Canadian Stock Assessment Secretariat
Research Document 99/140

Not to be cited without permission of the authors ${ }^{1}$

Secrétariat canadien pour l'évaluation des stocks Document de recherche 99/140

Ne pas citer sans autorisation des auteurs ${ }^{1}$

Biological Assessment of Skeena River Coho Salmon

B. Holtby ${ }^{1}$, Barry Finnegan ${ }^{2}$, Din Chen ${ }^{1}$, and David Peacock ${ }^{2}$
${ }^{1}$ Fisheries and Oceans Canada Pacific Biological Station Stock Assessment Division Science Branch Nanaimo, BC V9R 5K6
${ }^{2}$ Fisheries and Oceans Canada
417-2 ${ }^{\text {nd }}$ Ave. West
Prince Rupert, BC V8J 1G8

${ }^{1}$ This series documents the scientific basis for the ${ }^{1}$ La présente série documente les bases scientifiques evaluation of fisheries resources in Canada. As such, it addresses the issues of the day in the time frames required and the documents it contains are not intended as definitive statements on the subjects addressed but rather as progress reports on ongoing investigations.
des évaluations des ressources halieutiques du Canada. Elle traite des problèmes courants selon les échéanciers dictés. Les documents qu'elle contient ne doivent pas être considérés comme des énoncés définitifs sur les sujets traités, mais plutôt comme des rapports d'étape sur les études en cours.

Research documents are produced in the official language in which they are provided to the Secretariat.

Les documents de recherche sont publiés dans la langue officielle utilisée dans le manuscrit envoyé au secrétariat.

Abstract

Marine survivals were higher in the 1997-sea entry than they had been in the 1996-entry year. The increase relative to the previous year was largest for Toboggan wild and hatchery smolts but was slight for Fort Babine smolts. Survival was average for Lachmach coho but was below average for both Toboggan hatchery and wild smolts. Survivals remain below levels required for sustaining populations at the two Skeena hatcheries but there is growing evidence that hatchery survivals are less than 30% of wild survivals. Exploitation rates ranged between 28% for Toboggan coho to 60% for Babine coho. Exploitation in Canadian fisheries was due entirely to small incidental catches in some FW fisheries and to release mortality in all marine fisheries and the remaining FW fisheries. The total exploitation rate on upper Skeena coho in all Canadian fisheries was reduced to less than 2%. Exploitation rates in Alaskan fisheries remained largely unchanged from recent years.

Juvenile densities in 1998 provided a complex picture of 1997 escapement. Juvenile densities were lower in 1998 than in 1997 in five of eight summary areas. The largest decrease was seen in the upper Skeena $(0.12 \times)$. No juvenile coho were detected in the Sustut River sites despite an expanded search very few juveniles and no young of the year were detected in the upper Bulkley. Decreases in the middle Skeena areas and the Bulkley/Morice ranged from $0.59 \times$ to $0.68 \times$. Large increases were seen in the Lachmach $(1.7 \times)$ and the coastal streams $(1.8 \times)$. Juvenile densities also increased in the Babine by a factor of $1.3 \times$. This increase was general throughout the Babine. Despite the increase juvenile densities remained well below levels we would interpret as indicating an adequately seeded system.

Escapement was much improved in 1998 compared to 1997 throughout the Skeena Basin. The test-fishery index to August $25^{\text {th }}$ was about the $29^{\text {th }}$ percentile in a 43 -year time series. The index value was similar to values seen in the 1980 's. However, the value is consistent with a simple transfer of catch to escapement. Escapement to the Babine was 4,291 or over 9 -times the escapement in 1997. Compared to historic escapement the value in 1998 was at the $34^{\text {th }}$ percentile, which is significantly less than the median and is again comparable to escapement in the 1980 's and early 1990's. However, total stock size was lower than the brood years and did not represent a departure from the downward trend in stock size that began sometime in the 1970's. Visual escapement indices increased relative to 1997 in all Statistical Areas except Area 5. The largest proportional increase was in the upper Skeena ($13.9 \times$) but only six streams were included in the index. More escapement work in the upper Skeena would be required to have increased confidence in the visual escapement index. Escapement to the Bulkley/Morice above Moricetown falls was 2.3×10^{4} or 3.5 -times the 1997 escapement. With only four observations but covering a very wide range of escapement, the Moricetown estimate is significantly correlated with the Skeena test-fishery index (unadjusted). Tagging at this site could potentially yield escapement estimates for Morice pink,

Nanika/Morice sockeye and Bulkley/Morice chinook. The coho-tagging program should become a core assessment program. Escapement to the upper Bulkley increased from 88 in 1997 to 317, an increase of $3.6 \times$. However, escapement to the upper Bulkley remains less than 10% of historic averages. A new index site on the Sustut River was introduced in this report. Coho escapement there increased to 64 from 5 (all males) in 1997 but was only 46% of the escapement in the dominant brood year (1994). Historic data from this area is very unreliable but habitat measures suggest that current escapements are less than 10% of carrying capacity. Overall the escapement measures present a consistent picture of the status of Skeena Basin coho. Although escapement improved throughout the Basin, status remains very poor in the high interior and the upper Bulkley and well below carrying capacity throughout the interior. Coastal and middle Skeena areas appear to have recovered to average levels. The reappearance of fish in all areas is an encouraging sign that recovery is possible.

Very simple characterizations of average productivity for the Statistical Area aggregates and for the indicator streams confirm large productivity differences between interior streams (and Area 6) and streams in the lower and middle Skeena, Area 3 and SE Alaska. It is apparent that relative productivity is strongly related to population and aggregate status, as measured by two measures of status. This is compelling evidence that the root cause of declines in coho abundance in the Skeena interior is a chronic mismatch of exploitation rate and productivity.

A simple simulation of future population size for Babine coho indicated that recovery is contingent on both future survival and exploitation rates. With fishing levels similar to those in 1998 and a continuation of present survivals slow recovery to escapement near carrying capacity is expected. With average fishing rates recovery is uncertain unless survivals improve substantially.

Finally a provisional escapement target to the Babine of 1.15×10^{3} is suggested. At average survival the corresponding exploitation rate would be approximately 46%. A Limit Reference Escapement ${ }^{\square}{ }_{\text {of }} 1.2 \times 10^{3}$ is also provided.

Resumé

La survie en mer des poissons de l'avalaison de 1997 a été supérieure à celle de 1996. Cette augmentation par rapport à l'année précédente a été plus importante pour les saumoneaux sauvages et d'élevage de la rivière Toboggan, mais faible pour ceux de la rivière Fort Babine. La survie des saumoneaux coho d'élevage et sauvages a été moyenne pour ceux de la Lachmach et inférieure à la moyenne pour ceux de la Toboggan. Les taux de survie demeurent inférieurs au niveau nécessaire au maintien des populations des

[^0]deux piscicultures de la Skeena et il apparaît de plus en plus que le taux de survie des poissons de pisciculture est inférieur à 30% de celui des poissons sauvages. Les taux d'exploitation du coho ont varié de 28% pour la Toboggan à 60% pour la Babine. L'exploitation par les pêches canadiennes s'expliquait entièrement par de petites prises accidentelles de certaines pêches en eau douce et par la mortalité causée par la remise à l'eau de toutes les pêches marines et de toutes les autres pêches en eau douce. Le taux d'exploitation total du coho du cours supérieur de la Skeena de toutes les pêches canadiennes a été réduit à moins de 2%. Les taux d'exploitation des pêches de l'Alaska n'ont pratiquement pas changé au cours des dernières années.

Les densités des juvéniles en 1998 donne un aperçu complexe de l'échappée de 1997. Les densités de juvéniles de 1998 ont été inférieures à celles de 1997 dans cinq des huit zones d'étude. La plus grande baisse a été notée dans le cours supérieur de la Skeena $(0,12 \times)$. Aucun coho juvénile n'a été décelé au site de la rivière Sustut en dépit d'une recherche poussée et très peu de juvéniles et aucun jeune de l'année n'a été décelé dans le cours supérieur de la Bulkley. Les diminutions notées dans le cours médian de la Skeena et dans les Bulkley/Morice variaient de $0,59 \times$ à $0,68 \times$. D'importantes augmentations ont été notées dans la Lachmach $(1,7 \times)$ et les cours d'eau côtiers $(1,8 x)$. La densité des juvéniles a aussi augmenté d'un facteur de $1,3 \times$ dans la Babine et cette augmentation y était généralisée. En dépit de cette augmentation, les densités juvéniles demeurent bien inférieures aux valeurs que nous considérons celles d'un bassin suffisamment ensemencé.

L'échappée de 1998 était de beaucoup améliorée comparativement à 1997 dans tout le bassin de la Skeena. L'indice de la pêche d'essai au 25 août correspondait environ au 29e percentile d'une série chronologique de 43 années. L'indice était semblable à celui des années 1980. Par ailleurs, cette valeur correspond à un simple transfert des captures en échappées. L'échappée de la Babine s'est élevée à 4291 poissons, soit plus de neuf fois la valeur de 1997. Par rapport aux valeurs historiques, l'échappée de 1998 correspondait au 34e percentile ce qui est significativement inférieur à la médiane, mais comparable aux échappées des années 1980 et du début des années 1990. Par ailleurs, l'effectif total du stock était inférieur à celui des années de ponte et ne s'écartait pas de la tendance à la baisse apparue au cours des années 1970. Les indices visuels de l'échappée ont augmenté par rapport à 1997 dans toutes les zones statistiques, sauf la zone 5. La plus importante augmentation proportionnelle a été notée dans le cours supérieur de la Skeena ($13,9 \times$) mais l'indice ne comprenait que six cours d'eau. Il faudrait accroître les mesures de détermination de l'échappée dans le cours supérieur de la Skeena pour obtenir un indice visuel plus fiable de l'échappée. L'échappée dans les rivières Bulkley/Morice, en amont de la chute de Moricetown, était de $2,3 \times 104$ ou 3,5 fois supérieur à celui de 1997. Avec seulement quatre observations, qui couvraient cependant une large gamme d'échappées, l'estimation de Moricetown présente une corrélation significative avec l'indice de la pêche d'essai de la Skeena (non corrigé). Le marquage des poissons à cet endroit permettrait d'obtenir des estimations des échappées pour le saumon rose de la Morice, le saumon rouge des Nanika/Morice et le
saumon quinnat des Bulkley/Morice. Le programme de marquage des saumons coho devrait devenir un programme d'évaluation de base. L'échappée du cours supérieur de la Bulkley est passée de 88 en 1997 à 317 , soit une augmentation de $3,6 \times$, mais demeure toujours inférieure de 10% aux moyennes historiques. Le présent rapport fait état d'un nouveau site indice pour la rivière Sustut. En 1997, l'échappée du coho y es passée de 5 (tous des mâles) à 64 , mais cela ne correspond qu'à 46% de l'échappée de la principale année de ponte (1994). Les données historiques relatives à cette zone sont très peu fiables mais les mesures de l'habitat portent à croire que les échappées actuelles sont inférieures à 10% de la capacité de production. De façon générale, les mesures des échappées donnent une image cohérente de la situation du coho du bassin de la Skeena. Les échappées se sont améliorées dans tout le bassin, mais la situation demeure très défavorable dans le haut bassin intérieur et le cours supérieur de la Bulkley et le nombre de poissons est bien inférieur à la capacité de production dans tout l'intérieur. Les niveaux semblent s'être rétablis aux valeurs moyennes dans les segments côtier et moyen de la Skeena. La réapparition de poissons dans toutes les zones montre qu'un rétablissement est possible.

Des caractérisations très simples de la productivité moyenne pour les agrégats de la zone statistique et pour les cours d'eau indicateurs confirment l'existence d'importants écarts de productivité entre les cours d'eau de l'intérieur (et la zone 6) et les cours d'eau des cours inférieur et moyen de la Skeena, de la zone 3 et du sud-est de l'Alaska. Il apparaît clairement que la productivité relative est fortement corrélée avec la population et l'agrégat, tel que déterminé par deux mesures de la situation. Il s'agit là d'une preuve convaincante que les déclins de l'abondance du coho des cours d'eau intérieurs de la Skeena résultent d'une non concordance chronique du taux d'exploitation et de la productivité.

Une simulation simple de l'effectif futur de la population du coho de la Babine a montré que le rétablissement dépendait à la fois de la survie et des taux d'exploitation à venir. Le maintien de niveaux de pêche semblables à ceux de 1998 et le maintien des taux de survie actuels devraient donner lieu à un lent rétablissement des échappées vers l'atteinte de la capacité de production. Des taux de pêche moyens rendent le rétablissement incertain, à moins qu'il n'y ait amélioration appréciable des taux de survie.

Pour terminer, on propose une échappée provisoire cible de $1,15 \times 103$ pour la Babine. Au taux de survie moyen, le taux d'exploitation correspondant serait de 46% environ. Une échappée de référence limite 2 de $1,2 \times 103$ est aussi donnée.

[^1]Table of Contents page
1 INTRODUCTION. 11
2 INDICATOR POPULATIONS 14
2.1 SMOLT SURVIVAL 15
2. 2 EXPLOITATION RATES 16
3 INDICES OF ABUNDANCE 23
3.1 JUVENILES - INDICES OF 1997 ESCAPEMENT AND STATUS INDICATORS 23
3.2 Tyee (Skeena) Test Fishery 32
3.3 BABINE LAKE COHO AGGREGATE 43
3.3.1 Trends in abundance. 45
3.3.2 Cause of decline of upper Skeena coho is competitive superiority of juvenile sockeye. 54
3.4 VISUAL ESCAPEMENT COUNTS 62
3.5 BULKLEY/MORICE COHO ESCAPEMENT ESTIMATE 68
3.6 UPPER BULKLEY ESCAPEMENT 74
3.7 SUSTUT RIVER ESCAPEMENT 79
4 PRODUCTIVITY ANALYSES 80
4.1 BABINE LAKE AGGREGATE 80
4.2 Indicator Streams. 81
4.3 AREAS WITH VISUAL COUNTS 82
4.4 COMPARATIVE PRODUCTIVITIES AND STATUS. 82
4.5 TEMPORAL TRENDS IN PRODUCTIVITY 83
5 BABINE LAKE AGGREGATE - FUTURE PROJECTIONS. 111
6 CONCLUSIONS AND SUMMARY 118
7 LITERATURE CITED 120
Tables \qquad
TABLE 1. MANAGEMENT AND ASSESSMENT RECOMMENDATIONS FOR UPPER SKEENA RIVER (EARLY-RUN) and Skeena River coho and the corresponding responses made for the period 1988 to 1999. 11
TABLE 2. CWT RELEASE AND RECOVERY DATA FOR THE LACHMACH RIVER WILD COHO INDICATOR...... 17
TABLE 3. CWT RELEASE AND RECOVERY DATA FOR THE TOBOGGAN HATCHERY COHO INDICATOR. THE ERESH WATER (FW) EXPLOITATION RATE CAN BE OBTAINED BY SUBTRACTION. \qquad
TABLE 4. CWT RELEASE AND RECOVERY DATA FOR THE FORT BABINE HATCHERY COHO INDICATOR. THE FRESH WATER (FW) EXPLOITATION RATE CAN BE OBTAINED BY SUBTRACTION. 19
TABLE 5. ESTIMATES OF WILD SMOLT PRODUCTION AND WILD SMOLT SURVIVAL FOR THE NON-HATCHERY POPULATION AT TOBOGGAN CREEK. 20
TABLE 6 . JUVENILE COHO DENSITIES IN SKEENA BASIN STREAMS AND THE LACHMACH RIVER MEASURED N THE FALL OF 1998. THE STREAMS ARE GROUPED INTO THE SAME AREAS GRAPHED IN FIGURE 3....... 26
TABLE 7. RESULTS OF A PRINCIPAL COMPONENTS ANALYSIS OF THE JUVENILE DENSITY AND ESCAPEMENT indices and measures for the Skeena Basin. Escapement data are for 1993 to 1997 while the juvenile data are for the period 1994 to 1998. A VARIMAX rotation has been applied. The Shading of factor scores highlights variables with more than 50% Of their variance EXPLAINED ON A PARTICULAR ROTATED COMPONENT... 28

TABLE 8. CUMULATIVE TYEE TEST FISHING INDEX TO THREE TERMINATION DATES. CDFO USES THE INDEX TO AUGUST 25TH. SEE THE TEXT FOR DETAILS ON ADJUSTMENTS MADE TO THE INDEX VALUES FOR VARYING SOCKEYE CATCHABILITY.
.35
TABLE 9. CORRELATION BETWEEN ESTIMATED BABINE ESCAPEMENT AND RAW AND ADJUSTED TEST FISHING INDICES FOR THE PERIOD 1970 TO 1998. *P <0.05; ** $\mathrm{P}<0.01$; *** $\mathrm{P}<0.001$. NUMBER OF OBSERVATIONS $=28$.
TABLE 10. OBSERVATIONAL DATA FROM THE BABINE FENCE. BASE YEARS USED TO ESTIMATE TOTAL ESCAPEMENT ARE INDICATED BY THE " \rightarrow ". TOTAL ESCAPEMENT ESTIMATED BY "FILL-IN" ARE SHOWN IN ITALICS.TWO TOTAL ESCAPEMENT ESTIMATES ARE SHOWN FOR 1951. THE SMALLER IS THE ACTUAL ESCAPEMENT ESTIMATED. THE LARGER IS THE ESTIMATED ESCAPEMENT HAD THE 1951 BABINE SLIDE NOT OCCURRED.
TABLE 11. LINEAR MEASURES OF COHO REARING HABITAT IN THE BABINE LAKE SYSTEM......................... 59
TABLE 12. RANGES FOR TARGET ESCAPEMENTS OF COHO TO THE BABINE SYSTEM. FOUR TARGETS (A through D) are shown. Their derivation is explained in the text. The arrow indicates the DIRECTION OF THE CONVERSION BETWEEN FEMALES/KM AND TARGET ESCAPEMENT. .60
TABLE 13. THE $P_{\text {MAX }}$ ESCAPEMENT INDEX FOR FIVE STATISTICAL AREA AGGREGATES IN CANADA. THE values for SE Alaska are similarly standardized wild catch per hook in the Se alaska TROLL FISHERY.

65
TABLE 14. ESCAPEMENT ESTIMATES FOR THE UPPER BULKLEY RIVER. WHERE YEARS ARE UNDERLINED THE ESTIMATE IS A FENCE COUNT. IN YEARS MARKED BY A ‘ ${ }^{\prime}$ GOOD COUNTS OF WILD AND ENHANCED FISH WERE OBTAINED. THE PROPORTION OF WILD FISH IN THOSE YEARS WAS USED TO ESTIMATE THE WILD COMPONENT IN YEARS BETWEEN 1991 AND 1995. IN 1992 THE ONLY EXTANT FENCE RECORDS ARE FOR THE NUMBER OF ENHANCED FISH IN THE ESCAPEMENT. THE SAME PROPORTION WAS USED TO ESTIMATE THE WILD COMPONENT AND THE TOTAL ESCAPEMENT IN THAT YEAR.................................... 75
TABLE 15. CORRELATIONS BETWEEN THE HOUSTON FENCE COUNT OF WILD COHO AND TEST FISHERY INDICES AND TOTAL BABINE ESCAPEMENT. THE CORRELATIONS ARE ONLY FOR THOSE YEARS WHERE A FENCE COUNT WAS AVAILABLE. THE '*' INDICATES A P < 0.05.. 76
TABLE 16. STOCK-RECRUITMENT DATA FOR THE BABINE LAKE COHO AGGREGATE. 84
TABLE 17. REGRESSION RELATIONSHIP BETWEEN BY ESCAPEMENT (S) AND THE PROPORTION OF AGE-3 ADULTS IN BY+3 ($P_{\text {AGE } 3}$).. 85
TABLE 18. RICKER STOCK-RECRUITMENT FUNCTION FOR THE BABINE LAKE COHO AGGREGATE. 85
TABLE 19. STOCK-RECRUITMENT DATA FOR THE LACHMACH RIVER COHO INDICATOR.............................. 85
TABLE 20. DETAILS OF ESCAPEMENT TO THE TOBOGGAN HATCHERY INDICATOR. "NON-CWT HATCHERY ESCAPEMENT" WAS COMPRISED OF VENTRAL-CLIPPED FISH. BROOD STOCK WERE REMOVED AT THE TOBOGGAN CREEK FENCE FROM THE UNMARKED ESCAPEMENT. .. 86
TABLE 21. STOCK-RECRUITMENT DATA FOR THE TOBOGGAN CREEK INDICATOR. 86
TABLE 22. STOCK-RECRUITMENT DATA FOR THE HUGH SMITH LAKE COHO INDICATOR............................. 87
TABLE 23. TIME SERIES OF R/S FOR THE STATISTICAL AREA AVERAGE ESCAPEMENT INDICES. 88
TABLE 24. STOCK RECRUITMENT DATA FOR THE SE ALASKAN ESCAPEMENT INDEX STREAMS................... 89
TABLE 25. STOCK-RECRUITMENT PARAMETERS AND STATISTICS FOR THE INDICATOR STREAMS AND THE VISUAL ESCAPEMENT INDICES. THE AVERAGE ESCAPEMENT WERE CALCULATED FOR THE PERIOD 1992 TO 1998 FOR THE CANADIAN DATA AND FOR THE PERIOD 1991 TO 1997 FOR THE ALASKAN SITES....... 90
TABLE 26. STOCK-RECRUITMENT PARAMETERS AND STATISTICS FOR THE LACHMACH AND TOBOGGAN INDICATOR POPULATIONS WHEN THE OBSERVED SMOLTS/SPAWNER AND A CONSTANT MARINE SURVIVAL OF 10% IS USED TO ESTIMATE RECRUITMENT. THE VALUES OF N, R, AND P ARE FROM THE REGRESSIONS OF $L N$ (SMOLTS/SPAWNER) ON SPAWNERS. .91
TABLE 27. CORRELATIONS BETWEEN RESIDUAL $L N(R / S)$ FOR THE CANADIAN STATISTICAL AREA AGGREGATES AND THE BABINE LAKE AGGREGATE ($N=46$). ${ }^{*} P<0.05 ; * * P<0.01 ; * * * P<0.001 \ldots \ldots . . .91$
TABLE 28. PRINCIPAL COMPONENTS ANALYSIS ON RESIDUAL $L N(R / S)$ FOR THE CANADIAN STATISTICAL AREA AGGREGATES AND THE BABINE LAKE AGGREGATE.
.91
TABLE 29. FUTURE PROJECTIONS OF THE BABINE COHO AGGREGATE ASSUMING A TOTAL EXPLOITATION RATE OF 0.0.005 (SCENARIO 1).
TABLE 30. FUTURE PROJECTIONS OF THE BABINE COHO AGGREGATE ASSUMING A TOTAL EXPLOIT... RATE OF 0.372 (SCENARIO 2).

