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Abstract

One of the precautionary management approaches is to set up a pair of reference
points, a target reference point (TRP) and a limit reference point (LRP). An TRP
indicates the exploitation target and an LRP defines the limit, toward which management
strives. TRPs and LRPs are formulated through technical analysis. This paper describes
various empirical equations and fisheries assessment models which can be used to derive
reference points. The emphasis was put on the data requirements and procedures for
fitting models and estimating parameters. Assumptions involved in the models are
described. The bootstrapping and Monte Carlo simulation techniques, and Bayesian
analysis, are also illustrated.

Résumé

L’une des démarches de gestion prudente consiste à établir une paire de points de
référence : un point de référence cible (« TRP ») et un point de référence limite
(« LRP »).  Le « TRP » est l’objectif d’exploitation et le « LRP » est la valeur limite que
tend à atteindre la gestion. Ces deux points sont établis par analyse technique. Le
document présente diverses équations empiriques et modèles d’évaluation des pêches
pouvant servir au calcul des points de référence. L’accent est mis sur les données et
procédures nécessaires à l’ajustement des modèles et à l’estimation des paramètres. Les
hypothèses utilisées pour les modèles sont décrites et on illustre des techniques de
simulation par méthodes « bootstrap » et Monte Carlo ainsi que des analyses
bayesiennes.
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1. Introduction

A framework for provision of scientific advice for the management of new and
developing marine invertebrate fisheries has been developed (Perry et. al. 1999). This
framework explicitly endorses the precautionary approach for fisheries management and
research, as advocated by Garcia (1994), FAO (1995a) and FAO (1996), due to the very
nature of fisheries resources, which are highly variable, poorly controllable and slowly
reversible. The past few years have seen a major proliferation of action on the
development of Reference Points (RPs) to achieve precautionary fishery management
goals, as traditional management approaches based on target reference points alone have
proved vulnerable to overfishing.

A Reference Point is defined as a conventional value, derived from technical
analysis, which are believed to be useful for the management of the unit stock (Caddy and
Mahon 1995).  FAO (1995b) and Caddy and Mahon (1995) put forward the concept of
using a pair of RPs, Target Reference Point (TRP) and Limit Reference Point (LRP), to
manage fisheries stocks in a precautionary manner. A TRP indicates a state of fishing
which is considered to be desirable and at which management action should aim. A LRP
indicates a state of a fishery which is considered undesirable and which management
action should avoid. When LRP is approached, measures should be taken to ensure that it
will not be exceeded. If it is exceeded, immediate action is needed, such as a substantial
reduction in fishing effort or even closure of the fishery for a period of time.

Values of RPs are often derived from assessment models. When data are not
sufficient, simple empirical calculations may be employed. Fishing mortality (or fishing
effort), stock biomass and yield are the most basic Reference Variables for formation of
RPs.

In this paper, I describe how to use different assessment models and empirical
equations to derive RPs (Table 1). Emphasis was put on the data requirements, fitting
procedures, advantages, limitations and assumptions of these models. To help readers
assess the bias in parameter estimates, the bootstrapping and Monte Carlo simulation
techniques, and Bayesian analysis, are described.

2. Empirical Equations

When biological and fisheries data are limited, empirical equations may be used to
formulate RPs (Table 1).

2.1. Annual Yield Estimation

When the only information available is commercial catches and estimates of stock
biomass (or biomass indices), the so-called "Maguson-Stefanson feedback gain rule"
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may be used to set quotas (Caddy 1998). It is reported to be particularly useful when a
stock has been gradually declining in size over time and needs to be restored from the
depleted to the productive condition (Caddy 1998).
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where Y is catch and B is biomass or a biomass index such as CPUE, t is year and g is
referred to as the ‘feedback gain’ and reflects the degree of proportionality between
changes in biomass for the past two years. The value of g is set arbitrarily. When the
stock is decreasing gradually, values for g of one or greater seem to contribute to
precautionary approaches in simulations (Caddy 1998).

2.2. Maximum Constant Yield Estimation

In New Zealand, several yield-based reference points are frequently used in
fisheries management. Maximum Constant Yield (MCY) is defined as the maximum
constant catch that is estimated to be sustainable, with an acceptable level of risk, at all
probable future levels of biomass (Annala 1993). An acceptable level of risk is open for
specific definition. For instance, Francis (1993) defines it as the spawning stock biomass
above 20% of its virgin level at least 90% of the time. MCY corresponds to a relatively
low level of harvest and may be regarded as a precautionary target (Caddy 1998). There
are four methods used in data limited situations in New Zealand to calculate MCY
(Annala 1993).

2.2.1. For a developing fishery

01.025.0 BFMCY = 2.2

where B0 is the unfished biomass, F0.1 is a fishing mortality rate at which the marginal
increase in yield per recruit is 1/10 of the marginal increase at a very low value of fishing
mortality. If F0.1 is unknown, the natural mortality rate, M, may be used instead.

2.2.2. For a developed fishery with historic estimated biomass

avBFMCY 1.05.0= 2.3

where Bav is the average historic recruited biomass. If F0.1 is unknown, M may be used
instead.

2.2.3. A developed fishery with an MSY estimate
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MSYMCY
3
2

= 2.4

where MSY is the maximum sustainable yield, usually derived from biomass production
modelling.

2.2.4. A fishery with catch data and effort information

avcYMCY = 2.5

where c the natural variability factor, which depends on natural mortality, M, and
ranges between 0.6 and 1.0, Yav is the average catch over an appropriate time period.
Ideally in this period, there should be no large change in fish effort (or mortality), in
quotas, and in catch. This period should be half the exploited life span.

This empirical approach is useful, when only qualitative evaluation of fishing
effort is available and production modelling can not be used. It also comes handy, when
quantitative fishing effort data are present, but critical assumptions of production models
have been violated and production modelling should not be used.

2.3. Estimation of upper limit for total mortality rate

Clark (1991) showed that if recruitment to the fishery takes place much later than
maturation, the maximum sustainable fishing mortality, F, can be significantly higher than
F0.1 without dangerously reducing the spawning biomasss, and if recruitment takes place
much earlier than maturation, a truly sustainable F may be much smaller than F0.1. Thus,
ideally we should allow fish to spawn at least once, on average, before catching them. Die
and Caddy (1997) suggested a way of using an upper limit of total mortality rate or a
minimum size at first capture in this respect of management approach. Suppose that Lm is
the length of fish in the stock, half of which is mature and L is the average length of fish in
the catch. If L > Lm, the stock is more likely to be able to sustain itself than if L < Lm.
Beverton and Holt (1957) provided a method to calculate the total mortality, Z, based  on
the average size of fish in the catch, if the growth can be modelled by the von Bertalanffy
equation:

cLL
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−
−
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where L  is the mean length of all fish, Lc is the length at first capture. When
incorporating the inequality L >Lm, the following inequality equation is obtained:
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where Z* is the upper limit of total mortality rate, when the condition, L >Lm, is met. If Lm

< Lc, there is no need of applying this equation, and the fishery stands a good chance to
sustain itself, as, on average, a fish will spawn, at least, once before being caught.

Equation 2.7 provides, in the absence of information on the stock-recruitment
relationship, a simple way to check the effects of fishing on the spawning stock. Z* may
serve as a LRP. Equation 2.8 can be used to establish the minimum size at first capture
required to support a fishery where L >Lm:

M

LL
KLL m

mc

−
−> ∞ 2.8

where M is the natural mortality rate. This equation is only defined if
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2.4. MSY estimation

Gulland (1971) proposed the following equation to calculate MSY, when the
unfished stock biomass, ∞B ,and natural mortality rate, M, are known:

∞= xMBMSY 2.10

where x is a constant that may be related to the growth and mortality characteristics of
the stock. Gulland (1971) suggested that x may be set as 0.5. This is equivalent to setting
fishing mortality equal to M based on the logistic growth model. It is now well known
that to set x to be 0.5 is too risky. Beddington and Cooke (1983) showed that x lay
typically in the region of 0.3 and decreases as M increases. Garcia et. al. (1989)
recommended x = 0.2. After examining the Gulland approximation for a large number of
stocks of small pelagic fish with high natural mortality rates, Patterson (1992) noted that
x >= 0.33 consistently caused stocks to decline, while x <= 0.25 have generally allowed
stocks to increase in size. Thus, MSY calculated by setting x to be 0.2-0.3 may be used as
a TRP and this is basically the same as equation 2.2.

