and Graham (1957) using a three-year lag period have showed a positive corielation between mackerel landings and air temperatures. Phus, in year's with below average surface temperatures or retarded spring warning, the development and growth of the eggs and larvae woul be decreased, thus increasing the toll by predation on the vulneroble planktonic stages. The surface temperatures from

Entry Island for the sumner of 1959 were normal whereas for 1962 they were one to two degrees below normal (Appendix III). This below-average temperature may also have contributed to the poor survival of the 1962 year-class.

MeCallum (1925) showed that normal development occurred at salinities as low as 19.6%. The lowering of salinities caused by precipitation and surface run-off, in addition to the usual spring incursion from the $3 t$. Lawrence Kiver, thus would not affect directly the survival of eges and larvae. However, it could affect their survival indirectly by lowering the density of the surface layer and causing the eggs to sink to the subsurface waters where the cooler temperature would slow growth and development.

The abundance of zooplankton is an important factor in the survival of mackerel larvae (Sette, 1943). Information from the Bay of Chaleur indicates that the crop of zooplankton was more abundant in 1959 than in any of the years 1955 , 1960 to 1962 and 1964. However, it is not known if this represents the general condition throughout the Gulf. in unusually large crop of plankton was correlated witil successiul recruitment of five species of fish in Lake srie (Scott, 1950). Evidence from other animals which heve pelagic larvae and spawn in the liagdalen Shallows suggests that the successful recruitment of mackerel was not paralled by lobster (Scarratt, 1963), plaice or cod (Fowles and Kohler, personal communication).

Sette $(19+3)$ showed that piolonged winds from abnormal directions were responsible for the poor survival of the 1932
year-class in the southern population by drifting the larvae away from the plankton-rich nursery areas. Frolonged southerly or southwesterly winds in the Gulf of St. Lawrence would cause the eggs and larvae to move to tie cooler and less productive Laurentian Channel and Gaspe coast, thus decreasing survival. In addition to the enviconmental factors influencing the recruitment of mackerel, density-dependent causes of mortality among eggs and larvae may be important in survival of a yearclass. तicker (1954) suggests tilut a combination of densitydependent mortality with the mortality caused by environmental factors could account for the morked oscillation in mackerel abundance. The high production of recruits by a small number of spawning adults in 1959 and the low production of recruits by a lurge number of spawners in subsequent years, fits the theory of density-dependence. Indeed, in mackerel there is a generally recognized inverse correlation between the numbers of spawners and the success of recruitment (Bigelow and Schroeder, 1953). The two factors which may be responsible for densitydependence of recruitment in mackerel, are cannibalism and competition for food.

Nackerel have been reported to feed on eggs and larvae of various specics of fish, and small mackerel (Bigelow and Schroeder, 1953). They feed by both somewhat passive pharynzeal filtering and by active pursuit of rey. Goode (1884) claimed that mackerel in the Gulf of $3 t$. Lawence do not feed during the spawninj poriod because they could not be taken on hooks at thet time. However, durin the present stuay spawning mackerel were captured on hooks and undswater observations plus inspection
of stomach contents of purse-seine caught mackerel showed that they were feeding on zooplankton during and inmediately after spawning. Thus, passive cannibalism of eggs and larvae by adult fish may occur and in years of abundance of adults could be a significant factor in mortality of eggs and larvae.

Competition may also be significant in controllins survival of a year-class. The 1959 year-class grew more slowly than the other year-classes in the first year as a result of competition within the year-class, in spite of the apparent abundance of zooplankton. Thus, especialiy in years of low abundance of zooplankton, this within year-class competition may be an important factor in determining success of recruitment. (vi) Distribution and migration of the mackerel in Canadian waters
(a) Wigration of adults - The disappearance of the mackerel from the surface waters during the winter has long been the subject of controversy, especially among Canadian and United States biologists in the latter decades of the 19th century. United States biologists claimed that the schools of mackerel migrated in the autunn to southern waters near Cape Hatteras where they overwintered, then with the warming of the waters in the spring, they moved northward as far as the Gulf of St. Eawrence, and hence United States fishermen should have the right to follow the fish into the Gulf of St. Lawrence and fish there. Canadian biologists, however, quoting records of winter catches of mackerel, stated that the nackerel moved seaward in the auturn, overwintered just offshore, and returned to coastal waters during spring warming and hence United States fishermen did not have the right to fish
in the Guif of St. Lawrence (Goode, 1884). The Treaty of Washington, 1873, granted United States fishermen the right to fish in the Gulf of st. Lawrence, but in 1877 the Halifax Commission determined that the zovernment of the United States should provide financial compensation for the privilege of fishing in the Gulf. This controversy exisied until Setie (1)50) plotted the recorls of occasional winter cutches, then suggested that thesc nackerel pass the winter at mid-depths in water around 70 , along the edge of the continental shelf fron Sable Island to Cape Hatteras. Recent catches of mackerel by ussian fishermen from 1964 to 1966 indicated that there are large quantities of mackerel in the winter on the south and northwest slopes of Teorges Bank (ICNAF, Dartmouth, 1. S., unpublished records). Prom 1926 to 1935 se ite (1950) analyzed a considerable quantity of length measurements from commercial catches and combined this with the results from tagging experinents to indicate the existance of tiwo populations ('contingents') described as 'northern' and 'southern' with discrete spawning areas in the Gulf of St. Lawrence and from Gape Hatteras to Long Island, respectively. Sette also outlined their different patterns of migration (Fig. 20).

The southern population passed the winter in an area south of that for the northern one. Darly in april, the southern population appears between Cape Hatteras and Jelaware Bay moving inshore, then joined by additional schools from offshore it moves north and east, spawning in lay between the coast of New Jersey and Long Island. They then move around Cape Cod to occupy the western half of the Gulf of laine in summer. The auturn withdrawal
occurs in October, with the schools often proceeding as far south as Block Island, ... I., before disappearing from the surface waters.

The northern population, after passing the winter along the continental slope, approaches the coast of southern New Bingland in late May, mixes temporarily with the southern population, then moves to the northwest and is joined by additional schools from offshore. This newly constituted aggregation migrates along the coast of Nova Scotia and into the Gulf of St. Lawrence where it spawns in June and July. Parts of this sometimes remains along the Atlantic coast of Naine, Nova Scotia and Cape Breton Island. In September and October, the northern population withdraws from the Gulf of St. Lawrence, moves southward along the coast of Nova Scotia and through the Gulf of Naine from October to December where a brief mixing of the two populations occurs. The northern population leaves the Gulf of laine near Cape Cod in December.

The analysis of length measurements, the results of tagging, observations of the seasonal distribution of catch and comments made by fishermen during the present study all tend to support the pattern of migration for the northern population as suggested by Sette (1950), and answer some of the previously unresolved problems concerning the migration of this northern population.

The first mackerel sampled from southwest Nova Scotia in late May are larger than those in June. This results from the presence of larger fish (1959 year-class and older) in lay than in June. Juring migrations, mackerel tend to form schools, the
individuals of which are of uniform size and this in turn is related to swiming speed (Sette, 1950). The larger fish swim more rapidly than the smaller ones and would arrive first on the coast of Nova Scotia.

Mackerel which are captured in llay and early June along the southwest cosst of Nova Scotia are assumed to move eastward along the coast and then into the Gulf of st. Lawrence. The length-frequency distributions for 1965 and 1956 show that mackerel found on the Atlantic coast of Nova Scotia in June are similar to those found in the Gulf of St. Lawrence in July (fig. 9). Three of the nine fish recaptured in the tagging study in southwest Nova Scotia in June, 1906, had migrated to Cape Breton. Two of these were recaptured on the same day near arichat within 8 km of each other, 500 kn from the point of release. It is provable the these fish had migrated in the same school. The other six recaptured fish showed that sone schools remain along the southwest coast of Nova Scotia. These tagging results agree with the taeging study conducted by the atlantic Biological Station, St. Andrews, N. B., in June of 1925 to 1928 in southwest Nove seotia (Anon, 1931, Sette, 1950, and unpublished records Fisheries Research Board, 3t. Andrews, 1. .). Of the 53 recaptures in the first three months of that study, 37 showed migration northeast as far as Cape Breton. Only one fisil was recaptured from the Gulf of St. Lawrence. The remainder were recaptured in the vicinity (10), along the coast of laine (4) and one in the Bay of fundy. Chis indicates that some fish remain around southwestern llova Scotia and in the norehern Gulf of kaine during the
summer. The paucity of tagging returns in the Gulf of St. Lawrence from the tagging (1925 to 1928 and June, 1966) in southwestern Nova Scotia indicates that the fish which are found first along the coast of southwest Nova Scotia may be an inshore branch of the main body of migrating schools which remain on the Atlantic coast of Nova Scotia or migrate into the Gulf of St. Lawrence. If so, they must remain in an area or areas where there is no commercial fishery. Comments from fishermen indicate that the largest spring eatches are made in the first or second week of June.