114
TABLE 31. FUTURE PROJECTIONS OF THE BABINE COHO AGGREGATE ASSUMING A TOTAL EXPLOITATION RATE OF 0.50 (SCENARIO 3).. 115

TABLE 32. FUTURE PROJECTIONS OF THE BABINE COHO AGGREGATE ASSUMING A TOTAL EXPLOITATION
RATE OF 0.712 (SCENARIO 4).. 116

Figures
page
FIGURE 1. TIME SERIES OF SMOLT SURVIVALS FOR THE INDICATOR STREAMS. ... 21
FIGURE 2. TOTAL EXPLOITATION RATE AND ALASKAN EXPLOITATION RATE ON THE THREE COHO
INDICATOR POPULATIONS.
FIGURE 3. TIME SERIES OF JUVENILE COHO DENSITIES IN LATE SUMMER WITHIN THE GEOGRAPHIC assessments units of the Skeena basin including the Lachmach River. The bars in all GRAPHS SHOW NUMBER OF JUVENILE COHO PER M ${ }^{2}$.
Figure 4. Total chinook escapement to the Skeena River (Area 4) from 1950 To 1997. The Line IS A LOWESS SMOOTH. CHINOOK DENSITIES INCREASED DRAMATICALLY AFTER THE SIGNING OF THE Pacific Salmon Treaty.
FIGURE 5. RELATIONSHIPS BETWEEN THE DENSITIES OF JUVENILE COHO AND CHINOOK SALMON IN THE SITES WHERE THEY WERE FOUND TO CO-OCCUR IN THE SKEENA BASIN.
.
FIGURE 6. TIME SERIES OF SOCKEYE CATCHABILITY (QSO) WITH A LOWESS SMOOTH TREND LINE.......... 37

FIGURE 8. TYEE TEST FISHING INDEX SUMMED TO THREE FIXED TERMINATION DATES: AUGUST 15TH, AUGUST 25TH (THE USUAL TERMINATION DATE), AND SEPTEMBER 4TH. INDEX VALUES HAVE NOT BEEN ADJUSTED FOR VARYING SOCKEYE CATCHABILITY.
FIGURE 9. TYEE TEST FISHING INDEX SUMMED TO THREE FIXED TERMINATION DATES: AUGUST 15TH, AUGUST 25TH (THE USUAL TERMINATION DATE), AND SEPTEMBER 4TH. INDEX VALUES HAVE BEEN ADJUSTED FOR VARYING SOCKEYE CATCHABILITY.
FIGURE 10. QUANTILE PLOTS OF THE UNADJUSTED (TOP) AND ADJUSTED (BOTTOM) SKEENA TEST FISHERY INDEX TO AUGUST 25 Th. BOX PLOTS OF THE INDEX VALUES ARE SHOWN ABOVE THE PLOTS. The index values for 1998 are shown as vertical dashed lines. The solid curve is a LOWESS SMOOTH. .40
FIGURE 11. QUANTILE PLOTS OF THE UNADJUSTED SKEENA TEST FISHERY INDEX TO AUGUST $10{ }^{1 \mathrm{HI}}$ (TOP) AND SEPTEMBER $4^{\text {TH }}$ (BOTTOM). BOX PLOTS OF THE INDEX VALUES ARE SHOWN ABOVE THE PLOTS. THE index values for 1998 are shown as vertical dashed lines. The solid curve is a LOWESS SMOOTH. 41
FIGURE 12. UNADJUSTED TEST-FISHERY INDEX VS. TIME WITH A LOG-LINEAR FIT FOR THE PERIOD 19651996. 42

FIGURE 13. TOTAL CANADIAN AND ALASKAN EXPLOITATION RATES ON BABINE AGGREGATE COHO...... 49
FIGURE 14 BOX PLOTS OF THE TOTAL EXPLOITATION RATE ON THE BABINE LAKE AGGREGATE COHO. NOTE THAT THE "50'S" INCLUDE THE PERIOD 1946 TO 1949. .. 50
FIGURE 15. TRENDS IN OBSERVED BABINE COHO ESCAPEMENT, ESTIMATED TOTAL ESCAPEMENT AND ESTIMATED TOTAL RETURN (STOCK SIZE) FROM 1946 TO 1998... 51
FIGURE 16 BOX PLOTS OF TOTAL ESCAPEMENT OF THE BABINE COHO AGGREGATE. THE LINE LINKS THE DECADAL MEDIANS. NOTE THAT THE '50'S' INCLUDES THE PERIOD 1946-1949.
Figure 17. BOX Plots of Total stock size of the Babine coho agaregate. The line links the DECADAL MEDIANS. NOTE THAT THE '50'S' INCLUDES THE PERIOD 1946-1949.
FIGURE 18. TRENDS IN ESCAPEMENT (TOP PANEL) AND STOCK SIZE (LOWER PANEL) OF THE BABINE LAKE COHO AGGREGATE BETWEEN 1970 AND 1998. BECAUSE THE Y-AXIS IS A LOGARITHMIC SCALE THE LINEAR TREND LINES WITH NEGATIVE SLOPES ACTUALLY REPRESENT EXPONENTIAL DECLINES IN ABUNDANCE. WITHIN EACH PANEL TWO TRENDS LINES ARE SHOW: ONE FOR THE PERIOD 1970 TTO 1998 AND THO OTHER FOR THE PERIOD 1979-1998.
FIGURE 19. RELATIONSHIP BETWEEN THE TOTAL SIZE OF THE BABINE COHO STOCK AND THE NUMBER OF BABINE SOCKEYE SMOLTS. .. 55
FIGURE 20. RELATIONSHIP BETWEEN THE RESIDUAL FOR THE BABINE STOCK-RECRUITMENT RELATIONSHIP AND THE NUMBER OF SOCKEYE SMOLTS IN THE PREDOMINANT SMOLT YEAR................. 56
FIGURE 21. BABINE COHO ESCAPEMENT AS A PROPORTION OF PROPOSED ESCAPEMENT TARGET (TOP DASHED LINE) (SEE TABLE 12). THE LOWER DASHED LINE IS THE PROPOSED ESCAPEMENT FLOOR. THE CONTINUOUS CURVE IS A LOWESS SMOOTH OF THE PROPORTION.

FIGURE 22. TIME SERIES OF STANDARDIZED AVERAGE ESCAPEMENTS TO CANADIAN STREAMS GROUPED
By Statistical Area as indicated. For SE Alaska the standardized catch per hook of wild
COHO IN THE SE TROLL IS PLOTTED.
FIGURE 23. A DIAGRAMMATIC MAP OF THE MORICETOWN FALLS WITH BEACH-SEINING AND RECOVERY AREAS. 72
Figure 24. A map of the Bulkley and Morice River systems showing the tagging and RECOVERY AREAS MENTIONED IN THE TEXT. .. 73
FIGURE 25. WILD ESCAPEMENT TO THE UPPER BULKLEY RIVER BETWEEN 1950 AND 1998. THE CLEAR BARS ARE VISUAL ESTIMATES WHILE THE SOLID BARS WERE MADE AT A FENCE IN HOUSTON. 77
FIGURE 26. UPPER BULKLEY WILD COHO ESCAPEMENT PLOTTED ON A LOGARITHMIC SCALE VS. YEAR. The solid line is a linear regression through all of the data. The dotted line also a REGRESSION LINE BUT INCLUDES ONLY THE YEARS OF FENCE OPERATION... 78
FIgURE 27. RECRUITS/SPAWNER (R / S) VS. RETURN YEAR FOR THE BABINE LAKE COHO AGGREGATE. THE BOX PLOTS SUMMARIZE THE RESIDUALS BY DECADE, WITH THE FIRST DECADE INCLUDING THE FEW YEARS IN THE 1940'S WERE OBSERVATIONS WERE MADE. .92
FIGURE 28. THE STOCK-RECRUITMENT RELATIONSHIP FOR THE BABINE LAKE COHO AGGREGATE. A FITTED RICKER FUNCTION IS SHOWN. .93
FIGURE 29. THE STOCK-RECRUITMENT RELATIONSHIP FOR THE BABINE LAKE COHO AGGREGATE SHOWN IN LINEARIZED FORM. THE LINEAR REGRESSION LINE FIT TO THE DATA IS DETAILED IN TABLE 18. RICKER STOCK-RECRUITMENT FUNCTION FOR THE BABINE LAKE COHO AGGREGATE............................ 94
FIGURE 30. TIME SERIES OF RESIDUALS FOR THE BABINE LAKE COHO AGGREGATE STOCK-RECRUITMENT RELATIONSHIP IN LINEARIZED FORM.
Figure 31. FROM THE BABINE STOCK RECRUITMENT ANALYSIS, RESIDUAL LOG R / S VS. THE PREDICTED values of log R / S. THE LINE IS A LOWESS SMOOTH .
FIGURE 32. OUTPUT FROM "SRSHOW", A STOCK-RECRUITMENT TOOL UNDER DEVELOPMENT BY C. WALTERS, UNIVERSITY OF BC, VANCOUVER. .. 96
FIGURE 33. ILLUSTRATIONS OF THE AGE (LEFT PANEL) AND ESCAPEMENT (RIGHT PANEL) SIMULATIONS USED TO ESTIMATE UNCERTAINTY IN THE BABINE LAKE AGGREGATE STOCK-RECRUITMENT ANALYSIS. 97
FIGURE 34. SIMULATED DISTRIBUTIONS FOR RICKER PARAMETER A AND B AND FOR THE MANAGEMENT

FIGURE 35. FOR THE LACHMACH RIVER INDICATOR POPULATION PLOTS OF R / S VS BROOD YEAR (TOP) AND AGAINST ESCAPEMENT (BOTTOM). .99
FIGURE 36. FOR THE TOBOGGAN CREEK INDICATOR POPULATION (WILD COMPONENT) PLOTS OF R/S VS BROOD YEAR (TOP) AND AGAINST ESCAPEMENT (BOTTOM). 100
Figure 37. For the Hugh Smith Lake indicator population plots of R / S vs brood year (TOP) AND AGAINST ESCAPEMENT (BOTTOM).
FIGURE 38. TIME SERIES OF R / S DERIVED FROM THE VISUAL COHO SALMON COUNTS IN THE UPPER AND LOWER SKEENA. 102
Figure 39. $\quad R / S$ VS. ESCAPEMENT FOR THE UPPER AND LOWER SKEENA STOCK-RECRUITMENT DATA DERIVED FROM THE VISUAL COHO SALMON COUNTS IN THE UPPER AND LOWER SKEENA. 103
FIGURE 40. FOR AREA 3 AVERAGE ESCAPEMENTS DERIVED FROM VISUAL COUNTS, PLOTS OF R / S VS. BROOD YEAR (TOP) AND AGAINST ESCAPEMENT (BOTTOM). .. 104
Figure 41. FOR AREA 5 AVERAGE ESCAPEMENTS DERIVED FROM VISUAL COUNTS, PLOTS OF R / S VS. BROOD YEAR (TOP) AND AGAINST ESCAPEMENT (BOTTOM). .. 105
FIGURE 42. FOR AREA 6 AVERAGE ESCAPEMENTS DERIVED FROM VISUAL COUNTS, PLOTS OF R / S VS. BROOD YEAR (TOP) AND AGAINST ESCAPEMENT (BOTTOM). 106
FIGURE 43. FOR AVERAGE ESCAPEMENTS DERIVED FROM VISUAL COUNTS IN SE ALASKA INDEX STREAM, PLOTS OF R / S VS. BROOD YEAR (TOP) AND AGAINST ESCAPEMENT (BOTTOM)... 107
FIGURE 44. A PLOT OF THE RECENT AVERAGE ESCAPEMENT TO THE INDICATOR AND INDEX STREAMS AS A PROPORTION OF THE MSY ESCAPEMENT VS. THEIR OPTIMAL EXPLOITATION RATE. THE IDENTIFICATION codes are: ‘AR', Statistical Area; ‘BAB', Babine Lake agGregate; ‘LWRS': LOWER Skeena (AREA 4); ‘UPRS': UPPER SKEENA; ‘TBGN', TOBOGGAN CREEK WILD INDICATOR; ‘LACH’, Lachmach River wild indicator; 'SEAK', SE Alaska index streams; and 'HS', Hugh Smith LAKE WILD INDICATOR. .108

FIGURE 45. A PLot of the finite rate of change to the indicator and index streams as a PROPORTION OF THE VS. THEIR OPTIMAL EXPLOITATION RATE. THE IDENTIFICATION CODES ARE: ‘AR', Statistical Area; ‘BAB', Babine Lake agGregate; ‘LWrS': Lower Skeena (Area 4); ‘LACH', LACHMACH RIVER WILD INDICATOR; AND 'SEAK', SE ALASKA COHO CATCH PER HOOK IN THE TROLL FISHERY; ‘TYEE’, UNADJUSTED TEST-FISHERY INDEX, 'UBULK' UPPER BULKLEY RIVER, AND ‘UPRS’: UPPER SKEENA. ... 109
FIGURE 46. RESIDUAL PLOTS FOR $L N(R / S)$ VS. TIME FOR THE ESCAPEMENT INDICES AND THE BABINE LAKE AGGREGATE. ... 110
FIGURE 47. FUTURE PROJECTIONS OF BABINE AGGREGATE ESCAPEMENTS UNDER DIFFERENT EXPLOITATION SCENARIOS. THE TOP PANEL ASSUMES A FISHERY SIMILAR TO 1998 WITH A TOTAL EXPLOITATION RATE OF 0.34. THE BOTTOM PANEL ASSUMES A STATUS QUO FISHERY WITH A TOTAL EXPLOITATION RATE OF 0.71 . THE SOLID LINE IS THE POINT ESTIMATE. THE OPEN CIRCLES JOINED BY THE DOTTED LINE ASSUMES THE 25% ILE RESIDUAL. THE BOTTOM AND TOP OF THE VERTICAL LINES ASSUME THE 10\%ILE AND THE 75\%ILE OF THE RESIDUALS RESPECTIVELY... 117

1 Introduction

In this Working Paper, we provide a comprehensive assessment of the status of coho salmon (Oncorhynchus kisutch) of the Skeena River, British Columbia. An annotated list of past Working Papers, advice provided by PSARC, and the responses of Science and Fisheries Management to that advice is provided in Table 1

In this paper, we provide data on juvenile densities throughout the Skeena watershed in the year following record low escapements and document the responses in escapement to the conservation measures taken in 1998. For the Babine Lake coho aggregate advice is provided on a sustainable exploitation rate and both an escapement target and an escapement Limit Reference Point. Further assessment of the status of Skeena coho is provided and productivity differences of the interior and coastal coho are further documented (Holtby and Finnegan 1997).

Table 1. Management and assessment recommendations for upper Skeena River (early-run) and Skeena River coho and the corresponding responses made for the period 1988 to 1999.

source and recommendations
Kadowaki 1988
1. set an escapement target of 33,000 at river mouth, equivalent to 68 units in the test fishery by Aug. $24^{\text {th }}$

actions taken in response to recommendation recommendations

Kadowaki 1988

. set an escapement target of 33,000 at the test fishery by Aug. $24^{\text {th }}$
2. generate timing \& fisheries distributions of hatchery \& wild fish to decompose the aggregate into components
3. tag fish to generate exploitation rates
4. extend test fishery to end of Sept. to estimate relative magnitudes of early and late components

Kadowaki et al. 1992

1. continue with the escapement target of 33,000
2. extend test fishery to first week of Sept.

A conservation plan was developed that included: time and area closures in the troll fishery; reduced fishing times in the gillnet fishery in the approach waters to the Skeena, elimination of the non-tidal sport fishery, and requests to native groups to avoid coho where possible and to reduce coho harvests. The escapement target has been achieved in two years.
Coho produced at Kispiox hatchery, Toboggan Creek hatchery and in net pens on the Babine have been regularly tagged with CWTs. There has been sporadic tagging at some 10 other sites in the watershed. Recovery of the tags in the river mouth fishery has given some information about variations in run timing. Preliminary resolution of the catch of the 1998 test-fishery has recently been completed.
Exploitation rates and marine survival rates are now obtained for Babine Lake and Toboggan Creek hatchery stocks. Wild smolt survivals have been measured indirectly at Toboggan Creek since 1995 and directly at Lachmach River (Work Channel) since 1989.
Extension of the test fishery beyond the end of August is compromised by seal depredation in some years but was attempted in most years during the 1990's. The relative magnitude of the "late" component cannot be estimated unless the test-fishery is run well into October..

The conservation plan has continued due to the continued poor performance of Skeena coho indexed by the test-fishery.
See comment above.
source and
recommendations
3. estimate CWT escapements and inriver harvest for determination of exploitation rates.

Holtby et al. 1994

1. Development of additional exploitation/survival rate indicators
2.Examine the reasons for apparent low hatchery smolt survivals
2. Critical examination of the assessment program, especially with a view to establishing a drainage wide system of indexed escapements or proxy measures of escapement.
3. Faced with low and fluctuating marine survivals, the need to reduce exploitation rates to sustainable levels was identified
4. Development of a pre-season forecasting tool as a prelude to an adaptive management approach was recommended.

Holtby and Finnegan 1997

1. Given the continuing conservation concerns for upper Skeena coho (principally the Bear-Sustut, Babine, and Bulkley-Morice), the alarming further decline in abundance in 1997, and uncertainty in survival rates for coho returning in 1998, we caution that any exploitation of upper Skeena area coho poses a high risk to the viability of coho populations in that area.
2. Although conservation problems for lower and middle area Skeena coho were not indicated to 1996, because of the precipitous decline in abundance in 1997 and uncertainty in survival rates for coho returning in 1998, we recommend a more conservative approach to the harvest of these coho stocks.
actions taken in response to recommendation
In-river creel censuses have been operated opportunistically with Skeena Green Plan funding but have proven expensive.

This information is now routinely collected for the Toboggan Creek and Fort Babine hatchery stocks. There are no indicators in the lower river or coastal streams of Area 4 and until 1999, no wild tagging anywhere in the Skeena.
Wild smolt survivals have been measured indirectly at Toboggan Creek and would seem to indicate that survivals measured on hatchery smolts at that site are 25% of wild survival. No reasons for the difference have been identified.

A drainage-wide juvenile synoptic survey program was initiated in 1994, extending the program begun in the Bulkley-Morice.

Exploitation rates have been reduced in the northern troll fishery, but those reduction were offset in 1995 and 1996 by greater increases in the net fisheries and by escalating Alaskan exploitation. Further fisheries management actions were undertaken in 1997, which resulted in marked reductions in Canadian exploitation rates, but these actions were partially offset by further increases in Alaskan exploitation.
Forecasting based on jack returns to the Lachmach River was developed but Lachmach jack returns failed to predict the recruitment failure that seems to have occurred in the Skeena, QCI and sections of the Central Coast..

Conservation concerns for coho in the upper Skeena led to cessation of all directed coho fisheries in northern BC and non-retention of incidental coho catches.

Survival rates for coho entering the ocean in 1997 were slightly greater than the forecast value of average survival. The prohibition on coho retention was extended to all BC coho including coastal stocks in Area 4.
source and
recommendations
3. Assessment of Skeena coho continues to be affected by limited information, and in particular the lack of effective forecasting tools for Skeena coho and the lack of wild indictor sites where wild smolt production can be measured and their survival determined. Consequently we recommend the development of additional wild indicator sites in the Skeena, with highest priority given to the upper Skeena, as well of the development of more effective forecasting tools for Skeena coho.
4. The juvenile synoptic surveys have proven valuable in allowing us to monitor the status of populations throughout the watershed, and we recommend that they continue at their present scale

Holtby and Kadowaki 1998

1. This was a forecast paper and an assessment of the risks to escapement of fishing.

Holtby et al. 1999a

1. Forecast of survival for 1999 return for Area 3 and upper Skeena and abundance forecasts for Areas 1 to 10.
actions taken in response to recommendation

Development of forecasting tools based on oceanographic indicators was funded in 98/99. Several promising relationships were identified and these will be employed for the 2000/01 forecast. Time series approaches developed for southern BC coho (Holtby and Kadowaki 1998) were applied to forecast northern BC coho in 1999 (Holtby et al 1999). Development of Toboggan Creek wild indicator has proceeded. Funding constraints will prevent the development of other, perhaps more suitable, wild indicators in the upper Skeena.

The juvenile surveys have continued at a somewhat reduced scale due to funding constraints.

2 Indicator populations

There are two wild and two hatchery indicators in the study area. The hatchery indicators are the Toboggan CDP project on Toboggan Creek, a lower tributary of the Bulkley River and the Fort Babine CDP project on Nilkitkwa Lake, part of the Babine Lake system. The wild indicators are the Lachmach River at the head of Work Channel and the wild population at Toboggan Creek ${ }^{\text {B }}$.

Canadian catch data up to and including 1997 were obtained from the commercial catch database maintained by StAD at PBS, Nanaimo. Data on CWT recoveries in fisheries were obtained from the MRP database maintained at the Pacific Biological Station using the standard processing routines (Kuhn et al. 1988). There were known problems with the reporting of CWT recoveries in Area 3 and 4 gill-net fisheries during 1997, with the result that only 1 CWT was reported recovered. To estimate actual net exploitation rates in 1997 Holtby and Finnegan (1997) used the sockeye run-reconstruction model developed for Skeena-Nass fisheries (pers. comm. S. Cox-Rogers, DFO, Prince Rupert, Cox-Rogers 1994; Gazey and English 1996) to estimate the probable coho encounters during the 1994 through 1997 fisheries. The number of encounters was used to estimate exploitation rates in the 1997 fisheries. In 1998 coho retention was not permitted in any fisheries affecting Skeena coho. We used the same approach used in 1997 to estimate exploitation rates in each of the fisheries that affected Skeena coho and extended the models to fresh water fisheries by First Nations.

Adult counting fences are operated on the Lachmach River, Toboggan Creek, the Bulkley River at Houston, and the Babine River. At the Lachmach River and Toboggan Creek all coho are processed ${ }^{4}$ at a fence located in the lower river and a systematic proportion are given an external tag. In the event that either fence tops during fall freshets, visual estimates of tagged and untagged fish made by swimmers (Lachmach) or stream-side observers (Toboggan) are used to estimate the number of fish that passed the fence undetected using a Bayesian estimator described by Lane et al. (1994b). Both fences operate for the entire duration of the run (Lane and Finnegan 1991; Lane et al. 1994a, b, unpubl. data B. Finnegan, StAD, PBS). Data for the Toboggan Creek and Houston fence operations were obtained from the annual reports of the Toboggan Creek CDP hatchery ${ }^{\frac{5}{5}}$ The Babine River salmon counting fence was constructed in 1946 with the intent of enumerating the large runs of sockeye salmon that spawn in the tributaries of Babine Lake. During operation of the fence visual counts are made of other species, but in recent years most coho

[^2]have been dip-netted and examined for adipose clips. Fence operations have ended on various dates, but no earlier than September $13^{\text {th }}$. The enhanced component appears to be part of the early return to the lake and the fence has consistently operated late enough to capture that entire component. Data summaries were obtained from a database maintained by StAD in Prince Rupert (M. Jakubowski, B. Spilsted, pers. comm.)

Smolts are enumerated at Lachmach River, where they are trapped on their seaward migration, either at a weir or in a variety of rotary and fyke traps. Mark-recapture estimates of total run size were made when traps were in use. All smolts captured were tagged with coded-wire tags and adipose-clipped (Finnegan et al. 1990; Finnegan 1991; Davies et al. 1992; Baillie 1994; Lane and Baillie 1994; unpubl. data B. Finnegan, StAD, PBS).

Varying proportions of the adults enumerated at the Lachmach fence did not have an adipose clip and presumably did not have a coded-wire tag. Exploitation and survival rates, which are calculated from the coded-wire tagged releases, were used to estimate the actual smolt production. The expansion factor has ranged between 1.26 and 1.89 with a mean of $1.581(S D=0.234 ; N=9)$.

Beginning in 1995, the number of wild smolts leaving Toboggan Creek was estimated by trapping both wild and hatchery smolts near the outlet of the stream. All Toboggan Creek hatchery smolts are CWT'd and there is volitional release. Four years of trapping (Saimoto 1995; SKR Consultants Ltd. 1996; B. Finnegan, StAD, PBS, unpubl. data) have indicated that the out-migration timing of wild and hatchery smolts is very similar. Consequently a simple ratiometric procedure is used to estimate the number of wild smolts (N_{w}) using the observed numbers of wild and hatchery smolts (n_{w}, n_{h}) and the known number of hatchery smolts released $\left(N_{h}\right)$:

$$
\begin{equation*}
N_{w}=N_{h} n_{w} / n_{h} \tag{1}
\end{equation*}
$$

Smolts are not enumerated at the Babine and no other smolt data are available from the Skeena drainage.