3. Biomass Production Models

Biomass production models are among the simplest and most widely used
approaches in the assessment of exploited fish populations due to the readiness of  catch
and effort data, without having to know ageing or stock and recruitment relationship
(Table 1). The primary parameters to be estimated from fitting a production model are
MSY and Emsy. MSY is regarded as a maximum sustainable yield, a maximum catch that
may be taken from a stock without affecting the stock production or the catch of future
years. Emsy is the fishing effort corresponding to MSY. It has been widely used as a TRP
for fisheries around the world. However, previous experience in fishery management has
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cast doubts on the usefulness of MSY as a safe TRP (e,g, Larkin 1977). A constant MSY
is not a reality in most fisheries, as  stock sizes vary with the strength of year classes.
However, MSY may still serve as an LRP, possibly with some reduction so as to take
account of uncertainties in the input data and model parameter estimates.

 To obtain MSY and Emsy, production models are usually required. The most
commonly used is the Schaeffer (1954) model, which assumes a logistic growth
function:

)1(
∞

−=
B
B

rB
dt
dB

3.1

where B is the stock biomass, r is an intrinsic rate of population growth, ∞B is the

unfished equilibrium stock size, and 
dt
dB

is the biomass production per unit time.

Its main feature is the symmetric relationship between surplus production and biomass.
Surplus production is largest at half of the virgin stock size. Surplus production decreases
to zero as the stock size increases to ∞B or decreases to zero.

In an exploited stock, biomass production is described as:

C
B
B

rB
dt
dB

−−=
∞

)1( 3.2

where C is the catch per unit time. Catch is assumed to be proportional to the stock
biomass (B) and fishing effort (E):

qEBC = 3.3

where q is the catchability coefficient (proportion of the stock biomass caught by one
average fishing effort). Catch per unit effort (U) is thus an index of the biomass:

qB
E
C

U == 3.4

There are generally three ways of estimating parameters of the production model: the
equilibrium method, process-error method and observation-error method. Reliable
parameter estimates require a good contrast in effort and catch data.

3.1. Equilibrium method

This method has been widely described in the literature (e.g. Gulland 1983,

Quinn and Deriso 1999). At equilibrium, the surplus production,
dt
dB

, equals zero, and

the relationship between the catch per unit effort (U) and fishing effort (E) is:
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where ∞U  is the catch per unit effort, when the biomass is equal to the biomass at the
unfished state. Equation 3.5 conforms to a simple linear model:

bEaU += 3.6

where a = ∞U  and b = 
r
q

U ∞− . Multiplying fishing effort on both sides:

2bEaEC += 3.7

where C is the catch. This model suggests that the equilibrium yield is related to fishing
effort by a symmetrical parabola. The parameters, a and b, are estimated by fitting a
simple linear model with fishing effort as the independent variable and catch per unit
effort as the dependent variable. The values of a and b are then substituted into equation
3.7 to construct the parabolic curve, from which Emsy can be estimated:

b
a

Emsy 2
−= 3.8

Substitute Emsy into equation 3.7 to get MSY:

b
a

MSY
4

2

−= 3.9

Gulland (1961) suggested using an average effort, instead of individual effort,
over the last n years, where n is the number of age classes being fished.

This method relies fundamentally on the assumption that the stock is at equilibrium,
at which annual yield is equal to the surplus production of the stock. This is rarely the
case, if ever true. The consequence of using this equilibrium method is that surplus
production and fishing effort are usually overestimates, when data are gathered during a
stock decline, for instance, during fishery development (Hilborn and Walters 1992).
However, Caddy (1996) believes that the equilibrium method still has its own use. It
could be used to represent the average long-term behaviour of the system and to estimate
LRPs to be used in a precautionary fashion.

3.2. Process-error methods

These methods do not require the equilibrium assumption.

3.2.1. Schnute’s non-equilibrium method

Schnute (1977) showed that the Schaefer model could be transferred into the
following dynamic equation:
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This is a form of a multiple linear regression with two independent variables, X1 and X2:
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Parameters, a, b and c, can be

estimated by using multiple linear regression method with an assumption of additive
random error. Estimates of primary surplus production parameters are obtained as
follows:
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3.2.2. Walters and Hilborn’s difference method

Walters and Hilborn (1976) suggested a simple difference equation of the
Schaefer model:

t
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where Bt is the biomass at time t, and other parameters have the same meanings as in the
Schaeffer model. Based on this model, they derived a multiple linear regression (see
Hilborn and Walters (1992)):
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where tU  and tE  are two independent variables and 11 −+

t

t

U

U
 is the dependent variable.

After estimates of r, q and ∞B , the primary parameters can be calculated as:

4
∞=

rB
MSY 3.14
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= 3.15

Uhler (1980) used Monte Carlo simulation and showed that the Schnute non-
equilibrium model performs better than this one.

3.2.3. Observation-error method

No equilibrium assumption is required in using this method either. The basic idea
is to take initial guesses of r, q, ∞B  and to make time-series predictions of  the biomass
and catch per unit effort by using the following two equations:

t
t

ttt C
B

B
BrBB −−+=

∞
+ )

ˆ
1(ˆˆˆ

1 3.16

tt BqU
))

= 3.17

where the Ct is observed catch, tU
)

 and tB
)

 are predicted catch per unit effort and

biomass at year t.

The sum of squared error between observed and predicted CPUEs is calculated.
The way of calculation is based on the assumption of  the random error being additive or
multiplicative. An additive error structure is appropriate when the variability in CPUE is
constant as a function of the independent variable, stock biomass. A multiplicative error
structure is appropriate when the variability increases as a function of stock biomass. If
the random error is additive, the summed error is calculated as:

( )2∑ −= ttt UU
)

ε 3.18

If the random error is multiplicative, the summed error is calculated as:

( )2
lnln'∑ −= ttt UU

)
ε 3.19

where Ut and tÛ  are observed and predicted catch per unit effort respectively. The

parameter values are then adjusted until the summed error ∑ tε or ∑ 'tε  is minimized.

The output of the procedure has the final estimates of q, r, and ∞B .

To start the prediction, the stock size at the beginning of the data series available
has to be known. If not, this initial stock biomass (B1) is usually assumed as:

1

1
1 qE

C
B = 3.20
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where C1 and E1 are the catch and fishing effort at the beginning of the data series. This
indicates that there is an important reason to estimate biomass at the beginning of a new
fishery.

This time-series fitting method was first proposed and used by Pella and
Tomlinson (1969) and regarded by Hilborn and Walters (1992) as the best method for
estimating production models. Monte Carlo simulations showed that the observation-
error method is the least biased and the most precise, while the equilibrium method is
highly biased and the process-error approach is often imprecise (Polacheck et. al. 1993).

4. Production modelling using mortality information

To fit a production model, fishing effort data should be expressed in standardized
units to account for differences in size and type of vessels and fishing gears being used
and improvement in fishermen’s fishing experience. Quinn and Deriso (1999) described
several ways of CPUE standardisation. However, these changes are difficult to detect in
time to be incorporated into an assessment particularly for developing fisheries. A lack
of proper fishing effort calibration can lead to misleading results, particularly when a
fishery is in the earlier years when the learning curve of the fishermen is particularly
steep (Brown et. al. 1976).