Mackerel which are found at the head of St. Nargaret's Bay in July all tend to remain within the Bay until October as shown by the results of the tagging performed there in 1966. However, this was not the case with fish tagged on June 30, 1927, at the mouth of the Bay. Only one of the nine returns in the first three months was within the area of tagging, six had moved to Cape Breton as far as Ingonish and two were found in the Gulf of St. Lawrence.

The tagging program in the Gulf of St. Lawrence in 1966 yielded only 0.3\% returns, all near the point of release. This low percentage of recaptures may indicate a large population of fish in the Gulf. The tagging carried out in August, 1925, from the lagdalen Islands yielded one recapture near Prince Sdward Island in September, 1925.

In the tagging study in 1925 to $1928,30 \%$ of the tagged fish were recaptured from United States waters (Sette, 1950). These returns confirmed the pattern of migrations proposed by Sette. No recaptures from the tacging in 1956 were made in
the coastal waters of the United States. This absence of returns is not unexpected, since the catch of mackerel in the United States has decreased drastically in recent years and was only 13, 0 of the Canadian catch in 1900 (Table I) whereas from 1925 to 1928 it was four times greater than the Canadian catch (Sette and Needler, 1934).

There were five returns from the tagging in June, 1927, at ist. Nargaret's Bay during the summer of 1928 from New Jersey to cape Cou after the northern population had left this area. Sette (1950) claims thase were stragglers which were injured by the tag attached around the caudal peduncle, and thus were unable to remain with their schools. In alternate suggestion winich he mentions but discounts, is that some members of the northern population in one year may join the southern population in another yeur. This seems to have some validity since these stragglers represent 33% of the recaptures from that tagzing. Tagging studies in other localities in Canadian waters did not yield returns during the following sumners in the area normally occupicd by the southern population. Thus, mixing between the populations nay occur but is not a general occurrence.

The movement of mackerel within the Gulf of $3 t$. Lawrence cannot be determined from the fow tugging returns from there but the montilly statistics of comercial catches sufgests the following movements. Local concentrations appear along the southern shore and the Gaspe coust in July, along the north shorc in aucust, and around the llazdalen Islands and Frince Idward Island in ..degust and jeptember. In vetober, the schools are located along Cape Breton Island sugiesting tidat the mackerel are
leaving the Gulf throu h Cabot Strait. In years of above average surface temperatures, they may move along the east coast of Newfoundland.

In addition to the information on the spatial distribution of the mackerel, the following general information on the nature of the migration was determined.

The movement of the northern population to the Gulf of $3 t$. Lawrence in spring is a spawning migration as indicated by the information on stage of maturity. The mackerel along the atlantic coast of Nova Scotia in June are ripening, whereas those in the Gulf of St. Lawrence are spawning or spent in July. Casual examination of stomach contents indicate that this spawning migration was accompanied by feeding.

The swimning speed of fish-of-the-year in captivity has been demonstrated to be $11 \mathrm{ku} / \mathrm{hr}$ while that of yearlings is $21 \mathrm{~km} / \mathrm{hr}$. One fish in the present tagging study (1966) travelled 660 km in 12 days for an average swimming speed of $2.1 \mathrm{~km} / \mathrm{hr}$. Two returns from the tagging study at St. Margaret's Bay in 1927, showed rapid movement through considerable distances; one travelled 270 km in 5 days and the other travelled 485 km in 7 days, giving average speeds of $2.1 \mathrm{~km} / \mathrm{hr}$ and $2.5 \mathrm{~km} / \mathrm{hr}$, respectively.

The uniformity of size composition within schools
disappears during the summer feeding in the Gulf of St. Lawrence. Observations of purse-seine catches show all sizes are present in one school. Underwater observations of a school encircled in a purse-seine showed that not only were the different sizes of mackerel integrated into one school, but there were other species
of pelagic fish, herring (clupea harengus), gaspereau (alosa pseudoharengus), and shad (Alosa sapidissima), in the same school.

In summary then, the spring movement of mackerel is a spauning migration during which the fish are also feeding. The fish move along the coast of Nova Scotia and into the Gulf of St. Lawrence. The largest fish arrive first, in late Nay. The wain schools usually appear in early June. Ihose which arrive along the southwest coast of Nova jcotia probably represent a branch from the main body of fish and some or these may move westward and stay in the northein part of the Gulf of laine, others may remain in coastal waters of soutiwest liova scotia for the entire sumner, and others may migrate northeastward along the coast of Nova Scotia with some or all entering the Gulf of St. Lawrence. Some mackerel stay along the atlantic coast of Nova Scotia all sumner and tnose wiich enter St. largaret's Bay in July remain there until autumn.

The main body of fish spawn in the Gulf of St. Lawrence over the lagdalen Shallows. After spawning, they disperse and are found throughout the Gulf being more concentrated in the northern part in August, and around the Fagdalen Islands and Prince Edward Island in September. The main body leaves the Gulf via Cabot Strait in Cctober and if the waider temperatures on the east coast of Hew foundland are above average, some schools will move northward along the eost coast. The nackerel schools have leit all of these aceas in December and are assumed to pass the winter in the vicinity of Georges Jank.
(b) Vigration of immature fish - attempts to capture fish-of-the-year in august in 1955 and 1966 were unsuccessful and
information on their migration could not be determined. Age-I fish or 'tinkers' (fishermen's term for yearling mackerel, 220 to 290 mm) from the southern population migrate separately from the adult fish and arrive in the Gulf of Naine about a month later than the larger fish (Sette, 1950). These fish appear along southwestern liova Scotia and in St. Margaret's Bay in July and then remain until October. The appearance of yearlings along the Atlantic coast of Nova Scotia is a regular occurrence (KacKenzie, 1930) which fishernen describe as a summer run of 'tinker' mackerel. The mean lengths of yearling fish in samples taken in 1966 is different at Pubnico and St. Nargaret's Bay. This agrees with Sette (1950) who found different size yearlings in different areas. A few yearlings were found in the Gulf of St. Lawrence in 1966 and fishermen in Prince Edward Island stated that they captured some schools of 'tinkers' in July, 1966. Bergeron (1961) shows that yearling mackerel of the 1959 yearclass were common around the Magdalen Islands in 1960.

In summary then, the yearlings follow a similar pattern of migration to the adults but they appear a month later. They remain along the coast of Nova Scotia, often in large schools, particularly around Pubnico and in St. Nargaret's Bay, occasionally entering the Bay of fundy. They may reach as far as the Gulf of St. Lawrence in years when they are particularily abundant. The migration in the autumn is assumed to be similar to that of the adults, leaving Canadian waters in September and Cctober and passing the winter near Georges Bank.
(c) Factors which may influence the migration of mackerel The start of the spring migration probably is regulated by the
increasing photoperiod with subsequent control by temperature. The recent appearance of mackerel on the east coast of Newfoundland in autumn coinciles with higher than average temperatures ('Cempleman and Flemuing, 1753), suggesting that the migratory movements are simply a response to temperature. Galtsoff (1924) showed that the autum nigration of the atlantic mackerel in the Black Sea in autum is related to a sudden drop in surface temperature, but is independent of the temperature at waich this drop occurs. This migration also is independent of salinity. A similar situation may occur in the Gulf or St. Lawrence as fishertuen claim that strong winds in the auturn (which would increase mixing, thus lowering surface temperatures) cause the fish to disappear.
(vii) Population study

Sette (1950), after analyzing samples from comuercial catches of mackerel over a lo-yeur period, was able to separate the Ablantic mackerel from the coastal waters of North Anerica into northern and soutiern populations (pig. 21).