2.1 Smolt survival

Smolt survival returned to average values at Lachmach Table 2). Smolt survival at Toboggan was 3.5times what it was in 1997 (1996 sea-entry) but remained below average Table 3. Estimated wild survival rates for Toboggan also increased but remained below average Table 5. Smolt survival for Babine hatchery coho increased very slightly relative to 1997 but remained below 1% Table 4). Although there appears to be a downward trend in survival for the three Skeena populations Figure 1), none of the trends are significant. Furthermore, if forecast increases in survival (Holtby et al. 1999a) are realized the apparent trend will be eliminated. Survivals of hatchery smolts in the north appears to be as dismal as in Strait of

[^3]Georgia facilities (Holtby et al. 1999b), which is cause for concern even if there is no conclusive evidence of a downward trend. Marine survival at Lachmach appears to be without trend.

2.2 Exploitation rates

Total exploitation rates fell relative to 1997 levels at two of the three indicator sites Figure 2 but actually increased on the Fort Babine hatchery population. Directed Canadian fisheries were not permitted in 1998 and so all of the very modest exploitation in Canadian fisheries was due to incidental catch or to release mortality. Exploitation in Alaska remained at recent levels for the Lachmach and Toboggan indicators but increased for the Fort Babine indicator Table 4. There were no counting problems at the Babine fence and 71 CWTs were observed in ocean fisheries, so we think it likely that the exploitation rate estimate is correct.

Table 2. CWT release and recovery data for the Lachmach River wild coho indicator.

return year	CWTs released	observed CWTsall oceanfisheries	estimated CWTs by sector					exploitation rates				survival ratesmolt
			Canadian commercial	Canadian sport	Alaska	escapement	total	ocean sport	Canadian commercial	Alaska	total	
1988	1169	5	12	0	11	12	35	0.005	0.341	0.313	0.659	0.030
1989	9481	68	98	2	153	153	406	0.005	0.241	0.377	0.623	0.044
1990	17210	418	895	11	833	537	2276	0.005	0.393	0.366	0.764	0.113
1991	24408	635	1166	23	1019	825	3033	0.008	0.384	0.336	0.728	0.121
1992	13186	268	383	12	539	301	1235	0.010	0.310	0.436	0.756	0.088
1993	19921	255	353	20	481	457	1311	0.015	0.269	0.367	0.651	0.061
1994	14055	502	635	53	1192	761	2641	0.020	0.240	0.451	0.712	0.174
1995	6276	102	118	11	247	163	539	0.020	0.219	0.458	0.697	0.082
1996	3629	91	118	8	146	106	378	0.020	0.313	0.387	0.719	0.072
1997	5234	41	4	4	117	98	223	0.020	0.018	0.524	0.561	0.055
1998	7645	108	0	5	333	391	729	0.007	0.000	0.457	0.464	0.096

Table 3. CWT release and recovery data for the Toboggan hatchery coho indicator. The fresh water (FW) exploitation rate can be obtained by subtraction.

		observed	estimated CWTs by sector						exploitation rates				survival
return year	CWTs released	all ocean fisheries	Canadian commercial	Canadian sport	FW	Alaska	escapement \& terminal sport	total	ocean sport	Canadian commercial	Alaska	total	smolt
1988	31794	37	87	3	139	41	397	668	0.005	0.130	0.061	0.406	0.021
1989	30354	129	286	4	98	159	278	825	0.005	0.347	0.193	0.663	0.027
1990	31300	213	483	6	136	272	387	1284	0.005	0.376	0.220	0.699	0.041
1991	30954	309	514	14	226	465	642	1861	0.008	0.276	0.254	0.655	0.060
1992	31290	86	144	5	57	157	162	525	0.010	0.274	0.299	0.692	0.017
1993	30926	75	361	13	101	110	287	872	0.015	0.414	0.129	0.671	0.028
1994	32600	323	440	39	226	611	642	1958	0.020	0.225	0.320	0.672	0.060
1995	33533	64	81	12	91	93	323	600	0.020	0.135	0.158	0.462	0.018
1996	33609	195	316	17	43	238	227	841	0.020	0.376	0.287	0.730	0.025
1997	32368	26	19	3	7	55	77	161	0.020	0.120	0.350	0.522	0.005
1998	33255	57	2	4	4	162	440	613	0.007	0.003	0.264	0.282	0.018

Table 4. CWT release and recovery data for the Fort Babine hatchery coho indicator. The fresh water (FW) exploitation rate can be obtained by subtraction.

		observed	estimated CWTs by sector						exploitation rates				survival
return year	CWTs released	all ocean fisheries	Canadian commercial	Canadian sport	FW	Alaska	escapement \& terminal sport	total	ocean sport	Canadian commercial	Alaska	total	smolt
1994	30753	270	720	25	31	283	173	1231	0.020	0.585	0.230	0.859	0.040
1995	32934	79	72	7	7	211	44	340	0.020	0.212	0.620	0.871	0.010
1996	29255	168	231	18	34	333	303	919	0.020	0.251	0.362	0.670	0.031
1997	29694	21	27	3	4	56	74	164	0.020	0.163	0.342	0.548	0.006
1998	59891	71	2	3	2	229	156	391	0.007	0.005	0.585	0.601	0.007

Table 5. Estimates of wild smolt production and wild smolt survival for the non-hatchery population at Toboggan Creek.

smolt year	observed number of wild smolts	apparent wild survival	ratio of wild to hatchery survival	estimated number of wild smolts	estimated wild survival
1987				21106	0.08
1988			52961	0.10	
1989			56355	0.15	
1990			35374	0.23	
1991			91950	0.06	
1992			33768	0.11	
1993			25179	0.23	
1994			39990	0.07	
1995	38137	0.10	3.8855		
1996	34989	0.02	3.9663		
1997	42429	0.07	3.6110		
1998	66565				

Figure 1.
Time series of smolt survivals for the indicator streams.

Figure 2.
Total exploitation rate and Alaskan exploitation rate on the three coho indicator populations.

3 Indices of abundance

3.1 Juveniles - indices of 1997 escapement and status indicators

The methods used to determine juvenile densities and various aspects of the history of this program have been described extensively elsewhere (Holtby and Kadowaki 1996; Kadowaki et al. 1996; Holtby and Finnegan 1997; Simpson et al. 1997). Data for the Skeena in 1998 were obtained from Taylor (1998), Williamson (1998) and from unpublished summaries (B. Finnegan, DFO, Nanaimo, pers. comm.).

The marked differences in juvenile densities seen in previous years between the seven Skeena areas have persisted (Table 6 Figure 3). In the 1998 surveys, the highest juvenile densities were found in the Lachmach River and in the coastal Skeena tributaries. Densities were intermediate in the streams around Terrace, in the Kispiox and in the main-stem Bulkley/Morice. Densities were lowest in streams of the high interior, in Babine tributaries and in the upper Bulkley River (above Houston). No juvenile coho were found in the upper Bulkley Figure 3. Juvenile densities in the low-flow period at the end of summer of between 0.75 and $2 \mathrm{fish} / \mathrm{m}^{2}$ generally indicate fully seeded streams. The juvenile densities observed in the upper Skeena, which have averaged less than $0.25 \mathrm{fish} / \mathrm{m}^{2}$ are consistent with the sparse and oftenqualitative escapement indices from these areas.

Juvenile densities in five of eight areas fell in 1998 compared to 1997. Aside from the upper Bulkley, which had no juveniles, the largest decrease was seen in the upper Skeena ($0.12 \times$). Decreases in the Kispiox, Terrace and Bulkley/Morice areas ranged from $0.59 \times$ to $0.68 \times$. Juvenile densities in the remaining three areas increased in 1998 relative to 1997. The increases were largest in the Lachmach $(1.7 \times)$ and the coastal Skeena streams $(1.8 \times)$. Surprisingly and inexplicably, coho densities increased in the Babine by a factor of $1.29 \times$. Despite this anomaly densities in the Babine remain low, although not as low as they were in the high interior or in the upper Bulkley.

Escapement and juvenile densities in the following fall would be strongly correlated only if egg to juvenile mortality is invariant. If it weren't then juvenile densities would not be a particularly useful index of escapement. Of course, if FW survival was highly variable and often poor one might also conclude that escapement is not a particularly useful index of status. To examine temporal patterns in juvenile densities and escapement we did a Principal Component Analysis on the juvenile densities over the period 1994 to 1998 combined with six indices of escapement over the period 1993 to 1997 Table 7. Derivation of the upper and lower Skeena average escapement indices can be found in Holtby et al. 1999a. Four components were extracted from the correlation matrix and VARIMAX rotated.

Four temporal patterns were identified. The first accounted for 46% of the explained variance after rotation and involved all of the escapement indices and to some extent all of the juvenile indices except in the high interior Table 7. This association reflects the widespread effects of low escapement in 1997. The increased juvenile densities seen in coastal streams and in the Babine in 1998 are reflected by their negative loadings on the first component. The second component, which accounts for 29% of the explained variance
after rotation identifies the association between four of the remaining six juvenile indices. The remaining two juvenile indices (the High Interior and the Babine) dominate the third and fourth component respectively Table 7.

There are several reasons why escapement and subsequent juvenile density indices might be poorly related. First, the escapement indices might be poor indices of adult numbers. This explanation is plausible where the index is based on visual counts in a set of streams which is changing from year to year and where the methods are poorly standardized. Even where there are fence counts, there are always suspicions that some coho arrive before or after the fence operation. However, all of the escapement indices have high loadings with the same sign on the first component, which indicates that escapements were varying together over the entire basin. We think it unlikely that visual indices, the test-fishery and three fence counts would be consistently biased.

Second, there are several reasons why the juvenile density measures could be misleading. Extended periods of poor weather can play havoc with juvenile censuses. Wet summers can make counting juveniles in large streams very difficult especially in streams with moderate gradients draining higher elevations. The summer of 1995 was very wet with numerous fall storms, which might account for the relatively low densities recorded in many areas that year. Although the index sites are often more than 30 m in length and always include multiple habitat features it is possible that many more sites than the 7 to 18 per area that we have available are required to adequately index juvenile abundance. Most of the sites were chosen because of easy access with some consideration about the feasibility of enumeration. The best coho habitat in most of these streams is either pond or lake margin or deep pools in larger streams-habitats that are not easily enumerated within a single day. Consequently, most of the sites in our surveys would not be considered the best habitat available ${ }^{6}$. Furthermore the constraints of access and sampling have acted to make the site characteristics uniform across the entire basin. Aside from the logistics and statistical characteristics of the sampling there is no compelling reason to expect other than a weak relationship between egg numbers and juvenile numbers a year afterward. Egg-to-fry survival can be highly variable (Scrivener and Brownlee 1989) and FW population processes in coho tend to damp variation in escapements (e.g. Scrivener and Andersen 1984). Juvenile coho can be highly mobile within large FW systems. Juvenile coho might migrate into or out of the index sites before the end-of-summer sampling period. The few studies that have been done on coho movements in systems subjected to continental winters do indicate that a lot of seasonal movement does occur (Cederholm and Scarlett 1981; Swales et al. 1986; Swales and Levings 1989; Radtke et al. 1996). Many of the movements documented are autumnal shifts from mainstem habitats to ponds, which often have warmer winter temperatures (Swales and Levings 1989). Spring or summer movements might be a particular problem in the Babine where most of the coho rearing is thought to occur in Nilkitkwa

[^4]and Morrison Lakes (Bustard 1990). Habitat use and seasonal migration patterns should be more thoroughly investigated in these interior systems.

The observed changes in coho densities may be distributional shifts resulting from displacement by chinook. Since the signing of the Pacific Salmon Treaty exploitation rates on chinook have fallen and escapements have generally increased Figure 4. Chinook juveniles are found in many of the sites sampled for coho. A behavioral interaction between the species, which resulted in the displacement of coho from the best habitat, could result in low apparent juvenile densities if we were not sampling in marginal habitats. To examine this possibility we examined the relationship between coho and chinook densities in sites where they occurred together. If an interaction was occurring of sufficient magnitude to bias our measured densities we would expect to see a negative relationship between coho and chinook densities.

In the 48 samples in the upper Skeena where either coho, chinook or both species were found we found the following association:

species	number of samples
coho \& chinook:	23
coho only:	22
chinook only:	3

Where the two species co-occurred their densities were positively related Figure 5), although not significantly so ($\mathrm{P} \sim 0.15$). The habitats that are sampled are those where experienced field biologists would expect to find coho. Extensive searches in areas such as the upper Sustut River (pers. comm. D. Atagi, BCMELP, Smithers, BC), the Kluatantan and the Onerka Rivers (unpubl. data B. Finnegan, CDFO, Nanaimo) have revealed no coho in marginal habitats. Coho and chinook seem to cohabit the Morice River side-channels but studies of micro-habitat use suggest that consistent differences between the species allow co-existence (Lister and Genoe 1970; Murphy et al. 1989; Shirvell 1994). Regardless, if there have been extensive interactions between coho and chinook that have resulted in the displacement of coho from their preferred habitats, then the consequence would have been to lower the productivity of the coho populations and in consequence their ability to sustain harvest.

Table 6. Juvenile coho densities in Skeena Basin streams and the Lachmach River measured in the fall of 1998. The streams are grouped into the same areas graphed in Figure 3

region system	density ($\mathrm{n} / \mathrm{m}^{2}$)
high interior	
Johanson Creek \#1	0
Johanson Creek \#2	0
Kluatantan River	$2.4 \mathrm{E}-02$
Moosevale Creek	0
Motase SC	$2.8 \mathrm{E}-01$
Salix Creek	$3.0 \mathrm{E}-02$
Sicintine River	$1.4 \mathrm{E}-01$
Sustut River	0
Sustut River @ lake	0
Babine	
Boucher Creek (upper)	$8.0 \mathrm{E}-02$
Lamprey Creek	$5.0 \mathrm{E}-01$
Morrison River	$7.0 \mathrm{E}-02$
Nichyeskwa River	$4.0 \mathrm{E}-02$
Nine Mile Creek \#1	$2.9 \mathrm{E}-01$
Nine Mile Creek \#2	$6.0 \mathrm{E}-02$
Tachek Creek \#1	$3.9 \mathrm{E}-01$
Tachek Creek \#2	$2.7 \mathrm{E}-01$
upper Bulkley	
Ailport Creek	0
Buck Creek	0
Bulkley River @ Byman	0
Bulkley River@ Houston Fence	$1.0 \mathrm{E}-03$
Bulkley River @ McQuarrie	0
Byman Creek \#1, \#2	0
Bulkley/Morice	
Elliot Creek (lower)	$7.4 \mathrm{E}-01$
Elliot Creek (upper)	$5.0 \mathrm{E}-02$
Gosnell Creek	$5.5 \mathrm{E}-01$
McBride Creek (lower \#1)	$3.0 \mathrm{E}-02$
Morice SC @ km 44.5	$5.0 \mathrm{E}-01$
Morice SC @ km33	$2.1 \mathrm{E}-02$
Morice SC@km38.5	$8.5 \mathrm{E}-01$
Owen Creek (lower)	$1.5 \mathrm{E}-01$
Owen Creek (upper)	$3.7 \mathrm{E}-01$
Shea Creek (lower)	$2.2 \mathrm{E}-01$
Shea Creek (upper)	$2.5 \mathrm{E}-01$
Toboggan Creek	$2.1 \mathrm{E}-01$
Toboggan Creek (lower)	$5.4 \mathrm{E}-01$
Toboggan Creek tributary	7.0E-02
$\underline{\text { Kispiox }}$	
Clifford Creek \#1	$1.0 \mathrm{E}-02$
Clifford Creek \#2	$1.6 \mathrm{E}-01$
Cullon Creek \#1	$4.6 \mathrm{E}-01$

region system	density ($\mathrm{n} / \mathrm{m}^{2}$)
Cullon Creek \#2	$2.2 \mathrm{E}+00$
Cullon Creek \#3	$1.3 \mathrm{E}-01$
Kispiox River SC	$1.5 \mathrm{E}-01$
Moonlit Creek	$2.0 \mathrm{E}-01$
Nangeese Creek	$3.9 \mathrm{E}-01$
Terrace	
Clear Creek	$2.8 \mathrm{E}-01$
Clearwater Creek	$2.0 \mathrm{E}-02$
Coldwater Creek \#3	$1.6 \mathrm{E}-01$
Coldwater Creek (lower)	$8.9 \mathrm{E}-01$
Coldwater Creek (upper)	$1.4 \mathrm{E}+00$
Copper River \#1	$8.7 \mathrm{E}-01$
Copper River \#2	$7.2 \mathrm{E}-01$
Deep Creek \#1	$2.4 \mathrm{E}-01$
Deep Creek \#2	$2.3 \mathrm{E}-01$
Hadenschild Creek	$3.7 \mathrm{E}-01$
Hankin Creek (lower)	0
Hankin Creek (middle)	0
Kitwanga Creek	$1.7 \mathrm{E}-01$
Schulbuckhand Creek	$5.3 \mathrm{E}-01$
Singlehurst Creek \#1	$1.8 \mathrm{E}-01$
Singlehurst Creek \#2	$1.7 \mathrm{E}-01$
Sockeye Creek (lower)	1.2E+00
Sockeye Creek (upper)	7.7E-01
coastal	
Ecstall River	$2.0 \mathrm{E}+00$
Ecstall River tributary \#1	$2.2 \mathrm{E}-01$
Ecstall River tributary \#2	$3.5 \mathrm{E}-01$
Green River (lower)	$3.3 \mathrm{E}-01$
Green River (upper)	$8.8 \mathrm{E}-01$
Hayes Creek	$2.3 \mathrm{E}+00$
Kideen Creek	$3.0 \mathrm{E}-02$
Lachmach	
L0500	$6.1 \mathrm{E}-01$
L2000	$1.7 \mathrm{E}+00$
L2600	$7.7 \mathrm{E}-01$
L3390	$3.0 \mathrm{E}-01$
L3820	$4.6 \mathrm{E}+00$
L4500	$1.7 \mathrm{E}+00$
L5000	$8.0 \mathrm{E}-02$
L6300	$1.5 \mathrm{E}+00$
L7000	$1.2 \mathrm{E}+00$

Table 7. Results of a Principal Components Analysis of the juvenile density and escapement indices and measures for the Skeena Basin. Escapement data are for 1993 to 1997 while the juvenile data are for the period 1994 to 1998. A VARIMAX rotation has been applied. The shading of factor scores highlights variables with more than 50% of their variance explained on a particular rotated component.

	factor loadings after VARIMAX rotation			
variable	1	2	3	4
Upper Skeena average	0.971	-0.010	0.225	-0.084
escapement	0.934			
Babine escapement	0.810	0.215	0.116	0.261
Toboggan escapement	0.766	0.558	-0.048	0.171
Tyee test-fishery Aug. 25	0.751	0.614	0.369	0.357
Lower Skeena average			0.228	0.081
escapement	0.745	0.163	0.628	
Lachmach escapement	-0.222	0.846	0.466	0.155
JUV: Lachmach	-0.714	-0.494	-0.428	-0.135
JUV: Coastal	0.956	0.141	0.190	-0.253
JUV: Terrace	0.558	0.796	0.235	-0.013
JUV: Kispiox	0.236	0.955	0.031	0.177
JUV: Bulkley/Morice	0.603	0.719	0.335	-0.081
JUV: upper Bulkley	-0.350	-0.326	-0.875	0.080
JUV: Babine	0.050	0.017	-0.027	0.998
JUV: high interior	46%	29%	14%	10%
Percent of Total Variance				
Explained				

Figure 3. Time series of juvenile coho densities in late summer within the geographic assessments units of the Skeena basin including the Lachmach River. The bars in all graphs show number of juvenile coho per m^{2}.

Figure 4.
Total chinook escapement to the Skeena River (Area 4) from 1950 to 1997. The line is a LOWESS smooth. Chinook densities increased dramatically after the signing of the Pacific Salmon Treaty.

Figure 5. Relationships between the densities of juvenile coho and chinook salmon in the sites where they were found to co-occur in the Skeena Basin.

3.2 Tyee (Skeena) Test Fishery

The Tyee test fishery is described in detail by Kadowaki (1988) and by Cox-Rogers and Jantz (1993). The Tyee test-fishery is primarily intended for in-season management of the Skeena sockeye fisheries but because coho, chinook, steelhead and pink are also caught it has been routinely used as an abundance index for all salmon species in Area 4. The number of all species captured in the Tyee test-fishery has been recorded daily for the period July $1^{\text {st }}$ to August $25^{\text {th }}$ since 1956 . The unadjusted test-fishery index is the cumulative catch per 1000 fathom•minutes from mid-June to a fixed termination date, which has typically been August $25^{\text {th }}$, the earliest date of fishery closure. The 'adjusted' test-fishery index has been 'corrected' for annual variations in sockeye catchability. The test-fishery has operated in the same place with the same gear since 1956. Test-fishery data were obtained from a database maintained by Fisheries Management staff in the DFO Prince Rupert office (pers. comm. L. Jantz).

The test-fishery index is simply the cumulative daily capture between these two dates. Assuming that a constant proportion of the run is caught, the catchability of sockeye $\left(q_{s o}\right)$ is determined with the expression:

$$
\begin{equation*}
q_{s o}=T_{s o} / E_{s o} \tag{2}
\end{equation*}
$$

where:
$T_{\text {so }} \quad: \quad$ sockeye test fishery index, and
$E_{s o} \quad: \quad$ estimated sockeye escapement indexed by the test fishery.
Escapements can be estimated using eqn. (2) given values of catchability and the test-fishery index. The escapement of the coho population aggregate indexed by the test fishery is not known with any precision. The summed visual escapement estimates for populations upstream of Terrace in the 1960's and 1970's suggested that a value of $1 / 543$ was reasonable. However, provided that catchability remains constant over time, the value used is largely irrelevant to the use of the test-fishery as an index.

However, the value of $q_{s o}$ has been decreasing since the mid-1970's Figure 6 and it is reasonable to assume that the catchability of coho has been changing as well, although the reasons for the change in $q_{\text {so }}$ are unknown. A radio-tagging study in the Skeena in 1994 provided an estimated escapement to the Skeena above Terrace of 3.81×10^{4}. The test-fishery index in 1994 was 37.17 . Applying eq. 2 gives a value for coho catchability in $1994 \boldsymbol{\gtrless}_{t o, 1994} \boldsymbol{f}$ of 0.000977 . Sockeye catchability in the same year was 0.000621 . Coho catchability adjusted for the changing efficiency of the test-fishery can then be expressed as:

$$
\begin{equation*}
q_{c o}^{\prime}=q_{s o} q_{c o, 1994} / q_{s o, 1994} \tag{3}
\end{equation*}
$$

and an adjusted test-fishery index can be calculated with:

$$
\begin{equation*}
T_{c o}^{\prime}=q_{s o, 1994} T_{c o} / q_{s o} \tag{4}
\end{equation*}
$$

In many years the test-fishery was run beyond August $25^{\text {th }}$. The utility of running the test-fishery beyond the end of August has not been demonstrated. Without definitive stock composition estimates from the test fishery we can't determine what proportion of the coho captured in the test-fishery are bound for the upper Skeena. However, based on the 1994 radio-tagging study and run timing at Lachmach (Lane et al. 1994a) we currently think that middle and coastal Skeena coho are beginning to show by the middle of August and dominate the run by the second week of September. In years when pink abundance was low the test-fishers reported that seal predation on caught fish led to an under-estimate of abundance. For this report, the index was extrapolated to September $4^{\text {th }}$ in a fashion similar to that used to extrapolate the Babine fence counts.