Csirke and Caddy (1983) proposed a new approach that allows fitting of surplus
production models using total mortality rate instead of fishing effort (Table 1). This
method relies on the same assumptions as the production model and shares most of the
limitations of such a simplistic relationship. However, this method avoids the problem of
having to correct for changes in fishing power, increases in efficiency and fishing
experience, etc. As a bonus, natural and hence fishing mortality rate, can also be
estimated. So far, the model can only be fitted by the equilibrium method.

Based on the Schaefer production model and equilibrium assumption, Csirke and
Caddy (1983), and Caddy and Defeo (1996) derived the following equation:

)( MZ
r

B
B

MZ

Y
i

i

i −−=
−

∞
∞ 4.1

where Yi is the yield corresponding to year i, M is the natural mortality rate, assumed to
be constant and needs to be estimated, Zi is the total mortality rate for fully available age
groups corresponding to year i, ∞B  is the unfished stock biomass and r is the intrinsic
rate of population growth. This model conforms to a simple linear model with Zi – M as

the independent variable and 
MZ

Y

i

i

−
 as the dependent variable.

This simple linear model, however, can not be fitted in a direct way, as M is an unknown
parameter, which needs to be estimated. The model has to be fitted by using different
trial values of M, calculating the corresponding coefficient of determination, r2, of the
linear model for each trial value of M. The value of M, which results in the largest r2, will
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be the estimate of the natural mortality rate and be used to estimate the model
parameters, ∞B and r. The primary parameters are calculated as follows:

2
r

Fmsy = 4.2

MFZ msymsy += 4.3

msyF
B

MSY
2

∞= 4.4

where Fmsy and Zmsy are fishing and total mortality rates respectively corresponding to the
MSY.

When M can be independently estimated from field data, it could be used in
equation 4.1 to directly estimate the model parameters or to verify the model estimate of
M.

5. Maximum biological production estimation

The usual concept underlying production models, as noted by Pauly (1979), is that
the surplus production is effectively zero for the unfished stock. This, in a sense, ignores
the fact that for many stocks, predation is harvesting a significant proportion of prey
biomass even in the absence of fishing. In practice, whatever the source of the mortality,
the ultimate effect is to remove fish from the stock, although fishing mortality can be
controlled by the society (Caddy and Csirke 1983). Caddy and Csirke (1983) and Csirke
and Caddy (1983) put forward an interesting idea concerning stock production. When the
stock production is considered in response to the total mortality instead of, as in common
thinking, the fishing mortality, the biomass production is regarded as biological
production. Thus at equilibrium biological production corresponds to the total
production being harvested as well as being removed by natural mortality. Caddy and
Csirke (1983)  postulated that at equilibrium there must be a total mortality level, Zmbp, at
which the maximal biological production, MBP, is obtained from the stock.

Based on the Schaeffer model at equilibrium, Caddy and Csirke (1983)  showed that Zmbp

and Fmbp are positively correlated with the intrinsic rate of population growth, r:

)(5.0 MrZ mbp += 5.1

)(5.0 MrFmbp −= 5.2

and the maximum biological production (MBP) and the biomass to produce MBP (Bmbp)
and yield corresponding to MBP (Ymbp) are calculated as:

2)(
4

Mr
r

B
MBP += ∞

5.3
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Various simulations showed that FMBP is consistently lower than FMSY and is a
conservative reference point (Fig. 1). Die and Caddy (1997) indicated that FMBP can be
used as a TRP for a developing fishery.

6. Production model with area information

One of the main implicit assumptions made in using production models is that the
data reflect changes in the population size of a single biological unit. However, this
assumption is unlikely to be fulfilled in many situations. Many fisheries develop by
initially exploiting areas with higher fish densities and then move to less productive
grounds. Thus, the same amount of fishing effort does not generate the same fishing
mortality or same amount of catch, when effort is exerted in areas with different biomass
densities. To account for trends in the areal extent of the fishery, as well as for trends in
effort, Die et. al. (1990) developed a production model which incorporates areas of
fishing grounds in addition to the catch and fishing effort data.

Suppose there is an unit stock that is only partially exploited. Assume there is no
biomass transfer between the exploited and unexploited areas, but the rates of population
growth are identical for the two segments of the stock. Based on the logistic growth
model the production in the two areas can be described as follows:

11
1

1
1 BF

kB

BkB
rB

dt

dB
−

−
=

∞

∞ 6.1

∞

∞
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BBk
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)1(

)1( 2
2

2 6.2

where, k denotes the fraction of the virgin population biomass that is potentially affected
by fishing, B1 is the exploited fraction of the stock and B2 the unexploited fraction, ∞B is
the unfished population biomass, and F1  is the fishing mortality rate. When k = 1, the
entire population biomass is affected by fishing, and the model  reduces to the Schaefer
model.

At equilibrium, equation 6.1 results in the following relationship:

r

kBF
kBB ∞

∞ −= 1
1 6.3

Multiplying both sides by F1 results in the following yield equation:
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r

kBF
kBFY ∞

∞ −=
2

1
1 6.4

where Y is the yield.

Let s be the surface area affected by the fishery and S be the surface area
occupied by the whole population (s <= S). We may model k to be a simple power
function of the ratio s/S:

c

S
s

k 





= (c>=0) 6.5

where c is a constant. A value of c equal to 1.0 would mean that an increase in s would
lead to a proportional increase in k. A value of c less than 1.0 would imply that an
increase in s would result in a smaller increase in k. The opposite would be true if c is
more than 1.0.

 Within the fishing area, s, average catch per unit of effort, U, can be modelled as:

adq
E
Y

U '== 6.6

where E is the fishing effort, q’ is the catch efficiency (probability of capturing a fish that
is in the path of the fishing gear), a is the area fished by one unit of effort, and d is the
average density of fish in the area affected by the fishery, which can be expressed as:

s
B

d 1= 6.7

Yield can be calculated as

11FBY = 6.8

Insert equations 6.7 and 6.8 into equation 6.6 and rearrange:

s
aEq

F
'

1 = 6.9

Insert equations 6.5 and 6.9 into equation 6.4:

22
2

1 )'('
Es

rS

Baq
Es

S

aBq
Y c

c
c

c
−∞−∞ −= 6.10

The linear parameters in the above equation can be combined for simplicity:

221 EsEsY cc −− −= βα 6.11

where 
cS

aBq ∞=
'

α  and 
rS

Baq
c

∞=
2)'(

β . Dividing both sides of equation 6.11 by fishing

effort, we get:
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EssU cc 21 −− −= βα 6.12

The parameters, βα ,  and c can be estimated using a non-linear regression fitting
method by treating U as the dependent variable, and E and s as the independent
variables.

Emsy and MSY are calculated by the following two equations:

β
α

2
s

Emsy = 6.13

and
β
α

4

cs
MSY = 6.14

Both Emsy and MSY are the terms relative to the fraction of the population
affected by the fishery and increase with increasing s, giving a seemingly good
explanation of how the equilibrium relationship has changed with the expansion of the
fishery.

Die et. al. (1990) showed that a significantly improved fit was obtained with this
method when compared with the Schaeffer model, when data from the fishery for yellow
fin tuna in the eastern Pacific are used to illustrate the model’s applicability.

7. Yield per recruit modelling

Yield per recruit models examine the trade-off between capturing a large number of
fish at low average weight early in their life span and a smaller number of fish at higher
average weight later in their life span. Calculation of yield from a given recruitment is
important in many stocks, when stock and recruitment relationship is unknown or
recruitment is highly variable. Because variation in recruitment is ignored, yield is
expressed as the accumulated amount of yield produced by a given fishing mortality for
one recruited fish in its whole life span. To calculate yield per recruit, information on
growth, natural and fishing mortality rate has to be known (Table 1). There are basically
two methodologies for calculating catch per unit effort: the analytical method and the
projection method.