Differences in leneth and age composition of samples from the northern and southern areas were apparent in 1905 . The 1759 year-class was doninant in the northern population, wille the 1055 year-class appared to be dominant in the soutiern population. However, the samples from the southern population were obtained mainly from inshore traps at Provincetown, Mass., where Sette (1950) has shown there is a concentration of smaller and younger fish during summer and early autumn. Thus, the dominance of the 1965 year-class may not represent the true age composition of this population. Only one sample was obtained from the offshore
purse-seine fishery at Provincetown and in this the 1964 yearclass was dominant with the 1963 year-class next. Only two fish of the 1959 year-class were present in this sample of 100 fish . The difference between the length and age composition of the two populations may indicate a difference between them, but the paucity of samples from offshore for the soutiern population makes this comparison uncertain.

The average fork length of fish belonging to the 1962, 1903 and 1964 year-classes sampled in the summer of 1966 did not differ significantly ($\mathrm{F} \times \mathrm{O} .05$) in the two areas. In addition, the width of the first annular zone on the otolith did not differ significantly for these year-classes from the two areas. The 1965 year-class has already been shown to consist of at least three different length groups. The group from the southern area is intermediate in size between the two groups found in the northern area. Thus, the diriference in size in this 1965 yearclass does not indicate a difference between the populations.

The study of meristic characters failed to show significant differences ($1>0.05$) between the samples from the northern and southern areas for the number of anal fin rays, dorsal finlets or anal finlets. The counts of the dorsal fin rajs did show a significant difference between fish from the two areas but a significant difference was also shown by fish of the northern area sampled on the Atlantic coast of Nova Scotia and in the Gulf of St. Lawrence, yet these fish belong to the same northern population. Dvidence from the biociemical study fails to indicate any genetic differences between the populations. The lack of polymorphism in the LDH pattern of mackerel is unusual as poly-
morphism has been demonstrated in herring and cod by odense et al ($1966 \mathrm{~b}, \mathrm{c}$) and in pollack (1ollochius virens), haddock (ialanogramus aeclefinus), tomeod (Hicrocadus tomeod), and the Atlantic salmon (Salmo salar) by Odense (personal communication). There was no polymorphisn in the other enzymes tested in mackerel in this survey. The lack of polymorphism of the enzymes in mackerel may indicate that they are genetically very stable.

In sumary, differences were found in the length and age composition of the two populations, but these differences may be the result of inadequate sampling of the soutiern population. A difference was found for the counts of the rays of the second dorsal fin, between the two populations, but a similar difference was also found within the northern population. Ho differences were found in the other meristic characters. The enzyme patterns of the two populations were not different indicating that the populations are not genetically distinct.

The lack of differences in growth rate of the 1962, 1963 and 1964 year-classes from the two areas does not conform to the existance of two populations, especially in view of the differences that exist between different year-classes. This similarity of growth rate suggests that these year-classes are actually members of the same population. is already mentioned (in discussion of migration), mixing of the populations may occur (i. e., members of one population in one year may be found in the other population in anotier year). This mixing could happen if the spring spawning migration was controlled mainly by temperature. hapid vernal warming could cause the waters in the Gulf of laine to reach a suitable temperature for mackerel spawning
before the slower-moving schools destined for the northern area had left the Gulf of Maine. These schools would then stay there during the late spring and suamer, spawning and feeding.
(viii) Biochemical study

Nackerel were found to have three major isozymes corresponding to the mamalian LDH-1, 3 and 5. Markert and Faulhaber (1965) found only two main isozymes LDH-1 and 5 but the disappearance of the LDH-3 band after storage at -15 C could account for their findings.

The bands of minor isozynes found in kidney, eye and brain are probably separate from the main system of isozymes and under separate genetic control, similar to the extra isozyme of LDH found in the sperm of many mamals and birds (Blanco, Zinkham and Kupclyyk, 1964). Extra isozymes from the brain and eye have been found in other fish (Narkert and Paulhaber, 1965; Odense, personal communication). These extra isozymes from brain and eye may be part of the same system with the minor bands being different combinations on the LDH-b and LDT-e sub-units. Kohn (personal cominunication) found isozymes in mackerel eye which corresponded to the LDH-b and \underline{e}. She also found that retinal dehydrogenase (RDH) activity was located in the same place on the starch-gel as LDH-b.

The extra LDH isozyme band in the kidney appears to use malate as a substrate. This extra isozyme may represent a nonspecific dehydrogenase.

The weak bands of IDH activity present in samples of frozen tissue (Fig. 15) may be permutations of the monomers within the three major bands caused by alterations in the tetramer structure.
XI. AGKIVONLDECHELSTS

This study was possible only because of the cooperetion of many people and agencies. The risheries mesearch soant of Canada, Diological Station, St. Andrews, it. B., supplise the necessary financial and technical assistance and I woulo like to thank the many people at the station who assisted me. If. S. IV. Pibbo, Frogram Head of Pelagic Investigation, olisinally suggested the study and gave considerable assistance ond advice. Dr. L. Lauzier critically read that part of the manuseript wich deals with the oceanographic environment. liessrs. F. J. Uuningham and P. W. G. Nclullon assisted in the preparation of the figures and the staff of the Felagic Investigation assisted and cooperated in inany ways.

The piochemical section or tais study was currict out in cooperation with the Fisheries ieseareh Board, Technolosical Station, flalilià, ll. S., and I wish to express tatanks io Ji. f. if. Odense for his continuing assistance in the study and in the preparation of that portion of the manuscript.

I an grateful for having received a Daliousie iniversity Graduate student Scholarsiip and for financial aid through a National Research Council of Canada grant, to Dr. E. I. Garside. Dr. Garside supervised the preparation of the thesis and provided meny sugeestions and constructive criticisms. D. I. A. l'charen supplied encouragement and critically read the manuscript. I thank ray fellow graduate stukents at Dalhousie for their iortification of my spirits in moments of despair.

IHmerous other agencies and people assisted in this
work and I also wish to thank them: lif. R. Iivingstone, Jr., of the United States Bureau of Comercial Fisheries, Biological Laboratory, Woods Hole, Mass., nelped and cooperated in obtaining samples from the southern population; Nr. N. Amses collected mackerel from kuinson, N. J.; Mr. M. R. Bartlett of the Woods Hole Oceanographic Institution assisted in obtaining radiographs of mackerel from the southern population; the staff of the Harine Biological Laboratory at Grindstone, Nagdalen Islands, assisted in the collection of mackerel from thele and supplied laboratory space; and the stafi of the Halifax Veterinary Hospital provided use of X-ray equipment to obtain radiographs.

I am grateful to Mrs. F. 3. Cunningham for typing of this manuscript.
rinally, I would like to acknowledge and thank the many inshore fishermen without whose cooperation this study would have been impossible and I hope it will oenefit them.

Anon. 1932. The inackerel isher. In North Anerican Council on Fishery Investigations, Proceedinjs 1921-1930, No. I, Ottawa, pp. 26-27.

Anon. 1939. Mackerel sub comnittee report. Cons. Int. Waplor. Mer., Rapp. Proc.-Verb., III (Rapp. Allantique 1937-1938): 6-8.

Anon. 1266. Int. Comin. Northwest Atlantic Pish., Statistical Bulletin for 1964, 14 .
1967. Ibid, Statistical Bulletin For 1965, 15.
1967. Ibid, Statistical Bulletin for 1966, 16 (In press).

Bartlett, K.R. and A.L. Haedrici, 1966. Technicques in the radiozraphy of fishes, irans. Nner. ish. joc., 95: 99-101.

Berg, L.S. 1940. Classification of fishes both recent and fossil. Trav. Inst. Zool. acad. Sci. U.R.S.j., 5: 37-517. Reprint, 1947, Wdwards Brothers, An Arbor, Wich.

Bergeron, T. 1961. R-pport preliminaire des travaux sur la biologie du Maquereau (Scomber scoubrus L.) du golfe SaintLaurent. Rupp. Ain. 1960, sta. Biol. Mar. Grande-Rivière, pp. 77-85.
1962. Deukieme chantillomage de Maquereau (Somber geo brus L.) aux Iles-de-1a-tadeleine. Rapp. Ann. 1961, Sta. Biol. far. irande-Rivière, pp. 81-84.

Bizelow, H.B. and I.U. Schroeder. 1953. Pishos of the Guif of Hatne. U.S. Fish and ildlile Serv., Pish. Dull. 74, vol. 53, 577 p.

Blackiord, B.L. his 1965. Sone oceanographic observations in the southeast fulf of St. Lawrence--sumer 1,764. Rish. Res. Bu. Garada, is ropt., Oceanos, and Limol. 190: 1-22.

Blanco, A., H.H. Zinchau ant L. Kupchyk. 1964. Genetic control and ontogeny of lactate dehydrogenase in pizeon testes. J. *5p. Zool., 156: 137-142.