In 16 years the test-fishery was run until at least September $4^{\text {th }}$. For each of those years, for every day past August $25^{\text {th }}$ the cumulative test-fishery index was divided by the total for that year to September $4^{\text {th }}$. Then for every day past August $25^{\text {th }}$ the average proportion of the total run across the 16 base-years was calculated. For the years when the test-fishery stopped before September $4^{\text {th }}$ the index value to that date was estimated by dividing the index on the last day observed by the average proportion of the total index to that date calculated with the base years. The index was also tabulated for August $10^{\text {th }}$, which is roughly the average date of the peak when bimodality is evident in the daily index values.

Because of the temporal pattern of the catchability correction, its application to the coho index values has a marked effect on the temporal pattern of the index (compare Figure 8 with Figure 9. Although there is considerable variability in each, the unadjusted index values decrease with a "saw-tooth" pattern since the mid-1960's Figure 8. In contrast, the adjusted test-fishery index decreases abruptly in 1972 and remains relatively constant between that year and 1996 Figure 9.

We don't understand why the sockeye catchability varies and so can't definitively determine which index is best. One recent suggestion is that sockeye catchability is varying directly with average sockeye size (pers. comm. R. Kadowaki, PBS, Nanaimo). Coho are larger than sockeye so their catchability would not have varied over time. This possibility will be explored further. However, if coho catchability is varying then it is difficult to explain why the Babine fence index and total escapement are so much better correlated with the unadjusted test-fishery index Table 9). Since the Babine Lake aggregate is presumed to be a major component of the larger upper Skeena aggregate indexed by the test-fishery index the use of the unadjusted test-fishery index is the most suitable choice.

Index values in 1998 were considerably higher than in 1997 Table 8 ;Figure 8; Figure 9. The value of the (preferred) unadjusted index was about the $29^{\text {th }}$ percentile Figure 10, which was significantly lower than the median value of the index. In contrast, the value of the adjusted index was approximately the $45^{\text {th }}$ percentile. The difference in the two percentiles is a direct result of the correction in depressing index
values during the 1970's. The index date has considerable effect on the index as a measure of relative status. In 1998 the index value on August $10^{\text {th }}$ was approximately the $18^{\text {th }}$ percentile while on September $4^{\text {th }}$ the index value stood at approximately the $40^{\text {th }}$ percentile Figure 11.

A log-linear plot of the unadjusted test-fishery index to September $4^{\text {th }}$ vs. year is linear between the mid1960's and the end of the time-series Figure 12. The slope of the line fitted to the period 1965 to 1996 is 0.051. This corresponds to a finite rate of decrease of 0.0497 - $e^{-0.051}$ Nith an average age of 3.3 years the generational rate of decrease is 15.5% and the decrease over three generations of 39.6%. These are similar rates to those observed for Babine escapement and total stock size and for the upper Skeena average escapement.

Table 8. Cumulative Tyee test fishing index to three termination dates. CDFO uses the index to August 25 th. See the text for details on adjustments made to the index values for varying sockeye catchability.

year	Cumulative index values			$\mathrm{q}_{\text {so }}$	Cumulative index values adjusted for sockeye catchability (q_{so})		
	August $10{ }^{\text {th }}$	August $25^{\text {th }}$	Sept. ${ }^{\text {th }}$		August $10{ }^{\text {th }}$	August $25^{\text {th }}$	Sept. $4^{\text {th }}$
1956	46.0	91.4	127.3	0.002148	13.3	26.4	36.8
1957	48.7	97.1	115.1	0.001517	19.9	39.8	47.2
1958	90.5	156.0	208.3	0.001348	41.7	71.9	96.0
1959	58.5	76.2	90.9	0.001359	26.8	34.8	41.6
1960	44.6	71.5	77.5	0.001484	18.7	29.9	32.4
1961	35.1	56.2	92.9	0.001214	18.0	28.7	47.5
1962	55.1	119.3	131.4	0.001318	25.9	56.2	62.0
1963	64.0	90.2	102.4	0.001326	30.0	42.3	48.0
1964	55.0	119.6	144.7	0.001372	24.9	54.1	65.5
1965	123.1	175.5	272.3	0.001109	68.9	98.3	152.5
1966	127.2	168.5	182.3	0.002081	38.0	50.3	54.4
1967	83.0	163.3	208.8	0.001714	30.1	59.2	75.7
1968	41.6	77.4	112.3	0.001536	16.8	31.3	45.4
1969	37.8	146.5	185.6	0.001574	14.9	57.8	73.3
1970	63.5	136.9	159.1	0.001427	27.7	59.6	69.3
1971	78.4	168.3	191.1	0.001417	34.4	73.8	83.8
1972	36.0	75.9	95.6	0.001533	14.6	30.8	38.8
1973	39.4	91.4	121.0	0.002077	11.8	27.3	36.2
1974	18.7	47.7	68.6	0.001984	5.9	14.9	21.5
1975	43.8	63.5	88.6	0.001684	16.2	23.4	32.7
1976	15.1	68.0	78.2	0.001721	5.4	24.6	28.2
1977	25.1	103.5	134.5	0.001553	10.0	41.4	53.8
1978	44.6	111.6	149.8	0.00207	13.4	33.5	45.0
1979	15.5	28.2	37.2	0.001362	7.1	12.8	17.0
1980	39.3	73.5	103.0	0.002259	10.8	20.2	28.3
1981	40.0	57.8	79.0	0.001184	21.0	30.3	41.4
1982	38.2	63.6	86.2	0.001475	16.1	26.8	36.3
1983	36.4	64.3	87.2	0.001252	18.1	31.9	43.3
1984	35.1	74.8	103.4	0.001089	20.0	42.7	59.0
1985	19.9	48.1	57.6	0.001106	11.2	27.0	32.4
1986	25.5	52.5	56.8	0.001313	12.1	24.8	26.9
1987	20.0	30.6	59.8	0.000781	15.9	24.4	47.6
1988	12.6	23.7	36.1	0.00108	7.3	13.7	20.9
1989	31.3	81.3	109.0	0.000997	19.5	50.7	67.9
1990	39.9	77.8	104.1	0.000994	24.9	48.6	65.1
1991	22.2	59.4	92.3	0.000903	15.3	40.9	63.5
1992	8.7	12.1	24.4	0.000632	8.6	11.9	23.9
1993	6.8	14.2	20.1	0.000665	6.4	13.3	18.7
1994	14.8	37.2	51.9	0.00061	15.1	37.9	52.9
1995	12.1	27.9	42.6	0.000898	8.4	19.3	29.4
1996	12.5	27.4	39.4	0.000792	9.8	21.5	30.9
1997	3.1	5.2	5.2	0.000941	2.0	3.4	3.4
1998	15.9	52.3	85.2	0.00193	8.9	29.1	47.5

Table 9. Correlation between estimated Babine escapement and raw and adjusted test fishing indices for the period 1970 to 1998. *P <0.05; ** $\mathrm{P}<0.01$; *** $\mathrm{P}<0.001$. Number of observations $=28$.

Test fishery index	Escapement to Sept. $13^{\text {th }}$	Estimated total escapement
August $15^{\text {th }}$	$0.641^{* * *}$	$0.537^{* *}$
August $15^{\text {th }}$ (adj.)	0.348	0.266
August $25^{\text {th }}$	$0.788^{* * *}$	$0.715^{* * *}$
August $25^{\text {th }}$ (adj.)	$0.492^{* *}$	0.449^{*}
September $4^{\text {th }}$	$0.798^{* * *}$	$0.729^{* * *}$
September $4^{\text {th }}$ (adj.)	0.410^{*}	0.381^{*}

Figure 6. Time series of sockeye catchability (qso) with a LOWESS smooth trend line.

Figure 7. Time series of $1 / q_{c o}$.

Figure 8. Tyee test fishing index summed to three fixed termination dates: August 15th, August 25th (the usual termination date), and September 4th. Index values have not been adjusted for varying sockeye catchability.

Figure 9. Tyee test fishing index summed to three fixed termination dates: August 15th, August 25th (the usual termination date), and September 4th. Index values have been adjusted for varying sockeye catchability.

Figure 10. Quantile plots of the unadjusted (top) and adjusted (bottom) Skeena test fishery index to August 25th. Box plots of the index values are shown above the plots. The index values for 1998 are shown as vertical dashed lines. The solid curve is a LOWESS smooth.

Figure 11. Quantile plots of the unadjusted Skeena test fishery index to August $10^{\text {th }}$ (top) and September $4^{\text {th }}$ (bottom). Box plots of the index values are shown above the plots. The index values for 1998 are shown as vertical dashed lines. The solid curve is a LOWESS smooth.

Figure 12. Unadjusted test-fishery index vs. time with a log-linear fit for the period 1965-1996.

3.3 Babine Lake coho aggregate

The Babine River counting fence has been operated since the fall of 1946 primarily to enumerate sockeye salmon returning to the Babine. In most years the fence operations stopped well before the end of coho passage. The fence was operated through all or nearly all of the coho run in 11 of the 51 years it has been operated (able 10). Those years are referred to as the 'base' years. The base years were divided into two groups, with the second group beginning in 1992. The run-timing curve distinctly shifted in that year with smaller proportions of the run passing through the fence prior to the first week of September. On average approximately 25% of the run had passed through the fence by September 7 in years prior to 1992 but only 10% had passed in the more recent years. The latest date for which there is a count in every year is September $13^{\text {th }}$. Counts to that date are referred to as the escapement index and the period prior to and including September $13^{\text {th }}$ as the 'index period' Table 10.

To estimate total escapement, we calculated for the base years the average proportion escaped for each date after the index date. For each year in which a total count had not been obtained we estimated it by dividing the last count by the average proportion escaped in the base years on the date of the last count. The fence was not operated in 1948 and 1964. Using the time series of estimated total escapement we applied the "fill-in" procedure (Brown 1974) using the catch per hook in the SE Alaskan troll fishery (Shaul 1998) in 1948 and the Tyee test fishery index for 1964. A large slide partially blocked the Babine River in 1951 severely restricting salmon passage. The "fill-in" procedure using the catch per hook in the SE Alaskan troll fishery (Shaul 1998) was used to estimate what the escapement would have been had the blockage not occurred. This number was used only in the calculation of recruitment for the 1947 and 1948 brood years. The fill-in procedure using the test-fishery was also applied in 1965. In that year the recorded count was 20,000 to September 13 which became approximately 31,300 after expansion to total escapement and over 62,000 when expanded to the total stock. An escapement this large is inconsistent with other returns that year we decided to estimate the total escapement indirectly.

Age data are quite incomplete for the Babine aggregate (Table 16). A relationship between the proportion of age- 3 fish in BY+3 and the BY spawners was used to estimated age composition Table 17. The overall mean age at return in the Babine Lake aggregate is 3.3.

3.3.1 Reconstruction of Historical Exploitation Rates

Direct measures of fisheries exploitation on the Babine aggregate are derived from CWTs and begin in return year 1994 (brood year 1991). Comprehensive data on fisheries effort by fishery begin in 1963. However, effort data itself is of limited value in determining the pattern of historical stock specific fishery impacts, because the relative impact of a unit of effort on a specific stock varies widely among weeks,

[^5]fisheries, and years. Our approach was to adjust that effort time series by fishery-specific estimates of the relative impact of a unit of effort on upper Skeena coho.

We began with a measure of effort $E_{i j k}$ for each fishery i, week j and year k within the effort base period 1963-1997. Within the shorter "CWT" base period (1989-1997) tabulated the catch per unit effort of CWTs from upper Skeena release sites by fishery i, week j and year $k\left(T_{i j k}\right)$. These included all releases from Fort Babine, Toboggan, and the upper Bulkley. To increase the number of tags available we pooled all release sites. We then derived a weekly weighting of impact for each fishery i and week j as

$$
\begin{equation*}
W_{i j}=\overline{\overline{T_{i j}}} / \frac{\overline{T_{i}}}{} \tag{5}
\end{equation*}
$$

where:
$W_{i j} \quad: \quad$ weighting factor for fishery i in week j
$\overline{\underline{T_{i j}}} \quad: \quad$ average catch per unit of effort of upper Skeena CWTs in fishery i in week j.
$T_{i} \quad$: average weekly catch per unit of effort of upper Skeena CWTs in fishery i.
Then for each year from 1963 to 1997 the actual effort in each strata (of the weekly, fishery, year effort matrix) was multiplied by the relative upper Skeena coho impact weighting for that strata to give an index of effort adjusted for impact on upper Skeena coho:

$$
\begin{equation*}
E_{i j k}^{\prime}=W_{i j} E_{i j k} \tag{6}
\end{equation*}
$$

There were additional adjustments to U.S. and the Canadian troll fishery indices to cover known changes in fleet efficiency among years. The U.S. troll time series was adjusted for years where there is a direct measure of the relative efficiency of the fleet on Alaskan coho stocks, essentially a measure of exploitation rate per unit effort (the assumption being these same time trend would apply to the efficiency on Canadian stocks). In Canada, the proportion of the troll fleet comprised of freezer boats increased through the base period. Freezer trollers generally had a higher coho CPUE than the ice-boats they were replacing. The annual troll effort time series was converted to ice-boat equivalents by multiplying the number of freezer boat-days by the ratio of freezer boat to ice-boat coho CPUE and adding this to the number of boat-days for the ice-boat troll each year. The effect of this adjustment was to increase the troll effort in recent years. No data were available to apply the same principle to the net fleet, although the general expectation would be that efficiency per unit effort also increased in those fisheries over time. No data was available to apply the same principle to the net fleet, although the general expectation would be that efficiency per unit effort has increased over time. After those adjustments we had an annual index of the relative fishery impacts on upper Skeena stocks for each fishery.

Since the indices are all relative to each other, the indices are additive and the fisheries and areas can be combined into two indices for all Canadian and all Alaskan fisheries. To estimate time series of exploitation rate we calibrated the indices of relative impact with 'known' exploitation rates in the CWT-
period. Yearly exploitation rates were not significantly correlated with the indices over the short period of data for Babine coho Table 4, so we calculated an average calibration factor, X as follows:

$$
\begin{equation*}
X_{i}=\overline{u_{i j}} / \frac{\overline{E_{i j}^{\prime}}}{} \tag{7}
\end{equation*}
$$

where:
$X_{i}: \quad$ calibration factor for fishery i
$\overline{u_{i j}} \quad: \quad$ average exploitation rate observed in fishery i over the j years in the CWT-base period. $\overline{E^{\prime}}{ }_{i j} \quad: \quad$ average adjusted effort in fishery i over the j years in the CWT-base period.

Exploitation rates were estimated for years prior to the CWT-base period by multiplying the X_{i} by the estimates of adjusted effort. Observed exploitation rates were used in the CWT-base period and for years prior to the effort-base period average values of exploitation rate from 1963 to 1975 were used. Finally, rough estimates of the marine recreational and recreational and First Nations FW exploitation rates were added to the sum of Canadian and Alaskan exploitation rates to give the total exploitation rate (Figure 13).

3.3.2 Trends in abundance

Estimated total escapement of the Babine Lake coho aggregate has ranged between 453 to 22,985, an over 50 -fold range (Table 10; Figure 15 \& Figure 16). Decadal trends in total escapement and total stock size are also summarized in the following Table. The decadal median escapement for the 1990 's is 21% of the median for the 1960's. The reduction in total stock size over the same period was only slightly less severe (to 36\%).

decade	median escapement	median stock size
1946 to 1959	10206	23,586
1960 to 1969	12771	30,018
1970 to 1979	10156	23,363
1980 to 1989	3233	10,061
1990 to 1998	2669	10,728

The temporal patterns of the reductions in stock size and escapement are slightly different. The time series of escapement is noticeably stepped with a marked drop in escapement occurring in 1979 Figure 16. The time series of total stock size is not stepped and shows a continuous decline since the early 1970's. Figure 17)

When the logarithms of abundance are plotted against return year from 1970 onward the declines are approximately linear, especially in the case of stock size Figure 18. These plots describe trends in abundance in the form:

$$
\begin{equation*}
S=b e^{-a t} \tag{8}
\end{equation*}
$$

or in linearized form:

$$
\begin{equation*}
\log S=b+a t \tag{9}
\end{equation*}
$$

where:
S : abundance, either stock size or escapement,
t : time, in this case year, and
$a, b: \quad$ constants.

The following regressions were fit to these data.

total stock size		
$1946-1998$		
$1970-1998$	$\log R=54.3-0.0226 t$	$\left(N=53 ;\right.$ adj. $\left.r^{2}=0.25 ; P<0.001\right)$
		$\left(N=20 ;\right.$ adj. $\left.r^{2}=0.14 ; P<0.05\right)$
$\frac{\text { escapement }}{1946-1998}$	$\log S=72.3-0.0357 t$	
$1970-1998$	$\log S=120.3-0.0565 t$	$\left(N=53 ;\right.$ adj. $\left.r^{2}=0.42 ; P<0.001\right)$

Over the period 1970 to 1998 the size of the Babine Lake coho aggregate shrank every year on average by $1-e^{-0.0357}=0.035$ or 3.5%. This is termed the finite rate of decrease. The average age of a Babine coho at return is 3.3. Consequently, every generation the size of the aggregate shrank on average by $1-0.965^{3.3}=0.111$. Over the same period the finite rate of decrease in escapement was 5.5% with a generational rate of decline of 17%. These rates are modest compared to those seen in Thompson coho where generational decreases of 54% to 72% have been observed since 1988 (Bradford 1998). However, the decline of the Babine aggregate has been going on for a much longer period.

Table 10. Observational data from the Babine fence. Base years used to estimate total escapement are indicated by the " \rightarrow ". Total escapement estimated by "fill-in" are shown in italics.Two total escapement estimates are shown for 1951. The smaller is the actual escapement estimated. The larger is the estimated escapement had the 1951 Babine slide not occurred.

year	Date of first coho	Date count ceased	Count to Sept. 13^{th}	Total observed count	Estimated total escapement
1946	Aug. 20	Oct. 04	8687	12489	13411
1947	Aug. 08	Oct. 07	4983	10252	10815
1948	Fence not operated-Total escapement estimated using the "fillin" procedure and the time series of catch per hook in the SE Alaska troll fishery.				$\underline{13734}$
1949	Aug. 13	Oct. 03	6044	11938	12961
$\rightarrow 1950$	Aug. 05	Oct. 15	5205	11654	11654
1951	Aug. 22	Oct. 04	444	2120	2276
					$\underline{20427}$
$\rightarrow 1952$	Aug. 24	Nov. 06	1157	10554	10554
1953	Aug. 11	Oct. 28	5904	7648	7655
1954	Aug. 15	Oct. 03	1644	3094	3359
1955	Aug. 15	Oct. 03	4339	8947	9714
1956	Jul. 22	Sept. 30	5675	9250	9857
$\rightarrow 1957$	Aug. 02	Oct. 29	2475	4421	4421
1958	Aug. 02	Oct. 01	5026	7606	8438
1959	Aug. 11	Oct. 02	6347	10947	12004
1960	Aug. 05	Sept. 28	5191	6794	7942
1961	Aug. 02	Sept. 21	7297	10024	14416
1962	Aug. 10	Sept. 22	8088	11000	15183
1963	Aug. 09	Sept. 13	3600	3600	7737
1964	Fence not operated. Total escapement estimated using the "fillin" procedure and the Tyee test fishery time series to Sept. 4th				$\underline{10689}$
1965	Aug. 02	Sept. 13	20000	20000	22985
1966	Aug. 07	Sept. 15	6784	7200	13377
1967	Aug. 05	Sept. 23	7469	9378	12487
1968	Aug. 09	Sept. 14	6393	6600	13054
1969	Aug. 02	Sept. 21	2978	4660	6702
1970	Aug. 09	Sept. 15	4968	5600	10404
1971	Aug. 05	Sept. 24	4284	7700	9909
1972	Aug. 16	Sept. 20	2415	3598	5381
1973	Jul. 26	Sept. 15	5836	6247	11606
1974	Aug. 13	Sept. 19	4886	8853	13661
1975	Aug. 17	Oct. 01	2059	4429	4913
$\rightarrow 1976$	Aug. 22	Oct. 28	2085	4499	4499
$\rightarrow 1977$	Aug. 06	Oct. 20	4324	10474	10474
1978	Aug. 06	Oct. 10	5600	11446	11861
$\rightarrow 1979$	Aug. 04	Oct. 31	1144	2909	2909
1980	Aug. 08	Sept. 29	2172	4399	5046
1981	Aug. 12	Sept. 29	1426	2167	2486
1982	Aug. 12	Sept. 28	1704	2287	2673
1983	Aug. 05	Sept. 25	1598	2704	3402
1984	Aug. 14	Oct. 02	1539	2956	3241
$\rightarrow 1985$	Aug. 08	Oct. 24	914	2129	2129
1986	Aug. 14	Sept. 23	1673	2757	3671

year	Date of first coho	Date count ceased	Count to Sept. $13^{\text {th }}$	Total observed count	Estimated total escapement
1987	Aug. 10	Oct. 01	867	1894	2101
1988	Aug. 08	Oct. 05	1639	3026	3225
$\rightarrow 1989$	Aug. 06	Oct. 25	3140	5228	5228
1990	Aug. 09	Oct. 14	2477	5512	5619
1991	Aug. 08	Oct. 19	1558	4904	4941
1992	Aug. 08	Sept.29	584	1302	1714
1993	Aug. 15	Oct. 11	322	1974	2186
1994	Aug. 10	Nov. 01	695	3930	4053
$\rightarrow 1995$	Aug. 10	Nov. 06	510	2345	2345
$\rightarrow 1996$	Aug. 15	Nov. 04	640	2669	2669
1997	Aug. 05	Oct. 19	100	453	453
$\rightarrow 1998$	Aug. 04	Nov. 15	1279	4291	4291

Figure 13. Total Canadian and Alaskan exploitation rates on Babine aggregate coho.

Figure 14 Box plots of the total exploitation rate on the Babine Lake aggregate coho. Note that the " 50 's" include the period 1946 to 1949.

Figure 15. Trends in observed Babine coho escapement, estimated total escapement and estimated total return (stock size) from 1946 to 1998

Figure 16 Box plots of total escapement of the Babine coho aggregate. The line links the decadal medians. Note that the '50's' includes the period 1946-1949.

Figure 17. Box plots of total stock size of the Babine coho aggregate. The line links the decadal medians. Note that the '50's' includes the period 1946-1949.

Figure 18. Trends in escapement (top panel) and stock size (lower panel) of the Babine Lake coho aggregate between 1970 and 1998. Because the y-axis is a logarithmic scale the linear trend lines with negative slopes actually represent exponential declines in abundance. Within each panel two trends lines are show: one for the period 1970 tto 1998 and tho other for the period 1979-1998.

3.3.3 Cause of decline of upper Skeena coho is Babine Lake Development Project sockeye enhancement.

Coho juveniles in lakes feed on zooplankton, but are not obligate planktivores and are much less efficient planktivores than sockeye (Kyle and Koenings 1983; Kyle 1994). Consequently, it is possible that the increased numbers of rearing sockeye that were using Babine Lake after the construction of the Pinkut and Fulton spawning channels depressed zooplankton numbers below the level where coho could feed. Unfortunately the extant zooplankton samples are inadequate to determine how the zooplankton community responded to increased numbers of rearing sockeye with sufficient spatial resolution precision to resolve this issue.

The number of sockeye smolts should be a rough indication of possible interactions between the rearing juveniles. There is a suggestive inverse relationship the total stock size of the Babine Lake coho aggregate and the Babine and the number of sockeye smolts produced by Babine ($r^{2}=0.091 ; P<0.05$; Figure 19. However, there is no relationship between the residual of the fitted Babine stock-recruitment function and sockeye smolt production Figure 20, which suggests that any interactions that might be occurring are not driving the apparent declines in the productivity of Babine coho.