7.1. Analytical method

When the growth of fish can be modelled by the von Bertalanffy equation, fish
enter the fishery once they reach a certain age, and the recruited population suffers from
the same natural and fishing mortality rate, the yield per recruit can be calculated using
the following equation derived by Beverton and Holt (1957):
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where F is the fishing mortality rate, M is the natural mortality rate, Z is the total
mortality rate (= F+M), tc is the age at first capture and tr is the age of recruitment, ∞t  is
the maximum age, t0 is the theoretical age at which fish has zero length, rtt −= ∞λ ,

0ttr c −= , ∞W  is asymptotic weight, and K is the von Bertalanffy growth coefficient.

Ricker (1975) stated that this equation is more complex than is necessary for
many purposes. When ∞t  is large, he simplified the above equation as:
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To see how yield per recruit varies with rate of fishing and age of first capture, we
calculate yield per recruit by varying F and tc. When M/K is small, it will pay in terms of
getting the best yield from a recruited level to fish relatively lightly and with a large size
at first capture. If M/K is large, many fish will die before completing much of their
growth, and it will therefore pay to fish relatively hard and with small size at first capture
(Gulland 1983).

Given a fixed age of first capture, yield-per-recruit can be graphed as a function
of fishing mortality (Fig. 2). The fishing mortality corresponding to the maximum yield-
per-recruit is the Fmax. In short-lived species with high mortality rates, the results of yield
per recruit analyses may be quite misleading, often suggesting that an extremely high, or
sometimes infinite fishing mortality is required to secure the maximum yield. Fmax was
traditionally often used as an TRP, but nowadays, tends to be regarded as an LRP (Caddy
1998). The TRP is often set to be F0.1, a fishing mortality rate where the slope of the
yield per recruit function is 0.1 times the initial slope (Fig. 2). F0.1 will always be less
than Fmax. Probably the most important aspect of F0.1 strategies is that they are totally ad
hoc, but often appear to be in the right ball park (Hilborn and Walters 1992).

7.2. Projection method

The method first calculates the amount of catch and biomass at each age from a
given recruit and then summarise the catch and biomass.

Given an (assumed) number recruit (R), the number of fish reaching the age
vulnerable to the fishing gear (Nc) will be:

)(Re rc ttM
cN −−= 7.3

where tc is the age at first capture and tr is the age of recruitment. The number of fish at
the beginning of age a+1 (Na+1) is related to the number of fish living at the beginning of
age a (Na):
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aZ
aa eNN −

+ =1 7.4

where Za is the total mortality rate for fish at age a. The catch of fish in weight at age a
(Ca) from this recruitment is calculated as:

aaaa NFWC = 7.5

where aW  is the average weight of fish at mid-point of age a, aN  is the average number
of fish at age a. Fa is the age-specific fishing mortality rate for the fish at age a and may
be calculated as:

FSF aa = 7.6

where Sa is the relative gear selectivity and F is the fishing mortality on the age of fish
considered to be fully vulnerable. The average number of fish at age a is related to the
number of fish at the beginning of age a:

)1( aZ

a

a
a e

Z

N
N −−= 7.7

The total catch in weight, i,e, the yield (Y), is:

∑
∞

=

=
t

ta
a

c

CY 7.8

where tc is the age at first capture and ∞t is the symptotic age of the fish. The biomass for
age a (Ba) is:

aaa NWB = 7.9

The total catchable biomass (Btot) is:

∑
∞

=

=
t

ta
atot

c

BB 7.10

The spawning stock biomass (SSB) is:

a

t

ta
a BPSSB

m

∑
∞

=

= 7.11

where tm is the age at maturity, Pa is the proportion of the age group reaches maturity.
Yield-per-recruit, Biomass-per-recruit and Spawning Stock Biomass per Recruit are
simply calculated by dividing yield, total biomass spawning stock biomass by the
recruits respectively.

Information required to use the projection method is the same as for the analytic
yield per recruit analysis, namely growth, mortality and age at first capture. However,
this method is far more flexible than the classical Beverton and Holt method. Any type
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of growth information, such as length and weight at age, can be easily incorporated.
Fishing mortality rates do not have to be the same across all ages. Moreover, this process
can be easily generalized to allow inclusion of stock-recruitment information and
complex exploitation patterns.

8. Combination of spawning stock biomass per recruit and stock-recruitment analysis

Unlike yield per recruit, SSB per recruit is at a maximum when fishing mortality
rate is zero and decreases monotonically as fishing mortality increases. Fishing mortality
combined with age at first capture reduces the amount of SSB per recruit, which can be
expressed as a percentage of the maximum SSB per recruit (when F = 0). The
corresponding fishing mortality is noted as F%SPR. For instance, the fishing mortality
results in a 30% reduction in SPR is F30%SPR. When no information on stock and
recruitment relationship is available, F%SPR may be used as TRPs or LRPs depending on
the percentage.

Recently, reference points based on SSB per recruit have been defined based on
the relationship between SPR and the survival ration (Recruit/SSB) obtained from pairs
of stock recruitment observations (Table 1). This enable people to determine what
amount (percentage) of SSB per recruit should be preserved based on the degree of
resilience of the stock, and thus offers an objective way of setting up reference points.
The concept of Flow, Fmed, and Fhigh introduced by Anon (1984, 1985) represents a family
of biological reference points based on the combined analysis of SSB per recruit and
recruitment versus SSB scatter diagram (Fig. 3). The procedure for estimating these three
parameters is as follows:

(1) make a scatter plot of recruitment versus SSB

(2) draw lines through the origin which leave 90% (Flow), 50% (Fmed) and 10%
(Fhigh) of the points above the line. Thus the slopes correspond to values of
recruits per unit SSB and the reciprocals are SSB/recruit

(3) make a graph of SSB per recruit on fishing mortality. SSB per recruit is at a
maximum when fishing mortality is zero and decreases monotonically as
fishing mortality increases

(4) from the graph, locate points of SSB per recruit which equal the reciprocals of
the lines for Flow, Fmed and Fhigh

(5) the corresponding fishing moralities are read off from the x-axis.

Fmed corresponds to the level of fishing mortality where recruitment has been
sufficient to balance the mortality about 5 years out of 10. With fishing at the Fmed level,
there is, therefore, a good chance that the stock will be sustained.

Flow represents a level of fishing mortality where recruitment has been sufficient
to balance the mortality about 9 years out of 10. The likelihood of a decline in the stock
at this level of exploitation is therefore low and increase is more likely.
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Fhigh, on the other hand, represents a level of fishing mortality where recruitment
has been insufficient to balance the mortality in about 9 times out of 10. The likelihood
of a decline in the stock at this level of exploitation is therefore high.

Data required for estimating these parameters are the same as for Fmax or F0.1

except for a scatter plot of recruitment versus SSB and a proportion of maturity at each
age. Use of reciprocal of the slope of a line implies that only the survival ratio
(Recruit/SSB) obtained from pairs of stock recruitment observations are used in practice.
Therefore, the scatter plot does not have to have the actual recruits and SSB data.
Recruitment index and SSB index data can be used instead, as long as the ratio of the
recruitment index to actual recruits is same as the ratio of SSB index to actual SSB. For
instance, assume we have a fishery on an exploited stock, where the fish recruit to the
fishery at age 3 and reach maturity at age 4. Suppose we have 10 years of catch per unit
effort data for age 3 (CPUE3, i ) and above (CPUE3+, i) (i indicates the year (1, 2, …10)).
We also know the average weight of the fish at age 3 is 3W . Assume that the CPUE is
proportional to the biomass:

ii qCPUEB ,3,3 = 8.1

ii qCPUESSB ,3+= 8.2

where B3,i and SSBi are the biomass at age 3, and age 4 and above (the spawning stock
biomass) in year i respectively, q is the catchability coefficient.