Canauian Fisherios Statistics. whual Review 1931-196́. Doninion Bureau of Statistics, Otawa.

Dewey, N.W. and J.L. Conklin. 1960. starch gel electrophoresis of lactic dehydrogenase froa rat kidney. Proc. Soc. Lxp. Biol. Med., 105: 492-4 ${ }^{4}$.

Ehrenvaus, i. 1923. The mackerel larval and post-larval Corms-age groups---food--enemies. Cons. Int. Dxplor. Mer., Rap. 1roc. Verb., 30: 1-39.

Alich, J. L. 1951. Age composition of the southern Califormia catch of Pacific mackercl, 1939-1,40 through 1950-1951. Calif. Div. Hish and Gae, fisin bull. d3; 3-73.

Frasor-brunner, ‥ 1950. The fishes of the fanily Scombridae. Ann. Has. W.t. Hist., Sor. 12: 131-163.

Ualtsoff, AS. 1924. Seasonal nirration of mackerel in the black sea. Ecology, 5: 1-5.
(farstanj, w. 1898. On the variation, races, and migrations of the mackerel, Scomber sconbrus. J. Mar. Biol. Assoc., 5: 235-295.

Goode, G.B. 1884. The nacterel (scomber scombrus). In the Fisheries and Pishery Industry of the United States, Natural History of Uselul Ayuatic iniaals, Sect. 1, pp. 281-303. U.S. Govt. Printing Office.

Thachey, H.B. 1961. Oceanography and Canalian Atlantic waters. Bull. Fish. Res. Bd. Cina a, No. 134 , 120 p.

Hache;, ".B., f. Herwan an N.N. Billey. 1954. The waters of the ICNAF Convention Area. Int. Nom . Northwest Atlantic Fish., Ann. Proc. 4 (19)3-1954): 67-102.

Henderson, N.s. 1965. Isozymes of isocitric deilydrozenase. J. Bexpt. 4001., 158: 263-273.
1966. Isozymes and genetic control of Madp-malate dehydrogenase in mice. Areh. Biochen. Biophys., 117: 20-33.

Kondo, K., and K. Kuroda. 1966. Arowth of the Japanese mackerel - I. Bull. Tokai Rez. Fish. Res. Lab., 45: 31-60. (In rapanese, inglis sumary)

Lacroi., G. 1955. Production de zooplankton dans la Baie-des Chaleurs on 1964. Rapport Annuel 194, Sta. Biol. Mar. Grande-Riviere, pp. 53-88.

Lauzier, L.M. 1957a. Effect of storms on the water conditions in the Masdalen Shallows. Bull. Fist. Res. Bi. Canada, No. 111: 185-192.

1957b. The St. Lawrence sprin: run-oif and sumer salinities in the Magdalen Shallows. Ibid, No. 1ll: 193-194.

Lauzier, L.f., and A.B. Billey. 1957. Foatures of the deeper waters of the Gulf of it. Lawrence. Ibid, No. 111: 213-250.

Lavzier, L.I., R... Trites and H.B. Hachey. 1957. Some features of the surface layers of the Culf of St. Lawrence. Ibid., N. $0.111: 195-212$.

Lawrence, L.it., P.J. Nelnick, and h.E. Weiner. 1960. A species comparison of serum protiens and enzymes by starch-gel electrophoresis. Proc. Soc. Exptl. Biol. Med. 105:572-575.

Lu Gall, J. 1939. Guelque resultants des recherches faites sur la biologie du maquereau de I'Atlantique. Cons. Int. Axplor. Mer., Rapp. Proc.-Verb., III (Rapp. Atlantique 1937-38): 13-14.
1950. Maquereau (Scomber scopbrus L.), observations faites en 1949 sur sa biologie. Cons. Ner. Ann. Biol., 6: 70.

Leim, A.I., and W.B. Scott. 1966. Fishes of the iviantic coast of Conada. Bull. Fish. Res. Ba. Canada, No. $155,485 \mathrm{p}$. Leim, A. ${ }^{4}$. S.N. Tibbo and L.R. Day. 1957. E.ploration for derring in Canadian atlantic waters, 1945-1950. Report of Whe Atlantic Herring Investigation Comittee, Bull. Fish. Kes. Bd. Conada, No. III: 35-83.

Lowenstein, U. 1957. The sense organs: the zooustic-Iateralis systen, pp 15j-10\%. I: A.... ismow (Bd), the physiolozy of fishes, 2, Acalemic Press, he: York.
markert, C.L. 1/65. Developaental geneties, pp 187-218. In the Harvey lectures, Series 59, Acadenic Hress, hew York.

Warkert, C.L. and 1. Fulhaber. 1965. Lactate dehydrogenase isozyme patterns of fisil. J. Lxp. Lonl., 159: 319-332. Hatsui, 1. 1967. Review of the mackerel sener Scouber and jastr 1liger with description of a new species of Mastrelliger. Copeia, 1967: 71-83.
necullua, C... HS, 1)33. The life history of the mackerel Scomber scombrus Z. Prelininary study 192t-1925. i'ish. Res. Bu. Ganada, its Rept. Biol. Sta., No. 53, 26 p.

Hekonzie, R.A. IIS, 1933. Sone aspects of the macterel Iishery of tho Ifalifax area. Nisin. des. Bl. Canada, hu Rept. Biol. Sta. No. $85,15 \mathrm{p}$.

Wilsson, D. 1914. A contriwution to the bloloy of the mackerel. Gons. Inter. Lizplor. Mer., Publ. Circon., wo. 69: 1-61. Odense, P.I., T.I. Allen anl I.U. Leun. 1966a. Wultiple forms of lactate dehydrogenase and aspartic aninotransferese in horriag (ilupea harengus hopenuus L.), cin. i. Biochen., 1, 2 : 1319-1326.

1966b. Ah electrophoretic study of tissue proteins and enzynes of four Ganadian cod populations. vons. Int. Explor. mer., C.... Mo. G:14, 1-6.

Odense, f.ll., T.II. Allen and T.C. Leung. 1966c. The distribution of multiple foras of lactate dehydrogenase and aspartate aninotransferase in samples of two Canadian herring populations. wons. Int. Ezplor. Mer., C.M. iर. $1: 19,1-5$.

Palohoino, J.L. and L... Dickie, 1965. Pood and Growth of Iisues I. J. Fish. Res. Bd. Canada, 22: 521-542.

Pearse, A.E.G. 1961. Histochemistry. 2na Ed. Churchill Ltd., London, 985 p .

Reagan, C.l. 1929. Fishes, pp 305-328. In Aneyclopedia Brittanica, 14th Ed., •

Ricker, W. A. 1954. stock and reeruitinent. J. Nish. Res. Ba. Ganada, 11: 661-680.
1958. Handbook of computations for biologicel statistics of Iish populations. Bull. Nish. Res. Ba. Canada, No. 90, 300 p .
Rickor, W. A. and D. Herriman. 1954. On methods of measurin, fish. Cope1a, 1245: 184-191.

Rounsfold, G.A., and A.li. Averhart. 1953. Fishery science its methods and applications. John Wiley and Sons, New York.

Steven, G.A. 1950. Contribution to the biolofy of the anckerel Scomber scopbrus L. 1iI. Age and grouth. J. Mar. BioI. A.s90c., 30: 54-9-568.

Taylor, C.C., $11 . B$. Bigelow ant I1.W. Grahat. 1957. Cliatio tronds an the distribution of marine animais in Hew England. U.S. Fish Wildlife Serv., Pisil. Dull. 115(57): 149-237.

Tomplenan, W. 1966. Marine Ressurces of iewfoundland. Bull. Rish. Res. Bã. Canada, 2.0. 154, 170 p .

Teapleman, i. and A.M. Fleming. 1953. Lons teral Iluctuations in hydrographic conditions and corresponlin, changes in the aisundance of inarino animals. Int. Com. inoxthest auintic Fish., Ann. Proc. 3(1952-1953): 79-86.

Watford, I.A. 12 4 . A new graphic method of describia; the Growth of animals. Biol. Bul1., $90(2)=142-24$.
 otoliths. Irans. Aner. Pish. joc., 94: 267-260.

Worley, L. 1233. Develophent of tie ogj of mackercl at difforent constant temperatures. j. Gan. Hysiol. 15: 841-357.