In addition to the absence of a demonstrable relationship, we would raise the following objections to the hypothesis:

1. Staff in the limnology and sockeye units in CDFO indicated that the zooplankton community in Babine has not changed to the species mix typical of lakes where sockeye are having a large impact. Daphnia and Heterocope, both large bodied forms that disappear from heavily grazed lakes, are less abundant than they were but are still quite common. For sockeye at least the main basin of the lake continues to be under-utilized
2. Sockeye are pelagic while coho are sub-littoral, i.e. the two species use very different parts of the lake which should reduce their interactions (Scarsbrook and McDonald 1970, 1973). In Cowichan Lake on VCI, coho coexist with abundant kokanee and feed predominantly on insects rather than zooplankton (unpubl. data, K. Simpson, StAD, Nanaimo)
3. Coho do not rear in the main basin of Babine Lake. Most coho come from Nilkitkwa Lake and Morrison Lake, where there are few enhanced sockeye juveniles. Wild sockeye, which do use the NE parts of Babine Lake and Nilkitkwa Lake, have become less abundant since enhancement. If sockeye and coho interact in the Babine system it is more likely that the intensity of that interaction has lessened following enhancement.
4. When CDFO Fishery Officer Management Escapement Goals for coho are summed by basin in the Babine Lake only 12% of the total target is from streams that empty into the main basin, further evidence that coho and enhanced sockeye are unlikely to interact.
5. It is difficult to understand how competition between coho and sockeye juveniles in Babine Lake has adversely affected coho in the entire upper Skeena, and in coastal and inlet populations to the south of the Skeena. Interactions in the estuary and in the ocean along the migration routes for sockeye smolts are possible, although such interactions should also be detectable in the relationships plotted in Figure 19 and Figure 20. An interaction in the estuary or ocean would at least explain the region wide depression in coho numbers.
6. Finally, even if it is allowed that there have been interactions between sockeye and coho that have reduced the productivity of coho in the upper Skeena, we would argue that those interactions have acted to reduce the ability of the Babine stock to sustain harvest.

Figure 19.
Relationship between the total size of the Babine coho stock and the number of Babine sockeye smolts.

Figure 20. Relationship between the residual for the Babine stock-recruitment relationship and the number of sockeye smolts in the predominant smolt year.

3.3.4 Escapement targets for the Babine Lake coho aggregate

We used four approaches to establish escapement targets for Babine coho Table 12.

1. Limit Reference Escapement (LRP) A tentative floor escapement of 3 females $/ \mathrm{km}$ has been adopted by CDFO for conservation purposes. Operationally, this is interpreted as the escapement level that should be maintained for the majority of streams in a management unit. It is thus a floor and not a target and could be used to provide a criterion for determining permissible rates of fishing (FAO 1995). For Carnation Creek, a well-studied population on Barkley Sound, an escapement of between 9 and 13 females/km has been found to bracket the MSY escapement (Holtby 1988; Holtby and Scrivener 1989). Application of a LRP in the units of females/km requires an estimate of habitat. Estimates of accessible stream lengths for the Babine system were readily available (Smith and Lucop 1966, 1969;Table 11). Coho also extensively use the sub-littoral zones of all lakes in the area, and we have chosen to estimate this habitat as the length of shoreline. Coho were never common in the streams around the main basin of Babine Lake so the inclusion of that shoreline would possibly exaggerate the available habitat area. To estimate the effective shoreline length, we included the shoreline north of Topley Landing including Morrison Arm. Also included were Morrison and Nilkitkwa Lakes. The effective shoreline length was 305.7 km . For Babine coho a LRP of 3 females $/ \mathrm{km}$ corresponds to total escapement of between 1328 spawners (streams only) to 4347 spawners (stream + effective shoreline length) Table 12. For 13 females $/ \mathrm{km}$ the corresponding escapement is between 5,754 and 13,702. Concern has been expressed that inclusion of historical measures of accessible stream length might include habitat that has been damaged by logging and road construction or made inaccessible by landslides or beaver activity. The Sutherland River in particular was noted. We acknowledge that our measures of available habitat are crude and that it would desirable to explicitly account for varying quality (productivity) in determining the target escapement for a watershed. However, the provisional LRPs were derived from the same type and quality of habitat measurement and integrate across diverse habitat qualities.
2. Stock-recruitment analysis ($S_{\text {opt }}$) The MSY escapement estimated by the stock-recruitment analysis is 7,561 (Table 18). The SRSHOW analysis gave a similar value of $\approx 6,600$ Figure 32. These values are highly uncertain but are more likely to be higher than lower.
3. Stock-recruitment analysis ($R_{\max }$) The estimate of escapement for maximum recruitment $\left(S_{\mathrm{rmax}}\right)$ was 11,285 . This could be termed the carrying capacity of the Babine Lake aggregate and might serve as an appropriate escapement target, i.e., an escapement around which the realized escapement should vary. The corresponding exploitation rate under average survival conditions would be 0.48 or approximately 68% of the average exploitation rate exerted in the last two decades. A protocol under development by the B.C. Ministry of Fisheries (pers. comm. Eric Parkinson, UBC, Vancouver), defines the limit reference point at 10% of the maximum smolt production. This provides some
protection against irreversible damage to the most unproductive populations in an aggregate exposed to mixed-stock fisheries. A level defined in this way would correspond conceptually to the provisional LRP of 3 females/km (Wood and Holtby 1998; Holtby and Kadowaki 1998). When expressed in terms of females $/ \mathrm{km}$, an escapement floor of 1.13×10^{3} corresponds to an escapement of between 1.1 and 2.6 females/km Table 12 .
4. Oregon Coastal Zone target escapements A target of 41 spawners/mile has been adopted in the Oregon coastal zone (Anon. 1997). This corresponds to escapement targets of between 3.3×10^{3} and 11×10^{3} spawners for the Babine Lake aggregate Table 12.

An unweighted average of the target escapements indicated by four methods is 1.15×10^{3} or approximately 10.9 females $/ \mathrm{km}$ when the lake shoreline distances are included. Under mean survival conditions the corresponding exploitation rate would be 0.47 or about 66% of the exploitation rate that has been exerted since 1980. Since 1979 the Babine escapement has averaged 28% of this suggested target escapement but has fallen below the provisional floor of 3 females/km only once (in 1997; Figure 21 .

Table 11. Linear measures of coho rearing habitat in the Babine Lake system.

Table 12. Ranges for target escapements of coho to the Babine system. Four targets (A through D) are shown. Their derivation is explained in the text. The arrow indicates the direction of the conversion between females $/ \mathrm{km}$ and target escapement.

LRP (females/km)			target escapements	
			streams only $(221.3 \mathrm{~km})$	stream + effective lake margin (length $=527 \mathrm{~km}$)
A	1	\rightarrow	443	1,054
	3	\rightarrow	1,328	3,162
	9	\rightarrow	3,983	9,486
	13	\rightarrow	5,754	13,702
B	17.1	4	7,561 ($\mathrm{Sopt}^{\text {o }}$)	
	7.2	\leftarrow		7,561 ($S_{\text {opt }}$)
C	25.5	\leftarrow	$11,285\left(S_{R \max }\right)$	
	10.7	4		$11,285\left(S_{R \max }\right)$
	2.6	4	1,129 (10\% $\left.S_{R \max }\right)$	
	1.1	4		$1,129\left(10 \% S_{R \max x}\right)$
$\underset{\text { (spawners/mile) }}{\mathbf{D} \quad 41 \dagger}$		\rightarrow	5,638	13,426
unweighted average			$\begin{gathered} 7,560 \\ (17.1 \text { females } / \mathrm{km}) \end{gathered}$	$\begin{gathered} 11,493 \\ (10.9 \text { females } / \mathrm{km}) \end{gathered}$

[^6]

Figure 21. Babine coho escapement as a proportion of proposed escapement target (top dashed line) (see Table 12). The lower dashed line is the proposed escapement floor. The continuous curve is a LOWESS smooth of the proportion.

3.4 Visual escapement counts

Visual escapement estimates by stream and year were obtained from the escapement database maintained in the Prince Rupert office of DFO (pers. comm., B. Spilsted,). For comparative purposes escapement time series for coho streams in Statistical Areas 3 (Nass River; Portland Canal) and Area 6 (Kitimat) were obtained in addition to those in Area 4 (Skeena River and approaches) The data series begin in 1950 and extend to 1998. Escapement estimates have been made in a variety of ways, most of which are not adequately documented. In situations where the method was known to have changed from a visual count to a fence at some point in the record, the fence counts were not included in the series (e.g. Area 4: Toboggan Creek, upper Bulkley River; Area 3: Lachmach River; Zolzap Creek). The Babine fence count was excluded from Area 4 series but independently surveyed Babine tributaries were included. The estimates have no associated measures of uncertainty. In SE Alaska escapement records for a set of index streams begin in 1987. A variety of catch and CPUE indices track escapement to their indicator streams quite well (Shaul 1998). To extend the escapement (abundance) index for SE Alaska back to 1950 we selected the catch per hook in the SE Alaska troll with estimated hatchery contributions removed and standardized it using the procedure described below.

The time series of visual counts in Canadian streams are highly discontinuous, meaning that there are very few complete or nearly complete time series. It is not appropriate to total the escapements within an area and treat the sum as a measure of escapement. To recover information about trends in escapement by Area we first selected streams in which there were at least 10 observations. In years where no numeric estimate was recorded entries were ignored unless ' N / O ' or none observed, in which case the estimate was set to zero. Then by stream we divided the escapement in each year where it was recorded by the maximum escapement observed in that stream across all years on record. We then calculated the average proportion by year $\left(p_{\max }\right)$ by averaging across streams within years. Thus, where $n_{i} \geq 10$:

$$
\begin{align*}
& p_{\mathrm{max}, i j}=E_{i j} / \max E_{i} \tag{10}\\
& p_{\max , j}=\sum_{i} p_{\max , i j} / n_{j} \tag{11}
\end{align*}
$$

where
i : stream;
j : year;
$E_{i j}: \quad$ observed escapement to the $i^{\text {th }}$ stream in the $j^{\text {th }}$ year;
$n_{i}: \quad$ number of escapement records for the $i^{\text {th }}$ stream;
$p_{\text {max } i j}: \quad$ escapement to the $i^{\text {th }}$ stream in the $j^{\text {th }}$ year as a proportion of the maximum escapement to the $\mathrm{i}^{\text {th }}$ stream.

An escapement time series for the Area $\left(E_{A}\right)$ was also computed by multiplying $p_{\max }$ by the average maximum escapement observed in all streams in the Area:

$$
\begin{equation*}
E_{A, j}=p_{\max , j} \bar{E}_{\max } \tag{12}
\end{equation*}
$$

These values were used in the productivity analyses (see Section 4. Sample sizes by Statistical Area and fill-in procedures used to estimate missing data in Area 5 are described in Holtby et al. (1999a).

The escapement indices in all areas but Area 5 increased in 1998 over 1997 values Table 13. Figure 22. The largest proportional increases were in the upper and lower Skeena ($13.9 \times$ and $4.4 \times$, respectively) and in Area $6(4.3 \times)$. The increases in the Alaskan CPUE index and in Area 3 were more modest ($1.5 \times$ and $1.9 \times$, respectively). The magnitude of the increase in the escapement index to the upper Skeena is surprising since it indicates near-average escapement to the area. Only six streams met the criteria for inclusion in 1998, which is inadequate even though only two streams met the criteria in 1997 and but one in 1996. The recorded count in the Telkwa in 1998 was the highest on record. However, counting conditions this year were ideal and an intensive aerial count began sooner than usual because of concerns that significant numbers of fish had been missed in previous counts. The count in the Morrison River (a Babine Lake tributary) was at least partially a fence count and Station Creek (lower tributary of the Bulkley) is partially enhanced. Two other Babine tributaries were enumerated. The $P_{\max }$ in Fulton River was high (0.58) compared to Pinkut River (0.015) and both were quite different from the $P_{\max }$ derived from the fence count (0.19). The remaining stream, Gosnell Creek, an upper tributary of the Morice River, had an index value of 0.08 . Such a wide range of index values is unusual but there are insufficient data to correct what we think is an anomaly. Increased escapement enumeration in the upper Skeena is clearly warranted.

There appear to be three distinct temporal patterns in abundance Figure 22. To explore these patterns we did a Principal Component Analysis on the $P_{\text {max }}$ values in which three components were extracted from the correlation matrix and VARIMAX rotated. The analysis (following Table) confirmed the visual impression of the temporal patterns.

	loading on VARIMAX rotated		
component			
escapement index	1		
2	3		
SE Alaska	-0.098	0.030	0.987
Area 3	-0.079	0.927	0.090
lower Skeena	0.408	0.782	-0.068
upper Skeena	0.761	-0.049	-0.199
Area 5	0.805	0.281	-0.095
Area 6	0.918	0.091	0.080
\% variance explained	38%	26%	17%

The upper Skeena and Areas 5 and 6 share the same pattern of prolonged depression and all load on the first component. There is no discernable temporal trend in Area 3 and the lower Skeena indices and both
load on the second component. The SE Alaskan CPUE index is low in the early 1970's and has shown a prolonged increase since and loads by itself on the third component.

Finite rates of change were calculated for all of the indices for the period 1970 to 1996 and are shown in the following Table. Abundance of coho in SE Alaska is clearly trending in the opposite direction to abundance in the upper Skeena and Area 6. Trends in the other areas, which are geographically intermediate, are intermediate but are not statistically significant.

				finite rate of change	
area	slope	r	P	year	generation
SE Alaska	0.028	0.81	$\ll 0.001$	$+3 \%$	$+9 \%$
Area 3	0.012	0.26	NS	$+1 \%$	$+4 \%$
lower Skeena	-0.011	0.24	NS	-1%	-4%
upper Skeena	-0.050	0.60	0.001	-5%	-18%
Area 5	-0.022	0.32	0.1	-2%	-7%
Area 6	-0.042	0.80	$\ll 0.001$	-4%	-15%

Table 13. The $P_{\text {max }}$ escapement index for five Statistical Area aggregates in Canada. The values for SE Alaska are similarly standardized wild catch per hook in the SE Alaska troll fishery.

	$P_{\max }$					
year	SE Alaska	Area 3	lower Skeena	Area 5	Area 6	upper Skeena
1950	0.443	0.094	0.191	0.254	0.223	0.391
1951	0.893	0.172	0.243	0.303	0.458	0.284
1952	0.425	0.104	0.256	0.346	0.362	0.449
1953	0.244	0.089	0.179	0.331	0.298	0.402
1954	0.524	0.129	0.230	0.359	0.353	0.422
1955	0.368	0.270	0.243	0.443	0.267	0.474
1956	0.105	0.136	0.253	0.472	0.458	0.504
1957	0.341	0.129	0.299	0.450	0.428	0.242
1958	0.199	0.255	0.468	0.307	0.222	0.484
1959	0.239	0.181	0.264	0.421	0.185	0.463
1960	0.223	0.200	0.246	0.335	0.214	0.383
1961	0.147	0.389	0.223	0.544	0.217	0.403
1962	0.365	0.233	0.196	0.324	0.319	0.521
1963	0.362	0.489	0.183	0.454	0.387	0.481
1964	0.342	0.438	0.395	0.568	0.270	0.385
1965	0.286	0.649	0.509	0.669	0.445	0.361
1966	0.217	0.585	0.436	0.574	0.244	0.281
1967	0.172	0.398	0.176	0.304	0.196	0.260
1968	0.287	0.544	0.632	0.486	0.362	0.269
1969	0.136	0.259	0.257	0.157	0.136	0.308
1970	0.088	0.388	0.304	0.076	0.155	0.351
1971	0.147	0.457	0.320	0.097	0.194	0.365
1972	0.262	0.257	0.297	0.141	0.232	0.480
1973	0.161	0.223	0.205	0.163	0.129	0.404
1974	0.231	0.193	0.212	0.217	0.148	0.351
1975	0.072	0.218	0.174	0.307	0.196	0.106
1976	0.172	0.233	0.216	0.186	0.166	0.154
1977	0.139	0.247	0.184	0.244	0.127	0.413
1978	0.240	0.265	0.233	0.232	0.128	0.509
1979	0.222	0.130	0.142	0.139	0.159	0.055
1980	0.183	0.148	0.196	0.113	0.104	0.407
1981	0.267	0.244	0.151	0.207	0.113	0.245
1982	0.390	0.207	0.187	0.041	0.131	0.274
1983	0.389	0.280	0.179	0.088	0.086	0.267
1984	0.350	0.390	0.277	0.094	0.122	0.206
1985	0.464	0.478	0.151	0.120	0.130	0.275
1986	0.565	0.333	0.411	0.224	0.149	0.260
1987	0.310	0.335	0.276	0.154	0.100	0.128
1988	0.156	0.180	0.067	0.206	0.070	0.073
1989	0.420	0.286	0.232	0.067	0.083	0.099
1990	0.470	0.413	0.326	0.073	0.121	0.139
1991	0.375	0.239	0.233	0.047	0.082	0.152
1992	0.429	0.347	0.196	0.063	0.087	0.087
1993	0.630	0.244	0.115	0.058	0.075	0.095
1994	1.000	0.592	0.258	0.187	0.065	0.277

	$P_{\max }$					
year	SE Alaska	Area 3	lower Skeena	Area 5	Area 6	upper Skeena
1995	0.461	0.294	0.207	0.138	0.032	0.066
1996	0.762	0.306	0.132	0.126	0.087	0.125
1997	0.340	0.126	0.060	0.333	0.028	0.028
1998	0.518	0.241	0.264	0.205	0.122	0.388

Figure 22. Time series of standardized average escapements to Canadian streams grouped by Statistical Area as indicated. For SE Alaska the standardized catch per hook of wild coho in the SE troll is plotted.

3.5 Bulkley/Morice coho escapement estimate

Moricetown falls is located along the Bulkley River on the eastern edge of the village of Moricetown approximately 25 km northeast of Smithers, British Columbia (Figure 1). Studies conducted in the years 1945 to 1947 by what was then known as the Department of Fisheries of Canada indicated that the Moricetown falls were a significant barrier to adult salmon moving upstream to spawn. Fishways were installed along both the right and left sides of the falls in 1951(Walters and Ward 1998). This project was designed to estimate the number of coho salmon migrating upstream past Moricetown falls.

The tagging and recapture of coho at Moricetown falls consisted of two parts. This work was carried out by Wet'suwet'en Fisheries Program staff. Tagging was conducted at an island approximately 500 meters downstream of Moricetown falls near a point locally known as Idiot Rock Figure 23). Fish were captured using a 61×6 meter beach seine set from a 4.8 meter outboard jet powered boat. All fish captured were identified and counted. All coho and steelhead captured were measured to the nearest millimeter and tagged with a Floy FD68b anchor tag. All coho were given a secondary mark consisting of a caudal fin punch. A small diameter one hole paper punch was used for the secondary marking. A sample of caudal punches was preserved in 70% isopropanol for DNA analysis. The beach seine crew operated Monday to Friday from July 30 to September 18. Tagging was stratified by week, with uniquely coloured and numbered tags used during each tagging period.

Recapture and additional tagging was conducted at the left bank fishway. Fish were captured at the fishway with dipnets. The nets consisted of standard live release sport fishery type net bags attached to custom-built aluminum frames. Dipnet handle length varied from user to user and ranged from approximately 3 to 4.5 meters. All fish captured by the dipnet crew were identified and counted. All coho were inspected for tags or fin punches, measured, tagged with a Floy FD68b anchor tag, caudal punched and released. All steelhead captured were inspected for tags, measured, tagged and released. Recaptured tagged fish were measured and released. All tagged fish were released into a quiet backwater pool on the upstream side of the fishway. The fishway crew operated Monday to Friday from August 5 to September 18, 1998. Tagging at the fishway was not stratified by week. The intention was to use only two distinct tag colours for the entire tagging period. However, because of the large number of coho captured and some tag losses a variety of tag colors were used at the fishway.

Other recapture sites included the Toboggan Creek and Bulkley River adult counting fences. The Toboggan Creek fence operated continuously from August 8 to November 9, 1998 (M. O’Neill pers. comm.). The Bulkley River adult counting fence operated from September 4 to November 10, 1998 (J. Ewasiuk, pers. comm.).

Swim surveys were conducted at various sites in the Telkwa River upstream of Howson Creek and in the lower 24 km of the Gosnell River (Figure 24). These surveys were intended to provide data on tag distribution and tagged versus untagged ratios in two additional coho spawning areas. The swim surveys began with a helicopter overflight of the stream to locate concentrations of adult coho. Areas where coho
where located were immediately surveyed using one swimmer and one recorder/shore safety person. The swimmer moved slowly downstream through the areas of interest recording the total number of adult coho and the number and if possible the color of any tags.

A Schaefer method for stratified populations (Ricker 1975) was used to estimate the number of coho salmon moving upstream through Moricetown falls (Taylor 1999). The beach seine crew tagged and released 1526 coho salmon. Total coho catch at the fishway was 1113 including 80 tag recaptures. The fishway crew released approximately 997 additional tagged coho upstream. Unfortunately, due to tag shortages and some data recording problems, some duplication of tag colors and numbers were found.

Total coho catch at the Toboggan Creek fence was 1920. Of these 163 were tagged at Moricetown, 19 were caudal fin punched with no tag. Total coho catch at the Bulkley River fence was 317. This includes coho that were captured by beach seining in a pool directly downstream of the fence. Of these 31 had been tagged at Moricetown, 1 was caudal fin punched with no tag. Tag recoveries were from throughout the tagging program and included tags from the beach seine and the fishway crews.

The first swim survey was conducted on October 16, 1998 in the Telkwa River upstream of Howson Creek. Conditions for the aerial count were fair with high overcast, light rain and some snow in the headwater areas and at higher elevations. Conditions for the swim survey were also fair. Despite low clear water, small amounts of glacial silt restricted underwater and cross-stream visibility to about 5 meters. Of the 128 coho that were counted 10 had been tagged at Moricetown. Only coho that could be reliably inspected were included in this count. Due to turbidity tag color identification was unreliable.

The second swim survey was conducted at various locations in the Gosnell River and Shea Creek a major lower river tributary on October 19, 1998. Conditions for aerial surveys were excellent, high overcast with no precipitation. Conditions for swim surveys were good with low clear water and close to bank to bank visibility. Of the 130 coho inspected, 6 had been tagged at Moricetown. This included 4 yellow, 1 pink/green and 1 blue tag. The beach seine crew put on the yellow tags in the week of August 10. The beach seine crew put on blue tags during the week of August 24 . The pink/green tag was from the fishway tagging crew.

Due to problems with data records and the difficulty reconciling tag recoveries and releases by the fishway crew only tags released by the beach seine crew were used to estimate the coho population moving past Moricetown falls.

The data below were used to estimate escapement by the Schaefer method:
Total effective tags released $=1526$
Total catches $=1113$
Total tags recovered $=80$

The matrix for these data before correction for tag loss is:

(i)	P1	P2	P3	P4	P5	P6	P7		
(j)								Rj	Cj
1								0	10
2	1							1	64
3		8	1					9	167
4		2	8	7				17	258
5			1	12	5			18	271
6				2	8	10		20	160
7					2	5	8	15	183
Ri	1	10	10	21	15	15	8	80	1113
Mi	62	230	245	398	274	155	162		1526

Where $\mathrm{Ri}=$ recoveries in each tagging week, $\mathrm{Mi}=$ marks released in each tagging week, $\mathrm{Rj}=$ recoveries in each recovery week and $\mathrm{Cj}=$ catches in each recovery week.