When recruitment is expressed as pieces, we need to calculate the recruit in year i ( Ri):

3

,3

W

qCPUE
R i

i = 8.3

To make a scatter plot, we could just plot 
3

3,3

W

CPUE i+  against CPUE3+, I, instead of

plotting Ri+3 against SSBi.

In many studies recruitment is notoriously variable and it is difficult to obtain a
statistically significant fit to a traditional stock-recruitment relationship, such as those of
Ricker (1954) and Beverton and Holt (1957) (Maguire and Mace 1993). This method
offers an alternative approach, by considering the probability of obtaining strong,
average or poor recruitment at various spawning biomass levels, to incorporate the
information on stock and recruitment into stock dynamic analyses.

Yield per recruit analysis can be used to assess the possibility of growth
overfishing. As it ignores the variability in recruitment, the effect of exploitation on
recruitment overfishing is ignored. Incorporation of recruitment and stock relationships
into the yield and SSB per recruit analysis enable us to assess the impact of fishing
patterns not only on the growth overfishing but also on recruitment overfishing.
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9. Assumptions for the assessment models

All the models described in this paper assume that the exploited population behaves
in a more or less regular fashion and past series of fisheries data can be used to make
assertions as to the likely future behaviour of the system. They also assume that fisheries
operate on the unit stock defined as a closed, self-sustaining unit of population, and all
losses from the population are due to natural and fishing mortality (no immigration or
emigration). They further assume that fishing mortality is proportional to the effort and
all fish are available to the fishery and equally vulnerable to gear except for the
production model utilizing areal data.

9.1. Biomass Production Model

The catch and effort data reflect changes in the population size of a single
biological unit. The catchability coefficient is a constant. The rate of biomass production
is a function of biomass only, and has nothing to do with the population age-structure.

9.2. Production model using total mortality instead of fish effort.

Catch is equal to surplus production, i.e. equilibrium catch. Other assumptions
are the same as for the production model.

9.3. Maximum Biological Production model

Biological production is a function of biomass only, and has nothing to do with
the population age-structure. Biological production equals to the catch and what removed
by natural mortalities (i.e. equilibrium assumption). Other assumptions are the same as
for the production model.

9.4. Yield-per-recruit and Biomass-per-recruit model

Fishing patterns or environmental factors have no effect on recruitment, which is
assumed to be constant. Natural mortality rate is invariant with age, time, or locations.

The average size of an age is invariable. Fish of same age have the same catchability.

9.5. Fmed, Flow and Fhigh estimation

The historic range of variation in the ratio of spawning stock biomass to recruit
persists into the future. There is no compensatory or depensatory effect on stock and
recruitment relationship. Other assumptions are the same as for yield-per-recruit model.
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10. Simulations and Bayesian Analysis

Most people now accept errors in variables as an intrinsic problem in estimation
for fisheries, and rather than trying to correct the estimates, they try to understand how
large the bias is likely to be (Hilborn and Walters 1992). Simulations are often used to
assess the relative levels of confidence on the parameter estimates. Among the most
commonly used simulation techniques are Bootstrapping and Monte Carlo methods.

10.1. Bootstrapping

Bootstrap was developed by Efron (1979, 1981, 1982, 1987) and proved to be
very useful in assessing the variance in parameter estimates.

When a set of n data can be considered to be independent and from the same
probability distribution, we could generate many (a few hundred) sets of n data by
randomly resampling with replacement the original set of the data. After we use the
original data to fit a model and estimate parameters, we could use each one of the
regenerated data sets to fit the same model and estimate the same parameters. In this
way, we have a few hundred estimates of the same parameters, which allows us to
examine probability distributions for the parameters.

The above technique is easy to use and effective. However, most fisheries data
are of time-series nature and are, therefore, often not truly independent. Nonparametric
bootstrap may have to be used instead.

Suppose we have a time series of  CPUEi and Catchi data for n years of
observations (i = 1, 2…n). We use the observation-error method (equations 3.16 and
3.17) to fit the biomass production model, estimate a primary parameter, such as MSY,

as ′
iCPUE , and obtain our best predictions of 

∩

iCPUE . The residuals (ri) from the model fit

are:

∩
−= iii CPUECPUEr 10.1

Assume the residuals are a sample of the error representing the random
component in the input data, and the error is additive. Further, assume all the errors are
from the same probability distribution. We can then generate a new data set by randomly
sampling from the residuals, with replacement, n residual samples (rj, j = 1, 2…n), and

adding one residual to each predicted data point to get a new data series ( ′
iCPUE )

similar to but different from the initial one:

jii rCPUECPUE +=′ ∩
10.2

We then use the ′
iCPUE  values to fit the model again, and obtain new parameter

estimates for the model. We repeat this process a few hundred times. We then have a few
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hundred estimates of the parameters and MSY, which enable us to examine the
parameter variances and covariances, and bias in MSY estimation. The bias is estimated
as the difference between the mean of the bootstrap estimates and the original estimate,

YSM ˆ .

To construct a confidence interval for MSY, we may take the standard deviation
of the bootstrap estimates of MSY and calculate the confidence interval by assuming it is
the true standard deviation. Alternatively and preferably, we can establish a confidence
interval from the frequency distribution of the bootstrap estimates of MSY, especially
when the frequency distribution appears very asymmetry. For instance, if we want to
construct a 90% (so α = 0.05) confidence interval for MSY, we need to calculate a lower
bound and upper bound of the interval. We set the lower bound of the interval to be a
value so that the cumulative probability of bootstrap estimates smaller than this value
will equal to α, and the upper bound to be a value so that the cumulative probability of
bootstrap estimates smaller than this value will equal to 1-α.

If the error is assumed to be multiplicative instead of additive, the residuals are
calculated using the following equation:

∩
−= iii CPUECPUEr lnln 10.3

and a new data series should be generated as follows:

jii rCPUECPUE +=′ ∩
lnln or

jr
ii eCPUECPUE

∩

=′ 10.4

10.2. Monte Carlo simulation

The Monte Carlo method came into being in 1949, when an article entitled “The
Monte Carlo Methods” was published by two American mathematicians, Metropolis and
Ulam (1949).

The Monte Carlo method is a method of approximately solving mathematical
problems by the simulation of random quantities. The computational algorithm consists,
in general, of a process for producing a random event. The process is repeated many
times, each trial being independent of the rest, and the results of all the trials are
averaged together. The Monte Carlo method makes possible the simulation of any
process influenced by random factors, once the probability distribution can be derived.

Let us use the same time series of data of CPUEi and Catchi, as described above,
as an example. We use the data to fit the biomass production model by Walters and
Hilborn’s non-equilibrium method with an additive error:
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iqCatch
qB

CPUE
rCPUECPUECPUE i

i
iii ε+−−+=

∞
+ )1(1 10.5

where iε is a normally distributed random variable with a mean of 0.0 and a
standard deviation of σ . By the maximum likelihood method, we find the best estimates
of the parameters, ∞B

)
, q

)
 and r

)
, and the best estimate of the standard deviation, σ) . The

primary parameters, MSY and Emsy, can be calculated based on the values of ∞B
)

, q
)

 and
r
)

 (see equation 3.14 and 3.15). The current state of the art is to do simulations assuming
the estimates of the parameters are correct. We simply generate a time series of CPUE
data by using the estimates of the parameters, ∞B

)
, q

)
 and r

)
, and observed CPUEi and

Catchi in equation 10.5 plus a random error generated from the estimated normal
distribution with mean = 0 and sd = σ) . We then use the simulated data to fit the model
10.5 and obtain the estimates of the primary parameters, MSY and Emsy, again. After we
repeat this process for a few hundred times, we can then examine the variance and
covariance of these parameters.
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10.3. Bayesian Analysis

Bayesian statistics was developed more than two hundred years ago by the
Reverend Thomas Bayes (1763). It has now been increasingly applied in fisheries stock
assessment to evaluate the probability distribution for uncertain parameters.