Scarratt, D.J. 1964. Abundance of lobster larvae (Hiomarus anericanus) in Northumberland Strait. J. Fish. Res. Bd. Canada, 21: 661-680.

Scott, ..B. 1951. Fluctuation in abundance of the Lake Erie cisco (Leucichthys artedi) population. Cont. Royal Ont. Hus. Zoo. No. 32: 40 p

Setter, O.E. 1943. Biology of the Atlantic mackerel (Somber scombrus) of North werica. Part 1. Early life history. U.S. Fish. Wildlife Service, Fish Bull. 38(50): 149-237.
1950. Biology of the tlantic mackerel (Somber scoubrus) of North Averic. Part 2. Migration and habits. Ibid. 49 (51): 251-350.

Sate, O. and A. .II. Needler. 1934. Statistics of the menerel fisher of the st coast of North America, 1804 to 1930. U.S. Bur. Ais . Invest. Rept. 140. 19: 1-48. Sinderman, c.j. 1966. Diseases of marine fishes, pp 1-89. In F.S. Russell (Ed), Advances in marine biology No. 4, Academic Press, London

Smithies, 0. 1955. Zone electrophoresis in starch gels. Biochen. J. 61: 529-64.1.

Sparks, N.I. 1929. The spawning and development of mackerel on tho outer coast of Nova Scotia. Contrib. Cenalian Biol. HAsh., Ne., 4(28): 443-452.

Table 1
Catches of mackerel in the waters of ICNAF Convention, 1904 to 190^{1}, by Canada, Russia and the United States, in metric tons (1 metric ton equals $\underline{2204.6} 1 \mathrm{~b}$)

Year	Canada	Kussia	United States
1964	10,786	680	1,264
1965	10,991	2,877	1,469
1966	11,675	3,680	1,501

$1_{\text {From ICNAF }}$ Statistical Bulletin 1964, 1955 and 1966 (in press)

Table 2. Nem fork lengtio in of mackerel sanpled from comercill catches in linliCas vounty, I.S. -9 June, 1965, and from rialperue Itarbour, 30 July to 1 Alyust, 1966.


```
Table 3. Nean fork lenthe in In of Ais: smplod in Hay an. June Irom the southosest coast
```


1966.

Year	1962		1963		1964		1965			1966	
IUNAP District	$4 \times$		4 K		$4 \times$		$4 X$		4 T	48	$4 T$
Aonth	May	June	May	June	Hay	June	1ay	June	July	June	July
Number	172	688	242	280	143	475	304	2148	1012	816	487
Sean	363	333	354	320	354	330	365	350	350	354	353
$\begin{aligned} & \text { Standard } \\ & \text { Seviation } \end{aligned}$	± 33.4	± 35	± 15.	± 12.2	± 18.	$\pm 1+3$	± 15.9	± 13.0	± 14.0	$\pm{ }^{2}+1$	± 20.2

Table 4. Mean fork length and standard deviation of different year-classes of mackerel sampled from Canadion water s In 1963, 1965 and 1966 (number of f1sh in parentheses).
Year-class 19631965

1965	-		$276\left(\frac{ \pm}{(12)}{ }^{11 \cdot 1}\right.$	$280{\underset{(I 17)}{ }}^{8 \cdot 3}$
1964	-	$266 \frac{ \pm 13 \cdot 8}{(510)} \cdot 8$	$319\left(\frac{ \pm}{20}\right)^{12 \cdot 2}$	$323 \frac{ \pm}{(16)^{11.1}}$
1963	-	$318 \frac{+12}{(1+5)} \cdot 1$	$3^{4+5} \frac{ \pm}{35)}{ }^{8.4}$	-
1962	$266\left(\frac{1}{\mathrm{I}+)^{17}}{ }^{17 \cdot 3}\right.$	$338 \frac{ \pm}{(69)}$ 11.3	$353 \frac{ \pm}{(23)} 10.0$	-
1961	$316\left(\frac{ \pm}{28}\right)^{9 \cdot 3}$	$345(8+10 \cdot 0$	$358\left(\begin{array}{c}(40)\end{array}\right.$	-
1960	-	$3^{4} 8\left(\frac{11}{107}\right) \cdot 2$	$357\left(\frac{ \pm}{96)} 9.7\right.$	-
1959	$327\left(\frac{ \pm}{39}\right)^{17 \cdot 1}$	$3^{4} 9 \pm \frac{17}{(60,7)} \cdot 9$	${ }_{\left(25 \bar{z}_{2}\right)}^{10.8}$	-

Table 6. Nean widths of the successive otolith annuli and mean fork lengths of the mackerel from which they were taken, sampled in Canadian. waters in 1963, 1965 and 1966 and standard deviation.

$\begin{aligned} & \text { Year- } \\ & \text { Class } \end{aligned}$	- Date	Age	$\begin{gathered} \text { Mean } \\ \text { fork } \\ \text { length } \\ \mathrm{mm} \\ \hline \end{gathered}$	No.	Mean widths at successive annuli						
						O_{2}	3		O_{5}		O_{7}
1959	$\begin{aligned} & \text { June } \\ & 1963 \end{aligned}$	IV	$\begin{aligned} & 327 \\ & \pm 17.1 \end{aligned}$	39	$\begin{aligned} & 2.5 \\ & \pm .17 \end{aligned}$	$\begin{aligned} & 3.6 \\ & \pm .35 \end{aligned}$	$\begin{aligned} & 4.1 \\ & \pm .38 \end{aligned}$	$\begin{aligned} & 4.3 \\ & \pm .41 \end{aligned}$			-
1959	$\begin{aligned} & \text { May-Aug. } \\ & 1965 \end{aligned}$	VI,	$\begin{aligned} & 349 \\ & \pm 16.8 \end{aligned}$	103	$\begin{aligned} & 2.6 \\ & \pm .27 \end{aligned}$	$\begin{aligned} & 3.7 \\ & \pm .40 \end{aligned}$	$\begin{aligned} & 4.2 \\ & \pm .58 \end{aligned}$	$\begin{aligned} & 4.4 \\ & \pm .40 \end{aligned}$	$\begin{aligned} & 4.7 \\ & \pm .48 \end{aligned}$	$\begin{aligned} & 4.9 \\ & \pm .50 \end{aligned}$	-
1959	$\begin{aligned} & \text { June-Sept. } \\ & 1966 \end{aligned}$	VII	$\begin{aligned} & 362 \\ & \pm 10.8 \end{aligned}$	67	$\begin{aligned} & 2.5 \\ & . .30 \end{aligned}$	$\begin{aligned} & 3.6 \\ & \pm .35 \end{aligned}$	$\begin{aligned} & 4.2 \\ & \pm .40 \end{aligned}$	$\begin{aligned} & 4.4 \\ & \pm .43 \end{aligned}$	$\begin{aligned} & 4.7 \\ & \pm .43 \end{aligned}$	$\begin{aligned} & 4.9 \\ & \pm .44 \end{aligned}$	$\begin{aligned} & 5.1 \\ & \pm .45 \end{aligned}$
1960	$\begin{aligned} & \text { June-July } \\ & 1965 \end{aligned}$	V:	$\begin{aligned} & 342 \\ & \pm 13.0 \end{aligned}$	4	$\begin{aligned} & 2.5 \\ & \pm .20 \end{aligned}$	$\begin{aligned} & 3.6 \\ & \pm .13 \end{aligned}$	$\begin{aligned} & 4.2 \\ & \pm .17 \end{aligned}$	$\begin{aligned} & 4.4 \\ & \pm .20 \end{aligned}$	$\begin{aligned} & 4.7 \\ & \pm .40 \end{aligned}$		
1960	$\begin{aligned} & \text { June-Aug. } \\ & 1966 \end{aligned}$	VI	$\begin{aligned} & 352 \\ & \pm 11.0 \end{aligned}$	5	$\begin{aligned} & 2.6 \\ & \pm .29 \end{aligned}$	$\begin{aligned} & 3.6 \\ & \pm .22 \end{aligned}$	$\begin{aligned} & 4.1 \\ & \pm .27 \end{aligned}$	$\begin{aligned} & 4.3 \\ & \pm .32 \end{aligned}$	$\begin{aligned} & 4.6 \\ & \pm .36 \end{aligned}$	$\begin{aligned} & 4.9 \\ & \pm .38 \end{aligned}$	
1961	$\begin{aligned} & \text { June-July } \\ & 1963 \end{aligned}$	II	$\begin{aligned} & 316 \\ & \pm 9.3 \end{aligned}$	28	$\begin{aligned} & 2.9 \\ & \pm .25 \end{aligned}$	$\begin{aligned} & 3.9 \\ & \pm .23 \end{aligned}$	$\begin{aligned} & 4.2 \\ & \pm .30 \end{aligned}$				
1961	$\begin{aligned} & \text { June-July } \\ & 1965 \end{aligned}$	IV	$\begin{aligned} & 346 \\ & \pm 10.4 \end{aligned}$	9	$\begin{aligned} & 3.1 \\ & \pm .21 \end{aligned}$	$\begin{aligned} & 4.1 \\ & \pm .29 \end{aligned}$	$\begin{aligned} & 4.6 \\ & \pm .35 \end{aligned}$	$\begin{aligned} & 4.9 \\ & \pm .38 \end{aligned}$			
1962 J	$\begin{aligned} & \text { July-Aug. } \\ & 1963 \end{aligned}$	I.	$\begin{aligned} & 266 \\ & \pm 17.3 \end{aligned}$		$\begin{aligned} & 3.0 \\ & \pm .34 \end{aligned}$	$\begin{aligned} & 3.8 \\ & \pm .42 \end{aligned}$					
1963 J	$\begin{aligned} & \text { June-July } \\ & 1965 \end{aligned}$	II	$\begin{aligned} & 320 \\ & \pm 11.7 \end{aligned}$	12	$\begin{aligned} & 2.9 \\ & \pm .23 \end{aligned}$	$\begin{aligned} & 4.3 \\ & \pm .23 \end{aligned}$					
1963 J	$\begin{aligned} & \text { July-Aug. } \\ & 1966 \end{aligned}$	III	$\begin{aligned} & 346 \\ & \pm 10.8 \end{aligned}$	17	$\begin{aligned} & 2.9 \\ & \pm .33 \end{aligned}$	$\begin{aligned} & 4.0 \\ & \pm .41 \end{aligned}$	$\begin{aligned} & 4.4 \\ & \pm .45 \end{aligned}$	$\begin{aligned} & 4.7 \\ & \pm .49 \end{aligned}$			
1964 J	$\begin{aligned} & \text { July-Aug. } \\ & 1965 \end{aligned}$	I	$\begin{aligned} & 268 \\ & \pm 7.2 \end{aligned}$	51	$\begin{aligned} & 3.1 \\ & \pm .45 \end{aligned}$	$\begin{array}{r} 3.8 \\ \pm .4 \end{array}$					
1964 J	$\begin{aligned} & \text { July-Aug. } \\ & 1966 \end{aligned}$	II	$\begin{aligned} & 320 \\ & \pm 10.4 \end{aligned}$	24	$\begin{array}{r} 3.3 \\ \pm .6 \end{array}$	$\begin{aligned} & 4.2 \\ & \pm .35 \end{aligned}$	$\begin{aligned} & 4.4 \\ & \pm .42 \end{aligned}$				
1964	$\begin{aligned} & \text { October } \\ & 1966 \end{aligned}$	II	$\begin{aligned} & 323 \\ & \pm 11.3 \end{aligned}$	16	$\begin{aligned} & 3.1 \\ & \pm .54 \end{aligned}$	$\begin{aligned} & 4.2 \\ & \pm .47 \end{aligned}$	$\begin{aligned} & 4.7 \\ & \pm .39 \end{aligned}$				
1965	0ctober 1966	I	$\begin{aligned} & 279 \\ & \pm 8.6 \end{aligned}$	79	$\begin{aligned} & 3.5 \\ & \pm .26 \end{aligned}$	$\begin{aligned} & 4.2 \\ & \pm .34 \end{aligned}$					