No tag loss was detected between the seine location and the fishway. This is not surprising given the short distance between the two sites. Tag loss between Moricetown and the counting fences on Toboggan Creek and the Bulkley River was estimated to be 10%. This suggests that tag loss was between 1 and 10%. Therefore a series of estimates was prepared using $1 \%, 5 \%$ and 10% as correction factors representing tag loss. Additional estimates were also prepared by successively incorporating tag recoveries at the Toboggan Creek fence and at the Houston fence. These data are:

Toboggan Creek catch $=1883$
Toboggan Creek recoveries $=102$
Houston fence total catch $=317$
Houston fence recoveries $=33$

This resulted in the escapement estimates shown below:

	Estimate	Lower CI	Upper CI
1\% tag loss			
Fish ladder	23802	21015	26958
Toboggan	27615	17172	44408
Houston	26027	14338	47802
5\% tag loss			
Fish ladder	22840	20166	25869
Toboggan	26499	16478	42614
Houston	24975	13758	45871
10\% tag loss			
Fish ladder	21638	19105	24507
Toboggan	25104	15611	40371
Houston	23660	13034	43457

The 95% confidence intervals were derived from log transformation of the estimates, as appropriate for a negative binomial distribution. Taylor's power law may provide a more precise transformation but the simplicity of calculation recommended log transformation. The resultant mean of the transformed data is
equivalent to the geometric mean of the original data and this is always smaller than the arithmetic mean. Therefore to avoid an underestimate, the derived factor was applied to the arithmetic mean. This is a close approximation only, since there is no simple method that can be applied to a negative binomial to generate the true confidence limits. The expression used was :

$$
\begin{equation*}
y \pm t \sqrt{\frac{\text { var iance } \cdot \text { of } \cdot \text { transformed } \cdot \text { counts }}{n}} \tag{13}
\end{equation*}
$$

There are four years where an estimate of the Bulkley/Morice escapement was estimated using markrecapture with the marks applied at the Moricetown fishway (following Table).

year	estimate	95% CI	how
1961	2.6×10^{4}	$?$	mark-recapture (Palmer 1964
1994	1.4×10^{4}	$0.42-2.5 \times 10^{4}$	radio-tag mark recapture (Koski et al. 1995)
1997	6.5×10^{3}	$5.5-8.6 \times 10^{3}$	mark-recapture (BF, unpubl. data)
1998	2.28×10^{4}	$2.02-2.59 \times 10^{4}$	mark-recapture at fishway (BF unpubl. data)
1998	2.51×10^{4}	$1.56-4.04 \times 10^{4}$	mark-recapture at Toboggan

Although there are only four observations the Moricetown estimate is significantly correlated with the Skeena test-fishery index for Aug. 25 and Sept. 4 ($r=0.97$ and $0.99, P<0.05$). The correlations with the adjusted test-fishery index are much weaker ($r=0.63$ and 0.76 , respectively). The test-fishery index and the Moricetown count are not proportional across the observed range however. The test-fishery index in 1997 was 6% of the 1998 value while the estimated Bulkley/Morice escapement in 1997 was 29% of the 1998 escapement.

Figure 23. A diagrammatic map of the Moricetown Falls with beach-seining and recovery areas.

Figure 24. A map of the Bulkley and Morice River systems showing the tagging and recovery areas mentioned in the text.

3.6 Upper Bulkley Escapement

The portion of the Bulkley River upstream of Houston Figure 24, commonly referred to as the upper Bulkley, used to be a significant producer of coho salmon. Visual escapement estimates, which are almost certainly underestimates of real abundance, indicate escapements as high as 7,650 in the mid-1950's Table 14; Figure 25). Various groups have operated a fence on the Bulkley River at Houston since 1989 except in 1991. The primary function of the operation is to obtain coho brood-stock for smolt releases to the upper Bulkley, which began in 1989 (1987 brood year). The total escapement in 1998 was 317 of which 139 were the progeny of spawning in the wild, a number slightly greater than brood year escapement.

When visual counts and fence counts are treated on par, almost certainly giving an optimistic view of population trends, the finite rate of decrease between 1970 and 1995 was $11 \% /$ year $\left(1-e^{-0.116}\right)$ or $32 \% /$ generation Figure 26). That rate of decline is approximately double that seen in either the Babine or the test fishery indices.

There are chronic water flow problems in the upper Bulkley River around the time of coho return that affect fence operation and may dissuade coho from moving into the system. The occasional recovery of a CWT from a Bulkley release outside of the upper Bulkley can be used as evidence of this but there is no conclusive evidence that such fish would not have eventually found their way back to the system. The most precautionary interpretation of the near absence of juvenile coho in the upper Bulkley and the declining numbers of wild adults is that this particular population is near extinction.

The role that enhancement has played in the decline of upper Bulkley coho merits some attention. There is little doubt that numbers in the 1980's were lower than they had been in the 1950's. It would be interesting to know if the synchrony of enhancement, which began with a 1989 smolt release, and the rapid decline in wild abundance thereafter was merely a coincidence, and if so what was the probable cause of the decline.

Table 14. Escapement estimates for the upper Bulkley River. Where years are underlined the estimate is a fence count. In years marked by a ' ' good counts of wild and enhanced fish were obtained. The proportion of wild fish in those years was used to estimate the wild component in years between 1991 and 1995. In 1992 the only extant fence records are for the number of enhanced fish in the escapement. The same proportion was used to estimate the wild component and the total escapement in that year.

year	upper Bulkley River	Buck Creek	Maxan Creek	Richfield Creek	Houston fence	total escapement	enhanced escapement	wild escapement
1950	2000	250		50		2300		2300
1951	1000	300		30		1330		1330
1952	2500	300				2800		2800
1953	5000	300		100		5400		5400
1954	7500					7500		7500
1955	5000	60		15		5075		5075
1956	7500	75		75		7650		7650
1957	750	75				825		825
1958	1500	200		75		1775		1775
1959	3500	200				3700		3700
1960	3500	200		75		3775		3775
1961								
1962	2500	500		50		3050		3050
1963	300	400		300		1000		1000
1964	200	600		50		850		850
1965	500	200	100			800		800
1966	1000	200	200	100		1500		1500
1967	600	200				800		800
1968	1000	200	400			1600		1600
1969	1500	300	500	100		2400		2400
1970	600	300				900		900
1971	600	300	300			1200		1200
1972	2500		70	150		2720		2720
1973	1000					1000		1000
1974	200					200		200
1975	28	150				178		178
1976	22	200		25		247		247
1977	280	250		200		730		730
1978	1200	200		250		1650		1650
1979								
1980								
1981								
1982		50						
1983								
1984								
1985								
1986								
1987	18					18		18
1988	10					10		10
1989					1500	1500		1500
- 1990					965	965	587	378
1991	300					300	195	105
$\underline{1992}$						123	80	43
1993					103	103	67	36

year	upper Bulkley River	Buck Creek	Maxan Creek	Richfield Creek	Houston fence	total escapement	enhanced escapement escapement
$\underline{1994}$				141	141	91	wild
$\bullet \underline{1995}$				360	360	234	126
$\bullet \underline{1996}$				$\underline{170}$	$\underline{170}$	$\underline{109}$	$\underline{61}$
$\bullet \underline{1998}$			$\underline{88}$	$\underline{88}$	$\underline{69}$	$\underline{19}$	

Table 15. Correlations between the Houston fence count of wild coho and test fishery indices and total Babine escapement. The correlations are only for those years where a fence count was available. The ' $*$ ' indicates a $P<0.05$.

upper Bulkley wild escapement correlated with:	r
Tyee test fishery - Aug. 10	0.66
Tyee-test fishery - Aug 25	0.75^{*}
Tyee test fishery - Sept. 4	0.70^{*}
adjusted Tyee test fishery - Aug. 25	0.68^{*}
total Babine escapement	0.60

Figure 25. Wild escapement to the upper Bulkley River between 1950 and 1998. The clear bars are visual estimates while the solid bars were made at a fence in Houston.

Figure 26. Upper Bulkley wild coho escapement plotted on a logarithmic scale vs. year. The solid line is a linear regression through all of the data. The dotted line also a regression line but includes only the years of fence operation.

3.7 Sustut River escapement

The Sustut River is one of the major river systems in the "High Interior" zone of the Skeena River watershed. From 1992 to the present one or two adult fences have been operated in the system. The mainstem fence is located 700 m upstream of the confluence of the Moosevale Creek and provides the most inclusive count. Between 1992 and 1995 fences were operated near the confluence of the Sustut with Johanson Creek. Few coho were reported from these fences and the results are not included here. Between 1992 and 1996 the fences were operated by DFO with the primary objective to enumerate chinook salmon (Frith 1997). In 1997 and 1998 the fence was operated by the B.C. Ministry of Fisheries for steelhead enumeration (pers. comm. D. Atagi, BC Ministry of Environment Lands and Parks, Smithers; Williamson 1997, 1998, 1999).

Chinook, sockeye, steelhead and coho salmon are enumerated at the Sustut fence. Of these coho are the last to appear. The chinook run peaks in early August and the sockeye run in late August. Both steelhead and coho have protracted runs that have broad peaks in mid-September. Run timing is very comparable to the Babine aggregate, which also peaks in mid-September. The fence has been operated from the first of August to the end of September between 1993 and 1998, which may have been sufficient to enumerate most of the migrating coho. Coho were not enumerated in 1992.

year	coho counted	fence removed	comment	data source
1994	137	27-Sep	mainstem fence-700m above Moosevale confluence	Frith 1997
1995	28	16-Oct	mainstem fence	
1996	34	1-Oct	mainstem fence	Atagi, pers. comm.
1997	5	30-Sep	mainstem fence, all adults were males	Williamson 1998
1998	64	30-Sep	mainstem fence	

Escapement in 1998 was approximately twice that observed in 1995 but less than in the primary brood year of 1994. These ratios are similar to those seen elsewhere in the Skeena. Sustut escapement is correlated with other escapement time series for the Skeena (following Table), with the strongest and only significant $(\mathrm{P}<0.05)$ correlations with the adjusted Tyee test-fishery index and with Lachmach.

$N=5$	r
Babine esc	0.79
Toboggan	0.78
Tyee-early	0.67
Tyee index	0.61
Tyee-late	0.53
Tyee-index (adjusted)	0.91
Lachmach	0.90

There are approximately 37 km of stream habitat and at least 20 km of lake margin above the fence site (Frith 1997). This suggests that the carrying capacity of the system is over 1,000 animals (9 females $/ \mathrm{km}$)
and may be as much as $1,500(13$ females $/ \mathrm{km}$). That being so, the current escapements are less than 10% of the carrying capacity, or at a level that is consistent with other areas of the upper Skeena.

4 Productivity Analyses

The following analyses are all fits of the Ricker stock-recruitment model. Our purpose in fitting stockrecruitment models was not to define optimal exploitation rates or escapements. These data, except possibly the Babine Lake aggregate, are not adequate for that purpose. Instead we sought to illustrate that the potential magnitude of productivity differences between aggregates in the northern boundary area. For that reason we have included Hugh Smith Lake coho, a SE Alaskan indicator stream and an SE Alaskan aggregate comprised of 15 index streams where escapement is estimated visually in much the same way as the Canadian visual counts are obtained. We have also included aggregated visual estimates from Statistical Areas 3, 5 and 6.

4.1 Babine Lake aggregate

The data used for stock-recruitment analysis (Table 16) conforms to at least preliminary tests of suitability for this kind of analysis (Hilborn and Walters 1992). The estimates of spawner abundance are probably unbiased with reasonable levels of precision; the range in spawner abundance is nearly 51 -fold and there is considerable range in the R / S ratio ($0.46-10.4$). Recruits per spawner (R / S) were between 1 and 3 through most of the 1940's to late 1970's Figure 27. There were a few years with much higher values in the aftermath of the 1951 slide and dramatically lowered escapement. Values of R / S rose in the late 1970's and 1980's as escapements fell but then fell again in the 1990's despite even lower escapements (Figure 27. The linearized form of the Ricker function $(\log R / S=a-a S / b)$ was fit to the data followed by correction of the parameter values (a and b) after Hilborn (1985) (; Figure 28. Figure 29). Residual plots (Figure 30 and Figure 31 suggest that the stock-recruitment relationship has become non-stationary in the 1990's. A decrease in stock productivity could be anticipated by the decrease in R / S at low escapements observed in the 1990's. If this decrease in productivity is real then predictions of future performance (Section 5 must be treated with caution.

The stock-recruitment relationship was briefly explored using "SRSHOW", a software program under development by Carl Walters of the University of British Columbia, Vancouver. Among its features SRSHOW allows the user to explore the data and gain a sense of how uncertain the stock-recruitment analysis is. Figure 32 shows typical output from the program for the Babine coho data. The rightmost panel is a plot of the Bayes posterior distribution of u_{opt}. The MSY exploitation rate is poorly defined in this stock but clearly lower values than those produced by conventional analysis are more likely than higher ones. This does not mean that the true value is actually lower or higher than the nominal calculated value of 0.615 , but only that the confidence interval is highly asymmetrical.

4.1.1 Estimating uncertainty in the Babine Lake aggregate stock-recruitment analysis

Estimating uncertainty in the parameter estimates that are outputs of the Ricker stock-recruitment analysis was accomplished by repeated fits of a Ricker curve to simulated data. The simulations were designed to treat each variable that was used to estimate escapement and total return as a randomly drawn value from a population with a defined distribution.

Escapement data: Escapement data were treated as observations without error in those years where a complete count was obtained. In all other years the total escapement was calculated from the observed fence counts by dividing them by the average proportion of counts through the fence in years with complete counts. The random structure is introduced by assuming that the proportion is Beta distributed with the mean and standard deviation equal to the observed mean and standard deviation. The right panel in Figure 1 illustrates the calculated escapement to the simulated escapement.

Exploitation rates: To simulate uncertainty in the exploitation rate we assumed that the exploitation rate is uniformly distributed from 0.46 to 0.70 for brood years of 1946 to $1977 ; 0.56$ to 0.85 for brood years 1978 to 1993 and 95% to 105% of the observed exploitation rates derived from CWTs.

Age structure: We regressed the known arcsine square-root-transformed observed age 3 proportions in returning adults on the escapement in the parental generation (i.e., brood year minus 3). This regression was to estimate the age 3 proportions for other years. The regression results are summarized in Table 17. To implement the random structure for the simulation, we sampled a from the distribution $N(1.171923$, $0.078389), b$ from the distribution $N(0.000027,1.01 \mathrm{E}-05)$ and ε from the distribution $N(0,0.020772)$, then back-transformed to get the age- 3 proportion $p=\sin (a+b S+\varepsilon) 2$. The left panel in Figure 33 shows the age 3 proportion calculated from the regression (labeled as "Page3 without random") and a random sample for the age 3 proportion (labeled as "Page3 with random").

Simulation for Ricker model parameters and the MSY parameters: Using the models outlined above we generated 1000 data sets and fit a Ricker model to each one. Estimates of a, b, and the management parameters are summarized in the following Table.

parameter	mean	$S D$	$C I: 95 \%$
a	1.668	0.105	$1.454-1.868$
b	0.0000835	0.0000121	$0.0000585-0.000107$
$S_{M S Y}$	7,782	994	$6,427-9,815$
$u_{M S Y}$	0.639	0.0282	$0.58-0.69$

Distributions of the parameter values output from the simulations are shown in Figure 34

4.2 Indicator Streams

Stock-recruitment analyses were attempted on data from three wild indicators: Lachmach River (Area 3; Table 19, Toboggan Creek (Area 4, upper Skeena; Table 29; Table 21) and Hugh Smith Lake (SE Alaska,

Shaul 1998; Table 22). Toboggan Creek is the site of a coho hatchery. Fortunately, all of the smolts produced there are externally marked allowing us to determine the number of spawners in the wild Table $20{ }^{\circ}$ and the number of recruits they produced. We assumed that the measured exploitation rate on the hatchery fish at Toboggan applied to the naturally produced coho.

There are only six estimates of R / S for Lachmach, seven for Toboggan and 12 for Hugh Smith. Nevertheless, the Ricker model fit was statistically significant for the Hugh Smith and Lachmach populations but not for Toboggan coho (Table 25). We think that the poor fit of the model to the Toboggan and the Lachmach data is primarily the result of large variations in marine survival and the very short time series. In both systems the $L n$ number of smolts/spawner is significantly correlated with the number of spawners (Lachmach: $r=0.79, P<0.02$. Toboggan: $r=0.81, P<0.01$). If recruitment is estimated using the smolt/spawner relationships and a constant survival of 10%, which is the average, then the estimated productivities of both populations increase slightly (Table 26.

4.3 Areas with visual counts

Standardized escapement time-series were developed from visual counts for Statistical Areas 3, 4-upper, 4lower, 5 and 6. These data series are tabulated in Holtby et al. (1999a). Time-series of recruits per spawner $(R / S$; Table 23 were calculated by assuming the age composition listed in the following Table. Escapement data for 15 consistently surveyed streams in SE Alaska for the period 1987 to 1997 were obtained from Shaul (1998) and processed in an identical fashion to the Statistical Area visual counts to give an average escapement index for SE Alaska. The exploitation rate and age composition for the Hugh Smith Lake was applied to this time-series Table 24.

Area	exploitation rate time series	age composition time series
SE Alaska index streams	Hugh Smith Lake wild indicator	$p_{\text {age } 3}=0.67$, the average of Hugh Smith Lake
Area 3 (Nass)	Babine Lake reconstruction	$p_{\text {age } 3}=0.61$, the average in the Skeena test fishery
Area 4 (lower Skeena)	average of Babine Lake and	$p_{\text {age } 3}=0.61$, the average in the
Area 5 (Principe/Grenville)	Toboggan reconstruction without	Skeena test fishery
Area 6 (Kitimat)	FW fisheries	
Area 4 (upper Skeena)	average of Babine Lake and Toboggan reconstruction	$p_{\text {age } 3}=0.61$, the average in the Skeena test fishery

This time series of average "Area" escapement was then used in stock-recruitment analyses. The objective in doing so was to roughly characterize the relative productivities of the coho populations in each Area. To do so required time series of age composition and exploitation rate, which are identified in the preceding Table. The derivation of the indices and tabulated index values is given in Holtby et al. (1999a). Values of R / S for each Statistical Area can be found in Table 23. The results of the Ricker model fits are in Table 25.

4.4 Comparative productivities and status

A simple comparison of the relative productivities of the indicator streams and the average productivities of the aggregates can be made through comparison of estimates of $u_{\text {MSY }}$ Table 25), bearing in mind that data
limitations probably make small differences meaningless. Values of $u_{\text {MSY }}$ range from 56% in Area 6 to 82% at Hugh Smith Lake Table 25). If smolt production data and average marine survival are used to estimate productivity then $u_{\text {MSY }}$ could be as high as 88% at Lachmach Table 26.

We considered two simple measures of status. The first was the ratio of the average escapement over the past seven years (2 generations) to the escapement at $M S Y$ estimated by the Ricker models Figure 44. The second was the finite rate of change between 1970 and 1996 in the index aggregates, the Babine aggregate, the test-fishery index, the upper Bulkley aggregate and the troll catch per hook in the SE Alaska troll fishery. The latter is one of several indices of abundance of SE Alaska coho (Shaul 1998). For the testfishery index and the upper Bulkley aggregate we used the $u_{M S Y}$ value for Toboggan Creek coho. For both measures of status we found a significant relationship to our estimates of $u_{M S Y}$ (Figure 44 Figure 45, i.e., status is directly related to estimated relative productivity. We emphasize that these measure of $u_{M S Y}$ should only be used in a relative or comparative sense. We do not wish to imply that these represent target exploitation rates for these populations.

4.5 Temporal trends in productivity

In Section 4.1 we commented that the pattern of residual suggested that productivity of the Babine population had decreased in the 1990's. To compare the temporal pattern in residual among the Statistical Areas we examined simple correlations between their residuals Table 27) and used Principal Components Analysis Table 28. The PCA suggests that there are three temporal patterns. The Babine pattern is shared by the Area 3 and lower Skeena indices as indicated by loadings on the first component. Area 6 and the upper Skeena comprise the second grouping. The temporal pattern of Area 5, which loads on the third component is distinctive. Area 6 and the upper Skeena share the large reversal in residual values between the 1994 and 1995 brood years Table 23, Figure 46). The large positive residuals are due largely to the equally large increases to escapements in both areas Figure 22. The problems with the 1998 index in the upper Skeena have been discussed previously leaving in doubt whether the increases in escapement were as large as indicated by the indices. However, when the 1995 brood year was excluded from the analysis the results remained largely unchanged.

The grouping of Areas might reflect underlying distributions of fish in the ocean. Babine Lake coho have a distribution in fisheries that is similar to Lachmach coho while Toboggan and Kitimat (Area 6) coho are distributed more to the south (Anon. 1991, 1994; Holtby et al. 1994). The upper Skeena index is dominated by non-Babine sites, which might account for its similarity to Area 6 index. The distribution of lower and middle Skeena fish (e.g. Dry Creek) is intermediate. One possible inference from these relationships is that a major source of recruitment variability is marine survival influenced by fish behaviors.