Bayesian statistics differs fundamentally from the classic statistics in the
definition of probability. Classical statistics defines probability as the expected frequency
of occurrence of events under random sampling from a well-defined sample space.
Parameters are viewed as, although unknown, fixed values. So in classical statistics context
a parameter value does not have a probability distribution. Bayesian statistics defines
probability as a measure of credibility. Thus it makes perfect sense to talk about the
probability of a parameter value in a Bayesian statistics context. Another distinctive feature
of Bayesian statistics is to incorporate pre-beliefs (prior probabilities) about alternative
parameter values into the analysis.

The objective of Bayesian analysis is to calculate the probability distribution
associated with each unknown parameter in a model based on the Bayes theorem:

)()|()|( xpdxLdxp ×∝  10.6

where )|( dxp  is the probability of a parameter value given the data, d, which is known as
the posterior probability; )|( dxL  is the likelihood of the data given a particular parameter
value, x ; )(xp  is the pre-believed probabilities of alternative parameter values, which is
known as the prior probability. The Bayes theorem simply says that “posterior is
proportional to likelihood times prior” (see Lee 1989, Carlin and Louis 1998 for more
detail). The constant of proportionality (c) can be calculated as follows:

∑ ×
=

)()|(
1

xpdxL
c 10.7

in the discrete case, or

∫ ×
=

dxxpdxL
c

)()|(

1
10.8

in the continuous case.  The denominator is just the sum of probabilities over all possible
parameter values. The likelihood of the data, )|( dxL , is formulated by first formulating the
probability of observing the data, )|( xdp , given a parameter value, and then multiplying
by a constant, k:

)|()|( xdpkdxL ×= 10.9
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For fisheries stock assessment, we are often interested in the probability distribution
for parameters, which are of important concerns for management, such as MSY and the
unfished stock biomass. Again let us use the time series of CPUEi and Catchi, as described
for Bootstrapping and Monte Carlo simulation, as an example. Assume that each
observation of CPUEi is a random variable sampled from a normal distribution with mean
Ui and variance ϕ (i = 1, 2…n). For simplicity, we also assume that the variance, ϕ, is the
same for all observed CPUEi . The variance may be set to a reasonably “guessed” value or
be calculated in the following manner:

( )

n

UCPUE
n

i
ii∑

=

−
= 1

2

ϕ 10.10

The probability of observing CPUEi,  p(CPUEi|Ui), is:

ϕ

πϕ
2

)( 2

2

1
)|(

ii UCPUE

ii eUCPUEp
−

−
=  (i = 1, 2…n) 10.11

So the likelihood, L(Ui|CPUEi) , is:

ϕ

πϕ
2

)( 2

2

1
)|(

ii UCPUE

ii ekCPUEUL
−

−
×= (i = 1, 2…n) 10.12

where k is any constant. If we choose k to be πϕ2 , equation  10.12 becomes:

ϕ2

)( 2

)|(
ii UCPUE

ii eCPUEUL
−

−

= (i = 1, 2…n) 10.13

Suppose we have a prior belief that Ui follows a normal distribution with a mean of U0i and
a variance of  V0i. So the prior probability, p(Ui), is:
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(i = 1, 2…n) 10.14

The posterior probability for Ui, ),|( ii CPUEUp  is formulated as follows:
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π
 10.15

Because V0i is a constant, the equation 10.15 can be simplified as:
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The posterior probability (p) of observing CPUE1, CPUE2…and CPUEn is just the product
of every single posterior probability:
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The constant of proportionality (c) is the inverse of the summation of probabilities over all
possible values of these parameters:
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10.18

When we do not have any idea about prior probability of parameter values, we could
simply use an uniform prior by assigning the same prior probability for all possible
parameter values. In our example, we could simply assume the variances of the prior
probability distributions are very, very large. Mathematically, we may write:

∞=iV0 (i = 1, 2…n) 10.19

When uniform priors are adopted, the posterior probability of observing CPUE1,
CPUE2…and CPUEn becomes:
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The constant of proportionality (c) is:

∫
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To calculate the posterior probabilities, we need to know the value of Ui, which can be
estimated through the biomass production modelling:
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i
i

iii C
B

B
BrBB −−+=

∞
+ )

ˆ
1(ˆˆˆ

1 10.22

ii BqU ˆˆ = 10.23

where the Ci is observed catch, iB̂  and iÛ  are predicted biomass and catch per unit

effort (estimate of Ui) at year i respectively, and r, q, and ∞B are the parameters of the
production model.

For most fisheries assessments, the Bayes posterior probability is calculated by
means of a non-linear estimation of the likelihood at many different trial parameter values.
We may set up a grid of parameter values over which we are to calculate the posterior
probability at each grid point. To reduce the number of parameters involved in grid
computation, we might treat the less important parameter, such as q, as a "nuisance"
parameter, which is to be represented only by a maximum likelihood estimate. In our
example, the likelihood (L) of q can be formulated as follows:
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The log likelihood (l) is:
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Taking the derivative of the log likelihood function with respect to the parameter, q, then
setting the derivative equal to zero, and solving for q, we obtain the maximum likelihood
estimate of q as:
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10.26

Now we are ready to set a range and an increment for each of the more important
parameters, k and B∞. The range should be large enough to cover all the plausible values
for the parameter, and the increment, which determines the number of grids within the
range, should be reasonably fine. Suppose we define a range for r to be 0.1-0.5 with an
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increment of 0.01, and a range for ∞B  to be 1,000-5,000 with an increment of 100. So
there are 50 grids for each parameter and 502 = 2500 different grid combinations. At each
combination, we simulate the model forward in time over the period for which we have
data, calculating predicted values for the Ui and do the probability calculation. A
computer program is needed to complete this tedious task. The calculation procedure can
be summarized as follows:

(1) let r = 0.1 and ∞B = 1,000;

(2) iteratively use equation 10.22 to calculate iB̂  (assume ∞= BB1
ˆ ), and also

compute ∑
=

n

i
iB

1

2ˆ  and ∑
=

n

i
ii BCPUE

1

2ˆ  (i = 1, 2…n) along the way for

calculation of q;
(3) use equation 10.26 to calculate the maximum likelihood estimate of  q;
(4) use equation 10.23 to calculate iÛ  (i = 1, 2…n);

(5) use equation 10.10 to calculate the variance, ϕ;
(6) calculate likelihood times prior probability (LP) for this value of  r and

∞B  (refer to equation 10.17 or 10.20):
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 (if uniform prior is adopted);

(7) Add this value of LP onto a variable, SP, which stores the total probability
over all the combination of grid values; SP is equivalent to the denominator
of equation 10.18 or 10.21, but calculated in a discrete manner instead;

(8) Take one proper sup-step out of the three:  <1> increment ∞B  by 100 and
let r remain the same value, if ≠∞B 5,000; do the calculation again from
step 2 to 7;  <2> increment r by 0.01 and set ∞B  to 1,000,  if ∞B  = 5,000
and ≠r 0.5, do the calculation again from step 2 to 7;   <3> go to step 9, if
r = 0.5 and ∞B =5,000 (i.e. every grid combination has been evaluated);

(9) Calculate the posterior probability, P(r, ∞B ), for each grid combination:

SP
LP

BrP =∞ ),( , (r = 0.1, 0.11, 0.12…0.5; ∞B = 1,000, 1,100,

1,200…5,000).