Table 5. Mean fork length and standard deviation of different

Table 7. Kean widths of the successive otolith annuli and the mean fork lengths of the mackerel from which they were taken, and standard deviations, of samples from United States waters in 1966.

Year- Class	Location	Month	Number	Mean Width at O_{1}	Standard Deviation
1965	Canada	October	79	3.5	$\pm .26$
	United States	July	39	3.1	$\pm .27$
1964	Canada	July-Aug.	24	3.3	$\pm .60$
		October	16	3.1	$\pm .54$
	United States	July	64	3.2	$\pm .54$
1963	Canada	July-Au.	17	2.9	$\pm .33$
	United States	July	22	2.9	$\pm .39$

- 33 -

Table 9
Classification system used to determfne tine stage of maturity of mackerel sampled in 1965 and 1900

$3 y m b o l$	Stage of liaturity	Description
A	Imnature	gonads, small trans-
		Iucent or small
		opaque; no super-
		ficial distinction
		between sexes
B	Maturing	the testes enlarged,
		white; the ovaries
		enlarged, granular
		to translucent with
		spots
C	kipe and rumning	similar to maturing
		but sperm or eggs
		expressed by slight
		pressure on the abclomen
D	Spent	testes are loose and
		hemorrhaging; ovaries
		loose and containing
		residual eggs; often
		both testes and ovaries
		are atropinying

Table 10

Stage of maturity in various locations along the Atlantic coast of Nova Scotia, in the Gulf of 3 . Lawrence and the coast of Massachusetts in 1965 and 1966
Date Location Immature Maturing Ripe and Running Spent

Pable 11

Fork length of male and female nackerel sampled in Canadian waters in 1903 (1), 1965 and 1950

Year	Sex	Nunber	Mean	Standurd inror
1963	Females	97	325	± 2.0
1263	Vales	114	323	± 1.8
1955	Females	539	349	$\pm .56$
1965	Nales	592	344	$\pm .61$
1966	Females	255	350	$\pm .81$
1966	Males	244	353	$\pm .75$

(1) Data for 190j were obtained from unpuiblished records, Pisheries nesearch board of Canada, st. Andrews, N. B.

Results of 1966 tagging study in which 2407 mackerel were marked and released along the Atlantic coast of Nova Scotia and in the

Gulf of St. Lawrence
Date Location Number Number Per Cent distance from

June 9
St. Johns Is.,
Yarmouth Co.,
N. S.
June 13 Clarke Hor., Shelburne Co., N. S.

50
1
2
4 km

660 km
June 20 Clarke Hbr ., Shelburne Co., N. S.

75
5
7
24 km
July 23 St. Margaret's Bay, Halifax Co., IT. S. 100

25
25
15 km
August Malpeque Moor., 8-10 Fringe Co.,
P. E. I.

697
6
1
45 km
September Nalpeque Hor., 21-22 Prince Co., P. E. I. $\quad 1400$

0

Table 13

Nean counts of rays of the second dorsal fin fron v rious localities in Canadian and United States waters in 1955 and 190°

Date	Location	Number	liean	Standard Deviation
$\begin{aligned} & 1 \text { ay-June } \\ & 1365 \end{aligned}$	Atlantic coast of Nova Scotia	448	11.00	± 0.62
$\begin{aligned} & \text { July-Sept. } \\ & 1905-1900 \end{aligned}$	Gulf of it. Lawrence	450	11.78	± 2.56
$\begin{aligned} & \text { August } \\ & 1905 \end{aligned}$	Bay of Fundy	100	11.86	± 0.64
$\begin{aligned} & \text { October } \\ & 1966 \end{aligned}$	$\begin{aligned} & \text { Halifax, } \\ & \text { N. S. } \end{aligned}$	48	11.09	± 0.09
$\begin{aligned} & \text { September } \\ & 19.06 \end{aligned}$	$\begin{aligned} & \text { Provine town, } \\ & \text { liass. } \end{aligned}$	154	11.87	± 0.58

Table I't

ilean counts of rays of the ansl fin from vious locations in Canadian and United States wators in 1905 and 1900
Date Location Ilurber Hean Standora Deviation

1ean counts of dorsal and anitl finlets from various locations in Ganadian and Jnited States locations in 1905° and 190° Date Location Finlet Number Kean stardard weviaition

June	Atiantic coast	Dorsal	200	5.0	
1905	of Nova Scotia	Anal	100	5.0	
JulySeptenber 1965-1966	Gulf of $3 t$.	Dorsal	449	5.0	
	Lawrence	Anal	450	5.0	
$\begin{aligned} & \text { october } \\ & \text { 196j } \end{aligned}$	Malifax,	Dorsal	48	5.1	
	11. S.	Ana.	43	5.0	
September 1956	Frovincetown,	Dorsul	100	5.0	
	mass.	Anal	100	5.0	

The Atlantic mackerel, Scomber scombrus (after Leim and Scott,

FIGURD 2. Chart of the surface waters of the Northwest Atlantic durin soring and sumner, showin; current flow (after Templeman, 1966).

 statistical districts and the general area covered in this study.