Table 16. Stock-recruitment data for the Babine Lake coho aggregate.

brood year	$p_{\text {age3 }}$	u	total escapement	total return	brood year recruitment (R)	recruits per spawner (R / S)	$\begin{aligned} & \text { residual } \\ & \ln (\mathrm{R} / \mathrm{S}) \end{aligned}$	residual recruitment
1946	0.65	0.55	13411	29605	25419	1.895	0.17	4042
1947	0.65	0.55	10815	23874	37216	3.441	0.54	15513
1948	0.65	0.55	$1373{ }^{\text {d }}$	30318	33963	2.473	0.47	12689
1949	0.52	0.55	12961	28611	19710	1.521	-0.09	-1791
1950	0.59	0.55	11654	25726	11072	0.950	-0.67	-10637
1951	0.51	0.55	2276	45093	14569	6.400	0.40	4826
1952	0.53	0.55	10554	23298	19916	1.887	-0.08	-1759
1953	0.57	0.55	7655	16899	16831	2.199	-0.19	-3501
1954	0.80	0.55	3359	7415	14665	4.366	0.12	1606
1955	0.60	0.55	9714	21443	21716	2.236	0.01	223
1956	0.67	0.55	9857	21760	20658	2.096	-0.04	-877
1957	0.78	0.55	4421	9759	24229	5.480	0.44	8586
1958	0.62	0.55	8438	18626	35591	4.218	0.53	14684
1959	0.62	0.55	12004	26499	23871	1.989	0.10	2193
1960	0.75	0.55	7942	17532	24758	3.117	0.19	4195
1961	0.65	0.55	14416	31824	37511	2.602	0.58	16492
1962	0.56	0.55	15183	33517	31638	2.084	0.43	10956
1963	0.67	0.50	7737	15413	31443	4.064	0.43	11042
1964	0.49	0.63	10689	28580	37036	3.465	0.53	15345
1965	0.47	0.48	22985	44373	14915	0.649	-0.05	-757
1966	0.67	0.59	13377	32547	17961	1.343	-0.17	-3426
1967	0.59	0.47	12487	23605	23911	1.915	0.10	2307
1968	0.27	0.59	13054	31456	16915	1.296	-0.24	-4562
1969	0.52	0.50	6702	13512	20366	3.039	0.05	996
1970	0.55	0.57	10404	24028	23332	2.243	0.07	1679
1971	0.53	0.57	9909	22990	25784	2.602	0.18	4235
1972	0.70	0.66	5381	15641	8773	1.631	-0.69	-8712
1973	0.60	0.51	11606	23735	18666	1.608	-0.15	-3046
1974	0.711^{10}	0.56	13661	31189	19977	1.462	-0.06	-1322
1975	0.60	0.46	4913	9099	31780	6.468	0.65	15138
1976	0.60	0.46	4499	8285	12004	2.668	-0.28	-3806
1977	0.46	0.59	10474	25361	19842	1.894	-0.09	-1822
1978	0.78	0.69	11861	37775	4016	0.339	-1.69	-17677
1979	0.77	0.71	2909	10066	9587	3.296	-0.21	-2183
1980	0.78	0.74	5046	19332	18157	3.599	0.07	1266
1981	0.36	0.67	2486	7442	7473	3.006	-0.33	-2969
1982	0.79	0.58	2673	6365	11306	4.229	0.02	260
1983	0.74	0.81	3402	17447	17668	5.193	0.29	4492
1984	0.54	0.72	3241	11454	6897	2.128	-0.61	-5838
1985	0.85	0.75	2129	8585	10642	4.999	0.14	1411
1986	0.81	0.83	3671	21098	16457	4.483	0.17	2574
1987	0.90	0.64	2101	5788	21795	10.373	0.87	12662
1988	0.81	0.63	3225	8668	18086	5.609	0.35	5399

[^7]	brood year	$p_{\text {age3 }}$	u	total escapement	total return	brood year recruitment (R)	recruits per spawner (R / S)	residual $\ln (\mathrm{R} / \mathrm{S})$	residual recruitment
1989	0.77	0.67	5228	15988	6388	1.222	-0.99	-10832	
1990	0.81	0.74	5619	21285	13232	2.355	-0.30	-4646	
1991	0.78	0.77	4941	21205	24808	5.021	0.40	8113	
1992	0.73	0.70	1714	5731	16272	9.495	0.75	8562	
1993	0.72	0.72	2186	7921	6743	3.084	-0.34	-2689	
1994	0.74	0.86	4053	28947	2906	0.717	-1.63	-11910	
1995	0.81	0.87	2345	18038	8589	3.663	-0.15	-1386	
1996	0.80	0.67	2669	8088	-	-	-	-	
1997	0.76	0.55	453	1007	-	-	-	-	
1998	0.80	0.60	4291	10728	-	-	-	-	
								-	

Table 17. Regression relationship between BY escapement (S) and the proportion of age-3 adults in $\mathrm{BY}+3\left(p_{\text {age } 3}\right)$.

$$
\begin{gathered}
\operatorname{Arcsin}\left(\sqrt{p_{\text {age } 3}}\right)=1.171923(\text { s.e. }=0.078389)-0.000027(\text { s.e. }=1.01 \mathrm{E}-05) S \\
\left(N=13 ; \text { adj. } r^{2}=0.35 ; \text { MSE }=0.02077 ; P<0.05\right)
\end{gathered}
$$

Table 18. Ricker stock-recruitment function for the Babine lake coho aggregate.
$\log R / S=1.6558-0.0000887 S$

$$
\begin{aligned}
& \quad\left(N=50 ; \text { adj. } r^{2}=0.39 ; P<0.001 ; M S_{\text {residual }}=0.2676\right) \\
& S_{\mathrm{MSY}}=7,561 ; S_{r \max }=11,285 ; u_{M S Y}=0.67
\end{aligned}
$$

Table 19. Stock-recruitment data for the Lachmach River coho indicator.

return year	escapement	u	total return	smolts/ spawner	$p_{\text {age } 3}$	recruits	R / S
1989	599	0.623	1590	45.3	0.221	2011	3.357
1990	971	0.764	4116	29.9	0.174	3758	3.870
1991	1141	0.728	4194	31.0	0.006	3739	3.277
1992	409	0.756	1679	112	0.340	3611	8.829
1993	720	0.651	2065	53.6	0.339	2163	3.005
1994	1317	0.712	4570	19.1	0.322	2062	1.565
1995	975	0.697	3223	22.5	0.303		
1996	1102	0.719	3925	7.1	0.312		
1997	758	0.561	1728		0.462		
1998	1086	0.464	2025		0.346		

Table 20. Details of escapement to the Toboggan hatchery indicator. "Non-CWT hatchery escapement" was comprised of ventral-clipped fish. Brood stock were removed at the Toboggan Creek fence from the unmarked escapement.

year	total escapement	non-CWT hatchery escapement	total hatchery escapement	wild escapement brood stock	spawners in the wild	
1988	1401	0	397	1004	117	1284
1989	2356	225	503	1853	55	2301
1990	2807	56	393	2414	32	2775
1991	3336	0	614	2722	56	3280
1992	2025	44	206	1819	51	1974
1993	1437	30	297	1140	50	1387
1994	2416	31	623	1793	54	2362
1995	1762	1	313	1449	39	1723
1996	1185	4	220	965	61	1124
1997	394	0	73	321	35	359
1998	2470	3	443	2027	55	2415

Table 21. Stock-recruitment data for the Toboggan Creek indicator.

return year	escapement	u	total return	smolts/ spawner	$p_{\text {age }}$	recruits	R / S
1988	1284	0.404	1688	34.5	0.687	5845	4.552
1989	2301	0.663	5495	21.6	0.881	5349	2.325
1990	2775	0.723	8709	26.5	0.447	4549	1.639
1991	3280	0.663	8073	9.1	0.459	4479	1.365
1992	1974	0.691	5890	16.9	0.636	3196	1.619
1993	1387	0.683	3601	28.2	0.556	2291	1.651
1994	2362	0.686	5709	16.9	0.554	1752	0.742
1995	1723	0.466	2711	21.3	0.514		
1996	1124	0.739	3694	41.1	0.512		
1997	359	0.532	687		0.417		
1998	2415	0.282	2823		0.481		

Table 22. Stock-recruitment data for the Hugh Smith Lake coho indicator.

return year	escapement	u	total return	$p_{\text {age } 3}$	recruits	R / S
1982	2144	0.648	6091	0.664	3030	1.413
1983	1490	0.615	3870	0.664	3572	2.398
1984	1408	0.649	4011	0.664	2474	1.757
1985	903	0.626	2414	0.608	1358	1.504
1986	1783	0.601	4469	0.651	2723	1.527
1987	1118	0.523	2344	0.716	4173	3.733
1988	513	0.665	1531	0.481	6362	12.40
1989	424	0.821	2369	0.738	4309	10.16
1990	870	0.811	4603	0.788	6866	7.892
1991	1826	0.681	5724	0.905	8258	4.522
1992	1426	0.708	4884	0.757	5677	3.981
1993	830	0.806	4278	0.857	3861	4.652
1994	1753	0.814	9425	-	-	-
1995	1781	0.736	6746	-	-	-
1996	958	0.757	3942	-	-	-
1997	732	0.724	2652	-	-	-

Table 23. Time series of R / S for the Statistical Area average escapement indices.

brood year	Area 3	lower Skeena	upper Skeena	Area 5	Area 6
1950	2.3	2.3	2.3	3.0	3.0
1951	2.2	2.1	3.4	2.9	1.5
1952	4.4	2.1	2.4	2.9	2.0
1953	3.2	3.4	2.2	3.1	3.2
1954	2.9	3.5	1.8	2.4	2.1
1955	1.8	3.5	2.2	1.8	1.6
1956	2.9	2.2	1.9	1.8	0.9
1957	4.5	1.8	3.6	2.0	1.1
1958	2.7	1.0	2.1	3.3	2.4
1959	3.7	1.5	2.3	1.9	3.8
1960	5.0	2.6	2.6	3.4	3.4
1961	2.9	4.6	2.2	2.6	3.4
1962	5.4	5.2	1.3	4.1	2.3
1963	2.3	4.3	1.3	2.4	1.3
1964	2.1	2.0	1.4	1.4	2.0
1965	1.5	2.2	1.8	1.3	1.4
1966	1.1	1.4	2.5	0.5	1.2
1967	2.3	4.1	3.2	0.6	1.9
1968	1.6	1.3	4.0	0.6	1.4
1969	2.3	2.7	3.8	2.4	3.6
1970	1.1	1.5	2.3	5.2	1.8
1971	0.9	1.3	1.6	5.4	1.7
1972	1.5	1.2	0.5	3.4	1.4
1973	2.1	2.0	1.4	2.7	2.3
1974	3.4	2.7	3.6	3.0	2.2
1975	3.0	3.7	10.1	2.1	2.2
1976	2.0	2.7	4.7	2.5	2.7
1977	2.4	3.5	3.0	2.1	2.8
1978	2.3	1.9	1.4	1.8	2.4
1979	2.0	2.0	2.0	2.0	2.0
1980	8.7	4.8	2.8	3.6	3.9
1981	6.0	5.6	3.6	1.9	3.8
1982	8.4	7.0	4.6	19.4	4.5
1983	4.9	9.8	4.0	11.0	6.7
1984	1.8	1.9	1.4	5.1	1.9
1985	1.2	2.5	0.9	3.5	1.6
1986	3.2	2.2	1.5	1.0	2.1
1987	3.7	4.2	4.5	1.6	3.9
1988	5.5	13.0	7.0	1.0	4.3
1989	3.4	2.5	3.2	3.2	3.2
1990	4.6	1.8	4.0	4.9	1.9
1991	12.4	3.0	4.0	10.6	1.8
1992	4.4	2.3	2.8	5.5	1.6
1993	2.5	2.5	2.7	8.1	2.2
1994	0.7	1.2	1.4	3.0	2.2
1995	2.0	3.0	13.9	3.5	8.9

Table 24. Stock recruitment data for the SE Alaskan escapement index streams.

return year	$p_{\max }$	escapement	u	total return	$p_{\text {age } 3}$	recruits	R / S
1987	0.425	378	0.523	793	0.668	1585	4.19
1988	0.338	301	0.665	899	0.668	1631	5.41
1989	0.495	440	0.821	2461	0.668	2148	4.88
1990	0.342	305	0.811	1613	0.668	3087	10.12
1991	0.547	487	0.681	1527	0.668	3268	6.71
1992	0.603	537	0.708	1838	0.668	2299	4.28
1993	0.604	538	0.806	2771	0.668	1876	3.49
1994	0.778	692	0.814	3721	0.668		
1995	0.699	622	0.736	2356	0.668		
1996	0.596	531	0.757	2184	0.668		
1997	0.389	346	0.724	1255	0.668		

Table 25. Stock-recruitment parameters and statistics for the indicator streams and the visual escapement indices. The average escapement were calculated for the period 1992 to 1998 for the Canadian data and for the period 1991 to 1997 for the Alaskan sites.

parameter	indicator or escapement index									
	Lachmach	Toboggan	Hugh Smith	SE index	Area 3	lower Skeena	upper Skeena	Babine aggregate	Area 5	Area 6
a^{\prime}	2.422	1.555	2.667	2.595	1.834	1.978	1.774	1.790	1.874	1.394
b^{\prime}	1,884	3,908	2,645	1,52	3,610	2,250	1,528	20,176	2,122	2,640
$u_{\text {MSY }}$	0.80	0.61	0.84	0.83	0.68	0.72	0.67	0.67	0.69	0.56
$S_{\text {MSY }}$	623	1,529	829	399	1,342	814	574	7,561	783	,1062
N	6	7	12	7	46	45	45	50	46	46
r	0.8	0.52	0.71	0.59	0.565	0.61	0.394	0.63	0.648	0.604
P	<0.06	0.23	<0.01	0.16	<<0.001	<<0.001	<0.001	<0.001	<<0.001	<<0.001
average 2-gen escapement	910	1,621	1,329	536	1,453	732	307	2,530	512	325
as proportion of $S_{\text {msy }}$	146\%	106\%	160\%	134\%	108\%	90\%	53\%	33\%	65\%	31%

Table 26. Stock-recruitment parameters and statistics for the Lachmach and Toboggan indicator populations when the observed smolts/spawner and a constant marine survival of 10% is used to estimate recruitment. The values of N, r, and P are from the regressions of Ln(smolts/spawner) on spawners.

	indicator stream	
parameter	Lachmach	Toboggan
a^{\prime}	3.173	1.845
$\mathrm{~b}^{\prime}$	1500	3690
u_{MSY}	0.88	0.68
S_{MSY}	417	1369
N	8	9
r	0.79	0.81
P	<0.02	<0.01
average 2-gen	910	1621
escapement		
as proportion of $S_{\text {msy }}$	218%	118%

Table 27. Correlations between residual $\operatorname{Ln}(R / S)$ for the Canadian Statistical Area aggregates and the Babine Lake aggregate $(N=46) .{ }^{*} P<0.05 ; * * P<0.01 ; * * * P<0.001$.

	Area 3	lower Skeena	upper Skeena	Babine	Area 5
lower Skeena	$0.610^{* * *}$				
upper Skeena	0.279	$0.434^{* *}$			
Babine Lake	0.374^{*}	$0.423^{* *}$	0.291^{*}		
Area 5	0.225	0.032	0.036	0.195	
Area 6	0.169	$0.489^{* * *}$	$0.594^{* * *}$	0.152	0.211

Table 28. Principal Components Analysis on residual $L n(R / S)$ for the Canadian Statistical Area aggregates and the Babine Lake aggregate.

\left.| | loading on VARIMAX rotated | | |
| :--- | :---: | :---: | ---: |
| component | | | |$\right]$.

Figure 27. Recruits/spawner (R / S) vs. return year for the Babine Lake coho aggregate. The box plots summarize the residuals by decade, with the first decade including the few years in the 1940's were observations were made.

Figure 28. The stock-recruitment relationship for the Babine Lake coho aggregate. A fitted Ricker function is shown.

Figure 29. The stock-recruitment relationship for the Babine Lake coho aggregate shown in linearized form. The linear regression line fit to the data is detailed in Table 18.

Figure 30. Time series of residuals for the Babine Lake coho aggregate stock-recruitment relationship in linearized form.

Figure 31. From the Babine stock recruitment analysis, residual $\log R / S$ vs. the predicted values of $\log R / S$. The line is a LOWESS smooth .

Figure 32. Output from "SRShow", a stock-recruitment tool under development by C. Walters, University of BC, Vancouver.

Figure 33. Illustrations of the age (left panel) and escapement (right panel) simulations used to estimate uncertainty in the Babine Lake aggregate stock-recruitment analysis.

Figure 34. \quad Simulated distributions for Ricker parameter a and b and for the management parameters $S_{M S Y}$ and $u_{M S Y}$.

Figure 35. For the Lachmach River indicator population plots of R / S vs brood year (top) and against escapement (bottom).

Figure 36. For the Toboggan Creek indicator population (wild component) plots of R / S vs. brood year (top) and against escapement (bottom).

Figure 37. For the Hugh Smith Lake indicator population plots of R / S vs brood year (top) and against escapement (bottom).

Figure 38.
Time series of R / S derived from the visual coho salmon counts in the upper and lower Skeena.

Figure 39. $\quad R / S$ vs. escapement for the upper and lower Skeena stock-recruitment data derived from the visual coho salmon counts in the upper and lower Skeena.

Figure 40.
For Area 3 average escapements derived from visual counts, plots of R / S vs. brood year (top) and against escapement (bottom).

Figure 41. For Area 5 average escapements derived from visual counts, plots of R / S vs. brood year (top) and against escapement (bottom).

Figure 42. For Area 6 average escapements derived from visual counts, plots of R / S vs. brood year (top) and against escapement (bottom).

Figure 43. For average escapements derived from visual counts in SE Alaska index stream, plots of R / S vs. brood year (top) and against escapement (bottom).

Figure 44. A plot of the recent average escapement to the indicator and index streams as a proportion of the $M S Y$ escapement vs. their optimal exploitation rate. The identification codes are: ‘AR’, Statistical Area; ‘BAB’, Babine Lake aggregate; ‘LWRS': lower Skeena (Area 4); 'UPRS': upper Skeena; ‘TBGN', Toboggan Creek wild indicator; 'LACH', Lachmach River wild indicator; 'SEAK', SE Alaska index streams; and 'HS', Hugh Smith Lake wild indicator.

Figure 45. A plot of the finite rate of change to the indicator and index streams as a proportion of the vs. their optimal exploitation rate. The identification codes are: 'AR', Statistical Area; 'BAB', Babine Lake aggregate; 'LWRS': lower Skeena (Area 4); 'LACH', Lachmach River wild indicator; and 'SEAK', SE Alaska coho catch per hook in the troll fishery; 'TYEE', unadjusted test-fishery index, 'UBULK' upper Bulkley River, and 'UPRS': upper Skeena.

Figure 46. Residual plots for $\operatorname{Ln}(R / S)$ vs. time for the escapement indices and the Babine Lake aggregate.

5 Babine Lake aggregate - future projections

It is of great interest to know what the possible futures are for the Babine coho aggregate. Projections of the escapement trajectory were done using the Ricker stock-recruitment model under a range of survival and exploitation rate regimes.

Recruitment (R) in year $B Y$ was predicted by:

$$
\begin{equation*}
R_{B Y}=S_{B Y} e^{\varphi+a} \boldsymbol{b}_{S_{B Y} / b} \mathbf{g} \tag{14}
\end{equation*}
$$

where,
$R_{B Y}$: recruitment (total return) from spawning in year $B Y$
$S_{B Y}$: spawners in year $B Y$;
φ : residual or survival regime multiplier (see below);
$a, b: \quad$ intercept and slope of linearized Ricker stock-recruitment relationship (see Γ able 18 .

The survival regime multiplier (φ) incorporated into the prediction general survival conditions. The multiplier was fixed for the period of the prediction and was calculated by:

$$
\begin{equation*}
\varphi_{B Y}=\boldsymbol{T}_{\alpha Y, \text { observed }} \quad B Y \leq 1998 \tag{15}
\end{equation*}
$$

where,
$s_{\varphi} \quad$: the standard deviation of the residuals from the linearized Ricker stock-recruitment relationship $=0.51803 ; N=50$.

There are two predominant age groups in Babine aggregate coho. The proportion of the younger (age 3) age class in year BY +3 is correlated with spawner abundance in the brood year (BY) ($r=0.63 ; P<0.05$) and was estimated by:

$$
\begin{equation*}
p_{B Y+3}^{3}=0.854-0.00002479 S_{B Y} \tag{16}
\end{equation*}
$$

Escapement of age 3 fish in $B Y+3\left(S_{B Y+3}^{3}\right)$ was calculated as

$$
\begin{equation*}
S_{B Y+3}^{3}=\text { (} u_{B Y+3} \emptyset_{B Y+3}^{3} R_{B Y} \tag{17}
\end{equation*}
$$

and escapement of age 4 fishing in $B Y+4$ resulting from spawning in year $B Y$ was calculated

$$
\begin{equation*}
S_{B Y+4}^{4}=\text { - } u_{B Y+4} \boldsymbol{(}-p_{B Y+3}^{3} \widehat{R}_{B Y} \tag{18}
\end{equation*}
$$

where,
u : exploitation rate

Total escapement in any year was the sum of age 3 and age 4 escapements. Simulations were run under four exploitation regimes.

1. "no fishing" The exploitation rate was set to 0.005 , which allows for small incidental catches in FW.
2. "no Canadian commercial fishing": The exploitation rate was set to 0.372 . This allows for observed Alaskan fisheries and marine recreational and all FW fisheries.
3. "no Canadian commercial troll fishing": The exploitation rate was set to 0.496 . Only directed commercial fishing in Canada was excluded.
4. "normal fishing": The exploitation rate was set to 0.712 .

For brood years 1988 to 1995 , which are those returning from 1991 to 1998 , the mean residual in $\log R / S$ is -0.24 . Viewed against the entire time series about 32% of observed residuals would be lower than this through chance alone. Assuming that the survival over the next 10 to 15 years remains similar to the last 10 years, then a population trajectory simulated using the 25% ile of the residual $\log (R / S)$ might give some indication of the future escapement under the four exploitation regimes.

Simulation results are shown in Table 29 to Table 32 and in Figure 47. With no fishing the Babine Lake aggregate should rapidly rebuild under anything but the most dire survival downturn Table 29. With future exploitation rates similar to what they were in 1998 the recovery of the aggregate is contingent on future survivals Table 30. With survivals similar to those of the last decade slow recovery to escapements approximately double those of 1998 , corresponding to 50% to 70% of possible targets might be expected. If survival deteriorates then no recovery or further declines might occur Figure 47). With higher exploitation rates recoveries slow and the risk of further declines increase Table 31 and Table 32. At average exploitation rates the stock might not recover unless survivals improved to above the long-term mean Table 32 Figure 47.

[^8]Table 29. Future projections of the Babine coho aggregate assuming a total exploitation rate of 0.0.005 (Scenario 1).

return year	$\begin{aligned} & \text { exploitation } \\ & \text { rate } \\ & \hline \end{aligned}$	observed escapement	projected escapements				
			mean	$\begin{gathered} 5 \% \\ \text { lower } \end{gathered}$	$\begin{aligned} & 10 \% \\ & \text { lower } \end{aligned}$	$\begin{aligned} & 25 \% \\ & \text { lower } \end{aligned}$	75% lower
1990	0.74	5619					
1991	0.77	4941					
1992	0.70	1714					
1993	0.72	2186					
1994	0.86	4053					
1995	0.87	2345					
1996	0.67	2669					
1997	0.55	453					
1998	0.60	4291					
1999	0.005		10670	3812	5483	7532	15115
2000	0.005		3879	1386	1993	2738	5494
2001	0.005		12775	4564	6565	9018	18096
2002	0.005		20172	5104	8731	13424	27484
2003	0.005		14909	2962	5623	9572	26960
2004	0.005		18551	4653	8146	12542	24282
2005	0.005		17539	6019	10239	13794	14935
2006	0.005		25159	4885	10321	16779	22574
2007	0.005		16523	5060	9184	12821	13143
2008	0.005		17063	6277	10306	13249	17533
2009	0.005		22843	6367	11932	15858	28412
2010	0.005		17668	5754	10248	13472	25673
2011	0.005		22278	6304	10397	14572	36139
2012	0.005		16978	6912	11055	13502	18937
2013	0.005		24411	6483	11404	16213	22435
2014	0.005		20332	6437	10738	14679	13597
2015	0.005		17195	6879	10606	13798	10287
2016	0.005		23214	6947	11609	15537	26840

Table 30. Future projections of the Babine coho aggregate assuming a total exploitation rate of 0.372 (Scenario 2).

return year	$\begin{gathered} \text { exploitation } \\ \text { rate } \\ \hline \end{gathered}$	observed escapement	projected escapements				
			mean	$\begin{gathered} 5 \% \\ \text { lower } \end{gathered}$	$\begin{aligned} & 10 \% \\ & \text { lower } \end{aligned}$	$\begin{aligned} & 25 \% \\ & \text { lower } \end{aligned}$	$\begin{aligned} & 75 \% \\ & \text { lower } \end{aligned}$
1990	0.74	5619					
1991	0.77	4941					
1992	0.70	1714					
1993	0.72	2186					
1994	0.86	4053					
1995	0.87	2345					
1996	0.67	2669					
1997	0.55	453					
1998	0.60	4291					
1999	0.37		6734	2406	3461	4754	9540
2000	0.37		2448	875	1258	1728	3468
2001	0.37		8063	2881	4144	5692	11422
2002	0.37		11595	2499	4403	7103	17856
2003	0.37		7122	1271	2487	4387	13918
2004	0.37		10072	2136	3973	6586	16517
2005	0.37		12461	2519	5087	8491	15371
2006	0.37		13285	1582	3906	7852	21037
2007	0.37		11057	1862	4182	7450	14452
2008	0.37		12289	2326	5262	8748	14892
2009	0.37		15456	1810	5071	9750	18677
2010	0.37		12576	1779	4672	8494	15629
2011	0.37		12770	2133	5265	8770	19189
2012	0.37		13491	1932	5648	9627	15128
2013	0.37		14648	1779	5243	9463	20300
2014	0.37		13348	1999	5349	9019	17071
2015	0.37		12651	1966	5756	9208	15439
2016	0.37		14968	1810	5676	9814	18644

Table 31. Future projections of the Babine coho aggregate assuming a total exploitation rate of 0.50 (Scenario 3).

return year	$\begin{aligned} & \text { exploitation } \\ & \text { rate } \\ & \hline \end{aligned}$	observed escapement	projected escapements				
			mean	$\begin{gathered} 5 \% \\ \text { lower } \end{gathered}$	$\begin{aligned} & 10 \% \\ & \text { lower } \end{aligned}$	$\begin{aligned} & 25 \% \\ & \text { lower } \end{aligned}$	$\begin{aligned} & 75 \% \\ & \text { lower } \end{aligned}$
1990	0.74	5619					
1991	0.77	4941					
1992	0.70	1714					
1993	0.72	2186					
1994	0.86	4053					
1995	0.87	2345					
1996	0.67	2669					
1997	0.55	453					
1998	0.60	4291					
1999	0.50		5400	1929	2775	3812	7650
2000	0.50		1963	701	1009	1386	2781
2001	0.50		6466	2310	3323	4564	9159
2002	0.50		8543	1767	3126	5105	13691
2003	0.50		4886	838	1658	2962	9815
2004	0.50		7201	1441	2737	4654	12787
2005	0.50		9419	1584	3357	6020	13933
2006	0.50		8670	883	2278	4886	17095
2007	0.50		7924	1078	2599	5060	12966
2008	0.50		9475	1292	3290	6278	13370
2009	0.50		11067	883	2789	6368	16026
2010	0.50		9217	886	2681	5755	13607
2011	0.50		9555	1053	3173	6304	14818
2012	0.50		10869	838	3107	6913	13608
2013	0.50		10665	768	2862	6484	16476
2014	0.50		9935	877	3118	6438	14865
2015	0.50		10181	770	3243	6880	13946
2016	0.50		11282	686	3056	6948	15728

Table 32 . Future projections of the Babine coho aggregate assuming a total exploitation rate of 0.712 (Scenario 4).

			projected escapements				
return year	exploitation rate	observed escapement	mean	5% lower	10% lower	lower	lower
1990	0.74	5619					
1991	0.77	4941					
1992	0.70	1714					
1993	0.72	2186					
1994	0.86	4053					
1995	0.87	2345					
1996	0.67	2669					
1997	0.55	453					
1998	0.60	4291					
1999	0.71		3099	1107	1593	2188	4390
2000	0.71		1127	402	579	795	1596
2001	0.71		3711	1326	1907	2619	5256
2002	0.71		3713	747	1308	2153	6314
2003	0.71		1806	289	582	1063	3812
2004	0.71		2850	516	1016	1805	5824
2005	0.71		3595	468	1045	2068	7553
2006	0.71		2366	193	526	1234	6660
2007	0.71		2536	243	655	1478	6533
2008	0.71		3287	250	747	1818	7849
2009	0.71		2777	127	458	1337	8494
2010	0.71		2511	124	462	1329	7486
2011	0.71		3014	132	532	1594	7874
2012	0.71		2963	78	381	1366	8707
2013	0.71		2610	67	343	1257	8382
2014	0.71		2851	70	386	1429	8077
2015	0.71		2987	47	306	1341	8405
2016	0.71		2734	37	263	1218	8794

Figure 47. Future projections of Babine aggregate escapements under different exploitation scenarios. The top panel assumes a fishery similar to 1998 with a total exploitation rate of 0.34 . The bottom panel assumes a status quo fishery with a total exploitation rate of 0.71 . The solid line is the point estimate. The open circles joined by the dotted line assumes the 25% ile residual. The bottom and top of the vertical lines assume the 10% ile and the 75% ile of the residuals respectively.