The posterior probability matrix derived from the above calculation can be used to
estimate posterior probabilities for primary parameters, which are derived from the
production model parameters. For instance, we want to know the posterior probability
distribution for MSY, which is predicted from the production biomass model. We can set
up a series of MSY “bins”, each representing a narrow range of MSY values, and set up
an array to store the probability for each bin. For combination of each value of  r and
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∞B , estimate MSY (
4

∞=
rB

MSY ), determine which MSY bin this estimate falls into,

and then add the corresponding posterior probability for this combination of r and ∞B ,
P(r, ∞B ),  to the total probability for this bin, stored in the array. After the calculation is
completed for each value of r and ∞B , the posterior probability distribution for MSY is
represented by the probability contained in MSY bins. To have a, say 90%, confidence
interval for the MSY, we could find the confidence bounds simply by chopping off 5% at
each tail of the posterior probability distribution for MSY.

11. An example of setting LRP and TRP

FAO (1993) suggested that a LRP be a deterministic value that participants agree
represents a safe upper limit for exploitation by a fishery when the current rate of
exploitation is known with relatively low precision. It is no longer a target for
management, but helps define a target RP at a lower exploitation level. Because LRPs
are to be avoided, the probability of exceeding the values must, by definition, be very
low. This means that TRP for exploitation rate has to be set considerably lower than the
LRP. Within ICES, the TRP is set in such a way that the probability of exceeding the
LRP will be no greater than 5% in any given year (Serchuk et. al. 1997).

Caddy and McGarvey (1996) suggest that the LRP should be set first. Choosing a
LRP before a TRP leaves open how the TRP might be calculated. This TRP may not be
independently defined by technical criteria. Rather, it can be set according to the level of
management caution and the believed statistical uncertainty in the exploitation rate
estimate. When fishing is aimed at the TRP, the LRP will be exceeded only with a low,
preagreed-upon probability. Caddy and McGarvey (1996) illustrate the approach with
fishing mortality (F). The methodology can be easily extended to other control variables,
such as stock biomass.

Suppose agreement is reached on a maximum limit to the desirable rate of fishing
and we assume this corresponds to Fmsy. This value will be taken as established by
convention without variance. Uncertainty in the F estimate will be substantial for most
fisheries. The estimation error may be assumed to follow normal or log normal
distribution.

The “risk” of overshooting the established LRP, even though the best estimate of
the fishing mortality (Fnow) falls below Fmsy, is quantified as the probability (P(F>Fmsy))
corresponding to the right tail of a normal distribution function lying beyond Fmsy (Fig.
4). The actual current fishing rate may be any value encompassed by the probability
distribution surrounding the best current estimate of Fnow. Therefore, it would be wise to
set the TRP sufficiently below the agreed-upon LRP, Fmsy, so as to allow for an agreed-
upon margin of error (for instance 10%). The narrower the margin of acceptable error,
the lower the TRP should be set. The greater the standard deviation, the lower managers
should set the acceptable risk. Given these assumptions, we seek to find a value for TRP,
that lies safely below Fmsy such that the probability of the actual F being greater than Fmsy
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is small. Caddy and McGarvey (1996) introduced a formula derived by Abramowits and
Stegun (1970), for an approximation solution, accurate to three significant digits:
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The approach does not seem to be heavily distribution specific. The normal
distribution may be not ideal for modelling fishing mortality rates, as it has the defect of
not excluding negative values of F. the lognormal distribution is, thus, intuitively
appealing. However, Caddy and McGarvey (1996) showed that if the acceptable
probability of overshoot is not too low (>= 5%) and CV of error distribution not too large
(CV <= 0.5), a choice between the two common probability distributions for uncertainty
does not strongly affect the outcome.

12. Discussion

As specified by the FAO code of Conduct for Responsible Fisheries (FAO 1995c)
and the UN agreement on Straddling Fish Stock and Highly Migratory Fish Stocks (UN
1995), one operational component of a precautionary management system is to set up a
pair of reference points (RPs). The TRP should be set considerably below the LRP as the
target for fishery exploitation. LRP must not be assumed in any way that it may itself
serves as exploitation rate. LRP should not be approached and definitely not be exceeded.

The reference points (RPs) used in the fisheries management are usually derived
either from some empirical analysis or some sorts of modelling depending on quality of
biological and fisheries information. This paper intends to help people in identifying proper
quantitative or semi-quantitative methods for formulating RPs based on the biological and
fisheries information they have on hand. On the other hand, it also tries to help people in
determining what kinds of data they should collect for formulating certain RPs in a new or
developing fishery. The fitting procedure for each assessment model is reasonably
adequate. Although parameters and RPs can be estimated by following these procedures, it
is always a good idea to read some other related references and source materials, which deal
with the specific assessment methodologies in more detail.

A new or developing marine invertebrate fishery usually lacks adequate
information, such as a time series of catch and fishing effort data or growth and natural
mortality rate, allowing RPs to be formulated from modelling. In these cases, empirical
equations described in section 2 have to be used. Parameter estimates out of these analyses
are rough, but allow the fishery to have an early start or progress. They need to be refined
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later in light of accumulated time series of data collected while the fishery is evolving. It
would also be wise to set reference points in a more precautionary fashion. For instance, a
high variation is to be assumed in using Caddy's method described in section 11 to set a
TRP, which will force the exploitation rate at a low level.

Production modelling is simple and does not require age or stock recruitment data,
which are often lacking in marine invertebrate fisheries. The species most suitable for
production modelling are those which have low natural mortality rates, low recruitment
variability, and high intrinsic rates of increase (Punt 1995). Although some authors have
questioned the use of simple production models in assessments (Morgan 1979, Roff 1983),
Ludwig and Walters (1985) and Punt (1992) demonstrated that biomass production
modelling is not necessarily inferior to the more detailed population modelling, such as age-
structured models, and in some cases it outperforms the age-structured models. The method
of fitting production models is most important in obtaining reliable estimates of parameters
(Hilborn and Walters 1992, Polacheck et al. 1993). They argued that the observation error
time series fitting should always be used, as it provides, in most cases, the least biased
estimates when compared with the equilibrium method or process-error method. The data
requirement is the same for all these three methods. However, the equilibrium method does
not inevitably appear to be less precautionary, as the model performance may depend on
the number of years used for adjust for departure from equilibrium (Laloe 1995). The most
rigorous approach is to fit the production model using all these three methods, then use the
Monte Carlo or bootstrapping simulations to assess the bias in parameters estimation, and
finally to choose the most precautionary and reliable estimates for RPs. If time or resources
do not allow such a rigorous approach, the observation-error method should be used in
favour of the other two methods.

One of the major inherent problems of using fishing effort data in production
modelling is to deal with the change in catchability coefficient, q, especially during a
developing stage of a marine invertebrate fishery, when the fishing experience and
techniques improve quickly. To eliminate this problem, a time-series of total mortality rate
may be used instead of fishing effort (Caddy and Csirke 1983). Total mortality rate can be
estimated by the catch equation, mean length in the catch, length frequency data, etc. An
interesting and seemingly precautionary alternative reference point to MSY (Fmsy) is MBY
(Fmby), the maximum biological yield, which can also be estimated. Various simulations
have shown that Fmby is lower than Fmsy and may be used as a TRP (Die and Caddy 1997).

The dynamic pool assumption of perfect mixing of individual species and random
distribution of fishing effort is particularly weak for sedentary and mobile but territorial
species. This is especially true at early stages of a fishery, which are characterized by
progressive geographical expansion of the fishing grounds. When information on the area
of fishing grounds is available in addition to catch and fishing effort, the areal production
model developed by Die et al. (1990) (see section 6) may be used to formulate RPs, such as
Fmsy, relative to the fishing area. The model described in section 6 assumes no biomass
exchange between exploited and unexploited segments. However, many benthic marine
invertebrates are of metapopulation in nature. When biomass exchange at larval stages is
substantial, this method may not yield reliable estimates.
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For fitting production models with total mortality rate and the areal production
model, only the equilibrium method has been developed and there is no long history of
application. Therefore, whenever possible, results of these methods should be compared
with methods of assessment more commonly in use to ensure that they result in more
precautionary and realistic RPs.