North Rustics
A

B

FIGURi 4. Theoretical section between North kustico and Cheticamp in the Gulf of St. Lawrence, under different conditions: (A) no motion, (B) northerly wind (toward the viewer) resulting in warm surface water close to the bottom at North Rustico and cold bottom water near the surface at Cheticamp, and (C) southerly wind (away from the viewer) resulting in the reverse effect to a northerly wind (redrawn from Lazier, 1957a).

FTGUR 5. Variation in the amual connercial
natch of nackerel in Canallan waters, 1376 to 1966 (the total calich for each year is fomm in Appondix IJ).
(a)

FIGURE 6. Seasonal distribution of comercial catch of aacicerel; (a) 1924 to 1929 (after Sette and Needler, 193'), (b) 1957 to 1966 (from Canadian Fisheries Statistics, Preliminury Honthly Tabulations, Dominion Bureau of Statistics).

FIGURE 7. Otolith from Age-II mackerel showing measurement of otolith annuli; O_{1} is the width of the otolith annulus formed during the first year, O_{2} is the total width of the annulus at the end of the second year.

LIGURS 8. Len-th-frequency distributions of mackerel sampled from commercial catches by a purse-seine net and a gill-net of 3 in. stretched mesh at Nalpeque Hbr., P.L.I., Septenber 21 and $22,1966$.

1963

（ponutaucs） 6 「どのfis

FIGUAB 10. Length-frequency distributions of mackereI sampled in United States waters in 1965 and 1966 by month an arez (ICNAN' statistical districts in parenthesis). The peaks are lettered to enable identification of them in the text.
(a)

(c)

(d)

FIGURE 11, Otoliths from mackerel of different ages and lengths: (a) Age-0 (September), 136 mm ; (b) Age-I (June), 232 mm ; (c) Age-I (Septenber), $251 \mathrm{~m} \cdot l$; (d) Age-II (July), 322 mm ; (e) Age-III (June), 348 mm ; (r) Age-IV (August), 359 mm ; (g) AgeV (August), 362 mm ; (h) Age-VI (August), 355 mm ; and (i) AgeVII (August), 366 mm .

FIGURE 12. Per cent composition of year-classes of mackerel sampled from Canadian and United States waters in 1965 and 1966.
(a)

-2.

(b)

(c)

FIGURE 13. Illustration of the apparatus and method of tagging mackerel: (a) top - a modified large sewing needle used to apply the tag as a dart, middle - a Watson-Larsen tag, bottom - a loaded No. 12 hypodermic needle used to apply the tag as a dart; (b) the Watson-Larsen tag applied as a ring between the two dorsal fins; and (c) the Watson-Larsen tag applied as a barb, hooked under the last rays of the first dorsal fin.

FJ \ddagger UR I ${ }^{\text {l }}$. Activity of lactate lehydrozenase (LDİ) from different organs of the Atlantic macherel as determined by starch-gel electrophoresis.

FIGURE 15. Lactate dehydrogenase (LDH) activity of mackerel after starch-gel electrophoresis for 18 hours at 300 v on 16% starch. Odd-numbered slots, heart and white muscle extracts from Pubnico, N.S., June 3, 1966, and even-numbered slots, heart and white muscle extracts from Provincetown, Mass., June 30, 1966.

i3 3Un: 16. Growth curve of the 1959 year-cl"ss of mackerel sampled fron Canadi in iantic waters conpnred to the rowth curve lerived from the back-caloulation of otoliths from the 1959 year-class, sanpled in 1966, and to the growth curves derived from the age-determinations using otolitis sumpled in 1765 and 1966.

FIGURE.17. Growth curve of the 1959 year-class of Atlantic Hackerel iro. Janalian vaters compared with the 1923 year-class Inon southern IVew Injlani waters (3izelon and Schroeder, 1953), and with the growth curve of aackerel froil the southvest coast of Znjland (Steven, 1950).

F'] GURA 18. Straight-line growth transfornation (Nalford plot) of the Ablantic maciserel for the 1959 year-class. S'or't lenstis at afe n we plotted aŗainst lengti one yeur later $(n+1)$.

(a)

(b)

FIGUME 20. Dingranatic representation of the sprins (a) and autumn migration (b), after Sette (1950).

2IMURA 21. Length-frequencies representing the southern and northern populations, and the mixed population which results aurin the spring and qutuin nigration, after sette (1950).

Nonthly average surface temperatures iroA Grance Nivière for $1750-65$ and -ntry
Island ${ }^{2}$ for 1950-65.

Year Iotal catch in 000 Ibs... Iear. Total aatch in 000 ibs

1876	31,362	1.921	14, 555
1877	49,556	1922	25,122
1878	55,409	1923	14,175
1879	57,316	1924	21,
1880	70,331	1925	18,766
1881	32,412	1926	11, 549
1882	34,293	1927	15,880
1883	38,632	1928	12,376
1884	54, 534	1929	15,276
1885	44,720	1930	17,047
1886	45,832	1931	19,625
1887	36,195	1932	17, 845
1088	18,953	1933	2, 332
1889	19,064	1934	17,032
1890	29,440	1935	16,050
1891	40,557	.1936	22,764
1892	28,161	1937	23,916
1893	22,536	1938	28,557
1894	17,329	1939	52,065
1895	12,734	1940	35,735
1896	13,757	1941	35,113
1897	-3,342	1922	30,308
1898	10,150	1943	37,086
1099	10,381	1914	34,207
1900	25,210	1945	40,207
1901	23,155	1.246	29,510
1002	13,075	1947	25,991
1903	25,032	1748	25,076
1904	11,036	1949	33,523
1905	15,055	1950	2\%,230
1906	20,527	1951	24,742
1907	15,433	1952	21, 91
1908	22,747	1953	10,450
1,09	16,419	1954	25,512
1910	6,980	1955*	20,110
1911.	9,013	1956	22, 4,4
1912	10,798	1957	19,690
1913	21, 546	1958	16,147
1914	14, 372	1959	9, +51
1915	18,098	1960	13,138
1916	15,608	1961	14,118
1917	16,706	1962	10,107
1018	12,078	1963	17,039
1919	22,908	1964	23,90
1920	14,235	7965	24,846
1520	14,235	1966	25,741

*The Lotal catch before 1955 excludes Newfoundland while the total catch from 1955 on includes Nowfouniland
$1_{1876-1930}$ total after Sette and Leedler (1934) 1931-1966 totals Pron Cqnadian Fisherios Statistics (Amual Review) 1931-1966 - Duainion Bureau of Statistics

(a)

AI: Lumbis
III
Hean Fork len;th and mem total lenstiss of sanples used in c: leultutin; the conversi m factor

Date	cation	$\begin{gathered} \text { Buple } \\ \text { size } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Hean } \\ & \text { Corik } \\ & 2 \text { cruth } \\ & \hline \end{aligned}$	$\begin{gathered} \text { Hean } \\ \text { total } \\ \text { lenzth } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Sonversion } \\ & \text { factor } \end{aligned}$
25/6/65	$\begin{aligned} & \text { it. annes pt, } \\ & \text { H.S. } \end{aligned}$	20	337.0	373.8	. 910
$15 / 2165$	Cape Cod Bay, Hass.	50	231.6	307.	. 915
$\begin{aligned} & 25 / 5 / 60 \\ & \text { to } \\ & 20 / 6 / 60 \end{aligned}$	Souti-west nova Scotia	383	356.3	388.9	. 916
$\begin{aligned} & 30 / 6 / 66 \\ & t 0 \\ & 11 / \% / 66 \end{aligned}$	rovincetom, - tass.	398	270	294	. 918
1/3166	full of st. avrence	96	353.3	$38 \% .3$. 911

(b)

Heasmed total and fork lonetis, and calculate: fork len thos fun man of the somllost ant Iargest samples from which bot! fork and total 1engths wero available

Date	Iocation	$\begin{gathered} \text { innple } \\ \text { sjze } \\ \hline \end{gathered}$	$\begin{gathered} \text { moan } \\ \text { measured } \\ \text { totri } \\ \text { 1erth } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Hoan } \\ & \text { neasured } \\ & \text { Cork } \\ & \text { cenuth } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Calculnted } \\ & \text { fork } \\ & \text { lensth } \end{aligned}$	clelence
$\begin{aligned} & \text { sent } \\ & 1.966 \end{aligned}$	Aunson, .J.	96	154.09	142	141	1
$\begin{aligned} & \text { June } \\ & \text { I966 } \end{aligned}$	il. Johns Is.	100	393.3	360.5	360.2	. 3

Fork length frequencies for 1962 to 1966 by month and ICNAF Statistical District.