6 Conclusions and summary

Marine survivals were higher in the 1997-sea entry year than they had been in the 1996-entry year. The increase relative to the previous year was largest for Toboggan wild and hatchery smolts but was slight for Fort Babine smolts. Survival was average for Lachmach coho but was below average for both Toboggan hatchery and wild smolts. Survivals remain below levels required for sustaining populations at the two Skeena hatcheries but there is growing evidence that hatchery survivals are less than 30% of wild survivals.

Exploitation rates ranged between 28% for Toboggan coho to 60% for Babine coho. Exploitation in Canadian fisheries was due entirely to small incidental catches in some FW fisheries and to release mortality in all marine fisheries and the remaining FW fisheries. The total exploitation rate on upper Skeena coho in all Canadian fisheries was reduced to less than 2%.

Juvenile densities in 1998 provided a complex picture of 1997 escapement. Juvenile densities were lower in 1998 than in 1997 in five of eight summary areas. The largest decrease was seen in the upper Skeena $(0.12 \times)$. No juvenile coho were detected in the Sustut River sites despite an expanded search very few juveniles and no young of the year were detected in the upper Bulkley. Decreases in the middle Skeena areas and the Bulkley/Morice ranged from $0.59 \times$ to $0.68 \times$. Large increases were seen in the Lachmach $(1.7 \times)$ and the coastal streams $(1.8 \times)$. Juvenile densities also increased in the Babine by a factor of $1.3 \times$. This increase was general throughout the Babine. Despite the increase juvenile densities remained well below levels we would interpret as indicating an adequately seeded system.

Escapement was much improved in 1998 compared to 1997 throughout the Skeena Basin. The test-fishery index to August $25^{\text {th }}$ was about the $29^{\text {th }}$ percentile in a 43 -year time series. The index value was similar to values seen in the 1980's. However, the value is consistent with a simple transfer of catch to escapement. Escapement to the Babine was 4,291 or over 9 -times the escapement in 1997. Compared to historic escapement the value in 1998 was at the $34^{\text {th }}$ percentile, which is significantly less than the median and is again comparable to escapement in the 1980's and early 1990's. However, total stock size was lower than the brood years and did not represent a departure from the downward trend in stock size that began sometime in the 1970 's. Visual escapement indices increased relative to 1997 in all Statistical Areas except Area 5. The largest proportional increase was in the upper Skeena ($13.9 \times$) but only six streams were included in the index. More escapement work in the upper Skeena would be required to have increased confidence in the visual escapement index. Escapement to the Bulkley/Morice above Moricetown falls was 2.3×10^{4} or 3.5 -times the 1997 escapement. With only four observations but covering a very wide range of escapement, the Moricetown estimate is significantly correlated with the Skeena test-fishery index (unadjusted). Tagging at this site could potentially yield escapement estimates for Morice pink, Nanika/Morice sockeye and Bulkley/Morice chinook. The coho-tagging program should become a core assessment program. Escapement to the upper Bulkley increased from 88 in 1997 to 317, an increase of $3.6 \times$. However, escapement to the upper Bulkley remains less than 10% of historic averages. A new index
site on the Sustut River was introduced in this report. Coho escapement there increased to 64 from 5 (all males) in 1997 but was only 46% of the escapement in the dominant brood year (1994). Historic data from this area is very unreliable but habitat measures suggest that current escapements are less than 10% of carrying capacity. Overall, the escapement measures present a consistent picture of the status of Skeena Basin coho. Although escapement improved throughout the Basin, status remains very poor in the high interior and the upper Bulkley and well below carrying capacity throughout the interior. Coastal and middle Skeena areas appear to have recovered to average levels. The reappearance of fish in all areas is an encouraging sign that recovery is possible.

Very simple characterizations of average productivity for the Statistical Area aggregates and for the indicator streams confirm large productivity differences between interior streams (and Area 6) and streams in the lower and middle Skeena, Area 3 and SE Alaska. It is apparent that relative productivity is strongly related to population and aggregate status, as measured by two measures of status. This is compelling evidence that the root cause of declines in coho abundance in the Skeena interior is a chronic mismatch of exploitation rate and productivity.

A simple simulation of future population size for Babine coho indicated that recovery is contingent on both future survival and exploitation rates. With fishing levels similar to those in 1998 and a continuation of present survivals slow recovery to escapement near carrying capacity is expected. With average fishing rates recovery is uncertain unless survivals improve substantially.

Finally a provisional escapement target to the Babine of 1.15×10^{3} is suggested. At average survival the corresponding exploitation rate would be approximately 46%. A Limit Reference Escapement of 1.2×10^{3} is also provided.

7 Literature Cited

Anon. 1991. Northern Panel Area coho salmon status report. Pac. Salmon Comm. Coho Tech. Comm. Rep. TCCOHO (91)-1: 40p.
Anon. 1994. Interim estimates of coho stock composition for 1984-1991 southern area fisheries and for 1987-1991 northern panel area fisheries. Pac. Salmon Comm. Coho Tech. Comm. Rep. (94)-1: 25p.
Anon. 1997. Fishery management regime to ensure protection and rebuilding of Oregon coastal natural coho. Amendment 13 to the Pacific Coast Salmon Plan, Pacific Fishery Management Council, 2130 SW Fifth Avenue, Suite 224, Portland, Oregon 97201, October 1997 *DRAFT*.
Baillie, S. J. 1994. Summary of the 1993 coho salmon smolt trapping operation on the Lachmach River, British Columbia. Can. Data Rep. Fish. Aquat. Sci. 936: 43p.
Bradford, M. 1998. A risk assessment for Thompson River coho salmon. PSARC Working Paper S98-18: 20p.
Brown, M. B. 1974. Identification of sources of significance in two-way contingency tables. Appl. Statist. 23: 405-413.
Bustard, D. 1990. Assessment of coho salmon recruitment from streams tributary to Babine Lake. Contractor's report to DFO, Habitat Management Section, Prince Rupert, June 1990. 25p.
Cederholm, C. J., and W. J. Scarlett. 1981. Seasonal immigrations of juvenile salmonids into four small tributaries of the Clearwater River, Washington, 1977-1981, p. 98-110. In E. L. Brannon, and E. O. Salo [ed.] Proceedings of the Salmon and Trout Migratory Behavior Symposium, School of Fisheries, University of Washington.
Cox-Rogers, S. 1994. Description of a daily simulation model for the Area 4 (Skeena River commercial fishery. Can. MS Rep. Fish. Aquat. Sci. 2256: 46p.
Cox-Rogers, S., and L. Jantz. 1993. Recent trends in the catchability of sockeye salmon in the Skeena River gillnet test fishery, and impacts on escapement estimation. Can. MS Rep. Fish. Aquat. Sci. 2219: 19p.
Davies, D. L. W., B. O. Finnegan, and L. B. Holtby. 1992. Summary of the 1991 coho salmon smolt trapping operations on the Lachmach River, British Columbia. Can. Data Rep. Fish. Aquat. Sci. 871: 61p.
FAO. 1995. Code of conduct for responsible fisheries. Food and Agriculture Organization of the United nations, Rome, 41p.
Finnegan, B. 1991. Summary of 1988 coho salmon smolt trapping operations on the Lachmach River and Antigonish Creek, British Columbia. Can. Data Rep. Fish. Aquat. Sci. 844: 29p.
Finnegan, B. O., R. L. Dunbrack, and K. Simpson. 1990. Summary of 1987 coho salmon smolt trapping operations on the Lachmach River, British Columbia. Can. Data Rep. Fish. Aquat. Sci. 812: 27p+iv.
Frith, H. R. 1997. Salmon and steelhead trout adult escapement from 1992 to 1996 and smolt outmigration from 1994 to 1996 in the upper Sustut River. Contractor's Report for Department of Fisheries and Oceans, Nanaimo, 19p + Tables, Figures and Appendices.
Gazey, W. J., and K. K. English. 1996. Assessment of sockeye and pink salmon stocks in the Northern Boundary area using run reconstruction techniques, 1982-1992. Final report for Fisheries and Oceans Canada. LGL Ltd., Sydney, BC.
Hilborn, R. 1985. Simplified calculation of optimum spawning stock size from Ricker's stock recruitment curve. Can. J. Fish. Aquat. Sci. 42: 1833-1834.
Hilborn, R., and C. J. Walters. 1992. Quantitative Fisheries Stock Assessment: choice, dynamics and uncertainty. Chapman \& Hall, Inc., New York, NY. 570 p.
Holtby, L. B. 1988. The effects of logging on the coho salmon of Carnation Creek, British Columbia, p. 159-174. In T. W. Chamberlin [ed.] Proceedings of the workshop: applying 15 years of Carnation Creek results, Department of Fisheries and Oceans, Pacific Biological Station.
Holtby, L. B., and B. Finnegan. 1997. A biological assessment of the coho salmon of the Skeena River, British Columbia, and recommendations for fisheries in 1998. PSARC Working Paper S97-12: 48p.

Holtby, L. B., and R. Kadowaki. 1996. Forecast of 1994 brood year (1997 return year) smolt-to-adult survivals for west coast of Vancouver Island (WCVI) coho with comments on the implications of the poor brood year (1994) escapement. PSARC Working Paper S96-22: 35.
Holtby, L. B., and R. Kadowaki. 1998. A risk assessment for north coastal coho fisheries in 1998, with commentary on risk in southern inside and outside fisheries. PSARC Working Paper S97-12: 62.
Holtby, L. B., and J. C. Scrivener. 1989. Observed and simulated effects of climatic variability, clear-cut logging, and fishing on the numbers of chum salmon (Oncorhynchus keta) and coho salmon (O. kisutch) returning to Carnation Creek, British Columbia, p. 62-81. In C. D. Levings, L. B. Holtby, and M. A. Henderson [ed.] Proceedings of the National Workshop on Effects of Habitat Alteration on Salmonid Stocks, Canadian Special Publication of Fisheries and Aquatic Sciences 105.
Holtby, L. B., R. Kadowaki, and L. Jantz. 1994. Update of stock status information for early run Skeena River coho salmon (through the 1993 return year). PSARC Working Paper S94-4: 44p.
Holtby, L. B., B. O. Finnegan, and B. Spilsted. 1999a. Forecast for northern British Columbia coho salmon in 1999. PSARC Working Paper S99-7: 41p.
Holtby, L. B., J. Irvine, R. Tanasichuk, and K. Simpson. 1999b. Forecast for southern British Columbia coho salmon in 1999. Canadian Stock Assessment Research Document 99/125: 35.
Kadowaki, R. K. 1988. Stock assessment of early run Skeena River coho salmon and recommendations for management. Can. Tech. Rep. Fish. Aquat. Sci. 1638: 29 p.
Kadowaki, R., T. Pendray, and L. Jantz. 1992. Stock assessment of early run Skeena River coho salmon (through the 1991 return year). PSARC Working Paper S92-3: 13p.
Kadowaki, R., L. B. Holtby, K. Simpson, and D. Blackbourn. 1996. An update of assessment information for Strait of Georgia coho salmon stocks with 1996 forecasts and advice on setting an exploitation rate target. PSARC Working Paper S96-9: 43p.
Koski, W. R., R. F. Alexander, and K. K. English. 1995. Distribution, timing and numbers of coho salmon and steelhead return to the Skeena watershed in 1994. contractor's report prepared by LGL Ltd for DFO, Prince Rupert, BC.
Kuhn, B. R., L. Lapi, and J. M. Hamer. 1988. An introduction to the Canadian database on marked Pacific salmon. Can. Tech. Rep. Fish. Aquat. Sci. 1649: 54p.
Kyle, G. B. 1994. Assessment of trophic-level responses and coho salmon (Oncorhynchus kisutch) production following nutrient treatment (1981-1986) of Bear Lake, Alaska. Fish. Res. 20: 243261.

Kyle, G. B., and J. P. Koenings. 1983. Bear Lake nutrient enhancement (pre-fertilization) report. Ak Dept. Fish and Game, FRED Rep. 15: 43p.
Lane, J., and S. J. Baillie. 1994. Summary of the 1992 coho salmon smolt trapping operation on the Lachmach River, British Columbia. Can. Data Rep. Fish. Aquat. Sci. 926: 35p.
Lane, J., and B. Finnegan. 1991. Summary of fall 1988 adult and juvenile coho salmon sampling operation on the Lachmach River, British Columbia. Can. Data Rep. Fish. Aquat. Sci. 824: 61p.
Lane, J., J. A. Taylor, and B. O. Finnegan. 1994a. 1991 Adult coho escapement and summary of the 19881990 escapement years to the Lachmach River, British Columbia. Can. Data Rep. Fish. Aquat. Sci. 938: 53p.
Lane, J., J. A. Taylor, and B. O. Finnegan. 1994b. Summary of adult coho escapement to the Lachmach River, B.C., 1990. Can. Data Rep. Fish. Aquat. Sci. 932: 69p.
Lister, D. B., and H. S. Genoe. 1970. Stream habitat utilization by cohabiting underyearlings of chinook (Oncorhynchus tshawytscha) and coho (O. kisutch) salmon in the Big Qualicum River, British Columbia. J. Fish. Res. Board Can. 27: 1215-1224.
Murphy, M. L., J. Heifetz, J. F. Thedinga, S. W. Johnson, and K. V. Koski. 1989. Habitat utilization by juvenile Pacific salmon (Oncorhynchus) in the glacial Taku River, southeast Alaska. Can. J. Fish. Aquat. Sci. 46: 1677-1685.
Palmer, R. N. 1964. A re-assessment of Moricetown Falls as an obstruction to salmon migration. Internal Report, Department of fisheries of Canada, Vancouver, B.C. June, 32p.
Radtke, R., M. Svenning, D. Malone, A. Klementsen, J. Ruzicka, and D. Fey. 1996. Migrations in an extreme northern populations of Arctic charr Salvelinus alpinus: insights from otolith microchemistry. Mar. Ecol. Prog. Ser. 136: 13-23.
Ricker, W. E. 1975. Computation and interpretation of biological statistics of fish populations. Bull. Fish. Res. Board Can. 119: 382p.

Saimoto, R.K. 1995 Toboggan Creek coho smolt enumeration 1995. Contractors report to DFO, Stock Assessment Division, July 1995, 68p.
Scarsbrook, J. R., and J. McDonald. 1970. Purse seine catches of sockeye salmon and other species of fish at Babine Lake, 1966 to 1968. Fish. Res. Board Can. Manuscr. Rep. 1075: 1.
Scarsbrook, J. R., and J. McDonald. 1973. Purse seine catches of sockeye salmon and other species of fish at Babine Lake, 1972. Fish. Res. Bd. Can. Tech. Rep. 390: 1.
Scrivener, J. C., and B. C. Andersen. 1984. Logging impacts and some mechanisms that determine the size of spring and summer populations of coho salmon fry (Oncorhynchus kisutch) in Carnation Creek, British Columbia. Can. J. Fish. Aquat. Sci. 41: 1097-1105.
Scrivener, J. C., and M. J. Brownlee. 1989. Effects of forest harvesting on spawning gravel and incubation survival of chum (Oncorhynchus keta) and coho salmon (O. kisutch) in Carnation Creek, British Columbia. Can. J. Fish. Aquat. Sci. 46: 681-696.
Shaul, L. D. 1998. Status of coho salmon stocks and fisheries in Southeast Alaska through 1997. ADFG Div. Com. Fish. Reg. Inform. Rep. IJ98-26: 109p.

Shirvell, C. S. 1994. Effect of changes in streamflow on the microhabitat use and movements of sympatric juvenile coho salmon (Oncorhynchus kisutch) and chinook salmon (O. tshawytscha) in a natural stream. Can. J. Fish. Aquat. Sci. 51: 1644-1652.
Simpson, K., R. Diewert, R. Kadowaki, C. Cross, and S. Lehmann. 1997. A 1996 update of assessment information for Strait of Georgia coho salmon stocks (including the Fraser River). PSARC Working Paper S97-5: 50p.
SKR Consultants Ltd. 1996. Toboggan Creek coho smolt enumeration 1996. Contractors report to DFO, Stock Assessment Division, August 1996, 53p.
Smith, H. D., and J. Lucop. 1966. Catalogue of salmon spawning grounds and tabulations of escapement in the Skeena River and Department of Fisheries statistical area 4. F. R. B. Canada, MS Rep. Ser. 882 (Section 3): 100p.
Smith, H. D., and J. Lucop. 1969. Catalogue of salmon spawning grounds and tabulation of escapements in the Skeena River and Department of Fisheries Statistical Area 4. F. R. B. Canada, MS Rep. Ser. 1046: 191p.
Swales, S., and C. D. Levings. 1989. Role of off-channel ponds in the life cycle of coho salmon (Oncorhynchus kisutch) and other juvenile salmonids in the Coldwater River, British Columbia. Can. J. Fish. Aquat. Sci. 46: 232-242.
Swales, S., R. B. Lauzier, and C. D. Levings. 1986. Winter habitat preferences of juvenile salmonids in two interior rivers in British Columbia. Can. J. Zool. 64: 1506-1514.
Taylor, J. A. 1998. Synoptic surveys of juvenile coho populations in selected lakes and streams within the Skeena River watershed, British Columbia, 1998. Contractors Report for StAD, DFO, Nanaimo, 53p.
Taylor, J. A. 1999. An estimate of the coho escapement above Moricetown Falls, Bulkley River, B.C. Contractors report to StAD, DFO, Nanaimo.
Walters, C., and B. Ward. 1998. Is solar radiation responsible for declines in marine survival rates of anadromous salmonids that rear in small streams? Can. J. Fish. Aquat. Sci. 55: 2533-2538.
Williamson, C. J. 1997. Enumeration of adult steelhead in the upper Sustut River 1997. BCMELP Skeena Fish. Rep. SK-112: 51p.
Williamson, C. J. 1998. The enumeration of adult and juvenile salmon in the upper Sustut River 1998. unpubl manuscript, DFO, StAD, Prince Rupert, 42p.
Williamson, C. J. 1999. Enumeration of adult steelhead in the upper Sustut River 1998 Appendix Report 1 Fence Modifications. BCMELP Skeena Fish. Rep. SK-121: 15p.
Wood, C. C., and L. B. Holtby. 1998. Defining conservation units for Pacific salmon using genetic survey data, p. 233-250. In B. Harvey, C. Ross, D. Greer, and J. Carolsfeld [ed.] Action Before Extinction. An International Conference on Conservation of Fish Genetic Diversity, February 1618, 1998, Vancouver, British Columbia, Canada, World Fisheries Trust. (Proceedings of the World Fisheries Trust International "Action Before Extinction" Workshop, 16-18 February 1998, Vancouver, B.C. Canada)

[^0]: ${ }^{1}$ Escapement should not be allowed to fall below this level.

[^1]: ${ }^{2}$ On ne devrait pas permettre que l'échappée tombe en deçà de ce niveau.

[^2]: ${ }^{3}$ We will leave to others the philosophical question of whether or not the component of the Toboggan run that arises from naturally spawning and rearing fish is "wild". The parents of hatchery stock have always been unmarked individuals that are almost exclusively naturally spawned and reared. Since the proportion of the hatchery reared component of the run is not increasing and natural smolt production from the system appears to be stable and substantial we presume that the naturally spawning and rearing population segment could be self-sustaining and treat it as a wild population.
 ${ }^{4}$ sexed, FL measured, weight taken (Lachmach), scales taken for aging, presence/absence of adipose clip recorded.

[^3]: ${ }^{5}$ obtainable from M. O'Neill, Manager, Toboggan Creek Salmon and Steelhead Enhancement Society, RR\#1, Smithers BC, VOJ 2N0

[^4]: ${ }^{6}$ The sites in the Lachmach are exceptions to this generality. The L3300, L3800 and L5000 sites are all in pond or pond-like areas of a type not sampled anywhere else in the Skeena basin. However, the other sites are not exceptional.

[^5]: ${ }^{7}$ Fisheries are defined by location, time and gear-type.

[^6]: ${ }^{\dagger}$ approximately equivalent to 12.7 females/km

[^7]: ${ }^{8}$ The fence was not operated in 1948. Escapement was estimated from Alaskan catch/hk and total SE wild troll catch.
 ${ }^{9}$ A slide in the Babine River partially blocked access to Babine Lake. Total escapement in the absence of a slide would have been 20,427, which was estimated in the same way as the 2948 escapement.
 ${ }^{10}$ Italicized age proportions were observed. The remainder were estimated.

[^8]: ${ }^{11}$ The association of exploitation rates with closures of particular Canadian fisheries is intended only to show why particular exploitation rates were chosen for these simulations and should not be construed as defining or reflecting policy, which is the sole prerogative of the Minister of Fisheries and Oceans.