Marine invertebrate species are generally difficult to age. However, some species,
such as shrimps, do not have a long life span and their ages may be derived from length
frequency analysis. When growth or average length at age can be determined, yield per
recruit modelling can be employed to search for a fishing pattern with small risk of growth
over-fishing. To assess the impact of a fishing pattern on recruitment over-fishing,
spawning stock biomass per recruit (SSB per recruit) modelling can be used. The concept of
SSB per recruit is analogous to yield per recruit but examines the question of RPs from a
different perspective. It answers the question of how much biomass from each recruit
should be left rather than should be taken as answered by the yield per recruit modelling.
The RP derived from such an analysis is usually F%spr, a fishing mortality rate resulting in
a certain percentage of the maximum spawning stock biomass per recruit. When stock
and recruitment information are not available, there is no biological basis for selecting one
level of %SPR over another. The amount of biomass which should be left in the stock has
to be determined based on experience from other similar fisheries or even arbitrarily.
Knowledge of stock and recruitment relationships provides a biological and objective way
to determine how much biomass should be left to sustain the population. Absolute stock
and recruitment data are hard to obtain from the field for a marine invertebrate fishery.
They may be generated through virtual population analysis. A more practical way is to
estimate index of SSB and recruits, such as CPUE for the age at recruitment and the ages
for maturity, as described in the paper.

All these models were initially developed and have been mostly used for finfish
fisheries. Advantages and disadvantages of various models are also learned from their
application on finfish fisheries. Therefore, as pointed out by Perry et al. (1999), the
assumptions of these models must be carefully examined to ensure that they are appropriate
for any specific new or developing invertebrate fishery.  It is also worth noting here that all
of the model-based RPs, and the parameters they are derived from, are only known
approximately, often with a poorly defined level of error. In addition, the effect of
environmental change on the stock dynamics is ignored. Thus, it is desirable to set LRPs
and TRPs precautionarily, especially for a new and developing fishery, where the biological
and fisheries information is poor. A RP derived from a modelling or empirical analysis may
need to be adjusted (reduced) by a precautionary (maybe arbitrary) fraction to account for
uncertainties in parameter estimation, input data and environmental changes.

Recommendations:

(1) Move towards developing reference points in invertebrate stock assessments.
(2) Establish pre-agreed management actions which would be implemented

according to the performance of the fishery in relation to the reference points.
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(3) Regular review and updating of the reference points in light of new information.
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Fig. 1. The equilibrium Schaefer model, showing MSY and MBP
(Maximum Biological Production), and corresponding fishing
mortality rate, Fmsy and Fmbp. Note that Fmbp < Fmsy. (Excerpt from
Caddy and Mahon 1995).



42

Fig. 2. Yield per recruit curve, showing the fishing mortality rate, Fmax,
corresponding to the maximum yield per recruit. Also illustrating
the method of defining F0.1 as the point on the yield per recruit
curve at which the slope of the curve is 1/10 of the slope of the
curve at the origin. Note F0.1 < Fmax. (Excerpt from Caddy and
Mahon 1995).
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Fig. 3. Scatter plot of recruits versus spawning stock biomass (left) and
spawning stock biomass per recruit curve (right). Illustrating the
definition of Flow, Fmed and Fhigh and their relationship to spawning
stock biomass per recruit (SPR). (Excerpt from Caddy and Mahon
1995).
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Fig. 4. Illustrating variance in the current best estimate of fishing
mortality, Fnow. Assuming Fmsy as the LRP, the probability that Fnow

is larger than Fmsy is represented by the dark right tail beyond Fmsy

(Excerpt from Caddy and McGarvey 1996).
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Table 1. The reference points (RPs) described in this paper, data needs, modelling requirement, suitability for LRP or TRP, and
bibliographic reference.

RPs Definition Estimation Data Requirement Suita
bility

Reference

Yt Annual yield Yt = Yt-1(1 + g(Bt-1 - Bt-2)/Bt-2) Catch of the previous year and
Biomass (or biomass index)
estimates for previous two
years; g -- "feedback gain", a
value of one or over seems to be
precautionary.

TRP Caddy 1998

MCY Maximum constant yield that is
estimated to be sustainable, with
an acceptable level of risk, at all
probable future levels of biomass.

MCY = 0.25F0.1B0 (For a new
fishery)

F0.1 and B0 (unfished biomass)

If  F0.1 is not available, M may be
used.

TRP Annala 1993

MCY as above MCY = 0.5F0.1Bav (Developed
fishery)

F0.1 and Bav (average historic
recruited biomass). If F0.1 is not
available, M may be used.

TRP Annala 1993

MCY as above MCY = 2/3MSY MSY TRP Annala 1993

MCY as above MCY = cYav Yav  -- average catch over an
appropriate time period

c -- natural variability factor,
ranges between 0.6 and 1.0.

TRP Annala 1993
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Z* Upper limit for total mortality rate

cm

m

LL

LL
KZZ

−
−

=< ∞*
K and ∞L (parameters of the von
Bertalanffy equation).

Lm – length at 50% maturity

Lc -- length of first capture

LRP Die and Caddy
(1997)

Lc Lower limit for length of first
capture

M

LL
KLL m

mc

−
−> ∞ K, ∞L  and Lm (as above)

M – natural mortality rate

LRP Die and Caddy
(1997)

MSY Maximum sustainable yield MSY = xMB0 Natural mortality rate and
unfished biomass.

For LRP, x is set to be 0.2-0.3

LRP

Or

TRP

Gulland (1971),

Beddington and
Cooke (1983)

MSY As above Biomass Production modelling Historical catch and effort data,
catch and total mortality data,

or catch, effort and area data.

LRP Quinn and
Deriso (1999)

Emsy

or

Fmsy

Fishing effort or mortality rate
corresponding to the MSY.

Biomass Production modeling As above LPR Quinn and
Deriso (1999)

MBP Maximum biological production Biomass Production modelling Historical catch and total
mortality data

LRP Die and Caddy
(1997)

Zmbp or
Fmbp

Total or fishing mortality rate
corresponding to MBP

As above As above LRP Die and Caddy
(1997)
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Fmax Fishing mortality rate
corresponding to the maximum
yield per recruit

Yield per recruit modelling Natural mortality rate and growth LRP Quinn and
Deriso (1999)

F0.1 Fishing mortality rate at which the
slope of the yield per recruit curve
as a function of fishing mortality is
10% of that near the origin.

as above as above TRP Quinn and
Deriso (1999)

F%SPR Fishing mortality rate resulting in a
certain percentage of the
maximum spawning stock biomass
per recruit in the stock.

Spawning stock biomass per
recruit modelling

Natural mortality rate, growth
and maturity at each age.

TRP
or
LRP

(Mace and
Sissenwine
1993)

Fmed Fishing mortality rate allowing
recruitment to be more than
sufficient to balance the losses
due to mortality in 50% of the time.

Spawning stock biomass per
recruit modelling and a scatter
plot of spawning stock
biomass (or index) versus
recruitment (or index)

as above plus historical
information on recruitment (or
index) and spawning stock
biomass (or index)

TRP
or
LRP

Jakobsen
(1992)

Flow Fishing mortality rate allowing
recruitment to be more than
sufficient to balance the losses
due to mortality in 90% of the time.

As above as above TRP Jakobsen
(1992)

Fhigh Fishing mortality rate allowing
recruitment to be more than
sufficient to balance the losses
due to mortality in 10% of the time

As above As above LRP Jakobsen
(1992)
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