The 1962 to 1964 fork length frequencies culculated fran total length by $\mathrm{K}=.916 \mathrm{M}$. These length fregusncies obtained fron unpuhlished records Pisheries Research Board of Canada, St. Andrews, N.B.
${ }^{2}$ Rumson, $\mathrm{N} . \mathrm{J}$. , is outside the ICNAF Convention Area

APPFIDIX 7
Fean fork length and number of mackerel (in parentheses) of different year-classes, by monthly intervals and area for 1965 and 1965.

$\mathrm{I}_{\text {Rumson, N.J. is outside the ICMAF Convention Area. }}$

APPENDIX VI
Date, location, number of fish tagged and date and location of recaptures of 2407 mackerel tagged on the atlantic coast of liova Scotia and in the Gulf of St. Lawrence in 1966.

July 23 St. Nargarets Bay A Halifax Co., li.

Tagging

Date

June 9 St. Johns Is, Shelburne Co. in. 3.
June 13 Clerks Harbour Shelburne Co. Ne. Location
Johns Is,
burne Co.
ks Harbour
burne Co.

June 20 Clerks Harbour
Recaptures

AI M.DIS VI (continued)

Tacsing decaptures

Date \qquad Location C...jybol no. Date Location

wh. . 8 Halpeque Itarbour
${ }^{4} 7 \quad 100$
du:. 27
I siberton, F.Z.I.
Aug. 9 nalpeque ilarbour Aug. 10 Nalpeque Ilarbour
$\mathrm{A}_{6} \quad 27$ nuf. 10 1 wipene, ..s.i.

$$
A_{8}-300
$$

$$
\mathrm{A}_{10}
$$

$$
\begin{array}{lllll}
\text { Au:.10 Halpeque Harbour } & A_{11} & 100 & \text { Au. } 11 & 1 \\
\text { Sept. Halpeque, F.E.I. } \\
& & 0
\end{array}
$$

Fork length in win of mackerel of the 1959 year-class from various sources for the Gulf of St. Lawrence (ICNA statistical Area 48), the Atlantic coast of Cape Breton (ICimP Statistical Area $4 \vec{\gamma}_{n}$) and southern Atlantic coast of Liova Scutia (4 K).

Year	Date	1. umber		tean	Source
1960	July	4 T	100	224	Bergeron (1961)
1960	Angust	4	368	243	Berzeron (1961)
1960	Septenber	4 T	670	250	Bergeron (19:1)
1960	July to Siepte ber	41	1481	244	Bergeron (1961)
196.1	Aly Septeaber	41	1027	282	Bergeron (1962)
1262	June	4 x	513	316	length frequencies
1963	June	4.5	280	320	length frequencies
1763	October	4 K	263	333	length Prequencies
1963	Oetober	4 I	197	330	length Prequencies
1964	June	$4 K$	474	330	length frequencies
1964	October	4 T	218	342	length frequencies
1965	June	4 X	279	351	otoliths
1965	June	$4 V_{n}$	67	351	otoliths
1965	July	$4{ }^{12}$	106	349	otolitss
1965	August	411	75	345	otoliths
1965	June to August	$\text { and }{ }_{4 \mathrm{~T}}^{4 \mathrm{~V}} \text {, }$	4249	$3+5$.	length frequencies
1966	June	$4 \times$	160	357	otolitis
1966	August	4 T	78	357	otoliths
1966	September	42	42	357	otoliths
1966	June to Septe ber	$\begin{aligned} & 4 \mathrm{C} \\ & 4 \mathrm{~T} \\ & \\ & \text { and } \end{aligned}$	1107	355	length frequencies

(b) AFPGDIX VII

averace size in min of mackerel fron the 1923 year-class measured in the autum of 1925 to 1930, froa the waters of ivow inglana (after Bigelow and ichroeder, 1953).

Year
sampled \qquad $1925-1226$ \qquad
\qquad 128 122 $22-1230$

| Age | II | III | IV | V | VI | VII |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Hacurcd
 length | 365 | 385 | 395 | 405 | 415 | 425 |

(c)
work lengt: calculatod from total length neasurements of mackerel Ir in the S.J. const of ingland (teven, 1990).
age II III IV

Date Ilay Sopt. May Sept. May Sopt. May jepl. May Lept. Hay jept.
TL $\begin{array}{llllllllllll}238 & 286 & \begin{array}{lllllll}306 & 321 & 330 & 333 & 341 & 3^{\prime}+6 & 355 \\ 559 & 362\end{array}\end{array}$
$\begin{array}{llllllllllll}\text { F'L } & 218 & 262 & 280 & 294 & 302 & 305 & 312 & 317 & 325 & 329 & 332\end{array}$
(a)

Freqiency distribution of counts of rays of the second dorsal fin in various locations frow Canadian and United States waters in 1965 and 1966.

$\begin{aligned} & \text { Hay } 27 \\ & 1965 \end{aligned}$	Woods Harbour, Shelb. Co., N. S.		5	35	54	6		100
$\begin{aligned} & \text { June } 1- \\ & 15,1965 \end{aligned}$	Yarmouth and Lunenburg, it. 3.		6	42	97	5		150
$\begin{aligned} & \text { June } 15- \\ & 30,1,65 \end{aligned}$	Yarmouth and Ingonish, N.S.		9	51	133	5		198
$\begin{aligned} & \text { July } 1 \text { to } \\ & \text { Au }: 15 / 65 \end{aligned}$	Gulf of st. Lawrence		9	58	215	18	1	301
${ }_{1966}^{\mathrm{Au}} \dot{6}^{10}$	Malpeque, P.E.I.		1	17	78	4		100
$\begin{aligned} & \text { Sept. } 22 \\ & 1966 \end{aligned}$	Salpeque, P.E.I.		2	10	35	2		49
$\operatorname{Aug}_{2065} 5$	$\begin{aligned} & \text { 1'assanaquoddy } \\ & \text { Bay, N.B. } \end{aligned}$	1	0	21	69	8	1	100
$\begin{aligned} & \text { Oct. } 22 \\ & 1966 \end{aligned}$	Halifax, M. ${ }^{\text {c }}$		2	16	26	4		48
$\begin{aligned} & \text { Sept. } 10 \\ & 1966 \end{aligned}$	Provincetown, Mass.		2	11	83	4		100
$\begin{aligned} & \text { Sopt. } 14 * \\ & 19666^{14} \end{aligned}$	Provin etown, Hass.	1	2	8	37	6		54

*second dorsal fin ray counts were obtained froin radiographs

APFLIIDIX. VIII

frequency distributions of counts of rays of the anal fin in various locations from Canadian and United states waters in 1965 and 1966.
\qquad Location
turber of rays
nuaber of sanples $\begin{array}{llllll}9 & 10 & 11 & 12 & 13 & 14\end{array}$

Mry 27 Wonds inarbour
$1 \geqslant 65$ Shelb. Co., N.S. $6 \quad 23 \quad 70 \quad 1$
100
June 1- Yar nouth and
15, 1965 Lumenburi: 1. S. $1 \quad 24117$ 8 150
June 15- Yarnouth to 30, 1965 In;onish, II. i.
$2 \quad 501405$
197
July 1- Gulf of it.
$\begin{array}{lllll}6 & 46 & 237 & 9 & 1\end{array}$ 299 Aus.15t65 Lawrence

Sept. 22
1966° Malpeque, P.S.I. 1113850
Au; 5 Passwaaquoddy

1. 65 Bay, N.B.
$\begin{array}{lllll}1 & 2 & 12 & 83 & 2\end{array}$
100
Uct. 22
1966 Halifax, H.S. $7 \quad 39 \quad 2$

48
Sept. 14* Provincetown, 30 Mass.
$3 \quad 3 \quad 435$
54
*anal fin ray counts were obtained frou radio raphs
(c)
Arm bI: VIII

Frequency distribution of counts of inlets in various locations from Canadian and United States waters in 1965 and 1966.

Date	Location	Number of inlets			

[^0]: In summer, the waters of the Scotian Shelr and Gulf of

